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Preface

Metaheuristics for Hard Optimization comprises of three parts.
The first part is devoted to the detailed presentation of the four most
widely known metaheuristics:

the simulated annealing method;

the tabu search;

the genetic and evolutionary algorithms;
the ant colony algorithms.

Each one of these metaheuristics is actually a family of methods, of which we
try to discuss the essential elements. Some common features clearly appear
in most metaheuristics, such as the use of diversification, to force the explo-
ration of regions of the search space, rarely visited until now, and the use of
intensification, to go thoroughly into some promising regions. Another com-
mon feature is the use of memory to archive the best encountered solutions.
One common drawback for most metaheuristics still is the delicate tuning of
numerous parameters; theoretical results available by now are not sufficient
to really help in practice the user facing a new hard optimization problem.

In the second part, we present some other metaheuristics, less widespread
or emergent: some variants of simulated annealing; noising method; distrib-
uted search; Alienor method; particle swarm optimization; estimation of dis-
tribution methods; GRASP method; cross-entropy method; artificial immune
systems; differential evolution.

Then we describe some extensions of metaheuristics for continuous op-
timization, multimodal optimization, multiobjective optimization and con-
trained evolutionary optimization. We present some of the existing techniques
and some ways of research. The last chapter is devoted to the problem of the
choice of a metaheuristic; we describe an unifying method called “Adaptive
Memory Programming”, which tends to attenuate the difficulty of this choice.
The delicate subject of a rigorous statistical comparison between stochastic
iterative methods is also discussed.
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Preface

The last part of the book concentrates on three case studies:

the optimization of the 3G mobile networks (UMTS) using the genetic
algorithms. After a brief presentation of the operation of UMTS networks
and of the quantities involved in the analysis of their performances, the
chapter discusses the optimization problem for planning the UMTS net-
work; an efficient method using a genetic algorithm is presented and illus-
trated through one example of a realistic network;

the application of genetic algorithms to the problems of management of the
air traffic. One details two problems of air traffic management for which
a genetic algorithm based solution has been proposed: the first applica-
tion deals with the en route conflict resolution problem; the second one
discusses the traffic management in an airport platform;

constrained programming and ant colony algorithms applied to vehicle
routing problems. It is shown that constraint programming provides a
modelling procedure, making it possible to represent the problems in an
expressive and concise way; the use of ant colony algorithms allows to
obtain heuristics which can be simultaneously robust and generic in nature.

One appendix of the book is devoted to the modeling of simulated anneal-

ing through the Markov chain formalism.

Another appendix gives a complete implementation in C++ language for

robust tabu search method.

Créteil, Evry, Yerdon-les-Bains Johann Dréo
September 2005 Patrick Siarry

Alain Pétrowski
FEric Taillard
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Introduction

Introduction

Everyday, the engineers and the decision makers are confronted with prob-
lems of growing complexity, which emerge in diverse technical sectors, e.g. in
operations research, the design of mechanical systems, image processing, and
particularly in electronics (C.A.D. of electrical circuits, placement and routing
of components, improvement of the performances or the manufacture yield of
circuits, characterization of equivalent schemas, training of fuzzy rule bases
or neural networks ...). The problem to be solved can be often expressed as
an optimization problem. Here one can define an (or several) objective func-
tion, or cost function, that is sought to be minimized or maximized vis-a-vis
all the parameters concerned. The definition of the optimization problem is
often supplemented by the information of constraints. All the parameters of
the adopted solutions must satisfy these constraints, or otherwise these so-
lutions are not realizable. In this book, our interest is focused to a group of
methods, called metaheuristics or meta-heuristics, which include in particu-
lar the simulated annealing method, the evolutionary algorithms, the tabu
search method, the ant colony algorithms ..., available from the 1980s, with
a common ambition: to solve the problems known as of difficult optimization,
as well as possible.

We will see that the metaheuristics are largely based on a common set of
principles, which make it possible to design solution algorithms; the various
regroupings of these principles lead thus to a large variety of metaheuristics.

“Difficult” optimization

Two types of optimization problems can be distinguished: the “discrete” prob-
lems and problems with continuous variables. To be more precise, let us quote
two examples. Among the discrete problems, one can discuss the famous trav-
eling salesman problem: it is a question of minimizing the length of the round
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of a “traveling salesman”, which must visit a certain number of cities, before
turning over to the town of departure. A traditional example of continuous
problem is that of the search for the values to be assigned to the parameters
of a digital model of a process, so that this model reproduces the real behav-
ior observed, as accurately as possible. In practice, one may also encounter
“ mixed problems”, which comprise simultaneously of discrete variables and
continuous variables.

This differentiation is necessary to determine the domain of difficult op-
timization. Indeed, two kinds of problems are referred, in the literature, as
difficult optimization problems (this name is not strictly defined, and bound,
in fact, with regard to the state of the art for optimization):

e certain discrete optimization problems, for which there is no knowledge of
an exact polynomial algorithm (i.e. whose computing time is proportional
to N™, where N is the number of unknown parameters of the problem, and
n is an integer constant). It is the case, in particular, of the problems known
as “N P-difficult”, for which one conjectures that there is no constant n
for which the solution time is limited by a polynomial of degree n.

e certain optimization problems of continuous variables, for which there is no
knowledge of an algorithm enabling to definitely locate a global optimum
(i.e. the best possible solution) and in a completed number of computa-
tions.

There were many efforts carried out for a long time, separately, to solve
these two types of problems. In the field of continuous optimization, there
is thus a significant arsenal of traditional methods used for global optimiza-
tion [Horst and Pardolos, 1995], but these techniques are often ineffective if
the objective function does not possess a particular structural property, such
as convexity. In the field of discrete optimization, a great number of heuris-
tics, which produce solutions close to the optimum, were developed; but the
majority of them were conceived specifically for a given problem.

The arrival of the metaheuristics mark a reconciliation of both domains:
indeed, those apply to all kinds of discrete problems and they can also adapt
to the continuous problems. Moreover, these methods have in common the
following characteristics:

e they are, at least to some extent, stochastic: this approach makes it possible
to counter the combinatorial explosion of the possibilities;

e generally of discrete origin, they have the advantage, decisive in the con-
tinuous case, to be direct, i.e. they do not resort to often problematic
calculations of the gradients of the objective function;

e they are inspired by analogies: with physics (simulated annealing, simu-
lated diffusion. .. ), with biology (evolutionary algorithms, tabu search. . .)
or with ethology (ant colonies, particle swarms. . . );
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e they share also the same disadvantages: difficulties of adjustment of the
parameters of the method and the large computation time.

These methods are not mutually excluded: indeed, in the current state of
research, it is generally impossible to envisage with certainty the effectiveness
of a given method, when it is applied to a given problem. Moreover, the current
tendency is the emergence of hybrid methods, which endeavors to benefit from
the specific advantages of different approaches by combining them. One can
finally underline another richness of the metaheuristics: they lend themselves
to all kinds of extensions. Let us quote, in particular:

e multiobjective optimization [Collette and Siarry, 2003], where it is a ques-
tion of optimizing several contradictory objectives simultaneously;

e multimodal optimization, where one endeavors to locate a whole set of
global or local optima;

e dynamic optimization, which faces temporal variations of the objective
function;

e the recourse to parallel implementations.

These in particular require, for the solution methods, the specific properties
which are not present in all the metaheuristics. We will reconsider this subject,
which offers a means of guiding the user in the choice of a metaheuristic. The
adjustment and the comparison of the metaheuristics are often carried out
empirically, by exploiting analytical sets of test functions, whose global and
local minima are known. We present, as an example, in figure 0.1, the shape
of one of these test functions.
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Fig. 0.1. Shape of the test function F6. (a) one-dimensional representation in the
domain [—100,100], (b) two-dimensional representation in the domain [—10, 10].



4 Introduction
Source of the effectiveness of metaheuristics

To facilitate the discussion, let us consider a simple example of optimization
problem: that of the placement of the components of an electronic circuit.
The objective function to be minimized is the length of connections, and the
unknown factors — called “decision variables” — are the sites of the cir-
cuit components. The shape of the objective function of this problem can
be schematically represented as in the figure 0.2, according to the “configura-
tion”: each configuration is a particular placement, associated with a choice of
value for each decision variable. Let us note that in the entire book — except
otherwise explicitly mentioned — one will seek in the same way to minimize
an objective. When the space of the possible configurations has such a tor-
mented structure, it is difficult to locate the global minimum c¢*. We explain
below the failure of a “classical” iterative algorithm, before commenting on
the advantage that we can gain by employing a metaheuristic.

Trapping of a “classical” iterative algorithm in a local minimum

The principle of a traditional “iterative amelioration” algorithm is the fol-
lowing: one starts from an initial configuration ¢y, which can be selected at
random, or — for example in the case of the placement of an electronic cir-
cuit — can be determined by a designer. An elementary modification is then
tested, often called a “movement” (for example, two components chosen at
random are permuted, or one of them is relocated), and the values of the ob-
jective function are compared, before and after this modification. If the change
led to a reduction in the objective function, it is accepted, and the configura-
tion c¢; obtained, which is a “neighbor” of the preceding one, is used as the
starting point for a new test. In the contrary case, one returns to the preceding
configuration, before making another attempt. The process is made iterative
until any modification makes the result worse. The figure 0.2 shows that this
algorithm of iterative improvement (also indicated as classical method, or de-
scent method) does not lead, in general, to the global optimum, but only to
one local minimum ¢,, which constitutes the best accessible solution taking
the initial assumption into account.

To improve the effectiveness of the method, one can, of course, apply it
several times, with arbitrarily selected different initial conditions, and retain
as final solution the best local minima obtained. However, this procedure
appreciably increases the computing time of the algorithm, and may not find
the optimal configuration for ¢*. The repeated application of descent method
does not guarantee its determination and it is particularly ineffective when
the number of local minima grows exponentially with the size of the problem.

Capability of metaheuristics to be extracted from a local minimum

To overcome the obstacle of the local minima, another idea was demonstrated
to be very profitable, so much so that it is the basic core of all metaheuristics
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A OBJECTIVE
FUNCTION

k] * »
Ci..&Ch ¢ CONFIGURATION

[ [

Fig. 0.2. Shape of the objective function of a difficult optimization problem accord-
ing to the “configuration”.

based on a neighborhood (simulated annealing, tabu method): it is a ques-
tion of authorizing, from time to time, the movements of increase, in other
words to accept a temporary degradation of the situation, during a change
in the current configuration. It is the case if one passes from ¢, to ¢, (see
figure 0.2). A mechanism for controlling the degradations — specific to each
metaheuristic — makes it possible to avoid the divergence of the process.
It consequently becomes possible to be extracted from the trap which repre-
sents a local minimum, to leave to explore another more promising “valley”.
The “distributed” metaheuristics (such as the evolutionary algorithms) also
have mechanisms allowing the departure of a particular solution out of a lo-
cal “well” of the objective function. These mechanisms (as the mutation in
the evolutionary algorithms) affect a solution in hand, in this case, to assist
the collective mechanism to fight against the local minima, that represents
parallel control of a set of “population” of solutions.

Principle of the most widespread metaheuristics

Simulated Annealing

S. Kirkpatrick and his colleagues were specialists in statistical physics (who
were precisely interested in the low energy configurations of disordered mag-
netic materials, gathered under the term of spin glasses). The numerical deter-
mination of these configurations posed frightening problems of optimization,
because the “energy landscape” of a spin glass presents several valleys of un-
equal depths; it is similar to the “landscape” in the figure 0.2. S. Kirkpatrick
et al. [Kirkpatrick et al., 1983] (and independently V. Cerny [Cerny, 1985])
proposed to deal with these problems by taking as a starting point the ex-
perimental technique of the annealing used by the metallurgists to obtain a
“well ordered” solid state, of minimal energy (by avoiding the “metastable”
structures, characteristic of the local minima of energy). This technique con-
sists in carrying material at high temperature, then to lower this temperature
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slowly. To illustrate the phenomenon, we represent in figure 0.3 the effect of
the annealing technique, and that of the opposite technique of the quenching,
on a system of a set of particles.

The simulated annealing method transposes the process of the annealing
to the solution of an optimization problem: the objective function of the prob-
lem, similar to the energy of a material, is then minimized, with the help of
the introduction of a fictitious temperature, which is, in this case, a simple
controllable parameter of the algorithm.

« VISCOUS » STATE

DISORDERED CONFIGURATION OF PARTICLES
HIGH ENERGY OF THE SYSTEM

OC?OO
O

0O o0 o o
5 O

/ AN

annealing technique quenching technique
slow cooling very fast cooling
| CRYSTALLINE SOLID STATE | AMORPHOUS SOLID STATE
global minimum of energy local minimum of energy

eeee 283,

5
Fig. 0.3. Comparison of the techniques of annealing and quenching.

In practice, the technique exploits the Metropolis algorithm, which enables
us to describe the behavior of a thermodynamic system in “equilibrium” at
a certain temperature. On the basis of a given configuration (for example, an
initial placement of all the components), the system is subjected to an elemen-
tary modification (for example, one relocates a component, or one exchanges
two components). If this transformation causes to decrease the objective func-
tion (or energy) of the system, it is accepted . On the other hand, if it causes
an increase 0 F of the objective function, it can also be accepted, but with

a probability e~ *F . This process is then repeated in an iterative manner, by



Introduction 7

keeping the constant temperature, until thermodynamic balance is reached,
concretely at the end of a “sufficient” number of modifications. Then the tem-
perature is lowered, before implementing a new series of transformations: the
law of decrease by stages of the temperature is often empirical, just like the
criterion of program termination.

The flow chart of the simulated annealing algorithm is schematically pre-
sented in the figure 0.4. When it is applied to the problem of the placement
of components, simulated annealing operates a disorder-order transformation,
which is represented in a pictorial manner in the figure 0.5. One can also vi-
sualize some stages of this ordering by applying the method for the placement
of components to the nodes of a grid (see figure 0.6).

The disadvantages of simulated annealing lie on one hand in the “ad-
justments”, like the management of the decrease of the temperature; the user
should have the know-how of “good” adjustments. In addition, the computing
time can become very significant, which led to parallel implementations of the
method. On the other hand, the simulated annealing method has the advan-
tage of being flexible with respect to the evolutions of the problem and easy
to implement. It gave excellent results for a number of problems, generally of
big size.

The Tabu Search method

The method of search with tabus, or simply tabu search or tabu method, was
formalized in 1986 by F Glover [Glover, 1986]. Its principal characteristic is
based on the use of mechanisms inspired by the human memory. The tabu
method takes, from this point of view, a path opposite to that of simulated
annealing, which does not utilize memory at all, and thus is incompetent
to learn the lessons from the past. On the other hand, the modeling of the
memory introduces multiple degrees of freedom, which opposes — even in the
opinion of the author [Glover and Laguna, 1997] — any rigorous mathemati-
cal analysis of the tabu method. The guiding principle of the tabu method is
simple: like simulated annealing, the tabu method at the same time functions
with only one “current configuration” (at the beginning, any solution), which
is updated during successive “iterations”. In each iteration, the mechanism of
passage of a configuration, called s, to the next one, called ¢, comprises of two
stages:

e one builds the set of the neighbors of s, i.e. the set of the accessible con-
figurations in only one elementary movement of s (if this set is too vast,
one applies a technique of reduction of its size: for example, one utilizes a
list of candidates, or one extracts at random a subset of neighbors of fixed
size); let V(s) be the set (or the subset) of these neighbors;

e one evaluates the objective function f of the problem for each configuration
belonging to V(). The configuration ¢, which succeeds s in the series of the
solutions built by the tabu method, is the configuration of V'(s) in which
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PROGRAM

slow
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Fig. 0.4. Flow chart of the simulated annealing algorithm.

f takes the minimal value. Let us note that this configuration ¢ is adopted
even if it is worse than s, i.e. if f(¢) > f(s): due to this characteristic the
tabu method facilitates to avoid the trapping of f in the local minima.

Just as mentioned, the preceding procedure is inoperative, because there is
a significant risk to return to a configuration already retained at the time of
a preceding iteration, which generates a cycle. To avoid this phenomenon, it
requires updating and an exploitation, in each iteration, of a list of prohibited
movements, the “tabu list ”: this list — that gave its name to the method —
contains m movements (¢ — s), which are the opposite of the last m move-
ments (s — t) carried out. The flow chart of this algorithm known as “simple
tabu” is represented in the figure 0.7.
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Fig. 0.5. Disorder-order transformation realized by the simulated annealing applied

to the placement of electronic components.

a:T =25 L="775b: T =20, L =525
¢ T=13,L=460d: T =6, L =425

eT=4,L=260 fT=3,L=200

Fig. 0.6. Evolution of the system at various temperatures, on the basis of an arbi-

trary configuration: L indicates the overall length of connections.
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Fig. 0.7. Flow chart of the simple tabu algorithm.

The algorithm thus models a rudimentary form of memory, the short term
memory of the solutions visited recently. Two additional mechanisms, named
intensification and diversification, are often implemented to also equip the
algorithm with a long term memory.This process does not exploit more the
temporal proximity of particular events, but rather the frequency of their
occurrence, over a longer period. The intensification consists in looking
further into the exploration of certain areas of the solution space, identified
as particularly promising ones. Diversification is on the contrary the periodic
reorientation of the search for an optimum towards areas, seldom visited until
now.

For certain optimization problems, the tabu method gave excellent re-
sults; moreover, in its basic form, the method comprises less parameters of
adjustment than simulated annealing, which makes it easier to use. However,
the various additional mechanisms, like the intensification and diversification,
bring a notable complexity.
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Genetic Algorithms and Evolutionary Algorithms

The evolutionary algorithms (EAs) are the search techniques inspired by the
biological evolution of the species and appeared at the end of the 1950s
[Fraser, 1957]. Among several approaches [Holland, 1962] [Fogel et al., 1966]
[Rechenberg, 1965], the genetic algorithms (GAs) are certainly the most well
known example, following the publication of the famous book by D. E. Gold-
berg [Goldberg, 1989] in 1989: Genetic Algorithms in Search, Optimization
and Machine Learning. The evolutionary methods initially aroused a lim-
ited interest, because of their significant cost of execution. But they have
experienced, for the last ten years, a considerable development, that can be
attributed to the significant increase in the computing power of the com-
puters, and in particular following the development of massively parallel
architectures, which exploit their “intrinsic parallelism” (see for example
[Cohoon et al., 1991], for an application to the placement of components).
The principle of an evolutionary algorithm can be simply described. A set of
N points in a search space, chosen a priori at random, constitutes the initial
population; each individual x of the population has a certain fitness value,
which measures its degree of adaptation to the objective aimed. In the case
of the minimization of an objective function z, the fitness of x will be higher,
if z(x) is smaller. An EA consists in evolving gradually, in successive gener-
ations, the composition of the population, by maintaining its size constant.
During generations, the objective is to overall improve the fitness of the indi-
viduals; such a result is obtained by simulating the two principal mechanisms
which govern the evolution of the living beings, according to the theory of
C. Darwin:

e the selection, which supports the reproduction and the survival of the
fittest individuals,

e and the reproduction, which allows mixing, the recombination and the
variations of the hereditary features of the parents, to form offspring with
new potentialities.

In practice, a representation must be chosen for the individuals of a popu-
lation. Classically, an individual could be a list of integers for combinator-
ial problems, a vector of real numbers for numerical problems in continuous
spaces, a string of binary digits for Boolean problems, or will be able to even
combine these representations in complex structures, if it is required. The pas-
sage from one generation to the next one proceeds in four phases: a phase of
selection, a phase of reproduction (or variation), a phase of fitness evaluation
and a phase of replacement. The selection phase designates the individuals
who take part in the reproduction. They are chosen, possibly several times, a
priori all the more often as they have high fitness. The selected individuals are
then available for the reproduction phase. This one consists in applying varia-
tion operators to copies of the individuals previously selected to generate new
individuals; the operators most often used are crossover (or recombination),
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which produces one or two offspring from two parents, and mutation, which
produces a new individual from only one individual (see, for an example in
figure 0.8). The structure of the variation operators depends largely on the
chosen representation for the individuals. The fitness of the new individuals
are then evaluated, during the evaluation phase, from the objectives speci-
fied. Lastly, the replacement phase consists in selecting the members of the
new generations: one can, for example, replace the lowest fitness individuals
of the population by the best produced individuals, in an equal number. The
algorithm is terminated after a certain number of generations, according to
a termination criterion arbitrarily specified by the user. The principle of an
evolutionary algorithm is represented in figure 0.9.

0011010 1] o011 0i01 1]
1010001 1] [10100/101
two parent individuals two offspring individuals

a Crossover (one point)

00110101 ::>|00110001|

individual before mutation individual after mutation

b Mutation (one single bit)

Fig. 0.8. Examples of crossover and mutation operators, in the case of individuals
represented by 8-bit strings.

Because they handle a population of solution instances, the evolutionary
algorithms are particularly indicated to propose a set of various solutions,
when an objective function comprises several global optima. Thus, they can
provide a sample of trade-off solutions, when solving problems involving sev-
eral objectives, possibly contradictory. These possibilities are more specifically
discussed in chapter 6.
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Fig. 0.9. Principle of an evolutionary algorithm.

Ant Colony Algorithms

This approach, proposed by Colorni, Dorigo and Maniezzo [Colorni et al.,
1992], endeavors to simulate the collective capability to solve certain problems,
as observed in a colony of ants, whose members are individually equipped
with very limited faculties. Ants came to existence on earth over 100 million
years ago and they are indeed one of the most prosperous species: 10 million
billion individuals, living everywhere on the planet. Their total weight is of
the same order of magnitude as that of the humans! Their success raises
many questions. In particular, the entomologists analyzed the collaboration
which is established between the ants in seeking food outside the anthill. It
is remarkable that the ants always follow the same path, and this path is
the shortest possible one. This control is the result of a mode of indirect
communication, via the environment: the “stigmergy”. Each ant deposits,
along its path, a chemical substance, called “pheromone”. All the members of
the colony perceive this substance and preferentially direct their walk towards
the more “odorous” areas.

It results particularly in a collective faculty to find the shortest path
quickly, if this one is blocked fortuitously by an obstacle (see figure 0.10).
While this behavior was taken as a starting point to model the algorithm,
Dorigo et al. proposed a new algorithm for the solution of the traveling sales-
man problem. Since this research work, the method was extended to many
other optimization problems, some combinatorial and some continuous.

The ant colony algorithms have several interesting characteristics; to men-
tion in particular high intrinsic parallelism, flexibility (a colony of ants is able
to adapt to modifications of the environment), robustness (a colony is ready to
maintain its activity even if some individuals are failing), the decentralization
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(a colony does not obey a centralized authority) and the self-organization (a
colony finds itself a solution, which is not known in advance). This method
seems particularly useful for the problems which are distributed in nature,
problems of dynamic evolution, which require a strong fault-tolerance. At this
stage of development of these recent algorithms, the transposition with each
optimization problem is not however trivial : it must be the subject of a spe-
cific treatment, which can be difficult. ..

Q = *% T
N ¥

Fig. 0.10. Faculty of an ant colony to find the shortest path, fortuitously blocked
by an obstacle.

1. The real ants follow a path between the nest and a source of food.

2. An obstacle appears on the path, the ants choose to turn on the left or right, with
equal probabilities; the pheromone is deposited more quickly on the shortest path.

3. All the ants chose the shortest path.

Other metaheuristics

Whether they are the variants of the most famous methods or not, they
are legions. The interested reader can refer to the chapter 5 of this book
and three other recent books: [Reeves, 1995], [Sait and Youssef, 1999] and
[Pham and Karaboga, 2000]; each one of them is devoted to several meta-
heuristics.

Extensions of the metaheuristics

We review some of the extensions, which were proposed to face characteristics
of optimization.
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Adaptation for the problems with continuous variables

These problems, by far the most current ones in engineering, evoke less inter-
est among the specialists in informatics ... The majority of metaheuristics,
of combinatorial origin, are however adapted to the continuous case, which
assumes in particular the recourse to a discretization strategy of the variables.
The discretization step must adapt in the course of optimization, to guaran-
tee at the same time the regularity of the progression towards the optimum
and the precision of the result. Our proposals relating to simulated anneal-
ing, the tabu method and GAs are described in [Siarry and Berthiau, 1997],
[Chelouah and Siarry, 2000a] and [Chelouah and Siarry, 2000Db].

Multiobjective optimization

More and more problems require the simultaneous consideration of several
contradictory objectives. There does not exist, in this case, a single optimum;
one seeks, on the other hand, a range of solutions “Pareto optimal”, which
form the “trade-off surface ” for the problem considered. These solutions can
be subjected to the final arbitration of the user. The principal methods of
multiobjective optimization (either using a metaheuristic, or not) and some
applications, in particular in telecommunication, were presented in the book
[Collette and Siarry, 2003].

Hybrid methods

Fast success of metaheuristics is due to the difficulties encountered by the
traditional optimization methods in the complex engineering problems. Af-
ter the initial success of using such or such metaheuristic, the time came
to make a realistic assessment and to accept the complementary nature of
these new methods, between themselves like between other approaches: from
where we saw the current emergence of hybrid methods (see for example
[Renders and Flasse, 1996]).

Multimodal optimization

The purpose is to determine a whole set of optimal solutions, instead of a
single optimum. The evolutionary algorithms are particularly well adapted to
this task, because they handle a population of solutions. The variants of the
“multipopulation” type exploit in parallel several populations, which endeavor
to locate different optima.

Parallelization

Multiple modes of parallelization were proposed for the different metaheuris-
tics. Certain techniques were desired to be generalized; others, on the other
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hand, benefit from characteristics of the problem. Thus, in the problems of
placement of components, the tasks can be naturally distributed between sev-
eral processors: each one of them is responsible to optimize a given geographi-
cal area and information is exchanged periodically between nearby processors
(see for example [Sechen, 1988] and [Wong et al., 1988]).

Place of metaheuristics in a classification of the
optimization methods

In order to recapitulate the preceding considerations, we propose in figure 0.11
a general classification of the mono-objective optimization methods, already
published in [Collette and Siarry, 2003]. One finds, in this graph, the principal
distinctions made above:

e initially, the combinatorial and the continuous optimizations are differen-
tiated;

e for combinatorial optimization, one can approach different methods, when
one is confronted with a difficult problem; in this case, the choice is some-
times possible between “specialized” heuristics, entirely dedicated to the
problem considered, and a metaheuristic;

e for continuous optimization, one summarily separates the linear case
(which is concerned in particular with the linear programming) from the
non-linear case, where the framework for difficult optimization can be
found. In this case, a pragmatic solution can be to resort to the repeated
application of a local method which exploits, or not, the gradients of the
objective function. If the number of local minima is very high, the recourse
to a global method is essential: those metaheuristics are then found, which
offer an alternative to the traditional methods of global optimization, those
requiring the restrictive mathematical properties of the objective function;

e among the metaheuristics, one can differentiate the metaheuristics “of
neighborhood”, which make progress by considering only one solution at a
time (simulated annealing, tabu search ...) from the “distributed” meta-
heuristics, which handle in parallel a complete population of solutions
(genetic algorithms ... );

e finally, the hybrid methods often associate a metaheuristic with a local
method. This co-operation can take the simple form of a passage of relay
between the metaheuristic and the local technique, with the objective to
refine the solution. But the two approaches can also be intermingled in a
more complex way.

Applications of the metaheuristics

The metaheuristics are from now on regularly employed in all the sectors of
engineering, such that it is not possible to draw up an inventory of the ap-
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plications here. Several examples will be described in the chapters devoted to
different metaheuristics. Moreover, the last part of this book is devoted to the
detailed presentation of three case studies, in the fields of telecommunications,
the air traffic and the vehicle routing.

An open question: the choice of a metaheuristic

This presentation should not elude the principal difficulty with which the en-
gineer is confronted, in the presence of a concrete optimization problem: that
of the choice of an “efficient” method, able to produce an “optimal” solution
— or of acceptable quality — at the cost of a “reasonable” computing time.
Compared to this pragmatic concern of the user, the theory is not yet of a great
help, because the convergence theorems are often non-existent, or applicable
under very restrictive assumptions. Moreover, the “optimal” adjustment of
the various parameters of a metaheuristic which can be recommended the-
oretically, is often inapplicable in practice, because it induces a prohibitive
computing cost. Consequently, the choice of a “good” method, and the ad-
justment of the parameters of this one, generally calls upon the know-how and
the “experience” of the user, rather than the faithful application of well laid
down rules. The efforts of research in progress, for example the analysis of the
“energy landscape” or the development of a taxonomy of the hybrid methods,
aim at rectifying this situation, perilous in the long term for the credibility of
the metaheuristics. . .. Nevertheless, we will try to outline, in the chapter 7 of
this book, a technique of assistance for the selection of a metaheuristic.

Plan of the book

The book comprises of three parts.
The first part is devoted to the detailed presentation of the four more
widely known metaheuristics:

the simulated annealing method,;
tabu search;

the evolutionary algorithms;

ant colony algorithms.

Each one of these metaheuristics is actually a family of methods, of which we
try to discuss the essential elements.

In the second part, we present some other metaheuristics, less widespread
or emergent. Then we describe the extensions of metaheuristics (continuous
optimization, multiobjective optimization...) and some ways of search.

Lastly, we consider the problem of the choice of a metaheuristic and we
describe two unifying methods which tend to attenuate the difficulty of this
choice.
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Introduction

The last part concentrates on three case studies:

the optimization of the 3G mobile networks (UMTS) using the genetic
algorithms. This chapter is written by Sana Ben Jamaa, Zwi Altman,
Jean-Marc Picard and Benoit Fourestié of France Télécom R&D;

the application of genetic algorithms to the problems of management of the
air traffic. This chapter is written by Nicolas Durand and Jean-Baptiste
Gotteland, of the National School of the Civil Aviation (E.N.A.C.);
constraint programming and ant colony algorithms applied to problems
of vehicle routing. This chapter is written by Sana Ghariani and Vincent
Furnon, of ILOG.
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Fig. 0.11. General classification of the mono-objective optimization methods.



Part 1

Presentation of the Main Metaheuristics



1

Simulated Annealing

1.1 Introduction

The complex structures of the configuration space of a difficult optimization
problem (as shown in the figure 0.2 of the foreword) inspired to draw analo-
gies with physical phenomena, which led three researchers of IBM society
— S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi — to propose in 1982, and to
publish in 1983, a new iterative method: the simulated annealing technique
[Kirkpatrick et al., 1983], which can avoid the local minima. A similar work,
developed independently at the same time by V. Cerny [Cerny, 1985], was
published in 1985.

Since its discovery, the simulated annealing method has proved its effec-
tiveness in various fields such as the design of the electronic circuits, the image
processing, the collection of the household garbage, or the organization of the
data-processing network of French Loto... On the other hand it has been
found too greedy or incapable of solving certain combinatorial optimization
problems, which could be solved better by some specific heuristics.

This chapter starts with initially explaining the principle of the method,
with the help of an example of the layout problem of an electronic circuit.
This is followed by a simplified description of some theoretical approaches of
simulated annealing, which underlines its strong points (conditional guaran-
teed convergence towards a global optimum) and its weak points (tuning of
the parameters, which can be delicate in practice). Then various techniques
of parallelization of the method are discussed. This is followed by the pre-
sentation of some applications. In conclusion, we recapitulate the advantages
and the most significant drawbacks of simulated annealing. To conclude, we
put forth some simple practical suggestions, intended for those users who plan
to develop their first application based on simulated annealing. In appendix
A of this book, we recapitulate the main results of the simulated annealing
modeling based on Markov chains.

This chapter partly presents a summary of the synthesis book carried out
on the simulated annealing technique [Siarry and Dreyfus, 1989], which we
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published in the beginning of 1989; this presentation is properly augmented
by mentioning the more recent developments [Siarry, 1995, Reeves, 1995]. The
references mentioned in the text were selected either because they played a
significant role, or because they illustrate a precise point of the discussion. A
much more exhaustive bibliography — although old — can be found in the
works [Siarry and Dreyfus, 1989, Van Laarhoven and Aarts, 1987]
[Wong et al., 1988, Sechen, 1988] and in the article [Collins et al., 1988] pub-
lished on the subject. Interested readers are also requested to go through the
elaborate presentations of simulated annealing which appeared in the article
[Pirlot, 1992] and in chapter 2 of the book [Reeves, 1995].

1.2 Presentation of the method

1.2.1 Analogy between an optimization problem and some
physical phenomena

The idea of simulated annealing can be illustrated by a vision inspired by the
layout problem and routing of the electronic circuits: let us assume that a rel-
atively inexperienced electronics specialist randomly spread the components
on a plane, and connections were established as indicated in figure 0.4a of the
foreword.

It is clear that the solution obtained is an unacceptable one. The purpose of
developing a layout-routing program is to transform this disordered situation
to lead to an ordered electronic circuit diagram (figure 0.4b of the foreword),
where all connections are rectilinear, components are aligned and placed so as
to minimize the length of the connections. In other words, this program must
carry out a disorder-order transformation which, on the basis of a “liquid of
components”, leads to an ordered “solid”.

However such a transformation occurs spontaneously in nature if the tem-
perature of a system is gradually lowered; there are computer based digital
simulation techniques available, which exhibit the behavior of sets of particles
in interaction according to the temperature. In order to apply these tech-
niques to the optimization problems, an analogy can be established which is
presented in table 1.1.

To lead a physical system to a low energy state, the physicists generally
use the annealing technique: we will examine how this method of treatment

Table 1.1. Analogy between an optimization problem and a physical system.

l Optimization problem [ physical system

objective function free energy
parameters of the problem |“coordinates” of the particles
find a “good” configuration | find the low energy states
(even optimal configuration)
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of materials (real annealing) is helpful to deal with an optimization problem
(simulated annealing).

1.2.2 Real annealing and simulated annealing

To modify the state of a material, the physicists have an adjustable parameter:
the temperature. To be specific, annealing is a strategy where an optimum
state can be approached by controlling the temperature. To have a deeper
understanding, let us consider the example of the growth of a monocrystal.
The annealing technique consists in heating a material beforehand to impart
high energy to it. Then the material is cooled slowly, by keeping at each stage
a temperature of sufficient duration; if the decrease in temperature is too fast,
it may cause defects which can be eliminated by local reheating. This strategy
of a controlled decrease of the temperature leads to a crystallized solid state,
which is a stable state, corresponding to an absolute minimum of energy. The
opposite technique is that of the quenching, which consists in very quickly
lowering the temperature of the material: this can lead us to an amorphous
structure, a metastable state that corresponds to a local minimum of energy.
In the annealing technique the cooling of a material caused a disorder-order
transformation, while the quenching technique was responsible in solidifying
a disordered state.

The idea to use the annealing technique in order to deal with optimiza-
tion problems gave rise to the simulated annealing technique. It consists in
introducing a control parameter in optimization, which plays the role of the
temperature. The “temperature” of the system to be optimized must have
the same effect as the temperature of the physical system: it must condition
the number of accessible states and lead towards the optimal state, if the
temperature is lowered gradually in a slow and well controlled manner (as in
the annealing technique) and towards a local minimum if the temperature is
lowered abruptly (as in the quenching technique).

To conclude, we have to describe the algorithm in such a way that will
enable us to implement the annealing in a computer.

1.2.3 Simulated annealing algorithm

The algorithm is based on two results of statistical physics.

On one hand, when thermodynamic balance is reached at a given tem-
perature, the probability for a physical system to have a given energy F, is
proportional to the Boltzmann factor: e’miET, where kp denotes the Boltz-
mann constant. Then, the distribution of the energy states is the Boltzmann
distribution at the temperature considered.

In addition, to simulate the evolution of a physical system towards its
thermodynamic balance at a given temperature, the Metropolis algorithm
[Metropolis et al., 1953] can be utilized: on the basis of a given configuration
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(in our case, an initial layout for all the components), the system is subjected
to an elementary modification (for example, a component is relocated, or two
components are exchanged); if this transformation causes a decrease in the
objective function (or “energy”) of the system, it is accepted; on the contrary,
if it causes an increase AE of the objective function, it is also accepted,
but with a probability e (in practice, this condition is realized in the
following manner: a real number is drawn at random ranging between 0 and
1, and the configuration causing a AE degradation in the objective function
is accepted, if the random number drawn is lower than or equal to e#).
By repeatedly observing this Metropolis rule of acceptance, a sequence of
configurations is generated, which constitutes a Markov chain (in a sense that
each configuration depends on only that one which immediately precedes it).
With this formalism in place, it is possible to show that, when the chain is of
infinite length (in practical consideration, of “sufficient”length. .. ), the system
can reach (in practical consideration, can approach) thermodynamic balance
at the temperature considered: in other words, this leads us to a Boltzmann
distribution of the energy states at this temperature.

Hence the role entrusted to the temperature by the Metropolis rule is well
understood . At high temperature, e~ is close to 1, therefore the majority
of the moves are accepted and the algorithm becomes equivalent to a simple
random walk in the configuration space . At low temperature, e=T" is close to
0, therefore the majority of the moves increasing energy is refused. Hence the
algorithm reminds us of a classical iterative improvement. At an intermediate
temperature, the algorithm intermittently authorizes the transformations that
degrade the objective function: hence it leaves a scope for the system to be
pulled out of a local minimum.

Once the thermodynamic balance is reached at a given temperature, the
temperature is lowered © slightly”, and a new Markov chain is implemented
at this new temperature stage (if the temperature is lowered too quickly, the
evolution towards a new thermodynamic balance is slowed down: the theory
establishes a narrow correlation between the rate of decrease of the tempera-
ture and the minimum duration of the temperature stage). By comparing the
successive Boltzmann distributions obtained at the end of the various temper-
ature stages, a gradual increase in the weight of the low energy configurations
can be noted: when the temperature tends towards zero, the algorithm con-
verges towards the absolute minimum of energy. In practice, the process is
terminated when the system is “solidified” (it means that either the temper-
ature reached the zero value or no more moves causing increase in energy
were accepted during the stage). The flow chart of the simulated annealing
algorithm has been presented in figure 0.4 of the foreword.
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1.3 Theoretical approaches

The simulated annealing algorithm gave rise to many theoretical works be-
cause of the two following reasons: on one hand, it was a new algorithm, for
which it was necessary to establish the conditions of convergence; in addition,
the method comprises of many parameters as well as variations, whose effect
or influence on the mechanism should be properly understood, if one wishes
to implement this method with maximum effect.

These approaches, specially those which appeared during the initial years of
the formulation, are presented in detail in the book [Siarry and Dreyfus, 1989].
Here, we keep ourselves focused to emphasize on the principal aspects treated
in the literature. The theoretical convergence of simulated annealing is ana-
lyzed first. Then those factors which are influential in the operation of the
algorithm are analyzed in detail: the structure of the configuration space, the
acceptance rules and the annealing program.

1.3.1 Theoretical convergence of simulated annealing

Many noted mathematicians have invested their research efforts in the
convergence of the simulated annealing (see in  particular
[Aarts and Van Laarhoven, 1985, Hajek, 1988, Hajek and Sasaki, 1989]) or
some of them even endeavored to develop a general model for the
analysis of the stochastic methods for global optimization (notably
[Rinnooy Kan and Timmer, 1987a, Rinnooy Kan and Timmer, 1987b]). The
main outcome of these theoretical studies is the following: under certain con-
ditions (discussed later), simulated annealing probably converges towards a
global optimum, in a sense that it is made possible to obtain a solution ar-
bitrarily close to this optimum, with a probability arbitrarily close to unity.
This result is, in itself, significant because it distinguishes simulated annealing
from other metaheuristic competitors, whose convergence is not guaranteed.

However, the establishment of the “conditions of convergence” is not
unanimously accepted. Some of these, like those proposed by Aarts et al.
[Aarts and Van Laarhoven, 1985], are based on the assumption of decreasing
the temperature in stages. This property enables to represent the optimiza-
tion process in the form of completely connected homogeneous Markov chains,
whose asymptotic behavior can be simply described. It has also been shown
that the convergence is guaranteed provided that on one hand the reversibil-
ity is respected (the opposite change of any change allowed must also be
allowed) and on the other hand the connectivity (any state of the system can
be reached starting from any other state with the help of a finite completed
number of elementary changes) of the configuration space is also maintained.
This formalization presents two advantages:

e it enables us to legitimize the lowering of the temperature in stages, which
improves the convergence speed of the algorithm;
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e it enables us to establish that a “good” quality solution (located signifi-
cantly close to the global optimum) can be obtained by simulated annealing
in a  polynomial time, for certain = NP-hard  problems
[Aarts and Van Laarhoven, 1985].

Some of the other authors, Hajek et al. [Hajek, 1988, Hajek and Sasaki, 1989]
in particular, were interested in the convergence of the simulated anneal-
ing within the more general framework of the theory of the inhomogeneous
Markov chains. In this case, the asymptotic behavior was the more sensitive
aspect of study. The main result of this work is the following: the algorithm
converges towards a global optimum with a probability of unity if, when time
t tends towards infinity, the temperature T'(¢) does not decrease more quickly
than the expression Tog (D) where C' is a constant, related to the depth of the
“energy wells” of the problem. It should be stressed that the results of this
theoretical work, till now, are not sufficiently generalized and unanimous to
be used as a guide for the experimental approach, when one is confronted with
a new problem. For example, the logarithmic law of decrease of the tempera-
ture, recommended by Hajek, is not used in practice for two major reasons:
on one hand it is generally impossible to evaluate the depth of the energy
wells of the problem, on the other hand this law introduces an unfavorable
increase in computing time. ..

This analysis is now prolonged by careful, individual examination of the
various components of the algorithm.

1.3.2 Configuration space

The configuration space plays a fundamental role in the effectiveness of the
simulated annealing technique to solve a complex optimization problem. It
is equipped with a “topology”, originating from the concept of proximity
between two configurations: the “distance” between two configurations repre-
sents the minimum number of elementary changes required to pass from one
configuration to the other. Moreover, there is an energy associated with each
configuration, so that the configuration space is characterized by an “ energy
landscape”. All the difficulties of the optimization problem lie in the fact that
the energy landscape comprises of a large number of valleys of varying depth,
possibly relatively close to each other, which correspond to local minima of
energy.

It is clear that the shape of this landscape is not specific to the problem
under study, but to a large extent depends on the choice of the cost function
and the choice of the elementary changes. On the other hand, the required final
solution i.e. the global minimum (or one of the global minima of comparable
energy) must depend primarily on the nature of the problem considered, and
not (or very little) on the preceding choices. We showed, with the help of an
example problem of placement of building blocks, considered specifically for
this purpose, that an apparently difficult problem can be largely simplified,
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either by widening the allowable configuration space, or by choosing a better
adapted topology [Siarry and Dreyfus, 1989)].

Several authors endeavored to establish general analytical relations be-
tween certain properties of the configuration space and the convergence of sim-
ulated annealing. In particular, some of these works were directed towards the
analysis of the energy landscapes, and they searched to develop any link be-
tween the “ultrametricity” and simulated annealing
[Kirkpatrick and Toulouse, 1985, Rammal et al., 1986, Solla et al., 1986]: the
simulated annealing method would be more effective for those optimization
problems whose low local minima (i.e. the required solutions) form an ultra-
metric set. Thereafter, G.B. Sorkin [Sorkin, 1991] showed that certain fractal
properties of the energy landscape induce a polynomial convergence of simu-
lated annealing; such an explanation was provided by the author on the basis
of the effectiveness of the method in the field of the electronic circuit lay-
outs. In addition, Azencott et al. [Azencott, 1992] utilized the “theory of the
cycles” (originally developed in the context of the dynamic systems) to estab-
lish general explicit relations between the geometry of the energy landscape
and the expected performances of simulated annealing. This work led them
to propose the “method of the distortions” for the objective function, which
significantly improved the quality of the solutions for certain difficult prob-
lems [Delamarre and Virot, 1998]. However, all these approaches of simulated
annealing are still in a nascent stage, and their results are not yet generalized.

Lastly, another aspect of immediate practical interest relates to the adapta-
tion of the simulated annealing for the solution of the continuous optimization
problems [Siarry, 1994, Courat et al., 1994]. This subject is examined more in
detail in chapter 6 of this book. Here, we put stress only on the transfor-
mations necessary to graduate from the “combinatorial simulated annealing”
to the “ continuous simulated annealing”. Indeed, the method was originally
developed for application in the domain of the combinatorial optimization
problems, where the free parameters can take discrete values only. In the
majority of these types of problems encountered in practice, topology is con-
sidered almost always as data for the problem: for example, in the traveling
salesman problem, the permutation of two cities is a natural way to generate
the rounds close to a given round. It is the same in the layout of the compo-
nents for the exchange of two blocks. On the other hand, when the objective is
to optimize a function of continuous variables, the topology has to be updated.
This gives rise to the concept of “adaptive topology”: here the length of the
elementary steps is not imposed any more by the problem. This choice must
be dictated by a compromise between two extreme situations: if the step is too
small, the program explores only a limited region of the configuration space;
the cost function is then improved very often, but in negligible amount. On
the contrary, if the step is too large, the tests are accepted only seldom, and
they are almost independent of each other. We will examine in the chapter
6 some of the published algorithms , which are generally developed utilizing
an empirical step. From the point of mathematical interest, it is necessary to
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underline the work of L Miclo [Miclo, 1991], which was directed towards the
convergence of the simulated annealing in the continuous case.

1.3.3 Rules of acceptance

The principle of simulated annealing requires that one accepts, occasionally
and under the control of the “temperature”, an increase in the energy of the
current state, which enables it to be pulled out of a local minimum. The rule
of acceptance generally used is the Metropolis rule described in section 1.2.3.
It possesses an advantage that it originates directly from statistical physics.
There are however several variations of this rule [Siarry and Dreyfus, 1989],
which can be more effective from the point of view of the computing time.

Another aspect can be the examination of the following problem: at low
temperature the rate of acceptance of the algorithm becomes very low, hence
the method is ineffective. It is a well-known problem encountered in simulated
annealing, which can be solved by substituting the traditional Metropolis
rule with an accelerated alternative, called “thermostat” [Siarry and Dreyfus,
1989], as soon as the rate of acceptance falls too low. In practice, this method-
ology is rarely employed.

1.3.4 Annealing scheme

The convergence speed of the simulated annealing methodology depends pri-
marily on two factors: the configuration space and the program of annealing.
With regard to the configuration space, the effects on convergence of topology
and the shape of the energy landscape were described above. Let us discuss
the influence of the “program of annealing”: it addresses the problem of con-
trolling the “temperature” as well as the possibility of a system to reach, as
quickly as possible, a solution. The program of annealing must specify the
following values of the control parameters of the temperature:

the initial temperature;

the length of the homogeneous Markov chains, i.e. the criterion for change
of temperature stage;

the law of decrease of the temperature;

the criterion for program termination.

In the absence of general theoretical results, which can be readily exploited,
the user has to take resort to an empirical adjustment of these parameters.
For certain problems, the task is even complicated by the great sensitivity of
the result (and the computing time) to this adjustment. This aspect — that
unites simulated annealing with other metaheuristics — is an indisputable
disadvantage of this method.

To elaborate the subject a little more, we deliberate on the characteristic
of the program of annealing which drew most attention: the law of decrease
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Fig. 1.1. Lowering of the temperature according to the number of stages for the
geometrical law and several traditional laws.

of the temperature. The geometrical law of decrease: Tjy1 = - Tk, @ =
constant, is a widely accepted one, because of its simplicity. An alternative
solution, potentially more effective, consists in resorting to an adaptive law of
the form: Tyy1 = a(Tx) Tk, but it is then necessary to exercise a choice among
several laws suggested in the literature. One can show, however, that several
traditional adaptive laws, having quite different origins and mathematical
expressions are, in practice, equivalent (see figure 1.1), and can be expressed
in the following generic form:

Tyyr = (1_Tk'JA2((,§:Z))) T

where:

o* (Te) = (J3,) = (fn.)",
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f denotes the objective function,
A(Ty) depends on the adaptive law selected.

The simplest adjustment, A (Ty) = constant, can then be made effective,
although it does not correspond to any of the traditional laws.

Due to the inability in synthesizing the results (theoretical and experi-
mental) showing some disparities presented in the literature, the reader is
redirected to the paragraph 1.7, where we propose a suitable tuning algo-
rithm for the four parameters of the program of annealing, which can often
be useful, at least to start with.

Those readers who are interested in the mathematical modeling of simu-
lated annealing are advised to refer to the appendix A at the end of this book:
the principal results produced by the Markov formalism are described there.

1.4 Parallelization of the simulated annealing algorithm

Often, the computing time becomes a critical factor in the economic evalua-
tion of the utility of a simulated annealing technique, for applications in real
industrial problems. To reduce this time, a promising research direction is
the parallelization of the algorithm, which consists in simultaneously carrying
out several calculations necessary for its realization. This step can be consid-
ered in the context of the significant activities which have developed around
the algorithms and architectures of parallel computation for quite some time
now. However, this may appear paradoxical, because of the sequential struc-
ture of the algorithm. Nevertheless, several types of parallelization have been
considered to date. A book [Azencott, 1992] has been published which was
completely devoted to this direction; it has described at once the rigorous
mathematical results available and the simulation results, executed on par-
allel or sequential computers. To have a concrete idea, we shall describe the
idea behind two principal modes of parallelization, which are independent of
the problem dealt with and were suggested very soon after the invention of
simulated annealing. The distinction of these two modes remains relevant to
date, as has been shown in the recent status of the state of the art described
by Delamarre and Virot in [Delamarre and Virot, 1998].

The first type of parallelization [Aarts et al., 1986] consists in implement-
ing several Markov chain computations in parallel, by using K elementary
processors. To implement this, the algorithm is decomposed into K elemen-
tary processes, constituting K Markov chains. If L be the length of these
Markov chains, assumed constant, each chain is divided into K sub-chains
of length % The first processor executes the first chain at the initial tem-
perature, and implements the first % elements of this chain (i.e. the first
sub-chain); then it calculates the temperature of the following Markov chain,
starting from the states already obtained. The second elementary processor
then begins executing the second Markov chain at this temperature, starting
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from the final configuration of the first sub-chain of the first chain. During
this time, the first processor begins the second sub-chain of the first chain.
This process continues for the K elementary processors. It has been shown
that this mode of parallelization — described in more detail in the reference
[Siarry and Dreyfus, 1989] — allows to divide the total computing time by a
factor K, if K is small compared to the total number of Markov chains carried
out. However, the procedure presents a major disadvantage: its convergence
towards an optimum is not guaranteed. Indeed, the formalism of the Markov
chains enables to establish that the convergence of simulated annealing is as-
sured provided that the distribution of the states, at the end of each Markov
chain, is close to the stationary distribution. In the case of the algorithm de-
scribed, this proximity is not established at the end of each sub-chain, and
larger the number K of the processors in parallel, larger is the deviation from
the proximity.

The second type of parallelization [Kravitz and Rutenbar, 1987]
[Roussel-Ragot et al., 1990] consists in carrying out the computation in par-
allel for several states of the same Markov chain, while the following condition
must always be kept in mind: at a low temperature, the number of elemen-
tary transformations rejected becomes very important; it is thus possible to
consider that these moves are produced by independent elementary processes,
which may likely be implemented in parallel. Then the computing time can
be divided approximately by the number of processes. A strategy consists
in subdividing the algorithm into K elementary processes, each of which is
responsible to calculate the energy variations corresponding to one or more
elementary moves, and to carry out the corresponding Metropolis tests. Two
operating modes are considered:

e at “high temperature”, a process corresponds to only one elementary move.
Each time K elementary processes were implemented in parallel, one can
randomly choose a transition among those which were accepted, and the
memory, containing the best solution known, is updated with the new
configuration;

e at “low temperature”, the accepted moves become very rare: less than one
transition is accepted for K moves carried out. Each process then consists
in calculating the energy variations corresponding to a succession of dis-
turbances, until one of them is accepted. As soon as any of the processes
succeeds, the memory is updated.

These two operating modes can ensure a behavior, and in particular a
convergence, which is strictly identical to those of the sequential algorithms.
This type of parallelization was tested by experimenting on the optimization
problem of the placement of connected blocks [Roussel-Ragot et al., 1990].
We estimated the amount of computing time saved in two cases: the place-
ment of presumed point blocks in predetermined sites and the placement of
real blocks on a plane. With 5 elementary processes in parallel, the saving
in computing time lies between 60 % and 80 %, according to the program of
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annealing used. This work was then continued, within the scope of the thesis
work of P. Roussel-Ragot [Roussel-Ragot, 1990], by considering a theoretical
model, which was validated by programming the simulated annealing using a
network of “Transputers”.

In addition to these two principal types of parallelization of simulated
annealing, which should be applicable for any optimization problem, other
methods were proposed to deal with specific problems. Some of these prob-
lems are problems of placement of electronic components, problems of image
processing and problems of meshing (for the finite element method). In each
of these three cases, information is distributed in a plane or in space, and
each processor can be entrusted with the task to optimize the data pertaining
to a geographical area by simulated annealing; here information is exchanged
periodically between the neighboring processors.

Another step was planned to reduce the cost of synchronizations between
the processors: the algorithms known as “asynchronous” agree to calculate the
energy variations starting from partially out-of-date data. However it seems
very complex and sensitive to control the admissible error, except for certain
particular problems [Durand and White, 1991].

As an example, let us describe the asynchronous parallelization technique,
suggested by Casotto et al. [Casotto et al., 1987] to deal with the problem of
the placement of electronic components. The method consists in distributing
the components to be placed in K independent groups, respectively assigned
to K processors. Each processor applies the simulated annealing technique to
seek the optimal site for the components that belong to its group. The proces-
sors function in parallel, and in an asynchronous manner to each other. All of
them have access to a common memory, which contains the current state of the
circuit plan. When a processor plans to exchange the position of a component
of its group with that of an affected component in another group pertaining
to another processor, it temporarily blocks the activity of this processor. It
is clear that the asynchronous working of the processors involves errors, in
particular in the calculation of the overlapping between the blocks, and thus
in the evaluation of the cost function. In fact, when a given processor needs to
evaluate the cost of a move (translation or permutation), it will search, in the
memory, the current position of all the components of the circuit . However the
information collected is partly erroneous, since certain components are in the
course of displacement, because of activities of the other processors. In order
to limit these errors, the method is supplemented by the two following provi-
sions. On one hand, the distribution of the components between the proces-
sors is in itself an object of optimization by simulated annealing technique,
which is performed simultaneously with the optimization process already de-
scribed: in this manner, the membership of the components geographically
close to the same group can be favored. In addition, the maximum amplitude
of the moves carried out by the components is reduced as the temperature
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decreases. Consequently, when the temperature decreases, the moves mainly
relate to nearby components, thus generally belonging to the same group . In
this process the interactions between the groups can be reduced, thus reducing
the frequency of the errors mentioned above. This technique of parallelization
of simulated annealing was validated using several examples of real circuits:
the algorithm functions approximately six times faster with eight processors
than with only one, the results being of comparable quality with those of the
sequential algorithm.

1.5 Some applications

The majority of the preceding theoretical approaches are based on asymp-
totic behaviors which impose several restrictive assumptions, very often caus-
ing excessive enhancements in computing times. This is why, to solve real
industrial problems under reasonable conditions, it is often essential to adopt
an experimental approach, which may frequently result in crossing the barri-
ers recommended by the theory. The simulated annealing method proved to
be interesting in solving many optimization problems, NP-hard or not. Some
examples of these problems are presented here.

1.5.1 Benchmark problems of combinatorial optimization

The effectiveness of the method was initially tested on the benchmark problem
instances of combinatorial optimization. In this type of problem, the practi-
cal purpose is secondary: the initial objective is to develop the optimization
method, and to compare its performances with those of the other methods.
We will detail only one example: that of the traveling salesman problem.

The reason for the choice of this problem is that it is very simple to
formulate, and, at the same time, very difficult to solve: the larger problems
for which the optimum was found, and proved, comprise of a few thousands
of cities. To illustrate the disorder-order transformation, carried out by the
simulated annealing technique, as the temperature goes down, we present, in
the figure 1.2, three intermediate configurations obtained on 13206 nodes of
the Swiss road network..

Bonomi and Lutton considered very high dimensional examples: between
1000 and 10000 cities [Bonomi and Lutton, 1984]. They showed that, to pre-
vent a prohibitive computing time, the domain containing the cities can be
deconstructed into areas, and the moves for a round of the traveler can be
so forced that they are limited between the cities located in contiguous ar-
eas. Bonomi and Lutton compared simulated annealing with the traditional
techniques of optimization, for the traveling salesman problem: simulated an-
nealing was slower for small dimensional problems (/N lower than 100); on the
other hand, it was, by far, more powerful for higher dimensional problems (N
higher than 800). The traveling salesman problem has been extensively studied
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to illustrate and establish several experimental and theoretical developments
on the simulated annealing method [Siarry and Dreyfus, 1989].

Many other benchmark problems of combinatorial optimization were also
solved using simulated annealing [Siarry and Dreyfus, 1989, Pirlot, 1992]: in
particular the problems of the “partitioning of graph”, of the “minimal
coupling of points”, of the “quadratic assignment” ... The comparison
with the best known algorithms leads to different results, varying accord-
ing to the problems and ... the authors. Thus the works by Johnson et al.
[Johnson et al., 1989, Johnson et al., 1991, Johnson et al., 1992], which were
devoted to a systematic comparison of several benchmark problems, conclude
that the only benchmark problem which can find favor with simulated an-
nealing is that of the partitioning of graph. For some problems, promising
results with the simulated annealing method could only be observed for high
dimensional examples (a few hundreds of variables), and that too at the cost
of a high computing time. Therefore, if simulated annealing has the merit to
adapt simply to a great diversity of problems, it cannot claim as much to
supplement those specific algorithms that already exist for these problems.

‘We now present the applications of simulated annealing for practical prob-
lems. The first significant application of industrial interest was developed in
the field of the electronic circuit design; this industrial sector still remains the
biggest domain in which maximum number of application works using sim-
ulated annealing have been published. Two applications in the area of elec-
tronics are discussed in detail in two following paragraphs. This is followed
by discussions regarding other applications in some other fields.

1.5.2 Layout of electronic circuits

The first application of the simulated annealing method for practical prob-
lems was developed in the field of the layout-routing of the electronic circuits
[Kirkpatrick et al., 1983, Vecchi and Kirkpatrick, 1983, Siarry and Dreyfus,
1984]. Till now numerous works have been reported on this subject in sev-
eral publications and, in particular, two books were completely devoted
to this problem [Wong et al., 1988, Sechen, 1988]. A detailed bibliography,
concerning the works carried out in the initial period 1982-1988, can be
found in the books [Siarry and Dreyfus, 1989, Van Laarhoven and Aarts, 1987,
Wong et al., 1988, Sechen, 1988].

The search for an optimal layout is generally carried out in two stages.
The first consists in calculating an initial placement quickly, by a constructive
method: the components are placed one after another, in order of decreasing
connectivity. Then an algorithm for iterative improvement is employed that
gradually transforms, by elementary moves (e.g. exchange of components, op-
erations of rotation or symmetry etc.), the initial layout configuration. The
algorithms for iterative improvement of the layout differ according to the rule
adopted for the succession of elementary moves. Simulated annealing can be
used in this second stage.
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Fig. 1.2. The traveling salesman problem (13206 nodes of the Swiss road network):
best known configurations (length: L) at the end of 3 temperature stages (7).
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Our interest was concerned with a unit of 25 identical blocks to be placed
on predetermined sites, which are the nodes of a planar square network. The
list of connections is so that, in the optimal configurations, each block is con-
nected only to its closer neighbors (see figure 0.6 of the foreword): an a priori
knowledge about the global minima of the problem then facilitates to study
the influence of the principal parameters of the method on its convergence
speed. The cost function is the overall Manhattan length (i.e. the L length)
of the connections. The only authorized elementary move is the permutation
of two blocks. A detailed explanation for this benchmark problem on layout
design — which is a form of “ quadratic assignment” problem — can be found
in the references [Siarry, 1986] and [Siarry et al., 1987]. Here, the discussions
will be kept limited to the presentation of two examples of applications. First
of all, to appreciate the effectiveness of the method, we start with a com-
pletely disordered initial configuration (see figure 0.6 of the foreword), and
an initial “elevated” temperature (in the sense that at this temperature 90%
of the moves are accepted): the figure 0.6 of the foreword represents the best
configurations observed at the end of a few temperature stages. In this exam-
ple, the temperature profile is that of a geometrical decrease, of ratio 0.9. A
global optimum of the problem could be obtained after 12000 moves, whereas
the total number of possible configurations is about 10%°.

To illustrate the advantages of the simulated annealing technique, we ap-
plied the traditional method of iterative improvement (simulated annealing at
zero temperature), for the same initial configuration (see figure 1.3b), and by
authorizing the same number of permutations as during the preceding test.
It was observed that the traditional method got trapped in a local minimum
(see figure 1.3c); it is clear that the shifting from this configuration to the
optimal configuration as shown in the figure 1.3a would require several stages
(at least five), majority of which correspond to an increase in energy, inad-
missible by the traditional method. This problem of placement in particular
made it possible to empirically develop a program of “adaptive” annealing,
which could achieve gain in computing time by a factor of 2; the lowering of
the temperature is carried out according to the law Tj1 = Dy, - T}, with:

Dk = min (Do, é;)

that includes:

Dy =10.51t00.9

Ey is the minimal energy of the configurations accepted during the
stage k

(E) is the average energy of the configurations accepted during the
stage k

at high temperature, Dy = +=% is small: hence the temperature is lowere
t high t ture, Dy = 5ty i 1l: hence the t ture is 1 d
quickly; at low temperature, Dy = Dy, this corresponds to a slow cooling).
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Then we considered a more complex problem consisting of positioning
components of different sizes, with an objective of simultaneous minimization
of the length of the necessary connections and the surface area of the cir-
cuit used. In this case, the translation of a block is a new means of iterative
transformation of the layout. Here we can observe that the blocks are overlap-
ping with each other, what is authorized temporarily, but must be generally
excluded from the final layout. This new constraint can be accommodated
within the cost function of the problem, by introducing a new factor called
the overlapping surface between the blocks. Calculating this surface area can
become very cumbersome when the circuit comprises of many blocks. This
is why the circuit was divided into several planar areas, whose size is such
that a block can overlap only with those blocks located in the same area, or
with one of the immediately close areas. The lists of the blocks belonging to
each area are updated after each move, using a chaining method. Moreover,
to avoid leading to a circuit congestion such as routing is impossible, a ficti-
tious increase in the dimensions of each block is introduced. The calculation
for the length of the connections consists in determining, for each equipoten-
tial, the barycentre of the terminations, and then to add the L distances of
the barycentre with each termination. Lastly, the topology of the problem is
adaptive, which can be described in the following manner: when the temper-
ature decreases, the maximum amplitude of the translations decreases, and
the exchanges are considered between the neighboring blocks only.

SIMULATED
ANNEALING

CLASSICAL

METHOD

b random disordered
configuration : L = 775

¢ configuration corresponding to a local
minimum of energy : L =225

a optimal configuration : L =200

Fig. 1.3. The traditional method getting trapped in a local minimum of energy.

With the simulated annealing algorithm, it was possible to optimize in-
dustrial circuits, in particular in hybrid technology, in collaboration with the



40 1 Simulated Annealing

Thomson D.C.H. (Department of the Hybrid Circuits) company. As an ex-
ample, we present in the figure 1.4, the result of the optimization of a circuit
layout comprising of 41 components and 27 equipotentials: the automated
layout design procedure causes a gain of 18 % in the connection lengths, com-
pared to the initial manual layout.

This study showed that the flexibility of the method enables it to take
into account not only the rules of drawing, which translate the standards of
technology, but also the rules of know-how, which are intended to facilitate the
routing. Indeed, the rules of drawing impose in particular a minimal distance
between two components, whereas the rules of know-how recommend a larger
distance, allowing the passage of connections. To balance these two types of
constraints, the calculation of the area of overlapping between the blocks, on
a two by two basis, is undertaken according to the formula:

S =S, +a-S,, where the notations indicate:

Sy the “real” overlapping surface
Sy the “virtual” overlapping surface
a a weight factor (typically: 0.1)

Surfaces S, and S,, are calculated by increasing dimensions of the components
fictitiously, with a larger increase in S,. Here, this induces some kind of an
“intelligent” behavior, similar to that of an expert system. We notice, from
the figure 1.4, a characteristic of the hybrid technology, which was easily
incorporated in the program: the resistances, shown by a conducting link, can
be placed under the diodes or the integrated circuits.

The observations noted by the majority of the authors concerning the
application of the simulated annealing technique for the layout design problem
conform to our observations: the method is very simple to implement, it adapts
easily to various and evolving technological standards, and the final result
is of good quality, but it is sometimes obtained at the cost of a significant
computing time.

1.5.3 Search for an equivalent schema in electronics

We now present an application which mixes the combinatorial and the contin-
uous aspects: automatic identification of the “optimal” structure of a linear
circuit pattern. The objective was to automatically determine a model which
comprises of the least possible number of elementary components, while en-
suring a “ faithful” reproduction of experimental data. This activity, in col-
laboration with the Institute of Fundamental Electronics (IEF, CNRS URA
22, in Orsay), began with the integration, in a single software, of a simulation
program of the linear circuits (implemented in the IEF) and of a simulated
annealing based optimization program developed by us. We initially validated
this tool, by characterizing models of real components having a given struc-
ture (described using their distribution parameters S). A comparison with a
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Fig. 1.4. Optimization by simulated annealing of the design of an electronic circuit
layout comprising of 41 components.

drawing at the top: initial manual layout; length of connections: 9532;
drawing at the middle: final layout, optimized by annealing; length of connections
7861;

e drawing at the bottom: manual routing using the optimized layout.

commercial software (developed using the gradient method), at that moment
in use in the IEF, showed that simulated annealing is particularly useful if the
orders of magnitude of the parameters of the model are completely unknown:
obviously the models under consideration are of this nature, since their struc-
ture even is to be determined. We developed an alternative simulated anneal-
ing, called logarithmic simulated annealing [Courat et al., 1994], which allows
an effective exploration of the space of variations of the parameters, when this
space is very wide (more than 10 decades per parameter). Then the problem
of structure optimization was approached by the examination — in the case
of a passive circuit — of progressive simplification of a general “exhaustive”
model: we proposed a method which could be successfully employed to au-
tomate all the simplification stages [Courat et al., 1995]. This technique rests
on the progressive elimination of the parameters, according to their statistical
behavior during the process of optimization by simulated annealing.

We present, with the help of illustrations, the example of the search for
an equivalent schema for an MMIC inductance, in the frequency range of
100 MHz to 20 GHz. On the basis of the initial “exhaustive” model with 12
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parameters, as shown in the figure 1.5, and allowing each parameter to move
over 16 decades, we obtained the equivalent schema shown in the figure 1.6
(the final values of the 6 remaining parameters are beyond the scope of our
present interest: they are specified in [Courat et al., 1995]). The layouts in
the Nyquist plane of the four S parameters of the quadripole of the figure 1.6
coincide nearly perfectly with the experimental results of MMIC inductance,
and this is true for the entire frequency range [Courat et al., 1995].

oH

Fig. 1.5. Initial structure with 12 elements.
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Fig. 1.6. Optimal structure with 6 elements.

1.5.4 Practical applications in various fields

An important field of application for simulated annealing happens to be im-
age processing : here the main problem is to restore the images, by using
computer, mainly in three-dimensional forms, starting from incomplete or ir-
regular data. There are numerous practical applications in several domains
like robotics, medicine (e.g. tomography), geology (e.g. prospections)... The
restoration of an image using an iterative method involves, under normal cir-
cumstances, the treatment of a large number of variables. Hence it calls for
development of a suitable method, which can limit the computing time of the
operation. Based on the local features of the information contained in an im-
age, several authors proposed numerous structures and algorithms specifically
addressed to carry out calculations in parallel. Empirically, it appears that the
simulated annealing method should be particularly well suited for this task.
A rigorous theoretical justification of this property can be obtained start-
ing from the concept of Markovian field [Geman and Geman, 1984], which
provides a convenient and coherent model of the local structure of informa-
tion in an image. This concept has been explained in detail in the reference
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[Siarry and Dreyfus, 1989]. The “Bayesian approach” for the problem of op-
timal restoration of an image, starting from a scrambled image, consists in
determining the image which presents “the maximum of a posteriori likeli-
hood”. It has been shown that this problem is ultimately configured as a well
known minimization problem of an objective function, comprising of a very
large number of parameters, e.g. light intensities of all the “pixels” of an im-
age, in case of an image in black and white. Consequently, the problem can
be considered as a typical problem for simulated annealing. The iterative ap-
plication of this technique consists in updating the image by modifying the
intensity of all the pixels in turn, in a pre-specified order. This procedure
leads to a significant consumption of computing time: indeed, the number of
complete sweepings of the image necessary to obtain a good restoration is,
typically, about 300 to 1000. But as the calculation of the energy variation is
purely local in nature, several methods were proposed to update the image
by simultaneously treating a large number of pixels, using specialized elemen-
tary processors. The formalism of the Markovian fields made it possible to
treat, by simulated annealing, several crucial tasks in automated analysis of
the images: the restoration of scrambled images, the image segmentation, the
image identification ... Apart from this formalism, other problems in the im-
age processing domain were also solved by annealing: for example, the method
was utilized to determine the geological structure of the basement, starting
from results of seismic experiments.

To finish, we will mention some specific problems, in very diverse fields,
where simulated annealing was employed successfully: organization of the
data-processing network for the French Loto (it required ten thousand playing
machines to be connected to host computers), optimization of the collection
of the household garbage in Grenoble, timetable problems (the problem was,
for example, to determine the optimal planning of the rest days in a hospital),
optimization in architecture (in a project on constructing a 17 floor building
for an insurance company, it was necessary to distribute the activities among
the various parts, so that the work output from 2000 employees can be maxi-
mized). .. Several applications of simulated annealing for the scheduling prob-
lems can be found (particularly, in the references [Van Laarhoven et al., 1992,
Brandimarte, 1992, Musser et al., 1993, Jeffcoat and Bulfin, 1993]). The ade-
quacy of the method for this type of problem has been discussed. For instance,
Lenstra et al. [Van Laarhoven et al., 1992] showed that the computing time
involved was unsatisfactory. Moreover, in [Fleury, 1995], Fleury underlines
several characteristics of the scheduling problems which make them unsuit-
able for simulated annealing and he recommends a different stochastic method,
inspired by simulated annealing and tabu search: the “kangaroo method”, for
this problem.
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1.6 Advantages and disadvantages of the method

From the preceding discussion, the principal characteristics of the method
can be established. Firstly, the advantages: it is observed that the simulated
annealing technique generally achieves a good quality solution (i.e. absolute
minimum or good relative minimum for the objective function). Moreover,
it is a general method: it is applicable, and easy to implement, for all the
problems which can potentially employ the iterative optimization techniques,
under the condition that after each transformation the corresponding change
in the objective function can be evaluated directly and quickly (often the
computing time becomes excessive if complete re-computation of the objective
function cannot be avoided, after each transformation). Lastly, it offers great
flexibility, as one can add new constraints easily afterwards in the program.

Now, let us discuss the disadvantages. The users are sometimes repelled
by the involvement of great many parameters (initial temperature, rate of
decrease of the temperature, length of the temperature stages, termination
criterion for the program...). Although the standard values published for
these parameters generally allow an effective operation of the method, the
essential empirical nature of them can never guarantee suitability for a large
variety of problems. The second defect of the method — which depends on
the preceding one — is the computing time involved, which is excessive in
certain applications.

In order to reduce this computing time, it still requires an extensive re-
search effort to determine the best values of the parameters of the method
[Siarry, 1994], particularly for the law of decrease of the temperature. Any
progress in the effectiveness of the technique and the computing time in-
volved can be obtained by continuing the analysis of the method in three
specific directions: utilization of interactive parameter setting, parallelization
of the algorithm and incorporation of statistical physics based approaches to
analyze and study disordered mediums.

1.7 Simple practical suggestions for the beginners

o Definition of the objective function : some constraints are integrated here,
others constitute a limitation in allowed disturbances for the problem.

e Choice of the disturbance mechanisms for a “current configuration”: the
calculation of the corresponding AFE variation of the objective function
must be direct and rapid.

o [Initial temperature Ty: it may be calculated as a preliminary step using
the following algorithm:

— initiate 100 disturbances at random; evaluate the average (AE) of the
corresponding AF variations;
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— choose an initial rate of acceptance 7y of the “degrading perturbations”,
according to the assumed “quality” of the initial configuration; for
example:

“poor” quality: 79 = 50% (starting at high temperature),
“good” quality: 7o = 20% (starting at low temperature),

— deduce Ty from the relation: e% = T1p.

o Acceptance rule of Metropolis. it is practically utilized in the following
manner: if AE > 0, a number r in [0, 1] is drawn randomly, and accept
the disturbance if r < e;ﬁE, where T indicates the current temperature.

e Change in temperature stage: can take place as soon as one of the 2 fol-
lowing conditions is satisfied during the temperature stages:

— 12 - N perturbations accepted;
— 100 - N perturbations attempted,
N indicating the number of degrees of freedom (or parameters) of the
problem
e Decrease of the temperature: can be carried out according to the geomet-
rical law: Ty41 = 0.9 - T}.
e Program termination: can be activated after 3 successive temperature
stages without any acceptance.
e FEssential verifications during the first executions of the algorithm:

— the generation of the real random numbers (in [0, 1]) must be well
uniform;

— the “quality” of the result should not vary significantly when the algo-
rithm is executed several times:

with different “seeds” for the generation of the random numbers,
with different initial configurations,

— for each initial configuration used, the result of simulated annealing
can be favorably compared, theoretically, with that of the quenching
(“disconnected” Metropolis rule).

e An alternative for the algorithm in order to achieve less computation time:
simulated annealing is greedy and not very effective at low temperature;
hence the interest may lie in utilizing the simulated annealing technique,
prematurely terminated, in cascade with an algorithm of local type, for
specific optimization of the problem, of which role is “to refine” the opti-
mum.

1.8 Annotated bibliography

[Siarry and Dreyfus, 1989]: This book describes the principal theoretical ap-
proaches and the applications of the simulated annealing in the
early years of formation of the method (1982-1988), when the ma-
jority of the theoretical bases were established.
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[Reeves, 1995]: The principal metaheuristics are explained in great detail in
this work. An elaborate presentation of simulated annealing is pro-
posed in the chapter 2. Some applications are presented: in partic-
ular, design of electronic circuits and treatment of the scheduling
problems.

[Sait and Youssef, 1999]: In this book several metaheuristics have been exten-
sively explained, which includes simulated annealing (in chapter
2). The theoretical elements relating to the convergence of the
method are clearly put in detail. The book comprises also the
study of an application in an industrial context (that of the Tim-
berWolf software, which is a reference tool for the layout-routing
problem). This should be cited as an invaluable contribution for
the teachers: each chapter is supplemented by suitable exercises.

[Pham and Karaboga, 2000]: The principal metaheuristics are also explained
in this book. Here, chapter 4 is completely devoted to simulated
annealing which concludes with an application in the field of the
industrial production.

[Teghem and Pirlot, 2002]: This recent book is a collection of the contri-
butions of a dozen authors. Simulated annealing is however not
treated in detail.
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Tabu Search

2.1 Introduction

Tabu search was first proposed by Fred Glover in an article published in
1986 [Glover, 1986], although it borrowed many ideas suggested before dur-
ing the Sixties. The two articles simply entitled Tabu Search [Glover, 1989,
Glover, 1990] proposed the majority of tabu search principles which are cur-
rently known. Some of these principles did not gain prominence for a long
time among the scientific community. Indeed, in first half of the Nineties, the
majority of the research works in tabu search did use a very restricted domain
of the principles of the technique. They were often limited to a tabu list and
an elementary aspiration condition.

The popularity of tabu search is certainly due to the pioneering works
by the team of D. de Werra at the Swiss Federal Institute of Technol-
ogy, Lausanne, during the late Eighties. In fact, the articles by Glover, the
founder of the method, were not well understood at the time when there
was not yet a “metaheuristic culture”. Hence a significant credit for the
popularization of the basic technique must go to [Hertz and de Werra, 1987,
Hertz and de Werra, 1991, de Werra and Hertz, 1989] which definitely played
a significant role in the dissemination of the technique.

At the same time, a competition developed between simulated annealing
(which then had an established convergence theorem as its theoretical ad-
vantage) and tabu search. For many applications, tabu search based heuris-
tics definitely showed more effective results [Taillard, 1990, Taillard, 1991,
Taillard, 1993, Taillard, 1994], which increased the interest for the method
in the research community.

In the beginning of the Nineties, the technique was exported to Canada,
more precisely in the Center for Research on Transportation in Montreal,
where post-doctoral researchers from the team of D. de Werra worked in
this domain. In the process, this created another center of interest in the
domain of tabu search. The technique was then quickly disseminated among
several research communities and this culminated in the publishing of the
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first book which was solely dedicated to tabu search [Glover et al., 1993]. In
this chapter, we shall not concentrate on the more advanced principles of
tabu search, such as those presented in the book of Fred Glover and Manuel
Laguna [Glover and Laguna, 1997], but we shall focus on the most significant
and most general principles. Here, it should be mentioned that sometimes
another author is credited with the original ideas of tabu search. However in
our opinion the claim for such an attribution is abusive: no written document
presenting those ideas could ever be obtained, they were only presented in
front of a very small audience during a congress in 1986 and, according to
what we have heard about the presentation, it comprised of a very limited
subset of the basic ideas published earlier by Glover.

What unquestionably distinguishes it from the local search technique pre-
sented in the preceding chapter, is that tabu search incorporates intelligence.
Indeed, there is a huge temptation to direct an iterative search in a prospec-
tive, good direction, so that it is not only directed by the chance and the value
of an objective function to be optimized. The development of tabu search gives
rise to a couple of challenges: firstly, as in any iterative search, it is necessary
that the search engine, i.e. the mechanism of evaluation of neighboring solu-
tions, is effective; secondly, pieces of knowledge regarding the problem under
consideration should be transmitted to the search procedure, so that it should
not get trapped in bad regions of the solution space. On the contrary, it should
be directed intelligently in the solution space, if such a term is permitted to
be used.

One of the guiding principles can be to constitute a history of iterative
search or, equivalently, to provide the search with memory.

The first two sections of this chapter will present a few techniques that will
enable to guide an iterative search. Among the whole range of the principles
suggested in literature, we chose those that appeared most effective to direct
a search. In particular, we shall put stress on a simple and effective manner to
elaborate the concepts of short-term and long-term memory. These concepts
of memory will be analyzed by studying the effects of varying the parameters
which are associated with them.

The third section of this chapter will present some theoretical results on
tabu search. It will also show that a mechanism of short-term memory, based
on prohibition to visit certain solutions, and very extensively used because of
its simplicity and its great practical effectiveness, proves to be insufficient, as
the search does visit a subset of the solution space without passing by the
global optimum.

Some of these principles of tabu search will be illustrated with the help of a
particular problem, namely the quadratic assignment problem, so that these
principles do not float “in air”. We chose this problem for several reasons.
First of all, it finds applications in multiple fields. For example, the problem
of the placement of the electronic modules, about which we discussed in the
chapter 1 devoted to simulated annealing, is a quadratic assignment problem.
Then, its formulation is very simple, because it deals with finding a permuta-
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tion. Here, it should be noted that many combinatorial optimization problems
could be expressed in the form of a search for a specific permutation. Finally,
the implementation of a basic tabu search for this problem is very concise,
which enables us to present in extended form, in appendix B, the code for this
algorithm, which is among the most powerful ones presently available.

2.2 The quadratic assignment problem

Given n objects and the flows f;; between the object ¢ and the object j
(i, =1...n), and given n sites with distance d,s between the sites r and s
(r,s =1...n), the problem deals with placing the n objects on the n sites so
as to minimize the sum of the products, flows x distances. Mathematically,
this is equivalent to find a permutation p, whose i*® component p; denotes
the place of the object i, which minimizes Y37 327 fij - dp,p,-

This problem has multiple practical applications; among them undoubt-
edly the most popular ones are the assignment of offices or services in buildings
(e.g. university campus, hospital, etc.), the assignment of the departure gates
to airplanes in an airport, the placement of logical modules in electronic cir-
cuits, the distribution of the files in a database and the placement of the keys
of keyboards of typewriters. In these examples, the matrix of the flows rep-
resents, respectively, the frequency with which the people may move from a
building to another, the number of people that may transit from one airplane
to another, the number of electrical connections to be established between two
modules, the probability of asking the access to a second file if one accesses
the first one and, finally, the frequency with which two particular characters
appear consecutively in a given language. The matrix of the distances has an
obvious meaning in the first three examples; in the fourth, it represents the
transmission time between the databases and, in the fifth, the time separating
striking from two keys.

The quadratic assignment problem is NP-hard. One can easily show it by
noting that the traveling salesman problem can be formulated as a quadratic
assignment problem. Unless P = NP, there is no polynomial approxima-
tion scheme for this problem. This can be shown simply by considering two
problem instances which differ only in the flows matrix. If one withdraws
an appropriate constant from all the components of the first problem to
obtain the second, this one will have an optimum solution value of zero.
Consequently, all e-approximations of this second problem would give an op-
timal solution, which is possible to implement in polynomial time only if
P = NP. However, the problems generated at random (flows and distances
drawn uniformly) satisfy the following property: when n — oo, the value
of any solution (even the worst one) tends towards the value of an optimal
solution [Burkard and Fincke, 1985].
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Ezample.
Let us consider the placement of 12 electronic modules (1,...,12) on 12
sites (a,b,...,1). The number of connections required between the modules is

known and given in table 2.1. This problem instance is referred as SCR12 in
literature.

Table 2.1. Number of connections between the modules.

Module| 1 2 3 4 5 6 7 8 9 10 11 12
i/ — 180120 — — — — — — 104112 —
20180 — 96 2445 78 — 1395 — 120 135 — —
3|120 96 221 315 390
4| — 2445 — — 108 570 750 — 234 — — 140
5 — 78 — 108 — — 225 135 — 156 — —
6 221 570 615 45
7| — 1395 — 750 225 615 — 2400 — 187 — —
8 — — — — 135 —2400 — — — — —
9 120 315 234

10{104 135390 — 156 — 187 — — — 36 1200
11122 - - - — — — — — 36 — 225
2 — — — 140 — 45 — — — 1200225 —

Fig. 2.1. Optimum solution of a problem of connection between electronic modules.
The thickness of the lines is proportional to the number of connections.

The sites are distributed on a 3 x 4 rectangle. Connections can be imple-
mented only horizontally or vertically, implying wiring lengths measured with
Manhattan distances. In the solution of the problem presented in figure 2.1,
which is optimal, module 6 was placed on the site a, module 4 on the site b,
etc.
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2.3 Basic tabu search

Thereafter and without being restrictive, one can make the assumption that
the problem to be solved can be formulated in the following way:

min f(s)
In this formulation, f denotes the objective function, s a feasible solution of
the problem and S the entire set of feasible solutions.

2.3.1 Neighborhood

Tabu search is primarily centered on a non-trivial exploration of all the solu-
tions in a neighborhood. Formally, one can define, for any solution s of S, a
set N(s) C S that is a set of the neighboring solutions of s. For example, for
the quadratic assignment problem, s can be a permutation of n objects and
the set N(s) can be the possible solutions obtained by exchanging two objects
in a permutation. The figure 2.2 illustrates one of the moves of the set N(s),
where objects 3 and 7 are exchanged.

¥\

123456978 > 127456938

Fig. 2.2. A possibility of creating a neighboring solution, for a problem where a
permutation is sought.

Local search methods are almost as old as the world itself. As a matter
of fact, how will a person behave when someone supplies him with a solution
of a problem for which he himself could not find a solution or did not have
enough patience to find an optimal solution? The person may try to modify
the proposed solution slightly and may check to find out whether it is possible
to find better solutions while carrying out these local changes. In other words,
it will stop as soon as it meets a local optimum related to the modifications
authorized to make on a solution. In this process, it never indicates whether
the solution thus obtained is a global optimum — and, in practice, this is
seldom the case. In order to be able to find solutions better than the first
local optimum met, one can try to continue the process of local modifications.
However, if precautions are not taken, one may be exposed to visit a restricted
number of solutions, in a cyclic manner . Simulated annealing and tabu search
are two local search techniques which try to eliminate this disadvantage.

Some of these methods, like simulated annealing, were classified as artifi-
cial intelligence techniques. However, this classification is certainly abusive as
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they are guided almost exclusively by a chance — some authors even compare
simulated annealing to the peregrination of a person, suffering from amne-
sia, moving in the fog. Perhaps others describe these methods as intelligent
because, often after a large number of iterations during which they have enu-
merated several poor quality solutions, they produce a good quality solution
which would have otherwise required a remarkably extensive human effort.

In essence, tabu search is not centered on chance, although one can intro-
duce random components for primarily technical reasons. The basic idea of
tabu search is to make use of memories during the exploration of a part of
the solutions of the problem, which consists in moving repeatedly from one
solution to a neighboring solution. It is thus primarily a local search, if we
look beyond the limited meaning of this term and dig for a broader meaning.
However, some principles enabling to carry out jumps in the solution space
were proposed; in this direction, tabu search, contrary to simulated annealing,
is not a pure local search.

Origin of tabu search name.

The origin of the name of this method can be traced back to the idea that a
local search can continue beyond a local optimum, but to ensure that it will
not return periodically to the same local optimum, it is necessary to prohibit
the search to come back to solutions already visited, in other words, some
solutions must have a tabu status.

2.3.2 Moves, neighborhood

Local searches are based on the definition of a set N(s) of solutions in the
neighborhood of any solution s. But, from a practical point of view, one may
find it beneficial to consider the set of the modifications which one can make
to s, rather than the set N(s). A modification made to a solution is called
a move. Thus, the modification of a solution of the quadratic assignment
problem (see the figure 2.2) can be considered as a move, characterized by
the two elements to be transposed in the permutation. The figure 2.3 gives
the structure of the neighborhood based on the exchanges for the set of the
permutations of 4 elements, and this is presented under the form of a graph
whose vertices represent the solutions and the edges are the neighbors relative
to the transpositions.

The set N(s) of the solutions in the neighborhood of the solution s can
be expressed as the set of the feasible solutions which one can obtain while
applying a move m to the solution s, m pertaining to a set of moves M.
The application of m to s can be noted as s @ m and one can determine
the equivalent N(s) = {s'| = s @ m,m € M}. Expressing the neighborhood
in terms of move facilitates, when it is possible, to characterize the set M
more easily. Thus, in the above example of modification of a permutation, M
will be characterized by all pairs (place 1, place 2), of which one transposes
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Fig. 2.3. Set of the permutations of 4 elements (represented by vertices) with
relations of neighborhood relative to the transpositions (represented by edges).

the elements, independent of the current solution. It should be noted that
in the case of permutations with transpositions neighborhood, |S| = n! and
|M| = % Thus, the entire set of the solutions is much larger than that
of the moves, which varies as the square of the number of elements.

However, in some applications this simplification can lead to that definition
of moves which would produce non-feasible solutions and, in general, we have
|N(s)| < |M|, without | M| being much larger than |N(s)|. For a given problem
with few constraints, it can typically be |N(s)| = |M].

Ezxamples of neighborhoods for problems on permutations.

Many combinatorial optimization problems can be naturally formulated as a
search for a permutation of n elements. Assignment problems (which include
that of the quadratic assignment), the traveling salesman problem or task
scheduling problems are representative examples of such problems. For these
problems, several definitions of neighboring solutions are possible; some exam-
ples are illustrated in figure 2.4. Among the simplest neighborhoods, one can
find the inversion of two elements placed successively in the permutation, the
transposition of two distinct elements and finally, the move of an element to
another place in the permutation. Depending on the problem considered, more
elaborate neighborhoods that suit to the structure of good solutions should
be considered. This is typically the case for the traveling salesman problem
where there are innumerable neighborhoods suggested that do not represent
simple operations, if a solution is regarded as a permutation.

The first type of neighborhood, shown in the example above, is the most
limited one as it is of size n—1. The second type defines a neighborhood taking
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A

123456978 > 123546978

123456978 > 123756948

123456978 > 123745698

Fig. 2.4. Three possible neighborhoods on permutations (inversion, transposition,
displacement).

(=1 oves into consideration and the third one is of size n(n —2) + 1.

The capabilities of these various types of neighborhoods to direct a search in
few iterations towards good solutions are very different; generally, the first
type shows the worst behavior for many problems. The second one can be
better than the third one for some problems (like the quadratic assignment
problem), whereas, for scheduling applications, the third type often shows
better performance [Taillard, 1990].

2.3.3 Evaluation of the neighborhood

In order to implement an effective local search engine, it is necessary that the
relationship between the quality or the suitability of the type of moves and
the computing time necessary for their evaluation is as healthy as possible.
If the quality of a type of move can be justified only by the intuition and in
an empirical manner, the evaluation of the neighborhood can, on the other
hand, often be accelerated considerably by algebraic considerations. Let us
define A(s,m) = f(s ® m) — f(s). In many cases it is possible to simplify
the expression f(s ® m) — f(s) and thus to evaluate A(s,m) quickly. An
analogy can be drawn with continuous optimization: the numerical evalua-
tion of f(s @ m) — f(s) would be the equivalent to a numerical evaluation of
the gradient, whereas the calculation of the simplified function A(s, m) would
be the equivalent of the evaluation of the gradient by means of a function
implemented with the algebraic expressions of the partial derivatives.

Moreover, if the move m’ was applied to the solution s in the preceding
iteration, it is often possible to evaluate A(s@®m’, m) for the current iteration
as a function of A(s,m) (which was evaluated in the preceding iteration) and
to examine very rapidly the entire neighborhood, simply by memorizing the
values of A(s,m).

It may appear that the evaluation of A(s, m) is very difficult and expensive
to undertake. For example, for vehicle routing problems (VRP, see section 7.1),
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a solution s can consist of partitioning goods into subsets whose weights are
not more than the capacities of the vehicles. To calculate f(s), we have to find
an optimal order in which one will deliver the goods for each subset, which is a
difficult problem in itself. This is the well known traveling salesman problem.
Therefore, the calculation of f(s), and consequently that of A(s,m), cannot
be reasonably performed for any eligible move (i.e. pertaining to M); possibly
A(s,m) should be calculated for each move elected (that is in fact carried out)
but, in practice, one will have to be satisfied by calculating the true value of
f(s) for a limited number of solutions. Hence the computational complexity
is limited by evaluating A(s,m) in an approximate manner.

Algebraic example of simplification for the quadratic assignment problem.

As any permutation is a feasible solution for the quadratic assignment prob-
lem, its modeling is also trivial. For the choice of the neighborhood, it should
be realized that to move the element in the i*" position in the permutation
to put it in the j* position implies a very significant modification of the so-
lution. This is because all the elements between the i*" and the j*" position
are moved. The inversion of the objects in the i*" and the i + 1*" position
in the permutation generates a too restricted neighborhood. Actually, if the
objective is to limit ourselves to the neighborhoods modifying the sites as-
signed to two elements only, it is only reasonable to transpose the elements i
and j occupying the sites p; and p;. Each of these moves can be evaluated in
O(n) (where n is the size of the problem). With flows matrix F = (f;;) and
distances matrix D = (d,.s), the value of a move m = (i, j) for a solution p is
given by:

A(p, (l,j)) = (f” - fjj)(dpjpj - dpipi) + (flj - fji)(dpjpi - dpipj)
+ Zk;éi,j (fjk - fik)(dpipk - dpjpk) + (fkj - sz)(dpka - dlzkpjg
2.1
By memorizing the value of A(p,(¢,7)), one can calculate the value of
A(q, (i,7)) in O(1), for all 4 # r,s and j # r, s by using equation 2.2, where
q is the permutation obtained by exchanging the elements r and s in p, i.e.
QG = ks (k #1.k #5), @& =Ds, ¢s = Pr-

Ala, (i,5)) = Ap, (1, 7))
"‘(fM' - fm’ + ij - fsi)(dQSQi - dqsqj + d‘hqj - d‘]r‘]i) (22)
+(fir - fjr + fjs - fiS)(dqiqs - dqqu + d‘]j‘]r - d‘]i‘lr)

The figure 2.5 illustrates the modifications that are necessary for A(p, (i,75))
to obtain A(q, (¢,7)), if the move selected for going from p to q is (r,s). It
should be noted here that the quadratic assignment problem can be regarded
as that of the permutation of the lines and the columns of the distances ma-
trix, so that the scalar product of the two matrices is as small as possible.
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N (r, S) N

Fig. 2.5. On the left: in gray, the elements for which it is necessary to recalculate
the scalar product of the matrices to evaluate the move (r, s) applied to p (leading to
the solution q); on the right: those elements are surrounded for which it is necessary
to recalculate the product to evaluate the move (i,7) applied to q, compared to
those which were calculated if the move (4, ) had been applied to p.

Consequently, while memorizing the A(p, (i, 7)) values for all ¢ and j, the
entire neighborhood can be calculated in O(n?): by using equation 2.2 one
can evaluate the O(n?) moves that do not utilize the indices r and s and by
using equation 2.1, one can evaluate the O(n) moves which precisely utilize
these indices.

2.4 Candidate list

Generally, a local search does not necessarily evaluate all the solutions of N(s)
in each iteration, but only a subset of it. In fact, simulated annealing is even
considering only one neighbor. On the contrary, tabu search is supposed to
make an “intelligent” choice of a solution from N(s). One possible way of
accelerating the evaluation of the neighborhood can be to reduce its size; this
reduction may also have the goal of directing the search.

To reduce the number of eligible solutions of N (s), some authors adopt the
policy of randomly choosing a small number of solutions from N(s). When
a neighborhood is given by a static set M of moves, one can also consider
partitioning M into subsets; in each iteration, only one of these subsets will
be examined. In this manner, one can make a partial but cyclic examination
of the neighborhood, which will allow to elect a move more quickly, with
an associated deterioration in quality since all the moves are not taken into
consideration in each iteration. However, on a global level, this limitation
might not have a too bad influence on the quality of the solutions produced,
because a partial examination can generate a certain diversity in the visited
solutions, precisely because moves which were elected were not those which
would have been, if a complete examination of the neighborhood were carried
out.
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Finally, in accordance with the intuition of F. Glover when he proposed the
concept of candidate list, one can make the assumption that a good quality
move for a solution will remain good for solutions not too different. Practi-
cally, this can be implemented by ordering, in a given iteration, the entire set
of all feasible moves by decreasing quality. During the later iterations, only
those moves that were classified among the best will be considered. This is
implemented in form of a data structure called candidate list. Naturally, the
order of the moves will get degraded during the search, since the solutions
become increasingly different from the solution used to build the list, and it
is necessary to periodically evaluate the entire neighborhood to preserve a
suitable candidate list.

2.5 Short-term memory

When one wishes to make use of memory in an iterative process, the first
idea that comes to mind is to check if a solution in the neighborhood was
already visited. However, the practical implementation of this idea can be
difficult and even worse, it may prove to be not very effective. Indeed, it
requires to memorize each solution visited and to test in each iteration for
each eligible solution, if the later were already enumerated. This can possibly
be done efficiently by using hashing tables, but it is not possible to prevent a
significant growth in memory space requirement as it increases linearly with
the number of iterations.

Moreover, the pure and simple prohibition of solutions can lead to absurd
situations: let us assume that the entire set of the feasible solutions can be
represented by points whose co-ordinates are given on a surface in the plane
and that one can move from any feasible solution to any other by a number
of displacements of unit length. In this case, one can easily find trajectories
which disconnect the current solution from an optimal solution or which block
an iterative search due to lack of feasible neighboring solutions, if it is tabu to
pass by an already visited solution. This situation is schematically illustrated
in the figure 2.6.

2.5.1 Hashing tables

A first idea, which is very easy to implement to direct an iterative search, is
to prohibit the return to a solution whose value was already obtained during
t last iterations. Thus one can prevent a cycle of length t or less. This type of
tabu condition can be implemented in an effective manner: Let L be a whole
number, relatively large, so that it is possible to memorize an array of L en-
tries in the computer used.

If f(sk), the value of solution s in iteration k, is assumed to be an inte-
ger, that is not restrictive (computationaly speaking), one can memorize in
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Optimal solution

Fig. 2.6. Trajectories blocking search or disconnecting it from the optimal solution
in a strict tabu search.

T[f(sk) modulo L] the value k + ¢. If a solution s’ of the potential neighbor-
hood of the solution in the iteration &’ is such that T[f(s") modulo L)] > k', s
will not be considered any more as an eligible solution. This effective manner
of storing the tabu solutions only approximates the initial intention which was
to prevent to return to a solution of a given value, as not only any solution of
a given value is prohibited during t iterations, but also all those which have
this value modulo L. Nevertheless, only a very weak modification of the search
behavior can be noticed in practice, if L is selected sufficiently large.

This type of tabu condition works only if the objective function has a
vast span of values. However, there are many problems where the objective
function takes a limited span of values. One can circumvent the difficulty by
associating, in place of the objective, another function taking a large span
of values. In the case of a problem on permutations, one can associate, for
example, the hashing function:y ;i - p; which takes a number of different
values in O(n?).

More generally, if a solution of a problem can be expressed under the
form of a vector x of binary variables, one can associate the hashing function
i zi - x; with z;, a set of n numbers randomly generated at the beginning
of the search [Woodruff and Zemel, 1993].

When hashing functions are used for implementing tabu conditions, one
needs to focus on three points. Firstly, as already mentioned, it is necessary
that the function used take a vast span of possible values. Secondly, the eva-
luation of the hashing function for a neighboring solution should not impose
significantly higher computational burden than the evaluation of the objec-
tive. In the case of problems on permutations with neighborhood based on
transpositions, the functions mentioned above can be evaluated in constant
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time for each neighboring solution, if the value of the hashing function for the
starting solution is known. Thirdly, it should be noticed that even with a very
large hashing table, the collisions (different solutions with identical hashing
value) are frequent. Thus, for a problem on permutations of size n = 100, with
the transpositions neighborhood, approximately 5 solutions in the neighbor-
hood of the solution in the second iteration will enter in collision with the
starting solution, if a table of 10° elements is used. To reduce the risk of col-
lision effectively, one may find it beneficial to use several hashing functions
and several tables simultaneously [Taillard, 1995].

2.5.2 Tabu list

As it can be ineffective to restrict the neighborhood N(s) to those solutions
which are not yet visited, tabu conditions are rather based on M, the set
of moves applicable for a solution. This set is often of relatively modest size
(typically of size O(n) or O(n?) if n is the size of the problem) and must
have the characteristic of connectivity, i.e. an optimal solution can be reached
from any feasible solution. Initially, to simplify, we assume that M also has
the property of reversibility: for any move m applicable to a solution s, there
must exist a move m~! such that (s ® m) ®m~! = s. As it does not make
sense to apply m~! immediately after applying m, it is possible, in all cases, to
limit all the moves applicable to s ®m to those different from m~'. Moreover,
in this process one could avoid visiting s and s & m repeatedly, if s would
be a local optimum relative to the neighborhood selected and where the best
neighbor of s @ m would be precisely s.

By generalizing this technique of limiting the neighborhood, i.e. by pro-
hibiting during several iterations to apply the reverse of a move which has
just been made, one can prevent other cycles composed of a number of in-
termediate solutions. Once it is again possible to carry out the reverse of a
move, one hopes that the solution was sufficiently modified, so that it is im-
probable — but not impossible — to return to an already visited solution.
Nevertheless, if such a situation arises, it is hoped that the list of tabu moves
(or tabu list) would have changed, therefore the future trajectory of the search
would change. The number of tabu moves must remain limited enough. Let
us assume that M does not depend on the current solution. In this situation,
it is reasonable to prohibit only a fraction of the M moves. Thus, the tabu
list implements a short-term memory, relating typically to a few units or a
few tens of iterations.

For easier understanding, we had assumed that the reverse moves to those
that were carried out are stored. However, it is not always possible or obvious
to define what a reverse move is. Let us take the example of a problem where
the objective is to find an optimal permutation of n elements. A reasonable
move can be to transpose the elements i and j of the permutation (1 < i <
J < n). In this case, all the M moves applicable to an unspecified solution
are given by the entire set of the pairs (¢, j). But, thereafter if the move (i, j)
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is carried out, the prohibition of (i,j) (which is its own reverse) will prevent
visiting certain solutions without preventing the phenomena of cycling: indeed,
the moves (4, 7)(k,p)(i,p)(k,5)(k,1)(j,p) applied successively do not modify
the solution. One thus should not inevitably avoid making a reverse move
too quickly, but attribute tabu conditions to certain attributes of moves or
solutions. In the preceding example, if p; is the assignment of the element i
in an iteration, it is not the move (4, j) which should be prohibited when one
has just carried it out, but it is, for example, simultaneously assigning the
element ¢ at the place p; and the element j at the place p; that should be
prohibited. One can thus at least preserve those cycles which are of lengths
smaller or equal to the number of tabu moves, i.e. the tabu list length.

2.5.3 Duration of tabu conditions

Generally speaking, the short-term memory will prohibit to perform some
moves, either directly by storing tabu moves or tabu solutions, or indirectly
by storing attributes of moves or attributes of solutions that are prohibited.
If the minimization problem can be represented as a landscape limited by
a territory which may define the feasible solutions and where altitude may
correspond to the value of the objective function, the effect of this memory is
to visit valleys, (without always being at the bottom of the valley because of
tabu moves) and, sometimes, to cross a pass issuing into another valley.

The higher the number of tabu moves is, the more likely one is to cross
these mountains, but the less thoroughly will the valleys be visited. Conversely,
if the moves are prohibited during few iterations only, there will be less chances
of crossing the passes surrounding the valleys because, almost surely, there will
be an allowed move which will lead to a solution close to the bottom of the
valley; but, on the other hand, the bottom of the first visited valley will most
probably be found.

More formally, for a very small number of tabu moves, the iterative search
will tend to visit the same solutions over and over again. If this number is
increased, the probability of remaining confined to a very limited number of
solutions decreases and, consequently, the probability of visiting several good
solutions increases. However, the number of tabu moves should not be very
large, because, it then becomes less probable to find good local optima, for
lack of available moves. To some extent, the search is directed by the few
allowed moves rather than by the objective function.

The figure 2.7 illustrates these phenomena in the case of the quadratic
assignment problem: for each of 3000 instances of size 12, drawn at random,
50 iterations of a tabu search were performed. According to the number of
iterations during which a reverse move is prohibited, this figure gives the
two following statistics: firstly, the average value of all the solutions visited
during search and, secondly, the average value of the best solutions found
by each search. It should be noted that the first statistics grows with the
number of prohibited moves, which means that the average quality of the
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visited solutions degrades. On the other hand, the quality of the best found
solutions improves with the increase in the number of tabu moves, which
establishes the fact that the search succeeds to escape from more or less poor
local optima; then, their quality worsens, but this tendency is very limited
here. Thus, it can be concluded that the size of the tabu list must be chosen
carefully, in accordance with the problem under consideration, the size of the
neighborhood, the problem instance, the total number of iterations performed,
etc. It is relatively easy to determine the order of magnitude that should be
assigned to the number of tabu iterations, but the optimal value cannot be
obtained without testing all the possible values.
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Fig. 2.7. The influence of number of iterations during which the moves are tabu.

Random tabu duration

To obtain simultaneous benefits from the advantages of a small — for several
deepened visits of a valley — and a large number of tabu moves — for the
ability to escape valleys —, one may find it useful to modify this number
during the search process. Several methodologies can be considered for this
choice: for example, it can be decided at random between a lower and an upper
limit, in each iteration or after a certain number of iterations. These limits
can often be easily identified; it can also be increased or decreased on the
basis of certain characteristics observed during the search, etc. These were
the various strategies employed till the end of the eighties [Taillard, 1990,
Taillard, 1991, Taillard, 1995]. These strategies were shown to be much more
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efficient than tabu lists of fixed size (often implemented under the form of a

circular list, although this may not be the best alternative, as it can be seen
in the paragraph 2.7.2).
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Fig. 2.8. The effect of random selection of the number of iterations during which
the moves are prohibited (for quadratic assignment problem instances of size 15
drawn at random). The number of iterations during which the reverse of a move
is prohibited is drawn at random, uniformly between a minimum value and this
value increased by Delta. The size of the discs grows with the average number of
iterations necessary for the resolution of the problems until the optimum is found.
A circle indicates that a cycling phenomenon has appeared. The size of the circles
is proportional to the number of problem instances solved optimally.

Still for the quadratic assignment problem, the figure 2.8 gives the average
number of iterations necessary for the resolution of 500 examples of problems
of size 15, generated at random, when the technique is to choose the number
of tabu moves at random between a minimal value and this value increased
by Delta. The surface of the black discs depends on the average number of
iterations necessary to obtain the optimal solutions for the 500 problems. An
empty circle indicates that at least one of the problems was not solved opti-
mally. The surface of these circles is proportional to the number of problems
for which it was possible to find the optimum. For Delta = 0, i.e. when the
number of tabu moves is constant, cycles appear even for relatively large sizes
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of tabu lists. On the other hand, the introduction of a positive Delta, even a
very small one, can ensure much more protection against cycling. As it can
be noted in figure 2.7, the lower the tabu list size is, the smaller is the aver-
age number of iterations required to obtain the optimum. However, below a
certain threshold, cycles appear, without passing through the optimum. From
the robustness point of view, one is thus constrained to choose sizes of tabu
lists slightly larger than the optimal value (for this size of instances it seems
that it should be [7, 28] (minimum size = 7, Delta = 21), but it is noticed
that for [8, 28] a cycle appeared).

This technique of randomly selecting the number of tabu moves can thus
direct the search automatically towards good solutions. Let us note that such
a mechanism could be described as myopic because it is directed mainly by
the value of the objective function. Although it provides very encouraging
results considering its simplicity, it cannot be considered as an intelligent
way of directing the search, but must rather be viewed as a basic tool for
implementing the search process.

Type of tabu list for the QAP

A solution for the quadratic assignment problem can be represented under the
form of a permutation p of n elements. A type of move very frequently used
for this problem is to transpose the positions of two objects i and j. Indeed, it
is possible to evaluate effectively, in O(n?), the entire set of moves applicable
for a solution.

As it was discussed earlier, a technique for directing search at short-term
is to prohibit, during t iterations, the application of the reverse of the moves
which have just been carried out. If the move (4, j) is applied to the permuta-
tion p, the reverse of a move can be defined as a move which simultaneously
places the object ¢ on the site p; and the object j on the site p;. There are
other possible definitions of the reverse of a move, but this is one of the most
effective ones to prevent cycles and appears to be the least sensitive one to
the value of the parameter ¢, the number of iterations during which one avoids
applying the reversal of a move. A fixed value of ¢ does not produce a robust
search, because cycles may appear (see figure 2.8) even for large values of t.
To overcome this problem, it is proposed in [Taillard, 1991] that ¢ should be
uniformly drawn at random, between |0,9-n] and [1,1-n+4]. Indeed, exper-
iments have shown that a tabu duration equal to the size of the problem, or
slightly larger for small examples, seems rather effective. This paved the way
for the idea to select the value of ¢ in a dynamic manner during the course
of search, by choosing an average value slightly higher than the value which
would have been ideal in the static case. The program described in appendix B
was one of the earliest ones to propose this technique.

To implement this tabu mechanism in practice, a matrix 7 will be used
whose t;,- entry will give the iteration number during which the element ¢ was
moved the last time from the site r (to go to the site p;), number to which
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one adds the tabu duration ¢. Thus, the move (4, j) will be prohibited if both
entries ¢;;,, and t;;, contain values higher than the current iteration number
(see appendix B).

Let us consider the small 5 x 5 instance of quadratic assignment problem,
known in literature as NUG5, with flows matrix F and distances matrix D:

05241 01123
50302 10212
F=|23000, P=|12012
40005 21101
12050 32210

Iteration 0. On the basis of the initial solution p = (2,4, 1,5, 3) of cost 72, the
following evolution of tabu search will take place. The search can be started
by initializing the matrix 7 = 0.

Iteration 1. Then, the value A(p, (i,7)) is calculated for each transposition

(4,5):

move|(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
costf 2 —-12 —12 2 0 -10 -12 4 8 6

It can be realized that three moves produce a maximum profit of 12: to ex-
change the objects on the sites (1,3), (1,4) and (2,5). One can assume that it
is the first of these moves, (1,3), which is retained. If it is prohibited during
t = 9 iterations (i.e. until the iteration 10) to put element 2 on site 1 and
element 1 on site 3 simultaneously, the following matrix is obtained:

001000
100 000
T = 00 000
00 000
00 000

Tteration 2. The move chosen during iteration 1 leads to the solution p =
(1,4,2,5,3) of cost 60. Calculating the value of each transposition one can
obtain:

move|(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,
cost| 14 12 -8 10 0 10 8 12 12 6
tabu yes

5)

For this iteration, it should be noticed that the reverse of the preceding move is
now prohibited. The authorized move (1, 4), giving minimum cost, is retained,
for a profit of 8. If the randomly selected tabu duration of the reverse move
is t = 6, the matrix 7 becomes:
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801000
100 000
T = 00 000
00 000
00 080

Iteration 3. The solution p = (5,4, 2, 1,3) of cost 52 is reached which is a local
optimum. Indeed, at the beginning of iteration 3, no move has a negative cost:

move|(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
cost|] 10 24 8 0 0 22 20 8 8 14
tabu yes

The selected move (2, 3) in this iteration has a zero cost. It should be noticed
here that the move (1,3), which was prohibited during iteration 2 is again
authorized, since the element 5 was never in third position. If the random
selection of the tabu duration results in ¢t = 8, the following matrix is obtained:

§ 01000
10 01100
T= 0 0000
011 000
0 0 080

Iteration 4. One can then obtain a solution p = (5,2,4,1,3) of cost 52 and
the data structures situation will be as follows:

move|(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
cost|f 24 10 8 10 O 8 8 22 20 14
tabu yes yes

However, it is not possible any more to choose the move (2, 3) correspond-
ing to the minimum cost, which could bring us back to the preceding solution,
because this move is prohibited. Similar situation arises for the move (1,4)
which would replace the element 5 in position 1 and the element 1 in fourth
position, although this exchange leads to a solution not yet visited. Hence we
are forced to choose an unfavorable move (2,4), that increases the cost of the
solution by 8. With a selected tabu duration of ¢ = 5, one can obtain:

8§ 01090
10 91100
T = 0 0000
011 000
0 0 080
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Iteration 5. The solution at the beginning of this iteration is: p = (5, 1,4, 2, 3).
The calculation of the cost of the moves gives:

move[(1,2) (1,3) (1,4) (1,5) (2,3) (2.4) (2,5) (3,4) (3,5) (4,5)
cost| 12 —10 12 10 0 -8 4 14 20 10
tabu yes yes yes

It is noticed that the move degrading the quality of the solution at the
preceding iteration was beneficial, because it now facilitates to arrive at an
optimal solution p = (4,1, 5,2,3) of cost 50, by choosing the move (1, 3).

2.5.4 Aspiration conditions

Sometimes, some tabu conditions are absurd. For example, a move which leads
to a solution better than all those visited by the search in the preceding iter-
ations does not have any reason to be prohibited. In order to not to miss this
solution, it is required to disregard the possible tabu status of such moves.
According to the tabu search terminology, this move is called aspired. Natu-
rally, it is possible to assume other aspiration criteria, less directly related to
the value of the objective to be optimized.

It should be noted here that the first presentations on tabu search insisted
heavily on the aspiration conditions, but, in practice, these were finally limited
to authorize a tabu move which helped to improve the best solution found
so far during the search. As this last criterion became implicit, little research
were carried out later in defining more elaborate aspiration conditions. On the
other hand, aspiration can also be sometimes described as a form of long-term
memory, consisting in forcing a move never carried out over several iterations,
irrespective of its influence on the objective function.

2.6 Convergence of tabu search

Formally, one cannot speak about “convergence” for a tabu search, since in
each iteration the solution is modified. On the other hand, it is definitely in-
teresting to pass at least once through a global optimum. This was the focus of
discussion in [Hanafi, 2001], on the theoretical level, using an elementary tabu
search. It was shown that the search could be blocked if one prohibits passing
through the same solution twice. Consequently, it is necessary to enable one to
revisit the same solution. By considering a search which memorizes all the so-
lutions visited and which chooses, if all the neighboring solutions were already
visited, the oldest that was visited, it can be shown that all the solutions of
the problem will be enumerated. This is valid if the set of solutions is finite, if
the neighborhood is either reversible (or symmetric: any neighboring solution
to s has s in its neighborhood) or strongly connected (there is a succession of
moves enabling to reach any solution s’ starting from any solution s). Here,
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all the solutions visited must be memorized (possibly in an implicit form) and
it should be understood that this result remains theoretical.

There is another theoretical result on the convergence of tabu search pre-
sented in [Faigle and Kern, 1992]. These authors have considered probabilistic
tabu conditions. It is then possible to choose probabilities such that the search
process is similar to that of a simulated annealing. Starting from this obser-
vation, it can be well assumed that the convergence theorems for simulated
annealing can be easily adapted for a process called probabilistic tabu search.
Again, it should be understood that the interest of this result remains of
purely theoretical nature.

Conversely, it can be shown that tabu search in its simplest form can
simultaneously appear to be effective in practice but unable to pass through a
global optimum for some badly conditioned instances. To show this property,
it is important to work with a powerful method in practice. It is obviously
uninteresting to show that a method that does not work for a given problem
could never pass through a global optimum.

To prove that, one can define an elementary tabu search for the vehicle
routing problem (VRP) which enables it to obtain, if its single parameter is
well chosen, the optimal solution for a problem instance that is at the limits of
possibilities of exact methods. Then, one can show that this iterative search,
irrespective of the value of its single parameter, never passes through the
global optimum of a small badly conditioned instance.

To define an iterative search, firstly one has to model the problem and
the moves applicable to a solution. In the case of the VRP, one can authorize
those solutions where all the goods are not delivered, but attributing a penalty
of 2d for a good not delivered which is at a distance d from the depot (as if
one urged for a vehicle only to deliver it). The maximum number of vehicles
engaged is limited by a value m (which can be easily determined). A move
consists in removing a good ¢ (i = 1,...,n) currently served by the tour T}
(j = 0,...,m, the tour Ty represents the non-served goods) and to deliver
it during the tour T (k = 0,...,m,k # j). When a good ¢ is withdrawn
from T}, it is directly passed from the place of delivery of the good preceding
i in T} to that succeeding ¢ in the Tj. In tour T}, a good i is added at the
position which causes the shortest detour. Then, it is necessary to define how
the search is directed. One possibility may consist in prohibiting the reverse
of those moves which were just carried out during ¢ iterations. If the good
i of the tour T; was removed to be inserted in the tour T}, then it will be
prohibited to put the good ¢ back in the tour 7} during the next ¢ iterations
(unless that leads to a solution better than the best one found until now).
The search is initialized with a (very bad) solution consisting of no delivery
at all (all the goods are placed in the dummy tour Tp).

In spite of its simplicity, this procedure can quickly find good quality so-
lutions for classical instances from the literature when the parameter ¢ is
appropriately selected. A small poorly conditioned instance is as follows: let
us consider a maximum of 2 vehicles of capacity 24 and 11 goods to deliver
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with the respective volumes of 3, 8, 8, 8, 3, 3, 3, 3, 3, 3, 3 in only one place,
at a distance d from the depot. The optimal solution for this problem consists
in delivering all the goods of volume 3 by a vehicle and those of volume 8
by the other. It is observed that the tabu search described earlier, for any
value of the parameter ¢, either returns periodically at the same state (same
current solution and same tabu moves, prohibited for an identical number of
iterations), or arrives at a solution where no authorized move exists, without
ever passing through an optimal solution.

The figure 2.9 represents, according to the parameter ¢, the iteration from
which one enters a cycle and the length of this cycle, i.e. the number of inter-
mediate solutions that this iterative search visits before returning to a given
state. The number of different solutions is 258 for this problem (removing some
equivalences). It is noticed that sometimes one can move through a number
of solutions larger than the total number of solutions of the problem, before
entering a cycle. Perhaps that explains why this search behaves relatively well
for better conditioned instances. This figure also shows that the length of the
cycles is always slightly larger than the value of the parameter ¢. If the value
of the later exceeds 32, the search gets blocked in a solution such that all its
neighbors are tabu.
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Fig. 2.9. Appearance of cycles as a function of the parameter ¢, for an ill-conditioned
instance.

Thus, it is shown that the most elementary tabu search is not capable of
avoiding cycles. Hence, it is necessary to resort to other principles to imple-
ment a more effective search. These principles were presented in the first arti-
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cles concerning tabu search, but were not used during several years before they
were established as indispensable principles of this technique. In facts, some
of the articles published in the mid Nineties still presented heuristics based
exclusively on a short term memory presented above. The following section
discusses those techniques which facilitate to direct a longer-term search.

2.7 Long-term memory

In the case of a neighborhood defined by a static set of moves, i.e. when it
does not depend on the solution found in the process, statistics of the moves
chosen during the search can be of great utility. If some moves are elected
much more frequently than others, it is necessary to assume that the search
faces difficulties in exploring solutions of varied composition and that it may
remain confined in a “valley”. In practice, it is frequently observed problem
instances that comprise extended valleys. Thus, these can be visited using
moves of small amplitude, considering the absolute difference of the objective
function. If only the mechanism of prohibiting the moves which are reverse of
those recently carried out is employed to direct search, then the number of
prohibited moves is so low that it becomes almost impossible to escape from
some valleys. It was also seen that an attempt to increase this number of tabu
moves may force the search procedure to often reside on the hillside and even
if the search can change the valley, it can not succeed in finding good solutions
in the new valley because of the moves which will be prohibited after the visit
of the preceding valley. It is thus necessary to introduce other mechanisms to
direct effectively a search at long-term.

2.7.1 Frequency-based memory

In order to ensure certain diversity throughout the search without prohibiting
too many moves, a technique consists in penalizing the moves frequently used.
Several penalization methods can be imagined, for instance the prohibition
to carry out those moves whose frequency of occurrence during the search
may exceed a given threshold, or the addition of a value proportional to their
frequency of usage at the time of the evaluation of the moves. Moreover, the
addition of a penalty proportional to the frequency will have a beneficial effect
for the problems where the objective function takes only a small number of
values, which can generate awkward equivalence to direct search, when several
neighboring solutions have same evaluation. In these situations, the search will
then tend to choose those moves which are least employed rather than to select
a move more or less at random.

The figure 2.10 illustrates the effect of a penalization of the moves which
adds a factor proportional to their frequency of usage at the time of their
evaluation. For this purpose, the experiment carried out to show the influence
of tabu duration was repeated (see figure 2.7), but this time by varying the
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coefficient of penalization; the moves are thus penalized, but never tabu. This
experiment relates again to the 3000 quadratic assignment instances of size 12
generated at random. In figure 2.10, the average of the best solutions found
after 50 iterations and the average value of all the solutions visited are given
as functions of the coefficient of penalization. It should be noticed that the
behavior of these two statistics is almost the same as that shown in figure 2.7,
but overall, the solutions generated are worse than those obtained by the use
of a short-term memory.
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Fig. 2.10. Effect of the coefficient of penalization on the frequencies.

As implemented for the short-term memory, this can be generalized for
a long-term memory of non-static set of moves, i.e. where M depends on s:
then the frequency with which one employed certain characteristics of move
is recorded rather than the moves themselves. Here the similarities in im-
plementing these two forms of memories should be noticed: one stores the
iteration in which one can again resort to a characteristic of move, whereas
the other memorizes the number of times that this characteristic was used in
the chosen moves.

Value of the penalization.

As implemented for the tabu duration in the short-term mechanism, it is nec-
essary to tune the importance that one associates with a penalization based
on the frequencies. This tuning can be carried out on the basis of the follow-
ing considerations: Firstly, if freg(m) denotes the frequency of usage of the
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move m, it seems reasonable to penalize this move by a factor proportional
to freq(m), though another possible function can be, for example, freq?(m).

Secondly, if the objective is a linear function and if a new problem instance
is considered where all the data were multiplied by a constant, it is not desired
that this mechanism of penalization based on the frequencies depends on the
value of the constant. In the same way, the mechanism of penalization should
not work in a different manner if one adds a constant to the objective. Con-
sequently, it also seems legitimate to use a penalization which is proportional
to the average amplitude of two neighboring solutions.

Thirdly, the larger the neighborhood is, the more the distribution of the
frequencies concentrates on small values. The penalty should be multiplied
by a function strictly increasing with the size of the neighborhood, so that
the penalty does not become zero when the size of the problem increases.
If the identity function proves to be too large in practice (cf. [Taillard, 1993,
Taillard, 1994]), one can consider, for example, a factor proportional to y/|M]|.

Naturally, the concept of using a penalization based on the frequencies
also requires taking the mechanism of aspiration into consideration. If not,
then it is highly likely that we may pass beside excellent solutions.

2.7.2 Obligation to carry out move

Another long-term mechanism consists in performing a move which was never
used during a large number of iterations, irrespective of its influence on the
quality of the solution. Such a mechanism can be useful in destroying the
structure of a local optimum, therefore escaping from the valley in which
it was confined. This is also valid for high dimensional problems, as well as
instances having more modest size but very structured (i.e. for which the local
optima are separated by very bad solutions).

In the earlier example of the quadratic assignment problem, it is not even
necessary to introduce a new data structure to implement this mechanism. In
fact, it is enough to implement the tabu list under the form of a matrix of two
dimensions (element, position), whose entries indicate in which iteration each
element is authorized to occupy a given position, either to decide if a move
is prohibited (the entries in the matrix corresponding to the move contain
values larger than the number of the current iteration) or, on the contrary, if
a given element did not occupy a given position during the last v iterations.
If the matrix contains an entry whose value is lower than the number of
the current iteration decreased by the parameter v, the corresponding move
is elected, independent of its evaluation. It may happen that several moves
could be simultaneously elected because of this rule. This problem can be
solved by considering that, before the search was started, one had carried
out all the |M| moves (a static, definite neighborhood of all the M moves is
assumed) during hypothetical iterations —|M|, —|M|+ 1,...,—1. Of course,
it is necessary that the parameter v be (sufficiently) larger than |M]|, so that
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these moves are only imposed after v iterations. This is illustrated in the
program given in appendix B.

2.8 Strategic oscillations

The effect of the penalization on the frequencies produces fruitful results for
long searches and can thus be considered like a long-term memory. To obtain
effective implementations of tabu search, this long-term memory must be ex-
ploited in collaboration with a short-term memory. This collaboration can be
either constant, where the number of tabu moves and the coefficient of pena-
lization are chosen once and for all, or varied, by alternating search phases
where the long-term memory can have a dominating role or a limited one.
The purpose of these phases will be to intensify the search (when the number
of prohibited moves is reduced and/or the long-term memory is evoked to
choose solutions with characteristics close to the best solutions enumerated
by the search), or to diversify the search (when the number of tabu moves
is large and/or the long-term memory is used to support solutions or moves
with characteristics seldom met).

2.9 Conclusion

Only some basic concepts of tabu search were presented in this chapter. Other
principles may lead to a more effective and intelligent method. When possi-
ble, the graphical representations of the solutions visited successively during
the search will actively stimulate the spirit of the designer and will suggest,
often in an obvious way, how to direct the search more intelligently. The de-
velopment of a tabu search is an iterative process: it is almost improbable to
propose an excellent method at first attempt; adaptations, depending on the
type as well as on the problem instance dealt with, must certainly be required.
This chapter described only those principles which should enable a designer to
proceed towards an effective algorithm more quickly. Finally, let us mention
that other principles, often presented within the framework of tabu search as
suggested by F. Glover — such as scatter search, vocabulary building or path
relinking — will be presented in the chapter 7 devoted to the methodology.

2.10 Annotated bibliography

[Glover and Laguna, 1997]: This book is undoubtedly the most important re-
ference on tabu search. It describes the technique extensively, in-
cluding certain extensions which will be discussed in this book, in
the chapter 7.
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[Glover, 1989, Glover, 1990]: These two articles can be considered as the
founders of the discipline, even if the denomination of tabu search
and certain ideas already existed previously. They are not eas-
ily accessible; hence certain concepts presented in these articles,
like path relinking or scatter search, were studied by the research
community only several years after their publication.
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Evolutionary Algorithms

3.1 From genetics to engineering

The biological evolution generated extremely complex autonomous living be-
ings which can solve extraordinarily difficult problems, such as the continuous
adaptation to complex, uncertain environments and in perpetual transforma-
tion. For that, the superior living beings, like the mammals, are equipped
with excellent capabilities of pattern recognition, training and intelligence.
The large variety of the situations to which the life adapted shows that the
process of evolution is robust and is capable of solving many classes of prob-
lems. This allows a spectator of the living world to conceive that there are
other ways than establishing precise processes, patiently derived from quality
knowledge of the natural laws, to satisfactorily build up complex and efficient
systems.

According to C. Darwin [Darwin, 1859], the original mechanisms of evo-
lution of the living beings rest on the competition which selects the most well
adapted individuals to their environment while ensuring a descent, as in the
transmission of the useful characteristics to the children which allowed the
survival of the parents. This inheritance mechanism is based, in particular, on
a form of cooperation implemented by the sexual reproduction.

The assumption that the Darwin theory, enriched by the current knowledge
of the genetics, accounts for the mechanisms of evolution is still not justified.
Nobody can confirm till today that these mechanisms are well understood,
and that there is no essential phenomenon that remains unexplored. In the
same manner that it was necessary to wait for a long time to understand that
if the birds fly, it is not so much because of the beating of their wings, which
gives a visible and misleading demonstration, but rather because of the profile
of their wings, which creates the desired aerodynamic phenomenon.

However, the Neo-Darwinism is the only theory of evolution available that
has never failed until now. The development of the electronic calculators fa-
cilitated the study of this theory in simulation and some researchers desired
to test it on engineering problems, long back in the 1950s. But this work was
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not convincing because of insufficient knowledge, available at that time, of
the natural genetics and also because of the weak performances of the calcu-
lators available. In addition, the extreme slowness of the evolution crippled
the thinking that such a process can be usefully exploited.

During the 1960s and 1970s, as soon as calculators of more credible power
came in existence, many attempts to model the process of evolution were
undertaken. Among those, three approaches emerged independently, being
mutually unaware of presence of others, until the beginning of the 1990s:

o the evolution strategies (ES’s) of H.P. Schwefel and I Rechenberg
[Rechenberg, 1965, Beyer, 2001] which were designed in the middle of the
1960s like an optimization method for problems using continuously varying
parameters;

o the evolutionary programming (EP) of L.J. Fogel et al. [Fogel et al., 1966]
which aimed, during the middle of the 1960s, to make evolve the structure
of finite-state automata with iterated selections and mutations; it was
desired to be an alternative for the artificial intelligence of the epoch;

e the genetic algorithms (GA’s) were presented in 1975 by J.H. Holland
[Holland, 1992], with the objective to understand the subjacent mecha-
nisms of self-adaptive systems.

Thereafter, these approaches underwent many modifications according to the
variety of the problems faced by their founders and their pupils. The genetic
algorithms became extremely popular after the publication of the book “Ge-
netic Algorithms in Search, Optimization and Machine Learning” by D. E.
Goldberg [Goldberg, 1989] in 1989. This book, published world wide, resulted
in an exponential growth in interest in this field. While there were about a
few hundreds of publications in this area over 20 years duration before this
book appeared, there are several tens of thousands of them available today.
Researchers in this field have organized common international conferences
presenting and combining their different approaches.

Genetic algorithms or evolutionary algorithms?

The widespread term FEwvolutionary Computation, appeared in 1993 as the
title of a new journal published by the MIT Press, and then it was widely
used to designate all the techniques based on the metaphor of the biological
evolution theory. However, some specialists use the term “Genetic Algorithms”
to designate any evolutionary technique even though they have few common
points with the original propositions of Holland and Goldberg.

The various evolutionary approaches are based on a common model pre-
sented in section 3.2. The sections 3.3 and 3.4 describe various alternatives
of selection and variation operators, basic building blocks of any evolutionary
algorithm. The genetic algorithms are the most “popular” evolutionary algo-
rithms. This is why the section 3.5 is especially devoted to them. It shows
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how it is possible to build a simple genetic algorithm from an adequate com-
bination of specific selection and variation operators. Finally the section 3.6
briefly presents some questions related to the convergence of the evolution-
ary algorithms. This chapter concludes with a mini-glossary of terminologies
usually used in the field and a bibliography with accompanying notes.

3.2 The generic evolutionary algorithm

In the world of the evolutionary algorithms, the individuals subjected to evo-
lution are the solutions, more or less efficient, for a given problem. These so-
lutions belong to the search space of the optimization problem. The set of the
individuals treated simultaneously by the evolutionary algorithm constitutes
a population. It evolves during a succession of iterations called generations
until a termination criterion, which takes into account a priori the quality of
the solutions obtained, is satisfied.

During each generation, a succession of operators is applied to the individ-
uals of a population to generate the new population for the next generation.
When one or more individuals are used by an operator, they are called the
parents. The individuals originating from the application of the operator are
its offspring. Thus, when two operators are applied successively, the offspring
generated by one can become parents for the other.

3.2.1 Selection operators

In each generation, the individuals reproduce, survive or disappear from the
population under the action of two selection operators:

e the selection for the reproduction, or simply: selection, that determines
how many times an individual will be reproduced in a generation;

e the selection for the replacement, or simply: the replacement, that deter-
mines which individuals will have to disappear from the population in
each generation so that, from generation to generation, the population
size remains constant, or more rarely, is controlled according to a definite
policy.

In accordance with the Darwinist creed, the better an individual, the more
often it is selected to reproduce or survive. It may be, according to the al-
ternative of the algorithm, that one of the two operators does not favor the
good individuals compared to the others, but it is necessary that the appli-
cation of the whole of the two operators during a generation introduces a
bias in favor of the best. To make a selection possible, a fitness value, which
depends obviously on the objective function, must be attached to each indi-
vidual. This implies that, in each generation, the fitnesses of the offspring are
evaluated, which can be computation intensive. The construction of a good
fitness function from an objective function is rarely easy.
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3.2.2 Variation operators

In order that the algorithm can find solutions better than those represented
in the current population, it is required that they are transformed by the
application of variation operators or search operators. A large variety of them
can be imagined. They are classified into two categories:

the mutation operators, which modify an individual to form another;

the crossover operators, which generate one or more offspring from com-
binations of two parents. The designations of these operators are based
on the real life concept of the sexual reproduction of the living beings,
with the difference that the evolutionary computation, not knowing the
biological constraints, can be generalized to implement the combination of
more than two parents, possibly the combination of the entire population.

The way of modifying an individual depends closely on the structure of the so-
lution that it represents. Thus, if it is desired to solve an optimization problem
in a continuous space, e.g. a domain of R™, then it will be a priori adequate to
choose a vector of R™ to represent a solution, and the crossover operator must
implement a means so that two vectors of R™ for the parents correspond to
one (or several) vector of R™ for the offspring. On the other hand, if one wishes
to use an evolutionary algorithm to solve instances of the traveling salesman
problem, it is common that an individual corresponds to a round trip. It is
possible to represent it as a vector where each component is the number desig-
nated to a city. The variation operators should then generate only legal round
trips, i.e. rounds for which each city of the circuit is present only once. These
examples show that it is impossible to design universal variation operators,
independent of the problem under consideration. They are necessarily related
to the representation of the solutions in the search space. As a general rule,
for a representation chosen, it is necessary to define the variation operators
used, because they closely depend on it.

3.2.3 The generational loop

In each generation, an evolutionary algorithm implements a “loop iteration”
that incorporates the application of these operators on the population:

1. for the reproduction, selection of the parents among a population of p
individuals to generate A offspring;

2. crossover and mutation of the A selected individuals to generate A off-

spring;;

fitness evaluation for the offspring;

4. selection for the survival of p individuals among the A offspring and p
parents, or only among the X offspring, according to the choice made by
the user, in order to build the population for the next generation.

w
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The figure 3.1 graphically represents this loop with the insertion of the stop-
ping test and addition of the initialization phase of the population. It will be
noted that the hexagonal forms refer to the variation operators dependent on
the representation chosen, while the “rounded squares” represent the selection
operators that are independent of the solution representation.

Fitness Selection Crossover Mutation
evaluation for the of the A of the A
of the u reproduction selected selected
individuals, . X individuals individuals
(selection) | % offspring \ offspring
+ +
u W parents W parents A+
individuals individuals

Selection
for the
replacement

Population Fitness
initialization evaluation
of the A

offspring

n
indivi%uals individualg (replacement)

best individual(s)

Fig. 3.1. The generic evolutionary algorithm.

3.2.4 Solving a simple problem

Following our own way of illustrating the operation of an evolutionary algo-
rithm, let us consider the maximization of the function C(x) = 400 — 2?2 for
x in the interval [—20, 20]. There is obviously no practical interest for using
this type of algorithm to solve such a simple problem, the objectives here are
exclusively didactic. This example will be considered again and commented
on throughout the part presenting the basics of the evolutionary algorithms.
The figure 3.2 shows the succession of the operations from the initialization
phase of the algorithm until the end of the first generation. In this figure, an
individual is represented by a rectangle partitioned into two zones. The top
zone represents the value of the individual = ranging between -20 and +20.
The bottom zone contains the corresponding value of the objective function
C(z) after it was calculated during the evaluation phase. When this value is
not known, the zone is shown in gray. As we are confronted with a problem
of maximization and that the problem is very simple, the objective function
is also the fitness function. The ten individuals of the population are repre-
sented in a row while the vertical axis describes the temporal sequence of the
operations.

The choice of using ten individuals to constitute a population should not
be a misleading one. This can be useful in practice when the computation of
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the objective function takes much time suggesting to reduce the computational
burden by choosing a small population size. One prefers to use populations of
the order of at least one hundred individuals to increase the chances to discover
an acceptable solution. According to the problems under considerations, the
population size can exceed ten thousands of individuals, which then requires a
treatment on a multiprocessor computer (up to several thousands processing
units) so that the execution times are not crippling.

Initialization
fitness function
evaluations

Selections for the
reproduction and
matings

Crossovers

Mutations

Fitness function
evaluations

Replacement
selections

problem problem
dependent independent

operation operation

Fig. 3.2. Application of an evolutionary algorithm on a population of u = 10
parents and A = 8 offspring.

Our evolutionary algorithm works here with the integer representation.
This means that one individual is represented by an integer and that the
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variation operators must generate integers from the parents. For searching
the optimum of C(x) = 400 — 22, it is decided that the crossover will generate
two offspring from two parents, each offspring being an integer number drawn
randomly in the interval defined by the values x of the parents. The mutation
is only the random generation of an integer in the interval [—20,420]. The
result of the mutation does not depend on the value of the individual before
mutation, which could appear destructive. However, one can notice in the
figure 3.2 that the mutation is applied seldom in our model of evolution,
which makes this policy acceptable.

3.3 Selection operators

In general, the capability of an individual of being selected, for reproduction
or replacement, depends on its fitness. The selection operator thus determines
a number of selections for each individual according to its fitness.

In our “guide” example (see figure 3.2), the ten parents generate eight
offspring. This number is a parameter of the algorithm. According to the
figure, the selection operator thus copied twice the best parent, and once six
other parents to produce the population of the offspring. Those are generated
by the variation operators from the copies. Then the replacement operator
is activated and selects the ten best individuals among the parents and the
offspring to constitute the population of the parents for the next generation.
It is noticed that four parents survived, while two offspring, who were of very
bad quality, disappeared from the new population.

3.3.1 Selection pressure

The individuals having the best fitnesses are reproduced more often than the
others and replace the worst ones. If the variation operators are inhibited,
the best individual should reproduce more quickly than the others, until its
copies completely take over the population. This observation leads to a first
definition of the selection pressure suggested by Goldberg and Deb in 1991
[Goldberg and Deb, 1991]. The takeover time 7* is defined as the number of
generations necessary to fill the population with the copies of the best indi-
vidual under the action of the selection operators only. The selection pressure
will be higher as 7* will be low.

The selection intensity S is another method, borrowed from the population
genetics, to define the selection pressure. Let f be the average fitness of the
individuals of the population before the selection. Let g be the average fitness
of the A offspring of the population after the selection. Then S measures the
increase in the average fitness of the individuals of a population determined
before and after selection with the standard deviation o; of the individual
fitnesses before selection taken as a unit of measure:
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If the selection intensity is computed for the reproduction, then f =
S fi/p, with f; be the fitness of the individual 4, and g = Y20, gi/\,
with g; be the fitness of the individual ¢. The definitions presented above are
general and are applicable to any selection technique. It is possible to present
other definitions, whose validity is possibly limited to certain techniques, as
we will see later with regard to the proportional selection.

With a high selection pressure, there is a great risk of premature conver-
gence. This current situation occurs when the copies of a super-individual,
nonoptimal but who reproduces much more quickly than the others, take over
the population. Then, the exploration of the search space becomes local, since
it is limited to a search randomly centered on the super-individual, and there
will be huge risks that the global optimum is not approached in the event of
existence of local optima.

3.3.2 Genetic drift

The genetic drift is also a concept originating from the population genetics.
It is concerned about a random fluctuation of the frequency of the alleles
in a population of small size, where an allele is a variant of an element of
a sequence of DNA! having a specific function. For this reason, hereditary
features can disappear or be fixed at random in a small population even
without any selection pressure.

This phenomenon also occurs within the framework of the evolutionary
algorithms. At the limit, even for a population formed by different individuals
but of the same fitness, in the absence of variation generated by mutation
and cross-over operators, the population converges towards a state where all
the individuals are identical. It is the consequence of the stochastic nature
of the selection operators. The genetic drift can be evaluated by the time
required to obtain a homogeneous population using a Markovian analysis.
But these results are approximations and are difficult to generalize on the
basis of the case studies in the literature. However, it is verified that the time
of convergence towards an absorption state becomes longer as the population
size increases.

Another technique to study the genetic drift measures the reduction of the
variance of the fitness in the population for each generation, under the action
of the selection operators only, each parent having a number of offspring inde-
pendent of its fitness (neutral selection). This last hypothesis must be satisfied
to ensure that the reduction of variance is not due to the selection pressure.
Let r be the ratio of the expectation of the fitness variance in a given gener-
ation to the variance in the previous generation. In this case, A. Rogers and

! desoxyribonucleic acid: a giant molecule that supports part of the hereditary
features of the living beings
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A. Priigel-Bennett [Rogers and Priigel-Bennett, 1999] showed that r depends
only on the variance Vs of the number of offspring for each individual and on
the population size, assumed constant:

_EWVig+1) _ Vs

Vilg) — P-1

where V¢(g) is the variance of the population fitness distribution at generation
g. Vs is a characteristic of the selection operator. It is seen that increasing the
population size or reducing the variance Vy of the selection operator decreases
the genetic drift.

The effect of the genetic drift is prevalent when the selection pressure is
low and this situation leads to a loss of diversity. This involves a premature
convergence a priori far away from the optimum since it does not depend on
the fitness of the individuals.

In short, in order that an evolutionary algorithm can work adequately, it
is necessary that the selection pressure is neither too strong, nor too weak,
for a population of sufficient size, with the choice of a selection operator
characterized by a low variance.

3.3.3 Proportional selection

This type of selection was originally proposed by J Holland for the genetic
algorithms. It is used only for the reproduction. The expected number of
selections \; of an individual ¢ is proportional to its fitness f;. This implies
that the fitness function is positive in the search domain and that it must
be maximized, which can already impose some simple transformations of the
objective function to satisfy these constraints. Let p be the population size
and let A be the total number individuals generated by the selection operator,
A; can be expressed as:

B A

=1 i
Table 3.1 gives the expected number of selections \; of each individual i for a
total of A = 8 offspring in the population of 10 individuals from our “guide”
example.

However, the effective number of offspring can be only integers. For exam-
ple, the situation in the figure 3.2 was obtained with a proportional selection
technique. It shows that the individuals 7, 8 and 10, whose respective fitnesses
204, 175 and 144 are among the worst ones, do not have offspring. Except the
best individual that is selected twice, the others take part only once in the
process of crossover. To obtain this, a stochastic sampling procedure con-
stitutes the core of the proportional selection operator. Two techniques are
widespread and are described below: the roulette wheel selection method, RWS
because it is the operator originally proposed for the genetic algorithms, but it
suffers from high variance, and the stochastic universal sampling method, SUS
because it guarantees a low variance of the sampling process [Baker, 1987].

by fi
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Table 3.1. Expected number of offspring in the population of 10 individuals.

il 1 2 3 4 5
fi] 399 | 364 | 364 | 300 | 231
Ai|1.247]1.138]1.138(0.938|0.722

i| 6 7 8 9 10
fi| 204 | 204 | 175 | 175 | 144
A:]0.638]0.638]0.547(0.547|0.450

Proportional selection algorithms

The RWS method exploits the metaphor of a biased roulette game, which
comprises of as many compartments as individuals in the population and
where the size of these compartments would be proportional to the fitness
of each individual. Once the game is started, the selection of an individual
is indicated by the stopping of the ball on its compartment. If the compart-
ments are unrolled on a straight line segment, the selection of an individual
corresponds to choosing, at random, a point of the segment with a uniform
probability distribution (figure 3.3). The variance of this process is high. It is
possible that an individual having a good fitness value is never selected. In
extreme cases, it is also possible, by sheer misfortune, that bad quality indi-
viduals are selected as many as there are offspring. This phenomenon creates
a genetic drift that facilitates some poor individuals to have offspring with
the detriment of better individuals. To reduce this risk, the population size
must be sufficiently large.

random value

0.450 0938 | 0547 1247  0.638
5 100 2 [ 4] 3 [o][7] 1 [8]6]
0722 1.138 1.138  0.638 0.547

Fig. 3.3. RWS method: individual 3 is selected after drawing a random number.

It is the SUS method which was used in our “guide” example. One al-
ways considers a straight line segment partitioned in as many zones as there
are individuals in the population, each zone having its size proportional to
the fitness. But this time the selected individuals are designated by a set of
equidistant points, their number being equal to the number of offspring (figure
3.4). This method is different from the RWS method as here only one random
drawing is required to place the origin of the series of equidistant points and
thus to generate all the offspring in the population. According to the figure,
individuals 7, 8 and 10 are not selected, the best individual is selected twice,
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while the others are selected only once. For an expected number of selections
A; of the individual i, the effective number of selections will be either the
integer part of \;, or its immediate higher integer number. The variance of
the process being weaker than in the RWS method, the genetic drift appears
much less and, if A > u, the best individuals are certain to have at least an
offspring each.

random
offset

D S T S S S

5 [10] [ 4] 3 Jol7[ 1 [8e6]
0.450 0.938 0547 1247  0.638
0722 1.138 1138 0.638 0.547

Fig. 3.4. SUS method: the selected individuals are designated by equidistant points.

Proportional selection and selection pressure

In the case of proportional selection, the expected number of selections of the
best individual with fitness f among p selections for a population of p parents
is appropriate to define the selection pressure:

_m s
bs = Z;L:lfjf

where f is the average of the fitnesses of the population. If p, = 1, then all
the individuals have equal chances to be selected, indicating an absence of
selection pressure.

Let us consider the search for the maximum of a continuous function, e.g.
f(x) = exp(—2?). The individuals of the initial population are assumed to
be uniformly distributed in the domain [—2,+2]. Some of them have a value
close to 0, which is also the position of the optimum, and thus their fitness f
will be close to 1. The average fitness of the population f will be

| ~>

+oo
f~ /_ f(z)p(x)dx

where p(z) is the probability density of presence of an individual at z. An
uniform density is chosen in the interval [—2,+42], thus p(x) is 1/4 in this
interval, and is 0 elsewhere. Thus

S Y
fz—/ e v dzx
4J o
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that is f ~ 0.441, which gives a selection pressure of the order of p, = f/f ~
2.27. The best individual will thus have an expected number of offspring close
to two (figure 3.5a).

Now let us consider that the majority of the individuals of the population
are in a much smaller interval around the optimum, for example [—0.2; +0.2].
This situation spontaneously occurs after some generations, because of the se-
lection pressure, which favors the reproduction of the bests, these ones being
also closest to the optimum. In this case, assuming an uniform distribution
again f =~ 0.986, and ps ~ 1.01 (see figure 3.5b). The selection pressure
becomes almost non-existent: the best individual has practically as many ex-
pected offspring as any other individual, and it is the genetic drift which will
prevent the population from converging towards the optimum as precisely as
desired.

(a) (b)
, L average fitness of the population = 0,986

f(x)

average fithesg/of the population = 0,44

Fig. 3.5. The selection pressure decreases when the population concentrates in the
neighborhood of the optimum.

This undesirable behavior of the proportional selection, where the selection
pressure strongly decreases when the population approaches the optimum in
the case of continuous functions, is overcome by techniques of fitness function
scaling.

Linear scaling of the fitness function

With a technique of proportional selection, the expected number of selections
of an individual is proportional to its fitness. In this case, the effects of mis-
adjusted selection pressure can be overcome by a linear transformation of the
fitness function f. The adjusted fitness value f/ for an individual ¢ is equal to
fi — a, where a is a positive value if it is desired to increase the pressure, or
otherwise negative, identical for all the individuals. a should be chosen so that
the selection pressure is maintained at a moderate value, neither too large,
nor too small, typically about two. With such a technique, one should pay
attention to the fact that the values of f’ are never negative. They can be
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possibly lower bounded to 0, or to a small positive value, so that any individ-
ual, even of bad quality, has a small chance to be selected. This disposition
contributes in the maintenance of the diversity in the population. Assuming
that no individual becomes negative, the value of a can be calculated in each
generation from the value of the desired selection pressure pg:

azmwithps>1

Ps — 1

In the context of the above example, if the individuals are uniformly dis-
tributed in the interval [—0.2;40.2], then a = 0.972 for a desired selection
pressure ps = 2. The figure 3.6 illustrates the effect of the transformation
f''= f—0.972. It can be noticed that there are values of x for which the
function f’ is negative, whereas this situation is forbidden for a proportional
selection. To correct this drawback, the fitnesses of the individuals concerned
can be kept clamped at zero, or a small constant positive value, which has the
side effect of decreasing the selection pressure.

rage fitness of the population’x 0,014

Fig. 3.6. Adjustment of the selection pressure by subtraction of a positive constant
from f(x).

Exponential scaling of the fitness function

Rather than operating a linear transformation to adjust the selection pres-
sure, currently another common alternative exercised is to elevate the fitness
function to an adequate k power to obtain the desired selection pressure:

fl=fk
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the parameter k& depends on the problem. The Boltzmann selection (De La
Maza and Tidor 1993 [De La Maza and Tidor, 1993]) is another alternative,
where the scaled fitness can be expressed as:

fi = exp(fi/T)

The value of the parameter T', known as the “temperature”, determines the
selection pressure. T is usually a decreasing function of the number of gener-
ations, thus enabling the selection pressure to grow with time.

Rank based selection

These techniques for adjusting the selection pressure proceed by ranking the
individuals 7 according to the values of the raw fitnesses f;. The individuals are
ranked from the best (first) to the worst (last). The fitness value f/ actually
assigned to each individual depends only on its rank by decreasing value (see
figure 3.7) according to, for example, the formula given below which is usual:

f;=(1—T)p
"

where p is the number of parents, r is the rank of the individual considered in
the population of the parents after ranking. p is an exponent which depends
on the desired selection pressure. After ranking, a proportional selection is
applied according to f’. With our definition of the pressure p,, the relation
is: ps = 1 + p. Thus, p must be greater than 0. This fitness scaling technique
is not affected by a constraint of sign: f; can either be positive or negative.
It is appropriate for a maximization problem as well as for a minimization
problem, without the necessity to operate a transformation. However, it does
not consider the importance of the differences between the fitnesses of the
individuals, so that the individuals of very bad quality, but who are not at
the last row of the ranking will be able to persist in the population. It is
not inevitably a bad situation because it contributes to a better diversity.
Moreover, this method does not require the exact knowledge of the objective
function, but of simply being able to rank the individuals by comparing each
with the others. These good properties make that, overall, it is preferred by
the users of evolutionary algorithms compared to the linear scaling technique.

3.3.4 Tournament selection

The tournament selection is an alternative to the proportional selection tech-
niques which, as explained before, presents difficulties to control the selection
pressure during the evolution, while being relatively expensive in the compu-
tation power involved.
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Fig. 3.7. Performance obtained after ranking. (a) : f. = (1 — r/u)® — strong
selection pressure, (b): f;. = /(1 — r/u) — weak selection pressure.

Deterministic tournament

The simplest tournament consists in choosing at random a number k of in-
dividuals in the population, and selecting for the reproduction the one that
has the best fitness. During a selection step, there are as many tournaments
as selected individuals. The individuals who take part in a tournament can
be replaced in the population, or they can be withdrawn from it, according
to the choice of the user. A drawing without replacement makes it possible
to conduct | N/k| tournaments with a population of N individuals. A copy of
the population is re-generated when it is exhausted, and this is implemented
as many times as necessary, until the desired number of selections is reached.
The variance of the tournament process is high, which favors the genetic drift.
It is however weaker in the case of drawing without replacement. This method
of selection is very much used, because it is much simpler to implement than
a proportional reproduction with a behavior and properties similar to the
ranking selection.

The selection pressure is adjusted by the number of participants %k in a
tournament. Indeed, let us consider the case where the participants in a tour-
nament are replaced in the population. Then the probability that the best
individual of the population is not selected in k drawings is ((N —1)/N)¥. By
making the assumption that N is very large compared to k, this probability is
approximately 1 — k/N by a binomial expansion limited to first order. Thus,
the probability that the best individual is drawn at least once in a tournament
is close to k/N. If there are M tournaments in a generation, the best individ-
ual will have kM /N expected selections, that involve a selection pressure of
k, by considering again the definition that was proposed for the proportional
reproduction (with M = N). This pressure will be necessarily greater than or
equal to 2.
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Stochastic tournament

With the stochastic binary tournament, involving two individuals in compe-
tition, the best wins with a probability p ranging between 0.5 and 1. It is
still easy to calculate the selection pressure generated by this process. The
best individual takes part in a tournament with a probability of 2/N (see the
preceding paragraph). The best individual of the tournament will be selected
with a probability p. The two events being independent, the probability that
the best individual of the population is selected after a tournament is thus
p+2/N. If there are N tournaments, the best will thus have 2p expected
offspring. The selection pressure thus will range between 1 and 2.

Another alternative, the Boltzmann tournament, ensures that the distribu-
tion of the fitness values in a population is close to a Boltzmann distribution.
This method allows to build a bridge between evolutionary algorithms and
simulated annealing.

3.3.5 Truncation selection

This selection is very simple to implement, as it does nothing but to choose
the n best individuals from a population, n being a parameter chosen by the
user. If the operator is used for the reproduction to generate A offspring from
n selected parents, each parent will have A/n offspring. If the operator is used
for the replacement and thus generates the population of p individuals for the
next generation, then n = pu.

3.3.6 Replacement selections
Generational replacement

This type of replacement is the simplest, since the population of the parents
for the generation g + 1 will be composed of all the offspring, and only them,
generated in generation g. Thus: u = A. The canonical genetic algorithm uses
a generational replacement.

Replacement for the Evolution Strategies“(u, A)— ES”

A truncation selection of the best p individuals among A offspring forms the
population for the next generation. Usually, A is larger than pu.

Steady state replacement

In each generation, a small number of offspring (one or two) are generated and
they replace a lower or equal number of parents, to form the population for the
next generation. This strategy is useful especially when the representation of
a solution is distributed on several individuals, possibly the entire population.
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In this way, the loss of a small number of individuals in each generation: those
that are replaced by the offspring, does not disturb the solutions excessively
and thus they evolve gradually.

The choice of the replaced parents obeys various criteria. With the uniform
replacement, the replaced parents are designated at random. The choice can
also depend on the fitness: the worst parent is replaced, or it is selected sto-
chastically, according to a probability distribution that depends on the fitness
or other criteria.

The steady state replacement generates a population where the individuals
are subject to large variations of lifespan measured in number of generations
and thus in number of offspring. The high variance of these values augments
the genetic drift, which appears more especially as the population is small
[De Jong and Sarma, 1993].

Elitism

An elitist strategy consists in preserving in the population, from one gener-
ation to the next one, at least the individual having the best fitness. The
example shown in the figure 3.2 implements an elitist strategy since the best
individuals of the population composed by the parents and the offspring are
selected to form the population of the parents for the next generation. The fit-
ness of the best individual from the current population is thus monotonically
nondecreasing from one generation to the next generation. It is noticed, for
this example, that four parents of generation 0 find themselves in generation
1.

There are various elitist strategies. The strategy employed in our “guide”
example originates from the Evolution Strategies known as “(u + A)-ES”.
In other current alternatives, the best parents in generation g are copied
systematically in P(g + 1), the population for the generation g + 1. Or, if the
best individual of P(g) is better than that of P(g + 1), because of the action
of the variation or selection operators, then the best of P(g) will be copied in
P(g + 1), by usually replacing the lowest fitness individual.

It appears that such strategies improve considerably the performance of
evolutionary algorithms for some classes of functions, but prove to be disap-
pointing for other classes, by increasing the rate of premature convergences.
For example, an elitist strategy is harmful to seek the global maximum of
the F5 function of De Jong (figure 3.8). In fact, such a strategy increases the
exploitation of the best solutions, resulting in an accentuated local search,
with the detriment of the exploration of the search space.
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Fig. 3.8. F5 Function of De Jong.

Choosing a non-elitist strategy can be advantageous, but there is then no
guarantee that the fitness function of the best individual is increasing during
the evolution. That obviously implies to keep a copy of the best solution found
by the algorithm since the initiation of the evolution, without however this
copy taking part in the evolutionary process. It is an indispensable precaution
for any stochastic optimization algorithm anyhow.

3.3.7 Fitness function

Fitness function associates a fitness value to each individual in order to deter-
mine the number of times it will be selected to be reproduced, or whether it
will be replaced or not. In the case of the function C(x) chosen for example,
the fitness function is also the objective function for our maximization prob-
lem. This kind of situation is exceptional, and it is often necessary to carefully
construct the fitness function for a given problem. The quality of this function
greatly influences the efficiency of a genetic algorithm.

Construction

If a proportional selection is chosen, it is possibly necessary to transform the
problem under consideration so that it becomes a maximization problem of
a numerical function with positive values on its domain of definition. For
example, the solution of a system of equations S(x) = 0 could be obtained by
searching the maxima of 1/(a+|S(x)|), where the notation |V| represents the
modulus of the vector V. a is a non-null positive constant.

The construction of a good fitness function should consider the chosen
representation and the nature of the variation operators so that it can give
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non deceptive indications on the progress towards the optimum. For example,
it would be necessary to try to reduce the presence of local optima on the top
of broad peaks as long as a priori knowledge available on the problem allows
it. This relates to the study of the fitness landscapes that will be introduced
in the section 3.4.1 referring to the variation operators.

Moreover, a good fitness function must satisfy several criteria which refer
to its complexity, to the satisfaction of the constraints of the problem, and
also to the adjustment of the selection pressure during the evolution. When
the fitness function appears excessively complex, consuming a considerable
computing power, the search for an approximation is desirable, sometimes
indispensable.

Reduction of the required computing power

In general, in the case of industrial problems, the evaluation of the fitness
function consumes by far the greatest amount of the computing power during
an evolutionary optimization. Let us assume that the calculation of a fitness
value takes 30 seconds, that there are 100 individuals in the population, and
that acceptable solutions are discovered after a thousand of generations, each
one implying each time the evaluation of all the individuals, then it will re-
quire 35 days of computation. Now in the case of industrial problems, the
fitness evaluations usually involve computation intensive numerical methods,
for example: finite element methods. Strategies must be used to reduce these
computation times. Parallel computing can be considered. This kind of ap-
proach is efficient but hardware expensive. One can also consider fitness ap-
proximation calculations, which will be refined gradually, as the generations
pass. Thus, for finite element methods for example, it is natural to start by
using a coarse mesh, in the beginning of the evolution. The difficulty is then
to determine when the fitness function should be refined so that the optimizer
does not converge prematurely to false solutions generated by the approxi-
mations. Another solution to simplify calculation can exploit a tournament
selection or also, a ranking selection (section 3.3.3). Indeed, in these cases, it
is not necessary to know the precise values of the objective function, because
only the ranking of the individuals is significant.

3.4 Variation operators and representation

3.4.1 Generalities about the variation operators

The variation operators belong to two categories:

e the crossover operators, that use several parents (often two) to create one
or more offspring;
e the mutation operators, that transform one individual.
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They make it possible to create diversity in a population by building “off-
spring” individuals, who inherit, partly, the characteristics of “parent” in-
dividuals. They must be able to serve two mandatory functions during the
search for an optimum:

e the exploration of the search space, in order to discover the interesting
areas, which are most likely to contain the global optima;

e the exploitation of these interesting areas, in order to concentrate search
there and to discover the optima with the required precision, for those
which contain them.

For example, a purely random variation operator, where solutions are drawn at
random independent of each other, will have excellent qualities of exploration,
but will not be able to discover an optimum in a reasonable time. A local search
operator that performs “hill climbing” will be able to effectively discover an
optimum in an area of space, but there will be a great risk that it will be a local
solution, and the global solution will not be obtained. A good search algorithm
for the optimum will have to thus carry out an adequate balance between the
exploration capabilities and exploitation of the variation operators it uses.
It is not easy to conceive and it strongly depends on the properties of the
problem under consideration.

The study of the fitness landscape helps to understand why a variation
operator will be more effective than any other operator for the same problem
and the same choice of representation. The notion was introduced within the
framework of the theoretical genetics in the 1930s by S. Wright [Wright, 1932].
A fitness landscape is defined by:

e a search space {2 whose elements are called “configurations”;
e a fitness function f: 2 — R;
e a relation of neighborhood or accessibility .

It can be noticed that the relation of accessibility is not a part of the opti-
mization problem. This relation depends on the characteristics of the variation
operators chosen. Utilizing a configuration in the search space, the applica-
tion of these stochastic operators potentially gives access to a set of accessible
configurations with various probabilities. The relation of accessibility can be
formalized within the framework of a discrete space {2 by a directed hyper-
graph whose hyperarcs have values given by the probabilities of access to an
“offspring” configuration from a set of “parent” configurations.

For the mutation operator, the hypergraph of the relation of accessibil-
ity becomes a directed graph which, from an individual, or configuration X,
represented by a node of the graph, gives a new configuration X', with a
probability given by the value of the arc (X, X’). For a crossover operation
between two individuals X and Y that produce an offspring Z, the probability
of generating Z knowing that X and Y are crossed is given by the value of
the hyperarc ({X,Y},{Z}).
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The definition of the fitness landscape given above shows that it depends
at the same time on the optimization problem under consideration, on the
chosen representation defined by space {2 and on the relation of accessibility
defined by the variation operators. What is obviously expected is that the
application of the latter offers a sufficiently high probability to improve the
fitness of the individuals from one generation to another. This point of view
will be wise to adopt when designing relevant variation operator for a given
representation and a problem, while benefiting from all knowledge, formalized
or not, that is available for this problem.

After some general considerations regarding the crossover and mutation
operators, the following paragraphs present examples of traditional operators
applicable in various popularly used search spaces:

the space of the binary strings;

the real representation in domains of R"™;

the representations of permutations usable for various combinatorial prob-

lems, like the traveling salesman problem, and the problems of scheduling;
e the representation of parse trees, for the resolution of problems by auto-

matic programming.

Crossover

The crossover operator uses two parents to generate one or two offspring.
The operator is generally stochastic, hence the repeated crossover of the same
couple of distinct parents gives different offspring. As the crossovers of the
evolutionary algorithms are not subject to biological constraints, more than
two parents, in the extreme case the complete population, can participate in
mating for crossover [Eiben et al., 1995].

The operator generally respects the following properties:

e the crossover of two identical parents will produce offspring, identical to
the parents.

e By extension, on the basis of an index of proximity depending on the
chosen representation defined in the search space, two parents which are
close in the search space will generate offspring, close to them.

These properties are satisfied by the “classical” crossover operators like
most of those described in this chapter. These are not absolute, as in the
current state of knowledge of the evolutionary algorithms, the construction of
a crossover operator does not follow a precise rule.

The crossover rate determines the proportion of the individuals crossed
among the offspring. For the example in the figure 3.2, this rate was fixed
at 1, i.e. all offspring are obtained by crossover. In the simplest version of
an evolutionary algorithm, the individuals are mated at random among the
offspring generated by the selection without taking account of their charac-
teristics. This strategy can prove to be harmful when the fitness function has
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several optima. Indeed, it is generally not likely that the crossover of high
quality individuals located on different peaks will give good quality individ-

uals (refer to figure 3.9). A crossover is known as lethal if it produces one or
two offspring having too low a fitness to reproduce from good parents.

A

/ 4

parent 2 parent 1
offspring 1

offspring 2

.

Search domain

Fig. 3.9. Crossover of two individuals placed on different peaks of a fitness function

f.

A solution to avoid a too strong proportion of lethal crossovers consists
in preferentially mating the individuals who resemble each other. A distance
being defined in the search space, the simplest way to proceed consists in
selecting two individuals according to the probability distribution of the se-
lection operator and then to cross the individuals only if their distance is lower
than a threshold r. called restriction radius. If the latter is small, this will
lower the rate of effective crossover significantly, which can be prejudicial. It
is preferable then to select a first parent by the selection operator, then, if
there are individuals in its neighborhood, one of them is selected to become
the second parent. In all situations, if r. is selected too small, it significantly
reduces the exploration of the search space by accentuating local search, and
it can lead to premature convergences. This is especially sensitive to the ini-
tialization of the evolution when the crossover of two individuals distant from
each other makes it possible to explore new areas of the search space that
potentially contain peaks of the fitness function. Thus, to make the technique
efficient, the major problem consists in choosing a good value for r.; however
it depends largely on the fitness landscape, which is in general not known. It
is also possible to consider a decreasing radius r. during the evolution.
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Mutation

Classically, the mutation operator modifies an individual at random to gener-
ate an offspring who will replace it. The proportion of the mutated individuals
in the offspring population is equal to the mutation rate. Its order of mag-
nitude can vary substantially according to the chosen model of evolution. In
the example of the figure 3.2, two individuals are mutated among the eight
offspring obtained by the selection process. For the genetic algorithms, the
mutation is considered as a minor operator, aimed at maintaining a mini-
mum diversity in the population, which the crossover cannot ensure. With
this model, the mutation rate is typically low, about 0.01 to 0.1, whereas the
crossover rate is high. On the contrary, the mutation in the original model of
the Evolution Strategies is essential since there is no crossover. The mutation
rate is then 100%.

Most of the mutation strategies modify an individual in such a way that the
result of the transformation is close to it. In this way, the operator performs
a random local search around each individual to mutate. The mutation can
considerably improve the quality of the solutions discovered compared to the
crossover which loses its importance when most of the population is located in
the neighborhood of the maxima of the fitness function. Indeed, the individuals
located on the same peak are often identical because of the process of the
selection for the reproduction and do not undergo any modification by the
crossover operator. If they belong to different peaks, the offspring generally
have low fitnesses. On the other hand, the local random search due to the
mutations gives a chance to each individual to approach the exact positions
of the maxima, as much as the characteristics of the chosen operator allow it.

The mutation with a sufficiently high rate plays an important part in the
preservation of the diversity, useful for an efficient exploration of the search
space. This operator can fight the negative effects of a strong selection pressure
or a strong genetic drift, those phenomena which tend to reduce the variance
of the distribution of the individuals in the search space.

If the mutation rate is high and, moreover, the mutation is so strong that
the individual produced is almost independent of that which generated it, the
evolution of the individuals in the population is equivalent to a random walk
in the search space, and the evolutionary algorithm will require an excessive
time to converge.

The utilization of the mutation, as a local search operator, suggests com-
bining it with other more effective local techniques, although more problem-
dependent, such as a gradient technique for example. This kind of approach
led to the design of hybrid evolutionary algorithms.

3.4.2 Binary representation

The idea to make evolve a population in a space of binary vectors originated
mainly from the genetic algorithms, which was inspired by the transcription
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genotype-phenotype existing in the living world. Within the framework of the
genetic algorithms, the genotype is constituted by a string of binary symbols,
or more generally, a string of symbols belonging to a low-cardinality alphabet.
The phenotype is a solution of the problem in a “natural” representation.
The genotype undergoes the action of the genetic operators: selections and
variations, while the phenotype is used only for the fitness evaluation.

For example, if a solution is expressed naturally as a vector of real numbers,
the phenotype will be this vector. The genotype will thus be a binary string
which codes this vector. To code the set of the real variables of a numerical
problem as a binary string, the simplest way is to convert each variable in
binary format, then these binary numbers are concatenated to produce the
genotype. Lastly, the most immediate technique to code a real number in
binary format consists in representing it in fixed point format with a number
of bits corresponding to the desired precision.

Crossover

For a binary representation, there exists three classical variants of crossovers:

e the “single point” crossover;
e the “two point” crossover;
e the uniform crossover.

A pair of individuals being chosen by random drawing from the population,
the “single point” crossover [Holland, 1992] is applied in two stages:

1. random choice of an identical cut point on the two bit strings (see figure
3.10a);

2. cut of the two strings (figure 3.10b) and exchanges of the two fragments
located on the right (figure 3.10c).

—>
[1]0]0[ 0[] (1]of0][0][1]

1]0/0{0{0

= i:>
[0[1]0][0] O] [0o[1]0][0]O 0/1/0]/0]1
—>
g:ic:tce of a cut :x;;nd @ Result

Fig. 3.10. “Single point” crossover of two genotypes of 5 bits.

This process produces two offspring from two parents. If only one offspring
is used by the evolutionary algorithm employed, it is chosen at random from
the pair and the other one is discarded. The “single point” crossover is the
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simplest and the most traditional for codings using an alphabet with low car-
dinality, like the binary coding. An immediate generalization of this operator
consists in multiplying the cut points on each string. The “single point” and
“two point” crossovers are usually employed in practice for their simplicity
and their good effectiveness.

The uniform crossover [Ackley, 1987] can be viewed as a multipoint
crossover where the number of cuts is unspecified a priori. Practically, one
uses a “template string”, which is a binary string of the same length as the
individuals. A “0” at the n!*" position of the template leaves the symbols in
the n't" position of the two strings unchanged and a “1” activates an exchange
of the corresponding symbols (in figure 3.11). The template is generated at
random for each pair of individuals. The values “0” or “1” of the elements of
the template are generally drawn with a probability of 0.5.

nnml]m random template string

| 1]0[0] O 1] parent 1 [0[1]0]0[1] offspring 1
$d 9 =
[0[1]0[0] 0] parent 2 [1]0]0]0] 0] offspring 2

@ Choice of the @ Result
symbols to swap

Fig. 3.11. Uniform crossover.

Mutation

Classically, the mutation operator on bit strings modifies at random the sym-
bols of a genotype, with a low probability within the framework of genetic
algorithms, typically from 0.01 to 0.1 per individual. This probability is equal
to the mutation rate. The most common variants are the deterministic mu-
tation and the bit-flip mutation. With the “deterministic” mutation, a fixed
number of bits chosen at random are reversed for each mutated individual,
i.e. a “1” becomes “0” and vice versa, while with the “bit-flip” mutation, each
bit can be reversed independent of the others with a low probability. If the
mutation rate is too high with a great number of mutated bits per individual,
the evolution of the individuals of the population is equivalent to a random
walk in the search space, and the genetic algorithm loses of its effectiveness.

When a bit string represents a vector of integer or real numbers, the pos-
itive effects of the mutation are countered by the difficulty of crossing the
Hamming cliffs, which appear because of the conversion of the bit strings
towards real number vectors. For example, let us consider the function D(z):

256 — 22 if £ <0
D(z) = {O otherwise
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Let us use a string b(x) = {b1(z),...,bs(x)} of five bits to represent an
individual = that ranges from -16 to +15, and thus has 32 possible differ-
ent values. b(z) can be simply defined as the number = + 16 with a base of
2. The optimum of D(z) is obtained for = 0, which thus corresponds to
b(0) = {1,0,0,0,0}. The value = —1, obtained from the string {0,1,1,1,1},
gives the highest fitness apart from the maximum: this value will thus be
favored by the selection operators. However, it is noticed that there is no
common bit between {1,0,0,0,0} and {0,1,1,1,1}. This means that there is
no other individual with whom {0, 1,1,1,1} can be mated to give {1,0,0,0,0}.
As for the mutation operator, it will have to change the 5 bits of the genotype
{0,1,1,1,1} simultaneously to give the optimum because the Hamming dis-
tance 2 between the optimum and the individual which has the nearest fitness
is equal to the size of the strings. Hence, we encounter a Hamming cliff here.
It is not very likely to cross it with a “bit-flip” mutation, and it is impossible
with the “deterministic” mutation unless it flips all the bits of a bit string,
which is never used. But the mutation will be able to easily produce the op-
timum if there are individuals in the population that differ in only one bit of
the optimal string, here these individuals are:

string b(z) | x|D(x)
(0,0,0,0,0)[-16 0
(1,1,0,0,0)| 8/ O
(1,0,1,0,0)[ 4 0
(1,0,0,1,0)| 2| 0O
(1,0,0,0,1)[ 1] 0

Unfortunately they have completely null fitness and thus have very few
chances to “survive” from one generation to the next one.

This tedious phenomenon, which hinders the progress towards the opti-
mum, can be eliminated by choosing a Gray code which ensures that two
successive integers will have binary representations that differ only in one bit.
Starting from strings b(x) that represent integer numbers in base two, it is
easy to obtain a Gray code g(z) = {¢1(z),...,gi1(x)} by performing, for each
bit ¢, the operation:

9i(x) = bi(x) @ bi—1(x)

where the operator @ implements the “exclusive or” operation and bg(z) = 0.
Conversely, the string of [ bits b(x) = {b1(z),...,b(z)} can be obtained from

the string g(z) = {g1(z),..., q(x)}:

bi(z) = D aie)

2Hamming distance: number of different bits between two bit strings of the same
length.
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The Gray codes of {0,1,1,1,1} and {1,0,0,0,0} are respectively {0, 1,0,0,0}
and {1,1,0,0,0}. The mutation of the bit g; is then enough to reach the
optimum. A Gray code is thus desirable from this point of view. Moreover, it
modifies the landscape of the fitness function by reducing the number of local
optima created by transcribing a “real or integer vector” towards a “binary
string”. It will be noted however that the Hamming cliffs are generally not
responsible for dramatic fall in the performance of the algorithm.

3.4.3 Real representation

The real representation allows an evolutionary algorithm to operate on a popu-
lation of vectors in a bounded search domain {2 included in R". Let us assume
that, in a given generation, the individuals X of a population are drawn in
the search domain according to a probability distribution characterized by a
density p(x), where z is a point in 2. Then this distribution has an expecta-
tion:

E(X):/pr(m)dﬂc

and a variance:

V(X) = /szp(w)dx — E2(X)

If A\, the size of the population of the offspring, is large enough, these values
are approached by the empirical expectation:

A
b= D1 T
A

and the empirical variance:

V= Z?:1 a3 _p?
A
The empirical variance can be regarded as a measurement of diversity in the
population. If it is null, then all the individuals are at the same point in {2.
By adopting a mechanical analogy, F is the centroid of the population, while
V is its moment of inertia from the centroid, by allotting to each individual
a mass unit. It is interesting to evaluate these values after application of the
variation operators.

Crossover

Let us consider two points  and y in space R™ corresponding to two individu-
als selected to generate offspring. After application of the crossover operator,
one or two offspring 2’ and gy’ are drawn randomly, according to a probability
distribution which depends on x and y.
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Crossover by exchange of components.

It is about an immediate generalization of the binary crossovers, which con-
sists in exchanging some real components of two parents. One can thus find
all the variants of the binary crossover, in particular the “single point”, “two
point” and “uniform” crossovers (see figure 3.12). The last variant is also
called “discrete recombination” according to the terminologies of the Evolu-
tion Strategies. This type of crossover modifies neither E(X) nor V(X).

Voluminal BLX-o crossover.

The voluminal BLX-a operator generates two offspring chosen uniformly in-
side a hyper-rectangle with sides parallel to the coordinate axes, such that
the two parents and the coefficient « define one of its longest diagonals (see
figure 3.13). Let x; and y; be the components of the two parents x and y
respectively, for 1 < i < n; an offspring z will have its components:

zi = — oy, — z;) + (14 2a)(y; — x;) - U(0,1)
where U(0,1) indicates a random number drawn uniformly in the interval

[0,1].

A Q parents
@ offspring

Fig. 3.12. Uniform crossover; an individual resulting from the crossover of = and y
is located on a vertex of a hyper-rectangle with sides parallel to the coordinate axes
such that a longest diagonal is the segment (z,y).
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A Q parents
@ offspring

y V'

@

/

/

Fig. 3.13. Voluminal BLX-a crossover; an individual resulting from the crossover
of x and y is located inside a hyper-rectangle with sides parallel to the coordinate
axes such that a longest diagonal passes through z and y.

The voluminal BLX-« crossover does not modify E(X), but changes the
value of V(X). Let V.(X) be the variance of distribution of the population

after crossover:

vi(x) = L2y )

The variance after crossover decreases if:

V3-1
2

a < ~ 0.366

In this case, it is said that the crossover is contracting, and the iterative appli-
cation of the operator alone leads the population to collapse on its centroid.
In particular, if & = 0, z is located in the hyper-rectangle such that a longest
diagonal is the line segment (z,y). In this case, V,(X) = 2V(X). After iter-
ative application of this operator alone for g generations, and for an initial
population variance Vp(X), the variance becomes:

V() = (3) vatx)

The variance tends quickly towards 0! It is thus seen that the risk of premature
convergence is increased with a BLX-0 operator.
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Ifa> \/52’1, the variance is increasing if the domain is R". In practice,
for a bounded search domain {2, the variance is stabilized with a non-null
value. The “borders” of the search domain can be explored. The possible
optima which are there will be more easily found and retained. A usual value
is a =0.5.

It is also possible to show [Nomura and Shimohara, 2001] that the operator
reduces the possible correlations which exist between the components of the
vectors of the population. Its repeated application makes the coefficients of

correlation converge towards zero.
Linear BLX-a crossover .

The linear BLX-a operator generates one or two offspring, randomly chosen
on a line segment passing through the two parents, o being a parameter of
the evolutionary algorithm. This crossover is known under several denomi-
nations, according to the authors who studied it, like arithmetic crossover,
or the intermediary recombination for the “Evolution Strategies”, which are
equivalent to BLX-0.

x and y are the points corresponding to two individuals in the search space.
An individual z resulting from the crossover of x and y is chosen according to
a uniform distribution on a line segment passing through = and y:

z=z—oa(y—z)+ (1+2a)ly—=z)-U(0,1)

where U(0,1) indicates a random number uniformly drawn in the interval
[0,1]. If I is the length of the line segment [z,y], z could be on the segment
of length I - (14 2c) centered on the segment [z,y] (figure 3.14).

The linear BLX-« crossover does not modify E(X), but changes the value
of V(X) in a way similar to the voluminal BLX-« crossover. On the other
hand, it is noted that the possible correlations existing between the compo-
nents of the individuals of a population are preserved by the linear operator,
which shows a behavior basically different from that observed for the volumi-
nal operator.

Mutation

The mutation generally consists in the addition of a “small” random value
to each component of an individual, according to a zero average distribution,
with a variance possibly decreasing with time. In this way, it is assured that
the mutation leaves the centroid of the population unchanged.

Uniform mutation.

The simplest mutation technique adds to an individual z, belonging to a
domain {2 in R™, a random variable of uniform distribution in a hyper-cube
[—a, +a]™. However, such a mutation does not allow an individual trapped in a
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Q parents
@ offspring

Fig. 3.14. BLX-« crossover; an individual resulting from the crossover of x and y
is located on the line defined by = and y, possibly outside the segment [z, y].

local optimum located on a peak broader than the hypercube to escape from
it. To avoid this disadvantage, it is preferable to use an unlimited support
distribution.

Gaussian Mutation

The Gaussian mutation is one of the most widely used for the real represen-
tation. It adds to an individual 2 a Gaussian random variable (0, o), of zero
average and standard deviation ¢ which has a probability density of

1
—e
oV2r

The problem is then an adequate choice of o, presumably identical for the n
components of the vector x in the simplest versions of the operator. In theory,
it is possible to escape from a local optimum irrespective of the width of the
peak where it is, since the support of a Gaussian distribution is unlimited,
but if o is too small that could happen after far too many attempts. A solu-
tion would be to use distributions with thicker tails, such as the Cauchy or
Laplace distributions which have proven their advantages [Yao and Liu, 1996]
[Montana and Davis, 1989].

However, the Gaussian mutation is often preferred, by adapting the value
of o during the evolution, according to various strategies.

y\2

S

—1
2

ql

fly) =
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Gaussian mutation and the 1/5 rule.

From a study on two very different test functions with an elitist Evolution
Strategy (1 + 1)—ES?, Rechenberg [Rechenberg, 1973] [Beyer, 2001] calcu-
lated optimal standard deviations for each test function that maximize the
convergence speed. He observed that for these optimal values, approximately
one fifth of the mutations allow to reduce the distance between the individual
and the optimum. It deduced the following rule, termed as “one fifth” to adapt
o: if the rate of the successful mutations is larger than 1/5, increase o, if it
is smaller, reduce o. The “Rate of the successful mutations” is the propor-
tion of mutations which make it possible to improve the value of fitness of an
individual. Schwefel [Schwefel, 1981] proposed the following rule in practice:

estimate the rates of beneficial mutations ps on 10n mutations
IF p; < 0.2 THEN
o(g) «— o(g—mn)-0.85
ELSE IF p; > 0.2 THEN
o(g) —a(g—n)/0.85
ELSE
o(g) —olg—n)

where n is the dimension of the search space and g the index of the current
generation.

Self-adaptive Gaussian mutation .

The rule of the “one fifth” requires that o should have the same value for all
the components of a vector z. In this manner, the step of progression towards
the optimum is the same in all directions: the mutation is isotropic. However,
the isotropy does not make it possible to approach the optimum as quickly as
expected when, for example, the isovalues of the fitness function locally take
the shape of “flattened” ellipsoids in the neighborhood of the optimum (see
figure 3.15). If the step is well adapted in a particular direction, it will not
be in the other directions. It is then preferable to consider for each individual
an n-dimensional vector of standard deviations o whose each component o;
refers to a component of x. The o; evolves in a similar way as the variables of
the problem under the action of the evolutionary algorithm [Schwefel, 1981].
o is thus likely to undergo mutations. Let us assume that an individual is
represented by a couple of vectors (x,0). Schwefel proposed that the couple
(2',0"), obtained after mutation, is such that:

1’; =T +N(Oa0—£)
o} = o;exp(roN + TN (0,1))

3(1 + 1)-ES: the population is composed of only one parent individual that
generates only one offspring, the best of both is preserved for the next generation.
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1 1
V2n 2

where N indicates a Gaussian random value of average 0 and variance 1,
computed for the entire set of n components of o, and N (0, s) represents a
Gaussian random variable of average 0, and standard deviation s. o is thus
updated by application of a lognormal perturbation.

To ~

B

\/

Fig. 3.15. The isotropic mutation is not appropriate if, in the neighborhood of the
optimum, the isovalues of the fitness function take the shape of “flattened” ellipsoids.

This self-adaptive mutation was generalized so that it can take into account
possible correlations between variables, as in the case of the fitness function
whose isovalues are represented in figure 3.16.

\/

A
y
C/ x
Fig. 3.16. Isovalues of a fitness function for which there is a correlation between
variables.

An individual is then considered as a triplet (z, o0, «) where o is a vector
of n standard deviations, as in the previous case, and « is a vector composed
of n(n—1)/2 elementary rotation angles, which evolve under the action of the
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evolutionary algorithm. The components ay; undergo mutations according to
the following formula:
o = ar + BN(0,1)

where ay; expresses the rotation angle in the plane generated by the basic
vectors k and I. The mutated vector z’ is obtained from z by the addition of
a zero average Gaussian random vector with a covariance matrix C:

' =z +N(0,C)

where C is obtained from a diagonal matrix S whose diagonal coefficients
are the components of ¢’ and from a product of elementary rotation matrices
R(aj):

= (sH 11 R(a@)) (sH 11 R(am)
k=1Il=k+1 k=11l=k+1

In practice, the vector z’ is calculated according to the following expression:

' =x+ (1:[ H R(oz;d)> N(0,0")

k=11l=k+1

where N(0,0") is a zero average Gaussian random vector with a standard
deviation o} for each component i.

Schwefel suggests fixing 3 at a value close to 0.087 radian, that is ap-
proximately 5 degrees. This technique of mutation, although it is powerful, is
seldom used because of the amount of memory used by an individual, and its
algorithmic complexity of the order of n? matrix products for a problem of n
variables.

The procedures of self-adapting mutations presented above were specifi-
cally studied in detail by the supporters of the Fuvolution Strategies.

3.4.4 Some discrete representations for the permutation problems

There exist many types of combinatorial optimization problems and it is not
possible to describe all of them within a restricted space. We will consider here
only the permutation problem which consist in discovering an order in a list of
elements, maximizing or minimizing a given criterion. The traveling salesman
problem can be considered as an example. Knowing a set of “cities”, as well
as the distances between these cities, the traveling salesman must discover
the shortest possible path passing by each city once and only once. This NP-
complete problem is classically used as a benchmark making it possible to
evaluate the effectiveness of an algorithm. Typically, the problems considered
comprise several hundreds of cities.

A solution can be represented like a list of integers, each one associated
with a city. The list comprises of as many elements as the cities, and each
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city associated with an element must satisfy the constraint of uniqueness. It
is choosen to build individuals satisfying the structure of the problem and to
possibly specialize the genetic operators.

Ordinal representation

It is tempting to consider an individual representing an order like an integer
vector, and to apply crossovers to the individuals by exchanging components
similar to those described in the parts dedicated to the binary or real repre-
sentations (see sections 3.4.2 and 3.4.3). The ordinal representation makes it
possible to satisfy the constraint of uniqueness with the use of these standard
crossovers. It is based on an order of reference, for example the natural order
of the integers. First the list of the cities O satisfying this order of reference is
built, for example: O = (123456789) for 9 cities numbered from 1 to 9. Then
an individual is read from left to right. The n'*! integer read gives the order
number in O of the ni*" visited city. When a city is visited, it is withdrawn
from O. For example, let us consider now the individual (437253311):

e the first integer read in the individual is 4. The first visited city is thus
the fourth element in the list of reference O, i.e. the city 4. This city is
withdrawn from O. One then obtains O; = (12356789);

e the second integer read is 3. According to Oy, the second visited city is 3.
This city is withdrawn from O; to give Og = (1256789);

e the third integer read is 7. The third visited city is thus 9 and one obtains
O3 = (125678) which will be used as list of reference for the next step.

One thus continues until the individual is entirely interpreted. Hence for this
example the path is givenas: 4 -3 —-9—-2—-8—-6—-7—1—5.

But, experimentally, this representation associated with the standard vari-
ation operators does not give good results. This shows that it is not well
adapted to the problem under consideration, and that the simple satisfaction
of the uniqueness constraint is not sufficient. Other ways were explored, which
enable the offspring to inherit partially of the order of the cities, or then of
the relations of adjacency, which exist in their parents.

Path or sequence representation

In this representation, two successive integers of a list account for two nodes
adjacent in the path represented by an individual. Each number in a list must
be present once and only once. Useful information lies in the order of these
numbers compared to the others. Many variation operators were proposed for
this representation. A crossover preserving the order and another preserving
the adjacencies, chosen from the most common alternatives in the literature,
are presented below.
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Uniform order-based crossover.

With the uniform order-based crossover, an offspring inherits a combina-
tion of the orders existing in two “parent” sequences. The operator has the
advantages of simplicity and, according to L. Davis, one of its proposers
[Davis, 1991], it shows a good effectiveness. The crossover is held in three
stages (figure 3.17):

e A binary template is generated at random (figure 3.17a).

e Two parents are mated. The “0” (respectively “1”), of the binary mask de-
fines the position preserved in the sequence of the parent “1” (respectively
“27) (see figure 3.17b).

e To generate the offspring “1” (respectively “2”), the non-preserved ele-
ments of the parent “1” (respectively “2”) are permuted in order to satisfy
the order they have in the parent “2” (respectively “1”) (figure 3.17c).

[1]1] o 1] o] @ random template
U string

[1] 2] 3] 4] 5| parent 1 [4] 2] 3] 1] 5] offspring 1
[ 5] 4] 3] 2] 1] parent 2 [ 5] 4] 1] 2] 3] offspring 2

@ Choice of the symbols @ Result
to permute

Fig. 3.17. Uniform order-based crossover.

Crossover by edge recombination.

With this class of crossover operators, an offspring inherits a combination of
the adjacencies existing in the two parents. This is useful for the non-oriented
traveling salesman problem, because the cost does not depend on the route
direction in a cycle, but depends directly on the weights between the adjacent
nodes of a Hamiltonian cycle.

The edge recombination operator was improved by several authors over
several years. The “edge-3” version of Mathias and Whitley
[Mathias and Whitley, 1992] is presented now. Let two individuals be selected
for mating. They are, for example: ( b, g, j, k, i, e, a, ¢, 1, h, f, d) and ({, ¢, b,
e, k,a, h, i1 j,g,d). The first action builds an “edge table” of the adjacencies
(see table 3.2) such that to each node corresponds a list of adjacent nodes in
both parents: their numbers are from two to four. The adjacencies common
to both parents are marked by a * in the edge table.
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At the time of action 2, an initial active node is selected at random and
all the references to this node are removed from the table.

Action 3 consists in choosing the edge which, from the active node, led
to an adjacent node marked by a * or, failing this, having the shortest list
of adjacencies. If there are several equivalent options, the choice of the next
node is carried out at random. The adjacent node chosen becomes the new
active node added in the “offspring” tour. All the references to this node are
removed from the adjacency lists of the edge table.

Table 3.2. A table of adjacencies.

nodes|edge lists| [nodes|edge lists
a |c,e h, k g *j, b, d

b |d, g e c h f, 1,1, a
c |Lab,f i |e,k,1,h
d | b, * g j k, *g, 1
e |a, i,k b k [i,j,a e
f | *d, h,c I |hycji

Action 4 builds a string or possibly a complete tour. It consists of the
repetition of action 3 as long as the adjacency list of an active node is non-
empty. If it is empty, then the initial node is reactivated to start again from
the beginning of the string, but in the reverse direction, until the adjacency
list of the active node is empty again. Then action 4 is concluded. It should
be noted that the initial node could not be reactivated because its adjacency
list is empty due to previous removing of the edges.

As long as a complete tour is not generated, another active node is chosen
at random, among those which do not belong to any partial tour already
built by previous action 4 executions. Then action 4 is initiated again. The
application of the operator is thus summarized with the sequence of actions
1, 2 and as many actions 4 as necessary.

It is hoped that the operator will create few partial tours, and thus few
foreign edges which do not belong to the two parents. The “edge-3” operator
is powerful from this point of view.

Let us assume that the node a is selected at random as being initially
active in the example of table 3.2. Table 3.3 shows an example of execution
of the algorithm. The progress in the construction of the Hamiltonian cycle
is presented in the last row. The active nodes are underlined. When an active
node is marked (1), this means that the next one has to be chosen at random
because of the existence of several equivalent possibilities. When it is marked
(2), it is about an end of the string: there is no more possible adjacency, which
implies to move again in reverse direction by reactivating the initial node a.
It was necessary to apply the action 4 only once, which thus generated a
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complete tour (Lih,a.c,f,d,g,jk,eb). Thus, except for the edge (bl), all the
other edges originate from one of the two parents.

Table 3.3. Example of bearing of the problem.

stages:|1 2 3,4 5,6 7,8,9 (10 11

a |c,e,hklehk |ehk e,hk |h

b |d,ge.cl|d,ge |g.e e

¢ |ILbf |Lb,f |Lb Lb 1 1 1

d |b*g [b*g|b,g b

e |ikb |ikb |ikDb kb i i

f  [*d,h,c|*d,h |h h h

g |*,b,d |*},b,d [*j,b b

h fLi [fli |11 Li Li Li 1

i lek,Lh|ek,Lhlek,Lh |ek,Lh |Lh 1 1

i Ik*gl |k*gl|k*gl |kl 1 1 1

k |ije |ij,e [ij,e ie i i

1 |h,cj,i|hji |hj,i h,i h,i i

a®  lac |acfdPlactd]actd|h® aclihac,
tour: g,j“) g.j.k.e|f,d,gj, |f,d,g,j,
b®  [keb |keb

Mutations of adjacencies.

The “2-opt” mutation is common for the path representation. It is usually
used for the Euclidean traveling salesman problem because of its geometrical
properties. It consists in randomly choosing two positions in a sequence, then
to reverse the sub-sequence delimited by the two positions. Let the sequence
be (987654321), where two positions drawn at random are 3 and 8. Then the
sub-sequence located between positions 3 and 8 is reversed which gives the
new sequence: (984567321). The figure 3.18 shows the effect of the operator
applied to this sequence for the path representation. The operator can be
generalized by choosing more than two inversion positions of sub-sequences.

Mutations of permutations.

If an individual represents a solution for a scheduling problem, the “2-opt”
operator modifies the order of a large number of elements, on an average of /2
if [ is the size of a sequence. However, the route direction of a sub-sequence,
which was irrelevant for the traveling salesman problem, is essential in this
new context. Thus, the modifications which the adjacency mutation applies to
a sequence are important. However, a mutation should be able to apply often
small perturbations to a solution in order to explore its close neighborhood.
This is why other types of mutations were also proposed. The simplest one
consists in withdrawing an element chosen at random within a sequence to
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1 2 1 2

Before mutation After mutation

Fig. 3.18. An example of 2-opt mutation.

insert it into another position. Several operators are described in the literature,
like the mutation by exchange, where two positions in a sequence are chosen at
random and the elements in these positions are exchanged. The performances
offered by the variants of mutations depend closely on the properties of the
problem dealt with.

3.4.5 Representation of parse trees for the genetic programming

Till now we have seen that, for a problem under consideration, an evolutionary
algorithm has to discover the optimal values (or almost) of a well defined set
of parameters of a representation built a priori. Still it is necessary that an
adequate representation be proposed. When this is not the case, the problem
can be considered at another level: to discover the data-processing program
that will be able to solve it. Admittedly, the human approach to this option
results in building a good model so that it is possible to write the program,
but as this model is not available by hypothesis, this approach seems to be
fruitless. However, the modeling stage is not essential if the program is built
automatically, with the help of the definition of a quality criterion, which will
have to be maximized by the building process. This last problem can involve
an evolutionary technique and in this context, we can talk about genetic
programming, a term popularized by John Koza [Koza, 1992], who strongly
contributed to the field by his elegant approach, the quantity of his work and
by the organization of the first series of international conferences in the field.

A program modifiable by the action of evolutionary operators, such as
the crossover and the mutation, is not represented as a sequence of instruc-
tions with rigid and complex syntax, such as those encountered in the current
programming languages. These are indeed designed so that the least clerical
error is sanctioned by a rejection on behalf of the compiler or the interpreter
in order to reduce the risks to generate a wrong program by multiplying the
consistency checks. For example, if a program written in language C was
viewed like a vector of characters, variation operators that would act on the
level of the character would be almost unlikely to generate any valid program.
It would be necessary that the chosen representation for a valid program be
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such that a random modification of some of its elements often leads, if not
always, to another valid program. This representation exists, it is generated
by a compiler in the form of a parse tree, after the parsing stage.

A parse tree is a tree containing two types of nodes:

e the “internal nodes” or “non-terminal symbols”;
e the leaves or “terminal symbols”.

It is such that the children (¢;1,...,¢in), read from left to right of an in-
ternal node 4, defines a rule i — (¢;1,...,¢in). The root of the tree is a
non-terminal symbol. A parse tree associated with the arithmetic expression
sqrt(b * b - 4 * a * ¢) is given in figure 3.19a by using the rules of current
priority of the arithmetic operators with only one non-terminal symbol Expr.

It is noted that the set of the non-terminal symbols contains only the ele-
ment Expr and that it thus does not bring any information. The representation
of the tree can be reduced by considering the associativity of multiplication
and by placing the symbols of the operators “sqrt 7, “*” and “-” in the internal
nodes (see figure 3.19b).

Fig. 3.19. A parse tree for the expression sqrt(b*b-4*a*c) (a), and its reduced
representation (b).

The reduced version of the parse tree can be written recursively with a
parenthesized expression, which is: “(sqrt(-(* b b)(* 4 a ¢)))”. This is also the
original expression translated into language LISP. This language is conceived
to be able to generate directly a parse tree from a source text, after a parse
process that is reduced to its simpler form. For this reason LISP became one
of the favorite languages for the genetic programming.

The variation operators act on the structure of the parse trees and the
contents of the internal nodes or the leaves. The set of the terminal symbols
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should have a small size, while being relevant for the problem under consider-
ation. For example, it would be a priori unsuitable (though possible) to choose
a set of arithmetic operators and real variables to solve a Boolean problem.
Thus, all the knowledge available about the problem must be exploited to
provide a set of primitives and terminals adequate for the evolutionary en-
gine. The parse trees must moreover have a mechanism of regulation of their
sizes. Otherwise, the trees of the population will tend to grow indefinitely dur-
ing generations, consuming thus unnecessarily more and more memory and
computing power. The regulation mechanism can be simply implemented by
limiting the maximum depth of the trees, or the maximum number of nodes
for any tree generated by the variation operators.

The first examples of genetic programming presented by J. Koza was re-
stricted to the evolution of parse trees of expressions. He has empirically
shown that his approach makes it possible to discover relevant programs for
a great number of application examples, e.g. design of complex objects like
electronic circuits, with a significantly higher efficiency than the chance could
do. The approach was improved by the introduction of the “automatically
defined functions” (ADF) which decompose a program into a set of subrou-
tines called by a main program, all that being integrated within the same tree
[Koza, 1994].

The parse trees are transformed by the action of evolutionary operators
such as the crossover and the mutation. The structures of the individuals are
very different from those which were described previously for other represen-
tations. It was thus necessary to propose specific variation methods.

The crossover of parse trees

Its operation is very simple. First, two trees A and B are randomly selected
from a population to be mated. In the next step, a branch is selected randomly
in each tree to be cut. Let (A,, As) be the cut point between the parent node
A, and the child node Ay (see figure 3.20a). Similarly, let (B,,By) be the
cut point in the tree B (see figure 3.20b). Ay and By thus become the roots
of two sub-trees. During the third stage of the crossover, the sub-trees are
exchanged so that By is a child of A, (see figure 3.20c), and A a child of
B, (figure 3.20d).

This general principle presented by N Cramer in 1985 [Cramer, 1985] can
be refined according to various points of view. First, it is necessary to respect
the limit of size assigned to the trees of the population, so that they do not
become unnecessarily gigantic. If the chosen cut points do not respect it,
then the crossover cannot take place. The attitude adopted in this case is a
parameter of the crossover. It could be at least one of the following:

e selecting a new couple and attempting to reactivate a crossover until an
offspring satisfies the size constraint;

e or attempting to choose different cut points on the two selected parents,
until a satisfactory offspring is obtained.
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Fig. 3.20. Crossover of two parse trees.

In another point of view, the handled data could be typed. In this case, it will
be necessary to take precaution in such a way that the arguments correspond-
ing to the nodes Ay and By are of compatible types, which means that node
A ¢ having been selected, the choice of By will be restricted among the set of
the nodes of B such that their types are compatible with A ; [Montana, 1995].
In addition, J. Koza noticed that the number of terminals is of the same
order of magnitude as the number of internal nodes. According to him, the
crossover of leaves is similar to mutations, which does not make significant
modifications to the trees, thus slowing down the evolution. He thus suggested
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to limit the probability to crossover a leaf by proposing a rate of about ten
percent.

Mutation of parse trees

The genetic programming of J. Koza plants its roots in the domain of the
genetic algorithms [Holland, 1992] which attributes only a minor role to the
mutation. Within this framework, the purpose of the mutation is only to
maintain diversity in a too small population, denying it of any notable role in
the search for an optimal solution. This is why the mutation was not originally
present in the genetic programming. However, other evolutionary models have
shown the usefulness of the mutation and hence some genetic programming
specialists assert today that it can have a significant role with the parse trees.

J. Koza [Koza, 1992] proposed a simple model of mutation. It consists in
substituting a sub-tree whose root is chosen at random within the mutated
individual, by another tree built at random. Thus, at the time of the first
stage of mutation, a root M is selected (see figure 3.21a). Then, a tree of root
N is generated at random (see figure 3.21b). Finally the sub-tree of root M
is replaced by the tree of root N (figure 3.21c).

(a) (b)
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Fig. 3.21. Mutation of a parse tree.

If a tree uses typed operators and data, it is easy to adapt this mutation so
that the root of the tree generated at random is of compatible type with the
root of the sub-tree which will be replaced. Angeline [Angeline, 1996] proposes
another type of mutation, which permutes two sub-trees chosen at random
within an individual. It also suggests, as another variant, to simply substitute
the symbol associated with a node by another symbol chosen randomly, the
parent and offspring of this node being unchanged.

There still is, irrespective of the type of mutation, the constraint of max-
imum size for a mutated individual which must be satisfied. One of the two
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strategies enumerated above for the crossover can be directly adapted to this
end. But also, as regards the mutation of J. Koza, it is possible to gener-
ate random trees with sizes controlled according to the size of the replaced
sub-tree.

3.5 Particular case of the genetic algorithms

The simple genetic algorithm follows the outline of an evolutionary algorithm,
such as the one presented in figure 3.1 with a notable originality: they imple-
ment a genotype — phenotype transcription that is inspired by the natural
genetics. This transcription precedes the phase of fitness evaluation of the in-
dividuals. A genotype is often a binary symbol string. This string is decoded
to build a solution of a problem represented in its natural formalism: it is
viewed as the phenotype of an individual. This last one can then be evaluated
to give a fitness value, that can be exploited by the selection operators.

The flowchart of a simple genetic algorithm is presented in figure 3.22. It is
noticed that it implements a proportional selection operator (see section 3.3.3)
and a generational replacement, i.e. the population of the offspring replaces
that of the parents completely. Another classical version uses a steady state
replacement (section 3.3.6). The variation operators work on the genotypes.
As those are bit strings, the operators of crossover and mutation presented
in the section 3.4.2 related to the binary representation are often used. The
crossover is regarded as the essential search operator. The mutation is usually
applied with a small rate, in order to maintain a minimum degree of diversity
in the population. The representation being based on bit strings, the difficulty
is to discover a good coding of the genotype, such as the variation operators
in the space of the bit strings produce viable offspring, often satisfying the
constraints of the problem. It is generally not a trivial job ...

Holland, Goldberg and many other authors worked on a mathemati-
cal formalization of the genetic algorithms based on a “Schema Theorem”
[Goldberg, 1989], whose utility is controversial. A first glance enables it to
justify the choice of a binary representation. However research works using
this theorem did not prove finally very useful to model an evolution. Many
counterexamples showed that the conclusions formulated from considerations
deduced from this theorem are debatable, in particular even the choice of the
binary representation.
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Fig. 3.22. A simple genetic algorithm.

The genetic algorithms have been subject to many modification sugges-
tions in order to improve their performances or to extend their application
domains. Thus, the bit strings were replaced by representations closer to the
formalism of the problems dealt with, avoiding the hard question of the de-
sign of an effective coding. For example research works using the “Real Coded
Genetic Algorithms” use the real representations discussed in section 3.4.3.
In addition, the proportional selection is often replaced by other forms of
selection. These modifications are sufficiently significant so that the specific
features of the genetic algorithms disappear compared to the diversity of the
other evolutionary approaches.

3.6 Some considerations on the convergence of the
evolutionary algorithms

Let f, be the fitness of the best individual(s) obtained between generation 0
and n. It is said that an evolutionary algorithm converges towards a global
optimum if the stochastic sequence { fn} converges towards f*, the global op-
timal value of the fitness function. There is no theory of global convergence for
the evolutionary algorithms. It is easy to show that for operators such as the
BLX-0 crossover for the real representation, the convergence is not guaranteed
in the absence of mutation. And even in the presence of mutation, the con-
vergence speed of an evolutionary algorithm which uses BLX-0 could be lower
by several orders of magnitude than the speed of the simple random search,
according to the landscape of the fitness function. Because the representation
is not fixed a priori, the question of the convergence of an evolutionary algo-
rithm is reformulated in the following way: which are the properties that the
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variation and selection operators must satisfy so that convergence is guaran-
teed [Rudolph, 1996]7 And in this case, what will be the expected convergence
speed? Partial answers could be put forward for particular representations and
operators, or, for that matter precise answers but only for some very simple
problems, the representation and the operators being fixed.

Thus, a Markovian analysis proves the convergence, as defined above, for
a simple genetic algorithm for a population of bit strings, provided that the
mutation rate is non-zero. But such a result is weak, because it is noticed
that a simple random search in the space of the bit strings also converges
in the same manner towards the optimum. Nothing is mentioned about the
convergence speed and it can be noted that the crossover does not play any
role in the result of convergence [Rudolph, 1994].

The convergence of the Evolution Strategies has been proven for very
simple functions, like the “corridor” function and the “sphere” function, with
an estimated convergence speed [Rechenberg, 1965] [Beyer, 2001]. These are
the studies which made it possible to develop by extrapolation the rule of
the “one fifth” enabling to adapt the value of the variance of the Gaussian
mutation at any moment of the evolution.

3.7 Conclusion

This chapter has presented a set of principles and algorithmic techniques to
implement the various operators that function in an evolutionary algorithm.
Like building blocks, they can be chosen, configured and assembled according
to the flowchart of the generic evolutionary algorithm (see figure 3.1) in order
to solve a given problem as efficiently as possible. Obviously, specific choices
of operators allow to reconstitute a Genetic Algorithm, an Evolution Strategy,
or an Evolutionary Programming method such as designed by the pioneers of
evolutionary computation in years 1960-70. However, the references to these
original models, which have merged today to evolve one unifying paradigm,
should not influence the engineer or the researcher in his choices. He should
on the contrary concentrate on the essential and more important questions,
e.g. the choice of a good representation, a fitness function corresponding well
to the problem posed and finally on the efficient variation operators for the
chosen representation.

The solution of industrial problems which are typically multicriteria, must
satisfy constraints and which, too often, cannot be completely formalized,
requires the implementation of additional mechanisms within the evolutionary
algorithms. These aspects are treated in chapter 6 of this book.
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3.8 Glossary

allele: within the framework of genetic algorithms: a variant of a gene, i.e.
the value of a symbol in a specified position of the genotype.

chromosome: within the framework of genetic algorithms: synonymous to
“genotype”.

crossover: combination of two individuals to form one or two new individu-
als.

fitness function: function giving the value of an individual.
generation: iteration of the basic loop of an evolutionary algorithm.

gene: within the framework of the genetic algorithms: an element of a geno-
type, i.e. one of the symbols of a symbol string.

genotype: within the framework of the genetic algorithms: a symbol string
generating a phenotype at the time of a decoding phase.

individual: an instance of solution for a problem dealt with by evolutionary
algorithm.

locus: within the framework of the genetic algorithms: position of a gene in
the genotype, i.e. the position of a symbol in a symbol string.

mutation: random modification of an individual.

search operator: synonymous to “variation operator”.

replacement operator: determines which individuals of a population will
be replaced by the offspring. It thus makes it possible to create the new

population for the next generation.

selection operator: determines how much time a “parent” individual gen-
erates “offspring” individuals.

variation operator: operator modifying the structure, the parameters of an
individual, such as the crossover and the mutation.

phenotype: within the framework of the genetic algorithms: set of the ob-
servable manifestations of the genotype. More specifically, it is an instance
of solution for the problem dealt with, expressed in its natural represen-
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tation obtained after decoding the genotype.

population: the set of the individuals who evolve simultaneously under the

action of an evolutionary algorithm.

recombination: synonymous to “crossover”.

3.9 Annotated bibliography

[Baeck et al., 2000a, Baeck et al., 2000b]: An “encyclopedia” of the evolu-

tionary computation in which, as it should be, the most recog-
nized specialists in this field have contributed. The vision offered
by these two volumes is primarily algorithmic.

[Koza, 1992, Koza, 1994]: Two reference books written by the well known pi-

oneer of the genetic programming. The first volume exposes the
basic concepts of the genetic programming viewed by J. Koza.
The second introduces the concept of “automatically defined func-
tions”. The largest portion of these books, which comprise of more
than seven hundred pages in each volume, is devoted to the de-
scription of examples of applications resulting from a large variety
of domains. They are useful to help the reader to realize the po-
tentials of the genetic programming. There is also a third volume
published in 1999 which contains a significant part dedicated to
the automated synthesis of analogical electronic circuits.

[Goldberg, 1989]: The first and the most famous book in the world about the

genetic algorithms. It was published in 1989, and has not been
revised since then. As a result, the large part of the current knowl-
edge on genetic algorithms, a field that evolves very quickly, is not
in this book.
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Ant Colony Algorithms

4.1 Introduction

Ant colony algorithms form a class of recently proposed metaheuristics for
difficult optimization problems. These algorithms are initially inspired from
the collective behaviors of trail deposit and follow-up, observed in the ant
colonies. A colony of simple agents (the ants) communicate indirectly via
dynamic modifications of their environment (trails of pheromones) and thus
propose a solution for a problem, based on their collective experience.

The first algorithm of this type (the “Ant System”) was designed for the
traveling salesman problem, but the results were not very encouraging. How-
ever, it initiated the interest for the metaphor among the research community
and since then several algorithms have been proposed, some of them showing
very convincing results.

This chapter puts stress initially (section 4.2) on the biological aspect un-
derlying these algorithms. In our view it is interesting to put side by side the
design and the use of this metaheuristic algorithm along with the biological
theories which inspired it. Section 4.3 describes in detail the first ant colony
algorithm proposed and some of its principal variants. This is followed by
some gradual developments which can be useful to discover the large variety
of possible adaptations of these algorithms (section 4.4). Then, the operating
principles of the metaheuristics are studied from section 4.5, which is immedi-
ately followed by the research perspective in this field (section 4.6). Thereafter
a conclusion is presented on the whole chapter (section 4.7) and a bibliogra-
phy is proposed with accompanying notes to look further and dig deeper into
the subject (section 4.8).
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4.2 Collective behavior of social insects

4.2.1 Self-organization and behavior
Self-organization

The self-organization is a phenomenon described in many disciplines, notably
in the fields of physics and biology. A formal definition has been proposed
[Camazine et al., 2000, p.8]:

Self-organization is a process in which pattern at the global level of
a system emerges solely from numerous interactions among lower-level
components of the system. Moreover, the rules specifying interactions
among the system’s components are executed using only local infor-
mation, without reference to the global pattern.

Two terms need clarification for a better understanding, “pattern” and
“to emerge”. Generally, the first one applies to an “organized arrangement
of objects in space or time” (figure 4.1). Additionally, an emerging property
of a system is a characteristic which appears unforeseen (not being explicitly
determined), from the interactions among the components of this system.

Thus, the crucial question is to understand how the components of a sys-
tem interact with each other to produce a complex pattern (in relative sense
of the term, i.e. more complex than the components themselves). A certain
number of necessary phenomena have been identified: these are the processes
of feedback and the management of the information flow.

The positive feedbacks are processes which result in reinforcing the action,
for example by amplification, facilitation, self-catalysis, etc. Positive feedbacks
are able to amplify the fluctuations of the system, permitting the updating of
even imperceptible informations. Such processes can easily lead to an explosion
of the system, if they are not controlled by applying negative feedbacks. Hence
negative feedbacks act as stabilizers for the system. When they are coupled,
such feedback processes can generate powerful models.

Within the framework of biological behavior, it is easy to understand that
the interactions among the components of a system will very often give rise
to communication processes i.e. transfer of information between individuals.
Generally, individuals can communicate, either by means of signals, i.e. by
using a specific means to carry information, or by means of indices, where
information is carried accidentally. In a similar manner, information can come
directly from other individuals, or pass via the state of a work in progress.
This second possibility of exchanging information, by means of modifying the
environment, is called the stigmergy.

Generally, all these processes are more or less inter-connected, allowing a
system consisting of a large number of individuals to act together to solve
problems that are too complex for a single individual.
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Fig. 4.1. Examples of observable patterns in biological systems. (a) motives for
the dress of a reticulated giraffe (U.S. Fish and Wildlife Service, Gary M. Stolz),
(b) double spiral of Fibonacci in the heart of a daisy, (c) birds flocking, (d) fish
schooling.
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Certain characteristics of the self-organized systems are very interesting,
in particular their dynamism, or their capacity to generate stable patterns.
Within the framework of the study of the behavior of the social insects, certain
concepts related to the principle of self-organization deserve to be underlined:
the intrinsic decentralisation of these systems, their organization in dense
heterarchy and the recurring use of the stigmergy. Indeed, these concepts are
sometimes used to view the same problem from different angles and partially
cover the principles of self-organization.

Stigmergy

Stigmergy is one of the basic concepts for the creation of ant colony meta-
heuristics. It is precisely defined as a “form of communication by means of
modifications of the environment”, but one can utilize the term “indirect so-
cial interactions” to describe the same phenomenon. The biologists differenti-
ate the “quantitative stigmergy” from the “qualitative” one, but the process
in itself is identical. An example of the use of stigmergy is described in the
section 4.2.2. The great force of stigmergy is that the individuals exchange
information by means of the task in progress, to achieve the state of the total
task in advance.

Decentralized control

In a self-organized system, there is no decision-making at a given level, in
a specified order and no predetermined actions. In fact, in a decentralized
system, each individual has a local vision of his environment, and thus does
not know the problem as a whole. The literature of the multi-agent systems
(see [Weiss, 1999] for an initial approach) often employs this term or that of
“distributed artificial intelligence” [Jennings, 1996]. However, generally this
discipline tends to study more complex behaviors patterns, founded in par-
ticular in cognitive sciences. To be precise, the advantages of decentralized
control are the robustness and the flexibility [Bonabeau et al., 1999]. Robust
systems are desired because of their ability to continue to function in the
event of breakdown of one of their components; flexible devices are welcome,
because they can be useful for dynamic problems.

Dense heterarchy

The dense heterarchy is a concept borrowed directly from biology
[Wilson and Holldobler, 1988], used to describe the organization of the social
insects, and more particularly of the ant colonies. The concept of heterarchy
describes a system where not only the global level properties influence the
local level properties, but also the activities in the local units can influence, in
return, the global levels. The heterarchy is known as dense in the direction in
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which such a system forms a highly connected network, where each individ-
ual can exchange information with any other. This concept is to some extent
contrary to that of hierarchy where, in a popular but erroneous vision, the
queen would control her subjects while passing orders in a wertical structure,
whereas, in a heterarchy, the structure is rather horizontal (figure 4.2).
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Fig. 4.2. Hierarchy (a) and dense heterarchy (b): two opposite concepts.

It should be noted that this concept not only matches with that of decen-
tralized control, but also with that of stigmergy. This is because the concept
of heterarchy describes the manner in which information flows through the
system. However, in a dense heterarchy, any sort of communication must be
taken into account, which includes the stigmergy as well as the direct exchange
of information between the individuals.

4.2.2 Natural optimization: pheromonal trails

The ant colony algorithms were developed following an important observation:
social insects in general, and the ant colonies in particular, can solve relatively
complex problems in a natural way. The biologists studied extensively for a
long time how the ants manage collectively to solve problems which are too
complex for a single individual, especially the problem of choice at the time
of exploitation of the sources of food.

The ants possess a typical characteristic, they employ volatile substances
called pheromones to communicate. They perceive these substances because
of the receivers located in their antennas and they are very sensitive to them.
These substances are numerous and vary from species to species. The ants can
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deposit pheromones on the ground, utilizing a gland located in their abdomen,
and thus form odorous trails, which could be followed by their fellows (figure
4.3).

Fig. 4.3. Ants following a trail of pheromone.

The ants use the trails of pheromones to mark their way, for example
between the nest and a source of food. A colony is thus able to choose
(under certain conditions) the shortest path towards a source to exploit
[Goss et al., 1989, Beckers et al., 1992], without the individuals having a global
vision of the path.

Indeed, as illustrated in figure 4.4, those ants which followed the two short-
est branches, arrived at the nest quickest, after having visited the source of
food. Thus, the quantity of pheromone present on the shortest path is slightly
more significant than that present on the longest path. However, a trail pre-
senting a greater concentration of pheromones is more attractive for the ants
and it has a larger probability to be followed. Hence the short trail will be
reinforced more than the long one, and, in the long run, will be chosen by the
great majority of the ants.

Here it should be noted that the choice is implemented by a mechanism
of amplification of an initial fluctuation. However, it is possible that if, at the
beginning of the exploitation, a greater quantity of pheromones is deposited
on the large branches, then the colony may choose the longest route.

Other experiments [Beckers et al., 1992], with another species of ants,
showed that if the ants can make half-turns on the basis of very big vari-
ation compared to the direction of the source of food, then the colony is more
flexible and the risk to be trapped in the long route is weaker.

It is difficult to know precisely the physiochemical properties of the trails of
pheromone, which vary from species to species and depend on a great number
of parameters. However, the metaheuristics of ant colony optimization are



4.3 Optimization by ant colonies and the traveling salesman problem 129

Fig. 4.4. Experiment for selection of the shortest branches by a colony of ants:
(a) at the beginning of the experiment, (b) at the end of the experiment.

mainly based on the phenomenon of evaporation of the trails of pheromone.
It should be noted that, in nature, the trails evaporate slower than the models
envisage it. The real ants indeed have at their disposal “heuristics” bringing a
little more information about the problem for them (for example information
on the direction). It is necessary to keep in mind that the immediate interest
of the colony (to find the shortest path towards a source of food) can be in
competition with the adaptive interest of such behaviors. If one takes into
account all the constraints which a colony of ants has to consider (predation,
competition with other colonies, etc.), a fast and stable choice can be better,
and a change of exploited site can involve too strong costs to allow the natural
selection of such an option.

4.3 Optimization by ant colonies and the traveling
salesman problem

One of the earliest problems for which an ant colony algorithm was imple-
mented was the traveling salesman problem (7'SP): the “Ant System” (AS)
[Colorni et al., 1992]. The graduation of the metaphor to the algorithm is rel-
atively easily understood and the traveling salesman problem is well known
and extensively studied.
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It is interesting to dig deep into the principle of this first algorithm for bet-
ter understanding the operating principle of the ant colony algorithms. There
are two ways of approaching these algorithms. The first approach, most obvi-
ously in conformation with the earliest development, is that which historically
led to the development of the original “Ant System”; we chose to describe it
in this section. The second is a more formal description of the common mech-
anisms for the ant colony algorithms, it will be described in the section 4.5.

The traveling salesman problem consists in finding the shortest path con-
necting n cities specified, each city has to be visited only once. The problem is
more generally defined like a totally connected graph (N, A), where the cities
are the nodes N and the paths between these cities are the edges A.

4.3.1 Basic algorithm

In AS algorithm, in each iteration ¢ (1 <t < tpqz), each ant k (k=1,...,m)
traverses the graph and builds a complete path of n = |N| stages (one should
note that |N| is the cardinality of the set N). For each ant, the path between
a city ¢ and a city 5 depends on:

1. the list of the already visited cities, which defines the possible movements
in each step, when the ant k is on the city 4: J¥;

2. the reciprocal of the distance between the cities: 7;; = d%j, called wvisibility.
This static information is used to direct the choice of the ants towards close
cities, and to avoid the cities too remote;

3. quantity of pheromone deposited on the edge connecting the two cities,
called intensity of the trail. This parameter defines the relative attraction
of part of the total path and changes with each passage of an ant. This
can be viewed as a global memory of the system, which evolves through
a training process.

The rule of displacement (called “random proportional transition rule” by the
authors of [Bonabeau et al., 1999]) can be stated as following:

(T () (135)? i gk
pfj (t> = Zzeff (ra () (ni5)" 1y eJ; (4.1)
! it ¢ Jk

where « and 3 are two parameters controlling the relative importance of the
trail intensity, 7;;(t), and visibility n;;. With o = 0, only visibility of the city
is taken into consideration; the city nearest is thus selected with each step.
On the contrary, with 4 = 0, only the trails of pheromone become influential.
To avoid a too fast selection of a path, a compromise between these two
parameters, exploiting the behaviors of diversification and of intensification
(see section 4.5.3 of this chapter), is essential. After a full run, each ant leaves
a certain quantity of pheromones Arfj (t) on its entire course, the amount of
which depends on the quality of the solution found:
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Ark (1) = { ity i£(0,5) € T4 (12
0 if (4,7) ¢ T*(t)

where T*(t) is the path traversed by the ant k during the iteration ¢, L¥(¢)

the length of the turn and @ a fixed parameter.

However, the algorithm would not be complete without the process of
evaporation of the trails of pheromone. In fact, it is necessary that the system
should be capable of “forgetting” the bad solutions, to avoid being trapped
in sub-optimal solutions. This is achieved by counterbalancing the additive
reinforcement of the trails by a constant decrease of the values of the edges
in each iteration. Hence, the update rule for the trails is given as:

Tij(t+ 1) = (1= p) - 73;(t) + A7y (2) (4.3)
where A7, (t) = Z}’:ZIATZ»’} (t) and m is the number of ants. The initial quan-
tity of pheromone on the edges is a uniform distribution of a small quantity
To Z 0.

The figure 4.5 presents a simplified example of the traveling salesman

problem, optimized by an AS algorithm, whose pseudo code is presented in
the algorithm 4.1.

For t=1,...,tmax
For each ant k=1,...,m
Choose a city randomly
For each non visited city ¢
Choose a city j, from the list JF of remaining cities, according to the
formula 4.1
End For
Deposit a trail ATZ (t) on the path T*(t) in accordance with the equa-
tion 4.2
End For
Evaporate trails according to the formula 4.3

End For

Algorithm 4.1: Basic ant colony algorithm: the “Ant System”.

4.3.2 Variants
Ant System & elitism

An early variation of the “Ant System” was proposed in [Dorigo et al., 1996]:
the introduction of the “elitist” ants. In this version, the best ant (that which
traversed the shortest path) deposits a large quantity of pheromone, with
a view to increase the probability of the other ants of exploring the most
promising solution.
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(a) (b) (c) ()

Fig. 4.5. The traveling salesman problem optimized by the AS algorithm, the
points represent the cities and the thickness of the edges represents the quantity
of pheromone deposited (a) example of the path built by an ant, (b) at the begin-
ning of calculation, all the paths are explored, (c) the shortest path is reinforced
more than the others, (d) the evaporation allows to eliminate the worse solutions.

Ant-Q

In this variation of AS, the rule of local update is inspired by “Q-learning!”
[Gambardella and Dorigo, 1995]. However, no improvement compared to the
AS algorithm could be demonstrated. Besides, even in the opinion of the
authors, this algorithm is not more than a pre-version of the “Ant Colony
System”.

Ant Colony System

The “Ant Colony System” (ACS) algorithm was introduced to improve
the performances of the first algorithm for problems of higher dimensions
[Dorigo and Gambardella, 1997b, Dorigo and Gambardella, 1997a]. ACS is
founded on the modifications proposed for the AS:

1. ACS introduces a rule of transition depending on a parameter gy (0 <
go < 1), which defines a balance between diversification/intensification.
An ant k on a city ¢ will choose a city j according to the rule:

j = Argmate (riu () - (mi0)”| i g < g0
J ifqg > qo

where ¢ is a random variable uniformly distributed in [0,1] and J € JF a
city selected at random according to the probability:

ko (T () ()" 44
Pis) ZZeJZ“ (Ta () - (m‘z)ﬁ (44

!a reinforcement based training algorithm
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According to the parameter qq, there are thus two possible behaviors:
if ¢ > qo, the choice is made in the same manner as that for the AS
algorithm, and the system tends to carry out a diversification; on the
contrary, if ¢ < qo, then the system tilts towards an intensification. Indeed,
for ¢ < qo, the algorithm exploits the information collected by the system
more and it cannot choose a non explored path.

2. The management of the trails is subdivided into two levels: a local update
and a global update. Each ant deposits a trail at the time of the local
update according to the formula:

Tij(t+1) =1 =p)-7i;{t) +p- 70

where g is the initial value of the trail. At each passage, the visited edges
see their quantity of pheromone decreasing, which supports diversification
by taking into account the non explored paths. At each iteration, the total
update is carried out as:

Tij(t +1) = (L= p) - 7i; () + p - A7 (1)

where the edges (i, ) belong to the best turn length 7" of length L™ and
where Ar;;(t) = L%r Here, only the best trail is thus updated, which takes
part in an intensification by selection of the best solution.

3. The system uses a list of candidates. This list stores for each city v the
closest neighbors, classified by increasing distances. An ant will consider
an edge towards a city apart from the list only if this one was already
explored. To be specific, if all the edges were already visited in the list of
candidates, the choice will be done according to the rule 4.4, if not, then
it is the closest to the not visited cities which will be selected.

ACS & 3-opt

This variant is a hybridization of the ACS and a local search algorithm of 3-
opt type [Dorigo and Gambardella, 1997b]. Here, the local search is initiated
to improve the solutions found by the ants thus far (and thus to bring the
ants to the nearest local optimum).

Max-Min Ant System

This variant (abbreviated as MMAS) is founded on the basis of the AS
algorithm and presents some notable differences [Stiitzle and Hoos, 1997,
Stiitzle and Hoos, 2000]:

1. Only the best ant updates a trail of pheromone;
2. The values of the trails are limited by Tin and Tiaz;
3. The trails are initialized with the maximum value 7,,44;
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4. The updating of the trails is made in a proportional manner, the strongest
trails being less reinforced than the weakest;
5. A re-initialization of the trails can be carried out.

The best results are obtained by updating the best solution with an increas-
ingly strong frequency, during the execution of the algorithm.

4.3.3 Choice of the parameters

For the AS algorithm, the authors recommend that, although the value of
@ has little influence on the final result, this value is of the same order of
magnitude as the estimated length of the best found path. In addition, the
town of departure for each ant is typically selected at random as no significant
influence of specific starting point for the ants could be demonstrated.

With regard to the ACS algorithm, the authors advise to use the relation
7o = (n- Lpy,) ™1, where n is the number of cities and L, the length of a turn
found by the nearest neighbor method. The number of ants m is a significant
parameter, since it takes part in the principal positive feedback of the system.
The authors suggest using as many ants as the cities (i.e. m = n) for obtaining
good performances for the traveling salesman problem. It is possible to use
only one ant, but the effect of amplifying different lengths is then lost, just
as the natural parallelism of the algorithm, which can prove to be harmful
for certain problems. In general, the ant colony algorithms do not seem to be
very sensitive to a precise selection of the number of ants.

4.4 Other combinatorial problems

The ant colony algorithms have been extensively studied in recent past and
it would take a long time to make an exhaustive list of all the applications
and variations which were produced in the past few years. In the two prin-
cipal fields of application (N P-difficult problems and dynamic problems),
certain algorithms however gave very good results. In particular, interest-
ing performances were noted in the case of the quadratic assignment problem
[Stiitzle and Hoos, 2000], the planning problems [Merkle et al., 2000], sequen-
tial scheduling [Gambardella and Dorigo, 2000}, the vehicle routing problem
[Gambardella et al., 1999], or for the network routing problem
[Di Caro and Dorigo, 1998] (see also the section 4.6.2 of this chapter for this
application). A significantly large collection of literatures is available on al-
most all kinds of problems: traveling salesman, graph coloring, frequency as-
signment, generalized assignment, multidimensional knapsack, constraint sat-
isfaction, etc.
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4.5 Formalization and properties of ant colony
optimization

An elegant description was proposed in [Dorigo and Stiitzle, 2003], which can
be applied to the (combinatorial) problems where a partial construction of the
solution is possible. This description, although restrictive, makes it possible
to highlight the original contributions of these metaheuristics (called ACO,
for “Ant Colony Optimization”, by the authors).

Artificial ants used in ACO are stochastic solution construc-
tion procedures that probabilistically build a solution by iteratively
adding solution components to partial solutions by taking into account
(i) heuristic information on the problem instance being solved, if avail-
able, and (ii) (artificial) pheromone trails which change dynamically
at run-time to reflect the agents’ acquired search experience.

A more precise formalization exists [Dorigo and Stiitzle, 2003]. It devel-
ops a representation of the problem on the basis of a basic behavior of the
ants and a general organization of the metaheuristic under consideration.
Several concepts have also been laid down to facilitate the understanding of
the principles of these algorithms, in particular the definition of the trails
of pheromone as an adaptive memory, the need for an adjustment of inten-
sification / diversification and finally, the use of a local search. These various
subjects are covered in detail hereafter.

4.5.1 Formalization
Representation of the problem

The problem is represented by a set of solutions, an objective function as-
signing a value for each solution and a set of constraints. The objective is
to find the global optimum satisfying the constraints. The various states of
the problem are characterized similar to a sequence of components. It should
be noted that, in certain cases, a cost can be associated to the states which
do not belong to the set of solutions. In this representation, the ants build
solutions while moving on a graph G = (C, L), where the nodes are the com-
ponents of C' and the set L connects the components of C. The constraints
of the problem are implemented directly in the rules of displacement of the
ants (either by preventing the movements which violate the constraints, or by
penalizing such solutions).

Behavior of the ants

The movements of the ants can be characterized like a stochastic procedure of
building constructive solutions on the graph G = (C, L). In general, the ants
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try to work out feasible solutions, but if necessary, they can produce unfeasible
solutions. The components and the connections can be associated with the
trails of pheromone 7 (establishing an adaptive memory describing the state
of the system) and a heuristic value 7 (representing a priori information about
the problem, or originating from a source other than that of the ants; it is
very often the cost of the state in progress). The trails of pheromone and the
value of the heuristics can be associated either with the components, or with
the connections (figure 4.6).

(b)

Fig. 4.6. In an ant colony algorithm, the trails of pheromone can be associated with
the components (a) or connections (b) of the graph representing the problem to be
solved.

Each ant has a memory to store the path traversed, an initial state and the
stopping conditions. The ants move according to a probabilistic rule of decision
function of the local trails of pheromone, state of the ant and constraints
of the problem. At the time of addition of a component to the solution in
progress, the ants can update the trail associated with the component or the
corresponding connection. Once the solution is built, they can update the trail
of pheromone components or connections used. Lastly, an ant has the capacity
of at least building a solution for the problem.

Organization of the metaheuristic

In addition to the rules governing the behavior of the ants, another major
process is activated: the evaporation of the trails of pheromone. In fact, with
each iteration, the value of the trails of pheromone is decreased. The goal
of this reduction is to avoid a too fast convergence and the trapping of the
algorithm in local minima. This causes a gradual lapse in memory which helps
in exploration of new areas.

According to the authors of the ACO formalism, it is possible to implement
other processes requiring a centralized control (and thus not being able to be
directly controlled by some ants), as additional processes. In our opinion,
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this is not desirable; in fact, one then loses the decentralized characteristic
of the system. Moreover, the implementation of the additional processes with
rigorous formalization becomes difficult, because one should be able to view
any process there.

4.5.2 Pheromones and memory

The use of the stigmergy is a crucial factor for the ant colony algorithms.
Hence, the choice of the method for implementation of the trails of pheromone
is significant to obtain the best results. This choice is mainly related to the
possibilities of representation of the search space, each representation being
able to bring a different way to implement the trails. For example, for the
traveling salesman problem, an effective implementation consists in using a
trail 7;; between two cities ¢ and j like a representation of the interest to visit
the city j after the city 7. Another possible representation, less effective in
practice, consists in considering 7;; as a representation of the interest to visit
1 as the jth city. In fact, the trails of pheromone describe the state of the
search for the solution by the system in each iteration and the agents modify
the way in which the problem will be represented and perceived by the other
agents. This information is shared by the ants by means of modifications
of the environment, in form of an indirect communication: the stigmergy.
Information is thus stored for a certain time duration in the system, which
led certain authors to consider this process as a form of adaptive memory
[Taillard, 1998, Taillard et al., 1998], where the dynamics of storage and of
division of information will be crucial for the system.

4.5.3 Intensification/diversification

The problem of the relative use of the process of diversification and inten-
sification is an extensively explored problem in the design and the use of
a metaheuristic. By intensification, one understands the ezploitation of the
information gathered by the system at a given time. On the other hand, di-
versification is the exploration of search space areas imperfectly taken into
account. Very often, it is a question of choosing where and when “to inject
the random perturbation” in the system (diversification) and/or to improve a
solution (intensification). In the ACO type algorithms, as in the majority of
the cases, there are several ways in which these two facets of metaheuristics
of optimization can be organized. The most obvious method is by adjusting
the parameters o and 3, which determine the relative influence of the trails of
pheromone and the heuristic information. Higher the value of «, more signifi-
cant will be the intensification, because the trails will have more influence on
the choice of the ants. Conversely, lower the value of «, stronger diversification
will take place, because the ants will avoid the trails. The parameter 3 acts in
a similar manner. Hence both the parameters must be tuned simultaneously
to have a tighter control over these aspects.
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A viable alternative can also be introduced in form of modifications of
the management of the trails of pheromone. For example, the use of the
elitist strategies (the best solutions contribute more to the trails, see sec-
tion 4.3.2: the AS algorithm with elitism) supports intensification, whereas a
re-initialization of all the trails supports exploration (section 4.3.2, algorithm
MMAS).

This choice of diversification/intensification can be undertaken in a static
manner before initiating the algorithm, by using an a priori knowledge about
the problem, or in a dynamic manner, by allowing the system to decide the
better adjustment. There can be two possible approaches: adjustment of the
parameters or introduction of new processes. These algorithms are mostly
based on the concept of self-organization and these two approaches can be
equivalent, a change of parameter can induce a behavior of the system that
is completely different, at the global level.

4.5.4 Local search and heuristics

The ant colony metaheuristics are often more effective when they are hy-
bridized with local search algorithms. These algorithms optimize those so-
lutions found by the ants before the ants are used for updating the trails of
pheromone. From the point of view of local search, the advantage of employing
ant colony algorithms to generate an initial solution is undeniable. Very often
hybridization with a local search algorithm becomes the important factor in
differentiating an interesting ACO type metaheuristic from a really effective
algorithm.

Another possibility to improve the performances is to inject more rele-
vant heuristic information. This addition generally has a high cost in term of
additional computational burden.

It should be noted that these two approaches are similar from the point of
view of employing cost information to improve a solution. In fact, local search
in a way is more direct than the heuristics, however the latter is perhaps more
natural to use a priori information about the problem.

4.5.5 Parallelism

The structure of ant colony metaheuristics comprises of an intrinsic paral-
lelism. Generally, the good quality solutions emerge as a result of the indirect
interactions taking place inside the system, not of an explicit implementa-
tion of exchanges. Here each ant takes only the local information about its
environment (the trails of pheromones) into account; it is thus very easy to
parallel such an algorithm. It is interesting to note that the various processes
in progress in the metaheuristic (i.e. the behavior of the ants, evaporation and
the additional processes) can also be implemented independently, the user has
the liberty to decide the manner in which they will interact.
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4.5.6 Convergence

The metaheuristics can be viewed as modified versions of a basic algorithm: a
random search. This algorithm has the interesting property to guarantee that
the optimal solution will be found, early or late, and hence one can concentrate
on the issue of convergence. However, since this basic algorithm is skewed, the
guarantee of convergence does not exist any more.

If, in certain cases, one is sure about the convergence of an ant colony
algorithm (MMAS for example, see section 4.3.2), the problem of convergence
of an unspecified ACO algorithm remains unsolved. However, there is a variant
of the ACO whose convergence was proven [Gutjahr, 2000, Gutjahr, 2002]: the
“Graph-Based Ant System” (GBAS). The difference between the GBAS and
the AS algorithm lies in the updating of the trails of pheromone, which is
allowed only if a better solution is found. For certain values of parameters,
and for a given small € > 0, the algorithm will find the optimal solution with
a probability P, > 1 — ¢, after a time ¢ > ¢y (where t( is a function of ¢).

4.6 Prospect

Armed with the early success of the ant colony algorithms, allied research
interests started exploring many areas other than that of combinatorial op-
timization: for example, the use of these algorithms for continuous and/or
dynamic problems, or the comparison of this type of algorithms within a
framework of swarm intelligence and with other metaheuristics.

4.6.1 Continuous optimization
Problems of adaptation

The metaheuristics are very often employed for combinatorial problems, but
there is a class of problems often encountered in engineering, where the objec-
tive function is continuous and for which the metaheuristics can be of great
help (nonderivable function, multiple local minima, large number of variables,
nonconvexity, etc.; see section 6.2). Several research efforts to adapt meta-
heuristic ant colonies to the continuous domain have been reported.

In addition to the traditional problems of adaptation of a metaheuristic,
the ant colony algorithms pose some specific problems. Thus, the principal
problem arises if one places oneself in ACO formalism with a construction
of the solution composed by components. Indeed, a continuous problem can
— according to the perspective chosen — have an infinite number of com-
ponents and the problem of construction cannot be easily solved in this case.
The majority of the algorithms are thus inspired by the characteristics of
self-organization and external storage by the ant colonies, leaving aside the
iterative construction of the solution.

We list here four ant colony algorithms for continuous optimization:
CACO, a hybrid algorithm not baptized, CIAC and API.
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The CACO algorithm

The first of these algorithms, quite naturally called CACO (“Continuous Ant
Colony Algorithm”) [Bilchev and Parmee, 1995, Wodrich and Bilchev, 1997,
Mathur et al., 2000], uses two approaches: an evolutionary algorithm selects
and crosses areas of interest, that the ants explore and evaluate. An ant selects
an area with a probability proportional to the concentration of pheromone in
that area, in an identical manner as — in the “Ant System” —, an ant would
select a trail going from a city to another:
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where N is the number of areas and nf (t) is used to include specific heuristics

for the problem. The ants then leave the centre of the area and move in a

direction chosen randomly, as long as an improvement in the objective function

is observed. The displacement step used by the ant in each evaluation is given

by:
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where R is the diameter of the explored area, u € [0,1] a random number, T’
the total number of iterations of the algorithm and ¢ a cooling parameter. If
the ant found a better solution, the area is moved so that its centre coincides
with this solution, and the ant increases the quantity of pheromone of the
area proportional to the found improvement. The evaporation of the “trails”
is done classically according to a coefficient p.

Modifications were proposed by Wodrich et al. [Wodrich and Bilchev, 1997]
to improve the performances of the original algorithm. Thus, in addition to
the “local” ants of CACO, the “global” ants will explore the search space
(figure 4.7) so that, if required, the areas which are not very interesting will
be replaced by new areas which are not previously explored. The areas are
also affected by a factor called age, which increases if no improvement is dis-
covered. Moreover, the parameter ¢ in the search step of the ants dr(t, R) is
defined by the age of the explored area.

A remodeling of the algorithm [Mathur et al., 2000] was proposed in order
to more finely associate CACO with the paradigm of the ant colonies and
to abolish the association with the evolutionary algorithm. Thus it can be
noted that, for example, the algorithm speaks about diffusion to define the
creation of new areas. This algorithm was compared with some traditional
algorithms and has shown average performances in its first version and better
performances in its later versions.
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Fig. 4.7. The CACO algorithm: the global ants (a) take part in the displacement
of the areas which the local ants (b) evaluate.

A hybrid method

A similar approach — with simultaneous employment of ant colonies and evo-
lutionary algorithm — was proposed by Ling et al. [Ling et al., 2002], but few
results are available at the moment when this book is written. The principal
idea of this method is to consider the differences between two individuals in
each dimension as many parts of a path where the pheromones are deposited.
The evolution of the individuals is dealt with by employing the mutation and
the crossover operators. From a certain point of view, this method thus tries
to reproduce the construction mechanism of the solution, using components.

The method proceeds precisely as described in the algorithm 4.2. Each
ant x; of the population containing m individuals is considered as a vector
with n dimensions. Each element x; . of this vector can thus be regarded as a
candidate with the element 27 . providing the optimal solution. The idea is to
use the path between the elements z; . and xj. — given (i,j) — to deposit
a trail of pheromone whose concentration is given as 7;;(t) at the time step t.

The authors proposed an “adaptive” version where the probabilities of
mutation and crossover are variable quantities. Unfortunately this algorithm
is not yet completely tested, its performances are thus doubtful and need
validation.

The CIAC algorithm

Another algorithm was developed by two of the co-authors of this book, which
focused on the principles of communication of the ant colonies. It proposes to
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1. At each iteration, each ant selects an initial value in the group of candidate
values with the probability:

75 (t)

k _
Pij (t) - E Tir (t)

2. Use the mutation and the crossover operators on those m values in order to
obtain m new values;

Add these new values to the group of candidate values for the component ; ;
Form m solutions of the new generation;

Calculate the “fitness” of these solutions;

When m ants traversed all the edges, update the trails of pheromone of candidate
values of each component by:

Tij(t 4+ 1) = (1 = p)7r(t) + ZTE

S v W

7. If the k' ant chooses the j** candidate value of the group of components, then
67{3(1& + 1) = Wk, if not (57{} = 0. With W a constant and fi the “fitness” of
the solution found by the k*" ant;

8. Erase the m values having the lowest intensities of pheromone in each group of
candidates.

Algorithm 4.2: A hybrid ant colony algorithm for the continuous case.

add the direct exchanges of information [Dréo and Siarry, 2002] to the stig-
mergic processes, being inspired by a similar action adopted in “heterarchic
approach” described previously in the 4.2.1. Thus, a formalization of the ex-
change of information is proposed, based on the concept of communication
channels. Indeed, there are several possible ways to pass information between
two groups of individuals, for example either by deposits of trails of pheromone
or by direct exchanges. One can define various types of channels of commu-
nication representing the set of the characteristics of the transmission of in-
formation. From the point of view of metaheuristics, there are three principal
characteristics (see figure 4.8):

Range: the number of individuals involved in the exchange of information.
For example, information can be emitted by an individual and received
by several others, and vice-versa.

Memory: the persistence of information in the system. Information can remain
within the system for a specific time duration or can be only transitory.

Integrity: the modifications generated by the use of the channel of communi-
cation. Information can vary in time or be skewed during its transmission.

Moreover, information passing through a communication channel can be
of varied interest, such as for example the value and/or the position of a point
on the search space.

The CIAC algorithm (acronym for “Continuous Interacting Ant Colony”)
uses two communication channels:
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Informations

Fig. 4.8. Structural characteristics of a channel of communication for transmission
of information : range, memory and integrity.

1. The stigmergic channel is formed by the spots of pheromone, deposited
on the search space, which will be more or less attractive for the artificial
ants, according to their concentrations and their distances. The charac-
teristics of the stigmergic channel are thus the following: the range is at
its maximum, all the ants can potentially take information into account,
there is use of memory since the spots persist on the search space, finally,
information evolves with time as the spots evaporate. The information
carried by a spot implicitly contains the position of a point and explicitly
the value of the improvement found by the ant, having deposited the spot.

2. The direct channel is implemented in the form of message exchange be-
tween two individuals. An artificial ant has a stack of received messages
and can send some to another ant. The range of this channel is unity since
only one ant receives the messages, the memory is implemented in form
of the stack of messages which the ant memorizes and finally, information
(here the position/value of a point) does not fade with passage of time.

The algorithm showed some interesting characteristics, it utilizes the self-
organization properties of the ant colony algorithms, in particular a certain
capacity to be oscillated between a process of intensification and a process of
diversification when the two communication channels (stigmergic and direct)
are used in synergy. The figure 4.9 illustrates this behavior of oscillations:
the ordinate shows the standard deviation of the distribution of the objective
function values, a high standard deviation corresponds to a high dispersion
of the ants on the axis of the values (diversification) whereas a low value
corresponds to a gathering of the ants (intensification). It should be noted
that this behavior is not observed when only one channel is in use; hence
there is synergy between the two channels.

However, the results are comparable only with those produced by the
other ant colony algorithms implemented for the continuous domain, therefore
better results should be obtained by employing other metaheuristics adapted
for the continuous case.
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Fig. 4.9. Oscillations observed during the simultaneous use of the two channels of
communication in CIAC algorithm.

This approach gave rise to a hybridization with the Nelder-Mead algo-
rithm for local search [Dréo and Siarry, 2003]. This modification of the origi-
nal CIAC algorithm, called HCIAC, thus uses two channels of communication,
adds a local search methodology and stochastic decision-making processes.
The last feature is implemented by using the stimulus/response type func-
tions, which facilitates us to define a threshold of choice for an action. To be
precise, one can use a sigmoid function p(z) = H_eéﬁ to test the function
for choice of a state x of an ant where a threshold § determines the position
of the point of inflection and the power w characterizes the inflection of the
sigmoid function. If we draw a random number r from an uniform distribu-
tion, one can have two possible choices: r < p(x) or r > p(z). Considering
6 = 0.5 and w = 400, one can obtain a simple binary choice. Using this type
of function one can dispense with a delicate parameter setting procedure, for
example by distributing the thresholds according to a normal law on the en-
tire population. In a similar manner, one can initiate by this way a simple
training procedure, while varying the thresholds.

HCIAC algorithm is described in the figure 4.10. Hybridization has — as
often with the ant colony algorithms — facilitated to reach comparable results
with those obtained from other metaheuristic competitors for the continuous
problems.
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Fig. 4.10. The HCIAC algorithm.

The API algorithm

In all these algorithms adapted for continuous problems, the term “ant
colonies” could be utilized as all of them use processes very similar to stig-
mergy for information exchange.

However, there is one algorithm which can be adapted to the continu-
ous case [Monmarché et al., 2000] that utilizes the behavior of primitive ants
(which does not mean not-adapted) of the Pachycondyla apicalis species as a
starting point, and that does not utilize the indirect communication by trails
of pheromone: the API algorithm.

In this method, one can start by positioning a nest randomly on the search
space, and then ants are sent at random in a given perimeter. These ants
then locally explore the “hunting site” by evaluating several points in a given
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perimeter (see figure 4.11). Each ant memorizes the best-found point. If during
the exploration of its hunting site it finds a better point, then it will reconsider
this site, if not after a certain number of explorations, it will choose another
site. Once explorations of the hunting sites are completed, randomly peeked
ants compare, on two by two basis (as can be the case for the real ants when
they exhibit the behavior of “tandem-running”), their best results and then
they memorize the best two hunting sites. After a specified time period, the
nest is re-initialized at the best point found, the memory of the sites of the
ants is reset and the algorithm executes a new iteration.

Fig. 4.11. The API algorithm: a method with multiple starting inspired by a species
of primitive ant. The ants (full circles) explore hunting sites (small squares) within
a perimeter (large circle) around the nest. The nest is moved to the best point when
the system is re-initialized (arrow in thick feature).

Conclusion in the continuous domain

It should be noted that out of these four algorithms, two were in fact more
or less hybridized with an evolutionary algorithm, and a third one did not
utilize the “classic” metaphor for ant colonies. Generally, it can be opined
that research in this domain is still at its primitive stage and the proposed
algorithms are not fully matured, and are thus not yet really competitive
compared to the other established metaheuristic classes for the continuous
problems.
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4.6.2 Dynamic problems

A problem is known as a dynamic one if it varies with time, i.e. the optimal
solution does not have the same characteristics during the time of optimiza-
tion. These problems give rise to specific difficulties, owing to the fact that it
is necessary as well as possible to approach the best solution at each instant
of time.

The first application of the ant colony algorithms for dynamic prob-
lems was proposed for optimization of the routing of the telephone networks
[Schoonderwoerd et al., 1996]. However the proposed algorithm was not in-
tensively studied in the literature and hence it is difficult to learn some lesson
from it. Another application on similar problems was proposed by White et
al. [White et al., 1998, Bieszczad and White, 1999]. An application for prob-
lems of routing of Internet networks (see figure 4.12) has also been presented:
the AntNet algorithm [Di Caro and Dorigo, 1997]. This metaheuristic was the
subject of several studies (see in particular [Di Caro and Dorigo, 1998]) and
seems to have proven its effectiveness for several test problems.

Fig. 4.12. The network example used to test the AntNet algorithm: NFSNET
(each edge represents an oriented connection).

To update probabilistic tables of routing, each of these algorithms uses ants
to explore the network so that the relevant information is the frequency of
passage of the ants over each node. Generally, the distributed and the flexible
aspects of the ant colony algorithms seem to adapt well for the dynamic
problems.

4.6.3 Metaheuristics and ethology

Very often the metaheuristics originate from metaphors drawn from nature,
and in particular from biology. The ant colony algorithms are inspired by the
behavior of social insects, but they are not the only algorithms which evolved
from the study of the animal behavior (ethology). For example, optimization
by particle swarms (“Particle Swarm Optimization” [Eberhart et al., 2001],
see 5.6) originated from an analogy with the collective behaviors of animals
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displacements, as observed in fish schooling or bird flocking; there are other
algorithms also which are inspired by the behaviors of the bees [Choo, 2000,
Panta, 2002]. Moreover some algorithms can be found in literatures which
consider some aspects of the behavior of the social insects as the starting
point, although they do not make use of the classic characteristics of the
ant colony algorithms (see for example [De Wolf et al., 2002, Nouyan, 2002]
as well as the section 5.12 of this book).

Hence, all doors remain open to believe that ethology can be a source of
interesting inspiration for the design of new metaheuristic algorithms.

4.6.4 Links with other metaheuristics

The metaheuristics form a wide class of algorithms, where many concepts are
found across several categories. Moreover, many variations of a specific cate-
gory of algorithms make the borders between different metaheuristics fuzzy.

An example of overlapping between two metaheuristics can be cited by the
term “swarm intelligence”, which is used not only to describe the operating
mode of the ant colony algorithms [Bonabeau et al., 1999], but also of other
algorithms like the “particle swarm” [Eberhart et al., 2001] (see section 5.6 for
a detailed description). Generally, this term refers to any system (normally
artificial) having self-organization properties — similar to those described in
the section 4.2.1 — that is able to solve a problem by utilizing only the forces
of interactions at the individual level.

A broader attempt for unified presentation has also been made: the frame-
work of the “adaptive memory programming” [Taillard et al., 1998] (see sec-
tion 7.5), in particular including the ant colonies, the tabu search and the evo-
lutionary algorithms. This framework insists on the use of a form of memory in
these algorithms, and on the use of the intensification and the diversification
phases (see section 4.5.3 for this aspect of the artificial ant colonies).

Thus several metaheuristic algorithms can be brought closer to the ant
colony algorithms and vice-versa. One feature that strongly supports this over-
lapping is the fact that the ant colony algorithms are very often effective only
with a local search (see section 4.5.4). Hence, from a certain point of view, an
ant colony algorithm strongly resembles the GRASP [Feo and Resende, 1995,
Resende, 2000] (“Greedy Randomized Adaptive Search Procedures”, see sec-
tion 5.8) algorithm with a specific construction phase.

Similarly, the “Cross-Entropy” [Rubinstein, 1997, Rubinstein, 2001] (see
section 5.9) method has two phases: initially generate a random data file,
then change the parameters which generate this data file to obtain a better
performance for the next iteration. Still, this method can be considered to be
close to the ant colony algorithm [Rubinstein, 2001]. Some works have even
aimed at using these two methods jointly [Wittner and Helvik, 2002].

One can also point out the similarities of these algorithms with particle
swarm optimization [Kennedy and Eberhart, 1995, Eberhart et al., 2001] (de-
scribed in section 5.6), which also strongly utilizes the attributes of distributed
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systems. Here, large groups of particles are traversing the search space with
a displacement dynamic that make them gathering each other.

Another very interesting overlapping of ant colony algorithms can be ob-
served with the estimation of distribution algorithms (EDA,
[Larranaga and Lozano, 2002], described section 5.7). Indeed, these algorithms
— derived from the evolutionary algorithms in the beginning — are based
on the fact that in each iteration, the individuals in the search space are
chosen at random according to a distribution, built from the states of the
preceding individuals. Schematically, for a better individual, the probability
of creation of other individuals in the neighborhood is higher. One can ob-
serve that the similarity of these EDA algorithms to the ACO algorithms is
remarkable [Monmarché et al., 1999].

One can thus draw a parallel between evolutionary algorithms (see chap-
ter 3) and ant colonies, that both use a population of “agents” selected on
the basis of memory-driven or probabilistic procedures. One can also harp
on the idea, supported by some biologists, that the phenomenon of self-
organization has an important role to play in the evolutionary processes
[Camazine et al., 2000]... which the evolutionary algorithms consider as a
starting point.

A new approach — less related to the metaheuristics — consists in con-
sidering a particular class of ant colony algorithms (the class called “Ant
Programming”) and can be placed in between the optimal control theories
and the reinforcement learning [Birattari et al., 2002].

It is well observed that many interactions and overlapping do exist and
the relations between evolutionary algorithms, evolution of distribution algo-
rithms and ant colonies do iterate the fact that each one can finally reveal the
characteristics of the others. It is thus difficult to study ant colony metaheuris-
tic as a homogeneous, stand-alone algorithm which in itself is a separate class
from the others. However, the power of the metaphor utilized and the com-
bination of a whole group of relatively well-known characteristics (see section
4.5) make it possible to clarify its definition.

4.7 Conclusion

The metaheuristic which is inspired by the ant colonies is initiated to be
well described and formalized. The entire set of properties required for its
description is known: probabilistic construction of a solution (by addition of
components in the ACO formalism), heuristics on the specific problem, use of
indirect memory form and a structure comparable with that of a self-organized
system. The ideas underlying the ant colony algorithms are powerful; one
can describe this metaheuristic like a distributed system where the interac-
tions between basic components, by means of stigmergic process, facilitate the
emergence of a coherent global behavior so that the system is able to solve
difficult optimization problems.
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The ant colonies have been successfully applied to many combinatorial
problems and research initiations have been undertaken to adapt them for
continuous problems. The importance of the choice of a local search has been
emphasized to produce competitive algorithms against other older and often
more specialized metaheuristics. It seems that these algorithms can become
natural choices for dynamic problems as they are based on a self-organized
structure, especially when only local information is available.

4.8 Annotated bibliography

[Holldobler and Wilson, 1990]: This book presents an impressive collection of
knowledge on the biology of the ants. A bible on the subject, which
received the Pullitzer price.

[Camazine et al., 2000]: One can find here a complete description of the self-
organization principles in the biological systems, accompanied by
many examples. Descriptions of patterns make it possible to un-
derstand the theoretical bases of the self-organization.

[Bonabeau et al., 1999]: This work treats ant colony algorithms as systems
showing swarm intelligence. The book is articulated around biolog-
ical and algorithmic concepts, in particular around metaheuristics
of ant colonies. A reference on the ACO algorithms.

[Dorigo and Stiitzle, 2003]: A chapter specifically dedicated to the ant colony
algorithms in a book which provides general descriptions on several
metaheuristics. Less rich than the preceding one, but more recent.

[Dorigo et al., 2002]: Proceedings of the last ANTS congress on the “ant al-
gorithms”, a fast view on the most recent research in this field.
The congress is held every two years since 1998.
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Some Other Metaheuristics

5.1 Introduction

The metaheuristics form an extremely promising field of research, where sev-
eral ideas are coined, almost everyday. The well-known techniques, which were
presented in the first part of this book, should not shadow the existence of
many other methods. The development of such algorithms often follows a
regular, predictable pattern. In particular, often the initial versions of these
algorithms are innovative but not very effective and there remains enough
scope for further improvements, followed by proposals of several improved
variants, and finally they are hybridized with other approaches. The origin
of inspiration for each such algorithm may be useful, however the induced
classification of metaheuristics is often arbitrary.

We propose in this chapter a sample collection — inevitably incomplete
and partial — of the metaheuristics, from the “simple” variant of the sim-
ulated annealing to the more innovative concept of the algorithms based on
estimation of distribution. It will be interesting to draw analogy between these
methods and those described in the first four chapters of the book, or the ap-
proaches of unification presented in the chapter 7.

Hereafter we present, in a largely arbitrary order:

some variants of simulated annealing;
the noising method;

the method of distributed search;

the Alienor method;

particle swarm optimization;

algorithms with estimation of distribution;
the GRASP method;

the “Cross-Entropy” method;

artificial immune systems;

the differential evolution;

algorithms inspired by the social insects.
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Some other metaheuristics have also been separately discussed within the
scope of the chapters 1 to 4. The annotated bibliography placed at the end
of this chapter 5 finally aims at pointing out recently published books, which
give a detailed presentation of certain techniques described in this book, or
can even describe other methods which are left beyond the scope of this book.

5.2 Some variants of simulated annealing

5.2.1 Simulated diffusion

The idea in the method of the simulated diffusion [Aluffi-Pentini et al., 1985,
Geman and Hwang, 1986], is to introduce random fluctuations authorizing the
degradations of the objective function, while preserving the descent along the
directions of the gradients. The minimum of the function f is localized start-
ing from the asymptotic behavior of the solutions of the ordinary differential
equation of the gradient:

i=-Vf(z) (5.1)

for which the minimum is a stable state. However, there remains a major risk:
the algorithm may get trapped in a local minimum of f, rather than con-
verging towards the global minimum z*. In order to overcome this difficulty,
a stochastic disturbance is added to the relevant equation (eq.5.1) which is

then written as:

where {W;,t > 0} is a standard Brownian motion (i.e. a process of “random
walk”), for a suitable choice of the scalar coefficient of diffusion o(t).

It can be assumed that Vf allows a “Lipschitz constant” (when a func-
tion ¢ allows a Lipschitz constant K, it checks the following inequality:
lg(X) —g(Y)|| < K || X =Y/, in all the points X and Y in the domain where
g is defined, where |.. .|| denotes the Euclidian norm). It can also be assumed
that V f satisfies the limit of growth:

Vf @) < K (1+]al) (5.3)

for a given constant K, and all z € R".
Then, for o (t) = m, with ¢ > 0, it can be shown that the probabil-

ity distribution p (x;) converges towards a limit of Gibbs density proportional
— (=
T

to e =7~ when the ¢ absolute temperature” T = o2 (t) — 0 when t — oo .
This limit density is “concentrated” around the global minimum z* of f. Other
choices of o (t) can lead to convergence towards a local minimum of f with a
probability larger than that for convergence towards the global minimum.

In fact, the following significant result:

E (th - cr:*||21ogt> >y (5.4)
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can be established for a certain value of v > 0 and for ¢ sufficiently large.
There is a lower limit for this relation to converge, within the framework of
least squares, from z; towards x*.

The procedure using the solutions x; of (eq. 5.2) to locate z* is also called
“stochastic annealing” or “ stochastic gradient”. In practice, it requires the
employment of a numerical method to solve the stochastic differential equation
(eq. 5.2).

The simulated diffusion method was very successful in the treatment of
certain applications in the area of electronics. However, it could enjoy limited
applications, because it requires the gradient information of f for its successful
operation (see also the section 6.2).

5.2.2 Microcanonic annealing

Let us consider an isolated system, i.e. a system that does not have any heat
transfer with its environment. A “microcanonic” analysis of this system will
reveal that the principal property of this physical system, in this case, is that
its total energy is constant, irrespective of its dynamic evolution. In accor-
dance with this analysis, Creutz proposed a variant of simulated annealing,
the “microcanonic annealing” [Creutz, 1983]. The total energy of the system,
which is the sum of the potential energy and the kinetic energy, remains pre-
served during the process.

Eiotar = Ep + K. (55)

For the optimization problem, the potential energy F, can be considered
as the objective function, to be minimized. The kinetic energy FE. plays a
role similar to that of the temperature in simulated annealing; it is forced to
remain positive. E. allows to cut off or add energy to the system, according to
the disturbance imposed. The algorithm accepts all those disturbances which
cause moves towards the lower energy states, by adding —0E (lost potential
energy) to the kinetic energy E.. The moves towards higher energy states
are only accepted when §FE < FE., and the energy acquired in the form of
potential energy is cut off from the kinetic energy. Thus, the total energy
remains constant.

The algorithm is described in detail in algorithm 5.1.

At each energy stage, the “thermodynamic equilibrium” is reached as soon
as the ratio r¢q = % of the average kinetic energy observed to the standard
deviation of the distribution of E. is in the “neighborhood” of 1.

The equation (eq. 5.6) involving the kinetic energy and the temperature
establishes a bond between simulated annealing and microcanonic annealing.

(kp = Boltzmann constant)
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1. Choose, at random, an initial solution z for the system to be optimized and
evaluate the value of the objective function f = f(x);

2. Perturb this solution to obtain a new solution ' = = + Ax;

3. Calculate Af = f(z') — f(=x);

4. If Af < E.
Then accept the new solution 2’; make z « 2’ and E. «+ E. — Af;
Else refuse the solution z';

5. Save the best point met;

6. If the thermodynamic “equilibrium” of the system is reached,
Then decrease the kinetic energy FE;
Else go to step 2;

7. If the kinetic energy E. is close to 0,
Then go to step 8§;
Else go to step 2;

8. Solution=Dbest point found; terminate the program.

Algorithm 5.1: Algorithm for microcanonic annealing.

This algorithm has several advantages compared to simulated annealing.
It neither requires the evaluation of the transcendent functions like *, nor any
random number is required to be drawn for the acceptance or the refusal of a
configuration. From execution point of view, this can achieve greater speed.
However, Creutz noted a disadvantage, in the case of the problems of “small
dimension”. This method exhibited higher probability of getting trapped in
metastable states than simulated annealing [Hérault, 1989].

—_

Choose, at random, an initial solution x for the system to be optimized and
evaluate the value of the objective function f = f(z);
Choose an initial threshold T’
Perturb this solution to obtain a new solution =’ = x + Ax;
Calculate Af = f(z') — f(=x);
If Af<T,
Then accept the new solution x’; make x «+ a’;
Save the best point met;
7. If the quality of the optimum does not improve for a “certain duration”, or if
a given number of iterations were reached,
Then lower the threshold T
8. If the threshold is close to 0,
Then go to step 10;
9. Go to step 3;
10. Solution = best point found; terminate the program.

Grs LN

o

Algorithm 5.2: Algorithm for the threshold method.
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5.2.3 The threshold method

The principal difference between the threshold method [Dueck and Scheuer,
1989] [Bertocchi and Odoardo, 1991] and the simulated annealing technique
lies in the criterion for acceptance of the solutions attempted: simulated an-
nealing accepts those configurations which cause deterioration of the objective
function f only with a certain probability; on the other hand, the threshold
method accepts a new configuration, if the (possible) degradation of f does
not exceed a certain threshold T, which is a function of the iteration k.

The algorithm is presented in detail in the algorithm 5.2.

The method compares favorably with simulated annealing for the combi-
natorial optimization problems like the traveling salesman problem. An adap-
tation of this method to solve problems involving continuous variables can be
carried out, similarly to continuous simulated annealing.

5.2.4 “Great deluge” method

The method of the “great deluge” [Dueck, 1993], and the method of the
“record to record travel”, presented in the paragraph 5.2.5, are methods for
maximization of the objective function (an adaptation of the initial objective
function is thus necessary). These methods are variants of the simulated an-
nealing technique and the threshold method. The differences lie in the laws of
acceptance of the solutions, which degrade the objective function. Moreover,
compared to the simulated annealing method (which requires a complex, del-
icate choice of several parameters), these two methods are simpler to use, as
they comprise of less parameters (only two in each method).

The principle of the algorithm of the “method of the great deluge” is
presented in the algorithm 5.3.

The metaphor of the great deluge facilitates to understand the intuitive
mechanism of this method: to keep the feet dry, the hiker will visit the peaks
of the explored area. If the water level always goes up, an immediate disadvan-
tage due to the separation of the “continents” will appear, which should trap
the algorithm in local maxima. However, for combinatorial problems, the au-
thor presented results which were completely at par with those obtained with
other methods of global optimization [Dueck, 1993].

5.2.5 Method of the “record to record travel”

The other variant, entitled “record to record travel” [Dueck, 1993], is pre-
sented in the algorithm 5.4. In this method, any solution can be accepted, if
it is not “much worse” than the best record value obtained previously. A cer-
tain similarity with the preceding method can be found, the difference being
between the record and the variation (deviation) corresponding to the water
level WATER-LEVEL.
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—_

Choose, at random, an initial solution x for the system to be optimized and
evaluate the value of the objective function f = f(x);
Initialize the “quantity of rain” UP> 0;
Initialize the “level of water” WATER-LEVEL> O;
Perturb this solution to obtain a new solution =’ = x + Ax;
Evaluate the new value of f;
If f >WATER-LEVEL,
Then accept the new solution z’; make z « z';
increase the level WATER-LEVEL of the quantity UP;
Save the best point met;
8. If the function did not improve for a long time, or if there were too many
function evaluations,
Then go to step 9;
Else go to step 4;
9. Solution = best point found; terminate the program.

S oW

~

Algorithm 5.3: Algorithm for the method of the great deluge.

In this method, as in the preceding one, there are only two parameters to be
adjusted (quantity of water UP for the preceding method, or the variation de-
viation for this method, and the termination criterion in both methods). The
choice of the first parameter is significant, because it realizes a compromise
between the convergence speed and the quality of the maximum obtained.

The author specifies that the results of these two methods for the traveling
salesman problem of dimension higher than 400 cities are better than those
obtained using simulated annealing.

1. Choose, at random, an initial solution x for the system to be optimized and
evaluate the value of the objective function f = f(x);

2. Initialize the authorized “deviation” DEVIATION> 0;
3. Evaluate the initial RECORD : RECORD= f(z);
4. Perturb this solution to obtain a new solution ' = = + Ax;
5. Evaluate the new value of f;
6. If f >RECORD—DEVIATION,
Then accept the new solution; make x « z’;
7. Save the best point met;

8. If f >RECORD,
Then RECORD= f(x);
9. If the function did not improve for a long time, or if there were too many
function evaluations,
Then go to step 10;
Else go to step 4;
10. Solution= best point found; terminate the program.

Algorithm 5.4: Algorithm for the method of the record to record travel.
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5.3 Noising method

The noising method [Charon and Hudry, 2002] uses a descent-based algo-
rithm, i.e. an algorithm which, starting from an initial solution, carries out
iterative improvements until obtaining a local minimum. On the basis of an
unspecified point x in the domain S, the data are “disturbed”, i.e. the values
taken by the function f are modified in a certain manner; then the descent-
based algorithm is applied to the disturbed function. At each iteration, the
amplitude of the noising of f decreases until it is zero. The best solution met
is regarded as the global minimum.

The algorithm for this method is proposed in the algorithm 5.5. The
authors proposed and analyzed various possible functions of noising. They
showed that, according to the noising carried out, the method can be made
exactly identical with the threshold method described above, or with the
simulated annealing: in this direction, the noising methods represent a gener-
alization of simulated annealing and acceptance with threshold.

Choose, at random, an initial solution = for the system to be optimized;
Initialize the “amplitude of noise”;
Update the objective function, using noising of a given amplitude;
Apply, for the ”disturbed” objective function, a descent-based method, starting
from the current solution;
Decrease the amplitude of noise;
6. If the amplitude of noise is zero,
Then go to step 7;
Else go to step 3;
7. Solution=best point found; terminate the program.

e

o

Algorithm 5.5: Algorithm for the noising method.

The noising method compares favorably with the simulated annealing on
certain combinatorial optimization problems, like the problem of the parti-
tioning of graphs with a non-fixed number of cliques. On the other hand, its
adaptation for the problems with continuous variables remains a subject of
further study.

5.4 Method of distributed search

The algorithm of “distributed search” [Courrieu, 1991] evolves a probability
distribution of visit in the search domain. This distribution converges towards
a stable state, where the probability density is maximum in the neighborhood
of the extrema to be searched. Put in another way, the probability of visit is
“concentrated” on those zones where the objective function takes the required
extreme values.
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The basic idea is very simple: let 1 and x2 be two points in the search
domain S such that f(z1) < f(x2). Then, there is a collection of points x,
in the neighborhood of z; (whose size varies during the process), such that
f(z) < f(z2). The algorithm samples the domain .S according to a probability
distribution, controlled by an estimate of the adequate size of the neighbor-
hood, which varies in various stages of the process. The generation of the
points to be visited is done independently in each dimension, by means of a
generation function, known as “law of filiation”. This law is given as:

x; = s tan (wu;) +my (5.7)
where:
u; is a uniform random number in ] _71, %1[

m; are the components of the distribution center

s; are the scale parameters, i.e. the parameters which define the size of

the neighborhood of the minimum, or the quartiles (i.e. the values of z for
3

which the value of the distribution function is % or ).

The random variable thus defined obeys an n-dimensional Cauchy law of
density:

n

1 1
PERC I | m—_—
i=1 ‘14 (79“_’“)

Si

(5.8)

The Cauchy law does not have moment and its variance is infinite (the
density decreases slowly and is never negligible). In the opinion of the author,
the Cauchy variables have properties which are particularly suitable for this
method.

Practically, the method can be clearly understood while following the al-
gorithm described in the algorithm 5.6.

The application of this algorithm does not require any condition to be
fulfilled, it is capable of evaluating the objective function in any point of the
domain. The author showed the convergence of the method, and compared its
performances with those of three other methods: a uniform random search, a
simulated annealing algorithm and a genetic algorithm.

5.5 “Alienor” method

The Alienor method [Cherruault, 1986b, Cherruault, 1986a]
[Cherruault, 1989], proposed by Cherruault et al., is based on a succession of
reducing transformations, which can transform any function of several vari-
ables to a function of a single variable: the polar angle of an Archimedes spiral.
Then one can choose from a pool of powerful methods, usually implemented
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1. Generate, at random, a population of N points of the domain S;
Calculate, for each one of the points, the value of the function f;
Calculate the total of these values in the population;
2. Make N times:
e Choose, at random, two points from the current population;
e Take the better of the two points as “father”;
e Replace the other point by a “son” of the first, generated according to the
current “law of filiation” (equation 5.7);
e (Calculate the value of the function f associated with the new point, and
update the total of f in the population;
3. If the total of f in the population improved,
Then go to step 2;
Else go to 4;
4. If the termination criterion is reached,
Then go to step 6;
Else go to 5;
5. Adjust the law of filiation, by reducing the scale parameters; Go to 2;
6. Solution=Dbest point found; terminate the program.

Algorithm 5.6: Algorithm for the distributed search method.

for solving monovariable problems, to solve a multivariable optimization prob-
lem.

For example, in the case of a problem with 4 variables, let us replace the
vector components x = (1, Za,...,7,)’ by:

X1 = T1 COS 01 To =1T1 sin91 r = a101
I3 = T'g COS 92 Ty = T2 sin 92 T2 a292

This first transformation of variables gives:

fx1,29,23,24) = f(a101 cosOy, a6y sin by,
a292 COS 927 a202 sin 02)
J(x1, 22,23, 74) = g (01,02)
The function f of 4 variables is now transformed to a function g of 2
variables. A second transformation of variables:
0y =r-cosf,0; =r-sinfwithr = af

leads to a function of a single variable # which implies:

f(z1,22,23,24) = f(ara - cos@ - cos (ab - cos ),
ayaf - cosf - sin (ab - cosb),
asal - sinf - cos (ad - sinfh),
agaf - sin b - sin (ab - sin 9))
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f ($1,.T2,.133,l‘4) = G ((9)

It is equivalent to seek for the global optimum of f, or that of G. However,
the advantage of using G is that it does not comprise of any variable other
than 6. Indeed, it can be shown that min G tends towards min f, when a, a4,
and ag tend towards 0 [Cherruault, 1989].

Once the absolute minimum of G is determined, the absolute minimum of
f can be easily obtained by performing the following transformations, for the
example with 4 variables:

x1 = ayab - cos b - cos (ab - cos )
X9 = ayab - cos B - sin (ab - cos §)
x3 = agal - sinf - cos (ab - sin @)
x4 = agal - sinf - sin (ab - sin 0)

The minimization of G (6) can be carried out employing a traditional func-
tion minimization algorithm for a single variable.
There are two disadvantages associated with the use of this method:

e on one hand, the mandatory computational burden associated with the
trigonometric functions becomes huge, as soon as the number of variables
increases;

e in addition, it is very difficult to ensure the satisfaction of the constraints
of the type:

a; <z; <b;,1<i<n

It is necessary to evaluate many expressions of the type:
xj; = a;ab - cosf - cos (ab - cosb)

to check the preceding inequalities.
The figure 5.1 represents the global exploration of the plane (objective
function with 2 variables x1 and x5) parameterized by a single parameter 6.
The Alienor method in particular made it possible to numerically solve the
partial differential equations used to model biological systems. However, its
effectiveness is not yet established for the problems involving a large number
of variables.

5.6 Particle swarm optimization method

The particle swarm optimization (“Particle Swarm Optimization”, PSO)
[Kennedy and Eberhart, 1995, Eberhart et al., 2001] evolved from an anal-
ogy drawn with the collective behavior of the animal displacements (in fact,
the metaphor was largely derived from socio-psychology). Indeed, for certain
groups of animals, e.g. the fish schools, the dynamic behavior in relatively
complex displacements can be observed, where the individuals themselves



5.6 Particle swarm optimization method 163
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X1min X Imax X1

X2min

Fig. 5.1. Global exploration of the plane parameterized by 6 (the Archimedes spi-
ral).

have access only to limited information, like the position and the speed of
their closer neighbors. For example, it can be observed that a fish school is
able to avoid a predator in the following manner: initially it gets divided
into two groups, then the original school is reformed (see figure 5.2), while
maintaining the cohesion among the school.
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Fig. 5.2. A schematic of a fish school avoiding a predator. (a) the school forms
only one group, (b) the individuals avoid the predator by forming a “fountain” like
structure, (c) the school is reformed.
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These collective behaviors completely conform to the theory of the self-
organization described in the beginning of the chapter 4. To summarize, each
individual uses the local information regarding the displacement of his closer
neighbors, which are reachable by him, to decide on his own displacement.
Very simple rules like “remain relatively close to the other individuals”, “go
in the same direction”, “at same speed” etc. are good enough to maintain the
cohesion among the entire group, and to allow complex and adaptive collective
behaviors.

The authors, who proposed the method of particle swarm optimization,
drew their original inspiration by first comparing the behaviors in accordance
with the theory of socio-psychology for data processing and the decision-
making in social groups, side by side. It is an exceptional and remarkable
achievement that this metaheuristic was originally conceived for the continu-
ous domain, and, till date, majority of its applications are in this domain. The
method conceives a large group of particles, in the form of vectors, moving
in the search space. Each particle ¢ is characterized by its position x; and a
vector of change in position (called velocity) v;. In each iteration, the move-
ment of the particle can be characterized as: x;(t) = x;(t — 1) + v;(¢t — 1). The
core of the method consists in the manner in which v; is chosen, after each
iteration. Socio-psychology suggests that the movements of the individuals
(in a socio-cognitive chart) are influenced by their last behavior and that of
their neighbors (closely placed in the social network and not necessarily in
space). Hence, the updating of the position of the particles is dependent on
the direction of their movement, their speed, the best preceding position p;
and the best position pg among the neighbors:

xi(t) = f (xi(t = 1), vi(t — 1), pi, Py)

The change in position, in each iteration, is thus implemented according
to the following relation:

{Vi(t) =vi(t = 1) + 1 (pi —xi(t = 1)) + p2 (py — xi(t — 1))
Xz(t) = Xi(t — ].) +V2(t — ].)

where the ¢, parameters are drawn randomly from the discourse Uy ., ..
and are influential in striking a balance between the relative roles of the in-
dividual experience (governed by 1) and of the social communication (gov-
erned by ¢2). Uniform random selection of these two parameters is justified
from the fact that it does not give any a priori importance to any of the two
sources of information. The algorithm also employs another parameter, Vi, 4,
to limit the rapidity of movement in each dimension, so that it can prevent
any “explosion” of the system, in case there are too large amplifications of
the oscillations. The pseudo code for the generalized version of the algorithm
— in the continuous version — is presented in the algorithm 5.7.

This basic algorithm can be further improved, if the problem is addressed
from the point of view of controlling the divergence. In the initial version,
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n =number of individuals
D =dimensions of the problem
Until reaching the termination criterion:
For i=1ton:
If F(x;) > F(p:) then :
For d=1,...,D:
Pid = kia // Dia is thus the best found individual

end d
end if
g=1

For j =index of the neighbors:

If F(p;) > F(pgy) then :
g=3 // g is the best individual in the neighborhood

end if

end j

For d=1,...,D:
via(t) = via(t — 1) + @1 (pia — @ia (t — 1)) + 92 (Pga — @ia (t — 1))
Vid € (_Vmaz’ + Vma,:c)
Via(t) = zia(t — 1) + via(t)

end d

end i

end

Algorithm 5.7: Particle swarm optimization (in continuous domain).

the parameter V4, is employed to prevent any “explosion” of the system,
in the process of amplification of the positive feedback. One such improve-
ment proposed to use constriction factors to exercise better control over this
behavior [Clerc and Kennedy, 2002]. The algorithm proposes to limit rapid-
ity by constricting the velocity update relation such that the user can control
intensification/diversification dynamics of the system. In the “simple constric-
tion” version, only one factor is multiplied with two component members of
the velocity update relation which are influential in calculating rapidity or
swiftness. This method of constriction enables the algorithm to converge (the
amplitudes of the movements of the individuals are gradually decreased until
they get cancelled). The algorithm could implement an effective compromise
between intensification and diversification. The only problem arises when the
points p; and py move apart, in that case the particles will continue to oscillate
between these two points without converging. An interesting characteristic of
this algorithm is that, if a new optimum is discovered after the algorithm
converged (i.e., after a phase of intensification), the particles will explore the
search space around the new point (i.e. a phase of diversification).

In the same idea, a version sets up an inertia weight by multiplying
each member of the equation of swiftness by a different coefficient [Shi and
Eberhart, 1998]. To summarize, the inertia weight decreases according to time,
which causes a controllable convergence by this parameter. General dynamics
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remains the same as in the version with coefficient of constriction, except for
the impossibility of setting out again in a dynamics of diversification if a new
better point is found.

Another significant parameter can be the introduction of the concept of
neighborhood for the particles. It seems to be a well established fact that
a social neighborhood (for example, an individual xs is the neighbor of the
individuals 27 and 3, irrespective of the locations of x1, x2, x3 in space) gives
better results than a spatial neighborhood (a function of the proximity of the
individuals in the search space, for example).

Other variations were also proposed, e.g. modifying the concept of the
better preceding position of a particle by that of the better position of the cen-
tre of gravity of the “clusters” selected in the population [Kennedy, 2000].
The influence of the initial distribution of the particles was also studied
[Shi and Eberhart, 1999].

The readers are redirected to read [Eberhart et al., 2001] to obtain a de-
tailed, state of the art, understanding of the particle swarm optimization and
the concepts associated with it and [Clerc, 2005] to read a synthesis.

5.7 The estimation of distribution algorithm

The algorithms with estimation of distribution (“Estimation of Distribution
Algorithms”, EDA) were originally designed as an alternative for the evolu-
tionary algorithms [Miihlenbein and Paafl, 1996]. However, in the EDA type
methods, there are no crossover or mutation operators. In fact, the population
of the new individuals is drawn randomly according to a distribution estimated
with the help of the information gathered from the preceding population. In
the evolutionary algorithms, variables do maintain an implicit relationship,
whereas in the FDA algorithms, the basic essence of the method precisely
consists in estimating these relations, through the estimation of the probabil-
ity distribution associated with each selected individual.

The best way of understanding the principle of EDA is to study the sim-
plest possible example. Let us consider a simple problem of a function seeking
to maximize the number of 1s in the three dimensions: the objective is to
maximize h(x) = E?:l x; with 2; = {0,1} (the “OneMax” problem).

The first stage consists in generating the initial population, hence M
individuals are randomly drawn according to the probability distribution:
po(z) = Hf:l po(z;) where the probability that each element z; is equal to 1 is
po(x;). In other words, the probability distribution, according to which the in-
dividuals are randomly drawn, is factorized like a product of three univariant
marginal probability distributions (here, since the variables are binary, they
are the Bernouilli distributions of parameter 0.5). The population thus sam-
pled is named Dg. Let us consider, for example, a population of six individuals
(illustrated in figure 5.3).
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i|z1 2 z3|h(z)
/1 1 0| 2
210 1 1] 2
31 0 0] 1
41 0 1| 2
50 0 1] 1
6/0 1 0] 1

Fig. 5.3. EDA algorithm employed for optimization of the OneMax problem: the
initial population Dy.

The second stage consists in selecting individuals among this population;
hence the second population D(“)g ¢ is built in a probabilistic manner, drawn
from the best individuals in Dg. The method of selection is unrestricted, here
one can, for example, select the three best individuals (see figure 5.4).

i |x1 z2 x3|h(x)
1 1 1 0] 2
210 1 1| 2
4 11 0 1 2

Fig. 5.4. EDA algorithm employed for optimization of the OneMax problem: se-
lected individuals Dg °.

The third stage consists in estimating the parameters of the probability
distribution represented by these selected individuals. In this example, the
variables are assumed to be independent. Hence three parameters will be
necessary to characterize the distribution. Thus each parameter is estimated
as p(x; | Dg ¢) on the basis of its relative frequency in Dg ¢. Hence, this results
in: p1(x) = p1(z1,22,23) = H?le(mi | Dbge). By sampling this probability
distribution p;(z), one can obtain a new population D; (figure 5.5).
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Fig. 5.5. EDA Algorithm for optimization of the OneMax problem: the new pop-
ulation D1.
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This process has to be continued until a predefined termination criterion is

reached ... A generalized version of the estimation of distribution algorithm
is presented in the algorithm 5.8.

Dy +— Generate M individuals at random

1=0
Until reaching the termination criterion:
i=14+1

ijl «— Select N < M individuals in D;_; following the method of selection
pi(z) =p (w | Df_cl) — Estimate the probability distribution of an individual
belonging to the selected individuals
D; «— Sample M individuals since p;(z)
end loop

Algorithm 5.8: Algorithm for estimation of distribution.

The main difficulty associated with the estimation of distribution algo-
rithm is the estimation of the probability distribution. In practice, it is nec-
essary to determine the parameters of the distribution in accordance with a
selected model. Hence, many approximations for this estimation have been
proposed for problems of both continuous and combinatorial optimization.
Various algorithms proposed can be classified according to the complexity of
the model utilized to evaluate the dependency among the variables. Hence
three such categories can be determined:

1. Models without dependence: the probability distribution is factorized
starting from univariant independent distributions for each dimension.
The main drawback of such a choice is that it is not a practicable assump-
tion for difficult optimization problems, where a strong inter-dependence
of the variables is a common occurrence;

2. Models with bivariant dependences: the probability distribution is factor-
ized starting from bivariant distributions. In this case, the training of the
distribution can be wide until the concept of structure;

3. Models with multiple dependences: the factorization of the probability
distribution is carried out starting from the statistics of the order superior
than two.

I should be noted that in the continuous domain, the model of distribution is
generally a normal distribution. Some important alternatives have also been
proposed. These include the use of “data clustering” for multimode optimiza-
tion and similar alternatives for combinatorial problems. Convergence theo-
rems have also been formulated, in particular with the help of modeling by
Markov chains or dynamic systems.
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Unfortunately it is beyond the scope of this book to detail all such algo-
rithms proposed, however an interested reader is redirected to the exhaustive
book of reference [Larranaga and Lozano, 2002] in this field.

5.8 GRASP method

The GRASP (“Greedy Randomized Adaptive Search Procedure”
[Feo and Resende, 1995, Resende, 2000]) algorithm is a metaheuristic which is
characterized by multiple initializations. Basically, it operates in the following
manner: first a feasible solution is obtained, which is then further improved by
a local search technique . The main objective is to repeat these two phases in

an iterative manner and to preserve the best found solution (see the algorithm
5.9).

cut = dimension of the problem
For k =1,..., iterations_max make:
Construction:
solution =0
Evaluate the incremental cost of each individual candidate
If find Dimension( solution ) # cut:
Build LLC: the limited list of the candidates
Select randomly an element e from LCR
solution = Add( solution, e )
end
Search local:
If find the solution locally nonoptimal:
Find s € theNeighborhood of (solution) such that f(s') <
f(solution)
solution = s’
end
better_solution = Min( solution, better_solution )
end
return better_solution

Algorithm 5.9: The GRASP algorithm (the minimization problem).

In the construction phase, a limited list of the candidates (LLC) is drawn
as follows:

1. Choose all the feasible elements.

2. Choose among those the best elements according to a given performance
index.

3. Randomly draw, among these best elements, those which will belong to
the limited list of candidates.
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Generally, the performance index is chosen as the degradation in the value of
the objective function due to the incorporation of the element in the solution,
in the construction phase. This process gives the greedy dimension to the al-
gorithm, whereas the probabilistic dimension arises due to the phenomenon
of random selection. The important point to be noted is that the list of can-
didates is updated after each incorporation of a new element, which provides
the adaptive flavor to the algorithm.

As long as the construction phase is continued, the solution found is grad-
ually improved while a local search is implemented to transform this solution
into the local optimum.

The most interesting aspect of GRASP is its simplicity in implementation
as well as the limited number of parameters that are required to be tuned. It
can also be quickly realized that the local search phase can utilize any relevant
algorithm that is found effective for a given problem; same logic can also be
applied for the construction phase.

The LLC can be limited according to the number of elements, or according
to the quality of these similar elements. In the later case, the use of a parameter
to regulate the threshold of choice, o € [0, 1], facilitates easy adaptation of the
algorithm between a phase of greedy construction (« = 0, only the elements
equal to the minimal value are accepted) and a phase of random construction
(a =1, all the elements are accepted). A similar mechanism can be designed
to directly regulate the size of the LLC with the help of a similar coefficient.

In a more formal manner, GRASP can be viewed as a technique of sam-
pling an unknown distribution, which makes it similar to other algorithms
that use similar techniques, e.g. the estimation of distribution algorithms (see
section 5.7 of this chapter) or the ant colony based metaheuristics (see chap-
ter 4), to name a few.

In the “reactive” version of GRASP, the parameter « is dynamically cho-
sen during the execution of the algorithm, according to various strategies.
This version produced better results that the first. Other versions use differ-
ent procedures for the construction phase, implementing a specific form of
memory by modifying the probabilities of choice for each element of the LLC.
It was also proposed to use the “Path-Relinking” method in combination with
GRASP, in particular to implement them in parallel.

All these alternatives are elaborately described in [Resende, 2000], accom-
panied by several results and comparisons.

5.9 “Cross-Entropy” method

The “Cross-Entropy!” (CE) method was initially conceived to estimate the
probability of rare events in complex stochastic networks [Rubinstein, 1997],

Loriginally synonymous with the Kullback-Leibler distance, a well-known mea-
surement of information in neuro-informatics
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which was later adapted for difficult combinatorial optimization problems
[Rubinstein, 1999, Rubinstein, 2001].

The algorithm comprises of two phases: firstly, a solution is produced at
random according to a specified mechanism, then the parameters of the mech-
anism are modified, on the basis of the solution obtained, in order to obtain
a better solution in the next iteration.

The CFE method uses a graph-based formulation of the problems and views
the deterministic optimization problems like the problems of stochastic opti-
mization. In this direction, the random component lies either on the edges, or
on the nodes of the graph.

The simplest manner in which the operation of the basic algorithm can
be understood will be the description of its operation to solve problems of
searching for the shortest path in a network. Schematically, a probability ma-
trix represents the “memory” system, and the new solutions are produced by
a process of selection of Markov chains. The algorithm deteriorates the transi-
tion matrix and amplifies the probabilities in the Markov chains by sampling
during iterations. Thus the objective is to ensure an effective deterioration of
the matrix, which is the essence of the CE method.

The algorithm 5.10 gives a step-by-step description of the method. It uti-
lizes a performance function, which calculates the quality of a solution equiv-
alent to the objective function of the problem. An amplification (controlled
by p) of the best solutions is carried out in step 2. Step 3 will attempt to max-
imize the proximity with the optimum. Indeed, the solution for this problem
minimizes the entropy crossed between f (;vi—1) and f (+;v).

1. Initialize the iteration ¢t = 0 with a first uniform solution vg.

2. Generate a sample of solutions with the probability density f (-;vi—1) (by using
a strategy of selection) and calculate (1 — p)th quantile 4; of the performance
function.

3. By using the same sample of solutions, solve the “stochastic program”, memorize
the solution ;.

4. If for a fixed number of d iterations:

Then terminate
Else t =t + 1 and return to step 2

Algorithm 5.10: The “Cross-Entropy” method.

There does not exist any synthesis book yet on this method at the time
when this book is written. However a Web page is maintained on the subject
[De Boer, 2002].
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5.10 Artificial immune systems

The term “artificial immune systems” (AIS) is applicable for a vast range
of different systems, in particular for metaheuristic optimization, inspired by
the operation of the immune system of the vertebrates. A great number of
systems have been conceived in several varied fields e.g. robotics, the detec-
tion of anomalies or optimization (see [De Castro and Von Zuben, 2000] for a
detailed exploration of various applications).

The immune system is responsible for the protection of the organism
against the “aggressions” of external organisms. The metaphor from which
the AIS algorithms originate harps on the aspects of training and memory of
the immune system known as adaptive (in opposition to the system known
as innate), in particular by discriminating between self and non-self. Indeed,
the alive cells have on their membranes some specific molecules, called “anti-
gens”. Each organism thus has a single identity, determined by the whole of
the antigens present on its cells. The lymphocytes (a type of white globule)
are those cells of the immune system which have receivers that are able to
bind specifically to a single antigen, thus enabling to recognize a foreign cell
at the organism. Once a lymphocyte recognizes a cell of non-self, it will be
stimulated to proliferate (by producing clones of itself) and to be different in
cell enabling to keep the antigen in memory or cell enabling to fight the ag-
gressions. In the first case, it will be able to react more quickly, when exposed
to a new antigen: in fact, that is also the principle behind the effectiveness of
the vaccines. In the second case, the fight against the aggressions is possible
with the help of the production of the antibody. The figure 5.6 summarizes
these principal stages. The diversity of the receivers in the entire population
of the lymphocytes should also be noted as it is produced by a mechanism of
hyper-mutation of the cloned cells.

The principal ideas used for the design of this metaheuristic are the se-
lections operated on the lymphocytes accompanied by the positive feedback,
allowing the multiplication and the implementation of memory by the sys-
tem. Indeed, these are the chief characteristics to maintain the self-organized
characteristics of the system (see the beginning of the chapter 4 for a more
precise definition of the self-organization).

The approach used in the AIS algorithms is very similar to that of the evo-
lutionary algorithms but was also compared with that of the neural networks.
Within the framework of difficult optimization, the ALS can be regarded to
take the shape of evolutionary algorithm, introducing particular operators. To
operate the selection, it has to be based, for example, on a measurement of
affinity (i.e. between the receiver of a lymphocyte and an antigen). The process
of mutation takes place through an operator of hyper-mutation, resulting di-
rectly from the metaphor. In the final analysis, the algorithm developed is
very close to a genetic algorithm (see algorithm 5.11).

For example, algorithms which are interesting for dynamic optimization
can be elaborated [Gaspar and Collard, 1999].
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Fig. 5.6. Selection by cloning: lymphocytes, presenting specific receivers of an anti-
gen, are different in cell memory or cell taking part in active defence against the
organism with the help of the antibody.

1. Generate a collection of solutions P composed of an entire collection of cell
memories Pys added to the present population P.: P = Py + Py

2. Determine the n best cells P, from the population P, which is based on the
measure of affinity;

3. Clone n individuals to form a population C. The number of clones produced for
each cell is a function of affinity;

4. Implement a hyper-mutation process for the clones, which thus generates a
population C*. The mutation is proportional to affinity;

5. Select the individuals C™* to form the memory population Pas;

Replace the worst individuals in P to form P,;

7. If a termination criterion is not reached, return to 1.

2

Algorithm 5.11: A simple example of the algorithm of artificial immune sys-
tem.

A description of the basic theory and many applications of the arti-
ficial immune systems can be found in [De Castro and Von Zuben, 1999],
[De Castro and Von Zuben, 2000] and in [Dasgupta and Attoh-Okine, 1997],
and also in a book of reference [Dasgupta, 1999].

5.11 Method of differential evolution

The differential evolution technique belongs to the class of the evolutionary
algorithms. In fact, it is founded on the principles of mutation, crossover
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and selection. However, it was originally conceived [Storn and Price, 1995] for
continuous problems and it uses a weighted difference between two randomly
selected individuals as the source of random variations. The method is very
effective and recently has become increasingly popular.

Thus, the core of the method is based on a particular manner of creating
new individuals. A new vector is created by adding the weighted difference
between two individuals with a third; if the resulting vector is better than
a predetermined individual, the new vector replaces it. Thus, the algorithm
extracts information of direction and distance to produce its random compo-
nent.

Let us consider a D dimensional problem with a population of N individ-
uals, evolving with each generation ¢, according to three operators designed
as follows:

Mutation: an individual mutant v; ;41 is produced starting from an individual
x; ¢ relating to three other individuals conforming to:

Vi1 = Tpy g + F- (l’rg,t - x?”s,t)

where the three other individuals are indicated by r1, 79, r3, different in-
dices are chosen at random and by employing F € [0, 2], a real number
called “the amplification factor”. The disturbance will become smaller and
smaller as the difference (x,, ; — %, ) diminishes.

Crossover: the individual z;; is “mixed” with the mutant, thus creating the
“test vector” w; ¢41:

Uip1 = (Uli 41, U2it415 - - -, UDiyt41)
where ' . _ _
W [ i () < Croor j =rn (i)
gittl zjie  if (r(j) > Cr and j # rn (i)
with:
j=12,...,D;

r(4) € [0, 1]: the j** evaluation of a uniform random distribution;

Cr € [0,1]: the crossover constant;

rn(i) € (1,2,...,D): a random index ensuring that u; ;11 is at least an
element obtained from v; ¢41.

Selection: an individual is selected if the test individual u;;y; allows an im-
provement in the objective function compared to z; ;. A selected individual
takes part in the next generation; in the opposite case, it is only retained
to be used as parent during the next generation.
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Generate an initial population in accordance with an uniform distribution.
For t =0,...,T generations
For i =0,..., N individuals
Choose three individuals at random @, ¢, Try,t, Trs .t
Mutation:
Create a mutant v;; starting from the individual x;; and from
le,ty xTz,ty ng,t
Crossover:
Create the test individual u; ¢ starting from the mutant v;,; and from
Ti,t
Selection:
If f(uie) < f (i)
Tit+1 < Uiyt
Else
Tit4+1 < Tiyt

End individuals

End generations

Algorithm 5.12: The differential evaluation method for the minimization prob-
lem.

The method (summarized by the algorithm 5.12) thus has only three para-
meters: N, F' and C'g, which facilitates a relatively simple adjustment, studied
in detail in [Gamperle et al., 2002]. Many improvements were proposed, for
example by changing the choices of the vectors to be mutated, by hybridizing
a DE method with a local search algorithm [Rogalsky and Derksen, 2000] or
combining with particle swarm optimization [Tsui and Liu, 2003].... A fur-
ther study in this field should be undertaken with the help of detailed de-
scriptions presented in [Storn and Price, 1995, Storn, 1997], and the supple-
mentary bibliography presented in [Lampinen, 2001], which describes many
applications in particular.

5.12 Algorithms inspired by the social insects

These are those metaheuristics which are inspired by the behavior of the
social insects which are not explicitly related to the — more known — ant
colony algorithms. Indeed, the behaviors of these species are complex and rich;
and the self-organized characteristics possessed by these systems present an
interesting source of inspiration.

A good example can be the creation of an algorithm, inspired by the models
of the organization of work in the ants [Campos et al., 2000]
[Cicirello and Smith, 2001, Nouyan, 2002]. The task sharing among certain
species reveals that specialized individuals are employed to achieve specific
tasks, which facilitates to avoid the costs (in time and energy for example)
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related to the reallocation of the tasks. However, such specializations of the in-
dividuals are not rigid, which could be prejudicial with the colony, but adapts
according to many internal and external stimuli perceived by the individuals.
Thus, the colony presents a specialization which is an adapted and flexible
function of the parameters perceived by the individuals [Wilson, 1984].

The behavioral models proposed an explanation of the mechanisms in-
volved in this phenomenon [Bonabeau et al., 1996, Bonabeau et al., 1998,
Theraulaz et al., 1998]. These models are responsible for creating thresholds
of response for each type of tasks. These thresholds represent the levels of spe-
cializations of the individuals and they are either fixed [Bonabeau et al., 1998],
or updated according to the achievement of the tasks by the individuals
[Theraulaz et al., 1998].

These models are inspired by the algorithms employed for the dynamic
allocation of tasks, where each machine can be viewed as associated with an
individual having a set of thresholds of answer 6., where 0, ; represents the
threshold of the agent a for the task j. The tasks send a stimulus S; to the
agents, representing the latency of the task. The agent a will have a probability
of carrying out the task j of:

P(6,;,5;) = SJZ
(Oajs g)—m

The algorithm then employs update rules for the thresholds and the deci-
sion rules whether two agents would try to carry out the same task (see
[Cicirello and Smith, 2001] for more details). Later, improvements for this ba-
sic algorithm have also been proposed [Nouyan, 2002] which addressed the is-
sues of increasing the speed and the effectiveness of the algorithm for complex
problems.

5.13 Annotated bibliography

[Salt and Youssef, 1999]: Several metaheuristics are described in detail in this
book. In particular, two metaheuristics, which are not discussed
here, are explained in detail: “Simulated Evolution” and “Stochas-
tic Evolution”.

[Pham and Karaboga, 2000]: This book concentrates on elaborating several
metaheuristics. Special attention could be drawn towards a chap-
ter devoted to the neural networks, utilized for a problem of place-
ment of electronic components.

[Teghem and Pirlot, 2002]: This recent book is a collection of the contribu-
tions of a dozen authors. This collection can be very useful in sup-
plementing our very brief presentation of the noising methods and
the GRASP method. This book also includes a chapter devoted
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to the utility of the neural networks in combinatorial optimiza-
tion, and another chapter exploring the possible integration of the
techniques of operations research in constraint programming.

[Resende, 2000]: A synthesis of the GRASP algorithms, accompanied by some
results and comparisons.

[Eberhart et al., 2001]: A very complete book on particle swarm optimization,
the most obvious reference in this domain.

[Larranaga and Lozano, 2002]: A reference book on the algorithms of estima-
tion of distribution, comprising of a collection of articles, detailed
and rather clearly explained.

[Dasgupta, 1999]: A book on the artificial immune systems with a detailed
view of their various aspects.

[Reeves, 1995]: Main metaheuristics are presented in this book.
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Extensions

6.1 Introduction

Our interest in this chapter will be mainly focused to four types of extensions
of the metaheuristics, which have been proposed to encounter optimization
problems of following particular nature:

adaptation for the problems with continuous variables;
multimodal optimization;

multiobjective optimization;

evolutionary optimization with constraints.

6.2 Adaptation for the continuous variable problems

In this section, we initially present the general framework of “difficult” con-
tinuous optimization. Then some typical applications are described in detail,
followed by discussions on specific difficulties that arise in continuous prob-
lems. A few pitfalls encountered with the adaptation of metaheuristics for the
problems of continuous variables are underlined in the following section.

The second part of the chapter describes as an illustration the methods,
which we proposed to adapt some metaheuristics: simulated annealing, tabu
search and genetic algorithms. The adaptation of the ant colony algorithms
for the continuous case has been treated in detail in the 4.6.1 section.

6.2.1 General framework of “difficult” continuous optimization
Some typical problems

The “difficult” problems usually encountered in the presence of continuous
variables can be classified into three families:
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e problems of optimization strictly speaking,
e problems of identification or characterization,
e problems of learning.

We illustrate each of these families by an application example.

Ezample of a strictly speaking optimization problem: the optimization of the
performances of an electronic circuit.

Let us assume that the electrical diagram of the circuit is known, which fulfils a
given function: for example, a constant current generator, or a wide frequency
band amplifier. This circuit comprises of n “parameters”: for example, resis-
tance values, geometries of the transistors, etc. For each of them, generally
the discourse of the physically acceptable values is known. The problem of
the “optimization of the performances of the circuit” consists in seeking the
numerical value that is necessary to be assigned to each of the n parameters
available so that the circuit can realize a given objective, as far as practicable.

Ezample: optimization of a constant current generator. The circuit under con-
sideration is represented in the figure 6.1. It shows a constant current genera-
tor, comprising of 4 MOS transistors, denoted as M; to M4. The 8 unknown
factors of the problem are the dimensions (width W and length L) of the
channels of each transistor. The specifications imposed for the circuit are the
following: the delivered current i must be constant and equal to 50uA, ir-
respective of the continuous output voltage Vi, which is between —3V and
—2V.

The objective function f is formed by means of a circuit simulator, e.g.
SPICE. In “continuous simulation” mode, the simulator evaluates the current
1 delivered by the generator, when the voltage V; takes a specified value. In
this application, carried out in the CEA, Center of Bruyeres-le-Chétel, f is
formed from the results of 6 continuous simulations, corresponding to the
6 specified values of V; : =3 ; —2.8 ; —2.6 ; —2.4 ; —2.2 and —2V . The
corresponding currents obtained in the simulation are denoted as: i1,...,1g
(in pA).

Then f can be formed as:

f=>" (ix—50)°
k=1,6

For a fixed range of the channel dimensions of the transistors, 6 continu-
ous simulations are thus necessary to lead to an evaluation of the objective
function. Let us note that the choice of the number of simulations results from
a compromise between the computing time (proportional to this number of
simulations) and a better adequacy of the electronic circuit sought with the
specified objective.
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Fig. 6.1. Current constant generator: optimization problem with 8 variables.

Example of identification or characterization problem: the “tuning” of a
model of a synchronous electrical motor.

In an application implemented in the Centre de Génie Electrique de Lyon
(CEGELY) [Clerc et al., 2002], the objective was to bring the calculated
curves (obtained from the numerical model) and the experimental curves
(based on the measures taken from the motor) as close as possible. The ex-
perimental test bench employed to take measurements from the synchronous
motor (MS) is shown in figure 6.2. There is 19 unknown factors for this op-
timization problem and all are parameters of the numerical model. The ob-
jective function to be minimized is based on the difference (absolute value or
least squares) between the experimental data and the theoretical model based
calculations.

Ezxample of training problem. This type of problem is usually encountered in
neural networks, or fuzzy rule bases. We illustrate it with the “analog neural
network” of the 6.3, used by the CEA to reproduce the sine function in wired
form, as accurately as possible [Berthiau et al., 1994]. This multi-layer neural
network, of “feedforward” type, is used to calculate:

Y =08sinX,for — 7 < X <7

The network takes two inputs: the argument X of the sine function and the
initial constant X, (which allows to adjust the activation function of each neu-
ron in the network). The network comprises of two layers: an input layer of 5
neurons, each one receiving two inputs; an output layer of only one neuron,
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Fig. 6.2. Experimental test bench for the extraction of measurements on a syn-
chronous motor.

2

which receives 6 inputs. Each “ synaptic coefficient” of the neural network is
implemented by a resistance in the circuit, as shown in the figure 6.3a. The
training of the neural network can thus be expressed as an optimization prob-
lem of 16 variables: the 16 synaptic resistances, whose discourse of variation
is fixed in [1kw, 1M (2].

Going through these few preceding examples, one can guess the abundance
of the continuous applications in most of the engineering fields: in particular, in
the domains of electronics and mechanics. Moreover, there are many “mixed”
problems, which are simultaneously discrete and continuous, such as — that
we described in the chapter 1 (paragraph 1.5.3) — search for an equivalent
diagram in electronics.

Specific difficulties in the continuous problems

To ascertain these difficulties, let us consider the following case:

mono-objective problem;

objective function f, to be minimized;

decision variables accumulated in a vector z ;

only constraints: “box constraints”: xf\/”N <z; < xfWAX.

The continuous optimization problems, like those referred above, often present
specific difficulties. The name “difficult problem” is again used, even if this
term does not refer here to the theory of complexity, relevant for the discrete
problems.

The principal sources of these difficulties are the following:

1. There does not exist any analytical expression of f.

2. fis “noised”. This noise can be of experimental nature, if the calcula-
tion of f is carried out with the help of measurements. It can also be a
“numerical calculation noise”, for example when f is evaluated with the
help of an electronic circuit simulator (which, in particular, makes use of
methods for numerical integration).

3. f comprises of non-linearities.
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4. There exists correlations — non precisely localized — between certain
variables of the problem.

The difficulties (1) and (2) prohibit to access the gradients of f. As for the
difficulties (3) and (4) are concerned, they involve the existence of a tormented
“energy landscape”, comprising of many local minima. Consequently, those
methods which attempt to solve such difficult continuous problems effectively
must have two properties:

e They must be “direct”, i.e. do not require calculation of the gradients: this
condition prohibits the use of powerful traditional methods, of “Newton
type”.

e They must be “global”, in the following sense: methods that do not get
trapped, in theory, in a local minimum.

Remark. It is to be noted that the terms “global” and “local” above do not
characterize the type of “movement” utilized . It follows that, for example,
simulated annealing can be described as local, by its mechanism, but also
as global, by its finality. ..

This twofold requirement justifies the utility of employing the metaheuris-
tics, as all metaheuristics are simultaneously “direct” and “global”.

One can put stress on the point that the “direct ” aspect of metaheuristics
— that is related to their combinatorial origin — is not specially attractive
for discrete problems. On the contrary, it is a determining advantage in the
difficult continuous domain.

The preceding considerations explain the significant interest raised in the
metaheuristics in the context of continuous optimization. On the other hand,
the majority of metaheuristics were conceived within a discrete framework (a
notable exception being the “particle swarm optimization” method, described
in the chapter 5), from where the need arose for an “adaptation” for the
continuous problems.

Some pitfalls of the adaptation of metaheuristics for the problems
with continuous variables

These pitfalls are initially of “cultural” order: the continuous applications
are generally the domain of the engineers, specially the electronics and the
mechanical engineers. On the other hand, the know-how concerning the meta-
heuristics lies with the computer scientists, who are less interested in the con-
tinuous problems, that are very little standardized. This gap probably explains
the lack of theoretical results developed in this field.

There also exist the pitfalls of “technical” order, like:

e The heterogeneity of the definition domains of different variables;
e The presence of variables with very wide definition ranges (sometimes more
than 10 decades).
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In addition, confrontation between the competing empirical studies is perilous;
indeed:

The competitive codes are seldom available in public.

It is delicate to program all the competitive methods.

The results published are not easily comparable, due to the following rea-

sons:

— Different sets of test functions, and of evolution domains of the vari-
ables are utilized;

— Different methods for the selection of the initial point, and for the
number of averaged executions per result are implemented;

— Different definitions of the “success” (approach to the global optimum
x*), of the “final error” (in f7 in z7), of the computing time.

One of the authors of this book recommends an objective comparison
between the competing algorithms, via the use of statistical tests [Taillard,
2003b]: this procedure could solve the problem of the comparison, if the au-
thors of the competing algorithms agreed to conform.

Many methods were proposed in the literature to adapt the metaheuristics
to the continuous case. It is not possible to deduce general considerations from
these methods, except for the following ones:

e The majority of the techniques developed to adapt a metaheuristic are not
applicable for the other metaheuristics. . .

e As in the discrete domain, no metaheuristic seems to surpass its competi-
tors. ..

To clarify the domain, and to present the reader some examples of operational
methods, we now describe the techniques which we proposed to adapt some
metaheuristics for the continuous case.

6.2.2 Some continuous metaheuristics
Simulated annealing

The main problem relates to the management of the “discretization” of the
search space. It is necessary “ to maintain almost the same effectiveness”
for the process of optimization, throughout the descent in temperature. To
this effect, it is necessary to use the length of the discretization step as an
additional controllable parameter, which adapts automatically, for example
according to the rate of acceptance of the modifications attempted, or average
length of displacements already carried out (this length constituting, to some
extent, a measurement of the local topography of the configuration space).

In practice, for the development of continuous simulated annealing, one
can proceed as follows:
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1. The discretization step, a priori different for each variable x; of the prob-
lem, is called STEP;. It represents the maximum variation that z; can
undergo in a single “movement”.

2. For a fixed step ST EP;, we must specify the design rule F' for calculating
the movement of a variable, passing from the value z; to the value x;/ =
F ($i, STEPZ)

3. As mentioned before, ST EP; must be adjusted periodically, to maintain
the efficiency of optimization almost constant, when T is decreased; it is
thus necessary to choose:

a) the mode of evaluation of this effectiveness:
i. using the rate of acceptance of the movements attempted?
ii. using the average amplitude of the movements already carried
out?
b) the frequency of the adjustment of the step;
c¢) the law of the adjustment of the step.
4. We must decide which variables x; are concerned with a given movement:
a) all variables of the problem?
b) only one at a time?
c) a subset of variables?

Unfortunately, only a few theoretical results are available to validate this
intuitive procedure, and to specify its various options. Consequently, many
authors justify their choices by following a systematic empirical approach:
the program is evaluated and tuned by using, like objective functions, various
published analytical test functions, comprising up to 100 variables.

The a priori knowledge of the global and local minima of the problem
facilitates the study of the influence of the main parameters of the method on
its convergence speed. For the purpose of illustration, we define and present
three classical test functions in the figure 6.4.

The tuning that we utilized [Siarry and Berthiau, 1997] is specified in the
algorithm 6.1.

Remarks.

For strongly correlated variables, simultaneous displacement of several of them
enables us to approach the optimum more than that can be achieved by
employing individual displacements. An estimation of the gradients and the
“hessian” of the objective function f would make it possible to determine
the more “sensible” variables (i.e. those variables whose variations produce
the most significant effect on f), and to analyze the correlations between the
variables. However, as indicated before, the evaluation, by finite differences,
of the gradients and the hessian of f frequently leads to severe numerical in-
stabilities. It is thus necessary to give up a priori partitioning of the problem
based on the regrouping of the most correlated variables.



6.2 Adaptation for the continuous variable problems 187

Michalewicz (M Z) (n variables):

MZ(z) = —Z sin (z;) - (sin (ff)) ;

i=1
search space: 0 < x; <m,t=1,...,
n = 2, 1 global minimum: MZ (z*) = —1.80 ;
n =5, 1 global minimum: MZ (z*) = —4.687 ;
n = 10, 1 global minimum: MZ (z*) = —9.68 .

*

Goldstein-Price (GP) (2 variables):

GP(z) = (1 + (z1 + a2 +1)2 (19 — 143y + 322 — 1429 + 62122 + 3z§)) 'l" '..0
(30 + (221 — 322)% - (18 — 8221 + 1203 + 4825 — 362122 + 2723 ) ; =
search space: —2 < x; <2,i=1,2;

4 local minima;

1 global minimum: z* = (—1,0) ; GP (z*) = 3.

B2 (B2) (2 variables):

K
W) i =
S ."II"'/I'I/
LRI

TR """’f’ii

B2 (z) = 27 4 222 — 0.3 - cos (3mz1) — 0.4 - cos (4dmax2) + 0.7 A

search space: —1.5 <x; <1.5,i=1,2
25 local minima; )
global minimum: z* = (0,0) ; B2(z*) =0 L

Fig. 6.4. Examples of classical test functions.

Tabu search

We describe, as an illustration, the algorithm which we proposed: ECTS (“En-
hanced Continuous Tabu Search”) [Chelouah and Siarry, 2000a], which is de-
sired to be a faithful transposition of the combinatorial method.

The various elements of ECTS are the following:

The tabu list comprises of “balls” centered on the last adopted solutions.
The concept of neighbourhood is specified in figure 6.5: the space around a
current solution is deconstructed into concentric hyper-rectangular “crowns”.
The list of the neighbours of this current solution is formed by randomly
selecting a solution inside each “crown”.
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Initial STEP; : i of the domain of variation of x; ;

STEP; modified at the end of each temperature step;

The rate of acceptance A; of the movements attempted, during the stage, for x;
is analyzed:

- if A; > 20%, STEP; is doubled,

— if Ai < 5%, STEP; is divided by 2,

If the domain of variation of xz; is “not very wide”:

ri/=x; ty-STEP;

where y indicates a real random number, drawn in [0, 1].

Else (in case of several decades), the perturbation is operated according to a
logarithmic law;

The n variables of the problem are modified in groups of p, formed at random:
typically, p = .

The frequencies of movement of the various variables are equalized.

Several complementary criteria are used for the automatic termination of the
program.

Algorithm 6.1: Simulated annealing in continuous variables.

The general structure of the algorithm is presented in the figure 6.6. The
core of the tabu method, not described in this figure, is classical:

— N neighbours, not tabu, of the current solution are generated;

— the best of these neighbours becomes the new current solution;

— the old current solution occupies position in the tabu list.

ECTS comprises of two successive phases (figure 6.6):

— a diversification phase, intended to locate the “promising zones” in the
solution space, where the global minimum of f may be located. The
“promising” status is initially attributed to some solutions. The solu-
tion z is called promising, if it “clearly” surpasses (within the context
of a threshold fixed dynamically by ECTS) its N neighbours, evaluated
in turn in the core of tabu search. Then the promising list is made of
“balls” centered on the promising solutions.

— an ntensification phase: a new tabu search is initiated inside the best
promising zone. It operates in an even finer manner (reducing the di-
mension of the search space and the size of the tabu list).

To illustrate this mechanism, we present, in figure 6.7, the path followed by

ECTS during the optimization of a test function. ECTS located 6 promising
zones, including the one where is situated the global optimum (0, 0).

The principal drawback of this approach resides in the large number of

parameters required to be tuned:

size of the tabu list and promising list;
radius of the tabu and promising balls;
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Fig. 6.5. The concept of neighborhood of a current solution in continuous tabu
search.

e dimensions of the neighbourhood of a current solution;
e number of neighbours of a current solution;

The majority of the parameters in ECTS are calculated automatically, or
are “at best” fixed empirically. The detailed experimental validation of ECTS,
elaborated in [Chelouah and Siarry, 2000a], shows that the computing time
grows slowly (quasi linearly) with the number of variables in f. Convergence
can still be accelerated, by hybridizing ECTS with the polytope algorithm
of Nelder & Mead. This last one is a “local descent” algorithm, which has
the advantage — like the metaheuristics — of not requiring to calculate the
gradients of the objective function. The descent is implemented by successive
deformations of a “polytope”, via geometrical transformations described in
figure 6.8. In the hybrid variant of ECTS, the diversification and intensification
phases are alternate, as shown in figure 6.9.
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of parameters

l
DIVERSIFICATION

detection of « promising areas »

= promising list

I
SELECTION of the BEST
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]
INTENSIFICATION

inside the best promising area

l

BEST SOLUTION FOUND

Fig. 6.6. General structure of the continuous tabu algorithm ECTS.

Genetic algorithms

Here we describe, as an illustration, the algorithm which we have proposed:
CGA (Continuous Genetic Algorihm) [Chelouah and Siarry, 2000b].

The characteristics of CGA are the following;:

alternating phases of diversification and intensification, specified later;
dynamic reductions of the population size and the search space;

real coding of the individuals; the name given to an AG exploiting this
type of coding is twofold: RCGA (Real Coded Genetic Algorithm) or EA
(Evolutionary Algorithm);

specific crossover and mutation operators, described later;

dynamic reduction of the probability of mutation.

The alternation between diversification and intensification in CGA is illus-
trated in the figure 6.10:

The diversification phase is carried out using classical GA, employing “op-
ulent” individuals. It leads to the identification of a “promising solution”
x*.

The intensification phase is carried out in a new restricted search space,
around x*. It is carried out using a new GA, comprising a reduced popu-

lation, formed by thinner individuals.

The crossover operator, often called “recombination” in real coding, is

inspired, in CGA, by the mono-point crossover in binary coding:
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Fig. 6.7. The path followed by the ECTS algorithm (diversification) during the
optimization of the B2 test function.

Each individual is a vector = of dimension n.

The ith component of z is the i*® variable of optimization.

The position ¢ of the crossover is selected at random.

The components of index higher than i are exchanged between the two
parents.

e The components of index i undergo opposite variations, as indicated in an
example with (n = 2,7 = 2), in the figure 6.11.

The mutation operator affects the value of only one variable. The max-
imum amplitude of the perturbation and the probability of mutation are
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(a) initial polytope
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(b) Reflection (¢) Expansion

(e) Multi-contraction

(d) Contraction (z. internal,
x, external)

Fig. 6.8. Operating principle of the geometrical transformations applied by the
polytope algorithm of Nelder & Mead. x represents the vertex where the value of
the objective function is lowest; xj; represents the vertex where the value of the

objective function is highest.
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Fig. 6.9. Operating principle of the hybrid variant of ECTS algorithm.
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Ezample: n=2,1=2

Fig. 6.11. Opposite variations of the components of the two parents located at the
crossover point.
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Fig. 6.12. Typical example of performances obtained with CGA and ECTS algo-
rithms.
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gradually diminished: the later factor is more delicate and is discussed in detail
in [Chelouah and Siarry, 2000b].

A typical example of performance is presented in figure 6.12. In the case of
the optimization of the Goldstein-Price function, we compare the evolutions
obtained towards the optimum with two algorithms: the CGA algorithm and
the continuous tabu ECTS algorithm described before. It can be observed
that CGA performs better at the beginning, but then it “runs out of steam”,
which suggests that CGA should be hybridized with a method of local descent.
We proposed to carry out the intensification with the polytope algorithm of
Nelder & Mead [Chelouah and Siarry, 2003]. The effect of this transformation
is illustrated in the figure 6.13. From the example presented, it should be noted
that:

the CGA algorithm converges slowly after a few generations.

the polytope algorithm only (SS) led to a local optimum.

the hybrid method (CHA), obtained by hybridization of CGA and SS, is
very effective, provided the transition from one approach to the other is
not premature.

1  Objective function

09t

0.8
CHA with premature convergence

0.7 i CHA suitably adjusted

0.6 f:,.
05Fh
041
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02t

017

0 1 2 3 4 5 6 7 8 9 10

Number of generations

Fig. 6.13. Effect of the hybridization of CGA with the polytope algorithm of
Nelder & Mead: optimization of the Bs function.

The automated transition between these algorithms is discussed in
[Chelouah and Siarry, 2003].

The hybrid variant was exploited successfully, in the CEA, for optimal
design of a sensor with eddy currents intended for non destructive testing of
metal tubes [Chelouah et al., 2000]. The algorithm in particular enables us to
obtain a sensor, in plate form, very wide spread: the “pancake”.
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6.3 Multimodal optimization

6.3.1 The problem

The industrial problems can be seldom completely formalized. Many deci-
sions depend on the image that a company desires to project, the policy it
wants to adopt vis-a-vis its customers and its competitors, its economic or
legal environment, etc. Its decisions regarding the design of a new product, its
manufacturing, its launching, depend on dialogues, negotiations, with several
players. All these factors make it difficult to formalize such problems with the
aim of solving them by means of a computer. In the context of optimization,
a problem often presents several optimal solutions of equivalent value. Theo-
retically only one solution is enough. However, this does not offer any degree
of freedom to the decision makers. On the other hand, if a set of optimal
solutions is taken into account, this will enable the decision makers to freely
choose one of these solutions according to factors which can not be formalized.

Multimodal optimization consists in locating multiple global optima, and
possibly the best local optima, of an objective function. The evolutionary
algorithms are good candidates to achieve this task because they handle a
population of solutions that can be distributed among various optima. Let
us note that there are methods to search for several optima, like the sequen-
tial niching [Beasley et al., 1993], which do not require a population based
algorithm to succeed. But they present poor performances. This is why this
section is entirely devoted to the evolutionary methods. However, if a multi-
modal objective function is subjected to a standard evolutionary algorithm,
the experimentations and the theory show that the population is attracted
by only one of the maxima of the fitness function, and it is not necessarily a
global maximum. For example, let us consider a function comprising of two
peaks of equal height. An initial population is built where the individuals are
already evenly located, on the two optima. After a few generations, the bal-
ance will be broken because of the genetic drift. From this point, the crossover
amplifies imbalance until the majority of the population is localized only on
one peak. The problem of multimodal optimization would be correctly solved
if a mechanism could stabilize subpopulations located on the highest peaks of
the fitness function. It is about speciation, which makes it possible to classify
the individuals of a population into different subpopulations, and niching that
stabilizes subpopulations within ecological niches containing the optima of the
objective function. There are several methods of speciation and niching. The
most common or the most effective ones are described below.

6.3.2 Niching with the sharing method

The concept of “sharing of limited resources within an ecological niche”, sug-
gested by J.H. Holland [Holland, 1992], constitutes one of the most effective
approaches to create and maintain stable subpopulations around the peaks



6.3 Multimodal optimization 197

of the objective function with an evolutionary algorithm. The concept of eco-
logical niche originates from the study of the population dynamics. It was
formalized by Hutchinson in 1957 [Hutchinson, 1957], who defined it as a
hyper-volume in an n dimensional space, each dimension representing a living
condition (e.g. quantity of food, temperature, size of the vital domain, etc).
An ecological niche cannot be occupied by several species simultaneously. It is
the empirical principle of competitive exclusion. The resources within a niche
being limited, the size of the population that occupies it stabilizes.

In 1987, Goldberg and Richardson [Goldberg and Richardson, 1987] pro-
posed an adaptation of this concept for the genetic algorithms, which can
be generalized for any evolutionary algorithm. The technique is known un-
der the name of sharing method. It is essential that a concept of dissimilarity
among the individuals be introduced. For example, if the individuals are bit
strings, the Hamming distance can be appropriate. If they are vectors of R™,
the Euclidean distance is a priori a good choice. The value of dissimilarity is
the criterion to decide whether two individuals belong to the same niche or
not. The method consists in attributing a shared fitness to each individual,
which is equal to its raw fitness divided by a quantity that increases with
the number of individuals resembling it. The shared fitness can be viewed as
representing a quantity of resource available for each individual in a niche.
The selection is ideally proportional, so that the number of offspring of an
individual is proportional to its shared fitness, although the method has also
been employed with other selection models. Thus, with the same raw fitness,
an isolated individual will definitely have more offspring than an individual
having many neighbors in the same niche. At equilibrium, the number of in-
dividuals located on each peak becomes proportional, at first approximation,
to the fitness associated with this peak. This appears to give rise to a sta-
ble subpopulation in each niche. The shared fitness of an individual ¢ can be
expressed as:

” f(@)

10 = S 7))

where sh is of the form:

sh(d) = {1 (%)aifd<as

0 otherwise
with:
sh : the sharing function;
d(i,j) : the distance between the individuals ¢ and j, that depends on the
chosen representation;
O : the niche radius, or dissimilarity threshold;
: the “sharpness” parameter;

T the population size.
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Let us assume that « is chosen very large, tending towards infinity, then
(d/os)™ tends towards 0 and sh(d) is 1 if d < o, or otherwise equal to 0.
Then Z;‘:l sh (d(i,7)) is the number of individuals located within a ball of
radius o, centered on the individual 7. The shared fitness is thus, in this case,
the raw fitness of the individual ¢, divided by the number of its neighbors. This
type of niching performs well, at the condition that the distances between the
peaks are less than the niche radius o,. However, for a given optimization
problem, barring a few rare cases, the distances between the peaks are not
known a priori. Then, if the radius is selected too large, all optima cannot be
discovered by the individuals of the population. An imperfect solution for this
problem consists in defining niches as balls with a fuzzy boundary. Thus, the
individuals j from which the distances to the individual i are close to o5 have
a weaker contribution to the value of sh(d(i,7)) than the others. In this way,
if unfortunately the niche already presumably centered on a peak contains
another peak close to its boundary, it will be less probable that the later one
will perturb the persistence of the presence of individuals on the central peak.
The “sharpness” of the niche boundaries is controlled by the parameter «,
which is assigned a default value of 1.

Now, let us consider the case where the radius o, is selected too small
compared to the distances between the peaks. Then there will be several
niches for each peak. In theory, this is no trouble, but in practice it implies to
put much more individuals among the niches than necessary and thus it will
require a population size larger than it would be necessary. This will cause
wastage of computation resources. If the population is not of sufficient size,
it is very much possible that all the global optima of the population will not
be discovered. Hence an accurate estimation of o4 is of prime importance.
Hence suggestions will be subsequently made allowing to come close to this
objective.

(a) (b)

Fig. 6.14. (a): selection without sharing: the individuals converge towards only one
of the optima (b): selection with sharing: the individuals converge towards several
optima.

The figures 6.14a and 6.14b show the distribution of the individuals on
the peaks of a multimodal function defined in R?, after convergence of the
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evolutionary algorithm with and without sharing of the fitness function. The
individuals are projected on the plane located at the height of the optima,
parallel with the axes x and y, so that they are more visible.

Genetic drift and the sharing method

Let us assume that the individuals are distributed on all the global peaks of
the fitness function after a sufficient number of generations. Let N be the
population size and p be the number of peaks, each one of them will be occu-
pied by a subpopulation of approximately N/p individuals. Also let us assume
that the fitnesses of all the individuals are close to the fitness of the global
optima. As an equilibrium situation is reached, the subpopulations for the
next generation will have approximately the same size. Consequently, each in-
dividual is expected to have a number of offspring close to unity. In this case,
the effective number of offspring of an individual obtained by employing a sto-
chastic selection technique can be zero with a not negligible probability. Even
with a sampling of minimal variance like the SUS selection, an individual will
be able to have zero or one effective offspring if the expected number of off-
spring is slightly lower than unity. Hence, there is a possibility, which becomes
more significant for a small population, that a subpopulation covering a peak
may disappear because of stochastic fluctuations. To reduce this possibility
to an acceptable level, it is necessary to allot to each peak a high number of
individuals, so that the sharing method requires a priori big population sizes.

Advantages and difficulties for the application of the method

The basic sharing method enjoys an excellent stability if the population size
is large enough to counter the genetic drift. With the help of variation oper-
ators capable to ensure a good diversity, the distribution of the population
after some generations does not depend on the initial population. The main
difficulty of this method lies in the appropriate choice of the niche radius
os. Another drawback relates to the algorithmic complexity which is given as
O(u?), where p is the population size. As the method requires big population
sizes, this can be seriously disadvantageous except when the calculation of
the fitness function is very long. The basic sharing method is not compati-
ble with the elitism. Lastly, it is well suited to be used with a proportional
selection technique. Various authors proposed solutions to overcome these dis-
advantages. The seniority of the sharing method and its effectiveness in the
maintenance of diversity make it, still today, the most known and the most
used niching technique.

6.3.3 Niching with the deterministic crowding method

The first niching method by crowding was presented by De Jong in 1975
[De Jong, 1975]. It utilizes a value of distance, or at least of dissimilarity, be-
tween individuals, like the sharing method, but it operates at the level of the
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replacement operator. De Jong suggests that for each generation the number
of offspring be of the order of ten times less that the number of parents. A
higher value decreases the effectiveness of the method. A lower value would
favor too much the genetic drift. All the offspring find themselves in the popu-
lation of the parents for the next generation, and hence the parents that they
replace have to be chosen. The replacement operator selects a parent who
must “die” for the offspring that resembles it closest. Nevertheless, the simi-
larity comparisons are not systematic, and an offspring will be compared only
with one small sample Cp of parents randomly drawn from the population.
Cr is the crowding factor. De Jong showed, for some test functions, that a
value of Cr fixed at two or three gives interesting results. Hence the individ-
uals tend to be distributed among the various peaks of the fitness function,
thus preserving preexistent diversity in the population.

However the method makes frequent replacement errors due to the low
value of Cp, which is prejudicial to the niche effect. But a high value of
Cr produces a too strong reduction of the selection pressure. Indeed, the
parents which are replaced, being similar to the offspring, have almost the
same fitnesses if the function is continuous. Their replacement thus improves
the fitnesses within the population very little. On the contrary, the selection
pressure is stronger if efficient offspring replace less efficient parents, i.e. if
errors in replacement are made, which implies that C'r must be weak. In 1992,
S.W. Mahfoud [Mahfoud, 1992] proposed the deterministic crowding method
as a major improvement over the method of De Jong. The main idea is that
a pair of offspring e; and e, obtained after crossover and mutation enters in
competition only with its two parents p; and ps. There are two possibilities
of replacement:

(a): e1 replaces p; and e replaces po
(b): ey replaces ps and e replaces pp

The choice (a) is selected if the sum of dissimilarities d(p1,e1) + d(p2,e2)
is weaker than d(pi,es) + d(ps,e1) ; otherwise the choice (b) is carried out.
Lastly, the replacement of a parent by an offspring is effective only if the par-
ent is less efficient than the offspring. This can be described as a deterministic
tournament. This implies that the method is elitist, because if the best indi-
vidual is in the population of the parents and not in that of the offspring, it
will not be able to disappear from the population in the next generation.

Advantages and difficulties for the application of the method

Deterministic crowding does not require determination of appropriate para-
meter values depending on the problem such as a radius of niche. In fact,
only the population size is significant and is chosen according to a very simple
criterion: the larger the number of optima to find, the larger the population.
The number of calculations of distances to be carried out is of the order of
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the population size, which is lower by an order of magnitude compared to
the sharing method. Deterministic crowding is a replacement operator that
favours the best individuals. Thus, the selection for the reproduction may be
absent, i.e. reduced to its simplest expression: a parent always produces only
one offspring, irrespective of its fitness. In this case, the selection operators in-
volve only computational dependencies between couples of offspring and their
parents. Thus the parallelization of the method is both simple and efficient.
All these qualities are interesting, but deterministic crowding does not reduce
the genetic drift significantly compared to an algorithm without niching. From
this point of view, this method is less powerful than the sharing method. This
implies that, if the peaks are occupied during a certain number of generations
by individuals, the population will finally converge towards only one optimum.
This disadvantage often leads us to the conclusion that the methods with low
genetic drift are preferred, even if their use is less simple.

6.3.4 The clearing procedure

The clearing procedure was proposed in 1996 by A. Pétrowski [Petrowski, 1996].
It is based on limited resource sharing within ecological niches, according to
the principle suggested by J.H. Holland, with the particularity that the dis-
tribution of the resources is not equitable among the individuals. Thus the
clearing procedure will assign all the resources of a niche, typically to the best
individual, designated as the dominant. The other individuals of the same
niche will not have anything. This means that only the dominant individual
will be able to reproduce to generate a subpopulation for the next generation.
The algorithm thus determines the subpopulations in which the dominant in-
dividuals are identified. The simplest method consists in choosing a distance d
significant for the problem and to assimilate the niches with balls of radius o,
centered on the dominants. The value of o, must be lower than the distance
between two optima of the fitness function so that they can be distinguished
to maintain individuals on all of them. Thus the problem now consists in
discovering all the dominant individuals of a population. The population is
initially sorted according to the decreasing fitnesses. A step of the algorithm
is implemented in three phases to produce a niche:

1. The first individual of the population is the best individual. This individ-
ual is obviously a dominant.

2. The distances of all the individuals from the dominant are computed.
The individuals located at a distance closer than o, belong to the niche
centered on the dominant individual. Hence, they are dominated and thus
their fitnesses are assigned to zero.

3. The dominant and the dominated individuals are withdrawn virtually
from the population. The procedure is then reapplied from step 1 to the
new population thus reduced.
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The operator comprises of as many steps as the algorithm finds dominants.
These preserve the fitness which they obtained before the application of the
niching. The operator is applied just after the fitness evaluation and before
application of the selection.

Elitism and genetic drift

The clearing procedure lends itself easily to implement an elitist strategy: it
suffices to preserve the dominant individuals from the better subpopulations
to inject them in the population for the next generation. If the number of
optima to be discovered is known a priori, the same number of dominants is
preserved. In the opposite case, a simple strategy, among others, consists in
preserving in the population the dominant individuals whose fitness is better
than the average fitness of the individuals in the population before clearing.
Nevertheless it will be necessary to take precaution so that the number of
preserved individuals is not too large compared to the population size.

If the dominant individuals located the optima of the function in a given
generation, the elitism will indefinitely maintain them on the peaks. This
algorithm is perfectly stable, contrary to the methods discussed before. The
genetic drift does not have a detrimental effect in this context! This enables
us to reduce the required population sizes compared to other methods.

Niche radius

Initially, the estimation of the niche radius o. follows the same rules as for the
sharing method. Theoretically it should be lower than the minimum distance
between all the global optima considered two by two, so that all of them will
be discovered. However, the choice of a too large niche radius does not have
the same effects as with the sharing method, where this situation leads to
instabilities with an increased genetic drift. If this occurs with the clearing
procedure, certain optima will be ignored by the algorithm, without disturb-
ing its convergence towards those which are located. Hence, the criterion of
determination of the radius can be different. Indeed, the user of a multimodal
optimization algorithm does not require to know all the global optima, which
is impossible when those are in infinite number in a continuous domain, but
rather a representative sample of the diversity of these optima. Locating the
global optima corresponding to the instances of almost identical solutions will
not be very useful. On the other hand, it will be more interesting to determine
the instances of optimal solutions distant from each other in the search space.
Thus, the determination of 0. depends more on the minimum distance be-
tween the desired optimal solutions, an information independent of the fitness
function, than the minimum distance between the optima, which strongly de-
pends on fitness, and which is generally unknown. If however the knowledge of
all the global optima is required, there are techniques which enable estimation
of the niche radius by estimating the width of the peaks. It is also possible to
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build niches which are not balls, with the help of an explicit speciation (see
section 6.3.5).

Advantages and difficulties for application of the method

The principal quality of the method lies in its great resistance to the loss
of diversity by genetic drift, especially in its elitist version [Sareni and
Krahenbbuhl, 1998]. Therefore it can work with relatively modest population
sizes, which results in reduced computing time. The niche radius is a parame-
ter which can be defined independent of the landscape of the fitness function,
unlike the sharing method, and rather according to the desired diversity of
the multiple solutions.

The clearing procedure requires about O(cp) distance calculations where
¢ indicates the number of niches and p the population size. It is weaker than
the sharing method, but higher than the deterministic crowding method.

If it was found during the process of evolution that the number of dominant
individuals is of the same order of magnitude as the population size, this would
indicate:

e cither that the population size is insufficient to discover the optima with
the sampling step fixed by the niche radius;

e or that this step is too small, compared to the computation resources
assigned for the resolution of the problem. It is then preferable to increase
the niche radius, so that the optima found are distributed as widely as
possible in the entire search space.

The method performs unsatisfactorily with the condition of a restricted mat-
ing, using a restriction radius lower or equal to the niche radius (see chapter
3, section 3.4.1). In that case, the crossover will be useless, because it will
be applied only to similar individuals: the selected individuals, which are the
clones of the same dominant individual. To overcome this problem, there are
at least two solutions. One solution can be to carry out a mutation at a high
rate before the crossover, in order to restore diversity within each niche. The
other can be to increase the restriction radius. In the later case, the effect of
exploration of the crossover becomes more significant. Indeed, it may be that
between two dominant individuals around two peaks are located some areas
of interest that the crossover is likely to explore. But this can also generate a
high rate of lethal crossovers, reducing the convergence speed of the algorithm.

6.3.5 Speciation

The main task of the speciation is to identify the existing niches in a search
space. So far in our discussions only one species can occupy a niche, it is
then assumed that the individuals of a population who occupy it belong to a
species or a subpopulation. Once determined by speciation, a subpopulation
can be used in several ways. For example, it can be stabilized around a peak



204 6 Extensions

by employing a niching technique. The restricted mating can also be prac-
ticed inside subpopulations, which, in addition to the improvement due to the
reduction of the number of lethal crossovers, thus conforms to the biological
metaphor, which requires that two individuals of different species cannot mate
and procreate.

The balls used in the techniques of niching described above can be viewed
as niches created by an implicit speciation. The sharing method, and the clear-
ing procedure, also perform satisfactorily if the niches are provided to them
by the explicit and prior application of a speciation method. For that, such a
method must provide a partition of the population S = {S;,Ss,...,S.,} in ¢
subpopulations S;. Hereafter, it is then easy to apply, for example:

e a niching by the sharing method, by defining the shared fitness as:
foy = S0

)= card(S;) Vi ES;

for all subpopulations S; ;

e a niching by the clearing procedure, by preserving the fitness of the best
individual of any subpopulation S; and by forcing fitnesses of other indi-
viduals to zero;

e a restricted mating, which only operates between the individuals of any
subpopulation S;.

Moreover, an explicit speciation technique is compatible with the elitism: the
individuals of a subpopulation being clearly identified, it is possible to preserve
the best one from each subpopulation in a generation for the next one.

Label based speciation

In 1994, W.M. Spears proposed [Spears, 1994] a simple speciation tech-
nique using tag-bits, where an integer number belonging to a set T =
{11, Ts,...,T.} is associated with each individual in a population. The value
of the label T; signifies the subpopulation S; to which all the individuals la-
beled by T; belong. ¢ is the maximum number of subpopulations which can
exist in the population. The method was so named because originally Spears
had proposed his method within the framework of the genetic algorithms,
and the labels were represented by bit strings. During the construction of the
initial population, the labels attached to each individual are drawn randomly
in the set T. During the evolution, the labels can mutate, by selecting ran-
domly a new value in T. The mutation corresponds in this case to a migration
from a subpopulation towards another. After some generations, the subpopu-
lations are placed on the peaks of the fitness function because of the selective
pressure. However, there is no guarantee that each peak containing a global
optimum is maintained by one and only one subpopulation. Some of them can
be forgotten, while others can be occupied by several subpopulations. Hence
the method is not a reliable one. It is quoted here because it is well-known in
the world of evolutionary computation.
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Island model

The island model is also a classical concept in the field of evolutionary com-
putation. This model evolves several subpopulations S; through a series of
epochs. During each epoch, the subpopulations evolve independent of each
other, over a given number of generations G;. At the end of each epoch, the
individuals move between the subpopulations during a phase of migration, fol-
lowed by a possible phase of assimilation. The later phase is employed to carry
out integration operations of the migrants in their host subpopulations, for
example by stabilizing their sizes. This iterative procedure continues until the
user-defined termination criterion for the algorithm is satisfied. The migration
does not take place arbitrarily, but according to a relation of neighbourhood
defined between the subpopulations. The proportion of the migrating individ-
uals is determined by migration rates chosen by the user.

Originally, the model was developed as a parallelization model of a ge-
netic algorithm. That enables them to be efficiently implemented in a distrib-
uted memory multiprocessor computer, where each processing unit deals with
a subpopulation [Cohoon et al., 1987]. It can be noticed that, logically, this
process is similar to a label based speciation, with a mutation of the labels
constrained by the neighborhood relations. The label mutation takes place
only at the end of each epoch. As the label based speciation, this method
lacks in reliability in the distribution of the subpopulations on the peaks of
the fitness function. However, the fact that the subpopulations evolve inde-
pendently during each epoch, offers the advantage of a more accentuated local
search for optima.

Speciation by clustering

During an evolution, the individuals of a population tend to gather in the areas
of the search space showing high fitness under the action of the selection pres-
sure. These areas are good candidates to contain global optima. The applica-
tion of a classical clustering method (e.g. K-means algorithm, LBG algorithm,
etc.) partitions the search space in as many areas as accumulations of individ-
uals are detected. Each detected area is assimilated with a niche, and the in-
dividuals located there constitute a subpopulation [Yin and Germay, 1993b].
The method is reliable with large population sizes, because a niche can be
identified only if it contains a large enough cluster. This number can be sig-
nificantly reduced if the speciation algorithm exploits the fitness values of
the individuals in each area, in order to recognize better the existence of
possible peaks in those regions [Petrowski and Girod Genet, 1999]. Tt is in-
teresting to combine a clustering based speciation with an island model, in
order to profit from the advantages of both methods: a reliable global search
of the highest peaks, which occurs during the migration phases (exploration),
and an improved local search for the optima (exploitation), during the epochs
[Bessaou et al., 2000].
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6.4 Multiobjective optimization

The multiobjective, or multicriterion, optimization treats the case of the si-
multaneous presence of several objectives, often contradicting with each other.
In a recent work devoted to this subject at Springer [Collette and Siarry, 2003],
the authors underline the significant role of the metaheuristics, which largely
contributed to the renewal of the multiobjective optimization. A whole chapter
of this book is devoted to the multiobjective optimization methods exploiting
a metaheuristic.

6.4.1 Formalization of the problem

Let f(x) be a vector of ¢ objectives associated with an instance of solution
x of a multiobjective optimization problem. Each of its components f;(x) is
equal to the value of the ith objective for the solution associated with f. A
simple solution consists in aggregating all the objectives to a single one by
the method of weighted summation. Thus, the problem is transformed by
calculating a new objective function:

G(x) = Z w; fi(x)

where w; are the weights that must be chosen according to the importance
attached to each objective. But this solution is not very satisfactory for several
reasons:

e On one hand, the choice of the weights is a difficult exercise, because
objectives are often of different, incommensurable nature.

e On the other hand, rather than obtaining a single solution, one would
rather like to know some representative samples of solutions that can
achieve at best the optimization of the possibly conflicting objectives. The
argument that can be put forward for the interest in having several so-
lutions is similar to that which was developed before in connection with
multimodal optimization.

To solve this problem in a more adequate manner, a technique different from
the simple combination of the objective functions must be employed.

Pareto optimum

It is always possible to configure a multiobjective optimization problem as a
minimization problem for all its objectives. Indeed, when a problem does not
conform to this condition, it is enough to change the signs of those objectives
which must be maximized. In the context of minimization, let us consider two
vectors of objectives v and u. If all the components of v are lower or equal
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to the components of u, with at least one strictly lower component, then the
vector v corresponds to a better solution than u. In this case, it is said that

v dominates u in the Pareto sense. In a more formal way, it can be written
P
as: v<u.

P
v<u<=Viel;c,v; <u;and (35 € [1;¢] 1 v; < uy)

The collection of the objective vectors which cannot be dominated constitutes
the optimal values of the problem in the Pareto sense. These vectors belong
to the Pareto front, or trade-off surface. The Pareto-optimal set is defined as
the collection of the solutions in the search space {2 whose objective vectors
belong to the Pareto front. Multiobjective optimization consists of finding one
or more solutions of this set, or at least close to this set.

objective 2

L=

»

objective 1

Fig. 6.15. Dominations in the Pareto sense in an objective space of dimension 2.

The figure 6.15 represents the relations of domination between 6 objective
vectors in a two dimensional space. ¢ is dominated by a, b and e. d is dominated
by e. f is dominated by b, d and e.

Unquestionably the most employed metaheuristic class in the multiobjec-
tive optimization is that of the evolutionary algorithms. Indeed, they are well
suited for simultaneous searching of a collection of optimal solutions, because
they deal with populations of solution instances. The second part of this sec-
tion is devoted to them. In the first part, we briefly present the P.A.S.A. and
M.O.S.A. methods, employing simulated annealing.
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6.4.2 Simulated annealing based methods
P.A.S.A. (“Pareto Archived Simulated Annealing”) method

This method, developed at Electricite de France [Engrand and Mouney, 1998],
uses a function of “aggregation” of objective functions, coupled with a system
of archiving non dominated solutions.

Presentation of the method.

Let us assume that the objective functions to be minimized, f;,i =1,2,...,n,
of the multiobjective optimization problem, are positive. This assumption
makes it possible to define the problem as that of a mono-objective minimiza-
tion, with the following aggregation function:

G(2) =Y In(fi (@)

where x gathers the decision variables of the problem. Thus, the following
expression:

=G(()—-G(z)= n
i=1 fi (@)
represents the average relative variation of the objective functions between
the current point (z) and a point to be tested (z):

e If 0G > 0, the new solution z’ deteriorates, on a relative average, the set
of objective functions.

e If 6G < 0, the new solution z’ improves, on a relative average, the set of
objective functions.

In the first case, the solution z’ is accepted with the usual probability of
simulated annealing:
—AG
p= e T
where T denotes the temperature.
The method comprises an archiving of the “non-dominated” solutions.
Before stressing on this aspect, two traditional definitions in multiobjective
optimization are recalled:

relation of dominance: the vector x; is known to dominate the vector x5 if:
e 1 is at least as good as x5 for all the objectives;
e 1 is strictly better than xzo for at least one objective.

non dominated solutions: the non dominated solutions, or optimal solutions
in the Pareto sense, are those which dominate the other solutions, but do
not dominate amongst themselves.
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The P.A.S.A. method uses an “archive” of non-dominated solutions, whose
size can vary between 0 and N,,,,, managed in the following manner:

e If the solution z’ is dominated by at least one solution of the archive, it is
not placed in the archive.

e If the solution 2’ dominates a solution y in the archive, it replaces y in the
archive.

e If the solution z’ is not dominated by the members of the archive, it is
placed in the archive, and the solutions dominated by x’ are withdrawn.

For the optimization to achieve an approximation of the whole compromise
surface, it is necessary to start the search again regularly starting from a
point chosen at random, within the archive. This stage is called the “return
to base”. The algorithm of P.A.S.A. method is described in the algorithm 6.2.

Discussion.

The P.A.S.A. method enables us to take into account a preexistent expertise
on the problem under consideration: the “good” solutions known a priori can
be placed in the initial archive population. This flexibility is also apparent
in the level of the management of the archive, which may integrate heuristic
rules suitable for the problem at hand. A restriction of the method appears in
the definition of the aggregation function, which imposes that the objective
functions must be positive in the entire search space.



210 6 Extensions

—_

Choose an initial archive population, possibly reduced to only one element xo,
and choose the initial temperature Ty

To indicate that z), a neighbor of x,

Calculate G = G (z7,) — G (z)

If 6G <0, then 2,11 = ), o

If §G > 0, calculate p = eTa

e 1,41 = x,, with the probability p,
e I,y1 = x, with the probability (1 — p)

ANl

6. If the “thermodynamic equilibrium” at the temperature 7y is reached, then:
Tot1 =a-Tqy

with o < 1
7. Principle of non-dominance for the archiving of x,4+1 :

e if x,11 is dominated by at least one solution of the archive, it is not archived;

e if x, 1 dominates a solution y, of the archive, it replaces y, in the archive;

e if x,11 is not dominated by the members of the archive, it is placed in the
archive, and the solutions dominated by x,+1 are withdrawn.

8. “Return to base”: periodically make x,+1 = yi, where y; is a member of the
archive chosen at random.
9. If the termination criterion is not reached, return to 2.

Algorithm 6.2: Algorithm of the P.A.S.A. method.

M.0.5.A. method (“Multiple Objective Simulated Annealing”)
This method was proposed in [Ulungu et al., 1999).
Presentation of the method.

Let us consider that z,, be the current solution in the iteration n, and y be a
solution under consideration at the time of the iteration n. We can start by
defining a series 7, of functions expressing, for each objective function fj, the
probability of acceptance of a solution y degrading the objective:

—Afy
n LTt Af >0
1 iftAfi, <0

where: T, indicates the temperature in the iteration n,

Afr = fu (y) — fr (zn)

Then the aggregation of the functions 7 is carried out, by applying one
of the two following formulae:

N
tn) =[] (wgk)

k=1
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or:
t(I,\) = m]\lfn (ﬂ')\k)
’ k=1 \"F
with:
T collection of m,, k=1,...,N ;
A collection of A\, k=1,..., N ;
Ak a weighting coefficient related to the objective function fg.

In addition, it can be formulated as a mono-objective minimization problem
by building the equivalent objective function feq :

N
feq (z) = sz‘ - fi ()

The function ¢ (II, A) then defines the probability of acceptance of a per-
turbation degrading the function f.,.

Remarks.

The M.O.S.A. method should not be confused with the direct application of
simulated annealing for the function f., above. Indeed, in the later case, a
perturbation degrading the objective will be accepted with the probability

—Afeq
e Tn

An example studied in [Collette and Siarry, 2003] shows that M.O.S.A.
method is more effective, in this direction in particular when it can achieve
solutions which would not be accessible by the direct application of simulated
annealing for the mono-objective problem f,,.

Y. Collette in his thesis [Collette, 2002] discusses the employment of sev-
eral simulated annealing based metaheuristics, for the treatment of a mul-
tiobjective problem of particularly difficult nature: that of optimization at
ElectricitEde France of the nuclear fuel loading schedules.

6.4.3 Multiobjective evolutionary algorithms

This part is devoted to the methods which use the concept of Pareto domi-
nance because of their good reliability. The purpose of these is to provide a
“uniform” sampling of the Pareto front or the Pareto optimal set. The other
methods available now also find solutions that are indeed Pareto-optimal, but
they may “ignore” parts of the Pareto front, like its concave parts, or they can
give too much advantage to some parts like those that correspond to solutions
that minimize one of the objectives at the cost of the others.

In the context of solving such problems by evolutionary algorithms, the
individuals correspond to instances of solutions in the search space. They
are affected by a scalar fitness value, calculated from the objective vectors
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associated with the individuals, such that the non-dominated individuals will
be more often selected than the others.

That being stated, there exists a difficulty in applying the techniques based
on the Pareto dominance, relative to the dimensionality of the objective space.
More the number of objectives to optimize, and thus larger the dimension of
the objective space, more the Pareto front is vast, and less are the chances
that individuals are dominated by others. If in this case, a maximum fitness
is assigned to the individuals not dominated in a population, in order to
favour their reproduction. Then many individuals will have this fitness, thus
generating a low selection pressure, and consequently a slow convergence of the
algorithm. The strategies using the Pareto dominance will have, consequently,
to take this problem into account. The most popular or the most effective
methods are described below.

Essential components

An evolutionary algorithm, which tends to sample a Pareto-optimal set uni-
formly, needs two essential ingredients to perform satisfactorily, in addition
to the standard operators (selection, crossover, mutation, replacement):

e a method which assigns fitness values to the individuals, according to the
relations of dominance which exist within a population;

e a speciation/niching method, which maintains a high level of diversity
within the population, so that it covers the Pareto-optimal unit uniformly,
or at least, its nearest possible neighborhood.

A third essential ingredient, but which does not belong to the evolutionary
algorithm, is an archive of the non-dominated solutions discovered during
a complete evolution. Indeed, there is no guarantee that at the end of the
evolution, the solutions which approached the Pareto optimal set at best,
were preserved in the population. Thus, at the end of each generation of
the evolutionary algorithm, the population is copied in the archive, then the
dominated individuals are eliminated from it. This archive is not exploited
a priori by the multiobjective optimization algorithm, except notably for the
most recent ones.

The Goldberg’s “Pareto ranking”

An algorithm of this class of methods was described for the first time by D.E.
Goldberg in his famous book [Goldberg, 1989]. However, the author did not
describe any concrete implementation of this algorithm, and obviously any
performance result. The idea however inspired many researchers in the years
that followed.
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Calculation of the individual fitnesses.

In the original proposal of Goldberg, the calculation is based on the ranking
of the individuals according to the domination relation existing between the
solutions which they represent. First of all, rank 1 is assigned to the non-
dominated individuals of the complete population: they belong to the non-
dominated front. These individuals then are fictitiously withdrawn from the
population, and the new non-dominated individuals are determined, who are
assigned rank 2. It can be said that they belong to the rank 2 dominated
front. One can proceed in this manner until all the individuals are ranked.
The fitness value of each individual is then calculated like a function of the
rank of each individual in a way similar to the technique described in the
paragraph 3.3.3 of chapter 3, by keeping in mind to assign to each equally
placed individual the same fitness.

Niching.

It is the sharing method (section 6.3.2), possibly reinforced by a restricted
mating (section 3.4.1). Goldberg does not specify whether the niching is im-
plemented in the search space, or the objective space.

Several alternatives of this approach then appeared, differing mainly in
the mode of calculation of the individual fitnesses. Thus, Fonseca and Flem-
ing proposed the MOGA algorithm in 1993 [Fonseca and Fleming, 1993]. In
this contribution, each individual is assigned a rank equal to the number of
individuals who dominate it. Then a selection according to the rank is ap-
plied, in accordance with the idea of Goldberg. The niching is carried out
in the objective space, which allows a uniform distribution of the individu-
als in the neighborhood of the Pareto front, but not in the Pareto-optimal
set. This does not permit to perform multimodal and multiobjective opti-
mization at the same time. The niche radius o, should be calculated so that
the distribution of y individuals of the population is uniform on the whole
Pareto front. Fonseca and Fleming proposed a method to estimate its value
[Fonseca and Fleming, 1993].

The “Non Dominated Sorting Genetic Algorithm” method

The “Non Dominated Sorting Genetic Algorithm” method was presented in
1994 by Srinivas and Deb [Srinivas and Deb, 1994] and is inspired directly by
the idea of Goldberg. It uses the same Pareto ranking. On the other hand,
it carries out a niching different from the one used by MOGA. Indeed the
sharing method is applied, front by front, in the search space with a sharpness
parameter a equal to two. The method is a classical one. It is recognized as
an effective one in the approximation of the Pareto front.
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The “Niched Pareto Genetic Algorithm” method

For the “Pareto ranking” methods, the selection according to the rank can be
replaced by a tournament selection between the ranked individuals. Horn et al.
(1994) [Horn et al., 1994] proposed the “Niched Pareto Genetic Algorithm”
(NPGA) method which performs the tournaments directly according to the
relations of dominance, thus avoiding a computation expensive preranking of
the entire population. Applying a simple binary tournament (section 3.3.4)
is not satisfactory because of the low selective pressure in this context. To
increase it, the authors conceived an unusual binary tournament: the domi-
nation tournament.

Let two individuals « and y be drawn randomly from the population to
take part in a tournament. Those are compared with a comparison sample ~,
that is drawn at random and comprises of t4,,, individuals. The winner of the
tournament is z if it is not dominated by at least one of the individuals of ~
and if y is dominated. In the opposite case, the winner is y. If now x and y
are in the same situation: either dominated, or non-dominated, the winner of
the tournament is that which has less neighbors within a ball of radius oy in
the objective space. This last operation gives rise to a form of niching, with
an aim of reducing the genetic drift which would be induced by the choice of
a winner at random. Indeed, a significant genetic drift will be harmful with a
regular distribution of the non-dominated individuals, which are a priori close
to the Pareto-optimal set.

The parameters tg,, and o, must be fixed by the user. ¢4y, is an ad-
justment parameter of the selection pressure. Horn et al. noticed in some
case studies that if £, is too weak, smaller than one percent of the pop-
ulation, there are too many dominated solutions and the solutions close to
the Pareto optimal set have less chances to be discovered. If it is larger than
twenty percent, premature convergences are frequent, due to a too high se-
lection pressure. A value of about ten percent would be adequate to place
the individuals near the Pareto front at the best. The parameter o5 proves
to be a relatively robust one. It can be smaller and smaller as the population
becomes larger and larger, and vice versa, as far as the objective is only to
cover the areas close to the Pareto front as regularly as possible. An estimate
of its value is given in [Fonseca and Fleming, 1993] or [Horn et al., 1994]. The
NPGA method is one of the most widely used one.

The “Strength Pareto Evolutionary Algorithm ” (SPEA) method

This method was presented in 1999 by E Zitzler and L Thiele
[Zitzler and Thiele, 1999]. Its originality lies in the utilization of the archive
of the non-dominated solutions during the evolution of a population. The pur-
pose of it is to intensify the search for new non-dominated solutions, and thus
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to approach more from the Pareto front by implementing a form of elitism
(section 6.3.4). Moreover, the authors proposed a new niching technique ded-
icated to multiobjective optimization.

Calculation of the fitnesses of the individuals.

In each generation, the fitness of the individuals in the population P and the
archive P’ is determined in the following way:

Stage 1: The fitness f; of any individual ¢ in P’ is equal to the negative of its

strength s; :
n

p+1
where n is the number of solutions dominated by ¢ in the population P,
and p is the size of P, s; necessarily lies between 0 and 1.

Stage 2: The fitness f; of any individual j in P is equal to the negative of the
sum of the strengths of the individuals in P’ who dominate it, added to
unity:

fi=—s; and s;=

fi=—|t+ ) s
p

i,i<j
f; is thus smaller than or equal to -1, and consequently smaller than the
fitnesses of the solutions of P’.

Thus, the fitness of an individual is all the more weak as there are more
individuals of P? who dominate it. The figure 6.16 illustrates the calculation
of the fitness with the help of an example.

Al W)
2 l ®-13/11 -24/11@
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= -2/11 (a)@-18/11
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-18/11@ ® -22/11
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2) -15/11 ®
° -15/11
o : individual in P’ -4/11
e : individual inP 3)
»
objective 1

Fig. 6.16. Example of calculation of the fitness of the solutions in P and P’ with
SPEA method.
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Niching.

The niching is carried out implicitly by the fitness calculations described
above. Each rectangle in the figure 6.16 is regarded as a niche defined not
in terms of distance, but in terms of Pareto dominance. Let us consider the
marked niche (a). It contains a relatively high number of individuals compared
to the others. Thus its contribution to the strength of the individual (2) is
high. This high strength implies in return a relatively weak fitness of the indi-
viduals in the niche (a). The niche (b) contributes little to the strength of the
individual (1). The fitness of the individual that it contains is found higher
than those of the individuals in the niche (a). At the time of the selection
stage, the overcrowded niches will thus have less number of occasions to pro-
duce offspring than the sparsely crowded niches. This produces the required
stabilization effect for the subpopulation size in the niches.

The algorithm also employs a selection by binary tournaments operated
on the concatenation of the populations P and P’. Moreover, the authors
proposed that the size of the archive P’ can be reduced by clustering, if it
exceeds a fixed threshold. The clustering procedure allows to replace a group
of neighboring individuals by a single one, which is the centroid of the group.
In this way, the computing power is not wasted in redundant comparisons.

The SPEA method proved to be by far the most effective one in the ap-
proximation of the Pareto front, compared to the other techniques which were
presented here for a set of test functions. The enhancement in performance of
this method is primarily explained by the elitism supported by the utilization
of the archive P’.

6.5 Constrained evolutionary optimization

The optimization problems encountered in the industrial world must often
satisfy a certain number of constraints. These give rise to a set of relations
that the variables of the function to be optimized must satisfy. While solving
a numerical problem, these relations are generally expressed as a set of ¢
inequalities:

gi(z) <0,fori=1,...,q

where z is a solution of the optimization problem. The possible equality con-
straints are replaced by two inequality constraints of the type mentioned
above. In case of the evolutionary algorithms, the vector = is an individual.
When the constraints are satisfied by an individual, it is known as a feasible.
The feasible region F is the set of the feasible solutions. The complement of
F, U in the search space {2 is the infeasible region.

However, the standard variation operators described in chapter 3, for the
real or binary representation, generate individuals in a blind manner, not
taking the constraints into account, and they may correspond to infeasible
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solutions. To impose the necessity of satisfaction of the constraints on a prob-
lem, several approaches, acting on the various operators of the evolutionary
algorithm, can be employed.

A first rudimentary approach consists in calculating the fitness function
only in the feasible region F. The individuals in the infeasible region are
affected with a null fitness which prevent their reproduction. This is called the
death penalty method. Although this method is a simple one, it has proved
far from being powerful, because the topology of F seldom satisfies good
properties, like the convexity or the connectivity. Even if these properties are
satisfied, F can have zero measure. In this case, random drawings employed
by the variation operators, which are independent of the constraints, are not
likely to produce individuals corresponding to feasible solutions.

In addition, people involved in the field of constrained optimization prob-
lems noted that many feasible global optima are on the boundary of F. Having
solution instances on both sides of this boundary can help much to discover
these optima. Thus, when the objective function is defined also in the infea-
sible region, ! then it is useful to exploit infeasible instances of solutions to
help to find a feasible global optimum. In case of objective functions defined
on zero measure feasible regions, it will not be possible, in the general case,
to obtain feasible solutions. Within this framework, F should be approached
as closely as possible.

Many researchers over the years have attempted to address the difficul-
ties mentioned above. Here we present some of these approaches which have
become classical.

6.5.1 Penalization methods

The principle is simple: the fitness of an infeasible individual is reduced by
subtraction of a penalty.

where p(x) is positive, increasing with the measurements of the constraint
violations n;(z), such that:

ni(z) > 0 if the i*? constraint is violated,
n;(x) = 0 otherwise

Typically,
q
R )
i=1
where:

1This is not always possible because a region can be infeasible precisely because
the objective function is not defined inside it.
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P is an increasing function;

o is a positive coefficient whose value becomes larger as more im-
portance is given to the satisfaction of the i*® constraint;

16} is fixed typically at 1 or 2.

Static penalties

The simplest approach is described below:

! . n;i(z) = 1 ifthei'" constraint is violated,

p(z) = ; ()  with {m(x) = 0 otherwise

The constants «; must be determined in such a way that the global optima
of the restriction of f defined in U correspond to local optima of f,. Their
determination is difficult when the value of the optimum is not known a priori,
which is the general case. Indeed, the values of these constants must be large
enough, but if they are too large, the penalized individuals will have only a
few chances to reproduce, and the method closely resembles that of the “death
penalty”. These constants thus depend on the problem under consideration.
Moreover, this method is brutal because it does not offer a means of more
penalizing the infeasible individuals which are away from the boundary of F
compared to the others. This property complicates the search for the feasible
optima which are located on the boundary. Also, the approach is improved
by taking into account the values of g; in the expression of f,, when the
constraints are violated:

q . .th . . .
. B . n;(z) = g;(x) if the ** constraints is violated,
p(z) = ; a;n! (z) with { 0 otherwise

There too, the determination of the constants «; is difficult, more than in the
preceding case. The methods of static penalties can be sophisticated as that
presented by Homaifar et al. in 1994 [Homaifar et al., 1994].

Dynamic penalties

It can be advantageous to vary the coefficients «; according to the number of ¢
generations accomplished. Indeed, in the beginning, the penalties can be weak,
thus supporting diversity in the population, both in the feasible and in the
infeasible region. Then, when the evolution is quite advanced, the individuals
must concentrate on the most promising feasible peaks, in order to locate the
global optima precisely. Then the penalty coefficients must take higher values,
to increase the selection pressure in favour of the feasible individuals.

To sight an example, the following penalty function was proposed by Joines
and Houck in 1994 [Joines and Houck, 1994]:
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q
pla,t) =ty ain(z)
=1

where:
t represents the number of generations accomplished;
k takes a constant value, typically 1 or 2.

Adaptive penalties

With this method, the idea is to modify the weights «; according to the state of
the population during the last generations. The method of Hadj-Alouane and
Bean proposed in 1992 and published in 1997 [Hadj-Alouane and Bean, 1997)
is one of the earliest methods which proposed adaptation of penalties and is
known for its striking simplicity. Its modification criterion of «; depends on
the feasible or infeasible feature of the best individual x* in the population,
during G preceding generations:

q
p(x) =Y ai(t)n) (x)
i=1
where
a;(t)y1 ifx* € U on G generations
a;(t+1) = < a;(t)/y2 ifz* € F on G generations
a;(t)  otherwise
v1 and 2 are larger than 1. The update of the «; is carried out after each
period of G generations.

The “Segregated Genetic Algorithms” method

This method suggested by Leriche et al. in 1995 [Leriche et al., 1995] is re-
markable, in the sense that it uses two populations: one made up of individuals
whose fitness is strongly penalized if they are infeasible, the other containing
individuals that are slightly penalized. The selections in each population are
carried out independently, but the variation operators work on the reunion of
the two populations. In this way, the efficiency of the method is less sensitive
to the determination of the weights, compared to an evolutionary algorithm
employing a simple penalty function.

6.5.2 Superiority of the feasible individuals

With the type of methods discussed now, a feasible individual has always
more chances to be selected than an infeasible individual. This property was
not guaranteed in case of the methods of “penalties” examined before. The
simplest method in this class is that of Deb published in 2000 [Deb, 2000]. Tt
proposes a tournament selection. If, for two individuals who are selected to
take part in a tournament,
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both are feasible, the individual which has the better fitness wins;

one is feasible and the other infeasible, the feasible individual wins;

both are infeasible, the individual which violates the constraints less wins.
The measurement of the constraint violation can simply be the sum of the
values of the functions max(0, g;(x)).

This method has the advantage that it does not require the computation of
the objective function in the infeasible region . In this way, computation
resources can be saved and, moreover, the method can be applied when the
objective function is not defined in U.

To maintain diversity in the feasible region, Deb uses a niching compatible
with the tournament selection: a feasible individual ¢ being selected, a feasible
individual j takes part in the tournament with ¢ if the distance between ¢ and
j is smaller than a given threshold o. If no individual j is found after n;
drawing, then ¢ wins the tournament. o and ny are fixed by the user. They
are the only parameters of the method.

The method gives interesting results for the test problems where it was
applied. To produce satisfactory result, it requires that the measure (the “vol-
ume”) of the feasible region is not small compared to that of the infeasible
region.

There are other methods where a feasible individual is always better than
an infeasible individual. The method of the Stochastic ranking by Runarsson
and Yao [Runarsson and Yao, 2000] can be mentioned in this context.

6.5.3 Repair methods

A repair method transforms an infeasible individual into a feasible one. A
“repaired” individual can be used only for the evaluation of its fitness, or it
can be reintroduced in the population. The difficulty of this class of methods
is that they are strongly dependent on the representation and the problem.
The example of GENOCOP III makes it possible to have an idea of such an
approach.

Repair algorithm of GENOCOP III

GENOCOP III [Michalewicz and Nazhiyath, 1995] is employed to solve nu-
merical problems whose solutions must satisfy nonlinear constraints. GENO-
COP III is an extension of the GENOCOP (GEnetic algorithm for Numerical
Optimization of COnstrained Problems) algorithm which can solve problems
with linear constraints.

With GENOCOP III, two populations P, and P, coexist and coevolve.
P, contains infeasible individuals and possibly feasible individuals, they are
the search individuals. P, contains individuals who satisfy all the constraints
of the problem: they are the reference individuals. If an individual x of Py
selected by the selection operator does not satisfy all the constraints of the
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problem, individuals are generated by BLX-0 crossovers of xz with selected
reference individuals, until a feasible individual z is obtained. Then the fitness
of z is evaluated independent of the constraints. The fitness of x is chosen equal
to that of z. The algorithm 6.3 formalizes this description.

Action Repair (Individual )
Individual z
Individual »

Real a
Repeat
r «—select(P,)
a «—random(0, 1)
z—ar+ (1—a)r
While Non feasible(z)
z.f «—evaluate(z)
End Action

Algorithm 6.3: Description of the repair algorithm of GENOCOP III.

Instead of being stochastic, as specified for the BLX-0 crossover oper-
ator, the sequence of the coefficients a can be deterministic, for example
a = (1/2,1/4,1/8...). The selection of a reference individual r can be uni-
form, or according to a probability distribution which depends on the fit-
nesses. Once z is obtained, it can be introduced into the population Pg with
a probability p, to replace x. It is also introduced into P, to replace the ref-
erence individual which was used for generating it, provided that its fitness is
higher. The algorithm of co-evolution of P, and P, is not discussed here, as
it is beyond the framework of this section. The interested reader can refer to
[Michalewicz and Nazhiyath, 1995] for a more detailed discussion.

For proper functioning of the method, it is necessary to find feasible so-
lutions (at least one which is replicated) to build the initial population P,.,
which can be difficult, especially when the measure of the feasible region is
very small compared to the infeasible region. An advantage of GENOCOP
ITI, compared to the penalty methods, is that it does not require to evaluate
the individuals in the infeasible region.

6.5.4 Variation operators satisfying the constraint structures

When a variation operator satisfies the constraints of a problem, it gener-
ates certainly feasible offspring if the parents on which it works are feasible.
As in the preceding section, where the repair algorithms are described, these
operators necessarily depend on the problem dealt with and the chosen repre-
sentation. In general, it is difficult to design such operators, but they improve
a lot the efficiency of the optimization algorithm.
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It was already shown variation operators satisfying the constraints of a
problem in the section dedicated to the representations of the permutation
problems in chapter 3 (section 3.4.4). Indeed, these operators transform in-
dividuals representing some valid sequences into other valid sequences, thus
satisfying the unicity constraint of each element.

GENOCOP

The GENOCOP algorithm of  Michalewicz and Janikow
[Michalewicz and Janikow, 1994] deals with the nonlinear optimization prob-
lems with linear constraints. The possible equality constraints are eliminated
by equation solving. The remaining variables define a feasible region which is
a convex polytope.

It is simple to design a crossover in real representation which satisfies
these constraints. The BLX-0 crossover offers this guarantee. It is used in
GENOCOP under the designation of “arithmetic crossover”. Michalewicz and
Janikow also proposed the use of two other types of crossovers: the uniform
crossover and the heuristic crossover (see [Michalewicz and Janikow, 1994]).
These last two crossover techniques do not guarantee the satisfaction of the
constraints in only one application of the operator. Several crossover attempts
may be necessary with possibly different parameters to obtain feasible off-
spring. The three crossovers are applied with rates fixed by the user within
the population.

GENOCOP also combines the action of three types of mutations, applied
with fixed rates, that modify only one component zj, chosen at random, of
an individual z:

e the uniform mutation, where x is modified according to an uniform ran-
dom distribution in the interval delimited by the boundaries of the feasible
polytope;

e the boundary mutation, which replaces zj either by its minimum value in
the feasible polytope, or by its maximum value, with a probability 1/2 ;

e the non uniform mutation which generates smaller variations in xj as the
number of generations carried out becomes large, thus allowing to approach
an optimum with precision.

Search on the boundary of the feasible region

This search is based on the observation that the global optima are of-
ten on the boundary of the feasible region. The idea is then to design
specialized variation operators that, for parents on the boundary, gener-
ate offspring who are also on the boundary. Schoenauer and Michalewicz
[Schoenauer and Michalewicz, 1996] presented a development of this approach.
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6.5.5 Other methods dealing with constraints
Behavioral memory method

The behavioral memory method, proposed by Schoenauer and Xanthakis
[Schoenauer and Xanthakis, 1993], gradually deals with the constraints of the
problem, during several stages and by modifying the fitness function at each
stage. There are g + 1 stages for ¢ constraints to be satisfied. An order of
taking the constraints into account must be defined. For the first g stages,
the fitness at the stage 4 is a function M (g;(x)) which is maximum when the
constraint g;(z) < 0 is not violated. The individuals which do not satisfy the
constraints g1 to g;_1 disappear from the population as they are assigned zero
fitness (“death penalty method”). The algorithm passes from one stage to the
next one when a sufficiently high rate of the population is in the feasible re-
gion. In the last stage, the fitness depends only on the objective function in
the feasible region. The infeasible individuals disappear from the population.
A niching is used to maintain diversity in the population at each stage.

Converting the constraints into additional objectives

A mono-objective optimization problem which must satisfy ¢ constraints
gi(z) < 0 can be transformed into an unconstrained problem comprising g+ 1
objectives (f, f1, f2, ... fq), such that:

fi(z) = max(0, g;(x)), Vi € [1; 4]

In the implementation of Surry et al. [Surry et al., 1995], a Pareto ranking
r(x) is carried out on the objectives related to the constraints. The fitness f
is evaluated for all the individuals. A binary tournament selection is imple-
mented such that the tournament criterion is either f with a probability p,
or the Pareto rank. The variation operators are then applied. The value of p
is adapted according to the rate of the feasible individuals in the last genera-
tions. If the rate is lower than a desired value, then p is decreased, otherwise
it is increased.

6.6 Conclusion

In this chapter we presented probable answers to some highly important ques-
tions raised by the modern optimization problems: how to adapt the meta-
heuristics, often of discrete origin, for the problems with continuous variables,
many of which arising in the practical field of engineering? How to obtain
several diverse solutions, but of equivalent values, to further facilitate in tak-
ing finer decisions, according to one or more possible criteria which cannot be
formalized? How to discover the best trade-off solutions when several criteria
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must be optimized? How to take account of the constraints in the search for
the optima? These have proved to be enormously interesting research topics
which culminated in several fruitful studies over the years. Indeed this chapter
showed that new methods of continuous, multimodal, multiobjective or con-
straint handling optimization are emerging at a brisk pace. The purpose of
these works is to widen their applicability, to improve their effectiveness, to fa-
cilitate their implementation by increasing the robustness of their parameters,
or by reducing their number.

6.7 Annotated bibliography

[Collette and Siarry, 2003]: An ideal book to look further into multiobjective
optimization in multiple contexts.

[Deb, 2001]: A valuable reference book in the domain of multiobjective opti-
mization by evolutionary algorithms.

[Michalewicz, 1996]: After an introduction to the genetic algorithms, the au-
thor introduces a rich collection of sample solutions of constrained
optimization problems. One of the most widely circulated books
in the domain.
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Methodology

7.1 Introduction

We will certainly deceive those readers who were patient enough to read the
present book until now and who would know which metaheuristic they should
try first for solving the problem under their consideration. Indeed, this ques-
tion is a perfectly legitimate one, but we must confess that it is not possible
to recommend one specific technique or the other. It has been seen that the
weak theoretical results known about the metaheuristics are almost of no use
in practice. Indeed, in a sense these theorems state that, to ensure that the
optimum is correctly determined, it is required to examine a number of solu-
tions that is higher than the total number of solutions of the problem. In other
words, they (trivially!) recommend to use an exact method if the optimum
is needed to be determined absolutely correctly. However, the present chap-
ter will make an attempt to draw some guidelines for elaborating a heuristic
method based on metaprinciples discussed before. Following the same prin-
ciples as we adopted in the chapter on tabu search, this illustration will be
presented with the help of a given optimization problem. The vehicle routing
problem has been chosen for this specific purpose. In order to make the illus-
trations as clear as possible, we limit ourselves to the simplest version of the
problem, popularly known as Capacitated Vehicle Routing Problem (CVRP)
in the literature. However, the proposed methodology is a general one and
should be applicable for complex problems as well.

Academic vehicle routing problem

An academic problem, which is a simplification of practical vehicle routing
problems can be described as follows. An unlimited set of vehicles, each one
capable of carrying a volume V' of goods, is required to deliver n orders to cus-
tomers, starting from a unique depot, in such a fashion that the total distance
traveled by the vehicles is minimum. Each order (or, commonly saying, cus-
tomer) ¢ has a volume v; (¢ = 1,...,n). The direct distances d;; between the
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customers ¢ and j (i,7 = 0,...,n), are known, with 0 representing the de-
pot. The vehicles execute tours Ty, (kK = 1,2,...), that start from the de-
pot and finish on their return to the depot. A variant of the problem im-
poses an additional constraint that the lengths of the tours must be up-
per bounded by a given value L. Figure 7.1 illustrates the shape of a so-
lution obtained for a Euclidean problem instance considered in the litera-
ture [Christofides et al., 1979] with 75 customers (marked as circles, whose
surface is proportional to the volume ordered) and a depot (marked as a
black disk, whose surface is proportional to the volume of the vehicles).

Fig. 7.1. Best solution known for a small academic vehicle routing problem with
75 customers. It is not yet proved that this solution is an optimal one.

A solution of this problem can be viewed as a partition of the customer
set into a number of ordered subsets, the order defining the sequence in which
each vehicle has to visit the customers constituting a tour. The first question
to be addressed is about the number of tours that is needed to be created. It
must be mentioned here that for practical problems, the vehicle fleet available
is not unlimited and it is not always evident to even find a feasible solution
for the problem. Indeed, the partitioning of the customers into a specified
number of subsets of given weight is the well known NP-complete bin packing
problem. Even if the number of vehicles is unlimited, it may not be useful to
consider all feasible solutions of the problem. This is because this set may be
composed of a very large number of poor quality solutions that can easily be
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shown to be inferior, for those instances containing a majority of tours with
a single customer.

An initial guideline may be to try and limit the combinatorial explosion
of solutions. This can be achieved with the knowledge about the problem
and eventually employing a heuristic method. In other words, the size of the
set of feasible solutions must be limited. A typical example for the CVRP
is to impose the constraint that all the orders placed by the same customer
must be placed on the same vehicle tour, provided that the later has sufficient
capacity. Another idea consists in considering only those solutions that use at
most one or two vehicles more than the lower bound of the number of vehicles
required to deliver all customers (this lower bound can be easily determined by
dividing the total volume of the orders by the volume of a vehicle). However,
proceeding like this, it may be difficult to find a feasible solution or to define
an adequate neighborhood structure.

7.2 Problem modeling

These considerations naturally lead us to the discussions about the definition
of S, the set of feasible solutions. In fact it may happen that the shape of this
set is very complicated, i.e. without the definition of a very large neighbor-
hood, it is impossible to generate all feasible solutions, or, more precisely, it is
not possible to reach an optimal solution starting from any feasible solution.
In this case, to avoid the definition of an unmanageably large neighborhood
(and therefore the computational effort required to perform one iteration of
local search to be prohibitive), the set of feasible solutions is extended, while
penalizing solutions violating constraints of the initial problem. Therefore, the
problem is modified as follows:

s eq 1 (8) TP()

where § C Gextended () = ( for s € S, and p(s) > 0 if s ¢ S. This
penalization technique, inspired from Lagrangean relaxation, is very useful for
applications where finding a feasible solution is already difficult. For example,
this is the case for school timetables, where the variety of constraints is plenty.

In the CVRP, the number of vehicles can be chosen a priori and solutions
where some customers are not delivered can be accepted with some penalty.
In this way, creating a feasible (but not operational) solution is a trivial job.
The value of the penalty for not delivering an order can simply be the cost of
a return trip between the depot and the customer.

The penalties can be modified during the search: If, during the last it-
erations, a constraint was systematically violated, then the penalty associ-
ated with the violation of this constraint can be increased. Conversely, if
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a constraint was never violated, then the penalty associated with this con-
straint can be decreased. This technique was used in the context of CVRP
[Gendreau et al., 1994]. This technique is a well adapted one if only one con-
straint is relaxed. If several constraints are simultaneously introduced in the
objective, then it may happen that only non feasible solutions are visited.
This is due to the fact that the different penalties associated with different
constraints could vary in phase opposition in such a way that at least one
constraint is violated, the violated constraint changing during the search.

It is not always easy to model a problem, especially when the (natural)
objective is to minimize a maximum. The choice of the function to minimize
and the penalty function can be difficult. These functions must take a number
of different values as large as possible over their definition domain, in such
a way that the search can be efficiently directed. How can the choice of a
suitable move to be decided upon, when a large number of solutions with the
same cost exist in the neighborhood?

This last remark a priori assumes that a local search will be used. How-
ever, evolutionary algorithms or artificial ants do not refer to local searches,
at least in their most elementary versions. But now, almost all efficient im-
plementations inspired by these metaheuristics embed a local search, at least
a simple improving method.

7.3 Neighborhood choice

It is required to proceed for the choice of the neighborhood structure(s), in
conformation with the definition of the solution space. This problem is also
far from being trivial, since, for the same generic problem, a well adapted
neighborhood for a given instance could be bad for other instances. Typically,
this is an empirical choice, even if the problem characteristics may provide
some directions.

7.3.1 “Simple” neighborhoods

The model utilized, for the vehicle routing problem, used as an example for
our illustrations, is very simple. Feasible solutions are extended by considering
that it is not mandatory that all orders must be delivered. For this, a dummy
tour Ty with infinite capacity is added. The delivery mode of this tour consist
of successive return trips: depot-customer-depot. With this model, finding a
feasible solution is trivial: all orders can be placed on tour Tj.

For vehicle routing problems, many different neighborhoods have been pro-
posed. The simplest one is moving an order from one tour to another. Then
two orders belonging to two different tours can be exchanged. A relatively
general neighborhood, known as CROSS [Taillard et al., 1997], consists in ex-
changing two paths belonging to two different tours. Figure 7.2 illustrates
these three neighborhoods. The moves are evaluated by a simple insertion
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heuristic: a group of commands is placed on a tour where it implies the least
detour; the delivery order of customers remaining in the tour are not modified.
The vehicle directly travels from the previous customer to the next customer

of those removed from the tour.

Transfer Exchange CROSS

Fig. 7.2. Three types of moves frequently used in vehicle routing literature.

The use of a simple deletion and insertion technique implies that the qual-
ity of the tours, i.e. the order in which the customers are visited, deteriorates
as the local search proceeds. Theoretically, an NP-hard traveling salesman
problem should be solved for each solution attempted. In order to be more ef-
ficient, the tours are periodically (but not very frequently) re-optimized. They
are also re-optimized when a relatively good solution is found. These optimiza-
tions can be carried out either by an exact method (in case the number of
customers in each tour is limited) or by a convenient heuristic.

In order to improve the efficiency of the neighborhood evaluation, it can be
remarked that only two tours are modified from one solution to a neighboring
one. Therefore by storing, for all moves, the modifications brought for both
the tours concerned, only the update of the last tours must be computed to
evaluate the whole neighborhood. Such a technique can significantly accelerate
the search, at the cost of a very reasonable increase in memory consumption. In
order to apply this technique, it is necessary to know the maximum number of
vehicles m required to deliver the orders. If this number is unknown, generally
it can be easily determined.



230 7 Methodology
7.3.2 Ejection chains

An ejection chain is a technique to create potentially interesting neighborhood
that facilitates to perform, in a single move, a significant modification of a
solution. This technique can be well illustrated specially for the CVRP. For
this problem, the simplest neighborhood is to transfer one customer from
one tour to another. If this neighborhood is implemented in a local search,
it is difficult to implement a “rotation” over a set or a subset of tours, i.e.
to transfer a customer from the first tour to the second one, the second tour
transferring a customer to the third tour, and so on until the last tour transfers
a customer to the first one. This process is illustrated in Figure 7.3.

Fig. 7.3. Example of an ejection chain, consisting in transferring simultaneously
many customers from one tour to another

A neighborhood can be completely scanned only for very limited subsets
of tours, typically 2 or 3. However, an approximation can be performed for
any number of tours by solving an auxiliary problem. Such an approach was
proposed in [Xu and Kelly, 1996]. In this reference, the auxiliary problem is
a minimum cost flow problem in a two layer network. Here, the first layer
corresponds to the customers, and the second one corresponds to the tours.
The network is built as follows: directed arcs with cost 0 and capacity 1 are
created between a source-node and each customer-node and between each
tour-node and a sink-node. If it is possible (and authorized, in case of tabu
search) to move customer 4 in tour T}, then an arc with capacity 1 is added
between the customer-node 7 and the tour-node 7). The cost of this arc is that
of the insertion of the customer in the new tour diminished by the saving due
to the removal of the customer from the old tour. The computation of all the
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minimum cost flows between a value of 1 and the number m of vehicle tours
in this network provides an approximation of the global cost corresponding
to the move of 1,2,..., m customers.

[Rego and Roucairol, 1996] proposed another mechanism for implement-
ing an ejection chain. The idea is to perform a very partial enumeration of
the solutions that can be obtained after a given number of ejections.

7.3.3 Decomposition into subproblems: POPMUSIC

When solving large size problem instances, a natural tendency is to proceed
by decomposing into independent subproblems. These subproblems can then
be solved employing an appropriate procedure. In this way, large size problem
instances can be efficiently approached, since the global complexity of the
method grows very slowly, typically as O(n) or O(nlog(n)), where n is the
problem size.

However, implementing an a priori decomposition of a problem may induce
low quality solutions, since the subproblems have been created more or less
arbitrarily and without considering the shape of the solution. Indeed, it is not
easy to decompose a problem conveniently without having an intuition about
the structure of good solutions. The idea behind POPMUSIC is to locally
optimize parts of a solution a posteriori, once a global solution is known.

These local optimization procedures can be repeated until a local op-
timum — relatively to a very special neighborhood — is obtained. POP-
MUSIC is the acronym forPartial Optimization Meta-heuristic Under Spe-
cial Intensification Conditions [Taillard and Vo8, 2002]. Several authors have
proposed techniques that are slightly different from POPMUSIC. These
techniques are sometimes less general and are given different names like
LOPT (Local OPTimizations [Taillard, 2003a]), LNS (Large Scale Neighbor-
hood [Shaw, 1998]), shuffle, MIMAUSA [Mautor and Michelon, 1997], VNDS
[Hansen and Mladenovié, 1999], hybrid branch & bound tabu search, etc.

For many combinatorial optimization problems, a solution S can be repre-
sented by a set of parts sq,...,sp,. For the vehicle routing problem, a part can
be a tour, for example. The relations existing between each pair of parts may
vary. To elaborate, two tours containing customers that are close each oth-
ers will have a stronger interaction than tours located in opposite directions,
relative to the depot.

The central idea of POPMUSIC is to build a subproblem with a seed-
part, s;, and a given number r < p of parts s;,,...,s;, which are specially
related to the seed-part s;. These r parts build a subproblem R;, smaller than
the initial problem, that can be solved by an ad hoc procedure. In case if
each improvement in subproblem R; implies an improvement of the complete
solution, then the frame for a local search can be defined. This local search
is relative to a neighbourhood that consists in optimizing subproblems. So,
by storing a set O of those parts that have been used as seeds for building
a subproblem which are unable to improve the complete solution, the search
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can be stopped as soon as all p parts constituting the complete solution are
contained in O. So, a special local search has been designed. This local search
is parametrized by r, the number of parts constituting a subproblem (see
algorithm 7.1).

1. Input: Solution S composed of parts s1,...,sp
2. Set O =10
3. While O # {s1,..., sp} repeat
a) Select s; ¢ O
b) Create subproblem R; composed of the r parts s;,, ..., s;, that are the most
in relation with s;
¢) Optimize R;
d) If R; has been improved, set O «— O\{si;,...,si.}, update S (as well as
the set of parts).
Else, set O — O U {s;}

Algorithm 7.1: POPMUSIC(r).

This technique corresponds exactly to an improving method which, start-
ing from an initial solution, stops as soon as a local optimum, relative to a very
large neighborhood, is obtained. Hence, the method was named LOPT (Lo-
cal optimizations) in [Taillard, 2003a] and LNS (large neighborhood search)
in [Shaw, 1998].

Indeed, the structure of the neighborhood so built contains all solutions s’
that differ from s only by subproblem R;,7 = 1,...,p. This means that the
size of the neighborhood is defined by the number of solutions contained in
the subproblems. This number is naturally very large and grows exponentially
with parameter r (the subproblem created for r = p is the whole problem).

The optimization of a subproblem is a hard problem which can only be
exactly solved in a very few cases. Thus, a heuristic solution is frequently the
only practical option.

Parts.

When a POPMUSIC-based intensification scheme is desired to be imple-
mented, the first requirement is to define the meaning of a part of a solu-
tion. For vehicle routing problems, a tour (i.e. the set of orders delivered by
a same vehicle) is perfectly convenient to define a part. This approach was
used in [Taillard, 1993, Rochat and Semet, 1994, Rochat and Taillard, 1995].
It is also possible to consider each customer as a part. This approach was
used in [Shaw, 1998]. If the problem instances are large enough and contain
a relatively large number of tours, then considering a tour as a part has the
advantage that the subproblems so defined are also vehicle routing problems.
They can be solved completely independently.
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Seed-part.

The second point not precisely specified in the pseudo code of POPMUSIC
is the way the seed-part is selected. The simplest policy can be to systemati-
cally choose it at random. Another possibility can be to take those seed-parts
into consideration that have been previously selected. In the case of parallel
optimization of subproblems, the seed-parts are advantageously chosen as far
as possible, so that the interactions between the subproblems are minimized.
Other authors [Rochat and Semet, 1994] have suggested that successive seed-
parts can be chosen as close as possible. In this reference, the authors have
also suggested to change the value of the parameter r of POPMUSIC during
the search, thus implementing what is now called a variable neighbourhood
search.

Relations between parts.

The definition of the relations existing between different parts is the third
point of discussion in POPMUSIC frame. Sometimes, this relation is natu-
rally defined. For example, in case the parts are chosen as the customers of a
vehicle routing problem, the distance between customers is a natural measure
of the relation between parts. In case the parts are defined as the tour of
a vehicle routing problem, the notion of proximity is not so easy to define.
In [Taillard, 1993, Rochat and Taillard, 1995], who have treated Euclidean
problems, the proximity is measured by the center of gravity of the tours.
The quantity ordered by each client is interpreted as a mass. Figure 7.4 illus-
trates the principle of the creation of a subproblem from a seed-tour.

Optimization procedure.

Finally, the last point that is not specified in POPMUSIC frame is the
procedure used to optimize subproblems. In [Rochat and Taillard, 1995] and
[Taillard, 1993], the procedure employed is a basic tabu search. Shwa uses an
exact method based on constraint programming [Shaw, 1998].

7.3.4 Conclusions on modeling and neighborhood

In conclusion, we particularly insist on the modeling aspect of a problem and
on the choice of a neighborhood because in our opinion this is one of the most
important phases to successfully design an efficient heuristic. Indeed, if even
one of these points is poorly analyzed, the addition of another level (simulated
annealing, tabu search, etc.) to obtain better solutions than those produced
by a simple improving method can become deceptive.

For the purpose of illustration, we can cite the following example. Even if
you choose the best jet or helicopter pilot (i.e. the best way to direct a local
search), you will not be able to secure an alpinist in difficulty or cross the
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Atlantic Ocean if you do not choose the right engine (i.e. the right model and
the right neighborhood).

o

Fig. 7.4. Example of the definition of a subproblem for vehicle routing problems.
The seed-part (tour) is drawn with a thick line, the tours most in relation with the
seed-tour by normal lines and tours that are not considered in the optimization of
a subproblem by dashed lines. The routes from or to the depot are not drawn, so
that the figure is not overloaded

The vehicle routing also presents a good illustration of the importance
of this phase: The method described in [Taillard, 1993], which was able to
find many of the best solutions known for a set of benchmark problem in-
stances [Christofides et al., 1979], is based on a very simple tabu search. (The
moves considered are limited to the swapping of two customers or the move of
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one customer form one tour to another. The only component added to a very
basic tabu search is the penalization of moves frequently used.) The entire
method contains only few parameters, compared to much more sophisticated
methods, like those of [Gendreau et al., 1994, Xu and Kelly, 1996], which in-
corporate various advanced mechanisms and parameters, and do not prove to
be significantly superior.

7.4 Improving method, simulated annealing, taboo
search...?

To choose an appropriate model or a neighborhood, the knowledge of the
type of metaheuristic to be implemented is essential. Now, it is not possible
to decide which technique should be used on a theoretical basis. A simple im-
proving method, with a convenient neighborhood, might reveal to be better
than a simulated annealing or a tabu search. Indeed, an attempt to incor-
porate this neighborhood in one of these metaheuristics could lead us to an
algorithm that requires too much computational effort to be effective. However
the following methodology can be suggested: First a simple neighborhood can
be designed and implemented. This neighborhood should be chosen in such
a way that a neighboring solution can be evaluated fast. With such a base,
the implementation of an improving method or a simulated annealing should
be easy to design. Sometimes, like for the quadratic assignment problem, a
complete evaluation of the neighborhood can be efficiently implemented. In
such a case, the design of a tabu search seems to be a promising option (see
Figure 7.8).

If possible, it is very useful to graphically represent solutions visited during
an iterative search. In such a way, it is much easier to find, to analyze and
to remedy problems than with a “black box” approach. In the later approach
only the results obtained with given parameter settings are observed, without
the exact know-how about what happens during the search.

Nevertheless, if the method seems to be incapable of exploring solutions
with various structures, or if the parameters have to be set to extreme val-
ues such that the method behaves like a random search, then more global
approaches should be attempted. Evolutionary algorithms or ant colonies are
among these more global approaches. These methods require to embed a local
search to be efficient. So the importance and the burden of implementing a
local search is not lost!

7.5 Adaptive Memory Programming

A minute observation of recent implementations of evolutionary algorithms,
scatter search or artificial ant colonies reveals that all these techniques seem
to evolve toward a common framework, called Adaptive Memory Programming
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(AMP) [Taillard, 1998, Taillard et al., 1998]. This framework can be the fol-
lowing.

Adaptive Memory Programming

1. Initialize memory
2. Repeat, until a termination criterion is satisfied:
a) Build a new solution with the help of the memory
b) Improve the solution with a local search
¢) Update memory with information carried by the new solution

Now, let us justify why various metaheuristics follow the same framework.

7.5.1 Ant colonies

In the spirit of Adaptive Memory Programming, trails of pheromone of ant
colonies can be considered as a form of memory. This memory is utilized
for building new solutions, following the specific rules of simulated ants, or,
expressed in other terms, by following the magic formula, the belief in precepts
of the designers of ant colony optimization. Initially, the process did not embed
a local search. However, simulation experiments very soon revealed that the
quality of the process was more efficient when a local search was incorporated.
Unfortunately, the designer of ant colonies used to hide this component in the
pseudo-code of the metaheuristic under the form of a “daemon action” which
may consist, potentially, of anything!

7.5.2 Evolutionary or memetic algorithms

In the case of evolutionary algorithms, the population of solutions can be
considered as a form of memory. Indeed, some characteristics of the solutions
— hopefully the best ones — are transmitted and improved, from one genera-
tion to the next one. Recent implementations of evolutionary algorithms have
replaced the “random mutation” metaphor by a more elaborated operator.
Instead of performing several local and random modifications to the so-
lution obtained after crossover operation, a search for a local optimum is
initiated. Naturally a more elaborated search can be executed, e.g. a tabu
search or a simulated annealing. In the literature, this type of methods is
called “hybrid genetic algorithm” or “memetic algorithm” [Moscato, 1999].

7.5.3 Scatter Search

Scatter Search is almost as old as genetic algorithms as the technique was
originally proposed, completely independently, in 1977 [Glover, 1977]. How-
ever the technique started to gain prominence among the academic commu-
nities only by the end of the 90’s. In contrary to the evolutionary algorithms,
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simulated annealing and tabu search, this method has almost not been used
in the industrial world yet. Scatter search can be viewed as an evolutionary
algorithm with the following specific characteristics:

1. Binary vectors are replaced by integer vectors.

2. The selection operator for reproduction may select more than two parent
solutions.

3. The crossover operator is replaced by a convex or non convex linear com-
bination.

4. The mutation operator is replaced by a repair operator that projects the
newly created solution in the feasible solution space.

These characteristics may also be considered as generalizations of evolutionary
algorithms which have been proposed and exploited later by various authors,
especially [Miihlenbein et al., 1988]:

1. The use of crossover operators is different from the exchange of bits or
subchains;

2. A local search is applied for improving the quality of solutions produced
by the crossover operator;

3. More than two parents are used to create the child;

4. The population is partitioned with the help of classification methods in-
stead of an elementary survival operator.

In scatter search, the production of new individuals from solutions of the pop-
ulation is a generalization of crossover in evolutionary algorithms. In “pure”
genetic algorithms, solutions of a problem are only considered in the form
of a fixed chain length of bits. For many problems, it is not natural to code
a solution using a binary vector and, depending on the coding scheme cho-
sen, a genetic algorithm may produce results of varying quality. In the initial
versions of genetic algorithms, the main point was to choose an appropriate
coding scheme, the other operators belonging to a standard set. On the con-
trary, scatter search advocates for a natural coding of solutions, implying the
design of “crossover” operators (generation of new solutions from those of the
populations) strongly dependent on the problem to be solved.

In the first reference [Glover, 1977], scatter search was applied to integer
linear programming. Here, it was suggested to create a new solution by a lin-
ear combination of the solutions of the population. In the general case, e.g.
for permutation problems, it is not possible to make a linear combination of
the solutions. In this case, a specialized “crossover” operator must be de-
signed, which must eventually be followed by a repair operator, in case the
new solution is not feasible. Often, this repair operator consists of an elemen-
tary local search. One of the main drawbacks of evolutionary algorithms is
the population convergence (genetic drift). Indeed, once the population has
converged (i.e. all solutions of the population are clones), if the final solu-
tion is not satisfactory, there is no other option but to initiate a fresh search
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with a new population. To avoid such a situation, scatter search suggests to
manage the population with automatic classification techniques. Here, the
population is periodically classified into several groups, taking the similarity
existing between solutions as the homogeneity criterion. The size of the popu-
lation is then reduced by conserving only a few of the best solutions from each
cluster. This new solution set is called the reference set or the elite solutions.
In the construction phase, the solutions belonging to different clusters are
used to build new solutions, in order to preserve the diversity of the solutions
generated during the search.

7.5.4 Vocabulary building

Vocabulary building is also a concept introduced by [Glover and Laguna, 1997
in the context of tabu search, but the principles of this concept have certainly
been used, under different names, by different authors. Vocabulary building
can be conceived as a special scatter search (or evolutionary algorithm!). Here,
instead of storing complete solutions in the memory, only fragments (or words)
are memorized. These words are employed in building a vocabulary. A new
solution (i.e. a sentence) is obtained by combining different fragments. In the
context of the vehicle routing, a fragment — or part of a solution, conforming
to the terminology of POPMUSIC — can be defined as a tour. Then the
following procedure can be applied to build a new solution s, where M is a
set of tours, each tour T' being composed of a set of customers.

Building a new solution

1.s=0
2. Repeat, while M # ()
a) Choose T € M
b) Set s «—sUT
c) Set M — M\T' VT'e€ M such that T/NT # 0
3. If the solution s does not contain all customers, then complete it.
4. Improve the solution with a local search.

Thus, the idea is to build a solution by choosing tours successively be-
longing to a set of memorized tours. The chosen tours must not contain those
customers which are already contained in the partially built solution.

For vehicle routing problems, this technique was first applied in
[Rochat and Taillard, 1995]. It succeeded in obtaining several best solutions
of benchmark problem instances of the literature. This method shows signifi-
cant performance particularly for the following reasons: An elementary tabu
search, embedded within the framework of POPMUSIC, is capable of find-
ing very rapidly few of the tour of the best solutions known. Therefore, a
lot of computational effort can be spared by collecting already existing tours
without having to build them from scratch.
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Fig. 7.5. An example of the utility of creating words (= tours) in vocabulary
building. On the left, one of the best solutions known for a CVRP instance. On the
right, few of the tours found within a few seconds with a POPMUSIC based search.

7.5.5 Path relinking

Path relinking [Glover and Laguna, 1997] is another technique that utilizes
a population of solutions, also proposed by Glover in the context of tabu
search. This technique can be viewed as a special scatter search. Here the
objective is not to create one solution from many others, but to create a set of
solutions, neighbors of each other, connecting two solutions of a population,
thus creating a path between these two solutions. Each solution of the path
may eventually be improved with a local search. The technique is also very
similar to that of a tabu search, that is not guided by an objective function
and tabu conditions, but by a target-solution to reach.

Hence, there can be infinite number of possibilities to extend a technique.
The bottom-up methodology proposed here seems relatively logical to follow
(see Figure 7.6). Indeed, the addition of a level that increases the complex-
ity of a method is not very difficult to implement. For example, modifying
an improving method, that will terminate in the first local optimum for cre-
ation of a simulated annealing, takes few minutes or few hours to code, if
the first version is developed without implementing any algebraic or software
optimization. Even, nowadays the users have several libraries to their disposal
that allows them to embed a basic method into a more complex framework
(see, for example, the articles published in [VoB and Woodruff, 2002]).

So, it can be inferred that coding a heuristic based on metaheuristic prin-
ciples is relatively easy. However, it is much more problematic to find suit-
able parameters (e.g. annealing scheme, type and duration of tabu condi-
tions, penalty factors, intensification and diversification mechanisms in a tabu



240 7 Methodology

Adaptive Memory Programming

POPMUSIC

Tabu, simulated annealing, noising

Ejection Chains

Elementary neighborhood
structure

Fig. 7.6. Methodology suggested for designing a complex heuristic: The design
can be initiated with the implementation of an improving method with a simple
neighbourhood. If needed, the later may then be extended with the incorporation of
the ejection chains technique, and then be used for a more elaborated local search,
e.g. simulated annealing, noising methods or tabu search. If the problem is adapted
to the technique and if the instances to solve are of large size, the local search can
be embedded in a POPMUSIC frame. Finally, the entire design can be embedded in
an Adaptive Memory Procedure that exploits statistical informations, as in artificial
ant colonies, or a population of solutions, as in evolutionary algorithms or scatter
search, for building new solutions.

search, coding scheme, crossover operators, population size in an evolutionary
algorithm. . .)

In order to find good tuning of parameters, without performing elaborate
numerical experiments, it is important to utilize of statistical tests, sometimes
relatively specific. This leads us directly to a point that was quite neglected
in the metaheuristic literature: this is the comparison of iterative heuristics.

7.6 Iterative heuristics comparison

The implementation of a heuristic method for solving a complicated combina-
torial problem necessitates that the designer consider several choices. Some of
them may be relatively easy to justify, but others, like the numerical tuning
of parameters or the choice of a neighborhood may be much more hazardous.
When theory or intuition cannot support the choice of the researcher, the later
must justify his decision with the help of several numerical experiments. How-
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ever, it is observed too often that the choices are not supported by scientific
bases. The present section discusses few techniques for comparing improving
heuristic techniques.

7.6.1 Comparing proportion

The first question that should be clarified concerns the comparison of success
rates of two methods A and B. Practically, the experiments are as follows:
Method A is run n, times and succeeds in solving the problem a times. Simi-
larly when method B is executed n; times and succeeds in solving the problem
b times. So, the following question arises: is a success rate of a/n, significantly
higher than a success rate of b/n;? A researcher, who is a perfectionist, should
carry out a large number of experiments and work on a sufficiently large num-
ber of runs to conduct a standard statistical test based on the central limit
theorem. Conversely, a less careful researcher will not conduct the 15 or 20
runs theoretically needed to validate his choice of method among several op-
tions, but will assume, for instance, that if 4 has 5 positive results over 5 runs,
it will certainly be better than B that has only 1 positive run over 4. Is the
above conclusion correct or not? A nonparametric statistical test developed
in [Taillard, 2003b] shows that a success rate of 5/5 is significantly higher
— with a confidence level of 95% — than a success rate of 1/4. The contents
of table 7.1, which were originally proposed in [Taillard, 2003b], provide, for
a confidence level of 95%, the couples (a,b) for which a success rate higher
than or equal to a/n, is significantly better than a success rate lower than or
equal to b/ny.

This table can be particularly useful to find good parameters for a tech-
nique, both quickly and in a rigorous manner. A suitable procedure can be to
fix two different parameter sets (thus defining two different methods .4 and
B) and to compare the results obtained with both methods. In order to make
proper use of the Table 7.1 it is required to define what a success is (for in-
stance, the fact that the optimal solution or a solution of a given quality has
been found for a given problem instance) and, naturally, it is assumed that
the runs are conducted independently each other. It can be assumed that this
will work with a given problem instance and nondeterministic methods .4 and
B (like a simulated annealing) or will work with problem instances randomly
chosen in a set (for example, randomly generated instances of a given size).



7 Methodology

242

Table 7.1. Couples (a,b) for which a success rate > a/n, is significantly higher

than a success rate < b/ns, for a confidence level of 95%.
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7.6.2 Comparing iterative optimization methods

In the context of metaheuristics presented in this book, it is often difficult to
define success rates, since there is no clear goal to reach. More precisely, the
processes we are interested in have two objectives: in addition to improving
solution quality, it is required to minimize the computational burden. But this
last parameter can be freely chosen by the user, for instance by modifying the
number of iterations of a simulated annealing or a tabu search, or the num-
ber of generations of an evolutionary algorithm or the number of solutions
built with an ant colony. Moreover, most of these methods are nondetermin-
istic, which indicates that two successive runs on the same problem instance
generally produce two different solutions.

Traditionally, the measure of quality of a method is the average solution
value it produces. The computational burden is measured in terms of computer
CPU time consumed in seconds. Both of these measures are not satisfying.
If the computational burden is fixed for two nondeterministic methods A
and B, and if it is desired to rigorously compare the quality of the solutions
produced by these methods, both methods must be executed several times and
a statistical test comparing two methods must be conducted. Unfortunately,
the distribution function of the solutions quality produced by a method is
unknown and generally not Gaussian. Therefore it is not possible to use a
standard statistical test unless large samples are available. This means that
the numerical experiments are repeated a large number of times — practically,
this may correspond to many hundreds of times, contrary to the common belief
that a sample size of 20 or 30 is large enough.

In case quality may be measured by some other method than the average
solution values obtained, interesting comparisons can be performed with very
few runs. One of these nonparametric methods may consist in ranking the set
of all solutions obtained with methods A and B and to compute the sum of
the ranks obtained by one method. If this sum is lower than a value — that
depends on the level of significance, which can be read in numerical tables —,
then one cannot exclude the fact that a run of this method has a probability
significantly higher than 1/2 to obtain a better solution than a run of the
other method. In the literature [Conover, 1999], this test is known as the
Mann-Whitney test.

Naturally, if iterative methods must be compared using such a test, the
test must be repeated each time with a fixed computational effort. In prac-
tice, as mentioned before, computational time in a given computer is used for
measuring the computational effort. This is a relative measure as it depends
on the hardware used, on the operating system, on programming language,
on compiler, etc. To have a more rigorous comparison, an absolute compu-
tational burden must be used. Typically, the evaluation of the neighboring
solutions is the most demanding part of a metaheuristic-based method, such
as simulated annealing, tabu search, evolutionary algorithms or ant colonies
(provided that the last two techniques are hybridized with a local search).



244 7 Methodology

Thus, it is often possible to express the computational burden not in seconds
but in iteration numbers and to specify the theoretical complexity of one it-
eration. For instance, one iteration of tabu search proposed in Chapter 2 for
the quadratic assignment problem has a complexity of O(n?). By making the
code of this method available in public domain, everyone can now express the
computational burden of his/her own method for a given problem example
in terms of the equivalent number of tabu search iterations. So, there is no
necessity to provide a reference to a computational time relative to a given
machine — which will very soon become obsolete in near future.

By applying these principles, it is possible to generate two diagrams on the
same figure, indicating the functional evolution of the computational effort:
the first providing the average solution value and the second providing the
probability that a method will be better than the other, this probability being
computed on the base of a Mann-Withney test. This can be realized by means
of the STAMP [Taillard, 2002] software. An example of comparison is given
in Figure 7.7.

Finally, let us extract the information that is of real interest — is Method
A significantly better than Method B? —, where the first diagram providing
the evolution of average solution values can be removed and only the second
diagram providing the probability that a method will be better than the other
can be drawn. If the problem is approached in such a way, the surface needed
to provide the essential information is reduced in large proportions. So, it is
possible to draw many probability diagrams on the same figure, for example to
compare many methods with each other for the same problem instance or to
compare two methods solving different problem instances. This possibility is
illustrated in Figure 7.8, where not less than 5 heuristic methods are pairwise
compared when they are run on a problem instance, taken from the literature.

These diagrams provide, at a first glance, much more information than a
table comprising traditional numerical results. The two main advantages are
that they show comparisons, in a continuous manner of computational burden
and they provide exactly the requisite information (is this method better than
the other one?). For instance, it can be seen in Figure 7.8 that the simulated
annealing method is significantly worse than the other ones (where long FANT
runs are excepted), followed by the FANT. The three other methods cannot
be really ordered, as the order depends on the computational burden. Finally,
let us mention that this order is not the same for other problem instances.

7.7 Conclusion

It is sincerely hoped that this chapter will partially guide those researchers
who are engaged in the design of a heuristic based on techniques presented
in the previous chapters. We are well aware of the fact that each practical
problem will be a specific case and that our advices sometimes may not be
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Fig. 7.7. Comparison of a tabu search and an hybrid genetic algorithm for the
quadratic problem instance tai27e01. The upper diagram provides the average so-
lution values obtained by both methods over 20 runs. The lower diagram provides
the probability that a tabu search run gives a better solution than a hybrid genetic
algorithm run. A value below the lower horizontal line, indicating a confidence level
of 5 %, means that tabu search is significantly worse than the genetic hybrid. A value
above the upper line, indicating a confidence level of 95 %, means that tabu search
is significantly better than the genetic hybrid. The STAMP software indicates by
a bold line a statistical difference that remains significant even if one of the two
methods runs 2 times faster or slower.
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judicious. For example, for the travelling salesman problem, one of the best
heuristic methods available till now is a simple improving method, which is
based on the appropriate neighborhood. For the p-median problem, one of
the best methods is based on a POPMUSIC that does not embed other meta-
heuristic principles such as tabu search or simulated annealing. Finally, let
us mention that the evolutionary algorithms or scatter search implementa-
tions do not necessarily embed ejection chains, partial optimization or other
metaheuristic principles.

However, in our opinion, the researchers should be more careful concerning
the methodology for comparing iterative heuristics. Indeed, in the literature,
tables that formally contain no reliable information are too often presented,
and their authors draw conclusions that are not supported by the experiments
performed. This is why we hope that the last part of this chapter, where the
comparison of improving heuristics is presented, should lead to research topics
that will gain an increasing importance in the near future.

7.8 Annotated bibliography

In the literature there are relatively few works available that deal with design
methodology of heuristic methods. For example, the Journal of Heuristics has
very recently devoted a specific scope for this topic. Perhaps, this situation is
due to the fact that the metaheuristics are a relatively new domain, in which
each author who proposes a new paradigm desires to make publicity for his
own work. Indeed, our experience shows that the statistical tests induce less
affirmative conclusions than those which are sometimes expressed on purely
instinctive basis, leading to the choice of a computational effort specially in
favour of a method. Among works that try to unify the presentation of some
metaheuristics, let us mention:

[Hertz and Kobler, 2000]: This reference proposes a framework for the de-
scription of various methods that qualify as evolutionary, where
this term is not to be understood in the usual meaning used in the
present book, but in a less specific meaning, depending on the fact
that the methods embed data structures that evolve. In this chap-
ter, we prefer to describe these method as adaptive. Among sev-
eral methods considered in this reference are genetic algorithms,
scatter search, ant colonies, multipopulation genetic algorithms
and vocabulary building (strangely presented under the name of
adaptive memory programming).

[Taillard, 1998, Taillard et al., 1998]: These references present, under a uni-
fied framework, evolutionary algorithms hybridized with a local
search, artificial ant colonies, scatter search, GRASP-type proce-
dures as well as some tabu search principles.
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[Taillard, 2002]: This reference presents, under a unified framework, various
techniques for decomposing problems into subproblems and opti-
mizing them.

As far as the comparison of iterative heuristic methods is concerned,
references are virtually non existent, even if many works opined that the
researchers should use statistical tests in presenting their numerical re-
sults [Barr et al., 1995, Hooker, 1995, Coffin and Saltzman, 2000]. Moreover,
these few references only consider the quality of the solution produced by the
heuristic methods and there are almost no suggestions for comparisons with
varying computational effort. One of the only suggestions is to superpose ver-
tical bars, indicating the standard deviation of the measures, with the curve
(average quality/computational time). Such a diagram can be sometimes dif-
ficult to read, and does not provide the reader with enough meaningful infor-
mation about the significance of a curve to be above the others. . .



Part 111

Case Studies



8

Optimization of UMTS Radio Access Networks
with Genetic Algorithms

Sana Ben Jamaa, Zwi Altman, Jean-Marc Picard and Benoit
Fourestié

France Télécom RED, Département Interface Radio et Ingénierie pour les Réseaux
Mobiles, 38, rue du Général Leclerc, 92794, Issy les Moulineaux
zwi.altman@francetelecom. com

8.1 Introduction

Third generation (3G) mobile network, the UMTS (“Universal Mobile Tele-
communications System” ), will provide, in addition to the voice services, new
services and applications: Internet, transfer of data, video telephony, etc. Real
time (RT') services, with guaranteed bit rates, such as voice and multi-media
services and non-real-time (NRT) services such as downloading of files or
electronic messaging will both be supported. The deployment of the UMTS
networks in Europe involves a huge investment for the operators due to pro-
hibitive costs of infrastructures and licenses. The installation of the radio
access network represents approximately 80% of the total investments in in-
frastructures. In this context, the optimization of the radio access networks
becomes, for an operator, a fundamental stake enabling to save investments,
to reduce the number of sites to be deployed, and to guarantee good quality
of service for the users.

The majority of the operators make use of manual optimization, based on
empirical and nonsystematic methods. The main objective of this case study
is to automate network optimization, so as to test a range of configurations
much larger than the range permitted by manual optimization, to improve the
performances of the manually optimized networks and to save the time of radio
experts. The significant number of parameters to be optimized on one hand,
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and the complexity of the evaluation of the network on the other hand, make a
combinatorial optimization approach almost mandatory. The choice of the Ge-
netic Algorithm (GA) as the technique for optimization proved to be effective
and powerful for this problem [Altman et al., 2002, Ben Jamaa et al., 2003].
This network optimization is known as Automatic Cell Planning and the tool
performing this optimization as the Automatic Cell Planner (ACP).

This chapter is organized in the following manner: the first part briefly
presents the operation of UMTS networks, and the quantities involved in the
analysis of its performance. The second part defines the optimization problem
for planning the UMTS network. Next, we present the application of the
GA to the network planning problem, and finally, the results obtained for a
realistic network are analyzed.

8.2 Introduction to mobile radio networks

The objective of a mobile radio network, fixed by the licenses of operation,
is to provide a large number of users with the facility of reaching the net-
work using a portable terminal (telephone, computer, etc), starting from any
point within a wide territory. In general, the licenses define some specified
objectives for accessing network, or coverage, in terms of the percentage of
population covered or as the percentage of covered territory. The users must
be able to move within this territory without their communication quality
being excessively degraded.

8.2.1 Cellular network

In order to allow the users to be mobile, a radio channel connects the mo-
bile terminal to the network. The radioelectric signal is attenuated during
its propagation (diffraction, reflections etc). The received power at the hand-
set level must be sufficiently high so that the information intended for it be
correctly reconstituted. The powers of the various transmitters of the radio-
mobile system being limited, several access points for the network, called the
base stations, are installed within the territory (figure 8.1). A mobile which
moves within a territory is attached to the base station which provides it the
best radio link. A cell associated with a given base station is defined as the
zone where a mobile is attached to that base station. The transfer of the mo-
bile from one cell to another (which is also called handover) must be carried
out in a transparent manner for the user, without interruption of commu-
nication, or excessive degradation in the quality of service. In order to save
installation and maintenance costs of the sites, the operators carry out tri-
sectorisation (see figure 8.2). Three base stations with distinct antennas are
installed on the same site; typically, directive antennas are utilized separated,
in the horizontal plane, by angle of approximately 27 /3 radians.



8.2 Introduction to mobile radio networks 253
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Fig. 8.1. A mobile network. The base stations make it possible to cover the territory.

) (b)

(a) Omnidirectional antennas Tri-sectorial sites
Fig. 8.2. Tri-sectorization: the number of sites is divided by three in the case of
tri-sectorial sites (b) compared to the case where the antennas are omnidirectional

(a).

8.2.2 Characteristic of the radio channel

The use of the radio connection in the communication poses certain prob-
lems, related to the nature of the transmission medium. This medium is by
nature dispersive, it is common to all the users, and thus should be shared.
The radio spectrum, and consequently the capacity available for the radio
access, are generally limited by the regulations (imposed by the licenses). It
thus represents an expensive resource, which should be essentially saved, as
far as practicable. The radio channel is prone to multiple variations due to
the mobility of the users and the changes of the environment characteristics,
e.g. the shadowing or fast fading [Sizun, 2003]. The channel is disturbed by
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interferences, and the transmitted signals are propagated along multiple paths.
These phenomena vary in space and time.

Spectrum sharing and access methods

In mobile radio systems, the frequency band available for communication is
limited. This band must thus be judiciously used to achieve the maximum
number of communications. It is divided into several channels which are al-
located at the request of the mobiles or the base stations. The nature of the
transmission channels depends on the access method used. The three principal
techniques of multiple access, i.e. of radio resource sharing, are as follows:

Frequency Division Multiple Access (FDMA):

The oldest multiple access method is the FDMA method. Here, the fre-
quency bandwidth is divided into narrow bands around a carrier frequency.
For example, in the French radio-mobile system of the first generation, Radio-
com 2000, each channel occupied 25kH z. Each carrier (or channel) is used to
convey a single call, in one direction at a time (from the station to the mobile
or vice-versa). The capacity of the system is thus limited by the number of
carriers available.

Time Division Multiple Access (TDMA):

The TDMA technique is used in the radio-mobile systems of second gen-
eration like the GSM, where it is combined with FDMA method. The carrier
(radio frequency) is divided into N time intervals (TI) or time slots and can
thus be used by N terminals, each one using a particular TI. There are thus
several users, transmitted on the same frequency. The transmission in TDMA
is discontinuous: a mobile which transmits on the TI ¢ must wait for the TI
N +1i to transmit again. The capacity of the system is limited by the number
of carriers and the number of TI for each carrier.

Code Division Multiple Access (CDMA):

The principle of the CDMA access method is to modulate the useful signal
by a pseudo-random digital code with a frequency bandwidth much larger than
that utilized by the useful signal. This modulation results in the spreading of
the frequency spectrum of the signal. In reception, the signal is correlated with
a synchronized counterpart of the spreading code, which enables to restore
the initial information. The simultaneous access over a single carrier of several
users is made possible by assigning to each one an independent pseudo-random
code (orthogonal codes). The reconstruction of the original signal for a user is
carried out by applying the specific code assigned to this user, which results in
canceling the signals intended for the other users. This technique of spreading
the spectrum distributes the electromagnetic power on a frequency band much
broader than that necessary for the transmission of the useful signal. The
spectral density of power per user is low, the signal is almost undetectable
and not very sensitive to interference. Hence, the importance of Wideband-
CDMA or WCDMA systems, which belong to third generation systems, can
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be clearly understood. Their capacity is limited by the interference between
the signals and the number of codes.
The three access methods are presented in the figure 8.3.

Amplitude Amplitude Amplitude

Frequency Frequency Frequency
(a) FDMA mode (b) TDMA mode (c) CDMA mode

Fig. 8.3. Access Methods.

Modes of duplexing

Duplexing is the way in which the two directions of connection share the radio
resources. The upward link (reverse link or uplink, noted as UL) describes
the transmission of the mobile towards the base station. The downward link
(forward link or downlink, noted as DL) describes the transmission of the base
station towards the mobile.

In frequency duplexing or FDD (Frequency Division Duplexing), the base
station and the mobile terminal use different frequencies of transmission and
they transmit simultaneously. This mode is of particular interest in the macro-
cellular systems, because it does not require synchronization.

In temporal duplexing or TDD (Time Division Duplexing), the base sta-
tion and the mobile terminal use the same carrier, but transmit at different
moments. These two modes of duplexing are presented in the figure 8.4.

8.2.3 Radio interface of the UMTS

The third generation mobile radio systems aim at providing a large variety of
services such as voice, video, Internet, and data transfer, with bit rates capable
of reaching 2 Mb/s in downlink. Two access modes for the radio interface of
the UMTS were specified by the organizations of standardization: the first is
associated with the FDD duplexing mode (FDD/WCDMA) and the second
with a TDD (TDD/WCDMA) mode [Holma and Toskala, 2000].
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Fig. 8.4. Duplexing modes.

In this chapter, our interest is focused on the FDD/WCDMA mode, which
is used in the first version of the UMTS deployed in Europe. In frequency
division duplexing (FDD), the uplink and downlink signals cannot interfere.
For the same direction of connection, the users share the same frequency
band and interfere mutually, which limits the capacity. The performances of
the network, in terms of coverage, capacity and quality of service, and its
optimization are thus closely related to the management of the interferences.
For this reason, the following paragraph will describe the various types of
interferences in the system, followed by the descriptions of the concepts of
capacity, coverage and macro-diversity.

Evaluation of the interferences

Let us consider the communication of a mobile with a given base station. This
communication is interfered by the communications of the other mobiles. In
each direction of connection, the interferences caused by the communications
in the same cell are distinguished, and denoted as the “intra cellular” interfer-
ence, and interferences caused by the communications of the mobiles situated
outside the cell, are denoted as the “inter cellular” interference. To better
understand the different types of interferences, a simple example of a two-cell
system is described below.

Intracellular interferences

The figure 8.5 illustrates the intracellular interference experienced by the com-
munication of a mobile m;. In the downlink, the mobile m; receives a useful
signal coming from the base station, but it also receives a collection of signals
transmitted to the other mobiles of the cell. At the transmission antenna,
these various signals are orthogonal (synchronous multiplexing by orthogonal
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codes). Because of the multipath propagation, the orthogonality is partially
preserved on reception. A factor of orthogonality can be defined which mea-
sures the degree of orthogonality. The expression of the intracellular interfer-
ence received by a mobile m; (in the downlink) is as follows:

Qorth ZPJTCh + Pcch — Psch | + Psch
oL _ i#i
i Aff(B,m;)

In this equation:

Qorth is the factor of orthogonality, ranging between 0 and 1. For
Qorth — 0, the orthogonality is perfect; on the contrary, if appip —
1, the orthogonality is null.

pren is the power of transmission of the base station towards the mobile
m; with j # 4.
Poeon is the power of transmission of the common channels. These com-

mon channels, or beacons, are used to provide information or sig-
nalling in the cell. They are transmitted at constant power.
Pscn is the power of the synchronization channel. It is a particular chan-
nel which is not orthogonal to the other channels.
Aff (B, m;) is the path loss of the signal between the base station B and the
mobile m;.

In the uplink (from mobile to base station), the signal transmitted by the
mobile m; is interfered by the signals coming from all the mobiles belonging
to the same cell B. These signals are not synchronized, and the codes of Gold
(scrambling codes that differentiate the users) are used. The signals of the
other users are thus perceived as white noise [Holma and Toskala, 2000].

D Dy —
pory Aff( B ,m;)
In this equation:

P; is the transmitted power of the mobile of index m; with j # 4.
Aff(B,m;) is the path loss between the base station and the mobile m;.
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Fig. 8.5. Intracellular interferences related to mobile m;.

Intercellular interference.

The figures 8.6 and 8.7 illustrate the intercellular interferences that degrade
the communication of the mobile m; in a system with two cells. In the general
case of a network with NV stations, the mobile m; attached to a station of index
B is interfered by the signals originating from all the other base stations of
the network in the downlink:

Ptot

It =) a5re
by Aff(b,m;)
In this equation:
plet is the total transmission power of the base station of index b.

A ff (b,m;) is the path loss of the signal between the base station of index b
and the mobile m;.

In the uplink, the intercellular interference is due to the transmission of all
the mobiles in the other cells. The transmission of a mobile attached to the
base station of index B is perturbed by the following signal:

rmfer Z ff

j¢B
In this equation:

P; is the transmitted power of a mobile of index j, attached to a
base station other than B.

Aff(B,m;) is the path loss of the signal between the base station B and the
mobile of index j.
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Fig. 8.6. Downlink intercellular interference.

Fig. 8.7. Uplink intercellular interference.

Coverage and capacity
Capacity.

The profitability of a network is closely related to its capacity, i.e. with the
quantity of information that can be exchanged simultaneously. In a mono-
service context, the number of users defines the capacity. In a UMTS system,
where several services are offered and where consumption in radio resources
differs from one service to another, rather than relating to the number of
mobiles, the capacity can be defined as the aggregate bit rate transmitted in
the network for example. The maximum number of communications does not
depend solely on the “hard” resources, namely the number of codes available,
but also on the interferences, and therefore on the distribution of traffic in
the network and its characteristics. Hence the concept of “soft capacity” can
then be introduced.

Coverage.

A mobile is covered by the network if the three following conditions are sat-
isfied:

e It can decode the information from the network. The mobile must receive
at least a pilot signal with a sufficient quality. Hence, the term “pilot”
coverage is used.

e The power necessary for the transmission of the station towards this mobile
should be lower than the maximum power of a traffic channel. It can then
be said that the mobile is covered in the downlink.
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e The necessary transmission power of this mobile towards the base station
is lower than the maximum transmission power of the mobile. The mobile
is then covered in the uplink.

In the three cases, the coverage of a mobile strongly depends on the interfer-
ences, and therefore on the distribution of the traffic in the network. Thus,
a base station that serves many mobiles can see that its zone of coverage is
reduced. For example, in the figure 8.8, the station b is much more loaded
than its neighbor ¢ (continuous line) and its coverage is thus lower. This phe-
nomenon is denoted as cell breathing. If overlapping with neighboring cells is
not sufficient, then coverage holes will appear, and calls may be blocked or
dropped. To avoid coverage holes related to the increase in traffic, admission
control algorithms should be implemented. Hence coverage and capacity are
strongly interdependent in the WCDMA networks.

Fig. 8.8. Cell breathing. In continuous line, a situation in which the station b is
much more loaded than the station c.

Macro-diversity.

A mobile connects to the station which offers the best quality of radio link
for the pilot channel. When a mobile passes from one cell to another, the
pilot of the first station weakens, and that of the second gradually grows.
When the intensity of the two pilots is rather close (3dB difference for ex-
ample), a radio link is established with each of the two cells (see figure 8.9).
The mobile is then attached to the two base stations at the same time, mak-
ing it possible to combat, for example, the effects of fading and shadowing
[Durrenbach et al., 2003], and to guarantee continuity of service, namely mo-
bility between the two cells. The mobile recombines the two received signals,
in order to extract the maximum information (the Mazimum Ratio Combin-
ing algorithm). In the uplink, the mobile is received by the two base stations
and the network reconstitutes the useful signal by evaluating the best sig-
nal received on the two links, at every moment (using a selection algorithm).
In the particular case where the base stations belong to the same site, the
recombination algorithms can be used in the uplink.
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Fig. 8.9. Establishment of two radio links, or macro-diversity.

8.3 Definition of the optimization problem

In this section, we present the optimization of the parameter setting of the
UMTS networks. In the first paragraph, the various phases of the process of
planning are described, by specifying the role of an automatic tool for planning
in this chain. In the second paragraph, the optimization problem is defined,
by specifying the parameters and the objectives.

8.3.1 Radio planning of a UMTS network

The process of radio planning of UMTS networks can be divided into several
stages presented in the figure 8.10. Initially, dimensioning consists in estimat-
ing the density of sites necessary for the coverage of the territory and choosing
the sites among a set of possible sites. This choice is constrained by the in-
frastructure costs and the authorizations of installation of the antennas. For
the 3G networks, the operators thus seek to maximize the reuse of the existing
GSM sites.

Once the first phase is completed, the network is parameterized to serve
the users as well as possible. The term design is often associated with this
stage. In order to satisfy a significant traffic demand with a good quality of
service, the operator must parameterize the network in order to minimize
interferences. This optimization is a difficult problem that involves hundreds
of parameters. Hence, within this framework, the use of an automatic tool for
planning is relevant.

The automatic tool for cell planning, the ACP, involves the search for an
optimal set of parameters that allows the network to adapt itself as well as
possible to satisfy the traffic demand. The evolutions of the network such
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Fig. 8.10. Stages of the planning of a mobile network.

as the introduction of a new service, or the appearance of zones of strong
traffic (hot spots), can make the existing parameter setting nonoptimal. It is
thus necessary to adapt the parameter setting by using the ACP. In addition,
it is possible that the optimization problem does not have a solution with
acceptable quality. It is then essential to add base stations to ensure coverage,
which is known as network densification. If the optimization of the parameter
setting is more localized (i.e. modifications centered around a particular site),
one can also use the automatic tool for planning. Thus, as the figure 8.11
shows, the ACP receives an initial configuration of the network as an entry
and then determines an optimized network. The initial network can result
from an initial deployment or roll out, from a process of manual dimensioning
or from an operation of densification. The solution suggested by the ACP is
then evaluated, before being implemented on the terrain.

8.3.2 Definition of the optimization problem

The optimization problem is defined by the parameters to be adjusted and
the objectives to be optimized.

The optimization parameters

Two types of parameters can be distinguished: the antenna parameters and
the system parameters.

Antenna parameters.

Three parameters characterize the antenna of a tri-sectoral site: the type of
antenna, its tilt and its azimuth.
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Fig. 8.11. Utilization scenarios of a cell planning tool in the design process.

Type of antenna: The antenna type influences the extent and the form of the
zone covered by the base station. It also has an effect on the interfer-
ence created on the nearby cells. For sectorial sites for example, one uses
reflector antennas, which are characterized by the width of the principal
lobe (beam) of their radiation pattern in two perpendicular planes. A pool
of various types of candidate antennas is defined from which the genetic
algorithm chooses the antennas.

Tilt: The tilt of an antenna corresponds to its angle of inclination in a vertical
plane. By “tilting” the antenna downwards (corresponding to an increase
in the angle of the tilt), the zone covered by the antenna decreases and the
intensity of the average power received in the cell increases. The influence
of the tilt on the surface covered by the antenna is illustrated in the figure
8.12. The tilt can be modified mechanically (the angle of the antenna
changes physically), or electrically, by modifying the radiation pattern of
the antenna, without changing its inclination. Tilting an antenna requires
human intervention on the site, which introduces a cost related to this
parameter modification. In the near future, a remote electrical tilt will be
possible.

Azimuth: The azimuth angle corresponds to the orientation of the principal
lobe of the antenna in the horizontal plane. Ideally, in a tri-sectorial site,
the orientation of the antennas is separated by 27/3. A modification of
the azimuth angle can be useful following a masking effect due to the
landscape or buildings, which can cause undesirable reflections and inter-
ferences.
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(a) (b) (c)

Fig. 8.12. Zone covered by an antenna tilted by 10 (a), by 6 (b), and the super-
position of both coverages (c).

System parameters.

Pilot powers: The power of the pilot channel is the only system parameter

considered in the optimization. The pilot power indicates to the mobile
the cell to which it should be attached, thus defining the area of the
cell. According to the received pilot powers, the mobile decides how many
stations it will be attached to. This renders, on one hand, the possible
mobility throughout the network, and, on the other hand, reinforces the
radio link.

Optimization objectives

The objectives of the optimization are the following:

to satisfy the objectives of coverage for the various services and the various
situations (outdoor, in car, indoor. ..);

to maximize the capacity of the network;

to dimension the zones of macro-diversity, so as to ensure the continuity
of service;

to improve the quality of service (QoS);

to minimize the cost related to the implementation of the solution. An
economic cost is associated with each type of parameter modification.

A cost function incorporating the relevant objectives (criteria) is used. The
choice of the criteria and the way to aggregate them depend on the strategy
implemented by the operator. For example, for the criterion of coverage, the
priorities granted to the various services influence the choice of the services
to optimize. In a similar way, the compromise desired between coverage and
capacity intervenes in the choice of the criteria and their weightings.



8.4 Application of the genetic algorithm to automatic planning 265

8.4 Application of the genetic algorithm to automatic
planning

The general principle of the automatic tool for planning is described in fig-
ure 8.13. A genetic algorithm guides a generation of networks towards a global
solution corresponding to a global optimum or a good local optimum. At each
iteration, a fast UMTS network evaluator calculates the various quality crite-
ria which allows “to give a mark” to the suggested network, namely to assign
a fitness to the parameter settings. Then, the GA uses these “notes” and
proposes a new set of parameters for the network.

Genetic
Algorithm

Resulty for
quality criteria

New parameter
settings

Fast network
evaluator

Fig. 8.13. General diagram of the automatic tool for planning.

8.4.1 Coding

To implement the GA, the coding of information is carried out in the following
manner: a chromosome corresponds to a particular set of parameters of the
network. Each chromosome consists of several genes. A gene corresponds to
the parameter setting of a particular base station. It is thus a quadruplet
consisting of the type of antenna used, its tilt, its azimuth and the power of
the pilot channel (figure 8.14).

Chromosome | BS; | lgs;] BS; [B&\L |BSN|

. ~
. , S s
. , N ~
L L N -

Parameter setting=(Antenna
Gene | type, tilt, azimuth, pilot power)

Fig. 8.14. Coding of the various parameter settings of the network.
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8.4.2 Genetic operators
Selection

The traditional selection operator, the roulette wheel selection is used, guaran-
teeing the increase in the number of high quality individuals from generation
to generation.

Crossover

The traditional crossover consists in choosing, at random, an index of station
in the network, and exchanging the parameters of the stations on both sides
of this point, as shown in the figure 8.15.

[BS,[BS;[BS:|Bs.[ ... [BSx| | BS: | BS: | BS; LT AT

[ | e

BS, BS, BS, BS, ..  BSy Bs4| )]

Fig. 8.15. Crossover at a point.

This crossover operation can be carried out at two points of the chro-
mosome, which consists in exchanging the configurations (parameters) of the
stations ranging between two indices chosen at random (shown in figure 8.16).

[BS:|BS:[BS;|BS.[ .. [BSy] BS4| .. |BSy]

[ e
BS, BS, BS; BS, ..  BSy BS, BS, ... BSy

Fig. 8.16. Crossover at two points.

These two examples of crossover do not take into account any informa-
tion on the geographical proximity of the various stations in consideration,
since the indices of the stations in the chromosome do not reveal their rela-
tive positions. It would be more judicious, for our problem, to exchange the
configurations between two chromosomes for the same zone of the network.
A method of geographical crossover is proposed in [Meunier et al., 2001]. Tt
suggests to choose a site at random, and to exchange the configurations of all
the stations contained within a circle with this chosen site at the center, for
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a given radius, which can also be modified in a random manner (see figure
8.17).

Chromosome 1 Chromosome 2

Exchanged zones

Fig. 8.17. Geographical crossover.

Mutation

The mutation operator acts in two phases (figure 8.18). It initially chooses
the gene to be modified, i.e. the base station, then a parameter of this base
station.

8.4.3 Evaluation of the individuals

The evaluation of the individuals is carried out by a statistical evaluation
module of the quality of UMTS networks. This module enables us to carry out
a large number of simulations in a short time, making it possible to compare
the quality of the networks for a large number of different configurations.

During the evaluation, the basic quantities of a UMTS network, such as
the transmitted powers of the mobiles and base stations, the loads and the
interferences in both uplink (UL) and downlink (DL), are calculated taking
into account traffic distribution in the network, macro-diversity, load control,
etc. These quantities influence the calculation of the cost function.

8.5 Results

In this section we describe an example of application of the GA to the op-
timization of a UMTS network. The studied network consists of 172 base
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Fig. 8.18. The mutation operator acts in two steps.

stations, on tri-sectoral sites (figure 8.19). It is characterized by a heteroge-
neous, urban and dense urban environments, and an inhomogeneous traffic,
which is denser in the zone of strong density of sectors (shown by the zone on
the right of the figure). An initial network, manually optimized, is introduced
as the input to the ACP. The hilly landscape shown in the figure renders the
task of manual optimization particularly difficult.

For each base station, three parameters are optimized: the type of antenna,
selected from six candidate antennas, the tilt and the powers of the pilot
channels. A total of 516 parameters are set for possible modification by the
GA. In this example, we assume that the azimuths of the antennas are fixed,
the values being imposed by the constraints of cohabitation with an existing
GSM network. For a problem of this size, the GA converges in approximately
3—4 hours on a UNIX workstation. This relatively short optimization time can
be attributed to the ultra-rapid evaluation algorithms of the network, which
ensure that the evaluation time of the cost function is particularly short. It
can also be attributed to the landscape of the of the solution space.

The GA modifies the parameters of the majority of the base stations. The
impact of optimization on the tilts of the network is presented in the figure
8.20. For the initial network (shown in black), the tilts of approximately half
of the antennas have an identical value, which result in a significant peak in
the center of the histogram. High tilts make it possible to ensure the network
coverage. The results of the optimized network show that the tilts of the
majority of the antennas have been adjusted. Indeed, the large number of



8.5 Results 269

Fig. 8.19. UMTS network with 172 base stations in a heterogeneous environment,
urban and dense urban. The majority of the sites are tri-sectoral (three base stations
are installed on the same site).

configurations tested by the GA produces a wide spread histogram. Similar
results are obtained for the powers of the pilot channels: spreading out of the
histogram and reduction of the powers of the majority of the pilot channels.

The adjustments of the tilts, of the powers of the pilot channels and the
choice of best alternative for the antennas lead to a reduction of the interfer-
ences and an optimization of the traffic allocation to the base stations of the
network. The improved usage of the radio resources results in a significant
gain of capacity and quality of service. Next, the quality of the optimized net-
work is evaluated and the improvement brought about by the optimization is
analyzed.

8.5.1 Optimization of the capacity

The capacity is a central indicator of the profitability of a network, and should
be evaluated carefully. For a single service, the capacity is proportional to the
number of served mobiles. For a multi-service traffic, one can use either the
aggregate bit-rate, or the rate of successful transmissions. For packet mode,
erroneous bits are retransmitted.

The figures 8.21 and 8.22 present the evolution of the traffic demand as a
function of the satisfaction rate for 64 kb/s and voice services respectively.
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Fig. 8.20. Histogram of the tilts of the initial network (in black) and of the opti-
mized network (in gray).

The product of the traffic demand and the satisfaction rate indicates the
capacity of the network. For a given satisfaction rate, the capacity of the
optimized network increases by approximately 30 % compared to the initial
network for the 64 kb/s service, and by 10% for the voice service. The opti-
mization has been carried out for a target (dimensioning) service with high bit
rate, which explains the more significant gain obtained for the 64 kb/s service.
The optimized network leads to comparable capacity gains for various levels
of traffic demand. This result is important because it shows the robustness of
the solution obtained by the GA with respect to the traffic.

8.5.2 Optimization of the loads

The improved usage of radio resources for the optimized network is translated
into a lower average load value of the base stations of the network. Conversely,
for a given average load value, the optimized network can serve more traffic.
The variation of the served traffic as a function of the average network load is
presented in the figures 8.23 and 8.24. The improvement in DL is particularly
significant due to the optimization of the pilot channel powers.
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Fig. 8.21. Traffic demand as a function of satisfaction rate for 64 kb/s service.
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Fig. 8.22. Traffic demand as a function of satisfaction rate for the voice service.
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Fig. 8.23. Served traffic as a function of the average UL load.
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Fig. 8.24. Served traffic as a function of the average DL load.

8.5.3 Optimization of the intercellular interferences

The optimization of the network and the gains in capacity are closely related
to the reduction of the interferences. It is thus particularly interesting to ob-
serve the interference maps in the network. Figures 8.25a and 8.25b present
the intercellular interferences of the initial and the optimized networks respec-
tively. The gray levels correspond to the received powers of interference (figure
8.25¢). The clearer interference map of the optimized network highlights the
significant reduction of the intercellular interferences. Figure 8.25d illustrates
that the proportion of highly interfered surfaces is considerably reduced in
the optimized network.

8.5.4 Optimization of the coverage

The coverage of the network is satisfied for the initial and the optimized net-
works for both UL and DL and for the three services studied: voice, 64 and
144kb/s. The analysis of the results shows that the network is downlink lim-
ited, namely part of surface is on the limit of coverage. The DL coverage for
the 144 kb/s service for the initial and optimized networks are presented in
figures 8.26a and 8.26b respectively. The gray level at a given point represents
the power of the traffic channel necessary to cover a mobile located at this
point (see figure 8.26¢). The shift towards clear colors for the optimized net-
work illustrates the improved usage of the radio resources. The proportion of
surface on the limit of coverage is presented in figure 8.26d. The surface on
the limit of coverage has practically disappeared for the optimized network.
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Fig. 8.25. Intercellular interferences of the initial network (a) and the optimized
network (b). The legend is presented on (c) and the comparison between the highly
interfered surfaces with Iinter > —60dBm on (d).

8.5.5 Optimization of the probability of access

The probability of access to the network is a significant indicator of the quality
of service offered. A mobile can establish a communication if it is covered in
UL and DL by a traffic channel and by the common channels. Figure 8.27
presents the probability of access for the voice service with a penetration
margin of 15 dB added to the signal path-loss. This margin takes into account
an additional attenuation corresponding to the penetration inside buildings.
The gray levels of the meshes represent the probability of access defined by
the legend (figure 8.27c). The proportion of surface having a probability of
access below 98 % has decreased considerably for the optimized network. The
comparison between the surfaces with probability of access below 98 % is
presented in figure 8.27d.

The study of this example has highlighted the fundamental contribution
of optimization for the improvement of the network performance. Automatic
planning makes it possible to improve usage of the available radio resources,
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Fig. 8.26. DL coverage maps of the traffic channels for the initial network (a) and
the optimized network (b). The legend is presented on (c) and the comparison of
surfaces on the limit of coverage on (d).

to decrease the level of interference in the network, to increase its capacity
and to improve the quality of service.

8.6 Conclusion

This chapter has described the use of the Genetic Algorithm for the opti-
mization of UMTS networks. The Genetic Algorithm adjusts the antenna
parameters and the powers of the pilot channels of the network base stations.
The number of parameters to be optimized varies typically between a few
tens and several hundreds. An efficient evaluator has been developed to allow
very fast calculation of the quality criteria of the network from which the cost
function is computed. The large number of parameters to be optimized on the
one hand and their interdependence on the other hand make the development
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Fig. 8.27. Probabilities of access for the initial network (a) and the optimized
network (b). The legend is presented in (c) and the percentages of surface with a
probability of access lower than 98% in (d).

of optimisation solutions based on deterministic heuristics particularly diffi-
cult and render the Genetic Algorithm a natural tool, well adapted for this
problem.

The optimization of the network allows to considerably improve its perfor-
mances in terms of capacity, coverage and quality of service. For an inhomo-
geneous network, the gain obtained by automatic optimization will be more
obvious. Furthermore, for networks with inhomogeneous traffic, heterogeneous
environments or with hilly landscape, manual optimization is particularly dif-
ficult. In these cases, the optimal solutions diverge from a homogeneous para-

meter setting and the optimization gains, obtained by the Genetic Algorithm,
are considerable.
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Finally, the optimization of the network by the Genetic Algorithm allows
to improve the quality of manually optimized networks and to reduce the
time necessary for this repetitive task by radio experts. The performance
enhancement induces the reduction of infrastructure investments.
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The constant increase in air traffic, since the beginning of the commercial
aviation, has led to problems of saturation on airports, approaching areas,
or higher airspace.Whereas the aircraft are largely optimized and automated,
the air traffic control is still essentially relying on human experience.

The present case study details two problems of air traffic management
(ATM) for which a genetic algorithm based solution has been proposed. The
first application deals with the en route conflict resolution problem. The sec-
ond application deals with the traffic management problem in an airport plat-
form.

9.1 En route conflict resolution

An air traffic control (ATC) can be represented by a set of filters, where
each filter has a specific objective and manages distinct spatial and temporal
horizons. One can coarsely distinguish five levels:

In long term (more than 6 months), the traffic is organized in a macroscopic
manner. For example, here people are concerned with the traffic orienta-
tion diagrams, the measures of the committee regarding the hourly sched-
ule or the inter-centre agreements and the agreements with the military
who allow their own air zones to be used for civil aviation during peak
periods e.g. in the Friday afternoon.
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In shorter term, pre-regulation is often talked about: it consists in organizing
a day of traffic, on the day before or two days before. At this stage, one
has a clear idea about most of the flight plans, the control capacity of each
center ! is well known. The maximum flow of aircraft that can penetrate
in one sector? is called the sector capacity. This job is performed by the
CFMU 3.

The very same day, adjustments are carried out according to the last events.
The transatlantic traffic, for example, is taken into account at this stage.
Airways, taking off hours are adjusted, unused time slots are re-allocated,
weather conditions are taken into account. Generally, this job is performed
by the FMP 4 in each center.

The last filter is the tactical filter: it deals with the control inside a sector.
The average time spent by an aircraft in a sector is about fifteen minutes.
Here, the visibility of the controller is a little higher as it receives the flight
plans a few minutes before the entry of the aircraft into the sector. The
controller ensures the task of monitoring, resolves conflicts and performs
coordination with the neighbouring sectors. In this context, it is desirable
to specify the definition of a conflict: two aircraft are known to be in con-
flict when the horizontal separation distance between them is lower than
5 nautical miles® and their difference in altitude is lower than 1000 feet®.
The methods used by the controllers to resolve conflicts are mostly based
on previous experience and very rarely require any creative knowledge.
When several such couples of aircraft interact in the same conflict, they
start by simplifying the problem in order to have only elementary conflicts
to solve.

The emergency filter is not supposed to intervene except when the control
system is found missing or is weakened: for the controller, the safety net
predicts the trajectory of each aircraft with a temporal horizon of a few
minutes, using the last radar positions and the continuing algorithms, and
sets off an alarm in the event of a conflict. It does not propose a solution
for the detected conflicts. On board, the TCAS7 is supposed to avoid such
a collision. The temporal prediction is less than a minute (between 25 and
40 seconds). It is then too late for the controller to maneuver the aircraft

'In France the air traffic control is de-centralized into five centers (Paris, Reims,
Brest, Bordeaux and Aix en Provence), each center manages a part of the french
airspace.

2Each control center manages between 15 and 20 elementary sectors which can
be gathered according to the traffic density and the available controller teams.

3“Central Flow Management Unit”, located in Brussells.

4“Flow Management Position”

51 nautical mile is equivalent to 1852 meters

Sone foot is equivalent to 30.48 cm.

"“Traffic alert and Collision Avoidance System”: an embarked system for aircraft
which was made mandatory by the United States for all aircraft carrying more than
30 passengers.
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as it is estimated that it requires a minimum duration of 1 to 2 minutes
to analyze a situation, to find a solution and to communicate it to the
aircraft. Currently, the TCAS detects the surrounding aircraft and delivers
an advise for solving the conflict to the pilot (for the moment in the
vertical plane). This filter must solve the non-foreseeable conflicts like, for
example, a plane exceeding its assigned flight level, or a technical problem
which would significantly degrade the performances of the aircraft.

The application proposed in this section deals with the tactical filtering:
knowing the positions of the aircraft at a given moment and their future
positions (with a given precision), which are the maneuvers to be ordered
to these aircraft so that the trajectories do not generate any conflict and
minimize the generated delay.

The solution is based on a certain number of assumptions.

e An aircraft cannot modify its speed (or can, but slightly), except during
the period of descent.

e It cannot be considered that an aircraft flies at a constant speed, except
possibly when it is leveled and when there is no wind. Moreover during
climb and descent, its trajectory is not rectilinear. Hence it is almost im-
possible to analytically describe it. The evaluation of the future positions
of an aircraft requires the use of a simulator.

e Aircraft are constrained in their turning rates, generally pilots prefer lat-
eral maneuvers than vertical maneuvers, except during climb or descent.

e Although, nowadays autopilots are largely more powerful than human pi-
lots (in normal flight situations), for the moment it does not appear real-
istic to consider those trajectories which are not achievable by a human
pilot.

e Uncertainties in climbing and descending rates are very large (between
10% and 50% of the vertical speed). During cruising, uncertainty in speed
is reduced (in the vicinity of 5%). Laterally, uncertainty does not grow
with time, as an aircraft, in general, holds its altitude quite well during
cruising.

As trajectory prediction can only be done by a simulator, it is almost im-
possible to search for the analytical solutions for the conflict resolution prob-
lem and the implementation of traditional optimization methods employing
gradient based techniques or the Hessian criterion is impossible. However, the
principal difficulty arises essentially from the complexity of the problem itself.

The first part of this chapter is devoted to the introduction of some defin-
itions which facilitate to understand the complexity of the conflict resolution
problem. The second part is devoted to a short history of the algorithms tested
for this problem and their limitations. The third part details the modeling of
the problem. The development of the genetic algorithm for the problem is de-
tailed in the fourth part, which is followed by the numerical results obtained.
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9.1.1 Complexity of the conflict resolution problem
A conflict can be defined as follows:

A potential conflict is defined as a conflict between two aircraft
during a given time window of trajectory forecast, taking the uncer-
tainties in trajectories into account.

The relation “is in conflict with”, or “is in potential conflict with”, defines an
equivalence relation. The equivalence classes associated will be called “clus-
ters” of conflicting aircraft or simply “clusters”.

A cluster of size n can involve up to % potential conflicts. Consid-
ering only the horizontal plane, it was shown [Durand, 1996] that the entire

set of the acceptable solutions contains 2™ conmected components, under
the assumption that a local optimization method (continuous deformation of
trajectories) has been used which requires as many executions of the search
algorithm. Thus, for a 6 aircraft cluster, it represents 32768 connected compo-
nents. In practice, if the performances of the aircraft are taken into account,
all the connected components do not need to be explored. Nevertheless, the
theoretical presence of as many disjoined sets and the remote possibility of
knowing a priori which set contains the optimal solution make the problem
strongly combinatorial. By relaxing the separation constraint, the problem be-
comes similar to a global optimization problem comprising at least as many
local optima as the connected components.

The addition of the vertical dimension does not reduce the combinatorial
character of the problem as one does not simultaneously propose a maneuver
in the vertical and the horizontal planes.

9.1.2 Existing resolution methods
Operational approaches

The first air traffic  control automation project (AERAIII®
[Niedringhaus, 1989]) was American and appeared in the beginning of the
80s, but it was unable to solve clusters of size 3 or more. The European
project ARC2000° [Fron et al., 1993] proposed a method of continuous defor-
mation of four-dimensional tubes to optimize the trajectory of the n 4 1"
aircraft in an environment of n previously computed trajectories. This model-
ing did not take uncertainties into account and was unable to deal with high
traffic densities. It could not find the global optimum for large clusters and
only used an iterative method (the trajectory of the first aircraft is defined
first, then that of the second, by considering the trajectory of the first plane
as a constraint and so on...). Finally the Experimental European project
FREER!' [Duong and Faure, 1998], implemented in 1995, proposed to offset

8«Automated In-Road Air Traffic Control”
9«Automatic Radar Control for the 21%* Century”
10 «Free-Road Encounter Resolution”
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the task of solving the conflict aboard aircraft. The problem of coordination
between aircraft is managed by employing priority rules, which is like using
an iterative method as in ARC2000. It was unable to deal with large clus-
ters [Granger, 2002].

Theoretical approaches

Among the theoretical approaches employed for the problem, we can first
mention the reactive techniques of Zeghal [Zeghal, 1994]. According to this
method, aircraft are “attracted” by their objective and pushed back by the
close aircraft. The method seems to perform satisfactorily when the density
is low, but becomes chaotic when the traffic is dense. In addition, the model
assumes that flights are completely automated, as trajectories can be con-
tinuously modified. Similar approaches using the potential fields are tested
by the aeronautics department of Berkeley [Gosh and Tomlin, 2000], but for
the moment they are unable to solve more than 3 aircraft clusters. This was
very similar to the performance shown by the neural networks based meth-
ods tested in LOG(CENA-ENAC) ! [Durand et al., 1996] which could not
be extended to the cases of complex clusters. Lastly, among the global ap-
proaches for complex clusters (involving more than five aircraft), the first
major work was done by Feron [Frazzoli et al., 1999] . He used semi-definite
programming to determine the direction of resolution for each pair of conflict-
ing aircraft. Then, a convex optimization method involving convex constraints
is implemented to calculate the maneuvers. However, this method does not
give an acceptable solution in all cases. The addition of a random noise helps
to improve the success rate. The simplified framework of the selected model
(assuming constant speed, horizontal maneuvers, no uncertainty. . . ) leaves lit-
tle scope for its successful application in complex situations. Lastly, the LOG
also tested an Interval “Branch and Bound” type method [Médioni, 1998],
which could optimally solve the problem for small clusters (four aircraft), but
was not able to extend it successfully to more significant clusters, the size of
the search space becoming too significant.

Till date, only a genetic algorithm based algorithm could solve large clus-
ters (up to thirty aircraft) in a reasonable time.

9.1.3 Modeling of the problem
Taking uncertainty into account

First of all, a detection time window T, is defined and a simulator evaluates
the future positions of the aircraft in the time window. The simulator takes
into account uncertainties in the horizontal and vertical speeds of the aircraft,

1 Global Optimization Laboratory of the Centre d’Etudes de la Navigation Ari-
enne Navigation and the Ecole nationale de I’Aviation Civile
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as shown in figure 9.1. Time is discretized in practice employing 15 seconds of
sampling steps. In the horizontal plane, the aircraft is represented by a point
at the initial moment. In due course of time, this point becomes a segment
whose length keeps on increasing. When direction is changed (at ¢t = 4), the
segment gets deformed while following the new speed vector . The aircraft is
then represented by a parallelogram. Implementing a new change of heading
(at t = 7) transforms the parallelogram into a hexagon and, more generally
speaking, into a “convex”. In the vertical plane, a cylinder can be defined
whose height grows with time. When the plane reaches its requested flight
level (at t = 8), the top of the cylinder does not change its altitude any more
and the bottom of the cylinder continues to go up until the flight level is
reached.
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Fig. 9.1. Modeling the uncertainty.
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Fig. 9.2. Maneuvering in the vertical plane.

Conflict detection

To detect potential conflicts between aircraft, we need to measure, at each time
step, the horizontal distance between the convexes and the vertical distance
between the cylinders representing the two aircraft. A conflict occurs when
the vertical and the horizontal standards are simultaneously violated.

Modeling the maneuvers for avoidance

In order to respect both pilots and aircraft performances we define simple
maneuvers: in the horizontal plane, a maneuver is a heading change of 10, 20
or 30 degrees to the right or to the left. The maneuver begins at time ¢y and
ends at time ¢;. In the vertical plane, the maneuvers proposed depend on the
phase of flight in which the airplane is. Thus, as shown in figure 9.2, when the
aircraft is climbing, it can stop its climb at ¢y and resume its climb at ¢;. In
the cruising phase, it can descend to the nearest lower flight level (1000 feet
down) at to and join the initial flight level at ¢;. When the aircraft is less than
50 nautical from the beginning of its descent, it can anticipate its descent at
to and stop descending at t; to join its trajectory of descent. In order to make
the maneuver achievable, only one maneuver is given to the pilot at a time.
A new maneuver could be proposed to him only when the first maneuver is
finished.

A maneuver is thus modeled by three variables. The first is a discrete
variable indicating the type of maneuver (10, 20, 30, —10, —20, —30 degrees,
or vertical maneuver), the two others, tg and t1, are integer variables indicating
the beginning and the end of the maneuver. A resolution of a n aircraft cluster
is thus modeled by 3n variables.
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Real time management

The resolution is operated on the forecast time window Ty, (a fixed value, cho-
sen between 10 and 15 minutes) and the situation is updated each § minutes
(2 or 3 minutes in practice). The figure 9.3 details the real time modeling.
Three periods are distinguished in the time window. The first one is the time
duration of § minutes which is called the locked period. No modification of
trajectory can be effected during this period. Indeed, during the time neces-
sary for evaluation of the situation, the resolution of possible conflicts and
the transmission of the orders of maneuvers, the aircraft continue to fly. It is
consequently not possible to modify their trajectories. The following period is
called the final period, because the orders of maneuvers given for this period
could not be modified during the next iteration. The last period is the pe-
riod of predicted maneuvers. These maneuvers will be reconsidered during the
next iteration. Because of uncertainty, certain conflicts can disappear when
one approaches the point of conflict.
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Fig. 9.3. Modeling in real time.

The traffic simulator

The traffic simulator controlled CATS!? is an arithmetic simulator which uses
a tabulated model to make aircraft fly. It takes into account flight plans for

12Complete Air Traffic Solver
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one day of traffic. Every ¢ minutes (2 or 3 minutes in practice), the simulator
forecasts the trajectories for the next T;, minutes. It detects the conflicts for
each pair and then builds the clusters of aircraft in conflict. Each cluster is
solved by a solver using a genetic algorithm which proposes maneuvers for the
aircraft. A new forecast for the trajectories, taking the modified trajectories
into account, is then carried out in order to detect possible conflicts between
two aircraft, not belonging to the same cluster. When two aircraft of two
different clusters are in conflict, the two clusters are joined together and a
new resolution is operated. If a non conflicting aircraft interferes with an
aircraft of a cluster, it is integrated into the cluster and a new resolution is
operated. The process is repeated as many times conflicts remain between
aircraft not belonging to the same cluster.

9.1.4 Implementation of the genetic algorithm

The function to be optimized for each cluster takes several different criteria
into account in order to:

ensure all separations between aircraft.
minimize delays.
minimize the number of maneuvers and the number of aircraft undergoing
maneuvers.

e minimize the duration of maneuvers so that the aircraft are freed as soon
as possible.

General description

The genetic algorithm implemented is a simple algorithm as described in
[Goldberg, 1994].

An initial population of 3n variables is randomly created (the size of the
population being proportional to the number of aircraft with a maximum of
200 individuals). Then the fitness of each individual (representing a configu-
ration of maneuvers) is evaluated. The best individuals are then reproduced
and selected according to their adaptation (the selection technique used is
the “Stochastic Reminder Without Replacement”). A part of the population
(50 %) is then crossed: from two “parents”, two “children” are created; they
replace the parents in the population. Then a certain number of individuals
undergo mutation (15%). The mutation generally consists in modifying the
maneuver of an aircraft in the cluster. The distance used to distinguish two
configurations for the “sharing” operator is simple. Two maneuvers are con-
sidered equal if they are both in vertical or in horizontal direction and, in the
later case, if they are carried out to the same side. To measure the distance
between the two configurations, the number of different maneuvers are com-
puted. An elitism process is used: at each generation, the best individuals of
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the population are preserved so that they do not disappear during a crossover
or a mutation.

Taking the temporal requirements imposed by the real time traffic man-
agement into account, the termination criterion used consists in stopping the
optimization procedure at the end of a certain number of generations (gener-
ally twenty). However this number keeps increasing if the algorithm is unable
to find a solution without conflict (the maximum number of generations is
kept limited to forty).

The horizon effect

The solver has only one short-term vision of the aircraft trajectories. With the
cost function simply consisting in limiting the delay generated by a maneu-
ver, the solver is sometimes tempted to defer a conflict beyond the temporal
window without solving it. In order to counter this “horizon effect”, one can
measure the effectiveness of the resolution of a conflict and modify the fitness
function of the algorithm for resolving the conflict.

For any pair of aircraft under consideration in a cluster:

e [f the aircraft are not in conflict, it is not necessary to penalize the cost
function.

e [Else, if the trajectories between the current positions of the aircraft and
their destinations cross, the cost function is penalized when the aircraft
are still not crossing each other at the end of the time window.

The fitness function

For each configuration, a matrix F of size (n x n) is used to store the following
information:

e The diagonal term F; ; measures the lengthening of aircraft i’s trajectory.
It is zero if no maneuver is given to aircraft .

e The term F;j; with ¢ < j measures the violation of separation between
aircraft ¢ and aircraft j. It is zero when the two aircraft are not conflicting.

e The term Fj ; with ¢ > j measures the effectiveness of the conflict resolu-
tion between aircraft ¢ and aircraft j.

The fitness function chosen is:

1
! 2434 i
1 1
Y(i,7), 1 . =0= F=—-—4 ————
(Za.j)v ? #]7 5] 2 + 1+21FZ,Z

It guarantees that a configuration without conflict has a better fitness than a
configuration with one or more conflicts remaining.
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As described above, the genetic algorithm could hardly solve large clusters,
but it was shown that the use of the partially separable structure of the fitness
function makes it possible to define crossover and mutation operators adapted
for the problem.

Use of the partial separability

Let us consider the minimization problem of a function F' of n variables
Z1,%2, ..., Ty, sum of m terms F;, each of which depends only on a subset of
the variables of the problem.

Such a function (that is denoted as partially separable) can be expressed

as:
m

F(.Il,xg,...,l‘n) = ZFi(le"rjz"""rjni)

i=1

The adapted crossover operator

The intuitive idea is the following: for a completely separable problem, the
global minimum is obtained when the function is separately minimized for
each variable. In this case, the function to be minimized can be written as:

n
F(x1,29,...,2p) = ZE(%)
i=1
Minimizing each function F; leads to the global minimum of the function.

A crossover operator which chooses, for each variable x;, among the two
parents, the variable which minimizes the function F;, creates an individual
which is better than the two parents (or at least equal).

This strategy can be adapted for partially separable functions. To create
a child starting from two parents, the idea is to choose, for each variable, the
one among the two parents which minimizes the sum of the partial functions
F; in which it intervenes.

First, we define a local fitness Gy (z1, za, .., ) for variable xy as follows:

> Fi(zj,, 2y, -, 25,,)

n;

Gk(l‘]_,.’,UQ, "7mn) =
1€Sk

where Sy, is the set of ¢ such that xj is a variable of F; and n; the number of
variables of Fj.

The local fitness associated with a variable isolates the contribution of this
variable in the global fitness.

When minimizing F, if:

Gr(parenty) < Gi(parenty) — A
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then child 1 will contain variable zj of parent 1. Else, if:
Gi(parenty) > Gp(parents) + A
then child 1 will contain variable x; of parent 2. If:
|Gk (parent;) — Gi(parents)| < A

then variable xj of child 1 will be randomly chosen, or can be a random
linear combination of the k** variable of each parent when dealing with real
variables. If the same strategy is applied to child 1 and to child 2, children
may be identical, especially if A is small. This problem can be avoided by
taking a new pair of parents for each child.

Let us consider the following completely separable function:

F(z1,20,23) =21 + 22 + 23

for z1, x2 and x5 integers include in [0,2]. Variable k’s local fitness is:
Gp(x1, 2, 23) = x). Let us cross parents (1, 0, 2) and (2, 1, 0) which have
the same fitness F' = 3. With A = 0, child 1 will be (1, 0, 0): F = 1. With
A =1, child 2 may be (2,1, 0), (2,0,0), (1,1,0), or (1,0, 0). The chil-
dren’s fitness are always better than the parents’ fitness when A = 0 which is
not the case with a classical crossover operator.

As it is completely separable, this function is obviously too simple to show
the interest of the adapted crossover operator. In the next paragraph, a simple
partially separable function is introduced and the improvement achieved is
theoretically measured.

9.1.5 Theoretical study of a simple example

Let us define the following function:
F(x1,29,..,2,) = Z d(xi, xj) (9.1)
0<i#j<n

(x1,22,..,Ty) is a bit string and 6(z;,z;) =1 if x; # x; and 0 if x; = x;. It
must be noticed that the function is only partially separable and has 2 global
minima, (1,1,1,..,1) and (0,0,0,..,0).

For x = (z1, 22, ..z,), we define the local fitness G (x) by:

1 n
Gi(x) = 3 Z(S(xk,xi)
i=1

We define I(z) as the number of bits equal to 1 in . Then, it is easy to
establish that:
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DT e =1

In the following discussion,we use a classical n point crossover operator; A
and As represent 2 parents randomly chosen in a population and C' represents
their child.

In paragraph 9.1.5, the probabilities of increase of the fitness with the
adapted or the classical crossover operator are compared. The interested
reader will find a detailed study for this example in [Durand and Alliot, 1998].

Probability of improvement

For function (9.1), the probabilities of increase of the fitness with the classical
or the adapted operator can be mathematically computed for every possible
couple of parents.

Let us define P;_1(i, j, k) as the probability to find k bits equal to 1 at
the same position in both parents A; and Ay, with I(A;) =4 and I(A43) = j.
As Py_1(i,5,k) = P1_1(j,4, k), we will assume in the following discussion that
1 < j. It can be shown that:

e if k>4, then:
Pi_1(i,5,k) =0

e if k <, then:

Pr1(ij k) CkHj—lHn—l)—(j—k)

n—1 n—1

The classical crossover used is the n point crossover that randomly chooses
bits from A; or As (the order of the bit string has no influence on the fitness).

For the adapted crossover (respectively for the classical crossover), let
us define P,(i,7,k) (resp. P.(i,7,k)) as the probability that if I(A;) = ¢
and I(Az) = j then I(C) = k. As P,(i,j,k) = Py(j,4,k) and P.(i,j,k) =
P.(j,i,k), we will assume int the following discussion that ¢ < j. Then, it can
be shown that for the classical crossover:

min(k,i+j—k) Ck—l
.. .. i+j—21
Pc(Zajak) = E Plfl(laz%l)ﬁ
l:max(O,%)

For the adapted crossover(with m = min(k,n — k)):
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tional crossover — n = 50.

Pi_1(i,5,k)

Pa(iujv k)

t+g<n

P_1(n—i,n—jn—k)

Pa(iajv k)

t+j3>n

-1

Ci+j—2l
2i+j—21

> Pia(igl)

l

Pa(iaja k)

i+j=n

=0

0 if £ > min(4, j), then:

As Plfl(ivja k)

0

if i +j <n and k > min(7, j), then P, (4,7, k)

0

if i+ j > n and k < max(i,7), then P, (4,7, k) =

Consequently:

ifi4+j <nand P,(i,j,k) >0,

then k < min(i, j,n —é,n — j)

ifi+j>nand P,(i,7,k) >0,

then k > max(i,j,n —i,n — j)
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crossover — n = 50.

j = n, local fitness

Thus, if i + j # n, then F(C) > max[F(A;), F(A2)]. If i

of variables of each parent are equal and the adapted crossover behaves like a

classical n points crossover.

Figures 9.4 and 9.5 present the probability for a child to have a better
fitness than its parents (for all the possible combinations of the parents).
On this example, the adapted crossover widely improves crossover efficiency.

The small square in the center of the figure 9.4 represents a probability of

t larger than 0.5. It becomes a very large square in figure 9.5.

mmprovemen

Application for the problem of resolution of conflicts

For the conflict resolution problem, the “local fitness” associated with each

ft is defined as follows
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The adapted crossover operator is described in figure 9.6. For each aircraft
i, if the local fitness of aircraft i of parent A is definitely lower than that
of parent B, then the maneuver of aircraft ¢ of parent A is chosen for both
children. In the opposite case (for example for aircraft 3), the maneuver of
aircraft i of parent B is chosen for both children. When the local fitness are
close, a combination of both maneuvers is used.

father A father B

aircraft 1 Al<<BIl| Al child 1 child2 Bl
aircraft 2 A2 B2
A Fl <€

aircraft 3 A3 A B3| B3<<A3 aircraft 1 }(

aircraft 4 ﬂ 7; aircraft 2 F2<g );Q/

aircraft 5 AS # BSE N B / B - E B5 # AS aircraft 3 F3>¢ F3

aircraft 6 T(, L ] - |- T{, aircraft 4 F4>¢€ F % I
[ ];Z\TA&' - 0} C //]70( [ aircraft 5 F5<§€ g [

aircraft 6 F6>¢€ F

o

aircraft 7 Fi<g

aircraft 8 F8 > €

BB

Fig. 9.6. The adaptive crossover and mutation operators.

An adaptive mutation operator is also used (figure 9.6). An aircraft is
chosen among those whose local fitness are higher than a given threshold (for
example, the aircraft which are still in conflict).

9.1.6 Numerical application
Example of complex conflicts

In this example obtained from a simulation, at 10h42 (figure 9.7), 5 aircraft
are cruising at flight level 350 (35,000 feet). 4 conflicts are detected between
aircraft A and B, B and C, C and D, D and E.

The genetic algorithm uses a population of 100 individuals. A solution
without conflict is obtained after 5 to 10 generations (without the use of
the adapted crossover operator, about sixty generations would be required)!3.
The algorithm is terminated 20 generations after the achievement of a solution
without conflict (between the 25! and the 30" generation).

The best individual proposes to resolve the conflict with only two maneu-
vers: it proposes a descent of 1000 feet for aircraft B and D. However, as the

13These numbers were obtained by repeating the genetic algorithm a hundred
times, each time starting from a different initial random population.
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Fig. 9.7. Situation at 10h42.

maneuvers begin during the prediction period, they are not communicated to
the pilots, because they can be modified 3 minutes later, at the next update.
At 10h45 (figure 9.8), 5 aircraft are detected with 5 conflicts (4 preceding con-
flicts and a new additional conflict between aircraft C and E). The maneuvers
previously calculated do not solve the conflict between the aircraft C and E.
The resolution algorithm proposes, from now on, 3 maneuvers of which one
takes effect during the final period (turn to the left for the aircraft D) and two
become effective during the prediction period. Three minutes later, because of
the reduction of uncertainty, the conflicts disappeared. Finally, only aircraft
D underwent a turn to the left during one minute. A complete simulation over
one day of traffic is proposed in the following paragraph.
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Fig. 9.8. Situation at 10h45 (3 minutes later).

Statistics over one day of traffic

The results obtained with the simulator over one day of traffic in the French
airspace (Friday May 21 1999: 7540 flights carried out) are demonstrated in
this paragraph. More complete results can be found in [Granger, 2002]. The
simulation was carried out with three levels of uncertainties:

e 2% in the horizontal plane and 5% in the vertical plane;
e 5% in the horizontal plane and 15% in the vertical plane;
e 10% in the horizontal plane and 30 % in the vertical plane.

2140 real conflicts are observed during the day above flight level 100 (10000
feet) when the resolution process is not used.

For each level of uncertainty, the simulator is able to solve all the conflicts.
It is significant to note that the simulator adds a random noise to the real
trajectories of the aircraft so that they do not maintain the nominal trajec-
tories exactly. The table 9.1 shows the number of times the solver was called,
the number of maneuvers, the average duration of the maneuvers, the propor-
tion of the flight constrained by the maneuvers and the execution time of the
simulation!* for the various levels of uncertainties. It is observed that with
a weak uncertainty, the number of maneuvers carried out (2461) is slightly

14The simulations were realized using 12 PCs of which the most powerful one was
Pentium IV 2.53 MHz machine, the resolutions were carried out in parallel.
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higher than the number of real conflicts (2140). Hence it can be assumed that
the uncertainty causes some useless maneuvers. With 10% and 30 % of un-
certainties, the number of maneuvers is almost three times more significant
than with 2% and 5% of uncertainties, and the number of times the solver is
called is more than twice.

Table 9.1. Numerical results.

Uncertainty | Number |Number of{ Monthly duration| Proportion of |Duration of the
of clusters|maneuvers by plane constrained flight simulation

2% and 5% 8539 2461 34s 1,27% 26 mn

5% et 15% 12831 3881 78 s 2,85 % 35 mn

10% et 30%| 19390 6819 236 s 8,43 % 55 mn

The table 9.2 shows the influence of uncertainty on the size of the clusters.
It is observed that the increase in uncertainty plays a significant role in deter-
mining the size of the clusters to be solved and thus the difficulty in solving
problems grows significantly.

Table 9.2. Influence of the uncertainty on the size of the clusters.

cut 2 3 4 |56 |78 |9][10{11-17|18-37
2%-5% | 7205 (1021|224 |56 23| 6 | 3 |1
5%—-15% | 9970 |1855| 586 [218]|100| 42 | 24 {14|11| 11
10 %30 %|12859|3326|1317|741|388(245(153|81|77| 157 | 46

9.1.7 Remarks

The automation of the air traffic control is certainly not for tomorrow.
Whereas the various phases of a flight can be completely automated, the
air traffic management remains a complex problem for which no classical op-
timization method can propose a satisfactory solution. The genetic algorithms
make it possible to take account of the operational constraints of the problem:
necessity to simulate the trajectories, to take the uncertainties into account,
to model the maneuvers with discrete variables etc. In addition, the partially
separable structure of the problem enabled us to develop effective crossover
and mutation operators to increase the size of the problems dealt with to
about thirty aircraft. Till date, no other method tested in our laboratory or
by other teams all over the world could solve clusters of this size. It is thus
difficult to compare the performances of the genetic algorithm with those of
another algorithm. For the moment, the developed tool has only a vocation
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of simulation. A model was recently adapted in order to take account of the
current structure of the air routes. It should be well understood that this tool
does not control in the same manner as the human controllers do. In the de-
tailed example with 5 aircraft, a human operator would prefer to divide the
problem into two smaller clusters. Nevertheless, this tool for simulation makes
it possible to make a certain number of measurements on the complexity of
the traffic and to compare various airspace (European space and American
space). Its speed of execution enables us to develop a statistical tool that is
capable of absorbing complete days of traffic over Europe.

9.2 Ground Traffic optimization

Traffic delay due to airport congestion and ground operations becomes more
and more penalizing in the total gate-to-gate flight cycle. This phenomenon
can be largely attributed to recent development of the hubs, as all departures
and arrivals are tending to be scheduled at the same time.

Moreover, the uncertainty on departure and arrival times is largely in-
creased by ground delays and can easily reach several tens of minutes during
the peak of traffic, which is extremely damaging for all the actors of air traffic
flow management.

In this application, an airport simulation tool is used to compare the abil-
ity of different optimization methods to solve efficiently some ground traffic
situations: these methods use genetic and graph exploration algorithms to
find the best path and/or the best holding positions for each aircraft. The
efficiency of each method is measured by the correlation between the number
of taxiing aircraft and the resulting total delay.

9.2.1 Modeling

The problem is to find an optimal set of acceptable trajectories for all the
aircraft, where a trajectory is defined by a beginning time, a path and some
holding positions in this path.

An optimal set of trajectories can have various definitions and will be
globally considered as the one minimizing a cost function, which will be defined
below.

The trajectories are acceptable when the path of each aircraft is compat-
ible with the airport exploitation constraints (see 9.2.1) and when aircraft
separation rules (detailed below) are ensured.

Cost function

The global criterion to minimize can be defined as a function of several factors:
for example, the length of the paths assigned to the aircraft or the total taxiing
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time can appear relevant. However, holding on a taxiway can be interpreted
more or less penalizing than increasing the length of the path or holding at
the gate position...

In the current version, the cost function is defined as the total taxiing time
(including queuing for runway delay), added to the time spent in lengthened
trajectory:

N
fo=_ fe, where f, =r; +d;
=1

With this definition, lengthening trajectory is twice more penalizing than
holding position.

The airport

In order to assign to each aircraft a set of realistic alternative paths, the
airport is described by a graph linking its gates, taxiways and runways.

The cost from a taxiway node to its connected nodes is the time spent
to proceed via this taxiway, taking a speed limitation due to its turning rate
into account. The cost from other nodes (gates and runway positions) to their
connected nodes is zero.

Some taxiways can be described as “one-way”: in this case, the cost of
the opposite direction is balanced by a multiplicative coefficient representing
the inconvenience for an aircraft to follow this way, according to operational
controllers procedures.

In this context, classical graph algorithms can be used to compute a set
of alternative paths for aircraft.

The Dijkstra algorithm [Ahuja et al., 1993] can compute all the best paths
and the corresponding minimal taxiing times from a given node to every
other node. This information is then useful to find the kg best paths linking
two given points of the airport, using a Recursive Enumeration algorithm
[Jimenez and Marzal, 1999]. By performing m iterations of this process while
increasing the cost of selected taxiways, we can obtain up to mky “different
enough” paths.

Each aircraft is thus assigned a set of k possible paths (k < mkg) between
its gate to its runway entry points or between its runway exit points to its
gate.

Figures 9.9 and 9.10 represent the graphs of Roissy and Orly and show an
example of a set of paths in these graphs.

The traffic

Aircraft intentions are described by their flight-plan, containing their depar-
ture or arrival time, the type of the aircraft used, the gate position, the re-
quested runway and eventually a CFMU slot. The wake turbulence category
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Fig. 9.9. Roissy airport graph

Fig. 9.10. Orly airport graph
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(low, medium or high) and the takeoff or landing distance (restricting the
choice of the runway exit or entry points) can be deduced from the type of
the aircraft.

Aircraft separation rules

In order to detect the problems to solve in each traffic situation, a model for
aircraft separation is defined. This model takes into account runways area, 90
meters away from each side of the runway (or 150 meters away in bad weather
conditions). In these area, aircraft are considered on the runway even if they
are not taking off or landing.

Aircraft separation is then defined as follows :

Aircraft in gate position are separated from all other aircraft.
The distance between two taxiing aircraft must never be lower than 60
meters.
No more than one aircraft at a time can take off or land on a given runway.
A time separation of 1, 2 or 3 minutes (depending on the aircraft category)
is necessary after a take off to clear next takeoff or landing from wake
turbulence.

e When an aircraft is proceeding for takeoff or landing on a given runway,
other aircraft can be taxiing on the same runway area only if they are
behind the proceeding one.

When one of these rules is not ensured in the traffic prediction, there is a
conflict between the two concerned aircraft.

Speed uncertainty

In the simulation, the traffic prediction takes the uncertainty relative to air-
craft speeds into account: this uncertainty is modeled as a fixed percentage of
the initial defined speed (which is a function of procedures and turning rate).
Therefore, an aircraft is considered to occupy multiple potential positions at
a given time.

Separation rules are ensured if all of the possible aircraft positions are
separated with other aircraft positions, as defined before. However, two special
cases must be treated differently:

e When an aircraft is following another one, its speed will trivially depend
on the speed of the first aircraft, so that the two aircraft are assumed
separated, even if some of their uncertainty positions are not.

e When an aircraft must hold position, the uncertainty decreases, as the
position and the time until which the aircraft must hold is rigorously fixed.
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Simulations

Like in the first application, the simulation works with a shifting windows
model: at each simulation step (every A minutes), traffic prediction is per-
formed for the next T, minutes (T, is called the time window for traffic
prediction). The pairs of conflicting aircraft are extracted from this predic-
tion. At this simulation step, the problem consists in choosing a path and
some holding positions for each aircraft, in order to ensure separations be-
tween them. These paths and holding positions are then used to build the
new situation, Delta minutes later.

As a consequence of the limited time window for traffic prediction, some
negative effects could appear and must be explicitly by-passed:

e Two aircraft can be brought one in front of the other, which will definitively
freeze the future traffic situations.

e An aircraft can be stopped in a runway area while an arrival (that was
not predicted in the last situation) is coming...

For these reasons, a special analysis of aircraft positions at the end of the
time window is necessary: two aircraft must not be one in front of the other
and the runway area must absolutely be cleared.

These new rules complete the separation rules and correspond to a predic-
tive conflict detection: they will be applied for each resolution method detailed
in the next sections.

9.2.2 BB: the 1-against-n resolution method

In this resolution method, aircraft are sorted and considered one after another.

The optimization problem is therefore reduced to one aircraft: the algo-
rithm must find the best path and the best holding positions for the aircraft,
avoiding the other already considered aircraft. In this point of view, the initial
aircraft considered have higher priorities than the latter ones.

Graph definition

Given one particular path for the aircraft, the solution of the 1-to-n problem
for this aircraft can be found with a graph exploration:

e A node of the graph is a timed position of the aircraft.

e The root node of the graph is the initial position of the aircraft, at the
beginning of the time window.

e The terminal nodes are made of solution nodes: all the non conflicting
positions of the aircraft at the end of the time window or at the end of the
path and of no solution nodes: all the conflicting positions of the aircraft
at any time.
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e FEach non terminal node has two sons, representing the two possibilities for
the aircraft at each time step: moving forward or holding position. If the
first possibility can reach to a solution node, then it is the best solution
for the aircraft.

The best solution for the aircraft could be found by iterating this best-first
search on each of its paths.

However, each node of the graph relative to a particular path can be linked
to the current delay of the aircraft. This consideration allows to bound the
graph exploration with the minimum value of delay found in the already
explored paths: when the current delay is greater than this bound, the explo-
ration can be aborted.

Thus, the graph exploration for the complete set of paths of the aircraft
becomes a Branch & Bound algorithm [Horst and Tuy, 1995] with a best-first
exploration strategy.

Aircraft classification

As the later considered aircraft are extremely penalized (they must avoid all
earlier considered aircraft) the way to sort aircraft is a determining factor.

A simple way to assign priority levels is to consider the flight-plan trans-
mission time to the ground controllers.

This option seems the most realistic one as ground controllers can hardly
take an aircraft without its flight-plan into account. In the simulation context,
this is equivalent to sorting aircraft by their departure or arrival time.

However, this option must be refined :

e As landing aircraft can not hold position before exiting runway, their pri-
ority level must be higher than all taking off aircraft.
e Queuing for runway aircraft should be sorted in their queue order.

In order to satisfy these principles, a time T, is imposed on each aircraft as
a function of its beginning time T, and its remaining time t,: T, = Ty + t,- for
departures, and T, = Ty — Lhour for arrivals. Aircraft are sorted by increasing
values of Tj,.

9.2.3 GA and GA+BB : genetic algorithms

Two resolution methods using classical Genetic Algorithms and Evolutionary
Computation principles such as those described in the literature [Goldberg,
1989, Michalewicz, 1996], are developed.

In the first method, the algorithm finds a path and an optional holding
position for each aircraft. In the second one, the algorithm finds a path and a
priority level for each aircraft, and uses the BB algorithm (see 9.2.2) to build
the resulting trajectories.
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Data structure

In the first method, the trajectory of an aircraft a is described by 3 parameters
(Na, Da, ta): Mg is the index of the path to follow and p, is the position where
the aircraft must wait until time ¢, (if p, is reached after ¢,, the aircraft does
not stop).

The second method needs 2 parameters (ng, k,) for each aircraft: n, is the
number of the path to follow and k, its priority level. The detailed trajectory
of the aircraft is the result of the BB algorithm applied with the classification
given by (k,) and restricted to one path per aircraft. The case of an aircraft for
which the BB algorithm can not find any solution is interpreted as a conflict
involving this aircraft.

Fitness function

For the two methods, the fitness function must ensure that a solution without
any conflict is always better than a solution with a conflict: the fitness of con-
flicting solutions is always less than % while the fitness of acceptable solutions
is greater than %

Thus, for a solution with n. remaining conflicts,

For a solution without any conflict,

1 1

_|_
2 245N dotla

where d, is the delay of aircraft a and [, the time spent by aircraft a in
lengthened trajectory.

Crossover and mutation operators

The partially separable property of the conflict resolution problem is exploited
one more time.

A local fitness F, is computed for each aircraft a, as a function of the
number of conflicts n., for this aircraft and the cost function (see 9.2.1):

if ne, >0, Fy, = Kn,, else, F, = f.,

(where K is a constant parameter such that K > f. )
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Sharing

The problem is very combinatorial in nature and may have several local op-
tima. In order to prevent the algorithm from a premature convergence, the
sharing process introduced by Yin and Germay [Yin and Germay, 1993a] is
developed.

To implement this sharing process, a distance between two chromosomes
must be defined, in order to separate different clusters in the population. In
the experiments, the following distance is introduced:

Zi\il ‘lA7 - le‘
N

D(A, B) =

where 14, (respectively Iz,) is the length of the path of aircraft i in the
chromosome A (respectively B).

Termination criteria

As the time to solve each problem would be limited in a real time application,
the number of generations is limited: as long as no available solution is found,
the number of generation is limited to 50 and the algorithm is stopped 20
generations after the first acceptable solution (with no remaining conflict) is
found.

Clusters of conflicting aircraft

In order to lower the complexity of the problem as often as possible, a tran-
sitive closure is applied on conflicting aircraft pairs and gives the different
clusters of conflicting aircraft. The different clusters will be solved indepen-
dently at first. When the resolution of two clusters creates new conflicting
positions between them, the two clusters are unified and the resultant one is
then solved.

9.2.4 Experimental results
Simulations

Simulations are carried out with a real flight-plan sample at Roissy Charles
De Gaulle and Orly airports in a complete day (May 18™*" 1999).
The three resolution methods are compared with the following parameters:

Paths per aircraft : £ = 30

One-way : applied

Time window for traffic prediction : T,, = bmn
Resolution step : A = 2mn

Speed uncertainty : § = 10%
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Comparing the three methods

Figure 9.11 gives the mean value of the generated delay as a function of the
number of taxiing aircraft for the different methods.

As far as light traffic situations are concerned, the GA method provides
the best results: the aircraft are not sorted so that the solutions found can
approach the global optimum.

When the number of aircraft increases, the GA+BB method generates less
delay than the two other ones: the fact that aircraft are sorted becomes less
and less penalizing when the traffic density increases, and, perhaps, the size
of the problem becomes too large for the GA method.

Generally, the results obtained with the deterministic BB method are less
interesting because of the fixed priority levels of aircraft, which are never
modified during the simulation.

Thus, assigning priority levels to the aircraft seems to be an efficient way
to solve the ground traffic situations, under the condition that these priority
levels are regularly adapted to each new situation.

Figure 9.12 gives, for the three methods, the number of aircraft simultane-
ously moving at each period of the day. It appears that the GA+BB method
always keeps a lower number of moving aircraft during heavy time periods.

This result puts focus on an important phenomenon concerning the airport
traffic: a good resolution of a situation allows to decrease the delay in the short
term but also leads to better situations (with less moving aircraft) in the long
term.

Remarks

This preliminary work has shown that the ground delay at such busy airports
as Roissy Charles De Gaulle and Orly is very sensible to the resolution method
used, which means the way the traffic is dispatched in the airport. This first
conclusion gives an idea of the potential benefits that could be obtained with
the development of some decision support tools for the airport controllers.

Once again, genetic algorithms seem well adapted to treat this kind of
combinatorial problems as they can produce some unexpected solutions most
often close to the global optimum, while deterministic algorithms (1-against-n
method) must get limited in finding a local optimum, relative to a simplified
problem.

It can also be noticed that the modeling was easily improved with the
new runways of Roissy Charles De Gaulle, different speeds and uncertainties,
specific one-ways... without changing the genetic algorithm itself. In this sense,
simulations can be useful to evaluate some new operational procedures or
future infrastructures for the airport.

Of course, a lot of improvements are still to be incorporated: future work
will concentrate in refining the global criteria for genetic algorithms, taking,
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for example, takeoff sequencing needs of approach sectors or priority levels for
departures which are constrained by a takeoff slot, into account.

9.3 Conclusion

The two applications presented in this chapter show that the air traffic gives
rise to combinatorial problems which are very difficult to solve. The con-
straints related to the operational environment (uncertainties, human opera-
tors etc.) do not facilitate to define simple models. The functions to be opti-
mized do not have analytical expressions but are obtained from the result of
simulations. It seems that the genetic algorithms are quite efficient for these
two applications. Nevertheless, the use of such algorithms requires rather finer
adjustments and a good knowledge about the problem. The introduction of an
adapted crossover operator makes it possible to deal with large size problems
without losing the efficiency of the algorithm. The combination of genetic al-
gorithms with local or deterministic methods is also sometimes very useful.
From practical point of view, nowadays, the first application today makes it
possible to make comparative statistical studies for the air traffic structures
in various European countries or in the United States. It would be difficult
to develop decision-making tools that could be very useful as the human ca-
pabilities to analyze large clusters are limited. Currently the controller never
finds itself in a situation where it must solve a conflict with five aircraft like
that presented in the paragraph 9.1.5. The problems are regulated upstream,
to leave only the elementary problems to be solved by the controller. Using
a conflict solver, its role would become purely as that of an executive. On
the other hand, the second application has more operational future, even if
the current modeling procedure does not take into account all the constraints
related to the activities on an airport.
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The ant colony algorithm is inspired by the behavior of real ants. It pro-
vides an original approach to solve combinatorial optimization problems. We
present an industrial application of this method, in the context of constraint
programming, focused on solving vehicle routing problems.

10.1 Introduction

One of the main concerns in the industry is to improve the effectiveness of
their logistic chain, to be able to organize a better service at a lower cost and
to maintain the flow of their goods. Thus a fundamental component of any lo-
gistic system is the planning of the distribution networks by fleets of vehicles.
In recent times, significant research efforts have been devoted to the model-
ing of such problems and the implementation of suitable algorithms to solve
them. A fruitful collaboration between the specialists in the area of math-
ematical programming and combinatorial optimization on one side and the
transport managers on the other side, resulted in a great number of successful
implementations of software for vehicle routing optimization. The interest in
the implementation of the quantitative methods, for the optimization of the
transport activities, becomes obvious as the importance of the distribution
cost is paramount. The practical applications of this type of problems include:
public transportation, newspaper distribution, garbage collecting, fuel deliv-
ery, distribution of products to department stores, mail delivery or preventive
supervision of road inspections. However vehicle routing problems can be ex-
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tended by various constraints [Osman and Laporte, 1995] that metaheuristic
algorithms cannot usually manage.

The ant colony algorithm is a metaheuristic which is inspired by the be-
havior of real ant colonies [Colorni et al., 1992] in their search for food. It
belongs to the family of evolutionary algorithms and is characterized by the
combination of a constructive approach and a memory based learning mech-
anism. In this chapter, we will present an industrial case study based on this
method, solving vehicle routing problems including both pickup and deliv-
ery orders. Constraint programming will be used for modeling the problem
and will provide various services such as constraint propagation. Thereafter,
we will present a resolution algorithm based on ant colonies, supported by
experimental results.

10.2 Vehicle routing problems and constraint
programming

10.2.1 Vehicle routing problems

Vehicle routing problems are defined by a set of vehicles which must be used
to satisfy a set of demands corresponding to visits at various sites. The ve-
hicles are, for example, trucks, boats, planes, etc. The sites are factories,
hospitals, banks, post offices, schools, etc. The demands specify one or more
destinations, which must be visited by only one vehicle. These problems can
be constrained, thus the possible paths for the vehicles which satisfy these
demands are limited.

The routing problem can be solved by assigning the visits to the vehicles
first and then building a tour (i.e. placing the visits in order) for each one
of these vehicles. Each tour must satisfy an entire set of constraints such as
capacity constraints and time window constraints. The goal is to minimize
the total cost of the tours.

Capacity constraints

They denote the fact that a vehicle cannot transport more than the limit of
its capacity (in weight, volume...) i.e. the quantity of goods at each point
should not exceed a certain value.

Time window constraints

They become effective when the service can only take place in a specified in-
terval of time or when the vehicles are available only during certain periods of
time. The problem is in this case a vehicle routing problem with time windows.
Several other constraints corresponding to real situations can also be taken
into account in vehicle routing models such as visit precedence constraints, or
working time and rest constraints.
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The cost function

The total cost of the tours is calculated as the sum of the costs of each vehicle.
Generally, the cost of a vehicle is the linear combination of the total distance
traveled on the tour and the duration of the tour. A fixed cost can be added
when the objective is also to minimize the number of vehicles.

In this chapter, we will focus our attention on the “Pickup and Delivery
Problem” (PDP) which is a vehicle routing problem with loading and unload-
ing visits. It deals with the problem of picking up goods at a customer site
(or at a depot) and delivering it to another customer using the same vehicle.
The pickup must naturally be performed before the delivery.

The method implemented to solve this problem uses ILOG Dispatcher
[ILOG, 2002a], a C++ library dedicated to solving routing problems, based
on the constraint programming engine and the search algorithms provided
by ILOG Solver [ILOG, 2002b]. The next paragraph details the concepts of
constraint programming as well as the modeling of the problem in this context.

10.2.2 Constraint programming

In this section, we present concepts of constraint programming useful for the
rest of the chapter.

Constraint programming [Rossi, 2000, Tsang, 1993, Hentenyrck, 1989] is
a technique which is becoming increasingly significant in the field of optimiza-
tion. Its main advantage, compared to other techniques, is that it facilitates
the description and the resolution of general models, while keeping both no-
tions separate.

A problem modeled using constraint programming is defined by a set of
variables and a set of constraints. Each variable is associated to a finite set of
possible values (called a domain), and each constraint relates to a subset of
variables. Each one of these constraints indicates which partial assignments,
involving the variables appearing in the constraint, satisfy (or violate) the
constraint. The problem of constraint satisfaction is then to find an assign-
ment (one value in the domain) for each variable such that no constraint is
violated. This problem is NP-hard [Garey and Johnson, 1979]. A variant to
this problem — optimization — seeks an assignment for each variable, while
minimizing the value of one of the variables.

Tree search

Constraint programming is usually based on tree search, and in the simplest
case on depth-first search. Depth-first search is both complete and light in
memory consumption: it guarantees that a solution will be found if there is
one, or proves there is no solution, if the problem is infeasible. In the worst
case, tree search examines all the combinations of values for all the variables,
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but this worst case is seldom reached. Generally, significant parts of the search
tree are pruned thanks to constraint propagation.

Let us take an example to show how the depth-first search works. Let us
consider a problem with three variables a, b and ¢ which have the following
respective domains {0,2}, {0,1} and {0,1}. Let us also consider the three
constraints a # b, a > ¢ and b < ¢. The solutions to this problem are:

e a=20b=0,c=0;
e a=20=0,c=1;
e a=2b=1c=1.

)

Five other possible combinations of values for a, b and ¢ violate at least one
constraint and are thus not acceptable. The tree search presented here con-
siders the variables in the lexicographical order: initially a, then b, and finally
c. The values of the variables are considered in increasing order. The descrip-
tion of the order in which the variables and the values are chosen, and more
generally the description of the implementation of the search tree, is called
a goal in constraint programming. The search tree for this goal is presented
in figure 10.1. The nodes of the tree represent the states of the assignment of
the variables. When a node is marked by ®, it indicates that at least one con-
straint is violated at this stage. The arcs of the tree are transitions between
the states and are labeled with the assignments which take place during the
transition. Finally, the leaves of the tree not marked by ® are solution states,
where all the variables are assigned and no constraint is violated.

a=2,b=0,c=0 a=2,b=0,c=1 a=2,b=1,c=1

Fig. 10.1. Depth-first search.

Tree search is carried out as follows. Initially, the variable a is considered
and the smallest value of its domain, 0, is assigned to it, then b is assigned
the smallest value of its domain, 0. Although we do not have a complete
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solution yet, we can check the validity of the constraint a # b since all the
variables under consideration in this constraint have a fixed value. In other
words, no other assignment will be able to change the state of the constraint
— satisfied or violated. In this case, it can be seen that the constraint a # b
is violated. This state is called failure (marked by ®). One of the assignments
a =0 or b = 0 must be changed. In “Depth-first search”, the assignments are
backtracked by undoing the most recent assignment. The search then returns
to the state immediately before the assignment b = 0 — the movement is
known as backtracking — and b is assigned to the next value which is 1. This
time, the constraint a # b is satisfied, and one can thus continue the search
by assigning a value to c. In fact, no value for ¢ can satisfy the constraints
as 0 violates the constraint b < ¢ and 1 violates the constraint a > ¢. Hence
it is proved that there is no solution for a = 0 since one implicitly explored
all the combinations for b and ¢ with a = 0. One can now return to the top
of the tree by undoing all the previous assignments and assign a = 2. In this
case if we assign b = 0 and ¢ = 0, the constraints are satisfied. Hence, there is
a solution. If we were interested in only one solution, we could have stopped
there. However, one can also continue to find other solutions by backtracking.
Thus, by changing the assignment of ¢ with ¢ = 1, another solution is found.
The assignment b = 1 following that of ¢ = 0 leads to a failure ((b < ¢
is violated), but the assignment ¢ = 1 after backtracking produces the last
solution.

Constraint propagation

The technique for testing the constraints described above is known as back-
ward checking since the constraints are tested after all the variables involved
in the constraint have been assigned to values. It is an improvement over the
generate and test algorithm which postpones the tests of the constraints after
all variables have been instantiated. This improvement is however in general
too weak to solve anything but very simple problems. Normally, constraint
programming prunes branches of the search tree using a much more effec-
tive method, known as constraint propagation. Constraint propagation is a
technique much more active than backward checking. Instead of checking the
validity of a constraint, domains are filtered using a dedicated algorithm. This
procedure very often results in a reduction of the number of failures — i.e.,
dead ends in the search are noticed higher up in the tree, which avoids explicit
sub-tree exploration.

In the case of backward checking, each variable already has an assigned
value, or no value at all. On the contrary, constraint propagation main-
tains the current domains of each variable. The current domain is initially
equal to the initial domain, and is filtered as the search progresses in the
tree. If it is found that a value is impractical for a variable (because it
would violate at least one constraint), it is removed from the current do-
main. These removed values are not considered any more and the search
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tree is thus more effectively pruned than with backward checking alone. In
general, filtering algorithms are usually kept polynomial. General methods
[Bessiere and Regin, 1997, Mackworth, 1977] and specific algorithms for cer-
tain types of constraints exist [Belideanu and Contjean, 1994, Regin, 1994,
Regin, 1996].

Domains filtering is carried out independently for each constraint. Com-
munication between constraints is only based on the changes in the current
domains of the variables. In general, constraint propagation algorithm works
by having each constraint filter the domain of the variables related to them.
This process is carried out either until a variable has an empty domain (no
more possible value), or until no more domain reduction occurs. In the first
case, a failure and a backtrack occur. In the second case, a fixed point is
reached. If all the variables have only one possible value, a solution is found.
If not, it is necessary to branch on the values of the remaining variables to
either find a solution or to prove that there is none. The fixed point found
by constraint propagation should not depend on the order in which the con-
straints filter the values of the domains.

The figure 10.2 shows how constraint propagation interacts with depth-
first search on our small problem. As it can be seen, this method is more
effective than backward checking in terms of number of failures . There is
only one failure, all the other branches leading to a solution. At the top of the
tree, before branching, a propagation is carried out. In this case however, no
filtering can be done by considering constraints individually. A branch is thus
created, and a is assigned to 0. The constraint a # b deduces that b # 0 and
thus b = 1. Constraint a > ¢ deduces that ¢ # 1 and thus ¢ = 0. Constraint
b < ¢ deduces that ¢ # 0 which causes a failure as ¢ = 0, and that b # 1
(that also causes a failure as b = 1). It can be noticed that only one failure
will occur whether one or the other deduction is carried out first, with finally
either b, or ¢ having an empty domain. When the failure occurs, the constraint
solver backtracks to the root node and domains are restored. The right-hand
side branch is then taken which assigns a to 2. Similarly to the root node,
no constraint can reduce the domains, and branching is still needed, b = 0.
No filtering is done and a final branching ¢ = 0 leads to the first solution.
After backtracking and assigning ¢ to 1, the second solution is obtained. Then
we backtrack higher up in the tree, just before the assignment of b, and the
branch to the right-hand side of b = 1 is taken. In this case, the constraint
b < c filters, which removes the value 0 from the domain of c. It is the only
filtering which can be done at this node and it results in a solution . It is not
necessary to branch on ¢ as the variable does not have more than one possible
value. This is the last solution to the problem.

Note on optimization

Until now, we explained how to solve a decision problem which satisfies all the
constraints. Sometimes however the problem at hand is an optimization prob-
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a=2,b=1,c=1

a:z,b:O’C:O a=2,b=0,c= 1
Fig. 10.2. Depth-first search with propagation.

lem. Such problems are solved like a succession of decision problems. When a
solution of cost v is found, a constraint is added to the problem specifying that
any solution of cost v or more is not valid. This process is repeated until one
cannot find a better solution, and in this case the last solution is the optimal
solution. Each time a — better — solution is found, it is not required to start
the search again from the beginning. One can simply continue the search with
the new upper bound on v. This upper bound becomes more constraining as
the search progresses.

A powerful modelling and a powerful search.

In the preceding discussion, for pedagogical reasons, we only considered simple
constraints with simple propagation rules. When complex industrial problems
are solved, the models are more complex and constraint programming pro-
vides more advanced constraints to take this complexity into account. These
constraints are often based on powerful propagation algorithms which perform
strong filtering on domains, for example [Regin, 1994, Regin, 1996]. Here are
examples of more complex constraints usually available:

e y = afz]: y is constrained to be equal to the 2** element of a, where a is
a table of constants or variables.
all — dif f(a): all the variables of the table a must take different values.
¢ = card(a,v): the variable ¢ is forced to be equal to the number of occur-
rences of the value v in the table of variables a.

e min — dist(a,d): all the pairs of variables in the table a must take values
which differ by at least d.

Some open constraint programming frameworks let the users write their own
constraints, by writing the corresponding propagation rules. This is often very
useful as a framework cannot provide all possible constraints.
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All constraint programming frameworks give the option of writing custom
search goals, i.e. a description of how to assign values to variables during the
search. This can be useful because the efficiency of the constraint propagation
can depend on the order in which variables are considered. For example, in our
example with three variables, no failure occurs if one considers the variables
in the order b, a, c instead of a, b, c. For vehicle routing problems; it is usually
more interesting to extend a tour rather than to build many chains which
will finally merge. Such variable selection heuristics can often improve the
performance by an order of magnitude. The extensibility and the flexibility
of constraint programming make it possible for the users to write effective
optimization software.

10.2.3 Constraint programming applied to PDP: ILOG Dispatcher
Problem formulation in constraint programming

The formulation of the PDP in constraint programming is facilitated by the
clear separation between the description of the problem using constraints and
decision variables, and the resolution of the problem.

Decision variables.

In the usual linear model, there are O(m n?) Boolean decision variables where
m is the number of vehicles and n the number of customers to be visited. But
it is possible to describe the PDP with a linear number of variables. Each
visit 1 is associated with two variables with finite domains next; and veh;
representing, respectively, the visit which follows ¢ and the vehicle that serves
the visit 7. The decision variables are next; whose domain is the finite set of
visits. This set of visits consists of the visits to the customers and the visits
to the depot (2 visits to the depot by vehicle, starting and ending visits of the
tour corresponding to only one depot, but having different indices for each
vehicle). The value of veh; can be obtained by propagation of the following
constraints: next; = j if the visit j immediately follows the visit ¢ in the tour
and veh; = veh; if next; = j:

e If N is the set of the indices corresponding to the visits other than the ones
at the depot, S the set of the visit indices corresponding to the departures
from the depot and E the complete set of visit indices corresponding to
the returns to the depot, next; = j is possible if i € NUS and j € NUE,
which ensures the continuity of a tour;

e The constraints {next; = jispossibleifi € NUSandj € NUE} associ-
ated with the constraints {(next; = j A veh; = k) => veh; = k}, are equiv-
alent to the collection of the linear constraints:

: k k
VieV, VkeM: injzzxji:1
JEV JjEV
with V=NUFEUS.
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Path Constraints.

This concept allows us to take into account dimension constraints, such as
capacity and time constraints. Path constraints propagate quantities accumu-
lated along a tour. Formally these constraints can be described as follows:

Y(i,j) € (SUN) x (NUE)) next; = j =>o0; + f(i,7) = 0

where o; is a variable representing the accumulation of the quantity. f(i,j),
called transit, can be the distance from 7 to j or simply the quantity of goods
to be delivered at .

Ezxample:

e f(i,7) = q;: demand of the customer i (weight, volume. ..). o; represents
the load of the vehicle in ¢, thus the path constraint is simply:

V(i,j) € (SUN)x (NUE))  next;=j=>0;+¢ =0;
The capacity of a vehicle can be expressed by the following constraint:
Vie SUNUE 0<o,<C

where C is the capacity of the vehicle;

e 0;: represents the arrival time at ¢, f(i,7) = s; + ti; + w;, t; ; being the
travel time between ¢ and j, s; the service time in ¢ and w; the waiting
time between ¢ and j. Time window constraints can be expressed by a; <

Visit precedence and same vehicle constraints.

In a PDP, the two visits of the shipment (pickup and delivery visits) must be
carried out by the same vehicle: if ¢ is a pickup and j is the corresponding
delivery, veh; = veh;.

Moreover a pickup must precede the corresponding delivery. Thus, if o;
represents the rank of the visit ¢ in the tour and o; the rank of j, then o; < 0;.

The cost function.

The goal of the problem is to minimize the total cost of the tours:
> e
keE
¢ being the cost of the tour of the vehicle k, ¢ is generally defined by:
> (%))
(i, e{(, j)/ next,=j et veh;=k}

f(%,7) being the traveling cost from i to j.
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10.3 Ant colonies

The ant colony algorithm is a metaheuristic introduced by Marco Dorigo et
al. [Colorni et al., 1992]. It was inspired by the studies on the behavior of real
ants.

10.3.1 Behavior of the real ants

Real ants are able to find the shortest path joining their nest to a source
of food without using visual indicators, by only exploiting information from
a pheromone trail. Indeed, during a movement, an ant deposits a substance
called pheromone on its way and follows, with a certain probability, the quan-
tity of pheromone left by the other ants.

Assuming that a colony of ants moves towards a source of food and meets
an obstacle, the problem is overcome by some ants choosing the shortest
path and others the longest path. The choice is done at random. But, since
the ants move almost at a constant speed, the ants which chose the short-
est path, reach the source of food faster than the others and return faster
to their nest. The rate of pheromone accumulated on this path is then more
significant than on the longest path. Thus the ants will tend to follow the
first path. The ant system (AS) and the ant colony system (ACS) are algo-
rithms which are inspired by the behavior of the ants. Artificial ants cooper-
ate to find the shortest path on a graph, by exchanging information through
the quantity of pheromone deposited on the arcs of the graph. The ACS
has been applied to the combinatorial optimization problems like the TSP
(Travelling Salesman Problem) [Dorigo and Gambardella, 1997b] or the VRP
[Bullnheimer et al., 1997, Bullnheimer et al., 1999].

10.3.2 Ant colonies, vehicle routing problem and constraint
programming

The AS was applied in [Bullnheimer et al., 1997, Bullnheimer et al., 1999] to
solve the VRP with capacity constraints. In the first version, the proposed
algorithm is very similar to [Dorigo and Gambardella, 1997b], dedicated to
the TSP. The only difference is that each ant builds a complete tour for each
vehicle, at each iteration. In a second version, the algorithm is closer to ACS
due to the way it updates the quantity of pheromone.

The ACS was applied in [Gambardella et al., 1999] to solve the VRP with
time windows. The algorithm uses two ant colonies, one to minimize the num-
ber of vehicles used and the other to minimize the total cost of the tours. It
should be noted that local search techniques were used in the two algorithms
to improve the solution.

Constraint programming appears well adapted to the principles of search
by ant colonies. Indeed, constraint propagation makes it possible to direct the
movement of the ants so that the choice of a destination does not violate the
constraints of the problem.
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10.3.3 Ant colony algorithm with backtracking
Description

The proposed algorithm is inspired from [Gambardella et al., 1999]. It uses
two ant colonies, one to minimize the cost of the solution and the other to
minimize the number of vehicles (see algorithm 10.1). Each ant colony has its
own trail of pheromone. In this algorithm, the minimization of the number
of vehicles used is favored. Indeed, this criterion is often the most significant
and remains difficult to optimize. Moreover, the minimization of the number
of vehicles can sometimes help obtaining better global costs.

Solutions accepted during the iterations of this algorithm are not necessar-
ily feasible. A solution is not feasible if it contains one or more unperformed
visits. Let C; be the colony of ants minimizing the number of vehicles and Cy
be the one minimizing the cost. Let trail; denote the trail of pheromone of
C1 and traily denote pheromone trails of Cs.

S* : best solution found
S* := solution found by the savings heuristic
Repeat Nblteration times
v := number of vehicles used in S*
Initialization of traili
Initialization of trails
n:=1
While (S} is not feasible) or (n < n1)
S1 := Best solution found by Ci
Update the quantity of pheromone on the arcs belonging to Sp
n:=n-4+1
If S; is feasible then
(a) S* = Sl
(b) Update the quantity of pheromone on the arcs belonging to S*
(¢) Proceed to the next iteration
n:=1
While (S; is not feasible) or (cost(S2) > cost(S™)) or (n < n2)
S := Best solution found by Cs
Update the quantity of pheromone on the arcs belonging to S
n:=n-4+1
If S5 is feasible and cost of S2 < cost of S* then
(a) S* = SQ
(b) Update the quantity of pheromone on the arcs belonging to S*
(¢) Proceed to the next iteration

Algorithm 10.1: A broad outline of an ant-based algorithm with backtracking.
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Remarks:

n; and ng are parameters.

Initialization of pheromone trail.

The quantity of pheromone is represented by the same data structure in the
two ant colonies. The initial value of pheromone for each couple of visits (i, 5)

is: e
ty = N ifi # i
0 otherwise
where N is the number of visits and ¢ is the cost of the solution obtained
by the “savings” heuristic [Clarke and Wright, 1964] for a given number of
vehicles (at most v vehicles for the ant colony optimizing the cost and v — 1
vehicles for the one minimizing the number of vehicles).

Search procedures used by the two ant colonies.

The search procedures used by the two ant colonies are identical, with the
following limitations:

Each colony manages its own trail of pheromone.
The ant colony which minimizes the number of vehicles seeks a solution
with at most v — 1 vehicles whereas the other colony seeks a solution with
v vehicles.

e The two colonies do not use the same local search procedure.

The algorithm used by the two colonies is given in algorithm 10.2.

At this stage, the quantity of pheromone is updated according to the for-
mula: 7; = (1 —p) * 75 + p*1/Lpest, if (4, j) € the best solution found by the
ants in this iteration. Here Lp.q; is the cost of the best solution found by the
ants in the current iteration and p a evaporation coefficient.

Repeat for each ant
Repeat
Stage 1 Choose a random unused vehicle
Stage 2 Build a tour for this vehicle
Until there is no more unused vehicles
Apply local search to the solution found
Store the best solution found by the ants
Update the quantity of pheromone.

Algorithm 10.2: A broad outline of the algorithm used by the two ant colonies.
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Construction of a tour for a vehicle.

An ant is initially positioned at the depot, corresponding to the starting po-
sition of the vehicle. The constraints of the problem are propagated and the
domains of the variables are possibly reduced. This results in a filtering of the

possible next visits (figures 10.3 and 10.4).

K

Fig. 10.3. Possible next visits before propagation.

r

Fig. 10.4. Possible next visits after propagation.

Choice of the next visit.

The choice of a next visit is carried out according to the following rule:

.| jcorresponding to mazne o {[7:;]*[n:5]°}, ifg<qo (intensification)
J= j found applying the following, probability rule otherwise (diversification)

B 7 U 7)Y
bij = { Zhen[ﬂ'h]”[nih]ﬁ lfJ €8
0

otherwise

where:
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is the set of possible next visits for visit 4;

q is a random number between 0 and 1;

qo is a parameter between 0 and 1;

ij =1/ max (1, ¢;; — (number of times visit j has not been performed));
Cij is the travel cost from visit i to visit j;

aand B are of the parameters determining the relative importance of the
pheromone compared to the cost (o > 0 and 8 > 0).

The parameter gy determines the relative importance of diversification and
intensification. When ¢q is close to 1, the selected arc corresponds to the
choice of the other ants, which can lead to a premature trapping of the search
in a local minimum. In order to favor diversification and to push the ants to
move towards less explored arcs, the value of g is gradually decreased until
an ant succeeds in finding a better solution.

Once the next visit is chosen, the constraints are propagated again (fig-
ure 10.5).

e [If the propagation fails then the search “backtracks” and the selection
process is started over after removing from the domain of the next visit
variable the visit which led to a failure (figure 10.6),

e Otherwise, start the process again from the new current visit.

A

Fig. 10.5. No failure of the constraint propagation.

Fig. 10.6. Failure of the constraint propagation.
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Local update of the pheromone quantity.

Each time a next visit is selected, the quantity of pheromone is updated for
the arc created according to the formula:

7;; = (1 — p) * 7 + p * [initial quantity of pheromone]

where:
i corresponds to the current visit and j the next visit;
P is the coefficient of evaporation.

Each ant is thus influenced in its search by the solutions found by the preceding
ants and also by the current best solution.

Global update of the pheromone quantity.

The quantity of pheromone is updated on the arcs belonging to the current
best global solution, according to the formula:

Ti; =1 —p)xT; +p* if(i,j) € (the best current solution)

Lbest
where:
Lpest is the cost of the current best global solution;
P is the evaporation coefficient.

Improving the solution using local search.

Each time an ant finds a solution, it can be improved by a phase of local
search. This phase uses the principle of local search in constraint programming
proposed in [De Backer et al., 2002].

The ant colony which minimizes the number of vehicles uses the following
move operators.

MakePerform: creates new solutions (neighboring solutions) by inserting an
unperformed visit after a visit assigned to a vehicle.

MakeUnperform: creates new solutions (neighboring solutions) by making a
visit unperformed.

SwapPerform: creates new solutions (neighboring solutions) by exchanging a
visit assigned to a vehicle with an unperformed visit.

The ant colony which minimizes the cost uses the move operators described
previously and TwoOpt, OrOpt, Cross, Relocate and Exchange described in
figure 10.7.
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Q/Q\-Q

(c) Relocate (d) Exchange

(e) Cross

Fig. 10.7. Move operators.
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10.4 Experimental results

The data files which have been used as test bench are derived from those of
Solomon [Solomon, 1987]. They were modified to make some visits pickups
and others deliveries.

There exist two series of Solomon instances: series 1 is the series for which
the time windows are tight and series 2 is the series for which the time windows
are looser. Series 1 is easier to solve because there are more constraints: tight
time windows limit the number of possible next visits, for a given current visit.
Moreover, the test instances are divided into three classes: the class “C” in
which the visits are divided into several compact groups from a geographical
point of view (they are the easiest problems to solve), the class “R” in which the
co-ordinates of the visits are distributed at random and “RC” for which part
of the visits are grouped geographically and others are grouped at random.
Each derived instance is a problem with 200 visits.

For the sake of simplicity, in our proposed algorithm the two ant colony
algorithms are not run in parallel. The ant colony algorithm which minimizes
the number of vehicles is run first. If this algorithm succeeds to find a feasible
solution, using fewer vehicles than the best current solution, this solution
becomes the best current solution. The quantity of pheromone is updated
and the algorithm is started over. If the algorithm does not find a feasible
solution after five iterations, this ant colony algorithm is stopped and the one
minimizing the cost is started. If this algorithm succeeds in finding a better
solution, then it is stopped and the trail of pheromone on the arcs belonging
to the best solution is updated. The first algorithm is then re-started. If the
second algorithm does not find a feasible solution after three iterations, the
colony algorithm is stopped and the algorithm which minimizes the number
of vehicles is re-started, without reinitializing the pheromone trail.

The results obtained with this algorithm are compared to the results ob-
tained using guided local search (GLS) [De Backer et al., 2000]
[Kilby et al., 1997], which is a popular metaheuristic that usually achieves
satisfactory performance. The tests were carried out using the following pa-
rameter values:

e 10 ants;

e a=p0=1;
e ¢ =0.9;

o p=0.75
e 11 =09;

o 1o =23J.

The main comparison criterion is the number of vehicles used in the solution.
The computing time for each instance, for each of the two algorithms is two
hours. To trace the evolution of the optimal solution, the value of the solution
is recorded every 10 seconds during the first 300 seconds, and then recorded
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every 50 seconds up to 7200 seconds. Figures 10.8, 10.9 and 10.10 show the
evolution of the number of vehicles used in the solution.
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Fig. 10.9. R2 : problems of series 2 and class R.



10.5 Conclusion 325
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Fig. 10.10. RC2 : problems of series 2 and class RC.

If we restrict ourselves to the results obtained for the series 2, it is clearly
understandable that the ACS scores highly above the GLS from the point of
view of the number of vehicles used. It is also known that the problems R2
and RC2 are often regarded as more difficult to solve. Regarding the actual
solution costs (which are not presented here), they remain comparable with
those obtained with GLS. Although these results are still at a preliminary
stage, it can be assumed that the ant colony algorithm possesses a certain
robustness, since it succeeds in finding good solutions for difficult problems,
which other metaheuristics cannot reach, e.g. GLS.

10.5 Conclusion

In this chapter, an integration of ant colony algorithms is presented in the
context of constraint programming. This enabled us to combine the features
of the two approaches.

Firstly, constraint programming provided us with a modelling procedure,
making it possible to represent the problems in an expressive and concise way.
From the solution point of view, the propagation of the constraints and the
resulting reduction of the domains of the variables made the depth-first search
approach effective. However, this effectiveness is often at the expense of good
branching heuristics.



326 10 Constraint Programming and Ant Colonies

The “expertise” of the user can help designing effective custom heuristics.
However, this may not always be possible, in particular when the users of such
techniques are not experts.

The ant colony algorithms can significantly help in such cases. In this
chapter, we described how one can make use of ant colonies to obtain heuristics
which can be simultaneously robust and generic in nature. The robustness
characterizes the ability to finding a good solution, whatever the nature of the
data. This objective is primarily fulfilled by memorizing the movements of the
ants (in fact, of the states of the variables) and the corresponding costs. Thus
it is possible to reach good quality solutions, by alternating intensification
and diversification phases.

Since the only knowledge ant colony algorithms have of the problem is
the costs connecting variables to values (in the routing problems, that corre-
sponds to the costs of the arcs between visits), it can be assumed that this
approach is generic, maintaining a certain independence between the descrip-
tion of the problem and the way it is solved. Initial experimental results on
vehicle routing problems with pickup and delivery visits confirm this asser-
tion, especially when minimizing the number of vehicles. It would be very
interesting to study the impact of replacing depth-first search by other more
sophisticated procedures, such as “Slice-Based Search” (SBS) proposed in
ILOG Solver [ILOG, 2002b].
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Conclusion

This work has shown multiple facets of metaheuristics proposed, in the last 20
years, for the approximate solution of the “difficult optimization” problems.
The success of these procedures should not mask the principal difficulty that
the user will encounter, in the presence of a concrete optimization problem:
that of the choice of an “efficient” method capable of producing an “optimal”
solution — or of acceptable quality — at the cost of a “reasonable” computing
time. Compared to this pragmatic concern, the theory is not yet of a great
help, because the convergence theorems are often non-existent, or applicable
under very restrictive assumptions. Moreover, the “optimal” adjustment of
the various parameters of a metaheuristic, which can be recommended by the
theory, is often inapplicable in practice, because it induces a prohibitory cost of
calculation. Consequently, the choice of a “good” method, and the adjustment
of its parameters, generally require the knowledge and the “experience” of the
user, rather than the faithful application of well laid down rules.

The efforts of research in progress aim at rectifying this situation, essential
in the long term for the credibility of the metaheuristics. Considering the
possible expansion of the field, it becomes essential to light the user in the
choice of a metaheuristic or a hybrid method, and in the adjustment of its
parameters.

Let us mention a first significant direction of the research tasks in course:
systematic exploitation of hybridizations and co-operations between methods
(emergence of the multi-agent or self-organized systems, development of a
taxonomy of the hybrid methods...). The literature on this subject is abun-
dant. The reader is directed, for example, to [Renders and Flasse, 1996], which
describes several hybrid methods exploiting the evolutionary algorithms. In
presence of these several possibilities, the need for a classification is imminent.
In a recent work [Talbi, 2002], E.G. Talbi proposes a taxonomy of the hy-
brid metaheuristics: the author draws from them a common terminology and
mechanisms for classification, at the same time. The proposal is illustrated
through the classification of a large number of hybrid methods described in
the literature.
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It seems that the credibility of metaheuristics is reduced by an artificial
bulk-heading of the various techniques. Indeed, to take only one example, what
conceptually differentiates an ant colony from an approach of the GRASP
type, if not some details, such as the origin of the inspiration? Ultimately, the
two techniques rest on repeated construction, in a probabilistic and adaptive
way, of new solutions. As the fact of finding the local optimum associated
with a new solution does not conform to the metaphor of an ant colony, the
inventors of this last technique do not insist on the need for a local search.
However, the majority of the heuristics, established on the concept of the ant
colonies, make use of it. On the other hand, the possibility of building several
solutions in parallel is naturally based on the metaphor of the ant colonies,
whereas it will be about an extension of GRASP.

In our point of view, we should attempt to go beyond these polarizations,
which do not help the field of the metaheuristics to progress, and to think
globally. This is what one of the authors of this book attempted by employing
the “adaptive memory programming” or “POPMUSIC” | which, under unified
schemes, forms a broad group of techniques having various names and origins.
To develop effective heuristics for a given problem, it seems more interesting to
us to consider the set of principles contained in the metaheuristics, like the use
of a neighborhood (simple neighborhood, extended or composite; list of can-
didates), a memory (population of solutions, trails of pheromone, tabu lists),
noising effects (noising effects of data or solutions; penalization of the move-
ments) and to choose, among this set of principles, those which seem most suit-
able for the problem to solve. Certain authors even suggest techniques, that
they term as “hyper-heuristic”, to carry out these choices in an automatic way.

The principal justification for the use of a method developed on the basis
of metaheuristic being to produce solutions of high quality, one could observe
a race for the good solutions, which did harm to the metaheuristics. To present
tables of “demonstrative” results that a new method is effective, one gener-
ally tends to overload the heuristic with options, parameters and mechanisms
which reduce the possibility that one can propose a heuristic of simple design.
It is the reason which pushed us to encourage the use and the development of
statistical tests to compare more scientifically the nondeterministic iterative
methods, just as to publish in appendix the source of a complete program,
based on simple principles, but not inevitably naive. Going back more than a
decade — a great age, for this kind of techniques —, this code is still useful, if
one looks at the quality of the solutions which it produces and its simplicity.
It still remains the harsh reality that the theoretical analysis of metaheuris-
tics is particularly difficult and the results obtained until now are extremely
thin. The future, at the theoretical level, can perhaps encompass the definition
of complex neighborhood and the analysis of the “energy landscapes” which
result from these techniques. The measures of the efficiency of certain neigh-
borhoods, such as for example the coefficient of roughness, were proposed, but
these theoretical analyses have not yet led to really exploitable general results
in practice.
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Modeling of Simulated Annealing Through the
Markov Chain Formalism

Let R be the complete space of all the possible configurations of the system,
and r € R be a “state vector”, whose components entirely define a specified
configuration (or “state”). Moreover, let us consider that the set Ir consists
of the numbers assigned to each configuration of R:

Ig = (1,2,...,|R))

where |R] is the cardinality of R. Finally let us denote by C(r;) the value of the
cost function (or “energy”) in the state ¢, r; the state vector, and M;;(T’) the
probability of transition from the state ¢ to the state j at the “temperature” T
In case of the simulated annealing algorithm, the succession of the states forms
a Markov chain, in the sense that the probability of transition from the state
1 to the state j depends only on these two states, and not on the states former
to 4. In other words, all the past information about the system is summarized
in the current state. When the temperature T is maintained constant, the
probability of transition M;;(T) is constant, and the corresponding Markov
chain is known as homogeneous. The probability of transition M;;(T") from
the state i to the state j can be expressed in the following form:

oy = § Pii - Ai(T) ifi # j
Mis (T) = { 1 — XysiPyg - A (T) ifi = j
which includes the following notations:

Py the probability of perturbation, i.e. the probability of generating
the state j when one is in the state ;

and:

A;;(T) the probability of acceptance, i.e. the probability of accepting the
state j when one is in the state i, at the temperature 7.

The first factor P;; can be easily calculated. In fact, the system is generally
perturbed by randomly choosing a movement from the allowed elementary
movements. It results from it that:
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P { |[Ri| ™" ifj € In,
0 lf] ¢ IRi
where R; denotes the subset of R comprising of all the configurations which
can be obtained in only one movement starting from the state ¢, and I,
denotes the set of the numbers of these configurations. As for the second factor
A;;(T), it is often defined by the Metropolis rule. Aarts and Van Laarhoven
noted that, more generally, the simulated annealing method makes it possible
to impose the following five conditions:

1. the configuration space is connected, i.e. two unspecified states ¢ and j
correspond by a completed number of elementary movements.

2. Vi,j € Ig : P;; = Pj; (reversibility).

3. AZ](T) = 1, if AC” = C(Tj) — C(’I’Z) S 0
(the movements which result in a reduction of energy are systematically

accepted).
—00
lim A;;(T) =0
Tli% i(T)
(the movements which result in an increase in energy are all accepted at

infinite temperature, and all refused at zero temperature).
5. Vi, j,k €I |C(ry) > C(rj) > C(ri) : Aie(T) = Agj(T) - Aj(T)

4. lfACZJ >0

Asymptotic behavior of the homogeneous Markov chains

By using the results obtained for the homogeneous Markov chains, one can
establish the following properties.

Property 1.

Let us consider the Markov process generated by a mechanism of transition
which observes the five conditions stated above. This mechanism is applied n
times, at constant temperature, starting from a specified initial configuration,
arbitrarily chosen. When n tends towards infinity, the Markov chain obtained
has an equilibrium vector and only one, called ¢(T"), which is independent
of the initial configuration. This vector, which consists of |R| components, is
called distribution of static probability of the Markov chain. Its i*" component,
i.e. ¢;(T), represents the probability that the system is in the configuration ¢
when, after an infinity of transitions, the static condition is reached.

Property 2.

Aigi(T)
|R| ’

ZAioi(T)
i=1

where iy denotes the number of optimal configurations.

q:(T) is expressed by the following relation: ¢;(T") =
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Property 3.

When the temperature tends towards infinity or zero, the limit values of ¢;(7T')
|R0|71 ifi € IRO

0 ifi ¢ Ip,

where Ry denotes the set of the optimal configurations:

are given by : Tlim ¢(T) = |R|"" and %imo a(T) = {

Ro={ri e R|C(ri) = C(ri)}

Property 3 results immediately from property 2 when condition (4) is used.
Its interpretation is the following: for larger values of the temperature, all the
configurations can be obtained with the same probability. On the other hand,
when the temperature tends towards zero, the system reaches an optimal
configuration with a probability equal to the unit. In both cases, the result is
obtained at the end of a Markov chain of infinite length.

Remarks.

If one chooses the probability of acceptance A;;(7) recommended by Metropo-
lis (see in the reference [Aarts and Van Laarhoven, 1985] a justification for
this choice independently of any analogy with physics):

A(T) _ eiATCij lfAC” >0
Y 1 if AC;; <0

one finds, in property 2, the expression for the distribution of Boltzmann.

Choice of the annealing parameters

We saw in the preceding paragraph that the convergence of the simulated
annealing algorithm is assured when the temperature tends towards zero. A
Markov chain of infinite length undoubtedly ends in the optimal result if it is
built at a sufficiently low temperature (though nonzero). But this result is not
of any practical utility because, in this case, the balance is approached very
slowly. The Markov chain formalism makes it possible to theoretically exam-
ine the convergence speed of the algorithm. One can show that this speed is
improved when one starts from a high temperature and this temperature is
decreased in stages. This procedure requires the use of an annealing program,
which defines the optimal values of the parameters of the descent in tempera-
ture. We will successively examine four principal parameters of the annealing
program:

the initial temperature;
the length of the homogeneous Markov chains, i.e. the criterion for change
of temperature stage;

e the law of decrease of the temperature;
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e the criterion for program termination.

For each one of them, we will indicate initially the regulations resulting from
the theory, which lead to an optimal result, but often at the cost of a pro-
hibitive computing time. Then we mention the values obtained by the exper-
iment.

Initial temperature

There exists a necessary condition, but insufficient, so that the optimization
process does not get trapped in a local minimum. The initial temperature T
must be sufficiently high so that, at the end of the first stage, all the config-
urations can be obtained with the same probability. A suitable expression of
Ty, which ensures a rate of acceptance close to 1, is the following:

To=r- H?;?X AC;;

with 7 > 1 (typically » = 10). In practice, in many combinatorial optimiza-
tion problems, this rule is difficult to employ, because it is difficult to evaluate
a priori max;; ACj;. The choice of Ty will be able in this case to result from an
experimental procedure, carried out before the process of optimization itself.
During such a procedure, one calculates the evolution of the system during
a limited time; one acquires some knowledge about the configuration space,
from which one can determine Ty. This preliminary experiment can simply
consist in calculating the average value of the variation in energy AC;;, by
maintaining the temperature to zero. Aarts and Van Laarhoven propose a
more sophisticated preliminary procedure: they established an iterative for-
mula which makes it possible to adjust the value of Tj after each perturbation,
so that the rate of acceptance is maintained constant. The authors indicate
that this algorithm led to good results if the values of the cost function for the
various system configurations are distributed in a sufficiently uniform way.

Length of the Markov chains (or length of the temperature
stages); law of decrease of the temperature

The length of the Markov chain, which determines the length of the temper-
ature stages, and the law of decrease of the temperature, which acts on the
number of stages, are two parameters of the annealing program very closely
dependent on each other and which are most critical from the point of view
of the computing time involved. A first approach of the problem consists in
seeking the optimal solution, by fixing the length M of the Markov chains so
as to reach quasi-equilibrium, i.e. to approach equilibrium,at a short distance
€ fixed a priori, characterized by the vector of static probability distribution
q(T). One obtains the following condition:

M>K<|R\2—3|R\+3>
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where K is a constant which depends on €. In the majority of the combi-
natorial optimization problems, the total number of configurations |R| is an
exponential function of the number N of the variables of the system. Con-
sequently, the preceding inequality leads to an exponential computing time,
which was confirmed by experimental observations in the case of a particular
form of the traveling salesman problem (the cities considered occupy all the
nodes of a plane square network, which makes it possible to easily calculate the
exact value of the global optimum of the cost function: the a priori knowledge
of the solution is very useful to analyze the convergence of the algorithm).
These experimental results also show that a considerable gain in CPU time is
obtained if one agrees to deviate a little from the optimum. A deviation in the
final result of only 2% compared to the optimum makes it possible to decrease
the exponential computing time to a cubic time of N. This gave rise to the
idea to take the theoretical investigations again, by seeking the parameters of
the annealing program that ensure a deviation from the true optimum, and
this, independently of the dimension of the problem considered. The starting
postulate of the reasoning is as follows: for each homogeneous Markov chain
generated during the process of optimization, the distribution of the states
must be close to the static distribution (i.e. Boltzmann distribution, if one
adopts the Metropolis rule of acceptance). This situation can be implemented
on the basis of a high temperature (for which one arrives quickly at quasi-
equilibrium, as indicated by the property 3). Then it is necessary to choose
the rate of decrease of the temperature such that the static distributions cor-
responding to two successive values of T" are close. This way, after each change
of temperature stage, the distribution of the states approaches the new static
distribution quickly, so that the length of the successive chains can be main-
tained small. There one can see the strong interaction that exists between the
length of the Markov chains and the rate of decrease of the temperature. Let
by T and T’ be the temperatures of two unspecified successive stages and «
be the rate of decrease of the temperature (17 = o < T'). The condition to
be satisfied can be written as:

la(T) = o(T")]| <€
(e is a positive and small number)
This condition is equivalent to the following, which is easier to use:
1 a:(T)

VZeIRZm<qi(T/)

<1456

(0 is also a positive and small number, called the distance parameter). It can
then be shown, with the help of some approximations, that the rate of decrease
of the temperature can be written as:

1

@= TIn(1+9)
(1 + 3-0(T) )

(A1)
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when o(T) is the standard deviation of the values of the cost function for the
states of the Markov chain at the temperature T'.
The authors moreover recommend the following choice for the length of
the Markov chains:
M = max |R;| (A.2)
i€l

(it is pointed out that R; is the subset of R comprising all the configurations
that can be obtained in only one movement starting from the stage i). The
Markov chain formalism leads thus to an annealing program characterized
by a constant length of Markov chain and a variable rate of decrease of the
temperature. This result, which is based on the theory, differs from the usual
empirical approach: in this last case, one adopts a variable length of stage of
temperature and a constant rate a of decrease of the temperature, typically
ranging between 0.90 and 0.99. It is observed however that the parameter « is
not very critical in achieving the convergence of the algorithm, provided the
stage of temperature lasts long enough.

Program termination criterion

Quantitative information on the progress of the optimization process can be
drawn from the entropy, which is a natural measurement of the order of the
system. This one is defined by the following expression:

IR

ZQz hl QZ ))

It is shown that S(T") can be written in the following form :

Ty o2 ’
S(T):S(Tl)f/T T(Z;)dT’

and o2 (T) can be easily estimated numerically using the values of the cost
function, for the configurations obtained at the temperature T. A termina-
tion criterion can then be elaborated starting from the following ratio, which
measures the difference between the current configuration and the optimal
configuration

S(T) — So

Soo - SO
where S, and Sy are defined by the relations:

Seo = Tlim S(T) =1n|R|
So = %ig})S(T) =1In|Ry|

One can also detect the disorder-order transition (and consequently decide to

slow down cooling) by observing any steep increase in the following parame-

o*(T)
T2

ter, which is similar to the specific heat: . To achieve precise numerical
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calculations, these criteria are applicable in practice only when the Markov
chains are of sufficient length. In the contrary case, another termination crite-
rion can be obtained starting from extrapolation, at zero temperature, of the
smoothed average, Cj(T'), of the values of the cost function obtained during
the process of optimization:

‘dCZ(T) LN (A.3)

dT  C(Ty)

where €, is a positive and small number, and C(Tp) the average value of the
cost function at the initial temperature Tj.

Remarks.

If one adopts the rate of decrease of the temperature and the termination
criterion respectively defined by the relations (A.1) and (A.3), Aarts and Van
Laarhoven showed the existence of an upper limit, proportional to In|R|, for
the total number of temperature stages. Moreover, if the length of the Markov
chains is fixed in accordance with the relation (A.2), the execution time of the
annealing algorithm is proportional to the following expression:

max |R;| - In|R|
i€lr

But the term max |R;| is generally a polynomial function of the number of
variables of the problem. Consequently, the annealing program consisting of
the relations (A.1), (A.2), (A.3) and (A.3) allows to solve the majority of the
NP-difficult problems while obtaining, in a polynomial time, a result which
presents a variation of a few percent compared to the global optimum, and
this, independently of the dimension of the problem considered. The preceding
theoretical considerations were confirmed by the application of this annealing
program to the traveling salesman and logical partitioning problems.

Modeling of the simulated annealing algorithm by inhomogeneous
Markov chains

The results which we presented till now are based on the assumption of a
decrease of the temperature in stages (which ensures a fast convergence of the
simulated annealing algorithm, as we already mentioned before). This prop-
erty makes it possible to represent the process of optimization in the form of
a completed set of homogeneous Markov chains, whose asymptotic behavior
can be simply described. We have seen that it results in a complete theoretical
explanation of the operation of the algorithm, and development of an opera-
tional annealing program. Certain authors were interested in convergence of
the simulated annealing algorithm while placing themselves within the more
general framework of the theory of the inhomogeneous Markov chains. In this
case, the asymptotic behavior is more delicate to study: for example, Gidas
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[Gidas, 1985] shows the possibility of appearance of phenomena similar to the
phase transitions. We will be satisfied here to discuss the main result of this
work of primarily theoretical interest: the annealing algorithm converges to-
wards a global optimum, with a probability equal to unity if, when time ¢
tends towards infinity, the temperature T'(t) does not decrease more quickly
than the expression ln%, where C' denotes a constant that is related to the
depth of the “energy wells” of the problem.



B

Complete Example of Implementation of Tabu
Search for the Quadratic Assignment Problem

The following procedure establishes a tabu search for the quadratic assign-
ment problem. This procedure uses the transpositions like neighborhood. The
prohibition mechanism consists in preventing two elements from having posi-
tions which they both occupied recently. The long-term memory consists in
forcing a transposition that places two elements at positions that they never
occupied during a large number of iterations, and this, independently of the
quality of the solution that this movement carries out. This program estab-
lishing a tabu search for the quadratic assignment problem is known as Robust
taboo search in the literature [Taillard, 1991]. For certain types of problems,
it is at present one of the best methods.
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A C++ program for the Robust taboo search method
of [Taillard, 1991].

#include <iostream.h>
#include <fstream.h>

const long infinite = 999999999;

typedef intx* type_vector;
typedef long** typematrix;

Srrssskokk L Ecuyer random number generator ks /
const long m = 2147483647; const long m2 = 2145483479;

const long al2= 63308; const long q12=33921; const long r12=12979;
const long al3=-183326; const long q13=11714; const long r13=2883;
const long a21= 86098; const long q21=24919; const long r21= 7417,
const long a23=-539608; const long q23= 3976; const long r23=2071;
const double invm = 4.656612873077393e—10;

long x10 = 12345, x11 = 67890, x12 = 13579, // initialization Of
x20 = 24680, x21 = 98765, x22 = 43210; // seeds wvalues

double rando()

{long h, p12, pl3, p21, p23;
h = x10/q13; pl3 = —al3%(x10-h*xql13)-hxrl3;
h = x11/q12; pl2 = al2x(x11-hxql2)—hxri2;
if (p13 < 0) p13 = p13 + m; if (pl2 < 0) pl2 = pl2 + m;
x10 = x11; x11 = x12; x12 = p12-p13; if (x12 < 0) x12 = x12 + m;
h = x20/q23; p23 = —a23+(x20-hxq23)—h*r23;
h = x22/q21; p21 = a21x(x22-hxq21)—h*r21;
if (p23 < 0) p23 = p23 + m2; if (p21 < 0) p21 = p21 + m2;
x20 = x21; x21 = x22; x22 = p21-p23; if(x22 < 0) %22 = x22 + m2;
if (x12 < x22) h = x12 — x22 + m; else h = x12 — x22;
if (h == 0) return(1.0); else return(hkinvm);

}

ek return an integer between low and high sk /
long unif(long low, long high)

{return(low + long(double(high — low + 1) % rando() ));}
void transpose(int & a, int & b) {long temp = a; a = b; b = temp;}

int min(long a, long b) {if (a < b) return(a); else return(b);}
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fr «/
Jk compute the cost difference if elements i and j */
Jx are transposed in permutation (solution) p */
/r o/

long compute_delta(int n, typematrix & a, type.matrix & b,
type_vector & p, int i, int j)
{long 4; int k;
d = (alil[il-aljl1[j1) (o lplj]1] [p[j11-blp[il1 [p[il]1) +
(alil[j]1-aljl i *(lp[j11 [plil1-blplil] [p[j11);
for (k = 1; k <=n; k =k + 1) if (k!'=i & k!=j)
d = d + (alkl[i]l-alk] [j1)*(blplk]1] [p[j]11-blp[k]] [p[il1) +
(alil (k1-alj]1 kDD« (b[p[j11 [pk1]1-b[p[il] [p[k11);

return(d) ;

}
fr o/
/¥ Idem, but the value of deltafiJ[j] is supposed to */
Jx be known before the transposition of elements r and s */
/¥ */

long compute_delta part(typematrix & a, typematrix & b,
type_vector & p, type-matrix & delta,
int i, int j, int r, int s)
{return(deltalil [jl+(alr] [i]-alr] [j1+als] [j1-als] [1])*
(blpls]] [plil1-blp[s]] [p[j11+blp[r]] [p[j1]1-blplr]] [p[i11)+
(alil[r]-aljl [r]1+alj] [s]-alil [s1)x
(blp[il1[pls11-blp[j11[pls11+blp[j1]1 [plr]1]1-blp[ill [p[rl1) );
}

void tabu_search(long n,

typematrix & a,
typematrix & b,
type_vector & best_sol,
long & best_cost,

long min_size,

long max_size,

long aspiration,

long nr_iterations)

{type_vector p;

typematrix delta;

typematrix tabu_list;

long current_iteration;

long current_cost;

int i, j, k, iretained, j_retained;

// problem size

// flows matriz

// distance matriz

// best solution found

// cost of best solution
// parameter 1 (< n°2/2)
// parameter 2 (< n°2/2)
// parameter 8 (> n°2/2)
// number of iterations

// current solution
// store move costs

// tabu status
// current iteration

// current sol. value
// indices
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Jrrssskkkooooos . dynamic memory  allocation sskskskskskskskskkskskskskskskskok /
p = new int[n+1];

delta = new long* [n+1];

for (i = 1; i <= n; i = i+1l) deltal[i] = new long[n+1];
tabu_list = new longx [n+1];

for (i = 1; i <= n; i = i+1) tabulist[i] = new long[n+1];

Skt current solution initialization sokkssksskkkkksokk /
for (1 = 1; i <=n; 1 =i + 1) p[i]l = best_soll[il;

Sewssokrk initialization of current solution value skt /
SRRk and matriz of cost of moves  kxrkmRkkkRkkkk ok /
current_cost = 0;
for (i =1; i <=n; i=1i+1) for (j=1; j<=mn; j=3j+1)
{current_cost = current_cost + alil[j]l x blpl[ill[p[jl];

if (i < j) {deltalil[j] = compute_delta(n, a, b, p, i, j);};

best_cost = current_cost;

JRsskskssoookkookkk tabu list indtialization ssksksksksooorssssskokokkok /
for (i =1; i <=n; 1 =1+ 1) for (j = 1; j <=mn; j = j+1)
tabu_list[i] [j] = —(nxi + j);

SRRk Main tabu search 100p sxssokkksksskskskskskokskskk /

for (current_iteration = 1; current_iteration <= nr_iteratiomns;
current_iteration = current_iteration + 1)

{/xx find best move (i_retained, j.retained) *x/

i_retained = infinite; // in case all moves are tabu
long min_delta = infinite; // retained move cost
int autorized; // move not tabu?
int aspired; // move forced?
int already aspired = false; // in case many moves forced

for (i = 1; i < n; i =1+ 1)
for (j = i+1; j <= m; j = j+1)
{autorized = (tabu_list[i][p[jl] < current_iteration) ||
(tabu_list[jI1[p[il] < current_iteration);

aspired =

(tabulist[il[p[j]] < current_iteration-aspiration)|
(tabulist[j1[p[il]l < current_iteration—aspiration)||
(current_cost + delta[i] [j] < best_cost);
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if ((aspired &% 'already_aspired) || // first move aspired
(aspired &% already aspired && // many move aspired
(deltalil [j] < min_delta) ) || // => take best one
('aspired &% !'already.aspired && // no move aspired yet
(deltalil[j] < min_delta) && autorized))
{i_retained = i; j_retained = j;
min delta = deltali][j];
if (aspired) {already_aspired = true;};
}s
}s

if (i_retained == infinite) cout << "All moves are tabu! \n";
else
{/xx transpose elements in pos. i_retained and j-retained *x/
transpose(p[i_retained], pl[j_retained]);
// update solution value
current_cost = current_cost + deltali_retained] [j_retained];
// forbid reverse move for a random number of iterations
tabu_list[i_retained] [p[j_retained]] =
current_iteration + unif(min_size,max_size);
tabu list[j_retained] [p[i_retained]] =
current_iteration + unif(min_size,max_size);

// best solution improved ?
if (current_cost < best_cost)
{best,cost = current_cost;
for (k = 1; k <= n; k = k+1) best_soll[k] = plk];
cout << "Solution of value " << best_cost
<< " found at iter. " << current_iteration << ’\n’;
}s

// update matriz of the move costs
for (i = 1; 1 < n; i =1i+1) for (j = i+l; j <=mn; j = j+1)
if (i !'= i_retained && i != j_retained &&
j !'= iretained && j != j_retained)
{deltalil [j] =
compute_delta part(a, b, p, delta,
i, j, i-retained, j_retained);}
else
{deltalil [j] = compute_delta(n, a, b, p, i, j);};

+s
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// free memory
delete[] p;
for (i=1; i <= n; i = i+1) delete[] deltal[il]; delete[] delta;
for (i=1; i <= n; i i+1) delete[] tabu_list[i];
delete[] tabu_list;

} // tabu

void generate _random solution(long n, type_vector & p)
{int i;
for (i = 0; i <=mn; i = i+1) pli] = 1i;
for (i = 1; i < n; i = i+1) transpose(plil, plunif(i, n)l);

}

int n; // problem size
typematrix a, b; // flows and distances matrices
type_vector solution; // solution (permutation)
long cost; // solution cost

ifstream data_file;
char file_name[30];
int i, j;

main()

{ frssrssmsssrrnx read file name and problem size sksksssssssskkkk /
cout << "Data file name : \n";

cin >> filename; cout << filename << ’\n’;
data_file.open(file_name);

data_file >> n;

SR dynamic memory  allocation sksksksksksksksskskkskskskskkk /
a = new longx [n+1];

for (i = 1; i <=mn; i = i+1) ali]
b = new longx [n+1];

for (i = 1; i <= n; i = i+1) blil
solution = new int[n+1];

new long[n+1];

new long[n+1];

SRk read flows and  distances matrices sxsorkkskssksksksksk /

for (i = 1; i <= n; i = i+1) for (j = 1; j <= n; j = j+1)
data_file >> alil[j];

for (i = 1; i <=mn; i = i+1) for (j = 1; j <= mn; j = j+1)
data_file >> b[il[j];

data file.close();
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345
generate_random_solution(n, solution);
tabu_search(n, a, b, // problem data
solution, cost, // tabu search results
9xn/10, 11%n/10, n*n*2,
1000000) ;

// parameters
// number of iterations

cout << "Solution found by tabu search :\n";
for (i =1; i <=mn; i =
cout << ’\n’;

i+1) cout << solution[i] <<

) ).
)
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3-opt, 133

ACO, 135
Adaptive Memory Programming, 235,
236, 239, 247
ADF, 115
AlS, 172
algorithms
evolutionary, 75
genetic, 76, 118, 252, 277
allele, 82
amplification, 165
annealing, 5
microcanonic, 155
simulated, 6, 51, 208
simulated logarithmic curve, 41
annealing scheme, 30
Ant Colony System, 132, 316
Ant Programming, 149
Ant System, 130, 316
elitism, 131
Ant-Q, 132
Antigens, 172
AntNet, 147
API, 145
artificial immune systems, 172
aspiration, 47, 66, 71
asynchronous, 34
automatically defined functions, 115
azimuth, 263

CACO, 140
candidate list, 56

capacitated vehicle routing problem,
225
capacity, 259, 269
CE, 170
cell breathing, 260
cellular network, 252
change in temperature stage, 45
channels of communication, 142
direct, 143
integrity, 142
memory, 142
range, 142
stigmergic, 143
CIAC, 141
clearing procedure, 201
cloning, 173
clusters, 166, 205, 280
combinatorial explosion, 2
communication
ant colonies, 141
process, 124
comparison
heuristics, 240
multiple, 244
optimization methods, 243, 248
STAMP software, 244
success rates, 241
competitive exclusion, 197
complex neighborhood, 230
configuration space, 28
conflict in route, 277
constrained evolutionary optimization,
216
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constraint programming, 233
constraints, 1, 216, 316
Continuous Ant Colony Algorithm, 140
Continuous Interacting Ant Colony, 141
convergence, 27

of tabu search, 66

premature, 82
coverage, 259
Cross-Entropy method, 170
crossover, 78, 95

arithmetic, 104, 222

contracting, 103

lethal, 96

linear BLX-a, 104

operator, 237

rate, 95

voluminal BLX-a, 102
cycle, 51, 57, 59, 62, 68

darwinist operator, 77
decentralization, 13
decentralized control, 126
decision variables, 4
decomposing problems, 231, 248
decrease of the temperature, 26, 45, 334
dense heterarchy, 126

detection of the conflicts, 283
deterministic crowding, 199, 200
differential evolution, 173
distributed problems, 14
diversification, 10, 72, 137
dominance of Pareto, 207
dynamic optimization, 3

ecological niche, 196

EDA, 166

ejection chains, 230, 239

elitism, 91, 131, 202, 214

emergence, 124

energy, 6

entropy, 336

Estimation of Distribution Algorithms,
166

Evolution Strategies, 76, 105

evolutionary computation, 76

exploitation, 137

exploration, 137

exponential scaling, 87

extensions, 3

feasible individual, 216
feedback, 124, 165, 172
fitness function, 77, 92
flexibility, 13
fluctuations, 124
fractal properties, 29

GBAS, 139

generations, 77

genetic
algorithms, 76, 97, 118
drift, 82, 199, 202
programming, 113

GENOCOP, 222

GENOCOP 111, 220

genotype, 98, 118

Graph-Based Ant System, 139

GRASP, 169

Gray code, 100

Greedy Randomized Adaptive Search

Procedure, 169

Hamming cliffs, 99
HCIAC, 144
heuristic, 2

horizon effect, 286
hybrid methods, 15
hybridization, 138
hyper-mutation, 172

image processing, 42
indirect interactions, 138
inertia weight, 165
intensification, 10, 72, 137
interferences, 256

island model, 205
iterative amelioration, 4

landscape

energy, b

fitness, 94
layout of electronic circuits, 36
linear scaling, 86
list of limited candidates, 169
local search, 82, 231
lymphocytes, 172

macro-diversity, 260

maneuvers for avoidance, 283

Markov chain, 26, 331
homogeneous, 332
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inhomogeneous, 337
Markovian field, 42
Max-Min Ant System, 133
memory

forced, 71
inverse, 59
inversion, 53
penalized, 69

adaptive, 137, 239, 247
adaptive programming, 235
behavioral, 223
establishment, 339
long-term, 10, 69, 71, 72
population, 236
short-term, 10, 57, 59, 72
trails, 236

type, 63

method

descent, 4

penalization of the fitness function,
217

Alienor, 160

artificial immune systems, 172

classical, 4

Cross-Entropy, 170

crowding, 199

death penalty, 217

differential evolution, 173

distributed search, 159

estimation of distribution, 166

GRASP, 169

great deluge, 157

hybrid, 3, 15

kangaroo, 43

microcanonic annealing, 155

noising, 159

particle swam optimization, 162

repair, 220

roulette, 83

sharing, 196

simulated diffusion, 154

social insects, 175

stochastic universal sampling, 83

threshold, 157

travel of record in record, 157

reverse, 63

tabu, 5961

transposition, 53
movement, 4
multimodal, 3, 15, 196
multiobjective, 3, 15
multiobjective optimization, 206
mutation, 78, 97, 99, 104, 117, 267

bit-flip, 99

boundary, 222

deterministic, 99

gaussian, 105

non uniform, 222

operator, 237

self-adaptive, 106

uniform, 104, 222
mutation rate, 97

neighborhood, 51, 52, 228, 239
evaluation, 54
on a permutation, 51, 53
vehicle routing, 229

net of safeguard, 278

niching, 196
sequential, 196

NPGA, 214

NSGA, 213

operator
crossover, 78, 95, 287
darwinist, 77
mutation, 78, 97, 236
recombination, 78
replacement, 77, 90
search, 78
selection, 77, 81
variation, 78, 93

methodology, 239 optimization

migration, 204 difficult, 1

minimal coupling of points, 36 global, 2

MOGA, 213 multimodal, 196

move, 52, 64 multiobjective, 206
aspired, 66

candidate, 56
evaluation, 54, 55

Pachycondyla apicalis, 145
parallel implementations, 3
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parallelism, 138 radio planning, 261
intrinsic, 13 radius

parallelization, 15, 32 niche, 197, 202

parameter of restriction, 96
tuning, 60, 63, 68, 70, 240, 241 real time management, 284

Pareto front, 207 recombination, 78

Pareto optimal, 15 intermediary, 104

Pareto-optimal set, 207 regulate

parse trees, 113 acceptance, 45

Particle Swarm Optimization, 162 repair methods, 220

partitioning of graph, 36 replacement, 77, 90

path relinking, 72, 239 elitist, 91

penalties generational, 90
adaptive, 219 steady state, 90
dynamic, 218 representation, 78, 93
static, 218 binary, 97

penalty, 69, 227, 235 ordinal, 109
death, 217 paths, 109

real, 101
sequence, 109

permutation problem, 53
perturbation, 107
phenotype, 98, 118 robustness, 13
pheromonal trails, 127 roulette wheel selection method, 83
pheromone, 13, 127 routing, 147
POPMUSIC, 231-233, 238, 239, 248 rule
parameter, 232 acceptance, 30
population, 77 of 1/5, 106
power of the pilot channel, 263 RWS, 84
probability distribution, 166
problem
quadratic assignment, 339
decomposition, 231
modeling, 227
permutation, 108
quadratic assignment, 49
traveling salesman, 49, 108, 129
programming
constraint, 307

Scatter Search, 236
search
local, 51, 138
tabu, 47, 51, 52, 66
Segregated Genetic Algorithms, 219
selection
intensity, 81
operator, 77, 81, 237
pressure, 81, 85
proportional, 82-84

evolutionary, 76 rank based, 88
genetlc, 113 tournament, 88
linear, 16 truncation, 90
PSO, 162 self-organization, 14, 124, 164, 172, 175
separability, 287
quadratic assignment, 36, 60 sexual reproduction, 78
and tabu search, 62, 64, 71, 244, 339 shared fitness, 197
definition, 49 SPEA, 214
example, 50, 64 speciation, 196, 203
neighborhood, 55 by clustering, 205

quenching, 6 island model, 205



label based, 204
specific heat, 336
spin glasses, 5
STAMP, 244
statistical test
Mann-Whitney, 243
proportion, 241
stigmergy, 13, 126, 137
stochastic, 2
strategic oscillations, 72
subpopulation, 196, 203
SUS, 84
swarm, 162
swarm intelligence, 139, 148

tabu, 60, 61, 63
duration, 70

tabu (see under “search”), 47

tabu condition
duration of, 60

tabu list, 8, 57, 59
basic, 47
hashing tables, 57
length, 61
random, 61-63
size, 60

Index

type, 63, 67
tag-bits, 204
takeover time, 81
tandem-running, 146
temperature, 6
initial, 44
tilt, 263
tournament, 88
deterministic, 89
domination, 214
stochastic, 90
trade-off surface, 15, 207
traffic simulator, 284
trails of pheromone, 136
traveling salesman, 2, 35, 108
TSP, 108, 129
type of antenna, 263

ultrametricity, 29
uncertainty, 281

variables, 15
variations, 78

369

vehicle routing, 67, 225, 230, 233, 307

vocabulary building, 72, 238
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