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Preface

Engineering today’s systems is a challenging and complex task. Increasingly, 
systems are engineered by bringing together many separate systems, which 
together provide an overall capability that is otherwise not possible. Many 
systems no longer physically exist within clearly defined boundaries, are 
characterized by their ubiquity and lack of specification, and are unbounded, 
for example, the Internet.

More and more communication systems, transportation systems, and 
financial systems connect across domains and seamlessly interface with an 
uncountable number of users, information repositories, applications, and 
services. These systems are an enterprise of people, processes, technologies, 
and organizations. Enterprise systems operate in network-centric ways to 
deliver capabilities through richly interconnected networks of information 
and communication technologies.

Engineering enterprise systems is an emerging discipline. It encompasses 
and extends traditional systems engineering to create and evolve webs of 
systems and systems-of-systems. In addition, the engineering management 
and management sciences communities need new approaches for analyzing 
and managing risk in engineering enterprise systems. The aim of this book 
is to present advances in methods designed to address this need.

This book is organized around a set of advanced topics in risk analysis that 
apply to engineering enterprise systems. They include:

A framework for modeling and measuring engineering risks
Capability portfolio risk analysis and management
Functional dependency network analysis (FDNA)
Extreme-event theory
Prioritization systems in highly networked enterprise environments
Measuring risks of extreme latencies in complex queuing networks

The first three topics address the engineering management problem of how 
to represent, model, and measure risk in large-scale, complex systems engi-
neered to function in enterprise-wide environments. An analytical frame-
work and computational model is presented. In addition, new protocols that 
capture dependency risks and risk corelationships (RCRs) that may exist in 
an enterprise are developed and presented. These protocols are called the 
RCR index and the FDNA approach.

Extreme and rare event risks are of increased concern in systems that func-
tion at an enterprise scale. Uncertainties in system behavior are intensified 
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in those that operate in highly networked, globally connected environments. 
The realization of extreme latencies in delivering time-critical data, applica-
tions, or services in these environments can have catastrophic consequences. 
As such, the last three topics listed above address extreme and rare events 
and how these considerations can be captured in engineering enterprise 
systems.

Chapter 1 presents an introduction to engineering risk management. This 
chapter discusses the nature of risk and uncertainty and their considerations 
in engineering systems. The objectives of engineering risk management are 
described along with an overview of modern practices. New perspectives 
on managing risk in engineering systems-of-systems and enterprise systems 
are discussed.

Chapter 2 offers perspectives on the theories of systems and risk. This 
chapter introduces literature foundational to general systems theory, risk 
and decision theory, and their application to engineering risk management. 

Chapter 3 presents foundations of risk and decision theory. Topics include 
an introduction to probability theory (the language of risk) and decision-
making under uncertainty. Value and utility functions are introduced, along 
with how they apply to the analysis of risk in engineering systems.

Chapter 4 introduces enterprise systems. The discussion includes planning 
for their engineering and the environments within which they operate. 
Chapter 4 applies the concepts from the preceding chapters and presents 
an analytical framework for modeling and measuring risk in engineering 
enterprise systems. This chapter shows how modeling risk in the enterprise 
problem space can be represented by a supplier–provider metaphor using 
mathematical graphs.

Chapters 5 and 6 address the topic of capturing and analyzing dependencies 
in engineering enterprise systems, from a capability portfolio perspective. 
Chapter 5 presents a new management metric called the risk corelationship 
(RCR) index. The RCR index measures risk inheritance between supplier 
programs and its ripple effects across a capability portfolio. The index iden-
tifies and captures horizontal and vertical impacts of risk inheritance, as it 
increases the threat that risks on one supplier program may adversely affect 
others and ultimately their contributions to their associated capabilities.

Chapter 6 presents a new analytic technique called Functional 
Dependency Network Analysis (FDNA). FDNA is an approach that enables 
management to study and anticipate the ripple effects of losses in supplier-
program contributions on dependent capabilities before risks that threaten 
the suppliers are realized.

The RCR index identifies the supplier programs that face high levels of 
risk inheritance in delivering their contributions to capability. FDNA identi-
fies whether the level of operability loss, if such risks occur, remains within 
acceptable margins. Together, the RCR index and FDNA enables manage-
ment to target risk resolution resources to the supplier programs that face 
high risk and are most critical to operational capabilities.
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Chapter 7 presents an advanced decision-theoretic ranking algorithm that 
captures each risk’s multiconsequential impacts and dependencies that may 
exist in an enterprise. The algorithm offers a logical and rational basis for 
addressing the “choice problem” of selecting which capability risks to lessen, 
or eliminate, as a function of their criticality to the enterprise.

Chapter 8 brings together the concepts developed in the preceding chap-
ters into a coherent recipe for representing, modeling, and measuring risk in 
engineering large-scale, complex systems designed to function in enterprise-
wide environments. This chapter offers decision-makers formal ways to 
model and measure enterprise-wide risks, their potential multiconsequen-
tial impacts, dependencies, and their rippling effects within and beyond 
enterprise boundaries.

Chapter 9 presents a discussion on random processes and queuing the-
ory as a way to understand chance behaviors in systems. Techniques from 
these approaches are applied to show how systems under tight resource con-
straints can be viewed from the queuing perspective.

Chapter 10 presents an introduction to extreme and rare events, the sig-
nificance of extremes in managing risks in complex systems, and the use of 
extreme-event probability distributions in assessing risks of rare events.

Chapter 11 discusses the elements of a networked environment, including 
advanced exploration of the role of priorities in managing the performance 
of a network. Finally, the two major types of priority discipline models—
static and dynamic—and their roles in designing and managing networks 
are described.

Chapter 12 presents risks of extreme events in complex queuing systems 
and discusses the role of priority disciplines in managing queuing sys-
tems. In addition, this chapter presents tools and techniques for managing 
extremes, particularly in supersaturated queuing systems based on knowl-
edge of their priority disciplines.

This book is appropriate for advanced risk analysis studies in the engi-
neering systems and engineering management communities. Readers need 
a background in systems science, systems engineering, and closely related 
fields. Mathematical competence in differential and integral calculus, risk 
and decision theory, random processes, and queuing theory is recom-
mended. However, key concepts from these subjects are presented in this 
book. This facilitates understanding the application of these concepts in the 
topic areas described. Exercises are provided in each chapter to further the 
understanding of theory and practice.
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1
Engineering Risk Management

1.1  Introduction

Risk is a driving consideration in decisions that determine how engineering 
systems are developed, produced, and sustained. Critical to these decisions 
is an understanding of risk and how it affects the engineering and manage-
ment of systems. What do we mean by risk?

In general, risk means the possibility of loss or injury. Risk is an event 
that, if it occurs, has unwanted consequences. In the context of engineering 
management, risk can be described as answering the question, “What can 
go wrong with my system or any of its parts?” (Kaplan and Garrick, 1981). In 
the past 300 years, a theory of risk has grown from connections between the 
theories of probability and economics.

In probability theory, risk is defined as the chance an unwanted event 
occurs (Hansson, 2008). In economics, risk is characterized by the way a 
person evaluates the monetary worth of participation in a lottery or a gam-
ble—any game in which the monetary outcome is determined by chance. 
We say a person is risk-averse if he/she is willing to accept with certainty 
an amount of money less than the expected amount he/she might receive 
from a lottery.

There is a common, but subtle, inclusion of loss or gain in these definitions 
of risk. Probability theory studies risk by measuring the chances unwanted 
events occur. What makes an event unwanted? In economics, this question 
is answered in terms of a person’s monetary perspective or value structure. 
In general, “unwanted” is an adjective that needs human interpretation and 
value judgments specific to a situation.

Thus, the inclusion of probability and loss (or gain) in the definition of risk 
is important. Defining risk by these two fundamental dimensions enables 
trade-offs between them with respect to decision making and course-of-
action planning. This is essential in the systems engineering community, 
which traditionally considers risk in terms of its probability and conse-
quence (e.g., cost, schedule, and performance impacts). Understanding these 
dimensions and their interactions often sets priorities for whether, how, and 
when risks are managed in the engineering of systems.
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What does it mean to manage risk? From a systems engineering perspective, 
risk management is a formal process used to continuously identify, analyze, 
and adjudicate events that, if they occur, have unwanted impacts on a system’s 
ability to achieve its outcome objectives (Garvey, 2008). Applied early, risk 
management can expose potentially crippling areas of risk in the engineering 
of systems. This provides management the time to define and implement cor-
rective strategies. Moreover, risk management can bring realism to technical 
and managerial decisions that define a system’s overall engineering strategy.

Successfully engineering today’s systems requires deliberate and contin-
uous attention to managing risk. Managing risk is an activity designed to 
improve the chance that these systems will be completed within cost, on 
time, and will meet safety and performance requirements.

Engineering today’s systems is more sophisticated and complex than ever 
before. Increasingly, systems are engineered by bringing together many 
separate systems that, as a whole, provide an overall capability that is not 
possible otherwise. Many systems no longer physically exist within clearly 
defined boundaries and specifications, which is a characteristic of traditional 
systems. Today, systems are increasingly characterized by their ubiquity and 
lack of specifications. They operate as an enterprise of dynamic interactions 
between technologies and users, which often behaves in unpredictable ways.

Enterprise systems involve and evolve webs of users, technologies, systems, 
and systems-of-systems through environments that offer cross-boundary 
access to a wide variety of resources, systems, and information repositories. 
Examples of enterprise systems include the transportation networks, a uni-
versity’s information infrastructure, and the Internet.

Enterprise systems create value by delivering capabilities that meet user 
needs for increased flexibility, robustness, and scalability over time rather 
than by specifying, a priori, firm and fixed requirements. Thus, enterprise 
system architectures must always be open to innovation, at strategic junc-
tures, which advances the efficacy of the enterprise and its delivery of capa-
bilities and services to users.

Engineering enterprise systems involve much more than discovering and 
employing innovative technologies. Engineering designs must be adaptable 
to the evolving demands of user enclaves. In addition, designs must be bal-
anced with respect to expected performance while they are continuously 
risk-managed throughout an enterprise system’s evolution.

Engineers and managers must develop a holistic understanding of the social, 
political, and economic environments within which an enterprise system oper-
ates. Failure to fully consider these dimensions, as they influence engineering 
and management decisions, can be disastrous. Consider the case of Boston’s 
Central Artery/Tunnel (CA/T) project, informally known as the “Big Dig.”

1.1.1  Boston’s Central Artery/Tunnel Project

Boston’s Central Artery/Tunnel (CA/T) project began in 1991 and was com-
pleted in 2007. Its mission was to rebuild the city’s main transportation 
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infrastructure such that more than 10 hours of daily traffic congestion would 
be markedly reduced.

At its peak, the Big Dig involved 5000 construction personnel and more 
than 100 separate engineering contracts, and its expenditure rate reached 
$3 million a day. The CA/T project built 161 lane miles of highway in a 7.5 
mile corridor (half in tunnels) and included 200 bridges and 4 major high-
way interchanges (Massachusetts Turnpike Authority, Big Dig).

The Big Dig was an engineering and management undertaking on an 
enterprise scale—a public works project that rivaled in complexity with the 
Hoover Dam (Stern 2003). From the lens of history, design and engineering 
risks, though significant, were dwarfed by the project’s social, political, envi-
ronmental, and management challenges. Failure to successfully address vari-
ous aspects of these challenges led to a $12 billion increase in completion year 
costs and to serious operational safety failures—one which caused loss of life.

Case studies of the CA/T project will be written for many years. The suc-
cesses and failures of Boston’s Big Dig offer a rich source for understanding 
the risks associated with engineering large-scale, complex enterprise systems. 
The following discussion summarizes key lessons from the Big Dig and relates 
them to similar challenges faced in other enterprise engineering projects.

Research into the management of risk for large-scale infrastructure proj-
ects is limited, but some findings are emerging from the engineering com-
munity. A study by Reilly and Brown (2004) identified three significant areas 
of risk that persistently threaten enterprise-scale infrastructure projects such 
as the Big Dig. These areas are as follows.

System Safety: Experience from the Big Dig

This area refers to the risk of injury or catastrophic failure with the potential 
for loss of life, personal injury, extensive materiel and economic damage, and 
loss of credibility of those involved (Reilly and Brown, 2004).

On July 10, 2006, 12 tons of cement ceiling panels fell onto a motor vehicle 
traveling through one of the new tunnels. The collapse resulted in a loss of 
life. The accident occurred in the D-Street portal of the Interstate 90 connector 
tunnel in Boston to Logan Airport. One year later, the National Transportation 
Safety Board (NTSB) determined that “the probable cause of the collapse 
was the use of an epoxy anchor adhesive with poor creep resistance, that is, 
an epoxy formulation that was not capable of sustaining long-term loads” 
(NTSB, 2007). The safety board summarized its findings as follows:

Over time, the epoxy deformed and fractured until several ceiling sup-
port anchors pulled free and allowed a portion of the ceiling to collapse. 
Use of an inappropriate epoxy formulation resulted from the failure 
of Gannett Fleming, Inc., and Bechtel/Parsons Brinckerhoff to identify 
potential creep in the anchor adhesive as a critical long-term failure 
mode and to account for possible anchor creep in the design, specifica-
tions, and approval process for the epoxy anchors used in the tunnel.



4 Advanced Risk Analysis in Engineering Enterprise Systems

The use of an inappropriate epoxy formulation also resulted from a 
general lack of understanding and knowledge in the construction com-
munity about creep in adhesive anchoring systems. Powers Fasteners, 
Inc. failed to provide the Central Artery/Tunnel project with sufficiently 
complete, accurate, and detailed information about the suitability of 
the company’s Fast Set epoxy for sustaining long-term tensile loads. 
Contributing to the accident was the failure of Powers Fasteners, Inc., 
to determine that the anchor displacement that was found in the high 
occupancy vehicle tunnel in 1999 was a result of anchor creep due to the 
use of the company’s Power-Fast Fast Set epoxy, which was known by 
the company to have poor long-term load characteristics. Also contribut-
ing to the accident was the failure of Modern Continental Construction 
Company and Bechtel/Parsons Brinckerhoff, subsequent to the 1999 
anchor displacement, to continue to monitor anchor performance in 
light of the uncertainty as to the cause of the failures. The Massachusetts 
Turnpike Authority also contributed to the accident by failing to imple-
ment a timely tunnel inspection program that would likely have revealed 
the ongoing anchor creep in time to correct the deficiencies before an 
accident occurred.

(NTSB/HAR-07/02, 2007)

Design, Maintainability, and Quality: Experience from the Big Dig

This area refers to the risk of not meeting design, operational, maintainabil-
ity, and quality standards (Reilly and Brown, 2004).

In many ways a system’s safety is a reflection of the integrity of its design, 
maintainability, and quality. In light of the catastrophic failure just described, 
of note is the article “Lessons of Boston’s Big Dig” by Gelinas (2007) in the 
City Journal. The author writes:

As early as 1991, the state’s Inspector General (IG) warned of the “increas-
ingly apparent vulnerabilities … of (Massachusetts’s) long-term depen-
dence on a consultant” whose contract had an “open-ended structure” 
and “inadequate monitoring.” The main deficiency, as later IG reports 
detailed, was that Bechtel and Parsons—as “preliminary designer,” 
“design coordinator,” “construction coordinator,” and “contract admin-
istrator”—were often in charge of checking their own work. If the team 
noticed in managing construction that a contract was over budget 
because of problems rooted in preliminary design, it didn’t have much 
incentive to speak up. 

(Gelinas, 2007)

Cost–Schedule Realism: Experience from the Big Dig

This area refers to the risks of significant increases in project and support 
costs and of significant delays in project completion and start of revenue 
operations (Reilly and Brown, 2004).
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The completion cost of the Big Dig was $14.8 billion. Its original estimate was 
$2.6 billion. The project’s completion cost was 470% larger than its original 
estimate. If the impacts of unwanted events are measured by cost, then the 
risks realized by the Big Dig were severe.

Numerous investigations have been made into the reasons why the Big 
Dig’s costs increased to this magnitude. A key finding was lack of cost–
schedule realism in the project’s initial stages. This was driven by many fac-
tors such as incompleteness in cost scope, ignoring the impacts of inflation, 
overreliance on long-term federal political support (at the expense of build-
ing local political and community advocacy), and failure to incorporate risk 
into cost–schedule estimates.

Sadly, news reported concerns on cost overruns as a factor that contributed 
to the collapse of cement ceiling tiles in the new tunnel. Consider the fol-
lowing excerpt from the City Journal’s article “Lessons of Boston’s Big Dig” 
(Gelinas, 2007):

This problem of murky responsibility came up repeatedly during the Big 
Dig, but most tragically with the ceiling collapse. Designers engineered 
a lightweight ceiling for the tunnel in which Milena del Valle died. But 
Massachusetts, annoyed by cost overruns and cleanliness problems on a 
similar ceiling, and at the suggestion of federal highway officials, decided 
to fit the new tunnel with a cheaper ceiling, which turned out to be heavier.

Realizing that hanging concrete where no built-in anchors existed to 
hold it would be a difficult job, the ceiling’s designer, a company called 
Gannett Fleming, called for contractors to install the ceiling with an 
unusually large built-in margin for extra weight. Shortly after contrac-
tors installed the ceiling using anchors held by a high strength epoxy (as 
Gannett specified) workers noticed it was coming loose.

Consultants and contractors decided to take it apart and reinstall it. Two 
years later, after a contractor told Bechtel that “several anchors appear 
to be pulling away from the concrete,” Bechtel directed it to “set new 
anchors and retest.” After the resetting and retesting, the tunnel opened 
to traffic, with fatal consequences. 

(Gelinas 2007)

The paper “Management and Control of Cost and Risk for Tunneling and 
Infrastructure Projects” (Reilly and Brown, 2004) offers reasons from Fred 
Salvucci (former Massachusetts Secretary of Transportation) for the project’s 
schedule slip and cost growth:

The reasons had much to do with Governmental policies, local and 
national politics, new requirements not planned for in the beginning 
and, political and management transitions that disrupted continuity. 
Technical complexity was a factor—but it was not the major cause of the 
schedule slip and cost growth.

(Reilly and Brown, 2004)
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In summary, the engineering community should study and learn from the 
successes and failures of Boston’s CA/T project. The technical and engineer-
ing successes of the Big Dig are truly noteworthy, but sadly so are its failures. 
Project failures often trace back to judgments unduly influenced by cost, 
schedule, and sociopolitical pressures. Adherence to best practices in the 
management of engineering projects is often minimized by these pressures.

Clearly, the emergence of enterprise systems makes today’s engineer-
ing practices even more challenging than before. Projects at this scale, as 
experienced in the Big Dig, necessitate the tightest coupling of engineering, 
management, and sociopolitical involvement in unprecedented ways so that 
success becomes the norm and failure the exception. Risks can never be elim-
inated. However, their realization and consequences can be minimized by 
the continuous participation of independent boards, stakeholder communi-
ties, and well-defined lines of management authority.

1.2  Objectives and Practices

Engineering risk management is a core program management process. The 
objectives of engineering risk management are the early and continuous 
identification, management, and resolution of risks such that engineering a 
system is accomplished within cost, delivered on time, and meets perfor-
mance requirements (Garvey, 2008). Why is engineering risk management 
important? There are many reasons. The following are key considerations.

•	 An engineering risk management program fosters the early and con-
tinuous identification of risks so that options can be considered and 
actions implemented before risks seriously threaten a system’s per-
formance objectives.

•	 Engineering risk management enables risk-informed decision-
making and course-of-action planning throughout a program’s 
development life cycle, particularly when options, alternatives, or 
opportunities need to be evaluated.

•	 An engineering risk management program enables identified risk 
events to be mapped to a project’s work breakdown structure. From 
this, the cost of their ripple effects can be estimated. Thus, an ana-
lytical justification can be established between a project’s risk events 
and the amount of risk reserve (or contingency) funds that may be 
needed.

•	 The analyses derived from an engineering risk management pro-
gram will help identify where management should consider allocat-
ing limited (or competing) resources to the most critical risks in an 
engineering system project.
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•	 Engineering risk management can be designed to provide manage-
ment with situational awareness in terms of a project’s risk status. 
This includes tracking the effectiveness of courses of action and 
trends in the rate at which risks are closed with those newly identi-
fied and those that remain unresolved.

What are risks? Risks are events that, if they occur, cause unwanted change 
in the cost, schedule, or technical performance of an engineering system. The 
occurrence of risk is an event that has negative consequences to an engineer-
ing system project. Risk is a probabilistic event; that is, risk is an event that 
may occur with probability p or may not occur with probability ( ).1− p

Why are risks present? Pressures to meet cost, schedule, and technical per-
formance are the practical realities in engineering today’s systems. Risk is 
present when expectations in these dimensions push what is technically or 
economically feasible. Managing risk is managing the inherent contention 
that exists within and across these dimensions, as shown in Figure 1.1.

What is the goal of engineering risk management? As mentioned earlier, 
the goal is to identify cost, schedule, and technical performance risks early 
and continuously, such that control of any of these dimensions is not lost or 
the consequences of risks, if they occur, are well understood.

Risk management strives to enable risk-informed decision making 
throughout an engineering system’s life cycle. Engineering risk management 
process and practice vary greatly from very formal to very informal. The 
degree of formality is governed by management style, commitment, and a 
project team’s attitude toward risk identification, analysis, and management. 
Next, we present two basic definitions:

Performance

User wants

Target

User wants
Contract schedule

Best estimate
Schedule

Ceiling
Best
estimate

Cost

Delivered performance
Minimum acceptable performance

Contract award

FIGURE 1.1
Pressures on a program manager’s decision space. (Adapted from Garvey, P. R., Analytical 
Methods for Risk Management: A Systems Engineering Perspective, Chapman Hall/CRC Press, 
Taylor & Francis Group (UK), London, 2008.)
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Definition 1.1: Risk

Risk is an event that, if it occurs, adversely affects the ability of an engineer-
ing system project to achieve its outcome objectives (Garvey, 2008).

From Definition 1.1, a risk event has two aspects. The first is its occurrence 
probability.* The second is its impact (or consequence) to an engineering sys-
tem project, which must be nonzero.

A general expression for measuring risk is given by (Garvey, 2008).†

	 Risk = f(Probability, Consequence)	 (1.1)

Definition 1.2: Uncertainty

An event is uncertain if there is indefiniteness about its outcome (Garvey, 2008).

There is a distinction between the definition of risk and the definition of 
uncertainty. Risk is the chance of loss or injury. In a situation that includes 
favorable and unfavorable events, risk is the probability an unfavorable event 
occurs. Uncertainty is the indefiniteness about the outcome of a situation. 
Uncertainty is sometimes classified as aleatory or epistemic.

Aleatory  derives from the Latin word aleatorius (gambler). Aleatoric uncer-
tainty refers to inherent randomness associated with some events in the 
physical world (Ayyub, 2001). For example, the height of waves is aleatoric. 
Epistemic is an adjective that means of or pertaining to knowledge. Epistemic 
uncertainty refers to uncertainty about an event due to incomplete knowl-
edge (Ayyub, 2001). For example, the cost of engineering a future system is 
an epistemic uncertainty.

We analyze uncertainty for the purpose of measuring risk. In an engi-
neering system, the analysis might involve measuring the risk of failing to 
achieve performance objectives, overrunning the budgeted cost, or deliver-
ing the system too late to meet users’ needs.

Why is the probability formalism used in risk management? Because risk is 
a potential event, probability is used to express the chance that the event will 
occur. However, the nature of these events is such that objectively derived 
measures of occurrence probabilities are typically not possible. Risk man-
agement necessarily relies (in part) on probabilities that stem from expert 
judgment, which are known as measures of belief or subjective probabilities. 
Are such measures valid?

In 1933, Russian mathematician Kolmogorov established a definition 
of probability in terms of three axioms (Kolmogorov, 1956). He defined 

*	 If A is a risk event, then the probability that A occurs must be strictly greater than zero and 
strictly less than one.

†	 Some authors present a general expression for risk that includes Scenario as a third aspect, 
with Scenario addressing the question “what can happen?”. Including Scenario in the general 
expression for risk is known as Kaplan’s triplet, which is discussed in Chapter 2.
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probability as a measure that is independent of objective or subjective inter-
pretations of probability. Known as the axiomatic definition, it is the view of 
probability accepted today.

By this definition, it is assumed that for each random event A, in a sam-
ple space Ω, there is a real number P A( ) that denotes the probability of A. 
In accordance with Kolmogorov’s axioms, probability is a numerical mea-
sure that satisfies the following:

Axiom 1	 0 1≤ ≤P( )A  for any event A in Ω
Axiom 2	 P( )Ω = 1
Axiom 3	� For any sequence of mutually exclusive events A A1 2, ,… 

defined on Ω, P A P Ai i i i( ) ( ).∪ =
∞

=
∞= ∑1 1  For any finite sequence 

of mutually exclusive events A A An1 2, , ,…  defined on Ω, 
Axiom 3 becomes: P A P Ai

n
i i

n
i( ) ( )∪ = == ∑1 1

The first axiom states that the probability of any event is a nonnegative 
number in the interval 0–1. The second axiom states that a sure event is cer-
tain to occur. In probability theory, the sample space Ω is referred to as the 
sure event; therefore, we have P( )Ω  equal to 1. The third axiom states that 
for any infinite or finite sequence of mutually exclusive events, the prob-
ability of at least one of these events occurring is the sum of their respective  
probabilities.

Thus, it is possible for probability to reflect a measure of belief in an 
event’s occurrence. For instance, an engineer might assign a probability of 
0.70 to the event “the radar software for the Advanced Air Traffic Control 
System (AATCS) will not exceed 100K source instructions.” Clearly, this 
event is nonrepeatable. The AATCS cannot be built n times (and under 
identical conditions) to objectively determine if this probability is indeed 
0.70. When an event such as this appears, its probability may be subjec-
tively assigned.

Subjective probabilities should be based on available evidence and previ-
ous experience with similar events. They must be plausible and consistent 
with Kolmogorov’s axioms and the theorems of probability.

What about consequence? What does consequence mean and how can it 
be measured? As mentioned earlier, a risk event’s consequence is typically 
expressed in terms of its impact on an engineering system’s cost, sched-
ule, and technical performance. However, there are often other important 
dimensions to consider. These include programmatic, political, and eco-
nomic impacts.

Consequence can be measured in many ways. Common measurement 
methods include techniques from value or utility function theory, which 
are presented later in this book. These formalisms enable risk events that 
impact a project in different types of units (e.g., dollars, months, and process-
ing speed) to be compared along normalized, dimensionless scales. This is 
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especially necessary when risk events are rank-ordered or prioritized on the 
basis of their occurrence probabilities and consequences.

Assessing a risk event’s occurrence probability and its consequence is only 
a part of the overall process of managing risk in an engineering system proj-
ect. In general, risk management can be characterized by the process illus-
trated in Figure 1.2. The following describes each step in this process.

Risk Identification

Risk identification is the critical first step of the risk management process. Its 
objective is the early and continuous identification of risks to include those 
within and external to the engineering system project. As mentioned earlier, 
these risks are events that, if they occur, have negative impacts on the proj-
ect’s ability to achieve its performance objectives.

Risk Impact (Consequence) Assessment

In this step, an assessment is made of the impact each risk event could have on 
the engineering system project. Typically, this includes how the event could 
impact cost, schedule, and technical performance objectives. Impacts are not 
limited to these criteria. Additional criteria such as political or economic con-
sequences may also require consideration—discussed later in this book.

An assessment is also made of the probability that each risk event will 
occur. As mentioned previously, this often involves subjective probability 
assessments, particularly if circumstances preclude a direct evaluation of 
probability by objective methods.

4. Risk mitigation
planning,

implementation,
and progress
monitoring

1. Risk
identification

2. Risk
impact

assessment

3. Risk
prioritization

analysis

Risk
tracking

Risk events assessed as medium or high criticality might go into risk
mitigation planning and implementation; low critical risks might be
tracked/monitored on a watch-list

Decision-analytic rules
applied to rank-order
identified risk events
from “most-to-least” critical

Consequences may include
cost, schedule, technical
performance impacts,
as well as capability or
functionality impacts

Probabilities and
consequences of risk
events are assessed

Assess
probability 

and
consequence

Risk events and their
relationships are defined 

Identify
risks

Reassess existing
risk events and

identify new
risk events

Risk mitigation

Watch-listed
risks

Assess risk
criticality

FIGURE 1.2
Steps common to a risk management process.
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Risk Prioritization Analysis

In this step, the overall set of identified risk events, their impact assessments, 
and their occurrence probabilities are processed to derive a ranking of the 
most-to-least critical risks. Decision analytic techniques such as utility the-
ory, value function theory, and ordinal methods are formalisms often used 
to derive this ranking.

A major purpose for prioritizing (or ranking) risks is to form a basis for 
allocating critical resources. These resources include the assignment of addi-
tional personnel or funding (if necessary) to focus on resolving risks deemed 
most critical to the engineering system project.

Risk Mitigation Planning and Progress Monitoring

This step involves the development of mitigation plans designed to manage, 
eliminate, or reduce risk to an acceptable level. Once a plan is implemented, 
it is continually monitored to assess its efficacy with the intent to revise its 
courses of action if needed.

Systems engineering practices often necessitate the use of historical expe-
rience and expert judgments. In recognition of this, the analytical methods 
developed herein derive from formalisms designed for situations in which 
the availability of quantitative data is the exception rather than the rule. 
Specifically, value and utility function theory will be used to represent and 
measure risk and its effects on engineering systems. These formalisms orig-
inate from the von Neumann and Morgenstern axioms of expected utility 
theory (von Neumann and Morgenstern, 1944) and from modern works 
on preference theory (Keeney and Raiffa, 1976). Thoughts on these formal-
isms are given by R. L. Keeney in his book Value-Focused Thinking: A Path to 
Creative Decision Making (1992). Keeney writes:

The final issue concerns the charge that value (utility) models are not 
scientific or objective. With that, I certainly agree in the narrow sense. 
Indeed values are subjective, but they are undeniably a part of decision 
situations. Not modeling them does not make them go away. It is simply 
a question of whether these values are included implicitly and perhaps 
unknowingly in a decision process or whether there is an attempt to 
make them explicit and consistent and logical. In a broader sense, the 
systematic development of a model of values is definitely scientific and 
objective. It lays out the assumptions on which the model is based, the 
logic supporting these assumptions, and the basis for data (that is, spe-
cific value judgments). This makes it possible to appraise the implica-
tions of different value judgments. All of this is very much in the spirit of 
scientific analysis. It certainly seems more reasonable—even more scien-
tific—to approach important decisions with the relevant values explicit 
and clarified rather than implicit and vague.

(Keeney, 1992)
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This view reflects the philosophy and the analytic school of thought in 
this book. It is in this spirit that the formalisms herein were developed to 
address the very real and complex management problems in engineering 
today’s advanced enterprise systems.

1.3  New Challenges

As mentioned earlier, today’s systems are increasingly characterized by their 
ubiquity and lack of specification. They are an enterprise of systems and 
systems-of-systems. Through the use of advanced network and communica-
tions technologies, these systems continuously operate to meet the demands 
of globally distributed and uncountable users and communities.

Engineering enterprise systems is an emerging discipline that encom-
passes and extends traditional systems engineering to create and evolve 
webs of systems and systems-of-systems. They operate in a network-centric 
way to deliver capabilities via services, data, and applications through richly 
interconnected networks of information and communications technologies.

More and more defense systems, transportation systems, and financial 
systems connect across boundaries and seamlessly interface with users, 
information repositories, applications, and services. These systems are an 
enterprise of people, processes, technologies, and organizations.

Thoughts on how to design, engineer, and manage enterprise systems are 
at the cutting edge of modern systems thinking and engineering. Lack of 
clearly defined boundaries and diminished hierarchical control are signifi-
cant technical and managerial challenges. Along with this, the engineering 
management community needs to establish methods for identifying, ana-
lyzing, and managing risks in systems engineered to operate in enterprise 
contexts.

What makes managing risks in engineering enterprise systems more chal-
lenging than that in engineering traditional systems? How does the delivery 
of capability to users affect how risks are identified and managed in engi-
neering enterprise systems?

With regard to the first question, the difference is principally a matter of 
scope. From a high-level perspective, the basic risk management process 
(shown in Figure 1.2) is the same. The challenge comes from implement-
ing and managing this process across a large-scale, complex enterprise – 
in which contributing systems may be in different stages of maturity and 
managers, users, and stakeholders may have different capability needs and 
priorities.

With regard to the second question, an enterprise system is often planned 
and engineered to deliver capabilities through a series of time-phased 
increments or evolutionary builds. Thus, risks can originate from many 
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different sources and threaten enterprise capabilities at different points of 
time. Furthermore, these risks must align to the capabilities they potentially 
affect, and the scope of their consequences must be understood. In addition, 
the extent to which enterprise risks may have unwanted collateral effects on 
other dependent capabilities must be carefully examined.

A final distinguishing challenge in engineering enterprise systems is not 
only their technologies but also the way users interface with them and each 
other. Today, the engineering and social science communities are joining in 
ways not previously seen when planning and evolving the design, develop-
ment, and operation of enterprise systems (Allen et al., 2004).

The materials in this book present formal methods that promote a holis-
tic understanding of risks in engineering enterprise systems, their potential 
consequences, dependencies, and rippling effects across the enterprise space. 
Ultimately, risk management in this context aims to establish and maintain 
a complete view of risks across the enterprise so that capabilities and perfor-
mance objectives are achieved via risk-informed resource and investment 
decisions.

Questions and Exercises

	 1.	 In this chapter, engineering risk management was described as a 
program management process and one that, at its best, is indistin-
guishable from program management.
	(A)	 Discuss how one might institute protocols to ensure that risk 

management and program management are inseparable disci-
plines in the design and engineering of systems.

	(B)	 What leadership qualities are needed in the management envi-
ronment to accomplish (A)?

	 2.	The aim of engineering risk management was described as the 
early and continuous identification, management, and resolution of 
risks such that the engineering of a system is accomplished within 
cost, delivered on time, and meets performance. Discuss protocols 
needed on an engineering system project to ensure early and continu-
ous identification of risks throughout a project’s life cycle.

	 3.	Given Definition 1.1, if A is a risk event, then why must the probabil-
ity of A be strictly greater than 0 and strictly less than 1?

	 4.	This chapter discussed how pressures to meet cost, schedule, and 
technical performance are the practical realities in engineering 
today’s systems. Risk becomes present, in large part, because expec-
tations in these dimensions push what is technically or economically 
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feasible. Discuss ways an engineering manager might lessen or 
guard against these pressures within and across these dimensions. 
See Figure 1.1.

	 5.	Figure 1.2 presented a general risk management process for engi-
neering system projects. Discuss how this process might be 
tailored for use in a risk management program designed for engi-
neering an enterprise system that consists of a web of systems and 
systems-of-systems.

	 6.	Review the discussion on Boston’s CA/T project in Section 1.1. 
Enumerate what you consider to be key lessons from this project, as 
they relate to risks and their consequences. For each lesson in your 
list, write what you would do to ensure that such risks are mini-
mized (or eliminated) if you were the risk manager on a project with 
similar challenges.
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2
Perspectives on Theories of Systems and Risk

2.1  Introduction

This chapter introduces literature foundational to general systems theory, 
risk and decision theory, and their application to engineering risk manage-
ment. Modern literature on engineering systems and risk has only begun 
to address the complexities and multidisciplinary nature of this topic. 
However, foundational perspectives on ways to view this space exist in the 
literature and in the scientific community. Many of these perspectives orig-
inate from general systems theory (von Bertalanffy, 1968), a topic discussed 
in Section 2.2.

The major disciplines described in this book are presented in Figure 2.1 
in the form of a literature map. The three axes shown represent engineer-
ing systems, risk and decision theory, and engineering risk management. 
General systems theory provides a foundation for how aspects of these dis-
ciplines are applied to the approaches presented in this book.

2.2  General Systems Theory

We begin this discussion with a definition of the word system. A system is 
an interacting mix of elements forming an intended whole greater than the sum of 
its parts. These elements may include people, cultures, organizations, poli-
cies, services, techniques, technologies, information/data, facilities, prod-
ucts, procedures, processes, and other human-made (or natural) entities. 
The whole is sufficiently cohesive to have an identity distinct from its envi-
ronment (White, 2006). General systems theory is a view that systems are 
“everywhere” (von Bertalanffy, 1968). Natural laws and social behaviors are 
parts of highly complex, interdependent systems and elements. General sys-
tems theory is a philosophy that considers how to view and pursue scientific 
inquiry. Its concepts provide a basis for the analytic approaches in this book.

General systems theory is a phrase coined 40 years ago; however, systems 
and systems thinking have long been part of man’s history. Anthropological 
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evidence reveals the creation of hunting systems by Paleolithic human cul-
tures that existed more than 50,000 years ago.

Cro-Magnon artifacts demonstrate the increasing sophistication of their 
hunting devices and hunting systems to capture large and dangerous game 
from safer distances. One such device was a thrower. The thrower oper-
ated like a sling shot. When inserted with a spear and thrown, the device 
increased the spear’s speed, range, and lethality. This enabled hunters to 
attack from distances and so lessened their risk of injury. These were learned 
from empirical observations and not, at that time, from formal understand-
ing of the laws of motion.

Let us review this from the perspective of general systems theory. Three 
elements were integrated to make the Cro-Magnon’s weapon: the arrowhead; 
a long, thick stick; and the thrower device. Independently, these elements 
were ineffective as a weapon for capturing prey. However, when integrated 
as a whole system, the spear’s potential was deadly. The word “potential” is 
because the spear itself is inert; a human thrower is needed for the spear’s 
effectiveness to be realized.

In this sense, the human thrower is the weapon system, and the spear is 
the weapon. When multiple human throwers are engaged in a coordinated 
attack, they operate as a system of weapon systems engaged on a target. 
Here, the spears are the individual weapon systems that operate together to 
launch an even more powerful assault on a target than realized by a single 
human thrower acting as a single weapon system.

It took systems thinking to integrate the weapon’s three elements. It took 
even more of it to improve the weapon’s effectiveness by launching weap-
ons simultaneously at targets through group attack strategies. This is one 

General systems theory

Axiomatic decision theory,
utility function theory,
preference theory

Risk and decision
theory

Engineering risk
management

Engineering systems risk
analysis and management

Systems,
systems-of-systems,
enterprise systems

Engineering
systems
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of the many examples of systems, systems thinking, and even system-of-
systems thinking in early human culture. It highlights a view that systems 
are not only everywhere but have always been everywhere. They are ubiq-
uitous throughout nature and society. In 1968, Karl Ludwig von Bertalanffy 
authored the book “General Systems Theory: Foundations, Development, 
Applications.” He conjectured a theory of systems as “a general science 
of wholeness” where “the whole is more than the sum of its parts” (von 
Bertalanffy, 1968). These ideas were understood well by our ancestors. Next, 
we fast forward from Paleolithic times to the Industrial Revolution. 

Historians generally associate the Industrial Revolution with mid- to late-
18th century England. Here, mechanical innovations moved agriculture-
based economies to economies driven by mass production of manufactured 
goods. As a result, society experienced dramatic population shifts from rural 
farms to cities where factories and factory jobs were plenty.

Historians refer to the Industrial Revolution in two phases. The first phase 
involved mechanical innovations that replaced manual labor with machine-
driven mass production of goods. The second phase put many of these inno-
vations into complex applications, including some that required the use of 
electricity.

Consider steam power. In the first phase of the Industrial Revolution, 
steam powered many types of manufacturing machines that were oper-
ated in factories—especially in factories where waterpower was absent. 
However, steam power was soon recognized as the driving power for ship-
ping and railway systems. Ultimately, these innovations led to electrome-
chanical technologies that enabled wide-scale transportation systems to be 
built and operated across the expanse of a nation’s land and sea territories. 
Thus, one can trace the beginning of modern day engineering systems to 
those innovations, inventions, and processes that appeared more than a 
century ago.

Today, engineering systems continue to advance, but they do so within 
another revolution—the digital or information age. Unlike engineering sys-
tems built during the height of the Industrial Revolution, today’s systems are 
focused less on enabling the mass production of physical goods and more on 
enabling global connectivity. With this, engineering systems now make pos-
sible the instantaneous transport of digital information around the world.

With an understanding of the past and a perspective on today, Figure 2.2 
presents the literature foundational to this book. A chronology of modern 
scholarship on systems theory and the engineering of systems, systems-of-
systems, and enterprise systems is shown. We begin with Bertalanffy’s semi-
nal work on general systems theory.

Over 40 years ago, Karl Ludwig von Bertalanffy proposed a general theory 
of systems to explain fundamental commonalities that seem to underlie nat-
ural and sociobehavioral phenomena. He theorized that natural phenomena 
and social behavior at their elemental levels are systems comprising entities 
that operate and interact in open and continually dynamic ways.
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Bertalanffy (1968) argues that a closed system,* such as an urn contain-
ing red and blue marbles, eventually tends toward a state of most probable 
distribution. This reflects a tendency toward maximum disorder. A system 
might be closed at certain macrolevels of organization with behaviors pre-
dictable with certainty; however, at lower and lower levels of organization, 
the system eventually becomes more and more open, disordered, and with 
behaviors not predictable with certainty. “Thus a basic problem posed 
to modern science is a general theory of organization” (von Bertalanffy, 
1968) with general systems theory as a framework within which the beha-
vior and interaction of entities operating within an organization can be 
discovered.

Bertalanffy (1968) regarded general systems theory as a “general science of 
wholeness.” He saw the incompleteness of trying to understand “observable 
phenomena” as a collection of entities that could be studied “independently 
of each other.” Systems are fundamentally organizations made of entities 
“not understandable by investigation of their respective parts in isolation” 
(von Bertalanffy, 1968) but in how they assemble, react, and interact as a 
whole. Thus, the behavior of a system (an organization) is not simply the 
sum of the behavior of its parts.

Bertalanffy’s insights were profound. He foresaw not only the challenges in 
engineering today’s complex systems but also ways to view and study their 
dynamics, interactions, and behaviors. Others also expressed views consistent 
with those of Bertalanffy when planning and designing engineering systems. 
For example, Rittel (1972) wrote on the importance of “grasping the whole of 

*	 A closed system is isolated from its environment (von Bertalanffy, 1968). An open system is 
one that is not closed.
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a system” rather than viewing it in “piecemeal,” and since a system has many 
“facets,” planning its design is necessarily multidisciplinary.

Bertalanffy and Rittel recognized the need for many different specialties to 
work together in the engineering of systems as they evolved from single-
purpose machines, such as steam engines, to highly complex machines such 
as space vehicles (von Bertalanffy, 1968; Rittel, 1972). Throughout most of 
the Industrial Revolution, single-purpose machines were built by engineers 
trained in their underlying technologies. These machines were comprised 
of components that were similar to each other and were within the scope 
of the engineer’s training. As the industrial age moved to its second phase, 
and beyond, engineering systems required the assemblage of more and more 
different technologies. Today, many different specialties are needed to suc-
cessfully design, build, and field information age systems.

What are these specialties? These are indeed not only the traditional engi-
neering sciences but also include management, economics, cost analysis, and 
other analytical areas such as reliability and logistics analyses, modeling 
and simulation, and human factors. In the past, authors like Blanchard and 
Fabrycky (1990) brought these specialties and related areas into the modern 
study of systems engineering. As a result, systems engineering has become 
the principal discipline from which we address the depth and breadth of the 
sociotechnical challenges in engineering today’s advanced systems.

What is meant by sociotechnical challenges? They are challenges that 
range from how a system affects society to how society affects a system. 
With regard to the former, we discussed how the Industrial Revolution 
changed society from an agricultural economy to one driven by automation 
and the mass production of goods. With regard to the latter, in Chapter 1 we 
discussed how social and political attitudes affected technical decisions on 
Boston’s Central Artery/Tunnel (CA/T) project. Thus, sociotechnical chal-
lenges stem from how systems interact with people and how people interact 
with systems.

Social interactions with systems, as enabled by their technologies, are 
innumerable. They produce desirable and undesirable effects. For example, 
the ability to easily purchase goods from around the world via networked 
systems and services led to the emergence of cyber-based commerce and the 
economic opportunities that it provides. Unfortunately, opportunities often 
come with risks. Consider the risks posed by cybercrime to electronic com-
merce. Cybercrime is a socially initiated undesirable behavior that intention-
ally exploits the vulnerabilities in a system’s technologies.

In both cases, electronic commerce and cybercrime illustrate a property 
called emergent behavior. Emergent properties derive from “the whole of 
a system and not the properties of its parts; nor can it be deduced from the 
properties of its parts” (Gharajedaghi, 1999). Emergent behavior has always 
been possible in systems. However, emergent behaviors in industrial age sys-
tems could be anticipated and addressed better than in systems engineered 
in the current age. Emergent behaviors in today’s systems are often so subtle, 
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or originate so deeply in layers of architecture, that their effects or origins 
can go unnoticed. Thus, there is a persistence of uncertainty and unpredict-
ability in the performance and behavior of information age systems. Why is 
this? A simple answer is because of networks and networked computing. But 
that is where simplicity ends in this problem space.

2.2.1  Complex Systems, Systems-of-Systems, and Enterprise Systems

The computer was a closed system before the advent of networks in ways 
similar to single-purpose machines of the Industrial Revolution. Network 
technologies brought isolated computers into an open system of globally 
connected machines in which information dissemination and collaboration 
is nearly instantaneous.

Networking became the enabling technology of information age systems. 
Using this technology, separate and autonomous computers could now form 
into systems of networked computers, and computing grew in scale, com-
plexity, and purpose.

Thus, in today’s literature, the terms complex systems, systems-of-systems, 
and enterprise systems are commonly found. What do these terms mean and 
how are they related? It is important to note that the systems engineering 
community is not settled on answers to these questions. These are cutting-
edge topics in engineering systems and systems research. However, a con-
vergence of thought is beginning to emerge. We begin with the term complex 
system. Keating et al. (2003) describe complex systems as those having attri-
butes characterized by Jackson (1991), which are given below:

•	 Large number of variables or elements and rich interactions among 
elements

•	 Difficulty in identifying attributes and emergent properties
•	 Loosely organized (structured) interaction among elements
•	 Probabilistic, as opposed to deterministic, behavior in the system
•	 System evolution and emergence over time
•	 Purposeful pursuit of multiple goals by system entities or subsys-

tems (pluralistic)
•	 Possibility of behavioral influence or intervention in the system
•	 Largely open to the transport of energy, information, or resources 

from/across the system boundary to the environment.

Examples of complex systems include space shuttles, nuclear power plants, 
and magnetic resonance imaging scanners. More recently, and consistent 
with the above, White (2006) defines a complex system as “an open system 
with continually cooperating and competing elements—a system that con-
tinually evolves and changes its behavior according to its own condition and 
its external environment. Changes between states of order and chaotic flux 
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are possible. Relationships between elements are imperfectly known and 
difficult to understand, predict, or control.”

Engineering systems today are challenged when complex systems become 
more and more networked in ways that create metasystems—systems-of-
systems “comprised of multiple embedded and interrelated autonomous 
complex subsystems” (Keating, 2004). Similarly, White (2006) defines a sys-
tem-of-systems as “a collection of systems that function to achieve a purpose 
not achievable by the individual systems acting independently. Each system 
can operate independently and accomplish its own separate purpose.” In a 
system-of-systems, their whole is indeed more than the sum of their parts; 
however, it cannot exist without them.

A system-of-systems is formed by the integration of multiple subsystems, 
where each subsystem can be a complex system. Examples of systems-of-sys-
tems include the national airspace system, the international earth observa-
tion program known as GEOSS (global earth observation system-of-systems) 
and navigation systems such as the global positioning system. Building 
systems-of-systems like these is an enormous engineering and management 
challenge. Engineering systems of networked systems-of-systems is an even 
greater challenge. It is the newest demand being faced by today’s systems 
engineering community.

Systems of networked systems-of-systems are sometimes called enterprise 
systems. Enterprise systems, such as the Internet, are the cutting edge of 
information age computing and global communications.

The literature on engineering enterprise systems is very young. However, 
scholarship has begun to emerge from academia and industry. Writings by 
Allen et al. (2004) and Rebovich (2005) reflect thought trends from academic 
and industry perspectives, respectively.

In the monograph “Engineering Systems: An Enterprise Perspective,” 
Allen et  al. (2004) reflect on the nature of an enterprise and its effects on 
design and engineering solutions. They state, “Such designs are no longer 
purely technical. In many cases, the enterprise issues are far more difficult 
than the technical ones to solve; moreover, there must be adaptation on both 
sides of  the relationship between system and enterprise.” Moreover, Allen 
identifies the critical and sometimes orthogonal relationships and goals of 
the multiple stakeholders in the design of an enterprise system. Allen et al. 
(2004) write:

An enterprise perspective on system design makes us aware of the 
fact that most such designs engage multiple stakeholders. These can 
range from shareholders to suppliers to members of the workforce to 
customers to society. What impact can this far-reaching effect have 
on system design? First of all, stakeholders’ interests are not always 
in alignment.

System design may have to take this into account, balancing the 
interests of the various stakeholders. As a result, the design pro-
cess is far more complex than one would be led to believe from the 
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engineering science model that we teach to undergraduate engineering 
students. The best technical solution to a design may very well not be 
the best overall solution. In fact, it seldom is, and there may not even 
be a best technical design. Take for example the current F-35 aircraft 
design. With several customers, each having different missions for this 
system, the designers cannot optimize the design for any one of the 
customers’ desires. In addition, since recruiting customers in different 
countries often means engaging suppliers from those countries, adap-
tations may need to be made in the design to match the capabilities of 
those suppliers.

Allen’s insights echoed Bertalanffy’s insights that recognized that systems, 
such as the F-35 or Boston’s Big Dig (discussed in Chapter 1) are fundamen-
tally organizations made of entities (e.g., people) understood by “studying 
them not in isolation” but by studying how they assemble, react, and interact 
as a whole. Rebovich (2005, 2007) and other systems thinkers at MITRE offer 
a view on what is meant by an enterprise and what is fundamentally differ-
ent. MITRE (2007) writes the following:

By enterprise we mean a network of interdependent people, processes 
and supporting technology not fully under control of any single entity. 
In business literature an enterprise frequently refers to an organization, 
such as a firm or government agency; in the computer industry it refers 
to any large organization that uses computers.

Our definition emphasizes the interdependency of individual systems 
and even systems-of-systems. We include firms, government agencies, 
large information-enabled organizations and any network of entities 
coming together to collectively accomplish explicit or implicit goals. 
This includes the integration of previously separate units. The enterprise 
displays new behaviors that emerge from the interaction of the parts.

What is fundamentally different?

A mix of interdependency and unpredictability, intensified by rapid 
technology change, is driving the need for new systems engineering 
techniques. When large numbers of systems are networked together 
to achieve some collaborative advantage, interdependencies spring up 
among the systems. Moreover, when the networked systems are each 
individually adapting to both technology and mission changes, then the 
environment for any given system becomes essentially unpredictable. 
The combination of massive interdependencies and unpredictability is 
fundamentally different. Systems engineering success is defined not for 
an individual known system, but for the network of constantly changing 
systems.

(MITRE, 2007)

From this, it is inferred that a key differentiator of an enterprise system 
is diminished control over its engineering by a centralized authority. 
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Centralized or hierarchical control over design decisions is a feature in 
engineering systems-of-systems and traditional, well-bounded systems 
(e.g., an airplane and an automobile). Systems-of-systems are, in most 
cases, engineered in accordance with stated specifications. These may 
be shaped by multiple stakeholders, but they are managed by a central-
ized authority with overall responsibility for engineering and fielding the 
system-of-systems.

This is not the case in engineering enterprise systems. An enterprise 
system is not characterized by firm and fixed specifications under the con-
trol of a centralized authority and agreed to by all participants at different 
organizational levels. The envelope that captures stakeholders affected by, 
or involved with, an enterprise system is so broad that centralized or hierar-
chical control over its engineering is generally not possible and perhaps not 
even desirable.

Given these challenges and considerations, how is engineering an enter-
prise planned? The short answer, given what we have seen so far, is through 
a continual and evolutionary development of capability. What is meant by 
capability? Based on their experiences to date, planners of enterprise systems 
define capability as the ability to achieve an effect to a standard under speci-
fied conditions using multiple combinations of means and ways to perform 
a set of tasks (Office of the Secretary of Defense, 2005).

An enterprise is essentially a society of connected users with competing 
needs, interests, and behaviors. Thus, an enterprise system is characterized 
more by the capabilities it must field than by the specifications within which 
it must operate. Moreover, capabilities are constrained by the readiness of 
technology, availability of suppliers of technology, and the operational limits 
of the systems and systems-of-systems that enable them.

An enterprise system must be adaptable to evolving missions, changing 
capability needs, and the dynamics of human behaviors that interact within 
and across the enterprise. Rebovich (2007) writes:

Enterprise capabilities evolve through largely unpredictable technical 
and cultural dimensions. Enterprise capabilities are implemented by the 
collective effort of organizations whose primary interests, motivations, 
and rewards come from successfully fielding system capabilities.

Rebovich (2007) further writes:

Enterprise engineering is an emerging discipline for developing enter-
prise capabilities. It is a multidisciplinary approach that takes a broad 
perspective in synthesizing technical and nontechnical (political, eco-
nomic, organizational, operational, social and cultural) aspects of an 
enterprise capability.

Enterprise engineering is directed towards enabling and achieving 
enterprise-level and cross-enterprise operations outcomes. Enterprise 
engineering is based on the premise that an enterprise is a collection 
of entities that want to succeed and will adapt to do so. The implication 
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of this statement is that enterprise engineering processes are more about 
shaping the space in which organizations develop systems so that an 
organization innovating and operating to succeed in its local mission 
will—automatically and at the same time—innovate and operate in the 
interest of the enterprise.

Enterprise engineering processes are focused more on shaping the 
environment, incentives and rules of success in which classical engi-
neering takes place. Enterprise engineering coordinates, harmonizes 
and integrates the efforts of organizations and individuals through pro-
cesses informed or inspired by natural evolution and economic markets. 
Enterprise engineering manages largely through interventions (innova-
tions) instead of (rigorous/strict) controls.

The literature on systems and systems theory will continue to evolve. 
Systems science is endless. The more we explore, the more our present day 
understanding is shaped and further challenged. The more we advance in 
technology and global connectedness, the more open, complex, and virtual 
the enabling systems will become.

Engineering and managing the development of enterprise systems neces-
sitates, as never before, an openness and adaptability of process, practice, 
and procedure. Engineering methodologies that are appropriate today might 
not be appropriate tomorrow. Engineering management practices that scale 
today might not scale tomorrow. Because we cannot see beyond our line of 
sight, we should reserve judgment on the finality of any one process or prac-
tice at this stage of understanding.

It is with this view that the advanced analytical methods presented in this 
book were designed. The analytic philosophy was to approach risk analysis in 
the enterprise space from a whole systems perspective. A perspective with roots 
in the writings of Bertalanffy (1968) and influenced by recognizing that the 
whole of an enterprise is not only more than the sum of its parts—but is contin-
ually shaped, expanded, or diminished by them.

2.3  Risk and Decision Theory

The literature on risk and decision theory is vast. Its intellectual foundations 
are deeply rooted in mathematics and economics. Risk and decision theory 
has been a field of study for at least 300 years and one with a rich history of 
cross-domain applications. Engineering, management, and behavioral sci-
ences all apply and advance aspects of risk and decision theory.

The study of risk is the study of chance and the study of choice. Risk is the 
chance that an unwanted event occurs. Taking a risk is a choice to gamble on 
an event whose outcome is uncertain. Risk is the probability that an unfavor-
able outcome is realized. However, a favorable or an unfavorable outcome is 
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a personal determination—one that is influenced by a person’s view of value 
or worth.

Probability theory is the formalism to study chance. Decision theory 
is the formalism to study choice. Together, they provide the formalism 
to study risk. The importance of combining the study of chance and the 
study of choice was recognized by Swiss mathematician Daniel Bernoulli 
(1738) in his essay “Exposition of a New Theory on the Measurement of 
Risk.”

The following presents a brief review of the literature foundational to 
risk and decision theory as it applies to this book. Figure 2.3 identifies these 
authors. We will begin with Bernoulli and his seminal 1738 essay, which 
proposed a mathematical relationship between chance and choice, and end 
with Bertalanffy’s insights on the importance of this topic to general systems 
theory.

Daniel Bernoulli published one of the most influential essays on the the-
ory of risk and its measurement.* He formed the idea that valuing mon-
etary loss or gain from a gamble or lottery should be measured in the 
context of a player’s personal circumstance and existing wealth. It was the 
first time a person’s affluence was directly considered in how they value 
an amount of money won or lost, instead of just its absolute numerical sum 
(e.g., Figure 2.4).

To do this the determination of the value of an item must not be based 
on its price, but rather on the utility it yields. The price of the item is 
dependent only on the thing itself and is equal for everyone; the util-
ity, however, is dependent on the particular circumstances of the person 
making the estimate. Thus, there is no doubt that a gain of one thousand 
ducats is more significant to a pauper than to a rich man though both gain same 
amount.

(Bernoulli, 1738)

Meanwhile, let us use this as a fundamental rule: If the utility of each 
possible profit expectation is multiplied by the number of ways in 
which it can occur, and we then divide the sum of these products by the 
total number of possible cases, a mean utility [moral expectation] will be 

*	 Daniel Bernoulli’s essay was part of correspondences on a problem that became known as 
the St. Petersburg paradox, described in Appendix A. The paradox was one of five problems 
posed by Daniel’s cousin Nicolas Bernoulli (1687–1759) to Pierre Raymond de Montmort 
(1678–1719)—a French mathematician who wrote a treatise on probability theory and games of 
chance. In a 1728 letter to Nicolas Bernoulli, Swiss mathematician Gabriel Cramer (1704–1752) 
independently developed concepts similar to those in Daniel Bernoulli’s essay. Like Daniel 
Bernoulli, Cramer wrote “mathematicians estimate money in proportion to its quantity, and men of 
good sense in proportion to the usage that they may make of it.” Cramer went on to propose a square 
root function to represent “proportion of usage,” where Daniel Bernoulli derived a logarith-
mic function. Recognition of Cramer’s thoughts as remarkably similar to his own is acknowl-
edged by Daniel Bernoulli at the close of his 1738 essay (Bernoulli, 1738).
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obtained, and the profit which corresponds to this utility will equal the 
value of the risk in question.

(Bernoulli, 1738, para. 4)*

Thus, it becomes evident that no valid measurement of the value of a risk 
can be obtained without consideration being given to its utility, that is to say, 
the utility of whatever gain accrues to the individual or, conversely, how 
much profit is required to yield a given utility. However it hardly seems 
plausible to make any precise generalizations since the utility of an item 
may change with circumstances. Thus, though a poor man generally obtains 
more utility than does a rich man from an equal gain.

(Bernoulli, 1738)

*	 MONETA REIPUBLICÆ TIGURINÆ, oval city coat-of-arms within ornate frame supported 
by lions rampant, one holding palm, the other sword. DOMINI CONSERVA NOS IN PACE, 
aerial view of city along the Limmat River with boats; date in ornate cartouche.

FIGURE 2.4
A Swiss Silver Thaler, Zurich, 1727.* (From CNG coins. http://www.cngcoins.com, permission 
is granted to copy, distribute, and/or modify this document under the terms of the GNU Free 
Documentation license, Version 1.2.)
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With this, Bernoulli introduced the idea of expected utility theory and the 
logarithmic utility function (Figure 2.5) to represent decision-making under 
uncertainty. It was a formalism that directly captured personal or subjective 
measures of value (or worth) into a risk calculus.

As seen in Figure 2.5, Bernoulli’s log utility function is concave. Concave 
functions always appear “hill-like.” The log utility function exhibits a prop-
erty known as diminishing marginal utility.* This means that for every unit 
increase in wealth, there is a corresponding decrease in the rate of additional 
utility with respect to that change in wealth.

Concave utility functions are always associated with a risk-averse person. 
A risk-averse person is willing to accept, with certainty, an amount of money 
less than the expected winnings that might be received from a lottery or 
gamble. Bernoulli’s risk measurement theory assumed that all persons are 
risk-averse. This assumption was reasonable given the socioeconomic reali-
ties of eighteenth century Europe.

Despite the newness of Bernoulli’s theory, it would be 200 years before 
John von Neumann and Oskar Morgenstern (1944) extended its ideas to a 
set of axioms known as the axioms of expected utility theory.† The axioms of 
expected utility theory state conditions that must exist for rational decision-
making in the presence of uncertainty.

Subject to these conditions, a rational individual will choose (or prefer) 
the option from a set of options (with uncertain outcomes) with maximum 
expected utility. With this, von Neumann and Morgenstern define a utility 

*	 Also known as “Bernoulli’s increasing-at-a-decreasing-rate thesis, which economists would 
later term diminishing marginal utility of wealth” (Fishburn, 1989).

†	 The axioms of expected utility are sometimes called the axioms of choice or the preference 
axioms.
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function over options with uncertain outcomes (e.g., lotteries and gambles) 
instead of over wealth as defined by Bernoulli.

Before presenting these axioms, it is important to mention that decision 
theorists treat individual preferences as primitives. In decision theory, a prim-
itive is one that is not derived from other conditions (Garvey, 2008). Decision 
theory is a calculus that operates on primitives to interpret which option 
among competing options is the rational choice instead of interpreting why 
an individual prefers one option more than others.

How are preferences expressed? This can be illustrated by the following 
two examples:

	 (1)	A person strictly prefers red more than black (red ≻ black)*
	 (2)	A person weakly prefers five A-widgets more than nine B-widgets 

( )5 9A widgets B wi ets- -� dg

The principal axioms of von Neumann-Morgenstern (vNM) expected utility 
theory are as follows: 

Completeness Axiom  Given lottery A and lottery B, a person can state that A 
is strictly preferred to B ( . ., )i e A B�  or B is strictly preferred to A (i.e., B ≻ A), 
or the person is indifferent to them ( . ., ).i e A B∼

Transitivity Axiom  If a person prefers lottery A more than lottery B and lot-
tery B more than lottery C, then lottery A is preferred to lottery C.

Continuity Axiom  If a person prefers lottery A more than lottery B and lot-
tery B more than lottery C, then there is a probability p that this person is 
indifferent between receiving lottery B with certainty and receiving a com-
pound lottery† with probability p of receiving lottery A and probability ( )1− p  
of receiving lottery C.

The continuity axiom means that a person is willing to act on an event that 
has a favorable or unfavorable outcome if the probability that the unfavor-
able outcome occurs is reasonably small. Another way to view this axiom 
is as follows: a slight change in an outcome’s occurrence probability p does 
not change a person’s preference ordering of these outcomes. The continuity 
axiom implies that a continuous utility function exists that represents a per-
son’s preference relation.

Independence (Substitution) Axiom  If a person prefers lottery A more than 
lottery B, then a compound lottery that produces lottery A with probability p 

*	 The notation ≻ is a preference relation notation. Here, A B�  means a person strictly prefers 
outcome A more than outcome B; A B�  means a person weakly prefers outcome A more than 
outcome B (the outcome from A is at least as good as the outcome from B); A B~  means a 
person is indifferent between outcome A or outcome B.

†	 A compound lottery is one whose possible outcomes are themselves simple lotteries; a simple 
lottery is a gamble or risky prospect whose outcomes are determined by chance. Lotteries are 
discussed further in Chapter 3.
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and lottery C with probability ( )1− p  is preferred to a compound lottery that 
produces lottery B with probability p and lottery C with probability ( )1− p .

The independence axiom means that a person’s preference order of prefer-
ence for any pair of lotteries, A and B, is preserved when A and B are mixed 
with a third lottery C, provided lottery A and lottery B are produced with 
probability p and lottery C is produced with probability (1 − p).

Thus, in vNM utility theory, if an individual’s preferences obey these axi-
oms, then they act rationally in choosing the option that has maximum 
expected utility from a set of options whose outcomes are uncertain. The 
vNM axiomatization of utility furthered a formal theory of risk with respect 
to choices under uncertainty. From this, the existence of utility functions 
could be claimed, and their shapes could be associated with a person’s atti-
tude for risk-averse, risk-seeking, or risk-neutral behavior.

In a situation where gains are preferred to losses, a risk-averse person 
is one who is willing to accept a gain with certainty that is less than the 
expected amount received from a lottery. The opposite characterizes a risk-
seeking person. A risk-seeking person is one who is willing to accept a loss 
that is greater than the expected amount received from a lottery. A risk-neu-
tral person is one who is neither risk-averse nor risk-seeking. Such a person 
would be willing to accept a gain or a loss equal only to the expected amount 
received from a lottery.

There is a class of utility functions that model attitudes with respect to 
risk-averse, risk-seeking, and risk-neutral behaviors. A family of such func-
tions is shown in Figure 2.6.

Concave utility functions model risk-averse attitudes. When gains are pre-
ferred to losses, concave utility functions show a slowing rate of increase 
in utility for every unit increase in x. Convex utility functions model risk-
seeking attitudes. When gains are preferred to losses, convex utility func-
tions show a quickening rate of increase in utility for every unit increase 

U(x) U(x)
100

100

100

Risk-averse Risk-averse

Risk-seeking Risk-seeking
Risk-neutral Risk-neutral

Increasing preferences Decreasing preferences
0 0x

100
x

FIGURE 2.6
Families of risk attitude or utility functions. (Adapted from Garvey, P. R., Analytical Methods 
for Risk Management: A Systems Engineering Perspective, Chapman Hall/CRC Press, Taylor & 
Francis Group (UK), London, 2008.)
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in x. Linear utility functions model risk-neutral attitudes. Here, for every 
unit increase in x there is a constant rate of increase in utility, regardless of 
whether gains are preferred to losses.

From this, utility theorists began to measure a person’s degree of risk 
averseness by the steepness of their utility function. From calculus, the 
second derivative of a function provides information about its curvature. 
Because a vNM utility function U x( ) is monotonic and continuous on a 
close interval a ≤ x ≤ b, from differential calculus, U x( ) is concave if U x”( ) < 0 
and convex if U x’’( ) > 0 for all x such that a x b≤ ≤ . So, can U x”( ) provide a 
measure of a person’s degree of risk averseness that can be compared with 
another? Not by itself.

A key property of vNM utility functions is that they are unique up to an 
affine transformation. They are cardinal functions. Preference differences 
between points along their curves have meaning in accordance with car-
dinal interval scales.* Unfortunately, U x”( ) is not invariant under an affine 
transformation. However, two theoretical economists K. J. Arrow (Arrow, 
1965) and J. W. Pratt (Pratt, 1964) created a measure that used U x”( ) and pre-
served the preference structure of U x( ). This became known as the Arrow–
Pratt measure of absolute risk aversion. The measure is defined as follows:
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Using the Arrow–Pratt measure of absolute risk aversion, the Bernoulli log 
utility function has decreasing absolute risk aversion; that is,
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if U W W W( ) log( )= and  denotes wealth. Thus, the Bernoulli log utility func-
tion has decreasing absolute risk aversion and decreasing marginal utility 
with increasing wealth, as shown in Figure 2.5. This means that the amount 
of wealth a person is willing to risk increases as wealth increases.

*	 An interval scale is a measurement scale in which attributes are assigned numbers such that 
differences between them have meaning. The zero point on an interval scale is chosen for 
convenience and does not necessarily represent the absence of the attribute being measured. 
Examples of interval scales are the Fahrenheit (F) or Celsius (C) temperature scales. The math-
ematical relationship between these scales is an affine transformation; that is, F = (9/5) * C + 32. 
The zero point in a temperature scale does not mean the absence of temperature. In particular, 
0°C is assigned as the freezing point of water. Because distances between numbers in an inter-
val scale have meaning, addition and subtraction of interval scale numbers is permitted; how-
ever, because the zero point is arbitrary, multiplication and division of interval scale numbers 
is not permitted. For example, we can say that 75°F is 25°F hotter than 50°F; but, we cannot say 
75°F is 50% hotter than 50°F. However, ratios of differences can be expressed meaningfully; for 
example, one difference can be one-half or twice or three times another.



31Perspectives on Theories of Systems and Risk

The works of Daniel Bernoulli, John von Neumann, Oskar Morgenstern, and 
others brought about ways to study rational decisions relative to risk and risk 
taking. A theory of risk emerged in which a person’s choice to engage in events 
with uncertain outcomes could be represented by bounded and monotonic 
functions called utility functions—mathematical expressions that capture pref-
erences, measures of worth, or degrees of risk aversion unique to an individual.

In many ways, utility theory as a basis for a theory of risk was a revolu-
tion in the growth of mathematical thought. Before Daniel Bernoulli’s 1738 
essay on the St. Petersburg paradox, mathematics was principally applied to 
problems in natural sciences. By 1738, however, mathematics was intersect-
ing with problems in social sciences and most prominently with the study 
of economics. Economics provided the ideal problem environment to evolve 
theories of rational choice, as reflected in a person’s decision to invest in 
options with uncertain outcomes.

Around the same time von Neumann and Morgenstern were forming an 
axiomatic basis for a theory of rational choice, mathematicians were revisiting 
views on the nature of probability and its meaning as a measure. As mentioned 
earlier, the study of risk is the study of chance and the study of choice; thus, the 
dual concepts of probability and choice are integral to the theory of risk.

In 1926, F. P. Ramsey of the University of Cambridge wrote the chapter 
“Truth and Probability,” which appears as Chapter VII in the book The 
Foundations of Mathematics, and other Logical Essays (Ramsey, 1931). In his 
unpublished work, Ramsey produced some of the earliest arguments and 
proofs on the logical consistency of subjective utility and subjective proba-
bility as measures of value and chance; the latter, which he proved, follows 
the laws of probability.

Ramsey wrote that measuring a person’s degree of belief in the truth of a 
proposition can be determined from the odds a person would accept when 
gambling on an uncertain outcome. Thus, Ramsey connected an individual’s 
decision to engage in a bet with their previous knowledge or experience on 
whether the outcome would likely be in their favor or in their disfavor. This 
is essentially a lottery, which later became the fundamental concept of von 
Neumann and Morgenstern’s theory of rational choice.

Ramsey’s view of probability became increasingly a modern interpreta-
tion. Independent of Ramsey’s essay, Italian mathematician B. de Finetti 
(1974) went so far to say that “probability does not exist” (Nau, 2002)—mean-
ing that probability has only a subjective meaning (de Finetti, 1974). 

This definition neatly inverts the objectivistic theory of gambling, in 
which probabilities are taken to be intrinsic properties of events (e.g., 
propensities to happen and long-run frequencies) and personal betting 
rates are later derived from them. Of course, subjective probabilities may 
be informed by classical, logical, or frequentist reasoning in the special 
cases where they apply.

(Nau, 2002)
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Like Ramsey, de Finetti associated probability with the “rate at which an 
individual is willing to bet on the occurrence of an event. Betting rates are 
the primitive measurements that reveal your probabilities or someone else’s 
probabilities, which are the only probabilities that really exist.” (Nau, 2002). 
Thus, de Finetti, like Ramsey, viewed probability as one dependent on the 
state of a person’s knowledge.

In 1954, L. J. Savage further extended the ideas of Ramsey, von Neumann 
and Morgenstern, and de Finetti to ultimately form a Bayesian approach to 
statistical theory (Savage, 1954). In particular, Savage described a relation-
ship between probability and preference as follows:

Moreover, a utility function u is unique up to a positive affine (linear) 
transformation, and the subjective probability π is unique. The relation 
between probability and preference revealed by the representation is

	
p p( ) ( ) , ,A B x A y A x B y B> ⇔{ } { }

iff
if if not if if not        �

whenever outcome x is preferred to outcome y. For, Savage, you regard 
A as more probable than B if you would rather bet on A than B for the 
preferred outcome.

(Fishburn, 1989)

Despite continued debates on the interpretation of probability throughout the 
early 20th century, the issue was essentially settled in 1933. About 10 years 
before the postulation of the vNM axioms of utility, Russian mathematician, 
A. N. Kolmogorov (1956) presented a definition of probability in terms of 
three axioms. Introduced formally in Chapter 1, the first axiom states that 
the probability of any event is a nonnegative number in the interval 0–1. The 
second axiom states that a sure or certain event has probability equal to 1. 
The third axiom states that for any sequence of mutually exclusive events, 
the probability of at least one of these events occuring is the sum of their 
respective probabilities. Thus, probability is only a numerical measure that 
behaves according to these axioms. This encompassed all competing inter-
pretations on its nature and allowed objective and subjective probabilities to 
be part of the “Laplacian” calculus.

Modern Decision Theory

Decision theory has much of its modern theoretical basis in the classic text 
“Decisions with Multiple Objectives: Preferences and Value Tradeoffs” by 
R. L. Keeney and H. Raiffa (1976). In this work, Keeney and Raiffa extended 
the ideas of value and vNM expected utility theory into a modern theory 
of preference. Preference theory has become the theoretical foundation for 
most of the risk analysis methods of today’s engineering systems, as well as 
for the work in this book.



33Perspectives on Theories of Systems and Risk

Howard Raiffa has written extensively on subjective probability theory, 
the need for consistency with Kolmogorov’s axioms, and its role in Bayesian 
statistical inference—particularly in decision-making under conditions of 
uncertainty. Raiffa introduced concepts of preferential and utility independ-
ence—which are key to examining trade-offs between alternatives and their 
performance across multiple criteria. The study of trade-offs led to a the-
ory of multiattribute utility—whose extensive development Raiffa credits to 
Ralph Keeney, his doctoral student at that time.

Where trade-offs under conditions of uncertainty are captured by mul-
tiattribute utility, trade-offs under conditions of certainty are captured by 
multiattribute value theory. Keeney and Raiffa (1976) write:

The multiattribute value problem is one of value tradeoffs. If there is no 
uncertainty in the problem, if we know the multiattribute consequence 
of each alternative, the essence of the issue is, How much achievement 
on objective 1 is the decision-maker willing to give up to improve achieve-
ment on objective 2 by some fixed amount? If there is uncertainty in the 
problem, the tradeoff issue remains, but difficulties are compounded 
because it is not clear what the consequences of each alternative will 
be. The tradeoff issue often becomes a personal value question and, in 
those cases, it requires the subjective judgment of the decision-maker. 
There may be no right or wrong answers to these value questions 
and, naturally enough, different individuals may have different value 
structures.

Although, Keeney and Raiffa extended the theoretical foundations of vNM 
utility theory, it was Krantz et al. (1971) and Dyer and Sarin (1979) who devel-
oped value functions as formalisms to capture a person’s strength of prefer-
ence. A value function is a real-valued function defined over an evaluation 
criterion (or attribute) that represents an alternative’s (or option’s) measure of 
goodness over the levels of the criterion. A measure of “goodness” reflects 
a decision-maker’s judged value in the performance of an alternative (or 
option) across the levels of a criterion (or attribute).

Similar to a utility function, a value function* is usually designed to vary 
from 0 to 1 over the range of levels (or scores) for a criterion. In practice, the 
value function for a criterion’s least preferred level (or score), or the least 
preferred option or alternative, takes the value 0. The value function for a 
criterion’s most preferred level (or score), or the most preferred option or 
alternative, takes the value 1.

Dyer and Sarin (1979) introduced the concept of a measurable value func-
tion. A measurable value function is one in which the value difference 
between any two levels (or scores) within a criterion (or attribute) represents 

*	 A utility function is a value function, but a value function is not necessarily a utility function 
(Keeney and Raiffa, 1976).
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a decision-maker’s strength of preference between them—which is also 
referred to as preference difference.

A measurable value function* is monotonic in preferences. In this, value 
differences represent relative strength of preference. Large value differ-
ences between options (alternatives) indicate that the difference in prefer-
ence between them is greater than that between other options (alternatives). 
Furthermore, the numerical amount of this difference represents the relative 
amount of preference difference. The concept of value differences is also a 
“primitive concept” in decision theory; that is, it is a concept not derived 
from other conditions.

One way to address trade-off problems is found in “Strategic Decision 
Making: Multiobjective Decision Analysis with Spreadsheets” (Kirkwood, 
1997). In this work, Kirkwood writes 

If a decision-maker is multiattribute risk averse, then it is necessary to 
determine a utility function to convert values calculated using a multi-
attribute value function into utilities. This utility function can then be 
used to rank alternatives that have uncertainty about their outcomes.

(Kirkwood, 1997) 

Kirkwood (1997) presents a utility function known as the power-additive util-
ity function. It is an exponential utility function that is a function of a multiat-
tribute value function. With the power-additive utility function, Kirkwood 
connects utility theory to preference theory and to the concept of multiat-
tribute risk averseness (or risk tolerance). Although the power-additive util-
ity function has many useful theoretical properties, its strengths are in its 
practical aspects. Its shape is fully determined by a single parameter that 
reflects the risk averseness of a decision-maker. This parameter is known as 
multiattribute risk tolerance rm .

One way to determine rm is for the decision-maker to select the value 
that reflects his or her risk attitude. Where increasing preferences apply, an 
extremely risk-averse decision-maker might select rm in the interval 0.05 ≤ 
rm ≤ 0.15. A less risk-averse decision-maker might select rm in the interval 
0.15 < rm < 1. As rm becomes increasingly large the decision-maker becomes 
increasingly risk-neutral, and the power-additive utility function approaches 
a straight line. Here, the expected value of the value function can be used 
to rank alternatives.† Figure 2.7 presents families of power-additive utility 
functions for various rm and for increasing preferences.

*	 The vertical axis of a measurable value function is a cardinal interval scale measure of the 
strength of a decision-maker’s preferences. For this reason, a measurable value function is 
also referred to as a cardinal value function [refer to Dyer and Sarin (1976) and Kirkwood 
(1997)].

†	 This is where the expected value of an outcome would equal its expected utility; hence, either 
decision rule would be a rational basis for the choice under consideration.
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Preference theory and subjective expected utility theory grew in promi-
nence as a mathematical foundation for a theory of rational choice. With this, 
it became increasingly necessary to understand its conjunction with human 
behavior relative to decision-making under uncertainty.

By the 1950s, decision theory was joined with behavioral science through 
the works of Ward Edwards and his graduate student Detlof von Winterfeldt. 
Two influential articles written by Edwards in 1954 and 1961 introduced 
vNM utility theory to the field of psychology.

From these papers, an entirely new branch of study called behavioral 
decision theory emerged. Behavioral scientists began to study whether 
human behavior followed the views of vNM utility theory. Today, the find-
ings remain somewhat mixed. Nonetheless, Edwards brought a behavioral 
science view to the topic of rational choice and human decision-making. 
His many contributions included identifying that persons have preference 
structures for probabilities and not just for utilities (von Winterfeldt and 
Edwards, 1986). Consider the following from Fishburn (1989):

In early work on the psychology of probability, Edwards observed that 
people’s betting behavior reveals preferences among probabilities. For 
example, given monetary gambles with equal expected values, sub-
jects consistently liked bets with win probability 1/2 and avoided bets 
with win probability 3/4. Moreover, these probability preferences were 
reversed in the loss domain, were insensitive to the amounts involved, 
and could not be explained by curved utility functions.
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Families of power-additive utility functions. (Adapted from Garvey, P. R., Analytical Methods 
for Risk Management: A Systems Engineering Perspective, Chapman Hall/CRC Press, Taylor & 
Francis Group (UK), London, 2008.)
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2.4  Engineering Risk Management

The intellectual groundwork on general systems theory and modern deci-
sion theory has natural extensions and applications to managing risks in 
engineering systems. In general systems theory, vNM utility theory is rec-
ognized as concerned with the “behavior of supposedly rational players to 
obtain maximal gains and minimal losses by appropriate strategies against 
other players” (Bertalanffy, 1968). Engineering risk management is practiced 
in similar ways.

To be effective, engineering risk management relies on the behavior of 
rational decision makers to field systems that maximally achieve perfor-
mance outcomes, while minimizing failure by taking appropriate risk 
mitigation strategies against events that threaten success. To achieve this, 
engineering risk management is best practiced from a “whole systems” per-
spective—whether it is for traditional systems, systems-of-systems, or enter-
prise systems.

Successfully engineering today’s systems requires deliberate and con-
tinuous attention to the management of risk. Managing risk is an activity 
designed to improve the chance that these systems will be completed within 
cost, on time, and will meet safety and performance objectives.

As mentioned earlier, the study of risk is the study of chance and choice. 
In engineering a system, risk is the chance an event occurs with unwanted 
consequences to the system’s cost, schedule, or performance. Furthermore, 
choices must be made on where to allocate resources to manage risks such 
that, if they occur, their consequences to the system are eliminated or reduced 
to acceptable levels.

Until the mid-1970s, risk analyses in engineering systems were often 
informal and characterized by ad hoc collections of qualitative approaches. 
However, by 1975, qualitative approaches began to be replaced with increas-
ingly insightful quantitative methods. One such method became known as 
quantitative risk assessment (QRA).*

A founder of QRA was Stan Kaplan, an engineer and applied mathemati-
cian who first used the technique to analyze risks associated with engineering 
and operating nuclear power plants. He gave a definition of risk, which was 
consistent with that in past scholarship but in a context specific to engineer-
ing systems. Kaplan (1997) stated that risk analyses in engineering systems 
involve answering three questions (Kaplan, 1997). They are as follows:

•	 “What can happen?”

•	 “How likely is that to happen?”

•	 “If it happens what are the consequences”?

*	 Quantitative risk assessment (QRA) is also known as probabilistic risk assessment (PRA).
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These questions became known as Kaplan’s triplet and it is represented by 
the expression

	 Risk = 〈Scenario, Probability, Consequence〉

where Scenario, Probability, and Consequence reflect Kaplan's first, second, and 
third questions, respectively.

A hallmark of QRA is the idea of evidence-based decision making. Here, 
Kaplan writes that when dealing with an expert, we should never ask for his 
opinion. Instead, we want his experience, his information, and his evidence 
(Kaplan, 1997). This includes expert-driven evidence-based probabilities, the 
second component of Kaplan’s triplet. The impetus for this aspect of QRA 
is rooted in the views of probability expressed by Ramsey, de Finetti, and 
Savage, as well as from E. T. Jaynes, who wrote extensively on probability as 
a theory of logic.

Probabilities need not correspond to physical causal influences or pro-
pensities affecting mass phenomena. Probability theory is far more 
useful if we recognize that probabilities express fundamentally logical 
inferences pertaining to individual cases.

(Jaynes, 1988)

In our simplest everyday inferences, in or out of science, it has always 
been clear that two events may be physically independent with-
out being logically independent; or put differently, they may be logi-
cally dependent without being physically dependent. From the sound 
of raindrops striking my window pane, I infer the likely existence of 
clouds over-head

	 P Clouds Sound( ) ≈ 1

although the sound of raindrops is not a physical causative agent pro-
ducing clouds. From the unearthing of bones in Wyoming we infer the 
existence of dinosaurs long ago:

	 P Dinosaus Bones( ) ≈ 1

although the digging of the bones is not the physical cause of the dino-
saurs. Yet conventional probability theory cannot account for such sim-
ple inferences, which we all make constantly and which are obviously 
justified. As noted, it rationalizes this failure by claiming that probabil-
ity theory expresses partial physical causation and does not apply to the 
individual case.

(Jaynes, 1988)
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But if we are to be denied the use of probability theory not only for 
problems of reasoning about the individual case; but also for problems 
where the cogent information does not happen to be about a physical 
cause or a frequency, we shall be obliged to invent arbitrary ad hockeries 
for dealing with virtually all real problems of inference; as indeed the 
orthodox school of thought has done. Therefore, if it should turn out 
that probability theory used as logic is, after all, the unique, consist-
ent tool for dealing with such problems, a viewpoint which denies this 
applicability on ideological grounds would represent a disastrous error 
of judgment, which deprives probability theory of virtually all its real 
value and even worse, deprives science of the proper means to deal with 
its problems.

(Jaynes, 1988)

The QRA approach emphasized the importance of scenario-driven 
risk analyses and the integration of probability and consequence meas-
ures with cost-benefit-risk trade-offs to derive optimal risk reduction 
choices among competing courses of action. Early QRA applications 
focused on quantifying risks to public safety by certain types of engi-
neering systems, such as nuclear power systems. As QRA methods 
improved, so did the breadth of their applications to other engineering 
systems.

The text “Risk Modeling, Assessment, and Management” (Haimes, 
2004) was a major contribution in the extension of risk analysis methods 
to the engineering systems community. Innovations by Haimes included 
extensions of Keeney-Raiffa decision theory to enable the study of trade-
offs between risks and multiconsequential impacts to an engineering 
system. Haimes pioneered engineering risk management methods into 
project management processes and practices.

The literature relevant to this book has deep roots in philosophies of logic, 
probability, utility theory, and general systems theory. Despite, at times, dis-
cordant views on issues such as Does probability exist? Can utility functions 
represent human preference? the bodies of work from these disciplines con-
tinue to be advanced in theory and application. This book presents these 
advancements as they pertain to addressing the challenges of managing risk 
in engineering enterprise systems.

In summary, N. W. Dougherty, president of the American Society for 
Engineering Education (1954–1955), once said “the ideal engineer is a 
composite . . . he is not a scientist, he is not a mathematician, he is not a soci-
ologist or a writer; but he may use the knowledge and techniques of any or 
all of these disciplines in solving engineering problems (Dougherty, 1972).” 
That was true then and is even truer in engineering today’s sophisticated, 
complex, and highly networked engineering systems.
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Questions and Exercises

	 1.	Think of real-world examples of a complex system, a system-of- 
systems, and an enterprise system. Describe their similarities and 
key distinctions.

	 2.	Study the ideas on general systems theory by Ludwig von Bertalanffy. 
Write an essay that identifies the characteristics of today’s enterprise 
systems anticipated in his theory, when it was published in 1968. For 
this exercise, a reading of Bertalanffy’s (1968) book “General Systems 
Theory: Foundations, Development, Applications” is recommended 
(see “References”).

	 3.	Read the paper “Exposition of a New Theory on the Measurement of 
Risk” written by Daniel Bernoulli (1738). Write an essay that summa-
rizes the major new concepts Bernoulli introduced about risk and its 
measurement. Describe why Bernoulli’s paper is foundational to the 
emergence of economic science and human choice in the presence of 
uncertain prospects. For this exercise, a reading of Bernoulli’s (1738) 
paper is recommended.

	 4.	Suppose you have a choice to receive $10,000 with certainty or par-
ticipate in a lottery with two possible outcomes. In one outcome, 
you might receive $100,000 with probability p. In the other, you 
might receive nothing with probability (1 − p). Survey your friends 
to discover their values of p that would lead them to play the lot-
tery instead of accepting $10,000 with certainty. What is your value 
of p? What axiom of expected utility theory does this problem 
represent?

	 5.	Suppose you have two equally attractive outcomes x and y each with 
probability p and suppose a third outcome z with probability ( )1− p  
is introduced. If you decide that lottery A that produces outcome x 
with probability p and outcome z with probability ( )1− p  is equally 
attractive to a lottery B that produces outcome y with probability p 
and outcome z with probability ( )1− p , then what axiom of expected 
utility theory are you following?

	 6.	Compute the Arrow–Pratt measure of absolute risk aversion for the 
following utility functions, where w denotes a person’s wealth posi-
tion and 0 1≤ ≤w .

(A) (B) CU w w U w w U w w w( ) , , ( ) ( ) .= = −( ) = 
1
2

2

	 7.	From Exercise 6, graph each utility function and its Arrow–
Pratt  measure. Identify which utility function behaves with an 



40 Advanced Risk Analysis in Engineering Enterprise Systems

Arrow–Pratt measure that is independent of wealth, increasing with 
increasing wealth and decreasing with increasing wealth.

	 8.	Read the paper “Truth and Probability” (1926) by F.  P. Ramsey, 
University of Cambridge. Summarize Ramsey’s key arguments on 
the logical consistency of subjective utility and subjective probabil-
ity as measures of value and chance. Compare Ramsey’s thoughts on 
when a person will engage in a risky prospect with those written by 
Daniel Bernoulli (1738) and von Neumann and Morgenstern (1944) 
in their theory of rational choice. For this exercise, Ramsey’s paper 
can be obtained from http://homepage.newschool.edu/~het/texts/
ramsey/ramsess.pdf.
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3
Foundations of Risk and Decision Theory

3.1  Introduction

This chapter introduces the mathematical foundations of risk and decision 
theory. Topics include elements of probability theory—the original formal-
ism for studying the nature of risk. This is followed by an introduction to 
modern decision theory and how it aids human judgment in the presence 
of uncertainty. The chapter concludes with a discussion on how these topics 
apply to the analysis of risk in engineering systems.

3.2  Elements of Probability Theory

Whether it is a storm’s intensity, an arrival time, or the success of a decision, 
the word “probable” or “likely” has long been part of our language. Most 
people have an appreciation for the impact of chance on the occurrence of an 
event. In the last 350 years, the theory of probability has evolved to explain 
the nature of chance and how it may be studied.

Probability theory is the formal study of events whose outcomes are uncer-
tain. Its origins trace to seventeenth-century gambling problems. Games that 
involved playing cards, roulette wheels, and dice provided mathematicians 
a host of interesting problems. Solutions to many of these problems yielded 
the first principles of modern probability theory. Today, probability theory is 
of fundamental importance in science, engineering, and business.

Engineering risk management aims at identifying and managing events 
whose outcomes are uncertain. In particular, it focuses on events that, if they 
occur, have unwanted impacts or consequences to a project. The phrase if 
they occur means these events are probabilistic in nature. Thus, understand-
ing them in the context of probability concepts is essential. This chapter 
presents an introduction to these concepts and illustrates how they apply to 
managing risks in engineering systems.
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We begin this discussion with the traditional look at dice. If a six-sided die 
is tossed, there are clearly six possible outcomes for the number that appears 
on the upturned face. These outcomes can be listed as elements in a set 
{ , , , , , }1 2 3 4 5 6 . The set of all possible outcomes of an experiment, such as toss-
ing a six-sided die, is called the sample space, which we denote by Ω. The indi-
vidual outcomes of Ω are called sample points, which we denote by ω.

An event is any subset of the sample space. An event is simple if it consists of 
exactly one outcome. Simple events are also referred to as elementary events 
or elementary outcomes. An event is compound if it consists of more than one 
outcome. For instance, let A be the event an odd number appears and B be 
the event an even number appears in a single toss of a die. These are com-
pound events, which may be expressed by the sets A = { , , } { , , }.1 3 5 2 4 6and B=  
Event A occurs if and only if one of the outcomes in A occurs. The same is true 
for event B.

Events can be represented by sets. New events can be constructed from 
given events according to the rules of set theory. The following presents a 
brief review of set theory concepts.

Union. For any two events A and B of a sample space, the new event A B∪  
(which reads A union B) consists of all outcomes either in A or in B or in 
both A and B. The event A B∪  occurs if either A or B occurs. To illustrate the 
union of two events, consider the following: if A is the event an odd number 
appears in the toss of a die and B is the event an even number appears, then 
the event A B∪  is the set { , , , , , }1 2 3 4 5 6 , which is the sample space for this 
experiment.

Intersection. For any two events A and B of a sample space Ω, the new event 
A B∩  (which reads A intersection B) consists of all outcomes that are in both A 
and B. The event A B∩  occurs only if both A and B occur. To illustrate the inter-
section of two events, consider the following: if A is the event a six appears 
in the toss of a die, B is the event an odd number appears, and C is the event 
an even number appears, then the event A C∩  is the simple event { };6  on the 
other hand, the event A B∩  contains no outcomes. Such an event is called 
the null event. The null event is traditionally denoted by ∅. In general, if 
A B∩ = ∅, we say events A and B are mutually exclusive (disjoint). For notation 
convenience, the intersection of two events A and B is sometimes written as 
AB, instead of A B∩ .

Complement. The complement of event A, denoted by Ac, consists of all out-
comes in the sample space Ω that are not in A. The event Ac occurs if and only 
if A does not occur. The following illustrates the complement of an event. If C 
is the event an even number appears in the toss of a die, then Cc is the event 
an odd number appears.

Subset. Event A is said to be a subset of event B if all the outcomes in A are 
also contained in B. This is written as A B� .

In the preceding discussion, the sample space for the toss of a die was 
given by Ω= { , , , , , }.1 2 3 4 5 6  If we assume the die is fair, then any outcome in 
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the sample space is as likely to appear as any other. Given this, it is reason-
able to conclude the proportion of time each outcome is expected to occur is 
1/6. Thus, the probability of each simple event in the sample space is

	
P P P P P P({ }) ({ }) ({ }) ({ }) ({ }) ({ })1 2 3 4 5 6

1
6

= = = = = =

Similarly, suppose B is the event an odd number appears in a single toss of 
the die. This compound event is given by the set B= { , , }.1 3 5  Since there are 
three ways event B can occur out of six possible, the probability of event B is 
P B( ) / / .= =3 6 1 2  The following presents a view of probability known as the 
equally likely interpretation.

Equally likely interpretation. In this view, if a sample space Ω consists of a 
finite number of outcomes n, which are all equally likely to occur, then the 
probability of each simple event is 1/n. If an event A consists of m of these n 
outcomes, then the probability of event A is

	
P A

m
n

( ) = 	 (3.1)

In this interpretation, it is assumed the sample space consists of a finite num-
ber of outcomes and all outcomes are equally likely to occur. What if the 
sample space is finite but the outcomes are not equally likely? In these situa-
tions, probability might be measured in terms of how frequently a particular 
outcome occurs when the experiment is repeatedly performed under identi-
cal conditions. This leads to a view of probability known as the frequency 
interpretation.

Frequency interpretation. In this view, the probability of an event is the limit-
ing proportion of time the event occurs in a set of n repetitions of the experi-
ment. In particular, we write this as

	
P A

n A
nn

( ) lim
( )

=
→∞

where n A( ) is the number of times in n repetitions of the experiment the 
event A occurs. In this sense, P A( ) is the limiting frequency of event A. 
Probabilities measured by the frequency interpretation are referred to as 
objective probabilities. There are many circumstances where it is appropriate 
to work with objective probabilities. However, there are limitations with this 
interpretation of probability. It restricts events to those that can be subjected 
to repeated trials conducted under identical conditions. Furthermore, it is not 
clear how many trials of an experiment are needed to obtain an event’s lim-
iting frequency.
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Axiomatic definition. In 1933, Russian mathematician A. N. Kolmogorov pre-
sented a definition of probability in terms of three axioms. These axioms 
define probability in a way that encompasses the equally likely and frequency 
interpretations of probability. It is known as the axiomatic definition of prob-
ability. Based on this definition, it is assumed for each event A, in the sample 
space Ω, there is a real number P A( ) that denotes the probability of A. In 
accordance with Kolmogorov’s axioms, introduced in Chapter 1, probability 
is simply a numerical measure that satisfies the following:

Axiom 1	 0 1≤ ≤P A( )  for any event A in Ω
Axiom 2	 P( )Ω =1
Axiom 3	� For any sequence of mutually exclusive events A1, A2, . . . 

defined on Ω

	
P A P Ai

i
i

i=

∞

=

∞




= ∑

1 1
∪ ( )

For any finite sequence of mutually exclusive events A A An1 2, , ...,  defined on Ω

	
P A P Ai

i

n

i
i

n

= =






= ∑

1 1
∪ ( )

The first axiom states the probability of any event is a nonnegative number in 
the interval 0–1. In Axiom 2, the sample space Ω is sometimes referred to as 
the sure or certain event; therefore, we have P( )Ω  equal to 1. Axiom 3 states for 
any sequence of mutually exclusive events, the probability of at least one of 
these events occurring is the sum of their respective probabilities. In Axiom 
3, this sequence may also be finite. From these axioms, five basic theorems of 
probability are derived.

Theorem 3.1

The probability event A occurs is one minus the probability it will not occur; 
that is,

P(A) = 1 – P(Ac)

Theorem 3.2

The probability associated with the null event ∅ is zero, that is,

P(∅) = 0

Theorem 3.3

If events A1 and A2 are mutually exclusive, then

P(A1 ∩ A2) ≡ P(A1 A2) = 0
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Theorem 3.4

For any two events A1 and A2

P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2)

Theorem 3.5

If event A1 is a subset of event A2, then
P(A1) ≤ P(A2)

Measure of belief interpretation. From the axiomatic view, probability need only 
be a numerical measure satisfying the three axioms stated by Kolmogorov. 
Given this, it is possible for probability to reflect a “measure of belief” in an 
event’s occurrence. For instance, an engineer might assign a probability of 
0.70 to the event the radar software for the Advanced Air Traffic Control System 
will not exceed 100K lines of developed source instructions. We consider this event 
to be nonrepeatable. It is not practical, or possible, to build this system n 
times (and under identical conditions) to determine whether this probabil-
ity is indeed 0.70. When an event such as this arises, its probability may be 
assigned. Probabilities based on personal judgment, or measure of belief, are 
known as subjective probabilities.

Subjective probabilities are most common in engineering system projects. 
Such probabilities are typically assigned by expert technical judgment. The 
engineer’s probability assessment of 0.70 is a subjective probability. Ideally, 
subjective probabilities should be based on available evidence and previ-
ous experience with similar events. Subjective probabilities are suspect if 
premised on limited insights or no prior experience. Care is also needed in 
soliciting subjective probabilities. They must certainly be plausible and they 
must be consistent with Kolmogorov’s axioms and the theorems of probabil-
ity, which stem from these axioms. Consider the following:

The XYZ Corporation has offers on two contracts A and B. Suppose the 
proposal team made the following subjective probability assignments. 
The chance of winning contract A is 40%, the chance of winning contract 
B is 20%, the chance of winning contract A or contract B is 60%, and the 
chance of winning both contract A and contract B is 10%. It turns out this 
set of probability assignments is not consistent with the axioms and theo-
rems of probability! Why is this?* If the chance of winning contract B was 
changed to 30%, then this set of probability assignments would be consistent.

Kolmogorov’s axioms, and the resulting theorems of probability, do not sug-
gest how to assign probabilities to events. Instead, they provide a way to ver-
ify that probability assignments are consistent, whether these probabilities 
are objective or subjective.

Risk versus uncertainty. There is an important distinction between the terms 
risk and uncertainty. Risk is the chance of loss or injury. In a situation that 

*	 The answer can be seen from Theorem 3.4.
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includes favorable and unfavorable events, risk is the probability an unfavorable 
event occurs. Uncertainty is the indefiniteness about the outcome of a situation. We 
analyze uncertainty for the purpose of measuring risk. In systems engineering, 
the analysis might focus on measuring the risk of failing to achieve perfor-
mance objectives, overrunning the budgeted cost, or delivering the system 
too late to meet user needs. Conducting the analysis often involves degrees 
of subjectivity. This includes defining the events of concern and, when neces-
sary, subjectively specifying their occurrence probabilities. Given this, it is fair 
to ask whether it is meaningful to apply rigorous mathematical procedures 
to such analyses. In a speech before the 1955 Operations Research Society of 
America meeting, Charles J. Hitch addressed this question. He stated:

Systems analyses provide a framework which permits the judgment of 
experts in many fields to be combined to yield results that transcend any 
individual judgment. The systems analyst may have to be content with 
better rather than optimal solutions; or with devising and costing sensible 
methods of hedging; or merely with discovering critical sensitivities. We 
tend to be worse, in an absolute sense, in applying analysis or scientific 
method to broad context problems; but unaided intuition in such prob-
lems is also much worse in the absolute sense. Let’s not deprive ourselves 
of any useful tools, however short of perfection they may fail.

(Hitch, 1955)

Conditional Probability and Bayes’ Rule

In many circumstances, the probability of an event is conditioned on know-
ing another event has taken place. Such a probability is known as a condi-
tional probability. Conditional probabilities incorporate information about the 
occurrence of another event. The conditional probability of event A given 
event B has occurred is denoted by P A B( | ). If a pair of dice is tossed, then the 
probability the sum of the toss is even is 1/2. This probability is known as a 
marginal or unconditional probability.

How would this unconditional probability change (i.e., be conditioned) if it 
was known the sum of the toss was a number less than 10? This is discussed 
in the following problem.

PROBLEM 3.1

A pair of dice is tossed, and the sum of the toss is a number less than 10. 
Given this, compute the probability this sum is an even number.

Solution

Suppose we define event A and event B as follows:

A:  The sum of the toss is even.
B:  The sum of the toss is a number less than 10.
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The sample space Ω contains 36 possible outcomes; however, in this case, we 
want the subset of Ω containing only those outcomes whose toss yielded a 
sum less than 10. This subset is shown in Table 3.1. It contains 30 outcomes. 
Within Table 3.1, only 14 outcomes are associated with the event the sum of the 
toss is even given it is a number less than 10.

	

{( , )}, {( , )}, {( , )}, {( , )}, {( , )}, {( , )}, {( , )}, {(1 1 1 3 1 5 2 2 2 4 2 6 3 1 33 3 3 5
4 2 4 4 5 1 5 3 6 2

, )}, {( , )}
{( , )}, {( , )}, {( , )}, {( , )}, {( , )}








Therefore, the probability of this event is P A B( | ) / .=14 30
If A and B are events in the same sample space Ω, ( | )then P A B  is the prob-

ability of event A within the subset of the sample space defined by event B. 
Formally, the conditional probability of event A given event B has occurred, 
where P B( ) ,> 0  is

	
P A B

P A B
P B

( )
( )

( )
=

∩
� (3.2)

The conditional probability of event B given event A has occurred, where 
P A( ) ,> 0  is

	
P B A

P B A
P A

( )
( )

( )
=

∩
� (3.3)

PROBLEM 3.2

A proposal team from XYZ Corporation has offers on two contracts A and B. 
The team made subjective probability assignments on the chances of win-
ning these contracts. They assessed a 40% chance on the event winning con-
tract A, a 50% chance on the event winning contract B, and a 30% chance on 
the event winning both contracts. Given this, what is the probability of
	 (A)	 Winning at least one of these contracts?
	 (B)	 Winning contract A and not winning contract B?
	 (C)	 Winning contract A if the proposal team has won at least one contract?

TABLE 3.1

Outcomes Associated with Event B

{( , )} {( , )} {( , )} {( , )} {( , )} {( , )}
{( , )} {( , )} {(

1 1 1 2 1 3 1 4 1 5 1 6
2 1 2 2 22 3 2 4 2 5 2 6
3 1 3 2 3 3 3 4 3

, )} {( , )} {( , )} {( , )}
{( , )} {( , )} {( , )} {( , )} {( ,, )} {( , )}
{( , )} {( , )} {( , )} {( , )} {( , )}
{( , )} {( ,

5 3 6
4 1 4 2 4 3 4 4 4 5
5 1 5 22 5 3 5 4
6 1 6 2 6 3

)} {( , )} {( , )}
{( , )} {( , )} {( , )}




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
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
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
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
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Solution

	 (A)	 Winning at least one contract means winning either contract A or 
contract B or both contracts. This event is represented by the set 
A B∪ . From Theorem 3.4,

	 P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
therefore

	 P(A ∪ B) = 0.40 + 0.50 – 0.30 = 0.60

	 (B)	 The event winning contract A and not winning contract B is rep-
resented by the set A Bc∩ . From the Venn diagram in Figure 3.1, 
observe that P A P A B A Bc( ) (( ) ( )).= ∩ ∪ ∩

Since the events A B A Bc∩ ∩and  are mutually exclusive (disjoint), 
from Theorem 3.3 and Theorem 3.4, we have

	 P(A) = P(A ∩ Bc) + P(A ∩ B)

This is equivalent to P A B P A P A Bc( ) ( ) ( );∩ = − ∩  therefore,

	 P(A ∩ Bc) = P(A) – P(A ∩ B) = 0.40 – 0.30 = 0.10

	 (C)	 If the proposal team has won one of the contracts, the probability of 
winning contract A must be revised (or conditioned) on this informa-
tion. This means we must compute P A A B( | ).∪  From Equation 3.2,

	
P A A B

P A A B
P A B

( )
( ( ))

( )
∪ =

∩ ∪
∪

Since P A P A A B( ) ( ( )),= ∩ ∪  we have

	
P A A B

P A A B
P A B

P A
P A B

( )
( ( ))
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.
.
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∪
=

∪
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FIGURE 3.1
Venn diagram for P A P A B A Bc( ) (( ) ( ).= ∩ ∪ ∩
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A consequence of conditional probability is obtained if we multiply 
Equations 3.2 and 3.3 by P B P A( ) ( ),and  respectively. This yields

	 P(A ∩ B) = P(B)P(A|B) = P(A)P(B|A)� (3.4)

Equation 3.4 is known as the multiplication rule. The multiplication 
rule provides a way to express the probability of the intersection 
of two events in terms of their conditional probabilities. An illus-
tration of this rule is presented in Problem 3.3.

PROBLEM 3.3

A box contains memory chips of which 3 are defective and 97 are nondefective. 
Two chips are drawn at random, one after the other, without replacement. 
Determine the probability

	 (A)	 Both chips drawn are defective.
	 (B)	 The first chip is defective and the second chip is nondefective.

Solution

	 (A)	 Let A and B denote the event the first and second chips drawn from 
the box are defective, respectively. From the multiplication rule, we have

	 P(A ∩ B) = P(A)P(B|A)

= �P(first chip defective) P(second chip defective|first chip defective)

	
= 



 =

3
100

2
99

6
9900

	 (B)	 To determine the probability the first chip drawn is defective and 
the second chip is nondefective, let C denote the event the second chip 
drawn is nondefective. Thus,

	 P(A ∩ C) = P(AC) = P(A)P(C|A)

= �P(first chip defective) P(second chip nondefective|first chip 
defective)

	
= 



 =

3
100

97
99

291
9900

In this example, the sampling was performed without replace-
ment. Suppose the chips sampled were replaced; that is, the first 
chip selected was replaced before the second chip was selected. In 
that case, the probability of a defective chip being selected on the 
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second drawing is independent of the outcome of the first chip 
drawn. Specifically,

P(second chip defective) = P(first chip defective) = 3/100

so P A B( )∩ = 



 =

3
100

3
100

9
10000

 and P A C( )∩ = 



 =

3
100

97
100

291
10000

Independent Events

Two events A and B are said to be independent if and only if

	 P(A ∩ B) = P(A)P(B)	 (3.5)

and dependent otherwise. Events A A An1 2, , ,…  are (mutually) independent if 
and only if the probability of the intersection of any subset of these n events 
is the product of their respective probabilities.

For instance, events A A A1 2, , and 3 are independent (or mutually independ-
ent) if the following equations are satisfied:

	   P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3)	 (3.5a)

	 P(A1 ∩ A2) = P(A1)P(A2)	 (3.5b)

	 P(A1 ∩ A3) = P(A1)P(A3)	 (3.5c)

	 P(A2 ∩ A3) = P(A2)P(A3)	 (3.5d)

It is possible to have three events A A A1 2, , and 3 for which Equations 3.5b 
through 3.5d hold but Equation 3.5a does not hold. Mutual independence 
implies pair-wise independence, in the sense that Equations 3.5b through 
3.5d hold, but the converse is not true.

There is a close relationship between independent events and conditional 
probability. To see this, suppose events A and B are independent. This implies

	 P(AB) = P(A)P(B)

From this, Equations 3.2 and 3.3 become, respectively, P A B P A( | ) ( )=  and 
P B A P B( | ) ( ).=  When two events are independent, the occurrence of one 
event has no impact on the probability the other event occurs. To illustrate 
independence, suppose a fair die is tossed. Let A be the event an odd num-
ber appears. Let B be the event one of these numbers { , , , }2 3 5 6  appears. From 
this,

	 P(A) = 1/2  and  P(B) = 2/3

Since A B∩  is the event represented by the set { , },3 5  we can readily state 
P A B( ) / .∩ =1 3  Therefore, P A B P AB P A P B( ) ( ) ( ) ( )∩ = =  and we conclude 
events A and B are independent.
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Dependence can be illustrated by tossing two fair dice. Suppose A is the 
event the sum of the toss is odd and B is the event the sum of the toss is even. 
Here, P A B P A P B( ) ( ) ( )∩ = 0and and  are each 1/2. Since P A P A P B( ( ) ( ),∩ ≠Β)  
events A and B are dependent.

It is important not to confuse the meaning of independent events with 
mutually exclusive events. If events A and B are mutually exclusive, the event 
A and B is empty; that is, A B∩ =∅. This implies P A B P( ) ( ) .∩ = ∅ = 0  If events 
A and B are independent with P A P B( ) ( ) ,≠ ≠0 0and  then A and B cannot be 
mutually exclusive since P(A ∩ B) = P(A)P(B) ≠ 0.

Random Variables

To illustrate the concept of a random variable, consider the set of all possible 
outcomes associated with tossing two fair six-sided dice. Suppose x repre-
sents the sum of the toss. Define X as a variable that takes on only values 
given by x. If the sum of the toss is 2, then X = 2; if the sum of the toss is 3, 
then X = 3. Numerical values of X are associated with events defined from the 
sample space Ω for this experiment, which is given in Table 3.2. In particular,

X = 2 is associated with this simple event {( , )}1 1 *

X = 3. is associated with these two simple events {( , )}, {( , )}1 2 2 1
X = 4 is associated with these three simple events {( , )}, {( , )}, {( , )}1 3 2 2 3 1

Here, X is called a random variable. Formally, a random variable is a real-
valued function defined over a sample space. The sample space is the domain 
of a random variable. Traditionally, random variables are denoted by capital 
letters such as X.

Random variables can be characterized as discrete or continuous. A ran-
dom variable is discrete if its set of possible values is finite or countably infinite. 
A random variable is continuous if its set of possible values is uncountable.

*	 The outcomes from tossing two dice are recorded as ( , ),d d d d1 2 1 2where and  are the numbers 
appearing on the upturned faces of the first and second die, respectively. Therefore, in this 
discussion, x d d= +1 2 .

TABLE 3.2

Sample Space Associated with Tossing Two Six-Sided Dice

{( , )} {( , )} {( , )} {( , )} {( , )} {( , )}
{( , )} {( , )} {(

1 1 1 2 1 3 1 4 1 5 1 6
2 1 2 2 22 3 2 4 2 5 2 6
3 1 3 2 3 3 3 4 3

, )} {( , )} {( , )} {( , )}
{( , )} {( , )} {( , )} {( , )} {( ,, )} {( , )}
{( , )} {( , )} {( , )} {( , )} {( , )} {( , )}
{( ,

5 3 6
4 1 4 2 4 3 4 4 4 5 4 6
5 11 5 2 5 3 5 4 5 5 5 6
6 1 6 2 6 3

)} {( , )} {( , )} {( , )} {( , )} {( , )}
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Discrete Random Variables

Consider the set of all possible outcomes associated with tossing two fair 
six-sided dice. Suppose x represents the sum of the toss and X is a random 
variable that takes on only values given by x.

The sample space Ω for this experiment consists of the 36 outcomes in 
Table 3.2. The random variable X is discrete since the only possible values are 
x = 2 3 4 5 6 12, , , , , , .…  The function that describes probabilities associated with 
the event { }X x=  for all feasible values of x is shown in Figure 3.2. This func-
tion is known as the probability function of X. Mathematically, the probability 
function of a discrete random variable X is defined as

	 pX(x) = P(X = x)	 (3.6)

The probability function is also referred to as the probability mass function 
or the frequency function of X. The probability function associates probabili-
ties to events described by distinct (single) points of interest. Over all feasible 
(possible) values of x, probability functions satisfy the following conditions:

	 pX(x) ≥ 0

	 ∑pX(x) = 1 over all x

If x is not a feasible value of X, then

	 pX(x) = P(X = x) = P(Ø) = 0

It is often of interest to determine probabilities associated with events 
of the form { }.X x≤  For instance, suppose we wanted the probability 
that the sum of the numbers resulting from the toss of two fair dice will 
not exceed 7. This is equivalent to computing P X( ).≤7  In this instance, 
P X P X X X( ) ({ } { } { }).≤ = = ∪ = ∪ ∪ =7 2 3 7…  Thus, X can take a value not 
exceeding 7 if and only if X takes on one of the values 2 3 7, , , .…  Since 

6/36

pX(x)

5/36

4/36

3/36

2/36

1/36

2 3 4 5 6 7 8 9 10 11 12
x

FIGURE 3.2
Probability function for the sum of two dice tossed.
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events { }, { }, , { }X X X= = =2 3 7…  are mutually exclusive, from Axiom 3 and 
Figure 3.2, we have

	
P X P X P X P X( ) ( ) ( ) ( )≤ = = + = + + = =7 2 3 7 21

36�

The function that produces probabilities for events of the form { }X x≤  is 
known as the cumulative distribution function (CDF). Formally, if X is a dis-
crete random variable, then its CDF is defined by

	 F x P X x p t xX X
t x

( ) ( ) ( ) ( )= ≤ = −∞ < < ∞
≤
∑ 	 (3.7)

In terms of the preceding discussion, we would write P X( )≤7  as

	
F P X p t p p pX X

t
X X X( ) ( ) ( ) ( ) ( ) ( )7 7 2 3 7

7

= ≤ = = + + +
≤
∑ �

	 = = + = + + = =P X P X P X( ) ( ) ( ) /2 3 7 21 36�

The CDF for the random variable with probability function in Figure 3.2 is 
pictured in Figure 3.3. The CDF in Figure 3.3 is a step function—a charac-
teristic of CDFs for discrete random variables. The height of each step along 
the CDF is the probability the value associated with that step occurs. In 
Figure 3.3, the probability that X = 3 is the height of the step between X = 2 
and X = 3; that is, P X( ) / / / .= = − =3 3 36 1 36 2 36
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x

FIGURE 3.3
Cumulative distribution function for the sum of two dice tossed.
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Continuous Random Variables

As mentioned earlier, a random variable is continuous if its set of possible 
values is uncountable. For instance, suppose T is a random variable repre-
senting the duration (in hours) of a device. If the possible values of T are 
given by { : },t t0 2500≤ ≤  then T is a continuous random variable.

In general, we say X is a continuous random variable if there exists a nonnega-
tive function f xX ( ), defined on the real line, such that for any interval A

	
P X A f x xXA

( ) ( )∈ = ∫ d

The function f xX ( ) is called the probability density function (PDF) of X. Unlike 
the probability function for a discrete random variable, the PDF does not 
directly produce a probability; that is, f aX ( ) does not produce p aX ( ) as defined 
by Equation 3.6. Here, the probability X is contained in any subset of the real 
line is determined by integrating f xX ( ) over that subset. Since X must assume 
some value on the real line, it will always be true that

	 f x x P XX ( ) ( ( , ))d ≡ ∈ −∞ ∞ =
−∞

∞

∫ 1

In this case, the CDF of the random variable X is defined as

	 F x P X x P X x f t tX X

x
( ) ( ) ( ( , ]) ( )= ≤ = ∈ −∞ =

−∞∫ d 	 (3.8)

A useful way to view Equation 3.8 is shown by Figure 3.4. If we assume f xX ( )  
is a PDF, then from calculus we can interpret the probabilities of the events 
{ } { }X a a X b≤ ≤ ≤and  as the areas of the indicated regions in Figure 3.4. When 
X is a continuous random variable, the probability X a=  is zero because

	 P X a P a X a f x xXa

a
( ) ( ) ( )= = ≤ ≤ = =∫ d 0 	 (3.9)

From this, it is seen the inclusion or exclusion of an interval’s endpoints does 
not affect the probability X falls in the interval. Thus, if a and b are any two 
real numbers then

P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b) = FX (b) – FX (a)	 (3.10)

fX(x)

fX(x)dxfX(x)dx

a b
x

∞−∞

−∞
b

a

a
P(a ≤ X ≤ b) =P(X ≤ a) =

FIGURE 3.4
A probability density function.
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when X is a continuous random variable.

In general, for any discrete or continuous random variable, the value of F xX ( ) 
at any x must be a number in the interval 0 1≤ ≤F xX ( ) . The function F xX ( ) is 
always continuous from the right. It is nondecreasing as x increases; that is, 
if x x1 2< , then F x F xX X( ) ( ).1 2≤  Finally,

	 lim ( )
x XF x
→−∞

= 0  and lim ( )
x XF x
→∞

= 1

Bayes’ Rule

Suppose we have a collection of events Ai representing possible conjectures 
about a topic. Furthermore, suppose we have some initial probabilities asso-
ciated with the “truth” of these conjectures. Bayes’ rule* provides a way to 
update (or revise) initial probabilities when new information about these con-
jectures is evidenced. Bayes’ rule is a consequence of conditional probability. 

Suppose we partition a sample space Ω into a finite collection of three 
mutually exclusive events. In Figure 3.5, define these as A1, A2, and A3, 
where A A A1 2 3∪ ∪ =Ω. Let B denote an arbitrary event contained in Ω. With 
this, we can write B A B A B A B= ∩ ∪ ∩ ∪ ∩( ) ( ) ( ).1 2 3  Since events ( ), ( ), ( )A B A B A B1 2 3∩ ∩ ∩

( ), ( ), ( )A B A B A B1 2 3∩ ∩ ∩  are mutually exclusive, it follows from Axiom 3 that 
P B P A B P A B P A B( ) ( ) ( ) ( ).= ∩ + ∩ + ∩1 2 3  From the multiplication rule given in 
Equation 3.4, P(B) can be expressed in terms of conditional probability as

	 P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3)

This equation is known as the total probability law. Its generalization is

	
P B P A P B Ai i

i

n

( ) ( ) ( )=
=
∑

1

*	Named in honor of Thomas Bayes (1702–1761), an English minister and mathematician.

A2 ∩ B

A1 ∪ A2 ∪ A3 = Ω

A1 ∩ B

A1

A3 ∩ B

B

A2

A3

FIGURE 3.5
Partitioning Ω into three mutually exclusive sets.
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where Ω = ∪
=i

n

iA
1

 and A A i ji j∩ = ∅ ≠and . The conditional probability for each 
event Ai given event B has occurred is

	
P A B

P A B
P B

P A P B A

P Bi
i i i( )

( )
( )

( ) ( )

( )
=

∩
=

When the total probability law is applied to this equation, we have

	

P A B
P A P B A

P A P B A
i

i i

i ii

n( )
( ) ( )

( ) ( )
=

=∑ 1

	 (3.11)

This equation is known as Bayes’ rule.

PROBLEM 3.4

The ChipyTech Corporation has three divisions D1, D2, and D3 that each man-
ufactures a specific type of microprocessor chip. From the total annual output 
of chips produced by the corporation, D1 manufactures 35%, D2 manufactures 
20%, and D3 manufactures 45%. Data collected from the quality control group 
indicate 1% of the chips from D1 are defective, 2% of the chips from D2 are 
defective, and 3% of the chips from D3 are defective. Suppose a chip was ran-
domly selected from the total annual output produced and it was found to be 
defective. What is the probability it was manufactured by D1? By D2? By D3?

Solution

Let Ai denote the event the selected chip was produced by division 
Di i( , , ).=1 2 3  Let B denote the event the selected chip is defective. To deter-
mine the probability the defective chip was manufactured by Di, we must 
compute the conditional probability P A B ii( | ) , , .for =1 2 3  From the informa-
tion provided, we have

	 P(A1) = 0.35,  P(A2) = 0.20,  and  P(A3) = 0.45

	 P(B|A1) = 0.01,  P(B|A2) = 0.02,  P(B|A3) = 0.03

The total probability law and Bayes’ rule are used to determine P A Bi( ) for 
each i = 1 2, , and 3. With this, P B( ) can be written as

	     P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3)

	 P(B) = 0.35(0.01) + 0.20(0.02) + 0.45(0.03) = 0.021

and from Bayes’ rule, we can write

	

P A B
P A P B A

P A P B A

P A P B A

P Bi
i i

i ii

n
i i( )

( ) ( )

( ) ( )

( ) ( )

( )
= =

=∑ 1
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P A B

P A P B A

P B
( )

( ) ( )

( )
. ( . )

.
.1

1 1 0 35 0 01
0 021

0 167= = =

	
P A B

P A P B A

P B
( )

( ) ( )

( )
. ( . )

.
.2

2 2 0 20 0 02
0 021

0 190= = =

	
P A B

P A P B A

P B
( )

( ) ( )

( )
. ( . )

.
.3

3 3 0 45 0 03
0 021

0 643= = =

Table 3.3 provides a comparison of P Ai( ) with P A Bi( | ) for each i =1 2 3, , . The 
probabilities given by P Ai( ) are the probabilities the selected chip will have 
been produced by division Di before it is randomly selected and before it is 
known whether the chip is defective. Therefore, P Ai( ) are the prior, or a pri-
ori (before-the-fact) probabilities. The probabilities given by P A Bi( | ) are the 
probabilities the selected chip was produced by division Di after it is known 
the selected chip is defective. Therefore, P A Bi( | ) are the posterior, or a poste-
riori (after-the-fact) probabilities. Bayes’ rule provides a means for comput-
ing posterior probabilities from the known prior probabilities P Ai( ) and the 
conditional probabilities P B Ai( | ) for a particular situation or experiment.

Bayes’ rule established a philosophy that became known as Bayesian infer-
ence and Bayesian decision theory. These areas play important roles in the 
application of probability theory to systems engineering problems. In the 
total probability law, we may think of Ai as representing possible states of 
nature to which an engineer assigns subjective probabilities. These subjec-
tive probabilities are the prior probabilities, which are often premised on 
personal judgments based on past experience. In general, Bayesian methods 
offer a powerful way to revise, or update, probability assessments as new 
information becomes available.

Bayesian Inference in Engineering Risk Management

This discussion introduces a technique known as Bayesian inference. Bayesian 
inference is a way to examine how an initial belief in the truth of a hypoth-
esis H may change when evidence e relating to it is observed. This is done by 
a repeated application of Bayes’ rule.

TABLE 3.3

Bayes’ Probability Updating: 
Problem 3.4 Summary

i P Ai( ) P A Bi( | ) 

1 0.35 0.167
2 0.20 0.190
3 0.45 0.643
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Suppose an engineering firm was awarded a project to develop a software 
application. Suppose there are a number of challenges associated with this 
and among them are staffing the project, managing multiple development 
sites, and functional requirements that continue to evolve.

Given these challenges, suppose the project’s management team believes 
they have a 50% chance of completing the software development in accord-
ance with the customer’s planned schedule. From this, how might manage-
ment use Bayes’ rule to monitor whether the chance of completing the project 
on schedule is increasing or decreasing?

As mentioned earlier, Bayesian inference is a procedure that takes evidence, 
observations, or indicators, as they emerge, and applies Bayes’ rule to infer 
the truthfulness or falsity of a hypothesis, in terms of its probability. In this 
case, the hypothesis H is Project XYZ will experience significant delays in com-
pleting its software development.

Suppose at time t1 the project’s management comes to recognize that Project 
XYZ has been unable to fully staff to the number of software engineers needed for 
this effort. In Bayesian inference, we treat this as an observation or evidence 
that has some bearing on the truthfulness of H. This is illustrated in Figure 
3.6. Here, H is the hypothesis “node” and e1 is the evidence node contributing 
to the truthfulness of H.

Given the evidence-to-hypothesis relationship in Figure 3.6, we can form 
the following equations from Bayes’ rule.

	
P H e

P H P e H

P H P e H P H P e Hc c
( )

( ) ( )

( ) ( ) ( ) ( )1
1

1 1

=
+

	 (3.12)

	
P H e

P H P e H

P H P e H P H P e Hc
( )

( ) ( )

( ) ( ) ( ( )) ( )1
1

1 11
=

+ −
	 (3.13)

Project XYZ has been
unable to fully staff to

the number of software
engineers needed for

this effort

Project XYZ will experience significant delays in
completing its software development

H

e1

FIGURE 3.6
Evidence observed at time t1.
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Here, P(H) is the team’s initial or prior subjective (judgmental) probabil-
ity that Project XYZ will be completed in accordance with the customer’s 
planned schedule. Recall from the preceding discussion this was P H( ) . .= 0 50
The other terms in Equation 3.12 (or Equation 3.13) are defined as follows: 
P H e( | )1  is the probability H is true given evidence e1, the term P e H( | )1  is 
the probability evidence e1 would be observed given H is true, and the term 
P e Hc( | )1  is the probability evidence e1 would be observed given H is not true.

Suppose this team’s experience with e1 is that staffing shortfalls is a fac-
tor that contributes to delays in completing software development projects. 
Given this, suppose they judge P e H( | )1  and P e Hc( | )1  to be 0.60 and 0.25, 
respectively. From the evidence e1 and the team’s probability assessments 
related to e1, we can compute a revised probability that Project XYZ will 
experience significant delays in completing its software development. This 
revised probability is given by the following equation.

	
P H e

P H P e H

P H P e H P H P e Hc
( )

( ) ( )

( ) ( ) ( ( )) ( )1
1

1 11
=

+ − 	

(3.14)
	         

=
+ −

=
( . )( . )

( . )( . ) ( . )( . )
.

0 50 0 60
0 50 0 60 1 0 50 0 25

0 706

Notice the effect evidence e1 has on increasing the probability that Project 
XYZ will experience a significant schedule delay. We have gone from the 
initial or prior probability of 50% to a posterior probability of just over 70%.

In the Bayesian inference community, this is sometimes called updating, 
that is, updating the “belief” in the truthfulness of a hypothesis in light of 
observations or evidence that adds new information to the initial or prior 
assessments.

Next, suppose the management team observed two more evidence nodes 
at, say, time t2. Suppose these are in addition to the continued relevance 
of evidence node e1. Suppose the nature of evidence nodes e2 and e3 are 
described in Figure 3.7. Now, what is the chance Project XYZ will experience 
a significant schedule delay given all the evidence collected in the set shown 
in Figure 3.7? Bayesian updating will again be used to answer this question.

Here, we will show how Bayesian updating is used to sequentially revise 
the posterior probability computed in Equation 3.14, to account for the obser-
vation of new evidence nodes e2 and e3. We begin by writing the following:

	 P H e e P H e e( | ) ( | )1 2 1 2∩ ≡ � (3.15)

	
P H e e

P H e P e H

P H e P e H P H e P e Hc
( )

( ) ( )

( ) ( ) ( ( )) ( )1 2
1 2

1 2 1 21
=

+ − � (3.16)

	 P H e e e P H e e e( | ) ( | )1 2 3 1 2 3∩ ∩ ≡ � (3.17)
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P H e e e

P H e e P e H

P H e e P e H P H e e e P
( )

( ) ( )

( ) ( ) ( (( ) )) (1 2 3
1 2 3

1 2 3 1 2 11
=

+ − ee Hc
3 )

	 (3.18)

Suppose the management team made the following assessments:

	 P(e2|H) = 0.90, P(e2|Hc) = 0.45

	 P(e3|H) = 0.95, P(e3|Hc) = 0.10

Substituting them first into Equation 3.16 and then into Equation 3.18 yields 
the following:

	 P(H|e1e2) = 0.83  and  P(H|e1e2e3) = 0.98

Thus, given the influence of all the evidence observed to date, we can con-
clude hypothesis H is almost certain to occur. Figure 3.8 illustrates the find-
ings from this analysis.

Writing a Risk Statement

Probability is a measure of the chance an event may or may not occur. 
Furthermore, all probabilities are conditional in the broadest sense that one 
can always write the following*:

	 P(A) = P(A|Ω)

where A is an event (a subset) contained in the sample space Ω.

*	This result derives from the fact that P( | .Ω A)=1

Project XYZ will experience significant delays in
completing its software development

Project XYZ has been
unable to fully staff to

the number of software
engineers needed for

this effort

Key software development
facilities are geographically
separated across different
time zones

Requirements for the
software’s operational
functionality continue to
change and evolve despite
best efforts to control the 
baseline

H

e2

e1 e3

FIGURE 3.7
Evidence e2 and e3 observed at time t2.
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In a similar way, one may consider subjective or judgmental probabilities 
as conditional probabilities. The conditioning event (or events) may be expe-
rience with the occurrence of events known to have a bearing on the occur-
rence probability of the future event. Conditioning events can also manifest 
themselves as evidence, as discussed in the previous section on Bayesian 
inference.

Given these considerations, a best practice for expressing an identified risk 
is to write it in a form known as the risk statement. A risk statement aims 
to provide clarity and descriptive information about the identified risk so 
a reasoned and defensible assessment can be made on the risk’s occurrence 
probability and its areas of impact (if the risk event occurs).

A protocol for writing a risk statement is the Condition-If-Then construct. 
This construct is a recognition that a risk event is, by its nature, a probabilis-
tic event and one that, if it occurs, has unwanted consequences. An example 
of the Condition-If-Then construct is shown in Figure 3.9.

In Figure 3.9, the Condition reflects what is known today. It is the root cause 
of the identified risk event. Thus, the Condition is an event that has occurred, 
is presently occurring, or will occur with certainty. Risk events are future 
events that may occur because of the Condition present. The following is an 
illustration of this protocol.

Suppose we have the following two events. Define the Condition as event B 
and the If as event A (the risk event)

B = �{Current test plans are focused on the components of the subsystem and 
not on the subsystem as a whole}

Probability
hypothesis is true

Updated probability that hypothesis
H is true, given all evidence

observed to date

1.00

0.75

0.50

0.25

0.00

P(H) = 0.50

P(H|e1) = 0.7059
P(H|e1e2) = 0.8276

P(H|e1e2e3) = 0.9785

e1 e1 ∩ e2 e1 ∩ e2 ∩ e3

Initial or prior “belief”
that hypothesis H is

true

Influence of evidence node ...

FIGURE 3.8
Bayesian updating: truthfulness of hypothesis H.
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A = �{Subsystem will not be fully tested when integrated into the system for 
full-up system-level testing}

The risk statement is the Condition-If part of the construct; specifically,

R ISK STAT E M EN T:  {The subsystem will not be fully tested when integrated into 
the system for full-up system-level testing because current test plans are focused on 
the components of the subsystem and not on the subsystem as a whole}

From this, we see the Condition-If part of the construct is equivalent to a prob-
ability event; formally, we can write

	 0 < P(A|B) = α < 1

where α is the probability risk event A occurs given the conditioning event 
B (the root cause event) has occurred. As explained earlier, a risk event is 
equivalent to a probability event; it is the Condition-If part of the risk state-
ment construct. The Then part of this construct contains additional informa-
tion; that is, information on the risk’s consequences.

In summary, a best practice formalism for writing a risk is to follow the 
Condition-If-Then construct. Here, the Condition is the same as described 
above (i.e., it is the root cause). The If is the associated risk event. The Then 
is the consequence, or set of consequences, that will impact the engineering 
system project if the risk event occurs.

CONDITION
PRESENT

Risk Event A

Subsystem will not be fully tested when
integrated into the system for full-up
system level testing.  

Current test plans are focused on the components of
the subsystem and not on the subsystem as a whole
and its role in the larger system or enterprise. 

 

IF this
Risk Event Occurs

Conditioning
Event B

Risk Event AProb (A B)

Consequence
Event A1

�e subsystem will reveal
unanticipated performance shortfalls. 

THEN these are the
impacts (consequences) 

Root
Cause

Consequence
Event A2

�e full-up system will reveal
unanticipated performance shortfalls. 

Consequence
Event A3

�e subsystem will have to incorporate
late fixes to its software baseline. 

CONDITION

Consequence
Event A4

�e subsystem will have to accommodate
unanticipated changes to subsequent
build requirements.  

Consequence
Event A5

Unplanned cost increases and
schedule delays from inadequate testing.

FIGURE 3.9
An illustration of the Condition-If-Then construct (Garvey, 2008).
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3.3  The Value Function

Many decisions involve choosing the “best” or “most preferred” option 
among a set of competing options. In this section, we introduce the field of 
decision theory and discuss elements of this subject designed to identify not 
only the best option but an ordering of options from most-to-least preferred, 
as a function of how well each performs against evaluation criteria.

In engineering risk management, decision makers often need to order 
risks from most-to-least critical for a variety of purposes. A primary one is 
to decide where risk mitigation resources should be allocated. In this con-
text, risks are analogous to options. Their criticality is a function of multiple 
evaluation criteria, such as a risk’s impact on an engineering system’s cost, 
schedule, or technical performance.

Modern decision theory has much of its theoretical basis in the classic 
work “Decisions with Multiple Objectives: Preferences and Value Tradeoffs” 
(Keeney and Raiffa, 1976). In this, Keeney and Raiffa present the founda-
tions of preference theory and multiattribute value and utility function the-
ory. This section explores these concepts and illustrates their application 
from an engineering risk management perspective. We begin with the value 
function.

A value function is a real-valued mathematical function defined over an 
evaluation criterion (or attribute) that represents an option’s measure of 
“goodness” over the levels of the criterion. A measure of “goodness” reflects 
a decision maker’s judged value in the performance of an option (or alterna-
tive) across the levels of a criterion (or attribute).

A value function is usually designed to vary from 0 to 1 (or 0 to 100) over 
the range of levels (or scores) for a criterion. In practice, the value function for 
a criterion’s least preferred level (or score) takes the value 0. The value func-
tion for a criterion’s most preferred level (or score) takes the value 1.

Figure 3.10 illustrates a buyer’s value function for the criterion Car 
Color. Because this function is defined over a criterion, it is known as a sin-
gle-dimensional value function (SDVF). The notation in Figure 3.10 operates as 
follows. The letter capital X denotes the criterion Car Color. The letter small 
x denotes the level (or score) for a specific option or alternative associated 
with criterion X. The notation V xX ( ) denotes the value of x. For example, for 
the criterion X x= = =Car Color the option Green 3 has a value of 2/3; that is, 
V VCar Color Car Color(Green)= =( ) / .3 2 3

In Figure 3.10, suppose a buyer has the following preferences for the crite-
rion Car Color. A yellow car is the least preferred color, whereas a black car is 
the most preferred color. These colors receive a value of 0 and 1, respectively. 
Furthermore, the value function in Figure 3.10 shows the buyer’s increasing 
value of color as the level of the criterion moves from the color yellow to the 
color black. Here, red is preferred to yellow, green is preferred to red, blue is 
preferred to green, and black is preferred to blue.
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In Figure 3.10, the values show not only an ordering of preferences but 
suppose the buyer’s strength of preference for one color over another is also 
captured. Here, the smallest increment (change) in value occurs between 
blue and black. If we use this increment as a reference standard, then it can 
be shown, for this buyer, the value increment between yellow and red is 
three times the value increment between blue and black; the value increment 
between red and green is two times the value increment between blue and 
black; the value increment between green and blue is one and a half times 
the value increment between blue and black.

The expression “value increment” or “increment in value” refers to the 
degree the buyer, in this case, prefers the higher level (score) to the lower 
level (score) (Kirkwood, 1997). In Figure 3.10, the value increment between 
yellow and red is greater than that between blue and black. Increasing from 
yellow to red is more preferable to increasing from blue to black.

Since the buyer’s value function in Figure 3.10 features a preference 
ordering and a strength of preference between the criterion’s levels, we 
say this function is a measurable value function. In a measurable value func-
tion, the value difference between any two levels (or scores) within a cri-
terion (or attribute) represents a decision-maker’s strength of preference 
between the two levels (or scores). The vertical axis of a measurable value 
function is a cardinal interval scale measure of the strength of a decision-
maker’s preferences. For this reason, a measurable value function is also 
referred to as a cardinal value function. Refer to Kirkwood (1997) and Dyer 
and Sarin (1979) for an in-depth technical discussion on measurable value 
functions.

Figure 3.10 also illustrates how a value function can combine cardinal and 
ordinal features. In this case, the vertical axis is a cardinal interval scale, 
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FIGURE 3.10
A value function for car color (Garvey, 2008).
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whereas the horizontal axis is an ordinal scale. In Figure 3.10, the values 
along the vertical axis have, to the decision-maker, meaningful preference 
differences between them. The horizontal axis, in Figure 3.10, is ordinal in 
the sense that red is preferred to yellow, green is preferred to red, blue is pre-
ferred to green, and black is preferred to blue. Along this axis, we have an 
ordering of preference only that is preserved. The distance between colors, 
along the horizontal axis, is indeterminate (not meaningful).

Measurement Scales

A measurement scale is a particular way of assigning numbers or labels to 
an attribute or measure. In measurement and decision theory, there are four 
commonly used measurement scales (Stevens, 1946). These are nominal scale, 
ordinal scale, interval scale, and ratio scale.

Nominal scale. A nominal scale is a measurement scale in which attributes 
are assigned a label (i.e., a name). It is only a qualitative scale. Nominal data 
can be counted, but no quantitative differences, or preference ordering of the 
attributes are implied in a nominal scale. From this, it follows that arithmetic 
operations are without meaning in a nominal scale. Figure 3.11 illustrates a 
nominal scale for a set of U.S. cities, labeled A, B, C, and D.

Ordinal scale. An ordinal scale is a measurement scale in which attributes 
are assigned a number that represents order or rank. For example, a person 
might rate the quality of different ice cream flavors according to the scale in 
Figure 3.12. Here, a scale of one to four is assigned to “Worst,” “Good,” “Very 
Good,” and “Best,” respectively. The numerical values indicate only relative 
order in the sequence. The distance between the numbers is arbitrary and 
has no meaning. One could have easily assigned the number “forty” to the 
attribute “Best” while still preserving the order of the sequence.

A =
Boston

B =
New York

C =
Chicago

D =
Dallas

FIGURE 3.11
A nominal scale.

1 =
Worst

2 =
Good

3 =
Very good

4 =
Best

FIGURE 3.12
An ordinal scale.



66 Advanced Risk Analysis in Engineering Enterprise Systems

In an ordinal scale, such as the one shown in Figure 3.12, it does not follow 
that “Good” is twice as valuable as “Worst” or “Best” is twice as valuable 
as “Good.” We can only say that “Best” is more valued than “Very Good,” 
“Very Good” is more valued than “Good,” and “Good” is more valued than 
“Worst”. In each case, we cannot say by how much they are more valued. 
Data along an ordinal scale is more insightful than that along a nominal 
scale because the ordinal scale provides information on preference order or 
rank. However, because the distance between values in the ordinal scale is 
arbitrary, arithmetic operations on ordinal data is impermissible.

Interval scale. An interval scale is a cardinal measurement scale in which 
attributes are assigned numbers such that differences between them have 
meaning. The zero point on an interval scale is chosen for convenience and 
does not necessarily represent the absence of the attribute being measured. 
Examples of interval scales are the Fahrenheit or Celsius temperature scales. 
The zero point in a temperature scale does not mean the absence of tempera-
ture. In particular, 0°C is assigned as the freezing point of water.

Because distances between numbers in an interval scale have meaning, 
addition and subtraction of interval scale numbers is permitted; however, 
because the zero point is arbitrary, multiplication and division of interval 
scale numbers are not permitted. For example, we can say that 75°F is 25°F 
hotter than 50°F; but we cannot say 75°F is 50% hotter than 50°F. However, 
ratios of differences can be expressed meaningfully; for example, one difference can be 
one-half or twice or three times another.

When working with measurable value functions, such differences are referred 
to as preference differences. As mentioned earlier, a measurable value function 
is one that is monotonic in preferences and value differences represent rel-
ative strength of preference. Thus, large value differences between options 
indicate the difference in preference between them is greater, say, than the 
difference in preference between other options. The numerical amount of 
this difference represents the relative amount of preference difference. The 
concept of value differences is considered a “primitive” in decision theory, 
that is, not a concept derived from other conditions.

Ratio scale. A ratio scale is a cardinal measurement scale with a “true zero.” 
Here, attributes are assigned numbers such that (1) differences between the 
numbers reflect differences of the attribute, and (2) ratios between the num-
bers reflect ratios of the attribute. On a ratio scale, the zero point is a true zero 
in that it represents a complete absence of the characteristic being measured 
by the attribute. All arithmetic operations are permitted on numbers that 
fall along a ratio scale. Examples of ratio scales include measures such as 
distance, weight, money.

Constructed scale. A constructed scale is a measurement scale specific to 
the evaluation criterion being measured. Constructed scales are developed 
for a specific decision context. They are often defined when natural scales 



67Foundations of Risk and Decision Theory

are not possible or are not practical to use. They are also used when nat-
ural scales exist but additional context is desired and hence are used to 
supplement natural scales with additional information or context for the 
decision-maker.

Table 3.4 illustrates a constructed scale by Kirkwood (1997). It shows a 
scale for the security impacts of a networking strategy for a collection of 
personal computers. Table 3.4 also shows a mapping from the ordinal scale 
to its equivalent cardinal interval scale. The constructed scale in Table 3.4 
can be viewed by its single dimensional value function (SDVF). Figure 3.13 is 
the SDVF for the information in this table. Constructed scales are common 
in decision theory. Many examples are in Kirkwood (1997), Keeney (1992), 
Clemen (1996), and Garvey (2008).

Developing a Value Function

The value functions in Figure 3.10 and Figure 3.13 are known as piecewise 
linear single dimensional value functions. They are formed by individual 
line segments joined together at their “value points.” Piecewise linear SDVFs 
are commonly developed in cases when only a few levels (or scores) define 
a criterion.

One way to develop a piecewise linear SDVF is the value increment approach, 
described by Kirkwood (1997). This requires increments of value be specified 
between a criterion’s levels (or scores). The sum of these value increments is 
equal to 1. In Figure 3.10, the value increments from the lowest level to the 
highest level are, respectively,
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TABLE 3.4

A Constructed Scale for Security Impact (Kirkwood, 1997)

Ordinal Scale Definition Cardinal Interval Scale

–2 The addition of the network causes a 
potentially serious decrease in system 
control and security for the use of data 
or software.

VX ( )− =2 0

–1 There is a noticeable but acceptable 
diminishing of system control and 
security.

VX ( ) .− =1 0 50

0 There is no detectable change in system 
control or security.

VX ( ) .0 0 83=

1 System control or security is enhanced 
by the addition of a network.

VX ( )1 1=
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Their sum is equal to 1 and 2/15 is the smallest value increment. The value 
function in Figure 3.10 reveals, for this buyer, the smallest value increment 
for car color is between blue and black. A generalization of this is shown in 
Figure 3.14.

In Figure 3.14, the smallest value increment for criterion X is between lev-
els (or scores) A4 and A5 and is denoted by D. Subsequent value increments 
are multiples of the smallest value increment; that is, aD, bD, and cD, where 
a, b, and c are positive constants. It follows that

	 cD + bD + aD + D = 1 or equivalently ∆ =
+ + +

1
1a b c 	 (3.20)

With this, the following equations are true:

VX (A1)= 0

V V c cX X(A (A2) 1)= + ∆= ∆

V V b c bX X(A (A3 2) )= + ∆ = ∆+ ∆

V V a c b aX X(A (A4 3) )= + ∆= ∆+ ∆+ ∆

V V c b aX X(A (A5 4 1) )= + ∆= ∆+ ∆+ ∆+ ∆ =

The value increment approach uses the property that ratios of differences 
between values can be expressed meaningfully along an interval scale; that 
is, one difference (or increment) between a pair of values can be a multi-
ple of the difference (or increment) between another pair of values. Suppose 
we relate this approach to the value function for Car Color, in Figure 3.10. The 
value increments for the different levels (or scores) for car color, as multiples 
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FIGURE 3.13
A SDVF for Table 3.4 (Kirkwood, 1997).
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of the smallest value increment D, are shown in Figure 3.15. From this, it fol-
lows that
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Another approach to specifying a SDVF is the direct assessment of value. 
This is sometimes referred to as direct rating. Here, the value function for a 
criterion’s option (or alternative) with the least preferred level (or score) is 
assigned the value zero. The value function for a criterion’s option with the 
most preferred level is assigned the value one.

Next, the intermediate options, or alternatives, are ranked such that their 
ranking reflects a preference ordering along the horizontal axis of the value 
function. With this, the values of these intermediate options (or alternatives) 
are directly assessed such that they fall between 0 and 1 along the vertical 
axis of the value function. The spacing (or distance) between the values of 
these intermediate options is intended to reflect the strength of preference 
of the expert (or team) making the assessments for one option over another.

Because values are directly assessed along a cardinal interval scale, it is 
important to check for consistency. Discussed later in this section, differences 
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VX(A4)

VX(x)
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FIGURE 3.14
A piecewise linear SDVF.
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in values along an interval scale have meaning. For example, a value differ-
ence of 0.30 points between two options (or alternatives) should reflect an 
improvement in value that is exactly twice that measured by a difference of 
0.15 points between two other options (or alternatives). When implementing 
a direct preference rating approach with a group of inviduals, check for bias 
and possible dominance of opinion by one or more participants.

Exponential Value Function

A special type of value function can represent increasing or decreasing val-
ues (preferences) for criteria characterized by a continuous range of levels 
(or scores). Figure 3.16 illustrates an exponential value function for the criterion 
Probability of Intercept.

In Figure 3.16, higher probabilities of a successful intercept are more val-
ued than lower probabilities. The scores for this criterion vary continuously 
across the range of probability, that is, between 0 and 1 along the horizontal 
axis. The following definitions of the exponential value function are from 
Kirkwood (1997).

Definition 3.1

If values (preferences) are monotonically increasing over the levels (scores) 
for an evaluation criterion X, then the exponential value function is given by
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A value function for car color: A value increment view.
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Definition 3.2

If values (preferences) are monotonically decreasing over the levels 
(scores) for an evaluation criterion X, then the exponential value function 
is given by
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A family of exponential value functions is shown in Figure 3.17. The 
left-most picture reflects exponential value functions for monotonically 
increasing preferences over the criterion X. The right-most picture reflects 
exponential value functions for monotonically decreasing preferences over 
the criterion X.

The shape of the exponential value function is governed by the parameter 
r, referred to as the exponential constant (Kirkwood, 1997). One procedure for 
determining r relies on identifying the midvalue associated with the range 
of levels (or scores) for the evaluation criterion of interest.

Definition 3.3

The midvalue of a criterion X over a range of possible levels (scores) for X is 
defined to be the level (score) x such that the difference in value between the 
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FIGURE 3.16
An exponential value function for probability of intercept.
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lowest level (score) xmin and the midvalue xmid is the same as the difference in 
value between xmid and the highest level (score) xmax (Kirkwood, 1997).

From this definition, it follows that the SDVF for the midvalue of X will 
always equal 0.50; that is, V xX ( ) . .mid = 0 50  If x x xmin max, , and mid are known, 
then Equation 3.21 or Equation 3.22 can be numerically solved for r. For 
example, in Figure 3.16 suppose the midvalue xmid for the criterion Probability 
of Intercept was assessed to be 0.90. Since this criterion is characterized by 
increasing preferences, Equation 3.21 is the appropriate form of the expo-
nential value function. To determine r, in this case, we need to solve the 
following:
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Solving Equation 3.23 numerically yields r = − 0 1444475. . Today, a number of 
software applications are available to solve Equation 3.23, such as Microsoft’s 
Excel Goal Seek or Solver routines. The following illustrates an exponential 
value function for monotonically decreasing preferences.

Suppose the criterion Repair Time for a mechanical device ranges from 
10 hours to 30 hours. Suppose the midvalue for this criterion was assessed at 
23 hours. We need to determine the exponential constant r for this exponen-
tial value function, as depicted in Figure 3.18.

Since values (preferences) are monotonically decreasing over the levels 
(scores) for the criterion X, Repair Time, the exponential value function is 
given by Equation 3.22, that is,
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Families of exponential value functions.
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which, for this case, is
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Since xmid = 23, we have
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Solving Equation 3.24 numerically yields r = 15 6415. .
In this discussion, the exponential value function’s exponential constant r 

was solved by setting V xX ( )mid  equal to 0.50 and numerically solving for r;
that is, for a given criterion X its score (level) x is assessed such that it repre-
sents the midvalue of the value function V xX ( ).

In practice, one is not restricted to solving r based on the midvalue. An 
evaluator may prefer to assess the level (score) x associated with a value func-
tion’s value of, say, V xX ( ).0 25  = 0.25 or V xX ( ) ..0 75 0 75=  instead of V xX ( ) . .mid = 0 50  
In these cases, a procedure similar to the one described here can be used to 
determine r.

The Value of Probability

In Figure 3.16, an exponential value function is defined over a criterion that 
represented the probability of an event. In general, value functions can be 
defined for criteria that represent event probabilities whose outcomes are 

1

0.50

0
10

X: Repair time (hours)

xmin
23

xmid
30

x

xmax

VX(x)

FIGURE 3.18
An exponential value function for repair time.



74 Advanced Risk Analysis in Engineering Enterprise Systems

uncertain. Increasing probabilities that an event will occur with preferred 
outcomes might be modeled by increasing values of a value function. The 
exponential value function provides a way to shape relationships between 
value and probability. Figure 3.19 illustrates a family of these relationships. 
The general equation for this family is as follows:
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Equation 3.25 is a particular case of Equation 3.21. Table 3.5 provides the 
exponential constants for each value function from left to right in Figure 3.19. 
These constants ensure that the value function defined by Equation 3.25 is 
equal to 0.50 for the given probability shown in Table 3.5.

The Additive Value Function

Deciding the “best” alternative from a number of competing alternatives is 
often based on their performance across multiple criteria. Given a set of n 
value functions defined over n criteria, what is an alternative’s overall per-
formance across these criteria? First, some definitions.

Definition 3.4

A criterion Y is preferentially independent of another criterion X if preferences 
for particular outcomes of Y do not depend on the level (or score) of criterion X.

Informally, preference independence is present if a decision-maker’s pref-
erence ranking for one criterion does not depend on fixed levels (scores) of 
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other criteria in the decision space. Consider a buyer’s selection preference 
for a new car. If criterion Y is price and criterion X is color, then Y is pref-
erence independent of X if the buyer prefers a lower price to a higher price 
regardless of the car’s color.

Definition 3.5

If an evaluator’s preference for ith criterion (in a set of n criteria) remains the 
same regardless of the level (or score) of the other criteria, then the ith crite-
rion is preference independent of the other criteria. If each criterion is prefer-
ence independent of the other criteria, then the entire set of criteria is called 
mutually preference independent.

Definition 3.6

A value function V yY ( ) is an additive value function if there exists n SDVFs 
V x V x V x V xX X X X nn1 2 31 2 3( ), ( ), ( ), , ( )…  satisfying

	 V y w V x w V x w V x w V xY X X X n X nn
( ) ( ) ( ) ( ) ( )= + + + ⋅⋅⋅ +1 1 2 2 3 31 2 3

where w i ni for =1, ,…  are nonnegative weights whose values range between 
0 and 1 and where w w w wn1 2 3 1+ + + + =� .

TABLE 3.5

Exponential Constants for the Value 
Functions in Figure 3.19

Probability Exponential Constant

0.50 r=∞

0 60. r= − 1 2163.

0 70. r= −0 555225.

0 80. r= − 0 304759.

0 90. r= − 0 144475.

0 91. r= − 0 129928.

0 92. r= − 0 115444.

0 93. r= − 0 100996.

0 94. r= −0 0865629.

0 95. r= −0 0721349.

0 96. r= −0 0577078.

0 97. r= −0 0432809.

0 98. r= −0 0288539.

0.99 r= −0 014427.
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Theorem 3.6

If a set of criteria is mutually preferentially independent, then the evaluator’s 
preferences can be represented by an additive value function.

A proof of Theorem 3.6 is beyond the scope of this text. The reader is referred 
to Keeney and Raiffa (1976) for its proof.

Given (1) the SDVFs V x V x V x V xX X X X nn1 2 31 2 3( ), ( ), ( ), , ( )…  each range in value 
between 0 and 1 and (2) the weights each range in value between 0 and 1 
and sum to unity, it follows that V yY ( ) will range between 0 and 1. Thus, the 
higher the value of V yY ( ) the more preferred is the alternative; similarly, the 
lower the value of V yY ( ) the less preferred is the alternative.

CASE 3.1

Consider the following case. Suppose a buyer needs to identify which of five 
car options is best across three evaluation criteria Car Color, Miles per Gallon 
(MPG), and Price. Furthermore, suppose the criterion MPG is twice as impor-
tant as the criterion Car Color and Car Color is half as important as Price. 
Suppose the buyer made the value assessments in Figure 3.20 for each crite-
rion. Assume these criteria are mutually preferentially independent.

Solution

The three criteria are assumed to be mutually preferentially independent. It 
follows that the additive value function can be used to generate an overall 
score for the performance of each car across the three evaluation criteria. In 
this case, the additive value function is

	 V y w V x w V x w V xY X X X( ) ( ) ( ) ( )= + +1 1 2 2 3 31 2 3
� (3.26)

where V xX1 1( ), V xX2 2( ), and V xX3 3( ) are the value functions for Car Color, MPG, 
and Price, respectively; and, w ii for =1 2 3, ,  are nonnegative weights (impor-
tance weights) whose values range between 0 and 1 and where w w w1 2 3 1+ + = .

Weight Determination

Since the criterion MPG was given to be twice as important as the criterion 
Car Color and Car Color was given to be half as important as Price, the weights 
in Equation 3.26 are determined as follows: let w1 denote the weight for Car 
Color, w2 denote the weight for MPG, and w3 denote the weight for Price. From 
this, w w w w2 1 1 32 2= =and / . Thus,

	
w w w2 3 32
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Since w w w1 2 3 1+ + = , it follows that
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From this, Equation 3.26 can be written as
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Determine Performance Matrix

Next, suppose the buyer collected data on the five car options according to 
their performance against each of the three criteria Car Color, MPG, and Price. 
In Table 3.6, the left half of the matrix shows the data on each car option across 
these criteria. The right half of the matrix shows the equivalent numerical 
scores from the value functions shown in Figure 3.20. The scores in the last 
column of Table 3.6 come from applying the value functions in Figure 3.20 to 
Equation 3.27. In Equation 3.27, the term V xX1 1( ) is given by the top function in 
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Figure 3.20; the terms V xX2 2( )  and V xX3 3( ) are shown at the bottom of Figure 
3.20. They are defined as
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For example, from Equation 3.27, Car 1 has the following overall value score.
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The overall value scores of the remaining car options are similarly com-
puted. From this, Car 5 is the “best” choice followed by Car 2, Car 1, Car 3, 
and Car 4.

Sensitivity Analysis

Following an initial ranking of alternatives, a sensitivity analysis is often 
performed to identify what drives the ranking results. Frequently, this anal-
ysis is designed based on the sensitivity of rankings to changes in the impor-
tance weights of the evaluation criteria, which are Car Color, MPG, and Price 
in Case 3.1.

Recall that the additive value function is a weighted average of the individ-
ual SDVFs of each of the evaluation criteria. Here, the weights are nonneg-
ative and sum to 1. Because of this, as one weight varies the other weights 
must also change such that their sum remains equal to 1. An algebraic rule 

TABLE 3.6

A Performance Matrix of the Buyer’s Car Options

Criterion Level (Score) Equivalent Value Scores Overall
Value ScoreColor MPG Price Color MPG Price

Car 1 4 15 30 Car 1 0.87 0.33 0.69 0.58
Car 2 1 22 25 Car 2 0.00 0.69 0.86 0.62
Car 3 5 18 38 Car 3 1.00 0.50 0.37 0.55
Car 4 3 12 42 Car 4 0.67 0.14 0.17 0.26
Car 5 2 28 21 Car 5 0.40 0.93 0.97 0.84
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for automatically tracking the change in the other weights as one weight 
varies is described by Kirkwood (1997). Consider the case of a three-term 
additive value model given by Equation 3.28.

	 V y w V x w V x w V xY X X X( ) ( ) ( ) ( )= + +1 1 2 2 3 31 2 3
	 (3.28)

The weights in Equation 3.28 are nonnegative and have the property that 
they sum to 1. One procedure for varying the weights, for the purpose of 
a sensitivity analysis, is the ratio method. The ratio method operates as fol-
lows. Suppose w2 is selected as the weight to vary. Let w w0 1 0 3, ,and  denote the 
original set of weights for w w1 3and  established for the initial ranking. Then, 
formulas for w w1 3and  as a function of w2 are, respectively,
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So, w1 and w3 will automatically change as w2 varies. This change will be 
such that w w w1 2 3 1+ + = . This formulation also keeps the values for w1 and 
w3 in the same ratio as the ratio of their original weight values; that is, it can 
be shown that
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In Case 3.1, w w w1 2 31 5 2 5 2 5= = =/ , / , / .and  These were the original weights 
established for the initial ranking. Observe the ratio of w3 to w1 equals 2. This 
is the ratio preserved by Equations 3.29 and 3.30, where, for the sensitivity 
analysis, we set w w0 1 0 31 5 2 5, ,/ / .= =and  Thus, for a sensitivity analysis on 
the weights in Case 3.1, we have the following:
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In Case 3.1, w2 0 2= .  instead of its original value of 2/5. From Equations 3.31 
and 3.32, it follows that
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Equation 3.26 then becomes
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From Table 3.6, for Car 1 we have
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4
15

0 87
2

10
0 33

8
15

0 69 0 67

Similar calculations can be done for the rest of the cars in the set of alterna-
tives. Table 3.7 summarizes the results of these calculations, as the weight for 
MPG w2 varies from zero to one in increments of 0.1. A graph of the results 

TABLE 3.7

Case 3.1: Sensitivity Analysis on MPG

Sensitivity Analysis MPG Weight Variation

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1

Original 
Case

Car 1 0.58 0.75 0.71 0.67 0.63 0.58 0.54 0.50 0.46 0.42 0.37 0.33
Car 2 0.62 0.57 0.59 0.60 0.61 0.62 0.63 0.65 0.66 0.67 0.68 0.69
Car 3 0.55 0.58 0.57 0.56 0.55 0.55 0.54 0.53 0.52 0.52 0.51 0.50
Car 4 0.26 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16 0.14
Car 5 0.84 0.78 0.80 0.81 0.83 0.84 0.86 0.87 0.89 0.90 0.92 0.93

VΥ (y)
1

0.8

0.6

0.4

0.2

0
0 0.2 0.4

Original
weight w2 = 2/5

0.6 0.8

Car 4

Weight w2: MPG

Car 1

Car 3

Car 2

Car 5

1

FIGURE 3.21
Case 3.1: Sensitivity analysis on MPG.
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in Table 3.7 is shown in Figure 3.21. Car 5 is the clear winner and dominates 
the overall value score. Car 4 dominates the “loss column” falling below all 
other car option scores.

3.4  Risk and Utility Functions

In Section 3.3, risk was not considered in the analysis that identified the best 
alternative from a set of competing alternatives. Modeling decision problems 
by value functions is appropriate when there is certainty in how an alterna-
tive rates across the levels of criteria. What if there is uncertainty in the ratings 
of these alternatives? How might decisions be made in this circumstance? 
Addressing this involves a preference function called a utility function.

In general, value functions model decision-maker preferences when out-
comes of an evaluation criterion are known. Utility functions model decision-
maker preferences when these outcomes are uncertain. A utility function is 
a value function* that assigns a probability distribution to all possible out-
comes of a criterion that represents an alternative’s measure of “goodness” 
over the levels of that criterion. In this way, utility functions capture a deci-
sion-maker’s probabilistic preference or risk attitude for the outcome of each 
alternative in a set of competing choices.

Discussed in Chapter 2, modern decision theory began with axioms stated 
by von Neumann and Morgenstern (1944) in their seminal work on a the-
ory of games and rational choice. These axioms are known as the axioms 
of choice, the axioms of expected utility theory, or the preference axioms. 
The axioms of von Neumann and Morgenstern recognize the desirability 
of one alternative over others must consider a decision-maker’s preferences 
for the outcome of each alternative and the probabilities these outcomes are 
realized. This form of utility is known as the von Neumann–Morgenstern 
(vNM) utility.

3.4.1  vNM Utility Theory

Risk is the chance an unwanted event occurs, as mentioned in Chapter 2. 
Taking a risk is a choice to gamble on an event whose outcome is uncertain. 
Risk is the probability an unfavorable outcome is realized. However, a favor-
able or unfavorable outcome is a personal determination—one governed by 
a person’s attitude toward risk and their concept of value or worth. Thus, 
the study of risk is the study of chance and the study of choice. vNM utility 
theory is a formalism designed to capture the dualism of chance and choice. 

*	A utility function is a value function, but a value function is not necessarily a utility function 
(Keeney and Raiffa, 1976).
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To understand vNM utility theory, we first introduce the concepts of lotteries 
and risk attitudes.

Lotteries and Risk Attitudes

Risk can be characterized in the way a person evaluates uncertain outcomes. 
Uncertain outcomes can be portrayed as a lottery. A lottery is an event whose 
outcome is determined by chance. It is sometimes called a gamble or a risky 
prospect. A lottery X may be written as

	

X L x p x p x p
x p
xX≡ = =( , ; , ; , )1 1 2 2 3 3

1 1

2

with probability
with probabiliity
with probability

p
x p

2

3 3






	 (3.33)

where L XX ≡  is a random event whose outcome is xi with probability 
p ii ( , , )=1 2 3  and p p p1 2 3 1+ + = . Equation 3.33 can be written as a vector of 
probabilities. For instance,

	 LX = (x1, p1; x2, p2; x3, p3) ≡ (p1, p2, p3 ), 0 ≤ p1, p2, p3 ≤ 1	 (3.34)

with p p p1 2 3 1+ + = . The lottery given by Equation 3.34 is known as a simple 
lottery. A lottery whose outcome is a set of simple lotteries is known as a 
compound lottery. A compound lottery has a probability distribution on a set 
of simple lotteries. For instance, ′LY  is a compound lottery.

	 ′ = ≤ ≤L q L q L q qY ( , ; , ) ,1 1 2 2 1 20 1 	 (3.35)

where the lottery ′LY awards lottery L1 with probability q1 and lottery L2 with 
probability q2 with q q1 2 1+ = . A compound lottery can be reduced to a simple 
lottery, as illustrated by the lotteries ′LY and LY in Figure 3.22.

q1

LY′ LY  =  

p1

z1

z2

p3

y1

y2

y1

y2

y1

y2
q2 L2

L1

q2 = 1– q1
z2 = 1– z1

p2 = 1–p1

p4 = 1– p3

=

FIGURE 3.22
A compound lottery reduced to a simple lottery.
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Using probability rules, the compound lottery ′LY can be reduced to LY, that is,

	 ′ = = = + − − + − − ≤L L z z q p q p q p q p z zY Y ( , ) ( ( ) , ( ) ( )( )) ,1 2 1 1 1 3 1 1 1 3 11 1 1 1 0 22 1≤

with z1 + z2 = 1. Thus, the probabilities of realizing outcomes y1 and y2, respec-
tively, are

	 z1 = q1p1 + (1 – q1)p3

	                 z2 = q1(1 – p1) + (1 – q1)(1 – p3)

From this, observe that ′LY and q L q L1 1 1 21+ −( )  have the same vector of prob-
abilities; that is,

	 q1L1 + (1 – q1)L2 = q1(p1, 1 – p1) + (1 – q1)(p3, 1 – p3)

	                        = (q1p1 + (1 – q1)p3, q1(1 – p1) + (1 – q1)(1 – p3))

Preferences to engage in lotteries are indicated by the following conventions. 
The notation L L1 2�  indicates a person has a strict preference for lottery L1 
over lottery L L L2 1 2; ∼  indicates a person is indifferent between lottery L1 and 
lottery L L L2 1 2; �  indicates a person has a weak preference for lottery L1 over 
lottery L2 (i.e., L1 is not worse than L2).

In vNM utility theory, lotteries are used to order preferences over uncer-
tain outcomes. In this theory, persons are rational if their decisions to engage 
in risky prospects follow the vNM preference axioms. Introduced in Chapter 2, 
these axioms (in preference notation) are as follows:

Completeness Axiom

	 Either L L L L L L1 2� � ∼2 1or or2 1

Transitivity Axiom

	 If L L L L L L1 2 3 3� � �and then2 1,

Continuity Axiom

	 If L L L L1 2 3� �and 2 , then there exists a probability q such that 
L qL q L2 1 31∼ + −( )

Independence (Substitution) Axiom

	 If L L qL q L qL q L1 2 1 3 2 31 1� �, ( ) ( )then + − + −

Monotonicity Axiom

	 If L L q q q L q L q L q L1 2 2 1 1 2 2 1 2 21 1� �and then1 1> + − + −, ( ) ( ) . The mono
tonicity axiom stems from the preceding axioms.
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A fundamental result from these axioms is the vNM expected utility theorem. 
This theorem proved that if a person’s preference ordering over lotteries (or 
risky prospects) follows the vNM axioms, then a real-valued order-preserv-
ing cardinal utility function exists on an interval scale.

Theorem 3.7: �The Expected Utility Theorem

If preferences over any two lotteries L1 and L2 satisfy the vNM axioms, then 
there exists an interval scale real number U x( )i  associated to each outcome xi 
such that, for i n= 1 2 3, , , ...,

L p p p L q q qn n1 1 2 2 1 2( , , ..., ) ( , , ..., )�  if and only if

p U x p U x p U x q U xn n1 1 2 2 1 1( ) ( ) ... ( ) ( )+ + + ≥ + q2U(x2) + . . . + qnU(xn)  0 ≤ pi,qi ≤ 1.

The expected utility theorem proved that preference order-preserving, real-
valued, cardinal utility functions exist on interval scales. In this context, 
utility is a cardinal measure of strength of preference for outcomes under 
uncertainty. Because of their interval scale properties, utility functions are 
unique up to positive linear transformations. This means a person’s prefer-
ence order for engaging in risky prospects is preserved up to aU x b a( ) ( )+ > 0  
and ratios of differences in utility are invariant. Thus, the origin and unit of 
measurement of a utility scale can be set arbitrarily. Traditionally, this scale 
is set such that the utility of the least preferred outcome is 0 utils and the 
utility of the most preferred outcome is 1 util.

Definition 3.7

The expected utility of lottery LX with possible outcomes { , , , ... , }x x x xn1 2 3  is

	 E(U(LX)) = E(U(X)) = p1U(x1) + p2U(x2) + p3U(x3) + . . . + pnU(xn)	 (3.36)

where pi is the probability LX produces x i n U xi i(for and= 1,..., ) ( ) is the cardi-
nal utility associated to each outcome xi.

Definition 3.8

The expected value of lottery LX with possible outcomes { , , , ..., }x x x xn1 2 3  is

	 E(LX) ≡ E(X) = p1x1 + p2x2 + p3x3 + . . . + pnxn	 (3.37)

where pi is the probability LX produces x i ni (for = 1,..., ).

From the expected utility theorem, a decision rule for choosing between 
risky prospects is to select the one that offers the maximum expected utility 
(MEU). Person’s who invoke this rule are sometimes called expected utility 
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maximizers. However, the decision to participate in a lottery rests with a per-
son’s willingness to take risks. This can be characterized by a concept known 
as certainty equivalent.

Definition 3.9

A certainty equivalent of lottery X is an amount xCE such that the decision-
maker is indifferent between X and the amount xCE for certain.

For example, what amount of dollars would you be willing to receive with 
certainty that makes you indifferent between that amount and engaging in 
lottery X, given as follows:

	
L XX ≡ =

Win with probability
Lose with probability

$ .
$ .
500 0 60
150 0 40





The expected value of this lottery is E L E XX( ) ( ) . ($ ) . ( $ ) $ .= = + − =0 60 500 0 40 150 240 
E L E XX( ) ( ) . ($ ) . ( $ ) $ .= = + − =0 60 500 0 40 150 240  If you would be indifferent between receiving $200 with certainty and 

engaging in the lottery, then we say your certainty equivalent for this lottery 
is xCE = 200. In this example, we say this person is risk averse. He is willing to 
accept, with certainty, an amount of dollars less than the expected amount 
that might be received if the decision was made to participate in the lottery. A 
person is considered to be a risk-taker or risk seeking if their certainty equiv-
alent is greater than the expected value of the lottery. A person is considered 
risk neutral if their certainty equivalent is equal to the expected value of the 
lottery.

There is a mathematical relationship between certainty equivalent, 
expected value, and risk attitude. People with increasing preferences whose 
risk attitude is risk averse will always have a certainty equivalent less than 
the expected value of an outcome. People with decreasing preferences whose 
risk attitude is risk averse will always have a certainty equivalent greater than 
the expected value of an outcome.

People with increasing preferences whose risk attitude is risk seeking will 
always have a certainty equivalent greater than the expected value of an out-
come. People with decreasing preferences whose risk attitude is risk seeking will 
always have a certainty equivalent less than the expected value of an outcome.

People whose risk attitude is risk neutral will always have a certainty equiv-
alent equal to the expected value of an outcome. This is true regardless of 
whether a person has increasing or decreasing preferences.

3.4.2  Utility Functions

There is a class of mathematical functions that exhibit these behaviors with 
respect to risk averse, risk seeking, and risk neutral attitudes. They are referred 
to as utility functions. A family of such functions is shown in Figure 3.23.
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A utility is a measure of worth, satisfaction, or preference an outcome has 
for an individual. It is a dimensionless number that is sometimes referred to 
as “util.” A utility function is a real-valued mathematical function that relates 
uncertain outcomes along the horizontal axis to measures of worth or “utils” 
along the vertical axis. A utility function defined over a criterion, or attrib-
ute, is known as a single-dimensional utility function.

As discussed earlier, the vertical axis of a cardinal utility function is an 
interval scale and usually runs between 0 and 1 or between 0 to 100 utils 
(as shown in Figure 3.23). With this convention, the utility of the least pre-
ferred outcome is assigned 0 utils and the utility of the most preferred out-
come is assigned 100 utils. Higher preferred outcomes have higher “utils” 
than lower preferred outcomes.

Utility functions generally take one of the shapes shown in Figure 3.23. 
They are concave, linear, or convex. A concave utility function appears “hill-
like” and is always associated with a risk averse person. Concave functions 
have the property that they lie above a chord (a line segment) connecting 
any two points on the curve. A linear function is always associated with a 
risk neutral person. A convex function appears “bowl-like” and is always 
associated with a risk-seeking person. Convex functions lie below a chord 
connecting any two points on the curve.

Utility functions, as representations of a person’s risk attitude, exhibit a 
number of relationships between the expected value of a lottery, the expected 
utility of a lottery, and the utility of a lottery’s expected value. These meas-
ures can be related to the concept of certainty equivalent.

The relationship between E X E U X( ) ( ( ))and  of a lottery X can be seen by look-
ing at the utility function in Figure 3.24. Figure 3.24 shows this relationship for a 
monotonically increasing risk averse utility function. Similar relationships can 
be developed for other utility function shapes, such as those in Figure 3.23. In 
Figure 3.24, the equation of the chord g( ) ( )x U xbelow  is given by Equation 3.38.

	
g( )

( ) ( )
( ) ( )x

U b U a
b a

x b U b=
−
−

− + 	 (3.38)

U(x) U(x)
100

100

100

Risk averse Risk averse

Risk seeking Risk seekingRisk
neutral

Risk
neutral

Increasing preferences Decreasing preferences
0 0x

100
x

FIGURE 3.23
Utility functions capture risk attitudes.
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Here, we have E X pa p b( ) ( ) .= + −1  If we set x E X= ( ) in Equation 3.38, then it 
can be shown that

	 γ (E(X)) = pU(a) + (1 – p)U(b)

From Definition 3.7, pU a p U b E U x( ) ( ) ( ) ( ( )),+ − =1  therefore,

	 γ (E(X)) = E(U(x))	 (3.39)

The certainty equivalent xCE is that value on the horizontal axis where a per-
son is indifferent between the lottery and receiving xCE with certainty. From 
this, it follows that the utility of xCE must equal the expected utility of the 
lottery, that is,

	 U(xCE) = E(U(x))	 (3.40)

or, equivalently

	 U(xCE) = γ(E(X))	 (3.41)

as shown in Figure 3.25. From Equation 3.40, when a single-dimensional util-
ity function U(x) has been specified, the certainty equivalent xCE can be deter-
mined as

	 xCE = U–1(E(U(x)))	 (3.42)

where U x−1( ) is the inverse of U x( ).

Risk averse

(E(X), E(U(x)))

E(X)

U(x)

U(b)

U(a)

a b
x

occurs
with

probability p

occurs
with

probability (1 – p)

FIGURE 3.24
Relationship between E X E U x( ) ( ( )).and
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PROBLEM 3.5

Consider the lottery LX given as follows:

	
L XX ≡ =

 Win K with probability
Win K with probability

$ .
$ .
80 0 60
10 0 40



Determine the certainty equivalent xCE if a person’s utility function is given 
by U x x( ) ,= 10  where x is in dollars thousand ($K).

Solution

Figure 3.26 shows U x x( ) = 10  is a monotonically increasing, risk averse, 
preference function. To determine xCE for this lottery, we first compute its 
expected value, that is,

	 E(LX) = E(X) = p1x1 + p2x2 = 0.60($80K) + 0.40($10K) = $52K

Since U x( ) is a monotonically increasing risk averse utility function, it follows 
that xCE must be less than E X( ). From Equation 3.38, the chord g( )x  between 
10 80≤ ≤x is given by

g g( )
( ) ( )

( ) ( ) ( ) . ( ) .x
U U

x U x x=
−
−

− + ⇒ = − +
80 10
80 10

80 80 0 8257 80 89 4

From Equation 3.39, g( ( )) ( ) ( ) ( ) ( ( ));E X pU a p U b E U x= + − =1  thus,

	 γ (52) = 0.8257(52 – 80) + 89.4 = 66.3 = E(U(x))

Risk averse

(E(X), E(U(x)))

U(xCE) = E(U(x))

U(xCE)

xCE E(X)

U(x)

U(b)

U(a)

a b
x

occurs
with

probability p

occurs
with

probability (1–p)

FIGURE 3.25
Relationship between E X E U x x( ), ( ( )), .and CE
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The expected utility of LX could also have been determined from Definition 
3.7, that is,

	 E(U(x)) = p1U(10) + p2U(80) = 0.40(31.6) + 0.60(89.4) = 66.3

From Equation 3.40, we have U x E U x( ) ( ( )) . .CE = = 66 3  If U x x( ) ,= 10  then 
U x x− =1 210( ) ( / ) . Therefore, the certainty equivalent for this lottery is

	 xCE = U–1E(U(x)) = (66.3/10)2 = 43.93 ≈ 44

These results are summarized in Figure 3.27.
In Figure 3.27, notice there is a dot above the coordinate (52, 66.3). This 

point denotes the utility of the expected value, that is, U E X( ( )). A property 
of concave functions (risk averse utility functions) is U E X E U x( ( )) ( ( )).>  
Likewise, a property of convex functions (risk-seeking utility functions) 
is U E X E U x( ( )) ( ( )).<  Risk neutral utility functions have the property 
U E X E U x( ( )) ( ( )).=  Figure 3.28 illustrates these relationships for monotoni-
cally increasing preferences.

Suppose a utility function is scaled such that its vertical axis ranges from 0 
to 1. Suppose a lottery has two outcomes. Outcome a occurs with probability 
p. Outcome b occurs with probability ( ).1− p  If preferences are monotonically 
increasing (i.e., more is better than less) such that U a U b( ) ( ) ,= =0 1and  then 
it can be shown that E U x p( ( )) .= −1  Similarly, if the utility function is mono-
tonically decreasing, (i.e., less is better) such that U(a) = 1 and U(b) = 0, then it 
can be shown that E U x p( ( )) .=

Risk averse

(52, E(U(x)))

E(X) = 52

U(x) = 10√x

89.4

31.6

10
x

occurs
with

probability 0.4

occurs
with

probability 0.6

80

Dollars (thousands)

FIGURE 3.26
Problem 3.5 xCE derivation.
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Risk averse

(52, 66.3)

E(X) = 52xCE = 44

U(x) = 10√x

89.4

31.6

66.3

10
x

occurs
with

probability 0.4

occurs
with

probability 0.6

80

Dollars (thousands)

FIGURE 3.27
Problem 3.5 summary.

U(x)

U(x)

U(x)

E(X)

E(X) = xCE

U(b)

U(b)

U(a)

U(b)

U(a)

U(a)a ab b
x

a b
x

x

Risk averse Risk seeking

Risk neutral

U(xCE)

U(xCE)

xCE E(X) xCE

U(xCE) = E(U(x))
U(xCE) = E(U(x))

U(E(X))

= E(U(x))
U(E(X)) = U(xCE)

U(E(X))

E(U(x)) E(U(x))

FIGURE 3.28
A family of utility functions for monotonically increasing preferences.
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The Exponential Utility Function

A special type of utility function known as the exponential utility function 
(Kirkwood, 1997) can represent a broad class of utility function shapes or 
risk attitudes. Similar in form to the exponential value function, the follow-
ing defines the exponential utility function.

Definition 3.10

If utilities are monotonically increasing over the levels (scores) for an evalua-
tion criterion X, then the exponential utility function is given by

	

U x
x x

x x

x x

x x

( )

( )/

( )/

min

max min

min

max min

=

−
−

≠ ∞

−
−

− −

− −

1
1

e
e

if

if

r

r r

rr = ∞










	 (3.43)

Definition 3.11

If utilities are monotonically decreasing over the levels (scores) for an evalu-
ation criterion X, then the exponential utility function is given by

	

U x
x x

x x

x x

x x

( )

( )/

( )/

max

max min

max

max min

=

−
−

≠ ∞

−
−

− −

− −

1
1

e
e

if

if

r

r r

rr = ∞










	 (3.44)

The function U x( ) is scaled such that it ranges from 0 to 1. In particular, 
for monotonically increasing preferences, U x U x( ) ( ) .min max= =0 1and  The 
opposite holds for monotonically decreasing preferences, that is, U x( )min = 1 
and U x( ) .max = 0

A family of exponential utility functions is shown in Figure 3.29. The left-
most picture reflects exponential utility functions for monotonically increas-
ing preferences (“more is better”) over the criterion X. The right-most picture 
reflects exponential utility functions for monotonically decreasing prefer-
ences (“less is better”) over the criterion X.

In Equations 3.43 and 3.44, the constant r is called the risk tolerance. The 
risk tolerance r reflects the risk attitude of a person’s utility or preferences 
for a particular outcome. Positive values of r reflect a risk averse utility func-
tion. Negative values of r reflect a risk-seeking utility function. A r value of 
“infinity” reflects a risk neutral utility function.

Mentioned previously, an exponential utility function can be specified 
to represent many shapes that reflect a person’s risk attitude. The shape is 
governed by r, whose magnitude reflects the degree a person is risk averse 
or risk seeking. If a person is neither risk averse nor risk seeking, then the 
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exponential utility function is a straight line. The following further discusses 
the exponential utility function and ways to determine its shape when either 
r or the certainty equivalent xCE is given.

Consider an investment with the following two outcomes. Earn 10 mil-
lion dollars ($M) with probability p = 1 3/  or earn $20M with probability 
( ) / .1 2 3− =p  Suppose U U( ) , ( ) ,10 0 20 1= =  and the certainty equivalent for 
this lottery was set at $ 13M. What is the value of r? To answer this question, 
first determine the expected earnings from this investment. From Definition 
3.8, the expected earnings is

	 E(X) = (1/3)($10M) + (2/3)($20M) = $16.67M

Since the certainty equivalent was set at $13M, we know this investor is risk 
averse, because x E XCE < ( ). We also have monotonically increasing prefer-
ences since earning more is better than earning less. So, the utility function 
should look something like one of the upper curves in the left side of Figure 
3.29. In this case,

	
U x

x x

( )
( )/

( )/

( )/

( )/= −
−

= −
−

− −

− −

− −

−

1
1

1
1

10

20 10

10

10

e
e

e
e

r

r

r

r
	 (3.45)

From Definition 3.7, E U x p( ( )) / .= − =1 2 3  From Equation 3.40, we have

	 U(xCE) = E(U(x)) = 2/3	 (3.46)

Since xCE was given to be equal to $13M, from Equation 3.45 it follows that

	
U U( ) ( )

( )/

( )/

( )/

( )/x
e
e

e
eCE = =

−
−

=
−
−

− −

− −

−

−13
1
1

1
1

13 10

20 10

3

10

r

r

r

rr = 2 3/ 	 (3.47)
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FIGURE 3.29
Families of exponential utility functions.
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Equation 3.47 is then solved numerically for r, which yields r= 2 89139. . 
This was determined from the Mathematica® routine FindRoot 
[( [ / ])/( [ / ]) / , { , }].1 3 1 10 2 3 1− − − − = =Exp Expr r r  A graph of this exponential 
utility function is shown in Figure 3.30.

From this discussion, when specifying an exponential utility function it 
is necessary to identify the value associated with the certainty equivalent. 
Once the certainty equivalent has been specified, the shape of the exponen-
tial utility function, which reflects the risk attitude of the individual, can be 
completely determined.

Figure 3.31 shows a family of exponential utility functions for various 
certainty equivalents, as they vary around the basic data in Figure 3.30. 
Notice  the sharpness in risk averseness as the certainty equivalent moves 
away to the left of E X( ), in this case.

U(x) =
1–e–(x–10)/2.89139

1–e–(10)/2.89139
1

2/3

xDollars million

(16.67, E(U(X )) = 2/3)

0
10

p = 1/3
20

p = 2/3
xCE = 13 E(X) = 16.67

FIGURE 3.30
An exponential utility function.

U(x)
1

2/3

0
10 11 12 13 14 15 16

Dollars million

20

xCE = 11; ρ = 0.91027
xCE = 12; ρ = 1.83476
xCE = 13; ρ = 2.89139
xCE = 14; ρ = 4.38187
xCE = 15; ρ = 7.21348
xCE = 16; ρ = 17.5452
xCE = E(X ); ρ = ∞

p = 2/3p = 1/3

x
E(X)

(16.67, E(U(X))=2/3)

FIGURE 3.31
Families of risk averse exponential utility functions.
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Suppose we are given the utility function in Figure 3.30 and we want to know 
the certainty equivalent. In this case, we have a value for r and we want the 
value for xCE given r. To determine xCE , it is necessary to apply Equation 3.42 
to the exponential utility function. We need two formulas for this. One is the 
formula for the inverse of the exponential utility function. The other is the 
expected utility of the exponential utility function. These formulas are pro-
vided in the following theorems. It is left to the reader to derive these results.

Theorem 3.8

If U x( ) is a monotonically increasing exponential utility function, then the 
inverse function, expected utility, and certainty equivalent are as follows.
	 (a)	 Inverse Function

	
U x

x x k
x x x x

− =
− − ≠ ∞
− + = ∞





1 1
( )

ln( / )
( )
min

max min min

r r
r

if
if 	 (3.48)

		  where k x x= − − −1 1/( ).( )/max mine r

	 (b)	 Expected Utility

	

E U x
k E
E X x
x x

x x

( ( ))
( ( ))
( )

min / /

min

max min

=
− ≠ ∞
−
−

= ∞




−1 e e if

if

r r r

r



	 (3.49)

	 (c)	 Certainty Equivalent

	
xCE =

− ≠ ∞
= ∞





−r r
r

rln ( )
( )

/E
E X

xe if
if 	 (3.50)

Theorem 3.9

If U(x) is a monotonically decreasing exponential utility function, then the 
inverse function, expected utility, and certainty equivalent are as follows.

	 (a)	 Inverse Function

	
U x

x x k
x x x x

− =
+ − ≠ ∞
− − = ∞





1 1
( )

ln( / )
( )

max

max max min

r r
r

if
if 	 (3.51)

where k x x= − − −1 1/( ).( )/max mine r
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	 (b)	 Expected Utility

	

E U x
k E
x E X
x x

x x

( ( ))
( ( ))

( )

max / /

max

max min

=
− ≠ ∞
−
−

= ∞
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−1 e e if

if

r r r

r



	 (3.52)

	 (c)	 Certainty Equivalent

	
xCE

e if
if

=
≠ ∞
= ∞





r r
r

rln ( )
( )

/E
E X

x

	 (3.53)

PROBLEM 3.6

Consider the utility function in Figure 3.30. Show that the certainty equiva-
lent for this utility function is $13M.

Solution

The utility function in Figure 3.30 is given by

	
U x

x
x( ) . (

( )/ .

( )/ .
( )/=

−
−

= −
− −

−
− −1

1
1 0325 1

10 2 89139

10 2 89139
10e

e
e 22 89139. ) � (3.54)

where r= 2 89139. . Since this function is monotonically increasing, its cer-
tainty equivalent xCE is given by Equation 3.50. Applying that equation, with 
reference to Figure 3.30, we have

	 xCE = –ρlnE(e–x/ρ) = (–2.89139)ln((1/3)e–10/2.89139 + (2/3)e–20/2.89139) = 13

So, the certainty equivalent of the exponential value function is $13M, as 
shown in Figure 3.30.

Thus far, we have worked with lotteries that represent uncertain events hav-
ing a discrete number of chance outcomes. When the outcomes of a lottery 
are defined by a continuous probability density function, then

	
E X x f x xXa

b
( ) ( )= ∫ d 	 (3.55)

	
E U x U x f x xXa

b
( ( )) ( ) ( ) .= ∫ d 	 (3.56)

Furthermore, the certainty equivalent xCE becomes the solution to

	
U x E U x U x f x xXa

b
( ) ( ( )) ( ) ( ) .CE = = ∫ d 	 (3.57)
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PROBLEM 3.7

Consider the utility function in Figure 3.26. This function is given by 
U x x( ) ,= 10  where x is in dollars thousand (K). Determine E(X) and the cer-
tainty equivalent xCE if the lottery denoted by X is given by the uniform 
probability density function in Figure 3.32.

Solution

The equation for f xX( ) in Figure 3.32 is

	
f x xX ( ) = ≤ ≤

1
70

10 80

From Equation 3.55, we have

	
E X xf x x x xXa

b
( ) ( ) ( / )= = =∫ ∫d d1 70 45

10

80

Thus, the expected value of the lottery X is $45K. From Equation 3.57, we 
have

	
E U x U x f x x x xXa

b
( ( )) ( ) ( ) ( / ) .= = =∫ ∫d d10 1 70 65 135

10

80

From Equations 3.40 and 3.57, we have U x E U x( ) ( ( )) . .CE = = 65 135  Since 
U x x( ) ,= 10  it follows that U( ) . .x xCE CE= =10 65 135  Solving this equation 
for xCE yields xCE = 42 425. . Thus, the certainty equivalent is $42.43K when 
rounded.

Dollars (thousand)

Area = 1

10

1/70
fX(x)

80
x

FIGURE 3.32
A uniform probability density function.
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3.5 � Multiattribute Utility—The Power Additive 
Utility Function

Thus far, utility has been discussed from a single-dimensional perspective. 
The preceding focused on a single-dimensional utility function, its proper-
ties, and its characteristics. This section examines multiattribute utility. This 
is concerned with specifying a utility function over multiple criteria or mul-
tiple attributes that characterize an option or alternative. The question is one 
of ranking these options as a function of how well they perform across a set 
of criteria or attributes.

Multiattribute utility functions come in several general forms. For pur-
poses of this discussion, we focus on one form known as the power-additive 
utility function. Kirkwood (1997) provides an extensive discussion on this 
utility function, from which this material derives. The reader is directed to 
Keeney and Raiffa (1976), Clemen (1996), and von Winterfeldt and Edwards 
(1986) for other general forms of the multiattribute utility function.

When accounting for the risk attitude of a decision-maker, one can con-
vert “values” from a value function into utilities. Doing this requires a 
function that takes values from a multiattribute value function and maps 
them into a corresponding set of utilities. The power-additive utility 
function is a multiattribute utility function that performs this mapping. 
The power-additive utility function covers a wide span of possible risk 
attitudes.

3.5.1  The Power-Additive Utility Function

The power-additive utility function is a multiattribute utility function sim-
ilar in form to the exponential value function and the exponential utility 
function, which have been previously discussed. The following defines the 
power-additive utility function.

Definition 3.12

If utilities are monotonically increasing over the values of the additive value 
function V yY ( ), then the power-additive utility function is given by

	
U v

K
V y

V y
m

Y m

Y m

( )
( )
( )

( ( )/ )

=
− ≠ ∞

= ∞




−1 e if
if

r r
r

	
(3.58)

where K m= − −1 1 1/( )/e r  and v V yY= ( ) is the additive value function given in 
Definition 3.6.
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Definition 3.13

If utilities are monotonically decreasing over the values of the additive value 
function V yY ( ), then the power-additive utility function is given by

	
U v

K
V y

V y
m

Y m

Y m

( )
( )

( )

(( ( ))/ )

=
− ≠ ∞

− = ∞


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− −1
1

1e if
if

r r
r

	 (3.59)

where K m= − −1 1 1/( )/e r  and v V yY= ( ) is the additive value function given in 
Definition 3.6.

As mentioned above, the value function V yY ( ) is an additive value function; 
that is, there exists n SDVFs V x V x V x V xX X X X nn1 2 31 2 3( ), ( ), ( ), , ( )…  satisfying

	 V y w V x w V x w V x w V xY X X X n X nn
( ) ( ) ( ) ( ) ( )= + + + +1 1 2 2 3 31 2 3

�

where w i ni for = 1,...,  are nonnegative weights (importance weights) whose 
values range between 0 and 1 and where w w w wn1 2 3 1+ + + + =� .

Given the conventions that (1) the SDVFs V x V x V x V xX X X X nn1 2 31 2 3( ), ( ), ( ), , ( )…  
each range in value between 0 and 1 and (2) the weights each range in value 
between 0 and 1 and sum to unity, it follows that V yY ( ) will range between 0 
and 1. From this, the power-additive utility function will also range between 
0 and 1.

In Definitions 3.12 and 3.13, we assume conditions for an additive value 
function hold, as well as an independence condition known as utility inde-
pendence. Utility independence is a stronger form of independence than prefer-
ential independence. From Clemen (1996), an attribute X1 is utility independent 
of attribute X2 if preferences for uncertain choices involving different levels 
of X1 are independent of the value of X2.

3.5.2  Applying the Power-Additive Utility Function

The shape of the power-additive utility function is governed by a param-
eter known as multiattribute risk tolerance rm. Figure 3.33 presents families 
of power-additive utility functions for various rm and for increasing or 
decreasing preferences. Multiattribute risk averse utility functions have 
positive values for rm. Multiattribute risk-seeking utility functions have 
negative values for rm. The multiattribute risk neutral case occurs when rm 
approaches infinity. Here, we have a straight line; this is where the expected 
value of the value function VY(y) can be used to rank alternatives.

One approach to selecting rm is to have the decision-maker review Figure 
3.33 and select rm that most reflects his risk attitude. An extremely risk averse 
decision-maker, where monotonically increasing preferences apply, might 
select rm in the interval 0 05 0 15. . .≤ ≤rm  A less risk averse decision-maker, 
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where monotonically increasing preferences apply, might select rm in the 
interval 0 15 1. .< ≤r rm mAs  becomes increasingly large (approaches infinity), 
the decision-maker is increasingly risk neutral and the power-additive util-
ity function approaches a straight line. As we shall see, when this occurs the 
expected value of the value function V yY ( ) can be used to rank alternatives.

The information presented in Figure 3.33 provides a visual “look-up” pro-
cedure for selecting rm. Alternative approaches involve the use of lotteries 
similar to those previously discussed. For a discussion on the use of lotteries 
to derive rm , see Kirkwood (1997).

Theorem 3.10

If utilities are monotonically increasing over the values of the additive value 
function V yY ( ) with the power-additive utility function given below:
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where K m= − −1 1 1/( )/e r  and v V yY= ( ) (given in Definition 3.6) then
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Theorem 3.11

If utilities are monotonically decreasing over the values of the additive value 
function V yY ( ) with the power-additive utility function given below:
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FIGURE 3.33
Families of power-additive utility functions.
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where K m= − −1 1 1/( )/e r  and v V yY= ( ) (given in Definition 3.6) then
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Theorems 3.10 and 3.11 provide the way to compute the expected utilities 
of the power-additive utility function. Expected utilities provide measures 
with which to rank uncertain alternatives, from most-to-least preferred. The 
following presents a set of formulas needed to compute these expected utili-
ties, when uncertainties are expressed as either discrete or continuous prob-
ability distributions.

First, we look at Theorem 3.10. Here, utilities are monotonically increasing 
over the values of the additive value function. From Theorem 3.10,
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For the case where r≠ ∞, the term E V yY m( )( ( )/ )e− r  can be written as follows:

	 E EV y w V x w V x w V xY m X X n Xn n m( ) ( )( ( )/ ) ( ( ) ( ) ( ))/e e− − + + +=r r1 1 1 2 2 2 …
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where the X si ‘  are independent random variables and where
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	 (3.60)

In this equation, p xX ii
( ) is the probability the uncertain outcome Xi takes 

the score xi if Xi is a discrete random variable. In Equation 3.60, f xX ii
( ) is the 

probability density function of Xi if Xi is a continuous random variable. In 
Theorem 3.10, when r = ∞ the term E V yY( ( )) can be written as follows:

	 E V y w E V x w E V x w E V xY X X n X nn
( ( )) ( ( )) ( ( )) ( ( ))= + + +1 1 2 21 2

… 	 (3.61)
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Next, we look at Theorem 3.11. Here, utilities are monotonically decreasing 
over the values of the additive value function. From Theorem 3.11,
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For the case where r ≠ ∞, the term E V yY m( )(( ( ))/ )e− −1 r  can be written as
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where the Xi‘s are independent random variables and where
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In Equation 3.63, p xX ii
( ) is the probability the uncertain outcome Xi takes 

the score xi if Xi is a discrete random variable. In Equation 3.63, f xX ii
( ) is the 

probability density function of Xi if Xi is a continuous random variable. In 
Theorem 3.11, when r = ∞ the term 1− E V yY( ( )) can be written as

	 1 1 1 1 2 21 2
− = − + + +E V y w E V x w E V x w E V xY X X n X nn

( ( )) ( ( ( )) ( ( )) ( ( )))… 	 (3.64)

where
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3.6  Applications to Engineering Risk Management

The preceding sections covered many topics. An introduction to probability 
theory and value and utility function theory was presented. This section 
offers two case discussions that illustrate the application of these topics in 
engineering risk management.
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The following case discussion shows how value functions may be used in 
engineering risk management. In general, value functions provide ways to 
measure the relative merit of an alternative in a set of competing alternatives. As 
shown in Section 3.3, merit can be measured as a function of multiple criteria. 
In engineering risk management, value functions can be created to measure the 
relative criticality of each risk in a set of competing risks. Risk criticality can also 
be measured as a function of multiple evaluation criteria. As shown in Figure 
3.34, these criteria typically include a risk’s impact on a system’s cost, sched-
ule, and technical performance. Additional areas of impact may also be defined. 
Risks with higher measures of criticality are candidates for greater management 
attention and resources than those with lesser measures of criticality.

3.6.1 � Value Theory to Measure Risk

CASE 3.2

Consider a satellite communication system that interfaces to a number of 
networked subsystems. Suppose a data management architecture is being 
newly designed for the communication system as whole, one where the inter-
facing subsystem databases must support information exchanges. However, 
due to schedule pressures suppose the new database for the communication 
system will not be fully tested for compatibility with the existing subsystem 
databases when version 1.0 of the data management architecture is released. 

Suppose the project team identified the following risk event: Inadequate 
synchronization of the communication system’s new database with the existing sub-
system databases. Suppose we have the risk statement given in Figure 3.35.

Here, two events are described. They are the conditioning event and the 
risk event. In Figure 3.35, the Condition is event B and the If is event A; that is,

B = �{The new database for the communication system will not be fully tested 
for compatibility with the existing subsystem databases when version 1.0 
of the data management architecture is released}

A = �{Inadequate synchronization of the communication system’s new database 
with the existing subsystem databases}

1

Technical
performance

Schedule

Risk
event 3

Risk
event 2

Risk
event 1

Cost
1

0 1

FIGURE 3.34
Typical risk impact dimensions.
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From this, we can form the risk statement, as given below.

RISK STATEMENT: {Inadequate synchronization of the communication system’s new 
database with the existing subsystem databases because the new database for the com-
munication system will not be fully tested for compatibility with the existing sub-
system databases when version 1.0 of the data management architecture is released}

Probability Assessment

Recall that a risk event is equivalent to a probability event; formally, 
0 1< = <P A B( ) ,a  where a  is the probability risk event A occurs given the con-
ditioning event B has occurred. Suppose the engineering team used the table 
in Figure 3.36 as a guide for their assessment of the chance risk event A occurs.

In support of their assessment, suppose they determined inadequate syn-
chronization between the exchange of data across the system’s subsystems is 
almost sure to occur if lack of full compatibility testing persists. Referring to 
the table in Figure 3.36, suppose the engineering team assigned a probability 
of 0.95 to risk event A; that is, P A B( ) . .= =a 0 95  Furthermore, suppose they 
assumed a linear relationship between this probability and its value along 
the family of value functions in Figure 3.36; thus, V P A B V( ( )) ( ) .= = =a a 0 95 
in this case.

Impact Assessment

As shown in Figure 3.34, risk events can have multiconsequential impacts 
to an engineering system—especially systems in development. For this 
case discussion, suppose risks, if realized, affect the communication sys-
tem’s Cost, Schedule, Technical Performance, and program-related technical 
efforts (i.e., Programmatics). Suppose each risk’s impact is represented by a 

CONDITION
PRESENT

Risk Event A
Inadequate synchronization of the
communication system’s new database
with the existing subsystem databases.  

�e new database for the communication system will
not be fully tested for compatibility with the existing
subsystem databases when version 1.0 of the data
management architecture is released.    

IF this
Risk Event Occurs

Conditioning
Event B

Risk Event AProb (A B)

Consequence
Event A1

Lack of full compatibility testing and
inadequate database synchronization
will lead to data interoperability
shortfalls.   

THEN these are the
impacts (consequences) 

Root
Cause

Consequence
Event A2

Cost and schedule increases due to
interoperability-related fixes to the
databases, the supporting software,
and the extent that retesting is needed. 

Consequence
Event A3

Specification documents for the new
database not accepted by customer;
significant documentation rework
needed.   

CONDITION

FIGURE 3.35
Risk statement: Lack of database synchronization.
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value function, where increasing values of this function are associated with 
increasing levels of consequence.

Following the approach described in Section 3.3, a value function can be 
specified for each impact area. Depending on the area, these value func-
tions might be piecewise linear or vary continuously across levels (or scores). 
Furthermore, some impact areas do not have a natural or common unit of 
measure. In these cases, a constructed scale may be needed.

Consider a risk event’s impact on the technical performance of the com-
munication system. Technical performance is a difficult impact dimension 
to express in a common unit. This is because technical performance can be 
measured in many ways, such as the number of millions of instructions per 
second or the weight of an end item. It is difficult, then, to specify for an 
engineering system a value function for technical performance along a com-
mon measurement scale. A constructed scale is often appropriate, which we 
will illustrate in this case.

Figure 3.37 illustrates a piecewise linear value function designed along 
a constructed scale for the technical performance impact area. Suppose this 
function was designed by the communication system’s project team. There 
are many ways to define such a constructed scale and its associated value 
function. Table 3.8 provides one set of linguistic definitions for the levels 
(scores) corresponding to the value function in Figure 3.37.

In Figure 3.37, the anchor points 0 and 1 along the vertical axis are assigned 
by the team and set at level 1 and level 5, respectively, along the horizontal 
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probability greater than 0.15 but less
than or equal to 0.35. From “Not Very
Likely to Occur” to “Not Likely
to Occur”.

Low

Moderate

High

Very high

 Very low
A risk event that has an occurrence
probability greater than 0 but less
than or equal to 0.15. From “Extremely
Sure Not to Occur” to “Almost Sure
Not to Occur”.
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FIGURE 3.36
Probability table and families of value functions.
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axis. Suppose it was decided the smallest increment �  in value occurs between 
a level 1 and level 2 technical performance impact. If we use �  as the reference 
standard, it can be seen the team decided the following: (1) the value incre-
ment between a level 2 and level 3 technical performance impact is one and 
a half times the smallest value increment � ; (2) the value increment between 
a level 3 and level 4 technical performance impact is two times the smallest 
value increment � ; and (3) the value increment between a level 4 and level 5 
technical performance impact is three times the smallest value increment � .

1
V (x)

9/15

5/15

2/15
0

1 2 3 4 5
x

Technical performance impact

FIGURE 3.37
A value function for technical performance impact.

TABLE 3.8

A Constructed Scale for Technical Performance Impact

Ordinal Scale 
Level (Score)

Definition:
Technical Performance Impact

5 A risk event that, if it occurs, impacts the system’s operational capabilities 
(or the engineering of these capabilities) to the extent that critical technical 
performance (or system capability) shortfalls result.

4 A risk event that, if it occurs, impacts the system’s operational capabilities 
(or the engineering of these capabilities) to the extent that technical 
performance (or system capability) is marginally below minimum 
acceptable levels.

3 A risk event that, if it occurs, impacts the system’s operational capabilities 
(or the engineering or these capabilities) to the extent that technical 
performance (or system capability) falls well-below stated objectives but 
remains enough above minimum acceptable levels.

2 A risk event that, if it occurs, impacts the system’s operational capabilities 
(or the engineering of these capabilities) to the extent that technical 
performance (or system capability) falls below stated objectives but 
well-above minimum acceptable levels.

1 A risk event that, if it occurs, impacts the system’s operational capabilities (or 
the engineering of these capabilities) in a way that results in a negligible effect 
on overall performance (or achieving capability objectives for a build/block/
increment), but regular monitoring for change is strongly recommended.
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From a risk management perspective, the value function in Figure 3.37 can 
be interpreted as follows. It reflects management’s monotonically increasing 
preferences for risk events that, if they occur, score at increasingly higher 
levels along the technical performance impact scale. The higher a risk event 
scores along the value function in Figure 3.37, the greater its technical per-
formance impact.

Illustrated in Figure 3.34, a risk event, can impact not only the technical 
performance of a system but also its cost and schedule. An unmitigated risk 
may negatively impact the cost of a system, in terms of increased dollars 
beyond the budget to address problems caused by the risk. In addition, there 
may be adverse schedule impacts in terms of missed milestones or schedule 
slippages beyond what was planned.

To address these concerns, suppose the communication system’s project 
team designed the two value functions in Figure 3.38. These value functions 
capture a risk event’s impacts on the system’s cost and schedule, shown as 
single-dimensional monotonically increasing exponential value functions. 
In designing these value functions, suppose the project team decided a 5% 
increase in cost and a 3-month increase in schedule to be the midvalues for 
the cost and schedule value functions, respectively. From Definition 3.1, the 
general form of the value functions in Figure 3.38 is as follows:
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The specific equations for the value functions in Figure 3.38 are as follows:
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FIGURE 3.38
Illustrative value functions for cost and schedule impacts.
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The value functions in Figure 3.38 can also be expressed as constructed 
scales, as shown in Tables 3.9 and 3.10.

Figure 3.34 illustrated three dimensions of an engineering system com-
monly impacted by risk. In practice, other dimensions can be impacted by 
risk. For example, a risk’s programmatic impact is often as serious a concern 
as its impacts on a system’s technical performance, cost, or schedule.

In this regard, programmatic impacts might refer to specific work products 
or activities necessary to advance the program along its milestones or its life 
cycle. Examples of technical work products include system architecture doc-
uments, system design documents, the system’s engineering management 
plan, concepts of operation, and the system’s logistics plan. Examples of pro-
grammatic work products include the system’s integrated master schedule, 
its life cycle cost estimate, its risk management plan, and various acquisition 
or contract-related documents and plans.

TABLE 3.9

A Constructed Scale for Cost Impact

Ordinal Scale 
Level (Score)

Definition:
Cost Impact

5 A risk event that, if it occurs, will cause more than a 15% increase but 
less than or equal to a 20% increase in the program’s budget.

4 A risk event that, if it occurs, will cause more than a 10% increase but 
less than or equal to a 15% increase in the program’s budget.

3 A risk event that, if it occurs, will cause more than a 5% increase but 
less than or equal to a 10% increase in the program’s budget.

2 A risk event that, if it occurs, will cause more than a 2% but less than or 
equal to a 5% increase in the program’s budget.

1 A risk event that, if it occurs, will cause less than a 2% increase in the 
program’s schedule budget.

TABLE 3.10

A Constructed Scale for Schedule Impact

Ordinal Scale 
Level (Score)

Definition:
Schedule Impact

5 A risk event that, if it occurs, will cause more than a 12 month increase 
in the program’s schedule.

4 A risk event that, if it occurs, will cause more than a 9 month but less 
than or equal to a 12 month increase in the program’s schedule.

3 A risk event that, if it occurs, will cause more than a 6 month but less 
than or equal to a 9 month increase in the program’s schedule.

2 A risk event that, if it occurs, will cause more than a 3 month but less 
than or equal to a 6 month increase in the program’s schedule.

1 A risk event that, if it occurs, will cause less than a 3 month increase in 
the program’s schedule.



108 Advanced Risk Analysis in Engineering Enterprise Systems

Figure 3.39 illustrates a value function that could be used to express a risk 
event’s programmatic impacts. Table 3.11 shows a constructed scale associ-
ated to this value function. Such a scale would be developed in a manner 
similar to the preceding discussions. In Figure 3.39, the anchor points 0 and 
1 along the vertical axis are assigned by the team and set at level 1 and level 5, 
respectively, along the horizontal axis. Suppose it was decided the small-
est increment D in value occurs between a level 1 and level 2 programmatic 
impact. If we use D as the reference standard, it can be seen the team decided 

1
V3(x)

15/19
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4/19

0
1 2 3 4 5

x
Programmatic impact

FIGURE 3.39
Illustrative value function for programmatic impact.

TABLE 3.11

A Constructed Scale for Programmatic Impacts

Ordinal Scale 
Level (Score)

Definition:
Programmatic Impacts

5 A risk event that, if it occurs, impacts programmatic efforts to the extent 
that one or more critical objectives for technical or programmatic work 
products (or activities) will not be completed.

4 A risk event that, if it occurs, impacts programmatic efforts to the extent 
that one or more stated objectives for technical or programmatic work 
products (or activities) is marginally below minimum acceptable levels.

3 A risk event that, if it occurs, impacts programmatic efforts to the extent 
that one or more stated objectives for technical or programmatic work 
products (or activities) falls well-below goals but remains enough above 
minimum acceptable levels.

2 A risk event that, if it occurs, impacts programmatic efforts to the extent 
that one or more stated objectives for technical or programmatic work 
products (or activities) falls below goals but well-above minimum 
acceptable levels.

1 A risk event that, if it occurs, has little to no impact on programmatic 
efforts. Program advancing objectives for technical or programmatic work 
products (or activities) for a build/block/increment will be met, but 
regular monitoring for change is strongly recommended.
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the following: (1) the value increment between a level 2 and level 3 program-
matic impact is one and a quarter times the smallest value increment D; (2) 
the value increment between a level 3 and level 4 programmatic impact is one 
and a half times the smallest value increment � ; and (3) the value increment 
between a level 4 and level 5 programmatic impact is the same as the value 
increment between a level 1 and level 2 programmatic impact. Figure 3.40 
summarizes the four value functions associated with this case discussion.* 
We will return to these later in measuring a risk’s criticality.

Measuring Overall Impact

One way to measure a risk event’s overall impact is by the additive value 
function. If we assume preferential independence conditions, then, from 
Definition 3.6, we have

	 V(A) = w1V1(x1) + w2V2(x2) + w3V3(x3) + w4V4(x4)	 (3.68)

where V A( ) is the overall impact of risk event A. The terms V x V x V x1 1 2 2 3 3( ), ( ), ( ), 
and V x4 4( ) are SDVFs for Cost, Schedule, Technical Performance, and Programmatics 
given in Figure 3.40. The parameters w w w w1 2 3, , , and 4 are nonnegative weights 
whose values range between 0 and 1, and where Σ iwi = 1.

*	The value functions in Figure 3.40 are illustrative. In practice, a project team must define their 
own criteria and specific value functions in ways that truly captures the impact areas of con-
cern to the project and its management.
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FIGURE 3.40
Case 3.2 value functions.
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From the consequence events listed in Figure 3.35, suppose the project team 
assessed the impacts risk event A would have, if it occurred is shown in Table 
3.12. A key feature in this table is the basis of assessment (BOA). A BOA is a 
written justification of the reason for a chosen rating. The BOA must be writ-
ten such that it (1) clearly and concisely justifies the assessor’s rationale and 
(2) enables this justification to be objectively reviewed by subject matter peers.

For this case, suppose the project team decided on the following weight 
assessments. Technical performance w3 is twice as important as cost w1; 
cost w1 is twice as important as schedule; cost w1 is twice as important as 
programmatics w4 . From this, we have the following:

	 w w w w w w3 1 1 2 1 42 2 2= = =; ;

TABLE 3.12

Risk Event A Impact Assessments

Risk Event Inadequate synchronization of the communication system’s new database with the 
existing subsystem databases because the new database for the communication 
system will not be fully tested for compatibility with the existing subsystem 
databases when version 1.0 of the data management architecture is released.

The consequence event descriptions in Figure 3.35 provide a starting point 
for the basis of assessments below. They support the team’s judgments and 
supporting arguments for articulating the risk event’s consequences, if it 
occurs, on the project’s cost, schedule, programmatics, and the system’s 
technical performance.

Cost Impact 
Level 4

This risk event, if it occurs, is estimated by the engineering team to cause a 
12% increase in the project’s current budget. The estimate is based on a 
careful assessment of the ripple effects across the project’s cost categories 
for interoperability-related fixes to the databases, the supporting software, 
and the extent that re-testing is needed.

Value Function Value: From Equation 3 66 12 1 096 1 0 8421
12 8 2. , ( ) . ( ) . ./ .V e= − =−

Schedule 
Impact Level 2

This risk event, if it occurs, is estimated by the engineering team to cause a 
4-month increase in the project’s current schedule. The estimate is based 
on a careful assessment of the ripple effects across the project’s integrated 
master schedule for interoperability-related fixes to the databases, the 
supporting software, and the extent that re-testing is needed.

Value Function Value: From Equation 3.67, V e2
4 4 444 1 0181 1 0 604( ) . ( ) . ./ .= − =−

Technical 
Performance 
Impact Level 4

This risk event, if it occurs, is assessed by the engineering team as one that 
will impact the system’s operational capabilities to the extent that technical 
performance is marginally below minimum acceptable levels, depending 
on the location and extent of interoperability shortfalls.

Value Function Value: From Figure 3.40, V3 4 9 15 0 60( ) / . .= =

Programmatic 
Impact Level 4

This risk event, if it occurs, is assessed by the engineering team as one that 
will impact programmatic efforts to the extent that one or more stated 
objectives for technical or programmatic work products (e.g., various 
specifications or activities) is marginally below minimum acceptable levels.

Value Function Value: From Figure 3.40, V4 4 15 19 0 79( ) / . .= =
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Since w1 + w2 + w3 + w4 = 1, it follows that

	
w w w w1 1 1 1

1
2

2
1
2

1+ + + =

thus, w1
1
4= , w2

1
8= , w3

1
2= , and w4

1
8= . From this, it follows that
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From Table 3.12, we have the following:

	 V A( ) ( . ) ( . ) ( . ) ( . ) .= + + + =
1
4

0 842
1
8

0 604
1
2

0 60
1
8

0 79 0 685	 (3.70)

Figure 3.41 shows a probability-impact plot of risk event A. Overall, this 
event might be of moderately high concern to the project team.

The preceding analysis approach can be extended to multiple risk events. 
Figure 3.42 shows a probability-impact plot of 25 risk events. Suppose each 
event was analyzed by the same process just discussed. In Figure 3.42, risk 
events 3, 5, and 8 appear to be ahead of the others in terms of occurrence prob-
ability and impact to the project. What about risk events 24, 4, and 1? How 
critical are they relative to risk events 3, 5, and 8? The following discusses a 
way to measure the relative criticality of each risk in a set of competing risks.

Relative Risk Criticality

An approach to rank order risk events from most-to-least critical is to form 
an additive value function that produces a risk score for each risk event. 
Suppose the risk score of risk event E is given by the following definition.
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Case 3.2: A plot of risk event A.
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Definition 3.14: Risk Event Risk Score

The risk score of risk event E is given by the additive value function

 	 Risk Score E RS E u V E u V E( ) ( ) ( ) ( )= = +1 2Probability Impact 	 (3.71)

subject to the considerations in Theorem 3.6. In Equation 3.71, the first term is 
a value function for the risk event’s occurrence probability. The second term 
is a value function for the severity of the risk event’s impact, if it occurs. The 
coefficients u1, and u2, are nonnegative weights such that 0 11≤ ≤u , 0 12≤ ≤u , 
and u u1 2 1+ = . In Equation 3.71, these value functions can be designed to 
produce measures along either a 0 to 1 or a 0 to 100 cardinal interval scale, as 
discussed in Section 3.3.

Suppose Table 3.13 presents the data for each risk event plotted in Figure 
3.42. From left to right, column one is the risk event number labeled in Figure 
3.42. Column two is the assessment of each risk event's occurrence probabil-
ity. For convenience, suppose we have assumed a linear relationship between 
probability and its value function. Column three is each risk event’s overall 
impact score, computed by an application of Equation 3.69. Column four is 
each risk event’s risk score, computed by Equations 3.71 and 3.72. In Equation 
3.72, a risk event’s overall impact score is twice as important as its assessed 
occurrence probability. With this,

	
RS Ei V Ei V Ei( ) ( ) ( )= +

1
3

2
3Probability Impact 	 (3.72)

where i = 1, 2, 3, …, 25. Table 3.14 presents a relative risk ranking based on the 
value of each risk event’s risk score. As mentioned above, the higher a risk 
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event’s risk score the higher its rank position relative to the set of identified 
risks. Thus, risk event 3 is in first rank position. It has the highest risk score in 
the set shown in Table 3.13. Risk event 5 is in second rank position. It has the 
second highest risk score in the set shown in Table 3.13, and so forth.

In Table 3.14, observe the top five ranked risks are risk events 3, 5, 8, 24, and 
4. This suggests the project team should focus further scrutiny on these five 
events to further confirm they indeed merit these top rank positions. This 
includes a further look at the basis of assessments behind the value function 
inputs chosen to characterize each risk event, which is used by the risk score 
equation to generate the above rankings. Last, it is best to treat any risk rank-
ing as suggestive of a risk prioritization. Prioritization decisions with respect 
to where risk mitigation resources should be applied can be guided by this 
analysis but not solely directed by it. They are analytical filters that serve as 
aids to managerial decision-making. This completes Case 3.2.

TABLE 3.13

Values and Scores for Risks in Figure 3.42

Risk Event #
Probability Direct 

Assessment
Impact 
Score

Risk 
Score

1 0.95 0.477 0.635
2 0.85 0.353 0.519
3 0.65 0.867 0.795
4 0.50 0.718 0.645
5 0.93 0.688 0.769
6 0.10 0.349 0.266
7 0.95 0.194 0.446
8 0.85 0.681 0.737
9 0.35 0.695 0.580

10 0.50 0.420 0.447
11 0.70 0.516 0.578
12 0.55 0.517 0.528
13 0.10 0.515 0.376
14 0.20 0.455 0.370
15 0.95 0.432 0.605
16 0.60 0.525 0.550
17 0.75 0.382 0.505
18 0.33 0.555 0.480
19 0.25 0.254 0.252
20 0.95 0.260 0.490
21 0.45 0.248 0.315
22 0.20 0.530 0.420
23 0.35 0.475 0.434
24 0.85 0.545 0.646
25 0.80 0.481 0.587
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3.6.2 � Utility Theory to Compare Designs

CASE 3.3

Consider the following case. A new and highly sophisticated armored 
ground transport vehicle is currently being designed. There are three design 
alternatives undergoing engineering tests and performance trade stud-
ies. Suppose a  set of evaluation criteria to evaluate these designs has been 
defined by the program’s decision-makers. These criteria are Operational Days, 
Maintenance/Service Time, and Cost and are denoted by X1, X2, X3, respectively. 
The criterion Operational Days refers to the number of days the vehicle can 
operate without maintenance or servicing. The criterion Maintenance/Service 
Time refers to the number of labor hours needed to service the vehicle to keep 
it operationally on duty. The criterion Cost refers to each vehicle’s estimated 
recurring unit cost in dollars million.

TABLE 3.14

A Relative Ranking of the Risks in Figure 3.42

Rank Risk Event # Risk Score

1   3 0.795
2   5 0.769
3   8 0.737
4 24 0.646
5   4 0.645
6   1 0.635
7 15 0.605
8 25 0.587
9   9 0.580

10 11 0.578
11 16 0.550
12 12 0.528
13   2 0.519
14 17 0.505
15 20 0.490
16 18 0.480
17 10 0.447
18   7 0.446
19 23 0.434
20 22 0.420
21 13 0.376
22 14 0.370
23 21 0.315
24   6 0.266
25 19 0.252
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Suppose a program’s decision-makers assessed the criterion X1 as twice as 
important as criterion X2 and X3 as twice as important as criterion X2.

After careful deliberations, suppose the program’s decision-makers defined 
a set of exponential value functions for each of the three criteria. These func-
tions are shown in Figure 3.43. The equations for these value functions are 
given below.
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Suppose the decision-makers also reviewed the graphs in Figure 3.33 and 
determined their multiattribute risk tolerance is represented by the curve 
with rm = 0 25. . So their preference structure reflects a monotonically increas-
ing risk averse attitude over increasing values of the value function.

Suppose each design alternative is undergoing various engineering anal-
yses, cost estimates, and simulations to assess their potential performance 
on the criteria in Figure 3.43. The results predicted from these analyses are 
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FIGURE 3.43
Exponential value functions for Case 3.3.
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summarized in Table 3.15. Suppose the uncertainties in the outcomes for each 
criterion are captured by a uniform probability density function—specified 
for each criterion within a given alternative.

From this information and the data in Table 3.15, determine which design 
alternative is performing “best,” where best is measured as the alternative 
having the highest expected utility, in terms of the value of each design 
choice. In this case discussion, assume that conditions for an additive value 
function hold, as well as utility independence.

To determine which design alternative is performing “best,” we will com-
pute the expected utility of the value of each alternative, as well as compute 
each alternative’s expected value. The alternative with the highest expected 
utility for value will be considered the “best” among the three design choices.

Since the decision-makers determined their multiattribute risk tolerance 
is represented by the exponential utility curve with rm = 0 25. , their prefer-
ence structure reflects a monotonically increasing risk averse attitude over 
increasing values of the value function. Thus, Theorem 3.10 applies. This 
theorem will determine the expected utility for the value of each design 
alternative.

Applying Theorem 3.10: Analysis Setup

Since, in this case, rm = 0 25.  we have from Theorem 3.10

	 E U v K E V yY m( ( )) ( ( ))( ( )/ )= − −1 e r 	 (3.73)

where K m= − −1 1 1/( )/e r  and v V yY= ( ) (given in Definition 3.6). Given the 
parameters in this case, Equation 3.73 becomes

	 E U v E V yY( ( )) . ( ( ))( )= − −1 01865736 1 4e 	 (3.74)

where

	
v V y V x V x V xY X X X= = + +( ) ( ) ( ) ( )

2
5

1
5

2
51 2 31 2 3 	 (3.75)

TABLE 3.15

Case 3.3: Design Alternative Performance Measures

Design Alternative Criterion X1 Criterion X2 Criterion X3

Alternative A 72 – 79
X1 ~ Unif (72, 79)

15 – 23
X2 ~ Unif (15, 23)

5.5 – 7
X3 ~ Unif (5.5, 7)

Alternative B 85 – 88
X1 ~ Unif (85, 88)

23 – 27
X2 ~ Unif (23, 27)

5 – 6.5
X3 ~ Unif (5, 6.5)

Alternative C 80 – 85
X1 ~ Unif (80, 85)

24 – 28
X2 ~Unif (24, 28)

4 – 5
X3 ~ Unif (4, 5)

Note: X1 = Operational Days; X2 = Maintenance/Service Hours; X3 = Cost ($M)
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and
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Next, we will look at the term E V yY( )( )e−4  in Equation 3.74. Here,
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If we assume X1, X2, and X3 are independent random variables, then
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where
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and f xX ii
( ) is the probability density function for Xi which, in this case dis-

cussion, is given to be a uniform distribution for each Xi.

Computation Illustration: Computing E(U(v)) and E(v) for Design Alternative A

First, compute the value of Equations 3.81 through 3.83 given the param-
eters in Table 3.15 for Design Alternative A. These computations are given 
below.
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Entering these values into Equation 3.80, we have

	 E E E EV y V x V x V x
Y

X X X
( ) ( ) ( ) ( )( ) ( ) ( ) ( )
e e e e−

− − −

=4
8

5
4

5
8

51 1 2 2 3 3

	 = ( )( )( ) =0 2713921 0 57663 0 660046 0 103292. . . .

Substituting this value for E V yY( )( )e−4  into Equation 3.74, we have

	 E(U(v)) = 1.01865736(1 – 0.103292) = 0.913438 ~ 0.91

Next, we proceed to compute the expected value E v( ) for this design alterna-
tive. Here, we need to determine E v( ) where
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The terms in the Equation 3.84 are determined as follows:
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Substituting these into Equation 3.84, we have
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= + +

2
5

0 815941
1
5

0 692384
2
5

0 264084( . ) ( . ) ( . ) 	 (3.85)

= 0.5704868 ~0.57

This concludes the computation illustration for Design Alternative A. 
The same types of computations are performed for the two other design 
alternatives. The results of these computations are summarized in Table 
3.16. Design Alternative C is the “best” option in the set. This completes 
Case 3.3.

Questions and Exercises

	 1.	State the interpretation of probability implied by the following:
	(A)	 The probability a tail appears on the toss of a fair coin is 1/2.
	(B)	 After recording the outcomes of 50 tosses of a fair coin, the prob-

ability a tail appears is 0.54.
	(C)	 It is with certainty the coin is fair!
	(D)	 The probability is 60% that the stock market will close 500 points 

above yesterday’s closing count.
	(E)	 The design team believes there is less than a 5% chance the new 

microchip will require more than 12,000 gates.
	 2.	A sack contains 20 marbles exactly alike in size but different in color. 

Suppose the sack contains 5 blue marbles, 3 green marbles, 7 red 
marbles, 2 yellow marbles, and 3 black marbles. Picking a single 

TABLE 3.16

Case 3.3: Summary Computations

Design 
Alternative Criterion X1 Criterion X2 Criterion X3

Expected 
Value
E(v)

Expected 
Utility
E(U(v))

Alternative 
A

72 – 79
X1 ~ Unif (72, 79)

15 – 23
X2 ~ Unif (15, 23)

5.5 – 7
X3 ~ Unif (5.5, 7)

0.57 0.91

Alternative 
B

85 – 88
X1 ~ Unif (85, 88)

23 – 27
X2 ~ Unif (23, 27)

5 – 6.5
X3 ~ Unif (5, 6.5)

0.60 0.93

Alternative 
C

80 – 85
X1 ~ Unif (80, 85)

24 – 28
X2 ~ Unif (24, 28)

4 – 5
X3 ~ Unif (4, 5)

0.67 0.95

Note: X1 = Operational Days; X2 = Maintenance/Service Hours; X3 = Cost ($M).
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marble from the sack and then replacing it, what is the probability of 
choosing the following:
	(A)	 Blue marble?	 (B)	 Green marble?	 (C)	 Red marble?
	(D)	 Yellow marble?	 (E)	 Black marble?	 (F)	 Nonblue marble
	(G)	 Red or non-red marble?

	 3.	 If a fair coin is tossed, what is the probability of not obtaining a 
head? What is the probability of the event: (a head or not a head)?

	 4.	Suppose A is an event (a subset) contained in the sample space Ω. 
Are the following probability statements true or false and why?
	(A)	 P A AC( )∪ = 1 	 (B)	 P A P A( ) ( )Ω =

	 5.	Suppose two 4-sided polygons are randomly tossed. Assuming the 
tetrahedrons are weighted fair, determine the set of all possible out-
comes Ω. Assume each face is numbered 1, 2, 3, and 4. Let the sets A, 
B, C, and D represent the following events:

		  A: The sum of the toss is even.
		  B: The sum of the toss is odd.
		  C: The sum of the toss is a number less than 6.
		  D: The toss yielded the same number on each upturned face.

	(A)	 Find P A P B P C P A B P A B P B C P B C D( ), ( ), ( ), ( ), ( ), ( ), ( )∩ ∪ ∪ ∩ ∩and
	(B)	 Verify P((A ∪ B)C) = P(AC ∩ BC)

	 6.	The XYZ Corporation has offers on two contracts A and B. Suppose 
the proposal team made the following subjective probability assess-
ments: the chance of winning contract A is 40%, the chance of win-
ning contract B is 20%, the chance of winning contract A or contract 
B is 60%, the chance of winning both contracts is 10%.
	(A)	 Explain why the above set of probability assignments is incon-

sistent with the axioms of probability.
	(B)	 What must P B( )  equal such that it and the set of other assigned 

probabilities specified above are consistent with these axioms.
	 7.	Suppose a coin is balanced such that tails appears three times more 

frequently than heads. Show the probability of obtaining a tail with 
such a coin is 3/4. What would you expect this probability to be if the 
coin was fair (equally balanced)?

	 8.	Suppose the sample space of an experiment is given by Ω = ∪A B. 
Compute P A B P A P B( ) ( ) . ( ) . .∩ = =if and0 25 0 80

	 9.	 If A and B are disjoint subsets of Ω show that
	(A)	 P A Bc c( )∪ = 1	 (B)	 P A B P A P Bc c( ) ( ) ( )∩ = − +[ ]1

	 10.	Two missiles are launched. Suppose there is a 75% chance missile 
A hits the target and a 90% chance missile B hits the target. If the 
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probability missile A hits the target is independent of the probability 
missile B hits the target, determine the probability missile A or mis-
sile B hits the target. Find the probability needed for missile A such 
that if the probability of missile B hitting the target remains at 90%, 
the probability missile A or missile B hits the target is 0.99.

	 11.	Suppose A and B are independent events. Show that
	(A)	 The events Ac and Bc are independent.
	(B)	 The events A and Bc are independent.
	(C)	 The events Ac and B are independent.

	 12.	Suppose A and B are independent events with P A P B( ) . ( ) . .= =0 25 0 55and 
P A P B( ) . ( ) . .= =0 25 0 55and  Determine the probability

	(A)	 At least one event occurs.
	(B)	 Event B occurs but event A does not occur.

	 13.	Suppose A and B are independent events with P A r( ) =  and the prob-
ability that “at least A or B occurs” is s. Show the only value for P(B) 
is ( )( ) .s r r− − −1 1

	 14.	At a local sweet shop, 10% of all customers buy ice cream, 2% buy 
fudge, and 1% buy ice cream and fudge. If a customer selected at ran-
dom bought fudge, what is the probability the customer bought an 
ice cream? If a customer selected at random bought ice cream, what 
is the probability the customer bought fudge?

	 15.	For any two events A and B, show that P A A A B( ( )) .∩ ∩ = 1
	 16.	A production lot contains 1000 microchips, of which 10% are defec-

tive. Two chips are successively drawn at random without replace-
ment. Determine the probability
	(A)	 Both chips selected are nondefective.
	(B)	 Both chips are defective.
	(C)	 The first chip is defective and the second chip is nondefective.
	(D)	 The first chip is nondefective and the second chip is defective.

1 1
2 2

FIGURE 3.44
Two four-sided polygons for Exercise 5.
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	 17.	Suppose the sampling scheme in exercise 16 was with replacement; 
that is, the first chip is returned to the lot before the second chip is 
drawn. Show how the probabilities computed in exercise 16 change.

	 18.	Spare power supply units for a communications terminal are pro-
vided to the government from three different suppliers A1, A2, and 
A3. Thirty percent come from A1, 20% come from A2, and 50% come 
from A3. Suppose these units occasionally fail to perform accord-
ing to their specifications and the following has been observed: 2% 
of those supplied by A1 fail, 5% of those supplied by A2 fail, and 3% 
of those supplied by A3 fail. What is the probability any one of these 
units provided to the government will perform without failure?

	 19.	 In a single day, ChipyTech Corporation’s manufacturing facility pro-
duces 10,000 microchips. Suppose machines A, B, and C individually 
produce 3000, 2500, and 4500 chips daily. The quality control group 
has determined the output from machine A has yielded 35 defective 
chips, the output from machine B has yielded 26 defective chips, and 
the output from machine C has yielded 47 defective chips.
	(A)	 If a chip was selected at random from the daily output, what is 

the probability it is defective?
	(B)	 What is the probability a randomly selected chip was produced 

by machine A? By machine B? By machine C?
	(C)	 Suppose a chip was randomly selected from the day’s produc-

tion of 10,000 microchips and it was found to be defective. What 
is the probability it was produced by machine A? By machine B? 
By machine C?

	 20.	Given the evidence-to-hypothesis relationship in Figure 3.7, show 
that Bayes’ rule is the basis for the following equations.

	(A)	 P H e
P H P e H

P H P e H P H P e Hc
( )

( ) ( )

( ) ( ) ( ( )) ( )1
1

1 11
=

+ −

	(B)	 P H e e
P H e P e H

P H e P e H P H e P e Hc
( )

( ) ( )

( ) ( ) ( ( )) ( )1 2
1 2

1 2 1 21
=

+ −

	
(C)	 P H e e e

P H e e P e H

P H e e P e H P H e e e P
( )

( ) ( )

( ) ( ) ( (( ) )) (1 2 3
1 2 3

1 2 3 1 2 11
=

+ − ee Hc
3 )

	 21.	Consider the value function in Figure 3.10. Sketch the value function 
subject to the following value increments. The smallest value incre-
ment occurs between yellow and red; the value increment between 
red and green is one and a half times the smallest value increment; 
the value increment between green and blue is two times the small-
est value increment; the value increment between blue and black is 
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three times the smallest value increment. Compare and contrast this 
value function with the value function in Figure 3.10.

	 22.	Consider Figure 3.18. Determine the exponential constant for this 
value function if the midvalue for the mechanical device’s repair 
time is 15 hours.

	 23.	Review and give examples of a nominal scale, an ordinal scale, a car-
dinal interval scale, a cardinal ratio scale.

	 24.	 If a utility function U(x) is monotonically decreasing (i.e., less is bet-
ter) such that U x U x( ) ( )min max= =1 0and  show that the expected util-
ity is equal to the probability p that xmin occurs.

	 25.	Suppose a lottery X has a range of outcomes bounded by x1 and x2. 
Suppose the probability of any outcome between x1 and x2 is uni-
formly distributed. If U x a be x( ) ,= − −  where a and b are constants, 
show that the certainty equivalent xCE is

	
x

x x

x x

CE

e e
= −

−
−







− −

ln
1 2

2 1

	 26.	Suppose U(x) is a monotonically increasing exponential utility func-
tion of the form given in Equation 3.43. Show that the certainty 
equivalent is given by Equation 3.50.

	 27.	Suppose U x x( ) = 2  over the interval 0 1≤ ≤x  and that x = 0 with prob-
ability p and x = 1 with probability 1− p. Show that E U x U E X( ( )) ( ( )).>  
What do you conclude about the risk attitude of this decision-maker?

	 28.	Prove Theorems 3.8 and 3.9.
	 29.	Show that 1 1 2 1− = −V x V x V x( , ) ( , ), ( , )r r rwhere  is the increasing 

exponential value function with parameter r given by Equation 
3.21 and V x2 ( , )−r  is the decreasing exponential value function with 
parameter −r given by Equation 3.22. Show this general property 
holds for the power-additive utility functions defined by Equations 
3.58 and 3.59.

	 30.	Show that the power-additive utility function is the same for mono-
tonically increasing or decreasing preferences when v V yY= =( ) / .1 2
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4
A Risk Analysis Framework in Engineering 
Enterprise Systems

4.1  Introduction

Engineering enterprise systems is an emerging discipline. It encompasses 
and extends traditional systems engineering to create an enterprise of coop-
erating systems and services that deliver capabilities to globally distributed 
user communities, through a rich network of information and communica-
tions technologies. Enterprise systems operate ubiquitously in environments 
that offer cross-boundary access to a wide variety of services, applications, 
and information repositories.

Engineering enterprise systems is a sophisticated and complex undertak-
ing. Enterprise systems are increasingly being engineered by combining 
many separate systems, services, and applications which, as a whole, provide 
an overall capability otherwise not possible. Today, we are in the early stage 
of understanding how systems engineering, engineering management, and 
the social sciences join to create systems that operate and evolve in enterprise 
environments. This chapter introduces enterprise systems, challenges asso-
ciated with their engineering, and ways to model and measure risks affect-
ing enterprise capabilities such that performance objectives are achieved.

4.2  Perspectives on Engineering Enterprise Systems

Today’s systems are continually increasing in scale and complexity. More 
and more defense systems, transportation systems, financial systems, and 
human services systems network ubiquitously across boundaries and seam-
lessly interface with users, information repositories, applications, and serv-
ices. These systems are an enterprise of people, processes, technologies, and 
organizations.

A distinguishing feature of enterprise systems is not only their technolo-
gies but the way users interface with them and one another. How to design 
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and engineer these systems and their interfaces from human, social, polit-
ical, and managerial dimensions (Allen et al., 2004) are new challenges. To 
address these challenges, engineering and social sciences are joining in ways 
not previously attempted when planning and evolving the design, develop-
ment, and operation of these large-scale and highly networked systems.

This section discusses the enterprise problem space and systems think-
ing within that space. The following are excerpts from a perspectives paper 
on enterprise engineering, written by George Rebovich, Jr., of The MITRE 
Corporation.*

The Enterprise 

In a broad context, an enterprise is an entity comprised of interdependent 
resources that interact with one another and their environment to achieve 
goals (Rebovich, 2005). A way to view an enterprise is illustrated in Figure 4.1. 
In Figure 4.1, resources include people, processes, organizations, technolo-
gies, and funding. Interactions include coordinating functions or operations, 
exchanging data or information, and accessing applications or services.

Historically, systems engineering has focused on the technologies that 
have enabled the development of the piece parts—the systems and subsys-
tems embedded in the enterprise. Modern systems thinkers (Gharajedaghi, 
1999) are increasingly taking a holistic view of an enterprise. Here, an enter-
prise can be characterized by:

•	 A multiminded, sociocultural entity comprised of a voluntary asso-
ciation of members who can choose their goals and means

•	 An entity whose members share values embedded in a (largely com-
mon) culture

•	 An entity having the attributes of a purposeful entity 
•	 An entity whose performance improves through alignment of pur-

poses across its multiple levels

Many enterprises have a nested nature. At every level, except at the very 
top and bottom levels, an enterprise itself is part of a larger enterprise and 
contains subenterprises, each with its own people, processes, technologies, 
funding, and other resources. Nesting within an enterprise can be illustrated 
by a set of US Air Force programs shown in Figure 4.2. Here, the family of 
Airborne Early Warning and Control (AEW&C) systems is an enterprise, 
which is nested in the Command and Control (C2) Constellation enterprise, 
which is nested in the Air Force C2 enterprise.

*	Permission has been granted to excerpt materials from the paper “Enterprise Systems 
Engineering Theory and Practice, Volume 2: Systems Thinking for the Enterprise: New and 
Emerging Perspectives,” authored by Rebovich, George, Jr., MP 050000043, November 2005. 
© 2005 The MITRE Corporation, All Rights Reserved.
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Alignment of purposes across the levels of the enterprise can improve 
overall enterprise performance. The subenterprises contribute to the out-
comes or goals of the containing enterprise. This view has profound implica-
tions for how systems engineers must think about their activities—that they 
are inexorably linked to the enterprise and its operations as a whole.

For example, at the AEW&C system program level, the view must be 
that an AEW&C system builds an air picture that serves the higher goal of 
achieving situation awareness within the C2 Constellation. This requires the 
AEW&C systems engineer to ask (and answer) how the AEW&C piece parts 
being developed serve situation awareness in the C2 Constellation in addi-
tion to how they serve the AEW&C system specification.

At the next level, the view must be that the C2 Constellation develops inte-
grated capabilities to serve the higher goal of providing net-centric C2 for 

Enterprise

Funding

Processes

People

Environment

Technology

FIGURE 4.1
An enterprise and its environment.

AF C2 Enterprise

C2 Constellation

AEW&C

FIGURE 4.2
Nested nature of enterprises.



128 Advanced Risk Analysis in Engineering Enterprise Systems

the Air Force C2 Enterprise. The implication is that the systems engineer 
must address how the C2 Constellation piece parts serve the Air Force C2 
Enterprise, in addition to how they serve the C2 Constellation.

At the highest level in this example, the view must be that the Air Force 
C2 Enterprise develops Air Force net-centric capabilities to serve the higher 
goal of providing net-centric C2 for the Joint/Coalition C2 Enterprise. The 
implication is that the systems engineer must address how the Air Force C2 
Enterprise piece parts serve joint and coalition net-centric C2 in addition to 
how they serve the Air Force C2.

This discussion leads to an operational definition of enterprise from the 
perspective of an individual (system engineer or other participant) or team 
in the enterprise. It aims to answer the question, “what is my (our) enter-
prise?” The enterprise, then, can be viewed as a set of interdependent ele-
ments (systems and resources) that a participating actor or actors either con-
trol or influence.

This definition of enterprise is a virtual construct that depends on the 
make-up, authority, and roles of the participating actors in a community of 
interest. For example, the program team of a system managed by one organ-
ization may have virtual control of most engineering decisions being made 
on the system’s day-to-day development activities. If the system is required 
to be compliant with technical standards developed by an external agency, 
the program team may have representation on the standards team, but that 
representation is one voice of many and so the standard is a variable the pro-
gram team can influence but not necessarily control. The implication is that 
all actors or teams in an enterprise setting should know their enterprise and 
be aware of which enterprise elements or variables they control, which they 
influence, and which they neither control nor influence.

Engineering a system always involves asking good questions and fol-
lowing the implications of their answers. The following offers a series of 
questions (Rebovich, 2005) that assist in understanding the complexity of an 
enterprise.

•	 What is my enterprise? What elements of it do I control? What ele-
ments do I influence? What are the elements of my environment that 
I do not control or influence but which influence me?

•	 How can a balance be achieved between optimizing at the system-
level with enabling the broader enterprise, particularly if it comes at 
the expense of a smaller system?

•	 How can different perspectives be combined into one view to enable 
alignment of purposes across the enterprise?

•	 Would a change in performance at system or subsystem levels result 
in changes at the enterprise level? If so, how, and is it important? 
How would a new enterprise level requirement be met and how 
would it influence systems below it? 
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•	 How can complementary relations in opposing tendencies be viewed 
to create feasible wholes with seemingly unfeasible parts? How can 
they be viewed as being separate, mutually interdependent dimen-
sions that can interact and be integrated into an “and” relationship?

•	 Are dependencies among variables in a system or enterprise such 
that the ability to make progress in one variable occurs at the 
expense of others? How can dependencies among variables within 
an enterprise be identified, monitored, managed accordingly?

Engineering an enterprise system necessitates addressing these and related 
questions as aids in identifying and managing risks that threaten the suc-
cessful delivery of enterprise capabilities. In this context, enterprise risk 
management requires an integration of people, processes, and tools to ensure 
an enterprise-wide understanding of capability risks,* their potential conse-
quences, interdependencies, and rippling effects within and beyond enter-
prise boundaries. Ultimately, enterprise risk management aims to establish 
and maintain a holistic view of risks across the enterprise, so capabilities and 
performance objectives are achieved via risk-informed resource and invest-
ment decisions.

4.3  A Framework for Measuring Enterprise Capability Risk

This section presents an analysis framework for measuring enterprise capa-
bility risk. It can be used to address questions that include the following: What 
events threaten the delivery of capabilities needed to successfully advance enterprise 
goals and mission outcomes? If these events occur, how serious are their impacts? 
How can the progress of risk management plans be monitored? How can risk be 
considered in resource planning and investment decision-making? Questions such 
as these arise when planning, executing, and managing the engineering of 
large-scale, enterprise-wide systems. Addressing these questions involves 
not only engineering and technology dimensions but human–social–system 
interactions as well.

Enterprise risk management differs from traditional practice (Garvey, 2008) 
in the expanse of the consequence space within which risks affect enterprise 
goals, mission outcomes, or capabilities. In a traditional case, the consequence 
space is usually focused on the extent risks negatively affect a system’s cost, 

*	 Societal consequences of risks realized from engineering systems (e.g., nuclear, transpor-
tation, financial systems) have been studied and published by Murphy and Gardoni (2006). 
Their work relates notions of capability risks to their potential impacts on the capacity of 
socio-political structures to operate and on the ability of individuals to function within their 
respective social-political environments.



130 Advanced Risk Analysis in Engineering Enterprise Systems

schedule, and technical performance (discussed in Chapter 1). Enterprise risk 
management necessitates broadening the scope of this space. Identifying and 
evaluating higher-level effects (or consequences) on capabilities and services 
are critical considerations in decisions on where to allocate resources to man-
age enterprise risks.

A Capability Portfolio View

One way management plans for engineering an enterprise is to create capa-
bility portfolios of technology programs and initiatives that, when synchro-
nized, will deliver time-phased capabilities that advance enterprise goals 
and mission outcomes. Thus, a capability portfolio is a time dynamic organizing 
construct to deliver capabilities across specified epochs (Garvey, 2008).

Creating capability portfolios is a complex management and engineering 
analysis activity. In the systems engineering community, there is a large body 
of literature on portfolio analysis for investment decision management applied to 
the acquisition of advanced systems. This topic, however, is beyond the scope of 
this book. Instead, the following is focused on applying risk management prac-
tices within a generic model of capability portfolios, already defined to deliver 
capabilities to an enterprise. Figure 4.3 illustrates such a model.

In Figure 4.3, the lowest level is the family of capability portfolios. What 
does a capability portfolio look like? An example is shown in Figure 4.4. 
Figure 4.4 presents an inside look at a capability portfolio from a capability-
to-functionality view. Figure 4.4 derives from a capability portfolio for net-
work operations (OSD, 2005). This is one among many capability portfolios 
designed to deliver capabilities to the Department of Defense (DOD) Global 
Information Grid.*

Seen in Figure 4.4, a capability portfolio can be represented in a hierarchi-
cal structure. At the top is the capability portfolio itself. Consider this the 
Tier 1 level. The next tier down the hierarchy presents capability areas, such 
as network management and information assurance. These Tier 2 elements 
depict the functional domains that characterize the capability portfolio. 
Tier 3 is the collection of capabilities the portfolio must deliver by a specified 
epoch (e.g., 20xx). Here, a capability can be defined as the ability to achieve an 
effect to a standard under specified conditions using multiple combinations of means 
and ways to perform a set of tasks (OSD, 2005). Tier 4 is the functionality that 
must be integrated to achieve capability outcomes.

For example, consider the capability portfolio shown in Figure 4.4. The 
Tier 3 capability ability to create and produce information in an assured environ-
ment refers to the ability to collect data and transform it into information, 

*	 The Department of Defense (DOD) defines the Global Information Grid (GIG) as a glob-
ally interconnected, end-to-end set of information capabilities, associated processes, and 
personnel for collecting, processing, storing, disseminating, and managing information 
(Government Accountability Office (GAO), 2004).
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while providing end-to-end protection to assure the availability of informa-
tion and validating its integrity (OSD, 2005). Suppose this capability advances 
toward outcome goals when functionality is delivered that ensure the capture 
of timely, relevant, interoperable source data from sensors and other input areas. 
Suppose this functionality contributes to this capability’s outcome when the 
time for information change to be posted and/or subscribers notified is less than 1 
minute (OSD, 2005).

Next, we will use this information and show how a hierarchical representation 
of a capability portfolio can be used as a modeling framework within which risks 

State where enterprise goals and missions operate
through a ubiquitous interaction of users, systems,
technologies, applications, and services

Specified capabilities needed by stakeholders or end-
users to achieve enterprise goals or mission outcomes

Portfolios of investments
to deliver capabilities

Capabilities needed to achieve
enterprise goals & mission outcomes

Enterprise goals & 
mission outcomes

Portfolio
A

Portfolio
B Portfolio

C

Portfolio
D

Portfolio
XYZ

A collection of portfolios of systems or technology program investments
being developed or acquired that satisfy achieving one or more capabilities
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can be assessed and capability portfolio risk measures derived. In preparation 
for this, we first consider a capability portfolio from a supplier–provider context.

Supplier–Provider Perspective

Once a capability portfolio’s hierarchy and its elements are defined, it is man-
aged by a team to ensure its collection of technology programs and technol-
ogy initiatives combine in ways to deliver one or more capabilities to the 
enterprise. Thus, one can take a supplier–provider view of a capability portfo-
lio. This is illustrated in Figure 4.5.

In Figure 4.5, a capability portfolio can be viewed as the provider charged with 
delivering time-phased capabilities to the enterprise. Technology programs and 
technology initiatives align to, and synchronized with, the capability portfolio 
to supply the functionality needed to achieve the provider’s capability outcomes.

The supplier–provider view offers a way to examine a capability portfolio 
from a risk perspective. Look again at Figures 4.3, 4.4, and 4.5. We have enter-
prise goals and mission outcomes dependent on capability portfolios suc-
cessfully delivering required capabilities. Next, we have capability portfolios 
dependent on programs and technologies successfully delivering function-
ality that enables these capabilities. Thus, major sources of risk originate 
from the suppliers to these capability portfolios.
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133A Risk Analysis Framework in Engineering Enterprise Systems

Supplier risks include unrealistic schedule demands placed on them 
by portfolio needs or placed by suppliers on their vendors. Supplier risks 
include premature use of technologies, including the deployment of technol-
ogies not adequately tested. Dependencies among suppliers can generate a 
host of risks, especially when a problem with one supplier generates a series 
of problems with others. Economic conditions can threaten business stability 
or the business viability of suppliers and vendors. Unfavorable funding or 
political influences outside an enterprise can adversely affect its capability 
portfolios, its suppliers, or the supplier–vendor chains in ways that threaten 
the realization of enterprise goals and mission outcomes.

These issues are important risk considerations to any engineering system. 
However, they are a more present and persistent concern in the manage-
ment of risk in engineering enterprise systems, especially those acquired by 
supplier–provider models. The following will show how a hierarchical rep-
resentation of a capability portfolio can serve as a modeling and analytical 
framework within which risks can be assessed and capability portfolio risk 
measures derived.

4.4 � A Risk Analysis Algebra

When a capability portfolio can be represented in a hierarchical structure it 
offers a modeling framework within which risks can be assessed and capa-
bility risk measures derived. The following illustrates this idea using the 
hierarchies in Figures 4.4 and 4.5. What is meant by capability risk? In the 
context of a capability portfolio, we define capability risk as a measure of the 
chance and the consequence that a planned capability, defined within a portfolio’s 
envelope, will not meet intended outcomes by its scheduled delivery date (Garvey, 
2008).

First, we will design algebraic rules for computing risk measures within 
a segment of a capability portfolio’s hierarchy. Then, we will show how to 
extend these computations to operate across a capability portfolio’s fully 
specified hierarchy. This will involve a series of roll-up calculations. Shown 
will be risk measure computations that originate from leaf nodes, which 
will then roll-up to measure the risks of parent nodes, which will then roll-
up to measure the risk of the capability portfolio itself (i.e., the root node).

When a capability portfolio can be represented in the form of a hierarchy, 
decision-makers can be provided the trace basis and the drivers behind all 
risk measures derived for any node at any level in the hierarchy. From this, 
management has visibility and supporting rationales for identifying where 
resources are best allocated to reduce (or eliminate) risk events that threaten 
the success of the portfolio’s goals and capability outcome objectives.

In a capability portfolio’s hierarchical structure, each element in the hierar-
chy is referred to as a node. The top-most node is the root node. In Figures 4.4 



134 Advanced Risk Analysis in Engineering Enterprise Systems

and 4.5, the root node represents the capability portfolio itself, which, in this 
case, is the Network Operations Capability portfolio. A parent node is one 
with lower-level nodes coming from it. These lower-level nodes are called 
child nodes to that parent node. Nodes that terminate in the hierarchy are 
called leaf nodes. Leaf nodes are terminal nodes in that they have no children 
coming from them.

In the context of a capability portfolio hierarchy, leaf nodes are terminal 
nodes that originate from supplier nodes. Here, leaf nodes are risk events 
associated with supplier nodes. Thus, the risk measures of leaf nodes drive 
the risk measures of supplier nodes. The risk measures of supplier nodes 
drive the risk measures of their parent nodes. The risk measures of parent 
nodes drive the risk measures of their parent nodes and so forth. Hence, risk 
measures computed for all nodes originate from risk measures derived for 
leaf nodes. This ripple-in-the-pond effect is reflective of capability portfolio 
risk management from a supplier–provider perspective.

Risks that trace to suppliers are a major source of risk to the portfolio’s 
ability to deliver capability to the enterprise. However, it is important to 
recognize that suppliers are not the only source of risk. Risks external to a 
capability portfolio’s supplier–provider envelope are very real concerns. Risk 
sources outside this envelope must also be considered when designing and 
implementing a formal risk analysis and management program for a capa-
bility portfolio or family of capability portfolios.

Figure 4.6 shows a Tier 3 capability from the portfolio in Figure 4.5. For 
convenience, we have numbered the nodes as shown. Figure 4.6 shows three 
supplier nodes responsible for contributing to functionality node 3.22—
one of four functions needed for Capability 3.2 to be delivered as planned. 
Functionality node 3.22 is a parent node to the supplier nodes EWXT, QSAT, 
and S-RAD.

Shown in Figure 4.6, two of these supplier nodes are technology programs. 
One supplier node is a technology initiative. In practice, this distinction can 
be important. A technology program is often an engineering system acqui-
sition—one characterized by formal contracting, well-defined requirements, 
and adherence to engineering standards and program management proto-
cols. A technology initiative is often targeted at developing a specific tech-
nology for an engineering system or a user community. An example might 
be the development of advanced encryption technology for the information 
assurance community.

Whether supplier nodes are technology programs or technology initia-
tives, they exist in a capability portfolio because of their contributions to 
parent nodes. From the portfolio perspectives in Figures 4.5 and 4.6, func-
tionality nodes are the parent nodes to these supplier nodes. Here, the contri-
butions of supplier nodes integrate in ways that enable functionality nodes. 
Functionality nodes integrate in ways that enable their corresponding capa-
bility nodes—the collection of capabilities the portfolio is expected to suc-
cessfully deliver to the enterprise.
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At the supplier level, we define contribution by a supplier node as that which 
advances the portfolio’s ability to provide capability that meets the needs of the port-
folio’s user communities. A supplier’s contribution to its parent functionality 
node could be in many forms and include technologies, engineering analy-
ses, and software applications. At the supplier level, risk events can have 
adverse consequences on the cost, schedule, or technical performance of the 
supplier’s contribution to its parent functionality node.

Risk events can also negatively affect a supplier node’s programmatic activ-
ities. These activities include the technical or program-related work products 
that support the supplier’s business, engineering, management, or acquisi-
tion practices needed to advance the outcome objectives of the supplier’s con-
tribution to its parent functionality node. Technical or program-related work 
products include architecture frameworks, engineering analyses, organiza-
tional structures, governance models, and acquisition management plans.

In addition, supplier nodes can be negatively affected by political risks, 
business risks, economic risks, and the integrity of supply chains. These 
risks not only threaten suppliers but they can directly threaten functional-
ity or capability nodes at those levels in the portfolio’s hierarchy. Thus, risk 
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events from a capability portfolio perspective are of multiple types with the 
potential for multiconsequential impacts on parent nodes located at any level 
in the hierarchy.

Figure 4.7 shows leaf nodes intended to represent supplier node risk events. 
These leaf nodes are labeled E1, E2, E3, and so on. They denote risk events 
that, if they occur, would negatively affect the supplier node’s contribution 
to its parent functionality node (Functionality 3.22, in this case). Risks that 
threaten supplier node’s contributions to functionality 3.22 have ripple-in-the-
pond effects on the portfolio’s delivery expectations for Capability 3.2. As 
we will see, risks that affect Capability 3.2 can have horizontal and vertical 
effects elsewhere in the portfolio. Next, we look at eight risk events associ-
ated with the EWXT technology program node shown in Figure 4.8.

In Figure 4.8, each EWXT risk event is given a color. The color reflects a 
score or measure of the risk event’s potential impact to Functionality 3.22, 
if it occurs. In Figure 4.8, each risk event happens to be either RED (R) or 
YELLOW (Y). Suppose the basis for each color derives from a function of 
each risk event’s occurrence probability and its impact or consequence. 
Definition 4.1 presents this function, called risk score.
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Definition 4.1: Risk Event Risk Score*

The risk score of risk event E is given by the additive value function
	 Risk Score( ) ( ) ( ) ( )E RS E u V E u V E= = +1 2Probability Impact 	 (4.1)
subject to the considerations in Theorem 3.6. In Equation 4.1, the first term is 
a value function for the risk event’s occurrence probability. The second term 
is a value function for the severity of the risk event’s impact, if it occurs. The 
coefficients u1 and u2 are nonnegative weights such that 0 11≤ ≤u , 0 12≤ ≤u ,
and u u1 2 1+ = . In Equation 4.1, these value functions can be designed to pro-
duce measures along either a 0 to 1 or a 0 to 100 cardinal interval scale, as 
discussed in Chapter 3.

In Equation 4.1, suppose the linear value function in Figure 4.9 is assumed 
to represent the risk event’s occurrence probability. Non-linear relationships 
are also possible, as shown in Figures 3.19 or 3.36. Suppose Table 4.1 presents 
a constructed scale (introduced in Chapter 3) for assessing the value of the 
second term in Equation 4.1.

Returning to Figure 4.8 and applying Equation 4.1, suppose the risk scores 
of the EWXT technology program’s risk events E E E E1 2 3 8, , , ,…  are computed 
by the function

	 Risk Score Ei RS Ei u V Ei u V Ei( ) ( ) ( ) ( )= = +1 2Probability Impact

where i = 1, 2, 3, …, 8 in this case. Suppose the values of these risk scores are 
as shown in Figure 4.10, where risk event E1 has a risk score of 85, risk event 
E2 has a risk score of 90, risk event E3 has a risk score of 60, and so forth. 
Given the eight risk scores for the EWXT technology program, shown in 
Figure 4.10, what is an overall measure of the risk that supplier node EWXT 
poses to functionality node 3.22†? The following is one way to formulate this 
measure using a rule called the “max” average.

Definition 4.2: Max Average

The max average of { , , , , },x x x xn1 2 3 …  where 0 100≤ ≤xi , i n= 1 2 3, , , ,… , is

	 Max Ave Average= + −l lm x x x xn( ) { , , , , }1 1 2 3 … 	 (4.2)

*	 Equation 4.1 is one of many ways to formulate a Risk Score measure. The reader is directed to 
Garvey (2008) for additional approaches to formulating this measure.

†	 In general, identified risks and their risk scores are temporal. They reflect the risk situation 
known at a given point in time and thus should be regularly reviewed and updated accordingly.
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FIGURE 4.8
EWXT technology program risk set (R = Red, Y = Yellow).
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where m x x x xn= Max { , , , , },1 2 3 …  0 ≤ λ ≤ 1, and λ is a weighting function.*

Suppose the capability portfolio’s management decided to use the weighting 
function in Figure 4.11. In the context of this discussion, the x si’  in Equation 
4.2 equate to the risk scores in Figure 4.10. Thus, from Equation 4.2, we have

	 RS3 221 90 1 85 90 60 75 48 73 50 79. ( ) ( ) { , , , , , , , }= + −l l Average

where m = =Max{ , , , , , , , } .85 90 60 75 48 73 50 79 90  From Figure 4.11, it follows 
that l = 0 70. ; therefore,

	 RS3 221 0 70 90 0 30 70 84. ( . )( ) ( . )( )= + =

where RS3 221.  is the risk score of the EWXT technology program, denoted 
by node 3.221 in Figure 4.10. Thus, the EWXT technology program (a sup-
plier node) has a high risk score. In accordance with the color rating scale in 
Figure 4.10, EWXT falls in the RED (R) color band. The results of this discus-
sion are shown in Figure 4.12.

In summary, the EWXT technology program contributes a high degree 
of risk to functionality node 3.22 which, in turn, contributes to the risk of 
capability node 3.2. In this case, it can be shown that EWXT risk events E1, 
E2, E4, E6, and E8 are responsible for 93% of the EWXT technology pro-
gram’s risk score. These five risk events signal areas in the EWXT program 
where increased management focus and risk mitigation planning may be 
warranted.

*	 An example weighting function is shown in Figure 4.11. The shape of the weighting function 
can have a significant influence on scores generated by the max average rule. In practice, 
its shape should be designed to model the team’s (or decision-maker’s) preferences for how 
much the maximum score should influence the overall score.
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FIGURE 4.9
A value function for occurrence probability.
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Measuring Up: How Supplier Risks Affect Functionality

The preceding discussion presented one way to derive a risk score measure 
of the EWXT technology program. However, EWXT is just one of three sup-
plier nodes to functionality node 3.22. What about the other supplier nodes? 
How might their risk measures combine into an overall measure of risk to 
functionality node 3.22? What ripple effects do supplier risks have on all 
dependent higher-level nodes in the capability portfolio’s hierarchy? The fol-
lowing will address these and related questions.

Suppose risk measures for the other two supplier nodes to functionality 
node 3.22 are shown in Figure 4.13. These are the QSAT technology program 

TABLE 4.1

A Sample Constructed Scale: Supplier Node Impacts

Ordinal 
Scale (Score)

Definition: Risk Event Impacts on a
Supplier Node’s Contribution to its Parent Node

Cardinal Interval 
Scale (Score)

5 A risk event that, if it occurs, impacts the supplier 
node to the extent that its contribution to its parent 
node is severely degraded or compromised. The 
nature of the risk is such that outcome objectives for 
the supplier node’s contribution are either not met or 
are extremely unacceptable (e.g., fall well-below 
minimum acceptable levels). 

80 to 100

4 A risk event that, if it occurs, impacts the supplier 
node to the extent that its contribution to its parent 
node is marginally below minimum acceptable 
levels. The nature of the risk is such that outcome 
objectives for the supplier node’s contribution are 
moderately unacceptable.

60 to < 80

3 A risk event that, if it occurs, impacts the supplier 
node to the extent that its contribution to its parent 
node falls well-below stated objectives but remains 
enough above minimum acceptable levels. The 
nature of the risk is such that outcome objectives for 
the supplier node’s contribution are borderline 
acceptable.

40 to < 60

2 A risk event that, if it occurs, impacts the supplier 
node to the extent that its contribution to its parent 
node falls below stated objectives but falls well-above 
minimum acceptable levels. The nature of the risk is 
such that outcome objectives for the supplier node’s 
contribution are reasonably acceptable.

20 to < 40

1 A risk event that, if it occurs, impacts the supplier 
node to the extent that its contribution to its parent 
node is negligibly affected. The nature of the risk is 
such that outcome objectives for the supplier node’s 
contribution are completely acceptable, but regular 
monitoring for change is recommended.

0 to < 20
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and the S-RAD technology initiative. Suppose their risk measures were also 
derived by the max average rule given by Equation 4.2. From this, how can 
the risk measures from all three supplier nodes, in Figure 4.13, combine into 
an overall measure of risk to Functionality 3.22? One way is to apply a varia-
tion of the max average rule to the set of risk scores derived for the supplier 
nodes. We will call this variation the critical average.

Definition 4.3: Critical Average

Suppose a parent node has n child nodes. Suppose { , , , , }x x x xn1 2 3 …  is a set 
of child node scores, where 0 100≤ ≤xi  for i n= 1 2 3, , , , .…  If A is a subset of 
{ , , , , }x x x xn1 2 3 …  that contains only the scores of the child nodes deemed 

Weighting function
lamda λ

m = Max{x1, x2, x3, . . ., xn}
0

0
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1

FIGURE 4.11
An example max average weighting function. See Garvey (2008) for other forms of this function.
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critical* to the parent node, then the critical average of the set { , , , , }x x x xn1 2 3 …  
is given by

	 Crit Ave Max Average= + −l l{ } ( ) { , , , , }A x x x xn1 1 2 3 … 	 (4.3)

where l is a weighting function based on the maximum of A.

To apply the critical average to the supplier nodes in Figure 4.13, sup-
pose the EWXT technology program is the only critical supplier to Tier 4 

*	 A child node is critical to its parent node if the parent node’s outcome objectives are severely 
degraded, or not achieved, without its child node’s contribution.
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Overall EWXT program risk score and color rating (max ave, R = Red, Y = Yellow).

Functionality provides 
for the capture of 
timely, relevant, 

interoperable
source data from 
sensors and other

input areas

EWXT 
Technology 

Program

QSAT 
Technology 

Program

S-RAD 
Technology 

Initiative

RED = 84

YELLOW = 67.9

GREEN = 26.08

3.22

3.221

3.222

3.223

E1 E2 E3

E1 E2 E3 E4 E5 E6 E7 E8

85 90 60 75 48 73 50 79
R R Y R Y R Y R

Y Y Y Y R

E1 E2 E3 E4 E5

60 38 62 47 73

Y G G
34 20 12

FIGURE 4.13
Supplier node risk measures to Functionality 3.22.



142 Advanced Risk Analysis in Engineering Enterprise Systems

functionality node 3.22. From Definition 4.3, the risk score of functionality 
node 3.22 is

	 RS RS RS RS RS3 22 3 221 3 221 3 222 3 2231. . . . .{ } ( ) { , , }= + −l lMax Average 	 (4.4)

where l is a weighting function. Suppose we use a weighting function 
similar to Figure 4.11. Given this, from the risk scores in Figure 4.13 and 
Equation 4.4 we have

	 RS3 22 0 70 84 1 0 70 84 67 9 26 08 76 6. ( . )( ) ( . ) { , . , . } .= + − =Average

With RS3 22 76 6. . ,=  it follows that Tier 4 functionality node 3.22 has a high 
risk score and falls in the RED (R) color band—in accordance with the color 
rating scale in Figure 4.10. The magnitude of this score is driven by (1) the 
criticality of the EWXT technology program’s contribution to functionality 
node 3.22 and (2) the risk scores of EWXT risk events E1, E2, E4, E6, and E8.

Findings from this analysis identifies where management attention 
is needed with respect to reducing Tier 4 functionality node 3.22 risks. 
Addressing the threat posed by the EWXT technology program to function-
ality node 3.22 will lessen the potential of unwanted effects at higher depen-
dency levels across the capability portfolio’s hierarchy. The results of this 
discussion are shown in Figure 4.14.

Measuring Up: How Functionality Risks Affect Capability

The preceding presented ways to derive a measure of Tier 4 functionality 
node 3.22 risk as a function of its supplier node risks. Shown in Figure 4.7, 
functionality node 3.22 is one of the four functionality nodes to Tier 3 capa-
bility node 3.2. What about the other functionality nodes? How might their 
risk score measures combine into an overall measure of Tier 3 capability 
node 3.2 risk? The following addresses these questions.

Suppose risk scores for Tier 4 functionality nodes 3.21, 3.23, and 3.24 are 
given in Figure 4.15. Suppose they were computed as a function of the risk 
scores of their supplier nodes (not shown) in the same way the risk score of 
functionality node 3.22 was derived. Suppose Tier 4 functionality nodes 3.23 
and 3.24 are critical for Tier 3 capability node 3.2 to achieve its outcome objec-
tives. From Definition 4.3, the risk score of capability node 3.2 is

  RS RS RS RS RS RS3 2 3 23 3 24 3 21 3 22 3 21. . . . . .{ , } ( ) { , ,= + −l lMax Average 33 3 24, }.RS 	 (4.5)

where l is a weighting function. Suppose we use a weighting function 
similar to Figure 4.11. Given this, from the risk scores in Figure  4.15 and 
Equation 4.5 we have

	 RS3 2 0 70 42 4 82 9 1 0 70 35 76 6 42 4 82. ( . ) { . , . } ( . ) { , . , . ,= + −Max Average .. } .9 75 8=
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With RS3 2 75 8. . ,=  it follows that Tier 3 capability node 3.2 has a high risk score 
and falls in the RED (R) color band—in accordance with the color rating scale 
in Figure 4.10. The magnitude of this score is driven by the criticality of Tier 4 
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functionality nodes 3.23 and 3.24 to Tier 3 capability node 3.2 and their indi-
vidual risk scores.

Findings from this analysis identifies where management attention is 
needed to reduce capability node 3.2 risks. Addressing the threat posed by 
Tier 4 functionality nodes 3.23 and 3.24 to Tier 3 capability node 3.2 will 
lessen the potential of unwanted effects at higher dependency levels across 
the capability portfolio’s hierarchy. The results of this discussion are shown 
in Figure 4.16.

Measuring Up: How Capability Risks Affect the Capability Portfolio

The preceding presented ways to derive a measure of Tier 3 capability node 
3.2 risk as a function of the risk score measures of its Tier 4 functionality 
nodes. Shown in Figure 4.17, capability node 3.2 is one of the four capability 
nodes to the Tier 2 Information Assurance (IA) capability area. What about 
the other capability nodes? How might their risk score measures combine 
into an overall measure of Tier 2 Information Assurance risk? The following 
addresses these questions.

Suppose risk scores for Tier 3 capability nodes 3.1, 3.3, and 3.4 are given in 
Figure 4.18. Suppose they were computed as a function of the risk scores of 
their functionality nodes (not shown) in the same way the risk score of capa-
bility node 3.2 was derived. Suppose Tier 3 capability nodes 3.1, 3.3, and 3.4 
are critical for the Tier 2 IA capability area to achieve its outcome objectives. 
From Definition 4.3, the risk score of the IA capability area is

  RS RS RS RS RS RS RSIA = + −l lMax Average{ , , } ( ) { , ,. . . . . .3 1 3 3 3 4 3 1 3 2 31 33 3 4, }.RS 	 (4.6)
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where l is a weighting function. Suppose we use a weighting function 
similar to Figure 4.11. Given this, from the risk scores in Figure 4.18 and 
Equation 4.6 we have

	

RSIA =
+ −
( . ) { . , . , . }

( . ) { . , .
0 381 11 8 25 5 38 1

1 0 381 11 8 75 8
Max

Average ,, . , . }25 5 38 1 38=
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With RSIA = 38, it follows that the Tier 2 Information Assurance capability 
area node has a moderate score and falls in the YELLOW (Y) color band—
in accordance with the color rating scale in Figure 4.10. The magnitude of 
this score suggests management watch the IA capability area for unwanted 
changes that might increase its current level of threat to portfolio outcomes. 
The results of this discussion are shown in Figure 4.19.

The preceding presented ways to derive a risk score measure of the IA 
capability area as a function of the risk score measures of its Tier 3 capability 
node risks. Shown in Figure 4.20, IA is one of four Tier 2 capability areas to 
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Tier 1—the Network Operations Capability Portfolio. What about the other 
Tier 2 capability area nodes? How might their risk score measures com-
bine into an overall measure of risk to the Network Operations Capability 
Portfolio? The following addresses these questions.

Suppose risk score measures for the other three Tier 2 capability area 
nodes Network Management, Enterprise Services, and Communications 
and Applications are given in Figure 4.20. In Figure 4.20, all four Tier 2 
capability area nodes are identified as critical to the Network Operations 
Capability Portfolio (the Tier 1 root node). Given this, the critical aver-
age rule will equal the max average rule. Applying the max average rule, 
with the weighting function in Figure 4.11, to the Tier 2 capability area 
risk scores in Figure 4.20 results in an overall Tier 1 risk score of 64.65 for 
the Network Operations Capability Portfolio. Thus, this portfolio has a 
moderate risk score and falls in the YELLOW (Y) color band—in accord-
ance with the color rating scale in Figure 4.10. The magnitude of this score 
suggests management keep watch on this portfolio for unwanted changes 
that might increase its current level of threat to the portfolio’s outcome 
objectives.

The preceding discussion presented an algebra designed to measure 
risk, at any node in a capability portfolio, when risk events originate from a 
capability portfolio’s supplier levels. Computational rules were defined and 
illustrated to show how risk score measures were derived, in part, from a 
series of roll-up calculations. Risk score measures derived from leaf nodes 
were rolled-up to measure the risks of parent nodes. Risk score measures 
derived for parent nodes were rolled-up to measure the risk of the capability 
portfolio.

In the context of this formalism, the number of risk events associated with 
a supplier node does not fully drive the magnitude of its risk score meas-
ure. Consider the max average rule. This rule is purposefully designed to 
weight more heavily risk events, in a set of events, with higher risk score 
measures than those in the set with lower risk score measures. Although 
risk scores of all risk events associated with a supplier node are included in 
the max average, their effect on the node’s overall risk score is controlled by the 
shape or form of the weighting function l. Because of this, each risk event does 
not necessarily contribute equally to the supplier node’s overall risk score 
measure. A supplier node with a set of five risk events can have a higher 
risk score than one with a set containing more than five risk events and vice 
versa.

Thus, with the max average rule it is important to design the shape or form 
of its weighting function to capture the team’s (or decision-maker’s) pref-
erences for the degree the maximum risk score should influence the over-
all risk score. One weighting function is shown in Figure 4.11. Many other 
shapes are possible (Garvey, 2008).

The max average rule applied in the context of Figure 4.12 operates, under 
certain conditions, as a decision-maker’s “alert function.” In Figure 4.12, the 
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supplier node’s risk score measure is 84 given the eight risks E1 through E8. 
Suppose management actions were taken such that risks E3 through E8 were 
eliminated from this supplier node’s risk set. With this, the EWXT technol-
ogy program would now have a risk score measure of 89.25.

Why did this supplier node’s risk score increase despite the elimination of 
all but two of its risks? The answer includes the following: (1) management 
actions eliminated E3 through E8—but they did not eliminate the two most 
serious risks, E1 and E2, from the node’s risk set; and (2) the max average 
rule operates only on the risk set presented; so even though E3 through E8 
were eliminated, the max average rule only “sees” a supplier node with two 
serious risks E1 and E2.

The fact that the risk score increased is noteworthy, but not as important as 
the result that the node remained in the RED risk color band in this example. 
Thus, the max average rule can be tuned to alert management when a supplier 
node still faces a high degree of risk because of the presence of even just a few 
very serious risks—despite the elimination of less serious ones from the set.

What about risks to capabilities when risk events originate from sources 
or conditions outside of supplier nodes? How can these risks be considered 
in a capability portfolio risk assessment? Risks that threaten capabilities to 
be delivered by a capability portfolio can originate from sources other than 
those that affect only the portfolio’s suppliers. These events can directly 
attack one or more capability nodes in a capability portfolio’s hierarchy. For 
example, uncertainties in geo-political landscapes may impact operational 
demands on capabilities that stress planned performance.

Dependencies between capability portfolios in families of portfolios, such 
as those that constitute an enterprise, are also potential risk sources. Here, 
outcome objectives for capabilities delivered by one capability portfolio may 
depend on the performance of capabilities delivered by another capability 
portfolio. Identifying risk events from non-supplier sources and capturing 
their contribution to the risk measure is an important consideration in the 
risk assessment and analysis process.

The risk analytic framework described in this chapter provides ways to 
track and report risks faced by capability nodes, as a function of the many 
sources of risk affecting the nodes and ultimately the capability portfolio. In 
practice, it is recommended that supplier and nonsupplier measures of capa-
bility risk be separately derived, tracked, and reported to the capability port-
folio’s management team. In addition, each risk should be tagged according 
to its type (or nature) and tracked in the portfolio’s overall risk event popu-
lation. If this is done, then a variety of management indicators can be devel-
oped. These include (1) the frequency with which specific types of risk affect 
capability nodes, and (2) the degree to which a capability node’s risk score 
measure is driven by supplier versus nonsupplier source conditions, includ-
ing understanding the nature and drivers of these conditions. We end this 
discussion with a summary of the information needed to implement capabil-
ity portfolio risk analyses and management.
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4.5 � Information Needs for Portfolio Risk Analysis

Risk management in an enterprise capability portfolio context has unique 
and thought challenging information needs. These needs can be grouped 
into two categories. The first category addresses capability value and the sec-
ond one addresses supplier contributions, criticality, and risks as they relate 
to enabling the portfolio to deliver capability.

Information needs that address capability value include the following:

•	 For each Tier 3 capability, as shown in Figure 4.4, what standard (or 
outcome objective) must each capability meet by its scheduled deliv-
ery date?

•	 For each Tier 3 capability, what is the source basis for its standard 
(or outcome objective)? Does it originate from user-driven needs, 
policy-driven needs, model-derived values, a combination of these, 
or from other sources?

•	 For each Tier 3 capability, what extent does the standard (or outcome 
objective) for one capability depend on others to meet their stan-
dards (or outcome objectives)?

Information needs that address supplier contributions, criticality, and risks 
include the following:

•	 For each Tier 3 capability, which technology programs and technol-
ogy initiatives are the suppliers contributing to that capability?

•	 For each Tier 3 capability, what (specifically) are the contributions of 
its suppliers?

•	 For each Tier 3 capability, how do supplier contributions enable the 
capability to achieve its standard (or outcome objective)?

•	 For each Tier 3 capability, which technology programs and technol-
ogy initiatives are critical contributors to enable the capability to 
achieve its standard (or outcome objective)?

•	 What risks originate from (or are associated with) suppliers that, if 
they occur, negatively affect their contributions to capability?

A similar set of information needs can be crafted for risk events that origi-
nate from nonsupplier-related sources or conditions.

Measuring, tagging, and tracking risk events in the ways described aids 
management in identifying courses of action. Specifically, whether options 
exist to attack risks directly at their sources or to engage them by deliberate 
intervention actions—actions aimed at lessening or eliminating their poten-
tial capability consequences.
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Process tailoring, socialization, and establishing governance protocols are 
critical considerations in enterprise engineering risk management. Ensuring 
these aspects succeed is time well-spent. With this, effective and value-
added engineering management practices can be institutionalized—prac-
tices that enable capability portfolio outcomes, and ultimately those of the 
enterprise, to be achieved via risk-informed resource and investment man-
agement decisions.

The approach presented for enterprise capability portfolio risk manage-
ment provides a number of beneficial and actionable insights. These include 
the following:

•	 Identification of risk events that threaten the delivery of capabilities 
needed to advance goals and capability outcome objectives.

•	 A measure of risk for each capability derived as a function of each 
risk event’s occurrence probability and its consequence.

•	 An analytical framework and logical model within which to struc-
ture capability portfolio risk assessments—one where assessments 
can be combined to measure and trace their integrative effects on 
engineering the enterprise.

•	 Through the framework, ways to model and measure risk as capa-
bilities are time-phased across incremental capability development 
approaches.

•	 Decision-makers provided the trace basis and the event driv-
ers behind all risk measures derived for any node at any level of 
the capability portfolio’s hierarchy. With this, capability portfolio 
management has visibility and supporting rationales for identify-
ing where resources are best allocated to reduce (or eliminate) risk 
events that threaten achieving enterprise goals and capability out-
come objectives.

4.6  The “Cutting Edge”

This chapter presented an analytical framework and computational model 
for assessing and measuring risk in the engineering of enterprise systems. It 
illustrated one way to represent, model, and measure risk when engineering 
an enterprise from a capability portfolio perspective.

Few protocols presently exist for measuring capability risk in the context 
of capability portfolios. Additional research is needed on such protocols and 
how to customize them to specific supplier-provider relationships. Here, 
further concepts from graph theory might be used to visualize and model 
a capability portfolio’s supplier-provider topology. New computational 
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algebras might then be designed to generate measures of capability risk 
unique to that portfolio’s dependency relationships.

Protocols are also needed to capture and measure horizontal and verti-
cal dependencies among capabilities and suppliers within capability port-
folios and across families of capability portfolios that make an enterprise. 
With this, the ripple effects of failure in one capability (or supplier) on other 
dependent capabilities (or suppliers) or portfolios could be formally meas-
ured. Developing ways to capture and measure these effects would enable 
designs to be engineered that minimize dependency risks. This might lessen 
or even avoid potentially cascading negative effects that dependencies can 
have on the timely delivery of enterprise services to consumers.

Additional research areas at the “cutting edge” include the following:

•	 How time-phasing capability delivery to consumers should be 
factored into risk assessment, measurement, and management 
formalisms.

•	 How to approach risk measurement and management in enter-
prises that consists of dozens of capability portfolios with hundreds 
of supplier programs. For this, the idea of representing large-scale 
enterprises by domain capability portfolio clusters might be explored 
and a new concept of portfolio cluster risk management might be 
developed.

•	 How to design decision analytic methodologies to measure risk 
criticality that captures each risk’s multiconsequential impacts and 
dependencies across enterprise-wide capabilities.

The materials in this chapter aimed to bring conceptual understandings of 
the enterprise engineering problem space into view. Along with this, risk 
management theory and practice for engineering enterprises can evolve. 
This topic falls at the interface between risk management methods for engi-
neering traditional systems with those needed for engineering enterprises. 
Recognizing this interface and then addressing its challenges is an essential 
step towards discovering new methods and new practices uniquely designed 
to successfully manage risk in engineering an enterprise.

Questions and Exercises

	 1.	 In the following figure, suppose program node Nj  has 10 risk events 
Ei i( , , , , ).= 1 2 3 10…  Suppose each risk event’s occurrence probabil-
ity and its impacts (if it occurs) are scored as shown in Figure 4.21. 
Given this information, answer the following questions.
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	(A)	 Use Definition 4.1 to compute the risk score measure of each 
risk event. Assume equal weights in computing each risk score 
measure.

	(B)	 Develop a most-to-least critical risk ranking of these risk events 
using the computed risk score measures.

	(C)	 Create a scatter plot of the results in (A) and (B) similar to the 
scatter plot shown in Figure 3.42.

	 2.	Using the risk scores computed for the risk events in Exercise 1, 
determine the risk score of program node Nj using
	(A)	 The mean of the risk scores.
	(B)	 The maximum of the risk scores.
	(C)	 The max average of the risk scores; assume the weight function 

shown in Figure 4.11.
	(D)	 What drives the differences between the risk scores in (A), (B), 

and (C)? Discuss when a mean, maximum, or a max average risk 
score rule might be more appropriate than the others.

	 3.	From Definitions 4.2 and 4.3, determine when the max average and 
critical average are equal.

	 4.	 In Figure 4.22, show and explain why critical average and max aver-
age rules both generate a risk measure of 64.65 for the node labeled 
Network Operations Capability portfolio.

	 5.	Suppose Figure 4.23 presents a portion of a capability portfo-
lio defined as part of engineering an enterprise system. Given the 
information shown, apply the risk analysis algebra in this chapter to 
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Suppose all Tier 2 capability areas are critically important nodes to the portfolio 
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derive a risk measure for Capability 3.2. What risks are driving this 
measure?

		  The following are questions for advanced research investigations.
	 6.	Risk Measurement

This chapter presented a framework and algebra for assessing and 
measuring capability risk in the context of capability portfolios 
defined for engineering an enterprise. The discussion illustrated 
one way among possible ways to represent, model, and measure risk 
when engineering an enterprise from a capability portfolio perspec-
tive. Few protocols presently exist for measuring capability risk in 
the context of capability portfolios.
Think about such protocols and how they might be designed to address 
various types of supplier–provider relationships. Here, concepts from 
network or graph theory might be used to visualize and model a capa-
bility portfolio’s supplier–provider topology. Computational rules 
might then be designed to algebraically generate measures of capabil-
ity risk unique to that capability portfolio’s topology.

	 7.	Capturing Dependencies
Related to the above, protocols are needed to capture and measure hor-
izontal and vertical dependencies among capabilities and suppliers 
within capability portfolios and across families of capability portfolios 
that make up an enterprise. With this, the ripple effects of failure in one 
capability (or supplier) on other dependent capabilities (or suppliers) or 
portfolios could be formally measured.
Think about ways to capture, model, and measure these effects so 
designs can be engineered that minimize dependency risks and their 
potentially cascading negative effects on the timely delivery of enter-
prise services to consumers.

	 8.	Time-Phase Considerations

		  Think about how the time phasing of capability delivery to con-
sumers of enterprise services might be planned and then factored 
into risk assessment, measurement, and management formalisms.

	 9.	Enterprise Scale Considerations

		  Think about how to approach risk measurement and management 
in enterprises that consist of dozens of capability portfolios with 
hundreds of supplier programs. Here, a new idea of representing 
large-scale enterprises by domain capability portfolio clusters might be 
explored and a new concept of portfolio cluster risk management might 
be developed.

	 10.	Risk-Adjusted Benefit Measure

		  Consider a capability portfolio being managed through a supplier–
provider approach, as discussed in this chapter. Suppose a capability 
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portfolio manager must select investing in suppliers that offer the 
most benefit to achieving capability, in terms of desired outcomes.

		  Think about how to measure investment benefit but how to adjust 
this measure to account for risks each supplier may face in deliver-
ing their contribution to the capability portfolio’s desired capability 
outcomes. How might a portfolio manager optimally select the most 
risk-favorable subset of suppliers from a set of competing choices.

	 11.	Governance

		  Think about ways to structure engineering management and over-
sight protocols for an enterprise risk management process. Define 
necessary process participants, the decision chain of authority and 
its operations, and the roles of stakeholders in the process as con-
sumers of enterprise services.
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5
An Index to Measure Risk Correlationships

5.1  Introduction

Chapter 4 described a way to structure the risk management problem 
space in engineering enterprise systems from a capability portfolio per-
spective. A representation of this space by a supplier–provider metaphor 
in the form of a mathematical graph was developed. This graph is a logical 
topology of nodes that depict supplier–provider relationships unique to a 
capability portfolio. Capturing dependencies between nodes is a critical 
aspect in the analysis and management of risk in engineering enterprise 
systems.

In this book, we posit two types of dependencies that affect risk in 
engineering capabilities for an enterprise system. One is risk inheritance; 
that is, how risk-dependent are capabilities so that threats to them can 
be discovered before contributing programs (e.g., suppliers) degrade, fail, 
or are eliminated. The other is operational dependence; that is, what is 
the effect on the operability of capability if, due to the realization of risk, 
one or more contributing programs (e.g., suppliers) or supplier–provider 
chains degrade, fail, or are eliminated? The first type of dependency is 
addressed in this chapter. The second type of dependency is discussed 
in Chapter 6.

This chapter introduces a new engineering risk management metric called 
the risk correlationship index. The risk correlationship (RCR) index measures 
the strength of the influence of risk inheritance between supplier programs 
and across supplier–provide chains that comprise a capability portfolio. Risk 
inheritance, if present, can increase the threat that risks with one supplier 
program may adversely affect others and ultimately their collective contri-
butions to the associated capabilities. The purpose of the RCR index is to sig-
nal where risk-reducing opportunities exist to minimize dependency risks 
that, if realized, have cascading negative effects on the ability of an enter-
prise to deliver capabilities and services to users.
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5.2  RCR Postulates, Definitions, and Theory

The development of the RCR index is based on a set of postulates. These pos-
tulates define the index in terms of its behavior in the context of engineering 
enterprise systems by capability portfolios. The RCR postulates are stated in 
the language of a mathematical graph that represents the supplier–provider 
metaphor, as discussed in Chapter 4. As such, these postulates assume a 
parent–child relationship between a capability node (C-node) and the set of 
supplier program nodes (P-nodes) that contribute to enabling that capability. 
First, we begin with a definition of risk inheritance.

Definition 5.1: Risk Inheritance

A RCR exists between program nodes if and only if one program node inher-
its one or more risk events from one or more other program nodes.

RCRs only directly exist between P-nodes; that is, only P-nodes can directly 
inherit risk events. RCRs indirectly exist between C-nodes when P-nodes asso-
ciated with them have RCRs with other P-nodes in the capability portfolio.

Postulate 5.1: Capability Node Risk Score

A capability node’s risk score is a function of the risk scores of its supplier 
program nodes.

Postulate 5.2: Capability Node RCRs are Indirect

A capability node’s risk correlationships are indirect. They result and derive 
only from RCRs that directly exist between supplier program nodes, from 
across the capability portfolio, to that capability node.

Postulate 5.3: Inheritance Bounds

The risk score of a program node with noninherited risk events that then 
inherits one or more risks from one or more other program nodes cannot be 
lower than its risk score prior to the inheritance.

Postulate 5.4: Probability Invariant with Inheritance

A risk event’s occurrence probability is invariant with respect to inheritance.

Postulate 5.5: Impacts Can Vary with Inheritance

An inherited risk event’s impact (or consequence) on a receiving program node 
can be different from its impact (or consequence) on the sending program node.
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Postulate 5.6: Impacts Assessed Against Capability

A risk event inherited by a program node shall have its impacts assessed in 
terms of how the risk, if it occurs, has negative consequences on that program 
node’s ability to deliver its contribution to its associated capability node.

Postulate 5.7: Inherited Risk Events Have Resolution Priority

Inherited risk events are “first” targets for resolution or elimination by 
management.

Inherited risk events have, by their nature, extended their threat to other 
programs beyond their source program nodes. This complicates coordina-
tion, collaboration, and risk resolution planning between management and 
stakeholders across all levels of the portfolio. Impacts on multiple stakehold-
ers, users, and outcome goals of affected program nodes must be jointly and 
carefully considered when planning, executing, and managing resolution 
strategies for inherited risks.

Notation 5.1

Let E denote a risk event. Let Eix denote the xth risk event in the set of y risk 
events for program node Pi , where x y= 1 2 3, , , ..., .

Notation 5.2

Let [[ ]]E  denote a risk event inherited by one program node from another pro-
gram node. Let [[ ]], ,Ei j k  denote that program node Pi inherits from program 
node Pj the risk event k, k = 1 2 3, , , ..., .x

Notation 5.3

Let ∼ I denote a set of noninherited risk events. For example, the set

	 ∼ I E E E Ei i i iy= { , , , ..., }1 2 3

signifies that program node Pi contains a set of x y=1 2 3, , , ,…  nonherited events.

Notation 5.4

Let I denote a set of inherited risk events. For example, the set

	 I = {[[E1,2,6]]}

signifies that program node P1 inherits from program node P2 the risk event 
E6. The set
	 I = {[[E1,2,6]], [[E1,2,4]], [[E1,2,5]], [[E1,3,9]]}

signifies that program node P1 inherits from program node P2 the risk events 
are E6, E4, and E5 and program node P1 inherits from program node P3 the risk 
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event E9. The first subscript can be dropped when it is evident from a math-
ematical graph of P-node relationships (shown in Figure 5.5) which P-nodes 
are receiving (inheriting) risk events from those that are sending them (indi-
cated by the second subscript).

Notation 5.5

Let RS Eix( ) denote the risk score of the xth risk event in the set of risk events 
for program node Pi , where x y= 1 2 3, , , ..., .

Notation 5.6

Let RS Ei j k([[ ]]), ,  denote the risk score of risk event k that program node 
Pi , inherits from program node P kj , , , , ..., .where =1 2 3 x

Definition 5.2: Risk Event Risk Score*

Subject to the conditions in Theorem 3.6, the risk score of risk event E is given 
by the additive value function

	 Risk Score(E) = RS(E) = u1VProbability (E) + u2VImpact (E)	 (5.1)

In Equation 5.1, the first term is a value function for the risk event’s occurrence 
probability. The second term is a value function for the severity of the risk 
event’s impact, if it occurs. The coefficients u1 and u2 are nonnegative weights 
such that 0 1 0 11 2≤ ≤ ≤ ≤u u, , and u u1 2 1+ = . In Equation 5.1, these value func-
tions can be designed to produce measures along either a 0 to 1 or a 0 to 100 
cardinal interval scale, as discussed in Chapter 3.

In Chapter 3, Figure 3.19 illustrated a family of value functions that can be 
created for a risk event’s occurrence probability. From Chapter 1 recall that a 
risk event E is a special kind of probability event, in that E has both a nonzero 
and not certain occurrence probability; that is, 0 1< <P E( ) . However, a value 
function for the occurrence probability of a risk event may indeed be designed 
to equal 0 in the limit; that is, as P(E) approaches 0 from the right we have

	 limV(P(E)) ≡ limVProbability (E) = 0 as P(E) → 0+

Similar considerations apply to value functions designed to capture a risk 
event’s impact.

Definition 5.3: Node Risk Score (Noninheritance)

The risk score of the ith program node’s set of noninherited risk events is 
denoted by RS P Ii( | )∼  and is computed by the max average of the set ∼ I ,

*	 Equation 5.1 is one of many ways to formulate a Risk Score measure. The reader is directed to 
Garvey (2008) for additional approaches to formulating this measure. 
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which contains the noninherited risk event risk scores specific to program 
node Pi . The max average rule was introduced in Chapter 4 (Definition 4.1).

Definition 5.4: Node Risk Score (Inheritance)

The risk score of the ith program node’s set of inherited risk events is denoted 
by RS P Ii( ) and is computed by the max average of the set I, which contains 
the inherited risk event risk scores specific to program node Pi .

Definition 5.5: Program Node Risk Score (Mixed Case)

The risk score of the ith program node’s set of noninherited and inherited risk 
events is denoted by RS P I Ii( |~ )∧  and is defined as follows:

	
RS P I I

RS P I Z

MaxAve RS P I RS P I Zi
i

i i

( ~ )
( ~ )

( ( ~ ), ( ))
∧ =

if is true

if i
1

2 ss true






	 (5.2)

where Z1 is when RS P I RS P Ii i( ) ( ~ )≤  and Z2 is when RS P I RS P Ii i( ~ ) ( ).≤

The analytical philosophy behind the rule given by Definition 5.5 is as follows. 
If a program node’s set of inherited risk events has a higher overall risk score 
than the node’s set of noninherited risk events, then the node’s overall risk score 
should be driven by the impacts of inheritance. Alternatively, if a program node’s 
set of noninherited risk events has a higher overall risk score than the node’s set 
of inherited risk events, then the node’s overall risk score should be driven by 
the impacts of noninheritance—as these are the more threatening events to the 
program node’s ability to deliver its contribution to its capability node. 

The risk score rule in Definition 5.5 is one of many possible forms, with many 
design variations possible. For instance, certain conditions (when triggered) 
may warrant invoking the max rule in Equation 5.2. When evaluating the 
design of a risk score rule, the magnitudes of the values produced should 
always reflect the risk tolerance level of the program or decision maker 
receiving its results.

Definition 5.6: Capability Node Risk Score

The risk score RS of a capability node is the max average of its individual 
program node risk scores that include (if present) the influence of risk event 
inheritance in accordance with Definition 5.5.

Definition 5.7: Program Node RCR Index

If program node Pi contains noninherited risk events and risk events inher-
ited from one or more other program nodes in the capability portfolio, then 
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the RCR index of Pi is defined as follows:

	
0 1≤ =

∧ −
∧

≤RCR( )
( |~ ) ( |~ )

( ~ )
P

RS P I I RS P I

RS P I Ii
i i

i

	 (5.3)

Definition 5.8: Capability Node RCR Index

If capability node Cz contains one or more program nodes that have RCRs 
with other program nodes in the capability portfolio, then the RCR index of 
capability node Cz is defined as follows:

	
0 1≤ =

∧ −
∧

≤RCR( )
( |~ ) ( |~ )

( ~ )
C

RS C I I RS C I

RS C I Iz
z z

z

	 (5.4)

where RS C I Iz( |~ )∧  is the risk score of capability node Cz computed by the 
max average of its set of P-node risk scores derived from Equation 5.2. The 
term RS C Iz( |~ ) is the risk score of capability node Cz computed by the max 
average of its set of P-node risk scores that do not include the influence of risk 
event inheritance.

Finally, recall from Postulate 5.2 that capability node RCRs are indirect. They 
result and derive only from RCRs that exist directly between supplier pro-
gram nodes in the portfolio. A capability node’s RCR index is a response 
measure—one that derives from the influence of risk event inheritance 
between P-nodes that comprise that specific capability. This is illustrated in 
Figure 5.1, whose interpretation is discussed next.

Suppose Figure 5.1 illustrates a capability portfolio that consists of three 
capability nodes (C-nodes) and four supplier program nodes (P-nodes). The 
left-most assemblage of nodes shows an alignment of P-nodes under each 
C-node. Let this alignment indicate which supplier programs are responsible 
to deliver technologies that enable the associated capability. For example, in 
Figure 5.1 capability node Cap2 is dependent on two supplier program nodes  
P2 and P3 for Cap2 to achieve its intended outcomes.

In Figure 5.1, the right-most graph shows arrows between the C-nodes 
and the P-nodes. These arrows signal that RCRs exist between them. This 
is called an RCR graph. In an RCR graph, risk correlationships are always 
indicated by arrows.* Figure 5.2 shows the RCR graph in Figure 5.1 with the 

*	 In this chapter, arrows indicate that (1) a RCR exists between two nodes, and (2) the direction 
of the risk inheritance in terms of the inheritance sending node and the inheritance receiv-
ing node. When arrows on a graph indicate risk inheritance, then it is called an RCR graph. 
In Chapter 6, arrows will indicate the direction of operational dependencies between nodes 
in feeder–receiver relationship. Such a graph, discussed in Chapter 6, is called a functional 
dependency network analysis (FDNA) graph.
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inheritance flow of risk events from one node to another node. On the right 
side of Figure 5.2, a collection of risk events is shown under each program 
node. Recall that a risk event is one that, if it occurs, has unwanted conse-
quences for the respective program node’s ability to deliver its contribution 
to its respective capability node.

From Definition 5.1, a RCR exists between P-nodes if and only if one 
P-node inherits one or more risk events from one or more other P-nodes.  
When RCRs are present, they only exist directly between P-nodes. In 
accordance with Postulate 5.2, RCRs between C-nodes are indirect. They 
reflect the presence of RCRs between P-nodes that comprise the specific 
capability. In Figures 5.1 and 5.2, this is indicated by the arched arrow 
above the C-nodes.

Cap1

P1

Cap2 Cap3

P2

P3

P4

Cap1

P1

Cap2 Cap3

P2

P3
An

RCR graph

P4

FIGURE 5.1
An RCR graph: Program-to-capability node RCRs.
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P1

Cap2 Cap3

P2

P3

P4
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P1

Cap2 Cap3

P2
{[[E9]]}

{[[E1]],
[[E3]]}

{[[E6]]}
{[[E7]]}

{E4, E5} {E9, E10}{E1, E2, E3}

{E6, E7, E8}

P3
An

RCR graph

P4

FIGURE 5.2
An RCR graph: A risk event inheritance view.
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The RCR index for P-nodes behaves in accordance with the following 
properties. These properties follow from the preceding postulates and 
definitions.

Property 5.1

If program node Pi has a mix of noninherited and inherited risk events and 
RS P I RS P Ii i( | ) ( |~ )≤ , then RCR( )Pi = 0.

Proof

Program node Pi is given to have a mix of noninherited and inherited risk 
events. It is also given that RS P I RS P Ii i( | ) ( |~ )≤ . From Equation 5.2, it follows 
that RS P I I RS P Ii i( ~ ) ( ~ ) ;∧ =  thus,

	
RCR( )

( ~ ) ( ~ )

( ~ )

( ~ ) ( ~ )

(
P

RS P I I RS P I

RS P I I

RS P I RS P I

RSi
i i

i

i i=
∧ −

∧
=

−
PP Ii ~ )

= 0

Property 5.1 reflects the following: if the RCR between Pi and another 
program node is zero, then inheritance has no contribution to the risk 
score of Pi . Property 5.1 reflects Postulate 5.3 which states: The risk score 
of a P-node with noninherited risk events that then inherits one or more risks 
from one or more other P-nodes cannot be lower than its risk score prior to the 
inheritance.

Property 5.2: RCR Index Bounds

The RCR index falls within the interval 0 1≤ ≤RCR Pi( ) .

Property 5.2 reflects the behavior that the closer the risk correlationship 
index is to 0 the lesser the influence of risk inheritance on program node 
Pi . Alternatively, the closer the risk correlationship index is to 1 the greater 
the influence of risk inheritance on program node Pi . Thus, the RCR index is 
simply a strength of influence measure. Proving Property 5.2 is an exercise 
for the reader.

Property 5.3

If program node Pi  contains a mix of noninherited and inherited risk events 
and if RS P I RS P Ii i( ~ ) ( )<  then RS P I RS P I I RS P Ii i i( ~ ) ( ~ ) ( ).< ∧ <

5.3  Computing the RCR Index

The following problems illustrate computing the RCR index.
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PROBLEM 5.1

From the information in Figure 5.3, compute the RCR index for program 
node P1.

Solution

From Definition 5.3 we have

	 RS P I( ~ ) ( , , , , , ) .1 67 43 44 21 50 55 60 29= =MaxAve  

From Definition 5.4 we have

	 RS P I( ) ([[ ]])1 95 95= =MaxAve

From Definition 5.5, and since RS P I RS P I( ~ ) ( ),1 1≤  the overall risk score of 
P1 is

	 RS P I I( ~ ) ( . , ) .1 60 29 95 89 7935∧ = =MaxAve

In the above max average calculations suppose the weighting function in 
Figure 4.11 was used. From Definition 5.7 we have

	
RCR( )

( ~ ) ( ~ )

( ~ )
. .

.
P

RS P I I RS P I

RS P I I1
1 1

1

89 7935 60 29
89 7935

=
∧ −

∧
=

−
== 0 32857.

Therefore, approximately 33% of the overall risk score of P1 is contributed by 
P3. This finding would be noteworthy to report to the engineering manage-
ment team.

�e arrow between C-node Cap1 and C-node Cap2 signals
the risk event inheritance by P-node P1 from P-node P3 

Cap1 Cap2 Cap3

P4P2

P3

P1{67, 43, 44, 21, 50, 55}

{[[95]]}

{20, 42, 95}

An
RCR graph

Suppose the numbers
in these sets denote

risk event risk scores
computed from

Equation 5.1

FIGURE 5.3
Problem 5.1 RCR graph.



166 Advanced Risk Analysis in Engineering Enterprise Systems

PROBLEM 5.2

From the information in Figure 5.4, compute the RCR index for program 
node P1.

Solution

From Definition 5.3 we have

	 RS P I( ~ ) ( )1 95 95= =MaxAve

From Definition 5.4 we have

	 RS P I( ) ([[ ]], [[ ]], [[ ]], [[ ]], [[ ]], [[ ]])1 67 43 44 21 50 51= =MaxAve 660 29.

From Definition 5.5, and since RS P I RS P I( ) ( ~ ),1 1<  the overall risk score of 
P1 is

	 RS P I I RS P I( ~ ) ( ~ )1 1 95∧ = =

In the above max average calculations suppose the weighting function in 
Figure 4.11 was used. From Definition 5.7 we have

	
RCR( )

( ~ ) ( ~ )

( ~ )
P

RS P I I RS P I

RS P I I1
1 1

1

95 95
95

0=
∧ −

∧
=

−
=

Therefore, in accordance with Postulate 5.3, the contribution from P3 has no 
effect on the overall risk score of P1 (in this case). Recall that Postulate 5.3 

�e arrow between C-node Cap1 and C-node Cap2 signals
the risk event inheritance by P-node P1 from P-node P3 

Cap1 Cap2 Cap3

P4P2

P3

P1
{95}

{[[67]], [[43]], [[44]],
[[21]], [[50]], [[55]],}

{67, 43, 44, 21, 50, 55}

An
RCR graph

Suppose the numbers
in these sets denote
risk event risk scores
computed from
Equation 5.1

FIGURE 5.4
Problem 5.2 RCR graph.
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states: The risk score of a program node with noninherited risk events that then 
inherits one or more risks from one or more other program nodes cannot be lower 
than its risk score prior to the inheritance.

PROBLEM 5.3

Compute the RCR indexes for all nodes in Figure 5.5, given the data in the 
left three columns of Table 5.1.

Solution

Figure 5.5 shows 10 supplier program nodes providing contributions to 3 
capability nodes. Here, program nodes within a capability node need not be 
unique to that capability. In practice, the same program node may appear 
beneath multiple capability nodes if the technology program represented by 
that node is supplying multiple contributions to those capabilities. For exam-
ple, program node P2 might be the same technology program as program 
node P6 , but it is supplying multiple contributions to capability node Cap1 
and Cap2.

In Figure 5.5, observe that program node P1 has three noninherited risk 
events E11, E12 , and E13  and three inherited risk events [[ ]],[[ ]] [[ ]].E E E71 51 52, and  
These inherited risk events come from program nodes P7 and P5 . Suppose 
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P1

{E11,E12,E13}
{43,25,64}

{E21,E22,E23,E24,E25}
{38,22,81,89,92}
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{75,65,71,96,88}

{E31,E32}
{56,72}

{E61,E62,E63}
{52,75,33}

{E51,E52}
{77,25}

{E41,E42}
{82,57}

{E71,E72}
{86,56}

{[[E71]]}

{[[E25]]}

{[[E94]]}

{[[E63]]}

{[[E52]]}
{[[E41]]}

{[[E81]]}

{[[E51]],[[E52]]}

{[[E11]],[[E13]]}

{E91,E92,E93,E94}
{72,55,48,80}

{E81,E82,E83}
{34,52,46,}

P4 P7

P2 P5 P8

P3 P6 P9

P10

P1 P4 P7

P2 P5 P8

P3 P6

Inherited
risk events

Noninherited
risk events

An
RCR graph

P9

P10

Cap2 Cap3 Cap1 Cap2 Cap3

FIGURE 5.5
Problem 5.3. Noninherited and inherited risk events and their risk scores.
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risk scores for these six risk events are given in Table 5.1 and were computed 
by Equation 5.1; that is,

	 { ( ), ( ), ( )} { , , }RS E RS E RS E11 12 13 43 25 64=

	 { ([[ ]]), ([[ ]]), ([[ ]])} { , , }RS E RS E RS E71 51 52 86 77 25=

From Definitions 5.3 and 5.4, program node P1’s risk scores are as follows:

	

RS P I RS E RS E RS E( ~ ) ({ ( ), ( ), ( )})
({ , ,

1 11 12 13

43 25 6
=
=

MaxAve

MaxAve 44 56 8}) .=

	

RS P I RS E RS E RS E( ) ({ ([[ ]]), ([[ ]]), ([[ ]])})1 71 51 52=
=

MaxAve

MaxAvve({ , , })86 77 25 79=

From Definitions 5.5, the risk score of program node Pi , when Pi is character-
ized by a set of noninherited and inherited risk events is

	

RS P I I
RS P I RS P I RS P I

RS P I RS P
i

i i i

i

( ~ )
( ~ ) ( ) ( ~ )

( ( ~ ) , (
∧ =

≤if 

MaxAve ii i iI RS P I RS P I)) ( ~ ) ( )if ≤


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



From the above, since RS P I RS P I( ~ ) ( )1 1<  the combined risk score of pro-
gram node P1 is

	 RS P I I( ~ ) ( . , ) .1 56 8 79 75 67∧ = =MaxAve

TABLE 5.1

Problem 5.3 Data and Computations

Program 
Node

Noninherited 
Risk Event 
Risk Scores

Inherited 
Risk Event 
Risk Scores RS P Ii( )∼ RS P Ii( ) RS P I Ii( )∼ ∧ RCR Pi( )

P1 {43, 25, 64} {86, 77, 25} 56.80 79 75.67 0.249
P2 {38, 22, 81, 89, 92} None 83.72 0 83.72 0
P3 {56, 72} None 69.60 0 69.60 0
P4 {82, 57} {25} 78.25 25 78.25 0
P5 {77, 25} {92, 34} 69.20 83.30 81.185 0.148
P6 {52, 75, 33} {80} 68.50 80 78.275 0.125
P7 {86, 56} {43, 64} 81.50 60.22 81.50 0
P8 {34, 52, 46} {82} 48.16 82 76.924 0.374
P9 {72, 55, 48, 80} None 75.125 0 75.125 0
P10 {75, 65, 71, 96, 88} {33} 90.90 33 90.90 0
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Thus, the RCR index of P1 is
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=

−
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The results for the other nine program nodes were computed in a similar man-
ner and are summarized in Table 5.1. To the capability portfolio manager and 
to the portfolio’s individual program managers, inherited risks are first targets 
for resolution or elimination. Seen in Figure 5.5, inherited risk events extend 
their threat to other programs beyond their originating program nodes.

Inheritance complicates program-to-portfolio cross-coordination, collabo-
ration, and resolution planning. Multiple stakeholders, users, and outcome 
goals of affected program and capability nodes must be jointly considered 
when planning and executing resolution strategies for inherited risks. Thus, 
from a criticality perspective, inherited risk events are signaled as prime tar-
gets for early management attention and intervention.

Table 5.2 shows the computational results of each capability node’s risk 
score as a function of the relationships in Figure 5.5 and the derived pro-
gram node risk scores shown in Table 5.1. For example, the risk score and 
the risk correlationship index for capability node C2 are formulated from 
Definition 5.8, Figure 5.5, and Table 5.1 as follows:

	

Risk Score C RS C
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Here, RS C I I( ~ )2 ∧  is the risk score of capability node C2 computed over its 
set of P-node risk scores that include the influence of inheritance (Table 5.1). 
The RCR index of capability node C2 is then computed, from Equation 5.4, as 
follows:
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Observe that a capability node’s risk correlationships are indirect. They derive 
only from risk correlationships that exist directly between supplier program 
nodes in the portfolio. So, a capability node’s RCR index is really a response 
measure—one that derives from the effects of risk event inheritance between 
P-nodes that comprise the supplier dimensions of the capability portfolio.

Figure 5.6 presents the nodal topology of Problem 5.3 visualized by RCR 
indices. With this topology management can view time-history changes to 
these indices and see where high RCR indexes exist or remain between pro-
gram and capability nodes. A rank-order from highest-to-lowest RCR index 
by program and capability nodes affected by inheritance can be generated 
and monitored over time.
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0.148
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0

0
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P9

P10

0.0525 0.0245

FIGURE 5.6
Problem 5.3 nodes: An RCR index view.

TABLE 5.2

The Influence of Risk Inheritance on C-Node Risk Scores

Capability 
Node

Program Node 
Risk Score Set

Capability Node 
Risk Score RS(Cz) RCR(Cz)

C1 {75.67, 83.72, 69.6} 81.503 0.02315
C2 {78.25, 81.185, 78.275} 80.601 0.0525
C3 {81.5, 76.924, 75.125, 90.90} 87.964 0.0245



171An Index to Measure Risk Correlationships

5.4  Applying the RCR Index: A Resource Allocation Example

This section illustrates an application of the RCR index to resource allocation 
decisions. Here, we integrate an operations research optimization algorithm 
into the theory of risk inheritance and the RCR index. The aim is to demon-
strate a formal and analytically traceable investment decision protocol. This 
protocol works to identify which combination of program nodes offer the 
maximum reduction in capability risk, when risk resolution assets are allo-
cated from a constrained risk resolution budget. The identified nodes will be 
the best among other program node candidates for management interven-
tion and the investment of limited risk resolution funds. The optimization 
algorithm discussed below falls into a class known as constrained optimiza-
tion algorithms. It is informally known as the knapsack model.

The Knapsack Optimization Algorithm

The knapsack problem is a classic problem in operations research. One form 
of this problem can be described as follows. Suppose you have a finite col-
lection of items you want to pack into your knapsack. Suppose the knapsack 
has limited capacity so it is not possible to include all items. Suppose each 
item has a certain value (or utility) to you. Given this, which items can be 
included in the knapsack such that the value of its collection of items is maxi-
mized but does not exceed the knapsack’s capacity?

A classic knapsack problem can be mathematically formulated as follows:

Maximize v x v x v x v xn n1 1 2 2 3 3+ + + +�
	 subject to w x w x w x w x Kn n1 1 2 2 3 3+ + + + ≤�

where xi for i n= 1 2 3, , , ,…  takes the value 0 if item xi is not included in the 
knapsack and takes the value 1 if item xi is included in the knapsack. The 
parameter wi  is the weight (e.g., in pounds) of item xi and K is the overall 
weight capacity of the knapsack.

The first equation is called the objective function. The second equation is 
called the constraint equation. Solving the knapsack problem involves inte-
ger programming, a specialized optimization technique. The Microsoft® 
Excel Solver program can be used to find solutions to the knapsack problem. 

Instead of a knapsack, let us think of the problem of choosing which 
P-nodes to include in a risk resolution portfolio. However, suppose this port-
folio is defined by a fixed budget for funding P-node risk resolution plans. 
The decision problem is to select P-nodes that have the highest risk to their 
associated capability while not exceeding the overall risk resolution budget. 
As mentioned above, we can think of this as a knapsack problem. The math-
ematical set up is as follows.
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Let j n= { , , , , }1 2 3 …  be a set indexing the candidate P-nodes (note: sub-
scripts here are local to this knapsack formulation). Let

	
x

j
j =

0 if the th P node is not in the risk resolution portfolio
1

  -
  iif the th P node is in the risk resolution portfolioj -





Here, we want to

Maximize v x v x v x v xn n1 1 2 2 3 3+ + + +�
	 subject to c x c x c x c x Cn n1 1 2 2 3 3+ + + + ≤�

where vj is the RCR index of jth P-node, cj is the cost to resolve the risk events 
that comprise the jth P-node, and C is the total risk resolution budget.

Table 5.3 illustrates this application in the context of ten P-nodes described 
in Problem 5.3. Table 5.1 presents the risk scores of these P-nodes. Suppose 
the columns of the Table 5.3 are the ten P-nodes all competing for fund-
ing from the fixed risk resolution budget. Suppose the total risk resolution 
budget is $20 million. However, the cost to resolve the risks in all ten P-nodes 
is just over $36 million.

Furthermore, suppose the management team decides that the risk resolu-
tion budget should only be allocated to P-nodes with risk scores greater than 
or equal to 70. The reasoning being that P-nodes with risk scores equal to or 
higher than 70 fall into a “RED” color zone and are those that most threaten 
capability. Given this, which P-nodes should be funded in the “risk resolu-
tion portfolio” such that they collectively offer the maximum reduction in 
potential risk to capability while not exceeding the $20 million budget.

TABLE 5.3

P-Node Input Matrix

Optimization Input 
Matrix

Program 
Node ID

1

Program 
Node ID

2

Program 
Node ID

3

Program 
Node ID

4

Program 
Node ID

5

Objective Function: 
P-Node RCR Index

0.249 0 0 0 0.148

Subject to Constraint: 
Risk Resolution Cost ($K)

5900 2300 4321 7656 2132

Optimization Input 
Matrix

Program 
Node ID

6

Program 
Node ID

7

Program 
Node ID

8

Program 
Node ID

9

Program 
Node ID

10
Objective Function: 
P-Node RCR Index

0.125 0 0.374 0 0

Subject to Constraint: 
Risk Resolution Cost ($K)

6241 1325 3127 2112 1111
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To find the optimal collection of P-nodes to include in the risk resolution 
portfolio, given the above conditions, we can model this situation as a “knap-
sack” problem. Here, the coefficients of the objective function are the RCR 
indexes of the P-nodes. The coefficients of the constraint equation are the 
resolution costs of these P-nodes. For example, in Table 5.3, the first P-node 
has an RCR index of 0.249 and a risk resolution cost of $5.9 million. Next we 
use the Microsoft® Excel Solver program to solve this optimization problem. 
The results from Excel Solver are shown in Table 5.4.

In Table 5.4, the P-nodes indicated by a “1” in the gray box of the solu-
tion matrix are those to be funded. The P-nodes indicated by a “0” in the 
solution matrix are those not to be funded. Here, P-nodes 1, 5, 6, 7, 8, and 10 
are the optimal collection of P-nodes to fund in the risk resolution portfolio. 
Program nodes 2, 3, 4, and 9 are not funded and hence are excluded from the 
risk resolution portfolio.

The mix of funded P-nodes, shown in Table 5.4, is the optimal combina-
tion of P-nodes to allocate funds that (1) offer the largest risk reduction to the 
capability portfolio and (2) comes as close as possible, while not exceeding, 
the total risk resolution budget of $20 million. The risk resolution costs for all 
P-nodes selected for investment sum to $19.836 million.

The analysis approach discussed illustrates a formal way to allocate lim-
ited risk resolution resources to P-nodes considered most threatening to 
capability. Analytical approaches such as these are valuable “first-filters” 
that support management decision-making. They are not replacements 
for human judgment or creative intervention management. The organiza-
tion’s leadership should always look at results such as these and consider 
additional trade-offs, options, or creative ways to address critically threat-
ening risks, given risk resolution budget constraints. One way to use this 
analysis is to let it form the basis for deliberating why, where, and when 
increased resources are needed. This approach reveals not only those 
P-nodes whose risks can be included in a risk resolution funding portfo-
lio but those that, without relaxing constraints or finding workarounds, 
should be excluded.

TABLE 5.4

P-Node Solution Matrix

Program 
Node ID

1

Program 
Node ID 

2

Program 
Node ID 

3

Program 
Node ID 

4

Program 
Node ID 

5

1 0 0 0 1

Program 
Node ID

6

Program 
Node ID

7

Program 
Node ID

8

Program 
Node ID

9

Program 
Node ID

10

1 1 1 0 1
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5.5  Summary

Developing ways to represent and measure capability dependencies in engi-
neering enterprise systems is a critically important aspect of enterprise risk 
management. The importance of this problem is many-fold. The primary 
concern is enabling the management team to study the ripple effects of fail-
ure in one capability on other dependent capabilities across an enterprise. 
Offering ways to study these effects enables engineers to design for mini-
mizing dependency risks that, if realized, have cascading negative effects on 
the ability of an enterprise to deliver services to consumers.

The problem discussed in this chapter focused on one form of depen-
dency—risk inheritance between supplier programs in a capability portfo-
lio. An index was developed that measures the influence of risk inheritance 
among supplier programs and capabilities. The RCR index identifies and 
captures the effects of inheritance on the risk that program nodes will fail to 
deliver their contributions to the capabilities that depend on them.

Questions and Exercises

	 1.	Compute the RCR indexes for all nodes in Figure 5.7.
	 2.	Compute the RCR indexes for all nodes in Figure 5.8.
	 3.	Compute the RCR indexes for all nodes in Figure 5.9.
	 4.	Prove Property 5.2.
	 5.	 If RS P I RS P Ii i( |~ ) ( | )≤  show that RS P I I RS P I RS P Ii i i( |~ ) ( ) ( |~ ) ( ) ( | )∧ = − + +1

2
1
21 1l l 

RS P I I RS P I RS P Ii i i( |~ ) ( ) ( |~ ) ( ) ( | )∧ = − + +1
2

1
21 1l l  where 0 1≤ ≤l .

 {76, 34, 90}

{85, 45, 78}

 {25, 68}

{[[68]]} {[[25]]}

{[[90]]}P2

P3

P1 P4

FIGURE 5.7
RCR graph for Exercise 1.
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P2

P3

P1

Cap1 Cap2 Cap3

P4

 {80, 59, 84}

 {70, 95, 45}

 {77, 60}

 {88, 57}

{[[70]]} {[[95]]}

{[[80]],
[[84]]}{[[77]]}

FIGURE 5.8
RCR graph for Exercise 2.

P2

P3 P6

P7P4

P1

Cap1 Cap2 Cap3

P5{45, 43, 65, 41, 32, 38} {77, 88, 93, 37}

{55, 100, 45}

{97, 34, 75}

{[[95]]}

{45, 95}

{21, 47, 66}

{[[90]]}

{[[100]]}

{[[97]],[[75]]}

{[[95]]}

{90, 22}

{[[88]]} {[[65]]}

FIGURE 5.9
RCR graph for Exercise 3.
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6
Functional Dependency Network Analysis

6.1  Introduction

Critical considerations in engineering systems, systems of systems, and 
enterprise systems are identifying, representing, and measuring the effects 
of dependencies between suppliers of technologies and providers of serv-
ices the consumers. The importance of this topic is many-fold. Primary, is 
to study the ripple effects of failure in one capability on other dependent 
capabilities across an enterprise as a highly connected system. Providing 
mechanisms to anticipate these effects early in design enables engineers to 
minimize dependency risks that, if realized, can have cascading unwanted 
effects on the ability of a system to deliver its services.

One way to approach dependency analysis is by using mathematical graph 
theory. Graph theory offers a visual representation of complex dependencies 
between entities and enables the design of formalisms to measure and trace 
the effectiveness of these relationships as they affect many parts and paths in 
a graph. Likewise, an enterprise can be represented as a network of dependen-
cies between contributing systems, infrastructures, or organizational entities. 
They can be expressed as nodes on a graph depicting direction, strength, and 
criticality of feeder–receiver dependency chains or relationships. With these 
formalisms, algorithms can be designed to address questions such as:

What is the effect on the operability of enterprise capability if, due to 
the realization of risks, one or more contributing programs or supplier–
provider chains degrade, fail, or are eliminated? How tolerant is the 
operability of an enterprise if, due to the realization of risks, one or more 
contributing programs or supplier–provider chains degrade or fail?

Functional dependency network analysis (FDNA) is a new approach to 
address these and related questions (Garvey and Pinto, 2009). FDNA is a 
methodology and a calculus created to measure the ripple effects of degraded 
operability in one or more entities or feeder–receiver chains on enterprise 
capabilities, due to the realization of risks. FDNA measures the magnitude of 
system inoperability if such entities or chains are damaged and whether the 
loss is unacceptable. From this, algorithms can then be designed to derive 
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optimal portfolios of investments that strengthen entities most critical to 
maintaining a system’s effectiveness in the presence of uncertain or adverse 
conditions.

6.2  FDNA Fundamentals

FDNA is a way to measure inflows and outflows of value across a topology 
of feeder–receiver node dependency relationships. Figure 6.1 illustrates such 
a topology. Figure 6.1 shows a mathematical graph of a capability portfolio* 
with dependency relationships between feeder nodes and receiver nodes. 
A mathematical graph is a set of points and a set of lines, with each line con-
necting two points. The points of a graph are known as vertices or nodes. 
The lines connecting the vertices are known as edges or arcs. The lines of 
graphs can have directedness. Arrows on one or both endpoints indicate 
directedness. Such a graph is said to be directed. “A graph or directed graph 
together with a function which assigns a positive real number to each line 
is known as a network” (Weisstein, MathWorld).  As seen in Figure 6.1, an 
FDNA graph is a directed graph and later we show it is a network.

*	Chapter 4 discusses engineering enterprise systems from a capability portfolio perspective.

Internal portfolio
dependency nodes

Feeder node and
receiver node

Receiver node Receiver node

An external portfolio
dependency node

Receiver node

Leaf node and
feeder node

Leaf node and
feeder node

Feeder node and
receiver node

Leaf node and
feeder node

Leaf node and
feeder node

N2

N1
N3

N4

N6

N5

Cap3

Cap2

Cap1

FIGURE 6.1
An FDNA graph of a capability portfolio. An FDNA graph is a logical topology in that it rep-
resents how value (utils) transmits through the graph between nodes and not necessarily how 
nodes are physically connected.
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A graph may also be viewed in terms of parent–child relationships. A 
parent node is one with lower level nodes coming from it. These are called 
child nodes to that parent node. Nodes that terminate in a graph are called 
leaf nodes. Leaf nodes are terminal nodes; they have no children coming 
from them.

Similar to parent–child dependency relationships, an FDNA graph shows 
dependencies between receiver nodes and feeder nodes. A receiver node is 
one that depends, to some degree, on the performance of one or more feeder 
nodes. A feeder node is one that “feeds” contributions to one or more receiver 
nodes. A node can be a feeder and a receiver node.

A mathematical graph is an important way to visualize dependency rela-
tionships between nodes. In FDNA, it is used to study the transmission of 
value between nodes, so their operability can be mathematically expressed 
and measured.

Mathematically Expressing Dependence and Operability

In FDNA, a dependency exists between nodes when the operability achieved 
by one node relies, to some degree, on the operability achieved by other 
nodes. Operability is a state in which a node is functioning at some level of 
performance. The level of performance achieved by a node can be expressed 
by a measure of value, worth, or “the utility it yields” (Bernoulli, 1738).

In FDNA, a node’s measure of value is called its operability level. Value is 
analogous to a von Neumann-Morgenstern (vNM) utility, a dimensionless 
number expressed in “utils.” In FDNA, we define what a node produces as 
its measure of performance (MOP) and the value (util) of what is produced 
as its operability level or its measure of effectiveness (MOE).

In a dependency relationship between nodes, contributions to the depen-
dent node from other nodes are context specific to the nature of the supply-
ing nodes. Contributions result from the achievement of outputs by nodes 
that reflect their performance.

For example, suppose node Ni produces and supplies coolant fluid to vari-
ous engine manufacturers. A measure of performance for this node might be 
the rate at which it produces coolant fluid. Suppose a production rate of 9000 
gallons per hour means this node is performing at half its full operability 
level. If 100 utils means a node is fully operable (wholly effective) and 0 utils 
means a node is fully inoperable (wholly ineffective), then a performance 
level of 9000 gallons per hour implies node Ni has an operational effective-
ness of 50 utils of value. We can continue to assess the values (utils) of other 
performance levels achieved by Ni to form what is known as a value func-
tion.* Figure 6.2 illustrates one such a function.

*	Chapter 4 presents an extensive discussion on value function theory.
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In general, a value function is a real-valued mathematical function that 
models a node’s measure of value, worth, or utility associated with the 
levels of performance it achieves. The following presents how value func-
tions can be used as a basis to model and measure the transmission of value 
between nodes, across a topology of multinodal dependencies. We start with 
Figure 6.3.

Figure 6.3 is an FDNA graph of two nodes Ni . and Nj. The arrow indicates 
a dependency relationship exists between them. The arrow’s direction means 
the operability of receiver node Nj relies, to some degree, on the operability of 
feeder node Ni . The notation ij is adopted in FDNA to indicate i is the index of 
a feeder node to a receiver node of index j. How can an operability dependency 
between these nodes be mathematically expressed by value functions?

A linear value function is one way to express the operability dependency 
of receiver node Nj on feeder node Ni . Figure 6.4 presents such a family. The 
left side of Figure 6.4 shows a family of operability functions where the oper-
ability level of Nj is a linearly increasing function of the operability level of Ni . 
The family shown is given by the equation,

	 P P P Pj ij i ij ij i j= + − ≤ ≤ ≤ ≤a a a100 1 0 1 0 100( ), , , 	 (6.1)
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FIGURE 6.2
A node’s value function.
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FIGURE 6.3
An FDNA graph of a single feeder–receiver node pair.
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where Pj is the operability level of Nj , Pi is the operability level of Ni , and αij is 
the increase in the operability level of Nj with each unit increase in the oper-
ability level of Ni .

The right side of Figure 6.4 shows a family of functions where the opera-
bility level of Nj is a linearly decreasing function of the operability level of Ni . 
The family shown is given by the equation,

	
P P Pj ij i ij ij i j= − + ≤ ≤ ≤ ≤a a aP 100 0 1 0 100, , , 	 (6.2)

where Pj is the operability level of N Pj i,  is the operability level of Ni , and – αij 
is the decrease in the operability level of Nj with each unit increase in the 
operability level of Ni.

A nonlinear value function is another way to express the operational depen-
dency of receiver node Nj on feeder node Ni . Figure 6.5 presents such a family. 
The left side of Figure 6.5 shows a family of operability functions where the 
operability level of Nj can be a nonlinear monotonically increasing function of 
the operability level of Ni . The family shown is given by the equation,
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where Pj is the operability level of N Pj i,  is the operability level of Ni ,r is a 
scaling constant, and 0 100≤ ≤P Pi j, .

The right side of Figure 6.5 shows a family of operability functions where 
the operability level of Nj can be a nonlinear monotonically decreasing function 
of the operability level of Ni . The family shown is given by the equation,
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where Pj is the operability level of N Pj i,  is the operability level of Ni ,r is a 
scaling constant, and 0 100≤ ≤P Pi j, .

For the single feeder–receiver node pair in Figure 6.3, the operability level 
of receiver node Nj can be expressed as a function f of the operability level of 
its feeder node Ni . In general, we can write Pj as

	 P f P P Pj i i j= ≤ ≤( ), ,0 100 	 (6.5)

where Pj is the operability level of Nj and Pi the operability level of Ni . Figures 
6.4 and 6.5 illustrate how the operability function f might be expressed by 
linear or nonlinear value functions. How does this approach extend to multi-
ple feeder nodes and in cases where nodes have feeder and receiver roles? We 
consider these situations next.

Suppose receiver node Nj has dependency relationships on two feeder 
nodes Ni and Nh , as shown in Figure 6.6. In the figure, the direction of the 
arrows indicates that the operability of Nj relies, to some degree, on the oper-
ability of Ni and Nh. For the feeder–receiver node relationships in Figure 6.6, 
the operability level of receiver node Nj can be expressed as a function f of the 
operability levels of its feeder nodes N Ni hand . In general, we can write Pj as 

	
P f P P P P Pj i h i h j= ≤ ≤( , ), , ,0 100 	 (6.6)

where Pj is the operability level of N Pj i,  is the operability level of N Pi h, and  is 
the operability level of Nh .

Suppose receiver node Nj has dependency relationships on h feeder nodes, 
as shown in Figure 6.7. In the figure, the direction of the arrows indicate 
that the operability of Nj relies, to some degree, on the operability levels 
of N N N Nh1 2 3, , , ..., . For the feeder–receiver node relationships in Figure 6.7, 
the operability level of receiver node Nj can be expressed as a function f of 
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the operability levels of its feeder nodes N N N Nh1 2 3, , , ..., . In general, we can 
write Pj as

	
P f P P P P P P P Pj h h= ≤ ≤( , , , , ), , , , ,1 2 3 1 2 30 100… … 	 (6.7)

where Pj is the operability level of N P P P Pj hand 1 2 3, , , ...,  are the operability 
levels of feeder nodes N N N Nh1 2 3, , , ..., , respectively. Next, consider the situ-
ation where a node is a feeder and a receiver as shown in Figure 6.8.

In Figure 6.8, receiver node Np has a dependency relationship on node 
N Nj jand  has dependency relationships on nodes N N N Nh1 2 3, , , ..., . In this 
case, Nj has the dual role of being a feeder node and a receiver node. For 
the feeder–receiver node relationships in Figure 6.8, the operability level of 
receiver node Np can be expressed as a function of the operability levels of its 
feeder nodes N N N N Nj h, , , , ..., .1 2 3  Since Np has a dependency relationship on 
Nj we can write the expression P f Pp j= ( ). Since Nj has dependency relation-
ships on N N N Nh1 2 3, , , ...,  we can write the expression P g P P P Pj h= ( , , , ..., ).1 2 3  
Combining expressions, we have 

	
P f g P P P P P P P Pp h h= ≤ ≤( ( , , , , )), , , , ,1 2 3 1 2 30 100… …

	 (6.8)

The equation for Pp was fashioned by a composition of operability functions. 
Function composition is when one function is expressed as a composition 

Receiver node Nj

Ni NhFeeder node Feeder node

FIGURE 6.6
An FDNA graph with two feeder nodes.
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NhN3

Nj

N2N1Feeder nodes Feeder nodes...

FIGURE 6.7
An FDNA graph with h feeder nodes.
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(or nesting) of two or more other functions.* Function composition applies 
in FDNA when the operability function of one node is a composition of the 
operability functions of two or more other nodes. Next, we discuss forms the 
operability function f might assume. Selecting a specific form is central to 
FDNA and a major flexibility feature of the approach.

The first principle in formulating operability functions in FDNA is to 
understand the context of the graph, the nature of its nodes, and what their 
relationships and interactions mean. For instance, if the operability levels of 
all feeder nodes in Figure 6.7 are equally important to the operability level of 
receiver node Nj , then the operability function might be defined as

	
P f P P P P

P P P P
hj h

h= = + + + +
( , , , , )1 2 3

1 2 3…
�

	 (6.9)

If the operability levels of some feeder nodes in Figure 6.7 are more important 
than others to the operability level of receiver node Nj , then the operability 
function might be defined as

	
P f P P P P w P w P w P w Pj h h h= = + + + +( , , , , )1 2 3 1 1 2 2 3 3… � 	 (6.10)

where w1, w2, w3 , … , wh are nonnegative weights whose values range from 
0 to 1 and where w1 + w2 + w3 + … + wh = 1. If all weights are equal, then 
Equation 6.10 reduces to Equation 6.9.

In value function theory, the operability function f in Equation 6.10 is 
known as the linear additive model. This model is representative of a class 
of rules known as compensatory models. From an FDNA perspective, 
a compensatory model for f will produce operability measures with proper-
ties similar to a mathematical mean.

*	 In mathematics, if h g y y f x= =( ) ( )and  then h is a function of x and can be written as a com-
position of the functions g and f; that is, h g f x r x= =( ( )) ( ) for all x in domain X. In general, 
functions formed through composition are not commutative; thus, the order with which they 
appear is important in their evaluation.
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FIGURE 6.8
An FDNA graph with a feeder and receiver node.
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Another formulation for f might be the minimum function. The minimum 
function behaves as a weakest link rule. In general, the weakest link rule 
asserts no chain is stronger than its weakest link (Rescher, 2006). From an 
FDNA perspective, the weakest link rule means the operability level of a 
receiver node is equal to the operability level of its weakest performing feeder 
node. A weakest link formulation of f for the FDNA graph in Figure 6.7 can 
be written as follows:

	
P f P P P P P Pj h h= =( , , , , ) ( , , , , )1 2 3 1 2 3… …Min P P 	 (6.11)

Weakest link formulations offer many desirable properties in modeling and 
measuring inflows and outflows of value (utils) across a topology of feeder–
receiver node dependency relationships. The remainder of this chapter will 
present FDNA by weakest link formulations and show, from this perspec-
tive, the many properties that derive from this rule.

There are many ways to express dependence and operability as it relates to 
nodes and their interactions in a mathematical graph. This topic is of consid-
erable depth and breadth. It is a rich area for further study and research. We 
close this section with a set of FDNA postulates. These propositions are the 
foundations of FDNA and the basis for its calculus.

Postulate 6.1: Feeder Node

A feeder node is one that “feeds” contributions to one or more receiver nodes.

Postulate 6.2: Receiver Node

A receiver node is one whose performance depends, to some degree, on the 
performance of one or more feeder nodes.

Postulate 6.3: Feeder and Receiver Node

A node can be a feeder node and a receiver node.

Postulate 6.4: Leaf Node

Leaf nodes are terminal nodes; they have no subordinate nodes (children 
nodes) coming from them. A node that is a feeder node and a receiver node 
is not a leaf node.

Postulate 6.5: Measure of Performance

Each node can be expressed by a measure of its performance (MOP).

Postulate 6.6: Operability

Operability is a state where a node is functioning at some level of performance.
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Postulate 6.7: Operability Level, Measure of Effectiveness

Each node can be expressed by a value that reflects its operability level asso-
ciated with the measure of performance it achieves. A node’s operability 
level is also known as its measure of effectiveness (MOE). A node’s operabil-
ity level is equivalent to a von Neumann-Morgenstern utility measure (utils). 
The operability level of any FDNA node falls in the interval [0, 100] utils.

Postulate 6.8: Inoperable/Operable Node

A node is fully inoperable (wholly ineffective) if its operability level is 0 utils. 
A node is fully operable (wholly effective) if its operability level is 100 utils.

Postulate 6.9: Dependency Relationships, Computing Operability Levels

A dependency relationship exists between nodes when the performance 
level of one node relies, to some degree, on the performance levels of other 
nodes. In a dependency relationship, a receiver node’s operability level is 
computed by a function of the operability levels of its feeder nodes. This 
function is called the operability function.

Postulate 6.10: Paths Between Single Component Nodes are Acyclic*

In an FDNA graph, a path with the same first and last node that connects one 
or more other nodes that each produce one and only one unique product is 
disallowed. Nodes that produce one and only one product are called single 
component nodes.

6.3  Weakest Link Formulations

Functional dependency network analysis was developed using weakest 
link rules to express the operability functions of nodes in an FDNA graph. 
Definition 6.1 presents the general weakest link rule defined for FDNA. Definition 
6.1 allows for the inclusion of criticality constraints, where the operability level of 
a receiver node could be limited by the operability level of a feeder node.

Definition 6.1: FDNA General Weakest Link Rule (GWLR)

If receiver node Nj has dependency relationships on feeder nodes 
N N N Nh1 2 3, , , ..., , then the operability of Nj is given by the general expression

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… … 	 (6.12)

where F P P P Ph( , , , ..., )1 2 3  is the operability function of Nj based on the strength 
with which Nj depends on the performance of feeder nodes N N N Nh1 2 3, , , ..., . 

*	 Postulate 6.10 is further discussed in Sections 6.6.2 and 6.6.3.
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The function G P P P Ph( , , , ..., )1 2 3  is the operability function of Nj based on 
the criticality with which Nj depends on the performance of feeder nodes 
N N N Nh1 2 3, , , ..., . This section discusses Definition 6.1, and its variations and 
forms the functions F and G might assume. First, we introduce a measure 
called the limited average.*

Definition 6.2: Limited Average

The limited average of a finite set of nonnegative real numbers x x x xh1 2 3, , , ...,
is given by

Min
w x w x w x w x

w w w w
x xh h

h

1 1 2 2 3 3

1 2 3
1 1 2 2 3 3

+ + + +
+ + + +

+ + +
�

�
, , , , ,b b bx � xxh h+







b 	 (6.13)

where w w w wh1 2 3, , , ...,  are nonnegative weights and bk ≥ 0 for all k h= 1 2 3, , , ..., .
The limited average is a constrained weighted average, constrained 
by each βk  imposed on each xk. The limited average is equal to Min 
( , , , ..., )x x x xh h1 1 2 2 3 3+ + + +b b b b  if this is less than or equal to the weighted 
average of x x x xh1 2 3, , , ..., . If bk = 0 for all k h= 1 2 3, , , ..., , then the limited 
average is equal to Min( , , ..., ).x x xh1 2  If x x x xh1 2 3, , , ...,  are treated as h feeder 
nodes to a receiver node Nj , then a limited average form of FDNA GWLR 
(Definition 6.1) can be defined.

Definition 6.3: �FDNA Limited Average Weakest Link Rule (LAWLR)

If receiver node Nj has dependency relationships on h feeder nodes 
N N N Nh1 2 3, , , ..., , then the operability level of Nj is given by

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… … 	 (6.14)

	
F P P P P

w P w P w P w P
w w w wh

h h

h

( , , , , )1 2 3
1 1 2 2 3 3

1 2 3

… =
+ + + +
+ + + +

…
… 	 (6.15)

	
G P P P P P P P Ph j j j h hj( , , , , ) ( , , , , )1 2 3 1 1 2 2 3 3… …= + + + +Min b b b b 	 (6.16)

where 0 100≤ ≤bkj and 1, 2, 3, ,k = h… . In Definition 6.3, the operability level 
of receiver node Nj is constrained by each bkj imposed on each Nk . If these 
constraints are such that G P P P P F P P P Ph h( , , , ..., ) ( , , , ..., )1 2 3 1 2 3<  then

	
P P P P Pj j j j h hj= + + + +Min( , , , , )1 1 2 2 3 3b b b b… 	 (6.17)

*	The limited average was created by Dr. Brian K. Schmidt, The MITRE Corporation, 2005. It is 
one of many rules developed for problems in portfolio optimization and investment analyses 
(Moynihan, 2005; Moynihan et al., 2008).
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otherwise,	 P
w P w P w P w P

w w w wj
h h

h

= + + + +
+ + + +

1 1 2 2 3 3

1 2 3

�
� 	 (6.18)

If bkj = 0 utils for all k h P P P P Pj h= =1 2 3 1 2 3, , , ..., , ( , , , ..., ).then Min  Observe 
this is the weakest link formulation presented in Equation 6.11. Recall that 
Equation 6.11 reflects an operability function f where the operability level of a 
receiver node is equal to the operability level of its weakest performing feeder 
node. If bkj ≥ 100utils for all k h F P P P P G P P P Ph h= <1 2 3 1 2 3 1 2 3, , , , , ( , , , , ) ( , , , , )… … …then  

k h F P P P P G P P P Ph h= <1 2 3 1 2 3 1 2 3, , , , , ( , , , , ) ( , , , , )… … …then  and

	
P

w P w P w P w P
w w w wj

h h

h

= + + + +
+ + + +

1 1 2 2 3 3

1 2 3

�
�

Thus, the parameter bkj is called the critically constraint and it need only fall 
in the interval 0 100≤ ≤bkj . Next, we present a property on the influence a 
criticality constraint has on a receiver node’s operability level.

Property 6.1

In FDNA LAWLR, if receiver node Nj has dependency relationships on 
feeder nodes N N N Nh1 2 3, , , ..., , then the operability of Nj can never be more 
than P k hk kj kj+ = ≤ ≤b bfor all and1 2 3 0 100, , , , .…

Proof

In FDNA LAWLR, the operability of receiver node Nj is given by

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… …

where	 F P P P P
w P w P w P w P

w w w wh
h h

h

( , , , , )1 2 3
1 1 2 2 3 3

1 2 3

…
�

�
= + + + +

+ + + +

and	 G P P P P P P P Ph j j j h hj( , , , , ) ( , , , , )1 2 3 1 1 2 2 3 3… …= + + + +Min b b b b

In the above, Pj has one of two outcomes. If P F P P P Pj h= ( , , , ..., )1 2 3  then

	
F P P P P P P P Ph j j j h hj( , , , , ) ( , , , , )1 2 3 1 1 2 2 3 3… …< + + + +Min b b b b

If P G P P P Pj h= ( , , , ..., )1 2 3  then

	
Min( , , , , ) ( , , , , )P P P P F P P P Pj j j h hj h1 1 2 2 3 3 1 2 3+ + + + <b b b b… …

Thus, in either outcome, it always follows that

	
P P P P Pj j j j h hj≤ + + + +Min( , , , , )1 1 2 2 3 3b b b b…
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for all k where k h kj= ≤ ≤1 2 3, , , ..., and0 100;b  hence, the operability level of 
Nj , denoted by Pj , can never be more than Pk kj+b  for all k h= 1 2 3, , , ...,  and 
0 100≤ ≤bkj . This property leads to a constraint condition in FDNA LAWLR 
called maximum criticality.

Definition 6.4: Maximum Criticality

Receiver node Nj has a maximum criticality of dependency on feeder nodes 
N N N Nh1 2 3, , , ...,  when the operability level of Nj is equal to the operability 
level of its weakest performing feeder node. This occurs when bkj = 0 for all 
k h kj= ≤ ≤1 2 3 100, , , , .… and 0 b

PROBLEM 6.1

Answer the following given the FDNA graph in Figure 6.9.

	 (A)	 Apply the operability function given by Equation 6.10 to compute 
the operability level of receiver node Nj if (1) the operability levels 
of all feeder nodes are equally important to Nj and (2) the opera-
bility levels of N N N1 2 3, , and  are each twice as important to Nj as is 
the operability level of N4 and the operability level of N4 is equally 
important to Nj as is the operability level of N5.

	 (B)	 Apply the weakest link operability function given by Equation 6.11 
to compute the operability level of receiver node Nj.

	 (C)	 Compare and contrast the results in (A) with the result in (B).

Solution

	 (A)	 (1) Since all feeder nodes are given to be equally important to receiver 
node Nj , Equation 6.10 can be written as

	
P P P P P Pj = + + + +1

5
1
5

1
5

1
5

1
51 2 3 4 5

Receiver node

N4 N5N3

Nj

N2N1Feeder nodes

Operability level 45
utils

37
utils

21
utils

78
utils

63
utils

Feeder nodes

FIGURE 6.9
FDNA graph for Problem 6.1.
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where wi = 1 5/  for each i w w w w w= + + + + =1 2 3 4 5 11 2 3 4 5, , , , and  as 
required. Applying this to the FDNA graph in Figure 6.9, the operability 
level of receiver node Nj is

	
Pj =

+ + + + =45 37 21 78 63
5

48 8. utils

	 (A)	 (2) Here, we are given the operability levels of N N N1 2 3, , and  are 
each twice as important to Nj as is the operability level of N4 and 
the operability level of N4 is equally important to Nj as is the oper-
ability level of N5. Thus, w w w w w w w w1 4 2 4 3 4 52 2 2= = = =, , , .and 4

Since  w w w w w1 2 3 4 5 1+ + + + =  we have w w w1 2 3= = = 1 4/  and 
w w4 5 1 8= = / . Applying this to the FDNA graph in Figure 6.9, the 
operability level of receiver node Nj is

	
P P P P P Pj = + + + +1

4
1
4

1
4

1
8

1
81 2 3 4 5

	
Pj = + + + + =1

4
45

1
4

37
1
4

21
1
8

78
1
8

63 43 38( ) ( ) ( ) ( ) ( ) . utils

	 (B)	 Applying the weakest link operability function we have

	
P P P P P Pj = = =Min Min utils( , , , , ) ( , , , , )1 2 3 4 5 45 37 21 78 63 21

	 (C)	 The result in (B) is significantly lower than both results in (A) because 
the operability function is the minimum of the operability levels of 
the five feeder nodes in Figure 6.9. This means receiver node Nj’s 
operability level is equal to the operability level of its weakest feeder 
node, which is N3. Unlike the result in (B), the results in (A) allow the 
operability level of Nj to be weighted by the importance of the oper-
ability levels of all its feeder nodes.

PROBLEM 6.2

Using FDNA LAWLR, consider the graph given in Figure 6.9. Suppose the 
operability levels of all feeder nodes are equally important to the operabil-
ity level of receiver node Nj . If the operability level of Nj was determined 
to equal 25 utils, then (A) is a criticality constraint present? (B) If so, what 
is its magnitude and which feeder node is constraining the operability 
level of Nj?
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Solution

	 (A)	 Under FDNA LAWLR, we can write

	 P F P P P P P G P P P P Pj = =25 1 2 3 4 5 1 2 3 4 5Min( ( , , , , ), ( , , , , ))

		  From Definition 6.3, and the operability levels of the feeder nodes in 
Figure 6.9, we have

	
F P P P P P P P P P P( , , , , ) .1 2 3 4 5 1 2 3 4 5

1
5

1
5

1
5

1
5

1
5

48 8= + + + + =

		  From this, it follows that

	 P G Gj = = ⇒ =25 48 8 45 37 21 78 63 25 45 37 21 78 63Min( . , ( , , , , )) ( , , , , )

		  where, in this case, G P P P P P F P P P P P( , , , , ) ( , , , , ).1 2 3 4 5 1 2 3 4 5<  Therefore, 
in accordance with Definition 6.3, a criticality constraint is present.

	 (B)	 To determine the magnitude of this constraint, from Definition 6.3, 
we have

	
G j j j j j( , , , , ) ( , , , , )45 37 21 78 63 45 37 21 78 631 2 3 4 5= + + + + +Min b b b b b

		  Since 0 100 1 2 3 4 5≤ ≤ =bkj k( , , , , ), it follows that 25 45 37 21 78 63= G( , , , , ) 
25 45 37 21 78 63= G( , , , , ) only when b3 4j = . Thus, the magnitude of the criticality con-

straint is 4 utils, and N3 is the constraining feeder node to Nj.

This concludes an introduction to weakest link rules for the FDNA opera-
bility function. As mentioned earlier, weakest link rules offer many desir-
able properties in modeling and measuring inflows and outflows of value 
(utils) across a topology of feeder–receiver node dependency relationships. 
The next section presents a specific weakest link formulation called the a b,  
weakest link rule. It was the basis for FDNA’s original development (Garvey 
and Pinto, 2009). The remainder of this chapter presents this rule, its applica-
tions, and the rule’s many useful properties.

6.4  FDNA ( , )a b  Weakest Link Rule

This rule is a specific form of the FDNA limited average weakest link rule. 
The FDNA ( , )a b  weakest link rule (WLR) is characterized by three param-
eters. These are the baseline operability level (BOL), the strength of depen-
dency (SOD), and the criticality of dependency (COD).

In FDNA ( , )a b  WLR, SOD and COD are two types of dependencies that affect 
a receiver node’s operability level. The first type is the strength with which a 
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receiver node’s operability level relies, to some degree, on the operability levels 
of feeder nodes. The second is the criticality of each feeder node’s contribution 
to a receiver node. The SOD and COD parameters capture different but impor-
tant aspects of feeder–receiver node relationships.

Definition 6.5

The baseline operability level (BOL) of a receiver node is its operability level 
(utils) when the operability levels of its feeder nodes all equal 0. The BOL is 
measured with respect to the strength of dependency between a receiver 
node and its feeder nodes.

The baseline operability level of a receiver node provides a reference point 
that indicates its operability level prior to (or without) receiving its feeder 
node contribution, in terms of its dependency relationships on the other 
nodes and the criticality that may exist with those relationships.

Definition 6.6

Strength of dependency (SOD) is the operability level a receiver node relies 
on receiving from a feeder node for the receiver node to continually increase 
its baseline operability level and ensure the receiver node is wholly operable 
when its feeder node is fully operable.

The strength of dependency with which receiver node Nj relies on feeder 
node Ni is governed by the strength of dependency fraction a ij , where 
0 1≤ ≤a ij . This is shown in Figure 6.10. Notationally, i is the index of a feeder 
node to a receiver node of index j.

What would happen if a receiver node’s operability level were constrained 
by its feeder nodes operability levels? What would happen if a receiver node 
degrades from its baseline operability level without receiving its feeder 
nodes contributions. In FDNA ( , )a b  WLR, a parameter called criticality of 
dependency (COD) can address these and related questions.

Definition 6.7

The criticality of dependency (COD) is the operability level bkj (utils) such that 
the operability level of receiver node Nj with feeder nodes N N N Nh1 2 3, , , ...,  

Receiver node

0 ≤ αij ≤ 1

αij 

Feeder node

Nj

Ni

FIGURE 6.10
A single feeder–receiver node pair: strength of dependency fraction a ij .
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can never be more than Pk kj+b  for all k h= 1 2 3, , , ..., , where 0 100≤ ≤bkj  and 
Pk  is the operability level of feeder node Nk. The parameter bkj is the criticality 
of dependency constraint between receiver node Nj and its feeder node Nk.

Definition 6.7 is the mathematical characterization of a criticality constraint 
on a receiver node’s operability level, when the receiver node is dependent 
on one or more feeder nodes.

Definition 6.8

For a single feeder–receiver node pair, shown in Figure 6.11, the criticality of 
dependency constraint is the operability level bij (utils) that receiver node Nj 
degrades to from a reference point operability level RPOLPj , when its feeder 
node is fully inoperable (wholly ineffective).

Definition 6.8 characterizes a criticality constraint in terms of degradation in 
a receiver node’s operability level. Degradation is measured from an opera-
bility level that has meaning with respect to the receiver node’s performance 
goals or requirements. This level is the receiver node’s reference point oper-
ability level (RPOL). For example, a receiver node’s RPOL might be set at its 
baseline operability level (BOL). Other meaningful operability levels for a 
receiver node’s RPOL are possible. They are context specific to the situation.

Definitions 6.7 and 6.8 offer different ways to view criticality constraints in 
FDNA ( , )a b WLR. Note that a dependency relationship between a receiver 
node and its feeder node need not always involve a criticality of dependency 
constraint.

In summary, COD enables the operability level of a receiver node to be con-
strained by the operability levels of its feeder nodes. This allows a receiver 
node’s operability level to be limited by the performance of one feeder node, 
even when other feeder nodes to the receiver are fully operable. In FDNA 
( , )a b  WLR, SOD and COD capture different but important effects of feeder–
receiver node relationships on their operability levels. Where SOD captures 
the effects of relationships that improve baseline operability levels, COD 
captures whether such relationships could involve losses or constraints on 
these levels. Consider the following narrative.

Receiver node

0 ≤ βij ≤ 100

βij 

Feeder node

Nj

Ni

FIGURE 6.11
A single feeder–receiver node pair: criticality of dependency constraint bij .
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In Figure 6.12, receiver node Nj is a widget production machine and 
feeder node Ni supplies coolant and lubricant fluids for the machine’s 
engine. Suppose the machine is fully operable when it is producing 
120 widgets per hour; that is, P xj j( )= =120 100 utils. Without any sup-
ply of fluids from Ni suppose Nj can only produce 80 widgets per hour. 
Suppose a production rate of 80 widgets per hour is worth 55 utils; that 
is, P xj j( )= =80 55 utils when Pi = 0. This implies the baseline operability 
level of Nj , denoted by BOLPj , is 55 utils.

Suppose the fluids from supplier node Ni are ideal for lowering the oper-
ating temperature of the engine and increasing the output of the widget 
production machine. Without the fluids, the engine’s temperature will 
rise, its parts will wear, and the machine will decline from its base-
line operability level of 55 utils and eventually become fully inoperable 
(wholly ineffective, a value of 0 utils).

This narrative illustrates Definition 6.8 in describing the effect of a critical-
ity constraint on the widget production machine. In this case, the receiver 
node’s RPOL was its BOL. The use of SOD and COD in FDNA ( , )a b  WLR 
allows a mix of gain and loss effects that complex feeder–receiver node inter-
actions can have across a topology of multinodal relationships. Next, we pre-
sent a way to formulate these effects in FDNA ( , )a b  WLR.

From Definition 6.3, recall that FDNA LAWLR is given by

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… …

where F P P P Ph( , , , ..., )1 2 3  is the operability function of Nj based on the strength 
with which Nj depends on the performance of feeder nodes N N N Nh1 2 3, , , ..., .
The function G P P P Ph( , , , ..., )1 2 3  is the operability function of Nj based on the 
criticality with which Nj depends on the performance of feeder nodes N N N Nh1 2 3, , , ..., . 

N N N Nh1 2 3, , , ..., . Recall that F and G were given by Equations 6.15 and 6.16, respectively.
The FDNA ( , )a b  WLR is a form of the FDNA LAWLR with special expres-

sions for F and G. The following presents these functions for a single feeder–
receiver node pair. Then, this is extended to a receiver node with multiple 
feeder nodes. The formulations presented for F and G are one of many ways 
to express these functions. They can be tailored to characterize the nature of 

Receiver node A widget
production machine

A supplier of coolant and lubricant
fluid to the widget production machine

αij , βij 

Feeder node

Nj

Ni

FIGURE 6.12
A widget production machine’s dependency on a fluid supplier.
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specific feeder–receiver dependency relationships. As mentioned earlier, this 
is a rich area for further study and research.

FDNA (α, β) WLR: Single Feeder–Receiver Node Pair

Suppose we have a single feeder–receiver node pair as shown in Figure 6.13. 
The general weakest link rule, given by Definition 6.1, becomes

	
P F P G Pj i i= Min( ( ), ( )) 	 (6.19)

In Equation 6.19, F Pi( ) is the operability function for the strength of depen-
dency of Nj on N G Pi iand ( ) is the operability function for the criticality of 
dependency of Nj on Ni . In FDNA WLR,( , ) ( )a b F Pi  is defined by a linear 
value function of the form

	 F P SODP Pi j ij i ij( ) ( )= = + −a a100 1 	 (6.20)

Figure 6.14 shows the behavior of F Pi( ) for various αij across 0 100≤ ≤P Pi j, . If 
P Fi ij= = −0 0 100 1utils then ( ) ( )a  utils, as shown by the circled values along 
the vertical axis in Figure 6.14. From Definition 6.5, the baseline operability 
level of a receiver node is its operability level (utils) when the operability 
levels of its feeder nodes all equal 0. Thus, in Equation 6.20 the baseline oper-
ability level of receiver node Nj is the term 100 1( );−a ij  that is,

	 BOLPj ij= −100 1( )a 	 (6.21)

where 0 1 100≤ ≤ ≤ ≤a ij i jP Pand0 , .
From Definition 6.6, the strength of dependency is the operability level a 

receiver node relies on receiving from a feeder node for the receiver node to 
continually increase its baseline operability level, and ensure the receiver 
node is wholly operable when its feeder node is fully operable. Equation 6.20 
meets these characteristics. The parameter a ij is the strength of dependency 
fraction. The term a ij iP is the operability level receiver node Nj  relies on 
receiving from feeder node Ni , for Nj to increase its baseline operability level 
of 100 1( ).−a ij  In Equation 6.20, receiver node Nj is fully operable ( )Pj = 100
when its feeder node is fully operable ( ).Pi = 100

Receiver node

αij , βij 

Feeder node

Nj

Ni

FIGURE 6.13
An FDNA graph of a single feeder–receiver node pair.
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Finally, in Equation 6.20, if the baseline operability level of receiver node 
Nj is 0 then a ij = 1. This is called maximum strength of dependency. If the base-
line operability level of receiver node Nj is 100, then a ij = 0. The greater the 
value of a ij , the greater the strength of dependency that receiver node Nj has 
on feeder node Ni and the less N sj ’  operability level is independent of N si ’  
level. The smaller the value of a ij , the lesser the strength of dependency that 
receiver node Nj has on feeder node Ni . and the more N sj ’  operability level is 
independent of N si ’  level.

FDNA ( , )a b  WLR defines the operability function G Pi( ) in accordance with 
the limited average weakest link rule (Definition 6.3); hence, for the single 
feeder–receiver node pair in Figure 6.13 we have

	
G P CODP Pi j i ij( ) = = +b 	 (6.22)

where 0 100 0 100≤ ≤ ≤ ≤bij i j iP P G P, , , ( )and  is the operability constraint 
function of receiver node Nj such that Pj ≤ Pi + βij. This allows the operability 
level of Nj to be limited, if appropriate, by the performance of Ni ..

In summary, for a single feeder–receiver node pair, as shown in Figure 
6.13, the FDNA ( , )a b  WLR is defined as follows:

	
P F P G Pj i i= Min( ( ), ( )) 	 (6.23)

	
F P SODP Pi j ij i ij( ) ( )= = + −a a100 1 	 (6.24)

	
BOLPj ij= −100 1( )a 	 (6.25)

	 G CODPi j i ij( )P P= = +b 	 (6.26)

where 0 1 0 100≤ ≤ ≤ ≤a bij ij,  and 0 100≤ ≤P Pi j, .

FIGURE 6.14
FDNA ( , )a b  WLR strength of dependency function F Pi( ).
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PROBLEM 6.3

Given a single feeder–receiver node pair (Figure 6.13) if the baseline opera-
bility level of node Nj is 60 utils what operability level must Ni . achieve for Nj 
to reach 80 utils? Assume Nj will not degrade from its baseline operability 
level if the operability level of Ni . is 0. Use the FDNA ( , )a b  WLR.

Solution

The baseline operability level of Nj is given to be 60 utils. It follows that

	 BOLPj ij= − =100 1 60( )a utils

This implies a ij = 0 40. . Since Nj will not degrade from its baseline operability 
level if the operability level of Ni . is 0, it follows that BOLPj ij≤ ≤b 100. From 
FDNA ( , )a b  WLR

	
P F P G Pj i i= Min( ( ), ( ))

	
P P Pj i i ij= + +Min( . , )0 40 60 b

where BOLP P Pj kj i j≤ ≤ ≤ ≤b 100 100and 0 , . Receiver node Nj will reach 
an operability level of 80 utils when P Pj i= + =0 40 60 80. . This occurs when 
Pi = 50utils.

Property 6.2

Given the single feeder–receiver node pair in Figure 6.13, if BOLPj ij≤ ≤b 100
then P SODPj j= .

Proof

Given the single feeder–receiver node pair in Figure 6.13, from Equation 
6.23 receiver node Nj has operability function P F P G Pj i i= Min( ( ), ( )), where 
F Pi( ) is the operability function for the strength of dependency of Nj on Ni . 
and G Pi( ) is the operability function for the criticality of dependency of Nj 
on Ni . From Equations 6.24–6.26 we have F P SODP Pi j ij i ij( ) ( )= = + −a a100 1  
and G P CODP Pi j i ij( ) .= = +b  If BOLPj ij≤ ≤b 100, then from Equation 6.25 
we have 100 1 100( ) .− ≤ ≤a bij ij  If 100 1 100( )− ≤ ≤a bij ij  then a aij i ijP + −100 1( ) 
≤ +Pi ijb  since 0 1≤ ≤a ij ; thus, it follows that P Pj ij i ij= + −Min( ( ),a a100 1
P P SODPi ij ij i ij j+ = + − =b a a) ( ) .100 1

FDNA ( , )a b  WLR: Receiver Node with Multiple Feeder Nodes

Suppose we have a receiver node with multiple feeder nodes as shown in 
Figure 6.15. In Figure 6.15, receiver node Nj has dependency relationships on 
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h feeder nodes N N N Nh1 2 3, , , ..., . From the general weakest link rule (given 
by Definition 6.1) we have

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… … 	 (6.27)

In Equation 6.27, F P P P Ph( , , , ..., )1 2 3  is the operability function of Nj based on 
the strength with which Nj depends on the performance of feeder nodes 
N N N Nh1 2 3, , , ..., . The function G P P P Ph( , , , ..., )1 2 3  is the operability function 
of Nj based on the criticality with which Nj depends on the performance of 
feeder nodes N N N Nh1 2 3, , , ..., .

In FDNA ( , )a b  WLR, the function F P P P Ph( , , , ..., )1 2 3  is defined by

 

F P P P P SODP

SODP SODP SODP SODP
h j

j j j

( , , , , )

( , , , ,
1 2 3

1 2 3

…
…

=
= Average hhj ) 	 (6.28)

where SODP P k hkj kj k kj kj= + − = ≤ ≤a a a100 1 1 2 3 1( ) , , , , .for … and 0
In FDNA ( , )a b  WLR, the baseline operability level of a receiver node with 

h feeder nodes is defined by

	
BOLP BOLP BOLP BOLP BOLPj j j j hj= Average( , , , , )1 2 3 … 	 (6.29)

where BOLP k hkj kj kj= − = ≤ ≤100 1 1 2 3 1( ) , , , ..., .a afor and 0
In FDNA ( , )a b  WLR, the function G P P P Ph( , , , ..., )1 2 3  is defined in accord-

ance with the limited average weakest link rule; hence, for a receiver node 
with h feeder nodes

	

G P P P P CODP

CODP CODP CODP CODP
h j

j j j hj

( , , , , )

( , , , , )
1 2 3

1 2 3

…
…

=
= Min 	 (6.30)

where CODP P k hkj k kj kj= + = ≤ ≤b bfor 1 2 3 100, , , , .… and 0
In summary, for a receiver node with multiple feeder nodes (as shown in 

Figure 6.15) the FDNA( , )a b  WLR is defined as follows:

	
P F P P P P G P P P Pj h h= Min( ( , , , , ), ( , , , , ))1 2 3 1 2 3… … 	 (6.31)

Receiver node

α1j , β1j α2j , β2j α3j , β3j αhj , βhj

Feeder nodes N1 N2

Nj

N3 Nh Feeder nodes...

FIGURE 6.15
A receiver node with h feeder nodes.
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F P P P P SODPh j( , , , , )1 2 3 … = 	 (6.32)

	
SODP SODP SODP SODP SODPj j j j hj= Average( , , , , )1 2 3 … 	 (6.33)

	
SOD kjP Pkj kj k= + −a a100 1( )	 (6.34)

	
BOLP BOLP BOLP BOLP BOLPj j j j hj= Average( , , , , )1 2 3 … 	 (6.35)

	
BOLP j kjk = −100 1( )a 	 (6.36)

	
G P P P DPj( , , , , )1 2 3 … P COh = 	 (6.37)

	
CODP CODP CODP CODP CODPj j j j hj= Min( , , , , )1 2 3 … 	 (6.38)

	
CODP Pkj k kj= +b 	 (6.39)

where 0 ≤ αkj ≤ 1, 0 ≤ βkj ≤ 100, and 0 ≤ Pk , Pi ≤ 100 for k = 1, 2, 3, … , h.

PROBLEM 6.4

Given the FDNA graph in Figure 6.16, use FDNA( , )a b  WLR to answer the 
following.

	 (A)	 If BOLPkj kj= =0 0and b  utils for k = 1 2 3 4 5, , , ,  feeder nodes, then 
show that Pj = 21 utils.

	 (B)	 If a bkj kj= =1 100and  utils for k = 1 2 3 4 5, , , ,  feeder nodes, then show 
that Pj = 48 8.  utils.

Feeder nodes Feeder nodes

Receiver nodes
Nj

N1 N2 N3 N4 N5

Operability level 45
utils

37
utils

21
utils

78
utils

63
utils

FIGURE 6.16
FDNA graph for Problem 6.4.
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	 (C)	 Compute the operability level of receiver node Nj given the follow-
ing FDNA parameters.

	

a b a b a b
a b

1 1 2 2 3 3

4

0 35 30 0 15 45 0 90 50

0 45
j j j j j j

j

= = = = = =
=

. , ; . , ; . , ;

. , 44 5 5100 0 65 100j j j= = =; . ,a b
	

	 (D)	 Compute the rate by which receiver node Nj changes in operability 
level with every unit change in the operability level of each feeder 
node, given the following FDNA parameters.

	

a b a b a b
a

1 1 2 2 3 3

4

0 35 30 0 15 100 0 90 100

0 45
j j j j j j

j

= = = = = =
=

. , ; . , ; . , ;

. ,, ; . ,b a b4 5 5100 0 65 100j j j= = =
	

Solution

	 (A)	 Figure 6.16 is an FDNA graph of feeder nodes N1, N2, N3 , N4 , N5, and 
one receiver node Nj . From Equation 6.12, the operability level of 
receiver node Nj can be written as

	
P F P P P P P G P P P P Pj = Min( ( , , , , ), ( , , , , ))1 2 3 4 5 1 2 3 4 5

		  In FDNA ( , )a b  WLR, we have from Equations 6.31 to 6.39

	 

F P P P P P SODP

SODP SODP SODP SODP
j

j j j

( , , , , )

( , , ,
1 2 3 4 5

1 2 3 4

=
= Average jj jSODP, )5

		  where SODPkj = αkj Pk + 100 (1 – αkj) with BOLPkj = 100 (1 – αkj ) and

	

G P P P P P CODP

CODP CODP CODP CODP CO
j

j j j j

( , , , , )

( , , , ,
1 2 3 4 5

1 2 3 4

=
= Min DDP j5 )

		  where CODP Pkj k kj= +b . Given BOLP kkj = =0 1 2 3 4 5for , , , ,  it follows 
that a kj = 1 for all k. Thus, SODP P P P P Pj = Average( , , , , ).1 2 3 4 5   Given 
bkj = 0 utils for k = 1, 2, 3, 4, 5, it follows that CODP P P Pj = Min( , , ,1 2 3  
P P4 5, ). Combining these results, we have

	
P P P P P P P P P P Pj = Min Average Min( ( , , , , ), ( , , , , ))1 2 3 4 5 1 2 3 4 5

		  From Figure 6.16 it follows that Min Average( , , , , )P P P P P1 2 3 4 5 <  
( , , , , );P P P P P1 2 3 4 5  thus,

	
P P P P P Pj = = =Min Min( , , , , ) ( , , , , )1 2 3 4 5 45 37 21 78 63 21 utils
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		  Therefore, the operability level of receiver node Nj is equal to the 
operability level of its weakest performing feeder node, which is N3 
in this case.

		  This result is consistent with the characterization of maximum crit-
icality given in Definition 6.4. In general, it can be shown that when 
receiver node Nj is dependent on k h= 1 2 3, , , ...,  feeder nodes and 
bkj = 0 utils for all k, then Pj = Min( , , , , ).1 2 3P P P Ph…  This is true under 
the FDNA ( , )a b  WLR or the FDNA LAWLR.

	 (B)	 Given a bkj kj= =1 100and  utils for k = 1 2 3 4 5, , , ,  feeder nodes, it fol-
lows from part (A) that

	

P P P P P P

P P P P
j =

+ + +
Min Average

Min

( ( , , , , ),

( , , ,
1 2 3 4 5

1 2 3 4100 100 100 ++ +100 1005, ))P 	

		  From Figure 6.16, it follows that

	

Average
Min

( , , , , )
( , , , ,
P P P P P
P P P P P

1 2 3 4 5

1 2 3 4 5100 100 100 100< + + + + ++ 100) 	

		  thus, P P P P P Pj =
= =

Average

Average

( , , , , )

( , , , , ) .
1 2 3 4 5

45 37 21 78 63 48 8 utills

	 (C)	 Given the FDNA parameters

	

a b a b a b
a b

1 1 2 2 3 3

4

0 35 30 0 15 45 0 90 50

0 45
j j j j j j

j

= = = = = =
=

. , ; . , ; . , ;

. , 44 5 5100 0 65 100j j j= = =; . ,a b 	

		  From Equations 6.33 and 6.34, we can write

	
SODP P P P P Pj

j j j j j= + + + +
a a a a a1

1
2

2
3

3
4

4
5

55 5 5 5 5

	   
+ −

+ + + +





100 1
5

1 2 3 4 5a a a a aj j j j j

		  From Equations 6.38 and 6.39 we can write

	
CODP P P P P Pj j j j j j= + + + + +Min( , , , , )1 1 2 2 3 3 4 4 5 5b b b b b

		  In Figure 6.16, P P P P P1 3 545 37 21 78 63= = = = =utils, utils, utils, utils, and utils.2 4  
P P P P P1 3 545 37 21 78 63= = = = =utils, utils, utils, utils, and utils.2 4  Substituting these values, and the given FDNA 
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parameters, in SODPj and CODPj we have SODPj = 73 25.  utils and 
CODPj = 71 utils. Thus, the operability level of receiver node Nj is

	
P SODP CODPj j j= = =Min Min( , ) ( . , )73 25 71 71 utils

	 (D)	 Given the FDNA parameters

	

a b a b a b
a

1 1 2 2 3 3

4

0 35 30 0 15 100 0 90 100

0 45
j j j j j j

j

= = = = = =
=

. , ; . , ; . , ;

. ,, ; . ,b a b4 5 5100 0 65 100j j j= = =

		� it follows that P SODPj j=  (why?). From the solution in part (C) we have

	

P SODP P P P P Pj j
j j j j j

j j

= = + + + +

+ −
+ +

a a a a a

a a a

1
1

2
2

3
3

4
4

5
5

1 2

5 5 5 5 5

100 1 33 4 5

5
j j j+ +





a a

The rate by which receiver node Nj changes in operability level, with every 
unit change in the operability level of each feeder node, can be determined 
by computing the partial derivative

	

∂
∂

=
P

P
kj

k

for 1 2 3 4 5, , , ,
	

From this, it follows that

	

∂
∂

= =
∂
∂

= =

∂
∂

= =
∂
∂

=

P

P

P

P
P

P

P

P

j j j j

j j j

1

1

2

2

3

3

4

5
0 07

5
0 03

5
0 18

a a

a

. , . ,

. ,
aa a4

5

5

5
0 09

5
0 13j j jP

P
=

∂
∂

= =. , .
	

Thus, the rate by which the operability level of Nj changes is most influenced 
by feeder nodes N3 and N5.

Property 6.4 

In FDNA( , )a b  WLR, if receiver node Nj has dependency relationships on 
feeder nodes N N N Nh1 2 3, , , ...,  then the operability of Nj can never be more 
than CODPj.
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Proof

This proof follows directly from Property 6.1.

Property 6.5

In FDNA ( , )a b  WLR, if receiver node Nj has dependency relationships on 
feeder nodes N N N N1 2 3, , , ..., h, then P SODP h Pj j k kj k= , if ( / )=1Σh a  is less than or 
equal to CODP BOLPj j− .

Proof

From Equations 6.31 to 6.39 we have Pj = Min( , ),SODP CODPj j  where

	
SODP SODP SODP SODP SODPj j j j hj= Average( , , , , )1 2 3 …

	
CODP CODP CODP CODP CODPj j j j hj= Min( , , , , )1 2 3 …

	
SODP Pkj kj k kj= + −a a100 1( )

	
CODP Pkj k kj= +b

and 0 1 0 100 100 1 2 3≤ ≤ ≤ ≤ ≤ ≤ =a bkj kj k jP P k h, , , , , , ..., .and 0 for  Thus, we 
can write the following:

	
SODP

h
P BOLPj

kj

k

h

k j= +
=
∑

a

1

where BOLP BOLP BOLP BOLP BOLPj j j j hj= Average ( , , , ..., )1 2 3  and BOLPkj kj= −100 1( ).a 
BOLPkj kj= −100 1( ).a  From this, it follows that

	
P SODP CODP

h
P BOLP CODPj j j

kj
k j j

k

h

= = +




=

∑Min Min( , ) ,
a

1

Now, P SODPj j=  if

	      

a kj
k

k

h

j jh
P BOLP CODP

=
∑ + <

1

	
⇒ < −

=
∑

a kj

k

h

k j jh
P CODP BOLP

1

There is a relationship between Property 6.5 and Property 6.2. In Property 
6.5, if h = 1 we have a single feeder–receiver node pair (as in Figure 6.13). Then, 
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if we restrict b1 j to the interval BOLPj j≤ ≤b1 100 it follows that P SODPj j= . 
Hence, Property 6.2 is a special case of Property 6.5.

FDNA ( , )a b  WLR: Forming the FDNA Dependency Function (FDF)

This discussion illustrates how to form an FDNA dependency function (FDF) 
for various types of graphs. An approach known as function composition 
is used. Function composition is when one function is expressed as a com-
position (or nesting) of two or more other functions. Function composition 
applies in FDNA when the operability function of one node is a composition 
of the operability functions of two or more other nodes.

As mentioned earlier, a dependency relationship exists between nodes 
when the performance level achieved by one node relies, to some degree, on 
the performance levels achieved by other nodes. Operability is a state where 
a node is functioning at some level of performance. In FDNA, each node has 
a measure of its performance (MOP) and a measure of value or worth asso-
ciated with the performance level achieved. The measure of value or worth 
is a node’s operability level or its measure of effectiveness (MOE). FDNA 
captures the transmission of performance and value relationships between 
nodes by way of value functions.* Figure 6.17 illustrates this concept for a 
single feeder–receiver node pair.

Figure 6.17 shows how performance and value transmits between nodes 
for a single feeder–receiver node pair. A nesting of value functions captures 
the transmission of value between nodes for more complex dependency 
relationships. The following examples illustrate forming the FDF in these 
cases. 

PROBLEM 6.5

Formulate the FDFs for the graph in Figure 6.18. Use FDNA ( , )a b  WLR.

Solution

Using FDNA ( , )a b  WLR, from Equation 6.31, we can write

	
P SODP CODP P Pp p p jp j jp j jp= = + − +Min Min( , ) ( ( ), )a a b100 1

where

a jp is the strength of dependency fraction between N Nj pand

bjp is the criticality of dependency constraint between N Nj pand

From Equation 6.31, P SODP CODPj j j= Min( , ), where

*	A value function is a real-valued mathematical function that models a node’s measure 
of value, worth, or utility over the levels of performance it achieves. Chapter 3 presents a 
discussion on value functions.
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SODP
h

P
h

P
h

P
h

Pj
j j j hj

h

j j j hj

= + + + +

+ −
+ + + +

a a a a

a a a a

1
1

2
2

3
3

1 2 3100 1

�

�

hh






	 CODP P P P Pj j j j h hj= + + + +Min( , , , , )1 1 2 2 3 3b b b b…

where

a kj is the strength of dependency fraction between N Nk jand

bkj is the criticality of dependency constraint between N Nk jand

for k h= 1 2 3, , , ..., . Thus, the FDF for Np fashioned by a composition of opera-
bility functions is

0

50

4500 9000 18000

( )i i iP P x=
100

ix

Ni

Nj Receiver node

Feeder node

( )i iP x

( )j iP f P=

100400

30

70

100

Feeder node operability level

Re
ce

iv
er

 n
od

e o
pe

ra
bi

lit
y 

lev
el 

Fe
ed

er
 n

od
e o

pe
ra

bi
lit

y l
ev

el

Feeder node performance level

( ) 50, 30
2
i

j i i
PP f P Min P= = + +

7911
Feeder node performance level

180004500
ix

50

9000

75

FIGURE 6.17
Transmission of performance and value between nodes.

Receiver node

Feeder nodes Feeder nodes

Feeder and
receiver node Nj

Np

N1 N2 N3 Nh

FIGURE 6.18
FDNA graph for Problem 6.5.
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P SODP CODP P Pp p p jp j jp j jp= = + − +Min Min( , ) ( ( ), )a a b100 1

⇒ = + − +P SODP CODP SODP CODPp jp j j jp j j jMin Min Min( ( , ) ( ), ( , )a a b100 1 pp )

PROBLEM 6.6

Compute the operability level of Np given the information in Figure 6.19. Use 
FDNA ( , )a b  WLR.

Solution

Figure 6.19 is a specific case of the FDNA graph in Figure 6.18 with h = 5 
feeder nodes. In Figure 6.19, Nj is a receiver node with the same five feeder 
nodes in Figure 6.16. With this, from Problem 6.4 (C) the operability level of 
Nj was computed to be

	 P SODP CODPj j j= = =Min Min utils( , ) ( . , )73 25 71 71  

In Figure 6.19, Nj is also a feeder to node Np . Thus, the operability level of Np 
is a function of the operability level of Nj . Using the FDNA ( , )a b  WLR, the 
FDF for computing the operability level for Np is

	
P SODP CODP P Pp p p jp j jp j jp= = + − +Min Min( , ) ( ( ), )a a b100 1

where
a jp is the strength of dependency fraction between Nj  and  Np

bjp is the criticality of dependency constraint between Nj  and  Np

Given a bjp jp= =0 78 55. and  utils we then have

Receiver node Feeder node parameters
αjp = 0.78, βjp = 55

α1j = 0.35, β1j = 30

α2j = 0.15, β2j = 45

α3j = 0.90, β3j = 50

α4j = 0.45, β4j = 100

α5j = 0.65, β5j = 100

Feeder and receiver node

Feeder nodes N1 N2 N3

Nj

Np

N4 N5

Operability level 45
utils

37
utils

21
utils

78
utils

63
utils

FIGURE 6.19
FDNA graph for Problem 6.6.
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P SODP CODP P Pp p p jp j jp j jp= = + − +Min Min( , ) ( ( ), )a a b100 1

	            
= + +Min Min Min( . ( , ) , ( , ) )0 78 22 55SODP CODP SODP CODPj j j j

	           = + + =Min Min Min utils( . ( . , ) , ( . , ) ) .0 78 73 25 71 22 73 25 71 55 77 38

PROBLEM 6.7

Formulate the FDFs for the graph in Figure 6.20. Use FDNA ( , )a b  WLR.

Solution

Using FDNA ( , )a b  WLR, from Equation 6.31, we can write

	
P P P P Pj

j j j j
j j= + + −

+





+ +






Min

a a a a
b b1

1
2

2
1 2

1 1 2 22 2
100 1

2
, , 

	 P P P1 21 2 21 2 21100 1= + − +Min( ( ), )a a b

where

a1 j is the strength of dependency fraction between N1 and Nj

a 2 j is the strength of dependency fraction between N2 and Nj

a 21 is the strength of dependency fraction between N2 and N1

b1 j is the criticality of dependency constraint between N1 and Nj

b2 j is the criticality of dependency constraint between N2 and Nj

b21 is the criticality of dependency constraint between N2 and N1

Receiver node

Feeder and
receiver node

Leaf node feederN2N1

Nj

α1j, β1j α2j, β2j

α21, β21

FIGURE 6.20
FDNA graph for Problem 6.7.
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PROBLEM 6.8

Formulate the FDFs for the graph in Figure 6.21. Use FDNA ( , )a b  WLR.

Solution

Using FDNA ( , )a b  WLR, from Equation 6.31, we can write

	
P P P P Pj

j j j j
j j= + + −

+





+ +






Min

a a a a
b b1

1
2

2
1 2

1 1 2 22 2
100 1

2
, , 

	 P P P1 31 3 31 3 31100 1= + − +Min( ( ), )a a b

	
P P P P B2

12
1

32
3

42
4

12 32 42

3 3 3
100 1

3
= + + + − + +











Min
a a a a a a

,

	 B P P P= + + +Min( , , )1 12 3 32 4 42b b b

PROBLEM 6.9

Formulate the FDFs for the graph in Figure 6.22. Use FDNA ( , )a b  WLR. 
For convenience, let h indicate equivalence to the following FDNA 
parameters:

	

h a b h a b h a b h a1 1 1 2 3 3 3 3 3 4 61 1 1 1 2 2 3
≡ ≡ ≡ ≡Cap Cap Cap Cap Cap Cap Cap, , , , bb
h a b h a b h a b h a b

6

5 4 4 6 53 53 7 31 31 8 21 21

3

3 3

Cap

Cap Cap≡ ≡ ≡ ≡, , , ,
	

Receiver nodeNj

N1

N2

N3 N4

Feeder and
receiver node

Leaf node
feeder

Leaf node
feeder

Feeder and
receiver node

α1j, β1j

α2j, β2j

α12, β12

α31, β31

α32, β32
α42, β42

FIGURE 6.21
FDNA graph for Problem 6.8.
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Solution

Using FDNA ( , )a b  WLR, from Equation 6.31 we can write

	
P

P P
P P1

21 2 31 3 21 31
2 21 3 32 2

100 1
2

= + + − +











+ +Min
a a a a b b, , 11







	 P P P3 53 5 53 5 53100 1= + − +Min( ( ), )a a b

P
P P

Cap
Cap Cap Cap Cap

1

1 1 1 11 1 3 3 1 3

2 2
100 1

2
= + + −

+










Min
a a a a


+ +









, ,P PCap Cap1 1 3 31 1

b b

	 P P PCap Cap Cap Cap2 2 2 23 3 3 3 3100 1= + − +Min( ( ), )a a b

	
P

P P
Cap

Cap Cap Cap Cap

3

3 3 3 34 4 6 6 4 6

2 2
100 1

2
= + + −

+










Min
a a a a


+ +









, ,P PCap Cap4 4 6 63 3

b b

Problem 6.9 illustrates a simple capability portfolio. In practice, portfolios 
have a highly complex and intricate nodal topology. The power of the FDNA 
approach, as shown in these examples, is its ability to operate across com-
plex topologies with only two defining parameters: strength and criticality 
of dependency between dependent nodes.

An external portfolio
dependency node

Receiver node

Receiver node Receiver node

Internal portfolio
dependency nodes

Feeder node and
receiver node

Cap1

Cap2

Cap3

N4

N6

N5

N3

N2

N1

Feeder node and
receiver node

Leaf node
feeder

η8

η7

η2

η3
η5

η6

η4

η1

Leaf node
feeder

Leaf node
feeder

Leaf node
feeder

FIGURE 6.22
FDNA graph for Problem 6.9.
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Property 6.6

In FDNA ( , )a b  WLR, if receiver node Nj has dependency relationships on 
h feeder nodes with bkj = 0, for all k h= 1 2 3, , , , ,…  then P P P P Pj h= Min( , , , , ).1 2 3 …

Proof

From Equations 6.31−6.39 we have

	

P SODP CODP

SODP P P P P
j j j

j j j j

=
= + + +

Min

Min Min

( , )

( , ( , , , ,1 1 2 2 3 3b b b … hh hj+b ))

If bkj = 0, for all k h= 1 2 3, , , , ,…  then

	

P SODP CODP

SODP P P P P
j j j

j h

=
= + + + +
=

Min

Min Min

( , )

( , ( , , , , ))1 2 30 0 0 0…
MMin Min

Min

( , ( , , , , ))

( , , , , )

SODP P P P P

P P P P
j h

h

1 2 3

1 2 3

…
…=

since 0 1≤ ≤a kj  and 0 100≤ ≤Pk  for all k h= 1 2 3, , , , .…  Thus, in FDNA ( , )a b  
WLR if bkj = 0, for all k h= 1 2 3, , , , ,…  then the operability level of receiver 
node Nj is equal to the operability level of its weakest performing feeder 
node. This property is consistent with the meaning of maximum criticality 
of dependency given in Definition 6.4. Also, if BOLPkj = 0 and βkj = 0, for all 
k h= 1 2 3, , , , ,…  then a kj = 1 for all k h= 1 2 3, , , ,…  and

	

P P P P P P P P P

P P
j h h=
=

Min Average Min

Min

( ( , , , , ), ( , , , , ))

( ,
1 2 3 1 2 3

1

… …

22 3, , , )P Ph…

FDNA ( )a b,  WLR: Ways to Determine α, β

There are various ways to assess the strength and criticality of dependency 
parameters between nodes in the FDNA ( , )a b  WLR. This discussion illus-
trates two protocols. One is for assessing the strength of dependency frac-
tion. The other is for assessing the criticality constraint.

From Definition 6.6, strength of dependency is the operability level a receiver 
node relies on receiving from a feeder node for the receiver node to contin-
ually increase its baseline operability level and ensure the receiver node is 
wholly operable when its feeder node is fully operable. The strength of depen-
dency with which receiver node Nj relies on feeder node Ni is governed by the 
strength of dependency fraction a ij where 0 1≤ ≤a ij  as shown in Figure 6.23.

SOD Question Protocol

A receiver node’s baseline operability level can be used to determine a ij . One 
way this can be done is to ask the following: What is receiver node Nj’s baseline 
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operability level (utils) prior to (or without) receiving its feeder node Nj’s contribu-
tion? If the answer is 0 utils, then a ij =1; if the answer is 50 utils, then a ij = 0 50. ; 
if the answer is 70 utils, then a ij = 0 30. . Thus, for a single feeder-receiver node 
pair as in Figure 6.23, a ij can be solved from the expression

	
BOLP xj ij= − =100 1( )a 	 (6.40)

where x is the receiver node’s baseline operability level prior to (or without) 
receiving its feeder node’s contribution. The greater the value of αij, the 
greater the strength of dependency that receiver node Nj has on feeder node 
Ni and the less Nj ’s operability level is independent of Ni ’s level. The smaller 
the value of a ij , the lesser the strength of dependency that receiver node Nj 
has on feeder node Ni and the more Nj ’s operability level is independent of 
Ni ’s level. The approach using Equation 6.40 determines αij from pairwise 
assessments of feeder–receiver node dependencies.

Suppose we have (1) a receiver node with multiple feeder nodes, as shown 
in Figure 6.24, and (2) an assessment the receiver node’s baseline oper-
ability level. Given this, how might the strength of dependency fraction be 
determined for each feeder–receiver node pair? The following illustrates an 
approach.

From Equations 6.31 through 6.39, the FDNA dependency function for the 
graph in Figure 6.24 is

	  
P SODP SODP SODP CODP CODP CODPj j j j j j j= Min Average( ( , , ), , , )1 2 3 1 2 3
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where

a1 j is the strength of dependency fraction between N1 and Nj

a 2 j is the strength of dependency fraction between N2 and Nj

Receiver node

Feeder node Ni

Nj

αij

0 ≤ αij ≤ 1

FIGURE 6.23
A single feeder–receiver node pair: strength of dependency fraction a ij .
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a 3 j is the strength of dependency fraction between N3 and Nj

b1 j is the criticality of dependency constraint between N1 and Nj

b2 j is the criticality of dependency constraint between N2 and Nj

b3 j is the criticality of dependency constraint between N3 and Nj

In this case, the baseline operability level of receiver node Nj is

	
BOLPj

j j j= −
+ +



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100 1
3

1 2 3a a a

Suppose the baseline operability level of receiver node Nj was assessed at 
60 utils; then

	
BOLPj
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A unique set of values for α1j , α2j , and α3j does not exist. However, sup-
pose the dependency relationships between Nj and N1 and Nj and N2 is 
such that a a1 32j j=  and a a2 32j j= . From this,

	
a a a a a a1 2 3 3 3 3

6
5

2 2
6
5j j j j j j+ + = ⇒ + + =

for which a 3 6 25j = / , a 2 12 25j = / , and a1 12 25j = / ; hence,
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Another approach to determine the strength of dependency fraction is creat-
ing a constructed scale. From Chapter 3, constructed scales are often defined 
when natural scales are not possible or are not practical to use. They are also 
used when natural scales exist but additional context is desired and hence 

Receiver node

α1j 
α2j 

α3j 

Feeder nodes Feeder nodes

Nj

N1

N2

N3

FIGURE 6.24
An FDNA graph with multiple feeder nodes.
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are used to supplement natural scales with additional information. Table 6.1 
illustrates a constructed scale for assessing the strength of dependency that 
a receiver node Nj has on its feeder node Ni . Next, a discussion is presented 
on ways to access the criticality constraint in FDNA ( , )a b  WLR.

From Definition 6.7, criticality of dependency is the operability level 
βkj such that the operability level of receiver node Nj with feeder nodes 
N N N Nh1 2 3, , , ,… N N N Nh1 2 3, , , ,…  can never be more than Pk + βkj for all k h=1 2 3, , , , ,…  where 
0 100≤ ≤bkj  and Pk is the operability level of feeder node Nk.

TABLE 6.1

A Strength of Dependency (SOD) Constructed Scale

Ordinal 
Scale Receiver Node Baseline Operability Level (BOL)

Interval Scale
BOL Range

5
RED

A receiver node with this rating has a very low operational 
capability prior to receiving its feeder node’s contribution. 
Receiver nodes with this rating are those that operate in 
the range 0% to < 20% of their full operational capability 
(100 utils), prior to receiving their feeder node contributions. 
Receiver nodes with this rating are those with a very high 
dependency on their feeder nodes.

0 to < 20 utils

4
ORANGE

A receiver node with this rating has a low operational 
capability prior to receiving its feeder node’s contribution. 
Receiver nodes with this rating are those that operate in 
the range 20% to < 40% of their full operational capability 
(100 utils), prior to receiving their feeder node contributions. 
Receiver nodes with this rating are those with a high 
dependency on their feeder nodes.

20 to < 40 utils

3
YELLOW

A receiver node with this rating has a modest operational 
capability prior to receiving its feeder node’s contribution. 
Receiver nodes with this rating are those that operate in 
the range 40% to < 60% of their full operational capability 
(100 utils), prior to receiving their feeder node contributions. 
Receiver nodes with this rating are those with a modest 
dependency on their feeder nodes.

40 to < 60 utils

2
GREEN

A receiver node with this rating has a high operational 
capability prior to receiving its feeder node’s contribution. 
Receiver nodes with this rating are those that operate in 
the range 60% to < 80% of their full operational capability 
(100 utils), prior to receiving their feeder node contributions. 
Receiver nodes with this rating are those with a low 
dependency on their feeder nodes.

60 to < 80 utils

1
BLUE

A receiver node with this rating has a very high operational 
capability prior to receiving its feeder node’s contribution. 
Receiver nodes with this rating are those that operate in the 
range 80% to 100% of their full operational capability 
(100 utils), prior to receiving their feeder node contributions. 
Receiver nodes with this rating are those with a very low 
dependency on their feeder nodes.

80 to < 100 utils
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From Definition 6.8, criticality of dependency can be viewed from a deg-
radation perspective. In Definition 6.8, for a single feeder–receiver node pair, 
shown in Figure 6.11, the criticality of dependency constraint is the operabil-
ity level bkj (utils) that receiver node Nj degrades to from a reference point 
operability level RPOLPj , when its feeder node is fully inoperable (wholly 
ineffective).

As stated earlier, degradation is measured from an operability level 
that has meaning with respect to the receiver node’s performance goals 
or requirements. This is the receiver node’s RPOL, a value in the interval 
0 < RPOLPj , ≤ 100. A convenient reference point is a receiver node’s BOL. The 
BOL offers an anchoring property. It is a receiver node’s operability level 
prior to (or without) receiving its feeder node contribution.

COD Questions Protocol

If we use a receiver node’s BOL as its RPOL, then the criticality of depen-
dency constraint can be assessed from the following questions: If the feeder 
node’s performance is equal to zero in operational utility (the value or worth of its 
contribution) to its receiver node, then (1) will the receiver node degrade from its 
baseline operability level? (2) If yes, then to what operability level will the receiver 
node decline? (3) If no, then no criticality of dependency exists between the receiver 
node and its feeder node.

If the answer to (3) is no, then no degradation occurs in the baseline oper-
ability level of the receiver node. A criticality of dependency is not present 
between the receiver and its feeder node from this reference perspective.

If the answers to (1) and (2) are yes, then the criticality of dependency con-
straint is set to the level of operability to which receiver node Nj will (or is 
anticipated to) decline. For instance, in Figure 6.25 suppose an event occurs 
such that Ni’s performance level has 0 operational utility (value or worth) 
to Nj . If, because of this, the operability level of Nj degrades to 0 utils then 
bij = 0 utils. With this, the FDF for the single feeder–receiver node pair in 
Figure 6.25 is

	

P P BOLP CODP P BOLP P

P
j ij i j j ij i j i ij

ij

= + = + +
=

Min Min

Min

( , ) ( , )

(

a a b
a ii ij i iP P+ − + =100 1 0( ), )a

	
(6.41)

The result in Equation 6.41 reflects Property 6.6, which states if receiver 
node Nj has dependency relationships on h feeder nodes (where h = 1 in 
Figure 6.25) with bkj = 0 utils, for all k h=1 2 3, , , , ,…  then

	
P P P P Pj h= Min( , , , , )1 2 3 …

Thus, if bkj = 0 utils for all k h=1 2 3, , , , ,…  feeder nodes then the operability 
level Nj is equal to the operability level of its weakest performing feeder 
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node. From Definition 6.4, this condition is known as maximum criticality. 
Instead, in Figure 6.25 suppose the operability level of Nj degrades to 20 utils. 
In this case, bij = 20 utils. With this, the FDF for the single feeder–receiver 
node pair in Figure 6.25 is

	
P P BOLP P P Pj ij i j i ij ij i ij i= + + = + − +Min Min( , ) ( ( ), )a b a a100 1 20

In summary, the criticality of dependency constraint is such that the opera-
bility level of a receiver node Nj with h feeder nodes can never be more than 
Pk kj+b  for all k h=1 2 3, , , , ,…  where 0 100≤ ≤bkj and Pk is the operability level 
of feeder node Nk.

6.5  Network Operability and Tolerance Analyses

As mentioned earlier, critical considerations in assessing a mission’s 
operational effectiveness are identifying, representing, and measuring 
dependencies between entities (e.g., programs, functions, technologies) 
necessary for its successful execution. The importance of understanding 
entity relationships is many-fold. Primary, is to study the ripple effects 
that degraded performance in one entity has on the performance of other 
dependent entities across a relationship network that characterizes a mis-
sion or capability. The ability of a mission or network to absorb the effects 
of nodal degradation while maintaining an acceptable level of operational 
effectiveness is known in FDNA as network tolerance. Modeling and 
measuring the tolerance of a network to nodal degradations is a major 
consideration in engineering system planning, design risk analysis, and 
investment decisions.

As seen from the preceding discussions, graph theory offers a visual 
representation of complex dependencies between entities and enables the 
design of formalisms that measure and trace the effectiveness of these rela-
tionships as they affect many parts and paths in a graph. Likewise, a mission 
or capability can be represented as a network of systems, infrastructures, 

Receiver node

0 ≤ βij ≤ 100

βij 

Feeder node Ni

Nj CODPj = Pi + βij

FIGURE 6.25
A feeder–receiver node criticality of dependency view.
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or organizational entities expressed as nodes on a graph that depict direc-
tion, strength, and criticality of feeder–receiver dependency relationships. 
With this, algorithms can be designed to address questions such as the 
following:

What is the effect on the ability of a mission to operate effectively if one 
or more entities or feeder–receiver chains degrade, or fail due to events 
or situations? How much operational degradation occurs and does it 
breach the mission’s minimum effective level of performance?

The following illustrates an operability analysis from a network perspective 
using the FDNA calculus developed thus far. The analysis will include a 
perspective where the degradation tolerance of a receiver node to losses in 
feeder node performance is measured and discussed. First, we introduce the 
concept of a node’s minimum effective operability level (MEOL).

Definition 6.9

The minimum effective operability level (MEOL) of a node is the utility asso-
ciated with the minimum level of performance the node must achieve for its 
outputs to be minimally acceptable to stakeholders.

The MEOL is to recognize that not all nodes need to be fully operable for 
their outputs to have meaningful utility to stakeholders.

PROBLEM 6.10

Conduct an operability analysis of the FDNA graph in Figure 6.26. Use 
FDNA ( , )a b  WLR given the following: BOLPj ij= =50 10utils, utils,b  and 
MEOLPj = 80 utils.

Solution

From Equation 6.40, if BOLPj = 50 utils then receiver node Nj has a strength of 
dependency fraction a ij = 0 50. . A criticality constraint of bij =10 utils is given 
between receiver node Nj and feeder node Ni . From Definition 6.7, this means 
the operability level of Nj can never be more than Pi +10, where Pi is the opera-
bility level of feeder node Ni . From this, the operability function of receiver node 
Nj is
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P P
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i i

= = + +

= + +
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where BOLP P Pj ij ij ij i j= − ≤ ≤ ≤ ≤ ≤ ≤100 1 0 1 0 100 100( ), , , .a a b and 0  Table  6.2 
presents an operability analysis of the FDNA graph in Figure 6.26. The analy-
sis shows how the operability level of receiver node Nj improves with increas-
ing levels of operability in feeder node Ni ,  subject to the conditions given.
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The minimum effective operability level of Nj is given to be 80 utils. This is 
the value or worth associated with the minimum level of performance Nj 
must achieve for its outputs to be minimally acceptable to stakeholders. In 
this example, receiver node Nj achieves its minimum effective operability 
level when feeder node Ni reaches 70 utils (in Table 6.2).

In Problem 6.10, we can also interpret the criticality constraint in terms of 
degradation in a receiver node’s operability level. From Definition 6.8, recall 

Receiver node

αij, βij 

Feeder node Ni

Nj

SODPj = αij Pi +100(1–αij)

CODPj = Pi +βij

Pj = Min(SODPj , CODPj)

FIGURE 6.26
FDNA graph for Problem 6.10.

TABLE 6.2

Problem 6.10 Operability Analysis with bij = 10 utils

Ni Operability Level SODPj CODPj Nj Operability Level 

    0 50 10 10
    5 52.5 15 15
  10 55 20 20
  15 57.5 25 25
  20 60 30 30
  25 62.5 35 35
  30 65 40 40
  35 67.5 45 45
  40 70 50 50
  45 72.5 55 55
  50 75 60 60
  55 77.5 65 65
  60 80 70 70
  65 82.5 75 75
  70 85 80 80
  75 87.5 85 85
  80 90 90 90
  85 92.5 95 92.5
  90 95 100 95
  95 97.5 105 97.5
100 100 110 100

Note:	 An operability level of Ni = 80 utils is when SODP CODPj j= .
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that degradation can be measured from an operability level that has meaning 
with respect to the receiver node’s performance goals or requirements, called 
the reference point operability level. In this problem, if the receiver node’s 
reference point is its baseline operability level then Nj degrades to 10 utils 
if its feeder node’s performance level has 0 operational utility (no value or 
worth) to Nj . Thus, Nj maintains an acceptable level of operational effec-
tiveness as long as its feeder node operates at 70 utils or higher. Below that, 
for every one util decline in its feeder node’s operability receiver node Nj 
degrades by one util of operability—until it bottoms out at its criticality con-
straint of 10 utils. 

A number of other interesting results can be derived from Table 6.2. A few 
are as follows: the point where the operability level of Nj stages its transi-
tion from being determined by CODPj to being determined by SODPj occurs 
when Nj’s feeder node Ni reaches
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From this point forward, Nj improves in operability with increasing levels of 
operability in Ni , but it does so at half the rate of improvement produced by 
CODPj. Specifically, for every one util increase in the operability level of Ni 
(from Pi = 80) there is an αij = 0.50 util increase in the operability level of Nj.

If feeder node Ni’s contribution is valued at 0 in operational utility to receiver 
node Nj then Nj degrades from its baseline operability level of 50 to 10 utils, 
rendering Nj nearly inoperable. In Problem 6.10, instead of βij = 10 utils sup-
pose we have βij = 30 utils. Table 6.3 shows the resultant operability analysis 
with this criticality constraint. In this case, receiver node Nj achieves its min-
imum effective operability level when feeder node Ni reaches 60 utils instead 
of 70 utils (in Table 6.2). Thus, Nj maintains an acceptable level of operational 
effectiveness as long as Ni operates at 60 utils or higher.

In Table 6.3, the point where the operability level of Nj stages its transi-
tion from being determined by CODPj to being determined by SODPj occurs 
when Nj’s feeder node Ni reaches
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From this point forward, Nj improves in operability with increasing levels of 
operability in Ni , at a rate governed by SODPj . Specifically, for every one util 
increase in the operability level of Ni (from Pi = 40) there is an αij = 0.50 util 
increase in the operability level of Nj. Figure 6.27 compares the operability 
analysis in Table 6.2 with Table 6.3.

In Figure 6.27, the operability function for receiver node Nj is given by

	
P P Pj i i ij= + +
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TABLE 6.3

Problem 6.10 Operability Analysis with βij = 30 utils

Ni Operability Level SODPj CODPj Nj Operability Level 

    0 50 30 30
    5 52.5 35 35
  10 55 40 40
  15 57.5 45 45
  20 60 50 50
  25 62.5 55 55
  30 65 60 60
  35 67.5 65 65
  40 70 70 70
  45 72.5 75 72.5
  50 75 80 75
  55 77.5 85 77.5
  60 80 90 80
  65 82.5 95 82.5
  70 85 100 85
  75 87.5 105 87.5
  80 90 110 90
  85 92.5 115 92.5
  90 95 120 95
  95 97.5 125 97.5
100 100 130 100

Note:	 An operability level of Ni = 40 utils is when SODP CODPj j= .
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FIGURE 6.27
Tables 6.2 and 6.3 operability analysis comparisons.
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where bij = 30 utils (top function) and bij =10 utils (bottom function). 
Figure 6.28 is a further analysis of the dependency relationship in Figure 6.26 
for varying criticality constraints βij. In Figure 6.28, the functions from top to 
bottom are given by, respectively,

	
P P P P SODPj i i i j= + +



 = + =Min

1
2

50 50
1
2

50, 	 (6.42)

	
P P Pj i i= + +



Min

1
2

50 40, 	 (6.43)

	
P P Pj i i= + +



Min

1
2

50 30, 	 (6.44)

	
P P Pj i i= + +



Min

1
2

50 20, 	 (6.45)

	
Pj i iP P= + +



Min

1
2

50 10, 	 (6.46)

	
P P P P CODPj i i i j= + +



 = =Min

1
2

50 0, � (6.47)

The top function in Figure 6.28 illustrates Property 6.2, which states that 
in a single feeder–receiver node pair, if BOLPj kj≤ ≤b 100, then P SODPj j= . 
In Equation 6.42, we have BOLPj kj= =50 b . Hence, the operability level of Nj 
is strictly determined by SODPj in accordance with Property 6.2. Also, in 
Equation 6.42, observe there is no degradation in the baseline operability 
level of Nj if the operability level of Ni is 0. The bottom function in Figure 
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Table 6.2 operability analysis with bij = 50 40 30 20 10 0, , , , , .
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6.28 illustrates Property 6.6, which states if receiver node Nj has dependency 
relationships on h feeder nodes with bij = 0 for all i h=1 2 3, , , , ,…  then

	 P P P P Pj h= Min( , , , , )1 2 3 …

In Equation 6.47, we have bij = 0. Hence, the operability level of Nj is strictly 
determined by CODPj. In Equation 6.47, observe there is complete degrada-
tion in the operability level of Nj if the operability level of Ni is 0. As dis-
cussed earlier, this occurs when a receiver node has maximum criticality 
of dependency on all of its feeder nodes. In such cases, the operability level 
of Nj is equal to the operability level of its weakest performing feeder node 
(refer to Definition 6.4). In Figure 6.28, Z1, Z2, Z3, and Z4 mark transition 
points where the operability level of Nj stages its transition from being deter-
mined by CODPj to being determined by SODPj for bij = 40 30 20, , , and 10, 
respectively. Why are no such transitions seen in the top or bottom functions 
in Figure 6.28?

PROBLEM 6.11

Conduct an operability analysis of the FDNA graph in Figure 6.22. Use 
FDNA ( , )a b  WLR given the following parameter values.
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Solution

From the solution to Problem 6.9 we have the following FDFs:
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Applying the FDNA parameter values to these equations yields the results 
in Table 6.4. The table presents the operability analysis that results from the 
four leaf node feeders in Figure 6.22 losing operability over time periods t1, 
t2, and t3. Next, we explore the tolerance of each capability node in Figure 6.29 
to degradations in feeder node performance. Specifically, we discuss ways to 
address the following:

What is the effect on the ability of each capability node, shown in 
Figure 6.29, to operate effectively if its feeder nodes degrade or fail due 
to unwanted events or situations? How much operational degradation 
occurs in each capability node and is its minimum effective level of per-
formance breached?

6.5.1  Critical Node Analysis and Degradation Index

A critical node analysis involves identifying which nodes in a graph are 
among the most influential to the operational effectiveness of other depend-
ent nodes. One way to identify these nodes is to measure the ripple effects 

TABLE 6.4

Problem 6.11 Operability Analysis

Functional Dependency Network Analysis (FDNA): A Capability Portfolio

FDNA Parameters

a1 1Cap 0.90 a 4 3Cap 0.85 b1 1Cap 10 b4 3Cap 15

a 3 1Cap 0.45 a 53 0.30 b3 1Cap 55 b53 70

a 3 2Cap 0.65 a 31 0.15 b3 2Cap 35 b31 85

a 6 3Cap 0.90 a 21 0.28 b6 3Cap 10 b21 72

If these leaf node feeders are functioning at these operability levels … 

At time t1 At time t2 At time t3

P2 100 P2   75 P2   50
P5 100 P5   75 P5   50
P4 100 P4   75 P4   50
P6 100 P6 100 P6 100

Then these receiver nodes are functioning at these operability levels … 

At time t1 At time t2 At time t3

P3 100 P3 92.50 P3 85.00
P1 100 P1 95.94 P1 91.88
PCap1

100 PCap1
96.48 PCap1

92.97
PCap2

100 PCap2
95.13 PCap2

90.25
PCap3

100 PCap3
89.38 PCap3

65.00
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that a change in the operability level of one node has on the operability 
levels of other dependent nodes across a network. The following introduces 
a rule designed to measure these effects. The rule is called the degradation 
index (DI).

Definition 6.10: Degradation Index*

The degradation index of receiver node Nj that is dependent on feeder node Ni 
is the instantaneous rate of change of Nj with respect to Ni and is denoted by 
DINj|Ni. When the dependency relationships between nodes are expressed 
by linear operability functions, then DINj|Ni is the amount Nj decreases in 
operability level with every unit decrease in the operability level of Ni. In 
this case, the degradation index reflects a constant rate of change.

Definition 6.11 presents how to compute the degradation index. The com-
putation involves applying the multivariate chain rule by forming the 

*	 The degradation index is a rate of change measure. It can measure losses or gains in the 
operability levels of nodes, according to the situation of interest. In this section, the loss 
perspective is taken to illustrate how degraded performance in feeder nodes affects other 
dependent nodes in a network. Performance degradations can occur from circumstances 
that lead to operability levels being lower than planned (e.g., losses from the occurrence of 
unwanted events). The index can measure gains in the performance of nodes from circum-
stances that lead to operability levels being higher than planned (e.g., gains realized from 
successful investment decisions). Accordingly, Definition 6.10 can be interpreted to reflect the 
appropriate context.

An external portfolio
dependency node

Receiver node

Receiver node Receiver node

Internal portfolio
dependency nodes

Feeder node and
receiver node

Cap1

Cap2

Cap3

N4

N6

N5

N3

N2

N1

Feeder node and
receiver node

Leaf node
feeder

η8

η7

η2

η3
η5

η6

η4

η1

Leaf node
feeder

Leaf node
feeder

Leaf node
feeder

FIGURE 6.29
FDNA graph for Problem 6.12.
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correct “chaining” of derivatives as a function of the dependency relation-
ships in the FDNA graph, assuming differentiability conditions exist.

Definition 6.11: Computing the Degradation Index

	 (A)	 If the operability level of Nj is a function of the operability level of N1 
and the operability level of N1 is a function of the operability level of 
N2 then

	
DIN N

P

Pj
j

1
1
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∂
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		  where P Pj , ,1 and 2P  are the operability functions of nodes Nj, N1, and 
N2, respectively.

	 (B)	 If the operability level of Nj is a function of the operability levels of 
N1 and N2, and the operability levels of N1 and N2 are each a function 
of the operability levels of N3 and N4, then
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		  where P P P P Pj , , , ,1 2 3 4and  are the operability functions of nodes Nj, 
N1, N2, N3, and N4, respectively.

		  Since the operability levels of all nodes in an FDNA graph fall along 
the same 0 to 100 util scale, nodes with high degradation indices can 
be considered more influential to the network compared with those 
with low degradation indices. Interpreting the meaning of this influ-
ence must consider whether the dependency relationships between 
nodes are expressed by linear or nonlinear rates of change (i.e., by 
constant or non-constant rates of change).

PROBLEM 6.12

Compute the degradation index of each node in Figure 6.29, given the FDNA 
parameters in Problem 6.11 and the feeder node operability levels at time 
period t3.
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Solution

From Problem 6.11, we have the following operability functions.
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P P
P P1

21 2 31 3 21 31
2 21 3 32 2

100 1
2
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From Problem 6.11 (Table 6.4), we know that feeder nodes N2, N5, N4, and 
N6 at time period t3 have operability levels 50, 50, 50, and 100, respectively. 
Given these levels, the operability functions for the receiver nodes are as 
follows:

	 
P

P P
1

21 2 31 3 21 31

2 2
100 1

2
= + + − +
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
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a a a a

	 P P3 53 5 53100 1= + −a a( )
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P P
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2 2
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
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
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a a a a

	 
P PCap Cap Cap2 2 23 3 3100 1= + −a a( )

	  
P PCap Cap3 34 4= +b

To compute the degradation index of each node, we must formulate the cor-
rect “chaining” of derivatives as a function of the dependency relationships 
in Figure 6.29. One way to express this chaining is to use the “tree diagram 
technique.” This involves labeling the segments between each pair of nodes 
in Figure 6.29, as shown in Figure 6.30.

Referring to Figure 6.30, and assuming that differentiability conditions 
exist, the degradation index of one node that depends on another node is the 
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sum over all paths between them of the product of the derivatives on each 
segment (or branch) along that path. With this, we have the following chain 
rule formulations for computing each node’s degradation index.
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FIGURE 6.30
Chain rule formulation: The tree diagram technique.
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These degradation indices reflect constant rates of change. With this, we can 
summarize these results in various ways. For example, relative to the three 
capability nodes Cap1, Cap2, and Cap3 in Figure 6.29, we have

	 DICap N DICap N1 2 1 10 063 0 45= =. . utils,  utils

	 DICap N DICap N3 4 3 61 0= = utils,  utils

	 DICap N DICap N1 5 2 5 0 077625 0 195 0 272625+ = + =. . .  utils

	 DICap N DICap N1 3 2 3 0 25875 0 65 0 90875+ = + =. . .  utils

Thus, for every 1 util decrease in the operability level of node N3 (a receiver 
and feeder node) there is a 0.90875 util decrease in the total operability level of 
receiver nodes Cap1 and Cap2. From this, the operability level of N3 has a large 
influence on the operability levels of nodes Cap1 and Cap2. The index intro-
duced in this section provides visibility into which nodes are among the most 
sensitive in influencing the operational effectiveness of the network as a whole.

6.5.2  Degradation Tolerance Level

Merriam-Webster defines tolerance as the allowable deviation from a stand-
ard or a range of variation permitted. Modeling and measuring network 
tolerance is an active area of research in the network science, engineering 
systems, and system sciences fields. A robust treatment of network tolerance 
is beyond the scope of this section. The aim of this discussion is to introduce 
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the concept and present one of many perspectives on its measurement. For 
this, our focus is addressing the question:

Given a set of leaf node feeders to a receiver node, what single oper-
ability level must each leaf node mutually equal or exceed to ensure the 
receiver node does not breach its minimum effective operability level?

Definition 6.12:  Tolerance

Tolerance is the ability of an FDNA network to operate effectively within an 
allowable range of performance if, due to events or circumstances, one or 
more nodes or feeder-receiver chains degrade of fail.

Definition 6.13:  Leaf Node Degradation Tolerance Level (LNDTL)

The degradation tolerance of a set of leaf nodes N N N Nh1 2 3, , , ,…  to receiver 
node Nj is the operability level x that each leaf node must equal or exceed 
to ensure that Nj does not breach its minimum effective operability level 
(MEOLPj ).

From Definition 6.13, receiver node Nj breaches its minimum effective 
operability level if its set of leaf node feeders each fall below x, where 
0 100≤ ≤x  utils. The value of x is the common threshold operability level that each 
leaf node feeder, in the set, must be greater than or equal to for the receiver 
node Nj to avoid an MEOL breach. A breach in receiver node Nj’s MEOL can 
occur from combinations of leaf node operability levels that are different 
than x. The value derived for x is not affected by whether the operability lev-
els of intermediate nodes along the paths between Nj and its leaf node feed-
ers fall below their MEOLs, if these thresholds are identified. Noting these 
breaches is an important finding for management considerations.

PROBLEM 6.13

Consider the FDNA graph in Figure 6.20. Determine the degradation toler-
ance level of leaf node feeder N2 if the MEOL of receiver node Nj is 82.5 utils, 
given the FDNA parameters

	
a b a b a b1 1 2 2 21 210 25 100 0 75 100 0 50 100j j j j, . , , , . , , , . ,≡ ≡ ≡

Solution

From Problem 6.7, the operability functions for the FDNA graph in Figure 6.20 
are as follows:
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Given a b a b a b1 1 2 2 21 210 25 100 0 75 100 0 50 100j j j j, . , , , . , , , . , ,≡ ≡ ≡  and 0 ≤ ≤P P Pj1 2 100, , 
0 ≤ ≤P P Pj1 2 100, ,  it follows that
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Given MEOLPj = 82 5. , it follows that 0 125 0 375 50 82 51 2. . . .P P+ + =  Since the 
operability function of node N1 is P P1 20 50 50= +.  it follows that
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P P
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⇒ + =
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In accordance with Definition 6.13, receiver node Nj breaches its minimum 
effective operability level of 82.5 utils if its leaf node feeder falls below x = 60 
utils. This value is the threshold operability level that leaf node feeder N2 
must be greater than or equal to for receiver node Nj to avoid an MEOL 
breach.

From the above, the operability function for Nj can be expressed in terms 
of its leaf node feeder N P Pj2 20 4375 56 25as = +. . . This is a linear function 
with a rate of change equal to 0.4375. This is the degradation index of Nj that 
can also be derived by the chain rule, presented in Section 6.5.1. With respect 
to Figure 6.20, the chain rule is
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Thus, there is a degradation of 0.4375 utils in the operability level of receiver 
node Nj for every unit decrease in the operability level of leaf node feeder N2. 
Furthermore, as long as the operability level of leaf node feeder N2 remains in 
the allowable range 60 1002≤ ≤P  utils then receiver node Nj will not breach 
its stated minimum effective operability level.

In Problem 6.13, criticality constraints did not affect receiver node opera-
bility levels. The MEOL of receiver node Nj fell at an operability level derived 
by the function composition of SODPj and SODP1 ; in this case,

	
P SODP f P P P g P SODP P Pj j j= = = = ⇒ = +( , ), ( ) . .1 2 1 2 1 20 4375 56 25

for all 0 1001 2≤ ≤P P Pj , , . In FDNA WLRs, operability function composi-
tions may change as nodes in the network take values along the interval 



230 Advanced Risk Analysis in Engineering Enterprise Systems

0 to 100 utils. Identifying these changes and where they occur in this interval 
is necessary when computing LNDTLs, as defined herein.

PROBLEM 6.14

Consider the graph and FDNA parameters in Figure 6.19. Determine the 
LNDTL for the set of leaf node feeders if the MEOL of receiver node Np is 86 
utils.

Solution

From Problem 6.6, the operability functions for the FDNA graph in Figure 6.19 
are as follows:
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Given the FDNA parameters in Figure 6.19, these equations become

	 P P P Pp j j j= + +( ) = +Min 0 78 22 55 0 78 22. , . 	 (6.49)

	
P SODP P P P P Pj j= + + + + +Min( , , , , , )1 2 3 4 530 45 50 100 100

where

	
SODP P P P P Pj = + + + + +0 07 0 03 0 18 0 09 0 13 501 2 3 4 5. . . . .

for 0 1001 2 3 4 5≤ ≤P P P P P P Pp j, , , , , , .
From Definition 6.13, the degradation tolerance of leaf nodes N N N N1 2 3 4, , , , 

and N5 to receiver node Np is the operability level x that each leaf node feeder 
must equal or exceed to ensure that Np does not breach its minimum effec-
tive operability level. Thus, we must find x such that

	
P SODP x x x x xj j= + + + + +Min( , , , , , )30 45 50 100 100
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where 

	 SODP x x x x x xj = + + + + + = +0 07 0 03 0 18 0 09 0 13 50 0 50 50. . . . . .

Since 0 100≤ ≤x , it follows that
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(6.50)

Given the MEOL of receiver node Np is 86 utils, from Equation 6.49, it follows 
that

	 MEOLP P PP j j= = + ⇒ =86 0 78 22 82 0513. .

Since Pj = 82 0513.  falls in the interval 70 100≤ ≤Pj , it follows that

	 82 0513 0 50 50 64 103. . .= + ⇒ =x x utils

This solution is shown in Figure 6.31 with plots of Equations 6.49 and 6.50. 
Thus, receiver node Np breaches its minimum effective operability level of 
86 utils if each leaf node feeder falls below x = 64 103.  utils. This value is the 
common threshold operability level that all five leaf node feeders must be 
greater than or equal to for receiver node Np to avoid an MEOL breach. This 
does not preclude a breach in the receiver node’s MEOL from combinations 
of leaf node operability levels that are different than x.

PROBLEM 6.15

Consider the graph and FDNA parameters in Figure 6.32. Determine 
the LNDTL for the set of leaf node feeders if the MEOL of receiver node Nj 
is 75 utils.

Solution

The operability functions for the FDNA graph in Figure 6.32 are as follows:

	 P P P P P1
31

3
21

2
31 21

3 31 2 212 2
100 1

2
= + + −

+





+ +






Min
a a a a b b, ,  	 (6.51)
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for 0 1002 3 1≤ ≤P P P Pj, , , . Given the FDNA parameters specified in Figure 6.32, 
these functions are as follows:
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Problem 6.14: Leaf node degradation tolerance level.
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From Definition 6.13, the degradation tolerance of leaf node feeders N3 and 
N2 to receiver node Nj is the operability level x that each leaf node must equal 
or exceed to ensure that Nj does not breach its minimum effective operability 
level. Thus, we must find x such that

	

P x x x x

x x x
1 0 07 0 11 82 25 55

0 18 82 25 55
= + + + +( )
= + + +( )

Min
Min

. . , ,

. , , 	 (6.53)

	 P P x P xj = + + + +( )Min 0 19 0 44 37 65 751 1. . , , 	 (6.54)

where 0 100≤ ≤x . From this, it follows that the operability function P1 can be 
written as

	 P x x x x x1 0 18 82 25 55 0 18 82 25= + + +( ) = + +( )Min Min. , , . , 	 (6.55)

Figure 6.33 depicts the behavior of P1, given by Equation 6.55, along the inter-
val 0 100≤ ≤x . From Figure 6.33, the operability function P1 can be seen as

	
P x x

x x
x x1 0 18 82 25
0 18 82 69 5122 100

25 0 69
= + +( ) = + ≤ ≤

+ ≤ ≤
Min

if
if

. ,
. .

.55122




	 (6.56)

Substituting Equation 6.56 for P1 into Equation 6.54 we have the following:

P x x x xj = + + + + + +( )Min 0 19 0 18 82 0 44 37 0 18 82 65 75 69 5122. ( . ) . , ( . ) , , . ≤≤ ≤x 100

100
x

69.5122

100

50

25

0

A: (69.5122, 94.5122)

A

P1 = Min(0.18x + 82, x + 25)
0.18x + 82 if 69.5122 ≤ x ≤ 100
x + 25 if 0 ≤ x ≤ 69.5122

=




P1(x)

FIGURE 6.33
Behavior of operability function P1.
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P x x x x xj = + + + + + +( ) ≤ ≤Min 0 19 25 0 44 37 25 65 75 0 69 5122. ( ) . , ( ) , , .

This simplifies to

  
P

x x x x
j =

+ + + ≤ ≤Min( if
Min

0 4742 52 58 0 18 147 75 69 5122 100
0 6
. . , . , ) .

( . 33 41 75 90 75 0 69 5122x x x x+ + + ≤ ≤


 . , , ) .if

	 (6.57)

Equation 6.57 simplifies to

	
P

x x
x xj =

+ ≤ ≤
+ ≤ ≤





0 4742 52 58 69 5122 100
0 63 41 75 0 69 5122

. . .

. . .
if

if
	

(6.58)

Figure 6.34 depicts the behavior of Pj, given by Equation 6.58, along the inter-
val 0 100≤ ≤x . Thus, receiver node Nj breaches its minimum effective opera-
bility level of 75 utils if each leaf node feeder falls below x = 52 777.  utils. This 
value is the common threshold operability level that leaf node feeders N3 and 
N2 must be greater than or equal to for receiver node Nj to avoid an MEOL 
breach. This does not preclude a breach in the receiver node’s MEOL from 
combinations of leaf node operability levels that are different than x.

52.77 69.5122 100100
x

69.5122

100
Pj(x)

85.54
75

41.75

0 52.777

B: (69.5122, 85.54)

B

Leaf node
degradation

tolerance level
(LNDTL)   

Pj =
0.4742x + 52.58 if 69.5122 ≤ x ≤ 100
0.63x + 41.75 if 0 ≤ x ≤ 69.5122





FIGURE 6.34
Problem 6.15: leaf node degradation tolerance level.



235Functional Dependency Network Analysis

Various degradation indices can be seen in the solution to Problem 6.15. For 
example, the degradation index of receiver node Nj with respect to its leaf 
node feeders N2 and N3 is given by Equations 6.57 and 6.58, respectively

	
DIN N

P

P
P
P

P

Pj
j j

2
1

1

2 2

=
∂
∂

⋅
∂
∂

+
∂
∂ 	

(6.57)

	
DIN N

P

P
P
Pj

j
3

1

1

3

=
∂
∂

⋅
∂
∂ 	

(6.58)

As mentioned earlier, operability function compositions in FDNA WLRs 
may change with the operability levels of nodes in a network. This can affect 
their degradation indices, which can affect leaf node degradation tolerance 
levels. Table 6.5 presents the degradation indices DIN Nj 2 and DIN Nj 3 for 
Problem 6.15 and how their values are affected by the operability function 
formed by the row-column composition.

Understanding the relationship between degradation indices and degra-
dation tolerance levels in an FDNA graph is important. It provides insights 
into the rates with which critically important nodes may approach their 
minimum effective operability levels. With this, risk management options 
might be implemented that avoids performance breaches and ensures the 
network’s operational levels remain within allowable ranges.

TABLE 6.5

Degradation Indices of DINj|N2 and DINj|N3 for Problem 6.15

DI Formula P SODP1 1= P P1 3 31= +b P P1 2 21= +b

P SODPj j= DIN Nj
j j

2
1 21 2

2 2 2
= ⋅ +
a a a

DIN Nj
j

3
1 31

2 2
= ⋅
a a

DIN Nj
j

2
2

2
=
a

DIN Nj
j

3
1

2
=
a

DIN Nj
j j

2
1 2

2 2
= +
a a

DIN Nj 3 0=

P Pj j= +1 1b DIN Nj 2
21

2
=
a

DIN Nj 3
31

2
=
a

DIN Nj 2 0=

DIN Nj 3 1=

DIN Nj 2 1=

DIN Nj 3 0=

DI Values P SODP1 1= P P1 3 31= +b P P1 2 21= +b

P SODPj j= DIN Nj 2 0 4609= .

DIN Nj 3 0 0133= .

DIN Nj 2 0 44= .

DIN Nj 3 0 19= .

DIN Nj 2 0 63= .

DIN Nj 3 0=

P Pj j= +1 1b DIN Nj 2 0 11= .

DIN Nj 3 0 07= .

DIN Nj 2 0=

DIN Nj 3 1=

DIN Nj 2 1=

DIN Nj 3 0=
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The preceding discussion focused on addressing the question: Given a 
set of leaf node feeders to a receiver node, what single operability level x must each 
leaf node mutually equal or exceed to ensure the receiver node does not breach its 
minimum effective operability level? The value of x was the common threshold 
operability level that each leaf node feeder, in the set, must be greater than 
or equal to for the receiver node to avoid an MEOL breach. As mentioned 
earlier, this does not preclude a breach in the receiver node’s MEOL from 
combinations of leaf node operability levels that are different than x.

For example, in Problem 6.15 if leaf node feeder N3 becomes fully inoper-
able then leaf node feeder N2 must have an operability level greater than or 
equal to 75.57 utils for the operability level of Nj to be greater than or equal 
to its MEOL of 75 utils. In this situation, the operability level of Nj reaches a 
maximum of 85.75 utils—it can never reach full operability ( )Pj =100  if leaf 
node feeder N3 is fully inoperable; that is,

	 If P3 0=  then 
P P MEOP

P
j j

j

2 75 57 75

85 75

≥ ≥ =
≤







.

.

 for 

This result is shown in Figure 6.35 by the bottom-most line. Figure 6.35 pres-
ents a family of lines with each identifying the tolerance interval within 
which the operability level of N2 must fall for receiver node Nj to avoid an 
MEOL breach—given the fixed operability level of N3. Figure 6.35 also shows 
the maximum operability level of receiver node Nj, if leaf node feeder N2 is 
fully operable and the operability level of N3 is as shown.

5.758346.624 49.6591 53.9773 58.2955 62.6136 66.9318 71.25 75.5682 100

Leaf node feeder N2 operability level 

Receiver node N
j  operability level 

75

100
99.05

A B 49.66 53.98 58.29 62.61 66.93 71.25 75.57 100
A = 45.76
B = 46.62

P 3 =
 0P 3 =

 10P 3 =
 20P 3 =

 30P 3 =
 40P 3 =

 50P 3 =
 60P 3 =

 70P 3 =
 100

85.75
87.65
89.55
91.45
93.35
95.25
97.15Nj

N1

Problem 6.15
FDNA graph 

N2N3

FIGURE 6.35
A family of tolerance intervals for Problem 6.15.
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The analysis that went into constructing Figure 6.35 highlights one of many 
ways to structure and examine the tolerance of an FDNA graph. As men-
tioned earlier, modeling and measuring tolerance is an active area of research 
in the network science, engineering systems, and system sciences fields.

6.6  Special Topics

As stated earlier, FDNA is a new approach created to model and measure 
dependency relationships between suppliers of technologies and provid-
ers of services these technologies enable the enterprise to deliver. With any 
new approach, there are a number of extensions, special topics, and research 
areas to explore. This section discusses three areas. They are (1) regulating 
the operability function of dependent nodes, (2) an FDNA calculus to address 
nodes whose functionality are defined by constituent elements, and (3) ways 
to address cycle dependencies in an FDNA graph.

6.6.1  Operability Function Regulation

The flexibility in formulating the operability function between nodes is a 
desirable and important aspect of FDNA. Doing so requires understanding 
the context of the FDNA graph, the nature of its nodes, and the meaning of 
dependency relationships between them. For example, an operability func-
tion can be customized to regulate the rate that value (utils) from a feeder 
node flows into a receiver node.

Consider the single feeder–receiver node pair in Figure 6.36. What if cir-
cumstances are such that a receiver node is fully operable before its feeder 
node is fully operable? Can we regulate αij to address this circumstance?

Suppose we have a single feeder–receiver node pair as shown in Figure 
6.36. In Figure 6.36, suppose there is no criticality of dependency constraint 
between receiver node Nj and feeder node Ni. Let ′a ij denote the regulated a ij 
with

	
P SODP P P BOLPj j ij i ij ij i j= = ′ + − ≡ ′ +a a a100 1( )

From this, it follows that Pj =100 when

	
P

BOLP
i

j

ij

ij

ij

=
−

′
=

′
100

100
a

a

a

Furthermore, only when a aij ij≤ ′  will Pj =100 with Pi ≤100. Therefore, if 
P P Pj j ij i ij= = ′ + −SOD a a100 1( ) and 0 1≤ ≤ ′ ≤a aij ij  then Pj =100 when 
Pi ≤100. Under this SODPj regulation, feeder node Ni need not reach 
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an operability level of 100 utils for its receiver node Nj to become fully 
operable. This is illustrated in Figure 6.37. In Figure 6.37, observe that 
BOLPj ij ij= − = ⇒ =1 1 500 0 0 50( ) . .a a  With this, a family of operability func-
tions can be formed as shown in Figure 6.37. From left-to-right, they are:

	

P P P P

P P P
j i j i

j i j

= + ⇒ = =
= + ⇒ =

50 100 50

0 90 50 100

utils when utils

utils. wwhen utils

utils when utils

P

P P P P

P

i

j i j i

=
= + ⇒ = =

55 5

0 80 50 100 62 5

.

. .

jj i j i

j i j

P P P

P P P

= + ⇒ = =
= + ⇒ =

0 70 50 100 71 4

0 60 50 10

. .

.

utils when utils

00 83 3

0 50 50 100 100

utils when utils

utils when u

P

P P P P
i

j i j i

=
= + ⇒ = =

.

. ttils

This illustrates the flexibility FDNA offers in operability function formula-
tion. FDNA enables operability functions to be designed to capture nuances 
in nodal dependencies and their interactions in very specific ways. Extending 

Receiver node

0 ≤ αij ≤ α ′ij ≤ 1

α ′ij 

Feeder node Ni

Nj

FIGURE 6.36
Regulated strength of dependency fraction ′a ij .
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Families of SODPj functions for regulated a ij .
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these ideas to FDNA graphs with multiple feeder nodes and complex nodal 
interactions is a rich area for further study.

6.6.2  Constituent Nodes

In an FDNA graph, suppose we have a node defined by two or more distinct 
components. Suppose each component makes a unique product. Suppose 
the value (utility or worth) of this node is a function of the value (utility or 
worth) of its products. In FDNA, such a node is called a constituent node.

Definition 6.14

An FDNA node characterized by two or more distinct components, where 
each component makes a unique product, is a constituent node. A node that 
is not a constituent node is a single component node. A single component node 
makes one and only one product.*

Definition 6.15

The operability level of a constituent node is a function of the operability 
levels of its distinct components.

Figure 6.38 illustrates an FDNA constituent node. In Figure 6.38, suppose 
Ni is a machine shop that manufactures five distinct components: cogwheels, 
gages, stamping dies, lathes, and rotor blades. In accordance with Definition 
6.14, Ni is a constituent node. A constituent node is always separable into two 
or more distinct components. Nodes in the preceding discussions were not 
separable in this way. They delivered to, or received from, single component 
nodes. If the node in Figure 6.38 produced only cogwheels, then it would be 
a single component node.

A constituent node can be a feeder to, or a receiver from, other nodes in an 
FDNA graph. They may be other constituent nodes or other single component 
nodes. A component within a constituent node can be a feeder to, or a receiver 

*	 The nodes discussed in the preceding sections have all been single component node.

A

B
C

D E

Machine Shop

A: Cogwheels
B: Gages
C: Stamping Dies
D: Lathes
E: Rotor Blades

Node Ni

FIGURE 6.38
An FDNA constituent node.
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from, other components in the same node (an intracomponent dependency), 
or to other components in other constituent nodes, or to other constituent 
nodes (as a whole), or to other single component nodes in an FDNA graph.

If an FDNA node is a constituent node, then its operability level is defined 
as a function of the operability levels of its distinct components. The form of a 
component operability function is shaped by the particular dependency rela-
tionship present in the FDNA graph. For instance, the operability function 
of a component might be expressed by a single-dimensional value function. 
An example is shown in Figure 6.2. The operability function of a component 
might be expressed by a rule derived from one of the weakest link formula-
tions, as discussed in the preceding sections. A combination of formulations 
might be appropriate for the components of a particular FDNA constituent 
node. These considerations are illustrated in the forthcoming examples.

If the value (worth or utility) of the output produced by each component 
in a constituent node meets certain independence conditions (Keeney and 
Raiffa, 1976), then from decision theory the overall operability function of the 
constituent node can be expressed as a linear additive sum of the component 
operability functions. Consider Figure 6.39. 

In Figure 6.39, suppose A, B, and C are three distinct components that 
define constituent node Ni . Suppose the operability functions for A, B, and C 
are the value functions PA(xA ), PB(xB ), and PC(xC ), respectively. We can define 
the overall operability function of node Ni as

	 P w P x w P x w P xi A A A B B B C C C= + +( ) ( ) ( )	 (6.79)

where w w wA B c, , ,and  are nonnegative weights whose values range from 
0 to 1, with w w wA B c+ + =1, and 0 100≤ ≤P P x P x P xi A A B B c c, ( ), ( ), ( ) . Equation 6.79 
is a form of the additive value function in decision theory (Keeney and Raiffa, 
1976; Kirkwood, 1997). From this, the operability level of an FDNA constitu-
ent node can be formally defined as follows.
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FIGURE 6.39
Component value functions for constituent node Ni.
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Definition 6.16

The operability level Py of an FDNA constituent node Ny with components 
A1, A2, A3 , . . . , As is given by

	
P w P xy i A

i

s

ii
=

=
∑

1

( ) 	 (6.80)

where w w w ws1 2 3, , , ,…  are nonnegative weights whose values range from 
0 11 2 3to 1, w w w w P xs A ii

+ + + + =� , ( ) is the operability function of Ai , and 
0 100≤ ≤P P xy A ii

, ( ) .

In Definition 6.16, if component Ai has a dependency relationship with 
another component (internal or external to Ny ), then its operability function 
P xA ii

( ) is shaped by that particular relationship, as expressed in the FDNA 
graph. Equation 6.80 is a classical form of the Keeney-Raiffa additive value 
function. Figure 6.40 illustrates Definition 6.16.

PROBLEM 6.16

Formulate the FDF for the graph in Figure 6.41. Use FDNA ( , )a b  WLR.

Solution

Figure 6.41 consists of a constituent feeder node Ni and a receiver node Nj. In 
accordance with Definition 6.15, the operability level of constituent node Ni is 
a function of the operability levels of its three distinct components A, B, and 
C. In Figure 6.41, the arrow and the word “All” means receiver node Nj has a 
dependency relationship on each component contained in constituent feeder 
node Ni . With this, we can write the FDF for Nj as follows:

	 Pj = Min(αij Pi + 100(1 − αij ), Pi + βij )

	 Pi = wAPA + wBPB + wCPC

A1

A2
A3

1
( )

i

s
y i A i

i
P w P x

=
= ∑

As

Node Ny

FIGURE 6.40
The operability function of constituent node Ny. 

NjAll

αij, βij
A

B C

Node Ni

FIGURE 6.41
FDNA graph for Problem 6.16.
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where  w w wA B c, , and  are nonnegative weights whose values range from 0 to 1, 
w w w P P x P P x P P x P P P PA B C A A A B B B C C C i j A B+ + = = = = ≤1, ( ), ( ), ( ), , , , ,and0 PPC ≤100. 
The terms PA , PB , and PC are the operability levels of components A, B, and 
C, respectively. Their values derive from their value functions PA(xA) , PB(xB) , 
and PC(xC ), respectively. These value functions are the operability functions 
for A, B, and C.

PROBLEM 6.17

Formulate the FDF for the graph in Figure 6.42. Use FDNA (α, β ) WLR.

Solution

Figure 6.42 consists of a feeder node Ni and a constituent receiver node Nj . In 
accordance with Definition 6.14, feeder node Ni is a single component node. 
The arrow pointing to the letters A, B means components A and B contained 
in Nj have a dependency relationship on feeder node Ni . With this, from 
Definition 6.16, the FDF for Nj is

	 Pj = wAPA + wBPB + wCPC

	
P P PA ij i ij i ijA A A

= + − +Min( ( ), )a a b100 1

	
P PB ij i ij ijB B B

= + − +Min( ( ), )a a b100 1 Pi

where w w wA B C, ,  are nonnegative weights whose values range from 0 to 1, 
w w w P P x P P P P PA B C C C C i j A B C+ + = = ≤ ≤1 100, ( ) , , , , .and 0  The terms a ijA

, a ijB
, bijA

, 
and bijB

 are strength and criticality of dependency parameters. The notation 
ijA means component A contained in node Nj has a dependency relation-
ship with node Ni . Likewise, the notation ijB means component B contained 
in node Nj has a dependency relationship with node Ni . The term PC is the 
operability level of component C. Its value derives from a value function 
PC(xC ). This value function represents the operability function for C.

PROBLEM 6.18

Formulate the FDF for the graph in Figure 6.43. Use FDNA ( , )a b  WLR.

Ni A, B

A
B C

Node Nj

FIGURE 6.42
FDNA graph for Problem 6.17. 
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Solution

Figure 6.43 consists of a constituent feeder node Ni and a receiver node Nj . In 
accordance with Definition 6.14, receiver node Nj is a single component node. 
The two “puzzle” images and the “dot” on the left end of each arrow mean 
Nj has dependency relationships on components A and E contained in Ni . 
The point of each arrow touches the edge of Nj . This means the product cre-
ated by Nj relies, to some degree, on the products created by components A 
and E contained in node Ni . With this, we can write the FDF for Nj as follows:

 
P

P P
Pj

i j A i j E i j i j
A i j

A E A E

A
= + + −

+











+Min

a a a a
b

2 2
100 1

2
, ,PPE i jE

+








b

	
(6.81)

The terms a a b bi j i j i j i jA E A E
, , , and  are strength and criticality of dependency 

parameters. The notation iAj means node Nj has a dependency on compo-
nent A contained in node Ni . Likewise, the notation i jE  means node Nj has 
a dependency on component E contained in node Ni . The terms PA and PE 
are the operability levels of components A and E, respectively. Their values 
derive from their value functions P x P xA A E E( ) ( ),and  which are the operabil-
ity functions for A and E.

PROBLEM 6.19

Formulate the FDF for the graph in Figure 6.44. Use FDNA ( , )a b  WLR.

Solution

Figure 6.44 consists of two constituent nodes Ni and Nj . As shown in this 
figure, component G contained in Nj has a dependency relationship on 

A
B

C

D E
Nj

Node Ni

FIGURE 6.43
FDNA graph for Problem 6.18.
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G H

Node Ni Node Nj

FIGURE 6.44
FDNA graph for Problem 6.19.
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component A contained in Ni . Component E contained in Ni has a depen-
dency relationship on component F contained in Nj . With this, we can write 
the FDFs for Ni and Nj as follows:

	 Pi = wAPA + wBPB + wCPC + wDPD + wEPE

	 Pj = wFPF + wGPG + wHPH

	 P P PE j i F j i F j iF E F E F E
= + − +Min( ( ), )a a b100 1

	 P P PG i j A i j A i jA G A G A G
= + − +Min( ( ), )a a b100 1

where wA , wB , wC , wD , wE , wF , wG , and wH , are nonnegative weights whose val-
ues range from 0 to 1, w w w w w w w w P P x P P x P P xA B C D E F G H A A A B B B C C C+ + + + = + + = = = =1 1, , ( ), ( ), ( ), PP P x P P x P P x P P P P P P PD D D F F F H H H i j A B C D= = = ≤( ), ( ), ( ), , , , , , ,and and 0 EE F G HP P P, , , .≤100
P P x P P x P P x P P x P P xB B B C C C D D D F F F H H H= = = = = ≤( ), ( ), ( ), ( ), ( ),and and 0 PP P

P P P P P P P P
i j

A B C D E F G H

, ,

, , , , , , , .≤100

The terms a j iF E
 , a i jA G

 , bj iF E
 , and bi jA G

 are strength and criticality of depen-
dency parameters. The notation j iF E means component E contained in node 
Ni has a dependency on component F contained in node Nj . Likewise, the 
notation iAjG means component G contained in node Nj has a dependency on 
component A contained in node Ni.

The terms P P P P P PA B C D F H, , , , , and  are the operability levels of compo-
nents A, B, C, D, F, and H, respectively. Their values derive from their value 
functions, which are the operability functions for these components con-
tained in Ni and Nj.

PROBLEM 6.20

Formulate the FDF for the graph in Figure 6.45. Use FDNA ( , )a b  WLR.

Solution

The graph in Figure 6.45 consists of three nodes Ni , Nj , and Cap1. Nodes Ni 
and Nj are constituent nodes. Component A in constituent node Ni is a feeder 
to component G in constituent node Nj . Component F in constituent node Nj 
is a feeder to component E in constituent node Ni . With this, we can write the 
FDFs for Ni , Nj , and Cap1 as follows:

	
P

P P
PCap
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1 1 1 1
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	  Pi = wAPA + wBPB + wCPC + wDPD + wEPE

	 Pj = wFPF + wGPG + wHPH
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P P PE j i F j i F j iF E F E F E

= + − +Min( ( ), )a a b100 1

	   
P P PG i j A i j A i jA G A G A G

= + − +Min( ( ), )a a b100 1

where wA , wB , wC , wD , wE , wF , wG , and wH , are nonnegative weights whose val-
ues range from 0 1 1 1to , , , ( ),w w w w w w w w P P xA B C D E F G H A A A+ + + + = + + = =
P P x P P x P P x P P x P P x PB B B C C C D D D F F F H H H i= = = = = ≤( ), ( ), ( ), ( ), ( ), ,and 0 PP P

P P P P P P P
j A

B C D E F G H

, ,

, , , , , , .≤100

The terms a a b biCap jCap iCap jCap1 1 1 1
, , , ,and  are strength and criticality of depen-

dency parameters between Ni and Cap1 and between Nj and Cap1, respec-
tively. The terms a a b bj i i j j i i jF E A G F E A G

, , , and  are also strength and criticality of 
dependency parameters. The notation jFiE means component E contained in 
node Ni has a dependency on component F contained in node Nj. Likewise, 
the notation iAjG means component G contained in node Nj has a dependency 
on component A contained in node Ni.

The terms P P P P P PA B C D F H, , , , , and  are the operability levels of components 
A, B, C, D, F, and H, respectively. Their values derive from their value func-
tions, which are the operability functions for the components contained in 
Ni and Nj.

In Problem 6.20, suppose the FDNA parameters associated with the 
dependency relationships in Figure 6.45 are a iCap1

0.90,=  a jCap1
0 45= . , biCap1

35= , 
bjCap1

60= , a j iF E
= 0 85. , a i jA G

= 0 30. , bj iF E
= 25, and bi jA G

= 75. If components A, B, C, 
and D contained in constituent node Ni and components F and H contained 
in constituent node Nj have operability levels shown in Table 6.6, then we 
can compute the operability levels for components E and G and nodes Ni , Nj , 
and Cap1 as shown in Table 6.6. These computations assume equal weights 
among all components in constituent nodes Ni and Nj.

6.6.3  Addressing Cycle Dependencies

In general, a cycle dependency exists when a path connecting a set of nodes 
begins and ends with the same node. In graph theory, this is called a closed 

Cap1

A

B
C

D E

F

G HNode Ni Node Nj

FIGURE 6.45
FDNA graph for Problem 6.20. 
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path. In FDNA, Postulate 6.10 states that all FDNA graphs must be acyclic 
(without cycles). However, if a cycle dependency is identified then how might 
it be treated in an FDNA graph?

In FDNA, cycle dependencies can be evaluated by a procedure called com-
partmentation. Compartmentation is the process of assessing whether cycle 
dependencies can be resolved by replacing nodes along the closed path with 
a path that connects entities in acyclic relationships. In FDNA, these enti-
ties might be components in a constituent node. They would capture the 
basis for the original cycle but express the true nature of the cycle depen-
dency in acyclic ways. Compartmentation is not guaranteed to resolve cycle 
dependencies. If a cycle dependency is found to be irresolvable, then this may 
signal the nodes in the path are truly not separable into acyclic relationships.

Figure 6.46 illustrates what a successful compartmentation of a cycle depen-
dency might look like. Figure 6.46 is a modified FDNA graph from Problem 
6.20. With the right-most graph in Figure 6.46, an operability analysis can 

TABLE 6.6

Computing Component and Constituent Node Operability Levels

Functional Dependency Network Analysis (FDNA): A Capability Portfolio

FDNA parameters
αiCap1

0.90 biCap1
35

αjCap1
0.45 bjCap1

60

αjFiE
0.85 bj iF E

25

αiA jG
0.30 bi jA G

75

If these components are functioning at these operability levels . . . 

At time t1 At time t2 At time t3

PA 100 PA 75 PA 50
PB 100 PB 75 PB 50
PC 100 PC 75 PC 50
PD 100 PD 75 PD 50
PF 100 PF 75 PF 50
PH 100 PH 75 PH 50

Then these receiver nodes are functioning at these operability levels . . . 

At time t1 At time t2 At time t3

PE 100 PE 78.75 PE 57.50
PG 100 PG 92.50 PG 85.00
Pi 100 Pi 75.75 Pi 51.50
Pj 100 Pj 80.83 Pj 61.67
PCap1

100 PCap1
84.78 PCap1

69.55



247Functional Dependency Network Analysis

then be conducted as demonstrated with FDNA dependency functions pro-
vided in the solution to Problem 6.20.

6.7  Summary

Some of today’s most critical and problematic areas in engineering manage-
ment are identifying, representing, and measuring dependencies between 
entities involved in engineering an enterprise system. As discussed in this 
chapter, these entities can be suppliers of technologies and services and the 
users or receivers of these technologies and services.

The importance of understanding entity relationships is many-fold. 
Primary, is to study of ripple effects of failure of one entity on other depend-
ent entities across an enterprise system. Providing mechanisms to anticipate 
these effects early in a system’s design enables engineers to minimize depen-
dency risks that, if realized, may have cascading negative effects on the abil-
ity of an enterprise to achieve capability objectives in the delivery of services 
to users.

This chapter presented FDNA, which enables designers, engineers, and 
managers to study and anticipate the ripple effects of losses in supplier-
program contributions on an enterprise system’s dependent capabilities, 
before risks that threaten these suppliers are realized. An FDNA anal-
ysis identifies whether the level of operability loss, if such risks occur, 
is tolerable in terms of acceptable levels of performance. This enables 
management to target risk resolution resources to those supplier pro-
grams that face high risk and are most critical to a system’s operational 
capabilities.

Cap1

A

B
C

D
E

F

G H

Node Ni Node Nj

Cap1

Ni Nj

Nodes initially connected in a
cycle dependency relationship

Nodes now connected by entities in an
acyclic dependency relationship 

Before
compartmentation

After
compartmentation 

FIGURE 6.46
Compartmentation in an FDNA graph. 
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FDNA is a new approach. Its calculus and use of graph theory to model 
complex dependency relationships enables addressing such problems in 
ways that can be difficult in matrix-based protocols, such as input–output 
(I/O) models in economic science (Leontief, 1966). FDNA has the potential 
to be a generalized approach for a variety of dependency problems, includ-
ing those in input–output economics, critical infrastructure risk analysis, 
and nonstationary, temporal, dependency analysis problems.

There are a number of research areas to explore that will advance the the-
ory and application of FDNA. These include the following:

Operability Function Formulations: This chapter presented weakest 
link rules originally designed for the FDNA operability function. 
Although these rules offer many desirable properties, other formu-
lations are certainly possible. An area of further study is exploring 
other linear and non-linear forms for the FDNA operability func-
tion, discovering their properties, and identifying the conditions 
and contexts when they apply.

Analytical Scalability: Explore the analytical scalability of FDNA as a 
general dependency analysis methodology for large-scale logical 
topologies across a variety of problem spaces.

Nonstationary Considerations: Extend the FDNA calculus to include tem-
poral features that address nonstationary dependency analysis prob-
lems. Research the integration of FDNA concepts within dynamic, 
time-varying modeling and simulation environments.

Degradation Tolerant, Resilient, and Adaptive Networks: Conduct research 
in network tolerance and resilience and ways to measure them in 
an enterprise system if, due to the realization of risks, one or more 
contributing programs or supplier–provider chains degrade or fail. 
Investigate the optimal design of adaptable supplier–provider net-
works. Explore ways a network can reconfigure surviving nodes to 
maintain operational effectiveness in the loss of critical nodes, from 
stationary and temporal perspectives.

Portfolio Optimization for Investment Decisions: Explore the integration 
of FDNA with portfolio optimization techniques. Build an analytic 
environment with optimization algorithms that will derive the best 
mix (or allocation) of resources needed to achieve an enterprise 
system’s capability outcomes, subject to a variety of constraints 
such as cost, policy, and supplier–provider technology maturity 
considerations.

Probabilistic FDNA: Develop analytical protocols to conduct probabi-
listic analysis within the FDNA approach. This includes elicitation 
procedures for specifying uncertainty distributions around key 
FDNA parameters, such as a bij ijand .
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Alternative Dependency Analysis Approaches: Explore the relation-
ship and contribution of FDNA to other dependency analysis 
approaches in the engineering systems and economics communi-
ties. These include design structure matrices (DSM), failure modes 
and effects analysis (FMEA), the Leontief input–output model 
(Leontief, 1966), the inoperability input–output model (IIM) (Jiang 
and Haimes, 2004, Santos, 2007), and system dynamics models.

Questions and Exercises

	 1.	Answer the following given the FDNA graph in Figure 6.47.
	(A)	 Using the operability function given by Equation 6.10, compute 

the operability level of receiver node Nj if the operability levels 
of all feeder nodes are equally important to Nj.

	(B)	 Using the weakest link operability function given by Equation 
6.11, what is the operability level of receiver node Nj?

	(C)	 Compare and contrast the results in (A) with the result in (B).
	 2.	 In Figure 6.47, suppose the operability function of node Nj is com-

puted by the limit average weakest link rule. Suppose the opera-
bility levels of all three feeder nodes are equally important to Nj . 
If the operability level of receiver node Nj is 36 utils, then which 
feeder node is being constrained and what is the magnitude of its 
constraint?

	 3.	Use FDNA ( , )a b  WLR to answer the following. Consider the depen-
dency relationship between the widget production machine and 
its fluid supplier described in the narrative for the FDNA graph in 
Figure 6.12.
	(A)	 Determine a bij ijand  if RPOLB BOLPj j= .

Receiver node

Feeder nodes

37
utils

21
utils

78
utils

N3N2

Nj

N1

Operability level

FIGURE 6.47
FDNA graph for Exercise 1.
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	(B)	 From (A) write the equations for SODPj and CODPj.
	(C)	 From (A) and (B) explain why P P Pj i i= ≤ ≤for 0 100, in this case.

	 4.	Answer the following given the FDNA graph in Figure 6.48. Use the 
FDNA (α, β) WLR.
	(A)	 Compute the baseline operability levels of all nonleaf node feeders.
	(B)	 If the operability level of N3 is 55 utils, determine the operability 

levels of the other nodes.
	(C)	 Determine the operability level of Nj , if N2 has a maximum crit-

icality of dependency on N3.
	(D)	 Determine the operability level of Nj , if no criticality constraints 

are present in any dependency relationship.
	 5.	 In FDNA ( , )a b  WLR, if receiver node Nj has dependency relation-

ships on h feeder nodes and bkj = 0, for all k h= 1 2 3, , , , ,…  then show 
that P P P P Pj h= Min( , , , , ).1 2 3 …

	 6.	Answer the following, given the FDNA graphs in Figures 6.48 and 6.49.
	(A)	 Compute the degradation index of all receiver nodes in Figures 

6.48 and 6.49.
	(B)	 Compute the degradation index of all receiver nodes in Figure 

6.49 if b bjp kj= =100 100and  for all k =1 2 3 4 5, , , , .
	 7.	Answer the following given FDNA graph in Figure 6.50.

	(A)	 Show that the operability level of receiver node Nj is determined 
by SODPj when 100 1 100( )− ≤ ≤a bij ij  with 0 1≤ ≤a ij .

	(B)	 Show that the operability level of receiver node Nj crosses over 
from being determined by CODPj to being determined by SODPj 

when Pi
ij

ij
ij> −

−
≤ <100

1
0 1

b
a

a, . 

α1j = 0.90, β1j = 60

α2j = 0.45, β2j = 35

α31 = 0.75, β31 = 70

α32 = 0.10, β32 = 55

Nj

N2

N1

N3

Operability level = 55 utils

FIGURE 6.48
FDNA graph for Exercises 4 and 6.
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	 8.	Given the single feeder-receiver node pair in Figure 6.50, confirm the 
result for Pj shown in Table 6.7 for each row-column combination of 
a bij ijand .

	 9.	Formulate the FDNA dependency functions for the graph in Figure 6.51.
	 10.	Formulate the FDNA dependency functions for the graph in Figure 6.52.
	 11.	Formulate the FDNA dependency functions for the graph in Figure 6.53.
	 12.	Conduct an operability analysis of the FDNA graph in Figure 

6.26. Use FDNA ( , )a b  WLR given the following: BOLPj = 65 utils, 
bij jMEOLP= =50 85utils, and  utils. From this, answer the following:
	(A)	 Generate a new Table 6.2.

N1

Nj

N5N2 N3Feeder  nodes N4

Operability level 45
utils

37
utils

21
utils

78
utils

63
utils

1 1

2 2

3 3

4 4

5 5

0.78, 55
0.35, 30
0.15, 45
0.90, 50
0.45, 100
0.65, 100

jp jp

j j

j j

j j

j j

j j

α β
α β
α β
α β
α β
α β

= =

= =

= =

= =

= =

= =

Feeder node parameters
Feeder and
receiver node 

Np

Receiver node

FIGURE 6.49
FDNA graph for Exercise 6.

Receiver node

Feeder node Ni

αij, βij

Nj

FIGURE 6.50
FDNA graph for Exercise 7.

TABLE 6.7

Table for Exercise 8

bij = 0 bij = 100 bij jBOLP=

a ij = 0 P Pj i= Pj =100 Pj =100

a ij = 1 P Pj i= P Pj i= P Pj i=
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	(B)	 Determine the feeder node operability level where the opera-
bility level of Nj stages its transition from being determined by 
CODPj to being determined by SODPj.

	 13.	Answer the following using the FDNA ( , )a b  WLR.

α1j, β1j

α3j, β3j

α2j, β2j

α32, β32α41, β41
α42, β42

N4N3

N2
N1

Nj

FIGURE 6.53
FDNA graph for Exercise 11.

α1j, β1j

α31, β31

α34, β34

α42, β42
α41, β41

N4
N3

N1

Nj

N2

FIGURE 6.52
FDNA graph for Exercise 10.

α1j, β1j α2j, β2j

α31, β31 α42, β42

Nj

N2

N1

N3
N4

FIGURE 6.51
FDNA graph for Exercise 9.
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	(A)	 Suppose Nj is dependent on h feeder nodes as shown in 
Figure 6.54. If Nj becomes increasingly criticality unconstrained 
by the operability of its h feeder nodes, show that the operability 
function of Nj will increasingly approach SODPj .

	(B)	 Given (A), if Nj has no criticality constraints on these feeder 
nodes, show that P SODPj j= .

	(C)	 Develop a graphic that illustrates the results from (A) and (B).
	 14.	Suppose Nj is dependent on Ni as shown in Figure 6.55. If αij = 1, 

prove that P SODPj j=  for all bij .
	 15.	Derive the strength of dependency fractions for each dependency 

relationship in Figure 6.24 given the following: BOLPj = 55 utils 
and α1j and α2j are each considered 50% more important than α3j in 
improving the baseline operability level of receiver node Nj.

	 16.	 If the operability level of node N3 is 70 utils for the FDNA graph in 
Problem 6.15, then

	(A)	 Show that the degradation index of receiver node Nj with respect 
to N2 is as follows:

	

0 63 0 35 8427
0 4609 35 8427 73 6364
0 44

2

2

. .

. . .

.

     for 
 for 

≤ <
≤ <

P
P

      for 73 6364 1002. ≤ ≤





 P

	(B)	 Find the operability level of node N2 at the point where the oper-
ability levels of node N1 and Nj are equal.

N3

Nj

Nh Feeder nodesFeeder nodes

Receiver node

N2N1

FIGURE 6.54
FDNA graph for Exercise 13.

Nj
Receiver node

Feeder node Ni

αij, βij

FIGURE 6.55
FDNA graph for Exercise 14.
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	 17.	Verify the following, given the graph and FDNA parameters in 
Problem 6.15. Relate this to Figure 6.35.

If 80 then 
for 

P
P P MEOP

P
j j

j
3

2 46 335 75

99 734
=

≥ ≥ =
≤







.

.

If then
for 

P
P P MEOP

P
j j

j
3

2
90

46 0468 75

99 867
=

≥ ≥ =
≤







.

.

	 18.	Consider the industry sectors oil and electricity. Suppose oil pro-
duction requires electricity to run its facilities and electricity pro-
duction requires oil for its generation and distribution. Given only 
this information, we have a cycle dependency between these sectors. 
This is shown by the FDNA graph in Figure 6.56 (the looped arrows 
imply a nodal intradependency is present).

		  From Section 6.6, recall that compartmentation is the process of 
assessing whether cycle dependencies can be resolved by replacing 
nodes along the closed path with a path that connects entities in acy-
clic relationships. These entities might be components in a constitu-
ent node.

		  Suppose compartmentation resolved the cycle dependency in 
Figure 6.56 into (1) the constituent nodes shown in Figure 6.57 and 
(2) into the acyclic relationships between its components, as shown 
in Figure 6.58.

A: Oil used in
the oil

industry

Ac: Equipment and
facilities that consume

oil to produce oil

Bc: Equipment and facilities
that consume electricity to
produce electricity

B: Electricity used in
the electrical
industry

A

Ac Bc

Oil Elect
B

FIGURE 6.57
A constituent node representation of the cycle in Figure 6.56.

Oil Elect

FIGURE 6.56
A cycle dependency between oil and electricity.
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		  From this, formulate the FDNA dependency functions for the graph 
in Figure 6.57 if the acyclic component relationships are as shown in 
Figure 6.58. Use the FDNA ( , )a b  WLR.

	 19.	The two industry sectors in Exercise 18 can be represented by a 
protocol in economics known as the Leontief input–output matrix 
(Leontief, 1966). Such a matrix is shown in Figure 6.59.

		  From Exercise 18, suppose we populate Leontief’s input–output 
matrix C with entries that reflect the strength of dependency frac-
tions between the components in Figure 6.58. Suppose this is given 
by the alpha values on the FDNA component graph or equivalently 
by the entries in the α matrix in Figure 6.60.

Electricity B is consumed by the
equipment and facilities Ac needs to
produce the oil

Ac

Bc

A

B
Electricity B is consumed by the
equipment and facilities Bc needs to
produce the electricity

Oil A is consumed by the equipment
and facilities Bc needs to produce the

electricity

Oil A is consumed by the
equipment and facilities Ac needs

to produce the oil

FIGURE 6.58
Acyclic component dependency relationships within Figure 6.56.

Matrix rowOil

C =
c11 c12

c21 c22

Oil i = Input
i = Producer
i = Feeder

j = Output
j = Consumer Equivalent
j = ReceiverElectricity

Electricity Matrix column

FIGURE 6.59
An input–output matrix.

A Ac A Bc 0.35 0.15
0.25 0.10B

α = =

αBBc =0.10

αBAc =0.25

αABc =0.15

αAAc =0.35

A

B

Bc

Ac

Feeder Receiver
Ac B Bc

FIGURE 6.60
 An input–output matrix of strength of dependency fractions.
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		  Given the information in Figure 6.60, compute the operability levels 
of the Oil and Electricity nodes in Figure 6.57 if components A and B 
(in Figure 6.60) both have operability levels equal to 100 utils at time 
t1, equal to 75 utils at time t2, and equal to 50 utils at time t3. Assume 
the FDNA ( , )a b  WLR applies. Assume no criticality constraints 
affect operability levels.

	 20.	Questions for Research Projects or Papers
	(A)	 Explore the relationship between FDNA and Wassily Leontief’s 

Nobel Prize winning work in the theory of input–output mod-
els, developed in the late 1950s, to measure economic consump-
tion and demand across interdependent industries or sectors 
(Leontief, 1966).

	(B)	 In Section 6.7, areas for research in FDNA were identified. Select 
an area and review its description. Write a research paper on 
your selected area that discusses the issues, ways they might 
be addressed, and experiment with trial solutions that advance 
FDNA in the area being explored.
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7
A Decision-Theoretic Algorithm for 
Ranking Risk Criticality

7.1  Introduction

This chapter presents a decision-theoretic approach for prioritizing risk 
management decisions as a function of risk measures and analysis proce-
dures developed in the previous chapters. These measures are integrated 
into advanced ranking algorithms to isolate and prioritize which capabili-
ties are most risk-threatened and qualify for deliberate management atten-
tion. This methodology enables decision-makers to target risk reduction 
resources in ways that optimally reduce threats posed by risks to critical 
capability outcome objectives.

7.2  A Prioritization Algorithm

Management decisions often involve choosing the “best” or the “most-
preferred” option among a set of competing alternatives. Similar selection 
decisions exist in risk management. Instead of choosing the most-preferred 
alternative, risk management decisions involve choosing the most-preferred 
risks to reduce, or eliminate, because of their threats to capability. In either 
situation, the common question is “How to identify selecting the best option 
from a set of competing alternatives?” Addressing this question is the focus 
of rational decision-making, supported by a variety of analytical formalisms 
developed in the last 300 years.

In general, selection algorithms produce rankings of options from a finite 
set of competing alternatives as a function of how each alternative performs 
across multiple evaluation criteria. Algorithms that produce ordered rank-
ings fall into two classes. These algorithms use either ordinal or cardinal 
methods to generate the rankings.

Ordinal methods apply scales to rate the performance of alternatives 
by numbers that represent order. Ordinal scales are common in the social 
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sciences, where they are often used for attitude measurement. However, only 
the ordering of numbers on these scales is preserved. The distance between 
them is indeterminate (not meaningful). Arithmetic operations beyond 
“greater than,” “less than,” or “equal to” are impermissible. Thus, ordinal 
ranking algorithms isolate which alternative in a finite set of competing 
alternatives is more critical than the others. However, they cannot measure 
the distance between ranked alternatives.

Cardinal methods apply scales to rate the performance of alterna-
tives by numbers that represent an ordered metric. This means the dis-
tance between numbers on a cardinal scale is determinate (meaningful). 
Examples of numbers on a cardinal scale include the probability mea-
sure or degrees centigrade. For ranking risk criticality, a cardinal-based 
approach is frequently employed. This approach provides the flexibility 
to join optimization protocols with ranking algorithms when optimal 
assignments of risk reduction resources, under a variety of constraints, 
need to be determined.

As mentioned above, there are many algorithms that can be tailored to 
address the problem of ranking risks (say) from most-to-least critical to an 
engineering system. Many have their origins in vNM expected utility theory 
(von Neumann and Morgenstern, 1944).

From utility theory, a well-established algorithm known as the linear addi-
tive model is a popular approach (Keeney and Raiffa, 1976). A form of the lin-
ear additive model is given by Equation 7.1 (refer to Chapter 3, Definition 3.6). 
Furthermore, it has been proved if the criteria in a selection problem are 
mutually preferentially independent, then the evaluator’s preferences can be 
represented by an additive value function (Keeney and Raiffa, 1976).

7.2.1  Linear Additive Model

A value function V yY ( ) is an additive value function if there exists n single-
dimensional value functions V x V x V x V xX X X X nn1 2 31 2 3( ), ( ), ( ), , ( ),…  satisfying

	 V y w V x w V x w V x w V xY X X X n X nn
( ) ( ) ( ) ( ) ( )= + + + ⋅⋅⋅ +1 1 2 2 3 31 2 3 	 (7.1)

where w i ni for = 1,...,  are nonnegative weights (importance weights), whose 
values range between 0 and 1 and where w w w wn1 2 3 1+ + + + =� .

The linear additive model is representative of a class of decision rules 
known as compensatory models. Compensatory models allow trade-offs to 
compete between attributes (or criteria). For instance, an alternative with low 
scores on some attributes (or criteria) can improve in its attractiveness to a 
decision-maker if this is compensated by high values on other attributes; 
hence, the average or expected value effect results from compensatory deci-
sion models.
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There is another class of decision rules known as compromise solution 
models. These rules assume that choice among alternatives depends on a 
reference point (e.g., an ideal set of outcomes on all attributes) and attempts 
to minimize the distance between alternatives and the reference point 
(Malczewski, 1999).

More commonly referred to as ideal point methods, these approaches gen-
erate a complete ranking of alternatives as a function of their relative dis-
tance from the hypothetical ideal (the alternative characterized by attributes 
with all ideal values). According to Malczewski (1999), “ideal point methods 
treat alternatives and their attributes as inseparable bundles, all competing 
for closeness in similarity to the ideal alternative.”

The ideal point represents a hypothetical alternative that consists of the 
most desirable weighted normalized levels of each criterion across the set 
of competing alternatives. The alternative closest to the ideal point solution 
performs best in the set. Separation from the ideal point is measured geo-
metrically by a Euclidean distance metric.

Ranking algorithms from vNM decision theory are rooted in maximizing 
the expected utility. In contrast, those that derive from ideal point methods 
are rooted in maximizing similarity to the ideal solution. The best alterna-
tive is the compromise solution relative to that reference point.

As seen in the previous chapters, complex dependency relationships are 
the norm and not the exception in engineering an enterprise system. Entities 
such as supplier–provider nodes play key roles in planning, engineering, 
and managing an enterprise. Their effects on the success or failure of deliv-
ering to users are such that trade-offs between them might not be realistic 
or even advisable. For this reason, we approach the ranking problem in this 
chapter by a compromise model. This does not preclude the use of compen-
satory models if and when trade-offs between entities are reasonable. This is 
a fruitful area of continued research.

7.2.2  Compromise Models

Figure 7.1 illustrates the motivation for the development of compromise solu-
tion models. Two alternatives A1 and A2 are shown in relation to two benefit 
criteria or attributes (Attribute 1 and Attribute 2). In Figure 7.1, observe that 
A1 is closest to the ideal solution A*, but A2 is farthest from the negative ideal 
solution A− . Given this, which alternative do you choose?

An ideal point method that reconciles this question is the Technique for 
Order Preference by Similarity to Ideal Solution (TOPSIS) (Hwang and Yoon, 
1995). TOPSIS is an ideal point method that ensures the chosen alternative 
is simultaneously closest to the ideal solution and farthest from the negative 
ideal solution. It chooses the alternative whose performance across all crite-
ria maximally matches those that comprise the ideal solution.

TOPSIS assumes each attribute (or criterion) can be characterized by either 
monotonically increasing or decreasing utility. Here, we seek to maximize 
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attributes that offer a benefit and minimize those that incur a cost. TOPSIS 
generates an index that rank-orders competing alternatives from the most-
to-least desired on the relative distance of each to the ideal solution.

The TOPSIS algorithms operate on a generalized decision matrix of alter-
natives as shown in Table 7.1. Here, the performance of an alternative is 
evaluated across competing criteria. The attractiveness of an alternative to 
a decision-maker is a function of the performance of each alternative across 
these criteria. Applying TOPSIS consists of the following steps and equations.

Step 1

Normalize the decision matrix of alternatives (Table 7.1). One way is to com-
pute rij where

	

r
x

x
i m j nij

ij

iji

= = =
∑ 2

1 1, , ; , ,… …
	

(7.2)

Step 2

Compute a matrix of weighted normalized values according to vij ,

	 v w r i m j nij j ij= = =1 1, , ; , ,… … 	 (7.3)

where wj is weight of the jth attribute (criterion).

A3

A–

A*

A1

A2

Attribute 1

A
ttr

ib
ut

e 
2

FIGURE 7.1
Euclidean distances to positive and negative ideal solutions. (Reprinted from Hwang and Paul, 
Multiple Attribute Decision Making: An Introduction, Sage University Paper Series in Quantitative 
Applications in the Social Sciences, 07–104, Sage Publications, Thousand Oaks, California, 
copyright 1995 by Sage Publications, Inc. With permission.)
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Step 3�

Derive the positive A* and the negative A− ideal solutions, where

A v v v v v j J v j J ij n i ij i ij
∗ ∗ ∗ ∗ ∗= = ∈ ∈ ={ , , , , , } {(max | ),(min | )|1 2 1 2… … 11, , }… m 	 (7.4)

A v v v v v j J v j J ij n i ij i ij
− − − − −= = ∈ ∈ ={ , , , , , } {(min | ),(max | )|1 2 1 2… … 11, , }… m

	 (7.5)

where J1 is the set of benefit attributes, and J2 is the set of cost attributes.

Step 4

Calculate separation measures between alternatives as defined by the 
n-dimensional Euclidean distance metric. The separation from the positive-
ideal solution A* is given by

	
S v v i mi ij jj

∗ ∗= − =∑ ( ) , ,2 1 … 	 (7.6)

The separation from the negative-ideal solution A− is given by

	
S v v i mi ij jj

− −= − =∑ ( ) , ,2 1 … 	 (7.7)

Step 5

Calculate similarities to positive-ideal solution as follows:

	
0 1 1≤ =

+
≤ =∗

−

∗ −C
S

S S
i mi

i

i i( )
, ,… 	 (7.8)

TABLE 7.1

A Traditional Decision or Performance 
Matrix of Alternatives

Criteria and Weights
Decision C1 C2 C3 … Cn

Alternative w1 w2 w3 … wn

A1 x11 x12 x13 … x1n

A2 x21 x22 x23 … x2n

A3 x31 x32 x33 … x3n

… … … … … …
Am xm1 xm2 xm3 … xmn

A Decision Matrix
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Step 6

Choose the alternative in the decision matrix with the maximum Ci
* , or rank 

these alternatives from most-to-least preferred according to C*
i in descend-

ing order. The closer Ci
* is to unity, the closer it is to the positive-ideal solu-

tion. The farther Ci
* is from unity, the farther it is from the positive-ideal 

solution. The optimal compromise solution produced from these steps is 
given by

	 Max C C C Cn{ , , , , }1 2 3
∗ ∗ ∗ ∗…

The alternative with the maximum C*
i will be closest to the ideal solution and 

concurrently farthest from the least ideal solution.

7.2.3  Criteria Weights

Weighting the importance of each criterion in a decision matrix is a key 
consideration that influences the outcomes of a decision analysis. In the 
TOPSIS algorithm, criteria weights are entered at Step 2. How is weighting  
determined?

The literature presents many ways to derive criteria weights (Clemen, 
1996; Kirkwood, 1997). These include subjective weighting methods, objec-
tive weighting methods, and a mix of these approaches. Subjective weights 
are primarily developed from judgment-driven assessments of criteria 
importance and can vary from person-to-person. Objective weights are 
primarily fact-driven and are developed by quantifying the intrinsic informa-
tion (Diakoulaki, 1995) observed in each criterion. Objective weighting has 
the desirable feature of letting the “data” influence which criterion, in the 
set of criteria, is most important, which is next most important, and so 
forth.

The canonical approach to objective criteria weighting is the entropy 
method. Entropy* is a concept found in information theory that measures 
the uncertainty associated with the expected information content of a mes-
sage. It is also used in decision theory to measure the amount of decision 
information contained and transmitted by a criterion.

The amount of decision information contained and transmitted by a cri-
terion is driven by the extent the performance (i.e., “score”) of each alterna-
tive is distinct and differentiated by that criterion. When alternatives (in a 
decision matrix) all have the same performance for a criterion, we say the 

*	 In information theory, entropy measures the uncertainty associated with the expected 
information content of a message. The classical work in information entropy is available 
in Shannon, C. E., 1948. “A Mathematical Theory of Communication,” Bell System Technical 
Journal. 
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criterion is unimportant. It can be dropped from the analysis because it is 
not transmitting distinct and differentiating information. The more distinct 
and differentiated the performance of competing alternatives on a criterion, 
the greater the amount of decision information contained and transmitted 
by that criterion; hence, the greater is its importance weight.

In decision theory, entropy is used to derive objective measures of the rel-
ative importance of each criterion (i.e., its weight) as it influences the per-
formance of competing alternatives. If desired, prior subjective weights can 
be folded into objectively derived entropy weights. The following steps pre-
sent the equations for computing entropy-derived objective weights used to 
derive the “most-preferred” alternative in a decision matrix.

Step 1

From the decision matrix in Table 7.1, compute pij where

	
p

x

x
i m j nij

ij

iji

= = =
∑

1 1, , ; , ,… … 	 (7.9)

Step 2

Compute the entropy of attribute (criterion) j as follows:

	
0

1
1 1 1≤ = − ≤ = =∑E

m
p p i m j nj iji ijln( )

ln , , ; , ,… … 	 (7.10)

Step 3

Compute the degree of diversification dj of the information transmitted by 
attribute (criterion) j according to d Ej j= −1 .

Step 4

Compute the entropy-derived weight wj as follows:

	
w

d

d
j nj

j

jj

= =
∑

1, ,… 	 (7.11)

If the decision maker has prior subjective importance weights l j for each 
attribute (criterion), then this can be adapted into wj as follows:

	
w

w

w
j nj

j j

j jj

• = =
∑
l

l
1, ,… 	 (7.12)

In Step 2, observe that entropy weighting involves the use of the natural log-
arithm. Thus, weights derived from this approach require all elements in the 
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decision matrix be strictly greater than zero; otherwise, for some ij the term 
p pij ijln  in the expression

	
0

1
1 1 1

1

≤ = − ≤ = =
=
∑E

m
p p i m j nj ij

i

m

ijln( )
ln , , ; , ,… …

takes the indeterminate form 0 ⋅∞. In mathematics, this is one of seven 
indeterminate forms involving 0, 1, and ∞ whose overall limit is unknown. 
Table 7.2 shows a decision matrix in which this condition will arise, where 
suppose a true zero exists as shown in the last column of C-Node 4. However, 
it can be shown if p → 0 (in the limit), then the expression p pln  approaches 
zero; hence, entropy calculations often use the convention 0 0 0⋅ =ln .

An alternative to objective weighting by the entropy measure is the vari-
ance-to-mean ratio (VMR). Like entropy, the VMR is a measure of the uncer-
tainty or dispersion of a distribution. Distributions characterized by data 
with VMRs less than one are considered less random (more uniform) than 
those with VMRs greater than one. A probability distribution’s VMR is often 
compared to the VMR of a Poisson distribution, whose VMR is exactly one. 
If alternatives in a decision matrix all have the same performance on a cri-
terion, then the criterion’s VMR is zero. Thus, the criterion can be dropped 
from the analysis because it is not transmitting distinct and differentiating 
information. Recall, this is also a property of the entropy measure.

Deriving objective weights for criteria by the VMR statistic* is done as 
follows:

	

w j nj
j j

j jj

j= ≠ =
∑
s m

s m
m

2

2
0 1

/

/
, , ,… 	 (7.13)

*	 Note the VMR statistic requires the mean of a dataset be nonzero.

TABLE 7.2

A Decision Matrix that Yields an Undefined 
Entropy Weight

Capability 
Node

C-Node 
Risk Score

C-Node Risk 
Mitigation Dollars

C-Node 1 96.34 5.5
C-Node 2 54.67 7.8
C-Node 3 45.32 12.3
C-Node 4 77.78 0
C-Node 5 21.34 11.2
C-Node 6 66.89 9.3
C-Node 7 89.95 2.5
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If a decision maker has prior subjective importance weights l j for each crite-
rion, then this can be adapted into wj by wj

• in the same way shown in Step 4 
of the entropy weighting method.

7.2.4  Illustration

This section illustrates how the TOPSIS algorithm can be used to prioritize 
risk management decisions. Suppose we have the following information in 
Table 7.3, which presents characteristics on seven capability nodes (C-Nodes) 
across five criteria. These are C-Node Risk Score, C-Node Functional depen-
dency network analysis (FDNA), C-Node Risk Mitigation Dollars, C-Node 
Risk Reduction Benefit, and C-Node Criticality Level. They are defined as 
follows:

C-Node Risk Score 

A value between 0 and 100 quantifies the C-Node’s risk. The data for this cri-
terion derives from the risk score equations, measures, and risk inheritance 
considerations developed in the preceding chapters.

C-Node FDNA

The quantified effect on a C-Node’s operability if, due to the realization 
of risks, one or more contributing programs or supplier–provider chains 
degrade, fail, or are eliminated. The data for this criterion are expressed as 
a percentage below the minimum effective operational level (MEOL) defined 
in Chapter 6.

C-Node Risk Mitigation Dollars

The dollars (in millions) estimated to mitigate a C-Node’s risks.

TABLE 7.3
Capability Node Risk Management Decision Matrix

Capability 
Node

C-Node 
Risk Score

C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 96.34 5.0 5.5 85.0 3.0
C-Node 2 54.67 2.1 7.8 44.0 4.0
C-Node 3 45.32 3.2 12.3 78.0 3.0
C-Node 4 77.78 4.1 8.5 45.0 2.0
C-Node 5 21.34 0.1 11.2 56.0 1.0
C-Node 6 66.89 5.3 9.3 76.0 2.0
C-Node 7 89.95 3.3 2.5 25.0 5.0
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C-Node Risk Reduction Benefit

A C-Node’s risk-reduction benefit expected from expending its risk miti-
gation dollars. Here, benefit is expressed as the percent reduction in the 
C-Node’s risk score.

C-Node Criticality Level

This criterion represents a C-Node’s mission criticality with respect to the 
outcome objectives of the portfolio. The levels range from 1 (least critical) 
to 5 (most criticality). For convenience, assume these levels reflect numbers 
defined along a cardinal interval scale.

Given the above, suppose the management question is: “What is the most 
favorable ordering of C-Nodes in Table 7.3 that maximally reduces capabil-
ity risk and minimizes the expense of risk mitigation dollars?” The TOPSIS 
algorithm can be applied to address this question. The algorithm’s computa-
tional steps and results are shown and summarized in Tables 7.4a and 7.4b.

TABLE 7.4a

A TOPSIS-Derived Capability Risk Prioritization

Capability Node Risk Management Prioritization

Capability Node
C-Node 

Risk Score
C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 96.34 5.0 5.5 85.0 3.0
C-Node 2 54.67 2.1 7.8 44.0 4.0
C-Node 3 45.32 3.2 12.3 78.0 3.0
C-Node 4 77.78 4.1 8.5 45.0 2.0
C-Node 5 21.34 0.1 11.2 56.0 1.0
C-Node 6 66.89 5.3 9.3 76.0 2.0
C-Node 7 89.95 3.3 2.5 25.0 5.0

Sum 452.29 23.10 57.10 409.00 20.00
Root Sum of Squares 182.742 9.770 23.083 163.728 8.246

Normalized Matrix

C-Node 
Risk Score

C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 0.5272 0.5118 0.2383 0.5192 0.3638
C-Node 2 0.2992 0.2149 0.3379 0.2687 0.4851
C-Node 3 0.2480 0.3275 0.5329 0.4764 0.3638
C-Node 4 0.4256 0.4197 0.3682 0.2748 0.2425
C-Node 5 0.1168 0.0102 0.4852 0.3420 0.1213
C-Node 6 0.3660 0.5425 0.4029 0.4642 0.2425
C-Node 7 0.4922 0.3378 0.1083 0.1527 0.6063

Norm of Normalized Cols 1.000 1.000 1.000 1.000 1.000
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Tables 7.4a and 7.4b show the C-Node TOPSIS scores given the input data 
in Table 7.3. The C-Node with the largest TOPSIS score is most favorable with 
respect to the one that maximally reduces capability risk and minimizes the 
expense of risk mitigation dollars. The C-Node with the next largest TOPSIS 
score is the next most favorable, and so forth. The criterion with the largest 
weight has the most influence on the overall C-Node ranking. The criterion 
with the next largest weight has the next most influence on the overall C-Node 
ranking, and so forth. The ranking of C-Nodes by their TOPSIS scores is

C-Node 5 < C-Node 2 < C-Node 3 < C-Node 4 < 
C-Node 7 < C-Node 6 < C-Node 1

TABLE 7.4a (continued)

A TOPSIS-Derived Capability Risk Prioritization

Capability Node Risk Management Prioritization

Entropy Matrix

C-Node 
Risk Score

C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 0.2130 0.2165 0.0963 0.2078 0.1500
C-Node 2 0.1209 0.0909 0.1366 0.1076 0.2000
C-Node 3 0.1002 0.1385 0.2154 0.1907 0.1500
C-Node 4 0.1720 0.1775 0.1489 0.1100 0.1000
C-Node 5 0.0472 0.0043 0.1961 0.1369 0.0500
C-Node 6 0.1479 0.2294 0.1629 0.1858 0.1000
C-Node 7 0.1989 0.1429 0.0438 0.0611 0.2500

Sum 1.000 1.000 1.000 1.000 1.000
Entropy Measure 0.9589 0.9092 0.9577 0.9666 0.9496
Diversification Measure 0.0411 0.0908 0.0423 0.0334 0.0504
Entropy Weights 0.1592 0.3521 0.1640 0.1294 0.1953
Entropy Weight Sum 1.0000

Entropy Weighted 
Normalized Matrix

C-Node 
Risk Score

C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 0.0839 0.1802 0.0391 0.0672 0.0711
C-Node 2 0.0476 0.0757 0.0554 0.0348 0.0947
C-Node 3 0.0395 0.1153 0.0874 0.0616 0.0711
C-Node 4 0.0678 0.1478 0.0604 0.0356 0.0474
C-Node 5 0.0186 0.0036 0.0796 0.0442 0.0237
C-Node 6 0.0583 0.1910 0.0661 0.0600 0.0474
C-Node 7 0.0784 0.1189 0.0178 0.0198 0.1184
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Questions and Exercises

	 1.	Using Table 7.5, find the ideal solution to which house to buy using 
the TOPSIS algorithm, where miles are to be minimized and quality 
ratings are to be maximized. Apply entropy-weighted criteria.

	 2.	Solve Exercise 1 using the variance-to-mean ratio (VMR) as a basis 
for the criteria weights. How does the ideal solution found using 
VMR weighting compare to the ideal solution found using entropy 
weighting?

	 3.	 In Table 7.6, characteristics are given on seven C-Nodes across five 
criteria whose definitions are provided with Table 7.3. From these 
data, determine which C-Node is most favorable with respect to 
maximally reducing capability risk while minimizing the expense 
of risk mitigation dollars. Use the TOPSIS algorithm with entropy 
weighted criteria.

TABLE 7.5

Table for Exercise 1

Which House 
Is Best?

Distance to Work 
(miles)

Distance to Pizza 
Shop (miles)

Public Schools 
Quality (rating)

House A 20 2 4
House B 50 1 3
House C 34 3 1
House D 2 5 5
House E 18 3 2
House F 10 2 1
House G 27 2 5

TABLE 7.6

Table for Exercise 3

Capability 
Node

C-Node 
Risk Score

C-Node 
FDNA

C-Node Risk 
Mitigation 

Dollars

C-Node Risk 
Reduction 

Benefit

C-Node 
Criticality 

Level

C-Node 1 90.0 4.0 7.0 80.0 5.0
C-Node 2 45.0 3.2 9.0 50.0 3.0
C-Node 3 87.0 1.5 15.0 44.0 3.0
C-Node 4 55.0 5.5 4.0 45.0 4.0
C-Node 5 85.0 0.5 12.0 55.0 5.0
C-Node 6 35.0 6.7 8.8 70.0 2.0
C-Node 7 88.0 2.2 5.7 25.0 5.0
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	 4.	Solve Exercise 3 using the VMR as a basis for criteria weights. How 
does the ideal solution found under VMR weighting compare to the 
ideal solution found using entropy weighting?

	 5.	Research the relationship between entropy weighting, VMR weight-
ing, and standard deviation-to-mean weighting. Run empirical 
experiments to discover trends indicated in these weighting rules, 
when extreme ranges in values are present in a column of data (i.e., 
a criterion).
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8
A Model for Measuring Risk in Engineering 
Enterprise Systems

8.1  A Unifying Risk Analytic Framework and Process

Previous chapters covered a great deal of ground. New risk analytic meth-
ods have been developed to address engineering an enterprise system from 
the perspective of a capability portfolio. This chapter describes how these 
methods relate and unify into a practical model for the analysis of risk in 
engineering today’s enterprise systems.

8.1.1  A Traditional Process with Nontraditional Methods

In general, managing risk in engineering systems can be characterized by 
the process shown in Figure 8.1 (Blanchard and Fabrycky, 1990; Garvey, 
2008). Although this process grew from engineering traditional systems,* its 
implementation involves nontraditional methods when applied to engineer-
ing an enterprise. Why is this?

As discussed earlier, today’s information-age systems are characterized 
by their ubiquity and lack of specification. Systems such as the Internet are 
unbounded, present everywhere, and in places simultaneously. They are an 
enterprise of systems and systems of systems. By the use of advanced network 
and communications technologies, these systems continuously operate to meet 
the demands of globally distributed and uncountable users and communities.

Engineering enterprise systems is an emerging discipline that encom-
passes and extends “traditional” systems engineering to create and evolve 
“webs” of systems and systems of systems. They operate in a network-centric 
way to deliver capabilities via services, data, and applications through richly 
interconnected networks of information and communications technolo-
gies. More and more defense systems, transportation systems, and financial 
systems globally connect across boundaries and seamlessly interface with 

*	 Traditional systems are generally regarded as systems characterized by well-defined require-
ments and technical specifications, predictable operational performance, adherence to engi-
neering standards and manufacturing processes, and centralized management authority.
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users, information repositories, applications, and services. These systems are 
an enterprise of people, processes, technologies, and organizations.

As discussed in Chapters 2 and 4, an enterprise system is often planned 
to deliver capabilities through portfolios of time-phased increments or evo-
lutionary builds. Thus, risks can originate from many different sources (e.g., 
suppliers) and threaten enterprise capabilities at different points in time. 
Furthermore, these risks (and their sources) must align to the capabilities 
they potentially affect and the scope of their consequences understood. In 
addition, the extent enterprise risks may have unwanted collateral effects on 
other dependent capabilities must be captured and measured when plan-
ning where to allocate risk-reducing investments.

From a high-level perspective, the process for analyzing and managing 
risk in engineering enterprise systems is similar to that in engineering tra-
ditional systems. Scale, ubiquity, and decentralized authority in engineering 
enterprise systems drive the need for nontraditional risk analytic methods 
within the traditional process steps in Figure 8.1.

Recognizing and researching these distinctions have produced the for-
mal methods herein. They aim to enable a holistic understanding of risks in 
engineering enterprise systems, their potential consequences, dependencies, 
and rippling effects across the enterprise space. When implemented, these 
methods provide engineering management a complete view of risks across 
an enterprise, so capabilities and performance objectives can be achieved via 
risk-informed resource and investment decisions.

8.1.2 � A Model Formulation for Measuring Risk in 
Engineering Enterprise Systems

The following sections describe how the risk analytic methods in this 
book form a practical model for the analysis of risk in engineering today’s 

4. Risk mitigation
planning,

implementation,
and progress
monitoring

1. Risk
identification

2. Risk
impact

assessment

3. Risk
prioritization

analysis

Risk
tracking

Risk events assessed as medium or high criticality might go into risk
mitigation planning and implementation; low critical risks might be
tracked/monitored on a watch list

Decision-analytic rules applied to
rank-order identified risk events
from “most-to-least” critical

Consequences may include cost,
schedule, technical performance
impacts, as well as capability or
functionality impacts

Probabilities and
consequences of risk
events are assessedAssess

probability and
consequence

Risk events and their
relationships are defined 

Identify
risks

Reassess existing risk
events and identify new

risk events

Risk mitigation

Watch-listed
risks

Assess risk
criticality

FIGURE 8.1
A traditional risk management process.
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enterprise systems. We will relate this model formulation to the fundamen-
tal process steps shown in Figure 8.1.

Step 1: Risk Identification

In engineering a traditional system, risk identification is the critical first step 
of the risk management process. Its objective is the early and continuous 
identification of risks to include those within and external to the engineer-
ing system project. As mentioned earlier, these risks are events that, if they 
occur, have negative impacts on the project’s ability to achieve its outcome 
goals.

In engineering an enterprise system, risk identification needs to consider 
supplier risks. Supplier risks include unrealistic schedule demands placed 
on them by portfolio needs or placed by suppliers on their vendors. Supplier 
risks include premature use of technologies, including the deployment of 
technologies not adequately tested. Dependencies among suppliers can gen-
erate a host of risks, especially when a problem with one supplier generates 
a series of problems with others. Economic conditions can threaten the busi-
ness stability or viability of suppliers and vendors. Unfavorable funding or 
political influences outside an enterprise can adversely affect its capability 
portfolios, its suppliers, or the supplier–vendor chains in ways that threaten 
enterprise goals and mission outcomes.

Risks that trace to “suppliers” are a major source of risk to the portfolio’s 
ability to deliver capability to the enterprise. However, it is important to 
recognize that suppliers are not the only source of risk. Risks that threaten 
capabilities to be delivered by a portfolio can originate from sources other 
than those that affect only the portfolio’s suppliers. These events can directly 
attack one or more capability nodes in a capability portfolio’s hierarchy. For 
example, uncertainties in geopolitical landscapes may impact operational 
demands on capabilities that stress planned performance.

Risk identification also needs to consider dependencies. Dependencies 
between capability portfolios in families of portfolios, such as those that 
constitute an enterprise, are also potential risk sources. Here, outcome objec-
tives for capabilities delivered by one capability portfolio may depend on 
the performance of capabilities delivered by another capability portfolio. 
Identifying risk events from non-supplier-related sources and capturing 
their contribution to a capability node’s risk measure is an important consid-
eration in a capability portfolio’s risk assessment.

Figure 8.2 illustrates the risk analytic methods developed in this book that 
relate to this process step. Methods from Chapters 4 and 5 are applicable at 
this stage. Here, the capability portfolio is defined and expressed as a math-
ematical graph. This graph is used as a modeling “framework” within which 
risks can be assessed and capability risk measures derived. In this step, effort 
is spent defining capability in measurable contexts and aligning capability 
suppliers as they enable the portfolio to deliver capability.
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Step 2: Risk Impact (Consequence) Assessment

In engineering a traditional system, an assessment is made of the con-
sequence each risk event could have on the engineering system project. 
Typically, this includes how the event could impact cost, schedule, or techni-
cal performance objectives. An assessment is also made of the probability 
each risk event will occur. This often involves subjective probability assess-
ments, particularly if circumstances preclude a direct evaluation of probabil-
ity by objective methods.

In engineering an enterprise system, findings from Step 1 feed into math-
ematical constructs that generate capability risk measures across an enter-
prise. These measures are determined by the calculus created in Chapter 4, 
where the enterprise problem space is represented by a supplier–provider 
metaphor in the form of a mathematical graph. This graph is a topology of 
nodes that depict supplier–provider–capability relationships unique to a 
capability portfolio.

Within this topology, mathematical rules can be developed which oper-
ate on these relationships to generate measures of capability risk. Here, a 
definition of capability risk is provided which considers the occurrence 
probabilities and consequences of risks that threaten capability. In this con-
text, consequence is broadened beyond cost, schedule, and technical perfor-
mance dimensions; risk consequence is evaluated according to a capability’s 
ability to achieve its outcome objectives for the portfolio and ultimately for the 
enterprise.

Next, dependencies and risk correlationships that may exist in the enter-
prise are captured. Chapters 5 and 6 provide formalisms for analyzing 
dependency relationships and their effects on engineering and planning an 
enterprise system. Critical considerations in engineering enterprise systems 
are identifying, representing, and measuring dependencies between suppli-
ers of technologies and providers of services to users.

The importance of dependency analysis in engineering an enterprise 
is manyfold. A primary concern is enabling the study of ripple effects of 
failure in one capability on other dependent capabilities across the enter-
prise. Providing mechanisms to anticipate these effects early in design 
enables engineers to minimize dependency risks that, if realized, can have 
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cascading negative effects on the ability of an enterprise to deliver services 
to users.

One dependency is risk inheritance; that is, “How risk-dependent are 
capabilities so threats to them can be discovered before contributing pro-
grams (e.g., suppliers) degrade, fail, or are eliminated?” Chapter 5 provides a 
management metric, the risk correlationship (RCR) index, for capturing and 
measuring risk inheritance in an enterprise. The RCR index is a new man-
agement metric that measures risk inheritance between supplier programs 
and its ripple effects across a capability portfolio. The index identifies and 
captures horizontal and vertical impacts of risk inheritance, as it increases 
the threat that risks on one supplier program may adversely affect others 
and ultimately their contributions to portfolio capabilities.

The other dependency is operational dependence; that is, “What is the 
effect on the operability of capability if one or more contributing programs 
(e.g., suppliers) or supplier-provider chains degrade, fail, or are eliminated?” 
Chapter 6 presented an entirely new formalism called functional depen-
dency network analysis (FDNA) for capturing and measuring operational 
dependence in an enterprise.

Factoring dependency considerations into the methods presented in 
this book enables the proper management of risk in an enterprise, specifi-
cally, investment decisions on where to target risk-reduction resources in 
ways that optimally reduce threats to capabilities posed by dependencies. 
Figure 8.3 illustrates the risk analytic methods in this book that relate to this 
process step.

Step 3: Risk Prioritization Analysis

At this step, the overall set of identified risk events, their impact assessments, 
and their occurrence probabilities are “processed” to derive a ranking of the 
most-to-least critical risks. Decision analytic techniques such as utility the-
ory, value function theory, or ordinal methods are formalisms often used to 
derive this ranking.
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Findings from Steps 2 and 3 feed into ranking algorithms that identify an 
optimal ordering of enterprise capabilities to risk manage. In Chapter 7, a 
decision-theoretic approach for prioritizing risk management decisions as 
a function of the risk measures and analysis procedures developed in the 
previous chapters is provided. These measures are integrated into advanced 
ranking algorithms to isolate and prioritize which capabilities are most risk 
threatened and qualify for deliberate management attention.

The outputs from these ranking algorithms enable decision-makers to tar-
get risk-reduction resources in ways that optimally reduce threats posed by 
risks to critical capability outcome objectives. Figure 8.4 illustrates the risk 
analytic methods developed in this book that relate to this process step.

Step 4: Risk Mitigation Planning and Progress Monitoring

This step involves the development of mitigation plans designed to manage, 
eliminate, or reduce risk to an acceptable level. Once a plan is implemented, 
it is continually monitored to assess its efficacy with the intent to revise its 
courses of action if needed.

Step 4 results from the integration of all the risk analytic methods devel-
oped in Chapter 4 through Chapter 7. With this, decision-makers have a logi-
cal and rational basis for addressing the choice problem of selecting which 
capability risks to mitigate or reduce as a function of their criticality to the 
portfolio and to the enterprise as a whole. Figure 8.5 illustrates this step.
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In summary, these four process steps bring the risk analysis approaches 
developed in this book into a coherent structure for representing, modeling, 
and measuring risk in engineering large-scale, complex systems designed to 
function in enterprise-wide environments.

With this work, the engineering management and systems engineering 
community has a generalized framework and computational model for the 
analysis of risk in engineering enterprise systems. This provides decision-
makers formal ways to model and measure enterprise-wide risks, their 
potential multiconsequential impacts, dependencies, and their rippling 
effects within and beyond enterprise boundaries. Figure 8.6 visually sum-
marizes the risk analytical framework and model formulation presented 
herein.

Making operational the model shown in Figure 8.6 has unique information 
needs. These can be grouped into two categories. The first group addresses 
capability value. The second one addresses supplier contributions, criticality, and 
risks as they relate to enabling the portfolio to deliver capability.
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Information needs to address capability value include the following:

•	 For each Tier 3 capability, shown in Figure 4.5, identify what perfor-
mance standard (or outcome objective) each capability must meet by 
its scheduled delivery date.

•	 For each Tier 3 capability, identify the source basis for its performance 
standard (or outcome objective). Does it originate from user-driven 
needs, policy-driven needs, model-derived values, a combination of 
these, or from other sources?

•	 For each Tier 3 capability, identify to what extent the performance 
standard (or outcome objective) for one capability depends on others 
meeting their standards.

Information needs to address supplier contributions, criticality, and risks include 
the following:

•	 For each Tier 3 capability, identify which technology programs and 
technology initiatives are contributing to that capability.

•	 For each Tier 3 capability, identify what (specifically) are the contri-
butions of its suppliers.

•	 For each Tier 3 capability, identify how supplier contributions enable 
the capability to achieve its performance standard (or outcome 
objective).

•	 For each Tier 3 capability, identify which technology programs and 
technology initiatives are critical contributors to enabling the capa-
bility to achieve its performance standard (or outcome objective).

•	 With the above, identify what risks originate from (or are associated 
with) suppliers that, if these events occur, negatively affect their con-
tributions to capability.

Process tailoring, socialization, and establishing governance protocols are 
critical considerations in engineering risk management for enterprise sys-
tems. Overall, the risk analytic approaches described provide the following:

•	 Identification of risk events that threaten the delivery of capabilities 
needed to advance goals and capability outcome objectives of the 
enterprise.

•	 A measure of risk for each capability derived as a function of each 
risk event’s occurrence probability and its consequence.

•	 An analytical framework and logical model within which to struc-
ture capability portfolio risk assessments—one where assessments 
can be combined to measure and trace their integrative influence on 
engineering the enterprise as a whole.
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•	 Through the framework, ways to model and measure risk as capa-
bilities are time-phased across incremental capability development 
approaches.

•	 Analytic transparency, where the methods herein provide decision-
makers the trace basis and the event drivers behind all risk meas-
ures derived for any node at any level of the capability portfolio’s 
hierarchy. With this, capability portfolio management has visibility 
and supporting rationales for identifying where resources are best 
allocated to reduce (or eliminate) events that threaten achieving the 
enterprise’s capability goals.

8.2  Summary

Managing risk in engineering today’s systems is more sophisticated and 
challenging than ever before. Lack of clearly defined boundaries, diminished 
hierarchical control, network-centric information exchange, and ubiquitous 
services are significant technical and managerial challenges faced in engi-
neering enterprise systems. Increased complexity contributes to increased 
risks of system and management failures—particularly in systems designed 
to employ advanced, network-centric, information technologies (Daniels and 
LaMarsh, 2007). Few, if any, protocols exist for assessing and measuring risk 
in engineering enterprise systems from a capability portfolio perspective. 
Ways to address this problem has been the aim of the first eight chapters in 
this book. The advanced analytic methods presented provide a foundation 
on which to build solutions to a next set of hard risk analytic problems.

In summary, the material in this book falls at the interface between risk 
management methods for engineering traditional systems with those needed 
for engineering enterprise systems. Recognizing this is an essential first step 
toward addressing these challenges and discovering new methods and new 
practices in engineering risk management and its related disciplines.

Questions and Exercises

1. The following identifies research areas in risk analysis methods 
applicable to engineering enterprise systems. Select one or more of 
these areas and write an essay outlining your thoughts on ways to 
proceed. Identify what is important about each area and the chal-
lenges you see in addressing them. Identify work that may already 
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be underway in the engineering community that may be leveraged 
to address these areas.

Analytical Scalability: Research how to approach risk analysis in 
engineering enterprise systems that consist of dozens of capability 
portfolios with hundreds of supplier programs.

	 Explore representing large-scale enterprises by domain capability 
portfolio clusters and investigate a concept for portfolio cluster risk 
management—include a social-science perspective on the manage-
ment of risk in engineering enterprise systems at this scale.

	 Explore the efficacies of alternative protocols for assessing and meas-
uring risks from the supplier through the provider layers of a capa-
bility portfolio. Quality Function Deployment (QFD) and Design 
Structure Matrices (DSM) are protocols to consider.

Nonstationary Considerations: Extend the FDNA calculus presented 
in Chapter 6 to address nonstationary dependency analysis prob-
lems. Explore how FDNA can expand and integrate into time-vary-
ing modeling and simulation environments, such as those provided 
in systems dynamics methods and tools.

Optimal Adaptive Strategies: Research how to optimally adapt an 
engineering system’s supplier–provider network to reconfigure its 
nodes to maintain operability if risks that threaten these nodes are 
realized. Consider this problem in stationary and nonstationary 
perspectives.
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9
Random Processes and Queuing Theory

9.1  Introduction

Possibly one of the most important skills of a system engineer is to commu-
nicate in simple and readily comprehensible manner what in reality maybe a 
complex phenomenon in terms of “nomenclature and terminology that sup-
port clear, unambiguous communication and definition of the system and 
its functions, elements, operations, and associated processes” (INCOSE 2010, 
p. 4). Everyday, we hear the weather forecaster describe the day’s expected 
high and low temperature, and rainfall or snow. When the weather forecaster 
describes a cold front moving into the region coupled with the vapor-rich 
breeze from the east will result into a high temperature of 45ºC, you may ask 
yourself, how can he/she be so sure? No, the forecaster is never sure—but 
was able to convey a complex phenomenon with hundreds of factors into a 
compact and informative manner, albeit maybe inaccurate or imprecise. Also 
consider when a systems engineer is creating a testing plan to verify and 
validate system functionality, say the rate at which the new communication 
system drops calls coming from mobile antennas. The test may include a test 
parameter such as “dropped calls should not exceed 2-out-of-100.” On both 
cases, a fairly complicated phenomena are expressed in such simple manner.

Systems engineer, similar to a weather forecaster, often needs to describe 
a phenomenon with the objective of helping himself or someone else arrive 
at a decision. Depending on the systems engineer’s comprehension of the 
phenomenon and the needs of his audience, the engineer must be able to con-
vey the appropriate information to project members tasked with develop-
ing or managing technical systems. Too much or too little information may 
negatively affect the decision-making process and the budget, schedule, or 
performance of the system being developed. Nonetheless, systems engineers 
must also be able to recognize that there will be situations in which describ-
ing phenomena in its simplest way may not be sufficient.

The following discussion compares and contrasts between deterministic 
and nondeterministic way of describing a phenomena, identifies advantages 
and disadvantages of using deterministic and nondeterministic models, and 
describes random process to be able to discern the two sources of uncertainty. 
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Furthermore, the importance of reducing uncertainty is emphasized and 
Markov process and its importance for systems engineers touched upon. 
Finally, the elements of a queuing system are identified, various performance 
parameters of queuing systems are described, and how to model common 
and specialized engineering problems as queuing systems are explained.

9.2  Deterministic Process

The simplest way to describe a phenomenon may be in a deterministic man-
ner. Determinism is synonymous with definite, certain, sure, and can be 
quantitatively expressed as a point estimate such as when the day’s fore-
casted high temperature is estimated as a single number of 45ºC. Other 
deterministic expressions of phenomenon are the following:

•	 EPA describing the fuel consumption of a car to be, say 40 miles per 
gallon on the highway

•	 Structural engineers describing a bridge can hold up 60 tons of 
weight

•	 Pharmaceutical companies labeling a bottle to contain 8 ounces of 
medicine

There are countless examples of phenomenon described in a determinis-
tic manner. Most of the times, these descriptions are sufficient and precise 
enough such that decision makers can appropriately choose among car mod-
els, type of vehicles to be allowed on a bridge, and the size of medicine bottle 
to buy at the pharmacy. As apparent by now, the beauty of determinism lies 
in its simplicity. A well thought-out deterministic description of phenom-
enon, with precision and accuracy appropriate for the decision maker and 
the decision scenario at hand, is one of the greatest tools and skill a systems 
engineer can have.

It may now be a good time to dwell more on a term used several times in 
the immediately preceding paragraphs—describe—as in describing a phe-
nomenon. By using the term describe, the emphasis is less on the real phe-
nomenon but more on how this phenomenon is construed in the minds of 
the engineers and how it is purposely communicated, compared to the term 
define. One can also think of the often-used term model, as in the high tem-
perature is modeled (or described), to be a deterministic phenomenon. In the 
same way, an engineer can choose how to model a particular object (e.g., 
visual, schematic, etc.), or one can also choose to the same extent whether to 
describe a phenomenon as deterministic or otherwise. As with any type of 
model, a deterministic model of any phenomenon comes with many caveats.
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These caveats of deterministic model of processes can be discussed both 
mathematically and philosophically. With this book aimed primarily at 
those with an engineering background, deterministic process will be aptly 
described from the mathematical perspective. Nonetheless, the philosophi-
cal perspective will also be discussed simply because engineers, managers, 
and any diligent problem solver will benefit greatly from knowing the phil-
osophical basis of the deterministic process. This will also make it easier to 
comprehend the other side of the coin: random and probabilistic processes.

9.2.1  Mathematical Determinism

Let us look closer at forecasting the high temperature of a day. For brevity, 
let us express the forecasted high temperature as x, the low temperature 
as y, the humidity as z, and their relationship that results to the high tem-
perature as g. Obviously, there is great simplification being made in group-
ing the rest of the meteorological phenomenon into a relationship g, but 
this will suffice for now. Assuming these are all the information that we 
know, then conventionally, the high temperature and the phenomenon can 
be expressed as

	 x = g(y, z)	 (9.1)

Suppose that the forecaster obtained the high temperature estimate of 
45ºC based on a low temperature value of 33ºC and humidity value of 85%. 
With the way the phenomenon is described by Equation 9.1, particular val-
ues of y = 33 and z = 85% results in the equation x g= =( , ) .33 85 45  To say that 
x = 45  every time, y z= =33 85, and  is equivalent to saying that x g y z= ( , ) is a 
deterministic process.

Definition 9.1: Deterministic Process

Deterministic process is when the same output is obtained every time the 
same set of inputs or starting conditions occur.

Generalizing the low-temperature example in the preceding paragraph, 
g Y Z g Y Z Xt ( , ) ( , )= =  for all t, where t stands for time. There are many exam-
ples of situations when phenomena are described to be deterministic. Some 
examples are as follows:

•	 A computer program that provides the exact same output given the 
same input

•	 When an automobile tires is said to fail after 50,000 miles of road use
•	 When water level at a river is said to be 6 feet
•	 When the speed of the boat is said to be 10 nautical miles
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9.2.2  Philosophical Determinism

To describe (or model) a process or phenomenon, such as a day’s high tem-
perature as a deterministic process carries with it a number of implications. 
The first implication is that there are some forms of causality between the 
inputs or starting conditions of the process and the outputs. The second 
implication is that the uncertainty regarding the true process is nonexistent 
or ignored. The concept of uncertainty itself deserves some discussion, but 
for now, the description of uncertainty as the indefiniteness about the outcome 
of a situation (Section 3.2) will suffice. The third implication and possibly the 
most significant for systems engineers is that either due to limitations on the 
knowledge about the true nature of the process or the context of the decision 
scenario and decision maker or both makes it appropriate to describe the 
process as a deterministic model.

Consider as an example the basic formula for force in classical physics, 
F m a= * , that is, force is equal to mass multiplied by acceleration. First, 
this particular model for the notion of force implies that there is causality 
between mass and acceleration, and force. That is, the absence of mass or 
acceleration (or both) results in the absence of force. Mathematically,

	 F = 0  if m = 0  and/or  a = 0

Second, this model implies that the process expressed as m a*  describes for 
certain or determines the value of force without uncertainty. Finally, every 
time this notion of force is used by engineers in any of their activity implies 
that this description is appropriate for the scenario at hand.

9.3  Random Process

The previous section described the notion of determinism and deterministic 
process from both mathematical and philosophical perspectives. The dis-
cussion also presented many engineering problems expressed (or modeled) 
from the most basic mechanics and kinetics, and even physics and chemis-
try. In many situations, it is perfectly acceptable and appropriate to describe 
events and phenomenon in a deterministic manner. This is because many 
decisions can be made simply with deterministic statement and without 
great consequence.

Consider these example deterministic statements about projected costs:

•	 A haircut costs $10.
•	 I am thinking of buying a car that costs $2000.
•	 The federal government is going to spend $20 million to build a new 

bridge.
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All these statements, if taken exactly the way they are stated, do not pro-
vide any information aside from a deterministic cost projection of a service, 
product, or infrastructure, that is, a haircut, a car, or a bridge, respectively. 
However, consider the situation where the real cost was found to vary from 
the projected cost by being 10% higher. That is, the actual cost of the haircut, 
the car, and the bridge turned to be $11, $2200, and $22 million, respectively. 
The consequence of being $1 short after a haircut may be only a slight incon-
venience compared to a federal project that is $2 million short on budget. 
This shows that there may be cases, for one reason or another, that determin-
istic model of phenomenon may not suffice. It would have been more useful 
for the federal project planners to have known the range of uncertainties in 
the cost of the bridge, say a range of $20 ± $3 million. For one, this would 
have prompted the project planners to at least think of possible actions if 
indeed the bridge turned out to cost more than $20 million.

There is no denying that engineers have found themselves in many situa-
tions in which deterministic models are able to describe the system of inter-
est only in a very limited way, whether in estimating the cost of a project or 
in the final dimension of a product. In this type of situations, deterministic 
models are often found lacking and insufficient.

Going back to the weather forecast, not many of us keep notes of the actual 
high temperature of days but experience tells us that on most days, the actual 
high will be few degrees higher or lower than the forecast. Nonetheless how-
ever unlikely, the actual high temperature may exactly be equal to the forecast 
on some days. However, there may be decision scenarios where more accurate 
and precise information is required. For example, launching of expensive and 
sensitive electronic instruments through high-altitude balloons may require 
more precise and accurate temperature forecast. What would normally be 
useful information as “high temperature of 45ºC” may be lacking.

Definition 9.2: Random Process

A random process is a phenomenon that lacks predictability of its actual 
outcome (i.e., possesses the random property).

In general, the random property or simply randomness implies lack of pre-
dictability of the outcomes. Common examples are tossing a coin or rolling 
a dice.

In Chapters 1 and 3, the concept of random event was briefly mentioned 
in discussing the axiomatic definition of probability. This concept is now 
defined more precisely.

Definition 9.3. Random Event

A random event is a set of outcomes resulting from a random process.

Consider the earlier examples of random processes and now augmented with 
their possible corresponding events. When we pertain to some real-world 



286 Advanced Risk Analysis in Engineering Enterprise Systems

random phenomena, most likely we are pertaining to random events that are 
actually outcomes of one or more random processes as shown in Table 9.1.

9.3.1  Concept of Uncertainty

In Chapter 3, uncertainty was described as the indefiniteness about the out-
come of a situation. In everyday discussion, uncertainty commonly implies 
doubt, dubiety, ambiguity, lack of knowledge, and other similar terms. From 
the definition of a random process as a phenomenon that lacks predictability 
of its actual outcome, one will surmise that random process is characterized 
by uncertainty. It is beneficial to understand the two sources of uncertainty: 
aleatory and epistemic.

Definition 9.4: Epistemic Uncertainty

Epistemic uncertainty refers to uncertainty in our state of knowledge about 
certain phenomena. This is also known as reducible uncertainty, pertaining 
to its property to be reduced through investigation, reasoning, engineering 
interventions, and other forms of analyses.

Definition 9.5: Aleatory Uncertainty

Aleatory uncertainty, on the other hand, is due purely to the variation in 
outcomes of randomness. This is also known as irreducible uncertainty, per-
taining to its property of not being affected by further investigation, reason-
ing, and other forms of interventions and analyses.

Many activities in systems engineering are meant to reduce uncertainty in 
one form or the another, such as in product and service quality control, logis-
tics and supply chain optimizations, and others. In fact, the level of uncer-
tainty is one of the factors a systems engineer needs to consider in designing 
a plan on how to develop a system (INCOSE 2010, p. iii). In reducing uncer-
tainty, these two types of uncertainty are addressed by a large number of 
tools and techniques in a wide variety of disciplines and applications.

For example, quality control engineers in the manufacturing industry 
are used to looking into variations in the performance of certain machines. 
In particular, consider a machine that fills up 16-ounce boxes of breakfast 
cereals was observed to overfill or underfill boxes much too often than it is 

TABLE 9.1 

Random Process Outcomes Events

Tossing a coin H or T
Where H pertains to head 
and T pertains to Tail

For a single toss: H or T
For two consecutive tosses:
HH, TT, HT, or TH

Rolling a dice 1, 2, 3, 4, 5, 6 For a single roll of a dice:
1, 2, 3, 4, 5, or 6
Even-numbered outcomes of a single 
roll: (2, 4, 6)
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supposed to. Looking closely at the machine revealed a worn-out part that 
contributes to why the machine performs in such a way. After replacing the 
worn-out part, the machine now overfills and underfills boxes much less 
often. Further examination of the machine did not reveal any other mechani-
cal reason that causes variability in the machine’s performance. The varia-
tion in the machine’s performance due to the worn-out part is an example of 
a variation with assignable cause (i.e., epistemic in nature) and was managed 
by analyzing the causes and implementing engineering intervention to elim-
inate these causes. Nonetheless, if there is still variability in the machine’s 
performance, it can be simply attributed to randomness rather than on any 
assignable cause (i.e., aleatory type).

Previously, it was mentioned that simplification is achieved by describ-
ing or modeling a phenomenon as a function of another phenomenon. The 
example given earlier is the high temperature and how it can be expressed 
as a function in Equation 9.1. With the notion of uncertainty, one can say 
that there can be aleatory and epistemic uncertainty in this function. These 
uncertainties can be in our knowledge (i.e., epistemic) or in the actual values 
(i.e., aleatory) of the function g and variables y and z. That is, we can ask

Is the phenomena of a high temperature x really a function of g y z( , ) or 
can it be of another different form, say x f y z= ( , )?

Are the values of the parameters actually y and z or could it be of other 
values?

These uncertainties in both the function and the variables of the model 
eventually translates to uncertainty in the phenomena x.

9.3.2  Uncertainty, Randomness, and Probability

For convenience, the definitions of uncertainty, randomness, probability, and 
random variable (from Chapter 3) are repeated here.

Uncertainty: indefiniteness about the outcome of a situation.
Randomness: a property of a process that describes lack of predictabil-

ity of actual outcome.
Probability: a numerical measure that satisfies the Kolmogorov’s 

axioms.
Random variable: a real-valued function defined over a sample space. The 

random variable is usually denoted by X and the sample space by Ω.

For convenience, the axiomatic definition of probability in Chapter 1 is 
repeated here using the notion of random variables and its sample space. 
Under this definition, it is assumed for each random event A, in a sam-
ple space Ω, there is a real number P A( ) that denotes the probability of A. 
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In accordance with Kolmogorov’s axioms, probability is simply a numerical 
measure that satisfies the following:

Axiom 1	 0 1≤ ≤P A( )  for any event A in Ω.
Axiom 2	 P( ) .Ω = 1
Axiom 3	� For any sequence of mutually exclusive events A A1 2, ,… 

defined on Ω,
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For any finite sequence of mutually exclusive events A A An1 2, , ,…  defined 
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Also described in Chapter 3 are the three most common interpretations of 
probability, namely,

	 1.	Equally likely interpretation
	 2.	Frequency interpretation
	 3.	Measure of belief interpretation

It is important to point out that engineers often shift interpretation and 
hence use probabilities among these three interpretations. Intuitively, these 
three interpretations of probabilities go hand in hand in many engineering 
activities. For example, a quality engineer may conduct repeated trials of 
accelerated life tests to measure the failure of a part of a machine when sub-
jected to 1000 cumulative hours of use. Based on these repeated trials, the fre-
quency of failure of the particular part is expressed as probability, for example 
P A( ) .= 0 01 where A is the event of part failure on or after 1000 cumulative 
hours of use. This probability can be interpreted as the frequency of failure of 
the part on or after 1000 cumulative hours of use is 1 in 100. Afterwards, this 
same information may be the basis for a preventive replacement plan for this 
part, in essence, shifting the interpretation of the probability to the belief that 
the chance of failure of the part after 1000 hours of use is 1%.

These three concepts of uncertainty, randomness, and probability are strongly 
related, and yet their relationship is not always clear to many engineers. To bet-
ter place these concepts in context, consider the weather forecast example. If 
exactly knowing the high temperature for the day before it occurs is not possible, 
then this situation can be described as uncertain, that is, there is indefiniteness 
about the outcome of the situation. Now consider particularly the temperature 
readings for the day, that is, the value that can be read from the thermometer. 
Because the actual value of the thermal reading cannot be exactly predicted, 
then this reading can be described as a random process. For compactness, let us 
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pertain to the thermal reading (i.e., event of a random process) as A, and conse-
quently, A can be described as a random event. Furthermore, if A is described 
to be probabilistic, then it is assumed for each random event A in a sample space 
Ω there is a real number P A( ) that denotes the probability of A.

To further exemplify the concepts of uncertainty, randomness, and prob-
ability in engineering, assume that time has come when the science of 
weather forecasting has become so sophisticated that weather forecaster can 
accurately predict the high temperature for the day. That is, time has come 
that when a weather forecaster on TV says that “today’s high temperature is 
a balmy 75ºF,” it is for certain that today’s high temperature will actually be 
75ºF. However, this capability of meteorologists to perfectly predict the high 
temperature for the day does not change the fact that daily high temperature 
fluctuates from one day to the other. Another way to describe this is that 
weather forecaster may perfectly predict the weather but cannot control it. 
As such, daily high temperatures will still show the ups and downs expected 
as seasons change as we may know it today even if it is perfectly predictable.

At this point, we need to make a very significant shift in how we use prob-
ability. Previously, we used probability as a numerical measure to express 
random property of daily high temperature. But since we assumed that the 
time has come when daily high temperature is perfectly predictable, then 
one may say there is no use for the probability measure of daily high tem-
perature. However in fact, there is another alternative use for probability 
measure aside from expressing lack of predictability—this is to use probabil-
ity to express frequency of occurrence rather than measure of belief.

9.3.3  Causality and Uncertainty

An integral part of any engineering activity is the discovery of how things 
work and how to affect a desired result. Examples are as follows:

•	 A production engineer studies what causes a filling machine to 
overfill or underfill.

•	 A civil engineer studies the flow of water under various surfaces to 
design better irrigation systems.

In these examples, the engineers essentially infer causalities based on 
observations, for example, what triggers the machine to start and stop dis-
pensing products or what causes a change in water flow directions and 
pressures. And as the engineers make inferred causalities, the uncertainty 
surrounding the phenomenon is reduced. This is in fact fundamental to 
any scientific activity, wherein conclusions are made based on rational and 
repeatable acts of discovery.

Definition 9.6: Causality

Causality is the relationship between two events, wherein the occurrence of 
one implies the occurrence of the other.
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There are various ways in which engineers establish causal relationships 
among events, many of which are combinations of analyzing historical data, 
conducting experiments, and using statistical analyses. Nonetheless, the 
causal relationship among events can be meaningfully described for systems 
engineers in two ways.

Definition 9.7: Necessary Causes

A set of events B is described to be necessary to cause another set of events A 
if B is a required condition for the occurrence of A, not that A actually occurs.

Some implications of a situation where B is a necessary condition for the 
occurrence of A are as follows:

•	 Occurrence of A implies the occurrence of B
•	 Occurrence of B, however, does not imply that A will occur
•	 Nonoccurrence of B implies nonoccurrence of A

As an example, consider event B as being human and event A as being 
a systems engineer. By inductive reasoning of observation, one may safely 
infer that to be human is necessary to being a systems engineer: B is a neces-
sary cause for A. Furthermore,

•	 Occurrence of A implies the occurrence of B; being a systems engi-
neer implies being human;

•	 Occurrence of B, however, does not imply that A will occur; being 
human, however, does not imply being a systems engineer;

•	 Nonoccurrence of B implies nonoccurrence of A; not being human 
implies not being a systems engineer;

Definition 9.8: Sufficient Cause

A set of events B is described to be sufficient to cause another set of events A 
if the occurrence of B guarantees the occurrence of A. However, another set 
of events, say C, may alternatively cause A.

Some implications of a situation where B is a sufficient condition for the 
occurrence of A are as follows:

•	 Occurrence of A does not imply the occurrence of B.
•	 Occurrence of B may be not the only cause of occurrence of A.

As an example, consider as event B, a 100-year epic rainfall, and event A 
as the flooding of the Midtown Tunnel. It may be inferred that a 100-year 
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epic rainfall is sufficient to flood the Midtown Tunnel: event A is sufficient to 
cause event B. However,

•	 occurrence of A does not imply the occurrence B; flooding inside the 
Midtown Tunnel does not imply a 100-year epic rainfall;

•	 occurrence of B may be not the only cause of A; aside from a 100-year 
epic rainfall, there may also be alternative cause to flooding the tun-
nel, such as broken water pipe in the tunnel, or leaks in the tunnel 
wall which let water in.

9.3.4  Necessary and Sufficient Causes

The notions of necessary and sufficient causes taken together form the foun-
dation of judging causality in many fields including systems engineering 
and risk analysis. These concepts are the primary foundation in assuring the 
delivery of required functions during systems design and development, also 
known as goal operationalization, as well as the foundation of many risk 
management strategies.

Consider as an example the successful launching of rocket into space. 
During design and development, rocket engineers have a very clear list 
of functionalities and factors sufficient for successful launch, for example, 
enough thrust, right trajectory, weight, weather condition, and many others. 
All these functionalities and factors are sufficient to cause another event; 
in this case, the successful rocket launch. These being sufficient conditions, 
their presence are supposed to guarantee a successful launch.

Equivalently, necessary and sufficient causes are used to establish rela-
tionship between risk events and those that system engineers can affect to 
manage such risks. If the rocket engineers are tasked to prevent the risk of 
a failed launch, they will try to describe the potential causes of such risky 
event.

9.3.5  Causalities and Risk Scenario Identification

In the realm of risk management (to include risk assessment, analysis, and 
mitigation), the default preliminary step is the identification of risk scenar-
ios. This step essentially determines what later on will be the focus of the 
rest of the risk management processes. “Risk identification is the process of 
recognizing potential risks and their root causes” (INCOSE, 2004, p. 62) and 
is essential in setting priorities for a more detailed risk assessment.

It is also evident that establishing causalities among events is at the 
very foundation of risk scenario identification. These causalities provide 
confidence that buildings we construct will stand a certain magnitude of 
earthquake, strong wind, and even the failure of some of its supporting 
structures. Nonetheless, risk scenarios must be expressed in a clear way to 
enable analysis and defensible management. Garvey (2008, p. 33) suggests 
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the “condition-if-then construct” to express risk scenarios. In essence, this 
construct allows the undesirable consequence be stated conditioned on a 
contributing event or root cause.

As an example, consider the undesirable consequence, flooding of the 
Midtown Tunnel symbolized by A, and a known sufficient cause, 100-year 
epic rainfall symbolized by B. This risk scenario can be expressed using the 
condition-if-then construct as

	 A|B = flooding of Midtown Tunnel conditioned on 100-year epic rainfall

Risk scenarios expressed in this way facilitates the use of statistics and 
probabilities, that is, estimating P(A|B) where P can be interpreted as either 
the chance of occurrence or the degree of belief. Furthermore, this construct 
also facilitates the search for other contributing events or causes, for example, 
A|C, A|D, which is a significant aspect of the entire risk management process.

Nonetheless, identifying risk scenarios, particularly the unknown unknowns 
is not a trivial process as shown by Parsons (2007), particularly for large and 
complex systems such as those in NASA’s space exploration. This challenge 
applies to both identifying the root undesirable event A, as well as the vari-
ous causes B, C, etc. Yet a complete set of risk scenarios is an ideal character-
istic of an effective risk management process (Kaplan, 1997).

Again consider the flooding inside the Midtown Tunnel. Initially, the engi-
neer may ask the question “What can cause the flooding inside the Midtown 
Tunnel?”

Possible responses may be as follows:

	 A.	100-year epic rainfall
	 B.	Failure of water pump inside the tunnel
	 C.	Failure of water gates at both ends of the tunnel
	 D.	Leakage from the tunnel’s walls and ceilings (Midtown Tunnel is an 

underwater tunnel)
	 E.	Breakage in the city water pipes running inside the tunnel

{ }, { }, { }A D and E  can be surmised as sufficient conditions for flooding in the 
tunnel. The curly brackets are used to mean separate and distinct set of con-
ditions. That is, each of these events guarantees flooding inside the tunnel.

On the other hand, { } { }B and C  by themselves will not cause flooding. 
Nonetheless, consider 100-year epic rainfall and failure of water pump inside 
the tunnel together, that is, { }A,B  sounds to be more compelling set of events 
to cause flooding, at least more compelling than just { }A  alone, the 100-year 
epic rainfall by itself.

In essence, sufficient conditions such as { } ,A and {A,B}  though by defi-
nition of sufficiency can cause flooding in the tunnel by themselves, may 
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provide different insights to someone who wants to analyze the risk of tunnel 
flooding. In particular, experience and common sense tell us the following:

The chances of occurrence of { }A  may be different from {A, B}.
The magnitude of floods resulting from { }A  may be different from that 

of {A, B}.
The alternatives to manage flooding resulting from { }A  may be differ-

ent from that of {A, B}.

9.3.6  Probabilistic Causation

Lately, there has been an emphasis on expanding the traditional realm of 
risk scenarios to include those that would usually be seen as remote, unre-
lated, or are out-of-system bounds. Primarily, these have been the result of 
the observable but not well-understood transference of risks across system 
boundaries traditionally drawn by convention or convenience, that is, proj-
ects compared to programs as emphasized by Alali and Pinto (2009).

Furthermore, it has always been a challenge to assimilate the temporal 
domain of risk in the development of systems. As pointed out by Hofstetter 
et al. (2002) and more recently by Haimes (2009), actions meant to manage 
risks can create both further risks, as well as synergistic effects in the future, 
similar to a pebble dropped in the pond that creates ripples. These ripple 
effects, especially in the context of environmental risks, have proven to be 
a challenge from both the risk management, as well as the systems analysis 
perspective, as discussed by Hatfield and Hipel (2002).

From a systems analysis perspective, the two commonly held approaches to 
the identification of risk scenarios are bottom-up and top-down approaches. 
Bottom-up approach to risk identification is drawn from the systems analysis 
approach of the same name and relies on knowledge of what the elements of 
the systems are and how these elements are expected to work together. This 
approach is most commonly evident in reliability analysis and is embodied 
in tools or techniques such as failure mode and effect analysis (FMEA), fault 
trees, and alike. On the other hand, top-down approach to risk identification 
is drawn from the systems analysis approach of the same name and relies on 
knowledge of the objectives of the systems.

In practice, these two approaches of top-down and bottom-up applied 
together create synergy that provides risk analysts a more efficient identi-
fication of risk scenarios. The bottom-up approach, which relies heavily 
on empirical and historical data of previously known risks, coupled with 
knowledge of cause-and-effects, leads to a detailed set of risks with corre-
sponding causes and effects. These risks are also termed as faults or fail-
ures in reliability analysis. The top-down approach, which relies on what is 
known or perceived to be objectives of the systems coupled with a process of 
logical elimination or exclusion, provides general set of risks. The distinction 
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between these two approaches of identifying risk scenarios becomes more 
apparent in systems development for several reasons:

•	 The system being developed is not yet existing, and as such, all 
risk scenarios are in essence synthesized and results of informed 
conjecture.

•	 Usability of bottom-up approach to identifying risk events is limited 
and is dependent on the uniqueness of the system being developed 
and its comparability to existing systems.

•	 The mapping of systems development process with systems life cycle 
results to decision in the systems development process is predicated 
upon the perceived goals.

•	 The large number of possible risk scenarios coupled with the uncer-
tainty in the potential consequences makes discerning the more 
important risk scenarios challenging.

It is evident that risk identification in the context of systems development 
is very much related to but not exactly the same in the traditional sense. The 
entire nature of systems development being primarily system goal driven 
places more emphasis on the top-down approach to risk identification.

Consider again the causal relationship of these two events:

	 A:	 being a systems engineer
	 B:	 being a human

From previous discussion of necessary causations, to be human is said to 
be necessary to being a systems engineer: B is a necessary cause for A. We can 
now couple this with the notion of conditional probability from Chapter 3. 
Since the occurrence of A necessarily implies the occurrence of B, that is, if 
someone is a systems engineer, then that necessarily implies that this some-
one is a human, and therefore, the associated conditional probability relating 
event B as a necessary cause of event A is

	 P B A( )| = 1

However as mentioned before, simply being human does not necessarily 
imply being a systems engineer, that is,

	 P A B( )| < 1

Consider another earlier example where it was said that a 100-year epic 
rainfall is sufficient cause of flooding inside the Midtown Tunnel:

	 A:	 flooding inside the Midtown Tunnel
	 B:	 100-year epic rainfall,
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Then,

	 P( )A B = 1

However, being only a sufficient and not necessary condition, there can be 
other causes of flooding inside the Midtown Tunnel aside from a 100-year 
epic rainfall. As such

	 P( )B A < 1

The notions of causation and conditional probability bring together the con-
cept of probabilistic causation.

Definition 9.9: Probabilistic Causation

An evidence probabilistically causes the event of interest if the occurrence of 
the evidence increases the probability of occurrence of the event of interest.

The examples above show how events can be used as evidences in determin-
ing, possibly probabilistically, the occurrence of events of interest. In par-
ticular, being a systems engineer is a conclusive evidence of being human, in 
the same way as a 100-year epic rainfall is a conclusive evidence of flooding 
inside the Midtown Tunnel.

However, there are far more cases where evidences do not provide con-
clusions as strong as illustrated above. Consider a slight change to the first 
example such that the event of interest is now being a systems engineer and 
the evidence is being human.

	 A:	 being a systems engineer
	 B:	 being a human

As mentioned before, simply being human does not necessarily imply 
being a systems engineer, that is,

	 P( )A B < 1

Occurrence of evidence B merely establishes the plausibility of event A. Let 
us extend this example and consider a third event, say,

	 C:	 having an engineering degree

If it was established that event C is true, then similar to the discussion of 
Bayes’ rule in Chapter 3, the truthfulness of event A has to be revised. The 
occurrence of evidence C, similar to that of B, increases the chance that A is 
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indeed true. Even more, the occurrence of both B and C provides stronger 
evidence to the truthfulness of A than B alone. That is,

	 P A B P A B C( | ) ( |[ ])< <and 1

Therefore, the occurrence of events that can be construed as evidences forms 
the collection of probabilistic causes for events of interests. As engineers and 
risk analysts, these events play an important role in the assessment of risks 
and the management strategies that may follow.

These examples show that evidences can be necessary or sufficient without 
being both.

Definition 9.10: Necessary and Sufficient Cause

An event (or evidence) B is necessary and sufficient condition for another 
event A if A occurs if and only if B occurs. That is,

	 P A B( | ) = 1

and

	 P A B( | )′ ′ = 1

Ideally, decisions in engineering and risk management should be based 
on evidences that are both necessary and sufficient because this implies 
complete knowledge of the causality of a risk event. As a result of such 
knowledge, a risk manager can look at all possible causes of the risk event 
and accordingly institute risk management activities. Nonetheless, in less-
than-ideal scenarios, risk analysts need to carefully and diligently consider 
as many evidences as possible to establish the plausibility of particular risk 
events and revise this plausibility as new evidences become available.

Consider the development of a new software system. System developers 
usually identify capabilities the new system ought to perform and identify 
functionalities that will deliver such capabilities. As an example, a financial 
software may be designed to provide capability to perform transactions over 
secure federal intranets. Some functionality that will enable this capability 
is as follows:

•	 Issue and accept security tokens
•	 Send and receive encrypted information
•	 Accept, verify, and issue encryption keys

In more general terms, consider a particular required capability A. Based 
on analysis of the components and associated functionalities of the new 
software system, the necessary and sufficient conditions for implementing 
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capability A is given by the set of functionalities B. By definition of necessary 
and sufficient conditions, (A = true) if and only if (B = true) and

	 P A B( | ) = 1

It can be noted that for this new software system (or any other system for that 
matter), the failure to deliver a required capability is undesirable and thus is 
a risk event. Since B is both necessary and sufficient, then

	 P A B( | )′ ′ = 1 	
(9.2)

Furthermore, consider a case where the set of functionalities B can be 
decomposed to a finite number of system functionalities { , , , , }b b b bi1 2 3 …  such 
that B = true if ( )b truei =  for all { , , , , }.b b b bi1 2 3 …  That is,

	 P A b b b bi( | , )1 2 3 1∩ ∩ ∩ ∩… = 	
(9.3)

Equations 9.2 and 9.3 together provide conditions for failure of the 
new software system to deliver the capability as B = false if (bi = false) 
for at least one in i { , , , , }:b b b bi1 2 3 …

	 P A i bi( | )′ ∃ ′ = 1 	
(9.4)

Equations 9.3 and 9.4 emphasize two sets of important information, as 
described by Pinto et al. (2010):

	 1.	 Identifying necessary and sufficient functionalities, by definition, 
will lead to assuring a required capability.

	 2.	 Identifying sufficient functionalities, coupled by negation, will 
assure complete list of functional scenarios that can cause (the risk 
event) of not delivering a capability.

Going back to the case of capability to perform transactions over secure 
federal intranet, say that this is capability A that needs to be assured. Assume 
that the necessary and sufficient functionalities that will enable this capabil-
ity are as follows:

•	 Issue and accept security tokens, b1

•	 Send and receive encrypted information, b2

•	 Accept, verify, and issue encryption keys, b3

By definition, the following statements are true:

•	 Capability A will be possible only if functionalities b1, b2, and b3 are 
all operational.

•	 Any failure in functionalities b1, b2, and b3 will result in failure of 
capability A.
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In summary, identifying necessary and sufficient conditions establishes 
functionalities that assure delivery of a required capability. Consequently, 
the same set of necessary and sufficient conditions establishes functional-
ities whose failure equally assures the nondelivery of the capability. As such, 
necessary and sufficient conditions are essential aspect of identifying cau-
salities of failing to deliver a capability. In analyzing risks of not delivering a 
capability, this provides an important starting point toward more extensive 
risk management.

9.4  Markov Process

The preceding sections established the inescapable challenges presented by 
uncertainty surrounding risk events and established the importance of look-
ing for evidence to reduce such uncertainty in the form of necessary and 
sufficient conditions. Engineers and risk analysts alike have adapted and 
learned to use various simplifying models and associated tools, and tech-
niques to make reducing uncertainty more manageable. One such simplify-
ing model is the Markov process.

A Markov process, named after the Russian mathematician Andrey 
Markov (1856–1922), describes that future state of the system depends only 
on its present states, and not on any past states. This is often associated with 
the phrase “memoryless.” To be more precise, consider a probabilistic vari-
able X that can be observed through time and thus can be compactly repre-
sented as a probabilistic process X(t). This probabilistic process X(t) is said to 
have a Markov property if for any instant along time t i ni , , , ,= 1 2 …

	

P X t x X t x X t x X t x

P X t
n n n n n n

n

( ( ) ( ) , ( ) , , ( ) )

( ( )
+ + − −

+

= = = … =

= =
1 1 1 1 1 1

1 xx X t xn n n+ =1 ( ) )

This process, having the Markov property and termed as a Markov pro-
cess, has states that depend only on the immediately previous instant and 
not on any other earlier instants.

More interestingly, if time tn is now and tn+1 is the immediate future, then a 
Markov process future states depend only on the present and not on the past. 
This property is why this process is also termed to be memoryless, that is, it 
has no memory of the past.

Common examples of real system usually modeled as memoryless are as 
follows:

•	 Automated bank teller machines whose future rate of dispensing 
cash depends only on its current rate.
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•	 A production machine whose rate of failure tomorrow depends only 
on its failure rate today.

•	 A telephone switch whose rate of dropping the next call depends 
only on the rate it drops the current call.

Markov process is a popular way to describe real events in engineering 
and risk management due to several reasons, especially the following.

Compactness of information. The memoryless property of Markov pro-
cesses allows analysts the convenience of compactly summarizing 
the effects of past states of a system on its future states through its 
current state. Consider a production machine whose rate of fail-
ure tomorrow depends only on its failure rate today. If the engi-
neer in charge of maintaining this machine has the failure rate of 
the machine today, only that single information will be the key in 
determining the failure rate for tomorrow. When tomorrow comes, 
the engineer needs only the tomorrow’s failure rate to determine the 
failure rate for the next day and so on.

Convenience of analysis. The Markov property is a well-studied property 
of probabilistic processes that brings into consideration decades of 
research and hundreds of academic and application-based publi-
cations. Even though each engineer and risk analyst may be look-
ing at different systems, there is a great chance that they will find 
an acceptable Markov process approximation of their system with 
accompanying sets of solution formulas for their fundamental needs 
by scouring the body of literature.

The Markov property of probabilistic processes is often summarized in 
terms of state transition probabilities or the chance that the system will be in 
a particular state given its current state. Consider the simple event of tossing 
a fair coin with the face of the coin landing up is the system state of interest. 
With only two states, head and tail, and with equal chance of occurrence for 
a fair coin, the probabilities of the coin’s next state at tn+1 given the current 
state at tn are

	 P X t head X t headn n( ( ) | ( ) ) .+ = = =1 0 5

	 P X t head X t tailn n( ( ) | ( ) ) .+ = = =1 0 5

	 P X t tail X t headn n( ( ) | ( ) ) .+ = = =1 0 5

	 P X t tail X t tailn n( ( ) | ( ) ) .+ = = =1 0 5
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These transition probabilities can also be expressed as a matrix

	

0 5 0 5
0 5 0 5
. .
. .

9.4.1  Birth and Death Process

If the random variables denoting the states of a Markov process are discrete 
in nature, then these discrete random variables form a Markov chain. If a 
special type of Markov chain with the restriction that at each step of the 
chain, the state transition, if any, can occur only between immediately neigh-
boring states, then a very useful process is defined.

Definition 9.11: Birth and Death Process

Birth and death process is a special type of Markov chain with the restric-
tion that at each step of the chain, the state transition, if any, can occur only 
between immediately neighboring states (as shown in Figure 9.1a).

In a birth and death process with a current state i at time tn , the state at the 
immediately succeeding time period tn+1 can either be unchanged at i or be 
changed to the immediately neighboring states i i− +1 1, .or  This is illustrated 
in Figure 9.1b.

9.5  Queuing Theory

Engineering problems often arise from scarcity of resources such as server 
time (man or machine time), monetary resources, material resources, and 
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FIGURE 9.1
(a) State transition diagram for tossing a fair coin as a Markov process. (b) State transition dia-
gram for a birth and death process.
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information. A broad category of engineering systems with scarce resources 
is system of flows and is defined as system wherein transactions flow through 
a server to go from one point to another (Kleinrock, 1976). Systems of flows 
abound and come in different forms and complexities. Systems of flows can 
be large and complex and engineers have always tried to use models for 
analysis. A system of flows is the basis of study termed as queuing theory or 
the study of queues.

Queues, based on its common usage, pertains to persons, objects, or any 
other entities that are lining up and waiting for something. This apparent 
simple nature of queues is one reason queuing theory and its applications 
are very popular. Consider Figure 9.2, which shows a number of entities, 
queuing and waiting for their turn to be served by a server. The entities and 
server illustrated in Figure 9.2 could represent many particular examples. 
Consider some examples in Table 9.2. The entities can be cars lined up in front 
of a red stop light, the server, waiting for the light to turn green. The entities 

TABLE 9.2

Examples of Systems Being Modeled as a Queuing Systems and Possible Entities 
and Servers

System Being Modeled Entity Server Characteristics

Barber shop Humans Barber Number of barbers and barber’s 
chairs

How fast barbers cut hair
Length and style of hair

Emergency room Patients Triage nurse Time of the day
Number of doctors on duty

Doctor’s office Patients Doctors Day of the week
Type of practice

Internet at home Packets of 
information

Internet 
router

Connection speed
Routing protocol
Volume of information

Street intersection Cars Stop light Volume of cars
Length of time light is red or 
green 

Calling population Queuing system

Server
Waiting entities

Arrival rate Departure rate

FIGURE 9.2
Schematic of a simple queuing system.
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can be humans waiting for their turn at a barber shop. Though they may not 
be literally lined up in front of the barber’s chair as they may be sitting down, 
there is a particular order by which they will be served. The entities could 
also be packets of information waiting for their turn to be routed by an inter-
net router. For this particular example, the packets of information are not 
physically lined up in front of the server or any of the service provided by 
the internet router is not directly observable by the naked eye. Nonetheless, 
to model what is occurring as a queuing system provides immeasurable ben-
efits to engineers, resulting in the effectiveness and efficiency of the internet 
many of us are now benefiting from.

9.5.1  Characteristic of Queuing Systems

Inherent to any modeling effort is the selective choice on which among sys-
tem characteristics will be included in the model. The choice is made based 
on the purpose of the modeling effort and the characteristics of the system 
being emphasized (Jain, 1991). The chosen characteristics are translated to 
variables or parameters that serve as building blocks of the model (Haimes, 
1998). As a result, a model can be judged as appropriate for the analysis if 
the model has as building blocks the characteristics considered by the ana-
lyst as important and provide results that satisfy the analyst’s requirements. 
Consider the examples in Table 9.2. Some of the characteristics of these sys-
tems are typical of how we will describe the system, for example, a barber 
shop can be typically described in terms of the number of barbers and barber 
chairs it has and by how fast they cut hair. However, for a particular patron 
waiting in line, it may also be relevant to know the length and styles of hair-
cut of those ahead of the patron because these affect how long they will be 
served, hence the patron’s waiting time, or the available seats inside the bar-
ber shop for waiting customers.

In more general terms, queuing systems can be described by a number of 
characteristics, including:

	 A.	Description of how entities arrive into the queuing system (e.g., 
M stands for Markovian arrivals, GI for general (any distribution) 
arrivals, PH for phase-type arrivals).

	 B.	Description of the service provided by the server (e.g., M stands for 
Markovian service, GI for general (any distribution), PH for phase-
type service).

	 C.	Number of servers in the system.
	 D.	Capacity of the queue (i.e., the maximal number of entities that can 

be queued in the system).
	 E.	System population (i.e., the maximal number of entities that can 

arrive in the queue).
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	 F.	Queuing discipline, which can be FIFO (first come first serve), 
LIFO (last come first serve), or any other queuing discipline. If 
this argument is missing, then by default the queuing discipline 
is FIFO. For Figure 9.2, it is implied that the queuing discipline 
is FIFO.

These characteristics are expressed primarily by the Kendall notation A/B/
C/D/E/F made up of the preceding characterizations.

It is noticeable that several important characterizations—the arrival pro-
cess of entities and service process—can be described using the Markov 
process. In essence, this implies that there are cases where the arrival of enti-
ties is memoryless. From the pioneering work by Jackson (1957), analyses of 
queuing models with Markovian arrival and service are done with steady-
state probabilities. This also implies that the effects of initial conditions are 
nonexistent.

Of particular importance in characterizing queuing models with Markovian 
arrival and service times are two parametric distributions, namely Poisson 
and exponential distributions.

9.5.2  Poisson Process and Distribution

Poisson process is a collection of N(t) random variables, where t stands for 
time t ≥ 0, and N(t) is the number of events that have occurred from time 0 to 
time t and has the following properties:

•	 Events do not occur simultaneously.
•	 The number of events occurring in any interval of time after time t is 

independent of the number of arrivals occurring before time t, that 
is, the process is memoryless.

Consider the arrival of cars at an intersection. If one marks on a timeline 
when a car arrives at an intersection, then this timeline may look like that of 
Figure 9.3.

Time = 0 Time = t
1 2 3

∆t1
∆t2

∆t3
∆tk∆t(k–1)

k–1 k

FIGURE 9.3
Timeline marked with the occurrence of events of interest, for example, arrival of a car in an 
intersection.
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If the arrival of cars can be described as follows:

•	 No two or more cars arrive at the intersection at the same time, that 
is, events do not occur simultaneously

•	 The number of cars arriving after time t is independent of the num-
ber of arrivals occurring before t, that is the process is memoryless,

then this process can be described as a Poisson process, and the number of 
arrivals within a time period has a Poisson distribution.

Definition 9.12: Poisson distribution

The probability of k arrivals in t time periods in a Poisson process has a 
Poisson distribution expressed as

	
P t

t
k

ek

k
t( )

( )
!

= −l l

9.5.3  Exponential Distribution

Consider the time between arrivals of cars illustrated in Figure 9.2, the Δts. 
Essentially, these times between occurrences of events in a Poisson process 
are random variables whose probabilities have an exponential distribution.

Definition 9.13: Exponential Distribution

In a Poisson process, the distribution of time, say x, between occurrences of 
events have an exponential distribution and is given by

	 P x e x( ) = −m m

9.6  Basic Queuing Models

There are several well-established basic queuing models that are often used 
in engineering and other fields of applications. These basic models can be 
used to analyze, in particular, simple systems and also as building blocks for 
modeling more complex systems. Two basic queuing models are described 
in this section: single-server and multiple-server models.

9.6.1  Single-Server Model

A single-server model characteristically describes the presence of only one 
server to accommodate the entities as shown in Figure 9.2. We can analyze 
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this type of queuing system by making some simplifying assumptions:

	 1.	There are infinite number of spaces for entities waiting to be served.
	 2.	The arrival of entities from the calling population is known and can 

be described by a constant rate λ, in terms of entities per time period. 
Furthermore, the probability of entities arriving into the queuing 
system within a very short time period Δt → 0 is

	 a.	 P(one arrival) = λt

	 b.	 P(no arrival) = 1 – λt

	 c.	 P(more than one arrival) = 0
	 3.	The rate of service provided by the server can be described by a con-

stant rate μ, in terms of entities per time period. Furthermore, the 
probability of entities departing from the queuing system (provided 
there are entities being served) within a very short time period 
∆ →t 0 is

	 a.	 P(one departure) = mt

	 b.	 P(no departure) = 1−mt

	 c.	 P(more than one departure) = 0

Consider that the state of the queuing system is the number of entities 
inside the system, composed of both those waiting and being served. The 
state of the systems are then nonnegative integer values 0 1 2, , , , , , .… …N ∞
Since it was assumed that there are infinite spaces for waiting entities, there 
can also be as many system states.

Let the state of the queuing system be a random variable and the probabil-
ity that there are N entities inside the queuing system, and hence the state is 
N, at time t, has a function p tN ( ). By ignoring terms ( ) ,� t Y  with Y = 2 or higher 
since ∆t→0, then

	 p t t p t t p t t0 0 11( ) ( )[ ] ( )+ = − +∆ ∆ ∆l m

	      p t t p t t t p t t p t tN N N N( ) ( )[ ] ( ) ( ) , .+ = − − + + >− +∆ ∆ ∆ ∆ ∆1 01 1l m l m for N

Invoking the axiomatic definition of probabilities, Σ∀ =i ip t( ) ,1  for all t ≥ 0 
and taking the limits as ∆t→0 gives a partial derivative

	   

d
d

p t
t

p t p t0
0 1

( )
( ) ( )= − +l m

	
d

d
N

p t
t

p t p t p tN
N N

( )
( ) ( ) ( ) ( ),= − + + + >− +l m l m0 1 1 0for
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These two differential equations describe the states of the queuing system 
illustrated in Figure 9.2.

Equilibrium condition is reached when

	

d
d

p t
t

p t p t0
0 10

( )
( ) ( )= = − +l m

	   l mp t p t0 1( ) ( )=

	  
p t p t1 0( ) ( )=

l
m

If the time argument (t) is dropped from the notation and r l m= / , then

	 p p1 0= r

Similarly,

	 p p p p pN N N N
N

+ −
+= − − = = ≥1 1

1
01( ) ,r r r r for 1N

Invoking the axiomatic definition of probabilities, Σ∀ =i ip 1, the system 
state probabilities of a queuing system illustrated in Figure 9.2 are

	 p ii
i= − = ∞r r( ), , , ,1 0 1for all possible states … 	 (9.5)

However, a condition must be placed for a queuing system to be stable 
such that the number of entities inside any queuing system does not keep 
on continuously increasing. This condition is that the rate of arrival of enti-
ties must be less than the rate of departure, that is, l m<  and therefore r < 1. 
Knowing the equilibrium state probabilities allow the calculation of various 
performance parameters of the queuing system described in the following.

9.6.2  Probability of an Empty Queuing System

There are situations when knowing the likelihood of the queuing system 
being empty can be helpful in designing a system. Consider the case of a 
bank manager who may need to know how often they can replenish the 
cash machine in a day that can only be done when no one is using the cash 
machine.

From Equation 9.5 and i = 0, that is, the state of the system when it has no 
entity,

	 p0
0 1 1= − = −r r r( ) ( )

	
= −






1
l
m
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PROBLEM 9.1

Consider an automated bank teller machine (ATM) whose operating system 
needs regular updates by uploading small pieces of codes through remote 
uploads. To minimize disruption of service, this remote uploads can only be 
done when the machine is not serving any client and that no client is waiting 
to be served. If the mean arrival rate of clients is 10 per hour and the mean 
service rate is 15 per hour, what is the chance that there are no clients being 
served or waiting to be served?

Solution

Modeling the ATM as a queuing system with l=10 per hour and m= 15, the 
chance that the system is empty is

	
P0 1 1

10
15

0 33= −





= −



 =

l
m

.

9.6.3 � Probability That There Are Exactly N 
Entities Inside the Queuing System

Consider Equation 9.5 and expressing this in terms of the arrival and depar-
ture rates,

	
pN

N= − =






−




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r r l
m

l
m

( )1 1
N

PROBLEM 9.2

Consider a walk-up ATM being installed in a place where winter can be 
bitterly cold. The engineer decided to install the ATM inside a climate-
controlled area with enough space for 5 people, including that one using the 
ATM. If the mean arrival rate of clients is 10 per hour and the mean service 
rate is 15 per hour, what is the chance that there will be people needing to 
wait outside the climate-controlled area?

Solution

Essentially, what needs to be estimated is the chance that there are more than 
5 people inside the queuing system. This is

	

P P
P P P P P P

N N> ≤= −
= − + + + + +
=

5 5

0 1 2 3 4 5

1
1
0 088

( )
.
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9.6.4  Mean Number of Entities in the Queuing System

One of the most insightful performance parameters of a queuing system is 
the number of entities inside the system. For engineering systems with lim-
ited space such as a factory, knowing how much work in process will be 
waiting for a machine may be important in designing the shop floor layout.

Consider Equation 9.5, which provides the probability that there are i enti-
ties inside the queuing system. Using the notion of expected value provides 
the calculation for expected number of entities inside the system to be

	

Q ip ii
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= ×
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9.6.5  Mean Number of Waiting Entities

The number of entities waiting to be served is essentially the number in the 
queue. Since we are looking at a single server that can serve only one entity 
at a time, the number of entities in the queue will be one less than the num-
ber inside the system:
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9.6.6  Average Latency Time of Entities

The average latency time of an entity, that is, time inside the system waiting 
and being served can be important for systems where throughput is critical 
for system operation, for example, a well-balanced assembly line. Another 
consideration can be for systems where any delay can be critical to health 
and safety, for example, an emergency room triage service. However, one 
critical aspect that determines latency time of entities is the queue discipline 
or rule used to choose among the waiting entities to be served next. First 
come first served (FCFS), also known as first in first out (FIFO), is a common 
queue discipline. FCFS and FIFO make sense in many instances where there 
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may be n discernable differences among entities, similar to a mass product 
assembly line. These rules can also be perceived as just and fair in common 
service systems such as banks, barber shops, or fast-food restaurants.

However, several more assumptions can simplify the calculation of the 
average latency time of entities in a queuing system. In particular, assume 
the following:

	 1.	The arrival of entities into the queuing system is a Poisson process. 
That is, the distribution of times between arrivals is exponentially 
distributed with mean 1/ .l

	 2.	The service completion of entities, and thus their departure, is a 
Poisson process. That is, the distribution of times between depar-
tures is exponentially distributed with mean 1/ .m

	 3.	Queue discipline is FCFS.

Then the average latency time of an entity is
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9.6.7  Average Time of an Entity Waiting to Be Served

The average time of an entity waiting to be served, that is, waiting in the 
queue prior to service will be one mean service time less than the average 
latency time. That is

	

L Lq = − =
−

=
−

1
1

1
m

r
m r

m m l

( )

( ) 	

In summary, the basic assumptions in a single-server model in Kendall nota-
tion are shown in Table 9.3. However, also shown in Table 9.3 are other pos-
sible assumptions and corresponding Kendall notations.

Significant studies have been done in estimating performance parameters 
of various queuing models. This provides systems engineers the conve-
nience of not having to develop queuing models and derive performance 
measures for many types of systems. Nonetheless, the extensive research 
done in queuing systems also presents systems engineers the challenge of 
choosing the appropriate model for a particular system and for a specific 
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purpose. Presented in Tables 9.4 to 9.8 are the more common variations of 
queuing models that may be most useful for modeling many engineering 
systems. For more sophisticated and specialized queuing models, one may 
look at other sources specializing on this topic, including Bhat and Basawa 
(1992), Gorney (1981), and Daigle (1992).

Nonetheless, performance measures for the more commonly used queu-
ing models presented in this chapter are as follows:

•	 Basic single server, M/M/1/ FIFO∞ ∞/ /  (see Table 9.4)
•	 Single server, constant service time M/C/1/ / /FIFO∞ ∞  (see Table 9.5)
•	 Single server, finite queue length, M/M/1/F/ /FIFO∞  (see Table 9.6)
•	 Single server, finite calling population, M/M/1/ /F/FIFO∞  (see 

Table 9.7)
•	 Multiple server model, M/M/S/ / /FIFO∞ ∞  (see Table 9.8)

9.7  Applications to Engineering Systems

Queuing models are often used in analyzing various aspects of engineered 
systems to describe the scenarios surrounding limitations of resources. 
Consider the problem of a systems engineer in the process of developing 
remote sensing equipment meant to relay data from remote places to satel-
lites and eventually to a research laboratory. In particular, the engineer is 

TABLE 9.3

Kendall Notation for Compactly Describing Queuing Models

Kendall Variable Possible Characterization
Equivalent in 

Kendall Notation 

A Poisson arrival rate with λ mean arrival rate
Constant arrival rate
Arrival rate with general distribution

M
C
G

B Exponential service times with µ mean 
service rate

Constant arrival rate
Arrival rate with general distribution

M

C
G

C Only 1 server
Multiple servers

1
S

D Infinite queue length
Finite queue length

∞
F

E Infinite calling population
Finite queuing calling population

∞
F

F First-in, first-out queue discipline
Last-in, first-out queue discipline
Other priority queue discipline

FIFO
LIFO
Several notations
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TABLE 9.4

Summary Performance Metrics for a Basic Single-Server Model, M/M/1/ FIFO∞ ∞/ /

Probability that no entities are in the queuing system, i.e., queuing 
system is empty P0 1= −







l
m

Probability of exactly n entities in the queuing system Pn

n

=






−






l
m

l
m

1

Average number of entities in the system, including those waiting and 
being served 

Q =
−







l
m l

Average number of entities waiting to be served Qq = −( )










l
m m l

2

Average latency time of an entity, i.e., time inside the system waiting and 
being served

L =
−
1

m l

Average time of an entity waiting to be served, i.e., waiting in the queue Lq = −
1

m m l( )

Chance (or proportion of time) the server is busy, i.e. the server’s 
utilization factor

r l
m

=

TABLE 9.5

Performance Metrics for a Single Server with Constant Service Time, M/C/1/∞/∞/
FIFO

Probability that no entities are in the queuing 
system, i.e., queuing system is empty

P0 1= −






l
m

Average number of entities waiting to be served Qq =
+
−






=

−




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l s l m
l m

l
m m l

2 2 2 2

2 1 2
( / )

( / ) ( )

Since σ = 0 when service time is constant,

Average number of entities in the system, 
including those waiting and being served 

Q Qq= +
l
m

Average latency time of an entity, i.e., time inside 
the system waiting and being served

L Lq= +
1
m

Average time of an entity waiting to be served, 
i.e., waiting in the queue

L
Q

q
q=
l

Chance (or proportion of time) the server is busy, 
i.e., the server’s utilization factor

r l
m

=
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trying to determine which type of processor will be used to assure that data 
are processed and transmitted by the equipment in a timely manner.

If the engineer chooses to use queuing model to help in this decision sce-
nario, then the problem can be abstracted by modeling the system primarily 
made up of information as entities or jobs and the processor as a server, sim-
ilar to that shown in Figure 9.2. The modeling process can be summarized 
by specifying the characteristics of the model based on the Kendall notation 
as shown in Table 9.9.

TABLE 9.6

Performance Metrics for a Single Server with Finite Queue Length, M/M/1/F/∞/
FIFO

Probability that no entities are in the queuing system, i.e., 
queuing system is empty

P M0 1

1
1

=
−

−




+

( / )
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l m

l m

Probability of exactly n entities in the queuing system P Pn

n

= ( )
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
0

l
m  

for n ≤ M

Average number of entities in the system, including 
those waiting and being served 

Q
M M
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−
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+

+
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/
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( / )
( / )1
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1

TABLE 9.7

Performance Metrics for Single Server with Finite Calling Population, M/M/1/∞/F/
FIFO

Probability that no entities are in the queuing 
system, i.e., queuing system is empty P

N
N n

N

n

N
0

0

1
=

−






=

=∑ !
( )!

,
l
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n

where population size

Probability of exactly n entities in the queuing 
system 

P
N

N n
P n Nn

n

=
−





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=
!

( )!
, , , ,

l
m 0 1 2where …

Average number of entities in the system, 
including those waiting and being served 

Q = Qq + (1 − P0)

Average number of entities waiting to be served Q N Pq = −
+



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−
l m
l

( )1 0

Average latency time of an entity, i.e., time inside 
the system waiting and being served

L Lq= +
1
m

Average time of an entity waiting to be served, 
i.e., waiting in the queue

L
Q

N Qq
q=

−( )l



313Random Processes and Queuing Theory

However, similar to any modeling activity, the effectiveness and efficiency 
of using queuing models to approximate a real system will rely on multiple 
factors:

	 1.	The purpose for the modeling activity (e.g., decision scenario, 
insights needed by decision makers, variables needed by the deci-
sion scenario, etc.)

	 2.	The accuracy and precision of information required to support the 
decision scenario

	 3.	The information known about the real system (e.g., the speed of a 
computer processor for a web server)

	 4.	The cost of deducing, inferring, or estimating new information with 
the required accuracy (cost of market research to estimate potential 
traffic into a web server)

	 5.	The resources available for the modeling activity
	 6.	The benefits of the modeling activity
	 7.	Other alternatives to using queuing models.

TABLE 9.8

Performance Metrics for Multiple Server Model, M/M/S/∞/∞/FIFO

Probability that no entities are in the queuing 
system, i.e. queuing system is empty P
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Average latency time of an entity, i.e. time inside 
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Average time of an entity waiting to be served, 
i.e., waiting in the queue
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These factors all contribute in varying degrees to the systems engineer’s 
choice of using queuing models for the analysis and the particular type of 
model to use. Nonetheless, the availability of many variations and possible 
customization of queuing models may result in lower resources needed for 
the modeling activity.

Even though queuing model is popular in engineering application, a sys-
tems engineer needs to recognize that there are alternative models. Other 
approaches to modeling are the fluid flow model (Kulkarni, 1997) and the 
fractal queuing model (Ashok et al. 1997). More recently, a deterministic and 
statistical network calculus based on queuing models has been developed 
that puts bounds on the performance of queue in the form of effective service 
curves (Liebeherr et al., 2001) and bounds on the length of the waiting line 
and on latency have been estimated (Agrawal et al., 1999, Andrews, 2000, 
Kesidis and Konstantopoulos, 1998 all cited by Liebeherr et al., 2001).

Another field related to the modeling of risk and queue is the study of 
hard real-time systems. Hard real-time systems pertain to systems of flow 
wherein some of the transactions have guaranteed latency time. Buttazzo 
(1997) and Peng et al. (1997) approached the problem of assuring latency 
times by formulating scheduling algorithms. Such algorithms determine the 
feasibility for a certain sets of transactions with known arrival times and ser-
vice times in the sense that all guaranteed latency times are satisfied. Some 

TABLE 9.9

Modeling a Remote Sensing Equipment as a Queuing System and Possible Kendall 
Notation

Kendall 
Variable 

Characteristic of the Remote 
Sensing Equipment

Possible 
Characterization

Equivalent in 
Kendall Notation 

A Description of the arrival of 
data to be processed by the 
processor

Time between arrival of 
data is exponentially 
distributed, i.e., 
Markovian

M

B Description of how the 
processor process the data 

Time needed to process 
data is exponentially 
distributed, i.e., 
Markovian

M

C Number of processors in the 
remote sensing equipment

1 1

D Capacity of the remote-sensing 
equipment to store data prior 
to processing

Infinite storage capacity ∞

E The maximal number of data 
needs to be processed

Infinite ∞

F The order the data in storage 
will be processed 

First in, first out FIFO



315Random Processes and Queuing Theory

algorithms consider precedence constraints that essentially have priorities 
among transactions. There are also algorithms that consider servers with 
priorities similar to servers in queuing systems with priorities. However, the 
algorithms are basically on determining the feasibility of the system with 
respect to constraints in latency times. The algorithms do not facilitate the 
reconfiguration of the system to address infeasibility or the measurement of 
the risk of extreme latencies.

The product form, the fluid flow, and the fractal queuing models fail to 
answer a couple of needs for analysis of a realistic system. First, the assump-
tion that the arrival and service processes have Markovian property cannot 
always be the case in real systems (Jain, 1991). Moreover, precise solutions 
are available when interarrival and processing time distributions have 
the Markovian property and not for other more general distributions, for 
example, Gumbel-type distributions. Second, the results of the analysis 
describe the performance of the system as expected value rather than as a 
distribution of possible values. Even though variance describes the spread of 
the values, it is still hinged on the central tendency value (recall that variance 
is E x x[ ]−  where x is the mean). In cases when the distributions of the latency 
times are available, the solutions can be cumbersome and do not facilitate 
changes to configuration of the queuing systems. Such results do not provide 
the opportunity to perform analysis on the tails of the distributions repre-
senting the extreme latencies.

9.8  Summary

Knowing how and when to use deterministic and nondeterministic way 
of describing phenomena is an important skill of engineers and practitio-
ners. Each way has its own advantages and disadvantages and primarily 
depends on the decision scenario at hand and available information that 
will appropriately support the use of either deterministic or nondetermin-
istic models.

Important foundations for using nondeterministic models are the notions 
of random process and uncertainty. Furthermore, the importance of reduc-
ing uncertainty cannot be overemphasized in the field of engineering.

Finally, using queuing models can be an effective and efficient way for 
the analysis of many engineering systems. Nonetheless, applying queuing 
models requires that elements of the engineering system and their corre-
spondence with elements of a queuing system must be identified, in addi-
tion to carefully choosing various performance parameters to be used in the 
analysis.
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Questions and Exercises

True or False

	 1.	One of the most important skills of a system engineer is to commu-
nicate in simple and readily comprehensible manner.

	 2.	Systems engineer often needs to describe phenomenon with the 
objective of helping himself or someone else arrive at a decision.

	 3.	Too much never negatively affect the decision-making process and 
affect the budget, schedule, or performance of the system being 
developed.

	 4.	The simplest way to describe a phenomenon may be in a determin-
istic manner.

	 5.	Determinism is synonymous with definite, certain, sure, and can be 
quantitatively expressed as a point estimate.

	 6.	Phenomenon described in a deterministic manner is never sufficient 
and precise enough such that decision makers can appropriately 
choose among alternatives.

	 7.	A well thought-out deterministic description of phenomenon, with 
precision and accuracy appropriate for the decision maker and the 
decision scenario at hand, is one of the greatest tools and skill a sys-
tems engineer can have.

	 8.	Deterministic process is the one in which the same output is obtained 
every time the same set of inputs or starting conditions occur.

	 9.	Deterministic process implies that there is some form of causality 
between the inputs or starting conditions of the process and the 
outputs.

	 10.	A random process is a phenomenon that has predictability of its 
actual outcome (i.e., posses the random property).

	 11.	A random event is a set of outcomes resulting from a random process.
	 12.	Aleatory uncertainty refers to uncertainty in our state of knowledge 

about certain phenomena.
	 13.	Aleatory uncertainty is also known as reducible uncertainty, per-

taining to its property to be reduced through investigation, reason-
ing, engineering interventions, and other forms of analyses.

	 14.	Epistemic uncertainty, on the other hand, is due purely to the varia-
tion in outcomes of randomness.

	 15.	Aleatory is also known as irreducible uncertainty, pertaining to its 
property of not being affected by further investigation, reasoning, 
and other forms of interventions and analyses.
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	 16.	The concepts of uncertainty, randomness, and probability are weakly 
related, and their relationship is always clear to many engineers.

	 17.	An integral part of any engineering activity is the discovery of how 
things work and how they affect a desired result.

	 18.	Fundamental to any scientific activity is making conclusions based 
on rational and repeatable acts of discovery.

	 19.	Correlation is the relationship between two events, wherein the 
occurrence of one implies the occurrence of the other.

	 20.	A set of events B is described to be necessary to cause another set of 
events A if B is a required condition for the occurrence of A, not that 
A actually occurs.

	 21.	A set of events B is described to be necessary to cause another set of 
events A if the occurrence of B guarantees the occurrence of A.

	 22.	Establishing causalities among events is at the very foundation of 
risk scenario identification.

	 23.	Two commonly held approaches to risk scenarios identification are 
bottom-up and top-down approaches.

	 24.	Bottom-up approach to risk identification relies on the knowledge 
of what the elements of the systems are and how these elements are 
expected to work together.

	 25.	Top-down approach to risk identification relies on the knowledge of 
the objectives of the systems.

	 26.	An evidence probabilistically causes the event of interest if the 
occurrence of the evidence increases the probability of occurrence of 
the event of interest.

	 27.	An event (or evidence) B is necessary and sufficient condition for 
another event A if B occurs if and only if A occurs.

	 28.	Necessary and sufficient functionalities, by definition, will never 
assure a required capability.

	 29.	 Identifying sufficient functionalities, coupled by negation, will 
assure complete list of functional scenarios that can cause (the risk 
event) not delivering a capability.

	 30.	A Markov process describes that future state of the system depends 
only on its present states, and not on any past states.

	 31.	Memoryless property of Markov processes will not allow analysts to 
compactly summarizing the effects of past states of a system on its 
future states through its current state.

	 32.	Birth and death process is a special type of Markov chain with the 
restriction that at each step of the chain, the state transition, if any, 
can occur only between immediately neighboring states.
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Qualitative

	 1.	 Identify which of the following statements are deterministic and 
which are probabilistic.

	 (A)	 It will rain tomorrow.
	 (B)	� There is one-in-10-million chance of winning jackpot at the state 

lottery.
	 (C)	 My car broke down after 10 years.
	 (D)	 The butter I bought weighs one pound.
	 2.	What is mathematical determinism?
	 3.	Provide five examples of mathematical expressions that shows deter-

ministic process, for example, F = m*a.
	 4.	Provide examples of situations where phenomena can be appropri-

ately described deterministically.
	 5.	Compare and contrast between deterministic and nondeterministic 

way of describing a phenomenon.
	 6.	 Identify the advantages and disadvantages of using deterministic 

and nondeterministic models.
	 7.	Provide an example of a decision scenario when the statement an 

automobile tire will fail after 50,000 miles of road use is sufficient. When 
is it not?

	 8.	 Identify and describe a random process.
	 9.	Compare and contrast two sources of uncertainty in predicting the 

outcome of tossing a coin.
	 10.	 In your own words, describe epistemic and aleatory uncertainty.
	 11.	Describe the importance of reducing uncertainty.
	 12.	Compare and contrast necessary causes from sufficient causes.
	 13.	What are necessary and sufficient causes?
	 14.	What is the importance of necessary and sufficient causes in systems 

engineering?
	 15.	Describe a Markov process and compare with any other random process.
	 16.	 Identify the elements of a queuing system.
	 17.	 Identify and describe various performance parameters of a queuing 

system.
	 18.	Describe what may happen in a queuing model under the following 

situations:
	 (A)	 When l m<
	 (B)	 When l m>
	 (C)	 When l m=
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Case Studies

	 1.	Consider the event of your identity being stolen by an identity thief.
	 (A)	� Identify information that you would consider as evidence sup-

porting the occurrence of this event. Identify as many as you can.
	 (B)	 Rank the information from most supportive to least supportive.
	 (C)	� Discuss the information on the top and at the bottom of your list.
	 2.	Consider the event of being late going to work or school tomorrow.
	 (A)	 Identify as many sufficient conditions as possible.
	 (B)	 Identify as many necessary conditions as possible.
	 (C)	 Identify as many necessary and sufficient conditions as possible.
	 (D)	� What factors do you think determine the number of necessary 

and sufficient conditions for a given event?
	 3.	A systems engineer is designing a new data processor to handle 

incoming request to access information stored in a multimedia server.
	 (A)	� Describe this particular system in terms elements of a queuing 

model.
	 (B)	� Describe assumptions about particular elements of the model if 

the system will be modeled as an M/M/1/∞/∞/FIFO queuing 
system.

	 (C)	� Closer investigation revealed that requests arrive at an average 
rate of 100 per second while average request processing rate is 
150 per second. If the system is modeled as M/M/1/∞/∞/FIFO, 
what would be the model performance measures in terms of the 
following?

	 i.	 Probability that no entities are in the queuing system, that is, 
queuing system is empty

	 ii.	 Probability of exactly three entities in the queuing system
	 iii.	 Average number of entities in the system, including those 

waiting and being served.
	 iv.	 Average number of entities waiting to be served
	 v.	 Average latency time of an entity, that is, time inside the sys-

tem waiting and being served
	 vi.	 Average time of an entity waiting to be served, that is, wait-

ing in the queue
	 vii.	 Chance (or proportion of time) that the server is busy, that is, 

the server’s utilization factor
	 (D)	� Identify and describe possible reasons that will compel an 

analyst to model this system as M/C/1/∞/∞/FIFO instead of 
M/M/1/∞/∞/FIFO.
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	 4.	A new generation of bioauthentication technology is being deployed 
at the entrance of a library facility. At the heart of this new technol-
ogy is a software program that can compare a person’s bio profile 
with those on a database.

	 (A)	� An engineer suggested modeling this system as M/C/1/∞/∞/
FIFO queuing system. Identify particular information that will 
support such a suggestion.

	 (B)	� Another engineer suggested modeling this system as 
M/M/1/∞/∞/FIFO queuing system. Identify particular informa-
tion that will support such a suggestion.

	 (C)	� Investigations revealed that requests to compare bio profile 
comes at a mean rate of 5 per minute, and each bio profile can 
be compared with those on a database in an approximately con-
stant time of 0.5 seconds. Determine the following:

	 i.	 There are no requests in the system
	 ii.	 Average number of requests waiting to be served
	 iii.	 Average number of requests in the system, including those 

waiting and being served
	 iv.	 Average time of requests spent inside the system waiting and 

being served
	 v.	 Average time of request waiting to be served
	 vi.	 Chance (or proportion of time) the software is processing a 

request
	 5.	A team of systems engineers is trying to improve the current design 

of a bank currently with three teller windows. One engineer sug-
gested modeling each one of the teller as an M/M/1/F/∞/FIFO 
queuing system, whereas another engineer suggested modeling the 
entire bank as an M/M/S/∞/∞/FIFO queuing system.

	 (A)	� Identify, describe, and discuss the advantages and disadvan-
tages of the two suggestions.

	 (B)	� Identify important information that will support using an 
M/M/1/F/∞/FIFO model.

	 (C)	� Identify important information that will support using an 
M/M/S/∞/∞/FIFO model.

	 (D)	� Closer investigation revealed that clients arrive to the bank at 
a mean rate of 0.1 per minute and each teller can served a cli-
ent at a rate of 0.2 per minute. The bank currently has space 
for a total of 15 clients. Half of the engineering team decided 
to use M/M/1/F/∞/FIFO queuing system to model the bank. 
Determine the following:

	 i.	 Probability that there are no clients in the bank
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	 ii.	 Probability of exactly three clients in the bank
	 iii.	 Average number of clients in the system, including those 

waiting and being served
	 (E)	� The other half of the engineering team decided to use 

M/M/S/∞/∞/FIFO queuing system to model the bank.
	 i.	 Identify necessary assumption for this model to be valid.
	 ii.	 Determine the probability that no client is in bank.
	 iii.	 Determine the probability of exactly three clients in the bank.
	 iv.	 Determine the average number of clients in the bank.
	 v.	 Determine the average time clients spends inside the bank.
	 vi.	 Determine the average number of client waiting to be served.
	 vii.	 Determine the average time of a client spends waiting to be 

served.
	 viii.	 Determine the proportion of time the teller is busy serving 

clients.
	 6.	Two material-request procedures are being considered for deploy-

ment in a school library by a team of systems engineers, librar-
ians, and teachers. The team decided to model the procedures as 
M/M/1/∞/F/FIFO queuing systems. The following information is 
available: mean arrival rate of request for library materials is 6 per 
hour, procedure A can handle a request in an average of 2 minutes 
while procedure B can handle a request in an average of 3 minutes. 
There are approximately 200 students in the school and each one is 
not expected to make more than one request each time.

	 (A)	� Compare the two procedures in terms of the following perfor-
mance measures:

	 i.	 Probability that no entities are in the queuing system, that is, 
queuing system is empty

	 ii.	 Probability of exactly two entities in the queuing system
	 iii.	 Average number of entities in the system, including those 

waiting and being served
	 iv.	 Average number of entities waiting to be served
	 v.	 Average latency time of an entity, that is, time inside the sys-

tem waiting and being served
	 vi.	 Average time of an entity waiting to be served, that is, wait-

ing in the queue
	 (B)	 Which procedure is the better choice?
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10
Extreme Event Theory

10.1  Introduction to Extreme and Rare Events

Extreme events refer to phenomena that have relatively extreme high or 
low degree of magnitude while rare events refer to phenomena that have 
relatively very low frequency of occurrence. The use of the term relative in 
describing both extreme and rare events is important because, as will be dis-
cussed later, the relative difference between the magnitudes and frequency 
of occurrence of these events is the primary reason why they are difficult to 
analyze and manage. As such, events that are both extreme and rare can be 
defined as follows.

Definition 10.1: Extreme and Rare Events and Phenomena

Extreme and rare events and phenomena have relatively very low frequency 
of occurrence and at the same time have relatively extreme high or extreme 
low degree of magnitude.

There are some notable examples of extreme and rare events. One of the most 
notable is the recent global economic downturn. During the period of 2007–
2009, the prices of stocks of many of the world’s leading companies plum-
meted to very low levels. Another extreme and rare event is the magnitude 
10 earthquake that occurred in 2011 off the coast of Japan.

It is important to note that events that are extreme are not necessarily rare. 
Take as an example a pendulum and the angle it makes relative to the ver-
tical. As illustrated in Figure 10.1, the most extreme angles the pendulum 
makes are q qmax minand  because there will be no angles greater than qmax or 
less than qmin as illustrated in Figure 10.1. However, the figure also shows that 
for a frictionless pendulum, these extreme angles occur at every swing. That 
is, these extreme angles occur with the same frequency as any other meas-
ured angle of the pendulum and thus are extreme but not rare.

In a much similar way, rare events are not necessarily extreme. Consider as 
an example the number of wheels on vehicles in the streets. At the extreme 
low end are single-wheeled unicycles (if we include in consideration human-
powered vehicles) and 18-wheeled tractor trailer trucks on the extreme high 
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end. Something of rarity are five-wheeled vehicles. Having five wheels on a 
vehicle may be rare indeed but is obviously not extreme.

10.2  Extreme and Rare Events and Engineering Systems

Extreme and rare events are important in the analysis of risks in engineer-
ing enterprise systems for two reasons: (1) if magnitude is construed to be 
directly related to consequence, then these events can be associated with 
relatively very high degree of monetary loss, loss of lives, property dam-
age, physical and mental agony, loss of goodwill, and other negative conse-
quences. As an example, extremely high rainfall may cause extremely high 
property damage, as well as extremely low rainfall can cause suffering due 
to food and water shortage and (2) the relatively very small chance of occur-
rence limits the use of traditional engineering analysis and design. This is 
brought about by the use of probability and statistics in many engineering 
activities and the reliance on analysis and design based on averages.

Consider the following examples.

	 1.	Quality of air in urban areas is usually sampled during various times 
of the day, with special interest on the highest concentration of pol-
lutants staying below a certain threshold. Extremely high concentra-
tion of pollutants may trigger a city-wide health advisory.

	 2.	Drinking water in a geographic area may be sampled immediately after 
an earthquake to test for the presence of contaminants. Extremely 
high concentration of contaminants and bacteria may indicate dam-
age in the water pipes.

	 3.	Destructive testing of structural materials such as concrete blocks and 
steel beams are used to ensure sound bridges and buildings. An 
extremely low breaking point of a steel beam may be a sign of infe-
rior alloy and may trigger more testing or stoppage of its usage.

θmin θmax

FIGURE 10.1
Illustration of extreme but common events.
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	 4.	Mean time between failure (MTBF) is a common measure of the reliabil-
ity of equipment including those used in safety critical applications 
in hospitals. An extremely short observed time between failures for 
a particular type of equipment may be a sufficient reason to issue a 
recall on all equipment currently in use.

These examples all show scenarios in which systems engineers and risk 
analysts may need to pay more attention to the extreme events because of the 
possible consequences in that realm of possible events.

10.3  Traditional Data Analysis

Consider a hypothetical example of an engineer trying to design a new irri-
gation dam at a particular point in the James River in Virginia. An integral 
part of the design process is to analyze the likelihood of various flood levels 
at that particular point of the river. This will ensure that the new dam will 
be constructed appropriately high enough to avoid destructive flooding in 
the outlying areas.

The engineer conducted measurement of water level at a measuring point 
known as Kiln Bend in the James River. This was done in such a way that 
four measurements were taken throughout the day for 30 days. These mea-
surements are shown in Table 10.1a.

Traditional data analysis would suggest that the four measurements for 
each day are averaged to obtain a daily average measurement. As an exam-
ple, consider day 1 with readings of 29.8, 16.7, 24.3, and 9.6. These numbers 
are averaged to get an averaged measurement for day 1 such that

	 Average measurement for day 1 =
+ + +

=
29 8 16 7 24 3 9 6

4
20 11

. . . .
. .

The averaging process is done for all the 30 days, and the average values 
are shown in the right-most column of Table 10.1a.

The succeeding steps would be a sequence of steps meant to provide 
insights for the engineers:

	 1.	Eyeballing the data: The simplest analysis could be to plot the daily 
averages with respect to their occurrence as shown in Figure 10.2a. 
At this step, an engineer may want to get insights as to whether 
there is perceivable trend or pattern in the occurrences of measured 
water level values. Another visual representation of the data is their 
frequency of occurrence by grouping the daily averages into bins 
regardless of when those measurements were recorded. This is also 
known as a histogram and is shown in Figure 10.2b. A histogram 
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can provide insights into how data are distributed over its range of 
values. For this case, one may observe what seems to be the two 
most frequent occurrences seen as peaks in the histogram: one on 
water level 17 and another on water level 20. Another visual analy-
sis is to graph the frequencies in the histogram one on top of the 
other in succession, also known as cumulative frequency. As shown 
in Figure 10.2c, it is notable that cumulative frequency often has on 
its vertical axis % of total frequency instead of actual frequency as in 
the case of a histogram.

TABLE 10.1a

Measurements of Water Level at Kiln Bend in the James River

Reading 1 Reading 2 Reading 3 Reading 4
Average

(Sample Mean)

Day 1 29.8 16.7 24.3 9.6 20.1
Day 2 25 6.9 10.7 3.7 11.6
Day 3 4.1 16.3 25 15.7 15.3
Day 4 24.1 10.1 14.6 11.9 15.2
Day 5 3.2 5.1 29.1 19.9 14.3
Day 6 12.4 14.1 6.8 10.7 11.0
Day 7 8.2 3.1 3 21.8 9.0
Day 8 20.1 13.7 10 10.3 13.5
Day 9 24.3 4.3 15.2 17.1 15.2
Day 10 7.7 29.2 7.4 26.8 17.8
Day 11 28.6 2.3 23.7 9 15.9
Day 12 28 20.1 29.9 13 22.8
Day 13 26.8 9.9 13.8 18.1 17.2
Day 14 26.9 17 4.8 29.3 19.5
Day 15 6.5 5.8 6.7 11.1 7.5
Day 16 13.9 9.8 14.1 21.6 14.9
Day 17 25.9 24.4 9.5 12.5 18.1
Day 18 4.7 2.5 29.1 22.2 14.6
Day 19 7.7 4.6 6.4 19.2 9.5
Day 20 23.3 6.5 10.6 15.1 13.9
Day 21 1.8 13.9 12.9 18 11.7
Day 22 21.6 8.1 18.1 3.9 12.9
Day 23 7.9 27.3 24.8 18.8 19.7
Day 24 26.2 23.1 13.7 24.6 21.9
Day 25 23.4 6.7 26 22.2 19.6
Day 26 10.2 2.4 4.2 20.9 9.4
Day 27 7 3.6 27.8 8.2 11.7
Day 28 8.3 19.8 14.1 7.7 12.5
Day 29 23.1 27.6 5.2 21.2 19.3
Day 30 4.5 4.1 2 20 7.7



327Extreme Event Theory

	 2.	Basic statistics: After visually analyzing the data, the next step can be 
to generate basic statistics that will describe the data as shown in Table 
10.1b. These statistics can be conveniently generated using computer 
applications for managing spreadsheets and statistical analysis.

However, descriptive statistics are “central tendencies” of the events and 
extreme events are averaged out with other events, for example, mean square 
error (MSE) in curve fitting. As such, traditional data analysis does not pro-
vide long-run description of extreme events that may be critically important 
in the design of the dam in the James River.

10.4  Extreme Value Analysis

The analysis of data presented in Section 10.3 is typical and can answer ques-
tions such as the following:

•	 What is the average water level?
•	 What have been the lowest and the highest water level on record?
•	 What is the most frequent water level?

In extreme value analysis, the interest is in the parametric model of the 
distribution of the maxima and the exceedances, which basically involves 

TABLE 10.1b

Basic Descriptive Statistics for Data in Table 10.1a

Basic Statistics for Daily Averages Water Level at 
Kiln Bend in the James River

Mean of sample means 14.77
Standard error of sample means 0.76
Median of sample means 14.74
Standard Deviation of sample 
means

4.19

Sample Variance of sample means 17.53
Kurtosis of sample means -0.82
Skewness of sample means 0.07
Range of sample means 15.23
Minimum of sample means 7.53
Maximum of sample means 22.75
Sum of sample means 442.95
Count of sample means 30.00
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FIGURE 10.2
Analyses of data in Table 10.1a (a) Plot of daily averages with respect to their occurrence (data 
in Table 10.1a). (b) Histogram of daily averages (data in Table 10.1a). (c) Cumulative frequency of 
daily averages (data in Table 10.1a).
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the tails of the distributions. The probability of exceedance is defined as the 
following:

Definition 10.2: Probability of Exceedance

Probability of exceedance of a random variable x is the probability that it will 
be exceeded.

From the axiomatic definition of probability, the exceedance probability can 
be calculated as

	 P X x P X x( ) ( )> = − ≤1

Note that in Chapter 3, the cumulative distribution function (CDF) was 
defined. Also note that the probability of exceedance is a complement of the CDF.

Exceedance probabilities may be used to answer questions regarding the 
likelihood of a variable being exceeded. Examples of such questions are the 
following:

•	 What is the likelihood of a flood exceeding 10 feet?
•	 What is the likelihood that a truck weighing more than 10 tons will 

pass over a bridge?
•	 What is the likelihood that the temperature will drop below freez-

ing point?

All of these questions not only require information about the density 
functions but could also specifically pertain to the analysis of the extreme 
ends of the functions. As such, at the heart of these probabilistic analysis is 
the estimation of probability density and CDFs of random variables. This 
enables engineers to estimate how a particular system may perform under 
various situations, for example, the chance that a levee will break as flood 
level rises, or the chance a bridge will collapse as the magnitude of an earth-
quake increases.

However, when looking for extreme flood, earthquake, or other events that 
are in the tails of distributions, we often find that in real-life situations these 
tails are fatter (more heavy) than what classical distributions predict.

10.5  Extreme Event Probability Distributions

Significant advances have been made in analyzing extreme values, one of 
which is the work of Castillo (1988) on the tail equivalence of many con-
tinuous distributions. Johnson et al. (1994) presented the chronological 
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development of the field of extreme value analysis. Extreme value theory 
(EVT) deals with the study of the asymptotic behavior of extreme observa-
tions of a random variable (maxima and minima).

In traditional data analysis, we specify probability distributions through 
knowledge of the phenomena (e.g., roll of a dice, n sequential coin tosses) or 
based on empirical data and statistical methods (e.g., age of graduate stu-
dents, rainfall for the last 50 years).

Unlike traditional data analysis, EVT focuses primarily on analyzing the 
extreme observations rather than the observations in the central region of the 
distribution. The fundamental result of EVT, known as the “extremal types 
theorem,” identifies the possible classes of distributions of the extremes irre-
spective of the actual underlying distribution. EVT incorporates separate esti-
mation of the upper and the lower tails due to possible existence of asymmetry.

Definition 10.3: Order Statistics

Order statistics is the arrangement of n random variables X1, X2, X3 , . . . , Xn , 
in nondecreasing order, from 1 to n

	 X1:n, X2:n, X3:n, . . . , Xn:n

such that for sample size n X n, :1  is the smallest also called X Xmin and n:n is the 
largest called Xmax .

Several examples were provided in Section 10.2 of various extreme and 
rare events that may be of particular interest to systems engineers and risk 
analysts. These examples are revisited here in the context of order statistics.

	 1.	Quality of air in urban areas is usually sampled during various times 
of the day, with special interest on the highest concentration of pol-
lutants staying below a certain threshold. In this case, the interest 
may be on the actual highest measured value of pollutants, Xn n: .
A city-wide health advisory may be issued when Xn n:  becomes higher 
than a mandated threshold to protect the health of the citizens with 
compromised or weak pulmonary health.

	 2.	Drinking water over a geographic area may be sampled immediately after 
an earthquake to test for the presence of contaminants. Similarly, the 
interest may be on the actual highest measured value of contaminant 
Xn:n. Residents of that area may be advised to boil water before drink-
ing when the highest measured value of contaminant Xn:n is beyond the 
standard. This may also trigger the local city engineer to look closer into 
possible damage in the water purification or delivery pipes systems.

	 3.	Destructive testing of structural materials such as concrete blocks and 
steel beams is used to ensure strong bridges and buildings. Keeping 
in mind that destructive testing is done both to describe the strength 
and the durability of a piece of material being tested and to predict 
that for related samples, a X n1:  that is beyond the allowable statistical 
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limits may imply inferior quality of materials related to that one 
particularly tested. This may result in more testing of the related 
structural materials or even lead to rejecting and scrapping of whole 
batches of materials.

	 4.	MTBF is a common measure of the reliability of equipment including 
those used in safety-critical applications in hospitals. Similarly, for 
an extremely short observed time between failures for a particular 
type of equipment, X1:n may be predictive of a systematic failure of 
an entire type of equipment. This may be a sufficient reason to issue 
a recall on all equipment currently in use, resulting in the immedi-
ate stoppage of its use that can disrupt operations in a hospital.

All these examples provide scenarios in which an analysis of the extreme 
values may lead to decisions that can be costly and disruptive. Nonetheless, 
the measurements X X Xn n n n n1 3: : :, , , ...,X2:  are random variables, and so are the 
extremes X n1:  and Xn n: , which can be more appropriately described in a prob-
abilistic manner.

For example, consider the water readings on day 1 from Table 10.1a.

Reading 1 Reading 2 Reading 3 Reading 4

Day 1 29.8 16.7 24.3 9.6

If these water level readings are considered random variables with sample 
size n = 4, then the order statistics can be represented by arranging the water 
levels in increasing order such that

X1:4 X2:4 X3:4 X4:4

Day 1 9.6 16.7 24.3 29.8

If this process of arranging n samples in increasing order is done for each 
of the 30 days, then we will have Table 10.2.

10.5.1  Independent Single-Order Statistic

However, first suppose the case where the random variables X X Xn n n n1 3: : :, , , ...,X2:n  
X X Xn n n n1 3: : :, , , ...,X2:n  are independent, each with identical CDF, F(x). Furthermore, denote the 

CDF of the rth-order statistic Xr n:  to be F x r nr( ) ( ), , , ..., .= 1 2  Then the CDF of the 
largest-order statistic Xn n:  is given by

	

F x X x all X x

F x F x F x n

F x

n m n i

n

( ) :

( )

( ) ( ) ( )
( ) ( ) ( ),
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= ≤ = ≤
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� times

)) ( )= F xn
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This equation essentially provides the CDF of the largest-order statistic in 
terms of the common CDF of all the order statistics.

Similarly for the smallest-order statistic,

	

F x X x X x

X x F x
n n

i
n

( ) : :( ) ( ) ( )

( ) [ ( )]
1 1 11

1 1 1

= ≤ = − >

= − > = − −

P P

P all 	 (10.2)

TABLE 10.2

Order Statistics of Four Daily Samples of Water 
Levels at Kiln Bend of the James River

X1:4 X2:4 X3:4 X4:4

Day 1 9.6 16.7 24.3 29.8
Day 2 3.7 6.9 10.7 25
Day 3 4.1 15.7 16.3 25
Day 4 10.1 11.9 14.6 24.1
Day 5 3.2 5.1 19.9 29.1
Day 6 6.8 10.7 12.4 14.1
Day 7 3 3.1 8.2 21.8
Day 8 10 10.3 13.7 20.1
Day 9 4.3 15.2 17.1 24.3
Day 10 7.4 7.7 26.8 29.2
Day 11 2.3 9 23.7 28.6
Day 12 13 20.1 28 29.9
Day 13 9.9 13.8 18.1 26.8
Day 14 4.8 17 26.9 29.3
Day 15 5.8 6.5 6.7 11.1
Day 16 9.8 13.9 14.1 21.6
Day 17 9.5 12.5 24.4 25.9
Day 18 2.5 4.7 22.2 29.1
Day 19 4.6 6.4 7.7 19.2
Day 20 6.5 10.6 15.1 23.3
Day 21 1.8 12.9 13.9 18
Day 22 3.9 8.1 18.1 21.6
Day 23 7.9 18.8 24.8 27.3
Day 24 13.7 23.1 24.6 26.2
Day 25 6.7 22.2 23.4 26
Day 26 2.4 4.2 10.2 20.9
Day 27 3.6 7 8.2 27.8
Day 28 7.7 8.3 14.1 19.8
Day 29 5.2 21.2 23.1 27.6
Day 30 2 4.1 4.5 20
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PROBLEM 10.1

Consider the example of air quality in an urban area measured in terms of 
parts per million (ppm). The standard threshold for pollen particulate is 
300 ppm, which is known to have CDF of P(pollutants ≤ 300 ppm) to be 0.07. 
What would be the probability that the largest-order statistic of 5 samples 
will be less than or equal to this threshold?

Using Equation 10.1,

	
F F5

5 5 6300 300 0 07 1 68 10( )
−( ) = ( ) = ( ) = ×. .

PROBLEM 10.2

Consider the water level measurements at Kiln Bend of the James River. 
Similar to the measurement process resulting in Table 10.1a and b, four sam-
ples are taken each day. Suppose that it is known that the water level meas-
urement can be described by a Weibull distribution, such that
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where l = 21 is the scale parameter, and k = 2 is the shape parameter.
The engineer is contemplating on building a 30-foot dam and would like to 

know the probability that the largest-order statistic is less than or equal to 30 
feet. From Equation 10.1, this can be written as P X F x F xn

n( ) ( ) ( ).: ( )4 4 30≤ = =
Calculating the CDF of a 30-foot water level,
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Therefore,
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The engineer would also like to provide boaters and fishermen guidance on 
how shallow that point of the river can be and would like to know the prob-
ability that the smallest-order statistic will be less than 5 feet.
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Calculating CDF of a 5-foot water level,
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Therefore, from Equation 10.2

	

F X X

X
n n

i

( ) : :( ) ( ) ( )

( ) [ . ]
1 1 1

2

5 5 1 5

1 5 1 1 5 51 10

= ≤ = − >

= − > = − − × −

P P

P all nn

= 0 203. 	

Looking at the columns in Table 10.2, it is evident that these random variables 
are not independent contrary to the underlying assumption of Equations 10.1 
and 10.2. The level of water at any time of the day is very much related to 
other times of that same day and possible with those of the other days as 
well. Consider a scenario of a strong rainfall at the start of day 9. One can con-
clude that the rainfall event may result in higher water levels for several suc-
ceeding days—hence measurement for those days will be dependent on each 
other. Nonetheless, assuming the random variables X X X Xn n n n n1 2 3: : : :, , , ...,  are 
independent each with identical CDF of F(x) greatly simplifies the analysis 
and finds extensive valid and acceptable applications in engineering, albeit 
an approximation. For the more advanced cases of dependent-order statis-
tics, see Castillo et al. (2005).

10.6  Limit Distributions

The previous section has shown that the CDF of largest- and smallest-order 
statistics of a sample size n from a population with known CDF F x( ) is 
expressed as Equations 10.1 and (10.2), respectively, as

	 F x F xn
n

( )( ) ( )=

	 F x F x n
( )( ) [ ( )]1 1 1= − −

Consider the case when the sample size n is so large that it tends to approach 
infinity. This case gives
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and

	
lim ( ) lim [ ( )]
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This shows that the limit distributions only take values of 0 and 1 and thus 
are degenerate and may not be useful for most applications. To avoid degen-
eracy, a linear transformation is established using constants an , bn , and cn that 
are all dependent on sample size n. Castillo et al. (2005) consequently defined 
the domain of attraction of a given distribution.

Definition 10.4: Domain of Attraction

A distribution is defined to belong to the domain of attraction of F xmax ( ) or 
F xmin ( ) if

For at least one pair of sequences { } { },a bn nand > 0  the following is true:
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and similarly,
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Furthermore, Castillo et al. (2005) established that only the family of dis-
tributions that are nondegenerate are called the generalized extreme value 
distributions (GEVD).

The CDF of GEVD for the largest-order statistic is
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The CDF of GEVD for the smallest-order statistic is
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This family of distributions includes the Weibull, Gumbel, and Frechet. 
Tables 10.3 and 10.4 provide the CDF, mean, median, mode, and variance for 
the maxima and minima of these three distributions, respectively (adapted 
from Castillo et al., 2005). Overall, there are actually six unique distributions, 
namely maximal Weibull, maximal Gumbel, maximal Frechet, and minimal 
Weibull, minimal Gumbel, and minimal Frechet.

The primary and practical significant difference among these three distribu-
tions with respect to extreme event analysis is the shape of their tails. Figure 
10.4 shows the density curves of the three distributions and provides a compar-
ison of the tails. Shown are the truncated tail for the Weibull, the exponentially 
decaying tail for the Gumbel, and the polynomial decaying tail for the Frechet.

10.7  Determining Domain of Attraction Using Inverse Function

The previous section described the possible domain of attraction of maxima 
and minima for samples from population with a known CDF. Nonetheless, it 
still remains to be explored exactly which of these domains of attraction can 
be used in analyzing extreme events.

Castillo et al. (2005) showed that if the CDF of the population is known 
to be of the form F x( ), then the maximal domain of attraction F xmax ( ) can be 
identified by obtaining the inverse of F(x) and obtaining the limit based on
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(10.9)

where F x−1( ) is the inverse of F x( ), and z is the shape parameter of the associ-
ated limit distribution such that

If z F x> 0, ( ) belongs to the maximal Weibull domain of attraction
If z F x= 0, ( ) belongs to the maximal Gumbel domain of attraction
If z F x< 0, ( ) belongs to the maximal Frechet domain of attraction

Similarly, for CDF of the population known to be of the form F x( ), the min-
imal domain of attraction F xmin ( ) can be obtained by obtaining the inverse of 
F x( ) and obtaining the limit based on
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2
2 4
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(10.10)

where z is the shape parameter of the associated limit distribution such that

If z F x> 0, ( ) belongs to the minimal Weibull domain of attraction
If z F x= 0, ( ) belongs to the minimal Gumbel domain of attraction
If z F x< 0, ( ) belongs to the minimal Frechet domain of attraction
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TABLE 10.3

CDF, Mean, Median, Mode, and Variance for the Maxima of the Weibull, 
Gumbel, and Frechet Distributions
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Source: Adapted from Castillo et al. (2005), p. 193−212.
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TABLE 10.4

CDF, Mean, Median, Mode, and Variance for the Minima of the Weibull, Gumbel, 
and Frechet Distributions
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PROBLEM 10.3

Consider the people lining up in front of a bank’s automated teller machine 
(ATM). Suppose that this system is modeled as a M/M/1-FCFS queuing 
model with waiting times, w. If the CDF of waiting times is known to be

	 F w P W w w( ) ( ) ( )= < = − − −1 1r m re

What is the form of the distribution of extreme waiting times w?

Solution
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FIGURE 10.3
(a) Variation between classical parametric distributions and real-life empirical distributions. 
(b) Significant differences among the tails of the Weibull, Gumbel, and Frechet distributions.
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Since z F w= 0, ( ) belongs to the domain of attraction of maximal Gumbel 
distribution.

Shown in Table 10.5a are some of the more commonly used parametric 
distributions in engineering and the domain of attraction of its largest- and 
smallest-order statistics.

TABLE 10.5a

Common Parametric Distributions and the Domain of Attraction of 
its Largest- and Smallest-Order Statistics

Common Parametric Distribution
Domain of Attraction of the 

Largest-(Smallest)-Order Statistics

Normal Gumbel (Gumbel)
Exponential Gumbel (Weibull)
Lognormal Gumbel (Gumbel)
Gamma Gumbel (Weibull)
Rayleigh Gumbel (Weibull)
Uniform Weibull (Weibull)
Cauchy Frechet (Frechet)
Pareto Frechet (Weibull)

Source: Adapted from Castillo et al. (2005), p. 207.

Probability density curve of a random variable
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FIGURE 10.4
(a) Foci of EVT are the extreme observations. (b) Sample Gumbel plots for maxima (left) and 
minima (right) for some commonly known distributions.
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10.8 � Determining Domain of Attraction 
Using Graphical Method

The previous section provided a method for identifying the asymptotic dis-
tribution of maxima and minima using the inverse function of the underly-
ing distribution. However, there may be cases where obtaining the inverse 
function is unwieldy or that the underlying distribution may be unknown 
or indeterminate. This may be particularly true for cases where the phenom-
enon being analyzed is not well understood or that there are not many data 
to analyze.

A less precise but nonetheless equally useful method for determining 
domain of attraction provided some data that is available is the graphical 
method. Similar to many graphical methods for analyzing data, this method 
relies very much on plotting data points and observing patterns or trend 
produced. The method described in this section combines the process of 
elimination and the technique of graphing using modified axes to identify 
a likely domain of attraction of the maxima or minima of the given set of 
empirical data points.

10.8.1  Steps in Visual Analysis of Empirical Data

	 1.	Eliminate: As shown in Figure 10.3, the tails of the three asymptotic 
distributions may have two very discernable characteristics: either 
it is truncated or it is not. The analyst can use knowledge of phe-
nomenon to conveniently eliminate possible domains of attractions; 
such may be the case for naturally truncated phenomenon like mini-
mum rainfall where the empirical data will obviously be truncated 
at the zero rainfall level. This elimination process may conveniently 
limit the choices to possibly one or two: Weibull, if it is truncated, or 
between Gumbel and Frechet, if it is not truncated.

	 2.	Plot: Plotting empirical data can be performed using a maximal 
or minimal Gumbel plot paper. Equivalently, the plot can be done 
using spreadsheets with modified plotting positions (skip this step 
if already using G-I plotting paper):

	 a.	 If plotting maxima-order statistic, plot Xn:n versus plotting posi-
tion v v pi m, log[ log( )],:where = − −  and i is the rank in mX p i mn n i m: :, /( ).= + 1 

mX p i mn n i m: :, /( ).= + 1
	 b.	 If plotting minima-order statistic, plot X n1:  versus plotting posi-

tion v, where v pi m= − −log[ log( )].:1
	 3.	Diagonal/Linear? If the tail of interest on the plot shows diagonal 

linear trend, then domain of attraction is Gumbel (G-I). Since the 
Gumbel plotting position was used, a straight plot essentially vali-
dates that the data do come from a Gumbel distribution.
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	 4.	Vertical? If the tail of interest shows a vertical asymptote, then the 
domain of attraction is Weibull (G-III).

	 5.	Horizontal? If the tail of interest shows a horizontal asymptote, then 
the domain of attraction is Frechet (G-II).

	 6.	Be safe: There may be cases where the plot does not clearly show 
a trend. This may be possible due to the actual data itself or the 
way the plot is visually presented, for example, disproportionately 
stretched or squeezed. If there is no obvious asymptote, use the 
distribution that will provide better margin of safety. Consider a 
case where further into the extreme is undesirable such as extreme 
rainfall. One may elect to choose as an asymptotic distribution such 
as the Frechet that will provide the heaviest tail among the three 
options. The expected effect of such a choice is that the risk due to 
the extreme rainfall will likely be overestimated rather than under-
estimated and thus reflect a “be safe” approach.

Recall that listed in Table 10.5a are some commonly known distribu-
tions and their asymptotic distributions for maxima and minima. If 
data sets known to be coming from these distributions are plotted in 
a Gumbel plot in the way described above, then their plots may look 
similar to those in Figure 10.4. Consider as an example the uniform dis-
tribution that by definition would be truncated on both tails of the distri-
bution. As expected, data coming from the uniform distribution plotted 
in a Gumbel plot will show trends that are vertical, both for the maxima 
and the minima.

PROBLEM 10.4

Consider the order statistics of 4 daily samples of water levels at Kiln Bend 
of the James River in Table 10.2, which shows the maxima X4:4 for all 30 days. 
Following each of the steps in determining domain of attraction provided 
some data, which is the graphical method.

	Step 1:	 Eliminate. There seems to be no reason to conclude that extremely 
high water levels at the Kiln Bend of the James River is trun-
cated. Therefore, analysis proceeds to the next step.

	Step 2:	 Plot. To obtain the rank i of each in m readings, simply sort the 
maxima from Table 10.2 in an increasing order. This sorted max-
ima and their corresponding ranks are shown in the first two 
columns of Table 10.5b. Recognizing that there are distinct plot-
ting positions for maxima and minima, choosing the appropri-
ate one is important, and this is shown in the third and fourth 
columns of Table 10.5b.
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Using the sorted X4:4 values and plotting them with their correspond-
ing plotting position v produces the plot shown in Figure 10.5. Keeping 
in mind that the focal part of the plot is the higher water level value as 
highlighted in Figure 10.5, there seems to be a vertical trend of the plot. 
This suggests that the asymptotic distribution is the maxima Weibull, for 
example, empirical data shows that the maxima water level has a truncated 
distribution.

TABLE 10.5b

Data for Plotting Maxima X4:4 Using Gumbel Plotting 
Position v

Sorted Maxima Rank i p i mi m: /( )= + 1 v pi m= − −log[ log( )]:

11.1 1 0.0323 –1.23372

14.1 2 0.0645 –1.00826

18.0 3 0.0968 –0.84817

19.2 4 0.1290 –0.71671

19.8 5 0.1613 –0.60133

20.0 6 0.1935 –0.49605

20.1 7 0.2258 –0.39748

20.9 8 0.2581 –0.30347

21.6 9 0.2903 –0.2125

21.6 10 0.3226 –0.12346

21.8 11 0.3548 –0.03546

23.3 12 0.3871 0.052262

24.1 13 0.4194 0.140369

24.3 14 0.4516 0.229501

25.0 15 0.4839 0.320292

25.0 16 0.5161 0.413399

25.9 17 0.5484 0.509537

26.0 18 0.5806 0.609513

26.2 19 0.6129 0.714272

26.8 20 0.6452 0.824955

27.3 21 0.6774 0.942982

27.6 22 0.7097 1.070186

27.8 23 0.7419 1.209009

28.6 24 0.7742 1.362838

29.1 25 0.8065 1.536599

29.1 26 0.8387 1.737893

29.2 27 0.8710 1.979413

29.3 28 0.9032 2.284915

29.8 29 0.9355 2.70768

29.9 30 0.9677 3.417637
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PROBLEM 10.5

Consider the analysis where the interest may be the minima X1:4 of the same 
data set described in Table 10.2. Application of the steps discussed above, 
particularly the eliminate step, may lead to conclusion that the asymptotic 
distribution is minima Weibull. That is, knowledge of the phenomenon of 
water level at a river will suggest that empirical data will show an asymp-
totic distribution of the minima to be truncated Weibull.

Nonetheless, this conclusion can be further reinforced by actually plotting 
the X1:4 data using the plotting position v for minima. These data are shown 
in Table 10.6.

Similar to Problem 10.4, and using the sorted X1:4 values and plotting 
them with their corresponding plotting position v produces the plot shown 
in Figure 10.6. Keeping in mind that the focal part of the plot is the lowest 
water level value as highlighted in Figure 10.6, there seems to be a vertical 
trend of the plot. This suggests that the asymptotic distribution is the min-
ima Weibull, for example, empirical data shows that the minima water level 
has a truncated distribution.

Recall that in Table 10.5a are listed a number of fairly dissimilar known 
distributions having similar asymptotic distributions. This is for the reason 
why asymptotic distributions are mainly used for the tails of the distribu-
tions and not on the central regions. It is notable that there are many dissim-
ilar distributions. Consider two distributions that may be very dissimilar in 
their central regions as shown in Figure 10.5. However, since the Gumbel plot 
is meant to highlight only the tails of the distributions, Figure 10.7 shows the 
same asymptotic distribution of the minima.
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FIGURE 10.5
Gumbel plot of X4:4 from Table 10.5b showing an asymptotic distribution of maximal Weibull.
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10.8.2  Estimating Parameters of GEVD

The previous section described that knowing the CDF of the underlying pop-
ulation, the domain of attraction of its largest- and smallest-order statistics of 
samples from that population can be identified. It was shown that even with-
out knowledge of the underlying distribution, as long as there are empirical 
data, it is possible to identify the family of the asymptotic distribution of the 

TABLE 10.6

Data for Plotting Maxima X1:4 Using Gumbel 
Plotting Position v

Sorted Minima Rank i p i mi m: /( )= + 1 v

1.8 1 0.0323 –3.418
2.0 2 0.0645 –2.708
2.3 3 0.0968 –2.285
2.4 4 0.1290 –1.979
2.5 5 0.1613 –1.738
3.0 6 0.1935 –1.537
3.2 7 0.2258 –1.363
3.6 8 0.2581 –1.209
3.7 9 0.2903 –1.070
3.9 10 0.3226 –0.943
4.1 11 0.3548 –0.825
4.3 12 0.3871 –0.714
4.6 13 0.4194 –0.610
4.8 14 0.4516 –0.510
5.2 15 0.4839 –0.413
5.8 16 0.5161 –0.320
6.5 17 0.5484 –0.230
6.7 18 0.5806 –0.140
6.8 19 0.6129 –0.052
7.4 20 0.6452 0.035

7.7 21 0.6774 0.123

7.9 22 0.7097 0.212

9.5 23 0.7419 0.303

9.6 24 0.7742 0.397

9.8 25 0.8065 0.496

9.9 26 0.8387 0.601

10.0 27 0.8710 0.717

10.1 28 0.9032 0.848

13.0 29 0.9355 1.008
13.7 30 0.9677 1.234
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maxima and minima. The reasonable succeeding step is to estimate param-
eters of the domain of attraction distribution. Nonetheless, there are cases 
wherein the population is infinite or very large. Consider the water level rep-
resented by samples in Table 10.1a. There are many more water levels that are 
not measured and those that are on record will keep increasing in numbers 
as time goes on. For this particular case and other similar cases, the real pop-
ulation parameters are not observable, simply because analysis will always 
be based merely on samples taken from the entire population. Essentially, 
population parameters are approximated by using estimates based on sam-
ples rather than the entire population.
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FIGURE 10.6
Gumbel plot of X1:4 from Table 10.6 showing an asymptotic distribution of minimal Weibull.
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FIGURE 10.7
Two dissimilar distributions showing the same asymptotic distribution of the minima.
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There are many statistical techniques or methods that can be employed in 
this estimation process. The more commonly used ones are the following:

•	 Least square method
•	 Method of moments
•	 Maximum likelihood method
•	 Kalman filtering technique

For the most part, the choice of which tool or technique to use may be 
determined by one or all of the following factors:

•	 Ease of use (including analytical complexity and computing need)
•	 Efficiency (i.e., lower variance)
•	 Consequences of getting the estimates wrong

The first two factors are common to many estimation processes in which 
techniques or methods may each present their own advantages and disad-
vantages over the other. The third factor is specific from the perspective of 
risk analysis where the parameters being estimated may be construed to 
have a direct effect on how risk may be later managed. This factor definitely 
relies heavily on the context of the phenomenon being analyzed. A context 
of estimating parameters to eventually predict flood levels in a highly devel-
oped geographic region will differ if it was in an inhabited and undeveloped 
wetland. This is simply because the consequence of getting the wrong esti-
mates may be different for the two contexts.

10.9  Complex Systems and Extreme and Rare Events

A complex system is described by Keating et al. (2005, p. 1) as “a bounded set 
of richly interrelated elements for which the system performance emerges 
over time and through interaction between the elements and with the envi-
ronment . . . and the appearance of new and unforeseen system properties 
which cannot be known before the system operates, regardless of how thor-
oughly they are designed.”

A complex system has the following discernable properties (adapted from 
Keating et al., 2005):

•	 Large number of richly interrelated elements
•	 Dynamically emerging behavior and structure that can dramati-

cally change over time
•	 Uncertainty in outcomes
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•	 Incomplete understanding of the system
•	 Multiple, and possibly divergent, system stakeholder perspectives
•	 Constrained resources and shifting requirements/expectations
•	 Urgency for immediate responses with dire, potentially catastrophic 

consequences for “getting it wrong”

The best analogy to describe risks in complex systems is the pebble-in-the-
pond analogy, modified from Hofstetter et al. (2002).

At the most basic risk management scenario—even in the absence of any 
structured risk management process and notion of complexity—there will 
always exists a situation where a decision has to be made as a response 
to a perceived risk. This particular perceived risk can be more accurately 
described as original risk, compared to other related risks that may later 
arise or perceived. The response to this original risk can now be believed as 
a pebble thrown into a pond that creates ripples in the water. These ripples 
can symbolize the various effects of the response to the original risk. These 
ripple effects can be described with respect to a particular objective as either 
favorable or unfavorable, the latter being synonymous to risk effects. In a 
complex system, made up of multiple, and possibly divergent, system stake-
holder perspectives, these ripple effects may be favorable to some stakehold-
ers and at the same time unfavorable to others.

There is also the temporal domain of the analogy—as time goes on, the 
ripples in the pond resulting from the response to the original risk spreads 
throughout the pond at varying magnitudes. In essence, certain character-
istics of complex systems—such as dynamically emerging behavior and 
structure that can dramatically change over time, uncertainty in outcomes, 
incomplete understanding of the system—to name a few, result in new ben-
efits and risks as well.

10.9.1  Extreme and Rare Events in a Complex System

Extreme and rare events have been defined earlier as those having rela-
tively very low frequency of occurrence and at the same time have rela-
tively extreme high or extreme low degree of magnitude. Through several 
examples, extreme and rare events have been exemplified in both natu-
ral and engineering systems. In data measurement, some extreme data 
may not be recorded for various reasons such as limitation of measuring 
equipment or too few samples to capture the truly rare events. All these 
result in what analysts may refer to as data censoring. For the few possi-
ble instances that rare events do get recorded, classical data analysis may 
be performed resulting in extreme and rare measurements being labeled 
as outliers. This is often the result of hasty data filtering and forcing the 
assumption of stationarity. What may not be very apparent is the relation-
ship among these notions: extreme and rare events and the challenges in 
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their analysis, system complexity, probabilistic causation (Chapter 9), and 
evidence-based analysis (i.e., Bayes’ rule, Chapter 3). These notions can 
converge and pose themselves as two familiar problems of causalities and 
correlations.

10.9.2  Complexity and Causality

Establishing causalities among events occurring in the context of complex 
systems is never a trivial exercise. Recall from Chapter 9 that the notion of 
sufficient condition, for example, event A is said to be sufficient to cause 
event B if and only if

	 A B→

Using the concept of probability to express such causality,

	 P B A( | ) .= 1

However, inherent in complex systems is the incomplete understanding 
of the coupling and interactions among elements. Even more difficult would 
be the case when the event of interest, B, or the evidence A, or both A and B 
happen to be rare in occurrence. That is, the unconditional probability of B 
occurring is very low,

	 P B( ) ≅ 0

Since P B A( ) ,= 1  then it must be true that similar to B, the unconditional 
probability of A occurring is very low,

	 P A P B( ) ( )≤ ≅ 0

This further shed light on the importance of not only the sufficient evi-
dences but the necessary conditions as well in identifying risk scenarios.

10.9.3  Complexity and Correlation

Where there is causation, there is most likely correlation. Observations 
of the more-common events dominate the estimation process and since 
extreme observations consist of only a small part of the data, their contribu-
tion to the estimation is relatively smaller. Therefore in such an approach, 
the tail regions are not accurately estimated and causation is more difficult 
to establish, or may have low reliability, because of rarity of extreme data. 
Nonetheless, the analyst will necessarily have to recognize that evidences to 
support occurrence of a rare event of interest will show, at best, probabilistic 
causation. In essence, the observation of apparent correlation is merely being 
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extended to imply causation. And therein lies a dilemma. Consider these 
statements.

Statement 1: A occurs in correlation with B.
Statement 2: Therefore, A causes B.

Statement 1 is essentially what is really being recorded when an analyst is 
observing a phenomenon in a complex system. However, this apparent cor-
relation between A and B may be due to a number of reasons:

	 a.	A indeed causes of B, in which case Statement 2 is true.
	 b.	B may actually be the cause of A, in which case Statement 2 is false.
	 c.	A causes B in the same way B causes A, without precluding a possible 

third cause, say C, in which case Statement 2 is true but incomplete.
	 d.	Another event, say C, is actually causing both A and B, in which case 

Statement 2 is false.
	 e.	The occurrence of A and B is a mere coincidence, in which case 

Statement 2 is false.

Reasons c and d introduce the notion of a possible common-cause variable C 
among the preestablished events A and B. Consider the example of correla-
tion established between the use of a certain brand Y of automotive engine 
oil and the rapid accumulation of sludge inside the engine. After an exten-
sive study, this apparent correlation may become so convincing that it is 
extended to be taken as causality, that is,

	 Brand Y automotive engine oil causes rapid accumulation of sludge.

Nonetheless, a common-cause variable C may actually be later discovered. 
As an example, a closer look at the geographic locations of the automobiles 
sampled in the study showed that brand Y motor oil was actually given out 
free of charge to those who bought air filter of the same brand. It is known 
that inefficient air filter contributes to buildup of engine sludge. As such, 
what may have been construed to be a clear causation between two events 
may actually be less clear after discovery of new information.

10.9.4  Final Words on Causation

One of the eternal challenges for systems engineers and risk analysts is on 
establishing causalities. The importance of establishing causalities in effectively 
managing risks was discussed in Chapter 9. Nonetheless, it was also shown and 
exemplified by the notion of probabilistic causation that there exists a causal 
relationship in complex systems that may never be ultimately established.
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Here are several criteria that can help in establishing causation (adapted 
from Hill’s Criteria of Causation, see Goodman and Phillips, 2005, for more 
details).

	 1.	Precedence relationship: Cause always precede the effect
	 2.	Strength: Association as measured by appropriate statistical tests
	 3.	Robustness: Same relationship exists in various operating 

environment
	 4.	Plausibility: In agreement with current understanding of underly-

ing processes.

Nonetheless, some have argued that since proving causation is based on 
experience, and experience is only valid if the causation between past and 
the future experiences is assumed—that proving causation is a circular 
argument (and hence invalid).

10.10  Summary

This chapter presented the notion of extreme and rare events and the dif-
ficulties in analyzing such events for the purpose of risk analysis. This diffi-
culty is based on two reasons. The first difficulty is on the inappropriateness 
of traditional data analysis, which highlights the more common events 
and masks insights into the rare and extreme data. Nonetheless, the use of 
extreme value analysis is well established, but not commonly known extreme 
value distributions can overcome such difficulty. The second difficulty is 
inherent in the rarity of some events coupled with the dilemma of needing 
to establish causalities using the latest and most convincing information at 
hand. Complex systems, being characterized by emergence and incomplete 
knowledge of the actual interaction among elements, are always subject to 
the discovery of new information that can either reinforce or weaken causali-
ties and correlations currently held as true.

Questions and Exercises

	 1.	When are EVT tools applied? When is data analysis based on central 
tendency applied?

	 2.	An engineer is trying to determine the suitability of two metal 
alloys, alloy A and alloy B, in fabricating electrical fuse elements, 



352 Advanced Risk Analysis in Engineering Enterprise Systems

TABLE 10.7a

Melting Temperatures of Alloy A

Batch Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

1 258.8 144.6 264.2 151.7 164.3
2 158.6 168.6 280.0 154.7 169.3
3 217.9 216.8 203.6 163.1 177.8
4 241.0 227.3 249.6 246.8 144.4
5 167.3 243.7 141.6 108.3 114.6
6 215.9 168.6 277.4 269.5 138.4
7 189.3 195.0 179.5 254.4 202.5
8 205.4 276.6 167.4 169.6 199.9
9 191.0 233.4 224.5 127.0 190.0

10 172.5 140.9 177.1 184.0 285.2
11 262.0 206.5 215.9 176.9 166.1
12 294.6 131.8 230.6 250.1 226.3
13 154.9 229.7 301.9 156.5 165.2
14 191.8 200.8 202.7 199.2 166.6
15 154.9 155.4 214.3 191.7 169.6
16 177.7 172.7 182.5 185.4 126.8
17 232.6 180.5 198.0 136.7 170.7
18 183.3 166.0 257.9 110.3 226.0
19 161.7 195.3 260.3 195.5 235.6
20 175.2 301.2 205.6 201.0 144.7
21 188.8 150.5 158.5 143.3 232.3
22 181.5 214.0 268.4 185.4 265.3
23 181.6 131.8 144.5 220.1 245.2
24 198.0 238.2 187.5 133.6 373.1
25 267.7 155.3 258.3 105.2 150.6
26 222.9 225.4 179.4 168.2 251.7
27 166.9 183.2 186.3 193.1 233.8
28 143.0 187.0 153.5 156.3 191.9
29 225.2 309.9 188.5 198.8 131.9
30 179.1 186.0 153.8 125.0 244.7
31 286.9 270.7 181.0 153.3 158.5
32 153.4 134.5 130.1 235.4 183.7
33 175.3 194.8 208.8 294.9 248.9
34 269.4 199.7 253.0 223.4 224.5
35 209.3 209.0 175.8 182.5 229.5
36 250.6 164.2 205.1 172.2 220.1
37 164.3 258.2 212.2 135.2 145.6
38 205.5 180.0 185.2 246.5 194.6
39 168.0 153.2 156.5 181.7 218.5
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the part of the electrical fuse that melts after reaching a certain tem-
perature or current. Samples are taken from batches of alloys and 
are subjected to laboratory test where the melting temperatures are 
recorded. The melting temperatures for both alloys are provided in 
Table 10.7a and b. The engineer had asked your help in describing 
the extremely high and extremely low melting temperatures of the 
alloys by using G-I plot for minima and maxima.
	(A)	 For alloy A, what is the plotting position v for the largest of the 

minimal values?
	(B)	 What is the plotting position v for the largest of the maximal 

values?
	(C)	 What is the asymptotic distribution of the minimal melting tem-

perature of alloy A?
	(D)	 What is the asymptotic distribution of the maximal melting 

temperature of alloy A?
	(E)	 For alloy B, what is the plotting position v for the largest of the 

minimal values?

TABLE 10.7a  (Continued)

Melting Temperatures of Alloy A

Batch Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

40 232.6 226.3 226.3 169.8 154.4
41 155.8 200.0 209.6 214.3 135.2
42 168.1 271.7 154.8 149.5 224.6
43 317.9 140.7 181.3 224.1 158.1
44 258.0 216.0 179.0 100.6 156.1
45 184.8 164.1 294.9 141.0 225.8
46 151.9 156.0 248.6 220.1 220.8
47 156.7 312.2 193.3 204.2 192.0
48 264.9 169.9 248.9 275.9 150.9
49 258.4 174.9 225.0 194.1 203.6
50 173.1 171.6 237.9 223.2 227.9
51 216.0 180.1 214.6 209.9 163.4
52 163.7 194.9 253.5 163.8 187.6
53 170.7 250.1 192.7 161.9 170.4
54 217.3 196.2 128.9 194.7 171.0
55 203.3 249.1 262.1 240.0 202.1
56 218.7 168.7 151.3 130.5 181.1
57 135.3 149.5 234.2 115.7 173.1
58 157.7 188.1 229.7 104.2 253.1
59 214.7 204.4 176.3 193.2 217.9
60 247.1 186.7 273.2 248.2 160.9
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TABLE 10.7b

Melting Temperatures of Alloy B

Batch Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

1 252.3 243.9 174.3 210.9 192.4
2 266.7 196.0 56.0 187.8 236.7
3 278.9 59.3 219.5 187.0 198.5
4 206.9 196.6 97.5 129.4 181.0
5 160.8 212.2 287.5 125.9 308.7
6 196.0 201.1 198.3 189.4 204.1
7 154.3 341.8 115.8 196.5 159.8
8 153.3 215.0 153.1 290.6 168.9
9 132.1 253.4 252.9 247.6 112.8

10 203.1 286.5 123.1 223.2 284.6
11 113.3 241.6 230.0 184.8 235.7
12 213.9 143.5 240.7 133.9 275.2
13 152.8 250.4 244.5 179.7 268.4
14 221.8 167.7 199.6 246.5 243.3
15 172.3 168.0 302.1 154.4 302.3
16 366.3 209.2 208.2 235.1 210.2
17 246.8 242.9 233.3 273.3 207.9
18 112.0 251.7 173.4 260.1 207.7
19 274.8 256.5 159.2 174.9 280.2
20 202.7 275.1 115.1 233.7 150.6
21 177.3 203.3 288.8 256.6 176.5
22 223.1 157.0 146.1 182.3 266.7
23 206.2 211.9 198.9 239.0 184.9
24 197.2 203.9 230.4 250.1 234.0
25 160.4 185.0 235.0 203.6 172.1
26 242.1 185.8 218.6 262.9 181.0
27 149.0 201.3 244.4 135.9 196.9
28 208.1 191.3 208.2 260.4 162.4
29 122.1 184.7 222.2 166.9 259.9
30 159.4 138.0 199.5 134.1 152.8
31 252.8 207.1 222.2 165.5 191.3
32 193.7 315.1 133.0 276.0 187.3
33 182.3 224.3 136.2 202.0 233.0
34 313.9 264.1 310.7 177.5 219.7
35 182.3 290.4 127.7 213.3 175.9
36 179.7 216.3 159.5 207.9 154.7
37 192.7 174.8 210.9 169.6 201.9
38 171.2 311.0 205.7 263.3 251.5
39 127.8 185.4 148.0 239.0 214.9

40 227.8 195.4 214.6 202.0 222.8
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	(F)	 What is the plotting position v for the largest of the maximal values?
	(G)	 What is the asymptotic distribution of the minimal melting tem-

perature of alloy B?
	(H)	 What is the asymptotic distribution of the maximal melting 

temperature of alloy B?

TABLE 10.7b  (Continued)

Melting Temperatures of Alloy B

Batch Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

41 248.9 122.1 189.2 260.4 228.2
42 240.6 224.4 157.7 149.0 206.3
43 244.0 256.8 180.7 256.3 171.2
44 251.2 276.6 299.5 285.5 147.2
45 217.1 207.1 278.1 248.8 246.3
46 170.0 194.6 231.8 243.4 160.3
47 292.0 185.7 237.4 148.0 272.2
48 238.5 245.9 199.3 129.9 271.0
49 175.8 192.5 224.0 208.1 176.0
50 259.6 226.3 228.7 228.4 151.5
51 223.9 240.8 273.0 191.2 226.8
52 215.5 170.6 276.9 175.9 213.6
53 181.6 275.4 231.3 134.9 324.9
54 161.9 224.5 251.3 162.1 174.0
55 232.0 197.5 209.5 286.9 237.3
56 236.3 273.7 247.4 198.5 171.1
57 159.9 211.7 298.2 258.3 130.3
58 279.7 137.8 191.8 250.2 189.2
59 225.2 92.2 158.2 242.3 211.2
60 119.2 111.9 246.8 221.2 290.0
61 220.2 150.1 228.6 194.2 235.8
62 173.5 263.1 229.1 158.1 219.2
63 196.8 120.0 219.9 220.8 177.3
64 277.8 248.2 143.6 235.4 175.0
65 198.3 262.3 211.6 238.0 125.9
66 162.5 230.0 75.7 127.3 277.2
67 201.8 194.7 270.2 155.3 208.7
68 186.5 187.4 188.4 256.3 199.3
69 230.3 120.7 204.0 166.7 131.5
70 197.7 196.2 164.2 172.9 231.5
71 106.2 251.8 210.6 293.8 289.6
72 277.4 250.3 147.7 199.1 277.3
73 203.6 268.1 238.0 281.7 247.3
74 146.0 154.1 157.6 229.8 263.2
75 144.5 222.9 188.1 236.4 250.3
76 201.7 206.1 155.9 269.6 190.3
77 171.4 168.9 97.6 228.0 85.3
78 194.1 308.6 206.5 233.2 176.2
79 201.7 207.5 69.3 234.3 261.8
80 222.7 196.5 259.6 192.5 170.9
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	 3.	Describe the importance of causality and correlation in complex 
systems.

	 4.	Provide real cases where apparent correlation between events is 
being extended to imply causality.

	 5.	Describe the significance of probabilistic causation and emergence 
in complex systems.

	 6.	How can the four criteria for establishing causation complement the 
analysis of extreme and rare events in complex systems?
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11
Prioritization Systems in Highly 
Networked Environments

11.1  Introduction

In Chapter 9, the popularity of the queuing system to model many engi-
neering systems was discussed. In particular, it was emphasized how real 
entities such as production machines, human operators, computer proces-
sors, and other resources can be modeled as a server and the entities such as 
raw materials, operator tasks, and computer tasks can be modeled as entities 
that need to be served. It was also emphasized how fairly simple queuing 
systems can be the building blocks to model complex systems made up of 
combinations of servers and entities termed as network of queues.

This chapter describes in more detail how real systems can be modeled 
as network of queuing systems and how such model can be used to manage 
risks in terms of entities waiting too long to be served.

11.2  Priority Systems

Priority systems (PS), also called priority disciplines in the field of queu-
ing, are composed of entities and one or more servers. As entities arrive into 
the system, they are labeled according to some attribute or system state at 
the time of entry into the system. The labels are then used to distinguish the 
entities into classes. Each of the classes is assigned a priority level that serves 
as the basis for choosing from which class the next entity to be served will 
be coming from (Jaiswal, 1968). Within a class, the typical entities are chosen 
on a first come first serve (FCFS) basis. The grouping can be based on some 
measure related to (Kleinrock, 1976):

•	 Arrival times of entities
•	 Service time required or already received by the entities
•	 Functions of group membership of entities
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Examples of decisions based on arrival times are FCFS and last come first 
serve (LCFS). Examples of preferences based on service times only are shor
test job first (SJF) and longest job first (LJF). The decision can also be based on 
a mixture of these measures, as will be discussed in the following sections.

Figure 11.1 is a schematic diagram of a PS showing (from left to right) 
the stream of arriving entities from the calling population, the grouping 
of entities into classes, and a server with an entity currently being served. 
Comparing Figure 11.1 with Figure 9.2 shows that PS is essentially built from 
the simple queuing model as the foundation.

11.2.1  PS Notation

This section introduces a notation for describing variations of PS that enables 
the use of both analytical and simulation models. To facilitate managing of 
latency times through configuration, the notation is based on configuration 
parameters. The parameters include the following:

N: the number of classes of entities
I0:  the set of initial priorities
I f (*): the priority increment/decrement function

The notation is flexible enough to enable the modeling of PS of increasing 
complexity. In addition, the notation facilitates a discrete event simulation 
model of a given PS. The following sections define the parameters of a PS 
and are exemplified in a FCFS system. It can be argued that a FCFS system is 
a PS and can be modeled with infinitely many classes of entities, with a set 
of initial priorities and a static increment function.

Number of Classes

Arriving entities are classified into one of several classes as shown in 
Figure 11.1. The number of classes is dependent on the application of the sys-
tem. For relatively simple applications, a two-class system may be possible, 

Arrival rate

Calling population

Waiting entities

Queuing system

Server

Departure rate

FIGURE 11.1
Schematic diagram of priority system showing arriving entities grouped into three classes 
with a single server processing an entity from one of the classes.
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whereas for complex applications, the number of classes may be more than 
100. There can also be as many classes as there are entities in a PS. However, 
the common practice is the classification of entities into numbers of classes 
convenient for analysis.

As an example in an e-business application, the number of classes may 
be dependent on which part of the e-business organization the PS is being 
implemented. On a Web server, a meaningful classification can be according 
to web server requests (Enter, Browse, Search, etc.). Another example is on a 
database server where the classification can be made based on the type of 
information or part of the database being accessed (customer profile, product 
information, account information, etc.). Classifications are made such that all 
entities belonging to a class are homogeneous with respect to some attri-
butes. It is assumed that a class is fixed for an entity. The grouping of entities 
into classes affords differentiated service among the classes, the first class 
having the priority over the lower classes. Such grouping of entities into 
N number of classes is a configuration parameter of a PS defined as follows:

Definition 11.1: Number of classes

A PS parameter N is the number of classes of entity requiring service.

It is evident from the definition that N I∈ + , where I + is the set of positive 
integer numbers. The definition of N does not require that there are actually 
entities belonging to a class for a class to be defined, and thus an empty class 
is a possibility. Such is the case for types of entity that seldom occurs in a 
system. If such type of entity is the only one that can belong to a certain class, 
then the class may be empty for most of the time.

Initial Priority Levels

Each of the classes has a priority level, which is the basis for the decision 
from which class the next entity will be taken. The range of possible values 
of the priority level is the field of real numbers. The priority level of a class 
can be defined as follows:

Definition 11.2: Priority Level of a Class

A priority level pi,t is the priority level of class i indexed on t, such that pi t, ,∈ℜ
0 0< ≤ ≥i N t,  where the index t is time.

We now introduce the set based on this definition that describes the priority 
levels of the classes at any time t.

Definition 11.3: Set of Priority Levels

The set It is the set of priority levels for all the classes in a PS at time t, that is,

	  I p p p pt t t t N t= { , , , , }, , , ,1 2 3 …
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An important set of priority levels is the initial priority levels at t I= 0 0, . 
Succeeding sections will focus on the behavior of the PS if I0 plays a role in 
the choice of which class is served next.

Priority Increment Function

The rules or logic for implementing the decision on which class to serve 
next can be summarized into a parameter of the PS, termed as the incre-
ment function. If there is more than one entity of the same class waiting for 
service, then the discipline within the class is FCFS. The function describes 
how the priority levels of the classes will change and is indexed with t. The 
parameter can be defined as follows:

Definition 11.4: Increment Function

The increment function I f (*) is the set of rules that describes the change in 
the priority levels such that I I I w x zt t f t+ =� ( ; , , ..., ), where ∆t is some incre-
ment of index t, and w x z, , ...,  are system states, entity attributes, or some 
other derived parameters.

The increment function will also be expressed as I If t( ) in cases when the 
other arguments (e.g., system states, entity attributes) are not significant. The 
increment function can range in complexity from the simple static case to 
more complex rules, as will be discussed in the succeeding sections. The 
form of the increment function can be linear or nonlinear. I xf ( ) is a linear 
function of x if it has a form I x ax bf ( ) = +  where a and b are constants. When 
the increment function cannot be written in this form, then it is a nonlinear 
function with respect to the argument.

Related to the increment function is the operator used to choose which 
among the priority levels are considered high and low priority. A typical rule 
is to choose the class with the highest priority level value:

	 Class to be served at time t + 1 = idx max/min{It}	 (11.1)

where the operator idx max/min{} is the search for the index of the maximum 
or the minimum elements(s) in the set in { }, that is, z x x= idx max/min{ , , ...}1 2  
if x x xz = max/min{ , , ...}.1 2  Since max{ }It  is the same as min{ },−It  then any 
maximization rule can be translated into an equal minimization rule. For the 
remainder of the book, the rule for choosing among classes is of the maximi-
zation form.

Length of Waiting Line

The lengths of waiting lines in a PS are the number of entities waiting for 
service for each class. Each class can have a unique waiting line and can be 
defined for each instance of the index as follows:
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Definition 11.5: Lengths of Waiting Lines

The length of waiting line Q tn ( ) is the number of entities of Class n waiting 
for service at time t.

As introduced in Chapter 9, there are two basic types of PS with reference to 
the lengths of waiting lines: infinite and finite.

Q tn ( ) can be allowed to increase without bound or assumed not to reach a 
bound even if such bound exists. Analytical models such as the birth-and-
death process in queuing models generally have assumed infinite waiting 
line and can be defined as follows:

Definition 11.6: Infinite Waiting Line

The number of entities of Class n waiting for service at time t is infinite if 
0 ≤ ≤ ∞Q tn ( )  for all t.

Some practical reasons for assuming infinite waiting line are large memory 
buffer and high-speed servers common in high-efficiency communication 
systems. The assumption of infinite waiting line is also typical of analysis 
of systems with low server utilization wherein actual limits on the length of 
waiting lines are never reached.

Nonetheless, there can be conditions that may warrant assuming a finite 
waiting line. The physical constraints in space, time, and other resources 
may put an upper limit on the possible or allowable number of waiting 
entities. A combination of factors, some of which are the frequency of 
arrival of entities, the length of service, and the frequency the server is 
able to perform service, can contribute to reaching the maximum allow-
able length of waiting lines. Such an upper limit is defined as follows:

Definition 11.7: Finite Waiting Line

The maximum allowable number of entities of Class n waiting for service is 
Q nmax , such that 0 ≤ ≤Q t Qn n( ) max  for all t.

All arriving entities of Class n that find there is already Q nmax  in the system 
will be turned away. Such entities can be dropped and forever lost or can 
be processed in a variety of ways. Entities turned away can be redirected 
to other servers, consigned to wait in another system used for storage or 
rerouted to another class of entities whose limit has not yet been reached.

Since there can be limited or unlimited waiting lines for each class n N∈
n ∈ N of a PS, the possible number of waiting entities from all classes in 
the entire PS is the sum of the Q nmax  for all classes and can be defined as 
follows:

Definition 11.8: Waiting Entities in a PS

The maximum allowable number entities in a PS is Q Qn
N

nmax max= ∑ =1  if 
Qmaxn exists. It follows that Qmax is finite only if Q nmax < ∞ for classes 
n N N= < ∞1 2, , ..., , .and
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PROBLEM 11.1

Consider a FCFS system. Suppose that time is measured in discrete time 
length � t. Furthermore, suppose that every entity that arrived within a par-
ticular time ti within the period ( , )t t t+ ∆  belongs to the same class. Since time 
can be measured infinitely far in the past, then there can be infinitely many 
� t, and equivalently infinite number of classes of entities. That is,

	 for FCFS, N → ∞

Often times in the analysis of FCFS system, only one entity is allowed to 
arrive within a time length � t, either by assumption or by making � t infini-
tesimally small. The result is that there can only be at most one entity in each 
class.

The FCFS discipline is equivalent to having the time of arrival as a measure 
of priority of entities; the earlier the arrival, the higher the priority. The set of 
priority levels can then be modeled as follows:

It = {p1,t , p2,t , p3,t  , … , pn,t … }  where pn,t = n × ∆t,  for all n × ∆t ≤ t

This is true assuming that time is measured towards the direction of pos-
itive infinity. Note that the number of classes increases as the time of obser-
vation lengthens. The increment function can now be formulated as follows

	 I I I It f t tt+ = =∆ ( )

This is a static priority system since there are no evident changes on the 
relative priorities of the classes. The rule for choosing the next class to be 
served is formulated based on Equation 11.1 and is used to select the entities 
that arrived earliest among those in the system:

	 Class to be served at time t + 1 = idx max{–It}

Since there can only be one entity for each class, then the waiting line for 
each class is finite and have a maximum of one, that is,

	 Q nmax = 1  for n N= 1 2, , ...,

Thus, a FCFS system can be modeled as a PS with parameters N I It f, , .and

Entity Arrival Process and Service Process

In this section, characteristics of entity arrivals and departures are defined and 
described. The utilization of a PS server is also defined in terms of the arrival 
and departure processes. Consider a PS with N classes and define the arrival 
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of entities of class n n N, ∈  during the time interval [ , )0 t  to be A tn ( ) and can be 
described by a probabilistic function (modified from Liebeherr et al. 2001).

A natural extension is the departure function of class n, and the num-
ber of entities waiting for service assumes that each class has its own wait-
ing line. The departure of entities of class n n N, ∈  during the time interval 
[ , )0 t  is described by the function D tn ( ) (modified from Liebeherr et al. 2001). 
A related and often used concept in queuing modeling is the rate at which a 
resource can serve entities or mean service rate ( ).m  The service rate describes 
the rate at which a resource can perform the service required by the entities. 
The unit is in entities per unit time.

Definition 11.9: Saturated PS

The PS is saturated if there is always at least one entity in each class waiting 
for service, that is, Q tn ( ) ≥ 1 for all n and t.

Definition 11.10: Supersaturated PS

The PS is supersaturated if the lengths of waiting lines for all classes are 
increasing without bounds, that is,

	 Qn ( )t
t→∞

→ ∞  for all n and t.

PS described in Definitions 11.9 and 11.10 can be clearly compared and con-
trasted to the usual assumption of a stable queue. A stable queue assumes 
that the queue length is always finite.

In the area of product-form queuing models, a common assumption on 
the arrival and service process is that both possess the Markovian property. 
However, cases can be such that the distributions of arrivals are bounded, 
that is, Weibull distributed arrival. An example of such cases is when 
upstream server in a network has early failure.

11.3  Types of Priority Systems

The remainder of this chapter discusses the various types of priority sys-
tems using the succeeding definitions as the foundation. Figure 11.2 shows 
the various types of priority systems and how each are related.

11.3.1  Static Priority Systems

Static PS (SPS), also known as strict priority or head-of-line discipline, is the 
simplest type of PS, where class priorities do not change. In such cases, the 
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lower class entities will be accommodated only after all the higher class enti-
ties have been exhausted. The result is the short average latency for the higher 
class entities in comparison to the lower class entities. There are special cases 
where the arrivals of entities and the service provided by the server have 
Markovian property*: Poisson arrival rate for each class λi , i = 1, 2, ..., N, and 
one exponential service rate for all classes.

Equation 9.2 shows that the distribution of the latency times of entities in 
an SPS requires the Laplace transforms of the probability functions of the 
service times of the entity. However, the transforms of such function may not 
always be readily obtainable (Kleinrock, 1976).

Definition 11.11: Static Priority System (SPS)

An SPS is a type of PS wherein one class of entity is always preferred over 
another. That is, for each pair of classes i and j i j N, ,≠ ∈  one and only one of 
the following conditions is true:

	 (i)	 ( ), ,p pi t j t− > 0  for all t > 0,
	 (ii)	 ( ), ,p pi t j t− < 0  for all t > 0, or
	(iii)	 ( ), ,p pi t j t− = 0  for all t > 0.

Consider a telephone switch, an equipment used to route phone calls in 
systems where there can be a large number of phone users such as hotels, 
hospitals, and office buildings. It is recognized that not all phone calls may 
be of the same importance. At a common office building, most phone calls 
may be treated the same, except for incoming calls into the sales or cus-
tomer service departments that are deemed business critical and always 
have higher priority than calls coming into other departments.

Another example is airline passengers lining up at the airport gate on their 
way to board an airplane. First to board are first-class passengers, those with 
special needs, those with infants and children, and others with preferred 
services. After all preferred passengers have boarded, the general classes of 

*	Series of events have a Markov property if the past states can be completely summarized by 
the current state.

Priority system (PS)

Static priority system (SPS) Dynamic priority system (DPS)

Time-dependent
dynamic priority system (TDPS)

State-dependent
dynamic priority system (SDPS)

FIGURE 11.2
Types of priority systems.
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passengers start boarding. However, when a preferred passenger approaches 
the gate, this passenger will quickly move into the head of the line.

11.3.2  Dynamic Priority Systems

Dynamic PS (DPS) are such that the priority of a class of entities changes. 
In effect, a class can have the priority over the other classes only for some 
time, after which another class will have the priority. Hahn and Shapiro 
(1967) discussed the flexibility offered by DPS in cases when there is a need 
for system administrators to have more control over system performance. 
Effectively, the lower class entities do not have to wait for the higher class 
entities to be exhausted. Other studies that dealt with DPS in the field of 
communications are by Vazquez-Abad and Jacobson (1994), Greiner et  al. 
(1998), Berger and Whitt (2000), Ho and Sharma (2000), and Bolch et al. (1998). 
A common observation among these studies is the difficulty of determining 
the distribution of the performances of DPS. The difficulty is further com-
plicated by the numerous variants of such systems, as can be observed from 
the succeeding two sections. DPS can be further classified according to the 
basis of changes in the priorities of the classes. In modeling of queues, the 
typical classification is time-dependent and state-dependent DPS. The clas-
sification came about due to the prevalence of analysis of time-dependent 
queues in the early development of queue analysis. State-dependent DPS 
came about later in modeling of more complicated queuing disciplines.

Definition 11.12: Dynamic Priority System

A DPS is a type of PS wherein no one class of entity is always preferred over 
another. That is, for each pair of classes i and j, i ≠ j ∈ N, none of the following 
conditions are true:
	 (i)	 ( ), ,p pi t j t− > 0  for all t > 0,
	 (ii)	 ( ), ,p pi t j t− < 0   for all t > 0, or
	(iii)	 ( ), ,p pi t j t− = 0  for all t > 0.

11.3.3  State-Dependent DPS

This section introduces a state-dependent DPS (SDPS), which is modeled 
according to the notation presented in Section 11.2. The first section describes 
in detail the dynamic nature of the priority levels and how they translate 
into the increment function notation. The second section presents proposi-
tions on the class latencies of a two-class SDPS. The propositions provide 
knowledge on the distribution of the class waiting time that can be used to 
describe the latencies of the entities.

SDPS are such that the priorities of the classes change based on some com-
binations of system states and entity attributes and not directly based on 
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the arrival time of the entities. Jaiswal (1968) called such implementation as 
endogenous models.

Some examples of states that can serve as basis for changes in priority are 
as follows:

•	 Origin of entity. The origin of entity can provide knowledge on the 
urgency of providing service. Since origin of entities does not gener-
ally change prior to service, this is used in combination with other 
more dynamic system states or entity attributes.

•	 Nature or length of required service. A strategy to shorten the overall 
latency times of entities for all classes is to serve those with short-
est required service times. For systems that partially serve enti-
ties without necessarily completing the service (e.g., round-robin 
service discipline), the priority can be based on remaining service 
times.

•	 Expected result of service or lack of service. The expected result of ser-
vice or lack of service pertains to the benefits of providing service or 
the cost or penalty of delaying service. There can be a relationship 
between the penalty and the origin of entities such as in the case of 
airline passenger classes.

•	 Length of waiting line. The length of waiting line or the number of 
entities waiting for service is important for cases wherein there is 
a limit on space or memory buffer that is being occupied by the 
waiting entities. Length of waiting line is affected by the rate of 
arrival of entities and the rate of service being performed by the 
resource.

SDPS Increment Function

A specific implementation of the state-dependent type is wherein the prior-
ity level of each class at time t + 1 is dependent on the class from which the 
last entity served belongs and on an increment variable an .

Definition 11.13: State-dependent Dynamic Priority System

SDPS is a state-dependent DPS with an increment function described by

	 p I p n a
p i n Q t

i t f t t i
i t i
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* ,

*

( ; , , )
( )

+ = =
= +
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0 1
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




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where Q ti ( )+ 1  is the length of waiting line for Class i at time ( ),t + 1  and ai is 
the increment variable, i N= 1 2, , ..., . Within a class, FCFS discipline is used.
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Service differentiation is implemented by choosing the entity to be served 
next from the class with the highest, pn t*, , where

	 n pt n N n t
*

, , ,..., ,arg max[ ]= =1 2 3

nt
* is the class from where the next entity to be served will be taken. The oper-

ator max[ ],pn t  chooses the highest value among the priority levels pn t,  and 
returns as an argument the class number n. Inside a class, the discipline is 
usually FCFS. Ties among class priority levels are broken based on the initial 
priority level pn , .0

SDPS Class Latency

This section develops a proposition on the distribution of the waiting time 
of entities in a two-class SDPS. Consider a SDPS described by two classes 
of entities ( ),N = 2  with sets of initial priority levels I p p0 1 0 2 0= { }, , ,  such that 
p p C1 0 2 0, , ,− =  and the increment variable is unity ( ).a a1 2 1= =  Consider a per-
iod of analysis such that the SDPS is saturated, and the time between arrivals 
and time for service of entities of class n are random variables xn with density 
functions fn .

Proposition 11.1: Waiting Time for Class 1 of a Two-class Saturated SDPS

In a two-class SDPS with I p C p a a0 1 2 1= + = =( , ) ,and  Class 1 entity has 
waiting time distribution of
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and

Proposition 11.2: Waiting Time for Class 2 of a Two-class Saturated SDPS

Class 2 entities have a waiting time distribution of

	
f w f w u f u uCW
( ) ( ) ( )2 1 20

2= −∫ d

Proof of propositions 11.1 and 11.2:

Define O t N( ) { , , , ..., }∈ 1 2 3  to denote the class from which the next entity to 
be served is taken at time t. Consider wn as the waiting time of class n as the 
time elapsed between similar O n(*) ,=  that is,

	 w t tn = −’

such that O t O t n( ’) ( )= =  and there exists a ′′ < ′′ < ′t t t t,  such that O t n( ) .′′ ≠



368 Advanced Risk Analysis in Engineering Enterprise Systems

Table 11.1 shows values of O t( ) from t t xi
C

i= = ∑ =
+0 0

2 3to , where x x1 2, , ... 
represents service times of entities and the priority levels of the 
classes, O(t).

Consider the first row of Table 11.1. At time t = 0, Class 1 has a higher pri-
ority level than Class 2, and an entity of Class 1 is served for a duration of x1. 
Consider the second row. At time x1, the service of the first entity ended. 
Since the SDPS is saturated, there is always at least one entity of each class 
waiting for service, and the priority levels of the classes are incremented 
based on Definition 5.1 to

	 p p Cx1 1, = + and

	 p px2 1
1, = +

Class 1 still has a higher priority level that Class 2, an entity from Class 1, is 
served until completion at time t x x= +( ).1 2  An entity from Class 2 is served 
only after C-numbers of entity from Class 1 have been served, as shown in 
the fourth row coinciding with time t = ∑ =i

C
ix0 .

From Table 11.1, it can be generalized that w y1 0∈{ , }, where y is the ser-
vice time for entities from Class 2, and with corresponding frequencies
{ / , / }C C C+ + +1 2 1 2 . A w1 0=  corresponds to events when Class 1 entities 
are served successively, and a w y1 =  corresponds to events when the imme-
diately preceding entity served is from Class 2. It is notable that the waiting 

TABLE 11.1

Waiting Times for a Two-class Saturated SDPS with N I p p= =2 0 1 0 2 0, { , }, ,  Such That 
p p C a a1 0 2 0 1 2 1, , ,− = = =

Time
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of Class 2 [ ],p t2

Class to Be 
Served [ ( )]O t

Waiting Time of 
Class to be Served 

[ ]( )w t0

0 p + C p 1 —
x1 p C+ p + 1 1 0
x x1 2+ p + C p + 2 1 0

∑ =i
C

ix0
p + C p + C 1 0

∑ =
+

i
C

ix0
1 p + C p + C + 1 2 —

∑ =
+

i
C

ix0
2 p + C + 1 p 1 xC+2

∑ =
+

i
C

ix0
3 p + C p + 1 1 0

∑ =
+

i
C

ix0
4 p + C p + 2 1 0

. . . . . . . . . . . . . . . 

∑ =
+

i
C

ix0
2 2 p + C p + C 1 0

∑ =
+

i
C

ix0
2 3 p + C p + C + 1 2 ∑ = +

+
i C

C
ix2

2 3



369Prioritization Systems in Highly Networked Environments

time of one class corresponds to the service times of the other class. Thus, 
the waiting times for Class 2 is w xC

i2
1= ∑ +  every time, where x is the ser-

vice time of entities from Class 1. Therefore, the density function of w1 is 
expressed as
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where f w2 1( ) is the density function associated with Class 2 service times. 
For Class 2, the density function of w2 is the ( )C + 1 -fold convolution of f1 

(Bierlant et al., 1996) expressed as:

	
f w f w u f u uCW
( ) ( ) ( )2 1 20

2= −∫ d

For a Markovian service process, (i.e., exponentially distributed with 
mean 1/m), the ( )C + 1 -fold convolution is a gamma distribution with a mean 
C + 1/m (Ang and Tang, 1975).

Propositions 11.1 and 11.2 describe the distribution of waiting times of 
classes in a two-class saturated SDPS. By treating the waiting times of the 
classes as a type of server failure, the waiting times of the entities can be 
obtained by modeling a FCFS-SPS with server failure.

Analysis of SDPS using a simulation model showed that during time spans 
when system is saturated (there is always at least one element in each class 
waiting for service), the order of servicing of the classes is cyclic. The cycle of 
servicing is affected by relative priorities and not by the absolute priorities. 
Examples of the cycle of servicing are shown in Table 11.1 for three classes 
n = 1 2 3, ,  with initial priorities p p p1 0 2 0 3 0, , ,, , ,and  respectively, denoted as 
(p1,  p2, p3). The presence of service cycles in a saturated system suggests 
that for a specific set of priority levels, the ratio of elements served from 
each class is constant. From Table 11.1, the ratio of entities served from each 
class for (10,5,2) and (15,10,7) is 14:3:2, that is, for every 19 elements served, 14 
elements are from Class 1, three elements are from Class 2, and two elements 
are from Class 3 (Table 11.2).

The ratio for I0 10 5 3= ( , , ) is 13:3:2. Therefore, it can be deduced that in a 
saturated SDPS, the probability that an element in the lowest priority class 
will be served is 1 as long as the service times are finite. This can be com-
pared to a nonpreemptive SPS where only the elements in the highest class 
are assured of service.

Another approach in analyzing SDPS is to consider the change in the pri-
ority levels of the classes. Figure 11.3 shows the plot of the priority levels for 
each class. For simplicity, the service times were assumed equal and constant 
for all three classes. The plot shows that there is a warm-up period after 
which the cycle of priority levels stabilizes (see arrow on plot).
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TABLE 11.2

Classes Served in an SDPS. Cycle of Servicing 
for a Saturated SDPS with Different Initial 
Priority Levels I0 10 5 2 15 10 70= ( , , ), ( , , ) and 
( , , )10 5 3

(10,5,2) (15,10,7) (10,5,3)

1 1 1
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FIGURE 11.3
Priority levels for three-class SDPS.
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The plot shows a warm-up time for the priority levels of a saturated SDPS. 
The initial priority levels are (10,5,3); the arrow indicates the end of the 
warm-up period.

The peaks on the level of the class priorities correspond to an entity being 
served. As expressed in Definition 11.1, each service of entity is followed by 
the return of the priority to the initial level. Similar to Table 11.1, Figure 11.3 
suggests that all classes will be served as long as the service times of entities 
are finite.

11.3.4	 Time-Dependent DPS

Time-dependent DPS (TDPS) is such that priority levels are assigned based 
on the time of arrival of entities. The earliest analyses of DPS are made as 
time-dependent queuing models due to their affinity with existing queu-
ing models for SPS. As entities enter the system, the times of arrival are 
recorded and each entity is labeled for class identification. When an entity 
needs to be chosen among those waiting for service, the time-dependent 
priority functions are examined. The entity with the highest priority is then 
served.

Definition 11.14: Time-dependent Dynamic Priority System

The time-dependent PS described by Bolch et al. (1998) can be equivalently 
described as TDPS with the following configurations:

	 N < ∞
I0 = time of arrival

 I I I I t b I t b I t t bf t t f t n t n t n(*) ( , ; ) , ( )= = = + × = − ×+∆ ∆ ∆  0  for Equation 11.4

= = = + = + −+I I I t r I t I r t tt t f t n t t n∆ ∆ ∆( , ; ) , 0  for Equation 11.5

where t0 is the time the entities arrived in the system.
The rule for choosing the next entity for service is max{ }.It  For cases of 

tied priority levels It (when two or more entities of the same class arrived at 
exactly the same time), the choice is made randomly.

TDPS is different from SDPS in two aspects:

	 (1)	Priority levels for SDPS are assigned on a class-wide basis. All enti-
ties of the same class have the same priority level. For TDPS, priority 
levels are assigned for each entity and are dependent on the time of 
arrival.

	 (2)	SDPS priority levels revert to the initial levels once entities from that 
class is served.
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TDPS Compared to FCFS

Recall the example in Section 11.3 that reformulated a FCFS system into the 
DPS notation such that

	
I I I It t f t t+ = =∆ ( )

and

	 I n tt = × ∆

where n t× ∆  is the time when the entity arrived. From Definition 11.14, sub-
stituting t n t0 = × ∆ :

I b n t I r n tt n t n= × = + ×( ) ( )∆ ∆and

The equations are translations of the priority levels for classes in the FCFS 
model. The difference is the presence of bn , which transforms the rate of 
change of the priority level, and rn , which shifts the intercept of the rate of 
change (see Figure 11.3).

Bolch et al. (1998) describe two systems with time-dependent priorities 
where the priorities of the classes of entities are expressed as follows:

	    q1r(t) = (t – t0) × br

	 q2r(t) = rr + t – t0,

where q t tr1 ( ) ( )and q2r  express the two systems of time-dependent priori-
ties, t0 is the time when the entity entered the system, 0 1 2≤ ≤ ≤ ≤b b br... , and 
0 1 2≤ ≤ ≤ ≤r r rr...  are system parameters.

It is observed that for both functions of the time-dependent priority levels, 
the system behaves like a FCFS system when parameters br and rr are very 
close together. On the other hand, values of b rr rand  far from each other will 
behave like a static PS. Figure 11.4 shows the plot of the priority level with time.

TDPS Class Latency

The mean latency time for an r-class entity is given by

	

E x L

E L E L
b
b

b
b

r r

FIFO i i
i

r
i

r

i
r

i

( )

( ) ( )

= =
− −







− −





=

−∑ r

r

1

1 1

1

1

= +∑ i r

R

1

	 (11.2)

where Li denotes the latency times for entities of Class i L, FCFS denotes the 
latency times of entities in a similar FCFS discipline, and ρi denotes the 
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utilization in class i i R, .1≤ ≤  Equation 11.2 shows that to determine the mean 
latency time of one class of entity requires a system of equations of the mean 
latency times of the other classes of entities.

TDPS Class Differentiation

Suppose that the performance of a system is measured by the average latency 
times L n Nn , , , ..., .= 1 2  Then the relative differentiation model imposes for all 
pairs of classes ( , ), , , , ..., , :a b a b N a b= ≠1 2

	

L
L

c
c

a

b

a

b

= 	 (11.3)

where c c cN1 2< < <...  are the quality differentiation parameters for each of 
the classes (Essafi et al., 2001).

A time-dependent PS proposed by Bolch et al. (1998) and Essafi et al. (2001) 
that implements the relative differentiation of Equation 11.3 is such that pri-
ority levels are assigned based on the time of arrival of entities. Two systems 
with time-dependent priorities where the priority of a class of entities and 
the time-dependent priority functions are expressed as follows:

p1n,t and p2n,t are the priority levels of class n at time t for systems 1 and 2:

	 p1n,t = (t – t0) × bn	 (11.4)

	 p2n,t = rn + t – t0 	 (11.5)

where t0 is the time when the entity entered the system, 0 1 2≤ ≤ ≤ ≤b b bN... ,  
and 0 1 2≤ ≤ ≤ ≤r r rN...  are system parameters. For Equations 11.4 and 11.5, the 
system behaves like a FCFS system when parameters br or rr are very close 
together. On the other hand, values of bn or rn far from each other will behave 
like a head-of-line discipline.

Figure 11.5 shows the comparison of the priority levels of a typical entity 
in a TDPS with increment functions given by Equations 11.4 and 11.5 with 

Priority levels
a b

Time

FIGURE 11.4
Values of priority versus time for (a) q1r(t) and (b) q2r(t) showing the differentiation typical of 
priority systems.
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b rn n= =2 20and , respectively. From the figure and the form of the func-
tions, it is notable that br affects the rate of increase of the priority level with 
respect to an increase in the waiting time of entities—the higher the value 
of bn , the more rapid the increase of the priority level. On the other hand, 
rn affects the minimum value of the priority level and not the rate of increase. 
Furthermore, Figure 11.5 implies that this PS falls under the classification of 
a DPS since none of the two functions dominate the other over the whole 
period of time (see definition of a DPS).

The mean latency time is expressed as (Bolch et al. 1998):
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Using the notation presented in Section 11.2, the increment functions equiv-
alent to Equations 11.4 and 11.5 are as follows:

For Equation 11.4,
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FIGURE 11.5
TDPS priority levels: Comparison of TDPS priority levels for functions 1 and function 2.
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The new expression is obtained by first changing the notation such that
q t Ir t( ) .�  Then for Equation 11.4,
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For Equation 11.5,
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11.4  Summary

This chapter developed a state-dependent DPS uniquely identified by its 
increment function and consequently defined as SDPS later used in the dem-
onstration of the framework forwarded in the book. Propositions were pre-
sented that show the effect of increment function to the frequency that an 
entity from one class is served in relation to another class. In the process, the 
distribution of the waiting times of the classes was derived. It was shown 
that in a SDPS, the proportions of entities served from the various classes 
of entity can be controlled by the initial priority level parameter, and by the 
increment variable ai. The result is a configuration of a DPS that can imple-
ment relative differentiation among classes that has a fairly simple distribu-
tion of class latency times.

Questions and Exercises

True or False

	 1.	Priority systems (PS) are distinctively different from priority disci-
plines in the field of queuing.
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	 2.	Arriving entities into a PS are always classified into a single class.
	 3.	A PS parameter N is the number of classes of entity requiring service.
	 4.	The definition of N requires that there are actually entities belong-

ing in a class for a class to be defined, thus an empty class is not 
permissible.

	 5.	Each of the classes has an arrival rate, which is the basis for the deci-
sion from which class the next entity will be served.

	 6.	The rules for implementing the decision on which class to serve 
next can be summarized into a parameter of the PS, the increment 
function.

	 7.	Since max{ }It  is the same as min{ },−It  then any maximization rule 
can be translated into an equal minimization rule.

	 8.	There are two basic types of PS with reference to the lengths of wait-
ing lines for the classes of entities.

	 9.	Some practical reasons for assuming infinite waiting line are large 
memory buffer and high-speed servers common in communication 
systems.

	 10.	 In a PS with finite waiting line, entities turned away can be redi-
rected to other servers, consigned to wait in another system used for 
storage, or rerouted to another class of entities whose limit has not 
been yet reached.

	 11.	A traditional FCFS system can be modeled as a PS with parameters 
N I It f, , .and

	 12.	State-dependent DPS are such that the priorities of the classes change 
based on some combinations of system states and entity attributes 
and not directly on the arrival time of the entities.

	 13.	SDPS is a particular type of DPS wherein the priority levels of the 
classes of entities increments by ai every time waiting entities of the 
class is not served.

Questions

	 1.	Define the following terms in a narrative manner, that is, not using 
equations.
	(A)	 Number of classes
	(B)	 Priority level of a class
	(C)	 Set of priority levels
	(D)	 Increment function
	(E)	 Infinite waiting line
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	(F)	 Finite waiting line
	(G)	 Waiting entities in a PS
	(H)	 Saturated PS
	(I)	 Supersaturated PS

	 2.	Provide three examples of real systems that can be modeled as PS 
having infinite waiting line. Justify this assumption.

	 3.	Provide three examples of real systems that can be modeled as PS 
having finite waiting line. Justify this assumption.

	 4.	Provide three examples of real systems that can be modeled as PS 
having finite waiting line and describe how entities turned away are 
managed.
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12
Risks of Extreme Events in Complex 
Queuing Systems

12.1  Introduction

This chapter formulates the measurement of the risk of extreme latencies for 
various classes of entities in priority systems (PS). The first section inves-
tigates the conditions for the occurrence of extreme latencies, namely, the 
arrival and service rates of entities. The second section describes a basis for 
the measurement of risk in PS by defining nonexceedance probabilities of 
latency times. Latency thresholds are defined for each of the classes in a PS to 
identify the level of latency times wherein unnecessary cost is incurred, and 
the reliability of the PS is affected. The last section summarizes the contribu-
tions of this chapter to the book.

12.2  Risk of Extreme Latency

Chapter 11 presented two types of dynamic priority systems (DPS) that 
implements relative differentiation among classes of entities. It was also 
shown that configuration parameters such as initial priority levels and incre-
ment variables can be used to affect the latency times of entities in a DPS. 
Particularly important is the risk of entities from extremely long latency times 
due to its ability to drive the cost of operation unnecessarily high. Section 11.3 
discussed the deficiency of the mean of latency times in describing the risk 
of extremes of latencies. There is a need to describe the extremely long albeit 
rare latency times without being overwhelmed by the more frequent shorter 
latency times. Furthermore, measurements of risk of extremes of latency 
times need to be made for each of the classes in a PS for the following reasons:

•	 The heterogeneity across classes often warrants different treatment 
and cost considerations for each class.

•	 The flexibility and the potential to improve system performance of 
the PS can be maximized if configuration is based on classes.
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In systems like digital equipment and software-intensive systems, the 
probabilistic behavior of the system is not the only cause of failure or extreme 
events (Garrett and Apostolakis, 1999). System failure and extreme events 
also occur as results of encountering combinations of inputs, particular oper-
ating environment, and some particular configuration. Any randomness 
in the performance of PS is brought about by the randomness of the input 
and the operating environment. Extremes of latencies are known to cause 
system failures (see Klungle, 1999; Miller and Bapat, 1999; Tanir and Booth, 
1999). Therefore, it is worthwhile to investigate the contributing factors in the 
occurrence of extremes of latencies in PS.

Consider an emergency room in a hospital. Suppose there is a sudden 
arrival of several patients in critical conditions. The medical personnel on 
duty can be overwhelmed, and patients waiting in the emergency room 
with less severe conditions can experience delay on their treatment because 
patients in critical conditions are served first. The situation represents an 
extreme increase in the arrival of high-priority entities (critical patients), 
which results to longer latency times for low-priority entities (noncritical 
patients). But after a while, other medical personnel may be deployed in 
the emergency room to aid those on duty, effectively increasing the over-
all service capacity of the emergency room. The latency times of low-class 
patients can then revert to the normal lengths. Suppose that all the commo-
tions in the emergency room had unduly stressed the medical personnel on 
duty. The service to each patient given by the medical personnel now takes 
a longer time than before due to fatigue. Such degraded service rate can also 
result into longer latency times for patients.

The above is a case in point of conditions under which extreme latency 
times of entities in PS can occur, namely, under the following conditions:

•	 The traffic rates of entities are extremely high
•	 Service rates are extremely low
•	 Presence of both these conditions

The first condition is more of concern for entities of low-priority classes than 
to high-priority classes. As described in the above example, extremely high traf-
fic rates of high-priority entities will definitely affect the latency times of low-
priority entities. However, extremely high traffic rates for low-class entities do 
not necessarily affect the latency times of high-class entities. State-dependant 
dynamic priority system (SDPS) is an example of a PS in which high arrival 
rates of low-class entities do not affect the latency times of high-class entities.

The result of the conditions is the saturation of the PS when more entities 
arrive than what can be served by the resource (see Definition 11.9 in Chapter 
11). During saturation, there can be lengthening of the waiting lines and 
increase in latency times of entities. Figure 12.1 shows a possible relationship 
of the rate of arrival of entities, the service rate, and the latency times in a PS. 
From time period (0,e), the PS is stable and has finite average latency times. 
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However, within the long-term period lies shorter periods, like time period 
(a,b) when arrival rates of entities increases drastically. Extremes of latencies 
can occur if period (a,b) of increasing latency times persists long enough. The 
PS becomes stable once the service rate increases correspondingly during 
period (b,c) or when the arrival rate returns to previous level, like during 
period (c,d). Another possible period of increasing latency times is when the 
service rate drops considerably, like in period (d,e).

The challenge to PS designers and administrators is to measure the risk 
of extremes of latency times during periods (a,b) and (d,e) as illustrated in 
Figure 12.1. Furthermore, the measurement of risk must lend to the configu-
ration of PS for each of the classes.

12.2.1  Methodology for Measurement of Risk

Chapter 11 described several approaches to gathering and analyzing informa-
tion on the latency times of a PS, as well as possible effects of the configura-
tion of PS to the latency times of entities of various classes. The measurement 
of risk is performed to each of the N classes in a PS with the objective of ana-
lyzing the configuration of a PS. Measurement of risk of extremes of laten-
cies is based on the cumulative probability function Pr{ } ( )X x F xn n n≤ =  of the 
latency times xn of entities from Class n.

First, for a given PS configuration f, define the nonexceedance probability 
of the latency time xn of entity of Class n.

Definition 12.1: Nonexceedance Probability

The nonexceedance probability of latency time xn for entities of Class 
n n N, , , ,= 1 2 …  is defined as

	 NEn
f(xn) = P{Xn ≤ xn}

Arrival rate

Service rate

Latency times

a b c d e

Time

FIGURE 12.1
Arrival, service, and latency times. Variations in latency times brought about by variations in 
arrival and service rates.
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Definition 12.1 describes a concept closely related to the cumulative proba-
bility function for latency time xn. Most applications of PS impose thresholds 
on the latency times for various classes, such as in the case of the e-business 
example in Section 1.2. The threshold signifies the limit on latency times, 
which is intended for a class of entities. If reliability is defined as the ability to 
perform the intended function in a given environment at a specified period, 
then the thresholds can determine the reliability of a PS.

A definition of a threshold in terms of reliability and failure is given below.

Definition 12.2a: Latency Threshold Based on Reliability Cn

Latency threshold based on reliability Cn is the threshold for latency times of 
Class n such that

	 { }X Cn n> ⇒ PS failure in Class n

	 { } { }X C X Cn n n n≤ = − > ⇒1 PS non-failure in Class n

It follows from Definition 12.2a that the probability of failure in Class n is

	 P n X Cn n(failure in class P) { }= >

By Definitions 12.1 and 12.2a, the reliability of the PS due to Class n can be 
expressed as

	

Realiability in class n = − >
= <
=

1 P
P

{ }
{ }

( )

X C
X C

NE C

n n

n n

n
f

n

The reliability in Class n of a PS is equal to the nonexceedance of the 
latency time equal to Cn. An alternative to Definition 12.2a is a definition 
of the latency threshold based on cost functions. The thresholds on latency 
times can be determined by the cost incurred due to extremes of latencies, 
examples of which are penalties for late deliveries of entities. The threshold 
on the latency times of a class of entities can be defined in terms of a cost 
function.

Definition 12.2b: Latency Threshold Based on Cost Function Cn

Latency threshold based on cost function Cn is the threshold for latency times 
of Class n such that for a cost function,

	 Cost = g(Xn; Cn) = 0  for Xn ≤ Cn, and

	 Cost = g(Xn; Cn) > 0  for Xn > Cn
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Since risk is defined as the complement of reliability (Ang and Tang, 1984), 
then the risk associated with threshold Cn for Class n in a PS with configura-
tion f is defined below.

Definition 12.3: Risk of a Class

Risk associated with the threshold Cn is

	 Rn
f (Cn) = 1 – NEn

f(Cn)

A risk function of Rn
f (Cn) for the range of Cn equal to the range of the latency 

time is

	 Rn
f(xn) = 1 – NEn

f(xn)

Figure 12.2 illustrates the latency time threshold and the nonexceedance 
curve and the risk of extreme latencies. Figure 12.2a shows the two defini-
tions of the latency time threshold Cn as determinant of the failed or oper-
ational state of the PS and also as determinant of the value of cost incurred 
due to extremes of latencies. Figure 12.2b shows the nonexceedance curve 
and its complementary and the risk curve for the range. It is important to 
note that the risk can be determined for an extreme value of latency only if 
the probability density function of the latency is known, especially at the 
extremes.

State(a) (b)
NEn (xn)f

fRn (xn)

Failed

Nonfailed

Cost

Cn

x

x

x

x

FIGURE 12.2
Definitions of risk of extreme latencies. The comparison between (a) Definitions 12.2a and 
12.2b, and (b) the relationship between the nonexceedance curve NEn

f x( ) and the correspond-
ing risk R xn

f ( ).
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PROBLEM 12.1 (Application of R Cn
f

n(( ))

Consider a PS with several classes of entities each with known performance 
for a specific configuration. The classes of entities may each has different 
requirement in the level of performance. An example can be three classes 
of entities on an e-business server: Browse, Add-to-Cart, and Buy. The three 
classes of entities may require different levels of performance; the Buy enti-
ties have the strictest requirement, followed by the Add-to-Cart, and then by 
the Browse entities. Suppose a PS with a certain configuration f has three 
classes with each class having a nonexceedance function:
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For threshold C C1 2400 1500 8000= = =, , ,and C3  the risks of extremes of 
latencies are obtained by Definition 12.3:
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The risk for individual classes in a PS is expressed by Definition 12.3. More 
precisely, Definition 12.3 describes the probability that an entity of Class 
n have a latency time longer than Cn. Another way of describing the risk 
of extreme latencies is for the entire PS rather than for a particular class. 
Analogous to Definition 12.2, the probability of failure of the PS is the prob-
ability that an entity, regardless of the class to which it belongs, has a latency 
time longer than the threshold of that class.

Proposition 12.1: (Risk of a PS)

A PS with configuration f and N classes, each class having R C n Nn
f

n( ), ,∈  has 
a probability of failure due to extremes of latency:

	
R R CPS
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where fn > 0 are the relative frequencies of entity from each class, and 
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Proof:

The risk of extremes of latency for the entire PS is the risk for each class taken 
together, that is,

	 R P X C k NPS
f

k k= > ∈( | , , , )1 2 … 	 (12.1)

R Cn
f

n( ) defined in Definition 12.3 is the probability of an entity latency time 
to be longer than the threshold Cn , provided that the entity is of Class n. That 
is, consider a particular Class n,

	 R C P X Cn
f

n n n( ) (= > ) 	 (12.2) 

Equation 12.2 can be equally expressed in terms of any class k N∈1 2, , ...,  as

	 R C P X C k N k nn
f

n k k( ) ([( )| , , , ]| )= > ∈ =1 2 … 	 (12.3)

Let

	 [( )| , , , ]X C k N Ak k> ∈ =1 2 …
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	 { }k n B= =

Then Equation 12.3 becomes

	 R C P A Bn
f

n( ) ( | )=

The Total Probability Theorem states that Pr( ) Pr( | ) Pr( )A A B Bi i= ×∑  for 
all i. Then, by the same reasoning,
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for any class k N∈1 2, , ..., . By substitution of Equation 12.3 into Equation 12.4,

	
R R C P k nPS

f
n
f

n
n

N

= × =
=
∑[ ( ) ( )]

1
	 (12.5)

Suppose that the probability that an entity k belongs to Class n is expressed 
as fn , then Equation 12.5 becomes
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The proportion of all entities that belong to Class n is equal to fn and can be 
deduced from several sources. One possible source of this information is the 
known departure rates of entities. That is, if entities of Class n are known to 
depart at a rate of Yn (entities per minute), then the probability that a depart-
ing entity belongs to Class n is

	

fn
n

i
i

N

Y

Y
=

=
∑

1

	
(12.7)

PROBLEM 12.2 (Application of R f
PS)

Consider the PS described in Problem 12.1. Suppose that the probability that 
an entity belongs to one of the three classes are
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The risk of the PS as expressed in Proposition 12.1 is

	

R R CPS
f

n
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n n
n

= ×

= × + × +
=
∑[ ( ) ]

[ . . . . .

f
1

3

0 0034 0 367 0 00018 0 232 0 00063 ××
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0 401
0 001542

. ]
.

The result suggests that about 15 out of 10,000 entities will have latency times 
beyond the threshold, regardless of the class to which the entities belong.

12.3  Conditions for Unbounded Latency

This section develops the conditions on the configuration of PS such that 
the latencies for a class of entities are unbounded. This section provides a 
background on the unbounded latencies and the sufficient conditions for 
unbounded latency times for a saturated PS.

Chapter 10 describes the possible characteristics of the tails of a distri-
bution of latency times of entities: exponentially decaying, polynomially 
decaying, and bounded (also referred to having the domain of attraction of 
Gumbel types I, II, and III, respectively). A method presented by Castillo 
(1988) and subsequently adapted in Chapter 10 can determine the domain 
of attraction of continuous cumulative probability functions, effectively 
describing the characteristic of the tails of the distributions. The method 
states the following:
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A necessary and sufficient condition for the tail of a continuous cumulative 
probability function, F x( ), to belong to one of the Gumbel type distributions is

	
lim

( ) ( )
( ) ( )e

e e
e e→

− −

− −

− − −
− − −

=
0

1 1

1 1

1 1 2
1 2 1 4

2
F F

F F
d

	 (12.8)

More specifically, F x( ) belongs to the domain of attraction for maxima of the 
Gumbel type I if d = 0, Gumbel type II if d > 0, and Gumbel type III if d < 0.

PROBLEM 12.3 (Domain of Attraction for M/M/1-FCFS)

Consider an M/M/1-FCFS. The distribution of waiting times and latency 
times is (Hillier and Lieberman, 1986) as follows:

	 P W w ww( ) ( )< = − >− −1 01r m re for 	 (12.9)

	 P L( ) ( )< = − >− −� ��1 01e form r
	 (12.10)

By applying the necessary and sufficient conditions of Equation 12.8, con-
sider Equation 12.9, with an inverse function of

	
F w

w

− =

−





− +
1

1

1
( )

log

( )
r

m r 	

Equation 12.8 becomes
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Since d = 0, the distribution of waiting times for a SPS (M/M/1) is unbounded 
and has a domain of attraction for maxima of Gumbel type I. The result can 
be generalized to all cumulative density function with exponential form like 
the latency function of Equation 12.10.

PROBLEM 12.4 (Domain of Attraction for (G/G/1))

Consider a generally distributed arrival and service processes, equivalent to 
an SPS (G/G/1). Furthermore, consider the case of heavy entity traffic such 
that utilization* r ≅ 1. Section 12.2 showed the effects of heavy entity traffic 

*	 Utilization is defined as ρ = μ/λ, where μ and λ are the steady state service and arrival rate of 
entities, respectively.
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to the extremes of latency times. The latency times can be approximated by 
(Kleinrock, 1976):

	 P W w a b

w

( )
( )

< ≅ −
− −

+

−

1
2 1 1

2 2

e
r l

s s
	 (12.11)

where s a
2 is the variance of interarrival times, and s b

2 is the variance of service 
times.

Equation 12.11 also has an exponential form; therefore, applying Equation 
12.8 results in d = 0, implying that the distribution of the latency times is 
unbounded and belongs to Gumbel type I.

12.3.1  Saturated PS

There can be difficulties in assessing the true characteristics of the tails of 
the distribution of the latency times for variations in PS, as discussed in 
Chapter 11. The difficulties arise from lack of knowledge on the cumulative 
probability function of the latency times due to incomplete information on 
the arrival and service of entities and on the possible variations in PS. This 
section presents a set of conditions that will assure that the tails of the distri-
bution of latency times of classes in a PS are unbounded.

Proposition 12.2 �(Sufficiency Conditions for Unbounded Latency Times in PS)

Sufficient conditions for unbounded entity latency times in a saturated PS 
are as follows:

•	 The entity service times are mutually independent.
•	 The entity service times have common distribution.

Proof:

Recall definition of saturated PS in Definition 11.9 and consider the mth 
entity to be served in the PS. The latency time of the entity is composed of 
the following:

•	 Remaining service time of the entity being served when m 
arrived, assuming there is no preemption

•	 Service times of all entity that will be served ahead of m 

•	 Service time of entity m.

Define the length of the remaining service time of the entities being served 
when m arrived as y y i mi0 1 2 1and , , , ..., ,= −  are the service times of entities 
that are served ahead of m. The latency of entity m is therefore the sum of 
these service times, that is,

	

x y y y y y

y

m m m

i
i

m

= + + + + +

=

−

=
∑

0 1 2 1

0

�
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If the service times and the number of entities ( )m − 1  already in waiting for 
service are assumed to be random variables, then xm is a sum of a series of 
random variables i and is by itself also a random variable. That is,

If yi is a random variable, i m m= −0 1 2 1, , , ..., , and  is a random variable, 
then x ym i

m
i= =Σ 0  is a random variable.

By the central limit theorem,* xm have a normal distribution function for 
large values of m. Since supersaturated PS is characterized by increasing the 
number of waiting entities (see Definition 11.10 in Chapter 11), that is, m →∞  
as t →∞,, the central limit theorem applies. The domain of attraction of a nor-
mal distribution is Gumbel type I (Castillo, 1988).

Note that Proposition 12.1 is applicable, regardless of the priority class of 
the mth entity or the underlying distribution of the service times. For SPS, the 
domain of attraction of the distribution of latency times can be summarized 
in Table 12.1. For a saturated case, regardless of the underlying distributions 
of the arrival and service of entities, the latency times are unbounded and 
belong to the domain of attraction of the Gumbel type I. However, for the 
unsaturated case, the domain of attraction has been determined only for 
the arrival and service process both belong to the domain of attraction of the 
Gumbel type III (bounded). For other types of arrival and service process, 
the domain of attraction has not been determined.

12.4  Conditions for Bounded Latency

This section establishes the conditions for a general SPS to have bounded entity 
latency times, the sufficient conditions for entities of a particular class in an 
SPS to have bounded latency times, as well as for a particular class in a SDPS.
12.4.1  Bounded Latency Times in Saturated Static PS

Section 12.4 established sufficient conditions for entities in a PS to have 
unbounded latency times. However, there are situations wherein there is need 

*	 Central Limit Theorem states that if xi are mutually independent with common distribution, 
none of which is dominant, then for the sequence {xi} and for every fixed β, Pr(Lm < β)→N(β) as 

m→∞, where N(β) is the normal distribution function 
1
2

1
2

2

p
b
e
−

−∞∫
y

dy; μ = E(xi) and σ2 = Var(xi).

TABLE 12.1

Domains of Attraction for SPSa

System Description Domain of Attraction of Arrival and Service Distribution Are Both:

G-I G-II G-III

Domain of Attraction of the Waiting Time Distribution

Unsaturated ? ? Not G-II
Saturated G-I G-I G-I

a	 Domains of attraction for SPS: single-server FCFS model (see Problems 12.3 and 12.4).
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for a guaranteed maximum latency times, such as in health services. Patients in 
an emergency room cannot wait for an infinitely long time. Thus, to model such 
types of PS requires configurations that guarantee bounded latency times. As 
shown in Table 12.1 for an SPS, bounded latency times can be obtained only if 
the system is not saturated and both the service and interarrival times of enti-
ties are bounded. However, a saturated SPS will have unbounded latency times 
even if both the interarrival time and service times are bounded. Therefore, it 
is of interest to PS designers and administrators to determine configurations of 
SPS to effectively implement bounded latency times.

Proposition 12.3 (Sufficient Conditions for Bounded Latency Times in SPS)

For an entity of a particular Class n in an SPS, the sufficient conditions for 
bounded latency time are given as follows:

•	 The service times of entities for all classes are bounded.
•	 The waiting line for Class n is bounded ( max ).Q n < ∞
•	 The number of entities with higher priority than Class n is finite.

Proof:

Consider an SPS with N classes of entities and with particular interest to Class 
n. The latency time of the mth entity of Class n is composed of the following:

•	 The remaining service time of the entity being served when m 
arrived, assuming there is no preemption

•	 Service times of all entity that will be served ahead of m
•	 Service time of entity m

Consider two states of the server as busy and none-busy. A busy state is 
when the server is serving entities belonging to class other than n, whereas 
a nonbusy state is when the server is serving an entity from the Class n. 
Figure 12.3 illustrates the states where yn represents the service time of enti-
ties from Class n, and z represents the service times of entities served in-be-
tween the service of entities from the Class n.

Therefore, the latency time of the mth entity of Class n is

	

x z y z y z y

y z

m m m m m

i
i

m
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m

= + + + + + +

= +
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= =
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1 1 1 1
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�

Consider the possible properties of the service times y z mi i, , and  (the num-
ber of terms in the sequence). The random variables can be either bounded or 
unbounded, and the number of terms m in the sequence can also be bounded 
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or unbounded. Table 12.2 shows that only for the case of bounded service 
times y zi i, , and bounded m, the latency time xm can be bounded.*

*	 xm, yi, and zi are bounded if there exists an X, Y, Z such that xm < X, yi < Y, and zi < Z for all 
possible values of m, and i.

TABLE 12.2

Bounded and Unbounded Latency Timesa

y zi i, m xm

Bounded Bounded Bounded
Unbounded Bounded Unbounded
Unbounded Bounded Unbounded
Unbounded Unbounded Unbounded
Bounded Unbounded Unbounded
Bounded Unbounded Unbounded
Unbounded Unbounded Unbounded
Unbounded Bounded Unbounded

a	 Combinations of bounded and unbounded ser-
vice times and number of entities ahead of m.

State:(a)

(b)

Nonbusy

Busy

z z zym ym–1 ym–1

Engineering interventions:
Truncation of service times
Truncation of waiting lines

Server
Transactions with guaranteed latency times

(with cost of late transactions)

Transactions with truncated service
(with associated cost)

Refused transactions
(with associated cost)

•
•

FIGURE 12.3
(a) Two-state server, and (b) modified PS with bounded latency times and three streams for outgo-
ing entities: served, refused, and entities with truncated service.
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Consider the case when xm is bounded. Such is the case if yi, zi, and m are 
bounded. A bounded m implies two conditions: the waiting line of Class n 
is bounded, and the number of entities that can possibly be served ahead of 
the entity of interest (i.e., has a higher priority than Class n) has an upper 
limit. A bounded yi and zi implies that the service times for all classes are 
bounded.

The first condition of Proposition 12.2 is satisfied only if service times are 
known to be bounded or are artificially bounded by ejecting entities that 
have been served for a long period of time. The second condition can be 
implemented by configuring the SPS with a limit on the number of waiting 
elements for Class n such that all entities arriving after the limit is reached 
are dropped or rerouted. The third condition is more difficult to satisfy since 
there is very little control over the arrival of entities, and most SPS applica-
tions have an infinitely many potential entities.

Systems such as banks and offices that have a defined beginning and end 
of availability times can satisfy the third condition. However, for systems 
such as e-business servers with an expected availability of almost 100% of 
the time, the number of potential entities is unlimited.

12.4.2  Bounded Latency Times in a Saturated SDPS

The conditions of bounded service times and waiting lines can be reasonably 
implemented by configuring the SPS accordingly. However, the condition of 
finite number of entities with higher priorities is a challenge to implement. 
Recall the SDPS (see Definition 11.13 in Chapter 11) where the priority incre-
ment function is defined as

	
p I p n a

p i n i
i t f t t i

i t
,

*
,

*

( ; , )+ = =
=

1
0, class queue
 if  or class  iis empty

 if  and class  is not emptyp a i n ii t i t,
*+ ≠







A unique characteristic of the SDPS is the increment of priority levels of 
classes based on the number of high-priority entity served.

Proposition 12.3: (Sufficiency Conditions for Bounded 
Latency Times in a Saturated SDPS)

For an entity of a particular Class n in an SDPS, the sufficient conditions for 
bounded entity latency times are as follows:

•	 The service times of entities for all classes are bounded.
•	 The class of interest has a bounded waiting line ( max ).Q n < ∞
•	 The differences among the initial priorities are finite, −∞ < − < +∞( ) ,, ,p pi j0 0

 
−∞ < − < +∞( ) ,, ,p pi j0 0  for all i j N, , , , .= 1 2 …



393Risks of Extreme Events in Complex Queuing Systems

Proof:

Consider parts of the proof for Proposition 12.1 where the latency time of the 
mth entity of Class n is
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where y represents the service time of entities from Class n, and z represents 
the service times of entities served in between the service of entities from 
the Class n. It was established that for xm to be bounded, yi, zi , and m must 
be bounded. Bounded yi and zi implies that the service times of entities of all 
classes must be bounded. Recall that m is the sum of the number of entities of 
higher classes served before the entities of interest and the number of entities 
of Class n, which arrived before ahead of the entity of interest. For m to be 
bounded, the number of Class n entities ahead of m must be finite. Recall that 
the initial priority level I p p p pN0 1 0 2 0 3 0 0= { , , , , }, , , ,…  and the increment variable 
ai determine how many entities of the higher class are served before an entity 
of a lower class is served. Therefore, a bounded m implies a finite difference 
among the initial priority levels { , , , , }, , , ,p p p pN1 0 2 0 3 0 0…  and a positive-valued 
increment variable ai. A bounded m implies that the waiting line for Class n 
must be bounded.

It is important to note that under specific conditions, the limit imposed 
on the waiting line and the relative initial priorities of the classes may 
determine whether the distribution function of the latency is bounded. 
Since the central limit theorem do not distinguish among distribution of 
the random variables but only the number of terms in the sequence, a very 
large number m and very disparate initial priority levels of the classes may 
result in an approximate normal distribution for the latency. Thus, m must 
be defined such that a bounded distribution is assured. 

Let the minimum upper bound of latency times associated with m exist 
and is equal to x mmax ( ). The modified distribution of the latency times ′F  
with the imposed limit m as a function of the distribution F without the 
restriction on the waiting line is

	

F P X X x m
P X

P X x m
F

F x m

’( ) ( | ( ))
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where F is the cdf of x.
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x mmax ( ) can be deduced from x z y z y z ym m m m m= + + + + + +− −1 1 1 1
… . Therefore,

	

x m z y z y z ym m m mmax (max) (max) (max) (max) (max) (m( ) = + + + + + +− −1 1 1 1� aax)

(max) (max)= +
= =
∑ ∑y zi
i

m

j
j

m

1 1

The value for yi(max) is the minimum upper bound on the service times for 
entities of the class of interest. The value for yi(max) is a function of the minimum 
upper bound on the service times for entities of the classes and the number of 
terms in the sequence. The number of terms in this sequence is known to be 1 
for Class 1 and (C + 1) for Class 2 in a PS with N = 2, and Ip p p= +( ).C, 

Propositions 12.2 and 12.3 imply modification to the PS illustrated in 
Figure 12.3. The streams of entities that were refused entry into the system 
and those whose services are truncated can be rerouted to another server 
giving rise to a multiserver PS.

12.4.3  Combinations of Gumbel Types

Conditions for PS configurations such that bounded or unbounded latency 
times for classes of entities are assured were developed in Section 12.3. The 
conditions establish guidelines for the engineering of PS and its configura-
tion. Furthermore, the conditions can eventually affect the domain of attrac-
tion of the latency times as shown in Tables 12.1 and 12.2. However, it will 
be very useful for PS designers if the domain of attraction of the resulting 
latency times can be drawn from the domains of attraction of the distribu-
tions of service times.

Consider a latency time of the mth entity as x y zm = + , where y and z are 
random variables with probability density functions fy and fz and cumula-
tive probability functions Fy and Fz, respectively. Suppose that the domain 
of attractions of Fy and Fz are known, then it would be interesting for PS 
administrators to know the domain of attraction of the cumulative proba-
bility function of x Fm x, . The knowledge on the unbounded and the bounded 
properties y and z can be sufficient to determine whether x is bounded or 
unbounded. Consider an example if both Fy and Fz have bounded distribu-
tions. Then, Fx also has a bounded distribution. Table 12.3 shows the result-
ing property of Fx for known tails of Fy and Fz.

For cases when the functions fy and fz are known, the domain of attrac-
tion of fx can be analytically determined by making use of convolution. The 
cumulative probability function of xm is

	
F x f y z y zm Y Z

y z xm

( ) ( , ),=
+ ≤
∫∫ d d

For unknown functions of fy and fz, possible sources of information are the 
limit theorems of Mucci (1976), also presented by Galambos (1987).
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12.5  Derived Performance Measures

This section develops various performance measures relevant to the trade-
off of configuration in SDPS. Section 12.5.1 develops tolerance levels for the 
risk of extremes of latencies of classes in PS. Section 12.5.2 discusses the 
degree of deficit of satisfying the maximum level of risk of extremes of laten-
cies. Section 12.5.3 defines the relative risks between pairs of classes in a PS. 
Section 12.5.4 develops a measure for the differentiation between pairs of 
classes of entity. Section 12.5.5 develops the cost functions for delayed and 
refused entities in a PS.

12.5.1  Tolerance Level for Risk

Section 12.2 established the risk of extremes of latencies for a class in PS 
with a particular configuration f. The risk R Cn

f
n( ) is a function of the thresh-

old Cn, which determines incurring unnecessary cost or system failure. The 
risk R Cn

f
n( ) is the probability that an entity of Class n will have a latency 

beyond the threshold Cn. The risk measure can then be used to gauge the 
appropriateness of the particular PS configuration f. Suppose that there is 
a prescribed level of risk that a PS administrator is willing to tolerate. That 
is, there exists a maximum tolerable level on the risk R Cn

f
n( ) such that a risk 

beyond the tolerable level is unacceptable. Unacceptable risk warrants recon-
figuring the PS.

Consider the example of e-business entities. The Log-on entities and other 
entities of the same class has a Cn = 8seconds. The tolerable level for latency 
times of this class of entity is 1 in 10,000 entities or Pr = 0.0001. A configu-
ration for the e-business server is being proposed for better utilization of 
the server hardware. However, the proposed configuration will result in 
longer latency times for the Log-on entities, with Rn

new seconds)( . .8 0 0005=
The new configuration is called an unacceptable configuration, since 
Rn

new seconds)( . .8 0 0001>

TABLE 12.3

Bounded or Unbounded Tail of the Distribution of Sum of 
Random Variablesa

y z xm

Bounded Bounded Bounded
Bounded Unbounded Unbounded
Unbounded Unbounded Unbounded

a	 Resulting property of the tail of the distribution of the sum of 
random variables with known underlying properties.
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Definition 12.4: Tolerance Level for Risk

For a PS with N classes, the tolerance levels bn for Class n N= 1 2, , ...,  is a real 
number between 0 and 1, inclusive, such that an acceptable configuration f is 
characterized by

	 Rn
f(Cn) ≤ β  for all n ∈ N

From Definition 12.4, it follows that if R Cn
f

n n( ) > b  for any n N∈ , the config-
uration f is unacceptable.

PROBLEM 12.5 (Application of βn)

Suppose an SDPS with three classes whose risks R Cn
f

n( ) are measured for two 
configurations, namely I I0

2
0
22 5 10 4 5 10= =( , , ) ( , , ).and  The risks of extremes 

of latencies are
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However, the tolerance levels for the risks of extremes of latencies are

	 b b b1
3

2
4

3
52 10 2 10 2 10= × = × = ×− − −

Comparing R C R Cn n n n
1 2( ) ( )and  with the tolerance levels bn:
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1

1 1 1
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1 1
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b b
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Configuration f = 1, SDPS with initial priority levels I0
1 2 5 10= ( , , ), results 

in a risk of extremes of latencies for Class 1 entities, which is beyond the 
tolerance level ( ( ) ).R C1

1
1 1> b  By definition, an SDPS with initial priority lev-

els I0
1 2 5 10= ( , , ) is an unacceptable configuration. Reconfiguring the SDPS 

specifically to affect the infeasibility of the configuration f = 1, the ini-
tial priority levels are adjusted to I0

2 4 5 10= ( , , ). With the new configura-
tion, R C1

2
1 1( ) .< b  However, R C2

2
2 2( ) ,> b  which still results in an infeasible 

configuration.
Problem 12.5 illustrates the case when a change in PS configuration pro-

duces an improvement in the risk of one class but deterioration in the risk 
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of one or more other classes. The result is typical of PS with high utilization 
and is known as the law of conservation (see Kleinrock (1976)).

12.5.2  Degree of Deficit

To facilitate comparison between configurations, the incremental changes in 
the risks of the classes with respect to the tolerance level can be measured. 
Particularly important is the case when the risk of extremes of latencies for a 
class of entities is greater than the tolerance level. Such a case is described as 
unacceptable and is important in evaluating a PS configuration. The degree 
of deficit between the measured risk and the tolerance level can be used to 
further gauge among the effectiveness of PS configurations in addressing the 
risk of extremes of latencies.

Definition 12.5: Degree of Deficit on Tolerance Level for Risk

For a configuration f of a PS, the degree of deficit of the tolerance levels for 
risk bn of Class n n N, , , ...,= 1 2  is

	 Gn
f = Rn

f(Cn) − βn  if Rn
f(Cn) > βn,

	 = 0	 otherwise

The degree of deficit Gn
f is a measure of how much more entities of Class n 

can be late than the tolerable number. Thus, it is desirable to have the lowest 
degrees of deficit for all classes of entities.

PROBLEM 12.6 (Application of Gn
f)

Consider the resulting risks R Cn
f

n( ) in Problem 12.5. The degree of deficits Gn
1 

and Gn
2 for the three classes of the SDPS are

	

G

G

G

1
1 3 3 3

2
1

3
1

3 10 2 10 1 10

0

0

= × − × = ×
=
=

− − −

	

G

G

G

1
2

2
2 4 4 4

3
2

0

3 10 2 10 1 10

0

=
= × − × = ×
=

− − −

A comparison of the two configurations can then be made based on the 
trade-off between the degree of deficits of Class 1 and Class 2 as shown in 
Figure 12.4.



398 Advanced Risk Analysis in Engineering Enterprise Systems

12.5.3  Relative Risks

Problem 12.6 shows the changes in the risk of extremes of latencies that can 
result from changes in the configuration of a PS. Another measure of the 
acceptability of a configuration is the comparison of the risk among classes. 
There are applications that require some degrees of preference of one class 
over another to be maintained, as in the case where such preference is being 
paid for. Consider the application of PS to Internet service providers (ISP). 
ISP often provides various levels of service to suits of clients (i.e., corporate, 
small businesses, households). The differentiation among levels of service 
can be based on guarantees on relative latency times of entities for each cli-
ent. Clients who want to have shorter latency times often pay a premium 
for the service. Such differentiation can be measured through relative risk 
between classes. However, the comparison for the risk of extremes of laten-
cies among classes is meaningful only if all the risks are measured based on 
the same threshold value. That is, a condition has to be imposed on the val-
ues of the latency threshold Cn for the risk measure R Cn

f
n( ) to be comparable.

Definition 12.6: Relative Risk between Classes

The relative risk of extremes of latencies between Class a and Class b for a 
threshold value C is

	 Hf(a,b) = Ra
f(C) − Rb

f(C)

such that a b N a b, , , ..., , .= ≠1 2
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0.00E+00
Class 1

Class 2
Affected classes Class 3

Configuration f = 1

Configuration f = 2

FIGURE 12.4
Deficits on tolerance levels. Trade-off between degree of deficits of Classes 1 and 2 associated 
with two infeasible configurations, f f= =1 2and .
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It is evident that unless H a b H a b H b af f f( , ) , ( , ) ( , )= ≠0  and H a bf ( , ) = 
−H b af ( , ). Therefore, for a PS with N number of classes, there are 
( ) !/( )! !2 2 2N N N= −  meaningful combinations of a and b for H a bf ( , ).

PROBLEM 12.7 (Application of Hf(a,b))

Consider Problem 12.5. Suppose that the risk of extremes of latencies R Cn
f

n( ) 
are measured for a single value C C n Nn = =, , , ..., .1 2  The relative risks for 
configuration f = 1 are
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For configuration f = 2, the relative risks are
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Figure 12.5 shows the resulting H a bf ( , ) values. With the change in the ini-
tial priority level of Class 1 from 2 to 4, the differentiation in risk of extremes 
of latency for Classes 1 and 2 narrowed from 2.8 × 10–3 down to 1.7 × 10−3 
while the differentiation between Classes 2 and 3 widened from 0.194 × 10−3 
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FIGURE 12.5
Relative risks, H a bf ( , ), between classes showing the most significant change between Classes 
1 and 2.
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up to 0.291 × 10−3. Differentiation between Classes 1 and 3 does not vary 
much for both configurations.

12.5.4  Differentiation Tolerance Level

This section establishes a risk tolerance level that can describe how a PS con-
figuration satisfies a maximum risk of extremes of latencies R Cn

f
n( ). An anal-

ogous measure can be developed for the relative risk between two classes 
H a bf ( , ). The acceptability of a configuration f of a PS can be judged by 
whether the minimum differentiation between two classes is satisfied.

Definition 12.7: Differentiation Tolerance Level

For a PS with N classes, the differentiation tolerance levels f( , )a b  for Class 
n N= 1 2, , ...,  is a real number between 0 and 1, inclusive, such that an accept-
able configuration f is characterized by

	 Hf(a,b) ≥ f( , )a b ,  for all a, b ∈ N

Analogous to degree of deficit of the tolerance level for risk established is 
the degree of deficit on the tolerance level for class differentiation.

Definition 12.8: Degree of Deficit on the Tolerance 
Level for Class Differentiation

For a configuration f of a PS, the degree of deficit of the tolerance levels for 
differentiation f( , )a b  of Class a and Class b is

	 J f(a,b) = f( , )a b  − Hf(a, b)  if f( , )a b  > Hf(a, b)
	 = 0	 otherwise

J a bf ( , ) can be used to gauge if configuration f is acceptable. By Definition 
12.6, a J a bf ( , ) > 0 implies that configuration f is unacceptable since the min-
imum differentiation between Class a and Class b is not satisfied. Thus, it is 
desirable for a configuration to result in the lowest degrees of deficit for all 
classes of entities.

PROBLEM 12.8 (Application of J f(a,b))

Consider Problem 12.7 in which the relative risks are obtained for two con-
figurations. For configuration f = 1,

	 H H H1 3 1 3 1 31 2 2 8 10 1 3 2 994 10 2 3 0 194 10( , ) . ( , ) . ( , ) .= × = × = ×− − −

For configuration f = 2, the relative risks are

	 H H H2 3 2 3 2 31 2 1 7 10 1 3 2 991 10 2 3 0 291 10( , ) . ( , ) . ( , ) .= × = × = ×− − −
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Suppose that the tolerance levels for differentiation f( , )a b  are

	 f f f( , ) ( , ) ( , ) .1 2 2 10 1 3 2 10 2 3 0 2 103 3 3= × = × = ×− − −

The degrees of deficit on tolerance level for class differentiation are
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Shifting from configuration f = 1 to configuration f = 2, the deficit between 
Classes 1 and 2 is eliminated. However, a deficit between Classes 2 and 3 
is created. Figure 12.6 shows magnitude of the deficit values J a bf ( , ) for the 
three pairs of classes.

12.5.5  Cost Functions

There may be application in which a bounded latency is preferred over 
the unbounded case, such as when there is heavy penalty for exceeding a 
specified latency threshold. Consider the condition of Propositions 12.1 and 
12.2 when some entities are refused entry into the PS, by either dropping or 
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FIGURE 12.6
Deficits on class differentiation: degrees of deficit J f(a,b) between classes showing the most 
significant change between pairs of classes (1,2) and (2,3). Gumbel type I plots for distribution 
of latencies for the two configurations.
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rerouting of entities to put a bound on the waiting lines. For a waiting line 
length with a cumulative probability function Fw and a limit on the waiting 
line m, the probability that an arriving entity will be refused entry into the PS 
is 1− F mw ( ). In most applications, low chances of dropping or rerouting enti-
ties and short latency times are both desired. However, consider L mmax ( ) to be 
the minimum upper bound of latency times associated with the waiting line 
limit m. Then, as m F m L mw→∞ − → →∞, ( ( )) ( ) .max1 0 and  That is, as the limit 
on the waiting line increases, the frequency of dropped entities decreases, 
but there is a corresponding increase on the extremes of latency times of enti-
ties. The trade-off between the probability entities refused entry into the PS 
and the upper bound on the latency times is ∂ −( ) ∂( )1 F m L m( ) / ( ) ,max  which 
suggests a trade-off between the cost incurred due to late entities and cost 
incurred due to refused entities. The cost due to late entity can be attributed 
to a PS configuration and is a function for the probability that an entity is late.

Definition 12.9: Cost Due to Late Entities

The cost due to a late entity of Class n n N, , , ..., ,= 1 2  is

	 SL = θn(xn),

where q is a function of the latency time of the entity. Since a late entity has 
latency beyond the threshold,

	 θn(Xn) = 0  if Xn < Cn, and

	 θn(Xn) > 0  otherwise

Definition 12.10: Cost Due to Refused Entities

The cost incurred due to a refused entity of Class n n N, , , ..., ,= 1 2  is

	 SR = ψnV

where y n is a cost multiplier, and V is an indicator variable such that
V = 1 if the entity is refused, and
V = 0 if entity is not refused.

PROBLEM 12.9 (Application of SL and SR)

Consider Problem 12.7, an SDPS with three classes of entity, configurations 
f f= =1 2and . Furthermore, consider bounded waiting line for entities of 
Class 1. The risks of extremes of latencies are
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Suppose that 1,000,000 latency times are measured with the following break-
down among classes: 350,000 entities of Class 1, 350,000 entities of Class 2, 
and 300,000 entities of Class 3. Furthermore, a number of entities of Class 1 
are refused for the two configurations: 1000 entities for f = 1 and 5000 enti-
ties for f = 2. Suppose that the cost functions are given as

	 θ1 = $0.03, θ2 = $0.02, θ3 = $0.01, and ψ1 = $0.5

Therefore, the costs for each of the two configurations are as follows:

For f = 1,

	  

( ) ( . ) $ . $ .

( ) ( . ) $ . $
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× × × × =
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For f = 2,
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Configuration f = 1 has a higher SL than configuration f = 2, but the SR for 
configuration f = 2 is higher than that for configuration f = 1, resulting in a 
higher total cost.

The cost incurred on refused entities is typically higher than for late enti-
ties of the same class, that is, y q1 1> . A refused entity can represent those 
that  are forever lost resulting in lost revenue or rerouted to other servers 
requiring additional processing or server cost.

12.6  Optimization of PS

This section develops and formulates the minimization of costs due to late 
and refused entities subject to restriction on degrees of deficits. This section 
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also shows the evaluation of the impact of the choice of Gumbel type distri-
bution in representing the tails of the distributions of the latency times of the 
classes of entity in a PS. Furthermore, this section investigates both optimis-
tic and pessimistic approaches to configuring a PS.

12.6.1  Cost Function Minimization

The basic optimization framework for a PS is to minimize costs subject 
to various constraints, where the decision variables are the configuration 
parameters of the PS. The choice among several configurations can be based 
on a chosen primary performance measure such as latency or length of wait-
ing line, degrees of deficit Gn

f  and J a bf ( , ), or derived measures such as penal-
ties and cost S SL Rand . An optimization framework for a PS with N classes 
of entity can be as follows:

	

Minimize
subject to

for all   

Z S S f

G

J a b
n a b

L R

n
f

f

, ;

( , )
, ,

( )

≤
≥

=

0

0
11, 2 ,..., N

	 (12.12)

The total cost Z in Equation 12.12 is a function of the cost due to late enti-
ties SL and the cost due to refused entity SR, both of which are functions of 
the PS configuration variable f. The constraints are the required tolerance 
level for risk measured by Gn

f and the required level for class differentiation 
measured by J a bf ( , ) for all the classes of entities.

12.6.2  Bounds on Waiting Line

In general, a derived measure Y G J a bn
f f(i.e. and, ( , )) can be obtained from 

a primary performance measure x (i.e., latency times) through the relation 
Y g x= ( ) and for a known distribution function of the latency time x:

	 P y P X g y( ) [ ( )]ϒ < = < −1 and

	 F y F g yXϒ ( ) [ ( )]= −1 	 (12.13)

In Sections 12.2 through 12.5, it has been shown that the effectiveness of a 
configuration to control latencies below a threshold and the associated cost 
can be used to determine which among several configurations is adapted. 
Furthermore, it was also shown that to bound the latencies for classes of 
entities, the length of waiting lines have to be bounded. Putting bounds 
on waiting lines may result in costs associated with rerouting of entities 
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to other servers or dropping of entities resulting in lost entities, both cases 
referred to as refused entities. As such, there is a trade-off between the cost 
of entity latencies exceeding thresholds and entities being rerouted or lost. 
Aside from the primary performance measure x, latency times previously 
discussed, consider another primary measure Q, number of entities wait-
ing for service at a given time, and their respective derived cost measure 
Y g X Z h Q= =( ), ( ).and  Specifically,

	
Z

h Q Q Q
=

> >



( ) ’0
0 otherwise

′Q  is the bound imposed on entity waiting line.
Then for given distributions F FX Qand , Equation 12.13 becomes

	 P y P X g y( ) [ ( )]ϒ < = < −1  and F y F g yXϒ ( ) [ ( )]= −1 	 (12.14)
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	 (12.15)

Since the analysis covers all the classes of the SDPS, Equations 12.14 and 
12.15 translate to the following equations with consideration to the classes, 
the configurations, and the hypothesized domain of attraction:

	 F y F g yf i n
X
f i n

ϒ
, , , ,( ) [ ( )]= −1 	 (12.16)

	
F z Q

F h z F Q

F QZ
f i n Q

f i n
Q

f i n

Q
f i n

, ,
, , , ,

, ,( ; ’)
[ ( )] ( ’)

( ’)
=

−
−

−1

1
	 (12.17)

where f = { , , ...}1 2  are the configurations under consideration, i ∈{I, II, III} is 
the hypothesized domain of attraction of FX and FZ, and n N∈{ , , ..., }1 2  are the 
classes of entities in the SDPS.

Assuming the density functions associated with Equations 12.16 and 12.17 
exist, the problem of minimizing the total cost of refused and delayed enti-
ties of Equation 12.12 can be reformulated as

	 Minimize total cost = E Y E Z Q Q yf y y zf z Q z[ ] [ | ’] ( ) ( ; ’)+ > = +∫ ∫d d
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Subject to:

Derived measure constraints: P y P z Z( ’) , ( ’)> ≅ > ≅ϒ 0 0

Primary measure constraints: P x X( ’) ,> ≅ 0

The decision variables are the bounds Q’ and configuration f.

Impact of the Gumbel Type

From the previous sections, it was shown that the tail of the distribution 
function FX can be approximated by an equivalent tail and can be described 
as belonging to the Gumbel type I, II, or III domain of attraction. The hypoth-
esized domain of attraction of the distribution FX may also affect the value 
obtained in Equation 12.12. The further one goes out to the tail ( F yY

i ( ) →1 or 
F yY

i ( ) →0), the more significant the effect of the choice of domain of attrac-
tion. Therefore, Equation 12.12 is actually

	 F y F g yf i
L
f i

ϒ
, ,( ) [ ( )]= −1

where f = { , , ...}1 2  are the configurations under consideration and i ∈{I, II, III} 
is the hypothesized domain of attraction of FX. One way to choose among 
the configuration is to consider the optimum Y for a given probability of 
nonexceedance NE, that is,

	 Min or Max
f

{ },Yf i

	 such that F YY
f i

f i
,

,( )− =1 NE 	 (12.17)

Yf i,  is the value with a nonexceedance probability NE derived from X 
resulting from configuration f obtained by hypothesizing that the domain of 
attraction of FX is Gumbel type i.

12.6.3  Pessimistic and Optimistic Decisions in Extremes

To minimize or to maximize in Equation 12.17 depends on the nature of the 
derived measure Yi f, , whether it is a cost or penalty to be minimized or a rev-
enue to be maximized. One can take a pessimistic approach and minimize 
the maximum penalties and maximize the minimum revenues, or an opti-
mistic approach and minimize the minimum penalties and maximize the 
maximum revenues. The problem of choosing among configuration f can be 
formulated as follows:

For penalty Yi f,  ,

	 Pessimistic: f = idx Y
f i i jmin{max{ }}, 	 (12.18)

	 Optimistic: f = idx
f i i jmin{min{ }},° 	 (12.19)
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For revenue Yi f, ,

	 Pessimistic: f = idx
f i i jmax{min{ }},° 	 (12.20)

	 Optimistic: f = idx
f i i jmax{max{ }},° 	 (12.21)

i f∈ ∈{I, II, III}, { , , ...}.1 2

The operator idx max/min{}, is the search for the index of the maximum or 
the minimum elements(s) in the set in {}, that is, z idx x x= max/min{ , , ...}1 2  if 
x x x2 1 2= max/min{ , , ...}.

PROBLEM 12.10 (Impact of Gumbel Type)

Consider the Class 2 entity latencies of the e-business example for two SDPS 
configurations Ip

1 30 15 10= ( , , ) and Ip
2 30 25 10= ( , , ). The Gumbel type-I dis-

tribution parameters are estimated using the method of moments, and the 
Gumbel types II and III parameters are estimated using the following rela-
tions for the two-parameter Gumbel types II and III adapted from Castillo 
(1988):

	

x x

x x

I II II I II I
II

I III III I

= − = =

= − − = −

log( ), log( ),

log( ),

l l d d
b

l l

1

llog( ),d d
bIII I

III

= 1

The subscripts II and III pertain to the Gumbel types. The parameters are 
shown in Table 12.5. The corresponding Gumbel type I plots are shown in 
Figure 12.7.

Consider a measure of damage given by Y = 100L in $ units of cost and a 
chosen probability of nonexceedance NE = 0.999. Then, F Y F g Yy X( ) [ ( )]= −1  for 
the two configurations are shown in Figure 12.8.

TABLE 12.4

Domains of Attraction of Latency Times

fx fy fLm

G-I G-I G-I, G-II, or G-III 
G-I G-II G-I or G-II
G-I G-III G-I or G-II
G-II G-II G-I or G-II
G-II G-III G-I or G-II
G-III G-III G-III



408 Advanced Risk Analysis in Engineering Enterprise Systems

TABLE 12.5

Estimated Parameters for Problem 12.9a

Configuration (f) Gumbel Type I Gumbel Type II Gumbel Type III

λI I λII δII βII λIII δIII βIII

1 563 165 0 552 4.42 5000 4436 25.5
2 463 117 0 457 5.05 5000 4536 37.2

a	 Estimated parameters for the Gumbel types I, II, and III domains of attraction for the maxima 
of latencies for two configurations of SDPS applied to e-commerce entities.
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The resulting values of (3) for NE = 0.999 are
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Y

Y
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1

1
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172 000

264 000

162 000

128 000

,

,
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=

=

=

III

III

=

=

$ ,

$ ,,

180 000

124 0002Y

Applying Equation 12.18 results in choice of f = 2 as illustrated in Table 12.6. 
First, the maximum cost for configurations 1 and 2 are identified (i.e., $264 
for f = 1 and $180 for f = 2). Second, the minimum among the maximum 
cost is selected (i.e., $180 for f = 2). Therefore, configuration 2 and the choice 
of the Gumbel type II are the optimal decisions based on a pessimistic cost 
analysis.

Another way to choose the appropriate configuration is to compare the 
probability of nonexceedance for a given value of Yf,i. Then Equation 12.17 
can be modified to

	
Min Max/ { },

f

f iP

	 such that F Y PY
f i f i, ,( ) .=

P f i,  is the nonexceedance probability of Y derived from L resulting from 
configuration f obtained by hypothesizing that the domain of attraction of 
FL is Gumbel type i.

PROBLEM 12.11 (Comparison Based on Cost Yf,i)

As an example, consider a Y = $ 150,000. The corresponding Pf,i for the two 
configurations with different hypothesized domain of attraction for the 
maxima of the latency x are

TABLE 12.6

Total Cost for Problem 12.9a

Configuration

Gumbel Type of FX for Maxima

I II III

1 172,000 264,000 162,000
2 128,000 180,000 124,000

a	 Cost in $ associated with NE = 0.999 and the result of 
applying f = idx min

f  
{max

i  
{Yi,j}} with f = 2 and G-II as 

the optimal solution (bold).
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	 NE1(G−I) = 9.966 × 10−1

	 NE1(G−II) = 9.880 × 10−1

	 NE1(G−III) = 9.977 × 10−1

	 NE2(G−I) = 9.999 × 10−1

	 NE2(G−II) = 9.975 × 10−1

	 NE3(G−III) = 9.999 × 10−1

Since the higher the probability of nonexceedance for a cost measure is bet-
ter, the problem is similar to choosing among measures of benefits, thus 
Equation 12.20, f idx Y

f i i j= min{max{ }},  can be used in choosing the configura-

tion. Table 12.7 shows the results and highlights the chosen configuration, 
f = 1.

12.7  Summary

This chapter established sufficient conditions for unbounded latency 
times of entities in a saturated PS. It was established that regardless of 
the underlying distributions of the service times and arrival rates of enti-
ties, the latency times are unbounded for a saturated PS. A PS that is not 
saturated, the combinations of unbounded and bounded interarrival and 
service times, the domain of attraction of the waiting times has not been 
determined. These conditions provide insights in configuring PS wherein 
certain classes of entity do not have guaranteed latency times and form the 
foundation for the establishment of conditions for bounded latencies.

This chapter also established sufficient conditions for bounded latency 
times. Proposition 12.1 states that for a class of entities in an SPS to have 
bounded latency times, the waiting lines and service times of all entities 
have to be bounded. Difficulties on implementing the conditions arise due 
to infinitely many potential entities. However, an advantage presented by 
configuring a SDPS can result in bounded waiting lines even if there are 

TABLE 12.7

Nonexceedance Probabilities of Costsa

Configuration

Gumbel Type of FX for Maxima

I II III

1 9.966 × 101 9.880 × 10−1 9.977 × 10−1

2 9.999 × 10−1 9.975 × 10−1 9.999 × 10−1

a	 Nonexceedance probabilities associated with cost = $ 
150,000 and the result of applying f idx Y

f i i j= min{max{ }}.,
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infinitely many potential entities (Proposition 12.2). The establishment of 
the conditions provides a foundation in configuring SDPS wherein certain 
classes of entity need to have guaranteed latency times.

Furthermore, this chapter developed various performance measures rele-
vant to the trade-off of configuration in SDPS for various field of applications. 
The performance measures are based on the risk of extremes of latencies for 
the classes of entities in PS, R Cn

f
n( ). These measures are tolerance levels for 

the risk of extremes of latencies of classes bn , degree of deficit of satisfying 
the tolerance level of risk of extremes of latencies G R Cn

f
n
f

n n= −( ) ,b  relative 
risks between pairs of classes H a bf ( , ), differentiation R C R Ca

f
b
f( ) ( ),−  limit on 

the differentiation between pairs of classes J a bf ( , ), cost functions for late 
entity SL, and cost for refused entities SR. Examples are provided to illustrate 
the use of the performance measures.

Finally, this chapter has presented the optimization of PS through con-
figuration. The objective of choosing among configuration of the PS is for-
mulated as minimization of total cost due to both late and refused entities. 
The constraints of the formulation are the restrictions on degrees of deficits 
developed in Chapter 9. Moreover, the impact of the Gumbel type distribu-
tion as the hypothesized domain of attraction can also be examined in terms 
of the optimistic and pessimistic approaches. Since the tail of most continu-
ous distributions can be approximated by one of the three Gumbel type dis-
tributions, an envelope of approximates can be created. The envelope then 
describes the best and worst estimates.

Questions and Exercises

	 1.	Define the following terms in a narrative manner, that is, not using 
equations, and describe their relevance in the context of PS.

	 (A)	 Nonexceedance probability
	 (B)	 Latency threshold based on reliability Cn

	 (C)	 Latency threshold based on cost function Cn

	 (D)	 Risk of a Class
	 (E)	 Tolerance level for risk
	 (F)	 Degree of deficit on tolerance level for risk
	 (G)	 Relative risk between classes
	 (H)	 Differentiation tolerance level
	 (I)	 Degree of deficit on tolerance level for class differentiation
	 (J)	 Cost due to late entities
	 (K)	 Cost due to refused entities
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	 2.	What can be the reasons for measuring risk of extremes of latency 
times for each of the classes in a PS?

	 3.	Consider a dentist’s office where patients wait for service of a dental 
doctor and a dental hygienist. Describe several scenarios and condi-
tions under which patients may have extremely long waiting times.

	 4.	A data-processing system used by a credit card company is consid-
ered to be reliable if it can process any request for a data within 5 
seconds after a request has been placed (e.g., a request to verify a 
card holder’s credit limit). Describe how this system reliability can 
be related to the latency threshold based on reliability as described 
in Definition 12.2a.

	 5.	Costumers of fast-food restaurants lining up at the drive through 
servers are known to leave the line if made to wait for more than 
a certain time based on the time of the day and presence of other 
nearby fast-food restaurants. Describe how this waiting time thresh-
old for costumers can be related to the latency threshold based on 
cost function as described in Definition 12.2b.

	 6.	Consider the PS described in Problem 12.1. However, closer analy-
sis of incoming entities suggests that any incoming entity has equal 
chances of being any of the three classes. What are the risks of 
extreme latencies for each of the three classes?

	 7.	Consider a data-processing system used by a credit card company 
where length of times needed to accomplish a request for data are 
mutually independent and have common distribution.

	 (A)	 Based on this information, are the times requests have to wait 
bounded or unbounded? Please support your answer.

	 (B)	 What restrictions have to be placed on this data-processing sys-
tem to change the times requests have to wait from bounded (or 
unbounded) to unbounded (or bounded)? Please support your 
answer.

	 8.	Consider a dentist’s office where patients wait for service of a den-
tal hygienist. To improve the overall satisfaction of patients, the 
office manager decided to make sure no patient waits longer than a 
specified length of time even during the busiest periods of the day. 
Currently, there are two categories of patients, those that have emer-
gency situations, for example, in pain, and nonemergency situations, 
for example, periodic check-up. Describe how the following suffi-
ciency conditions for bounded latency times in a saturated SDPS 
(Proposition 12.3) can be implemented in this situation (the first of 
these conditions has already been described as an aid).

	 (A)	 Sufficient condition: The service times of entities for all classes 
are bounded. Implementation: regardless of a patient’s reasons 
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for being in the dental office or the procedures that needs to 
be performed, patients cannot be attended longer than a certain 
length of time.

	 (B)	 Sufficient condition: The class of interest has a bounded waiting 
line ( max )Q n < ∞

	 (C)	 Sufficient condition: The differences among the initial priorities 
are finite, −∞ < − < +∞( , , ,pi pjo o)  for all i j, , , ...,= 1 2 N.

	 9.	Consider Problem 12.5 (Application of βn). Instead of what was ini-
tially provided, suppose that the tolerance levels for the risks of 
extremes of latencies are

	 b b b1
3

2
5

3
77 10 2 10 5 10= × = × = ×− − −

Compare the two configurations based on the risks of each of the Classes.
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A  Bernoulli Utility and the 
St. Petersburg Paradox

As discussed in Chapter 2, the literature on risk and decision theory is 
deeply rooted in mathematics and economics. The study of risk is the study 
of chance and choice. Probability theory is the formalism to study chance 
and decision theory is the formalism to study choice. Their union provides 
the formalism to study risk.

The importance of combining the study of chance and the study of choice 
was recognized by Swiss mathematician Daniel Bernoulli (1700–1782) in his 
1738 essay “Exposition of a New Theory on the Measurement of Risk.” In 
that essay, Bernoulli recognized that taking a risk is a choice to gamble on 
an event whose outcome is uncertain. However, a favorable or unfavorable 
outcome is a personal determination—one influenced by a person’s view 
of value or worth. Bernoulli reasoned a person’s wealth position influences 
their choice to engage in a risky prospect. His integration of chance, choice, 
and wealth into a mathematical theory of risk ultimately became the founda-
tions of economic science. Bernoulli’s motivation for this theory was his solu-
tion to a famous problem that became known as the St. Petersburg paradox.

A.1.1  The St. Petersburg Paradox*

The St. Petersburg paradox began as the last of five problems posed by 
Daniel Bernoulli’s cousin Nicolas Bernoulli (1687–1759) to Pierre Raymond 
de Montmort (1678–1719). Montmort was a French mathematician famous 
for his book Essay d’analyse sur les jeux de hazard (1708). This work was a trea-
tise on probability and games of chance. A second edition was published in 
1713. This edition included discussions on all five problems; the last problem 
become known as the St. Petersburg paradox.

*	The St. Petersburg paradox got its name from Daniel Bernoulli’s publication of his essay in 
Papers of the Imperial Academy of Sciences in Petersburg, Vol. 5, 175–192 (1738), an academy where 
he held an appointment from 1725–1733. Daniel Bernoulli returned to his academic roots 
at the University of Basel in 1733 but remained an honorary member of the St. Petersburg 
Academy of Sciences, where he continued to publish many of his scientific works.



416 Advanced Risk Analysis in Engineering Enterprise Systems

In his 1738 essay, Daniel Bernoulli’s statement of his cousin’s the fifth prob-
lem was as follows: 

Peter tosses a coin and continues to do so until it should land ‘heads’ 
when it comes to the ground. He agrees to give Paul one ducat if he gets 
‘heads’ on the very first throw, two ducats if he gets it on the second, 
four if on the third, eight if on the fourth, and so on, so that with each 
additional throw the number of ducats he must pay is doubled. Suppose 
we seek to determine the value of Paul’s expectation.

To address this question, let LX be a lottery with possible outcomes 
{ , , , } { , , , , },x x x1 2 3 1 2 4 8… …=  with xn denoting the amount of ducats Paul wins 
from Peter on the nth coin toss. The probability that heads first appears after 
n tosses is pn

n= ( / ) .1 2  Figure A.1 is the probability function for LX . From 
Definition 3.8, the expected value of LX is

E L E XX( ) ( ) ( ) ( ) ( ) ( )≡ = + + + + = + + + + = ∞
1
2

1
1
4

2
1
8

4
1

16
8

1
2

1
2

1
2

1
2

… … � (A.1)

From Equation A.1, Paul should expect an infinite gain from this lottery. If 
the expected value is used as the decision rule* to enter this game, then Paul 
should be willing to pay any finite entry fee to play with the expectation 

*	 Seventeenth century Dutch mathematician Christiaan Huygens (1629–1695) introduced the 
concept of expected value as a decision rule for whether to engage in games with risky pros-
pects; however, in some games of chance this rule violates common sense as illustrated by the 
St. Petersburg paradox.

0.5
P(n)

P(n)P(n) = Probability that heads
first appears after n tosses 0.015625

0.0078125

0.00390625
0.00195313

0.000976563
0.25

0.125
0.0625

0.03125
1 2 3

Number of tosses n of a fair coin
4 5

6 7 8 9 10

n

n

FIGURE A.1
St. Petersburg game probability function.
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of an infinite monetary gain. However, given the probability function for 
this lottery (Figure A.1) the chances of realizing increasingly higher payoffs 
becomes rapidly improbable with each toss after the first toss of the coin. 
Hence, most people would be willing to pay only a small entry fee to play 
this game despite the expected infinite gain. This is the paradox posed in  
Nicolas Bernoulli’s problem five.

To address this paradox, Daniel Bernoulli (1738) recognized that 

the determination of the value of an item must not be based on its price, 
but rather on the utility it yields. The price of the item is dependent 
only on the thing itself and is equal for everyone; the utility, however, 
is dependent on the particular circumstances of the person making the 
estimate. Thus there is no doubt that a gain of one thousand ducats is 
more significant to a pauper than to a rich man though both gain the 
same amount.

Bernoulli (1738) also observed that

no valid measurement of the value of a risk can be obtained without 
consideration being given to its utility, that is to say, the utility of what-
ever gain accrues to the individual or, conversely, how much profit is 
required to yield a given utility. However it hardly seems plausible to 
make any precise generalizations since the utility of an item may change 
with circumstances . . . a poor man generally obtains more utility than 
does a rich man from an equal gain.

Bernoulli (1738) further recognized that

any increase in wealth, no matter how insignificant, will always result in 
an increase in utility which is inversely proportionate to the quantity of 
goods already possessed.

With this proposition, Daniel Bernoulli identified an economic law that 
would become known as diminishing marginal utility. The stage was set for 
joining chance, choice, and wealth into a mathematical theory of economic 
decisions by individuals to engage in prospects with uncertain outcomes.

A.1.2  Use Expected Utility, Not Expected Value

With the European age of enlightment well underway, Swiss mathemati-
cian Daniel Bernoulli (1700–1782) introduced an alternative to the expected 
value as a way to solve the St. Petersburg paradox and other games of chance. 
In his 1738 essay, Daniel Bernoulli (1738) proposed using expected utility, 
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not expected value, as the decision rule to engage prospects with uncertain 
outcomes: 

Meanwhile, let us use this as a fundamental rule: If the utility of each 
possible profit expectation is multiplied by the number of ways in which 
it can occur, and we then divide the sum of these products by the total 
number of possible cases, a mean utility [moral expectation] will be 
obtained, and the profit which corresponds to this utility will equal the 
value of the risk in question [Bernoulli, 1738].

Bernoulli chose a log utility function to demonstrate a resolution of the St. 
Petersburg paradox. Consider the log utility function U x xi i( ) ( ).= Log  This 
function generates a cardinal utility associated to each outcome xi from the 
St. Petersburg lottery LX , where

	
L x p x p x p x pX = =( , ; , ; , ; , ; ) ( , ; , ; , ; , ; )1 1 2 2 3 3 4 4

1
2

1
2

1
2

1
2

1 2 4 82 3 4… …

From Chapter 3, Definition 3.7, the expected utility of lottery Lx is

	

E U L E U X p U x p U x p U x p U xX( ( )) ( ( )) ( ) ( ) ( ) ( )
(

= = + + + +
=

1 1 2 2 3 3 4 4
1
2 1

…

Log )) ( ) ( ) ( )

( ) (

+ + + +

= =−

=

∞

∑

1
2

1
2

1
2

1
2

1

1

2 3 42 4 8

2 2

Log Log Log

Log Log

…

n
n

n

)) .= 0 30103 	

Seen in Figure A.2 the above infinite series converges to Log(2). Thus, Paul 
obtains a finite gain from this lottery if the expected utility is the decision rule 
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pnU(xn) = Log(2n–1)
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n

FIGURE A.2
St. Petersburg game with log utility.
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to enter this game instead of the expected value. With this rule, Paul should 
not pay an entry fee of more than 10 22Log( ) =  ducats to play this version of the 
St. Petersburg lottery. 

Bernoulli’s use of log utility not only solved the St. Petersburg paradox but  
the solution presented in his 1738 essay is considered the birth of mathemati-
cal economics and a formal theory of risk. In this work, Bernoulli introduced 
a mathematical theory of risk aversion and the law of diminishing marginal 
utility – which assumes persons have decreasing risk aversion with increas-
ing wealth. Bernoulli chose the function 1/W to represent this observed 
human trait, where W is a person’s wealth position.

Bernoulli’s notion of expected utility (instead of expected value) as a rule 
for assessing the merits of engaging in risky prospects was innovative. It was 
the first time personal measures of worth were directly captured into a risk 
calculus. Despite Bernoulli’s clever solution to this paradox, 200 years would 
past before mathematicians John von Neumann and Oskar Morgenstern 
(1944) extended these ideas into a formal theory of rational decision making 
under risk.

Questions and Exercises

	 1.	 In the St. Petersburg game, compute the probability of a payoff equal 
to $1,048,576. How many coin flips are needed to receive this payoff?

	 2.	Solve the St. Petersburg paradox if the Bernoulli utility function is 
U W W( ) =  by showing the expected utility of the game converges 
to the finite value of $2.91.  

	 3.	Create a computer simulation of the St. Petersburg game and simu-
late 5000 game plays. Suppose there is an entry fee of $10 per game 
play. From your simulation results, answer the following:

	 (A)	� What payoff occurred most frequently? Develop a frequency 
distribution of the payoffs from your simulated game and derive 
their occurrence probabilities.

	 (B)	� From your simulated game, what is the occurrence probability 
of the maximum payoff? How many trials were needed for the 
maximum payoff to first appear? Given the entry fee, what was 
your net earnings if you kept playing the game until the maxi-
mum payoff was achieved?

	 (C)	� Figure A.3 presents the results from a computer simulation of 
the St. Petersburg game played 1,000,000 times, with an entry 
fee of $10 per game play. The maximum payoff was $524,288. 
It took game play 718,550 for this payoff to occur, which meant 
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tails appeared on 19 consective coin tosses before a head first 
appeared on toss number 20 (with payoff = 219). If, on this game 
play, a head first appeared on toss number 21, then the player 
would have won $1,048,576. However, as shown in Figure A.3, 
even in a million plays of this game the million dollar payoff 
never occurred! Expecting such a payoff is an extremely unlikely 
event!

How do your simulation results in Part (B) compare to these findings?

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

Payoff Won
Number of Times Payoff 

Occurred Probability

$524,288 1 0.000001
$131,072 1 0.000001
$65,536 5 0.000005
$32,768 11 0.000011
$16,384 30 0.00003
$8,192 77 0.000077
$4,096 119 0.000119
$2,048 245 0.000245
$1,024 494 0.000494
$512 947 0.000947
$256 1970 0.00197
$128 3867 0.003867
$64 7806 0.007806
$32 15712 0.015712
$16 31287 0.031287
$8 62578 0.062578
$4 124728 0.124728
$2 249575 0.249575
$1 500547 0.500547

Sum 1,000,000 1

Probability

Payoff

FIGURE A.3
St. Petersburg game simulation results: 1,000,000 game plays.
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