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PREFACE

This really is the golden age of Mathematics. It has been said that half
the Mathematics ever created has been in the last 100 years and that half
the mathematicians who have ever lived are alive today. We have seen such
achievements as the resolution of the four-colour problem and Fermat’s
last theorem, with the latter being a special manifestation of a much more
general result!

This book consists of chapters that deal with important topics in
Biomathematics. A glance through any modern textbook or journal in the
fields of ecology, genetics, physiology or biochemistry reveals that there
has been an increasing use of mathematics, which ranges from the solu-
tion of complicated differential equation in population studies to the use of
transfer functions in the analysis of eye-tracking mechanisms. This volume
deals with Applied Mathematics in Biology and Medicine and is concerned
with applied mathematical models and computer simulation in the areas of
Molecular and Cellular Biology, Biological Soft Tissues and Structures as
well as Bioengineering.

In this volume an attempt has been made to cover biological background
and mathematical techniques whenever required. The aim has been to for-
mulate various mathematical models on a fairly general platform, making
the biological assumptions quite explicit and to perform the analysis in rel-
atively rigorous terms. I hope, the choice and treatment of the problems will
enable the readers to understand and evaluate detailed analyses of specific
models and applications in the literature.

The purpose of bringing out this volume on Biomathematics dealing
with interdisciplinary topics has been twofold. The objectives are to pro-
mote research in applied mathematical problems of the life sciences and
to enhance cooperation and exchanges between mathematical scientists,
biologists and medical researchers. This volume has both a synthetic and
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analytic effect. The different chapters of the volume have been mostly con-
cerned with model building and verification in different areas of biology and
the medical sciences.

I believe people in the entire spectrum of those with interest in ecology,
from field biologists seeking a conceptual framework for their observations
to mathematicians seeking fruitful areas of application, will find stimulation
here. It may so happen that some readers may find some parts of this volume
trivial and some of the parts incomprehensible. Keeping this in view the
extensive bibliographies given at the end of each chapter do attempt to
provide an entry to the corresponding areas of study.

For over 35 years I have been engaged in teaching and research at several
well-known institutions of India, Germany and North America. Publication
of the series of books has been the fruit of a long period of collaboration
together with relentless perseverance. My labour will be deemed amply
rewarded if at least some of those for whom the book is meant derive
benefit from it.

I feel highly indebted to the contributors of this volume who have so
kindly accepted my invitation to contribute chapters. The enormous plea-
sure and enthusiasm with which they have accepted my invitation have
touched me deeply, boosting my interest in the publication of the book.

I constantly remember the extent of care my parents have taken to
impart proper education to me. I am highly indebted to Srimat Swami
Shankaranandaji Maharaj, seventh President of the Ramakrishna Math and
the Ramakrishna Mission, Belur Math, Swami Tejasanandaji and Swami
Gokulanandaji, the then Principal and Vice-Principal of the Ramakrishna
Mission Vidyamandira, Belur Math and to the monastic members of the
Ramakrishna Mission Calcutta Students’ Home, Belgharia for their kind
guidance and suggestions and for instilling in me, while I was still a col-
lege and university student, a deep sense of total involvement in pursuing
academic goals and a strong commitment to human values.

It is a pleasure to acknowledge the moral support, help and encourage-
ment that I have been receiving constantly in all my academic activities
from my wife Shorasi and my children Subhas, Sumita and Sudip.

LI.T. Kharagpur J. C. Misra
January, 2005
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CHAPTER 1

DETECTING MOSAIC STRUCTURES IN DNA
SEQUENCE ALIGNMENTS

DIRK HUSMEIER

This article first provides a concise introduction to the statistical approach to
phylogenetics. It then describes a new method for detecting mosaic structures
in DNA sequence alignments, which is based on combining two probabilis-
tic graphical models: (1) a taxon graph (phylogenetic tree) representing the
relationships among the taxa, and (2) a site graph (hidden Markov model)
representing spatial correlations between nucleotides.

1. Introduction

The recent advent of multiple-resistant pathogens has led to an increased
interest in interspecies recombination as an important, and previously
underestimated, source of genetic diversification in bacteria and viruses.
The discovery of a surprisingly high frequency of mosaic RNA sequences
in HIV-1 suggests that a substantial proportion of AIDS patients have
been coinfected with HIV-1 strains belonging to different subtypes, and
that recombination between these genomes can occur in vivo to generate
new biologically active viruses [25]. A phylogenetic analysis of the bacterial
genera Neisseria and Streptococcus has revealed that the introduction of
blocks of DNA from penicillin-resistant non-pathogenic strains into sensi-
tive pathogenic strains has led to new strains that are both pathogenic and
resistant [16]. Thus interspecies recombination, illustrated in Figs. 8 and 9,
raises the possibility that bacteria and viruses can acquire biologically
important traits through the exchange and transfer of genetic material.

In the last few years, a plethora of methods for detecting interspecies
recombination have been developed — following up on the seminal paper
by John Maynard Smith [16] — and it is beyond the scope of this article
to provide a comprehensive overview. Instead, the focus will be on a novel
approach, in which two probabilistic graphical models are combined: (1) a
taxon graph (phylogenetic tree) representing the relationships among the
species or strains, and (2) a site graph (hidden Markov model) representing

1
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interactions between different sites in the DNA sequence alignments. While
at present this approach is still limited to deal with only small numbers
of species or strains simultaneously, it has two advantages over existing
(mostly heuristic) methods: first, it can predict the locations and break-
points of recombinant regions more accurately than what can be achieved
with most existing techniques. Second, it provides a proper probabilistic
generative model. This implies that well-known methods from statistics,
like maximum likelihood, can be applied to estimate the parameters. It also
renders the model amenable to established statistical methods of hypothesis
testing and model selection.

The article is organized as follows. Section 2 provides a brief intro-
duction to the statistical approach to phylogenetics. Section 3 explains
the biological process of interspecific recombination. Section 4 provides a
short recapitulation of hidden Markov models. Section 5 discusses a hybrid
model — combining phylogenetic trees with hidden Markov models — for
detecting recombination in DNA sequence alignments. Also, different ways
of estimating the model parameters are discussed. Section 6 describes sev-
eral DNA sequence alignments, on which the proposed model and training
algorithms are tested. The results of these tests are discussed in Sec. 7.
Finally, Sec. 8 contains a short summary and an outlook on future work.

2. A Brief Introduction to Phylogenetics
2.1. Topology and parameters of a phylogenetic tree

The objective of phylogenetics is to infer the evolutionary relationships
among different species or strains and to display them in a tree-structured
graphical model called a phylogenetic tree. An example is given in Fig. 1.
The leaves of the (unrooted) phylogenetic tree represent contemporary
species, like chicken, frog, mouse, etc. The inner or hidden nodes repre-
sent hypothetical ancestors, where a splitting of lineages occurs. These
so-called speciation events lead to a diversification in the course of evo-
lution, separating, for example, warm-blooded from cold-blooded animals,
birds from mammals, primates from rodents, and so on. A phylogenetic tree
conveys two types of information. The topology defines the branching order
of the tree and the way the contemporary species are distributed among
the leaves. For example, from Fig. 1 we learn that the mammals — human,
chicken, mouse, and opossum — are grouped together, and are separated
from the group of animals that lay eggs — chicken and frog. Within the
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Frog GCTTGACTTCTGAGGTT
Chickkn GCGTAACTTCACATGAT
Human GCGTCACTTGAGACGCT
Rabbit GCGTCACTTGAGACGCT
Mouse GCGTCACTTGACAGGCT
Opossum GCGTCACTTGAGACGCT

Human Mouse

Opossum
Rabbit
Chicken
Frog

Fig. 1. Phylogeny and DNA sequence alignment. The figure shows a phylogenetic
tree for six species and a subregion of the DNA sequence alignment from which it is
inferred. The topology of the tree is the branching order, that is, the way the species
are distributed across the leaf nodes. The parameters of the tree are the branch lengths,
which represent phylogenetic time.

former group, opossum is grouped out, since it is a marsupial and there-
fore less closely related to the other “proper” mammals. Exchanging, for
instance, the leaf positions of opossum and rabbit changes the branching
order and thus leads to a different tree topology. For n species there are,
in total, (2n — 5)!! different (unrooted) tree topologies, as can easily be
proved by induction (see, for instance [4, Chap. 7]). In what follows, we
will use the integer variable S € {1,2,...,(2n — 5)!1} to label the different
tree topologies.

The second type of information we obtain from a phylogenetic tree
are the branch lengths, which represent phylogenetic time, measured by
the average amount of mutational change. For example, Fig. 1 shows a
comparatively long branch leading to the leaf with frog. This suggests that
the splitting of the lineages separating frog from the other animals hap-
pened comparatively long ago, that is, earlier than the other speciation
events. This is a reasonable conjecture as frog is the only cold-blooded ani-
mal, whereas all the other animals are warm-blooded. A (unrooted) tree
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for n species has n — 2 inner nodes, and thus m=n+(n—-2)—1=2n-3
branches. In what follows, individual branch lengths will be denoted by
w;, and the total vector of branch lengths will be denoted by w =
('wl, ey 1.U2n_3).

2.2. DNA sequences and sequence alignments

We now need a method to infer the correct topology of a tree and its
branch lengths for a given set of species. As the driving force for evolution
are mutations, that is, errors in the replication of DNA, it is reasonable to
base our inference process on this information. This approach has recently
become viable by major breakthroughs in DNA sequencing techniques. In
July 1995, the entire 1.8 million base pairs of the genome of Haemophilus
influenzae, a small Gram-negative bacterium, was published. Since then,
the amount of DNA sequence data in publicly accessible data bases has been
growing exponentially and is now about to claim its biggest triumph: the
complete 3.3 billion base-pair DNA sequence of the entire human genome
(for which a first draft was already released in June 2000).

DNA is composed of an alphabet of four nucleotides, which come in two
families: the purines adenine (A) and guanine (G), and the pyrimidines
cytosine (C) and thymine (T). DNA sequencing is the process of determin-
ing the order of these nucleotides. After obtaining the DNA sequences of
the taxa of interest, we want to compare homologous subsequences, that
is, regions of the genome that have been acquired from the same common
ancestor. Also, one has to allow for nucleotide insertions and deletions. For
example, a direct comparison of the sequences

A C G TTATA
A G T C A T A

gives the erroneously small count of only a single site with identical
nucleotides. This is due to the insertion of a C in the second position of
the first strand, or, equivalently, the deletion of a nucleotide at the second
position of the second strand (the insertion of a so-called gap). A correct
comparison leads to

A CGTTAT A
A - G T C A T A

which suggests that the sequences differ in only two positions. The pro-
cess of (1) finding homologous DNA subsequences and (2) correcting for
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insertions and deletions is called DNA sequence alignment. A standard
algorithm is Clustal-W, discussed in [28]. The details are beyond the scope
of this article.

Figure 1, top, shows a small section of the DNA sequence alignment
used for inferring the tree at the bottom of Fig. 1. Rows represent different
species or strains (generic name: taxa), columns represent different sites or
positions on the DNA. At the majority of sites, all nucleotides are identi-
cal, which reflects the fact that the compared sequences are homologous.
At certain positions, however, differences occur, resulting from mutational
changes during evolution. In the fifth column, for instance, human, rabbit,
mouse, and opossum have a C, chicken has an A, and frog has a G. This
reflects the fact that the first four species are mammals and therefore more
closely related to each other than to the two remaining species. Note, how-
ever, that the process of nucleotide substitution is intrinsically stochastic.
We will therefore discuss, in the following two subsections, a mathematical
model for statistical phylogenetic inference.

2.3. A mathematical model of nucleotide substitution

The driving force for evolution are nucleotide substitutions, which can be
modelled as transitions in a 4-state state space, shown in Fig. 2. P(Y|X, w),
where X,Y € {A,C,G,T}, denotes the probability of a transition from
nucleotide X into nucleotide Y, conditional on the elapsed phylogenetic
time w. The latter is given by the product of an unknown mutation rate A
with physical time ¢: w = At. To rephrase this: P(Y'|X, w) is the probability
that nucleotide Y is found at a given site in the DNA sequence given that w
phylogenetic time units before, the same site was occupied by nucleotide X.

An intuitively plausible functional form for these probabilities is shown
on the right of Fig. 2. For w = 0, there is no time for nucleotide sub-
stitutions to occur. Consequently, P(A|A,w = 0) = 1, and P(C|A,w =
0) = P(G|A,w = 0) = P(T|A,w = 0) = 0. As w increases, nucleotide
substitutions from A into the other states lead to an exponential decay of
P(A|A,w), and, concurrently, an increase of P(C|A,w), P(G|A,w), and
P(T|A,w). This increase is faster for a mutation within a nucleotide class
(purine — purine, pyrimidine — pyrimidine), than between nucleotide
classes (purine < pyrimidine). For w — oo, the system “forgets” its
initial configuration as the result of the mixing caused by an increasing
number of nucleotide substitutions. Consequently, P(Y|X,w) — ILY),
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P(AIA,w) ] Transition-Transversion Ratio = 2
1\
Q 075t
P(CIA,w) \ P
A C \
05 ™
P(GIAW .
( )l P(TIA,W) o5l FEAW
P(CIA W)=P(TIA W)
G T % 1 2 3 !

Fig. 2. Mathematical model of nucleotide substitutions. Left: Nucleotide substi-
tutions are modelled as transitions in a 4-state state space. The transition probabilities
depend on the phylogenetic time w = of, where t is physical time and « is a mutation
rate. Right: Dependence of the transition probabilities (vertical axis) on w (horizontal
axis). The graphs were obtained from the Kimura model with a transition-transversion
ratio of 2.

where X,Y € {A,C,G, T}, and II(Y) is the equilibrium distribution (here
H(Y)=1/4VY).

Let y;(t) € {A,C, G, T} denote the nucleotide at site ¢ and at physical
time ¢. This notation will be used throughout this chapter: the subscript
refers to the position in the alignment, while the expression in brackets
denotes physical or (later) phylogenetic time. The total length of the align-
ment is N, that is, i € {1,..., N}. The derivation of the aforementioned
results is based on the theory of homogeneous Markov chains and the fol-
lowing assumptions:

e The process is Markov:
P(yi(t + At)lys(t), y:(t — At),....) = P(yi(t + Aty (1))
e The Markov process is homogeneous:
P(yi(s +t)lyi(s)) = P(y:(t)l:(0))-
e The Markov process is the same for all positions:
P(3i(t)[9:(0)) = P(ye(®)lyx(0)) Vi,ke{1,...,N}

e Substitutions at different positions are independent of each other:

N
P(y1(t), .- -, yn@®)[51(0), . -, yn(0)) = [[ P(w:(®)lw:(0)).
i=1
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This implies that the nucleotide substitution process at a given site is com-
pletely specified by the following 4-by-4 transition matrix:

P(y(t) = Aly(0) = A) --- P(y(t) = Aly(0) =T)

P(t) = P(y(t) = Gly(0) = A) --- P(y(t) = Gly(0) =T) (1)
P(y(t) = Cly(0) = A) --- P(y(t) =Cly(0)=T) |
P(y(t) = T|y(0) = A) --- P(y(t) = T|y(0) = T)

Because of the site independence, the site label (that is, the subscript) has
been dropped to simplify the notation. Equation (1) obviously implies that

P(0) =1, (2)
where I is the unit matrix. We now make the ansatz
P(dt) = P(0) + Rdt, (3)

where R is the so-called rate matrix. From the theory of homogeneous
Markov chains it is known that

P(t + dt) = P(dt)P(t), (1)

which follows from the Chapman—Kolmogorov equation; see [10] or {22].
Inserting Egs. (2) and (3) into (4) gives:

P(t + dt) = (I+ Rdt)P(t) (5)
and
dP
o RP. (6)
This is a system of linear differential equations with the solution
P(t) = R, (7)

To make sure that P(t) is a proper transition matrix, that is, has columns
that sum to 1, the columns of the rate matrix R have to sum to 0. A
possible design for R, the so-called Kimura model [15], is of the form

—28—a B « B
_ B -28-a B8 o
R= @ B —2—a B : )
B e B 28—«

Here, the rows (from top to bottom) and columns (from left to right) corre-
spond to the nucleotides A, C, G, T (in the indicated order). The positive
parameters  and [ denote the rates of transitions (mutations within a
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2p-a

Aﬁ

G T

Fig. 3. Kimura model of nucleotide substitutions. The figure presents a par-
tial graphical display of the rate matrix of Eq. (8), showing mutations out of
nucleotide A. The positive parameter a denotes the rate of a transition (purine —
purine, pyrimidine — pyrimidine), while 8 denotes the rate of a transversion (purine —
pyrimidine).

nucleotide class: purine — purine, pyrimidine — pyrimidine) and transver-
sions (mutations between nucleotide classes: purine «— pyrimidine), respec-
tively.® An illustration is given in Fig. 3.

It can now be shown [15] that inserting (8) into (7) leads to

TYE

_ e [F®) d®) F©) 900

PO=<=100 50 dv f@)| ©)
i o) £ db)

where
£le) = 701 - 1%,
g(t) = (14740 — gt
d(t) = 1—2f(t) — g(t).
Defining A = 43, which implies that the phylogenetic time is given by
w =40t (10)
this results in

Flw) = 31— e™) (1)

2Unfortunately this terminology, which is used in molecular biology, leads to a certain
ambiguity in the meaning of the word transition. When we talk about transitions between
states, a transition can be any nucleotide substitution event. When we talk about tran-
sitions as opposed to transversions, a transition refers to a certain type of nucleotide
substitution.
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1 T
glw) = z(1+e™® —2e”FY) (12)
d(w) = 1 - 2f(w) — g(w) (13)
in which 7 denotes the transition-transversion ratio:
a
T === 14
3 (14)

Denoting by P(Y|X,w) the probability that at a given site in the align-
ment nucleotide Y is observed given that nucleotide X was at this site w
phylogenetic time units before, we can re-write P, the transition matrix
of (1), as follows:

[P(A|A,w) P(A|C,w) P(A|G,w) P(A|T,w)
Plw) — P(G|A,w) P(G|C,w) P(G|G,w) P(G|T,w)
@) =1 pclaw) PC|C,w) P(CIG.w) P(CIT,w)
| P(T|A,w) P(T|C,w) P(T\G,w) P(T|T,w)
[d(w) f(w) g(w) f(w)
_ | flw) d(w) flw) g(w) (15)
gw) flw) d(w) f(w)|’
Lf(w) g(w) flw) d(w)

where d(w), f(w), and g(w) are given by (11)-(13).
Setting 7 = 2 leads to the graphs on the right of Fig. 2 and the results
discussed at the beginning of this section.

2.4. Likelihood of a phylogenetic tree

A phylogenetic tree is a directed acyclic graph (DAG), which allows the
expansion of the joint probability of the nodes in terms of the transition
probabilities of (15). This expansion is based on the factorization rule for
directed graphical models (see, for instance [12]), according to which the
joint probability of a set of random variables x1, ..., z, can be factorized as

N
P(zy,...,zN) = H P(z;|parents|z;]), (16)
i=1
where parents|z;] is the set of random variables corresponding to the subset
of nodes with an arrow that feeds into ;.

Consider Fig. 4, left. The black nodes, labelled by y1, y2, vys, and
Y4, represent contemporary species. The white nodes, labelled by z; and
z9, represent hypothetical ancestors. We are interested in the probability
P(y1,y2,y3, Y4, 21, 22|W, S), where y1, y2, etc. represent nucleotides at the
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y1

Fig. 4. Phylogenetic trees. Black nodes represent contemporary or extant species.
White nodes represent hypothetical ancestors, where lineages bifurcate (speciation). Left:
Undirected graph. Right: Directed graph. Node 23 is the root of the tree, and arrows are
directed.

respective nodes, w is the vector of all branch lengths, and S is a label
defining the tree topology. Choosing, arbitrarily, z; to be the root of the
tree, see Fig. 4, right, the application of (16) gives:

P(yl, Y2, Y3, Y4, 21, Z2Iw’ S)
= P(y1|z1,w1) P(y2|21, w2) P(22|21, ws ) P(ys| 22, ws) P(ya| 22, wa)II(z1)

(17)
The equilibrium distribution over the four nucleotides, I(z; ), is a parameter
vector of the model. For example, in the Kimura model we have II(z; =
A =1(z; = C) = (z; = G) = Il{z; = T) = 0.25. The other factors

represent transition probabilities, which are defined in (15).

Now, we assume that the transition matrix (15) is reversible:

P(Y|X, w)II(X) = P(X|Y, w)II(Y), (18)

where X,Y € {A, C,G,T}. Obviously, this holds true for the Kimura model
discussed above. It can then be shown that the expansion of the joint prob-
ability P(y1, Y2, Y3, ¥4, 21, 22|W, S) is independent of the root position.

Compare, for instance, the three directed graphs in Fig. 5. We have
just derived the expansion for the tree on the left; see (17). Applying the
expansion rule (16) to the tree in the middle, we obtain:

P(yl:y2,y3,y4a21,z2|W,5)
= P(y1|z1, w1)P(y2|21, w2) P(21| 22, w5 ) P(ys| 22, wa) P(y4| 22, wa)II(22).
(19)

Now, reversibility implies that P(z1|z2,ws)II(22) = P(z2|21,ws)I(z1),
hence the expansions in (17) and (19) are identical. By the same token,
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Fig. 5. Different root positions. The figure shows three directed graphs with differ-
ent root positions (shown in black).

expanding the joint probability P(yi, ¥z, ¥s, 4, 21, 22|W, §) according to the
tree on the right of Fig. 5 gives

P(yl,yz,y3,y4,zl,22|W,5)
= P(y1|z1, w1) P(y2]21, w2) P(z1]|22, ws) P(ya| 22, ws) P(22|ys, w3)I(y3).
(20)

Applying reversibility, P(z2|ys,ws)II(ys) = P(ys|z2, ws)II(22), this expan-
sion is seen to be identical to (19) and hence (17). In the terminology of
graphical models, the three directed graphs in Fig. 5 are distribution equiv-
alent [12], that is, they represent the same joint probability distribution.
In fact, a more rigorous proof [6] generalizes this finding to any phyloge-
netic tree: if the transition matrix is reversible, trees that only differ with
respect to the position of the root and the directions of the arcs are equiv-
alent. Consequently, we can choose the position of the root arbitrarily.?

The factorization (17) allows us to compute the probability of a complete
configuration of nucleotides. However, while we obtain the nucleotides of
the extant species, y;, from the DNA sequence alignment, the nucleotides
at the inner nodes, z;, are never observed. This requires us to marginalize
over them, as illustrated in Fig. 6:

P(y1,y2,Y3,0alw, S) = DY P(y1, 42, Y3, 94, 21, 22|W, S). (21)
Z1 K4

There are efficient message-passing algorithms to carry out this marginaliza-
tion and decrease the computational complexity of the summation; see [6].

The upshot of this procedure is that for a given column y; in the align-
ment, a probability P(y:|w,S) can be computed, which depends on the

bIn more recent phylogenetic models, this reversibility constraint has been relaxed. See,
for instance (8].
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1 4 1 4 1 4 1 4
2 3 2 3 2 2 3
1 4 1 4 1 1 4
2 2 3 2 2 3
1 1 4 1 1 4
2 2 3 2 2 3
1 1 4 1
2 3 2 3 2 3 2 3

Fig. 6. Marginalization over hidden nodes. Leaf nodes represent extant taxa,
which are observed (nucleotides in the DNA sequence alignment). Hidden nodes rep-
resent hypothetical ancestors, which are not observed (nuisance parameters). To obtain
the probability of an observation, that is, the probability of observing a given column of
nucleotides at a certain position in the DNA sequence alignment, one has to sum over
all possible configurations of hidden nodes.

tree topology, S, and the vector of branch lengths, w. This can be done for
every site, 1 <t < N, which allows, under the assumption that mutation
events at different sites are independent of each other, the computation of
the likelihood P(D}w, S) of the whole DNA sequence alignment D:

P(D|w,S) = HP yi|w, S (22)

This, in principle, opens the way to a maximum likelihood optimization of
the tree: given a DNA sequence alignment D, the tree (S’, W) most sup-
ported by the data is the one that maximizes the likelihood:

(8, W) = ar%max{P(mw, $}. (23)

TW

More precisely, one should also state the dependence of the likelihood on
the nucleotide substitution model and its parameters, which also need to
be optimized so as to maximize the likelihood. For the Kimura model, dis-
cussed above, we have one parameter: the transition-transversion ratio 7.
Two more complex model, the HKY85 model [11] and the Felsenstein 84
model [5], have three further parameters: the equilibrium probabilities for
the nucleotides, II{A),II(C),II(G),II(T) (due to the constraint II(A) +
II(C) + IK(G) + I{T) = 1, there are three rather than four free param-
eters). Recently, more complex nucleotide substitution models have been
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developed, as reviewed in [23]. These details are beyond the scope of this
article. To keep the notation simple, the dependence of the likelihood on
the nucleotide substitution model will not be stated explicitly.

A principled difficulty in applying the maximum likelihood method out-
line here is that the optimization problem is NP hard. As mentioned in
Sec. 2.1, n taxa give rise to (2n — 5)!! different (unrooted) tree topologies,
that is, the number of different tree topologies increases super-exponentially
with the number of taxa. In practice this means that for large numbers of
taxa one has to resort to iterative, greedy search algorithms, which usually
find only a local rather than the global maximum of the likelihood. Effective
algorithms have been proposed in [6] and [5], and are implemented in the
program DNAML of the PHYLIP software package [7]. For an introductory
text, see also [4]. The details of these optimization algorithms will not be
summarized here. Instead, this article will focus on a fundamental problem
inherent in the phylogenetic analysis of certain bacteria and viruses.

3. Recombination

Conventional phylogenetic analysis, as described in the previous section,
assumes that all sites in a DNA multiple alignment have the same evolution-
ary history. This is a reasonable approach when applied to DNA sequences
obtained from most species. However, this assumption is violated in certain
bacteria and viruses due to interspecific recombination, which is a pro-
cess that leads to the transfer or exchange of DNA subsequences between
different strains. The resulting mixing of the genetic material by the for-
mation of so-called mosaic sequences is likely to be an important source
of genetic variation and is a process through which, for example, disease-
causing bacteria may acquire resistance to antibiotics. Figure 8 shows an
example in which the incorporation of the genetic material from another
strain leads to a change of the branching order (topology) in the affected
region, which results in conflicting phylogenetic information from different
regions of the alignment. If undetected, the presence of mosaic sequences
can lead to errors in phylogenetic tree estimation. Their detection, there-
fore, is a crucial prerequisite for inferring the evolutionary history of a set
of DNA sequences.

Figure 9 shows an example of recombination in HIV-1 [25]. The left
subfigure shows a phylogenetic tree for eight established strains of HIV-1.
The subfigure on the right shows a so-called circulating recombinant strain,
denoted by ZR-VI 191. If the phylogenetic analysis is done on the basis of
the env gene, this strain is found to be most closely related to the A strain.
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¥
Frog GCTTGACTTCTGAGGTT
Chicken GCGTAACTTCACATGAT
Human GCGTCACTTGAGACGCT
Rabbit GCGTCACTTGAGACGCT
Mouse GCGTCACTTGACAGGCT
Opossumn GCGTCACTTGAGACGCT
Human Mouse e
c C
Opossum
Rabbit c
C
Chicken
A
G
Frog

Fig. 7. Statistical approach to phylogenetics. For a given column y; in the align-
ment, a probability P(y¢|w,S) can be computed, which depends on the tree topology,
S, and the vector of branch lengths, w. This can be done for every site, 1 <t < N,
which allows the computation of the likelihood P(D|w,S) of the whole DNA sequence
alignment D = {y1,...,y~N}-

For a phylogenetic analysis based on the gag gene, ZR-VI 191 is most closely
related to the G strain. Ignoring recombination and treating the sequence
of ZR-VI 191 as a monolithic entity will adversely affect the estimation
of the branch lengths in the phylogenetic tree. For medical applications,
determining a strain as a mosaic sequence of well-established strains can
be important for vaccine development [25].

In the last few years, a plethora of methods for detecting interspecies
recombination have been developed — following up on the seminal paper
by John Maynard Smith [16] — and it is beyond the scope of this article to
present a comprehensive overview. Many detection methods for identifying
the nature and the breakpoints of the resulting mosaic structure are based
on moving a window along the alignment and computing a phylogenetic
divergence score for each window position. Examples are the bootstrap
support for the locally optimal topology [26], the likelihood ratio between
the locally and globally optimal trees [9], and the difference in the fitting
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Fig. 8. Influence of recombination on phylogenetic inference. The figure shows
a hypothetical phylogenetic tree of four strains. Recombination is the exchange of DNA
subsequences between different strains (top diagram, middle), which results in two
so-called mosaic sequences (top diagram, margins). The affected region in the multi-
ple DNA sequence alignment (shown by the shaded area in the middle diagram) seems
to originate from a different phylogenetic topology, in which two branches of the phy-
logenetic tree have been exchanged (bottom diagram, where the numbers at the leaves
represent the four strains). Reprinted from [14], with permission from Mary Ann Liebert.
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c Recombinant strain
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Fig. 9. Recombination in HIV-1. The left subfigure shows a phylogenetic tree for
eight established strains of HIV-1. The subfigure on the right shows a so-called circulating
recombinant strain, denoted by ZR-VI 191. If the phylogenetic analysis is done on the
basis of the env gene, this strain is found to be most closely related to the A strain. For
a phylogenetic analysis based on the gag gene, ZR-VI 191 is most closely related to the
G strain.
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scores between two adjacent locally optimized trees [17]. The determination
of the breakpoints of the mosaic structure is then based on an analysis of
the signals thus obtained, using bootstrapping to estimate their significance.
While these methods are useful for a preliminary scan of a DNA sequence
alignment, the spatial resolution for the identification of the breakpoints is
typically of the order of the window size and, consequently, rather poor.

This chapter discusses a different approach, which was first suggested
in {13]. The idea is to introduce a hidden state, which represents the tree
topology at a given site. A state transition from one topology into another
corresponds to a recombination event. To introduce correlations between
adjacent sites, a site graph is introduced, representing which nucleotides
interact in determining the tree topology. To keep the mathematical model
tractable and the computational costs limited, interactions are reduced to
nearest-neighbour interactions. The natural framework for modelling such
a system is a hidden Markov model, whose application to the detection of
recombination was first suggested in [18]. The next section provides a brief
introduction to hidden Markov models.

4. A One-Minute Introduction to Hidden Markov Models

Assume you are in a casino and take part in some (hopefully legal) gambling
game involving a die. You are playing against two players: a fair player, who
uses a fair die, and a corrupt player, who uses a loaded die. The situation
is illustrated in Fig. 10. Unfortunately, the other players are hidden behind
a brick wall, and all you observe is a sequence of die faces; see Fig. 11. The

OEFEBEEE DEEDED

Fig. 10. Corrupt casino 1. Two players are in a casino: a fair player (right) using a
fair die, and a corrupt player (left) using a loaded die.
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Fig. 11. Corrupt casino 2. The player is hidden behind a brick wall, and only the die
faces are observed. The problem is to predict which player is rolling the die at a given
time t.

s 1 s_2 s_t s_(t+1) S

O—O O O
6o oo o

_ _ y_t y_({t+1) y_N

Z

Fig. 12. Hidden Markov model. Black nodes represent observed random variables
(the die faces), white nodes represent hidden states (the players), and arcs represent
conditional dependencies. The joint probability factorizes into a product of emission
probabilities (vertical arrows) and transition probabilities (horizontal arrows). The pre-
diction task is to find the most likely sequence of hidden states given the observations.

task is to predict which player is rolling the die at a given time, and to
predict the breakpoint where the corrupt player is taking over (in order to
nab him).

If the decision of a player to pass the die on to the other player is made
instantaneously on the basis of the current situation without considering
the earlier past, the process corresponds to a hidden Markov model (HMM)}),
shown in Fig. 12. Here, black nodes represent observed random variables ¥,
(the die faces) at different moments in time ¢, white nodes represent hidden
states S; (the players) at different times, and arcs represent conditional
dependencies. The task is to find the most likely sequence of hidden states
given the observations, that is, the mode of

P(Sly)=P(Sl,...,SNIy1,...,yN). (24)

At first, this task seems to be intractable: for K different states (here:
K = 2 for “fair” and “corrupt”) and a sequence of length N, there are
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KV different state sequences. Hence, an exhaustive search seems to be
impossible for all but very short sequence lengths N. Fortunately, there
is a dynamic programming method, the so-called Viterbi algorithm, which
reduces the computational complexity to O(N) (that is, linear in N) by
exploiting the sparseness of the connectivity of the graph in Fig. 12.

Recall that in a directed graphical model the joint probability of the
random variables z1, . ..,Zy can be factorized according to (16). The appli-
cation of this formula to the graph in Fig. 12 gives:

N N
P(y1,...,yn, 51, ., Sn) = [ [ PwelSe) [[ P(Se|Se-1)P(S1).  (25)

We refer to P(y;|S:) as the emission probabilities (corresponding to the
vertical edges), P(S:|S:—1) as the transition probabilities (which correspond
to the horizontal edges), and P(S1) as the initial probability. From (25) we
obtain the recursion:

Yn(Sn) = s max InP(yi,...,¥n,S1,...,50)

1551

n n
=, max [ZlnP(yt|St) + ZlnP(SASt_l) +1n P(S51)
1yyOn—1 t=1 t=2

= In P(yn|Sn) + max

In P(S,|Sn— 1)+ max {ZlnP (y¢]St)

ly 3] n 2
n—1
+3 " InP(Sy|Si-1) +In P(Sy)
t=2
=In P(ynlsn) + gnax[ln P(Snlsn—l) + 7n~1(sn—1)]- (26)
n—1
Obviously:
max P(S1,...,Snly1,---,yn) = max InP(y,...,yn,S1,...,5N)
Slr ) N Sl,...,SN
= max YN (SN) (27)
SN
and the mode, P(S’l,...,S'lel,...,yN), is obtained by recursive back-
tracking:
Initialization:

Sy = argmax y (Sw). (28)

N
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Recursion:

Sny = argmax [In P(S5|Sn—1) + ¥n-1(Sa-1)]. (29)
n-1

The computational complexity of a single step of the recursions (26)
and (29) is O(K?), that is, it only depends on the number of different states
K but is independent of the sequence length N. The total computational
complexity of the algorithm is thus linear in N, which is a considerable
improvement over the naive method, which was K. For a more detailed
exposition of this topic, see [24].

5. Detecting Recombination with Hidden Markov Models
5.1. The model

Let us now study how HMMs can be applied to model mosaic structures
in DNA sequence alignments. Here, the hidden state represents the phy-
logenetic tree topology at a given site. For four taxa, for instance, there
are three possible tree topologies, shown in Fig. 13. The subscript ¢ now
represents sites in the DNA sequence alignment rather than time, hence
S; is the hidden state corresponding to the f{th site in the alignment. The
observations y; are the columns of the DNA sequence alignment, that is,
y: is the vector with the nucleotides of all the taxa at the tth site in the
alignment. For a given tree, we can compute the probability of y;, as dis-
cussed in Sec. 2.4 and illustrated in Fig. 7. Hence for a given DNA sequence
alignment D = (y1,...,¥n~), we can apply the Viterbi algorithm to find
the most likely sequence of hidden states, S, ..., Sy, that is, the mode of
P(S1,...,9N|y1,--.,yn). Recombination events then correspond to state
transitions in the Viterbi path.

Recall that in an HMM, the joint probability factorizes into the prod-
uct of the emission probabilities, P(y:|S;), and the transition probabilities,
P(5¢|S:—1), where the latter correspond to recombination events. With K

State 1 State 2 State 3

Fig. 13. Different tree topologies for four taxa. Shown are the three possible
phylogenetic tree topologies for four taxa. Species 1 can be clustered with species 2, 3,
or 4. Reprinted from [14], with permission from Mary Ann Liebert.
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different tree topologies, there are, in principle, K (K — 1) transition prob-
abilities to be specified. However, given that recombination is likely to be a
rare event, it would hardly be possible to reasonably infer these parameters
from the DNA sequence alignment (over-fitting), nor is it likely that detailed
prior knowledge is available to decide on these parameters in advance. For
this reason, only one free parameter was used in [18]: the overall probability
that no recombination occurs. This is similar to an approach taken in [5] for
modelling rate variation among sites. Let v be the probability that the tree
topology remains unchanged as we move from a given site in the alignment,
t, to an adjacent site, ¢+ 1 or ¢ — 1. We then obtain for the state transition
probabilities:

1-—
7 _”1 [1—6(Ss, Se_1)]

)1—5(3:,&—1)

P(S¢|St-1) = vé(St, Se—1) +

— 8(56,5:1) ( 1-v , (30)

K-1
where 6(St, S:—1) denotes the Kronecker delta function, which is 1 when
S; = S;—1, and 0 otherwise. It is easily checked that this satisfies the nor-
malization constraint ) g P(St|S;—1) = 1. For the emission probabilities,
recall from Sec. 2.4 and Fig. 7 that for a given nucleotide substitution
model, the probability of a column vector y; depends both on the tree
topology, S;, and the vector of branch lengths corresponding to this topol-
ogy, wg,. To simplify the notation, let us introduce the accumulated vector
of all branch lengths in all possible topologies, w = (wy,...,Wg), and
define: P(y:|S:,ws,) = P(y¢|St, w). This means that S, indicates which
subvector of w applies. We can depict the dependence of the probability
distribution on the parameters w and v in an extended graphical model,
shown in Fig. 14. Applying the Viterbi algorithm gives us the most likely
hidden state sequence conditional on the observations (that is, the DNA
sequence alignment) and the parameters w and v:

argmax P(S1,...,Sn|y1,..., YN, W, V). (31)
S1yeSn

We thus need a way to estimate these parameters.

5.2. Naive parameter estimation

A straightforward way to estimate the branch lengths w seems to be a
separate maximum likelihood optimization for each possible tree topology.
This can be accomplished with the methods described at the end of Sec. 2.4,
and was applied in [18]. However, Fig. 8 points to a serious shortcoming
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Cw

Fig. 14. Modelling recombination with a hidden Markov model. Positions in
the model, labelled by the subscript £, correspond to positions in the DNA sequence
alignment. Black nodes represent observed random variables; these are the columns in
the DNA sequence alignment. White nodes represent hidden states; these are the different
tree topologies, as shown in Fig. 13. Squares represent parameters of the model: the vector
of branch lengths w, and the recombination parameter v. Arcs represent conditional
dependencies. The probability of observing a column vector y: at position ¢ in the DNA
sequence alignment depends on the tree topology S: and the vector of branch lengths w.
The tree topology at position ¢t depends on the topologies at the adjacent sites, Si—1
and Syy1, and the recombination parameter v.

of this approach. For a proper estimation of the branch lengths of the
recombinant tree, that is, the tree that corresponds to the shaded centre
region of the alignment, one would have to base the parameter estimation on
this very region of the alignment. Unfortunately, its location is not known
in advance. Estimating the branch lengths from the whole DNA sequence
alignment leads to seriously distorted values — see Fig. 15 — since the
estimation includes data for which the tree topology is incorrect. A heuristic
way to address this problem, suggested in [18], is to estimate the branch
lengths from a subregion of the alignment. The length of this region should
be matched to the length of the recombinant region, which, however, is not
known in advance. Also, this approach does not offer a way to estimate the
recombination parameter v.

5.3. Maximum likelihood

A solution to this problem, proposed in [14], is a proper maximum likelihood
estimation of the parameters so as to maximize

L(w,v) =InP(D|w,v) =In Y _ P(D,S|w,v) (32)
S



22 Biomathematics: Modelling and Simulation

Fig. 15. Effect of naive parameter estimation. The left figure shows the correct
recombinant tree, corresponding to the recombinant region in the alignment of Fig. 8.
The right figure shows the tree that results from a maximum likelihood estimation of
the branch lengths from the whole DNA sequence alignment. This includes the flanking
regions — shown in white in Fig. 8 — where the recombinant tree topology is incorrect.
Obviously, the branch lengths have been significantly distorted, with a contraction of
the internal branch and an extension of the external branches. Reprinted from [14], with
permission from Mary Ann Liebert.

with respect to the vector of branch lengths w and the recombination
parameter v. This requires a summation over all state sequences S8 =
(S1,...,8n), that is, over K terms. For all but very short sequence
lengths N this is intractable. A viable alternative, however, is the expecta-
tion maximization (EM) algorithm {3]. Let Q(S) denote an arbitrary prob-
ability distribution over the hidden state sequences, and define

ZQ )In P(D, S|w,v) — ZQ S)InQ(S). (33)

We are interested in the posterior distribution of the hidden state sequences,
P(S|D, w,v), given the DNA sequence alignment, D, and the parameters,
w and v. The difference between Q(S) and P(S|D,w,v) is measured by
the Kullback-Leibler divergence

Q(s)
L@, P) =Y ) (528, (34
@P)=> (epem)

which is always non-negative, and zero if and only if Q = P. The proof,
which is based on the concavity of the logarithm, is straightforward. Now,
combining (33) and (34), we can rewrite the likelihood of (32) as

L(w,v) =U(w,v) + KL(Q, P). (35)

This decomposition was first suggested in [20], and can easily be proved by
recalling that P(D,S|w,v) = P(S|D,w,v)P(D|w,v) and > g Q(S) = 1.
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Fig. 16. Ilustration of the EM algorithm. U is a lower bound on the log likeli-
hood L, with a difference given by the Kullback-Leibler divergence K L. The E-step sets
KL to zero. Since the model parameters are kept constant, the log likelihood L is not
changed. The M-step adapts the model parameters so as to maximize U. Since U is a
lower bound on L, this also increases L.

Since KL(Q, P) is non-negative, U is a lower bound on L: U(w,v) <
L(w,v). The EM algorithm alternates between optimizing the distribution
over the hidden states Q(S) (the E-step) and optimizing the parameters
given Q(S) (the M-step). The E-step holds the parameters fixed and sets
@ to the posterior distribution over the hidden states given the param-
eters, Q(S) = P(S|D,w,v). This sets KL(Q, P) = 0 and, consequently,
L(w,v) = U(w,v). The M-step holds the distribution Q(S) fixed and com-
putes the parameters w,v that maximize U. Since L(w,v) = U(w,v) at
the beginning of the M-step, and since the E-step does not affect the model
parameters, each EM cycle is guaranteed to increase the likelihood unless
the system has already converged to a (local) maximum (or, less likely, a
saddle point). An illustration of the algorithm is given in Fig. 16.

Now, similar to the discussion in Sec. 4, we can exploit the sparseness of
the connectivity of the underlying graphical model and simplify the maxi-
mization of U considerably. From the factorization (25) we have:

P(D,S|w,v) = P(y1,---,¥N,S1,...,Sn|W, V)

N N
= [[ P(velSe, w) [ P(SelSe-1,v)P(Sh). (36)

t=1 =2
Inserting (36) into (33) gives

N
U(w,v) = > _Q(S)Y_InP(y:|S:,w)
S

t=1

N
+ > Q(8)> InP(S|S;1,v) +C, (37)
S

t=2
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where C' is independent of the parameters w and v. Equation (37) simplifies
considerably. The first term allows immediate marginalization over all but
one state S; in the state sequence S:

N N K
> QS)D mP(yelSew)=> Z (S;) In P(y;|S;, w). (38)
S t=1 S;=1

t=1

For the second term, recall the definition of the transition probabilities
P(8¢|St—1,v) in (30), define

N N K
U= "Q(S)6(S:,Si-1) =Y > Q(St, Sem1 = Sy) (39)

S t=2 t=2 S,=1
and note that

N
>N Q)1 -56(S 8 1)] =N -1-10. (40)
S

t=2

This gives

N
1—v
;Q(S);lnP(StlSt_l,v) =Ulnv+(N-1-T)In (K 1). (41)

Inserting (38) and (41) into (37), we obtain:

N K
U=> Y Q(S)InP(yS:,w)+¥nv
t=1 S;=1
FN-1-) (1% 4 ¢ (42)
K—1 '

Note that U only depends on the marginal univariate probability Q(S;),
and the marginal two-variate probability Q(St, Si—1) (via (39)), but no
longer on the multivariate joint probability Q(S).

5.3.1. E-step
The probabilities Q(S;) and Q(S:, St+1) are updated in the E-step, where
we set:
Q(St) - P(Stlpawa V) (43)
Q(St-1,8t) — P(S¢-1,8:|D, w,v). (44)

These computations are carried out with the forward-backward algorithm
for HMMs [24], which is a dynamic programming method that reduces the
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computational complexity from O(K™) to O(N). The underlying principle
is similar to that of the Viterbi algorithm, discussed in Sec. 4, and is based
on the sparseness of the connectivity in the HMM structure. Details are
beyond the scope of this chapter, and the interested reader is referred to the
tutorial [24], or textbooks like [1] and [4], which also discuss implementation
issues.

Now, all that remains to be done is to derive update equations for the
parameters w and v so as to maximize the function U (M-step).

5.3.2. M-step: Optimization of the recombination parameter

Setting the derivative of U with respect to v to zero, %’3— = 0, we obtain

= 4
V= (45)
This optimization is straightforward since, as seen from (39), ¥ only
depends on Q(S;—1,S:), which is obtained by application of the forward-
backward algorithm (see above).

5.3.3. M-step: Optimization of the branch lengths

Only the first term on the left-hand side of (42) depends on the branch
lengths w. This requires a maximization of

N K
>3 Q(S)In P(ye|Si, w), (46)

t=1 8§y=1

which can be achieved with standard phylogenetic programs, like PHYLIP
(mentioned in Sec. 2.4). The only modification required is the introduction
of a weighting factor Q(S;) for each site, as illustrated in Fig. 17.

5.3.4. Reason for not optimizing the prior probabilities

In principle, U has a further set of parameters that need to be optimized: the
K —1 prior probabilities P(S1) (see (36)). Due to the rarity of recombination
events, however, a maximum likelihood approach would most probably lead
to over-fitting. Also, since DNA sequence alignments are usually sufficiently
long, N >» K, the influence of P(S1) on the mode of P(S51,...,S5n|D) is
negligible. It therefore seems to be reasonable to keep the prior probabilities
constant: P(S) = £VS; € {1,...,K}.
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Q(s_t) Q(s_t) Q(s_t)
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Fig. 17. Nucleotide weighting schemes. The figure shows three nucleotide weighting
schemes for estimating the branch lengths of the phylogenetic trees. The bottom of each
figure represents a multiple DNA sequence alignment with a recombinant zone, printed
in grey, in the middle. Left: Naive approach, suggested in [18], where the tree param-
eters are estimated from the whole alignment. This corresponds to constant weights,
Q(St) =1 Vt. Middle: Heuristic window method, also suggested in [18], where the tree
parameters are estimated from a subregion of the alignment. The length of this region
should be matched to the length of the recombinant region, which, however, is not known
in advance. Right: Maximum likelihood with the EM algorithm. The dashed line shows
the site-dependent weights Q(S: = Tg) for the recombinant topology Tg, the solid line
represents the weights for the non-recombinant topology Tp : Q(S: = Tp). Note that
in this scheme the weights Q(S;) are updated automatically in every iteration of the
algorithm as a natural consequence of the optimization procedure (E-step). Reprinted
from [14)], with permission from Mary Ann Liebert.

5.3.5. Algorithm

The implementation of the parameter update scheme is straightforward and
can be accomplished with the following algorithm:

(1) Initialize the parameters w and v. This can be done as in [18], that
is, by choosing a plausible recombination rate and by estimating w,
for each of the topologies, with a phylogenetic program like DNAML
from the whole alignment.

(2) Compute Q(S;) and Q(Si-1,S5;) with the forward-backward algo-
rithm for HMMs.

(3) Compute ¥ from (39) and adapt v according to (45).

(4) For t = 1 to N: weight the tth column in the multiple sequence
alignment, y;, by Q(S:), and optimize the branch lengths w so as
to maximize U(w) in (46). This can, in principle, be achieved with
a standard phylogeny program, like DNAML of the PHYLIP pack-
age [7]. The only change required is the introduction of a weighting
scheme for the sites in the alignment.

(5) Test for convergence. If the algorithm has not yet converged, go back
to step 2.

Note that this algorithm can be interpreted as a modified version of the
Baum-Welch algorithm; see [24].
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6. Test Data

The viability of the proposed HMM scheme was tested on the following
three DNA sequence alignments.

6.1. Synthetic data

DNA sequences, 1000 nucleotides long, were evolved along a 4-species tree,
using the Kimura model of nucleotide substitution, which was described in
Sec. 2.3. The transition-transversion ratio was set to 7 = 2. Two recombina-
tion events were simulated by exchanging the indicated lineages, as shown
in Fig. 18.

6.2. Gene conversion in maize

When looking at the distribution of genes within genomes, one finds that
many genes, rather than existing as individual copies, are part of a larger
family of related genes called a multigene family. A special form of recom-
bination, which takes place in multigene families and contributes greatly
to their evolution, is gene conversion. This process occurs when the DNA
sequence of one gene is replaced (or “converted”) by the DNA sequence
from another; for further details, see, for instance [21], Chapter 3. Evi-
dence for gene conversion between a pair of maize actin genes (involv-
ing Maz56 and Maz63; see below) has been reported in [19]. In the
present study, the following four maize sequences were analyzed: Maz56
(GenBank/EMBL accession number U60514), Maz63 (U60513), Maz89
(U60508), and Maz95 (U60507). As discussed in Sec. 2.2, prior to any
phylogenetic analysis the DNA sequences need to be aligned. This was
done with the program Clustal-W [28], using the default parameter set-
tings and discarding columns with gaps. The three hidden states of the
HMM are defined as follows. State 1: ((Maz56,Maz63),(Maz89,Maz95));

Fig. 18. Synthetic DNA sequence alignment. Two recombination events are sim-
ulated by swapping the indicated lineages. Defining the predominant tree topology as
state 1, the first recombination event corresponds to a transition into state 2, while the
second event corresponds to a transition into state 3.
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state 2: ((Maz56,Maz89),(Maz63,Maz95)); state 3: ((Mazb6,Maz95),
(Maz63,Maz89)).

6.3. Recombination in Neisseria

One of the first indications for interspecific recombination was found in
the bacterial genus Neisseria [16]. The analysis in this study was done on a
subset of the 787 nucleotide Neisseria argF DNA multiple alignment studied
in [29], selecting the following four strains: (1) N. gonorrhoeae (X64860),
(2) N. meningitidis (X64866), (3) N. cinera (X64869), and (4) N. mucosa
(X64873) (GenBank/EMBL accession numbers are in brackets). Zhou and
Spratt [29] found two anomalous, or more diverged regions in the DNA
alignment, which occur at positions ¢ = 1 — 202 and ¢ = 507 — 538.€ In the
rest of the alignment, N. meningitidis clusters with N. gonorrhoece (defined
as state 1 in our HMM), while between ¢ = 1 and t = 202, they found that
it is grouped with N. cinera (defined as state 3 in our HMM). Zhou and
Spratt [29] suggested that the region t = 507 — 538 was more diverged as a
result of rate variation. An illustration is given in Fig. 19.

P
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4 2 3
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Fig. 19. Recombination in Neisseria. According to [29], a recombination event cor-
responding to a transition from state 1 into state 3 has affected the first 202 nucleotides
of the DNA sequence alignment. A second more diverged region seems to be the result
of rate variation.

1
2

®Note that Zhou and Spratt [29] used a different labeling scheme, with the first nucleotide
at t = 296, and the last one at t = 1082.
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7. Simulation

Both training schemes, the heuristic method described in Sec. 5.2, and the
maximum likelihood approach described in Sec. 5.3, were tested on the
three DNA sequence alignments. The application of the heuristic method
was similar to [18]. For each of the three possible tree topologies, the branch
lengths were estimated separately with maximum likelihood on the whole
alignment, using the Kimura model of nucleotide substitution, which was
described in Sec. 2.3. The practical computation was carried out with the
program DNAML of the PHYLIP package [7]. The transition-transversion
ratio 7 was optimized with maximum likelihood, using the program pack-
age PUZZLE [27]. The recombination parameter was set to v = 0.8. As
opposed to [18], the optimization was not restricted to subsets of the
alignments, since the subset size is a parameter that cannot be properly
optimized.

The maximum likelihood approach followed the procedure described in
Sec. 5.3, optimizing all the parameters simultaneously with the EM algo-
rithm. The initial recombination parameter was set to v = 0.8, as for the
heuristic approach, and the initial probabilities for the three tree topologies
were set to equal values: P(S1 = 1) = P(S1 = 2) = P(S1 =3) =1/3. The
EM algorithm typically took about 10-30 EM steps to converge, depending
on the data set. Further details can be found in [14].

After parameter estimation, the classification of a site can be based
on the mode of the posterior probability P(S;|D), that is, set Sy = k if
P(S; = k|D) > P(S, = i|D)Vi # k. A problem of this approach is that
even if S; = k; maximizes P(S;|D) for all t € {1,..., N}, it is not guar-
anteed that (ky,kq,...,ky) maximizes P(Si,Ss,...,Sn|D) [24].9 There-
fore, a better approach is to base the classification of the sites S; directly
on the mode of the joint posterior probability P(S1,Ss,...,Sn|D), which
can be computed with the Viterbi algorithm, described in Sec. 4. How-
ever, the deviation between the predictions based on the mode of the
marginal posterior probabilities P(S;|D) and the joint posterior probabil-
ity P(S1,852,...,Sn|D) was found to be negligible in the simulation stud-
ies described here, and the marginal posterior probability P(S;|D) has the
advantage that it can be graphically displayed.

dAssume, for instance, that S; = k; maximizes P(S¢|D) and Si+1 = k¢41 maximizes
P(S¢+1|D), but that P(St+1 = kt+1|S¢ = kt) = 0. Then P(St =k, Si41 = kt+1]D) =0,
so (kt,kt+1) is not the mode of P(S:St+1|D)-
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This visualization has been done in Figs. 20-22, which show the results
obtained with the two training methods on the three DNA sequence align-
ments. Each figure contains two subfigures: the left subfigure shows the
results obtained with the heuristic training scheme, and the right subfigure
shows the results obtained with the maximum likelihood scheme. Each sub-
figure is composed of three graphs. These graphs show the posterior proba-
bilities for the three topologies, P(S; = 1|D) (top), P(S; = 2|D) (middle),
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Fig. 20. Detection of recombination in the synthetic DNA sequence align-
ment. The figure contains two subfigures, where each subfigure is composed of three
graphs. These graphs show the posterior probabilities for the three topologies, P(S; =
1|D) (top), P(S: = 2|D) (middle), P(S: = 3|D) (bottom), plotted along the DNA
sequence alignment (the subscript ¢ denotes the position in the alignment). Left: Heuris-
tic training scheme. Right: Parameter estimation with maximum likelihood.
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Fig. 21. Detection of gene conversion between two maize actin genes. The
figure contains two subfigures, where each subfigure is composed of three graphs, as
explained in the caption of Figure 20. Left: Heuristic training scheme. Right: Parameter
estimation with maximum likelihood.
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Fig. 22. Detection of recombination in the Neisseria DNA sequence align-
ment. The figure contains two subfigures, where each subfigure is composed of three
graphs, as explained in the caption of Fig. 20. Left: Heuristic training scheme. Right:
Parameter estimation with maximum likelihood.

and P(S; = 3|D) (bottom), plotted along the DNA sequence alignment
(recall that the subscript ¢ denotes the position in the alignment). The
probabilities are computed with the forward-backward algorithm, which
was mentioned in Sec. 5.3, and is discussed at length in [24].

7.1. Synthetic DNA sequence alignment

Figure 20 shows the results obtained on the synthetic DNA sequence align-
ment. For the heuristic training scheme (left subfigure) the overall pat-
tern of the posterior probabilities is correct, showing an increase for state
S; = 2 in the region 200 < t < 400, and an increase for state S; = 3 in
the region 600 < ¢ < 800. However, the signals are very noisy, and an auto-
matic classification based on the mode of the posterior probability would
incur a high proportion of erroneously predicted topology changes. This
shortcoming is significantly improved as a result of using the maximum
likelihood scheme. The predicted state transitions coincide with the true
breakpoints, and the tree topologies are predicted correctly. The posterior
probabilities for the states, P(S;|D), are mostly close to zero or one. This
indicates a high confidence in the prediction, which is reasonable: since the
DNA sequence alignment results from the simulation of a recombination
process, the transitions between topologies are, in fact, well defined. The
estimated recombination parameter is v = 0.992, With four breakpoints in
an alignment of length 1000 nucleotides, the correct value for the recom-
bination parameter is v = 0.996, which deviates from the prediction by
only 0.4%.
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7.2. Gene conversion in maize

The prediction on the maize DNA sequence alignment is shown in Fig. 21.
When using the heuristic parameter estimation method (left), the overall
pattern of the graphs P(S;|D) captures the gene conversion event in that
the final section shows a clear increase of the posterior probability for state
S; = 3. However, the signals are very noisy and unsuitable for an automatic
detection of gene conversion without human intervention. The application
of the maximum likelihood scheme leads to a clear improvement: a sharp
transition from state S; = 1 to state S; = 3 is predicted in accordance with
the gene conversion event found in [19).

7.3. Recombination in Neisseria

Figure 22 shows the prediction obtained on the Neisseria DNA sequence
alignment. The heuristic training method (left) leads to a signal that is very
noisy and only gives a vague indication of a topology change at the begin-
ning of the alignment. Estimating the parameters with maximum likelihood
leads to a considerable reduction in the noise. A topology change from state
S; = 3 to S; = 1 with a breakpoint at site ¢ = 202 is predicted, which is
in accordance with the findings in [29]. Also, the second anomalous region
between sites ¢ = 507 and ¢t = 538 is clearly detected in that the poste-
rior probability for state 1, P(S; = 1|D), is significantly decreased, with
sharp transitions at the sites predicted in [29]. However, while the HMM
predicts a recombination event corresponding to a transition from state 1
into state 2, the findings in [29] suggest that this mosaic segment is more
likely the result of rate variation than recombination. This will be discussed
in more detail below.

8. Discussion

We have combined two probabilistic models for detecting interspecific
recombination in DNA sequence alignments: (1) a taxon graph (phyloge-
netic tree) representing the relationships among the taxa, and (2) a site
graph (HMM) representing which nucleotides interact in determining the
tree topology. The parameters of the combined model can be estimated in a
maximum likelihood sense with the EM algorithm, and this leads to a sig-
nificant improvement on an older heuristic parameter estimation scheme.
In fact, the simulation study carried out here suggests that recombinant
regions can be accurately located, in agreement with the true location
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(simulation study) or the location predicted in previous, independent work
(maize actin genes, Neisseria).

Two limitations of the approach presented here, however, have to be
discussed.

Each possible topology constitutes a separate hidden state of the HMM.
Now recall, from Sec. 2.1, that for n taxa there are (2n — 5)!! different
unrooted tree topologies. This implies that the number of states K increases
super-exponentially with the number of taxa, which limits our algorithm to
alignments of small numbers of taxa. In practical applications, the HMM
method is therefore at best combined with a fast low-resolution preprocess-
ing step that can analyze more taxa simultaneously. A useful approach is to
conduct the initial search for recombination with split decomposition [2],
a method that represents evolutionary relationships among sequences by
a network if there are conflicting phylogenetic signals in the data. Split
decomposition itself does not allow individual recombination events to be
identified nor the statistical support for them to be assessed. It is, however,
a useful preprocessing step in that a network that strongly deviates from a
bifurcating tree is suggestive of recombination and gives hinds as to which
sequences might belong to candidate recombinant strains. This can then
be further investigated with the high-resolution method discussed in the
present paper.

The second limitation is that the hidden states represent different tree
topologies, but do not allow for different rates of evolution. However, if a
region has evolved at a drastically different rate, employing a new state for
modelling this region might increase the likelihood even though the new
state itself — representing a different (wrong) topology — is ill-matched to
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Fig. 23. Factorial Hidden Markov Model. In generalization of the standard HMM

of Fig. 12, a factorial HMM has two separate families of hidden states: one represents
different topologies (St), the other represents different evolutionary rates (r¢).
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the data. Consequently, a differently diverged region might be erroneously
classified as recombinant, which seems to have happened on the Neisseria
sequence alignment, as discussed in the previous section. A way to redeem
this deficiency is to employ a factorial hidden Markov model, shown in
Fig. 23, and to introduce two separate hidden states: one representing dif-
ferent topologies, the other representing different evolutionary rates. This
effectively combines the method of the present paper with the approach
in [5]. A detailed investigation of this idea is the subject of future research.
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CHAPTER 2

APPLICATION OF STATISTICAL METHODOLOGY
AND MODEL DESIGN TO SOCIO-BEHAVIOUR
OF HIV TRANSMISSION

JACOB OLUWOYE

The common scientific approaches to the reasoning of problems are math-
ematical reasoning or statistical reasoning. Mathematical or formal reason-
ing is mostly deductive, in that, one reasons from general assumptions to
specifics using mathematical logic and axioms for multi-criteria decision-
making. The purpose of this chapter is to relate statistical methodology and
model design to planning and policy making for a viable solution to the rav-
aging Human Immune Deficiency Virus (HIV)/Acquired Immune Deficiency
Syndrome (AIDS). Demonstrating the benefits that can be derived from adapt-
ing the concept and model building approach in planning and decision-making
of public health and urban development. Discussion in this chapter is presented
the following sequence: (a) introduction, (b) deductive/inductive approach,
(c) statistical methodology and model design, (d) adaptation of “Seldom Do”
models to human behaviour, (e€) the discrete choice modelling and its applica-
tion to the socio-behaviour of HIV transmission. The chapter concludes that
the “Seldom Do” model approach offers potential for addressing the develop-
ment of planning and multi-criteria decision processes associated with health
and urban development problems in our society.

Keywords: Deductive/inductive approach; HIV/AIDS behaviour; modelling;
sociomedicine; urban development policy.

1. Introduction

The common scientific approaches to the reasoning of problems are mathe-
matical reasoning or statistical reasoning. Mathematical or formal reason-
ing is mostly deductive, in that one reasons from general assumptions to
specifics using mathematical logic and axioms for multi criteria decision-
making [1]. Mathematical probability, which is the basis of all statistical
theory, had its beginning in ancient times. Certain mathematical patterns
were developed as pastimes by the Greeks, and others were first found to
coincide with chance happenings, such as occur in card games and later
found to coincide with actual happenings. According to [2] and in quote
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“mathematical methods are gaining wide acceptance in the study of infec-
tious diseases and putting this powerful tool in the hands of public health
community is an extremely important development”. It was not until the
Seventeenth Century that one of the first practical uses was made of prob-
ability when life expectancy tables were published for use in computing life
insurance premiums and benefits.

Thus, this chapter will be based on the principles of applied research
which attempt to use existing knowledge as an aid to the solution of a giveh
problem or set of problems. When considering the problem of predicting
the rate of HIV infection, it is important to factor in geographic dimensions
that have been totally ignored due to ignorance and an undue concern for
confidentiality.

[3] reported that at a global level, there are considerable differences
between regions, states, localities, cities, towns and villages in the levels
of prevalence, and rate of transmission, of the Human Immune Deficiency
Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS). Furthermore,
there are differences between Regions, States and Localities in the social
and demographic characteristics of HIV carriers/AIDS suffers (e.g., the
relative proportions of heterosexuals/homosexuals, injecting drugs users,
male/female infant HIV carriers) [3]. However, measures to improve health
and quality of life in developing countries now need greater attention,
together with the need to protect and improve the environment.

It should be noted that diverse and complex environmental health prob-
lems cross national boundaries and often need to be dealt with internation-
ally. It is therefore not surprising that large organizations try to pool their
efforts in the context of environmental and health policies and research [4].

As AIDS is projected to remain of critical importance in this century,
attempts to forecast and predict its developments are urgently needed. A
vast amount of literature describing many different aspects of the disease
has already been investigated. But as [5] points out: “Rarely can one find
an attempt to model the spread of AIDS incorporating the basic spatial
dimensions of human existence. Most modelling seems to be focused com-
pletely within the temporal domain”. One of Kabel’s main lines of argu-
ment is that modelling the geographical distribution of AIDS can contribute
to both educational intervention and the planning of heath care delivery
systems.

Medical cartography can play an important role in both areas, as it
is an excellent means of communication. In order to be useful to resource
planners, predictions of AIDS should include a spatial component.
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2. Deductive and Inductive Approach

The detailed methodology, which a researcher should adopt, is a function
of the problem, which she/he has set for themselves; different intellectual
problems have to be tackled in different ways [6]. Traditionally, however,
approaches to problem solving are classified into one of two categories,
deductive or inductive. The qualities of each general methodology interact
with the intellectual problem, so that sometimes the inductive approach
and other times the deductive approach is preferable.

The deductive approach to investigation implies the deduction of a series
of events or states from a set of pre-established axioms, and often a compar-
ison of observed phenomena with the deduced events or states (Fig. 1(a)).
The inductive approach, in contrast, starts with the observation of a set of
phenomena and concludes with attempts to recognise patterns and logical
structures in these phenomena, often with some suggestions or conclusions
as to their cause (Fig. 1(b)). The former thus starts with a hypothetical
cause and then attempts to identify an effect, while the latter observes an
effect and then searches for a cause.

If the deductive approach is to be implemented, then a set of axioms
must be created or must already be in existence. The deductive approach
thus implies some prior knowledge of the problem or of the reasons for the
causes in the cause-effect equation. The inductive approach, on the other
hand, suggests that investigation proceeds from a state of ignorance. If

Spatial Theory
Testing of Theory
Selection of relevant information
Analytic$1 Techniques
Interpretation of results

Assessment of the theory

Fig. 1(a). Deductive research methods.
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Spatial Diversity
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Verbal Numerical
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Interpretaim of Result
General model

Possible Applications

Fig. 1(b). Inductive research methods.

a body of knowledge about a problem already exists then the deductive
approach is often adopted. When there is no body of knowledge, which can
be built upon or criticised, as the starting point for an investigation, then
the inductive approach is to be preferred [5].

3. Statistical Methodology and Model Design

Some scholars claim that the purpose of science is prediction. This is the
practical person’s viewpoint even when it is endorsed by such scholars
as Knight [7]. Neo-Machians (after Ernst Mach) go even further. Just as
Mach [8] focused attention on economy of thought without regard for the
special role of logical order, they claim that practical success is all that
counts; understanding is irrelevant. No doubt if science had no utility for
the practical person, who acts on the basis of predictions, scientists (both
physical and social) would now be playing their little game only in pri-
vate clubs. However, even though prediction is the touchstone of scientific
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knowledge, “in practice man proves the truth”, [9, p. 76] the purpose of
science in general is not prediction, but to gather knowledge which can be
used as a means of enhancing prediction.

There are two distinct levels of individual analysis: “descriptive” analy-
sis and “predictive” analysis. Both are behavioural in the sense of involving
individuals at the aggregate level, but are distinctly different in objective.

The primary distinction between description and prediction can be illus-
trated diagrammatically by the {10] Schema of Scientific Explanation (see
Fig. 2).

The difference between the two is of a pragmatic character. If E has
been observed, i.e., an individual behaviour, and a suitable set of state-
ments C1, C2, ..., Ck, L1, L2, ..., Lr is provided afterwards then we have
“explanation”.? If the later statements are given and E is derived from the
C’s and L’s before E is observed, then we have “prediction”. For a model to
have explanatory power it must, together with other requirements, contain
empirical propositions in the explanatory variables which must be con-
firmed by all available relevant evidence. Such a model would reflect the
understanding theoretical constructs of the habit and decision periods.

Mathematical or formal reasoning is mostly deductive in that one rea-
sons from general assumption to specifics using mathematics precision.
Models built with this approach are usually larger and more complex than

C1,Q2,.,Ck Statement of antecedent
conditions
Explanans

L1,L2,..Lr General Laws —
Logical
deductiuon —_—

. »F Description of the empirical
phenomenon to be explained Explanandum

Fig. 2. Schema of scientific explanation.

2Given the confirmation of E, certain philosophers give a certain confirmation to state-
ments of antecedent conditions plus general laws. This does not deductively follow
from E, but the existence of E gives inductive support to a statement that the initial
conditions plus general laws do, in fact, hold.
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those developed using statistical reasoning. A mathematical model is devel-
oped on the basis of axiomatic assumptions, which are useful, precise, rea-
sonable and concerned with simplicity. Based on these general assumptions,
the mathematician reasons a precise mathematical structure, thus estab-
lishing a system of relationships referred to as a theory or a model. The
properties of the model should be examined and the theory should also
evaluate and tested in terms of what it tells the researcher in the light of
the consequences of the axiomatic assumptions.

The statistical or factual approach deals directly with empirically
derived factual data using inductive reasoning. Data should be collected
and attempts should be made to find whether patterns of regularities
exist within the data. Besides usually simplifying the data, the three com-
mon uses of statistical reasoning are description, induction and hypothesis
testing [11].

Description could involve finding and explaining the distribution of some
phenomena. Induction aims to establish empirically an association between
variables such as a simple correlation, linear or non-linear relationship, and
so on. Hypothesis testing involves making a decision to reject or accept a
given generalisation within a probabilistic framework. In simple terms, the
common uses of such reasoning are either to describe or infer something
from an assumption [12].

3.1. Five steps in model building

Whichever of the above approaches or combination of approaches is used,
model building is likely to involve five steps (Fig. 3).

Step 1. Step 1 is to make assumptions regarding the data. Such assump-
tions will help reduce or remove possible uses of the shotgun method of
problem solving.

Step 2. The second step is to reason based on the prior assumptions. At
this step the initial properties and results of the model are examined. Up
to this point the model is usually non-operational.

Step 3. Step 3 is making the model operational. This involves assuming
functional forms for the relationships. Are they linear, quadratic? Theoret-
ical variables must be defined and a means established to estimate model
parameters (i.e., fitting the model).

Step 4. In Step 4 the procedure involves estimating and testing the
model by actually plugging data into it. Predictive accuracy is reviewed
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y
I Prior Assumptions ]

|
Y

I Model Operational l
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if not

Make use of the model if it P Do not use it
passes all the tests

Fig. 3. Five steps in model building.

by analysing trial prediction accuracy. Goodness-of-fit of the whole model
is examined and residuals are analysed.
Step 5. Step 5 is the use of the model if it passes all the tests.

3.2. Model building approach

What are “Seldom do” models? “Seldom do” models involve all five steps
discussed above, in that seldom are they deduced axiomatically and made
operational.

However, mathematical models, which are derived from sound reason-
ing, can be widely used for such purposes (for example the study of poly-
partnerism) as in Fig. 4. Furthermore, the six dimensions of mathematical
models are discussed below.

Understanding or explaining the often complex relationships that exist
in the real world are fundamental objectives of mathematical models. Com-
plexities usually arise from the fact that many variables act to produce some
reaction (i.e., no single cause) and that there are interdependencies among
variables. Variables in mathematical models are usually designated as either
endogenous or exogenous variables. In a given problem, exogenous variables
are the predetermined variable or independent variables while endogenous
variables are determined by exogenous and other endogenous variables.
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/—) Explaining \/

Understanding Description

Planning and
decision making

'\ Prediction
Conditional
Prediction

Fig. 4. Six dimensions of mathematical models.

4. Adaptation of “Seldom Do” Models to
Human Behaviour

As a simple example, for a particular point in time land-use will affect socio-
human behaviour and both in turn will influence trip generation rates.

However, in a temporal sense, trip generation rates will influence land-
use which will affect occupation.

It is evident that in developing mathematical models an extremely
important assumption is made when determining which variables are
endogenous and which are exogenous. This, of course, implies causal rela-
tionships and if the assumptions regarding the variables are incorrect, the
model will not work, or, at the very least, will be misleading.

In addition to understanding or explaining, models of this type have
the additional property of description and can be used to generate data for
which the researcher has no measurements. Simply stated:

Land-use influences effec Number of people
activity DTUCHCES | travel time —— carrying the HIV

Making trips

Land-use Commercial Trip generation
activity affect sex workers  influence rates

|

Fig. 5. Land use/commercial sex workers/trip generation interactions.
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For example, models employing land use variables (as easily measured
exogenous variables) could inferentially describe travel time. This, in turn,
could be used to imply something about the relative levels of congestion or
conflict existing in a particular area.

The third property is that of prediction. The predictive power of a model
builds upon description in that it can predict values of variables for which
there are not yet measurements. These predictions can then be used for
some future point in time assuming a single future form.

Graphically a predictive model might look like:

Exogenous . g1 PREDICTIVE ‘ > Endogenous
Variables MODELS Variables

Fig. 6. Predictive models.

(Within the model [box] endogenous variables are linked and influence
other endogenous variables.)
Set in the simplest terms, for example:

Land-use and — People living

Social environment » » With HIV

Characteristics Models Characteristics
Fig. 7. Predictive models.

Variables must be confirmed by all available relevant evidence. Such a
model would reflect the underlying theoretical constructs for the habit and
decision periods.

Descriptive analysis looks at “individual drug users”, investigating cur-
rent behaviours in terms of various factors influencing individual drug users’
behaviour.

When prediction is considered, some adjustments are required. A chang-
ing situation (decision period analysis) can be evaluated in a descriptive
framework, just like evaluation of a situation in the behaviour period. Also,
prediction can occur under conditions where change is occurring, or where
behaviour period conditions exist.

Condition prediction, the fourth property or type of model, deals with
alternative future predictions based on conditional assumptions.

The usefulness in planning and public policy-making are quite clear,
however the properties of the model become increasingly more complex
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in modelling alternative forms of the future. Because of this, some input
variables have to be made control or policy/actions variables. This can be
illustrated diagrammatically:

Control
variables

\ Conditional

Exogenous — gl predictive _»EHC!OEIenous ——p»-Outcome
Altemate/' variables model variables variables
plans

Fig. 8. Policy/Actions model.

The characteristics of the variables are important to the decision-making
process. Outcome variables can be any type of variable, control, non-control,
exogenous or endogenous. Also alternative plans specify the control and
exogenous variables. As an example, set within the context of the epidemi-
ology research, alternative plans might aim to reduce vulnerability of road
users (Driver on long distance route) along commercial roads. Control vari-
ables might include reducing the number of stops, including educational
intervention and policy on long distance road stops. Exogenous variables
might include social activities at that location, land use characteristics, and
traffic generation. The endogenous variable predicted by the model might
be potential risk, in terms of, say, travel time, or it might be the number,
and purpose of stops.

If there is only one outcome when testing alternative plans the theory
is simple. However, when you have several outcome variables the theory
becomes complex, as does decision-making. With more than one alternative
and outcome, a criterion or pay-off function probably is necessary. What
is needed is a method to evaluate trade-offs, for example, in spread of HIV
problem, trade-offs such as number of infected people versus changes in time
or other cost/benefit type ratios. Such pay off functions should usually be
dictated by the immediate situation as viewed by the local governing body
in terms of their variables of interest.

Another form of trade-off is predictive trade-off.

Observations are expected to cluster around the point of indifference.
There is a cluster of observations of non-definite behaviour generated. Dis-
criminant analysis can handle this relationship because it is specifically
designed to either minimise misclassification with respect to some presumed
threshold, or to obtain the greatest separation of the two populations rela-
tive to the within-population variance.
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City i Population Size
in City i
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HIV)
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Fig. 9. Predictive trade-off.

The fifth type of model is the decision-making, planning model. This is
often referred to as the maximising, minimising or optimising model. It is
used to generate alternative plans and optimise the input variables. Lin-
ear or non-linear (dynamic) programming methods are usually employed.
Graphically, this model might be portrayed:

Generationof g, Control variables

i
Alternative Exogenous Conditional
plans —————»  variables ———»| predictive —P
(optimized) model

—— p» Endogenous __p. outcome g pay-off function
I

Fig. 10. Decision making and planning model.

This type of model generates alternative plans and optimises the exoge-
nous variables using linear or non-linear programming techniques. Since
such techniques are very time-consuming the development of this type of
model is usually quite costly.

5. The Discrete Choice Modelling

Discrete choice is a type of regression technique that uses a choice set of
mutually exclusive and collectively exhaustive alternatives to describe an
outcome.
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Looking at different theories of people’s behaviour, there seems to be
recognition of a conceptual framework with a number of characteristics. In
recent years, the interaction-oriented approach has been articulated in the
form of systems framework. In its application to people living with HIV,
one should point to the definition of a system and the notion of interaction
as being most useful in providing a relevant framework. It should be noted
here that a system is defined as a set of elements having definite attributes,
together with the relationships between the elements and between their
attributes. Since the systems usually exist in some kind of environment,
one can define the environment as a set of those elements, which do not
belong to the system and whose attributes influence the system, or are
influenced by it. Finally, each system has a specific function, which imposes
a defined standard of performance.

Discrete choice modelling is a well-established regression technique that
has been used extensively in several disciplines related to psychology, eco-
nomics, mathematics, and transportation engineering. Several books and
papers have been written on this subject [13-18]. However due to reasons
outlined below, the author has decided to use the Multinomial Logit (MNL).

The Multinomial Logit (MNL) model can be used to calculate the prob-
abilities of choosing different alternatives in sampling people living with
HIV. In the MNL model, individuals are assumed to choose the alterna-
tive that yields the highest utility. Some authors [19-21] have emphasised
that data derived from binomial counts should be analysed to take into
account the binomial denominator, so that the proportion (percentage) of
the population already infected can be anaiysed in order to accommodate
the variance while at the same time retaining the binomial probability dis-
tribution inherent in the data.

In order to understand the logit approach as a representation of an
alternative behavioural hypothesis, the author considers the case of a num-
ber of alternative outcomes. It is likely that sex trade individuals act to
maximise utility (V'), and that they constantly evaluate alternative ways
of achieving outcomes (s) consistent with this behavioural postulate. An
alternative outcome is closer if and only if it provides the highest (indirect)
utility.

The discrete/continuous model, the utility of the ith alternative for the
gth individual, U4, should be calculated on the basis of variables affecting
the choice of the decision makers (e.g., homosexuals)

k
Uig = ) _ BikXig- 1)
k=1
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The characteristics are likely to be socioeconomic variables (attributes of
the decision-maker). In addition, alternative specific dummy variables can
also be used as part of the decision process.

Thus the author decided to use population with only two choice alterna-
tives: one infected population and the other population at risk (e.g., Homo-
sexuals, Bisexuals, IV Drug users, Heterosexuals, Hemophiliacs, Blood
transfuses). It should be noted here that the value of an explanatory vari-
able could not be the same for all alternatives. Because of this, one has to
set each variable to zero for one alternative. The choice of which variable
should be set to zero for each alternative has no effect on the final results
of the model, but it naturally alters the form of the utility functions.

Let p be the probability that HIV infected population will continue to
grow or spread and hence (1 — p) the probability that population at risk
will react to educational intervention; then one may want to apply a linear
specification of the form:

N %
T +b—— > teq + d1Q1 + d2Q2 + d3Qs. (2)
Where T, and T are the times (minutes per day for social activities) needed
for the two populations, C; and Cy their costs of living (dollars per day),
and Q1, @2, and @3, population characteristics which are considered to be
relevant to the choice (income, family size, age, etc.).

A difficulty with respect to Eq. (2) is that the left-hand side (the prob-
ability p is constrained to the interval from zero to one, whereas the right-
hand side can in principle take arbitrary real values. This defect can be
remedied by replacing the left-hand p by a more suitable variable, e.g.,

5= (2)a(8) et ®

i=1

or in logarithmic form:

ip:a—{—ﬂlog(%) ’ylog( ) Zdlong (4)

The left-hand variable in Eq. (4) is known as the logit corresponding to
the probability that people living with HIV/AIDS are dying. The logit is
monotonically increasing function of the probability p varying between —oo
and oo. Note that it is numerically equal to the logit of the complementary
event but of opposite sign:

1
0g T

P
1—

log £ = —log
1-p
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This implies that the linear logit specification has the convenient property
that it is perfectly symmetric in the two alternatives (population infected
versus population at risk). If one interchanges the roles of the two alterna-
tives, each term in the equation remains as it is except that it takes the
opposite sign. Suppose, however, that we do not have two alternatives but
three or more. Then Eq. (4) is not sufficient.

Formalising the problem of choice, one expects the utility provided by
the population (infected and at risk) to be a function of individual social-
behaviour characteristics, socio-economic characteristics, attraction (land-
use) and a disturbance term (i.e., on-street prostitutes, drugs). If one uses a
reduced form structure, the utility will also be dependent on the continuous
variable, utilisation. Therefore, the unobservable could be characteristics
population (infected and at risk) and/or attributes of social activities. This
concept, therefore, combines two ideas — the idea of a variation in taste
among individuals in a population and the idea of unobserved variables in
land-use/urban social behaviour models. These components of the utility
function will be denoted by the M-dimensional vector €, and the utility
function will be written U(z, b, 2, s, ). For the individual infected and at
risk, € is a set of fixed constants (or functions) but for the investigator ¢ is
a random variable with some joint density function, denoted

fe(el, .. ,€m), which includes a density on U.

Assuming, that the individual infected and at risk has decided to travel for
social activity j. Conditional on this decision, his/her utility as a function
of z; and z, the remaining choice variables, is

U; =U0(0,...,0,z;0,...,0,b1,...,bN, 2, 8,€).
By virtue of assumption, this conditional direct utility can be written as
U; = Uj(z;,b), 2, 8,€).

The population infected and at risk maximises U; subject to the conditional
time constraints.

Pjz; + z =y, and the non-negatively conditions z; > 0,2 > 0.

For the purpose of explaining the logit method and its relationships to
the choice of HIV infections, one needs to note that the objective is to
construct a model to find the probability, p, which one can calculate in
preference to another aspect of unprotected sex. This probability of choice
can be explained in terms of combination of explanatory variables.
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It should be noted that the resultant probability function, almost iden-
tical to the cumulative normal curve, is a symmetrical sigmoid curve
diverging from the normal curve at the extremes only. In developing the
model when the regress and (or dependent) variables are dichotomous, and
they are on the values 1 (for infected population) and 0 (for non-infected
population).

A qualitative dependent variable, such as the binary choice of social
behaviour, imposes an automatic restriction on the range of variation of
its conditional distribution, constraining the probability of choice to take
values between 1 and 0. Discrete choice models are similar in appearance
to least square linear regression models (refer to Eq. (5)), but are different
in that the value of the discriminant function (P*) is substitute in Eq. (6).
Equation (6) is called the logit function and takes on the values between
zero and one. Other functions with similar properties can also be used such
as the probit, urban and Geompertz.

P*=gp4+a1Xi+taxXe+--+anXnm (5)
where, X1, X3, ..., X,, = independent variables.
PPI=¢eP" /(1 +€7) (6)

where, PPI = Probability of proportion of the population already infected
e = exponential function.

Figure 11 shows a graphical representation of the logistic function.
Notice that it has as “S” shaped appearance and asymptotically approaches
zero and one as the value of P* approaches negative infinity and positive
infinity, respectively.

P*
1

—o0 oo

Fig. 11. The logit as a function of the probability.
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6. Application of the Use of Logit Specification to
Socio-Behaviour of HIV Transmission

To illustrate the use of logit specification, consider the two major factors of
transmission of HIV that reported by [3] and [22]. The two major factors
are:

(1) The Pool — The Pool comprises the total availability, during a certain
period of a transmissible and infectious agent within a particular pop-
ulation — in short the proportion of the population already infected;
and

(2) Polypartnerism — Polypartnerism is the number of different contacts
with whom an individual engages in unprotected coitus (in the case of
HIV, needle/syringe sharing as well as sexual contacts).

Examples of Secs. 6.1-6.3 below were modified based upon G.V.
Crockett, Introduction to Statistical Technique in the Social Sciences,
pp- 124-129.

6.1. Binary choice models

As discussed above one can see that, all models contained a dependent or
endogenous variable, which was continuous. However, an increasing area of
interest is in models in which the dependent variable can take only a limited
range of values. For example, one might want to model “Polypartnerist”
behaviour where there are only three unprotected coitus; or one might
want to study variables influencing the “Pool” — the proportion of the
population already infected. In this section the author will concentrate on
models where are only two categories — for example, “Sexual Contacts”,
or “Needle/Syringe Sharing”, and so on.

Binary choice models are couched in probabilistic terms; as an example,
given a sample of population with HIV in a particular city or country
and data on their attributes (age, sex, income etc.), the choice models to
be described can predict the likelihood (or the probability) of an individual
engages in unprotected coitus on the basis of their individual incomes. That
is, other things equal, low-income individuals with HIV more or less likely to
engage in needle/syringe sharing than high-income individuals with HIV?

This section looks only at two of a range of possible models, the first
being the linear probability model, and the second, the logistic regression
model.
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6.2. The linear probability model

This model is a simple extension of the linear multiple regression models,
and takes the form:

Yi=bo+ X, +e (8)

where Y; = 1 if the choice is made in target group for both sexual partners
using condoms and Y; = 0 if the choice is made in target group for only
sexual partners using condoms;

X, = the set of attributes (age, sex, social location, distance to location,
etc.) e; = error term.

When Y; is a dichotomous variable, the regression can be interpreted as
describing the probability that an of HIV risk behaviours among an indi-
vidual engages unprotected coitus, given information about the individual’s
age, seX, income, etc.

Since Y; can only take the value one or zero, it is not difficult to show
that the variance of the error term is not constant [23, pp. 226-227], and
that observations where the probability of choosing to use condom (for
example), are close to zero or close to one, will have relatively low vari-
ances, while observations where the probability is close to 0.5 will have
high variances. As discussed in Sec. 5 above, this characteristic of the error
term not displaying a constant variance (called heteroscedasticity) results in
a loss of efficiency, nevertheless, the parameter estimates are still unbiased
and consistent.

Consider the following problem:

A sample of hypothetical data on age versus whether an individual
engages unprotected coitus HIV risk behaviours. The model then is:

Y =bo+b; Age+e (9)

1 If both sexual partners used condoms

0 If one sexual partner used condoms

where, Y = {

and AGE = the age in years of HIV risk behaviours among an individ-
ual engages unprotected coitus by fitting an OLS regression to the data,
resulting in the following fit:

Y = —0.23+0.025 Age. (10)

Since Y is interpreted as the probability of both sexual partners used
condoms, Eq. (10) shows that as the age of the individual with HIV
increases, the probability of both sexual partners used condoms increases,
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while conversely the probability of one sexual partner used condoms
decreases.
Hence, if Age = 20,
Y = Probability of both sexual partners used condoms
= —0.23 + (0.025 x 20)
=0.27

If, however, Age = 40

Y = Probability of both sexual partners used condoms
= —0.23 + (0.025 * 40)
=0.77

The fitted Eq. (11) is depicted in Fig. 12 below.

6.3. The logit model

An obvious problem arises with Eq. (10), Fig. 12 shows that ¥ can exceed
1, or be less than zero, both impossibilities.

One way of avoiding this would be to set all Y/ greater than 1, equal to 1,
and all ¥ less than 0, equal to 0 forming the flattened Z shape ABCD.
This specification, however, is still not satisfactory in that, being linear; it
suggests that equal changes in age result in the same change in probability,
regardless of the age. Thus a unit increase in age of usage of condoms is

A

Y=1 XXXXXXXXXX /
Usage of Condoms ‘ I
(Both partners using
condoms) C D

A B

A XXXXX

Y=0
Usage of Condoms | I
(Only one partner using 10 20 30 40
Condoms)

g

AGE
x = Hypothetical data (years)

Fig. 12. Usage of condoms versus age.
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predicted to cause a 0.025 increase in the probability of both partners using
condoms, regardless of whether the sexual behaviours of individual is in his
or her early 20’s, or in his or her late 50’s. It is much more likely that a
constant change in age will produce a relative change in Y; ie., the upper
and lower tails would more likely be much flatter than the linear function.
At the lower end of the Y values, this flattening can be obtained by fitting
the log of Y versus Age:

logf/ = 130 + I;l Age.

Similarly, at the high end of Y values (i.e., as Y approaches 1), the flattening
can be achieved by taking the log of (1 — Y'). Combining both ends of the
scale, results in the model:

logV —log(l — V) = bo + by Age (11)
or,
more generally, log(P/(1 — P)) = by + b, X.
Solving Eq. (11) for P gives:

1

P= 1 + e—(bo+b1X)

which is called a logistic curve, as graphed in Fig. 13

Using application of the previous authors it would appear that Eq. (11)
could be easily estimated by OLS with a suitable log transformation of
the dependent variable. This is not possible, however, because if P = 1, the

Linear Equation
Constrained to be
Between 0 and 1

\I.ogistic

Curve

Linear
Equation

Fig. 13. Graph of the logistic curve.
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expression P/(1— P) is infinitely large, while if P = 0, the expression equals
zero; hence the logarithm in each case would be undefined. Fortunately, a
method called maximum likelihood estimation (MLE) is available which can
cope with this problem; briefly, in this method, different values of I;o and
31 are tried until those values of by and b; are discovered which maximize
the likelihood of their having come from the sample of (X,Y’) values given.
The parameter values that make this likelihood largest are therefore called
the maximum likelihood estimator’s 130 and 131. The computer using an
iterative procedure finds them; i.e., the computer keeps trying different
values until it converges on the maximum likelihood values. Hence the user
should be aware that this procedure is likely to be quite costly in terms of
computer time, and accordingly limit the number of independent variables,
or use random samples of the original data in order to limit the number of
independent variables when the full data set is used.

7. Conclusion

This paper has discussed the major five steps of a “Seldom do” model
for the purpose of improving multi-criteria decision making for health and
urban problems, in which the role of models and other statistical tools of
analysis in the information system are important. In particular, we have
noted the relationship between variables which have considerable value to
the planner in the understanding and development of planning and decision
processes.

The planners must also know how such variables change over time and
the way they respond to intervention. Models of health, urban develop-
ment and other statistical techniques structure these relationships between
the major variables; helping planners to analyse urban and environmen-
tal health problems. They are therefore very useful tools in understanding
the complexity of the health (HIV/AIDS preventive) activities and urban
development policies. Data banks and models are therefore very much inter-
connected within the urban information system.

8. General Comments

The discussion of model types and model building was based in part
on courses (i.e., quantitative methods, statistical methods, methods of
sociological inquiry, etc.) taken by the author at the University of
Wisconsin-Madison, USA; Howard University, Washington, D.C.; and Inde-
pendent Research (Ph.D.) at the UNSW Kensington, Australia.
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CHAPTER 3

A STOCHASTIC MODEL INCORPORATING HIV
TREATMENTS FOR A HETEROSEXUAL POPULATION:
IMPACT ON THRESHOLD CONDITIONS

ROBERT J. GALLOP, CHARLES J. MODE and CANDACE K. SLEEMAN

During recent years the medical community has been aggressively searching
for a cure of the HIV disease, but so far a cure has not been found. Conse-
quently, the goal of HIV/AIDS treatments has been to impact the health of
infected individual and to extend their life-expectancy with the hope that in
time the medical community may find a cure. Much success has been reported
in improving the life-span of infected individuals. How this increased life-span
for infected individuals effects the overall impact of the spread of the disease
remains unknown. Thus, while success of HIV treatments, such as the HAART
therapy, is beneficial in the infected population, consequences must be consid-
ered for the susceptible audience. The investigation described in this article
will focus on the heterosexual population; therefore, a thorough investigation
must consider the multiple facets present in the heterosexual population. A
stochastic model for the heterosexual population with sufficient parameters to
model the multiple facets impacting the spread of the disease in this audience
is considered. Proximity to threshold conditions specify when the disease will
spread if a small number of infected people are introduced into a susceptible
population. Determination of distance to the threshold condition for a popula-
tion participating in HIV treatments and a population without HIV treatments
is investigated. Simulations suggest that from the perspective of only successful
implementation of HIV treatments to this audience, a more rapid spread of the
disease throughout the susceptible sector occurs. The merits of HIV treatments
is not in question but, in this era of more advances in HIV treatments, HIV
treatments must be coupled with attention to general awareness and further
education and prevention efforts, for proper control of the epidemics spread.

1. Introduction

Since public recognition of the acquired immunodeficiency syndrome
(AIDS) epidemic during the mid 1980’s and the causal agent of AIDS,
human immunodeficiency virus (HIV), a great amount of effort has been
devoted to constructing and analyzing statistical models of the epidemic.
When focus is placed solely on heterosexual transmission, certain facets
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of the disease transmission and audience characteristics must be consid-
ered. As discussed by Dietz and Hadeler [5], if two susceptible individuals
form a marital couple, then they can be considered temporarily immune
as long as they do not separate and have no sexual contacts outside the
couple. While understanding the idiosyncrasies of the heterosexual com-
munity and that there is a need to model the heterosexual spread of
HIV/AIDS, questions arise as how to model the epidemic. Recently, Mode
and Sleeman [13] formulated a modeling structure which incorporates key
facets of the heterosexual population such as couple formation, couple dis-
solution, selectivity of partners in couple formations, and selectivity of part-
ners for extra-marital contacts. It is formulated in a stochastic framework
where semi-Markovian life cycle models for single females, single males,
and couples are outlined based on the theory of competing risks, where
the disease may progress among stages of severity. Much attention has
been given to the effect of HIV/AIDS treatments such as the highly active
antiretroviral therapy (HAART') treatment of protease inhibitors [2, 4, 7, 8],
which illustrate subjects may move among the stages of the disease with
both improvement and deterioration possible. The Mode-Sleeman model
accounts for both possible transitions among stages of disease.

By operating on conditional expectations of the present, given the past,
deterministic models, expressed as non-linear difference equations, may be
embedded in the stochastic process. By letting the time increment approach
zero, the embedded non-linear difference equations give rise to a system of
differential equations. As will be illustrated in examples, by exploiting the
stability properties of this embedded system of differential equations, it
is possible to provide insights on threshold conditions as to whether an
epidemic spreads in the population according to the stochastic model.

The concept of threshold conditions is one of the most important con-
cepts in mathematical epidemiology [10], and is used to specify conditions
in terms of the parameters such that the disease will spread if a small
number of infected people are introduced into a large susceptible popu-
lation. As discussed by Hyman et al. [11], an analysis of the stability of
the infection-free equilibrium gives rise to an epidemic threshold condition.
Briefly, a stability analysis consists of linearizing the embedded differential
equations around the infection-free equilibrium and determining when the
largest real part of the eigenvalues crosses zero gives rise to a threshold
condition. When the value is positive, it indicates the introduction of a few
infectives into a susceptible population will result in a spread of the dis-
ease throughout the susceptible population with positive probability. When
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negative, it indicates the susceptible population is resilient to the introduc-
tion of a few infectives; therefore, a minor epidemic may develop but will
eventually become extinct with positive probability. When zero, it indicates
a threshold condition based on the multi-dimensional parameter space has
been met. The magnitude of the largest real part of the eigenvalues indicates
the rate of spread, if positive, or the rate of restoration to an infection-free
system, if negative. For two systems with the same sign for the largest real
part of the eigenvalues, the system with the larger magnitude will have the
quicker rate of infection, if positive, or quicker rate of restoration to an
infection-free system, if negative.

The main focus of this article will be to iliustrate the effect of HIV/AIDS
treatments on the spread of the disease in a susceptible population with the
introduction of a few infectives. To illustrate this point, threshold investi-
gations for a system with HIV/AIDS treatments and a system without
HIV/AIDS treatments will be compared. To enhance the understanding of
the epidemic process, fifty Monte Carlo realizations of the stochastic pro-
cesses will be computed on monthly time intervals of 720 months. Monte
Carlo samples will be summarized statistically on a monthly basis, by
derivation of the minimum, maximum, 25th quantile, 50th quantile, and
75th quantile. To provide a basis of comparison of the systems, computer
generated graphs of the two systems will be simultaneously compared.
The coupling of advances in education and prevention efforts and HIV
treatments will also be investigated and comparisons to the other systems
will be made.

2. Parameters for a Heterosexual Population

The heterosexual population is partitioned into three groups: X, single
females, Y, single males, and Z, coupled individuals. Each group is parti-
tioned in time and severity of the disease. Stages of the disease are expressed
in terms of CD4% counts, with stages represented by intervals of CD4*
counts, with higher stages representing more severe immune deficiency. By
definition, stage 0 indicates an individual is susceptible. Thus, at time ¢,
X (t; 1) represents the number of single females in stage 7 at time ¢, Y'(¢; §)
represents the number single males in stage j at time ¢; and Z(¢; 1, j) repre-
sents the number of couples with a female in stage ¢ and a male in stage j at
time t. In order to formulate a model which realistically captures the multi-
ple facets of the heterosexual population, parameters representing the char-
acteristics of the disease infection and progression and population transition
must be defined. For disease infection, parameters are needed to describe
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extra-marital infection and intra-marital infection. For disease progression,
parameters are needed to describe the declination of CD4% counts and the
potential reconstitution of CD4* counts through effective HIV treatments.
For population transitions, parameters are needed to describe recruitment,
couple formation, couple dissolution, and deaths.

Focusing first on the infection of a susceptible individual, one recognizes
that infection can occur through sexual contact with an infected individual.
Potentially unsafe sexual contact may involve all individuals regardless of
marital status. We will classify all sexual contacts outside wedlock as extra-
marital sexual contacts.

The probability a susceptible is infected within a couple during a given
time period, depends on the expected number of marital sexual contacts per
unit time, v;,¢, and the probability the susceptible is infected per marital
contact. Let g (k) denote the probability a susceptible female is infected
per marital contact when her partner is in stage k of the disease. The
parameter ¢mm (k) is defined similarly for males. As discussed by Hyman
et al. [11], the probability of infection per sexual contact may be differ
across gender and severity of the disease; therefore, as illustrated above, a
model must accommodate this characteristic of disease transmission.

The probability a susceptible is infected through extra-marital contacts
during a given period with a given partner depends on the expected number
of sexual contacts per unit time, ny for females and 7,, for males, and the
probability the susceptible is infected per extra-marital contact, gfem (k)
for females and gyem (k) for males. Unlike the marital case, where there is
only one person with whom a susceptible engages in sexual activity, in the
extra-marital case, there may be multiple partners with whom a susceptible
can engage in extra-marital sexual contacts. Let the parameters Ay and A,
denote the expected number of extra-marital sexual partners per unit time
for females and males respectively.

While there are many social-demographic variables which may influ-
ence choice of partners for sexual activity, our attention will be on the
impact of HIV/AIDS awareness on choice of partner. During the later
part of the twentieth century more people became aware of HIV/AIDS
as a heterosexually transmitted disease with no discrimination as to age,
race, health, or sexual preference [15]. Through increased public awareness
and education, it seems reasonable to suppose that individuals may pos-
sess more skills in screening of potential partners prior to the initiation of
sexual intimacy. Screening skills may consist of individuals asking about
potential partner’s past sexual history, drug use, and previous HIV test
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results. Non-negative parameters quantifying an individual’s inclination to
accept a potential partner for extra-marital sexual contacts will be denoted
by Bfem for females and Bmem for males. Given that a female is in stage i of
disease, the generic form of the acceptance probabilities used in this article
are a(i, j) = exp(—pB|i—7j|) denote the conditional probability that she finds
a male in stage j acceptable as a sexual partner. Observe that the larger
the value of Bfem, the smaller is the probability that a female in stage i of
disease will find a male acceptable as a sexual partner. Beta values of zero
indicate individuals randomly select partners with no caution or screen-
ing for HIV. A more comprehensive discussion of acceptance probabilities
may be found in the Mode-Sleeman [14}, including a discussion of other
functional forms and extensions to higher dimensions. In the next section,
formulas showing how these probabilities enter into the formulation will be
given. Turning to population transitions, the mortality rate parameters per
unit time will be denoted by p o for females and pmo for males. Incremental
change in death rates due to stages of disease will be defined as follows: let
psr denote the incremental change in risk of death for females in stage k of
the disease and define the parameter u,,; similarly for males in stage k of
disease. Parameters accounting for transition to the next more severe stage
of disease and the next less severe stage of the disease must be present in
the formulation. When an infective is in stage 1, there is no transition to
susceptible and when an infective is in the final stage of the disease, there
is no transition to the next more severe stage of the disease. The parameter
v¢(k,k + 1) is the risk of the transition k£ — k + 1 for an infected female
per unit time in stage k = 1,2,...,n — 1 of disease, and the parameter
Ym(k, k 4+ 1) has the same interpretation for a male in stage k. The param-
eter v¢(k, k — 1) is the risk per unit time of the transition ¥ — k — 1 for an
infected female in stage k = 2,...,n, and the parameter «,,(k,k — 1) has a
similar interpretation for males.

Similar to the extra-marital contacts, singles may enter into a marital
status, where choice of partner is from a collection of non-married individ-
uals. Acceptance parameters for choice of marital partner are defined as
Bm for females and G, for males. Rate of couple formation is given as p.
Rate of couple dissolution is given as 4.

Recruits may enter the population over time. Recruits are often thought
of as adolescents reaching the age of sexual activity. The parameter uy
denotes the expected number of single females into the population per unit
time and ps(j) is the probability a recruit is of type j = 0,1,2,...,n.
Similar definitions are made for single males entering the population.
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3. Latent Risks for Transitions in Population

Having defined the parameters of the model, the next step is to set
down those functions that appear in the stochastic population process. Let
©¢(f) = (6¢(t; 4, k)) denote a matrix of latent risks for life cycle model of
single females. Later in this section, this matrix, as well as other matrices
of latent risks, will be defined explicitly in terms of the parameters of the
model. A function of basic importance in studying discrete time approxima-
tions to the life cycle models in continuous time is the following conditional
probability, which arises in computing Monte Carlo realizations of the pro-
cess, using chains of multinomial distributions. Given that a female is in
stage j at time ¢, let 7¢(¢; 4, k; h) be the conditional probability there is
a jump to stage k # j during the time interval (¢,t + h]. Then, it can be
shown by using the classical theory of competing risks that

Os(t; 4, k)

(63, ks ) = (1= expl=0s(t; DH) = o 1)

where

t5) =Y 6s(t: 5 k)
k

is the total latent risk for a transition from stage j at time ¢, and ¢(¢; 7, k)
is the latent risk for a transition from j to k at time ¢. It follows that

m(t g dsh) = 1= ms(t; §, ks h) = exp[—07(¢; 5)h] (2)
kg
is the conditional probability that there is no transition from stage j during
(t,t + h], given the process was in stage j at time t.

Most latent risks are constant over time with the exception of the those
for couple formation and extra-marital sexual contacts, which depend on
the stage of the population at some time 4, (t; j, k) denote the conditional
probability a single female in stage j finds a single male in stage k acceptable
for matrimony at time t. Then, in the stochastic component of the model,
it can be shown by applying the total law of probability and Bayes’ formula
that

iy Yt k)am(d, k)
38 = S Y Roagm G )

A similar formula for the conditional probability vmm (¢; k, j) that a sin-
gle male in stage & finds a single female in stage j acceptable for matrimony
can be derived by substituting X’s for Y’s and amm for agp,. Mode and

(3)



Impact on Threshold Conditions 65

Sleeman [14] may be consulted for further details on the derivation of this
formula.

Let Yfem (t; 7, k) denote the conditional probability a female in stage j
finds a male in stage k acceptable for extra-marital sexual contact at time ¢.
Then, by using a similar argument, it can be shown that

Yr (t; k)afem (Ja k)
> ko Yr(t; K)asem (4, k)

7fem(t;j7 k) = (4)

where

n
Yr(tk) =Y (k) + ) Z(55,k) (5)
§=0

is the total number of males in stage & in the population at time ¢. Similarly,
let Ymem (t; 7, k) denote the conditional probability that male in stage k finds
a female in stage j acceptable for extra-marital sexual contact at time ¢.
An analogous procedure was used to derive a formula for this probability.
In the deterministic model embedded in a stochastic process introduced
by Mode and Sleeman [13], the random function N¢g(¢; 4, k) represents the
potential couples of type (4, k) that may be formed in the time interval

(t, t+ h] and was calculated as:

Ncr(t; 5, k) = min[X (& 5)sm (8 4; k), Y (8 B) Ymm (8 K, )] (6)

The random function Ngap(t; j, k) represents the potential number of
extra-marital social contacts of type (4, k) occurring during the time interval
(t,t + h] was and was estimated in the embedded deterministic model as:

Nemp(t; j, k) = min[X1(t; 5)Vem (6 5, k), YT (6 k) Ymem (6 K, 5)]. (7)

Observe that in [6] and [7], the arguments in the min-function are condi-
tional multinomial expectations, given the state of the population at time ¢.
For a female in stage j at time t, let the random function pgem (¢; j, k)
denote the conditional probability that she has an extra-marital sexual
contact with a male in stage k. The random function for males pmem (t; &, 7)
is defined similarly. For females this function has the form
v Nemp(t;5,k)
pfem(t7]a k) = Zu NEMP(t;j, ’U) . (8)
A similar formula is used for pyem(t; &, 7)-
Finally, let the random function Qfemc(t) represent the conditional
probability that a susceptible female at time ¢ becomes infected dur-
ing (t, t + h] through infectious extra-marital sexual contacts. Similarly,
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Qmemc(t) denotes the conditional probability a susceptible male at time ¢
becomes infected during (¢, t + k] through infectious extra-marital sexual
contacts. These random functions are calculated by

Qfemc(t) = Z pfem(t; 0, k)Qfem (k) (9)
k=0
and
Qmeme(t) =Y pmem(t; 5, 0)gmem (5)- (10)
=0

Having defined the latent risk that are elements of the matrix ©(f)
and other matrices of latent risk for the life cycle models of single males
and couples, the next step is to set down an explicit form of ©¢(f). Let Ty
denote the state space for the life cycle model for single females. Death will
terminate the life cycle for individual; therefore, the state space will consist
of a subset, Ts; of two absorbing states: Fi; (death from causes other
than the disease) and Ei2 (death from causes attributable to the disease).
The set of transient states, denoted by Y sz, will consist of (n + 1) states,
where Eyp corresponds to the female is susceptible to the disease and Fs,
corresponds to the female is in stage r of the disease for r = 1,2,...,n.
Thus, the state space for females, Ty = Ts; U Yo, consists of (n + 3)
states. The state space for males is defined similarly.

The matrix of latent risks for females can be laid out in partitioned form
as follows:

(11)

0r0)=[ o2 0r0]

Of21(t) Oj,22(t)

where 017 and 012 are 2 X 2 and 2 X (n + 1) zero matrices indicating there
are no transitions out of absorbing states, ©7,21(t) is an (n + 1) x 2 matrix
governing transitions from transient states to absorbing states, and ©  22(t)
is an (n + 1) x (n + 1) matrix governing transitions among the transient
states. The jth row of O 2:1(t), denoted by Oy 2:1(t); has the following form:

Or,21(t); = (kro, pfj)- (12)

©¢,21(t); corresponds to a single female in stage j governing transitions to
one of the two absorbing states: death not due to the disease and death



Impact on Threshold Conditions 67

due to the disease. The jth row of ©j2(t) denoted by O 22(t); has the
following form:

9f,22(t)j = (0, Afoemc(t)(s]Q + 5]27f(2a 1), .o 17f(.77.7 - 1)7
O,7f(.7’.7+1)70a,0)a

where 7¢(j,7 — 1) corresponds to transitions from stage j to j — 1. The
entry of v¢(j,j — 1) corresponds to the j — 1 column of Oy 22(t);. Note,
by assumption, there is no transition from a state of infection back to
a susceptible state. Similarly, v¢(4,j + 1) corresponds to transitions from
stage j to j+ 1. The entry of y¢(j, j +1) corresponds to the j+1 column of
©y,22(t);. Note there is no transition from stage n to stage n + 1, because
the disease is not assumed to have n stages of disease. In the above equation,
Kronecker’s delta, d;;, is utilized to illustrate susceptibles becoming infected
via extra-marital contacts and also, the transition from stage 2 to stage 1
of infection. Kronecker’s delta have the following properties:

(13)

(Sij:l lf’L=J, and
5y =0 ifi#7. (14)

For singles males,

_ 011 012
Om21(t) Om,22(t)

where 0;; and 012 are 2 X 2 and 2 X (n + 1) zero matrices indicating there
are no transitions out of absorbing states, O, 21(t) is an (n+ 1) X 2 matrix
governing transitions from transient states to absorbing states, and ©, 22(t)
is an (n+1)x (n+1) matrix governing transitions among the transient states.
The kth row of O, 21(t), denoted by ©,, 21(t)x has the following form:

9m,21 (t)k = (,Uf'm.Ovﬂmk)- (16)

©,n,21(t)k corresponds to a single male in stage k governing transitions to
one of the two absorbing states: death not due to the disease and death
due to the disease. The kth row of ©,, 22(t) denoted by ©,, 22(t)x has the
following form:

@m,22(t)k = (07 )\QOemc(t)(skO + 6k27m(2, 1), v ,'Ym(ka k — 1),
0, Ym(k,k+1),0,...,0)

O (t) (15)

(17)

where vy (k, k — 1) corresponds to transitions from stage k to & — 1. The
entry of v, (k, k — 1) corresponds to the £ — 1 column of ©,, 22(t)x. Note,
there is no transition from a state of infection back to a susceptible state.
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Similarly, ym (k, £+ 1) corresponds to transitions from stage k to k+ 1. The
entry of v, (k, k + 1) corresponds to the £ + 1 column of O, 22(t)x. Note
there is no transition from stage n to stage n + 1, because the disease is
not assumed to have n stages of disease. In the above equation, Kronecker’s
delta, &4, is as described in Eq. (14).

Following the formation of a couple, if either a male or female is suscep-
tible, he or she may become infected through sexual contacts with infected
persons, or, if any member is infected, he or she may experience a tran-
sition with respect to stages of the disease. Furthermore, there may be
dissolution of the couple if either the female or male die, or there is a sep-
aration. Similar to the description for females and males, state spaces for
a semi-Markovian process describing the evolution of life cycles of couples
following their formation may be derived as follows.

Denote the set of absorbing states as Y3, which has five elements that
signal the conclusion of the partnership. Es., denoted the partnership ends
in separation or divorce. Ef11 and Efi2 denote that the female member of
the partnership dies due to causes other than the disease or dies due to
causes of the disease, respectively. E,11 and E,;1 are defined similarly for
the male member of the partnership. Thus the set of absorbing states of
the life cycle model for couples is:

Tcl = {Esepv Efla Ef2) Eml, Em2} - (18)

A couple of type T = (§, k) is defined, such that the female is of type j € T2
and the male is of type k € Y12, where T2 and Y,,,2 are the sets defines in
the life cycle model for single females and single males. The set of all couple
types will constitute the set of transient states of the life cycle model for
couples, symbolically represented as:

Teo = {7 = (4,004, k) € Ty2 X T2} (19)
so that the state space for the evolution of partnership is:
T.= Te1 U Teo. (20)

To simplify notation, denote elements of the set T. by the Greek letter 7.

To make a comparable matrix representation of ©.(t), as was performed
for ©4(t) and ©,,(t), when the disease has n stages, the set T2 of transient
states contains (n + 1)? elements so that the space T, for the evolution of
couples contains 5 4+ (n + 1)2 elements. Because no exits from absorbing
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states are possible, the (5+ (n+1)2) x (5+ (n+1)?) matrix ©.(t) of latent
risks for evolution of couples may be represented in the partitioned form:

011 012
21
O¢,21(t) O 22(t) (21)

where 017 and 0;2 are 5 x 5 and 5 x (n + 1)? zero matrices, O 2;(t) is an
(n+1)? x 5 matrix governing transitions from transient states to absorbing
states, and O, 22(t) is an (n+1)2 x (n+1)2 matrix of latent risks governing
transitions among the transient states. The row corresponding to couple of
type (4, k) of ©,,21(t), denoted by O 21(t)(; ) has the following form:

9c(t) =

Oc,21(t) (j,k) = (0, 50y s Bmos Bmk)- (22)

For the representation of the couple combinations, male stages of disease
iterate within female stages of the disease; therefore, to understand the
structure of ©, 22(t) consider the (n + 1) X (n + 1) submatrix where the
female is of 7 and the male stage of disease range from 0 to n, denoted by

O¢,22(t)je:
O¢,22(t)jo =super-diag[Am Qmemc(t) + Ymedm (4), Ym(1,2), . ., Ym(n—1,n))
(23)
is along the upper quasi-diagonal and
O¢,22(t)jo = super-diag [0,vm(2,1),...,Ym(n,n —1)] (24)

is along the lower quasi-diagonal.

The above considers the latent risk for male member of a couple expe-
riencing a transition. To consider the latent risk for a female member of
the couple experiencing a transition consider the following. Let 0.(¢;0, k)
represent the latent risk for the female member of a couple governing a
transition to stage 1 of the disease when the female is a susceptible. Then,

oc(t§ 07 k) = )\foemc(t) + 7mCQf(k)‘ (25)

Let 0.(t; , k)L denote the latent risk of the female in the couple governing
transitions from stage j to stage 7 — 1. Thus,

oc(t;ja k)L = 7f(j’j - 1) (26)
Let 6.(¢t; j, k)u denote the latent risk of the female in the couple governing
transitions from stage j to stage j + 1. Thus,

0c(t;j’ k)U =7f(jvj+1)' (27)

Based on Egs. (25) through (27), the remaining non-zero entries for © 22(t)
can be defined.
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Given the latent risks and all parameters of the model, formulas for the
total risk functions may be derived by summation across the rows of the
latent risk matrix. Formulas similar to those in [1] and [2] may also be set
down for the matrices of latent risks ©,,(¢) for single males as well as that
for couples ©.(¢).

4. Stochastic Evolutionary Equations

Now with the latent risks per stage completely defined, a discrete time
stochastic process can be defined. At time ¢ + h, the number of single
females in stage j is a sum of three components: recruitments to stage 7,
undergo a transition to stage j, and couple dissolution by divorce or sepa-
ration or death of the male partner when the female is in state j. This is
represented by

X(t+h;5) =Xr(t+hij)+ Y Xr(t+h,v,5) + Xpis(t+h,j)  (28)
v#j

for every 7 = 0,1,2,...,n, where the subscript R indicates recruitment
into the population, T represents transition to stage j, and DIS represents
dissolution of a couple formation involving a female partner in stage j.
A similar equation can be written for single males.

The random function Z(t 4 h;7i;72), denoting the number of couples
of type 72 = (j,k) at time t + h, is the sum of two components. One
component consists of those couples who were of type 71 at ¢ and made
a transition to type 7 during (¢,t + h] and the number Zeor(t + h; 115 72)
formed during (¢,t + k] from a single female of type j and a single male of
type k, respectively, at time t; therefore,

Z(t+hm)= > Zr(t+hir;m)+ Zer(t+ ki) (29)
T1#T2

When considering the discrete time approximations to processes in con-
tinuous time, it is of interest to investigate what happens when the incre-
ment becomes small, h — 0. Under this assumption and using the following
the equation, 1 —exp{zh) = —zh+ o(h), which can be illustrated via Taylor
series expansions, Eqgs. (1) and (2) can be rewritten as:

s (t; g, ki h) = 05 (t; 3, k)h + o(h), (30)
ms(t; 4,53 h) =1 — 0p(t; 5)h + o(h). (31)
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This result is very useful when embedding a set of differential equations
in the stochastic partnership model, where latent risk appear as constant
or coeflicient functions. Similar equations may be written down for the
m-probabilities for single males and couples. In the stochastic model these
conditional probabilities are random functions, but in the embedded dif-
ferential equations these random functions are estimated by a procedure
described in Mode and Sleeman [13] and elsewhere. In what follows all esti-
mates of random functions will be denoted by a hat over the functions. For
example, an estimate of X (t; ) will be denoted by X (¢; ).

As h — 0, the embedded non-linear difference equations represented in
Eq. (28) may be expressed in a modified form. The difference equations for
single females become:

X(t+hij) =prpr(h+ Y X(t;v)is(tv,5;h)
vEY g2

— Y Ner(t;d, k)acr(G, k; )
k€T m2

+ 3 D 25 kywe(t sk i h) (32)

k€Y ma T2€DIS ¢

for every j € Ty. For single males we have:

Y(t+hik) = pmpm(R)h+ Y Y(t;0)im(t; 0, k; h)
’UETm2

- Y Ner(t;v,k)gor (v, k; b)

’UGsz

+ D D Zg ket ik h) (33)

JE€Y 52 T2€DIS,

for every k € Y,,2. For couples we have:

Z(t+h,m2) = D Z(t+h,11,72)tc(t; 71, 72h) + Nop(t; T2)gor (2 h).

T17#T2

(34)

Given the above relationships described in Egs. (30)-(34), for every
j € Tso2 the non-linear difference equations for single females may be
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written in the form

X(t+h;j) = urps(G)h+ X (t5)(1 — 8(t; 5)h)
Z Xt vé (t;v,5)h — Z NCF(t;j»k)P(j7k)h

J#vGsz k€Y ma

+ > > Z(t;5,k)be(t; 5, ks 2)h + o(h). (35)

k€Y ma T2€DISf

By forming the ratio M}l—ﬂﬁ and letting h — 0, it can be seen
that for all j € T ¢, the following system of differential equations for single
females arise

dX(t;j N YA S <y ;
9) — ios) ~ R 069+ Y R0 (60,9)
JAVEY 52
— > Ner(t;5,k)p(, k)
k€T m2
+ > > Z(55,k)0e(t 5, ks 7). (36)

kET m2 T2€DIS s

Similarly, for every k € T2 the differential equation for single males take
on the following form:

dy (t; k N A N R
(t:k) = pmpm(k) = Y (& k)0m(t; k) + Z Y (t;0)0m(t; v, k)
dt ‘
JFVET m2
- Z NCF t .7, (J?k)
JETf2
+ 3 D 25,k 5, k) (37)

jGsz 79€ DIS™M

For couples, an analogous system of differential equations may be
derived. For every T € T.2, these equations have the form

dZ(t; T)

= -2 m)0.67) + Y Z(tsm)be(ts T, T) + Nor(tm)p(r). (38)

T#T
5. Form of the Embedded ODE for Given Parameters

Under the assumption of n stages of disease, the embedded differential
equation for a single female in stage j based on the parameters of the
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model is as follows:

dX t;j "
——(gti) = usps(3) — (o + I > s ) X(6:5) +6 > Z(t; 5, k
k=0

+ (Z Hmo + I(k > 0)“mk> Z(t;j: k) (.u'mO)ZA(t .7v )
k=1

—I(§ = At Qfemc®) X (t0) + I(5 = DA;Q semc(t) X (t;0)

+IG > )y (G - 1,3)X (65— 1) = I1(G > 0)vs (G, 5 + DX (5 4)

+I( >0y (5 + L)X (5 +1) = I(G > V(5,5 — DX (8 5)

- ZNCF(t;j’ k)p (39)
k=0

The hat superscript indicates parameters are estimates of the recur-
sive equations of the stochastic formulation. The indicator function I(e)
is defined as one when the expression in the parentheses is true and zero
otherwise. Recall there is no transition to a susceptible stage from and
infective stage and there is no transition beyond stage n. There is no incre-
mental change in mortality rate due to the disease when a person is in the
susceptible stage. A similar equation can be derived for a single male in
stage k:

dy (¢ k 3
—t(it ) = Umpm (k) — (tmo + I(k > 0)pimk) Y(t 7) Z (t:5,k
7=0

+ (Z pro+1(5 > O)ij) Z(t;5,k) + (ko) Z(t;0, k)

j=1
- I(k = O))\QOemc(t)Y/(t? 0) + I(k = 1)AQOemc(t)Y(t; 0)
+ Ik > Dym(k—1,k)Y (t; k—1) — I(k>0)ym (k, k+1)Y (¢; k)
I(k>0)ym(k+1, k)Y (t; k+1) — I(k> Dym(k, k — )Y (t; )

n

= " Ner(t 4, k)p. (40)
3=0
A similar equation can be given for couples:
dZ(t;4,j S
DI — _52(550,) — (ugo + 1G> O)ugs) Z(t53.4)

— (tmo + I(j > O)mji) Z(t;4, 5)
+I( > V)yp(i = 1,4) 2 (k1 — 1,5)
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—I(i > 0)y4 (4,4 + 1) Z(¢; 4, §)

+ 10> V)i +1,0) 250 + 1, 5)

—I(6 > 1)74(5,5 — 1) Z2(t;4, §)

+1( > 1) ym(G — 1,§)Z(t;4,5 — 1)

—I(j > 0)ym (4,5 + 1) Z(t;14,5)

+1(j > 0)ym( + 1,5)Z(t;4,5 + 1)

—I(G > Vym (5, i D) Z(6:4,5) + Ymem ()1 (G =1)Z(t;4,5-1)
+ Yme@m ()1 = 1)Z(t;5 — 1, 5) — Ymeqm(D)I(G = 0)2(t; 3, 5)
+ Ymets (NI =0)Z(t4,5) + Z(t;i—1,5)I(i=1)AsQ femo(t)
+2(t;4,5 — DI = D)AnQumeme(t)

= 2(t;4,§)1( = 0)A;Q eme(t)

+Z(t;1,5)I( = 0)AmQmeme(t) + Nor(t; i, 5)p. (41)

6. Determination of the Spread of the Disease

For n stages of disease, let V() be the (2(n + 1) + (n + 1)2) x 1 vector with
components:

X(t;6) ]
Vi) =| Y9 |- (42)
Z(t;1,7)
The vector-matrix form of the embedded differential equation is
d‘;—f) — R+ AV(£) + BOV)V(t) + F(V) (43)
with R the constant vector of susceptible recruits; A the matrix of constant
latent risks; B(V) the matrix of latent risk due to extra-marital contacts;
F (V) the vector arising in couple formations. Note that the constant latent
risks include death rates, the effect of HIV/AIDS treatment, the progression
of the disease, couple dissolution rates, and intra-marital infection.
According to Spiegel [19], solutions of the embedded differential equa-
tion in the vicinity of the infection-free equilibrium behave like the solutions
of the linearization of the system. Linearization of the system necessitates
deriving the Jacobian of the system at the infection-free equilibrium. Sta-
bility is determined by the maximum real part of the eigenvalues. The more
positive the maximum real part, the faster infection will spread throughout
the population. Methods were established to determine the Jacobian eval-
uated at the infection-free equilibrium for the system in Eq. (43). These
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methods, while not achieving a closed form solution based on the parame-
ters of the model, welcome software implementation. Algorithms were writ-
ten in APL2000 [6] on the IBM-PC platform. Immediate identification of
system stability is available by reviewing the list of eigenvalues. Again fur-
ther details on the derivation of Jacobian matrices can be found in Mode
and Sleeman [14].

7. Results of Monte Carlo Simulation Experiments

One of the costs of the quest for realism in formulating the stochastic model
of a heterosexual population under consideration is that the number of
parameters can be quite large. However, when the formulation is restricted
to the case of four stages of disease both the stochastic model and the
embedded differential equations become computationally tractable. In this
connection, it may be of interest to consult some of the more recent investi-
gations of staged models of infectious diseases with four stages {11, 12, 18].
To answer questions regarding the main focus of this article, to investi-
gate of threshold conditions for a sample incorporating HIV treatments
versus a sample not incorporating HIV treatments, the chosen parameter
assignments should reflect current behavior for both the population and
the disease. Current reported behavior will be based on a review of the
recent literature describing relevant characteristics such as mortality, infec-
tion rates, sexual contact rates, marriage rates, and divorce rates. Because
full conditions for agreement between deterministic and expected stochas-
tic solution are at present unknown, comparison between the deterministic
and stochastic facets of the model will be based on statistical summaries
of Monte Carlo simulation samples [14}. Fifty Monte Carlo realizations of
the stochastic processes will be computed on monthly time intervals of
360 months. Monte Carlo samples will then be summarized statistically on
a monthly basis, by derivation of the minimum, maximum, 25th quantile,
50th quantile, and 75th quantile at each month. The deterministic solu-
tion, which serves as a measure of central tendency for the process, will be
computed on a monthly time scale. Both systems, the deterministic and
stochastic, will give us a comprehensive understanding of the impact of the
introduction of a few infectives into a susceptible population over time. To
provide a basis of comparison of the systems, computer generated graphs of
the two systems will be simultaneously compared. Parameter assignments
are as indicated in Sleeman and Mode [18]. The parameter assignments are
displayed in Tables 1-5.
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Table 1. Initial parameter assignments for four-stage model.

Initial numbers, single females per stage (902, 1, 0,0, 0)
Initial numbers, single males per stage (690, 1, 0, 0, 0)
Initial numbers, couples with both susceptible 4828

Table 2. Expectations for sexual contacts.

Expected number of extra-marital male partners per female Ay =0.25
Expected number of extra-marital female partners per male A, =0.25
Expected number of marital sexual contacts Yme = 8

Table 3. Probability of infections per sexual contact.

Prob. infection per extra-marital contact, stage 1 gfem (1) = gmem (1) = 0.10
Prob. infection per extra-marital contact, stage 2 gem (2) = gmem(2) = 0.05
Prob. infection per extra-marital contact, stage 3  gfem(3) = gmem(3) = 0.05
Prob. infection per extra-marital contact, stage 4  gfem(4) = gmem(4) = 0.10

Prob. infection per marital contact, stage 1 am(1) = gmm(1) =0.10
Prob. infection per marital contact, stage 2 qim(2) = gmm(2) =0.05
Prob. infection per marital contact, stage 3 2m(3) = gmm(3) =0.05
Prob. infection per marital contact, stage 4 a5m(4) = qmm(4) =0.10

Table 4. Mortality rates.

Mortality rates for females, stage 0 fo = 1/720

Mortality rates for females, stage 1, stage 2, stage 3 Hf1 = Hfa = pugz = 1/240
Mortality rates for females, stage 4 tps = 1/23.8

Mortality rates for males, stage 0 tmo = 1/660

Mortality rates for males, stage 1, stage 2, stage 3 ml = tm2 = Um3 = 1/180
Mortality rates for males, stage 4 tma = 1/23.8

Table 5. Acceptance parameters and coupling parameters.

Couple formation-dissolution p=1/12;6 =1/120
Acceptance parameters for extra-marital parameters  Bfem = Bmem =0
Acceptance parameters for marital partners Bfm = Bmm =0

As discussed by Sleeman and Mode [18], duration of marital part-
nerships were long in the sense that the latent expectation of a marital
partnership was 1/6 = 120 months or 10 years but the expected latent
waiting time among marital partner was 1/p = 12 months or one year.
Thus, the samples consist of a heterosexual population with long duration
of partnerships. Initial conditions, as seen in the first three rows of Table 1,
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were determined by Sleeman and Mode [18]. The 3-parameters are all set
t0 0, Bfem = Bmem = Bfm = Bmm = 0, which indicate that marital partners
and extra-marital sexual partners are chosen at random, with no regards
to medical status or disease severity of the potential partner. Extra-marital
sexual contacts occurred at a rate of 3 per year or Ay = A, = 0.25. It was
assumed the probability of infection per stage were the same for marital
and extra-marital contacts. Not illustrated in Table 1 are the y-parameters
for duration of stay in stages 1, 2, and 3 before transition to the next more
severe stage. Parameter assignments were determined by results of Sleeman
and Mode (18] and Longini et al. [12]. The parameters are as follows:

¥7(1,2) = vm(1,2) = 1/12, £(2,3) = ¥m(2,3) =1/52.62, and
v4(3,4) = ¥m(3,4) = 1/62.89.

Applying the Jacobian methodology, the Jacobian is unstable with maxi-
mum real part of the eigenvalues is 0.0313; therefore, the introduction of a
few infectives at the parameter settings in Table 1, an epidemic will develop
with positive probability. Presented in Fig. 1 are the trajectories based on
the summary statistics of the 50 Monte Carlo simulation runs for the cumu-
lative number of infected females in couples along with the trajectory for
the embedded deterministic model for projections of 720 months.

One of the most striking features of Fig. 1 is the level of stochasticity
exhibited in the projections. For example in every epoch, the minimum
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Fig. 1. HIV/AIDS treatments not implemented.
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of the 50 realizations is on the horizontal axis, indicating that in some
realizations of the process no new infection occurred but according to the
maximum of the 50 realizations, nearly 2500 coupled females have been
infected by 720 months. Nonetheless, the model indicates the potential for
a severe epidemic to develop, although it may take a substantial amount of
time for the epidemic to develop.

Based on the findings of Renaud et al. [17], Detels et al. [4], and
Autran [2], which suggest that potent antiretroviral therapy use by HIV
infected persons will have a substantial beneficial effect on arresting CD4*
count decline, parameter assignments are as illustrated in Table 6, indicat-
ing, on average, complete arrest in CD4% count declination.

Based on the parameter assignments of Tables 1 through 6, the maxi-
mum real part of the eigenvalues is 0.0366, which is larger than when the
transition rates to less severe stages are set to 0. Thus, the larger eigenvalue
indicates a quicker rate of spread as compared to the previous example.
Trajectories based on the parameter assignments of Tables 1 through 6 are
illustrated in Fig. 2.

Table 6. Transitions rates among stages.

Y5(1,2) = 1m(1,2) = 77(2,1) = 1 (2, 1) = 1/12,
7£(2,3) = 1m(2,3) = 717(3,2) = 7m(3,2) = 1/52.62,
77(3,4) = ¥m (3,4) = 77(4,3) = 1 (4, 3) = 1/62.89
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Fig. 2. HIV/AIDS treatments implemented.
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Simultaneous comparison of Fig. 2 with Fig. 1 illustrates when
HIV/AIDS treatments are taken into consideration, the epidemic will have a
quicker rate of spread; therefore, resulting in an increase in infections of sus-
ceptibles. All corresponding trajectories of Fig. 2 compared to Fig. 1, with
the exception of the minimum trajectory, indicate a substantial increase in
the cumulative number of new infectives. Direct comparison of the deter-
ministic solution at 720 months indicates approximately 1500 cumulative
infected coupled females for Fig. 1 and 3800 cumulative infected coupled
females for Fig. 2.

To estimate the probability of infection, the fraction of those realizations
of the process that contained no secondary infectives was calculated as a
function of time. Figure 3 contains the plot of the probability of extinc-
tion as a function of time for both systems. Similar to our simultaneous
comparison of Fig. 1 and Fig. 2, simultaneous comparison of the extinction
probabilities as a function of time provide empirical evidence that the sys-
tem incorporating HIV treatments has a lower level of extinction; therefore,
increase infections are evident in the system with HIV treatment.

While the need for HIV/AIDS treatments is not in question, the
Jacobian methodology demonstrates that there is a potential detrimental
impact for the susceptible population. By prolonging the life-span of infec-
tives, the infectives have more opportunities to infect susceptibles, which,

0 60 120 180 240 300 360 420 480 540 600 660 720
MONTHS
HIV TX USED: —NoO

Fig. 3. Comparison of extinction probability over duration of simulations.
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on average, will result in a quicker rate of spread for the epidemic. With
recent published success of HIV/AIDS treatment protocols [9], it is urgent
to inform and educate the public to the HIV/AIDS heterosexual epidemic.
Infectives experiencing positive results, might question their medical status
and the need to adopt stringent safe-sex practices and honest communi-
cation of health status. Thus, improvement in partnership selectivity is
needed. Improvement in communication skills is targeted to help one to
learn about a partner’s prior sexual behavior and level of risk, such infor-
mation will presumably lead to safer sexual behaviors such as abstaining
from sex with high risk partners and screening of partners prior to engaging
in sexual activity or a committed relationship [20], corresponding to both
sets of S-parameters in the Mode—Sleeman model. Threshold investigations,
based on these increased acceptance parameters, may serve as benchmarks
for where a random-mixing population must achieve to limit the severity
of the epidemic.

In the discussed experiments, selective skills for choice of marital part-
ners would need to be greatly increased in order to return the system to the
rate of progression seen prior to the introduction of HIV/AIDS treatments.
The (-parameters for couple formations would need to be 1.25. This repre-
sents that a susceptible would choose a susceptible marital partner 78% of
the time over an infected potential partner in stage 1 of the disease, 92% of
time over an infected in stage 2 of the disease, 98% of time over an infected
in stage 3 of the disease, and 99% of the time over an infected in stage 4 of
the disease. In order to achieve a stable system resilient to infection spread,
further inflation of the B-parameters is required.

8. Discussion and Summary

This stochastic model considers a semi-Markov process based on competing
risks for males and females. The multiple facets of the heterosexual pop-
ulation incorporated by our stochastic model are couple formation, couple
dissolution, recruitments, death, selectivity of partners for couple forma-
tion and extra-marital contact, progression through disease severity, the
effects of HIV/AIDS treatments, and infection through sexual contacts. By
allowing the time increment to become small, the stochastic model gives
rise to a system of embedded differential equations. A stability analysis
performed by linearizing the embedded differential equation around the
infection-free equilibrium and determining when the maximum real part of
the eigenvalues crosses zero gives a threshold condition dependent on the
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multidimensional parameter setting. The sclution of the system of differen-
tial equations is a linear combination of the exponential of each eigenvalue;
therefore, the magnitude of the maximum real part of the eigenvalues indi-
cate the rate of disease progression, with more positive values indicating a
faster rate of spread. For statistical simplicity, our attention was focused
on a heterosexual population with quick rate of couple formation and long
duration of partnership. However, the model referenced in this paper are
capable of handling many other scenarios, such as the inclusion of covari-
ates such as age and race. Refer to Mode and Sleeman [14] for an extensive
discussion on these issues.

As our experiments illustrated, when the effect of HIV/AIDS treatments
is ignored the disease impact and progression is less then when the effect of
HIV/AIDS treatments is incorporated. In order to achieve a system com-
parable to the disease impact prior to the implementation of HIV/AIDS
treatment, selection skills must be greatly increased.

One fear is that infected individuals may question their health status
when experiencing beneficial HIV therapy; therefore, it is urgent susceptible
individuals screen their partners. It is not realistic to assume screening
would constitute medical testing, but screening could consists of questions
concerning sexual promiscuity and risky drug use behavior. Susceptible
individuals need to posses the skills to recognize potentially risky partners.
While the life-span of infected individuals, as well as their health status,
continues to improve, the spread of the epidemic may continue to rise, if
HIV education and prevention efforts are not advanced.

Recent investigations [1, 3] have also considered the issue of the effect
of HIV treatments on infection spread and have had similar findings as
discussed in this article. The models discussed in these papers are simpler
and do not account for the various facets of the population as discussed here.
Blower et al. [3] and Quinn et al. [16] have discussed the positive effect of
HAART therapy has on reducing viral load, which in turn also reduces
infectivity. This does provide evidence of an interaction of the effect of
HAART therapy and the probability of infection. The model described here
can accommodate this feature of the disease behavior, but accurate archival
parameter estimates of infection rates incorporating this feature are needed.
Presently, more research is being performed in this area; therefore, accuracy
of these initial findings still remain uncertain. Thus, for now, the findings
described by the experiments discussed in this article can be considered
as the worst-case scenario. If HAART therapy, does reduce infection rates,
then the estimates described here maybe slightly inflated. Regardless of
the effect HAART therapy has on infection rates, the coupling of increased
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educational efforts and HIV treatments will have an overall positive effect
on the disease severity, with a higher probability for disease extinction.

In closing it should also be mentioned that stability of the disease-free
equilibrium could also be attained if it were possible to lower the probabili-
ties that a susceptible becomes infected per sexual contact with an infected
person. On the practical side, one on the widely used methods for achieving
this reduction would be the use of condoms and other protective devices.
The Jacobian methodology described in this paper could be used to find
regions of the parameter space such that the disease free system were stable,
but, due to space limitations, the results of computer experiments designed
to find such regions will not be reported here.
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CHAPTER 4

MODELING AND IDENTIFICATION OF THE DYNAMICS
OF THE MF-INFLUENCED FREE-RADICAL
TRANSFORMATIONS IN LIPID-MODELING

SUBSTANCES AND LIPIDS

J. BENTSMAN, I. V. DARDYNSKAIA, O. SHADYRO, G. PELLEGRINETTI,
R. BLAUWKAMP and G. GLOUSHONOK

This work presents two mathematical models explicitly reflecting the magnetic-
field-induced transitions in biologically significant processes: oxidation of
n-hexane and linolenic acid, and describes the methodology used in obtain-
ing the models. For the n-hexane oxidation, the range of the magnetic field
strength is found (0.05-0.3 T') with the trend indicating a significant magnetic-
field-induced change in the reaction rates (up to 50% at 0.2 T'). For the linolenic
acid oxidation, a pronounced magnetic-field-induced change in the rate of mal-
onaldehyde (MDA) production is found (at 0.1 T). The equations describing
the effects of the magnetic field on the photoinduced free radical reaction of oxi-
dation involving a lipid-modeling substance, hexane, and a fatty acid, linolenic
acid, are obtained on the basis of chemical kinetics and data from batch exper-
iments. The magnetic-field-induced changes in n-hexane and linolenic acid
oxidation are validated (the latter only for diene conjugates) using the iden-
tification technique based on the real time input-output data in separately
conducted flow-through experiments.

Keywords: Mathematical modeling; stochastic Hoo identification; magnetic-
field-induced transitions; lipid-modeling substance; oxidation; hexane;
fatty acid.

0. Introduction

In recent years there appeared studies, based on the experiments at the
cellular level as well as on animals, which report that magnetic fields can
interact with, and produce changes in, biological structures. One of the
major candidate biophysical mechanisms for MF effects arises through the
influence of MF on free radical reactions, which always play an important
role in the processes of damaging of the living organism, therefore, any
changes in the rates of these reactions are likely to alter their damaging
effects.

85
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The proposed biophysical mechanisms for MF effects on biological struc-
tures can be briefly described as follows [23, 26]. When a spin-correlated rad-
ical pair is formed, the radical electron spins can be either parallel (T-triplet
state) or antiparallel (S-singlet state). Pauli Exclusion Principle, however,
postulates that electrons cannot bond if their spins are parallel, and there-
fore chemical bond formation between two reacting radicals requires that
they be in the singlet, rather than the triplet, state. Confining the discussion
to the triplet state formed free radical pair, either spin-orbit or hyperfine
interactions can induce the electron transition from triplet to singlet state.
This transition is referred to as intersystem crossing or T-S interconversion
(S8-T conversion is also possible) (13, 28]. If after T-S conversion a single
state spin-correlated radical pair remains in the cage (a space sufficiently
small to ensure that the probability of recombination of the original spin-
correlated pair is much higher than that of the reaction of each of the
radicals of this pair with the other molecules) (23], the pairwise elimination
of the singlet state radicals by recombination is likely to take place. This
recombination (geminate or cage recombination) competes with the escape
of the radicals from the cage into the “volume” (a space outside of the cage
were free radical reactions could take place) and subsequent formation of
products different from those of cage recombination. The magnetic field
effect (MFE) consists in engaging the electrons through their magnetic
moments and altering the intersystem crossing rate. This magnetic field
action, therefore, may either speed up or slow down the rate of free-radical
recombination, depending on the precise field value, thereby influencing the
ratio of cage to escape reaction yields and rendering the overall chemical
reaction field sensitive [1].

Recently a number of experimental studies on the influence of the mag-
netic field on the chemical reactions of free radicals and on processes involv-
ing triplet excited molecules in solutions has been carried out [14, 17], and
physically justified models of these phenomena have been proposed [25].
However, the relation between the magnetic field strength and the reaction
rate (including qualitative change in terms of rate increase or decrease)
has not been established for many such reactions in the ranges of field
strength frequently encountered by humans, and the review of reported
results reveals a significant knowledge gap in this area. There are also only
a few well-documented examples involving biological systems. McLaucham
and Steiner [13], Harkins and Grissom [11], and Grissom (8] show that an
applied external magnetic field can alter the rate of T-S interconversion in
radicals, and potentially affect enzyme activity. Chignel and Sik, [3] showed
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that application of a static external magnetic field (3350G) during UV-
irradiation reduced the time of 50% ketoprofen-sensitized photohemolysis
of human erytrocytes.

The effect of the magnetic field on biologically relevant chemical reac-
tions can be looked at as taking place at four time scales, corresponding to
the process stages in the descending order of the process speed. The fastest
time scale corresponds to the physical stage, where the energy absorption
and redistribution process, which leads to excitation and/or ionization of
molecules, takes place. The second, physico-chemical, stage corresponds to
the formation of charges or neutral radicals and/or ions. The third stage
corresponds to the formation of stable chemical products. The fourth stage
is the formation of biological effects as the result of the previous three
stages. Mathematical models which describe the time evolution of the prod-
ucts of the reactions and their biological effects provide a framework that
clearly sorts out the entire behavior of the magnetic-field-induced transi-
tions in biological systems. These models are usually constructed on the
basis of physico-chemical laws governing the behavior of process variables
such as concentrations of the reactions, and identification methods using
direct input-output measurements collected during real time experiments
where the process transients or response to random or sinusoidal excitation
can be observed with the sufficient time-resolution. Such detailed model ver-
ification, for example, has been carried out for the bistable laser-induced
dimerization of sulfonyl chloride with composition affecting optical density
in [7] via high time resolution optical density measurements.

The time-resolved techniques for studying MF effects on chemical reac-
tions have been utilized in [24] in a flow-through experiment where pho-
tochemical quantum yield dependence on magnetic field has been studied
using optical density changes and in {10] where the evolution of the inter-
mediates in the MF-influenced reaction has been monitored in real time via
optical detection.

Due to the fact that mathematical model can never entirely capture the
reality, and therefore always “undermodels” the true process, it is important
to supply a model with a “quality tag”, i.e. the quantified degree of under-
modeling, often referred to as modeling uncertainty, or unmodelled dynam-
ics [9, 12]. The recently developed robust Hy, identification methods [9, 12,
19, 20, 27] are suitable for this task, since they generate models along with
the Ho, norm bounds on unmodelled dynamics. The Hy, identification can
also yield a solution (the best possible under the circumstances) for a sig-
nificant plant/model mismatch. This is especially important for biologically
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relevant chemical reactions which are known to have high level of dynamic
uncertainty and yield noisy experimental data. Under such conditions tra-
ditional identification methods are known to break down if the model is not
chosen sufficiently close to the a priori unknown plant dynamics. Therefore,
it looks attractive to enhance the modeling methodology with H,, identi-
fication methods in an attempt to obtain the models for EMF-influenced
biologically significant reactions known to have high dynamic uncertainty
level and assess the model quality in terms of the explicit bound on the
modeling uncertainty.

The mathematical modeling of MF-sensitive free-radical reactions is
still in infancy. The physico-chemical stage has been studied in the work
of R. Z. Sagdeev (1977) [23] where the intluence of a constant magnetic
field on the reactions involving free radicals and triplet molecules in solu-
tions has been examined and the theoretical principles of the influence of
the magnetic field on the recombination processes of free radicals (tak-
ing into account the spin effect) and the quenching of triplets have been
described. Two models, diffusion and exponential ones, were considered
for phenomenological description of the recombination of the radicals. In
Bachelor et al. (1993) [1], using a time resolved experiment it was shown
that dynamics of evolution of the free radical cloud lies between the dynam-
ics of the diffusion model and that of the exponential one. Some features
of the MF-influenced chemical reaction dynamics are presented in [10] on
the basis of the time-resolved experiments. The first fully developed explicit
mathematical description of the dynamics of an MF-sensitive chemical reac-
tion is given by the present authors in [2].

The stage of the formation of the biologically significant products of
magnetic-field-induced transitions is investigated to a much lesser extent.
Therefore, it is of great interest to investigate the influence of the external
magnetic field on the free radical reactions of oxidation that could take
place in biological lipid structures and to build the models of the dynam-
ics of these reactions with the refinement and validation of these models
on the basis of the experimental data. The description of the MF-sensitive
reaction in [2] represents also the first experimentally validated and refined
mathematical model of the MF-induced transitions of a biologically signifi-
cant process, oxidation of a lipid-modeling substance, hexane. The journal
publication {2}, however, is focused only on the mathematical model and
does not contain detailed experimental data and description of the chemical
reaction kinetics.

Building on the material in [2] and including experimental data and
chemical kinetics equations, the present chapter describes the development
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and validation of mathematical models of the MF-induced transitions in oxi-
dation of hexane (Sec. 3) and another biologically significant substance —
linolenic acid (Sec. 4), the latter belonging to the class of fatty acids.

1. Objectives and Motivation

The objectives of this work were:

(1) To select and experimentally verify the conditions under which the free
radical processes that take place in biological structures are most likely
to be sensitive to the influence of the external magnetic fields.

(2) Under these conditions, to experimentally examine the magnetic-field-
induced changes in these processes in the range of MF strength from
zero through the values where pronounced effects of MF exposure are
most likely to be found.

(3) To develop predictive mathematical models with the explicit depen-
dence on the magnetic field strength describing the temporal evolution
(dynamics) of these processes. Refine and validate these models via
processing the experimental data by robust (Hy,) and standard iden-
tification algorithms as well as through the computation of the model
trajectories and their comparison to the experimental process temporal
evolution data.

In order to approach the stated objectives a model describing the effect of
magnetic field on the free radical reactions of oxidation in lipids and lipid-
modeling substances (substances which can undergo free radical transfor-
mations similar to lipids) was chosen.

Lipids are the essential cell compounds which are generally regarded to
be the most sensitive to the influence of free radicals. Among them phospho-
lipids, containing a significant amount of unsaturated fatty acid residues,
are the most vulnerable to a free radical attack. Free radical processes that
take place in the hydrophobic part of lipids lead to their peroxidation,
which is considered a prevalent feature of the free radical inflicted cellular
injury [21].

The peroxidation of polyunsaturated fatty acids usually involves three
operationally defined processes: initiation, propagation and termination.
These processes can be described by the following reactions:

r—-r—2°r (1.1)
‘r+RH - *R+rH (1.2)
‘R + Oy — ROO* (1.3)
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ROO* + RH — ROOH + R (1.4)
‘R+*R—>R-R (1.5)
‘R +ROO* — ROOR (1.6)
2RO0* — ROOR + Os. (1.7)

As seen from this scheme, the process of lipid oxidation occurs in a form of a
chain reaction, with reaction (1.2) being the reaction of the chain initiation.

Lipid peroxidation may be initiated by any primary free'radical that has
sufficient reactivity to extract hydrogen atom from a reactive methylene
group of an unsaturated fatty acid. In our experiment the photosensitized
reactions were selected to provide the initiation of free radical reaction
of oxidation in lipids. This type of initiation requires molecular oxygen,
a sensitizing dye, or pigment, and exciting light. In the case when the
formation of free radicals in lipids takes place in the presence of exciting
light and sensitizing agent in the form of carbonyl compound, the formation
of a geminate radical pair in the triplet state initiation phase could take
place. Thus, the formation of geminate radical pairs in the photosensitized
reactions in lipids could induce the sensitivity of the free radical processes
that take place in them to the external magnetic field.

2. Framework for Fitting Mathematical Models
to the Experimental Data

Two types of experiments, batch and flow-through, were conducted to
obtain the experimental data and to reveal the MF effects on lipids
(linolenic acid) and lipid modeling substances (hexane). A separate exper-
iment, the reaction of the photoinduced transformation of iso-propanol in
the presence of acetone, was conducted to localize the influence of mag-
netic field in system model. This reaction indicated that the dependence of
the reactions of oxidation on magnetic field could be adequately reflected
through the functional dependence of the intersystem crossing rate coeffi-
cient in the differential equations of the reaction dynamics on the magnetic
field strength.

The mathematical modeling framework for the batch experiment has
been confined to nonlinear continuous time ordinary differential equations
(ODE’s), describing the second, physico-chemical, stage of the formation of
free radicals under UV irradiation and the third stage, that of the forma-
tion of stable chemical products. The approach taken was that of a “gray
box” modeling, namely, the ODE’s were obtained from the fundamental
physico-chemical relations and parametrized by a set of constants which
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Fig. 1. Conceptual diagram of mathematical modeling using batch experiment data.

were adjusted to match the experimental data and to reflect the effects of
magnetic field on the formation of stable chemical products.

A conceptual diagram of mathematical modeling using the batch exper-
iment data is presented in Fig. 1.

As seen from this figure, the batch experiment data were used as fol-
lows. For a given experimental acetone concentration and UV intensity,
the excited acetone concentration was computed using a nonlinear relation
which was also included in the model, the rates of the production of stable
chemical reaction products were measured as functions of magnetic field
strength, and the corresponding model-generated rates, computed through
model decomposition and ODE solvers, were matched to the experimental
ones via the adjustment of the intersystem crossing rate coefficient in the
model and very minor changes in the other coefficients, wherever necessary.

While it is of interest to carry out batch experiments to exhaustively
cover the whole range of possible acetone concentrations, this is pro-
hibitively time consuming, therefore the flow-through experiments have
been pursued were the input switches between the maximal and the minimal
acetone concentrations, and the mixing inside the reaction vessel makes ace-
tone concentrations sweep through the whole range of interest.

The quality of mixing could be assessed by how well the identified mix-
ing dynamics between input and output acetone concentrations matches
perfect mixing dynamics which is known to be of the first order. The math-
ematical modeling framework for the flow-through experiment has been
confined to the affine discrete time ODE’s, i.e. linear discrete time ODE’s
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with a constant offset, with the approach being that of a “black box” mod-
eling. The values of an offset and model parameters would depend upon the
particular identification procedure. A conceptual diagram of mathematical
modeling using the flow-through experiment data is presented in Fig. 2.

As seen from this figure the flow-through experiment data were used as
follows. Keeping the input flow rate into and out of the reaction vessel con-
stant, the input acetone concentration was modulated as a pseudo-random
binary sequence (PRBS). The fluid was stirred in the reaction vessel under
UV and MF irradiation, the exit flow concentrations of acetone and reac-
tion products were measured, and the excited acetone concentration was
computed using a known nonlinear relation. Then, in the absence of the
magnetic field and under fixed nonzero value of magnetic field strength,
the input-output models were identified which related (i) PRBS input to
the concentration of acetone in the exit flow (“black box 1”), (ii) PRBS
input to the concentration of the reaction products in the exit flow (“black
box 3”), and (lii) the computed excited acetone concentration to that of
the reaction products (“black box 2”).

3. Modeling and Identification of the MF-Influenced
Oxidation of Hexane

3.1. Experimental part

The investigation was performed using a stirred-tank reaction vessel which
had a volume of 900 wl. This apparatus is shown in Fig. 3.

A valve at the outlet of the vessel maintains a constant flow rate of the
exit stream at 30 ul/min. Three regulating valves are placed at the input
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Fig. 3. Apparatus for the flow through experiment.

to the reaction chamber to permit the selection of n-hexane with various
concentrations of acetone in the inlet stream. This stream is formed by
liquid flows resulting from switching among vessels that contain prepared
solutions with acetone concentrations of 6.0 x 10~2 mol/1, 8.0 x 10~2 mol/1,
and 1.0mol/l. The reaction vessel is held continuously under ultraviolet
light with 260-280nm wavelength to provide a constant energy source for
the oxidation reaction. The reaction vessel is placed within the coils of an
electromagnet, which can provide varying magnetic fields. The exit stream
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is sampled and analyzed using gas-chromatographic equipment to evaluate
the concentration of acetone and reaction products, ketones and alcohols.

In order to investigate the dynamics of the reaction, experiments were
performed which varied the input concentration while sampling and ana-
lyzing the exit stream every three minutes. In these experiments, the
input concentration of the acetone was modulated as a pseudo-random
binary sequence (PRBS), alternating at random sample times between
6.0 x 103 mol/1 and 1.0mol/l. Specifically, the reaction was first brought
to steady-state conditions with an input concentration of 8.0 x 10~2 mol/1.
Then, according to randomly preselected time samples, the input concen-
tration was switched between the minimum and the maximum concentra-
tions, while the exit stream was analyzed at every sampling instant. These
concentrations were chosen because steady state data indicated that the
steady state concentration of the reaction products was a nearly linear func-
tion of the logarithm of acetone concentration for acetone concentrations
between 3.0 x 1072 mol/] and 2.0 x 10~ mol/1. On a logarithmic scale, the
8.0 x 1072 mol/] concentration lies almost exactly between the minimum
and maximum concentrations. This value has been chosen as the logarith-
mic average for the magnitude of the PRBS sequence. The preselection of
pseudo-random sample times for the alternation of concentrations was done
in such a way that the concentration of acetone in the reaction vessel would
stay in the “near-linear” range, and so that it would be suitably “rich” in
frequency content; i.e. the spacing between concentration alternations var-
ied sufficiently. The curves describing accumulation (concentration growth)
of the reaction products as a function of the UV-exposure duration were
observed to be linear for each of the products for almost the entire duration
of the process. The nonhomogenuity of the UV irradiation was evaluated
and found not to noticeably affect the outcome of the experiment, therefore
in the model it is neglected.

To investigate the influence of the magnetic field on the photo-induced
free-radical transformations of n-hexane the commercial chemical reagents
were utilized. The purity of these chemicals was verified by chromatographic
method. N-hexane that contains diluted oxygen in tube was placed in a
plastic rack between the poles of ERS-220 electromagnet and exposed to
UV-irradiation at room temperature in the presence of acetone with stable
concentration 1072 mol/1 as the sensitizer.

The experiment was conducted as follows. Samples with the identi-
cal initial composition were irradiated at the time intervals, sequentially
increasing by the increment of 5 minutes; i.e. the first sample was irra-
diated during 5min. and then analyzed, the second identical sample was
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irradiated during the time interval of 10 minutes and then analyzed and
so on. The irradiation was performed either in the presence or absence of
applied static magnetic field. The initial magnetic field strength was set at
0.4T and for each of the subsequent experiments with magnetic field the
field strength was sequentially reduced by 0.05 T until the whole range was
exhausted. The analysis of molecular products of the reaction of photoin-
duced oxidation of hexane was performed by the method of the gas-liquid
chromatography (GLC) with the flame ionizing detection.

3.2. Reaction scheme and differential equations, describing
the process of photo-induced oxidation of hexane

The main products of the photolysis of n-hexane in the presence of ace-
tone were alcohols (hexanol-2 and hexanol-3) and ketones (hexanon-2
and hexanon-3). The formation of these products occurs according to the
following scheme:

Ac B 3[Acr (3.1)
7 7
3[AC}* + CeHiq — [*AcH---*CgHi3] (3.2)
T 7 . T !
['ACH ce 'Csng] =, ['ACH oo 'CGH13] (3.3)
T l
[*AcH- - *CgH;3] — nonradical products (3.4)
1 7
['ACH s 'C6H13] — *AcH +°CgH;3 (3.5)
*CeHiz + Oo — CgH1300° (3.6)
CeH1300°* + CgHy14 — CgH300H + *CgHis (3.7)
2C¢H;300° — CgH120 + CgH130H + O (3-8)
(ketones) (alcohols)
2Ce¢H 300" — 2CgH;20 + H04 (39)
(ketones)
2C¢H 3 — mnonradical products (3.10)
206H1300' + AcH — C6H1300H + Ac (311)
2*AcH — Ac + (CHj3)2.CHOH (3.12)
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CeHy3 = CH3CH,CH,* CHCH,CH3 , or CH3CH,CH,CH,* CHCHj4
Ac=CHy;COCHs  *AcH = (CH,),*COH

The curves describing accumulation (concentration growth) of hexanol-2,
hexanol-3, hexanon-2, and hexanon-3 as a function of the UV-exposure
duration were observed to be linear for each of the products for almost the
entire duration of the experiment, as shown in Fig. 4.

This fact indicates that these substances are the initial products of the
photolysis. The numerical values of the slopes of the linear regions of the
curves in Fig. 4 give the corresponding concentration growth rates for each
of the products.

%10 Ketones
4 T L} 1 L} L) T
8
8 x
E 9t - ]
g2 ST x
g — " -
O 4 TR L bas .
ek S
=7 1 1 ! 1 1
0 5 10 15 20 25 30 35
time
%10° Alcohols
2 L ¥ T T L) Ll
81.5—
.@
ST
[}
5
o5 0 T e -
T [} 1
0 5 10 15 20 25 30 35
time

Fig. 4. Dependence of concentration growth on the UV exposure duration. The slopes
of these lines are corresponding concentration growth rates in B = 0.0T (solid lines)
and B = 0.2T (dashed lines).
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Fig. 5. Slope data for output production of Cz, C2, C3OH, C2OH in hexane reactions
versus magnetic field strength (in Tesla). Concentrations are plotted on a log scale, to
show relative changes in magnitude.

The results of the experimental studies of the concentration growth rates
dependence of the n-hexane oxidation products on magnetic field strength
are summarized in Fig. 5.

As illustrated in this figure, the application of the magnetic field in
the range of 0-0.1T causes a slight increase in the growth rates, followed
by a pronounced growth rates decrease in the range of 0.1-0.2 T. The most
significant decrease of the rate of product formation is seen to occur at 0.2 T.
Thereafter, the growth rates increase in the interval 0.2-0.3 T, reaching a
plateau between 0.3-0.4T. No experiments were conducted for the field
strengths higher than 0.4T. Thus, the batch experiments show that the
process of photo-induced oxidation of hexane is sensitive to the magnetic
field. The observed variation of the product growth rates could be explained
by the dependence of the free-radical recombination in the “cage” on the
magnetic field strength.

The system of differential equations of the photo-induced hexane oxida-
tion obtained on the basis of methods of competitive kinetics is given below
and is further referred to as System 3.1.
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dzy /dt = kyu — 8.4kexy k1 — quantum yield of 3Ac*
u — dose-rate of the UV-irradiation
x1 — concentration of the excited
acetone molecules
dxo/dt = 8.4kexy — k3o — kszo o — concentration of the triplet

7 T
radical pairs [*AcH - - - *CgH,3]
dzs/dt = k3zs — kaz3 z3 — concentration of singlet radical
T l
pairs [*AcH- - - *CgH;3]
dz4/dt = kszo + 8.4k7z6 x4 — concentration of *CgH ;3

—keza - 1072 — 2kyo mi radicals
dzs /dt = kg xo2 — 2k12 :t:g — k11 x6x5 5 — concentration of *AcH radicals
dze/dt = kezs - 1072 — 2(kg + kg) x6 — concentration of CgH;300°

T2 — k11765 radicals
dxy /dt = 8.4k7xe + k11T62s x7 — concentration of C¢H;300H
dzs/dt = kox + 2koz? xg — concentration of ketones
dzg/dt = kgz? g — concentration of alcohols
System 3.1.

The last three equations do not include the terms in the right hand side
that describe the saturation, or equilibrium, of the last three products,
a long term behavior observed experimentally after about thirty minutes.
Analysis of the above equations reveals that after the ultraviolet light exci-
tation is turned on, the concentrations z,, 2, and z3 evolve very fast and
quickly settle into steady states, which appear in the other slower equations
as constant values. The next three equations, governing the production of
T4, Ts, and ze involve a more complicated combination of fast and slow
dynamics, but these variables also eventually settle into stable steady state
values, with a constant concentration of products in the solution versus
time. Finally, the last three equations depend only on the previous quan-
tities. The derivatives of the concentrations, therefore, approach positive
constants within a short time period. This is consistent with the almost
linear concentration growth behavior observed in the batch experiments.
These equations also provide the basis for the understanding of dynam-
ics of the flow-through test with stirring. In this test the solution undergoes
the ultraviolet light irradiation during specific fixed time interval. The con-
centrations of products 7, s, and xg increase in the presence of the excited
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acetone, and when the solution passes through the test setup, and out of the
influence of the light, the reactions stop, and the concentrations remain at
their final values. These final values depend on the rates of the production
(the slopes in the batch test) which themselves might depend on magnetic
field, the acetone concentration, and the time the solution remains in the
influence of the light. In the tests with MF and without it, the input and
output flow rates are identical and constant resulting in the same time
of light irradiation, the irradiation parameters are identical, and the time
patterns of the change in the input acetone concentration are identical as
well, therefore the only variation from the test with MF to the test with-
out it will be in the rates of production. Consequently, any differences in
the final concentrations of products will be directly related to the changes
in the slopes of their production. This implies that the detection of the
MF effects can be carried out via comparison of the input-output relation
identified from the data of the test with MF and that obtained from zero
MF test data. If this comparison yields relations that match the ratios of
slopes of the concentration growth in the corresponding batch tests, then
the presence or absence of the MF effects is validated by two experiments
with completely different data generation and processing methodologies.

3.3. Localization of the influence of magnetic field
in the system description

The results of the batch experiments are presented in Fig. 6.

This figure shows the dependence of the concentration growth rate on
the value of magnetic field that turns out to be rather pronounced. The
differential equations presented above must be modified to include this
effect. Since the dynamics of the influence of magnetic field on the free
radical cloud is extremely fast in comparison to that of the formation of
stable chemical products, it was decided to introduce the MF effects into
the model in the form of the direct dependence of certain reaction parame-
ters (coefficients) on the value of the magnetic field strength. Mathematical
models of MF-influenced chemical reactions, however, contain a large num-
ber of coeficients, and at the outset it is not clear which of them should
reflect the MF effects. Therefore, as the first step in model development
it was decided to determine parameters which should reflect the MF influ-
ence on the overall reaction by experimentally finding the reaction stage
most sensitive to the MF irradiation and subsequently introducing the func-
tional dependence on the magnetic field into the coefficients in this stage.
Although the available theory suggests that the stage of the competition
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Fig. 6. Slope data for output production of ketones (upper curve) and alcohols in hexane
reactions versus magnetic field.

between the “cage” recombination of free radicals with the formation of
the “cage” products and the escape of the radicals from the “cage” to the
“volume” with subsequent formation of “non-cage” products is the most
sensitive to magnetic field, the sensitivity in this stage strongly depends
on the method of free radical initiation and should be ascertained for each
particular initiation type. Such verification could be most easily done by
selecting a test reaction with the initiation type of interest where the “cage”
products could be easily detected and analyzed. In the present work all free
radical reactions have been initiated by ultraviolet light irradiation with
acetone as the sensitizing agent. For this reaction initiation type, the reac-
tion of the photoinduced transformation of iso-propanol in the presence
of acetone was chosen as the test reaction with pinacol being the “cage”
product. The reasoning behind such choice is as follows. Irradiation of the
iso-propanol by UV in the presence of acetone causes the formation of a
radical pair which consists of two (CH3)2COH radicals. These two radi-
cals could interact with each other in the reactions of two different types,
the reaction of recombination and the reaction of disproportionation. The
process of recombination of these two radicals leads to the formation of
pinacol. Although, besides “cage”, the formation of pinacol could also take
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place in the “volume”, the experiments on radiolyses of the aqueous solu-
tions of iso-propanol, where two similar radicals of (CH3)2COH are formed,
clearly show that in the case when these two radicals escape to the “vol-
ume” they usually (10:1) undergo disproportionation with the resulting
formation of acetone and iso-propanol [18]. Therefore, pinacol which is the
product of photoinduced transformation of iso-propanol in the presence of
acetone could be formed mainly as the result of the reaction of recombina-
tion of two radicals in the “cage”. This product could be easily analyzed
during the reaction of photoinduced transformation under the influence of
the magnetic field of various strengths. Thus, the data on the rate of the
formation of pinacol under the influence of the magnetic field, obtained
from this experiment, could point exactly at the field-dependent stage in
the photochemically-induced free radical transformations of organic com-
pounds in the presence of acetone as the sensitizing agent and thereby
single out the parameter (coefficient) in the mathematical description of
the reactions of this type which needs to reflect MF-induced changes in the
reaction rate. The process of the photolysis of iso-propanol in the presence
of acetone could be described by the following scheme:

[Ac] N 3[AgH (3.13)
7 7
3[Ac]* + (CHg)zCHOH — [’ACH e (CH3)2'COH] (3.14)
T T l T
[*AcH- - - (CHs)* COH] % [*AcH - - - (CH3),*COH] (3.15)
l i
[*AcH--- (CHj3)2*COH] — (CHj3)2C(OH)C(OH)(CHgs), (3.16)
(pinacol)
7 i
[*AcH---(CHs)2*COH] — *AcH + (CHs)*COH (3.17)

*AcH + (CHa)g'COH — Ac + (CH3)2CHOH (318)
(acetone)  (iso-propanol)
Ac = CH3COCH3, °*AcH = (CH;)2°*COH

The results of our experimental studies of the dependence of the con-
centration growth rate of pinacol on magnetic field strength showed that
the application of the magnetic field in the range of 0-0.15T causes an
increase in the pinacol growth rate, followed by a pronounced growth rate
decrease in the range of 0.3 T. Thereafter, the growth rate increases in
the interval 0.3-0.4T. Thus, the batch experiment shows that magnetic
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field with the strength between 0.0-0.4T could influence the rate of the
formation of the products of the recombination of two radicals in the
“cage”, and that the rate of intersystem crossing between triplet and singlet
spin-correlated states in the reactions of photosensitized transformations of
organic compounds in the presence of acetone could be field-dependent.
This observation, therefore, indicates that the dependence of these reac-
tions on magnetic field could be adequately reflected through the functional
dependence of the intersystem crossing rate coefficient in the differential
equations of the reaction dynamics on the magnetic field strength.

Although, as indicated in [15], excited singlet acetone can also be
involved in hydrogen abstraction reactions, the conclusion of [15] (items 3
and 4) indicates that the efficiency of intramolecular triplet reactions is
noticeably higher than that of the singlet hydrogen abstraction and, cor-
respondingly, the efficiency of product formation in the singlet reaction is
generally low (< 25%) and may become negligibly small in some cases. For
these reasons we consider that the inclusion of reactivity of excited singlet
state acetone into the kinetic scheme corresponding to the model presented
is not critical for capturing the EMF-induced effects by the model, and,
therefore, this reactivity is omitted.

3.4. Development of the model with dependence on
magnetic field

From the experiment with iso-propanol, it follows that the equation which
reflects the change in the concentration of singlet radical pairs x3, and the
“inter-system crossing” constant k3 which multiplies zo in this equation,
are the most likely to be affected by a change in magnetic field. By changing
k3 and repeatedly solving numerically differential equations given above it
might be possible to find the values of k3 which yield very close match-
ing between the empirical slopes obtained from the experimental data in
the whole range of MF values and those obtained from the numerical solu-
tion. This procedure then would generate a function k3 versus B, thereby
explicitly introducing the effect of the magnetic field into the differential
equations, and tailoring the behavior of the equations to the results of the
experiments.

The complexity and nonlinearity of the differential equations, especially
the large difference in the time constants for coupled equations makes this
procedure difficult. The following steps were followed to obtain the steady
state slopes of the outputs. The first six equations were solved for the
equilibrium point with nominal parameter values, i.e. values obtained from
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the literature and numerous prior experiments conducted by the authors.
These values are:

ki -u=595-10""; ko=2-10% k4=2-10° ks=4-10%
ke =109 k; =0.53; ks =1.5-107; ko=8-10% kjo=1.1-10%
kll =2 109; k12 =2 109.

The values of K2, K3 are taken from [29]; K4, K6, K11, K12 — from
[16, p. 572); K5 — from [6]; K7 — from [5, p. 25]; K8, K9 — from [22,
p. 25]; K10 — from (16, 30, p. 380}.

This equilibrium point gave constant rates (slopes of the solution curves)
of the generation of the output products in the remaining three equations.
Then, by varying k3, and thereby changing the value of the equilibrium
point, a range of possible slopes for the last three equations was obtained.
This range turned out to be very narrow for an order of magnitude variation
in k3 (10* < k3 < 10°). To maximize this range, the other model parameters
were varied over a range of 10-20%. The constants then were increased or
decreased in such a way as to provide a larger range of the output slopes
for the same variations in k3. The new values for the constants are:

k; =0.39, ks =22-107, ko =1.4-107,
ki1 = 109, k1o = 109, the rest unchanged.

By changing k3 in the range 10%-107 in System 3.1 these new values of
constants permit a numerical matching of the entire range of experimentally
obtained slopes. This permits the model to cover the ratios 1 through 1.5418
for ketones and 1 through 1.8105 for alcohols, encompassing the production
rates under no magnetic field as well as all the MF affected rates. This
matching of the slopes yields the set of (ks, B) pairs (see Table 1).

Table 1. Relation between the
values of intersystem crossing
rate coefficient and MF strength
obtained by matching numerical
solutions to experimental data.

B= k3=
0 9.5026 - 104
5.10"2 2.9583 - 104
1-10°1 4.1707 - 104
1.5 - 10! 3.2894 . 10°
2.10"1 1.6766 - 108
3.1071! 1.2045 - 105

4.10"1 1.0494 - 108




104 Biomathematics: Modelling and Simulation

. Hexane: Parameter K3 varsus magnetic field B
10 T T T T T T

Parameter K3

L 1 I 1
5 0.2 0.25 03 0.35 0.4
Magnetic Field, B

10* —1 L L

0 0.05 0.1 0.1

Fig. 7. Nonlinear hexane model development. Relationships (dotted curves) between
parameter k3 and magnetic field, obtained by matching the slopes for ketones and alco-
hols versus magnetic field data to the same slope values obtained from simulation via
adjusting parameter k3. The solid curve shows the average.

The function ks versus B shown in Fig. 7 is obtained by interpolating
between the values of this set.

Thus, the complete mathematical model of the hexane oxidation irradi-
ated by the magnetic field in the range 0-0.4 T is given by System 3.1 along
with the graphical dependence of k3 on magnetic field strength shown in
Fig. 7. The accuracy of this model in terms of representing the changes in
the final product concentration growth rates as a function of magnetic field
is demonstrated in Fig. 8.

3.5. Procedures for identification of the reaction dynamics
under MF influence using the flow-through
experimental data

Reference [7] indicates that flow-through experiments provide a good set-
ting for studying sensitivity of chemical reactions to magnetic field. The
purpose of the flow-through experiment with hexane carried out in this
work is to use robust system identification methods [9, 10, 12, 19, 20] to
independently assess and quantify the influence of the magnetic field on the
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Hexane Reaction simulation
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Fig. 8. Simulation of slopes for output production of ketones (upper curve) and alcohols
in hexane reactions versus magnetic field. Actual slope data from experiments is indicated
by the dotted lines.

flow-through process with mixing for a broad range of the oxidizer concen-
trations at the value of magnetic field strength B = 0.2 T where the batch
process displayed the highest sensitivity and thereby partially validate the
mathematical model developed on the basis of the batch experiments at
the point with the highest MF effect.

In the flow-through test, the input acetone concentration is modulated,
resulting in the experimental output acetone concentration given in Fig. 9,
the computed output excited acetone concentration given in Fig. 10, and the
output product concentration with magnetic field on (B = 0.2T) and off,
given in Figs. 11 and 12. The excited acetone concentration is computed
from the measured output acetone by interpolating the data in Table 2.
This interpolation is shown in Fig. 13.

The measured acetone concentration data do not lend themselves easily
to a convenient identification of a linear model due to a nonlinear relation to
the excited acetone concentration. For a plot of the log of acetone concen-
tration versus excited acetone concentration (Fig. 13), a region close to lin-
ear is demonstrated for acetone concentrations between 1072 and 5-1072,
but the actual acetone concentration range lies between 21072 mol/l and
2-107 1 mol/l, producing the excited acetone levels which are nonlinearly
scaled. For this reason, black box 2 in Fig. 2 to be identified will have
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Fig. 9. Output acetone concentration in the flow through experiments.
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Fig. 10. Estimated excited acetone concentration, computed from the output acetone
concentration.
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5 Comparison of Magnetic field off and on (dotied)
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Fig. 11. Time domain data of C;0OH flow-through hexane experiment comparing the
cases of magnetic field off, B = 0.0 T (solid line) and magnetic field on, B = 0.2 T (dotted
line). The second plot shows the ratio of the two concentrations as a function of time,
and the overall average.

the estimated excited acetone concentration as the input and experimen-
tal product (CoOH and C3OH) concentration as the output. The linear
models of black boxes in Fig. 2, given below by the identified discrete time
transfer functions, can be viewed as dynamic relations between input and
output obtained via averaging input/output data by statistical and/or fre-
quency domain methods over a broad range of the input acetone concentra-
tion values. Black box 1 represents the mixing dynamics of acetone, black
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10® Comparison of Magnetic field off and on (dotted)
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Fig. 12. Time domain data of C30H flow through hexane experiment comparing the
cases of magnetic field off, B = 0.0 T (solid line) and magnetic field on, B = 0.2 T (dotted
line). The second plot shows the ratio of the two concentrations as a function of time,
and the overall average.

box 2 — the relation between computed excited acetone concentration and
final reaction products, and black box 3 — the transfer function of the
whole system including both mixing and reaction dynamics.
Decomposition of box 3 into boxes 1 and 2 does not introduce a signif-
icant approximation error due to the fact that the reaction reaches steady
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Table 2. Relation between the values of experimental ace-
tone concentration data and computed (estimated) excited
acetone concentration.

Acetone:  Excited Acetone Acetone: Excited Acetone

10—4 4.1384.10~7 3.102 8.3285.105

1073 4.0349-10-6 4.1072 9.8863.10~5
2.108 7.9516 - 10~6 5.10~2 1.1067-10~4
3.1073 1.1765.10~5 6-10~2 1.1964 . 10~4
4.10-3 1.5460-10~5 7.1072 1.2643-10~4
5.10~3 1.9066 - 10~5 8.1072  1.3160e-10—%
6.10-3 2.2584.10~5 9.10—2 1.3550-10—4
7-10—3 2.5998.105 101 1.3847-10~4
8.1073 2.9309-10—% 2.10"1! 1.4721.10~4
9.103 3.2546-10~5 3.1071! 1.477-10~4
1-10—2 3.5679.10~5 4.10-1 1.477-1074
2-10~2 6.2756 - 105 2 1.4780-10—4

concentration growth rates in the time scale the order of magnitude faster
than that of mixing. Thus, by using the exit stream concentration of the
acetone as an input, instead of the concentration of the selected input vial
for a particular sample time, the mixing dynamics of the acetone can be
effectively eliminated. This permits the identification to focus on the reac-
tion dynamics, which is the primary interest.

Due to the fixed residence time of the flow-through experiment, the
ratios to be compared to the constant slope (concentration growth rate)
ratios of the batch experiment are those of the output steady state con-
centrations. The flow-through steady state product concentrations can be
obtained from the input/output data as the final values of the unit step
responses of the identified linear models with an offset. These final values
are, in fact, the steady state gains (i.e. the frequency responses for zero
frequency: w = 0) of these models plus an offset, computed by summing
the coeflicients of the transfer functions and adding the offset value. For
example, for a transfer function of the form:

H(z) = [Bo]/[AoZ + A1]

a steady state gain is Bo/(A¢ + A1). Here z is understood as either one
step advance in time domain: z(t)z = z(f 4+ 1), or the complex argument
z = re?* of z-transform.

Two different forms of models were obtained as a result of the identifi-
cation procedure. The first one corresponds to a linear model (zero offset).
The form of the data fit is

A(2)y(t) = B(z)u(t —1).
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Fig. 13. Plot of function relating excited acetone concentration to acetone
concentration.

The second one considers an offset in the data, so that the form of the data
fit is

A(2)(y(8) — yo) = B(2)(u(t — 1) — uo)-

The physical significance of this offset becomes clear after examining the
original non-linear input/output relation. Identification reveals that the
mixing dynamics between input and output acetone concentrations is nearly
linear and first order, yielding A(z) = Aoz + A1 and B(z) = By. This is
demonstrated by the accuracy of the data fit of the simulated acetone con-
centration at the output of the model to the experimental data. On the
other hand, the relationship between output acetone concentration and
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Co0H concentration and C3OH concentration is complex. Since this rela-
tion is modeled by a linear system, the best fit to the data would include an
offset yo from the origin. This is demonstrated by a decrease in the residual
noise variance for the models with offset. It is interesting to note, though,
that both model forms yield reasonably close parameter values, with similar
time constants and gains.

Three identification methods have been applied to the experimental
data: least squares (LS), empirical transfer function estimate (ETFE), both
using MATLAB system identification toolbox, and stochastic He, identifi-
cation method of [19, 20]. It is interesting to point out that the initial set of
data contained a one time step mismatch between the input and the output
data, which could be viewed as the plant/model mismatch introduced by
the measurements. This mismatch resulted in the failure of the standard
LS method to produce any results, while the latter two methods yielded
acceptable models. In the subsequent data sets this mismatch was removed,
and the LS algorithm started converging to a set of parameter values. Only
the results of the third method, however, will be presented below since it
yields the process model with the smallest error bound on the unmodelled
dynamics.

The latter identification algorithm attempts to estimate the model clos-
est in the Hg norm to the plant by minimizing the maximal plant/model
mismatch as estimated by the standard empirical transfer function estimate
(ETFE) of the transfer function from the input sequence (u(kT')) to the
output error (e(kT'}). As indicated in [19, 20], by establishing a connection
between this minimax problem and a sequence of weighted least squares
(WLS) problems, the estimate itself is computed via an iterative sequence
of weighted least squares estimates. The weighting filter in this sequence
is updated to asymptotically satisfy the H,, minimization criterion. The
convergence of this procedure under relatively mild assumptions has been
proven and computationally supported in [19, 20]. Convergence of the
parameter estimates in the present paper is very similar to that of [19, 20].

In the present work, following the approach of [19, 20|, iterations of a
least-squares minimization algorithm with frequency weighting were car-
ried out, adjusting the weights until the peak of the error frequency spec-
trum is made as low as possible. The error of the model with an offset for
Ao =1 is given as a one step ahead prediction error by: e(kT) = y(kT)+
A1ly((k = 1)T) — yo] — Bo[u((k — 2)T") — uo] — %o

The error frequency spectrum is represented by the empirical transfer
function estimate from u to e, denoted by ETFE(e, u, M), where M is the
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number of frequency samples. The magnitude plot of this sampled transfer
function from u to e is the function to be minimized in the weighted least
squares sense through the selection of the model parameters. It represents
the errors which result from modeling uncertainty, rather than random noise
injected into the process or measurements, since it shows the frequency
domain correlation with the input.

The minimization of the magnitude peak of ETFE(e,u, M), denoted
further as Ly, is carried out through the iteratively weighted least squares
(IWLS) procedure of [19, 20], as follows. Let at k’th iteration x € R™ and
qr € RM denote vectors of model parameters and weights, respectively,
Okit=1,...,m,and g, ¢ =1,..., M, denote their i’th components, and
M samples of ETFE(e, u, M) be arranged into M-vector with the complex-
valued components, denoted further as ETFE(e, u, M), : R™ — CM. Fix
a step size o €(0, 1] and a weighting exponent 3,

(i) initialize counter k and weighting vector g, as k = 1 and

= [ 1 1 1) respectively;
Q1 \/M—\/M_ \/]\7 ) 1Y y;

repeat:

(ii) find 6y (i.e. model coefficients By and A; and offsets ug and yp in
the present work) that minimize (|qx e ETFE(e, u, M)i||2, where (o) denotes
componentwise multiplication (this step represents WLS minimization car-
ried out in the present work by means of Levenberg-Marquardt algorithm);

{iil) update each component of the weighting vector:

Frt1,i = q,%,i((l — ) + a|ETFE(e, u, M)kﬂ-]ﬁ), i=1,..., M,

(iv) normalize weights: qe+1 = Gr+1/[/@k+11l2;

(v) increment k;
until k& > kmax or |ETFE(e,u, M)illo — S0, a2 ; [ETFE(e, u, M) |/
E¢Ai1 q,%ﬂ- < &, € > 0; the values of kyax and ¢ in the stopping criteria
above are usually obvious from the convergence behavior of the estimates.
The || f||oo norm is the maximum absolute value over the components of f,
lgll2 is the Euclidean norm of vector gq.

Thus, IWLS approach generates a sequence of weights g such that a
sequence of WLS solutions

0 € arg min [lgx e ETFE(e,u, M)i[3
converges to the Hoo solution

6 € arggrélliirrln \ETFE(e, u, M)} oo-
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3.6. Identification results

The H,, identification method was used to identify black box 1 (mix-
ing dynamics from PRBS input acetone concentration to exit stream ace-
tone concentration) and black box 3 (the overall system dynamics from
PRBS input acetone concentration to the final product concentrations).
Fixing Aq = 1, the identification procedure produced the polynomials
B(z) = By = const. and A(z) = Apz + A; and the offsets yo and ug
as well as the measures of the identification accuracy given by the bound
on the unmodelled dynamics, denoted below by L;. The results of the com-
putations are collected in Table 3.

The relatively small size of the bound on the unmodelled dynamics given
in Table 3 indicates that the quality of the identified models is relatively
high. The relations between output acetone and final product concentra-
tions were determined taking into account the known nonlinear relation
between acetone and excited acetone concentrations. The transfer func-
tions (black box 2 in Fig. 2) are then identified from the excited acetone
concentration to the output. Since the dynamics of the oxidation process is
extremely fast in comparison to the sampling rate of the experimental data
collection, the relation between excited acetone concentration and reaction
products could be well described by a constant.

3.7. Validation of the nonlinear mathematical model and
the region of model validity

The ratios of the output concentrations generated by the linear models com-
puted on the basis of the flow-through experiment data can be compared

Table 3. Hoo identification results. Input: PRBS acetone concentra-
tion, outputs: concentrations of output acetone and alcohols C2OH and
C30H.

B=0.0 B=0.2

Acetone, L1 = 0.36
Bp = 11.3210, A; = —0.8421

Acetone, L1 = 0.15
Bg = 10.2407, A; = —0.8405

yo = 6.4580, ug = 0.08
C,OH, L; =0.03

Bp = 0.1841, A; = —0.8075
yo = 0.4480, up = 0.08
C30H, L1 =0.039

By = 0.2978, A1 = —0.8172
yo = 0.7373, ug = 0.08

Yo = 6.2620, up = 0.08
C20H, L1 = 0.012

Bg = 0.1115, A; = —0.8767
yo = 0.3882, up = 0.08
C3OH, L; = 0.016

Bo = 0.1844, A; = —0.8853
yo = 0.6383, ug = 0.08
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to the corresponding ratios of the concentration growth rates generated by
the full nonlinear model computed on the basis of the batch experiment
data to verify the relative change in the reaction rates corresponding to
the change in magnetic field. These ratios for CoOH and C3OH production
for the cases of MF strength B = 0 and B = 0.2 are computed using the
output concentration of the model, y. Given an input, u, the steady state
output of the models obtained via H,, identification method and presented
in Table 3 can be computed by the formula:

y = [Bo/(1 + A1)](u — uo) + Yo.

Due to the nonlinearity of the actual process, the following ratios produced
by the linear models are evaluated at the minimum, mean, and maximum
input values, up = 0.006, 0.08, 1.0, respectively.

The ratios produced by the H., identification are as follows:

To507s (u — 0.08) +0.448

C2OH: =1.13 to 1.41,
ot (u — 0.08) +0.388
2978 (4 — 0.08) 4 0.737

C30H: 5872 = 1.14 to 1.32.

=0 8883y (u — 0.08) +0.638

The error bounds of the Hy, identification are sufficiently small to ensure
high confidence in the identification results. The above ratios are also con-
sistent with the batch experiment data and therefore they indeed validate
the nonlinear reaction model of the photosensitized free radical hexane oxi-
dation under the influence of magnetic field developed on the basis of the
batch experiment. As shown in Figs. 6-13, the experimentally supported
range of model validity is as follows: (a) magnetic field strength: 0.0 Tesla—
0.4 Tesla, (b) excited acetone concentration: 10-3 mol/1-5- 10~ mol/],
(¢) cumulative alcohols concentration: 4-10~8 mol/1-2 - 10=* mol/1.

4. Modeling and Identification of the MF-Influenced
Oxidation of Linolenic Acid

4.1. Ezxperimental part

The experimental study of the magnetic field influence on the photo-induced
free-radical oxidation of lipids was carried out using the linolenic acid sup-
plied by Sigma Chemical Co. For the exposure studies the solution of the
linolenic acid in chloroform (5.263 mg/ml) in quantity necessary for the
preparation of the experiment was placed into a tube, and CHCI3 was
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dried by rotary evaporation in argon at room temperature. The substance
remaining in the tube was diluted by 0.1 mol Na3PO4 prepared using the
bidistilled water. After the one hour dilution the prepared solution of the
linolenic acid was used in the experiments.

Three batch experiments were performed. In the first batch experiment
the 0.5 - 1072 mol/1 concentration of linolenic acid was utilized. The acetone
at the final concentration of 51072 mol/l was added to linolenic acid con-
tained in the test tubes immediately before irradiation. The reaction vessel
was placed within the coils of an electromagnet, capable of providing vary-
ing magnetic fields and was held continuously under ultraviolet light with
260-280nm wavelength to provide a constant energy source for the oxida-
tion reaction. The exit stream was sampled and analyzed. In the second
batch experiment the linolenic acid with the concentration of 102 mol/1
was utilized. The experimental procedure was identical to that of the first
experiment. In the third batch experiment the linolenic acid and the acetone
with the concentrations of 1072 mol/1 and 10~ mol/1 respectively, were uti-
lized. The experimental procedure differed from that of the first experiment
only in the irradiation duration and the final value of the MF strength set
here at 30 min. and 0.2 T, respectively.

4.2. Reaction scheme and differential equations, describing
the process of photo-induced ozidation of linolenic acid

The effect of the magnetic field on the photo-induced peroxidation of
linolenic acid was studied by measuring the concentration of malonaldehyde
(MDA) and the diene conjugates (DC). The formation of these products
occurs according to the following scheme:

Ac B 3(Aq* (4.1)
T 1
3(Acj* + LH — [*Lj...*AcH] (4.2)
T T T i
[*Li...*AcH] — [*L;...°AcH] (4.3)
T T T !
[*La...*AcH] =5 [*Lz...*AcH] (4.4)
T !
[*Lz...°AcH| — nonradical products (4.5)
T T

[*La...*AcH] — °*Ls + *AcH (4.6)
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*Ly + O2 —  L,00O° (4.7)
L,00* + LH — L;OOH + °*1, (4.8)
L,00° o oL (4.9)
*Lz + LH -  LgH +°L; (4.10)
LsH 29028, MDA + other products (4.11)
2 L,00° —  Ly0O0Lz + O2 (4.12)
*Ly + L;00* —  L,00L, (4.13)
2 *AcH —  Ac + (CH3);CHOH (4.14)
*Ly — Ly (4.15)

LH — linolenic acid. °L; — the radical of the abstraction of a hydrogen
atom from a reactive methylene group of the linolenic acid.

*Ly; — an alkyl radical of the diene conjugate. LoOO® — a peroxyl radi-
cal of the diene conjugate. *L3z — a cyclic peroxide radical. LsH — cyclic
endoperoxide. LoOOH — hydroperoxides of the linolenic acid diene conlu-
gates. LoOOL, — peroxides of the diene conjugates.

In the reaction scheme acetone in its triplet state 3[Ac| abstracts a
hydrogen atom from fatty acid to generate a triplet radical pair, Eq. (4.2).
The latter can follow two pathways: (1) intersystem crossing (ISC) to a
singlet radical pair which recombines to give non-radical products, Eq. (4.5),
or (2) separation, Eq. (4.6) — to produce radicals that are available for
reaction with other molecules. The escaped radicals could react with oxygen
to form peroxyl radicals (LOO*®) and the propagation of lipid peroxidation
proceeds by a well-known mechanism.

As shown in the scheme, during the photoinduced oxidation of linolenic
acid the process of peroxidation takes place. In our experiments the yield of
this peroxidation was measured by quantifying the diene conjugation (for
the third batch and flow-through experiments) and malonaldehyde (for all
batch experiments).

The results of the batch experiments on the dependence of the linolenic
acid oxidation products concentration growth rates on magnetic field
strength are summarized in Figs. 14-16. Figure 14 shows the change in
the MDA concentration growth rates in the first batch experiment as a
function of magnetic field strength.

The data from two test days of the first experiment are plotted
by dashed lines with data points of each day distinguished by (o) and
(*) symbols, and with the average function drawn with a solid line. As
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Linolenic Acid Test: Days 1(o) and 2(*} and average
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Fig. 14. The values of MDA concentration growth rate in linolenic acid oxidation versus
magnetic field; day 1, day 2 and the average of both days. First batch experiment:
CLa = 0.5% 1072 mol/l, uv = 20 min, Cag = 5 * 10~2 mol/1.

illustrated in this figure, the application of the magnetic field causes a
growth rates decrease in the range of 0.0-0.1T. Thereafter, the growth
rates slightly increase in the interval 0.1-0.25 T, reaching a plateau between
0.25T and 0.4T. No experiments were conducted for the field strengths
higher than 0.4 7T.

The results of the second batch experiment are shown in Fig. 15.

As illustrated in this figure, the application of the magnetic field causes
an MDA concentration growth rates increase in the range of 0.0-0.15T.
Thereafter, a slight decrease is observed in the interval 0.15-0.20'T, followed
by a significant decrease in the range of 0.25-0.35T and a plateau between
0.35 and 0.4 T'. No experiments were conducted for the field strengths higher
than 0.4T.

The results of the third batch experiment are shown in Fig. 16.

The upper plot shows that the application of the magnetic field causes
a slight decrease of diene conjugates production rate in the range of 0.0~
0.06 T, followed by a slight rates increase in the range of 0.06-0.1 T, reaching
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Fig. 15.

Biomathematics: Modelling and Simulation

Linoleni¢ Acid Experiment
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the plateau between 0.1-0.2 T. The lower plot shows that the application of
the magnetic field causes a significant growth rates decrease of MDA pro-
duction in the range of 0.0-0.06 T with the plateau reached between 0.06
and 0.1 T. Thereafter, the MDA production rates increase in the interval
0.1-0.16 T and then slightly decrease in the range 0.16-0.2 T. No experi-
ments were conducted for the field strengths higher then 0.2 T.

The results of the flow-through experiment with magnetic field off (solid
curve) and on (dotted curve) for diene conjugates are shown in Fig. 17.

The lower plot indicates that the average change in the diene conjugates
growth rates caused by magnetic field for the concentration of linolenic acid
0.5 - 10~2mol/l and magnetic field strength 0.17 T is very small: 1.78%; i.e.
within the measurement error, so that further flow-through experiments
should be conducted to analyze MDA growth rate change.

xi0™ Comparison of Magnetic field off and on (dotted)
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Fig. 17. Time domain data of diene conjugate concentration in the flow through
linolenic acid experiment comparing the cases of magnetic field off (B = 0.0T) (solid
line) and magnetic field on (B = 0.17T) (dotted line). The second plot shows the ratio
of the two concentrations as a function of time, and the overall average ratio.
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Our findings for the common trend displayed by the batch experiments
can be explained by the following mechanism: application of an external
magnetic field during UV-irradiation of a solution of linolenic acid increases
the rate of intersystem crossing of triplet radical pairs in several intervals
of the field strength as shown in Figs. 14 and 16. This allows fewer radi-
cal pairs to dissociate, resulting in lower average concentration of fatty acid
free radicals in the solution and lower formation of malonaldehyde. We con-
jecture that in the heterogeneous structures the processes of the oxidation
under the influence of the magnetic field are significantly more complicated
then in the homogeneous structures, and they could depend not only on the
strength of the magnetic field but also on the concentrations of substrate
and sensitizer as well as the duration of the UV-irradiation.

The system of differential equations of the photo-induced oxidation of
linolenic acid obtained on the basis of methods of competitive kinetics is
given below and is further referred to as System 4.1.

dzy/dt = k1uy — koz1Z2 k; — quantum yield 3[Ac]*
dzo/dt = —kexi22 x1 — concentration of excited acetone
—(kszg + ki0T12)T2
dzs/dt = kex12y — k3zs xo — concentration of lipid LH
dzs/dt = ksxs — (ka + ke)xsa 3 — concentration of triplet radical pairs
T T
['L] v 'ACH]
dzs/dt = kaxy — ksxs x4 — concentration of triplet radical pairs
T T
['Lz e 'ACH]
dze/dt = kexa + k15211 x5 — concentration of singlet radical pairs
— krzezs — k13T
1 T
['Lz e °ACH]
dxr/dt = kexg — 2k14:c$ g — concentration of *Lo radicals
dzg/dt = k1272 — krTeTs 7 — concentration of *AcH radicals
dxo/dt = krxers — (ksxe + k9 g — concentration of Os
+ 2k12%9 + k13%6) X9
dzio/dt = kgxoxs xgq — concentration of L,OO* radicals
dxy1/dt = ksxoTo + kioT12T2 10 — concentration of (LoOOH)
—kisz11

dzi2/dt = koxg — k10Z12%2 11 — concentration of *L; radicals
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dzy3/dt = kipx1272 — k11713 212 — concentration of cyclic peroxide
*L3 radicals

dzy4/dt = k11713 113 — concentration of cyclic peroxide
L3zH
d:l:ls/dt = klg.’L‘g + k13TgZg 14 — concentration of MDA
dzi6/dt = kgzoza + k12x§ x15 — concentration of peroxides of diene
+ k13zeTg conjugates.
Y1 = T14
Y2 = ZT10 + 15 — the measured concentration of diene conjugates in
solution.

kiup =5.95-1077, kg = 2- 108, k3 = 1010, k4 = 105, ks = 109,
ke =4-105, k; = 9108, kg = 30; kg = 108, k1o = 1, k13 = 10,
k1o =3-107, ki3 =5-107, kyg = 2-10°, kg5 = 1010,

System 4.1.

Analysis of the above equations reveals that the dynamics of the equations
is more complicated than that of the case with hexane. The variables z;,
Ta, and z3 evolve very fast after the ultraviolet light excitation is turned
on and settle into steady state values which depend on the other, slower
states, especially on xg and z12. The equations of System 4.1 do not lend
themselves to easy solution by the methods employed earlier. Still, these
states will eventually settle into the constant values of concentration versus
time. As before, the variables of interest (z14 and x16) depend only on the
other states, therefore the derivatives of the concentrations (the concentra-
tion growth rates) can be shown to quickly converge to positive constants.
This is consistent with the almost linear concentration growth observed in
the batch experiments.

For the flow through test configuration, these equations are still valid.
The test provides only a specific, finite time for the solution to be under
the ultraviolet light. The product concentrations increase at some constant
rate while they are in the presence of the excited acetone, and when the
solution passes through the test setup, and out of the influence of the light,
the reactions will stop, and the concentrations will remain at their final
values. These final values depend on the rates of the production (the slopes
in the batch test) which themselves might depend on magnetic field, the
acetone concentration, and the time the solution remains in the influence
of the light. In the tests with MF and without it, the input and output flow
rates are identical and constant resulting in the same time of light irradia-
tion, the irradiation parameters are identical, and the time patterns of the
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change in the input acetone concentration are identical as well, therefore
the only variation from the test with MF to the test without it will be in
the rates of production. Consequently, any differences in the final concen-
trations of products will be directly related to the changes in the slopes of
their production. This implies that the detection of the MF effects can be
carried out via comparison of the input-output relation identified from the
data of the test with MF and that obtained from zero MF test data.

4.3. Identification of the reaction dynamics under MF
influence using the flow-through experimental data

The model form for fitting the experimental data was selected as:

y(t) = B(q)/F(g){u(t — 1) — du} + C(q)/D(q)e(t) + dy.

Three identification methods have been employed in this part of the work:
least squares (LS), empirical transfer function estimate (ETFE), both using
MATLAB system identification toolbox, and H,, identification method
described in Sec. 3.5.

The identification process demonstrated the following very important
feature of the H, identification method. Discrete models of real processes
usually include a one-step measurement delay, which is routinely incorpo-
rated into the identification model structure by defining input to be u(t—1),
as in the model above. The process variables were sampled in real time
but analyzed off-line, with the analysis results recorded with no measure-
ment delay. This specificity of the data record for the linolenic acid did not
become clear until after the identification had been carried out, and one
step input delay was included into the standard model structure above. The
results of the LS identification are presented in Table 4 and Figs. 18 and 19
for model with one step input delay, and Figs. 22 and 24 for input with no
delay. The corresponding Ho, identification results are given in Table 5 and
Figs. 20 and 21 for model with one step input delay, and Figs. 23 and 25
for input with no delay.

As seen in Figs. 18 and 19, the LS identification algorithms could not
identify the plant model under one step delay data/model mismatch for
the experiments with magnetic field on and off. The mismatch resulted in
the high variance of the residual noise shown in Table 4 and in the large
errors in the estimated frequency response from the input signal to the error
signal. The Hy, identification algorithm, however, managed to adequately
identify the plant parameters, and modeled the dynamics faithfully, as seen
in Figs. 20 and 21, in spite of the large bound L, on modeling uncertainty
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Linolenic Acid; B=0; Delay Mismatch
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Fig. 18. Linear linolenic acid model identification using output error least squares iden-
tification, including a delay mismatch. Measured and simulated (lower curve) diene con-
jugates concentration versus time. Magnetic field off (B = 0.0T).

for the case with measurement delay given in Table 5. Thus, for a one
step input delay data/model mismatch, which clearly represents a large
unmodeled dynamic perturbation, the H,, identification method shows a
true strength in yielding a reasonably good model identification, while the
LS method fails to do so.

For the case of no delay both methods yield similar results as seen in
Figs. 22-25. For this case, the relatively small size of the residual noise
variance and the bound on the unmodeled dynamics, given in Tables 4
and 5, respectively, indicate that the quality of the identified models is
relatively high.

The relations between output acetone and final product concentration
were determined taking into account the nonlinear relation between acetone
and excited acetone concentrations given in Table 2 and interpolated in
Fig. 13. The transfer functions (black box 2 in Fig. 2) are then identified
from the excited acetone concentration to the output concentration of diene
conjugates. Since the dynamics of the oxidation process is extremely fast
in comparison to the sampling rate of the experimental data collection,
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Linolanic Acid Test; B=0.17; Delay Mismatch
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Fig. 19. Linear linolenic acid model identification using output error least squares iden-
tification, including a delay mismatch. Measured and simulated (lower curve) diene con-
jugates concentration versus time. Magnetic field on (B = 0.17T).

the relation between excited acetone concentration and reaction products
could be well described by a constant. This is indeed confirmed by the
ETFE estimate given in Table 6 and presented in Figs. 26 and 27.

As seen in these figures, the ETFE estimates have almost flat magnitude
spectra and phase spectra close to zero both with magnetic field on and off.
This means that the model structure given earlier is simply a constant plus
an offset, whose value depends on that of the magnetic field. Figures 28
and 29 show that by including the nonlinear function of the input into
the modeling and using it to reduce input/output nonlinearity, the model
output captures the shape of the nonlinear process behavior at the maximal
concentration values (the tops of the curves), unlike linear fit in Figs. 22-25.



D.C. Products

Modeling and Identification of the Dynamics

Linolenic Acid Test; B=0.0

125

T

20

40

80

100

120

Time {(min)

140

160

1
180

200

Fig. 20. Linear linolenic acid model identification using output error H-infinity
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diene conjugates concentration versus time. Magnetic field off (B = 0.0T).
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diene conjugates concentration versus time. Magnetic field on (B = 0.17T).
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Linear linolenic acid model identification using output error H-infinity
identification, including a delay mismatch. Measured and simulated (smoother curve)
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Linolenic Acid Test; B=0
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Fig. 22. Linear linolenic acid model identification using output error least squares iden-

tification. Measured and simulated (smoother curve) diene conjugates concentration ver-
sus time. Magnetic field off (B = 0.0T).
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Fig. 23. Linear linolenic acid model identification using output error H-infinity identifi-
cation. Measured and simulated (smoother curve) diene conjugates concentration versus
time. Magnetic field off (B = 0.0T).
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Linolenic Acid Test; B=0.17
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Fig. 24. Linear linolenic acid model identification using output error least squares iden-
tification. Measured and simulated (smoother curve) diene conjugates concentration ver-
sus time. Magnetic field on (B = 0.17T).
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Fig. 25. Linear linolenic acid model identification using output error H-infinity identifi-
cation. Measured and simulated (smoother curve) diene conjugates concentration versus
time. Magnetic field on (B = 0.17T).
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. Identification results
Table 4. Least squares identification results. Input: PRBS acetone con-

centration, outputs.

No magnetic field B = 0.0 Magnetic field on B = 0.17

No DCvar = 0.3017 DC_Bvar = 0.1662
measurement B(z) = 3.4840 B(2) = 3.39380
delay F(z) =1-0.9206 F(z)=1-0.9198
dy=5.5,du=0 dy =5.5,du=0
With DCvar = 1.3210 DCBvar = 1.1280
measurement B(z) = 01.3855 B(z) = 00.2201
delay F(z) =1-0.9128 F(z) =1-0.9150
dy =5.5,du=0 dy =55,du=0

Table 5. Heo identification results. Input: PRBS acetone concentra-
tion, outputs: concentrations of diene conjugates.

No magnetic field B = 0.0 Magnetic field on B = 0.17

No L1 = 0.4087 L; =0.3158
measurement F(z) =1 - 0.8702 F(z) =1 —0.8677
delay B(z) = 3.82970 B(z) = 3.68040

dy = 9.4615, du = 0.08 dy = 9.3350, du = 0.08
With L1 =12.9834 L1 = 2.8432
measurement F(z) =1 — 0.8242 F(z) =1-0.8226
delay B(z) = 03.2440 B(z) = 03.0601

(mismatch) dy = 9.6765, du = 0.08 dy = 9.5394, du = 0.08

Table 6. Identified gains for ETFE in linolenic acid. Input:
PRBS acetone concentration, outputs: concentrations of
diene conjugates.

B=00 B=0.17

DC Gain = 63351 DC Gain = 62524
dy =10.13, du = 1.20- 104 dy = 9.95, du = 1.20- 10~*

4.4. Sensitivity of the concentration growth rates to
magnetic field strength in the batch and
flow-through experiments

The comparison of the trial with no magnetic field and that with the
magnetic field turned on is carried out by computing the ratio of the
corresponding slopes of concentration change versus time. The slopes are
computed at either a batch data point, cr at a point that matches the
magnetic field strength of the flow-through experiment.

For the latter case, the magnetic field is an interpolation at B = 0.17.
These ratios are given below.
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Fig. 26. Empirical transfer function estimate from the input of estimated excited ace-
tone concentration to the output of diene conjugates concentration in linolenic acid reac-
tions, for zero magnetic field. The nearly flat magnitude response indicates a constant
relationship between the input and the output.

For the first set of batch experiment data for diene conjugates
(cf. Fig. 14),

V[DC)(B = 0.0)

V[DC](B = 0.17) = 1.395.

For the second set of batch experiment data for MDA (cf. Fig. 15),

VIMDA](B = 0.0)
VIMDA](B = 0.25)

= 0.6228.

For the third set of batch experiment data for diene conjugates and MDA
(cf. Fig. 16),

VIDC)(B = 0.0)
VIDC](B = 0.17)

= 1.019,
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Fig. 27. Empirical transfer function estimate from the input of estimated excited ace-
tone concentration to the output of diene conjugates concentration in linolenic acid reac-
tions, with magnetic field (B = 0.17 T). The nearly flat magnitude response indicates a
constant relationship between the input and the output.

V[MDAJ(B = 0.0)

VIMDA)(B =0.17) ~ 188

If the ratios are computed at B = 0.1 a more dramatic effect is observed:

VIDC|(B =0.0) _

VOB =01
V[MDAJ(B =0.0) _
VIMDA|(B=0.1) _ >

For the flow through test data for diene conjugates, the sensitivity of the
oxidation to magnetic field is given by the ratio of the steady state con-
centration values between the test with no magnetic field and the test with
the magnetic field set at B = 0.17.
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Fig. 28. Empirical transfer function of the constant gain of diene conjugate concentra-
tion from the input of estimated excited acetone concentration in linolenic acid reactions.
Measured and simulated (lower curve) diene conjugates concentration versus time. Mag-
netic field off (B = 0.0°T).

From the Least Squares Identification of Table 4 (B = 0.0 and
B =0.17):
(1—36‘.198306) (u)+5.5

: Ratio = 1.01 to 1.03.

From the H, identification of Table 5 (B = 0.0 and B = 0.17):

'(13'3.28%2) (u - 0.08) +9.462

: Ratio = 1.02 to 1.05.
(0 —0.08)+9.316

From the empirical transfer function estimate of Table 6 (B = 0.0 and
B =0.17):

63351(u — 1.20 - 10™4) +- 10.13

: Ratio = 1.01 to 1.02.
62524(u — 1.20- 10-4) 7 9.95 * roti° 0 1.02

As seen from the above ratios, there is a strong consistency between all
three identification methods with the error bounds sufficiently small to
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Fig. 29. Empirical transfer function of the constant gain of diene conjugate concentra-
tion from the input of estimated excited acetone concentration in linolenic acid reactions.
Measured and simulated (lower curve) diene conjugates concentration versus time. Mag-
netic field on (B = 0.17T).

ensure high confidence in the identification results. The above ratios are
also consistent with the third batch experiment data indicating that for
the chosen acid concentration the sensitivity of the production of diene
conjugates to MF irradiation in the photosensitized free radical linolenic
acid peroxidation is small and that MDA production sensitivity to MF
exposure should be investigated.

4.5. Development of nonlinear equation constants and
dependence on magnetic field

Finally, the differential equations (presented above) governing the produc-
tion of the MDA and diene conjugates must be expanded to include the
effects of the magnetic field on the dynamics. From analysis of the equa-
tions, it looks plausible that the equation which describes the production of
the state z5 and the “inter-system crossing” constant k4 (which multiplies
T4 in these equations), are the most likely to be affected by the change in
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magnetic field. It also looks plausible that System 4.1 is capable of support-
ing the experimentally observed behavior and yielding the constant slope
of the production of z14 (MDA) and z16 (diene conjugates). By equating
the empirical slopes obtained from the experimental data with the slopes
obtained from the differential equations, it is possible to describe k4 as a
function of magnetic field, thereby introducing the effect of the magnetic
field into the differential equations, and tailoring the behavior of the equa-
tions to be consistent with the results of the experiments.

Conclusion

The results of the experiment demonstrate a pronounced dependence of the
oxidation of hexane on the strength of the MF irradiation. The methods
of control theory permit obtaining a model with capability to predict the
effects of MF influence on oxidation of lipid modeling substances and fatty
acids. Establishing whether there is any link between the effects reported
here and a danger from MF irradiation to humans and animals requires
further investigation.

5. Problems

(1) Simulate system 3.1. Investigate the nature of system dynamics. Look
for fast convergence onto slow manifold in the state space.

(2) Relate the simulation results to the experimental data given in Sec. 3.

(3) Relate equations of chemical kinetics for hexane oxidation to system of
differential equations 3.1.

(4) Using discrete models in Sec. 3, generate input/output data sequences
and carry out Least Squares as well as H,, identification.

(5) Repeat problems 1-4 for system 4.1.
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CHAPTER 5

COMPUTER SIMULATION OF SELF REORGANIZATION
IN BIOLOGICAL CELLS*

DONALD GREENSPAN

In this paper we describe supercomputer simulations for the self reorganiza-
tion of tissue which has been separated into endoderm, mesoderm, and ecto-
derm cells.

Keywords: Morphogenesis; self reorganization; endoderm; mesoderm;
ectoderm.

1. Biological, Physical and Computational Preliminaries
1.1. Introduction

Steinberg [4] describes several interesting bivlogical experiments in morpho-
genesis, that is, in the self reorganization of biological cells. For example,
Holtfreter showed that embryonic tissue, consisting of distinct endoderm,
mesoderm, and ectoderm layers, when separated out, could recombine into
tissue with normal endoderm, mesoderm, and ectoderm layers. (See Fig. 1.)
As another example, in an experiment by Wilson, cells and cell clusters
obtained by squeezing a sponge through a fine silk cloth could reunite and
aggregates could reconstruct themselves into functional sponges.

In this paper we will concentrate on a computer simulation of the
Holtfreter experiment.

1.2. Classical molecular mechanics

For purposes of intuition, it will be important to review, first, how molecules
interact. Within a larger body, molecules interact only locally, that is, with
their nearest neighbors. This interaction is of the following nature [1]. If
two molecules are pushed together they repel, if pulled apart they attract,

*Material in this paper has been adapted from Chapter 6 of PARTICLE MODELING,
Birkhauser, Boston, 1997, by Donald Greenspan, and reprint permission has been granted
by Springer Science and Business Media.
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Fig. 1. The Holtfreter experiment.

and mutual repulsion is of a greater order of magnitude than is mutual
attraction. Mathematically, this behavior is often formulated as follows.
The magnitude F' of the force F between two molecules which are locally
r units apart is of the form

G H
F = — 7 + prl (1.1)
where, typically, G > 0, H > 0, ¢ > p > 6. The negative term in (1.1) is
the attraction term and the positive term is the repulsion term.

The major problem in simulating any physical body is that there are
too many component molecules to incorporate into the model. The clas-
sical mathematical approach is to replace the large, but finite, number
of molecules by an infinite set of points. In doing so, the rich physics of
molecular interaction is lost because every point has an infinite number of
neighbors which are arbitrarily close. A viable computer alternative is to
replace the large number of molecules by a much smaller number of parti-
cles and then to readjust the parameters in (1.1). This is the engineering
methodology called the lumped mass approach and it is this approach which
we will follow.

1.3. The computer algorithm

The general idea outlined above will be implemented in the following con-
structive fashion. Consider N particles, P;, i = 1,2,3,...,N. For At > 0,
let t; = kAt, k=0,1,2,3,.... For each of 1 = 1,2,3,..., N, let m; denote
the adhesive measure of P;, and, in two dimensions, let P; at t; be located
at 7k = (Tik,Yik), have velocity U;x = (Vi k,z)Vik,y), and have accelera-
tion @; k = (@ik,z,Gik,y)- Let position, velocity and acceleration be related
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by the recursion formulas [2]:

1
1_}'1;’% = 171;,0 + g(At)a:i,O, (Starter) (1.2)
171;,k+% = /D‘i,k—% + (At)d’i,k, k= 1, 2, 3, . (13)
Tik+1 = Tik + (At)'l—)'i,k_'_%, k=0,1,2,3,.... (1.4)

Formulas (1.2)—(1.4) are the popular leap frog formulas, which are compu-
tationally most convenient when the number of particle N is very large. At
tk, let the force acting on P; be F’tk We relate force and acceleration by
the dynamical equation
Fk = midii k. (1.5)
As soon as the precise structure of F’i‘k is given, the motion of each
P; will be determined explicitly and recursively by (1.2)—(1.5) from given
initial data. The force F},k is now described as follows. Let 7; be the
vector from P; to P; at time ¢x, so that r;; , the distance between the two
particles, is given by 7i; x = ||7i,k — 7j,|. Then the force F'ij,k on P; exerted
by P; at time t; is assumed to be

e (-G o )
(rije)®  (Tijk)?) Tijk

in complete analogy with (1.1). The total force F‘;,k on P; due to all other
particles different from P; is defined by

N
= Gy Hi; \ Tjik
Fi — _ 1) + 2, ) Jt >. 1.6
ow ;(( (rige)? — (Tajk)?) Tijk (16
i

Note finally that the introduction of an additional parameter D is essen-
tial to assure that particle interactions are local. We will require that when-
ever 7;;x > D, then (1.6) must be replaced by

—

Fi,k = 6 (rij,k > D) (1.7)
2. Supercomputer Examples

2.1. A morphogenesis simulation

A large number of examples were run on a CRAY YMP /8. We will describe

one in detail in this section and then discuss others in the next section.
Since, in general, particles do not adhere when in a gaseous state and

are rigid when in a solid state, self reorganization can occur only in a liquid
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or near-liquid state. Relative to this observation, previous calculations [2]
allow us now to fix the parameters as follows: At = 0.0001, p = 3, ¢ = 5,
Gij = Hyj = 5mym;, D = 2.2. For, then, if P; is to be a liquid particle, the
speed v; of P; has been deduced for various adhesive measures m; [2]. In
particular;

m; = 2000 implies 100 < v; < 170 (2.1)
m; = 4000 implies 90 < v; < 160 (2.2)
m; = 10000 implies 50 < v; < 80. (2.3)

Let us now examine a particular example. Consider a square region in
the XY plane whose vertices are (—16, —16), (—16, 16), (16, 16), (16, —16).
On this region construct a triangular grid of 1072 points using the recursion
formulas

z(l) = —15.5, y(1) = —16.0
z(i+1) =z(@) +1.0, y(i+1)=-160, i=1,31
z(33) = —16.0, ¥(33)=—15.0
z(i+1) =z(i)+ 1.0, y(i+1)=-150, i=233,64
z(i) = z(i — 65), y(i) =y(i—65)+2.0, i=66,1072.

This point set is shown in Fig. 2.

We now fix a set A which consists of 38 particles each with adhesive
measure 10000, a set B of 266 particles each with adhesive measure 4000,
and a set C of 768 particles each with adhesive measure 2000. The particles
are distributed at the 1072 points shown in Fig. 2, with no two particles
at the same point. A particle at the point (x(:),y(?)) is denoted by F;.
In Fig. 3, the A particles, which have the largest adhesive measures, are
denoted by circles; the particles of set B, which have the intermediate
adhesive measures, are denoted by quadrilaterals; and the particles of set C
which have the smallest adhesive measures are denoted by triangles.

Next a velocity is assigned to each particle. In agreement with (2.1)-
(2.3), each A particle is assigned a speed of 60 while each of the B and
C particles is assigned a speed of 150. The XY direction and the corre-
sponding (+) signs of the velocity vectors are determined at random, and
the resulting velocity is shown in Fig. 3 as a vector emanating from each par-
ticle’s center. For a complete listing of all the initial data, see Greenspan [3].

The motion of the system is now determined by (1.2)-(1.7). However,
in order to keep the particles within the square while they are in motion,
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Fig. 2. 1072 points in a 32cm by 32cm square.

the following reflection rules are applied:

(a) if z; > 16, reset x; — 32.0 — x4, vy,; — —0.9%v; 3, vy,; — 0.99v, ;
(b) if z; < —16, reset z; — —32.0 — 3, Uzs — —0.99vz 5, vy — 0.99v, ;
(c) if y; > 16, reset y; — 32.0 —y;, v — 0.9%v 4, vy; — —0.99v,;
(d) if y; < —16, reset y; — —32.0 — y;, Vg3 — 0.99v5 5, vy — —0.99v,;

The small velocity damping in rules (a)—(d) insures numerical stability when
using the time step At = 0.0001.

The resulting self reorganization is shown in Figs. 4-13. Figures 4-9
show the self reorganization of the A cells at T' = 1.5, 9.0, 16.5, 24.0, 31.5,
39.0. Notice that these cells first reorganize into small groups which then
converge to form a central core. The self reorganization of the B cells at
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Fig. 3. The initial data.
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Fig. 4. T
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Fig. 5. T =9.0.

Fig. 6. T = 16.5.

»

Fig. 7. T =24.0.
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Fig. 8. T =315.
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Fig. 9. T = 39.0.

Fig. 10. T =24.0.
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Fig. 11. T = 31.5.

Fig. 12. T =39.0.

the respective times T = 24.0, 31.5, 39.0 is shown in Figs. 10-12. Figure 13
shows the triple self reorganization of the A, B, and C sets at time T = 39.0.
The exceptionally slow self reorganization of the sets B and C after the
A particles formed into the core was accelerated by setting the damping
factor 0.99 to 0.9 in rules (a)—(d) after T' = 24.0.

With regard to computer time on the CRAY, 1000 time steps require
48 seconds of cpu time.

2.2. Other examples

If one varies parameters in Sec. 2.1 by no more that 5%, results completely
analogous to those shown in Figs. 4-13.
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Fig. 13. T = 39.0.

The need for damping in rules (a)-(d) follows because the time step
At = 0.0001 is relatively large. This protocol proves to be economically
practical for the simulations. The damping rules however can be discarded
if one wishes to use a time step At = 0.00001 or smaller.

Next note that a “close” choice of the m; parameters, like m; = 10000
for the A set and m; = 9500 for the B set, results in exceptionally slow self-
reorganization.

If in rules (a)-(d) the damping factor 0.99 is replaced by 0.9 from the
start, then trapping often results, and, in particular, a particle from the
set B can often be found in the interior of the set A after the set A has
formed a core. The reason is that there follows an excessive loss of system
kinetic energy, which yields premature solidification in the core.

If all other parameters are unchanged, the calculations are unstable for
D > 3.0.
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Finally note that the concept of temperature for molecules does yield
a specific formula for temperature calculation. No such formula exists for
particles. It would be of interest to develop such a formula, for it would then
allow the determination of the temperature range in which morphogenesis
can result.
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CHAPTER 6

MODELLING BIOLOGICAL GEL CONTRACTION BY
CELLS: CONSEQUENCES OF CELL TRACTION FORCES
DISTRIBUTION AND INITIAL STRESS
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Mécaniques et Thermodynamiques des Matériaux, CNRS-UPR9001,
Institut Galilée, Université Paris 13,
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Models based on the Murray—Oster continuum framework have been applied
to a variety of biological settings in order to investigate the morphogenesis
of living tissues. Collagen-matrix contracted by fibroblast model is an impor-
tant example and a suitable way to study reciprocal geometric and mechanical
interactions that regulate wound contraction of connective tissue cells. This
contraction, which is due to cell traction forces, is essential in wound heal-
ing and pathological contractures. In the present contribution, where thin disk
sample geometry is considered, an attempt is made to investigate the effect
of initial stress upon the kinematics of contraction. This aspect is probably
source of novel insight into the roles of key biological parameters in determin-
ing the biomechanical properties of contracted biological gel. Our hope is that
this contribution will find a logical sound and contribute to gain a greater
understanding of wound contraction mechanism.

1. Introduction

The mechanical interactions developed by motile cells with fibers in the
surrounding extracellular matrix is essential to cell behavior and plays a
major role in soft tissues and tissue-equivalent reconstituted gels, and thus
to many biomedical and tissue engineering problems [1, 4, 8, 14, 16-19, 24,
27-28, 33]. The ability of cells to organize collagen fibrils is fundamental
to a variety of processes found in angiogenesis, embryogenesis, fibrosis, scar
formation, and wound healing [3-6, 26-28, 30-34]. It has been suggested
that fibroblast reorganize the collagen lattice either as a result of isometric
tension applied to the collagen fibrils [1-23, 25, 27-29, 32]. Although the
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mechanism of wound contraction, which is a clinically important biologi-
cal process, is not completely understood. In fact what is well known is
based on the two following theories: (a) the one advanced by Ehrlich [8-
9] suggest that wound contraction results from migrating fibroblasts that
move trough and rearrange connective tissue in granulating wounds. The
activity of the fibroblasts on the connective tissue is sufficient to cause cen-
tripetal movement of the skin margin. Simultaneous formation of collagen
cross-links maintains the dimensions of the wound as it decreases its sur-
face area over time, (b) the second theory, which carries a recent study
proposed by [13], has been suggested by Gabbiani et al. [10] who origi-
nally described myofibroblasts; these highly specialized contractile fibrob-
lasts found in granulating wounds are attached to one another by cell-cell
connection and to the extracellular matrix (ECM). Thus, they are capa-
ble of contracting synchronously to generate the centripetal force of wound
contraction {10, 12]. Proponents of the later theory suggest that collagen
has very little to do with wound contraction {15]. Based on experimental
observations, Murray et al. [22] had proposed a continuum model for mes-
enchymal morphogenesis which take into account the interaction between
cells and ECM and which has been extensively used [1, 20-21, 23, 29-32].
Despite the fact that above studies have permitted to more understand the
cell-ECM interactions mechanisms, the exact form of these forces and their
relative distribution is still an open question [20]. Moreover, it has been
shown that excessive and permanent contractile forces are characteristic of
abnormal healing responses such as keloid scarring and other fibrocontrac-
tive diseases [23, 27]. Thus, there is a clear need to study the contraction
mechanism which reflects the macroscopic manifestation of the intrinsic
and local cell-matrix fiber mechanical interaction [3-4, 9].

In the present work, which is based on the theory proposed by Mur-
ray and Oster [22], the interactive processes of cell migration and matrix
deformation are derived from mass conservation equations for cell and
extra-cellular matrix (ECM) which are coupled to the mechanical force
balance for the tissue-equivalent composite. The above model is revisited
with the new assumption dealing with: (a) the centripetal character of the
cell traction force and, (b) the effect of the initial stress due probably to
the cell-cell interactions. The mixed system of parabolic-hyperbolic-elliptic
partial differential equations, obtained after spatial rescaling together with
the ordinary differential derived from the zero stress condition at the free
boundary, are solved numerically by the use of finite difference method.
From our numerical investigation, it is clearly shown that the initial stress
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has a predominant role in the mechanism of contraction. This aspect, which
is often omitted, is probably source of novel insight into the roles of key
biological parameters in determining the biomechanical properties of con-
tracted biological gel. Our hope is that this contribution will find a logical
sound and contribute to gain a greater understanding of wound contraction
mechanism.

2. The Mechanocellular Model

Whereas in biochemical models cells respond in a programmed manner to
chemical concentrations, in biomechanical models they participate directly
in the dynamics of pattern formation and react actively and passively to
mechanical forces. The basis of most biomechanical models of pattern for-
mation lies largely in experimental observations of the effect of cell traction
on artificial substrates 1, 7, 13-16].

From theoretical view point, Murray and Oster [22] proposed a
mechanocellular model for pattern formation based on the following
assumptions:

(a) cell’s migration occurs through the fibrous network of extracellular
matrix;

(b) cell’s motility induces large traction responsible in part of the extracel-
lular matrix deformation and;

(c) this deformation and adhesion gradient influence the direction of the
movement of cells (haptotaxis).

According to this theory, the basic variables are cell density n{M,t)
and ECM density p(M, t); these are locally averaged species variables that
depends on space M and time t. The mechanical consequences of the cell-
ECM traction forces, the intrinsic response of the tissue-composite and the
external resistance to tissue movement due to fibrous attachments to under-
lying tissues, are encapsulated by a force-balance equation that governs the
tissue displacement, u(M,t). Specifically, the model equations have the fol-
lowing forms:

e For the mass conservation of the local cells concentration,

% +div(J) = P(n, p) (1)

where n(M,t) is the number of cells per unit volume, J is the flux of
cell per unit area and P(n,t) is the mitotic rate process. The cell flux
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vector is given by

Ou
J= nar = D,, grad(n) (2)

where D, is a diffusion coefficient which represents short-range effect
in random dispersal. Each of the three terms of Eq. (2) reflects respec-
tively, the convection term characteristic of the ECM deformation and
the cell’s diffusion by migration.

In order to account for the mitosis process which is viewed as a
logistic process, we used the well known relation for the mitotic rate
P(M,t) = kn(N — n) where k is a growth rate and N is a maximum
cell density.

e For the mass conservation for the local ECM concentration,

% + div ( g—‘;) = B(n, p) (3)

where the rate of ECM secretion and degradation by fibroblasts B (n, p)
has been neglected in order to reflect the fact that the rate of ECM
remodeling takes place on a relatively long time scale compared with
the proliferative phase.

e For the local mechanical equilibrium, with body and inertial forces
neglected,

div(e) =0 4)
where the stress tensor for the composite material can be written as
0 = 6f + ¢ + o’grad(u) (5)

and in which o”, ¢ and o¢° are the passive, the active and the ini-
tial stress tensors, respectively. The superimposed bar represents the
transpose of the displacement gradient tensor.

We consider the behavior of the ECM as a linear, isotropic, compressible
viscoelastic solid. Then, we shall write the ECM stress tensor o? as follows:

0 0 FE v
y - —
o’ = u18t6+uzattr el T+ ) [e+ ot €] I] (6)

where ¢ is the linearized strain tensor, I is the identity tensor, u; and u2
are related to the shear and bulk viscosities, E is the Young’s modulus and
v is the Poisson’s ratio.

Although this area has received significant attention, the origin of the
forces exerted by the cells is poorly understood, but stress fibers, i.e. aligned
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microfilaments, have been seen in the cytoplasm of these cultured cells and
depend on adhesion between cell surface receptors and binding sites on
collagen fibers [2, 5]. To account for the short-range of the active cell-matrix
interaction contribution, Murray and Oster [22] considered the stress of;
as a negative pressure proportional to the product pn. When a fibroblast
is embedded and cultured in a collagen gel, for example, the collagen fibers
near the cell align in a radial pattern [28], apparently also in response to
an applied tension. Taking advantage of previous works, the centripetal
direction of the internal traction force is chosen as follows

10
¢® = ’Top (7)
T+ 2" 0 0

where 79 and A are positive constants. Moreover, A defines the saturation
cell density; i.e. cell motion is restricted by contact inhibition, whereas 7o
is the constant value of the initial traction parameter.

By the use of the relations (5)-(7) and with the following simplification
o® = ¢%I, the equation of motion (4) can be rewritten more explicitly in
polar coordinates

0

( + ) 62 +_1_2’u_,_£
Hr T 2 ot \or2 ' ror r2

E(1-v) [O%uw 10u u
+emraim | (5315 - 5)

o on 1 °m
+5<Tol+)\n2)+;1+)\n2_0' (8)

The symmetry properties associated with the hypothesis of free bound-
ary condition at the moving surface gives respectively

on_y 0
or 7 or

=0, u=0; r=0 (9)

(Nl‘i‘#z) +&@+ E(l_’/) [3_’“ v Ejl

grot - r ot (1+v)(1-—2v) l—-vr
Ou
0_ _—
+ 0o or +T01+>‘n2 (10)

at the current moving boundary position S(t).
We finally assume that local cell and ECM concentrations are initially
distributed according to the uniform and normal laws, respectively. The
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initial conditions are therefore,
2

n(r,0) =ng, p(r,0)= 5—(;_[_6— 252y, u(r,0) =0. (11)

In order to solve the set of equations we have defined dimensionless
variables as follow

*_n *_ﬂ * __ 2 *__,r_ *__t_
n‘—Nv P—po, u_a, T"a, t“Ta
DT
D* ==, k*=kNT, X" =AN?
¢ (12)
N*=IL1+M2V N*:_ﬂ_2y T*=TP0N,, .:0051_
1 —ET 1, 2 ET 1, 0 o——E 1, P E
(141 -2v) v
S (i S L

where a is the initial radius of the disk sample, T is a characteristic time,
that is a factor scale.

The governing equations, boundary and initial conditions are written in
the new relative frame £ = -5%7 which fixes the boundary at £ = 1 for all
time. The set of equations is then

_£dSon  (on)  nd [ £dS0u
Sdtog " \ot), S0\ Sdtoe

() (525
tol\ae ") st
18°n 1 6n
‘D(ﬁa—e‘+s—sa—e
gdsap+<@) +p8( £ dS ou )

“Satoet\at), Tsee\ " sawae T

1/0p p £dSou _
+§<85+Z>(“§dtag+v)_0 (14)
u 10u wu 0? £dS ou
(a—gz+‘—“)(1+p>+“15g(*5228—5“)
,u16 deBu Ui édsau
+?a_§(_§Ea_§+v)_?<_s_dt_a§+v>

d(tonp/1 + An?) L g_TomP
13 1+ An?
where v is the cell-matrix composite velocity.

) +kn(n—-1)=0 (13)

+8 =0 (15)


file:///dtJt

Modelling Biological Gel Contraction by Cells 155

The initial conditions and boundary conditions are therefore in the rel-
ative frame:

n(eto) =no, o6 1) = T2 F, uet)=0  (6)
on B QB _ ~ B
(8—5.)5:0 =0, <a§)€=0 =0, u(§= O,t) =0 (1n

Y o () o weert— S0 -tv =S
(a§)€=1—o, (a§)£=l—o, u€=1,4)=5()-1Lv) = (18)

3. Model Predictions and Discussion

Then, this transformed nonlinear governing moving boundary value prob-
lem is reduced to a differential algebraic system of equations. This system
is solved applying centered finite difference approximation to derivatives
and a Newton—Raphson method.

3.1. Uniazxial cell traction force effect

We simulate the gel contraction for an inhomogeneous initial distribution
of ECM density over the gel. First, an attempt is made to compare the
uniaxial cell traction force hypothesis (0g9 = 0) with the spherical one
(or7+ = 0gg) in the case where there is no initial stress. For the chosen set of
parameters values taken back from Barocas et al. [20] and given in Table 1,
we represents in the relative frame (0, £) and at successive time steps:

(a) the simulated evolution of the cells concentrations (Fig. 1). It is clearly
shown that the results are sensibly the same. However, one can note
that for the spherical hypothesis the steady value (bold line) is not the
maximal one contrarily to the centripetal hypothesis;

(b) the simulated evolution of the apparent ECM concentrations is given
Fig. 2. One notes different distributions between the two hypotheses
and observes a reduction of the density on the left part of the curve 2b
(€ <0.5);

Table 1. Model’s parameters.

Dimensionless Parameters ng Po T0 D k A Vo n1 o M2

0.80 1.00 1.00 0.10 1.00 080 096 10 0.1
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Fig. 1. Simulated gel contraction for an homogeneous initial cell distribution. Cell den-
sity along the gel radius is plotted as a function of time without initial stress. (a) Spherical
active stress hypothesis, (b) Uniaxial active stress hypothesis.

(c) the simulated evolution of the local volumetric dilatation illustrated in
Fig. 3. The decrease of the ECM concentration is certainly due in part
to the increase of the local volume as shown in Fig. 3(b). This result is
in connection with the results shown in Fig. 4.
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Fig. 2. Simulated gel contraction for an inhomogeneous initial gel distribution without
initial stress. Gel density along the gel radius is plotted as a function of time. (a) Spherical
active stress hypothesis, (b) Uniaxial active stress hypothesis.

Effectively, it exists one area under tension even though the sample is
globally under compression. Until now the measure of the boundary dis-
placement attracted all the attention of experimental investigators. Maybe
it is necessary to look at the displacement of the interior points.
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(b) Uniaxial active stress hypothesis.
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3.2. Initial stress effect

With the hypothesis of an uniaxial cell traction force, we first represents
in the relative frame (0,&) the effect of increasing initial stress upon the
steady values of:

(a) the cell concentration which is considerably increasing up to 40% of the
initial concentration (Fig. 5),

(b) the ECM density which exhibits a highly nonlinear distribution as
shown in Fig. 6,

(c) the local volumetric dilatation which is also increasing as shown in
Fig. 7.

Second, we illustrates during the time period (0, 3T) the evolution of
both the boundary and midpoint displacements given in Figs. 8 and 9,
respectively. In Fig. 8, we observe a significant increasing of the boundary
as a function of the initial stress. It is shown in Fig. 9 that the behavior
of midpoint is first compacted (negative displacement) before changing and
to be in extension (positive displacement). Note that the apparition of the
extension is delayed by the increase of the initial stress.

We have examined the mechanical interactions of cells with tissue-
equivalent gels revisiting the well known monophasic theory to describe the
biomechanics of the gel contraction. In particular, consequences of the cell
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Fig. 5. Simulated gel contraction for an homogeneous initial cell distribution and an
inhomogeneous initial gel distribution. Steady cell density along the gel radius is plotted
as a function of initial stress.
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traction forces distribution and the initial stress effects are investigated. In
this study, it is clearly shown that these two aspects plays a predominant
role during the contraction process. In particular, the initial stress effect
which is often omitted can affect the manner in which cells restructure the
surrounding collagen network and this aspect is central to the modeling of

Modelling Biological Gel Contraction by Cells

such biomaterials.

Nomenclature

zbhﬁﬂ‘b

a 2=~

Local cell concentration

Local ECM concentration

Displacement vector for cell/matrix composite
Radial displacement for cell/matrix composite
Net cell flux vector due to active migration
Cell motility coefficient

Logistic growth rate constant

Maximum cell concentration

Total stress tensor for cell/ECM composite
Stress tensor for ECM

Stress tensor associated with the active traction stress
Small strain tensor for cell/ECM composite
Local dilatation of cell/ECM composite
Young’s modulus

Poisson’s ratio

Shear viscosity

Bulk viscosity

Identity tensor

Traction parameter

Contact inhibition parameter

Radius of the disk sample

Position of disk boundary

Radial coordinate

Relative frame

Time scale factor

Time

Velocity of cell/ECM composite
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CHAPTER 7

PERISTALTIC TRANSPORT OF PHYSIOLOGICAL
FLUIDS

J. C. MISRA* and S. K. PANDEY

Department of Mathematics, Indian Institute of Technology
Kharagpur-721802, India
*iem@maths.iitkgp.ernet.in

Physiological fluids in human or subhuman primates are, in general,
pumped by the continuous periodic muscular oscillations of the ducts
through which the fluids pass. These oscillations are supposed to be caused
by the progressive transverse contraction waves that propagate along the
walls of the duct. True peristalsis is usually defined as a coordinated
reaction in which a wave of contraction is preceded by a wave of relaxation.
Some electrochemical reactions are held responsible for this phenomenon. In
fact, it is a reflex process. The swallowing of food through the oesophagus,
the movement of chyme through the small intestine, the colonic transport
in the large intestine, the passage of urine from the kidneys to the urinary
bladder through the ureters, the spermatic flows in the ductus efferentes of
the male reproductive tract, the vas deferens and the cervical canal, and the
movement of ovum in the fallopian tube are all based upon the mechanism
of peristaltic transport. The vasomotion of some blood vessels, e.g. venules
and arterioles and the motion in the lymphatic vessels have also been found
to be of peristaltic nature. Even some worms move peristaltically. More-
over, biomechanical pumps are fabricated to save blood or similar fluids
from any possible contamination arising out of the contact with the pump
machinery while pumping the fluid.

The peristaltic motion experienced in physiological flows is classified
into different categories, a few of them being: (i) rush peristalsis, (ii) anti-
peristalsis and (iii) mass peristalsis.
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Rush peristalsis is the ordinary peristalsis found in different physio-
logical transportations. This term is mainly associated with the flow in the
small intestine.

Anti-peristalsis is the same peristalsis but it acts in the opposite
direction. For example, in the oesophagus it moves in the oral direction.
It is present in man in the second and the third parts of duodenum.

Mass peristalsis is found in the large intestine and is analogous to
the rush peristalsis in the small intestine. Indeed, it is the main movement
of the large intestine.

In order to have a proper understanding of the peristaltic transport in
physiological systems, it is felt that we should have some information about
the relevant matters. It is with this end in view, we first discuss briefly a
few phenomena and some physiological systems associated with peristalsis.

1. Phenomena Associated with Peristalsis

Two very important fluid dynamical phenomena inherent in peristalsis are:
(i) reflux and (ii) trapping.

Reflux. There are two contradicting definitions prevailing from the begin-
ning of the investigation on peristaltic motion of physiological fluids. One
was propagated by Fung and Yih [20] and the other by Shapiro et al. {57]. In
fact, they meant two different phenomena. Shapiro et al. associated their
definition with the backward migration of bacteria from the bladder to
the kidneys. According to them, it refers to the presence of fluid particles
that move, on the average, in the direction opposite to the net flow. The
backward migration takes place near the walls. It was also experimentally
verified by Weinberg et al. [72]. According to Fung and Yih, it is the aver-
age mean flow reversal near the axis of the duct. A similarity with vesico-
ureteral reflux was expected with this definition. Shapiro et al. maintained
that in order to examine the retrograde motion of fluid particles, Eulerian
time-mean velocity should be taken into consideration whereas Fung and
Yih stressed on Lagrangian displacement of fluid particles. In the light of
this controversy reflux, hereafter, will be denoted by refluz! for the defi-
nition of Shapiro et al. and refluz? for the definition of Fung and Yih as
these two still perpetuate.

Trapping. Shapiro et al. [57] held that at high flow rates and large occlu-
sions there is a region of closed streamlines in the wave frame and thus
some fluid is found trapped within a wave of propagation. The trapped
fluid mass is found to move with the mean speed equal to that of the wave.
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2. Physiological Systems Associated with Peristalsis
2.1. Digestive system

The human digestive canal (cf. Fig. 1) is a long muscular duct compris-
ing mouth, tongue, pharynx, oesophagus, stomach, small intestine, large
intestine, rectum and anal canal.

2.2. Oesophagus

It is a long muscular tube that commences at the neck opposite to the long
border of cricoid cartilage and extends from the lower end of the pharynx
to the cardiac orifice of the stomach. The cardiac sphincter regulates the
proximal end of the stomach and the one which guards the distal end is
known as pyloric sphincter. Small intestine follows the pyloric sphincter.
It is about 76 mm long in an adult human being and is subdivided into
duodenum, jejunum and ileum (see Fig. 1). Large intestine joins the lower
end of the small intestine at the ileocolic sphincter. The last part in which
the large intestine opens is rectum together with anal canal.

Swallowing (or deglutition) takes place in three stages: (i) first, i.e.
buccal, (ii) second, i.e. pharyngeal, and (iii) third, i.e. oesophageal. The first
one is voluntary but the remaining two are controlled reflexly.

Salivery glands y

Epiglottis

Oesophagus
(gultet)

Gall
bladder Pyloric

sphincter

Bile duct
Pancreatic
duct
Small Deodenum
intestine Heum

Rectum [intestine

Colon
Caecum Large
Anus

Appendix

Fig. 1. Human digestive system.
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Buccal deglutition: The food after mastication is rolled into a bolus.
Owing to the contraction of mylohyoid muscles upward and backward move-
ments start in the tongue which throws the bolus into the pharynx.

Pharyngeal deglutition: The soft palate is elevated and the nasal cavity
is closed. There is a rise in the larynx together with the hyoid bone. The
vocal cords are adducted and respiration is inhibited for a moment. Then
there is an elevation in the epiglottis, which takes the bolus away from the
laryngeal opening. The pharynx reopens and gathers the bolus.

Oesophageal deglutition: The larynx retrieves its normal position and
the bolus is propelled into the oesophagus by the contraction of cricopha-
ryngeus muscle. Peristaltic wave begins to propagate down the oesophagus
carrying the bolus to the lower end where it is squeezed out into cardiac
sphincter. The rate of propagation of the peristaltic wave is 20-40 mm per
second. The vagus and the local plexus control the peristaltic movement.
The cardiac sphincter relaxes within 2sec of the swallowing. Gravity has
little role in this process as the rate of progress along the oesophagus is not
affected by posture, whether spine or erect (cf. Bosma [5]).

2.3. Stomach
In empty state two kinds of movements are seen in the stomach:

(i) Tonus rhythm — Rhythmic variations of tone occur at the rate of
about 3 per min.

(i) Hunger contraction — At intervals a series of strong contractions,
called hunger contractions, takes place for about 30sec. The entire
stomach is involved in it.

Two different types of movements are observed in the two halves — pylorus
and fundus, after taking food.

(i) Fundus movement: Here is tonic contraction but no peristalsis. A
constant pressure is maintained upon the contents and these parts of
the stomach send out more and more food into the pylorus, which in
the mean time churns and pushes the food mass into the duodenum.

(i) Pylorus movement: This part exhibits movements like peristalsis.
They are waves of constriction. The waves activate near the incisura
angularis and move towards the pylorus slowly. They become stronger
as they proceed but almost die out normally near the pyloric sphincter
and never continue up to duodenum. Each such progressive wave varies
rhythmically in intensity. The recurrence of the wave is seen at the
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rate of 3-4per min. In addition, three or more waves may exist on
the pylorus at the same time. Sometimes the pyloric sphincter does
not open and the food mass suffers from a backward reflection in an
axial stream. After some time when such a wave becomes sufficiently
strong, the sphincter is opened and as a result, a part of the gastric
contents is propelled out into the duodenum. The sphincter closes itself
immediately and the peristaltic process continues until it opens again.

Vomiting. It is the act of forcible expulsion of the stomach contents
through the mouth. In the beginning a feeling of nausea is experienced,
followed by excess salivation. Glottis becomes closed and the nasopharynx
is also shut off by elevating the soft palate. The stomach, the cardiac sphinc-
ter and the oesophagus relax and then there is a rise in intra-abdominal
pressure.

It is a reflex process. A vomiting centre is situated in the medulla and
is closely related to the vagus nucleus. Certain drugs (Apomorphine, etc.),
toxins (such as those of uraemia) and increased intravascular pressure (as in
the cases of brain tumour, asphysia, meningitis, etc.) directly stimulate this
centre. It can be stimulated reflexly in various ways. The afferent impulses
may arise in the throat, stomach, intestine, uterus, heart and from other
viscera. The efficient impulses — both excitatory and inhibitory are carried
in the vagus. The cause of vomiting is gastric irritation and its purpose is
to drive out the irritant from the stomach (cf. Borison and Wang [4]).

2.4. Small intestine

The movement in the human small intestine are of four kinds: (i) segmen-
tation, (ii) peristalsis, (iil) anti-peristalsis and (iv) pendulor movement.

Segmentation: These are local constrictions followed by immediate relax-
ation. The constriction occurs at the site of maximum distension. In animals
the group of constrictions succeeds at the rate of 20-30 per min. The rate
is slower in man. The frequency which is 17 per min in duodenum and
12 per min in ileum is inversely proportional to the distance from the stom-
ach. These most fundamental movements of the intestine are myogenic in
nature and are independent of all nerves. Their functions include proper
admixture of food with the digestive juices, helping absorption by bringing
the mucus membrane into closer contact with food and increasing vascular
and lymphatic circulation through the wall of the gut.
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Peristalsis: Peristalsis in small intestines is called “The law of intestine”
or “Muyenteric reflex”. The presence of food acts as the normal stimulus
causing relaxation below and constriction above the food-bolus. As the wave
travels downwards the food is moved in a spiral manner and the direction
of rotation is anti-clockwise. The length of bowel traversed in making a
copalate spiral is about 30 cm on average.

Peristalsis with two different speeds, are observed in the small intestine.
It depends on nervous and chemical agents.

A special manifestation of peristaltic movement in the ileum is called
gastro-ilial reflex. This is a brisk peristalsis set up in the ileum after meal
reflexly, although peristalsis is generally very sluggish in the last part of
ileurn. The purpose is to drive out the ilial contents into caecum creating
space for fresh supply.

Anti-peristalsis: It moves in the oral direction and is present in man
in the second and third parts of duodenum only. Weak anti-peristalsis too
takes place in the terminal part of the ileum and in this way restrains a rapid
passage of the ilial contents into caecum. In the duodenum it helps through
admixture, and also causes duodenal regurgitation into the stomach.

Pendular movement: It is side to side mmovement of individual loops of
the intestine as a consequence of the rush of the food material through the
lumen. It is absolutely a passive movement.

Large intestine:

It has four types of motion: (i) rhythmic variations of tone, (i) peristal-
sis, (iil) mass peristalsis and (iv) anti-peristalsis.
Rhythmic variations of tone: This occurs throughout the large intestine
but not always and is not at all concerned with propulsion; it rather main-
tains adequate circulation through the wall and helps in the absorption of
water.

Peristalsis: It is not the same as rush peristalsis seen in the small intes-
tine. It is a weak peristalsis alternately shortening and elongating in the
transverse colon.

Mass peristalsis: This is the chief movement of large intestine governed
by gastrocolic reflex. It occurs twice or thrice a day and after meal and
during defaecation.

Anti-peristalsis: In man it is rarely seen but is well marked in animals
such as cats.
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2.5. Ureter

The two nearly 300 mm long muscular ducts joining the kidneys to the
bladder are known as ureters (cf. Fig. 2). They are located in the extraperi-
tonial tissue behind the peritoneum to which they closely adhere. The upper
aspect of the ureter lies in the abdomen while its continuing lower part is
in the pelvis. The only known function of the ureter is that it collects urine
from the kidneys and squeezes it out to the bladder at the ureterovesical
junction against a pressure gradient. This ureterovesical junction functions
as a one-way valve and refrains fluid from going back into the ureters from
the bladder. At rest it is totally collapsed and gets activated when needed
to function. The fluid is passed peristaltically with almost full occlusion of
the duct. The diastolic phase is found to be twice as long as the systolic
phase. The cross-section is almost circular when it is fully distended while
it adopts a star-like shape with flat quasi-two-dimensional lobes when con-
tracted. Several waves of length ranging from 10mm to 150 mm per min
have been observed experimentally. The largest diameter is found to be
5mm. In a normal ureter, the composition of urine is unchanged, but in a
diseased state abnormal elements such as red or white cells or tumor cells
may be present. The propulsion of fluid in a ureter is easily found to be
primarily due to peristaltic motion (cf. Weinberg [71}).

Kid
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Urinary bladder
Prostate gland
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Bulbo urethwal gland
duct \o )
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Fig. 2. Male urogenital organs.
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2.6. Vas deferens

The vas deferens (or ductus deferens) is a long duct originating at the
testis near epididymis and joins the seminal vesicle to form the common
ejaculatory duct. It is the main duct through which seminal fluid passes.
Its average length in an adult human is 45 cm.

2.7. Experimental investigations on peristalsis

Latham’s [31] experiment (cf. Fig. 3) included a test duct of clear flexi-
ble polyvinylchloride with a wall thickness of 0.05 in. It was confined, in a
180° arc between a steel band and a stationary back plate formed in a semi-
circle of 16 in radius, such that the tube became approximately rectangular
in shape, height 2.5in, and a mean width of about 0.3 in. The ends of the
test duct, outside the semicircular arc of flattening, joined vertical reservoirs
to maintain the fluid at a constant elevation. For adjusting the pressure rise
between the reservoirs and measuring mean flow, a control valve was placed

"/ Suionary
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Rotating
whee!

Coatrol
vaire

Flow

meter

Flexible " 52 pans of s

band adjustable A
fingers |
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Fig. 3. Latham’s apparatus of quasi-two-dimensional experiment (a) plane view,
(b) section.
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in the network. 32 pairs of adjustable fingers were mounted on the rotating
wheel. Arrangements were made, by adjusting the fingers, for the propa-
gation of an integral number of waves of approximately sinusoidal nature,
having an amplitude of one-third of the half width of the rectangular duct.
The motion of the fluid was approximately two-dimensional.

In order to attain different viscosity levels, mixtures of either glycerin
and water or corn syrup and water were used. The main features of this
experiment were that the wave speed, the pressure rise and the viscosities
could be adjusted. For Reynolds number, R < 0.2, no significant difference
was observed. However, for R > 0.2, pumping performance was found to
be degraded. For R = 38, pumping drastically deteriorated.

Although it had some drawbacks such as (i) the wave was in only one
wall and (ii) the whole duct was curved in a semicircle, the results of that
experiment were generally in good agreement with the theoretical investi-
gation of Shapiro [56).

A more refined experimental investigation was carried out by Weinberg
et al. [72] on an improved apparatus for Reynolds number ranging from the
inertia-free limit to values in which inertial effects were significant. Various
mixtures of glycerin and water were used as the working fluid in order
to obtain the range of viscosity necessary for wide variations of Reynolds
number.

The pumping duct, rectangular in cross-section, was bounded by a rigid
semi-circular back wall, a flexible moving wall in which longitudinal waves
of transverse displacement were driven by roller cams, and two transparent
cover plates. The rectangular duct was 10 in high, with a mean width of
0.50 in, giving a mean aspect ratio of 20. It was laid out on a semi-circle of
radius 17.24 in. Exactly three wavelengths were fitted within the arc length
of 54.0 in, so that the wavelength was equal to 18 in and the ratio of the
half-width of the channel to the wavelength was 0.014 (cf. Fig. 4).

The dimensionless time-mean flow was measured as a function of dimen-
sionless pressure rise per wavelength for very small values of R and with
three different amplitude ratios (¢ = 0.4, 0.7 and 0.9).

No effects of Reynolds number in the range R = 0.024 to 0.034 were
observed. The slight difference from the theory of Shapiro et al. [567] was
attributed to the rectangular cross-section of the experimental pumping
duct and end wall effects. Reflux! was experimentally confirmed by inserting
dye near the wall. The phenomenon of trapping as predicted by Shapiro
et al. [57] was also verified. The following conclusions were made:

(i) The inertia-free theory is valid up to R21. (ii) The phenomenon of
reflux is determined by the Lagrangian time-mean velocity rather than by
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Fig. 4. Apparatus of Weinberg’s experiment. A, upstream transition chamber to reser-
voir above; E, downstream transition chamber to reservoir above; B, spring steel flaps for
sealing; C, cable to restrain rotational motion of moving wall I; D, cam rotor; F, radially
adjustable arms and roller cams; G, semi-circular back wall; H, pressure-taps; I, flexible
moving wall.

the Eulerian time-mean velocity. (iii) The second order expansion in R is
valid up to R =210.

Yin and Fung [73] were of the opinion that since the experimental verifi-
cation of Shapiro’s model [56] had some drawbacks like consideration of the
vibration of only one wall while the mathematical model included vibra-
tions of both the wall, the comparison was not quite satisfactory. In order
to match the experiment with the mathematical model, they extended and
modified the theoretical analysis of Fung and Yih [20] by imposing vibra-
tions in only one wall. They also tried to rectify the three dimensional
effects that arise owing to finite width-to-height ratio. The experimental
results matched very closely with the theoretical predictions. The differ-
ence between the two was attributed partly to the experimental error and
partly to the perturbation technique used in achieving the solution. They
also performed experimental verification for reflux.

Brown and Hung [8] who conducted an experiment as well as a numer-
ical investigation claimed that their numerical solution agreed closely with
experimental flow visualization and concluded that (i) the transport effec-
tiveness is markedly reduced for pumping against a mild adverse pressure
drop, and (ii) increasing the wave amplitude leads to the development of
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traveling vortices within the core region of the peristaltic flow. An exper-
imental investigation of the peristaltic flow of a mixture of fluid and solid
particles was also carried out by Hung and Brown [26].

3. Theoretical Studies on Peristaltic Transport

Various studies on peristaltic flows, Newtonian as well as non-Newtonian,
have been carried out by different investigators with varied considerations.
We give here a brief review of the same in a systematic manner.

3.1. Newtonian flows

As mentioned earlier, the investigation of peristalsis from a mechanical
point of view was launched with a crude experiment by Latham [31] who
examined the problem analytically too. The results of that experiment
were generally in good agreement with the theoretical investigation of
Shapiro [56].

Although investigations similar to that of peristalsis were reported ear-
lier by considering varying breadth along the length such as that according
to cosine law (without any reference to peristalsis), a theoretical inves-
tigation truly for the peristaltic motion was carried out by Burns and
Parkes [10], who studied the flow of a Newtonian fluid through a pipe and
a channel by considering sinusoidal variations in the walls along the length.
Two cases were examined in particular, viz, (i) peristaltic motion with no
pressure gradient and (ii) flow under pressure along a pipe or a channel
with fixed walls and sinusoidally varying cross-section. Perturbation solu-
tions, in powers of the ratio of the amplitude of the variation in the pipe
radius or channel breadth to the mean radius or the breadth respectively,
were given for the stream function.

A contemporary investigation was reported by Shapiro [56] for
two-dimensional peristaltic pumping under the two conditions: (i) the
appropriate Reynolds number is so small that the flow may be considered
inertia-free, and (ii) the length of the peristaltic wave is very long com-
pared to the width of the tube. The small Reynolds number approximation
was endorsed by Jaffrin [28]. He further extended the analysis by consider-
ing higher order terms to include cases where Reynolds number is higher.
An exact solution having a parabolic velocity profile of Poiseuille flow was
presented under the said assumptions, which made the flow steady in the
wave frame. They also discussed the reflux phenomenon in detail. This was
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followed by a further investigation by Barton and Raynor [1] using large
wavelength approximation for intestinal flow. They analyzed in a greater
detail the case for small Reynolds number.

Fung and Yih [20] formulated a mathematical model in order to study
peristaltic pumping using perturbation technique by applying Fourier series
expansion used by Taylor [68] for arbitrary Reynolds number but small
amplitude ratio (i.e. the ratio between the amplitude of the wave and the
width of the channel). The channel was supposed to be of constant width
and infinite length. Apart from the application of their model to the flow of
blood in arterioles and venules their investigation was focused on the situ-
ation where there is some obstruction in the ureter or in the ureter bladder
junction. Consequently, dilation of the ureter takes place at the site of the
observation and the amplitude of the peristaltic waves become relatively
small. In this context, there arises a question whether pumping takes place
or not. The answer was found to be in the affirmative when the pressure
gradient is less than a critical value depending on the situation. Whenever
it exceeds the critical value, a flow reversal (or reflux) is observed. The
corresponding analysis for the two-dimensional flow was extended for the
axisymmetric case by Yin and Fung [73] for practical applications to biolog-
ical problems. The two results are qualitatively similar but quantitatively
different.

An important investigation for ureteral low was put forward by Shapiro
et al. [57] who solved the problem of the flow of a Newtonian fluid through
a circular cylindrical tube as well as through a channel by considering the
propagation of an integral number of sinusoidal waves of arbitrary ampli-
tude along the walls of the tube/channel of infinite length under the assump-
tion of very small Reynolds number. They derived mathematical expressions
for mechanical efficiency of pumping, for the phenomena such as reflux and
trapping and also limits for reflux and trapping. A separate expression
of the reflux function for small amplitude was also presented by them.
Their results including that of reflux were experimentally verified through
Latham’s experiment [31]. These few studies laid the real foundation stone
for the investigation of peristaltic pumping.

Chow [17] generalized the solution put forward by Fung and Yih [20] by
considering axisymmetrical geometry with initially non-stationary flow. In
fact, it was also more general than that presented by Yin and Fung [73]. The
solution given in the form of a power series expansion, dealt with two cases,
viz. (i) when the amplitude-radius ratio of the pipe and Reynolds number
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are small but the radius-wavelength ratio is unrestricted, and (ii) the radius-
wavelength ratio is small but the other two quantities are unrestricted.

Lykoudis and Roos [35] pointed out that the shape of the ureter during
peristalsis is not sinusoidal. In the light of this they solved the problem
for arbitrary wave shapes and determined the minimum and maximum
pressures in a tube the displacements of whose wall vary according to a
power-law in the axial direction. The existence of reflur® with adverse
pressure gradient was, however, ignored by them. Manton [37] extended
their approach to investigate some general properties of peristalsis. In his
asymptotic expansion he accounted for the inertial and viscous effects to
an extent greater than that considered by Lykoudis and Roos [35]. These
authors determined expressions for the relationship between the mean
pressure gradient and the volume flux. A necessary and sufficient condi-
tion for the occurrence of trapping was also obtained. They found that
reflux occurs whenever there is an adverse mean pressure gradient, inde-
pendent of the shape of wave. An estimate of the amount of reflux was also
derived. Mahrenholtz et al. [36] examined the influence of wave form on
peristaltic transport of a Newtonian fluid for high Reynolds number in a
highly occluded channel.

A study on ureteral peristalsis was made by Griffiths [21] by consider-
ing the ureter as a collapsible muscular tube. The tube was supposed to be
non-uniform and of finite length and was subjected to non-uniform external
pressure. They observed that peristaltic pumping occurs effectively for low
flow-rate and pressure. At higher mean flow rates the peristaltic contrac-
tions of the ureter may even obstruct the flow of urine. Li and Brasseur [34]
made an attempt to explore the pressure shear rate (at the wall) distri-
bution of a Newtonian flow. The conventional sinusoidal wave equation
was improved by considering the position of the wall as a function of the
minimum radius of the tube, which vibrates in only one direction. The
amplitude, which is equal to the radius of the tube minus the minimum
tube radius is, however, to be adjusted whenever the degree of contraction
of the tube is varied. They studied the difference between integral num-
ber and non-integral number of waves propagating along a tube of finite
length. Single bolus transport in oesophagus was also discussed. An active
membrane model for peristaltic pumping with periodic activation waves
has recently been reported by Carew and Pedley [12]. The predictions of
their analysis on phase-lag in wall constriction with respect to peak acti-
vation wave, lumen occlusion due to thickening of the lumen material with
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smooth muscle, and the general bolus shape were reported to be in quali-
tative agreement with experimental observation.

3.2. Non-Newtonian flows

As mentioned above, several authors considered the fluid to behave like a
Newtonian fluid for physiological peristalsis including the flow of blood in
arterioles. But such a model has only restricted application. Casson [13]
derived a semiempirical equation for the flow behavior of varnishes and
printing inks by assuming the presence of interparticle forces and disrup-
tive stresses in chain like flocculus. Scott Blair [55] opined that the same
description was applicable for blood flow too. He used the available experi-
mental data for human blood and plotted a graph of square root of strain-
rate against square root of shear stress, which showed a remarkable linearity
with a nonzero value for the intercept on the stress-axis. Experimental data
available for animal blood too were reported to conform to this observa-
tion. Merrill et al. [38] adopted two different methods to obtain data for
two different suspensions of red cells in plasma. All the four sets of data dis-
played linear graphs having positive stress intercepts. Moreover, this model
was found to be satisfactory over a large range of shear rates. Charm and
Kurland [14, 15] demonstrated that by using Casson’s equation, it is possi-
ble to extrapolate blood viscometry information obtained at shear-ranges
of 5 to 200sec™! to shear-rates of 10000 to 100000 sec™! with less than five
percent error.

Although viscoelastic behavior of blood as well as that of the blood
vessel wall was adequately taken care of in several investigations (cf. Bohme
and Friedrich [3]; Misra and Patra [47]; Imaeda and Goodman [27]), in view
of the experimental observations mentioned above, the Casson fluid model
of blood seems to bear the potential to explore some important aspects of
blood flow through small vessels.

Like blood since other physiological fluids also are mostly of non-
Newtonian nature, it is worthwhile to study the dynamics of such fluids by
taking their non-Newtonian behavior into consideration. Patel et al. [50]
found that human faeces is a non-Newtonian power low fluid. Further,
Han and Bernett [25] pointed out that bronchial mucus behaves like a
non-Newtonian fluid. Raju and Devanathan [53] reported a theoretical
investigation for blood flow by considering blood as a non-Newtonian power-
law fluid. They employed the perturbation technique used by Chow [17]
to solve the problem of the flow in a cylindrical tube with a sinusoidal
wave of small amplitude. A similar problem was later considered by Devi
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(b) Propagation of train-waves of contraction against a pressure difference of p(L)-p(0)
along the length of the oesophagus.

Fig. 5. Schematic representation of the peristaltic transport through the oesophagus.
c is the velocity of the wave, A the wavelength, L the oesophageal length, and h the
position of the activated wall from the center line.

and Devanathan [18] where the fluid was taken to be micropolar. For vis-
coelastic liquids, the solution of the problem was presented by Bohme and
Friedrich [3]. They also discussed mechanical efficiency of pumping for such
liquids. An analysis of this problem for Casson fluid model applicable to
blood flow was carried out by Srivastava and Srivastava [63], by considering
a peripheral layer of a Newtonian fluid.

Misra and Pandey [44] investigated the transport of a food-bolus
through the oesophagus by developing a mathematical model. The oesoph-
agus was treated as a circular tube of finite length and the transport of the
masticated food-grains was taken to be governed by a power-law, where
the power-law index was supposed to vary, depending on the kind of the
food material. (This consideration was based upon the experimental data
reported by Patel et al. [50] for a similar case.) The peristaltic transport
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was supposed to take place axisymmetrically where a single wave was con-
sidered to propagate along the wall. The wall of the oesophagus is supposed
to be brought under the influence of a periodic transverse contraction wave,
owing to which the passage is first shortened by way of contraction of mus-
cles. Then its path is retracted so that its original position is attained.
This process continues until the propellant (food material) is completely
squeezed out. Misra and Pandey [44] represented such a motion by an equa-
tion of form

h(z,t) =a — O.5¢{1 + cos—2/\1(z - ct)},

where z denotes the axial distance, ¢ the time variable, a the radius of the
stationary tube, ¢ the amplitude of the wave, A the wavelength, ¢ the wave
speed and h the radial displacement of the wave from the centreline (cf.
Fig. 5).

The wall equation of the tube was taken to fit the natural oesophageal
wall contraction that did not involve the expansion beyond the stationary
boundary. The spatial as well as the temporal dependence of pressure was
studied for a fixed time-averaged flow-rate in the laboratory frame of refer-
ence. Comparison was made between the effects of a single wave transport
and the propagation of train-waves (cf. Fig. 5) with an integral number of
waves in the train. On the basis of the study it has been concluded that
in the single wave propagation, there is a forward flow within the wave,
while beyond the wave in the oesophagus, there is a tendency of retrograde
motion and that if there is some fluid within the duct apart from that in
the wave, the average flow will be in the opposite direction. It has been
reported that in the train-wave case, the flow is everywhere positive except
at the junction of two waves where the rate of backward flow is very high.

Basing upon the observations of the study, Misra and Pandey [44] made
a conjecture that it is easier to swallow a pseudoplastic fluid than a dilatant
fluid. They also remarked that in the single wave case, the occlusion of the
duct should be sufficient to overcome the tendency of retrograde flow in
the other region of the oesophagus and that the oesophagus undergoes
total occlusion while transporting a single food-bolus.

3.3. Non-stationary initial flows

Chow [17] studied the problem of a non-stationary initial flow for the
axisymmetric case. Srivastava and Srivastava [61, 62| studied the problem
by incorporating an initial flow induced by an arbitrary periodic pressure
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gradient for axisymmetric flow in order to model the flow through pul-
monary arteries, arterioles, venules and other microvessels. The interac-
tion between peristaltic flow and pressure driven motion was examined by
Pozrikidis [51] for molecular connective transport.

3.4. Two-phase flows

As mentioned earlier, the investigation on peristaltic transport of a mix-
ture of fluid and solid particles was initiated by Hung and Brown [26] who
conducted an experiment for the channel flow of a single bolus. They found
that for a neutrally buoyant particle propelled along the axis of the channel
by a single bolus, the net particle displacement can be either positive or
negative. The instantaneous force acting upon the particle and the result-
ing particle trajectory are sensitive to the Reynolds number of flow. The
net forward movement of the particle increases slightly with the increase in
particle size but decreases rapidly as the gap-width of the bolus increases.
A reduction in wave amplitude along with an increase in wave speed may
lead to a retrograde particle motion. Further, when the centre of the par-
ticle is off the longitudinal axis, the particle will undergo rotation as well
as translation. Lateral migration of the particles was found to occur in the
curvilinear flow region of the bolus leading to a reduction in the net longitu-
dinal transport. The applications included transport of such a mixture for
various technological purposes. A theoretical investigation was attempted
by Kaimal [30] for the peristaltic motion of a fluid, in which rigid particles
are uniformly distributed through an axisymmetric tube of arbitrary wave
shape for low Reynolds numbers. He concluded that the presence of parti-
cles does not disturb the flow-field. His study included reflux and trapping.
This model too was mainly meant for engineering applications. Srivastava
and Srivastava [64] used Drew’s model [19] and solved a two-dimensional
problem of peristaltic transport of a mixture of a Newtonian fluid and
small spherical solid particles by neglecting inter-molecular forces for arbi-
trary Reynolds number and considering the ratio between the amplitude of
the wave and the width of the channel to be small. Refluz? was also dealt
with by them. The analysis was aimed at providing a model for chyme flow
in the small intestine, spermatic fluid in the cervical canal and the flow of
diseased fluid in arterioles.

Peristaltic pumping induced by a sinusoidal travelling wave of moderate
amplitude was investigated by Misra and Pandey [41] in the axisymmetrical
case for a Newtonian viscous incompressibe fluid mixed with rigid spherical
particles of identical size. They employed a continuum mechanics approach,
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where the equations governing the conservation of mass and conservation
of linear momentum for the fluid and the solid particle phases were taken
as follows:

For the Fluid Phase

o 15] 0
(1 — C)pf [E + Ufa + uf&]vf

Op o2 82 10 1

——(1—0)6 +(1- )US(C)[ +£§+;E—;}W+C5’(vp—vf),
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For the Particulate Phase

0 0 0 Op
Cpp[at—HJPB +up6] C'(9 + CS(vy —vp),
0 0 0 Op
Cpp[6t+vpa +upg- ]up— C@ + CS(us — up),
0 0
EC’UP + aC’U,p —+ ;C’Up = 0

In the equations given above, z represents the direction of the wave
propagation, whereas 7 stands for the radial coordinate, (uy, v¢) denote the
axial and radial velocity components of the fluid phase, and (up, vp) those
of the particulate phase; py, pp, (1 — C)ps and Cp, are, respectively, the
actual densities of the materials consisting of the fluid and the solid particle
phases, the fluid-phase density, and particle-phase density, C being the
volume fraction of the particles in the mixture, p is the pressure, ps(C) is the
particle-fluid mixture viscosity and .S the drag coeflicient of the interaction
for the force exerted by one phase on the other. The expression of the drag
coeflicient was selected as (cf. [67])

po,,
S = 2a2)\(0)
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where X (C) = 4+3[Sciz—f§c2']];/2+3c, o being the fluid viscosity, and a the
radius of each solid particle suspended in the fluid. The above expression
for the drag coefficient bears the potential to account for the finite particu-
late fractional volume through the function A’'(C). For the viscosity of the
suspension, the following empirical relation (cf. [15]) was used.

1
,Us(C) = Hom,

where g = 0.070exp[2.49C + 127 exp(1 — 1.69C)], in which T represents
the absolute temperature (°K).

Charm and Kurland [15] asserted that the formula gives reasonable
accuracy for values of C' up to C = 0.6. The no-slip and impermeability
conditions constituted the boundary conditions of the problem discussed
by Misra and Pandey [41].

They used a perturbation technique, choosing the amplitude ratio (wave
amplitude/tube radius) as the perturbation parameter. The analysis was
carried out by duly accounting for the nonlinear convective acceleration
terms and the no-slip condition on the wavy wall. The governing equations
were developed up to the second order of the amplitude ratio. It was shown
that the zeroth order terms yield the Poiseuille flow, while the first order
terms give the Orr-Sommerfeld equation. In the absence of the pressure
gradient and the wall motion, the mean flows (for the mixture of the fluid
and the solid particles) and the mean pressure gradient (averaged over time)
were found to be proportional to the square of the amplitude ratio. On the
basis of this study they made the following conclusions:

(i) The mean flow induced by the peristaltic motion is proportional to
the square of the amplitude ratio and depends on the mean pressure
gradient induced by the peristaltic motion.

(ii) At a certain critical value of the pressure gradient, the reversal of flow
takes place, which is favored by the presence of particles.

(iii) The mean flow in the axisymmetric case may exhibit the reversal of
flow at the boundaries also.

As an illustration of the applicability of their analytical work, they
investigated the peristaltic flow through the ureter, by using the necessary
data reported by Orkins [49], Bergman [2], Weinberg [71], Boyarsky [6] and
Griffiths [21].
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3.5. Two-layer flows

Flows in certain physiological processes like the vasomotion of some blood
vessels, motion in ductus efferentes of the male reproductive tract, transport
of spermatozoa in the cervical canal, movement of chyme in the gastroin-
testinal tract, involve flow of a mucus layer adhered to the innermost surface
of the walls of the ducts (c¢f. Guyton [24]). It is observed that the viscos-
ity of the fluid in the peripheral region is different from that in the core
region. Bugliarello and Sevilla [9] as well as Cockelet [16] showed by car-
rying out experiments that for blood flowing through small vessels, there
is a peripheral layer of plasma, which is a Newtonian fluid, and a core
region which is non-Newtonian, that can be regarded as a suspension of
erythrocytes. Taking this fact into consideration, Shukla et al. [58] tried to
include a peripheral layer of different viscosity in peristaltic flows through
tubes and channels using Stokes approximation. They applied the tube
solution to intestinal flows and the channel solution to the flows in the duc-
tus efferentes of the male reproductive tract. Shukla and Gupta [59] further
extended this analysis to incorporate power-law nature of the fluid in order
to apply to blood flow problems. Both of these studies, however, ignored
the conservation of mass in separate layers. Though quantitatively the flow
rate might not have been affected to a very large extent, the shape of the
interface was wrongly deduced. Brasseur et al. [7] pointed out this mistake
and presented a correct solution where the interface was considered as a
streamline in the steady wave frame. The mechanical efficiency and also the
phenomena of trapping and reflux were also elucidated for channel flow. An
extension of this study to axially symmetric case was carried out by Rao
and Usha [52]. Peristaltic transport of a biological fluid in a pipe of elliptic
cross-section was studied by Usha and Rao [70].

An analytical study of the two-dimensional flow of a power-law fluid
with a peripheral layer was conducted by Misra and Pandey [43]. By using
large wavelength approximations, the solution was obtained in the form of
a stream function from which the shape of the interface was determined. A
relation between the flow-rate and the pressure difference was established
and using that relation, analytical expressions for the maximum pressure
and the maximum flow-rate were derived. They also deduced the expres-
sions for the mechanical efficiency of pumping, the trapping limit and the
reflux limit. The study reveals that the flow increases with an increase in
the flow behavior index or with an increase in the peripheral layer viscosity.
They concluded that in the case of peristaltic pumping of physiological flu-
ids for which the viscosity of the peripheral layer is usually less than that of
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the core region, a thinner peripheral layer whose viscosity is considerably
large (but does not exceed the viscosity of the core region) bears the poten-
tial to enhance the flow-rate. This is in coherence with the observation of
Brasseur et al. [7]. Misra and Pandey [43] made an observation that the
maximum pressure difference for physiological power-law fluids is less than
that for Newtonian fluids. They conjectured that the maximum pressure
difference increases indefinitely for a more viscous peripheral layer when
the occlusion is large enough and further that in the case of total occlusion,
it may not be possible to check the flow by applying a finite pressure differ-
ence, however large. They proclaimed that the peristaltic pumping is more
efficient when the physiological power-law fluid has a thinner but a more
viscous peripheral layer and is subjected to large occlusions and also that
the pumping efficiency of physiological power-law fluids is less than that of
Newtonian fluids.

Misra and Pandey [45] developed a mathematical model with an aim to
study the pulsatile flow of chyme through the small intestine treated as a
long cylindrical intestinal duct under the influence of a mucus layer existing
adjacent to the inner surface of the duct. The chyme was taken to be pro-
pelled by the sinusoidal motion of the wall. The wall motion is due to some
electrochemical reactions that take place within the human body. Both the
chyme and the mucus are treated as power-law fluids having different viscos-
ity. Small Reynolds numbers and inertia-free flows have been investigated.
This is in coherence with the observation made by Han and Barnett [25]
that mucus layer is non-Newtonian by nature. Small Reynolds number and
inertia-free flows have been investigated with particular emphasis, because
of the observation made by Jaffrin and Shapiro [29], Buthand [11] and
Jaffrin [28] who on extending the inertia-free flow of Shapiro et al. [57]
to next higher order terms for Reynolds number and wave number, found
that their results were in good agreement with the zeroth order solution
when Reynolds number and wave number are small. Misra and Pandey [45]
concluded that the peripheral layer thickness is less uniform when it is
less viscous and that a reduction in the value of the flow behavior index
makes the peripheral layer thicker while waxing and thinner while waning.
They pointed out that unlike two-layered axisymmetric Newtonian flows,
reflux does not take place in the entire domain in the corresponding flow
of power-law fluids.

It was pointed out by Misra and Ghosh [40] that blood flow in the
micro-vessels of the lung may be described as a channel flow, where as that
in arterioles and venules as an axisymmetric flow. The peristaltic flow of
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blood in small vessels was investigated by Misra and Pandey [46] through
the development of a mathematical model in which blood was treated as a
two-layer fluid where the core region was described by Casson model and the
peripheral region was taken to be Newtonian viscous. Wave frame steady
solutions for channel flow as well as axisymmetric flow were presented by
them. Consideration of mass conservation has been made separately in the
two layers. It has been shown that the higher the viscosity of the periph-
eral layer, the greater is the flow rate. The study indicates further that
(i) a thinner peripheral layer enhances the flow rate, whereas the flow-rate
reduces when the yield stress increases, (ii) the flow-rate in the case of
a single layer is higher than the two-layer flow-rate when the peripheral
layer is more viscous than the core layer and (iii) the flow-rate in the case
of axisymmetric flow is greater than that of channel flow under identical
conditions.

4. Flows through Tubes of Non-Uniform Cross-Section

Lee and Fung [32] studied flow in small blood vessels of non-uniform cross-
section, considering the flow to be of peristaltic nature. Peristaltic trans-
port as well as mixing of chyme in small intestine was investigated by Lew
et al. [33].

Considering the non-uniform geometry of viscometric capillary tubes
and blood vessels, Manton [37] examined the peristaltic flow of a Newtonian
fluid through an axisymmetric tube whose radius varies slowly in the axial
direction and whose wall is subjected to arbitrary wave propagation. Appli-
cation of Stokes approximation and use of a perturbation technique were
made for performing the analysis. Gupta and Seshadri [23] presented a
solution of peristaltic pumping of Newtonian fluids in channels and tubes
of non-uniform cross-section with a particular reference to the spermatic
flow in the vas deferens. They concluded that peristalsis is responsible for
one-third of the total flow in the vas deferens. Similar solutions of peri-
staltic flows in non-uniform tubes were reported by Rath [54], Srivastava
and Srivastava [61].

Misra and Pandey [42] studied the nonlinear peristaltic flow of a
Newtonian viscous incompressible fluid through a tapered tube, where the
wave propagating along the wall of the tube is sinusoidal and the initial
flow is Hagen-Poiseuille. The derived analytical expressions were computed
to have an in-depth study of an important physiological problem, viz. sper-
matic flow through the vas deferens, in which the peristaltic motion is quite



Peristaltic Transport of Physiological Fluids 189

dominant. Their theoretical prediction for the flux-rate was found to be in
good agreement with the experimentally measured values reported by Guha
et al. [22] for rhesus monkeys.

5. Numerical Investigations

A finite element approach was adopted by Tong and Vawter [69] to analyze
peristaltic pumping, by considering that both the wavelength and the wave-
amplitude have a strong influence on the flow-field. They studied the reflux
phenomenon for short wavelengths, as well as for longer wavelengths. Their
method for solving peristaltic flow problems was subsequently extended by
Nergin et al. [48].

Computational investigations of two-dimensional non-linear peristaltic
flows under the assumption of finite wall-wave curvature and Reynolds num-
ber were carried out by Brown and Hung [8]. They used orthogonal curvi-
linear coordinates and employed an implicit finite-difference technique for
solving the problem. The same problem was also studied by them exper-
imentally. It was concluded that (i) the inertia-free theory is valid up to
Reynolds number of the order of 1, and (ii) the second order expansion in
Reynolds number is valid up to Reynolds number of the order of 10.

Takabatake and Ayukawa [65] used upwind SOR method to solve
two-dimensional peristaltic motion with moderate Reynolds number and
compared their results with those achieved by applying perturbation tech-
niques. It was found that the validity of the perturbation solutions given
by Jaffrin [28] and Zien and Ostrach {74] are confined within a range nar-
rower than that they had predicted. It was concluded that the refluz! phe-
nomenon in the flow changes the whole situation according to Reynolds
number. They also claimed to find a good agreement of their computa-
tional results with experimental results.

Takabatake et al. [66] adopted an upwind finite difference technique
to replace the channel cross-section of Takabatake and Ayukawa [65] by a
circular one. They inferred that much greater peristaltic mixing and trans-
port occur in a circular tube than that in a plane channel. Their discussion
included mechanical efficiency of pumping, reflux and trapping. They also
pointed out the term left out in the calculations for the mechanical effi-
ciency in the case of a circular cylindrical tube and concluded that the
efficiency is more in this case than that in the case of the channel.

A numerical simulation of the peristaltic reflex of a small bowel was
presented by Miftakhov and Wingate [39).
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1. Introduction

A defining moment for DNA research was the discovery of its structure half
a century ago on 25 April 1953 by James Watson and Francis Crick [15]
describing the entwined embrace of two strands of deoxyribonucleic acid
(DNA). The structure of DNA is the foundation for understanding differ-
ent physiological phenomenon like molecular damage and repair, replication
and inheritance of genetic material, as well as the diversity and the evolu-
tion of species. One of the longstanding issues in molecular biology is the
three-dimensional structure (shape) of proteins and deoxyribonucleic acid
(DNA) in solution in the cell and the relationship between structure and
function. Ordinarily, the structure of protein and DNA is determined by
X-ray crystallography or electron microscopy. Because of the close packing
needed for crystallization and the manipulation required to prepare a spec-
imen for electron microscopy, these methods provide little direct evidence
for molecular shape in solution.

The structure of DNA suggests its three dimensional arrangement as
two very long curves that are intertwined millions of times, linked to other
curves, and subjected to four or five successive orders of coiling to con-
vert it into a compact form for information storage. Hence the arrange-
ment of these two curves is called the duplex DNA, consisting of two
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backbone strands wound about each other in right-handed helical fash-
ion. DNA strand consists of sugar phosphate backbone with a nitrogenous
base attached to each sugar. The four bases are adenine (A), guanine (G),
cytosine (C) and thymine (T) (cf. [2, 15, 16]). The two strands are held
together by hydrogen bonding between the bases with A always paired
with T with two hydrogen bonds and G always paired with C with three
hydrogen bonds. The bacterial DNA is usually circular. Although human
DNA is linear, it is extremely long and tacked down to a protein scaffold at
various points on the DNA. This periodic attachment endows human DNA
with topological constraints similar to those for circular DNA. Although
DNA is considered to be the master molecule of the body, actually pro-
tein is the working molecule. Hence these topological constraints of DNA
can interfere with vital cellular processes such as replication and transcrip-
tion due to different mode of interactions with proteins. Enzymes are usu-
ally proteins and are involved in these topological entanglement problems
that arise through cellular metabolism and replication. In this case topoi-
somerases, which are enzymes that mediate the passage of one segment of
DNA through an enzyme-bridged transient break in the backbone strands
of another DNA segment, are responsible for unlinking the DNA. Other
enzymes called recombinases break two DNA segments and interchange the
ends, resulting in an exchange of genetic information. Tangle calculus has
been successfully used to study recombinases. The topological approach
to enzymology is an experimental protocol in which the descriptive and
analytical powers of knot theory and tangle calculus are employed in an
indirect effort to determine the enzyme mechanism and the structure of
active enzyme-DNA complexes in vitro (in a test tube).

Due to the uniqueness of the bonding partner for each nucleotide, knowl-
edge of the sequence along one backbone implies knowledge of the sequence
along the other backbone. In the classic Watson—Crick double helix model
for DNA [2], the ladder is twisted in a right-hand helical fashion, with an
average and nearly constant pitch of approximately 10.5 base pairs per
full helical twist. The local helical pitch of duplex DNA is a function of
both the local base pair sequence and the cellular environment in which
the DNA lives; if a DNA molecule is under stress, or is constrained to live
on the surface of a protein, or is being acted upon by an enzyme, the heli-
cal pitch can change. The packing, twisting, and topological constraints
all taken together mean that topological entanglement poses serious func-
tional problems for DNA. This entanglement would interfere with, and be
exacerbated by, the vital life processes of replication, transcription, and
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recombination. For information retrieval and cell viability, some geometric
and topological features must be introduced into the DNA. For example,
the Watson—Crick helical twist of duplex DNA may require local unwind-
ing in order to make room for a protein involved in transcription to attach
to the DNA. The DNA sequence in the vicinity of a gene may need to be
altered to include a promoter or repressor. During replication, the daugh-
ter duplex DNA molecules become entangled and must be disentangled in
order for replication to proceed to completion. After the process is finished,
the original DNA conformation must be restored. Some enzymes main-
tain proper geometry and topology by passing one strand of DNA through
another by means of a transient enzyme-bridged break in one of the DNA
strands. Other enzymes break the DNA apart and recombine the ends by
exchanging them, a move performed by recombinases. Recently, it has been
found that Topoisomerase III and IV also help in DNA recombination. The
description and quantification of the three-dimensional structure of DNA
and the changes in DNA structure due to the action of these enzymes have
required serious use of geometry and topology in molecular biology. This
use of mathematics as an analytic tool is particularly important because
there is no experimental way to observe the dynamics of enzymatic action
directly.

In the experimental study of DNA structure and enzyme mecha-
nism, biologists developed the topological approach to enzymology, shown
schematically in Figs. 1 and 2. In this approach, one performs experiments
on circular substrate DNA molecules [7]. Cloning techniques to contain
regions that a certain enzyme will recognize and act upon, genetically engi-
neer these circular substrate molecules. The circular form of the substrate
molecule traps an enzymatic topological signature in the form of DNA knots
and links (catananes). These DNA knots and links of the reaction product
DNA molecules are observed by gel electrophoresis and electron microscopy.

pd

— Knolted

g Linked

Fig. 1. Topological approach to enzymology.

D,»:;GC} Supercolled




198 Biomathematics: Modelling and Simulation

Fig. 2. (a) DNA (+) Whitehead link, (b) DNA knot 63.

By observing the changes in geometry (supercoiling) and topelogy (knot-
ting and linking) in DNA caused by an enzyme, the enzyme mechanism can
be described and quantized.

The topological approach to enzymology poses an interesting challenge
for mathematicians as to how one can deduce enzyme mechanisms from the
observed changes in DNA geometry and topology. This requires the con-
struction of mathematical models for enzyme action and the use of these
models to analyze the results of topological enzymology experiments. The
entangled form of the product DNA knots and links contains information
about the enzymes that made them. In addition to utility in the analysis of
experimental results, the use of mathematical models forces all of the back-
ground assumptions about the biology to be laid out carefully. At this point
they can be examined and dissected, and their influence on the biclogical
conclusions drawn from experimental results can be determined.

Ernst and Sumners [7] were the first to introduce tangle model. They
also used the model to analyze the Tn3 resolvase site-specific recombina-
tion system. It was proved mathematically that, in a processive recombi-
nation event, Tn3 resclvase binds to its unknotted, negatively supercoiled
substrate (sites in direct repeat), fixes three negative superéoils, and each
round of recombination introduces s positive crossing in the domain. It was
also proved that, given biologically reasonable assumptions, this is the only
possible explanation for the experimental data. In 2001 Darcy {4] mod-
elied the Xer recombinase using 4-plat oriented equation. But since Xer is
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non-processive the model gave an infinite number of solutions. The solutions
of the model depended upon the initial assumptions that were made.

2. Mathematical Background

Site-specific recombination affects the topology of circular DNA substrates.
These changes in topology can be characterized experimentally. Based on
the experimental data, biological models for enzymatic mechanisms can
be proposed. Only a mathematical treatment of this problem can give a
definite answer. The fields of knot theory and low dimensional topology are
needed to analyze site-specific recombination reactions.

2.1. Topological tools for DNA analysis

Fortunately for biological applications, most of the circular DNA falls into
the mathematically well-understood family of 4-plats (cf. [1, 6, 8, 11]). This
family consists of knot and link configurations produced by patterns of
plectonemic supercoiling of pairs of strands about each other. All “small”
knots and links are members of this family — more precisely, all prime
knots with crossing number less than 8 and all prime (two-component)
links with crossing number less than 7 are 4-plats. For in vitro binding of
circular DNA with enzymes, we can consider the enzyme mechanism as a
machine that transforms 4-plats into other 4-plats. We need a mathematical
language for describing and computing these enzyme-mediated changes.
In many enzyme-DNA reactions, a pair of sites that are distant on the
substrate circle are juxtaposed in space and bound to the enzyme. The
enzyme then performs its topological moves, and the DNA is then released.
A mathematical language is also required to describe configurations of linear
strings in a spatially confined region. This is accomplished by means of the
mathematical concept of tangles, which were introduced into knot theory
by Conway [2]. Tangle theory is knot theory done inside a 3-ball with the
ends of the strings firmly glued down. A mathematical model for the study
of enzymatic action on DNA knots and links was recently developed and
analyzed by Misra et al. [13].

The family of tangles that can be converted to the trivial tangle by
moving the endpoints of the strings on S2 is the family of rational tan-
gles [14]. Equivalently, a rational tangle is one in which the strings can
be continuously deformed (leaving the endpoints fixed) entirely into the
boundary 2-sphere of the 3-ball, with no string passing through itself or
through another string.
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Rational tangles form a homologous family of 2-string configurations
in B3 and like 4-plats, look like DNA configurations being built up out of
a pattern of plectonemic supercoiling of pairs of strings. More specifically,
enzymes are often globular in shape and are topologically equivalent to
our unit-defining ball. Thus, in an enzymatic reaction the enzyme bound
DNA forms a 2-string tangle. Since the amount of bound DNA is small,
the enzyme-DNA tangle so formed admits projections with few nodes and
therefore is very likely rational. For example, all locally unknotted 2-string
tangles having less than five crossings are rational. There is a second, more
natural argument for rationality of the enzyme-DNA tangle. In all cases
studied intensively, DNA is bound to the surface of the protein. This means
that the resulting protein-DNA tangle is rational, since any tangle whose
strings can be continuously deformed into the boundary of the defining ball
is automatically rational.

There is a classification scheme for rational tangles that is based on a
standard form that is a minimal alternating diagram. The classifying vec-
tor for a rational tangle is an integer entry vector (a1, az,...,a,) of odd or
even length, with all entries (except possibly the last) non-zero and hav-
ing the same sign and with |a;| > 1. The integers in the classifying vector
represent the left-to-right (west-to-east) alternation of vertical and horizon-
tal windings in the standard tangle diagram, always ending with horizontal
windings on the east side of the diagram. Horizontal winding is the winding
between strings in the top and bottom (north and south) positions; verti-
cal winding is the winding between strings in the left and right (west and
east) positions. By convention, positive integers correspond to horizontal
plectonemic right-handed supercoils and vertical left-handed plectonemic
supercoils; negative integers correspond to horizontal left-handed plectone-
mic supercoils and vertical right-handed plectonemic supercoils. Two ratio-
nal tangles are of the same type if and only if they have identical classifying
vectors. Due to the requirement that |a;| > 1 in the classifying vector con-
vention for rational tangles, the corresponding tangle projection must have
at least two nodes. There are four rational tangles {(0); (0;0); (1); (-1)}
that are exceptions to this convention (|a;| = 0 or 1).

Tangles can be used to build a model that will compute the topology
of synaptic complex in a single recombination event, with knowledge of
the topology of the substrate and product. In site-specific recombination
on circular DNA substrate, two kinds of geometric manipulation of the
DNA occur. The first is a global ambient isotopy, in which a pair of distant
recombination sites are juxtaposed in space and the enzyme binds to the
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molecule(s), forming the synaptic complex. Once synapsis is achieved, the
next move is local and due entirely to enzyme action. Within the region
occupied by the enzyme, the substrate is broken at each site, and the ends
are recombined.

Within the region controlled by the enzyme, the enzyme breaks the
DNA at each site and recombines the ends by exchanging them. Hence the
enzyme itself can be modeled as a 3-ball. The synaptosome consisting of
the enzyme and bound DNA forms a 2-string tangle.

2.2. Definitions

A knot is a simple closed curve embedded in 3-space. A link is a disjoint
union of such simple closed curves (cf. [1, 11]). Two knots A and B are
said to be equivalent if and only if A can be smoothly deformed into B,
and we write A = B. A knot that can be deformed to lie on a plane, with
no crossings, is called a trivial knot, or the unknot. Likewise, a trivial
link with two components consists of two circles that can be deformed to
lie flat on a plane. The 2-dimensional representation of a 3-dimensional
knot is known as the projection of a knot. The crossing number of a knot
is the minimum number of crossings over all the projections of a knot.
For example, the crossing number of a trefoil knot is 3 (see Fig. 3). The
problem of deciding when two knots or links are equivalent is not easy.
Many invariants of knots and links, both geometric and algebraic, have been
developed throughout the years. Some examples of geometric invariants are
the crossing number of a link, and the linking number of a link with two
oriented components.

crossing # =3

O @=f v=%

unknot achiral chiral

Fig. 3. Different types of knots.
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The following definitions will lead to another knot invariant. Let K
be a link with a fixed orientation. The link obtained after inverting the
orientation of K is denoted by (—K), and it is called the inverse of K.
Likewise, the link obtained by reflection of K with respect to a plane, is
called the mirror image of K and is denoted by K*. If K = (—K), then
K is said to be invertible. K is achiral if K = K*. If K # K*, K is said
to be chiral.

2.3. 2-string tangles

A unit ball is considered in R3. In the XY plane (see Fig. 4) the posi-
tive Y-axis is considered to point north, and the positive X-axis to point
east. Let {NE,NW,SE,SW} be four fixed equatorial points of the unit
ball. A 2-string tangle can be thought of as two strands with end-points
{NE,NW, SE, SW} together with the unit ball to that contains them. The
basic definition is illustrated in Fig. 4.

As is the case with knots, tangles are also studied through their pro-
jections. A tangle diagram is the image of the 2-string tangle when it is
projected onto the equatorial disc. Two tangle diagrams represent equiva-
lent tangles if strands of the one can be deformed into strands of the other.

There are 3 types of tangles (see Fig. 5):

e Rational Tangle: a, a’) any rational tangle can be obtained from the
trivial tangle shown in a) by moving the strands’ ends on the boundary
of the ball.

e Locally knotted: b) a locally knotted tangle contains a knotted
strand.

e Prime Tangle: ¢) tangles which are not rational or locally knotted
are said to be prime.

Fig. 4. Projection of a unit ball from R3 to S2.
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Fig. 5. Different types of tangles.
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Fig. 6. Tangle addition.

Given two tangles A and B, the tangle addition A + B is defined
in the figure above (cf. [3, 9]), as in Fig. 6. The resulting object A + B is
obtained by gluing NE of A to NW of B, and SE of A to SW of B. One may
note that the sum of two tangles is not always a tangle since the strands of
(A + B) can include a simple closed curve.

The figure given below (Fig. 7) is used to define two other tangle oper-
ations called numerator and denominator. Given a tangle 4, N(A4) and
D(A) denote these operations, respectively, and they produce knots and
2-component links. N(A + B) and D(A + B) can be defined in a similar
way. Note that if A+ B is not a 2-string tangle, the result of N(A + B) or
D(A + B) can be a link of more than two components.

i
!
i

i
i
i

2.4. Rational tangle

Rational tangle is a tangle whose strands can be deformed to a trivial tangle
by moving the ends of strands on the boundary [14]. Rational tangles admit
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Fig. 7. 'Tangle operations.

Fig. 8. Tangle surgery.

of a classification in which a unique standard vector with integer entries is
associated with each equivalence class of rational tangles. Such a vector
(a1,...,an,) must satisfy the following conditions:

(1) a; #0when 0 <i<m
(2) all entries are of the same sign
(3) ay is not equal to 1 or —1.

The tangle can be constructed from its associated vector as shown in the
figure above (Fig. 8).

Four exceptional tangles are excluded by the convention; they can be
visualized in Fig. 9 together with their standard vector.

For each equivalence class of rational tangles, denoted by A, the stan-
dard vector associated to it is called the Conway Symbol for A (cf. [2]). To
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Fig. 9. Canonical form of rational tangles.

= (-5)

Fig. 10. Integral tangle.

each Conway symbol can be associated a unique extended rational number;

8 cQu{oco}

Bla=a1+ 1
G2t 71—
Gt —1

e
am

A tangle is integral (shown in Fig. 10), if its canonical vector is of the
form (z) for some integer z. It may be noted that integral tangles are in
one-to-one correspondence with the integers, and that they are drawn as a
row of horizontal twists (positive or negative).

2.5. 4-plats

A 4-plat is a knot or a link that admits a representation consisting of a braid
on 4 strings closed up as in Fig. 11. The classification of 4-plats shows that
each 4-plat K is characterized by a vector (ci,cg,...,C2n+1) such that ¢;
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Fig. 11. Standard 4-plats.

and cap41 are different from zero. A rational number is assigned, by means
of the following continued fraction calculation, to each vector:

1
Bla=—"r—
c1+ 1
02+T

The link K is denoted by b(a, ) and is termed as the Conway notifica-
tion for K.

2.6. Classification of 4-plats
b(a, B) and b(a’, B') are equivalent and non-oriented links if and only if
a=a; F =p(mod a).

See Figs. 12 and 13.
The numerator closure of the sum of two rational tangles is a rational
knot or link (Fig. 14).
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Fig. 12. Equivalent tangles.
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(a), (b) Rational knot/link equivalence.
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Fig. 14. Numerator closure for sum of two tangles.
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3. Biological Statement and Assumptions

The main goal when doing tangle analysis of experimental data arising
from site-specific recombination reactions is to understand the enzymatic
mechanism. The tangle model studies topological changes in DNA caused
by the enzymes. The mechanism of recombinases involves local interaction
of two DNA strands (Fig. 15).

One of the goals of the tangle model is to compute the topology of
the synaptosome (enzyme + bound DNA), before and after the enzymatic
action. In an attempt to translate an enzymatic action on DNA into the
language of mathematical 2-string tangles, DNA molecule with its two
recombination sites as an embedding of one or more circles in 3-space has
been considered. Therefore the substrate, DNA is considered to be a knot
or a link. Each circular DNA molecule is represented by the axis of its
double-helix (a simple closed curve in R3). A single event of recombination
consists of two movements. One of them is a global movement where, by
ambient isotopy of R2, the recombination sites are juxtaposed inside a ball.
The ball represents the enzyme, together with any accessory proteins that
bind the DNA substrate and are required for recombination. The ball with
the two strands of bound DNA represents, by definition, the local synap-
tic complex (or synaptosome). The second movement is a local movement
in the interior of the ball where two strands are cut at the recombination
sites, and then recombined. At this stage, the part of the knot or link that
was left in the exterior of the ball remains fixed. Mathematically, the ball
divides the space into two regions. Each region will be defined on the basis
of its biological role.

A ball with two embedded strands is, by definition, a 2-string tangle.
Therefore the enzyme with the accessory proteins and the bound DNA form
a 2-string tangle, where the proteins form the ball that defines the tangle.
Call this tangle E. Likewise, the recombination sites can be surrounded by
a small ball in the interior of E. Let P be this tangle in the interior of

=i &

Fig. 15. Local interaction of two DNA strands.
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&

Fig. 16. Sketch of a recombination site.

E where the DNA is cut by the enzyme. This description is illustrated in
Fig. 16.

4. Tangle Model Assumptions

In a site-specific recombination reaction, the recombinase and accessory
proteins bind to the DNA. Enzyme and proteins are modelled as a ball; the
circular DNA is modelled as a knot or link that intersects the ball in two
strands. The synaptosome is a 2-string tangle called E. We can look upon
FE as the sum of two tangles, Oy + P.

Assumption 1. E = Oy + P, where Oy contains the entire DNA that
is bound to the enzyme or to the accessory proteins, except for the recom-
bination sites that are contained in P. That is, the enzyme mechanism
in a single recombination event is constant, independent of the geometry
(supercoiling) and topology (knotting and catenation) of the substrate pop-
ulation. Moreover, recombination takes place entirely within the domain of
the enzyme ball, and the substrate configuration outside the enzyme ball
remains fired while the strands are being broken and recombined inside and
on the boundary of the enzyme.

We assume that any two pre-recombination copies of the synaptosome
are identical, meaning that we can by rotation and translation superimpose
one copy on the other, with the congruence so achieved respecting the
structure of both the protein and the DNA. We likewise assume that all of
the copies of post-recombination synaptosome are identical.

Let Oy be the tangle formed by the ball §2 — E that contains the DNA
not bound to the enzyme/accessory proteins complex. It may be noted
that both topology and sequence of Op and Oy remain unchanged upon
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recombination. Oy contains all the relevant topological information from
the free DNA. Assumption 1 allows to see the whole synaptic complex
simply as:

N(Oj + Oy + P) = N(O; + E).

One may note that both Op and Oy remain unchanged upon recombi-
nation. Let O be the “outside tangle” defined by the following sum:

0= 05+ Oy.

In the calculations one will usually refer to the tangle O instead of O
and Oy. If the substrate is a knot or link K3, then the synaptic complex
can be represented by a substrate equation of the form:

NO+ P) = K;.

Recombination occurs during the local movement, and strand exchange
is restricted to the tangle P. This motivates the second mathematical
assumption.

Assumption 2. The recombinase action corresponds to a tangle surgery
where the tangle P is changed by the tangle R.

With this assumption, after one round of recombination leading to a
knotted or linked product of type K, the parental tangle P is removed from
the synaptosome and replaced by the recombinant tangle R. The outside
tangle O remains unchanged. The post-recombination synaptic complex is
represented by the product equation:

N(O+R) =K.

Therefore, one round of recombination action is translated to the following
system with two tangle equations:

N(Of+0b+P):N(0+P)=K1}

N(Of + Oy + P) = N(O + P) = K, (1)

where {Oy, Op, P, R} are unknown. In general, two tangle equations on 4
unknowns are not enough to find a unique solution array (Oy, Op, P, R),
or even a finite number of solutions. Electron micrographs of the synaptic
complex can sometimes characterize Oy.

For unknotted substrates it can generally be deduced that Oy is ratio-
nal; in particular, Oy = (0) and therefore, O = Oy + Op = Op.
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4.1. Other substrates

When the tangle model was used to study a resolvase system, the following
assumption was crucial to unveil the enzymatic mechanism:

Assumption 3. The recombination mechanism is constant, independent
of the geometry (supercoiling) and topology (knotting and linking) of the
substrate population.

This means, in part, that the recombination is restricted to the inte-
rior of the ball, and that the substrate’s configuration outside the ball
remains fixed during this event. It also implies that both P and R are con-
stant, they do not depend on the nature of neither substrate nor product
of recombination, and they are characteristic of the enzyme. Any change
in the substrate would be translated into a change in the tangle O (in
particular a change in Oy). It follows from Assumption 3 that the tangles
{ O, P, R} are constants reflecting enzyme binding and mechanism, while
the tangle Oy reflects the variable geometry and topology of the substrates.
In the case of enzymes with topological selectivity and specificity (e.g. Gin,
Tn3 and Xer), given a fixed substrate K; the tangles O, P and R are
constants uniquely determined by the enzyme. Furthermore, if one consid-
ers two experiments where a given enzyme acts on topologically different
substrates, then two systems of equations appear in the tangle analysis.
Assumption 3 allows taking P and R constant in both the systems. The
tangle O will be denoted as O for experiment 1 and as O'® for experi-
ment 2. In the cases of Gin and Xer the assumption of constant mechanism
is supported by experimental data (Gin, Xer). On the other hand, there are
some enzymes such as A-int, mutant Gin and FLP that have no topological
selectivity. In those cases, for a single substrate, the tangle O can vary.
Assumption 3 in these cases only implies that P and R are constants. Thus
the mechanism is not constant and it is not clear whether the enzymatic
binding (characterized by the tangle O) changes from one substrate type
to another.

5. Site-Specific Recombination

Site-specific recombination is one of the ways in which nature alters the
genetic code of an organism, either by moving a block of DNA to another
position on the molecule or by integrating a block of alien DNA into a
host genome (cf. [2, 15]). One of the biological purposes of recombination
is the regulation of gene expression in the cell, because it can alter the
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relative position of the gene and its repressor and promoter sites on the
genome. Site-specific recombination also plays a vital role in the life cycle
of certain viruses, which utilize this process to insert viral DNA into the
DNA of a host organism. An enzyme that mediates site-specific recombi-
nation on DNA is called a recombinase. A recombination site is a short
segment of duplex DNA whose sequence is recognized by the recombinase.
Site-specific recombination can occur when a pair of sites (on the same or
on different DNA molecules) becomes juxtaposed in the presence of the
recombinase. The pair of sites is aligned through enzyme manipulation or
random thermal motion (or both), and both sites (and perhaps some con-
tiguous DNA) are then bound by the enzyme. This stage of the reaction
is called synapsis. We shall call this intermediate protein-DNA complex
formed by the part of the substrate that is bound to the enzyme together
with the enzyme itself the synaptosome and the entire DNA molecule(s)
involved in synapsis (including the parts of the DNA molecule(s) not bound
to the enzyme), together with the enzyme itself, the synaptic complex. It
is our intent to deduce mathematically the path of the DNA in the black
mass of the synaptosome, both before and after recombination.

After forming the synaptosome, a single recombination event occurs:
the enzyme then performs two double-stranded breaks at the sites and
recombines the ends by exchanging them in an enzyme-specific manner.
The synaptosome then dissociates, and the enzyme releases the DNA. We
call the pre-recombination unbound DNA molecule(s) the substrate and the
post-recombination unbound DNA molecule(s) the product. During a sin-
gle binding encounter between enzyme and DNA, the enzyme may mediate
more than one recombination event; this is called processive recombination.
On the other hand, the enzyme may perform recombination in multiple
binding encounters with the DNA, which is called distributive recombina-
tion. Some site-specific recombination enzymes mediate both distributive
and processive recombination.

Site-specific recombination involves topological changes in the substrate.
In order to identify these topological changes, one chooses to perform exper-
iments on circular DNA substrate. One must perform an experiment on a
large number of circular molecules in order to obtain an observable amount
of product. Using cloning techniques, one can synthesize circular duplex
DNA molecules, which contain two copies of a recombination site. At each
recombination site, the base pair sequence is in general not palindromic and
hence it induces a local orientation on the substrate DNA circle. If these
induced orientations from a pair of sites on a singular circular molecule
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agree, this site configuration is called direct repeats (or head-to-tail), and if
the induced orientations disagree, this site configuration is called inverted
repeats (or head-to head). If the substrate is a single DNA circle with a
single pair of directly repeated sites, the recombination product is a pair
of DNA circles and can form a DNA link (or catanane). If the substrate
is a pair of DNA circles with one site each, the product is a single DNA
circle and can form a DNA knot (usually with direct repeaté). In proces-
sive recombination on circular substrate with direct repeats, the products
of an odd number of rounds of processive recombination are DNA links,
and the products of an even number of rounds of processive recombina-
tion are DNA knots. If the substrate is a single DNA circle with inverted
repeats, the product is a single DNA circle and can form a DNA knot. In
all the figures where DNA is represented by a line drawing, duplex DNA is
represented by a single line, and supercoiling is omitted.

a. Substrate b. Pre-recamblnaticn
synaptic complex

c. Post-recombination d. Product
synaptic complex

Fig. 17. A single recombination event: direct repeats.
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The geometry and topology of circular DNA substrate are experimental
control variables. The geometry and topology of the recombination reaction
products are observable. In vitro experiments usually proceed as follows:

Circular substrate is prepared, with all of the substrate molecules rep-
resenting the same knot type. The amount of supercoiling of the substrate
molecules is also a control variable. The substrate molecules are reacted
with a high concentration of purified enzyme, and the reaction products
are fractionated by gel electrophoresis. Gel electrophoresis discriminates
among DNA molecules on the basis of molecular weight; given that all
molecules have the same molecular weight (as is the case in these topo-
logical enzymology experiments), electrophoresis discriminates on the basis
of subtle differences in the geometry (supercoiling) and topology of the
DNA molecules. Under the proper conditions gel velocity is (surprisingly)
determined by the crossing number of the knot or the link, knots and links
of the same crossing number migrate with the same gel velocities. After
running the gel, the DNA molecules are removed from the gel and coated
with Rec A protein. It is this new observation technique (Rec A-enhanced
electron microscopy) that makes possible the detailed knot-theoretic anal-
ysis of reaction products. Rec A is an E. coli protein that binds to DNA
and mediates general recombination in E. coli. The process of Rec A coat-
ing fattens, stiffens, and stretches (untwists) the DNA. This facilitates the
unambiguous determination of crossings (nodes) in an electron micrograph
of DNA.

6. Processive Recombination

Processive recombination must be incorporated to the tangle model without
contradicting the assumption of constant mechanism [2, 15]. Since P is
assumed to be changed by R upon one round of recombination, R will be
assumed to go to R + R after two rounds and so on and so forth. In this
way processive recombination is modelled by tangle addition. Experimental
data obtained from processive recombination adds equations to the system.
These equations involve the same unknowns as before.

Assumption 4. Processive recombination acts by tangle addition
(Fig. 18). The implication is that, after n rounds of processive recombi-
nation, the post-recombination synaptosome is (Op + nR). This leads to a
new equation for each round of recombination:

N(O + nR) = nth round product
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Fig. 18. Processive recombination.

In the tangle analysis of Tn3 resolution and in that of Gin inversion,
data arising out of the first few (three or four) rounds of recombination
are enough to find unique solutions to the tangle equations. In addition,
these computations correctly predict the products of additional rounds of
processive recombination.

7. Useful Facts and Theorems About Tangles

(1) Both N(a/b) and D(a/b) are 4-plats. The knot/link N{(a/b) is the 4-plat
S(a, —b). The knot/link D(a/b) is the 4-plat S(b,a).

(2) The tangle corresponding to a1\b; is the same as the tangle correspond-
ing to ag\by if and only if al\bl = ag\bz.

(3) a1\b1 + az\by = a rational tangle unless either by = 41 or by = 1.

(4) a/b+t = (a+bt)/t.

(5) N(A+ C)= N(C+ A) where A and C are arbitrary tangles.

(6) N(A+C) = 4-plat implies at least one of A and € is rational or locally
knotted.

(7) D(A+ C) = D(4) = D(C).

(8) N(AN(c1,...,cn)+B)y=N(A+ BN(cp,...,c1)) where n is odd.

Theorem 1. Let U and R be tangles such that N(U + iR) = 4-plat for
some i > 2, and N(U + jR) # N(U +iR) for some j. Then R is a rational
tangle. If i > 3, then R is an integral triangle.

Proof. If R were locally knotted, then N(U + iR), ¢ > 2 would be com-
posite. Since 4-plats are prime, R cannot be locally knotted. Suppose R is
a prime tangle. By tangle properties U + (¢ — 1)R is rational or locally
knotted and R prime implies that (¢ — 1)R prime and U must be co-tangle
or locally knotted.
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Now U cannot be a oo-tangle. If U were the infinity tangle, then
N(U+iR) = D(iR) = D(R)#- - - #D(R). Since 4-plats are prime, D(R) =
unknot. But N(U + iR) = D(iR) = unknot = D(jR) = N(U + jR), a
contradiction. Thus if U is locally unknotted, R must be rational.

If i > 3, then R does not have parity oo since 4-plats have at most two
components. If i > 3, U is locally unknotted, and R is not integral, then if U
is not integral, U+ R and (i—1)R are prime. But N(U+{R) = 4-plat would
then contradict the tangle property. If U is integral and if R is rational,
then N(U + iR) = 4-plat, 1 > 3, if and only if R is integral. Thus if U is
locally unknotted and i > 3, then R must be integral.

Suppose U is locally knotted. Then if U’ is the tangle formed from U
by removing the local knot, then N(U’ + iR) = unknot, since 4-plats are
prime. N(U + jR) # N(U + iR) implies that N(U’ + jR) # N(U’ +iR).
Since the unknot is a 4-plat and U’ is locally knotted, R is rational if ¢ > 2
and integral if i > 3. O

Theorem 2. If N(U + P) = 4-plat and N(U + R) = 4-plat where P =
a1/b1, R = aa/ba, a1by — asby # *£1, then U is either a rational tangle or
ambient isotopic to a sum of two rational tangles.

Proof. If N(U + P) = 4-plat and N(U + R) = 4-plat where P = a1/b;,
R = ay/by, a1bs — agb; # +1, then the cyclic surgery theorem implies that
the double branched cover of the tangle U is a Seirfert fibered space. This
means, U is ambient isotopic to a Montesinos tangle (Ernst [8]). O

Theorem 3. Let U and R be tangles such that NU + iR) = K; for
0 <1 < 3, where K;’s are 4-plats, and {K1, Ko, K3} represent at least
2 different link or knot types. Then there is at most one solution for U and
U is either rational or the sum of two rational tangles.

Theorem 4. Lat E =t/w—tangle, (w,t) =1 and ay—bx = 1. Then the
following are equivalent for |t| > 2. For t = 1, (2) and (3) are equivalent
and imply (1):

(1) dr (N(a/b), N(z/v)) < 1.

(2) If w = +1modt, N(z/v) = N((tb+ w)a)/(—ty + w)z)) or N((—tz +
(tk + w)a)/(—ty + (tk + w)b)). Else w = *1lmodt and N(z/v) =
N((tp?b + sa)/(—tp®y — sz)) or N((—tp*z + sa)/(—tp*y + sb)) where
§= tp(_'Q'Fpk) +1, (p,Q) =1,p>0.
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(3) N(a/b) = N(U 4 0) and N(z/v) = N(U + t/w) have the following
solutions when |t| > 2:

If w # £1modt, then U must be rational and U = a/(b + ka) or
a/(—z + ka).

If w = £1modt, then U must be ambient isotopic to a sum of at
most two rational tangles and U = (Uy + Uz2) o (h,0) where U; =
(—bja(d — kj))/(pb+ a(pk — q)) or (zj + a(d — kj))/(—px + a(pk — q))
and Uz = j/p,pd—qj=1and h=(—wL D/t if (—wx1l) e Z. If
t = 1, then the above list contains all solutions when U is ambient
isotopic to a sum of rational tangles.

Proof. dr(N(a/b), N(z/v)) <1 if and only if there exists a U such that
N(a/b) = N(U +0) and N(z/v) = N(U +t/w). By Theorem 2, U is either
a rational tangle or ambient isotopic to the sum of two rational tangles.
If U is a rational tangle, N(U + 0) = N(a/b) implies by tangle fact that
U=a/(b+ka)ora/(—z+ka) and N(z/v) = N((tb+ w)a)/(—ty + w)x))
or N((—tz + (tk + w)a)/(—ty + (tk + w)b)). If U is ambient isotopic to
the sum of two rational tangles, U; + Us, then since N(U + 0) is a 4-
plat, U = (U + Ua) o (k,0). Solving N((U1 + 5/p) o (h,0) +0) = N(a/b)
implies Uy = (—bja(d — kj))/(pb + a(pk — q)) or (zj + a(d — kj))/(—pz +
a(pk — ¢)) and Uz = j/p, pd — ¢j = 1. If N((Ur +j/p)o(h,0) +t/w) =
N((Uy + 3/p + t/(ht + w)). If U; or U, are non-integral, N((U; + Uz +
t/(ht + w)) is a 4-plat if and only if ht + w = %1, i.e. w = £1mod? in
which case h = (—w £ 1)/t if (—w 3 1) € Z. Again by tangle properties
if s = tp(—q + pk) £ 1, N(Uy + Uz £ t) = N((tp?b + sa)/(—tp®y — sz)) =
N({(—tp*z + sa)/(—tp*y + sb)). |

Theorem 5. If N(U + f1/g91) = unknot and N(U + f2/g2) = N(2z/1)
where figz — fag1 = *1, then U is rational.

Lemma 1. If N(U; + P) = unknot, i = 1,2, and Uy # Us, then P is
rational.

Theorem 6. If N(U+0/1)= N(1/0) and N(U + 1/w) = N(2k/1), then
U is rational.

Corollary 1. Suppose bx —ay = 1, N(U 4+ 0/1) = N(a/b) and N(U +
t/w) = N(z/v) where N(a/b) and N(z/v) are unoriented 4-plats. If w # +1
or if U is rational, then t/w = (xz—av’)/ (00" —yz—kt) and U = a/(b+ka)
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or t/w = (bz — av')/(zv' — yz — kt) and U = a/(z + ka) where v' is any
integer such that v'vt! = 1mod z. If w = +£1mod¢, then t divides z Y a.

8. Model for the Tn3 Resolvase

Tn3 resolvase is a site-specific recombinase that reacts with certain cir-
cular duplex DNA substrate with directly repeated recombination sites.
One begins with supercoiled unknotted DNA substrate and freats it with
resolvase. The principal product of this reaction is known to be the DNA
4-plat. Resolvase is known to act dispersively in this situation to bind to the
circular DNA, to mediate a single recombination event, and then to release
the linked product. It is also known that resolvase and free (unbound) DNA
links do not react. However, once in twenty encounters, resolvase acts pro-
cessively — additional recombinant strand exchanges are promoted prior to
the release of the product, with yield decreasing exponentially with increas-
ing number of strand exchanges at a single binding encounter with the
enzyme. Two successive rounds of processive recombination produce the
DNA 4-plat (2; 1; 1); three successive rounds of processive recombination
produce the DNA 4-plat (1; 1; 1; 1; 1), whose electron micrograph appears
in Fig. 2(a); four successive rounds of recombination produce the DNA 4-
plat (1; 2; 1; 1; 1) whose electron micrograph appears in Fig. 2(b). The
discovery of the DNA knot (1; 2; 1; 1; 1) substantiated a model for Tn3
resolvase mechanism.

For resolvase, the electron micrograph of the synaptic complex reveals
that Oy = (0), since the DNA loops on the exterior of the synaptosome can
be untwisted and are not entangled. This observation from the micrograph
reduces the number of variables in the tangle model by one, leaving us
with three variables {Op; P; R}. One can prove that there are four possible
tangle pairs {O; R}, which can produce the experimental results of the
first two rounds of processive Tn3 recombination (cf: [1, 9, 11]). The third
round of processive recombination is then used to discard three of these
four pairs of extraneous solutions. The following theorems can be viewed as
a mathematical proof of resolvase synaptic complex structure. The model
proposed in [2] is the unique explanation for the first three observed prod-
ucts of processive Tn3 recombination, assuming that processive recombina-
tion acts by adding on copies of the recombinant tangle R. Mathematical
analysis makes feasible the reconstruction of DNA topology from gel elec-
trophoresis, avoiding the technically difficult electron microscopy of Rec
A-enhanced DNA.
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Theorem 1. Suppose that tangles Op; P; and R satisfy the following
equations:

(1) N(Op + P) = (1) (the unknot),
(2) N(Ow + R) = (2) (the Hopf link),
(3) N(Op + R+ R) = (2;1;1) (the figure 8 knot).

Then {Op;R} = {(=3;0);(1)}, {(3;0);(~1)}, {(=2;-38;-1);(1)}, or
{(2;3;1); (=1}

In order to decide the biologically correct solution, we have to utilize
more experimental evidence. The third round of processive resolvase recom-
bination determines which of these four solutions is the correct one.

Theorem 2. Suppose that tangles Op; P; and R satisfy the following
equations:

(1) N(Op+ P) = (1) (the unknot),

(2) N(Os + R) = (2) (the Hopf link),

(3) N(Op + R+ R) = (2;1;1) (the figure 8 knot),

(4) N(Oy+ R+ R+ R) = (1;1;1;1;1) (the (+) Whitehead link).

Then Op = (—3;0); R=(1), and N(O, + R+ R+ R+ R) =(1;2;1;1;1).

The correct global topology of the first round of processive Tn3 recom-
bination on the unknot is shown in Fig. 17. Moreover, the first three rounds
of processive Tn3 recombination uniquely determine N(Op+ R+ R+ R+ R),
the result of four rounds of recombination. It is the 4-plat knot (1; 2; 1; 1;
1), and this DNA knot has been observed (cf. Fig. 2(b)). We note that there
is no information in either Theorem 1 or Theorem 2 about the parental tan-
gle P. Since P appears in only one tangle equation (Eq. (i)), for each fixed
rational tangle solutions for Oy there are infinitely many rational tangle
solutions to the equation for P. Most biologists believe that P = (0), and
a biomathematical argument exists for this claim.

9. Model for the Xer Recombinase and
Topoisomerases III and IV

Xer recombinase acting on an unknotted substrate produces only one
product, the link N(4/1). Thus there are only two equations involving
3 unknowns and hence they have an infinite number of solutions.

N (Ui + P) = unknot N({Ui+ R)=N(4/1)
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This enzyme cannot act processively. So there is no experiment that can
be performed in order to reduce the infinite number of solutions to a finite
number. However, we can make a list of all possible solutions and propose
experiments to reduce this list to a smaller number of solutions. These can
then be analyzed to decide as to which solutions are the most biologically
relevant, using additional biological assumptions. For example, if P and R
are biologically restricted to have at most 4 crossings, then the solutions
become finite.

9.1. Biological model for recombinases and topoisomerases

e Initial Configuration.

e The accessory proteins fix three negative crossings in the domain. Xer
binds to the two recombination sites.

o Idea: the proteins and the three negative crossings remain fixed.

e One round of recombination produces one negative crossing in the
domain.

e After recombination the enzyme releases the molecule.

9.2. Biological model (unknotted substrates)

Substrate = unknotted circular DNA with sites in direct repeat.

K, =b(1,1) = (1) [where K’s are 4-plats]

Product = 4-crossings right-handed torus link with antiparallel sites.
K, =b(4,3)=(1,2,1)

9.3. Biological model (catenated substrates)

e Substrate = 6-crossings right-handed torus link with anti-parallel sites.
e Ky =b(6,5)=(1,4,1)
e Product = 7-crossings knot or link.

9.4. Tangle equations for unknotied substrates
(i) N(O+P)=(1)=501,1)
(i) N(O +R) = (1,2,1) = b(4,3)
together with the assumptions:
(a) P=(0);
(b) R = (k), k non-zero integer;
(c) O is rational or sum of 2 rational tangles.

We solve for O and R.
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9.5. Tangle equations for catenated substrates

(i) N(O+ P)=(L,4,1) = b(6,5)
(if) N(O + R) = K, = 7-crossings knot or link.

in which

(1) P=(0);

(2) R = (k), k being a non-zero integer;

(3) O is rational or sum of 2 rational tangles;
(4) K, is a 4-plat.

1

We solve for O and R.

9.6. Problems
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e Xer recombination is not processive. The action on substrates with a

single topology provides only two tangle equations.

o For known P rational and K 4-plat: N(O + P) = K has infinitely many

solutions for O.

e For known P rational, K; and K 4-plats: N(O+ P) = K1, N(O+ R) =

K> do not lead a unique solution.

In order to solve the tangle equations, we intend to make use of the min-
imum possible assumptions, with an aim to put forward the results in a

realistic manner.

9.7. Results

e UNKNOTTED SUBSTRATES: 1. When O is rational:
e The solutions to the tangle equations are:

e O=(-3,0)and R=(-1)

e O=(-5,0) and R = (+1)

e O=(1)and R=(3)

e O=(-1)and R=(5)

The last two cases produce 4-crossing links with the wrong site alignment.

These cases must be discarded.

¢ When O is the sum of two rational non-integral tangles, there

exist no solutions.
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Conclusions
N(O + P)=1b(1,1)
N(O + R) = b(4, 3) with sites in anti-parallel P = (0), R = (k),
O is rational or the sum of two rational tangles.
The only solutions to the system are:
0 =(-3,0), R=(-1);
0 =(-5,0), R = (+1)

Results

e CATENATED SUBSTRATES:
¢ When O is rational, the solutions to the tangle equations are:

(a) O =(6) and R = (+1), K2 = b(7,6)

(b) O = (6) and R = (—13), K3 = b(7,1)

(¢c) O=(6,2,0) and R = (—1), K3 = (7,6)

(d) O=(-5,-1) and R = (4), K2 = b(14,9)

(e) O =(-5,-1)and R = (-1), Kz = b(11,9)

(f) O = (~5,~1,-2,0) and R = (+1), K2 = b(11,9)

The solutions (a)-(c) have to be discarded, since they correspond to
torus knots, while the solution (d) is to be discarded because it corre-
sponds to a link of parental genotype. The solutions (e) and (f) are the
only acceptable ones since they correspond to twist knots of recombinant
genotype.

When O = X + A with X and A rational non-integral, the solu-
tions to the tangle equations are:

(1) X = (=4,0), A = (—2,0) and R = (+3), K = b(18,13)
(2) X = (~4,0), A = (~2,0) and R = (—1), K = b(14,9)

(3) X = (~3,0), A = (=3,0), and R = (-1), K = b(15,11)
(4) X = (=3,0), A =(-3,0), and R = (+3), K = b(21,13)

The solutions (1) and (2) have to be discarded since they correspond to
links. The solutions (3) and (4) are the only acceptable ones since they
correspond to knots of recombinant genotype.

10. Modelling Conclusions

The tangle is modelled here, assuming that for a given enzyme, the tangles
P and R are constant, independent of the topology of the substrate. We
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made the tangle analysis of two recombination events mediated by recom-
binases. We showed that if P = (0), R is integral and O is rational or the
sum of two rational tangles, and K is a 4-plat, then there are only three
solutions that explain the observed products in both the experiments.

Recapitulating, the tangle model looks upon the circular DNA substrate
and products as knots or links. The site-specific recombinase and its acces-
sory proteins are seen as a ball that intersects the DNA knot or link in two
strands. The interior of the ball is divided into two regions. One of them
is restricted to strand exchange and corresponds to a parental tangle P.
This tangle can be chosen to be P = (0). P represents the only region in
the synaptic complex that changes upon recombination. The region outside
P but inside the ball, called Oy, traps all the conformation that, together
with the change from P to R, determines the topology of the recombina-
tion products. Finally, the region outside the ball, O detects the varia-
tion between substrates with different topology. The tangle model assumes
that the synaptic complex can be expressed as N(O + P) = K¢ where
O = Oy + Oy is called the outside tangle. Recombination is modelled by
a tangle surgery that replaces P by the recombinant tangle R, thus lead-
ing to a product equation V(O + R) = K;. The assumption of constant
mechanism implies that P and R are constants uniquely determined by
the enzyme. In the cases when there are both topological selectivity and
specificity (e.g. Tn3 resolvase, Gin, Xer), the tangle O is also determined
uniquely by both the enzyme and the topology of the substrate. If there is
no topological selectivity (e.g. A -Int, mutant Gin and FLP) then, for a fixed
substrate, P and R are constants but O can vary. Furthermore, processive
recombination is modelled by tangle addition. A recombination event that
consists of n-rounds of processive recombination is translated into a system
of (n 4 1) equations with unknowns O, P and R. The tangle O is
allowed to change from one equation to another if and only if there is no
topological selectivity. This introduces more unknowns to the system, and
the analysis becomes much more difficult. It was seen that solutions for a
system of three tangle equations with three unknowns could be found if the
unknowns are rational tangles.
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CHAPTER 9

USING MONODOMAIN COMPUTER MODELS FOR THE
SIMULATION OF ELECTRIC FIELDS DURING
EXCITATION SPREAD IN CARDIAC TISSUE

G. PLANK

Institut fiir Medizinische Physik und Biophysik,
Karl Franzens Universitat Graz, Austria
gernot.plank@meduni-graz.at

Within the last decade computer models of cardiac excitation spread have
become increasingly more realistic due to the interdisciplinary merging of tech-
niques from biophysics, mathematics, cardiology and computer sciences. Com-
puter models are considered as an indispensable complement to experimental
and clinical studies. Both experimental as well as clinical methods for the
determination of the cardiac activation sequence rely in most instances on the
measurement of potentials outside the myocardium. For the interpretation of
such measurement a profound understanding of the relationship between elec-
trical processes in the tissue and the electric field caused by them outside the
tissue is essential. Monodomain computer models are one of the most frequently
used tools for the investigation of this relationship since they represent a bal-
anced trade-off between level of detail and computational tractability. This
paper summarizes theoretical basics necessary for the implementation of mon-
odomain computer models for the simulation of the cardiac excitation spread
and the concomitant electric field and reviews numerical techniques used for
this purpose.

1. Introduction

The human heart is a mechanical pump with four chambers, two upper
chambers, the atria, which act to fill the two lower main pumping cham-
bers, the ventricles. Electrical signals propagate wavelike through the heart
muscle to coordinate the mechanical contraction which guarantees appro-
priate blood circulation under normal conditions. Disturbances of the elec-
trical signal conduction may deteriorate or impede the coordination of the
mechanical contraction leading to discomfort or even life-threatening con-
ditions. As a vital organ the diagnosis of malfunctions of the heart has been
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an important issue since ever. Clinical examinations are based on poten-
tials measured on the body surface from which conclusions are drawn on the
electrical processes occurring within the heart. In the last decades a further
method was established which permits potential measurements inside the
heart by means of electrodes introduced with catheters. Beyond mere mea-
surements this method also facilitates the modification of conduction path-
ways by delivering high-frequency impulses to the tissue. During in vitro
experiments with heart preparations the situation is quite different. A wider
gamut of methods, most of them not applicable in vivo, is applied, provid-
ing measurement data from inside the tissue as well. Nevertheless, clinical
examinations of the cardiac activation sequence still rely almost exclusively
on the measurement of potentials outside the tissue. Therefore, the under-
standing of the relation between the electrical processes occurring within
the tissue and the concurrent electric field outside the tissue is fundamen-
tal for the interpretation of clinically recorded signals. Numerous studies
addressed this question trying to elucidate this source-field relationship with
both in vitro experiments and numerical studies with computer models.

The development of computer models is hampered by both structural as
well as functional complexities of cardiac tissue. The tissue is composed of
irregularly shaped and nonuniformly interconnected cells, surrounded by a
fluid-filled space (interstitium) with embedded connective tissue and blood
vessels. The cell borders are defined by an isolating membrane with highly
nonlinear electrical properties. The local functional behavior of the tissue
is determined by the cell membrane as the location of the electrical sources,
however, the interaction of a membrane patch with adjacent tissue depends
on the passive electrical properties determined by the tissue structure. All
that constitutes evident difficulties to find an appropriate representation as
electrical network.

Early computer models represented the three-dimensional cardiac struc-
ture as a one-dimensional cable and adopted membrane models appropri-
ate for nerve membranes. Improved experimental techniques revealed more
and more details of the basic mechanisms of cardiac electrical activity.
Favored by the rapidly increasing availability of computational resources,
these mechanisms were integrated subsequently into computer models to
investigate their effects.

Despite considerable technical advances, insurmountable limitations of
experimental measurements persist. For technical reasons the number of
different parameters which can be measured simultaneously during exper-
iments is limited. Since the cardiac excitation process is determined by
many factors, the analysis of interactions between them is considerably
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complicated by the fact that just a small number of them can be measured
and the majority of them remain unknown.

In contrast to experimental measurements, the use of computer models
allows a clear separation of effects caused by structure (connecting network)
and function {(membrane kinetics). These models, however, are based on
simplifying assumptions on structure and function of the tissue and have to
be considered as an approximation of the actual physical system. Therefore,
computer models on its own are not particularly useful since the discrimina-
tion between model artefact and real physical behavior is impossible with-
out experimental validation. As a complementary method to experimental
measurement, however, they have proven to be an extremely powerful tool
permitting insights which cannot be gained otherwise.

Computational resources available today are by far not sufficient to
integrate all the available physiological knowledge into computer models. In
fact, depending on the question being answered, a trade-off has to be made
between the amount of details considered in the model and the tractability
of simulations. If models are too simple, wreng or imprecise predictions will
result, if too complex, computations will become intractable.

Computer models typically consist of two parts, one representing the
tissue structure and one the functional behavior of the cell membrane.
Regarding the choice the structural representation of the tissue two model
types exist, the monodomain and the bidomain model. Both models can
be coupled with a large variety of ionic models to describe the dynamic
membrane behavior.

Since the excitation spread in cardiac tissue and the corresponding elec-
tric field are inextricably linked, in a strict sense both excitation spread
and corresponding field have to be considered simultaneously to account
for the feedback effect of the field on the electrical processes in the tissue.
Whenever these effects are of interest, a mathematical treatment based on
a bidomain formulation is more appropriate, since it allows to account for
the different electrical properties in both compartments inside and outside
the tissue.

Under the assumption, however, that these effects are negligible due
to comparably small potentials in the extracellular medium, the excita-
tion spread in the tissue and the extracellular potentials can be computed
sequentially. Models based on these assumptions are generally referred to
as monodomain models. All the techniques described in this work deal with
that model type. Monodomain models are particularly suitable for the sim-
ulation of cardiac tissue surrounded by an extensive fluid medium (volume
conductor). This reflects, for instance, the common experimental setup of a
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small tissue preparation immersed in an extended fluid bath or in a clinical
context, potential measurements in the blood-filled cavities of the heart.

The aim of this work is to provide the basic knowledge necessary for the
setup of monodomain computer models for the simulation of the cardiac
excitation spread and the corresponding extracellular potentials evoked by
the sources within the tissue.

2. Physiological Background

This chapter is intended as a brief summary of basic concepts used in
cardiac electrophysiology for readers unfamiliar with the subject. Charac-
teristic properties of the cardiac tissue like its cellular structure, the basic
ionic mechanisms responsible electric potential differences across the mem-
brane and the response of the membrane to the application of stimulation
currents will be elucidated. A more detailed introduction into membrane
biophysics is found in [85].

2.1. Properties of cardiac cells

Cardiac muscle is composed of densely packed cells arranged into fibrous
bundles [111]. A single cell is typically 30-100 um long and 8-20 pum wide.
Cells have an approximately cylindrical geometry with step-like irregular-
ities at the cell ends. The cells are bounded by a thin plasma membrane
(~75 A thick) which separates the fluid-filled intracellular space from the
interstitial fluid surrounding the cell. In general the membranes of adjacent
cells are separated by narrow clefts, but at some points the membranes
are connected via protein channels, called the nexus or gap junctions. The
gap junctional membrane is localized mainly to the intercalated disks at
the cell ends and, to a lesser extent, along the length of the cell. A typical
cell is connected with ten neighboring cells [107]. As a consequence of the
low conductance of the cell membrane and the spatial arrangement of gap
junctions, the average conductance along the cell axes (longitudinal direc-
tion) is approximately ten times higher than in the perpendicular direction
(transverse direction) {13].

The main function of the membrane is to control the passage of sub-
stances (ions and molecules) into and out of the cell. Its main constituent
is lipid which is organized to form a lipid bilayer. The membrane lipid
excludes passage of ions. Exchange of ions between intra- and extracellu-
lar spaces is only possible via channel proteins which are embedded in the
bilayer matrix of the membrane.
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Solute transport through the membrane is facilitated by passive and
active mechanisms. Passive transport tends to equilibrate ionic concentra-
tions inside and outside the cell and requires no expenditure of metabolic
energy, whereas active transport is metabolically driven. Passive mecha-
nisms include diffusion as a result of the concentration gradient (intra-
and extracellular ionic concentrations are different), facilitated diffusion
via carrier proteins (carrier-mediated transport) and through ion channels.
Ton channels are specialized membrane proteins that allow the rapid move-
ment of small ions like Na*, K+,Cl™ and Ca?*. An ion carrying channel
consists of an aqueous pore (through which ions may traverse the mem-
brane), a selectivity filter (reflecting the selective permeability property
of the channel, which allows only ions of a certain species to permeate
the channel) and a control gate which may be classified as voltage- or
as ligand-gated, depending on the nature of the mechanism that triggers
the gate. Voltage-gated channels open or close their gates depending on
the potential difference across the membrane; ligand-gated channels act
depending on the concentration of different ions, neurotransmitters, hor-
mones or drugs among other substances. To maintain intracellular ionic
concentrations, active transport mechanisms are necessary to antagonize
the effect of passive transport. Active transport is driven by so-called ion
pumps which use metabolic energy to transport ions against the concen-
tration gradient.

The unequal ionic concentration in the intra- versus the extracellu-
lar space gives rise to diffusion of ions along the concentration gradient,
whereby the rate of diffusion depends on the difference in concentrations
and the membrane permeability. Regardless of the mechanism, the move-
ment of ions across the membrane constitutes a flow of electric current since
ions are carrying charges. The membrane accumulates these charges due to
its associated capacitance resulting in a potential difference across the mem-
brane. This potential difference is associated with an electric field which
exerts forces on all charged particles within the membrane. A steady-state
is reached when the ion fluxes driven by diffusion and electric field forces are
equal. The corresponding non-zero electrical potential difference is called
resting membrane potential.

A quantitative description of diffusion is given by

Ja = —DpVCy (1)

known as Fick’s law, where C, is the concentration of an ion of species p as
a function of position and D, is the corresponding diffusion constant. The
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flux jq is the number of ions passing per unit time through a cross section
of unit area. The flux resulting from the electric field forces is given by
D,FZ,
RT

where —V® is the electric field, Z, the valence of the ion species, F the
Faraday constant, R the gas constant and T the absolute temperature.

The equilibrium potential difference for a given ion can be found from
Ja + je = 0. Under these conditions we obtain from (1) and (2)

_FZ,Cp
T ——Vo (3)
If we assume that quantities vary in the direction £ perpendicular to
the membrane only we obtain
dCp, _ FZpCyp a® (4)
dg RT d¢
Rearranging and integrating from the inner to the outer membrane surface
yields

Je = —

Cp,V® )

VC, =

€dC,  FZ, [°
i Cp__RT id@ (5)
resulting in
[Cele
m =0 — ®e =
K FZ § ([Cp]i (6)

This is the Nernst potential for which the ion of type p is in equilibrium
with its diffusion force. For example, the potential difference Ex necessary
for the potassium to be in equilibrium is given by
RT [K*]e

= () @
which is approximately Ex ~ —88mV for [K*], = 5.4mM and [K*]; =
145 mM. In general, biological membranes cannot be in equilibrium for all
ions, since their Nernst potentials are different. The resting condition can
be only characterized as a steady state (0V;,/8t = 0) which requires the
total ionic flux to be zero. Under these conditions and the assumption of
constant field strength within the membrane the resting potential in a two-
ion system is given by Goldman’s equation

~ 9, = E1 Pic [K)e + Pva [Na™]e (8)

Px [K+]e + Ppng [Na+]
where Px and Py, are the permeabilities for potassium and sodium ions.
At the resting membrane potential V,¢s: = —84 mV the membrane is much
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more permeable for potassium than for sodium and Py, in the Goldman
equation may be neglected. This yields the Nernst equation and the resting
potential of the membrane is close to the Nernst equilibrium potential for
potassium.

2.2. The action potential

During each heart beat all cardiac cells cycles through a deflection of the
transmembrane voltage V,, = ®; — ®, which is in the most general case
characterized by five distinct phases: the rapid upstroke (phase 0), the early
repolarization (phase 1), the plateau (phase 2), the repolarization (phase 3)
and the resting phase (phase 4). Such a cycle is called the action potential
(see Fig. 1(a)).

An action potential is the response of the membrane to a current
either from an external source (stimulation) or from an adjacent membrane
in excited state. No action potential is elicited unless the depolarization
reaches a specific level, called the threshold potential. Once the threshold
potential is reached an action potential is triggered which is always identical
(all-or-nothing). That is, the shape of the waveform of the action poten-
tial is independent of the initial depolarization. This property is known as
excitability.

The initial part of phase 0, generally referred to as the foot of the
action potential (see Fig. 1(b)), reflects the passive membrane behavior. If
the depolarization is driven by adjacent tissue the time course of the foot
is exponential. Once the threshold is reached, active membrane behavior
is triggered. Beyond the threshold, a positive feedback between membrane
permeability for sodium ions and transmembrane potential begins. The
depolarization of the membrane increases the sodium permeability due to
the opening of the Na¥ channels. As a consequence, the sodium current
increases which leads to a further depolarization of the membrane and to
a further increase of the sodium permeability which drives the membrane
towards the Nernst potential for sodium Ep,. The resulting upstroke of
Vin is extremely fast due to positive feedback mechanism with a duration
of approximately 1 ms only (see Fig. 1(b)). During phase 1, a slight repo-
larization occurs reflecting a decreasing number of open Na't channels and
the opening of K+ channels. The plateau phase of the action potential
is mainly sustained by calcium currents. Subsequently the closing of the
Ca?* channels and the opening of the delayed outward rectifier K+ chan-
nels repolarizes the transmembrane gradually back to its resting state.
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Fig. 1. (a) Phases of a ventricular action potential: Starting from the resting potential
Vg which is close to the Nernst equilibrium potential for potassium Ef, the transmem-
brane voltage Vi cycles through an action potential. During the rapid upstroke (0) the
membrane rapidly depolarizes towards the equilibrium potential for sodium Ep,, fol-
lowed by early repolarization (1) and plateau (2). During repolarization (3) Vi, returns
gradually to its resting state (4). (b) Upstroke of the action potential: During the foot
of the action the membrane behaves passively and the time course of V;, is exponential.
Exceeding the threshold potential triggers active behavior, a positive feedback mecha-
nisms causes a very fast upstroke of V,,. The derivative dV, /dt of the transmembrane
voltage demonstrates the short duration of the upstroke of only ~ 1ms. (c) Phases of a
pacemaker action potential: A pacemaker action potential is characterized by the absence
of a constant resting potential. The membrane depolarizes up to the threshold without
any external stimulation and triggers an action potential automatically. Compared with
(a) the phases (1) and (2) are not present.

The waveform of the action potential may differ depending on the
cell type and not all the phases are observed in all types of cells. Par-
ticularly pacemaker cells like found in the sino-atrial node, in the atrio-
ventricular node and in the His-Purkinje system show different waveforms
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(see Fig. 1(c)). The salient property of these cells is the absence of a resting
potential. During phase 4 pacemaker cells depolarize progressively permit-
ting to reach the threshold without any external stimulation. This property
is referred to as automaticity. Under normal conditions the cells of the sino-
atrial node depolarize faster than all other pacemaker cells and thus are
setting the pace of the heart beat. In case of malfunction of the sino-atrial
node pacemaker cells of the atrio-ventricular node or the His—Purkinje sys-
tem assume this duty.

Another important action potential characteristics is referred to as
refractoriness. Once an action potential has been triggered, a subsequent
depolarization will not elicit another action potential unless a certain min-
imum period of time (the absolute refractory period) has elapsed. For a
subsequent time period (the relative refractory period), the threshold for
the second depolarization is higher than normal. Under normal conditions,
this prevents the action potential from returning to its origin since the
excitation wave front would encounter tissue in refractory stake; Under
pathological conditions, however, reentrant circuits way arise resulting in
flutter or fibrillation of the heart.

3. Modelling the Membrane Kinetics

Based on the voltage clamp technique which allows the measurement of
ionic currents during an action potential, Hodgkin and Huxley derived
a quantitative model describing the cell membrane of a squid axon [49].
Although the model was developed for a nerve action potential, the mathe-
matical formalism has been used in models for the cardiac action potential
as well, even in contemporary models this formalism is virtually unchanged.
The behavior of cardiac cells in different regions of the heart (pacemaker
cells, atrial and ventricular cells) differs considerably and depends moreover
on the species as well. Technical advances of the voltage clamp technique
allowed to correct formulations used in older models and to identify of new
currents. This led to the development of numerous models which account for
more and more physiological details, described by a considerably increased
number of state variables (the number of state variables increased from
the Luo-Rudy phase I model to the phase II model from 9 to 30, a fact,
which poses significant computational problems in large scale computa-
tions). Today specialized cardiac membrane models are available for the
sino-atrial node [22], for Purkinje fibers [2, 24], for atrial [19, 62, 74, 96],
and ventricular cells |5, 26, 28, 64-66).
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A membrane model for the cardiac action potential describes the electro-
chemical events in a small membrane patch and the adjacent intracellular
and interstitial media. The patch is assumed to be sufficiently small so that
the diffusion in the adjacent media occurs essentially instantaneous, and
at the same time sufficiently large that the membrane channels show their
ensemble-averaged behavior and the probabilistic single channel behavior
does not appear. Ionic current models in their most general form typically
consist of three submodels: an electrical analog, a kinetic gating model, and
a fluid compartment model.

The electrical analog connecting in parallel the ionic currents and the
capacitive current is known as parallel-conductance model (see Fig. 2(d)).
The total transmembrane current density i, [A/cm?] is given by

gmzém%‘%ﬂ'*'gion:EmaaL:l‘*‘%:Zp (9)
where %ion [uA/cm?] is the sum of the ionic currents of ion species p and
&n [uF/cm? is the specific membrane capacitance. Each parallel branch
reflects the contribution of a partial current to the total transmembrane
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Fig. 2. (a) Physical model of a cylindrical fiber of radius a surrounded by a thin fluid
film of radius b: Conductivity within the fiber is o;, respectively oe in the extracellular
fluid. A coordinate system is chosen so that the axis x aligns with the cylinder axis. Cable
models of cardiac fibers neglect potential variations with ¢ or r according to the core
conductor assumptions. (b) Discrete cable element of length dz: Since cross-sectional
potential variations are neglected the inner and outer cylinder may be replaced by a
resistor. The membrane is modelled as a capacitance in parallel with an electric model
of the resistive membrane properties of Hodgkin—Huxley type. (c) Linear core conductor
model for restricted extracellular space. (d) Electical representation of a fiber element of
length Az under sub- and transthreshold conditions: The conductances gy and gx are
found from the Hodgkin—Huxley equations, En, and Ex are the equilibrium potentials
for sodium and potassium, respectively.
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current. The ionic currents branches are of the form of Ohm’s law

;p =Gp (Vi — Ep) (10)
where §, [mS/cm?] is the membrane conductance and E,, the Nernst equi-
librium potential for the ion species p. The net driving force for ion species
p is (Vi — Ep) which is the deviation of the membrane potential from the
equilibrium condition. Depending on the mechanism, the conductance g,
may be represented as a simple constant or as a nonlinear term. Leakage
or background currents accounting for nonspecific current flow are typi-
cally modelled with fixed conductances. Nonlinear currents in cardiac mem-
brane models, however, are described by kinetic gating models based on the
Hodgkin-Huxley formalism. According to this formalism, it is assumed that
the conductance of each channel is determined by a number of independent
subunits or gates, each having two possible states: open or closed. Ions may
pass through the membrane via a particular channel if all subunits are in
the appropriate state. Switching between open and closed state of a single
channel is a stochastic process where instant and duration of the opening
and closing processes random variables. The current derived from a large
number of such channels corresponds to the macroscopically measured cur-
rent. The state transition of the gates is governed by first-order kinetics.
If y is the probability of a particular gate to be in the open state, the
ensemble-averaged transient behavior of this type of gate is given by

Y (V)1 ~5) ~ BVl (1)
where a and § are non-negative monotonic functions depending on V;, only.
To exemplify this formalism, the system of equations used by Hodgkin
and Huxley in their first quantitative model of a nerve cell membrane is
given (see Eq. (20)) [49]. Their model took into account the sodium current,
responsible for the fast upstroke of the action potential, the potassium cur-
rent for the repolarization of the membrane, and a leakage current. Currents
were formulated as

iNa = GNa(Vin — Ena) (12)
ik = G (Vin — Ek) (13)
i = §i(Vem — E1) (14)

where g; is a constant and gy, and §x depend on the gating variables m, h
and n according to

GNa = gNam°h (15)
gx = gxn® (16)
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where En, and Ex are the Nernst equilibrium potentials and §n, and §x
are the maximum conductances of sodium and potassium, respectively.
Gating variable m represents the portion of open activation gates of a
sodium channel and A the portion of open inactivation gates. In case of
the potassium channel there is only one state variable determining the ion
transport rate. The transient behavior of these gates is governed by

-(Z_T = am(Vm)(l - m) - ﬂm(Vm)m (17)
%t’l = an(Vin)(1 = k) — Ba(Vin)h (18)
ch? = an(Vi)(1 = 1) = Ba(Vin)n (19)

Hence the total transmembrane ionic current of the Hodgkin-Huxley model
is given by

‘iion = gNamBh(Vm - ENa.) + QKn4(Vm - EK) + gl(Vm - El) (20)

Contemporary membrane models like [19, 65, 74] include fluid compart-
ment models. These models allow to account for variations of ionic con-
centrations in intracellular and interstitial compartments as a consequence
of ionic fluxes by enforcing mass conservation with the fluxes between the
compartments. A fluid compartment model leads to one or more first order,
ordinary differential equations.

Thus a general membrane model comprises one equation imposing cur-
rent conservation according to Kirchhoff’s current law (9), some mass con-
servation equations describing the fluid compartment model, and some
kinetic gating equations like given in (11) or (17)—(19). The common inde-
pendent variable is time, the dependent variables are the transmembrane
voltage, the ionic concentrations and the gating variables. All equations
together constitute a system of first-order, nonlinear ordinary equations.
Since analytic solutions are not known for this system, numerical methods
have to be applied.

For mathematical methods presented in the following sections physio-
logical details of the membrane models will not be considered, since they
are not essential for the understanding of the basic concepts. Hence for the
sake of simplicity the following abstractions are made. All model variables
except the transmembrane potential are collectively referred to as mem-
brane state variables and denoted by m,, with n =1,..., N where N is the
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number of state variables of a particular model. The mass conservation and
gating equations are written as

dmy,
dt

= fa(mn, Vi) (21)

where f,,(mn, Vi) are nonlinear functions. The equation for the total trans-
membrane current is written as

~ OV =
—==+ Yion ('m'n: Vm) (22)
ot
The sum of all ionic currents is given by the nonlinear function
tson(Mn, Vi) similar to (20), each single ionic current is given by an expres-
sion as in Eq. (12).

imzém

4. Modelling of Action Potential Propagation in
Cardiac Tissue

Early studies of action potential propagation [48, 49] used the one-dimen-
sional cable equation to describe the electrical behavior of a cylindrical
nerve fiber. In contrast to nerve fibers, cardiac tissue is better character-
ized as a three-dimensional electrical network of complex geometry and
discontinuous distribution of electrical parameters rather than a uniform
continuous fiber. Experimental evidences [14, 125] suggested that cardiac
tissue exhibits syncytial behavior which justified, to a certain extent, a
homogenization of the discrete cellular structure into a uniformly continu-
ous region. Based on the assumption of syncytial behavior, investigators
began to apply the continuous cable theory to cardiac tissue consider-
ing the conduction along a representative fiber and compared the results
with experimentally obtained data. Based on the one-dimensional cable
theory models were extended to two and three dimensions to account for
effects of anisotropy [13]. A detailed deduction of the mathematical descrip-
tion of the cable analysis may be found in various places like for instance
in {37, 51, 54, 85], a summary of fundamental relations will be given here.

4.1. Core conductor model
4.1.1. FElectrical parameters of a cylindrical fiber

For a uniform continuous cylindrical structure it is convenient to define its
electrical parameters on a per unit length basis. The axial resistance per
unit length 7; [kQ/cm] of the intracellular fluid (myoplasm) is defined as
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the resistivity p; [kQ cm] divided by the cross sectional area. If we designate
the radius of the cylinder with a, the resistance per unit length is given by

Pi
= (23)
and the conductivity per unit length g; [mS cm] by
gi = o;a’n (24)

where o; is the conductivity of the myoplasm in [mS/cm].

The cylindrical membrane enclosing the myoplasm shows resistive as
well as capacitive properties and might be characterized as a capaci-
tance shunted with a leakage resistance. If we designate the specific resis-
tance of the membrane with 7,,, [kQ2cm?|, the specific conductance with
Gm [mS/cm?] and the specific capacitance with &, [uF/cm?], the per unit
length quantities r, [k cm], g [mS/cm] and ¢, [uF/cm] are given by

Tm = Tm/27a (25)
Im = gm 2ma (26)
Cm = Cm 27a (27)

4.1.2. Flectrical model of a single fiber

A rigorous mathematical treatment of an infinite excitable fiber immersed in
an extensive, homogeneous, conducting medium would require the solution
of a three-dimensional field problem [12]. The potential field of such a fiber
can be considered as quasi-static satisfying Laplace’s equation in the exter-
nal medium and the myoplasm. If we assume the membrane as infinitely
thin Laplace’s equation is satisfied everywhere and non-zero potential fields
can only be explained with discontinuities across the membrane interface
(that is, the sources of the fields are located on or within the membrane).
If we designate the potential at an arbitrary point in the external medium
in cylindrical coordinates (see Fig. 2(a)) with ®.(r, ¢, z), then

Ad(r,0,2) =0 r>a (28)
must be satisfied in the extracellular space and
ADi(r,p,z)=0 r<a (29)

in the myoplasm.
Computer models based on these equations are rarely found, just a few
studies are reported [58, 99, 124]. These models are based on a boundary
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element approach which makes use of Green’s theorem to simplify the three-
dimensional problem given by Egs. (28)-(29) to two dimensions.

Making various simplifying assumptions permits to reduce this three-
dimensional problem to the essentially one-dimensional problem of a core
conductor.

A formulation reduced by one dimension is obtained by assuming axial
symmetry, that is /8¢ = 0 with ¢ denoting the azimuth angle. If the
extracellular fluid is restricted as shown in Fig. 2(a) to a thin cylindrical
fluid sheet of radius b it may be further assumed that all the involved
quantities, extra- and intracellular potentials and currents, are a function
of x only. This is equivalent to the assumption that at a given site z no
radial potential gradients of ®; and ®. (i.e. no radial current flow) arise
and consequently the current flow in both media must be confined to the
axial direction only.

In the intracellular space the assumption of axial current flow seems to
be well satisfied, since the diameter of a cardiac cell is small compared to its
length. In the extracellular space the validity of this assumption depends
on the relation of a and b, but also on the spatial distribution of the sources
within the membrane. For values of b < 1.5a, however, the core conductor
assumptions are well satisfied independent of the source distribution within
the membrane [102, 118], for b >> a deviations from core conductor behavior
will occur.

For instance, if we consider a bundle of parallel, tightly packed fibers
instead of a single fiber, core conductor assumption might be well sat-
isfied for a fiber near the center of the bundle, since the cross section
available for interstitial current flow is comparable with the myoplasmic
cross section. For fibers near the bundle surface, however, the interstitial
space of the fibers is somewhat in closer contact with the surrounding
fluid. This will give rise to radial current flow as well and, in consequence,
the associated extracellular potentials will deviate from those expected
from core conductor assumptions. In the context of monodomain computer
models (see Sec. 4.2) it is common practice to neglect the extracellular
resistance, since the extracellular potentials are small compared to the intra-
cellular ones. Thus one forgive the ability to compute ®. directly from the
model, however, the recovery of these potentials from the transmembrane
current distribution is still possible (see Sec. 5).

Starting from the core conductor assumptions a single fiber can be rep-
resented as a discrete electrical network. Although the cable equations are
based on a continuum, a representation as a repetitive network of finite-
length Az is equivalent for Az — 0. Potentials and currents are designated
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with ®, and I, along the extracellular path, and with ®; and I; along the
intracellular path, respectively (see Fig. 2(c)). Like illustrated in Sec. 3, the
electrical behavior of the membrane depends on the transmembrane poten-
tial V;,. Two ranges are to be discriminated, a linear subthreshold range
Vi < Vip, where the membrane is characterized as a passive RC-structure,
and a nonlinear transthreshold range V,,, > V;;, where a characterization
based on non-linear kinetic models is required (see Fig. 2(d)).

4.1.3. Cable equations

The application of Kirchhoff’s laws to the electric circuit analog of a core
conductor (see Fig. 2(c)) leads to the cable equations. In the subsequent
analysis we will continue to consider an infinitely long cylindrical continuous
cable of radius a surrounded by an extracellular fluid cylinder of radius b,
respectively its analog representation as an electric circuit like shown in
Fig. 2(c).

According to Ohm’s law the decrease in potentials ®; and ®. per unit
length must be equal to the voltage drop caused by the axial currents I; and
I, at the resistances r; and r.. Hence

0B,

5 = leTe (30)
0%

5 = Iir; (31)

From Kirchhoff’s current law we conclude that the axial decrease in the
intracellular current occurs as a consequence of the loss of current which
enters the extracellular space by crossing the membrane. Expressed on a
per unit length basis this yields

oI;

— =1 32

Oz m (32)

The current leaving the intracellular space must appear in the extra-

cellular space and sums up there to the extracellular current. A further

increase may occur due to applied stimulation currents. If we express the
stimulation current i, as current per unit length as well, we obtain

oI,
Oz

The transmembrane voltage V;, is defined as the difference between
intracellular and extracellular potential at the inner and outer surface of the

= 'lm + is (33)
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membrane. Since radial potential variations are neglected according to the
core-conductor assumptions the transmembrane potential V,,, is defined as

Vip=®; — ®, (34)

In absence of a stimulating current i, the magnitudes of the intra- and
extracellular axial currents are equal and I; = —I. holds. Using this and
Egs. (30)-(31) allow the representation of the derivatives of ®; and ®. as
a function of V;,,. This yielding

8<I>i _ T % (35)
oz ri+71e O
0%, Te OVin

or —ri+7‘e ox (36)

or if we just consider deflections from the resting values of V,,, ®; and @,
and designate them with v, ¢; and ¢. (these new quantities are equal to
the original quantities aside from a constant) we obtain

@; = P Um (37)
—_ Te
e = ik T Um (38)

The deflections of ®;, &, and V;,, from their resting values are related by a
simple voltage divider like expression.

The relation between the transmembrane current i,, and the transmem-
brane potential V;, can be found by subtracting (30) from (31)

OV
W = —TiIi + TeIe (39)
differentiating the result with respect to z
0V, oI; ol
i PR (40
and substituting Eqgs. (32)—(33) into (40)
0%V, , ,
e (i +Te)im + Teis (41)

Equation (41) is valid under core conductor conditions, regardless
whether the membrane is sub- or transthreshold. In absence of stimulat-
ing currents (i = 0), Eq. (41) shows that the transmembrane current i,
and the second spatial derivative of the membrane potential Vj, are
proportional.
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A fiber immersed in an extended volume conductor represents a setup
which is not conform with the core conductor assumption. If we assume the
volume conductor as infinitely conductive with r. = 0, no potential drops
occur in the extracellular fluid and from ®. ~ 0 follows V,,, ~ ®;. Hence
(41) may be written as

i 1 02

™ Ox?

The same result can be deduced by differentiating (31) with respect to

z and substituting into (32). Since Eq. (42) was deduced from intracellular

quantities only it is valid whether or not the core conductor assumptions are

fulfilled in the extracellular domain. Equations (41) and (42) are considered

as monodomain equations, since a single partial differential equation is

used to describe the behavior of a fiber. In contrast to this, a bidomain

description of a cylindrical fiber can be deduced from Egs. (30) and (31).
Differentiation of (30)—(31) and substitution of (32)—(33) yield

(42)

1992 . .

r_lb-x_; =tm + s (43)
1 99?2 . .

E 2 =~y + 2se (44)

where iy4; and iz are internally or externally applied stimulation currents.
Note that Eqgs. (41)-(44) are equally valid for ¢;, ¢. and vy, since a spatial
derivative is involved.

4.1.4. Linear subthreshold conditions

If the deflections of the transmembrane voltage from the resting poten-
tial are sufficiently small, the relationship of membrane current i,, and
voltage V;,, is given by a passive admittance. This subthreshold range where
the membrane responds passively is referred to as linear or electrotonic. The
electrical behavior of the membrane can be characterized as a capacity ¢n,
in parallel with a resistance r,,. In contrast to transthreshold conditions,
T is constant and does not depend neither on time nor on V,,.
Examination of the membrane behavior under electrotonic conditions
is important for several reasons. The tissue ahead of a propagating action
potential is characterized as electrotonic corresponding to the foot of the
action potential in the temporal course of V,, (see Fig. 1(b)). Also for the
study of electric stimulation subthreshold conditions are frequently used,
since it is often considered as sufficiently accurate to determine whether
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a stimulation pulse raises the membrane potential enough to reach the

threshold voltage V;;, or not. Furthermore, in experimental studies passive

conditions has been used frequently to determine membrane parameters.
The transmembrane current under subthreshold conditions is given by

. Um Ovm
= — 4 Cm—— 45
im - + cm o (45)
where v,, denotes the excursions of the membrane potential from its resting
value as defined before.

Substituting (45) in (41) yields
T™m 827)7” 6Um TeT'm
—— e — Tl —— — Uy =
7y + 1 Ox? ot T +Te
Characteristic properties of cable are identified as the time constant 7,,, and
the length constant A which are defined as

is (46)

r 1/2
A (Ti +7‘e) and Ty = Tmem (47)
Substituting (47) in (46) results in
0%v Bv
)\ 6222 - me — VUm = Te)\ 1s (48)

Assuming steady-state conditions (8/0t = 0) and a current injection of
strength Iy at = 0, represented as a spatial delta function i, = Iy §(z), is
obtained the steady-state equation

o 0%up,

52 Um = T2l 6(x) (49)
with the solution of the homogeneous form
V() = Ae™%/* + Be®/? (50)

where A and B are arbitrary constants. Imposing boundary conditions on
A and B [85] to account for the effect of the stimulating current yields

By
vp{z) = —%2 e, >0 (51)
V() = —T—e;—I—O & <0 (52)

From inspection of (51) it can be concluded that the application of a
stimulus current influences the transmembrane voltage, since v,, is different
from zero at all sites . The strongest influence of the stimulus occurs at
the stimulus site itself and decreases exponentially with z. A positive cur-
rent causes a more negative transmembrane potential (hyperpolarization),
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whereas a negative current gives rise to an increase (depolarization) in vy,.
The length constant \ represents a measure for the spatial extension of a
disturbance as a consequence of a stimulating current, at £ = X the change
in vy, is 1/e of the magnitude at the stimulus site.

The general time-varying solution of Eq. (48) for z > 0 is given by

i =2 L (5 (7) - () )
e[ (m5(2) @) e

where erf is the error function, defined by erf(y) = fé’ e=="dz. The solution
for x < 0 is found from symmetry. A detailed elucidation of the solution
steps is found in [85].

Since erf(co) = 1 and erf(—oo0) = —1, the spatial course of vy, (z,t — 00)
reduces the expression (53) to (51), valid under steady-state conditions.
Using erf(—y) = —erf(y) permits to derive the time course of v, at the

origin = 0 from (53). This results in

Vm(z =0,t) = —re;IO erf ( L) (54)

Tm
with a peak value of —r,AIy/2 for t = oo. The quantity —r.Alp is divided
by two as a consequence of the tacit assumption of current sinks of
strength —Iy/2 at £ = +o0, therefore half the current goes towards —oo
and half towards +oo.

Due to the presence of a capacitance, time is required to charge the
membrane at a given distance z from the stimulus site to its steady-state
value and 7y, is a measure for this effect (see Fig. 3(b)). For a given instant ¢,
the spatial decay is exponential-like, with increasing t the spatial course
vm(z) approaches the true exponential course of the steady-state solution
in (51). This continuous decay of v,, with x is explained by the leakage
resistance of the membrane with A as a measure of this effect (see Fig. 3(a)).

4.1.5. The propagating action potential

Once a sufficiently large membrane patch is depolarized beyond the thresh-
old voltage and active behavior is triggered, the membrane undergoes a
change in transmembrane potential referred to as action potential. The rise
of the potential relative to adjacent regions, where no potential changes
occurred, leads to current flow between the active site and the surrounding
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Fig. 3. Distribution of transmembrane voltage Vi, of a passive cell membrane in
response to the onset of a constant current, applied extracellularly at the origin z = 0.
(a) shows the spatial distribution of V;,, at different times, and (b) the time course of the
potential at different distances along the fiber. Time T is expressed as multiples of the
time constant 7, the distance X along the fiber as multiples of the length constant A.

inactive regions. These currents, known as local circuit currents, depolar-
ize the vicinity of the active site up to the threshold, so that the adjacent
inactive tissue becomes active as well. Stimulation is only required to initi-
ate this process, once it is triggered, these changes in membrane potential
propagate through the tissue in a self-sustained manner. This is referred to
as action potential propagation and is associated with the conditions i, = 0
and I; = —I,. Consequently, (41) specializes to

2
=i )
where the extracellular resistance r. is assumed to be zero. It is a known
fact that the propagation of the action potential along a uniform fiber
takes place without distortion and damping. This is only possible since
cardiac tissue is an active medium capable of storing metabolic energy.
The property of undistorted propagation is mathematically expressed by

Vin(@,t) = Vin(z — 0t) (56)

or equivalently as a differential equation, obtained by differentiating (56)
twice using the chain rule
0%V, 1 0%V,

9z 62 ot2 (57)



246 Biomathematics: Modelling and Simulation

Equation (57) is referred to as wave equation, where @ is the propagation
velocity of the action potential.

For the foot of the action potential RC-behavior of the membrane can be
assumed. Then the transmembrane current i, is given by (45) and Eq. (55)
can be rewritten using (47) to obtain

A\ 8%V, Vi
(5) T = V=0 @9
to describe the foot of the action potential. The solution of this equation is
the sum of two exponentials with the time constants

1 ™m0? 6 [7202

’7'1:'1,2 - 2/\2 2_/\— }\2

+4 (59)

In most cases 72,02/A% > 4 is well satisfied and the foot of the action
potential is a monoexponential process, characterized by the time constant
TF given by

2
p= B8 (60)
Tm

Under transthreshold conditions the membrane behavior is nonlinear
and more complex membrane models are required. Ionic membrane models
usually describe the transmembrane current on a per unit area basis. Thus
for the linkage of Eq. (55) with a kinetic model it is convenient to express the
transmembrane current on a per unit area basis rather than on a per unit
length basis. Both quantities, i,, and i,,, are related through the cylindrical

geometry by

i = 2TQ Iy, (61)
This permits to rewrite (55)
~ a 0%V,
2 9Vn 9
’ 2,0:; Ox? (6 )

If the membrane is capable of conducting an action potential at constant
velocity, Eq. (57) may be used to obtain

- a 0%V,

0l ot (63)

If the time course Vi, (t) at a given site x is known, the time course of 1,5, () is
determined as well. In general, the relation between V;,(¢) and i, (t) is com-
plicated and there will not be a simple relation between them. As an exam-
ple, the total transmembrane current as formulated in the Hodgkin-Huxley
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model is stated here:

- . OV . . -
im = Em—= + GNaM (Vi — Eng) + 951 (Vin — Ex) + 51(Vin — E1)

ot
(64)

From Egs. (62)-(64) several conclusions can be drawn. The transmem-
brane current is determined by two factors, the electrical load seen by the
membrane and the intrinsic properties of the membrane. The electric load
is imposed by the properties of the conducting region which relates the cur-
rent that crosses the membrane with the second spatial derivative of V.
Equation (62) states how the potentials in the neighborhood of a certain
patch and the resistive coupling affect the local transmembrane current.
The intrinsic properties of the membrane like its capacitance and its time
and voltage dependent permeability for ions of different species reflect the
local dynamic behavior of the membrane, comprised by Eq. (64).

From inspection of (63), however, an important result can be deduced
without having to solve the equation explicitly. One pair of functions V,,(t)
and i,,(t) satisfying (63) will continue to be a solution if

a 1

where K is constant. Thus the conduction velocity is given by [50]

aK
6= ’/ 50 (66)

The values for %, in Egs. (62)—(64) must be equal. Equating two of them,
(64) to (62) or (63), allows to solve for a propagating action potential. In
general an analytical solution is not possible and numerical methods have
to be applied. Equating (63) and (64) permits to solve for V;, as a function
of time only. This method was originally used by Hodgkin and Huxley.
They guessed a value # and stepped through the solution as a function of
time. For an incorrect guess of 8 the solution was found to diverge, but
with a correct 8 the time course of the action potential was found. Modern
computer methods, however, are based on equating (62) to the intrinsic
membrane current given by (64) which allows to find solutions for V,, as a
function of space and time.

4.1.6. Finite length cables

Up to this point, all the analysis was based on the assumption of
an infinitely long cable, real cables, however, are of finite length. This
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discrepancy gives reason to expect a distinct behavior. Differences in behav-
ior between finite and infinite cables should be examined in terms of the
input impedance Z;,, defined as

Zin = %ﬂ (67)
and evaluated at the stimulus site, by simply comparing their input
impedances under steady state conditions. For this purpose we will regard
a semi-infinite cable with one end at z = 0 and the other end at z = +o00.
The same equations as for the infinite cable are valid apart from the minor
difference that the voltage at = 0 for the semi-infinite cable, given by

U (z) = —re Ao e/ (68)

is twice the voltage of the infinite cable. Insight is gained by regarding the
infinite cable as a shunt of two semi-infinite cables (therefore the infinite
cable has half the impedance of the semi-infinite cable), or equivalently,
by taking into account that no current will flow in the —z direction in
the semi-infinite case. Consequently, the entire current Iy will flow in the
+z-direction instead of Iy/2 in the infinite case.

A stimulation current i, is injected at x = 0, for z > 0%, however,
is = 0 holds and the axial currents are related by I, = —I;. Using this the
intracellular current I; is found from (39). This gives

1 Vit
T ridTe 8 (ri+Te)A €
Division of (68) by (69) according to (67) permits to express the input
impedance Z;, = Zy of the semi-infinite cable at x = 0% as
~z/A

I = (69)

=reMly  —a/
(ritror € =0+

Zo=(ri +7e)Tm (71)

To find Z;,, in general for a cable of finite length x = L, terminated with
an arbitrary load impedance Zj, at x = L, the homogeneous expressions

Um(z) = Ae™%/* + B e/ (72)

Zo = = Ari+7e) (70)

or

and

1

I (Ae™2/A — Be™/?) (73)

0
will be used. Appropriate values for A and B are found by means of the
reflection coefficient v, a factor relating the terminal impedance Zy with
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the impedance of the infinite cable Zy. The impedance at a certain site x
is given by

Ae~*/* 4 Be®/A

Z(z) = ZO(Ae—z/)\ _ Bea:/)\) (74)
At z = 0 the input impedance is found from (74) with
A+ B
Fin =20 (m) (75)
and the terminal impedance Z; at £ = L with

Ae~L/x L Bel/>

ZL:ZO(A@“L/)‘—BGL//\> (76)

The reflection coefficient v, a term adopted from the theory of travelling
electromagnetic waves due to similarities of the mathematical representa-
tion, at the cable end is defined as

(L)_Ae—m _Zp+ 2
N = Belix T 7, — 7,

If the cable is terminated with Z; = Zj, the cable is equivalent to
an infinite cable and no “reflections” will occur (y = o0). A reflection
coefficient of v = +1 corresponding to a load impedance of Z = oo,
0 represents a maximum discontinuity and everything will be “reflected”. If
we rewrite (76) by using (77) is obtained the input impedance as a function
of the reflection coefficient

(77)

(78)

2L/X
Z, = ZO('ye + 1)

0% e2L/x _ 1

A finite cable with a sealed end is considered as a cable terminated with
an open circuit, that is Z; = oo and v = 1. For such a cable the input
impedance is given by

e?/* + 1 L
Z,L' - Zo(;{[?/-)‘—-—l) = Zo coth <X> (79)

Other special cable solutions like for cables terminated with a short cir-
cuit or with a finite impedance are found in [21, 37]. Regarding (79), for
L = 3) the ratio of Z;,, /Zp = 1.01, i.e. the deviation of the input impedance
compared to a cable of infinite length is about 1%. For cables with L < A
substantial deviations in behavior compared to infinite cables are to be
expected. For instance Z;,/Zo = 10 for a cable with L = 0.1\. This is of
particular importance regarding numerical cable simulations. The majority
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of studies considers the tissue terminated with sealed ends, although actu-
ally the behavior of infinite tissue is of interest. Hence, to avoid boundary
effects, a certain minimum fiber length should be simulated. The observa-
tion site where simulation results are examined, should maintain a minimum
distance of several A to the cable ends. In multidimensional tissue A depends
on the direction of propagation (A transverse to the fibers is usually much
smaller than along the fibers). This should be taken into account to find an
optimum tissue size for a simulation.

4.2. Monodomain models
4.2.1. One-dimensional fiber
The one-dimensional cable equation is given by

1 vz :
.
T+ 71, O Ti+Te

is (80)

where injection of the stimulation current in the intracellular space is
assumed contrary to (41). Rewriting in terms of conductivities and with
the transmembrane current density i,, yields

; ov?2 ~
[ 7; = 2ma i, + Ge
git+9ge Ox gi + ge

is (81)

Conductivities g; and g. are given on a per unit length base. That is,
g; = 0;A; and g, = 0. A, where A; = a?r and A, = (b®> — a2)7 (see Fig. 2).
Although it is not essential for monodomain models to refer g; and g.
to the entire cross-section (and it is not common practice to do it neither),
it may be convenient particularly with regard to bidomain models and the
comparison of used parameters. Bidomain models are based on the idea
of two continuous interpenetrating intra- and extracellular domains which
are separated everywhere by a membrane of unspecified topology [38, 45].
Therefore it is required to refer all quantities to the entire cross section
A; = A; + A, of a discrete element which entails an adjustment of the
intrinsic conductivities. If we rewrite (81) in terms of intrinsic conductivities
o; and o, we obtain

o iAi O'GAe BV,%
0iA; + oA, 022

We define the fractions f; and f. as
A A

=t == 83
f’l At a‘nd fe At ( )

+ O Ae
0iA; + 0 Ae

= 27a iy, s (82)
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and spread out the conductances of the respective domains of the entire
volume to obtain the adjusted intrinsic conductivities &; and &, as

Gi=0ifi and 0. =o0cfe (84)
generally referred to as effective intra- and extracellular conductivity. Sub-
stituting (83) into (82) yields

oifioefe av2 27ra~ o —ele a'efe 1
Uifi + Uefe 3:1:2 At o'zfz + aefe At
If we further define the surface-to-volume ratio J as the ratio of the

total membrane area to the total volume we obtain for a cylindrical fiber
element of length 6z with the cross sectional fraction f;

2nadxr _ 2madx 2ra dx 2f;

(85)

Adz A;/fidx  a?wiéz/f; a (86)
This permits to rewrite (85) as
0; O¢ ov?2 ~ O
WV _ g7 I, 87
g; + 0 Ox2 pi +6i+6e (87)

where Iy = 15/A, is identified as a stimulus current per unit volume. A com-

mon assumption is that the fiber lies in an infinite, homogeneous conductive

bath. Under these conditions the extracellular space can be assumed to be
grounded (g, =~ oo) and (87) simplifies to

6V2

Tigre

This is a monodomain representation of a one-dimensional fiber in which

a single partial differential equation describes the current flow in the intra-
cellular space.

= Bim + I, (88)

4.2.2. Multi-dimensional tissue

The monodomain model can be extended to two and three dimensions.
Multi-dimensional models allow to account for the anisotropy of cardiac
tissue which gives rise to a faster conduction velocity along than across the
fibers. A general form of the monodomain model is

V- (DiVVi) = Bim — I, (89)

where D; is the intracellular conductivity tensor in [mS/cm] and I, a current
source per unit volume in (uA/cm?).

If we continue to consider cardiac tissue as a set of parallel fibers it
is mathematically convenient to choose a coordinate system whose axes
align with the principal axes of D;. For instance, for tissue with straight
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non-rotated fiber, a Cartesian coordinate system is defined such that the
axis z aligns with the fiber direction. Then the conductivity tensor is a
diagonal matrix D; = diag(o;1, 0, oir) with the conductivity o;7, along
and o;7 across the fiber. Under these conditions the discretized Eq. (89)
may be interpreted as a network of resistors on a regular grid [47] like shown
in Fig. 4 for a two-dimensional monodomain model. An expression [10, 79]
typically used for such a model is
0*Vy, 0%, OVm,

OiL oz2 + oir ay;n = ,Bgm + I, = ﬂzion + ﬂémw + I (90)

If the fibers are curved or rotated, D; is a function of space and the coor-
dinate axes cannot be chosen to diagonalize D; everywhere. For instance, in
the three-dimensional ventricular tissue the fiber orientation rotates slowly
with tissue depth from the epicardium to the endocardium. Under these
conditions the diffusion term in the most general case two-dimensional
Di(z,y) is represented as

_9(, 08, 0\, 0 ( o, o
v (DIVf) = % (Uzz Bz +0'1:y ay) + ay (O'xy oz +0yy 6y>

o%f 52 f 82 f 005y  Oogy\ Of
= Onags ¥ 20eyg s Y owge t ( 5z T oy ) ¥z

Oogy | Ooyy\ Of
+ (B ) o oD

a)

Fig. 4. (a) Cardiac tissue as a set of parallel fibers: Using a coordinate system aligned
with the principal axes of the fibers allows a representation as a regular lattice of resistor
S. Application of Kirchhoff’s current law to the central node (4,j) by simply summing
up the currents Ips = Iy + Ig + Is + Iw leads to the same equation as the spatial
discretization of the diffusion part of monodomain equation. (b) Two-dimensional mon-
odomain representation of a uniform continuous tissue model and (c) of a coupled cable
tissue model.
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4.2.3. Discontinuous monodomain models

From a macroscopic point of view, cardiac tissue can be considered as a
continuum based on the assumption of syncytial behavior. At a microscopic
size scale, however, this is definitely not the case. The intracellular region
of a cardiac cell is connected with the intracellular space of the neighboring
cells by low-ohmic gap junctions, i.e. the intracellular space is continuous in
the sense that a moving ion does not have to pass to the extracellular space
to get from one cell to another, but the distribution of electrical parameters
is discontinuous. A typical value of a junctional resistance is approximately
equal to that of an entire cell region in the range of 0.5-5 M(Q [14, 71].

One-dimensional monodomain models were developed to account for
these discontinuities. The influence of the junctions was taken into account
by subdividing a cell into several segments and adding the junctional resis-
tances at the terminal segments of the cell where the gap junctions are
assumed to be located [23, 42, 69, 103, 128]. Based on one-dimensional dis-
continuous cables two- and three-dimensional discontinuous monodomain
models were built as well. Leon et al. developed a multidimensional dis-
continuous model by connecting one-dimensional cables laterally [59, 60].
The cables are allowed to be discontinuous and the lateral interconnections
are placed in a staggered way so that no cable is connected with more
than one neighboring cable at a certain junction site (see Fig. 4(c)). The
arrangement of the lateral connections is a limitation of the computational
technique which prevents the simulation of completely continuous tissue.
This method was extended to three dimensions as well [121, 122].

Other studies started from the regular resistive network approach
(Fig. 4(b)) and varied longitudinal and transverse resistances within cer-
tain bounds. Probably the most detailed approach of this kind was proposed
by Spach et al. [113-115]. They constructed a 2D model of multiple cells
based on an approximation of the naturally occurring variations in size and
shape of isolated cardiac cells and the distribution of the cell-to-cell connec-
tions {126, 127] and adjusted the resistive grid to reflect both cell geometry
and junctional coupling.

4.3. Numerical solution of monodomain equations

When modelling propagation of the cardiac excitation spread, simplify-
ing assumptions of structural and functional details of the tissue. A com-
puter model which takes into account all known details of cardiac tissue
would exceed by far available computational resources. Therefore computer
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models are tailored for specific problems. Macroscopic models are capable
of simulating large pieces of tissue, but the spatial resolution of these mod-
els is coarse and the functional aspects of the membrane do not regard too
much physiological details. On the other hand, microscopic models are more
detailed concerning the ionic current and have a fine spatial resolution, but
they are restricted to the simulation of small pieces of tissue. Today there
is no model available equally well suited for all questions and the amount of
detail necessary for a specific problem, should be carefully selected, since the
computational complexity increases with the amount of details included in
the model. This is particularly true for ionic current based models, whose
complexity increased considerably within the last years. Such membrane
models [19, 62, 65, 74, 91] permit the simulation of complicated electrophys-
iological phenomena [117] like early and delayed afterdepolarizations [55,
66, 106], effects of antiarrhythmic drugs, the dynamical tracking of ionic
movements [75], ischemia [11, 34, 110] and other pathological conditions.
Unfortunately, the price to pay for such a variety of physiological details
is high. If we consider a monodomain model using a modern description of
the membrane behavior like e.g. [65] up to 85% of the overall computational
workload is spent on the integration of the ordinary differential equations
of the kinetic model [90]. Particularly if multidimensional tissue with ionic
current based models is considered, simulations are usually limited to phe-
nomena occurring within the time frame of several milliseconds or seconds.
The observation of various phenomena like fibrillation or ischemia require
the simulation of much longer periods.

As a consequence of the computational costs of these models most three-
dimensional models reported in the literature use membrane models with a
reduced number of ionic currents {33] or non-physiological models like the
FitzHugh-Nagumo-model [1, 36] with a small number of state variables and
a slow membrane kinetic.

Efficient integration is rather hard to achieve owing to the very fast time
scale and the short length scale of propagating action potentials. Physi-
ological membrane kinetic models lead to an exceedingly stiff system of
equations, a phenomenon which often occurs when some components in
the solution change at a very fast time scale in comparison with other
components and the overall time scale of the solution [52].

In the following a survey of the numerical methods reported in the
research literature for action potential propagation in monodomain mod-
els will be presented. Although nowadays bidomain models are considered
as the state of the art, understanding of numerical methods used for the
integration of monodomain models is still of great importance for several
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reasons: the monodomain model represents a special case of a bidomain
model, only when intracellular and interstitial anisotropy ratios are differ-
ent the bidomain model will yield qualitatively different results; methods
for monodomain integration were developed first and bidomain methods
evolved from those methods which proved to be efficient there; besides mon-
odomain models are still frequently used, partly because a given problem
may not require a bidomain formulation and partly because the compu-
tational costs of the monodomain are significantly less compared with a
bidomain.

For the purpose of illustration action potential propagation in a two-
dimensional sheet of tissue in the domain Q = [0, a] x [0, b] will be consid-
ered. The monodomain model should be represented by the following set
of equations

vxnﬁvmxnzﬂFm@%?9+hmmeﬂ—Lux) (92)
d’;" =f(V,mn), n=1...N (93)

where V(t,x) is the membrane potential at time ¢ and location x = (z, y),
&m is the membrane capacitance per unit area, 8 is the surface-to-volume
ratio, ID; the conductivity tensor, %ion the total ionic current per unit area
and I;(t,x) a stimulus current per unit volume to initiate propagation.
The variable m,, represents the gating variables whereby N depends on
the used kinetic model. The initial values of V(tg) and m,(t) are typi-
cally computed by assuming steady-state conditions dV/dt = dm,,/dt = 0.
Neumann boundary conditions are imposed at all boundaries by

n-(D;VV)=0 (94)

4.3.1. Spatial discretization of equations

The majority of monodomain models has been implemented using finite
difference schemes for the spatial discretization. The major drawback of this
approach are difficulties regarding the modelling of complex geometries and
realistic descriptions of the fiber direction. Since mostly regular domains
were considered, the ease of implementation of finite differences was the
crucial argument to prefer this method. There are just a handful studies
reporting the use of other techniques. Finite elements have been used in [4,
98, 100, 101, 108, 109] and a finite volume method in [40, 41] to model a
two-dimensional domain with curved boundaries.
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The most common approach to discretize the problem has been the use
of a static uniform grid. Since the appropriate degree of spatial resolution
varies with time when solving for a propagating action potential, the sim-
plest means of obtaining sufficient spatial resolution is the use of a uniform
fine grid for the entire domain.

The spatial operators are mostly expressed in cartesian or cylindrical
coordinates. The finite difference approximations to the Laplacian operator
in cartesian coordinates typically use the centered, second order accurate
approximation

f| _ fia—2fi+ fin

z2 o - Az?
in the interior of the domain where f;_1, f; and f; 1 are grid points and Az
is the spatial discretization step. The boundaries of the domain are typically
assumed as sealed ends. At the right boundary z = a of the domain ) an
expression for the boundary condition 8f/0z = 0 is obtained by using a
ghost point z;41 (which lies actually outside the domain, but substitution
of the boundary condition into (95) at the boundary nodes will permit to
let the ghost points disappear) with the first order accurate approximation

(95)

of firr—fi
— N — 9
oz, ~ " Az (%6)
or the second order accurate approximation
of _ Jir1— fima
oz|,_,  2Az o7)

Approximation (96), although less accurate, is useful because it corre-
sponds to the discrete electrical network model [56, 61, 97] which has been
used in several simulation studies.

For the discretization of the diffusion term at the left hand side of (92)
we assume that €2 is defined as a set of nodes (z;, y;) with {x,| T; = iAx, i =
0...N;} and {y,| y; = jAy,j = 0... Ny} representing a mesh on 2 with
N cells along and N, cells across the fibers, each cell of size Az x Ay
with Az = NLI and Ay = le. We will seek approximations of the solu-
tion V defined everywhere in §) at the mesh points (z;,;) of Q and will
denote these values with V; ;. If we rewrite the diffusion term, given in the
invariant form in (92), in cartesian coordinates, assuming straight fibers
and alignment of the fiber axis with z, we obtain

o*v 0*v
V(D;VV) =O’¢LW +0'¢T6—y2 (98)
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and for the boundary condition in (94)

ov —o, ov

Oip = Oip =0 99
- oz z=0,a B ay y=0,b ( )

where Dj is a diagonal matrix diag(o;, ,0y,) with o;, designating the con-
ductivity along the fibers and o, across. The differential operators can be
approximated by finite differences given in (95) and (97). Imposing of (97)
on (95) at the boundaries permits to get rid of the ghost points. This yields
the following approximations

8%V Vie1,; —2Vi; + Vig1
UiLW g X Ag (100)
o’V Vij—1—2Vi; +Viin
S Pt v oo
in the interior of € and
*v 2(Vig1,; — Vi) . .
UiLW 0y zo'iL—Axi— 1=0, 7 =0...Ny (102)
8’V 2(Viery —Vig) . :
CugE|,_, ST Ag o LT Ne d=0N (109
o’V 2(Vig+1 —Viy) . :
I e L S EU
o*v 2(Vij—1—Viy) . .
g |, SO A =0 Ne i=N, (105)

at the boundaries of 2.

Projection of the remaining variables m,,, tion ONto § and arrangement
in vector form permits to rewrite Egs. (92)-(93) in a spatially discretized
form

dv 1

& = 7o |~ GV~ Flion + 1] (106)
d;r;“ = f(mmv) (107)

where the spatial derivatives are represented by means of the conductance
matrix Gj as Gi - v = —V . (D; VV). The vectors v, mn,iion and I are of
length L = N, - N, (the number of mesh points), the conductance matrix
G is L x L. Gy is sparse and pentadiagonal in the two-dimensional case.
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4.3.2. Monodomain integration methods

Due to the computational expense of integrating ionic models the use of
efficient and inexpensive methods becomes important. One of the simplest
methods is the explicit forward Euler method. Equations (106)-(107) are
integrated with the following scheme:

At
VL ok i [Gi vF + Tion (m¥, v*) — I¥] (108)
mi* — mb + At f(m, v¥) 109

where k denotes the time instant ¢ = kAt. Although only first order accu-
rate, this method has often been used (8, 9, 29, 30, 86, 89] owing to its
simplicity and the ease with which vectorizable code may be written [86].
A severe restriction of this method is its limited stability. Explicit methods
for parabolic partial differential equations impose a constraint on the size of
the time step for numerical stability. A stability constraint using the mesh
ratio, appropriate for the diffusion equation, given by
oAt < 1
BénAz?2 ~ 2d
where d is the number of space dimensions [16, 73|, has been found help-
ful for the monodomain equations as well [85, 112]. An explanation why
the stability constraints of diffusion and monodomain equation are linked
is found in [52]. According to (110) the time step At has to be kept very
small to prevent the solution from becoming unstable regardless of whether
there are transients in the solution whose accurate solution would require
such a small time step.

An alternative to low-cost integration schemes like forward Euler is the
use of implicit or semi-implicit methods which reduce the dependence of the
time step on the spatial resolution substantially. Most studies report the use
of a semi-implicit method referred to in the electrophysiological literature as
Crank-Nicholson method. The linear term G - v is treated implicitly as the
weighted average (with weighting factor 1/2) of the spatial derivatives at the
instants k and k+1 like in the Crank-Nicholson method [20], the nonlinear
term iion(mn, v), however, is treated explicitly. Hence Eq. (106) becomes

(110)

o 2=l 2o ttotn 2
(111)

The stability of this semi-implicit method does not depend on the spa-
tial resolution any longer and numerical stability is much better compared
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to forward Euler. The cost of this increased stability is that an algebraic sys-
tem has to be solved at each integration time step. Direct methods [27, 39]
factoring the coefficient matrix at the left-hand side of (111) once and using
the factors at each time step to generate the result, have been used. For
one-dimensional domains the coefficient matrix is tridiagonal and banded
methods are optimal. For higher dimensions the equations should first be
reordered [105] to reduce the cost of both the factor and solve steps. Beyond
a certain number of nodes (i.e. large two-dimensional or three dimensional
models) the storage costs of a direct method are prohibitive and iterative
methods have to be applied. Classical iterative methods like Gauss—Seidel,
Jacobi or SOR. have been applied to that problem as well as semi-iterative
Krylov subspace methods. These methods usually require a preconditioner
to be effective such as diagonal preconditioning or incomplete Cholesky fac-
torization [105]. For multidimensional domains, iterative methods [67, 68,
97, 113, 114] or implicit treatment in one dimension by the ADI method [7,
31, 32, 35, 56, 61, 72, 78, 92-94, 121, 123] have generally been preferred.

The integration step of the state variables m,, is performed separately
using an explicit method. Several researchers used a method developed by
Rush and Larsen [104]. Their technique is based on the observation that
the equations for the gating variables can be viewed as linear equations,
assuming that the voltage-dependent parameters used to update them
change slowly. Other approaches to improve the efficiency of the integra-
tion include the variation of the time step depending on the time scale of
the variable being integrated [121] and the use of lookup tables to store
voltage-dependent variables. It was demonstrated that with a sufficiently
fine resolution of the lookup tables the resulting deviations are negligible
and the computation time is just a third compared to the direct calculations
of the coefficients & and (8 which involve the costly evaluation of several
exponential terms [113].

In contrast to the common usage of semi-implicit methods, fully implicit
methods (i.e. those that are implicit in both v and m,) have rarely been
used. Cooley and Dodge [18] used the Trapezoidal Rule method in one of the
earliest computer simulations of a propagating action potential and solved
the resulting equation system using the Gauss—Seidel method. Mascagni [70)
applied the backward Euler method to the one-dimensional problem with
the Hodgkin—-Huxley membrane. Hooke developed a fully implicit algorithm
based on a Trapezoidal and Backward Euler integration with a nonlinear
Newton solver [52, 88]. This method, second order accurate in time, can be
augmented for variable time stepping based on a rigorous error estimate.
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4.3.3. Advanced techniques

As stated above high temporal and spatial resolutions are required to
resolve membrane depolarization with accurate upstroke and wave front
conduction velocities [57, 112]. Solution times for sufficient cycles of elec-
trical activity and the corresponding memory requirements are the main
constraints to problem size. Solution time is proportional to the number of
mesh points L = N; - N, - N, and the number of time steps T'/At. Mem-
ory requirements are proportional to L. Since desktop processor speeds
have increased dramatically over the last decade such simulations might be
carried out on desktop computers up to a certain level of computational
workload, beyond this, particularly if three-dimensional tissue should be
simulated, high performance computing environments are required.

Sophisticated numerical methods that address these constraints include
adaptivity [3, 15, 95, 121}, iterative linear system solution [53] and table
lookup to accelerate gating variable evaluation {25, 113, 120, 121]. Paral-
lel computing techniques become more and more important and have been
applied with success to large scale monodomain problems on shared mem-
ory supercomputers {17, 35, 86]. Recently the use of a cluster of worksta-
tions as a practical alternative to supercomputers was suggested to distribute
calculation and data storage among several machines connected by a local
area network [90].

Most approaches try to reduce the computational costs using adaptiv-
ity in space, in time or in both based on the following considerations: the
fast components within the activated regions of the tissue determine the
smallest possible time step, although the major part of the tissue is not
in active state and would allow integration with much bigger time steps.
Standard algorithms applied to this problem advance all the nodes of the
domain with the same small At¢, whose size is limited by the time scale of
activation. Hence, adjusting At locally is a key factor in improving compu-
tational efficiency, particularly since most of the computing time is spent
calculating the reaction term which is a purely local function without spatial
dependencies. A further reduction of computational costs can be achieved
by dynamically adapting the spatial resolution of the mesh with a very
coarse grid in regions of quiescence and a fine grid around the activated
regions.

Barr and Plonsey [83] describe a physiologically based technique known
as dynamically tracking of the active region. Again, a uniform grid is
assumed throughout the domain, but at each integration step calculations
are performed only on a subset of the grid points which includes only cells
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located near the active wavefront. The choice of these cells is based on
heuristic rules linked to the presumed shape of the depolarization waveform.
The solution is found with substantially less computational efforts com-
pared to conventional techniques and propagation velocity and the shape
of the transthreshold waveform is preserved, but distortions of the initial
electrotonic part of the waveform occurs. This method has proven to be
efficient in large-scale simulation [86-88], however, it is only useful when
gross features of propagation are of interest.

A new method to control the time step locally was presented recently
by Quan et al [95]. The integration procedure consists of two stages:
integration over the whole domain and integration over subdomains.
In the first stage between two consecutive integrations over the whole
domain the implicit integration method of Cooley-Dodge [18] with modified
alternating-direction-implicit (ADI) is used. In the second stage the model
is spatially decomposed into many subdomains and an explicit Euler inte-
gration method is applied. Since At is defined locally, a priority queue is
used to store and order next update time for each subdomain, the sub-
domain with the earliest update time is given the highest priority and
advanced first. Domain decomposition and priority queue integration allow
a large integration time step for nonactive subdomains. A performance
improvement between 3 and 17 has been reported for the integration of a
two-dimensional domain with the Luo-Rudy-II kinetic model.

The coupled cable model developed by Leon et al. [60] uses a clever
numerical algorithm that is amenable to a parallel implementation. Par-
ticularly, if the number of lateral connections between neighboring cables
is low, this method is highly efficient and has been used successfully to
simulate three-dimensional tissue with fiber rotation. It is not clear if the
algorithm is directly extensible to a true continuous structure (with lateral
connections at all cells) or twisting fibers without performance degradation.

Another adaptive approach based on this technique was presented by
Vigmond et al. [121]. The identification of subdomains where update of
variables with larger time steps is possible was done by using both temporal
and spatial methods. Integration of the gating variables was optimized by
exploiting the fact that different gates respond on different time scales. Fast
responding gates were updated more frequently than slow responding gates.
A performance improvement of 2 was reported in this study.

Until recently adaptive methods were implemented by varying either
the spatial or temporal resolution, but not both, locally and dynamically.
A new approach involving a dynamical adaption of temporal as well as spa-
tial resolution was proposed by Cherry et al. [6, 15]. The basic idea of this
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adaptive mesh refinement approach is to focus the computational efforts on
areas with large spatial and temporal gradients. It has been demonstrated
that this method is able to reduce memory and computation time require-
ments of a simulation of complex cardiac dynamics compared to a uniform
space-time mesh by a factor of 5 to 15.

Otani and Allexandre proposed a different approach based on a modi-
fied backward Euler method that allows unsynchronized time steps across
the domain. Neighboring values at new time steps are extrapolated lin-
early in time from earlier values when they are not known. An increase of
the maximum stable time step by around three orders of magnitude was
reported (76, 77].

Qu et al [93] suggested an advanced method for solving reaction-
diffusion-type equations for cardiac conduction using operator splitting
[116] and adaptive time step methods. Operator splitting allows to sep-
arate diffusion and reaction term. The advantage is that in one step the
simplest possible diffusion equation has to be solved and in a further step
the integration of the ordinary differential equations can be done adaptively.

Veronese and Othmer have formulated an efficient algorithm for mon-
odomain and bidomain problems that uses an alternating direction implicit
(ADI) step with a Multigrid step [119]. This method has been used on
extremely large scale, three-dimensional problems, but may be limited to
parallel fibers.

5. Recovery of Extracellular Potentials and Fields

Monodomain simulations do not provide extracellular potentials immedi-
ately since ®, = 0 is assumed. Nevertheless it is common practice to use the
transmembrane currents obtained from monodomain simulations to com-
pute ®.. This procedure of first ignoring the effect of extracellular potentials
to compute the excitation spread in the tissue, and then recover non-zero
potentials @, based on these data seems to be paradox, but it is justified by
the fact that ignoring ®. introduces negligible errors in shape and velocity
of action potential propagation [43, 46].

Although the approximation ®, ~ 0 is often satisfactory it is not appli-
cable under all circumstances. Then it is more adequate to use the some-
what more general bidomain model which accounts explicitly for current
flow in both extracellular and intracellular spaces. A typical problem falling
in this category is, for instance, the stimulation of cardiac tissue with exter-
nal currents (defibrillation). Unfortunately the step from a monodomain to
a putatively similar and closely related bidomain model is accompanied by
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a significant increase in computational costs. Thus whenever there is no
need to account explicitly for the extracellular flow, except in its contri-
bution to the overall conduction velocity, a treatment of the tissue as a
computationally more tractable monodomain [47] is preferred.

The following considerations should elucidate the procedure of extra-
cellular field recovery from data obtained with monodomain simulations. A
two-dimensional sheet of cardiac cells in contact with an extensive homo-
geneous isotropic bathing fluid (volume conductor) will be assumed. Under
these circumstances the extracellular resistance is small and the assumption
of a grounded extracellular region is quite well satisfied.

5.1. Source-field concept

For the computation of extracellular potentials and fields from monodomain
simulations it is necessary to establish a relation between the electrical
activation of a fiber (the source) and the concomitant volume conductor
field [84]. For the basic understanding of this concept it is helpful to regard
first the source-field relation of simple point sources. This will facilitate
the interpretation of the more sophisticated relation of fields evoked by the
sources of a cylindrical fiber.

It has been shown that the current flow field in an electrophysiological
volume conductor is quasi-static [12, 81]. This permits to derive the electric
field E as the gradient of a scalar potential ®. Consequently, the electric
field can be expressed as

E=-V® (112)
and the current density, which is related to E by Ohm’s law, as
J=0.E (113)

Assuming a point source of strength Iy, lying in an uniform conducting
medium of infinite extent of conductivity o, the radial current density
results in

Ip

J=
4moer or (114)

as a consequence of symmetry, where e, is a radial unit vector. Using (112)
we find the associated potential field of a single point or monopole source
at site x¢ as

Qm (Xf) =

1
I, =
Amo, O (115)



264 Biomathematics: Modelling and Simulation

where r is the distance from source point xs to field point x;. A further
source configuration of interest is a point source and a point sink of equal
strength Iy very close together, separated by the displacement d, where
Iyp — 00 and d — 0 such that their product p = Iy d remains finite. Such a
source is known as a dipole source p = pegq where eq is the unit vector of
the dipole axis and p = Iy d the magnitude of the dipole source strength.
A mathematical expression can be found by superposition of two monopole
sources located at xs and x; + d using (115). This is most conveniently
evaluated by taking the directional derivative of (115), since ®(x; + d) —
O(xs) = B(x¢) + VO - d — O(x¢) with VO - d = d(09/dd). Consequently,
the potential field of a dipole source may be written as

- (odea) -V (7) = o (%) we)

5.2. Volume conductor fields of cylindrical fibers

1
D 4(x¢) Vo ino

If we consider again a single cell of cylindrical geometry, infinitely long and
axially symmetric, which is immersed in a uniform medium of conductivity
oe, the extracellular potential is given by

8(x) = - [ 08.0) — o8]V (3 )ar (117)

Oe

where r is the distance between the field point x¢ and a source element
located at the surface I of the cylinder and ®; and ®. are the intracellular
and extracellular surface potentials [82, 84]. Assuming that the potentials
®;(z) and ®.(x), defined at the membrane, take on the same value through-
out the entire cross-section, permits to apply the divergence theorem to
(117) and integrate over the fiber volume V. This results in

B(xs) = 47306 /Vv- [[ae@e(x) ~ 0:%:(2)] V (})]dv (118)

which is equivalent to

O(xs) =

B, (2) — 0:0i()] - (%)dV (119)

since x¢ lies outside the cell, hence ~ cannot become zero and V2(1/r) =0
holds. Taking into account that the dot product in (119) will be zero for all
components apart from = we are allowed to further simplify the integrand to

Xf 47r0_e // Ueq) (I _Uz ( )] a;/r drdA (120)
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where dA is an element of the cross-sectional area and dV = dAdx repre-
sents a volume element. Integration by parts of (120) yields the expression

O(x) = — 47306 /A L & ((’e‘p‘f(m)"‘”q’i(z))% dzdA (121)

8x?

for the potential field, since the integrated parts, evaluated at x = 00, are
zero (the membrane is assumed to be in resting state there).

Comparison with expressions (115)-(116) obtained for monopole and
dipole point sources permits the following interpretation of equations (120)
and (121): in (120) the field arises from a source that consists of stacks of
double layer disks of thickness dz oriented in the positive z-direction. The
dipole strength of one such disk is —a?r dzd(c.®, — 0;®;)/0x, where the
term —0(0.®. —0;®;)/0z is identified as a volume density function varying
with z (see Fig. 5I(c)). Comparison of (115) and (121) reveals that (121)
is a single layer representation of the same source, where the monopole
source strength of a disk is —a?n dz 820, P. — 0;®;]/0x2, and the volume
density function is given by 82[c.®. — 0;®;]/9x? (see Fig. 5I(d)). These
disk sources are not real sources, but they are equivalent in the sense that
their evaluation yields the same field outside the fiber like expression (117),
where the sources are assumed to be located at the membrane only. Both
representation (120) and (121) are fully equivalent [63, 82].

If the field point x; is located sufficiently far from the fiber in relation
to the fiber radius a, the function 1/ in (120) and (121) can be considered
essentially as constant over the cross-sectional area. Using the monodomain
approximation ®. =~ 0 (hence V;,, = &; — &, = @,), Eqgs. (120) and (121)

simplify to
OV 0(1/7)
- _ 2y e A
Bxe) =~ - / aroy S5 S g (122)
1 o 0% 1
D(xs) = 47F0e/za i 5 ;dm (123)

Substitution of expression (42) for the transmembrane current per unit
length, i, = a?mo; 02®;/022, permits to rewrite (123) as
Bxe) = —— [ img (124)
= —dz
f dnge J, T

The assumption of a constant 1/r over the cross-section is equivalent to
assume that all the sources are concentrated at the axis of the cylindri-
cal fiber. Therefore the sources in Eqs. (122)—-(124) are line densities and
referred to as a “line-source” models.
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Fig. 5. (I) Simulation of action potential propagation with a monodomain model:
(a) Monodomain model with observation sites P and Q. Propagation is initiated at site
STIM. The central fiber is marked with a dashed line. (b) Spatial course of V;, along the
central fiber. (c) Distribution of dipole source density (arrows indicate dipole orienta-
tion) and (d) monopole source density (+/— indicates source polarity). (II) Time course
of intra- and extracellular signals at Q: Instants ¢, {2 and t3 mark the maxima and
minima of %. (a) transmembrane current im and (b) derivative im, (c) transmembrane
potential Vi, and (d) derivative Vj, (€) extracellular potential ®. and (f) derivative ®..
Scales are (a) 100 #A /cm?, (b) 1000 gA/cm?/ms, (c) 50 mV, (d) 100 V/s, () 10mV, and
(f) 100 V/s. (III) The electric field at Q: (a)—(d) The electric field Ezy in a plane parallel
to the tissue surface. (a) time course of the components E; and (b) Ej, and (c) the
magnitude of Ezy. (d) The maximum vector Ezy occurs at the instant t2 and points
opposite the direction of propagation (the vector is orthogonal to the tangent g of the
local isochrone (curved line) at site Q). (e)—(g) The three-dimensional electric field at
Q: (e) Component E, of the field orthogonal to the tissue surface. (f) Magnitude of the
field E. (g) Temporal evolution of a three-dimensional vector loop of E.

If we assume a set of cylindrical fibers arranged in parallel, each fiber
of radius a with a current density per unit area of i, = i, /2ma at the site
X, the extracellular potential at the field point xr is found with

B(xs) = — /F im(%s) 41 (125)

4o, |ref|

where x, designate the source point, rss = X — X the vector from source
to field point and dT = 2andzx is the surface area of one fiber element of
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length dz. According to (112) the electric field E at x; can be expressed
by taking the negative gradient of ®.. Applying the gradient to (125) we
obtain

_ _ 1 im(xs)rsf
E(Xf)——vq)e(Xf)—‘lﬂ_a_e/r FE dar (126)

where V operates at the field coordinates.

6. Volume Conductor Potentials and
Fields during Depolarization

This final section serves to demonstrate methods presented in this paper
by means of a simulation example. Action potential propagation in a small
piece of tissue will be simulated using a monodomain computer model.
Extracellular potentials and fields will be recovered from transmembrane
current data obtained from the monodomain model. Basic properties of
intra- and extracellular signals will be discussed in terms of their relevance
for electrophysiological measurements.

6.1. Two-dimensional tissue model

For the analysis of extracellular potentials and fields during depolariza-
tion in the immediate vicinity of a cardiac tissue surface action potential
propagation was simulated using a two-dimensional monodomain com-
puter model representing a thin sheet of cardiac tissue of size 4 x 4 mm?
(see Fig. 5I(a)). The sheet was assembled with a set of cable-like cylindrical
elements (radius a = 6 um) arranged in parallel with a center-to-center
distance of 15 um. Cables were transversely connected by a network of
resistances. The dynamic membrane behavior was described by a capac-
itance in parallel with the ionic currents corresponding to the Luo-Rudy-I
model [64]. The model parameters according to Eq. (90) were chosen as
follows: anisotropy in conduction was represented by different intracellu-
lar conductances along = (longitudinal to fibers) with o, = 4mS/cm,
and along y (transversal to fibers) with o;7 = 0.44mS/cm, the surface-to-
volume ratio was set to 3 = 2/a and the specific membrane capacitance
was chosen with &, = 1 uF/cm?.

The spatial discretization steps were set to Ax = Ay = 15 um, the
temporal integration step to At = 2us. Boundaries of the sheet were
considered to be sealed ends. Equation (90) was discretized using a semi-
implicit scheme. The ordinary differential equations of the ionic currents
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were solved with an Euler Predictor-Corrector method. The equation sys-
tem was reordered using the reverse Cuthill-McKee method, preconditioned
with incomplete LU-factorization and solved with a conjugate gradient
method. The model was implemented with Matlab, all simulations were
carried out on a Linux-PC (Dual Pentium II, 2 x 850 MHz, 2 GB RAM).

Action potential propagation was initiated by pacing five central ele-
ments at the left edge of the sheet. Propagation velocity of the elliptic
wavefront at the center of the sheet was 0.68 m/s with a longitudinal-to-
transverse velocity ratio of 1, /01 ~ 3/1.

The extracellular potential and field was computed at site @ (see
Fig. 5I(a)) at a distance of 30 um from the tissue surface by evaluating
Egs. (125) and (126).

6.2. Spatial source distribution at the central fiber

The following matter relates to the initial phase (depolarization) of the
action potential and its propagation. The spatial course of the transmem-
brane voltage V,, and the volume source density functions 8V, /dz and
0%V, /0x? were examined along the central fiber at the instant of local
activation at site P in the center of the tissue (see Fig. 5I(a)).

The action potential propagates in the positive x direction, therefore we
have activated tissue with V;,, = 420 mV at the left side of the upstroke and
resting condition with V,,, ® —85mV at the right side. The spatial course of
the depolarization of V;,(x) is monophasic. The distance between the isopo-
tential contours of V;,, = +20mV and V,,, = —80mV is about 0.8 mm on the
central fiber (see Fig. 5I(b)). For uniform propagation the space-time behav-
ior of Vi, (z,t) satisfies the wave equation V,,(z,t) = Vju(z — 0t) where 6 is
the propagation velocity. Consequently, the spatial course V;,,(z) is a scaled
and right-left reversed image of V;,,(t) (compare Fig. 5I(b) and 5II(c)).

As discussed earlier the equivalent double layer source density is propor-
tional to —dV,,/0x whereas the single-layer source density is proportional
to 82V, /0z2. Both functions are shown in Fig. 5I(c) and (d).

Since the central fiber (marked in Fig. 5I(a) with a dashed line) repre-
sents a symmetry axis in the given arrangement, the derivative 82V, /0y?
vanishes there and the transmembrane current i,, is proportional to
0%V, /822 (see Eq. (90)). Taking into account that the time course of i, (t)
is a right-left reversed image of i, (z) allows a qualitative verification of
this proportionality by comparing the waveforms of the signal 1,,,(t) at site
Q (Fig. 5I1(a)) and i, (z) ~ 8?V;,/0z? along the central fiber (Fig. 51(d)).
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6.3. Time course of intra- and extracellular signals

For the examination of the cardiac excitation spread it is required to deter-
mine the activation pattern with electrophysiological measurements, that
is to find out when activation takes place at a certain site and how fast
and in which direction the wavefront propagates. A standard procedure is
to determine local activation times (LAT) simultaneously at a given set
of recording sites and construct isochrone maps from these time mark-
ers. Each isochrone corresponds to a local activation time, the direction of
propagation is orthogonal to the isochrone and the distance between two
neighboring isochrones is inversely related to the conduction velocity (dense
isochrones correspond to zones of slow propagation and vice versa).

The most accurate determination of the instant of activation is achieved
with intracellular measurements. Quantities measurable during action
potential propagation are the intracellular potential ®; (cells are impaled
with microelectrodes) or the transmembrane potential (measurements with
optical methods which give a relative measure of V,,,). Extracellular mea-
surements reflect the activation sequence as well, but deviations from the
actual intracellular activation pattern will occur for several reasons: if
conduction is discontinuous due to inhomogeneities of the tissue like for
instance ischemic zones or conduction obstacles like connective tissue, prop-
agation delays will occur which are not reflected in the same way in the
extracellular space. Furthermore, due to the integration effect of the vol-
ume conductor (all the sources of the tissue contribute to the extracellular
signal, but to those sources which are closer to the recording site is given
more weight by virtue of the factor 1/7) signals are smoothed out somewhat
(compare Fig. 51I(a) and 5II(e)).

Since in clinical routine intracardially only extracellular measurements
are possible (by means of catheters), it is important to have a reliable
marker for the local activation time. The most common practice to deter-
mine LAT is by means of unipolar measurements of &, (Fig. 5II(f)) or
bipolar measurements of voltage differences of two closely spaced electrodes
yielding signals similar to those in Fig. 5III(a)}—(b). In the uniform case the
temporal coincidence of the instants of maximum respectively minimum
of the derivatives is very close, a property which is routinely exploited to
determine LAT. This is shown at site @) in the lateral part of the elliptic
wavefront (see Fig. 5I(a)). The time course of the intracellular signals Vi,
and i:m, of the extracellular signal ®. and of the corresponding derivatives
Vm, im and &, were computed. A very close coincidence of the maximum
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derivative of V;,, with the minima of the derivatives of i,, and ®, is observed
(see Fig. 5II(b), (d), (e)) [112].

6.4. The electric field evoked by an elliptic wavefront

The electric field near the surface of cardiac tissue is a three-dimensional
phenomenon which may be represented as a vector. The field vector E varies
magnitude and direction during depolarization. The trajectory described by
the tip of the vector is referred to as vector loop. At a given instant ¢ the
electric field vector E is accurately determined by its components, that is
E(t) = [E;(t), Ey(t),E, (t)]T, where E,, E, and E, are the projections of
E onto the cartesian coordinate axes defined in Fig. 2(a).

In contrast to measurements of uni- and bipolar extracellular signals,
measurements of the electric field are rarely used. This may be partly due
to the somewhat more difficult interpretation of vector representations and
partly due to the considerable technical efforts required for such measure-
ments. The two-dimensional electric field in a plane parallel to the surface of
the tissue can be measured with a square arrangement of four tightly spaced
electrodes, very small inter-electrode distances of less than 100 um and high
sampling rates of at least 50 kHz are required {80]. This is explained as fol-
lows: like stated in (112), the electric field E corresponds to the gradient of
the potential. In the one-dimensional case the gradient is given by 8®/dz,
graphically represented by the slope of the tangent ¢ (Fig. 51(b)). Measure-
ments are based on the approximation of the tangent ¢ by a secant s like
(®(z) — ®(x + dx))/dz. From Fig. 5I(b) it is evident that for the accurate
determination of the tangent in the steep part of Vi, (z) a spatial sampling
interval much smaller than the distance of 0.8 mm between the isopoten-
tial contours of —80 and +20mV is required. The high required sampling
rate is explained in a similar manner. The elapsed time from t; to ¢3 is
just = 400 us and the movement of the tip of the vector is extremely fast
(Fig. 5I1I(d)). Thus a too low sampling frequency would cut off the tip of
the vector loop.

In Fig. 5I1I(a)—(b) the time course of the two-dimensional field compo-
nents E, and E, are shown, in 5III(c)~(d) the magnitude of |E;,| and the
vector loop E,,. The instant of the maximum field of E., coincides closely
with the instant of local activation tz in the tissue. A further interesting
property is that the maximum field vector E;, points opposite the local
direction of propagation. This is illustrated in Fig. 51II(d) for the vector
loop at site Q. The vector Ezy(t2) is orthogonal to the tangent tg of the
local isochrone (curved line) at site Q.
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The three-dimensional field E is shown in 5III(e)—-(g). During the initial
lobe of the loop the field points upwards since the potential gradient during
this phase is mainly sustained by the capacitive outward current &y, Vs, /0t
(compare location of instant ¢ in Fig. 5II(a) and 5III(e), (g)). The terminal
lobe of E is mainly driven by the sodium inward current and the field
vector points downwards (compare location of instant 3 in Fig. 5II(a) and
5I11(e),(g)). The time course of the magnitude of E is monophasic. The field
strength E increases when the wavefront approaches, shows a maximum,
when activation takes place at the recording site, and finally decreases when
the wavefront departs.
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0. Introduction

The study of flow in tubes of complex geometry has invited a lot of attention
due to its application to wide range of problems. Tubes of complex geometry
are of common occurrence in almost all piping systems, several engineering
devices such as heat and mass exchangers, chemical reactors, chromatog-
raphy columns, processing equipments and human cardiovascular system.
Fluid dynamic principles have been successfully applied to understand and
solve many engineering problems and it is our belief that those ideas can
be applied with confidence to understand physiological flows in general and
blood flows in particular {7]. However, it is important to remember that
fluid flows within the human body raise problems very different from those
raised by engineering flows [35]. Modelling blood flows in the circulatory
system would require incorporating various essential features like the prop-
erties of blood, the pulsatility of flow, multiplicity of vessel branching and
variation in pressure/velocity of the flow.

The flow of a fluid in tubes of complex geometry can be used to under-
stand the flow characteristics of blood flow in the cardiovascular system
which provides the means for circulation of materials throughout the body.
The anatomy of the canine aorta and its main branches is described in
Fig. 1. The blood vessels are of different dimensions, are curved, elastic
and branched. Hence, the flow, which is highly infiuenced by the geometry
of the vessel, is never a Poiseuille flow. The repeated branching keeps it as
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an entry flow and due to the curvature, secondary motions are developed
in addition to the primary flow. Localized hydrodynamic effects such as
pressure distribution along the blood vessel, wall shear stress distribution,
velocity distribution, secondary vortices, separation phenomena and onset
of turbulence are crucial in understanding the nature of the flow in the
cardiovascular system.

0.1. Wall shear stress and atherosclerosis

The possibility that arterial fluid mechanics may explain why certain vascu-
lar sites are more prone than others to the development of atherosclerosis —
a disease due to the thickening of the artery wall — is responsible for the
interest in modelling the cardiovascular system through fluid dynamics. The
belief that apart from physiological factors, additional factors like the mag-
nitude of wall shear stress and physics of the blood flow in vessels of complex
geometry may contribute to the initiation of the disease brought together a
lot of fluid dynamicists to work in this area [22]. The flow details are found
to be important in determining the distribution of wall shear stress in arter-
ies, a major factor in atherogenesis. It is established that low and/oscillatory
wall shear stress are the associated hemodynamic conditions at these sites
where the disease is found to develop [6]. Departures from unidirectional,
laminar and symmetrical flow patterns in the blood circulation are found to
encourage plaque formation. The coronary arteries are exposed to greater
fluctuations in flow direction and amplitude during systole than are other
systemic arteries and increases in heart rate result in decreased diastolic
time while systolic time remains nearly constant [24]. The hemodynamic
investigations in the living systems being inadequate at the moment, the
emphasis should be on models, both theoretical as well as experimental, in
order to correlate the distribution of lesions in given anatomical regions of
human subjects with quantitative fluid dynamic measurements.

0.2. Arterial stenosis

A consequence of the thickening of the arterial wall due to the atheroscle-
rotic plaques is the occlusion of the artery — it is then called a stenosed
artery. As a result of the occlusion, the blood supply to the corresponding
organs is impaired. Arterial constriction/stenosis is associated with signifi-
cant changes in the blood flow, pressure distribution and resistance to the
flow. In regions of narrowing arterial constriction the flow accelerates and
consequently the velocity gradient near the wall region is steeper due to
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the increased core velocity resulting in relatively large shear stress on the
wall even for a mild constriction. The large pressure loss across the stenosis
is essentially dependent on the flow rate and the geometry (size as well as
shape) of the stenosis. Thus, the important characteristics to be studied in
problems of blood flow through a stenosed artery are (i) reduction in blood
supply/enhanced impedance to flow (ii) changed flow pattern causing sepa-
ration of flow or turbulence and (iii) changed properties of the artery walls
like post stenotic dilatation. The mathematical study of stenosed blood flow
was initiated by Young [55, 57]. Using a simple order of magnitude anal-
ysis, the impedance factor was obtained. Subsequently, there have been
numerous studies, both theoretical and experimental [34, 38, 41, 42, 44, 56].

0.3. Entry flows

When a fluid enters a tube with a flat velocity profile, the portion which
comes into contact with the wall is forced to be motionless in view of the “no
slip” condition. Immediately, a velocity gradient is established between the
motionless fluid at the wall and the adjacent fluid in the core. As the flow
proceeds along the tube, viscosity progressively modifies the blunt profile.
The original velocity gradient at the wall becomes reduced, and more of the
core is sheared. The core fluid is accelerated to maintain the constant fux
across a cross section. There has been a keen interest in the study of entry
flows and several publications [21, 36, 50-52] came up due to its application
to blood flows, since, as in the words of Lighthill [35], blood flow in “large
arteries is almost all entry region”. This is due to the repeated branchings
of the blood vessels which do not let the flow to become a developed one.
The problem gets more acute when a stenosis is at the very entrance of a
blood vessel [28,29].

0.4. Influence of curvature

The interest in understanding the fluid dynamics of blood circulation has
also initiated a lot of study on problems related to flow in curved tubes. The
aorta, which takes origin from the left ventricle, curves in a complicated
three dimensional way, through about 180°, giving branches to the heart,
head and upper limbs (Fig. 1). The exact distribution of velocity and pres-
sure at these vessel entrances is dependent on the ventricular contractions
and the heart valves.

The flow in a curved tube is very different from that in a straight tube.
In addition to the primary flow along the axis of the tube, there exist
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secondary components of velocity due to the lateral forces. This secondary
flow is in the form of the fluid in the core being swept to the outside of the
bend and that near the wall returning towards the inside. This induces a
pressure gradient, called the centrifugal pressure gradient, directed towards
the inner bend of the curved tube. Computed axial velocity contours and
secondary flow streamlines are shown in Figs. 2 and 3. The first theoretical
study on steady fully developed flow of an incompressible Newtonian fluid
in a loosely coiled curved pipe was made by Dean [15, 16] for values of Dean
number D (similarity parameter) up to 96.

Subsequently, there have been numerous theoretical and experimental
investigations on steady, unsteady, developing, and fully-developed flows in
curved tubes of circular and non-circular cross-sections which are exten-
sively reviewed by Pedley [46], Berger et al. [3], Ito [26].

The numerical solution of the Dean’s problem for intermediate and
higher values of Dean number D were obtained by McConalogue and
Srivastava [37] for 96 < D < 605, Truesdell and Alder [54] for 96 <
D < 3578, Greenspan [25], Collins and Dennis [11], and Dennis [18] for
96 < D < 5000 by using finite difference schemes of different accuracy. The
significance of the numerical solution by Collins and Dennis [11] was that
it was of second order accuracy with respect to grid sizes and it established

Fig. 2. Computed axial velocity contours (left) and two-vortex secondary flow stream-
lines (right) for steady flow in a curved tube of small curvature at two values of the Dean
number. (A) D = 500; (B) D = 5000 (Daskopoulos and Lenhoff {14]).
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Fig. 3. Computed axial Velocity contours (left) and a secondary flow streamlines (right)
for steady flow is a curved tube of small curvature at comparable values of the Dean
number D, showing the non-uniqueness of the flow. The flows marked S are stable, those
marked U are unstable (Daskopoulos and Lenhoff [14]).

the asymptotic structure of the solution for D — oo. The multiple solu-
tion for flow in curved pipes/ducts were obtained by Dennis and Ng [19],
Daskopoulos and Lenhoff [14], Kao [32], and Mees et al. [40].

With an objective to understand the role of fluid mechanics on cardio-
vascular diseases like atherosclerosis (the disease occurs at certain preferen-
tial sites like curved portions and flow dividers of the arterial tree), several
studies related to flow in curved pipes were taken to estimate the wall
shear stress. Padmanabhan and Jayaraman [44] and Jain and Jayaraman



Flow in Tubes with Complicated Geometries with Special Application 285

[27] studied the flow characteristics in curved constricted tubes of circular
and elliptic cross-sections, respectively, based on a double series pertur-
bation analysis for small curvature and mild constriction. The numerical
simulation of pulsatile or oscillatory flow in a curved tube was made by
Chang and Tarbell [8,9] and Schilt et al. [49].

0.5. Artefacts of catheters

Catheters attached with various functional tools have extensive use in con-
temporary medical sciences. The measurements of various physiological flow
characteristics (such as arterial blood pressure or pressure gradient and
flow velocity or flow rate) as well as the diagnosis and treatment of various
arterial diseases (such as X-ray angiography, intravascular ultrasound, and
coronary balloon angioplasty) are done through an appropriate catheter-
tool device by inserting the device into a peripheral artery and positioning it
in the desired part of arterial network [47, 48]. In addition, when a catheter
is inserted into a stenosed artery, it will further increase the impedance or
frictional resistance to flow and will alter the pressure distribution. Thus,
the pressure/pressure gradient or flow velocity/flow rate recorded by the
device will certainly differ from that of uncatheterized artery. Recent inter-
ests in flow in curved annulus [13,20, 30,33] are due to their applicability
to understand the changed flow pattern in a catheterized artery and to
introduce corrections to the measured pressure or pressure gradient using
catheters.

With the evolution of coronary balloon angioplasty, there has been a
considerable increase in the use of catheters of various sizes. It has been
shown that, by reducing the obstruction through balloon angioplasty, the
mean translesional pressure drop Ap, i.e. the difference of mean pressure
between coronary ostium as measured through the guiding catheter (2.6 mm
diameter) and just distal to the stenosis as measured through the angio-
plasty catheter (1.4 mm diameter), is reduced and the coronary blood flow
as well as the coronary flow reserve is increased. The magnitude of mean
translesional pressure drop |Ap| is often used by clinicians to gauge the
severity of the lesion and the reduction in |Ap| due to angioplasty is used
to judge the effectiveness of the interventions [23]. It is important to men-
tion here that relatively large mean translesional pressure drop of about
51 mm Hg (nearly 50% of =100 mm Hg, mean overall pressure drop across
the coronary artery) has been observed at basal flow before angioplasty.

It is well-known that the standard angioplasty catheters cause coronary
flow obstruction, and therefore, will certainly magnify the true pressure
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drop. In a series of papers, Bjorno and Pettersson [4, 5] studied extensively
the hydro- and hemodynamic effects of catheterization of vessels with and
without stenosis through various experimental models. Back [1] and Back
et al. [2] studied the important hemodynamical characteristics like the wall
shear stress, pressure drop and frictional resistance in catheterized coronary
arteries under normal as well as the pathological situation of a stenosis
present. The effect of catheterization on various flow characteristics in a
curved artery was studied by Jayaraman and Tiwari [30]; it was shown that
catheterization led to an increase in the axial wall shear stress and formation
of increased number of secondary vortices. The experimental study on flow
characteristics in a curved vessel with an aneurysm was made by Niimi et al.
[43]; it was shown that the vortices induced in the aneurysm influenced and
modified the axial velocity and secondary flow due to the vessel curvature.

It is fairly obvious from the foregoing that in the past four decades,
a lot of emphasis has been laid on internal flows, especially, in tubes of
complex geometries with an objective of understanding the flow in the
human blood circulation. We shall discuss in the following an example which
takes into account most of the complexities discussed so far and explores the
possibilities of mathematical modelling becoming a part of the procedures
in clinical medicine. The details of mathematical formulation including the
simplification of the governing equations of motion are given in Sec. 2.
The methods of approach (i) a perturbed solution and (ii) a numerical
scheme for the simplified equations are discussed in Sec. 3. The effects of
Dean number D and radii ratio k on various flow characteristics — i.e.
flow rate, pressure gradient, pressure drop, frictional resistance, friction
factor, wall shear stress, and the primary and secondary flow patterns —
are discussed in Sec. 4. Finally, we have discussed the important application
of this study to the clinical problem — flow in a stenosed artery with an
inserted catheter — as required to model in balloon angioplasty and during
blood pressure measurement using catheters. The effect of catheterization
on various physiologically important flow characteristics — i.e. pressure
drop, impedance, wall shear stress and the change in flow. The results
are used to obtain the estimates of increased pressure drop (and hence,
impedance) and wall shear stress across a coronary artery stenosis during
catheterization. In addition, many interesting fluid mechanical phenomena,
i.e. the modification of secondary streamlines due to the combined action
of stenosis and curvature, and formation of increased number of secondary
vortices due to catheterization, are brought out.
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1. Mathematical Formulation
1.1. Flow geomelry

The mathematical formulation models the curved artery as a rigid circular
tube of radius “a”, coiled in the form of a circle of radius “b”, and the
catheter as a coaxial rigid tube with radius “ka” with k < 1. It is assumed
that the stenosis has developed in an axi-symmetric manner due to some

abnormal growth over a length “L” of the artery given by

7z _, _h (zzd

1— —sinw
a a

),d§2§d+L (1)

where (%) is the radius of the stenosis, Z is along the axis of the artery and
“h” is the maximum projection of the stenosis into the lumen. Since we are
interested in the instantaneous condition of the stenosis during catheteriza-
tion, the growth of stenosis with time, which is very slow, can be neglected.
The schematic diagram of the flow geometry corresponding to a catheter-
ized curved artery with stenosis is shown in Fig. 4. It is further assumed
that the flow geometry lies in a plane so that the effect of torsion can be
neglected.

1.2. Co-ordinate system

Figure 5 shows the system of toroidal co-ordinates (7,0, ¢) used to analyze
the flow field in the geometry mentioned above.

“C” is the center of the cross-section of the tube which makes an angle ¢
with the fixed axial plane and “P” is an arbitrary point in the cross-section

Stenosis

Fig. 4. The schematic diagram of a catheterized curved artery with stenosis.
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Fig. 5. The Toroidal co-ordinate of the flow geometry.

whose polar co-ordinate is (7,8). OC is the length “b” which is the radius
of curvature of the curved tube. The axial co-ordinate is defined by z = b¢.

1.3. Governing equations of motion

Blood is modelled as an incompressible Newtonian fluid and the flow is
assumed to be steady and laminar. The equations of motion governing
the flow, in the co-ordinates system described above, are given in non-
dimensional form as [31, 46].

v ew?cos§  Gp | 1 [Vz u 20v  evsind

ATy T e TR TR R H
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where
V2=§—;+-11;%+;1—2~§—;+-;—22§:—2, (3a)
Alzu%+§56§+%§;, (3b)

7 = (u,v,w) is the velocity field in (r,0, z) co-ordinates, p is the pressure
field and H = 14¢r cos . The parameters occurring in the problem through
these equations are the Reynolds number Re, curvature parameter ¢, and
the geometric parameter 4, defined respectively, as

Re:a—lyj", e=% I=7%, (4)
where Uy is the characteristic velocity (centerline velocity in a straight
tube), v = u/p is the kinematic viscosity, 1 is the dynamic viscosity and
p is the density of the fluid. The non-dimensionalization of the various
variables has been performed as follows;

(& T W z-d 7 P
(uyv,w)—<U0, an U()), z= L ) T_a,’ p—onz- (5)

1.4. Boundary conditions

The appropriate boundary conditions for the problem under study are the
no-slip conditions at the arterial wall and the catheter wall, i.e.

u=v=w=0 atr=mn(z) and r =k, (6)
where
n(z)=1-édysinwz, 0<2<1, (7

n(z) is the non-dimensional radius of the stenosed artery and 6; = h/a is the
non-dimensional maximum height of the stenosis (stenotic parameter). The
pressure field is obtained by using the unity flux condition over the length
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of the stenosis. It is to be noted that two more parameters, i.e. the non-
dimensional catheter radius k& and the stenotic parameter 4,, enter into the
problem through the boundary conditions. The other boundary condition
includes the symmetric condition for the flow field about the central plane
(the plane passing through OX and perpendicular to OY in Fig. 2), i.e.

Ju ow
%—v—‘—%-—O at0=0 and O=m. (8)

2. Methods of Solution
2.1. Perturbation analysis

Equations (2a)-(2d) are non-linear in nature, and hence, it is difficult to
obtain a closed-form solution for all values of €, § and Re. Nevertheless, it is
possible to find an approximate solution for small values of ¢ and § through
a double series perturbation analysis; small £ (i.e. € = a/b « 1) refers to
small curvature ratio and small § (i.e. § = a/L < 1) corresponds to slowly
varying cross-section and enables the use of lubrication theory. Thus, “z”
will appear as a parameter in the problem and the solution in the stenotic
region will correspond to 0 < z < 1. We perturb all the physical variables
in powers of £ and § and seek the solutions in the form of series expansions,
as in Padmanabhan and Jayaraman [44] given by

7= (Goo + 6Go1 + %oz + - - ) + &(Gro + 611 + %G1z + - -)
+€X(qao + 621 + 2 Fog + ) + -+, (9a)

1 1
p= (31’0—1 + poo + dpo1 +) +e (3])1—1 + p1o + dp11 +)
2 f1
t+e€ gp2—1+p20+6p21+--- +y (9b)

with vog = vo1 = vo2 = 0 (since the flow is two-dimensional in the absence
of curvature, i.e. for ¢ = 0) and ugo = 0. Thus, Jug;/080 = Owg; /00 =
Opo;/860 = 0, for all j, and also, Op;_1/0r = Op1-1/00 = 0 = Opa_1/0r =
Op2_1/06. The equations of O(1) with §; = 0 corresponds to the Poiseuille
flow. The differential equations of various orders of € and & can be obtained
by substituting expansions (9a) and (9b) into Egs. (2a)—(2d) and equating
the coefficients of various orders on both sides. Details of these calculations
are in Dash et al. [13].
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2.2. Numerical approach

The three-dimensional non-linear elliptic partial differential equations
(2a)—(2d) are not amenable directly to numerical solution. So, we simplify
these equations through the following steps:

(I) We define the characteristic velocity as Uy = p/pa so that the
Reynolds number Re defined by Eq. (4) becomes unity.

(II) Since the centrifugal force terms drive the secondary motion, we
need to rescale the velocities to make the centrifugal force terms
to be of the same order of magnitude as the viscous and inertial
terms. This is accomplished through the transformation (u,v,w) —
(u,v, (26)~Y2w).

(IIT) We assume that the radius of curvature of the outer pipe is large com-
pared to its mean radius (i.e. € = a/b <« 1) so that the terms of O(¢)
and higher order terms in € can be neglected. The effect of curvature
is taken into account through the terms of O(¢'/2). This is the loosely
coiled approximations in curved pipe flows [3, 15, 16, 46].

(IV) Again, we assume that the length of the constriction is very large as
compared to the mean radius of the outer pipe (i.e. § = a/L <« 1)
so that the terms of O(d) and higher order terms in § can also be
neglected compared to the terms of O(1). Nevertheless, the effect of
constriction is taken into consideration through the no-slip boundary
condition (6) at the outer wall defined by Eq. (7) in the constricted
region 0 < z < 1. This is, in fact, the order of magnitude approach of
Young [57] modified for the flow characteristics in a curved constricted
pipe/annulus. This assumption makes the governing equations locally
two-dimensional and axial co-ordinate z appears as a parameter in the
problem.

Under the above assumptions, the pressure field can be approximated by
1
p= SGf(Z) + pl('f', 01 Z)a

where G is a constant and f(z) is an unknown function to be determined
by using the constant flux condition; f(z) = z when é; = 0. Then the
governing Eqs. (2a)—(2d) of motion are reduced to

v w? o1 u 20v
Vou—?——Q—COSQ——W'{-AOU“T_z_ﬁ%, (103)

w  w? 10p; v 2 0u
VOU+T+_2_Sm0_—;W +AOU—;§+;§59‘, (10b)

d
Vow = Dd—J; + Aow, (10c)
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Ou u 10v

o tr e
where Vo = Vs at § = 0, Ag = As at § = 0, and D = (2)'/2G =
4(2¢)'/? Re® is the Dean number. Here, Re® = G/4 is the Reynolds number
defined with respect to the centerline velocity in a Poiseuille flow. D is
regarded as the dynamical similarity parameter for curved pipe flows and
is a measure of secondary flow. Now if we introduce the secondary stream
function v and the vorticity function 2 defined through

10y oY ov wvlou
—;55, ’U—-———'a—r-, and Q—E‘F;;%, (11)
then the equation of continuity (10d) is identically satisfied and the momen-
tum equations (10a)—(10c) are reduced to
Py, 100, 10%
or2  ror  r? 90?2

=0, (10d)

= -0, (12a)
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where
1 oLl 19y
A(r, 0) = o (1 66’) and pu(r,0) = 3o (12d)
The boundary conditions (6) and (8) are reduced to
== 8¢ =0, atr=mn(z) and r=k, (13a)
2_1;‘)=0’ Yv=0=, atf#=0 and 0=m, (13b)

w(r,—0) = w(r,8), P(r,—0)=—y(r,0), Qr,—0)=-Q(r,0). (13c)

As mentioned before, df /dz is an unknown function of z which will be
determined by using the constant flux condition given by

(26)—1/2 n(z) p2w _
Il /k /0 w(r, 0, 2)r dr df = Q(k, D), (14)

where Q(k, D) is the flow rate in a curved annulus without constriction.
In view of the symmetric condition (13b)—(13c), it is necessary to deter-
mine the flow field only within the semi-annular region k& < r < 5(2),
0 < @ < 7. The simplified equation of motion (12a)—(12d), and the
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boundary conditions (13a)-(13d) are considered in Collins and Dennis [11].
But, those were for flow in a non-constricted curved pipe in which f(z) = z.
In contrary, the present analysis deals with the flow in a constricted curved
annulus and f(z) is required to be determined using the constant flux con-
dition (14). So, the flow variables will depend on the axial distance z and
radii ratio k through the boundary condition (13a) in addition to their
dependence on Dean number D. Details of the computational procedure
are given in Jayaraman and Dash [31].

3. Discussions

Since the heart surface is usually curved, the coronary arteries also tend
to be curved as they follow the surface contour of the heart. The radius of
curvature “b” of the coronary arteries is about 10 times their radius “a”,
and therefore, the value of the curvature parameter, € = a/b, is about 0.1.
The average radius of the coronary arteries is about 1.5 mm. Although the
mean Reynolds number in the coronary arteries is about 150 under resting
condition under the pathological situation of a stenosis present, the mean
Reynolds number can be even as small as 50. The values of density p and
kinematic viscosity v are assumed to be 1.05gm/cm? and 0.035cm?/sec
respectively.

For our mathematical analysis, based on perturbation method, which
is valid for small values of the geometric parameter &, we fix it at 0.1. The
stenotic parameter §; is also fixed at 0.1. These values correspond to a
typical mild stenosis in which the stenosis has a maximum height of 10% of
the radius with a length of 100 times that of the height. This case, though it
corresponds to a slowly varying mild stenosis, is expected to give an insight
into the actual situation in which the values of § and §; are larger.

The angiographic data on coronary artery shows that the proximal ves-
sel diameter ranged about from 2 to 4.7mm and therefore, for an angio-
plasty catheter (1.4 mm diameter), a rough range of values for k of interest
is about from 0.3 to 0.7 Back [1]. For smaller infusion catheters 0.66 mm
diameters as used by Ganz et al. [23], this range is even smaller and is about
from 0.14 to 0.33. Therefore, in our calculations based on numerical scheme,
the results are obtained for different values of radii ratio 0.1 < k < 0.7 and
Dean number 50 < D < 2000 based on 11 grid points (i.e. N3 = 10) in
radial direction and 19 grid points (i.e. No = 18) in azimuthal direction.
Since our primary goal is towards the application of the model to blood
flow in a catheterized stenosed artery, we have not done grid independent
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test of the results. As discussed in Collins and Dennis [11], 11 X 19 number
of grid points should be enough to obtain the desired accurate results.

3.1. Pressure drop and impedance

We define the pressure drop Ap, over a stenotic length z, averaged over a
cross-section, by

JE o g (—%) rdr df dz

02" f: rdrdf

Apz = (15)

Table 1 shows the comparison of the maximum pressure drop Appax across
a stenosis with the pressure drop Ap over the whole stenotic length (i.e.
Ap, at z =1) for e = 0.1, § = 0.1 and §; = 0.1, and different values of k
and Re. From the table, the increase in the actual pressure drop due to the
curvature and stenosis as well as the catheterization can be estimated. The
estimated increased pressure drop due to catheterization can be used to
find the error involved in the measured pressure gradient using catheters.

Table 2 shows the ratio of the pressure drop in a catheterized artery
to that in an uncatheterized artery as a function of catheter radius k& and
Reynolds number Re for § = 0.1, £ = 0 and € = 0.1, §; = 0 (without steno-
sis) and §; = 0.1 (with stenosis). In the absence of curvature and stenosis,
the pressure drop is inversely proportional to the Reynolds number Re. The
pressure drop ratio can then be obtained as

Ap. Ink
Ap, (1 —kYHInk+ (1 —k?)2

(16)

Table 1. Comparison of the maximum pressure drop (Ap max) across a
stenosis with the pressure drop (Ap) over the whole stenotic length for
e =0.1, § = 0.1 and 4; = 0.1, and different values of k and Re.

K Re=25 Re = 50 Re=175 Re =100

Apmax Ap APmax Ap Apmax AP APmax Ap

0.0 2.25 2.23 1.13 1.09 0.74 0.69 0.57 0.50
0.1 3.69 3.64 1.89 1.74 1.54 1.09 1.31 0.78
0.2 5.14 5.08 2.94 2.44 2.34 1.52 2.05 1.08
0.3 7.72 7.42 5.04 3.57 4.23 2.23 3.83 1.59
0.4 13.77 11.64 9.97 5.63 8.80 3.52 8.18 2.52
0.5 30.38 20.44 24.29 9.92 22.23 6.24 21.26 4.48
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Table 2. The ratio of pressure drop in a catheterized artery to that
in an uncatheterized artery (Ap./Ap.) as a function of Re and k for
6=0.1,¢e=0and ¢ =0.1, 61 =0 and é; =0.1.

K £=0.1,6 =0.1 e=0.1, & =0.1
For all Re Re=25 Re=50 Re=75 Re=100

0.0 1.00 1.00 1.00 1.00 1.00
0.1 1.74 1.63 1.60 1.58 1.56
0.2 2.35 2.28 2.24 2.20 2.17
0.3 3.29 3.33 3.28 3.23 3.18
0.4 4.89 5.22 5.16 5.10 5.03
0.5 7.94 9.17 9.10 9.04 8.96

where the subscripts “c” and “u” refers to a “catheterized” and an

“uncatheterized” artery respectively. Thus, the pressure drop ratio is inde-
pendent of the Reynolds number Re and depends only on the catheter
radius k, as seen in Table 2 for £¢ = 0 and 4; = 0, which agrees with the
estimation of increased mean pressure drop obtained by Back [1]. In the
presence of curvature and stenosis with € = 0.1 and é; = 0.1, the pressure
drop over the whole stenotic length is seen to be higher than the corre-
sponding drop in pressure over an unit length in the absence of curvature
and stenosis. Again, the insertion of a catheter into the artery leads to
a considerable increase in their magnitudes. The increase in the pressure
drop due to catheterization depends on the catheter radius &k as well as the
Reynolds number Re.

The impedance or frictional resistance FR, over a stenotic length z is
defined by

Ap.
zQ
where Ap, is the pressure drop over the stenotic length z and @ is the total
flow rate over a cross-section which is taken as unity. This, in fact, gives
a measure of reduction to blood flow rate for a given pressure gradient,
and hence, may be interpreted as the resistance to blood flow (frictional
resistance per unit length; Back et al. [2]) offered by the stenosis.

The axial variation of frictional resistance FR, for D = 1000 and dif-
ferent values of k& is shown in Fig. 6(A), while the variation of frictional
resistance FR, with the radii ratio k at the entrance (z = 0) and exit
(2 = 1) of stenosis for different values of the Dean number D (D = 100 and
D = 2000) is shown in Fig. 6(B). The frictional resistance FR in a curved
annulus without constriction (i.e. for §; = 0 or n = 1) corresponds to the
value of FR, at z = 0. It is seen from Fig. 6(A) that the frictional resistance

FR, = (17)
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Fig. 6. (A) Axial variation of frictional resistance FR; in the presence of constric-
tion with constricted parameter §;1 = 0.1, curvature parameter ¢ = 0.1, Dean number
D = 1000, and different values of radii ratio k; (B) Variation of FRy with k at the
entrance z = 0 and exit z = 1 of stenosis for §; = 0.1, = 0.1, and different values of D.

FR, in a constricted curved tube (i.e. for £ = 0) does not vary much over
the length of the constriction. But, in a constricted curved annulus with rel-
atively higher value of radii ratio k, it varies significantly over the length of
the constriction. It is further depicted that, the frictional resistance FR, in
the downstream of the constriction is higher than the corresponding value
in the upstream. It is observed from Fig. 6(B) that, the frictional resistance
FR, does not vary much with the Dean number D, and it becomes almost
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Fig. 7. (A) Axial variation of frictional factor FF3 in the presence of constriction with
constricted parameter §; = 0.1, curvature parameter € = 0.1, Dean number D = 1000,
and different values of radii ratio k; (B) Variation of FF; with D at the exit 2 = 1 of
stenosis for 61 = 0.1, = 0.1, and different values of D.

independent of D (i.e. the effect of curvature is nullified) for higher values
of radii ratio k (e.g. for k£ > 0.4). It is further depicted that, for higher val-
ues of k, the frictional resistance in the presence of constriction (i.e. FR, at
z = 1) is considerably higher than the corresponding value in the absence
of constriction (i.e. FR, at z = 0). However, the frictional resistance FR,
increases with the increase in the value of radii ratio k.

It is inferred from our present results that the insertion of a catheter
into an artery leads to an increase in the frictional resistance. The factor by
which frictional resistance increases due to catheterization can be estimated
by obtaining the ratio of frictional resistance in a catheterized artery to that
in an uncatheterized artery.

The comparison of frictional resistance ratio FRR in a curved
catheterized artery (¢ = 0.1) with that in a straight catheterized artery



298 Biomathematics: Modelling and Simulation

Table 3. Frictional resistance ratio FRR in a straight (¢ = 0) and curved (¢ = 0.1)
catheterized artery without stenosis (§; = 0) (i.e. FRR, at z = 0) for different values of
catheter radius k and Dean number D.

K\D e=01, 6 =01 e=0.1, § =0.1
For all Re D=100 D=500 D=1000 D=1500 D = 2000
0.1 1.741 1.705 1.323 1.246 1.220 1.202
0.2 2.349 2.289 1.732 1.523 1.445 1.406
0.3 3.289 3.201 2.414 2.059 1.865 1.756
0.4 4.894 4.760 3.590 3.049 2.723 2.499
0.5 7.938 7.719 5.821 4.943 4.408 4.033
0.6 14.586 14.182 10.695 9.082 8.099 7.409
0.7 32.611 31709  23.910 20.304 18.105 16.563

Table 4. Frictional resistance ratio FRR in a straight (¢ = 0) and curved (¢ = 0.1)
catheterized artery with stenosis (61 = 0.1) (i.e. FRR, at z = 1) for different values of
catheter radius k and Dean number D.

k/D =01, 61 =01 e=01, 6§ =01
For all Re D=100 D=500 D=1000 D=1500 D =2000

0.1 1.779 1.734 1.339 1.261 1.233 1.230
0.2 2.461 2.389 1.797 1.574 1.489 1.466
0.3 3.571 3.463 2.596 2.206 1.990 1.893
0.4 5.596 5.424 4.066 3.442 3.066 2.845
0.5 9.815 9.511 7.189 6.034 5.368 4.970
0.6 20.491 19.854 14.882 12.596 11.206 10.373
0.7 58.266 56.452 42.315 35.813 31.862 29.495

(¢ = 0) corresponding to §; = 0 (without stenosis) and §; = 0.1 (with
stenosis) and different values of k¥ and D are shown in Tables 3 and
4, respectively. It is observed that the frictional resistance ratio FRR
increases with the increase in value of radii ratio k. Again, in a curved
catheterized artery, FRR is smaller than the corresponding value in a
straight catheterized artery, and it decreases further with the increase
in Dean number D. Thus, these results indicate that the increase in the
frictional resistance (or equivalently, the increase in the pressure gradi-
ent at a constant flow rate) due to catheterization at a higher value of
D is less than that at a lower value of D. For & = 0.5, the frictional
resistance in the catheterized artery without stenosis (i.e. for é; = 0
or 7 = 1) is about 5.8 times of the value in the uncatheterized artery
at D = 500 and 4 times of the value in the uncatheterized artery at
D = 2000. In the presence of stenosis with §; = 0.1, this increase factor
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(7.2 at D = 500 and 4.97 at D = 2000) is even higher than the correspond-
ing value in the absence of stenosis for which d; =0 or n = 1.

The friction factor FF in a curved tube (i.e. for k = 0), is considerably
higher than the corresponding value in a curved annulus. For D = 2000, the
friction factor FF in a curved tube (i.e. for k¥ = 0) is about 2 (implying a
50% reduction in flow rate due to curvature effect). But, for the same value
of D, the friction factor FF in a curved annulus with the value k£ = 0.1 is
about 1.35 (implying a 26% reduction in flow rate due to curvature effect).

For higher values of k, the friction factor decreases further, and for
k > 0.4, it becomes almost independent of Dean number D, implying that
the curvature effect is almost nullified for £ > 0.4. It is further depicted
that, for all values of & > 0.1, the variation of friction factor FF with the
Dean number D is insignificant compared to that in a curved tube (i.e. for
k = 0) whenever D < 500.

3.2. Wall shear stress

The non-dimensional wall shear stress (shear stress non-dimensionalized
with respect to p(u/(pa)?) at any axial point z is approximated by

17200
or

It is evaluated numerically using four-point backward difference formula.
The axial variation of wall shear stress 7, for D = 1000, D = 2000 and
different values of radii ratio k is shown in Fig. 8(A, B), where as the
variation of wall shear stress 7, with the Dean number D at the entrance
z = 0 and peak z = 0.5 of stenosis for different values of radii ratio k is
shown in Fig. 8(C, D). The wall shear stress 7 in a curved annulus without
constriction (i.e. for §; = 0 or 7 = 1) corresponds to the value of 7, at 2 =0
or z = 1. It is seen from Fig. 8(A, B) that, for smaller values of radii ratio k,
the wall shear stress 7, varies markedly along the length of the stenosis. It
is further depicted that the wall shear stress 7, increases with the increase
in Dean number D but decreases with the increase in radii ratio k. For a
fixed pressure gradient G, or equivalently for a fixed value of D, increase in
the value of k results in the decrease in flow rate @), which in fact results
in the decrease in wall shear stress 7,. But, if the flow rate @ is maintained
to be constant (independent of k), then the increase in the value of & would
result in an increase in the pressure gradieni G which would, in fact, lead to
an increase in the wall shear stress 7,. It is seen from Fig. 8(A, B) that the
wall shear stress 7, remains positive over the entire stenotic length. Thus,

T, & —(2€) (18)

r=1
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Fig. 8. (A, B) Axial variation of wall shear stress 72 in the presence of constriction with
constricted parameter §; = 0.1, curvature parameter £ = 0.1, Dean number D = 1000,
and D = 2000, and different values of radii ratio k; (C, D) Variation of 72 with D at
the entrance z = 0 and peark z = 0.5 of stenosis for 67 = 0.1 £ = 0.1, and different
values of k.

this analysis could not detect the point of separation in the downstream
of the flow field. To capture the separation points, the governing equations
have to include all the neglected terms, and a better numerical procedure
has to be adopted.

3.3. Flow behavior

Figure 9 shows the secondary streamlines (¢ = constant) in r — # plane
of a curved annulus without constriction (i.e. for ; = 0 or n = 1) for
(a) k = 0.1, D = 1000, (b) k = 0.1, D = 2000, (c) k¥ = 0.3, D = 1000,
(d) k = 0.3, D = 2000, (¢) k£ = 0.5, D = 1000, and (f) k = 0.5, D = 2000.
It is observed that the streamline pattern divides each half of the cross-
sectional plane into two parts forming two loops which is in contrast to the
streamlines pattern in a curved tube where only one loop formation occurs
unless a dual solution exists [3,11,25,37,46]. The loop near the inner wall
is smaller for lower values of radii ratio k. But, as the value of radii ratio &
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Fig. 9. Secondary streamlines.

increases, the loop near the inner wall becomes larger and the loop near
the outer wall becomes smaller.

4. Concluding Remarks

The example of flow through a curved annulus with a local constriction at
the outer wall brings out many interesting fluid mechanical phenomena due
to the effect of flow geometry (inner wall radius, outer wall variation and
curvature) as well as the dynamics of flow governed by the Dean number
(dynamical similarity parameter) D. These results can be used to estimate
the increase in frictional resistance or pressure drop in an artery when
a catheter is inserted into it. It is found that, because of the curvature,
the increase in frictional resistance due to catheterization depends on the
catheter size (radii ratio k) as well as the Dean number D. In the absence
of constriction and depending on the value of k¥ ranging from 0.1 to 0.7,
the frictional resistance increases by a factor ranging from 1.32 to 23.91 for
D =500 and 1.20 to 16.56 for D = 2000. But, in the presence of constriction
and with the same range for k, the increase in frictional resistance is by a
factor ranging from 1.34 to 42.32 for D = 500 and 1.18 to 29.5 for D = 2000.
These estimate for the increased frictional resistance can be used to correct
the error involved in the measured pressure gradients using catheters.
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The study gives a lot of hope that fluid dynamic principles can be used

effectively to model physiological phenomena as well as the procedures in
clinical medicine. The ultimate success in making these sort of studies as
a part of the clinical medicine or procedures will require a wholehearted
interdisciplinary research involving engineers, physiologists, applied math-
ematicians and physicists.
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Biomechanistic and theoretical models can be applied to investigate complex
reproductive processes. The application of Laplace equation to follicle rupture
helps in obtaining insight into the simultaneous effect of a number of factors
pertaining to bursting of the follicle. Gamete transport dynamics via peristaltic
analysis for cilia beat has been outlined for the oviduct. The metachronal
wave generated in the wall of the vas deferens contradicts peristalsis to be the
dominating factor in spermatozoa transport. Biomechanical characterization
of the forces involved in the mechanics of sperm-egg interactions are outlined.
Generalized Hooks law to obtain displacements for specific load conditions
during fetal head moulding and formulation of a fertilization index based on
Von Foerster’s equation accounting for both epididymal spermatozoa reserves
and spermatozoa numbers for a specific ejaculation frequency are described.

Keywords: Reproductive processes; theoretical models; mathematical analysis
biomechanics; spermatozoa.

1. Introduction

Bioengineering is the application of engineering and technology to the
problems of biology. Engineering methodology application to reproductive
biology attempts to describe quantitatively the different reproductive phe-
nomenon and to assess the effects of different mechanisms. Biomechanics
of reproductive biology describes the mathematical modeling of processes
and events in reproductive biology such as descriptions of processes of ovu-
lation, models of cell cleavage, models of effects of contractions and cilia
on gamete transport, models of contractile pattern in the uterus, relation
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of viscosity of sperm transport in the cervix, computer models and simu-
lation of hormone interactions, models of fluid flow in the tract and blood
flow in the tract, analysis of sperm motility and relation of sperm motility
to energetics and morphology. The mechanics of some reproductive pro-
cesses, feedback control of spermatozoa maturation and fertilization index
formulation are being presented.

2. Mechanics of Ovulation

The biochemical aspects of ovulation have been most extensively studied.
However, in order to elucidate fully the mechanism of this complex pro-
cess such as enlargement and rupture of follicle, it is important to study
biomechanical aspects of the process to get an insight into the mechanis-
tic dynamics of ovulation physiology [10]. This is facilitated by the use of
mathematical and physical model of mammalian follicle.

Experimental observations of follicular maturation suggest a hypothesis
that distensibility of the follicular wall is compatible with constancy in pres-
sure and increase in intrafollicular fluid volume together. Mathematically,
bursting of the follicle without a pressure increase suggests the presence
of a trigger at the time of rupture. Lardner et al [7] have put forward
a simple but elegant model correlating all the above mentioned findings
and thoughts. They base the model on a thin shell approximation repre-
sentation. With this approximation the wall stress 1 is given by Laplace
equation

_PR

Ty
where p is the internal pressure, R the inner radius of the shell and ¢ is
the wall thickness. The hypothesis proposed suggests that the distensi-
bility of the follicular wall material begins to increase near the period of
ovulation. An increase in distensibility implies a reduction in the mod-
ulus of elasticity. The decrease can be estimated with the help of the
equations formed. At the time of ovulation R/Ro = 1.5 where Ro is the
unstressed radius. Current experimental techniques do not allow a reli-
able quantitation of the modulus of elasticity of the follicular wall. But
some verification of the model can emerge from an estimation of the fol-
licular wall thickness. Indeed by ultrasonography, it is noted that during
follicular maturation the follicular wall thickness reduces and there is a
rapid decline in the thickness, close to the time of ovulation. Therefore, in
spite of the gross approximations involved, the biomechanical model does
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help in obtaining an insight into some of the factors pertaining to follicle
rupture.

3. Transport of Gametes

The dynamics of transport of gametes is an important aspect of the repro-
ductive process and controlled fertility. Hence, there is a need to understand
the intrinsic physiology of the transport process. Major investigative meth-
ods of experimental study cannot provide all details of the transport process
without significantly altering the physiological process itself. Experimen-
tal studies on gamete transport are accomplished through common imag-
ing systems such as ultrasonics, X-rays and magnetic resonance. However,
gamete imaging across the walls of reproductive tract cannot be performed.
An alternative is to examine the problem from an analytical viewpoint
with parameters and boundary conditions being obtained from experimen-
tal observations whenever possible. By coupling experimental observation
with theoretical modeling, various limitations can be surpassed. Experi-
ments provide information regarding the movement patterns of the repro-
ductive tract. Theoretical model correlates this data with gamete transport
mechanism.

3.1. Ovum transport

Ovum descends the fallopian tube at speed characteristic to the animal
species and it is apparent that ovum does not possess a steady one direc-
tional progression. The back and forth motions, periods of hold up at some
sites and phases of rapid and slow movement seem to follow a stochastic
pattern [13]. However, since the random motion is transient, the motion of
the ovum undergoes a deterministic pattern. No intrinsic motility is evi-
dent from the structural details of the ovum. The movement of ovum is
passive under the influence of external forces. Considering the structure
and function of the fallopian tube, the factors which may contribute to
ovum propulsion include: drag by secretory fluid flow, cilia action or the
wall contractions [1].

The secretory fluid volume being small, theoretically an object sus-
pended in this fluid can be dragged in the direction of flow. Gupta and
Sheshadri [5] have analysed peristalsis for a sinusoidal waveform. It is
assumed that the tips of cilia in the testis form a sinusoidal envelope. If
p(z,t) is the pressure at time ¢ at any point (z,0) along the axis of the
tube, and u(z,r,t) is the velocity of fluid within the tube at a point z, at
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a distance r from the central axis at time ¢, the final flow rate equation is
given as

2
2aoc

U(z,r,t) = X

(hz-—'rz)—a:—

2
+2®sin Tﬂ(x — ct) + ®? sin® 2%(:1; - ct)]

where ¢ is wave velocity of cilia metachronal wave; A the wavelength; &k the
taper coefficient; ag is the resting radius. The average flow velocity (U) over
the ovum is given by

1 T (R
UZWA -/0 u(z,r,t)drdt

where T is the total time period and R is ovum radius. The instantaneous
ovum velocity is approximately equal to U because of the viscous drag. The
expressions have been evaluated taking appropriate values: ¢ = 200 ps™1;
b=5pm; A = 500pum; k = —0.04; ap = 2500 pum; T = 2.5s; and R =
75um. The flow velocity has been calculated to be 0.1 us~1. Hence, fluid
flow generated by ciliary action cannot be a significant contributor to ovum

propulsion.

3.2. Transport of spermatozoa

The dynamics of transport mechanism of spermatozoa is an important
aspect of the reproductive process and controlled fertility. Spermatozoa as
they emerge from the epididymis have already acquired a definite flagellar
swimming character but the linear progression on account of this move-
ment is too slow to contribute significantly to the rapid transport required
at the time of ejaculation. Guha et al. [3] examined the mechanisms involved
in the transport of spermatozoa in quiet and ejaculatory state. Based on
biomechanical analysis of the morphological structures involved in trans-
port mechanism, the following factors can be identified as possibilities for
sources of pressure gradient: pressure exerted by the epididymis; negative
pressure or a sucking action produced by the flow of seminal vesicle fluid;
relaxation of elastic recoil of the stretched walls of the vas deferens and
active contraction of the wall of the vas deferens constricting the lumen.
The above factors may operate simultaneously, but the various parameters
were initially analysed independently. The fluid transport parameters indi-
cate that peristalsis plays an important role for slow filling of the ampulla
in the vas deferens. A strong contraction of the ampullar end was observed
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and it was estimated that the volume within the ampulla reduces by 90%.
Thus 0.018 ml of spermatic fluid will be expelled for ampullar volume of
0.02 ml, which may either move distally or proximally. At the proximal end
is present the long lumen diameter vas deferens main segment, preventing
any possibility of spermatic fluid flow due to high flow resistance. However,
the wide ejaculatory duct at the distal region allows practically the entire
volume to flow into the ejaculatory duct.

For peristaltic analysis of spermatozoa the metachronal wave may be
considered to be generated in the wall of the vas deferens {4]. The time
period T of the cycle of the peristaltic waves is 7.5sec, wave velocity
c = 8mms~!, peristaltic ratio ¢ = 0.2 and lumen radius a = 0.16 mm.
Using low Reynolds-number infinite-wavelength analysis with appropriate
parameter values the maximum flow for no pressure build-up is

a’c [ 84%(1 — ¢?/16 5
Qmax—T{W}—lﬁﬁxlﬂ ml/sec
And the maximum pressure per unit wavelength for no flow is
Ane \ [64md?(1 — ¢?/16
A-Pmax = VU
oas (52 ) [ M
= 0.108 KN/m”.

Thus the reduction in the peristaltic action cannot be considered as a potent
factor for the failure of pregnancy following vasectomy. Also, in designing
reversible occlusion valves for the vas deferens, the interruption of peri-
staltic wave at the site of implantation of the device need not be taken as
a contraindication for sectioning the vas deferens.

4. Mechanics of Sperm-Egg Interaction

The fusion between sperm and egg plasma membrane, during fertilization
has been well studied. However, the molecular mechanism of the fusion pro-
cess needs further investigation. The mammalian sperm traverses various
barriers before fertilization can occur [11]. The mammalian egg is encap-
sulated by the outermost cumulus and inner zona. Before reaching the egg
plasma membrane, a sperm must first bind to the zona, reorient towards
the egg, and penetrate the zona. The head of a motile mammalian sperm
tends to move in three dimensions. Hence when bound to the zona, it not
only pushes on the zona, but also pulls away from it. For the sperm to
remain bound, the tensile strength (F's) of the sperm zona bonds must be
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great enough to withstand the maximum pulling force (Fp) exerted by the
sperm.

To mimic the mechanics of a motile sperm stuck to the surface of the
zona, Baltz and David [6] employed a suction micropipet to exert a suction
force (F's) analogous to the adhesive force (Fp). Since the magnitude of F's
could be manipulated, it was possible to measure the minimum net strength
required to tether the sperm to the zona.

The force exerted by a suction pipet on a surface occluding the opening
at its tip is

Fs= (Pout _I)in)A

where P, is the pressure inside the pipet, P,y is the pressure outside the
pipet (i.e. 1 atmosphere) and A is the area of the opening.

They proposed that if a motile sperm is being held on the pipet by
suction alone, the suction force exerted by the pipet on the sperm must
be greater than the force with which the sperm pulls against the pipet
opening. If the suction force is then lowered slowly, the sperm first begins
to swim freely when the suction force drops below the maximum pulling
force extended by that sperm. Thus using the above equation together with
the measured area of the opening, the pressure at which each sperm is first
able to swim free yields the maximum pulling force exerted by that sperm.
In a separate method the force exerted by a sperm was determined on the
basis of flagellar beat parameters (length of the flagellum, beat frequency
and beat shape that were measured experimentally).

For motile sperm (at 35° to 37°C), the maximum pulling forces were
found to range between 11 and 28 wdyn, with a mean of 20 £ 1.5 ndyn
(mean £ SEM, n = 15 sperm) using five different pipets whose openings
had diameters from 1.0 to 1.5 um.

5. Fetal Head Molding

There have been various speculations regarding the forces producing mold-
ing of the fetal head during labour. Limitations of force measurement data
and its reliability and reproduction are a major hindrance in biomechan-
ical analysis of fetal head molding. The phenomena of head molding has
then to be considered on the basis of direct experimental data on forces
as well as inferences derived from other related observations. The parame-
ters involved include: structure of the system, movement of the structures,
measured forces and physical properties of the materials forming the fetal
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head and the maternal pelvis. For biomechanical study, Hooks law, that is
stress is proportional to strain, is the basis of all analysis.

Stress

Modulus of Elasticity E = Strain

Taking notations in the Cartesian coordinates, in the general case in an
elemental volume of a stressed body, there are six components of stress
expressed as a vector

{O'}T = [020y0 2 TayTyzToz)|

where ¢, 0y and o, are the normal components of stress and 7, 7,, and
T,z are the components of shear stress. At a point there are six normal
components of strain given by the strain vector

{E}T = [5x5y527xy7yz’Yzm]

where €, €y and €, are the normal strain and <y, vy, and 7, are the
shear strains.

Each of the six stress components may be expressed as a linear function
of the six components of strain, to obtain a generalized Hooke’s law.

[0, | [C1h Ci2 Ci3 Cis Cis Cis| [ €
oy Cot Cap Coz3 Coq Coz Cop Ey
oz | _|Cs Cs2 Css Cas Css Cse €z
Tey Cy Cio Caz Cya Css Cag | | Yay
Tyz Cs1 Cs2 Css Csa Css Css | | Ty

(722 ] | Ce1 Ce2 Ces Cea Ces Cos| | Vax |

The terms Cs incorporate the relationship between the modulus of elas-
ticity and the Poisson’s ratio which is the ratio between the lateral strain
and the longitudinal strain. In general case where the material is anisotropic
21 elastic constants come into the picture. The present analysis is simplified
considering the orthotropic nature of the material and that the thickness
of the skull bone is small in relation to the overall dimension so that plane
stress conditions will be applicable. Under these approximations all terms
relating to the z direction disappear and stresses and strains are taken in
the radial direction (r) and the tangential direction (t). These steps give
the simplified expressions of McPherson and Kriewall [9].

oy Cu Ci2 O Er
op | =|Cor C O &t
Ort 0 COo Csz] L



312 Biomathematics: Modelling and Simulation

E
Ciy=—"TFT—
1- Vrtltr
Et
Cop= ———
22 1 — ypvtr
Cho = Eivyy
1 —vpvy
Evy,
Cy = ——
A 1 — vpvtr
C33 = Gry

where v,; is the Poisson’s ratio for load in the r direction with lateral
contraction in the ¢ direction; and vtr is the Poisson’s ratio in the t direction
with lateral contraction in the r direction. G, is the shear modulus, which
may be approximated by

ET‘
Cre = 2(1+ vpe)
By symmetry Ci2 = Cz; and hence
E. E
V—'rt B Vtr‘

The equation is solved by matrix inversion to obtain the strain and thereby
the displacements for specific load conditions as derived from experimental
study during labour.

6. Fertility Index of Spermatozoa

In analysing the contraceptive efficiency of a drug, an index for the fertiliz-
ing capability of the aggregate of spermatozoa in the ejaculate is required
[3]. Von Foerster’s equation can be applied to the mode of sperm matura-
tion in epididymis and sperm number in the ejaculate [12]. Here ‘a’ is the
age of spermatozoa, A is the loss function, K3 = proportionality factor,
Ky = factor representing biochemical rate processes and K3 = factor asso-
ciated with destruction process of the spermatozoa. If 7(t, a) is defined as
the number of spermatozoa present of age between a and a + da at time t,
then the relationship of this function with the loss function, neglecting
ejaculatory loss, can be represented as

on  914a) _ (@)t a).

ot + da
The input into the system is at a constant rate. Therefore the input function
a(t) is given by

a(t) = n(t, 0) = K4
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where K} is the input rate constant and having a typical value of 50 million

per day. Thus
/ X(x)dw] .

n(t,a) = ot — a)exp [—
Jr=0
Since a(t) is time independent function 7(t,a) also becomes independent

of time and may be written as n(a). Therefore

(a) = Kyex _/a Ky 1—; dx
" T Aaexp :l:=0K2 1+K.’L‘2 )

If no loss of ejaculation occurs, the total number of spermatozoa present in
the epididymis at any time ¢ is

N(t) = /O " n(a) - da.

The quantity is also termed as the epididymal reserve. The integration
limit of ¢ is taken because the upper bound of spermatozoa age is the time
elapsed from the reference, that is, time equal to zero. At this instant the
epididymis is considered as being empty.

The average age of the spermatozoa in the epididymal reservoir at any
instant of time ¢ is given by

fo an(a)da

Jyn(a)da

As non-integral forms are involved, the expressions were numerically evalu-
ated for discrete time intervals equal to a day. Different values are ascribed
to the parameter K, to obtain the results. A value of K = 0.0004 meets the
physiological requirements that the average age stabilizes at around 10 days.
That is, if an ejaculation occurred following stabilization, the average epi-
didymal transit time of the ejaculated spermatozoa would be 10 days. If
the epididymis is emptied by two ejaculations per day continued through a
week and then the subject is given sexual rest, the epididymis reserve builds
up and stabilizes in about three weeks time [8]. For K = 0.0004, such char-
acteristic is obtained. Based on these correlation’s, it may be concluded
that the above given expression with K = 0.0004 is appropriate.

a™(t) =

7. Conclusion

The use of mathematical modeling is an effective method to link quan-
titative engineering techniques with qualitative physiological descriptions.
The integration of engineering with biology and physiology has invariably
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brought new understanding to complex biological processes as is evident
from the recent resurgence of utilization of physiological system modeling
in most areas of biomedicine.
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Investigation of bioelectricity phenomena has gained recently a steadily increas-
ing interest in medical and engineering applications. This chapter deals with
the computational aspects of bioelectromagnetic interactions and their related
bioelectric processes, aiming to provide a better physical understanding of
the effect of functional electrical stimulation (FES) on biological tissue and
to set-up models that can provide quantitative insights into this bioelectro-
magnetic phenomenon. These goals are achieved here by an explicit image
series construction of the macroscopic electromagnetic field within the multi-
layer tissue. The novel image series expansion scheme, outlined here for qua-
sistatic Green’s function in multilayer media, utilizes a unique and explicit
recursive representation for Green’s function. Our recursive construction con-
vergences under rather general constraints on the media parameters. The use-
fulness and effectiveness of the proposed analysis is demonstrated through an
hybrid scheme, combining image series and moment method procedures, that
are capable of handling effectively layered medium problems excited by an elec-
trode array. The inclusion of a collective image term, expressed in a closed form
asymptotic evaluation of the series remainder integral, significantly accelerated
the image series convergence and the overall algorithm speed and accuracy.
This proposed computational procedure can be used as a simple tool for pro-
ducing analytical data for testing numerical subroutines applied to simulate
direct (FES) and inverse (bioelectromagnetic imaging) problems in biomedical
applications.
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1. Introduction

1.1. Bioelectromagnetic interaction between electric field
and biological tissue: computational aspects

Knowledge of the potential distribution caused by an electrode array during
functional electrical stimulation (FES) (forward problem) or detection of
the potential caused by activation of excitable cells (inverse problem) is a
very important topic in biomedical engineering [34, 35,41, 42, 50, 54, 66, 73].
For instance, when surface electrodes are used, for either stimulation or
detection, the current has to pass through non-excitable regions such as
skin, fat and connective tissues as well as through the actual excitable tissue.

The major difficulties in the application of field theory on biological
tissues include: (a) non-homogeneity, i.e. different tissues have different
electrical properties; (b) anisotropy, i.e. properties depend on direction of
measurement; (c) dispersivity, i.e. properties are frequency dependent [24];
(d) complex electrode/tissue interface [74].

Analytical electromagnetic field theory is well developed for handling
problems involving isotropic, homogeneous infinite media. Field theory is
also reasonably well developed for finite media of specific and limited types
of geometry {18, 43, 88, 92]. Planarly layered media remain the most studied
non-homogeneous media due to simplicity of modeling. Meaningful results
can be obtained from modeling without intensive computational calcula-
tions. A layered medium may serve as a simplified first-order prototype
model for a variety of realistic biomedical problems, where the dependence
on the number of electrodes, tissue layers and their electrical properties has
to be accounted for [36, 87]. Furthermore, closed-form solutions in terms of
spectral integrals (Sommerfeld integrals) allow for asymptotic approxima-
tions, providing a more physical insight into the problems.

Models of field distribution in a region of planar stratification
have been applied in several disciplines such as geophysical prospect-
ing [33, 45,75, 98], remote sensing [6,23], microstrip circuits and antennas
[2,3,13,14,47,59,95,96], acoustical engineering [103], wave propaga-
tion theory [4,18,94,101,102,105], and electrode grounding in power
systems [19, 20,49, 104].

Most of the investigations dealing with electric field propagation the-
ory in plane stratified media, fall into two main categories: the “harmonic
school” and the “image school”.

1.2. Harmonic school

Olendorff [76] gave the solution for the electric field in plane stratified media
in the form of an integral involving Bessel functions. Later, Stefanesco and
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Schlumberger [86] gave for the case of three layer media a particular deriva-
tion of the Hummel formulae [40] by direct solution of Laplace’s equation in
terms of Bessel’s functions. They also indicated the nature of the solution
for the general case of n layers. Direct calculation of the determinants of
order 2n, which occur in this solution, is computationally inefficient. Thus,
Sunde [89] suggested instead a recursive relation based on the transmission
line theory.

The major problem with the harmonic approach has been the numerical
computation of the potential expression, written as an infinite integral con-
taining a combination of Bessel and kernel functions. This form does not
lend itself to analytical integration. The kernel (Green’s function) exhibits
the well-known singularity 1/r. Recently, one of the following three tech-
niques has been used to compute the space domain of Green’s function:

(1) Discrete complex image [19,39,48]. This method approximates the
smooth part of the spectral domain Green’s function by a sum of
complex exponentials (Prony’s method [37]). This technique heavily
depends upon the accurate approximation of the kernel function. In
the general case, this leads to a system of nonlinear equations whose
solution is rather difficult. In addition, serious accuracy and stability
problems make it impractical for application in more than two layers.

(2) FFT scheme. These methods enforce Dirichlet or Neumann bound-
ary conditions on a bounding box, and use 3D FFT to perform the
transformation. They require, however, extremely fine sampling to suf-
ficiently cover the spectral contents in order to achieve a reasonable
accuracy [11].

(3) Numerical integration. Green’s function may be represented via a one-
dimensional Hankel transform [29,105]. Although robust, the numeri-
cal evaluation of this transform, is relatively time consuming. However,
the use of the Fast Hankel Transform reduces this cost significantly.
Nevertheless, numerical evaluation of the potential integral is not effec-
tive, in particular, when this integral has to be evaluated repeatedly in
a numerical algorithm. Such is the situation in the solution of a 3-D
potential problem for a large number of mesh points to calculate the
potential distribution in multi-layered media due to a finite electrode
array.

1.3. Image school

In the static case, Laplace equation for electrostatic (or magnetostatic)
potential can be solved in a space region using a technique, in which the
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required boundary conditions for the potential are simulated by using one
or more image charges placed in a different region.

The physical interpretation via the wave/transmission line analog can be
done as follows: At the beginning, the current source generates two starting
voltage waves one up and one down at the excitation point. The two waves
can independently propagate. If the waves meet an impedance discontinuity,
they split into reflected and transmission waves according to the boundary
conditions. The reflected and transmission waves then independently prop-
agate, each being attenuated by the splitting process and the distance it
has traveled. Waves passing the observation point are called images.

In the quasi-optic limit, the physical interpretation via ray optics anal-
ogy can be used. There is some analogy between the way in which a current
travels through a medium and the way light rays spread through space. For
instance, both the current density and light ray intensities obey the law
of the inverse square of the distance from the point source. This analogy,
however, does not imply, that the principles of geometric optics can be
used to solve each and every problem in electrical current flow. In fact, the
use of images is valid only in solving a limited number of potential prob-
lems [44]. In setting up the optical analogy, current sources are replaced
by light sources and the planes with different conductivities are replaced
by semi-transparent mirrors having reflection and transmission coefficients
correlated to the resistivities of the layers. Accordingly, the light intensity
at a point in a given medium is due partly to the point source and partly
to its images from the other layers.

For a horizontally stratified medium consisting of two parallel layers,
Maxwell [64] first expressed the electric field due to a current from a point
source in terms of an infinite series of images by adopting the method
of images first proposed by Lord Kelvin [90]. Several authors extended
the method to three layers. For instance, Hummel [40] published, with-
out an explicit derivation, formulae in terms of images. Other authors
[7,49,79,82,105] extended the solution for the multilayer case by using
different modifications of the image method. An extensive list of contribu-
tions in this field can be found {45,98]. Evidently, the image method has
also been asymptotically applied in optics [8] and wave propagation {31, 55].

The main advantage of the image technique is that a clear physical
interpretation can be attributed to the mathematical terms. This may help
to easily simplify the resulting algebraic expressions, without significant
loss in the calculation precision. A major difficulty, though, is the complex-
ity in taking into account all the reflection combinations from the primary
and secondary images. In addition, the image series schemes existing in the
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literature neither led to explicit closed form expansions for n > 2 (where n
is the number of interfaces), nor contained information regarding its conver-
gence properties. Furthermore, while the existence of a direct link between
quasioptic and quasistatic image series expansions is accepted [55], this link
has not been outlined systematically and explicitly.

The Institute of Scientific Information (ISI) database mentions more
than 250 references dealing with this topic over the past decade alone,
indicating that work on multiple-layer stratification is continuing and is far
from being accomplished.

1.4. Brief summary

The first part of the chapter outlines the image series expansion of Green’s
function for a medium with planar stratification. The second part presents
a hybrid model, dealing with the current density distribution in biological
media. This latter model combines a novel image series expansion algorithm
with the moment method [38] and illustrates an application of the image
theory in bioelectromagnetics [62].

Upon developing the image series method, the following drawbacks were
addressed: (1) For more than two layers, the infinite series expression is rel-
atively hard to be derived and to implement; (2) Up to date no robust
convergence testing procedure exists for the image series method. We thus
focused on the following three goals: (i) rigorous closed form image series
expansions for n (number of interfaces) >3, (ii) series convergence proper-
ties via a truncation-error estimation, (iii) bridging analytically between
the ray-optics and quasistatic regimes. These targets were achieved by
introducing first an integral representation for the frequency-dependent
Hertz potential via a recursively constructed characteristic Green’s func-
tion, in terms of reflection and transmission coefficients. The benefits of
this construction were evidently overlooked in previous investigations, in
which transmission-line impedances were used instead [65]. Next, the Hertz
potential is expanded in finite image integral sums, often labeled as exact
images [55] or ray integrals [31], and collective image integral (remainder)
terms. The expansions utilize the unique recursive construction for Green’s
function which is a generic characteristic of the stratification and are explic-
itly constructed for n < 3. While results for 0 < n < 2 are given for reference
only, the expansion scheme for a double slab configuration, n = 3, is quite
general and outlines the procedure for n > 3, without any increase in the
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complexity. The n-layer finite expansion scheme is outlined by recursively
extending the n = 3 procedure.

The finite expansions lead to rigorous image series expansions in the
quasistatic limit where the remainder terms can be made negligibly small
for sufficiently large summation indices. Evidently, our expansion scheme,
relying on the recursive construction of the associated Green’s function,
bridges smoothly between the low and the high-frequency regimes. The
collective image, representing an error-estimation term, is a closed form
expression obtained via an asymptotic evaluation of the series remainder
integral and is valid for sufficiency large summation indices. The image
series convergence is accelerated by including a collective image term.

The fast convergence proved important when we further used this expan-
sion, in conjunction with the moment method [38], to calculate the poten-
tial distribution due to a finite electrode array in multiple-layered media,
as shown in Sec. 3 of the chapter.

Electrode excitation of a biological tissue is a well known and fundamen-
tal phenomenon, related to almost every FES application. Nevertheless, the
literature reports only a few elementary models dealing with either a single
finite electrode in infinite space [81,99] (both reference make use of Jack-
son’s derivation for circular electrode [43]) [12, 77,78, 83], or arrays of point
electrodes [84,93]. More general electrode miodels (analytical or numerical)
in biomedical applications are not reported in the existing literature.

Thus, we present in this part of the chapter the electromagnetic field
interaction with multilayered biological medium as investigated for an elec-
trode array excitation. A layered medium may serve as a simplified first-
order prototype model for many realistic biomedical problems where the
dependence on the number of electrodes, tissue layers and their electri-
cal properties has to be accounted for [36]. Mathematically, the addressed
problem may be reduced into a system of integral equations of the elec-
trodes’ current distribution [61]. The solution of the integral equation is
accomplished by using the hybrid method. This enables the construction
of the electrodes voltage/current relations via the impedance (admittance)
matrix of the electrode array and consequently, also to evaluate the elec-
trode power. The inversion of the integral operator is carried out in a two-
step procedure: first its kernel is succinctly expanded in an image series
expansion with a remainder term (collective image). Next, the moment
matrix elements are calculated through an explicit analytic integration
of the image terms. The hybrid scheme is further applied for numerical
calculations.
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The simulations are selected to address simple, yet fundamental,
concepts associated with electromagnetic field interaction with biological
tissues such as the potential distribution and electrode array impedance
calculations.

2. Rigorous Image Series Expansion of Green’s Function
for Plane-Stratified Media

2.1. Finite image integral erpansion

The physical configuration of our problem, depicted in Fig. 1, consists
of a time-harmonic point-source S located at r' = (0,0, 2), an observa-
tion point P located at r = (z,y,2), and n + 1 isotropic homogeneous
layers. The electromagnetic vector fields E(r,r’) and H(r,r’) are assumed
to be excited by z-directed electric and magnetic point current elements,
of length ¢,

Je(r) = I.05(r — v')2, (1)
and
Jn(r) = I 88(r — v')z, (2)

respectively. In the above equations Z is a z-directed unit vector, Je(r)
and Jp,(r) are the electric and magnetic source current densities, I, and

p
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Fig. 1. Physical configuration for plane-stratified media, consisting of n + 1 layers,
with n planar boundaries between the layers. The observation point P, the source
point S, and the transverse coordinate p are defined via; r = p + 22 = (z,¥, 2),
v = p' + 2% = (0,0,2') and p = /22 + y?, respectively. The parameters £ and pu
denote the medium permittivity and permeability, respectively.



322 Biomathematics: Modelling and Simulation

I, electric and magnetic source currents, and §(r — r’) is the Dirac delta
function. The fields may be expressed at r # r’, assuming time-dependence
e7wt [9,30,97], as:

E(r,t') =V x V x 2lL(r,r') — Jwam(2)V x 2IL,(r,r'), (3)
H(r,r') = Jwoe(2)V x 2lle(r,r') + V x V x 2IL,(r, 1), (4)
where Il (r,r') and I, (r,r’) represents the E-mode and H-mode Hertz
potentials [88], respectively, J is the imaginary unit and w is the angular
frequency. The piecewise constant, generally complex, permittivity e(z) and

permeability p(z) of the medium are denoted by the parameters a.(z) and
am(2), ie.

oe(z) = €(z) =&i, am(z) = pu(z) = pi;, ()
in the ith layer,
zic1 <2<z, 1=0,1,...,n+1, z_1=-00, zg=2, zn41 =00
(6)

The Hertz potential in (3) and (4) can be expressed most effectively via
Green’s function,

O(r,r') = %G(r, r'), )
where
Q=1I1/Jw. (8)

The distinguishing subscripts e and m in (7) and (8) have been omitted
since the equations apply to both modes. This rule is adopted throughout
the entire paper for all the equations that apply to both modes.

Equation (7) illuminates the role played in selecting longitudinal electric
and magnetic current elements in (1) and (2), respectively. In particular, a
longitudinal electric current element (I, # 0, I, = 0) generates E modes
only and a longitudinal magnetic current elements (I, = 0, I, # 0) excites
only H modes, whereas both modes types are generated by a transversely
directed source of either electric or magnetic current [9, 30,97]. Thus, only
a single scalar potential function is involved in either the E- or H-mode
quasistatic limit discussed later in Sec. 2.2.

2.1.1. Integral representation

The point-source coordinates selection, r’ = (0,0,2’) (Fig. 1), leads to a
circularly symmetric Green’s function (Eq. (7)) which can be expressed
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via a single spectral integral, known as the Fourier-Bessel representation
9, 30,97]

Gr,r') / £9(z ) To(Ep)dE, (9)

where Jy is the Bessel functlon of the first kind and order zero, p is the
radial coordinate (Fig. 1) and g(z, 2’), the characteristic Green’s function,
is given via

aze’P1% 7B 12’

T s [Ty To(§)][e7%% — Ri(§)e7P+#], i >0,

—IB12 _ Tz’ .
e TP, i =0.

9i(z,2') = (10)

The subscript ¢ (or p) denotes specific expressions or values that are valid in
the ith (pth) layer, defined in (6). Both G(r,r') and g(z, 2), in (9) satisfy,
3-D and 1-D wave equations, respectively, and appropriate constraints, as
summarized in Table 1.

The reflection and transmission coefficients R(£) and T'(§) in (10),
respectively, are obtained by imposing the constraints listed in the right-
most column of Table 1:

1— K2(6)| Ry (£)eT2Pivrz) o0
Ri(§) = {Ki(ﬁ) + [1 m I{Z((E))]Ri_:;(é))eJQﬂi+lzi }e T35, Rnya(€) =0

(11)
T:(§) = 1_1(5)67231-1% L T (Bi—Bin)zic1
( )6.72[3,,2, 1
[1+ K;_1(£)]e? PiFi-1)zin
- T; =1 1
1+ K;_1(§)R;i(§)eT2Bizi1 ° 1(§) ) (12)
where K;(&) denotes the local reflection coefficient of the ith interface,
Q41 — Q4 3
K’l(g):M KO(&)::O’ a0=a1, ;30=,81. (13)

@ifit1 + aip1 i’
The representation of the z-directed transmission-line characteristic Green’s
function ¢(z, 2') in terms of reflection and transmission coefficients R(£) and
T'(€) constitutes a unique recursive construction, via the intrinsic reflection
coefficient K;(£) in (13). Finally, substituting (9) in (7) results in an explicit
integral representation for the Hertz potential

N —
H(r,r) = 32 / oy lEnde, (14)
where the characteristic Hertz potentlal 7(z,2") is obtained via (10)
201 5;
mi(2,2) = L221B o2, (15)

i



Table 1.

Wave equations and boundary/continuity conditions for G(r,r’) and g(z, z').

G(r,r")

9(z,2)

Differential equation

Wave number k(z)
Propag. constant 3(z)

[value in ith layer]

Source condition

Continuity condition

at z=24,1>0

Radiation condition

[V2 + k2(2)]G(r,r') = —68(r, ')

k(z) = wy/u(2)e(z), Sm[k(2)] <0

[ki = wy/i€s

/ V2G(r,r)dV = f VG(r,r')-dA = -1
V—o0 A—0

Gi(r,r') = Giy1(r, ')
1 0Gy(r,r') 1 0Gi(r,r')

a; Oz - iyl dz

=0

r [5(?; +.7k(z)] G(r,r’)

T—00

[i - ﬁz(z)] g(z,2') = ~8(z — &)

dz?

B(z) = Vk*(z) - €2, Sm[B(2)] <0
.~ 7o)

dg(z' +h,z’) dg(z' —h,z2')
dz dz

h—0

9i(2,2') = git1(z,2')
1dgi(2,2") 1 dgiyi(z,2)

Q; dz a;41 dz

=0

jz]—o0

{di + 78] 2.

=-1

vee

UOPDINUWILG PUD BUYIIPON §21DULIYIDUWOLT
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2.1.2. Image integral expansions

The recursive characteristics of R;(€) and T;(£) are now implemented to
obtain finite expansions of m(z,2’) and II{(r,r’) in (14), for an arbitrary
number of boundaries (Fig. 1). While results for 0 < n < 2 are well known
(see [9, 30,55,97] for n < 1), the expansion scheme developed for a double
slab configuration, n = 3, is quite general and outlines the procedure for
n > 3, without any increase in the complexity. The n-layer finite expansion
schemes are obtained here by recursively extending the n = 3 procedure,
as outlined at the end of this section [26].

The representation of the finite expansion scheme is given, without any
loss of generality, for the observation points (P in Fig. 1) that are embedded
in a single layer selected here as —o0 < 2z < 2z’ (Eq. (6)) to assist the
applications carried out in Sec. 3.4.

The finite expansion is represented in terms of finite image integral
expansions, often labeled as exact images [55] or ray integrals [31], and
remainder terms. The remainder terms represents n — 1 collective sum-
mations of the individual images related to each of the n — 1 slabs, that
were excluded from the image series expansions due to truncation. These
remainders can be made negligibly small for sufficiently large summation
indices: (1) in the quasistatic limit (see later 2.4), as k(z) — 0, leading to
rigorous image series expansions [26] and (2) asymptotically in the qua-
sioptic (or the so-called geometric optical) limit, as k(z) — oo, leading
to asymptotic (ray-optical) image series expansions [27,28, 31]. Evidently,
our expansion scheme, relying on the recursive construction of 7(z, 2’), has
a generic characteristic that bridges smoothly between the low-frequency
and high-frequency image series expansions, via an appropriate frequency
adjustment. This generic characteristic is obscured. in alternative proce-
dures, which first apply either one of the frequency limits and only then
the image series expansion scheme [8,10].

The series expansion of (15) via (10) and consequently the image integral
expansion of (14) are carried out by utilizing the binomial series expansion

M N M+p+1
1 N M+ N+1 P
_— e — m+ ™ + + + I—, (16)
(1 — )N+ 2 m pzzo M+p+1) (1—z)pt

m=0

containing M terms and remainder. The series converges as M — oo, for
all |z| < 1.
This is illustrated in the following examples.
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2.1.3. Unbounded medium, n =0

In an unbounded medium R;(¢) = 0 (Eq. (11)). Hence, the characteristic
Hertz potential 7 (2, 2’) consists of a single outgoing wave in free space,

m(z,2') = e~Thlz=2"] 17

A closed form expression for the Hertz potential can be obtained by sub-
stituting (17) in (14) and applying the Sommerfeld integral identity,

—TJk1|r—r’
o~ T Brlz—7| _ Qe e
41ra1 Jﬂl Jo(€p)de = o |r—r’|

Hl(l‘, I‘/ = (18)
2.1.4. Semi-infinite medium, n =1

In a semi-infinite medium, R;(¢) = K1(¢) (Egs. (11) and (13)). Thus, the
potential in (15) contains two terms representing outgoing and reflected
waves,

mi(2,2') = e IBl2 _ [ ()B4, (19)
The potential II;(r,r’) in (14) can be expressed as,
Q¢ le‘m‘l"”“""

_ ® £ JIB1(2+2")
/0 S Ki(©)e Jo(Ep)de|. (20)

e —r|

2.1.5. Single slab configuration, n =2

In a three layers medium, R;(£) can be expanded into a finite geometric
series in K1(¢)Rg(€), where Ry(¢) = Ko(£)e~72P272 and a remainder term.
The 1-D potential function (2, 2’) can be expressed, similarly, as

M;
m(z2) = e~ IPlz=2| _ Kl(g)ejﬂl(zw') - Z (1 - K2(¢)]

mi=0

X [—Kl(f)]TKg"H(5)6‘7[[31(Z+z/)_2(m1+1)ﬁ222] + v, (2, 2)

_ o~ TBlz- z]_eJﬂl(l-i'Z)Z Z ( )(Wh—ll)

1;=0m1=0
x KL — K2(e) T =Ky (O™ K5 ~ht(g)

% e-J2(m1—11+1)5222 + Vo, (z, z'), (21)
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where the remainder term vy, (2, 2’) is given by means of (16),

[~ K1 (&) M+ Mi+2(g)e= T2(M1+2)B222
1+ Kl(ﬁ)Kz (&')6—525222

—emmen S S (0) (M) mbe

mo=01;=0p1=0
- A Mi—lL+1
1— K2(e)|"h+i_K mo ,— T 2B1(z1—2") 1= 1
x 1= KHOI - Ko(e)™e Mol
[— K (&) M Pt [, (€)= T 2P2(z2—21) | Matpr—11 42
1+ K1 (&) K2(£)eT2B2(z2~21)|pr+1
The last expressions in (21) and (22), though identical to the preceding
terms, render the generalization to n layered media straightforward.

Substituting (21) and (22) in (14) and changing the order of the inte-
gration and summation, results in a finite expansion for IT; (r, '),

n_ Q [erThirl o ¢ Tu(at7")
o) = 2 { S - [ ke e e

iy 2, 2') = =7 PG 1- K (€)]

X

(22)

M, 0o £
B Z ~/0 \7_ﬁ1[1 - K%(E)][_Kl(f)]legn1+l(€)

m1=0

% eJ[ﬁl(z+z')—2(m1+1)ﬂzzzlJ0(§p)d§ + Ty, (r, r')}

Qe e~ Tklr—r'| S my— Iy
- 47ra1{ ir —r'| Z Z I my

[;=0m;=0

0o é— L _ - _ my grma+1
< [ S KON - KO KO KR @)

x g7 1(e=2)=2mi—li+ D222 Jo (£ p)dg + T, (r, r"}’ (23)

where the remainder integral 'y, (r, ') is,
oo

PMl (I‘, rl) = o ?E’YM] (Z,Z’)Jo(fp)ds. (24)

Note that for I; = 1 the series expansions in (21) and (23) are reduced into

single terms, and the corresponding contributions to the remainder terms
in (22) and (24) are zero.

2.1.6. Double slab configuration, n =3

In a four-layer medium R;(£) can be expanded into a finite geometric series
in K1(§)R2(§) followed by two finite binomial expansions in K2(£)R3(€),
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where R3(€) = K3(£)e™72%%s | and two remainder terms. The characteristic
Hertz potential m1(z, 2’) can be expressed, similarly, as

m(z,2) = e~ TPilz=="l _ g (5)67ﬁ1(2+2')

M; mi+l M,

=Y 3 S n-rel-rer (M)

m1=0 [;=0 mz=0

x K2(€)[1 — K2(g)™m—lat! (m1 +n'r:22 - 12>

x [ Ka (€)™ [Ka(g)[mtma =ttt

x g7 [B1(z+2")=2(m1+1)B222—2(m1+ma~l2+1)B3 (23— 22)]

+ M, (z’ ZI) + Yy, M, (z’ z,)

Tl _ gamnet) 5 NN S (1
i z—2 2Tz
= S S TS Y (4)

11=0m1=0 I3=0 me=0

% my — Il miy—1l1+1 m1+mo — I — Iy
mi lg ma

x KN (e KL (€)1 — Ky (&)] 711 — Ky(€)™ ~h—ht!

x [~ K1 (€)™ [ Ko (€)™ [Ka ()™ tme—himlett
x 6—32[(’“1—l1+1)ﬂ222+(m1+m2—l1—l2+1)ﬁ3(za—z2)]

+ M, (Zazl) +7M1,M2(z’zl)’ (25)

where the remainder terms yas, (2, ") and ya, m, (2, 2’) are given by means
of (16),

iy (2,2') = —eT P11 — K2(g))]
[— K1 (€)|MiH+1[Ry (€)eT 20222 Mi+2—T2M1+2) 6222
1+ K1(§Ra(§) 7

— oTP1(z=2)) % 21: _Zh (rr?o> (lll) K1 (€)

mo=01;=0p1=0

X

- mo ,~— z1—2' My -5 +1
<= K[ Ko(@meero20e=s) (4 1)

[ K1 (£)]Ma+P1+1[Ry(€)eT 2271 | Mr+pi—l1+2
[14+ K1(€)R2(€)eT 2221 ]p1+1 )

(26)
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and

VM1, M, (z’ ZI)

My mu mi—l2

= et 30 S (M) Kb - K@)

my1=01=0 p2=0

_ _ My+my—1Ila+1
x[1— K2 mi—lz+11_ g my ,—J2(m1+1)B222 2
[ 2 (E)] [ l(f)] € M, + po+1

[ K2(€)]M2+P2+1[K3(§)]M2+Pz+m1~lz+2 —TJ2(Mz+p2+mi1—Il242)B3(za—22)
[14+Ko(&) K3 (€)e=T28s(z5-22) [pa+1

My mi—lLi+lmi—li—ls

—enemn 3052 30 TS

mo=01[;=0m1=0 [;=0 p2=0

>< (n‘j) (™o () (Mt rrexte

x [1 = KF(©) " [1 = K3(e) ™ ~h R =Ko ()™ [- K1 ()™

o e~ T21B1(z12") +(ma—lo— 11 +1)Ba(z2—21)] (Mz +my—li—la+1
My +p2+1

[_K2(§)]M2+P2+1[Ra(5)6‘72[3322]M2+P2+m1—ll—lz+2

[1 + K2(§)R3(§)eT 2Pz patl ’
respectively. As indicated previously (n = 2 configuration), the last expres-
sions in (25), (26) and (27), though identical to the preceding terms, are
given merely to render the generalization to n+ 1 layered problem straight-
forward. Substitution of (25)-(27) in (14) and changing the order the of
integration and summation, results in a finite expansion for II; (r,r’),

Jki|r—r'| 00 ,
Hl(r I') Qe [6 _A _j%Kl(g)eJﬂl(z+z )Jo(gp)dé-

dray |r —r/|

X (27)

My mi+l My

__Z Z Z (m1+1) <m1+m2—l2>

m
m1=0 [2=0 m2=0 2

o

x| 75 - KHOIL - KZ(©)])™M BT [—Ky (&)™

x [~ Ka(€)]™2 K5 (€)[K3(€)m +me—tatl

> 63[51(Z+Z')—2ﬂzzz(m1+1)—233(zs—22)(m1'+m2—l2+1)]

X Jo(fp)d£ + FM] (r’ I‘,) + FM1,M2 (I‘, I‘,) 3



330 Biomathematics: Modelling and Simulation

Qe |e~Tkilr—r'l 1 M mich+l M,
arenl he e e DID DD DD DI
1 | l L=0m1=0 I3=0 mg=0

« 1 m1—h mi—h+1\ [mi+me—1 -1
l1 ma lz mo

< [ - KHOIKP RPN - Ka(g)) ™+
0 1

X [1 = Ka()™ =8B [ Ky ()™ [~ Ka(E)]™

x [Ks(é)]"u-i-mz—ll—lz-l-l

x eJ[ﬁ1(2+zl)—2(m1~l1+1)ﬂ222+(m1+m2—l1—lz+1)ﬂ3(za—zz)]
x Jo(€p)d€ + T'agy (r’ r,) + oty 0, (r, rl) ’ (28)
where the remainder integrals ', (r,r’) and T'as, ar, (r, 1) are given via,

Tsy (1, 1) = / Jiﬁlm (2, 2') Jo(Ep)d, (29)

and
n_ [T_¢ ,
1-‘M11M2 (r7r ) - /0 Jﬁ] 7M1,M2 (Z,Z )Jo(gp)dg’ (30)

respectively. It should be noted that for either I; = 1 or I3 = m; + 1 the
series expansion in (25) and (28) are reduced into single terms or single slab
series, respectively, and both corresponding contributions to the remainder
terms in (27), (29) and (30) are zero.

2.1.7. Generalized image integral expansion (n > 1)

The finite expansion scheme for a triple slab configuration (n = 4) can
readily be confirmed to repeat the double slab procedure (n = 3) and then
followed by two additional finite binomial expansions in K3(¢)R4(£) and
additional remainder term. The extended procedure is due to the recur-
sive expression (11) in which K3(&) is replaced by R3(£) and R4(§) =
K4(¢)e~T?Pa% Extension of the finite expansion scheme for n-interface
configurations is straightforward, in view of the last expressions contained
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n (21), (25), (22), (26) and (27), and can be carried out by induction:

Sn_2+1 Mp_i
7r1(z z ) = e—Jﬂllz—z I eJﬁl(z+z) Z Z Z Z
Li=0m1=0 ln_1=0mp_1=0

y {E <sk-llk+ 1) (;»kk)
K ()1 — KR (e))eer—hett

X [—Kg(€)]™* [Kn(é‘)]mk_lke_32(3k+1)ﬂk+1(zk+1—zk) }Kn(ﬁ)

n—1
Z YMy,..., My (Za Z,)a (31)
k=1
where
Sn= (mx—1l), s0=0, (32)
k=1
and

Mp_1 sg—1+18k_1—1k

Voo M 2y 21) = J"l‘“’ZZ DD

mo=01[;=0 Mr—1=0 =0 =0
k
% H (Sj—l +1> ( Sj—1 )
i\ b mj-1

x K7 (&)L - K}g)]s 71+
x [—Kj_1(€)]™ 6—52(8j—1+1)ﬁj(2j—21—1)}

y M+ sg—1 -l +1
Mig+p.+1

[ Kk(g)]Mk+Pk+1[Rk+1( )6.72ﬂk+1zk]Mk+pk+3k_1_lk+2
[1 + Kk(g)Rk_H(f) ~72ﬂk+1zk]pk+l

(33)
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Finally,
N QE —TB1lr—r'| 1 Spn_2+1 My 1
m@,r)_ml[ s zz Ty
n—1
Sk—1+1 Sk A 2V Sk—1—le+1
(T2 () [ meon s
« K™ [Kn(g)]mk-lke-”“k“’ﬂkﬂ<zk+l—“>}
n—1
X Kn(€)—ee? M) Joe0)dE + 3 Tagy,oany (07) |, (34)
T b proct
where
Tty (1,17) = /0 jiﬂlm,...,m(z,z’)Jo(ep)ds- (35)

It should be noted that, for Iy = sx_1 + 1 the series expansions in (31) and
(34), carried out for n — 1 slabs, are reduced into expansions for k — 1 slabs,
and the corresponding contributions to the remainder terms (33) and (35)
are zero. In general, the total number of summations N in these equations
is twice the number of slabs (n — 1). However, since the observation point
lies within the seminfinite layer ¢ = 1, the number of summation is reduced
by one, i.e.

N=2n-1)—1=2n-3. (36)

The number N is an intrinsic characteristic of the stratification, and thus,
invariant to r which can be arbitrarily embedded in any layer. The summa-
tion indices l; and my denote the number of bounces on the kth layer from
the left and the right sides, respectively (Fig. 1). It can readily be verified
that for a single interface problem (n = 1) the image series expansion in
(34) contributes a single term and zero remainder, since ]_[2:1 =1 and

0
2k=1=0.

2.2. I'mage series exrpansion

The quasistatic limit (k(z) = w+/p(2)e(z) — 0) of the electromagnetic vec-
tor fields E(r,r’), H(r,r') and the Hertz potential II(r,r’) is completely
specified by the leading terms of their low-frequency power series approxi-
mations, in k(z). Since the propagation constant 3(z) is an even function
of the wave number k(z) (Table 1), it can be readily shown by means of (7)



Image Theory and Applications in Bioelectromagnetics 333
that the quasistatic limit of E(r,r") and H(r,r’) in (3) and (4), respectively,
is given by the following relations,

V x V x a#ll(r,r') = V x V x 2P(r, ') + O[k*(2)]
B’P(r r')

5 + O[k%(2)], k(2) — 0, (37)

Jwa(z)V x #P(r,r') = Jwa(z){V x 2P(r,r') + O[k*(2)|}, k(z) — 0.
(38)

Substituting 8 = —J¢ (k(z) — 0) into the Hertz potential II(z,2’)

(Eq. (14)), the characteristic Hertz potential 7(z, 2’) (Eq. (15)), the reflec-
tion coeflicient R(£) (Eq. (11)), the transmission coefficient T'(¢) (Eq. (12))
and the intrinsic reflection coefficient K(£) (Eq. (13)), result in their qua-
sistatic limit in the following expressions:

P(rr) = o / Pz, #)Jo(€p)de, (39)
o [T T@®)][e4 = Ru(€)et]et*, i >0,
)= { e Ly

Ri(§) = [’Ci + (L= KD)Ris1 (E)e*é e %%

1+ KiRip1(£)es v Rnt1(§) =0, (41)

_ 1-— R¢_1(£)625zi_1 14 ’Ci—l

: = , Ti(e) =1, (42
T(g) _ Ri(g)e%z]-q 1+ ’Ci—lni(ﬁ)e%zi—l 1(6) ( )
and
o a; — Qi1 _ _
K’l’ - a; _|_ a1'+1 ’ ICO 07 ag al, (43)

respectively. If the parameter a(z) is not singular, then the electroqua-
sistatic or magnetoquasistatic fields are obtained by setting Q. # O,
Qm = 0or Q. = 0, Qm # 0, respectively. If, however, a(z) is singular
as k(z) — 0 then Jwa(z) = o(z), the latter denoting the conductivity of
the medium [88,98] in the stationary-current regime. In this case Eq. (39)
reduces, utilizing Eq. (8), to JwQ/Jwa(z) = I/o(z) and Eq. (43) reduces
to K; = Jw(a; — aip1)/TJw(a; + as1) = (05 + 0i41) /(05 + 0ig1).

2.2.1. Properties of R(£)

The reflection coefficients R, (£) and R,_1(£) in (41) can be evaluated, at
£ =0, as,

Rn(0) = Ky, = Gn — Ont1 (44)

b
Ap + Apt1
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and

Up—1 — Qn41
Rp-1(0 =L——, 45
1(0) PR (45)

respectively. Consequently, R.,(0) is obtained by induction leading to,

Gm — G
R (0) = a—-lﬁ' (46)

Utilizing Eq. (46) and an alternative representation for the reflection coef-
ficient R, (€) in (41),

1 - =K I—Ri+1(E)e::”
. _ 14K 1+ Riy1(§)e % _o¢y,
Ri(E) = 1+ 1K; I-Raa ()ePé= 47)
IHK: THRiy1 (€)%

results in,
|Rn-1(§)e*™-1| < 1, if both |[Kn_1| <1 and |K,| < 1. (48)

The general rule for 1< m < n — 1 is obtained by means of induction in
conjunction with the continuity conditions (Table 2),

1—Rp(£)e* ™  1-Kpl—Rpp1(€)e*sn
14+ Rm(€)e%em 14+ Km 1+ Rpi1(€)eem

(49)

Table 2. Laplace equations and boundary/continuity conditions for G(r,r’) and

G(z,2').

g(r,l") g(zyz’)
d2
Differential v2G(r,r') = —é(r,r') (d_z - §2> G(z,2') = -8(z — 2')
equation z
’ ’ ! Ry
Source / vig(r,r)aV d(z ;—h,z ) oG y )
condition at v—o 2 z h—0
z=2 = Vg(r,r')-dA=—1 =-1
A—0
Continuity Gi(r,v) = Giy1(r, 1) Gi(z,2") = Git1(2,2")
condition at
z= zl '3 /) ( I)
. 0Gi(r,r') Giy1(r,x’)  dGi(z,2') _  dGit1(z,z
1>0 “e BT g, Mgy T Mg,
d
Decay at rG(r, 1’ )rmoo < 00 (E + 5) G(z, zl)|z|—voo =0

infinity
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leading to
|Rm(€)e?™| <1, if both |[Kp| < 1and [Rpp1(€)e®™| < 1. (50)
Note that |[K;| < 1, 1 € i < n, if Re[a;] > 0 whereas Smla;] < 0,

since Im[k(z)] < 0 (Table 1). Similarly, in a conductive medium where
o(z) = Jwa # 0 (following Eq. (43)), |K;| < 1, if Re[o;] = Re[Twa;] > 0
whereas Sm/[a;] < 0, since Sm|o;] = Sm[Jwa;] > 0. A very important
property of the global reflection and intrinsic coefficient is thus proved
which makes converging of the image series representation possible, as dis-

cussed in Sec. 2.4.

2.2.2. Quasistatic point-charge potential

The longitudinal derivative of the quasistatic Hertz potential OP(r,r’)/0z,
in (37), identified as a dipole potential, can be expressed alternatively as
the difference between two point-charge responses [88, 98],

OP(r,r') 8%(r,r’)

Or\LY ) g I _ 5 oa _ _
}%[é(r,r 20/2) — ®(r,x’' + 2£/2)] 5 L. (51)

0z

The point-charge potential ®(r,r’) can be expressed via the quasistatic
Green'’s function as

&(r,r') = g—g(r, r'), (52)
1
where
1 o0
Gr,r') = o /0 £G(z, 2')Jo(Ep)dE. (53)
Finally the quasistatic characteristic Green’s function G(z, 2’} is given by

1 6% TTpo To(@)lle™** + Ri(€)et?], i >0,
2 | [e78 + Rui(£)et* €8, i=0.

The potential function ®(r,r’), representing a normalized point-source
response (@Q/a1 = 1), is more suitable for implementation in quasistatic
problems than the potential difference, i.e. the dipole response [60, 98] rep-
resented by dP(r,r')/8z in (37). Furthermore, since the expressions for
®(2,2") and P(z,2') in (52) and (40), respectively, are similar up to the
sign of the reflection coeflicient R(£), the image series expansions of &(r, ')
and P(r,r') in (54) and (39), respectively, are expected to be identical up
to the sign of the corresponding terms (and the multiplication constant £).
Both G(r,r') and G(z, 2'), in (53), satisfy 3-D and 1-D Laplace equations,
respectively, and appropriate constraints, as summarized in Table 2.

Gi(z,2) = (54)
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2.3. Infinite image series expansions

In the quasistatic limit, K;, the intrinsic reflection coefficient in (43) is
independent of the integration variable &, thus, the individual integrals
contained in the finite expansions (Sec. 2.1) can be evaluated in closed
form explicit expressions, interpreted as properly weighted and shifted
point-source (image-source) responses. Since, the remainder integrals (i.e.
(24), (29), (30) and (35)) can be made negligibly small by increasing the
number of the expansion terms, under rather general set of constraints,
to be discussed in the following section, the image series expansions may
be regarded as converging representations. The complete image expansion
derived here for —00 < z < 2’ is quite general and outlines the procedure
for ¢ > 1 without any increase in the complexity.

The following cases illustrate the procedure.

2.3.1. Unbounded medium, n =10

The reduction of the radiation integral in (18) into a close form expression,

- @t /Oo e‘512"1’|J0(§p)d§ = _%_1__ (55)

" 4may Jo dway |r — r'|

P1(r,r)

is carried out via the Weber-Lipschitz integral identity [98] which is the
quasistatic limit of the Sommerfeld identity (8 — —J€ as k(z) — 0). The
integral identity is a vital tool in converting the finite integral summations
into infinite image series representations.

2.3.2. Semi-infinite medium, n =1

The quasistatic potential for n = 1, obtained from Eq. (20), is given by,

= —r' =(0,0,—2'). (56)

Pyi(r,r') = Q¢ 1 Ky ] 7

T dmay [[r=1|  Jr—F

As depicted in Fig. 2, both contributions from the point-source at r' =
(0,0,2") and the image-source at ¥’ = —r’ = (0,0,%’) = (0,0, —2’) reach
the observation point P. The image-source contribution can be interpreted
as the point-source contribution undergoing a single reflection (1) at z =
zZ1 = 0.
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Fig. 2. Physical configuration for a semiinfinite medium, n = 1. Both contributions from
the point-source S at r’ = (0,0, 2’) and the image-source § at ¥ = —r' = (0,0,%’) =
(0,0, —z') reach the cbservation point P. The image-source (5) contribution (solid line)
can be interpreted as the point-source (S) contribution undergoing a single reflection
(K1) at z = 21 = 0 (dashdot line).

2.3.3. Single slab configuration, n = 2

The quasistatic Hertz potential for a three layers medium, obtained from
Eq. (23), is given [10] by,

P =2 [ 5s S (1) (M)

l1=0my1=0

DS B i 19 e A
|I‘ - f‘llyml I ’

fiy,my = [0,0,229(m1 — 1 +1) — 2], (57)

As depicted in Fig. 3, both contributions from the point-sources at
r = (0,0,z') and the image-source set located at T, 0,0 (L, ma)
(1,0),(0,0), (1,0), reach the observation point P. The contribution of the
image-source set can be interpreted as a summation over all the point-
source responses undergoing, at z = z; = 0, either a single reflection (K;,
li = 1, m; = 0) or a single transmission ({; = 0) in (1 + K;) and out
(1 — K1) accompanied by single reflection (K2) at z = z2 and my (m; > 0)
bounces both at 21 ((—K;)™) and z5 (K3**'). Note that for I; = 1 the
series expansion in (57) is reduced into a single term.
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P
b )
g | & £,

Fig. 3. Physical configuration for a single slab, n = 2. Both contributions from the
point-sources S at r’ = (0,0, z’) and the image-source set 5'11,,,“ at F;nl,h ,(1,m1) =
(1,0), (0,0), (1, 0), reach the observation point P. The image-source set (5‘,1,,,,1) contri-
bution (solid line) can be interpreted as a point-source (S) contribution undergoing, at
z = z1 = 0, either a single reflection (X1, dashdot line, I3 = 1, m; = 0) or a single
transmission in (1 + K1) and out (1 — K;) accompanied by single reflection (XC2) at
z = z2 (1 = 0)and m1 (m1 > 0) bounces both at z1 ((—K1)™1) and z3 ((—K2)™1),
dashed and dotted lines for m; = 0, and m; = 1, respectively.

2.3.4. Double slab configuration, n = 3

The quasistatic Hertz potential for a four layers medium, obtained from
(28), is expressed as,

Qé oo mi—li+l oo
Pl(r 1') 47!'(11 ‘!‘-I"l l;)le:o ZO m;o

x 1 my — Iy mi1—Il1+1 my+mo—11— g
l1 mi l2 ma

ICh’C [1 ’Cl]—11+1[1 _ Kz]m‘_l‘—l2+1[——lcl]m1
[ ’Cz]mz[’Calm1+m2_ll_l2+1

|I‘ - f';l)mlylb'mdl

~;1,m1,lz,m2 [0’0’ 2(m1 -+ 1)22
+(my+mg—ly —lo+1)(z3 — 22) — 2] (58)

As depicted in Fig. 4, both contributions from the point-sources S, at
r’' = (0,0,2') and the image-source set at ¥}, ,,, 1, m,» reach the observation
point P. The contribution of the image-source set can be interpreted as a
summation, over all the point-source responses undergoing, at z = z; = 0,
either a single reflection (Ky, l; = 1) or a single transmission (I; = 0)
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Fig. 4. Physical configuration for a double slab geometry, n = 3. Both contributions
from the point-sources S at r' = (0,0,2’) and the image-source set S'll,"u,lzmw at
'il smaulg,my where (I3, m1, 12, m2) = (1,0,0,0), (0, 1, 1, 0) reach the observation point P.
The image-source set (Sll,ml,lz,mz) contribution (solid line) can be interpreted as a
point-source (S) contribution undergoing, at z = 23 = 0, either a single reflection (K,
dashdot line, {1 = 1) or a single transmission ({; = 0) in (1 + K1) and out (1 — Kj),
accompanied by all possible combinations of bounces and transmissions z = z1 = 0,

z =2z and z = z3, ('"%;‘1) ('"1+1:l"22—12), where my (m1 > 0) and m2 denote the number

of internal reflections at z = z; =0 ((—K1)™1) and z = 22 (—K2)™2), respectively, and
my — l2 + 1 is the number of transmission in (1 + K2) and out (1 — K2) at 2z = 22
((l1,m1, I2, m2) = (0,1,1,0) associated with the two only combinations depicted by
dashed and dotted lines).

in (1 + K;) and out (1 — K;), accompanied by all possible combinations
of bounces and transmissions at z = z; = 0, z = 29 and z = z3,

(mj:'l) (m"",;":_lz), where m; (m; > 0) and my denote the number of
internal reflections at z; ((—K1)™) and 25 ((—K3)™2), respectively, and
my — Iz 4+ 1 is the number of transmission in (1 + K3) and out (1 — K2) at
z = z5. It should be noted that for either m; —lp +1 = 0 or K3 = 0 the

series expansion in (58) is reduced into a single geometric series.

2.3.5. n+ 1 layered media
Upon utilizing (34) one obtain

Py(r,r')
_ Q| 1 Z Z Z "‘1<sk_1+1><sk>
dmay Ir L1=0m1=0  [,_ 1=0mn21:—0 kl;[l b m
Krn
ErE T (|
(59)

’Cik [1- K%]Sk—l—lk"'l [_’Ck]mklcnmk—lk
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where
n—1
2, =22(sk+1)(zk+1 —zk)— 2. (60)
k=1
Expressions in the quasistatic limit for any layer and any number of layers
within the medium were recently reported [61].

2.4. Convergence and truncation-error estimation: the
collective image approach

The quasistatic reduction process which was successfully utilized to gener-
ate closed form image series expansions, in the previous section, is applied
here for reduction of the remainder integral terms, such as, Ty, (r,r'), and
Tty m, (r,x'), in (24) (29), and (30), respectively. Two goals are readily
accomplished: (i) the remainders are shown to be négligibly small for suf-
ficiently large summation indices warranting the convergence of associated
image series under rather general physically interpretable, set of constraints;
(ii) closed form asymptotic expressions (end-point contributions), obtained
via integration by parts, enable accurate truncation-error estimations, for
sufficiently large number of summation indices. The asymptotic remainders
are regarded here as collective image contributions. Image series expansions
including a finitely small number of ordinary image terms together with
(asymptotic) collective image contributions, are shown to converge faster
than expansions containing ordinary image terms only. The following exam-
ples illustrate the procedure.

2.4.1. Single slab configuration, n = 2
Equations (22) and (24) are reduced, in the quasi-static limit, into,
(1 _ ,C%)(_,Cl)M1+1Ké\41+26£[z+z’—2z2(M1 +2)]
1+ K1Kqe—622

Ay (2,2') = (61)

and
M) = [ D) (e, (62)
0
respectively. Equation (62) can readily be reduced into the following

inequality,

1— IC2 }Cl Mi+1 }C2|M1+2
1

(1- |/C11C2|)[2z2(M1 + 2) s Z’] ’ (63)

|AM1 (I‘, I‘/)I <
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which guarantees the convergence of the image series expansion in (57), if at
least one of |K1| or |Kg| is less than unity, i.e. Apg (r,r’') — 0 as My — oo,
if either |Ki| < 1 or |K2| < 1. The collective image contribution can be
obtained asymptotically (for large M;) via integration by the parts of (62),
yielding,

1 - k(=) Mty

’ A n_
Aaay (5,0) ~ Ay (2,2) = (14 K1Ks)[220(My + 2) — 2z — 2]’

(64)
where Ay, (2,2') is the asymptotic collective image contribution.

2.4.2. Double slab configuration, n =3

Equations (26), (27), (29) and (30) are reduced, in the quasistatic
limit, into,

[1 - K3)(— Kl)M1+1[RQ(E)]M1+265(Z+21)

A 2z , 65
)‘Ml,Mz (Zv Z/)
= — fl: milmlz:lz (ml +1) (M2+m1 —lz+1>
mi=0 l5—=0 p=0 Mz+pz+1
X (1= K (=)™ (K2) 2 {[1 — K3]KCa} ™~
(_K:2’CS)M2+P2+1e—5[2(z3—z2)(M2+p2+m1—lg+2)+2zz(m1+1)—z—z']
[1 - IC2K36_2€(Z3—22)]P2+1 , (66)
o0
M) = [ Dy a2 ) (e (67)
0
and
o0
Maiaea ) = [ Nt (2, 2) o), (69)
0

respectively. Equations (67) and (68) can be manipulated into the following
inequalities:

[1 = KK M+ Ry (§o)e 02| Ma+2

Mo (001 < 57 R (e T2ea(0 + 2 — 2= 7]

(69)

where & and &; are defined via |1 + K1R2(€)] > 1 — [K1R2(€)] =2 1 —
IK1R2(61)] and Ra(€)e**2 < [Rz(€o)e*®*2| < 1, 0 < € < oo respectively,



342 Biomathematics: Modelling and Simulation

and

M, mi+1lmy—1a
my+1 Mo4+mp—1Ila+1
lAM17M2(rr)|< 1_’C1 Z Z Z ( )( Mz +p2+1

m1=0 lp=0 p3=0

| — K™ Kol 2{[1 — KIKa ™ ~ 12t Kpkcp| M2t H
= IKaKalPo (223 — 22)(Ma + p2 + m1 — I + 2) + 225(mn + D—2—27]'
(70)
The image series expansion in (58) converges if at least two of |K1], |Kz|
|KC3| are less than unity, i.e. Apr, (r,r’) — 0 as M; — o0, if either || < 1
or |Ra(&)e*0%2| < 1. Note that |Rq(&o)e*0%2| < 1 if both |K;| < 1 and
|KCs| < 1 (see Sec. 2.2). Similarly, Aps, ar,(r,r') — 0 as My — o0, if either
K2l < 1or|Ks| <1.

The collective image contributions can be obtained asymptotically (for
large M7 and My) via integration by the parts of (67) and (68), yielding,

[1 = KH(=K) M+ [Ry(0)] 1 +2

[1 F K1 R2(0)|222(M1 + 2) — 2 — 2]’
ag

az + asg’
where R2(0) is derived in 2.2, and

Apg, (r,1) ~ Apgy (2,2") = — -
Rz(O)

Aty m, (1Y) ~ /_\MI,M2(Zv Z)
=0 1320 pa—0 Ma+pp+1
(1 — K2)(=K1)™K2[(1 — KE)Ka)™ 21 (—KyKg)Matret)
(1 + K2K3)P2+1[2(23 — 2z2)(Ma + p2 + m1 — Iz + 2)+222(my + 1)—2—2']
(72)
The asymptotic collective image contribution in (71) and (72) is denoted

by Aa(z,2') and Apg ara(z,2'), respectively. Note that for either
—lo+1=0K3 =0, Ap, m2(z,2') in (72) is equal to zero.

2.4.3. n+1 layered media

The remainder term obtained via end-point integration is given as
Mgy sk—1+1sg_1—lk

SRS 35 3 DI D >

mo=01[;=0 mg_1=0 ;=0 pr=0

: { () ()

i=1
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lJ' 8j—1~—t; my_—
X I} [ — 3]sl iy

. (Mk+3k~1 —lg+1
M +pe+1
[_’CII‘:W):+Pk+1[Rk+1(0)]Mk+Pk+3k—l—lk+2]

= , (73)
1+ KxRi41(0)|Pe+1(2 — Z})
where
Zk—22[ — 2j-1)(8j-1 +1)]
+ (Zk+1 — 2k)(8k—1 — I + Mg +p +2) — 2", (74)

In n-layered media, the finite expansion converges in the quasistatic
limit, if at least n — 1 of the intrinsic reflection coefficients |K;{, 1 < i < n,
are less then unity, i.e. Ap(r,r') — 0 as M7 — oo, if either K] < 1
or |Rq(€p)e?0%2| < 1. Note that |Ra(£o)e?°?2| < 1 if both |K2| < 1 and
|R3(€)e*%| < 1, etc. (see Sec. 2.2). Finally Aps, a1,,....0,_,(r,x') — 0 as
Mp_1 — o0, if either [Kp_1| <1 or |[K,| < 1.

The effectiveness of the collective image approach is demonstrated in
Figs. 5 and 6, for n = 2 and n = 3, respectively. Both figures show the
normalized truncation error dependence of the image series expansion on

T T T T
I\ ?
90 l
L\
3 1
707
R L \)
% | 3\
& 50 N
[~ A
m \
|z b\ d=0
30 \\ \
F « \\ d=10
0f TSR
1 3 5 7 9
M,

Fig. 5. Normalized truncation error of finite image series expansion truncated at Mj,
for a single slab configuration, n = 2. Contributions incorporating either ordinary image
terms only, 100{Aayz, (r,r')|/|Ao(r,r’)| (Eq. (62)), or both the ordinary and collective
image terms, 100|Apy, (r, 1) —Apg, (2, 2")| /| Ao(r, )| (Eq. (64)), are denoted by solid and
dashed lines, respectively. The simulation parameters: 1 = —0.89, K3 = 0.75, z; = 0.0,
z2 =0.03m, 2z’ = —0.01m, r' = (0,0,2'), r = (0,0,dz’).
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Fig. 6. Truncation error contours of finite image series expansion truncated at My, M2,
for a double slab configuration, n = 3. Contributions incorporating either ordinary image
terms only, 100|A s, (v, ') + Ary, a, (v, )1/ |A0(x, v') + Ao o(r, r')| (Eqgs. (67), (68)), or
both ordinary and collective image terms, 100|Apz, (r,v/) + Apgy, Mo (T, 7') — Apg, (2, 27) —
Anty g (2, 2)| /| Ao(r, T') + Ao o(r, T')| (Egs. (71), (72)), are denoted by solid and dashed
lines, respectively. The simulation parameters: K1 = 0.65, K2 = —0.75, K3 = 0.85,
21 =0, z2 = 0.01m, z3 = 0.02m, z’ = —0.0lm, ¢’ = (0,0, z'), r = (0,0, 102’).

the summation indices (M, for n = 2 and M;, M for n = 3) using biological
medium parameters (60, 62].

The highest convergence rate is always achieved via contributions incor-
porating both ordinary and collective image terms, thereby, establishing the
superiority of the collective image approach over ordinary image summa-
tion. This proved important when we further used this expansion, through
the moment method, to calculate the potential distribution due to finite
electrode array in multilayered media (Sec. 3).

3. Electrode Array in Layered Media
3.1. Integral equation formulation

The physical configuration of our problem, depicted in Fig. 7 consists of a
stratified biological medium with n boundaries separating between the n+1
homogeneous and isotropic layers. Each layer is characterized by its thick-
ness, conductivity o(z) (generally complex), where o(2) = o; as defined in
(6). An array of P rectangular electrodes is placed in the first layer (i = 1).
The evaluation of the electrodes’ current distributions and potentials is car-
ried out within the quasistatic (low-frequency) regime. Assuming that all
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Fig. 7. Physical configuration for a layered biological tissue excited by an array of finite
electrodes.

the P electrode plates (Fig. 7) are perfect conductors, i.e. constant potential
patches, the potential of each electrode V is specified. Hence, the problem
constitutes a system of P Fredholm integral equations of the first kind [61]
for the electrodes’ current distribution ip(rp),

P
1 .
Vy=®(ry) = - E ]{S ip(rp)G(rq,rp)dsp, ¢=1,2,...,P, (75)
p=1 P

where ip(r), the pth electrode current distribution, ®(r) can be expressed
as a superposition over all the electrode potentials ®,(r),

P
B(r) = Dp(r), (76)
p=1
defined via the convolution integral
1 .
B0) = o= § inles)0(r, 55 )iy (77)
1Js

P
The point-source response G(r,rp) (Green’s function, Table 2) can be rep-
resented most effectively as the image series expansion i.e. a collection of
properly weighted and shifted point-source responses and a remainder term
(collective image) as presented in Sec. 2.2 [60, 61]. We note that o(z) should
be replaced by the complex conductivity <(z) = o(z) + Jwe(z), in every
layer for which the inequality o(z) > Jwe(z) is not satisfied. The parameter
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w denotes the angular frequency corresponding to the electrode excitation.
To simplify the notation we allow ¢ to be complex in the remainder of the
paper.

3.2. Electrode array

The total current of each electrode I, is obtained by integration of the
electrode current density distribution iy(r,) over the electrode surface,

I,= fs ip(rp)dsp. (78)

14
The uniqueness of the solution of system (75) in conjunction with the super-
position principle leads to the following linear relation between the electrode
currents and electrode voltages

Wi Rz Riz Riz ... Rip L
Va Ro:1 Roa Rgz ... Rop L
V=| | = i ) ) ] . | =RI, (79)
Vp Rpi Rpz Rpz ... Rpp/ \Ip
or, alternatively

G Gz Gz ... Gyp Wi
Ga1 G2z Gaz ... Gop Va
Gp1 Gp2 Gps ... Gpp Vp

where G and R = G~! denote the input conductance (admittance) and
the input resistance (impedance) P x P matrices of the electrode array
feeding network, respectively. It can be readily shown that the matrices
R and G are symmetric due to the reciprocity property of G(r,rp), i.e.
G(rq,rp) = G(rp,rq). Furthermore, all the diagonal elements of both matri-
ces are positive, whereas, the off-diagonal elements are positive for R and
negative for G.

In view of Kirchhoff’s current law, the sum of all the electrode currents
must be zero,

1,1,...,0)I=(1,1,...,1)GV =0, (81)
i.e. (LHS),

> 5,=0, (82)
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or, equivalently (RHS),

P P
ZapV}, =0, op= Z Ggp- (83)
p=1 q=1

This restriction leads to the conclusion that only P — 1 of the elements of
either the vector V or the vector I can be arbitrarily selected. Thus, the
remaining P + 1 elements of V and I are explicitly specified via either (82)
or (83), and (80).

The total complex power S, delivered by a P-electrode array, can be
expressed in terms of the vector V and complex conjugate of the vector I,

S = %VTI*. (84)

Note that for w = 0, the real input power is § = VT1I.

3.3. Moment method

The integral equation system in (75) can be inverted using the moment
method with pulse base for the electrode current distribution and point
match for the potential {38)]. The discretized electrode potential ® is a linear
transformation of the discretized current density distribution ¢ via L,

& = Li. (85)

The moment matrix L is a square matrix specified by its elements £,,,
(representing the potential at the center of the subsection m due to unit
current density distribution on the subsection n), given as,

Tn+b/2 pyn+b/ 2
by = / G(rm,r,)dz, dy,,, (86)
n—b/2 Jy,—b/2
where r,,, and r,, represent the location of the observation and source points,
respectively. It can be readily verified that the discretization quantum is a
square element of size b x b, thus a square electrode of size a x a contains
= (a/b)? subdivisions (Fig. 7). Hence, a problem involving P identical
square electrodes associates with vectors ¢ and ® of size PN and a moment
matrix L of size (PN) x (PN). An explicit closed-form expression for the
moment matrix element can be obtained by substituting (59) and (73) from
Sec. 2 in (86) and utilizing the identity,

T Y do'dy’
fava = [ [

=zln(y+r)+yln(z +r) — zarctan (zy/zr), (87)
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where 1’ = (22 + y2 + 22)!/2. In this derivation we make use of reported
procedures [25, 46], or more efficiently, of symbolic software Mathematica 3
(Wolfram Research Corp.). The expression can be reduced into Bancroft’s
result [5], upon setting z = 0. The resultant element £,,,, is given by,

Zmn =

47TG1 (A(Tm — Zn +b/2,Ym — Yn + b/2, 21)
—h(Tm — Tn +b/2,ym —yn — b/2, 2)
—MZTm — Tn —b/2,Ym — yn + /2, 2)
+h(Tm — Tn — b/2,Ym — Yn — b/2, 2m)], (88)
where h(z,y, zm) is expressed via the (59)
hMz,y,z) = f(z,y,2 — 2')

P2 5SS I () ()

l1=0m1=0 lpn-1=0mp_1=0 k

% K:;ck [1 _ ’Cl2c]sk—1—lk+1[_’Ck]mk]czlk—lk f(z,y’z + ZL)} K,

n—1
+ > Ragy, mi (2, 2)02. (89)

k=1
The last term in the RHS of (89) represents an asymptotic error esti-
mation (Eq. (73)) of ¢;,» due to the truncated image series expansion in
(59). This collective image term significantly accelerates the image series

convergence and the overall algorithm speed.

Note that, the electrode voltages and currents in (80) are related to the
discretized electrode potential and current density distribution in (85) via,

& =UV=UG™I, (90)
and
I=5"UT4, (91)
where U is a (PN) x P rectangular matrix,
¥ 710 otherwise, i =1,2,...,PN, j=1,2,...,P.
Thus, using (90), Eq. (85) can be uniquely inverted once either the
P —1 electrode voltages or electrode currents are specified (Eqgs. (81)—(83)).

Furthermore, upon utilizing (91) as well, the conductance matrix G is
completely determined via L™!

G =p»UTL . (93)

(92)



Image Theory and Applications in Bioelectromagnetics 349

3.4. Electrode array excitation of layered biological tissue:
numerical simulations

The hybrid image series and moment method scheme that has been out-
lined in the previous sections is applied herein for numerical calculations.
The simulations are selected to address simple, yet fundamental, concepts
associated with low-frequency interaction between electromagnetic field and
biological tissues. Thereby, they demonstrate the potential promise of the
hybrid scheme that is capable of efficiently handling 3-D problems in lay-
ered media excited by an array of finite electrodes of arbitrary (generally
non-planar) shape.

Since, all of the calculations are carried out for the physical configuration
depicted in Fig. 7 where 2z, =21 =0, p=1,2,..., P (2, is a component of
rp = (Tp, Yp, 2p)), w = 0, and oy = 0 (air layer), the expression for G, (r,r’)
in (59) has to be modified in accordance with the identity,
him 1EK1_ 2 (94)

1+ 1-K;
o1 g9 T 01=0 o1 )]

Furthermore, the simulations are calculated assuming perfect conduct-
ing electrode plates discretized as b = 0.05a (N = (a/b)? = 400) and
the following typical FES parameters [32]: n = 4, o1 = 0 (air), o2 =
0.4 S/m (wet skin), o3 = 0.04 S/m (fat),o4 = 0.7 S/m (muscle), o5 =
0.07 S/m (bone/ fascia), z1 =0, z2 = 0.005 m, z3 = 0.01 m, z4 =0.04 m.

3.4.1. Potential map

The potential in the mth layer (m = 1,2,...,n + 1) is obtained via (76)
through discretization of (77),

b2 PN

(I)m(r) = 0_—1 Zikgm(r, I‘k), r; € Sp7 (95)
k=1

where i is a component of the PN-dimensional vector ¢ in (85) and
Gm(r,ry) is the corresponding mth layer Green’s function. The current
density J(r) and electric field E(r) are related via J(r) = o(z)E(r) and
E(r) = —V®(r), respectively, and obtained through explicit (analytic)
closed-form differentiation of ®(r) and G(r,r,) (i.e. term by term differ-
entiation of the image series expansion). This is more accurate and stable
than the numerical differentiation generally used in other solution schemes.
A sketch of the computational algorithm is depicted in Fig. 8.
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Conductance Electrode Excitatiox?
matrix Eq(92)

G= [Gu] I=GV, or

V=G1 y

Moment Operator
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J

Fig. 8. Block scheme of the algorithm: (1) The kernel (Green’s function) expanded
in image series; (2) Moment matrix elements calculated through analytical integration
of the image terms; (3) Moment matrix inversion; (4) Impedance matrix calculation;
(5) Electrode current density distribution calculation; (6) Potential or field distribution
at any point in any layer calculation. Note that we use image expansion on two different
occasions: (a) To obtain the electrode current density distribution (using the image series
expansion corresponding to the layer where the electrode array is placed), and (b) to
obtain, after moment matrix inversion, the potential at any layer, using the image series
expansion corresponding to that layer. Image series can be analytically differentiated to
obtain the electric field and current density vectors. Since the impedance matrix depends
only on the problem geometry, we need to perform matrix inversion only once, and then
study the electrode array current—voltage relation for any given input voltage or current.

The potential distribution and vector plot of the  — y components of
the electric field, depicted in Fig. 9, is calculated for a four electrode array
P =4, PN = 4 x 400 = 1600, m = 1 and electrode size a = 0.04m. The
map illustrates efficiently the complete excitation status of the biological
tissue at the electrode plane z, = z; = 0, p = 1,2,3,4. The electrode
T — y spacings and the electrode potentials V are specified in Fig. 9. The
plot of the z — y projection of the field vector E(r) is obtained through
explicit (analytic) closed-form differentiation of ®(r) and G, (r,rx) in (95),
i.e. term by term differentiation of the image series expansion. The method
is illustrated for the case of a two electrodes.
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Potential [V]

Fig. 9. Potential map and vector plot of the £ — y components of the electric field
for a four-electrode array at z = 2p = z1 = 0, p = 1,2,3,4. The electrodes’ size are
ap = 0.04m, their z — y centers are z = (z1,z2,3,z4) = (0.1,0.1,0.1,0.2) [m], y =
(y1,¥2,¥3,y4) = (0.05,0.15,0.25,0.15)[m}, and their potentials are V = (—0.5,0.5, —0.5,
0.5)[V}, respectively.

3.4.2. Two-electrode configuration

We focus here on the dependence of electrode array and biological tissue
interaction on the following three parameters: 1. electrode size, 2. electrode
separation, 3. number of layers and their conductivities. The array config-
uration, therefore, is reduced to the simplest possible, i.e. a two-electrode
system.

We focus herein on the evaluation of the conductance matrix elements
G11 and G2 in (93) as well as the electrode input admittance Gy, given via,

I

1
Gin = VoV §(G11 — Gi2), (96)

for the symmetrical two-electrode problem (Vi = —V2 & Gi; = Gog,
Eq. (83)). The dependence of G11/G11max, G12/G1imax and Gin/G11max on
the electrodes’ normalized center spacing d/a > 1, is given in Fig. 10. Note
that for d/a > 3, there is practically no interaction between the electrodes,
i.e. Gi2 = 0, and Gi; reaches the single electrode limit. The normalized
conductivity dependence on either o5 or o3 is depicted in Figs. 11 and 12,
respectively. While the conductivities strongly depend on the skin layer
conductivity (o2), that is in contact with the electrode array, the some-
what more moderate dependence on the fat layer conductivity (o3) cannot
be ignored.
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Fig. 10. Dependence of the normalized electrodes input conductance (G;p, in Eq. (96),
dashed line) and conductance matrix elements (Gi1 solid line and G12 dotted-dashed
line, Eq. (93)) on the normalized distances between the electrode centers.
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Fig. 11. Dependence of the normalized electrodes input conductance (dashed line,
Eq. (96)) and conductance matrix elements Gy (solid line) and Gi2 (dotted-dashed
line, Eq. (93)) on the second layer conductivity, o2, (skin).

4. Conclusion

A major outcome from this work was a novel image series expansion scheme
for quasistatic Green’s function in media with arbitrary number of layers.
The expansions utilized a unique recursive representation for Green’s func-
tion that is a generic characteristic of the stratification and were explicitly
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Fig. 12. Dependence of the normalized electrodes input conductance (dashed line,
Eq. (96)) and conductance matrix elements (Gi11 solid line) and Gii dotted-dashed
line, Eq. (93) on the third layer conductivity, a3 (fat).

constructed for multilayer media. Qur recursive construction allowed us to
prove analytically, to our knowledge for the first time, the convergence of
n-layer image series under general conditions.

The numerical simulations demonstrated the importance of appropriate
modeling of the tissue layers for FES application. The proposed hybrid
model was shown capable to handle effectively layered medium problems
with any number of layers. Thus a decision whether a particular layer should
be included in the model could be accurately made.

The efficient handling of 3-D problems was achieved with the finite
electrode arrays of arbitrary (generally non-planar) geometry due to the
following: (a) The moment matrix elements were expressed explicitly via
the analytical integration of image series terms combined with an asymp-
totic truncation error estimation; (b) The field was obtained through an
analytic closed-form differentiation of the potential (i.e. term by term dif-
ferentiation of the image series expansion); (c¢) Utilization of complex con-
ductivity enabled generation of low-frequency field data for layered media
rather than for the DC component only.

The inclusion of a collective image term, representing a closed form
asymptotic expression of the series remainder integral, significantly accel-
erated the image series convergence and the overall algorithm speed. The
numerical simulations signify the importance of the appropriate model-
ing of the tissue layers. Oversimplified models in FES problems, utilizing
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a reduced number of layers, may result in inaccurate simulations, which
greatly deviate from the real problem. Since our hybrid model can effec-
tively handle layered medium problems with any number of layers, a deci-
sion whether a particular layer should be included in the model can be
accurately made. The simulation results can be readily implemented for
the classification, calibration, verification and interpretation of reported
numerical and experimental data. The proposed computational procedure
can thus be used as a simple tool for producing analytical data for testing
numerical subroutines applied to simulate direct (FES) and inverse (bio
electromagnetic imaging) problems in biomedical application.
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CHAPTER 13

DYNAMICS OF HUMANOID ROBOTS:
GEOMETRICAL AND TOPOLOGICAL DUALITY

VLADIMIR G. IVANCEVIC

Defence Science & Technology Organization
Adelaide, Australia
vladimir. Ivancevic@dsto.defence.gov.au

Humanoid robots are human-like, anthropomorphic mechanisms with biody-
namics that resembles human musculo-skeletal dynamics. The present chapter
enlightens the underlying unique global mathematical structure beneath the
general humanoid dynamics (HD, for short). It presents a parallel development
of Hamiltonian and Lagrangian formulations of HD, proves both differential-
geometrical and algebraic-topological dualities between these two formulations,
and finally establishes a unique functorial relation between HD-geometry and
HD-topology.

1. Introduction

Highly complex, many-degree-of-freedom dynamics of humanoid robots
resembles human motion dynamics (see [10] for technical details on
biomechanically-realistic HD). Since the early papers of Vukobratovic
[25-30], the vast body of research has been done in relation to kinemat-
ics, dynamics and control of anthropomorphic robots [1, 6, 8, 9, 12, 18,
22-24]. Some of the biped models had the ability of passive dynamic walk-
ing [15] and others had powered walking ability {16]. The previous decade
was dominated by various solutions to the kinematic problems of redun-
dancy and singularities (31, 21]. The last decade of the twentieth century
has been characterized mostly by extensive use of intelligent, adaptive,
neuro-fuzzy-genetic control of HD [2, 5, 7, 17, 19, 20].

The present chapter uncovers the underlying unique global geometrico-
topological structure beneath the HD. It presents a parallel development
of Hamiltonian and Lagrangian formulations of dissipative, muscle-driven
HD (see [10]), proves both differential-geometrical and algebraic-topological
dualities between these two formulations, and finally establishes a unique

359
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functorial relation between HD-geometry and HD-topology (see [13] for the
modern unifying mathematical language of categories, functors and natural
equivalences).

The finite-dimensional configuration manifold Q¥ of HD is constructed
using direct products of constrained rotational Lie groups. Lagrangian
formulation of HD is performed on the tangent bundle TQY, while
Hamiltonian formulation is performed on the cotangent bundle T*QV.
Both Riemannian and symplectic geometry are used for these formulations.
The geometrical duality (see [11, 3]) of Lie groups and algebras between
these two HD-formulations is proved as an existence of natural equiva-
lence between Lie and canonical functors. The topological duality (see [4])
between these two HD-formulations is proved as an existence of natural
equivalence between Lagrangian and Hamiltonian functors in both homol-
ogy and cohomology categories.

2. Topological Preliminaries

In topology of finite-dimensional smooth (i.e. CP*! with p > 0) manifolds,
a fundamental notion is the duality between p-chains C and p-forms (i.e.,
p-cochains) w on the smooth manifold M, or domains of integration and
integrands — as an integral on M represents a bilinear functional fc w =
(C,w) (see [3] and [4]). The duality is based on the classical Stokes formula

Jo= fe®

This is written in terms of scalar products on M as (C, dw) = (0C,w), where
OC is the boundary of the p-chain C oriented coherently with C. While the
boundary operator 9 is a global operator, the coboundary operator, that is,
the exterior derivative d, is local, and thus more suitable for applications.
The main property of the exterior differential,

d?>=0 implies 8% =0,
can be easily proved by the use of Stokes’ formula
(8%C,w) = (0C, dw) = (C,d*w) = 0.

The analysis of p-chains and p-forms on the finite-dimensional smooth
manifold M is usually performed in (co)homology categories (see [4])
related to M.

Let M* denote the category of cochains, (i.e., p-forms) on the smooth
manifold M. When C = M®*, we have the category S*(M?*) of generalized
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cochain complexes A® in M*, and if A}, = 0 for n < 0 we have a subcategory
Sp (M?®) of De Rham differential complexes in M*®

br 0 — QM) S 0 (M) S 02(M)
RN LT0.7) R (1)

Here A}, = Q™(M) is the vector space over R of all p-forms w on M (for
p = 0 the smooth functions on M) and d,, = d : Q""}(M) — Q*(M) is the
exterior differential. A form w € Q"(M) such that dw = 0 is a closed form or
n-cocycle. A form w € Q"(M) such that w = df, where § € Q"~1(M), is an
exact form or n-coboundary. Let Z"(M) = Ker(d) (resp. B*(M) = Im(d))
denote a real vector space of cocycles (resp. coboundaries) of degree n. Since
dn+1dr = d? = 0, we have B"(M) C Z™(M). The quotient vector space

Hpp(M) = Ker(d)/Im(d) = Z"(M)/B" (M)

is the de Rham cohomology group. The elements of HR,(M) represent
equivalence sets of cocycles. Two cocycles wi, wy belong to the same equiv-
alence set, or are cohomologous (written w; ~ wy) if and only if they differ
by a coboundary wi —wy = df. The De Rham cohomology class of any form
w € QM) is [w] € HEz(M). The De Rham differential complex (1) can
be considered as a system of second-order differential equations d?6 = 0,
6 € Q"~}(M) having a solution represented by Z™(M) = Ker(d).

Analogously let M, denote the category of chains on the smooth mani-
fold M. When C = M,, we have the category S,(M,) of generalized chain
complexes A, in M,, and if A, = 0 for n < 0 we have a subcategory
SE(M,) of chain complexes in M,

A0 —C) & (M) & (M)

~&orvan &
Here A, = C™(M) is the vector space over R of all finite chains C on the
manifold M and 8, = 8 : C"*}(M) — C™(M). A finite chain C such that
OC = 0 is an n-cycle. A finite chain C such that C = 8B is an n-boundary.
Let Z,(M) = Ker(0) (resp. B,(M) = Im(d)) denote a real vector space
of cycles (resp. boundaries) of degree n. Since 0,410, = 0% = 0, we have
Bn(M) C Z.(M). The quotient vector space

H (M) = Ker(8)/Im(8) = Zu(M)/Bn(M)

is the n-homology group. The elements of HS (M) are equivalence sets
of cycles. Two cycles C1, C> belong to the same equivalence set, or are
homologous (written C; ~ C3), if and only if they differ by a boundary
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C) — C3 = 0B). The homology class of a finite chain C € C*(M) is [C] €

The dimension of the n-cohomology (resp. n-homology) group equals the
nth Betti number b™ (resp. b,) of the manifold M. Poincaré lemma says
that on an open set U € M diffeomorphic to R¥, all closed forms (cycles)
of degree p > 1 are exact (boundaries). That is, the Betti numbers satisfy
b? =0 (resp. bp =0) forp=1,...,n.

The De Rham theorem states the following. The map ®: H, x H® - R
given by ([C], [w]) — (C,w) for C € Z,,, w € Z" is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) H,, and H™
and the equality b, = b™.

3. HD-Configuration Manifold and Its Reduction
3.1. Configuration manifold

Kinematics of an n-segment humanoid chain is usually defined as a map
between ezternal (usually, end-effector) coordinates z"(r = 1,...,n) and
internal (joint) coordinates ¢*(i = 1,...,N) (see [10]). The forward kine-
matics are defined as a nonlinear map z” = z"(g‘) with a correspond-
ing linear vector functions dz” = 8z"/0q'dq* of differentials: and " =
dz" /8¢t ¢ of velocities. (Here and subsequently the summation convention
over repeated indices is understood.) When the rank of the configuration-
dependent Jacobian matrix J = 0z"/8q" is less than n the kinematic
stngularities occur; the onset of this condition could be detected by the
manipulability measure. Inverse kinematics are defined conversely by a
nonlinear map ¢* = ¢*(z”) with a corresponding linear vector functions
dq* = Oq*/0x" dx” of differentials and §* = 8q*/8z" " of velocities. Again,
in the case of redundancy (n < N), the inverse kinematic problem admits
infinite solutions; often the pseudo-inverse configuration-control is used
instead: ¢* = J* ", where J* = JT(JJT)~! denotes the Moore-—Penrose
pseudo-inverse of the Jacobian matrix J.

Humanoid joints, that is, internal coordinates ¢* (i = 1,...,N), con-
stitute a smooth configuration manifold QV, described as follows. Uniax-
ial, “hinge” joints represent constrained, rotational Lie groups SO(2),,.¢r
parameterized by constrained angles q’,.,. = ¢ € [g&n, @nax]- Three-
axial, “ball-and-socket” joints represent constrained rotational Lie groups

S50(3)%,, .., parameterized by constrained Euler angles ¢* = %, (in the
following text, the subscript “cnstr” will be omitted, for the sake of sim-

plicity, and always assumed in relation to internal coordinates g*).
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All SO(n)-joints are Hausdorff C*°-manifolds with atlases (Uy, uq);
in other words, they are paracompact and metrizable smooth manifolds,
admitting Riemannian metric.

Let A and B be two smooth manifolds described by smooth atlases
(Ua,uq) and (Vg,uvg), respectively. Then the family (Uy x V3,uq X vg :
Ua X V3 = R™ x R")(0, f) € A x B is a smooth atlas for the direct
product A x B. Now, if A and B are two Lie groups (say, SO(n)), then
their direct product G = A x B is at the same time their direct product
as smooth manifolds and their direct product as algebraic groups, with the
product law

(a1,b1)(az, b2) = (a1az,b1b2), a12€ A, b2 € B.

Generalizing the direct product to N rotational joint groups, we can
draw an anthropomorphic product-tree (see Fig. 1) using a line segment “-”
to represent direct products of humanoid’s SO(n)-joints. This is our basic
model of the humanoid configuration manifold Q¥ .

Let TqQN be a tangent space to Q% at the point ¢. The tangent bundle
TQY represents a union quQ N TqQN , together with the standard topology
on TQ" and a natural smooth manifold structure, the dimension of which
is twice the dimension of QY. A vector field X on Q¥ represents a section
X : QN = TQN of the tangent bundle TQ"V.

SO(3)
s?(s) S?(s)
sclJ(z) scla(z)
SO@B)  SO(3)  SO(3)

SO(3)}———50(3)

SO(2) SO(2)

SO(3) SO(3)

Fig. 1. Configuration HD-manifold Q¥ modeled as anthropomorphic product-tree of
constrained SO(n) groups.
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Analogously let Tq*QN be a cotangent space to QY at g, the dual to
its tangent space T,Q". The cotangent bundle T*Q" represents a union
Uqeon Ty QY , together with the standard topology on T*Q” and a natural
smooth manifold structure, the dimension of which is twice the dimension
of QN. A one-form 8 on QY represents a section 6 : QN — T*QN of the
cotangent bundle T*QV. '

We refer to the tangent bundle TQY of HD configuration manifold Q¥
as the velocity phase-space manifold, and to its cotangent bundle T*QY as
the momentum phase-space manifold.

3.2. Reduction of the configuration manifold

The HD-configuration manifold Q" (Fig. 1) can be (for the sake of the
brain-like motor control [19, 20]) reduced to N-torus TV, in three steps, as
follows.

First, a single three-axial SO(3)-joint can be reduced to the direct prod-
uct of three uniaxial SO(2)-joints, in the sense that three hinge joints can
produce any orientation in space, just as a ball-joint can. Algebraically, this
means reduction (using symbol “>”) of each of the three SO(3) rotation
matrices to the corresponding SO(2) rotation matrices

! 0 0 cos¢ —sing
0 cos¢ —sing | 2 (sinq& cosd)) ,
0 sing cos¢

cgs ¥ (1) Sn(l) ¥ S ( cosy siny >
—sinyy 0 cosy —siny  cosy
C?S 6 —sing 0 cosf —sinf

sin cosf 0| 21| . .
sin @ cos 0

0 0 1

In this way we can set the reduction equivalence relation SO(3) 2
S0(2)y x SO(2)y x SO(2)9, where x denotes the noncommutative semidi-
rect product.

Second, we have a homeomorphism: SO(2) ~ S!, where S? denotes the
constrained unit circle in the complex plane, which is an Abelian Lie group.

Third, let IV be the unit cube [0,1]V in RY and “~” an equivalence
relation on R" obtained by “gluing” together the opposite sides of I N pre-
serving their orientation. The manifold of humanoid configurations depicted
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in Fig. 1 can be represented as the quotient space of RY by the space of the
integral lattice points in RY, that is a constrained N-dimensional torus TV:

N
RN/ZN =N/~ ] 8}
i=1

={(¢’,i=1,...,N):mod 27} = TV.

Since S! is an Abelian Lie group, its N-fold tensor product TV is also an
Abelian Lie group, the toral group, of all nondegenerate diagonal N x N
matrices. As a Lie group, the HD-configuration space QY = TV has a
natural Banach manifold structure with local internal coordinates ¢* € U,
U being an open set (chart) in TV,

Conversely by “ungluing” the configuration space we obtain the primary
unit cube. Let “~*” denote an equivalent decomposition or “ungluing” rela-
tion. By the Tychonoff product-topology theorem, for every such quotient
space there exists a “selector” such that their quotient models are homeo-
morphic, that is, TN/ ~*~ AN/ ~*. Therefore IV represents a “selector”
for the configuration torus 7% and can be used as an N-directional
“command-space” for the topological control of humanoid motion. Any
subset of degrees of freedom on the configuration torus TV representing
the joints included in humanoid motion has its simple, rectangular image
in the command space — selector I". Operationally, this resembles what
the brain-motor-controller, the cerebellum, actually performs on the highest
level of human motor control (see [20]).

4, Geometrical Duality in Humanoid Dynamics

Theorem 1. There is a geometrical duality between Lagrangian and
Hamiltonian HD-formulations on QV. In categorical terms, there is a
unique natural geometrical equivalence

Dualg : Lie = Can

in HD (symbols are described in the next subsection).

Proof. The proof has two parts: Lie-functorial and geometrical. a

4.1. Lie-functorial proof

If we apply the functor Lie on the category S*{SO(n)?] (forn = 2,3 and i =
1,...,N) of rotational Lie groups SO(n)* (and their homomorphisms) we
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obtain the category S,[so(n);] of corresponding tangent Lie algebras so(n);
(and their homomorphisms). If we further apply the isomorphic functor
Dual to the category S,[so(n);] we obtain the dual category S}[so(n)}] of
cotangent, or, canonical Lie algebras so(n); (and their homomorphisms).
To go directly from S*[SO(n)] to S;[so(n)}] we use the canonical functor
can. Therefore, we have a commutative triangle:

S*[SO(n)]

Li Can

Sefso(n)i] Silso(n);]

o
. o |
DuaLe

Applying the functor Lie on HD-configuration manifold QV (Fig. 1),
we get the product-tree of the same anthropomorphic structure, but having
tangent Lie algebras so(n); as vertices, instead of the groups SO(n)*. Again,
applying the functor can on QV, we get the product-tree of the same
anthropomorphic structure, but this time having cotangent Lie algebras
so(n); as vertices. Both the tangent algebras so(n); and the cotangent
algebras so(n)} contain infinitesimal group generators: angular velocities
¢* = ¢% — in the first case, and canonical angular momenta p; = py, — in
the second case [10]. As Lie group generators, both the angular velocities
and the angular momenta satisfy the commutation relations: [§%,§¥%:] =

e;’,””q"i and [pg,,py,] = egd)pgi, respectively, where the structure constants

egw and 635111 constitute the totally antisymmetric third-order tensors.

In this way, the functor Dual¢ : Lie &2 Can establishes the unique geo-
metrical duality between kinematics of angular velocities ¢* (involved in
Lagrangian formalism on the tangent bundle of Q") and kinematics of
angular momenta p; (involved in Hamiltonian formalism on the cotan-
gent bundle of @V), which is analyzed below. In other words, we have
two functors, Lie and Can, from the category of Lie groups (of which
S°[SO(n)"] is a subcategory) into the category of (their) Lie algebras (of
which S,.[so(n);] and S;{so(n)}] are subcategories), and a unique natu-
ral equivalence between them defined by the functor bualg. (As angular
momenta p; are in a bijective correspondence with angular velocities ¢,
every component of the functor Dualg is invertible.) o
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4.2. Geometrical proof

Geometrical proof is given along the lines of Riemannian and symplectic
geometry of mechanical systems (see [10] and [14]), as follows. The Rieman-
nian metric g = (,) on the configuration manifold Q” is a positive-definite
quadratic form g : TQN — R, given in local coordinates ¢* € U (U open in

Q) as
gij — gij(g, m)dg*dg’.

Here

i oz" ozt
gij (q, m) = ?;1 mn67'3 —3? _6};1—

is the covariant material metric tensor defining a relation between internal
and external coordinates and including n segmental masses m,,. The quan-
tities " are external coordinates (r,s = 1,...,6n) and i,j = 1,...,N =
6n — h, where h denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : TQN — R depen-
dent on velocity v and such that L(v) = $(v,v). It is given by

1 o
L(v) = Egij(q, m)v'v?!

in local coordinates ¢¢,v¢ = ¢* € U, (U, open in TQ¥). The Hamiltonian
of the system is a quadratic form H : T*Q" — R dependent on momentum
p and such that H(p) = 1(p,p). It is given by

1 i
H(p) = 59 I(q, m)pip;

in local canonical coordinates ¢, p; € U, (U, open in T*Q™). The inverse
(contravariant) metric tensor is defined as

9q" 8¢
Z Mydrs 8z 0z°

For any smooth function L on TQY, the fiber derivative or Legendre
transformation is a diffeomorphism FL : TQN — T*QN, F(w)-v = (w,v),
from the momentum phase-space manifold to the velocity phase-space man-
ifold associated with the metric g = (, ). In local coordinates ¢¢, v¢ = ¢* € U,
(U, open in TQN), FL is given by (¢*,v%) = (¢*, p:)-
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On the momentum phase-space manifold T*QV exists:

(i) A unique canonical one-form 8y with the property that, for any one-
form 3 on the configuration manifold Q¥, we have *0y = 3. In local
canonical coordinates ¢¢,p; € U, (U, open in T*QY) it is given by
On = pidq’.

(ii) A unique nondegenerate Hamiltonian symplectic two-form wg, which
is closed (dwy = 0) and exact (wy = dfy = dp; A dq*). Each body
segment has, in the general SO(3) case, a sub-phase-space manifold
T*SO(3) with

Wi = dpy A de + dpy A dip + dpe A d6.
Analogously, on the velocity phase-space manifold TQY exists:

(i) A unique one-form 6y, defined by the pull-back 01, = (FL) 0y of 6y
by FL. In local coordinates ¢*,v* = ¢¢ € U, (U, open in TQ") it is
given by 01, = L,:dg’, where L, = 0L/0v".

(ii) A unique nondegenerate Lagrangian symplectic two-form wy,, defined
by the pull-back wy, = (FL)*wg of wy by FL, which is closed (dwy, =
0) and exact (wr, = df, = dL,: Adg').

Both 7*Q" and TQV are orientable manifolds, admitting the standard
volumes given respectively by

N(N+1)
(1)
Qupy = N wg, and
(D*F
QwL = N' (.L)L

in local coordinates ¢*,p; € U, (U, open in T*QV), resp. ¢*,v* = ¢* € U,
(U, open in TQY). They are given by

QH:dql/\-n/\qu/\dm/\"‘/\de, and
Qr=dg' A---ANdg¥N Adv* A AdoV.

On the velocity phase-space manifold TQY we can also define the action
A:TQN — R by A(v) = FL(v) - v and the energy E = A — L. In local
coordinates ¢*,v* = ¢* € U, (U, open in TQN) we have A = v'L,:, so
E = v'L,: — L. The Lagrangian vector field X; on TQ" is determined
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by the condition ix,wy = dE. Classically, it is given by the second-order
Lagrange equations

d 6L oL
T " oG 2)

The Hamiltonian vector field X is defined on the momentum phase-
space manifold T*Q" by the condition ix, w = dH. The condition may be
expressed equivalently as Xg = JVH, where

7=(70)

In local canonical coordinates g*, p; € U, (U, open in T*Q") the vector field
Xy is classically given by the first-order Hamilton’s canonical equations

- OH . 0H ,
q _6_’ Pz——a—qi- (3)

As a Lie group, the configuration manifold QV is Hausdorff. There-
fore for z = (¢*,p;) € Up (Up open in T*QV) there exists a unique
one-parameter group of diffeomorphisms ¢; : T*QN — T*Q¥ such that
%It:o ¢rx = JVH(x). This is termed Hamiltonian phase flow and repre-
sents the maximal integral curve t — (g*(t), p;(t)) of the Hamiltonian vector
field Xy passing through the point z for ¢t = 0.

The flow ¢, is symplectic if wy is constant along it (that is, gjwy =
wg) if and only if its Lie derivative vanishes (that is, Lx,wyg = 0). A
symplectic flow consists of canonical transformations on T*QY, that is,
local diffeomorphisms that leave wg invariant. By Liouville’s theorem, a
symplectic flow ¢; preserves the phase volume on T*Q". Also, the total
energy H = FE of the system is conserved along ¢,, that is, H o ¢, = ¢.

Lagrangian flow can be defined analogously (see [14]).

For a Lagrangian (resp. a Hamiltonian) vector field X (resp. Xg)
on @V, there is a base integral curve co(t) = (q*(t),v*(t)) (resp. co(t) =
(¢*(t),ps(t))) if and only if co(t) is a geodesic. This is given by the con-
travariant velocity equation

¢ =v, ' +ThovF =0 (4)
in the former case and by the covariant momentum equation

qk = gkiph
i + Lo " pipm = 0
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in the latter. Here Fj- « denote the Christoffel symbols of an affine connection
in an open chart U on QV, defined on the Riemannian metric g = (,) by
Tk = ¢%Tju,
1(8gu , Ogt  Ogjk
2 (517' Era _54_’> '

The left-hand sides #* = o' + T w70 (resp. p; = pi+ g’ "™ pipm) in
the second parts of (4) and (5) represent the Bianchi covariant derivative
of the velocity (resp. momentum) with respect to t. Parallel transport on
QY is defined by #* = 0, (resp. f; = 0). When this applies, X1, (resp. Xg)
is called the geodesic spray and its flow the geodesic flow.

For the dynamics in the gravitational potential field V : Q¥ — R, the
Lagrangian L : TQN — R (resp. the Hamiltonian H : T*@Q~ — R) has an
extended form

Tju =

1.
L(v,q) = 39V — V(a),

1 ..
(resp. H(p,q) = Eg”ml?j +V(q)).

A Lagrangian vector field X, (resp. Hamiltonian vector field Xg) is
still defined by the second-order Lagrangian equations (2) and (4) (resp.
first-order Hamiltonian equations (3) and (5)).

The fiber derivative FL : TQN — T*Q" thus maps Lagrange’s equa-
tions (2) and (4) into Hamilton’s equations (3) and (5). Clearly there exists
a diffeomorphism FH : T*QN — TQV, such that FL = (FH)™!. In
local canonical coordinates ¢*,p; € Up (Up, open in T*@Q") this is given
by (¢¢,p;) — (¢*,v*) and thus maps Hamilton’s equations (3) and (5) into
Lagrange’s equations (2) and (4).

A general form of the forced, non-conservative Hamilton’s equations
(resp. Lagrange’s equations) is given as
= (69_5;, lji = '"gg +-Fi(t$ql’pi)1

d 9L 9L -
(resp. %o og = Fi(t, q’,v')).
Here the Fj(t,q%,p;) (resp. F;(t,q',v)) represent any kind of covariant
forces, including dissipative and elastic joint forces, as well as actuator
drives and control forces, as a function of time, coordinates and momenta.
In covariant form we have

I3

q

qk = gkipia
pi + Fj’kgﬂgkmplpm = Fi(t,q",pi),
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(resp. ¢* = v*,
o+ F}kvjvk = g Fj(t, ¢*,v")). o
This proves the existence of the unique natural geometrical equivalence
Dualg : Lie=Can
in HD.

5. Topological Duality in Humanoid Dynamics

In this section we want to prove that HD can be equivalently described in
terms of two topologically dual functors Lag and Ham, from Dif£, the cat-
egory of smooth manifolds (and their smooth maps) of class C?, into Bund,
the category of vector bundles (and vector-bundle maps) of class CP~!,
with p > 1. Lag is physically represented by the second-order Lagrangian
formalism on TQY € Bund, while Ham is physically represented by the
first-order Hamiltonian formalism on T7*Q" € Bund.

Theorem 2. There is a topological duality between Lagrangian and
Hamiltonian formalisms on QN (Figure 1). In categorical terms, there is a
unique natural topological equivalence

Dualr : Lag = Ham
in HD.

Proof. The proof has two parts: cohomological and homological.

5.1. Cohomological proof

If C = H* M (resp. C = £° M) represents the Abelian category of cochains
on the momentum phase-space manifold T*Q" (resp. the velocity phase-
space manifold TQ"), we have the category S*(H*M) (resp. S*(L*M)) of
generalized cochain complexes A® in H* M (resp. L*M) and if A}, =0 for
n < 0 we have a subcategory Sy (H* M) (resp. Spr(L*M)) of De Rham
differential complexes in S*(H* M) (resp. S*(L* M))

App 0= QUT*QN) & Ql(T* Q)
40T QM) S ... SaNTN) 4 ...
(resp.
$r:0— QTQY) S al(TQMN) 4 Q2(TQN) &
LS aNTNy 4.,
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where A, = QNV(T*QN) (resp. Ay = QN (T'Q"Y)) is the vector space of all
N-forms on T*Q" (resp. TQY) over R.

Let ZN(T*QVN) = Ker(d) (resp. ZV(T) = Ker(d)) and BY(T*QN) =
Im(d) (resp. BN (T'Q™N) = I'm(d)) denote respectively the real vector spaces
of cocycles and coboundaries of degree N. Since dyi1dy = d? = 0, it
follows that BN(T*QN) c ZN(T*Q") (resp. BN(TQN) c zZN(TQM)).
The quotient vector space

Hpp(T*Q") = Ker(d)/Im(d) = ZN(T*Q")/BN(T*Q")
(resp. HRp(TQ"N) = Ker(d)/Im(d) = ZN(TQ")/BN(TQ")),

we refer to as the De Rham cohomology group (vector space) of HD on
T*QYN (resp. TQV). The elements of HNL(T*Q"V) (resp. HN(TQN)) are
equivalence sets of cocycles. Two cocycles w; and wy are cohomologous, or
belong to the same equivalence set (written w; ~ ws) if and only if they
differ by a coboundary w; — wy = df. Any form wy € QN (T*QY) (resp.
wr, € QV(TQVN) has a De Rham cohomology class [wy] € HYR(T*QN)
(resp. [wr] € HRR(TQN)).

Hamiltonian symplectic form wy = dp; A dg; on T*QV (resp.
Lagrangian symplectic form wy, = dL,: A dg* on TQ") is by definition both
a closed two-form or two-cocycle and an exact two-form or two-coboundary.
Therefore the two-dimensional De Rham cohomology group of humanoid
motion is defined as a quotient vector space

Hpp(T*QN) = ZX(T*QN)/BX(T*Q")
(resp. Hpp(TQY) = Z2(TQ™)/B*(TQY)).

As T*QN (resp. TQV) is a compact Hamiltonian symplectic (resp.
Lagrangian symplectic) manifold of dimension 2N, it follows that wly (resp.
w¥) is a volume element on T*Q" (resp. TQ"), and the 2N-dimensional De
Rham cohomology class [w] € HEL(T*QV) (resp. [wl] € HEL(TQN))
is nonzero. Since [wf] = [wH]N (resp. [wl] = [wL]N), then [wy] €
H3p(T*QV) (resp. [wr] € HLR(TQN)) and all of its powers up to the
Nth must be zero as well. The existence of such an element is a neces-
sary condition for T*Q™N (resp. TQ") to admit a Hamiltonian symplectic
structure wy (resp. Lagrangian symplectic structure wy ).

A De Rham complex A%, on T*QN (resp. TQ™N) can be considered as
a system of second-order differential equations 20y = 0,0y € QN (T*QY)
(resp. d?0, = 0,0, € QN(TQV)) having a solution represented by
ZN(T*QN) (resp. Z¥(TQN)). In local coordinates ¢*, p; € Up (Up open in
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T*QN) (resp. ¢*,v* € U, (U, open in TQ")) we have d?0y = d%(p;dq’) =
d(dp; A dg*) = 0, (resp. d?0y, = d*(L,idg*) = d(dL,: A dg') = 0). O

5.2. Homological proof

If C =HeM, (resp. C = Lo M) represents an Abelian category of chains
on T*QY (resp. TQV), we have a category Se(HeM) (resp. Se(LoeM))
of generalized chain complexes A, in He M (resp. Lo M), and if A = 0
for n < 0 we have a sub-category SE(HM) (resp. S¢(LeM)) of chain
complexes in Ho M (resp. Lo M)

Ae: 0= COUT*QM) & eV QM) & (T QM) &
L& omTMy &

(resp.

Av: 0 COUTQYN) & cTQN) & cX(TQN) &
L& ovThy &,

Here Ay = CN(T*QY) (resp. Ay = CN(TQV)) is the vector space
of all finite chains C on T*Q" (resp. TQ"N) over R, and Oy = 0 :
CNTHT*QN) — CN(T*QN) (resp. Oy = 8 : CNHY(TQN) — CN(TQN)).
A finite chain C such that 0C = 0 is an N-cycle. A finite chain C
such that C = 8B is an N-boundary. Let Zy(T*QV) = Ker(d) (resp.
ZN(TQYN) = Ker(d)) and By(T*QN) = Im(d) (resp. Bn(TQV) =
Im(3)) denote respectively real vector spaces of cycles and boundaries of
degree N. Since Oy_10n = 8% = 0, then By(T*QN) C Zn(T*Q") (resp.
BN(TQN) € ZN(TQV)). The quotient vector space

HE(T*QN) = Zn(T*Q")/BN(T*QN)
(resp. HG(TQN) = Zn(TQN)/BNn(TQM))

represents an N-dimensional homology group (vector space) of humanoid
dynamics. The elements of HG(T*QN) (resp. HG(T'QY)) are equivalence
sets of cycles. Two cycles C; and C, are homologous, or belong to the same
equivalence set (written C; ~ C3) if and only if they differ by a boundary
C) — Cy = 0B. The homology class of a finite chain C € CN(T*Q") (resp.
C e CN(TQM)) is [C] € H{(T*QN) (resp. [C] € HG(TQN)). m]
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Particularly, in the case of the N-torus (QV = TV), the Betti numbers
of HD are given by

=1,

b'=N,...,b° = N GVl =N (6)
p ? ?

W =1 (0<p<N).

From the homotopy axiom for De Rham cohomologies, it follows that
Hyp(QN) =~ Hpn(TQN) =~ Hyr(T*QN). Also from the De Rham theorem
it follows that Hpp(X) = Hl(X) for any smooth manifold X. Therefore,
bN = by are given by (6) for all three HD-manifolds X = TV, TTN, T*T".

Therefore, bV = by are given by (6) for both TV and T*T", defining
also their Euler-Poincaré characteristic as [3]

N
X(@TN, T*TV) = (~1)Pb,,.

p=1

In this way, we have proved a commutativity of a triangle:

Diff

La Ham

Bund Bund

—— Pualr——>
which implies the existence of the unique natural topological equivalence
Dualr : Lag = Ham

in HD.

6. Global Structure of Humanoid Dynamics

Theorem 3. Global structure of HD is defined by the unique natural
equivalence

Dyn : Dualg = Dualr.
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Proof. The unique functorial relation Dyn:Dualg = Dualy, uncovering

the natural equivalence between geometrical and topological structures
of HD:

S*1SO(n)’]
Li Can
Slso(m)] ___p = | Siso(n;]
Dyn
Diff
La Ham
Bund Du.%lT Bund

— has been established by parallel development of Lagrangian and
Hamiltonian HD-formulations, i.e., functors Lag(Lie) and Ham(Can).
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CHAPTER 14

THE EFFECTS OF BODY COMPOSITION ON ENERGY
EXPENDITURE AND WEIGHT DYNAMICS DURING
HYPOPHAGIA: A SETPOINT ANALYSIS

FRANK P. KOZUSKO

Department of Mathematics, Hampton University, Hampton
Virginia, USA 25668
frank.kozusko@hamptonu.edu

1. Introduction

During hypophagia (under eating) loss of body weight is expected. The
dynamics of the weight change involve complicated biochemical processes
that produce changes in our daily energy needs, the amounts of fat and non-
fat tissue stored in the body and the energy efficiency at which we function.
If we consume fewer calories than are required for our daily activities, the
body is forced to use the energy stored in the fat and nonfat tissues with
resultant weight loss. Most of the energy will be supplied by the high energy
density fat mass while a smaller quantity will be supplied by consumption
of low energy density nonfat body mass. Since it is nonfat that is metabol-
ically active, loss of nonfat reduces the daily required energy, reducing the
energy deficit. Chemical changes in the body sense the loss of fat, causing
the appetite to increase. The body becomes more efficient at performing
its metabolic and physical activities which will further reduce the rate of
weight loss. Eventually body weight will decrease to the point where there
is no longer a deficit for the dietary calories provided (unless the intake is
less than minimum starvation requirements).

Figure 1 is an energy block diagram. The dotted line to the Out arrow
indicates the dependence of energy expenditure on the levels of fat and
nonfat. What the average person understands about this diagram is that a
3500 Calorie deficit will produce a loss of one pound of fat. Hence, reduce
your diet by 500 Calories per day and loose a pound per week. This would

379
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Fig. 1. Energy block diagram.
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Fig. 2. Representive weight loss model results.

produce a constant rate of weight loss as represented by the solid line in
Fig. 2. However, this concept neglects the change in the energy expenditure
as well as the fact that not all weight loss is fat. A more refined model
allows the energy expenditure to decrease in relationship to the decrease in
weight (dashed line in Fig. 2), with the slope determined by the proportion
of fat/nonfat in the lost weight. A further refinement would be to model
the increased energy efficiency achieved during f weight loss (represented
by the +++ curve in Fig. 2).

Figure 1 is a block diagram of the law of conservation of energy repre-
sented functionally as [1]:

%(energy stores) = Edz(energy supplied) — %(energy consumed) (1)
and mathematically as

dE}

di*

At times, it will be convenient to conduct analysis using normalized/

nondimensionalized parameters. We use * to indicate dimensional param-
eters and those without * are nondimensional. Definitions are provided in

=C* - E". 2)



A Setpoint Analysis 381

Table 1. Definition of Terms (reprinted from [2]).

Term Definition Nondimensional
C* Daily Calorie intake from diet. (Calories/day) C=C*C}
Cs Equilibrium (setpoint) value of C* (C} = Eg). 1=Cy/C}
E* Daily Energy Expenditure. (Calories/day) E = E*/E}
E} Equilibrium (setpoint) value of E* (E} = C3). 1= E}/E;
Ey Energy stored in the body (Calories)

F* Body Fat Weight (Lbs) F=FYWg§
F3 Equilibrium (setpoint) value of F** Fo = Fj/Wy

HB Harris—Benedict

k% Energy Density of Fat (Calories/Lb)

k» Energy Density of Nonfat (Calories/Lb)

k2 Nominal Energy Density of Body Weight (Calories/Lb)

N* Nonfat Body Weight (Lbs) N = N*/Wg

N§ Equilibrium (setpoint) value of N* No = N§ /W3

t* Time (Days) t=t*/t]

t Characteristic Time: t§ = kj, W3/ E§

W*  Total Body Weight (Lbs) W* = F* + N* W =W*W
W=F4+Nand 1= Fy+ Ny

wg Equilibrium (setpoint) value of W*. 1=W3/Wy

Table 1, reprinted from [2]. C* (Calories/day) is the energy supplied from
food consumption, assumed to readily determined. It is the modeling of
the other two components of the energy equation which this chapter will
explore: (1) How does the body’s energy stores (fat/nonfat), E; (Calories),
change during a deficit energy balance? and (2) What is the daily energy
expenditure, E* (Calories/day) for a person experiencing an energy deficit
induced weight loss?

2. Modeling Human Daily Energy Expenditure

The energy expenditure of the human body consist of energy to digest the
food consumed: Thermic Effect of Food (TE), energy to conduct Physical
Activity: (PA), and the energy to conduct all other metabolic functions:
Resting Metabolic Rate (RMR). Percent estimates for sedentary adults
[3] are TE (10%), PA (20-30%) and RMR (60-70%). The sedentary total
is called the 24 hour Energy Expenditure (24EE) or the Resting Energy
Expenditure (REE). Predictive equations usually involve multilinear regres-
sions of measured REE versus various combinations of body weight, fat free
weight, body fat weight, age and gender. Since most of the metabolic activ-
ity is carried out by the nonfat mass, models linearly dependent on fat free
mass are popular.
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2.1. Equilibrium models

The classic Harris-Benedict equations [4], first formulated in 1919 and esti-
mating REE based on the subject’s age, gender, height and weight, are the
most common for research and clinical use [5]. Also popular in the litera-
ture is the Brody—Kleiber Law where REE is proportional to body weight
to the 3/4 power [6]. Additional energy expenditure for physical activity is
directly proportional to body weight [7].

These and other models are based on equilibrium conditions and their
use during nonequilibrium, such as weight loss, have been questioned in
numerous studies. Leibel et al. [8] reported a decrease in both obese and
never obese subjects following a 10% weight loss. Foster [9] found a decrease
in the relative cost of physical activity (walking) following significant weight
loss. Weigle [10] also found a reduction of the energy requirements of walk-
ing even after a weighted vest was used to compensate for the lost weight.
Stern et al. [11], studying rats, stated that the Brody-Kleiber law might
not apply in a non-equilibrium state. Other studies of 24EE after weight
loss showing reduced levels when compared to that anticipated for changes
in body composition include [12] and [13].

2.2. Setpoint analysis and modeling nonequilibrium
energy needs

This “adaptive thermogenesis” {14] is attributed to the body's defense of
a setpoint weight [15, 16]. The setpoint weight may be described as the
genotypical “normal” weight of the individual. Hirsch et al. [17] define the
setpoint weight as that weight for which the energy expenditure is in agree-
ment with the Brody—Kleiber equation. Metabolic adaption to weight loss
has been observed in both lean and, to a lesser extent, obese individuals
[18]. Although some mathematical models of energy expenditure can be
found in the literature, none adequately address this setpoint mechanism.

The simplest model [19] provides energy consumption as a constant pro-
portionality with weight. More robust models described by Alpert [1, 20, 21]
track the change in fat and nonfat separately and provide some recogni-
tion of setpoint dynamics by using different linear fits for underfed and
equilibrium conditions. He also postulates a changing value of the energy
supplied per unit of fat weight loss during underfeeding. [22] suggests a
model describing physical activity as proportional to weight and a near
Kleiber-Brody term for the remaining 24EE. The setpoint model of energy
expenditure was introduced in [23].



A Setpoint Analysis 383

We ask how does energy expenditure vary from setpoint energy as
weight decreases from its setpoint value because of a negative energy bal-
ance (undereating). Since weight is the only variable in the HB equations
during weight loss, we will model that the energy (E*) is proportional to
weight (W*). To provide for metabolic adaption, we make the proportion-
ality factor (o*) a variable depending on weight. Then

E* = o*(W*)W*. (3)

It is emphasized that we propose Eq. (3) only for variation around the
setpoint and not to calculate setpoint.

E%, W3 and of are the predicting equilibrium values (E§ = ogWg).
Parameters E;, Wy and a} are introduced as the equilibrium starvation
values. We define the nondimensional parameters

E* W* a*
=—, W= and a=—. 4

E}’ wWe ol “)

The model assumes a linear fit from (W, ag) to (W), o}). The s sub-
script may also stand for any secondary equilibrium condition established
between setpoint and starvation. After nondimensionalization the linear fit
yields:

E

— (s — W) (1—as)
*="aow,y Tu-w)” )

(W=1——+a=1andW=Ws—>a=a3.)Deﬁningﬂ1=-((°’1-—"vaZ—’)zand

+

B2 = éll_‘—“j‘v-:%, the model becomes
E=BW + BW2. (6)

We note that 8; + 82 = 1 and devise an analysis to first find (;. Since
0 < a;, W; <1, 35 is always positive. We can postulate that a; > Wj, that

is the body’s ability to reduce the per pound energy requirement is limited.
Then 0 < £y, B2 < 1. Rewriting the setpoint energy expression

E=B/W+BW2=01-F)W+BW2=W4+LWW-1). (7)

Then
dE
dw
The B2 term provides for E to decrease faster than the weight and represents
the metabolic adaption. The maximum adaption (32 = 1) we assign to the
lean individual with a low setpoint body fat ratio (Fp = V—I;";;) and the
minimum adaption (32 = 0) to the obese with a high body fat ratio.

=1+ (2(2W —1). (8)
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Because Fy = 1 and Fy = 0 are mathematical but not physiological, we
can anticipate an asymptotic approach to 82 = 0 and 3 = 1 versus Fy. An
analytic function that fits this criteria is (Fig. 3):

Fo(1-Fp)

tanh (Lm=Fol) 4 1
(g o )

B2

The value of m determines the inflection point and the value of f determines
the maximum slope at the inflection point. (See [23] for B define for nonfat
ratio.) We predict that the energy expenditure relative to setpoint energy
will change with the (setpoint) relative weight change according to Egs. (8)
and (9) depending on the setpoint body fat ratio Fy. Figure 4(a) provides a
schema interpreted from [17] showing that weight loss from point 1 does not
have a corresponding energy change along the equilibrium relationship to

1.0

1 1
0.2 04 0.6 0.8 1.0
EQUILIBRIUM FAT MASS RATIO (Fy)

o2

Fig. 3. Metabolic reduction (82) factor versus setpoint fat mass ratio (f = 1.5 and
m = 0.5), (reprinted from [2]).

bl 2a > 2a
]
: 5
4} =
2b , 2b )
WEIGHT WEIGHT

(@ (b)

Fig. 4. (a) Hypothetical schema (interpreted from [17]) relating the experimental
change of energy for a weight change (1 — 2b) versus that anticipated from equilib-
rium relationships (1 — 2a) and (b) schema depicting many setpoint paths from 1 — 2
depending on the level of metabolic adaption, (1 — 2a: none and 1 — 2b: maximum).
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2a but to a reduce level 2b. Figure 4(b) shows the setpoint model equivalent
schema showing many paths from 1 to 2 depending on the level of metabolic
adaption: 1 to 2a no adaption (high setpoint Fy) and 1 to 2b maximum
adaption (low setpoint Fp).

2.3. Comparing models

The Harris-Benedict equation resting energy is of the form
REE = ayy + ap, W (10)

where a9 represents all the linear regression factors for height, weight and
gender which remain constant for an individual losing weight. ¢ is the
linear regression factor for weight dependence. Adding a, W for additional
physical activity [7], the total energy expenditure is

E =PA+ REE =ar, + (ar;, + ap)W = e, + @, W (11)
where
51]7[57 = o, = constant slope. (12)

We require that F = 1 when W =1 for a valid comparison with Eq. (6)
and note that E = W will produce a lower limit of any line E = a¢, + 0., W
passing through (1,1) and so provides some reduction of energy from the
Harris—Benedict model. The £ = W model will be called the constant
slope model. The setpoint model is equivalent to the constant slope model
when (; = 0. Figure 5 shows E versus W for the setpoint model for 8y =
1.0,0.8,0.6,0.4, and 0.2 (bottom to top) and the constant model (dashed).
The actual HB energy will be greater than the constant slope value. The
figure should be read from right to left. Weight and Energy levels start at
nondimensional values 1.0. As the weight decrease (to the left) the energy

Fig. 5. Energy versus weight for setpoint model with f2 = 1.0, 0.8, 0.6, 0.4 and 0.2
(bottom to top) and the constant (82 = 0) model (dashed).



386 Biomathematics: Modelling and Simulation

needs decrease, but more slowly for lower values of 32 and slowest for the
constant (dashed) model.

3. Energy from Fat/Nonfat Body Mass

When the body’s energy requirements exceed the energy supplied from the
diet, the deficit must be made up from the body’s stored energy. These
stores are in the form of glycogen, protein and fat [24]. Glycogen is stored
in the muscles and liver and accounts for only 800-1600 Calories in 200-400
grams, enough energy for less than a day of fasting. Because each gram of
glycogen is bound to 2 to 4 grams of water, severe calorie restriction can
produce 2 to 3 pounds of weight loss in the first day. We are interested
in the long term effects of calorie restriction and will neglect the glycogen
energy storage.
The total body weight (W*) is the sum of the fat (F*) and the non-
fat (N*)
W*=F*"+ N*. (13)
Fat has an energy density (k}) of 9400 Calories/kg (4273 Calories/Lb)
while nonfat body mass yields (k) 1020 Calories/kg (464 Calories/Lb) [25].

Clearly, the way these energy compartments are used to make up the energy
deficit will effect the rate of weight loss.

3.1. The personnel fat ratio

In the event of energy deficit, the body must respond by combining two
disparate means. Consuming high energy density fat mass provides energy
to compensate for the intake deficit with a slower loss of body weight.
However, reducing the total body fat is not as effective in reducing the
energy deficit itself as is reducing the metabolically active nonfat mass.
Consuming low energy density nonfat mass produces a more rapid loss of
weight. How is this partitioning determined?

Kreitzman [26] defines a Personal Fat Ratio (PFR) as the ratio of fat to
fat free mass in the excess weight above the core fat-free body. If we define
Wy = N; to be a theoretical starvation weight at which body fat is zero
then

F AF*
PFR = N N N = PFR = AN (14)

Kreitzman reports that this ratio remain stable during weight reduc-
tion in both lean and obese individual, even through a reduction in excess
of 80kg.
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3.2. The ratio of nonfat loss to total weight loss

In a similiar way to Kreitzman, Forbes [27] states that the ratio of nonfat
loss to total weight loss is curvilinearly related to the initial percent body
fat (Fp). Forbes shows that extremely low calorie diets will have a different
curvilinear relationship from that of more reasonable calorie diets. Defining

AN*
N (15)
and using Eq. (13), shows
1 __o (16)
1+ PFR

In modeling a relationship between ® and Fy, we can be comfortable in
setting ® = 1 when Fy = 0. If there is no body fat, then the change in
lean mass and the change in total weight must be equal. We are tempted
to let ® = 0 when Fy = 1 (a very theoretical consideration). However,
there is a limit to how low ® can go. The majority of body fat is stored
in adipose tissue which is estimated at 80%-85% fat, the rest being water
and a small amount of protein. This implies a minimum ¢ of 0.2-0.15.
Forbes [28] cites a case of a 213kg weight loss from an initial 304kg and
an estimated 38kg loss of nonfat weight (® = 0.18). Setting ®min = 0.15,

1.0 121
0.75|
e 05|
0.251
0 t 1 1 J 0
0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 1.0
Fo FO
(@ b

Fig. 6. (a) The ratio of nonfat weight loss/total weight loss (®) versus initial body
fat ratio and (b) The energy density ratio (Ag) versus initial body fat ratio (reprinted
from [2]).
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data from [27] suggests a relationship (Fig. 6(a))

(1—Fp)

o= 2
(1+1.5F07)

+0.15F. (17)
3.3. The energy density and the energy density ratio

The amount of energy supplied by the consumption of fat and nonfat for a
specified change of body weight change is

AE; = k;AF* + k,AN* (18)
using AW* = AF* + AN* and Eq. (15) yields
k% k} — kr,
a5 = (i~ alk - k)aw = (¢ - o ) aw-
= Ask,, AW* (19)

k; — <I>[k3“c — k] is the true energy demsity of the lost body weight. \g
is the energy density ratio and indicates how AE} varies from the sim-
ple model of &}, AW™. Using a common nominal value for k7, 7700 Calo-
ries/kg (3500 Calories/Lb), values introduced with Egs. (13) and (17) yields
Fig. 6(b). Figure 6(b) shows that the energy density ratio is less than 1.0
for all but the extremely obese, so most subjects will have an energy density
less than the nominal value.

4. The Setpoint/Body Composition Adjusted
Energy Rate Equation

Our goal was to develop a model for AE} and E* to use in the conser-
vation of energy equation (2). This has been accomplished and both these
quantities modeled as dependent on the initial body fat ratio Fp. We will

need to define additional nondimensional variables
* *

:C— and t=— (20)

where tj is defined to simplify the resulting equation t§ = lgﬁf Making
the proper substitutions and completing the nondimensionalization, the
setpoint body composition adjusted rate equation is
aw C— W — BoW?
dt Ao ’
Equation (21) shows how the partitioning of fat/nonfat consumption during
weight loss effects the rate of weight loss. For most cases As < 1.0 and the

W(t=0)=1. (21)
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rate of weight loss will be greater than anticipated using the nominal energy
density. Equation (21) has the analytic solution

A A B
W—2[32 coth(2A¢t+K> 2%, (22)
with
—1(2B2+ b
A=1/B2+45:C, K =coth 1 <#> . (23)
5. Analysis

Equation (21) is the generalized nondimensional energy rate equation
adjusted for body composition effects on Calories/pound in the lost weight
and for the setpoint driven metabolic adaption (reduction) to weight loss.
Setting B2 = 0 (81 = 1) eliminates the metabolic reduction and provides a
constant slope model similiar to HB. When Ay = 1, the energy density is
adjusted to a constant nominal value (no difference between energy density
of fat and nonfat weight loss). We use the robustness of Eq. (21) to analyze
and compare weight loss dynamics.

5.1. The Minnesota experiment

The seminal Minnesota Semistarvation Experiment was conducted dur-
ing the last months of World War II using 32 volunteer conscientious objec-
tors. The subjects were monitored during a three month control period
establishing an equilibrium body weight and calorie consumption for a spec-
ified activity regime. A six months dieting period followed, with the goal
of 25% weight loss. The daily average calories were adjusted weekly to pro-
vide weight versus time along a parabolic path flattening near the end of
the period. The dieting period was followed by a three months rehabilita-
tion period during which calorie consumption was gradually increased. An
extensive report of the data taken during these periods is provided in [29].
Figure 7(a) shows the weekly averages of the daily calories consumption
relative to setpoint for the 32 individuals of the Minnesota Experiment.
The severity of the diet is clear with an average drop in calories of more
than 50% during the 24 weeks of weight loss. Calories are increased dur-
ing the rehabilitation period (weeks 25-36). Figure 7(b) shows the weekly
average of the body weights relative to setpoint. The data (+++) shows
the parabolic weight loss curve and weight increase during rehabilitation.
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Fig. 7. (a) Average weekly calories relative to setpoint calories for 32 individuals of the
Minnesota experiment and (b) Averages of ( ) for 32 individuals of the Minnesota

experiment: data (+-+-+), setpoint model (SOlld line) and constant model (modified
from [30]).

Because C varied with time, Eq. (21) had to be solved numerically.
Results as first presented in [30] are shown graphically in Fig. 7(b) dis-
playing the weekly averages of the setpoint normalized weights of the 32
individuals of the Minnesota Experiment and the averages of solutions of
Eq. (21) for the setpoint and constant models. The data was sufficient to
calculate the characteristic time for each subject. The energy density s
was set to 1.0. The constant slope model greatly over estimates the amount
of weight loss.

5.2. The characteristic time and rate of weight loss

Setting Ay = 1, and C = 0.75 to represent a 25% calorie reduction and solv-
ing Eq. (21) for various values of 3 yields results displayed in Fig. 8. This
represents the weight loss dynamics if everyone had the same characteristic
time, t§ and the same energy constant weight loss energy density. Since
ty = kL, W5 /Eg, a unlform characteristic time requires each individual to
have the same setpoint % We value which is not the case.

To get a true plcture °of the relative rates of weight loss, we need to
move out of the nondimensional time units and calculate the individual
characteristic time. Forbes [28] provides an estimate for Ej based on the
initial fat mass (Fg) and nonfat mass (INg)

E}(Calories/day) = 35.7Nj (kg) + 15.3F; (kg) 4+ 198 (24)

derived form a study group with a range of body fat from 2 to 74kg. We
convert Eq. (24) to

5/9* (Calories/day /kg) = 38.7 — 20.4Fp (25)
0
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Fig. 8. Weight ratio for 82 = 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0 (bottom to top) for C = 0.75
versus time units (A = 1, t constant) (reprinted from [23]).

then

k*
to(d =% 2
0(deys) = S5 "o0am, (26)
We can get a physical interpretation of tj by evaluating Eq. (21) at t =0

(where the rate of weight loss is greatest). In the ¢* units (real time)

dw _ —(1-0)
dt* 79.F ’

(27)

Then the maximum rate of change of weight for a given calorie deficit
(1 — C) is inversely proportional to t§. Figure 9(a) show ¢ versus Fy and
Fig. 9(b) shows the maximum rate of weight loss versus Fp for diet ratios,
C = 0.50-0.75.

Considering a 25% diet (C = 0.75) and solving Eq. (21) for Fy = 10% to
Fy = 55% in 5% steps (B2 = 1.0 — 0.2) and using Eq. (26) for characteristic
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Fig. 9. (a) The characteristic time, ¢} in days versus Fo and (b) The maximum rate
of change of relative weight versus initial body fat percentage for 50%, 55%, 60%, 65%,
70% and 75% Calorie Diet (top to bottom) (reprinted from [2]).

times yields Fig. 10. The rates of weight loss for the high body fat cases
have slowed compared to Fig. 8 because of the higher characteristic times
(lower E§/W{ ratio). The rates are nearly the same until the amount of
weight loss is significant enough to induce the metabolic reduction.

If we further introduce the fat/nonfat effects embodied in Ag, we get
the results displayed in Fig. 11. The rate of weight loss has increased sig-
nificantly for the low fat (high () cases because more low density lean
mass is providing a higher percentage of the energy deficit compared to the
high fat cases. Again, when the weight loss is enough to trigger metabolic
reduction, the energy deficit is lowered and the rate is reduced; more for
the low fat than the high fat cases.

5.3. Comparing the models in dynamics

We start by solving Eq. (21) for (1) the Harris-Benedict case for nomi-
nal energy density (81 = 1,082 = 0,Ap = 1), and (2) the setpoint model
adjusted for body composition. In both case ¢ is calculated from Eq. (26).
Figure 12 shows the comparative results for various values of Fy as indi-
cated, for 25% calorie reduction (C = 0.75). For low values of Fy, the HB
model under estimates the rate of weight loss in the early days because
it over estimating the calories from fat and the effects of metabolic adap-
tion are small until there is some level of weight loss. As time goes on
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Fig. 10. Weight ratio for Fy = 10% to Fo = 55% in 5% steps (82 = 1.0 — 0.2) versus
time for 0.75 calorie ratio diet with individual characteristic time and constant energy
density (Ap = 1).

the metabolic reduction dominates the setpoint model and the HB over
estimate the weight loss as shown in [23].

As Fp increases, the energy density increases coming closer to the
nominal value while the level of adaption decreases (Fig. 3). The time
to crossover, the time when the setpoint weight is greater than the HB
weight, increases while the maximum difference between the two models
gets smaller. For Fy = 0.55 there is no perceptible difference for the first
300 days.

Further comparing the models for more restrictive diets (50%-70%)
shows that all cases exhibit the initial under estimate by the HB model
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Fig. 11. Weight ratio for Fo = 10% to Fo = 55% in 5% steps (82 = 1.0 — 0.2) versus
Time for 0.75 calorie ratio diet corrected for characteristic time and energy density.

where the cross over time is more sensitive to the initial body fat (Fp)
than the caloric intake (Fig. 13(a)). The minimum cross over time occurs
for Fy =~ 0.3 where the metabolic adaption (32, Fig. 3) is high and the
fat density ratio is approaching 1.0 (Fig. 6(b)). To the left of 0.3, the
metabolic adaption slows the weight decrease while higher consumption
of lean body weight increases the rate of weight loss. As Fy increases cross
over time increases but the divergence between the two models get smaller
(Fig. 13(b)), again showing the concurrence of the two model for the very
obese subjects.

5.4. Comparing the models in equilibrium

Equation (21) shows that the selection of fat versus nonfat does not change

the equilibrium (2 = 0) values of W, for a given C:

A~
Weo =
283,

(Setpoint), Wy = C(HB). (28)
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Fig. 12. Weight ratio for Harris-Benedict Model (dashed) with energy density of

3500 Kcal/Lb and Setpoint Model (solid) (adjusted for body composition) versus time
for various initial fat ratios as indicated (C = 0.75) (reprinted from [2}).

At B = 1, Wy = V/C. For B2 = 0 Eq. (28) reduces to Wy, = C. Then
C < Wy <VC according to (2. Figure (14) compares the final weight to
the initial weight (

(%"%‘n) and the final percentage of nonfat body mass to the initial value

(%‘?7/%-&“) for a C = 0.75 diet. The setpoint model predicts a much higher

final weight as the body defends the setpoint weight. Both models closely
predict that the percentage of lean body mass will increase, this should
be expected since & = dW, < 1 (Fig. 6(a)). The setpoint models values
of percent fat remain much higher, because of the higher body weight.
Then the defense of setpoint weight is also a defense of setpoint body fat
percentage.

) the final percentage body fat to the initial value



396 Biomathematics: Modelling and Simulation

225 - 005
.O
200 F 5
8
(=]
175 | &
(7] Sy
§ z
150 | =
0
L
3
125 F 3
=
100 1 I ) 0 ] 1 )
0 0.2 04 0.6 0 0.2 0.4 0.6
F, Fo
(a) ®)

Fig. 13. (a) The time in days until the Harris-Benedict Model predicted weight is less
than the body composition adjusted Setpoint predicted weight versus initial body fat
ratio (Fp) and (b) The ratio of the maximum difference between the two models before
cross over divided by the initial weight versus initial body fat ratio (Fp). (Both figures
for 50%, 55%, 60%, 65% and 70% Calorie Diet (top to bottom)) (reprinted from [2]).
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Fig. 14. Ratios of equilibrium values for 75% Calorie diet versus original (Setpoint)
values: Lean -— % percent lean body mass, Fat — % percent body fat mass and Weight —
final weight over initial weight. Harris-Benedict Model (dashed) and Setpoint Model
(solid) (reprinted from [2]).

6. Discussion and Conclusions

Models have been presented for calculating a metabolic reduction factor
(B2) and an energy density ratio (Ag) which effect weight dynamics during
a reduced calorie diet. These have both been modeled as dependent on the
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initial (setpoint) percent body fat (Fp). Of course, conversion to depen-
dence on percent nonfat mass is easily accomplished. A characteristic time
(t5) which also effects the rate of weight loss was defined and modeled as
dependent on Fp. Expressing t§ in terms of Fy simplified the analysis. How-
ever t§ can be calculated directly from the setpoint values Ej and Wy, if
known. The models predict that the obese will loose weight and fat/nonfat
more closely to the nominal/equilibrium models while the lean will experi-
ence significant departure. The difference of weight loss dynamics between
lean and obese individuals is compactly displayed in Fig. 11.

The shaping of Fig. 3 is from nominal values found in the literature.
Future efforts will be to further refine the 83 form. The present model will
also be expanded to metabolic adaption to weight gain (an increase in the
relative energy needs).
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We introduce the most common quantitative approaches to population
dynamics and ecology, emphasizing the different theoretical foundations and
assumptions. These populations can be aggregates of cells, simple unicellular
organisms, plants or animals.

The basic types of biological interactions are analysed: consumer-resource,
prey-predation, competition and mutualism. Some of the modern developments
associated with the concepts of chaos, quasi-periodicity, and structural stability
are discussed. To describe short- and long-range population dispersal, the inte-
gral equation approach is derived, and some of its consequences are analysed.
We derive the standard McKendrick age-structured density dependent model,
and a particular solution of the McKendrick equation is obtained by elemen-
tary methods. The existence of demography growth cycles is discussed, and
the differences between mitotic and sexual reproduction types are analysed.

1. Introduction

In a region or territory, the number of individuals of a species or a com-
munity of species changes along the time. This variation is due to the
mechanisms of reproduction and to the physiology of individuals, to the
resources supplied by the environment and to the interactions or absence

of interactions between individuals of the same or of different species.
Biology is concerned with the architecture of living organisms, its phys-

iology and the mechanisms that originated life from the natural elements.
Ecology studies the relations between living organisms and the environ-
ment, and, in a first approach, detailed physiological mechanisms of indi-

viduals have a secondary importance.
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As a whole, understanding the phenomena of life and the interplay
between living systems and the environment make biological sciences, biol-
ogy together with ecology, a complex science. To handle the difficulties
inherently associated to the study of living systems, the input of chem-
istry, physics and mathematics is fundamental for the development of an
integrative view of life phenomena.

In the quantitative description of the growth of a population, several
interactions are involved. There are intrinsic interactions between each
organism and its environment and biotic interactions between individuals
of the same or of different species. These interactions have specific char-
acteristic times or time scales, and affect the growth and fate of a species
or a community of species. Population dynamics deals with the population
growth within a short time scale, where evolutionary changes and mutations
do not affect significantly the growth of the population, and the population
is physiologically stable. In this short time scale, the variation of the number
of individuals in the population is determined by reproduction and death
rates, food supply, climate changes and biotic interactions, like predation,
competition, mutualism, parasitism, disease and social context.

There exists an intrinsic difficulty in analysing the factors influencing
the growth and death of a species. There are species that are in the mid-
dle of a trophic web, being simultaneously preys and predators, and the
trophic web exhibits a large number of interactions. For example, the food
web of Little Rock Lake, Wisconsin, shows thousands of inter-specific con-
nections between the top levels predators down to the phytoplankton, [1].
In this context, organisms in batch cultures and the human population are
the simplest populations. In batch cultures, organisms interact with their
resources for reproduction and growth. The human population is at the top
of a trophic chain. Even for each of these simple cases, we can have different
modelling approaches and strategies.

From the observational point of view, one of the best-known populations
is the human population for which we have more than 50 years of relatively
accurate census, and some estimates of population numbers over larger time
intervals. Observations of population growth of micro-organisms in batch
cultures are important to validate models and to test growth projections
based on mathematical models.

Mathematical models give an important contribution to ecological stud-
ies. They propose quantities that can be measured, define concepts enabling
to quantify biological interactions, and even propose different modelling
strategies with different assumptions to describe particular features of the
populations.



Mathematical Models in Population Dynamics and Ecology 401

In population dynamics, and from the mathematical point of view, there
are essentially two major modelling strategies: (i) The continuous time
approach using techniques of ordinary differential equations; (ii) The dis-
crete time approach which is more closely related with the structure of the
census of a population. Both approaches use extensively techniques of the
qualitative theory of dynamical systems.

In the continuous time approach, the number of individuals of a popula-
tion varies continuously in time and the most common modelling framework
applies to the description of the types of biotic inter-specific interactions and
to the interactions of one species with the environment. They are useful for
the determination of the fate of a single population or of a small number of
interacting species. These models have been pioneered by Pierre-Frangoise
Verhulst, in the 19th century, with the introduction of the logistic model,
and by Vito Volterra, in the first quarter of the 20th century, with the
introduction of a model to describe qualitatively the cycling behavior of
communities of carnivore and herbivore fishes.

In the discrete time approach, models are built in order to describe the
census data of populations. They are discontinuous in time, and are closer
to the way population growth data are obtained. These models are useful
for short time prediction, and their parameters can be easily estimated from
census data.

Modern ecology relies strongly on the concepts of carrying capacity
(of the environment) and growth rate of a population, introduced by the
discrete and the continuous models. In the 20th century, the works of
McKendrick and Leslie gave an important contribution to modern ecology
and demography.

The usefulness of population dynamics to predictability and resource
management depends on the underlying assumptions of the theoretical
models. Our goal here is to introduce in a single text the most common
quantitative approaches to population dynamics, emphasizing the different
theoretical foundations and assumptions.

In the next two sections, we introduce the continuous and the discrete
age-structured approach to quantitative ecology. These are essentially two
review sections, where we emphasise on the assumptions made in the deriva-
tion of the models, and whenever possible, we present case studies taken
from real data. As the reader has not necessarily a background on the
techniques of the qualitative theory of dynamical systems, we introduce
some of its geometric tools and the concept of structural stability. In mod-
elling situations where there exists some arbitrariness, structural stabil-
ity is a useful tool to infer about the qualitative aspects of the solutions
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of ordinary differential equations upon small variations of its functional
forms.

In Sec. 4, and in the sequence of the Leslie type age-structured discrete
models (Sec. 3), we make the mathematical analysis of the Portuguese
population based on the census data for the second half of the 20th century.
Here we introduce a very simple model in order to interpret data and make
demographic projections, to analyse migrations and the change of socio-
economic factors. This is a very simple example that shows the importance
of mathematical modelling and analysis in population studies. In Sec. 5 we
introduce discrete time models with population dependent growth rates,
and we analyse the phenomenon of chaos. In Sec. 6, the consumer-resources
interaction is introduced, and we discuss the two types of randomness found
in dynamical systems: quasi-periodicity and chaos. In Sec. 7, we derive a
general approach to the study of population dispersal (short- and long-
range), and we derive a simple integro-difference equation to analyse the
dispersion of a population.

In Sec. 8, we introduce the standard continuous model for age-structured
density dependent populations, the McKendrick model, showing the exis-
tence of time periodic solutions by elementary techniques. In this context,
we discuss demography cycles and the concept of growth rate. In Sec. 9,
we derive a modified McKendrick model for populations with mitotic type
reproduction, and compare the growth rates between populations with sex-
ual and mitotic reproduction types. In the final section, we resume the main
conclusions derived along the text and we compare the different properties
of the analysed models.

2. Biotic Interactions
2.1. One species interaction with the environment

We consider a population of a single species in a territory with a well-
defined boundary. Let z(t) be the number of individuals at some time t.
The growth rate of the population (by individual) is,
o 1)
If the growth rate r is a constant, independently of the number of individ-
uals of the population, then Eq. (1) has the exponential solution z(t) =
z(to)em ¢t where z(to) is the number of individuals in the population at
time to. If, r > 0, z(t) — o0, as t — oo. In a realistic situation, such a
population will exhaust resources and will die out in finite time.
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Equation (1) with 7 constant is the Malthusian law of population
growth. Exponential growth is in general observed in batch cultures of
micro-organisms with a large amount of available resources and fast repro-
duction times, [2] and [3]. From the solution of Eq. (1) follows that the
doubling time of the initial population (¢4) is related with the growth rate
by tq = In2/r. For example, with the data of the world population, [4], we
can determine the variation of the doubling time or the growth rate of the
human population along historical times, Fig. 1. The curve in Fig. 1 sug-
gests that, for human populations and at a large time scale, the growth
rate r cannot be taken constant as in the Malthusian growth law (1),
but must depend on other factors, as, for example, large-scale diseases,
migrations, etc.

For large population densities, and in order to avoid unrealistic sit-
uations of exponential growth or explosion of population numbers, it is
expected that the growth rate becomes pcpulation dependent. Assuming
that, for large population numbers, r = r(z(t)) < 0, for £ > K, and,
r =r(z(t)) > 0, for x < K, where K is some arbitrary constant, the sim-
plest form for the growth rate r(x) is, r(z) = ro(K — z). Substitution of
this population dependent growth rate into Eq. (1) gives,

dz

== roz(K —z) :=rz(l — z/K) (2)

Doubling time of the world population
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Fig. 1. Evolution of the doubling time of the world population. The doubling time
has been calculated according to the formula t; = In2/r, where r = (N(t + h) —
N(t))/(hN(t)), and N(t) is the world population at year t. The data set is from
reference [4].
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where 7y is a rate constant. Equation (2) is the logistic or Verhulst equation
for one-species populations. For a population with z(to) > 0 at some time
to, the general solution of (2) is,

. .’E(to)KGTO(t—tO) 3
 z(to)(emoli=to) — 1) + K 3)

z(t)

and, in the limit ¢ — oo, z(t) — K. The constant K is called the carry-
ing capacity of the environment and is defined as the maximum number
of individuals of a species that the territory can support. For the same
species, larger territories and bigger renewable resources correspond to
larger values of K.

The logistic Eq. (2) describes qualitatively the growth of single colonies
of micro-organisms in batch experiments, [3]. For example, in a batch
experiment, Gause, [5], fitted the measured growth curve of the proto-
zoa Paramecium caudatum, finding a good agreement with the solution
(3) of the logistic equation. For the human population, the agreement is
not so good, being dependent on technological developments, sociologi-
cal trends and other factors, [2]. Depending on the data set, and from
country to country, some authors find a good fit between the solutions
of the logistic equation and demography data (see for example [4]), and
others propose empirical models based on the delayed logistic equation,
() =rz®(1 —z(t — T)/K), [4].

In the derivation of the logistic equation, the plausibility of the mathe-
matical form of the growth rate is assumed, without any assumptions about
the relations between population growth and environmental support, or
about the mechanisms of interaction between individuals and the environ-
ment. It is simply supposed that, for each species, the environment ensures
enough resources. The carrying capacity constant can only be measured
a posteriori through the asymptotic solution, z(t) — K, as t — oo.

A possible mechanism for the derivation of the logistic equation is based
on the mass action law of chemical kinetics, [6] and [7, pp. 295-300]. To be
more specific, we represent species and resources by, A;, with j =1,...,m.
The interactions between species or between species and resources can be
represented by n collision diagrams,

l/ilAl+"'+l/imAmr—i)/,Li1A1+---+[L.imAm, i=1,...,n (4)

where r; measure the rate at which the interactions occur, and the constants
vi; and p;; are positive parameters measuring the number of individuals or
units of resources that are consumed or produced in a collision. The mass



Mathematical Models in Population Dynamics and Ecology 405

action law asserts that the time evolution of the (mean) concentration of
A; is given by,

d4; & ” :
d—tJ =Z7‘i(ﬂij —vi)Aft A, J=1.,m (5)
i=1

As we have in general n interaction diagrams and m species or resources,
the system of Eq. (5) are not independent. In general, by simple inspec-
tion of the m Eq. (5), it is possible to derive the associated conservation
laws, that is, a set of linear relations between the concentrations A;. With
these conservations laws, we obtain a system of s < m linearly independent
differential equations.

In this framework, reproduction in the presence of resources can be
seen as the collision of the members of a population with the resources. In
the case of the logistic equation, the collisions between individuals and the
resource is represented by the diagram,

A+z B0 +e)x (6)

where A represents resources, z is the number of individuals in the popu-
lation, collisions occur at the rate ry, and the inequality e > 0 expresses
the increase in the number of individuals. By (4) and (5), to the diagram
(6) is associated the logistic equation (2), together with the conservation
law z(t) + eA(t) = z(to) + eA(to), where the carrying capacity is given
by K = z(ty) + eA(to). As, in the limit ¢ — oo, z(t) — K, then, in the
same limit, A(¢) — 0. In this interpretative framework, when the popula-
tion attains the equilibrium value K, resources are exhausted. In realistic
situations, after reaching the equilibrium, the number of individuals of the
population decreases and, some time afterwards, the population disappears,
[3]. However, this asymptotic behavior is not predicted by Eq. (2). To fur-
ther include this effect, we can add to the collision mechanism (6) a new

death rate diagram, z 4, In this case, by the mass action law, (4) and (5),
the time variation of the number of individuals of the population is not of
logistic type anymore, obeying to the equations,

{ z'(t) = roexA — dzx

A'(t) = —rozA )

without any conservation law and, consequently, without a carrying capac-
ity parameter. Numerical integration of the system of Eq. (7) leads to the
conclusion that, for a small initial population, a fast exponential grow-
ing phase is followed by a decrease in the number of individuals of the
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Fig. 2. (a) Comparison between the solutions of the exponential (1), logistic (2) and
equation (7), for the initial conditions z(0) = 1, A(0) = 9, and the parameters r = 1,
ro =1, K =10, d = 0.01 and e = 1. (b) Growth rates as a function of time for Eq. (1),
(2) and (7). -

population, and extinction occurs when t — oo, Fig. 2(a). The growth
behavior predicted by Eq. (7) is in qualitative agreement with the growth
curves observed in generic microbiological batch experiments, [3].

In Fig. 2(a), we compare the solutions of the three Eq. (1), (2) and
(7) for the growth of one-species. In the growing phase, the solutions of
the three growth models show qualitatively the same type of exponential
behavior. For Eq. (7), the concept of carrying capacity is lost but the growth
maximum is approximated by the value of the carrying capacity of the
logistic equation. In these models, and for the same data set, it is possible
to obtain different values for the fitted growth rates, as it is clearly seen in
Fig. 2(b).

The approach developed so far introduces into the language of popula-
tion dynamics the concepts of exponential or Malthusian growth, growth
rate, doubling time and carrying capacity. The agreement between the mod-
els and data from laboratory experiments is, in some situations, very good,
but in others deviates from observations. In the situations where no agree-
ment with observations is found, it is believed that other relevant factors
besides reproduction are not included in the modelling process. In modern
ecology, the modelling concepts introduced here enable a rough estimate
of the population growth and are the starting point for more specific and
specialized approaches. For a more extensive study and applications of the
exponential and logistic models see [8-10].

2.2. Two interacting species

Here, we introduce the basic models for the different types of biotic interac-
tions between the populations of two different species. As models become
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non-linear, and no general methods for the determination of solutions of
non-linear differential equations exist, in parallel, we introduce some of the
techniques of the qualitative theory of differential equations (dynamical
systems theory).

We consider two interacting species in the same territory, and we denote
by z(t) and y(t), their total population numbers at time ¢. The growth rates
by individual of both interacting species are,

EEZ f(-’lf, )
l%—w@w)

defining the two-dimensional system of differential equations, or vector field,

dr

dy_
E—wmw

The particular form of the system of Eq. (8) ensures that the coordinate
axes of the (z,y) phase space are invariant for the flow defined by the
vector field (8), in the sense that, any initial condition within any one of
the coordinate axis is transported by the phase flow along that axis. Due to
this particular invariant property, in the literature of ecology, Eq. (8) are
said to have the Kolmogoroff form, [8, p. 62].

In general, the system of differential Eq. (8) is non-linear and there are
no general methods to integrate it explicitly. We can overcome this problem
by looking at Eq. (8) as defining a flow or vector field in the first quadrant
of the two-dimensional phase space (z > 0,y > 0). Adopting this point
of view, the flow lines are the images of the solutions of the differential
equation in the phase space, Fig. 3. At each point in phase space, the flow
lines have a tangent vector whose coordinates are zf(z,y) and yg(z,y),
and the flow lines can be visualised through the graph of the vector field.
In fact, given a set of points in phase space, we can calculate the z- and
y-coordinates of the vector field components, zf(z,y) and yg(z,y), and
draw the directions of the tangent vectors to the flow lines. The solutions
of the differential Eq. (8) are tangent to the vector field.

The phase space points for which we have simultaneously, zf(z,y) =0
and yg(z,y) = 0, are the fixed points of the flow. The fixed points are
stationary solutions of the ordinary differential Eq. (8). In dimension two,
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Fig. 3. The differential Eq. (8) defines a vector field or phase flow in the two-dimensional
phase space. The flow lines are the images in phase space of the solutions of the differ-
ential equation. The flow lines are parameterised by the time ¢. At each point (z,y) in
phase space, the tangent vector to the flow line or orbit has local coordinates zf(z,y)
and yg(z,y).

the knowledge of these stationary solutions determines the overall topology
of the flow lines in phase space. With the additional knowledge of the two
nullclines, defined by equations zf(z,y) = 0 and yg(z,y) = 0, we can
qualitatively draw in phase space the flow lines of the differential equation
and to determine the asymptotic states of the dynamics, which, in generic
cases, are isolated fixed points.

The (isolated) fixed points of a differential equation can be (Lyapunov-)
stable or unstable. They are stable if, for any initial condition sufficiently
close to the fixed point, and for each t > 0, the solution of the equation
remain at a finite distance from the fixed point. If in addition, in the limit
t — o0, the solution converges to the fixed point, we say that the fixed
point is asymptotically stable. A fixed point is unstable if it is not stable.

Around a fixed point, the stability properties of the solutions of a dif-
ferential equation can be easily analysed. Let (z*,y*) be a fixed point of
Eq. (8), and let (z(t) = z* + Z(t), y(t) = y* + F(t)) be a solution defined
locally around (z*, y*). Introducing this solution into (8), we obtain, up to
the first order in Z and 7,

df * * *ﬂ * * *ﬂ * *
dg B *ag * * * * *ag * * :17
g7 Yy a—w(x,y) glz*y*) +y ay(w,y)

81

::DF() (9)

<
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where DF' is the Jacobian matrix of the vector field (8) evaluated at (z*, y*).
In the conditions of the theorem below, the solutions of the linear differential
Eq. (9) are equivalent to the solutions of the nonlinear Eq. (8) near (z*, y*).

Theorem 1 (Hartman-Grobman, [11]). If none of the eigenvalues of
the Jacobian matriz DF rest on the imaginary axis of the complex plane,
then, near the fized point (z*,y*), the phase flows of Eqs. (8) and (9) are
similar or topologically equivalent.

Under the conditions of the Hartman—Grobman theorem (Theorem 1),
by a simple linear analysis, it is possible to determine the stability of the
fixed points of the non-linear Eq. (8), and, therefore, to determine the
asymptotic behavior of the solutions of the non-linear Eq. (8). The global
flow in the first quadrant of phase space is conditioned by the fixed points
with non-negative coordinates. This approach is geometrically intuitive and
is one of the most powerful tools of the theory of dynamical systems, [11]
and [12]. As will see now, this enables the analysis of models for biotic
interactions with a minimum of technicalities.

We now introduce the most common types of two-species interactions.
There are essentially three basic two-species interactions: prey-predator,
competition and mutualism. In the prey-predator interaction, for large
predator numbers, the growth rate of the prey becomes negative, but in
the absence of predators, the growth rate of the prey is positive. If the prey
is not the only resource for predators, the growth rate of the predators is
always positive. In competition, and in the presence of both species, both
growth rates decrease. In mutualistic interactions, the growth rates of both
species increase.

Adopting the same empirical formalism as in the case of the logistic
equation (Sec. 2.1), we assume that the growth rates f and g are sufficiently
well behaved functions, and the above ecology definitions can be stated into
the mathematical form:

Prey-predator: of <0, @ >0
0 Ox
...  Of Og
Competition: 3y <0, p <0 (10)
Mutualism : ﬁ >0, @ > 0.
Oy Oz

In the simplest situation where f and g are affine functions, f(z,y) =
dy + doz + day and g(z,y) = d4 + dsz + dgy, and further assuming that
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in the absence of one of the species the growth of the other species is of
logistic type, by (10), we obtain for the growth rates,

Prey-predator: f =rz(1 —z/K; —c1y) and g=ry(1+ cox —y/Ky)
Competition: f=r;(1—-x/K;—c1y) and g=ry(l—-coz—y/K,)
Mutualism:  f=r,(1 —z/K; +c1y) and g=ry(1+coz —y/Ky)

(11)

where ¢, c2, K, and K, are positive constants. The constants in the
growth rate functional forms (11) have been chosen in such a way that,
in the absence of any one of the species, we obtain the logistic equation (2).
Introducing (11) into (8), we obtain three systems of non-linear ordinary
differential equations for prey-predation, competition and mutualism. The
topological structure in phase space of the solutions of these equations can
be easily analysed by the qualitative methods just described above.

The generic differential Eq. (8) defines a flow in the first quadrant of
the two-dimensional phase space, and the simplest solutions are the fixed
points of the flow. These fixed points are obtained by solving simultaneously
the equations, zf(z,y) = 0 and yg(z,y) = 0. For any of the values of the
parameters in (11), and for the three biotic interaction types, we have the
fixed points (zo,y0) = (0,0), (z1,y1) = (K3,0) and (z2,y2) = (0, Ky),
which correspond to the absence of one or both species. The fixed points
(Kz,0) and (0, K,) are the asymptotic solutions associated to any non-zero
initial condition on the phase space axis x and y, respectively. The zero
fixed point corresponds to the absence of both species. For a particular
choice of the parameters, a forth fixed point can exists:

1-akK, 14+ K,
Prey-predator: (z3,y3) = <K1 L+ cieeK K, Y1+ cicoK Ky
if Cle <1
N _ aky -1 coKs — 1
Competition: (z3,y3) = (Kz ciea KKy — 1" YeieoK Ky — 1

if Cle >1, oK, >1

- B 1+aK, 1+ K,
Mutualism: (z3,y3) = (Kw 1-acK.K,’ Ly K K,

if ciea Kz Ky < 1. (12)

In Fig. 4, we show, for the differential Eq. (8) and the three growth rate
functions (11), all the qualitative structures of the flows in phase space. The
fixed points with non-zero coordinates (12) correspond to cases (a)-(c), and
are marked with a square.
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To determine qualitatively the structure of the solutions of Eq. (8) for
the different cases depicted in Fig. 4, we have analysed the signs of the com-
ponents of the vector field along the nullclines. The arrows in Fig. 4 repre-
sent the directions of the flow in phase space. Except the case of Fig. 4(a),
the vector field directs the flow towards the fixed points, and the limiting
behavior of the solutions as t — oo is easily derived.

(d)

y Y
¥e(xy)=0
;: Lﬁ gl’ \
5% t
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proy T X
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g (,y)=0
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L X
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e
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S p
L3
L Txy)=0
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Fig. 4. Qualitative structures of the flow in phase space of the differential equation (8),
for the growth rate functions (11). Bullets and squares represent fixed points. In cases
(a)—(c), a non-zero fixed point exists if the conditions in (12) are verified. Cases (d)—(g)
correspond to different arrangements of nullclines. The arrows represent the directions
of the vector fields, and the solutions of Eq. (8) are tangent to the vector field. The sign
of the vector field is calculated from the sign of the functions f and g at each point in
phase space.
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Fig. 5. Vector field and nullclines for the prey-predator equation of Fig. 4(a), with
parameter values ¢; = 0.05, c2 = 0.01, Ky = 15, Ky = 10 and ro = ry = 1. As it is
clearly seen, the vector field directs the flow to the fixed point (x3,ys). This fixed point
is asymptotically stable.

To analyse the prey-predator case of Fig. 4(a), we have calculated the
directions of the vector field near the fixed point (z3,ys), Fig. 5. In this
case, the flow turns around the fixed point (z3,ys3), and to determine the
local structure of the flow, we use the technique provided by the Hartman-
Grobman theorem. Linearising Eq. (8) around (z3,y3), by (11) and (12),
we obtain the linear system of differential equations,

dz
dt ~rzZ3/ Ky — K % T
Ae Te3/ rzz3c1 Ky (a_:) — DF (a_:) (13)
dy TyCays  —Tyys/Ky ] Y
dt

where (z,y) = (z3 + Z, ys + 7). The stability near the fixed point (z3,y3) is
determined by the eigenvalues of the matrix DF', provided that they are not
on the imaginary axis of the complex plane. As, Trace(DF) = A1+ X2 <0
and Det(DF) = Ajh2 > 0, the eigenvalues A; and A2 of DF are both
real and negative or, complex conjugate with negative real parts. As the
solution of the linear system of Eq. (13) is a linear combination of terms
of the form e**, and the eigenvalues have negative real parts, this implies
that Z(¢) and §(t) converge to zero as t — 0o. Therefore, for non-zero initial
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conditions, the solutions of the prey-predator system of Fig. 4(a) converge
to the stable fixed point (z3,ys), Fig. 5.

In the prey-predator case of Fig. 4(d), c1K, > 1, the effect of the
predator on the prey is so strong that asymptotically predators consume
all the preys, and, as ¢ — oo, the solutions converge for the fixed point
(z2,y2) = (0, Ky). In this case, we do not need to make the linear anal-
ysis near the fixed points because the directions of the vector field show
clearly the convergence of the solutions to the asymptotically stable fixed
point.

For the competitive and mutualistic interactions of Figs. 4(b) and 4(c),
Eq. (8) has always a stable fixed point which is also an asymptotic solution
for non-zero initial conditions. In cases (e) and (g), we have ¢1 K, < 1 or
e K, < 1, and, asymptotically in time, only one of the species survives. For
the mutualistic interaction (f), we have ¢;co K Ky > 1, and, asymptotically
in time, both population numbers explode to infinity. (Note however that,
in this last case, it is possible that the solutions go to infinity in finite time
due to the non-Lipschitz nature of the right-hand side of (8).)

From the models for the prey-predator, competition and mutualis-
tic interactions, it is possible to derive some ecological consequences. In
the prey-predator system, the prey brings advantage to the predator in
the sense that its presence increases the number of predators at equilib-
rium, but the presence of predator decreases the equilibrium population of
the prey. If the effect of the predator on the prey is too strong, preda-
tors consume all the preys, and, in the long time scale, predators lose
advantage.

For competition, the asymptotic equilibrium between the two species
assumes lower values for both species when compared to the cases where
they are isolated.

In the mutualistic interaction, the situation is opposed to the compe-
tition case, where the equilibrium between the two species assumes higher
values. However, for strong mutualistic interactions, we can have overcrowd-
ing as in the Malthusian model (1), leading to the death of the species by
over consumption of resources. These conclusions, derived from the mathe-
matical models (8) and (11), are in agreement with the biological knowledge
about predation, competition and mutualism, [13] and [14].

Another model for the prey-predator interaction that has a conceptual
and historical importance is the Lotka—Volterra model. This model has been
used as an explanation to justify the resumption of carnivore fishes, after
the cessation of fishing in the North Adriatic Sea after the First World
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War, [8]. To be more specific, the prey-predator Lotka—Volterra interaction
model is,

dx
- = rz2(1 — c1y)
(14)
dy
pri ryy(coz — 1)

where ¢;, ¢z, 7z and ry are constants.

This model obeys the prey-predator conditions in (10), but assumes that
predators have an intrinsic negative growth rate and do not survive without
preys. For preys alone, it assumes that they have exponential growth as in
model (1).

The Lotka—Voltrerra model (14) has one horizontal and one vertical
nullcline in phase space, Fig. 6, and one non-zero fixed point with coordi-
nates (z,y) = (1/cg,1/c1). One of the eigenvalues of the Jacobian matrix
of (14) calculated at the fixed point is zero, and as the conditions on the
Hartman-Grobman theorem fail: the local structure of the flow cannot be
characterized by the linear analysis around the fixed point. It can be shown
that, in the first quadrant of phase space, the solution orbits of (14) are
closed curves around the fixed point, Fig. 6, corresponding to oscillatory

[
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Fig. 6. Qualitative structure of the flow in phase space of the Lotka—Volterra system
of Egs. (14), for parameter values ¢y = ¢z = ry = ry = 1. Away from the non-zero
fixed point, the solutions are periodic in time, suggesting a simple explanation for the
oscillatory behavior observed in prey-predator real systems. It can be shown that the
orbits of the system of Eqgs. (14) are the level sets of the function, H(x,y) = rylogz —
TyC2Z + Tz logy — rzc1y.
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motion in the prey and predator time series (for a proof see [12]). Moreover,
along each phase space cycle, the temporal means of prey and predators
are independent of the amplitude of the cycles, being given by, (z) = 1/c;
and (y) = 1/¢1, respectively. This property of the solutions of Egs. (14) has
been used to assert that fluctuations in fisheries are periodic but the time
average during each cycle is conserved, [8, p. 93].

One of the important issues in the Lotka—Volterra model is to suggest
the possibility of existence of time oscillations in prey-predator systems.
A long-term observation of prey-predator oscillations was provided by the
hare-lynx catches data during 90 years, from the Hudson Bay Company,
[14] and [15]. The catches of lynx and hare are in principle proportional
to the abundances of these animals in nature, and the time series shows
an out of phase oscillatory abundance, with the lynx maximum preceding
the hare maximum. Making a naif analogy between the solutions of the
Lotka—Volterra model and the oscillations found in the lynx-hare interac-
tion, it turns out that the maximum number of preys is observed before
the maximum numbers of predator. This is in clear disagreement with the
Lotka—Volterra model where the prey maximum precedes in time the preda-
tor maximum, Fig. 6. Several attempts were made to explain this out of
phase behavior but no consistent explanations have been found, [15].

One possible meaningful argument against the plausibility of the Lotka—
Volterra model (14) to describe the prey-predator interaction is based on the
property that any perturbation of the right-hand side of Eq. (14) destroys
the periodic orbits in phase space. In mathematical terms, it means that the
Lotka—Volterra system (14) is not structurally stable or robust. In general,
a two-dimensional dynamical system is structurally stable if all its fixed
points obey the conditions of the Hartman—-Grobman theorem, and there
are no phase space orbits connecting unstable fixed points (saddle points),
[11] and [12]. The only types of structurally stable two-dimensional differen-
tial equations with periodic orbit in phase space are equations with isolated
periodic orbits or limit cycles. In this case, the growth rate functions f and g
must be at most quadratic, and several models with this property appeared
in the literature, [12} and [15]. However, all these models show the same
wrong out of phase effect as in the hare-lynx data.

In modern theoretical ecology, the development of more specialized
models relies on the conditions (10) and on further assumptions on the
functional behavior of the growth rate functions, [13], {12] and [14].
In some cases, the assumptions are introduced in analogy with some
mechanisms derived from chemical kinetics, {6], {16] and [17]. For example,
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the mechanisms,

Atz DB (14e)x

z+y B(1+e)y+ez

dy (15)
xTr —
y 3

withe; >0,e2>0,71 >0,7, >0and c <1, and,

Atz DB (1+e)
B4y 3 (1+ey

T+y S az+oy (16)
x4

da
y—)

withegs > 0,e2 >0, 70 > 0,79 > 0,73 >0,¢; > 0and cg > 0, are
examples of possible mechanisms for the prey-predator and generic biotic
interactions. The phase space structure of the orbits of the Lotka—Volterra
system (14) and the model (8)—(11) are different from the ones derived from
the model equations associated to (15) and (16). However, the mechanistic
interpretation of models (15) and (16) are closer to the biological situations.
A detailed account of models for predation and parasitism is analysed in
[18] and [19].

3. Discrete Models for Single Populations.
Age-Structured Models

One important fact about the individuals of a species is the existence of age
classes and life stages. Within each age class, the individuals of a species
behave differently, have different types of dependencies on the environment,
have different resource needs, etc. For example, in insets, three stages are
generally identified: egg, larval and the adult. In mammals, in the childhood
phase, reproduction is not possible, neither hunting nor predation.

To describe a population with age classes or stages, we can adopt a
discrete formalism, where the transition between different age classes or
stages is described in matrix form. One of the advantages of this type of
models is that they can be naturally related with field data. One discrete
model that accounts for age or stage classes has been proposed by Leslie in
1945, [20].

The Leslie model considers that, at time n, a population is described
by a vector of population numbers, (N*)T = (N},...,N"), where N7 is
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the number of individuals with age class ¢ (or in life stage ¢). The time
transition between age classes is described by the map,

Nl = AN™ (17)

where A is the Leslie time transition matrix. Under the hypothesis that from
time n to time n+ 1, the individuals die out or change between consecutive
age classes, the matrix A has the form,

0 e e - eg-1 €
a 0 0 -.. 0 0

A=10 a2 0 ... 0 0 (18)
0O 0 0 -+ a1 O

where the e; are fertility coefficients, and the «; are the fraction of individ-
uals that survive in the transition from age class 1 — 1 to 4. Clearly, ¢; > 0
and 0 < a; < 1. We consider always that ex > 0, where ey, is the last repro-
ductive age class. If e; = 0, the determinant of matrix A is zero. Obviously,
we can have populations with age classes such that e, =0 and oy, > 0, for
p > k. In this case, if e; > 0, the solutions N, with p > k, are determined
from the solutions obtained from the discrete difference Eq. (17) in dimen-
sion k. For example, if ex4+1 = 0, then N}, ; = ax N, ,?"1. Therefore, without
loss of generality, we always consider that e; > 0 and e, =0, for p > k.

In Fig. 7(a), we show the distribution of age classes for the Portuguese
population obtained from the census of 1991, 1992 and 1999, [21]. As it is

Total Portuguese population distributed Probability of survival between age classes
by age classes, for 1991, 1992 and 1999 1 b)
175000
150000 0.0
125000
N, 100000 208
75000
50000 07
25000
0 0.6
¢ 20 4¢ 60 8¢ 100 Q 20 4¢ (80 8¢ 10
Age () Age (j)

Fig. 7. (a) Total Portuguese population distributed by age classes for 1991, 1992 and
1999, (21]. (b) Probability of survival between age classes calculated with the population
data of 1991 and 1992. The fraction of individuals that survive in the transition from
age class j — 1 to j is given by, a; = N;”:ll /NP
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clearly seen, the population in 1992 and 1999 is approximately obtained
from the population in 1991 by a translation along the age axis, a property
shared by the Leslie transition matrix (18). In Fig. 7(b), we show the values
of the survival probability o; as a function of the age classes, calculated
from the census of 1991-92. For age classes j < 45, the values of o are
close to 1.

The solution of the Leslie discrete map model (17)-(18) is easily deter-
mined. As the discrete Eq. (17) is linear, its general solution is, [22],

k
NP = Zj=1 Cii A} (19)

where the c;; are constants determined by the initial conditions and the
coefficients of the matrix A, and the )A; are the eigenvalues of (18). To
simplify, we assume that the eigenvalues of .4 have multiplicity 1. As Ais a
non-negative matrix with non-zero determinant (e > 0), by the Frobenius—
Perron theory, [23], its dominant eigenvalue X is positive with multiplicity 1,
implying the existence of a non-zero steady state if, and only if, A = 1. If,
A < 1, the solutions (19) go to zero, as n — oo. If, A > 1, the solutions (19)
go to infinity.

Calculating the characteristic polynomial of A, we obtain (by induction
in k),

k i
PO) = (-1 (X =Y e a1 | (20)
=2

7=2

Imposing the condition that A = 1 is a root of the polynomial (20), from
the condition P(1) = 0, we define the constant,

k i
G = ZeiHaj_l (21)
i=2 j=2

where G is the inherent net reproductive number of the population. If we
make the approximation, a; = 1, we have the net fertility number G :=
Zf:z €.

The condition for the existence of asymptotic stable population num-
bers, given by the dominant eigenvalue of A, can be stated through the
inherent net reproductive number of the population. So, in a population
where G < 1, any initial condition leads to extinction. If, G > 1, we have
unbounded growth. If, G = 1, in the limit n — oo, the population attains
a stable age distribution.
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The Leslie model is important to describe populations where there exists
a complete knowledge of the life cycle of the species, including survival prob-
abilities and fertilities by age classes. For example, in the Leslie paper [20],
it is described a laboratory observation of the growth of Rattus norvegicus.
For a period of 30 days, the projected total population number was over-
estimated with an error of 0.06% of the total population.

For human populations, survival probabilities are easily estimated from
census data, Fig. 7. However, data from the fertility coefficients are diffi-
cult to estimate due to sex distinction and to the distribution of fertility
across age classes. For an exhaustive account about Leslie type models, its
modifications, and several case studies we refer to {23|, [24] and [13]. For
tables of the world population by country and the measured parameters of
the Leslie matrix, we refer to [25].

Comparing the discrete and the continuous time approaches, the Leslie
population growth model presents exactly the same type of unbounded
growth as the exponential model (1). To overcome the exponential type
of growth, we can adopt two different points of view. One approach is to
introduce a dependence of the growth rates on the population numbers,
as it has been done in Sec. 2, in the derivation of the logistic equation
from the Malthusian growth equation. Another alternative is to introduce
a limitation on the growth rates through the resource consumption of the
population. These two types of development of the Leslie model lead to the
introduction of the concepts of chaos and randomness and will be developed
below.

4. A Case Study with a Simple Linear Discrete Model

Here, we introduce a simplified discrete linear model enabling to make
projections about human population growth based on census data. With
this simple model, we avoid the difficulty associated with the choice of the
fertility coefficients by age classes, a characteristic of the Leslie model.

We characterize a population in a finite territory at time n by a two-
dimensional vector (B™, N*)T, where B" represents the age class of new-
borns, individuals with less than 1 year, and N™ represents the total number
of individuals with one or more years. By analogy with the Leslie approach
of the previous section, the time evolution equations are now,

(2)-(5 1) ()
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where e is the (mean) fertility coefficient of the population, « is the prob-
ability of survival of the total population between consecutive years, and
B is the probability of survival of new-borns. In census data, the fertility
coefficient is given in number of new-borns per thousand, but here we use
the convention that the fertility coefficient is given in number of new-borns
by individual.

Following the same approach as in the previous section, the solution of
the discrete Eq. (22) is,

B™ = 1 AT + oAy

N™ = c3AT + c4 A} (23)

where A; and A; are the eigenvalues of the matrix defined in (22), and the
¢; are constants to be determined from the initial data taken at some initial
census time ng. If the dominant eigenvalue of the matrix in (22) is A =1,
in the limit n — oo, the solution (23) converges to a non-zero constant
solution, from any non-zero initial data. As the characteristic polynomial
of the matrix in (22) is,

P\ =X —aX—ef
the condition of existence of a non-zero steady state is,
I=a+ef=1. (24)

As in (21), we say that I = o + ef is the inherent net reproductive
number of the population. If, I > 1, then A > 1, and the solution (23)
diverges to infinity as n — oc. If, I < 1, then the solution (23) goes to zero.

In order to calibrate the simple model (22), we take the census data for
the Portuguese population in the period 1941-1999, Fig. 8.

. Total Portug population without new—borns New~Dborns
1x10°
200000
9.5% 10°
. 180000
9x10
N*8.5x10° pe 160000
8 10° 140000
7.5x 10° 120000
7x10° 100000
1940 1950 1960 1970 1980 1990 2000 1940 1950 1960 1970 1980 1990 2000
year (n) year (n)

Fig. 8. Portuguese population and new-borns for the years 1941-1999, from refer-
ence [21].
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As we see from Fig. 8, the total Portuguese population without new-
borns shows strong variations, sometimes with a negative growth rate. This
negative growth rate is due to emigration, decrease of population fertility
and other social factors. The data for new-borns also shows negative growth
rates. Therefore, the growth behavior shown in Fig. 8 is influenced by other
factors that are necessary to quantify.

The values of the parameters o, 3 and e, are calculated from the census
data and are shown in Fig. 9. The probability of survival of the population
is approximately constant with mean o = 0.9891, and a standard deviation
of the order of 10~6. The coefficient of fertility e and the new-borns sur-
vival probability § vary along the years. The last two coeflicients are very
sensitive to socio-economic and technological factors, suggesting that, for
growth predictions, we must introduce into model (22) their time variation.

From the data of Fig. 9, the net reproductive number can be estimated.
In Fig. 10, we show the variation of I = a + ef for the period 1960-1999.
For 1960, we have I = 1.01137 and, for 1999, I = 1.00074, both very close
to the steady state condition (24). Therefore, during this period of time, the
Portuguese population is growing with a net reproductive number I > 1,
but very close to 1. The decrease in the population number in the period
1960-1974 is essentially due to emigration.

To make population growth projections, we consider that « is constant,
Fig. 9, with the mean value a = 0.9891, and we consider that e and 8
are time varying functions. Due to the form of the curves in Fig. 9, the
functions,

C2
cg + (t —1945)¢4

ﬁ(t) =1- Cse—cs(t—1960)

e(t) =c) +

(25)

0.58 00250 e . 0.98
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Fig. 9. (a) Probability of survival a, and (b) fertility coefficient e for the period 1945—
1999. (c) Probability of survival of new-borns 8 in the period 1960-1999. The proba-
bilities of survival o and 8 have been calculated with the death rate data by thousand
habitants, [21]. In (b) and (c), we show the fitting functions (25), for the parameter
values (26).
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Fig. 10. Dots represent the inherent net reproductive number of the Portuguese popu-
lation, calculated from the data of Fig. 9 (1960-1999). The two lines correspond to the
two possible projections for the net reproductive number I, for the period 2000-2010. In
estimate (a), we have considered that the time dependence of B and e is given by (25),
for the parameter values (26). In estimate (b), we have taken constant values for 3 and
e, obtained with the 1999 census values, [21].

are reasonable choices, with fitting constants,

c; = 0.00979232, ¢y = 5.65086 x 10%, ¢3 = 3.93899 x 108,

(26)
c4 = 5.63644, c5 =0.09058, cs = 0.06355.

In Fig. 9, we show the fitting functions (25), for the parameter values
(26). In the limit ¢ — oo, the new-borns survival probability converges to
1 and the mean fertility coefficient converges to ¢; ~ 0.0097, which corre-
sponds roughly to 10 new-borns per thousand individuals in the population.
The census value of e for 1999 corresponds to 11.6 new-borns per thousand.

To estimate the population growth for the period 2000-2010, we adopt
two strategies for the iteration of map (22). In the first case, we iterate
(22) with the time dependent functions (25), and we introduce as initial
conditions the census data for 1999, Fig. 11. In the second case, we take
for B and e the 1999 values. We also apply these two strategies to estimate
the net reproductive number (24) as a function of time, Fig. 10.

With the simplified model (22), it is possible to make a short time pro-
jection of population numbers. However, for a good calibration and greater
accuracy, emigration and immigration factors must be taken into account.

From the data and the fits in Figs. 10 and 11, we can derive sev-
eral conclusions. The projections for the period 2000-2010 show two dif-
ferent growth behaviors: In case (a) of Fig. 10 and Fig. 11, we have,
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Fig. 11. Projections of the population numbers for the period 2000-2010, from the
initial data of the year 1999. In estimate (a) we have considered that the time dependence
of 8 and e is given by (25)~(26). In the estimate (b), we took B and e with the 1999
census values. These projections do not take into account emigration or immigration
factors.

B2019 — 99 966 and N2010 = 9835840, with B!%99 = 115,440 and
N1999 = 9889150, implying a negative growth with an inherent net
reproductive number I < 1. In case (b), we have, B?010 = 115,251 and
N?2010 — 9.940,660, corresponding to a positive growth of the population
but with I close to the transition value I = 1.

Emigration and immigration are strongly dependent on several social
factors. However, even in this simplified model, we can make an estimate
of the balance between emigration and immigration. Iterating map (22) for
all the initial conditions between 1960 and 1998, we can compare with the
census data the projected value for the next year. The differences between
these values is an estimate of the balance between emigration and immigra-
tion, Fig. 12. In this case, we have used the mean value a = 0.9891, which
does not change too much during the period under analysis.

The period 1960-1974 is characterized by a strong emigration, reflected
in the negative growth of the population and new-borns. During the period
1974-1982, immigrants outnumber emigrants, introducing a larger growth
in the population and in the newborns. For the period 1983-1999, we have
an oscillatory balance. In the period 1960-1974, the emigration-immigration
balance is of the order of 0.68 millions habitants, implying that emigra-
tion was stronger than immigration. In the period 1975-1999, the external
income of population dominates, and the emigration-immigration balance
is of the order of —0.18 millions habitants.

The example presented here shows how this type of simple discrete mod-
els can help us to predict the overall growth of a population, the impact of
historical events and the impact of policies of social protection and medical
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Fig. 12. Emigration-immigration balance for the period 1961-1999 calculated with
the census data and model Eq. (22). Positive values correspond to larger emigration
when compared to immigration. Negative values mean that immigration is larger than
emigration.

care. In fact, the main features presented in the figures reflect important
social transformations that occurred in Portugal in the last 40 years. This
approach can be further extended in order to introduce emigration and
immigration factors and age classes.

In fact, in demography studies, the Leslie discrete model of Sec. 3 is
nowadays the basic tool for demographic projections in human popula-
tions, [25]. In microbiology, most of modelling approaches are based on the
exponential and logistic models, [3].

5. Discrete Time Models with Population
Dependent Parameters

In discrete time models with population dependent parameters, we intro-
duce the same kind of reasoning as developed in the continuous models
of Sec. 2: In a bounded territory, the growth rate of a population shows
sensitivity to population numbers, Fig. 1. As we have seen, this choice has
been used in the derivation of the logistic model and, in some sense, has
been validated by the predictions of growth of Paramecium caudatum in a
batch culture.

The simplest discrete population dependent model is described by the
Ricker map {26),

Npg1 =7rNye Vn (27)
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where 7 is the growth rate and N, represents the number of individuals
of a population at time n. This map has been used for many years in the
analysis of fisheries.

The overall dynamics of map (27) is similar to the discrete logistic
model,

Npt1 = aNy(1 = Ny) (28)

used in the modern theory of dynamical systems as a prototype of a chaotic
systems, [27]. In particular, the map (28) is a finite differences approxima-
tion to the logistic Eq. (2). Applying a finite difference approximation for
the derivative in (2), we obtain, £p4+1 = Zn(1+7At — z,7At/K). With the
linear change of coordinates, N,, = rAtz,/K(rAt + 1) and a = (rAt + 1),
we get the discrete logistic map (28). These types of models introduce a
population dependent growth rate in the form of a decreasing function of
the number of individuals in the population. The right-hand side of both
maps (27) and (28) have a local maximum at N, = 1 and N, = 1/2,
respectively.

The dynamic behavior of maps (27) and (28) introduce into the lan-
guage of population dynamics and ecology the concept of chaos, [27]. The
motivation for this approach is based on some observations that, during
time, some populations show erratic variations in the population numbers,
apparently without external causes, as for example the diminishing of envi-
ronmental resources.

From the mathematical point of view, there are essentially two types
of random behavior in dynamical systems. One type of random behavior,
called quasi-periodicity, is associated with the non-periodicity of a temporal
time series, as in the iteration of circle maps, [11]. The other type of erratic
behavior, called chaoticity, is associated with the existence of an infinite
number of unstable periodic orbits in phase space. The Ricker and the
logistic maps have chaotic behavior for several parameter values.

To analyse the type of random behavior of the Ricker map (27), we
construct a bifurcation diagram: For each value of the parameter r, we
iterate the Ricker map from a given initial condition, say 1000 times, and
we plot the last 500 iterates. Then, we repeat this procedure for other
parameter values. The graph obtained gives information about the asymp-
totic states of the trajectories of the map, as a control parameter is varied,
Fig. 13. For simple enough maps, as one-dimensional maps with one maxi-
mum, the information obtained by this method is independent of the initial
conditions.
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Fig. 13. Bifurcation diagram for the Ricker map (27). Chaos occurs for r > reo.

As we see from Fig. 13, for small values of the parameter r, the map
(27) has an asymptotically stable steady state — the iterates converge to a
stable period-1 fixed point or stable steady state. Increasing the value of the
parameter r, the period-1 stable steady state disappears and a new stable
steady state with period-2 appears. The parameter value of the transition
is a bifurcation in the dynamics of the map. For the parameter values where
the period-2 orbit is stable, there exists an unstable period-1 orbit, which
obviously does not appear in the bifurcation diagram. For increasing values
of the parameter r, a sequence of period doubling bifurcations appears. This
sequence accumulates at r = 7o,. For r > ro, we say that the dynamics of
map (27) is chaotic, [11].

One of the characteristics of the chaotic region in one-dimensional maps
(r > roo) is the existence of an infinite number of unstable periodic orbits in
phase space, even in the regions where the asymptotic states are stable fixed
points. The typical time series of a chaotic map is represented in Fig. 14.

It is generally believed that populations can have chaotic behavior in
time [27]. In a laboratory experiment with a flour beetle, Costantino et al.
[28] have shown that, by manipulating the adult mortality, the number of
individuals of the population can have erratic behavior in time. In this case,
the experimental system shows qualitatively the same type of bifurcation
behavior as in a non-linear three-dimensional discrete model for the time
evolution of the feeding larvae, the large larvae and the mature adults. How-
ever, there is no clear evidence that such erratic behavior shares the same
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Fig. 14. Chaotic time series obtained with the Ricker map (27), for r = 26.

dynamic properties of maps with chaotic behavior, despite the similarities
between bifurcation diagrams.

Based on observational data, some authors claim that, in the time
series of some populations, the observed erratic behavior has quasi-periodic
characteristics, [29]. In the next section, we present a consumer-resource
approach model with a bifurcation diagram with some characteristics that
are similar to the one obtained with the Ricker map.

6. Resource Dependent Discrete Models

The consumer-resource interaction is a fundamental issue in ecology, [30]
and [31]: Without resources, living organisms do not survive or reproduce.
In a rich environment, it seams natural to assume that the effect of resources
on a small population is not an important limiting factor for growth. How-
ever, if resources are scarce, we can expect an increase of death rates and
an increase in mobility for the search for other territories.

In ecological modelling, the effect of resources is sometimes introduced
as external forcing factors. A typical example is the modelling based on
the logistic equation with a time varying carrying capacity. In this case,
the response of the population numbers to the external forcing follows the
time varying characteristics of the forcing function. Here, we adopt a more
generic approach and introduce directly the dynamics of the resources into
the models, [31].

To maintain some degree of generality in the derivation of resource
dependent models, we adopt a Leslie age-structured approach. The compro-
mise between simplicity and generality is to consider that, in age-structured
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populations, resources only affect the probability of survival of the repro-
ductive age classes. Under these conditions, we can write a resource depen-
dent model in the generic form, [31],

NpHt 0 es ez «-- er_1 ek Np
Npt? ai(R™) 0 0o --- 0 0 N»
Nt 2 0 a(R™) 0 .- 0 0 Ng
(29)
Nptl 0 0 0 - ap_1(R?) 0 Np

R+l = f(R™)$(N™)

where we have introduced a dynamic for the resources, and N* = NJ*+- - -+

N7 is the total number of individuals in the population at time n. We also

assume that the fertility coefficients are resource independent, which must
" be understood as an oversimplification.

To analyse the dynamical properties of map (29), we make some assump-
tions on the form of the functions a;(R), f(R) and ¢(N). In order to derive
general properties about the asymptotic states of the population numbers,
we establish plausible limiting behaviors for the model functions, with-
out specifying any particular functional forms for a;(R), f(R) and ¢(N).
The function f(R) describes the dynamics of the resources alone through
the iteration R"*! = f(R"). We further assume that the resource map,
R™1 = f(R™), has a stable fixed point for R® = K and an unstable fixed
point for R* = 0.

We further assume that both o;(R) and f(R) are non-negative and
monotonic increasing functions of R, and ¢(N) is non-negative and mono-
tonic decreasing function of N. Therefore, we have the following limiting
values,

a;i(R)—0, asR—0

a;(R)—1, as R— oo

f(R)—0, asR—0 (30)
¢(N)—1, asN -0

¢(N)—0, asN—o0

Under these conditions, it can be proved that ([31)):
Theorem 2. The map (29) together with conditions (30) is a diffeo-

morphism in the interior of the set B = (N» > 0,...,Np, > 0,
R > 0). The resource dependent inherent net reproductive number
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GK)=YF,e Hj':z a;—1(K) is a bifurcation parameter for map (29).
If G(K) > 1, but G(K) is close to the value 1, then the map (29) has a
non-zero stable fized and is structurally stable in the interior of B.

The importance of Theorem 2 relies on the statement that the resources
control the structural stability of model map (29), in the sense that any
small perturbations of the map will not destroy the stability of the non-zero
fixed point. Moreover, the structural stability result is independent of the
functional form of a;(R), f(R) and ¢(N).

In order to better understand the dynamic properties of map (29), we
take a prototype model with three age classes, and we choose plausible
functions o;(R), f(R) and ¢(N). For the resources, we choose a logistic
growth function,

(3

FRY = e —

(B-1)+ K

where 3 > 1 is the discrete time intrinsic growth rate, and K is the carrying

capacity. Function (31) is a logistic type growth function for the resources

and follows from (3), with t = At and B = e™At. For the probability of

survival between age classes, we assume that it has the form of a birth-and-
death (stochastic) process, [32],

(31)

i R"
where the v; > 0 are parameters. As 7; becomes large, the probability of
survival in the transition between consecutive age classes becomes close
to 1, and o;(R™) becomes sensitive to the variations of resources only for
small values of R" (few available resources). The function ¢(N) is assumed
to have the Poisson form,

n

p(N™) = e M. (33)

With &k = 3, and introducing (31)-(33) into (29), we obtain the resource
dependent map,

0 €2 €e3

Nn+1 N
N;H nR 0 0 Ni‘
N e
Ng 0 _nR" N3 (34)
YyaR™ +1
KpBR»
Rntl = _'B exp (—(N7 + NI + N§)).
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Fig. 15. Bifurcation diagram of map (34) for the parameter values ez = 0.8, 1 =
2 =1, K = 100 and 8 = 1000, [31].

The phase space of map (34) has dimension 4. However, to analyze the
bifurcation diagrams of the number of individuals, we simply plot the total
number of individuals of the population, N = N[+ N3+ NZ, as a function
of the control parameters. In Fig. 15, we show the bifurcation diagram for
the total number of individuals calculated from map (34), as a function
of the control parameter e;. The other parameters have been fixed to the
values e3 = 0.8, y1 =2 =1, K = 100 and 8 = 1000.

For 0.11 < ez < 1.04, the map (34) has a non-zero stable fixed point.
Increasing es, this fixed point becomes unstable. The instability of the fixed
point is due to a discrete Hopf bifurcation, and an invariant circle in phase
space appears, [33], Fig. 15. The discrete Hopf bifurcation occurs when
two complex conjugate eigenvalues of the Jacobian matrix of (34) evalu-
ated at the period-1 fixed point cross the unit circle in the complex plane.
On the invariant circle, the time evolution is not periodic anymore, and
any time series or orbit becomes quasi-periodic. Increasing further the con-
trol parameter, there is a continuous region in the parameter space where
regions of invariant circles in phase space and regions of periodic behav-
ior appear. These regions are separated by bifurcations from quasi-periodic
to periodic attractors (saddle-node discrete bifurcations) characteristic of
circle maps, [33].

In Fig. 16, we show the attractors and the time series for two different
values of the parameter e2. In Fig. 16(a), the invariant trajectory in phase
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Fig. 16. Invariant sets in phase space and time series for map (34), for several values of
the control parameter ez. In (a), the invariant set in phase space is homeomorphic to a
circle, and in (b) it is similar to a fractal set. In both cases, the corresponding time series
are quasi-periodic. The time series of these quasi-periodic motions should be compared
with the chaotic time series of Fig. 14.

space is homeomorphic to a circle and has a quasi-periodic time series. In
Fig. 16(b), the invariant circle is destroyed and an invariant set appears,
apparently, with a fractal structure. In this case, the quasi-periodicity of the
time series is maintained. Further numerical analysis for other parameter
values leads the conclusion that the random behavior found in this map
has a different characteristic than the one found in the chaotic case of the
previous section.

Quasi-periodic time series have random behavior. In fact, there exists a
continuous probability distribution characterizing the permanence time of
the iterates of the map on the attractor in phase space, [34]. This probabil-
ity distribution also exists in the chaotic maps (27) and (28). The difference
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between map (34) and maps (27) and (28) is that, in map (34), the phase
trajectories on the invariant set have no unstable periodic orbits, whereas in
chaotic systems invariant sets contain an infinite number of unstable peri-
odic orbits. In both cases, the trajectories on the invariant sets are random
because they are ergodic, leaving invariant the above-mentioned probability
distribution, with support on the attractor. The time series of the chaotic
system is clearly irregular, contrary to the quasi-periodic case where it is
almost regular, despite the apparent similarities of bifurcation diagrams.

There is one more important distinction between the map (34) and the
maps (27) and (28). The map (34) is a diffeomorphism in the positive part
of phase space, and maps (27) and (28) are not invertible. Prototype models
of chaotic dynamics are in general non-invertible. The map (34) becomes
non-invertible in the limit 8 — co. In this limit, we obtain, for the resource
dynamics, R*t! = Ke~(NT'+N7+N3) This corresponds to the introduction
of a fast recovery time of the resources when compared with the time scale
of the population. In this case, the structure of the invariant sets in phase
space becomes more complex than the ones depicted in Fig. 16, and we
observe regions of quasi-periodic behavior mixed with regions with more
complex time series, [31].

From the comparison between the models (27), (28) and (34), the main
conclusion we want to point out is that, for hypothetical populations follow-
ing these dynamics, the information provided by the bifurcation diagrams
is not enough to decide about the degree of complexity of a time series. The
structure of the attractors in phase space has to be taken into account. In
principle, any analytical strategy in order to calibrate and validate models
with chaotic or quasi-periodic behavior in time must elucidate about the
topological structure of the attractors and about fixed points in phase space.

7. Spatial Effects

In general, in the search of resources or simply to avoid overcrowding, pop-
ulations spread along space. In some species, the spreading is short-range
and in others it has a long-range effect. In order to describe both effects in
a simple formalism, we take the simplest case where the population at time
n + 1 relates to the population at time n, through the difference equation,

N = (N (35)

where f is some arbitrary function, and N™ is the number of individuals
in the population at time n. To introduce the effect of spatial spreading
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into (35), we let N = N™(z), and the total population is,

/b N™(z)dz = Ny, (36)

where a and b define the limits of the territory. The limiting cases a =
—o0 and b = 400 are allowed. Now, N(z) is the number of individuals of
the population per unit of length or area. The spatial spreading effect is
introduced into (35) by a dispersion kernel k(y —z), and the local dynamics
becomes,

,, |
N™H(g) = / Ky — 2)f(V"())dy (37)

where, to avoid spatial asymmetries, we assume that k() is an even function
of its argument. We impose further that,

/ ’ k(2)dz = 1. (38)

With condition (38), the kernel function k(z) can be understood as
a probability distribution, and the term k(y — z)f(N™(y)) in (37) is the
frequency of individuals that were at y at time n and will be at x at time
n + 1. Introducing, z = y — z into (37), we obtain,

b
N™tl(z) = / k(2)f(N"(z + z))dz. (39)

The integro-difference Eq. (39) describes the time evolution of the den-
sity of individuals in the population and, depending of the form of the
kernel function, it accounts for short- and long-range spreading effects.

In order to describe only short-range effects, we develop f(N™(z + z))
in Taylor series around z = 0, and from (39), we obtain,

N™(a) = F(N* (@) + Doy (FV @) + - (40)

where we have used the normalization condition (38), and,

D= /b k(2)2%dz (41)

is the diffusion coefficient or second moment of the kernel function k(z).
The kernel function k(z) is specific to the species under consideration, and,
in principle, is related with the mobility of the population. Obviously, D is
also species dependent. In [15] and [35], some examples of kernel functions
used in ecological modelling are discussed.
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We apply now this formalism to the study of the dispersal of a hypothet-
ical population that follows a Ricker type dynamics (Sec. 5). Introducing
the Ricker map (27) into the integro-difference equation (39), we obtain,

+-o00
NPt (z) = ¢ / k(2)N™(z + z)e~N"C+9) g, (42)

—00

and we chose as dispersion kernel the normalized Gaussian function,

1 2
k(z) = g% /4D 43
()= 375 (43)
where D is the diffusion coefficient.
To follow in time and space the growth of this hypothetical popula-
tion, we consider a one-dimensional infinite domain with the initial density
distribution,

0 2 ifjz|<1
N(=) = {o if |z > 1. (44)
By (36), the initial total population described by (44) has four individuals.

To follow the space and time evolution of the number of individuals in
the population, we introduce (44) into (42), and we iterate (42) for several
values of the growth rate parameter r. In Fig. 17, we show the first iterates
of the integro-difference equation (42), for the initial condition (44), and
parameter values: D = 0.1 and r = 5; D = 0.1 and r = 17. For these
parameter values, the Ricker map (27) has periodic and chaotic behavior
(Fig. 13), respectively. After four iterations, the total population numbers
are: N, = 9.6, for r = 5, and N2, = 21.2, for r = 17. In both cases, the

initial condition corresponds to Ny, = 4.

[ 5]

n
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Fig. 17. First iterates of the integro-difference Eq. (42) associated to the Ricker map,
for D =0.1, (a) r =5 and (b) 7 = 17. N™(z) is the density of individuals at the spatial
region z and time n. The initial condition at time zero is given by (44). The numbers in
the graphs represent the iteration time n.
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The numerical simulations in Fig. 17(a) show the formation of a disper-
sal front. Initially, the front amplitude has small oscillations. After some
time, the front amplitude stabilizes and its value equals the value of the
fixed point of the Ricker map (27). The front propagates in space and
the population number increase in time. When n — oo, then N* — oo.
In Fig. 17(b), the Ricker map has chaotic behavior, and a dispersion
front appears as time increases. In this case, at each point of the spatial
region, the oscillations of the population density during time are chaotic,
Fig. 18.

In Fig. 18(a), we show, for the Ricker map (27), the time evolution
of N™(0), calculated with the integro-difference equation (42). The time
series at a given point of the extended system has the same type of chaotic
behavior as the time series obtained with Ricker map. In Fig. 18(b), we show
the graph of the points (N"*+1(0), N*(0)). Also, in the extended system,
the chaotic behavior of the local map persists. In real extended systems,
this effect gives information about the chaoticity or periodicity of the local
dynamics.

This simple example shows that the dispersal effect strongly increases
the equilibrium values of the population, implying that the dimension of
the territory of a population is a constraining factor for the population

7 ) 7
6 a 6
5 5
4 4
n n+1
N'®) N"0) |
2 2
1 1
0 0
0 5 10 15 20
n NY(0)

Fig. 18. (a) The heavy line is the time series of the first iterates of the density of
individuals N™(0), calculated with the integro-difference equation (42), for the Ricker
map (27). The parameters values are, D = 0.1, r = 17, and the initial condition is
given by (44). The thin line is the iterate of the Ricker map, for the same parameter
values, and the initial condition NO = 2. For these parameter values, the Ricker map is
chaotic. As it is clearly seen from the time series, the chaotic behavior is still present
in the extended system. In (b), we show the graph of the function N*+! = f(N") =
rN™e~N™ (thin line), and the points (N*+1(0), N™(0)) from the time series in (a). The
iterates of the Ricker map are on the graph of the function f(N™) (triangles). The points
(N"+1(0), N™(0)) obtained from the time series of the extended system are near to the
graph of the function f(N™) (squares).
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growth. Note that, the Ricker map only admits finite values for the number
of individuals of a population.

Suppose now that we have a population evolving according to the
logistic equation (2), and we want to take into account dispersal effects.
Applying to the logistic equation the same reasoning leading to the integro-
difference Eq. (39), we obtain,

b
‘?9_1:’ - / k(2)rN(z + 2, 1)(L — N(z + 2, 8)/K)dz (45)

together with the normalization condition (38). In this case, we obtain an
integro-differential time evolution equation. To analyze short-range disper-
sal effects, by (40), we have,

ON 0?

5¢ = "N = N/K) +rDo—(N(1 - N/K)) (46)

which is a parabolic partial differential equation.

We take the simple equilibrium solution of the logistic equation, N(z) =
K. Introducing this solution into (46), N(z) = K is a stationary solution of
the parabolic Eq. (46). Therefore, by (36), the logistic model with dispersal
admits an infinite population in an infinite territory. Once more, it is clear
that population numbers are dependent of the dimensions of the territory.

In the literature of ecology, dispersion effects are analysed through the
parabolic equation,

ON 8N

which is known as the Kolmogoroff-Petrovskii-Piskunov or Fisher equation.
This equation is in general derived under the assumption of Fick laws that
asserts that migration occurs from regions with higher densities to regions
with lower densities. One of the properties of the solutions of the equation
(47) is the possibility of having a propagating front  along space, [36] and
[37], analogous to the fronts of Fig. 17(a).

To incorporate dispersion effects into continuous models of population
dynamics, we can follow the reasoning leading to equations (45) and (46), or
adopt the view leading to Eq. (47), introduced by Kolmogoroff-Petrovskii—
Piskunov, [36]. In the last case, this corresponds to add a diffusive term,
transforming the differential equations into a quasi-linear parabolic partial
differential equation. Most of these spatial models are non-linear and their
space and time solutions are found numerically. In references [15] and [35],
several models with spatial effects are analysed.
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8. Age-Structured Density Dependent Models

In the literature of ecology, density dependent models appear in several
contexts. In the Leslie approach, the effects on population density can be
introduced through the dependence of the probability of survival between
age classes on the population numbers. In this case, the survival probabili-
ties between the age classes are of the form a;(N™), where N™ is the total
population at time n, [38], and the general non-linear map obtained falls
in the class of non-linear maps of Sec. 5. Also, in the previous section, we
found a density dependent model in the sense that the state variable of the
population has the generic form N (z), representing the number of individu-
als by unit of area or length. All these models are, in a certain sense, density
dependent. Here, we are interested in density dependent models where the
age and time variables have a continuous nature, [39], [23], [40] and [41].
We consider a population age density function n(a,t) such that,

+o0
N(t) = /0 n(a, t)da (48)

where N(t) is the total population at time ¢, and a represents age. The
function n(a,t) is the density of the individuals of the population with age
a at time ¢. The births are described by the fertility function by age class
b(a,t), and are given by,

+o00
n(0,t) = /0 b(a,t)n(a,t)da. (49)

Assuming that the normalised death rate of the density of individuals
(mortality modulus) of the population is constant (1), we have,

dn

As ageing is time dependent, a = a(t), and is measured in the same time

scale of time, %—‘t‘- = 1, by (50), the function n(a(t),t) obeys the first order
linear partial differential equation,

on(a,t) n on(a,t)
ot da
together with the boundary condition (49). Equation (51) is the
McKendrick equation [39].
Let us find now a solution of the McKendrick partial differential
Eq. (51) by elementary geometric methods. Writing Eq. (51) in the form,

dn d‘t”t) = —pun(a,t), where a is also a function of ¢, the solutions of (51)

= —un{a,t) (51)
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are obtained through the solutions of the system of ordinary differential
equations,

dn
dt
da
5=

= —un
(52)

These two independent equations have the general solution,

n(a,t) = n(aog, to)e H{t—to)
a—apg=t—1p

(53)

where ag is the continuous age variable for t = ty. The second equation in
(53) is the equation of the characteristic curves of the partial differential
Eq. (51), Fig. 19. Introducing the second equation in (53) into the first one,
we obtain the solution of the McKendrick equation,

n(a,t) =n(a—t,0)e™ ", fort<a (54)

7

t*
t]_ A

"
0 N a

Fig. 19. Characteristic curves a — ap = t — o for the McKendrick equation (51). The
graph of the characteristic curves lies in the domain of the solution n(a,t). Given an
arbitrary point (a*,t*) in the domain of the partial differential equation, the solution
n(a*,t*) is easily obtained following the thin line backwards in time down to ¢t = 0.
The heavy lines are characteristic curves defined by the equations ¢ = a + may, for
m=0,1,....
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where n{a,0) is an initial density distribution of the population at £y = 0.
For t < a, the solution (54) is independent on the boundary condition (49).
The domain of the solution (54) is the region labeled with a zero in Fig. 19.

To extend the solution (54) for ¢ > a, the boundary condition must
be introduced, as well as some additional simplifications. We suppose that
births occur at some unique fixed age a = a3, Fig. 19. Then, the fertility
function is necessarily concentrated at the point @ = a;. Therefore, as
fertility function by age class, we take,

b(a,t) = bd(a — a1)

where 6(-) is the Dirac delta function and b is a (mean) fertility parameter.
Under these conditions, the boundary condition (49) simplifies to,

n(0,t) = bn(a1, t). (55)

We extend now the solution (54) to ¢ = a, with the boundary condition
(65). By (53) and (55), the solution of the McKendrick equation (51) is,

n(a,t) = n(0,0)e™** = bn(a;,0)e™ ", fora="t. (56)

With a simple geometric construction, we calculate now the solu-
tion for ¢ > a. We take the point (a*,t*) on the line t = t*, Fig. 19.
This point is in the region labelled 2 in Fig. 19. By (53), the charac-
teristic line that passes by (a*,t*) crosses the line a = 0 at some time
t = t}, and n(a*,t*) = n(0,})e ¢ ~1) = n(0,t* — a*)e~#¢" ~t) where
} = t* — a*. Imposing on this solution the boundary condition (55), we
obtain, n(a*,t*) = bn(a1,t* — a*)e ¢ ), As n(a;,t* — a*) is the solu-
tion of the McKendrick equation at the point {a;,t* — a*), we repeat the
above construction, by drawing the horizontal line connecting the points
(0,t7) with (a1,t7), Fig. 19. Iterating this procedure backwards in time, we
obtain,

n(a*,t*) = b2n(ay, t* — a* — ay)e M HHE 1)
= P20 +a® — £1,0)cHE-GHI-EHE-0 (57)
= b’n(2a; + a* — t*,0)e H
where t3 = t* — a] — a*, and we systematically have used the equation of
the characteristic curves, a —ag = t —t¢. In Fig. 19, for any initial condition
inside the region labelled with an integer, say m, an easy induction argu-

ment shows that the solution of the McKendrick equation (51) has the form
(57), where the factor 2 is substituted by m, where m = [(t — a)/a; + 1] and



440 Biomathematics: Modelling and Simulation

[z] stands for the integer part of z. Then, by simple geometric arguments,
we have proved:

Theorem 3. Let n(a,0) be an initial data function for the McKendrick
partial differential equation (51), with a > 0, ¢t > 0 and p > 0. Then, for
the boundary condition (55), with a1 and b positive constants, the general
solution of the McKendrick partial differential equation is,

n(a,t) =n(a—t,0)e ', fort<a (58)
n(a,t) = blt=a)/ar+ln(((t —a)/a1 + 1]a; + a —t,0)e™#, fort>a

where [z] stands for the integer part of x.

We analyse now the stability of the solution (58) of the McKendrick
partial differential equation. As [(¢ — a)/a1] +1 = m, where m is a positive
integer, we have, (t — a)/a1 + 1 = m + ¢(a, t), and, for fixed a, with t > a,
the function e(a,t) is time periodic with period a;. Therefore,

plt—a)/ar+1j—nt _ l(t—a)/ar](Inb—pa1) p,—pa —pare(at)

By (58), and for ¢ > a, we have,
n(a, t) — e[(t—a)/al](ln b—pa1)
x n([(t — a)/ay + 1]a; + a — t,0)be " Hoe~Fne@t) - (59)

Then, if (Inb— pa,) = 0, the asymptotic solution of the McKendrick partial
differential equation is periodic in time. If, b > e**1 asymptotically in time,
the population density goes to infinity, and if, b < e#®!, the population
density goes to zero. Hence, we have:

Corollary 4. Let n{a,0) be o differentiable and bounded initial data func-
tion for the McKendrick partial differential equation (51), with boundary
condition (55). Suppose in addition that Inb = pa;. Then, the asymptotic
solution of the McKendrick equation is bounded and periodic in time, with
period ay:

n(a,t) = n([(t — a)/ay + a1 + a — t,0)be~Hoe~Harel@t),

In Fig. 20, we show the time evolution of an initial population with an
uniform age distribution, with a maximal age class, and obeying to the sta-
bility condition b = e#%*, We have chosen for initial conditions the density
function: n(a,0) = 2, for a < 100, and n{a, 0) = 0, for a > 100. By (48), this
corresponds to the initial population, N(0) = 200. The calculated popula-
tion numbers for ¢ = 30 and ¢ = 100 are N(30) = 110.7 and N(100) = 70.9,
respectively. As it is clearly seen in Fig. 20, after a transient time, the
population density becomes periodic in time, as asserted in Corollary 4.
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Fig. 20. (a) Time evolution of the solution of the McKendrick equation (51), for the
age classes a = 8 and a = 35. (b) Distribution of the number of individuals by age class,
for t = 30 and t = 100. All these solutions have been calculated with the initial data
condition, n(a, 0) = 2, for a < 100, and n(a,0) = 0, for a > 100, and parameter values,
a1 = 25 (unique reproductive age class), u = 0.05 (death rate) and b = e#*1 = 3.49
(mean fertility).
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Fig. 21. Total population as a function of time, for the same parameter values of Fig. 20.
After a transient time, the period of oscillations is a1, the age of the unique reproductive
age class.

In Fig. 21, we show the total population as a function of time, calcu-
lated from Theorem 3 and (48), with the initial condition and parameters
from Fig. 20. In the McKendrick continuous age-structured approach, the
asymptotic stable state of the dynamics are not fixed points as in the case of
the Leslie type maps (Sec. 3}, but bounded time periodic function. More-
over, by Theorem 3, the amplitude of oscillations depends on the initial
data function n(a,0).

If, b > e#%1, by (59), it can be shown that the growth curve is modulated
by a time periodic function with period a;, [42]. For two reproductive age
classes and boundary condition n(0,t) = bin(ai, t) + ban(ae, t), the growth
curves are always modulated by two time periodic functions with periods
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a1 and az. If these periods are not rationally related (ni1a;+nsas = 0, has no
integer solutions in n; and ns), the modulation function is quasi-periodic.
In the population dynamics literature the quasi-periodic modulations of
the growth curves are called demography cycles. For a detailed discussion
see [42].

In the more general case of age dependent fertility function and mor-
tality modulus, b(a) and u(a), the qualitative behavior and stability prop-
erties of the solutions of the McKendrick equation (51) are determined by
the Lotka growth rate, [24] and [42],

az

T =/ b(c)e™ Jo us)ds go (60)
ai

where a1 and ay are the ages of the first and the last reproductive age

classes, and b(a) and p(a) are determined from demography data.

To estimate the growth of populations, the Lotka growth rate is an
important demography tool, [25]. A detailed analysis shows that, the dis-
crete approximation of (60) coincides with the inherent net reproductive
number of a population (21), [42], introduced in the discrete time and age
Leslie formalism of Sec. 3.

We can now compare the solution of the McKendrick equation derived in
Theorem 3 with the exponential solution of the Malthusian growth model
(1). Assuming that ¢ > a, we have, n(a,t + sa1) = n{a,t)r®, where s is
an integer and r = be™#* is the Lotka growth rate. With ¢ = a; and
T = a1 + sa1, we obtain, n(a,7) = n(a,a;)r{""%)/a1_ Integrating n(a, ) in
a, we have for the total population,

N(71) = N(ap)r{T—a)/as (61)

which is a Malthusian growth function with Lotka growth rate r. Therefore,
with a time step equal to the age of the only reproductive age class (a;), the
solution of the McKendrick equation behaves like the exponential growth
model of Sec. 2. In fact, taking the derivative of (61) in order to 7, the total
population N obeys to the differential equation,

ﬂ _logr

N
dr a1

which is the Malthusian growth model (1). This shows that Malthusian type
models describe population growth at a larger time scale when compared
with age-dependent McKendrick type models.
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9. Growth by Mitosis

When reproduction occurs by mitosis as in cells and some micro-organisms,
the growth model of the previous section must be modified. We consider a
population of micro-organisms or cells in a media with enough resources,
eventually infinite. We assume that the micro-organisms replicate by mito-
sis, and the time of the mitotic processes can be neglected. We represent
by n(a,t) the density of organisms in the media with age a at time ¢.

We consider that the probability of dying depends only on the age. We
denote by u(a) the probability density of death with age a, and b(a) is
the probability density of undergoing mitosis with age a . If an organism
initiates mitosis, then, after some time, the organism transforms into two
new ones with age zero. Therefore, the density of newborns at time ¢ is,

n(0,t) =2 /Ooo b(a)n(a,t)da (62)

where the factor 2 accounts for the mitotic process.

Hence, the time evolution of the colony of micro organisms is described

by the modified McKendrick equation,
ot 4 288D — (@) + bla)n(a, ) (63
together with the boundary condition (62).

We consider a population where all the individuals initiate mitosis at
some fixed age a = o, such that b{a) = §(a — a). To simplify even further,
we suppose that u(a) = p is constant, independently of the age. So, by
(60), (62) and (63), the Lotka growth rate is now,

loo)
ro= 2/ 8(a — a)e™ Jo (o) +8(s—)ds gq (64)
0
As,
N 0, ifa<a
/ d(s—a)ds=<1/2, ifa=a (65)
0 1, ifa>a

by (65) and (64), for a population with mitotic reproduction type, the Lotka
growth rate is,

7= 2e"HeeTl/2, (66)

Making u = 0 in (66), for the Lotka growth rate, we obtain the constant
value,

r=2e"1/2 = 1.21306.
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In the case of sexual reproduction and in the limit case of zero mortality,
by (60), we have,

r= /‘:2 b(c)de (67)

which can be larger or smaller than 1, depending on the intrinsic fertility
of the species. In mitosis, in the limiting case of zero mortality, the Lotka
growth rate is always greater than 1, ensuring an exponential growth pro-
cess. On the other hand, by (66), in organisms that reproduce by mitosis,
r cannot take large values, but in the case of organisms with sexual repro-
duction, by (67), r can be arbitrary large.

The application of the McKendrick approach to the growth of colonies
of micro-organisms is described in detail in Rubinow [43].

10. Conclusions

Along this review we have derived the most common models used in ecol-
ogy and population dynamics. Differential and difference equation models,
describe a population as whole, in the sense that they do not distinguish
either intra-specific characteristics of the individuals, or their spatial dis-
tribution. The calibration of these models with real biological situations
is not always successful and, in the context of growth projections, they
must be considered as toy models. However, the analysis of their dynamic
behavior introduced in the language of ecology new concepts that later
were generalised to the age-structure approach. This is the case of the con-
cept of growth rate, introducing a quantitative measure of the stability or
instability of a population.

The dependence of the carrying capacity and of the growth rate param-
eters on the dimensions of the territories and on the available resources, is
also an important issue. Experimental measurements of growth of micro-
organisms as a function of resources has been done by Monod, [44].

The class of age-structured models gives us a more detailed insight on
the dynamics of a population. In demography studies, the Leslie and the
McKendrick approaches are nowadays the reference models. In the context
of microbiology, the same structure and theoretical setting holds as it has
been shown in Rubinow, [43]. One of the consequences of the age-structured
McKendrick approach to the population growth is that, in a time scale of
the order of the mean age of the reproductive classes, populations have a
Malthusian type growth pattern with a Lotka growth rate. The Malthusian
growth pattern is perturbed by periodic functions which globally induce
quasi-periodic demography cycles.
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The distinction between chaos and quasi-periodicity in real ecologi-
cal systems, is not a simple subject. We have presented models based on
the difference equations approach that are non-invertible and have chaotic
behavior. However their calibration with real biological systems presents
some difficulties. Models showing quasi-periodicity are invertible, and the
restriction to the phase space attractors make them similar to circle maps.
Technically, both chaotic and quasi-periodic systems are ergodic, leaving
invariant a probability measure. This property implies that chaotic and
quasi-periodic systems have the same type of randomness.

In generic terms, the dynamical properties of chaotic and quasi-periodic
systems are strongly dependent of the adopted mathematical models. The
question whereas a basal population or a population at the top of a trophic
chain follow any of these choices can only be verified by observation.

One possible way of distinguishing between chaos and quasi-periodicity
in populations is through the analysis of the population dispersal. As it has
been seen in Sec. 7 for the dispersal of a population, the characteristics of
the temporal dynamics is imprinted in the density profile along space. The
analysis of this effect gives information about chaoticity or periodicity of
the local dynamics.

Some of these models are sensitive to perturbations of the functional
forms of the growth rates, others are not. For populations at the top or at
the bottom of a trophic chain, it is difficult to conceive that growth models
could be too sensitive to arbitrary small external factors. In this case, the
structural stability property should be a mandatory property for the choice
of any mathematical model for the population growth.

We have compared the dynamic properties of the models derived along
this review. We have analysed the modelis according the possibility of
describing population extinction and explosion, non-zero equilibrium states,
oscillations, chaos and quasi-periodicity. The structural stability or robust-
ness of the models in phase space is, in simple terms, related with the
conditions of the Hartman-Grobman theorem (Theorem 1), and with the
non-existence of phase space trajectories connecting unstable fixed points.
For this global comparison, we have considered that growth rates are
always positive. The properties of the analysed models are summarised in
Table 1.

For all the models analysed along this review, it is evident that, the
same biological assumptions, but different technical options, lead to differ-
ent models with different properties, Table 1. The choice of the appropriate
model to describe a specific living system must rely on the calibration and
validation of the model results with the growth projections.



Table 1. Comparison between the properties of the population growth models analysed along the text. In the case of partial differential
equation models, the concept of structural stability needs a different approach from the one explored here. Notes: (1) Structural
stability refers to persistence upon perturbations of the non-zero equilibrium in phase space. (2) In mutualistic interactions we can
have explosion of population numbers. This case has not been considered in this classification. (3) The zero equilibrium state is always
unstable. (4) Technically, if the rotation number around the closed trajectories is irrational, the time series is quasi-periodic. (5) In
general, the Leslie matrix has non dominant complex eigenvalues, introducing quasi-periodic modulations in the growth curves. (6) If
the Leslie matrix has no eigenvalues on the unit circle of the complex plane, then the Leslie map is structuraly stable. (7) Chaos occurs
for some of these models when the recovery time of the resources goes to zero, [31}. (8) The McKendrick model has quasi-periodic time
behavior in the sense that growth curves are modulated by periodic functions, with periods equal to the ages of the reproductive age
classes, [42]. (9) In general, the concept of structural stability is not defined for partial differential equations.

Population Non-zero Population Population Oscillations Chaos Quasi- Structural
growth equilibrium goes to oo dies out periodicity stability (1)
model

Malthusian no yes no no no no yes
Logistic yes no no no no no yes
Logistic no no yes no no no yes
controlled
by resources
Biotic yes no (2) no (3) no no no yes
interactions

(Sec. 2.2)

Lotka- yes no no yes no yes (4) no

Volterra

Leslie yes yes yes yes (5) no yes (5) yes (6)

Leslie yes no yes yes yes (7) yes yes
controlled

by resources

Ricker yes no yes yes yes no yes
McKendrick no yes yes yes no yes (8) 9)

il 47
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Some other modelling approaches to ecology and population dynamics
were not focused in this review. This is the case of the dynamic energy
budget approach, [45], topics related with resource exploration and eco-
economics, [46], harvesting, [47], [46] and [48], epidemics and dispersal of
diseases, [15], [30] and [49]. In the dynamic energy budget approach, the
main objective is to make an integrative view of the different levels of orga-
nization of biological systems, from simple micro-organisms to ecosystems.
In the resource exploration aspects of ecology and eco-economics, concepts
of economic theory are introduced in the framework of ecology. Harvesting
models are important to analyse problems of control and over consump-
tion of natural resources, [46]. Also, harvesting models are an alternative
approach to describe predation in species that are incorporated in trophic
webs, [48]. Epidemics and dispersal of diseases are important subjects due to
its immediate application to health prevention issues. For a recent account
on more specialised mathematical models in biological sciences see [50].
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CHAPTER 16

MODELLING IN BONE BIOMECHANICS
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This chapter gives a brief account of various mathematical models developed
by different investigators in connection with various studies in Biomechanics of
Bones. A mention of some relevant experimental investigations has also been
made. For the convenience of readers some basic concepts and some associated
topics useful for a better comprehension of this interesting interdisciplinary
area of study are also included.

1. Introduction

As early as 1638 Galileo propounded the idea that the form of the bones
depends on the load they carry (Ascenzi, 1993). But it was not easy to
readily apply the laws of mechanics, that are used to discuss the stat-
ics and dynamics of inanimate objects subjected to loads, to a biological
material like bone which is capable of “self-repair” or “self-organization”.
Before renaissance period people used to think that the world of living
beings has nothing in common with that of the non-living bodies. Nobody
even thought of explaining biological events in physical terms. But from
the time of Descartes, when people with liberal views were questioning the
past habits and lines of thought, they were trying to give a systematic inter-
pretation of every phenomenon. Serious attempts were made by them to
investigate the mechanical behavior of biological elements. These studies
helped develop the discipline of Biomechanics. As the application of the
concepts of biomechanics to study different aspects of bone, from a struc-
tural point of view and also as a system, this subject area of study grew as
a subdiscipline of Biomechanics, known as Bone Biomechanics. The growth
of bone biomechanics that took place till 1973 has been summarized by
Evans (1973). This treatise contains a review of most of all the important
researches on the mechanical properties of bones. Subsequently Cowin and

451



452 Biomathematics: Modelling and Simulation

his associates (1976-1998) made significant contribution to mathematical
modelling of the functional adaptation of bones under load. Roesler (1987)
presented the historical development of the fundamental concepts of bone
biomechanics and the important milestones in the history of researches in
this interesting field of study.

During the last three decades, a tremendous growth of bone biome-
chanics has taken place. Basing upon adaptive elasticity theory and com-
putational mechanics, Cowin and his co-workers investigated extensively
different aspects of the process of bone remodelling. They also dealt with
problems associated with bone implants. Lakes and Katz (1974-1979) made
a series of investigations on the material behavior of bones using wave prop-
agation technique, analyzed and compared their results with those reported
by other workers in this field. They also tried to explain the discrepancies
between experimental results and theoretical results estimated on the basis
of the classical theory of elasticity in several cases, using the concept of
Cosserat elasticity. Subsequently several other researchers also contributed
significantly to the growth of bone biomechanics. A comprehensive discus-
sion on the Mechanics of Head Injury and the Fracture and Remodelling
Mechanics of bones are available in the recent book published by Misra
(2005).

The aim of the present chapter is to provide some useful information
on mathematical modelling in Bone Biomechanics along with experimen-
tal observations on different physical properties and mechanical behavior
of bones. It is believed that the comprehensive material presented in this
chapter would stimulate further research in the important domain of biome-
chanics. Sections 3 and 4 deal with a brief account of the physical properties
of ideal solids and the relevant constitutive relations. The subsequent sec-
tions include discussions on the properties and relations that are adapted in
case of bones. Theoretical formulations of the control mechanism for inter-
nal and surface bone remodelling are also presented. The last section gives
an idea of the current state-of-the-art of mathematical modelling of some
important problems in Bone Biomechanics.

2. Bone Biomechanics and Its Mathematical Analogues

Biomechanics, according to Hatze (1974), may be defined as the study of
the structure and function of biological systems by means of the methods
of mechanics. The particular subdiscipline which is concerned with stud-
ies pertaining to the mechanics of bones is called the Bone Biomechanics.
The importance of researches in this important area lies in ascertaining the
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mechanical properties of bone tissue with an aim to determine the patho-
logical state of diseased bone, the fracture site etc., in understanding the
remodelling processes that living bone continually undergoes in the course
of our daily activities, by which bone adapts its histological structure to
changes in long term loading and in constructing suitable biomechanical
implants for replacements of skeleton joints e.g. vertebral, knee and hip
joints.

In the realm of physical sciences, the motions of inanimate bodies, which
are its objects of study, can be analyzed within the limits of practical impor-
tance but this is not exactly so for biological motions. The truth of this
assertion lies in the fact that whereas a set of definite laws and almost a
definite knowledge of the forces governing the motions of non-living objects,
even in molecular and atomic levels exist, such basic information regard-
ing the forces and the laws governing the biological motions is yet to take
a definite shape. Although Medical Physics, in particular and Biomedical
Engineering, in general, have undergone an unprecedented development in
recent years, because of the lack of accurate knowledge of the basic prin-
ciples governing the motions of biological elements, our knowledge of the
human skeleton as a load carrying system which is so vital for mankind,
has been in no more than a prenatal state as compared to our comprehen-
sion of the mechanical behavior of technological structures. Even today this
assertion continues to be largely true. So it is of utmost importance to ana-
lyze the material response of bone, the most important constituent of the
skeletal system. Only through a continual comparison of the theoretical pre-
dictions derived by using suitable mathematical models for bones with the
experimental data obtained from experiments on real bone specimen, the
exact principles governing the biological motions may be developed — and
finally an exact mathematical model simulating the osseous medium can
be constructed. Punjabee (1979) pointed out that such a model combined
with experimental data for physical properties of osseous tissue structure or
system form a mathematical analogue which even without validation, has
the possibility of representing the reality. Some recent experimental studies
indicate success to actualize this possibility.

At early stages of researches on bone, it was modelled as an isotropic,
homogeneous and linear elastic solid and the mathematical methods of
stress analysis used to be employed, based on the simplified rules of Strength
of Materials. With the profusion of experimental studies on bone, it has
been revealed that bone is rate-sensitive and it should be modelled as a
viscoelastic solid. Time-dependence of the mechanical properties or the
viscoelastic behavior of bones actually owes its origin to various on-going
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physical processes e.g. thermomechanical coupling, piezoelectric coupling,
etc. (Lakes et al., 1979) inside the bone. With passage of time, more compli-
cated mathematical models have been proposed to account for the results
of experimental observations on the material behavior of bones, carried out
in a continuous manner by many researchers. However, it is always pos-
sible to work on simplified bone models which provide usefu! information
for many practical situations. On the basis of such mathematical models,
it has already been possible to replace the hip and knee joints by artificial
structures and attempts are now going on to design and improve many
other replacement joints.

It should, however, be borne in mind that bone is not exactly an engi-
neering material — it is a living organ which continually undergoes the
processes of growth, re-inforcement and resorption which are collectively
referred to as bone remodelling due to which a living bone adapts its histo-
logical structure to changes in the case of long term loading. What follows
from this is that in formulating a mathematical analogue of a real bone
specimen, which can be directly used in the design and construction of
prosthetic devices, one must pay due attention to the mechanism of bone
remodelling.

It follows from the above discussion that one can mathematically ana-
lyze the problems on bone, including its remodelling mechanism, by using
the principles of mechanics but utmost importance should be paid to the
choice or construction of a suitable mathematical model with due cog-
nizance of experimental data available for different physical properties of
bone tissues obtained from the latest experiments on bone specimens. Once
this is done, such an analysis can provide information which should be of
significant importance for further biomechanical and clinical investigations.
Before we proceed further, let us discuss briefly some relevant matters asso-
ciated with the response of structural solids subjected to external loading
conditions. This will be followed by a brief discussion on human skeletal
system, composition of bone as well as its mechanical and physical prop-
erties. All these are deemed necessary for a better comprehension of the
current state-of-the-art of the highly interesting interdisciplinary field of
bone biomechanics.

3. Material Response of Structural Solids to
External Excitations

In the classical formulation of the theory of elasticity it is generally held that
the mechanical energy stored in a solid continuum during a deformation
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process initiated by an external mechanical load, is completely recoverable.
This implies that the classical theory totally ignores the possibility of energy
loss. Thus in the case of a simple conservative system, it is possible to fit
the classical elasticity theory exactly into the purview of reversible thermo-
dynamics. But in reality, dissipation of energy is a common phenomenon
exhibited in deformable bodies; this is quite apparent from the subsidence of
vibrations set up in them due to excitation. This subsidence, as interpreted
by Love (1927), is due to the loss of work done against viscous resistances
offered by solid continua. So, in a deformation process, the work has to be
done not only against the elastic forces with which the molecules in solids
are bound together but also against the time and rate-dependent viscous
resistances which render regular molar motions into molecular agitations.
While the work done against elastic forces is completely recoverable upon
withdrawal of the external load (in the classical theory), the work done
against viscous resistances is totally dissipated as heat.

There are, however, other interesting effects of viscous resistances on the
material response behavior of solids when subjected to mechanical loads.
If the specimen of a perfectly elastic solid is subjected to a sudden loading
state held constant thereafter, response is supposed to be in the form of
an instantaneous deformation which should remain constant. But the com-
mon experience is that a real solid, under such a loading state, exhibits an
instantaneous deformation followed by a flow process which may or may
not remain limited as time progresses. This particular response behavior is
termed as creep in solids. Again, if the specimen is subjected to a constant
deformation state, the stress developed in it continuously decreases with
time through a process which is known as stress-relaxation. Both creep and
stress-relaxation in real solids can be explained by assuming induced vis-
cous resistances which are time- as well as rate-dependent. Indeed, such
material response behavior, though unnatural from the standpoint of clas-
sical elasticity theory, is of common occurrence to people working with so
called elastic metals at high temperatures and pressures, and with polymers
and biological materials even at ordinary physical conditions. In fact, this
type of material response may be described as the inherent property of all
solids; it is observable only under favorable physical conditions.

To account for the instantaneous deformation and the steady flow follow-
ing it, which are respectively the characteristics of a perfectly elastic solid
and a Newtonian viscous fluid occurring simultaneously in a solid specimen,
an entirely new theory is essential. Such a theory, which combines both the
features of material response of real solids subjected to external excitations,
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is known as the theory of viscoelasticity. The materials whose mechanical
response characteristics are represented through this theory are called as
viscoelastic.

It is quite interesting to note that due to the occurrence of such a
flow process, the deformation field is dependent on the history of loading
state. This is clearly observed when we consider the application of the
external load to the specimen in two or more stages, in succession. It is
understood that the deformation in the specimen, just after the last stage of
loading, is the result of superposition of all the deformations induced at the
current time by each increment of the load applied at different times in the
stages preceding the last one, together with the instantaneous deformation
produced by the last increment. This means that the specimen experiences
not only the instantaneous response to the last stage of loading but also
the continuing time responses of the other incremental loadings prior to the
last one. Thus in order to study the net material response, one must keep
an eye on the past history in addition to the current state of loading. Such
materials are said to possess memory. The modern theory of viscoelasticity
has been built upon the basis of the memory hypothesis. It may, however, be
mentioned here that there exist other theories on the mechanical behavior
of materials which have a memory of deformation. For example, incremental
theory of plasticity accounts for the dissimilar material behavior in loading
and unloading conditions in a specimen loaded beyond the elastic limit. This
difference in material responses in loading-unloading programmes may be
attributed to the memory of deformation in the specimen. In the plasticity
theory, the time-scale involved in such programmes is deemed practically
unimportant while the theory of viscoelasticity considers specific time- or
rate-dependence (Boley and Weiner, 1967).

It is clear from the above discussion that besides the deformation field,
in a real solid specimen subjected to a loading state, a temperature field
may also be induced due to heat dissipation in it. Of course, a temperature
field is also induced in ideal elastic solids due to thermo-mechanical cou-
pling, which is applicable only to the dynamical conditions of loading. But
in a viscoelastic specimen the temperature field is present even under stat-
ical conditions of loading due to the loss of work done against viscous resis-
tances. It is true that except in cyclical loadings such dissipation is really too
small in most solids to effect any appreciable temperature-rise. But theo-
retically speaking such a temperature-rise, however small, can be accounted
for by solving the appropriate energy equation conforming to the physical
conditions of a particular thermo-viscoelastic boundary value problem.
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In the mechanically loaded specimen of some crystalline solids, the
deformation- and temperature-fields are associated, in general, together
with an electric field. In such materials, known as piezoelectric solids, the
electric field is induced by the deformation field. This thermodynamically
reversible phenomenon is known as piezoelectric effect. A temperature field,
instead of the deformation field, may also cause a similar effect, which is
known as pyroelectric effect. But under isothermal or nearly isothermal
conditions, only the former effect is of much importance. Elastic and vis-
coelastic solids, belonging to some particular classes of crystals exhibit these
effects. A dynamical loading induces an electric field accompanied by a
magnetic field in elastic solids and an electromagnetic field in viscoelastic
solids, even in static loading situations. For many viscoelastic materials of
common use, e.g. polymers, some biological elements, etc., both the tem-
perature and the piezoelectric effects induced by the mechanical load, are
not too small to be neglected; of course, the induced electrical polarization
depends entirely on the degree of crystallization.

So far, we have discussed how the deformation, temperature, electric
and magnetic fields are induced in a specimen of real solid subjected to
a mechanical excitation. But irrespective of the method of excitation —
mechanical, thermal or electrical, all such fields are simultaneously induced
in a continuum (particularly in a crystalline solid) and are usually coupled
together. Besides these thermodynamically reversible or quasi-reversible
processes, some other irreversible processes like electrostriction may also
take place in the medium.

It is now apparent that an exact theory of solids should account
for all such material responses. Such a theory has been developed by
Nowinski (1978) from thermodynamical considerations for elastic solids.
One may develop a similar theory for viscoelastic solids from similar ther-
modynamic reasoning. With reference to an experimental study carried
out by Satter et al. (1999) for the treatment of bone fracture by pulse
electromagnetic fields, Eringen (2004) has developed a general electromag-
netic theory of microstretch elasticity considering different material prop-
erties for determining different aspects of remodelling in bone, modelled
as an elastic solid having interconnected voids, microcracks or stretch-
able micro elements. However, the mathematical analysis of a particu-
lar problem, by considering such a general theory, is hardly tractable. So
we shall now present the theories which are somewhat simple and at the
same time do not cause much loss to the generality of the results derived
therefrom.
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4. Deformable Solids
4.1. Basic concepts

For the convenience of readers, before describing the theories regarding the
material response behavior of solids subjected to external excitations, it
is pertinent to present some fundamental concepts relevant to the central
theme of our present discussion. Let the coordinates of a material point
in a specimen of a solid be X; and z; (i = 1,2,3) with reference to the
rectangular cartesian coordinates X and z respectively. The system X is
assumed to be fixed in space, whereas z is attached with the body, both
being coincident initially. Then

1'11(7-) = .’IJ,;(Xi,T), —a<7<t (1)

where 7 is the time variable and ¢ is the current time. The displacement
vector of the point may be given by

ui(1) = 2i(7) — X (7). (2)
Differentiating (2) with respect to X, one obtains

Oui _ 9z
0X; 0X;

— 045. (3)

If n%” < 1, the deformation is said to be infinitesimal. In the infinites-
imal deformation theory of solids, usually no distinction is made between
differentiation with respect to X; and that w.r. to z;. Bearing this in mind,
the strain components may be defined as

Sij = (Um + uj5) (4)

in which a comma before an index denotes differentiation with respect to
the corresponding space coordinate.

Let us now consider an element of area, §4 within the body or on its
bounding surface, with its orientation defined by the unit positive normal
fi. If the total force acting on this area be Fj, the stress at the central point
of the elementary area §A may be defined as

F;
hlllo m (5)

For each orientation of the area d A, there would be a different stress vector.
Hence the stress tensor Tj; is defined through the following transformation
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which relates the components of the stress vectors to the orientation of the
elementary surface.

Tf,; = Tjini. (6)

By using the principle of conservation of linear momentum in a small tetra-
hedron, one can derive the transformation (6). Similarly the conservation
of angular momentum in an element of volume of the specimen gives rise to

Tij = Tji. (7)

4.2. Equilibrium equation

The principles of Newtonian mechanics assert that irrespective of the nature
of the continuum and the type of excitations, the total force acting on a
body is always zero; this means

Bzui
plfimZm )V + [ Tiyndd=0 (8)
v B

where f; is the body force density, g—ii‘— the acceleration at a point, p the
density of the material, V' the volume of the body and B the area of the sur-
face bounding it. By using Gauss divergence theorem in (8) and considering
the equilibrium of each element of the volume, one finds

Tij,j = p’l'li (9)

in which a dot denotes differentiation with respect to time. Equation (9)
represents the equilibrium of a dynamical system. Under statical or quasi-
statical conditions the inertia term in (9) may be neglected, so that the
condition of equilibrium reduces to

4.3. Linear viscoelastic constitutive relations:
non-piezoelectric materials

The phenomenological development of the relations among stress, strain
and other fields is based on the memory hypothesis (explained in Sec. 3),
together with the observation that different material bodies having identical
mass and geometrical configuration, respond quite differently to the same
excitation. This individual material response behavior is actually due to the
difference in internal constitution, which is different for different materials.
As a result, the functional form of the relation, commonly known as the



460 Biomathematics: Modelling and Simulation

constitutive relation, is the same for all materials, though its constituents
change from one material to the other.

By employing the memory hypothesis and using relevant theorems of
mathematical analysis, the following linear constitutive relations for vis-
coelastic materials which do not exhibit piezoelectric effects, have been
developed in the form (cf. Christensen, 1971)

t
T,'j(.’l,‘, t) = / Gijkl(t — T)?%dT, (11)

in which the relaxation functions Gk (7) characterizing individual material
response behavior have the following symmetry and analytical properties:

Gijki(t) = Gyim(t) = Gijuk(t)
Gijkl (t) =0, —o0 <t<0 (12)

Gijri(t) and Goijkl (t) being assumed to be defined in 0 < ¢ < oo and dots
denote time-derivatives.

Equation (11) represents the integral form of the linear constitutive rela-
tions for viscoelastic solids with most general type of anisotropic material
behavior, under isothermal conditions. The integral equations of the type
(11) may be rewritten in an abridged form as

Tij(=, t) = Gijii(t) * Swi(z, t). (13)
By inverting the relation (13), one may write
S,--(x, t) = Jijkl (t) * Tkl(di,t), (14)

in which the creep functions J;;xi(t) obey the same symmetry and analytical
conditions (12).

For isotropic solids under isothermal conditions, the stress-strain rela-
tions (13) reduce to

ti;(z,t) = 2G(t) * Si; (z, ) (15)
and
Tii(z,t) = 3K (¢) * Si(z,t) (16)

where t;; and s;; represent deviatoric stress and strain defined respec-
tively by

1
tij =155 — §Tkk51j (17)
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and
1
Sij = Sij ot §Skk5ij- (18)

G(t) and K(t) are termed as relaxation functions in shear and hydrostatic
pressure respectively; they are also subjected to the analytical conditions
(12). &;; is the Kronecker symbol.

At this point, it is very much instructive to observe a close correspon-
dence of the viscoelastic constitutive relations (11) with those for elastic
solids given by

Tij(z', t) = CijuSkl(z:,t) (19)

in which Cj;x; are the elastic moduli. The Laplace transformations of the
relations (11) and (19) with respect to time read

Tij(z,p) = pGijki (p) Sk (p) (20)
T (2, p) = Cijir(p) Sk (p), (21)

in which p is the Laplace transform variable and a bar over a function
denotes its Laplace transform. From (20) and (21), one may conclude that
in the Laplace space, the solution of a viscoelastic boundary value problem
can be obtained from the transform solution of the corresponding elastic
problem, if one replaces the elastic moduli in it by p times the transforms
of the viscoelastic relaxation functions. Using the elastic-viscoelastic cor-
respondence principle, the final solution can be obtained just by inverting
the transformed solution.

Apart from the integral representations as above, the constitutive rela-
tions of a rate sensitive linear material may also be expressed as (cf. Moghe
and Hsiao, 1966; Bulanowski and Yeh, 1971)

Ti; (z, t) = Eijkl(D)Skl(:L‘, t) (22)

in which D = %.

It is easy to note that

Eijki(p) = pGijir(p), (23)

if E;jxi(D) are expressible as a power series in D or as the quotient of two
such power series in D. In a similar fashion the linear constitutive relations
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for isotropic materials, in differential form, are written as
P (D)ti;(z,t) = Q1(D)Si;(x, t) (24)
and
Py(DYTkk(z,t) = Q2(D)Skk(z,t). (25)

Here P’s and @’s represent power series in D. It is needless to mention that
the concept of elastic-viscoelastic correspondence can also be realised by
using this differential formulation of the viscoelastic constitutive relations.
But the principal advantage of this formulation lies in the fact that using
the said principle one can obtain the time-dependent relaxation or creep
functions for materials whose response behavior can be characterized by a
mathematical model.

5. The Human Skeletal System

The two hundred and six bones, which are highly connective tissues, form
the rigid frame-work of the human skeletal system. They are organs that
consist of bone tissues, bone membranes and bone marrow. Among the
biological materials, bone is the hardest of all. According to shape and size,
bones in the skeletal system may be classified into five categories, viz. long,
short, flat, seasamoid and irregular. In a long bone, the axial dimension
is large compared to transverse one. Such bones are almost cylindrical in
shape. They usually have two or more ends termed as epiphysis. In some
bones the axial and transverse dimensions are comparable; such bones are
termed as short bones. If the transverse dimension of a bone is larger than
its axial dimension, it is called a flat bone. It consists of two layers of
compact bones, separated by a layer of spongy bone. The short bones that
develop in tendons resemble seasame seeds and are called seasamoid bones.
Bones whose shapes are irregular and not included in any of the categories
mentioned above, are called irregular bones. They include those contained
in vertebrae, shoulders etc. In recent researches vertebral joints have been
modelled as circular discs of trabecular bone.

Since some problems on long femur or tibia and inter-vertebral joints
have been the subject of discussion in this chapter, brief discussions on
these two types of bones will be made in the following two sections.

6. Long Bones

In femur and tibia, since the axial dimension is many times larger than the
transverse one, they are long bones (cf. Fig. 1). Although microscopically
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Fig. 1. A typical long bone.
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Fig. 2. Geometry of (a) two layered bone, (b) compact bone.

such bone is non-homogeneous and consists of osteons, interstitial tissues
and other organic substances embedded in a viscoelastic matrix. A long
bone can be described as a composite thick cylindrical shell of two types of
materials (cf. Fig. 2) — compact in the outer layer and spongy in the inner
layer (Vayo and Ghista, 1971). The outer surface or cortex of the femur
is made of the hard tissue, the cortical bone. The cancellous or spongy
bone inside the bone medium consists of a network of hard interconnected
filaments called trabeculae filled with marrow and a larger number of blood
vessels. Cancellous bone is structurally prominent near the joints, i.e. at
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the epiphyses while cortical bone is structurally prominent in the middle
portion of the femur, the bone diaphysis.

Carter et al. (1976) made an observation that adult bone has two or
three distinct regions, which is in conformity to Vayo and Ghista’s (1971)
composite bone model.

The bone cross-section is non-uniform, in general. In the diaphysis
region of human femur, it is almost uniform, but for human tibia it gradu-
ally decreases from the knee-joint, where the dimension of the cross section
has its maximum value (Finlay et al., 1982). For this reason, a human tibia
of finite length may be modelled as a truncated conical bar [cf. Misra et al.
(1989, 1992)].

7. Intervertebral Discs

There are 47 vertebral joints in the human spinal column. Each joint has
three substructures (Fig. 3). The first substructure, called the intervertebral
disc, lumps the cortical and trabecular bone regions with the end plates.
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Fig. 3. Body of vertebra, intervertebral disc and the spinal cord.
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Fig. 4. Simplified model of the vertebral body/intervertebral disc.

The second structure presents the annulus fibrosis of the intervertebral disc
and the last one represents the nucleus pulposis, an incompressible fluid.
In analytical studies, the vertebral discs have been supposed to possess
circular shape with axial symmetry by some authors (Spilker, 1980; Spilker
et al., 1984) while the disc material has been considered to be isotropic,
linear and viscoelastic by some researchers (Lu et al., 2004; Lee et al., 2004).

8. Composition of Bone

The composite structure of bone consists of crystalline mineral (hydrox-
yapatite), amorphous mineral, crystalline organic (collagen), amorphous
organic (protein molecule) and liquid phases. The macro structural prop-
erties of bone depend on the properties and volume composition of dif-
ferent phases present in them. The major portion of the bone is made of
hydroxyapatite and collagen; the rest consists of liquid in haversian canal,
canaliculi and lacunae. It is supposed that collagen and organic amor-
phous phase lump together to form the fibre of the bone composite whereas
lumping of hydroxyapatite crystals with the amorphous mineral provides
the matrix in which the fibres are embedded. Spaces within the osseous
media are interconnected and the flow of liquid through these pores can
absorb large amount of energy, thereby increasing the toughness of the bone
structure.

9. Microscopic Anatomy of Bone Tissue

The osteons or the haversian systems, which have an irregularly cylindrical
and branching structure, form the primary histological units of bone struc-
ture. Each osteon is roughly a cylinder of 150 microns in diameter and one
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to two centimeters in length. In cancellous bones, the osteons are arranged
in a pattern along the line of average principal stress (Koch, 1917). In cor-
tical bones, the osteons are parallel to the axis. The walls of the osteons
are thick. There is a fluid-filled hollow or lumen, called the haversian canal,
each of forty microns diameter, along the centre of its long axis. Each lumen
is provided with a blood vessel required to supply nourishment to the bone
cells inside the osteons. The blood vessels and lumina together constitute
what is called the haversian system.

Osteoblasts, osteocytes and osteoclasts are the three cellular compo-
nents of bones which actively participate in its remodelling mechanism.
Osteoblasts are of cuboidal shape; they participate in the formation of bones
and are attached to their surfaces. Osteoblasts that are present inside the
bones are known as osteocytes; they help in the maintenance of bone as
a living tissue. Osteoclasts, which are giant cells with a variable number
of nuclei perform the function of resorption. Gottesman and Hasin (1980)
investigated the mechanical properties of bone as a composite material,
on the basis of a micromechanical model. They made an observation that
the microscopic structure can be derived only when the exact mechanical
properties of bulk bone are known.

10. Physical Properties of Bones

Being the major important constituent of the skeletal system, bone is always
subjected to internal and external loads. The stresses and strains induced
in it are determined by its mechanical as well as other physical properties.
The first study on the mechanical properties of bone was carried out by
Wertheim (1847). Rauber (1876) provided the first hint that elastic mod-
uli of bone tissues are direction-dependent and also that they are history
dependent (viscoelastic). As mentioned earlier, in the early researches bone
was modelled as an isotropic elastic solid. Dempster and Liddicoat (1952)
observed that a compact bone should be modelled as a non-isotropic mate-
rial. Subsequent experiments confirmed the orientational characteristics of
the physical properties of hard tissues. Most of the non-isotropic crystalline
solids have a tendency to exhibit piezoelectric effects — electric field is
induced in them when they are subjected to mechanical loads. Bone is not
any exception to that rule. Fukada and Yasuda (1957) investigated quan-
titatively the piezoelectric effect in bone for the first time. Subsequently,
intensive as well as extensive investigations were carried out in order to
relate bone piezoelectricity with the mechanism of bone remodelling and
search for piezoelectric effects in other biological tissues e.g. tendons, blood
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vessels etc. Most relevant studies in this field were reviewed by Fukada
(1968) as well as by Giizelsu and Demiray (1979). Like real solids, bone
also exhibits viscoelastic material behavior. Early investigations on the vis-
coelastic material behavior of bone were carried out by Sedlin (1965) and
McElhaney (1966). Sedlin, on the basis of his experimental study, proposed
a mechanical model — standard linear solid for osseous media. Lakes and
Katz (1979c) proposed that bone is a non-linear viscoelastic solid. Nowinski
(1971) commented that bone is generally non-homogeneous and anisotropic.
Nowinski (1974) put forward a mathematical analysis by assuming power
law variation for the physical constants of bone tissues. Carter (1976)
observed experimentally that the elastic moduli are connected with the
apparent density of osseous tissues, in a non-linear manner. In an experi-
mental study, Morgan et al. (2001) observed that bone possesses non-linear
elastic behavior even at small strains.

Osseous tissues resemble a lattice structure, in which there are innumer-
able cavities in a solid skeleton. These cavities are interconnected and the
liquid phase is distributed in such a fashion that it has access to a drainage
path to the surface of the bone. The difference between the two major types
of bone — compact and spongy is rather relative. The difference is owing
to the variation in the proportion of the volume of the pores to the volume
of the solid matter in a unit volume of bone. Owing to porosity in bone,
Nowinski (1970, 1971) considered it to be a two-phase material, the solid
skeleton being perfectly elastic (1970) or viscoelastic (1971) and the liquid
phase being Newtonian.

It appears that bone has diverse physical properties. Basing upon the
research studies carried out by Currey(1984) on the mechanical properties
of bone, Roesler (1987) made an observation that “bone can have a wide
variety of different mechanical properties, depending upon its function”. So
it is essential that each of these properties be considered separately, keeping
an eye on the nature of the problem. The salient properties are discussed
briefly in Secs. 11-15.

11. Bone Anisotropy

Rauber (1876) conjectured that the elastic moduli of bone are direction-
dependent. The directional effect of loading on the bone compressive
strength was clearly observed by Dempster et al. (1952, 1961) in their
experimental studies on compact bone in different directions. They reported
that the ultimate compressive strength is least in the tangentially loaded
femoral bones and greatest in the axially loaded ones. These tests were
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carried out by taking cubical specimens of femur. From an experiment on
bovine femoral bones, fresh and dried, Lang (1970) determined all the five
independent elastic moduli needed to characterize the material behavior of
osseous medium. Lang (1970) also established experimentally the existence
of hexagonal symmetry in cortical bones by using ultrasound technique
for the first time. The theoretical predictions on cortical bones by Yoon
and Katz (1976a) were in conformity to the experimental observations of
Lang (1970). Yoon and Katz (1976b) also determined experimentally the
said elastic moduli for human femoral bones. Reilly and Burstein (1974)
conjectured that bone is transversely isotropic. In a subsequent study they
(1975) confirmed their hypothesis. Katz (1980) also showed that Young’s
modulus of bone is direction-dependent. van Buskirk and Ashman (1981)
modelled bone as an orthotropic material with nine elastic constants. Using
ultrasonic wave technique they measured these constants and came to the
conclusion that cortical bone is non-homogeneous.

The symmetry and consequently the anisotropic properties of osseous
media result from the nature of its composition. The most important con-
stituents of bone, hydroxyapatite and collagen are anisotropic in nature.
Physical properties of bones are mostly derived from the relative orientation
and amount of the organic and inorganic crystalline substances contained
in them. In an experiment on bovine cortical bone, Lipson and Katz (1984)
measured the elastic properties of bones having different histology along
three different mutually orthogonal directions with an aim to investigate
the influence of microstructure of bone on its mechanical properties. It
was found that the plexiform bone is orthotropic while harversian bone is
transversely isotropic. Ashman et al. (1984) also measured the correspond-
ing elastic constants. They arrived at the conclusion that bone is both
anisotropic and non-homogeneous and that the actual material behavior
of human compact bone is orthotropic. Cowin and van Buskirk (1986)
analysed the data reported by Ashman et al. (1984) and confirmed that
their results were within the thermodynanic restrictions investigated by
Mahanian and Pizialli (1985). In bone biomechanics the term “fabric” has
been introduced to describe local anisotropy of a material microstructure.
Based on the consideration of the orthotropy of bones, Cowin (1985, 1986)
formulated elastic properties as a function of fabric and density. With an
aim to analyze fabric dependence of orthotropic elastic constituents of bone,
Turner et al. (1980), van Rietberger (1995, 1996) and Odgaard et al. (1997)
conducted further studies in this direction using methods based on finite
element techniques.
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In order to take into account the anisotropic elastic behavior of osseous
tissues, Eq. (19) may be taken as the constitutive relation in the case
of bone.

12. Viscoelastic Properties of Osseous Tissues

The creep and relaxation phenomena in real solids which have been dis-
cussed in Section 3, are quite common in bones. Rauber (1876) studied
creep as well as anisotropic material behavior of bones. On the basis of
his experimental observations on bones under loads well below the fracture
load, Sedlin (1965) proposed a viscoelastic model to explain the creep and
relaxation behavior of bones in which a Hookean spring is in series with a
Kelvin model; Kelvin model is that in which a Hookean spring is connected
in parallel with a viscous dashpot. Smith et al. (1965) investigated vis-
coelastic properties of bones. Mc Elhaney (1966) also observed the strain
dependence of the elastic moduli of bones experimentally and concluded
that osseous tissues are viscoelastic.

The viscoelastic material behavior also owes its origin to the viscoelastic
properties of the bone constituents — mainly the hydroxyapatite and col-
lagen besides the ongoing physical processes, e.g. thermo-mechanical cou-
pling, piezo-electric coupling etc. [cf. Lakes et al. (1979a)]. Gottesman and
Hashin (1980) obtained the anisotropic relaxation functions by using the
theory of composite materials. It is assumed that collagen together with
the other organic phase constitutes the fibres whereas the mixture of the
hydroxyapatite and another mineral phase acts as the matrix. In a the-
oretical study Nowinski (1974) used the generalized Sedlin model (1965)
in which the anisotropic material behavior of bone was considered. Sev-
eral researchers have been working on the stress analysis in the vertebral
body by assuming it to be represented by a two-, three- or four-parameter
Kelvin model [cf. Spilker (1982), Spilker et al. (1984), Furlong and Pulazotto
(1983), Burns et al. (1980, 1984)].

The linear viscoelastic constitutive relation for one-dimensional stress
analysis connecting the stress T with the strain S may be written as

(Nowinski, 1971)
E+nHD
T=|——— 2

( 1+nD ) y (26)
in which D = % is the time operator, E, H and n are model parameters.

A relaxation process (mechanical, dielectric, magnetic or piezoelectric)
is often described by means of a spectrum of relaxation times. A mechanical
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system may possess a single characteristic rate at which it readjusts itself to
equilibrium from its disturbed situation. Then the system is said to possess
a single relaxation time. In this case its time dependent stiffness coefficient
C(t) may be given by Debye model (Lakes and Katz, 1979b), described by

C(t) = Co + Cre /T (27)

where Ty is the single relaxation time and Cp , C; are model parameters.

By taking both the viscoelastic and anisotropic material behavior of
osseous tissues into account, the constitutive relation in the framework of
a linear theory may be given by Eq. (11) presented above. In the operator-
form the linear anisotropic viscoelastic constitutive relations for osseous
media are represented by (23) (cf. Bulanowski and Yeh, 1971).

Lakes and Katz (1974) analyzed the experimental data obtained by
Black and Korostoff (1973), Curry (1965), Lugassy and Korostoff (1969),
Mc Elhaney (1965), Smith (1965) and Tennyson (1972) in order to compare
them as well as to determine the relations among viscoelastic functions in
anisotropic materials like bones.

A non-linear study on the viscoelastic properties of wet cortical bones
was presented by Lakes and Katz (1979b). Sanjibee (1982) and Sanjibee
et al. (1982b) observed non-linear viscoelastic effects in collagen, an
important constituent of bone. In ordinary solids, as mentioned earlier,
viscoelasticity arises due to relative motions of the different layers in solids
subjected to load. Apart from this bone viscoelasticity may have other ori-
gins. A substantial part of recent research on bones aims at enlisting these
causes and their contributions to the overall viscoelastic material behavior
of bone. At the molecular level, investigation by Sasaki et al. (1995, 1997)
suggests that an important constituent of bone, the collagen, a proteina-
ceous phase along with its water content may give rise to significant vis-
coelastic effects. Thermomechanical coupling giving rise to heat dissipation
in elastic solids may also be a cause for damping of waves in bones, but this
has not been well investigated. Lakes and Katz (1979b, c¢) made an obser-
vation that the piezoelectric coupling in hexagonal tissues may be a source
of bone viscoelasticity; however, their study revealed that it has negligible
contribution to the damping of waves in bones. Prior to these reports, it
had been observed by Biot (1941) that fluid flow within bone induces vis-
coelasticity, while Katz (1980) and Lakes and Saha (1979) observed viscous-
like cement line motion contributes significantly to bone viscoelasticity.
Piekarski et al. (1977), Cowin (1993), Cowin et al. (1995) and Cowin (1998)
observed that stress induced fluid flow leading to remodelling in bones is the
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direct outcome of its viscoelastic properties. Misra and Samanta (1987) also
studied the extent to which bone remodelling is influenced by viscoelasticity
of osseous tissues.

Due to viscoelastic properties, waves through bones are attenuated and
vibrations are damped. Misra and Samanta (1982) put forward mathemat-
ical analyses of several problems on waves and vibrations in bones and
determined how wave and vibration parameters get modified, if bone vis-
coelasticity is taken into account. Based on wave propagation technique,
Brodt et al. (1995) and Garner et al. (2000) performed experiments to cor-
relate wave characteristics with bone viscoelasticity in different frequency
ranges. While experimenting with compact bones in torsion and bending in
the frequency range from 5 mHz to 5 KHz in bending and 5 KHz to 50 KHz
in torsion, Garner et al. (2000) showed that wet bones are more viscoelas-
tic than dry bones and the results obtained by them confirmed the earlier
observation by Lakes et al. (1979a) and Sasaki et al. (1993). Solomonow
et al. (2001) investigated lumbar viscoelastic creep due to prolonged cyclic
loading. Lu et al. (2004) concluded on the basis of experimental observation
on vertebral discs that repetitive lumbar loading at fast rates is indeed a
risk factor as it induces large creep in the lumbar viscoelastic tissues, which
in turn intensifies the resulting neuromuscular disorder. In a recent mathe-
matical analysis based on a finite element model of lumbar interbody fusion
under axial loading, Lee et al. (2004) have demonstrated that if the mechan-
ical behavior of the intervertebral disc is considered to be viscoelastic, in
addition to its composite characteristics, their theoretical predictions are
in good agreement with the relevant experimental observations reported by
previous researchers. All these studies confirm the validity of the consider-
ation of viscoelasticity of intervertebral discs in an earlier study conducted
by Misra and Samanta (1988).

13. Piezoelectric Effects in Bone

As mentioned earlier, in some materials possessing anisotropic material
behavior, electric field is induced while they are subjected to mechanical
loading. This is known as piezoelectric effect. Fukada and Yasuda (1957)
observed and quantified such piezoelectric effects in bones, for the first time.
The experimental studies of Anderson and Eriksson (1968, 1970) indicate
that collagen in bone continues to exhibit piezoelectric behavior even when
the bone specimen is fully hydrated. They further showed that the stress
generated potentials, which are strongly related to the rate of deformation
in moist bone are neutralised by the conductivity of physiological milieu.
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It was reported that at low frequencies, the measurements of Anderson
and Eriksson (1970) supported the Maxwell-Wagner type of polarization
in bone tissues. Further studies (Gurdijian and Chem, 1974) in this area
indicate that electric current even of the order of microampere possesses
the potential to cause bone deformation. It was inferred that electric cur-
rent originated due to bone piezoelectricity produces similar effects in the
physiological state. Like other physical properties (e.g. anisotropy and vis-
coelasticity), bone piezoelectricity also owes its origin to its basic con-
stituents. Osteon, the unit of bone histology, possesses hexagonal symmetry
and exhibits piezoelectric effects. However, bioelectrical signals are always
generated in some biological tissues, while performing their physiological
functions. Intensive as well as extensive researches were undertaken to ascer-
tain whether electricity induced in bones was due to piezoelectric effects or
it had any other origin. Of the three possible origins of bioelectricity viz.
piezoelectric effect, streaming potential effect and p-n junction effect, the
piezoelectric effect has the primary contribution to bio-electricity in dry
bones. Even in physiologically moist bones it is mainly of piezoelectric ori-
gin (cf. Giizelsu and Demray, 1979).

The piezoelectric effect exhibited by certain materials which lack a
centre of symmetry, may be defined as the production of an electrical
response due to mechanical excitation and vice versa (Cady, 1946). The
coupling between the mechanical deformation and electric polarization in
elastic solids, may be described by the relations, (cf. Cady, 1947; and
Giizelsu, 1978)

Thm = C,’,”:nSn — ermEx (28)
Dy = exmSm +e5Ei, (1<m,n<6;1<1i,k<3) (29)

in which E; is the electric field, D; the electric displacement, CZ,_ the
stiffness matrix at zero electric field, ex,, the piezoelectric coefficient matrix
and g7, the dielectric tensor at zero strain.

By considering the mechanical, dielectric and piezoelectric relaxations,
in certain semi-crystalline polymers including those of biological origin, the
above constitutive relations get modified to

OE, ] (50)

Th = /t CE (t —7)=dr — egm(t — T)——dT
™ I or k or
and

¢ - OF
Dy = / [ekm(t — T)aadeT +eri(t — 'r)—de] (31)

oo or
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in the convolution form. In operator formalism, they assume the form:

T = Cryy(D)Sn — €km (D) Ex (32)
and

Dy = egm(D)Sm + €ki(D)Ek. (33)

The frequency dependence of dielectric matrix is of common occur-
rence. The piezoelectric relaxations in polymers were studied by Furukawa
and Fukada (1976). Pfeiffer (1977) invoked the idea of Thomson model
to represent both the mechanical and piezoelectric relaxation in osseous

tissues. In the problems of wave propagation and vibration one may take
(cf. Bulanowski and Yeh, 1971)

Crrn(D) = O (i)

when the medium is disturbed sinusoidally with a single frequency w. One
can also write

Crn(iw) = Cn(W)[L + i6(w)], (34)

in which CE  is the storage modulus and § the loss tangent. It has been
reported by Lakes and Katz (1979a) that for wave propagation problems
in human cortical bones in the ultrasound frequency range, both storage
modulus and loss tangent are independent of frequency. As a consequence of
piezoelectric effects, mechanical strain waves propagating in a given spec-
imen of bone along most directions are accompanied by induced electric
fields which are in phase with the mechanical motion (if viscoelastic effects
are disregarded). It is evident from the above constitutive relations that the
electric field induced at high frequencies is accompanied by a magnetic field.
The induced fields in the bone monitors effectively the characteristics of the
traveling wave and can lift the equilibrium between osteogenic and osteo-
clastic activities (Park, 1979). If properly oriented, the fields can also induce
calcium ion movement. Hence bone piezoelectricity can play an important
role in fracture healing. Demiray (1983) put forward an analysis for study-
ing the electromechanical remodelling of bone tissues, by considering wet
bone to be composed of a charged fluid and the solid bone matrix which
possesses the piezoelectric property. Saha and Lakes (1977b) designed an
experiment to detect the induced magnetic field accompanying the travel-
ling ultrasonic wave for the purpose of determining the physical properties
by a completely invasive technique. For this purpose theoretical investiga-
tions were carried out by Giizelsu and Saha (1981), Misra and Samanta
(1983a, 1983b, 1988) and Misra et al. (1988).
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14. Bone Inhomogeneity

Nowinski (1971) emphasized that like most biological materials, a real bone
is non-homogeneous. With this in mind he proposed a power law of variation
for the physical properties of bone material, by using which Nowinski (1974)
carried out stress analysis in a cylindrical bone specimen, treating bone
tissue as anisotropic and viscoelastic. The relations he proposed in this
study are as follows:

ij = C»L'j’l”p and Po = prp (35)

in which r is the radial co-ordinate of a representative point in the bone
specimen, Cy; the elastic moduli, p, the density, C;;, p and p are material
parameters.

Patel (1969) pointed out that for porous materials, the modulus C is
related to the apparent density p, {mass per unit volume of the bone spec-
imen including voids) according to the law:

C= Copg (36)

where C, and b are constants. From compression tests on cylindrical spec-
imens of human and bovine trabecular bones, Carter and Hayes (1976)
found that b = 2 for compressible strength. This is in agreement with
the theoretical prediction made by Patel (1969) for cellular plastics and
porous materials like bones. For shear strength, the value of the exponent
obtained theoretically by Patel (for foams) is 1, whereas the experimental
value of “b” for bones, as reported by Stone et al. (1982) is 1.65. It was
also observed by Patel (1969) from his experimental studies on the shear
strength of foams (which are porous material like bones), that the value of
the exponent ranges from 1.0 to 1.5. The assumption of a linear variation
of shear strength with density (i.e. b = 1) virtually leads to similar power
laws for the shear modulus and density [see relations (35)].

15. Bone Remodelling

As indicated earlier, living bones cannot be treated just as an ordinary
engineering material. The reason for this is that the microscopic structure
of engineering materials remains unaltered for all time under the influence
of external mechanical loads, whereas living bones undergo the continual
processes of growth, reinforcement and resorption, which constitute the
mechanism of bone remodelling by which the bone adapts its histological
structure to changes in long term loading. Frost (1964) classified the remod-
elling processes as internal remodelling and surface remodelling. As early
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as 1892, Julius Wolff, the German anatomist was the first scientist who car-
ried out intensive research on this problem. The results of his experimental
findings are embodied in what is called Wolff’s law. According to this law,
bone remodelling is dependent on strain or stress. The mechanism by which
the bulk density of an osseous medium changes within fixed boundaries is
termed as internal bone remodelling, while the process of bone deposition
on the periosteal surface is known as surface remodelling.

Electrical and chemical properties of bones were found to influence the
remodelling processes (Basset and Becker, 1962; Shamos, 1963; Becker and
Murray, 1970; Basset, Pawlick, and Becker, 1964; Justus and Luft, 1970).
Gijelsvik (1973a) postulated that the surface aspect of bone remodelling
is governed, at least in part, by the piezoelectric polarization produced in
a deformed bone. The internal remodelling, according to him, is a second
mechanism aimed at making the material direction aligned with the primary
stress distribution throughout the volume of a bone specimen, if there is any
misalignment between the two directions. According to the Gjelsvik model
of bone remodelling, the piezoelectric polarization (P;) in the bone tissue
due to a stress field (T3,,) caused by the external loads may be determined
from the simplified relation

Pi=dimTn (i=1,2,3; m=12...,6) (37)

in which d;,, are the piezoelectric constants for bone tissues.

Apart from piezoelectric polarization, several mechanisms have been
proposed for the transduction of mechanical loads to the remodelling
response such as streaming potentials, alterations in mineral solubility
due to stress, mechanical fatigue microdamage, extracellular fluid pres-
sure effects on bone cells and direct load on bone membrane (Treharne,
1981). Each of these mechanisms is supported by experiments. Cowin and
Hegedus (1976), and Hegedus and Cowin (1976) developed performed the-
oretical studies, by using the theory of adaptive elasticity, basing upon
which Cowin et al. (1976-1981) explained the bone remodelling mechanism
considering its chemical origin. They presented a porous and chemically
reacting solid model for bone tissue to interpret its remodelling mechanism
[cf. Cowin (1976), Cowin and Nachlinger (1978)]. They developed the mod-
els by using the concept of small strain elasticity under isothermal condi-
tions. According to these models,

T; = (& +e)Cik Sk, (i,k=1,2,...,6) (38)

in which & is the reference volume fraction of bone matrix material, “e”
measures an increment of this fraction from &y and all other symbols retain
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their earlier meanings. Cowin and van Buskirk (1978) used this model to
analyze the problem of internal remodelling induced by a medullary pin.
In a later communication Cowin and Van Buskirk (1979) proposed a the-
ory of surface remodelling and applied it to determine the changes in the
endosteal and periosteal diameters of the bone specimen, modelled as a
hollow cylinder. In this theory it was assumed that the normal speed of the
remodelling surface u at a point @, for small strain, is proportional to the
strain tensor Six(Q) measured from a reference value S (Q), so that

@ = Cik(7i, Q)[Six(Q) — S%(Q)], (39)

where Cy (71, Q) are surface remodelling rate coefficients which are, in gen-
eral, dependent upon the point @ and the normal 7 to the surface at Q.

Cowin and Firoozbaksh (1981) applied this theory of surface remod-
elling to predict the shape evolution of right hollow circular cylinders —
the idealized models of the diaphyseal region of a long bone. Based on finite
element method, Hurt et al. (1982, 1984) developed a computational model
for the same situation. Cowin et al. (1985) determined the values of surface
bone remodelling coefficients for combined axial loading and bending for
actual bone cross-sections. D’ Antoni (1987) developed a computer simula-~
tion model for a similar problem to the one mentioned above. Cowin (1987)
proposed a theory of surface remodelling to include the effects of shearing
strains as well as normal strains.

As discussed earlier, bone is viscoelastic and this material behavior is
expected to have significant effect on bone remodelling dynamics. Misra
et al. (1983, 1987) developed mathematical models and made pioneering
contribution in this study of viscoelastic effects of osseous tissues on bone
remodelling. Misra and Murthy (1983) analyzed the viscoelastic effect of
osseous tissues on the physiological processes of internal bone remodelling
induced by a medullary pin. The mathematical analysis they performed
was, however, very much involved. Based on the remodelling equations (38)
and (39), Misra and Samanta (1987) proposed an approximate method for
solving remodelling problems by considering material damping behavior of
bone tissues, in which undue mathematical complication could be avoided
without diluting the physical relevance of the problem. It is worthwhile to
mention that bone being dissipative, the condition of isothermality inher-
ent in the remodelling theories of Cowin et al. is maintained. The study
conducted by Misra and Samanta (1987) reveals that the effect of mate-
rial damping behavior on the strain values is significant, particularly at
intermediate times for smaller relaxation times.
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Misra et al. (1989) also developed a mathematical model to study the
internal bone remodelling mechanism in a specimen of long bone, by pay-
ing due attention to the non-isotropic elastic property of osseous tissues
and the non-uniformity of the cross section of a long bone. The process of
remodelling was considered to have been initiated by the force fitting of a
metallic pin into the medulla of the bone specimen. The results of numerical
simulation of this study clearly indicate that both the non-isotropy of bone
tissues and the cross-sectional non-uniformity bear the potential to affect
the remodelling mechanism in quantitative as well as qualitative terms, to
a significant extent. Misra et al. (1992) constructed and analyzed another
mathematical model for studying the remodelling of the diaphyseal surfaces
of the specimen of a long tubular bone induced owing to the force fitting of
a pin as a part of a surgical operation. This study reveals that at different
transverse sections of the bone specimen, the nature of remodelling and
its saturation were different. Using surface bone remodelling law, given by
Eq. (39) and the boundary element method (BEM), Sadegh et al. (1993)
studied bone remodelling along an implant interface. Martinez et al. (1998)
reformulated this method by combining it with sensitivity and optimization
method to efficiently model bone in-growth into a slot of an implant.

After reviewing many research studies on the functional adaptation of
bone subjected to load and related problems, Ramtani and Zidi (2001)
made an observation that throughout life, bone is continucusly turning
over by the well regulated process of bone formation and resorption. Bone
damage occurring during daily activities of life is normally repaired in a
continuous manner by means of remodelling processes. When an imbalance
in this remodelling process occurs, bones may become more susceptible to
fracture. With this observation, the authors made an attempt to formulate
theoretically the competition between damage and internal remodelling in
bones, under the purview of the general framework of continuum thermo-
dynamics with reference to the theory of adaptive elasticity (cf. Cowin and
Hegedus, 1976; Hegedus and Cowin, 1976). Their formulation was based
upon a mathematical model developed by Prendergast and Taylor (1994)
for prediction of bone adaptation by taking care of damage accumulation.
They remarked that their formulation would provide a better understanding
of bone remodelling induced by a medullary pin, if all the constants and the
exact form of damage evolution during the adaptation process were known.

In another study, Hazelwood et al. (2001) developed a constitutive
model for bone remodelling by incorporating several relevant mechanical
and biological processes. They used this model to address differences in
the remodelling behavior as a volume element of bone is placed in disuse
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or overload. The authors claimed that it was a complete model for bone
remodelling that had the potential to help studying bone diseases and their
treatment.

It appears from the above discussion that the assumption of stress
or strain dependence of the bone remodelling mechanism is common to
all the models proposed so far. In determining experimentally the rela-
tionship between elastic properties and microstructure of bovine cortical
bones, Lipson and Katz (1984) offered an indirect validation of this assump-
tion. They observed that the level of osteonal remodelling is related to the
pattern of mechanical stress.

16. Current State-of-the-Art

The concept of viscoelastic behavior of materials, in the realm of solid
mechanics, is not of recent origin. The celebrated physicists like Maxwell,
Kelvin and Voigt contributed much to the initial development of the theory
of viscoelasticity more than a hundred years ago. But the general develop-
ment and broader applications of the theory are of relatively recent occur-
rence. This is due to a rapid growth of research on polymers and materials
of biological origin, which are mostly viscoelastic, during the last three
decades. It is now widely accepted that polymers and metals at high tem-
perature exhibit viscoelastic behavior, and a general theory for all such
materials, linear or non-linear, are well-established. The excellent mono-
graph of Bland (1960), Nowacki (1962), Boley and Weiner (1967), Ferry
(1970), Christensen (1971), Findley et al. (1976) may be cited as the general
references in this extensive field of research involving ordinary materials.
The researches on the viscoelastic properties of bones, however, are not
so extensive. As remarked by Herman and Liebowitz (1972), the exploration
of bone as a viscoelastic material is still in its infancy. After McElhaney
(1961) and Sedlin (1965), Nowinski (1974) analyzed a viscoelastic prob-
lem involving a long bone by using the bone model proposed by Sedlin
(1965). In a series of papers Lakes et al. carried out investigations on the
viscoelastic cortical bone. In their first communication, Lakes et al. (1979)
dealt with the dynamic measurements of relaxation properties in torsion.
They observed that at high frequencies, in the ultrasound range, the mate-
rial parameters are independent of frequency. In the second one, Lakes and
Katz (1979a), discussed the possible contribution of the ongoing physical
processes in bone to its relaxation mechanism. Non-linear viscoelastic con-
stitutive relation for cortical bones was the subject of their third study (cf.
Lakes and Katz, 1979b). Assuming bone to be a two-phase, fibre-reinforced
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composite material, Gottesman and Hashin (1980) determined analytically
the five relaxation functions by means of a micromechanical model. Pelker
and Saha (1983) carried out an experiment on the propagation of stress
waves in bones, modelled as a viscoelastic solid. By assuming that the
material behavior of trabecular bone which is the chief constituent of the
vertebral body at the intervertebral joints in the human skeletal system
to be represented by two-, three- or four-parameter Kelvin model, a series
of researches were made by various researchers [cf. Spilker (1980), Burns
and Kaleps (1980), Furlong and Palazotto (1983), Spilker, Dangirda and
Schultz (1984), Burns et al. (1984), Dangirda and Schultz (1984)]. These
studies reveal that three- and four-parameter Kelvin models yield better
results.

Sanjibee et al. (1982a, b) established the non-linear constitutive rela-
tions for a specimen of collagen, an important constituent of bone.

As mentioned earlier, the semi-crystalline polymers and materials hav-
ing biological origin possess another interesting material behavior —
they exhibit piezoelectric effects. Having discovered bone piezo-electricity,
Fukada and Yasuda (1957) concluded that this was mainly due to collagen,
the crystalline organic constituent present in bones. Following the obser-
vation made by Fukada and Yasuda (1957), many investigators tried to
correlate bone piezoelectricity with the mechanism of bone remodelling [cf.
Bassett et al. (1962), Cochran (1966), Cochran et al. (1968), Samos et al.
(1963), Bassett (1965) and Marino et al. (1970)]. Bioelectricity in bones
may have different origins, but Anderson and Ericksson (1970) tried to
establish in a convincing manner that bone piezoelectricity is its primary
source. Excellent reviews of the researches in this field of study are provided
in Fukada (1968), Bassett (1971), Libofl et al. (1973, 1974) and Giizelsu and
Demiray (1979).

As innumerable voids are present in bone, it is generally non-
homogeneous. Nowinski (1974) described bone inhomogeneity by a power
law variation. He assumed that elastic moduli are proportional to the appar-
ent density of bone. But Patel (1969) theoretically proposed a power law
of variation of elastic modulus with apparent density, for porous materials.
Carter et al. (1976) experimentally obtained such power law of variation of
bone compressive strength with its apparent density. Later on, Stone et al.
(1982) experimentally confirmed the validity of this law for shear strength
of osseous tissue.

Julius Wolff (1892) was the first to observe the strain-dependence of
the mechanism of bone remodelling. Most of the experimental studies that
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were aimed at relating bone remodelling with bone piezoelectricity have
already been mentioned in Sec. 13. In his theoretical study, Gjelsvik (1973a)
proposed a macrobone model by assuming that bone remodelling is effected
mostly by piezoelectricity of osseous tissues. He used this model to explain
the surface and internal bone remodelling and claimed that his results were
justified from experimental and clinical observation on bone remodelling
and the piezoelectric properties of bone. In a second study Gjelsvik (1973b)
discussed the equilibrium and non-equilibrium forms of bone architecture
by using his model.

Cowin et al. (1976-1981) explained the bone remodelling mechanism
from a different standpoint. Having assumed its chemical origin, they pre-
sented a porous and chemically reacting elastic solid model for bone tis-
sues to interpret its remodelling mechanism (Cowin, 1976; Cowin and
Nachdinger, 1978). The concept of small strain elasticity under isother-
mal condition has been used in developing their model. Cowin and van
Buskirk (1978) used this model to analyze the problem of internal remod-
elling induced by a medullary pin. In a later communication, Cowin and
van Buskirk (1979) proposed a theory of surface remodelling of bone and
applied it to obtain the changes in endosteal and periosteal diameters of a
cylindrical bone specimen. In this study, remodelling was considered to be
induced by an axial load or by a medullary pin. Cowin and Firoozbaksh
(1981) made some theoretical predictions on the remodelling of diaphyseal
surfaces under constant load.

The balance between local remodelling and accumulation of trabecular
bone micro damage is believed to play an important role in the maintenance
of skeletal integrity. However, the local mechanical parameters associated
with micro damage initiation are not well understood. Trabecular bone
micro damage and micro structural stresses under uniaxial compression
were studied by Nagaraja et al. (2005).

Miller and Fuchs (2005) examined the effect of trabecular curvature on
the stiffness of trabecular bone. They used simplified structural models of
trabecular bone to model various forms of variability. The structural effects
of variability of direction, length and thickness of the trabeculae have been
studied using “lattice-type” finite element models.

For choosing intramedullary devices, the surgeon has to take care of
the factors that may affect the functional outcome, viz. the strength of the
inserted device, bone quality and fracture reduction. Sheer body weight and
muscle contraction can result in nail failure, as well as bone penetration
due to improper positioning or bone quality. Steinberg et al. (2005) studied
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experimentally the biomechanical properties of the nail and peg as well as
the influence of the peg’s expansion upon cadaveric femoral heads.

The ability to accurately assess bone quality in vivo is essential for
improving the diagnostic and therapeutic goals for bone loss from such
varied etiologies as osteoporosis, micro gravity, bed rest, or stress-shielding
from an implant. Early diagnostic ability is very important because the
effectiveness of treatment diminishes with disease progressing, yet patients
are rarely symptomatic before considerable bone loss has occurred and
sometimes not until the first fracture has occurred (Davidson, 2003;
Homminga et al., 2004).

Stanczyk (2005) presented a study on modelling of PMMA bone cement
polymerization. The model is constructed in such a way as to mimic the
chemical processes taking place in the cement dough. On the basis of this
study he could identify some important phenomena and put forward a
mathematical formulation.

So far we have given a brief account of various earlier researches on bone,
particularly on its anisotropic, viscoelastic, piezoelectric, non-homogeneous
material behavior and its remodelling mechanism. Before we conclude this
section, we present a brief review on previous researches devoted to waves
and vibrations in bones.

It is known that studies on waves and vibrations in a continuum bear the
potential to provide useful techniques for determining its elastomechanical,
electromechanical, thermo-mechanical and damping characteristics. But for
an osseous medium, which can adapt its shape according to loading condi-
tions, such a study offers information regarding the pathological state, the
site of fracture and the remodelling process in addition to its mechanical
and electrical properties. Moreover, such information can be obtained for
in vivo situations.

In fact due to its piezoelectric material behavior, all such information
can be derived by studying the electromagnetic waves radiated by bone,
when disturbed by travelling elastic waves, using some appropriate monitor-
ing devices [cf. Saha and Lakes (1977a, b), Giizelsu and Saha (1981, 1984)}].
Giizelsu and Saha (1983) made an investigation on the diagnostic capacities
of flexural waves in wet bones. Chen and Saha (1987) developed a math-
ematical model for stress wave propagation in a long bone. Having used
the data for human femurs for different age groups, reported by Martin
and Atkinson (1977), they made an observation that osteoporosis sets in
around the age of 55. They further suggested that the diagnostic meth-
ods based on wave propagation characteristics may be potentially useful in
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detecting the onset of osteoporosis changes in the human skeletal system.
Based on waves and vibration techniques, there have been different stud-
ies with a definite aim to assess bone pathology and monitor the rate of
fracture healing [cf. Lewis (1975), Lewis and Goldsmith (1975), Wong et
al. (1976), Wright et al. (1981), Pelker and Saha (1983, 1985), Rubin et
al. (1984 a, b)]. Misra and Samanta (1984) put forward a mathematical
analysis for a problem of wave propagation in tubular bones.

By considering the damping material behavior of the skull and brain
tissues, the effects of various pulse shapes in vehicular impact situations
were studied by Misra et al. (1977, 1978b). Misra (1978a) carried out a
detailed study in order to examine the effect of triangular pulse, which is
one of the most frequently occurring pulses during accidents caused due
to collision of the head with a hard surface. Misra (1978c) put forward a
theoretical study on the deformation of human head impacted by an exter-
nal load. The study takes care of the eccentricity of the skull structure
and also the viscoelastic properties of osseous tissues. Misra and Murty
(1979) put forward a theoretical estimate of the intensified stress-field
generated in the neighbourhood of a crack in a human-sized skull, while
Misra and Mishra (1984) reported similar estimates for an exterior star-
shaped crack in a bone medium. Misra (1986b) reported the results of
his theoretical study on the distribution of stresses in a pre-cracked bone
specimen.

Misra and Chakravarty (1984a) modelled the human skull as a poroe-
lastic shell in their study of a problem concerned with head injury. In order
to take care of the eccentricity of the human skull, Misra and Chakravarty
(1984b) modelled the skull as a prolate spheroidal shell in their study of
rotational brain injury.

Misra (1985) carried out a theoretical analysis on the distribution of
stresses in a tubular bone exposed to heat radiation from a distant heat
source. Misra (1986a) studied theoretically the stress-field in the human
skull generated due to thermogenesis. In this study he made use of the
temperature-distributions in the human head reported by Thron (1956)
and the results presented by Richardson and Whitelaw (1968) for their
problem of heat conduction in the head.

The three-layered structure of the skull bone was duly taken care of by
Misra and Roy (1988) in their mathematical analysis of the free and forced
vibrations of the cranial vault. They studied four different types of pulse
shapes, viz. square pulse, half-sine pulse, triangular pulse and skewed pulse,
which are reported to be encountered quite frequently in vehicular impact
situations.
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A study on local piezoelectric polarization of human cortical bone as a
function of stress frequency was carried out by Pfeiffer (1977). Saha and
Giizelsu (1981) derived the magnetic field induced by a travelling antisym-
metric wave propagating in a single layered long bone. Pelker and Saha
(1983) studied the viscoelastic effects on wave propagation in bones. Misra
and Chakravarty (1982) analyzed the resonance spectrum of free vibra-
tions of the human cranial system with due consideration to the damping
material behavior of osseous tissues.

By modelling long human bone as a solid or hollow circular cylindri-
cal shells of uniform cross-section, Jurist et al. (1970, 1973), Doherty and
Wilson (1974) calculated the resonance frequencies assuming bone to be
an elastic solid. However, no attention to different types of resonances
and their attenuation with time was paid in these studies. Collier et al.
(1982) studied the resonances with the objective of identifying various res-
onances in long human tibia in vitro with the consideration of constant
cross-section of isosceles triangle. In this study too, damping of resonances
was not considered.

Since materials with hexagonal symmetry are piezoelectric and since
osseous media are viscoelastic, Misra and Samanta (1983a) examined the
effects of these material properties on the wave propagation characteris-
tics of a bone specimen. This study corresponds to a situation in which
both the endosteal and periosteal surfaces of the long bone specimen are
maintained at zero electric potential and are free from traction. The study
demonstrated that though the piezoelectric properties do not have appre-
ciable effect on wave propagation characteristics, they are useful to deter-
mine the induced radial polarization that affects bone remodelling, if one
uses the method developed by Gjelsvik (1973). Misra et al. (1988) put for-
ward theoretical estimates for the effects of inhomogeneity of bones on the
wave propagation constant as well as on the remodelling processes. In a
separate study Misra and Samanta (1983b) studied the torsional waves in
long biphasic bones having viscoelastic and piezoelectric properties with
material inhomogeneity. The authors determined the effects of material
damping behavior on wave propagation constants and reported their the-
oretical estimates for the induced electric and magnetic fields. They dis-
cussed possible influence on bone remodelling processes. The study has been
extended to a specimen of polymethyl methacrylate (bone cement) having
geometry as that of the bone specimen. It was found that the effects of
material inhomogenity and viscoelasticity are more prominent in the case
of PMMA and dispersion of waves in it were also more significant, particu-
larly at higher modes. It has been argued by Park et al. (1986) that owing
to these differences in material properties between bone and PMMA (bone
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cement), the two interfaces, viz. prosthesis-bone and bone-bone cement are
vulnerable sites for loosening at the joints.

In order to derive the micro-structural composition of osseous media
from bulk material characteristics, such as modulus of elasticity, piezoelec-
tric coefficients etc. one needs the complete knowledge of all such material
parameters. But it is not possible to determine all of them from a sin-
gle experiment. With this end in view, Misra et al. (1989) analyzed the
thickness vibration of long bone, considering different properties of osseous
tissues as in their earlier studies on bones. This study bears the potential
to devise an electromechanical transducer that could generate ultrasound
waves within the body itself and is also useful for correlating certain mate-
rial properties with vibration characteristics of bones. By considering the
material non-homogeneity as well as the dissipative material behavior of
osseous tissues, Misra et al. (1986) studied theoretically the vibration char-
acteristics of a tubular bone in axial planes and conjectured that the stress
wave propagation in bones results in induced electric and magnetic fields,
the magnitudes of which depend upon the frequencies of the stress waves.
They studied the frequency spectrum of a vibrating bone specimen by using
experimental results on the variation of elastic constants with density of
osseous tissues, reported by Patel (1969).

Since a real bone specimen is of finite length and non-uniform cross
section, Collier et al. (1982) considered bone to have a non-uniform cross
section. Finlay et al. (1982) assumed bone to have different circumferential
dimensions at different locations. In analyzing the stress field inside the
wall of carotid sinus von Maltzahn (1982) assumed it to be cone-shaped.
Misra and Samanta (1988) treated human tibia as a truncated conical bar.
This model took care of the finiteness of the length of bone specimen as well
as non-uniformity of its cross section in a better manner. The geometrical
model for bone specimen was used to analyze the lengthwise vibration of the
bone specimen theoretically, with an aim to provide better correlation with
the experimentally obtained vibration parameters. In a recent experiment,
Garner et al. (2000) studied the viscoelastic dissipation in human compact
bone, in dry and wet conditions, in torsion and bending in longitudinal and
transverse directions.
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