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Preface

This book covers the fundamental mechanics of fluids as they are treated at 
the senior level and at the introductory graduate level. Many excellent books 
exist that treat special areas of fluid mechanics such as ideal-fluid flow or 
boundary-layer theory. However, there are very few books at this level that 
sacrifice an in-depth study of one of these special areas of fluid mechanics for 
a briefer treatment of a broader area of the fundamentals of fluid mechanics. 
This situation exists despite the fact that many institutions of higher learn-
ing offer a broad, fundamental course to a wide spectrum of their students 
before offering more advanced specialized courses to those who are special-
izing in fluid mechanics. This book is intended to remedy this situation.

The book is divided into five parts. Part I, “Governing Equations,” deals 
with the derivation of the basic conservation laws, flow kinematics, and 
some basic theorems of fluid mechanics. Part II is titled “Ideal-Fluid Flow,” 
and it covers two-dimensional potential flows, three-dimensional potential 
flows, and surface waves. Part III, “Viscous Flows of Incompressible Fluids,” 
contains chapters on exact solutions, low-Reynolds-number approximations, 
boundary-layer theory, and buoyancy-driven flows. Part IV of the book is 
titled “Compressible Flow of Inviscid Fluids,” and this part contains chapters 
that deal with shock waves, one-dimensional flows, and multidimensional 
flows. Finally, Part V, which is titled “Methods of Mathematical Analysis,” 
presents a summary of some of the commonly used methods of analysis as 
used in this book as well as many others. Appendixes are also included that 
summarize vectors, tensors, the governing equations in the common coordi-
nate systems, Fourier series, and thermodynamics.

The treatment of the material is such as to emphasize the phenomena asso-
ciated with the various properties of fluids while providing techniques for 
solving specific classes of fluid-flow problems. The treatment is not geared to 
any one discipline, and it may readily be studied by physicists and chemists 
as well as by engineers from various branches. Since the book is intended 
for teaching purposes, phrases such as “it can be shown that” and similar 
clichés that cause many hours of effort for many students have been avoided. 
In order to aid the teaching process, several problems are included at the end 
of each of the 14 chapters. These problems serve to illustrate points brought 
out in the text and to extend the material covered in the text.

Most of the material contained in this book can be covered in about 50 
lecture hours. For more extensive courses, the material contained here may 
be completely covered and even augmented. Parts II, III, and IV are essen-
tially independent so that they may be interchanged or any one or more of 
them may be omitted. This permits a high degree of teaching flexibility and 
allows the instructor to include or substitute material that is not covered in 
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the text. Such additional material may include free convection, density strati-
fication, hydrodynamic stability, and turbulence with applications to pollu-
tion, meteorology, etc. These topics are not included here, not because they 
do not involve fundamentals, but rather because I set up a priority of what I 
consider to be the basic fundamentals.

For the fourth edition, Chapter 14, which is titled “Some Useful Methods 
of Analysis,” has been added. The problems in all chapters have also been 
reviewed, and some of them have been revised in order to clarify and/or 
extend the questions. Some new problems have also been included, bringing 
the total number to 140.

Many people are to be thanked for their direct or indirect contributions 
to this text. I had the privilege of taking lectures from F. E. Marble, C. B. 
Millikan, and P. G. Saffman, and some of the style and methods of these 
great scholars are probably evident in the following pages. Thanks are also 
due to the many instructors and students who have used the book as a text 
and who have pointed out errors and/or ambiguities in the material in the 
earlier versions of this text.

I. G. Currie



Part I

Governing Equations

In this first part of the book, a sufficient set of equations will be derived, 
based on physical laws and postulates, governing the dependent variables 
of a fluid that is moving. The dependent variables are the fluid-velocity com-
ponents, pressure, density, temperature, and internal energy or some simi-
lar set of variables. The equations governing these variables will be derived 
from the principles of mass, momentum, and energy conservation and from 
equations of state. Having established a sufficient set of governing equations, 
some purely kinematical aspects of fluid flow are discussed, at which time 
the concept of vorticity is introduced. The final section of this part of the book 
introduces certain relationships that can be derived from the governing equa-
tions under certain simplifying conditions. These relationships may be used 
in conjunction with the basic governing equations or as alternatives to them.

Taken as a whole, this part of the book establishes the mathematical equa-
tions that result from invoking certain physical laws postulated to be valid 
for a moving fluid. These equations may assume different forms, depending 
upon which variables are chosen and upon which simplifying assumptions 
are made. The specific chapters contained in Part I are as follows:

	 Chapter 1: Basic Conservation Laws
	 Chapter 2: Flow Kinematics
	 Chapter 3: Special Forms of the Governing Equations

Parts II, III, and IV of the book are devoted to solving the governing 
equations established in Part I for different categories of fluid flow, thereby 
explaining quantitatively some of the phenomena that are observed in a flow-
ing fluid. In addition, they establish the methodologies that are employed in 
the various branches of fluid mechanics.
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1
Basic Conservation Laws

The essential purpose of this chapter is to derive the set of equations that 
results from invoking the physical laws of conservation of mass, momen-
tum, and energy. In order to realize this objective, it is necessary to discuss 
certain preliminary topics. The first topic of discussion is the two basic ways 
in which the conservation equations may be derived: the statistical method 
and the continuum method. Having selected the basic method to be used in 
deriving the equations, one is then faced with the choice of reference frame 
to be employed, Eulerian or Lagrangian. Next, a general theorem, called 
Reynolds’ transport theorem, is derived, since this theorem relates deriva-
tives in the Lagrangian framework to derivatives in the Eulerian framework.

Having established the basic method to be employed and the tools to be 
used, the basic conservation laws are then derived. The conservation of mass 
yields the so-called continuity equation. The conservation of momentum 
leads ultimately to the Navier–Stokes equations, while the conservation of 
thermal energy leads to the energy equation. The derivation is followed by a 
discussion of the set of equations so obtained, and finally a summary of the 
basic conservation laws is given.

1.1  Statistical and Continuum Methods

There are basically two ways of deriving the equations that govern the 
motion of a fluid. One of these methods approaches the question from the 
molecular point of view. That is, this method treats the fluid as consisting 
of molecules whose motion is governed by the laws of dynamics. The mac-
roscopic phenomena are assumed to arise from the molecular motion of the 
molecules, and the theory attempts to predict the macroscopic behavior of 
the fluid from the laws of mechanics and probability theory. For a fluid that 
is in a state not too far removed from equilibrium, this approach yields the 
equations of mass, momentum, and energy conservation. The molecular 
approach also yields expressions for the transport coefficients, such as the 
coefficient of viscosity and the thermal conductivity, in terms of molecular 
quantities such as the forces acting between molecules or molecular diam-
eters. The theory is well developed for light gases, but it is incomplete for 
polyatomic gas molecules and for liquids.



4 Fundamental Mechanics of Fluids

The alternative method used to derive the equations governing the motion 
of a fluid uses the continuum concept. In the continuum approach, individ-
ual molecules are ignored, and it is assumed that the fluid consists of con-
tinuous matter. At each point of this continuous fluid, there is supposed to 
be a unique value of the velocity, pressure, density, and other so-called field 
variables. The continuous matter is then required to obey the conservation 
laws of mass, momentum, and energy, which give rise to a set of differen-
tial equations governing the field variables. The solution to these differential 
equations then defines the variation of each field variable with space and 
time, which corresponds to the mean value of the molecular magnitude of 
that field variable at each corresponding position and time.

The statistical method is rather elegant, and it may be used to treat gas 
flows in situations where the continuum concept is no longer valid. However, 
as was mentioned before, the theory is incomplete for dense gases and for 
liquids. The continuum approach requires that the mean free path of the 
molecules be very small compared with the smallest physical-length scale of 
the flow field (such as the diameter of a cylinder or other body about which 
the fluid is flowing). Only in this way can meaningful averages over the 
molecules at a “point” be made and the molecular structure of the fluid be 
ignored. However, if this condition is satisfied, there is no distinction among 
light gases, dense gases, or even liquids—the results apply equally to all. 
Since the vast majority of phenomena encountered in fluid mechanics fall 
well within the continuum domain and may involve liquids as well as gases, 
the continuum method will be used in this book. With this background, the 
meaning and validity of the continuum concept will now be explored in 
some detail. The field variables such as the density ρ and the velocity vector 
u will in general be functions of the spatial coordinates and time. In symbolic 
form, this is written as ρ = ρ(x, t) and u = u(x, t), where x is the position vector 
whose Cartesian coordinates are x, y, and z. At any particular point in space, 
these continuum variables are defined in terms of the properties of the vari-
ous molecules that occupy a small volume in the neighborhood of that point.

Consider a small volume of fluid ΔV containing a large number of mol-
ecules. Let Δm and v be the mass and velocity, respectively, of any individual 
molecule contained within the volume ΔV, as indicated in Figure 1.1. The 
density and the velocity at a point in the continuum are then defined by the 
following limits:

	 ρ
ε

=
→

∑
lim
∆

∆

∆V

m

V 	

	
u

V
=

→

∑
∑

lim
∆

∆
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where ε is a volume that is sufficiently small that ε1/3 is small compared with 
the smallest significant length scale in the flow field but is sufficiently large 
that it contains a large number of molecules. The summations in the above 
expressions are taken over all the molecules contained within the volume 
ΔV. The other field variables may be defined in terms of the molecular prop-
erties in an analogous way.

A sufficient condition, though not a necessary condition, for the contin-
uum approach to be valid is

	 1 3

n
L<< <<ε

	

where n is the number of molecules per unit volume, and L is the smallest 
significant length scale in the flow field, which is usually called the macro­
scopic length scale. The characteristic microscopic length scale is the mean free 
path between collisions of the molecules. Then, the above condition states 
that the continuum concept will certainly be valid if some volume ε that is 
much larger than the volume occupied by a single molecule of the fluid but 
much smaller than the cube of the smallest macroscopic length scale (such as 
cylinder diameter) can be found. Since a cube of gas, at normal temperature 
and pressure, whose side is 2 µm contains about 2 × 108 molecules and the 
corresponding figure for a liquid is about 2 × 1011 molecules, the continuum 
condition is readily met in the vast majority of flow situations encountered 
in physics and engineering. It may be expected to break down in situations 
where the smallest macroscopic length scale approaches microscopic dimen-
sions, such as in the structure of a shock wave, and where the microscopic 
length scale approaches macroscopic dimensions, and such as when a rocket 
passes through the edge of the atmosphere.

v

∆m

∆V

FIGURE 1.1
Individual molecule in small volume ΔV having mass Δm and velocity v.



6 Fundamental Mechanics of Fluids

1.2  Eulerian and Lagrangian Coordinates

Having selected the continuum approach as the method that will be used 
to derive the basic conservation laws, one is next faced with a choice of ref-
erence frames in which to formulate the conservation laws. There are two 
basic coordinate systems that may be employed, these being Eulerian and 
Lagrangian coordinates.

In the Eulerian framework, the independent variables are the spatial coor-
dinates x, y, and z and time t. This is the familiar framework in which most 
problems are solved. In order to derive the basic conservation equations in 
this framework, attention is focused on the fluid that passes through a con-
trol volume that is fixed in space. The fluid inside the control volume at any 
instant in time will consist of different fluid particles from that which was 
there at some previous instant in time. If the principles of conservation of 
mass, momentum, and energy are applied to the fluid passing through the 
control volume, the basic conservation equations are obtained in Eulerian 
coordinates.

In the Lagrangian approach, attention is fixed on a particular mass of 
fluid as it flows. Suppose we could color a small portion of the fluid without 
changing its density. Then, in the Lagrangian framework, we follow this 
colored portion as it flows and changes its shape, but we always consider 
the same particles of fluid. The principles of mass, momentum, and energy 
conservation are then applied to this particular element of fluid as it flows, 
resulting in a set of conservation equations in Lagrangian coordinates. In 
this reference frame, x, y, z, and t are no longer independent variables since 
if it is known that our colored portion of fluid passed through the coor-
dinates x0, y0, and z0 at some time t0, then its position at some later time 
may be calculated if the velocity components u, v, and w are known. That 
is, as soon as a time interval (t – t0) is specified, the velocity components 
uniquely determine the coordinate changes (x – x0), (y – y0), and (z – z0) so 
that x, y, z, and t are no longer independent. The independent variables in 
the Lagrangian system are x0, y0, z0, and t, where x0, y0, and z0 are the coor-
dinates that a specified fluid element passed through at time t0. That is, the 
coordinates x0, y0, and z0 identify which fluid element is being considered, 
and the time t identifies its instantaneous location.

The choice of which coordinate system to employ is largely a matter of 
taste. It is probably more convincing to apply the conservation laws to a con-
trol volume that always consists of the same fluid particles rather than one 
through which different fluid particles pass. This is particularly true when 
invoking the law of conservation of energy, which consists of applying the 
first law of thermodynamics, since the same fluid particles are more read-
ily justified as a thermodynamic system. For this reason, the Lagrangian 
coordinate system will be used to derive the basic conservation equations. 
Although the Lagrangian system will be used to derive the basic equations, 
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the Eulerian system is the preferred one for solving the majority of prob-
lems. In the next section, the relation between the different derivatives will 
be established.

1.3  Material Derivative

Let α be any field variable such as the density or temperature of the fluid. 
From the Eulerian viewpoint, α may be considered to be a function of the 
independent variables x, y, z, and t. However, if a specific fluid element is 
observed for a short period of time δt as it flows, its position will change 
by amounts δx, δy, and δz while its value of α will change by an amount 
δα. That is, if the fluid element is observed in the Lagrangian framework, 
the independent variables are x0, y0, z0, and t, where x0, y0, and z0 are initial 
coordinates for the fluid element. Thus, x, y, and z are no longer independent 
variables but are functions of t as defined by the trajectory of the element. 
During the time δt, the change in α may be calculated from differential cal-
culus to be
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Equating the preceding change in α to the observed change δα in the 
Lagrangian framework and dividing throughout by δt gives
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The left-hand side of this expression represents the total change in α as 
observed in the Lagrangian framework during the time δt, and in the limit, 
it represents the time derivative of α in the Lagrangian system, which will be 
denoted by Dα/Dt. It may be also noted that in the limit as δt → 0, the ratio 
δx/δt becomes the velocity component in the x direction, namely, u. Similarly, 
δy/δt → v and δz/δt → w as δt → 0, so that in the limit, the expression for the 
change in α becomes
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In vector form, this equation may be written as follows:
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D
D
α α
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Alternatively, using the Einstein summation convention where repeated 
subscripts are summed, the tensor form may be written as

	
D
D
α α α
t t

u
xk
k

=
∂
∂

+
∂
∂

.	 (1.1)

The term Dα/Dt in Equation 1.1 is the so-called material derivative. It rep-
resents the total change in the quantity α as seen by an observer who is fol-
lowing the fluid and is watching a particular mass of the fluid. The entire 
right-hand side of Equation 1.1 represents the total change in α expressed in 
Eulerian coordinates. The term uk(∂α/ ∂xk) expresses the fact that in a time-
independent flow field in which the fluid properties depend upon the spatial 
coordinates only, there is a change in α due to the fact that a given fluid 
element changes its position with time and therefore assumes different 
values of α as it flows. The term ∂α/ ∂t is the familiar Eulerian time deriva-
tive and expresses the fact that at any point in space, the fluid properties 
may change with time. Then, Equation 1.1 expresses the Lagrangian rate of 
change Dα/Dt of α for a given fluid element in terms of the Eulerian deriva-
tives ∂α/ ∂t and ∂α/ ∂xk.

1.4  Control Volumes

The concept of a control volume, as required to derive the basic conservation 
equations, has been mentioned in connection with both the Lagrangian and 
Eulerian approaches. Irrespective of which coordinate system is used, there 
are two principal control volumes from which to choose. One of these is a 
parallelepiped of sides δx, δy, and δz. Each fluid property, such as the veloc-
ity or pressure, is expanded in a Taylor series about the center of the control 
volume to give expressions for that property at each face of the control vol-
ume. The conservation principle is then invoked, and when δx, δy, and δz 
are permitted to become vanishingly small, the differential equation for that 
conservation principle is obtained. Frequently, shortcuts are taken, and the 
control volume is taken to have sides of length dx, dy, and dz with only the 
first term of the Taylor series being carried out.

The second type of control volume is arbitrary in shape, and each con-
servation principle is applied to an integral over the control volume. For 

example, the mass within the control volume is ρdV
V∫ , where ρ is the fluid 

density and the integration is carried out over the entire volume V of the 
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fluid contained within the control volume. The result of applying each con-
servation principle will be an integrodifferential equation of the type

	
L V

V
αd =∫ 0

	

where L is some differential operator and α is some property of the fluid. But 
since the control volume V was arbitrarily chosen, the only way this equation 
can be satisfied is by setting Lα = 0, which gives the differential equation of 
the conservation law. If the integrand in the above equation was not equal to 
zero, it would be possible to redefine the control volume V in such a way that 
the integral of Lα was not equal to zero, contradicting the integrodifferential 
equation above.

Each of these two types of control volumes has some merit, and in this 
book, each will be used at some point, depending upon which gives the bet-
ter insight into the physics of the situation under discussion. The arbitrary 
control volume will be used in the derivation of the basic conservation laws 
since it seems to detract less from the principles being imposed. Needless to 
say, the results obtained by the two methods are identical.

1.5  Reynolds’ Transport Theorem

The method that has been selected to derive the basic equations from the con-
servation laws is to use the continuum concept and to follow an arbitrarily 
shaped control volume in a Lagrangian frame of reference. The combination of 
the arbitrary control volume and the Lagrangian coordinate system means that 
material derivatives of volume integrals will be encountered. As was mentioned 
in the previous section, it is necessary to transform such terms into equivalent 
expressions involving volume integrals of Eulerian derivatives. The theorem 
that permits such a transformation is called Reynolds’ transport theorem.

Consider a specific mass of fluid and follow it for a short period of time δt 
as it flows. Let α be any property of the fluid such as its mass, momentum in 
some direction, or energy. Since a specific mass of fluid is being considered 
and since x0, y0, z0, and t are the independent variables in the Lagrangian 
framework, the quantity α will be a function of t only as the control volume 
moves with the fluid. That is, α = α(t) only and the rate of change of the inte-
gral of α will be defined by the following limit:

	
D
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d d
t

t V
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V t t V t t

α
δ

α δ α
δ δ

( ) lim ( ) (
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1
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( )
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V t∫ 	

where V(t) is the control volume containing the specified mass of fluid 
and which may change its size and shape as it flows. The quantity α(t + δt) 
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integrated over V(t) will now be subtracted, and then added inside the above 
limit.
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The first two integrals inside this limit correspond to holding the inte-
grand fixed and permitting the control volume V to vary, whereas the second 
two integrals correspond to holding V fixed and permitting the integrand α 
to vary. The latter component of the change is, by definition, the integral of 
the familiar Eulerian derivative with respect to time. Then, the expression 
for the Lagrangian derivative of the integral of α may be written in the fol-
lowing form:
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t

t t V
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d .	

The remaining limit, corresponding to the volume V changing while α 
remains fixed, may be evaluated from geometric considerations.

Figure 1.2a shows the control volume V(t) that encloses the mass of fluid 
being considered both at time t and at time t + δt. During this time interval, the 

V(t)

V(t + δt)

S(t)

u

n

u
n

δS u .  n δt

(a)

(b)

FIGURE 1.2
(a) Arbitrarily shaped control volume at times t and t + δt and (b) superposition of the control 
volumes at these times showing element δV of the volume change.
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control volume has moved downstream and has changed its size and shape. 
The surface that encloses V(t) is denoted by S(t), and at any point on this sur-
face, the velocity may be denoted by u and the unit outward normal by n.

Figure 1.2b shows the control volume V(t + δt) superimposed on V(t), and 
an element of the difference in volumes is detailed. The perpendicular dis-
tance from any point on the inner surface to the outer surface is u · n δt, so 
that an element of surface area δS will correspond to an element of volume 
change δV in which δV = u · n δt δS. Then, the volume integral inside the 
limit in the foregoing equation may be transformed into a surface integral in 
which dV is replaced by u · n δt dS.
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Having completed the limiting process, the Lagrangian derivative of a vol-
ume integral has been converted into a surface integral and a volume integral 
in which the integrands contain only Eulerian derivatives. As was mentioned 
in the previous section, it is necessary to obtain each term in the conserva-
tion equations as the volume integral of something. The foregoing form of 
Reynolds’ transport theorem may be put in this desired form by converting 
the surface integral to a volume integral by use of Gauss’ theorem, which is 
formulated in Appendix A. In this way, the surface-integral term becomes

	
α ⋅ ⋅ αt S V

S t V t
( ) = ( )

( ) ( )∫ ∫u n ud d .
	

Substituting this result into the foregoing expression and combining the 
two volume integrals give the preferred form of Reynolds’ transport theorem:
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or, in tensor notation,
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( )u .	 (1.2)

Equation 1.2 relates the Lagrangian derivative of a volume integral of a 
given mass to a volume integral in which the integrand has Eulerian deriva-
tives only.
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Having established the method to be used to derive the basic conserva-
tion equations and having established the necessary background material, 
it remains to invoke the various conservation principles. The first such prin-
ciple to be treated will be the conservation of mass.

1.6  Conservation of Mass

Consider a specific mass of fluid whose volume V is arbitrarily chosen. If this 
given fluid mass is followed as it flows, its size and shape will be observed 
to change but its mass will remain unchanged. This is the principle of mass 
conservation that applies to fluids in which no nuclear reactions are taking 
place. The mathematical equivalence of the statement of mass conservation 
is to set the Lagrangian derivative D/Dt of the mass of fluid contained in V, 

which is ρdV
V∫ , equal to zero. That is, the equation that expresses conserva-

tion of mass is

	
D
D

d
t

V
V
ρ∫ = 0.	

This equation may be converted to a volume integral in which the integrand 
contains only Eulerian derivatives by use of Reynolds’ transport theorem 
(Equation 1.2), in which the fluid property α is, in this case, the mass density ρ:

	
∂
∂

+
∂
∂

=∫
ρ

ρ
t x

u V
k

k
V

( ) d 0.	

Since the volume V was arbitrarily chosen, the only way in which the above 
equation can be satisfied for all possible choices of V is for the integrand to be 
zero. Then, the equation expressing conservation of mass becomes

	
∂
∂

+
∂
∂

=
ρ

ρ
t x

u
k

k( ) 0.	 (1.3a)

Equation 1.3a expresses more than the fact that mass is conserved. Since it 
is a partial differential equation, the implication is that the velocity is continu-
ous. For this reason, Equation 1.3a is usually called the continuity equation. 
The derivation that has been given here is for a single-phase fluid in which no 
change of phase is taking place. If two phases were present, such as water and 
steam, the starting statement would be that the rate at which the mass of fluid 
1 is increasing is equal to the rate at which the mass of fluid 2 is decreasing. 
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The generalization to cases of multiphase fluids and to cases of nuclear reac-
tions is obvious. Since such cases cause no changes in the basic ideas or prin-
ciples, they will not be included in this treatment of the fundamentals.

In many practical cases of fluid flow, the variation of density of the fluid 
may be ignored, as for most cases of the flow of liquids. In such cases, the 
fluid is said to be incompressible, which means that as a given mass of fluid 
is followed, not only will its mass be observed to remain constant but its 
volume, and hence its density, will be observed to remain constant as well. 
Mathematically, this statement may be written as follows:

	
D
D
ρ
t
= 0.	

In order to use this special simplification, the continuity equation is first 
expanded by use of a vector identity given in Appendix A:

	
∂
∂

+
∂
∂

+
∂
∂

=
ρ ρ

ρ
t

u
x

u
xk

k

k

k

0.	

The first and second terms in this form of the continuity equation will be 
recognized as being the Eulerian form of the material derivative as given by 
Equation 1.1. That is, an alternative form of Equation 1.3a is

	
D
D
ρ

ρ
t

u
x
k

k

+
∂
∂

= 0.	 (1.3b)

This mixed form of the continuity equation in which one term is given as 
a Lagrangian derivative and the other as an Eulerian derivative is not useful 
for actually solving fluid-flow problems. However, it is frequently used in 
the manipulations that reduce the governing equations to alternative forms, 
and for this reason, it has been identified for future reference. An immediate 
example of such a case is the incompressible fluid under discussion. Since 
Dρ/Dt = 0 for such a fluid, Equation 1.3b shows that the continuity equation 
assumes the simpler form ρ(∂uk/ ∂xk) = 0. Since ρ cannot be zero in general, the 
continuity equation for an incompressible fluid becomes

	
∂
∂

=
u
x
k

k

0 (incompressible).	 (1.3c)

It should be noted that Equation 1.3c is valid not only for the special case of 
Dρ/Dt = 0 in which ρ is constant everywhere but also for stratified fluid flows 
of the type depicted in Figure 1.3. A fluid particle that follows the lines ρ = ρ1 
or ρ = ρ2 will have its density remain fixed at ρ = ρ1 or ρ = ρ2 so that Dρ/ Dt = 0. 
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However, ρ is not constant everywhere, so that ∂ρ/ ∂x ≠ 0 and ∂ρ/ ∂y ≠ 0. Such 
density stratifications may occur in the ocean (owing to salinity variations) 
or in the atmosphere (owing to temperature variations). However, in the 
majority of cases in which the fluid may be considered to be incompressible, 
the density is constant everywhere.

Equation 1.3, in either the general form (Equation 1.3a) or the incompress-
ible form (Equation 1.3c), is the first condition that has to be satisfied by 
velocity and density. No dynamical relations have been used to this point, 
but the conservation-of-momentum principle will utilize dynamics.

1.7  Conservation of Momentum

The principle of conservation of momentum is, in effect, an application of 
Newton’s second law of motion to an element of the fluid. That is, when con-
sidering a given mass of fluid in a Lagrangian frame of reference, it is stated 
that the rate at which the momentum of the fluid mass is changing is equal to 
the net external force acting on the mass. Some individuals prefer to think of 
forces only and restate this law in the form that the inertia force (due to accel-
eration of the element) is equal to the net external force acting on the element.

The external forces that may act on a mass of the fluid may be classed as 
either body forces, such as gravitational or electromagnetic forces, or surface 
forces, such as pressure forces or viscous stresses. Then, if f is a vector that 
represents the resultant of the body forces per unit mass, the net external 

body force acting on a mass of volume V will be ρf dV
V∫ . Also, if P is a sur-

face vector that represents the resultant surface force per unit area, the net 

external surface force acting on the surface S containing V will be P dS
S∫ .

y

x

ρ = ρ2

ρ = ρ1

FIGURE 1.3
Flow of density-stratified fluid in which Dρ/Dt = 0 but for which ∂ρ/∂x ≠ 0 and ∂ρ/∂y ≠ 0.
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According to the statement of the physical law that is being imposed in this 
section, the sum of the resultant forces evaluated above is equal to the rate of 
change of momentum (or inertia force). The mass per unit volume is ρ and its 

momentum is ρu, so that the momentum contained in the volume V is ρu
V∫  

dV. Then, if the mass of the arbitrarily chosen volume V is observed in the 
Lagrangian frame of reference, the rate of change of momentum of the mass 

contained with V will be (D/Dt) ρu dV
V∫ . Thus, the mathematical equation 

that results from imposing the physical law of conservation of momentum is

	
D
D

d d d
t

V S V
V s V
ρ ρu P f∫ ∫ ∫= + .	

In general, there are nine components of stress at any given point, one nor-
mal component and two shear components on each coordinate plane. These 
nine components of stress are most easily illustrated by use of a cubical ele-
ment in which the faces of the cube are orthogonal to the Cartesian coordi-
nates, as shown in Figure 1.4, and in which the stress components will act at a 
point as the length of the cube tends to zero. In Figure 1.4, the Cartesian coor-
dinates x, y, and z have been denoted by x1, x2, and x3, respectively. This per-
mits the components of stress to be identified by a double-subscript notation. 
In this notation, a particular component of the stress may be represented by 

x1

x2

x3

σ22

σ21
σ23

σ11
σ13

σ12

σ33

σ31

σ32

FIGURE 1.4
Representation of nine components of stress that may act at a point in a fluid.
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the quantity σij, in which the first subscript indicates that this stress compo-
nent acts on the plane xi = constant and the second subscript indicates that it 
acts in the xj direction.

The fact that the stress may be represented by the quantity σij, in which i 
and j may be 1, 2, or 3, means that the stress at a point may be represented 
by a tensor of rank 2. However, on the surface of our control volume, it was 
observed that there would be a vector force at each point, and this force was 
represented by P. The surface force vector P may be related to the stress ten-
sor σij as follows: The three stress components acting on the plane x1 = con-
stant are σ11, σ12, and σ13. Since the unit normal vector acting on this surface 
is n1, the resulting force acting in the x1 direction is P1 = σ11n1. Likewise, the 
forces acting in the x2 direction and the x3 direction are, respectively, P2 = 
σ12n1 and P3 = σ13n1. Then, for an arbitrarily oriented surface whose unit nor-
mal has components n1, n2, and n3, the surface force will be given by Pj = σijni 
in which i is summed from 1 to 3. That is, in tensor notation, the equation 
expressing conservation of momentum becomes

	
D
D

d d d
t

u V n S f Vj
V

ij i
s

j
V

ρ σ ρ∫ ∫ ∫= + .	

The left-hand side of this equation may be converted to a volume integral in 
which the integrand contains only Eulerian derivatives by use of Reynolds’ 
transport theorem, Equation 1.2, in which the fluid property α here is the 
momentum per unit volume ρuj in the xj direction. At the same time, the sur-
face integral on the right-hand side may be converted into a volume integral 
by use of Gauss’ theorem as given in Appendix B. In this way, the equation 
that is evolved from Newton’s second law becomes

	
∂
∂

+
∂
∂

=
∂

∂
+∫ ∫t

u
x

u u V
x

V fj
k

j k
V

ij

iV
j( ) ( )ρ ρ

σ
ρd d dVV

V∫ .	

All these volume integrals may be collected to express this equation in the 

form {} =∫ dV
V

0 , where the integrand is a differential equation in Eulerian 

coordinates. As before, the arbitrariness of the choice of the control volume V 
is now used to show that the integrand of the above integrodifferential equa-
tion must be zero. This gives the following differential equation to be satisfied 
by the field variables in order that the basic law of dynamics may be satisfied:

	 ∂
∂

+
∂
∂

=
∂

∂
+

t
u

x
u u

x
fj

k
j k

ij

i
j( ) ( )ρ ρ

σ
ρ .	

The left-hand side of this equation may be further simplified if the two 
terms involved are expanded in which the quantity ρujuk is considered to be 
the product of ρuk and uj.
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	 ρ
ρ

ρ ρ
σ

ρ
∂

∂
+

∂
∂

+
∂
∂

+
∂

∂
=
∂

∂
+

u

t
u

t
u

x
u u

u

x x
fj

j j
k

k k
j

k

ij

i
j( ) .	

The second and third terms on the left-hand side of this equation are now 
seen to sum to zero since they amount to the continuity equation (Equation 
1.3a) multiplied by the velocity uj. With this simplification, the equation that 
expresses conservation of momentum becomes

	 ρ ρ
σ

ρ
∂

∂
+

∂

∂
=
∂

∂
+

u

t
u

u

x x
fj

k
j

k

ij

i
j.	 (1.4)

It is useful to recall that this equation came from an application of Newton’s 
second law to an element of the fluid. The left side of Equation 1.4 represents 
the rate of change of momentum of a unit volume of the fluid (or the inertia 
force per unit volume). The first term is the familiar temporal acceleration 
term, while the second term is a convective acceleration and accounts for local 
accelerations (such as when flowing around obstacles) even when the flow is 
steady. Note also that this second term is nonlinear since the velocity appears 
quadratically. On the right-hand side of Equation 1.4 are the forces causing the 
acceleration. The first of these is due to the gradient of surface shear stresses, 
while the second is due to body forces, such as gravity, which act on the mass 
of the fluid. A clear understanding of the physical significance of each of the 
terms in Equation 1.4 is essential when approximations to the full govern-
ing equations must be made. The surface-stress tensor σij has not been fully 
explained up to this point, but it will be investigated in detail in a later section.

1.8  Conservation of Energy

The principle of conservation of energy amounts to an application of the first 
law of thermodynamics to a fluid element as it flows. The first law of thermo-
dynamics applies to a thermodynamic system that is originally at rest and, 
after some event, is finally at rest again. Under these conditions, it is stated 
that the change in internal energy, due to the event, is equal to the sum of the 
total work done on the system during the course of the event and any heat 
that was added. Although a specified mass of fluid in a Lagrangian frame 
of reference may be considered a thermodynamic system, it is, in general, 
never at rest and therefore never in equilibrium. However, in the thermody-
namic sense, a flowing fluid is seldom far from a state of equilibrium, and 
the apparent difficulty may be overcome by considering the instantaneous 
energy of the fluid to consist of two parts: intrinsic or internal energy and 
kinetic energy. That is, when applying the first law of thermodynamics, the 
energy referred to is considered to be the sum of the internal energy per unit 
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mass e and the kinetic energy per unit mass 
1
2

u u⋅ . In this way, the modified 

form of the first law of thermodynamics that will be applied to an element 
of the fluid states that the rate of change of the total energy (intrinsic plus 
kinetic) of the fluid as it flows is equal to the sum of the rate at which work is 
being done on the fluid by external forces and the rate at which heat is being 
added by conduction.

With this basic law in mind, we again consider any arbitrary mass of fluid 
of volume V and follow it in a Lagrangian frame of reference as it flows. The 

total energy of this mass per unit volume is ρ ρe + ⋅
1
2

u u, so that the total 

energy contained in V will be ρ ρe V
V

+ ⋅∫
1
2

u u d . As was established in 

the previous section, there are two types of external forces that may act on 
the fluid mass under consideration. The work done on the fluid by these 
forces is given by the product of the velocity and the component of each force 
that is colinear with the velocity. That is, the work done is the scalar product 
of the velocity vector and the force vector. One type of force that may act on 
the fluid is a surface stress whose magnitude per unit area is represented by 

the vector P. Then, the total work done owing to such forces will be u P⋅ dS
S∫  , 

where S is the surface area enclosing V. The other type of force that may act 
on the fluid is a body force whose magnitude per unit mass is denoted by 
the vector f. Then, the total work done on the fluid due to such forces will be 

u f⋅ ρ dV
V∫ . Finally, an expression for the heat added to the fluid is required. 

Let the vector q denote the conductive heat flux leaving the control volume. 
Then, the quantity of heat leaving the fluid mass per unit time per unit sur-
face area will be q ∙ n, where n is the unit outward normal, so that the net 

amount of heat leaving the fluid per unit time will be q n⋅ dS
S∫ .

Having evaluated each of the terms appearing in the physical law that is to 
be imposed, the statement may now be written in analytic form. In doing so, 
it must be borne in mind that the physical law is being applied to a specific, 
though arbitrarily chosen, mass of fluid so that Lagrangian derivatives must 
be employed. In this way, the expression of the statement that the rate of 
change of total energy is equal to the rate at which work is being done plus 
the rate at which heat is being added becomes

	
D
D

d d d
t

e V S V
V S V
ρ ρ ρ+ ⋅ = ⋅ + ⋅ − ⋅∫ ∫ ∫

1
2

u u u P u f q n ddS
S∫ .	

This equation may be converted to one involving Eulerian derivatives 
only by use of Reynolds’ transport theorem, Equation 1.2, in which the fluid 
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property α is here the total energy per unit volume ρ ρe + ⋅
1
2

u u . The 
resulting integrodifferential equation is

	

∂
∂

+ ⋅ +
∂
∂

+ ⋅
t

e
x

e u
k

kρ ρ ρ ρ
1
2

1
2

u u u u

= ⋅ + ⋅ − ⋅

∫

∫ ∫ ∫

d

d d d

V

S V S

V

S V S
u P u f q nρ .

	

The next step is to convert the two surface integrals into volume integrals 
so that the arbitrariness of V may be exploited to obtain a differential equa-
tion only. Using the fact that the force vector P is related to the stress tensor 
σij by the equation Pj = σijni, as was shown in the previous section, the first 
surface integral may be converted to a volume integral as follows:

	 u P⋅ = =
∂
∂∫ ∫ ∫d d dS u n
x

u V
S

j ij i
S i

j ij
V

σ σS ( ) .	

Here, use has been made of Gauss’ theorem as documented in Appendix B. 
Gauss’ theorem may be applied directly to the heat-flux term to give

	 q n⋅ = =
∂

∂∫ ∫ ∫d d dS q n S
q

x
V

S
j j

S

j

jV
.	

Since the stress tensor σij has been brought into the energy equation, it is 
necessary to use the tensor notation from this point on. Then, the expression 
for conservation of energy becomes

	

∂
∂

+ +
∂
∂

+
t

e u u
x

e u u uj j
k

j j kρ ρ ρ ρ
1
2

1
2

=
∂
∂

+ −
∂

∂

∫

∫ ∫

d

d d

V

x
u V u f V

q

V

i
j ij

V
j j

V

j( )σ ρ
xx

V
jV
d∫ .

	

Having converted each term to a volume integral, the conservation equa-

tion may be considered to be of the form {} =∫ dV
V

0 , where the choice of V 

is arbitrary. Then, the quantity inside the brackets in the integrand must be 
zero, which results in the following differential equation:

	
∂
∂

+ +
∂
∂

+
t

e u u
x

e u u uj j
k

j j kρ ρ ρ ρ
1
2

1
2

=
∂
∂

+ −
∂

∂x
u u f

q

xi
j ij j j

j

j

( )σ ρ .	



20 Fundamental Mechanics of Fluids

This equation may be made considerably simpler by using the equations 
that have already been derived, as will now be demonstrated. The first term 

on the left-hand side may be expanded by considering ρe and 
1
2
ρu uj j  to be 

the products (ρ)(e) and ( )ρ
1
2
u uj j , respectively. Then,

	
∂
∂

+ =
∂
∂
+

∂
∂

+
∂
∂t

e u u
e
t

e
t t

u uj j j jρ ρ ρ
ρ

ρ
1
2

1
2

+
∂
∂

1
2
u u

tj j
ρ

.	

Similarly, the second term on the left-hand side of the basic equation may 

be expanded by considering ρeuk to be the product (e)(ρuk) and 
1
2
ρu u uj j k  to 

be the product 
1
2
u u uj j k( )ρ . Thus,
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j j k
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In this last equation, the quantity (∂/ ∂xk)(ρuk), which appears in the first and 
third terms on the right-hand side, may be replaced by –∂ρ/ ∂t in view of the 
continuity equation (Equation 1.3a). Hence, it follows that

	
∂
∂

+ = −
∂
∂

+
∂
∂

−
x

e u u u e
t

u
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j j k k
k

ρ ρ
ρ
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u

x
u uj j k

k
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∂
∂

ρ
ρ

1
2

.	

Now, when the two components constituting the left-hand side of the basic 
conservation equation are added, the two terms with minus signs above are 
canceled by corresponding terms with plus signs to give
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Then, noting that

	
∂
∂
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the equation that expresses the conservation of energy becomes

	 ρ ρ ρ ρ
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Now, it can be seen that the third and fourth terms on the left-hand side are 
canceled by the first and third terms on the right-hand side since these terms 
collectively amount to the product of uj with the momentum equation (Equation 
1.4). Thus, the equation expressing conservation of thermal energy becomes

	 ρ ρ σ
∂
∂
+

∂
∂

=
∂

∂
−
∂

∂
e
t

u
e
x

u

x

q

xk
k

ij
j

i

j

j
.	 (1.5)

The terms that were dropped in the last simplification were the mechanical-
energy terms. The equation of conservation of momentum, Equation 1.4, 
may be regarded as an equation of balancing forces with j as the free sub-
script. Therefore, the scalar product of each force with the velocity vector, 
or the multiplication by uj, gives the rate of doing work by the mechanical 
forces, which is the mechanical energy. On the other hand, Equation 1.5 is a 
balance of thermal energy, which is what is left when the mechanical energy 
is subtracted from the balance of total energy. The result is usually referred 
to as simply the energy equation.

As with the equation of momentum conservation, it is instructive to interpret 
each of the terms appearing in Equation 1.5 physically. The entire left-hand 
side represents the rate of change of internal energy, with the first term being 
the temporal change while the second being due to local convective changes 
caused by the fluid flowing from one area to another. The entire right-hand 
side represents the cause of the change in internal energy. The first of these 
terms represents the conversion of mechanical energy into thermal energy 
due to the action of the surface stresses. As will be seen later, part of this con-
version is reversible and part is irreversible. The final term in the equation 
represents the rate at which heat is being added by conduction from outside.

1.9  Discussion of Conservation Equations

The basic conservation laws, Equations 1.3a, 1.4, and 1.5, represent five scalar 
equations that the fluid properties must satisfy as the fluid flows. The continuity 
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and the energy equations are scalar equations, while the momentum equation 
is a vector equation that represents three scalar equations. Two equations of 
state may be added to bring the number of equations up to seven, but our basic 
conservation laws have introduced 17 unknowns. These unknowns are the sca-
lars ρ and e, the density and the internal energy, respectively; the vectors uj and 
qj, the velocity and heat flux, respectively, each vector having three components; 
and the stress tensor σij, which has, in general, nine independent components.

In order to obtain a complete set of equations, the stress tensor σij and the 
heat-flux vector qj must be further specified. This leads to the so-called consti­
tutive equations in which the stress tensor is related to the deformation-rate 
tensor and the heat-flux vector is related to temperature gradients. Although 
the latter relation is very simple, the former is quite complicated and requires 
either an intimate knowledge of tensor analysis or a clear understanding of 
the physical interpretation of certain tensor quantities. For this reason, prior 
to establishing the constitutive relations, the tensor equivalents of rotation 
and rate of shear will be established.

1.10  Rotation and Rate of Shear

It is the purpose of this section to consider the rotation of a fluid element 
about its own axis and the shearing of a fluid element and to identify the 
tensor quantities that represent these physical quantities. This is most easily 
done by considering an infinitesimal fluid element of rectangular cross sec-
tion and observing its change in shape and orientation as it flows.

Figure 1.5 shows a two-dimensional element of fluid (or the projection of 
a three-dimensional element) whose dimensions at time t = 0 are δx and δy. 
The fluid element is rectangular at time t = 0, and its centroid coincides with 
the origin of a fixed coordinate system. For purposes of identification, the 
corners of the fluid element have been labeled A, B, C, and D.

After a short time interval δt, the centroid of the fluid element will have 
moved downstream to some new location as shown in Figure 1.5. The dis-
tance the centroid will have moved in the x direction will be given by

	 ∆x u x t y t t
t

= ∫ [ ( ), ( )] d
0

δ

.	

Since the values of x and y must be close to zero for short times such as δt, 
the velocity component u may be expanded in a Taylor series about the point 
(0,0) to give
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where the dots represent terms that are smaller than those presented and 
that will eventually vanish as the limit of δt → 0 is taken. Integrating the 
leading term explicitly gives

	
∆ …x u t x t
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y t
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= +
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= +( , ) .…

	

Similarly,

	 Δy = v(0,0) δt + ⋯.	

As well as moving bodily, the fluid element will rotate and will be dis-
torted as indicated by the corners, which are labeled Á, B,́ C,́ and Dʹ to rep-
resent the element at time t = δt. The rotation of the side CD to its new 
position CʹDʹ is indicated by the angle δα, where α is positive when mea-
sured counterclockwise. Similarly, the rotation of the side BC to its new 
position BʹCʹ is indicated by the angle δβ, where β is positive when measured 
clockwise. Expressions for δα and δβ in terms of the velocity components 
may be obtained as follows.
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C D
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β

δα

δβ

∆x
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FIGURE 1.5
Infinitesimal element of fluid at time t = 0 (indicated by ABCD) and at time t = δt (indicated by 
Á BʹCʹDʹ).
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From the geometry of the element as it appears at time t = δt,
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where v is evaluated first at point D, whose coordinates are 
1
2

1
2

δ δx y,− , 

and secondly at point C, whose coordinates are − −
1
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1
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δ δx y, . The x com-

ponent of the side DʹCʹ will be only slightly different from δx, and it turns out 
that the precise departure from this value need not be evaluated explicitly.

Expanding the velocity component v in a Taylor series about the point (0,0) 
results in the following expression for δα:
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Since the argument of the arctangent is small, the entire right-hand side 
may be expanded to give
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This expression represents the change in the angle α per unit time so that 
in the limit as δx, δy, and δt all tend to zero, this expression becomes

	 α⋅ =
∂
∂
v
x
( , )0 0

	

where α⋅  is the time derivative of the angle α. By an identical procedure, it 
follows that the time derivative of the angle β is given by

	 β
⋅
=
∂
∂
u
y
( , )0 0 .	

Recall that α is measured counterclockwise and β is measured clockwise. 
Thus, the rate of clockwise rotation of the fluid element about its centroid is 
given by
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.	

Likewise, the shearing action is measured by the rate at which the sides BʹCʹ 
and DʹCʹ are approaching each other and is therefore given by the quantity
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The foregoing analysis was carried out in two dimensions, which may be 
considered as the projection of a three-dimensional element on the xy plane. 
If the analysis is carried out in the other planes, it may be verified that the 
rate of rotation of the element about its own axes and the rate of shearing are 
given by the following quantities in the yz, xz, and xy planes, respectively:
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Both of these quantities may be represented by a tensor of rank 2, as we 
will now show. Define the deformation-rate tensor eij and split it into its sym-
metric and antisymmetric parts as follows:

	 e
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The antisymmetric part of the deformation-rate tensor represents the rate 
of rotation of a fluid element about its own axes, while the symmetric part 
of the deformation-rate tensor represents the rate of shearing of the fluid 
element. The antisymmetric part has three independent components, corre-
sponding to Equation 1.6a, and these components correspond to those of the 
curl of the velocity vector. The symmetric part has six independent compo-
nents, including the components given in Equation 1.6b, and it corresponds 
to the six independent components of stress at a point. This conclusion will 
be verified a little later in this chapter. That is, there are a total of nine com-
ponents of the deformation-rate tensor since it is a tensor of rank 2, and these 
components collectively represent the rotation and the rate of shear of the 
fluid element.

1.11  Constitutive Equations

In this section, the nine elements of the stress tensor σij will be related to the 
nine elements of the deformation-rate tensor ekl by a set of parameters. All 
these parameters except two will be evaluated analytically, and the remain-
ing two, which are the viscosity coefficients, must be determined empiri-
cally. In order to achieve this end, the postulates for a Newtonian fluid will 
be introduced directly. Water and air are by far the most abundant fluids on 
earth, and they behave like Newtonian fluids, as do many other common 
fluids. It should be pointed out, however, that some fluids do not behave in a 
Newtonian manner, and their special characteristics are among the topics of 
current research. One example is the class of fluids called viscoelastic fluids, 
whose properties may be used to reduce the drag of a body. Since this book is 
concerned with the classical fundamentals only, the Newtonian fluid will be 
treated directly. If the various steps are clearly understood, there should be 
no conceptual difficulty in following the details of some of the more complex 
fluids such as viscoelastic fluids.

Certain observations and postulates will now be made concerning the 
stress tensor. The precise manner in which the postulates are made is largely 
a matter of taste, but when the Newtonian fluid is being treated, the resulting 
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equations are always the same. The following are the four conditions the 
stress tensor is postulated to satisfy:

	 1.	When the fluid is at rest, the stress is hydrostatic and the pressure 
exerted by the fluid is the thermodynamic pressure.

	 2.	The stress tensor σij is linearly related to the deformation-rate tensor 
ekl and depends only on that tensor.

	 3.	Since there is no shearing action in a solid-body rotation of the fluid, 
no shear stresses will act during such a motion.

	 4.	There are no preferred directions in the fluid, so that the fluid prop-
erties are point functions.

Condition 1 requires that the stress tensor σij be of the form

	 σij= −pδij + τij	

where τij depends upon the motion of the fluid only and is called the shear-stress 
tensor. The quantity p is the thermodynamic pressure and δij is the Kronecker 
delta. The pressure term is negative since the sign convention being used here 
is that normal stresses are positive when they are tensile in nature.

The remaining unknown in the constitutive equation for stress is the shear-
stress tensor τij. Condition 2 postulates that the stress tensor, and hence the 
shear-stress tensor, is linearly related to the deformation-rate tensor. This is 
the distinguishing feature of Newtonian fluids. In general, the shear-stress 
tensor could depend upon some power of the velocity gradients other than 
unity, and it could depend upon the velocity itself as well as the velocity 
gradient. The condition postulated here can be verified experimentally in 
simple flow fields in most common fluids, and the results predicted for more 
complex flow fields yield results that agree with physical observations. This 
is the sole justification for condition 2 above.

There are nine elements in the shear-stress tensor τij, and each of these ele-
ments may be expressed as a linear combination of the nine elements in the 
deformation-rate tensor ekl (just as a vector may be represented as a linear com-
bination of components of the base vectors). That is, each of the nine elements 
of τij will, in general, be a linear combination of the nine elements of ekl so that 
81 parameters are needed to relate τij to ekl. This means that a tensor of rank 4 is 
required so that the general form of τij will be, according to condition 2,

	 τ αij ijkl
k

l

u
x

=
∂
∂

.	

It was shown in the previous section that the tensor ∂uk/ ∂xl, like any 
other tensor of rank 2, could be broken down into an antisymmetric part 
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and a symmetric part. Here, the antisymmetric part corresponds to the 
rate of rotation of a fluid element, and the symmetric part corresponds to 
the shearing rate. According to condition 3, if the flow field is executing a 
simple solid-body  rotation, there should be no shear stresses in the fluid. 
However, for a solid-body rotation, the antisymmetric part of ∂uk/ ∂xl, namely, 
1
2
( )∂ ∂ − ∂ ∂u x u xk l l k/ / , will not be zero. Hence, in order that condition 3 may 

be satisfied, the coefficients of this part of the deformation-rate tensor must 
be zero. That is, the constitutive relation for stress must be of the form

	 τ βij ijkl
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.	

The 81 elements of the fourth-rank tensor βijkl are still undetermined, but 
condition 4 has yet to be imposed. This condition is the so-called condition of 
isotropy, which guarantees that the results obtained should be independent 
of the orientation of the coordinate system chosen. In Appendix B (a sum-
mary of some useful tensor relations), it is pointed out that the most general 
isotropic tensor of rank 4 is of the form

	 βijkl = λδijδkl + μ(δikδjl + δilδjk) + γ(δikδjl − δilδjk)

where λ, μ, and γ are scalars. The proof of this is straightforward but tedious. 
The general tensor is subjected to a series of coordinate rotations and inflec-
tions, and the condition of invariance is applied. In this way, the 81 quantities 
contained in the general tensor are reduced to three independent quantities 
in the isotropic case. In the case of the fourth-rank tensor relating the shear-
stress tensor to the deformation-rate tensor, namely, βijkl, not only must it be 
isotropic but it must be symmetric in view of condition 3 as well. That is, 
the coefficient γ must be zero in this case so that the expression for the shear 
stress becomes
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Using the fact that δkl = 0 unless l = k shows that
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in which l has been replaced by k. Likewise, replacing k by i and l by j shows 
that
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and replacing l by i and k by j shows that
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Hence, the expression for the shear-stress tensor becomes
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Thus, the constitutive relation for stress in a Newtonian fluid becomes
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which shows that the stress is represented by a second-order symmetric 
tensor.

The nine elements of the stress tensor σij have now been expressed in terms 
of the pressure and the velocity gradients, which have all been previously 
introduced, and two coefficients λ and μ. These coefficients cannot be deter-
mined analytically and must be determined empirically. Up to this point, 
both λ and μ are just coefficients, but their nature and physical significance 
will be discussed in the next section.

The second constitutive relation involves the heat-flux vector qj, which rep-
resents conduction alone. Fourier’s law of heat conduction states that the heat 
flux by conduction is proportional to the negative temperature gradient so 
that

	 q k
T
xj
j

= −
∂
∂

.	 (1.8)

This is the constitutive equation for the heat flux, where the proportional-
ity factor k in Fourier’s law is the thermal conductivity of the fluid. In using 
Equation 1.8, it is implicitly assumed that the concept of temperature, as 
employed in equilibrium thermodynamics, also applies to a moving fluid.
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1.12  Viscosity Coefficients

It was pointed out in the previous section that the parameters λ and μ, which 
appear in the constitutive equations for stress, must be determined experi-
mentally. It is the purpose of this section to establish a physical interpreta-
tion of these two parameters and thus show the manner in which they may 
be evaluated.

Consider a simple shear flow of an incompressible fluid in which the veloc-
ity components are defined by

	 u = u(y)	

	 v = w = 0	

That is, only the x component of velocity is nonzero, and that component is 
a function of y only. From the definition of this flow field, the components of 
the stress tensor may be evaluated from Equation 1.7 to give

	

σ σ
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That is, the normal components of the stress are defined by the thermody-
namic pressure, and the nonzero shear components of the stress are propor-
tional to the velocity gradient with the parameter μ as the proportionality 
factor. However, from Newton’s law of viscosity, the proportionality factor 
between the shear stress and the velocity gradient in a simple shear flow is 
the dynamic viscosity. Hence, the quantity μ that appears in the constitutive 
equation for stress is the dynamic viscosity of the fluid. Frequently, the kine­
matic viscosity, defined by υ = μ/ρ, is used instead of the dynamic viscosity.

The parameter λ in Equation 1.7 is usually referred to as the second viscos­
ity coefficient. In order to establish its significance, the average normal stress 
component p  will be calculated.

	 − = + +p
1
3 11 22 33( )σ σ σ .	

This average normal stress is the mechanical pressure in the fluid, and it is 
equal to one-third of the trace of the stress tensor. Since the mechanical pres-
sure is either purely hydrostatic or hydrostatic plus a component induced by 
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the stresses that result from the motion of the fluid, it will, in general, be dif-
ferent from the thermodynamic pressure p. Using Equation 1.7, the mechani-
cal pressure p  may be evaluated as follows:
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That is, the difference between the thermodynamic pressure and the 
mechanical pressure is proportional to the divergence of the velocity vector. 
The proportionality factor is usually referred to as the bulk viscosity and is 
denoted by K. That is,

	 p p K
u
x
k

k

− =
∂
∂ 	

where K = +λ
2
3

. Of the three viscosity coefficients μ, λ, and K, only two are 

independent and the third is defined by the equation that defines K. For pur-
poses of physical interpretation of these viscosity coefficients, it is preferred 
to discuss μ (which has already been done) and K, leaving λ to be defined by 

λ = −K
2
3

.

In order to identify the physical significance of the bulk viscosity, some of 
the results of the kinetic theory of gases will be used. The mechanical pres-
sure is a measure of the translational energy of the molecules only, whereas 
the thermodynamic pressure is a measure of the total energy, which includes 
vibrational and rotational modes of energy as well as the translational mode. 
For liquids, other forms of energy are also included such as intermolecular 
attraction. These different modes of molecular energy have different relax-
ation times, so that in any given flow field, it is possible to have energy trans-
ferred from one mode to another. The bulk viscosity is a measure of this 
transfer of energy from the translational mode to the other modes, as may be 
seen from the relation p p K u xk k− = ∂ ∂( )/ . For example, during the passage 
through a shock wave, the vibrational modes of energy are excited at the 
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expense of the translational modes, so that the bulk viscosity will be nonzero 
in this case.

The above discussion has been for a polyatomic molecule of a liquid or a 
gas. If the fluid is a monatomic gas, the only mode of molecular energy is the 
translational mode. Then, for such a gas, the mechanical pressure and the ther-
modynamic pressure are the same, so that the bulk viscosity is zero. That is,

	 λ = −
2
3 	

which is called Stokes’ relation, so that there is only one independent viscosity 
coefficient in the case of monatomic gases. For polyatomic gases and for liq-
uids, the departure from K = 0 is frequently small, and many authors incor-
porate Stokes’ relation in the constitutive relation (Equation 1.7) for stress. In 
any case, for incompressible fluids, Equation 1.7 shows that it is immaterial 

whether λ = −
2
3

 or not, for then the term involving λ is zero by virtue of 

the continuity equation.

1.13  Navier–Stokes Equations

The equation of momentum conservation (Equation 1.4), together with the 
constitutive relation for a Newtonian fluid (Equation 1.7), yields the famous 
Navier–Stokes equations, which are the principal conditions to be satisfied by 
a fluid as it flows. Having obtained an expression for the stress tensor, the term 
∂σij/ ∂xi that appears in Equation 1.4 may be evaluated explicitly as follows:
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where, in the first two terms, i has been replaced by j since it is only when i = j 
that these terms are nonzero. Substituting this result into Equation 1.4 gives

	 ρ ρ λ
∂

∂
+

∂

∂
= −

∂

∂
+

∂
∂

∂
∂

+
∂
∂

u

t
u

u

x
p
x x

u
x x

j
k

j

k j j

k

k i

∂∂
∂

+
∂

∂
+

u
x

u

x
fi

j

j

i
jρ .	 (1.9a)



33Basic Conservation Laws

Equation 1.9a is known as the Navier–Stokes equations, representing three 
scalar equations corresponding to the three possible values of the free sub-
script j. In the most frequently encountered situations, the fluid may be 
assumed to be incompressible and the dynamic viscosity may be assumed to 
be constant. Under these conditions, the second term on the right-hand side 
of Equation 1.9a is identically zero and the viscous-shear term becomes
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That is, the viscous-shear term is proportional to the Laplacian of the 
velocity vector, and the constant of proportionality is the dynamic viscosity. 
Then, the Navier–Stokes equations for an incompressible fluid of constant 
density become
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In the special case of negligible viscous effects, Equation 1.9a becomes
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Equation 1.9c is known as the Euler equations and the fluid is said to be 
inviscid.

1.14  Energy Equation

The term σij(∂uj/ ∂xi) that appears in the equation of energy conservation 
(Equation 1.5) may now be evaluated explicitly by use of Equation 1.7.
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Using the fact that the first two terms on the right-hand side of this equa-
tion are zero unless i = j, this expression becomes
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It will be recalled that the term σij(∂uj/ ∂xi) represents the work done by the 
surface forces. The first term in the expression for this work done, namely, 
–ρ(∂uk/ ∂xk), represents the reversible transfer of energy due to compression. 
The remaining two terms are collectively called the dissipation function and 
are denoted by Φ. That is,
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The reason Φ is called the dissipation function is that it is a measure of the 
rate at which mechanical energy is being converted into thermal energy. This 
may be readily verified by considering an incompressible fluid in a Cartesian 
coordinate system. Then,
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which is a positive-definite quantity. This shows that the dissipation func-
tion always works to increase irreversibly the internal energy of an incom-
pressible fluid.

In terms of the dissipation function, the total work done by the surface 
stresses is given by
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Using this result and the constitutive relation for the heat flux (Equation 
1.8) in the equation of conservation of energy, Equation 1.5, yields the energy 
equation for a Newtonian fluid:
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where Φ is defined by Equation 1.10.

1.15  Governing Equations for Newtonian Fluids

The equations that govern the motion of a Newtonian fluid are the continu-
ity equation (Equation 1.3a), the Navier–Stokes equations (Equation 1.9a), the 
energy equation (Equation 1.11), and equations of state. For purposes of sum-
mary and discussion, these equations will be repeated here.
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	 (1.11)

	 p = p (ρ, T)	 (1.12)

	 e = e (ρ, T).	 (1.13)

The last two equations are general representations of the thermal and 
caloric equations of state, respectively. The most frequently encountered 
form of the thermal equation of state is the ideal-gas law p = ρRT, whereas 
the most frequently encountered form of the caloric equation of state is e = 
CVT, where CV is the specific heat at constant volume.

The preceding set of equations represents seven equations that are to be 
satisfied by seven unknowns. Each of the continuity, energy, and state equa-
tions supplies one scalar equation, whereas the Navier–Stokes equations 
supply three scalar equations. The seven unknowns are the pressure, den-
sity, internal energy, temperature, and velocity components, that is, p, ρ, e, T, 
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and uj. The parameters λ, μ, and k are assumed to be known from experimen-
tal data, and they may be constants or specified functions of the temperature 
and pressure.

It is not always necessary to solve the complete set of equations in order 
to define the flow field analytically. For example, if compressible effects are 
thought to be unimportant in the flow field being considered, the incom-
pressible form of the governing equations may be used. The continuity 
equation and the Navier–Stokes equations are then simpler, as indicated 
by Equations 1.3c and 1.9b, respectively, but the greatest simplification 
comes from the fact that the energy equation is mathematically uncoupled 
from these two equations. The continuity and Navier–Stokes equations 
offer four scalar equations involving only p and uj. That is, the pressure 
and velocity fields may be established without reference to the energy 
equation. After doing this, the temperature field may be established sepa-
rately, and the temperature may have the trivial solution T = constant. In 
cases of forced convection heat transfer in which the flow is turbulent, 
the continuity and Navier–Stokes equations are frequently replaced by an 
empirical velocity distribution, and the energy equation is solved to yield 
the temperature distribution. More frequently, however, thermal effects 
are unimportant, and the continuity and Navier–Stokes equations alone 
must be solved.

The most common type of body force acting on a fluid is due to gravity, so 
that the body force fj that appears in the Navier–Stokes equations is defined 
in magnitude and direction by the acceleration due to gravity. Sometimes, 
however, electromagnetic effects are important, and in such cases, f = (ρcE + 
J  × B), which is the Lorentz force. Here, ρc is the charge density, E is the 
electric field vector, J is the electric current density, and B is the magnetic 
field vector. The electric and magnetic fields themselves must obey a set of 
physical laws that are expressed by Maxwell’s equations. The solution to 
such problems requires the simultaneous solution of the equations of fluid 
mechanics and of electromagnetism. One special case of this type of cou-
pling is the field known as magnetohydrodynamics.

It may also be pointed out that the governing equations summarized here 
contain the equations of hydrostatics and heat conduction as special cases. 
If the fluid is at rest, the velocity components will all be zero, so that the 
Navier–Stokes equations (Equation 1.9a) become

	 0 = −
∂

∂
+

p
x

f
j

jρ .	

If the body force fj is now set equal to the gravitational force, the equa-
tion of hydrostatics is obtained. For example, if gravity acts in the negative z 
direction, fj = – gez, where ez is the unit vector in the z direction. Then,
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which shows that ∂p/ ∂x = ∂p/ ∂y = 0 and ∂p/ ∂z = – ρg. In the case of zero veloc-
ity, the energy equation becomes
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Introducing the enthalpy h = e + p/ρ and using the fact that p and ρ are 
constant in a stationary fluid give
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If the fluid is thermally perfect, h will be a function of T only, so that
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where Cp is the specific heat at constant pressure, which is the appropriate 
process for this case. Then, the energy equation becomes
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which is the equation of heat conduction.

1.16  Boundary Conditions

The Navier–Stokes equations are, mathematically, a set of three elliptic, 
second-​order partial differential equations. The appropriate type of bound-
ary conditions is therefore Dirichlet or Neumann conditions on a closed 
boundary. Physically, this usually amounts to specifying the velocity on all 
solid boundaries. Within the continuum approximation, the experimentally 
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determined boundary condition is that there is no slip between the fluid and 
a solid boundary at the interface. On the molecular scale, slippage is possible, 
but it is confined within a layer whose dimensions are of the same order as 
the mean free path between the molecules. Then, if U represents the velocity 
of a solid boundary, the boundary condition that should be imposed on our 
continuum velocity is

	 u = U	 on solid boundaries.	 (1.14)

In the case of an infinite expanse of fluid, one common form of Equation 
1.14 is that u → 0 as x → ∞.

If thermal effects are included, a boundary condition on the tempera-
ture is also required. As in the case of heat-conduction problems, this 
may take the form of specifying the temperature or the heat flux on some 
boundary.

PROBLEMS

	 1.1	 Derive the continuity equation from first principles using an infini­
tesimal control volume of rectangular shape and having dimensions 
(δx, δy, δz). Identify the net mass flow rate through each surface of 
this element as well as the rate at which the mass of the element is 
increasing. The resulting equation should be expressed in terms 
of the Cartesian coordinates (x,y,z,t), the Cartesian velocity compo-
nents (u,v,w), and the fluid density ρ.

	 1.2	 Derive the continuity equation from first principles using an infini­
tesimal control volume of cylindrical shape and having dimensions 
(δR, Rδθ, δz). Identify the net mass flow rate through each surface of 
this element as well as the rate at which the mass of the element is 
increasing. The resulting equation should be expressed in terms of 
the cylindrical coordinates (R,θ,z,t), the cylindrical velocity compo-
nents (uR,uθ,uz), and the fluid density ρ.

	 1.3	 Derive the continuity equation from first principles using an infini­
tesimal control volume of spherical shape and having dimensions (δr, 
rδθ, rsinθ δω). Identify the net mass flow rate through each surface 
of this element as well as the rate at which the mass of the element 
is increasing. The resulting equation should be expressed in terms 
of the spherical coordinates (r,θ,ω,t), the spherical velocity compo-
nents (ur,uθ,uω), and the fluid density ρ.

	 1.4	 Obtain the continuity equation in cylindrical coordinates by 
expanding the vector form in cylindrical coordinates. To do this, 
make use of the following relationships connecting the coordi-



39Basic Conservation Laws

nates and the velocity components in Cartesian and cylindrical 
coordinates:

	 x = R cos θ	

	 y = R sin θ	

	 z = z	

	 u = uR cos θ − uθ sin θ	

	 v = uR sin θ + uθ cos θ	

	 w = uz.	

	 1.5	 Obtain the continuity equation in spherical coordinates by expand-
ing the vector form in spherical coordinates. Make use of the vector 
relationships outlined in Appendix A and follow the procedures 
used in Problem 1.4.

	 1.6	 Evaluate the radial component of the inertia term (u · ∇)u in cylin-
drical coordinates using the following identities:

	 x = R cos θ	

	 y = R sin θ	

	 uex + vey = uR eR + uθ eθ	

	 and any other vector identities from Appendix A as required. Here, 
R and θ are cylindrical coordinates, uR and uθ are the correspond-
ing velocity components, and eR and eθ are the unit base vectors.

	 1.7	 Evaluate the radial component of the inertia term (u · ∇)u in spheri-
cal coordinates by use of the vector identities given in Appendix A.

	 1.8	 Start with the shear stress tensor τij. Write out the independent 
components of this tensor in Cartesian coordinates (x,y,z) using the 
Cartesian representation (u,v,w) for the velocity vector. Specialize 
these expressions for the case of a monatomic gas for which the 
Stokes relation applies.
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	 1.9	 Write out the expression for the dissipation function, Φ, for the same 
conditions and using the same notation as defined in Problem 1.8.

	 1.10	 Write down the equations governing the velocity and pressure in 
steady, two-dimensional flow of an inviscid, incompressible fluid, 
but for which the density is not a constant, in which the effects of 
gravity may be neglected. If the fluid is stratified, the density ρ will 
depend, in general, on both x and y. Show that the transformation

	 u u∗ =
ρ
ρ0 	

	 v v∗ =
ρ
ρ0 	

		  in which ρ0 is a constant reference density, transforms the govern-
ing equations into those of a constant-density fluid whose velocity 
components are u* and v*.
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2
Flow Kinematics

This chapter explores some of the results that may be deduced about the 
nature of a flowing continuum without reference to the dynamics of the 
continuum.

The first topic, flow lines, introduces the notions of streamlines, pathlines, 
and streaklines. These concepts not only are useful for flow-visualization 
experiments but also supply the means by which solutions to the governing 
equations may be interpreted physically.

The concepts of circulation and vorticity are then introduced. Although 
these quantities are treated only in a kinematic sense at this stage, their full 
usefulness will become apparent in the later chapters when they are used in 
the dynamic equations of motion.

The concept of the streamline leads to the concept of a stream tube or a 
stream filament. Likewise, the introduction of the vorticity vector permits 
the topic of vortex tubes and vortex filaments to be discussed. Finally, this 
chapter ends with a discussion of the kinematics of vortex filaments or 
vortex lines. In this treatment, a useful analogy with the flow of an incom-
pressible fluid is used. The results of this study form part of the so-called 
Helmholtz equations, with the remaining parts being taken up in the next 
chapter, which deals with, among other things, the dynamics of vorticity.

2.1  Flow Lines

Three types of flow lines are used frequently for flow-visualization pur-
poses. These flow lines are called streamlines, pathlines, and streaklines, and in 
a general flow field, they are all different. The definitions and equations of 
these various flow lines will be obtained separately below.

2.1.1  Streamlines

Streamlines are lines whose tangents are everywhere parallel to the veloc-
ity vector. Since, in unsteady flow, the velocity vector at a given point will 
change both its magnitude and its direction with time, it is meaningful to 
consider only the instantaneous streamlines in the case of unsteady flows.
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In order to establish the equations of the streamlines in a given flow field, 
consider first a two-dimensional flow field in which the velocity vector u has 
components u and v in the x and y directions, respectively. Then, by virtue of 
the definition of a streamline, its slope in the xy plane, namely, dy/dx, must 
be equal to that of the velocity vector, namely, v/u. That is, the equation of the 
streamline in the xy plane is

	
d
d
y
x

v
u

=
	

where, in general, both u and v will be functions of x and y. Integration of 
this equation with respect to x and y, holding t fixed, will then yield the 
equation of the streamline in the xy plane at that instant in time.

In the case of a three-dimensional flow field, the foregoing analysis is valid 
for the projection of the velocity vector on the xy plane. By similarly treating 
the projections on the xz plane and on the yz plane, the slopes of the stream-
lines are found to be
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on the xz and yz planes, respectively. These three equations defining the 
streamline may be written in the form
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Written in this form, it is clear that these three equations may be expressed 
in the following more compact form:
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= = .	

Integration of these equations for fixed t will yield, for that instant in time, 
an equation of the form z = z(x, y), which is the required streamline. The 
easiest way of carrying out the required integration is to try to obtain the 
parametric equations of the curve z = z(x, y) in the form x = x(s), y = y(s), and 
z = z(s). Elimination of the parameter s among these equations will then yield 
the equation of the streamline in the form z = z(x, y).
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Thus, a parameter s is introduced whose value is zero at some reference 
point in space and whose value increases along the streamline. In terms of 
this parameter, the equations of the streamline become

	
d d d

d
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v

z
w

s= = = .	

These three equations may be combined in tensor notation to give

	
d
d

fixed
x
s

u x t ti
i i= ( , ) 	 (2.1)

in which it is noted that if the velocity components depend upon time, the 
instantaneous streamline for any fixed value of t is considered. If the stream-
line that passes through the point (x0, y0, z0) is required, Equation 2.1 is inte-
grated and the initial conditions that when s = 0, x = x0, y = y0, and z = z0 are 
applied. This will result in a set of equations of the form

	 xi = xi (x0, y0, z0 , t, s)	

which, as s takes on all real values, traces out the required streamline.
As an illustration of the determination of streamline patterns for a given 

flow field, consider the two-dimensional flow field defined by

	 u = x(1 + 2t)	

	 v = y	

	 w = 0.	

From Equation 2.1, the equations to be satisfied by the streamlines in the 
xy plane are
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Integration of these equations yields

	 x = C1e(1+2t)s	

	 y = C2es	
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which are the parametric equations of the streamlines in the xy plane. In par-
ticular, suppose the streamlines passing through the point (1, 1) are required. 
Using the initial conditions that when s = 0, x = 1 and y = 1 shows that C1 = 
C2 = 1. Then, the parametric equations of the streamlines passing through 
the point (1, 1) are

	 x = e(1+2t)s	

	 y = es.	

The fact that the streamlines change with time is evident from the preced-
ing equations. Suppose the streamline passing through the point (1, 1) at 
time t = 0 is required; then,

	 x = es	

	 y = es.	

Hence, the equation of the streamline is

	 x = y.	

This streamline is shown in Figure 2.1 together with other flow lines, 
which are discussed below.
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FIGURE 2.1
Comparison of the streamline through the point (1, 1) at t = 0 with the pathline of a particle that 
passed through the point (1, 1) at t = 0 and the streakline through the point (1, 1) at t = 0 for the 
flow field u = x(1 + 2t), v = y, w = 0.
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2.1.2  Pathlines

A pathline is a line traced out in time by a given fluid particle as it flows. 
Since the particle under consideration is moving with the fluid at its local 
velocity, pathlines must satisfy the equation

	
d
d
x
t

u x ti
i i= ( , ).	 (2.2)

The equation of the pathline that passes through the point (x0, y0, z0) at time 
t = 0 will then be the solution to Equation 2.2, which satisfies the initial condi-
tion that when t = 0, x = x0, y = y0, and z = z0. The solution will therefore yield 
a set of equations of the form

	 xi = xi(x0, y0, z0, t)	

which, as t takes on all values greater than zero, will trace out the required 
pathline.

As an illustration of the manner in which the equation of a pathline is 
obtained, consider again the flow field defined by

	 u = x(1 + 2t)	

	 v = y	

	 w = 0.	

From Equation 2.2, the differential equations to be satisfied by the path-
lines are
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Integration of these equations gives

	 x = C1et(1+t)	

	 y = C2et.	

These are the parametric equations of all the pathlines in the xy plane for 
this particular flow field. In particular, if the pathline of the particle that 
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passed through the point (1, 1) at t = 0 is required, these parametric equations 
become

	 x = et(1+t)	

	 y = et.	

Eliminating t from these equations shows that the equation of the required 
pathline is

	 x = y1+log y.	

This pathline is shown in Figure 2.1, from which it will be seen that the 
streamline that passes through (1, 1) at t = 0 does not coincide with the path-
line for the particle that passed through (1, 1) at t = 0.

2.1.3  Streaklines

A streakline is a line traced out by a neutrally buoyant marker fluid that is 
continuously injected into a flow field at a fixed point in space. The marker 
fluid may be smoke (if the main flow involves air or some other gas) or a dye 
(if the main flow involves water or some other liquid).

A particle of the marker fluid that is at the location (x, y, z) at time t must 
have passed through the injection point (x0, y0, z0) at some earlier time t = τ. 
Then, the time history of this particle may be obtained by solving the equa-
tion for the pathline (Equation 2.2) subject to the initial conditions that x = 
x0, y = y0, and z = z0 when t = τ. Then, as τ takes on all possible values in the 
range –∞ ≤ τ ≤ t, all fluid particles on the streakline will be obtained. That 
is, the equation of the streakline through the point (x0, y0, z0) is obtained by 
solving Equation 2.2 subject to the initial conditions that when t = τ, x = x0, 
y = y0, and z = z0. This will yield an expression of the form

	 xi = xi (x0, y0, z0, t, τ).	

Then, as τ takes on the values τ ≤ t, these equations will define the instan-
taneous location of that streakline.

As an illustrative example, consider the flow field that was used to illus-
trate the streamline and the pathline. Then, the equations to be solved for 
the streakline are
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which integrate to give

	 x = C1et(1+t)	

	 y = C2et.	

Using the initial conditions that x = y = 1 when t = τ, these equations become

	 x = et(1+t)−τ (1+τ)	

	 y = et−τ.	

These are the parametric equations of the streakline that pass through the 
point (1, 1), and they are valid for all times t. In particular, at t = 0, these equa-
tions become

	 x = e−τ(1+τ)	

	 y = e−τ.	

Eliminating τ from these parametric equations shows that the equation of 
the streakline that passes through the point (1, 1) is, at time t = 0,

	 x = y1−log y.	

This streakline is shown in Figure 2.1 along with the streamline and the 
pathline that were obtained for the same flow field. It will be noticed that 
none of the three flow lines coincide.

2.2  Circulation and Vorticity

The circulation contained within a closed contour in a body of fluid is defined 
as the integral around the contour of the component of the velocity vector 
that is locally tangent to the contour. That is, the circulation Γ is defined as

	 Γ ⋅= ∫ u d1� 	 (2.3)

where d1 represents an element of the contour. The integration is taken 
counterclockwise around the contour, and the circulation is positive if this 
integral is positive.
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The vorticity of an element of fluid is defined as the curl of its velocity vec-
tor. That is, the vorticity ω is defined by

	 ω = ∇ × u.	 (2.4)

In tensor notation, Equation 2.4 may be written in the form

	 ω i ijk
j

k

u

x
= −

∂

∂
ε .	

From this definition, it is evident that, by comparison with Equation 1.6a, 
the vorticity vector is numerically twice the angular speed of rotation of the 
fluid element about its own axes. That is, the vorticity is equal to twice the 
antisymmetric part of the deformation-rate tensor ejk. It should be noted that 
a fluid element may travel on a circular streamline while having zero vortic-
ity. Vorticity is proportional to the angular velocity of a fluid element about 
its principal axes, not the angular velocity of the center of gravity of the ele-
ment about some reference point. Thus, a particle traveling on a circular 
streamline will have no vorticity, provided that it does not revolve about its 
own center of gravity as it moves.

The vorticity contained in a fluid element is related to the circulation 
around the element. This relationship may be obtained from an application of 
Stokes’ theorem to the definition of circulation as follows. From Equation 2.3

	
Γ = ⋅

= × ⋅

∫
∫

u d1

u

�
( ) ndA

A 	

where the contour integral has been converted to a surface integral by use 
of Stokes’ theorem, in which A is the area defined by the closed contour 
around which the circulation is calculated and n is the unit normal to the 
surface. Finally, invoking the definition of the vorticity vector, this relation-
ship becomes

	 Γ = ⋅∫ ωω ndA
A

. 	 (2.5)

Equation 2.5 shows that, for arbitrary choices of contours and enclosing 
areas A, if ω = 0, then Γ = 0 and vice versa. Flows for which ω = 0 are called 
irrotational, and flows for which this is not so are called rotational. The distinc-
tion between rotational and irrotational flow fields is an important one from 
an analytic point of view, as will be seen in later chapters.
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2.3  Stream Tubes and Vortex Tubes

The concept of a streamline, which was introduced in an earlier section, may 
be used to define a stream tube, which is a region whose sidewalls are made 
up of streamlines. For any closed contour in a flow field, each point on the 
contour will have a streamline passing through it. Then, by considering all 
points on the contour, a series of streamlines that form a surface are obtained, 
and this surface is called a stream tube. Figure 2.2a shows a length of stream 
tube defined by a contour whose area is A1. The corresponding area at some 
other section is shown as A2, where in general A2 will be different from A1 
and the shapes of the two cross sections of the stream tube will be different. 
If the cross section of a stream tube is infinitesimally small, the stream tube 
is usually referred to as a stream filament.

By analogy with streamlines and stream tubes, the useful concepts of 
vortex lines and vortex tubes may be introduced. A vortex line is a line 
whose tangents are everywhere parallel to the vorticity vector. Then, for 
any closed contour in a flow field, each point on the contour will have a 
vortex line passing through it, and the series of vortex lines defined by the 
closed contour form a vortex tube. Figure 2.2b shows a length of vortex tube 
defined by a contour whose area is A1. The cross-sectional area and shape 
at any other section of the vortex tube will, in general, be different. A vortex 
tube whose area is infinitesimally small is usually referred to as a vortex 
filament.
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FIGURE 2.2
(a) Stream tube and (b) vortex tube subtended by a contour of area A1 in a flow field.
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2.4  Kinematics of Vortex Lines

Certain properties of flow lines may be established by studying the kine-
matics of vortex lines. The results so obtained form part of what is some-
times referred to as the Helmholtz theorems of vorticity. The other parts of the 
Helmholtz theorems involve the dynamics of vorticity, which will be taken 
up in the next chapter.

Equation 2.4 defines the vorticity vector as the curl of the velocity vector. 
Since the divergence of the curl of any vector is identically zero, it follows 
that

	 ∇ · ω = 0.	

Since the vorticity vector is divergence-free, it follows that there can be no 
sources or sinks of vorticity in the fluid itself. That is, vortex lines must either 
form closed loops or terminate on the boundaries of the fluid. The boundar-
ies of the fluid may be either a solid surface or a free surface.

The fact that the vorticity vector is divergence-free leads to an analogy 
with the flow of an incompressible fluid. In this analogy, the counterpart of 
the velocity vector is the vorticity vector, and the counterpart of the volume 
flow rate is the circulation. To establish this analogy, a sequence of opera-
tions will be performed first on the velocity vector for an incompressible 
flow field and then on the vorticity vector.

The continuity equation for an incompressible fluid is

	 ∇ · u = 0.	

Integrating this expression over some volume V gives

	 ⋅ =∫ udV 0
V

. 	

By use of Gauss’ theorem, this volume integral may be converted to the 
equivalent surface integral

	
u ⋅ =∫ nds 0

s 	

where the surface s encloses the volume V. Now, consider the surface s to be 
the entire outer surface of an element of a stream tube or stream filament, as 
shown in Figure 2.2a, including the ends. Then, since u · n = 0 on the walls of 
the stream tube by definition, it follows that

	 u n u n⋅ + ⋅ =∫∫ d ds s
AA

0
21

.	
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Since n is defined as the outward unit normal,

	 u n⋅ = −∫ ds Q
A

1
1 	

and

	 u n⋅ =∫ ds Q
A

2
2 	

where Q1 is the volume flow rate crossing the area A1, and Q2 is the volume 
flow rate crossing the area A2. That is, the fact that the vector u is divergence-
free leads to the result

	 Q1 = Q2

which states that the volume of fluid crossing the area A1 per unit time is 
equal to that crossing the area A2 per unit time. Since the fluid was assumed 
to be incompressible, this result appears intuitively obvious.

Turning now to the vorticity vector, it was shown that

	 ∇ · ω = 0	

so that

	 ωω⋅ dV =∫ 0
V

	

and

	 ωω ⋅ =∫ nds 0
s

	

where the surface s enclosed the volume V. Now, consider the surface s to be 
the entire outer surface of an element of a vortex tube or a vortex filament 
as shown in Figure 2.2b, including the ends. By definition of the vortex lines 
that make up the surface of the vortex tube, ω ∙ n = 0 on the walls of the vor-
tex tube. Then,

	 ωω ωω⋅ + ⋅ =∫∫ n nd ds s
AA

0
21

.	

However, from Equation 2.5

	 ωω ⋅ = −∫ nds
A

Γ1
1 	
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and

	 ωω ⋅ =∫ nds
A

Γ2
2

.	

Hence, the fact that ω is divergence-free results in the condition

	 Γ1 = Γ2.	

That is, the circulation around the limiting contour of the area A1 is equal 
to that around A2. Alternatively, this result may be stated in the form that 
the circulation at each cross section of a vortex tube is the same. This means 
that if the cross-sectional area of the vortex tube increases, the average value 
of the vorticity across that section must decrease, just as the average velocity 
would decrease to satisfy continuity. In fact, the result Γ1 = Γ2 may be put in 
the form of the simple, one-dimensional continuity equation. If ω1 denotes 
the average vorticity across the area A1 and ω2 denotes that across A2, the 
result

	 ωω ωω⋅ + ⋅ =∫∫ n nd ds s
AA

0
21 	

becomes

	 ω1A1 = ω2A2.	 (2.6)

The fact that the vorticity vector ω is divergence-free means that vortex 
tubes must terminate on themselves, at a solid boundary or at a free surface. 
Smoke rings terminate on themselves, while a vortex tube in a free surface 
flow over a solid boundary may have one end at the solid boundary forming 
the bottom and the other end at the free surface.

PROBLEMS

	 2.1	 It is required to reproduce the graph shown in Figure 2.1 of the text. 
The curves should be drawn from a sufficiently large number of cal-
culated points that a smooth curve is obtained in each case. Print 
your graph in landscape mode and adjust its size so that the size of 
one unit in the x direction corresponds to the size of one unit in the y 
direction. Also, make the range and the grid lines in both the x and 
y directions correspond to those presented in Figure 2.1 of the text 
and make the diagram “fill” a regular-size sheet of paper.

	 2.2	 Consider the two-dimensional flow field defined by the following 
velocity components:



53Flow Kinematics

	 u
v
t

v w=
+

= =
1

1 0.	

		  For this flow field, find the equation of
(a)	 The streamline through the point (1,1) at t = 0
(b)	 The pathline for a particle released at the point (1,1) at t = 0
(c)	 The streakline at t = 0, which passes through the point (1,1)

	 2.3	 A two-dimensional flow field has the following velocity components:

	 u = x(1 + t)	 v = 1	 w = 0.	

		  Determine the following quantities for this flow field:
(a)	 The equation of the streamline that passes through the point (1,1) 

as seen at t = 0.
(b)	 The equation of the pathline for a particle released at the point 

(1,1) at time t = 0.
(c)	 The equation of the streakline that passes through the point (1,1) 

as seen at t = 0.
(d)	 The density at time t = 0 on a particular streamline in this flow 

has the value ρ0, which is a constant. Find an expression for the 
density ρ at any subsequent time t on the same streamline.

	 2.4	 Show that the streamlines and particle paths coincide for the follow-
ing flow field for values of i = 1, 2, and 3:

	 ui = xi /(1 + t).	

	 2.5	 The velocity components for a particular flow field are as follows:

	 u = 16x2 + y	 v = 10	 w = yz2.	

(a)	 Determine the circulation, Γ, for this flow field around the 
following contour by integrating the velocity around it 
counterclockwise:

	 0 ≤ x ≤ 10	 y = 0	

	 0 ≤ y ≤ 5	 x = 10	

	 10 ≥ x ≥ 0	 y = 5	

	 5 ≥ y ≥ 0	 x = 0.	
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(b)	 Calculate the vorticity vector, ω, for the given flow field and 
hence evaluate:

	 ωω ⋅∫ nd
A

A
	

	 where A is the area of the rectangle defined in (a) and n is the unit 
normal to that area. Compare the result obtained in (b) with that 
obtained in (a).

	 2.6	 Consider the two-dimensional velocity distribution defined as follows:

	 u
x

x y
v

y

x y
= −

+
=

+2 2 2 2 .	

		  Determine the circulation for this flow field around the following 
contour by integrating around it counterclockwise:

	 −1 ≤ x ≤ +1	 y = −1	

	 −1 ≤ y ≤ +1	 x = +1	

	 +1 ≥ x ≥ −1	 y = +1	

	 +1 ≥ y ≥ −1	 x = −1.	

	 2.7	 A particular three-dimensional flow field has the following velocity 
components:

	 u = 9x2 + 2y	 v = 10x	 w = −2yz2.	

(a)	 Using the same contour as defined in Problem 2.6 on the plane 
z = 5, determine the circulation for the given flow field.

(b)	 Calculate the vorticity vector for the given flow field at any point 
(x,y) in the plane z = 5.

(c)	 Using the value obtained in (b) for the vorticity vector ω in the 
plane z = 5, evaluate the following integral:

	 ωω ⋅∫ nd
A

A.	

		  In the above, A is the area of the rectangle defined in (a), and n is 
the unit normal to that area in the positive z direction. Compare the 
result obtained in (c) with that obtained in (a).
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	 2.8	 The velocity components for a particular two-dimensional flow field 
are defined as follows:

	 u
y

x y
v

x
x y

= −
+

=
+2 2 2 2 .	

(a)	 Using the same contour as defined in Problem 2.6, determine the 
circulation for the given flow field.

(b)	 Calculate the vorticity vector for the given flow field at any point 
(x,y).

(c)	 Calculate the divergence of the velocity vector for the given flow 
field at any point (x,y).

	 2.9	 Consider the two-dimensional velocity distribution of a fluid defined 
as follows:

	 u = αy	 v = βx.	

		  In the above, α and β are both constants.
(a)	 Determine the circulation Γ for this flow field around the same 

contour as in Problem 2.6 by integrating in the counterclockwise 
direction.

(b)	 Evaluate the following integral for this flow field:

	 ωω ⋅∫ nd
A

A.
	

(c)	 Find the equations of the streamlines for the given flow field in 
terms of an unspecified constant of integration.

(d)	 For α = −1 and β = +1, determine the equation of the streamline 
that passes through the point (1,0).

(e)	 For α = β = 1, determine the equations of the streamlines that 
pass through the origin, that is, the point (0,0).

	2.10	 Calculate the vorticity at any point (R,θ) for each of the following 
two-dimensional flow fields:
(a)	 uR = 0,	 uθ = ωR

(b)	 uR = 0,	 uθ = Γ/2πR

		  In the above, R and θ are cylindrical coordinates while ω and Γ are 
constants.
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3
Special Forms of the Governing Equations

Some alternative forms of the governing equations, as derived in Chapter 1, 
will be discussed here. The results are all obtained from the governing equa-
tions under various degrees of approximation such as negligible viscous 
effects. Some of the results are frequently referred to as theorems. They are 
used either as alternatives to the general equations derived in Chapter 1, under 
the specified restrictions, or as supplementary information to these equations.

The first result established is Kelvin’s theorem. This theorem establishes 
the conditions under which irrotational motion remains irrotational and 
so justifies the simplifying methods of analysis that are utilized for irrota-
tional flows. Then, the Bernoulli equations are derived. These equations are 
integrals of the Euler equations under certain conditions. They are used to 
relate the pressure and velocity fields when the velocity is established sepa-
rately from, for example, the condition of irrotationality. Crocco’s equation 
is derived next. This equation relates the entropy of the fluid to the vorticity 
and shows that, under certain conditions, isentropic flows are irrotational, 
and vice versa. Finally, the vorticity equation is derived for a fluid of constant 
density and viscosity. This equation is useful in the study of rotational flows.

3.1  Kelvin’s Theorem

This theorem states that for an inviscid fluid in which the density is constant, 
or in which the pressure depends on the density alone, and for which any 
body forces that exist are conservative, the vorticity of each fluid particle will 
be preserved. Kelvin’s theorem covers the remainder of the Helmholtz theo-
rems of vorticity that were not treated in Section 2.4 during the discussion of 
the kinematics of vortex lines. Although Kelvin’s theorem appears to be kine-
matic in nature, the dynamic equations of motion are required in the proof.

Suppose that a body force fj per unit mass that may act on the fluid is con-
servative, such as gravity for example. Then, fj may be written as the gradient 
of some scalar function G, giving

	 f
G
xj
j

=
∂
∂

.	
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Then, from Equation 1.9c, the equations of motion for an inviscid fluid sub-
jected to only conservative body forces are

	 ρ ρ ρ
∂

∂
+

∂

∂
= −

∂

∂
+

∂
∂

u

t
u

u

x
p
x

G
x

j
k

j

k j j 	

or, in terms of the material derivative,

	
D

D

u

t
p
x

G
x

j

j j

= −
∂

∂
+
∂
∂

1
ρ

.	

It is this form of the momentum equation, which is valid for an inviscid 
fluid subjected to only conservative body forces, that will be used to prove 
Kelvin’s theorem.

In order to determine the rate of change of vorticity associated with a given 
fluid element, the material derivative of the circulation Γ will be calculated. 
From Equation 2.3

	

D
D

D
D

d

D

D
d

D d

D

Γ
t t

u x

u

t
x u

x

t

j j

j
j j

j

=

= +

∫

∫

�
�

( )
.

	

The quantity D(dxj)/Dt is the material derivative of an element dxj of the 
contour around which the circulation is to be calculated. Its value may be 
established as follows:

	
D d

D
d

D

D
d d

x

t

x

t

x

t
u

x

x
u

j j j
k

j

k
j

( )
= =

∂

∂
+

∂

∂
= .	

Here, the material derivative has been converted into its Eulerian equiva-
lent, using Equation 1.1, in which t and the spatial coordinates are indepen-
dent. Thus, ∂xj/∂t = 0 and ∂xj/∂xk = δjk, which is zero unless k = j, at which 
time its value is unity. This shows that the value of Dxj/Dt is uj and hence the 
value of D(dxj)/Dt is duj. In this way, the expression for the rate of change of 
circulation becomes

	
D
D

D

D
d d

Γ
t

u

t
x u uj
j j j= +∫ .	
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The quantity Duj/Dt will now be eliminated from this expression by using 
the momentum equations that were derived above for an inviscid fluid in 
which any body forces were conservative. Thus, the rate of change of circula-
tion becomes

	

D
D

d d d
Γ
t

p
x

x
G
x

x u u
j

j
j

j j j= −
∂

∂
+
∂
∂

+

= −

∫
1
ρ�
dd

d d
p

G u uj jρ
+ +∫

1
2

( )�
	

where it has been observed that (∂p/∂xj)dxj = dp, which is the total spatial 
variation of p, and likewise (∂G/dxj)dxj = dG. It is now observed that, since 
the integration is to be carried out around a closed contour, the integral of 
dG and that of d(ujuj) are both zero since the body force and the velocity are 
both assumed to be single valued. Then,

	
D
D

dΓ
t

p
= − ∫ ρ� .	

Now, if ρ is a constant, the remaining integral is zero for the same reason 
that the other integrals were zero. However, this integral is zero under less 
restrictive conditions also. Suppose the pressure p may be considered to be a 
function of the density ρ only as, for example, in isentropic flows. Then, for 
some function g,

	 p = g(ρ)	

so that

	 dp = g′(ρ)dρ.	

The expression for DΓ/Dt now becomes

	
D
D

d
Γ
t

g
= − ∫

( )ρ
ρ

ρ� .	

That is, this integral falls into the same category as the two previous inte-
grals, and its value around any closed contour is zero. This gives the result 
known as Kelvin’s theorem:

	
D
D
Γ
t
= 0.	 (3.1)



60 Fundamental Mechanics of Fluids

Equation 3.1 says that if we follow a given contour as it flows, the total 
vorticity inside that contour will not change. Recall that the right-hand side 
of Equation 3.1 could be proved to be zero by considering the fluid to be 
inviscid, the body forces to be conservative, and either the density to be con-
stant or the pressure to be a function of the density only. Relaxing any of 
these conditions leads to, in general, a nonzero term on the right-hand side of 
Equation 3.1. Thus, it may be deduced that the total vorticity may be changed 
by the action of viscosity, the application of nonconservative body forces, or 
density variations that are not simply related to the pressure variation.

It should be noted that Equation 3.1 applies to a simply connected region. 
That is, for any closed contour in the fluid that contains only fluid, there will 
be some definite value of the circulation Γ. Equation 3.1 asserts that under the 
conditions specified in the derivation, the value of Γ will not change around 
that contour even though the contour itself may be deformed by the flow. A 
closed contour that originally does not include a body cannot at any subse-
quent time contain a body such as a two-dimensional airfoil. There is there-
fore no conflict in the fact that such an airfoil may have a circulation around 
it while immersed in an irrotational flow.

From Kelvin’s theorem and the results established in Section 2.4, it is evi-
dent that the total vorticity associated with a vortex filament is fixed and 
will not change as the vortex filament flows with the fluid. Distortion of the 
vortex filament may take place, but the total vorticity associated with it will 
remain the same. The vortex filament will always consist of the same fluid 
particles as it flows, and if the vortex filament is elongated, the vorticity at 
any section of the filament will increase and the total vorticity associated 
with the filament will remain fixed.

The principal use of Kelvin’s theorem is in the study of incompressible, 
inviscid fluid flows. If a body is moving through such a fluid, or if a uniform 
flow of such a fluid passes around a body, then the vorticity far from the 
body will be zero. Then, according to Kelvin’s theorem, the vorticity in the 
fluid will everywhere be zero, even adjacent to the body. Then, the condition 
∇ × u = 0 may be used to replace the Euler equations so that the condition of 
irrotationality becomes the alternative form of the equations of motion for 
the fluid. Again, it is emphasized that this kinematic equivalent is valid only 
because of Kelvin’s theorem, and in turn, the Euler equations were used to 
prove Kelvin’s theorem.

3.2  Bernoulli Equation

For an inviscid fluid in which all body forces are conservative and either the 
flow is steady or it is irrotational, the equations of momentum conservation may 
be integrated to yield a single scalar equation called the Bernoulli equation.
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In the previous section, it was pointed out that the equations of motion for 
an inviscid fluid in which all body forces are conservative could be written 
in the form

	 ρ ρ ρ
∂

∂
+

∂

∂
= −

∂

∂
+

∂
∂

u

t
u

u

x
p
x

G
x

j
k

j

k j j

.	

Using a vector identity given in Appendix A, the second term on the left-
hand side of these equations may be rewritten as follows:

	

u
u

xk
j

k

∂

∂
= ⋅ = ⋅ − × ×

= ⋅

( ) ( )u u u u u u

u u

1
2

1
2

− ×u ωω.
	

In this way, the Euler equations may be written in the following vector form:

	
∂
∂

+ ⋅ − × = − +
u

u u u
t

p Gωω
1
2

1
ρ

.	

It is now proposed to show that the term (1/ρ)∇p, which appears on the 

right-hand side of this equation, may be written as ∇ dp/ρ∫ . To do this, we 

form the scalar product of an element of a space curve dℓ, such as an element 
of a streamline, with the vector quantity (1/ρ) ∇p:

	 d d d� �⋅ = ⋅ =
1 1 1
ρ ρ ρ

p p p.	

Here, the result dℓ · ∇ = dx(∂/dx) + dy(∂/∂y) + dz(∂/∂z) = d has been used, 
where the scalar operator d is the total spatial derivative. Then, using d and 
its inverse integral operation, it follows that

	 d d
d

d
d

� �⋅ = = ⋅∫ ∫
1
ρ ρ ρ

p
p p

	

where, again, the equivalence of d and dℓ ∙ ∇ has been used. The vectors that 
form the scalar product with dℓ in this last equation must be equal since dℓ 
was arbitrarily chosen; hence, it follows that

	 1
ρ ρ

p
p

= ∫
d .	
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Using this result, the Euler equations become

	
∂
∂

+ + ⋅ − = ×∫
u

u u u
t

p
G ωω

d
ρ

1
2

.	 (3.2a)

The vector Equation 3.2a may be integrated for steady flow and for unsteady 
or steady irrotational flow.

Considering first steady flow, Equation 3.2a becomes

	 ωω
dp

G
ρ∫ + ⋅ − = ×

1
2

u u u .	

Forming the scalar product of the velocity vector u with this equation gives

	 u u u u u⋅ + ⋅ − = ⋅ ×∫ ωω
dp

G
ρ

1
2

( ).	

However, the vector product of u with ω will yield a vector that is perpen-
dicular to u; hence, the quantity u · (u × ω) is zero. Furthermore, the operator 
u · ∇ is the steady-state form of the material derivative. Thus, the preceding 
equation states that as we flow along a streamline in steady flow, the quan-

tity dp G/ /2ρ+ u u⋅ −∫  remains constant. That is,

	
d

constant along each streamline
p

G
ρ∫ + ⋅ − =

1
2

u u .	 (3.2b)

This result is referred to as the Bernoulli integral or the Bernoulli equation. It 
should be recalled that it is valid for the steady flow of a fluid in which viscous 
effects are negligible and in which all body forces are conservative. In many 
cases, the flow around some body originates in a uniform flow, and in such 
cases, and in some other cases, the constant on the right-hand side of Equation 

3.2b is the same for each streamline. Then, the quantity dp G/ /2ρ+ u u⋅ −∫  is 

constant everywhere. The constant is usually referred to as the Bernoulli constant.
Equation 3.2a may also be integrated under slightly different circum-

stances from those that led to Equation 3.2b. Rather than considering steady 
flows, consider irrotational flows. Then, the vorticity ω will be zero so that 
Equation 3.2a becomes

	
∂
∂

+ + ⋅ − =∫
u
t

p
G

d
ρ

1
2

0u u .	

Now, since ω = ∇ × u = 0, it follows that the velocity vector u may be written as 
the gradient of some scalar, for example, ϕ, since ∇ × ∇ϕ = 0 for any function ϕ. 
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The quantity ϕ is known as the velocity potential, and it will be used extensively 
in Chapter 4. Then, replacing u by ∇ϕ in the preceding equation gives

	
∂
∂

+ + ⋅ − =∫
φ

ρ
φ φ

t
p

G
d 1

2
0.	

Forming the scalar product of this vector equation with an element of a 
space curve dℓ gives

	 d
d∂

∂
+ + ⋅ − =∫

φ
ρ

φ φ
t

p
G

1
2

0
	

where again the fact that dℓ · ∇ = d has been used, where d is the total spatial 
derivative. Thus, integration yields

	
∂
∂

+ + ⋅ − =∫
φ

ρ
φ φ

t
p

G F t
d 1

2
( ) 	 (3.2c)

where F(t) is some function of time that may be added after integrating over 
the space coordinates. F(t) is usually referred to as the unsteady Bernoulli con­
stant, even though it is not strictly a constant. Recall that Equation 3.2c is 
valid for irrotational motion of a fluid in which viscous effects are negli-
gible and in which all body forces are conservative. Kelvin’s theorem usually 
helps to verify the validity of the condition of irrotationality by relating the 
flow under consideration to a simpler form of the flow far upstream.

3.3  Crocco’s Equation

This equation relates the vorticity of a flow field to the entropy of the fluid. 
Under certain conditions, it will be shown that isentropic flows are irrota-
tional, and vice versa. Then, if it is known that a flow field is essentially isen-
tropic, the mathematical simplifications associated with irrotational motion 
may be employed. This simplification will be employed in the chapters deal-
ing with compressible fluid flow, and it is justified by Crocco’s equation.

In order to establish Crocco’s equation, consider the flow of an inviscid 
fluid in which there are no body forces. Then, from Equation 1.9c, the Euler 
equations that guarantee dynamic equilibrium, become

	
∂
∂

+ ⋅ = −
u

u u
t

p( )
1
ρ

.	
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The nonlinear term may be expanded as follows using a vector identity 
given in Appendix A:

	
( ) ( )u u u u u u⋅ = ⋅ − × ×

1
2

.
	

Hence, the Euler equation becomes

	
∂
∂

+ ⋅ − × = −
u

u u u
t

pωω
1
2

1
ρ

.	

It is this form of the Euler equation that is the starting point for the deriva-
tion of Crocco’s equation. In order to relate the dynamics of the flow to its 
thermodynamics, it is proposed to eliminate the pressure p and the density 
ρ, which appear in the term on the right-hand side of the above equation, 
in favor of the enthalpy h and the entropy s. To do this, we use the first law 
of thermodynamics and the definition of the entropy. From Appendix E, a 
change in internal energy de is caused by work done on the fluid −pd(1/ρ) 
and by any heat that is added to the fluid dq. That is,

	

d d d

d d

e p q

p T s

= − +

= − +

1

1

ρ

ρ
	

where the last relation follows from the definition of the entropy. Now p and 
ρ have been related to e and s. In order to eliminate e in favor of the enthalpy 
h, we use the equation that defines the enthalpy, namely, e = h − p/ρ. Then, the 
foregoing thermodynamic relation becomes

	 d d d dh
p

p T s− = − +
ρ ρ

1
.	

Since d(p/ρ) = pd(1/ρ) + dp/ρ, this equation simplifies to

	 − = −
1
ρ
d d dp T s h.	

Using again the result established in the previous section that dℓ · ∇ = d, it 
follows that

	 − = −
1
ρ

p T s h.	
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This result will now be used to eliminate the pressure and the density that 
appear on the right-hand side of the Euler equations:

	
∂
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+ ⋅ − × = −
u

u u u
t

T s h
1
2

ωω .	

Rearranging this vector equation slightly yields the result known as 
Crocco’s equation:

	 u u u
u

× + = + ⋅ +
∂
∂

ωω T s h
t

1
2

.	 (3.3a)

Equation 3.3a is valid for flows in which viscous effects are negligible and in 
which there are no body forces.

Under conditions of steady, adiabatic flow, Equation 3.3a may be reduced to 
a scalar equation. To show this, it will first be shown that for adiabatic flow 
of an inviscid fluid in which there are no body forces, the quantity h0 = h + 
u · u/2 is constant along each streamline. The quantity h0 is called the stagna­
tion enthalpy.

From Problem 3.1, the energy equation for adiabatic flow of an inviscid 
fluid is

	 ρ
D
D

D
D

h
t

p
t

= .	

The Euler equations for a flow without body forces are

	 ρ
D
D

u
t

p= − .	

Forming the scalar product of this equation with the velocity vector u gives

	 ρ
D
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p
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Adding this equation to the energy equation derived above yields
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or
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h
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∂

∂
.	



66 Fundamental Mechanics of Fluids

Then, for steady flow, the right-hand side of this equation will be zero. That 
is, for steady, adiabatic flow of an inviscid fluid in which there are no body 
forces, the quantity Dh0/Dt will be zero. Hence, the stagnation enthalpy h0 
will be constant along each streamline.

Equation 3.3a was derived for an inviscid fluid that is not subjected to any 
body forces. Then, if, in addition, the flow is steady and adiabatic, Equation 
3.3a becomes

	 u × ω + T ∇s = ∇h0	

where the quantity h0 is constant along each streamline. Hence, ∇h0 will be a 
vector perpendicular to the streamlines. However, u × ω is also perpendicu-
lar to the streamlines, so that the remaining vector, namely, T ∇s, must also 
be perpendicular to the streamlines. Then, the above vector equation may be 
written in the following scalar form:

	 U T
s
n

h
n

+ =
d
d

d
d

0 .	 (3.3b)

Here, U and Ω are, respectively, the magnitudes of the velocity vector u 
and the vorticity vector ω. The coordinate n is perpendicular to the stream-
lines locally. Equation 3.3b is valid for steady, adiabatic flow of an inviscid 
fluid in which there are no body forces.

Usually when the stagnation enthalpy is constant along each streamline, it 
is constant everywhere. That is, the value of h0 along each streamline is the 
same. Under these conditions, dh0/dn = 0, so that Equation 3.3b becomes

	 U T
s
n

+ =
d
d

0.	 (3.3c)

In this form, Crocco’s equation clearly shows that if s is constant, Ω must 
be zero. Likewise, if Ω is zero, ds/dn must be zero so that s must be constant. 
That is, isentropic flows are irrotational and irrotational flows are isentropic. 
This result is true, in general, only for steady flows of inviscid fluids in which 
there are no body forces and in which the stagnation enthalpy is constant.

3.4  Vorticity Equation

The equation to be satisfied by the vorticity vector ω for a fluid of constant 
density and constant viscosity will be derived in this section. Such an equa-
tion is useful in the study of viscous flows in incompressible fluids, which 
is the topic of Part III of this book. One reason that the vorticity equation 
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is of interest is that it enables us to learn more about the physics of given 
flow fields. Also, in the analysis of some flow fields, it is frequently possible 
to make some statement about the vorticity distribution that facilitates the 
analysis if the problem is posed in terms of the vorticity.

From Equation 1.9b, the Navier–Stokes equations for a fluid of constant 
density and viscosity and for which relevant body forces are conservative 
are as follows:
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+ ⋅ = − + +
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u u u
t

p
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ρ
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The quantity υ = μ/ρ is the kinematic viscosity. Replacing the nonlinear term 
by its equivalent form given by the vector identities in Appendix A, this vec-
tor equation becomes
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u

u u u u u
t

p
G

1
2

2( )
ρ

υ .	

The vorticity equation is obtained by taking the curl of this equation and 
noting that the curl of the gradient of any scalar is zero. Hence,

	
∂
∂

− × × =
ωω

ωω ωω
t

( )u υ 2 .	

Using a vector identity given in Appendix A, the second term on the left-
hand side may be expanded to give

	 ∇ × (u × ω) = u(∇ · ω) − ω(∇ · u) − (u · ∇)ω + (ω · ∇)u.	

However, ∇ · ω = 0, since the divergence of the curl of any vector is zero and 
∇ · u = 0 from the continuity equation. Hence, the vorticity equation becomes

	
∂
∂

+ ⋅ = ⋅ +
ωω

ωω ωω ωω
t

( ) ( )u u υ 2 .	 (3.4a)

For two-dimensional flows, the vorticity vector ω will be perpendicular to 
the plane of the flow, so that (ω · ∇)u will be zero. Then,

	
∂
∂

+ ⋅ =
ωω

ωω ωω
t

( )u υ 2 .	 (3.4b)

The vorticity equation, in either the general form (Equation 3.4a) or the 
two-dimensional form (Equation 3.4b), has another advantage over and 
above those mentioned in the preliminary remarks. It will be noted from 
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these equations that the pressure p does not appear explicitly. Thus, the 
vorticity and velocity fields may be obtained without any knowledge of the 
pressure field.

In order to determine the pressure distribution in terms of the vorticity, the 
Navier–Stokes equations are again used in the form

	
∂
∂

+ ⋅ = − + +
u

u u u
t

p
G( )

ρ
υ 2 .	

Taking the divergence of this equation and using the result of Problem 3.2 
together with the continuity equation ∇ · u = 0, it follows that the equation to 
be satisfied by the pressure p is

	 = ⋅ + ⋅ − ⋅ +2 2 2 21
2

p
G

ρ
ωω ωω u u u u( ) ( ) .	 (3.5)

If the body force represents only gravity, the Laplacian of G will be zero. 
From the foregoing results, we see that the vorticity satisfies an advection–​​
diffusion equation, whereas the pressure satisfies a Poisson equation 
(Figures 3.1 and 3.2).

z

xy

FIGURE 3.1
Results from the large eddy numerical simulation of a liquid jet in a gaseous cross flow show-
ing the deformation and breakup of the liquid jet. The jet velocity is 40 m/s, its viscosity is 10–4 
Pa-s, and its density is 14.4 kg/m3. The cross flow bulk velocity is 40 m/s, the gas viscosity is 
10–5 Pa-s, and its density is 1.2 kg/m3. (Courtesy of Professor Nasser Ashgriz, University of 
Toronto, Toronto, Canada.)
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PROBLEMS

	 3.1	 In vector form, the thermal energy equation is

	 ρ
D
D
e
t

p k T= − ⋅ + ⋅ +u ( ) Φ.	

		  By using the definition of the enthalpy h, show that an equivalent 
form of this equation is

	 ρ
D
D

D
D

h
t

p
t

k T= + ⋅ +( ) Φ.	

	 3.2	 Show that, for an incompressible fluid, the following identity holds 
between the velocity vector u and the vorticity vector ω:

	 ⋅ ⋅ = ⋅ − ⋅ − ⋅[( ) ] ( ) ( )u u u u u u ωω ωω
1
2

2 2 .	

	 3.3	 In cylindrical coordinates, the velocity components for the uniform 
flow of an incompressible and inviscid fluid around a circular cylin-
der are

FIGURE 3.2
Results from numerical calculations showing droplet dynamics and spray formation from an 
annular nozzle with outer and inner co-flowing gas. The droplets break up into smaller ones 
due to the high velocity gaseous flow, generating a spray of smaller droplets. The outer gas 
velocity is 140 m/s; the inner gas velocity, as well as the velocity of the droplets, is 40 m/s. 
(Courtesy of Professor Nasser Ashgriz, University of Toronto, Toronto, Canada.)
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u U
a
R

u U
a
R

R = −

= − +

1

1

2

2

2

2

cos

sin .

θ

θθ

	

		  Here, U is the constant magnitude of the velocity approaching the 
cylinder, and a is the radius of the cylinder. Determine the pressure 
p(R, θ) at any point in the fluid in the absence of any body forces. 
Take the pressure far from the cylinder to be constant and equal 
to p0.

		  Specialize the result obtained above to obtain an expression for 
the pressure p(a, θ) on the surface of the cylinder.

Further Reading—Part I

Part I of this book has been concerned with the derivation of the equations 
governing the motion of a fluid. The number of books dealing with fluid 
mechanics in which these equations are derived is large. The following rep-
resents a sample of some of these books.

Aris, R.: Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Inc., 
Englewood, N.J., 1964.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press, 
London, 1967.

Chorin, A. J. and Marsden, J. E.: A Mathematical Introduction to Fluid Mechanics, 3rd ed., 
Springer-Verlag, Berlin, 1993.

Lagerstrom, P. A.: Laminar Flow Theory, in F. K. Moore (ed.): Theory of Laminar Flows, 
Princeton University Press, Princeton, N.J., 1964.

Lamb, H.: Hydrodynamics, 6th ed., Dover, New York, 1932.
Landau, L. D. and Lifschitz, E. M.: Fluid Mechanics, 2nd ed., Pergamon Press, London, 

1987.
Panton, R. L.: Incompressible Flow, John Wiley & Sons, New York, 1984.
Serrin, J.: Mathematical principles of classical fluid mechanics, in S. Flügge (ed.): 

Handbuch der Physik, vol. VIII/1, Springer-Verlag OHG, Berlin, 1959.
Sherman, F. S.: Viscous Flow, McGraw-Hill Book Company, New York, 1990.
Yih, C.-S.: Fluid Mechanics, McGraw-Hill Book Company, New York, 1969.



Part II

Ideal-Fluid Flow

This part of the book deals with the flow of ideal fluids, that is, fluids that 
are inviscid and incompressible. The results are therefore limited to flow 
fields in which viscous effects of the fluid are negligible and compressibility 
of the fluid is unimportant. Then, any phenomena that are predicted by the 
governing equations will be due to the inertia of the fluid. The mathematical 
simplification that results from neglecting viscous and compressible effects 
is great, and consequently, the topic of ideal-fluid flow is, mathematically, the 
best understood.

Part II contains Chapters 4, 5, and 6. Chapter 4 deals with two-dimensional 
potential flows. Apart from some fundamental flows, the flow around some 
two-dimensional bodies such as cylinders, ellipses, and airfoils is cov-
ered. Chapter 5 treats three-dimensional potential flows including the flow 
around submerged bodies such as spheres. Finally, Chapter 6 deals with 
surface waves on liquids. This chapter includes traveling waves, standing 
waves, and waves at the interface of two fluids.

II.1  Governing Equations and Boundary Conditions

Since the fluid is assumed to be incompressible, the equation of mass con-
servation is Equation 1.3c. The equations of momentum conservation for an 
inviscid fluid are the Euler equations, which are expressed by Equation 1.9c. 
That is, the equations governing the velocity and pressure fields for an ideal 
fluid are
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	 ∇ · u = 0	 (II.1)

	
∂
∂

+ ⋅ = − +
u

u u f
t

p( )
1
ρ

.	 (II.2)

Equations II.1 and II.2 are sufficient to establish the velocity and the pres-
sure in the flow independent of any temperature distribution that may exist. 
It was pointed out in Chapter 1 that compressibility is the fluid property that 
couples the equations of thermodynamics to those of dynamics so that in the 
study of ideal fluids, the equations of thermodynamics need not be solved 
concurrently with the equations of motion. The study of ideal-fluid flows is 
frequently referred to as hydrodynamics, and Equations II.1 and II.2 are fre-
quently called the equations of hydrodynamics.

Within macroscopic length scales, the proper boundary condition to be 
satisfied by the velocity is the no-slip boundary condition expressed by 
Equation 1.14. It is not possible to satisfy this boundary condition with the 
Euler equations. The reason lies in the fact that the Euler equations are one 
order lower than the Navier–Stokes equations because the viscous terms 
are absent in the former equations. Thus, the true boundary condition must 
be relaxed somehow under the approximation of negligible viscous effects. 
Since it is primarily viscous effects that prohibit a fluid from slipping along 
a solid boundary, the condition of no tangential slip at boundaries is relaxed. 
That is, the condition of no normal velocity at a solid boundary is retained, 
but the condition of no tangential velocity is dropped. Thus, the boundary 
condition that should be used with the Euler equations is

	 u ∙ n = U ∙ n	 on solid boundaries	 (II.3)

where n is the unit normal to the surface of the body, and U is the velocity vec-
tor of the body. Comparison of Equation II.3 with Equation 1.14 shows that the 
former constitutes one component of the true boundary condition and the two 
tangential components are unspecified. Physically, this means that the condi-
tion of no slip on a solid boundary has become the condition that the surface 
of the body must be a streamline. Any boundary condition that is to be satis-
fied far from the body, such as the flow becoming uniform, is unaffected by 
the inviscid approximation.

II.2  Potential Flows

If the flow of an ideal fluid about a body originates in an irrotational flow, 
such as a uniform flow, for example, then Kelvin’s theorem (Equation 3.1) 
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guarantees that the flow will remain irrotational even near the body. That is, 
the vorticity vector ω will be zero everywhere in the fluid. Then, since ∇ × 
∇ϕ = 0 for any scalar function ϕ, the condition of irrotationality will be satis-
fied identically by choosing

	 u = ∇ϕ.	 (II.4)

The function ϕ is called the velocity potential, and flow fields that are irrota-
tional, and so can be represented in the form of Equation II.4, are frequently 
referred to as potential flows. In order to find the equation that the velocity 
potential ϕ satisfies, the expression for u given by Equation II.4 is substituted 
into the continuity equation (Equation II.1) to give

	 ∇2ϕ = 0.	 (II.5)

Thus, by solving Equation II.5 and utilizing Equation II.4, the velocity field 
may be established without directly using the equations of motion (Equation 
II.2). This is so because the condition of irrotationality has been used, and 
this condition is justified by Kelvin’s theorem, which uses Equation II.2 in its 
proof. However, the equations of motion must be used directly to obtain the 
pressure distribution. Solving Equation II.5 for the velocity potential ϕ deter-
mines the velocity distribution only, and in order to determine the pressure, 
use must be made of the equations of dynamics. Rather than use Equation 
II.2, its integrated form, that is the Bernoulli equation, will be used. Using 
Equation 3.2c, the pressure may be determined from the following relation:

	
∂
∂

+ + ⋅ − =
φ

ρ
φ φ

t
p

G F t
1
2

( ).	 (II.6)

Having determined the velocity potential ϕ, this becomes a simple alge-
braic equation for the pressure.

From the foregoing, it is evident that a simpler form of the governing equa-
tions exists for potential flows. Rather than solving Equations II.1 and II.2 
directly, Equation II.5, together with the appropriate boundary conditions, 
may be solved to yield the velocity potential and hence the velocity field. 
Having done this, Equation II.6 may be used to establish the pressure field. 
This formulation has certain simplifying features. First, it will be noticed 
that the differential equation to be solved, given by Equation II.5, is linear, 
whereas Equation II.2 is nonlinear. Of course, the nonlinearity cannot be 
completed circumvented, and indeed, it appears in the term ∇ϕ ∙ ∇ϕ in the 
Bernoulli equation. However, in this equation, it poses no difficulty in the 
analysis. One of the most useful properties of linear differential equations is 
that different solutions may be superimposed to yield other solutions. This 
property will be used extensively in the following chapters.
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4
Two-Dimensional Potential Flows

It was pointed out in the introduction to Part II that potential flows may 
be analyzed in a much simpler way than general fluid flows. Within the 
category of potential flows, the two-dimensional subset lends itself to even 
greater simplification. It will be shown in this chapter that the simplification 
is so great that solutions to Equations II.5 and II.6 may be obtained without 
actually solving any differential equations. This is achieved through use of 
the powerful tool of complex variable theory.

The chapter begins by introducing the stream function, which, together 
with the velocity potential, leads to the definition of a complex potential. 
Through this complex potential, some elementary solutions corresponding 
to sources, sinks, and vortices are examined. The superposition of such ele-
mentary solutions then leads to the solution for the flow around a circular 
cylinder. The method of conformal transformations is then introduced, and 
the Joukowski transformation is used to establish the solutions for the flow 
around ellipses and airfoils. The Schwarz–Christoffel transformation is then 
introduced and used to study the flow in regions involving sharp corners. 
Included in this chapter are examples of free-surface configurations.

4.1  Stream Function

The velocity potential ϕ was defined in such a way that it automatically sat-
isfied the condition of irrotationality. The continuity equation then showed 
that ϕ had to be a solution of Laplace’s equation. A second function may be 
defined by a complementary procedure for two-dimensional incompressible 
fluid flows. That is, a function may be defined in such a way that it automati-
cally satisfies the continuity equation, and the equation it must satisfy will be 
determined by the condition of irrotationality.

The continuity equation, in Cartesian coordinates, for the flow field under 
consideration is

	
∂
∂

+
∂
∂

=
u
x

v
y

0.	
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Now, introduce a function ψ that is defined as follows:

	 u
y

=
∂
∂
ψ

	 (4.1a)

	 v
x

= −
∂
∂
ψ

.	 (4.1b)

With this definition, the continuity equation is satisfied identically for all 
functions ψ. ψ is called the stream function, and by virtue of its definition, it is 
valid for all two-dimensional flows, both rotational and irrotational.

The equation that the stream function ψ must satisfy is obtained from the 
condition of irrotationality. Denoting the components of the vorticity vector 
ω by (ξ, η, ζ), it is first observed that, in two dimensions, the only nonzero 
component of the vorticity vector is ζ, the component perpendicular to the 
plane of the flow. Secondly, it is noted that ζ = ∂v/∂x – ∂u/∂y. Thus, the condi-
tion of irrotationality is

	
∂
∂

−
∂
∂

=
v
x

u
y

0.	

Substituting for u and v from Equation 4.1 shows that ψ must satisfy the 
following equation:

	
∂

∂
+
∂

∂
=

2

2

2

2
0

ψ ψ

x y
.	 (4.2)

That is, the stream function ψ, like the velocity potential ϕ, must satisfy 
Laplace’s equation. The stream function ψ has some useful properties that 
will now be derived.

The flow lines that correspond to ψ = constant are the streamlines of the 
flow field. To show this, it is noted that ψ is a function of both x and y in 
general so that the total variation in ψ associated with a change in x and a 
change in y may be calculated from the expression

	
d d d

d d

ψ
ψ ψ

=
∂
∂

+
∂
∂

= − +

x
x

y
y

v x u y 	
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where Equation 4.1 has been used. Then, the equation of the line ψ = constant 
will be

	 0 = −v dx + u dy	

or

	
d
d
y
x

v
u

=
ψ 	

where the subscript denotes that this expression for dy/dx is valid for ψ held 
constant. However, it was shown in Chapter 2 that this is precisely the equa-
tion of the streamlines in the xy plane. Hence, the lines corresponding to 
ψ = constant are the streamlines, and each value of the constant defines a 
different streamline. It is this property of the function ψ that justifies the 
name stream function.

Another property of the stream function ψ is that the difference of its 
values between two streamlines gives the volume of fluid that is flowing 
between these two streamlines. To show this, consider two streamlines cor-
responding to ψ = ψ1 and ψ = ψ2 as shown in Figure 4.1. A control surface AB 
of arbitrary shape but positive slope is shown joining these two streamlines, 
and an element of this surface shows the positive volumetric flow rates cross-
ing it in the x and y directions per unit depth perpendicular to the flow field. 
Then, the total volume of fluid flowing between the streamlines per unit 
time per unit depth of flow field will be

A

B

ψ = ψ2

ψ = ψ1

u dy

v dx

FIGURE 4.1
Two streamlines showing the components of the volumetric flow rate across an element of 
control surface joining the streamlines.
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	 Q u y v x= −∫ ∫d d
A

B

A

B

.	

However, it was observed earlier that dψ = –v dx + u dy, so that, integrating 
this expression between the two points A and B, it follows that

	 ψ ψ2 1− = − +∫ ∫v x u yd d
A

B

A

B

.	

Comparing these two expressions confirms that ψ2 − ψ1 = Q.
Finally, it should be noted that the streamlines ψ = constant and the lines 

ϕ = constant, which are called equipotential lines, are orthogonal to each other. 
This may be shown by noting that if ϕ depends upon both x and y, the total 
change in ϕ associated with changes in both x and y will be

	
d d d

d d

φ
φ φ

=
∂
∂

+
∂
∂

= +

x
x

y
y

u x v y 	

where Equation II.4 has been used. Then, the lines corresponding to ϕ = con-
stant will be defined by the following relation:

	 0 = udx + vdy	

or

	
d
d
y
x

u
v

= −
φ

.	

That is,

	
d
d d /d
y
x y x

= −
φ

1
( )ψ

.	

In words, the slope of the line ϕ = constant is the negative reciprocal of the 
slope of the line ψ = constant, so that these sets of lines must be orthogonal. 
This property of the streamlines and the equipotential lines is the basis of a 
numerical procedure for solving two-dimensional potential-flow problems. 
The method is referred to as the flow net.
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4.2  Complex Potential and Complex Velocity

The velocity components u and v may be expressed in terms of either the 
velocity potential or the stream function. From Equations II.4 and 4.1, these 
expressions are

	

u
x y

v
y x

=
∂
∂

=
∂
∂

=
∂
∂

= −
∂
∂

φ

φ

ψ

ψ
.
	

That is, the functions ϕ and ψ are related by the expressions

	

∂
∂

=
∂
∂

∂
∂

= −
∂
∂

φ

φ

x y

y x

ψ

ψ
.
	

But these will be recognized as the Cauchy–Riemann equations for the 
functions ϕ(x, y) and ψ(x, y). Then, consider the complex potential F(z), which 
is defined as follows:

	 F(z) = ϕ(x,y) + iψ(x,y)	 (4.3)

where z = x + iy. Now, if F(z) is an analytic function, it follows that ϕ and ψ 
will automatically satisfy the Cauchy–Riemann equations. That is, for every 
analytic function F(z), the real part is automatically a valid velocity potential, 
and the imaginary part is a valid stream function.

The foregoing result suggests a very simple way of establishing solutions 
to the equations of two-dimensional potential flows. By equating the real 
part of a given analytic function to ϕ and the imaginary part to ψ, the theory 
of complex variables guarantees that ∇2ϕ = 0 and ∇2ψ = 0 as required. The 
flow field corresponding to that analytic function may be determined by 
studying the streamlines ψ = constant. The corresponding velocity compo-
nents may be calculated from Equation II.4 or Equation 4.1, and the pressure 
may be obtained using Equation II.6. This approach has the disadvantage 
of being inverse in the sense that a problem is first solved and then exam-
ined to see what the physical problem was in the first place. However, for 
teaching purposes, this is of no consequence. Another disadvantage is that 



80 Fundamental Mechanics of Fluids

the method cannot be generalized to three-dimensional potential flows. On 
the other hand, this approach avails itself of the powerful results of com-
plex variable theory and avoids the difficulties of solving partial differential 
equations. For these reasons, the complex-potential approach will be used in 
this chapter.

Another quantity of prime interest, apart from the complex potential F(z), 
is the derivative of F(z) with respect to z. Since F(z) is supposed to be analytic, 
dF/dz will be a point function whose value is independent of the direction 
in which it is calculated. Then, denoting this derivative by W, its value will 
be given by

	

W z
F
z

F
x

x
i
x

( ) = =
∂
∂

=
∂
∂

+
∂
∂

d
d

φ ψ

	

that is,

	 W z
F
z

u iv( ) = = −
d
d

	 (4.4)

where Equations 4.3, II.4, and 4.1b have been used. In view of this result, the 
quantity W(z) is called the complex velocity, although its imaginary part is –iv. 
Equation 4.4 offers a convenient alternative to the use of Equations II.4 and 
4.1 for finding the velocity components that correspond to any particular 
complex potential.

A useful property of the complex velocity is that, when multiplied by its 
own complex conjugate, it gives the scalar product of the velocity vector with 
itself. To show this, consider W(z) and its complex conjugate W z( ). Then,

	
WW u iv u iv

WW u v

= − +

= +

( )( )

.2 2
	 (4.5)

The significance of this result is that the quantity u · u = ∇ϕ ∙ ∇ϕ = u2 + v2 
appears in the Bernoulli equation.

Frequently, it is advantageous to work in cylindrical coordinates rather 
than Cartesian coordinates. An expression for the complex velocity may be 
readily obtained in cylindrical coordinates by converting the Cartesian com-
ponents of the velocity vector (u, v) to cylindrical components (uR, uθ). Figure 
4.2 shows a velocity vector OP decomposed into its Cartesian components 
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(shown solid) and also its cylindrical components (shown dotted). From this 
figure, each of the Cartesian velocity components may be expressed in terms 
of the two cylindrical components as follows:

	

u u u u u

v u

R R

R

= + − = −

= +

cos cos cos sin

sin

θ
π

θ θ θ

θ

θ θ2

uu u uRθ θ
π

θ θ θsin sin cos .
2
− = +

	

Substituting these expressions into Equation 4.4 gives the expression for 
the complex velocity W in terms of uR and uθ:

	
W u u i u u

u i

R R

R

= − − +

= −

( cos sin ) ( sin cos )

(cos sin

θ θ θ θ

θ

θ θ

θθ θ θθ) (cos sin )− −iu i 	

that is,

	 W = (uR − iuθ)e−iθ.	 (4.6)

The foregoing results (Equations 4.3 through 4.6) are sufficient to establish 
the flow fields, which are represented by simple analytic functions.

y

x

u

v

u R

O

P

θ

u
θ

FIGURE 4.2
Decomposition of velocity vector OP into its Cartesian components (u, v) and its cylindrical 
components (uR, uθ).
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4.3  Uniform Flows

The simplest analytic function of z is proportional to z itself, and the corre-
sponding flow fields are uniform flows.

First, consider F(z) to be proportional to z where the constant of propor-
tionality is real. That is,

	 F(z) = cz	

where c is real. Then, from Equation 4.4,

	 W(z) = u − iv = c.	

Then, by equating real and imaginary parts of this equation, the velocity 
components corresponding to this complex potential are

	 u = c	

	 v = 0.	

But this is just the velocity field for a uniform rectilinear flow as shown in 
Figure 4.3a. Thus, the complex potential for such a flow whose velocity mag-
nitude is U in the positive x direction will be

	 F(z) = Uz.	 (4.7a)

Next, consider the complex potential to be proportional to z with an imagi-
nary constant of proportionality. Then,

	 F(z) = −icz	

where c is real. The minus sign has been included to make the velocity com-
ponent positive when c is positive. For this complex potential,

	 W(z) = u − iv = −ic	

y y y

x x x

(a) (b) (c)

α

FIGURE 4.3
Uniform flow in (a) x direction, (b) y direction, and (c) angle α to x direction.
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so that the velocity components are

	 u = 0	

	 v = c.	

This is a uniform vertical flow as shown in Figure 4.3b. Then, the complex 
potential for such a flow whose velocity magnitude is V in the positive y 
direction will be

	 F(z) = −iVz.	 (4.7b)

Finally, consider a complex constant of proportionality so that

	 F(z) = ce−iαz	

where c and α are real. For this complex potential,

	 W(z) = u − iv = c cos α − ic sin α.	

Hence, the velocity components of the flow field are

	 u = c cos α	

	 v = c sin α	

This corresponds to a uniform flow inclined at an angle α to the x axis as 
shown in Figure 4.3c. Hence, the complex potential for such a flow whose 
velocity magnitude is V will be

	 F(z) = Ve−iαz.	 (4.7c)

This last result, of course, contains the two previous results as special cases 
corresponding to α = 0 and α = π/2.

4.4  Source, Sink, and Vortex Flows

Complex potentials that correspond to the flow fields generated by sources, 
sinks, and vortices are obtained by considering F(z) to be proportional to log 
z. When considering log z, we consider the principal part of this multivalued 
function corresponding to 0 < θ < 2π.
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Consider, first, the constant of proportionality to be real. Then,

	

F z c z

c Re

c R ic

i

( ) log

log

log .

=

=

= +

θ

θ 	

Hence, from Equation 4.3,

	
φ

ψ θ

=

=

c R

c

log

.
	

That is, the equipotential lines are the circles R = constant, and the stream-
lines are the radial lines θ = constant. This gives a flow field as shown in 
Figure 4.4a in which the streamlines are shown solid and the direction of 
the flow is shown for c > 0. The direction of the flow is readily confirmed 
by evaluating the velocity components. In view of the geometry of the flow, 
cylindrical coordinates are preferred, so that

	 W z
c
z

c
R
e i( ) = = − θ .	

Comparison with Equation 4.6 shows that the velocity components are

	
u

c
R

u

R =

=θ 0
	

which confirms the directions indicated in Figure 4.4a for c > 0.

(a) (b)

FIGURE 4.4
Streamlines (shown solid) and equipotential lines (shown dashed) for (a) source flow and 
(b) vortex flow in the positive sense.
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The flow field indicated in Figure 4.4a is called a source. The velocity is 
purely radial, and its magnitude decreases as the flow leaves the origin. In 
fact, the origin is a singular point corresponding to infinite velocity, and as 
the fluid flows radially outward, its velocity is decreased in such a way that 
the volume of fluid crossing each circle is constant, as required by the conti-
nuity equation.

Sources are characterized by their strength, denoted by m, which is defined 
as the volume of fluid leaving the source per unit time per unit depth of the 
flow field. From this definition, it follows that

	

m u R

c c
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= =

∫

∫

d

d

θ

θ π

π

π

0

2
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Here, the result uR = c/R has been used. Then, c may be replaced by m/2π, 
giving the following complex potential for a source of strength m:

	 F z
m

z( ) log=
2π

.	

The source corresponding to this complex potential is located at the origin, 
the location of the singularity. Then, the complex potential for a source of 
strength m located at the point z = z0 will be

	 F z
m

z z( ) log( )= −
2 0π

.	 (4.8)

Clearly, the complex potential for a sink, which is a negative source, is 
obtained by replacing m by –m in Equation 4.8.

Now, consider the constant of proportionality in the logarithmic complex 
potential to be imaginary. That is, consider

	 F(z) = −ic log z	

where c is real and the minus sign is included to give a positive vortex, as 
will be seen. Then, using cylindrical coordinates,

	
F z ic Re

c ic R

i( ) log

log .

= −

= −

θ

θ 	
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Then, from Equation 4.3, the velocity potential and the stream function are

	
φ θ=

= −

c

c Rψ log . 	

That is, the equipotential lines are the radial lines θ = constant, and the 
streamlines are the circles R = constant as shown in Figure 4.4b. The velocity 
components may be evaluated by use of the complex velocity:

	 W z i
c
z

i
c
R
e i( ) = − = − − θ.	

Comparison with Equation 4.6 shows that the velocity components are

	

u

u
c
R

R =

=

0

θ .
	

Hence, the direction of the flow is positive (counterclockwise) for c > 0, and 
the resulting flow field is called a vortex.

A vortex is characterized by its strength, which may be measured by the 
circulation Γ associated with it. From Equation 2.3, the circulation Γ associ-
ated with the singularity at the origin is
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Here, the result uθ = c/R has been used. Then, c may be replaced by Γ/2π, 
giving the following complex potential for a positive (counterclockwise) vor-
tex of strength Γ:

	 F z i z( ) log= −
Γ
2π

.	

The singularity in this expression is located at z = 0. That is, the line vortex 
is located at z = 0. Then, the complex potential for a positive vortex located 
at z = z0 will be



87Two-Dimensional Potential Flows

	 F z i z z( ) log( )= − −
Γ
2 0π

.	 (4.9)

The complex potential for a negative vortex would be obtained by replac-
ing Γ by –Γ in Equation 4.9. Note, however, that the negative coefficient is 
associated with the positive vortex.

The flow field represented by Equation 4.9, which is shown in Figure 4.4b 
for z0 = 0, corresponds to a so-called free vortex. That is, for any closed contour 
that does not include the singularity, the circulation will be zero and the 
flow will be irrotational. All the circulation and vorticity associated with this 
type of vortex are concentrated at the singularity. This is in contrast with the 
solid-body rotation vortex mentioned in Chapter 2.

The principal application of the source, the sink, and the vortex is in the 
superposition with other flows to yield more practical flow fields.

4.5  Flow in Sector

The flows in sharp bends or sectors are represented by complex potentials 
that are proportional to zn, where n ≥ 1. A special case of such complex poten-
tials would be n = 1, which represents a uniform rectilinear flow. Then, in 
order that this special case will reduce to Equation 4.7a, consider the complex 
potentials

	 F(z) = Uzn.	

Substituting z = Reiθ and separating the real and imaginary parts of this 
function give

	 F(z) = URn cos nθ + iURn sin nθ.	

Then, the velocity potential and the stream function are

	 ϕ = URn cos nθ	

	 ψ = URn sin nθ.	

From this, it is evident that when θ = 0 and when θ = π/n, the stream func-
tion ψ is zero. That is, the streamline ψ = 0 corresponds to the radial lines 
θ = 0 and θ = π/n. Between these two lines, the streamlines are defined by Rn 
sin nθ = constant. This gives the flow field shown in Figure 4.5. The direction 
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of the flow along the streamlines may be determined from the complex 
velocity as follows:

	
W z nUz nUR e

nUR n inUR

n n i n

n n

( )

( cos

( )= =

= +

− − −

− −

1 1 1

1 1

θ

θ ssin ) .n e iθ θ−
	

Thus, by comparison with Equation 4.6, the velocity components are

	

u nUR n

u nUR n

R
n

n

=

= −

−

−

1

1

cos

sin .

θ

θθ 	

Then, for 0 < θ < (π/2n), uR is positive while uθ is negative, and for (π/2n) 
< θ < (π/n), uR is negative and uθ remains negative. This establishes the flow 
directions as indicated in Figure 4.5.

From the foregoing, the complex potential for the flow in a corner or sector 
of angle π/n is

	 F(z) = Uzn.	 (4.10)

For n = 1, Equation 4.10 gives the complex potential for a uniform rectilin-
ear flow, and for n = 2, it gives the complex potential for the flow in a right-
angled corner.

ψ = 0

ψ = 0

π
n

FIGURE 4.5
Streamlines (shown solid) and equipotential lines (shown dashed) for flow in a sector.
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4.6  Flow around Sharp Edge

The complex potential for the flow around a sharp edge, such as the edge of 
a flat surface, is obtained from the function z1/2. Then, consider the complex 
potential

	 F(z) = cz1/2	

where c is real and 0 < θ < 2π. Then, in cylindrical coordinates,

	 F(z) = cR1/2eiθ/2	

so that the velocity potential and stream function are

	

φ
θ

θ

=

=

cR

cR

1 2

1 2

2

2

/

/

cos

sin .ψ
	

Thus, the lines θ = 0 and θ = 2π correspond to the streamline ψ = 0. The 
other streamlines are defined by the equation Rl/2 sin θ/2 = constant, which 
yields the flow pattern shown in Figure 4.6. The direction of the flow is 
obtained from the complex velocity as follows:
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Hence, the velocity components are

	

u
c
R

u
c
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2 2
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cos

sin .

θ

θ
θ

	

Then, for 0 < θ < π, uR > 0 and uθ < 0. Also, for π < θ < 2π, uR < 0 and uθ < 0. 
This gives the direction of flow as indicated in Figure 4.6.

The flow field shown in Figure 4.6 corresponds to the flow around a sharp 
edge, and so the complex potential for such a flow is
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	 F(z) = cz1/2.	 (4.11)

An important feature of this result is that the corner itself is a singular point 
at which the velocity components become infinite. Since both uR and uθ vary 
as the inverse of R1/2, it follows that the velocity is singular as the square root 
of the distance from the edge. This result will be discussed in Section 4.15.

4.7  Flow due to Doublet

The function 1/z has a singularity at z = 0, and in the context of complex 
potentials, this singularity is called a doublet. The quickest way of establish-
ing the flow field that corresponds to the complex potentials that are propor-
tional to 1/z would be to follow the methods used in the previous sections. 
However, it turns out that the doublet may be considered to be the coalescing 
of a source and a sink, and the required complex potential may be obtained 
through a limiting procedure that uses this fact. This interpretation leads to 
a better physical understanding of the doublet, and for this reason, it will be 
followed here before studying the flow field.

Referring to the geometry indicated in Figure 4.7a, consider a source of 
strength m and a sink of strength m, each of which is located on the real axis 
a small distance ε from the origin. The complex potential for such a configu-
ration is, from Equation 4.8,

θ = 2π

θ = 0
ψ = 0

ψ = 0

FIGURE 4.6
Streamlines (shown solid) and equipotential lines (shown dashed) for flow around a sharp 
edge.
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If the nondimensional distance ε/|z| is considered to be small, the argu-
ment of the logarithm may be expanded as follows:

	

F z
m

z z
O

z
( ) log= + + +

2
1 1

2

2π
ε ε ε

= + +
m

z
O

z2
1 2

2

2π
ε ε

log

	

where the designation O(ε2/z2) means terms of order ε2/z2 or smaller. The 
logarithm is now in the form log(1 + γ), where γ ≪ 1, so that the equivalent 
expansion γ + O(γ2) may be used. Then,

y
y

x x

ε ε

m –m

(a) (b)

FIGURE 4.7
(a) Superposition of a source and a sink leading to (b) streamline pattern for the limit ε → 0 
with mε = constant.
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	 F z
m

z
O

z
( ) = +

2
2

2

2π
ε ε

.	

It is now proposed to let ε → 0 and m → ∞ in such a way that limε→0(mε) = 
πμ, where μ is a constant. Then, the complex potential becomes

	 F z
z

( ) = .	

Thus, the complex potential μ/z may be thought of as being the equivalent 
of the superposition of a very strong source and a very strong sink that are 
very close together.

In order to establish the flow field that the above complex potential repre-
sents, the stream function will be established as follows:

	

F z
x iy

x iy

x y

y

x y
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.

=
+

=
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+

∴ = −
+
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2 2

2 2

	

Thus, the equation of the streamlines ψ = constant is

	 x y y2 2 0+ + =
ψ 	

or

	 x y2
2 2

2 2
+ + =

ψ ψ
.	

But this is the equation of a circle of radius μ/(2ψ) whose center is located at 
y = –μ/(2ψ). This gives the streamline pattern shown in Figure 4.7b. Although 
the direction of the flow along the streamlines may be deduced from the 
source and sink interpretation, it will be checked by evaluating the velocity 
components. The complex velocity for this complex potential is
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Hence, the velocity components are
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R
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θ
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2

2

cos
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These expressions for uR and uθ confirm the flow directions indicated in 
Figure 4.7b.

The flow field illustrated in Figure 4.7b is called a doublet flow, and the 
singularity that is at the heart of the flow field is called a doublet. Then, the 
complex potential for a doublet of strength μ that is located at z = z0 is

	 F z
z z

( ) =
− 0

.	 (4.12)

The principal use of the doublet is in the superposition of fundamental 
flow fields to generate more complex and more practical flow fields. An 
application of this will be illustrated in the next section.

4.8  Circular Cylinder without Circulation

The fundamental solutions to the foregoing flow situations provide the 
basis for more general solutions through the principle of superposition. 
Superposition is valid here since the governing equation, for either the veloc-
ity potential or the stream function, is linear. The first example of superposi-
tion of fundamental solutions will be the flow around a circular cylinder.

Consider the superposition of a uniform rectilinear flow and a doublet at 
the origin. Then, from Equations 4.7a and 4.12, the complex potential for the 
resulting flow field will be

	 F z Uz
z

( ) = + .	
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It will now be shown that for a certain choice of the doublet strength, the 
circle R = a becomes a streamline. On the circle R = a, the value of z is aeiθ, so 
that the complex potential on this circle is

	

F z Uae
a
e

Ua
a

i Ua
a

i i( )

cos s

= +

= + + −

−θ θ

θ iin .θ
	

Thus, the value of the stream function on the circle R = a is

	 ψ = −Ua
a

θsin .	

For general values of μ, ψ is clearly variable, but if we choose the strength of 
the doublet to be μ = Ua2, then ψ = 0 on R = a. The flow pattern for this doublet 
strength is shown in Figure 4.8a. The flow field due to the doublet encounters 
that due to the uniform flow and is bent downstream. For clarity, the flow 
due to the doublet is shown as dashed lines in Figure 4.8a. It may be seen 
that the doublet flow is entirely contained within the circle R = a, whereas 
the uniform flow is deflected by the doublet in such a way that it is entirely 
outside the circle R = a. The circle R = a itself is common to the two flow fields.

Under these conditions, a thin metal cylinder of radius a could be slid into 
the flow field perpendicular to the uniform flow so that it coincides with the 
streamline on R = a. Clearly, the flow due to the doublet and that due to the 
free stream would be undisturbed by such a cylindrical shell. Having done 
this, the flow due to the doublet could be removed, and the outer flow would 
remain unchanged. Finally, the inside of the shell could be filled to yield a 
solid cylinder. That is, for R ≥ a, the flow field due to the doublet of strength 
Ua2 and the uniform rectilinear flow of magnitude U give the same flow as 

(a) (b)

FIGURE 4.8
(a) Flow field represented by the complex potential F(z) = U(z + a2/z) and (b) flow around a 
circular cylinder of radius a.
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that for a uniform flow of magnitude U past a circular cylinder of radius a. 
The latter flow is shown in Figure 4.8b. Then, the complex potential for a 
uniform flow of magnitude U past a circular cylinder of radius a is

	 F z U z
a
z

( ) = +
2

.	 (4.13)

This result is useful in its own right, but it will also be found useful in 
later sections, through the technique of conformal transformations, to obtain 
additional solutions.

The solution given by Equation 4.13 for the flow around a circular cylinder 
predicts no hydrodynamic force acting on the cylinder. This statement will 
be proved quantitatively in a later section, and in the meantime, it will be 
proved qualitatively. Referring to Figure 4.8b, it can be seen that the flow is 
symmetric about the x axis. That is, for each point on the upper surface, there 
is a corresponding point on the lower surface, vertically below it, for which 
the magnitude of the velocity is the same. Then, from the Bernoulli equation, 
the magnitude of the pressure is the same at these two points. Hence, by 
integrating p dx around the surface of the cylinder, the lift force acting on the 
cylinder must be zero. Similarly, owing to the symmetry of the flow about 
the y axis, the drag force acting on the cylinder is zero.

Although the foregoing result does not agree with our physical intuition, 
the potential-flow solution for the circular cylinder, and indeed for other bod-
ies, is valuable. The absence of any hydrodynamic force on the cylinder is due 
to the neglect of viscosity. It will be seen in Part III that viscous effects create 
a thin boundary layer around the cylinder, and this boundary layer separates 
from the surface at some point, creating a low-pressure wake. The resulting 
pressure distribution creates a drag force. However, it will be pointed out 
that the viscous boundary-layer solution is valid only in the thin boundary 
layer around the cylinder, and the solution obtained from the boundary-layer 
equations must be matched to that given by Equation 4.13 at the edge of the 
boundary layer. That is, Equation 4.13 gives a valid solution outside the thin 
boundary layer and upstream of the vicinity of the separation point. It also 
indicates the idealized flow situation that would be approached if viscous 
effects are minimized. For more streamlined bodies, such as airfoils, the 
potential-flow solution is approached over the entire length of the body.

4.9  Circular Cylinder with Circulation

The flow field studied in the previous section not only was irrotational but 
also produced no circulation around the cylinder itself. It was found that 
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there was no hydrodynamic force acting on the cylinder under these condi-
tions. It will be shown in a later section that it is the circulation around a 
body that produces any lift force that acts on it. It is therefore of interest to 
study the flow around a circular cylinder that has a circulation around it.

It was established in a previous section that the streamlines for a vortex 
flow form concentric circles. Therefore, if a vortex is added at the origin to 
the flow around a circular cylinder, as described in the previous section, the 
fact that the circle R = a is a streamline would be unchanged. Thus, from 
Equations 4.13 and 4.9, z0 being zero in the latter, the complex potential for the 
flow around a circular cylinder with a negative bound vortex around it will be

	 F z U z
a
z

i
z c( ) log= + + +

2

2
Γ
π

.	

The negative vortex has been used since it will turn out that this leads to a 
positive lift. A constant c has been added to the complex potential for the fol-
lowing reason. For no circulation, it was found that not only was ψ constant on 
R = a but also the value of the constant was zero. By adding the vortex, ψ will 
no longer be zero on R = a, although it will have some other constant value. 
Since it is frequently useful to have the streamline on R = a be ψ = 0, it is desir-
able to adjust things so that this condition is achieved. By adding a constant c 
to the complex potential, we have the flexibility to choose c in such a way that 
ψ = constant becomes ψ = 0. This adjustment has no effect on the velocity and 
pressure distributions since the velocity components are defined by deriva-
tives of ψ, so that the absolute value of ψ at any point is of no significance.

In order to evaluate the constant c, the value of the stream function on the cir-
cle R = a will be computed. Then, putting z = aeiθ, the complex potential becomes
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Hence, on the circle R = a, the value of ψ is indeed constant, and by choos-
ing c = –(iΓ/2π) log a, the value of this constant will be zero. With this value 
of c, the complex potential becomes

	 F z U z
a
z

i z
a

( ) log= + +
2

2
Γ
π

.	 (4.14)

This describes a uniform rectilinear flow of magnitude U approaching a 
circular cylinder of radius a that has a negative vortex of strength Γ around 
it. As required, this result agrees with Equation 4.13 when Γ = 0.
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In order to visualize the flow field described by Equation 4.14, the corre-
sponding velocity components will be evaluated from the complex velocity.
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Hence, by comparison with Equation 4.6, the velocity components are

	 u U
a
R

R = −1
2
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cosθ 	 (4.15a)

	 u U
a
R Rθ θ

π
= − + −1
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2

2
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Γ
.	 (4.15b)

On the surface of the cylinder, where R = a, Equation 4.15 becomes

	

u

u U
a

R =

= − −

0

2
2θ θ
π

sin .
Γ

	

The fact that uR = 0 on R = a is to be expected since this is the boundary 
condition (Equation II.3). A significant point in the flow field is a point where 
the velocity components all vanish—that is, a stagnation point. For this flow 
field, the stagnation points are defined by

	 sin θ
πS Ua

= −
Γ

4
	 (4.16)

where θS is the value of θ corresponding to the stagnation point. For Γ = 0, 
sin θS = 0, so that θS = 0 or π, which agrees with Figure 4.8b for the circular 
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cylinder without circulation. For nonzero circulation, the value of θS clearly 
depends upon the magnitude of the parameter Γ/(4πUa), and it is convenient 
to discuss Equation 4.16 for different ranges of this parameter.

First, consider the range 0 < Γ/(4πUa) < 1. Here, sin θS < 0, so that θS must 
lie in the third and fourth quadrants. There are two stagnation points, and 
clearly the one that was at θ = π is now located in the third quadrant, while 
the one that was located at θ = 0 is now located in the fourth quadrant. The 
two stagnation points will be symmetrically located about the y axis in order 
that sin θS = –constant may be satisfied. The resulting flow situation is shown 
in Figure 4.9a.

Physically, the location of the stagnation points may be explained as fol-
lows: The flow due to the vortex and that due to the flow around the cylinder 
without circulation reinforce each other in the first and second quadrants. 
On the other hand, these two flow fields oppose each other in the third and 
fourth quadrants, so that at some point in each of these regions, the net 
velocity is zero. Thus, the effect of circulation around the cylinder is to make 
the front and rear stagnation points approach each other, and for a negative 
vortex, they do so along the lower surface of the cylinder.

Consider next the case when the nondimensional circulation is unity, that 
is, when Γ/(4πUa) = 1. Here, sin θS = –1, so that θS = 3π/2. The corresponding 
flow configuration is shown in Figure 4.9b. The two stagnation points have 
been brought together by the action of the bound vortex such that they coin-
cide to form a single stagnation point at the bottom of the cylindrical surface. 
It is evident that if the circulation is increased above this value, the single 
stagnation point cannot remain on the surface of the cylinder. It will move 
off into the fluid as either a single stagnation point or two stagnation points.

Finally, consider the case where Γ/(4πUa) > 1. Since it seems likely that any 
stagnation points in this case will not lie on the surface of the cylinder, the 
velocity components must be evaluated from Equation 4.15. Then, if Rs and 
θS are the cylindrical coordinates of the stagnation points, it follows from 
Equation 4.15 that Rs and θS must satisfy the equations

(a) (b) (c)

FIGURE 4.9
Flow of approach velocity U around a circular cylinder of radius a having a negative bound 
circulation of magnitude Γ for (a) 0 < Γ/(4πUa) < 1, (b) Γ/(4πUa) = 1, and (c) Γ/(4πUa) > 1.
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Since it is assumed that the stagnation points are not on the surface of the 
cylinder, it follows that Rs ≠ a, so that the first of these equations requires that 
θS = π/2 or 3π/2. For these values of θS, the second of the above equations 
becomes

	 U
a
R Rs s
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2

2

2
+ = ±

Γ
π

	

where the minus sign corresponds to θS = π/2 and the plus sign to θS = π/2. 
Since U > 0, the left-hand side of the above equation is positive, and since 
Γ > 0, the minus sign must be rejected on the right-hand side. This might 
have been expected since for Γ/(4πUa) = 1, the value of θS was 3π/2, whereas 
the minus sign corresponds to θS = π/2, which would require a large jump in 
θS for a small change in Γ. The equation for Rs now becomes
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This result shows that as 4πUa/Γ → 0, Rs → ∞ for the plus sign, but the cor-
responding limit is indeterminate for the minus sign. This difficulty may be 
overcome by expanding the square root for 4πUa/Γ ≪ 1 as follows:
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where the dots indicate terms of order (4πa/Γ)4 or smaller. In this form, it is 
evident that as 4πUa/Γ→ 0, Rs → 0 for the minus sign. Since this stagnation 
point would be inside the surface of the cylinder, the minus sign may be 
rejected, so that the coordinates of the stagnation point in the fluid outside 
the cylinder are
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This gives a single stagnation point below the surface of the cylinder. The 
corresponding flow configuration is shown in Figure 4.9c, from which it 
will be seen that there is a portion of the fluid that perpetually encircles the 
cylinder.

The flow fields for the circular cylinder with circulation, as shown in 
Figure 4.9, exhibit symmetry about the y axis. Then, following the argu-
ments used in the previous section, it may be concluded that there will be 
no drag force acting on the cylinder. However, the existence of the circula-
tion around the cylinder has destroyed the symmetry about the x axis, so 
there will be some force acting on the cylinder in the vertical direction. 
For the negative circulation shown, the velocity on the top surface of the 
cylinder will be higher than that for no circulation, whereas the velocity 
on the bottom surface will be lower. Then, from Bernoulli’s equation, the 
pressure on the top surface will be lower than that on the bottom surface, 
so that the vertical force acting on the cylinder will be upward. That is, a 
positive lift will exist. In order to determine the magnitude of this lift, a 
quantitative analysis must be performed, and this will be done in the next 
section.

The principal interest in the flow around a circular cylinder with circula-
tion is in the study of airfoil theory. By use of conformal transformations, the 
flow around certain airfoil shapes may be transformed into that of the flow 
around a circular cylinder with circulation.
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4.10  Blasius Integral Laws

In the previous section, it was argued that a lift force exists on a circular cyl-
inder that has a circulation around it. However, the magnitude of the force 
can be established only by quantitative methods. The obvious way to evalu-
ate the magnitude of this force is to establish the velocity components from 
the complex potential. Knowing the velocity components, the pressure dis-
tribution around the surface of the cylinder may be established by use of the 
Bernoulli equation. Integration of this pressure distribution will then yield 
the required force acting on the cylinder.

The difficulty with the foregoing procedure is that it would have to be 
carried out for each pressure distribution and for each body under consid-
eration. The Blasius laws provide a convenient alternative. It will be shown 
that if the complex potential for the flow around a body is known, then it is 
possible to evaluate the forces and the turning moment acting on the body by 
means of simple contour integrals. These contour integrals, in turn, may be 
readily evaluated by use of the residue theorem. The Blasius laws are actu-
ally two separate laws: one for forces and one for the hydrodynamic moment 
acting on the body.

In order to establish the forces acting on an arbitrarily shaped body in 
a flow field, consider such a body as shown in Figure 4.10. A fixed control 
contour C0 of arbitrary shape is drawn around the body whose surface is 
denoted by Ci. The forces acting through the center of gravity, as indicated by 
X and Y, are the hydrodynamic forces acting on the body in the x and y direc-
tions, respectively. Then, for the fluid contained between the surfaces C0 and 
Ci, it may be stated that the net external force acting on the positive x direc-
tion must equal the net rate of increase in the x component of the momen-
tum. In Figure 4.10, an element of positive slope of the surface C0 is shown 
decomposed in the x and y directions. The components of the volume flow 
that pass through this element of surface are also indicated. Then, the above 
statement of Newtonian mechanics for the x direction may be expressed by 
the following equation:

	 − − = −∫ ∫X p y u y v x u
C C

d d d
0 0

ρ( ) .	

In writing this equation, it has been noted that there is no transfer of 
momentum across the surface Ci since it is a streamline, and that the inte-
gral of the pressure around Ci yields the force X, which acts in the posi-
tive direction on the body and hence in the negative direction on the fluid. 
Also, the mass efflux across the element of the surface C0 is ρ(u dy – v dx), 
so that the product of this quantity and the x component of velocity, when 
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integrated around the surfaces C0, gives the net increase in the x component 
of momentum.

A similar equation may be obtained by applying the same Newtonian law 
to the y direction. Thus, the statement that the net external force acting in the 
positive y direction must equal the net rate of increase in the y component of 
the momentum yields the equation

	 − + = −∫ ∫Y p x u y v x v
C C

d d d
0 0

ρ( ) .	

Solving these two equations for the unknown forces X and Y yields the 
following pair of integrals:

	

X p y u y uv x

Y p x uv y v x

C

C

= − − +

= − +

∫

∫

( )

( ).

d d d

d d d

ρ ρ

ρ ρ

2

2

0

0 	

The pressure may be eliminated from these equations by use of the 
Bernoulli equation, which, for the case under consideration, may be written 
in the form

	 p u v B+ + =
1
2

2 2ρ( )
	

M

Y

X

v dx

u dy

Ci

C0

FIGURE 4.10
Arbitrarily shaped body enclosed by an arbitrary control surface. X, Y, and M are the drag, lift, 
and moment acting on the body, respectively.
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where B is the Bernoulli constant. Then, by eliminating the pressure p, the 
expressions for X and Y become

	

X uv x u v y

Y uv y u v

C
= − −

= − + −

∫ρ

ρ

d d

d d

1

1

2 2

2 2

0 2

2

( )

( ) xx
C∫ 0 	

where the fact that B x B y
C C

d d
0 0

0∫ ∫= =  for any constant B around any 

closed contour such as C0 has been used.
It will now be shown that the quantity X – iY is related to a specific com-

plex integral. Consider the following complex integral involving the complex 
velocity W:

	

i W z i u iv x i y

i u v x

C C

ρ ρ

ρ

2 2

2
2

2 2

2 2

0 0

d d d

d

∫ ∫= − +

= − +

( ) ( )

( ) uuv y i u v y uv x

uv x u

C
d d d

d

+ − −{ }

= −

∫ ( )

(

2 2

2

2

1

0

ρ
2

−− + + −v y i uv y u v x2 2 21
) ( )d d d

2CC

X iY

0
∫

= − . 	

The last equality follows by comparison of the expanded form of the com-
plex integral with the expressions derived above for the body forces X and 
Y. That is, the complex force X – iY may be evaluated from the following 
equation:

	 X iY i W z
C

− = ∫
ρ
2

2

0

d 	 (4.17a)

where W(z) is the complex velocity for the flow field, and C0 is any closed 
contour that encloses the body under consideration. It should be noted that 
X and Y were defined as the forces acting on the body through its center of 
gravity.

Equation 4.17a constitutes one of the two Blasius laws. Normally, in 
applying Equation 4.17a, the contour integral is evaluated with the aid of 
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the residue theorem. An application of this procedure will be covered in 
the next section.

In order to establish the hydrodynamic moment acting on the body, con-
sider again Figure 4.10. The quantity M is the moment acting on the body 
about its center of gravity. Then, taking clockwise moments as being posi-
tive, moment equilibrium of the fluid enclosed between C0 and Ci requires 
that

	 − + + + − − − =∫M px x py y u y v x uy u y v x vx
C
[ ( ) ( ) ]d d d d d dρ ρ

0

0.	

The first two terms under the integral are the components of the pressure 
force multiplied by their respective perpendicular distances from the center 
of gravity of the body, which is at the origin of the coordinate system. The 
remaining two terms under the integral represent the inertia forces, which 
were evaluated in the discussion of the force equations, multiplied by their 
respective perpendicular distances from the origin. These inertia forces are 
equal in magnitude and opposite in direction to the rate of increase in the 
horizontal and vertical momentum components.

Solving the foregoing equation for the hydrodynamic moment M gives

	 M px x py y u y y v x x uvy x uvx y
C

= + + + − −∫ [ ( )]d d d d d dρ 2 2

0

.	

Substituting p = B – ρ(u2 + v2)/2 from the Bernoulli equation gives

	 M u v x x y y u y y v x x uvy x uvx= − + + + + − +ρ
1
2

2 2 2 2( )( ) ( ) (d d d d d ddy
C

)∫
0 	

where the fact that Bx x By y
CC

d d= =∫∫ 0
00

 for any constant B and any 

closed contour C0 has been used. Rearranging the preceding equation shows 
that the integral for the moment M may be put in the following form:

	 M u v x x y y uv x y y x
C

= − − − + +∫
ρ
2

22 2

0

[( )( ) ( )]d d d d .	

It will now be shown that the quantity M may be related to the real part of 
a complex integral. Consider the real part, designated by Re(), of the follow-
ing complex integral:
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Re Re ( )( ) ( )
ρ ρ
2 2

2 2

0 0

zW z x iy u iv x i y
C C

d d d∫ ∫= + − +

= − − + +∫Re [( )( ) ( )]
ρ
2

22 2

0

u v x x y y uv x y y x
C

d d d d

+ − + − +

=

∫i u v x y y x uv x x y y
C

ρ

ρ

2
2

2

2 2

0

[( )( ) ( )]d d d d

[[( )( ) ( )]

.

u v x x y y uv x y y x

M

C

2 2 2
0

− − + +

= −

∫ d d d d

	

The last equality follows from a comparison of the real part of the com-
plex integral with the expression derived for M. That is, the hydrodynamic 
moment acting on a body is given by

	 M zW z
C

= − ∫
ρ
2

2

0

Re d 	 (4.17b)

where W(z) is the complex velocity for the flow field, and C0 is any closed 
contour that encloses the body. It should be noted that M is defined as the 
hydrodynamic moment acting on the body, and it is positive when it acts 
in the clockwise direction. Equation 4.17b is the second of the Blasius laws, 
and the contour integral in this equation is usually evaluated by use of the 
residue theorem.

4.11  Force and Moment on Circular Cylinder

It was observed in an earlier section that a force exists on a circular cylinder 
that is immersed in a uniform flow and that has a circulation around it. The 
magnitude of this force may now be evaluated using the results of the previ-
ous section.

From Equation 4.14, the complex potential for a circular cylinder of radius 
a in a uniform rectilinear flow of magnitude U and having a bound vortex of 
magnitude Γ in the negative direction is
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	 F z U z
a
z

i z
a

( ) log= + +
2

2
Γ
π

.	

Then, the complex velocity for this flow field is

	

W z U
a
z

i
z

W z U
U a
z

U a
z

( )

( )

= − +

∴ = − +

1
2

2

2

2

2 2
2 2

2

2 4

Γ
π

44

2

3

2

2 24
+ − −
iU
z

iU a
z z

Γ Γ Γ
π π π

.
	

But from the Blasius integral law (Equation 4.17a),

	

X iY i W z

i i W C

C
− =

=

∫
ρ

ρ
π

2

2
2

2

2
0

0

d

residues of inside( ))∑
	

where the last equality follows from the residue theorem. It is therefore 
required to evaluate the residue of W 2(z) at each of the singular points that 
lie inside an arbitrary contour in the fluid enclosing the cylinder. However, 
inspection of the expression derived for W 2(z) above shows that the only sin-
gularity is at z = 0, corresponding to the doublet and the vortex that are 
located there. Furthermore, W 2(z) is in the form of its Laurent series about 
z = 0, from which it is seen that the only term of the form b1/z is the fourth 
term. Hence, the residue of W 2(z) at z = 0 is iUΓ/π. Then, the value of the 
complex force is

	
X iY i i

iU

i U

− =

= −

ρ
π

π

ρ

2
2

Γ

Γ. 	

Equating the real and imaginary parts of this equation shows that the drag 
force X is zero, as was expected, and that the value of the lift force is

	 Y = ρUΓ.	 (4.18)

Equation 4.18 is known as the Kutta–Joukowski law, and it asserts that, for 
flow around a circular cylinder, there will be no lift force on the cylinder if 
there is no circulation around it, and if there is a circulation, the value of the 
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lift force will be given by the product of the magnitude of this circulation 
with the free-stream velocity and the density of the fluid. The right-hand 
side of Equation 4.18 is positive, so the negative circulation that acted on the 
cylinder led to a positive, that is, upward, lift force.

In order to evaluate the hydrodynamic moment M acting on the cylinder, 
the quantity zW 2 must be evaluated. From the expression for W 2(z) that was 
established above,

	 zW z U z
U a
z

U a
z

iU iU a
z z

2 2
2 2 2 4

3

2

2

2

2

2
4

( ) = − + + − −
Γ Γ Γ
π π π

.	

But from the Blasius integral law (Equation 4.17b),

	

M zW z

i zW

C
= −

= −

∫
ρ

ρ
π

2

2
2

2

2

0

Re

Re (

d

residues of iinside C0 )∑
	

where again the residue theorem has been used. However, the quantity 
zW 2(z), as evaluated above, is already in the form of its Laurent series about 
z = 0. From this, it is evident that the only singularity is at z = 0, and the 
residue there comes from the second and last terms in the expansion. Hence,

	
M i U a= − − −

=

ρ
π

π2
2 2

4

0

2 2
2

2
Re

.

Γ

	

That is, as might be expected, there is no hydrodynamic moment acting on 
the cylinder.

4.12  Conformal Transformations

Many complicated flow boundaries may be transformed into regular flow 
boundaries, such as the ones already studied, by the technique of conformal 
transformations. Before using this fact, it is necessary to study the effect of 
conformal transformations on the complex potential, the complex velocity, 
sources, sinks, and vortices. In carrying out this study, it will be considered 
that some geometric shape in the z plane whose coordinates are x and y is 
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mapped into some other shape in the ζ plane whose coordinates are ξ and η 
by means of the transformation

	 ζ = f(z)	

where f is an analytic function. This situation is depicted in Figure 4.11.
The basis of the complex potential was that both the velocity potential 

and the stream function had to satisfy Laplace’s equation. Hence, in order 
to establish the effect of a conformal transformation on complex potentials, 
their effect on Laplace’s equation should be studied. This will be done by 
transforming the second derivatives with respect to x and y into derivatives 
with respect to the new coordinates, namely, ξ  and η. Then, considering ϕ to 
be a function of ξ and η,

	
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

φ ξ φ
ξ

η φ
ηx x x 	

where ∂ξ/∂x and ∂η/∂x will be known from the equation of the mapping, 
ζ = f(z). Now, in order to transform ∂2ϕ/∂x2, each of the two terms on the right-
hand side of the expression for ∂ϕ/∂x must be differentiated with respect to 
x. Then, using the product rule and considering ϕ to be a function of ξ and η

	
∂
∂
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∂
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2φ
ξ η

	

and

	
∂
∂

∂
∂

∂
∂

=
∂

∂

∂
∂

+
∂
∂

∂
∂

∂
∂ ∂

+
∂

x x x x x
η φ

η
η φ

η
η ξ φ

ξ η
η2

2

2

∂∂
∂

∂x

2

2

φ

η
.	

y

x

z plane

η

ξ

ζ plane

FIGURE 4.11
Original and mapped planes for the mapping ζ = f(z) where f is an analytic function.
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Hence, the expression for ∂2ϕ/∂x2, in terms of derivatives with respect to ξ 
and η, becomes

	
∂

∂
=

∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

2

2

2 2

2

2 2

2
2
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∂
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The corresponding expression for ∂2ϕ/∂y2 is
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Now, since ϕ must satisfy Laplace’s equation in the original plane, that is, 
the xy plane, the sum of the above two quantities must be zero. Then,
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This is the equation that has to be satisfied by ϕ(ξ, η) in the ζ plane due to 
any transformation ζ = f(z) corresponding to ∂2ϕ/∂x2 + ∂2ϕ/∂y2 = 0 in the z 
plane. So far, no restrictions have been imposed on the transformation, but if 
the transformation is conformal, the mapping function will be analytic and 
the real and imaginary parts of the new variable ζ will be harmonic. That is, 
∂2ξ/∂x2 + ∂2ξ/∂y2 = 0 and ∂2η/∂x2 + ∂2η/∂y2 = 0, so that the terms involving these 
quantities in the equation for ϕ will be zero. Also, ξ(x,y) and η(x,y) must satisfy 
the Cauchy–Riemann equations if the mapping function is analytic. That is,

	
∂
∂

=
∂
∂

ξ η
x y 	

and

	
∂
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= −
∂
∂

ξ η
y x 	
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∂
∂

∂
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∂

∂
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x x y y x x x x

== 0.	
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Using this result, the equation to be satisfied by ϕ becomes

	
∂
∂
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Using the Cauchy–Riemann equations to eliminate first ξ, then η, shows 
that the following pair of equations must be satisfied:
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But these equations must be satisfied for all analytic mapping functions; 
hence, it follows that

	
∂

∂
+
∂

∂
=

2

2

2

2
0

φ

ξ

φ

η
.	

That is, Laplace’s equation in the z plane transforms into Laplace’s equa-
tion in the ζ plane, provided that these two planes are related by a conformal 
transformation. Then, since both ϕ and ψ must satisfy Laplace’s equation, it 
follows that a complex potential in the ζ plane is also a valid complex poten-
tial in the ζ plane, and vice versa. This means that if the solution for some 
simple body is known in one of these planes, say the ζ plane, then the solu-
tion for a more complex body may be obtained by substituting ζ = f(z) in the 
complex potential F(ζ).

Consider now what happens to the complex velocity under a conformal 
transformation. Starting in the z plane with the definition of complex velocity,
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	 (4.19)
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That is, complex velocities are not, in general, mapped one to one, but they 
are proportional to each other, and the proportionality factor depends on the 
derivative of the mapping function.

Finally, the effect of a conformal transformation on the strength of the 
basic singularities will be investigated. That is, the strength of transformed 
sources, sinks, and vortices will be established. This is most readily done by 
first proving the general relation that the integral of the complex velocity 
around any closed contour in the flow field equals Γ + im, where Γ is the net 
strength of any vortices inside the contour and m is the net strength of any 
sources and sinks inside the contour.

To prove this relation, consider any closed contour C such as the one shown 
in Figure 4.12. An element dl of this contour is shown resolved into its coor-
dinate components. Then, the net strength of all the sources inside C (sinks 
being considered negative sources) and the net strength of all the vortices 
inside C will be given by

	
m l u y v x

l u x v y

C C
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∫ ∫
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u n
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d d d
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Now, consider the integral around C of the complex velocity W(z).

y

x

dx

dydl

C

FIGURE 4.12
Arbitrary closed contour C with an element dl resolved into its coordinate components.
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where the last equality follows from a comparison with the expressions 
derived for m and Γ. This general result will now be applied to a single vortex 
Γz and a single source mz located in the z plane. Then,
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where Cz is some closed contour in the z plane and Cζ is its counterpart in the 
mapped plane. Γζ and mζ are the corresponding vortex and source strengths 
in the ζ plane, and the above result shows that the vortex and source strengths 
are the same in the z plane as in the ζ plane. That is, sources, sinks, and vor-
tices map into sources, sinks, and vortices of the same strength under a con-
formal transformation.

In summary, if the complex potential for the flow around some body is 
known in the ζ plane, then the complex potential for the body corresponding to 
the conformal mapping ζ = f(z) may be obtained by substituting this transfor-
mation into the complex potential F(ζ). Complex velocities, on the other hand, 
do not transform one to one but are related by Equation 4.19. Sources, sinks, 
and vortices maintain the same strength under conformal transformations.

4.13  Joukowski Transformation

One of the most important transformations in the study of fluid mechanics is 
the Joukowski transformation. By means of this transformation and the basic 
flow solutions already studied, it is possible to obtain solutions for the flow 
around ellipses and a family of airfoils. The Joukowski transformation is of 
the following form
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	 z
c

= +ζ
ζ

2

	 (4.20)

where the constant c2 is usually taken to be real. A general property of the 
Joukowski transformation is that for large values of |ζ|, z → ζ. That is, far 
from the origin, the transformation becomes the identity mapping, so that 
the complex velocity in the two planes is the same far from the origin. This 
means that if a uniform flow of a certain magnitude is approaching a body 
in the z plane at some angle of attack, a uniform flow of the same magnitude 
and angle of attack will approach the corresponding body in the ζ plane.

From Equation 4.20,

	
d
d
z c
ζ ζ
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2

2
	

so that there is a singular point in the Joukowski transformation at ζ = 0. 
Since we are normally dealing with the flow around some body, the point 
ζ = 0 is normally not in the fluid, and so this singularity is of no consequence. 
There are also two critical points of the transformation, that is, points at 
which dz/dζ vanishes, at ζ = ±c. Since smooth curves passing through critical 
points of a mapping may become corners in the transformed plane, it is of 
interest to investigate the consequence of a smooth curve passing through 
the critical points of the Joukowski transformation. To do this, consider an 
arbitrary point z and its counterpart ζ as shown in Figure 4.13a. Let the point 
ζ be measured by the radii ρ1 and ρ2 and the angles ν1 and ν2 relative to the 
two critical points ζ = c and ζ = –c, respectively. However, according to the 
Joukowski transformation, the points ζ = ±c map into the points z = ±2c. 
Then, let the mapping of the point ζ be measured by the radii R1 and R2 and 
the angles θ1 and θ2 relative to the two points z = 2c and z = –2c, respectively.

From Equation 4.20,
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Thus, with reference to Figure 4.13a,
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Equating the modulus and the argument of each side of this equation 
shows that
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FIGURE 4.13
(a) Coordinate system used to investigate the critical points of the Joukowski transformation 
and (b) coordinate changes corresponding to a smooth curve passing through ζ = c.
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and

	 θ1 − θ2 = (ν1 − ν2).	

This last result shows that if a smooth curve passes through the point ζ = c, 
the corresponding curve in the z plane will form a knife-edge or cusp. This 
may be verified by considering a smooth curve to pass through the point 
ζ = c. Two points on this curve are shown in Figure 4.13b, from which it is 
seen that ν1 changes from 3π/2 to π/2 and ν2 changes from 2π to 0 as the 
critical point is passed. That is, the value of ν1 – ν2 changes from –π/2 to π/2, 
giving a difference of π. From the result θ1 – θ2 = 2(ν1 – ν2), it follows that the 
corresponding difference in the value of θ1 – θ2 will be 2π. This yields a knife-
edge or cusp in the z plane as shown in Figure 4.13b. That is, if a smooth 
curve passes through either of the critical points ζ = ±c, the corresponding 
curve in the z plane will contain a knife-edge at the corresponding critical 
point z = ±2c.

An example of a smooth curve that passes through both critical points is a 
circle centered at the origin of the ζ plane and whose radius is c, the constant 
that appears in the Joukowski transformation. Then, on this circle ζ = ceiv, 
and the value of z will be given by

	
z ce ce

c

i i= +

=

−ν ν

ν2 cos . 	

That is, the circle in the ζ plane maps into the strip y = 0, x = 2c cos ν 
in the z plane. It is readily verified that all points that lie outside the circle 
|ζ| = c cover the entire z plane. However, the points inside the circle |ζ| = c 
also cover the entire z plane, so that the transformation is double valued. 
This is readily verified by observing that for any value of ζ, Equation 
4.20 yields the same value of z for that value of ζ and also for c2/ζ. It will 
be noted that c2/ζ is simply the image of the point ζ inside the circle of 
radius c.

This double-valued property of the Joukowski transformation is treated 
by connecting the two points z = ±2c by a branch cut along the x axis and 
creating two Riemann sheets. Then, the mapping is single valued if all the 
points outside the circle |ζ| = c are taken to fall on one of these sheets and 
all the points inside the circle are taken to fall on the other sheet. In fluid 
mechanics, difficulties due to the double-valued behavior do not usually 
arise because the points |ζ| < c usually lie inside some body about which 
the flow is being studied, so that these points are not in the flow field in 
the z plane.
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4.14  Flow around Ellipses

Applications of the Joukowski transformation will be made in an inverse 
sense. That is, the simple geometry of the circle, the flow around which is 
known, will be placed in the ζ plane, and the corresponding body that results 
in the z plane will be investigated by use of Equation 4.20.

Consider, first, the constant c in Equation 4.20 to be real and positive, and 
consider a circle of radius a > c to be centered at the origin of the ζ plane. 
The contour in the z plane corresponding to this circle in the ζ plane may be 
identified by substituting ζ = aeiv into Equation 4.20:

	

z ae
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Equating real and imaginary parts of this equation gives

	

x a
c
a

y a
c
a

= +

= −

2

2

cos

sin .

ν

ν

	

These are the parametric equations of the required curve in the z plane. 
The equation of the curve may be obtained by eliminating ν by use of the 
identity cos2 ν + sin2 ν = 1. This gives
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2
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2

1
/ / 	

which is the equation of an ellipse whose major semiaxis is of length a + 
c2/a, aligned along the x axis, and whose minor semiaxis is of length a − c2/a. 
Then, in order to obtain the complex potential for a uniform flow of magni-
tude U approaching this ellipse at an angle of attack α, the same flow should 
be considered to approach the circular cylinder in the ζ plane. However, it is 
shown in the problems at the end of this chapter that the complex potential 
for a uniform flow of magnitude U approaching a circular cylinder of radius 
a at an angle α to the reference axis is
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	 F U e
a

ei i( )ζ ζ
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α α= +−
2

.	

Then, by solving Equation 4.20 for ζ in terms of z, the complex potential in 
the z plane may be obtained. From Equation 4.20,
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Since it is known that ζ → z for large values of z, the positive root must be 
chosen. Then, the complex potential in the z plane becomes
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where the last term has been rationalized. By writing z/2 as z – z/2 in the first 
term, two of the terms may be combined as follows:

	 F z U ze
a
c

e e
z z

ci i i( ) = + − − −− −α α α
2

2

2
2

2 2 .	 (4.21a)

Equation 4.21a is the complex potential for a uniform flow of magnitude 
U approaching an ellipse whose major semiaxis is a + c2/a and whose minor 
semiaxis is a – c2/a. The flow is at an angle of attack α to the major axis. In this 
form, it may be seen that the complex potential consists of that for a uniform 
flow at an angle α to the reference axis plus a perturbation that is large near 
the body but vanishes for large values of z. The flow field generated by the 
complex potential (Equation 4.21a) is shown in Figure 4.14a together with 
that for the circular cylinder in the ζ plane.

The stagnation points in the ζ plane are located at ζ = aeiα and ζ = aeiα(α+π), 
that is, at ζ = ±aeia. Then, from Equation 4.20, the corresponding points in the 
z plane are
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This gives the coordinates of the stagnation points as
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Equation 4.21a includes two special cases within its range of validity. For 
α = 0, it describes a uniform rectilinear flow approaching a horizontally ori-
ented ellipse, and for α = π/2, it describes a uniform vertical flow approach-
ing the same horizontally oriented ellipse. However, it is of interest to note 
that the solution for a uniform rectilinear flow approaching a vertically ori-
ented ellipse may be obtained directly from the Joukowski transformation 

ζ planez plane

ζ planez plane

(a)

(b)

FIGURE 4.14
(a) Uniform flow approaching a horizontal ellipse at an angle of attack and (b) uniform parallel 
flow approaching a vertical ellipse.
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with a slight modification. Substitute c = ib, where b is real and positive, into 
Equation 4.20

	 z
b

= −ζ
ζ

2

.	

Then, as with the horizontal ellipse, examining the mapping of the circle 
ζ = aeiν gives the parametric equations of the mapped boundary:
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Thus, the equation of the contour in the z plane is
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which is the equation of an ellipse whose major semiaxis is a + b2/a, which is 
aligned along the y axis. Then, to obtain uniform rectilinear flow approach-
ing such an ellipse, the same flow should approach the circle in the ζ plane. 
Thus, the required complex potential, from Equation 4.13, is

	 F U
a

( )ζ ζ
ζ

= +
2

.	

But the inverted equation of the mapping for which ζ → z as z → ∞ is

	 ζ = + +
z z

b
2 2

2
2 .	

Hence, the complex potential in the z plane is
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in which the same rationalization and simplification have been carried out 
as before. Again, the complex potential is in the form of that for a uniform 
flow plus a perturbation that is large near the body and that vanishes at large 
distances from the body. Equation 4.21b describes a uniform rectilinear flow 
of magnitude U approaching a vertically oriented ellipse. The flow field for 
this situation is shown in Figure 4.14b.

4.15  Kutta Condition and Flat-Plate Airfoil

It was observed in Section 4.6 that the potential-flow solution for flow 
around a sharp edge contained a singularity at the edge itself. This singular-
ity required an infinite velocity at the point in question, which, of course, is 
physically impossible. The question arises, then, as to what the real flow situ-
ation would be in a physical experiment. Depending upon the actual physi-
cal configuration, one of two remedial situations will prevail. One possibility 
is that the fluid will separate from the solid surface at the knife-edge. The 
resulting free streamline configuration would be such that the radius of cur-
vature at the edge becomes finite rather than being zero. As a consequence, 
the velocities there will remain finite. Examples of this type of solution will 
be discussed later in this chapter.

A second possibility is that a stagnation point exists at the sharp edge. 
For the flow around finite bodies, stagnation points exist, and it seems 
possible that a stagnation point could be induced by the flow field to move 
to the location of the sharp edge. This possibility leads to the so-called 
Kutta condition, and it will be discussed below in the context of the flat-
plate airfoil—that is, a flat plate that is at some angle of attack to the free 
stream.

In the previous section, the flow around an ellipse was obtained from the 
Joukowski transformation (Equation 4.20) by considering the flow around 
a circular cylinder of radius a > c in the ζ plane. Now, if the constant c is 
allowed to approach the magnitude of the radius a, the resulting ellipse in 
the z plane degenerates to a flat plate defined by the strip –2a ≤ x ≤ 2a. The 
resulting flow field, as defined by Equation 4.21a, is shown in Figure 4.15a. 
Because of the angle of attack, the stagnation points do not coincide with the 
leading and trailing edges of the flat plate. Rather, the upstream stagnation 
point is located on the lower surface and the downstream stagnation point is 
located on the upper surface at the points x = ±2a cos α. Then, around both 
the leading and trailing edges, the flow will be that associated with a sharp 
edge, which was discussed in Section 4.6. In that section, it was observed 
that infinite velocity components existed at the edge itself, a situation that is 
physically impossible to realize.
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The difficulty encountered above with the flat-plate airfoil does not occur 
at the leading edge of real airfoils because real airfoils have a finite thick-
ness and so have a finite radius of curvature at the leading edge. However, 
the trailing edge of airfoils is usually quite sharp, so that the difficulty of 
infinite velocity components still exists there. However, this remaining dif-
ficulty would also be overcome if the stagnation point that is near the trailing 
edge was actually at the trailing edge. This would be accomplished if a cir-
culation existed around the flat plate and the magnitude of this circulation 
was exactly the amount required to rotate the rear stagnation point so that 
its location coincides with the trailing edge. This condition is called the Kutta 
condition, and it may be restated as follows: For bodies with sharp trailing 
edges that are at small angles of attack to the free stream, the flow will adjust 
itself in such a way that the rear stagnation point coincides with the trailing 
edge.

The amount of circulation required to comply with the Kutta condition 
may be determined as follows: In the ζ plane of Figure 4.15a, the rear stagna-
tion point is located at the point ζ = aeiα, but, according to the Kutta condi-
tion, the rear stagnation point should be located at the point z = 2a, which 
corresponds to the point ζ = a. That is, the stagnation point on the down-
stream face of the circular cylinder in the ζ plane should be rotated clockwise 

z plane ζ plane

z plane ζ plane

(a)

(b)

FIGURE 4.15
Flow around a flat plate at shallow angle of attack (a) without circulation and (b) satisfying the 
Kutta condition.
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through an angle α. However, from Equation 4.16, the magnitude of the cir-
culation that will do this is

	 Γ = 4πUa sin α	 (4.22a)

in the clockwise direction (i.e., negative circulation). Then, the complex 
potential for the required flow in the ζ plane is, from Equations 4.14 and 4.29,
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and the inverse, which gives ζ → z as z → ∞, is
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Then, the complex potential in the z plane is
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	 (4.22b)

The flow field corresponding to this complex potential is shown in Figure 
4.15b. Although the flow at the trailing edge is now regular, the singularity at 
the leading edge still exists. In an actual flow configuration, the fluid would 
separate at the leading edge and reattach again on the top side of the airfoil. 
The streamline ψ = 0 would then have a finite curvature, and the velocity 
components would remain finite at the leading edge.

The lift force generated by the flat-plate airfoil may be calculated from the 
Kutta–Joukowski law. Then, denoting the lift force by Y and using the value 
of the circulation given by Equation 4.22a,
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	 Y = 4πρU2a sin α.	

It is usual to express lift forces in terms of the dimensionless lift coefficient 
CL, which is defined as follows:

	 C
Y
U l

L = 1
2

2ρ 	

where l is the length or chord of the airfoil, which, for the flat plate under 
consideration, equals 4a. Then, the value of the lift coefficient for the flat-
plate airfoil is

	 CL = 2π sinα.	 (4.22c)

This result shows that the lift coefficient for the flat-plate airfoil increases 
with angle of attack, and for small values of α, for which sin α ≈ α, the lift 
coefficient is proportional to the angle of attack with a constant of propor-
tionality of 2π. This result is very close to experimental observations, and 
so the Kutta condition appears to be well justified. If the Kutta condition 
were not valid, there would be no circulation around the flat plate and con-
sequently no lift would be generated. This would mean that kites would not 
be able to fly.

4.16  Symmetrical Joukowski Airfoil

A family of airfoils may be obtained in the z plane by considering the 
Joukowski transformation in conjunction with a series of circles in the ζ 
plane whose centers are slightly displaced from the origin. These airfoils are 
known as the Joukowski family of airfoils.

Consider, first, the case where the center of the circle in the ζ plane is dis-
placed from the origin along the real axis. It must then be decided in which 
direction the center should be moved and what radius should be employed, 
relative to the Joukowski constant c. From previous sections, it is known that 
if the circumference of the circle passes through either of the two critical 
points of the Joukowski transformation, ζ = ±c, then a sharp edge or cusp is 
obtained in the z plane. Then, if the leading edge of the airfoil is to have a 
finite radius of curvature and if there should be no singularities in the flow 
field itself, it follows that the point ζ = –c should be inside the circle in the ζ 
plane. Also, since the trailing edge of the airfoil should be sharp as opposed 
to being blunt, the circumference of the circle should pass through the point 
ζ = c. These conditions will be satisfied by taking the center of the circle to be 
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at ζ = –m, where m is real, and by choosing the radius of the circle to be c + m. 
Such a configuration is shown in Figure 4.16a.

The radius a is given by

	 a = c + m = c(1 + ε)	

where the parameter ε = m/c will be assumed to be small compared with 
unity. When ε = 0, the flat-plate airfoil is recovered, so that for ε ≪ 1, it may 
be anticipated that a thin airfoil will be obtained. The significance of the 
restriction ε ≪ 1 will be that all the equations may be linearized in ε, which 
will permit a closed-form solution to be obtained for the equation of the air-
foil surface in the z plane. Also shown in Figure 4.16a is the airfoil that is 
obtained in the z plane and its principal parameters, the chord l and the 
maximum thickness t. It is now required to relate these parameters to the 
free parameters a and m and to establish the equation of the airfoil surface 
in the z plane.

To establish the chord of the airfoil in terms of the chosen radius a and 
offset m, it is only necessary to find the mapping of the points ζ = c and 
ζ = –(c + 2m) since these points correspond to the trailing and leading edges, 
respectively. Using the Joukowski transformation, the mapping of the point 
ζ = c is z = 2c. Also, the mapping of the point ζ = –(c + 2m) = –c(1 + 2ε) is
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FIGURE 4.16
Symmetrical Joukowski airfoil: (a) mapping planes and (b) uniform flow past the airfoil.
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Since it was decided to linearize all quantities in ε, the value of z will be 
obtained to the first order in ε only:

	

z c c O

c O

= − + − − +

= − + 2
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1 2 1 2
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That is, to the first order in ε, the leading edge of the airfoil is located at 

z = –2c, so that the chord is

	 l = 4c.	

This means that, correct to the first order in ε, the chord of the airfoil is 
unchanged by the shifting of the center of the circle in the ζ plane.

In order to determine the maximum thickness t, the equation of the airfoil 
surface must be obtained. This may be done by inserting the equation of the 
surface in the ζ plane into the Joukowski transformation. However, in the ζ 
plane, the polar radius R to the circumference of the circle is a function of the 
angle ν. In order to establish this dependence explicitly, the cosine rule will 
be applied to the triangle defined by the radius a, the coordinate R, and the 
real ζ axis, as shown in Figure 4.16a. Thus,
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But a = c + m, so that the equation above may be written in the form
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Now, since R ≥ c, it follows that m/R ≤ m/c so that, to first order in ε = m/c, 
the term m2/R2 may be neglected. The equation for R then becomes
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Thus, to the first order in ε, this relation becomes
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This is the required equation that gives the variation of the radius R with 
the angle ν for points on the circumference of the circle in the ζ plane. Then, 
in order to determine the equation of the corresponding profile in the z 
plane, this result should be substituted into the Joukowski transformation 
(Equation 4.20). Thus, points on the surface of the airfoil will be defined by
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This equation may also be linearized in ε as follows:
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Then, by equating real and imaginary parts of this equation, the paramet-
ric equations of the airfoil are, to first order in ε,
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Using the first of these equations to eliminate ν from the second equation 
gives the following equation for the airfoil profile:
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The location of the maximum thickness may now be obtained, and this 
is most readily done by using the parametric equation for the coordinate y 
as derived above. Thus, setting dy/dν = 0 for a maximum value of y gives 
the following equation for the value of ν at the location of the maximum 
thickness:

	 sin2 ν + (1 − cos ν) cos ν = 0.	

This relation reduces to

	 cos 2ν = cos ν	
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which is satisfied by ν = 0, ν = 2π/3, and ν = 4π/3. The solution ν = 0 corre-
sponds to the trailing edge and corresponds to the minimum thickness. The 
solutions ν = 2π/3 and ν = 4π/3 give the maximum thickness, and for these 
values of ν, the coordinates of the airfoil surface are

	

x c

y c

= −

= ±
3 3
2

ε.
	

The maximum thickness t will be twice the positive value of y, so that the 
thickness ratio t/l of the airfoil will be

	
t
l
=
3 3
4

ε.	

That is, the thickness-to-chord ratio of the airfoil is proportional to ε, which 
is the ratio of the offset of the center of the circle in the ζ plane to the radius 
c of the critical points of the transformation. Since the thickness ratio of the 
airfoil is a parameter that may be thought of as being specified, it is useful to 
eliminate ε in terms of this parameter. Hence,
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3 3
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Then, the equation of the airfoil surface may be written in the form
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2
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where the maximum value of y/t will be 0.5 and the minimum value will be 
–0.5, both of which occur at x = –c.

The magnitude of the circulation required to satisfy the Kutta condition is, 
from Equation 4.16, 4πUa sin α, where a = c + m and m = cε = 0.77 tc/l. Thus, 
the required amount of circulation is

	 Γ = +π αUl
t
l

1 sin0.77 	 (4.23b)

where c has been replaced by l/4. In this form, the required circulation may 
be evaluated for the given free-stream velocity, angle of attack, and the chord 
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and thickness of the airfoil. Using the Kutta–Joukowski law (Equation 4.18), 
the lift force acting on the airfoil may be evaluated as

	 F U l
t
lL = +πρ α2 1 0 77. sin .	

Then, the lift coefficient for the symmetrical Joukowski airfoil is

	 C
t
lL = +2 1 0 77π α. sin .	 (4.23c)

It will be noticed that this result reduces to Equation 4.22c for the flat-plate 
airfoil as t → 0. This indicates that the effect of thickness of an airfoil is to 
increase the lift coefficient. However, this fact cannot be used to produce 
high lift coefficients through thick airfoils since the flow tends to separate 
from bluff bodies much more readily than it does from streamlined bodies. 
This separation of the flow is a viscous effect, and it will be discussed in the 
next part of the book. In the meantime, it is sufficient to say that separation 
of the flow results in a low-pressure wake that destroys the lift. The same 
result may occur for slender bodies, such as airfoils, that are at large angles 
of attack. In this context, the separation is usually referred to as stall.

The center of the circle in the ζ plane is located at ζ = –m rather than at 
ζ = 0. Thus, the complex potential for the flow in the ζ plane may be obtained 
from Equation 4.29 by replacing ζ by ζ + m and adding the circulation. The 
required complex potential then becomes
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where

	 a
l tc
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and

	 m
tc
l

= 0 77. .	

The magnitude of the circulation Γ is given by Equation 4.23b, and in the 
Joukowski transformation, the parameter c equals l/4. The flow field corre-
sponding to this complex potential is shown in Figure 4.16b.
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4.17  Circular-Arc Airfoil

It was shown in the two previous sections that, using the Joukowski trans-
formation, a circle of radius c centered at the origin in the ζ plane produced 
a flat-plate airfoil, whereas a slightly larger circle centered a small distance 
along the real axis from the origin produced a thin symmetrical airfoil. It 
will now be shown that a circle whose radius is slightly larger than c and 
whose center is located on the imaginary axis in the ζ plane produces an 
airfoil that has no thickness but has curvature or camber.

Referring to Figure 4.17a, consider a circle of radius a > c in the ζ plane such 
that the center of the circle is located a distance m along the positive imagi-
nary axis. Since the trailing edge of the airfoil should be sharp, the circle 
should pass through the critical point ζ = c as before. Then, in this case, the 
circle will also pass through the other critical point, ζ = –c.

The equation of the airfoil in the z plane may be obtained by substituting 
ζ = Reiν into the Joukowski transformation, where, on the circumference of 
the circle in the ζ plane, R is a function of ν. This substitution gives
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FIGURE 4.17
Circular-arc airfoil: (a) mapping planes and (b) uniform flow past the airfoil.
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Thus, the parametric equations of the airfoil profile are

	

x R
c
R

y R
c
R

= +

= −

2

2

cos

sin .

ν

ν

	

 The variable R may be eliminated from these equations as follows:

	
x y R

c
R

R
c
R

2 2 2 2
2

2

2 2
2

sin cos sin cosν ν ν ν− = + − −

=

2

2 2

2 2 24

sin cos

sin cos .

ν ν

ν νc 	

This is the equation of the airfoil surface in the z plane, but it still contains 
the variable ν. This variable may be eliminated by applying the cosine rule 
to the triangle defined by the radius a, the coordinate R, and the imaginary 
ζ axis. From this, it follows that

	
a R m Rm

c m R m Rm

2 2 2

2 2 2 2

2
2

2

= + − −

+ = + −

cos

sin

π
ν

ν 	

where the fact that a2 = c2 + m2 has been used. Solving this equation for sin ν, 
it follows that

	 sin ν =
−R c
Rm

2 2

2
.	

But it was shown above that y = [(R2 – c2) sin ν]/R; hence, it follows that

	 sin
sin

ν
ν

=
y

m2 	

or

	 sin2

2
ν =

y
m 	
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and so

	 cos2 1
2

ν = −
y
m

.	

Using these results to eliminate ν, the equation of the airfoil surface becomes

	 x
y
m

y
y
m

c
y
m

y
m

2 2 2

2
1

2
4

2
1

2
− − = − .	

Collecting like terms, this equation may be put in the form

	 x y
c
m

m y c2 2
2

22 4+ + − = .	

Completing the square in y shows that the equation of the airfoil surface is

	 x y c
c
m

m
c

c
c
m

m
c

2

2

2
2

4+ + − = + −

	

which is the equation of a circle. It should be noted that so far no approxima-
tions have been made. But to be consistent with the analysis in the previous 
section and to permit superposition in the next section, the parameter ε = m/c 
will again be assumed to be small compared with unity. Then, linearizing in 
ε, the equation of the airfoil surface becomes

	 x y
c
m

c
c
m

2
2

2

2
2

2
4+ + = + .	

That is, correct to the first order in ε, the center of the circle in the z plane is 

located at y = –c2/m and the radius of the circle is c c m4 2 2+ / .
The characteristic parameters of the airfoil are the chord l and the camber, 

or height, h, as shown in Figure 4.17a. Since the equation of the airfoil has 
now been established, it is possible to relate these parameters to those in 
the ζ plane, namely, c and m. Since the ends of the circular-arc airfoil lie on 
the real axis y = 0, the foregoing equation of the airfoil shows that the cor-
responding values of x are ±2c. That is, the chord of the airfoil is

	 l = 4c.	
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This is the same chord value as for the two previous airfoils.
The simplest way of establishing the camber h of the airfoil is to use the 

fact that, in view of the result that the center of the circular arc is at x = 0, the 
maximum value of y will occur when x = 0. However, the parametric equa-
tion x = (R + c2/R) cos ν shows that this corresponds to v = π/2. Then, the 
other parametric equation, namely, y = 2m sin2 ν, shows that the maximum 
value of y is 2m. That is,

	 h = 2m.	

Using the foregoing results, the ζ plane parameters c and m may be replaced 
by the z-plane parameters l/4 and h/2, respectively. Then, the equation of the 
airfoil surface in the z plane may be written in the form

	 x y
l
h

l l
h

2
2

2
2 2

28 4
1

16
+ + = + .	 (4.24a)

In order to satisfy the Kutta condition, the rear stagnation point must rotate 
through an angle greater than α, the angle of the free stream. By rotating 
through the angle α, the rear stagnation point will be located on the surface 
of the circle in the ζ plane at a point that is in the same horizontal plane as the 
center of the circle, but the center of the circle is located a distance m above 
the real ζ axis. Thus, in order to be located at the point ζ = c, the rear stagna-
tion point must rotate through a further angle given by

	
tan tan

( ).

− −=

= +

1 1

2

m
c

O

ε

ε ε 	

That is, in order to comply with the Kutta condition, the rear stagnation 
point must rotate through the angle α + m/c, to the first order in ε. Then, from 
Equation 4.16, the required circulation is

	 Γ = +4π αUa
m
c

sin .	

But a c m= +2 2  so that, to first order in ε, a = c. Hence,

	 Γ = +4π αUc
m
c

sin .	
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Then, from the Kutta–Joukowski law, the lift force is

	 F U c
m
cL = +4 2πρ αsin

	

and the corresponding lift coefficient is

	 C
c
l

m
cL = +8π αsin .	

Using again the fact that c = l/4 and m = h/2, the lift coefficient becomes

	 C
h
lL = +2
2

π αsin .	 (4.24b)

Comparing this result with Equation 4.22c, the corresponding result for the 
flat plate, shows that the effect of positive camber in an airfoil is to increase 
its lift coefficient. As a consequence of this increased lift coefficient, a non-
zero lift exists at zero angle of attack.

Since the center of the circle in the ζ plane is at ζ = im rather than at ζ = 0, 
the complex potential in the ζ plane may be obtained by replacing ζ by ζ – im 
in Equation 4.29 and adding the circulation. Thus, the required complex 
potential is

	 F U im e
a
im

e
i im

a
i i( ) ( ) logζ ζ

ζ π
ζα α= − +

−
+

−−
2

2
Γ

	 (4.24c)

where

	 a
l

=
4 	

and

	 m
h

=
2

.	

The magnitude of the circulation Γ is given by

	 Γ = +π αUl
h
l

sin
2
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and the parameter c in the Joukowski transformation is l/4. The flow field 
corresponding to this complex potential is shown in Figure 4.17b. As was the 
case with the flat-plate airfoil, this flow field has a singularity at the leading 
edge. This singularity would not exist for airfoils of finite nose radius and 
would not exist even for sharp leading edges because of separation of the 
flow at the nose. In spite of this local inaccuracy, the results derived above are 
representative of the flow around thin cambered airfoils.

4.18  Joukowski Airfoil

The results of the two previous sections suggest that a cambered airfoil of 
finite thickness may be obtained by considering the Joukowski transforma-
tion in conjunction with a circle in the ζ plane whose center is in the second 
quadrant. Such a configuration is shown in Figure 4.18a in which the center 
of the circle is displaced a distance m from the origin at an angle δ from the 
reference axis. In order that the trailing edge of the corresponding airfoil 
be sharp, the circumference of the circle passes through the critical point 
ζ = c. The principal parameters of the airfoil in the z plane are also shown in 
Figure 4.18a. These are the chord l, the maximum thickness t, and the maxi-
mum camber of the centerline h.

t h

l

–c c

a

m δ

z plane ζ plane

z plane ζ plane

(a)

(b)

FIGURE 4.18
Joukowski airfoil: (a) mapping planes and (b) uniform flow past the airfoil.
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From the previous two sections, it follows that, to the first order in ε, the 
centerline of the airfoil will be a circular arc whose center is on the y axis and 
the airfoil will be symmetrical about its centerline. Then, the equation of the 
upper and lower surfaces of the airfoil may be obtained from the equation 
for the circular-arc centerline plus or minus, respectively, the thickness effect. 
Hence, from Equations 4.23a and 4.24a, the airfoil profile will be given by

	 y
l l

h
x

l
h

t
x
l

= + − − ± − −
2 2

2
2

2

4
1

16 8
0 385 1 2 1. 22

2
x
l

	 (4.25a)

where the plus defines the upper surface and the minus defines the lower 
surface of the so-called Joukowski airfoil.

It was observed that the effect of thickness on an airfoil was to increase 
its lift by an amount 0.77t/l and that the effect of camber was to increase the 
effective angle of attack to α + 2h/l The present airfoil has both these effects, 
so that, from Equations 4.23c and 4.24b, the lift coefficient for the Joukowski 
airfoil will be

	 C
t
l

h
lL = + +2 1 0 77
2

π α. sin .	 (4.25b)

The complex potential for the flow around this airfoil, in the ζ plane, is

	 F U me e
a e
me

i mi i
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i
( ) ( ) logζ ζ

ζ π
ζδ α
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δ
= − +

−
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2
Γ ee
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	 (4.25c)

where m cos δ = –0.77(tc/l), m sin δ = h/2, and a = l/4 + 0.77(tc/l). These results 
follow from the observation that –m cos δ replaces m as used in the sym-
metrical Joukowski airfoil and m sin δ replaces m as used in the circular-arc 
airfoil. The magnitude of the circulation Γ will include both the thickness 
and camber effects, and so it follows that

	 Γ = + +π αUl
t
l

h
l

1 0 77
2

. sin .	

The flow field corresponding to the foregoing complex potential is shown 
in Figure 4.18b. It should be remembered that there is a limit to the amount 
of thickness and camber that may be introduced if the flow field is to remain 
as shown. As the thickness and/or camber of the airfoil increases, the 
body departs more and more from a streamlined airfoil and approaches a 
bluff body. It was pointed out earlier that a consequence of this would be 
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separation of the flow, which destroys the lift force and creates the so-called 
stall condition.

4.19  Schwarz–Christoffel Transformation

Another conformal transformation of prime interest in the study of poten-
tial flows is the Schwarz–Christoffel transformation. This transformation is 
reviewed briefly in Appendix D, from which it will be seen that the mapping 
function is the solution to the following differential equation:

	
d
d

/ / /z
K a b c

ζ
ζ ζ ζα π β π γ π= − − −− − −( ) ( ) ( )1 1 1�

	

where a, b, c, etc., are the locations in the ζ plane of the vertices of a polygon 
in the z plane that subtend the internal angles α, β, γ, etc. The quantity K is a 
constant, and normally three of the quantities a, b, c, etc., may be chosen arbi-
trarily. The manner in which this transformation is used will be illustrated 
through its application to a simple problem whose solution may be deduced 
from previously established results. This will permit a direct and indepen-
dent check on the solution obtained through use of the Schwarz–Christoffel 
transformation.

The problem to be considered is that of obtaining the complex potential 
for the flow around a flat plate of finite length oriented such that it is perpen-
dicular to the oncoming flow; that is, the angle of attack is 90°. The solution 
to this problem may be deduced from that of a vertically oriented ellipse, 
which was treated in Section 4.14, by a limiting procedure. The length of the 
plate obtained in Section 4.14 was 4a, and that is the length of the plate that 
we will consider here. The stagnation streamline will be a line of symmetry 
for this problem, so that only one-half of the plate, say the top half, need 
be considered. The stagnation streamline ψ = 0 is shown in Figure 4.19a 
for the top half of a vertical plate of length 4a. The plate itself is considered 
to be made up of the line ABC, which folds back on itself. The location of 
the vertices A, B, and C in the z plane are shown as the points a, b, and c, 
respectively, on the ζ plane. The points chosen for a, b, and c are –1, 0, and 
1, respectively.

The equation of the Schwarz–Christoffel mapping function is the solution 
to the following equation:

	
d
d

/ /z
K

ζ
ζ ζ ζ= + − −− −( ) ( ) ( )1 0 11 2 1 1 2
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where the fact that α = π/2, β = 2π, and γ = π/2, as indicated in Figure 4.19a, 
has been used. That is, the equation of the mapping function is

	
d
d
z

K
ζ

ζ

ζ
=

−2 1 	

or, integrating

	 z K D= − +ζ2 1 	

where D is a constant of integration that is, in general, complex. The con-
stants K and D will now be evaluated such that the points A, B, and C and a, 
b, and c correspond to each other. The conditions to be satisfied are

	 1.	When ζ = 1, z = 0.
	 2.	When ζ = –1, z = 0.
	 3.	When ζ = 0, z = i2a.

2a
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B

C

β = 2π

α = – π
2 γ = – π

2 –1 +1
a b c

z plane ζ plane

(a)

(b)

FIGURE 4.19
Flow around a vertical flat plate assuming that the flow does not separate: (a) Schwarz–
Christoffel mapping planes and (b) flow field.
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The first two conditions are satisfied by taking D = 0, while the third condi-
tion is satisfied by choosing K = 2a. Then, the required mapping function is

	 z a= −2 12ζ .	

The complex potential in the ζ plane is that of a uniform rectilinear flow 
since the streamline ψ = 0 has been stretched out along the real ζ axis. To 
find the magnitude of the uniform velocity, it is observed from the mapping 
function that as ζ → ∞, z → 2aζ. Then, from Equation 4.19, W(ζ) → 2aW(z), so 
that for a flow of magnitude U in the z plane, the magnitude in the ζ plane 
should be 2aU. Thus, the required complex potential is

	 F(ζ) = 2aUζ.

But from the mapping function

	 ζ = ± +
z
a2

1
2

. 	

In order that ζ → +∞ as z → +∞, so that the direction of the flow is correct, 
the positive root must be chosen. Hence, the required inverse of the mapping 
function is

	 ζ = +
1
2

42 2

a
z a . 	

The complex potential in the z plane then becomes

	 F z U z a( ) .= +2 24 	

This result may be checked by using the result for the uniform flow of 
magnitude U past an ellipse of major semiaxis (a + b2/a) and minor semiaxis 
(a – b2/a), the latter being along the x axis. The resulting complex potential is 
given by Equation 4.21b, which was obtained through use of the Joukowski 
transformation. As b → a in this result, the ellipse degenerates to a vertical 
flat plate of length 4a. Substituting b = a in the complex potential confirms the 
result derived above by use of the Schwarz–Christoffel transformation. The 
corresponding flow field is shown in Figure 4.19b. From this figure, or from 
inspection of the complex potential, it will be seen that infinite velocities, of 
the type discussed in Section 4.6, exist at y = ±2a. Clearly, the Kutta condi-
tion cannot be applied in such a case, and so the fluid will separate from the 
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two edges of the plate. That is, the complex potential derived here does not 
represent the actual flow field accurately because the fluid does not remain 
in contact with the plate as was implicitly assumed here. A more representa-
tive flow configuration for this problem will be analyzed later in this chapter.

4.20  Source in Channel

The Schwarz–Christoffel transformation may be used to solve a sequence of 
problems related to that of the flow generated by a line source located in a 
two-dimensional channel. Then, consider a channel of width 2l and of infi-
nite length in which a source is located midway between the channel walls. 
If the origin of the coordinate system in the z plane is taken to be at the loca-
tion of the source, it is clear that the resulting flow field will be symmetrical 
about both the x axis and the y axis. Then, the entire x axis and the portion 
–l ≤ y ≤ l of the y axis will be streamlines, so that only the first quadrant of 
the flow field need be considered; the remainder will follow from symmetry. 
Figure 4.20a shows the first quadrant of the flow field in the z plane in which 
the source is located at z = 0.

Considering the region 0 ≤ x, 0 ≤ y ≤ l, to be bounded by the polygon that is 
to be mapped, the vertices A and B will be chosen to correspond to the points 
ζ = –1 and ζ = 1, as shown in Figure 4.20a. The interior angles corresponding 
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FIGURE 4.20
(a) Mapping planes for a source in a channel, (b) flow field for a full or semi-infinite channel, 
(c) flow field for the source at the wall, and (d) infinite array of sources.
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to the vertices A and B in the z plane are π/2, so that the differential equation 
of the mapping is

	

d
d

/ /z
K

K

ζ
ζ ζ

ζ

= + −

=
−

− −( ) ( )1 1

1

1 2 1 2

2

	

and hence, integrating

	 z = K cosh−1 ζ + D

where D is a constant of integration. The constants K and D will now be 
evaluated such that the point A corresponds to the point a and the point B 
corresponds to the point b. The required conditions are

	 1.	When ζ = 1, z = 0.
	 2.	When ζ = –1, z = il.

The first condition is satisfied by setting D = 0, while the second condition 
is satisfied for K = l/π. Then, the required mapping function is

	 z
l

= −

π
ζcosh 1

	

which has the inverse

	 ζ
π

= cosh
z
l

.	

The flow field in the ζ plane now corresponds to a source located at the 
point ζ = 1. Hence, the complex potential in the ζ plane is

	 F
m

( ) log( )ζ
π

ζ= −
2

1
	

so that the corresponding complex potential in the z plane is

	 F z
m z

l
( ) log cosh= −

2
1

π
π
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This result may be simplified slightly by using the identity

	 cosh (X + Y) − cosh (X − Y) = 2 sinh X sinh Y	

for X = Y = πz/(2l). Hence,

	 cosh sinh
π πz
l

z
l

− =1 2
2

2 .	

Thus, the complex potential may be written in the alternative form
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But the constant term may be neglected since it does not affect the velocity 
components. That is, the complex potential may be taken to be

	 F z
m z

l
( ) log sinh=

π
π
2

.	 (4.26)

Equation 4.26 is the complex potential for the flow configurations shown 
in Figure 4.20b through d. Figure 4.20b shows the flow field due to a source 
that is located on the centerline of an infinitely long channel or at the center 
of the end of a semi-infinite channel. Figure 4.20c shows the flow field due 
to a source that is located on one wall of an infinite channel or at a cor-
ner of a semi-infinite channel. The foregoing flow configurations are clearly 
related to the largest flow field, shown in Figure 4.20b, by symmetry. The 
total quantity of fluid leaving the source is 4lU, so that the source strength m 
in Equation 4.26 should be 4lU in order that the channel velocity in the four 
configurations shown in Figure 4.20b and Figure 4.20c will be U.

Figure 4.20d depicts an infinite array of line sources spaced a distance 2l 
apart. The horizontal lines that pass midway between each pair of sources 
will obviously be streamlines for such an array of sources. It follows that the 
case of a source located in a horizontal channel may be thought of as only 
one component of an infinite number of such channels stacked on top of each 
other in the vertical direction. Mathematically, the fact that Equation 4.26 
represents an infinite number of sources spread in the y direction follows 
from the fact that the hyperbolic sine function repeats itself for imaginary 
values of its argument.
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4.21  Flow through Aperture

One of the most impressive applications of the Schwarz–Christoffel transfor-
mation, in the field of fluid mechanics, is in the study of streaming motions 
that involve free streamlines. It is not usually known where these free 
streamlines lie, and this information must come out of the solution. The key 
to solving such problems is the so-called hodograph plane, which uses the fact 
that along such free streamlines, the pressure is constant. Two examples will 
be covered in this chapter, this first example being an application to the flow 
through a two-dimensional slit or aperture.

Figure 4.21a shows, in the z plane, a horizontal plate with an opening in 
it. The plate contains a semi-infinite expanse of fluid above it, and this fluid 
is draining through the aperture that is defined by the section BB′ of the x 
axis. At the corners B and B′, the flow will locally behave like that for the flow 
around a sharp edge, which was discussed in Section 4.6. It was pointed out 
in that section that if the fluid remained in contact with the solid boundary, 
infinite velocity components would result at the edge itself. Since this cannot 
be physically so, the fluid will not remain in contact with the solid boundary 
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FIGURE 4.21
(a) Mapping planes for flow through a slit and (b) geometry of one of the free bounding 
streamlines.
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but will separate at the edge. In the case under discussion, the bounding 
streamlines along the horizontal plate will curve toward the vertical plane 
of symmetry, as shown in Figure 4.21a. The magnitude of the velocity in 
the resulting jet will reach some uniform magnitude U downstream of all 
edge effects. The principal streamlines in the flow field have been labeled 
for identification purposes. These are the bounding streamlines on the right, 
identified by the points A, B, and C, the bounding streamlines on the left, 
identified by the points A′, B′, and C′, and the central streamline II′. The free 
streamlines are BC and B′C′.

The first transformation will be to the hodograph plane, which will be desig-
nated the ζ plane here. The transformation will be taken to be

	 ζ θ= = =
+

U
z
F

U
W

U

u v
ei

d
d 2 2

.	 (4.27a)

That is, the ζ plane is defined by the nondimensional reciprocal of 
the complex velocity, and the last equality follows from the fact that 

W u iv u v e i= − = + −2 2 θ. The significance of this transformation is that the 
free streamlines, whose positions are unknown, are mapped onto the unit 
circle in the ζ plane, as will now be shown. In so doing, it should be noted 
that, by the foregoing definition, θ is the angle subtended by the velocity vec-
tor in the z plane.

Along the free streamlines BC and B′C′, the pressure will be constant, typi-
cally atmospheric pressure, so that, from Bernoulli’s equation, the quantity 
u2 + v2 will be constant. The value of this constant may be determined by 
noting that away from the edge effects, the velocity in the jet is U. Hence, 
the value of u2 + v2 along the free streamlines is U2. Then, along the free 
streamlines, ζ = eiθ, which is the equation of the unit circle in the ζ plane. To 
find the portion of this unit circle that represents the free streamlines, it is 
observed that along the streamline A′B′, the angle θ of the velocity vector is 
0 or 2π, while the value of θ along AB is π. Also, along the streamline II′, the 
angle θ of the velocity vector is 3π/2. From these observations, it is evident 
that the lower half of the unit circle in the ζ plane represents the streamlines 
BC and B′C′, as shown in Figure 4.21a. The other principal streamlines may 
be identified as follows: Along A′B′, the value of θ is 0 or 2π, while u2 + v2 
varies from 0 at A′ to U2 at B′; hence, |ζ| varies from infinity at A′ to unity at 
B′. Likewise, along AB, the value of |ζ| varies from infinity at A to unity at 
B, with the value of θ being π. Finally, along the streamline II′, the value of θ 
is 3π/2, while u2 + v2 varies from zero at I to U2 at I′, making |ζ| infinity at I 
and unity at I′. This establishes the flow configuration shown in the ζ plane 
of Figure 4.21a. Since the flow is toward the point ζ = –i, which is identified 
by C, C′, and I′, there is a fluid sink there.

Since the principal streamlines in the ζ plane are either radial lines or the 
unit circle, the flow pattern may be mapped into a plane configuration by 
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means of a logarithmic transformation. Then, a second mapping is proposed 
to the ζ′ plane, where ζ′ is defined by

	 ζ′ = log ζ.	 (4.27b)

If a point in the ζ plane is represented by its polar coordinates R and θ, 
where R = U/(u2 +v2)1/2, then ζ = Reiθ, so that

	 ζ′ = log ζ = log R + iθ.	

Thus, the radial lines in the ζ plane become the horizontal lines defined by 
ζ′ = log R + i × constant in the ζ′ plane, while the unit circle R = 1 becomes 
the vertical line ζ′ = iθ. Noting that the angle θ is the angle subtended by 
the velocity vector in the z plane, it follows that the value of θ along A′B′ 
is 0 or 2π. This gives the flow configuration shown in Figure 4.21a in the ζ′ 
plane, which corresponds to the flow in a semi-infinite channel due to a sink 
located at the center of the end of the channel. However, it was seen in the 
previous section that such a configuration could be mapped into that of a 
simple source. Using the results of the previous section, a simple source flow 
will result in the ζ″ plane through the mapping

	 ζ″ = cosh (ζ′ − iπ)	

that is,

	 ζ″ = −cosh ζ′.	 (4.27c)

Here, the rectangle ABCC′B′A′ has been taken as the equivalent of the half 
channel of width l that was considered in the previous section. Then, the 
quantity l that appeared in the transformation is π in this case, and in order 
to bring the corner B to the origin in the ζ′ plane, the quantity ζ′ – iπ rather 
than ζ′ is the appropriate variable.

The flow field in the ζ″ plane is shown in Figure 4.21a. The complex poten-
tial in this plane will be that for a simple sink located at ζ″ = 0, so that

	 F
m

K( ) log= − +ζ
π

ζ
2

	 (4.27d)

where the constant K has been added to permit the streamline ψ = 0 and the 
equipotential line ϕ = 0 to correspond to a chosen streamline and equipoten-
tial line, respectively. Referring to Figure 4.21b, it will now be specified that 
the streamline ψ = 0 be the streamline II′ and that the equipotential line ϕ = 0 
passes through the points B′ and B. Then, using the property of the stream 
function that the difference in the values of ψ between two streamlines equals 
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the volume of fluid flowing between these two streamlines, the value of ψ 
along A′B′C′, which will be denoted by ψA′B′C′, may be identified. Considering 
the flow between the streamlines II′ and A′B′C′, it follows that

	 0 − ψA′B′C′ = CclU	

where Cc is the contraction coefficient of the jet. Similarly, if ψABC is the value 
of ψ along the streamline ABC, it follows by considering the flow between 
the streamlines ABC and II′ that

	 ψABC − 0= CclU.	

That is,

	 ψABC = CclU	

and

	 ψA′B′C′ = −CclU.	

Then, at point B′, ϕ = 0 and ψ = –CclU. Hence, the value of the complex 
potential there is 0 – iCclU. Applying this result to Equation 4.27d and noting 
that ζ″ = –1 at the point B′ give

	

0
2

1

2

− = − − +

− = − +

iC lU
m

K

iC lU i
m

K

c

c

π
log( )

.
	

Likewise, at point B, the complex potential is 0 + iCclU and the value of ζ″ 
is unity; hence,

	 0
2

1+ = − +iC lU
m

Kc π
log

	

or

	 iCClU = K.	

These two equations show that K = iCclU and m = 4CclU, so that the com-
plex potential (Equation 4.27d) becomes

	 F
C lU

iC lU( ) log= − +ζ
π

ζ
2 c

c .	
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The corresponding complex potential in the z plane may be obtained by 
use of the transformations (Equations 4.27a through 4.27c). This gives

	 F z
C lU

U
z
F

i( ) log cosh log= − −
2 c d

dπ
π + iC lUc .	 (4.27e)

This result is an implicit expression for F(z) rather than an explicit expres-
sion since dF/dz appears inside the expression for F(z). However, the flow 
problem has, in principle, been solved, and it is possible to obtain useful 
information from the result. The quantity that is of prime interest in this 
problem is the value of the contraction coefficient Cc , so this value will be 
determined below.

In order to evaluate the contraction coefficient Cc, the equation of the free 
streamline B′C′ will be established. From this result, the value of x at point 
C′ should be numerically equal to the half-jet dimension Ccl. This will enable 
the quantity Cc to be evaluated. The equation of the free streamline B′C′ is 
most readily established in terms of a coordinate s whose value is zero at 
point B′ and whose magnitude increases along B′C′. Then, considering a 
small element of a curve, such as the streamline B′C′, whose slope is positive, 
it follows that

	

d
d

d

x
s

x x s
s

=

∴ = + ∫

cos

cos

θ

θ0
0 	

where the constant x0 has been added to permit the condition x = –l when 
s = 0 to be applied. The variation of ds with θ is now required, and owing to 
the implicit nature of the mapping function (Equation 4.27a), this variation 
must be obtained by indirect methods as follows: The preceding expression 
for the lateral displacement x of the jet surface may be written as

	
x x

s
= + ∫0

2
cosθ

ζ
ζ
θ

θ
π

θ d
d

d
d

d
	

where the quantities ds/dζ″ and dζ″/dθ must be expressed in terms of θ 
before the integration may be performed. The value of dζ″/dθ on B′C′ will be 
obtained from the equations of the mappings, while ds/dζ″ will be obtained 
from the complex potential F(ζ″). Considering first the value of ds/dζ″, it may 
be stated that, on the streamline B′C′
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1 = = =

=

ζ

ζ
ζ

U
W

U
z
F

U
z

F

d
d

d
d

d
d

.
	

But from Equation 4.27d with m = 4CclU,

	

d
d

d
d

c

c

F C lU

U
z

C lU

= −

∴ =

ζ π ζ

ζ
π

ζ

2 1

1
2

.
	

On B′C′, ζ″ < 0, so that

	

d
d

cz C l
=

ζ π ζ
2 1 .

	

Now, on the streamline B′C′, the value of dz may be represented by –ds eiθ, 
where ds is an element of the coordinate s, which was previously introduced. 
Also, along B′C′, ζ″ is increasing so that dζ″ > 0. Hence,

	

d
d

cs C l
= −

ζ π ζ
2 1 .

	

The equations of the various mappings may now be used to evaluate ζ″ in 
terms of θ. On the streamline B′C′, the value of ζ is

	

ζ

ζ ζ θ

θ=

∴ = =

e

i

i

log 	

and

	

= − = −

∴ =

ζ ζ θ

ζ
θ

θ

cosh cos

sin
d
d 	
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and

	

d
d

cs C l
=

ζ π θ
2 1

cos
.
	

Using these last two equations, the expression for the lateral displacement 
x of the free streamline becomes

	

x x
C l

x
C l

= +

= +

∫

∫

0
2

0
2

2

2

cos
cos

sin

sin

θ
π θ

θ θ

π
θ θ

π

θ

π

θ

c

c

d

d

== + −x
C l

0
2

1c

π
θ( cos ).

	

But when θ = 2π, that is, at the point B′, x = –l. Hence, x0 = –l, so that

	
x l

C l
= − + −

2
1c

π
θ( cos ).

	

Also, the value of x at the point C′ is –Ccl, while the value of θ is 3π/2. Thus,

	

− = − +

∴ =
+

C l l
C l

C

c
c

c

2

2

π

π
π

.

	 (4.27f)

Equation 4.27f predicts that the free jet that emerges from the aperture 
will assume a width that is 0.611 of the width of the slit. This result is well 
established experimentally, and the figure of 0.611 has been confirmed for 
openings under deep liquids.

4.22  Flow Past Vertical Flat Plate

In Section 4.19, the complex potential for the flow around a flat plate that 
is oriented perpendicular to the free stream was obtained. However, it was 
pointed out that the result obtained at that time was unrealistic because it 
required infinite velocity components at the two edges of the plate. It would 
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therefore appear that the assumption of attached flow, which was implic-
itly made at that time, is not valid. The same problem will be treated here, 
but this time, it will be assumed that the flow separates from the surface of 
the plate at the two edges. The resulting free streamlines will be treated in 
a manner similar to that in which the free jet was treated in the previous 
section.

Figure 4.22 shows, in the z plane, the assumed flow configuration for a uni-
form rectilinear flow of magnitude U approaching a vertically oriented flat 
plate of height 2l. The stagnation streamline II′ splits upon reaching the plate 
and forms the bounding streamlines ABC and A′B′C′, where BC and B′C′ are 
the free streamlines. The region downstream of the plate between the two 
free streamlines is interpreted as being a cavity that has a uniform pressure 
throughout. The point I′ is on the surface of the plate.

As in the previous section, the free streamlines may be handled by use of 
the hodograph plane. Hence, a transformation is made to the ζ plane, where

z plane ζ plane

ζ΄ plane ζ ΄́ plane

ζ΄́́  plane ζ΄́΄́  plane

I ÍA

B

C

A΄
B΄

C΄

l

l

U +1

–1

A

B

CI Í

A΄

B΄

C΄

AB

C

A΄B΄

C΄I Í
π
2–i–

π
2i–

A B C C΄ B΄ C΄
I

Í

Í I
ABC

C΄ B΄ A΄ A΄
A

I Í B΄
B

C΄
C

+1+1

+1–1

FIGURE 4.22
Mapping planes for flow over a flat plate that is oriented perpendicular to a uniform flow.
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	 ζ θ= = =
+

U
z
F

U
W

U

u v
ei

d
d 2 2

.	 (4.28a)

The boundaries of the flow field in the ζ plane are shown in Figure 4.22. 
The free streamlines BC and B′C′ again become part of the unit circle in 
the ζ plane. Since the value of θ along ABC lies between π/2 and 0 and the 
value of θ along A′B′C′ lies between –π/2 and 0, the appropriate portion of the 
unit circle is that which lies in the first and fourth quadrants. Since the flow 
boundary crosses the positive portion of the real ζ axis, it is no longer con-
venient to consider the range of θ to be 0 ≤ θ ≤ 2π. If this range were adopted, 
the multivalued functions, which require branch cuts, would divide the 
flow boundary. This difficulty may be simply overcome by considering the 
branch cut to lie along the negative real ζ axis so that the principal value of 
the multivalued functions will correspond to –π ≤ θ ≤ π.

The geometry of radial lines and circular contour is next converted to that 
of a plane figure by means of a logarithmic transformation. That is, a map-
ping to the ζ′ plane is made where

	 ζ′ = log ζ.	 (4.28b)

This maps the flow boundary into that of a rectangular channel, as shown 
in Figure 4.22. Since the range of θ is now –π ≤ θ ≤ π, the lower wall of this 
channel corresponds to the imaginary part of ζ′ being – π/2, and the upper 
wall corresponds to +π/2. That is, the centerline of the channel corresponds 
to the real ζ′ axis. Then, the flow field may be stretched out using the same 
transformation as was used in Section 4.20 for a source in a channel. Here, 
the corner B′ is located at ζ′ = iπ/2 rather than ζ′ = 0, and the channel half 
width is π instead of l. Hence, the required transformation is

	 = +ζ ζ
π

cosh i
2

.	 (4.28c)

The principal flow lines in the ζ″ plane may be made collinear by means 
of the mapping

	 ζ′″ = (ζ″)2.	 (4.28d)

This doubles the angles subtended by the principal streamlines, so that 
the flow in the ζ′″ plane is unidirectional along the principal streamlines, as 
shown in Figure 4.22. However, the flow is still not that of a uniform flow as 
the principal streamlines might suggest. This may be confirmed by observ-
ing that, in the z plane, there is a source of fluid at I that flows toward a sink 
at CC′. However, in the ζ′″ plane, CC′ and I are at the same location, so that 
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the flow in the ζ′″ plane is probably that of a doublet. Rather than prove this 
is so, one final transformation will be made to the ζ́ ʹʹʹ plane where

	 =ζ
ζ
1 .	 (4.28e)

The effect of this transformation is to map the origin to infinity, and vice 
versa, as shown in Figure 4.22. Fluid emanates from I and flows toward CC′, 
as was the case in the z plane. That is, the flow in the ζ́ ʹʹʹ plane is that of a 
uniform rectilinear flow so that the complex potential is

	 F (ζ́ ʹʹʹ) = Kζ́ ʹʹ .́	

The value of the constant K, which represents the magnitude of the uni-
form flow, would normally be obtained by relating complex velocities 
through Equation 4.19. However, the implicit nature of the hodograph trans-
formation prohibits this being done directly, so that indirect methods must 
be used, as in the previous section. The hodograph transformation involves 
dF/dz, but F is known only as a function of ζ́ ʹʹ .́ Hence, it is proposed to start 
with the hodograph transformation and express the variables in terms of ζ″. 
Also, F(ζ́ ʹʹʹ) is known, so that F(ζ″) may be calculated, and so an identity will 
be established in the ζ″ plane. The details now follow.

From Equation 4.28a, the following identity is established:

	

U
z
F

U
z

F

d
d

d
d

d
d

=

∴ =

ζ

ζ
ζ

ζ.
	

Here, dF/dζ″ may be evaluated from the complex potential F(ζ́ ʹʹ) and the 
mapping functions, while ζ may be evaluated from the mapping functions. 
Both quantities will be expressed in terms of ζ″:

	

F K

F
K

( )

( )

=

∴ =

ζ ζ

ζ
ζ 	

and

	

F
K

F K

( )
( )

( )

=

∴ = −

ζ
ζ

ζ ζ

2

3

2d
d 	



152 Fundamental Mechanics of Fluids

also

	

ζ ζ

ζ π

ζ

=

=

= −

−−

−

e

e

ie

i(cosh / )

cosh .

1

1

2

	

But cosh–1 x x x= + −log( )2 1 , so that

	 ζ ζ ζ= − + −i( ( ) )2 1 .	

Substituting the preceding expressions for dF/dζ″ and ζ into the identity 
established from the hodograph transformation gives

	
− = − + −( )U

z
K

i
d
dζ

ζ
ζ ζ

( )
( )

3
2

2
1 .

	

In order to establish an algebraic identity that will permit the constant K to 
be evaluated, the preceding expression must be integrated. It is proposed to 
integrate over the region B′ to A′ so that

	
U z i Kd d=

+ −
2

12

3

ζ ζ

ζ
ζ

( )

( ) 	

where the upper limits of integration correspond to the point A′ and the 
lower limits to the point B′. The integral on the right-hand side may be con-
veniently evaluated by use of the substitution ζ″ = 1/sin ν. Then,

	

U z i K v

iUl i K

il
d d= − +

∴ = +

−∫ ∫2 1

2 1
4

0

2

0

( cos )cos
/

ν ν
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K
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=

+
2

4π
.
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Then, the complex potential in the ζ́ ʹʹʹ  plane becomes

	
F

Ul
( ) =

+
ζ

π
ζ

2
4

.
	

The corresponding complex potential in the z plane may be obtained by 
using the mapping equations (Equations 4.28a through 4.28e). Hence, using 
the fact that cosh (ζ′ + iπ/2) = i sinh ζ′, the corresponding expression for F(z) is

	
F z

Ul
U z F

( )
sinh {log[ ( )]}

= −
+
2

4
1

2π d /d
.	 (4.28f)

This result is again an implicit expression for F(z) rather than an explicit 
expression. However, since the flow problem has been solved, results may be 
deduced from the solution. Here, the result of interest is the drag force acting 
on the plate. Thus, if X is the drag force acting on the plate in the positive x 
direction and P is the pressure in the cavity, it follows that

	
X p P y

l
= −

−∫2
0

( )d
	

where the symmetry of the flow field about the x axis has been invoked. But 
from the Bernoulli equation

	

p
u v

P
U

ρ ρ
+ + = +
1
2

1
2

2 2 2( )
	

where the Bernoulli constant has been evaluated on the free streamlines at 
a position well downstream of the plate. Thus, the expression for the drag 
force X becomes

	

X U u v y

U y u v

l

l l

= − +

= − +

−

− −

∫

∫ ∫

2
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2

2 2 2
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2
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2 2
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( )

d
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The first integral may be evaluated explicitly, while the integrand of the 
second integral may be written as v2 since u = 0 on the surface of the plate. 
Then W = dF/dz = –iv on the surface of the plate, so that v2 = –W2 there. 
That is,
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X U l

F
z

y
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= +
−∫ρ ρ2

20 d
d

d .
	

Also, x = 0 on the surface of the plate, so that z = iy there. That is, dz = idy 
on the plate, so that

	
X U l i

F
z

z
il

= −
−∫ρ ρ2

20 d
d

d .
	

Now, since F(z) is an implicit expression, it is proposed to evaluate F(ζ″) and 
to perform the indicated integration in the ζ″ plane rather than the z plane. 
This may be done as follows:

	
X U l i

F
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∫ρ ρ
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2

1

d
d
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d

d
	

where it has been noted that as z varies from –il to 0, ζ″ varies from unity to 
infinity. But expressions for dF/dζ″ and dz/dζ″ were obtained earlier in terms 
of ζ″ and K. Then, using these expressions and the fact that K = 2Ul/(π + 4), the 
expression for the drag force becomes
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The integral may now be evaluated by means of the substitution ζ″ = 1/sin ν. 
This gives
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	 (4.28g)

From the symmetry of the flow field about the x axis, it may be stated 
that there will be no lift force acting on the plate. On the other hand, the 
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lack of symmetry about the y axis implies the existence of a drag force, and 
Equation 4.28g gives the magnitude of this drag force. 

PROBLEMS

	 4.1	 For the complex potential F(z) = ϕ + iψ = cos–1z, turn this expression 
around by solving it for z as a function of ϕ and ψ, and hence obtain 
implicit expressions of the form x = x(ϕ,ψ) and y = y(ϕ,ψ). Thus, obtain 
the following results:
(a)	 Eliminate ϕ between the two equations obtained above to get 

a single equation of the form f(x,y,ψ) = constant that defines the 
points on the streamlines ψ(x,y) = constant in terms of the coor-
dinates x and y.

(b)	 Sketch three typical streamlines corresponding to ψ = 0, ψ = 
ψ1 > 0, and ψ = ψ2 > ψ1.

(c)	 Obtain an expression for the complex velocity at any location z 
and hence determine the flow direction on these streamlines by 
evaluating the velocity at the point x = 2 and y = 0.

	 4.2	 For the complex potential F(z) = ϕ + iψ = cosh–1z, turn this expression 
around by solving it for z as a function of ϕ and ψ, and hence obtain 
implicit expressions of the form x = x(ϕ,ψ) and y = y(ϕ,ψ). Thus, obtain 
the following results:
(a)	 Eliminate ϕ between the two equations obtained above to get 

a single equation of the form f(x,y,ψ) = constant that defines the 
points on the streamlines ψ(x,y) = constant in terms of the coor-
dinates x and y.

(b)	 Sketch three typical streamlines corresponding to ψ = 0, ψ = 
ψ1 > 0, and ψ = ψ2 > ψ1.

(c)	 Obtain an expression for the complex velocity at any location z 
and hence determine the flow direction on these streamlines by 
evaluating the velocity at the point x = 0.5 and y = 0.

	 4.3	 Write down the complex potential for a source of strength m located 
at z = ih and a source of strength m located at z = –ih. Show that the 
real axis is a streamline in the resulting flow field, and so deduce 
that the complex potential for the two sources is also the complex 
potential for a flat plate located along the line y = 0 with a source of 
strength m located a distance h above it.

		  Obtain the pressure on the upper surface of the plate mentioned 
above from Bernoulli’s equation. Integrate the pressure difference 
over the entire surface of the plate, and so show that the force acting 
on the plate due to the presence of the source is ρm2/(4πh). Take the 
pressure along the lower surface of the plate to be equal to the stag-
nation pressure in the fluid.
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	 4.4	 Consider a source of strength m located at z = –b and a sink of 
strength m located at z = b. Write down the complex potential for 
the resulting flow field, adding a constant term –im/2 to make the 
streamline ψ = 0 correspond to a certain position. Expand the result 
for small values of z/b and hence show that if b → ∞ and m → ∞ in 
such a way that m/b → πU, the resulting complex potential is that 
of a uniform flow of magnitude U. That is, a uniform flow may be 
thought of as consisting of a source located at –∞ and a sink of equal 
strength located at +∞.

	 4.5	 Write down the complex potential for the following quantities:
(a)	 A source of strength m located at z = –b

(b)	 A source of strength m located at z = –a2/b

(c)	 A sink of strength m located at z = b
(d)	 A sink of strength m located at z = a2/b

(e)	 A constant term of magnitude –im/2
		  Expand the resulting expression for small values of z/b and a2/

(bz), and hence show that if b → ∞ and m → ∞ in such a way that 
m/b → πU, the resulting complex potential is that of a uniform flow 
of magnitude U flowing past a circular cylinder of radius a.

	 4.6	 Consider a system of singularities consisting of the following:
(a)	 A source of strength m located at z = –b

(b)	 A source of strength m located at z = –a2/b

(c)	 A sink of strength m located at z = a2/l

(d)	 A sink of strength m located at z = l
(e)	 A constant term of magnitude −[m/(2π)]log b

		  Write down the complex potential for this system and let b → ∞. 
Show that the result represents the complex potential for flow 
around a circular cylinder of radius a due to a sink of strength m 
located a distance l > a to the right of the center of the cylinder. This 
may be done by showing that the circle of radius a is a streamline.

		  Use the Blasius integral theorem around a contour of integration 
that includes the cylinder, but excludes the sink, and hence show that 
the force acting on the cylinder, due to the presence of the sink, is

	 X
m a
l l a

=
−

ρ

π

2 2

2 22 ( )
.	

	 4.7	 A system of flow singularities consists of the following components:
(a)	 A source of strength m located at z = bei(α+π)

(b)	 A source of strength m located at z = (a2/b)ei(α+π)
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(c)	 A sink of strength m located at z = (a2/b)eiα

(d)	 A sink of strength m located at z = beiα

(e)	 A constant term of magnitude –im/2
		  Write down the complex potential for this system and expand it 

for small values of z/b and a2/(bz). Hence, show that the complex 
potential for a uniform flow of magnitude U approaching a circular 
cylinder of radius a at an angle of attack α to the horizontal is

	 F z U ze
a
z
ei i( ) = +− α α

2

.	 (4.29)

	 4.8	 Determine the complex potential for a circular cylinder of radius a 
in a flow field produced by a counterclockwise vortex of strength 
Γ located a distance l from the center of the cylinder. This may be 
done by writing the complex potential for the following system of 
singularities:
(a)	 A clockwise vortex of strength Γ located at z = –b

(b)	 A counterclockwise vortex of strength Γ located at z = –a2/b

(c)	 A clockwise vortex of strength Γ located at z = a2/l

(d)	 A counterclockwise vortex of strength Γ located at z = l
(e)	 A constant term of magnitude – [iΓ/(2π)] log b

		  Then, let b → ∞ and show that the circle of radius a is a streamline. 
Obtain the value of the force acting on the cylinder due to the vortex 
at z = l by applying the Blasius law to a contour that includes the 
cylinder but excludes the vortex at z = l.

	 4.9	 The complex potential for a uniform flow of magnitude U approach-
ing a circular cylinder of radius a that has a bound vortex of strength 
Γ around it is

	 F z U z
a
z

i z
a

( ) log= + +
2

2
Γ
π

.	

		  Using this result, together with Bernoulli’s equation, obtain an 
expression for the pressure p(a,θ) on the surface of the cylinder. 
Integrate the quantity –p(a,θ) a sin θ around the surface of the cyl-
inder, and hence verify the validity of the Kutta–Joukowski law for 
this particular flow.

	4.10	 It is proposed to model the steady-state flow due to a tornado by 
superimposing a sink and a counterclockwise irrotational vortex, 
both of which are located at the origin of the coordinate system. If 



158 Fundamental Mechanics of Fluids

the strength of the sink is denoted by m and the strength of the vor-
tex by Γ, determine the following quantities:
(a)	 The velocity potential ϕ and the stream function ψ in terms of 

cylindrical coordinates (R,θ).
(b)	 The cylindrical velocity components uR and uθ in terms of cylin-

drical coordinates (R,θ).
(c)	 The pressure p in terms of cylindrical coordinates (R,θ). Take the 

pressure far from the origin to be p0, and neglect gravitational 
effects.

	4.11	 In order to analyze the flow around a circular cylinder that is close 
to a wall, superimpose the complex potentials for the following two 
configurations:
•	 A uniform flow of magnitude U approaching a circular cylinder 

of radius a whose center is located a distance h above the x axis
•	 A uniform flow of magnitude U approaching a circular cylinder 

of radius a whose center is located a distance h below the x axis
		  For the resulting superimposed flow, obtain expressions for the 

following quantities:
(a)	 The horizontal velocity along the x axis—that is, the value of 

u(x,0).
(b)	 The locations of any maxima and minima of the velocity 

obtained in (a) above, including the values of the velocities at 
these locations.

(c)	 An expression for the pressure distribution along the x axis—
that is, the value of p(x,0). Take the pressure far from the origin to 
be constant and equal to p0.

	4.12	 The figure for this problem shows the (a) assumed configuration 
for separated flow of magnitude U approaching a circular cylinder 
of radius a. (b) Shows a system of flow elements that are proposed 

(a) (b)

a a

U
θS

θ2

m2

m2

m1

m1

m3
θ1
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to model this particular flow. The model consists of the following 
components:

(a)	 A source of strength m1 located at z aei= θ1

(b)	 A source of strength m1 located at z ae i= − θ1

(c)	 A sink of strength m2 located at z aei= θ2

(d)	 A sink of strength m2 located at z ae i= − θ2

(e)	 A sink of strength m3 located at origin, z = 0
		  For this flow model, determine the following quantities:

(i)	 The strength of the sink m3 that makes the circle R = a a streamline
(ii)	 The magnitude of the velocity on the surface of the cylinder, 

q(a,θ)
(iii)	The parameters m2 and θ2 using the following two conditions:

	

d
d

d
d

q
a

q
a cU R

S

S e

θ
θ

θ
θ

( , )

( , ) ./

=

=

0

2

2
1 2

	

		  In the above, θS is the polar angle to the location of the separa-
tion point, c is an experimentally determined constant, and Re is the 
Reynolds number. Express the results in the following form:

	 m2 = m2 (m1, θS, θ1, θ2)	 f(θ2, θ1, θS, m1, m2, c, Re) = 0.	

		  That is, obtain an explicit expression for m2, but the result for θ2 
may be left as an implicit expression.

	4.13	 A mapping function is defined by the following equation:

	 z
c

n

n

n
= +

− −
ζ

ζ( )1 1
	

	 where

	 z = x + iy = Reiθ	

	 and

	 ζ = ξ + iη = ρeiν.	
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		  In the above, c is a real constant and n is an integer. Find the loca-
tion of the critical points of this mapping function in the ζ plane and 
sketch their locations for n = 2, n = 3, and n = 4.

		  Using the Cartesian representation of z and the polar representa-
tion of ζ, find the equation of the mapping in the form:

	 x = x(ρ, ν)	 and	 y = y(ρ, ν).	

		  From these equations, obtain expressions for the polar coordinates 
R and θ of the form:

	 R = R(ρ, ν)	 and	 θ = θ(ρ, ν).	

		  Consider a circle in the ζ plane whose radius ρ is large so that

	
c
ρ

ε= � 1.	

		  Use the results obtained above for R and θ to find the equations for 
the mapping of this circle in the z plane, working to the first order 
only in the small parameter ε.

		  Using any of the results obtained above, sketch the resulting object 
shape in the z plane for ε < 1, n = 3.

	4.14	 The Joukowski transformation, in conjunction with a circle in the ζ 
plane whose center lies in the second quadrant, yields an airfoil in 
the z plane. It is required to prepare an accurate drawing of such an 
airfoil in the z plane.

		  Using either (a) or (b) below, depending on the preferred system of 
units, prepare a table of values of points that lie on the surface of air-
foil. Use the results quoted in Section 4.18 to calculate the points (x, y) 
in the z plane, ensuring that a sufficiently large number of points are 
used so that a smooth curve is obtained for the airfoil surface. Use 
the table of points to draw the figure that is produced in the z plane.
(a)	 SI units:
	 Joukowski parameter, c = 60.0 mm
	 Center of circle in ζ plane = (–5.0 mm, +7.5 mm)
	 Circle to pass through point = (+60.0 mm, 0.0 mm)
(b)	 English units:
	 Joukowski parameter, c = 2.4 in.
	 Center of circle in ζ plane = (–0.2 in., +0.3 in.)
	 Circle to pass through point = (+2.4 in., 0.0 in.)
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	4.15	 Using either (a) or (b) below, depending on the preferred system of 
units, determine the lift force generated by a short span of aircraft 
wing whose cross section is the same as that of Problem 4.14. Take the 
air properties to be defined by the standard atmosphere at sea level.
(a)	 SI units:
	 Length of wing element = 1.0 m
	 Chord of wing element = 3.0 m
	 Flight speed = 250 m/s
(b)	 English units:
	 Length of wing element = 3.0 ft
	 Chord of wing element = 9.0 ft
	 Flight speed = 750 ft/s

	4.16	 Find the transformation that maps the interior of the sector 0 ≤ θ ≤ 
π/n in the z plane onto the upper half of the ζ plane. Thus, by consid-
ering a uniform flow in the ζ plane, obtain the complex potential for 
the flow in the sector 0 ≤ θ ≤ π/n in the z plane.

	4.17	 Use the Schwarz–Christoffel transformation to find the mapping that 
transforms the interior of the 90° bend shown in the z plane of the 
figure for this problem onto the upper half of the ζ plane as shown. 
Hence, obtain the complex potential for the flow around a right-angled 
bend in terms of the channel width l and the approach velocity U.

	4.18	 The z plane of the figure for this problem shows one-half of a sym-
metric expansion device, or diffuser. It is assumed that the angle ϕ 
is not large and that the flow remains in contact with the wall. In the 
ζ plane, the points specified by lowercase letters correspond to the 
points indicated by the capitalized letters in the z plane. The loca-
tion of the point c, indicated by the value α, is undefined at this time. 
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Using the correspondence indicated, find the differential equation 
of the mapping function if the angle ϕ is taken to be the ratio of two 
integers times 90°; that is,

	 φ
π

=
r
n 2 	

	 where r and n are integers. Express the result in terms of the param-
eters r, n, α, and K, where K is the scale parameter in the Schwarz–
Christoffel transformation.

		  Noting that the strength of the source in the ζ plane is m = 2UH, 
obtain the complex potential for the flow field in the ζ plane. From 
this result, obtain an expression for the complex velocity in the z 
plane, expressing the result in terms of the variable ζ and the param-
eters U, α, r, n, and K.

		  Use the result obtained above to evaluate the parameters K and α, 
expressing them in terms of the remaining parameters h, H, r, and n.

	4.19	 The figure for this problem shows a channel with a step in it in the z 
plane. Show that the mapping function that maps the interior of this 
channel onto the upper half of the ζ plane is

	 z
H s
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		  Let the points A, B, and C in the z plane correspond to the points 0, 
1, and α, respectively, in the ζ plane. The quantity α may not be speci-
fied a priori, but it should be determined from the mapping function 
after the points A and B have been located as desired. Note that the 
streamline ABCD may be considered to be the streamline dividing 
two symmetrical regions, so that this mapping function also applies 
to a channel of width 2H with an obstacle of width 2(H – h) located 
along the centerline of the channel.
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C D
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b' a' a b c
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5
Three-Dimensional Potential Flows

Although there are no significant phenomena associated with three-dimensional 
flows that do not exist in two-dimensional flows, the method of analyzing 
flow problems is completely different. The method of employing analytic 
functions of complex variables cannot be used here in view of the three-
dimensionality of the problems. Then, we must resort to solving the partial 
differential equations that govern the variables of the flow field. These par-
tial differential equations were reviewed at the beginning of Part II, and for 
irrotational motion, the equation governing the velocity potential is given by 
Equation II.5. After solving the flow problem for the velocity potential ϕ, the 
pressure may be obtained from the Bernoulli equation, which is expressed 
in Equation II.6.

The chapter begins by reviewing the equation that is to be satisfied by the 
velocity potential in spherical coordinates. Then, it is shown that for axi-
symmetric flows, a stream function exists, called the Stokes’ stream function. 
Although the flow fields may be solved through the velocity potential, the 
stream function is useful for interpreting the flow fields. Fundamental solu-
tions are then established by solving the Laplace equation for ϕ by separation 
of variables. These fundamental solutions are then superimposed to establish 
the flow around a few three-dimensional bodies, including the sphere and a 
family of solid bodies known as Rankine solids. A study of the forces that act 
on three-dimensional bodies is then made, which leads to d’Alembert’s para­
dox. This paradox contends that for a body immersed in a potential flow, no 
forces exist on the body, in spite of the fact that forces are observed to exist 
experimentally. The chapter ends by introducing the notion of an appar-
ent mass for a body in a potential flow. This concept allows the fluid to be 
ignored if a certain additional mass is associated with the body when its 
dynamics are considered.

Since bodies of interest, such as airship hulls and submarine vehicle hulls, 
have an axis of symmetry, this chapter will consider only three-dimensional 
bodies that are axisymmetric. In so doing, it will be found convenient to work 
in spherical coordinates (r, θ, ω). These coordinates are shown in Figure 5.1. 
Since the axis of symmetry of bodies is invariably in the streamwise direc-
tion, and since the approaching flow is normally taken to be horizontal, the 
reference axis of the coordinate system is also taken to be horizontal. Then, 
in terms of the spherical coordinates (r, θ, ω), a point P may be represented by 
its radius r from the origin, the angle θ between the reference axis and the 
radius vector r, and the angle ω subtended by the perpendicular line to the 
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reference axis that passes through P. For axisymmetric flows, there will be 
no variation in the fluid properties as ω varies from 0 to 2π while r and θ are 
held constant.

5.1  Velocity Potential

Although the topic of discussion is three-dimensional flows, these flow fields 
are supposed to be potential. That is, the fluid motion is assumed to be irro-
tational so that a velocity potential exists, irrespective of the dimensionality 
of the flow field. Then, the equation to be satisfied by the velocity potential is 
Laplace’s equation, given by Equation II.5. Hence, expanding the Laplacian 
in spherical coordinates and using the fact that ∂/∂ω = 0 for axisymmetric 
flows, the equation to be satisfied by ϕ is

	
1 1

0
2

2
2r r

r
r r

∂
∂

∂
∂

+
∂
∂

∂
∂

=
φ

θ θ
θ

φ
θsin

sin .	 (5.1)

The velocity components are related to the velocity potential by Equation 
II.4, which in spherical coordinates gives

	 ur r
=
∂
∂
φ

	 (5.2a)

	 u
rθ

φ
θ

=
∂
∂

1
.	 (5.2b)

The third velocity component, uω, is zero for axisymmetric flows.

ω

θ
O

P

Reference
axis

r

FIGURE 5.1
Definition sketch of spherical coordinates.
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5.2  Stokes’ Stream Function

In the previous chapter, a stream function was introduced that, by its defi-
nition, satisfied the two-dimensional continuity equation. In three dimen-
sions, it is not possible, in general, to satisfy the continuity equation by a 
single scalar function. However, in axisymmetric flows, such a function does 
exist. The continuity equation for the incompressible case under consider-
ation is, for axisymmetric flows,

	
1 1

0
2

2

r r
r u

r
ur

∂
∂

+
∂
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=( )
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( sin )
θ θ

θθ .	

Now, consider the velocity components to be related to a function ψ in the 
following way:

	 u
r

r =
∂
∂

1
2 sin θ θ

ψ
	 (5.3a)

	 u
r rθ θ

= −
∂
∂

1
sin

ψ
.	 (5.3b)

Direct substitution shows that if the velocity components are defined in 
this way, the continuity equation will be identically satisfied for all functions 
ψ. It will now be shown that the quantity 2πψ corresponds to the volume of 
fluid crossing the surface of revolution that is formed by rotating the posi-
tion vector OP, in Figure 5.1, around the reference axis. This statement will be 
proved in the following way. First, the statement will be assumed to be true 
and to constitute the definition of a quantity ψ. Then, it will be shown that 
as a result of this definition, the velocity components must be related to this 
function ψ by Equations 5.3a and 5.3b.

Let a function ψ be defined such that if the position vector OP is rotated 
around the reference axis, that is, if the coordinate ω is varied through 2π 
while r and θ are held fixed, the quantity of fluid that crosses the surface of 
revolution formed by the vector OP will be 2πψ. Now, apply this definition to 
two points P and P′ that are close together, as shown in Figure 5.2. Then, if 
the line element PP′ is rotated about the reference axis, the resulting surface 
will have a quantity of fluid 2π dψ crossing it per unit time. However, refer-
ence to Figure 5.2 shows that a quantity of fluid urr dθ – uθ dr crosses a unit 
area of this surface so that
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But if ψ is a function of both r and θ, it follows from differential calculus 
that

	 d d dψ
ψ ψ

=
∂
∂

+
∂
∂θ

θ
r

r.	

Comparing these two expressions for ψ shows that

	
∂
∂

=
ψ
θ

θu rr
2 sin

	

	
∂
∂

= −
ψ
r

u rθ θsin .
	

This confirms Equations 5.3a and 5.3b, so that the definition of ψ agrees 
with the requirements for satisfying the continuity equation. Then, it may be 
concluded that for the stream function defined by Equations 5.3a and 5.3b, 
the volume of fluid crossing an element of surface generated by revolving a 
line element about the reference axis is 2π dψ.

The stream function defined above is known as the Stokes’ stream func­
tion. It will be used here in an auxiliary way only since flow solutions will 
be obtained through solutions for the velocity potential ϕ. The equation 
that must be satisfied by ψ is therefore deferred to Problem 5.1 at the end of 
the chapter. It should be pointed out, however, that for rotational flows, the 
velocity potential does not exist, and the stream function then offers the only 
mechanism for reducing the vector equations of motion to a single scalar 
equation.
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Ṕ

Reference
axis

uθ
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θ
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θ r s
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FIGURE 5.2
Velocity components and flow areas defined by a reference point P and neighboring point P′.
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5.3  Solution of Potential Equation

The equation to be satisfied by the velocity potential ϕ has been established. 
Rather than attempting to solve this equation as part of a boundary-value 
problem for various physical situations that may arise, it is proposed to 
obtain here a general form of solution by separation of variables. The funda-
mental solutions so obtained will subsequently be superimposed to produce 
more complex solutions in a manner similar to that which was used in the 
previous chapter.

The velocity potential will be a function of r and θ only for axisymmetric 
flows, and so a separable solution will be sought of the form

	 ϕ(r, θ) = R(r) T(θ).	

Substituting this assumed form of solution into Equation 5.1 gives
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This equation may now be reduced to a separated form by multiplying it 
by r2/(RT).
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The usual argument of separation of variables is now invoked. The left-
hand side of this equation is a function of r only, and the right-hand side is 
a function of θ only. Hence, if either r or θ alone is changed, one side of the 
equation will change while the other does not. Then, the only way the equa-
tion can remain valid is for each side to be equal to a constant, say l(l + 1). 
Then,
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The significance of choosing the separation constant as l(l + 1), rather than 
simply β, is that with this choice, the resulting ordinary differential equa-
tion for T(θ) appears in standard form, and so a subsequent transformation 
becomes unnecessary. For the time being, there is no implication that the 
quantity l need be an integer. The differential equation to be satisfied by R(r) is

	
d
d

d
dr

r
R
r

l l R2 1 0− + =( ) .	

This is an equidimensional equation, and so its solution will be of the form

	 R(r) = Krα.	

Substituting this form of solution into the differential equation gives

	 α (α + 1)Krα − l(l + 1)Krα = 0	

which will be satisfied by α = l and α = –(l + 1). Then, the general solution for 
R(r) will be a linear combination of these two solutions. That is,

	 R r A r
B
r

l l
l l

l
( ) = +

+1 .	

Since this is a valid solution for any choice of l, the arbitrary constants Al 
and Bl have been assigned subscripts to indicate which value of l is being 
considered. Likewise, the solution Rl(r) has been assigned a subscript to indi-
cate which solution is being considered.

The equation for T(θ) is
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1 0
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θ θ

θ
θ

d
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d
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T

l l T+ + = .	

This is Legendre’s equation, and it may be reduced to its standard form by 
the transformation x = cos θ, which yields

	
d
d

d
dx

x
T
x

l l T( ) ( )1 1 02− + + = .	

The solutions to this equation are Legendre’s function of the first kind, 
denoted by Pl(x), and Legendre’s function of the second kind, denoted by Ql (x). 
Thus, the general solution for T(θ) is
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	 Tl (θ) = ClPl (cos θ) + DlQl (cos θ).	

The Ql(cos θ) functions diverge for cos θ = ±1 for all values of l. The coef-
ficient Dl must then be specified as being zero since there should be no sin-
gularities in the flow field. Also, Pl(cos θ) diverges for cos θ = ±1 unless l is an 
integer. Then, it must be specified that the quantity l be an integer, so that the 
continuous spectrum of separation constants l(l + 1) now becomes a discrete 
spectrum.

Combining the solution for Rl(r) with that for Tl(θ) gives the following solu-
tion for ϕl, (cos θ):

	 φ θ θl l
l l

l lr A r
B
r

P( , ) (cos )= +
+1

	

where the arbitrary constant Cl has been absorbed into the two other arbi-
trary constants Al and Bl. This solution is valid for any integer l. Then, since 
the partial differential equation being solved is linear, all such possible solu-
tions may be superimposed to yield a more general type of solution. That is, 
ϕ(r, θ) may be considered to be the sum of all possible solutions ϕ(r, θ). Hence,

	 φ θ θ( , ) (cos )r A r
B
r
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l l

l
l
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0

.	 (5.4)

The Legendre function of the first kind that appears in Equation 5.4 is 
defined by
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In view of the nature of this function, it is frequently referred to as 
Legendre’s polynomial of order l. The first three Legendre polynomials are writ-
ten out explicitly below for reference purposes:
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Equation 5.4 contains certain fundamental solutions that are useful for 
superimposing to establish additional solutions. These fundamental solu-
tions will now be studied.
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5.4  Uniform Flow

One of the solutions contained in Equation 5.4 corresponds to a uniform 
flow. It may be obtained by setting

	 Bl = 0	 for all l	

	 A l
U ll =

≠
=

0 1
1

for
for . 	

Using the fact that P1 (cos θ) = cos θ, the solution given by Equation 5.4 then 
becomes

	 ϕ (r, θ) = Ur cos θ.	 (5.5a)

The simplest way of confirming that the velocity potential given by 
Equation 5.5a corresponds to a uniform flow is to note that the Cartesian 
coordinate x is related to the spherical coordinates r and θ by the relation x = 
r cos θ. Thus, Equation 5.5a states that ϕ = Ux, which is the velocity potential 
for a uniform flow of magnitude U.

The stream function for a uniform flow may be deduced from Equation 5.5a 
as follows: Using the result (Equation 5.5a), it follows from Equation 5.2a that

	 u
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Hence, from Equation 5.3a,
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where f(r) is any function of r. Likewise, the velocity component uθ may be 
evaluated from ϕ and expressed as a derivative of ψ, giving
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or

	 ψ = +
1
2

2 2Ur gsin ( )θ θ
	

where g(θ) is any function of θ. Then, comparing these two expressions for ψ, 
it follows that f(r) = g(θ) = constant at most. Taking this constant to be zero, 
without loss of generality, gives

	 ψ( , ) sinr Urθ θ=
1
2

2 2 .	 (5.5b)

An alternative way of evaluating ψ(r, θ) is simply to invoke its definition. 
Then, considering an arbitrary point P in the fluid as shown in Figure 5.3, 
the amount of fluid crossing the surface generated by OP due to the uniform 
flow will be 2πψ. However, the flow area perpendicular to the velocity vector 
is π(r sin θ). Hence, it follows from the definition of ψ that

	 2πψ = Uπ (r sin θ)2	

or

	 ψ( , ) sinr Urθ θ=
1
2

2 2 .	

This agrees with the result obtained by the other method.
Both the methods outlined above for evaluating the stream function 

are useful, and each will be used in the following sections. The particular 
method employed will depend upon the complexity of the problem, and it is 
evident that the second method can be conveniently employed only for very 
simple flow fields.
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FIGURE 5.3
Geometry for evaluating the stream function for a uniform flow.
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5.5  Source and Sink

The velocity potential corresponding to a three-dimensional source or sink 
is obtained from Equation 5.4 through the term whose coefficient is B0. Then, 
let
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Then, from Equation 5.4, using the fact that P0 (cos θ) = 1,

	 φ θ( , )r
B
r

= 0 .	

The velocity components for the resulting flow field are
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Hence, the velocity is purely radial, its magnitude increases as the origin is 
approached, and there is a singularity at the origin. Clearly, there is a source 
or sink of fluid at r = 0, and the quantity of fluid leaving or entering this sin-
gularity may be evaluated by enclosing it with a spherical control surface of 
radius r. Then, if Q is the volume of the fluid leaving the control surface per 
unit time, it follows that

	
Q

s
= ∫ u n⋅ ds.	

However, the velocity vector is radial, so that u · n = |u| = +B0/r2 and ds = 
r2 sin θ dθ dω. Hence,
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Then, for a source of strength Q, the constant B0 should be set equal to –Q/ (4π). 
That is, the velocity potential for a source of strength Q located at r = 0 is
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	 φ θ
π

( , )r
Q
r

= −
4

.	 (5.6a)

It should be noted that the minus sign is associated with the source, and so 
a positive sign would be associated with a sink.

In order to establish the stream function corresponding to Equation 5.6a, 
the definition of ψ will be invoked. Referring to Figure 5.4, a source of strength 
Q is shown at the origin. At any arbitrary point P, the velocity will be radial 
and is indicated by ur. The quantity of fluid that crosses the surface generated 
by revolving the line OP about the reference axis will depend upon whether 
the source Q is considered to be slightly to the left of the origin or slightly to 
the right of it. Here, the source Q will be considered to be slightly to the right 
of O, so that the quantity of fluid crossing the surface generated by OP will 
be 2πψ + Q. Then, from Figure 5.4, it follows that

	 2 2
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π θ π θ
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θ
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where ur cos θ is the component of the velocity vector that is perpendicular 
to O′P, and r dθ/cos θ is the element of surface area along O′P. Performing the 
integration yields

	 ψ( , ) ( cos )r
Q

θ
π

θ= − +
4

1 .	 (5.6b)

It now becomes evident that if the source Q had been considered to be 
slightly to the left of the origin, the constant term in Equation 5.6b would 
have been different. However, the velocity components would be the same.
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FIGURE 5.4
Geometry for evaluating the stream function for flow due to a source.
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5.6  Flow due to Doublet

As was the case in two dimensions, the flow due to a doublet may be obtained 
by superimposing a source and sink of equal strength and letting the dis-
tance separating the source and the sink shrink to zero. Figure 5.5 shows a 
source of strength Q located at the origin and a sink of strength Q located 
a distance δx along the positive portion of the reference axis. The distance 
from the source to some point P in the fluid will be r, and the corresponding 
distance to the sink will be r – δr.

From Equation 5.6a, the velocity potential for the flow due to this source 
and sink will be

	

φ θ
π π δ

π δ

( , )
( )

.

r
Q
r

Q
r r

Q
r r r

= − +
−

= − −
−

4 4

4
1

1
1 /

	

If the source and sink are close together, the quantity δr/r will be small, 
so that the expression for the velocity potential may be expanded as follows:
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.
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FIGURE 5.5
Superposition of a source and a sink that become a doublet as δx → 0.
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The quantity δr may be eliminated in favor of δx by applying the cosine 
rule to the triangle defined by the vectors r and r – δr, and the distance δx 
separating the source and the sink. Thus,

	 (r − δr)2 = r2 + (δx)2 − 2rδx cosθ.	

Solving this equation for cos θ gives

	

cos
( ) ( )

θ
δ δ

δ
δ
δ

δ δ
δ
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=
+ − −

= − +

=

r x r r
r x
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2
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Using this result, the expression for ϕ(r, θ) becomes

	
φ θ

π
δ

θ
δ

( , ) cosr
Q
r

x
r

O
r
r

= +
4

1 .
	

Now, let the distance δx → 0 and the source strength Q → ∞ such that the 
product Q δx → μ. Then,

	 φ θ
π

θ( , ) cosr
r

=
4 2

.	 (5.7a)

Equation 5.7a is the velocity potential for a positive doublet of strength μ, 
that is, a doublet that expels fluid along the negative portion of the reference 
axis and absorbs fluid along the positive portion.

The stream function corresponding to Equation 5.7a will be obtained 
by using the equivalent expressions for the velocity components given by 
Equations 5.2 and 5.3. Thus,
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and

	
ψ( , ) sin ( )r

r
f rθ

π
θ= − +

4
2 .

	

Likewise, the two expressions for uθ give
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r r r r
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so that

	
ψ( , ) sin ( )r

r
gθ

π
θ θ= − +

4
2 .

	

Comparing these two expressions for ψ(r, θ) shows that f(r) = g(θ) = 0 and

	 ψ( , ) sinr
r

θ
π

θ= −
4

2 .	 (5.7b)

Equation 5.7b gives the stream function for a doublet that discharges fluid 
along the negative portion of the reference axis and attracts fluid along the 
positive part of the reference axis.

5.7  Flow near Blunt Nose

By superimposing the solutions for a uniform flow and a source, the solu-
tion corresponding to a long cylinder with a blunt nose is obtained. From 
Equations 5.5b and 5.6b, the stream function for a uniform flow of magni-
tude U and a source of strength Q located at the origin is

	
ψ( , ) sin ( cos )r Ur

Q
θ θ

π
θ= − +

1
2 4

12 2 .
	

In order to interpret the flow field that this solution represents, consider ψ 
to be constant and solve the preceding equation for r in terms of θ:
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where the fact that 1 + cos θ = 2 cos2 (θ/2) and the fact that sin(θ) = 2 sin(θ/2) 
cos(θ/2) have been used. Then, denoting by r0 the value of r for which ψ = 0, 
the radius to the surface corresponding to ψ = 0 is

	 r
Q
U0 4

1
2

=
π θsin( )/

.	

Thus, the radii r0 corresponding to the principal values of θ are as follows:
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This defines the stream surface ψ = 0, as shown in Figure 5.6.
Although the polar radius r0 is infinite for θ = 0, the cylindrical radius R0 is 

finite. This may be verified by noting that R = r sin θ, so that

	 R
Q
U0 4 2

=
π

θ
θ

sin
sin( )/

.	

Q
2πU

Q
4πU

Q
πU

Q
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FIGURE 5.6
Flow around an axisymmetric body created by a source in a uniform flow.
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Then, as θ → 0
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Hence, the cylindrical radius far from the source becomes

	 R
Q
U0 = π

.	

The fluid emanating from the source located at the origin does not mix 
with the fluid that constitutes the uniform flow. Then, a shell could be fitted 
to the shape of the surface corresponding to ψ = 0, and the source could be 
removed without disturbing the outer flow. That is, the stream function for 
the semi-infinite body shown in Figure 5.6 is

	 ψ( , ) sin ( cos )r Ur
Q

θ θ
π

θ= − +
1
2 4

12 2 .	 (5.8a)

The corresponding velocity potential may be obtained from Equations 5.5a 
and 5.6a, giving

	 φ θ θ
π

( , ) cosr Ur
Q
r

= −
4

.	 (5.8b)

Equations 5.8a and 5.8b may be used to deduce the velocity and pressure 
distribution in the vicinity of the nose of a blunt axisymmetric body such as 
an aircraft fuselage or a submarine hull.

5.8  Flow around Sphere

The stream function for a uniform flow past a sphere may be obtained by 
superimposing the solution for a uniform flow and that for a doublet. From 
Equations 5.5b and 5.7b, the stream function for such a superposition is

	 ψ( , ) sin sinr Ur
r

θ θ
π

θ= −
1
2 4

2 2 2 .	
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Then, the equation defining the surface that corresponds to ψ = 0 is

	 0
1
2 40

2 2

0

2= −Ur
r

sin sinθ
π

θ
	

where r0 is the value of the polar radius r that defines the surface on which 
ψ = 0. Solving this equation for r0 gives

	 r
U0

1 3

2
=

π

/

.	

Since r0 = constant, the surface that corresponds to ψ = 0 is that of a sphere. 
If the doublet strength is chosen to be μ = 2πUa3, the radius of this spherical 
surface will be r0 = a. Then, by choosing μ = 2πUa3, the stream function for a 
uniform flow of magnitude U approaching a sphere of radius a is

	 ψ( , ) sinr U r
a
r

θ θ= −
1
2

2
3

2 .	 (5.9a)

The corresponding velocity potential may be obtained from Equations 5.5a 
and 5.7a, in which the doublet strength μ = 2πUa3 is used. This gives

	 φ θ θ( , ) cosr U r
a
r

= +
1
2

3

2
.	 (5.9b)

5.9  Line-Distributed Source

The stream function and the velocity potential for a source that is distrib-
uted over a finite strip will be established in this section. The result is useful 
as one element in superpositions that lead to additional solutions to flow 
problems.

Figure 5.7 shows a source that is uniformly distributed over the section 
0 ≤ x ≤ L of the reference axis. The source strength, which is constant, is q 
per unit length, so that qL is the total volume of fluid that emanates from the 
source per unit time. An arbitrary field point P is shown whose coordinates 
are r, θ, and ω. One end of the line source, which is at the origin, is a distance 
r from this point and subtends an angle θ to the x axis. The other end of the 
line source is a distance η from the point P and subtends an angle α to the 
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x axis. Also, an element of the line source of length dξ, which is a distance 
ξ, from the origin, subtends an angle v to the x axis. However, the strength 
of this element of the source is q dξ, so that, from Equation 5.6b, the stream 
function for the line source will be

	 ψ = − +∫
q

v
L dξ

π4
1

0
( cos )

	

where the angle v is a function of ξ and so will be a variable in the integra-
tion. Rather than expressing v as a function of ξ, the variable of integration 
will be changed from ξ to v. Referring to Figure 5.7, it will be observed that 
the cylindrical radius R = r sin θ = η sin α remains constant throughout the 
integration. Also, it may be observed that
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Hence, the expression for ψ may be written in the form
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But from Figure 5.7, the following relations may be established:
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R 
= 

r s
in

 θ

FIGURE 5.7
Geometry connecting a field point P to a line source of length L distributed uniformly along 
the reference axis.
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Using these relations, the expression for the stream function for a line 
source of strength q per unit length and of length L is

	 ψ = − + −
q

L r
4π

η( ).	 (5.10a)

The velocity potential corresponding to Equation 5.10a may be obtained in 
an analogous way. From Equation 5.6a, it follows that

	 φ
ξ

π
= −∫

q
R v

L d
/40 ( sin ) 	

where it has been observed that the distance from the point at ξ on the line 
source to the field point P is R/sin v. As before, it is observed that

	 x − ξ = R cot v	

and so

	 −dξ = −Rcsc2 vdv.	

Then, the expression for ϕ becomes
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	 (5.10b)

Although the result for the stream function was more compact when 
expressed in terms of lengths, the result for the velocity potential is more 
compact in terms of angles, so that Equation 5.10b will be considered to be 
the final result.
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5.10  Sphere in Flow Field of Source

In the Chapter 4 problems, it was established that the solution for a circular 
cylinder in a sink flow could be obtained from the solutions for two sources 
and two sinks, all of which have the same strength. It will be shown here that 
the solution for a sphere in a source flow may be obtained in an analogous 
manner, although the singularities that must be imposed are two sources, of 
unequal strength, and a line sink.

Figure 5.8 shows the connection between a field point P and certain singu-
larities. The singularities are a source of strength Q, which is located at point 
Q, which is a distance l along the reference axis, a source of strength Q*, which 
is located at point Q*, which is at the image point a2/l of point Q in the sphere 
of radius a, and a uniformly distributed line sink of strength q per unit length 
along section OQ* of the reference axis. It will be shown that for an appropri-
ate choice of source and sink strengths, the sphere r = a corresponds to ψ = 0.

If the spherical surface r = a is to be a stream surface, the total sink strength 
must equal the total source strength inside the surface r = a. That is, qa2/l = Q*, 
which establishes the sink strength q in terms of the source strength Q*. 
Then, using Equations 5.6b and 5.10a, the stream function for the singulari-
ties shown in Figure 5.8 will be

	 ψ( , ) ( cos ) ( cos )r
Q Q Q l

a
a
l

rθ
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4
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where α, β, and η are functions of r and θ. Then, for points on the surface of 
the sphere r = a, the value of ψ will be

	 ψ( , ) ( cos ) ( cos )a
Q Q Q

a
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a
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Now, if point P lies on the spherical surface r = a, a relationship will exist 
among the parameters η, a, β, α, and θ. To establish this relationship, it will 
be noted that

	
a l
a

a
l

2/
= .	

But the numerator and denominator of each side of this equation represent 
the lengths of one of the vectors shown in Figure 5.8. Thus, it follows that

	
OQ*
OP

OP
OQ

= .	
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But these lengths represent corresponding sides of the triangles OPQ* and 
OQP. Then, since the angle θ is common to both these triangles, it follows 
that the two triangles are similar. Then, the angle OPQ*ˆ  must equal the angle 
OQPˆ , which, in turn, equals π – β. Hence, the length η may be written as

	

η π α π β

α β

= − + −

= − −

a
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Substituting this result into the expression for ψ(a, θ) gives
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Thus, by choosing the source strength Q* to be equal to aQ/l, the surface 
r = a will correspond to the stream surface ψ = 0. Then, the stream function for 
a sphere of radius a whose center is at the origin and that is exposed to a point 
source of strength Q located a distance l along the positive reference axis is

	 ψ θ
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η
( , ) ( cos ) ( cos )r

Q Q a
l
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.	 (5.11a)
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FIGURE 5.8
Superposition of a line sink of strength q per unit length, a source of strength Q*, and a source 
of strength Q near a sphere of a radius a.
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The velocity potential corresponding to Equation 5.11a may be obtained 
from Equations 5.6a and 5.10b. This gives

	 φ θ
πζ πη π
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( , ) log
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Q Q q

= − −
∗
+

4 4 4
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.	 (5.11b)

Using the fact that Q* = aQ/l and q = lQ*/a2 = Q/a, the expression for the 
velocity potential for a sphere of radius a in the presence of a source of 
strength Q becomes

	 φ θ
πζ πη π

α
θ

( , ) log
tan
tan

r
Q Qa

l
Q
a

= − − +
4 4 4

2
2
/
/

.	 (5.11c)

The quantity ζ is the distance from the field point P to the source Q as 
shown in Figure 5.8.

5.11  Rankine Solids

The solution for the flow around a family of bodies, which are known as 
Rankine solids, is obtained by superimposing a source and a sink of equal 
strength in a uniform flow field. Let the magnitude of the uniform flow be U 
and the strength of the source and the sink be Q. Consider the source and the 
sink to be located equal distances l from the origin as shown in Figure 5.9a.

From Equations 5.5b and 5.6b, the stream function for the configuration 
shown in this figure is

	 ψ θ θ
π

θ θ( , ) sin (cos cos )r Ur
Q

= − −1
2

2 2
1 24

.	 (5.12a)
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FIGURE 5.9
(a) Superposition of uniform flow, source and sink, and (b) uniform flow approaching a 
Rankine solid.
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Then, if r0 is the radius to the surface on which ψ = 0, the radius r0 must 
satisfy the equation

	 0
1
2 40

2 2
1 2= − −Ur

Q
sin (cos cos )θ

π
θ θ .	

Working with the cylindrical radius R = r sin θ rather than the polar radius 
r, it follows that the cylindrical radius R0, which corresponds to the surface 
ψ = 0, will be

	 R
Q
U0

2
1 22

= −
π

θ θ(cos cos ).	

Then, when θ1 = θ2 = 0, and when θ1 = θ2 = π, the value of R0 is zero. Also, 
the maximum value of R0 occurs when θ1 = θ2 = π/2 or when θ1 = θ2 = 3π/2. 
Thus, the stream surface that corresponds to ψ = 0 defines a body as shown 
in Figure 5.9b. The principal dimensions of this body are the half width L 
and the half height h. Both these parameters depend upon the free-stream 
velocity U, the source and sink strength Q, and the distance l.

The value of L may be obtained from the equation resulting from the obser-
vation that the velocity at the downstream stagnation point is zero. However, 
the velocity at that point is the superposition of a uniform flow of magnitude 
U, a source of strength Q a distance L + l away, and a sink of strength Q a 
distance L – l away. Hence,

	 U
Q
L l

Q
L l

+
+

−
−

=
4 4

0
2 2π π( ) ( )

.	

Rearranging this equation gives the following equation to be satisfied by L 
in terms of the parameters U, Q, and l:

	 ( )L l
Ql
U
L2 2 2 0− − =

π
.	 (5.12b)

An analogous expression for the half height h may be obtained by noting 
that the value of the cylindrical radius R0 is h when cos θ1 = –cos θ2, where 
tan θ1 = h/l. Hence,

	 h
Q
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Rearranging this expression shows that h must satisfy the following equation:

	 h h l
Ql
U

2 2 2 0+ − =
π

.	 (5.12c)

For various values of the parameters U, Q, and l, Equations 5.12b and 5.12c 
define a family of bodies of revolution for which the stream function is given 
by Equation 5.12a. The corresponding velocity potential is

	 φ θ θ
π π

( , ) cosr Ur
Q
r

Q
r

= − +
4 41 2

.	 (5.12d)

5.12  D’Alembert’s Paradox

It will be shown in this section that if an arbitrary three-dimensional body 
is immersed in a uniform flow, the equations of hydrodynamics predict that 
there will be no force exerted on the body by the fluid. Experimentally, it is 
known that a drag force exists on a body that is in a fluid flow, and this theo-
retical result is known as d’Alembert’s paradox.

Figure 5.10 shows a body of arbitrary shape whose center of gravity is located 
at the origin of a coordinate system. The surface of the body is denoted by S, 

U
x

y

z

n

n0

FS

S0

FIGURE 5.10
Spherical control surface S0 enclosing an arbitrarily shaped body of surface area S. The force 
acting on the body is F, and the unit normal to the body surface is n.
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and the unit outward normal to S, locally, is denoted by n. The hydrodynamic 
force, which may act on the body, is denoted by the force vector F. A spherical 
control surface S0 is set up around the body under consideration, and n0 is the 
unit outward normal to S0. That is, n0 = er, where er is the unit radial vector.

The equation of force equilibrium will now be written for the body of fluid 
contained between the surfaces S and S0. The fluid force acting on the body 
through the surface S is F; hence, the force acting on the fluid through that 
surface is –F. There is no transfer of momentum across the surface S since 
that surface is a stream surface. Around the surface S0, there will be a force 
due to the pressure distribution. The magnitude of this force will be –pn0 per 
unit of surface area, so that the total pressure force will be the surface inte-
gral of this quantity. Across the surface S0, there will be a momentum flux 
corresponding to the mass flux ρu ∙ n0 per unit area. Then, the momentum 
flux will be ρu(u · n0) per unit area, so that the inertia force per unit surface 
area will be –ρu(u ∙ n0). Thus, the equation of force equilibrium for the fluid 
that is bounded by the surfaces S and S0 is

	 0 0 0
0

= − − + ⋅∫F p S
S

n u u nρ ( ) d .	

The pressure may be eliminated from this equation through use of the 
Bernoulli equation, which, for the case of steady irrotational motion under 
consideration, may be written in the form

	 p B+ ⋅ =
1
2
ρu u

	

where B is the Bernoulli constant. Then, the force F acting on the body will 
be given by the following integral:

	 F = ⋅ − ⋅∫ρ
1
2 0 0

0

( ) ( )u u n u u n
S

sd .	

Here, it has been observed that the surface integral of Bn0 is zero for any 
closed surface.

It is now proposed to write the velocity vector u as the sum of the free-stream 
velocity vector U = Uex and a perturbation u′. The perturbation velocity u′ will 
be large near the body, but it will tend to zero far from the body. Then, writing

	 u = U + u′	

the expression for the force F becomes

	 F U u u u n U u U u n= + ⋅ + ⋅ − + + ⋅ρ
1
2

1
2

2
0 0U ( ) ( )∫ dS

S0

.	
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Expand the integrand now and note that U s
S

2
0 0

0

n d =∫  since U2 is a con-

stant. U n⋅ =∫ 0 ds
S

0
0

 since U is a constant vector and ⋅ =∫ u n0 0
0

ds
S

 from 

the continuity equation. Hence,

	 F U u u u n u U n u u n= ⋅ + ⋅ − ⋅ + ⋅ρ
1
2 0 0 0( ) ( )∫S s

0

d .	

The first and third terms in the integrand may be replaced by –U × (u × n0) 
in view of the vector identity

	 U × (u′ × n0) = u′(U · n0) − n0 (U · u′).

Hence, the expression for the hydrodynamic force F may be written in the 
form

	 F U u n u u n u u n= − × × + ⋅ − ⋅∫ρ ( ) ( ) ( )0
1
2 0 0

0S
sd .	

It will now be shown that each of these terms is zero.
Let ϕ′ be the velocity potential corresponding to the perturbation velocity 

u′. Then, from Equation 5.4, ϕ′ must be of the form
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where the first two terms, which correspond to a source and a doublet, have 
been written out explicitly, and any remaining terms must vary as 1/r3 or 
some greater power of 1/r. Then, since u′ = ∇ϕ′, it follows that

	 =u O
r
1
2 .	

That is, the perturbation velocity varies, at most, as 1/r2. Also,
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That is, since n0 = er and since er × er = 0, it follows that

	 × =u n0 3

1
O

r
.	

Finally, since an element of surface area dS equals r2 sin θ dθ dω, it is evi-
dent that

	 dS = O(r2).	

Using the foregoing results, it is possible to establish the order of magni-
tude of each of the integrals that appears in the expression for F. Thus,
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That is, if the radius of the spherical surface S0 is taken to be very large, 
each of these integrals will be vanishingly small. Thus, in the limit,

	 F = 0.	 (5.13)

Since it is known that any body that is immersed in a flow field experiences 
a drag force, Equation 5.13 poses a paradox known as d’Alembert’s paradox. 
The resolution of this paradox lies in the fact that viscous effects have been 
omitted from the equations that led to Equation 5.13. It will be seen in Part 
III that there is a thin fluid layer around such a body in which viscous effects 
cannot be neglected. This fluid layer, or boundary layer, exerts a shear stress 
on the body that gives rise to a drag force. In addition, the boundary layer 
may separate from the surface of the body, creating a low-pressure wake. 
This, in turn, will induce an additional drag, called the form drag, owing to 
the pressure variation around the surface of the body. However, for stream-
lined bodies, Equation 5.13 is approached because of the absence of form 
drag, although the viscous-shear drag will still exist.
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5.13  Forces Induced by Singularities

It was established in the previous section that, according to the equations of 
hydrodynamics, no force exists on a body that is in a uniform flow field. This 
is consistent with the results of the last chapter since the Kutta–Joukowski 
law shows that in the absence of circulation around a body, there are no 
forces acting on two-dimensional bodies. In view of the fact that ∇ ∙ ω = 0, 
it is very difficult to establish an appreciable circulation around short bod-
ies—that is, around three-dimensional bodies. However, it was established 
in the problems at the end of Chapter 4 that a force will exist on a cylinder 
that is exposed to a singularity in the flow such as a source, a sink, or a vor-
tex. Likewise, it will be shown here that a force exists on a three-dimensional 
body if it is exposed to a point singularity in the fluid.

Figure 5.11a shows an arbitrary body whose center of gravity coincides 
with the origin of a coordinate system. The surface of the body is denoted by 
S, and n is the outward unit normal to S. A singularity is assumed to exist 
at the point x = xi since the polar axis may be made to pass through the sin-
gularity without loss of generality. A small spherical control surface denoted 
by Si and of radius ε is established around the singularity. The unit outward 
normal to the surface ε is denoted by ni. A large spherical surface, denoted 
by S0, is drawn around both the body and the singularity. The unit normal to 
this surface is denoted by n0. The hydrodynamic force that acts on the body 
and whose magnitude is sought is denoted by F.

For equilibrium of the forces that act on the body of fluid that is inside S0 
but outside S and Si, the sum of the forces must be zero. Hence,

U

xi
xi

+Q –Q

n

n0

F
ni

S0

S Si

δ

Reference
axis

(a) (b)

FIGURE 5.11
(a) Control surfaces for a body located at the origin and a point singularity at x = xi and (b) a 
source and a sink close together near the body.
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	 0 0 0
0 0

= − = + ⋅ + + ⋅∫ ∫F n u u n n u u np S p
S

i i
S

ρ ρ( ) ( )d dSS.	

The first two terms on the right-hand side of this equation are identical 
with those that appeared in the previous section, and the third term repre-
sents the pressure and momentum integral for the new surface Si. However, 
it was shown in the previous section that the integral around S0 that appears 
above is zero. Then,

	 F n u u n= + ⋅∫ p Si i
Si

ρ ( ) d .	

Since the integral that appears in this equation represents the force acting 
on the surface Si, whose radius is arbitrarily small, it follows that if a force F 
acts on the body S, the reaction of this force must act on the singularity. From 
the Bernoulli equation, p = B – ρ(u · u)/2, so that

	 F u u n u u n= − ⋅ + ⋅∫ρ
1
2
( ) ( )i i

Si

Sd .	 (5.14a)

In order to further reduce the integral in Equation 5.14a, it is necessary to 
specify the nature of the singularity located inside the surface Si. The case of 
a source, or sink, and that of a doublet will be examined.

Consider, first, the singularity at x = xi to be a source of strength Q. Then, 
from Equation 5.6a, the velocity on the surface Si will be

	 u e u= +
Q

i
4 2πε

ε

	

where eε is the unit vector radial from the point x = xi, and ui is the velocity 
induced by all means other than the source under consideration. Then,

	 u u e u u u⋅ = + ⋅ + ⋅
Q Q

i i i
16 22 4 2π ε πε

ε

	

and

	

u n u e

u

⋅ = ⋅

= + ⋅

i

i
Q

ε

ε
πε4 2

e .
	

Hence, from Equation 5.14a,
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Of these four integrals, the first is zero since it involves a constant multi-
plied by eε integrated around a closed surface. Since the radius ε is arbitrarily 
small, the quantity ui ∙ ui, may be considered to be constant over the surface 
Si, and so the second integral will be zero in the limit as ε → 0. The last term in 
the integrand will likewise involve a quantity ui, which will be constant, and 
a quantity eε, which will change direction around Si. Thus, the product ui ∙ eε 
will have equal positive and negative regions over the surface Si, so that the 
integral of (ui ∙ eε)ui over Si will be zero. Then, the expression for F becomes

	 F u= ∫ρ πε

Q
SiSi 4

d
2

	

where, again, ui may be considered to be constant throughout the integration 
for vanishingly small value of ε. Hence,

	
F u

F u

=

=

∫ ∫
ρ
π

ω θ θ

ρ

π πQ

Q

i

i

4 0

2

0
d dsin

.
	 (5.14b)

That is, the force on the body, and on the source, is proportional to the 
source strength and to the magnitude of the velocity, ui, induced at the loca-
tion of the source by all mechanisms other than the source itself. The direc-
tion of the force coincides with that of the velocity vector ui. For a sink, Q 
should be replaced by –Q in Equation 5.14b.

Consider now the case when the singularity is a doublet. It was shown in 
Section 5.6 that a doublet may be obtained by superimposing a source and a 
sink of equal strength. Hence, consider a source of strength Q to be located 
at x = xi and a sink of strength Q to be located at x = xi + δ, as shown in Figure 
5.11b, where δ is a vanishingly small distance. Then, if ui is the fluid veloc-
ity at x = xi due to all components of the flow except the source and the sink 
under consideration, the velocity at x = xi, less that due to the source itself, 
will be
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Q

x i4 2πδ
e u+

	

where ex is the unit vector in the x direction.
The velocity at x = xi + δ, less that due to the sink, will be

	
Q

xx i
i

4 2πδ
δe u

u
+ +

∂
∂

+….	

Then, from Equation 5.14b, the force acting on the body due to the source 
will be

	 ρ
πδ

Q
Q

x i
4 2

e u+
	

and the force acting on the body due to the sink will be

	 − + +
∂
∂

+ρ
πδ

δQ
Q u

xx i
i

4 2
e u …

	

where the minus sign results from the fact that a sink is being considered. 
The net force that will act on the body due to the combined source and sink 
will then be

	 −
∂
∂

ρ δQ
x
iu

.	

Now, if δ is allowed to shrink to zero and Q is allowed to become infinite 
such that Qδ → μ, the force acting on the doublet of strength μ that will result 
at x = xi will be

	 −
∂
∂

ρ
ui

x
.	

Hence, the force acting on the body due to a doublet of strength μ will be

	 F
u

= −
∂
∂

ρ i

x
.	 (5.14c)

As an example of an application of the foregoing results, consider a sphere 
in the presence of a source, which was discussed in Section 5.10. The flow 
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field was found to consist of the source of strength Q, which was located at 
x = l, an image source of strength Qa/l located at x = a2/l, and a line sink of 
strength Q/a extending over the region x = 0 to x = a2/l. Then, the velocity 
ui, at the point x = l due to all causes except the source of strength Q, will be

	

u e
e

i x
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Then, from Equation 5.14b, the force F acting on the sphere due to the 
source will be

	 F e=
−

ρ

π

Q a
l l a

x

2 3

2 2 24 ( )
.	 (5.14d)

That is, the sphere is attracted to the source with a force that is propor-
tional to Q2.

5.14  Kinetic Energy of Moving Fluid

It is sometimes of interest to calculate the kinetic energy associated with a 
fluid disturbance. An example of the utility of this quantity in the context of 
flow around immersed bodies will be given in the next section, and an appli-
cation to free-surface flows will be made in the next chapter.

The kinetic energy associated with the fluid in the uniform flow around a 
stationary body will be infinite if the flow field is infinite in extent. However, 
the kinetic energy induced in a quiescent fluid by the passage of a body 
through it will be finite, even if the flow field is infinite in extent. For this 
reason, discussions of kinetic-energy considerations are based on a frame 
of reference in which the fluid far from the body is at rest and the body is 
moving.

Referring to Figure 5.12, we consider an arbitrary body of surface area S that 
is moving with velocity U through a stationary fluid. An arbitrarily shaped 
control surface S0 is constructed around the body. The unit outward normal 
to the surfaces S and S0, denoted by n and n0, respectively, are indicated. If 
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V is the volume of fluid contained between the surfaces S and S0, the kinetic 
energy of T of this volume of fluid will be

	

T = ⋅

= ⋅

∫
∫

1
2

1
2

ρ

ρ φ φ

( )u u d

d

V

V

V

V 	

where ϕ is the velocity potential corresponding to the motion induced in 
the fluid by the moving body. This volume integral may be converted to a 
surface integral by use of Green’s theorem in the form given in Appendix A. 
Thus, since ∇2ϕ = 0, it follows from Green’s theorem that

	 T =
∂
∂∑∫

1
2
ρ φ

φ
n

Sd
	

where Σ is the surface that encloses V and so consists of the surfaces S and 
S0. However, on the surface S, the unit normal points away from the surface 
and into the volume V. Using this fact, the surface integral above may be 
expanded to give

	 T
n

S
n

S
SS

=
∂
∂

−
∂
∂∫∫

1
2

1
20

ρ φ
φ

ρ φ
φ

d d .	

U

n

n0

S

S0

V

FIGURE 5.12
Control surface for an arbitrary body moving through a quiescent fluid.
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The first integral that appears in this expression is zero, which will now be 
shown.

From the continuity equation, if follows that

	
⋅∫ ud = 0.V

V 	

This volume integral may be converted into two surface integrals by use of 
Gauss’ theorem to yield the following expression:

	 u n u n⋅ − ⋅ =∫∫ d dS S
SS

0
0

.	

But u ∙ n = ∂ϕ/∂n on the surface S, and u = U, where U is a constant. Hence,

	 ∂
∂

− ⋅ =∫∫
φ
n

S S
SS

d d 0
0

U n .	

The second integral in this identity is zero since U is a constant vector over 
the surface S, so that for any constant C, it follows that

	 C
n

S
S

∂
∂

=∫
φ
d 0

0

.	

Subtracting this quantity from the right-hand side of the expression for T 
gives

	 T C
n

S
n

S
S S

= −
∂
∂

−
∂
∂∫ ∫

1
2

1
20

ρ φ
φ

ρ φ
φ

( ) d d .	

Now, since the fluid velocity far from the body is zero, the value of ϕ there 
can at most be a constant. Thus, by considering the surface S0 to be large and 
by choosing C to be the value of ϕ far from the body, the first integral may be 
made to vanish. That is, the kinetic energy induced in the fluid by the move-
ment of the body is

	 T
n

S
S

= −
∂
∂∫

1
2
ρ φ

φ
d 	 (5.15)

where, it should be recalled, the velocity potential corresponds to the body 
moving through a stationary fluid.
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5.15  Apparent Mass

When a body moves through a quiescent fluid, a certain mass of the fluid is 
induced to move to some greater or lesser extent. A question that may then 
be asked is, what equivalent mass of fluid, if it moved with the same velocity 
as the body, would exhibit the same kinetic energy as the actual case? If the 
fluid may be considered as being ideal, the mass of fluid referred to above is 
found to depend upon the body shape only, and this mass of fluid is called 
the apparent mass.

We define the apparent mass of a fluid M′ as that mass of fluid, which, if 
it were moving with the same velocity as the body, would have the same 
kinetic energy as the entire disturbed fluid. That is,

	

1
2

1
2

2

2

= −
∂
∂

= −
∂
∂

∫
∫

M U
n

S

M
U n

S

S

S

ρ φ
φ

ρ
φ

φ

d

d .
	 (5.16)

For arbitrarily shaped bodies, the velocity potential will depend upon the 
direction of the flow. That is, the apparent mass of fluid associated with a 
given body will be a property of the shape of that body, and as for inertia, 
there will in general be three principal axes of the apparent mass. For axi-
symmetric bodies, there will be two principal values of M′, whereas for the 
sphere, there will be only one.

As an example of an application of Equation 5.16, the apparent mass for a 
sphere will be worked out here. The velocity potential (Equation 5.9b) corre-
sponds to a stationary sphere of radius a with a uniform flow of magnitude U 
approaching it. Then, the required velocity potential may be obtained from 
Equation 5.9b by adding the velocity potential for a uniform flow of magni-
tude U in the negative x direction. This gives
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Hence, on the surface S where r = a,

	 φ
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θ
∂
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Then, from Equation 5.16, the apparent mass for the sphere is

	

= − −

=

∫ ∫M
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U a a

M

ρ
ω θ θ θ

π

π π

2 0

2
2 2 2

0

1
2

2
3

d dcos sin

aa3ρ.
	 (5.17)

That is, the apparent mass for a sphere is one-half of the mass of the same 
volume of fluid. This apparent mass may be added to the actual mass of 
the sphere, and the total mass may be used in the dynamic equations of the 
sphere. That is, the existence of the fluid may be ignored if the apparent mass 
of fluid is added to the actual mass of the body.

PROBLEMS

	 5.1	 Use the definition of the Stokes stream function and the ω compo-
nent of the condition of irrotationality to show that the equation to 
be satisfied by the stream function ψ(r, θ) for axisymmetric flows is 
as follows:

	 r
r

2
2

2

1
0

∂

∂
+

∂
∂

∂
∂

=
ψ

θ
θ θ

ψ
θ

sin
sin

.	 (5.18)

	 5.2	 Show by direct substitution that the stream functions obtained for 
a uniform flow, a source, and a doublet, as given by Equations 5.5b, 
5.6b, and 5.7b, respectively, satisfy Equation 5.18.

	 ψ θ θ( , ) sinr Ur=
1
2

2 2

	 (5.5b)

	 ψ θ
π

θ( , ) ( cos )r
Q

= − +
4

1 	 (5.6b)

	 ψ θ
π

θ( , ) sinr
r

= −
4

2 .	 (5.7b)

	 5.3	 Look for a separation-of-variables solution to Equation 5.18 of the 
following form:

	 ψ(r, θ) = R(r)T(θ).	

		  Hence, show that the finite solutions for R(r) are of the following 
form:

	 Rn(r) = Anr−n	
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	 and that the equation to be satisfied by T(θ) is the following:

	 ( ) ( )1 1 02
2

2
− + + =η

η

d
d
T

n n T
	

	 where η = cos θ. Show that the substitution T = (1 – η2)1/2τ trans-
forms this equation to the following form:
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τ
d
d

d
d

n n .	

		  This is the associated Legendre equation. Show that the nonsin-
gular solution to this equation is the following:

	 τ η η
η
ηn
nP( ) ( )
( )

= −1 2 1 2/ d
d

.	

		  In the above, Pn(η) is Legendre’s polynomial of order n. Thus, 
deduce that the general solution to Equation 5.18 is the following:

	 ψ θ
θ

θ
θ( , )

sin
(cos )r A

r
Pn n n

n

=
=

∞

∑ d
d

1

.	 (5.19)

	 5.4	 Show that setting An = 0 for n ≠ 1 in Equation 5.19 yields the solution 
for a doublet.

	 5.5	 The figure for this problem shows a doublet of strength μ* located at 
x = l and a doublet of strength μ* located at x = a2/l. Show that the sur-
face r = a corresponds to ψ = 0 if μ*= –a3 μ/l3. Hence, deduce that the 
stream function for a doublet of strength μ located a distance l from 
the center of a sphere of radius a is given by the following equation:

	
ψ θ

πζ
β

π η
α( , ) sin sinr

a
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= − +
4 4

2
3

3
2 .	 (5.20a)

		  Also, deduce that the corresponding velocity potential is given 
by the following equation:

	 φ θ
πζ

β
π η

α( , ) cos cosr
a
l

= + −
4 42

3

3 2
.	 (5.20b)
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	 5.6	 Show that the force that acts on a sphere of radius a due to a doublet 
of strength μ located a distance l from the center of the sphere along 
the x axis is given by the expression

	 F e=
−

3
2

3

2 2 4

ρ

π

a l
l a

x
( )

.	

	 5.7	 A spherical gas bubble of radius R(t) exists in a liquid; that is, the 
radius of the bubble is changing with time. The liquid is quies-
cent, except for any motion that is caused by the bubble itself. It 
is assumed that the fluid motion does not involve any viscous or 
compressible effects, and it may therefore be represented by a time-
dependent velocity potential that satisfies the following conditions:
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		  In the above, �R  is the derivative of R with respect to time. Obtain 
an expression for the radial velocity at the surface of the bubble and 
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for the velocity potential ϕ(r, t), both of these expressions being in 
terms of R, �R , and r. Also, obtain an expression for the pressure at 
the surface of the bubble p (R, t), taking the pressure far from the 
bubble to be p0, which is a constant.

		  Suppose that at time t = 0 the pressure at the surface of the bubble 
is p0, the radius of the bubble is R0, and its initial velocity is – �R; that 
is, the radius of the bubble is decreasing as time increases. Obtain an 
expression for the time required for the radius of the bubble to shrink 
to zero.

	 5.8	 A sphere of radius a moves along the x axis with velocity U(t) that 
varies with time. A fixed-origin coordinate system is defined by 
the location of the sphere at time t = 0, so that its location at any 
subsequent time will be defined by the relation

	 x t U
t

0
0

( ) ( )= ∫ τ τd .	

		  This situation is depicted in the figure for this problem. If P is 
any fixed field point, its coordinates (r, t) relative to the sphere will 
change with time. Obtain the velocity potential for the sphere in 
a stationary fluid, first in terms of r and θ, then in terms of x, R, 
and x0. If the undisturbed pressure is p∞, find the pressure at the 
field point P in terms of r and θ. Hence, by integrating the pres-
sure around the surface of the sphere, find the force acting on it. 
Compare the result so obtained with that obtained by using the 
apparent mass concept in conjunction with Newton’s second law 
of motion.

x0(t)
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r (
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0

θ(t)
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6
Surface Waves

The effect of gravity on liquid surfaces is treated in this chapter. The flows 
associated with surface waves will be assumed to be potential, which is a 
valid approximation for many free-surface phenomena. Most of the flows 
treated here will be two-dimensional. However, the treatment of surface 
waves has been separated from the other two-dimensional potential flows 
because of the different nature of the problems and the different approaches 
to their solutions.

The formulation of surface-wave problems is discussed first. The linear-
ized version of this formulation is then presented, and this version is used 
throughout most of the remainder of the chapter. The propagation speed of 
small-amplitude waves is established, and the effect of surface tension on 
this result is investigated. Waves on shallow liquids are discussed next, and 
the manner in which waves of arbitrary form and amplitude propagate is 
established.

The complex potential for traveling waves is calculated, and this result 
is used to establish the pathlines for fluid particles in a body of liquid on 
the surface of which waves are propagating. A superposition of traveling 
waves is then used to introduce the topic of standing waves. The particle 
paths for this type of wave are also established. The topic of standing waves 
leads, quite naturally, to the question of what type of waves may exist on the 
free surface of liquids that are contained in vessels of finite dimensions. In 
particular, rectangular and cylindrical vessels are discussed. The response 
of the free surface to arbitrary motions of such vessels is obtained. Finally, 
the behavior of waves at the interface of the two different fluid streams is 
investigated. This leads to the topics of Helmholtz or Rayleigh instability and 
Taylor instability.

6.1  General Surface-Wave Problem

When a quiescent body of liquid experiences gravity waves on its free sur-
face, the motion induced by the surface waves may be considered to be irro-
tational in most instances. Then, the velocity vector may be expressed as the 
gradient of a velocity potential, which, in turn, must satisfy Laplace’s equa-
tion. That is, the governing equation is the same as that for each of the two 
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previous chapters, so that surface-wave theory introduces no new difficulties 
with respect to the governing equation. The boundary conditions to be satis-
fied will now be established.

Figure 6.1 shows a body of liquid on a flat surface in which waves exist on 
the free surface of the liquid. The x axis of a coordinate system is located at the 
mean level of the free surface, which is defined by the equation y = η(x, z, t), 
and the mean depth of the liquid is h. Two boundary conditions must be 
imposed on the free surface y = η. The first of these conditions is called the 
kinematic condition, and it states that a particle of fluid that is at some time on 
the free surface will always remain on the free surface. Then, since the equa-
tion of the free surface is y – η = 0, it follows that

	

D
Dt

y( ) .− =η 0
	

In terms of Eulerian coordinates, this boundary condition becomes
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However, in the Eulerian frame of reference, the coordinates x, y, z, and t 
are independent. Also, the function η depends on x, z, and t only. Hence, the 
equation above may be rewritten to give
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FIGURE 6.1
Coordinate system for surface-wave problems.
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where it has been noted that ∂xi/∂xj = δij. Finally, expressing the velocity com-
ponents in terms of the velocity potential ϕ, the kinematic surface condition 
becomes
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+
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=
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η φ η φ η φ
t x x z z y
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The other boundary condition that must be imposed on the free surface is 
a dynamic one. Typically, the statement amounts to specifying that the pres-
sure is constant, but in general, it may be stated that p = P(x, z, t) on y = η. This 
condition is implemented through the Bernoulli equation. The appropriate 
form of the Bernoulli equation is that for unsteady, irrotational motion. Since 
gravitational forces are intrinsically important in free-surface waves, grav-
ity must be included in the body-force term. Thus, from Equation II.6 with 
G = –gy, the boundary condition p = P on y = η becomes
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g F t
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Finally, the boundary condition at the bed must be imposed. For the case 
of an inviscid fluid, which is under consideration, this amounts to specifying 
that the velocity component normal to the boundary be zero. For a flat bed 
as shown in Figure 6.1, this simply amounts to specifying that ∂ϕ/∂y = 0 on 
y = –h.

To summarize, in terms of the velocity potential ϕ, the conditions to be 
satisfied for surface-wave motions are the following:

	 ∇2ϕ = 0	 (6.1a)
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The difficulty in solving surface-wave problems may be seen to be in the 
boundary conditions rather than in the differential equation. Equation 6.1c 
is nonlinear, and both it and Equation 6.1b are to be imposed on the surface 
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y = η. In many real situations, this surface may not be known a priori and 
may be one of the quantities that evolve from the solution itself. However, 
many interesting features of surface-wave flows do not depend upon these 
complex features of the problem. That is, by linearizing the problem, the dif-
ficulties discussed above may be avoided while the basic features of the flow 
are not destroyed. Such a linearization will be carried out in the next section.

6.2  Small-Amplitude Plane Waves

For simplicity, we consider plane waves, that is, two-dimensional flow fields 
with waves on the surface. Then, without any further approximation, the 
differential equation to be satisfied by the velocity potential in the xy plane is

	
∂
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∂
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2
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φ φ

x y
. 	 (6.2a)

In order to make the surface boundary conditions more tractable, small-
amplitude waves will be considered. That is, only waves for which the 
amplitude is small compared with the other characteristic length scales will 
be considered. The other characteristic length scales are the liquid depth h 
and the wavelength of the waves. But if η is small compared with the wave-
length, the quantity ∂η/∂x, which is the slope of the free surface, will be 
small. Furthermore, the quantity ∂ϕ/∂x, which is a velocity component, will 
be small since surface waves do not involve high frequencies and since the 
amplitude of the motion has been assumed to be small. Then, the product 
∂ϕ/∂x with ∂η/∂x, which appears in Equation 6.1b, will be quadratically small 
and hence may be neglected to first order. The kinematic boundary condition 
on the free surface then becomes
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Although this equation is free from quadratic terms, it still contains the 
difficulty that it must be imposed on y = η. However, in our present approxi-
mation, η is small, so that a Taylor expansion may be written for the quantity 
∂ϕ/∂y at y = η about the line y = 0. Thus,
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The second term in this expansion is quadratically small and so, to the 
first order, may be neglected. That is, to the first order in small quantities, the 
boundary condition (Equation 6.1b) may be written in the form
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φ η
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x t

t
x t( , , ) ( , ).0 	 (6.2b)

The dynamic boundary condition on the free surface may be treated in 
the same way. Since the fluid is essentially quiescent and any fluid motion is 
induced by the waves, the nonlinear term u · u = ∇ϕ · ∇ϕ may be neglected as 
being quadratically small. Thus, Equation 6.1c becomes
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The quantity ∂ϕ/∂t may be expanded in a Taylor series about the line y = 0, 
and only the first term in this expansion need be retained. This gives
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The quantity F(t) may be absorbed into the velocity potential ϕ(x, y, t) by 
considering ϕ(x, y, t) to be replaced by

	
φ( , , ) ( )x y t F t t+ ∫ d .

	

Thus, the linearized version of Equation 6.1c may be written in the form
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If the time derivative of this equation is formed, the term ∂η/∂t may be 
eliminated in favor of ∂ϕ/∂y from Equation 6.2b. Thus, the preferred form of 
the dynamic boundary condition on the free surface is
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The boundary condition on the lower boundary is unaffected by the lin-
earization and requires
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Equations 6.2a through 6.2d represent a much more tractable set than the 
general equations presented in the previous section. However, as was men-
tioned earlier, they correctly predicted many of the features of surface waves, 
and so they will form the basis of most of the remaining sections of this 
chapter.

6.3  Propagation of Surface Waves

Consider a quiescent body of water or other liquid of depth h, as shown in 
Figure 6.2. A small-amplitude plane wave is traveling along the surface of 
this liquid with velocity c. The form of the wave is taken to be sinusoidal, 
with the amplitude of the wave being ε and its wavelength being λ. Thus, the 
equation of the free surface will be y = η(x, t), where

	
η ε

π
λ

( , ) sin ( ).x t x ct= −
2

	

This corresponds to the wave traveling in the positive x direction with 
velocity c.

The question we ask is the following: Given the wave amplitude ε and 
wavelength λ and given the depth h, what will be the propagation speed c? 
The answer to this question may presumably be obtained by solving the flow 
problem for the velocity potential. For the time being, surface-tension effects 

h

y

x
λ

ε

FIGURE 6.2
Parameters for a pure sinusoidal wave.
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will be neglected; hence, the pressure on the surface of the liquid will be con-
stant and equal to, say, the atmospheric pressure. That is, P(x, t) = constant 
in this instance. Then, from Equations 6.2a through 6.2d, the problem to be 
solved for ϕ(x, y, t) is
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Here, the equation for η(x, t) has been used in the kinematic condition on 
the free surface. The appropriate solution to the Laplace equation by separa-
tion of variables will be trigonometric in x, and hence, it will be exponential 
or hyperbolic in y. This deduction follows from the nature of the value of 
∂ϕ/∂y, which is prescribed on y = 0 by the kinematic boundary condition. In 
fact, inspection of this boundary condition yields even stronger information. 
Since ∂ϕ/∂y must vary as cos 2π(x – ct)/λ, then so must ϕ. That is, the nature 
of the time dependence is brought in through this boundary condition, as is 
the nature of the x dependence. Furthermore, since the separation constant 
in the x direction must be 2π/λ, the separation constant in the y direction 
must also be 2π/λ. Hence, the appropriate form of solution to the Laplace 
equation is
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Here, the hyperbolic form of solution in y has been used in preference to 
the exponential form since the region in y is finite rather than infinite. This 
facilitates application of the boundary conditions. Having used the form 
of the first boundary condition, the third boundary condition will now be 
imposed. Thus, the condition that ∂ϕ/∂y must vanish on y = –h gives
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Since this condition is to be satisfied for all values of x and t, the quantity 
inside the second set of parentheses must be zero. This gives
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λ 	

Hence, the solution for ϕ(x, y, t) becomes
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Finally, the second boundary condition, corresponding to the dynamic 
condition on the free surface, will be imposed. This gives
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Again, this equation is to be satisfied for all values of x and t, so that the 
quantity inside the square brackets must vanish. But the only unknown 
quantity inside the brackets is the wave speed c. That is, imposing this final 
boundary condition determines the speed c with which the wave train is 
traveling. In nondimensional form, the result is
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Equation 6.3a was obtained using a small-amplitude approximation, 
which means that it is valid provided ε ≪ λ and ε ≪ h.

As a special case, we consider deep liquids, that is, liquids for which 
h ≫ λ. Then, the parameter 2πh/λ will be large, so that tanh (2πh/λ) will be 
approximately unity. Then, for deep liquids, Equation 6.3a may be approxi-
mated by

	
c
gh h
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2
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λ
π

. 	 (6.3b)

Equation 6.3b will be valid for ε ≪ λ ≪ h.
The other obvious limit is that of shallow liquids, that is, liquids for which 

h ≪ λ. In this case, the parameter 2πh/λ will be small so that
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	 tanh .
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λ

π
λ

h h
≈

	

Then, Equation 6.3a, becomes

	
c
gh

2

1= 	 (6.3c)

which will be valid for ε ≪ h ≪ λ.
The foregoing results are presented schematically in Figure 6.3, in which 

the general solution (Equation 6.3a) is shown by a solid line and the two 
asymptotic limits are shown dotted.

An arbitrarily shaped wave train may be considered to be a superposi-
tion of sinusoidal waves of the type just treated. That is, waves of arbitrary 
form may be Fourier-analyzed and so decomposed into a number of pure 
sinusoidal waves. Thus, the foregoing results show that such waves will 
not, in general, propagate in an undisturbed way. That is, the propagation 
speed c, or celerity as it is sometimes called, depends upon the wavelength 
λ of its sinusoidal components. Only with shallow liquids (Equation 6.3c) is 
the propagation speed independent of the wavelength. That is, unless the 
shallow-liquid conditions apply, the different Fourier components of an arbi-
trarily shaped wave will all travel at different speeds so that the waveform 
will continuously change. This process is usually referred to as dispersion or, 
more specifically, frequency dispersion.

0
0

1.0

Deep liquids Shallow liquids

Equation
6.3c

Equation 6.3a

Equation
 6.3b

c2

gh

λ
2πh

FIGURE 6.3
Propagation speed c for small-amplitude surface waves of sinusoidal form.
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6.4  Effect of Surface Tension

In the previous section, it was assumed that the pressure along the topmost 
layer of the liquid was constant, corresponding to atmospheric pressure. 
However, if surface-tension effects are included, the pressure along the edge 
of the liquid will be different from the pressure outside the liquid, unless the 
surface is flat. To establish the effect of this pressure differential, an element 
of the surface is isolated in Figure 6.4 and the forces due to surface tension 
are indicated.

At the reference position x, the value of the surface tension is σ, and the 
slope of the surface there is ∂η/∂x. Then, a short distance Δx farther from the 
origin, the value of the surface tension will be σ + (∂σ/∂x)Δx, and the slope of 
the surface will be ∂η/∂x + (∂2η/∂x2)Δx. Only the first-order corrections have 
been written down here since the unwritten terms in the Taylor series will 
contain terms of order (Δx)2 or smaller. Then, if p0 is the pressure above the 
liquid and if P(x, t) is the pressure at the edge of the liquid, vertical equilib-
rium of the element of surface shown in Figure 6.4 requires that the follow-
ing equation be satisfied:
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Expanding the terms in this equation and neglecting terms that are qua-
dratic in the length Δx gives
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FIGURE 6.4
Element of liquid surface showing forces due to surface tension.
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The length Δx may now be permitted to shrink to zero, so that the neglected 
terms become identically zero and the preceding equation becomes exact. 
The last term in this equation will be zero if σ is constant and will be qua-
dratically small if σ is almost constant. Thus, to the first order in small quan-
tities, the pressure P(x, t) at the edge of the liquid becomes
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In the dynamic boundary condition on the free surface (Equation 6.2c), the 
pressure enters through the term ∂P/∂t. However, if the pressure p0 outside 
the liquid is constant, the expression for ∂P/∂t is
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where the order of differentiation has been interchanged in the first equa-
tion, and ∂η/∂t has been eliminated in favor of derivatives of ϕ using the 
kinematic boundary conditions (Equation 6.2b). Using the preceding result, 
the dynamic boundary condition on the free surface (Equation 6.2c) becomes
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This revised form of the dynamic boundary condition will be used to 
recalculate the propagation speed of a sinusoidal wave.

The existence of surface tension does not affect the governing partial dif-
ferential equation, the kinematic surface condition, or the bed boundary con-
dition. Hence, from the previous section, the velocity potential that satisfies 
these unchanged equations is
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Application of the boundary condition (Equation 6.4) to this velocity poten-
tial results in the requirement
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The general solution to this equation requires that the quantity inside the 
square brackets vanish, which gives, in nondimensional form,
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If σ is negligibly small, Equation 6.3a is recovered. This result shows that 
the effect of surface tension is to increase the propagation speed of the wave.

For deep liquids, the parameter 2πh/λ is large, so that Equation 6.5a 
becomes
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If, in addition, the parameter inside the brackets is sufficiently large that
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then the expression for the propagation speed will reduce to the following:
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Waves that satisfy the foregoing conditions and so travel at the speed 
defined by Equation 6.5b are called capillary waves. It will be noted that the 
propagation speed of capillary waves depends upon the wavelength λ, so 
that an arbitrarily shaped wave will disperse because of the different propa-
gation speeds of its Fourier components.

The propagation speed of sinusoidal waves, as predicted by Equation 6.5a, 
is shown in Figure 6.5 as a function of the parameter λ/(2πh). It is seen that 
the effect of surface tension modifies our previous result only in the deep-
liquid end of the spectrum. This is because the condition
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is realized only for small values of λ, which, in turn, corresponds to deep-
liquid waves.
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6.5  Shallow-Liquid Waves of Arbitrary Form

It was deduced from the results of the previous two sections that waves of 
arbitrary form will disperse unless the liquid is shallow. That is, owing to the 
different propagation speeds of its Fourier components, an arbitrarily shaped 
wave will decompose unless the liquid depth h is small compared with the 
shortest wavelength λ of the various Fourier components that constitute the 
wave. The deduction that shallow-liquid waves of small amplitude will not 
decompose may be verified by carrying out a detailed study of such waves.

The starting point of such a study is the equations governing the depen-
dent variables. These equations may be obtained from the continuity and 
Euler equations by integrating across the fluid depth and employing a one-
dimensional approximation. However, it is no more difficult and consider-
ably more instructive to derive the equations from first principles using a 
one-dimensional approach. The latter procedure will be followed here.

Figure 6.6a shows a portion of a liquid layer in which a surface wave of 
arbitrary form exists. The waveform is assumed to be such that the smallest 
wavelength of its various Fourier components is large compared with the 
mean depth h. Then, a one-dimensional approximation may be employed. 
That is, the x component of the velocity vector will be assumed to be con-
stant over the fluid depth, and the y component of the velocity vector will be 
neglected as being small.

Figure 6.6b shows an element of length Δx of the fluid that extends from 
the bottom to the free surface. The mass-flow rates into the element and out 
of it are also indicated in Figure 6.6b. The mass-flow rate per unit depth 
entering the element through the surface at x is ρu(h + η). Then, the mass flow 

Capillary waves

Deep-liquid waves

Shallow-liquid
waves

0
0

1.0

λ
2πh

c2

gh

FIGURE 6.5
Propagation speed for sinusoidal waves including the effects of surface tension.
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leaving the element at x + Δx is indicated by the first two terms of a Taylor 
series about the location x, the remaining terms, not indicated, then being of 
order (Δx)2 or smaller. A mass flux is shown leaving the control volume at the 
top. This is due to the fact that η depends on both x and t, and the quantity 
∂η/∂t represents the vertical velocity of the free surface. Then, multiplying 
this velocity by the density and the length Δx gives a mass efflux per unit 
time per unit depth. Using the expressions for these various components of 
mass-flow rate, the equation of mass conservation becomes
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FIGURE 6.6
(a) Arbitrary waveform on a shallow-liquid layer, (b) mass-flow-rate balance for an element, 
and (c) momentum and force balance in the x direction.
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The first and last terms cancel each other, and the remaining terms may be 
divided by ρΔx to give
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The limit Δx → 0 may now be taken so that the terms that were not included 
in the Taylor expansion become identically zero. In the resulting equation, 
the product uη will be of second order and so may be neglected. Hence, the 
linearized form of the continuity equation is
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Figure 6.6c shows the same element of fluid considered above but on which 
the components of the x momentum and the external forces are indicated. 
The components of the x momentum are obtained by multiplying the mass-
flow components obtained above by the x component of the velocity vector, 
namely, u. In so doing, it should be noted that the mass-flow component that 
leaves the control volume by way of the free surface will, in general, have an 
x component of velocity, so that an efflux of x momentum will be involved 
although the mass flow is essentially vertical. The forces that act on the fluid 
element in the x direction are due to the pressure in the fluid. This pressure, 
in turn, will be hydrostatic in our linear approximation. Then, at the refer-
ence station at x, the pressure will vary from atmospheric at the free surface 
to atmospheric plus ρg(h + η) at the bottom. This linear variation in pressure 
gives rise to a force in the positive x direction of ρg(h + η)2/2, in which gauge 
pressures have been used since absolute values have no consequence here. 
At the location x + Δx, the first two terms in a Taylor series of this quantity 
are indicated in Figure 6.6c. Then, from Newton’s second law, the rate of 
increase in the x momentum of the fluid as it passes through the control vol-
ume is equal to the net external force acting in the x direction on the fluid. 
Thus,
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The first term in this equation represents the time rate of increase in the 
momentum of the element of fluid, whereas the second and third terms 
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represent the net convective increase associated with the various mass-flow 
components. The term on the right-hand side of the equation represents the 
net external force that comes from the hydrostatic pressures.

Dividing this equation by ρΔx gives the following form of the equation of 
momentum conservation:
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Here, the differentiation on the right-hand side has been carried out, and 
Δx may now be permitted to tend to zero, so that the unwritten terms in the 
Taylor expansion vanish. This equation will now be linearized in the small 
quantities u and η. Thus, in the first term, the product uη is of second order 
and hence may be neglected. The entire second term is of second order or 
smaller owing to the presence of u2. Likewise, the third term is quadratically 
small in u and η. In the term on the right-hand side, the product η ∂η/∂x is 
quadratically small and so may be neglected. Thus, the linearized form of 
the equation of momentum conservation is
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Equations 6.6a and 6.6b are, respectively, the equations of mass and momen-
tum conservation. They represent two equations in the two unknowns 
u and η. By forming the cross derivatives ∂2u/∂x∂t and ∂2η/∂x∂t, first η and 
then u may be eliminated between Equations 6.6a and 6.6b. This shows that 
the equations to be satisfied by u and η are
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That is, both u and η must satisfy the one-dimensional wave equation. 
Hence, u and η must be of the general form

	 u x t f x gh t g x gh t( , ) ( ) ( )= − + +1 1 	 (6.6c)

	 η( , ) ( ) ( )x t f x gh t g x gh t= − + +2 2 	 (6.6d)
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where f1, g1 and f2, g2 are any differentiable functions. The first solution in 
each of these equations represents a wave traveling in the positive x direc-
tion with velocity gh . The second solution in both cases represents a wave 

traveling in the negative x direction with velocity gh. That is, if an arbitrary 
wave is traveling along the surface of a shallow-liquid layer, it will continue 
to travel with velocity gh. This confirms the propagation speed derived 
earlier for a sinusoidal wave (Equation 6.3c) and shows that the shape of the 
wave does not change as it moves along the surface. Thus, if the shape of the 
wave is known as a function of x at some time, it will be known for all values 
of x and t.

6.6  Complex Potential for Traveling Waves

Consider, again, the case of a small-amplitude surface wave in a fluid of arbi-
trary depth. For a sinusoidal wave of the form
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it was shown in Section 6.3 that the velocity potential was
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The constant C2 may be evaluated by completely imposing the kinematic 
boundary condition on the free surface. This boundary condition was used 
only to establish the functional form of the solution, but it was not completely 
imposed. Then, as required by Equation 6.2b, the condition ∂ϕ/∂y(x, 0, t) = 
∂η/∂t(x, t) gives
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which is satisfied by setting
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Then, the velocity potential for a traveling sinusoidal wave is

	 φ ε
π
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π

λ
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π
( , , ) cos ( ) sinh coth coshx y t c x ct

y h
= − − +

2 2 2 2 yy
λ

	 (6.7a)

where the propagation speed c must satisfy Equation 6.3a. From Equation 
6.7a, the stream function for a traveling wave may be deduced, and so the 
corresponding complex potential may be obtained. This, in turn, will be 
used to establish the particle paths for traveling waves.

Since u = ∂ψ/∂y = ∂ϕ/∂x, it follows from Equation 6.7a that
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Integrating this expression shows that ψ(x, y, t) is of the following form:
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π
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where F(x) is any function of x that may be added through the integration. 
In principle, a function of time could also be added, but it is known that, for 
a traveling wave, the time dependence above is correct. Another expression 
for ψ(x, y, t) may be obtained from the fact that v = –∂ψ/∂x = ∂ϕ/∂y. This gives
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so that
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where G(y) is any function of y. Comparing this result with the previous 
expression for ψ(x, y, t) shows that F(x) = G(y) = 0, so that

	 ψ( , , ) sin ( ) cosh coth sinhx y t c x ct
y h y

= − +ε
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π2 2 2 2
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. 	 (6.7b)
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Equations 6.7a and 6.7b define, respectively, the velocity potential 
ϕ(x, y, t) and the stream function ψ(x, y, t) for a traveling sinusoidal wave. 
Then, the corresponding complex potential F = ϕ + iψ may be established 
as follows:
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The hyperbolic functions that are inside the brackets will now be trans-
formed into trigonometric functions having imaginary arguments using the 
identities sin iα = i sinh α and cos iα = cosh α. Thus, the complex potential 
may be written in the form
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Here, the quantities inside the brackets have been observed to be the 
expansions of single trigonometric functions involving x – ct + iy = z – ct. 
Again, converting the hyperbolic functions inside the brackets to trigono-
metric functions gives
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	 (6.7c)

where it has been observed that the brackets contain the expansion of a sin-
gle trigonometric function. Equation 6.7c gives the complex potential for the 
traveling sinusoidal wave η(x, t) = ε sin 2π(x – ct)/λ.

6.7  Particle Paths for Traveling Waves

As a wave train travels across the surface of an otherwise quiescent liquid, 
the individual particles of the liquid undergo small cyclical motions. The 
precise trajectory followed by the fluid particles may be established with the 
aid of the results of the previous section.

Consider a specific particle of fluid such as the one indicated by point P 
in Figure 6.7a. The instantaneous position of this particle of fluid will be 
indicated by a fixed-position vector z0 and an additional vector z1 that varies 
with time. That is, the length and orientation of z0 remain fixed, while both 
the length and inclination of z1 vary with time. Considering the complex 
conjugate of the variable-position vector, that is, considering z x iy1 1 1= − , it 
follows that
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Then, using Equation 6.7c,
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Integrating this equation with respect to time gives
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ε
π λ

π
λsinh( )
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Here, the constant of integration has been taken to be zero without loss of 
generality. Such a constant would not affect the time dependence of z1, and 
so it would not affect the trajectory of the fluid particle. Rather, it would only 
change the length of the z1 position vector, which is equivalent to adjusting 
the choice of the constant z0 position vector.

y

z0

z 1

x

2ε

2ε coth

P

2πh
λsinh

2ε

h

ε y = 0y = 0

(a)

(b) (c)2πh
λ

FIGURE 6.7
(a) Coordinate system for establishing particle paths, (b) particle trajectories due to a sinusoidal 
wave, and (c) trajectories in deep liquids.
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Comparing the foregoing expression for z1  with Equation 6.7c shows that

	
z

F z t
c1 = −
( , )

.
	

Then, it follows that x1 = –ϕ(x, y, t)/c and y1 = ψ(x, y, t)/c. Hence, from 
Equations 6.7a and 6.7b, the coordinates x1 and y1 of the trajectory of our 
reference fluid particle will be given by
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That is, the instantaneous coordinates of the trajectory of a fluid particle 
depend on both the x and y coordinates of the fluid particle and on the time. 
The time t may be eliminated between these two equations to yield the tra-
jectory of the fluid particle in the following way:
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Substituting from the preceding equations for x1 and y1 into this identity gives
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	 (6.8)

Equation 6.8 shows that the trajectory of a fluid particle depends only on 
its depth of submergence, y, and that it is independent of x. Eliminating the 
time also eliminated the x coordinate. This might have been expected since 
each particle of fluid experiences the same waves passing above it, irrespec-
tive of its x coordinate. Thus, the motion experienced by two particles that 
are separated in the x direction will be the same, but the phasing will be 
different. Since Equation 6.8 is that of an ellipse, the trajectories of the fluid 
particles will be ellipses whose dimensions are determined by the value of 
y for the various particles. For particles that lie on the free surface, y = 0, so 
that Equation 6.8 becomes
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2
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22
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[ coth( )]
.

ε π λ ε/
+ =

	

This shows that the trajectory of particles on the free surface is that of an 
ellipse whose semiaxes are ε in the y direction and ε coth(2πh/λ) in the x 
direction. This result is shown in Figure 6.7b. For particles that are on the 
bottom, y = –h, the semiaxis in the y direction becomes zero, and the semi-
axis in the x direction becomes ε/sinh(2πh/λ). That is, the ellipse degenerates 
to the line –ε/sinh(2πh/λ) ≤ x1 ≤ ε/sinh(2πh/λ). For values of y that are interme-
diate to y = 0 and y = –h, the particle trajectories will be ellipses as described 
by Equation 6.8 and as shown in Figure 6.7b.

For shallow liquids, the ellipses shown in Figure 6.7b merely become elon-
gated in the x direction. However, for deep liquids, the ellipses become circles. 
This may be shown by observing that for deep liquids, the parameter 2πh/λ 
will be very large, so that coth(2πh/λ) will be unity. Then, Equation 6.8 becomes
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This is the equation of a circle of radius ε[sinh(2πy/λ) + cosh(2πy/λ)]. That is, 
the radius is ε at the free surface and decreases as y becomes more and more 
negative. The particle trajectories for deep liquids are shown in Figure 6.7c.

6.8  Standing Waves

Up to this point, we have been dealing with traveling waves, that is, waves 
that move along the surface of the liquid. We now consider standing waves, 
which are waves that remain stationary—the surface moves vertically only. 
An interesting way of obtaining the equation of a standing wave is to super-
impose two identical traveling waves that are moving in opposite directions. 
Thus, consider two traveling waves η1 and η2 as follows:

	
η ε
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Let η(x, t) represent the free-surface profile that results from superimpos-
ing these two traveling waves. Then,
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That is, the superposition of two identical traveling waves results in a wave 
that, at any time, is a sine function in x and that, for any value of x, oscillates 
vertically in time. Such a wave, in which the entire surface oscillates in time, 
is called a standing wave.

The complex potential for a sinusoidal-shaped standing wave may be 
obtained by superimposing the complex potentials for two traveling waves 
moving in opposition to each other. Thus, Equation 6.7c will be used to obtain 
the complex potential for two waves, each of amplitude ε/2 and wavelength λ, 
one of which is traveling in the positive x direction with velocity c and the other 
of which is traveling in the opposite direction with the same velocity. Hence,
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The cosine functions will now be expanded, taking z + ih as one element 
and ct as the other. This gives
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229Surface Waves

Equation 6.9 gives the complex potential for a standing sinusoidal wave of 
wavelength λ that is oscillating in time with frequency 2πc/λ.

6.9  Particle Paths for Standing Waves

Following the procedure employed in Section 6.7 for traveling waves, the 
particle paths for standing waves may be established from the complex 
potential. Using the same coordinate system as was used in Section 6.7, it 
follows as before that
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Then, using Equation 6.9,
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Integrating with respect to time and neglecting the constant of integration 
as before give the following expression for z1 :
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Writing z + ih = x + i(y + h) and expanding the trigonometric function of 
this argument give
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in which the trigonometric terms having imaginary arguments have been 
converted to hyperbolic terms. The quantity z1 is complex and so may be 
written in the polar form

	 z r e i
1 1

1= − θ
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where r1 and θ1 are defined by
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Equations 6.10a and 6.10b show that, for given values of x and y, the polar 
angle θ1 of the particle trajectory is constant, whereas the radius r1 oscillates 
in time. Thus, the particle trajectories will be straight lines whose inclination 
will depend upon the location of the particle under consideration. In particu-
lar, when x = nλ/2, Equations 6.10a and 6.10b reduce to
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This describes a family of horizontal lines whose length r1 decreases as 
the depth of submergence increases. The location x = nλ/2 corresponds to 
the nodes of the free surface, that is, the points of the free surface that have 
no vertical motion. The horizontal motion of these points, which is shown in 
Figure 6.8, is necessary to satisfy the continuity equation as the maximum 
amplitude of the wave shifts from one side of the node to the other as the 
surface oscillations take place.

Midway between the nodes, that is, at x = (2n + l)λ/4, Equations 6.10a and 
6.10b show that
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This defines a family of vertical lines whose length r1 decreases as the 
depth of submergence increases and reaches zero on the bottom, y = –h. This 
motion is also shown in Figure 6.8. As the boundary condition requires, the 
vertical motion vanishes on y = –h.
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6.10  Waves in Rectangular Vessels

The fact that standing waves may exist on the surface of an infinite expanse 
of liquid raises the question of whether standing waves may exist on the 
surface of a liquid that is contained in a vessel of finite extent. In this sec-
tion, rectangular vessels will be considered, and it will be shown, as might 
be expected, that only standing waves whose wavelengths coincide with a 
discrete spectrum of values may exist on such liquid surfaces.

Figure 6.9a shows a two-dimensional rectangular container of width 2l 
that contains a liquid of average depth h. For this configuration, we ask the 
following question: What type of steady-state or pseudo-steady-state waves, 
if any, may exist on the surface of the liquid? Any waves that may exist will 
have to satisfy the following partial differential equation and boundary 
conditions:
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FIGURE 6.8
Particle trajectories induced by a sinusoidal standing wave of amplitude ε and wavelength λ.
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∂
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=
φ
y
x t( , , )0 0 	 (6.11c)
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φ
x

l y t( , , ) .0 	 (6.11d)

The first boundary condition is the pressure condition at the free surface in 
which the kinematic condition has been employed, and the other boundary con-
ditions prevent normal velocity components on the bottom and side surfaces of 
the container. Since the free-surface profile is not being specified a priori here, 
the kinematic condition at the free surface should not be imposed separately.

Since a steady-state wave solution is being sought, the velocity poten-
tial should have trigonometric time dependence. It may be observed that 
the existence of the sidewalls at x = ±l eliminates the possibility of travel-
ing waves since the particle paths for traveling waves are ellipses, so that 
the wall boundary conditions could not be satisfied. The time variation will 
therefore be of the standing-wave type and will be chosen to be sin(2πct/λ). 
There is no loss in generality with this choice since any phase change merely 
corresponds to a shifting of the time origin, which is of no consequence here. 
Thus, the appropriate separable solution to Equation 6.11a will be of the form
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The x dependence has been chosen to be trigonometric in view of the homo-
geneous boundary conditions at x = ±l. Then, in order to satisfy Laplace’s 

y

x

l l

h h

2l

n = 0 n = 1

m = 0 m = 1(a) (b)

FIGURE 6.9
(a) Geometry for liquid in a rectangular container and (b) first four fundamental modes of 
surface oscillation.
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equation, the y dependence must be exponential or hyperbolic. In view of 
the finite extent of the domain and the homogeneous boundary condition 
at y = 0, the hyperbolic form has been employed. The boundary condition 
(Equation 6.11c) requires that B1 = 0, so that the velocity potential becomes 
of the form
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The pressure condition on the free surface (Equation 6.11b) then requires 
that
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Since this equation is to be satisfied for all values of x and all values of t, it 
follows that the quantity inside the square brackets must be zero. This gives
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That is, the pressure condition on the free surface establishes the frequen-
cies of the wave motion. It will be seen that this result agrees with Equation 
6.3a and that each Fourier component of the waveform has a different fre-
quency of motion.

The final boundary condition to be satisfied is that of no horizontal veloc-
ity component at the vertical walls of the container. Thus, Equation 6.11d 
requires that
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which will be satisfied for all values of y and t if
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This condition may be satisfied by setting D1 = D2 = 0, but then ϕ = 0, which 
is the trivial solution. For a nontrivial solution, either D1 or D2 at least must 
be different from zero.

Suppose, first, that D1 is different from zero and D2 = 0. Then,
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where the subscript n has been associated with the quantity λ in anticipation 
of the fact that the foregoing transcendental equation may be satisfied in an 
infinite number of ways. That is, one way of satisfying the side boundary 
conditions is to choose the preceding values of λn so that the corresponding 
velocity potentials will be of the form
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where cn is related to λn through the identity that resulted from imposing the 
pressure condition on the free surface.

Next, suppose D1 = 0 and D2 is different from zero. Then,
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Thus, another way of satisfying the side boundary conditions is to adopt 
the value above for λm so that the corresponding velocity potentials will be
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where cm is related to λm. The first two surface modes corresponding to ϕn 
and ϕm are shown in Figure 6.9b.

It will be seen that, out of the continuous spectrum of wavelengths that 
may exist, only those waves whose particle paths are vertical at x = ±l are 
permissible solutions. This gives rise to an even spectrum of modes (corre-
sponding to D1 = 0) and an odd spectrum of modes (corresponding to D2 = 0). 
That is, there is a discrete spectrum of wavelengths whose particle paths are 
vertical at x = ±l and that may therefore satisfy the boundary conditions at 
the sidewalls.
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The individual solutions given by ϕn and ϕm may be superimposed to 
describe more general waveforms. Thus, a more general solution will be 
obtained by superimposing all the ϕn solutions and all the ϕm solutions. This 
gives

	

φ
π π

( , , ) sin
( )

cosh
( )

sin
(

x y t D
n x

l
n y

l
n

n=
+ + +

1
2 1

2
2 1

2
2 1))

cos cosh sin

π

π π π

c t
l

D
m x
l

m y
l

m c t
l

n

n

m
m

m

2
0

2

0

=

∞

=

∞

∑

∑+
	 (6.12a)

where
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and
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The coefficients D1n and D2m that appear in Equation 6.12a are undeter-
mined at this point. If the initial shape and velocity of the free surface are 
specified, these constants may be evaluated. An example of how this may be 
utilized is to establish the response of a body of water to an earthquake. The 
body of water may be an artificial reservoir or a lake whose shape may be 
approximated by a rectangular container. Seismographic records for the area 
would indicate the magnitude and frequency of the expected accelerations. 
These data may be Fourier-analyzed and used to establish a surface wave-
form and oscillation frequency at the end of the earthquake, which would 
be the beginning of the standing-wave oscillations. The constants D1n and 
D2m may be used to fit these data, and then Equation 6.12a will describe the 
subsequent motion.

6.11  Waves in Cylindrical Vessels

An analysis similar to that presented in the previous section may be carried 
out for cylindrical containers. Figure 6.10a shows a cylindrical container of 
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radius a that contains a liquid whose average depth is h. Then, in terms of the 
cylindrical coordinates R, θ, and z and the time t, the problem to be solved for 
the velocity potential ϕ(R, θ, z, t) is
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The solutions to this problem will describe the possible waveforms that 
may exist on the surface of the liquid in the container.
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Y1(x)

x x

(a)

(b)

FIGURE 6.10
(a) Geometry for liquid in a cylindrical container and (b) Bessel functions of the first and sec-
ond kind.
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The solution to the foregoing problem may be obtained by the method of 
separation of variables. Thus, a solution is sought in the form

	 ϕ(R, θ, z, t) = R(R)T(θ)Z(z) sin ωt	

Here, the time dependence has again been taken to be sinusoidal, corre-
sponding to standing waves. Substituting this expression for ϕ into Equation 
6.13a and multiplying by R2/ϕ give
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Following the usual argument of separation of variables, it is observed that 
the second term in this equation contains all the θ dependence and that it is a 
function of θ only. Then, this term must equal a constant. This constant will 
be chosen to be –m2, where m is an integer. The significance of the minus sign 
is that trigonometric rather than exponential θ dependence will result, and 
the significance of m being an integer is that ϕ(θ) = ϕ(θ + 2π) will be satisfied, 
as is required. The solution for T(θ) is then

	 T(θ) = A1 sin mθ + A2 cos mθ.	

The remaining differential equation is, after dividing by R2,
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The separation-of-variables argument now requires that the last term be 
equal to a constant. Since trigonometric z dependence does not fit the physi-
cal circumstances, this constant will be chosen as k2. Then, the solution for 
Z(z) will be

	 Z(z) = B1 sinh kz + B2 cosh kz.	

Here, the hyperbolic form has been used in preference to the exponential 
form in view of the finite extent of the z domain.

The remaining differential equation, after multiplying by R2R, becomes
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But this is Bessel’s equation of order m whose solution is

	 R(R) = D1mJm(kR) + D2mYm(kR)	

where Jm is Bessel’s function of the first kind, and Ym is Bessel’s function of 
the second kind. The first two Bessel functions of each kind are shown sche-
matically in Figure 6.10b.

Since the Bessel functions of the second kind, Ym(x), diverge for x = 0 for all 
values of m, the coefficients D2m must be zero. Thus, the radial dependence of 
the velocity potential will be proportional to Jm(kR). Then, for any integer m, 
the solution by separation of variables is
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1 2

1 2 oosh ) ( )sin .kz J kR tm ω 	

The boundary condition (Equation 6.13c) requires that B1m be zero, whereas 
the pressure condition at the free surface (Equation 6.13b) determines the 
oscillation frequency to be

	 ω2 = gk tanh kh.	

Thus, the velocity potential will be of the form

	 ϕm (R, θ, z, t) = (K1m sin mθ + K2m cos mθ) cosh kz Jm (kR) sin ωt.

The remaining boundary condition (Equation 6.13d) then requires, for a 
nontrivial solution,

	 Jʹm (ka) = 0	

where the prime denotes differentiation. This transcendental equation may 
be satisfied by any of an infinite number of discrete values of k. These values 
will be distinguished by employing a double subscript on k. Thus, kmn will 
denote the nth root of the Jm Bessel function in the equation

	 Jʹm (kmna) = 0.	

Values of kmna that satisfy this equation may be found in tables of func-
tions. For example, the first few roots of Jʹ0 (k0na) = 0 are given below:

	

n
k an

0 1 2 3
3 832 7 016 10 174 13 3240 . . . .

.
	

From the foregoing analysis, one solution to the problem posed for the 
velocity potential is

	 ϕmn (R, θ, z, t) = (K1mn sin mθ + K2mn cos mθ) cosh kmnz Jm (kmnR) sin ωmnt.	
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Here, a double subscript has been associated with the oscillation frequency 
ω since this quantity is related to the separation constant k. The foregoing 
expression for ϕmn represents a valid solution to our problem for any inte-
ger m and any integer n. Then, a more general solution may be obtained by 
superimposing all such solutions to give
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R z t K m K mmn mn
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= +
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=
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=

∞

∑∑ 1 2

00

kk zJ k R tmn m mn mn( ) sinω

	 (6.14a)

where

	 ωmn mn mngk k h2 = tanh( ) 	 (6.14b)

and

	 Jḿ (kmna) = 0.	 (6.14c)

As was the case in the previous section, the remaining arbitrary constants 
may be defined by specifying the nature of the free surface at some value of 
the time.

A simple illustration of the validity of the result above may be obtained by 
use of a cup of coffee or some other liquid. If such a cup is jarred by strik-
ing the bottom squarely on a flat surface, it may be induced to vibrate in 
a purely radial mode. That is, the fundamental mode in which the surface 
R = a vibrates in and out may be induced. This motion causes surface waves 
that will also have no θ dependence. Then, putting m = 0 in Equation 6.14a 
shows that the velocity potential will be proportional to J0(k0nR). Thus, the 
surface will adopt the shape of the J0 Bessel function, which is shown in 
Figure 6.10b. This shape may be actually observed, and under certain condi-
tions, the peak at the axis of the vessel may become very pronounced. Of 
course, the analysis is no longer valid under these conditions since large 
amplitudes lead to large slopes, which violates the assumptions that were 
made in the linearization.

6.12  Propagation of Waves at Interface

As a final example of surface waves, the behavior of propagating waves at 
the separation of two dissimilar fluids will be investigated. Figure 6.11 shows 
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a wavy surface y = η(x, t) below which a fluid of density ρ1 flows with mean 
velocity U1 in the x direction. Above the interface is a fluid of density ρ2 
whose mean velocity is U2 in the x direction.

For the foregoing configuration, we specify a sinusoidal waveform at the 
interface and ask, what is the propagation speed of the wave? That is, we 
specify the equation of the interface to be

	 η(x, t) = εei(2π/λ)(x−σt).	

This represents a sinusoidal wave of amplitude ε and wavelength λ. If σ 
is real, the wave is traveling in the x direction with velocity σ, whereas if σ 
is imaginary, the wave is decaying (if σ/i is negative) or is growing (if σ/i is 
positive). The last situation represents an unstable interface.

Since the two fluids now have nonzero mean velocities, the linearization 
of the boundary conditions must be reexamined here. Letting the subscript 
i be 1 or 2 for the lower and upper fluids, respectively, the velocity ui may be 
written as follows:

	 ui = Uiex + ∇ϕi	

where ϕi is the velocity potential for the perturbation to the uniform flow 
caused by the waves at the interface. Then, the material derivative becomes
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FIGURE 6.11
Wave-shaped interface separating two different fluids traveling at different average speeds.
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The second term on the right-hand side of this identity is new and is of 
first order in this case. The third term on the right-hand side involves veloc-
ity components derived from the perturbation velocity potential, and hence 
these velocity components will be small.

Using this result for the material derivative, the kinematic condition on the 
free surface, D(y – η)/Dt = 0, becomes
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The last term on the left-hand side of this equation is quadratically small, 
for small-amplitude waves, and so may be neglected. Thus, the revised kine-
matic boundary condition on the free surface is
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Comparison of this result with Equation 6.2b shows that the last term in 
the preceding equation is new and that this term vanishes for Ui = 0.

From Equation 6.1c, the Bernoulli equation for a constant-pressure surface 
in which F(t) is absorbed into the velocity potential is, as before,
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Substituting our expansion for ui into this equation and neglecting qua-
dratic terms in the perturbation velocity give
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Here, the term ρi iU 2 2/  has been absorbed into the constant on the right-
hand side of this equation.

Using Equations 6.15a and 6.15b, we may now define the problem to be 
satisfied by the velocity potentials ϕ1 and ϕ2. In the region y < 0, the velocity 
potential ϕ1 must satisfy the following partial differential equation:
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242 Fundamental Mechanics of Fluids

where the velocities derived from ϕ1 should be finite. That is,

	 |∇ϕ1| = finite.	 (6.16b)

Similarly, in the region y > 0, we have
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	 |∇ϕ2| = finite.	 (6.16d)

At the interface, which is linearized to y = 0, the kinematic condition must 
be satisfied by ϕ1 and by ϕ2 separately. Thus, from Equation 6.15a,
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Finally, the pressure condition at the interface must be satisfied, which, in 
the present case, amounts to equating the pressure in the two fluids at the 
interface. Thus, from Equation 6.15b, since the Bernoulli constant will be the 
same for i = 1 and i = 2, the pressure condition becomes
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Equations 6.16a through 6.16g represent the problem to be satisfied by any 
perturbation to the uniform flows. In particular, we decided to study the 
effect of a sinusoidal wave at the interface, and so the equation of the inter-
face was chosen to be

	 η(x, t) = εei(2π/λ)(x−σt).	 (6.16h)

The solution to Equations 6.16a and 6.16c may be obtained by separation 
of variables. In view of the shape of the interface, as defined by Equation 
6.16h, the solutions should be trigonometric in x. Then, the y dependence 
will be exponential. In view of the conditions 6.16b and 6.16d, the negative 
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exponential should be rejected for ϕ1 and the positive exponential should be 
rejected for ϕ2. Thus, the solutions to Equations 6.16a and 6.16c that satisfy 
Equations 6.16b and 6.16d are
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Imposing the kinematic surface conditions 6.16e and 6.16f on these solu-
tions shows that

	 A1 = iε(−σ + U1)	

	 A2 = −iε(−σ + U2).	

Thus, the velocity potentials in the lower and upper regions are, respectively,

	 ϕ1(x, y, t) = −iε(σ − U1)e(2π/λ)yei(2π/λ)(x−σt)	

	 ϕ2(x, y, t) = iε(σ − U2)e–(2π/λ)yei(2π/λ)(x−σt).	

These solutions satisfy all the required conditions except the pressure con-
dition at the interface. Equation 6.16g then requires
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The quantity η, as defined by Equation 6.16h, has been canceled through-
out this equation as a nonzero common factor. Combining the first and sec-
ond terms on each side of this equation reduces it to the following form:

	
− − + = − +ρ

π
λ

σ ρ ρ
π
λ

σ ρ1 1
2

1 2 2
2

2
2 2

( ) ( ) .U g U g
	

Everything in this algebraic equation is known a priori except the quan-
tity σ. Then, the equation above should be looked upon as a quadratic equa-
tion for σ. Solving this quadratic equation gives
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The first two quantities inside the square root may be combined to give the 
following simplified expression for σ:
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Equation 6.17a shows that σ may be real, imaginary, or complex, depend-
ing upon the nature of the free parameters. Several special cases will be 
investigated.

Consider, first, the special case where U1 = U2 = 0 and ρ2 = 0. This would 
correspond to two stationary fluids in which the density of the upper fluid 
is very small compared with that of the lower fluid. Such a condition would 
closely approximate a stationary liquid over which a stationary gas exists, 
for example, air over water. Then, Equation 6.17a shows that σ will be real, 
having the values

	 σ
λ

π
= ±

g
2

. 	 (6.17b)

This agrees with Equation 6.3b, which gives the propagation speed for sur-
face waves in deep liquids. The minus sign in Equation 6.17b corresponds to 
a wave traveling in the negative x direction. Since it turned out that σ is real, 
the waves at the interface will propagate, so that the surface of separation 
will remain intact. That is, the interface is stable.

Next, consider the case where ρ2 = 0 and the other parameters are nonzero. 
Physically, this would approximate the case of a gas blowing over a liquid 
surface. Under these conditions, Equation 6.17a reduces to

	 σ
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π
= ±U

g
1 2

. 	 (6.17c)

But this is just Equation 6.17b, in which a Galilean transformation of mag-
nitude U1 has been applied. That is, the waves move along the surface of the 
liquid at the speed of the liquid plus or minus the speed of the waves on a qui-
escent body of the liquid. Again, the interface will remain intact and so is stable.

Consider now the case in which ρ2 = ρ1. Physically, the situation is a dis-
continuity in the velocity (i.e., a shear layer) in a homogeneous fluid. Then, 
Equation 6.17a becomes

	 σ =
+

±
−U U

i
U U2 1 2 1

2 2
. 	 (6.17d)

This result shows that unless U2 = U1 (in which case there is no shear layer), 
the quantity σ will have an imaginary part that will result in the interfacial 
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wave growing exponentially with time. That is, the interface at the shear 
layer is unstable. This form of instability is known as Helmholtz instability or 
Rayleigh instability.

Finally, consider both fluids to be quiescent so that U1 = U2 = 0, but let their 
densities differ. Then, Equation 6.17a reduces to

	 σ
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. 	 (6.17e)

For ρ1 > ρ2, that is, for the heavier fluid on the bottom, σ will be real, so that 
the interface will be stable. However, for ρ2 > ρ1, that is, for the heavier fluid 
on top, σ will be imaginary, so that the interface will be unstable. This form 
of instability is known as Taylor instability.

PROBLEMS

	 6.1	 Equation 6.5a, which is reproduced below, defines the speed with 
which a small-amplitude sinusoidal wave travels along the surface 
of a liquid in which the effects of surface tension are included:
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		  Numerical evaluation of this equation, as presented in Figure 6.5, 
shows that the wave speed has a minimum for nonzero values of 
the surface tension and that the location of this minimum corre-
sponds to a small value of the wavelength λ. Obtain an estimate 
of the value of λ corresponding to this minimum wave speed by 
assuming that the value of tanh(2πh/λ) in the above equation may 
be evaluated for small values of the wavelength λ.

		  Substitute the result obtained above into the full version of 
Equation 6.5a and hence obtain an analytic expression for the mini-
mum speed of the wave.

	 6.2	 The complex potential for a traveling wave on a quiescent liquid 
surface is
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		  Use this result to deduce that the complex potential for a sta-
tionary wave on the surface of a moving liquid layer whose mean 
velocity is c in the negative x direction is
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		  Show that, in very deep liquids, the result above becomes

	 F(z) = −cz − cεe−i(2π/λ)z.	 (6.18a)

		  Use this last result to determine the stream function ψ(x,y) for a 
stationary wave on the surface of a deep-liquid layer whose mean 
velocity is c. Hence, show that the streamline ψ(x,η) = 0 gives the 
equation of the free surface as
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	 6.3	 The Bernoulli equation for the situation depicted in Problem 6.2 is

	

p
gy c

P
ρ ρ

ε
π
λ

+ ⋅ + = + +
1
2

1
2

1
22 2

2

u u

	

	 where P is the pressure at the free surface. Use this equation, 
together with the result u u⋅ = + =u v WW2 2  and Equation 6.18a, to 
show that setting p = P when y = η requires that the quantity c, the 
velocity difference between the mean velocity and the wave-train 
velocity, must satisfy the following equation:
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		  Linearize this expression for small values of ε/λ and hence con-
firm the following relation for deep liquids:
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		  Further, show that, by neglecting only those terms that are of 
fourth order or smaller, the general expression for c becomes
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		  This shows that the effect of finite wave amplitude is to increase 
the wave speed on the surface of the liquid.

	 6.4	 The complex potential for a traveling wave on an otherwise quies-
cent liquid is
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		  Apply a Galilean transformation to the coordinate system that 
was used in arriving at this expression and hence show that the 
stream function for the stationary wave shown in the figure for this 
problem is
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		  Here, H is the mean depth of the liquid while ε and λ are, respec-
tively, the amplitude and the wavelength of the stationary wave on 
the surface of the liquid.

	 6.5	 The result of Problem 6.4 may be used to obtain the solution to the 
problem of steady flow over a wave-shaped surface. The configu-
ration for which the solution is sought is shown in the figure for 
this problem. To obtain the required solution from the results of 
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Problem 6.4, observe that the solution obtained in Problem 6.4 will, 
at some depth h < H, have a wave-shaped streamline of amplitude 
ε0 and wavelength λ. This streamline may be considered to be a 
surface, so that if the liquid surface is taken to be ψ = 0, the bound-
ary defined by ψ = Uh will correspond to y = – h + η0 where η0 = 
ε0sin(2πx/λ). In this way, show from linear theory that the ratio of 
the wave amplitude to the wall amplitude is
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		  The various parameters in this result are defined in the figure for 
this problem.

	 6.6	 Consider two traveling waves that are defined by the following 
equations:
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		  Show that the equation of the free surface that results from super-
imposing these two waves will be defined by
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		  Hence, show that if λ1 and λ2 differ by only a small amount and 
that if c1 and c2 differ by only a small amount, the resulting surface 
profile may be considered to be of the following form:
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	 which represents a traveling wave whose amplitude is changing 
slowly with time compared with the frequency of oscillations. This 
situation is shown in the figure for this problem (y versus t for a given 
x location). The phenomenon is referred to as beating, and it occurs in 
situations where two similar waves or signals are superimposed.

	 6.7	 (a)	� The potential energy per wavelength of a wave train is given by 
the expression

	
V g x= ∫

1
2

2

0
ρ η

λ

d .
	

		  Use this expression to show that the potential energy per wave-
length of the wave η = ε sin2π(x – ct)/λ is

	
V g=

1
4

2ρ ε λ.
	

	 (b)	 The kinetic energy per wavelength of a wave train is given by

	

T
y

x
y

=
∂
∂

=
∫

1
2

0
0

ρ φ
φλ

d .

	

		  Use this expression and the velocity potential for a traveling sinu-
soidal wave

	 φ ε
π
λ

π
λ

π
λ

( , , ) cos ( ) sinh coth coshx y t c x ct
h h

= − − × +
2 2 2 2ππ

λ

y
	 (6.7a)
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	 to show that the kinetic energy per wavelength of the same sinusoi-
dal wave is

	
T g=

1
4

2ρ ε λ.
	

	 6.8	 The work done on a vertical plane due to waves on a liquid of depth 
h is given by

	
WD p

x
y

h
=

∂
∂−∫
φ
d

0

.
	

		  Use the linearized form of the Bernoulli equation and Equation 
6.7a to show that the work done on a vertical plane by a traveling 
wave defined by η = ε sin 2π(x – ct)/λ is

	
WD gc x ct

h
h

= − +
1
2

2
1

2
2 2

2 2ρ ε
π
λ

π λ
π λ

sin ( )
sinh( )cosh(

/
/ ππ λh/ )

.
	

		  Hence, show that for deep liquids, the time average of the work 
done is one-half of the sum of the kinetic energy per wavelength 
and the potential energy per wavelength. That is, show that

	
( ) ( ).WD T Vave = +

1
2 	

	 6.9	 The distribution of vorticity in a lake is assumed to be represented 
by the following expression:

	 Ω(x, y, t) = ω(x, y, t) + βy.	

		  In this equation, Ω is the total vorticity, ω is the intrinsic vorticity, 
and β is a constant. x and y are coordinates that lie on the surface of 
the lake, and the stream function for the liquid motion is taken to be

	 ψ(x, y, t) = Aei(kx+ly+σt).	

		  Here, A is a constant, k and l represent the wavelengths in the x 
and y directions, respectively, and σ represents the speed at which 
the wave is traveling. Use the definition of vorticity and the defini-
tion of the stream function to show that ω is proportional to ψ, and 
find the constant of proportionality.

		  Using linear theory, show that the material derivative of the total 
vorticity Ω is proportional to the stream function ψ, and find the 
constant of proportionality. Also, find the value of the speed σ that 
makes the material derivative of Ω zero.
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	6.10	 One very simple wave of representing a boundary layer is to con-
sider it to be a layer of zero fluid velocity. The figure for this problem 
shows such a model of a boundary layer for uniform flow over a 
flat plate. For this configuration, carry out a stability analysis of the 
interface by imposing a wave on the depicted flow of the following 
form at the interface:

	 η(x, t) = εei(2π/λ)(x−σt).	

		  Determine whether or not the interface is unstable to this wave, 
and if it is unstable, determine the fastest growing wavelength of the 
instability.

	6.11	 A fluid of density ρ1 occupies the space –h < y < 0, while a different 
fluid of density ρ2 occupies the space 0 < y < h. Solid boundaries exist 
at both y = –h and y = +h, and both fluids are originally at rest. A 
small-amplitude traveling wave of wavelength λ is introduced along 
the interface separating the two fluids. Using linear theory, deter-
mine the speed at which the wave will travel along the interface and 
discuss the conditions under which the amplitude of the wave will 
decay with time, or grow with time.

Further Reading—Part II

The topic of ideal-fluid flow is probably the most studied branch of fluid 
mechanics, and it is well represented in the literature. Most texts on fluid 
mechanics have at least one chapter on the subject, and some books are 
entirely devoted to it. The following books, collectively, cover the subject in 
some depth. The book by Sir Horace Lamb was first published in 1879, and 
it does not utilize vector analysis or tensor analysis. However, this book has 

y

x

U

δ
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been a standard reference for many years, and it continues to be a valuable 
source of information.

Denath, L.: Nonlinear Water Waves, Academic Press, San Diego, 1994.
Jeffrey, A.: Complex Analysis and Applications, CRC Press, Boca Raton, 1992.
Kirchhoff, R. H.: Potential Flows, Marcel Dekker, New York, 1985.
Lamb, H.: Hydrodynamics, 6th ed., Dover Publications, New York, 1932.
Lighthill, J.: Waves in Fluids, Cambridge University Press, London, 1978.
Milne-Thompson, L. M.: Theoretical Hydrodynamics, 4th ed., The Macmillan Company, 

New York, 1962.
Panton, R. L.: Incompressible Flow, John Wiley & Sons, New York, 1984.
Robertson, J. M.: Hydrodynamics in Theory and Application, Prentice-Hall, Englewood 

Cliffs, N.J., 1965.
Whitham, G. B.: Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.



Part III

Viscous Flows of 
Incompressible Fluids

In this section, problems will be solved and phenomena will be established 
in which the viscosity of the fluid is intrinsically important. The treat-
ment is divided into four chapters. Chapter 7 covers the exact solutions to 
the Navier–Stokes equations. Although these solutions are relatively few 
in number, they are cherished. They are used as the basis for perturbation 
schemes to solve problems that are close to the exact solution configurations, 
they are used to test the accuracy of numerical techniques, and they are used 
to calibrate instruments.

Chapter 8 deals with approximate solutions to the Navier–Stokes equa-
tions that are valid for small Reynolds numbers. This is achieved by reduc-
ing the Navier–Stokes equations through the so-called Stokes approximation 
and by studying the solutions to the resulting equations. Such solutions are 
valuable in their own right, and they have physical counterparts. In addition, 
they form the basis of approximate solutions to other problems.

Chapter 9 deals with large-Reynolds-number flows. Specifically, the 
Prandtl boundary-layer approximation to the Navier–Stokes equations is 
examined. Some exact solutions to these equations are first obtained through 
similarity methods. The Kármán–Pohlhausen method is then covered as an 
example of an approximate solution to the boundary-layer equations. The 
stability of boundary layers is also introduced.

The final chapter in this part of the book deals with buoyancy-driven flows. 
The Boussinesq approximation to the Navier–Stokes and thermal energy 
equations is introduced in Chapter 10. Solutions to the resulting equations 
are presented for vertical isothermal surfaces, a line source of heat, and a 
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point source of heat. The stability of horizontal fluid layers is also discussed 
with a view to establishing the condition for the onset of thermal convection.

The governing equations for this part of the book are the continuity equa-
tion and the Navier–Stokes equations. Thus, from Equations 1.3c and 1.9b, 
the vector form of the governing equations is

	 ∇ · u = 0	 (III.1)

	
∂
∂

+ ⋅ = − + +
u

u u u f
t

p( )
1 2

ρ
υ . 	 (III.2)

In this last equation, we have introduced the quantity υ = μ/ρ, which is the 
kinematic viscosity of the fluid. As was the case in the previous parts of the 
book, these equations form a complete set for the unknown quantities p and 
u. This is due to the assumption of incompressibility, which has the math-
ematical consequence of uncoupling the equations of dynamics from those 
of thermodynamics.

The boundary condition that is to be imposed on the velocity vector u is 
the no-slip boundary condition, which is given by Equation 1.14. This bound-
ary condition is

	 u = U on solid boundaries	 (III.3)

where u is the fluid velocity, and U is the velocity of the solid that forms the 
boundary with the fluid. This condition states that the fluid adjacent to a 
solid boundary adheres to that boundary and does not slip on the boundary. 
This boundary condition is much stronger than that which was used in the 
study of ideal fluids. The essential difference is that the inclusion of the vis-
cous terms in Equation III.2 has raised the order of the governing partial dif-
ferential equation by one. Thus, the true physical boundary condition may 
be accommodated in this part, whereas it could not be satisfied completely in 
the previous part of the book.

It was observed in Chapter 3 that the equations of momentum conser-
vation, the Navier–Stokes equations in this instance, may be alternatively 
phrased in terms of the vorticity ω. Although we will not solve problems 
here from the vorticity formulation, it is sometimes of interest to examine 
solutions from the point of view of the distribution of vorticity. For such 
cases, Equation 3.4a shows that the vorticity equation is

	
∂
∂

+ ⋅ = ⋅ + + ×
ωω

ωω ωω ωω
t

( ) ( )u u fυ 2 	 (III.4)



255Viscous Flows of Incompressible Fluids

in which the possibility of nonconservative body forces has been included 
for generality.

The solutions to the foregoing equations of viscous flow that will be estab-
lished in this part of the book will all correspond to laminar flow. Viscous 
flows may be divided into two principal categories: laminar flows and tur-
bulent flows. The phenomena and treatment associated with turbulent flows 
are somewhat different from the other fundamental aspects of fluid flow, 
and it is usually treated separately in specialized books. This procedure will 
be adopted here, so that only laminar flows will be considered.
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7
Exact Solutions

In this chapter, some exact solutions to the equations governing the motion 
of an incompressible, viscous fluid will be established. It is perhaps because 
so few exact solutions have been found that they are so important. The basic 
difficulty in obtaining exact solutions to viscous-flow problems lies in the 
existence of the nonlinear convection terms in Equation III.2. Furthermore, 
these nonlinear terms cannot be circumvented in this instance in the man-
ner used in the study of ideal fluids. This, in turn, is due to the inapplicability 
of Kelvin’s theorem due to the existence of viscosity, and viscous flows are 
not potential. In addition, the Bernoulli equations do not apply.

The exact solutions may be divided into two broad categories. In one of 
these categories, the nonlinear term (u · ∇)u is identically zero owing to the 
simple nature of the flow field. Examples of this situation that are covered 
in this chapter are Couette flow, Poiseuille flow, the flow between rotating 
cylinders, Stokes’ problems, and pulsating flow between parallel surfaces.

The second broad category of exact solutions is that for which the non-
linear convective terms are not identically zero. Examples presented here 
include stagnation-point flow, the flow in convergent and divergent chan-
nels, and the flow over a porous wall.

7.1  Couette Flow

One of the simplest viscous-flow fields is that for flow between two parallel 
surfaces. Figure 7.1a shows two parallel surfaces whose size in the z direction 
is supposed to be very large compared with their separation distance h. The 
flow between these plates is taken to be in the x direction, and since there is 
no flow in the y direction, the pressure will be a function of x only. That is, 
since there are no inertia, viscous, or external forces in the y direction, there 
can be no pressure gradient in that direction. Using the fact that u = u(y) only 
and v = w = 0, together with the fact that p = p(x) only, Equation III.2 becomes, 
for a force-free fluid field,

	 0
2

2
= − +

d
d

d
d

p
x

u
y

.
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Here, the continuity equation is identically satisfied, and the nonlinear 
convection terms are identically zero by virtue of the simplicity of the flow 
field. The Navier–Stokes equations reduce to the preceding ordinary differ-
ential equation, which states that there is a balance between the pressure 
force in the fluid and the viscous-shear force at all points in the fluid. Since 
dp/dx is a function of x only, this equation may be integrated twice with 
respect to y to give

	 u y
p
x

y
Ay B( ) = + +

1
2

2d
d

	

where A and B are constants of integration. The boundary condition u(0) = 
0 requires that B = 0, whereas the condition u(h) = 0 requires that A = –h/2. 
Thus, the velocity profile will be given by the equation

	 u y
p
x
y h y( ) ( ).= − −

1
2

d
d 	

It is usual to introduce a dimensionless pressure parameter, which is 
defined as follows:

	 P
h
U

p
x

= −
2

2
d
d

.
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FIGURE 7.1
(a) Flow between parallel surfaces, (b) plane Couette flow, and (c) general Couette flow.
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Here, U is any characteristic velocity such as the mean-flow velocity. In 
terms of this pressure parameter, the expression for the velocity profile 
between the parallel plates becomes

	
u y
U

P
y
h

y
h

( )
.= −1 	 (7.1a)

Equation 7.1a shows that the fluid flows in the direction of the negative 
pressure gradient and that the velocity profile across the flow field is para-
bolic. The maximum velocity therefore occurs at the centerline between the 
two plates (i.e., at y = h/2), and the magnitude of the maximum velocity is 
PU/4. For this type of flow, the pressure gradient is the driving mechanism, 
so if there is no external pressure gradient, there will be no flow.

Another way of inducing a flow between two parallel surfaces, apart from 
applying a pressure gradient, is to move one of the two surfaces. Figure 7.1b 
depicts such a situation, which is referred to as plane Couette flow. The surface 
y = 0 is held fixed while the surface y = h is moving in the x direction with 
constant velocity U. As before, the only nonzero velocity component will be 
u, and it will be a function of y only. Also, there will be no pressure gradient 
in the y direction, as before, and here, it is assumed that there is no external 
pressure gradient in the x direction. Then, the governing equations reduce 
to the same equation as before but without the pressure term. That is, the 
velocity must satisfy the equation

	 0
2

2
=

d
d
u
y

.
	

Integrating this equation gives

	 u(y) = Ay + B	

where A and B are constants of integration. The boundary condition u(0) = 0 
requires that B = 0, while the condition u(h) = U requires that A = U/h. Thus, 
the velocity profile for plane Couette flow is

	
u y
U

y
h

( )
.= 	 (7.1b)

This result shows that the velocity profile induced in a fluid by moving one 
of the boundaries at constant velocity is linear across the gap between the 
two boundaries. This is consistent with Newton’s law of viscosity in which 
it was assumed that the velocity profile in one dimension was linear across 
the fluid with the constant of proportionality defining the dynamic viscosity.

A more general situation is one in which either of the two surfaces is mov-
ing at constant velocity and there is also an external pressure gradient. Such 



260 Fundamental Mechanics of Fluids

a situation is referred to as general Couette flow. The velocity profile for gen-
eral Couette flow may be obtained by superimposing Equations 7.1a and 7.1b 
since the governing equations that led to these results are linear. Thus, it 
follows that

	
u y
U

y
h

P
y
h

y
h

( )
.= + −1 	 (7.1c)

The velocity profiles corresponding to this equation are shown in Figure 
7.1c. It will be seen from Figure 7.1 that for P = 0, plane Couette flow is recov-
ered, while for P ≠ 0, the pressure gradient will either assist or resist the 
viscous-shear motion. For P > 0 (i.e., for dp/dx < 0), the pressure gradient 
will assist the motion that is induced by viscous shear to overcome the shear 
force at the lower surface. For P < 0 (i.e., for dp/dx > 0), the pressure gradient 
will resist the motion induced by the motion of the upper surface. In this 
case, a region of reverse flow may occur near the lower surface, as shown in 
Figure 7.1c.

7.2  Poiseuille Flow

The steady flow of a viscous fluid in a conduit of arbitrary but constant cross 
section is referred to as Poiseuille flow. Figure 7.2a shows an arbitrary cross 
section in the yz plane with a steady flow in the x direction. Here again, the 
transverse velocity components v and w will be zero, while u will be a func-
tion of y and z only. The pressure cannot vary in the transverse directions 
since there is no motion or forces in these directions; hence, p will be a func-
tion of x only. Under these conditions, the governing equations, Equations 
III.1 and III.2, reduce to

	 0
2

2

2

2
= − +

∂

∂
+
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∂

d
d
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u
y

u
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.
	

Again, owing to the simple geometry of the flow field, the nonlinear term 
(u · ∇)u is identically zero and the continuity equation is identically satisfied 
for any velocity distribution u(y, z). The remaining equation that has to be 
satisfied is a Poisson type of equation. In standard form, this equation is

	 ∂

∂
+
∂

∂
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2

2

2

2
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y

u
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p
x

d
d

	 (7.2a)
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where the nonhomogeneous term must be a constant at most. There is no 
general solution to Equation 7.2a for arbitrary cross sections, but solutions for 
a few specific cross sections do exist.

Consider, first, the special case in which the cross section in the yz plane 
is circular with radius a, as shown in Figure 7.2b. With this geometry, the 
preferred coordinate system is cylindrical coordinates. Then, let the cross 
section of the conduit be represented by the cylindrical coordinates R and θ 
rather than the Cartesian coordinates y and z, so that the independent coor-
dinates are now R, θ, and x. In this coordinate system, the axial velocity u 
will be independent of θ and x, so that Equation 7.2a will become

	
1 1
R R

R
u
R

p
x

d
d

d
d

d
d

= .
	

Since the pressure gradient is independent of R, this equation may be inte-
grated twice with respect to R to give

	 u R
p
x
R

A R B( ) log= + +
1

4

2d
d 	
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FIGURE 7.2
Viscous flow along conduits of various cross sections: (a) arbitrary, (b) circular, and (c) elliptic.
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where A and B are constants of integration. The condition u(0) = finite 
requires that A = 0, while the condition u(a) = 0 requires that B = –(dp/dx)a2/
(4μ). Thus, the velocity profile in the conduit will be of the form

	 u R
p
x
a R( ) ( ).= − −

1
4

2 2d
d

	 (7.2b)

This result is similar to that for the flow between two parallel surfaces. The 
flow depends upon the external pressure for its existence, and the resulting 
velocity profile is parabolic.

For elliptic cross sections, as shown in Figure 7.2c, a proper procedure 
would be to express the Laplacian that appears in Equation 7.2a in ellip-
tic coordinates and proceed as above as with the circular cross section. 
However, a simpler and more direct method of solution exists and will be 
followed here. The basis of this method is the observation that, for the ellipse 
shown in Figure 7.2c, the quantity (y2/a2 + z2/b2 – 1) is zero on the boundary. 
This motivates us to look for a solution that is proportional to this quantity, 
so a solution to Equation 7.2a is sought in the form

	 u y z
y

a
z
b

( , ) .= + −α
2

2

2

2
1

	

Direct substitution shows that this is indeed a solution to Equation 7.2a, 
provided the value of α is

	 α =
+

1
2

2 2

2 2

d
d
p
x

a b
a b

.
	

Thus, the velocity profile for an elliptic conduit is
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p
x

a b
a b

y

a
z
b

( , ) .=
+

+ −
1
2

1
2 2

2 2

2

2

2

2

d
d

	 (7.2c)

7.3  Flow between Rotating Cylinders

An exact solution to the Navier–Stokes equations exists for the case of a fluid 
contained between two concentric circular cylinders either of which (if not 
both) is rotating at constant speed about its axis. The cylinders are assumed 
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to be long compared with their diameter, so that the flow field will be two-
dimensional. Figure 7.3 shows the geometry under consideration. The outer 
cylinder has a radius Ro and it is rotating in the clockwise direction with 
angular velocity ωo, whereas the radius of the inner cylinder is Ri and its 
angular velocity is ωi.

Cylindrical coordinates are preferred for the geometry shown, and the 
only nonzero velocity component in this coordinate system will be the tan-
gential velocity uθ. Furthermore, this velocity component will depend upon 
R only. For this type of velocity field, and in the absence of any external body 
forces, the pressure can depend upon R only. Using these observations, the 
governing equations (Equations III.1 and III.2) become

	

− = −

= +
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p
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R R
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θ θ
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d
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Because of the simple geometry of the flow field, the continuity equation 
is identically satisfied. The first of the equations above shows that there is a 
balance between the centrifugal force that acts on an element of fluid and a 
force that is produced by the induced pressure field. The second equation 
above states that there is a balance between the viscous stresses in the fluid.

The foregoing equations may be readily integrated by establishing uθ from 
the second equation and then determining the pressure p from the first equa-
tion. Integrating the second equation twice with respect to R gives

R i R o

ωi

ωo

FIGURE 7.3
Geometry for flow between concentric rotating circular cylinders.
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	 u R A
R B

Rθ = +
2 	

where A and B are constants of integration. The boundary conditions uθ(Ro) = 
ωoRo and uθ(Ri) = ωiRi give
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Thus, the velocity distribution in the fluid between the two cylinders will 
be
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Rθ ω ω ω ω( ) ( ) ( )=

−
− − −

1
2 2

2 2
2 2

o i
o o i i o i

i o . 	 (7.3a)

Using Equation 7.3a and the remaining equation that is to be satisfied, it 
follows that the pressure p must satisfy the equation
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Integrating this equation shows that the pressure distribution will be
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where C is a constant of integration that may be evaluated in any particular 
problem by specifying the value of the pressure on R = Ro or on R = Ri.

As special cases, Equations 7.3a and 7.3b describe the flow field due to a 
single cylinder rotating in a fluid of infinite extent and a cylinder filled with 
fluid that is rotating. Some aspects of these special cases will be investigated 
in the problems at the end of the chapter.
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7.4  Stokes’ First Problem

The fluid-mechanics problem referred to as Stokes’ first problem has counter-
parts in many branches of engineering and physics. In the fluid-mechanics 
context, the situation that is being considered is shown in Figure 7.4a. The 
x axis coincides with an infinitely long flat plate above which a fluid exists. 
Initially, both the plate and the fluid are at rest. Suddenly, the plate is jerked 
into motion in its own plane with a constant velocity. Under these conditions, 
what will be the response of the fluid to this motion on the boundary?

To answer this question, we appropriately reduce the equations of motion 
and obtain a solution to them. Since the motion of the boundary is in the x 
direction, it may be reasonably assumed that the motion of the fluid will 
also be in that direction. Thus, the only nonzero velocity component will be 
u, and this velocity component will be a function of y and t only. Then, the 
pressure will be independent of y, and since u is independent of x, so will 
p be independent of x. That is, the pressure will be constant everywhere in 
the fluid. Using these properties of the flow field, the governing equations 
reduce to the following linear partial differential equation:
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FIGURE 7.4
(a) Definition sketch for Stokes’ first problem and (b) solution curves in terms of the similarity 
variable and in terms of dimensional variables.
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The boundary conditions are
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This problem lends itself to solution by Laplace transforms and by similar-
ity methods. Since similarity solutions are the only ones that exist for some 
nonlinear problems arising in boundary-layer theory and other situations, 
this method of solution will be employed here to establish a base for future 
considerations.

Similarity solutions are a special class of solutions that exist for problems 
governed by parabolic partial differential equations where there is no geo-
metric length scale in the problem. Stokes’ first problem meets these require-
ments. It may be observed that had there been a second plate at some plane 
y = h, the geometric length scale h would exist, and so the conditions for a 
similarity solution would no longer exist. In the absence of such a length 
scale, however, it may be anticipated that the fluid velocity u will reach some 
specified value, say 0.4U, at different values of y, which will depend upon the 
value of the time t. That is, anticipating the results to be of the form indicated 
in Figure 7.4b, it may be observed that at some time t1, the velocity will have 
a value of 0.4U at some distance y1 from the plate. At some later time t2, the 
same velocity magnitude of 0.4U will exist at some different distance y2, and 
so on. This suggests that there will be some combination of y and t, such as 
y/tn, such that when this quantity is constant, the velocity will be constant. 
That is, it is expected that a solution will exist in the form

	
u y t
U

f
( , )

( )= η
	

where

	 η α=
y

tn
.
	

Here η(y, t) is called the similarity variable, and α is a constant of propor-
tionality that will be defined later to render η dimensionless. This assumed 
form of solution has the property that when η is constant (which corresponds 
to y ~ tn), u = constant. If indeed a similarity solution exists to our problem, 
substitution of our assumed form of solution into the governing partial dif-
ferential equation will result in an ordinary differential equation with f as 
the dependent variable and y as the independent variable. That is, it will be 
possible to eliminate y and t in terms of η only.
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From the assumed form of solution, the following expressions for the 
derivatives are obtained:

	

∂
∂

= − = −

∂
∂

=

∂

∂
=

+

u
t

Un
y

t
f Un

t
f

u
y

U
t

f

u
y

U
t

n

n

α η

α

α

1

2

2

2

2nn
f .

	

Here, the primes denote differentiation of f with respect to η. Substitution 
of these expressions into the governing equation yields the identity
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This is not an ordinary differential equation for arbitrary values of n, but 
for n = 1

2
, the explicit time dependence will be eliminated, yielding an ordi-

nary differential equation. That is, for n = 1
2

, a similarity solution is obtained. 

For this value of n, the differential equation for f and the definition of the 
similarity variable are as follows:
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The quantity α may now be determined in terms of the parameter υ (and 
U if necessary) to render η dimensionless. The dimensions of y/t1/2 are a 
length divided by the square root of time. Since the dimensions of v are a 
length squared divided by time, it is sufficient to take α equal to 1/√υ. For 
convenience, in the solution of the differential equation, a factor of 2 is also 
included, so that the similarity variable becomes

	 η
υ

=
y

t2 	

and the differential equation to be solved becomes

	 fʺ + 2ηfʹ = 0.	
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This equation may be integrated successively by rewriting it as follows:

	
d
dη

η(log ) = −f 2
	

and hence

	 log fʹ = −η2 + log A

where the constant of integration has been chosen as log A. Then, combining 
the two logarithmic quantities and taking exponentials of both sides of the 
resulting equation give
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where B is another constant of integration, and ξ is a dummy variable of 
integration. The boundary condition u(0, t) = U for t > 0 requires that f(0) = 
1. This, in turn, requires that B = 1. The initial condition u(y, 0) = 0 for y ≥ 0 
requires that f(η) → 0 when η → ∞. This gives
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so that the value of the constant A is −2/ π . Then, using the definition of the 
similarity variable, the expression for the velocity becomes
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But the second term on the right-hand side of this equation is the error 
function whose argument is the upper limit of integration. Thus, the solution 
to Stokes’ first problem may be written in the following form:

	
u y t
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y
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2
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υ
	 (7.4)

Values of the error function are presented in many tables of functions. 
Figure 7.4b shows the functional form of the error function and the dimen-
sional velocity profiles generated by this single similarity curve.
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As one might expect intuitively, the disturbance caused by the impulsive 
motion of the boundary diffuses into the fluid as the time from the initia-
tion of the motion progresses. An estimate of the depth of fluid affected by 
the movement of the boundary may be obtained by observing from detailed 
plots of the error function that u/U is reduced to about 0.04 when η = 3/2. 
That is, for values of η greater than 3/2, the motion of the fluid is small, and 
the fluid may be considered to be unaffected by the moving boundary. Then, 
denoting the value of y by δ at which u/U is 0.04 shows that
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That is, the thickness of the fluid layer affected by the motion of the bound-
ary is proportional to the square root of the time and to the square root of 
the kinematic viscosity of the fluid. This result shows the role played by the 
kinematic viscosity in the diffusion of momentum through fluids.

7.5  Stokes’ Second Problem

Another problem to which an exact solution exists is geometrically identical 
to the one treated in the previous section, but the principal boundary condi-
tion is different. Stokes’ second problem differs from Stokes’ first problem 
only in the condition that the boundary y = 0 is oscillating in time rather 
than impulsively starting into motion. The geometry of the flow and the 
nature of the boundary condition are indicated in Figure 7.5a.

Since the geometry is the same as that of the previous section and since the 
motion is again in the plane of the boundary itself, the differential equation 
to be satisfied by u(y, t) will be the same. That is, the problem to be solved 
becomes
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Since the boundary y = 0 is oscillating in time, it is to be expected that the 
fluid will also oscillate in the x direction in time with the same frequency. 
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However, it is to be expected that the amplitude of the motion and the phase 
shift relative to the motion of the boundary will depend upon y. Thus, a 
steady-state solution is sought of the form

	 u(y, t) = Re[w(y)eint]	

where the symbol Re signifies the real part of the quantity that is inside the 
brackets. Substituting this assumed form of solution into the partial differ-
ential equation for u(y, t) gives
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Noting that √i = ±(1 + i)/√2, the solution to this differential equation is
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n
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The condition that the velocity be finite requires that the constant B should 
be zero. Thus, the solution for w(y) will be of the form

U

y

x t

y

u(y,t)U

u(0,t)

0

u(0,t)= U cos nt
2π
n

(a)

(b)

FIGURE 7.5
(a) Definition sketch for Stokes’ second problem and (b) typical velocity profiles.
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The expression for the velocity then becomes

	

u y t A
n
y i nt

n
y( , ) Re exp exp= − −

2 2υ υ

= − −A
n
y nt

n
yexp cos .

2 2υ υ
	

The constant A may be evaluated by imposing the boundary condition 
u(0, t) = U cos nt, which requires A = U. Thus, the velocity distribution in 
Stokes’ second problem will be given by the following equation:
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Equation 7.5 describes a velocity that is oscillating in time with the same 
frequency as the boundary y = 0. The amplitude has its maximum value at 
y = 0, and it decreases exponentially as y increases. Also, Equation 7.5 shows 
that there is a phase shift in the motion of the fluid and that this phase shift 
is proportional to y and to the square root of n. The type of velocity profile 
that Equation 7.5 represents is illustrated in Figure 7.5b.

A measure of the distance away from the moving boundary within which 
the fluid is influenced by the motion of the boundary may be obtained 
as follows. The amplitude of the motion at any plane y = constant may 
be obtained by letting the trigonometric term in Equation 7.5 assume its 
maximum value of unity. Then, if the value of y at which the amplitude of 
the motion is 1/e2 of its maximum value U is denoted by δ, it follows from 
Equation 7.5 that

	
1

22e
n

= −exp .
υ
δ

	

Hence,
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n
.
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The quantity δ is a distance such that for y > δ, the fluid may be considered 
to be essentially unaffected by the motion of the boundary. Again, it is seen 
that viscous effects extend over a distance that is proportional to √υ. It is also 
observed that δ varies inversely as the square root of the frequency of the 
motion. That is, the faster the motion becomes, the smaller the distance will 
be over which the adjacent fluid will be influenced.

7.6  Pulsating Flow between Parallel Surfaces

Another type of unsteady-flow situation for which an exact solution exists 
is that of an oscillating pressure in a fluid layer that is bounded by two par-
allel planes. We consider the two parallel surfaces to be located at y = ±a 
and consider the pressure gradient in the x direction to oscillate in time. 
Then, the velocity will be in the x direction only and will also oscillate in 
time. That is, the only nonzero velocity component will be u(y, t). Using these 
features of the flow, the governing equations reduce to the following single 
equation:
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where u(a, t) = u(–a, t) = 0. The pressure gradient is assumed to oscillate in 
time so that ∂p/∂x will be taken to be of the following form
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where Px is a constant that represents the magnitude of the pressure-gradient 
oscillations.

This problem may be treated in the same manner as that of the previous 
section. That is, by virtue of the oscillatory nature of the pressure gradient, it 
may be expected that the velocity of the fluid will also oscillate in time, and 
with the same frequency, but possibly with a phase lag relative to the oscil-
lations in the pressure. Thus, the pressure gradient and the velocity may be 
represented as follows:
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Substituting these expressions into the governing equation gives
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Thus, the quantity w(y) must satisfy the following nonhomogeneous ordi-
nary differential equation:
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The general solution to this differential equation consists of a constant par-
ticular integral plus the general solution to the homogeneous equation. This 
gives
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where the quantity (1 + i)/√2 has been used for √i, and the hyperbolic form of 
solution has been chosen rather than the exponential form due to the finite 
extent of the flow field in the y direction. The boundary conditions u(a, t) = 0 
and u(–a, t) = 0 give, respectively,
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The solution to this pair of algebraic equations for the undetermined con-
stants A and B is
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Thus, the solution for w(y) is
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Then, the expression for the velocity in the fluid becomes
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This expression may be decomposed to yield the real part explicitly. 
Although the concepts are straightforward, the details are cumbersome; 
hence, the compact form of Equation 7.6 will be considered to be the final 
expression. It is evident from the result that the velocity oscillates with the 
same frequency as the pressure gradient but that a phase lag, which depends 
upon y, exists. Thus, the motion of the fluid that is adjacent to the boundaries 
will have a time-wise phase shift relative to the motion near the centerline 
of the boundaries. The amplitude of the motion near the boundaries will 
also be different from that near the centerline, and in order to satisfy the 
boundary conditions, this amplitude will approach zero as the boundaries 
are approached.

7.7  Stagnation-Point Flow

In all the foregoing flow situations, the geometry of the flow field was such 
that the nonlinear inertia terms (u · ∇)u were identically zero. The flow in 
the vicinity of a plane stagnation point is an example of a flow field in which 
these inertia terms are not zero, yet one for which an exact solution exists.

Figure 7.6a shows the situation under consideration. A fluid stream whose 
velocity vector coincides with the y axis impinges on a plane boundary that 
coincides with the x axis. The boundary may be considered to be curved, 
such as the surface of a circular cylinder, provided that the region under 

y

x

φ΄

η

1.0

0
0

(a) (b)

FIGURE 7.6
(a) Flow configuration for a plane stagnation point and (b) functional form of the solution.
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consideration is small in extent compared with the radius of curvature of the 
surface. This problem was investigated by Hiemenz, and the flow field is fre-
quently referred to as Hiemenz flow. The basis of the solution is to modify the 
potential-flow solution in such a way that the Navier–Stokes equations are 
still satisfied and such that the no-slip boundary condition may be satisfied.

The potential-flow solution for the situation under consideration was 
established in Chapter 4, and the complex potential for the flow in a sector of 
angle π/n is given by Equation 4.10. Using this result and the value n = 2, the 
velocity components for the potential flow are

	 u = 2Ux	

	 v = −2Uy.	

Then, from the Bernoulli equation, the pressure distribution will be

	 p = p0 − 2ρU2 (x2 + y2)	

where p0 is the Bernoulli constant that corresponds to the pressure at the 
stagnation point. Note that U is not an actual velocity here.

The foregoing velocity and pressure distributions satisfy the potential-flow 
problem exactly, and like all potential flows, they also satisfy the equations 
of motion for a viscous, incompressible fluid exactly. This may be readily 
shown by observing that the difference between the potential-flow equa-
tions and the equations governing the flow of a viscous, incompressible fluid 
is the presence of the viscous term υ∇2u in the latter. However, for potential 
flows, u = ∇ϕ, so that

	 ∇2u = ∇2(∇ϕ) = ∇(∇2ϕ) = 0.	

That is, the viscous-shear terms in the Navier–Stokes equations are identi-
cally zero for potential-flow fields.

Although potential-flow fields satisfy the equations of motion for a vis-
cous, incompressible fluid, they do not satisfy the no-slip boundary con-
dition. Then, for the case of stagnation-point flow, Hiemenz attempted to 
modify the potential-flow field in such a way that meeting this boundary 
condition would be possible. Thus, the x component of velocity is taken to be

	 u = 2Uxfʹ(y)	

where the prime denotes differentiation with respect to y. Then, the continu-
ity equation requires that

	 ∂
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so that the vertical component of the velocity will be of the form

	 v = −2Uf(y).	

Defining the velocity field in this way satisfies the continuity equation for 
all functions f(y), and if we stipulate that f(y) → y as y → ∞, the potential-flow 
solution will be recovered far from the boundary.

The equations of motion have yet to be satisfied, and this will impose fur-
ther restrictions on the function f. The equations to be satisfied are
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Substituting the expressions obtained above for u and v into these equa-
tions shows that the following pair of equations must be satisfied:
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The second of these equations will be used to establish the pressure distri-
bution, and this result will be used to eliminate the pressure from the first 
equation. The result will be a nonlinear ordinary differential equation that 
the function f(y) must satisfy.

Integrating the last equation with respect to y gives the following expres-
sion for the pressure:

	 p(x, y) = −2ρU2( f)2 − 2ρUυfʹ + g(x)	

where g(x) is some function of x that may be determined by comparison with 
the potential-flow pressure distribution that should be recovered for large 
values of y. Recalling that f(y) → y for large values of y shows that, for large 
values of y,

	 p(x, y) → −2ρU2y2 − 2ρUυ + g(x)	

which, by comparison with the potential-flow pressure, requires that

	 g(x) = p0 − 2ρU2x2 − 2ρUυ.	
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Then, the pressure distribution in the viscous fluid will be

	 p(x, y) = p0 − 2ρU2( f)2 + 2ρUυ(1 − fʹ) − 2ρU2x2.	

So far, we have satisfied the continuity equation and the equation of y 
momentum. From the result above, it follows that ∂p/∂x = –4ρU2x, so that the 
equation of x momentum becomes

	 4U2x( fʹ)2 − 4U2xffʺ = 4U2x + 2Uυxfʹ .̋	

In standard form, with the highest derivative to the left, this equation 
becomes

	
υ
2

1 02

U
f ff f+ − + =( ) .

	

The boundary condition u(x, 0) = 0 requires that fʹ(0) = 0, while the condi-
tion v(x, 0) = 0 requires that f(0) = 0. In addition, the condition that the poten-
tial-flow solution be recovered as y → ∞ requires that f(y) → y, or that fʹ(y) → 
1, as y → ∞. Thus, the boundary conditions that accompany the foregoing 
ordinary differential equation are

	 f(0) = fʹ(0) = 0	

	 fʹ(y) → 1 as y → ∞.	

That is, the potential-flow solution may be modified to satisfy not only 
the governing equations but also the viscous boundary conditions provided 
that the modifying function f(y) satisfies the foregoing conditions. Clearly, it 
would be preferable to solve a problem that is free of the parameter υ/(2U), for 
then the result will be valid for all kinematic viscosities and all flow veloci-
ties. It is possible to render the foregoing problem free from parameters by 
making the following change of variables. Let

	 φ η
υ

( ) ( )=
2U

f y
	

and

	 η
υ

=
2U

y.
	

Then, in terms of ϕ(η), the problem to be solved in order to satisfy all the 
requirements is

	 ϕʹʺ + ϕϕʺ − (ϕʹ)2 + 1 = 0	 (7.7a)
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	 ϕ(0) = ϕʹ(0) = 0	 (7.7b)

	 ϕʹ(η) → 1 as η → ∞	 (7.7c)

where the primes denote differentiation with respect to η. This nonlinear 
problem must be solved numerically, but this is a much easier task than solv-
ing the original system of partial differential equations numerically. For this 
reason, the solution is usually considered to be exact.

To summarize, the velocity and pressure fields in stagnation-point flow 
are given by

	 u(x, y) = 2Uxϕʹ	 (7.8a)

	 v x y U( , ) = − 2 υφ 	 (7.8b)

	 p(x, y) = p0 − ρUυϕ2 + 2ρUυ(1 − ϕʹ) − 2ρU2x2	 (7.8c)

where ϕ(η) is the solution to Equations 7.7a through 7.7c and

	 η
υ

=
2U

y.
	

The nature of this solution is shown in Figure 7.6b in the form of a curve of 
ϕʹ as a function of η. From quantitative plots of this type, it is found that the 
value of η for which ϕʹ = 0.99 is about 2.4.

From this qualitative figure and the supplementary quantitative data, it is 
evident that ϕʹ may be considered to be unity (and hence the potential-flow 
solution is recovered) when η = 2.4 approximately. Then, if δ denotes the 
value of y at this edge of the viscous layer, it follows that

	
2

2 4
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and hence

	 δ
υ

= 2 4
2

. .
U 	

That is, viscous effects are confined to a layer adjacent to the bound-
ary, whose thickness varies as the square root of the kinematic viscos-
ity of the fluid and inversely as the square root of the velocity–magnitude 
parameter.
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7.8  Flow in Convergent and Divergent Channels

A flow field in which the continuity equation is not identically satisfied and 
in which the nonlinear inertia terms are not identically zero is that of flow 
in a convergent or divergent channel. For such flow fields, an exact solution 
to the governing equations exists in the sense of the previous section—that 
is, the system of partial differential equations may be reduced to a simple 
numerical problem.

Figure 7.7a shows the flow configurations for flow in a converging chan-
nel and flow in a diverging channel. The preferred coordinate system for 
such configurations is cylindrical coordinates R, θ, and z. Then, of the three 
velocity components, only the radial component uR will be different from 
zero, and this velocity component will depend upon R and θ only. Thus, the 
continuity equation and the Navier–Stokes equations become
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FIGURE 7.7
(a) Flow configuration and (b) velocity profiles for flow in convergent and divergent channels.
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A separable form of solution will be sought to these equations. That is, a 
solution for the velocity will be sought in the form

	 uR(R, θ) = f(R)F(θ).	

Then, the continuity equation shows that RuR must be a constant, so that 
uR must be proportional to R–1. Thus, the velocity distribution will be of the 
form

	 u R
R
FR( , ) ( )θ

υ
θ= 	 (7.9a)

where the kinematic viscosity has been used as a proportionality factor in 
order to render the function F(θ) dimensionless.

Having satisfied the continuity equation, the two components of the 
Navier–Stokes equations must next be satisfied. This will impose some 
restrictions on the function F(θ). Substitution of Equation 7.9a into the 
reduced form of the Navier–Stokes equations shows that the following pair 
of equations must be satisfied:
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where the primes denote differentiation with respect to θ. This pair of equa-
tions may be reduced to a single equation by forming the second cross deriv-
ative of p, namely, ∂2p/∂R ∂θ, and thus eliminating the pressure between the 
two equations. The resulting ordinary differential equation for F(θ) is

	 Fʹʺ + 4Fʹ + 2FFʹ = 0.	

This equation may be immediately integrated once with respect to θ to give

	 Fʺ + 4F + (F2) = K	

where K is a constant of integration. In order to further reduce this equation, 
new dependent and independent variables are introduced. Thus, let G(F) = Fʹ 
be the new dependent variable and F be the new independent variable. Then,
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Using this result to eliminate F ,̋ the differential equation to be satisfied 
becomes

	 G
G
F

F F K
d
d

+ + =4 2( ) .
	

That is, in terms of G(F), the differential equation is reduced to first order. 
However, this equation may be integrated directly to yield G as follows. 
Rewriting the equation above in the form
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and integrating with respect to F give
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where A is a constant of integration. Solving this equation for G(F) gives
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Although this equation cannot be solved to give an explicit expression for 
F in terms of θ, the result may be put in the form of an integral expression for 
θ as a function of F. The expression is the following elliptic integral:
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	 (7.9b)

where ξ is a dummy variable of integration, and B is a constant of integration. 
Equation 7.9b represents a fairly simple numerical problem whose solution, 
when coupled with Equation 7.9a, defines the velocity distribution.

The physical boundary conditions that have to be satisfied are

	 uR(α) = uR(−α) = 0 (divergent)	

	 uR(π + α) = uR(π − α) = 0 (convergent).	

These boundary conditions represent the no-slip condition at the walls of 
the channel. In addition, since the velocity profiles will be symmetrical about 
the reference axis, it follows that
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Then, from Equation 7.9a, the conditions the function F(θ) must satisfy are

	 F(α) = F(−α) = Fʹ(0) = 0 (divergent)	 (7.9c)

	 F(π + α) = F(π − α) = Fʹ(π) = 0 (convergent).	 (7.9d)

These boundary conditions are sufficient to determine the constants A, 
B, and K that appear in Equation 7.9b. Equations 7.9a through 7.9d describe 
velocity profiles that have the form indicated in Figure 7.7b.

In Figure 7.7b, the various curves are identified by the Reynolds number 
where RN1 > RN2 > RN3. Here, the Reynolds number is defined as

	 R
u R

N = c

υ 	

where uc is the velocity of the fluid at the centerline of the channel. It may be 
seen that the nature of the velocity profile in a convergent channel may be 
quite different from that in a divergent channel, particularly at low Reynolds 
numbers. The adverse pressure gradient that exists in a divergent channel 
may overcome the inertia of the fluid near the wall (where viscous effects 
have reduced the velocity), resulting in a reversed-flow configuration. This 
separation of the flow is well established experimentally, particularly at large 
values of the angle α.

7.9  Flow over Porous Wall

The foregoing exact solutions to the equations of viscous flow of an incom-
pressible fluid were sufficiently simple that either the nonlinear inertia terms 
dropped out, or these terms were nonzero and a reduction to a nonlinear 
ordinary differential equation was possible. The flow field to be studied here 
is an example of a case where the nonlinear inertia terms become linearized, 
but are nonzero, and a closed form of solution becomes possible.

Figure 7.8 shows a flat surface over which a steady uniform flow exists. 
Rather than being impervious, the surface is porous and fluid is being 
drawn off into the porous surface such that the normal component of 
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velocity at the surface is V. Porous surfaces of this type with suction 
beneath them are sometimes used to prevent boundary layers from sepa-
rating (a topic that will be discussed in Chapter 9). However, it may be 
stated now that boundary-layer separation on airfoil surfaces can lead to 
a stalled configuration that destroys the lift generated by the airfoil. Thus, 
it is natural that one of the areas of application of boundary-layer suction 
has been in aeronautics.

A solution to the foregoing problem will be sought in which p is a constant 
and u depends upon y only. That is, a solution to the governing equations is 
being sought in which the magnitude of the suction is adjusted in such a way 
that the tangential velocity component is independent of x. For this situation, 
the continuity and Navier–Stokes equations become
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with the boundary conditions

	 u(0) = 0	

	 v(x,0) = −V	

y

x

U

v(x,0) = –V

FIGURE 7.8
Uniform flow over a plane boundary with suction.
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	 u(y) → U as y → ∞.	

Now, the continuity equation may be integrated to show that v(x,y) is actu-
ally a constant, and the boundary condition at y = 0 shows that this constant 
must be –V. That is,

	 v = −V.	

With this information, the momentum equations reduce further to the fol-
lowing single equation:

	 − =V
u
y

u
y

d
d

d
d

υ
2

2
.
	

It may now be seen that the inertia terms are not retained in a compre-
hensive form, yet they are not zero. Rather, the intermediate case of a linear-
ized form exists in which the convection velocity is V rather than a variable, 
which it would be in more general cases.

The foregoing ordinary differential equation may be integrated once with 
respect to y to give

	
d
d
u
y

V
u A

V
+ =
υ υ 	

where the constant of integration has been chosen as AV/υ. The particular 
solution to the remaining equation is then u = A, so that the complete solu-
tion is

	 u(y) = A + Be−(V/υ)y	

where B is a constant. The boundary condition u(0) = 0 requires that B = –A, 
and the condition u → U as y → ∞ then gives A = U. Hence, the velocity dis-
tribution will be

	 u(y) = U(1 − e−(V/υ)y).	 (7.10)

Some idea of the thickness of the layer that is affected by viscosity may be 
obtained by considering the value of y at which u = U(1 – 1/e5) = 0.993U to be 
δ. Then, from Equation 7.10, the value of δ will be

	 δ
υ

= 5
V
.
	

That is, the distance away from the surface at which the uniform flow is 
essentially recovered is proportional to the kinematic viscosity of the fluid 
and inversely proportional to the suction velocity.
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It will be observed that the solution (Equation 7.10) diverges for negative 
values of V (i.e., for blowing instead of suction). Some insight into the reason 
for this may be obtained by studying the vorticity distribution. The equation 
governing the vorticity is Equation III.4. Here, we are dealing with steady 
flow without external body forces. In addition, the flow is two-dimensional, 
so that the vorticity vector will be ω = (0, 0, ξ). Then, using the fact that v = – V 
and u = u(y), the vorticity equation becomes

	 − =V
y y

d
d

d
d

ξ
υ

ξ2

2
.
	

This equation may be integrated once with respect to y to give

	 − =V
y

ξ υ
ξd

d
.
	

Interpreted physically, the term on the left-hand side of this equation rep-
resents the convection of vorticity, which is toward the boundary (negative y 
direction), and the convection velocity is V. The term on the right-hand side 
represents the diffusion of vorticity in which the diffusion coefficient is the 
kinematic viscosity of the fluid. Thus, the equation of vorticity states that 
the convection rate of vorticity toward the wall due to the suction is just bal-
anced by the diffusion of vorticity away from the wall. It is this balance that 
makes possible a solution of the assumed form. However, if blowing instead 
of suction exists, the convection and the diffusion will both take place in the 
same direction, so that a solution of the form u = u(y) only will no longer 
exist.

PROBLEMS

	 7.1	� To explain the manner in which Couette flow is established, find 
the velocity distribution in a fluid that is bounded by two hori-
zontal parallel surfaces in which everything is quiescent for t < 0 
and for which the upper surface is impulsively set into horizontal 
motion with constant velocity U at time t = 0. (This can be done 
by obtaining the solution in its asymptotic form, corresponding to 
t → ∞, then adding a separation of variables solution.)

	 7.2	� To determine the manner in which plane Couette flow decays, find 
the velocity distribution in a fluid that is bounded by two horizon-
tal parallel surfaces between which steady Couette flow exists for 
t < 0 as described in Problem 7.1. The motion of the upper surface 
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is suddenly stopped at time t = 0. Obtain an expression for the sub-
sequent velocity distribution between the two parallel surfaces.

	 7.3	 A viscous fluid occupies the space between two stationary par-
allel horizontal surfaces defined by the lines y = −1 and y = +1. 
Initially, there is no motion in the fluid, but at time t = 0, a valve is 
opened and the fluid begins to move in the x direction under the 
pressure differential that exists between the ends of the conduit. 
The problem to be solved for the subsequent fluid velocity u(y,t), 
subject to the appropriate boundary conditions, is the following:
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= +
∂

∂
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		  The velocity and the two independent variables have been made 
dimensionless in this equation. The constant P is the dimension-
less value of the pressure gradient in the flow direction for t > 0 
(i.e., in the x direction), and H(t) is the Heaviside function (unit step 
function). Obtain the solution to the foregoing problem that is valid 
for all times t > 0.

	 7.4	 A moving belt is inclined at an angle α to the horizontal. The lower 
end of this belt is immersed in a pool of liquid, and the belt drags 
some of the liquid with it as it moves upward and out of the liquid. 
The liquid may be assumed to be viscous but incompressible.
(a)	� Using the configuration shown in the following figure, solve 

the Navier–Stokes equations for the following quantities:

	 (i)	 The velocity distribution in the liquid layer
(ii)	 The volumetric flow rate of liquid in the x direction per 

unit width
	 (iii)	 The angle α for which the volumetric flow rate is zero

y
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U
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α

Solid
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(b)	� Repeat part (a) of this question for the configuration shown in 
the following figure.

	 7.5	 For Poiseuille flow through an elliptic pipe of semiaxes a and b, find 
the ratio b/a that gives the maximum flow rate for a given flow area 
and a given pressure gradient.

		  For a given pressure gradient, find the ratio of the discharge from 
an elliptic pipe to that from a circular pipe that has the same flow 
area. Evaluate this ratio for the specific value b/a = 4/3.

	 7.6	 The figure for this problem shows a conduit whose cross section 
is the shape of an equilateral triangle. For the coordinate system 
shown in the figure, the equations of the three sides are
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z y
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3
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		  Look for a solution for the velocity distribution in this conduit of 
the following form:
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		  Determine the value of the constant α such that the assumed form 
of solution is exact, with the value of this constant being expressed 
in terms of the applied pressure gradient.

	 7.7	 It is required to obtain the solution for pressure-driven flow through 
a duct of rectangular cross-sectional shape that is bounded by the 
lines y = 0, y = 1, z = 0, and z = α. The partial differential equation to 
be solved for the velocity in the x direction, u(y,z), is

	
∂

∂
+
∂

∂
= ≤ ≤ ≤ ≤

2

2

2

2
8 0 1 0

u
y

u
z

P y zfor , .α
	

		  In this equation, the velocity u(y,z) is dimensionless, as are the 
independent coordinates y and z. The parameter P is the dimen-
sionless value of the pressure gradient in the x direction, and the 
parameter α is greater than unity.
(a)	� Show, by direct substitution, that the following expression is a 

particular solution to the foregoing differential equation that 
satisfies the boundary conditions on the boundaries y = 0 and 
y = 1, and find the value of the constant A:

	 u y A y1

2

1 4
1

2
( ) .= − − −

	

(b)	� Show, by direct substitution, that the following expression is a 
complementary solution to the differential equation that satisfies 
the boundary conditions on the boundaries y = 0, y = 1, and z = 0:

	 u y z B
n z
n

n yn

n
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π

	

(c)	� Show, by direct substitution, that the following expression is a 
complementary solution to the differential equation that satisfies 
the boundary conditions on the boundaries y = 0, y = 1, and z = α:
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(d)	� It follows from the principle of linear superposition that the fol-
lowing expression will be a solution to the differential equation:

	 u(y, z) = u1(y, z) + u2(y, z) + u3(y, z).	

		  Find the values of the constants Bn and Cn that make this expres-
sion for u(y,z) satisfy the boundary conditions on all four boundar-
ies of the flow field.

	 7.8	 The figure for this problem shows two parallel, vertical surfaces 
and a horizontal surface. The space defined by these surfaces, 0 
< y < b for 0 < z, is filled with a viscous, incompressible fluid. The 
horizontal surface, z = 0, is moving in the positive x direction with 
constant velocity U. The other surfaces are stationary, as is the 
fluid—except for the motion that is induced by the moving surface.

		  Derive an expression for the velocity distribution in the yz plane 
if the flow is steady and if there are no body forces. Also, obtain an 
expression for the volumetric flow rate of the fluid that is induced 
to flow in the x direction by the moving surface.

	 7.9	 The figure for this problem represents steady flow in a circular 
pipe through which two Newtonian fluids of viscosities μ1 and μ2 
are simultaneously flowing in the axial direction. That is, the cross 

b

z

y
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z
µ1
µ2

µ2
µ1

R 1

R 2
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section of the pipe is circular in the R–θ plane, and the flow is in the 
axial or z direction. The position vector is defined by x = (R,θ,z), and 
the velocity vector is defined by u = (uR,uθ,w). The densities of the 
two fluids are the same, and the applied pressure gradient, which 
is a constant, is the same for both fluids. If we assume that the only 
nonzero component of velocity is w and that it depends on R only, 
it follows that we have the following conditions for each fluid:

	 w = w(R) only and uR = uθ = 0	

	
1 1
R R

R
w
R

p
z

w
RzR Rz

d
d

d
d

d
d

where
d
d

= = =τ τ .
	

		  All other components of the shear stress tensor are zero.
(a)	 Obtain expressions for the velocity components in each of the 

two fluids. That is, obtain expressions for the following velocity 
components:

	 w1(R) valid for 0 ≤ R ≤ R1	

	 w2(R) valid for R1 ≤ R ≤ R2.	

(b)	 From the results obtained in (a) above, evaluate the velocity 
w1(0) on the axis of the pipe.

	 7.10	 Two concentric circular cylinders enclose a viscous fluid. If the 
inner cylinder is at rest and the outer cylinder rotates at a constant 
angular velocity, calculate the torque required to rotate the outer 
cylinder and that required to hold the inner cylinder at rest.

	 7.11	 Using the solution for flow between concentric rotating circular 
cylinders, deduce the velocity distribution created by a circular cyl-
inder that is rotating in a fluid of infinite extent that is otherwise 
at rest. Compare this result with that for a line vortex of strength 
Γ = 2 2π ωRi i in an inviscid fluid that is at rest at infinity.

	 7.12	 Obtain the velocity distribution for the modified Stokes second 
problem consisting of a fluid that is contained between two infinite 
parallel surfaces separated by a distance h. The upper surface is 
held fixed, while the lower surface oscillates in its own plane with 
velocity U cos nt.

	 7.13	 The velocity profile in a fluid between two parallel surfaces created 
by an oscillating pressure gradient was shown in Equation 7.6 to be
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		  A Reynolds number for such a flow may be defined by the fol-
lowing quantity:

	 R
a n

N =
2

2υ
.
	

		  For this situation, consider the two asymptotic limits that are 
defined below:
(a)	� For RN ≪ 1, it might be expected that viscous effects will domi-

nate. Expand the expression above for the velocity in this case 
and obtain an explicit expression for the leading term in the 
expansion. Interpret the result physically.

(b)	� For RN ≫ 1, it might be expected that viscous effects will be 
small everywhere except in the vicinity of the walls. Expand 
the expression for the velocity for this case, and interpret the 
result that is obtained.

	 7.14	 For potential flow due to a line vortex, the vorticity is concentrated 
along the axis of the vortex. Thus, the problem to be solved for the 
decay of a line vortex with time due to the viscosity of the fluid is 
as follows:

	

∂
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		  Here, ω(R, t) is the vorticity, and the total circulation associated 
with the vortex for any time t ≥ 0 is Γ. Look for a similarity solution 
to this problem of the following form:

	 ω
πυ υ

( , ) .R t
t
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R

t
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2

	

		  Thus, obtain expressions for the velocity uθ(R, t) and the pressure 
p(R, t) in the fluid.
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	 7.15	 The following flow field satisfies the continuity equation every-
where except at R = 0, where a singularity exists:

	

u aR

u
K
R
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2 . 	

		  Show that this flow field also satisfies the Navier–Stokes equa-
tions everywhere except at R = 0, and find the pressure distribution 
in the flow field.

		  Modify the foregoing expressions to the following:
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u
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=

=
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.2 	

		  Determine the function f (R) such that the modified expression 
satisfies the governing equations for a viscous, incompressible 
fluid and such that the original flow field is recovered for R → ∞.
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8
Low Reynolds Number Solutions

For flow problems in which an exact solution is not known, it may be possible 
to obtain an approximate solution. By an approximate solution we mean an 
analytic expression that approximately satisfies the full viscous flow equa-
tions rather than a numerical approximation to these equations. In this chap-
ter, the full governing equations will be approximated for flows involving 
low Reynolds numbers, and some exact solutions to the resulting equations 
will be established.

The fundamental low-Reynolds-number approximation is the Stokes 
approximation, and this is the first topic in the chapter. Some fundamen-
tal solutions are established and used to create more practical solutions, 
similar to the procedures used in Chapter 4. In this way, the flow in the 
vicinity of a rotating sphere is obtained, as is the solution for uniform 
flow past a sphere. The case of uniform flow past a circular cylinder is 
examined to illustrate the consequences of the Stokes approximation. 
Finally, an alternative low-Reynolds-number approximation, the Oseen 
approximation, is briefly discussed. A detailed study of the Oseen equa-
tions is not made, but the nature and utility of the approximation are 
discussed.

8.1  Stokes Approximation

The Stokes equations are a special case of the Navier–Stokes equations cor-
responding to very slow motion of a viscous fluid. Under these conditions, 
the inertia of the fluid may be neglected in comparison with the other forces 
that act on it. Since the Reynolds number may be considered to be the ratio 
of the inertia forces of the fluid to the viscous forces, the condition of negli-
gible inertia forces amounts to very small Reynolds numbers. The essential 
feature of the Stokes approximation is that all the convective inertia compo-
nents are assumed to be small compared with the viscous forces. Then, from 
Equations III.1 and III.2, the equations governing the Stokes approximation 
for a flow field without body forces are

	 ∇ · u = 0	 (8.1a)
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Equation 8.1b, which represents three scalar equations, is usually referred 
to as the Stokes equation. This equation, together with the continuity equation 
(Equation 8.1a), represents four scalar equations in the four unknowns u and 
p. The great simplification in this approximation is that the governing equa-
tions are now linear.

The foregoing equations may be extracted from the Navier–Stokes equa-
tions in a more formal manner. Since this alternative approach must be used 
when employing higher-order corrections, it will be outlined here. The first 
step is to nondimensionalize the dependent and independent variables as 
follows. Let
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Here, U is a characteristic velocity of the fluid (such as the free-stream 
velocity), and l is a characteristic length scale (such as a body dimension). 
The starred quantities are the dimensionless variables where the kinematic 
viscosity υ has been used to nondimensionalize the pressure and the time. 
Experience gained in the previous chapter indicates that the time l2/υ cor-
responds to the time required for viscous diffusion to traverse the distance l.

The variables that appear above are now substituted into the Navier–Stokes 
equations to yield the equations governing the dimensionless variables. The 
resulting vector equation is
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where the gradient and the Laplacian operators are now expressed in terms 
of the dimensionless space coordinates. Multiplying this equation by l2/(υU) 
and introducing the Reynolds number RN = Ul/υ give

	
∂
∂

+ ⋅ = − +
u

u u u
*
*

* * * * * * *.
t

R pN ( ) 2

	



295Low Reynolds Number Solutions

In this form, it is evident that the Stokes equation (Equation 8.1b) may 
be obtained from the Navier–Stokes equations by taking the limit RN → 0 
while holding the coordinates fixed. This suggests that higher-order 
approximations to the Stokes solution for any given problem could be 
obtained by expanding the dependent variables in ascending powers of the 
Reynolds number. The sequence of differential equations that would have 
to be solved could then be obtained from the above form of the Navier–
Stokes equations by a limiting procedure. Thus, the Stokes equations may 
be considered to be an asymptotic limit of the Navier–Stokes equations cor-
responding to zero Reynolds number, while the space coordinates remain 
of order unity.

An alternative form of Equations 8.1a and 8.1b exists that is frequently use-
ful. In this alternative form, the velocity and pressure equations are sepa-
rated so that the velocity and pressure fields may be established separately. 
To obtain the equation governing the velocity field, the curl of the curl of 
Equation 8.1b is taken. Having done this, the identities ∇ × (∇ × u) = ∇(∇ · u) – 
∇2u and ∇ × ∇p = 0 are employed. The resulting equation is

	
∂
∂

⋅ − = ⋅ −
t
[ ( ) [ ( ) ].u u u u2 2 2] υ

	

Finally, using the continuity equation, the pressure-free form of the momen
tum equation becomes

	
∂
∂

=2 4u
u

t
υ . 	 (8.2a)

To obtain the equation governing the pressure, the divergence of Equation 
8.1b is taken. This gives

	 ∇2p = 0.	 (8.2b)

The advantage in the formulation above is that the pressure field has been 
separated, mathematically, from the velocity field. However, the price we 
pay is that the highest differentials are now fourth order instead of second 
order.

Solutions to the Stokes equations may be obtained in either of two basic 
ways. Using the governing equations and the appropriate boundary con-
ditions, the boundary-value problem for each geometry of interest may be 
solved. Alternatively, basic solutions to the governing equations may be 
established and superimposed to obtain other solutions. This is the proce-
dure that was used in Chapters 4 and 5, and it will be used again here. The 
principal value of this approach is that it leads to the clear understanding 
of which elements of a mathematical solution are responsible for producing 
forces and torques.
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8.2  Uniform Flow

The simplest solution to the Stokes equations is that for a uniform flow. It 
may be simply observed that for a constant velocity vector and a constant 
pressure, Equations 8.1a and 8.2b are identically satisfied. That is, for any 
constant U, the following velocity and pressure fields satisfy the Stokes 
approximation to the Navier–Stokes equations:

	 u = Uex	 (8.3a)

	 p = constant	 (8.3b)

where ex is the unit vector in the x direction, which is the reference direc-
tion. Clearly, this velocity and pressure distribution does not create a force 
or turning moment on the system. Some of the other fundamental solutions 
that will be considered later correspond to point singularities, and some of 
these singularities correspond to point forces or turning moments acting on 
the fluid.

8.3  Doublet

It was pointed out in Section 7.7 that any potential flow is an exact solution 
of the full Navier–Stokes equations since the viscous terms are identically 
zero for potential flows. Then, for any steady potential flow, the Stokes equa-
tions will be satisfied provided that the pressure term is zero. That is, for 
steady flow, all the inertia terms are zero to the Stokes approximation, and 
for potential flows, the viscous term will be zero. Hence, potential flows are 
also solutions to the Stokes equations provided that ∇p = 0 or p = constant.

In the study of the flow of ideal fluids, it could be shown, through Kelvin’s 
theorem, that a flow that is initially irrotational would remain irrotational 
regardless of the shape of any bodies it may flow around. Here, we consider 
the nature of the velocity field assumed by an irrotational motion if it exists. 
The solution to any real flow problem may contain such a component in its 
solution in addition to other fundamental solutions, some of which may cor-
respond to rotational motion. It should be noted that the velocity field corre-
sponding to viscous irrotational motion is not related to the pressure field in 
the manner that existed for ideal-fluid flows. The conditions that were stipu-
lated in deriving the Bernoulli equation are violated for viscous flows, so that 
the pressure and the velocity are no longer connected by such a relationship. 
Indeed, it was shown above that any irrotational velocity distribution had to 
be accompanied by a constant pressure in order to satisfy the Stokes equations.
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If an irrotational flow field exists, the velocity will be derivable from a 
velocity potential, and from the continuity equation, the velocity potential 
must satisfy Laplace’s equation. Then, for three-dimensional potential flows, 
the mathematical problem is the same as that of Chapter 5. That is, if we are 
interested in axisymmetric flow fields, we may use the coordinate system 
defined in Figure 5.1 and the solutions to Equation 5.1 that have already been 
established.

But the solution that was identified as a doublet (Equation 5.7a) was of the 
functional form:

	 φ θ
θ
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= =
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where the fact that x = r cosθ has been used. Then, since u = ∇ϕ, the velocity 
vector will have a component along the x axis and a radial component, giving

	 u
e e

= −A
r

x
r

x r
3 4

3
	 (8.4a)

where ex and er are unit vectors in the x direction and in the radial direc-
tion, respectively. This formulation of expressing variables in terms of 
streamwise and radial components will be found to be useful in the present 
application.

The velocity field described by Equation 8.4a cannot be proved to be valid 
from upstream irrotational conditions, and it is presented here only as a pos-
sible form for a viscous fluid. Then, in order for this flow field to satisfy the 
present version of the momentum equations, the pressure distribution must be

	 p = constant.	 (8.4b)

Although the solution defined by Equations 8.4a and 8.4b represents the 
flow field generated by a singularity that is located at the origin, this singu-
larity does not exert a force or a moment on the surrounding fluid. This may 
be simply argued from the fact that the pressure is constant and the flow 
configuration is such that there is no net momentum flux acting on the fluid.

8.4  Rotlet

In this section, a solution to the Stokes equations will be sought in which 
the vorticity is different from zero and the pressure is constant. That is, a 
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rotational-flow solution will be sought. The resulting solution will involve a 
singularity at the origin that is known as a rotlet.

Consider steady flow fields of the form

	 u = r × ∇χ	

where r is the position vector. In tensor notation, this expression becomes

	 u x
xi ijk j
k

=
∂
∂

ε
χ

.
	

Then, the divergence of this velocity vector will be given by
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The first term on the right-hand side of this equation is zero since ∂xj/∂xi 
is zero unless i = j and εijk is zero when i = j. That is, the product of the pseu-
doscalar εijk and the symmetric tensor ∂xj/∂xi is zero. Likewise, the second 
term inside the parentheses in the equation above is a symmetric tensor, so 
that the product of this quantity with the pseudoscalar εijk will be zero. That 
is, the continuity equation will be satisfied identically for all forms of the 
scalar χ.

Since the flow is assumed to be steady and since the pressure has been 
taken to be constant, the Stokes equations reduce to

	 ∇2u = 0.	

But, for the form of the velocity vector introduced above, it follows that

	 =
∂
∂ ∂

=
∂

∂ ∂
∂
∂

+
∂
∂

∂
∂

2
2 2 2

u
u

x x

x

x x x
x

x xi
i

l l
ijk

j

l l k
j

k

ε
χ χ

ll lx∂
.

	

The first term on the right-hand side of this equation is zero since 
∂2xj/ (∂xl ∂xl) = 0 for all values of j and l. Also, the second term on the right-
hand side will be zero if ∇2χ = 0. That is, the velocity distribution u = r × 
∇χ will be a valid solution to the Stokes equations for a constant pressure 
distribution, provided that ∇2χ = 0. The problem, therefore, again reduces to 
that of obtaining axisymmetric solutions to the three-dimensional Laplace 
equation.

From Chapter 5, the first separable solution that was obtained corre-
sponded to a source and was of the form χ ~ 1/r. This gives ∇χ ~ er so that 
u = 0, and hence, that particular solution is of no interest in this case. The 
next solution, corresponding to a doublet, was of the form
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	 χ
θ

= =B
r

B
x
r

cos
.

2 3
	

The velocity field corresponding to this solution will be

	 u r r
e e

= × = × −B
x
r

B
r

x
r

x r
3 3 4

3 .
	

Since r = rer and since er × er = 0, this velocity distribution may be repre-
sented by the simplified expression

	 u
e e

=
×

B
r

r x
2 	 (8.5a)

while the corresponding pressure distribution is

	 p = constant.	 (8.5b)

The streamlines corresponding to Equation 8.5a must be perpendicular to 
both er and ex. That is, the streamlines are circles whose centers lie on the x 
axis. A typical streamline is shown in Figure 8.1a, in which the direction is 

x

x

y

z

nS

Rotlet

(a)

(b)

Rotlet

FIGURE 8.1
(a) Typical streamline due to a rotlet and (b) spherical control surface surrounding a rotlet.
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shown for B > 0. It is the nature of the streamlines that suggests the name 
rotlet for the singularity that exists in Equation 8.5a at r = 0.

The rotlet does not exert a force on the fluid, but it does exert a turning 
moment on it. This may be verified by constructing a spherical control sur-
face around the rotlet, as shown in Figure 8.1b. Then, if F is the force acting 
on the fluid contained within the control surface S and if n is the unit out-
ward normal to S, it follows that

	 F n Si ij j
s

= −∫ σ d
	

where σij is the stress tensor. But, for an incompressible Newtonian fluid, 
Equation 1.7 shows that the stress tensor may be expressed by

	 σ δij ij
i

j

j

i

p
u
x

u

x
= − +

∂
∂

+
∂

∂
.
	

Using this result, the order of magnitude of the force Fi may be evaluated 
as follows. Substituting σij into the expression for Fi gives

	 F p
u
x

u

x
n Si ij

i

j

j

is
j= − − +

∂
∂

+
∂

∂∫ δ d .

	

Since p = constant here, the first component of the integral above will be 
zero. Also, Equation 8.5a shows that ui ~ r–2, and it is known that dS ~ r2 for 
an element of surface of a sphere. Hence

	 F
r
r

ri ~ .
1 1
3

2 =
	

Then, by considering the control surface S to be of a very large radius, it is 
clear that Fi = 0. That is, there is no force acting on the fluid due to the rotlet.

The torque, or turning moment M, exerted on the fluid by the singularity, 
may be calculated as follows:

	 M r P= ×∫ dS
s 	

where P is the surface-force vector resulting from the existence of the stress 
tensor σij. In tensor notation, this expression becomes

	 M x P Si ijk j k
s

= ∫ ε d .
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Using the relation Pk = σklnl and the expression for σkl that was used above, 
the value of the turning moment becomes

	 M x p
u
x

u
x

n Si ijk j kl
k l

ks
l= − +

∂
∂

+
∂
∂∫ ε δ

1

d ..
	

Noting that, since p = constant, the first component of this integral is zero 
and using the fact that nl = xl/r for the spherical control surface of radius r, the 
expression for the turning moment of the fluid becomes

	 M
r

x x
u
x

u
x

Si ijk j l
k

l

l

ks
=

∂
∂

+
∂
∂∫ ε d .

	

The preceding expression is valid for any velocity distribution whatsoever. 
In this particular case, the velocity (Equation 8.5a) is a homogeneous func-
tion of degree 2. A homogeneous function of order m is one that satisfies the 
condition

	 f
x y z

f x y zm

λ λ λ
λ, , ( , , ).=

	

For such functions, Euler’s theorem states that

	 x
f
x

y
f
y

z
f
z

mf
∂

∂
+

∂

∂
+

∂

∂
= − .

	

Then, for the velocity distribution under consideration, which is given by 
Equation 8.5a and which is homogeneous of degree 2, it follows that

	 x
u
x

ul
k

l
k

∂
∂

= −2 .
	

This identifies one term that appears in the integrand for the expression 
for the moment Mi. Another term that appears in the integrand may be eval-
uated as follows:

	 x
u
x x

x u u
x
x

ul
l

k k
l l l

l

k
k

∂
∂

=
∂
∂

−
∂
∂

= −( ) .
	

Here, it is noted that the first term on the right-hand side of this identity is 
zero since ∂(xlul)/∂xk = ∇(r · u), and the velocity vector u is perpendicular to 
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the position vector r, as may be seen from Equation 8.5a. Also, ∂xl/∂xk = δlk, so 
that ul∂xl/∂xk = ulδlk = uk. Then, the expression for the moment exerted on the 
body of fluid by the rotlet at the origin becomes

	 M
r

x u u Si ijk j k k
s

= − −∫ ε ( ) .2 d
	

Or, in vector form, this expression is

	 M r u= − ×∫3
r

S
s

d .
	

But, using Equation 8.5a,

	

r u r
e e

r e e r e e e

× = ×
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= ⋅ − ⋅ = −

B
r

B
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B
r

B
x
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B

r x

x r r x r

2

2 2 2
( ) ( )

rr xe .
	

Thus, the expression for the moment M becomes

	 M e e= − −∫3
2

B
x
r

S
r

r x
s

d
.
	

This integral may now be evaluated explicitly using the following rela-
tions, which are obtained from Appendix A:

	 x = r cos θ	

	 er = cos θ ex + sin θ cos ω ey + sin θ sin ω ez	

	 dS = r2 sin θ dθ dω.	

Using these results, the expression for M becomes

	M e e= − − + +∫3 1
0

2
2B x yω θ θ θ ω θ

π

d [(cos ) sin cos cos sin cosθθ ω θ θ
π

sin ]sin .ez d
0∫

That is,

	 M = 8πBμ ex.	 (8.5c)

Equations 8.5a and 8.5b represent a valid solution to the Stokes equa-
tions, and they correspond to a singularity at the origin called a rotlet. This 
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singularity exerts no force on the surrounding fluid, but it does exert a turn-
ing moment on it. The magnitude of this turning moment is proportional to 
the velocity–magnitude parameter, and it acts, according to the right-hand-
screw rule, in the x direction in the same algebraic sense as the velocity–
magnitude parameter.

8.5  Stokeslet

So far, all our fundamental solutions to the Stokes equations have corresponded 
to a constant pressure. In general situations, it is to be expected that the pres-
sure distribution will not be constant, so that another fundamental solution 
will be sought, and this time, the pressure will be assumed to be different from 
a constant value. Then, the pressure must be a nontrivial solution to Equation 
8.2b, which is the Laplace equation. Having so determined the pressure, the 
corresponding velocity distribution will be obtained from Equation 8.1b.

Since the pressure p satisfies the three-dimensional Laplace equation, the 
possible fundamental solutions may be written immediately from Section 
5.3. The source type of solution, in which p ~ 1/r, turns out to be of no special 
interest. The next highest form of separable solution, which is the doublet 
type of solution, is p ~ cos θ/r2. For reasons that will become apparent shortly, 
the constant of proportionality will be taken as 2cμ, so that the pressure field 
that is being considered is

	 p c
x
r

= 2
3

	

where cos θ = x/r has been used. Then, if the flow is assumed to be steady, the 
equation to be satisfied by the velocity is, from Equation 8.1b,

	 =2 1
u p.

	

Of the three scalar equations represented by this vector equation, the 
equation for the velocity component u is the most complicated because of 
the nature of the pressure distribution; so this equation will be dealt with 
last. From the expression for p, the equation to be satisfied by the velocity 
component v is

	 2
5

6v c
xy

r
= − .

	



304 Fundamental Mechanics of Fluids

The particular integral to this nonhomogeneous partial differential equa-
tion, which is v = cxy/r3, is readily obtained if one is familiar with the proper-
ties of harmonic functions of different degrees. Alternatively, this result may 
be deduced from the following identities:

	
=

−

= + + ⋅

+
2

2

2 2 2

1 1

2

r
n n
rn n

( )

( )φψ ψ φ φ ψ φ ψ.	

Here, r2 = x2 + y2 + z2 and ϕ and ψ are any two functions. Then if ϕ = 1/r3 
and ψ = xy, it is readily verified that
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where the first result follows from the first of the identities above. Then, 
using the second of these identities,

	 = = −2 2
3 5

6( ) .φψ
xy

r

xy

r 	

That is, the particular solution to the equation for the velocity component 
v is

	 v c
xy

r
=

3
.
	

The equation to be satisfied by the w component of the velocity vectors is

	 = −2
5

6w c
xz
r

.
	

The particular solution to this equation is obtained in exactly the same 
way as that for v and may be deduced to be
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	 w c
xz
r

=
3
.
	

The equation to be satisfied by the u component of the velocity vector is

	 = −2
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2
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2
6u c

r
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.
	

In view of the solutions for v and w, it might be expected that the solution 
to this equation is u = cx2/r3. This is indeed the case, as may be confirmed by 
setting ϕ = 1/r3 and ψ = x2 and employing the identities mentioned above. 
Thus

	

=

= −

=

=

∴ ⋅ = −

2
5

4

2

2

5

6

3

2

2

6

φ

φ

ψ

ψ

φ ψ

r

r
e

xe

x
r

r

x

	

and hence

	 = = −2 2
2

3 3
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Thus, the particular integral to the equation for u is

	 u c
x
r

=
2

3
.
	

Solutions to the homogeneous equations ∇2u = 0, ∇2v = 0, and ∇2w = 0 may 
be added to each of the foregoing particular integrals. Denoting these solu-
tions by u ,́ v ,́ and w ,́ respectively, the complete solution for the velocity u 
corresponding to the pressure distribution p = 2cμx/r3 is

	 u e e e u e u= + + + = +c
x
r

xy

r

xy

r
c
x
r

x y z r

2

3 3 3 2
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where uʹ = (u ,́ v ,́ wʹ). The quantity u ,́ which must satisfy the equation ∇2uʹ = 0, 
will now be determined such that the continuity equation is satisfied. Taking 
the divergence of the velocity u shows that

	 ⋅ = ⋅ + ⋅u r uc
x
r3

	

but

	

⋅ = ⋅ + ⋅

= −

x
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where the fact that ∇ ∙ r = 3 has been used. Hence

	 ⋅ = + ⋅u uc
x
r3

.
	

Thus, by choosing uʹ = c(ex/r), the continuity equation will be satisfied. It 
will be noted that this form of uʹ also satisfies the homogeneous equation 
∇2uʹ = 0. Thus, a valid velocity distribution has been found that satisfies the 
Stokes equations corresponding to a doublet type of pressure field. In sum-
mary, this solution is

	 p c
x
r

= 2
3 	 (8.6a)

	 u e e= +c
x
r rr x2

1
. 	 (8.6b)

The solution represented by the above equations has a singularity at the 
origin, and this singularity is known as a stokeslet. Although the stokeslet 
does not exert a torque on the surrounding fluid, it does exert a force on it. 
The magnitude of this force may be established as follows: in tensor notation, 
the force Fi acting on the fluid will be

	 F n Si ij j
s

= −∫ σ d
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where, for a Newtonian fluid,

	 σ δij ij
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j
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and for this particular flow field, the pressure is given by Equation 8.6a. 
Hence, the expression for the force Fi becomes
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Now, if the surface S is considered to be a sphere of radius r, then nj = xj/r, 
so that the expression for Fi becomes
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But in this particular case, the velocity distribution, which is given by 
Equation 8.6b, is homogeneous of degree 1. Hence, from Euler’s theorem, it 
follows that
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A second quantity that appears in the integrand of the foregoing integral 
may be evaluated as follows:
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where the fact that ujdxj/dxi = ujdij = ui has been used. Hence, using Equation 
8.6b,
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Using these results, the expression for the force acting on the fluid due to 
the stokeslet becomes

	

F c
xx
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r r
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Alternatively, in vector notation, this expression becomes

	 F e= ∫6
3

c
x
r

Sr
s

d .
	

This integral may be evaluated explicitly using the following relations:

	 x = cos θ	

	 er = cos θ ex + sin θ cos ωey + sin θ sin ωez	

	 dS = r2 sin θ dθ dω.	

Thus, the force acting on the fluid due to a stokeslet is

	 F e e e= + +∫6
0

2

c x y zω θ θ θ ω θ ω
π

d cos (cos sin cos sin sin )sinn .θ θ
π

d
0∫ 	

That is,

	 F = 8πcμex.	 (8.6c)

Thus, a stokeslet exerts a force on the surrounding fluid with a strength 
that is proportional to the pressure parameter c and whose direction is in the 
positive x direction for c > 0.

8.6  Rotating Sphere in Fluid

The foregoing fundamental solutions are sufficient to establish more practical 
solutions for low-Reynolds-number flows. One of these solutions corresponds 
to a solid sphere that is rotating in an otherwise quiescent fluid. Consider 
such a sphere to be rotating about the x axis with constant angular velocity Ω. 
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The nature of the resulting flow field may be expected to be similar to that of 
a rotlet. Hence, let the velocity distribution correspond to Equation 8.5a and 
see if the boundary conditions are, or may be, satisfied. Then

	 u
e e

=
×

B
r

r x
2

.
	

This velocity distribution gives a finite velocity as r → ∞ as required. The 
other boundary condition is, on r = a, u = Ωaer × ex. This condition is satisfied 
for B = Ωa3, so that the required velocity distribution is

	 u e e= ×
a
r

r x

3

2
. 	 (8.7a)

Since the rotlet is located at r = 0 and since the surface of the sphere is r = a, 
there is no singularity in the fluid.

Since the rotlet was found to exert a moment on the surrounding fluid, the 
surrounding fluid will exert a moment on the surface r = a in this case. The 
magnitude of this moment is given by Equation 8.5c. Hence, using B = Ωa3, 
the moment acting on the sphere will be

	 M = −8πμΩa3ex.	 (8.7b)

This moment acts in a direction that opposes the motion of the sphere, as 
might be expected.

8.7  Uniform Flow Past Sphere

The solution corresponding to uniform flow past a sphere may be obtained 
by superimposing the solutions for a uniform flow, a doublet, and a stokeslet. 
Hence, from Equations 8.3a, 8.3b, 8.4a, 8.4b, 8.6a, and 8.6b, the assumed forms 
of the velocity and pressure fields are as follows:
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Far from the origin, this velocity field reduces to that of a uniform flow as 
required. The simplest way of imposing the near boundary condition is to 
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observe that at the rear stagnation point, u = 0. Hence, substituting x = r = a 
and setting u = 0 in the foregoing expression for the velocity give

	 0 3
3 3

= + − + +U A
a a

c
a ax

x r r xe
e e e e

.
	

Setting the coefficients of ex and er equal to zero separately yields the fol-
lowing pair of equations:
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The solution to these algebraic equations is
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Thus, the velocity and pressure distributions are

	 u e e e= − + + −U
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	 p uU
ax
r

= −
3
2 3

. 	 (8.8b)

In this form, it is readily confirmed that Equation 8.8a satisfies the bound-
ary condition u = 0 over the entire surface r = a.

Neither the uniform flow nor the doublet exerts a force on the fluid. 
However, the stokeslet exerts a force on the surrounding fluid, and the mag-
nitude of this force is given by Equation 8.6c. Then, since the stokeslet is 
inside the spherical surface r = a, the surrounding fluid will exert an equal 
but opposite force on the sphere. Thus, from Equation 8.6c and using the fact 
that c = – 3Ua/4, the magnitude of the force acting on the sphere will be

	 F = 6πμUaex.	 (8.8c)
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This is the famous Stokes’ drag law for a sphere in a uniform flow, and 
it is valid for low Reynolds numbers. Since the direction of this force 
is clearly in the direction of the uniform flow, this result is frequently 
quoted  in  terms of the dimensionless drag coefficients, which involves 
the scalar magnitude of the force only. This drag coefficient is defined as 
follows:

	
C

A

U
D =

F/

1
2

2ρ
	

where A = πa2 is the frontal area of the sphere. Thus, using Equation 8.8c

	 C
RD
N

=
24

. 	 (8.8d)

Here, RN = ρU2a/μ is the Reynolds number of the flow. This result is 
shown in Figure 8.2, which shows the form of the drag coefficient as a func-
tion of the Reynolds number for a sphere over a large range of Reynolds 
numbers. Of the entire range of Reynolds numbers, Equation 8.8d is the 
only closed-form analytic solution that exists. Strictly speaking, Equation 
8.8d is valid only for Reynolds numbers that are small compared to unity, 
but it is found experimentally that the result is valid for Reynolds numbers 
that are less than unity, as well as for Reynolds numbers that are small 
compared to unity.

CD

RN

24
RN

CD =

FIGURE 8.2
Drag coefficient as a function of Reynolds number for flow around a sphere.
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8.8  Uniform Flow Past Circular Cylinder

It will be shown in this section that the solution obtained above for a sphere 
in three dimensions has no counterpart in two dimensions. This will be 
shown by attempting to solve the Stokes equations for uniform flow past a 
circular cylinder. Since the fundamental solutions have not been established 
for two dimensions, the alternative approach of solving the boundary-value 
problem for the stream function will be adopted.

For steady flow, the Stokes equation is given by

	 0
1 2= − +
ρ

ρ υ u.
	

Taking the curl of this equation gives the following equation for the vortic-
ity to the Stokes approximation:

	 ∇2ω = 0.	

But in two dimensions, the only nonzero component of the vorticity vector 
is ζ, which is the vorticity in the z direction. Hence

	 ∇2ζ = 0	

but
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where the stream function that satisfies the continuity equation has been 
introduced. Thus, the equation to be satisfied by the vorticity is

	
∂
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This is the biharmonic equation, and in cylindrical coordinates (R, θ), it 
becomes

	
∂
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Noting that the stream function for a uniform flow is ψ = Uy = UR sin θ, we 
look for a solution to the preceding equation of the form

	 ψ(R, θ) = f(R) sin θ	

where f(R) → UR as R → ∞. Substituting this form of solution into the bihar-
monic equation gives

	
d
d

d
d

2

2 2

2
1 1

0
R R R R

f+ − = .
	

This is an equidimensional equation whose solution is of the form

	 f R AR BR R CR
D
R

( ) log .= + + +3

	

Thus, the stream function is of the form

	 ψ θ θ( , ) log sin .R AR BR R CR
D
R

= + + +3

	

In order to recover a uniform flow far from the cylinder, ψ(R, θ) must tend 
to UR sinθ as R → ∞. Hence

	 A = B = 0	

and

	 C = U.	

Hence, the expression for the stream function reduces to

	 ψ θ θ( , ) sin .R UR
D
R

= +
	

The near boundary condition requires that on the surface of the cylinder, 
both the tangential and radial velocity components should vanish. That is, 
on R = a, both ∂ψ/∂θ and ∂ψ/∂R should vanish. Since ∂ψ/∂θ should be zero 
for all values of θ, the tangential velocity component being zero is equivalent 
to requiring that ψ(a, θ) = constant, where the constant may be taken to be 
zero. That is, the no-slip boundary condition on the surface of the cylinder 
requires that
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ψ θ
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It is now evident that there is no choice of the constant D in our solution 
that satisfies these two boundary conditions. If we had satisfied the near 
boundary conditions first with the solution, it would have been found that it 
was impossible to satisfy the far boundary condition. Thus, we conclude that 
there is no solution to the two-dimensional Stokes equations that can satisfy 
both the near and far boundary conditions. The lack of such a solution is 
known as Stokes’ paradox.

The difference between the two-dimensional Stokes equations and the 
three-dimensional Stokes equations is best explained by reexamining the 
Stokes approximation. In terms of dimensionless variables, the Navier–
Stokes equations were shown to be

	
∂
∂

+ ⋅ = − +
u

u u u
*
*

* * * * * * *
t

R pN ( ) 2

	

so that the Stokes equations correspond to the limit RN → 0. Thus, a more 
accurate solution for low Reynolds numbers could be sought in the form

	 ψ ψ ψ= + +0 1
2R O RN N( ) 	

which represents an asymptotic expansion for the stream function, which is 
valid for low Reynolds numbers. Then, by employing a limiting procedure, 
the problem for ψ0 may be solved, then the problem for ψ1, and so on. It has 
been shown here and in Section 8.7 that a solution corresponding to ψ0 exists 
for a sphere but not for a cylinder. However, it is found that the problem for 
ψ1 in the case of the sphere has no solution, which is known as Whitehead’s 
paradox. Thus, a basic difficulty has been encountered, and this difficulty 
appears in the first-order problem in two dimensions and in the second-
order problem in three dimensions.

In mathematical terminology, the difficulty encountered above is referred 
to as a singular perturbation. That is, the Stokes approximation is really the 
first-order problem arising out of a perturbation type of solution to the 
Navier–Stokes equations, and the inability of this type of solution to match 
the required boundary conditions renders the perturbation singular. In two 
dimensions, the difficulty associated with this singular perturbation appears 
immediately, whereas in three dimensions, the difficulty is postponed to the 
second-order term in the expansion.

In more physical terms, the difficulty encountered is associated with the 
neglect of the convection of momentum of the fluid, an assumption that 



315Low Reynolds Number Solutions

is invalid far from the body. The limit RN → 0 is equivalent to completely 
neglecting the convection in the fluid in comparison with the viscous dif-
fusion in the fluid. Because of the nature of the viscous boundary condi-
tion near the body, viscous diffusion will be large near the body, whereas 
convection will be small because of the retardation of the velocity by the 
body. However, far from the body, the velocity gradients will die down, so 
that viscous diffusion will be reduced. At the same time, the fluid velocity 
will be close to that of the free-stream velocity. That is, the convection in the 
fluid will become more important, while the viscous diffusion will become 
less important. This means that the conditions required to satisfy the Stokes 
approximation will be violated.

The nature of the failure of the approximation introduced by Stokes is that 
of a nonuniform representation in space. The approximation is valid close to 
the body but is invalid far from the body. Thus, singular perturbations are 
sometimes referred to as nonuniform expansions. The mathematical diffi-
culties encountered in singular perturbations may be overcome by matched 
expansions, which will be described in the next section.

8.9  Oseen Approximation

An alternative low-Reynolds-number approximation is the Oseen approx-
imation. Oseen recognized the discrepancy that was inherent in the 
Stokes approximation far from the body under consideration. He noted 
that the Stokes approximation corresponds to convection at zero veloc-
ity and recognized that far from the body momentum will be convected 
with a velocity that will be close to the free-stream velocity. Thus, Oseen 
proposed linearizing the Navier–Stokes equations such that momentum 
is transported not with the local velocity (as in the exact case) or with zero 
velocity (as in the Stokes approximation), but with the free-stream veloc-
ity. Thus, if the free stream flows in the x direction with velocity U, the 
equations that represent the Oseen approximation to the Navier–Stokes 
equations are

	 ∇ · u = 0	 (8.9a)

	
∂
∂

+
∂
∂

= − +
u u

u
t

U
x

p
1 2

ρ
υ . 	 (8.9b)

Solutions to the equations above may be established in a manner similar to 
that used to obtain solutions to the Stokes equations. The results so obtained 
will be valid far from the body but will fail close to the body. This is exactly 
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the opposite of the solutions to the Stokes equations. Thus, two independent 
solutions are obtained, one being valid near the body and the other being 
valid far from the body. By matching these two solutions, a uniformly valid 
expression will result that will be valid for small Reynolds numbers. The 
details are considered to be beyond the scope of the fundamentals that are 
being treated in this book, but they may be found in the book by Van Dyke 
referenced at the end of Part III. This method of overcoming the difficul-
ties encountered owing to the singular perturbation is called the method of 
matched asymptotic expansions.

PROBLEMS

	 8.1	 Using the Stokes solution for uniform flow over a sphere, inte-
grate the pressure around the surface of the sphere to establish 
the pressure drag that acts on the sphere. Hence, deduce what 
portion of the total Stokes drag is due to the pressure distribution 
and what portion is due to the viscous shear on the surface of the 
sphere.

	 8.2	 A liquid drop whose viscosity is μʹ moves slowly through another 
liquid of viscosity μ with velocity U. The shape of the drop may be 
taken to be spherical and the motion may be taken to be sufficiently 
slow that inertia of the fluid may be neglected. The boundary condi-
tions at the surface of the drop are that the velocity and tangential 
stresses in the two fluids are the same.

		  Show that the solution to the problem posed above exists in which 
the pressure inside the drop is proportional to x and that outside the 
drop is proportional to x/r3. From the solution, calculate the drag of 
the drop and show that it is smaller than that for a rigid sphere of the 
same size, the drag ratio being

	
1 2 3

1
+

+
/ /

/
( )

.
	

	 8.3	 A flow field is represented by the following equations:

	 u = rer × ex	

	 p = 0.	

		  Show that this representation satisfies the Stokes equations. Using 
this solution, find the velocity and pressure fields for a fluid that is 
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contained between two concentric spheres of radii ri and ro > ri in 
which the outer sphere is rotating with angular velocity Ωo about 
the x axis and the inner sphere is rotating with angular velocity Ωi, 
in the same direction. Calculate the torque that acts on each of the 
spheres.

		  From the results obtained above, deduce the velocity and pressure 
fields in a fluid that is contained inside a rotating sphere and find the 
torque that acts on the sphere.

	 8.4	 A flow field is represented by the following equations:

	 u = ∇x × Ω	

	 p = 0.	

		  Here, Ω is a vector of constant magnitude. Show that this represen-
tation is a solution of the Stokes equations provided that χ satisfies 
the following equation:

	 −
∂
∂

=2 1
0χ

υ
χ
t

.
	

		  Solve this equation for χ, and hence, find the velocity field gener-
ated by a sphere of radius a that is rotating with a periodic angular 
velocity |Ω| eiωt.

	 8.5	 Show that in spherical coordinates the Stokes equations for axisym-
metric flows may be written in the following form:

	 L2(L2ψ) = 0	

	 where

	 L
r r

2
2

2 2

1
=
∂

∂
+

∂
∂

∂
∂

sin
sin

.
θ

θ θ θ 	

	 8.6	 Obtain a solution to the Stokes equations in spherical coordinates for 
the stream function ψ(r, θ) in the following form:

	 ψ(r, θ) = r f (θ).
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		  Show that this solution can be used to represent Stokes flow in a 
right-angled corner in which the vertical surface x = 0 is stationary 
and the horizontal surface y = 0 is moving in the negative x direction 
with constant velocity U. Estimate the range of validity of this solu-
tion by evaluating from it the order of magnitude of the inertia terms 
and the viscous terms as indicated below and determining the value 
of the radius r that ensures a small value of the Reynolds number:

	 inertia: ρu
u
rr
r∂

∂ 	

	 viscous:
θr
ur

2

2

2

∂

∂
.
	

		  Figure 8.3 shows how modern experimental instrumentation and 
techniques permit the visualization of complex fluid flow situation.
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0 ms 0.6 ms

0.2 ms 0.8 ms

0.3 ms 1.0 ms

0.4 ms 1.4 ms

0.5 ms 1.8 ms
1 mm

FIGURE 8.3
Heptane droplet striking a stainless steel surface at a temperature of 160°C. (Courtesy of 
Professor Sanjeev Chandra, University of Toronto, Toronto, Canada.)
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9
Boundary Layers

Boundary layers are the thin fluid layers adjacent to the surface of a body in 
which strong viscous effects exist. Figure 9.1 shows the nature of the flow 
field that would exist around an arbitrary body at a Reynolds number that 
is not small or of order unity. The nature of such a flow field is known from 
information gathered from a large number of experiments.

A dotted line is shown in Figure 9.1 that originates at the front stagnation 
point and moves downstream near the top and bottom surfaces of the body. 
Outside of this dotted line, relative to the body, the velocity gradients are not 
large, and so viscous effects are negligible. Then, if compressible effects may 
be ignored, the fluid may be considered to be ideal, and the results of Part II 
of this book may be employed. Thus, if the flow field far upstream is uni-
form, it is also irrotational there, so that Kelvin’s theorem guarantees us that 
the flow outside the dotted line is everywhere irrotational. This potential-
flow field is frequently referred to as the “outer flow.”

Between the dotted line and the body, there are strong viscous effects due 
to the large velocity gradient that exists. These large velocity gradients are 
necessitated by the no-slip boundary condition on the solid boundary, which 
reduces the large velocities that exist in the outer flow to zero on the surface. 
This is the so-called boundary layer or “inner flow.” Here, the vorticity is not 
zero. Vorticity is generated along the surface of the body, and it is diffused 
across the boundary layer and convected along the boundary layer by the 
mean flow.

Toward the rear of the body, the boundary layer will encounter an adverse 
pressure gradient, that is, an increasing pressure. This usually causes the 
boundary layer to separate from the body, forming a so-called wake region 
behind the body. The velocity gradients are not large in the wake, so viscous 
effects are not too important. However, all the vorticity that exists in the 
boundary layers is convected into the wake, so that the flow in the wake is 
not irrotational. If the boundary layer is still laminar at separation, a shear 
layer will exist of the type discussed in Section 6.12. Such shear layers were 
found to be unstable, and over a wide range of Reynolds numbers, this insta-
bility manifests itself in the form of a periodic wake that is the well-known 
Kármán vortex street.

The coverage of boundary layers begins here with the derivation of the 
boundary-layer approximation to the Navier–Stokes equations. Some exact 
solutions to these equations are then discussed, including the Blasius solu-
tion for the boundary layer on a flat surface and the Falkner–Skan similarity 
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solutions. The Kármán–Pohlhausen approximate method is then introduced 
and applied to a general boundary-layer problem. Finally, the separation of 
boundary layers and their stability are discussed.

9.1  Boundary-Layer Thicknesses

Prior to establishing the boundary-layer equations, it is useful to establish 
the three types of boundary-layer thicknesses that are in common use. The 
most widely used of the boundary-layer thicknesses is simply referred to as 
the boundary-layer thickness, and it is denoted by δ. Its usual definition is that 
distance y = δ from the solid boundary where the local value of the velocity 
reaches 0.99 of the free-stream or outer-flow value. That is,

	 y = δ when u = 0.99U.	 (9.1a)

Figure 9.2a shows the boundary-layer thickness δ for flow over a flat 
surface.

Another type of boundary-layer thickness that is useful under certain 
circumstances is the displacement thickness, which is denoted by δ*. This 
thickness is defined as the distance by which the undisturbed outer flow 
is displaced from the boundary by a stagnant layer that removes the same 

Boundary layer separatesOuter flow
Viscous effects negligible
Vorticity zero

Inner flow
Strong viscous effects
Vorticity generated

Wake
Viscous effects not important
Vorticity nonzero

FIGURE 9.1
Nature of flow around an arbitrarily shaped bluff body.
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mass flow from the flow field as the actual boundary layer. That is, δ* is the 
thickness of a zero-velocity layer that has the same mass-flow defect as the 
actual boundary layer. This thickness is illustrated in Figure 9.2b. In math-
ematical terms, the volume of fluid that is absent owing to the presence of 
the boundary-layer model is Uδ*. Equating this to the volume of fluid that is 
absent owing to the actual boundary layer gives the equation that defines the 
displacement thickness. Thus

	 U U u yδ* ( )= −
∞

∫ d
0 	

and hence

	 δ* .= −
∞

∫ 1
0

u
U

yd 	 (9.1b)

A third type of boundary-layer thickness that is frequently used is the 
momentum thickness, denoted by θ. The momentum thickness is defined as 
that thickness of layer that, at zero velocity, has the same momentum defect, 
relative to the outer flow velocity, as the actual boundary layer. Thus, the 
momentum thickness is a layer similar to that illustrated in Figure 9.2b, 
except that momentum fluxes rather than mass flows are compared with the 
actual boundary layer. The mass flow that would exist through the momen-
tum thickness at the outer velocity would be ρUθ. Hence, the momentum 
defect due to this layer will be ρU2θ. Equating this to the momentum defect 
in the actual boundary layer gives

	 ρ θ ρU u U u y2

0
= −

∞

∫ ( )d
	

0.99 U

δ

δ*

U U(a) (b)

FIGURE 9.2
Definition sketch for (a) boundary-layer thickness and (b) displacement thickness.
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and hence

	 θ = −
∞

∫
u
U

u
U

y1
0

d . 	 (9.1c)

The various thicknesses defined above are, to some extent, an indication 
of the distance over which viscous effects extend. Each of these thicknesses 
will be used in later sections of this chapter, but in the meantime, it may 
be stated that the boundary-layer thickness δ is usually larger than the dis-
placement thickness δ*, which, in turn, is usually larger than the momentum 
thickness θ.

9.2  Boundary-Layer Equations

The boundary-layer equations may be derived from the Navier–Stokes 
equations by either a physically based argument or a limiting procedure as 
RN → ∞. The original derivation used by Prandtl was physical in nature and 
will be followed here.

Figure 9.3 shows a typical boundary-layer configuration on a plane sur-
face or on a curved surface for which δ is small compared with the radius 
of curvature of the surface. The only geometric length scale in such prob-
lems is the distance x from the leading edge of the surface. For all points in 
the boundary layer except those near the leading edge, the boundary-layer 
thickness will be small compared with the distance x. That is, except near the 
leading edge, δ/x ≪ 1. The x component of velocity u is of order U, the outer 
flow velocity, and ∂/∂x is of order 1/x in the boundary layer. Thus, ∂u/∂x is of 
order U/x, and hence, in order to maintain the importance of both terms in 

U

y

x

δ (x)

FIGURE 9.3
Development of a boundary layer on a plane surface.
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the continuity equation, ∂v/∂y must also be of order U/x. Since v will be much 
smaller than u in the boundary layer and since ∂/∂y will be much larger than 
∂/∂x, the required order of ∂v/∂y may be met by considering v to be of order 
Uδ/x and ∂/∂y as being of order 1/δ. Thus, within the boundary layer, the 
following order of magnitudes will exist:

	

u U

v U
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x x

y
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The Navier–Stokes equations for the steady two-dimensional flow under 
consideration are
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Using the order of magnitudes established above, the various terms in 
these two equations will be of the following order of magnitude:
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No attempt has yet been made to estimate the order of magnitude of the 
pressure terms, so they are carried along as they are.

In the first of these two equations, the two inertia terms are of the same 
order, but the second viscous term (υ∂2u/∂y2) is seen to be much larger 
than the first viscous term (υ∂2u/∂x2). Hence, the latter viscous term may 
be neglected in boundary layers. Since fluid particles may be accelerated in 
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boundary layers, and since strong viscous effects exist, the dominant viscous 
term is assumed to be of the same order of magnitude as the inertia terms. 
This gives

	
U
x

U2

2
~ υ

δ 	

or

	 δ
υ

~ .
x
U 	

That is, from purely order-of-magnitude considerations, it may be deduced 
that the boundary-layer thickness will increase as √x. Furthermore, the con-
dition δ/x ≪ 1 becomes

	
x Ux2

2
1

δ υ
~ >>

	

or

	 R
Ux

N = >>
υ

1
	

that is, the boundary-layer assumption that δ/x ≪ 1 is equivalent to the con-
dition RN ≫ 1, where the length scale used in the Reynolds number is x.

From the foregoing discussion, it is obvious that, provided the Reynolds 
number based on x is large, the x component of the Navier–Strokes equations 
may be approximated by the following equation:
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Furthermore, from the order-of-magnitude balance for the y component of 
the Navier–Stokes equations, it is evident that the inertia in the y direction 
is of order δ/x smaller than that in the x direction and so may be neglected 
by comparison. Also, the viscous terms in the y direction are of order δ/x 
smaller than those that act in the x direction, and so the former may be 
neglected. Thus, the y component of the Navier–Stokes equations becomes

	 0
1

= −
∂

∂ρ

p
y
.
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That is, p is independent of the transverse coordinate y in boundary layers, 
so that p will be a function of x only. Thus, in boundary layers, the continuity 
equation and the Navier–Stokes equations become

	
∂
∂

+
∂
∂

=
u
x

v
y

0 	 (9.2a)
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It will be noticed that the loss of the highest derivative in x now makes 
the governing equations parabolic, whereas the Navier–Stokes equations 
are elliptic. This mathematical change has physical consequences, as well as 
mathematical implications, which will be exposed in later sections.

Since the pressure p is independent of the transverse coordinate y in 
boundary layers, the pressure distribution along the boundary layer will be 
the same as that of the outer flow. But the outer flow is a potential flow, and 
so the Bernoulli equation is valid there. Hence

	
p

U
ρ
+ =
1
2

2 constant
	

where the outer velocity U will be a constant for flow over a plane surface, 
but in general, it will be a function of x. Thus, from the Bernoulli equation, 
considering U to be a function of x,
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∂
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Substituting this result into Equation 9.2b gives the following alternative 
form of the Prandtl boundary-layer equation:
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The boundary conditions that accompany the boundary-layer equations 
are the no-slip conditions on the surface and the condition that the outer-
flow velocity is recovered far from the bounding surface. That is, the follow-
ing boundary conditions must be satisfied:

	 u(x, 0) = 0	 (9.3a)

	 v(x, 0) = 0	 (9.3b)
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	 u(x, y) → U(x) as y → ∞.	 (9.3c)

The last condition in effect matches the inner flow to the outer flow, so 
that the potential-flow solution must be known before the boundary-layer 
problem can be solved.

The alternative way of deriving the boundary-layer equations from the 
Navier–Stokes equations involves a limiting procedure similar to that which 
was used to extract the Stokes equations from the full Navier–Stokes equa-
tions. The Navier–Stokes equations are first written in terms of dimension-
less variables, which results in a coefficient 1/RN appearing in front of the 

viscous terms. Stretched coordinates X = x and Y R yN=  are then intro-
duced, which removes the coefficient 1/RN from one of the viscous terms. If 
the limit RN → ∞ is taken, while holding X and Y fixed, the boundary-layer 
equations will be obtained. This approach is useful if higher approximations 
to boundary-layer theory are required, that is, if an expansion type of solu-
tion is sought. However, the nature of the coordinate stretching is not obvi-
ous without appealing to the results obtained using the physical approach.

9.3  Blasius Solution

An exact solution to the boundary-layer equations corresponding to a uni-
form flow over a flat surface was obtained by Blasius. The flow configuration 
for a flat boundary is shown in Figure 9.3, where it is understood that U is a 
constant and δ is a function of x. Since U is constant, the pressure term in the 
boundary-layer equation is identically zero. Thus, the continuity equation 
and the boundary-layer approximation to the Navier–Stokes equations are
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In order to reduce this pair of equations to a single equation, a stream func-
tion defined by u = ∂ψ/∂y, v = −∂ψ/∂x is introduced. This satisfies the conti-
nuity equation identically for all stream functions ψ and yields the following 
form of the boundary-layer equation:
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∂
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Since this is a parabolic partial differential equation and since there 
is no geometric length scale in the problem, a similarity type of solu-
tion will be sought. Similarity solutions were discussed in Section 7.4 and, 
in the context of the problem in hand, were shown to be of the following 
form:

	 ψ(x, y) ~ f(η)	

where

	 η~ .
y

xn 	

The value of n for the case of a flat surface is 1
2

, so that the similarity vari-
able η is chosen to be

	 η
υ

=
y

x U/
.
	

Here, the parameters v and U have been used to render the similarity vari-
able dimensionless. For this choice of η, the x component of velocity will have 
the following functional form:

	 u
y

U
x
f=

∂
∂
ψ

υ
η~ ( )

	

where the prime denotes differentiation with respect to η. But when η = con-
stant, u should be constant, so that the proportionality factor in the equa-
tion ψ(x, y) ~ f(η) should include a √x. Then, since the units of ψ are a length 
squared divided by time, the dimensions will be correct if the proportional-
ity factor also includes υU . That is, a similarity solution of the following 
form is sought:

	 ψ υ η( , ) ( )x y Ux f= 	

where

	 η
υ

=
y

x U/
.
	

From these expressions, the various derivatives that appear in the bound-
ary-layer equation may be evaluated as follows:
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Substituting these results into the equation for the stream function gives
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Since x may be canceled from this equation, the existence of a similarity 
type of solution is confirmed. That is, a solution of the assumed form exists 
provided that the function satisfies the following conditions:

	 + =f ff
1
2

0 	 (9.4a)

	 f(0) = fʹ(0) = 0	 (9.4b)

	 fʹ(η) → 1 as η → ∞.	 (9.4c)

The boundary conditions 9.4b and 9.4c follow from the no-slip boundary 
conditions and the matching condition with the outer flow as described by 
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Equations 9.3a through 9.3c. From the solution to this problem, the stream 
function may be obtained using the relationship

	 ψ υ
υ

( , ) .x y Ux f
y

x U
=

/
	 (9.4d)

The problem represented by Equations 9.4a through 9.4c is a well-posed 
problem. It is shown in the problems at the end of this chapter that the dif-
ferential equation may be reduced in order. However, numerical integration 
is eventually required. In spite of this, the Blasius solution to the boundary-
layer equations is considered to be exact since the partial differential equa-
tion has been reduced to an ordinary differential equation that, together 
with the appropriate boundary conditions, may be solved numerically to a 
high degree of accuracy.

The results of interest that should be extracted from the solution are the 
shear-stress distribution along the surface, the drag acting on the surface, 
and the boundary-layer thickness. The shear stress on the surface is given by
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Nondimensionalizing this surface shear stress by means of the kinetic 
energy in the free stream gives
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where the Reynolds number is based on the distance x from the leading edge 
of the surface to the location under consideration. But the value of fʺ(0) is 
found numerically to be 0.332, so that the shear-stress distribution along the 
surface will be given by the expression
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(9.5a)

This result shows that the shear stress falls off as √x along the surface.
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The drag force acting on the surface may be evaluated by integrating the 
shear stress. That is, the drag force acting on the surface up to the location x 
will be given by

	 FD
x

= ∫ τ ξ ξ0
0

( ) .d
	

Thus, the drag coefficient of the surface will be
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Using the result obtained above for the surface shear-stress distribution 
gives
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Strictly speaking, the shear-stress distribution given by Equation 9.5a 
should not be used near the leading edge of the surface since the boundary-
layer assumptions are no longer valid there. However, any difference 
between the actual shear stress and that given by Equation 9.5a is not likely 
to create any significant discrepancy because of the relatively short distance 
involved. The shear stress actually has a singularity at x = 0, but this singu-
larity is integrable, so that the drag force is not singular. Indeed, Equation 
9.5b shows that the drag force varies as √x, where x is the point up to which 
the accumulated drag is being considered.

To obtain the boundary-layer thickness, it is observed from the numerical 
solution that u = 0.99U when η = 5.0. Then, using the definition of η and the 
fact that y = δ when u = 0.99U gives

	
δ

υx/U
= 5 0.

	

and hence

	
δ
x RN

=
5 0.

	 (9.5c)
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where, again, the length used in the Reynolds number is the distance x to 
which the boundary-layer thickness applies. In the same way, the following 
expressions are obtained from the numerical results for the displacement 
thickness and the momentum thickness:

	
δ*
x RN

=
1 72.

	 (9.5d)

	
θ
x RN

=
0 664.

. 	 (9.5e)

These results show that the various boundary-layer thicknesses grow as 
√x and that θ < δ* < δ.

9.4  Falkner–Skan Solutions

A whole family of similarity solutions to the boundary-layer equations was 
found by Falkner and Skan. These solutions are obtained by seeking general 
similarity-type solutions and interpreting the flow field for each solution so 
obtained.

Look for general similarity solutions of the form

	 u(x, y) = U(x)fʹ(η)	

where

	 η
ξ

=
y
x( )

.
	

Here, U(x) is the outer flow and ξ(x) is an unspecified function of x that will 
be determined later. For the form of velocity given above, the stream func-
tion, which may be obtained by integration, must be of the following form:

	 ψ(x, y) = U(x)ξ(x)f(η).	

But, from Equation 9.2c, the equation to be satisfied by ψ is

	 ∂
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The various terms that appear in this equation may be evaluated as follows:

	

∂
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Substituting these results into the equation to be satisfied by ψ gives
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Hence
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Here, the second term in the first bracket has been canceled with the third 
term in the second bracket. Combining the second and third terms of this 
equation gives
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This equation may be put in standard form by multiplying by ξ2/(υU), 
giving

	 + + −f
x
U ff

U
x

f
ξ
υ

ξ
ξ
υ

d
d

d
d

( ) { ( ) }
2

21 == 0.
	

If a similarity solution exists, this should now be an ordinary differential 
equation for the function f in terms of η. Thus, the two coefficients inside the 
square brackets should equal a constant at most, say α and β, respectively. 
That is, for a similarity solution, we must have
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d
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where α and β are constants. A convenient alternative to one of the preceding 
equations may be obtained as follows:
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that is,

	
d
dx

U( ) ( ).ξ υ α β2 2= −
	

This equation, together with either of the foregoing two equations, is suf-
ficient to relate U and ξ to the constants α and β. In terms of α and β, the dif-
ferential equation to be solved for the function f becomes

	 fʹʺ + αffʺ + β[1 − ( fʹ)2] = 0.	

The boundary conditions that accompany this differential equation are the 
same as for the flat surface. If the problem so obtained is a solvable one, then 
we have found an exact solution to the boundary-layer equations.
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From the foregoing analysis and discussion, it is evident that exact solu-
tions to the boundary-layer equations may be obtained by pursuing the fol-
lowing procedure:

	 1.	Select values of the constants α and β.
	 2.	Find the corresponding values of U(x) and ξ(x) from the relations

	
d
dx

U( ) ( )ξ υ α β2 2= − 	 (9.6a)

	 ξ βυ2 d
d
U
x
= . 	 (9.6b)

	 3.	Determine the function f(η) that is the solution to the following 
problem:

	 fʹʺ + αf fʺ + β[1 − ( fʹ)2] = 0	 (9.6c)

	 f(0) = fʹ(0) = 0	 (9.6d)

	 fʹ(η) → 1 as η → ∞.	 (9.6e)

	 4.	The stream function for the flow field in the boundary layer is then 
given by

	 ψ ξ
ξ

( , ) ( ) ( )
( )

.x y U x x f
y
x

= 	 (9.6f)

Having chosen the constants α and β, a particular flow configuration 
is being considered. This flow configuration will not be known à priori, 
but it will become evident when step 2 is completed. The function U(x) is 
the outer-flow velocity, which is the potential-flow velocity for the geom-
etry under consideration. Then, when U(x) is established through step 2, 
comparison with the results of Chapter 4 will reveal the geometry of the 
problem. Since α and β have been chosen, the problem to be satisfied by 
the function f(η) is now explicit, so a solution may be sought. This solu-
tion, together with the quantities U(x) and ξ(x), completely determines the 
stream function for the problem from which all properties of the flow field 
may be derived.

Several exact solutions to the boundary-layer equations may be obtained 
by the foregoing method. The solution corresponding to a flat surface, which 
has already been established, will be obtained from the Falkner–Skan 
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solutions to illustrate the procedure and to verify the result. Some new solu-
tions to the boundary-layer equations will then be established in the follow-
ing sections.

It should be noted that for α = 1, numerical solutions to Equations 9.6a 
through 9.6f show that fʺ(0) → 0 as β is decreased. The value for which 
fʺ(0) → 0 is β = –0.1988, and for values of β that are smaller than this value, 
fʹ(η) > 1 at some location. This corresponds to u > U, which is physically 
realized only in certain types of wall jets. Therefore, for α = 1, we consider 
β > –0.1988.

The solution corresponding to a flat surface is obtained by choosing α =
1
2

 

and β = 0 in the Falkner–Skan solutions. Then, from Equations 9.6a and 9.6b
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Since ξ(x) cannot be zero, the second of these equations shows that U(x) = c, 
where c is a constant. Then, the other equation shows that

	 ξ
υ

( ) .x
x
c

=
	

The fact that U(x) is a constant in this case identifies the geometry as a 
flat surface rather than a curvilinear one that may be thought of as being 
stretched out into a plane. Using the values of α and β chosen above, the 
problem to be solved by the function f(η) is
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f ff
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The stream function is then given by

	 ψ υ
υ

( , ) .x y c x f
y

x
=

/c 	

These results are seen to agree identically with the form of the Blasius solu-
tion, which is given by Equations 9.4a through 9.4d.
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9.5  Flow over a Wedge

The solution to the boundary-layer equations corresponding to flow over a 
wedge may be obtained from the Falkner–Skan equations by setting α = 1 
and keeping β arbitrary. Then, from Equations 9.6a and 9.6b with α = 1, U(x) 
and ξ(x) will be defined by the following equations:

	

d
d

d
d

x
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U
x
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ξ υ β

ξ υβ

2

2

2= −

=
	

Integrating the first of these equations gives

	 ξ2U = υ(2 − β)x.	

Dividing the second of the foregoing equations by this last result gives

	
1

2
1

U
U
x x

d
d

=
−
β
β

.
	

This equation may be integrated directly to give

	 log log logU x c=
−

+
β
β2 	

where c is an arbitrary constant. Hence, the outer-flow velocity correspond-
ing to our choice of α is

	 U(x) = cxβ/(2–β)	 (9.7a)

but

	
ξ υβ

ξ
β
β

υββ β

2

2 2 1

2

d
d

/(2 )

U
x

c x

=

∴
−

=− − −( )

	

and hence

	 ξ
υ β β β( )
( )

.( )x
c

x=
− − −2 1 /(2 ) 	 (9.7b)
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Equation 9.7a shows that the outer flow is that over a wedge of angle πβ. This 
may be shown by using the potential flow solution for flow in a sector whose 
angle, measured in the fluid, is π/n. The result, as given by Equation 4.10, is

	
F z Uz

W z nUz

n

n

( )

( )

=

∴ = −1
	

that is,

	 u − iv = nU(x + iy)n−1.	

Hence, on the surface y = 0, the velocity components are

	 u nUx

v

n=

=

−1

0. 	

That is, the velocity given by Equation 9.7a has the same form as that 
near the boundary of the flow in a sector of angle π/n. To find the angle of 
the wedge corresponding to Equation 9.7a, the exponents of x in these two 
expressions are equated. Hence

	 n − =
−

1
2
β
β
.
	

This gives the angle of the half wedge measured in the fluid. Then, from 
the symmetry of the flow field, the angle of the wedge will be 2(π – π/n). From 
the equation above, this angle is πβ, which is shown in Figure 9.4.

y
x

    π β

π
n–

FIGURE 9.4
Boundary-layer flow over a wedge.
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From Equations 9.6c through 9.6e, the problem to be solved for the function 
f is

	 fʹʺ + ffʺ + β[1 − ( fʹ)2] = 0	 (9.7c)

	 f(0) = fʹ(0) = 0	 (9.7d)

	 fʹ(η) → 1 as η → ∞.	 (9.7e)

This problem may be solved numerically. Having obtained the solution for 
f(η), the stream function will be given by Equation 9.6f, where U(x) and ξ(x) 
are given by Equations 9.7a and 9.1b. This gives

	 ψ β υ
β υ

β β β( , ) ( )
( )

( )x y c x f
y

x= −
−

− − − −2
2

1 1 2/(2 ) /( )

/c
. 	 (9.7f)

9.6  Stagnation-Point Flow

Another exact solution to the boundary-layer equations that may be obtained 
from the Falkner–Skan similarity solution is that corresponding to a 
stagnation-point flow. The values of the constants α and β that yield this solu-
tion are α = β = 1. But this is equivalent to letting β be unity in the solution for 
the flow over a wedge. Then, the angle of the wedge becomes π, which means 
that the flow impinges on a flat surface yielding a plane stagnation point.

The solution may be obtained by setting β = 1 in Equations 9.7a through 
9.7f. This gives

	 U(x) = cx	 (9.8a)

	 ξ
υ

( )x
c

= 	 (9.8b)

	 fʹʺ + ffʺ + 1 − ( fʹ)2 = 0	 (9.8c)

	 f(0) = fʹ(0) = 0	 (9.8d)

	 fʹ(η) → 1 as η → ∞	 (9.8e)

	 ψ υ
υ

( , ) .x y c xf
y

c
=

/
	 (9.8f)
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It will be noticed that this is precisely the exact solution to the full Navier–
Stokes equations that was obtained by Hiemenz for a stagnation point. This 
solution is given by Equations 7.7a through 7.7c. Thus, the exact solution to 
the boundary-layer equations is also an exact solution to the full Navier–
Stokes equations in this instance.

9.7  Flow in Convergent Channel

The boundary-layer solution for flow in a convergent channel may be 
obtained from the Falkner–Skan solution by choosing α = 0 and β = 1. For 
these particular values of the constants, Equations 9.6a and 9.6b become
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d
d
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U
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ξ υ

ξ υ

2

2

= −

=
	

Integrating the first of these equations gives

	 Uξ2 = −υx	

and dividing the second equation by this last result gives

	
1 1
U

U
x x

d
d

= − .
	

Integrating this equation shows that the outer-flow velocity is of the form

	 U x
c
x

( ) = − 	 (9.9a)

where c is a constant. Then, from one of the results above, it follows that

	 ξ
υ

( ) .x
c
x= 	 (9.9b)

Equation 9.9a is the potential-flow velocity for flow in a convergent chan-
nel. That is, the solution obtained here corresponds to a boundary layer on 
the wall of a convergent channel in which the flow is directed inward to the 
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apex of the channel walls. This flow configuration is shown in Figure 9.5. It 
will be noted that for c < 0, that is, for outward flow from the apex, Equation 
9.9b shows that no solution exists. This may be interpreted as follows: for 
flow in a divergent channel, the adverse pressure gradient will cause the 
boundary layers to separate, and hence a reverse flow will result. This situa-
tion was encountered in Section 7.8 when the exact solution for viscous flow 
in convergent and divergent channels was studied.

For α = 0 and β = 1, the problem to be satisfied by the function f(η) is

	 fʹʺ + 1 − ( fʹ)2 = 0	 (9.9c)

	 f(0) = fʹ(0) = 0	 (9.9d)

	 fʹ(η) → 1 as η → ∞.	 (9.9e)

Then, using Equation 9.6f and the results 9.9a and 9.9b, the value of the 
stream function will be

	 ψ υ
υ

( , ) .x y c f
y

cx
= −

/
	 (9.9f)

9.8  Approximate Solution for Flat Surface

The foregoing solutions have all been exact in the sense that a similarity 
form of solution reduced the governing partial differential equations to a 

y

x

FIGURE 9.5
Boundary-layer flow on the wall of a convergent channel.
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nonlinear ordinary differential equation that could be solved numerically 
to a high degree of accuracy. For situations where an exact solution to the 
boundary layer equations does not exist, an approximate solution must be 
sought. One of the classical approximate methods that are used widely was 
introduced by von Kármán and refined by Pohlhausen. The basic procedure 
will be presented in this section in the context of boundary-layer flow on a 
flat surface, and the procedure will be generalized in the next section.

For flow over a flat surface, the outer velocity U is constant, so that the 
boundary-layer equations are
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Normally, a functional form of solution to these equations is sought that 
satisfies the equations identically at each point in space, that is, at each value 
of x and y, and which tends to the appropriate values on the boundaries. If 
such a solution cannot be found, it may be possible to satisfy the basic equa-
tions on the average rather than at each and every point in the fluid. That 
is, if the boundary-layer version of the momentum equation is integrated 
with respect to y across the boundary layer, the resulting equation will rep-
resent a balance between the average inertia forces and viscous forces for 
each x location. Then, a velocity distribution may be obtained that satisfies 
this averaged balance of forces but which does not provide a balance at each 
point across the boundary layer. The results that are extracted from such 
approximate solutions are found to be reasonably accurate in most instances.

Prior to integrating the boundary-layer equations, it is useful to recast them 
in a slightly different form. The term u ∂u/∂x may be rewritten as follows:
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in which ∂u/∂x has been replaced by –∂v/∂y from the continuity equation. 
Thus, the boundary-layer form of the equation for the x momentum may be 
written in the following form:
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or

	
∂
∂

+
∂
∂

=
∂

∂x
u

y
uv

u
y

( ) ( ) .2
2

2
υ

	

This equation is still exact within the boundary-layer approximation. This 
local balance of forces will now be reduced to an average balance across the 
boundary layer by integrating with respect to y from y = 0 to y = δ:

	
∂
∂

+ =
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u y uv
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0
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But u(x, 0) = v(x, 0) = 0 from the no-slip boundary condition and u(x, δ) = U, 
which is the outer-flow velocity. Also, μ ∂u/∂y = τ0, the surface shear stress, 
when y = 0, and since the boundary-layer velocity profile should blend 
smoothly into the outer-flow velocity at y = δ, ∂u/∂y = 0 there. Hence, the 
integrated boundary-layer equation becomes

	
∂
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+ = −∫ x
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0
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τ
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The quantity v(x, δ) may be evaluated by integrating the continuity equa-
tion between the limits y = 0 and y = δ. This gives
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Then, the integrated boundary-layer equation may be written in the fol-
lowing form:

	
∂
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Finally, these two integrals involving derivatives may be expressed as 
derivatives of integrals through the rule of Leibnitz. For any function f(x, y), 
this rule states

	 ∂
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Using this rule, the integrals that appear above may be rewritten as follows:
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Thus, the integrated boundary layer equation becomes
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Since U is a constant, it may be taken inside the derivative and the integral, 
and the two integrals may be combined. This gives
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This equation is known as the momentum integral, and it is valid for bound-
ary layer flow over a flat surface. Physically, this equation states that the rate 
of change of the momentum in the entire boundary layer at any value of 
x is  equal to the force produced by the shear stress at the surface at that 
location.

The manner in which the momentum integral is used is as follows: A form 
of velocity profile is first assumed, typically a polynomial in y. The arbitrary 
constants in this expression are used to match the required boundary condi-
tions. These boundary conditions are
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The first of these conditions is the no-slip boundary condition at the sur-
face, the second condition matches the boundary-layer velocity to the outer-
flow velocity, and the third condition ensures that the matching is smooth at 
y = δ. It should be noted that all the higher derivatives should also be zero at 
y = δ for a smooth transition from the boundary layer to the outer flow. The 
number of conditions that can be satisfied, of course, depends upon the num-
ber of free parameters in the assumed velocity profile. It should further be 
noted that a series of boundary conditions should also be imposed at y = 0. 
The boundary-layer equation for this case is
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Hence, the no-slip boundary condition at y = 0 would automatically result 
in ∂2u/∂y2 = 0 at y = 0 if our velocity profile was the correct one. However, 
since we know that our assumed velocity profile is not the correct one, this 
boundary condition must be imposed separately. Likewise, by differentiating 
the boundary-layer equation, conditions for the third and higher derivatives 
will be obtained, and these should be imposed separately in our approxi-
mate solution. The number of boundary conditions out of this infinite array 
at y = 0 and y = δ that can be accommodated depends upon the number of 
free parameters that are available in the assumed expression for the velocity. 
Normally, the three conditions mentioned above are included in the order 
of priority in which they are written down, then the condition ∂2u/∂y2 = 0 at 
y = 0 is imposed, then ∂2u/∂y2 = 0 at y = δ, and so on.

Typically, the velocity profile is taken to be a polynomial in y, and the 
degree of this polynomial determines the number of boundary conditions 
that may be satisfied. For the case under consideration, we propose the fol-
lowing form:
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Then, three boundary conditions may be satisfied, and since these bound-
ary conditions all involve constants in the case of a flat surface, the quantities 
a0, a1, and a2 will be constants. Thus, the velocity profile represented above 
will be similar at various values of x and so represents a similarity type of 
profile. The boundary conditions u(x, 0) = 0, u(x, δ) = U, and ∂u/∂y(x, δ) = 0 
give, respectively,

	 0 = a0	

	 1 = a0 + a1 + a2	

	 0 = a1 + 2a2.	

The solution to these equations is a0 = 0, a1 = 2, and a2 = –1, so that the veloc-
ity profile becomes
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y y
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2

δ δ
. 	 (9.10a)

Using the assumed velocity profile across the boundary layer will 
reduce the momentum integral to an ordinary differential equation for the 
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boundary-layer thickness δ(x). The terms that appear in the momentum inte-
gral may be evaluated as follows:
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Substituting these results into the momentum integral gives
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Integrating this equation and setting δ = 0 when x = 0 give

	 δ
υ

= 30
x
U

.
	

In nondimensional form, this result becomes

	
δ
x RN

=
5 48.

	 (9.10b)
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where the length scale that has been used in the Reynolds number is the dis-
tance x. Equation 9.10b compares favorably with Equation 9.5c, which is the 
exact solution for a flat surface. The relation τ0 = 2μU/δ shows that the shear 
stress on the surface is given by

	
τ

ρ

0

21
2

0 73

U RN

=
.

.
	 (9.10c)

This result also compares favorably with the exact solution, which is given 
by Equation 9.5a.

It is evident that the momentum-integral approach is capable of producing 
meaningful results, even when it is used in conjunction with a rather crude 
approximation to the form of the velocity profile. In the case under consider-
ation here, a second-degree polynomial was used. An even more crude rep-
resentation of the velocity profile would be a straight line that matches only 
the boundary conditions u(x, 0) = 0 and u(x, δ) = U. On the other hand, third- 
or higher-degree polynomials could also be employed that would yield more 
accurate results. The second-order profile used here, expressed by Equation 
9.10a, gives ∂2u/∂y2(x, 0) = –2U/δ2 instead of zero as required. By employing a 
third-degree polynomial, the correct velocity curvature at the wall could be 
imposed, which would yield more accurate results. This will be confirmed in 
the problems at the end of the chapter.

9.9  General Momentum Integral

The momentum integral that was developed in the previous section for flat 
surfaces will be generalized here to include outer flows whose velocities are, 
in general, functions of x. The boundary layer may still be considered to be 
stretched out in a plane, provided that the radius of curvature of the body is 
large compared with the boundary-layer thickness, and centrifugal effects are 
negligible. In such cases, the outer-flow velocity U(x) will not be constant but 
will be defined by the potential-flow solution for the body under consideration.

Performing the same manipulation on the term u ∂u/∂x as was carried out 
in the previous section, the boundary-layer equations may be written in the 
following form:
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Integrating the second equation across the boundary layer and utiliz-
ing the boundary conditions u(x, 0) = 0, u(x, δ) = U, μ ∂u/∂y(x, 0) = τ0, and 
∂u/∂y(x, δ) = 0 give
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∂

+ = −∫∫ x
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U
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00
d
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The outer-flow velocity U(x) at the edge of the boundary layer depends 
upon x only, and dU/dx has been taken outside the integral while U has 
been kept inside the integral in the pressure term. This is purely a matter of 
convenience that will permit two integrals to be combined in the subsequent 
analysis. Integrating the continuity equation shows that
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so that the momentum-integral equation becomes
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Using Leibnitz’s rule permits the order of the integration and the differen-
tiation to be interchanged, yielding the following result:
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The second integral may be rewritten as follows:
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Thus, the momentum integral becomes
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The first and second integrals may now be combined, and the third and 
fourth integrals may be combined to give
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But the integrands of these two integrals are essentially zero for y > δ, so 
that the upper limits of integration may be taken to be infinity. This gives
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d

d
d
d
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Now, the first integral is the momentum thickness θ, and the second inte-
gral is the displacement thickness δ*, as may be seen from comparison with 
Equations 9.1c and 9.1b, respectively. Then, the momentum integral may be 
rewritten in the form

	
d
d

d
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Expanding the first derivative and dividing the entire equation by U2 yield 
the following alternative form of the generalized momentum integral:

	
d
d

d
d

θ
θ δ

τ

ρx U
U
x U

+ + =( *) .2
1 0

2 	 (9.11)

For any assumed form of velocity profile across the boundary layer, θ, 
δ*, and τ0 may be evaluated from their definitions. Then, Equation 9.11 
will provide an ordinary differential equation that may be solved for the 
boundary-layer thickness. The manner in which the solution is carried out, 
for the case of a fourth-order polynomial for u, will be covered in the next 
section.

9.10  Kármán–Pohlhausen Approximation

The general momentum integral, when used in conjunction with a fourth-
order polynomial to represent the velocity profile, is known as the Kármán–
Pohlhausen method. The velocity profile is taken to be of the form

	
u
U

a b c d e= + + + +η η η η2 3 4

	

where
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.x y
y
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=
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The coefficients a, b, c, d, and e will, in general, be functions of x, so that 
solutions that are not similar may be obtained. The foregoing velocity profile 
can satisfy five boundary conditions, and these are taken to be
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The fourth boundary condition comes from the boundary-layer form of 
the momentum equation and the no-slip boundary condition. In terms of the 
dimensionless velocity u/U and the dimensionless coordinate η = y/δ, these 
boundary conditions become
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The quantity Λ(x) that has been introduced here is a dimensionless vari-
able that is a measure of the pressure gradient in the outer flow.

Imposing the foregoing boundary conditions on the assumed form of veloc-
ity profile gives the following set of algebraic equations for the unknown 
coefficients:

	

0

2

1

0 2 3 4

0 2 6 12

=

− =

= + + + +

= + + +

= + +

a

c

a b c d e

b c d e

c d e

Λ

. 	



352 Fundamental Mechanics of Fluids

The solution to this set of equations is
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Thus, the assumed form of velocity profile that satisfies the principal 
boundary conditions is

	
u
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= + − − − + −2
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It is advantageous to separate the right-hand side of this expression into 
terms that are independent of Λ(x) and terms that depend upon Λ(x). This 
gives
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	 (9.12a)

Equation 9.12a is now in the form

	
u
U

F G= +( ) ( )η ηΛ
	

where the functions F(η) and G(η) are shown schematically in Figure 9.6a. 
The function F(η) is seen to be a monotonically increasing function of η that 
ranges from zero at η = 0 to unity at η = 1. The function G(η) increases from 
zero at η = 0 to a maximum of 0.0166 at η = 0.25, after which it drops off to 
zero at η = 1.

Figure 9.6b shows the velocity profiles corresponding to various values 
of the pressure parameter Λ. For Λ = 0, the velocity profile corresponds 
to a flat surface in which the representation is a fourth-order polynomial. 
For values of Λ greater than 12, the resulting velocity profiles show that 
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u/U > 1. Since the boundary-layer velocity is not expected to exceed that 
of the outer flow locally, it is concluded that Λ < 12. Also, for values of Λ 
less than –12, the velocity profiles show negative regions that correspond 
to reverse flow. Although reverse flows do occur physically, under these 
conditions, the basic assumptions upon which the theory is based cannot 
be justified. Thus, the parameter Λ should be greater than –12. Combining 
these  two results, it is concluded that the parameter Λ should lie in the 
range

	 −12 < Λ(x) < 12.	 (9.12b)

Having established a suitable approximation to the velocity profile, the 
boundary-layer thicknesses and the surface shear stress may now be evalu-
ated. Substituting the velocity profile 9.12a into Equation 9.1b gives the follow-
ing expression for the displacement thickness in terms of the boundary-layer 
thickness:
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	 (9.12c)

Similarly, Equation 9.1c yields the following expression for the momentum 
thickness:

u
U

1.0
0

0.0166 1.0 1.0

0
1.0

G(η) F(η)

0.25 η η

G(η)

F(η) Λ > 12

Λ > 0

Λ = 0
Λ < 

0
Λ<

 –
 12

(a) (b)

FIGURE 9.6
(a) Form of functions F(η) and G(η), and (b) velocity profiles for various values of the parameter 
Λ(x).
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The shear stress on the surface for this velocity distribution will be
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	 (9.12e)

The foregoing expressions relate the displacement and momentum thick-
nesses and the surface shear stress to the boundary-layer thickness, which 
as yet, is unknown. These relations follow purely from the velocity profile 
under consideration. It is now required to determine the values of these vari-
ous quantities as constrained by the momentum integral.

Multiplying the momentum integral (Equation 9.11) by θ/υ gives the fol-
lowing additional relation connecting θ, δ*, and τ0:
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Expressions for the various quantities that appear in this equation 
will now be established as functions of the pressure parameter Λ(x). Recall 
that
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and hence

	
θ
υ

θ

δ

2 2

2

d
d
U
x
= Λ.

	

But θ/δ may be evaluated in terms of Λ through Equation 9.12d. This gives

	
θ
υ

2 2
2

37
315 945 9072

d
d
U
x
= − −

Λ Λ
Λ

	

or

	
θ
υ

2 d
d
U
x

K x= ( )
	

where

	 K x( ) .= − −
37
315 945 9072

2
2

Λ Λ
Λ

	

The term δ*/θ that appears in the momentum integral may be similarly 
evaluated using Equations 9.12c and 9.12d. Thus
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The function f depends on Λ and hence upon x. However, K is also a 
function of x, so that f may be considered to be a function of K. The other 
parameter that appears in the momentum integral is τ0θ/(μU). Multiplying 
Equations 9.12d and 9.12e gives the following expression for this parameter:

	
τ θ0
U

g K= ( )
	

where

	 g K( ) .= + − −2
6

37
315 945 9072

2Λ Λ Λ

	

These results will now be substituted into the momentum integral. For the 
time being, the leading term in the momentum integral will be retained in its 
existing form. Substituting from the above results for δ*/θ, θ2(dU/dx)/υ, and 
τ0θ(μU) then gives
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It is now proposed to take Z = θ2/υ as a new dependent variable so that

	 K Z
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Then, the momentum integral becomes
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where

	 H(K) = 2{g(K) − [2 + f(K)]K}.	
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Then, substituting for g(K) and K from their definitions shows that H(K) is 
related to Λ(x) through the following identity:
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where the quantity K is related to Λ by the expression
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From these two expressions, both K and H(K) may be evaluated for any 
value of the pressure parameter Λ(x). Thus, a curve of H(K) as a function of 
K may be constructed. The form of this curve is shown in Figure 9.7. The 
momentum integral has been reduced to the ordinary differential equation 
U dZ/dx = H(K) where the functional form of the quantity H is sufficiently 
complex that this integral cannot be evaluated explicitly. However, it may be 

H(K)

K

0.47

0 0.0783

FIGURE 9.7
Exact form of the function H(K) (solid line) and straight-line approximation (dashed line).
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seen from Figure 9.7 that the function H is approximately linear in K over the 
range of interest.

Thus, the function H may be approximated by the equation

	 H(K) = 0.47 − 6K.	

Substituting this result, the momentum integral becomes

	

U
Z
x

K

Z
U
x

d
d

d
d

= −

= −

0 47 6

0 47 6

.

.
	

or

	
1

0 47
5

6

U x
ZU

d
d

( ) . .=
	

In this form, the momentum integral may be expressed in terms of the fol-
lowing quadrature:
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Then, since Z = θ2/υ, the value of θ will be
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For any given boundary shape, the approximate solution to the bound-
ary layer equations may be obtained as follows: For the specified boundary 
shape, the potential-flow problem should be solved to yield the outer velocity 
U(x). Then, Equation 9.12f may be used to evaluate the momentum thickness 
θ(x). The pressure parameter Λ(x) may then be evaluated from the relation
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2
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Λ Λ
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υ

d
d
U
x
. 	 (9.12g)

Having established Λ, the boundary-layer thickness δ may be evaluated 
from Equation 9.l2d, and the displacement thickness δ* may then be obtained 
from Equation 9.12c. The velocity distribution across the boundary layer will 
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be given by Equation 9.12a, and the shear stress at the surface will be given 
by Equation 9.12e. In practice, it is difficult to evaluate the quantity Λ(x) from 
Equation 9.12g unless Λ = constant. It is therefore much simpler to choose 
specific functions Λ(x) and use the foregoing equations to determine the 
outer-flow velocity and hence the nature of the boundary shape.

As an example, the Kármán–Pohlhausen approximation will be applied to 
the case of flow over a flat surface. For a flat surface, the outer-flow velocity 
U will be constant, so that Equation 9.12f gives

	 θ
υ2 0 47= .
x
U 	

or

	
θ
x RN

=
0 686.

. 	 (9.13a)

Since U = constant, dU/dx = 0, so that Equation 9.12g will have the solution 
Λ = 0. Then, from Equation 9.12d,

	 θ δ=
37
315 	

so that, from Equation 9.13a, the boundary-layer thickness will be

	
δ
x RN

=
5 84.

. 	 (9.13b)

Equations 9.12c and 9.12e may now be employed to evaluate the displace-
ment thickness and the surface shear stress. This gives

	
δ* .
x RN

=
1 75

	 (9.13c)
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These results compare favorably with the results obtained from the Blasius 
solution that are given by Equations 9.5a through 9.5e. The principal result 
of physical interest is the surface shear stress. The exact solution has a coef-
ficient of 0.664, whereas the Kármán–Pohlhausen approximate solution has 
a coefficient of 0.686. Thus, the shear-stress distribution obtained here is 
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within 3.5% of the exact solution. It should also be noted that there is con-
siderable improvement in the fourth-order polynomial velocity distribution 
used here over the second-order polynomial analysis, which yielded a coef-
ficient of 0.73 as was established in Equation 9.10c.

9.11  Boundary-Layer Separation

It is known from experimental observations that boundary layers have a 
tendency to separate from the surface over which they flow to form a wake 
behind the body, as shown in Figure 9.1. The existence of such wakes leads 
to large streamwise pressure differentials across the body, which results in a 
substantial pressure drag or form drag. Indeed, for bluff bodies such as circu-
lar cylinders, the form drag constitutes almost all the total drag at Reynolds 
numbers of 104 or higher. That is, the shear stress along the surface of a cylin-
der produces a drag force that is negligible compared with the form drag for 
large Reynolds numbers. For lifting bodies such as airfoils, separation of the 
boundary layer can destroy the bound vortex on the body, thus destroying 
the lift that the airfoil generates. This is the so-called stall condition.

A simple qualitative explanation for the existence of boundary-layer sepa-
ration on a bluff body may be given as follows: The pressure gradient along 
a boundary layer is determined by that of the outer flow, as was established 
earlier. Then, if a region of adverse pressure gradient exists in the outer flow, 
this pressure gradient will exert itself along the surface of the body near 
which the fluid velocity is small. The momentum contained in the fluid lay-
ers that are adjacent to the surface will be insufficient to overcome the force 
exerted by the pressure gradient, so a region of reverse flow will exist. That 
is, at some point, the adverse pressure gradient will cause the fluid layers 
adjacent to the surface to flow in a direction opposite to that of the outer flow. 
Such a flow configuration means that the boundary layer has separated from 
the surface and is deflected over the reverse-flow region.

Figure 9.8 shows the qualitative form of the velocity profile in a boundary 
layer in the vicinity of the separation point. Prior to separation, the velocity 
gradient at the surface is positive, so the shear stress there opposes the outer 
flow. After separation, the velocity gradient at the surface is negative, so the 
shear stress has changed its sign and direction. This observation leads to the 
classical definition of a separation point as a point at which the shear stress 
vanishes. That is, separation is said to occur at the point where the velocity 
gradient vanishes.

	
∂
∂

=
u
y
x( , )0 0 for separation. 	 (9.14)
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Using this definition of separation, it may be shown that separation can 
occur only in a region of adverse pressure gradient. Along the surface y = 0, 
the boundary-layer equations reduce to

	 0
2

2
= − +

∂

∂

d
d
p
x

u
y 	

due to the no-slip boundary condition. Thus, the curvature of the velocity 
profile is proportional to the pressure gradient along the surface. Then, if 
dp/dx is negative, the curvature of the velocity profile is negative and will 
remain negative at the surface just as it is at the edge of the boundary layer. 
That is, separation will not occur in a region of favorable pressure gradient. 
On the other hand, if dp/dx is positive, the curvature of the velocity pro-
file will be positive at the surface. Since ∂2u/∂y2 must still be negative at the 
edge of the boundary layer, the velocity profile must go through an inflection 
point somewhere between y = 0 and y = δ. Such a velocity profile may lead to 
separation if the curvature at y = 0 is sufficiently positive to yield a reverse-
flow configuration, as shown in Figure 9.8. Thus, it may be concluded that 
separation can occur in a region of positive pressure gradient.

Calculating the location of the separation point is not an easy matter. The 
obvious way of proceeding is first to solve the potential-flow problem for the 
body in question. The pressure so obtained could then be substituted into 
the boundary-layer equations, which could then be solved by either an exact 
solution or an approximate solution. From the solution to the boundary-layer 
equations, the location of the point of zero shear stress could then be located. 
The obvious difficulty with such a procedure is that as soon as the boundary 
layer separates, the pressure distribution will differ from that predicted by 
the potential-flow solution since the latter applies to a different streamline 
configuration from that which exists physically.

There are two principal approaches that are used to overcome the diffi-
culty outlined above. The approach used by Hiemenz involved determining 
the pressure distribution around the body in question experimentally. The 

δ

x
Separation point

FIGURE 9.8
Velocity profiles in a boundary layer in the vicinity of separation.
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resulting pressure curve may then be represented analytically by a polyno-
mial that permits it to be used in the boundary-layer equations. The results 
obtained by this method show good agreement with experimental observa-
tions. However, the disadvantage of this approach lies in the fact that the 
pressure distribution must be established experimentally for each body 
shape and for each Reynolds number of interest. Measuring the pressure 
distribution around circular cylinders is not difficult since a single pressure 
tap may be rotated to sense the pressure at different angles from the front 
stagnation point. On the other hand, measuring the pressure distribution 
around noncircular cylinders is not such a simple matter.

The second approach that is used to determine analytically the location of 
the separation point is to modify the potential-flow model from which the pres-
sure distribution is obtained. Several flow models exist, each of which takes 
into account the separated configuration of the outer flow. The difficulty with 
this approach is that empirical constants exist in the potential-flow model, and 
experimental results must be consulted to establish these constants.

From the foregoing discussion, it is evident that the subject of boundary-
layer separation is one that is not well understood analytically. Indeed, it is 
still not clear whether the boundary-layer equations are regular at separa-
tion. One school of thought claims that the boundary-layer equations are 
regular at separation by virtue of the appropriate pressure distribution. 
Some recent results even question the validity of condition 9.14 at separa-
tion. Evidence suggests that the location of the point where dp/dx vanishes, 
that where ∂u/∂y vanishes, and that where separation occurs are all distinct. 
However, no length scales could be established; thus, all these points could 
possibly concur within the appropriate macroscopic length scales. What is 
known is that boundary layers will separate in adverse pressure gradients, so 
the magnitude and extent of such pressure gradients should be minimized. 
This means that bodies should be streamlined in shape rather than bluff 
and should be oriented at small angles of attack. Also, it is known that sharp 
corners that bend away from the fluid become separation points; thus, such 
corners should be avoided if separation is to be delayed as far as possible.

9.12  Stability of Boundary Layers

Like any fluid-flow situation, boundary layers may become unstable. Usually, 
instabilities in boundary layers manifest themselves in turbulence. That is, a 
laminar boundary layer that becomes unstable usually becomes a turbulent 
boundary layer. The properties of laminar and turbulent boundary layers are 
quite different. For example, the angle to the location of the separation point 
on a circular cylinder, measured from the front stagnation point, is about 
82° for a laminar boundary layer and about 108° for a turbulent boundary 
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layer. This significant change in location of the separation points results in 
an appreciable drop in the drag coefficient, as shown in Figure 8.2. It is there-
fore of some interest to investigate the stability of boundary layers.

The basis of our stability calculation will be to introduce a small distur-
bance into the boundary-layer variables and determine whether this distur-
bance grows or decays with time. If the disturbance grows with time, the 
boundary layer will be classified as unstable, and if the disturbance decays 
with time, the boundary layer will be classified as stable. Intermediate to 
these two situations is the case of marginal stability, in which the distur-
bance neither grows nor decays.

Figure 9.9a shows the velocity profile in a narrow strip of a boundary layer. 
For such a narrow strip, the velocity in the horizontal direction may be con-
sidered to be a function of y only, for example, V(y), and the vertical velocity 
may be considered to be zero. The undisturbed boundary-layer velocity V(y) 
acts in the horizontal direction, although the symbol V has been used. This 
symbol has been employed to avoid confusion with the outer-flow velocity 
U(x) at the edge of the boundary layer.

A small but arbitrary disturbance is introduced to this boundary-layer 
velocity profile so that the velocity components and the pressure become

	 u(x, y, t) = V(y) + uʹ(x, y, t)	

	 v(x, y, t) = 0 + vʹ(x, y, t)	

	 p(x, y, t) = p0(x) + pʹ(x, y, t)	

V(y)

Im(c) < 0

Im(c) < 0

Im(c) > 0

α

V

0.34

520

Stable

Stable

Unstable

αδ*

RN = U δ*
υ

(a)

(b) (c)

FIGURE 9.9
(a) Undisturbed boundary-layer velocity profile, (b) stability calculation results for fixed V, and 
(c) stability diagram.
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where |u/́V|, |v/́V|, and |p/́p0| are all small compared with unity. 
Substituting these instantaneous local values of the velocity components and 
the pressure into the continuity and the Navier–Stokes equations gives
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As a special case, when the perturbation is zero, the foregoing equations 
reduce to
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Hence, these terms may be removed from the equation of x momentum. 
Furthermore, since the perturbation is assumed to be small, products of all 
primed quantities may be neglected as being small. Thus, the linearized 
equations governing the motion of the disturbance are
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These three equations may be reduced to two by introducing a perturba-
tion stream function defined by
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In terms of this stream function, the governing equations become
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Finally, by forming the mixed derivative ∂2p/́∂x ∂y from each of the fore
going equations and equating the two expressions so obtained, the two equa-
tions above may be reduced to one, which may be written in the following form:
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The stream function for the disturbance must satisfy this linear, fourth-
order, partial differential equation.

Since the disturbance under consideration is arbitrary in form, it may be 
Fourier-analyzed in the x direction. That is, the perturbation stream function 
may be represented by the following Fourier integral:

	 ψ αα( , , ) ( ) ( )x y t y ei x ct= −
∞

∫ Ψ d
0 	

where α is real and positive. The time variation has been taken to be e–iαct, so 
that if the imaginary part of c is positive, the disturbance will grow, and if it is 
negative, the disturbance will decay with time. For c = 0, the disturbance will be 
neutrally stable. Substituting the preceding expression for the stream function 
into the governing equation yields the following integrodifferential equation:
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where the primes denote derivatives with respect to y. Since this equation 
should be valid for any arbitrary disturbance whatsoever, it should be valid 
for each individual value of the inverse wavelength α. Thus, the integrand in 
the preceding equation should vanish. This gives
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Equation 9.15a is known as the Orr–Sommerfeld equation. The boundary 
conditions that accompany this equation may be derived from the condition 
that the disturbance should vanish at the surface y = 0 and at the edge of the 
boundary layer. Thus

	 uʹ(x, 0, t) = vʹ(x, 0, t) = 0	

	 uʹ(x, y, t) = vʹ(x, y, t) → 0 as y → ∞.	

In terms of the stream function Ψ(y), these boundary conditions become

	 Ψ(0) = Ψʹ(0) = 0	 (9.15b)

	 Ψ(y) = Ψʹ(y) → 0 as y → ∞.	 (9.15c)

Solutions to the Orr–Sommerfeld equation are obtained as follows. For a 
given undisturbed velocity profile and disturbance wavelength, both V(y) 
and α will be known. Then, Equations 9.15a through 9.15c represent an 
eigenvalue problem for the time coefficient c. Then, if each possible wave-
length in turn is treated, results of the form indicated in Figure 9.9b may 
be established. That is, regions that are stable (corresponding to the imagi-
nary part of c being negative) and regions that are unstable (correspond-
ing to the imaginary part of c being positive) may be identified. Then, by 
considering all possible values of the undisturbed boundary-layer velocity 
that are less than the outer-flow velocity, a stability diagram may be con-
structed. That is, by considering all possible values of V(y) in the range 
0 ≤ V(y) ≤ U(x), the stability boundaries for that particular x location may be 
established. Figure 9.9c shows the results of carrying out such a procedure 
for flow over a flat surface. Here, the Reynolds number has been based on 
the displacement thickness of the boundary layer, and the inverse wave-
length α has been nondimensionalized by the same quantity. It may be 
seen that the lowest Reynolds number for which an instability may occur 
is 520. Thus

	
Uδ
υ
crit
*

.= 520 	 (9.16)

Hence, an arbitrary disturbance having a Fourier component whose wave-
length is such that αδ* = 0.34 will lie on the stability boundary. Thus, it may be 
expected that for Reynolds numbers in excess of 520, arbitrary disturbances 
will be unstable. Such instabilities will manifest themselves in the form of 
turbulence at Reynolds numbers slightly larger than this critical value.
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PROBLEMS

	 9.1	 It was stated in the text that the boundary-layer equations are para-
bolic. Show that they may be put in the form of the one-dimensional 
diffusion equation, or heat conduction equation, by taking h = p + 
ρu · u/2 as a new dependent variable with ξ = x and η = ψ as the new 
independent variables.

	 9.2	 The Blasius solution for flow over a flat surface involves solving a 
third-order, nonlinear, ordinary differential equation. It will be 
noticed that this differential equation is invariant to the following 
transformations:
(a)	 f → f, η → η + constant
(b)	 f → f/a, η → aη

		  Show that transformation (a) enables the Blasius equation to be 
reduced to a second-order equation by taking F = df/dη as a new 
dependent variable and f as a new independent variable. Then, show 
that transformation (b) enables the resulting second-order equation to 
be reduced to a first-order equation by taking G = (dF/df)/f as a new 
dependent variable and ξ = F/f 2 as a new independent variable. Find 
the resulting ordinary differential equation for G(ξ).

	 9.3	 The solution to the boundary layer equations corresponding to flow 
in a convergent channel resulted in the following ordinary differen-
tial equation:

	 fʹʺ + 1 − ( fʹ)2 = 0.	

		  Show that this third-order, nonlinear, ordinary differential equa-
tion may be integrated once by multiplying by the integrating factor 
f ,̋ then integrated again to give

	 = + −f ( ) tanh .η
η

3
2

1 146 22

	

	 where the primes denote differentiation with respect to η.
	 9.4	 The figure for this problem illustrates a two-dimensional jet enter-

ing a reservoir that contains a stationary fluid. A solution is sought to 
the laminar boundary layer equations for this situation. Assuming 
that there is no pressure gradient along the jet, look for a similarity 
solution for the stream function of the following form:

	 ψ(x, y) = 6αυx1/3f(η)	
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	 where

	 η α=
y

x2 3/
.
	

		  In the expressions above, α is a dimensional constant and υ is the 
kinematic viscosity of the fluid. Obtain an expression for the func-
tion f(η) in this solution and the boundary conditions that it has to 
satisfy. From the solution for f(η), obtain the solution for the stream 
function ψ(x,y).

	 9.5	 A boundary layer develops on a surface over which the outer (invis-
cid) flow velocity is represented by the following expression, in 
which k is a constant:

	 U(x) = kx1/3.	

		  Look for a similarity solution to the boundary-layer equations for 
this flow of the following form:

	 ψ υ η η
υ

( , ) ( ) .x y k x f
k y

x
m= =

3
2

2
3 1 3

where
/

	

		  Verify that such a similarity solution exists by finding the value of 
the exponent m and establishing the ordinary differential equation 
to be satisfied by the function f(η).

y

x
Flow
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	 9.6	 The Blasius solution to the laminar boundary layer equation for uni-
form flow over a flat surface was shown to be as follows:
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		  The solution to the ordinary differential equation above has the 
following asymptotic forms for small and large values of the simi-
larity variable η:
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(a)	 Using the above results, obtain an expression for the nondi-
mensional surface shear stress in terms of the Reynolds number 
based on the distance x.

(b)	 Obtain an expression for the nondimensional vertical compo-
nent of velocity v(x, y)/U in the boundary layer in terms of the 
Reynolds number, based on the distance x, and which is valid for 
y → ∞.

(c)	 Obtain an expression for the value of the vorticity at any loca-
tion in the boundary layer in terms of the similarity variable η. 
Integrate the result so obtained over all values of y and hence 
obtain an expression for the total amount of vorticity in the fluid 
at any location x, per unit width in the z-direction.

	 9.7	 Use the momentum integral and the velocity profile

	
u
U

a b
y

= +
δ 	

	 to evaluate the boundary-layer thicknesses δ, δ*, and θ and the sur-
face shear stress τ0 for flow over a flat surface.

	 9.8	 Repeat Problem 9.7 using the following velocity distribution:

	
u
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	 9.9	 Repeat Problem 9.7 using the following velocity distribution:

	
u
U

y
= sin .

π

δ2 	

	 9.10	 Repeat Problem 9.7 using the following velocity distribution, in 
which α is a constant:

	
u
U

e y= − −1 α δ/ .
	

	 9.11	� The velocity distribution and the shear stress associated with the 
turbulent flow in the boundary layer on a flat surface are found 
from experiments to be represented by the following expressions: 
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		  Use the first result to express θ in terms of δ and the second result, 
together with the momentum integral, to express δ in terms of x. 
Hence, evaluate δ, δ*, θ and τ0 in terms of the Reynolds number for 
the turbulent boundary layer.

	9.12	� Use the Kármán–Pohlhausen approximation to obtain the solution 
for the boundary layer that develops on a surface for which the 
outer flow velocity is defined by the following expression:

	 U(x) = Ax1/6	

	 where A is a constant. From the solution, evaluate the boundary-
layer thicknesses δ, δ*, and θ and the surface shear stress τ0.

	 9.13	� Figure 9.10 shows a viscous, incompressible liquid flowing down 
a vertical surface. A boundary layer develops on the vertical sur-
face and grows to approach the free surface. Taking into account 
the force due to gravity, write down the boundary-layer equations 
for this flow configuration. From these equations, obtain the cor-
responding momentum integral. Hence, by employing a second-
order polynomial for the velocity distribution, obtain an expression 
for the boundary-layer thickness δ(x).
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Figure 9.11 shows the wake behind an airfoil at a large Reynolds number. It 
illustrates the difference in streamline pattern between laminar flows, which 
are treated herein, and turbulent flows.

x

y

U(x) = (2 g x)1/2 

δ(x) Free surface

FIGURE 9.10
Liquid flowing down a vertical surface.

FIGURE 9.11
Wake behind a NACA 0025 airfoil at 5° angle of attack and Reynolds number of 105. (Courtesy 
of Sebastian Goodfellow and Professor Pierre Sullivan, University of Toronto, Toronto, Canada.)
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10
Buoyancy-Driven Flows

There exists a large class of fluid flows in which the motion is caused by 
buoyancy in the fluid. Buoyancy is the force experienced in a fluid due to 
a variation of density in the presence of a gravitational field. According 
to the definition of an incompressible fluid, as was presented in Section 
1.6, variations in the density normally mean that the fluid is compressible, 
rather than incompressible. That being the case, one might expect that the 
material content of this chapter would be presented in Part IV of the text, 
rather than Part III. The rationale for this apparent contradiction is dis-
cussed below.

For many of the fluid flows of the type mentioned above, the density 
variation is important only in the body-force term of the Navier–Stokes 
equations. In all other places in which the density appears in the govern-
ing equations, the variation of density leads to an insignificant effect. That 
is, compressibility of the fluid is not a prime consideration. However, vis-
cous effects are of first-order importance. Buoyancy results in a force acting 
on the fluid, and the fluid would accelerate continuously if it were not for 
the existence of the viscous forces. The viscous forces oppose the buoyancy 
forces and cause the fluid to move with a velocity distribution that creates 
a balance between the opposing buoyancy and viscous forces. Therefore, if 
buoyancy-driven flows are to be classified as being viscous flows of incom­
pressible fluids or compressible flows of inviscid fluids, the former is the more 
appropriate classification.

The situation depicted above occurs in natural convection. The other type 
of convection is forced convection, in which the fluid moves under the influ-
ence of forces other than the buoyancy force. Since density variations exist 
in buoyancy-driven flows, the density is no longer a known quantity. This 
means that the continuity and Navier–Stokes equations no longer constitute 
a complete set of equations from which the solution to a flow problem may 
be obtained. The energy equation is required in order to yield a complete set 
of equations, and this adds to the complication of solutions to this class of 
problems.

The equations that are most commonly used to solve buoyancy-driven 
flow problems employ the Boussinesq approximation. This is the first topic that 
is addressed in this chapter. The balance of the chapter is devoted to a pre-
sentation of some of the solutions of the governing equations, as defined by 
the Boussinesq approximation.
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10.1  Boussinesq Approximation

The equations governing the flow of an incompressible fluid in which grav-
ity provides the only significant body force are written below:

	 ∇ · u = 0

	 ρ ρ ρ
∂
∂

+ = − + −
u

u u u e
t

p g z( ) .⋅⋅ 2

	

Here, ez is the unit vector acting in the positive z direction, and it is 
assumed that gravity acts in the negative z direction. In the absence of any 
motion, these equations reduce to the following form:

	 0 = −∇p0 − ρ0gez	 (10.1)

where p0 and ρ0 are, respectively, the pressure and density distributions that 
exist under static equilibrium. Then, we may adopt the following notation 
for the pressure, density, and velocity distributions in the fluid during con-
vective motion:

	 p = p0 + p*	

	 ρ = ρ0 + ρ*	

	 u = 0 + u*	

where p* is the pressure in the fluid relative to the static value, ρ* is the den-
sity measured relative to the static value, and u* is the velocity of the fluid 
during the convective motion. Substituting these values into the equations 
quoted above yields the following result:
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In the above, the equation of static equilibrium, Equation 10.1, has been 
subtracted.

The equations presented above are exact for an incompressible fluid that 
has a density variation, or stratification, throughout it. The Boussinesq 
approximation consists of neglecting any variation of density except in the 
gravitational term. The latter term is of prime importance since it represents 
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the force that causes the motion that is being represented. However, the vari-
ation of density is assumed to have only a minor effect on the inertia forces. 
This may be considered to be reasonable where relatively small density dif-
ferences exist over moderate distances. Then, considering ρ to be constant, 
the Boussinesq approximation to the governing equations is

	 ∇ · u = 0	 (10.2a)

	 ρ ρ ρ
∂
∂

+ ⋅ = − + −
u

u u u e
t

p g z( ) .2 ∆ 	 (10.2b)

In Equations 10.2a and 10.2b, it is understood that the pressure p is mea-
sured relative to the static pressure distribution. The quantity Δρ is the den-
sity difference relative to the static distribution, and it is positive when the 
density is greater than the static value.

Strictly speaking, the equations presented above are valid only for a fluid 
in which the density varies, but which is incompressible. However, the idea 
behind the Boussinesq approximation may be extended to also include com-
pressible fluids. Provided that the variation in density is small, it may be 
assumed that in buoyancy-driven flows, the variation in density is negligible 
in all of the terms in the governing equations except the gravitational term. 
This means that the variation in density may be neglected in the continuity 
equation as well as in the equations of dynamics.

10.2  Thermal Convection

In thermal convection, the density variation is caused by temperature varia-
tions in the fluid. This is to be contrasted with the case of density variations 
caused by such effects as salinity variations in water. In thermal convection, 
the density is usually expressed in terms of the temperature by the following 
relationship:

	 ρ = ρ0[1 − β(T − T0)]	 (10.3)

where β is the coefficient of thermal expansion of the fluid, and T0 is the tem-
perature of the fluid that exists at static equilibrium.

The representation of the density given by Equation 10.3 is valid for mod-
erate departures of the temperature T from the static value T0 for an incom-
pressible fluid. In general, the thermal equation of state may be written in the 
form ρ = ρ(p, T). Hence, it follows, without invoking the condition of incom-
pressibility, that
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In the above, only the linear terms in the pressure difference and the tem-
perature difference have been retained in a Taylor series expansion. Now, if 
it is assumed that compressible effects are negligible, the second term on the 
right-hand side of this equation will be negligible. This is equivalent to say-
ing that the density is a function of the temperature only, rather than being 
a function of both the pressure and the density. The third term on the right-
hand side of the equation above may be evaluated for the case of an ideal gas, 
for which ρ = p/RT, giving the result
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This is the same form as Equation 10.3, and it shows that for an ideal gas, 
the thermal expansion coefficient assumes the value β = 1/T0. In general, the 
value of β is determined experimentally, and it is a property of the fluid in 
the same sense as the viscosity is a property.

From Equation 10.3, it follows that Δρ = –ρ0β(T – T0) = –ρβ(T – T0), where the 
density ρ is assumed to be constant and equal to the value that exists when 
there is no motion. Then, substituting this value into Equation 10.2b yields 
the following form of the equations governing the motion that results when 
thermal convection occurs:

	 ∇ · u = 0	 (10.4)

	 ρ ρ ρ β
∂
∂

+ ⋅ = − + + −
u

u u u e
t

p g T T z( ) ( ) .2
0 	 (10.5)

Equations 10.4 and 10.5 constitute four scalar equations for five unknown 
quantities. The unknown quantities are the velocity vector u, the pressure 
p, and the temperature T. Then, in order to achieve a closed mathematical 
system, the thermal energy equation must be employed. This means that the 
dynamics of the system, and its thermodynamics, are no longer independent 
of each other. That is, permitting the density of the fluid to vary with its 
temperature in the buoyancy term has coupled the system’s dynamics and 
thermodynamics.

The appropriate form of the equation of conservation of energy was 
derived in Problem 3.1, and it is given by Equation 3.6, which is rewritten 
below:
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where

	 h = h(ρ, T).	 (10.7)

In the foregoing equations, h is the enthalpy of the fluid, and Φ is the dissi-
pation function. In accordance with the Boussinesq approximation, the den-
sity is assumed to be constant in the energy equation.

In general, the enthalpy h is a function of the pressure p and the tempera-
ture T. However, if we restrict our discussion to ideal gases, it follows that h 
may be considered to be a function of T only. Then, for cases where h may be 
considered to be a function of T only, including all fluids that are ideal gases, 
Equations 10.4 through 10.7 may be rewritten in the following form:

	 ∇ · u = 0	 (10.8)

	 ρ ρ ρ β
∂
∂
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u

u u u e
t

p g T T z( ) ( )2
0 	 (10.9)
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In the foregoing equations, the density ρ is assumed to be constant, and 
the pressure p is measured relative to the static value. The quantity Cp is the 
specific heat at constant pressure, and Φ is the dissipation function.

10.3  Boundary-Layer Approximations

Buoyancy-driven flows that comply with the general Boussinesq approxima-
tion are governed by Equations 10.4 through 10.7. For the case of thermal 
convection in which the density may be considered to be a function of the 
temperature only, the simplified form of the governing equations is given by 
Equations 10.8 through 10.10. In this section, we further simplify the govern-
ing equations by applying the boundary-layer approximation to the latter 
set of equations and by assuming that the fluid properties remain constant.

In the interests of consistency with Chapter 9, we consider two-dimensional, 
steady flow in the x–y plane, in which the main flow is in the x direction. 
Since the flow is buoyancy driven, this requires that we adopt the configura-
tion illustrated in Figure 10.1. This is the same situation as depicted in Figure 
9.3 except that there is no externally driven flow, and the coordinate system 
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has been rotated through an angle of 90°. In Figure 10.1, the quantity δT is the 
thermal boundary-layer thickness, which is assumed to be of the same order of 
magnitude as the boundary-layer thickness δ.

For boundary layer–like flows, the dynamic equations are approximated 
in the same way that they were in the previous chapter. That is, the equa-
tions of the dynamics are the same as those derived in Chapter 9 and given 
by Equations 9.2a and 9.2b, except that the buoyancy term that appears in 
Equation 10.9 acts in the x direction. Then, it remains to arrive at a consistent 
version of the energy equation (Equation 10.10). Writing this equation explic-
itly for steady, two-dimensional flows for which the viscosity coefficient and 
the thermal conductivity are both constant yields the following result:
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The following observations may be made regarding the various terms that 
appear in this equation.

y
x

δ

δT

Fl
ow

Heated
surface

FIGURE 10.1
Development of thermal and momentum boundary layers on a vertical heated surface.
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	 1.	The convective terms on the left-hand side of this equation are both 
of the same order of magnitude—as was the case for the convection 
of momentum in the boundary-layer equations.

	 2.	 In the first bracketed term on the right-hand side, the pressure gradi-
ent across the boundary layer is negligibly small. This fact is verified 
by the y component of the momentum equation in the boundary-
layer equations.

	 3.	 In the heat conduction term, the component involving the second 
derivative with respect to y is considerably larger than that with 
respect to x. This is the same approximation as was made with the 
viscous terms in the boundary-layer equations.

	 4.	For moderate velocities induced by thermal convection, the dissipa-
tion of energy by the action of viscosity is negligibly small. That is, Φ 
may be neglected.

Applying these observations and assumptions to the energy equation, as 
written above, results in the following reduced form:
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Combining this result with the continuity and momentum equations 
results in the following set of equations for buoyancy-driven thermal con-
vection according to the boundary-layer approximation:

	
∂
∂

+
∂
∂

=
u
x

v
y

0 	 (10.11a)

	 u
u
x

v
u
y

p
x

u
y

g T T
∂
∂

+
∂
∂

= − +
∂

∂
+ −

1 2

2 0ρ
υ β

d
d

( ) 	 (10.11b)

	 u
T
x

v
T
y C

u
p
x

T
yp

∂
∂

+
∂
∂

= +
∂

∂

1 2

2ρ
κ

d
d

. 	 (10.11c)

In Equation 10.11c, the quantity κ = k/ρCp is the thermal diffusivity of the 
fluid.

Equations 10.11a and 10.11b are the same as Equations 9.2a and 9.2b, except 
that the buoyancy term exists in Equation 10.11b. This additional term 
involves the local value of the temperature of the fluid, which, in general, is 
unknown. This requires the inclusion of the energy equation in order to yield 
a closed set of equations. Equation 10.11c is the form of the energy equation 
that is consistent with the boundary-layer approximation and that is valid 
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for moderate temperature differentials from the ambient value. Equations 
10.11a through 10.11c are to be solved subject to the no-slip boundary condi-
tion on the surface y = 0 and subject to the condition that the velocity should 
be zero far from the heated surface. In addition, either the temperature of the 
heated surface or the heat flux on its surface must be specified.

10.4  Vertical Isothermal Surface

In this section, we apply the equations derived above to the flow induced by 
a vertical surface that is isothermal at a temperature that is elevated relative 
to the ambient. The situation is as depicted in Figure 10.1 in which the tem-
perature of the vertical surface is everywhere Ts while the temperature far 
from the surface is T0, both of which are constants. For such a configuration, 
there is negligible pressure gradient in the x direction. From Equations 10.11a 
through 10.11c, the mathematical problem to be solved becomes
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The boundary conditions that accompany these differential equations are

	 u(x, 0) = 0	 (10.13a)

	 v(x, 0) = 0	 (10.13b)

	 u(x, y) → 0  as y → ∞	 (10.13c)

	 T(x, 0) = Ts	 (10.13d)

	 T(x, y) → T0  as y → ∞.	 (10.13e)

The first two of these conditions are the usual no-slip boundary condi-
tion, whereas the third condition ensures that the effect of the heated surface 
does not extend far from the surface. The last two conditions specify that 



381Buoyancy-Driven Flows

the temperature in the fluid is Ts at the vertical surface and T0 far from the 
surface.

In order to facilitate the solution to Equations 10.12a through 10.12c, two 
changes will be made. First, the stream function ψ(x, y) will be introduced 
as was done in Chapter 9. This will permit Equations 10.12a and 10.12b to 
be replaced by a single equation involving the stream function. Second, the 
temperature T(x, y) will be replaced by a dimensionless temperature differ-
ence θ(x, y), defined as follows:
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T x y T
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−
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This dimensionless temperature varies in value from zero, far from the 
surface, to unity at the surface. This makes it preferable to the alternate 
dimensionless temperature defined by the quantity β(T – T0). In terms of 
these new variables, Equations 10.12a through 10.12c become
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Following the methods employed in Chapter 9, we now look for a similar-
ity solution to this problem of the following form:

	 ψ(x, y) = C1xmf(η)	

and

	 θ(x, y) = F(η)	

where

	 η( , )x y C
y

xn
= 2

	

where m and n are undetermined exponents, although not necessarily inte-
gers, and C1 and C2 are constants whose values will be chosen to render the 
functions f, F, and η dimensionless. From the definitions of these quantities, 
the various derivatives that appear in the differential equations are evalu-
ated as follows:
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The primes in the expressions above represent derivatives with respect to 
the similarity variable η. Substituting these expressions into Equations 10.14a 
and 10.14b produces the following two equations:

	 C C x m n f mf f C C xm n m n
1
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2
2 2 2 1 2

1 2
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	 − =− − −mC x f C x Fm n n
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1 2F 2κ . 	

If these equations are to be reduced to a pair of ordinary differential equa-
tions, the powers of x on each side of the first equation must be zero, and the 
powers of x on each side of the second equation must be equal. That is, the 
following relations must be satisfied:

	 2m − 2n − 1 = 0	

	 m − 3n = 0	

	 m − n − 1 = −2n.	
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Although it is generally not possible to satisfy three conditions with only 
two quantities, the three equations above are satisfied by the following val-
ues because two of them are linearly dependent:
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Using these values, the ordinary differential equations derived above sim-
plify to the following form:
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Having selected the values for the exponents m and n in order to produce 
a similarity solution, it is now possible to define explicitly the constants C1 
and C2 in such a way that the functions f, F, and η are dimensionless. The 
quantities available for this purpose are υ, g, and K. Then, it is sufficient, from 
dimensionality considerations, to define C1 and C2 as follows:
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However, including dimensionless constants of proportionality in the def-
initions of these two quantities permits two of the coefficients that appear 
in the differential equations to be normalized to unity. Noting that the 
quantity β(Ts – T0) is dimensionless, we define the constants C1 and C2 as 
follows:

	

C
g T T

C
g T T

s

s

1
0

2

1 4

2
0

2

4
4

4

=
−

=
−

υ β

υ

β

υ

( )

( )

/

11 4/

.
	

With this choice of values for the constants C1 and C2, the differential equa-
tions for the functions f and F become
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	 fʹʺ + 3 f fʺ − 2( fʹ)2 + F = 0	 (10.15a)

	 Fʺ + 3Pr  fFʹ = 0.	 (10.15b)

In the above, the parameter Pr = υ/κ is the Prandtl number. Numerically, 
the Prandtl number is about 0.7 for air and about 7.0 for water. In terms of 
the functions f and F, the boundary conditions defined by Equations 10.13a 
through 10.13e become

	 f(0) = fʹ(0) = 0	 (10.15c)

	 fʹ(η) → 0 as η → ∞	 (10.15d)

	 F(0) = 1	 (10.15e)

	 F(η) → 0 as η → ∞.	 (10.15f)

Once the solution to the ordinary differential system defined by Equations 
10.15a through 10.15f has been obtained, the corresponding solutions for the 
stream function and the dimensionless temperature are given by the follow-
ing relations:
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	 θ(x, y) = F(η)	 (10.16b)
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The problem defined by Equations 10.15a through 10.15f was solved by 
Pohlhausen for Pr = 0.733. The physical result of greatest interest is the rate at 
which convective heat transfer takes place between the vertical surface and 
the ambient fluid. The result so obtained is usually quoted in the following 
nondimensional form:

	 Nu = 0.359(Gr)1/4	 (10.17)

where

	 N
hl
ku =
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and
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The parameters in Equation 10.17 are the Nusselt number Nu, which is the 
nondimensional heat transfer rate, and the Grashof number Gr, which is the 
nondimensional temperature differential that drives the convection. In these 
quantities, h is the convective rate of heat transfer per unit area per unit time, 
k is the thermal conductivity of the ambient fluid, and l is the length of sur-
face over which the heat transfer takes place.

10.5  Line Source of Heat

Figure 10.2 shows the physical situation that exists when a line source of heat 
is immersed in an otherwise stationary fluid. The situation is similar to that 
of the vertical surface, except that there is no physical surface involved and 
no characteristic temperature differential.

x

y

FIGURE 10.2
Thermal convection from a line or point source of heat.
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The equations governing the motion that is induced in this situation will 
be the same as those of Section 10.4, and they are given by Equations 10.12a 
through 10.12c. However, the boundary conditions are different in this case. 
Since there is no physical surface in the present case, conditions 10.13a and 
10.13d are no longer relevant. The first of these conditions must be replaced 
by a statement that the x axis is a line of symmetry and the second condition 
by a statement ensuring that the total heat rising from the source is the same 
at all streamwise locations. These new conditions are expressed by the fol-
lowing equations:
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where Q is the value of the total amount of heat that leaves the source per 
unit time per unit length of source.

With the changes noted above, the problem to be solved consists of the 
differential system defined by Equations 10.12a through 10.12c, subject to the 
following boundary conditions:
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T
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	 T(x, y) → 0  as y → ± ∞.	 (10.18e)

As in the case of the isothermal surface, we recast the differential equa-
tions in terms of the stream function and a dimensionless temperature. The 
former is defined to satisfy the continuity equation as before, but the dimen-
sionless temperature has to be redefined. The surface temperature no longer 
needs normalizing to unity, so the appropriate definition of the dimension-
less temperature in this case is

	 θ(x, y) = β{T(x, y) − T0}.	
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In terms of the stream function and the new dimensionless temperature, 
Equations 10.12a through 10.12c reduce to the following form:
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In order to obtain solutions to these equations, we seek a similarity solu-
tion that is suggested by that found in the previous section, but in which the 
dimensionless temperature also has a coefficient that is a function of x. The 
form of the solution that is sought is

	 ψ(x, y) = C1xmf(η)	

where

	 η( , )x y C
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and

	 θ(x, y) = C3xrF(η).	

In these expressions, m, n, and r are undetermined exponents, and the quan-
tities C1, C2, and C3 are constants that render the functions f, F, and η dimension-
less. It is not to be assumed that any of these quantities have the same values as 
they did in Section 10.4. The derivatives of the stream function are the same as 
those in Section 10.4, and the derivatives of the dimensionless temperature are
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Using these results, Equations 10.19a and 10.19b reduce to the following form:
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For a similarity solution to exist, the x dependence in these equations 
must  cancel. This leads to the following equations relating the exponents 
m, n, and r:

	 2m − 2n − 1 = m − 3n	

	 2m − 2n − 1 = r	

	 m − n + r − 1 = r − 2n.	

The first two of these relations come from the momentum equation, while 
the last relation comes from the energy equation. It will be seen that the 
first and last equations are the same, so that the requirement of reducing 
the partial differential equations to ordinary differential equations is met 
by satisfying the first two of the equations presented above. Rewriting these 
equations shows that the similarity condition is met provided that
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It will be noted that for the special case r = 0, the solution obtained in 
Section 10.4 is recovered. In order to determine the value of r for the case 
under consideration, the condition given by Equation 10.18c must be invoked. 
This condition specifies the following:
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In the above, it has been noted that
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However, the integration indicated above is carried out in a plane x = con-
stant, so that dy will be proportional to xndη. Substituting the values estab-
lished for the quantities in the integrand produces the result
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Since the quantity Q should be independent of x, it follows that (m + r) 
should be zero. This additional requirement, coupled with the results 
obtained above, leads to the following values for the exponents m, n, and r:
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For these values of the exponents, the differential equations for the func-
tions f and F become
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In order to render the functions f, F, and η dimensionless, we choose
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As was the case in the previous section, we may include dimensionless 
constants of proportionality in the definitions of the preceding quantities. 
The purpose of doing this is to simplify the parameters that appear in the 
resulting differential equations and boundary conditions. The differential 
equations are given above, and the condition relating to the total amount 
of heat being Q is given by Equation 10.20. The boundary conditions may 
be considerably simplified through normalization, and in this context, it is 
noted that the following quantity is dimensionless:

	
ρυ

β

C

Q
p .

	

With this observation, the following definitions of the constants C1, C2, 
and  C3 are adopted in order to simplify the coefficients in the resulting 
problem:
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Using these definitions, the differential equations, as given by Equations 
10.21a and 10.21b, reduce to the following form:

	 ( ( )+ − + =f f f f F3 02 	 (10.22a)
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The boundary conditions that accompany this differential system are 
given by Equations 10.18a through 10.18e. In terms of the new variables and 
parameters, these equations become

	 f(0) = f ̋ (0) = 0	 (10.23a)

	 =
−∞

∞

∫ f Fdη 1 	 (10.23b)

	 Fʹ(0) = 0	 (10.23c)

	 F(η) → 0  as  η → ± ∞.	 (10.23d)

The solutions to Equations 10.22a and 10.22b are of the following form:

	 f(η) = A tanhαη	

	 F(η) = B sech2αη.	

This form of solution satisfies Equations 10.23a, 10.23c, and 10.23d for all 
finite values of the constants A, B, and α. Then, substitution of the assumed 
form of solutions into Equations 10.22a, 10.22b, and 10.23b produces restric-
tions on the values of A, B, and α. These restrictions are, respectively,
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	 α = 3PrA	

	 B A=
3
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.
	

These four conditions cannot be satisfied by the constants A, B, and α alone, 
and the solution only exists for a particular value of the Prandtl number Pr. 
The solution to the preceding equations is
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In summary, a similarity solution has been found for a particular value of 
the Prandtl number only, and the solution is as follows:
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The above solution is valid for a Prandtl number of Pr = 5/18. It shows that 
the centerline temperature (T(x, 0) – T0) varies as x–3/5.
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10.6  Point Source of Heat

A solution analogous to that obtained in Section 10.5 may be obtained for the 
case of a point source of heat. The physical situation that will exist is illus-
trated in Figure 10.2, it being understood that in the present case, there will 
be angular symmetry about the x axis. In recognition of this fact, the pre-
ferred coordinate system involves circular cylindrical coordinates in which 
the coordinates y and z are replaced by R and θ. Under these circumstances, 
the coordinate system will be (R, θ, x), which is different from the usual situ-
ation in which the axis of symmetry is the z axis.

Noting that there will be no θ dependence due to the symmetry already 
noted, the governing equations, which are described by Equations 10.12a 
through 10.12c, may be rewritten in terms of the preferred coordinate system 
as follows:
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where u is the velocity in the x direction, and uR is the velocity in the radial 
direction, perpendicular to the x axis. In order to facilitate obtaining a solu-
tion to this set of differential equations, a Stokes stream function and a 
dimensionless temperature are introduced as follows:
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	 θ = β(T − T0).	

In terms of these new dependent variables, the differential equations 
quoted above assume the following form:
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The boundary conditions that accompany these differential equations are 
the following:

	
∂
∂

=
∂
∂

∂
∂

=
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u
R
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R R R
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( , )0
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0
0

ψ
	 (10.25a)

	 u x
R xR

R

( , )0
1

0
0

= −
∂
∂

=
=

ψ
	 (10.25b)

	 ρ π ρ
ψ θ

β
πuC T T R R

R
C R Qp P( )− =

∂
∂

=
∞∞

∫∫ 0
00

2 2d d 	 (10.25c)

	
∂
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=
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∂

=
=

T
R

x
R

R

( , )0
1

0
0

β
θ

	 (10.25d)

	 T(x, 0) → 0  and  θ(x, 0) → 0 as R → ± ∞.	 (10.25e)

Solutions to the differential system are sought of the following form:

	 ψ(x, R) = C1xmf(η)	

where

	 η( , )x R C
R
xn

= 2
	

and

	 θ(x, R) = C3xrF(η).	

Substitution of these assumed forms of solution into the differential sys-
tem shows that a similarity solution exists for the following values of the 
exponents m, n, and r:

	 m = 1  and  4n + r = 1.	

The third equation that is required to define the solution is obtained from 
the condition defined by Equation 10.25c. In terms of the new variables, this 
condition becomes

	 2 1 3
0

πρ
β

ηC C
C

x f F Qp m r+
∞

=∫ d . 	 (10.26)
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Since the quantity Q, the heat leaving the source per unit time, must 
be independent of x, the additional requirement is that (m + r) = 0. This results 
in the following values of the exponents for a similarity solution to exist:

	 m n r= = = −1
1
2

1.
	

For these values of the exponents m, n, and r, the differential equations for 
the stream function and the dimensionless temperature become

	 − − + =f
C

f
f gC

C C
F1 01 3

1 2
4υ η η υ
η

d
d 	

	 + =F
C

fF1 0
κη

.
	

Also, the values of the constants C1, C2, and C3 that preserve the cor-
rect dimensions of the stream function and the dimensionless temperature are
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For a point source of heat, as we have here, the quantity Q has the dimen-
sions of quantity of heat per unit time. Then, a dimensionless parameter for 
this case is

	
ρυ

β
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p
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.
	

Then, in order to simplify the coefficients in the differential equations and 
in Equation 10.26, we choose the following values for the constants:
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Using these values for the constants of proportionality in the expressions 
for the stream function and the dimensionless temperature, the system 
reduces to the following ordinary differential system:

	 − − + =f f f F( )1
1

0
d
dη η

η 	 (10.27a)

	 + =F P fFr
1

0
η

. 	 (10.27b)

In arriving at Equation 10.27b, the energy equation has been integrated 
once, and the boundary condition 10.25d has been employed. The boundary 
conditions that accompany these two differential equations are

	 f(0) = fʹ(0) = Fʹ(0) = 0	 (10.28a)

	 =
∞

∫ f F dη
π
1
20

. 	 (10.28b)

Closed-form solutions to the problem posed above exist, and they will be 
explored in the problems at the end of the chapter.

10.7  Stability of Horizontal Layers

When a horizontal layer of fluid is heated from below, or cooled from above, 
a buoyancy force exists that can result in convective motion. However, if the 
buoyancy force is not sufficiently large, no motion occurs. This situation may 
be qualitatively explained as follows.

Consider a horizontal layer of fluid as shown in Figure 10.3. The fluid is at 
rest, and heat is passing through the fluid by conduction from the lower sur-
face to the upper surface. For simplicity, the two horizontal surfaces are con-
sidered to be isothermal, although they have different temperatures. Under 
these circumstances, the buoyancy force will tend to cause the fluid to rise 
from the lower surface, resulting in natural convection.

Suppose that while the fluid is still at rest, a small-amplitude disturbance 
is introduced. It may be that the viscous forces that act on the disturbing 
motion exceed the buoyancy force, which would cause any convection to 
take place. Under these circumstances, the disturbance will decay and the 
motion will cease. On the other hand, if the buoyancy force exceeds the vis-
cous forces, the disturbance will grow and convective motion will result. 
These observations suggest that a stability analysis of the situation depicted 
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could identify the existence of a minimum value of the buoyancy force below 
which no motion will exist. The situation described above may be analyzed 
quantitatively in a manner similar to that used in Section 9.12, which dealt 
with the stability of boundary layers. However, the governing equations will 
be different in the current case because of the existence of heat addition. The 
relevant equations are also different from those used in the previous few 
sections since the disturbance mentioned above will not, in general, satisfy 
the assumptions of the boundary layer approximation.

The situation depicted in Figure 10.3 involves heat conduction in a station-
ary fluid. A small-amplitude disturbance is assumed to be introduced into 
this situation. The equations that govern the motion involved in this distur-
bance will be unsteady and three-dimensional. Following the Boussinesq 
approximation, we consider variations in density to be important only in the 
gravitational term. We further consider the fluid properties to be constant, 
and in the energy equation, we neglect the viscous dissipation of energy 
and the effects of pressure variations in the transfer of energy. Then, using 
the density variation defined by Equation 10.3, the equations governing the 
motion associated with the disturbance will be
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∂

+ ⋅ = − + − − −

∂
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FIGURE 10.3
Horizontal layer of fluid heated from below.



397Buoyancy-Driven Flows

In the preceding equations, the pressure is measured relative to its abso-
lute value; that is, it is no longer measured relative to the static value. But, 
from Figure 10.3, the static temperature distribution, Ts(x), is represented by

	 T x T T T
x
hs( ) ( ) .= − −1 1 2

	

Before the disturbance is introduced, the velocity vector u in the preceding 
equations will be zero. Then, using the temperature distribution specified 
above, the equations reduce to the following form:

	 0
1

1 1 0 1 2= − − − − − −
ρ

β
d
d
p
x

g T T T T
x
h

s ( ) ( ) .
	

The pressure distribution that exists in the stationary state has been labeled 
ps, and as before, the density is understood to be evaluated at the reference 
temperature T0.

When the disturbance is introduced, the field variables are assumed to be 
perturbed in the following manner:

	 u(x, y, z, t) = 0 + uʹ(x, y, z, t)	

	 p(x, y, z, t) = p0(x) + pʹ(x, y, z, t)	

	 T(x, y, z, t) = Ts(x) + Tʹ(x, y, z, t).	

Here, the primed quantities are, by assumption, small perturbations caused 
by the disturbance. Then, products of primed quantities may be neglected. 
Thus, the linearized form of these equations is

	 ∇ · uʹ = 0	

	
∂
∂

= − + +
u

u e
t

p g T x
1 2
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υ β

	

	
∂
∂

−
−

=
T
t
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T T

h
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.1 2 2κ
	

The pressure may be eliminated from this system of equations by taking 
the curl of the momentum equation. Then, it is proposed to take the curl of 
the resulting equation and to use the identity

	 ∇ × (∇ × uʹ) = ∇(∇ · uʹ) − ∇2uʹ = −∇2uʹ	
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in which the continuity equation has been utilized. In this way, the momen-
tum equation becomes

	 −
∂
∂

= − −
∂
∂

2 2 21
υ

β

υt
g

x
Txu e .

	

The y and z components of velocity may now be eliminated by taking 
the dot product of this equation with the unit vector ex. Thus, the problem 
reduces to the following two equations:
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The disturbance that is represented by the perturbation quantities uʹ and Tʹ 
is arbitrary in its form. Therefore, it may be represented by Fourier integrals 
in the y and z directions. Thus, we represent the velocity and temperature 
perturbations by the following expressions:
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Substituting these expressions into the equations that govern the distur-
bance and using the fact that the result must be valid for all wavelengths of 
disturbance result in the following two differential equations:
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where

	 k k ky z
2 2 2= + . 	
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We next use the fact that the coefficients in the equations above are con-
stants. Then, we can seek solutions to the differential equations of the fol-
lowing form:

	 =U x t U x e h t( , ) ( ) ( / )σ κ 2

	

	 =θ θ σ( , ) ( ) .( / )x t x e h tκ 2

	

In the above, the time t has been made dimensionless by dividing it by 
the quantity h2/κ, which is the time required for heat to diffuse across the 
fluid layer. Substituting this representation of the disturbance into the two 
governing equations gives

	 D
P

D U
g

hr

2 2 2 2
2

2− − − =α
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α
β

υ
α θ( ) 	 (10.29a)

	 D
T T

h
U2 2 1 2− −( ) = −

−
α σ θ

κ
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	 (10.29b)

where

	 α = hk	

and

	 D h
x

=
d
d

.
	

In these equations, α is a dimensionless wave number, and D is the dimen-
sionless derivative with respect to x. Eliminating the temperature θ between 
these two equations yields the following stability equation:

	 ( )( )D D D
P

R U
r

a
2 2 2 2 2 2 21

0− − − − − + =α α σ α σ α 	 (10.30)

where

	 R
gh T T
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−3

1 2β

κυ

( )
.
	

The parameter Ra = PrGr is the Rayleigh number, where Pr is the Prandtl 
number, and Gr is the Grashof number. Gr is a measure of the strength of the 
buoyancy force that tries to initiate convective motion.
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For the configuration depicted in Figure 10.3, the boundary conditions 
require that the velocity and the temperature perturbations vanish at the 
boundaries, x = 0 and x = h. The first of these conditions requires that U = 0, 
while the second condition requires that

	 D D
P

U
r

2 2 22 0− − =α
σ

.
	

The latter result follows from Equation 10.29a and the fact that U itself 
vanishes at the boundaries. In addition, the no-slip condition at the bound-
aries requires that not only uʹ but also vʹ and wʹ must vanish on the bound-
aries. With reference to the continuity equation, this condition will be 
satisfied if DU vanishes on the boundaries. Putting these boundary con-
ditions together produces the following set of conditions that are to be 
satisfied:

	 U DU D D
P

U
x
hr

= = − − = =2 2 22 0 0 1α
σ

on , . 	 (10.31)

The problem posed by Equations 10.30 and 10.31 represents an eigenvalue 
problem. For given values of the Rayleigh number Ra, the wave number of 
the disturbance α, and the Prandtl number Pr, the eigenvalue will be the time 
coefficient σ. That is, for given values of Ra, α, and Pr, there will be a value of 
the quantity σ that satisfies the conditions specified above. As the value of 
the wave number is varied, different values of σ will be obtained. The largest 
real value of σ will define the Fourier component of the disturbance that is 
the fastest growing.

It was stated earlier that there was a qualitative reason to expect that there 
was a minimum value of the buoyancy force for convection to start. If this 
is so, there will be a minimum value of the Rayleigh number below which 
no convection will take place. In order to identify this minimum value, we 
note that the situation that will exist in such a case will correspond to the 
wavelength of the fastest-growing component for σ = 0. All other compo-
nents will be decaying. Then, at the onset of instability, the time coefficient 
in the preceding equations will be zero. For this situation, Equations 10.30 
and 10.31 become

	 [(D2 − α2)3 + α2Ra]U = 0	 (10.32a)

	 U DU D U
x
h

= = − = =( ) , .2 2 2 0 0 1α on 	 (10.32b)

The eigenvalue is now the Rayleigh number Ra, which can be determined 
from the equations above for any given value of the wave number α. Then, 
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the minimum value of Ra, with respect to α, will be the critical Rayleigh num­
ber. This corresponds to the magnitude of the smallest temperature gradient 
for which all disturbances, that is, all possible wave numbers, will decay in 
time rather than grow in time and produce convective motion.

The problem posed by Equations 10.32a and 10.32b has a solution that 
yields a value of 1707.8 for the critical Rayleigh number. When one of the 
boundaries is free, the appropriate boundary condition is that the surface 
be free of stress. In this case, the value of 1100.7 is obtained for the critical 
Rayleigh number. For two free boundaries, the value of the critical Rayleigh 
number is 657.5.

PROBLEMS

	10.1	 A similarity solution exists to the problem posed by a point source 
of heat. The solution is of the following form:

	
ψ η

η

θ η

( , ) ( )

( , )

( , ) ( ).

x R C x f

x R C
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x R C x F
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=

=
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2

3 	

		  Carry out the analysis of this solution by substituting the 
assumed form of solution into the differential equations for the 
stream function and the temperature to verify that a similarity 
solution to the equations exists provided that

	 m = 1 and 4n + r = 1.	

		  The total amount of heat leaving the point source per unit time at 
any x location is given by the following relation:

	 2 1 3
0

πρ
β

ηC C
C

x f Fp m r+
∞

∫ d .
	

		  Use this result and the fact that the total amount of heat leaving 
the point source is a constant to determine the values of the param-
eters m, n, and r.

	10.2	 The problem posed by convection from a point source of heat was 
shown, after using similarity methods, to reduce to the following 
problem:
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	 − − + =f f f F( )1
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dη η

η 	 (10.27a)

	 + =F P fFr
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0
η

	 (10.27b)

	 where

	 f(0) = fʹ(0) = Fʹ(0) = 0	 (10.28a)

	 and
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		  Look for a solution to this problem of the following form for the 
case Pr = 1:
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	 where the quantities A, B, and a, are unspecified constants.
(a)	 Show that the assumed form of solution satisfies Equation 

10.27b provided that A = 0.
(b)	 Show that it also satisfies Equations 10.27a and 10.28b provided 

that

	 a B= =6 2
6 2
3

π
π
π

and .
	

	10.3	 Show that for a point source of heat in a fluid for which Pr = 2, a 
solution exists in the following form:
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		  Find the values of the constants A, B, and a that satisfy Equations 
10.27a, 10.27b, and 10.28b.

	10.4	 The problem of marginal stability of a layer of fluid that is heated 
from below is represented by the following equations:

	 [(D2 − α2)3 + α2Ra]U = 0	 (10.32a)

	 U DU D U
x
h

= = − = =( ) , .2 2 2 0 0 1α on 	 (10.32b)

		  The general solution to these equations is of the following form:

	 U x C e C e C e C e C e Cx x x x x( ) = + + + + +− − − − −
1 2 3 4 5 6

1 2 3 4 5γ γ γ γ γ ee x−γ6 . 	

(a)	 Find the values of the constants γi that satisfy the differential 
equation (Equation 10.32a).

(b)	 The existence of a nontrivial solution that satisfies the bound-
ary conditions 10.32b leads to a certain determinant being zero. 
Find this determinant. It is not required to solve the problem of 
setting this determinant equal to zero.

	10.5	 Replace the boundary conditions defined by Equation 10.32b for 
the case of two free surfaces at x = 0 and x = h. That is, find the 
equivalent of Equation 10.32b for the case of two free surfaces.

Further Reading—Part III

The topic of laminar viscous flows is fairly well covered in books, particu-
larly the boundary layer section of the material. The following books cover 
and extend the material treated in Part III of this book.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press, 
London, 1967.

Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B.: Buoyancy-Induced Flows and 
Transport, Hemisphere Publishing Corporation, New York, 1988.

Rosenhead, L. (ed.): Laminar Boundary Layers, Oxford University Press, London, 1963.
Schlichting, H.: Boundary-Layer Theory, 6th ed., McGraw-Hill Book Company, New 

York, 1968.
Van Dyke, M.: Perturbation Methods in Fluid Dynamics, Academic Press, New York, 

1964.
Yih, C.-S.: Fluid Mechanics, McGraw-Hill Book Company, New York, 1969.





Part IV

Compressible Flow 
of Inviscid Fluids

In this part of the book, some phenomena associated with the compress-
ibility of fluids will be discussed, and some methods of solving the govern-
ing equations will be established. In order to do this, the viscosity of the 
fluid will again be neglected, but owing to the high speeds associated with 
most compressible effects, the inertia of the fluid will be retained. That is, the 
fluids under consideration and the flow fields associated with them will be 
considered to be such that viscous effects are negligible but such that com-
pressible effects are important.

Part IV of the book encompasses Chapters 11, 12, and 13. Chapter 11 deals 
with the propagation of disturbances in compressible fluids and shows how 
shock waves are formed. This is followed by a treatment of both normal and 
oblique shock waves. Chapter 12 deals with one-dimensional flow situations 
and shows how pressure signals react upon reaching interfaces between dif-
ferent fluids and also solid boundaries. Nonadiabatic flows, including heat 
addition and friction, are also included. The final chapter, Chapter 13, deals 
with multidimensional flow fields, both subsonic and supersonic. These 
include the Prandtl–Glauert rule for subsonic flow and Ackeret’s theory for 
supersonic flow.
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IV.1  Governing Equations and Boundary Conditions

When the density of the fluid is not constant, the equations of continuity 
and momentum conservation are no longer sufficient to permit a solution for 
the velocity and pressure fields to be obtained. This is because the density, 
which is now a dependent variable, appears in these equations. To close the 
system of equations, the conservation of thermal energy must be utilized. 
Thus, from Equations 1.3a, 1.9a, and 1.11, the equations governing the motion 
of an inviscid fluid in which there are no body forces are

	
∂
∂

+ ⋅ =
ρ

ρ
t

( )u 0 	 (IV.1)

	 ρ ρ
∂
∂

+ ⋅ = −
u

u u
t

p( ) 	 (IV.2)

	 ρ ρ
∂
∂
+ ⋅ = − ⋅ + ⋅

e
t

e p k T( ) ( )u u .	 (IV.3a)

In addition, equations of state must be included. These equations will be 
of the general form

	 p = p(ρ, T)	

	 e = e(ρ, T).	

The foregoing set of equations represents seven scalar equations for the 
seven unknowns u, p, ρ, e, and T.

Two useful alternative forms of the thermal-energy equation exist. One of 
these was derived in the problems at the end of Chapter 3 and is given by 
Equation 3.6. This equation, which introduces the enthalpy h of the fluid in 
preference to the internal energy e, is

	 ρ ρ
∂
∂
+ ⋅ =

∂

∂
+ ⋅ + ⋅

h
t

h
p
t

p k T( ) ( ) ( )u u .	 (IV.3b)

It should be noted that Equation IV.3b follows directly from Equation IV.3a 
without further approximation. If the form Equation IV.3b is employed, the 
caloric equation of state for e should be replaced by the following caloric 
equation of state for h:

	 h = h(p, T).	
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The second alternative form of the thermal-energy equation is obtained 
from Equation IV.3a as a special case. For situations in which heat conduc-
tion is negligible, Equation IV.3a may be written in the form

	 ρ
D
D
e
t

p= − ⋅u.	

If, in addition, the fluid is a perfect gas, it follows from the results of ther-
modynamics that

	 e e T
e
T

Cv= =( ) .and
d
d 	

Also

	 p = ρRT.	

Thus, the thermal-energy equation may be written in the following form:

	 ρC
T
t

pv
D
D

= − ⋅u.	

It should be noted that De/Dt = (de/dT) DT/Dt = Cv  DT/Dt, so that the result 
above is valid even if Cv is not constant.

Using the continuity equation, ∇ · u may be replaced by –(Dρ/Dt)/ρ in the 
equation above. Also, T may be replaced by p/(ρR) from the thermal equation 
of state. Thus, the energy equation may be rewritten as follows:
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The last result follows from the thermodynamic relations

	 Cp − Cv = R	 and	 γ = Cp/Cv.	
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The thermal-energy equation is now in the form of logarithmic derivatives 
that may be combined as follows:
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t
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	 ∴ =
p

ργ
constant along each streamline.	 (IV.3c)

The foregoing result will be recognized as the isentropic law for thermo-
dynamic processes. This is compatible with the assumptions of an inviscid 
fluid in which heat conduction is negligible. The latter assumption means 
that the flow is adiabatic, and the absence of viscosity eliminates any irrevers-
ible losses. Equation IV.3c states that the quantity p/ργ is constant along each 
streamline, which means that the entropy is constant along each streamline. 
But if the flow originates in a region where the entropy is constant every-
where, then the constant in Equation IV.3c will be the same from streamline 
to streamline. That is, p/ργ will be constant everywhere for adiabatic flow of 
a perfect gas that originates in an isentropic-flow field or reservoir.

The boundary conditions that accompany the foregoing equations may 
specify the velocity and the temperature or the heat flux. Since inviscid 
fluids are again being considered, the no-slip boundary condition cannot 
be imposed at rigid boundaries as it was in Part III. Rather, the condition 
u · n = U, which was used in Part II, must again be employed, for the same 
reason as before.
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11
Shock Waves

This chapter establishes the relationships for shock waves that occur in 
supersonic flow. First, the propagation of infinitesimal internal waves is 
studied, which establishes the speed of sound. It is then shown how this 
acoustical result is modified in the case of finite-amplitude disturbances. 
That is, it is shown how nonlinear effects grow to cause a shock wave to 
form. The remainder of the chapter is devoted to the study of steady flows 
involving standing shock waves.

The famous Rankine–Hugoniot relations for a normal shock wave are first 
derived. These relations show, among other things, that the flow through a 
shock wave is nonisentropic. From the second law of thermodynamics, it is 
then shown that shock waves can occur only in supersonic flow and that, 
in the case of a normal shock wave, the downstream Mach number will be 
less than unity. This is followed by derivation of the working equations for 
both normal shock waves and oblique shock waves. That is, relationships are 
established that permit the conditions downstream of a shock wave to be 
calculated if the upstream conditions are known and, in the case of oblique 
shock waves, the angle of the boundary that is inducing the shock wave, rela-
tive to the flow direction.

11.1  Propagation of Infinitesimal Disturbances

By studying the equations of motion for a small-amplitude internal dis-
turbance in a gas, the speed at which such disturbances propagate may be 
established. This speed is, of course, the speed of sound since sound is a 
small-amplitude disturbance. Thus, we consider a perfect gas that is origi-
nally at rest and through which a one-dimensional or plane disturbance is 
traveling. It will be assumed that this disturbance travels at a sufficiently fast 
speed that heat conduction may be neglected. That is, it is assumed that the 
flow is adiabatic. Then, from Equations IV.l, IV.2, and IV.3c, the fluid vari-
ables must satisfy the following conditions:	

∂
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t x
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The flow field under consideration is isentropic, so that the pressure may 
be considered to be a function of one thermodynamic variable only, say the 
density ρ. That is, p may be considered to be p(ρ) only where the particular 
function that applies is defined by the energy equation written above. Then, 
the pressure term in the Euler equation may be rewritten as follows:
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Using this relation, the continuity and momentum equations may be 
rewritten as follows:
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So far, the preceding equations are exact within the assumptions of one-
dimensional motion of an inviscid fluid in which the flow is adiabatic. In 
order to utilize the assumption of a small-amplitude disturbance, the field 
variables will now be written in terms of their undisturbed values plus a 
perturbation that is caused by the passage of the disturbance. The undis-
turbed velocity is zero, and the undisturbed pressure and density will be 
denoted by the constants p0 and ρ0, respectively. Then, the instantaneous 
field variables may be written as follows:

	 p = p0 + p′	

	 ρ = ρ0 + ρ′	

	 u = 0 + u′.	

Substituting these expressions into the two equations derived above gives
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The quantities ρ′/ρ0, p′/p0, and u′ will be small for a small-amplitude dis-
turbance, and so products of all primed quantities may be neglected as being 
quadratically small. The meaning of the statement “u′ is small” will be clari-
fied later. Thus, the linearized form of the foregoing equations is
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It has been considered that the quantity dp/dρ has been expanded in a 
Taylor series, and the quantity (dp/dρ)0 is the leading term in such an expan-
sion. The meaning of the subscript zero is that the quantity dp/dρ should be 
evaluated using the properties of the undisturbed gas.

From these equations, it follows that
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so that the equation to be satisfied by the density perturbation is

	
∂
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Likewise, by eliminating ρ′, the equation governing the velocity perturba-
tion is found to be

	
∂
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Thus, both the density perturbation and the velocity perturbation will have 
the same functional form, so that u′ may be considered to be a function of ρ′ 
only. That is, whatever the dependence of ρ′ is on x and t, u′ will have the same 
form of dependence, so that a simple relationship must exist between u′ and ρ′. 
The foregoing partial differential equations will be recognized as being one-
dimensional wave equations. Thus, the solution for ρ′ will be of the form

	 = − + +ρ
ρ ρ

( , )x t f x
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t g x
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t
d
d

d
d

0 0 	
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where f and g are any differentiable functions of their arguments. The first 
term in this expression represents a wave traveling in the positive x direc-
tion with velocity ( / )d dp ρ 0 , and the second term represents a wave travel-
ing in the negative x direction with the same velocity. Thus, the speed with 
which the density perturbation travels, and also that with which the velocity 
perturbation travels, is ( / )d dp ρ 0 . Since the disturbance was assumed to 
be small and since sound is a small disturbance, this will be the speed with 
which sound travels. That is, if a0 denotes the speed of sound in a quiescent 
gas, it follows that

	 a
p

0

0

=
d
dρ

.
	

The foregoing result may be put in a different form by evaluating the indi-
cated derivative through use of the isentropic relationship and the ideal-gas 
law. From Equation IV.3c
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Hence, employing the gas law p = ρRT gives

	
d
d
p

RT
ρ

γ= .
	

Thus, the speed of sound in a quiescent gas may be written as

	 a RT
p

0 0
0

0

= =γ γ
ρ

	 (11.1a)

where T0 is the temperature of the undisturbed gas. This familiar result 
shows that the speed of sound in a gas may be considered to be a function 
of the temperature of the gas only and that the speed increases as the square 
root of the temperature of the gas.

It is now possible to be more precise concerning the assumption made ear-
lier that the perturbation velocity u′ is small. A quantitative interpretation of 
this assumption may be obtained from our original linearized form of the 
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momentum equation together with the solution just obtained. The linearized 
form of the momentum equation that was used above is
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But it was shown that for a wave traveling in the positive x direction, the 
solution for u′ was f(x – a0t), so that
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where f ′ is the derivative of f with respect to its argument. Thus, the linear-
ized form of the momentum equation may be written in the following form:
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Integrating this equation with respect to x and noting that u′ = 0 when 
ρ′ = 0 gives the following algebraic relation between the velocity and density 
perturbations:

	 =
u
a0 0

ρ
ρ

.	 (11.1b)

Equation 11.1b shows that the meaning of the assumption “u′ is small” is 
that u′/a0 ≪1 since it was already assumed that ρ′/ρ0 ≪ 1. Equation 11.1b also 
exposes the simple relationship between u′ and ρ′ that was deduced to exist.

Another result that may be deduced from Equation 11.1b concerns a funda-
mental difference between compression and expansion waves. For compres-
sion waves, the density perturbation ρ′ will be positive. Then, Equation 11.1b 
shows that the velocity perturbation u′ will also be positive. That is, the fluid 
velocity behind a compression wave will be such that the fluid particles tend 
to follow the wave, as shown in Figure 11.1a. On the other hand, ρ′ will be 
negative for an expansion wave, so Equation 11.1b shows that u′ will also be 
negative. That is, the fluid behind an expansion wave will tend to move away 
from the wave front, as shown in Figure 11.1b. This fundamental difference 
between compression and expansion waves will be discussed further in later 
sections.
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11.2  Propagation of Finite Disturbances

Consider, again, the passage of a plane wave through an otherwise quies-
cent fluid, but this time, no assumption will be made about the infinitesimal 
nature of the wave amplitude. By retaining the effects of finite amplitude, the 
phenomena associated with finite-amplitude disturbances may be exposed. 
It will be shown that finite-amplitude waves do not propagate undisturbed 
and that they form shock waves.

The continuity and momentum equations are the same as those that were 
the starting point of the previous section:
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In the previous section, it was found that, for infinitesimal waves, u was a 
function of ρ only and p was a function of ρ only. Although the flow will con-
tain finite-amplitude effects here, it will be assumed that u and p will again 
be functions of ρ only. Then, from u = u(ρ), it follows that

	 ∂
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(a) (b)

FIGURE 11.1
Fluid velocity induced by (a) compression wave front and (b) expansion wave front.
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Also, from p = p(ρ) only,
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Thus, the continuity and momentum equations may be rewritten in the 
following form:

	
d
d
ρ

ρ
u

u
t

u
u
x

u
x

∂
∂

+
∂
∂

+
∂
∂

= 0
	

	
∂
∂

+
∂
∂

= −
∂
∂

u
t

u
u
x

p
u

u
x

1
ρ ρ

ρd
d

d
d

.
	

The bracketed term in the first equation also appears in the second equa-
tion and so may be readily eliminated between these two equations. The 
resulting relation is
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Canceling ∂u/∂x from this equation and solving for du gives

	 d
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.
	

For convenience, the quantity dp/dρ will be denoted by a2, although no 
physical significance will be attached to the quantity a at this time. However, 
it is known that a→a0 as the amplitude becomes infinitesimal. In terms of this 
quantity a, the preceding equation becomes

	
d du
a
= ±

ρ
ρ

.
	

The analogous equation that was obtained in the previous section was 
du/a0 = dρ/ρ0 for a forward-running wave. Thus, in order that the result 
obtained here may reduce to the linear result for weak waves, the plus sign 
must be associated with a forward-running wave, and the minus sign should 
be associated with a backward-running wave. This gives a fluid-particle veloc-
ity that follows a compression wave and moves away from an expansion wave 
as before. The foregoing relation shows that for a forward-running wave
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This result will be used in the momentum equation as follows:
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That is, the momentum equation for a forward-running wave may be writ-
ten in the following form:
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Solutions to this equation are of the form

	 u(x, t) = f[x − (u + a)t]	 (11.2b)

where f is any differentiable function. It should be noted that in this instance, 
both u and a are functions of the two independent variables x and t.

The foregoing solution represents a wave traveling in the positive x direc-
tion with velocity

	 U = u + a.	

The wave speed U may be related to the speed of an infinitesimal wave, 
that is, to the speed of sound a0, by use of the isentropic law p p/ /ρ ργ γ= 0 0 . 
From the definition of the quantity a, it follows that
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where the definition of the speed of sound has been employed from Equa
tion 11.1a. Using this result and Equation 11.2a, the local value of the fluid 
velocity may be related to the local speed of sound. From Equation 11.2a
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where the relation between a and a0 established above has been employed. 
This equation may be integrated to give
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Using the fact that when u = 0, ρ = ρ0 shows that the value of the constant 
of integration is 2a0/(γ – 1), so that the expression for u becomes
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Here, the relation that was established between a and a0 has again been 
used. That is, the quantity a is related to the local fluid velocity u in the fol-
lowing way:

	 a a u= +
−

0
1

2
γ

.	

This result shows that a > a0 for u > 0 and that the difference between a and 
a0 is proportional to the local fluid velocity u. Using this result, the speed 
of propagation of a finite-amplitude disturbance may be evaluated. It was 
shown from Equation 10.2b that such a disturbance travels with velocity

	 U(x, t) = a + u	

	 ∴ = +
+

U x t a u( , ) 0
1

2
γ

	 (11.2c)

where the relation between a and u established above has been used. Equation 
11.2c shows that the speed of propagation of a finite-amplitude disturbance 
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is greater than the speed of sound for u > 0. That is, the speed of propagation 
is no longer constant, and its value depends upon the value of the local fluid 
velocity.

Since the propagation speed defined by Equation 11.2c depends upon 
both x and t, it is not an equilibrium speed. That is, the speed at which a 
finite-amplitude signal travels will change continuously according to Equa
tion  11.2c. It is instructive to deduce the manner in which a given wave 
front will change its characteristics as a result of this fact. In time τ, Equa
tion 11.2c shows that a disturbance will travel a distance L that is given by 
the expression

	 L a u= +
+

0
1

2
γ

τ.	

Then, relative to an observer who is moving at the speed of sound a0, the 
distance traveled by the wave will be

	 S u=
+γ

τ
1

2
.	

That is, relative to the observer, the wave will travel a distance that is 
dependent upon the magnitude and the sign of the local fluid velocity in 
the disturbance. Thus, regions of high local velocity will travel faster than 
regions of low local velocity. Then, a smooth disturbance of arbitrary form 
will develop as shown in Figure 11.2.

At time τ1, a smooth velocity profile is considered to be traveling in the 
positive x direction. Then, at some later time τ2 > τ1, the regions of higher 
velocity will have advanced further, relative to an observer moving at con-
stant velocity a0, than the regions of lower velocity. At time τ3 > τ2, the wave 
front is shown to be vertical as higher-velocity regions continue to advance 
faster than the slower regions. Finally, at time τ4 > τ3, the higher-velocity 

u u u u

τ1 τ2 τ3 τ4

FIGURE 11.2
Progression of finite-amplitude disturbance.
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regions are shown as having overtaken the portion of the signal that is mov-
ing at the sonic velocity a0. It is seen that this is an impossible configuration 
since three values of u exist at a given location. Thus, it is concluded that the 
wave front will steepen as indicated until the situation depicted at time τ3 
is reached. At this stage, a sharp discontinuity in the field variables exists, 
which is called a shock wave. For times greater than τ3, this sharp wave front 
or shock wave will propagate in an equilibrium configuration.

To summarize, if a smooth, finite-amplitude compression wave is gener-
ated, it will travel in a nonequilibrium configuration. Different parts of the 
wave will travel at different speeds in such a way that the wave front will 
steepen as it progresses. Eventually, the steepening of the wave front will 
reach the point where the changes in velocity, pressure, etc., take place across 
a very narrow region. That is, a shock wave has been formed, and this shock 
wave will continue to travel at an equilibrium speed.

It should be noted that, in the foregoing argument, the fluid velocity u was 
taken to be positive, which corresponds to a compression wave. For an expan-
sion wave, u will be negative for a forward-running wave so that, according 
to Equation 11.2c, the wave front will move more slowly than the speed of 
sound. Also, the more intense parts of the wave move the most slowly, so 
that the wave front will spread out rather than steepen. That is, compression 
waves steepen as they propagate, but expansion waves spread out.

11.3  Rankine–Hugoniot Equations

In the previous section, it was shown how shock waves develop from finite-
amplitude compression waves. In this section, the variation of some of the 
fluid properties across a shock wave will be established. In particular, the 
Rankine–Hugoniot equations relate the density ratio across a shock wave to 
the pressure ratio and the fluid-velocity ratio.

Shock waves are very thin compared with most macroscopic length scales, 
so that they are conveniently approximated as line discontinuities in the fluid 
properties. For purposes of analysis, it is convenient to adopt a frame of ref-
erence in which the shock wave is stationary and in which fluid approaches 
the shock wave in one state and leaves in another state. Figure 11.3 shows 
such a situation in which the incoming velocity, pressure, and density of the 
fluid are, respectively, u1, p1, and ρ1. The corresponding outgoing values are 
u2, p2, and ρ2. Since the shock wave is oriented normal to the velocity vector, 
it is called a normal shock wave.

The quantities u1, p1, ρ1, u2, p2, and ρ2 will be related to each other through 
the equations of mass, momentum, and energy conservation. Since the shock 
wave represents a discontinuity in the fluid properties, differential equa-
tions cannot be used across it. Thus, either the differential equations must be 
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integrated to yield algebraic equations or the governing equations must be 
rederived in algebraic form.

Adopting the latter procedure, the equation of mass conservation may be 
readily written down by inspection from Figure 11.3a:

	 ρ1u1 = ρ2u2.	 (11.3a)

Multiplying these mass flow rates by the corresponding velocity magni-
tudes gives the change in momentum across the shock wave as ρ ρ2 2

2
1 1

2u u− . 
This change in momentum must be caused by the pressure force p1 – p2 per 
unit area, so that the equation of momentum conservation becomes
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2

2u p u p+ = + .	 (11.3b)

Finally, the energy balance may be established as follows: The enthalpy per 
unit mass will be
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Here, the ideal-gas law has been used together with the identity Cp – Cv = R. 
The total energy per unit mass will be the sum of the kinetic and internal 
components, so that the equation of energy conservation is
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FIGURE 11.3
(a) Shock-wave configuration and (b) results from the Rankine–Hugoniot and isentropic 
relations.
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In deriving Equation 11.3c, it has been implicitly assumed that the flow is 
adiabatic, although it has not been assumed that it is isentropic. Since shock 
waves involve high speeds and since heat conduction is a slow process, the 
adiabatic condition is well justified.

Equations 11.3a through 11.3c represent three equations in the six quanti-
ties u1, p1, ρ1, u2, p2, and ρ2. Hence, two of these quantities may be eliminated, 
leaving an equation connecting the remaining four quantities. The quan-
tities u1 and u2 will be eliminated as follows: Dividing Equation 11.3b by 
Equation 11.3a gives
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where p2/ρ2u2 has been rewritten as p2/ρ1u1, which follows from the continu-
ity equation. Multiplying the preceding equation by u2 + u1 gives
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But, from the continuity equation, u2/u1 = ρ1/ρ2, so that
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The left-hand side of this equation may be replaced by a function of the 
pressures and densities only through use of the energy Equation 11.3c. The 
resulting equation is
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This is the required equation that relates the pressures and densities across 
the shock wave. Solving this equation for the density ratio results in the fol-
lowing alternative form of the equation above:
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From the continuity equation ρ2/ρ1 = u1/u2, so that, combining this result 
with the equation above, the following conditions will apply across a normal 
shock wave:
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Equations 11.4 are called the Rankine–Hugoniot equations, and they relate 
the density ratio across a shock wave to the pressure ratio and the velocity 
ratio.

In the derivation of the Rankine–Hugoniot equations, it was not assumed 
that the flow was isentropic, and indeed, it will now be shown that it is not 
isentropic. If the flow had been isentropic, the density ratio across the shock 
wave would have been
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2
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1

=
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/

.	

Thus, in a plot of log(ρ2/ρ1) versus log(p2/p1), the isentropic law will be 
a straight line of slope l/γ. The corresponding curve obtained from Equa
tions 11.4 is a curved line, as shown in Figure 11.3b.

From the foregoing results, it may be concluded that shock waves depart 
from the isentropic law unless p2/p1 and ρ2/ρ1 are close to unity. That is, 
unless the shock wave is very weak, it will not be isentropic.

11.4  Conditions for Normal Shock Waves

It will be shown in this section that, as a consequence of the second law of 
thermodynamics, only that portion of Figure 11.3b that lies in the first quad-
rant has physical significance. This restriction will be shown to result in the 
requirement that the upstream Mach number M1 must be greater than unity 
for shock waves to occur, and the resulting downstream Mach number M2 
will be less than unity.

Using the results from thermodynamics that are quoted in Appendix E, 
the entropy difference across a shock wave s2 – s1 will be given by

	 s s C
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− = −log log .	

Using the ideal-gas law, the temperature ratio in the equation above may 
be eliminated in favor of the pressure and density ratios. Thus, the entropy 
change may be rewritten as follows:
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But Cp – R = Cv, so that the entropy change across the shock wave, which 
will be denoted as Δs, may be evaluated from the following equation:
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Using the preceding result, the entropy change and the density ratio will 
be compared, for a given pressure ratio, for two processes. The first process 
will be a shock wave that must obey the Rankine–Hugoniot equations, and 
the second process will be a hypothetical isentropic one for the same pres-
sure ratio as the shock wave. Then, from the equation above, the entropy 
changes in each of these processes will be
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where the subscript R-H indicates the entropy change and the density ratio for 
a shock wave in which the pressure ratio is p2/p1, and the subscript I denotes 
the density ratio for an isentropic process that spans the same pressure ratio. 
Subtracting these two equations to eliminate the common pressure ratio gives

	
∆s
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.	

But the second law of thermodynamics requires that Δs ≥ 0, so that

	 log log
ρ
ρ

ρ
ρ

2

1

2

1

≥
−I R H

.	

Figure 11.3b shows that this inequality can be satisfied only in the first 
quadrant of the diagram, which corresponds to log(ρ2/ρ1) > 0 and log(p2/p1) 
> 0. That is, in order to satisfy the second law of thermodynamics
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ρ
ρ
2

1

1≥ .	 (11.5a)

This means that the gas must be compressed as it goes through a shock 
wave. The continuity equation then shows that

	
u
u
1

2

1≥ 	 (11.5b)

so that the fluid is slowed down as it passes through a shock wave.
Conditions 11.5a and 11.5b may be put into the more meaningful condition 

M1 ≥ 1. In order to achieve this alternative formulation, it is first necessary to 
derive a relationship that is known as the Prandtl or Meyer relation. In deriv-
ing this region, the subscript * will be used to denote the value of a variable 
when M = u/a = 1, where u is the fluid velocity, and a is the local value of the 
speed of sound. Then, it follows that u* = a*.

The starting point in the derivation is the equation obtained by dividing 
the momentum equation 11.3b by the continuity equation 11.3a:
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Using the definition of the speed of sound to introduce a p1
2

1 1= γ ρ/  and 
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The right-hand side of this equation may be replaced by an equivalent 
expression that is obtained from the energy equation in the following 
form:
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where the fact that u1* = u2* = a1* = a2* = a* has been used. Thus, the velocity 
difference u1 – u2 may be rewritten in the following form:
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This equation simplifies considerably to the form

	 u u a1 2
2= ∗ 	 (11.6)

which is the Prandtl or Meyer relation.
The preceding result will be used in the conditions that were established 

for a normal shock wave to obtain an alternative form of these conditions. 
Multiplying both the numerator and the denominator of the inequality 11.5b 
by u1 gives

	
u

u u
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1 2

1≥ .	

Then, using Equation 11.6
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The left-hand side of this inequality may be evaluated from the energy 
equation as follows:
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Dividing this equation by u1
2 gives
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Substituting this expression into the condition for a shock wave gives
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which reduces to

	 M1 ≥1.	 (11.7a)
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That is, a shock wave can occur only if the incoming flow is supersonic. 
Furthermore, in view of the Prandtl or Meyer relation (Equation 11.6), the 
inequality 11.7a implies that

	 M2 ≤ 1.	 (11.7b)

To summarize, in order that the second law of thermodynamics is not 
violated, a normal shock wave can occur only in supersonic flow, and the 
resulting downstream flow field will be subsonic. That is, the fluid will be 
compressed as it passes through the shock wave.

11.5  Normal-Shock-Wave Equations

The results of the last two sections were intended to establish the funda-
mental phenomena of shock waves and the principal consequences of the 
existence of shock waves. However, the relationships established in these 
sections are not suitable for evaluating the conditions downstream of a 
shock wave in terms of the upstream conditions. It will be recalled that 
the three conservation equations connect six quantities, three upstream 
values and three downstream values. Then, it should be possible to elimi-
nate any two of the downstream conditions and so obtain an equation 
that relates  the remaining downstream condition to the three upstream 
conditions. In this way, equations may be established for each of the 
downstream quantities in terms of the upstream conditions, which are 
presumably known. Rather than considering the velocity to be one of the 
quantities, the Mach number M will be considered. Thus, for supersonic 
flow in which a shock wave exists, the known quantities may be consid-
ered to be p1, ρ1, and M1, while the unknown downstream quantities will 
be p2, ρ2, and M2.

To evaluate the downstream Mach number M2, the energy equation 
involving the upstream conditions and the sonic conditions is employed 
as follows:
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Similarly, from the energy equation involving the downstream conditions 
and the sonic conditions, it follows that
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These expressions will be used in the Prandtl or Meyer equation (Equa
tion 11.6) as follows:
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Solving this equation for M2 gives
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/
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.	 (11.8a)

That is, the downstream Mach number is a function only of the upstream 
Mach number and the specific-heat ratio of the gas. The variation of M2 with 
M1, as defined by Equation 11.8a, is shown schematically in Figure 11.4a. It will 
be seen that as the upstream Mach number increases, the downstream Mach 
number decreases. As M1 → ∞, Equation 11.8a shows that M2

2 1 2→ −( )γ γ/ , 
which defines the asymptotic limit.

M1

M2
ρ2
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M1 M11.0 1.0 1.0
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γ + 1
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 γ – 1
 2γ

FIGURE 11.4
Conditions downstream of a normal shock wave: (a) Mach number, (b) density, and (c) pressure.
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The density ratio across the shock wave will be obtained by first evaluating 
the velocity ratio and then using the continuity equation. From Equation 11.6
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where the last equality was established earlier in this section. Simplifying 
the right-hand side of this equation gives
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But, from the continuity equation, u2/u1 = ρ1/ρ2, so that the expression for 
the density ratio across the shock wave is
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.	 (11.8b)

The form of the density ratio as a function of the upstream Mach num-
ber is shown in Figure 11.4b. The density ratio is a monotonically increasing 
function of M1 and reaches an asymptote that, as shown by Equation 11.8b, 
is (γ + l)/(γ – 1).

The pressure ratio across a normal shock wave may be readily evaluated 
from the Rankine–Hugoniot equations (Equations 11.4) and the density ratio 
as given by Equation 11.8b. This gives
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Solving this equation for the pressure ratio gives
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The form of this result is shown in Figure 11.4c. It will be seen from this 
curve, and it may be verified from Equation 11.8c, that the pressure ratio 
increases without limit as the upstream Mach number increases.

The foregoing relations (Equations 11.8a through 11.8c) give each of the 
principal downstream quantities in terms of the upstream Mach number 
and the specific-heat ratio of the gas. The functional form of these results is 
shown qualitatively in Figure 11.4, and quantitative data may be obtained 
from tables and figures that appear in the references at the end of this part 
of the book.
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11.6  Oblique Shock Waves

Oblique shock waves are shock waves that are inclined to the free stream 
at an angle different from π/2. Such a shock wave is shown in Figure 11.5, 
in which both the incoming and outgoing velocities have been decomposed 
into components that are perpendicular to the shock wave and those that 
are parallel to the shock wave. The shock wave is inclined at an angle β to 
the incoming flow direction, and the velocity vector is deflected through an 
angle δ by the shock wave.

The components of the velocity vectors that are normal to the shock wave 
are u1 sin β and u2sin (β – δ) for the incoming and outgoing flow, respectively. 
These velocity components must obey the normal-shock-wave equations, so 
that

	 u2 sin (β −δ) ≤u1 sin β.	

On the other hand, the tangential-velocity components must be equal since 
there is no pressure differential or other force acting in the tangential direc-
tion. This shrinking of the normal-velocity component and preservation of 
the tangential-velocity component result in the downstream velocity vector 
u2 being bent toward the shock wave, as shown in Figure 11.5.

The equations that determine the downstream values of the pressure, den-
sity, and Mach number need not be established from the governing equa-
tions in the same manner as was done in the previous section. Rather, the 
observations that have already been made regarding normal- and tangential-
velocity components may be utilized in conjunction with the normal-shock-
wave equations. Since the upstream normal-velocity component is now 
u1 sin β rather than u1, the upstream Mach number M1 should be replaced by 

Shock wave

β
δ

u u21

M1, p1, ρ1 M2, p2, ρ2

u
1  sin β

u 1 c
os β

u
2  sin(β − δ) u 2 c

os(β
 − δ)

FIGURE 11.5
Configuration of an oblique shock wave.
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M1 sin β in Equations 11.8a through 11.8c. Likewise, the downstream Mach 
number M2 should be replaced by M2 sin(β – δ). Thus, the equations for the 
downstream Mach number, density, and pressure become
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The foregoing equations express M2, ρ2, and p2 in terms of M1, β, and δ. 
Although M1 is usually known, only one of the angles β and δ is typically 
known. If the shock wave is generated by the leading edge of a body, the 
angle δ will be known since the downstream velocity vector must be tangent 
to the surface of the body. Then, the angle β is typically the unknown quan-
tity. However, one more equation exists to close the system of equations. The 
conservation equations have been applied only to the normal components of 
the upstream and downstream velocity vectors. Since there are no forces act-
ing along the shock wave, the conservation of mass and momentum in that 
direction are satisfied by equating the components of the velocity vectors in 
the tangential direction. This gives

	 u1 cos β = u2 cos (β − δ)	

and hence
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Since this equation is supposed to determine the shock-wave angle β, the 
velocity ratio should be eliminated in favor of known quantities. The conti-
nuity equation, which involves the normal-velocity components, gives
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Equating these two expressions for the velocity ratio results in the identity
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Now, the density ratio may be eliminated from the results that were deduced 
above from the normal-shock-wave equations. The result is the relation
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This equation is sufficient to determine the angle β since both M1 and δ 
are known. However, the result is an implicit expression for β rather than 
an explicit expression. Although the equation is not readily rearranged to 
express β in terms of M1 and δ, it is possible to solve for M1 in terms of β and 
δ. Solving directly for M1 gives
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This result may be simplified by first rearranging the numerator and 
denominator to give
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Next, the trigonometric identities for multiple-angled functions may be 
employed to reduce the expression to the following form:
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.	 (11.9a)

Equation 11.9a connects three quantities, two of which will be known in any 
flow configuration. The form of the solution represented by Equation 11.9a 
is shown in Figure 11.6a. These results show that, for given values of M1 and 
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FIGURE 11.6
Oblique-shock-wave relations: (a) shock-wave inclination β, (b) downstream Mach number M2, 
and (c) pressure ratio across the shock wave.
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the deflection angle δ, two shock-wave angles β are possible. The limiting 
values of β may be established by recalling the condition for a normal shock 
wave, M1 ≥ 1, which here becomes M1 sin β ≥ 1. Then, β must lie in the follow-
ing range:

	 sin− ≤ ≤1

1

1
2M

β
π

	 (11.9b)

where the upper limit corresponds to a normal shock wave. The lower limit 
will be recognized as the angle of a Mach wave, that is, the angle to the lead-
ing edge of a sound wave that is being continuously emitted by a source of 
sound in which the source is moving with Mach number M1. Mach waves, of 
course, represent the sonic end of the shock-wave spectrum, so that the pres-
sure ratio and the density ratio across Mach waves are unity. On the other 
hand, normal shock waves exhibit the maximum pressure and density ratio 
for a given approach Mach number. These observations lead to the classifica-
tion of oblique shock waves as being either strong (if the value of β is close to 
π/2) or weak [if the value of β is close to sin–1 (1/M1)]. It will be shown shortly 
that the downstream flow is subsonic for a strong shock wave and super-
sonic for weak shock waves. The dotted line in Figure 11.6a corresponds to 
M2 = 1, which does not coincide with the minimum value of M1 for fixed δ, 
although these two values do not differ substantially.

The value of the downstream Mach number may be obtained from the 
equations that were already deduced from the normal-shock-wave equa-
tions. The expression is
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Since M1 and δ will be known from the problem definition and since β 
will be known from Equation 11.9a, the value of M2 may be established from 
Equation 11.9c. The results of such a solution are shown schematically in 
Figure 11.6b. The figure clearly illustrates the possibilities of having either 
subsonic or supersonic flow downstream of the shock wave. In the case 
of normal shock waves, it was found that the downstream flow had to be 
subsonic, but for oblique shock waves, the unaffected tangential-velocity 
component, when added to the subsonic normal component, may result in 
supersonic flow, particularly for shallow angles β.

The expression for the pressure ratio across an oblique shock wave was 
also deduced from the normal-shock-wave equations and was shown to be
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The form of the curves that are generated from this equation is shown in 
Figure 11.6c. This diagram brings out the significance of the terminology 
“strong” and “weak” as applied to shock waves. The strength of a shock wave 
is defined by the nondimensional pressure difference (p2 – p1)/p1, which is 
seen to be larger for the strong shock waves than for the weak shock waves.

The downstream Mach number and pressure ratio are two quantities of 
principal interest in shock-wave flows. The equation for the density ratio was 
also deduced from the normal-shock equations and was shown to be
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.	 (11.9e)

The foregoing equations are sufficient to completely determine the condi-
tions downstream of an oblique shock wave, provided that the type of shock 
wave is known (i.e., strong or weak). There is no mathematical criterion for 
determining whether the shock wave will belong to the strong family or the 
weak family. The configuration that will be adopted by nature depends on 
the geometry of the projectile or boundary inducing the shock wave.

Figure 11.7 shows two different shapes of leading edge that are considered 
to be immersed in the same supersonic flow field. For the blunt-nosed body, 
the boundary condition on the solid surface requires that the velocity vec-
tor be close to the vertical in the vicinity of the front stagnation point. This 
boundary condition may be realized only if a detached shock wave exists in 
front of the body as shown. Since the angle β is close to π/2 for this shock 
wave, it will be of the strong variety, so that the downstream Mach number 
will be less than unity. The corresponding subsonic flow may then satisfy 
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FIGURE 11.7
Supersonic flow approaching a blunt-nosed body and a sharp-nosed body.
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the required boundary condition in the usual way. Moving away from 
the front stagnation point along the surface of the body, the angle δ of the 
downstream velocity vector is continuously changing. Thus, some point is 
eventually reached where the value of δ is such that matching the boundary 
condition by deflecting the flow through a weak shock wave is possible. The 
shock wave will therefore bend back with the flow far from the body so that 
the downstream flow becomes supersonic. Thus, a region of subsonic flow 
will exist in the vicinity of the nose of the body, and the rest of the flow field 
will be supersonic.

In the case of a sharp-nosed slender body, an attached shock wave will 
exist, as shown in Figure 11.7. With this configuration, the velocity vector 
will be deflected by the shock wave through just the correct angle to sat-
isfy the boundary condition that the surface be a streamline. Since the shock 
wave will belong to the weak family in this case, the flow downstream of the 
shock wave will remain supersonic.

PROBLEMS

	 11.1	� In general, the enthalpy h depends on both the pressure and the 
temperature, that is, h = h(p, T). However, if p = ρRT, it follows that 
h = h(T) only. To show this, obtain the first law of thermodynamics 
in the form

	 T ds = dh − v dp	

	 where v is the specific volume of the gas. Then, by considering s = 
s(p,T) and h = h(p,T), show that
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T T
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s
p T

h
p

v
1

.	

	 These are the reciprocity relations that are quoted in Appen
dix E. By eliminating s from these equations and utilizing the gas 
law p = ρRT, show that ∂h/∂p = 0 so that h = h(T) only.

	 11.2	� In general, the internal energy e depends on both the specific vol-
ume and the temperature, so that e = e(v, T). Show that if p = ρRT, it 
follows that e = e(T) only.

	 11.3	� Show that, for a calorically perfect gas, the entropy change involved 
in some event may be related to the temperature ratio and the 
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pressure ratio, or to the temperature ratio and the density ratio, by 
the following expressions:
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	 11.4	� The equation governing the fluid velocity induced by a finite-
amplitude forward-running disturbance was shown to be
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u
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	 in which both u and a depend on both x and t. Show, by direct sub-
stitution, that

	 u = f  [x − (u + a)t]	

	 is the general solution to this equation, where f is any differentiable 
function.

	 11.5	 The equation to be solved for u in Problem 11.4 is
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	 Show that the steepness of the wave ∂u/∂x satisfies a relationship of 
the form:
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	 and find the constant of proportionality. If the steepness of the 
wave front at time t = 0 is denoted by

	

∂
∂

=
u
x

S
0 	

	 find the time required for ∂u/∂x to become infinite, and thus show 
that S must be negative for a shock wave to form.

	 11.6	� The entropy increase across a shock wave may be calculated from 
the following expression:
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.

	

	 Using the normal-shock-wave equations, express Δs/Cv as a function 
of M1 and γ only. Denoting ( )M1

2 1−  by ε, express Δs/Cv as the sum of 
three terms, each of which has the form (1 + αε), where α is a function 
of γ only. Expand the result for small values of ε, and hence show that 
Δs/Cv ~ ε3, which shows that weak shock waves are almost isentropic.

	 11.7	� A normal shock wave occurs in a fluid that is not a perfect gas and 
for which the pressure and the density are related by the following 
expression:

	
ρ

ρ

d
d
p
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	 where c is a constant.
(a)	 Using the continuity and momentum equations, together with 

the foregoing relation and the general expression for the speed 
of sound, show that the upstream and downstream Mach num-
bers are related as follows:

	
log
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2 1

2
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2= − .	

(b)	 The pressure across the shock wave (p2 – p1) can, in principle, be 
expressed in terms of M1 and c. The relation is implicit rather 
than explicit, but it can be solved for M1

2 as a function of (p2 – p1) 
and c. Find this expression.
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	 11.8	� The equation to be solved in the propagation of sound waves is the 
same as that to be solved for shallow-liquid waves. This leads to an 
analogy between sound waves in a gaseous medium and waves 
on the surface of a liquid. Find the corresponding physical quanti-
ties in this analogy, and find the value of γ that makes the analogy 
complete.

	 11.9	� The equations governing a wave that is approximately one-dimen-
sional are as follows:
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	 Look for a progressive-wave solution to these equations in which the 
pressure p(x, t) is dependent on x and t only, and the velocity compo-
nents follow the same x and t dependence as indicated below:

	

∂

∂
+

∂

∂
=

=

=
∂

∂

p
t

c
p
x

u x y t U p y

v x y t V p y
p
x

0

( , , ) ( , )

( , , ) ( , ) .
	

	 In the above, the wave speed c(p) is considered to be a function of 
the pressure p. Without linearizing, determine the equations to be 
satisfied by the functions U(p,y) and V(p,y).

		  Look for a similarity solution to the equations obtained above in 
the following form:

	 U(p, y) = p1/2U*(y)	

	 V(p, y) = p−1/2V*(y)	

	 c(p) = p1/2C*	

	 where C * is a constant. Find the equations to be satisfied by U *(p,y) 
and V *(p,y).
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12
One-Dimensional Flows

This chapter deals with flow fields that are essentially one-dimensional 
and that are compressible, either subsonic or supersonic. Most of the topics 
considered involve sonic flow and so constitute a continuation of the topics 
treated in the previous chapter.

The topic of weak shock waves or sonic waves is treated from a general 
viewpoint by means of Riemann invariants. In this way, the manner in 
which acoustic waves react in various situations is established. Particular 
situations that are treated include the release of waves in a shock tube, the 
reflection of waves at a solid boundary, reflection and refraction of waves at 
the interface of two gases, and waves generated by a moving piston. In order 
to show the quantitative differences due to finite-strength waves, the non-
linearized shock-tube problem is also treated. Nonadiabatic flows are also 
treated through the technique of influence coefficients. This allows not only 
heat addition but also friction and area changes to be handled. Finally, the 
flow through convergent–divergent nozzles is treated.

12.1  Weak Waves

The topic of weak shock waves or acoustic waves will be further investigated in 
this section. The Riemann invariants for the governing equations will be estab-
lished, which permits the treatment of general problems involving weak waves.

It was shown in Chapter 11 that weak waves are isentropic, so that p may 
be considered to be a function of ρ only. Thus
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The continuity and momentum equations for a plane wave may therefore 
be written in the following form:
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For a fluid that is originally at rest before the wave passes through it, the 
density, pressure, and velocity may be written as their quiescent values plus 
a perturbation. That is,

	 ρ = ρ0 + ρ′	

	 p = p0 + p′	

	 u = 0 + u′	

where, for a weak wave, ρ′/ρ0 ≪ 1, p′/p0 ≪ 1, and u′/a0 ≪ 1, where a0 is the 
speed of sound in the undisturbed gas. Thus, the linearized form of these 
equations, which will describe weak waves, is
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Since ρ0 is a constant, it may be added to ρ′ when it appears inside a deriva-
tive. Thus, the equations above may be rewritten in the following form:
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Using, again, the expansions for ρ and u shows that
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The quantities inside the differential operators will now be nondimension-
alized by dividing the first equation by ρ0 and the second equation by ρ0a0. 
This gives
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Finally, the desired form of the governing equations for weak waves is 
obtained by first adding, then subtracting, these two equations:
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Both these equations are of the form of a material derivative of some quan-
tity being zero. The material derivative is one in which the convection veloc-
ity is the speed of sound, and in the first equation, the convection is in the 
positive x direction. Then, integrating these two equations gives
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The lines x – a0t and x + a0t are called the characteristics, and the quantities 
u/a0 + ρ/ρ0 and u/a0 – ρ/ρ0, which are constant along the characteristic lines, 
are called Riemann invariants. Figure 12.1a shows the characteristics that pass 
through a typical x location and the Riemann invariants for these character-
istics. It will be noted that one of the characteristics is forward-running and 
the other is backward-running.

The Riemann invariants may be expressed in terms of the pressure and the 
velocity rather than the density and the velocity. Depending on the problem 
being considered, this alternative formulation may be desirable. To obtain 
the alternative formulation, the density ratio is replaced by the pressure ratio 
through use of the isentropic gas law as follows:
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Since ρ′/ρ0 ≪ 1, this expression may be linearized to give
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In order to eliminate the density ratio from the Riemann invariants, this 
expression must be rearranged to yield the density ratio in the form ρ/ρ0. 
This may be done as follows:
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(a) Characteristics and Riemann invariants in the xt plane and (b) basis of evaluating the field 
variables at an arbitrary point P.
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and hence
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That is, the density ratio ρ/ρ0 may be replaced by the pressure ratio as indi-
cated so that, from Equations 12.1a and 12.1b, the Riemann invariants may 
be written in the form
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Figure 12.1a shows the two characteristics that pass through a typical point 
(x, 0) in the xt plane and the alternative Riemann invariants along these 
characteristics.

Equations 12.1a through 12.1d may be used to evaluate the velocity, the 
density, and the pressure at any value of x and any value of t if the values of u, 
ρ, and ρ are known as functions of x at some time such as t = 0. The manner in 
which this is done may be explained with reference to Figure 12.1b. A typical 
point P(x, t) is shown in the xt plane together with the two characteristics that 
originate along the t = 0 axis and that pass through the point P. Associated 
with these two characteristics are Riemann invariants whose constants may 
be evaluated from the known conditions at t = 0. Then, at the point P, the 
Riemann invariants for u and ρ provide two algebraic equations for the two 
unknowns. Alternatively, the Riemann invariants for u and p provide two 
algebraic equations for these two unknowns. The following sections will uti-
lize this approach to obtain solutions for particular flow situations.

12.2  Weak Shock Tubes

The first application of the foregoing theory will be made to a shock tube 
in which a weak wave is released. A shock tube is a relatively long tube 
fitted with a diaphragm, as shown in Figure 12.2a. The gas on one side of 
the diaphragm is maintained at a pressure different from that on the other 
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side. In general, the gases on either side of the diaphragm may be different 
and so may have different properties and states. In this instance, the gases 
will be considered to be the same, and only the states are assumed to differ. 
The initial pressure distribution, which is taken to be an equilibrium state, 
is shown in Figure 12.2b. The diaphragm may be designed to burst at some 
predetermined value of the pressure p1. A pressure wave is thus released 
from the vicinity of the diaphragm as the two regions tend to equalize their 
pressures. The problem is to determine the pressure and the velocity in the 
gas at any location and at any time.

The xt diagram for the shock tube is shown in Figure 12.2c. The time at 
which the diaphragm bursts is taken to be t = 0 for convenience, and the loca-
tion of the diaphragm is chosen to be x = 0. Then, a compression wave will 
emanate from the origin and will travel into the lower-pressure region, while 
an expansion wave will emanate from the origin and travel into the region 
of higher pressure as indicated. Since weak waves are being considered, the 
two waves mentioned will travel at the speed of sound a0. Then, the slopes 
of the waves in the xt plane are a0 and – a0 for the compression wave and the 
expansion wave, respectively. The xt diagram in Figure 12.2c is divided into 
three regions that are defined by the waves emanating from the origin of the 
diagram. Region 1 is that portion of the positive x axis that has not yet been 
affected by the oncoming compression wave. In this region, the velocity is 
zero and the pressure is p0. Region 2 is defined as that portion of the negative 
x axis that has not been influenced by the expansion wave. Here, u = 0 and 
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FIGURE 12.2
(a) Shock tube, (b) initial pressure distribution, (c) xt diagram, and (d) typical pressure distri
bution for t > 0.
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p = p1. The third region, denoted region 3, is that part of the x axis that has 
been influenced by the compression wave and the expansion wave. Since the 
pressure and the velocity must be continuous across x = 0, both the positive 
and negative portions of the x axis in region 3 will experience the same pres-
sure and velocity.

In order to determine the pressure and the velocity in region 3, an arbi-
trary point P is considered, as shown in Figure 12.2c. The two characteristics 
that originate on the x axis at t = 0 and pass through the point P are indi-
cated and are denoted by ξ = constant and η = constant. The values of the 
Riemann invariants along these characteristics may be determined from the 
known distributions along the x axis at t = 0. Thus, along the characteristic ξ = 
constant, Equation 12.1c shows that
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Here, the fact that u = 0 and p = p1 at t = 0 for x < 0 has been used. From 
η = constant:
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The fact that u = 0 and p = p0 at t = 0 along the positive x axis has been used 
here. The solution to these two algebraic equations shows that the velocity 
and the pressure behind the compression and expansion waves are
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Equation 12.2a shows that for p1/p0 > 1, u/a0 > 0, so that the fluid moves along 
the positive x axis. This agrees with our previous finding that the fluid parti-
cles tend to follow compression waves and move away from expansion waves. 
Equation 12.2b shows that the pressure in region 3 is the arithmetic mean of 
the pressures in regions 1 and 3. The pressure distribution along the tube is 
shown for some time t > 0 in Figure 12.2d. This figure illustrates that a com-
pression wave of amplitude (p1 – p0)/2 moves along the positive x axis with 
speed a0, whereas an expansion wave of the same amplitude moves along the 
negative x axis at the same speed. The expansion waves may be considered 
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to be a discontinuity since only weak waves are being considered. The analo-
gous problem for finite-strength waves will be considered in a later section.

The analysis that is presented above may be used to solve a variety of prob-
lems involving weak waves interacting with walls, interfaces with other flu-
ids, etc. The section title “Weak Shock Tubes” appear to be self-contradictory 
in the sense that the words “weak” and “shock” are used together. However, 
the physical system described above is an excellent model for determin-
ing the physics of what happens when weak waves, such as sound waves, 
encounter the situations that will be discussed in the following sections.

12.3  Wall Reflection of Waves

The behavior of a weak pressure wave when it strikes a solid boundary will 
be established in this section. This will be done by considering a shock tube 
that has a closed end so that the wave that travels along the tube will impinge 
upon it. In this way, it will be shown that a compression wave is reflected by 
a wall as a compression wave of the same strength, and an expansion wave 
is likewise reflected as an identical expansion wave.

Figure 12.3a shows a shock tube similar to that which was considered in 
the previous section, except that the tube is closed at one end. The xt diagram 
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(a) Shock tube, (b) xt diagram; (c) pressure distribution at some time and (d) at a later time.
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for the four conditions that result from bursting the diaphragm at time t = 0 
is shown in Figure 12.3b. As in the previous section, the outgoing waves 
divide this diagram into distinct regions numbered 1, 2, and 3. Upon striking 
the closed end of the shock tube, the wave that was traveling in the positive 
x direction will be reflected as a wave of some form. It is known that this 
reflected wave will travel at the speed of sound a0, but it is not known a priori 
whether it will be an expansion wave or a compression wave and what the 
strength of this wave will be in relation to that of the incident wave. Thus, the 
properties of the gas in region 4, which is the region that has been influenced 
by both the incident and reflected waves, are not known.

Region 1 of Figure 12.3b has not yet been influenced by the outgoing wave 
from the origin and so maintains its initial conditions of u = 0, p = p0. Likewise, 
region 2 maintains its undisturbed condition of u = 0, p = p1. Region 3 has been 
influenced by the outgoing waves, and so the velocity and the pressure there 
will be given by Equations 12.2a and 12.2b. In order to determine the state of 
the gas in region 4, an arbitrary point P(x, t) and its two characteristics are 
indicated in Figure 12.3b. The ξ = constant characteristic comes from region 3, 
where the velocity and the pressure are known. Hence, this characteristic 
may be terminated at any point in region 3 where the value of the Riemann 
invariant may be established. The η = constant characteristic runs parallel 
to the line of the reflected wave and eventually reaches the x location of the 
closed tube end. Since the pressure here is unknown, the ξ1 = constant char-
acteristic from this point is drawn into region 3, where the velocity and the 
pressure are known. This permits the Riemann invariant to be established for 
the η = constant characteristics.

Denoting the pressure at the wall or closed end in region 4 by pw, the 
Riemann invariant along the η = constant characteristic gives
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Here, the fact that u = 0 and p = pw on the wall has been used. To evaluate 
pw, the Riemann invariant for the η = constant characteristic will be used. 
This gives
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where the values of the velocity and the pressure in region 3, as given by 
Equations 12.2a and 12.2b, and at the wall in region 4 have been used. The 
last equality is satisfied by

	 pw = p1.	
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Then, the equation along the η = constant characteristic becomes
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A second equation is obtained from the ξ = constant characteristic:
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Here, the constant for the Riemann invariant has been evaluated in region 
3 by again using Equations 12.2a and 12.2b. The solution to the last two alge-
braic equations is

	 u = 0	 (12.3a)

	 p = p1.	 (12.3b)

Equation 12.3a shows that the velocity of the gas in region 4 is zero. This 
result is due to the fact that region 4 includes the closed end of the tube, and 
the boundary condition there requires zero velocity. Equation 12.3b shows 
that the pressure in region 4 equals the pressure in region 2. This means that 
the pressure at any value of x > 0 varies as follows: initially, the pressure is 
p0, and as the first wave passes toward the closed end, the pressure jumps 
to (p1 + p0)/2. Finally, as the reflected wave passes, the pressure jumps to p1, 
as shown in Figure 12.3a and b. That is, the pressure differential across the 
incident wave is (p1 – p0)/2, which is also the pressure differential across 
the reflected wave. Since this result is valid for either p1 > p0 or p1 < p0, it fol-
lows that compression waves are reflected as compression waves of the same 
strength by solid boundaries, and expansion waves are reflected as expan-
sion waves of the same strength.

12.4  Reflection and Refraction at Interface

When a wave encounters an interface between two different gases, part of 
the wave is transmitted through the interface and part of it is reflected by 
the interface. This conclusion may be verified by modeling the situation by 
a shock tube in which an interface between two different gases exists part 
way down the tube. Such a configuration is shown in Figure 12.4a. Initially, 
the velocity is zero everywhere while the pressure is p1 for x < 0 and p0 for 
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x > 0. Partway down the positive x axis, the physical properties of the gas 
are assumed to change abruptly because there are two different gases in the 
tube, or the same gas may have two regions that are at different tempera-
tures. In either case, the speed of sound is taken to be a01 to the left of the 
interface and a02 to the right of the interface. Likewise, the specific-heat ratio 
is denoted by γ1 to the left of the interface and γ2 to the right.

The xt diagram describing the sequence of events that results from burst-
ing the diaphragm at time t = 0 is shown in Figure 12.4b. It is assumed that 
the wave that emerges from the burst diaphragm and that travels in the posi-
tive x direction toward the gaseous interface is partially transmitted and 
partially reflected at the interface. That is, in general, it is assumed that part 
of the incident wave passes through the gaseous interface and is refracted, 
while the other part of the wave is reflected by the interface. Thus, Figure 
12.4b is divided into four distinct regions as indicated. Region 1 represents 
the initial state of the gas located to the right of the diaphragm, and although 
the physical properties of the gas will be discontinuous at the gaseous inter-
face, the velocity will be everywhere zero, and the pressure will be every-
where p0 in this region. In region 2, the velocity will be zero and the pressure 
will be p1. In the regions marked 3, the gas will be influenced by passage 
of the waves that result from bursting the diaphragm, and the velocity and 
pressure there will be given by Equations 12.2a and 12.2b.
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FIGURE 12.4
Shock tube with gas interface and xt diagram subsequent to bursting the diaphragm.
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In order to determine the velocity and the pressure in the regions marked 4, 
an arbitrary point P(x, t) that lies on the interface between the two gases is 
considered. From this point, the ξ = constant and η = constant characteristics 
are drawn, and by virtue of the fact that the point P lies on the interface, 
each of these characteristics lies entirely in the domain of one gas only. The 
ξ = constant characteristic may be terminated anywhere in region 3 where 
the velocity and pressure are known, whereas the η = constant characteristic 
may be terminated anywhere in region 1. Since the velocity and the pressure 
must be continuous across the interface at all times, the two regions labeled 4 
must have the same velocity and pressure. Since it is realized that, in general, 
the interface may move after being struck by the incident wave, the line that 
represents the interface in the regions 4 does not necessarily correspond to 
x = constant.

Using the Riemann invariant along the ξ = constant characteristic shows 
that the velocity and the pressure in region 4 must satisfy the condition
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Here, the known conditions for region 3 have been employed from 
Equations 12.2a and 12.2b. Along the η = constant characteristic, we get
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where the undisturbed conditions for region 1 have been used. The solution 
to these two equations is
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Equation 12.4a shows that for p1/p0 > 1, the velocity u in region 4 will be 
positive, so that the interface will move to the right in the positive x direc-
tion. As in the previous section, this confirms the result that the flow tends 
to follow compression waves since for p1/p0 > 1, not only will the incident 
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wave be a compression wave but so will the reflected wave. It was shown in 
the previous section that, for a solid interface, the reflected wave was of the 
same strength as the incident wave. In the present case, it may be anticipated 
that the gaseous interface is not as efficient in reflecting waves as the solid 
interface. The actual strength of the reflected wave may be calculated from 
the solution given by Equation 12.4b. If the pressure differential across the 
reflected wave is denoted by Δpr, it follows that
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where the solution for the pressure in region 3 has been used. Then, using 
the pressure given by Equation 12.4b for the value in region 4, the pressure 
differential across the reflected wave becomes
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If the speed of sound a02 becomes very small compared with a01, which 
corresponds to a high-density gas beyond the interface, this result reduces to 
Equation 12.3b for a solid boundary. That is, as the density difference at the 
interface increases, the foregoing result reduces to that for an impermeable 
boundary corresponding to perfect reflection.

If the pressure differential across the transmitted or refracted wave is 
denoted by Δpt, it follows that
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where the fact that p = p0 in region 1 has been used. Then, from Equation 
12.4b,

	
∆p
p

p p
a a

t

0

1 0

1 2 02 01

1
1

=
−

+

( )
( )( )

/
/ /γ γ

.	 (12.5b)

Equations 12.5a and 12.5b show that the strength of the reflected wave 
and that of the transmitted or refracted wave depend on the nature of the 
interface between the two gases. For γ2 = γ1 = γ and a02 = a01 = a0, Equations 
12.5a and 12.5b show that there is no reflected wave and that the transmitted 
wave is identical to the incident wave. For a02/a01 → 0, the reflection becomes 
total, as was discussed earlier. Intermediate to these two limiting cases, both 
a reflected wave and a transmitted wave will exist.
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12.5  Piston Problem

The so-called piston problem is a classical one and may be stated as fol-
lows: Figure 12.5a shows a cylinder or a tube inside which a piston slides. 
Initially, the piston and the gas ahead of it are stationary, when the piston 
is suddenly jerked into motion at some constant velocity. The problem is to 
find the velocity and the pressure ahead of the piston after the motion has 
started.

The xt diagram for such a situation is shown in Figure 12.5b. One of the 
two lines on this diagram corresponds to a wave front that is generated by 
the impulsive acceleration of the piston and that travels down the cylinder 
ahead of the piston with velocity a0. The second line represents the instan-
taneous location of the piston, which is moving with constant velocity U 
for t > 0. Since, according to our linear theory, U/a0 ≪ 1 so that the piston 
will always be close to x = 0, compared with the location of the wave front, 
the boundary condition that u = U on the piston face may be imposed on 
x  = 0 rather than x = Ut. This yields the modified xt diagram shown in 
Figure 12.5c.

The xt diagram shown in Figure 12.5c is divided into two distinct regions 
by the wave that leaves the piston face. Region 1 contains the undisturbed 
gas, which is stationary and whose pressure is p0. In order to determine the 
velocity and pressure in region 2, a typical point P(x, t) is considered. The 
η = constant characteristic from this point enters region 1, where the val-
ues of u and p are known. The ξ = constant characteristic runs parallel to 
the wave front and eventually encounters the position of the piston face at 

Piston

Piston position

Wave front

U

u 
= 

U
 

t

x

t

x

u 
= 

U

P(x, t)
η = constη1  = const

ξ = const

(a)

(b) (c)

u = 0, p = p0 u = 0, p = p0

FIGURE 12.5
(a) Piston and cylinder, (b) actual xt diagram, and (c) linearized xt diagram.
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x = 0. Although the velocity there is known, the pressure is not; hence, the 
η1 = constant characteristic is drawn from the point where the ξ = constant 
characteristic terminates. These three characteristics permit the values of the 
velocity and the pressure at the point P to be evaluated.

Denoting the value of the pressure at the piston face by pp, the Riemann 
invariant along ξ = constant gives

	

u
a

p
p

U
a

p

p
p

0 0 0 0

1 1
+ = +
γ γ

.
	

The pressure at the piston may be evaluated from the Riemann invariant 
for the η1 = constant characteristic, which is evaluated first on the piston face 
and then in region 1. The resulting equation is
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Using the last equality to evaluate pp, the equation for the ξ = constant 
characteristic becomes

	

u
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p
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U
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.
	

Another equation connecting u and p may be obtained from the Riemann 
invariant for the η = constant characteristic, which yields

	

u
a

p
p0 0

1 1
− = −
γ γ

.
	

The solution to the last two equations is

	 u = U	 (12.6a)

	
p
p

U
a0 0

1= +γ .	 (12.6b)

Equation 12.6a shows that the gas velocity in region 2 is everywhere the 
same as that of the piston. Equation 12.6b shows that the pressure ahead of 
the piston but behind the outgoing wave is greater than the initial value by 
an amount that is proportional to the piston speed U.



454 Fundamental Mechanics of Fluids

12.6  Finite-Strength Shock Tubes

In the previous four sections, some properties of internal waves have been 
exposed through reference to weak shock tubes. In reality, finite-strength 
waves exist, and their properties may be established through reference to 
finite-strength shock tubes. Although the qualitative behavior of strong 
waves is the same as that for weak waves, the quantitative results are dif-
ferent. The nature of these differences will be established in this section by 
carrying out an analysis for the problem that is analogous to that treated in 
Section 12.2 for a weak shock tube.

Figure 12.6a shows a shock tube in which the initial velocity is everywhere 
zero and in which the initial pressure distribution is p1 to the right of the 
diaphragm and p4 to the left of the diaphragm. The initial pressure distribu-
tion is shown in Figure 12.6b, and it is assumed that the pressure differential 
p4 – p1 is substantial so that a linear theory is no longer valid. Because of the 
substantial pressure differential and/or the fact that the gases may differ, 
the specific-heat ratio and the speed of sound will be different on either side 
of the diaphragm and are denoted by γ1, a1 and γ4, a4, as indicated in Figure 
12.6a.

The form of the pressure distribution for t > 0, corresponding to the dia-
phragm bursting at t = 0, is shown in Figure 12.6c. A compression wave 
of finite strength will travel down the tube in the positive x direction. It is 
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γ = γ4, a = a4
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FIGURE 12.6
(a) Shock tube configuration, (b) initial pressure distribution, (c) xt diagram, and (d) typical 
pressure distribution for t > 0.
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known from Section 11.2 that this wave will steepen as it travels and will 
develop into a shock wave, as shown in Figure 12.6c. An expansion wave 
will travel in the negative x direction, and it is known that such waves tend 
to smooth out as they propagate. The px diagram for this situation is shown 
in Figure 12.6d. The shock wave may be represented by a single-line discon-
tinuity, but the expansion wave will extend over a substantial portion of the 
x axis and is thus represented by an expansion fan. This consists of a series 
of lines that emanate from the origin of the xt diagram and may be thought 
of as a very large number of weak waves.

The location of the interface between the two bodies of gas is also shown 
in Figure 12.6c so that the possibility of two different gases may be covered. 
Thus, the xt diagram is seen to be divided into four distinct regions. Region 
2 consists of gas 2 and represents those locations that have been affected by 
the passage of the compression wave. Region 3 consists of gas 4 in those loca-
tions that have been affected by the expansion wave. The principal quantities 
of interest are the strength of the shock wave that results from bursting the 
diaphragm, for given values of p4 and p1, and the speed with which the shock 
wave moves along the tube.

The boundary conditions at the interface between regions 3 and 2 are 
u3 = u2 and p3 = p2. These conditions guarantee continuity of the velocity and 
the pressure, and they may be used to determine the strength of the shock 
wave as follows. By employing a Galilean transformation to a stationary nor-
mal shock wave, the results obtained in Chapter 11 may be used to obtain an 
expression for u2 in terms of p2/p1. By an analogous procedure, the velocity 
u3 may be expressed in terms of the pressure ratio across the expansion wave 
p4/p3. The matching conditions at the interface will then give an equation 
that relates the pressure ratio p2/p1 across the shock wave to the initial pres-
sure ratio p4/p1 across the diaphragm.

Considering first the compression wave, let u1n and u2n be the gas velocities 
u2 and u1, respectively, expressed in a frame of reference in which the shock 
wave is stationary. Then, in order that u1 may be zero here, a Galilean trans-
formation of magnitude u2n must be made on the velocities. The relationships 
between the normal shock velocities u2n and u1n, which refer to Figure 11.3a, 
and the present velocities u1 and u2, which refer to Figure 12.6d, are
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This now represents a shock wave that is moving with velocity u2n through 
a stationary gas in which the velocity of the gas behind the shock wave is u2. 
But u2n/u1n may be evaluated from the Rankine–Hugoniot relation (Equation 
11.4), which gives
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where p1 and p2 now refer to Figure 12.6d. But u1n = a1M1n, where M1n is 
the Mach number of the flow approaching a stationary shock wave. From 
Equation 11.8c
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where, again, the pressures now refer to Figure 12.6c. The expression for the 
velocity in region 2 then becomes
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This result may be simplified to give
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Consider next the expansion wave. It was established in Chapter 11 that 
expansion waves, contrary to compression waves, tend to smooth out and 
spread themselves over substantial distances. Thus, the expansion from p4 to 
p3 takes place in a continuous manner that may be thought of as consisting 
of a very large number of weak expansion waves, each of which is isentropic. 
Thus, from Equation 11.2a, it follows that at any point in the expansion wave
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where the minus sign denotes that the wave is traveling in the negative x 
direction. But

	

a
p p

p

a

2
4

4 4

4

4
2

4

1

4

4

4

= =

=
−

γ
ρ

γ
ρ

ρ

ρ
ρ

γ

γ

γ

	



457One-Dimensional Flows

where the isentropic law has been used to relate p to ρ. Thus, the expression 
for du becomes
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Integrating this expression and noting that u = 0 when ρ = ρ4 yield the 
following expression for the local value of the velocity u in the expansion 
wave:
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The local density ρ may be replaced by the local pressure p through use of 
the isentropic law. This gives
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In particular, at the trailing edge of the expansion wave, p = p3 and u = u3, 
so that
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The expressions obtained above for u2, from the compression wave, and u3, 
from the expansion wave, will now be used in conjunction with the interface 
matching conditions. Thus, setting u3 = u2 and at the same time replacing p3 
by p2 yields the following identity:

	
2

1
1

24

4

2

4

1 2

1
1 2

4 4
a p

p
a

p p
γ

γ γ

−
− =

−( )/
( / −−

− + +

1
1 1

2

1 1 1 2

1 2
)

[( ) ( )( )]

/

γ γ γ1 /p p
.	

Although this equation cannot be solved to yield an explicit expression for 
the shock-wave pressure ratio p2/p1 in terms of the initial diaphragm pres-
sure ratio p4/p1, the converse is not true. Thus, solving this equation for p4 
gives
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If p1/p2 is replaced by 1 – ε, Equation 12.7a shows that p4/p1 = 1 + 2ε to the 
first order in ε. That is, for weak waves, the result obtained in Section 12.2 is 
recovered.

It was shown earlier in this section that the results for normal shock waves 
could be related to those of a shock wave moving with velocity u2n into a 
stationary gas in which the gas velocity behind the shock wave is u1n – u2n. 
Thus, if Ms denotes the Mach number with which the shock wave propagates 
through fluid 1, it follows that

	 Ms = M1n.	

Then, from Equation 11.8a
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But, from Equation 11.8c
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where p1 and p2 refer to the problem at hand. Thus, the expression for the 
Mach number of the compression wave becomes
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This result may be simplified to yield the following equation:
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As p2/p1 approaches unity, Ms also approaches unity. That is, for weak 
shock waves, the front travels at the speed of sound, which confirms the 
results of Chapter 11. Equation 12.7 also shows that the Mach number of the 
shock wave can be considerably greater than unity for strong shock waves.
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12.7  Nonadiabatic Flows

The physical situations to be treated here differ from those of the previous 
sections in several ways. As the heading suggests, the most significant dif-
ference is that flows in which heat is being added to the gas, or removed 
from it, will be covered. In addition, external body forces such as frictional 
forces may be included. Another difference from previous treatments is that 
variations in the flow area may be included, provided that the flow may be 
considered to be essentially one-dimensional. In the previous sections of this 
chapter, the flow configurations have been exactly one-dimensional. Here, 
converging and diverging boundaries will be permitted, and the velocity 
that exists at any streamwise location will be considered to be the average 
value at that location. Finally, the flow situations considered here differ from 
those of the previous sections in the sense that the flow varies continuously 
rather than abruptly, as with Mach waves or shock waves. That is, the heat 
addition, external forces, and area changes will be assumed to be such that 
they vary the flow properties continuously rather than abruptly, so that the 
use of derivatives will be valid.

Figure 12.7a shows a typical flow configuration of the type to be consid-
ered here. At the location defined by x, the flow area is A, and at the location 
x + dx, the flow area is A + dA. The element of length dx is subjected to an 
external force δf(x), and an amount of heat δq(x) is added to it.

The equations of motion for the gas may be readily derived in differential 
form as follows: The continuity equation requires that ρuA = constant where 
ρ and u are, respectively, the average density and velocity of the gas at the 
location x. Then

	 d(ρuA) = 0	

δq(x)

δf (x)

x dx

M < 1 M > 1 

dA
dx

= 0 

(a) (b)

FIGURE 12.7
(a) Element of one-dimensional flow field and (b) flow through a typical nozzle.
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so that performing the indicated differentiation and dividing by ρuA give
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Equation 12.8a supplies one equation connecting three of the variables. 
The momentum balance for the element shown in Figure 12.7a is

	 ρ u du = dp + δf.	

Dividing this equation by p and using the fact that a2 = γp/ρ reduce it to the 
following form:
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where the local Mach number M = u/a has been introduced. The thermal-
energy balance for the case of a perfect gas may be written in the form

	 CpdT + u du = δq	

where T is the local temperature of the gas. Dividing this equation by CpT 
gives
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But T may be replaced by p/ρR for a perfect gas and RCP = (γ – 1)/γ, so the 
energy equation may be written in the form
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Here, again, the expression for the speed of sound and the definition of the 
Mach number have been employed. Finally, the equation of state for an ideal 
gas gives
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and hence
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Equations 12.8a through 12.8d represent four algebraic equations for the 
differentials du, dρ, dp, and dT in terms of the local values of the variables 
u, ρ, p, T, M, f, q, and A. Then, these equations may be solved to yield expres-
sions for each of the differentials separately. To obtain the expression for du, 
for example, use Equation 12.8d and eliminate dp/p by using Equation 12.8b 
and dT/T by using Equation 12.8c. This gives
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Adding Equation 12.8a to this result to eliminate dρ/ρ results in the follow-
ing expression:
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Equation 12.9a gives the change in speed du that is associated with a 
change in area dA, application of an external force δf, and the addition of 
an amount of heat δq. The coefficients of the quantities dA/A, δf/p, and δq/
CPT are called influence coefficients since they represent the influence of some 
external process, such as heat addition, on some flow variable, such as the 
gas velocity. Thus, with respect to the normalized velocity du/u, the influ-
ence coefficient for dA/A and that for δf/p is 1/(M 2 – 1), whereas the influence 
coefficient for δq/CPT is –1/(M2 – 1). As a special case, consider adiabatic flow 
without external forces. Then, Equation 12.9a becomes
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This equation expresses the familiar result that in order to accelerate 
(du > 0) subsonic (M < 1) flow, the flow area should be decreased (dA < 0). On 
the other hand, for supersonic flow, the area should be increased to acceler-
ate the flow. This leads to nozzle shapes of the form shown in Figure 12.7b 
where the throat, which corresponds to dA = 0, has sonic conditions.
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An expression similar to Equation 12.9a may be obtained for dp/p by using 
Equation 12.8a and by eliminating du/u from it through use of Equation 
12.9a. This gives
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For adiabatic flow without external forces, Equation 12.9b becomes
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This result shows that in order to expand a gas in a nozzle continuously, 
the flow area should decrease when the flow is subsonic and increase when 
the flow is supersonic. This agrees with our conclusion regarding accelerat-
ing gases in nozzles. For flow in a constant-area channel in which there are 
no external forces acting on the gas, Equation 12.9b becomes
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This equation shows that in order to expand a gas in a pipe by thermal 
means, heat should be added if the flow is subsonic, whereas heat should be 
removed if the flow is supersonic.

The variation of the temperature may be obtained by using Equation 12.8a 
to eliminate du/u from Equation 12.8c. This gives
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For adiabatic flow without external forces, Equation 12.9c reduces to
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Hence, for γ > 1, the temperature will drop in a converging-flow area if the 
flow is subsonic or in a diverging-flow area if the flow is supersonic. For flow 
in a constant-area channel in which there are no external forces, Equation 
12.9c becomes
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The influence coefficient here changes sign at M = 1/ γ  and at M = 1. 
Then, for γ > 1, the effect of heat addition will be to increase the tempera-

ture for M < 1/ γ  and for M > 1, but the temperature will decrease in the 

range 1 1/ γ < <M . For adiabatic flow in a constant-area duct, Equation 
12.9c becomes
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Hence, for γ > 1, the effect of an external force such as wall friction is to 
increase the temperature of subsonic flow and to decrease the temperature 
of supersonic flow.

Two well-known results that may be established in this way are the 
Fanno line and the Rayleigh line. In each case, the variation of temperature 
or enthalpy is considered as a function of the entropy. The resulting curve 
for the case of adiabatic flow in a constant-area duct is called a Fanno line, 
whereas the curve for the case of a constant-area duct without external forces 
is called a Rayleigh line. That is, the Fanno line shows the effect of friction in 
a constant-area duct, whereas the Rayleigh line shows the effect of heat addi-
tion. One of the most practical and significant results that may be deduced 
from these diagrams, or from the equations established above, is that chok-
ing takes place at M = 1. Thus, adding heat to a constant-area flow will accel-
erate it until M = 1, and no more heat can be added beyond this point. For 
long pipelines, the effect of friction is similar, so that a point may be reached 
beyond which no more gas can be pumped through the pipe without remov-
ing some heat.

12.8  Isentropic-Flow Relations

For isentropic flows, simple and useful relations exist between the local 
value of some variable, such as the temperature or pressure, and the local 
Mach number. These relations may be obtained from the thermal-energy 
equation as follows.

For steady, isentropic flow, the thermal-energy Equation IV.3b becomes

	 ρ (u · ∇) h = (u · ∇)p.	

But, forming the scalar product of u and the Euler equation (Equation IV.2) 
shows that
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Hence, the energy equation may be written in the form
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This means that the quantity h + u∙u/2 is constant along each streamline, 
so that

	 h h+ ⋅ =
1
2 0u u

	

along each streamline. The quantity h0 is called the stagnation enthalpy, and 
it corresponds to the enthalpy that the fluid would have at zero velocity. Of 
course, it may be known that in some part of the flow field, the stagnation 
enthalpy is constant, which is usually the case, so that h0 will have the same 
constant for every streamline.

The foregoing result for the enthalpy may be recast in terms of the tem-
perature, the pressure, or the density. For a perfect gas whose physical prop-
erties are constant, h = CPT, so that

	 C T u C Tp p+ =
1
2

2
0 .	

Here, the fact that we are dealing with one-dimensional flows only has 
been used, so that u ∙ u = u2. The quantity T0 that has been introduced here is 
the stagnation temperature, which corresponds to the temperature the fluid 
would have if it were brought to rest. Solving this equation for the tempera-
ture ratio shows that
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The quantity u2/T may be rewritten as γRu2/(γRT) = γRM 2 since γRT, which 
appears in the denominator, is the square of the local value of the speed of 
sound. Then, since R/Cp = (γ – 1)/γ, the expression for the temperature may 
be written in the following form:
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The following relations are known from thermodynamics to be valid for 
isentropic flows:
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Using these identities and Equation 12.10a shows that the following rela-
tions hold:
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Here, p0 and ρ0 are, respectively, the stagnation pressure and the stagnation 
density, and M is the local Mach number.

12.9  Flow through Nozzles

It was shown in Section 12.7 that if a nozzle is required to expand a subsonic 
flow to supersonic speeds, its shape should be of the form shown in Figure 
12.7b. Such a flow configuration will be considered here in which the flow 
reaches sonic conditions at the throat and is supersonic downstream of the 
throat. Since the flow is adiabatic and if frictional losses may be considered 
to be negligible, the flow will be isentropic. This means that the results of the 
previous section may be employed.

The notation that was introduced in Section 11.4 to indicate sonic condi-
tions will again be used here. Thus, the temperature, pressure, and density 
corresponding to M = 1 will be denoted by T*, p*, and ρ*, respectively.

Then, from Equations 12.10a through 12.10c

	
T
T
0 1

2*

=
+γ

	 (12.11a)

	
p
p
0

1
1

2*

( )

=
+

−
γ

γ γ/

	 (12.11b)
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ρ
ρ

γ
γ

0

1 1
1

2*

( )

=
+

−/

.	 (12.11c)

That is, the temperature, pressure, and density at the throat of the nozzle 
may be determined if the stagnation values are known. The stagnation condi-
tions will be known directly if the flow originates in a large reservoir where 
the fluid speed is zero and its other properties are known. If the fluid proper-
ties and nonzero speed are given at the inlet to the nozzle, then the stagna-
tion properties may be calculated from Equations 12.10a through 12.10c.

The variation of the Mach number of the flow with the flow area of the 
nozzle may be established as follows. The continuity equation, written for an 
arbitrary section and for the throat of the nozzle, gives ρuA = ρ*u*A*; hence

	
A
A

M a
Ma*

* * *=
ρ
ρ

.	

But M* = 1 by definition and a a T T* */ /= , so that

	
A
A M

TT
T T*
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ρ ρ
ρ ρ

0

0

0

0

1
.	

Now ρ*/ρ0 is given by Equation 12.11c, while ρ0/ρ is given in terms of the 
local Mach number by Equation 12.10c. Likewise, T*/T0 is given by Equation 
12.11a and T0/T is given by Equation 12.10a. Thus, the expression for the area 
ratio may be written in the form
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.
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M
/

	

This result may be simplified to yield the following expression for the ratio 
of the local flow area for which the Mach number is M to the area of the 
nozzle throat:

	
A
A M

M
*

( ) ( )

=
+

+
−

+ −
1 2

1
1

1
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2

1 2 1

γ
γ

γ γ/

.	 (12.12a)
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Equation 12.12a relates the local flow area to that of the throat, so it is of 
interest to obtain an expression that relates the throat area A* to the mass 
flow rate through the nozzle. Denoting this quantity by �m, it follows that

	

�m u A

M a A

=

=

ρ

ρ ρ
ρ

* * *

*
* * *( ) .0

0 	

Using Equation 12.11c again together with the facts that M* = 1 and 

a RT RT T T= =γ γ* *0 0/ , this equation becomes

	 �m RT A=
+ +

−
2
1

2
1

1 1

0 0

1 2

γ
ρ γ

γ

γ/ /( )

*

	

where Equation 12.11a has been used for T*/T0. Using the ideal-gas law to 
write ρ0 = ρ0/(RT0), the final form of the expression for the mass flow through 
the nozzle becomes

	 �m
p A

T T
=

+

+ −

0

0

1 1
2
1

*
( ) ( )

γ
γ

γ γ/

.	 (12.12b)

As might be expected, the mass flow rate through the nozzle is propor-
tional to the throat area A*. Equation 12.12b further shows that the mass flow 
rate is proportional to the stagnation pressure of the gas and inversely pro-
portional to the square root of the stagnation temperature of the gas.

The foregoing expressions are sufficient to design convergent–divergent 
nozzles. Typically, the conditions in the gas at the entrance to the nozzle are 
given together with the mass flow rate (or the inlet area) and the exit pressure 
to which the gas must be expanded. From the inlet conditions, the stagna-
tion properties may be evaluated from Equations 12.10a through 12.10c. The 
required throat area for the nozzle may then be calculated from Equation 
12.12b. Since the stagnation properties of the gas are constant through the 
nozzle, Equation 12.10b permits the exit Mach number to be determined. 
Equation 12.12a  then determines the exit flow area of the nozzle.

PROBLEMS

	 12.1	 Consider a weak shock tube that has a finite length in the positive x 
direction downstream of the diaphragm. The end of the shock tube 
that is downstream of the diaphragm is open to the atmosphere. 
Draw the xt diagram for the wave that will result from bursting 
the diaphragm. If the pressure at the open end of the shock tube is 
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maintained at the value p0, obtain expressions for the velocity and 
the pressure behind the wave that is reflected from the open end of 
the tube, back toward the burst diaphragm.

	 12.2	 The figure in this problem shows a piston located at x = 0 in a cyl-
inder of length L. Two different gases occupy the space between 
the piston and the cylinder head, and these two gases meet at a 
free interface that is located at x = αL. At the time t = 0, the piston 
is impulsively set into motion with constant velocity U, where the 
velocity U may be assumed to be small compared with the acoustic 
velocities a01 and a02. At the interface between the two gases, part 
of the resulting wave is reflected and part of it is refracted. If the 
reflected wave reaches the piston at time t = τ and the transmitted 
wave reaches the end of the cylinder at the same instant, draw the 
xt and use linear theory to find the following:
(a)	 The temperature ratio T02/T01 in terms of α
(b)	 The velocity and the pressure for 0 < x < L and for 0 < t < τ in 

terms of U, p0, γ, a01, and α
(c)	 The ratio of the strength of the reflected wave to that of the 

transmitted wave

	 12.3	 Show that, for a finite-strength shock tube, the Mach number of the 
flow behind the shock wave is given by the following expression:

	 M
p
p

p
p2

1

2

1

1

1

2

1

1
1 1

1
2

1= − +
−

−
γ

γ
γ

pp
p
2

1

1 2− /

	

	 where the subscript 1 corresponds to the region ahead of the shock 
wave, and the subscript 2 corresponds to the region immediately 
behind the shock wave.

	 12.4	 Heat is being added to a perfect gas that is flowing in a constant-
area channel. Neglecting all external forces, determine the influ-
ence coefficient β in the equation

x = 0 x = a L x = L 

Piston Interface

Closed end

u = 0, p = p0
γ, T01, a01

u = 0, p = p0
γ, T02, a02
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dM
M

q
C Tp

= β
δ

.
	

		  Use the resulting equation, together with the following equation:

	
dp
p

M
M

q
C Tp

=
−

γ δ2

2 1 	

	 to establish a differential relation between p and M. Integrate this 
relation to obtain an expression for the pressure ratio p2/p1 in terms 
of the Mach numbers M2 and M1 at any two locations.

	 12.5	 Use the results of Problem 12.4 and the isentropic flow relations 
to obtain the temperature ratio T2/T1 and the density ratio ρ2/ρ1 in 
terms of the Mach numbers M1 and M2.

	 12.6	 The entropy change between two flow conditions of a perfect gas 
may be determined from the following relation:

	 s s C
p
pv− =1
1

1log
ρ
ρ

γ

	

	 where the subscript 1 denotes inlet conditions for the flow. Apply 
this to the case of steady, adiabatic flow in a channel of constant 
cross-sectional area to establish the equation of the Fanno line. To 
do this, use the following forms of the continuity and energy equa-
tions, and the equations of state:

	

ρ

ρ

uA m

h
u

h

p RT

h C Tp
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�
2

02

.
	

		  Here, �m  is the mass flow rate of the gas and h0 is the stagnation 
enthalpy. Hence, show that the equation of the Fanno line is
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h h h
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.	
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		  From this last result, show that the entropy reaches a maximum 
when M = 1.

	 12.7	 To obtain the equation of the Rayleigh line, use the same equations 
that were used in the previous problem except, since heat addition 
is involved, replace the energy equation with the following form of 
the momentum equation:

	 ρ u2 + p = p0.	

		  Hence, obtain the equation of the Rayleigh line. From the result, 
show that the entropy reaches a maximum where M = 1 and that 
the enthalpy reaches a maximum when M = 1/ γ .
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13
Multidimensional Flows

This chapter deals with some steady two-dimensional and three-dimensional 
flow problems, both supersonic and subsonic. The governing equations are 
first established for irrotational motion, and then solutions to these equa-
tions are sought. The Janzen–Rayleigh expansion is discussed first. This 
expansion is a parameter expansion in powers of the Mach number squared, 
and so it is valid only for Mach numbers that are somewhat less than unity. 
Small-perturbation theory is next discussed. This approximation assumes 
that the body about which the flow is sought disturbs the free stream in a 
minor way only. Since many real flow situations satisfy this condition, small-
perturbation theory is widely used.

Small-perturbation theory is then used to study some specific subsonic 
and supersonic flows. The Prandtl–Glauert rule for subsonic flows is cov-
ered. This rule relates subsonic compressible flows to the corresponding 
incompressible flows. Ackeret’s theory for supersonic flows, which is also 
based on small-perturbation theory, is discussed next.

Leaving the topic of small-perturbation theory, the chapter ends with a 
discussion of an exact solution. The flow treated is that of supersonic flow 
turning around a corner that bends away from the free stream. This flow is 
known as the Prandtl–Meyer flow.

13.1  Irrotational Motion

As was the case for incompressible flows, many of the flow fields of inter-
est are irrotational because they originate in a uniform flow. According to 
Crocco’s equation, the flow will then also be isentropic. Then, the pressure 
term in the momentum equation may be rewritten as follows:

	
p

p
a= =

d
dρ

ρ ρ2

	

where the fact that p is a function of ρ only, owing to the isentropic nature of 
the flow, has been used. Then, the momentum Equation IV.2 becomes
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∂
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Forming the scalar product of the velocity vector u with this vector equa-
tion gives
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∂
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( ) [( ) ] .u u u u u u
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The term on the right-hand side of this equation may be recast by use of the 
continuity equation in the form
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∂
∂

− ⋅ρ
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ρ
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Thus, the foregoing form of the momentum equation becomes
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The density may be completely eliminated from this equation by taking 
the time derivative of the Bernoulli equation. Thus
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Now, the two inverse operations, differentiation with respect to ρ and inte-
gration with respect to ρ, cancel one another, so that the Bernoulli equation 
becomes

	

∂

∂
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t t
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Using this equation to rewrite the nonsteady term on the right-hand side 
of the momentum gives

	

1
2

1
2

2

2
2∂

∂
⋅ + ⋅ ⋅ = −

∂

∂
−

∂
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⋅ + ⋅
t t t
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φ

	

Solving this equation for ∇ ∙ u yields the following equation governing the 
irrotational motion of a compressible fluid:

	
⋅ = ⋅ ⋅ +

∂
∂

∂
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+ ⋅u u u u u u
1
2a t t

[( ) ] .
φ

	

In terms of the velocity potential ϕ, this equation becomes

	
= ⋅ ⋅ +

∂
∂

∂
∂

+ ⋅2
2

1
φ φ φ φ

φ
φ φ

a t t
[( ) ] . 	 (13.1)

Equation 13.1 is the differential equation to be satisfied by the velocity 
potential ϕ for irrotational motion of a compressible fluid. The equation differs 
drastically from the Laplace equation, which was shown to be the governing 
equation for incompressible flow. In fact, Equation 13.1 becomes ∇2ϕ = 0 as 
a2 → ∞, which corresponds to ρ = constant. This may be verified by noting that

	
a

p2 =
d
dρ 	

where the derivative is evaluated at constant entropy. But for ρ = constant, 
dρ = 0, so that a2 → ∞. Thus, it may be concluded that for constant density, the 
governing equation for irrotational motion is linear, but for variable density, 
the governing equation becomes nonlinear. It should also be noted that the 
nonlinearity must be dealt with directly here since the equations of kinemat-
ics and dynamics are no longer separable.

Cleary, Equation 13.1 represents a formidable analytic problem for any spe-
cific flow problem that is to be solved. The difficulty of obtaining exact solu-
tions has led to the development of approximate methods, and two of these 
will be discussed in the following sections.

13.2  Janzen–Rayleigh Expansion

The Janzez–Rayleigh expansion is an expansion of the steady-state form of 
Equation 13.1, which is valid for any shape of body but only for Mach num-
bers less than about 0.5. For steady flow, Equation 13.1 becomes
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In tensor notation, this equation is
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∂
∂

∂
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∂
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2
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21φ φ φ φ
x x a x x x xi i i j j i
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As the speed of sound becomes infinite, that is, as the Mach number tends 
to zero, this equation reduces to the Laplace equation. That is, the right-hand 
side of the foregoing equation represents compressible effects, so that these 
effects vary as a–2. It seems reasonable, then, that an approximate solution for 
slightly compressible flows could be sought in which the first correction due 
to compressibility varies as the Mach number squared.

The foregoing remarks form the basis of an expansion for ϕ of the follow-
ing form:

	
φ φ( , , ) ( , , ).x y z U M x y zn
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0

	 (13.2b)

It is assumed here that a uniform flow of magnitude U approaches the 
body under consideration, and M∞ = U/a∞ is the Mach number far from the 
body, where a∞ is the speed of sound there. Substituting Equation 13.2b into 
Equation 13.2a gives
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The significance of including the coefficient U in Equation 13.2b is now 
apparent; the coefficients in the series may be made dimensionless, yielding 
the following equation:
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Although the coefficients are all dimensionless, the quantity a a°
2 2/  is not 

constant and should also be expressed as a series in M°
2 . This may be done 

by using the energy equation in the form
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where the constant has been evaluated far from the body. Solving this equa-
tion for the ratio of the local value of the speed of sound to that far from the 
origin gives
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Substituting u = ∇ϕ and inserting the expansion for ϕ yield the following 
expansion for a2:
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Inverting this expression defines the quantity that appears in the govern-
ing equation:
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Substituting this result into the expanded form of the governing equation 
for ϕ yields
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The expansion (Equation 13.2b) is assumed to be uniformly valid in M°
2 . 

This means that the coefficients of like powers of this quantity must balance 
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on each side of the foregoing equation. This gives the following sequence of 
equations that represents the coefficients of the quantities M M M° ° °

0 2 4, , , etc.:
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(13.2e)

and so on.
The equation to be solved for ϕ0 (Equation 13.2c) represents the incompressible-

flow problem corresponding to M∞ → 0. The problem for ϕ1, represented by 
Equation 13.2d, is a linear one, although the differential equation is non-
homogeneous. Having solved the problem for ϕ0, the right-hand side of 
Equation 13.2d will become an explicit function of the spatial coordinates. 
Likewise, having obtained expressions for ϕ0 and ϕ1, Equation 13.2e repre-
sents a linear, nonhomogeneous equation for ϕ2. In this way, solutions for 
ϕ0, ϕ1, ϕ2, etc., may be obtained sequentially, and each of these solutions rep-
resents a term in the perturbation solution (Equation 13.2b). It may be seen 
from the equations for ϕ1 and ϕ2 that the differential equation to be solved 
becomes complicated rapidly, and it is not practical to carry out the solution 
beyond the first two or three terms. This means that the solution so obtained 
will be valid only for Mach numbers that are of the order of 0.5 or smaller. 
The advantage of the Janzen–Rayleigh expansion, on the other hand, is that 
it is valid for any shape of body, not just slender bodies.

13.3  Small-Perturbation Theory

An alternative approximate method of solution to the equation for compress-
ible potential flows is small-perturbation theory. This approximation is valid 
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for supersonic flows as well as subsonic flows, but it is restricted to relatively 
slender bodies.

Suppose that a uniform flow approaches a body that is sufficiently slender 
that it causes only a small perturbation to the free stream. Then, the velocity 
potential may be written in the form

	 ϕ = Ux + Φ	 (13.3a)

where
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U xi
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Then, for steady flows, Equation 13.1 becomes
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This expression is still exact within the inviscid theory, but now, the fact 
that the perturbation velocity potential Φ leads to small-velocity components 
will be used to eliminate quadratic and higher terms. Thus, the linearized 
form of the governing equation is
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This simplified equation retains only one term out of the compressible cor-
rection terms, and the retained term corresponds to the direction of the free 
stream. In its present form, the compressible correction term contains a vari-
able coefficient a, which should also be linearized for consistency. This may 
be done by appealing to the energy equation in the form
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but

	 u · u = (U + uʹ)2 + (vʹ)2 + (wʹ)2	

where u ,́ v ,́ and wʹ are the velocity perturbations to the free-stream velocity 
U. Thus, the linearized form of the kinetic-energy term is
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	 u · u = U2 + 2Uu .́	

Using this form, the energy equation becomes
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Substituting this expression into the simplified equation for the perturba-
tion velocity potential gives
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This equation, in turn, may now be linearized to yield the following linear 
equation with constant coefficients:
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In Cartesian coordinates, this equation becomes
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Equation 13.3b shows that for subsonic flow, the governing equation is 
elliptic and so will have no real characteristics. On the other hand, for 
supersonic flow, the governing equation is hyperbolic and so will have 
real characteristics. This observation is compatible with our previous 
result that shock waves can occur only in supersonic flow. Equation 13.3b 
is valid for supersonic flows as well as subsonic flows, but as will be dem-
onstrated later, it is invalid near M∞ = 1. Also, by virtue of the lineariza-
tion, the equation is valid only for flows that involve relatively slender 
bodies.
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13.4  Pressure Coefficient

The principal quantity that will be of interest in the solution to specific problems 
in this chapter is the pressure distribution in the fluid since the integral of the 
pressure around the surface of a body defines the lift and drag forces acting on 
the body. The usual way of expressing the pressure is by means of the dimen-
sionless pressure coefficient. It is therefore of interest to obtain a linear expression 
for the pressure coefficient that will be compatible with the linearized equation 
derived in the previous section. Such an expression will be derived now.

The pressure coefficient Cp is defined in the following way:
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Here, p∞, ρ∞, and U are, respectively, the pressure, density, and fluid veloc-
ity far from the body around which the flow is being studied. The pressure 
coefficient may be readily expressed in terms of the pressure ratio as follows:
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In order to relate the pressure ratio to the velocity, the energy equation will 
be employed:
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Since the flow is irrotational, it is also isentropic; hence, the quantity p/ρ 
may be expressed in terms of p only by use of the isentropic law. Thus
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Substituting this expression into the energy equation gives
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From this equation, the following expression is obtained for the pressure 
ratio:
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Using this result, our expression for the pressure coefficient becomes
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Equation 13.4a, which expresses the local value of the pressure coeffi-
cient in terms of the local velocity, is still exact within the inviscid, adiabatic 
assumptions. In order to obtain an expression for the pressure coefficient 
that is compatible with small-perturbation theory, Equation 13.4a will now 
be linearized in the perturbation velocity. The velocity term in the foregoing 
equation may thus be rewritten as follows:

	 U2 − u · u = U2 − [(U + uʹ)2 + (vʹ)2 + (wʹ)2]	

	 = −2Uu .́	

Substituting this linearized expression into Equation 13.4a yields the fol-
lowing simplified expression for the pressure coefficient:
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But, to the first order in the perturbation velocity,
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Thus, the linearized form of Equation 13.4a is

	
C

u
Up = −2 .

	 (13.4b)

This simple result will be used in conjunction with approximate solu-
tions to the compressible-flow equations that are established through use of 
Equation 13.3b.

13.5  Flow over Wave-Shaped Wall

The first application of small-perturbation theory will be made to flow over 
a sinuous wall. This flow is relatively simple, and it has the property of illus-
trating clearly the distinctions between subsonic and supersonic flows.

Figure 13.1a shows a sinusoidal surface over which a uniform flow of mag-
nitude U is assumed to flow such that compressible effects are not negligible. 
The equation of the wavy surface is taken to be as follows:

	
y x

x
= =η ε

π
λ

( ) sin
2

	

where ε/λ is assumed to be small compared with unity, so that the linear the-
ory will be valid. The differential equation to be solved is the two-dimensional 
form of Equation 13.3b. The boundary condition to be satisfied on y = η(x) is

	 +
= =

v
U u

y
x

xd
d

2 2π
λ
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π
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cos .
	

In view of our linear theory, the quantity v/́(U + uʹ) may be reduced to 
v/́U, so that this boundary condition becomes
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The left-hand side of this equation may be expanded in a Taylor series and 
linearized so that the linear form of this boundary condition is
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From the foregoing discussion, it is evident that, within the confines of 
small-perturbation theory, the problem to be solved for the perturbation 
velocity potential Φ(x, y) is the following:

	
( )1 02
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2

2

2
−

∂

∂
+
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∂
=∞M

x y
Φ Φ

	 (13.5a)
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2 2π
λ
ε

π
λ

	 (13.5b)

	

∂
∂

= → ∞
Φ
x

x y y( , ) .finite as 	 (13.5c)

Since Equation 13.5a may be either elliptic or hyperbolic, depending on 
whether M∞ is less than unity or greater than unity, it is convenient to dis-
cuss the solution to Equations 13.5a through 13.5c for subsonic flow and 
supersonic flow separately.

Consider, first, the case of subsonic flow. It will be found convenient to 
replace x by a new coordinate ξ that is defined by

y

x

λ

ε
U y = η(x)

θ

(a)

(b)

(c)

FIGURE 13.1
(a) Wave-shaped wall, (b) flow for M∞ < 1, and (c) flow for M∞ > 1.
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M1 2
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Then, in terms of the coordinates ξ and y, Equations 13.5a through 13.5c 
become
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The governing equation is now seen to be Laplace’s equation in this new 
coordinate system. Solving this equation by separation of variables, the solu-
tion should be trigonometric in ξ in view of the first boundary condition. 
Then, the y dependence will be either exponential or hyperbolic, and in view 
of the semi-infinite domain in the y direction, the exponential form will be 
used. However, the second boundary condition rules out the possibility of a 
positive exponential, so the required solution will be of the form

	 Φ(ξ, y) = (A cos αξ + B sin αξ)e−αy.

But the first boundary condition has been used only to obtain the func-
tional form of Φ. Thus, imposing this boundary condition completely gives
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Equating coefficients and arguments of the two trigonometric terms 
involved in the last equality gives
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Thus, the complete solution for Φ is
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Returning now to the original coordinate system gives the following solu-
tion for the perturbation velocity potential:
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Equation 13.6a shows that the perturbation to the free stream is in phase 
with the wall, and it leads to a flow pattern, as shown in Figure 13.1b. It is 
also evident that the perturbation dies exponentially with distance from the 
surface. Since it was assumed that the perturbation velocity should be small 
compared with the free-stream velocity, Equation 13.6a shows that
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Using the expression 13.4b and the solution 13.6a yields the following 
expression for the pressure coefficient in the fluid:
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This result shows that the maximum pressure on the wall corresponds to 
the bottom of the troughs, and the minimum pressure corresponds to the top 
of the humps. That is, the pressure is symmetrically distributed about the 
humps on the wall, so that there will be no induced drag on the wall. This 
result will be further discussed later in this section.

Considering now the case of supersonic flow, the governing partial dif-
ferential equation is
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−
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0
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x M y( )
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This is the so-called one-dimensional wave equation, whose general solu-
tions will be of the form
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Φ( , )x y f x M y g x M y= − −( ) + + −( )∞ ∞

2 21 1
	

where f and g are any differentiable functions. The first solution represents a 
wave that slopes downstream and away from the wall, so that perturbations 
generated by the wall will travel downstream only according to this solu-
tion. On the other hand, the second function in the solution above represents 
signals that travel upstream as they move away from the wall. Since such a 
solution has no physical meaning in supersonic flow, it must be rejected here, 
so that the general solution becomes

	
Φ( , ) .x y f x M y= − −( )∞

2 1
	

The function f may be evaluated by imposing the surface boundary condi-
tion 13.5b. This gives
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Thus, the perturbation velocity becomes

	

Φ( , ) sin .x y
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This solution satisfies the remaining boundary condition (Equation 13.5c). 
From this solution and Equation 13.4b, the value of the pressure coefficient 
is found to be
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	 (13.7b)

The solution represented by Equations 13.7a and 13.7b shows that the 
velocity components and the pressure are constant along the lines:
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	 x M y− − =∞
2 1 constant. 	

The slope of these lines is given by

	

d
d
y
x M
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−
=

∞

1

12
tan θ

	

where θ is the inclination of the lines with respect to the x axis. Hence

	
θ = −

∞

sin .1 1
M 	

This result shows that the lines along which the flow parameters are con-
stant are actually the Mach lines. That is, signals are propagated along the 
Mach lines undisturbed. The resulting flow field is illustrated in Figure 13.1c.

Equation 13.7b shows that the pressure on the wall is proportional to cos 
(2πx/λ), which means that the pressure peaks are 90° out of phase with the 
geometric peaks of the wall. It follows, then, that a drag force will exist on 
the wall for the case of supersonic flow. This is quite different from the result 
that was obtained for subsonic flow. Figure 13.2a shows a section of the 
wall, whereas Figures 13.2b and 13.2c shows the pressure distribution on the 
wall for subsonic flow and for supersonic flow, respectively. In this figure, 
the value of the pressure coefficient Cp evaluated on the wall is denoted by 
Cp . Because of the symmetrical pressure distribution about each geometric 
peak, there is no drag force in subsonic flow. However, the lack of symme-
try in supersonic flow leads to a drag that is called the wave drag. Thus, the 
linearized theoretical drag on bodies in compressible flow is as shown in 
Figure 13.2d. The theoretical drag becomes infinite for Mach numbers close 
to but greater than unity because the linearized theory breaks down in sonic 
flow. A transonic theory exists and shows, as it should, that retaining some 
important terms that the linear theory neglected results in a finite drag coef-
ficient. The actual drag indicated in Figure 13.2d illustrates this result and 
also shows that, owing to viscous effects, a drag force exists even for sub-
sonic flows. However, this viscous drag is relatively small for slender bodies 
when it is compared with the wave drag.

The foregoing solution for a wave-shaped wall is significant in its own 
right, and it illustrates some important features of subsonic and super-
sonic flows. Also, since the theory being used is linear, superposition is 
valid. Thus, by use of Fourier integrals, the solution obtained here may be 
extended to obtain solutions for compressible flow over arbitrarily shaped 
surfaces.
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13.6  Prandtl–Glauert Rule for Subsonic Flow

Using small-perturbation theory, it is possible, by means of a simple transfor-
mation, to reduce all subsonic-flow problems to equivalent incompressible-
flow problems. The rule that results from such a transformation is called the 
Prandtl–Glauert rule.

For subsonic flow over a body whose surface is defined by y = f (x), the per-
turbation velocity potential must satisfy the following problem:
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FIGURE 13.2
(a) Wave-shaped wall, (b) surface pressure coefficient for subsonic flow and (c) supersonic flow, 
and (d) drag coefficient versus Mach number.
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Introduce a new velocity potential Φʹ and a new vertical coordinate η that 
are defined as follows:
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Then, the problem to be solved for Φʹ(x, η) is the following:
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That is, in the xη plane, the problem to be solved is that of irrotational 
motion of an incompressible fluid about a body whose surface is defined by 
η = f(x). Assuming that the ideal-fluid flow problem can be solved, the cor-
responding pressure coefficient may be evaluated from Equation 13.4b. Thus, 
denoting the incompressible pressure coefficient by Cp, it follows that
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But the compressible pressure coefficient is given by
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that is,
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That is, the pressure distribution around a body in subsonic compressible 
flow may be obtained from the corresponding incompressible pressure dis-
tribution. The rule that connects these two pressure distributions (Equation 
13.8) is known as the Prandtl–Glauert rule. It establishes the effects of com-
pressibility for subsonic flows and illustrates that, within the linear theory, 
any subsonic compressible-flow problem may be solved provided that the 
corresponding incompressible-flow problem may be solved.

13.7  Ackeret’s Theory for Supersonic Flows

Small-perturbation theory may also be used to establish a theory for super-
sonic flows. The resulting theory is known as Ackeret’s theory. The situation to 
which this theory applies is shown in Figure 13.3a. Supersonic flow approaches 
a thin, cambered airfoil that is at an angle of attack α to the free stream whose 
Mach number is M∞. The chord of the airfoil is denoted by c, t is the maximum 
thickness, and h is the maximum camber of the airfoil. The equation of the 
upper surface of the airfoil is y = ηu(x), whereas that of the lower surface is ηl(x).

According to the linearized theory, the problem to be solved for the pertur-
bation velocity potential is the following:
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FIGURE 13.3
(a) Parameters for supersonic airfoil and (b) definitions of the half-thickness function τ(x) and 
the camber function γ(x).
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Since, in general, the surfaces y = ηu(x) and y = ηl(x) will be different, the 
boundary condition on y = 0 will be different for the upper and lower sur-
faces, so that the corresponding values of Φ will be different. Denoting these 
solutions by Φu and Φl, it therefore follows that the two solutions will be

	
Φu x y f x M y( , ) = − −( )∞

2 1
	

	
Φl x y g x M y( , ) .= + −( )∞

2 1
	

Here, the left-running solution has been omitted from Φu, and the right-
running solution has been omitted from Φl. This satisfies the condition that 
signals can travel downstream only in supersonic flow, so that the lines 
along which signals travel must slope downstream as they move away from 
the airfoil.

The functions f and g may be evaluated by imposing the boundary condi-
tions at the surface of the airfoil. Thus, the boundary conditions at y = 0+ and 
y = 0–, together with the corresponding solutions, give
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It is not necessary to integrate these expressions in order to evaluate the 
pressure coefficient. From Equation 13.4b
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Thus, denoting the pressure coefficient on the upper surface by Cpu and 
that on the lower surface by Cpl , it follows that
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These results show that the local value of the pressure coefficient is pro-
portional to the local slope of the airfoil surface.

Using these values of the surface pressure coefficient, the lift coefficient of 
the airfoil may be evaluated as follows:
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Here, ρ∞ is the density of the fluid far from the airfoil, and pl and pu are, 
respectively, the pressure on the lower and the upper surface of the airfoil. 
Then, from the definition of the pressure coefficient, it follows that
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But ηl(c) = ηu(c) = 0 and ηl(0) = ηu(0) = αc. Hence, the value of the lift coef-
ficient is
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. 	 (13.9a)

Equation 13.9a shows that the lift force that acts on a supersonic airfoil 
depends only on the Mach number of the flow and on the angle of attack of 
the airfoil. That is, the lift force is independent of the camber and thickness 
of the airfoil. This result is quite different from the corresponding result for 
subsonic flow. Indeed, Equations 4.25b and 13.8 show that the lift coefficient 
for a Joukowski airfoil at subsonic speeds is
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Thus, the lift of subsonic airfoils is greatly affected by airfoil thickness and 
camber, but the lift of supersonic airfoils is not affected by these parameters.
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The drag coefficient for the airfoil may be evaluated in a similar manner 
as follows:

	

C
U

p p y

c

c C C y

D

l u

c

pl pu

c

=
−( )

= −( )

∞

∫

∫

1
1
2

1

2

0

0

ρ

α

α

d

d .
	

This integral may be converted to one in x by noting that dy = (dy/dx)dx, 
where dy/dx = dηu/dx on the upper surface and dy/dx = dηl/dx on the lower 
surface of the airfoil. Hence
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Using the expressions that were derived for the pressure coefficient on the 
upper and lower surfaces shows that

	

C
c M x xD

l u
c

=
−

+
∞
∫

2

12

2 2

0

d
d

d
d

d
η η

xx.

	

Since the integrand of this integral is positive definite, it is evident that a 
nonzero drag will exist for nontrivial airfoil shapes, a result that was deduced 
for the wave-shaped wall in Section 13.5.

The manner in which airfoil thickness and camber affect the wave drag 
may be established by writing the equations of the upper and lower surfaces 
of the airfoil in terms of the corresponding parameters. Thus, let the thick-
ness parameter and the camber parameter be defined, respectively, by
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=

t
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.
	

Here, t and h are the maximum thickness and maximum camber, respec-
tively, as shown in Figure 13.3a. Then, a half-thickness function τ(x) is defined 
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such that the local value of the airfoil half thickness is δcτ(x), as shown in 
Figure 13.3b. Likewise, a camber function γ(x) is defined such that the local 
value of the airfoil camber is εcγ(x), which is also shown in Figure 13.3b. 
Thus, the upper and lower surfaces of the airfoil may be defined in terms 
of the angle of attack, the half-thickness function, and the camber function. 
From the definitions of these two functions, they must lie in the following 
range:

	
0

1
2

≤ ≤τ( )x
	

	 0 ≤ γ(x) ≤ 1.	

In terms of the functions defined above, the equations of the upper and 
lower surfaces of the airfoil are

	 ηu(x) = α(c − x) + εcγ(x) + δcτ(x)	

	 ηl(x) = α(c − x) + εcγ(x) – δcτ(x).	

That is, the upper and lower surfaces are defined by the line through the 
mean thickness of the airfoil, plus or minus the half thickness, respectively. 
Thus, the integrand of the integral that defines the drag coefficient may be 
evaluated as follows:
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In the foregoing equations, the primes denote differentiation with respect 
to x. Substituting the last result into the expression for the drag coefficient 
yields the following result:
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The first term in the integrand is a constant and may be integrated directly. 
The last term in the integrand integrates to zero since γ(0) = γ(c) = 0. Thus, the 
drag coefficient becomes
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Equation 13.9a showed that the lift coefficient of supersonic wings is inde-
pendent of the camber and the thickness of the airfoil. On the other hand, 
Equation 13.9b shows that both camber and thickness increase the drag coef-
ficient of such wings. Hence, it may be concluded that supersonic wings 
should be as straight as possible and as thin as possible. However, it is evi-
dent that for structural reasons, there is a limit to the minimum thickness 
to which such wings may be made. Apart from the general guidelines of 
minimizing the camber and thickness of wing sections, application of the 
foregoing theory to specific airfoils shows that sharp corners are prefera-
ble to rounded corners in supersonic flight. The investigation of the perfor-
mance of specific airfoil sections is deferred to the problems at the end of the 
chapter.

13.8  Prandtl–Meyer Flow

In this section, an exact solution to the equations of two-dimensional flow of 
a compressible fluid will be derived. The flow situation to which this solution 
refers consists of supersonic flow approaching a sharp bend in a boundary in 
which the boundary bends in such a direction that an expansion, rather than 
a compression, is required to turn the fluid. The resulting flow field is called 
the Prandtl–Meyer flow.

Figure 13.4a shows the flow configuration that is under consideration. 
Supersonic flow whose Mach number is M1 flows parallel to a boundary 
that suddenly changes direction, as shown in the figure. In order to satisfy 
the boundary condition at the surface, the velocity vector must be deflected 
in the direction indicated. Since this deflection is opposite in sense to that 
which was shown to be necessary for shock waves, it may be concluded 
that an expansion, rather than a compression, is required. Although expan-
sions are continuous processes as opposed to the discrete processes of shock 
waves, the expansion is illustrated as consisting of a large number of very 
weak expansion waves. This is known as a Prandtl–Meyer fan.

An arbitrary point in the expansion fan is indicated in Figure 13.4a. The 
Mach number at this point is M, and the deflection of the velocity vector at 
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this point, relative to its original direction, is denoted by θ. The inclination of 
the Mach wave that passes through the point under consideration is denoted 
by β. Then, it is known that the leading Mach wave will subtend an angle 
defined by

	
β1

1

1

1
= −sin .

M 	

Since the pressure gradient will be normal to each of the Mach lines, the 
changes in the velocity must also be normal to the Mach lines. Thus, if q 
denotes the magnitude of the velocity vector as it approaches our reference 
Mach wave and if Δq denotes the change in the value of q that is caused by 
the Mach wave, the velocity diagram will be as shown in Figure 13.4b.

The velocity vector that emerges from the Mach wave will have a magni-
tude q + dq, and it will have been deflected through an angle dθ. Since Δq 
will be infinitesimally small as the limit of an infinite number of Mach waves 
is approached, the deflection of the velocity vector may be approximated by

	
d

cos ( + )
d

θ
β θ

=
+

∆q
q q

.
	

In the limit, all second-order terms will vanish identically, so that this 
expression may be further reduced to

	
d cosθ β θ= +

∆q
q

( ).
	

M1
M(θ)

dθ

θ

β

∆q

(β + θ)

(β + θ)

∆q sin (β + θ)

∆q cos (β + θ)

Mach

wave
 q

q + dq

(a) (b)

FIGURE 13.4
(a) Prandtl–Meyer fan and (b) velocity change through a typical Mach wave.
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But, from Figure 13.4b,

	 q + dq = q + Δq sin (β + θ).	

Using this result to eliminate Δq yields the following equation for dθ:

	
d

d
cotθ β θ= +

q
q

( ).
	

But it is known that the inclination of the Mach wave under consideration 
is given by

	
sin( )β θ+ =

1
M 	

and hence

	 cot( ) .β θ+ = −M2 1 	

Thus, the turning angle of the velocity vector becomes

	
d

d
θ = −M

q
q

2 1 .
	

In order to complete the solution, this equation must be integrated to yield 
an expression for θ in terms of either q or M. Choosing the latter as being 
more relevant, q must be expressed in terms of the local Mach number M. 
This may be done by use of the definition of the Mach number in the form

	 q = aM	

and hence

	
d d dq
q

a
a

M
M

= + .
	

To eliminate a from this equation, the energy equation will be employed 
in the form

	
1
2 1 1

2
2

0
2

q
a a

+
−

=
−γ γ
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Or, multiplying this equation by (γ – 1)/a2 gives
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Thus, the expression for dq becomes
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Using this result to eliminate q from our expression for the element of 
turning angle dθ gives

	
d

/2
d

θ
γ

=
−

+ −

M
M

M
M

2

2

1
1 1( )

.
	

This equation may now be integrated to give

	 θ = v(M) − v(M1)	 (13.10a)

where

	 v M M M( ) ( ) .=
+
−

−
−

− − −( )− −γ
γ

γ
γ

1
1

1
1

1 11 2 1 2tan tan 	 (13.10b)

Equation 13.10b defines the so-called Prandtl–Meyer function, which is 
denoted by v(M). The solution 13.10a gives θ = 0 for M = M1 and represents 
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a monotonically increasing function of M for values of M > M1. Then, the 
minimum value of θ occurs at M1 = 1, with the value of θ being zero, and the 
maximum value of θ occurs when M tends to infinity. From Equations 13.10a 
and 13.10b, this gives the following maximum:

	 θ
π γ

γmax .=
+
−

−
2

1
1

1 	 (13.10c)

For γ = 1.4, this gives a maximum deflection of approximately 130°.

PROBLEMS

	 13.1	 Show that the equation to be satisfied by the velocity potential for 
steady, two-dimensional, irrotational motion of an inviscid fluid is

	
1 2 1

2

2

2

2 2

2 2

2

2

−
∂

∂
−

∂
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+ −
∂u

a x
uv
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φ φ φ
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	 13.2	 Introduce a stream function that is defined as follows:

	
ρ ρ

ψ
ρ ρ

ψ
u

y
v

x
=

∂
∂

=
∂
∂0 0

	

	 where ρ0 is a constant reference value of the density. Show that this 
stream function identically satisfies the continuity equation for 
steady two-dimensional motion of a compressible fluid, and that 
for irrotational motion, the equation to be satisfied by ψ/(x,y) is
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∂
−

∂
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+ −
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∂∂
=

y2
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	 13.3	 The stream function that is defined in Problem 13.2 may be consid-
ered to be a function of the magnitude of the velocity vector q and 
its angle θ. That is, we can consider the stream function to be ψ (q, θ) 
where u = q cosθ and v = q sinθ. To obtain the differential equation 
to be satisfied by ψ/(q, θ), proceed as follows:
(a)	 Obtain expressions for dϕ and dψ in terms of dx and dy in 

which the coefficients are functions of q, θ, and the density ratio 
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only.  Invert these equations to express dx and dy in terms of 
dϕ and dψ.

(b)	 Use the fact that the velocity potential is ϕ(q, θ) and that the 
stream function is ψ(q, θ) to eliminate dϕ and dψ in the expres-
sion obtained above in terms of their derivatives with respect to 
q and θ.

(c)	 Considering both x and y to be functions of q and θ, obtain 
expressions from differential calculus for dx and dy. By equat-
ing these expressions with those obtained in (b) above, obtain 
expressions for the partial derivatives of x and y with respect to 
q and θ.

(d)	 Eliminate both x and y from the results obtained in (c) by form-
ing the second mixed derivatives of x and y with respect to q and 
θ. In this way, obtain expressions for the following derivatives:

	

∂
∂

∂
∂

φ
θ

φ
and

q 	

	 in terms of derivatives of the stream function ψ(q, θ). In deriv-
ing this result, it should be noted that the density ρ is a function 
of the magnitude of the velocity q, but not of its direction θ.

(e)	 Use the Bernoulli equation for steady flow and the definition of 
the speed of sound to obtain the result

	

d
dq

q

a
ρ
ρ

ρ
ρ

0

0
2

= .
	

		  From this result, and one of the expression obtained in (d), 
show that

	

∂
∂

= − −
∂
∂

φ ρ
ρ

ψ
θq q

M0 21
1( ) .

	

		  Finally, eliminate ϕ from this expression, using a result 
obtained in (d), to show that the following equation is to be sat-
isfied by the stream function:
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q
q M

q
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2 2
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	 13.4	 In the Janzen–Rayleigh expansion, find the differential equation to 
be satisfied by the function ϕ3 in the series.

	 13.5	 The linearized form of the pressure coefficient is defined by the 
equation

	
C

u
Up = −2 .

	

		  Find the next correction term in the expression for Cp. That is, 
find the approximate expression for the pressure coefficient that is 
valid to the second order in small quantities.

	 13.6	 Using the results of the linearized theory for compressible flow 
over a wave-shaped wall, integrate the pressure over one wave-
length of the wall and so verify that the drag is zero for subsonic 
flow. Also, calculate the drag per wavelength per unit width of the 
wall for supersonic flow over the wall.

	 13.7	 An infinitely long cylinder of radius a + ε sin(2πx/λ) is exposed to a 
uniform axial flow of compressible fluid, as shown in the figure for 
this problem. If the flow is subsonic and if the following conditions 
apply

	

ε
λ

ε
<< <<1 1and

a 	

	 then the conditions to be satisfied by the perturbation velocity 
potential are as follows:
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		  The flow velocity is also subject to the condition that it should be 
everywhere finite. In the foregoing expressions, r  is the value of r 
that corresponds to the surface of the cylinder.

		  Using a linearized theory, find an expression for the pressure 
coefficient on the surface of the cylinder. Form the ratio of this pres-
sure coefficient to that for a wave-shaped wall, and by expanding 
this ratio in powers of λ/[ ( )]a M1 2− ∞ , establish the effect of wall 
curvature.

	 13.8	 Use Ackeret’s theory to find the drag coefficient of the double-
wedge airfoil shown in the figure for this problem for zero angle of 
attack in supersonic flow.

	 13.9	 The half-thickness function τ(x) for the biconvex circular-arc airfoil 
shown in the figure for this problem is given by the expression

	
τ

δ
η( ) ( ).x

c
x=

1

	

		  The equation of the upper surface is defined by the equation

	
( ) .η δ+ + − = +a x

c
a c2
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		  Using Ackeret’s theory, evaluate the drag coefficient of a bicon-
vex circular-arc airfoil at zero angle of attack in supersonic flow. 
Compare this result with that for the double-wedge airfoil dis-
cussed in the previous problem.

Further Reading—Part IV

The compressible-flow area of fluid mechanics is not as well endowed with 
books as the other areas. However, the following materials adequately cover 
and extend the material treated in Part IV of this book.

Ames Research Staff: Equations, Tables and Charts for Compressible Flow, National 
Advisory Committee for Aeronautics, Report 1135, 1935.

Anderson, J. D.: Modern Compressible Flow: With Historical Perspective, McGraw-Hill, 
New York, 2003.

Liepmann, J. W., and A. Roshko: Elements of Gas Dynamics, John Wiley & Sons, New 
York, 1957.

Lighthill, J.: Waves in Fluids, Cambridge University Press, London, 1978.
Shapiro, A. H.: The Dynamics and Thermodynamics of Compressible Fluid Flow, Vols. 1 

and 2, The Ronald Press Company, New York, 1953.
Thompson, P. A.: Compressible-Fluid Dynamics, Rensselaer Polytechnic Institute Press, 

1988.



Part V

Methods of Mathematical 
Analysis

In Part V, we summarize the methods of mathematical analysis that are 
used extensively in this book. The coverage is by no means complete or even 
extensive. Only a few of the commonly used methods of analysis are typi-
cally used in fluid flow problems, and we restrict ourselves to the methods 
that are employed in this book. Within the topics that are discussed, the cov-
erage is not intended to be complete. For the fundamental topics, the pre-
sentation is essentially a summary. For the more advanced topics, a slightly 
more detailed coverage is presented.

Part V consists of a single chapter, Chapter 14. This chapter consists of the 
selected topics as outlined above and as described in more detail in the intro-
ductory comments relating to the chapter.
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14
Some Useful Methods of Analysis

The topics that have been selected for coverage herein are as follows:

•	 Fourier series
•	 Complex variable theory
•	 Separation of variable solutions
•	 Similarity solutions
•	 Group invariance methods

When solving differential equations in general, and partial differential 
equations in particular, it is necessary to express both the solution to the dif-
ferential equation and the applied boundary conditions in the same form or 
“language” as each other. For example, in Chapter 6, we solved surface wave 
problems in which both the solution to the Laplace equation and the bound-
ary condition at the free surface were expressed in terms of trigonometric 
functions. Sometimes we can obtain the solution to the differential equation 
in the form of an applied boundary condition, and on other occasions, we 
write the boundary condition in the same form as the solution to the dif-
ferential equation. In both cases, we end up with a solution to the differen-
tial equation and to the applied boundary condition, both being in the same 
form or “language.”

Fourier series has been selected as a relevant topic because it is widely 
used to express boundary conditions in the same language as the solution to 
the differential equation. We can express a given function that may appear in 
a boundary condition in several ways. For example, the function sin x may be 
expressed as a series, as a derivative, or as an integral as follows:

	
sin ( )

( )!
(cos ) cos .x

x
n x

x x xn
n

n

= −
+

= − =
+

=

∞

∑ ∫1
2 1

2 1

0

d
d

d
	

Frequently, the solution to the differential equation is in the form of trigono-
metric functions, and Fourier series permits us to also express boundary condi-
tions in the form of trigonometric functions. One of the most common examples 
involves graphical representations of a variable on a boundary. Fourier series 
permits us to convert the graphical representation to a trigonometric series in 
order to match the form of the solution to the differential equation.
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Complex variable theory is used extensively in Chapter 4, where it leads 
to a variety of very useful and impressive solutions to the Laplace equation. 
This is followed by the most commonly used method for solving partial 
differential equations, namely, separation of variables. The emphasis of the 
treatment presented herein is to arrive at the appropriate form of solution 
quickly through observation of the boundary conditions and adherence to 
the rules governing solutions obtainable by this method.

There are not as many methods available for solving nonlinear differential 
equations as there are for solving linear differential equations. Two methods 
that are applicable to nonlinear differential equations are used in this book, 
namely, similarity solutions and group invariance methods. Similarity solu-
tions are introduced in Chapter 7 and used extensively in Chapters 9 and 
10. Group invariance methods are used to reduce the ordinary differential 
equations obtained through similarity techniques to their simplest possible 
form. In this way, any numerical solutions that are required involve only the 
simplest of numerical techniques.

14.1  Fourier Series

If a function, call it f(x), is periodic over some distance 2L, then the Fourier 
theorem states that it may be represented by a series of trigonometric func-
tions of various amplitudes. That is, f(x) may be represented by the following 
series:
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The coefficients in this expression are obtained by utilizing the orthogonal 
properties of the trigonometric functions. The orthogonal properties are as 
follows:
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Hence, multiplying both sides of Equation 14.1a first by cos (mπx/L) and 
then by sin (mπx/L), and integrating over the interval −L ≤ x ≤ L in each case, 
the following values for a0, an, and bn are obtained:

	 a
L

f x x
L
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0
1
2

=
−∫ ( )d 	 (14.1b)

	 a
L

f x
n x
L

xn
L

L

=
−∫

1
( )cos

π
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L

f x
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L
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1
( )sin .

π
d 	 (14.1d)

In the above equations, we have taken the integration to be over the inter-
val −L ≤ x ≤ L. There is no loss of generality in this choice of interval because 
we know that the function f(x) is periodic between x = x1 and x = x2, where 
these two locations are a distance 2L apart, as illustrated in Figure 14.1a. 
Then, we can choose x1 = −L and x2 = L.

Equation 14.1b shows that the quantity a0, by virtue of its definition, corre-
sponds to the mean value of f(x) over the interval −L ≤ x ≤ L. For the particular 
function illustrated in Figure 14.1a, the value of a0 will be zero, but this will not 
necessarily be the case in general. Equations 14.1c and 14.1d are valid for n ≥ 1.

f (x)

f (x) f (x)

(a)

(c)(b)

H

H H

LL

2L

x

xx

x2x1

FIGURE 14.1
Square wave of (a) general form, (b) even form, and (c) odd form.
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In many cases involving fluid flow problems, it is possible to represent the 
desired quantity using only the even or the odd component of the Fourier 
series. Figures 14.1b and 14.1c show, respectively, the even and odd represen-
tations of a square wave where we are interested in only the shaded part of 
the function. By choosing the origin of the coordinate system as indicated, 
we may represent the square wave by a cosine series alone or by a sine series 
alone. In such cases, the symmetric or antisymmetric nature of the function 
f(x) may be invoked to simplify the series represented by Equation 14.1a.

Consider first the symmetric case illustrated in Figure 14.1b by a typical 
even function—the square wave. If the function f(x) is even in x, it follows 
that f(x) = f(−x) over the interval −L ≤ x ≤ L. Hence, the integration indicated 
in Equation 14.1b may be evaluated over the half range 0 ≤ x ≤ L, and the 
answer doubled. Likewise, the integration indicated in Equation 14.1c may 
be evaluated over the same half range, and the answer doubled. In Equation 
14.1d, the integrand involves the product of an even function f(x) and an odd 
function sin (nπx/L), so that bn will be zero for all values of n. That is, for an 
even function in x, the Fourier series for f(x) over the interval −L ≤ x ≤ L may 
be represented by the following series:
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Equation 14.2c is valid for n ≥ 1. For the particular function illustrated in 
Figure 14.1b, the following specific values apply:
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Substituting these values into Equations 14.2b and 14.2c produces the fol-
lowing results:
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The coefficients an in this case cycle through values that are positive, then 
zero, and then negative as n increases. Thus, Equation 14.2a for this specific 
case becomes

	 f x
H
n

n n x
L

n

( ) sin cos .=
=

∞

∑ 4
2

1
π

π π
	 (14.3)

Although Equation 14.3 is valid over the entire interval −L ≤ x ≤ L, we typi-
cally use it only over the subinterval –L/2 ≤ x ≤ L/2 to represent a boundary 
value, as indicated in Figure 14.1b.

Next, consider the asymmetric case illustrated in Figure 14.1c by a typical 
odd function—the square wave again, but with a shift in the origin of the 
coordinate system. If the function f(x) is odd in x, it follows that f(x) = – f(−x) 
over the interval −L ≤ x ≤ L. Hence, the integral indicated in Equation 14.1b 
will be zero. Likewise, the integral indicated by Equation 14.1c will be zero 
because the integrand is odd in x. Finally, the integral in Equation 14.1d may 
be evaluated over the half range 0 ≤ x ≤ L, and the answer doubled because 
the integrand is even in x, being the product of the odd function f(x) and the 
odd function sin (nπx/L). That is, for an odd function in x, the Fourier series 
for f(x) over the interval −L ≤ x ≤ L may be represented by the following series:
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Equation 14.4b is valid for n ≥ 1. For the particular function illustrated in 
Figure 14.1c, the following specific values apply:

	 f(x) = H for 0 ≤ x ≤ L.	

Substituting this value into Equation 14.4b produces the following result:

	 b
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Thus, Equation 14.4a for this specific case becomes
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Although Equation 14.5 is valid over the entire interval −L ≤ x ≤ L, we typi-
cally use it only over the subinterval 0 ≤ x ≤ L to represent a boundary value, 
as indicated in Figure 14.1c.

The Fourier series corresponding to a number of frequently encountered 
shapes are presented in Appendix D for reference purposes.

14.2  Complex Variables

The theory of complex variables is quite extensive, and we use only some of 
the mainstream results of the theory in Chapter 4. In Chapter 14, we review 
and summarize some of the material that is employed in this book.

14.2.1  Analytic Functions

A function F(z) of the complex variable z = x + iy is said to be analytic if the 
derivative dF/dz exists at a point z0, and in some neighborhood of z0, and if 
the value of dF/dz is independent of the direction in which it is calculated. A 
singular point of the function F(z) is any point at which F(z) is not analytic. If 
F(z) is analytic in some neighborhood of the point z0, but not at z0 itself, then 
z0 is called an isolated singular point of F(z).

If F(z) is analytic, then dF/dz will exist and may be calculated in any 
direction. Thus, if we evaluate dF/dz along the line y = constant, we get 
dF/dz =  ∂F/∂x, and if we evaluate it along the line x = constant, we get 
dF/ dz = ∂F/∂(iy) = −i ∂F/∂y. That is,
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Hence, if F(z) = ϕ(x,y) + iψ(x,y), where both ϕ(x,y) and ψ(x,y) are real func-
tions, then we conclude from the line above that
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Then, equating the real and imaginary parts on both sides of the last equal-
ity shows that
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These equations are called the Cauchy–Riemann equations, and they 
are necessary, but not sufficient, conditions for a function to be analytic. 
Eliminating first ϕ, and then ψ, from the Cauchy–Riemann equations shows 
that both ϕ and ψ are harmonic functions. That is, for an analytic function, 
both the real and imaginary parts of the function must satisfy the Laplace 
equation:
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Many functions are analytic but assume more than one value at any point 
on the complex plane, z = Reiθ, as θ increases in multiples of 2π. This difficulty 
or ambiguity may be overcome by replacing the single complex plane, which 
is valid for all values of θ, by a series of Riemann sheets, which are connected 
to each other along a branch cut that runs (usually along the negative real 
axis) between two branch points (frequently z = 0 and z = ∞), which are sin-
gular points of the function. Then, the principal value of the function may be 
considered to be valid over the range –π ≤ θ ≤ π, and each additional Riemann 
sheet will apply to a different range of θ, such as π ≤ θ ≤ 3π, etc. In this way, the 
square root function will have two Riemann sheets, the cube root function 
will have three Riemann sheets, etc.

14.2.2  Integral Representations

There are several important integral theorems associated with complex 
variable theory. In this book, we do not use them directly, but we do use 
some important results that require these integral theorems for their proof. 
Therefore, the integral theorems are recorded here, but without an extensive 
proof.

One of the most fundamental integral theorems is the Cauchy integral theo­
rem or the Cauchy–Goursat theorem. This theorem states that if F(z) is a func-
tion that is analytic at all points inside and on a closed contour C, then

	 F z z
C

( ) .d∫ = 0 	 (14.7)
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This theorem is established by using P = ϕ and Q = ψ in the following form 
of Green’s theorem:

	 ( ) .P x Q y
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Then, using a second application of Green’s theorem with P = ψ and Q = ϕ 
leads to the result quoted in Equation 14.7.

Another important integral result is the Cauchy integral formula. This for-
mula states that if F(z) is analytic at all points inside and on a closed contour 
C, and if z0 is any point inside C, then
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The proof of this formula uses the Cauchy integral theorem, Equation 14.7, 
with the contour as illustrated in Figure 14.2. The contour of integration con-
sists of an outer contour C and an inner contour C0 with these two contours 
joined to form a single contour through two straight lines that join C and C0. 
The inner contour C0 encloses the reference point, z0, at which the function 

C0

C

z0

FIGURE 14.2
Contour of integration for evaluating a function at the point z0 using the Cauchy integral 
formula.
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F(z) is being evaluated. The integrations along the two straight line segments 
cancel one another, and the result presented in Equation 14.8a is achieved.

14.2.3  Series Representations

There are two types of series representations for a function that are of use: 
the Taylor series and the Laurent series. The Taylor series says that if F(z) is 
analytic at all points within a circle r < r1 whose center is at z0, then F(z) may 
be represented by the following series:
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where the radius of convergence is the distance from the point z0 to the near-
est singularity. The general form of this series, as given above, is known as 
the Taylor series, and the special case z0 = 0 is known as Maclaurin’s series. The 
proof for the case of complex variables is the same as that for real variables.

If a circle of radius r is considered, where r > r1 as defined above, there will 
be at least one point within the circle for which the given function is not ana-
lytic. That is, the function will have at least one singular point, and the Taylor 
series of Equation 14.9 will not be valid. In such cases, we must represent the 
given function by a Laurent series, which is defined as follows.

If F(z) is analytic at all points within the annular region r1 < r < r2 whose 
center is at the point z0, then F(z) may be represented by the following series:
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where
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and
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As shown in Figure 14.3, the contour C1 corresponds to the inner radius 
r = r1, and the contour C2 corresponds to the outer radius r = r2 of the annular 
region. The quantity ξ is a variable of integration. The series is convergent 
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if the smallest inner radius r1 and the largest outer radius r2 are such that 
there is no singularity in the region r1 < r < r2. The part of the series that 
contains the bn coefficients is known as the principal part. The general form 
of the series is known as the Laurent series, and in the special case in which 
r1 can be extended to zero (i.e., there is no principal part), the series becomes 
the Taylor series.

The starting point for the development of the Laurent series is the follow-
ing identity:

	 1 1 1 1 12 1= − + − + − + ⋅ ⋅ ⋅ + − +−( ) ( ) ( ) ( ) .α α α α α α α αn n

	

Dividing both sides of this equation by (1 − α) produces the following result:
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If an appropriate choice of the quantity α in this identity is used in the 
Cauchy integral formula, Equation 14.8a, the results quoted above are 
obtained. The Laurent series is a very useful and important representation 
of a function F(z), and Equation 14.10a is encountered in Chapter 4.

14.2.4  Residues and Residue Theorem

The residue of a function at a point z0 is defined as the coefficient b1 in its 
Laurent series about the point z0. That is, the residue of the function F(z) at 
the point z0 is the coefficient of the term 1/(z – z0) in the Laurent series of the 

z0

z

C1 C2
ξ

ξ

FIGURE 14.3
Contour of integration for establishing the Laurent series about the point z0.
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function as written about the point z0. The significance of this definition lies 
in the residue theorem, which is a powerful theorem that can be used in the 
evaluation of integrals in the complex plane. The residue theorem may be 
stated as follows.

If F(z) is analytic within and on a closed curve C, except for a finite number 
of singular points z1, z2,…, zn, then

	 F z z i R R R
C

n( ) ( )d∫ = + + +2 1 2π � 	 (14.11)

where R1 is the residue of F(z) at z1, R2 is the residue at z2, and Rn is the residue 
at zn. In order to evaluate the residue of a function at some point, it is useful 
to know the type of singularity that exists at that point.

Branch points: These are the singular points at the end of each branch 

cut of a multivalued function. For example, the function 1 1 2/ − z
has branch points at z = ± 1. The residue theorem does not apply at 
branch points.

Essential singular points: If the principal part of the Laurent series of the 
expansion of a function about some point contains an infinite num-
ber of terms, that point is an essential singular point. For example, 
the function log z has an essential singularity at z = 0.

Pole of order m: If the principal part of the Laurent series of expansion of 
a function about some point contains only terms up to (z – z0)m, that 
point is a pole of order m. That is, if F(z0) is a pole of order m, then 
(z – z0)mF(z0) will be analytic.

Simple pole: If the principal part of the Laurent series of the expansion 
of a function about some point contains only a term inversely pro-
portional to z – z0, that point is a simple pole. That is, if F(z0) is a 
simple pole, then (z – z0)F(z0) will be analytic.

The following methods may be used to calculate the residue of a function 
F(z) at a singular point z0:

	 1.	Expand F(z) in a series about z0, and so obtain the coefficient of the 
term l/(z – z0). This fundamental method uses the definition of the 
residue and is valid for all types of singularities.

	 2.	 If the point z0 is a simple pole, the residue may be calculated by tak-
ing the following limit:
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	 3.	 If the point z0 is a pole of order m, the residue may be calculated by 
taking the following limit:
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	 4.	 If F(z) may be put in the form F(z) = p(z)/q(z) where q(z0) = 0 but 
dq/ dz(z0) ≠ 0, and where p(z) ≠ 0, the residue may be calculated by 
taking the following limit:
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The residue theorem is one of the most useful theorems in the analysis of 
potential flow problems, and it is used to great advantage in Chapter 4 to 
calculate the fluid forces and moments that act on bodies.

14.2.5  Conformal Transformations

A conformal transformation is a mapping from the z plane to the ζ plane 
of the form z = f(ζ), where f is an analytic function of ζ. Conformal transfor-
mations preserve angles between small arcs except at points where df/dζ = 
0. Such points are called critical points of the transformation, and smooth 
curves through such points in the ζ plane may give angular corners in the 
z plane.

Useful conformal transformations are provided by the elementary func-
tions, the Joukowski transformation, and the Schwarz–Christoffel trans-
formation. The elementary functions and the Joukowski transformation 
are covered in detail in Chapter 4. The Schwarz–Christoffel transformation 
maps the interior of a closed polygon in the z plane onto the upper half of the 
ζ plane, whereas the boundary of the polygon maps onto the real axis of the 
ζ plane. The transformation is of the following form:

	
d
d
z

K a b c
ζ

ζ ζ ζα π β π γ π= − − −− − −( ) ( ) ( ) ./ / /1 1 1� 	 (14.13)

Here, the vertices A, B, C, etc., in the z plane subtend the interior angles α, β, 
γ, etc., as indicated in Figure 14.4, and a, b, c, etc., are the points on the real axis 
of the ζ plane corresponding to the vertices A, B, C, etc. Since the polygon in 
the z plane is closed, the angles α, β, γ, etc., must satisfy the following relation:

	 α β γ π+ + + = −� ( ) .n 2 	
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Here, n is the number of vertices in the polygon. The constant K determines 
the scale of the polygon and its orientation, whereas the constant of integra-
tion determines the location of the origin in the z plane. Of the constants a, b, 
c, etc., any two may be chosen arbitrarily, for example, (–1,1) or (0,1), and any 
remaining ones will be determined by the shape of the polygon. This trans-
formation is used extensively in Chapter 4.

14.3  Separation of Variable Solutions

The three types of second-order partial differential equations with two inde-
pendent variables, in their simplest or canonical form, are the following:
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The first equation above is the Laplace equation, which is of the elliptic 
type, and it has no real characteristics. The second equation is the diffusion 
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a b c

α
β

γ

z plane ζ plane

FIGURE 14.4
Corresponding regions in the original plane (z plane) and the mapped plane (ζ plane) for the 
Schwarz–Christoffel transformation.
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equation or heat conduction equation, which is of the parabolic type, and it has 
one real characteristic. The third equation is the wave equation, which is of 
the hyperbolic type, and it has two real characteristics.

Separation of variables is the most commonly used method for solving 
partial differential equations of all three types. It is used extensively in this 
book, particularly to obtain solutions to the Laplace equation in two dimen-
sions. It is useful in cases where the solution obtained by this method is 
capable of satisfying the boundary conditions.

Suppose we have a dependent variable ϕ that is a function of two indepen-
dent variables x and y. If ϕ must satisfy the Laplace equation, then we must 
solve the following differential equation:
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We look for a “separable” solution to this equation in which each compo-
nent is a function of one independent variable only:

	 ϕ(x, y) = X(x)Y(y).	

Substituting this assumed form of solution into the differential equation, 
then dividing both sides by the product XY, gives
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The essential argument is that if we change the value of x, but not the value 
of y, the left side of this equation will change but the right side will not. The 
only way that this equation can remain valid under these circumstances is 
for each side of the equation to be equal to the same constant. Calling this 
constant α2, the two resulting ordinary differential equations are
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The first ordinary differential equation yields trigonometric solutions, 
whereas the second yields exponential solutions. We note that if we had 
chosen the separation constant to be −α2 instead of +α2, the trigonometric 
solution would have been in the y direction, and the exponential solution 
would have been in the x direction. The important point to note is that the 
coefficient of x and the coefficient of y in both the trigonometric and the 
exponential solutions are both α, the square root of the separation constant.
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The solutions to the two ordinary differential equations above are

	 X = A cos αx + B sin αx	 (14.14a)

	 Y = Ce−αy + Deαy.	 (14.14b)

The relationship that exists between exponential functions and hyperbolic 
functions permits us to present the solution given in Equation 14.14b in the 
following alternative form:

	 Y = C* sinh αy + D* cosh αy.	 (14.14c)

The exponential version, given by Equation 14.14b, is the preferred form 
of solution if the fluid extends to infinity in either the positive or negative 
direction. However, if the fluid extends over only a finite domain, the hyper-
bolic version of the solution is preferred. This is because of the fact that one 
of the two components of Equation 14.14c, namely, sinh αy, vanishes when its 
argument is zero. Then, if we have a boundary condition that requires the 
dependent variable to be zero for y = 0, we should use the hyperbolic func-
tion solution and take D* = 0.

By invoking the identity for a compound angle of the sinh function, we can 
identify yet another useful form of the solution for Y. The identity is

	 sinh(P − Q) = sinh P cosh Q − cosh P sinh Q.	

Hence, if P = h = constant and Q = y = the coordinate, this identity may be 
written as follows:

	 K sinh(h − y) = K sinh h cosh y − K cosh h sinh y = K1 cosh y + K2 sin y

where K1 = K sinh h and K2 = −K cosh h. Hence, if our solution must be zero 
on y = 0, we can use the right side of the above equation with K1 = 0, and if it 
must be zero on y = h instead, we can use the left side of the above equality. 
That is, an equivalent form of Equation 14.14c is

	 Y = C** sinh α(h − y) + D** cosh α(h −y).	 (14.14d)

Generally speaking, we can determine which coordinate has the trigono-
metric solution and which has the exponential (or hyperbolic) solution by 
looking at the boundary conditions. It is frequently possible to also deter-
mine the value of the separation constant by looking at the boundary condi-
tions. In this way, we are normally able to determine the functional forms 
of the solution in both the x and y directions so that all that remains is to 
determine the constant of proportionality. A typical example is discussed 
below.
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The problem of determining the speed of a travelling surface wave on a 
liquid is discussed in Section 6.3 where it is shown that the problem to be 
solved for the velocity potential ϕ(x,y,t) is the following:
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In addition to the two boundary conditions listed above, there is a dynamic 
boundary condition to be satisfied on the free surface, but this condition has 
no effect on the solution we will obtain, so it will be omitted here in the 
interests of clarity. That boundary condition determines the value of speed 
of the wave c.

The first boundary condition tells us three things: it tells us that the solu-
tion should be trigonometric in x, that only the cosine function is required, 
and that the value of the separation constant α in this case is 2π/λ. Then, 
preserving the same time dependence since it does not appear explicitly in 
the partial differential equation, the solution in the x direction will be of the 
functional form

	 cos ( ).
2π
λ

x ct−
	

It therefore follows that the solution in y must be exponential or hyper-
bolic, and as required by the second boundary condition, the derivative of 
the solution must vanish on y = −h. Therefore, using the same separation 
constant as for the x direction, the functional form of the solution in the y 
direction is chosen to be

	 cosh ( ).
2π
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That is, by merely looking at the boundary conditions, we conclude that 
the appropriate functional form of the solution will be
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We now establish the value of the constant A by matching this solution to 
the first boundary condition, not just invoking its functional form. This gives 
the result

	 A
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Thus, the complete solution to the problem posed is
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This is the same value as we found in Section 6.6, that is, Equation 6.7a. If 
a boundary condition is given in the form of a graph, such as a square wave 
or a triangular wave, we can convert the graph into trigonometric functions 
by means of a Fourier series.

If the partial differential equation is of the parabolic type, that is, where 
one of the possible highest derivatives is missing, the equation to be solved 
will be of the following type:
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This equation was encountered in Chapter 7 where u(y,t) is the x compo-
nent of the velocity vector. If we carry out the same procedure as we did for 
the Laplace equation, we will get the following result:
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The separation constant has been taken to be −α2. If we choose the separa-
tion constant to be +α2, we will get solutions that grow exponentially with 
time. Since we normally deal with situations where the dependent variable 
decays with time, we reject the positive separation constant. Then, it follows 
that the solution in the y direction will be trigonometric. Note that the sepa-
ration constant appears explicitly as a coefficient of t, but only as a square 
root in the coefficient of y in the solution. As with the Laplace equation, the 
boundary conditions will reveal the required value of the separation con-
stant, and if a graphical value is specified, we can represent it as a Fourier 
series.
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If the partial differential equation is of the hyperbolic type, the equation to 
be solved will be of the following type:
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Using separation of variables shows that the two components of the solu-
tion must both be of the same functional form, namely, either trigonometric 
or exponential. This is not the most suitable form for matching the solutions 
to typical boundary conditions in fluid mechanics. However, an alternative 
method exists that produces a general form of solution, namely, the method 
of characteristics. The wave equation is discussed in Section 11.1, where it is 
established that the appropriate solution will be of the following form:

	 u(x, t) = f(x − ct) + g(x + ct).	

In the above, f and g are two differential functions that are established by 
the boundary conditions or the initial conditions. The first term on the right-
hand side of this solution represents a wave travelling in the positive x direc-
tion with velocity c, and the second term represents a wave travelling in the 
negative x direction with velocity c. This form of solution is well suited for 
matching the type of boundary or initial conditions that are encountered in 
typical fluid mechanics applications.

14.4  Similarity Solutions

Similarity solutions are solutions that reduce the number of independent 
variables by one. That is, if a similarity solution is applied to a partial differ-
ential equation with two independent variables, it will reduce the problem 
to an ordinary differential equation. Unlike separation of variables, the simi-
larity solution will result in just one ordinary differential equation, not two, 
and it may be applied to nonlinear problems as well as linear problems. The 
method was introduced in Section 7.4, and it is used extensively in Chapters 
9 and 10.

Similarity solutions may be applied to partial differential equations of 
the parabolic type, such as the heat conduction equation or the diffusion 
equation, as well as a few instances in the analysis of fluid flows. They work 
where there are no physical length scales involved, so that the solutions 
are all “similar” to each other. In Section 7.4, the Stokes’ first problem was 
discussed, and it was established as requiring the solution to the following 
problem for the velocity u(y,t):
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	 where u(0, t) = UH(t)	

	 and u(y, t) = finite.	

In the above, H(t) is the Heaviside function, or unit step function, which 
has the following properties:
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Physically, Stokes’ first problem considers a semi-infinite body of fluid, cor-
responding to y ≥ 0, which is originally at rest. The fluid is in contact with a 
horizontal surface that is located along the x axis at y = 0, as shown in Figure 
14.5a. The horizontal surface, which may be considered to be a movable belt, 
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FIGURE 14.5
(a) Definition sketch for an impulsively moving surface, (b) expected form of the solution 
curves, and (c) typical curve that represents u/U = constant.
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is impulsively set into sliding motion with constant horizontal velocity U at 
time t = 0+. The anticipated motion of the fluid is shown in Figure 14.5b for a 
variety of times after initiation of the motion.

In Figure 14.5b, we show a vertical line corresponding to the velocity ratio 
u/U = λ, which is a fixed number in the range 0 < λ < 1. The dashed line inter-
sects each of the indicated velocity profiles at some time ti and some distance 
from the belt yi. Then, it follows that the velocity ratio u/U is constant when

	 y = y1 and t = t1	

	 y = y2 and t = t2	

	 y = y3 and t = t3	

	 y = y4 and t = t4	

and so on.
If we plot these data points of y versus t, we will generate a curve like the one 

shown in Figure 14.5c. That is, along the line shown in Figure 14.5c, the velocity 
ratio u/U will be constant. If we represent the curve in Figure 14.5c by the rela-
tion y ~ tn, then we can say that u/U is constant when y/tn is constant. That is

	
u
U

y
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= some function of .

	

Hence, we should look for a solution to Equation 14.15a in which the veloc-
ity ratio u/U is a function of a single independent variable, call it η, where 
η ~ y/tn. That is, we should look for a solution of the following functional form:
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In the above relation, a constant α has been added to permit us to make 
sure that the variable η is dimensionless, as it should be, since the left side of 
the equation is dimensionless. The variable η is called the similarity variable.

Generating the derivatives required by Equation 14.15a, we get
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Here, the primes denote differentiation with respect to η. In the first equa-
tion above, we have eliminated the independent variable y using the defini-
tion of the new variable η. Substituting these results into Equation 14.15a, 
we get
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Thus, if we choose the value n = ½, this equation reduces to the following 
form:
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The solution to Equation 14.15b is pursued further in Section 7.4, but for 
our purposes here, we can stop and say that we have been able to reduce a 
partial differential equation having two independent variables to an ordi-
nary differential equation. Stokes’ first problem may also be treated by linear 
methods, such as a Laplace transform.

Now, we will look at a nonlinear problem where linear methods are not 
appropriate. We consider the boundary layer flow over a flat surface, which 
is discussed in Section 9.3. This flow problem, posed in terms of the stream 
function ψ(x,y), is as follows:
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This is a third-order, nonlinear, partial differential equation in two inde-
pendent variables. There are no geometric length scales, so that the possi-
bility of a similarity solution exists. If we were to superimpose the velocity 
profiles from different values of x, we would be led to the same conclusion 
here as we were in the case of the Stokes’ first problem. Namely, the veloc-
ity profiles at different values of x exhibit the same behavior as they did at 
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different values of t in the Stokes’ first problem. That is, the problem behaves 
in a similar manner with the independent variable x in this case replac-
ing the independent variable t in the Stokes’ first problem. Thus, we would 
expect a similarity solution to exist in which
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where g is some undetermined function. Then, since u = ∂ψ/∂y, we have
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Then, by integration, it follows that the stream function will be of the fol-
lowing form:

	 ψ = βx1/2f(η)	 (14.16b)
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In this last equation, a constant β has been included in the definition of the 
function f, as was done with the definition of η in the Stokes’ first problem, in 
order to make the dimensions the same on both sides of the equation. It may 
be readily verified that Equation 14.16b is a solution to Equation 14.16a by dif-
ferentiating it with respect to y and verifying that ∂ψ/∂y = Ug is recovered. 
If we substitute the expression in Equation 14.16b into the partial differential 
equation, it will be readily verified that the assumed form of ψ does indeed 
reduce the partial differential equation to an ordinary differential equation. 
The solution is developed further in Section 9.3.

Having reduced a second-order linear partial differential equation into 
a second-order ordinary differential equation, and a third-order nonlinear 
partial differential equation to a third-order ordinary differential equa-
tion, the question arises as to the possibility of generalizing the concepts 
that were used to solve other problems. This approach was considered by 
Falkner and Skan who generalized the solution presented in Equation 14.16b. 
As discussed in Section 9.4, the problem posed by the boundary layer equa-
tions, for flows other than constant velocity flows approaching the surface, 
requires solving the following problem:

	
∂
∂

∂
∂ ∂

−
∂
∂

∂

∂
= +

∂

∂

ψ ψ ψ ψ
υ

ψ
y x y x y

U
U
x y

2 2

2

3

3

d
d
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∂
∂

=
∂
∂

=
ψ ψ
x

x
y

x( , ) ( , )0 0 0
	

	
∂
∂

→ → ∞
ψ
y

x y U x y( , ) ( ) .as
	

The difference between this problem and the previous problem is that we 
no longer restrict the outer velocity U(x) to be a constant. In order to solve 
this problem, Falkner and Skan decided to generalize the form of the solu-
tion as presented in Equation 14.16b by generalizing the function of x that 
appears in the definitions of the stream function ψ and in the similarity vari-
able η. Thus, they decided to explore the possibility of the existence of solu-
tions of the following form:

	 ψ = U(x)ξ(x)f(η)	 (14.17a)

	 where η
ξ

=
y
x( )

	 (14.17b)

	 and then u(x, y) = U(x)fʹ(η).	

As we show in Section 9.4, substitution of this assumed form of solution 
into the partial differential equation leads to an ordinary differential equa-
tion for some specific types of outer flow velocities U(x) and some specific 
functions ξ(x). The detailed solution is presented in Section 9.4, and all we 
have tried to do here is to present a rational basis for the assumed form of the 
solution specified above.

In summary, a similarity solution may exist to a particular problem if the 
following conditions apply and the solution may be obtained if the proce-
dures indicated are followed:

•	 The partial differential equation is of the parabolic type, that is, 
one of the highest derivatives does not appear in the differential 
equation.

•	 There are no geometric length scales associated with the problem. 
Examples include the Stokes’ first problem (Section 7.4) and bound-
ary layer flows (Chapter 9). If a horizontal surface at y = h is intro-
duced in the Stokes’ first problem, the geometric length scale will 
preclude a similarity solution that is capable of satisfying the bound-
ary conditions. However, in such cases, a separation of variable solu-
tion will be able to match the boundary conditions through the use 
of a Fourier series representation of the boundary condition.
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•	 For problems where the dependent variable is the quantity that is 
“similar,” such as the velocity in the Stokes’ first problem, look for a 
solution of the following form:

	
u
U

t fm= β η( ) 	 (14.18a)

	 where η α=
y

tn
. 	 (14.18b)

		  Substitute this assumed form of solution into the partial differ-
ential equation and see if some choice of the parameters m and n 
reduced the problem to an ordinary differential equation. If so, the 
ability of the resulting ordinary differential equation to satisfy the 
required boundary conditions may then be investigated.

•	 If the dependent variable is not the quantity that is “similar,” such 
as in boundary layer theory, look for a solution of the form speci-
fied by Equations 14.17a and 14.17b. If substitution into the partial 
differential equation leads to an ordinary differential equation, for 
some choice of the quantities U(x) and ξ(x), then a similarity solution 
exists. The ability of the solution to the resulting ordinary differen-
tial equation to satisfy the required boundary conditions may then 
be investigated.

14.5  Group Invariance Methods

In this book, we use only the idea of coordinate invariance as applied to the 
solution of ordinary differential equations. This material is useful in solving 
the nonlinear ordinary differential equations, which are created by similar-
ity solutions to nonlinear partial differential equations, such as the boundary 
layer equations. The method can be used to reduce the order of an ordinary 
differential equation, including nonlinear equations, from n to (n − 1).

The method can be readily illustrated by considering the simple case of a 
spring-mass vibration system, as illustrated in Figure 14.6. For such a system, 
the differential equation to be solved for the displacement x as a function of 
the time t is

	
d
d

2

2
0

x
t

x+ = . 	 (14.19a)
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The variables here have been made dimensionless by using the frequency 
parameter ω to make the time dimensionless, where ω2 = k/m, and the dis-
placement x can be made dimensionless by using the initial displacement 
from the rest position. If we now introduce the velocity v = dx/dt, we get

	
d
d
x
t

v=
	

	 ∴ = −
d
d
v
t

x.
	

The last equation follows from the original differential equation. If we now 
divide these two first-order differential equations, the time t is eliminated, 
giving

	
d
d
v
x

x
v

= − .
	

That is, the original second-order equation has been reduced to two first-
order equations, which are

	
d
d
v
x

x
v

= − 	 (14.19b)

	
d
d
x
t

v= . 	 (14.19c)

If we integrate Equation 14.19b and obtain an expression for v, we can then 
substitute the result into Equation 14.19c and integrate again to get x. The 
solution to Equation 14.19b is called the phase plane solution, that is, the plot 
of v versus x is known as the phase plane.

m

k

x

FIGURE 14.6
Free vibrations of a spring mass system with no damping.
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The reason that we were able to reduce the problem to two first-order dif-
ferential equations this way is that the independent variable t did not appear 
explicitly in the given differential equation—only as a derivative. If a more 
general version of Equation 14.19a is to be solved, the procedure would be the 
same. For example, suppose that the given differential equation is nonlinear 
and of the following form:

	
d
d

d
d

2

2
0

x
t

x
t

x
m

n+ + =α β . 	 (14.20)

Then, if we take the velocity v as the new dependent variable and x as 
the new independent variable as before, we get the following two first-order 
equations:

	
d
d
v
t

v xm n= − −α β
	

	
d
d
x
t

v= .
	

Dividing these two equations eliminates t as before, giving the result

	
d
d
v
x

v x
v

m n

= −
+α β

.
	

Another way of expressing the condition that made the method work is to 
say that the given differential equation is invariant to the following coordi-
nate transformation:

	 X = x	

	 T = t + constant.	

In terms of the new variables X and T, Equation 14.20 becomes

	
d
d

d
d

2

2
0

X
T

X
T

X
m

n+ + =α β .
	

Another way of looking at what happened above is to note that we found 
an invariant coordinate, which in this case was x. Then, by taking the invari-
ant coordinate x to be the new independent variable, and taking v = dx/dt to 
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be the new dependent variable, the second-order equation for x(t) became a 
first-order equation for v(x).

This method would also work if you found any invariant coordinate to 
use as a new independent variable. If ξ(x, t) is a coordinate that arises from 
invariance of the differential equation, then we should choose ξ to be the 
new independent variable and G(ξ) = tn dx/dt to be the new dependent vari-
able. Including the coefficient tn in the definition of the new dependent vari-
able G(ξ) is a generalization similar to what we used to get the Falkner–Skan 
similarity solutions by generalizing the method used to obtain the Blasius 
solution for flow past a flat surface. The inclusion of the factor tn gives us a 
free parameter n, which can be used to clear the transformed differential 
equation of both x and t to yield a differential equation for G(ξ).

To illustrate this situation, we consider the following differential equation 
that is nonlinear and that contains the independent variable explicitly:

	
d
d

2

2
2 0

x
t

tx+ = . 	 (14.21)

This equation cannot be solved by taking v = dx/dt as the new dependent 
variable and x as the new independent variable. If v = dx/dt, it follows from 
the differential equation that

	
d
d
v
t

tx= − 2

	

	 and
d
d
x
t

v= .
	

Dividing these two equations gives

	
d
d
v
x

tx
v

= −
2

.
	

Note that the variable t has not been eliminated because it appears explic-
itly in the differential equation. However, we can show that if we take G(ξ) = 
tndx/dt as the new dependent variable, instead of v = dx/dt, and ξ = t3x as 
the new independent variable, instead of x, we can reduce the second-order 
differential equation to a first-order differential equation. The way we arrive 
at these variable changes is as follows.

First, we must establish a coordinate that leaves the differential equation 
unchanged. To do this, let

	 x = aX and t = bT	
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Then, Equation 14.21 becomes

	

a
b

X
T

a b TX
2

2

2
2 2 0+ ( ) =

d
d

.
	

If the differential equation is to be the same in both coordinate systems, 
we must make

	

a
b

a b a
b2

2
3

1
= = .

	

That is,

	

x
X

T
t

=
3

3
.
	

So that

	 xt3 = XT 3.	

That is, we have established that the quantity xt3 is an invariant coordi-
nate for Equation 14.21, so we will take this as our new independent variable. 
Then, taking the equivalent of the “velocity” as our new dependent variable, 
we are looking for a solution to Equation 14.21, which is of the following form:

	 G t
x
t

n( )ξ =
d
d

is our new dependent variable 	 (14.22a)

	 and ξ = t3x is our new independent variable.	 (14.22b)

Now, we substitute these expressions into Equation 14.21 and try to elimi-
nate both x and t to yield an ordinary differential equation for the new vari-
able G(ξ). From Equation 14.22a

	

d
d
x
t

t Gn= −

	

	
∴ = = − +− − + −d

d
d
d

d
d

2

2
1x

t t
t G nt G t

G
t

n n n( ) ( )

	

	 but
d
d

d
d

d
d

d
d

d
d

d
d

G
t t

G
t
t x

G
t x t

x
t

= = = +
ξ

ξ ξ
( )3 2 33

dd
d
G
ξ
.
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From Equation 14.22a, we have dx/dt = t−nG, and from Equation 14.22b, we 
have the result x = t−3ξ. Hence, our expression for dG/dt becomes

	

d
d

d
d

G
t

t t G
Gn= +{ }− −3 1 3ξ
ξ
.
	

Substituting this result into the equation for d2x/dt2 above produces the result

	

d
d

d
d

2

2
1 1 33

x
t

nt G t t t G
Gn n n= − + +{ }− + − − −( ) ξ
ξ 	

	
= − + +− + − + −nt G t

G
t G

Gn n n( ) ( ) ( ) .1 1 3 23 ξ
ξ ξ

d
d

d
d 	

Substituting this expression into the given equation, Equation 14.21, we get

	
− + + + =− + − + − −nt G t

G
t G

G
tn n n( ) ( ) ( ) .1 1 3 2 5 23 0ξ

ξ ξ
ξ

d
d

d
d 	

Then, in order to eliminate t, we must equate the powers of t in this equa-
tion. That is,

	 −(n + 1) = (3 − 2n) = −5.	

These equations are satisfied by the value n = 4. The resulting ordinary 
differential equation is

	
− + + + =4 3 02G

G
G

G
ξ

ξ ξ
ξ

d
d

d
d 	

	
d
d
G G

Gξ
ξ
ξ

=
−
+

4
3

2

. 	 (14.23a)

Once the solution for G is obtained, the solution for x will be given by the 
solution to the following ordinary differential equation:

	
d
d
x
t

t G= −4 . 	 (14.23b)

That is, the original second-order ordinary differential equation, Equation 
14.21, has been reduced to two first-order ordinary differential equations, 
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Equations 14.23a and 14.23b. Many methods exist for solving first-order ordi-
nary differential equations, including simple numerical methods if required.

In summary, when solving nonlinear ordinary differential equations, use 
the following methods—in order of priority:

	 1.	Look for direct integration—for example

	 xʹʺ + xʹxʺ = 0 ⇒ xʺ + (xʹ)2/2 = constant.	

	 2.	Look for a simple group invariance, that is, if the independent vari-
able does not appear explicitly, then choose v = dx/dt as the new 
dependent variable and x as the new independent variable.

	 3.	For less simple cases, look for an invariant coordinate, ξ(x,t), and 
choose G(ξ) = tndx/dt as the new dependent variable and ξ(x,t) as the 
new independent variable.

PROBLEMS

	 14.1	 In Appendix D, Item D.2, a Fourier series representation is given 
for a square wave that is odd in x. Use the methods discussed in 
Section 14.1 to verify the expression that is quoted.

	 14.2	 It is required to represent the shaded area in the figure for this 
problem by a Fourier series. The upper limit of the shaded area is 
a parabola that is defined by the following equation over the range 
–L ≤ x ≤ L:

	 f x H
x
L

( ) .=
2

2
	

		  This gives f (0) = 0 and f (L) = H. Obtain the Fourier series for this 
particular curve.

	 14.3	 It is required to represent the shaded area in the figure for this 
problem by a Fourier series. The upper limit of the shaded area is 

f (x)

H

2L
x
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a parabola that is defined by the following equation over the range 
–L < x < L:

	 f x H
x
L

( ) .=
2

2
	

		  Here, f(0) = 0, but f(L) = 0, which is different from Problem 14.2 
above. Obtain the Fourier series for this particular curve.

	 14.4	 In Appendix D, Item D.2, a Fourier series representation is given for 
a square wave that is odd in x. Due to the discontinuity in slope at 
the two ends, x = 0 and x = L, this is one of the most difficult curves 
to represent using a Fourier series. Use the given series and any 
appropriate software, such as Excel, to plot the series representa-
tion using a truncated number of terms as follows:
(a)	 The first 10 terms corresponding to n = 1 to n = 10
(b)	 The first 20 terms corresponding to n = 1 to n = 20
(c)	 The first 30 terms corresponding to n = 1 to n = 30

		  Plot f(x)/H versus x/L and use a sufficient number of x/L values 
to produce smooth curves in each case. You will notice oscillations 
that persist and move toward the two corners as n increases. This 
is known as Gibb’s phenomenon.

	 14.5	 Use the series representation of each of the following complex 
functions to identify the value of the residue at each singularity:

(a)	 F z
z

z
( )

cos
=

3

(b)	 F z
z

z
( )

cosh
=

3

(c)	 F z
e

z

z

( )
( )

=
− α 2

f (x)

H

L

x
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	 14.6	 Use the formula given by Equation 14.12b to determine the value 
of the residue of each of the following functions at their singular 
points:

(a)	 F z
z

z
( )

cos
=

3

(b)	 F z
z

z
( )

cosh
=

3

(c)	 F z
e

z

z

( )
( )

=
− α 2

	 14.7	 Use the formula given by Equation 14.12c to determine the value 
of the residue of each of the following functions at their singular 
points:

(a)	 F z
z
z

( )
cos
sin

=

(b)	 F z
z
z

( )
sinh( )

=
− α

(c)	 F z
e

z

z

( )
( )

=
− α

	 14.8	 Considering α to be a real number, determine the residues of the 
following function at each of its singular points:

	 F z
z

( )
( )

.=
−

4 2

2 2 2

α

α 	

	 14.9	 It is required to obtain solutions to the Laplace equation for two 
situations as outlined below.
(a)	 The first situation has the boundary conditions indicated in the 

figure for this problem, so that the problem to be solved for 
T(x,y) is as follows:

	

∂

∂
+
∂

∂
=

2

2

2

2
0

T
x

T
y 	

	
T x A

x
L

T x H T y T L y( , ) sin ; ( , ) ; ( , ) ; ( , ) .0 0 0 0 0= = = =
π
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		  Obtain the solution in three simple steps as follows:
Step 1: Start by writing down the x component of the solution 

that satisfies the boundary conditions on x = 0 and on x = 
L and that has the correct functional form and the correct 
amplitude along the surface y = 0.

Step 2: Next, write down the y component of the solution that 
satisfies the boundary condition on y = H and that has the 
value unity on the surface y = 0.

Step 3: Multiply these two components of the solution together 
and verify that the resulting expression satisfies all of the 
required conditions.

(b)	 The second situation has the boundary conditions as indicated 
in the figure for this problem, so that the problem to be solved 
becomes

	

∂

∂
+
∂

∂
=

2

2

2

2
0

T
x

T
y 	

	
T x T x H B

x
L

T y T L y( , ) ; ( , ) sin ; ( , ) ; ( , ) .0 0 0 0 0= = = =
π

	

y

H

0 L x

T(x,H) = 0

T(x,0) = Asin(πx/L)

T(
0,
y)

 =
 0

T(
L,
y)

 =
 0

y

H

0 L x

T(x,H) = Bsin(πx/L)

T(x,0) = 0

T(
0,
y)

 =
 0

T(
L,
y)

 =
 0
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	 Follow a similar procedure to the three steps outlined in Part (a).
Step 1: Start by writing down the x component of the solution 

that satisfies the boundary conditions on x = 0 and on x = 
L and that has the correct functional form and the correct 
amplitude along the surface y = H.

Step 2: Next, write down the y component of the solution that sat-
isfies the boundary condition on y = 0 and that has the value 
unity on the surface y = H.

Step 3: Multiply these two components of the solution together 
and verify that the resulting expression satisfies all of the 
required conditions.

	 14.10	 It is required to obtain solutions to the Laplace equation for two 
situations as outlined below.
(a)	 The first situation has the boundary conditions indicated in the 

following figure, so that the problem to be solved for T(x,y) is as 
follows:

	

∂

∂
+
∂

∂
=

2

2

2

2
0

T
x

T
y 	

	
T x T x H T y C

y
H

T L y( , ) ; ( , ) ; ( , ) sin ; ( , ) .0 0 0 0 0= = = =
π

	

		  Obtain the solution in three simple steps as follows:
Step 1: Start by writing down the y component of the solution 

that satisfies the boundary conditions on y = 0 and on y = 
H and that has the correct functional form and the correct 
amplitude along the surface x = 0.

Step 2: Next, write down the x component of the solution that 
satisfies the boundary condition on x = L and that has the 
value unity on the surface x = 0.

H

y

0 L x

T(x,H) = 0

T(x,0) = 0

T(
0,
y)

 =
 C

sin
(p
y/
H

)

T(
L,
y)

 =
 0
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Step 3: Multiply these two components of the solution together 
and verify that the resulting expression satisfies all of the 
required conditions.

(b)	 The second situation has the boundary conditions as indicated 
in the figure for this problem, so that the problem to be solved 
becomes

	

∂

∂
+
∂

∂
=

2

2

2

2
0

T
x

T
y 	

	
T x T x H T y T L y D

y
H

( , ) ; ( , ) ; ( , ) ; ( , ) sin .0 0 0 0 0= = = =
π

	

		  Follow a similar procedure to the three steps outlined in Part (a).
Step 1: Start by writing down the y component of the solution 

that satisfies the boundary conditions on y = 0 and on y = 
H and that has the correct functional form and the correct 
amplitude along the surface x = L.

Step 2: Next, write down the x component of the solution that 
satisfies the boundary condition on x = 0 and that has the 
value unity on the surface x = L.

Step 3: Multiply these two components of the solution together 
and verify that the resulting expression satisfies all of the 
required conditions.

	 14.11	 Using the results of Problems 14.9 and 14.10, write down the solu-
tion to the following problem:

	

∂

∂
+
∂

∂
=

2

2

2

2
0

T
x

T
y 	

	
T x A

x
L

( , ) sin0 =
π

	

H

y

0 L x

T(x,H) = 0

T(x,0) = 0

T(
0,
y)

 =
 0

T(
L,
y)

 =
 D

sin
(p
y/
H

)
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T x H B

x
L

( , ) sin=
π

	

	
T y C

y
H

( , ) sin0 =
π

	

	
T L y D

y
H

( , ) sin .=
π

	

	 14.12	 Use separation of variables to obtain the solution for u(y,t) 
in the  range 0 ≤ y ≤ 2h and t ≥ 0, which satisfies the following 
conditions:

	

∂
∂

=
∂

∂

u
t

u
y

υ
2

2

	

	
u y U

y
h

( , ) sin0 =
π

	

	 u(y, t) → 0 as t → ∞.	

	 14.13	 In Problem 9.2, it was indicated that the boundary layer equa-
tions for flow over a flat surface may be reduced to the following 
second-order nonlinear ordinary differential equation after apply-
ing a similarity method of solution and a simple group invariance 
method:

	

d
d

d
d

d
d

2

2

2
1 1

2
0

F
f F

F
f

f
F

F
f

+ + = .
	

		  It was also stated in Problem 9.2, without proof, that a certain 
transformation of coordinates reduces this second-order equation 
to a first-order equation.
(a)	 Find a coordinate, call it ξ, that leaves the foregoing differential 

equation invariant.
(b)	 Using group invariance ideas, define a new dependent variable 

as follows:

	
G f

F
f

n( ) .ξ =
d
d 	

	 Show that this transformation reduces the given second-order 
equation to a first-order equation, and find the first-order equation 
for G(ξ).
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Further Reading—Part V

The following references are representative of the extensive amount of mate-
rial that exists relating to the methods of analysis that are commonly used in 
fluid mechanics problems.

Ablowitz, M. J. and A. S. Fokas: Complex Variables, Cambridge University Press, 
Cambridge, UK, 2003.

Bender, C. M. and S. A. Orszag: Advanced Mathematical Methods for Scientists and 
Engineers, Springer-Verlag, New York, 1999.

Bluman, G. W. and S. C. Anco: Symmetry and Integration Methods for Differential 
Equations, Springer-Verlag, New York, 2002.

Cousteix, J. and J. Mauss: Asymptotic Analysis and Boundary Layers, Springer-Verlag, 
Berlin, Heidelberg, 2007.

Hydon, P. E.: Symmetry Methods for Differential Equations, Cambridge University Press, 
Cambridge, UK, 2000.

Schlichting, H., K. Gersten and K. Gersten: Boundary-Layer Theory, Springer-Verlag, 
Berlin, Heidelberg, 2000.

Sobey, I. J.: Introduction to Interactive Boundary Layer Theory, Oxford University Press, 
Oxford, UK, 2000.

Van Dyke, M.: Perturbation Methods in Fluid Dynamics, Academic Press, New York, 
1964.
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Appendix A: Vector Analysis

The vector relations given in this appendix are particularly useful in the 
study of fluid mechanics. The derivation of these relationships may be found 
in most books that cover the topic of vector analysis.

A.1  Vector Identities

In the following formulas, ϕ is any scalar and a, b, and c are any vectors:

	

× =

⋅ = ⋅ + ⋅

× = × + ×

⋅ ×

φ

φ φ φ

φ φ φ

0
( )
( ) ( )

( )

a a a

a a a

a ==

⋅ = ⋅ − × ×

× × = ⋅ −

×

0
1
2

2

( ) ( ) ( )

( ) ( )
(

a a a a a a

a a a

aa b a b b a a b b a

a b b a

× = ⋅ − ⋅ − ⋅ + ⋅

⋅ × = ⋅ ×

) ( ) ( ) ( ) ( )
( ) ( )) ( ).− ⋅ ×a b

	

A.2  Integral Theorems

In the following two theorems, which relate surface integrals to volume inte-
grals, V is any volume and S is the surface that encloses V, with the unit nor-
mal on S being denoted by n. ϕ is any scalar and a is any vector.

	 Gauss’ theorem (also known as the divergence theorem):

	
a n a⋅ = ⋅∫ ∫d dS V

S V 	
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	 Green’s theorem:

	

φ
φ

φ φ φ φ
s V

n
S V∫ ∫

∂
∂

= ⋅ +d [ ]2 d

	
	 Stokes’ theorem:

	

a dl a n⋅ = × ⋅∫ ∫� ( ) .dA
A

	
This theorem relates a line integral to an equivalent surface integral. The 

surface A is arbitrary, but it must terminate on the line l.

A.3  Orthogonal Curvilinear Coordinates

Let x1, x2, x3 be a set of orthogonal curvilinear coordinates with e1, e2, e3 as 
the corresponding unit base vectors.

	 Position vector:

	 r = xex + yey + zez

where ex, ey, and ez are fixed in space.

	 Base vectors:

	 e
r r

i
i ix x

=
∂
∂

∂
∂

.	

	 Metric-scale factors:

	 h
xi
i

=
∂
∂r .	

	 Line element:

	 ( ) ( ) ( ) ( )d d d d dr ⋅ = + +r h x h x h x1
2

1
2

2
2

2
2

3
2

3
2 .	
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	 Cartesian coordinates (rectangular coordinates):

	

x x x y x z

h h h
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	 4.	Laplacian:
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Figure A.1 shows the geometric relationship between Cartesian coordi-
nates and the two most common curvilinear coordinate systems.

(R,θ,z) (r,θ,ω)

θ ω

θ

z

x

y

z

r

x

y

z

R

(a) (b)

FIGURE A.1
Relationship between Cartesian coordinates and (a) cylindrical coordinates and (b) spherical 
coordinates.
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Appendix B: Tensors

In this appendix, some of the basic properties of tensors are reviewed. 
Although much of the material is general, the discussion is restricted to 
Cartesian tensors since curvilinear tensors are not used in this book.

B.1  Notation and Definition

B.1.1  Notation

The following rules of notation will be followed throughout:

	 1.	 If a given index appears only once in each term of a tensor equation, 
it is a free index and the equation holds for all possible values of that 
index.

	 2.	 If an index appears twice in any given term, it is understood that a 
summation is to be made over all possible values of that index.

	 3.	No index may appear more than twice in any term.

B.1.2  Definition

A tensor of rank r is a quantity having nr components in n-dimensional space. 
The components of a tensor quantity expressed in two different coordinate 
systems are related as follows:

	 T′ijk⋯m = CisCjtCku⋯CmvTstu⋯v	

where the quantities Cmn are the direction cosines between the axes of the 
two coordinate systems.

A tensor of rank 2 is sometimes called a dyadic, a tensor of rank 1 is a vector, 
and a tensor of rank 0 is a scalar.
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B.2  Tensor Algebra

B.2.1  Addition

Two tensors of equal rank may be added to yield a third tensor of the same 
rank as follows:

	 Cij⋯k = Aij⋯k + Bij⋯k.	

B.2.2  Multiplication

If tensor A has rank a and tensor B has rank b, the multiplication of these two 
tensors yields a third one of rank c.

	 Cij⋯krs⋯t = Aij⋯k Br⋯t.	

B.2.3  Contraction

If any two indices of a tensor of rank r ≥ 2 are set equal, a tensor of rank r – 2 
is obtained. For example, if Cij is defined by

	 Cij = AiBj	

then by setting i = j, the tensor Cij, which is of rank 2, becomes a tensor of 
rank 0 (i.e., a scalar):

	 Cii = AiBi.	

Thus, contraction is equivalent to taking the scalar product of two vectors 
in vector algebra.

B.2.4  Symmetry

If the tensor A has the property that

	 Ai⋯j⋯k⋯l = Ai⋯k⋯j⋯l	

then the tensor A is said to be symmetric in the indices j and k. As a con-
sequence of the relation above, the tensor has only n(n + 1)/2 independent 
components.

If the tensor A has the property that

	 Ai⋯j⋯k⋯l = −Ai⋯k⋯j⋯l	
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then the tensor A is said to be antisymmetric in the indices j and k. Such ten-
sors have only n(n − 1)/2 independent components.

B.3  Tensor Operations

B.3.1  Gradient

The gradient of a tensor of rank r is defined by

	 T
R

xij kl
ij k

l
�

�=
∂

∂ 	

and yields a tensor of rank (r + 1).

B.3.2  Divergence

The divergence of a tensor of rank r results in a tensor of rank (r – 1):

	 T
R

xi jl m
i jkl m

k
� �

� �=
∂

∂
.	

B.3.3  Curl

If R is a tensor of rank r, the curl operation will produce an antisymmetric 
tensor of rank (r + 1). In general, the operation is defined by

	 T
R

x
R
xi j kl

i j k

l

i l k

j
� �

� � ��=
∂

∂
−
∂
∂

.	

In three dimensions, the curl of a tensor of rank 1 (i.e., a vector) may be 
written in the form

	 T
R

xi ijk
j

k

= −
∂

∂
ε

	

where εijk is a constant pseudoscalar defined by

	

ε ε ε

ε ε ε

ε

123 312 231

213 321 132

1

1

0

= = =

= = = −

=ijk otherwisse. 	



552 Appendix B

B.4  Isotropic Tensors

B.4.1  Definition

An isotropic tensor is one whose components are invariant with respect to 
all possible rotations of the coordinate system. That is, there are no preferred 
directions, and the quantity represented by the tensor is a function of posi-
tion only and not of orientation.

B.4.2  Isotropic Tensors of Rank 0

All tensors of rank 0 (i.e., scalars) are isotropic.

B.4.3  Isotropic Tensors of Rank 1

There are no isotropic tensors of rank 1. That is, vectors are not isotropic 
since they have preferred directions.

B.4.4  Isotropic Tensors of Rank 2

The only isotropic tensors of rank 2 are of the form αδij, where α is a scalar 
and δij is the Kronecker delta, which has the property that

	

δij
i j

i j
=

≠

=

0

1

when

when .
	

B.4.5  Isotropic Tensors of Rank 3

The isotropic tensors of rank 3 are of the form αεijk, where α is a scalar and εijk 
is a pseudoscalar defined under Section B.3.

B.4.6  Isotropic Tensors of Rank 4

The most general isotropic tensor of rank 4 is of the form

	 αδijδpq + β(δipδjq + δiqδjp) + γ(δipδjp – δiqδjp)	

where α, β, and γ are scalars.
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B.5  Integral Theorems

The following two theorems were given in vector form in Appendix A, and 
they are reproduced here in tensor form.

B.5.1  Gauss’ Theorem (Divergence Theorem)

	
a n S

a
x

Vi i
s

i

iV
d d∫ ∫=

∂
∂

.
	

B.5.2  Stokes’ Theorem

	
a l

a

x
n Ai i ijk

j

k
i

A
d d�∫ ∫= −

∂

∂
ε .
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Appendix C: Governing Equations

This appendix gives the continuity, Navier–Stokes, and energy equations 
together with the components of stress in the three most commonly used 
coordinate systems: Cartesian, cylindrical, and spherical coordinates. The 
equations are valid for calorically perfect incompressible, Newtonian fluids 
in which μ and k are constants.

C.1  Cartesian Coordinates

	 Coordinates r = (x, y, z)	

	 Velocity u = (u, v, w)	
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C.2  Cylindrical Coordinates

	 Coordinates r = (R, θ, z)	

	 Velocity u = (uR, uθ, uz)	
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C.3  Spherical Coordinates

	 Coordinates r = (r, θ, ω)	

	 Velocity u = (ur, uθ, uω)	
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Appendix D: Fourier Series

This appendix lists some of the more commonly used Fourier series repre-
sentations that are particularly useful in the study of fluid mechanics. In 
each case, the function f (x) is periodic over the distance 2L and may be used 
to represent the shaded area of the corresponding diagram.

	 1.	Square wave (even)
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	 3.	Triangular wave (even)

	 f x H
n

n x
L

n

n

( ) ( ) cos= − −{ }
=

∞

∑ 4
1 1

2 2
1

π

π
	

	 4.	Triangular wave (odd)

	 f x H
n

n n x
L

n

( ) sin sin=
=

∞

∑ 8
22 2

1
π

π π
	

	 5.	Sawtooth wave (forward): f (x) = x H/L

	 f x H
n

n x
L

n

n

( ) ( ) sin= − +

=

∞

∑ 2
1 1

1
π

π
	

f (x)

H

x

L

f (x)

H

x

L

f (x)

H

x

L



563Appendix D

	 6.	Sawtooth wave (backward): f (x) = H (1− x/L)
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	 7.	Parabola (even): f (x) = H{1− (x/L) 2}
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	 8.	Parabola (odd): f (x) = 4H(x/L){1 − (|x|/L)}
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Appendix E: Thermodynamics

Thermodynamics is a complete subject in itself. However, in the study of 
fluid mechanics, only a few fundamental relationships from thermodynam-
ics are needed, and these arise mainly in the study of compressible flow. The 
following summary contains all the results from thermodynamics that are 
required in this book.

E.1  Zeroth Law

The zeroth law of thermodynamics states that there exists a variable of state, 
the temperature T, and that two systems that are in thermal contact are in 
equilibrium only if their temperatures are equal.

E.2  First Law

The first law of thermodynamics states that there exists a variable of state, 
the internal energy e. If an amount of work δw is done on a thermodynamic 
system and an amount of heat δq is added to it, the equilibrium states before 
and after the process are related by

	 δe = δw + δq.	

That is, the change in the internal energy equals the work done on the sys-
tem plus the heat added to it during the process or event.

E.3  Equations of State

There are two commonly used thermal equations of state, one being for ideal 
gases and the other for real gases.
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E.3.1  Thermally Perfect Gas

The equation of state for a thermally perfect gas is

	 p = ρRT	

where R is the gas constant for that particular gas. Frequently, this equation 
is used to define a perfect gas. That is, gases that obey the above equation of 
state are defined as perfect gases.

E.3.2  Van der Waals Equation

An approximate equation of state for real gases is given by the Van der Waals 
equation, which is

	 p RT
RT

=
−

−ρ
βρ

αρ1
1 	

where

	
α
β
=
27
8
RTc

	

and

	
α

β2
27= pc .	

Here, pc and Tc are, respectively, the critical pressure and temperature of 
the gas.

E.4  Enthalpy

The enthalpy h of a gas is defined by the following:

	 h e
p

e pv= + = +
ρ 	

where v is the volume of the gas per unit mass.
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E.5  Specific Heats

There are two specific heats in common usage, that at constant volume and 
that at constant pressure.

E.5.1  Constant Volume

The specific heat at constant volume Cv is defined as follows:

	 C
q
T

e
T

h
T

h
p

v
p
Tv

v

≡ =
∂
∂

=
∂
∂

+
∂
∂

−
∂

∂

d
d

vv

.
	

From the defining identity, the other relations follow without approximation.

E.5.2  Constant Pressure

The specific heat at constant pressure Cp is defined by

	 C
q
T

e
T

e
v

p
v
T

h
p

p p

≡ =
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

d
d TT

.

	

E.5.3  Perfect Gas

Using the above definitions of the specific heats and considering a perfect 
gas, it follows that

	 CP − Cv = R.	

Under these circumstances, it can be shown that e and h are functions of 
the temperature T only and may be expressed in the form

	
e T C T

h T C T

v

p

( ) = +

= +

∫

∫

d constant

( ) d constant.
	

If Cv and Cp are constants, independent of T, the gas is called calorically 
perfect, and it follows that

	
e C T

h C T

v

p

= +

= +

constant

constant.
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E.6  Adiabatic, Reversible Processes

The following relations are valid for adiabatic, reversible processes:

	

ρ
ρ

ρ
ρ

γ

γ γ

0 0

1 1

0 0

1

0

=

= =

−

−

T
T

p
p

T
T

/( )

/( ) γ

	

where γ = Cp/Cv and ρ0, T0, p0 are constants.

E.7  Entropy

There exists a variable of state, the entropy s. If heat is added to a system, the 
change in entropy between the initial and final equilibrium states will be 
given by

	 s s
q
TB A

A

B

− = ∫
d

	

where the integral is evaluated for a reversible process.

E.8  Second Law

The second law of thermodynamics states that for any spontaneous process, 
the entropy change is positive or zero. That is,

	 s s
q
TB A

A

B

− ≥ ∫
d

.
	

For a calorically perfect gas, it follows that

	
s s C

T
T

R
p
p

C
T
T

R

p

v

− = −

= +

0
0 0

0

0

log log

log log .
ρ
ρ 	
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E.9  Canonical Equations of State

The heat-addition term in the first law may be eliminated in favor of the 
entropy, yielding an equation that involves variables of state only. From this, 
the following identities may be established:

	

∂
∂

=
∂
∂

= −

∂
∂

=
∂
∂

e
s

T
e
v

p

h
s

T
h
p

v s

p

=
s

v.

	

E.10  Reciprocity Relations

By considering s to be a function of p and T, the following reciprocity rela-
tions follow:

	
∂
∂

=
∂
∂

∂
∂

=
∂
∂

−
s
T T

h
T

s
p T

h
p

v
1 1

.	

From these reciprocity relations, the following equation is obtained, which 
relates the caloric and thermal equations of state:

	
∂
∂

= −
∂
∂

h
p

v T
v
T

.	

Similarly, by considering s to be a function of v and T, the following reci-
procity relations are obtained:

	
∂
∂

=
∂
∂

∂
∂

=
∂
∂

+
s
T T

e
T

s
v T

e
v

p
1 1

.	

From these, the relation between the caloric and thermal equations of state 
is found to be

	
∂
∂

= − +
∂

∂
e
v

p T
p
T

.	
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