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Preface

This book covers the fundamental mechanics of fluids as they are treated at
the senior level and at the introductory graduate level. Many excellent books
exist that treat special areas of fluid mechanics such as ideal-fluid flow or
boundary-layer theory. However, there are very few books at this level that
sacrifice an in-depth study of one of these special areas of fluid mechanics for
a briefer treatment of a broader area of the fundamentals of fluid mechanics.
This situation exists despite the fact that many institutions of higher learn-
ing offer a broad, fundamental course to a wide spectrum of their students
before offering more advanced specialized courses to those who are special-
izing in fluid mechanics. This book is intended to remedy this situation.

The book is divided into five parts. Part I, “Governing Equations,” deals
with the derivation of the basic conservation laws, flow kinematics, and
some basic theorems of fluid mechanics. Part II is titled “Ideal-Fluid Flow,”
and it covers two-dimensional potential flows, three-dimensional potential
flows, and surface waves. Part III, “Viscous Flows of Incompressible Fluids,”
contains chapters on exact solutions, low-Reynolds-number approximations,
boundary-layer theory, and buoyancy-driven flows. Part IV of the book is
titled “Compressible Flow of Inviscid Fluids,” and this part contains chapters
that deal with shock waves, one-dimensional flows, and multidimensional
flows. Finally, Part V, which is titled “Methods of Mathematical Analysis,”
presents a summary of some of the commonly used methods of analysis as
used in this book as well as many others. Appendixes are also included that
summarize vectors, tensors, the governing equations in the common coordi-
nate systems, Fourier series, and thermodynamics.

The treatment of the material is such as to emphasize the phenomena asso-
ciated with the various properties of fluids while providing techniques for
solving specific classes of fluid-flow problems. The treatment is not geared to
any one discipline, and it may readily be studied by physicists and chemists
as well as by engineers from various branches. Since the book is intended
for teaching purposes, phrases such as “it can be shown that” and similar
clichés that cause many hours of effort for many students have been avoided.
In order to aid the teaching process, several problems are included at the end
of each of the 14 chapters. These problems serve to illustrate points brought
out in the text and to extend the material covered in the text.

Most of the material contained in this book can be covered in about 50
lecture hours. For more extensive courses, the material contained here may
be completely covered and even augmented. Parts II, 11, and IV are essen-
tially independent so that they may be interchanged or any one or more of
them may be omitted. This permits a high degree of teaching flexibility and
allows the instructor to include or substitute material that is not covered in

xxi



xxii Preface

the text. Such additional material may include free convection, density strati-
fication, hydrodynamic stability, and turbulence with applications to pollu-
tion, meteorology, etc. These topics are not included here, not because they
do not involve fundamentals, but rather because I set up a priority of what I
consider to be the basic fundamentals.

For the fourth edition, Chapter 14, which is titled “Some Useful Methods
of Analysis,” has been added. The problems in all chapters have also been
reviewed, and some of them have been revised in order to clarify and/or
extend the questions. Some new problems have also been included, bringing
the total number to 140.

Many people are to be thanked for their direct or indirect contributions
to this text. I had the privilege of taking lectures from F. E. Marble, C. B.
Millikan, and P. G. Saffman, and some of the style and methods of these
great scholars are probably evident in the following pages. Thanks are also
due to the many instructors and students who have used the book as a text
and who have pointed out errors and/or ambiguities in the material in the
earlier versions of this text.

I. G. Currie



Part 1

Governing Equations

In this first part of the book, a sufficient set of equations will be derived,
based on physical laws and postulates, governing the dependent variables
of a fluid that is moving. The dependent variables are the fluid-velocity com-
ponents, pressure, density, temperature, and internal energy or some simi-
lar set of variables. The equations governing these variables will be derived
from the principles of mass, momentum, and energy conservation and from
equations of state. Having established a sufficient set of governing equations,
some purely kinematical aspects of fluid flow are discussed, at which time
the concept of vorticity is introduced. The final section of this part of the book
introduces certain relationships that can be derived from the governing equa-
tions under certain simplifying conditions. These relationships may be used
in conjunction with the basic governing equations or as alternatives to them.

Taken as a whole, this part of the book establishes the mathematical equa-
tions that result from invoking certain physical laws postulated to be valid
for a moving fluid. These equations may assume different forms, depending
upon which variables are chosen and upon which simplifying assumptions
are made. The specific chapters contained in Part I are as follows:

Chapter 1: Basic Conservation Laws
Chapter 2: Flow Kinematics
Chapter 3: Special Forms of the Governing Equations

Parts II, III, and IV of the book are devoted to solving the governing
equations established in Part I for different categories of fluid flow, thereby
explaining quantitatively some of the phenomena that are observed in a flow-
ing fluid. In addition, they establish the methodologies that are employed in
the various branches of fluid mechanics.
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Basic Conservation Laws

The essential purpose of this chapter is to derive the set of equations that
results from invoking the physical laws of conservation of mass, momen-
tum, and energy. In order to realize this objective, it is necessary to discuss
certain preliminary topics. The first topic of discussion is the two basic ways
in which the conservation equations may be derived: the statistical method
and the continuum method. Having selected the basic method to be used in
deriving the equations, one is then faced with the choice of reference frame
to be employed, Eulerian or Lagrangian. Next, a general theorem, called
Reynolds’ transport theorem, is derived, since this theorem relates deriva-
tives in the Lagrangian framework to derivatives in the Eulerian framework.

Having established the basic method to be employed and the tools to be
used, the basic conservation laws are then derived. The conservation of mass
yields the so-called continuity equation. The conservation of momentum
leads ultimately to the Navier—Stokes equations, while the conservation of
thermal energy leads to the energy equation. The derivation is followed by a
discussion of the set of equations so obtained, and finally a summary of the
basic conservation laws is given.

1.1 Statistical and Continuum Methods

There are basically two ways of deriving the equations that govern the
motion of a fluid. One of these methods approaches the question from the
molecular point of view. That is, this method treats the fluid as consisting
of molecules whose motion is governed by the laws of dynamics. The mac-
roscopic phenomena are assumed to arise from the molecular motion of the
molecules, and the theory attempts to predict the macroscopic behavior of
the fluid from the laws of mechanics and probability theory. For a fluid that
is in a state not too far removed from equilibrium, this approach yields the
equations of mass, momentum, and energy conservation. The molecular
approach also yields expressions for the transport coefficients, such as the
coefficient of viscosity and the thermal conductivity, in terms of molecular
quantities such as the forces acting between molecules or molecular diam-
eters. The theory is well developed for light gases, but it is incomplete for
polyatomic gas molecules and for liquids.
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The alternative method used to derive the equations governing the motion
of a fluid uses the continuum concept. In the continuum approach, individ-
ual molecules are ignored, and it is assumed that the fluid consists of con-
tinuous matter. At each point of this continuous fluid, there is supposed to
be a unique value of the velocity, pressure, density, and other so-called field
variables. The continuous matter is then required to obey the conservation
laws of mass, momentum, and energy, which give rise to a set of differen-
tial equations governing the field variables. The solution to these differential
equations then defines the variation of each field variable with space and
time, which corresponds to the mean value of the molecular magnitude of
that field variable at each corresponding position and time.

The statistical method is rather elegant, and it may be used to treat gas
flows in situations where the continuum concept is no longer valid. However,
as was mentioned before, the theory is incomplete for dense gases and for
liquids. The continuum approach requires that the mean free path of the
molecules be very small compared with the smallest physical-length scale of
the flow field (such as the diameter of a cylinder or other body about which
the fluid is flowing). Only in this way can meaningful averages over the
molecules at a “point” be made and the molecular structure of the fluid be
ignored. However, if this condition is satisfied, there is no distinction among
light gases, dense gases, or even liquids—the results apply equally to all.
Since the vast majority of phenomena encountered in fluid mechanics fall
well within the continuum domain and may involve liquids as well as gases,
the continuum method will be used in this book. With this background, the
meaning and validity of the continuum concept will now be explored in
some detail. The field variables such as the density p and the velocity vector
u will in general be functions of the spatial coordinates and time. In symbolic
form, this is written as p = p(x, t) and u = u(x, t), where x is the position vector
whose Cartesian coordinates are x, y, and z. At any particular point in space,
these continuum variables are defined in terms of the properties of the vari-
ous molecules that occupy a small volume in the neighborhood of that point.

Consider a small volume of fluid AV containing a large number of mol-
ecules. Let Am and v be the mass and velocity, respectively, of any individual
molecule contained within the volume AV, as indicated in Figure 1.1. The
density and the velocity at a point in the continuum are then defined by the

following limits:
S

Am
AV—¢ AV

E VAm
u=lim

AV—e Am



Basic Conservation Laws 5

AV

FIGURE 1.1
Individual molecule in small volume AV having mass Am and velocity v.

where ¢ is a volume that is sufficiently small that €'/3 is small compared with
the smallest significant length scale in the flow field but is sufficiently large
that it contains a large number of molecules. The summations in the above
expressions are taken over all the molecules contained within the volume
AV. The other field variables may be defined in terms of the molecular prop-
erties in an analogous way.

A sufficient condition, though not a necessary condition, for the contin-
uum approach to be valid is

1
—xex]’®
n

where 7 is the number of molecules per unit volume, and L is the smallest
significant length scale in the flow field, which is usually called the macro-
scopic length scale. The characteristic microscopic length scale is the mean free
path between collisions of the molecules. Then, the above condition states
that the continuum concept will certainly be valid if some volume ¢ that is
much larger than the volume occupied by a single molecule of the fluid but
much smaller than the cube of the smallest macroscopic length scale (such as
cylinder diameter) can be found. Since a cube of gas, at normal temperature
and pressure, whose side is 2 um contains about 2 x 108 molecules and the
corresponding figure for a liquid is about 2 x 10" molecules, the continuum
condition is readily met in the vast majority of flow situations encountered
in physics and engineering. It may be expected to break down in situations
where the smallest macroscopic length scale approaches microscopic dimen-
sions, such as in the structure of a shock wave, and where the microscopic
length scale approaches macroscopic dimensions, and such as when a rocket
passes through the edge of the atmosphere.
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1.2 Eulerian and Lagrangian Coordinates

Having selected the continuum approach as the method that will be used
to derive the basic conservation laws, one is next faced with a choice of ref-
erence frames in which to formulate the conservation laws. There are two
basic coordinate systems that may be employed, these being Eulerian and
Lagrangian coordinates.

In the Eulerian framework, the independent variables are the spatial coor-
dinates x, y, and z and time ¢t. This is the familiar framework in which most
problems are solved. In order to derive the basic conservation equations in
this framework, attention is focused on the fluid that passes through a con-
trol volume that is fixed in space. The fluid inside the control volume at any
instant in time will consist of different fluid particles from that which was
there at some previous instant in time. If the principles of conservation of
mass, momentum, and energy are applied to the fluid passing through the
control volume, the basic conservation equations are obtained in Eulerian
coordinates.

In the Lagrangian approach, attention is fixed on a particular mass of
fluid as it flows. Suppose we could color a small portion of the fluid without
changing its density. Then, in the Lagrangian framework, we follow this
colored portion as it flows and changes its shape, but we always consider
the same particles of fluid. The principles of mass, momentum, and energy
conservation are then applied to this particular element of fluid as it flows,
resulting in a set of conservation equations in Lagrangian coordinates. In
this reference frame, x, y, z, and t are no longer independent variables since
if it is known that our colored portion of fluid passed through the coor-
dinates x,, y,, and z, at some time f,, then its position at some later time
may be calculated if the velocity components u, v, and w are known. That
is, as soon as a time interval (f — t;) is specified, the velocity components
uniquely determine the coordinate changes (x — x,), (v — ), and (z — z;) so
that x, y, z, and t are no longer independent. The independent variables in
the Lagrangian system are x,, v, zo, and t, where x,, y,, and z, are the coor-
dinates that a specified fluid element passed through at time ¢;. That is, the
coordinates x,, y,, and z, identify which fluid element is being considered,
and the time t identifies its instantaneous location.

The choice of which coordinate system to employ is largely a matter of
taste. It is probably more convincing to apply the conservation laws to a con-
trol volume that always consists of the same fluid particles rather than one
through which different fluid particles pass. This is particularly true when
invoking the law of conservation of energy, which consists of applying the
tirst law of thermodynamics, since the same fluid particles are more read-
ily justified as a thermodynamic system. For this reason, the Lagrangian
coordinate system will be used to derive the basic conservation equations.
Although the Lagrangian system will be used to derive the basic equations,
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the Eulerian system is the preferred one for solving the majority of prob-
lems. In the next section, the relation between the different derivatives will
be established.

1.3 Material Derivative

Let o be any field variable such as the density or temperature of the fluid.
From the Eulerian viewpoint, a may be considered to be a function of the
independent variables x, y, z, and t. However, if a specific fluid element is
observed for a short period of time &t as it flows, its position will change
by amounts &x, 8y, and 6z while its value of a will change by an amount
da. That is, if the fluid element is observed in the Lagrangian framework,
the independent variables are x,, y,, z,, and t, where x,, y,, and z, are initial
coordinates for the fluid element. Thus, x, y, and z are no longer independent
variables but are functions of ¢ as defined by the trajectory of the element.
During the time 8¢, the change in @ may be calculated from differential cal-
culus to be

a—aét + a—a6x+a—a6y + a—Otf)z.
ot ox ay 0z

Equating the preceding change in a to the observed change Sa in the
Lagrangian framework and dividing throughout by 5t gives

do  da dx da  dy o Oz da
b ——

S ot ot ax Ot gy Ot 9z

The left-hand side of this expression represents the total change in « as
observed in the Lagrangian framework during the time &8¢, and in the limit,
it represents the time derivative of a in the Lagrangian system, which will be
denoted by Do/Dt. It may be also noted that in the limit as 8 — 0, the ratio
dx/dt becomes the velocity component in the x direction, namely, u. Similarly,
dy/dt — v and 8z/8t — w as &t — 0, so that in the limit, the expression for the
change in a becomes

Da da oo oo oo
— =t U—+V—+W—.
Dt ot ax oy 0z

In vector form, this equation may be written as follows:
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Do da
—=—+(u )o.
Dt ot
Alternatively, using the Einstein summation convention where repeated
subscripts are summed, the tensor form may be written as

@=aﬁ+ukaﬁ‘ (1.1)
Dt ot *ox,

The term Da/Dt in Equation 1.1 is the so-called material derivative. It rep-
resents the total change in the quantity a as seen by an observer who is fol-
lowing the fluid and is watching a particular mass of the fluid. The entire
right-hand side of Equation 1.1 represents the total change in o expressed in
Eulerian coordinates. The term u,(da/0x,) expresses the fact that in a time-
independent flow field in which the fluid properties depend upon the spatial
coordinates only, there is a change in a due to the fact that a given fluid
element changes its position with time and therefore assumes different
values of a as it flows. The term da/dt is the familiar Eulerian time deriva-
tive and expresses the fact that at any point in space, the fluid properties
may change with time. Then, Equation 1.1 expresses the Lagrangian rate of
change Do/Dt of a for a given fluid element in terms of the Eulerian deriva-
tives da/dt and do/dx,.

1.4 Control Volumes

The concept of a control volume, as required to derive the basic conservation
equations, has been mentioned in connection with both the Lagrangian and
Eulerian approaches. Irrespective of which coordinate system is used, there
are two principal control volumes from which to choose. One of these is a
parallelepiped of sides &x, 8y, and 6z. Each fluid property, such as the veloc-
ity or pressure, is expanded in a Taylor series about the center of the control
volume to give expressions for that property at each face of the control vol-
ume. The conservation principle is then invoked, and when 8x, 6y, and 6z
are permitted to become vanishingly small, the differential equation for that
conservation principle is obtained. Frequently, shortcuts are taken, and the
control volume is taken to have sides of length dx, dy, and dz with only the
first term of the Taylor series being carried out.

The second type of control volume is arbitrary in shape, and each con-
servation principle is applied to an integral over the control volume. For

example, the mass within the control volume is | pdV, where p is the fluid

v
density and the integration is carried out over the entire volume V of the
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fluid contained within the control volume. The result of applying each con-
servation principle will be an integrodifferential equation of the type

f LodV =0
1%

where L is some differential operator and o is some property of the fluid. But
since the control volume V was arbitrarily chosen, the only way this equation
can be satisfied is by setting La = 0, which gives the differential equation of
the conservation law. If the integrand in the above equation was not equal to
zero, it would be possible to redefine the control volume V in such a way that
the integral of La was not equal to zero, contradicting the integrodifferential
equation above.

Each of these two types of control volumes has some merit, and in this
book, each will be used at some point, depending upon which gives the bet-
ter insight into the physics of the situation under discussion. The arbitrary
control volume will be used in the derivation of the basic conservation laws
since it seems to detract less from the principles being imposed. Needless to
say, the results obtained by the two methods are identical.

1.5 Reynolds’ Transport Theorem

The method that has been selected to derive the basic equations from the con-
servation laws is to use the continuum concept and to follow an arbitrarily
shaped control volume in a Lagrangian frame of reference. The combination of
the arbitrary control volume and the Lagrangian coordinate system means that
material derivatives of volume integrals will be encountered. As was mentioned
in the previous section, it is necessary to transform such terms into equivalent
expressions involving volume integrals of Eulerian derivatives. The theorem
that permits such a transformation is called Reynolds’ transport theorem.

Consider a specific mass of fluid and follow it for a short period of time &t
as it flows. Let a be any property of the fluid such as its mass, momentum in
some direction, or energy. Since a specific mass of fluid is being considered
and since x, Yy, Z, and t are the independent variables in the Lagrangian
framework, the quantity a will be a function of ¢ only as the control volume
moves with the fluid. That is, @ = a(t) only and the rate of change of the inte-
gral of a will be defined by the following limit:

D o®dv-tim

DtJve 30 Ot Jv(tsst)

a(t+8t) dV - f a(t) dv
V(t)

where V(t) is the control volume containing the specified mass of fluid
and which may change its size and shape as it flows. The quantity a(t + &f)
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integrated over V(f) will now be subtracted, and then added inside the above
limit.

Do avotim a(t+0t) AV - [ aft+ot) dV

DtJve 30 Ot Jv(t+st) 140

+$ at+5) AV [ a() dV

V(t) V()

The first two integrals inside this limit correspond to holding the inte-
grand fixed and permitting the control volume V to vary, whereas the second
two integrals correspond to holding V fixed and permitting the integrand o
to vary. The latter component of the change is, by definition, the integral of
the familiar Eulerian derivative with respect to time. Then, the expression
for the Lagrangian derivative of the integral of a may be written in the fol-
lowing form:

Droapaveim L alt+5t) dV +f 9% gy
DtJve 8=0 Ot Jv(t+sn-vit) vy ot

The remaining limit, corresponding to the volume V changing while o
remains fixed, may be evaluated from geometric considerations.

Figure 1.2a shows the control volume V(f) that encloses the mass of fluid
being considered both at time t and at time ¢ + 6¢. During this time interval, the

(b)

FIGURE 1.2
(a) Arbitrarily shaped control volume at times f and ¢ + 8¢ and (b) superposition of the control
volumes at these times showing element 8V of the volume change.
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control volume has moved downstream and has changed its size and shape.
The surface that encloses V(t) is denoted by S(f), and at any point on this sur-
face, the velocity may be denoted by u and the unit outward normal by n.

Figure 1.2b shows the control volume V(¢ + &t) superimposed on V(f), and
an element of the difference in volumes is detailed. The perpendicular dis-
tance from any point on the inner surface to the outer surface is u - n 8t, so
that an element of surface area 8S will correspond to an element of volume
change 8V in which 8V = u - n &t 8S. Then, the volume integral inside the
limit in the foregoing equation may be transformed into a surface integral in
which dV is replaced by u - n 5t dS.

D oapydvetim [ a(t+dHu-nds “f 9% 4y
V()

V() 5t—0 S(t) ot

Ja
= Hu-ndS + —dV.
J;(t)a( u J:/u) ot

Having completed the limiting process, the Lagrangian derivative of a vol-
ume integral has been converted into a surface integral and a volume integral
in which the integrands contain only Eulerian derivatives. As was mentioned
in the previous section, it is necessary to obtain each term in the conserva-
tion equations as the volume integral of something. The foregoing form of
Reynolds’ transport theorem may be put in this desired form by converting
the surface integral to a volume integral by use of Gauss’ theorem, which is
formulated in Appendix A. In this way, the surface-integral term becomes

fs(t)cx(t)u-nd5= ) -(au)dV.

Substituting this result into the foregoing expression and combining the
two volume integrals give the preferred form of Reynolds’ transport theorem:

D oo
— dv = — . dv
thv “ fv ot + low

or, in tensor notation,
Bf a dV =f a—Ot+i(ocuk) dv. (1.2)
DtJv v ot ax,

Equation 1.2 relates the Lagrangian derivative of a volume integral of a
given mass to a volume integral in which the integrand has Eulerian deriva-
tives only.
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Having established the method to be used to derive the basic conserva-
tion equations and having established the necessary background material,
it remains to invoke the various conservation principles. The first such prin-
ciple to be treated will be the conservation of mass.

1.6 Conservation of Mass

Consider a specific mass of fluid whose volume V is arbitrarily chosen. If this
given fluid mass is followed as it flows, its size and shape will be observed
to change but its mass will remain unchanged. This is the principle of mass
conservation that applies to fluids in which no nuclear reactions are taking
place. The mathematical equivalence of the statement of mass conservation
is to set the Lagrangian derivative D/Dt of the mass of fluid contained in V,

which is f pdV, equal to zero. That is, the equation that expresses conserva-
14

tion of mass is

prdV=0.
DtJv

This equation may be converted to a volume integral in which the integrand
contains only Eulerian derivatives by use of Reynolds” transport theorem
(Equation 1.2), in which the fluid property a is, in this case, the mass density p:

p d
—+—(pu) dV=0.
ot ox, (puy)

Since the volume V was arbitrarily chosen, the only way in which the above
equation can be satisfied for all possible choices of V is for the integrand to be
zero. Then, the equation expressing conservation of mass becomes

p a
o + o, (pu,) = 0. (1.3a)

Equation 1.3a expresses more than the fact that mass is conserved. Since it
is a partial differential equation, the implication is that the velocity is continu-
ous. For this reason, Equation 1.3a is usually called the continuity equation.
The derivation that has been given here is for a single-phase fluid in which no
change of phase is taking place. If two phases were present, such as water and
steam, the starting statement would be that the rate at which the mass of fluid
1 is increasing is equal to the rate at which the mass of fluid 2 is decreasing.
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The generalization to cases of multiphase fluids and to cases of nuclear reac-
tions is obvious. Since such cases cause no changes in the basic ideas or prin-
ciples, they will not be included in this treatment of the fundamentals.

In many practical cases of fluid flow, the variation of density of the fluid
may be ignored, as for most cases of the flow of liquids. In such cases, the
fluid is said to be incompressible, which means that as a given mass of fluid
is followed, not only will its mass be observed to remain constant but its
volume, and hence its density, will be observed to remain constant as well.
Mathematically, this statement may be written as follows:

Dp_.
Dt

In order to use this special simplification, the continuity equation is first
expanded by use of a vector identity given in Appendix A:

) 9 ou
By, P oM,
ot Xy, X,

The first and second terms in this form of the continuity equation will be
recognized as being the Eulerian form of the material derivative as given by
Equation 1.1. That is, an alternative form of Equation 1.3a is

Do o0 . (1.3b)
Dt ax;

This mixed form of the continuity equation in which one term is given as
a Lagrangian derivative and the other as an Eulerian derivative is not useful
for actually solving fluid-flow problems. However, it is frequently used in
the manipulations that reduce the governing equations to alternative forms,
and for this reason, it has been identified for future reference. An immediate
example of such a case is the incompressible fluid under discussion. Since
Dp/Dt = 0 for such a fluid, Equation 1.3b shows that the continuity equation
assumes the simpler form p(du,/dx;) = 0. Since p cannot be zero in general, the
continuity equation for an incompressible fluid becomes

Ot _ 0 (incompressible). (1.30)
0x

It should be noted that Equation 1.3c is valid not only for the special case of
Dp/Dt = 0 in which p is constant everywhere but also for stratified fluid flows
of the type depicted in Figure 1.3. A fluid particle that follows the lines p = p,
or p = p, will have its density remain fixed at p = p, or p = p, so that Dp/Dt =0.
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FIGURE 1.3
Flow of density-stratified fluid in which Dp/Dt = 0 but for which dp/dx # 0 and dp/dy # 0.

However, p is not constant everywhere, so that dp/dx = 0 and dp/dy # 0. Such
density stratifications may occur in the ocean (owing to salinity variations)
or in the atmosphere (owing to temperature variations). However, in the
majority of cases in which the fluid may be considered to be incompressible,
the density is constant everywhere.

Equation 1.3, in either the general form (Equation 1.3a) or the incompress-
ible form (Equation 1.3c¢), is the first condition that has to be satisfied by
velocity and density. No dynamical relations have been used to this point,
but the conservation-of-momentum principle will utilize dynamics.

1.7 Conservation of Momentum

The principle of conservation of momentum is, in effect, an application of
Newton’s second law of motion to an element of the fluid. That is, when con-
sidering a given mass of fluid in a Lagrangian frame of reference, it is stated
that the rate at which the momentum of the fluid mass is changing is equal to
the net external force acting on the mass. Some individuals prefer to think of
forces only and restate this law in the form that the inertia force (due to accel-
eration of the element) is equal to the net external force acting on the element.

The external forces that may act on a mass of the fluid may be classed as
either body forces, such as gravitational or electromagnetic forces, or surface
forces, such as pressure forces or viscous stresses. Then, if f is a vector that
represents the resultant of the body forces per unit mass, the net external

body force acting on a mass of volume V will be f pfdV. Also, if P is a sur-
v
face vector that represents the resultant surface force per unit area, the net

external surface force acting on the surface S containing V will be f Pds.
s
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According to the statement of the physical law that is being imposed in this
section, the sum of the resultant forces evaluated above is equal to the rate of
change of momentum (or inertia force). The mass per unit volume is p and its

momentum is pu, so that the momentum contained in the volume V is f pu
\%4

dV. Then, if the mass of the arbitrarily chosen volume V is observed in the
Lagrangian frame of reference, the rate of change of momentum of the mass

contained with V will be (D/Df) f pudV. Thus, the mathematical equation
14

that results from imposing the physical law of conservation of momentum is

DBthpu dV=fP dS+prde.

In general, there are nine components of stress at any given point, one nor-
mal component and two shear components on each coordinate plane. These
nine components of stress are most easily illustrated by use of a cubical ele-
ment in which the faces of the cube are orthogonal to the Cartesian coordi-
nates, as shown in Figure 1.4, and in which the stress components will act ata
point as the length of the cube tends to zero. In Figure 1.4, the Cartesian coor-
dinates x, y, and z have been denoted by x,, x,, and x;, respectively. This per-
mits the components of stress to be identified by a double-subscript notation.
In this notation, a particular component of the stress may be represented by

022
17ﬁ 091
023,
: 012
033 |
|
| t-i— 0'11
031
o
| 13
/I_ R
033 -
7
7
Xy 7
7
X1

X3

FIGURE 1.4
Representation of nine components of stress that may act at a point in a fluid.
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the quantity o;, in which the first subscript indicates that this stress compo-
nent acts on the plane x; = constant and the second subscript indicates that it
acts in the x; direction.

The fact that the stress may be represented by the quantity c;, in which i
and j may be 1, 2, or 3, means that the stress at a point may be represented
by a tensor of rank 2. However, on the surface of our control volume, it was
observed that there would be a vector force at each point, and this force was
represented by P. The surface force vector P may be related to the stress ten-
sor c; as follows: The three stress components acting on the plane x; = con-
stant are 6y, 615, and 6,;. Since the unit normal vector acting on this surface
is n,, the resulting force acting in the x, direction is P, = 6,,n,. Likewise, the
forces acting in the x, direction and the x; direction are, respectively, P, =
o1, and P; = 6,311;. Then, for an arbitrarily oriented surface whose unit nor-
mal has components 7, 11,, and n;, the surface force will be given by P, = 6,
in which i is summed from 1 to 3. That is, in tensor notation, the equation
expressing conservation of momentum becomes

D
aﬂ/puj dV=fsoijni dS+prfj dv.

The left-hand side of this equation may be converted to a volume integral in
which the integrand contains only Eulerian derivatives by use of Reynolds’
transport theorem, Equation 1.2, in which the fluid property o here is the
momentum per unit volume pu; in the X; direction. At the same time, the sur-
face integral on the right-hand side may be converted into a volume integral
by use of Gauss’ theorem as given in Appendix B. In this way, the equation
that is evolved from Newton’s second law becomes

i(u)+i(uu)dV— ﬂdV+ f; dV
y oot U gy, Pt fvax,. fvp’ '

All these volume integrals may be collected to express this equation in the
form f {}dV =0, where the integrand is a differential equation in Eulerian
\4

coordinates. As before, the arbitrariness of the choice of the control volume V
is now used to show that the integrand of the above integrodifferential equa-
tion must be zero. This gives the following differential equation to be satisfied
by the field variables in order that the basic law of dynamics may be satisfied:

i( u)+i( uu)—%+ f -
o PTG PHIME = R

The left-hand side of this equation may be further simplified if the two
terms involved are expanded in which the quantity pu;u, is considered to be
the product of pu; and u,.
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auj p % Jo

p—+u-a—+u-i(pu)+pu =—ij+pf-
at ot Tox, o “ox, ox, 1

The second and third terms on the left-hand side of this equation are now
seen to sum to zero since they amount to the continuity equation (Equation
1.3a) multiplied by the velocity u;. With this simplification, the equation that
expresses conservation of momentum becomes

ou;

; du; 9oy f (1.4)
—+PQU, — = —+ P B
Pt TP oy T, T

It is useful to recall that this equation came from an application of Newton’s
second law to an element of the fluid. The left side of Equation 1.4 represents
the rate of change of momentum of a unit volume of the fluid (or the inertia
force per unit volume). The first term is the familiar temporal acceleration
term, while the second term is a convective acceleration and accounts for local
accelerations (such as when flowing around obstacles) even when the flow is
steady. Note also that this second term is nonlinear since the velocity appears
quadratically. On the right-hand side of Equation 1.4 are the forces causing the
acceleration. The first of these is due to the gradient of surface shear stresses,
while the second is due to body forces, such as gravity, which act on the mass
of the fluid. A clear understanding of the physical significance of each of the
terms in Equation 14 is essential when approximations to the full govern-
ing equations must be made. The surface-stress tensor 6; has not been fully
explained up to this point, but it will be investigated in detail in a later section.

1.8 Conservation of Energy

The principle of conservation of energy amounts to an application of the first
law of thermodynamics to a fluid element as it flows. The first law of thermo-
dynamics applies to a thermodynamic system that is originally at rest and,
after some event, is finally at rest again. Under these conditions, it is stated
that the change in internal energy, due to the event, is equal to the sum of the
total work done on the system during the course of the event and any heat
that was added. Although a specified mass of fluid in a Lagrangian frame
of reference may be considered a thermodynamic system, it is, in general,
never at rest and therefore never in equilibrium. However, in the thermody-
namic sense, a flowing fluid is seldom far from a state of equilibrium, and
the apparent difficulty may be overcome by considering the instantaneous
energy of the fluid to consist of two parts: intrinsic or internal energy and
kinetic energy. That is, when applying the first law of thermodynamics, the
energy referred to is considered to be the sum of the internal energy per unit
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- . 1 . o
mass ¢ and the kinetic energy per unit mass Suu In this way, the modified

form of the first law of thermodynamics that will be applied to an element
of the fluid states that the rate of change of the total energy (intrinsic plus
kinetic) of the fluid as it flows is equal to the sum of the rate at which work is
being done on the fluid by external forces and the rate at which heat is being
added by conduction.

With this basic law in mind, we again consider any arbitrary mass of fluid
of volume V and follow it in a Lagrangian frame of reference as it flows. The

total energy of this mass per unit volume is pe + Epu-u, so that the total

energy contained in V will be f pe + %pu‘u dV. As was established in
\4

the previous section, there are two types of external forces that may act on
the fluid mass under consideration. The work done on the fluid by these
forces is given by the product of the velocity and the component of each force
that is colinear with the velocity. That is, the work done is the scalar product
of the velocity vector and the force vector. One type of force that may act on
the fluid is a surface stress whose magnitude per unit area is represented by

the vector P. Then, the total work done owing to such forces will be f u-Pds,
s

where S is the surface area enclosing V. The other type of force that may act
on the fluid is a body force whose magnitude per unit mass is denoted by
the vector f. Then, the total work done on the fluid due to such forces will be

f u-pfdV. Finally, an expression for the heat added to the fluid is required.
\4

Let the vector q denote the conductive heat flux leaving the control volume.
Then, the quantity of heat leaving the fluid mass per unit time per unit sur-
face area will be q - n, where n is the unit outward normal, so that the net

amount of heat leaving the fluid per unit time will be | q-ndS.
s

Having evaluated each of the terms appearing in the physical law that is to
be imposed, the statement may now be written in analytic form. In doing so,
it must be borne in mind that the physical law is being applied to a specific,
though arbitrarily chosen, mass of fluid so that Lagrangian derivatives must
be employed. In this way, the expression of the statement that the rate of
change of total energy is equal to the rate at which work is being done plus
the rate at which heat is being added becomes

Bf pe+lpu-u dV=fu-P dS+fu-pf dV—fq-n ds.
DtJv 2 s v s

This equation may be converted to one involving Eulerian derivatives
only by use of Reynolds’ transport theorem, Equation 1.2, in which the fluid
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property a is here the total energy per unit volume pe+lpu'u . The
resulting integrodifferential equation is 2

9 e+1uu +i e+l u-u uy dV
fv ot PP o, 2P k

=fsu‘PdS+fVu-pde—fsq'n ds.

The next step is to convert the two surface integrals into volume integrals
so that the arbitrariness of VV may be exploited to obtain a differential equa-
tion only. Using the fact that the force vector P is related to the stress tensor
o; by the equation P; = 6,1, as was shown in the previous section, the first
surface integral may be converted to a volume integral as follows:

fsu'PdS=fu]0qnz ds = f u0;)dV.

Here, use has been made of Gauss’ theorem as documented in Appendix B.
Gauss’ theorem may be applied directly to the heat-flux term to give

fands= [qmds= [ q’ av.

Since the stress tensor o;; has been brought into the energy equation, it is
necessary to use the tensor notation from this point on. Then, the expression
for conservation of energy becomes

d 1 ] 1
— Pe+_pUl; +—— pe+ _puUl; U dv
fv ot PP ox, TPt

=fva%(u] DAV [ upfdv- [ 7l % av.

Having converted each term to a volume integral, the conservation equa-

tion may be considered to be of the form f {}dV =0, where the choice of V
\4

is arbitrary. Then, the quantity inside the brackets in the integrand must be
zero, which results in the following differential equation:

d 1 )
— pe+— puu +a pe+5pujuj U =§(u] i)+ upf; - —
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This equation may be made considerably simpler by using the equations
that have already been derived, as will now be demonstrated. The first term

on the left-hand side may be expanded by considering pe and u;u; to be

the products (p)(e) and (p) — u , respectively. Then,

9 e+lu = —e ap —luu +luu@
atp P pat ot pat 2 2 7 ot

Similarly, the second term on the left-hand side of the basic equation may
be expanded by considering peu; to be the product (e)(pu;) and %pujujuk to
be the product %ujuj (pty). Thus,

9 pe+lpuu U ei(pu)+pu ge
o, 20 TR T gy R “ox,

+1uui(u)+ uiluu
2]’axkpk pkaxk 2

In this last equation, the quantity (d/0x,)(pu), which appears in the first and
third terms on the right-hand side, may be replaced by —dp/dt in view of the
continuity equation (Equation 1.3a). Hence, it follows that

9 e+luuu —e@+u£luu@+uiluu
ox, Dot Pt ot TP gn T Mty TP G MM

Now, when the two components constituting the left-hand side of the basic
conservation equation are added, the two terms with minus signs above are
canceled by corresponding terms with plus signs to give

i e+1u +i (i’+l uu. u
o POT P F o PeT P T

= %+ uﬁ+iluu +uiluu
Pt TP o, TP oMM TP ot

de au] au
=p—+puU u +pu;ul
p Pkak pjat Y kak
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Then, noting that

9 d0;; ou;
Tox, 7 o,

the equation that expresses the conservation of energy becomes

p%+pu de u%+ uu %—u aOij+0 %+u f i)
or TP G TPy TPt T T T i gy, TP a;

Now, it can be seen that the third and fourth terms on the left-hand side are
canceled by the first and third terms on the right-hand side since these terms
collectively amount to the product of u; with the momentum equation (Equation
1.4). Thus, the equation expressing conservation of thermal energy becomes

de d ou; 9q;
0% wpu, 2o, T (1.5)

ot ax, ' ox, oy

The terms that were dropped in the last simplification were the mechanical-
energy terms. The equation of conservation of momentum, Equation 14,
may be regarded as an equation of balancing forces with j as the free sub-
script. Therefore, the scalar product of each force with the velocity vector,
or the multiplication by u,, gives the rate of doing work by the mechanical
forces, which is the mechanical energy. On the other hand, Equation 1.5 is a
balance of thermal energy, which is what is left when the mechanical energy
is subtracted from the balance of total energy. The result is usually referred
to as simply the energy equation.

As with the equation of momentum conservation, it is instructive to interpret
each of the terms appearing in Equation 1.5 physically. The entire left-hand
side represents the rate of change of internal energy, with the first term being
the temporal change while the second being due to local convective changes
caused by the fluid flowing from one area to another. The entire right-hand
side represents the cause of the change in internal energy. The first of these
terms represents the conversion of mechanical energy into thermal energy
due to the action of the surface stresses. As will be seen later, part of this con-
version is reversible and part is irreversible. The final term in the equation
represents the rate at which heat is being added by conduction from outside.

1.9 Discussion of Conservation Equations

The basic conservation laws, Equations 1.3a, 14, and 1.5, represent five scalar
equations that the fluid properties must satisfy as the fluid flows. The continuity
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and the energy equations are scalar equations, while the momentum equation
is a vector equation that represents three scalar equations. Two equations of
state may be added to bring the number of equations up to seven, but our basic
conservation laws have introduced 17 unknowns. These unknowns are the sca-
lars p and ¢, the density and the internal energy, respectively; the vectors #; and
q; the velocity and heat flux, respectively, each vector having three components;
and the stress tensor o which has, in general, nine independent components.

In order to obtain a complete set of equations, the stress tensor o, and the
heat-flux vector g, must be further specified. This leads to the so-called consti-
tutive equations in which the stress tensor is related to the deformation-rate
tensor and the heat-flux vector is related to temperature gradients. Although
the latter relation is very simple, the former is quite complicated and requires
either an intimate knowledge of tensor analysis or a clear understanding of
the physical interpretation of certain tensor quantities. For this reason, prior
to establishing the constitutive relations, the tensor equivalents of rotation
and rate of shear will be established.

1.10 Rotation and Rate of Shear

It is the purpose of this section to consider the rotation of a fluid element
about its own axis and the shearing of a fluid element and to identify the
tensor quantities that represent these physical quantities. This is most easily
done by considering an infinitesimal fluid element of rectangular cross sec-
tion and observing its change in shape and orientation as it flows.

Figure 1.5 shows a two-dimensional element of fluid (or the projection of
a three-dimensional element) whose dimensions at time ¢t = 0 are 5x and dy.
The fluid element is rectangular at time t = 0, and its centroid coincides with
the origin of a fixed coordinate system. For purposes of identification, the
corners of the fluid element have been labeled A, B, C, and D.

After a short time interval 8¢, the centroid of the fluid element will have
moved downstream to some new location as shown in Figure 1.5. The dis-
tance the centroid will have moved in the x direction will be given by

3t
Ax = fo ulx(t), y(t)] dt.

Since the values of x and y must be close to zero for short times such as 8¢,
the velocity component # may be expanded in a Taylor series about the point
(0,0) to give

St
we u(0,0)+x(f)ZZ(O,O)+y(t)3:(O,0)+-~ dt
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FIGURE 1.5
Infinitesimal element of fluid at time ¢ = 0 (indicated by ABCD) and at time ¢ = 8¢ (indicated by
ABCD)).

where the dots represent terms that are smaller than those presented and
that will eventually vanish as the limit of 8t — 0 is taken. Integrating the
leading term explicitly gives

Ot

A = (0, )3t + | X(0) 22 (0,0)+ y(t)g;‘(o, 04 di

= (0, 0)3t + .

Similarly,
Ay =v(0,0) 6t + ---.

As well as moving bodily, the fluid element will rotate and will be dis-
torted as indicated by the corners, which are labeled A; B;, C, and D’ to rep-
resent the element at time t = &t. The rotation of the side CD to its new
position C'D’ is indicated by the angle 6o, where a is positive when mea-
sured counterclockwise. Similarly, the rotation of the side BC to its new
position B'C’is indicated by the angle 8, where f is positive when measured
clockwise. Expressions for da and 8f in terms of the velocity components
may be obtained as follows.
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From the geometry of the element as it appears at time t = &t,

5o tan-! ¥ component of D C

x component of D C

1% l6x,—lf>y o+ — v —léx,—léy Ot +---
! 2 2 2 2
= tan

Ox +---

. . . . 1 1
where v is evaluated first at point D, whose coordinates are Eéx,—if)y ,

and secondly at point C, whose coordinates are - %6x, —%6y . The x com-

ponent of the side D'C’ will be only slightly different from dx, and it turns out
that the precise departure from this value need not be evaluated explicitly.

Expanding the velocity component v in a Taylor series about the point (0,0)
results in the following expression for da:

v(0,0) + %Evc(av/ dx)(0,0) - %6}/(81] /oy)(0,0)+--- ot

da = tan™!
ox(1+--)
- 0(0,0) - %Evc(av/ dx)(0,0) - %63/(37; /ay)(0,0)+--- ot
ox(1+--)
— tan! [6x(dv/0x)(0,0) + ---15¢

ox(L+--)

4 [(8v/0x)(0,0) +---15¢t
(1+--)

= tan

=tan”’ ?(0,0)+~-- ot .
X

Since the argument of the arctangent is small, the entire right-hand side
may be expanded to give
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o= 20(0,0) 4 Ot +---
Jx

oo v
—=—(0,0
ot ox 0,0+

This expression represents the change in the angle a per unit time so that
in the limit as 8x, 8y, and 6t all tend to zero, this expression becomes

. 0o
=—1(0,0
a ax( )

where a is the time derivative of the angle a. By an identical procedure, it
follows that the time derivative of the angle f is given by

c U
p= @(0,0)-

Recall that a is measured counterclockwise and f is measured clockwise.
Thus, the rate of clockwise rotation of the fluid element about its centroid is
given by

1 ou ov

*([3— )‘E @_8735 .

Likewise, the shearing action is measured by the rate at which the sides B'C’
and D'C’ are approaching each other and is therefore given by the quantity

The foregoing analysis was carried out in two dimensions, which may be
considered as the projection of a three-dimensional element on the xy plane.
If the analysis is carried out in the other planes, it may be verified that the
rate of rotation of the element about its own axes and the rate of shearing are
given by the following quantities in the yz, xz, and xy planes, respectively:

ow o 1w g 1w

rate of rotation: 1w oo ; 1 ; 1 (1.6a)
2 gy 9z 2 o0z dx 2 dy ox

rate of shearing: 1 a—w+a—v ; 1 a—u+a—w ; 1 %4_671) . (L6b)
2 9y 9z 2 9z dx 2 dy ox
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Both of these quantities may be represented by a tensor of rank 2, as we
will now show. Define the deformation-rate tensor e; and split it into its sym-
metric and antisymmetric parts as follows:

ou,

1

1 oy auj 1 o auj
e =—"= -—L 4= +—L
Toox; 2 ox; ox, 2 ox;  ox;

The antisymmetric part of the deformation-rate tensor represents the rate
of rotation of a fluid element about its own axes, while the symmetric part
of the deformation-rate tensor represents the rate of shearing of the fluid
element. The antisymmetric part has three independent components, corre-
sponding to Equation 1.6a, and these components correspond to those of the
curl of the velocity vector. The symmetric part has six independent compo-
nents, including the components given in Equation 1.6b, and it corresponds
to the six independent components of stress at a point. This conclusion will
be verified a little later in this chapter. That is, there are a total of nine com-
ponents of the deformation-rate tensor since it is a tensor of rank 2, and these
components collectively represent the rotation and the rate of shear of the
fluid element.

1.11 Constitutive Equations

In this section, the nine elements of the stress tensor o;; will be related to the
nine elements of the deformation-rate tensor ¢, by a set of parameters. All
these parameters except two will be evaluated analytically, and the remain-
ing two, which are the viscosity coefficients, must be determined empiri-
cally. In order to achieve this end, the postulates for a Newtonian fluid will
be introduced directly. Water and air are by far the most abundant fluids on
earth, and they behave like Newtonian fluids, as do many other common
fluids. It should be pointed out, however, that some fluids do not behave in a
Newtonian manner, and their special characteristics are among the topics of
current research. One example is the class of fluids called viscoelastic fluids,
whose properties may be used to reduce the drag of a body. Since this book is
concerned with the classical fundamentals only, the Newtonian fluid will be
treated directly. If the various steps are clearly understood, there should be
no conceptual difficulty in following the details of some of the more complex
fluids such as viscoelastic fluids.

Certain observations and postulates will now be made concerning the
stress tensor. The precise manner in which the postulates are made is largely
a matter of taste, but when the Newtonian fluid is being treated, the resulting
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equations are always the same. The following are the four conditions the
stress tensor is postulated to satisfy:

1. When the fluid is at rest, the stress is hydrostatic and the pressure
exerted by the fluid is the thermodynamic pressure.

2. The stress tensor o;; is linearly related to the deformation-rate tensor

e, and depends only on that tensor.
3. Since there is no shearing action in a solid-body rotation of the fluid,
no shear stresses will act during such a motion.

4. There are no preferred directions in the fluid, so that the fluid prop-
erties are point functions.

Condition 1 requires that the stress tensor o; be of the form
o= —pd; + T;

where t; depends upon the motion of the fluid only and is called the shear-stress
tensor. The quantity p is the thermodynamic pressure and §;; is the Kronecker
delta. The pressure term is negative since the sign convention being used here
is that normal stresses are positive when they are tensile in nature.

The remaining unknown in the constitutive equation for stress is the shear-
stress tensor t;. Condition 2 postulates that the stress tensor, and hence the
shear-stress tensor, is linearly related to the deformation-rate tensor. This is
the distinguishing feature of Newtonian fluids. In general, the shear-stress
tensor could depend upon some power of the velocity gradients other than
unity, and it could depend upon the velocity itself as well as the velocity
gradient. The condition postulated here can be verified experimentally in
simple flow fields in most common fluids, and the results predicted for more
complex flow fields yield results that agree with physical observations. This
is the sole justification for condition 2 above.

There are nine elements in the shear-stress tensor t;, and each of these ele-
ments may be expressed as a linear combination of the nine elements in the
deformation-rate tensor ey, (just as a vector may be represented as a linear com-
bination of components of the base vectors). That is, each of the nine elements
of 7; will, in general, be a linear combination of the nine elements of ¢, so that
81 parameters are needed to relate t; to ¢;. This means that a tensor of rank 4 is
required so that the general form of t; will be, according to condition 2,

o oy,
o= Ol
7 1) axl

It was shown in the previous section that the tensor du,/dx, like any
other tensor of rank 2, could be broken down into an antisymmetric part
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and a symmetric part. Here, the antisymmetric part corresponds to the
rate of rotation of a fluid element, and the symmetric part corresponds to
the shearing rate. According to condition 3, if the flow field is executing a
simple solid-body rotation, there should be no shear stresses in the fluid.
However, for a solid-body rotation, the antisymmetric part of du,/dx;, namely,

1 . . o\
E(auk /9x; - du;/ dx, ), will not be zero. Hence, in order that condition 3 may

be satisfied, the coefficients of this part of the deformation-rate tensor must
be zero. That is, the constitutive relation for stress must be of the form

1 o, Ay
T.=—0B., —+—=
if ) Bl]kl axl axk

The 81 elements of the fourth-rank tensor B, are still undetermined, but
condition 4 has yet to be imposed. This condition is the so-called condition of
isotropy, which guarantees that the results obtained should be independent
of the orientation of the coordinate system chosen. In Appendix B (a sum-
mary of some useful tensor relations), it is pointed out that the most general
isotropic tensor of rank 4 is of the form

Bijr = A8;By + 1(8:5; + 88;) + v(8:8; — 8

where A, p, and y are scalars. The proof of this is straightforward but tedious.
The general tensor is subjected to a series of coordinate rotations and inflec-
tions, and the condition of invariance is applied. In this way, the 81 quantities
contained in the general tensor are reduced to three independent quantities
in the isotropic case. In the case of the fourth-rank tensor relating the shear-
stress tensor to the deformation-rate tensor, namely, B;;;, not only must it be
isotropic but it must be symmetric in view of condition 3 as well. That is,
the coefficient y must be zero in this case so that the expression for the shear
stress becomes

1 . ou
Ty = 5[7&5176“ + (80 +0;0;)] aixl,(-l- @

Using the fact that §;; = 0 unless [ = k shows that

1
*7\61761(1 s + 9y - >“6ij o
2 ax;,  0x, 0x;,

in which / has been replaced by k. Likewise, replacing k by i and I by j shows
that
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1 d 9 1 o 0u;
- 6ik6jl ﬂ_,_ﬂ =_ %_Fi]
2 ax,  0xy 2 0x; dx;

and replacing I by i and k by j shows that

1 1
g, M, om 1004
2 ax;,  9x; 2 ox; o

1

au]- ou:
+

Hence, the expression for the shear-stress tensor becomes

ou ou; ou;
Ty =M+ 4L
X, ox;  ox;

Thus, the constitutive relation for stress in a Newtonian fluid becomes

1

+
Xy ox;  ox;

w9y

O = —pd; + A, (17)

which shows that the stress is represented by a second-order symmetric
tensor.

The nine elements of the stress tensor 6, have now been expressed in terms
of the pressure and the velocity gradients, which have all been previously
introduced, and two coefficients A and p. These coefficients cannot be deter-
mined analytically and must be determined empirically. Up to this point,
both A and p are just coefficients, but their nature and physical significance
will be discussed in the next section.

The second constitutive relation involves the heat-flux vector g;, which rep-
resents conduction alone. Fourier’s law of heat conduction states that the heat
flux by conduction is proportional to the negative temperature gradient so
that

o

Lk
9 ax;

(1.8)

This is the constitutive equation for the heat flux, where the proportional-
ity factor k in Fourier’s law is the thermal conductivity of the fluid. In using
Equation 1.8, it is implicitly assumed that the concept of temperature, as
employed in equilibrium thermodynamics, also applies to a moving fluid.
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1.12 Viscosity Coefficients

It was pointed out in the previous section that the parameters A and p, which
appear in the constitutive equations for stress, must be determined experi-
mentally. It is the purpose of this section to establish a physical interpreta-
tion of these two parameters and thus show the manner in which they may
be evaluated.

Consider a simple shear flow of an incompressible fluid in which the veloc-
ity components are defined by

u =u(y)
v=w=0

That is, only the x component of velocity is nonzero, and that component is
a function of y only. From the definition of this flow field, the components of
the stress tensor may be evaluated from Equation 1.7 to give

du

Opp =0y = ———
dy

O3 =0pn =033 =-p

O3 =03 = Oy = O3 = 0.

That is, the normal components of the stress are defined by the thermody-
namic pressure, and the nonzero shear components of the stress are propor-
tional to the velocity gradient with the parameter u as the proportionality
factor. However, from Newton’s law of viscosity, the proportionality factor
between the shear stress and the velocity gradient in a simple shear flow is
the dynamic viscosity. Hence, the quantity p that appears in the constitutive
equation for stress is the dynamic viscosity of the fluid. Frequently, the kine-
matic viscosity, defined by v = p/p, is used instead of the dynamic viscosity.

The parameter A in Equation 1.7 is usually referred to as the second viscos-
ity coefficient. In order to establish its significance, the average normal stress
component p will be calculated.

_ 1
-p= 5(011 + 0y +03) .

This average normal stress is the mechanical pressure in the fluid, and it is
equal to one-third of the trace of the stress tensor. Since the mechanical pres-
sure is either purely hydrostatic or hydrostatic plus a component induced by
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the stresses that result from the motion of the fluid, it will, in general, be dif-
ferent from the thermodynamic pressure p. Using Equation 1.7, the mechani-
cal pressure p may be evaluated as follows:

—f)=l —p+7\%+2 ou + —p+}\%+2 L
3 0x; dx 0x; ay
+ —p+k%+2 9w
X, 0z
cpen e 2 O
ax, 3 ox
=-p+ )\+g %
3 Ix

That is, the difference between the thermodynamic pressure and the
mechanical pressure is proportional to the divergence of the velocity vector.
The proportionality factor is usually referred to as the bulk viscosity and is
denoted by K. That is,

_ ou
—p=K=—2k
Por =Ko

where K = A + % . Of the three viscosity coefficients p, A, and K, only two are

independent and the third is defined by the equation that defines K. For pur-
poses of physical interpretation of these viscosity coefficients, it is preferred
to discuss p (which has already been done) and K, leaving A to be defined by
A-K-2 .
3

In order to identify the physical significance of the bulk viscosity, some of
the results of the kinetic theory of gases will be used. The mechanical pres-
sure is a measure of the translational energy of the molecules only, whereas
the thermodynamic pressure is a measure of the total energy, which includes
vibrational and rotational modes of energy as well as the translational mode.
For liquids, other forms of energy are also included such as intermolecular
attraction. These different modes of molecular energy have different relax-
ation times, so that in any given flow field, it is possible to have energy trans-
ferred from one mode to another. The bulk viscosity is a measure of this
transfer of energy from the translational mode to the other modes, as may be
seen from the relation p - p = K(du; /dx;). For example, during the passage
through a shock wave, the vibrational modes of energy are excited at the
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expense of the translational modes, so that the bulk viscosity will be nonzero
in this case.

The above discussion has been for a polyatomic molecule of a liquid or a
gas. If the fluid is a monatomic gas, the only mode of molecular energy is the
translational mode. Then, for such a gas, the mechanical pressure and the ther-
modynamic pressure are the same, so that the bulk viscosity is zero. That is,

L2
3

which is called Stokes’ relation, so that there is only one independent viscosity
coefficient in the case of monatomic gases. For polyatomic gases and for lig-
uids, the departure from K = 0 is frequently small, and many authors incor-
porate Stokes’ relation in the constitutive relation (Equation 1.7) for stress. In
any case, for incompressible fluids, Equation 1.7 shows that it is immaterial

2 . . . .
whether A =- 3 or not, for then the term involving A is zero by virtue of

the continuity equation.

1.13 Navier—Stokes Equations

The equation of momentum conservation (Equation 14), together with the
constitutive relation for a Newtonian fluid (Equation 1.7), yields the famous
Navier—Stokes equations, which are the principal conditions to be satisfied by
a fluid as it flows. Having obtained an expression for the stress tensor, the term
do;/dx; that appears in Equation 1.4 may be evaluated explicitly as follows:

00 ; 9 9 ou.  ou;
7 _péij_,_;\aijﬂ*_ o 9
0X;, dax;  0x;

ox;  0x; ] ;

0 om0 ow o

ox;  ox; 0x;, 0x; ox; o,

where, in the first two terms, i has been replaced by j since it is only wheni =
that these terms are nonzero. Substituting this result into Equation 1.4 gives

ou, ou; ) a .9 . o,
oty L =P 0y e PR +0f;. (19a)
ot 00X ox;  dx; 0x; x; ax; o,
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Equation 1.9a is known as the Navier—Stokes equations, representing three
scalar equations corresponding to the three possible values of the free sub-
script j. In the most frequently encountered situations, the fluid may be
assumed to be incompressible and the dynamic viscosity may be assumed to
be constant. Under these conditions, the second term on the right-hand side
of Equation 1.9a is identically zero and the viscous-shear term becomes

2 2
au]- _ au]-

dx;0x; dx;0x;

1 1

d ou; au]' 0 o
+ [

ox,  ox; ox; ox; ox;

That is, the viscous-shear term is proportional to the Laplacian of the
velocity vector, and the constant of proportionality is the dynamic viscosity.
Then, the Navier-Stokes equations for an incompressible fluid of constant
density become

o, ou; 9 0%u;
Lypuy L =Py !

P ot X, 9x; 0x;0x;

+pf;- (1.9b)

In the special case of negligible viscous effects, Equation 1.9a becomes

p%+puk%=—a—p+pf». (19¢)
ot o, ox; )

Equation 19c¢ is known as the Euler equations and the fluid is said to be
inviscid.

1.14 Energy Equation

The term o,(duy/dx) that appears in the equation of energy conservation
(Equation 1.5) may now be evaluated explicitly by use of Equation 1.7.

au; u ou,  ou,  du;
O = —pdy+ My 4 4L L
0x; 0X; ox; ox;  ox

Using the fact that the first two terms on the right-hand side of this equa-
tion are zero unless i = j, this expression becomes
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1

T o, ax; X, ax;  ox;  0x;

2
Ouj _ e o O O O O

It will be recalled that the term o,(du/dx,) represents the work done by the
surface forces. The first term in the expression for this work done, namely,
—p(01,/dxy), represents the reversible transfer of energy due to compression.
The remaining two terms are collectively called the dissipation function and
are denoted by @. That is,

2
e w0 0y

9x; ax;  dx; dx;

O =) (1.10)

The reason @ is called the dissipation function is that it is a measure of the
rate at which mechanical energy is being converted into thermal energy. This
may be readily verified by considering an incompressible fluid in a Cartesian
coordinate system. Then,

oo w ow o
ox; 0x; Ox;
_oaw 0w 1y w1 o
ox; ox; 2 dx; dx; 2 dx;  Ox;
2
_1 w9
2 ox; ox

which is a positive-definite quantity. This shows that the dissipation func-
tion always works to increase irreversibly the internal energy of an incom-
pressible fluid.

In terms of the dissipation function, the total work done by the surface
stresses is given by

Using this result and the constitutive relation for the heat flux (Equation
1.8) in the equation of conservation of energy, Equation 1.5, yields the energy
equation for a Newtonian fluid:
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de de ou, d aT
P P —=mp ok ko
ot ax; ox,  ox;  0x;

+@ (1.11)

where @ is defined by Equation 1.10.

1.15 Governing Equations for Newtonian Fluids

The equations that govern the motion of a Newtonian fluid are the continu-
ity equation (Equation 1.3a), the Navier-Stokes equations (Equation 1.9a), the
energy equation (Equation 1.11), and equations of state. For purposes of sum-
mary and discussion, these equations will be repeated here.

ap d
—+—(pu)=0 1.3a
ot ox, (puy) (1.3a)
ou; ou; ap 0 ou 9 ou, U,
R S Lv—L 4pfi (19

Pt TP o T Ty Tax, Tax, Tax, o, T an, o (19)

d ) d d oT d : d du; Ju;
0% you, e Ly, 8 G OT Ay O

ot X, ox,  dx;  0x; 0X; ox;  9x; ox;
p=ppT) (1.12)
e=e(p, 7). (1.13)

The last two equations are general representations of the thermal and
caloric equations of state, respectively. The most frequently encountered
form of the thermal equation of state is the ideal-gas law p = pRT, whereas
the most frequently encountered form of the caloric equation of state is e =
CyI, where Cy is the specific heat at constant volume.

The preceding set of equations represents seven equations that are to be
satisfied by seven unknowns. Each of the continuity, energy, and state equa-
tions supplies one scalar equation, whereas the Navier-Stokes equations
supply three scalar equations. The seven unknowns are the pressure, den-
sity, internal energy, temperature, and velocity components, that is, p, p, ¢, T,
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and u;. The parameters A, p, and k are assumed to be known from experimen-
tal data, and they may be constants or specified functions of the temperature
and pressure.

It is not always necessary to solve the complete set of equations in order
to define the flow field analytically. For example, if compressible effects are
thought to be unimportant in the flow field being considered, the incom-
pressible form of the governing equations may be used. The continuity
equation and the Navier-Stokes equations are then simpler, as indicated
by Equations 1.3c and 1.9b, respectively, but the greatest simplification
comes from the fact that the energy equation is mathematically uncoupled
from these two equations. The continuity and Navier-Stokes equations
offer four scalar equations involving only p and u;. That is, the pressure
and velocity fields may be established without reference to the energy
equation. After doing this, the temperature field may be established sepa-
rately, and the temperature may have the trivial solution T = constant. In
cases of forced convection heat transfer in which the flow is turbulent,
the continuity and Navier—Stokes equations are frequently replaced by an
empirical velocity distribution, and the energy equation is solved to yield
the temperature distribution. More frequently, however, thermal effects
are unimportant, and the continuity and Navier-Stokes equations alone
must be solved.

The most common type of body force acting on a fluid is due to gravity, so
that the body force f; that appears in the Navier-Stokes equations is defined
in magnitude and direction by the acceleration due to gravity. Sometimes,
however, electromagnetic effects are important, and in such cases, f = (p.E +
J x B), which is the Lorentz force. Here, p, is the charge density, E is the
electric field vector, J is the electric current density, and B is the magnetic
field vector. The electric and magnetic fields themselves must obey a set of
physical laws that are expressed by Maxwell’s equations. The solution to
such problems requires the simultaneous solution of the equations of fluid
mechanics and of electromagnetism. One special case of this type of cou-
pling is the field known as magnetohydrodynamics.

It may also be pointed out that the governing equations summarized here
contain the equations of hydrostatics and heat conduction as special cases.
If the fluid is at rest, the velocity components will all be zero, so that the
Navier—Stokes equations (Equation 1.9a) become

o

+pf..
axj pf]

If the body force f; is now set equal to the gravitational force, the equa-
tion of hydrostatics is obtained. For example, if gravity acts in the negative z
direction, f] = - ge,, where e, is the unit vector in the z direction. Then,
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p
P _ e
o, pge:

which shows that dp/dx = dp/dy = 0 and dp/0dz = — pg. In the case of zero veloc-
ity, the energy equation becomes

de_ o T

p =
ot ax]- ax]-

Introducing the enthalpy i = ¢ + p/p and using the fact that p and p are
constant in a stationary fluid give

oo ar

p =
o ox; - ox;

If the fluid is thermally perfect, i will be a function of T only, so that

oh  oh T aT

where C, is the specific heat at constant pressure, which is the appropriate
process for this case. Then, the energy equation becomes

oc, T -2 9T
ot ax]- ax]-

which is the equation of heat conduction.

1.16 Boundary Conditions

The Navier-Stokes equations are, mathematically, a set of three elliptic,
second-order partial differential equations. The appropriate type of bound-
ary conditions is therefore Dirichlet or Neumann conditions on a closed
boundary. Physically, this usually amounts to specifying the velocity on all
solid boundaries. Within the continuum approximation, the experimentally
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determined boundary condition is that there is no slip between the fluid and
a solid boundary at the interface. On the molecular scale, slippage is possible,
but it is confined within a layer whose dimensions are of the same order as
the mean free path between the molecules. Then, if U represents the velocity
of a solid boundary, the boundary condition that should be imposed on our
continuum velocity is

u=U on solid boundaries. (1.14)

In the case of an infinite expanse of fluid, one common form of Equation
114 is thatu — 0 as x — oo.

If thermal effects are included, a boundary condition on the tempera-
ture is also required. As in the case of heat-conduction problems, this
may take the form of specifying the temperature or the heat flux on some
boundary.

PROBLEMS

1.1 Derive the continuity equation from first principles using an infini-
tesimal control volume of rectangular shape and having dimensions
(x, 8y, 82). Identify the net mass flow rate through each surface of
this element as well as the rate at which the mass of the element is
increasing. The resulting equation should be expressed in terms
of the Cartesian coordinates (x,y,z,f), the Cartesian velocity compo-
nents (1,0,w), and the fluid density p.

1.2 Derive the continuity equation from first principles using an infini-
tesimal control volume of cylindrical shape and having dimensions
(OR, R86, 8z). Identify the net mass flow rate through each surface of
this element as well as the rate at which the mass of the element is
increasing. The resulting equation should be expressed in terms of
the cylindrical coordinates (R,6,z,t), the cylindrical velocity compo-
nents (ug,Uyu.), and the fluid density p.

1.3 Derive the continuity equation from first principles using an infini-
tesimal control volume of spherical shape and having dimensions (&7,
156, rsind dw). Identify the net mass flow rate through each surface
of this element as well as the rate at which the mass of the element
is increasing. The resulting equation should be expressed in terms
of the spherical coordinates (1,6,0,t), the spherical velocity compo-
nents (u,ug1,), and the fluid density p.

14 Obtain the continuity equation in cylindrical coordinates by
expanding the vector form in cylindrical coordinates. To do this,
make use of the following relationships connecting the coordi-
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nates and the velocity components in Cartesian and cylindrical

coordinates:
x=RcosB
y=Rsin0
z=2z

U=1upcosO—1u,sind

U = Ug Sin 0 + u, cos 0

1.5 Obtain the continuity equation in spherical coordinates by expand-
ing the vector form in spherical coordinates. Make use of the vector
relationships outlined in Appendix A and follow the procedures
used in Problem 1.4.

1.6 Evaluate the radial component of the inertia term (u - V)u in cylin-
drical coordinates using the following identities:

x=Rcos0
y=Rsin0
ue, +ve, = iy eg + Uy €

and any other vector identities from Appendix A as required. Here,
R and 0 are cylindrical coordinates, 1 and 1, are the correspond-
ing velocity components, and e, and e, are the unit base vectors.

1.7 Evaluate the radial component of the inertia term (u - V)u in spheri-
cal coordinates by use of the vector identities given in Appendix A.

1.8 Start with the shear stress tensor t;. Write out the independent
components of this tensor in Cartesian coordinates (x,y,z) using the
Cartesian representation (u,u,w) for the velocity vector. Specialize
these expressions for the case of a monatomic gas for which the
Stokes relation applies.
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1.9 Write out the expression for the dissipation function, ®, for the same
conditions and using the same notation as defined in Problem 1.8.

1.10 Write down the equations governing the velocity and pressure in
steady, two-dimensional flow of an inviscid, incompressible fluid,
but for which the density is not a constant, in which the effects of
gravity may be neglected. If the fluid is stratified, the density p will
depend, in general, on both x and y. Show that the transformation

u* = }ﬁu
Po

in which p, is a constant reference density, transforms the govern-
ing equations into those of a constant-density fluid whose velocity
components are u* and v*.
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Flow Kinematics

This chapter explores some of the results that may be deduced about the
nature of a flowing continuum without reference to the dynamics of the
continuum.

The first topic, flow lines, introduces the notions of streamlines, pathlines,
and streaklines. These concepts not only are useful for flow-visualization
experiments but also supply the means by which solutions to the governing
equations may be interpreted physically.

The concepts of circulation and vorticity are then introduced. Although
these quantities are treated only in a kinematic sense at this stage, their full
usefulness will become apparent in the later chapters when they are used in
the dynamic equations of motion.

The concept of the streamline leads to the concept of a stream tube or a
stream filament. Likewise, the introduction of the vorticity vector permits
the topic of vortex tubes and vortex filaments to be discussed. Finally, this
chapter ends with a discussion of the kinematics of vortex filaments or
vortex lines. In this treatment, a useful analogy with the flow of an incom-
pressible fluid is used. The results of this study form part of the so-called
Helmholtz equations, with the remaining parts being taken up in the next
chapter, which deals with, among other things, the dynamics of vorticity.

2.1 Flow Lines

Three types of flow lines are used frequently for flow-visualization pur-
poses. These flow lines are called streamlines, pathlines, and streaklines, and in
a general flow field, they are all different. The definitions and equations of
these various flow lines will be obtained separately below.

2.1.1 Streamlines

Streamlines are lines whose tangents are everywhere parallel to the veloc-
ity vector. Since, in unsteady flow, the velocity vector at a given point will
change both its magnitude and its direction with time, it is meaningful to
consider only the instantaneous streamlines in the case of unsteady flows.

41
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In order to establish the equations of the streamlines in a given flow field,
consider first a two-dimensional flow field in which the velocity vector u has
components 1 and v in the x and y directions, respectively. Then, by virtue of
the definition of a streamline, its slope in the xy plane, namely, dy/dx, must
be equal to that of the velocity vector, namely, v/u. That is, the equation of the
streamline in the xy plane is

dy _
dx

= |Q

where, in general, both u and v will be functions of x and y. Integration of
this equation with respect to x and y, holding t fixed, will then yield the
equation of the streamline in the xy plane at that instant in time.

In the case of a three-dimensional flow field, the foregoing analysis is valid
for the projection of the velocity vector on the xy plane. By similarly treating
the projections on the xz plane and on the yz plane, the slopes of the stream-
lines are found to be

dz _w
dx u
dz _w
dy o

on the xz and yz planes, respectively. These three equations defining the
streamline may be written in the form

dy dx dz_dx dz _dy
v U woou w v

Written in this form, it is clear that these three equations may be expressed
in the following more compact form:

Integration of these equations for fixed ¢ will yield, for that instant in time,
an equation of the form z = z(x, y), which is the required streamline. The
easiest way of carrying out the required integration is to try to obtain the
parametric equations of the curve z = z(x, y) in the form x = x(s), ¥ = y(s), and
z = z(s). Elimination of the parameter s among these equations will then yield
the equation of the streamline in the form z = z(x, y).
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Thus, a parameter s is introduced whose value is zero at some reference
point in space and whose value increases along the streamline. In terms of
this parameter, the equations of the streamline become

de _dy dz_
M_ U_ZU_

ds.

These three equations may be combined in tensor notation to give

dx; _ u(x;, t)  tfixed 2.1)
ds

in which it is noted that if the velocity components depend upon time, the
instantaneous streamline for any fixed value of t is considered. If the stream-
line that passes through the point (x,, v, zo) is required, Equation 2.1 is inte-
grated and the initial conditions that when s = 0, x = x,, ¥ = y,, and z = z, are
applied. This will result in a set of equations of the form

X;=x; (X, Yo, Zo, 1, 5)

which, as s takes on all real values, traces out the required streamline.
As an illustration of the determination of streamline patterns for a given
flow field, consider the two-dimensional flow field defined by

u=ux(1+2t)
v=y
w=0.

From Equation 2.1, the equations to be satisfied by the streamlines in the
xy plane are

% =x(1+2t)
dy
as v

Integration of these equations yields
X = Cle(1+2t)s

y=Cye’
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which are the parametric equations of the streamlines in the xy plane. In par-
ticular, suppose the streamlines passing through the point (1, 1) are required.
Using the initial conditions that when s = 0, x = 1 and y = 1 shows that C, =

C, = L. Then, the parametric equations of the streamlines passing through
the point (1, 1) are

X = e(1+2t)s
y =e°.

The fact that the streamlines change with time is evident from the preced-

ing equations. Suppose the streamline passing through the point (1, 1) at
time t = 0 is required; then,

Hence, the equation of the streamline is

x=y.

This streamline is shown in Figure 2.1 together with other flow lines,
which are discussed below.
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FIGURE 2.1

Comparison of the streamline through the point (1, 1) at t = 0 with the pathline of a particle that

passed through the point (1, 1) at f = 0 and the streakline through the point (1, 1) at f = 0 for the
flow field u = x(1 + 2t), v =y, w =0.
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2.1.2 Pathlines

A pathline is a line traced out in time by a given fluid particle as it flows.
Since the particle under consideration is moving with the fluid at its local
velocity, pathlines must satisfy the equation

dx
dt

L= u(x;, ). (2.2

The equation of the pathline that passes through the point (x,, y,, z,) at time
t = 0 will then be the solution to Equation 2.2, which satisfies the initial condi-
tion that when t = 0, x = x,, y =y, and z = z,. The solution will therefore yield
a set of equations of the form

x; = X{(Xo, Yo, Zo 1)

which, as t takes on all values greater than zero, will trace out the required
pathline.

As an illustration of the manner in which the equation of a pathline is
obtained, consider again the flow field defined by

u=x(1+21)
v=y
w = 0.

From Equation 2.2, the differential equations to be satisfied by the path-
lines are

% =x(1+2t)

dy
L _y
dt
Integration of these equations gives
X = Clet(m)

y =Cyel.

These are the parametric equations of all the pathlines in the xy plane for
this particular flow field. In particular, if the pathline of the particle that
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passed through the point (1, 1) at ¢ = 0 is required, these parametric equations
become

x = et0+)

y=e.

Eliminating t from these equations shows that the equation of the required
pathline is

X = y1+log v,

This pathline is shown in Figure 2.1, from which it will be seen that the
streamline that passes through (1, 1) at t = 0 does not coincide with the path-
line for the particle that passed through (1, 1) at t = 0.

2.1.3 Streaklines

A streakline is a line traced out by a neutrally buoyant marker fluid that is
continuously injected into a flow field at a fixed point in space. The marker
fluid may be smoke (if the main flow involves air or some other gas) or a dye
(if the main flow involves water or some other liquid).

A particle of the marker fluid that is at the location (, y, z) at time t must
have passed through the injection point (x,, y,, z,) at some earlier time ¢ = 7.
Then, the time history of this particle may be obtained by solving the equa-
tion for the pathline (Equation 2.2) subject to the initial conditions that x =
X0, Y = Yo and z = z; when t = 7. Then, as 7 takes on all possible values in the
range — < 1 < t, all fluid particles on the streakline will be obtained. That
is, the equation of the streakline through the point (x,, y,, z,) is obtained by
solving Equation 2.2 subject to the initial conditions that when t = 7, x = x,,
Y =Yy and z = z,,. This will yield an expression of the form

x; = X; (Yo, Yo, Zo/ 1, D)

Then, as 7 takes on the values 7t < t, these equations will define the instan-
taneous location of that streakline.

As an illustrative example, consider the flow field that was used to illus-
trate the streamline and the pathline. Then, the equations to be solved for
the streakline are

% =x(1+2t)

dy _

ar Y



Flow Kinematics 47

which integrate to give
X = Clet(m)
y=Cyel.
Using the initial conditions that x = y = 1 when t = 7, these equations become
X = et(1+t)—r (1+7)
y=eT
These are the parametric equations of the streakline that pass through the
point (1, 1), and they are valid for all times t. In particular, at ¢ = 0, these equa-
tions become
x = ¢~t(1+7)
y=e".

Eliminating T from these parametric equations shows that the equation of
the streakline that passes through the point (1, 1) is, at time ¢ = 0,

X = yl—log v,

This streakline is shown in Figure 2.1 along with the streamline and the
pathline that were obtained for the same flow field. It will be noticed that
none of the three flow lines coincide.

2.2 Circulation and Vorticity

The circulation contained within a closed contour in a body of fluid is defined
as the integral around the contour of the component of the velocity vector
that is locally tangent to the contour. That is, the circulation I' is defined as

r= ff,u-cu 2.3)

where d1 represents an element of the contour. The integration is taken
counterclockwise around the contour, and the circulation is positive if this
integral is positive.
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The vorticity of an element of fluid is defined as the curl of its velocity vec-
tor. That is, the vorticity o is defined by

o=V xu 2.4

In tensor notation, Equation 2.4 may be written in the form

ou;
w; = _Sijk 5 .
k

From this definition, it is evident that, by comparison with Equation 1.6a,
the vorticity vector is numerically twice the angular speed of rotation of the
fluid element about its own axes. That is, the vorticity is equal to twice the
antisymmetric part of the deformation-rate tensor e;. It should be noted that
a fluid element may travel on a circular streamline while having zero vortic-
ity. Vorticity is proportional to the angular velocity of a fluid element about
its principal axes, not the angular velocity of the center of gravity of the ele-
ment about some reference point. Thus, a particle traveling on a circular
streamline will have no vorticity, provided that it does not revolve about its
own center of gravity as it moves.

The vorticity contained in a fluid element is related to the circulation
around the element. This relationship may be obtained from an application of
Stokes’ theorem to the definition of circulation as follows. From Equation 2.3

F=fu-d1

=fA( xu)-ndA

where the contour integral has been converted to a surface integral by use
of Stokes” theorem, in which A is the area defined by the closed contour
around which the circulation is calculated and n is the unit normal to the
surface. Finally, invoking the definition of the vorticity vector, this relation-
ship becomes

r= f o-ndA. 2.5)

Equation 2.5 shows that, for arbitrary choices of contours and enclosing
areas A, if ® = 0, then I" = 0 and vice versa. Flows for which @ = 0 are called
irrotational, and flows for which this is not so are called rotational. The distinc-
tion between rotational and irrotational flow fields is an important one from
an analytic point of view, as will be seen in later chapters.



Flow Kinematics 49

2.3 Stream Tubes and Vortex Tubes

The concept of a streamline, which was introduced in an earlier section, may
be used to define a stream tube, which is a region whose sidewalls are made
up of streamlines. For any closed contour in a flow field, each point on the
contour will have a streamline passing through it. Then, by considering all
points on the contour, a series of streamlines that form a surface are obtained,
and this surface is called a stream tube. Figure 2.2a shows a length of stream
tube defined by a contour whose area is A;. The corresponding area at some
other section is shown as A,, where in general A, will be different from A,
and the shapes of the two cross sections of the stream tube will be different.
If the cross section of a stream tube is infinitesimally small, the stream tube
is usually referred to as a stream filament.

By analogy with streamlines and stream tubes, the useful concepts of
vortex lines and vortex tubes may be introduced. A vortex line is a line
whose tangents are everywhere parallel to the vorticity vector. Then, for
any closed contour in a flow field, each point on the contour will have a
vortex line passing through it, and the series of vortex lines defined by the
closed contour form a vortex tube. Figure 2.2b shows a length of vortex tube
defined by a contour whose area is A;. The cross-sectional area and shape
at any other section of the vortex tube will, in general, be different. A vortex
tube whose area is infinitesimally small is usually referred to as a vortex
filament.

FIGURE 2.2
(a) Stream tube and (b) vortex tube subtended by a contour of area A, in a flow field.
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2.4 Kinematics of Vortex Lines

Certain properties of flow lines may be established by studying the kine-
matics of vortex lines. The results so obtained form part of what is some-
times referred to as the Helmholtz theorems of vorticity. The other parts of the
Helmholtz theorems involve the dynamics of vorticity, which will be taken
up in the next chapter.

Equation 2.4 defines the vorticity vector as the curl of the velocity vector.
Since the divergence of the curl of any vector is identically zero, it follows
that

V-o=0.

Since the vorticity vector is divergence-free, it follows that there can be no
sources or sinks of vorticity in the fluid itself. That is, vortex lines must either
form closed loops or terminate on the boundaries of the fluid. The boundar-
ies of the fluid may be either a solid surface or a free surface.

The fact that the vorticity vector is divergence-free leads to an analogy
with the flow of an incompressible fluid. In this analogy, the counterpart of
the velocity vector is the vorticity vector, and the counterpart of the volume
tflow rate is the circulation. To establish this analogy, a sequence of opera-
tions will be performed first on the velocity vector for an incompressible
flow field and then on the vorticity vector.

The continuity equation for an incompressible fluid is

V-u=0.

Integrating this expression over some volume V gives

fv udV =0.

By use of Gauss’ theorem, this volume integral may be converted to the
equivalent surface integral
f u-nds=0
S

where the surface s encloses the volume V. Now, consider the surface s to be
the entire outer surface of an element of a stream tube or stream filament, as
shown in Figure 2.2a, including the ends. Then, since u - n = 0 on the walls of
the stream tube by definition, it follows that

f u-nds+f u-nds=0.
A Ay
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Since n is defined as the outward unit normal,

f u-nds =-Q,
A

and

fAzu-nds=Q2

where Q; is the volume flow rate crossing the area A,, and Q, is the volume
flow rate crossing the area A,. That is, the fact that the vector u is divergence-
free leads to the result

Qi=0Q,

which states that the volume of fluid crossing the area A; per unit time is
equal to that crossing the area A, per unit time. Since the fluid was assumed
to be incompressible, this result appears intuitively obvious.

Turning now to the vorticity vector, it was shown that

V-o=0

so that

fv ‘odV =0

fm-nds=0

where the surface s enclosed the volume V. Now, consider the surface s to be
the entire outer surface of an element of a vortex tube or a vortex filament
as shown in Figure 2.2b, including the ends. By definition of the vortex lines
that make up the surface of the vortex tube, ® - n = 0 on the walls of the vor-
tex tube. Then,

and

o-nds + o-nds = 0.
Ay Ay

However, from Equation 2.5

®-nds=-T,
A
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and

o-nds=T,.
Ay

Hence, the fact that @ is divergence-free results in the condition
Ir,=r,.

That is, the circulation around the limiting contour of the area A, is equal
to that around A,. Alternatively, this result may be stated in the form that
the circulation at each cross section of a vortex tube is the same. This means
that if the cross-sectional area of the vortex tube increases, the average value
of the vorticity across that section must decrease, just as the average velocity
would decrease to satisfy continuity. In fact, the result I') = I', may be put in
the form of the simple, one-dimensional continuity equation. If ®; denotes
the average vorticity across the area A; and o, denotes that across A,, the
result

o-nds + w-nds=0
Ay Ay

becomes
0,4, = 0,A,. (2.6)

The fact that the vorticity vector o is divergence-free means that vortex
tubes must terminate on themselves, at a solid boundary or at a free surface.
Smoke rings terminate on themselves, while a vortex tube in a free surface
flow over a solid boundary may have one end at the solid boundary forming
the bottom and the other end at the free surface.

PROBLEMS

2.1 Itis required to reproduce the graph shown in Figure 2.1 of the text.
The curves should be drawn from a sufficiently large number of cal-
culated points that a smooth curve is obtained in each case. Print
your graph in landscape mode and adjust its size so that the size of
one unit in the x direction corresponds to the size of one unit in the y
direction. Also, make the range and the grid lines in both the x and
y directions correspond to those presented in Figure 2.1 of the text
and make the diagram “fill” a regular-size sheet of paper.

2.2 Consider the two-dimensional flow field defined by the following
velocity components:
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u=—— v=1 w=0.

For this flow field, find the equation of
(@) The streamline through the point (1,1) at t =0
(b) The pathline for a particle released at the point (1,1) at t =0
(c) The streakline at t = 0, which passes through the point (1,1)
2.3 Atwo-dimensional flow field has the following velocity components:

u=x1+1t v=1 w =0.

Determine the following quantities for this flow field:

(@) The equation of the streamline that passes through the point (1,1)
asseen at t = 0.

(b) The equation of the pathline for a particle released at the point
(1,1) at time t = 0.

() The equation of the streakline that passes through the point (1,1)
asseenatt=0.

(d) The density at time ¢ = 0 on a particular streamline in this flow
has the value p,, which is a constant. Find an expression for the
density p at any subsequent time ¢ on the same streamline.

2.4 Show that the streamlines and particle paths coincide for the follow-
ing flow field for values of i = 1, 2, and 3:

u;=x; /(1 +1).
2.5 The velocity components for a particular flow field are as follows:
u=16x*+y v=10 w=yz2

(@) Determine the circulation, I, for this flow field around the
following contour by integrating the velocity around it

counterclockwise:
0<x<10 y=0
0<y<5 x=10
102x>0 y=5

52y20 x=0.
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(b) Calculate the vorticity vector, @, for the given flow field and

hence evaluate:
f o-ndA
A

where A is the area of the rectangle defined in (a) and n is the unit
normal to that area. Compare the result obtained in (b) with that
obtained in (a).

2.6 Consider the two-dimensional velocity distribution defined as follows:

X
U=- U= L

x2+y2 x2+y2'

Determine the circulation for this flow field around the following
contour by integrating around it counterclockwise:

-1<x<+1 y=-1
-1<y<+l x=+1
+1>x>-1 y=+1
+H12y>-1 x=-1.

2.7 A particular three-dimensional flow field has the following velocity
components:

u=9x2+2y v=10x w = -2yz2.

(@) Using the same contour as defined in Problem 2.6 on the plane
z =5, determine the circulation for the given flow field.

(b) Calculate the vorticity vector for the given flow field at any point
(xy) in the plane z = 5.

(o) Using the value obtained in (b) for the vorticity vector ® in the
plane z = 5, evaluate the following integral:

wa-ndA.

In the above, A is the area of the rectangle defined in (a), and n is
the unit normal to that area in the positive z direction. Compare the
result obtained in (c) with that obtained in (a).
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2.8 The velocity components for a particular two-dimensional flow field

29

210

are defined as follows:

Yy X

U=- v= .
X +y x* +y?

(@) Using the same contour as defined in Problem 2.6, determine the
circulation for the given flow field.

(b) Calculate the vorticity vector for the given flow field at any point
(y)-

(o) Calculate the divergence of the velocity vector for the given flow
field at any point (x,y).

Consider the two-dimensional velocity distribution of a fluid defined
as follows:

u=oy v = fx.

In the above, a and p are both constants.

(@) Determine the circulation I for this flow field around the same
contour as in Problem 2.6 by integrating in the counterclockwise
direction.

(b) Evaluate the following integral for this flow field:

fAm-ndA.

(o) Find the equations of the streamlines for the given flow field in
terms of an unspecified constant of integration.

(d) For @ = -1 and p = +1, determine the equation of the streamline
that passes through the point (1,0).

() For a = p = 1, determine the equations of the streamlines that
pass through the origin, that is, the point (0,0).

Calculate the vorticity at any point (R,0) for each of the following
two-dimensional flow fields:

@ ug=0, uy=wR
(b) ug =0, uy=1/27R

In the above, R and 0 are cylindrical coordinates while ® and I" are
constants.
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Special Forms of the Governing Equations

Some alternative forms of the governing equations, as derived in Chapter 1,
will be discussed here. The results are all obtained from the governing equa-
tions under various degrees of approximation such as negligible viscous
effects. Some of the results are frequently referred to as theorems. They are
used either as alternatives to the general equations derived in Chapter 1, under
the specified restrictions, or as supplementary information to these equations.

The first result established is Kelvin's theorem. This theorem establishes
the conditions under which irrotational motion remains irrotational and
so justifies the simplifying methods of analysis that are utilized for irrota-
tional flows. Then, the Bernoulli equations are derived. These equations are
integrals of the Euler equations under certain conditions. They are used to
relate the pressure and velocity fields when the velocity is established sepa-
rately from, for example, the condition of irrotationality. Crocco’s equation
is derived next. This equation relates the entropy of the fluid to the vorticity
and shows that, under certain conditions, isentropic flows are irrotational,
and vice versa. Finally, the vorticity equation is derived for a fluid of constant
density and viscosity. This equation is useful in the study of rotational flows.

3.1 Kelvin’s Theorem

This theorem states that for an inviscid fluid in which the density is constant,
or in which the pressure depends on the density alone, and for which any
body forces that exist are conservative, the vorticity of each fluid particle will
be preserved. Kelvin’s theorem covers the remainder of the Helmholtz theo-
rems of vorticity that were not treated in Section 2.4 during the discussion of
the kinematics of vortex lines. Although Kelvin’s theorem appears to be kine-
matic in nature, the dynamic equations of motion are required in the proof.

Suppose that a body force f; per unit mass that may act on the fluid is con-
servative, such as gravity for example. Then, f; may be written as the gradient
of some scalar function G, giving

_ G
axj'

fi

57
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Then, from Equation 1.9¢, the equations of motion for an inviscid fluid sub-
jected to only conservative body forces are

ou; ou;
P pou, o 06

P ot X, 0x; 0x;

or, in terms of the material derivative,

Duj 1o oG

s + )
Dt p ox; ox;

It is this form of the momentum equation, which is valid for an inviscid
fluid subjected to only conservative body forces, that will be used to prove
Kelvin’s theorem.

In order to determine the rate of change of vorticity associated with a given
fluid element, the material derivative of the circulation I" will be calculated.
From Equation 2.3

DI D
—=—Qu;dx
Dt DtJ '
Du; D(dx
=§ —Ldx; +u (dx;)
Dt /7 Dt

The quantity D(dx;)/Dt is the material derivative of an element dx; of the
contour around which the circulation is to be calculated. Its value may be
established as follows:

D(dxj)= % =d %+u % =du,.
Dt Dt at - Fox, /

Here, the material derivative has been converted into its Eulerian equiva-
lent, using Equation 1.1, in which ¢ and the spatial coordinates are indepen-
dent. Thus, ax,./ ot = 0 and ax,./ ox, = 8, which is zero unless k = j, at which
time its value is unity. This shows that the value of Dx;/Dt is u; and hence the
value of D(dx))/Dt is du,. In this way, the expression for the rate of change of
circulation becomes

Dr_ o Dy,

b ) o
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The quantity Du;/Dt will now be eliminated from this expression by using
the momentum equations that were derived above for an inviscid fluid in
which any body forces were conservative. Thus, the rate of change of circula-
tion becomes

br =§ —la—pdxj +de]- +u;du,
Dt p ox; ax;

dp 1
=56 —?+dG+§d(ujuj)

where it has been observed that (dp/dx)dx; = dp, which is the total spatial
variation of p, and likewise (BG/dx]-)dxj = dG. It is now observed that, since
the integration is to be carried out around a closed contour, the integral of
dG and that of d(uu) are both zero since the body force and the velocity are
both assumed to be single valued. Then,

Now, if p is a constant, the remaining integral is zero for the same reason
that the other integrals were zero. However, this integral is zero under less
restrictive conditions also. Suppose the pressure p may be considered to be a
function of the density p only as, for example, in isentropic flows. Then, for
some function g,

p=g(p)

so that

dp = g'(p)dp.

The expression for DI'/Df now becomes
Dbr _ _95&@_
Dt p

That is, this integral falls into the same category as the two previous inte-
grals, and its value around any closed contour is zero. This gives the result
known as Kelvin’s theorem:

—=0. 3.1
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Equation 3.1 says that if we follow a given contour as it flows, the total
vorticity inside that contour will not change. Recall that the right-hand side
of Equation 3.1 could be proved to be zero by considering the fluid to be
inviscid, the body forces to be conservative, and either the density to be con-
stant or the pressure to be a function of the density only. Relaxing any of
these conditions leads to, in general, a nonzero term on the right-hand side of
Equation 3.1. Thus, it may be deduced that the total vorticity may be changed
by the action of viscosity, the application of nonconservative body forces, or
density variations that are not simply related to the pressure variation.

It should be noted that Equation 3.1 applies to a simply connected region.
That is, for any closed contour in the fluid that contains only fluid, there will
be some definite value of the circulation I Equation 3.1 asserts that under the
conditions specified in the derivation, the value of I will not change around
that contour even though the contour itself may be deformed by the flow. A
closed contour that originally does not include a body cannot at any subse-
quent time contain a body such as a two-dimensional airfoil. There is there-
fore no conflict in the fact that such an airfoil may have a circulation around
it while immersed in an irrotational flow.

From Kelvin’s theorem and the results established in Section 2.4, it is evi-
dent that the total vorticity associated with a vortex filament is fixed and
will not change as the vortex filament flows with the fluid. Distortion of the
vortex filament may take place, but the total vorticity associated with it will
remain the same. The vortex filament will always consist of the same fluid
particles as it flows, and if the vortex filament is elongated, the vorticity at
any section of the filament will increase and the total vorticity associated
with the filament will remain fixed.

The principal use of Kelvin's theorem is in the study of incompressible,
inviscid fluid flows. If a body is moving through such a fluid, or if a uniform
flow of such a fluid passes around a body, then the vorticity far from the
body will be zero. Then, according to Kelvin's theorem, the vorticity in the
fluid will everywhere be zero, even adjacent to the body. Then, the condition
V x u =0 may be used to replace the Euler equations so that the condition of
irrotationality becomes the alternative form of the equations of motion for
the fluid. Again, it is emphasized that this kinematic equivalent is valid only
because of Kelvin’s theorem, and in turn, the Euler equations were used to
prove Kelvin’s theorem.

3.2 Bernoulli Equation

For an inviscid fluid in which all body forces are conservative and either the
flow is steady or itis irrotational, the equations of momentum conservation may
be integrated to yield a single scalar equation called the Bernoulli equation.
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In the previous section, it was pointed out that the equations of motion for
an inviscid fluid in which all body forces are conservative could be written
in the form

ou; ou; d oG
pj+puk4=—i+pf-

Using a vector identity given in Appendix A, the second term on the left-
hand side of these equations may be rewritten as follows:

auj 1
——=(u* )u= —u'u -ux( xu)

u
k ax, 2

= —uu-uxo.
2

In this way, the Euler equations may be written in the following vector form:

du 1 1
—+ —uu -uxw=-— p+ G
ot 2 P

It is now proposed to show that the term (1/p)Vp, which appears on the

right-hand side of this equation, may be written as V f dp/p . To do this, we

form the scalar product of an element of a space curve d/, such as an element
of a streamline, with the vector quantity (1/p) Vp:

de-

p =—deé- p=1dp.
p

|-
D | =

Here, the result d¢ - V = dx(d/dx) + dy(d/9y) + dz(9/9z) = d has been used,
where the scalar operator d is the total spatial derivative. Then, using d and
its inverse integral operation, it follows that

where, again, the equivalence of d and d{ - V has been used. The vectors that
form the scalar product with d?f in this last equation must be equal since df
was arbitrarily chosen; hence, it follows that

-

1
p p



62 Fundamental Mechanics of Fluids

Using this result, the Euler equations become

a—u+ f%+lu-u—G =uxm. (3.2a)
ot p 2

The vector Equation 3.2a may be integrated for steady flow and for unsteady
or steady irrotational flow.

Considering first steady flow, Equation 3.2a becomes

%+lu-u—G =uxm.
p 2

Forming the scalar product of the velocity vector u with this equation gives
u- fdp+1u-u—G =u-(uxw).
p 2

However, the vector product of u with @ will yield a vector that is perpen-
dicular to u; hence, the quantity u - (u x ®) is zero. Furthermore, the operator
u - Vis the steady-state form of the material derivative. Thus, the preceding
equation states that as we flow along a streamline in steady flow, the quan-

tity f dp/p+u-u/2 - G remains constant. That is,
dp 1 .
f —+ Eu -u - G = constant along each streamline. (3.2b)
p

This result is referred to as the Bernoulli integral or the Bernoulli equation. It
should be recalled that it is valid for the steady flow of a fluid in which viscous
effects are negligible and in which all body forces are conservative. In many
cases, the flow around some body originates in a uniform flow, and in such
cases, and in some other cases, the constant on the right-hand side of Equation

3.2b is the same for each streamline. Then, the quantity [ dp/p+u-u/2-Gis

constant everywhere. The constant is usually referred to as the Bernoulli constant.

Equation 3.2a may also be integrated under slightly different circum-
stances from those that led to Equation 3.2b. Rather than considering steady
flows, consider irrotational flows. Then, the vorticity @ will be zero so that
Equation 3.2a becomes

6—u+ f%+lu-u—G =0.
ot p 2

Now, since ® =V x u =0, it follows that the velocity vector u may be written as
the gradient of some scalar, for example, ¢, since V x V¢ = 0 for any function ¢.
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The quantity ¢ is known as the velocity potential, and it will be used extensively
in Chapter 4. Then, replacing u by V¢ in the preceding equation gives

) dp 1
—+[—=+= ¢ ¢-G =0.
ot +fp +2 L

Forming the scalar product of this vector equation with an element of a
space curve df gives

W, o, 1 o
d8t+fp+2¢¢c_0

where again the fact that df - V = d has been used, where d is the total spatial
derivative. Thus, integration yields

L e
8t+fp+2 ¢ ¢-G=F(t) (3.20)

where F(f) is some function of time that may be added after integrating over
the space coordinates. F(f) is usually referred to as the unsteady Bernoulli con-
stant, even though it is not strictly a constant. Recall that Equation 3.2c is
valid for irrotational motion of a fluid in which viscous effects are negli-
gible and in which all body forces are conservative. Kelvin’s theorem usually
helps to verify the validity of the condition of irrotationality by relating the
flow under consideration to a simpler form of the flow far upstream.

3.3 Crocco’s Equation

This equation relates the vorticity of a flow field to the entropy of the fluid.
Under certain conditions, it will be shown that isentropic flows are irrota-
tional, and vice versa. Then, if it is known that a flow field is essentially isen-
tropic, the mathematical simplifications associated with irrotational motion
may be employed. This simplification will be employed in the chapters deal-
ing with compressible fluid flow, and it is justified by Crocco’s equation.

In order to establish Crocco’s equation, consider the flow of an inviscid
fluid in which there are no body forces. Then, from Equation 19¢, the Euler
equations that guarantee dynamic equilibrium, become

E+(u' )u=—l p.
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The nonlinear term may be expanded as follows using a vector identity
given in Appendix A:

(u Jus= %u-u —ux( xu).

Hence, the Euler equation becomes

ou 1
— 4+ —u'u -uUxX®=-—

ot 2 P

° |-

It is this form of the Euler equation that is the starting point for the deriva-
tion of Crocco’s equation. In order to relate the dynamics of the flow to its
thermodynamics, it is proposed to eliminate the pressure p and the density
p, which appear in the term on the right-hand side of the above equation,
in favor of the enthalpy / and the entropy s. To do this, we use the first law
of thermodynamics and the definition of the entropy. From Appendix E, a
change in internal energy de is caused by work done on the fluid —pd(1/p)
and by any heat that is added to the fluid dg. That is,

de=-pd +dg

+T ds

Tk T~

=-pd

where the last relation follows from the definition of the entropy. Now p and
p have been related to e and s. In order to eliminate e in favor of the enthalpy
h, we use the equation that defines the enthalpy, namely, e = & — p/p. Then, the
foregoing thermodynamic relation becomes

dh-d =-pd +T ds.

oI
D | =

Since d(p/p) = pd(1/p) + dp/p, this equation simplifies to
1
-—dp=T ds-dh.
p

Using again the result established in the previous section that df - V =d, it
follows that

1
-— p=T s- h.
0 p



Special Forms of the Governing Equations 65

This result will now be used to eliminate the pressure and the density that
appear on the right-hand side of the Euler equations:

8—u+ lu-u —uxw=T s- h
ot 2

Rearranging this vector equation slightly yields the result known as
Crocco’s equation:

uxw+T s= h+lu-u +a—u. (3.3a)
2 ot

Equation 3.3a is valid for flows in which viscous effects are negligible and in
which there are no body forces.

Under conditions of steady, adiabatic flow, Equation 3.3a may be reduced to
a scalar equation. To show this, it will first be shown that for adiabatic flow
of an inviscid fluid in which there are no body forces, the quantity i, = h +
u - u/2 is constant along each streamline. The quantity h, is called the stagna-
tion enthalpy.

From Problem 3.1, the energy equation for adiabatic flow of an inviscid
fluid is

D Dp

"Dt "D
The Euler equations for a flow without body forces are

Du __
Por =~ F

Forming the scalar product of this equation with the velocity vector u gives

D1
Par 2 P

Adding this equation to the energy equation derived above yields

D 1 Dp
p— h+-uu =——-up
Dt 2 Dt
or
Dh, dp

Dt ot
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Then, for steady flow, the right-hand side of this equation will be zero. That
is, for steady, adiabatic flow of an inviscid fluid in which there are no body
forces, the quantity Dh,/Dt will be zero. Hence, the stagnation enthalpy h,
will be constant along each streamline.

Equation 3.3a was derived for an inviscid fluid that is not subjected to any
body forces. Then, if, in addition, the flow is steady and adiabatic, Equation
3.3a becomes

ux o+ T Vs=Vh,

where the quantity /4, is constant along each streamline. Hence, Vi, will be a
vector perpendicular to the streamlines. However, u x ® is also perpendicu-
lar to the streamlines, so that the remaining vector, namely, T Vs, must also
be perpendicular to the streamlines. Then, the above vector equation may be
written in the following scalar form:

u +T§=d—h°. (3.3b)
dn dn
Here, U and Q are, respectively, the magnitudes of the velocity vector u
and the vorticity vector . The coordinate 7 is perpendicular to the stream-
lines locally. Equation 3.3b is valid for steady, adiabatic flow of an inviscid
fluid in which there are no body forces.
Usually when the stagnation enthalpy is constant along each streamline, it
is constant everywhere. That is, the value of /1, along each streamline is the
same. Under these conditions, d/,/dn = 0, so that Equation 3.3b becomes

u +t¥_o (3.30)
dn

In this form, Crocco’s equation clearly shows that if s is constant, Q must
be zero. Likewise, if Q is zero, ds/dn must be zero so that s must be constant.
That is, isentropic flows are irrotational and irrotational flows are isentropic.
This result is true, in general, only for steady flows of inviscid fluids in which
there are no body forces and in which the stagnation enthalpy is constant.

3.4 Vorticity Equation

The equation to be satisfied by the vorticity vector ® for a fluid of constant
density and constant viscosity will be derived in this section. Such an equa-
tion is useful in the study of viscous flows in incompressible fluids, which
is the topic of Part III of this book. One reason that the vorticity equation
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is of interest is that it enables us to learn more about the physics of given
flow fields. Also, in the analysis of some flow fields, it is frequently possible
to make some statement about the vorticity distribution that facilitates the
analysis if the problem is posed in terms of the vorticity.

From Equation 1.9b, the Navier-Stokes equations for a fluid of constant
density and viscosity and for which relevant body forces are conservative
are as follows:

a—u+(u- Ju=- Py tus G

ot

The quantity v = p/p is the kinematic viscosity. Replacing the nonlinear term
by its equivalent form given by the vector identities in Appendix A, this vec-
tor equation becomes

ad 1
au —u'u —ux( xu)=- +v ‘u+ G.

+ P
ot 2 p

The vorticity equation is obtained by taking the curl of this equation and
noting that the curl of the gradient of any scalar is zero. Hence,

— - x(uxw)=v ‘o.
Using a vector identity given in Appendix A, the second term on the left-
hand side may be expanded to give
Vxuxo)=uV-0o)-o(V-u)-u-V)o + (®- V)u
However, V - ® = 0, since the divergence of the curl of any vector is zero and
V- u =0 from the continuity equation. Hence, the vorticity equation becomes

—+u Jo=(w Ju+v ‘o (34a)

For two-dimensional flows, the vorticity vector ® will be perpendicular to
the plane of the flow, so that (® - V)u will be zero. Then,

aa—(;)+(u‘ w=v ‘0. (3.4b)

The vorticity equation, in either the general form (Equation 3.4a) or the
two-dimensional form (Equation 3.4b), has another advantage over and
above those mentioned in the preliminary remarks. It will be noted from
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these equations that the pressure p does not appear explicitly. Thus, the
vorticity and velocity fields may be obtained without any knowledge of the
pressure field.

In order to determine the pressure distribution in terms of the vorticity, the
Navier-Stokes equations are again used in the form

a—u+(u' u=-— Piv 2us G

Taking the divergence of this equation and using the result of Problem 3.2
together with the continuity equation V - u = 0, it follows that the equation to
be satisfied by the pressure p is

2 P =0-o+u-( 2u)—% 2(wru)+ *G. (3.5)
p

If the body force represents only gravity, the Laplacian of G will be zero.
From the foregoing results, we see that the vorticity satisfies an advection—
diffusion equation, whereas the pressure satisfies a Poisson equation
(Figures 3.1 and 3.2).

FIGURE 3.1

Results from the large eddy numerical simulation of a liquid jet in a gaseous cross flow show-
ing the deformation and breakup of the liquid jet. The jet velocity is 40 m/s, its viscosity is 10+
Pa-s, and its density is 14.4 kg/m?. The cross flow bulk velocity is 40 m/s, the gas viscosity is
1075 Pa-s, and its density is 1.2 kg/m?. (Courtesy of Professor Nasser Ashgriz, University of
Toronto, Toronto, Canada.)
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FIGURE 3.2

Results from numerical calculations showing droplet dynamics and spray formation from an
annular nozzle with outer and inner co-flowing gas. The droplets break up into smaller ones
due to the high velocity gaseous flow, generating a spray of smaller droplets. The outer gas
velocity is 140 m/s; the inner gas velocity, as well as the velocity of the droplets, is 40 m/s.
(Courtesy of Professor Nasser Ashgriz, University of Toronto, Toronto, Canada.)

PROBLEMS
3.1 In vector form, the thermal energy equation is

pg—i=—p ‘u+ (b T)+ .

By using the definition of the enthalpy /;, show that an equivalent
form of this equation is

bn_Dp “(k T)+®.

3.2 Show that, for an incompressible fluid, the following identity holds
between the velocity vector u and the vorticity vector e:

[(u- >u1=% 2(u-w)-u-( u)-0-o.

3.3 In cylindrical coordinates, the velocity components for the uniform
flow of an incompressible and inviscid fluid around a circular cylin-
der are
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aZ
ug =U 1—P cos 0

2

Uy = -U 1+% sin 6.

Here, U is the constant magnitude of the velocity approaching the
cylinder, and a is the radius of the cylinder. Determine the pressure
p(R, 6) at any point in the fluid in the absence of any body forces.
Take the pressure far from the cylinder to be constant and equal
to p,.

Specialize the result obtained above to obtain an expression for
the pressure p(a, 6) on the surface of the cylinder.

Further Reading—Part I

Part I of this book has been concerned with the derivation of the equations
governing the motion of a fluid. The number of books dealing with fluid
mechanics in which these equations are derived is large. The following rep-
resents a sample of some of these books.

Aris, R.: Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Inc.,
Englewood, N.J., 1964.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press,
London, 1967.

Chorin, A. J. and Marsden, J. E.: A Mathematical Introduction to Fluid Mechanics, 3rd ed.,
Springer-Verlag, Berlin, 1993.

Lagerstrom, P. A.: Laminar Flow Theory, in F. K. Moore (ed.): Theory of Laminar Flows,
Princeton University Press, Princeton, N.J., 1964.

Lamb, H.: Hydrodynamics, 6th ed., Dover, New York, 1932.

Landau, L. D. and Lifschitz, E. M.: Fluid Mechanics, 2nd ed., Pergamon Press, London,
1987.

Panton, R. L.: Incompressible Flow, John Wiley & Sons, New York, 1984.

Serrin, J.: Mathematical principles of classical fluid mechanics, in S. Fliigge (ed.):
Handbuch der Physik, vol. VIII/1, Springer-Verlag OHG, Berlin, 1959.

Sherman, F. S.: Viscous Flow, McGraw-Hill Book Company, New York, 1990.

Yih, C.-S.: Fluid Mechanics, McGraw-Hill Book Company, New York, 1969.



Part 11

Ideal-Fluid Flow

This part of the book deals with the flow of ideal fluids, that is, fluids that
are inviscid and incompressible. The results are therefore limited to flow
fields in which viscous effects of the fluid are negligible and compressibility
of the fluid is unimportant. Then, any phenomena that are predicted by the
governing equations will be due to the inertia of the fluid. The mathematical
simplification that results from neglecting viscous and compressible effects
is great, and consequently, the topic of ideal-fluid flow is, mathematically, the
best understood.

Part II contains Chapters 4, 5, and 6. Chapter 4 deals with two-dimensional
potential flows. Apart from some fundamental flows, the flow around some
two-dimensional bodies such as cylinders, ellipses, and airfoils is cov-
ered. Chapter 5 treats three-dimensional potential flows including the flow
around submerged bodies such as spheres. Finally, Chapter 6 deals with
surface waves on liquids. This chapter includes traveling waves, standing
waves, and waves at the interface of two fluids.

II.1 Governing Equations and Boundary Conditions

Since the fluid is assumed to be incompressible, the equation of mass con-
servation is Equation 1.3c. The equations of momentum conservation for an
inviscid fluid are the Euler equations, which are expressed by Equation 1.9¢.
That is, the equations governing the velocity and pressure fields for an ideal
fluid are
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V-u=0 (IL1)
1
—+(u- )u=—5 p+f. (IL.2)

Equations II.1 and IL.2 are sufficient to establish the velocity and the pres-
sure in the flow independent of any temperature distribution that may exist.
It was pointed out in Chapter 1 that compressibility is the fluid property that
couples the equations of thermodynamics to those of dynamics so that in the
study of ideal fluids, the equations of thermodynamics need not be solved
concurrently with the equations of motion. The study of ideal-fluid flows is
frequently referred to as hydrodynamics, and Equations II.1 and IL.2 are fre-
quently called the equations of hydrodynamics.

Within macroscopic length scales, the proper boundary condition to be
satisfied by the velocity is the no-slip boundary condition expressed by
Equation 1.14. It is not possible to satisfy this boundary condition with the
Euler equations. The reason lies in the fact that the Euler equations are one
order lower than the Navier-Stokes equations because the viscous terms
are absent in the former equations. Thus, the true boundary condition must
be relaxed somehow under the approximation of negligible viscous effects.
Since it is primarily viscous effects that prohibit a fluid from slipping along
a solid boundary, the condition of no tangential slip at boundaries is relaxed.
That is, the condition of no normal velocity at a solid boundary is retained,
but the condition of no tangential velocity is dropped. Thus, the boundary
condition that should be used with the Euler equations is

u-n=U:-n on solid boundaries (IL.3)

where n is the unit normal to the surface of the body, and U is the velocity vec-
tor of the body. Comparison of Equation I.3 with Equation 1.14 shows that the
former constitutes one component of the true boundary condition and the two
tangential components are unspecified. Physically, this means that the condi-
tion of no slip on a solid boundary has become the condition that the surface
of the body must be a streamline. Any boundary condition that is to be satis-
fied far from the body, such as the flow becoming uniform, is unaffected by
the inviscid approximation.

II.2 Potential Flows

If the flow of an ideal fluid about a body originates in an irrotational flow,
such as a uniform flow, for example, then Kelvin's theorem (Equation 3.1)
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guarantees that the flow will remain irrotational even near the body. That is,
the vorticity vector @ will be zero everywhere in the fluid. Then, since V x
V¢ = 0 for any scalar function ¢, the condition of irrotationality will be satis-
fied identically by choosing

u = Vé. (IL4)

The function ¢ is called the velocity potential, and flow fields that are irrota-
tional, and so can be represented in the form of Equation 1.4, are frequently
referred to as potential flows. In order to find the equation that the velocity
potential ¢ satisfies, the expression for u given by Equation 114 is substituted
into the continuity equation (Equation I1.1) to give

V2 = 0. (IL5)

Thus, by solving Equation IL.5 and utilizing Equation 1.4, the velocity field
may be established without directly using the equations of motion (Equation
I1.2). This is so because the condition of irrotationality has been used, and
this condition is justified by Kelvin’s theorem, which uses Equation I1.2 in its
proof. However, the equations of motion must be used directly to obtain the
pressure distribution. Solving Equation I1.5 for the velocity potential ¢ deter-
mines the velocity distribution only, and in order to determine the pressure,
use must be made of the equations of dynamics. Rather than use Equation
I1.2, its integrated form, that is the Bernoulli equation, will be used. Using
Equation 3.2¢, the pressure may be determined from the following relation:

. r, 1o e_Ge
6t+p+2 ¢ ¢-G=F(1). (IL6)

Having determined the velocity potential ¢, this becomes a simple alge-
braic equation for the pressure.

From the foregoing, it is evident that a simpler form of the governing equa-
tions exists for potential flows. Rather than solving Equations II.1 and II.2
directly, Equation IL5, together with the appropriate boundary conditions,
may be solved to yield the velocity potential and hence the velocity field.
Having done this, Equation II.6 may be used to establish the pressure field.
This formulation has certain simplifying features. First, it will be noticed
that the differential equation to be solved, given by Equation IL5, is linear,
whereas Equation II.2 is nonlinear. Of course, the nonlinearity cannot be
completed circumvented, and indeed, it appears in the term V¢ - V¢ in the
Bernoulli equation. However, in this equation, it poses no difficulty in the
analysis. One of the most useful properties of linear differential equations is
that different solutions may be superimposed to yield other solutions. This
property will be used extensively in the following chapters.
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Two-Dimensional Potential Flows

It was pointed out in the introduction to Part II that potential flows may
be analyzed in a much simpler way than general fluid flows. Within the
category of potential flows, the two-dimensional subset lends itself to even
greater simplification. It will be shown in this chapter that the simplification
is so great that solutions to Equations IL.5 and I1.6 may be obtained without
actually solving any differential equations. This is achieved through use of
the powerful tool of complex variable theory.

The chapter begins by introducing the stream function, which, together
with the velocity potential, leads to the definition of a complex potential.
Through this complex potential, some elementary solutions corresponding
to sources, sinks, and vortices are examined. The superposition of such ele-
mentary solutions then leads to the solution for the flow around a circular
cylinder. The method of conformal transformations is then introduced, and
the Joukowski transformation is used to establish the solutions for the flow
around ellipses and airfoils. The Schwarz—Christoffel transformation is then
introduced and used to study the flow in regions involving sharp corners.
Included in this chapter are examples of free-surface configurations.

4.1 Stream Function

The velocity potential ¢ was defined in such a way that it automatically sat-
isfied the condition of irrotationality. The continuity equation then showed
that ¢ had to be a solution of Laplace’s equation. A second function may be
defined by a complementary procedure for two-dimensional incompressible
fluid flows. That is, a function may be defined in such a way that it automati-
cally satisfies the continuity equation, and the equation it must satisfy will be
determined by the condition of irrotationality.

The continuity equation, in Cartesian coordinates, for the flow field under
consideration is

%+a—v=0.
ox oy

75
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Now, introduce a function y that is defined as follows:

u=v (@1a)
ay

SR (4.1b)
ox

With this definition, the continuity equation is satisfied identically for all
functions y. y is called the stream function, and by virtue of its definition, it is
valid for all two-dimensional flows, both rotational and irrotational.

The equation that the stream function y must satisfy is obtained from the
condition of irrotationality. Denoting the components of the vorticity vector
o by (&, 1, §), it is first observed that, in two dimensions, the only nonzero
component of the vorticity vector is {, the component perpendicular to the
plane of the flow. Secondly, it is noted that { = dv/dx — du/dy. Thus, the condi-
tion of irrotationality is

dv 0
oo
ox dy

Substituting for u and v from Equation 4.1 shows that y must satisfy the
following equation:

2 2
27‘5 . aay“’ - 0. (4.2)

That is, the stream function v, like the velocity potential ¢, must satisfy
Laplace’s equation. The stream function y has some useful properties that
will now be derived.

The flow lines that correspond to y = constant are the streamlines of the
flow field. To show this, it is noted that y is a function of both x and y in
general so that the total variation in y associated with a change in x and a
change in y may be calculated from the expression

np o
dyp=""dx+d
v ox ¥ ay Y

=-vdx+udy
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where Equation 4.1 has been used. Then, the equation of the line y = constant
will be

0=-vdx+udy
or
dy 2
dv  u
v

where the subscript denotes that this expression for dy/dx is valid for y held
constant. However, it was shown in Chapter 2 that this is precisely the equa-
tion of the streamlines in the xy plane. Hence, the lines corresponding to
y = constant are the streamlines, and each value of the constant defines a
different streamline. It is this property of the function y that justifies the
name stream function.

Another property of the stream function  is that the difference of its
values between two streamlines gives the volume of fluid that is flowing
between these two streamlines. To show this, consider two streamlines cor-
responding to y =y, and y = y, as shown in Figure 4.1. A control surface AB
of arbitrary shape but positive slope is shown joining these two streamlines,
and an element of this surface shows the positive volumetric flow rates cross-
ing it in the x and y directions per unit depth perpendicular to the flow field.
Then, the total volume of fluid flowing between the streamlines per unit
time per unit depth of flow field will be

FIGURE 4.1
Two streamlines showing the components of the volumetric flow rate across an element of
control surface joining the streamlines.
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B B
Q =fAudy —fAvdx.

However, it was observed earlier that dy = —v dx + u dy, so that, integrating
this expression between the two points A and B, it follows that

VP, -, =—fjvdx+fjudy.

Comparing these two expressions confirms that y, — y; = Q.

Finally, it should be noted that the streamlines y = constant and the lines
¢ = constant, which are called equipotential lines, are orthogonal to each other.
This may be shown by noting that if ¢ depends upon both x and y, the total
change in ¢ associated with changes in both x and y will be

99 99
dp=—"dx+_—d
¢ ax x+ay Y

= udx + vdy

where Equation I1.4 has been used. Then, the lines corresponding to ¢ = con-
stant will be defined by the following relation:

0 =udx + vdy
or
dy __u
dx . v
That is,
dy 1

dv - (dy/dx),

In words, the slope of the line ¢ = constant is the negative reciprocal of the
slope of the line y = constant, so that these sets of lines must be orthogonal.
This property of the streamlines and the equipotential lines is the basis of a
numerical procedure for solving two-dimensional potential-flow problems.
The method is referred to as the flow net.
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4.2 Complex Potential and Complex Velocity

The velocity components # and v may be expressed in terms of either the
velocity potential or the stream function. From Equations 1.4 and 4.1, these
expressions are

)
ox  dy
0200
ay ax

That is, the functions ¢ and y are related by the expressions

% _
ox oy
% __
dy  ox

But these will be recognized as the Cauchy—Riemann equations for the
functions ¢(x, y) and y(x, y). Then, consider the complex potential F(z), which
is defined as follows:

F(z) = d(xy) + iw(xy) @.3)

where z = x + iy. Now, if F(z) is an analytic function, it follows that ¢ and y
will automatically satisfy the Cauchy—Riemann equations. That is, for every
analytic function F(z), the real part is automatically a valid velocity potential,
and the imaginary part is a valid stream function.

The foregoing result suggests a very simple way of establishing solutions
to the equations of two-dimensional potential flows. By equating the real
part of a given analytic function to ¢ and the imaginary part to y, the theory
of complex variables guarantees that V2¢ = 0 and V?y = 0 as required. The
flow field corresponding to that analytic function may be determined by
studying the streamlines y = constant. The corresponding velocity compo-
nents may be calculated from Equation I1.4 or Equation 4.1, and the pressure
may be obtained using Equation I1.6. This approach has the disadvantage
of being inverse in the sense that a problem is first solved and then exam-
ined to see what the physical problem was in the first place. However, for
teaching purposes, this is of no consequence. Another disadvantage is that
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the method cannot be generalized to three-dimensional potential flows. On
the other hand, this approach avails itself of the powerful results of com-
plex variable theory and avoids the difficulties of solving partial differential
equations. For these reasons, the complex-potential approach will be used in
this chapter.

Another quantity of prime interest, apart from the complex potential F(z),
is the derivative of F(z) with respect to z. Since F(z) is supposed to be analytic,
dF/dz will be a point function whose value is independent of the direction
in which it is calculated. Then, denoting this derivative by W, its value will
be given by

W(z)=£=£
dz ox
=@+ia—w
ax ox
that is,
dF
WE)=—=u-1i 44
(2) - Uu-1iv 4.4

where Equations 4.3, 11.4, and 4.1b have been used. In view of this result, the
quantity W(z) is called the complex velocity, although its imaginary part is —iv.
Equation 4.4 offers a convenient alternative to the use of Equations 1.4 and
4.1 for finding the velocity components that correspond to any particular
complex potential.

A useful property of the complex velocity is that, when multiplied by its
own complex conjugate, it gives the scalar product of the velocity vector with
itself. To show this, consider W(z) and its complex conjugate W(z). Then,

WW = (u - iv)(u + iv) @.5)
WW = u* + 07,

The significance of this result is that the quantity u - u = V¢ - Vi = 12 + 2
appears in the Bernoulli equation.

Frequently, it is advantageous to work in cylindrical coordinates rather
than Cartesian coordinates. An expression for the complex velocity may be
readily obtained in cylindrical coordinates by converting the Cartesian com-
ponents of the velocity vector (1, v) to cylindrical components (uy, 1). Figure
4.2 shows a velocity vector OP decomposed into its Cartesian components
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FIGURE 4.2
Decomposition of velocity vector OP into its Cartesian components (1, v) and its cylindrical
components (ig, U).

(shown solid) and also its cylindrical components (shown dotted). From this
figure, each of the Cartesian velocity components may be expressed in terms
of the two cylindrical components as follows:

U .
U = Uy cos O + u, cos 5—6 = Uy cosO —1u,sind
. . .
U = Uy SIN O + U, sin 5—6 = U Sin 0 + 1, cos 0.

Substituting these expressions into Equation 4.4 gives the expression for
the complex velocity W in terms of uy and

W = (ug cos0 — u, sin 0) — i(u sin 6 + 1, cos 0)
= Uy (cos O — isin B) — i1, (cos O — i sin O)
that is,
W = (ug — iuge™™. 4.6

The foregoing results (Equations 4.3 through 4.6) are sufficient to establish
the flow fields, which are represented by simple analytic functions.



82 Fundamental Mechanics of Fluids

4.3 Uniform Flows

The simplest analytic function of z is proportional to z itself, and the corre-
sponding flow fields are uniform flows.

First, consider F(z) to be proportional to z where the constant of propor-
tionality is real. That is,

F@z)=cz
where c is real. Then, from Equation 4.4,
WiE)=u-iv=c.

Then, by equating real and imaginary parts of this equation, the velocity
components corresponding to this complex potential are

u=c
v=0.

But this is just the velocity field for a uniform rectilinear flow as shown in
Figure 4.3a. Thus, the complex potential for such a flow whose velocity mag-
nitude is U in the positive x direction will be

F(z) = Uz. 4.7a)

Next, consider the complex potential to be proportional to z with an imagi-
nary constant of proportionality. Then,

F(z) = —icz

where c is real. The minus sign has been included to make the velocity com-
ponent positive when c is positive. For this complex potential,

W(z) =u —iv = —ic

() (b) (©
y y y

- L

FIGURE 4.3
Uniform flow in (a) x direction, (b) y direction, and (c) angle o to x direction.
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so that the velocity components are

This is a uniform vertical flow as shown in Figure 4.3b. Then, the complex
potential for such a flow whose velocity magnitude is V in the positive y
direction will be

F(z) = -iVz. 4.7b)

Finally, consider a complex constant of proportionality so that

F(z) = ce*z
where ¢ and o are real. For this complex potential,
W(z) = u — iv = ¢ cos o — ic sin .
Hence, the velocity components of the flow field are

Uu=ccosuo

v=csina
This corresponds to a uniform flow inclined at an angle « to the x axis as
shown in Figure 4.3c. Hence, the complex potential for such a flow whose
velocity magnitude is V will be

F(z) = Ve iz, 4.70)

This last result, of course, contains the two previous results as special cases
corresponding to « = 0 and a = n/2.

4.4 Source, Sink, and Vortex Flows

Complex potentials that correspond to the flow fields generated by sources,
sinks, and vortices are obtained by considering F(z) to be proportional to log
z. When considering log z, we consider the principal part of this multivalued
function corresponding to 0 < 0 < 2.
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Consider, first, the constant of proportionality to be real. Then,
F(z)=clogz
= clog Re®
= clog R + ic0.

Hence, from Equation 4.3,

¢=clogR
Y = ch.

That is, the equipotential lines are the circles R = constant, and the stream-
lines are the radial lines 6 = constant. This gives a flow field as shown in
Figure 4.4a in which the streamlines are shown solid and the direction of
the flow is shown for ¢ > 0. The direction of the flow is readily confirmed
by evaluating the velocity components. In view of the geometry of the flow,
cylindrical coordinates are preferred, so that

-0

W(z) =

e

N o
e

Comparison with Equation 4.6 shows that the velocity components are

FIGURE 4.4
Streamlines (shown solid) and equipotential lines (shown dashed) for (a) source flow and
(b) vortex flow in the positive sense.
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The flow field indicated in Figure 4.4a is called a source. The velocity is
purely radial, and its magnitude decreases as the flow leaves the origin. In
fact, the origin is a singular point corresponding to infinite velocity, and as
the fluid flows radially outward, its velocity is decreased in such a way that
the volume of fluid crossing each circle is constant, as required by the conti-
nuity equation.

Sources are characterized by their strength, denoted by m, which is defined
as the volume of fluid leaving the source per unit time per unit depth of the
flow field. From this definition, it follows that

27
m =f uzRdo
0

2

),

Here, the result u = ¢/R has been used. Then, ¢ may be replaced by m/2x,
giving the following complex potential for a source of strength m:

cdO = 2mc.

F(z) = %1ogz.

The source corresponding to this complex potential is located at the origin,
the location of the singularity. Then, the complex potential for a source of
strength m located at the point z = z, will be

F(z) = %log(z _z). .8)

Clearly, the complex potential for a sink, which is a negative source, is
obtained by replacing m by —m in Equation 4.8.

Now, consider the constant of proportionality in the logarithmic complex
potential to be imaginary. That is, consider

F(z) = —iclog z

where c is real and the minus sign is included to give a positive vortex, as
will be seen. Then, using cylindrical coordinates,

F(z) = —iclog Re"

=c6-iclogR.
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Then, from Equation 4.3, the velocity potential and the stream function are

¢=cO
= -clogR.
That is, the equipotential lines are the radial lines 6 = constant, and the

streamlines are the circles R = constant as shown in Figure 4.4b. The velocity
components may be evaluated by use of the complex velocity:

c c
W(z)=-i—=-i—e™.
(2) . R

Comparison with Equation 4.6 shows that the velocity components are

Hence, the direction of the flow is positive (counterclockwise) for ¢ > 0, and
the resulting flow field is called a vortex.

A vortex is characterized by its strength, which may be measured by the
circulation I" associated with it. From Equation 2.3, the circulation I" associ-
ated with the singularity at the origin is

r=g>‘u-d1
27
=f uy,Rd6
0

27

=f cdO = 2mc.
0

Here, the result 1, = ¢/R has been used. Then, ¢ may be replaced by I'/2x,
giving the following complex potential for a positive (counterclockwise) vor-
tex of strength I

r
F = ‘71 .
(z2)=-i——logz

The singularity in this expression is located at z = 0. That is, the line vortex
is located at z = 0. Then, the complex potential for a positive vortex located
at z =z, will be
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F(z) - —i%log(z ~2). “9)

The complex potential for a negative vortex would be obtained by replac-
ing I" by -I" in Equation 4.9. Note, however, that the negative coefficient is
associated with the positive vortex.

The flow field represented by Equation 4.9, which is shown in Figure 4.4b
for z, = 0, corresponds to a so-called free vortex. That is, for any closed contour
that does not include the singularity, the circulation will be zero and the
flow will be irrotational. All the circulation and vorticity associated with this
type of vortex are concentrated at the singularity. This is in contrast with the
solid-body rotation vortex mentioned in Chapter 2.

The principal application of the source, the sink, and the vortex is in the
superposition with other flows to yield more practical flow fields.

4.5 Flow in Sector

The flows in sharp bends or sectors are represented by complex potentials
that are proportional to z", where n > 1. A special case of such complex poten-
tials would be n = 1, which represents a uniform rectilinear flow. Then, in
order that this special case will reduce to Equation 4.7a, consider the complex
potentials

F(z) = Uz".

Substituting z = Re®® and separating the real and imaginary parts of this
function give

F(z) = UR" cos nB + iUUR" sin n6.
Then, the velocity potential and the stream function are
¢ = UR" cos no
y = UR" sin n6.
From this, it is evident that when 0 = 0 and when 0 = nt/#n, the stream func-
tion  is zero. That is, the streamline y = 0 corresponds to the radial lines

0 =0 and 0 = n/n. Between these two lines, the streamlines are defined by R"
sin 116 = constant. This gives the flow field shown in Figure 4.5. The direction
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FIGURE 4.5
Streamlines (shown solid) and equipotential lines (shown dashed) for flow in a sector.

of the flow along the streamlines may be determined from the complex
velocity as follows:
W(z) = nUz"" = nUR"'e'"°

= (nUR"" cos n® + inlUR"™" sin n@)e™.

Thus, by comparison with Equation 4.6, the velocity components are

uz = nUR"™ cos nd

uy = —nUR"" sin n.

Then, for 0 < 0 < (n/2n), uy is positive while 1, is negative, and for (x/2n)
< 0 < (n/n), ug is negative and u, remains negative. This establishes the flow
directions as indicated in Figure 4.5.

From the foregoing, the complex potential for the flow in a corner or sector
of angle nn/n is

F(z) = Uz". (4.10)
For n = 1, Equation 4.10 gives the complex potential for a uniform rectilin-

ear flow, and for n = 2, it gives the complex potential for the flow in a right-
angled corner.
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4.6 Flow around Sharp Edge
The complex potential for the flow around a sharp edge, such as the edge of
a flat surface, is obtained from the function z!'/2. Then, consider the complex
potential

F(z) = cz'/?
where cis real and 0 < 0 < 2x. Then, in cylindrical coordinates,

F(z) = cR1/2¢0/2

so that the velocity potential and stream function are
0
¢ = cRY? cos —
2
. 0
Yy = cRY? sin._.

Thus, the lines 0 = 0 and 0 = 2x correspond to the streamline y = 0. The
other streamlines are defined by the equation R"2 sin 6/2 = constant, which
yields the flow pattern shown in Figure 4.6. The direction of the flow is
obtained from the complex velocity as follows:

c c _ig/2
W) = = Jrim

= c:os9 + ising e
- 2R1/2 2 °

Hence, the velocity components are

Then, for 0 <0 <, up >0 and u, < 0. Also, for 1 < 0 < 2x, uy <0 and u, < 0.
This gives the direction of flow as indicated in Figure 4.6.

The flow field shown in Figure 4.6 corresponds to the flow around a sharp
edge, and so the complex potential for such a flow is
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FIGURE 4.6
Streamlines (shown solid) and equipotential lines (shown dashed) for flow around a sharp
edge.

F(z) = cz'/2. 4.11)

An important feature of this result is that the corner itself is a singular point
at which the velocity components become infinite. Since both u; and u, vary
as the inverse of R'/?, it follows that the velocity is singular as the square root
of the distance from the edge. This result will be discussed in Section 4.15.

4.7 Flow due to Doublet

The function 1/z has a singularity at z = 0, and in the context of complex
potentials, this singularity is called a doublet. The quickest way of establish-
ing the flow field that corresponds to the complex potentials that are propor-
tional to 1/z would be to follow the methods used in the previous sections.
However, it turns out that the doublet may be considered to be the coalescing
of a source and a sink, and the required complex potential may be obtained
through a limiting procedure that uses this fact. This interpretation leads to
a better physical understanding of the doublet, and for this reason, it will be
followed here before studying the flow field.

Referring to the geometry indicated in Figure 4.7a, consider a source of
strength m and a sink of strength m, each of which is located on the real axis
a small distance € from the origin. The complex potential for such a configu-
ration is, from Equation 4.8,
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(@) (b)

L)

FIGURE 4.7
(a) Superposition of a source and a sink leading to (b) streamline pattern for the limit & — 0

with me = constant.

m m
F(z) = Elog(z +¢)— Elog(z -¢)

m Z+E€
=—-1Io

2% zZ—-¢
—ﬂo 1+¢/z

o 8 1-¢/z

If the nondimensional distance ¢/|z| is considered to be small, the argu-
ment of the logarithm may be expanded as follows:

82

m € 3
F(iz)=—log 1+— 1+—+0 —
® 2 8 z z z’

2

m € €
=—Ilog 1+2—+0 —
2 B z z?

where the designation O(e?/z%) means terms of order €2/z> or smaller. The
logarithm is now in the form log(1l + y), where y < 1, so that the equivalent
expansion v + O(y?) may be used. Then,
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Fo)=2 2%5:0 &
2z

It is now proposed to let € = 0 and m — o« in such a way that lim,_(me) =
np, where 1 is a constant. Then, the complex potential becomes

F(Z)—;.

Thus, the complex potential 1/z may be thought of as being the equivalent
of the superposition of a very strong source and a very strong sink that are
very close together.

In order to establish the flow field that the above complex potential repre-
sents, the stream function will be established as follows:

F(z)= —
X +1y

x-iy
x*+y?

Thus, the equation of the streamlines y = constant is
2 2
X+y +—y=0
P

or

2 2
X+ oyt = ——

2y 2y

But this is the equation of a circle of radius u/(2y) whose center is located at
y =-1/(2y). This gives the streamline pattern shown in Figure 4.7b. Although
the direction of the flow along the streamlines may be deduced from the
source and sink interpretation, it will be checked by evaluating the velocity
components. The complex velocity for this complex potential is
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W(Z) = —ZT = _?6—129

) -0
=-—>(cosO-isinB)e™.
Hence, the velocity components are
Ug = — Y cos 0
Uy = — E sin 6.

These expressions for u; and u, confirm the flow directions indicated in
Figure 4.7b.

The flow field illustrated in Figure 4.7b is called a doublet flow, and the
singularity that is at the heart of the flow field is called a doublet. Then, the
complex potential for a doublet of strength p that is located at z = z, is

F(z) =

4.12)

Zy

The principal use of the doublet is in the superposition of fundamental
flow fields to generate more complex and more practical flow fields. An
application of this will be illustrated in the next section.

4.8 Circular Cylinder without Circulation

The fundamental solutions to the foregoing flow situations provide the
basis for more general solutions through the principle of superposition.
Superposition is valid here since the governing equation, for either the veloc-
ity potential or the stream function, is linear. The first example of superposi-
tion of fundamental solutions will be the flow around a circular cylinder.

Consider the superposition of a uniform rectilinear flow and a doublet at
the origin. Then, from Equations 4.7a and 4.12, the complex potential for the
resulting flow field will be

F(z)=Uz+—.
Z
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It will now be shown that for a certain choice of the doublet strength, the
circle R = a becomes a streamline. On the circle R = g, the value of z is a¢®, so
that the complex potential on this circle is

F(z) = Uae® + —e™™
a
= Ua+— cosO+i Ua-— sinb.
a a
Thus, the value of the stream function on the circle R = a is
Y= Ua-— sinb.
a

For general values of p, y is clearly variable, but if we choose the strength of
the doublet to be p = Ua?, then y = 0 on R = a. The flow pattern for this doublet
strength is shown in Figure 4.8a. The flow field due to the doublet encounters
that due to the uniform flow and is bent downstream. For clarity, the flow
due to the doublet is shown as dashed lines in Figure 4.8a. It may be seen
that the doublet flow is entirely contained within the circle R = 4, whereas
the uniform flow is deflected by the doublet in such a way that it is entirely
outside the circle R = 4. The circle R = g itself is common to the two flow fields.

Under these conditions, a thin metal cylinder of radius a could be slid into
the flow field perpendicular to the uniform flow so that it coincides with the
streamline on R = a. Clearly, the flow due to the doublet and that due to the
free stream would be undisturbed by such a cylindrical shell. Having done
this, the flow due to the doublet could be removed, and the outer flow would
remain unchanged. Finally, the inside of the shell could be filled to yield a
solid cylinder. That is, for R > 4, the flow field due to the doublet of strength
Ua? and the uniform rectilinear flow of magnitude U give the same flow as

FIGURE 4.8
(a) Flow field represented by the complex potential F(z) = U(z + a%/z) and (b) flow around a
circular cylinder of radius a.
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that for a uniform flow of magnitude U past a circular cylinder of radius a.
The latter flow is shown in Figure 4.8b. Then, the complex potential for a
uniform flow of magnitude U past a circular cylinder of radius a is

2

Fz)=U z+ “? . 4.13)

This result is useful in its own right, but it will also be found useful in
later sections, through the technique of conformal transformations, to obtain
additional solutions.

The solution given by Equation 4.13 for the flow around a circular cylinder
predicts no hydrodynamic force acting on the cylinder. This statement will
be proved quantitatively in a later section, and in the meantime, it will be
proved qualitatively. Referring to Figure 4.8b, it can be seen that the flow is
symmetric about the x axis. That is, for each point on the upper surface, there
is a corresponding point on the lower surface, vertically below it, for which
the magnitude of the velocity is the same. Then, from the Bernoulli equation,
the magnitude of the pressure is the same at these two points. Hence, by
integrating p dx around the surface of the cylinder, the lift force acting on the
cylinder must be zero. Similarly, owing to the symmetry of the flow about
the y axis, the drag force acting on the cylinder is zero.

Although the foregoing result does not agree with our physical intuition,
the potential-flow solution for the circular cylinder, and indeed for other bod-
ies, is valuable. The absence of any hydrodynamic force on the cylinder is due
to the neglect of viscosity. It will be seen in Part III that viscous effects create
a thin boundary layer around the cylinder, and this boundary layer separates
from the surface at some point, creating a low-pressure wake. The resulting
pressure distribution creates a drag force. However, it will be pointed out
that the viscous boundary-layer solution is valid only in the thin boundary
layer around the cylinder, and the solution obtained from the boundary-layer
equations must be matched to that given by Equation 4.13 at the edge of the
boundary layer. That is, Equation 4.13 gives a valid solution outside the thin
boundary layer and upstream of the vicinity of the separation point. It also
indicates the idealized flow situation that would be approached if viscous
effects are minimized. For more streamlined bodies, such as airfoils, the
potential-flow solution is approached over the entire length of the body.

4.9 Circular Cylinder with Circulation

The flow field studied in the previous section not only was irrotational but
also produced no circulation around the cylinder itself. It was found that
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there was no hydrodynamic force acting on the cylinder under these condi-
tions. It will be shown in a later section that it is the circulation around a
body that produces any lift force that acts on it. It is therefore of interest to
study the flow around a circular cylinder that has a circulation around it.

It was established in a previous section that the streamlines for a vortex
flow form concentric circles. Therefore, if a vortex is added at the origin to
the flow around a circular cylinder, as described in the previous section, the
fact that the circle R = a is a streamline would be unchanged. Thus, from
Equations 4.13 and 4.9, z; being zero in the latter, the complex potential for the
flow around a circular cylinder with a negative bound vortex around it will be

a> il
Fz)=U z+— +—logz+c.
@) z 2 &

The negative vortex has been used since it will turn out that this leads to a
positive lift. A constant ¢ has been added to the complex potential for the fol-
lowing reason. For no circulation, it was found that not only was y constant on
R = abut also the value of the constant was zero. By adding the vortex, y will
no longer be zero on R = g, although it will have some other constant value.
Since it is frequently useful to have the streamline on R =a be y = 0, it is desir-
able to adjust things so that this condition is achieved. By adding a constant c
to the complex potential, we have the flexibility to choose c in such a way that
y = constant becomes y = 0. This adjustment has no effect on the velocity and
pressure distributions since the velocity components are defined by deriva-
tives of y, so that the absolute value of y at any point is of no significance.

In order to evaluate the constant ¢, the value of the stream function on the cir-
cle R =a will be computed. Then, putting z = ae®, the complex potential becomes

F(z) = U(ae® + ae™) + ;—rlog ae® +c
n

= ZUacose—L6+£loga+c.
2n 2m

Hence, on the circle R = g, the value of y is indeed constant, and by choos-
ing c = —(il'/2n) log a, the value of this constant will be zero. With this value
of ¢, the complex potential becomes

2 .
F(z)=U 2+ +£10g£. (4.14)
z 2% a

This describes a uniform rectilinear flow of magnitude U approaching a
circular cylinder of radius a that has a negative vortex of strength I' around
it. As required, this result agrees with Equation 4.13 when I" = 0.
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In order to visualize the flow field described by Equation 4.14, the corre-
sponding velocity components will be evaluated from the complex velocity.

2 o
a ir 1
WiEz)=U 1-— +_——
@) 72 2n z
2 o
U 1-% i +—lr e
R? 27R
2 o
-u eze_i ) +£ e
R? 2R
2 2
U 1-L cos+i U 1+% si116+L e ™,
R? R? 2R

Hence, by comparison with Equation 4.6, the velocity components are

2

g = U 1—% cos0 (4.152)
. r
Uy =-U 1+P sme—m. (4.15b)

On the surface of the cylinder, where R = a, Equation 4.15 becomes
ug =0

U, = —ZUSmG—L.
0 2ma

The fact that u; = 0 on R = a is to be expected since this is the boundary
condition (Equation I1.3). A significant point in the flow field is a point where
the velocity components all vanish—that is, a stagnation point. For this flow
field, the stagnation points are defined by

r

s = - 4nla

4.16)

where 65 is the value of 6 corresponding to the stagnation point. For I" = 0,
sin 65 = 0, so that 05 = 0 or n, which agrees with Figure 4.8b for the circular
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cylinder without circulation. For nonzero circulation, the value of 6 clearly
depends upon the magnitude of the parameter I'/(4rxlla), and it is convenient
to discuss Equation 4.16 for different ranges of this parameter.

First, consider the range 0 < I'/(4nla) < 1. Here, sin 05 < 0, so that 65 must
lie in the third and fourth quadrants. There are two stagnation points, and
clearly the one that was at 6 = & is now located in the third quadrant, while
the one that was located at 6 = 0 is now located in the fourth quadrant. The
two stagnation points will be symmetrically located about the y axis in order
that sin 65 = —constant may be satisfied. The resulting flow situation is shown
in Figure 4.9a.

Physically, the location of the stagnation points may be explained as fol-
lows: The flow due to the vortex and that due to the flow around the cylinder
without circulation reinforce each other in the first and second quadrants.
On the other hand, these two flow fields oppose each other in the third and
fourth quadrants, so that at some point in each of these regions, the net
velocity is zero. Thus, the effect of circulation around the cylinder is to make
the front and rear stagnation points approach each other, and for a negative
vortex, they do so along the lower surface of the cylinder.

Consider next the case when the nondimensional circulation is unity, that
is, when I'/(4=xUa) = 1. Here, sin 65 = -1, so that 05 = 3n/2. The corresponding
flow configuration is shown in Figure 4.9b. The two stagnation points have
been brought together by the action of the bound vortex such that they coin-
cide to form a single stagnation point at the bottom of the cylindrical surface.
It is evident that if the circulation is increased above this value, the single
stagnation point cannot remain on the surface of the cylinder. It will move
off into the fluid as either a single stagnation point or two stagnation points.

Finally, consider the case where I'/(4nlla) > 1. Since it seems likely that any
stagnation points in this case will not lie on the surface of the cylinder, the
velocity components must be evaluated from Equation 4.15. Then, if R, and
0 are the cylindrical coordinates of the stagnation points, it follows from
Equation 4.15 that R, and 05 must satisfy the equations

FIGURE 4.9

Flow of approach velocity U around a circular cylinder of radius a having a negative bound
circulation of magnitude I" for (a) 0 < I'/(4nUa) < 1, (b) I[/(4rnlUa) = 1, and (c) I'/(4xla) > 1.
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2

ui-2 cosf; =0

2
s

2
U 1+ sin Og =—L.
R? 2nR,

Since it is assumed that the stagnation points are not on the surface of the
cylinder, it follows that R, # 4, so that the first of these equations requires that
05 = n/2 or 3n/2. For these values of 0, the second of the above equations
becomes

2
u 1+a— =z r
R? 27R,

S

where the minus sign corresponds to 85 = n/2 and the plus sign to 85 = ©/2.
Since U > 0, the left-hand side of the above equation is positive, and since
I' > 0, the minus sign must be rejected on the right-hand side. This might
have been expected since for I'/(4nxla) = 1, the value of 65 was 3n/2, whereas
the minus sign corresponds to 85 = n/2, which would require a large jump in
0, for a small change in I. The equation for R, now becomes

2
Ui+t -
R?  2nR,
or
R-L R0
2nl
and hence
r r °
R=——x)]— -
4nl 4nl
or
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This result shows that as 4nla/T" — 0, R, — o for the plus sign, but the cor-
responding limit is indeterminate for the minus sign. This difficulty may be
overcome by expanding the square root for 4nla/T" < 1 as follows:

R, T 1 4dnlln °
— 1+ 1-— +

a  4nla 2 T

where the dots indicate terms of order (4na/I')* or smaller. In this form, it is
evident that as 4nlla/T'— 0, R, — 0 for the minus sign. Since this stagnation
point would be inside the surface of the cylinder, the minus sign may be
rejected, so that the coordinates of the stagnation point in the fluid outside
the cylinder are

3
65—7
R T 4nlla °
s _ 1+,1- 4
a 4xnlUa T

This gives a single stagnation point below the surface of the cylinder. The
corresponding flow configuration is shown in Figure 4.9¢, from which it
will be seen that there is a portion of the fluid that perpetually encircles the
cylinder.

The flow fields for the circular cylinder with circulation, as shown in
Figure 4.9, exhibit symmetry about the y axis. Then, following the argu-
ments used in the previous section, it may be concluded that there will be
no drag force acting on the cylinder. However, the existence of the circula-
tion around the cylinder has destroyed the symmetry about the x axis, so
there will be some force acting on the cylinder in the vertical direction.
For the negative circulation shown, the velocity on the top surface of the
cylinder will be higher than that for no circulation, whereas the velocity
on the bottom surface will be lower. Then, from Bernoulli’s equation, the
pressure on the top surface will be lower than that on the bottom surface,
so that the vertical force acting on the cylinder will be upward. That is, a
positive lift will exist. In order to determine the magnitude of this lift, a
quantitative analysis must be performed, and this will be done in the next
section.

The principal interest in the flow around a circular cylinder with circula-
tion is in the study of airfoil theory. By use of conformal transformations, the
flow around certain airfoil shapes may be transformed into that of the flow
around a circular cylinder with circulation.
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4.10 Blasius Integral Laws

In the previous section, it was argued that a lift force exists on a circular cyl-
inder that has a circulation around it. However, the magnitude of the force
can be established only by quantitative methods. The obvious way to evalu-
ate the magnitude of this force is to establish the velocity components from
the complex potential. Knowing the velocity components, the pressure dis-
tribution around the surface of the cylinder may be established by use of the
Bernoulli equation. Integration of this pressure distribution will then yield
the required force acting on the cylinder.

The difficulty with the foregoing procedure is that it would have to be
carried out for each pressure distribution and for each body under consid-
eration. The Blasius laws provide a convenient alternative. It will be shown
that if the complex potential for the flow around a body is known, then it is
possible to evaluate the forces and the turning moment acting on the body by
means of simple contour integrals. These contour integrals, in turn, may be
readily evaluated by use of the residue theorem. The Blasius laws are actu-
ally two separate laws: one for forces and one for the hydrodynamic moment
acting on the body.

In order to establish the forces acting on an arbitrarily shaped body in
a flow field, consider such a body as shown in Figure 4.10. A fixed control
contour C; of arbitrary shape is drawn around the body whose surface is
denoted by C,. The forces acting through the center of gravity, as indicated by
X and Y, are the hydrodynamic forces acting on the body in the x and y direc-
tions, respectively. Then, for the fluid contained between the surfaces C, and
C, it may be stated that the net external force acting on the positive x direc-
tion must equal the net rate of increase in the x component of the momen-
tum. In Figure 4.10, an element of positive slope of the surface C; is shown
decomposed in the x and y directions. The components of the volume flow
that pass through this element of surface are also indicated. Then, the above
statement of Newtonian mechanics for the x direction may be expressed by
the following equation:

X-( pdy-= dy - odx)u.
fcopy fcnp(uy vdx)u

In writing this equation, it has been noted that there is no transfer of
momentum across the surface C; since it is a streamline, and that the inte-
gral of the pressure around C, yields the force X, which acts in the posi-
tive direction on the body and hence in the negative direction on the fluid.
Also, the mass efflux across the element of the surface C; is p(u dy — v dx),
so that the product of this quantity and the x component of velocity, when
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udy

FIGURE 4.10

Arbitrarily shaped body enclosed by an arbitrary control surface. X, ¥, and M are the drag, lift,
and moment acting on the body, respectively.

integrated around the surfaces C,, gives the net increase in the x component
of momentum.

A similar equation may be obtained by applying the same Newtonian law
to the y direction. Thus, the statement that the net external force acting in the
positive y direction must equal the net rate of increase in the y component of
the momentum yields the equation

=Y+ pdx=f p(udy — vdx)o.
Co Co

Solving these two equations for the unknown forces X and Y yields the
following pair of integrals:

X=[ (-pdy-pu’dy +puvdx)
Co

Y =f (pdx - puvdy + po* dx).
Co

The pressure may be eliminated from these equations by use of the
Bernoulli equation, which, for the case under consideration, may be written
in the form

p+%p(u2 +7v%)=B
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where B is the Bernoulli constant. Then, by eliminating the pressure p, the
expressions for X and Y become

X=p uvdx—%(uz—vz)dy

Co

1
Y=- uody + = (u? — v*)dx
pfco b+ € )

where the fact that | Bdx= | Bdy=0 for any constant B around any
Co Co

closed contour such as C; has been used.

It will now be shown that the quantity X —iY is related to a specific com-
plex integral. Consider the following complex integral involving the complex
velocity W:

iP [ w2dz - i% (- iv)(dx +idy)

Co Co

= i% { (W =0v*)dx +2uody +i (u* - 0*)dy - 2uvdx }
Co

=p uvdx—%(tf—vz)dy +i uvdy+%(u2—v2)dx

Co

=X-iY.

The last equality follows by comparison of the expanded form of the com-
plex integral with the expressions derived above for the body forces X and
Y. That is, the complex force X — iY may be evaluated from the following
equation:

X —iY = ig W2dz (4.17a)

Co

where W(z) is the complex velocity for the flow field, and C; is any closed
contour that encloses the body under consideration. It should be noted that
X and Y were defined as the forces acting on the body through its center of
gravity.

Equation 4.17a constitutes one of the two Blasius laws. Normally, in
applying Equation 4.17a, the contour integral is evaluated with the aid of
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the residue theorem. An application of this procedure will be covered in
the next section.

In order to establish the hydrodynamic moment acting on the body, con-
sider again Figure 4.10. The quantity M is the moment acting on the body
about its center of gravity. Then, taking clockwise moments as being posi-
tive, moment equilibrium of the fluid enclosed between C, and C, requires
that

-M +f [pxdx + pydy + p(udy - vdx)uy - p(udy — vdx)ovx] = 0.
Co

The first two terms under the integral are the components of the pressure
force multiplied by their respective perpendicular distances from the center
of gravity of the body, which is at the origin of the coordinate system. The
remaining two terms under the integral represent the inertia forces, which
were evaluated in the discussion of the force equations, multiplied by their
respective perpendicular distances from the origin. These inertia forces are
equal in magnitude and opposite in direction to the rate of increase in the
horizontal and vertical momentum components.

Solving the foregoing equation for the hydrodynamic moment M gives

M =f [pxdx + pydy + p(u’y dy + v*x dx - uvy dx - uvx dy)].
G
Substituting p = B — p(u* + v?)/2 from the Bernoulli equation gives

M=p[ - %(u2 +0°)(xdx + ydy) + (u*ydy + v*xdx) - (uoydx + uoxdy)

Co

where the fact that Bxdx= | Bydy=0 for any constant B and any
Go G

closed contour C; has been used. Rearranging the preceding equation shows
that the integral for the moment M may be put in the following form:

M= _Bf [(1* - v*)(xdx - ydy) + 2uv(xdy + y dx)].
2Jc,

It will now be shown that the quantity M may be related to the real part of
a complex integral. Consider the real part, designated by Re(), of the follow-
ing complex integral:
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B 2 _ B . N2 .
Re chon dz =Re 2fco(xﬂy)(u iv)”(dx +idy)
=Re Bf [(* - v*)(xdx - ydy) + 2uv(xdy + y dx)]
2Jc,

+ iEf [(#* - v*)(xdy + ydx) - 2uo(xdx + y dy)]
2Jc,

_P

) [(* - v*)(xdx - ydy) + 2uo(xdy + y dx)]
Co

- -M.

The last equality follows from a comparison of the real part of the com-
plex integral with the expression derived for M. That is, the hydrodynamic
moment acting on a body is given by

M= —%Re f ZW?dz 4.17b)

Co

where W(z) is the complex velocity for the flow field, and C; is any closed
contour that encloses the body. It should be noted that M is defined as the
hydrodynamic moment acting on the body, and it is positive when it acts
in the clockwise direction. Equation 4.17b is the second of the Blasius laws,
and the contour integral in this equation is usually evaluated by use of the
residue theorem.

4.11 Force and Moment on Circular Cylinder

It was observed in an earlier section that a force exists on a circular cylinder
that is immersed in a uniform flow and that has a circulation around it. The
magnitude of this force may now be evaluated using the results of the previ-
ous section.

From Equation 4.14, the complex potential for a circular cylinder of radius
ain a uniform rectilinear flow of magnitude U and having a bound vortex of
magnitude I' in the negative direction is
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a> il z
Fz)=U z+— +—log—.
@) +z +2n ga

Then, the complex velocity for this flow field is

2 .
a ir
Wiz=U 1-— +—
(@) 2 2nz
WD) = L 2U%a? .\ u?a* ,iur _ iura®  1°
N z? z4 nz 2’ An

But from the Blasius integral law (Equation 4.17a),

X-iy=i? [ W?dz
2Je,

=1 g Zm'E (residues of W? inside C,)

where the last equality follows from the residue theorem. It is therefore
required to evaluate the residue of W2(z) at each of the singular points that
lie inside an arbitrary contour in the fluid enclosing the cylinder. However,
inspection of the expression derived for W?2(z) above shows that the only sin-
gularity is at z = 0, corresponding to the doublet and the vortex that are
located there. Furthermore, W2(z) is in the form of its Laurent series about
z = 0, from which it is seen that the only term of the form b,/z is the fourth
term. Hence, the residue of W?2(z) at z = 0 is iUI/x. Then, the value of the
complex force is

Xoiy=i® om UL
2 7T
=-ipUL

Equating the real and imaginary parts of this equation shows that the drag
force X is zero, as was expected, and that the value of the lift force is

Y = pUL 4.18)
Equation 4.18 is known as the Kutta—Joukowski law, and it asserts that, for

flow around a circular cylinder, there will be no lift force on the cylinder if
there is no circulation around it, and if there is a circulation, the value of the
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lift force will be given by the product of the magnitude of this circulation
with the free-stream velocity and the density of the fluid. The right-hand
side of Equation 4.18 is positive, so the negative circulation that acted on the
cylinder led to a positive, that is, upward, lift force.

In order to evaluate the hydrodynamic moment M acting on the cylinder,
the quantity zWW2 must be evaluated. From the expression for W?(z) that was
established above,

2U%a? .\ u?at .\ iur ura®> 1?

3 2

ZW?(z) =U?z - .
@) z T 7z 4n’z

But from the Blasius integral law (Equation 4.17b),
M=-PRe [ iz
2 G
= —%Re Zm'E (residues of zW? inside C,)

where again the residue theorem has been used. However, the quantity
zW?2(z), as evaluated above, is already in the form of its Laurent series about
z = 0. From this, it is evident that the only singularity is at z = 0, and the
residue there comes from the second and last terms in the expansion. Hence,

FZ

- _PRe 2 —2u2a? -
2 4

That is, as might be expected, there is no hydrodynamic moment acting on
the cylinder.

4.12 Conformal Transformations

Many complicated flow boundaries may be transformed into regular flow
boundaries, such as the ones already studied, by the technique of conformal
transformations. Before using this fact, it is necessary to study the effect of
conformal transformations on the complex potential, the complex velocity,
sources, sinks, and vortices. In carrying out this study, it will be considered
that some geometric shape in the z plane whose coordinates are x and y is
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mapped into some other shape in the { plane whose coordinates are § and n
by means of the transformation

(=1@)

where fis an analytic function. This situation is depicted in Figure 4.11.

The basis of the complex potential was that both the velocity potential
and the stream function had to satisfy Laplace’s equation. Hence, in order
to establish the effect of a conformal transformation on complex potentials,
their effect on Laplace’s equation should be studied. This will be done by
transforming the second derivatives with respect to x and y into derivatives
with respect to the new coordinates, namely, & and n. Then, considering ¢ to
be a function of £ and 7,

a9 o n o
dx dx dE  dx Jm

where 0&/0x and dn/dx will be known from the equation of the mapping,
€ =f(z). Now, in order to transform 0%¢$/dx?, each of the two terms on the right-
hand side of the expression for d¢/0x must be differentiated with respect to
x. Then, using the product rule and considering ¢ to be a function of & and n

0 GEap _9°Eog & O0E 09 n 0%
ox dx 9E  9x? 9E  dx ox 9E*  dx 9%dm

and
2 2 2
d dn dp dmadp on 9 ¢ In 9o
- = . Ty - = 4 T
2 2
dx Jx dn dx* o dx Adx 9EIM  Ax an
BRI
BRI
RRIRIIIKKS
< CIIIRLLRRS
LRSI
< R LEIIIIIRRRRLKD
[RKEEK LIRS
% s oSate s teteret kotetotatetetetedes
X R ORREIRIIIRRIKK)
RG] KIS
KR RIS [ IR
ROSXSSERE5SKE8KL K SQQEKEK X X KEKKKKERK K AL KK LKKKKEL
00002020 20 0 0 0 e 0e 0 N0 0 0 00 00 190005 %% 0000 0. 0.0, 000 0.0 008
RIS 1% %
R RRRIIKIRIRKKS % RAXRKS %
N Q.Q.Q’Q‘Q'Q‘O“ %% % o o X
0% 0.0‘ 5 ’0‘0 0.’ XX}
0.0.0 ‘Q.Q‘Q
z plane { plane

Original and mapped planes for the mapping ( = f(z) where fis an analytic function.



Two-Dimensional Potential Flows 109

Hence, the expression for 0*¢$/0dx?, in terms of derivatives with respect to &
and 1, becomes

2 2 .9 2 .9 2 2 2
Po_ 0 T, an o sk d0 0% a0 o

ox>  9x 98 ax  an®  Ox dx 9Edn  ox* 9E  ox® an’

The corresponding expression for 02¢p/dy? is

2 2 0 2 .2 2 2 2
Po_ T Fe, e i i FE a0 i

d
>  dy  9E Ay om* 9y dy 9Bm  ay® 05 ay® am

Now, since ¢ must satisfy Laplace’s equation in the original plane, that is,
the xy plane, the sum of the above two quantities must be zero. Then,

2 2 2 2 2 2 2
g e 9% am m 0% E I g am 9O
— 4+ = —+ — 4+ — —— 42 =t =
ox ay  oE? ox ay o ox dx  dy dy IEIM

2 2 2 2
OE O 9 0om om 9 _,

+
aw* gyt 9 ax® gyt am

This is the equation that has to be satisfied by ¢(E, 1) in the { plane due to
any transformation { = f(z) corresponding to 0’¢p/dx? + 0*$p/dy? = 0 in the z
plane. So far, no restrictions have been imposed on the transformation, but if
the transformation is conformal, the mapping function will be analytic and
the real and imaginary parts of the new variable { will be harmonic. That is,
0%€/0x% + 9%€/9y? = 0 and 0*1/dx> + 0*11/0y? = 0, so that the terms involving these
quantities in the equation for ¢ will be zero. Also, &(x,y) and n(x,y) must satisfy
the Cauchy—Riemann equations if the mapping function is analytic. That is,

& _m
ox oy
and
& __m
ay ax
then

dgan dgon _ asom_omag

dx dx  dy Jdy ©ox ox  ox ox
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Using this result, the equation to be satisfied by ¢ becomes

m> o P
— o, A ¢=O.

2 2 P
¥, 0 P
dx dy  9E? ax ay

Using the Cauchy-Riemann equations to eliminate first &, then n, shows
that the following pair of equations must be satisfied:

2 2

2 2
KLU K
ox ay 0E an
2 2 > >
23 ‘€ e o _
+ St =0.
ox ay 0g on

But these equations must be satisfied for all analytic mapping functions;
hence, it follows that

That is, Laplace’s equation in the z plane transforms into Laplace’s equa-
tion in the { plane, provided that these two planes are related by a conformal
transformation. Then, since both ¢ and y must satisfy Laplace’s equation, it
follows that a complex potential in the { plane is also a valid complex poten-
tial in the { plane, and vice versa. This means that if the solution for some
simple body is known in one of these planes, say the { plane, then the solu-
tion for a more complex body may be obtained by substituting { = f(z) in the
complex potential F(C).

Consider now what happens to the complex velocity under a conformal
transformation. Starting in the z plane with the definition of complex velocity,

dF(z)
dz

_dt dF(@)
dz dC

W(z) =
.19

W) = WO,
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That is, complex velocities are not, in general, mapped one to one, but they
are proportional to each other, and the proportionality factor depends on the
derivative of the mapping function.

Finally, the effect of a conformal transformation on the strength of the
basic singularities will be investigated. That is, the strength of transformed
sources, sinks, and vortices will be established. This is most readily done by
first proving the general relation that the integral of the complex velocity
around any closed contour in the flow field equals I" + im, where I" is the net
strength of any vortices inside the contour and m is the net strength of any
sources and sinks inside the contour.

To prove this relation, consider any closed contour C such as the one shown
in Figure 4.12. An element d! of this contour is shown resolved into its coor-
dinate components. Then, the net strength of all the sources inside C (sinks
being considered negative sources) and the net strength of all the vortices
inside C will be given by

m=fcu'ndl=fc(udy—vdx)

I“=fcu-dl=fc(udx+vdy).

Now, consider the integral around C of the complex velocity W(z).

&
&

dx

FIGURE 4.12
Arbitrary closed contour C with an element d/ resolved into its coordinate components.
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f W(z)dz = f (u - iv)(dx +idy)

=f(udx+vdy)+if (udy — vdx)
C C
=T'+im

where the last equality follows from a comparison with the expressions
derived for m and I'. This general result will now be applied to a single vortex
I', and a single source m, located in the z plane. Then,

L, +im, =f W(z)dz
CZ
_ dg
= fc Z WE dz
= | W@©dC
G
=T +im.

where C, is some closed contour in the z plane and C, is its counterpart in the
mapped plane. I', and m, are the corresponding vortex and source strengths
in the { plane, and the above result shows that the vortex and source strengths
are the same in the z plane as in the { plane. That is, sources, sinks, and vor-
tices map into sources, sinks, and vortices of the same strength under a con-
formal transformation.

In summary, if the complex potential for the flow around some body is
known in the { plane, then the complex potential for the body corresponding to
the conformal mapping = f(z) may be obtained by substituting this transfor-
mation into the complex potential F((). Complex velocities, on the other hand,
do not transform one to one but are related by Equation 4.19. Sources, sinks,
and vortices maintain the same strength under conformal transformations.

4.13 Joukowski Transformation

One of the most important transformations in the study of fluid mechanics is
the Joukowski transformation. By means of this transformation and the basic
flow solutions already studied, it is possible to obtain solutions for the flow
around ellipses and a family of airfoils. The Joukowski transformation is of
the following form
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CZ
z=C+ E (4.20)

where the constant ¢? is usually taken to be real. A general property of the
Joukowski transformation is that for large values of |(|, z — (. That is, far
from the origin, the transformation becomes the identity mapping, so that
the complex velocity in the two planes is the same far from the origin. This
means that if a uniform flow of a certain magnitude is approaching a body
in the z plane at some angle of attack, a uniform flow of the same magnitude
and angle of attack will approach the corresponding body in the  plane.
From Equation 4.20,

dz_, &
dt =~

so that there is a singular point in the Joukowski transformation at ¢ = 0.
Since we are normally dealing with the flow around some body, the point
¢ =0is normally not in the fluid, and so this singularity is of no consequence.
There are also two critical points of the transformation, that is, points at
which dz/d¢ vanishes, at { = +c. Since smooth curves passing through critical
points of a mapping may become corners in the transformed plane, it is of
interest to investigate the consequence of a smooth curve passing through
the critical points of the Joukowski transformation. To do this, consider an
arbitrary point z and its counterpart { as shown in Figure 4.13a. Let the point
{ be measured by the radii p, and p, and the angles v; and v, relative to the
two critical points { = ¢ and { = —c, respectively. However, according to the
Joukowski transformation, the points { = +c map into the points z = +2c.
Then, let the mapping of the point { be measured by the radii R, and R, and
the angles 6, and 6, relative to the two points z = 2c and z = -2c, respectively.
From Equation 4.20,

z+2(:=M
C
and
z—2c=7@_c)2
C
.z-2c  C-c ’

T z+2c  CTac
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FIGURE 4.13

(a) Coordinate system used to investigate the critical points of the Joukowski transformation
and (b) coordinate changes corresponding to a smooth curve passing through ¢ = c.

Thus, with reference to Figure 4.13a,

R 04 vy 2
s CRR L

Rzefez pzeivz

or

2
Ry jioron o PL i

R, P2

Equating the modulus and the argument of each side of this equation
shows that
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and
0, —0,=(; — 1.

This last result shows that if a smooth curve passes through the point{ =,
the corresponding curve in the z plane will form a knife-edge or cusp. This
may be verified by considering a smooth curve to pass through the point
¢ = c. Two points on this curve are shown in Figure 4.13b, from which it is
seen that v; changes from 3x/2 to n/2 and v, changes from 2x to 0 as the
critical point is passed. That is, the value of v, — v, changes from —n/2 to n/2,
giving a difference of n. From the result 6, — 6, = 2(v; — v,), it follows that the
corresponding difference in the value of 0, — 6, will be 2x. This yields a knife-
edge or cusp in the z plane as shown in Figure 4.13b. That is, if a smooth
curve passes through either of the critical points { = +c, the corresponding
curve in the z plane will contain a knife-edge at the corresponding critical
point z = *2c.

An example of a smooth curve that passes through both critical points is a
circle centered at the origin of the { plane and whose radius is ¢, the constant
that appears in the Joukowski transformation. Then, on this circle { = ce®,
and the value of z will be given by

z=ce™ +ce™

=2CCOSV.

That is, the circle in the { plane maps into the strip y = 0, x = 2c cos v
in the z plane. It is readily verified that all points that lie outside the circle
|C] =c cover the entire z plane. However, the points inside the circle |{| =¢
also cover the entire z plane, so that the transformation is double valued.
This is readily verified by observing that for any value of {, Equation
4.20 yields the same value of z for that value of { and also for ¢2/¢. It will
be noted that c?/{ is simply the image of the point { inside the circle of
radius c.

This double-valued property of the Joukowski transformation is treated
by connecting the two points z = +2¢ by a branch cut along the x axis and
creating two Riemann sheets. Then, the mapping is single valued if all the
points outside the circle |{| = c are taken to fall on one of these sheets and
all the points inside the circle are taken to fall on the other sheet. In fluid
mechanics, difficulties due to the double-valued behavior do not usually
arise because the points |{| < c usually lie inside some body about which
the flow is being studied, so that these points are not in the flow field in
the z plane.
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4.14 Flow around Ellipses

Applications of the Joukowski transformation will be made in an inverse
sense. That is, the simple geometry of the circle, the flow around which is
known, will be placed in the { plane, and the corresponding body that results
in the z plane will be investigated by use of Equation 4.20.

Consider, first, the constant c in Equation 4.20 to be real and positive, and
consider a circle of radius a > ¢ to be centered at the origin of the { plane.
The contour in the z plane corresponding to this circle in the { plane may be
identified by substituting ¢ = ae” into Equation 4.20:

2
. C s
z=qae" +—e"
a
2 CZ
= 44— COSV+i a-— sinwv.
a a

Equating real and imaginary parts of this equation gives

C2
X= ad+— CosVv
a

y= a ¢ sin v
; .

These are the parametric equations of the required curve in the z plane.
The equation of the curve may be obtained by eliminating v by use of the
identity cos? v + sin? v = 1. This gives

2 2
X
=1

+
a+c*/a a-c*/a

which is the equation of an ellipse whose major semiaxis is of length a +
c?/a, aligned along the x axis, and whose minor semiaxis is of length a — c?/a.
Then, in order to obtain the complex potential for a uniform flow of magni-
tude U approaching this ellipse at an angle of attack a, the same flow should
be considered to approach the circular cylinder in the { plane. However, it is
shown in the problems at the end of this chapter that the complex potential
for a uniform flow of magnitude U approaching a circular cylinder of radius
a at an angle « to the reference axis is
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2

FQ=U Ce ™+ %ei"'

Then, by solving Equation 4.20 for { in terms of z, the complex potential in
the z plane may be obtained. From Equation 4.20,

C-zZL+c*=0

2

2

z
== -c.
C 5 E

z
2

Since it is known that { — z for large values of z, the positive root must be
chosen. Then, the complex potential in the z plane becomes

a2€1cx

+
z/2 + \/(2/2)2 —-c?

2 2 2
z z e @z z ,
=U z-Z+,] 2 -c® e+ S| = ¢ e
2 2 ¢t 2 2

where the last term has been rationalized. By writing z/2 as z—z/2 in the first
term, two of the terms may be combined as follows:

Fz)=U §+ ==t e

2
2
—iat a i —ia Z
F(z)=U ze™+ —e“%-e —
c’ 2

-t 4.21a)

Equation 4.21a is the complex potential for a uniform flow of magnitude
U approaching an ellipse whose major semiaxis is a + ¢2/a and whose minor
semiaxis is a — c?/a. The flow is at an angle of attack a to the major axis. In this
form, it may be seen that the complex potential consists of that for a uniform
flow at an angle a to the reference axis plus a perturbation that is large near
the body but vanishes for large values of z. The flow field generated by the
complex potential (Equation 4.21a) is shown in Figure 4.14a together with
that for the circular cylinder in the { plane.

The stagnation points in the { plane are located at { = ae™ and { = ael*@,
that is, at { = +ae”. Then, from Equation 4.20, the corresponding points in the
z plane are
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FIGURE 4.14
(@) Uniform flow approaching a horizontal ellipse at an angle of attack and (b) uniform parallel

flow approaching a vertical ellipse.

2 2

c . C .
* 4+— COSOxl 4a—— SINOA.
a a

]
+

This gives the coordinates of the stagnation points as

X=% a+— COsa
a

c?
y=+ a-— sino.
a

Equation 4.21a includes two special cases within its range of validity. For
a = 0, it describes a uniform rectilinear flow approaching a horizontally ori-
ented ellipse, and for a = n/2, it describes a uniform vertical flow approach-
ing the same horizontally oriented ellipse. However, it is of interest to note
that the solution for a uniform rectilinear flow approaching a vertically ori-
ented ellipse may be obtained directly from the Joukowski transformation
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with a slight modification. Substitute c = ib, where b is real and positive, into
Equation 4.20

bZ
z=C- c .

Then, as with the horizontal ellipse, examining the mapping of the circle
{ = ae" gives the parametric equations of the mapped boundary:

2

X= ad-—— COSV
a

2
= a+— sinv.
Y a
Thus, the equation of the contour in the z plane is
2 2

x .\ y
a-b%/a a+b®/a

which is the equation of an ellipse whose major semiaxis is a + b*/a, which is
aligned along the y axis. Then, to obtain uniform rectilinear flow approach-
ing such an ellipse, the same flow should approach the circle in the ¢ plane.
Thus, the required complex potential, from Equation 4.13, is

a2
FQ=U T+—
© T+ C

But the inverted equation of the mapping for which { - zasz — «is

z
=+

c 2
Hence, the complex potential in the z plane is

2
F(z)y=U A a
2 |2 2/2+(z/2)? + b
. 4.21b)
2
Fz)=U z- 1+° Z_ %2 Lp
o2\ 2



120 Fundamental Mechanics of Fluids

in which the same rationalization and simplification have been carried out
as before. Again, the complex potential is in the form of that for a uniform
flow plus a perturbation that is large near the body and that vanishes at large
distances from the body. Equation 4.21b describes a uniform rectilinear flow
of magnitude U approaching a vertically oriented ellipse. The flow field for
this situation is shown in Figure 4.14b.

4.15 Kutta Condition and Flat-Plate Airfoil

It was observed in Section 4.6 that the potential-flow solution for flow
around a sharp edge contained a singularity at the edge itself. This singular-
ity required an infinite velocity at the point in question, which, of course, is
physically impossible. The question arises, then, as to what the real flow situ-
ation would be in a physical experiment. Depending upon the actual physi-
cal configuration, one of two remedial situations will prevail. One possibility
is that the fluid will separate from the solid surface at the knife-edge. The
resulting free streamline configuration would be such that the radius of cur-
vature at the edge becomes finite rather than being zero. As a consequence,
the velocities there will remain finite. Examples of this type of solution will
be discussed later in this chapter.

A second possibility is that a stagnation point exists at the sharp edge.
For the flow around finite bodies, stagnation points exist, and it seems
possible that a stagnation point could be induced by the flow field to move
to the location of the sharp edge. This possibility leads to the so-called
Kutta condition, and it will be discussed below in the context of the flat-
plate airfoil—that is, a flat plate that is at some angle of attack to the free
stream.

In the previous section, the flow around an ellipse was obtained from the
Joukowski transformation (Equation 4.20) by considering the flow around
a circular cylinder of radius a > c in the { plane. Now, if the constant c is
allowed to approach the magnitude of the radius 4, the resulting ellipse in
the z plane degenerates to a flat plate defined by the strip —2a < x < 2a. The
resulting flow field, as defined by Equation 4.21a, is shown in Figure 4.15a.
Because of the angle of attack, the stagnation points do not coincide with the
leading and trailing edges of the flat plate. Rather, the upstream stagnation
point is located on the lower surface and the downstream stagnation point is
located on the upper surface at the points x = +2a cos a. Then, around both
the leading and trailing edges, the flow will be that associated with a sharp
edge, which was discussed in Section 4.6. In that section, it was observed
that infinite velocity components existed at the edge itself, a situation that is
physically impossible to realize.
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FIGURE 4.15
Flow around a flat plate at shallow angle of attack (a) without circulation and (b) satisfying the
Kutta condition.

The difficulty encountered above with the flat-plate airfoil does not occur
at the leading edge of real airfoils because real airfoils have a finite thick-
ness and so have a finite radius of curvature at the leading edge. However,
the trailing edge of airfoils is usually quite sharp, so that the difficulty of
infinite velocity components still exists there. However, this remaining dif-
ficulty would also be overcome if the stagnation point that is near the trailing
edge was actually at the trailing edge. This would be accomplished if a cir-
culation existed around the flat plate and the magnitude of this circulation
was exactly the amount required to rotate the rear stagnation point so that
its location coincides with the trailing edge. This condition is called the Kutta
condition, and it may be restated as follows: For bodies with sharp trailing
edges that are at small angles of attack to the free stream, the flow will adjust
itself in such a way that the rear stagnation point coincides with the trailing
edge.

The amount of circulation required to comply with the Kutta condition
may be determined as follows: In the { plane of Figure 4.15a, the rear stagna-
tion point is located at the point { = ae’®, but, according to the Kutta condi-
tion, the rear stagnation point should be located at the point z = 24, which
corresponds to the point { = 4. That is, the stagnation point on the down-
stream face of the circular cylinder in the { plane should be rotated clockwise
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through an angle a. However, from Equation 4.16, the magnitude of the cir-
culation that will do this is

I' =4xla sin o (4.22a)

in the clockwise direction (i.e., negative circulation). Then, the complex
potential for the required flow in the { plane is, from Equations 4.14 and 4.29,

2

FQ=U Te™ +%ei°‘ + ileasinoclogE .
a

But the equation of the mapping is

aZ

z=C0+—

o

and the inverse, which gives { — zas z — o, is

z z
=—+, - =-a.
¢ 2 2

Then, the complex potential in the z plane is

F@)=U 2+ )2 - e+ ae”
2 2 z/2 ++(z/2)* - a*
: 4.22b)
+i2asinolog % §+ % -a

The flow field corresponding to this complex potential is shown in Figure
4.15b. Although the flow at the trailing edge is now regular, the singularity at
the leading edge still exists. In an actual flow configuration, the fluid would
separate at the leading edge and reattach again on the top side of the airfoil.
The streamline y = 0 would then have a finite curvature, and the velocity
components would remain finite at the leading edge.

The lift force generated by the flat-plate airfoil may be calculated from the
Kutta—Joukowski law. Then, denoting the lift force by Y and using the value
of the circulation given by Equati