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Preface to Second Edition

This edition differs from the previous one in several respects. The use of sto-
chastic calculus and control methods to analyze financial market models has
expanded at a remarkable rate. A new Chapter X gives an introduction to
the role of stochastic optimal control in portfolio optimization and in pricing
derivatives in incomplete markets. Risk-sensitive stochastic control has been
another active research area since the First Edition of this book appeared.
Chapter VI of the First Edition has been completely rewritten, to empha-
size the relationships between logarithmic transformations and risk sensitiv-
ity. Risk-sensitive control theory provides a link between stochastic control
and H-infinity control theory. In the H-infinity approach, disturbances in a
control system are modelled deterministically, instead of in terms of stochastic
processes. A new Chapter XI gives a concise introduction to two-controller,
zero-sum differential games. Included are differential games which arise in
nonlinear H-infinity control and as totally risk-averse limits in risk-sensitive
stochastic control. Other changes from the First Edition include an updated
treatment in Chapter V of viscosity solutions for second-order PDEs. Mate-
rial has also been added in Section I.11 on existence of optimal controls in
deterministic problems. This simplifies the presentation in later sections, and
also is of independent interest.

We wish to thank D. Hernandez-Hernandez, W.M. McEneaney and S.-J.
Sheu who read various new chapters of this edition and made helpful com-
ments. We are also indebted to Madeline Brewster and Winnie Isom for their
able, patient help in typing and revising the text for this edition.

W.H. Fleming
May 1, 2005 H.M. Soner





Preface

This book is intended as an introduction to optimal stochastic control for con-
tinuous time Markov processes and to the theory of viscosity solutions. We ap-
proach stochastic control problems by the method of dynamic programming.
The fundamental equation of dynamic programming is a nonlinear evolution
equation for the value function. For controlled Markov diffusion processes on
n - dimensional euclidean space, the dynamic programming equation becomes
a nonlinear partial differential equation of second order, called a Hamilton –
Jacobi – Bellman (HJB) partial differential equation. The theory of viscos-
ity solutions, first introduced by M. G. Crandall and P.-L. Lions, provides a
convenient framework in which to study HJB equations. Typically, the value
function is not smooth enough to satisfy the HJB equation in a classical sense.
However, under quite general assumptions the value function is the unique vis-
cosity solution of the HJB equation with appropriate boundary conditions. In
addition, the viscosity solution framework is well suited to proving continuous
dependence of solutions on problem data.

The book begins with an introduction to dynamic programming for de-
terministic optimal control problems in Chapter I, and to the corresponding
theory of viscosity solutions in Chapter II. A rather elementary introduction
to dynamic programming for controlled Markov processes is provided in Chap-
ter III. This is followed by the more technical Chapters IV and V, which are
concerned with controlled Markov diffusions and viscosity solutions of HJB
equations. We have tried, through illustrative examples in early chapters and
the selection of material in Chapters VI – VII, to connect stochastic con-
trol theory with other mathematical areas (e.g. large deviations theory) and
with applications to engineering, physics, management, and finance. Chapter
VIII is an introduction to singular stochastic control. Dynamic programming
leads in that case not to a single partial differential equation, but rather to
a system of partial differential inequalities. This is also a feature of other im-
portant classes of stochastic control problems not treated in this book, such
as impulsive control and problems with costs for switching controls.



xiv Preface

Value functions can be found explicitly by solving the HJB equation only
in a few cases, including the linear–quadratic regulator problem, and some
special problems in finance theory. Otherwise, numerical methods for solving
the HJB equation approximately are needed. This is the topic of Chapter IX.

Chapters III, IV and VI rely on probabilistic methods. The only results
about partial differential equations used in these chapters concern classical
solutions (not viscosity solutions.) These chapters can be read independently
of Chapters II and V. On the other hand, readers wishing an introduction to
viscosity solutions with little interest in control may wish to focus on Chapter
II, Secs. 4–6, 8 and on Chapter V, Secs. 4–8.

We wish to thank M. Day, G. Kossioris, M. Katsoulakis, W. McEneaney, S.
Shreve, P. E. Souganidis, Q. Zhang and H. Zhu who read various chapters and
made helpful comments. Thanks are also due to Janice D’Amico who typed
drafts of several chapters. We are especially indebted to Christy Newton. She
not only typed several chapters, but patiently helped us through many revi-
sions to prepare the final version.

W.H. Fleming
June 1, 1992 H.M. Soner



Notation

In this book the following system of numbering definitions, theorems, formulas
etc. is used. Roman numerals are used to refer to chapters. For example,
Theorem II.5.1 refers to Theorem 5.1 in Chapter II. Similarly, IV(3.7) refers
to formula (3.7) of Chapter IV; and within Chapter IV we write simply (3.7)
for such a reference.

IRn denotes n-dimensional euclidean space, with elements x = (x1, · · · , xn).
We write

x · y =

n
∑

i=1

xiyi

and |x| = (x · x) 1
2 for the euclidean norm. If A is a m× n matrix, we denote

by |A| the operator norm of the corresponding linear transformation from IRn

into IRd:
|A| = max

|x|≤1
|Ax|.

The transpose of A is denoted by A′. If a and A are n× n matrices,

tr aA =
n
∑

i,j=1

aijAij .

Sn denotes the set of symmetric n×n matrices and Sn
+ the set of nonnegative

definite A ∈ Sn. The interior, closure, and boundary of a set B are denoted
by intB, B̄ and ∂B respectively. If Σ is a metric space,



xvi Notation

B(Σ) = σ − algebra of Borel sets of Σ

M(Σ) ={all real − valued functions on Σ which are bounded below}

C(Σ) = {all real − valued continuous functions on Σ}

Cb(Σ) = bounded functions in C(Σ)}.

If Σ is a Banach space

Cp(Σ) ={polynomial growing functions in C(Σ)}.

A function φ is called polynomially growing if there exist constants K,m ≥ 0
such that

|φ(x)| ≤ K(1 + |x|m), ∀x ∈ Σ.

For an open set O ⊂ IRn, and a positive integer k,

Ck(O) = {all k − times continuously differentiable functions on O}

Ck
b (O) = {φ ∈ Ck(O) : φ and all partial derivatives of φ or orders ≤ k are

bounded}

Ck
p (O) = {φ ∈ Ck(O) : all partial derivatives of φ of orders ≤ k are

polynomially growing}.

For a measurable set E ⊂ IRn, we say that φ ∈ Ck(E) if there exist Ẽ
open with E ⊂ Ẽ and φ̃ ∈ Ck(Ẽ) such that φ(x) = φ̃(x) for all x ∈ E.
Spaces Ck

b (E), Ck
p (E) are defined similarly. C∞(E), C∞

b (E), C∞
p (E) denote

the intersections over k = 1, 2, · · · of Ck(E), Ck
b (E), Ck

p (E).
We denote the gradient vector and matrix of second order partial deriva-

tives of φ by
Dφ = (φx1 , · · · , φxn

)

D2φ = (φxixj
), i, j = 1, · · · , n.

Sometimes these are denoted instead by φx, φxx respectively.
If φ is a vector-valued function, with values in IRm, then we write φ ∈

Ck(E), φ ∈ Ck
b (E) etc if each component of φ belongs to Ck(E), Ck

b (E) etc.
For vector-valued functions,Dφ andD2φ are identified with the differentials of
φ of first and second orders. For vector-valued φ, |Dφ|, |D2φ| are the operator
norms. We denote intervals of IR1, respectively closed and half-open to the
right, by

[a, b], [a, b).

Given t0 < t1

Q0 = [t0, t1) × IRn, Q0 = [t0, t1) × IRn.



Notation xvii

Given O ⊂ IRn open

Q = [t0, t1) ×O, Q = [t0, t1] ×O

∂∗Q = ([t0, t1] × ∂O) ∪ ({t1} ×O).

We call ∂∗Q the parabolic boundary of the cylindrical region Q. If Φ =
φ(t, x), G ⊂ IRn+1, we say that Φ ∈ Cℓ,k(G) if there exist G̃ open with G ⊂ G̃
and Φ̃ such that Φ̃(t, x) = Φ(t, x) for all (t, x) ∈ G and all partial derivatives of
Φ̃ or orders ≤ ℓ in t and of orders ≤ k in x are continuous on G̃. For example,
we often consider Φ ∈ C1,2(G), where either G = Q or G = Q. The spaces

Cℓ,k
b (G), Cℓ,k

p (G) are defined similarly as above.
The gradient vector and matrix of second-order partial derivatives of Φ(t, ·)

are denoted by DxΦ,D
2
xΦ, or sometimes by Φx, Φxx.

If F is a real-valued function on a set U which has a minimum on U , then

arg min
v∈U

F (v) = {v∗ ∈ U : F (v∗) ≤ F (v) ∀v ∈ U}.

The supnorm of a bounded function is denoted by ‖ ‖, and Lp-norms are
denoted by ‖ ‖p.



I

Deterministic Optimal Control

I.1 Introduction

The concept of control can be described as the process of influencing the
behavior of a dynamical system to achieve a desired goal. If the goal is to
optimize some payoff function (or cost function) which depends on the control
inputs to the system, then the problem is one of optimal control.

In this introductory chapter we are concerned with deterministic optimal
control models in which the dynamics of the system being controlled are gov-
erned by a set of ordinary differential equations. In these models the system
operates for times s in some interval I. The state at time s ∈ I is a vector
in n-dimensional euclidean IRn. At each time s, a control u(s) is chosen from
some given set U (called the control space.) If I is a finite interval, namely,

I = [t, t1] = {s : t ≤ s ≤ t1},

then the differential equations describing the time evolution of x(s) are (3.2)
below. The cost functional to be optimized takes the form (3.4).

During the 1950’s and 1960’s aerospace engineering applications greatly
stimulated the development of deterministic optimal control theory. Among
such applications was the problem of optimal flight trajectories for aircraft
and space vehicles. However, deterministic control theory provides methods
of much wider applicability to problems from diverse areas of engineering,
economics and management science. Some illustrative examples are given in
Section 2.

It often happens that a system is being controlled only for x(s) ∈ O, where
O is the closure of some given open set O ⊂ IRn. Two versions of that situation
are formulated in Section 3. In one version, control occurs only until the time
of exit from a closed cylindrical region Q = [t0, t1] × O. In the other version,
only controls which keep x(s) ∈ O for t ≤ s ≤ t1 are allowed (this is called a
state constrained control problem.)
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The method of dynamic programming is the one which will be followed in
this book, to study both deterministic and stochastic optimal control prob-
lems. In dynamic programming, a value function V is introduced which is
the optimum value of the payoff considered as a function of initial data. See
Section 4, and also Section 7 for infinite time horizon problems. The value
function V for a deterministic optimal control problem satisfies, at least for-
mally, a first order nonlinear partial differential equation. See (5.3) or (7.10)
below. In fact, the value function V often does not have the smoothness prop-
erties needed to interpret it as a solution to the dynamic programming partial
differential equation in the usual (“classical”) sense. However, in such cases V
can be interpreted as a viscosity solution, as will be explained in Chapter II.

Closely related to dynamic programming is the idea of feedback controls,
which will also be called in this book Markov control policies. According to
a Markov control policy, the control u(s) is chosen based on knowing not
only time s but also the state x(s). The Verification Theorems 5.1, 5.2 and
7.1 provide a way to find optimal Markov control policies, in cases when the
value function V is indeed a classical solution of the dynamic programming
partial differential equation with the appropriate boundary data.

Another approach to optimal deterministic control is via Pontryagin’s prin-
ciple, which provides a general set of necessary conditions for an extremum.
In Section 6 we develop, rather briefly, the connection between dynamic pro-
gramming and Pontryagin’s principle. We also give a proof of Pontryagin’s
principle, for the special case of control on a fixed time interval (O = IRn).

In Section 8 and 9 we consider a special class of control problems, in which
the control is the time derivative of the state (u(s) = ẋ(s)) and there are no
control constraints. Such problems belong to the classical calculus of varia-
tions. For a calculus of variations problem, the dynamic programming equa-
tion is called a Hamilton-Jacobi partial differential equation. Many first-order
nonlinear partial differential equations can be interpreted as Hamilton-Jacobi
equations, by using duality for convex functions. This duality corresponds
to the dual Lagrangian and Hamiltonian formulations in classical mechanics.
These matters are treated in Section 10.

Another part of optimal control theory concerns the existence of optimal
controls. In Section 11 we prove two special existence theorems which are used
elsewhere in this book. The proofs rely on lower semicontinuity of the cost
function in the control problem.

The reader should refer to Section 3 for notations and assumptions used
in this chapter, for finite-time horizon deterministic optimal control problems.
For infinite-time horizon problems, these are summarized in Section 7.

I.2 Examples

We start our discussion by giving some examples. In choosing examples, in
this section and later in the book, we have included several highly simplified
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models chosen from such diverse applications as inventory theory, control of
physical devices, financial economics and classical mechanics.

Example 2.1. Consider the production planning of a factory producing
n commodities. Let xi(s), ui(s) denote respectively the inventory level and
production rate for commodity i = 1, · · · , n at time s. In this simple model we
assume that the demand rates di are fixed constants, known to the planner.
Let

x(s) = (x1(s), · · · , xn(s)), u(s) = (u1(s), · · · , un(s)), d = (d1, · · · , dn).

They are, respectively, the inventory and control vectors at time s, and the
demand vector. The rate of change of the inventory x(s) ∈ IRn is

(2.1)
d

ds
x(s) = u(s) − d.

Let us consider the production planning problem on a given finite time interval
t ≤ s ≤ t1. Given an initial inventory x(t) = x, the problem is to choose the
production rate u(s) to minimize

(2.2)

∫ t1

t

h(x(s))ds+ ψ(x(t1)).

We call t1 the terminal time, h the running cost, and ψ the terminal cost. It
is often assumed that h and ψ are convex functions, and that h(x), ψ(x) have
a unique minimum at x = 0. A typical example of h is

h(x) =
n
∑

i=1

[

αi(xi)
+ + γi(xi)

−
]

,

where αi, γi are positive constants interpreted respectively as a unit holding
cost and a unit shortage cost. Here, a+ = max{a, 0}, a− = max(−a, 0).

The production rate u(s) must satisfy certain constraints related to the
physical capabilities of the factory and the workforce. These capacity con-
straints translate into upper bounds for the production rates. We assume
that these take the form c1u1 + · · · + cnun ≤ 1 for suitable constants ci > 0.

To summarize, this simple production planning problem is to minimize
(2.2) subject to (2.1), the initial condition x(t) = x, and the control constraint
u(s) ∈ U where

(2.3) U = {v ∈ IRn : vi ≥ 0, i = 1 · · · , n,
n
∑

i=1

civi ≤ 1}.

An infinite time horizon, discounted cost version of this problem will be
mentioned in Example 7.4, and the solution to it will be outlined there.

Example 2.2. Consider a simple harmonic oscillator, in which a forcing
term u(s) is taken as the control. Let x1(s), x2(s) denote respectively the
position and velocity at time s. Then
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(2.4)

d

ds
x1(s) = x2(s)

d

ds
x2(s) = −x1(s) + u(s).

We require that u(s) ∈ U , where U is a closed interval. For instance, if U =
[−a, a] with a < ∞, then the bound |u(s)| ≤ a is imposed on the forcing term.

Let us consider the problem of controlling the simple harmonic oscilla-
tor on a finite time interval t ≤ s ≤ t1. An initial position and velocity
(x1(t), x2(t)) = (x1, x2) are given. We seek to minimize a quadratic criterion
of the form

(2.5)

∫ t1

t

[

m1x1(s)
2 +m2x2(s)

2 + u(s)2
]

ds+ d1x1(t1)
2 + d2x2(t2)

2,

where m1,m2, d1, d2 are nonnegative constants. If there is no constraint on
the forcing term (U = IR1), this is a particular case of the linear quadratic
regulator problem considered in Example 2.3. If U = [−a, a] with a < ∞, it
is an example of a linear regulator problem with a saturation constraint.

One can also consider the problem of controlling the solution x(s) = (x1(s),
x2(s)) to (2.4) on an infinite time horizon, say on the time interval [0,∞). A
suitable modification of the quadratic criterion (2.5) could be used as the
quantity to be minimized. Another possible criterion to be minimized is the
time for x(s) to reach a given target. If the target is the point (0, 0), then
the control function u(·) is to be chosen such that the first time θ when
x(θ) = (0, 0) is minimized.

Example 2.3. We will now describe the linear quadratic regulator problem
(LQRP). Due to the simplicity of its solution, it has been applied to a large
number of engineering problems. Let x(s) ∈ Rn, u(s) ∈ Rm satisfy

(2.6)
d

ds
x(s) = A(s)x(s) +B(s)u(s)

with given matrices A(s) and B(s) of dimensions n × n, n ×m respectively.
Suppose we are also given M(s), N(s), and D, such that M(s) and D are
nonnegative definite, symmetric n × n matrices and N(s) is a symmetric,
positive definite m×m matrix. The LQRP is to choose u(s) so that

(2.7)

∫ t1

t

[x(s) ·M(s)x(s) + u(s) ·N(s)u(s)] ds+ x(t1) ·Dx(t1)

is minimized. Here x · y denotes the inner product between two vectors. The
solution to this problem will be discussed in Example 5.1.

Example 2.4. The simplest kind of problem in classical calculus of vari-
ations is to determine a function x(·) which minimizes a functional

(2.8)

∫ t1

t

L(s, x(s), ẋ(s))ds+ ψ(x(t1)),
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subject to given conditions on x(t) and x(t1)). Here, · = d/ds. Let us fix the
left endpoint, by requiring x(t) = x where x ∈ IRn is given. For the right
endpoint, let us fix t1 and require that x(t1) ∈ M, where M is given closed
subset of IRn. If M = {x1} consists of a single point, then the right endpoint
(t1, x1) is fixed. At the opposite extreme, there is no restriction on x(t1) if
M = IRn.

We will discuss calculus of variations problems in some detail in Sections
8 – 10. In the formulation in Section 8, we allow the possibility that the fixed
upper limit t1 in (2.8) is replaced by a time τ which is the smaller of t1 and
the exit time of x(s) from a given closed region Ō ⊂ IRn. This is a particular
case of the class of control problems to be formulated in Section 3.

I.3 Finite time horizon problems

In this section we formulate some classes of deterministic optimal control
problems, which will be studied in the rest of this chapter and in Chapter
II. At the end of the section, each of these classes of problems appears as a
particular case of a general formulation.

A terminal time t1 will be fixed throughout. Let t0 < t1 and consider initial
times t in the finite interval [t0, t1). (One could equally well take −∞ < t < t1,
but then certain assumptions in the problem formulation become slightly more
complicated.) The objective is to minimize some payoff functional J , which
depends on states x(s) and controls u(s) for t ≤ s ≤ t1.

Let us first formulate the state dynamics for the control problem. Let
Q0 = [t0, t1) × IRn and Q0 = [t0, t1] × IRn, the closure of Q0. Let U be a
closed subset of m-dimensional IRm. We call U the control space. The state
dynamics are given by a function

f : Q0 × U → IRm.

It is assumed that f ∈ C(Q0 × U). Moreover, for suitable Kρ:

(3.1) |f(t, x, v) − f(t, y, v)| ≤ Kρ|x− y|

for all t ∈ [t0, t1], x, y ∈ IRn and v ∈ U such that |v| ≤ ρ. If the control space
U is compact, we can replace Kρ by a constant K, since U ⊂ {v : |v| ≤ ρ} for
large enough ρ. If f(t, ·, v) has a continuous gradient fx, (3.1) is equivalent to
the condition |fx(t, x, v)| ≤ Kρ whenever |v| ≤ ρ.

A control is a bounded, Lebesgue measurable function u(·) on [t, t1] with
values in U . Assumption (3.1) implies that, given any control u(·), the differ-
ential equation

(3.2)
d

ds
x(s) = f(s, x(s), u(s)), t ≤ s ≤ t1
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with initial condition

(3.3) x(t) = x

has a unique solution. The solution x(s) of (3.2) and (3.3) is called the state
of the system at time s. Clearly the state depends on the control u(·) and the
initial condition, but this dependence is suppressed in our notation.

Let U0(t) denote the set of all controls u(·). In notation which we shall use
later (Section 9)

U0(t) = L∞([t, t1]; U).

This is the space of all bounded, Lebesgue measurable, U - valued functions
on [t, t0]. In order to complete the formulation of an optimal control problem,
we must specify for each initial data (t, x) a set U(t, x) ⊂ U0(t) of admissible
controls and a payoff functional J(t, x;u) to be minimized. Let us first for-
mulate some particular classes of problems (A through D below). Then we
subsume all of these classes in a more general formulation. For classes A and
B, all controls u(·) ∈ U0(t) are admitted. However, for classes C and D only
controls u(·) in a smaller U(t, x) are admitted.

A. Fixed finite time horizon. The problem is to find u(·) ∈ U0(t) which
minimizes

(3.4) J(t, x;u) =

∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1)),

where L ∈ C(Q0 ×U). We call L the running cost function and ψ the terminal
cost function.

B. Control until exit from a closed cylindrical region Q. Consider
the following payoff functional J , which depends on states x(s) and controls
u(s) for times s ∈ [t, τ), where τ is the smaller of t1 and the exit time of x(s)
from the closure O of an open set O ⊂ IRn. We let Q = [t0, t1) × O, Q =
[t0, t1] ×O the closure of the cylindrical region Q, and

∂∗Q = ([t0, t1) × ∂O) ∪ ({t1} ×O).

We call [t0, t1)×∂O and {t1}×O the lateral boundary and terminal boundary,
respectively, of Q. Given initial data (t, x) ∈ Q, let τ denote the exit time of
(s, x(s)) from Q. Thus,

τ =

⎧

⎨

⎩

inf{s ∈ [t, t1) : x(s) ∈/O} or

t1 if x(s) ∈ O for all s ∈ [t, t1)

Note that (τ, x(τ)) ∈ ∂∗Q. We let

(3.5) J(t, x;u) =

∫ τ

t

L(s, x(s), u(s))ds
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+g(τ, x(τ))χτ<t1 + ψ(x(t1))χτ=t1

Here χ denotes an indicator function. Thus, for real numbers a, b,

χa<b =

⎧

⎨

⎩

1 if a < b

0 if a ≥ b,

and χa≤b is defined similarly. The function g is called a boundary cost function,
and is assumed continuous.

B′. Control until exit from Q. Let (t, x) ∈ Q, and let τ ′ be the first
time s such that (s, x(s)) ∈ ∂∗Q. Thus, τ ′ is the exit time of (s, x(s)) from
Q, rather that from Q as for class B above. In (3.5) we now replace τ by τ ′.
We will give conditions under which B and B′ are equivalent optimal control
problems.

C. Final endpoint constraint. Suppose that in case A, the additional
restriction x(t1) ∈ M is imposed, where M is a given closed subset of IRn. In
particular, if M = {x1} consists of a single point, then both endpoints (t, x)
and (t1, x1) of the curve γ = {(s, x(s)) : t ≤ s ≤ t1} are given. We now admit
controls u(·) ∈ U(t, x), where

U(t, x) = {u(·) ∈ U0(t) : x(t1) ∈ M}.

The condition that U(t, x) is nonempty is called a reachability condition. See
Sontag [Sg]. If U = IRm, it is related to the concept of controllability.

In a similar way, one can consider the problem of minimizing J in (3.5)
subject to an endpoint constraint (τ, x(τ)) ∈ S, where S is a given closed
subset of ∂∗Q.

D. State constraint. This is the problem of minimizing J(t, x;u) in (3.4)
subject to the constraint x(s) ∈ O. In this case,

U(t, x) = {u(·) ∈ U0(t) : x(s) ∈ O for t ≤ s ≤ t1}.

General problem formulation. Let us now formulate a general class of
control problems, which includes each of the classes A through D above. Let
O ⊂ IRn be open, with either: (i) O = IRn, or (ii) ∂O a compact manifold of
class C2. Let Q = [t0, t1) ×O. In case O = IRn, we have Q = Q0. Let Ψ be a
function, such that

(3.6) Ψ(t, x) =

⎧

⎨

⎩

g(t, x) if (t, x) ∈ [t0, t1) × IRn

ψ(x) if (t, x) ∈ {t1} × IRn

We let

(3.7) J(t, x; u) =

∫ τ

t

L(s, x(s), u(s))ds+ Ψ(τ, x(τ)),
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where τ is the exit time of (s, x(s)) from Q. This agrees with (3.5), and also
with (3.4) in case O = IRn. We admit controls u(·) ∈ U(t, x), where U(t, x)
is nonempty and satisfies the following “switching” condition (3.9). Roughly
speaking, condition (3.9) states that if we replace an admissible control by
another admissible one after a certain time, then the resulting control is still
admissible. More precisely, let u(·) ∈ U(t, x) and u′(·) ∈ U(r, x(r)) for some
r ∈ [t, τ ]. Define a new control by

(3.8) ũ(s) =

⎧

⎨

⎩

u(s), t ≤ s ≤ r

u′(s), r < s ≤ t1.

Let x̃(s) be the solution to (3.2) corresponding to control ũ(·) and initial
condition x̃(t) = x. Then we assume that

(3.9) ũs(·) ∈ U(s, x̃(s)), t ≤ s ≤ τ̃ ,

where ũs(·) denotes the restriction to [s, t1] of ũ(·) and τ̃ is the exit time from
Q of (s, x̃(s)). Note that (3.9) implies, in particular, that an admissible control
always stays admissible. Indeed, simply take in (3.7) r = τ and ũs(·) = us(·).

The control problem is as follows: given initial data (t, x) ∈ Q, find u∗(·) ∈
U(t, x) such that

J(t, x; u∗) ≤ J(t, x;u) for all u(·) ∈ U(t, x).

Such a u∗(·) is called an optimal control.
Relation between classes B and B′. Let us conclude this section by

giving some conditions (3.10), (3.11) under which the problem of controlling
until the time τ of exit of (s, x(s)) from Q is equivalent of that of controlling
until the time τ ′ of exit from Q. Let us assume:

(3.10) L ≥ 0, ψ ≥ 0, ψ(x) = 0 for xǫ∂O and g ≡ 0.

(3.11) For every (s, ξ) ∈ [t0, t1] × ∂O there exists v(s, ξ) ∈ U such that

f(s, ξ, v(s, ξ)) · η(ξ) > 0,

where η(ξ) is the exterior unit normal at ξ ∈ ∂O.

We always have τ ′ ≤ τ ≤ t1. In particular, τ ′ = t1 implies that τ ′ = τ . If
τ ′ < t1, then by (3.5) and the assumption g ≡ 0,

J(t, x;u) =

∫ τ ′

t

Lds+

[
∫ τ

τ ′

Lds+ ψ(x(t1))χτ=t1

]

.

Let us denote the first term on the right side by J ′(t, x;u). J ′ is the payoff for
the problem of control up to time τ ′, in case τ ′ < t1. Since L ≥ 0 and ψ ≥ 0,
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(3.12) J(t, x;u) ≥ J ′(t, x;u)

for all u(·) ∈ U0(t). On the other hand, given u(·) with τ ′ < t1, let

ũ(s) =

⎧

⎨

⎩

u(s), t ≤ s ≤ τ ′,

v(τ ′, x(τ ′)), τ ′ < s ≤ t1,

with v(s, ξ) as in (3.11). The corresponding solution x̃(s) of (3.2) with x̃(t) = x
coincides with x(s) for t ≤ s ≤ τ ′, and exits from Q at time τ ′. Thus,

(3.13) J ′(t, x;u) = J(t, x; ũ).

From (3.12) and (3.13), it suffices to minimize J among controls ũ(·) for which
the exit times from Q and Q are the same.

I.4 Dynamic programming principle

It is convenient to consider a family of optimization problems with different
initial conditions (t, x). Consider the minimum value of the payoff function as
a function of this initial point. Thus define a value function by

(4.1) V (t, x) = inf
u(·)∈U(t,x)

J(t, x;u),

for all (t, x) ∈ Q. We shall assume that V (t, x) > −∞. This is always true if
the control space U is compact, or if U is not compact but the cost functions
are bounded below (L ≥ −M,Ψ ≥ −M for some constant M ≥ 0.)

The method of dynamic programming uses the value function as a tool in
the analysis of the optimal control problem. In this section and the following
one we study some basic properties of the value function. Then we illustrate
the use of these properties in an example for which the problem can be explic-
itly solved (the linear quadratic regulator problem) and introduce the idea of
feedback control policy.

We start with a simple property of V . Let r ∧ τ = min(r, τ). Recall that g
is the boundary cost (see (3.5)).

Lemma 4.1. For every initial condition (t, x) ∈ Q, admissible control
u(·) ∈ U(t, x) and t ≤ r ≤ t1, we have

(4.2) V (t, x) ≤
∫ r∧τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r

+V (r, x(r))χr≤τ .

Proof. Suppose that τ < r ≤ t1. Then Ψ(r ∧ τ, x(r ∧ τ)) = g(τ, x(τ)),
and (4.2) follows from the definition of the value function. Now suppose that
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r ≤ τ . For any δ > 0, choose an admissible control u1(·) ∈ U(r, x(r)) such
that

∫ τ1

r

L(s, x1(s), u1(s))ds+ Ψ(τ1, x1(τ1)) ≤ V (r, x(r)) + δ.

Here x1(s) is the state at time s corresponding to the control u1(·) and initial
condition (r, x(r)), and τ1 is the exit time of (s, x1(s)) from Q. (Such a control
u1(·) is called δ - optimal.) As in (3.8) define an admissible control ũ(·) ∈
U(t, x) by

ũ(s) =

⎧

⎨

⎩

u(s), s ≤ r

u1(s), s > r.

Let x̃(s) be the state corresponding to ũ(·) with initial condition (t, x), and τ̃
the exit time of (s, x̃(s)) from Q. Since r < τ, τ1 = τ̃ and we have

V (t, x) ≤ J(t, x; ũ)

=

∫ τ̃

t

L(s, x̃(s), ũ(s))ds+ Ψ(τ̃ , x̃(τ̃))

=

∫ r

t

L(s, x(s), u(s))ds+

∫ τ1

r

L(s, x1(s), u1(s))ds

+Ψ(τ1, x1(τ1))

≤
∫ r

t

L(s, x(s), u(s))ds+ V (r, x(r)) + δ. �

The proof of Lemma 4.1 shows that the right side of (4.2) is a nondecreas-
ing function of r. However, if u(·) is optimal (or nearly optimal), then this
function is constant (or nearly constant). Indeed, for a small positive δ, choose
a δ-optimal admissible control u(·) ∈ U(t, x). Then for any r ∈ [t, t1] we have

δ + V (t, x) ≥ J(t, x;u)

=

∫ τ

t

L(s, x(s), u(s))ds+ Ψ(τ, x(τ))

=

∫ τ∧r

t

L(s, x(s), u(s))ds+

∫ τ

τ∧r

L(s, x(s), u(s))ds+ Ψ(τ, x(τ))

=

∫ τ∧r

t

L(s, x(s), u(s))ds+ J(r ∧ τ, x(r ∧ τ);u)

≥
∫ τ∧r

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r + V (r, x(r))χr≤τ .
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Since δ is arbitrary, we have proved the following.
Lemma 4.2. For any initial condition (t, x) ∈ Q and r ∈ [t, t1],

(4.3) V (t, x) = inf
u(·)∈U(t,x)

[

∫ r∧τ

t

L(s, x(s), u(s))ds

+g(τ, x(τ))χτ<r + V (r, x(r))χr≤τ

]

.

The above identity is called the dynamic programming principle. It is the
basis of the solution technique developed by Bellman in the 1950’s [Be]. An
interesting observation is that an optimal control u∗(·) ∈ U(t, x) minimizes
(4.3) at every r. Hence to determine the optimal control u∗(t), it suffices
to analyze (4.3) with r arbitrarily close to t. Intuitively this yields a simple
optimization problem that is minimized by u∗(t). However, as we shall see in
later chapters, this approach requires a knowledge of the value function.

Another corollary of the above computations is the following.
Corollary 4.1. An admissible control u(·) ∈ U(t, x) is δ-optimal at (t, x)

if any only if it is δ-optimal at every (r, x(r)) with r ∈ [t, τ ].

I.5 Dynamic programming equation

In this section, we assume that the value function is continuously differen-
tiable and proceed formally to obtain a nonlinear partial differential equation
satisfied by the value function. In general however, the value function is not
differentiable. In that case a notion of “weak” solutions to this equation is
needed. This will be the subject of Chapter 2. After formally deriving the
dynamic programming partial differential equation (5.3), we prove two Veri-
fication Theorems (Theorems 5.1 and 5.2) which give sufficient conditions for
a solution to the optimal control problem.

Let 0 < h ≤ t1 − t, and take r = t + h in the dynamic programming
principle (4.3). Subtract V (t, x) from both sides of (4.3) and then divide by
h. This yields

(5.1) inf
u(·)∈U(t,x)

{

1

h

∫ (t+h)∧τ

t

L(s, x(s), u(s))ds+
1

h
g(τ, x(τ))χτ<t+h

+
1

h
[V (t+ h, x(t+ h))χt+h≤τ − V (t, x)]

}

= 0.

Let us assume that:

(5.2) For every (t, x) ∈ Q and v ∈ U there exists u(·) ∈ U(t, x) such that

v = lim
s↓t

u(s).
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If U(t, x) = U0(t), clearly (5.2) holds. For instance, we may take u(s) ≡ v.
For the state constrained problem (Case D, Section 3), (5.2) holds provided
U(r, ξ) is not empty for every (r, ξ) ∈ Q (See Theorem II.12.1.). Note that we
assume (5.2) for (t, x) ∈ Q, not (t, x) ∈ Q. In the state constrained problem,
only controls in some subset of U can be used at time t when (t, x) is on
the lateral boundary of Q. If (t, x) ∈ Q, then x ∈ O and t + h ≤ τ if h is
sufficiently small. If we formally let h ↓ 0 in (5.2) we obtain, for (t, x) ∈ Q,

(5.3)
∂

∂t
V (t, x) + inf

v∈U
{L(t, x, v) + f(t, x, v) ·DxV (t, x)} = 0.

This is a nonlinear partial differential equation of first order, which we refer to
as the dynamic programming equation or simply DPE. In (5.3), DxV denotes
the gradient of V (t, ·). It is notationally convenient to rewrite (5.3) as

(5.3′) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x)) = 0,

where for (t, x, p) ∈ Q0 × IRn

(5.4) H(t, x, p) = sup
v∈U

{−p · f(t, x, v) − L(t, x, v)} .

In analogy with a quantity occurring in classical mechanics, we call this func-
tion the Hamiltonian. The dynamic programming equation (5.3′) is sometimes
also called a Hamilton–Jacobi–Bellman PDE.

Equation (5.3) is to be considered in Q, with appropriate terminal or
boundary conditions. Let us describe such conditions for problems of the
classes A and B in Section 3. Boundary conditions for state constrained prob-
lems (class D, Section 3) will be described later in Section II.12. For class A,
we have Q = Q0. By (3.4) the terminal (Cauchy) data are

(5.5) V (t1, x) = ψ(x), x ∈ IRn.

We now state a theorem which connects the dynamic programming equation
to the control problem of minimizing (3.4).

Theorem 5.1. (Q = Q0). Let W ∈ C1(Q0) satisfy (5.3) and (5.5). Then:

(5.6) W (t, x) ≤ V (t, x), ∀(t, x) ∈ Q0.

Moreover, if there exists u∗(·) ∈ U0(t) such that

(5.7) L(s, x∗(s), u∗(s)) + f(s, x∗(s), u∗(s)) ·DxW (s, x∗(s))

= −H(s, x∗(s), DxW (s, x∗(s))

for almost all s ∈ [t, t1], then u∗(·) is optimal for initial data (t, x) and
W (t, x) = V (t, x).
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In Theorem 5.1, x∗(·) denotes the solution to (3.2) with u(·)=u∗(·), x∗(t)=
x. Theorem 5.1 is called a Verification Theorem. Note that, by the definition
(5.4) of H, (5.7) is equivalent to

(5.7′) u∗(s) ∈ arg min
v∈U

{f(s, x∗(s), v) ·DxW (s, x∗(s)) + L(s, x∗(s), v)}.

Proof of Theorem 5.1. Consider any u(·) ∈ U0(t). Using multivariate
calculus and the dynamic programming equation (5.3), we obtain

(5.8) W (t1, x(t1)) = W (t, x) +

∫ t1

t

[
∂

∂t
W (s, x(s)) + ẋ(s) ·DxW (s, x(s)]ds

= W (t, x) +

∫ t1

t

[
∂

∂t
W (s, x(s)) + f(s, x(s), u(s)) ·DxW (s, x(s))]ds

≥ W (t, x) −
∫ t1

t

L(s, x(s), u(s))ds.

By (5.5), W (t1, x(t1)) = ψ(x(t1)). Hence

W (t, x) ≤ J(t, x;u).

We get (5.6) by taking the infimum over u(·).
To prove the second assertion of the theorem, let u∗(·) ∈ U0(t) satisfy

(5.7). We redo the calculation above with u∗(·). This yields (5.8) with an
equality. Hence

(5.9) W (t, x) = J(t, x;u∗).

By combining this equality with (5.6), we conclude that u∗(·) is optimal at
(t, x).

�

Remark 5.1. Condition (5.7) is necessary as well as sufficient. Indeed,
from the proof of Theorem 5.1 and the definition (5.4) of H it is immediate
that (5.7) holds for almost all s if u∗(·) is optimal.

We illustrate the use of the Verification Theorem 5.1 in an example.
Example 5.1. Consider the linear quadratic regulator problem (LQRP)

described in Example 2.3. In this example, O = IRn, U = IRm,U(t, x) = U0(t),
and

(5.10)

f(t, x, v) = A(t)x+B(t)v

L(t, x, v) = x ·M(t)x+ v ·N(t)v

Ψ(t, x) = ψ(x) = x ·Dx.

The dynamic programming equation (5.3′) becomes
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(5.11) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x)) = 0, t0 ≤ t < t1, x ∈ IRn.

The Hamiltonion H(t, x, p) is given by

(5.12)

H(t, x, p) = sup
v

{−f(t, x, v) · p− L(t, x, v)}

= 1
4N

−1(t)B′(t)p ·B′(t)p−A(t)x · p− x ·M(t)x,

where B′(t) is the transpose of the matrix B(t) and N−1(t) is the inverse of
N(t) which is assumed to be invertible. For later use, we note that the unique
maximizer of (5.12) is

(5.13) v∗ = −1

2
N−1(t)B′(t)p.

To use the Verification Theorem 5.1, first we have to solve (5.11) with the
terminal condition

(5.14) V (t1, x) = x ·Dx, x ∈ Rn.

We guess that the solution of (5.11) and (5.14) is a quadratic function in x.
So, let

W (t, x) = x · P (t)x

for some symmetric matrix P (t). We substitute W (t, x) into (5.11) to obtain

− ∂

∂t
W (t, x) +H(t, x,DxW (t, x))

= −x · ∂
∂t
P (t)x+N−1(t)B′(t)P (t)x ·B′(t)P (t)x

−2A(t)x · P (t)x− x ·M(t)x

= x · [− ∂

∂t
P (t) + P (t)B(t)N−1(t)B′(t)P (t)

−A(t)P (t) − P (t)A′(t) −M(t)]x.

Hence W satisfies (5.11) provided that

(5.15)
d

dt
P (t) = P (t)B(t)N−1(t)B′(t)P (t)

−A(t)P (t) − P (t)A′(t) −M(t), t ∈ [0, t1).

The continuity of W at time t1 yields that

(5.16) P (t1) = D.
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Equation (5.15) is called a matrix Riccati equation. It has been studied
extensively. If we fix t1, then (5.15)-(5.16) has a solution P (t) backward in
time on some maximal interval tmin < t ≤ t1, where either tmin = −∞
or tmin < ∞. Let us use Theorem 5.1 to show that V (t, x) = W (t, x) for
tmin < t ≤ t1, and to find an explicit formula for the optimal u∗(s). In view
of (5.13), (5.7′) holds at any s ∈ [t, t1] if and only if

(5.17)
u∗(s) = −1

2
N−1(s)B′(s)DxW (s, x∗(s))

= −N−1(s)B′(s)P (s)x∗(s).

Now substitute (5.17) back into the state equation (2.6) to obtain

d

ds
x∗(s) = [A(s) −B(s)N−1(s)B′(s)P (s)]x∗(s).

This equation has a unique solution satisfying the initial condition x∗(t) = x.
Thus there is a unique control u∗(·) satisfying (5.17). Theorem 5.1 then implies
that u∗(·) is optimal at (t, x).

Notice that the optimal control u∗(s) in (5.17) is a linear function of the
state x∗(s). The matrix N−1(s)B′(s)P (s) can be precomputed by solving
the Riccati differential equation (5.15) with terminal data (5.16), without
reference to the initial conditions for x(s). This is one of the important aspects
of the LQRP.

In the LQRP as formulated in Example 2.3, the matrices M(s) and D
are nonnegative definite and N(s) is positive definite. This implies that P (t)
is nonnegative definite and that tmin = −∞. To see this, for tmin < t ≤ t1,
0 ≤ V (t, x) ≤ J(t, x; 0). Since V (t, x) = x ·P (t)x, P (t) is nonnegative definite
and bounded on any finite interval, which excludes the possibility that tmin >
−∞.

In Section VI.8 we will encounter a class of problems in which M(s) is
negative definite. Such problems are called LQRP problems with indefinite
sign. In this case, P (t) may not be nonnegative definite and tmin may be
finite. The following example illustrates these possibilities.

Example 5.2. Let n = 1, f(v) = v, L(x, v) = −x2 + v2 and D = 0. The
solution to (5.15)-(5.16) is P (t) = − tan(t1 − t) if t1 − t < π

2 and tmin = t1 − π
2 .

Control until exit from Q. Let us next consider the problem of control
until the time τ of exit from a closed cylindrical region Q (class B, Section
3.) We first formulate appropriate boundary conditions for the dynamic pro-
gramming equation (5.3). Then we outline a proof of a Verification Theorem
(Theorem 5.2) similar to Theorem 5.1. When t = t1, we have as in (5.5):

(5.18) V (t1, x) = ψ(x), x ∈ O.

Let us assume that (3.11) holds on the lateral boundary [t0, t1) × ∂O. This
implies that, for (t, x) ∈ [t0, t1) × ∂O, one choice is to exit immediately from
Q (thus, τ = t). Therefore,
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(5.19) V (t, x) ≤ g(t, x), (t, x) ∈ [t0, t1) × ∂O

If it is optimal to exit immediately from Q, then equality holds in (5.19).
However, in many examples, there are points (t, x) of the lateral boundary
for which there exists a control u0(·) such that J(t, x;u(·)) < g(t, x). See
Example II.2.3. At such points, strict inequality holds in (5.19). If (3.10) is
assumed, in addition to (3.11), then V (t, x) ≥ 0. Since g ≡ 0 when (3.10)
holds, (5.19) implies that the lateral boundary condition V (t, x) = 0 holds
for all (t, x) ∈ [t0, t1) × ∂O, if both (3.10) and (3.11) hold. Note that we
have not yet proved that the value function V is continuous on Q. However,
such a result will be proved later (Theorem II.10.2.). Boundary conditions are
discussed further in Section II.13.

Theorem 5.2. Let W ∈ C1(Q) satisfy (5.3), (5.18) and (5.19). Then

(5.20) W (t, x) ≤ V (t, x) for all (t, x) ∈ Q.

Moreover, suppose that there exists u∗(·) ∈ U0(t) such that (5.7) holds for
almost all s ∈ [t, τ∗] and W (τ∗, x∗(τ∗)) = g(τ∗, x∗(τ∗)) in case τ∗ < t1. Then
u∗(·) is optimal for initial data (t, x) and W (t, x) = V (t, x).

Here τ∗ is the exit time of (s, x∗(s)) from Q. The proof of Theorem 5.2
is almost the same as for Theorem 5.1. In (5.8) the integral is now from t
to the exit time τ , and W (τ, x(τ)) is on the left side. By (5.18) and (5.19),
W (τ, x(τ)) ≤ Ψ(τ, x(τ)) with Ψ as in (3.6). This gives (5.20). The second half
goes exactly as for Theorem 5.1.

Remark 5.2. An entirely similar Verification Theorem is true for the
problem of control until the time τ ′ of exit from Q (rather from Q.) In fact,
since (s, x(s)) ∈ Q for t ≤ s < τ ′, the proof of Theorem 5.2 shows that it
suffices in this case to assume W ∈ C1(Q) ∩ C(Q) rather than W ∈ C1(Q).
A situation where such a weaker assumption on W is convenient will arise in
Example 7.3.

In Example 5.1 we constructed an admissible control by using the value
function. To generalize the procedure, let W be as in Theorem 5.2 (or as in
Theorem 5.1 in case Q = Q0.) For (t, x) ∈ Q define a set-valued map F ∗(t, x)
by

F ∗(t, x) = {f(t, x, v) : v ∈ v∗(t, x)}
where v∗(t, x) is another set-valued map

(5.21) v∗(t, x) = arg min
v∈U

[f(t, x, v) ·DxW (t, x) + L(t, x, v)] .

We may now restate (5.7′) as u∗(s) ∈ v∗(s, x∗(s)). Substituting this into the
state dynamics yields

(5.22) ẋ∗(s) ∈ F ∗(s, x∗(s)), s ∈ [t, τ∗].

Thus, we have the following corollary to Theorem 5.2.
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Corollary 5.1. A control u∗(·) satisfies the optimality condition (5.7) if
x∗(·) is a solution to the differential inclusion (5.22).

Feedback controls (Markov control policies). Corollary 5.1 is closely
related to the idea of optimal feedback control, according to which the control
u∗(s) is chosen based on knowledge not only of time s but also of the state
x∗(s). To formulate this idea more precisely, let us call any function u : Q0 →
U a feedback control policy. Such a function U will also be called in later
chapters a Markov control policy. Consider the differential equation

(5.23)
d

ds
x(s) = f(s, x(s), u(s, x(s))), s ∈ [t, t1].

If (5.23) with the initial data x(t) = x has a unique solution x(·), and if

(5.24) u(s) = u(s, x(s))

belongs to U0(t), then we call u an admissible feedback control for initial
conditions (t, x).

In particular, suppose that u∗ is a feedback control policy such that
u∗(s, y) ∈ v∗(s, y) for all (s, y) ∈ Q. If u∗ is admissible for initial conditions
(t, x), then we let x∗(s) be the corresponding solution of (5.23) with u = u∗,
and

(5.25) u∗(s) = u∗(s, x∗(s)).

For the fixed finite time horizon problem (Q = Q0), Theorem 5.1 and Corol-
lary 5.1 imply that u∗(·) is an optimal control. If u∗ is admissible for every
(t, x) ∈ Q0, then we call u∗ an optimal feedback policy (or Markov control
policy).

In the LQRP example above, we take

u∗(s, y) = −N−1(s)B′(s)P (s)y,

which is a linear function of the state variable y. According to (5.17), u∗ is an
optimal feedback control policy.

For the problem of control until exit from a closed cylindrical region Q, the
condition W (τ∗, x∗(τ∗)) = g(τ∗, x∗(τ∗)) in case τ∗ < t, needs to be added.
Then optimality of u∗ follows from Theorem 5.2 and Corollary 5.1, provided
u∗ is admissible.

It is a complicated matter to determine, in general, whether an optimal
feedback control policy exists. We shall not undertake to deal with it here,
but will only indicate some of the difficulties. In order to implement the pro-
cedure just outlined above, one needs first a smooth solution W to the dy-
namic programming equation (5.3) with terminal and boundary conditions. If
L(s, y, v)+f(s, y, v)·DxW (s, y) has a minimum on U at a unique v∗ = u∗(s, y)
this determines a candidate for the optimal feedback policy u∗. If v∗ is not
unique, a selection theorem is needed in order to choose u∗(s, y). Finally, in
many examples u∗(s, y) is not even a continuous function of (s, y), and there
is no guarantee that (5.23) with the initial conditions has a unique solution.
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I.6 Dynamic programming and Pontryagin’s principle

In this section we first give a sufficient condition that the value function V
satisfies the dynamic programming equation (5.3) at a point (t, x). Then we
show how dynamic programming is related to Pontryagin’s principle, which
gives necessary conditions for u∗(·) to minimize J(t, x;u).

We call a function V differentiable at an interior point (t, x) of its domain
if there exist a scalar a and a vector b such that

lim
(h,k)→(0,0)

(|h| + |k|)−1|V (t+ h, x+ k) − V (t, x) − ah− b · k| = 0.

Differentiability of V is equivalent to the existence of a tangent plane to the
graph of V at (t, x). If V is differentiable at (t, x), then a = Vt(t, x) and
b = DxV (t, x). A sufficient condition for differentiability of V at (t, x) is that
V ∈ C1(N) for some neighborhood of N of (t, x). See, for instance, Fleming
[F1].

Theorem 6.1. Let (t, x) ∈ Q be a point at which the value function V is
differentiable. Then:
(a) Vt(t, x) + L(t, x, v) + f(t, x, v) ·DxV (t, x) ≥ 0, ∀v ∈ U ;

(b) If there exists an optimal control u∗(·) ∈ U(t, x) such that u∗(s)
tends to a limit v∗ as s ↓ t, then

Vt(t, x) + L(t, x, v∗) + f(t, x, v∗) ·DxV (t, x) = 0.

Hence the dynamic programming equation (5.3) holds at (t, x).
Proof. By assumption (5.2), for any v ∈ U there exists a control u(·) ∈

U(t, x) such that u(s) tends to v as s ↓ t. By Lemma 4.1, if t+ h < τ , then

(6.1) V (t, x) ≤
∫ t+h

t

L(s, x(s), u(s))ds+ V (t+ h, x(t+ h)),

where x(s) is the solution of (3.2) with x(t) = x. Then

lim
h↓0

h−1[x(t+ h) − x(t)] = f(t, x, v),

lim
h↓0

h−1[V (t+ h, x(t+ h)) − V (t, x)] = Vt(t, x) + f(t, x, v) ·DxV (t, x),

since V is differentiable at (t, x). Moreover,

lim
h↓0

∫ t+h

t

L(s, x(s), u(s))ds = L(t, x, v).

This proves (a). To prove (b), we use the same argument, observing that
equality holds in (6.1) when u(·) = u∗(·) and x(·) = x∗(·) is the corresponding
solution of (3-2)-(3.3). �
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In particular, assumption (b) holds if a continuous optimal control u∗(·)
exists. In Section 9 we will show that there is a continuous optimal control, for
a special class of control problems of calculus of variations type. For further
results about existence and continuity properties of optimal controls see [FR,
Chap III], Cesari [Ce] and Section 11.

If the control space U is compact and U(t, x) = U0(t), assumption (b) is
unnecessary:

Theorem 6.1′. Let U be compact and U(t, x) = U0(t). Then the dynamic
programming equation (5.3) holds at every point (t, x) ∈ Q such that V is
differentiable at (t, x).

Let us merely sketch the proof of Theorem 6.1′. Another proof of this
result is also given by using the theory of viscosity solutions (See Corollary
II.8.1.). By the dynamic programming principle (4.3), we have (see (5.1)) for
small h > 0

inf
u(·)∈U0(t)

{

1

h

∫ t+h

t

L(s, x(s), u(s))ds+
1

h
[V (t+ h, x(t+ h)) − V (t, x)]

}

= 0.

Since U is compact, it can be shown that the limits as h ↓ 0 in the proof of
Theorem 6.1 are uniform with respect to u(·). Therefore

Vt(t, x) +
1

h
inf

u(·)∈U0(t)

[
∫ t+h

t

L(t, x, u(s))ds

+

∫ t+h

t

f(t, x, u(s))ds ·DxV (t, x)

]

= O(1),

where O(1) → 0 as h ↓ 0. This infimum is attained for u(s) ≡ v∗, where v∗

is any point of U at which L(t, x, v) + f(t, x, v) · DxV (t, x) has a minimum.
Then

Vt(t, x) + L(t, x, v∗) + f(t, x, v∗) ·DxV (t, x) = 0.

By combining this with Theorem 6.1 (a), the dynamic programming equation
(5.3) holds at (t, x). �

Generalized solutions to dynamic programming equations. Typi-
cally the value function V fails to be differentiable at some points (t, x). Thus,
V may not satisfy the dynamic programming equation (5.3) everywhere in Q.
In such cases, we wish to interpret V as a solution in some extended sense.
One such interpretation is as a generalized solution, a concept which we shall
now define. We call a function W locally Lipschitz on Q if: for every compact
set K ⊂ Q there exists a constant MK such that

|W (t, x) −W (t′, x′)| ≤ MK(|t− t′| + |x− x′|)

for all (t, x), (t′, x′) ∈ K. If one can choose M = MK which does not depend
on K, then W is Lipschitz continuous on Q. By Rademacher’s Theorem ([EG]
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or [Zi]) every locally Lipschitz function is differentiable at almost all points
(t, x) ∈ Q.

Definition. W is a generalized solution to the dynamic programming
equation in Q if W is locally Lipschitz and satisfies (5.3) for almost all
(t, x) ∈ Q.

Corollary 6.1. Let U be compact and U(t, x) = U0(t). If V is locally
Lipschitz on Q, then V is a generalized solution of the dynamic programming
equation (5.3).

Later we will prove two theorems which give sufficient conditions for the
value function V to be Lipschitz on Q. See Theorem 9.3, Theorem II.10.2. A
local Lipschitz condition for V follows from the estimates in Section IV.8.

Unfortunately, when generalized solutions are considered instead of “clas-
sical” solutions of class C1(Q), a serious lack of uniqueness is encountered.
Indeed, elementary examples show that (5.3) with given boundary data can
have infinitely many generalized solutions. See Example II.2.2 below. This
difficulty is circumvented by choosing the unique generalized solution which
is also a viscosity solution, according to the definition to be given in Chapter
II.

Pontryagin’s Principle. During the 1950’s Pontryagin formulated a
“maximum principle” which provides a general set of necessary conditions
for an extremum in an optimal control problem. A statement and proof of
Pontryagin’s principle in its full generality is rather lengthy, and will not be
given in this book. See for instance [FR, Chap II] [PBGM]. However, the proof
is much simpler in special cases. See [FR, Sec. 2.11] and Theorem 6.3 below.

We shall first prove a result (Theorem 6.2) which connects Pontryagin’s
principle and dynamic programming. For this purpose we assume that the
partial derivatives fxi

, Lxi
, gxi

, ψxi
exist and are continuous for i = 1, · · · , n.

As above, let u∗(·) denote an optimal control and x∗(·) the corresponding
solution to (3.2) with x∗(t) = x. Let τ∗ be the exit time of (s, x∗(s)) from Q,
and let

γ∗ = {(s, x∗(s)) : t ≤ s ≤ τ∗}.
We call γ∗ an optimal trajectory. A crucial object in Pontryagin’s principle is
a IRn-valued function P (·) = (P1(·), · · · , Pn(·)) called an adjoint variable. It
satisfies for j = 1, · · · , n, t ≤ s ≤ τ∗ the linear differential equations

(6.2)
d

ds
Pj(s) = −

n
∑

i=1

∂

∂xj
fi(s, x

∗(s), u∗(s))Pi(s)

− ∂

∂xj
L(s, x∗(s), u∗(s)).

In addition, for almost all s ∈ [t, t∗]

(6.3) P (s) · f(s, x∗(s), u∗(s)) + L(s, x∗(s), u∗(s))
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= −H(s, x∗(s), P (s)).

When Pontryagin’s principle is stated in full generality, the term ∂L/∂xi

in (6.2) and L in (6.3) should be multiplied by some constant P 0 ≥ 0. In all
problems which we shall consider, P 0 > 0 and hence one can take P 0 = 1.

In addition to (6.2) and (6.3), the adjoint variable satisfies conditions at the
final time τ∗, called transversality conditions. We will state these transversality
conditions below in particular cases of interest to us.

If V is differentiable at each point (s, x∗(s)) of the optimal trajectory γ∗,
then a candidate for an adjoint variable is

(6.4) P (s) = DxV (s, x∗(s)).

We shall give two sets of conditions under which P (s) in (6.4) indeed satisfies
(6.2), (6.3) and an appropriate transversality condition.

In the first of these two results, we consider the control problem on a fixed
time interval [t, t1], with no terminal or state constraints on x(s). This is case
(A) of Section 3.

Theorem 6.2. Let U(t, x) = U0(t) and O = IRn. Let u∗(·) be an optimal
control, which is right continuous at each s ∈ [t, t1). Assume that the value
function V is differentiable at (s, x∗(s)) for t ≤ s < t1, and let P (s) be as in
(6.4). Then P (s) satisfies (6.2), (6.3) and the transversality condition

(6.5) P (t1) = Dψ(x∗(t1)).

Proof. The transversality condition (6.5) is immediate since V (t1, y) =
ψ(y) for all y ∈ IRn by (5.5). If in Theorem 6.1 we replace t, x, v∗ by
s, x∗(s), u∗(s+), then (6.3) follows from Theorem 6.1. It remains to show
that P (s) satisfies the linear differential equations (6.2).

Observe that (6.2) is a linear ordinary differential equation. Hence it has
a unique solution P̄ (s) satisfying (6.5). So the task in front of us is to show
that P (s) is indeed equal to P̄ (s).

For t ≤ r < t1, the restriction u∗
r(·) of u∗(·) to [r, t1] is admissible. Hence,

for any y ∈ IRn

(6.6) V (r, y) ≤ J(r, y;u∗
r(·)).

If y = x∗(r), then u∗
r(·) is optimal for the initial data (r, x∗(r)) and equality

holds in (6.6). Since J(r, ·; u∗
r(·)) − V (r, ·) has a minimum on IRn at x∗(r),

(6.7) DxV (r, x∗(r)) = DxJ(r, x∗(r);u∗
r(·)).

for all r ∈ [t, t1). Hence, it suffices to show that the right side of (6.7) equals
P̄ (r). In the following calculations it is notationally convenient to make the
dependence of the state x(s) on the initial condition explicit. With fixed initial
starting time r ∈ [t, t1] and control u∗

r(·) let x(s; y) denote the state at time s
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with initial conditions x(r; y) = y. Clearly x(s;x∗(r)) = x∗(s) for all s ∈ [r, t1].
We directly calculate that

(6.8)
∂

∂xi
J(r, x∗(r);u∗) =

n
∑

j=1

{

∫ t1

r

Lxj
(s, x∗(s), u∗(s))zij(s)ds

+ψxj
(x∗(t1))zij(t1)

}

, r = 1, · · · , n,

where Lxj
= ∂L/∂xj , ψxj

= ∂ψ/∂xj and for i, j = 1, · · · , n

zij(s) =
∂

∂yi
xj(s;x

∗(r)).

A straightforward calculation, by standard ordinary differential equations
methods, gives

(6.9)
d

ds
zij(s) =

n
∑

ℓ=1

∂

∂xℓ
fj(s, x

∗(s), u∗(s))ziℓ(s), s ∈ [r, t1],

with initial data

(6.10) zij(r) =

⎧

⎨

⎩

1, if i = j

0, if i �= j.

We claim that the right-hand side of (6.8) is equal to P̄i(r). Indeed using (6.2)
and (6.9) we calculate that

d

ds

⎧

⎨

⎩

n
∑

j=1

zij(s)P̄j(s)

⎫

⎬

⎭

= −
n
∑

j=1

Lxj
(s, x∗(s), u∗(s))zij(s),

i = 1, · · · , n.
We integrate this identity on [r, t1] and use (6.5), (6.7), (6.8), (6.10) to obtain

P̄i(r) =

n
∑

j=1

zij(r)P̄j(r)

=

n
∑

j=1

zij(t1)P̄j(t1) −
∫ t1

r

d

ds

⎧

⎨

⎩

n
∑

j=1

zij(s)P̄j(s)

⎫

⎬

⎭

ds

=
∂

∂xi
J(r, x∗(r);u∗

r) =
∂

∂xi
V (r, x∗(r)).

�
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When the value function is not differentiable, a version of (6.4) still holds
true. However, a weaker notion of gradient is needed. See Section II.l5 in this
book and [Cle1,2].

Results similar to Theorem 6.2 are known for the problem of control up to
the time of exit from the closure Q of a cylindrical region Q = [t0, t1)×O. See
[FR, p.100]. However, in [FR] the assumption that V is differentiable along
the optimal trajectory γ∗ is replaced by the stronger assumption that V is of
class C2 in some neighborhood of γ∗. We shall not reproduce the proof of this
result here. However, we will derive the transversality condition.

Again let P (s) be as as in (6.4). If τ∗ = t1 and x∗(t1) ∈ O, then the
transversality condition is again (6.5). Suppose that τ∗ < t1. Then the
transversality condition at the point (τ∗, x∗(τ∗)) of the lateral boundary is
as follows: there exists a scalar λ such that

(6.11a) P (τ∗) = Dxg(τ
∗, x∗(τ∗)) + λη(x∗(τ∗))

with g as in (3.6) and η(ξ) the exterior unit normal at ξ ∈ ∂O. Moreover,

(6.11b) gt(τ
∗, x∗(τ∗)) = H(τ∗, x∗(τ∗), P (τ∗)).

We prove (6.11 a,b) as follows. If τ∗ < t1, then V (τ∗, ξ) ≤ g(τ∗, ξ) for
all ξ ∈ ∂O by (5.19). Equality holds when ξ = x∗(τ∗). Hence, the derivative
of V (τ∗, ·) − g(τ∗, ·) at x∗(τ∗) is zero in any direction tangent to ∂O. This
implies that DxV −Dxg at (τ∗, x∗(τ∗)) is a scalar multiple λ of the exterior
unit normal η(x∗(τ∗)). Thus,

P (τ∗) −Dxg(τ
∗, x∗(τ∗)) = Dx(V − g)(τ∗, x∗(τ∗)) = λη(x∗(τ∗)),

which is (6.11a). Since V (s, x∗(τ∗)) ≤ g(s, x∗(τ∗)), by (5.19), with equality
for s = τ∗,

∂V

∂t
(τ∗, x∗(τ∗)) =

∂g

∂t
(τ∗, x∗(τ∗)).

By (5.3′) and (6.4), the left side is H(τ∗, x(τ∗), P (τ∗)). Thus, (6.11b) holds.
To conclude this section, we give a proof of Pontryagin’s principle on a

fixed time interval t ≤ s ≤ t1 without reference to the value function V or
other restrictive assumptions in Theorem 6.2.

Theorem 6.3. Let U(t, x) = U0(t) and O = IRn. Let u∗(·) be an optimal
control, and let P (s) be the solution to (6.2) for t ≤ s ≤ t1 with P (t1) =
Dψ(x∗(t1)). Then (6.3) holds for almost all s ∈ [t, t1.]

Proof. Let s ∈ [t, t1) be any point at which u∗(·) is approximately con-
tinuous. (For a definition of approximately continuous function, see [EG] or
[McS, p. 224].) Given v ∈ U and 0 < δ < t1 − s, let

uδ(r) =

⎧

⎨

⎩

u∗(r) if r �∈ [s, s+ δ]

v if r ∈ [s, s+ δ],
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and let xδ(r) be the solution to (3.2) with u(r) = uδ(r) and with xδ(t) = x.
Since J(t, x;u∗) ≤ J(t, x;uδ)

(6.12)

0 ≤ 1

δ

∫ s+δ

s

[L(r, xδ(r), v) − L(r, x∗(r), u∗(r)]dr

+
1

δ

∫ t1

s+δ

[L(r, xδ(r), u
∗(r)) − L(r, x∗(r), u∗(r))]dr

+
1

δ
[ψ(xδ(t1)) − ψ(x∗(t1))].

The first term on the right side tends to L(s, x∗(s), v) − L(s, x∗(s), u∗(s)) as
δ → 0. By the mean value theorem, the second term equals

∫ t1

s+δ

∫ 1

0

Lx(r, x∗(r) + δλζδ(r), u
∗(r)) · ζδ(r)dλdr

where Lx = (∂L/∂x1, . . . , ∂L/∂xn) and ζδ(r) = δ−1[xδ(r)−x∗(r))]. As δ → 0,
ζδ(r) tends uniformly on [t, t1] to ζ(r) which is the solution to the linear
differential equation

(6.13)
d

dr
ζ(r) = fx(r, x∗(r), u∗(r))ζ(r), s ≤ r ≤ t1,

with ζ(s) = f(s, x∗(s), v) − f(s, x∗(s), u∗(s)).
In (6.13), fx is the matrix of partial derivatives ∂fl/∂xj . By (6.12)

(6.14)

0 ≤ L(s, x∗(s), v) − L(s, x∗(s), u∗(s))

+

∫ t1

s

Lx(r, x∗(r), u∗(r)) · ζ(r)dr +Dψ(x∗(t1)) · ζ(t1).

From (6.2) and (6.13)

(6.15)
d

dr
[P (r) · ζ(r)] = −Lx(r, x∗(r), u∗(r)) · ζ(r).

From (6.14), (6.15) and the values of ζ(s), P (t1) we obtain for all v ∈ U

(6.16)
0 ≤ L(s, x∗(s), v) + P (s) · f(s, x∗(s), v)

− L(s, x∗(s), u∗(s)) − P (s) · f(s, x∗(s), u∗(s)).

By (5.4), this is equivalent to (6.3). �
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I.7 Discounted cost with infinite horizon

In this section we study a class of problems with infinite time horizon (t1 =
∞). With the notation of Section 3, the payoff functional is

(7.1) J(t, x;u) =

∫ τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<∞,

where τ is the exit time of (s, x(s)) from Q, or τ = +∞ if (s, x(s)) ∈ Q for all
s ≥ t. In contrast to the finite horizon case, additional assumptions are often
needed to ensure the finiteness of the value function.

A standard procedure is to introduce a discount factor β ≥ 0 such that

L(t, x, v) = e−βtL̃(t, x, v)

g(t, x) = e−βtg̃(t, x).

If β > 0 and L̃, g̃ are bounded, then the value function V is always finite.
Unfortunately, these assumptions do not cover many examples of interest.
In such cases further assumptions of a technical nature are needed to insure
finiteness of V .

To simplify the problem we assume that all the given data are time inde-
pendent. Thus L̃, g̃ and f , are independent of t. With an abuse of notation
we use L(x, v) and g(x) to denote L̃(x, v) and g̃(x) respectively. Then (7.1)
becomes

(7.1′) J(t, x;u) =

∫ τ

t

e−βsL(x(s), u(s))ds+ e−βτg(x(τ))χτ<∞.

We will take U(t, x) = Ux, where Ux is defined below. If we let ũ(s) = u(t+s),
for s ≥ 0, then

(7.2) J(t, x;u) = e−βtJ(0, x; ũ).

Hence, it suffices to consider initial time t = 0. From now on we shall do so, and
will write J(x;u) instead of J(0, x;u). Let us now formulate more precisely the
class of infinite horizon control problems which we shall consider. Let O ⊂ IRn

be an open set, such that either O = IRn or ∂O is a compact manifold of class
C2. We assume that f, L ∈ C(IRn ×U) and g ∈ C(IRn). Moreover, for suitable
Kρ,

(7.3) |f(x, v) − f(y, v)| ≤ Kρ|x− y|

for all x, y ∈ IRn and v ∈ U such that |v| ≤ ρ. By a control we mean any U -
valued, Lebesgue measurable function u(·) on [0,∞) such that u(s) is bounded
on [0, t] for any t < ∞. Let U0 denote the set of all controls.

The dynamics of the state x(s) are now
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(7.4)
d

ds
x(s) = f(x(s), u(s)), s ≥ 0,

with initial condition x(0) = x. The payoff functional is

(7.5) J(x;u) =

∫ τ

0

e−βsL(x(s), u(s))ds+ e−βτg(x(τ))χτ<∞,

where τ is the exit time of x(s) for O (or τ = +∞ if x(s) ∈ O for all s ≥ 0.)
If O = IRn, then τ = +∞ and the last term in (7.5) is missing. Let Ux ⊂ U0

denote the set of controls u(·) such that

∫ τ

0

e−βs |L(x(s), u(s))| ds < ∞.

Then J(x;u) is defined for all u(·) ∈ Ux. We assume that

(7.6) Ux is nonempty for all x ∈ O.

We also assume the analogue of (3.11):

(7.7) For every ξ ∈ ∂O there exists v(ξ) ∈ U such that

f(ξ, v(ξ)) · η(ξ) > 0.

Here η(ξ) is the exterior unit normal at ξ.
The value function V is defined by

(7.8) V (x) = inf
Ux

J(x;u), x ∈ O.

We will only consider problems in which V (x) > −∞. This is true, in particu-
lar, if L ≥ 0 and g ≥ 0 since then V (x) ≥ 0. For simplicity, we consider in this
section only the problem of control until exit from O, rather than the more
general formulation in Section 3. In particular, we do not consider the infinite
horizon problem with a state constraint x(s) ∈ O for all s ≥ 0. However such
problems can be analyzed exactly as below.

Equation (7.2) suggests that

(7.9) V (t, x) = e−βtV (x).

By substituting this in equation (5.3′), we obtain the dynamic programming
equation for the infinite horizon, discounted control problem:

(7.10) βV (x) +H(x,DV (x)) = 0, x ∈ O

where for x, p ∈ Rn, H(x, p) = sup
v∈U

{−p · f(x, v) − L(x, v)}.

As in (5.19) we have

(7.11) V (x) ≤ g(x), ∀x ∈ ∂O.
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We cannot expect equality in (7.11) at all points of ∂O, although this is
true under additional assumptions (for example, if L ≥ 0 and g ≡ 0.) If O is
unbounded (in particular, if O = IRn) an additional condition will be imposed
to exclude solutions to (7.10) which “grow too rapidly” as |x| → ∞. See (7.14).

Following the proofs of Lemma 4.1 and Lemma 4.2 we obtain a similar
result for the infinite horizon case.

Lemma 7.1. For any initial condition x ∈ O and r ≥ 0

(7.12) V (x) = inf
Ux

[

∫ r∧τ

0

e−βsL(x(s), u(s))ds

+e−βτg(x(τ))χτ<r + e−βrV (x(r))χr≤τ ].

Moreover, an admissible control u(·) ∈ Ux is δ - optimal at the initial point x
if and only if it is δ - optimal at every x(s) with s ∈ [0, τ ].

We continue with the proof of a verification theorem. Let W ∈ C1(O) sat-
isfy the stationary dynamic programming equation (7.10) and the boundary
conditions (7.11). As in the proof of Theorem 5.1, using the state dynamics
and (7.10) we calculate that

e−βrW (x(r)) = W (x) +

∫ r

0

e−βs[−βW (x(s)) + ẋ(s) ·DW (x(s))]ds

= W (x) +

∫ r

0

e−βs[−βW (x(s)) + f(x(s), u(s)) · dW (x(s))]ds

≥ W (x) −
∫ r

0

e−βrL(x(s), u(s))ds

for any u(·) ∈ Ux and r ∈ [0, τ). We let r ↑ τ to obtain

(7.13) W (x) ≤
∫ τ

0

e−βsL(x(s), u(s))ds+ lim
r↑τ

e−βrW (x(r)).

If τ < ∞, then (7.11) implies that the above limit is less than or equal to
e−βτg(x(τ)).

However, if τ = ∞ we do not in general know anything about this term.
To avoid this difficulty, we assume:

(7.14) lim
r↑∞

e−βrW (x(r)) = 0

for all u(·) ∈ Ux such that τ = ∞.
We have proved the following.
Theorem 7.1. (Verification Theorem). Let W ∈ C1(O) satisfy (7.10),

(7.11) and (7.14). Then

(a) W (x) ≤ V (x) for all x ∈ O.
(b) Suppose that there exists u∗(·) ∈ Ux such that
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(7.15) L(x∗(s), u∗(s)) + f(x∗(x), u∗(s)) ·DW (x∗(s))

= −H(x∗(s), DW (x∗(s))

for almost every s ∈ [0, τ∗) and W (x∗(τ∗)) = g(x∗(τ∗)) provided τ∗ < ∞.
Then u∗(·) is optimal for initial data x and W (x) = V (x).

In this theorem, x∗(·) denotes the solution to (7.4) with u(·) = u∗(·), x∗(0) =
x; and τ∗ is the exit time of x∗(s) from O (or +∞ if x∗(s) ∈ O for all s ≥ 0.)

Remark 7.1. A slight generalization of Theorem 7.1 can be proved in
which (7.14) is replaced by assumptions like those in Theorem III.9.1 and
Theorem IV.5.1. Those results concern stochastic control problems. In the
deterministic case, one simply considers control functions u(·) instead of ad-
missible control systems (Section III.9) or progressively measurable control
processes (Section IV.5).

The following is one among many conditions sufficient for (7.14).
Lemma 7.l. Suppose that β > 0, that

(7.16) sup{f(x, v) · x : x ∈ O, v ∈ U} < ∞,

and that |W (x)| ≤ C(1 + |x|m) for some constants C,m. Then (7.14) holds.
Proof. We calculate that

(7.17)
d

ds
(|x(s)|2) = 2f(x(s), u(s)) · x(s)

for any control u(·). By (7.16)

|x(s)|2 ≤ |x|2 +Ks

for some K. Then, for suitable C1

|W (x(s))| ≤ C1(1 + |x|m + s
m
2 ),

which implies (7.14). �

Example 7.1. Let f(x, v) = −x+ v, x ∈ IR1, v ∈ [−1, 1]. Then

f(x, v) · x ≤ −x2 + |v‖x| ≤ 1

4
,

and hence (7.16) holds. Consider the problem of minimizing

J(x;u) =

∫ ∞

0

e−s

[

1

2
x(s)2 +

1

2
u(s)2

]

ds.

The stationary dynamic programming equation (7.10) is

(7.18) V (x) − min
|v|≤1

[

1

2
v2 + vV ′(x)

]

− 1

2
x2 + xV ′(x) = 0.
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Here ′ = d/dx. The value function V turns out to be convex. Moreover,
V (−x) = V (x) and V (·) is increasing for x ≥ 0. Thus, we look for a class C1

solution W of (7.18) with these properties. Equation (7.18) is equivalent for
x ≥ 0 to

(7.19) V (x) +
1

2
(V ′(x))2 − 1

2
x2 + xV ′(x) = 0, if V ′(x) ≤ 1

(7.20) V (x) − (
1

2
+

1

2
x2) + (1 + x)V ′(x) = 0, if V ′(x) > 1.

Equation (7.19) is the same as for the problem without control constraints
(U = IR1 instead of U = [−1, 1].) Motivated by the solution to the linear
quadratic regulator problem (Section 5) we tryW (x) = Dx2 for |x| ≤ b, where
W ′(b) = 1. Then (7.19) holds for D the positive root of 2D2 + 3D − 1

2 = 0
and b = (2D)−1. Then the linear equation (7.20) is solved for x ≥ b, with
W (b) = Db2; and we set W (−x) = W (x). This solution W to (7.18) is of class
C1(IR1) and grows quadratically as |x| → ∞. We determine u∗(s) = u∗(x∗(s))
from the control policy

u∗(x) =

⎧

⎨

⎩

−2Dx, if x ≤ b

− sgnx, if |x| ≥ b,

using the fact that W ′(x) = 2Dx if |x| ≤ b. The Verification Theorem 7.1
implies that V = W and u∗ is an optimal policy.

When O = IRn there are no boundary conditions. The stationary dynamic
programming equation (7.10) may have many solutions W in IRn. Condition
(7.14) is helpful in finding the one relevant to the control problem. The fol-
lowing simple example illustrates this point.

Example 7.2. Consider the problem of minimizing

(7.21)
1

2

∫ ∞

0

e−su(s)2ds,

subject to ẋ(s) = u(s) and u(s) ∈ IR1. In this case O = U = IR1. The
problem is in fact an infinite horizon linear quadratic regulator problem with
n = m = 1. Since the running cost does not depend on the state, the optimal
control is u∗(s) ≡ 0. Hence V (x) ≡ 0, which is a solution to the stationary
dynamic programming equation

(7.22) V (x) +
1

2
(V ′(x))2 = 0, x ∈ IR1.

For any constant a,

W (x) = −1

2
(x− a)2
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is also a solution of (7.22), different from the value function V (x). Formula
(7.15) states, in this case, that 1

2v
2 + vW ′(x∗(s)) has a minimum at v =

u∗(s) = ẋ∗(s). This gives ẋ∗(s) = x∗(s) − a with x∗(0) = x. If x �= a, then
(7.21) is infinite and (7.14) does not hold for this choice of u∗(s).

Remark 7.2. A verification theorem entirely similar to Theorem 7.1 is
true for the problem of control until the time τ ′ when x(s) exits from O,
rather than from O. Since x(s) ∈ O for 0 ≤ s < τ ′, the proof of Theorem 7.1
shows that in this case it suffices to assume that W ∈ C1(O) ∩ C(O) rather
than W ∈ C1(O). See Remark 5.2 for the corresponding finite time horizon
problem.

Remark 7.2 will be used in the next example, in which O is the interval
(0,∞).

Example 7.3. This example concerns a very simple deterministic model
for the consumption and investment behavior of a single agent. In this simple
model, the agent has wealth x(s) invested in an asset on which a fixed rate
of return r is earned. At each time s, the agent chooses a consumption rate
c(s) ≥ 0, which has the role of a control. The wealth dynamics are

(7.23)
d

ds
x(s) = rx(s) − c(s), s ≥ 0.

Let ℓ be a concave, increasing function on the control set U = [0,∞). ℓ is
called a utility function. The problem is to maximize the total discounted
utility of consumption

(7.24) J(x; c) =

∫ τ ′

0

e−βsℓ(c(s))ds, x ≥ 0,

where either τ ′ = +∞ if x(s) > 0 for all s ≥ 0 or τ ′ is the first s such that
x(s) = 0 (bankruptcy). In this model, once bankruptcy occurs the wealth
remains at 0, namely, x(s) = 0 for all s ≥ τ ′. Hence, the problem is equiv-
alent to maximizing total discounted utility on the interval 0 ≤ s < ∞,
subject to the state constraint x(s) ≥ 0. Let us take ℓ(c) = γ−1cγ , where
0 < γ < 1. This is a commonly used utility function, of so-called HARA type
[KLSS]. In Example IV.5.2 and in Chapter X we will consider stochastic opti-
mal investment-consumption models, in which an investor divides the wealth
between a riskless asset with interest rate r and a risky asset with uncertain
rate of return.

Let us assume that rγ < β. For rγ ≥ β, it can be shown that the value
function V (x) is +∞. The stationary dynamic programming equation is

(7.25) βV (x) − 1 − γ

γ
(V ′(x))

γ
γ−1 − rxV ′(x) = 0, x > 0,

with the boundary condition V (0) = 0. (To use (7.10), we replace L by
−ℓ, V by −V and maximum by minimum. In (7.25) we implicitly assume
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that V ′(x) > 0.) A straightforward calculation shows that (7.25) has a power
type solution

(7.26) W (x) = (
1 − γ

β − rγ
)1−γ 1

γ
xγ .

Using (7.26) and the procedure described in Example 5.1, we compute a can-
didate for the optimal feedback consumption rate

(7.27) c∗(x) = (W ′(x))
1

γ−1 = (
β − rγ

1 − γ
)x.

Note that the optimal feedback control is a linear function in this example,
as was also true for the linear quadratic regulator problem in Example 5.1.

We must verify that, in fact, W is the value function and c∗(·) is optimal.
For this purpose, we show that the value function is finite, (7.14) holds and
use Theorem 7.1 with Remark 7.2. Since c(s) ≥ 0, (7.23) implies that

(7.28) x(s) ≤ xers, x = x(0).

Then (7.23) and (7.28) imply an upper bound on the total consumption up
to time s:

∫ s

0

c(ρ)dρ =

∫ s

0

[rx(ρ) − d

dρ
x(ρ)]dρ

= r

∫ s

0

x(ρ)dρ− x(s) + x

≤ r

∫ s

0

xerρdρ+ x = xers.

Using this and Jensen’s inequality, we get

h(s) =

∫ s

0

(c(ρ))γdρ

≤ s(
1

s

∫ s

0

c(ρ)dρ)γ

≤ s1−γxγerγs.

Then integration by parts yields

J(x; c) =
1

γ

∫ ∞

0

e−βs(c(s))γds

= lim
T→∞

1

γ

[

e−βTh(T ) + β

∫ T

0

e−βsh(s)ds

]

≤ βx

γ

γ ∫ ∞

0

s1−γe−(β−rγ)sds,
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and this is finite since rγ < β. This upper bound for J(x; c) implies the same
bound for V (x), and in particular that V (x) < ∞. By (7.28)

e−βTx(T )γ ≤ xγe−(rγ−β)T

which tends to 0 as T → ∞ since rγ < β. Thus

lim
T→∞

e−βTW (x(T )) = 0

as required in (7.14). Consequently, W (x) is the value function and c∗(·) is
the optimal feedback consumption rate.

Example 7.4. This example is related to the production planning problem
described in Example 2.1. In this simple model there are two commodities;
n = 2. We assume that the running cost is given by

h(x) = α|x1| + |x2|, x = (x1, x2) ∈ IR2

with some α > 0. Let U be as in (2.3) with c1d1 + c2d2 < 1. Then the
production planning is to minimize the total discounted holding and shortage
cost,

J(x, u) =

∫ ∞

0

e−βsh(x(s))ds.

Here x(s) is the solution of (2.1) with initial data x(0) = x. and u(s) ∈ U for
all s ≥ 0.

Clearly if there is no shortage of either commodity then the optimal pro-
duction rate is zero. Also if only one of the products is in shortage then the
optimal strategy is to produce that product with full capacity. Hence the
optimal policy u∗ satisfies

u∗(x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(0, 0) if x1, x2 > 0

( 1
c1
, 0) if x1 < 0 < x2

(0, 1
c2

) if x1 > 0 > x2.

When both products are in shortage (x1, x2 < 0) the optimal production
policy is produce one of the products in full capacity until it is no longer in
shortage, then produce the other product. The product that has the priority
depends on the parameters of the problem. To determine this priority rule
we use the dynamic programming equation. An elementary but a tedious
computation yields an explicit formula for the value function. See [LSST]. We
then obtain the optimal production rate u∗ by (7.15). For x1, x2 < 0,

u∗(x1, x2) =

⎧

⎨

⎩

( 1
c1
, 0) if c1 ≤ αc2

(0, 1
c2

) if c1 ≥ αc2.

See [S1] for additional examples.
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I.8 Calculus of variations I

In the remainder of this chapter we consider a special class of optimal control
problems, already mentioned in Example 2.4. The state dynamics (3.2) are
now simply

(8.1)
d

ds
x(s) = u(s), t ≤ s ≤ t1,

and there are no control constraints (U = IRn). The control problem is then
one of calculus of variations, for which there is an extensive literature ante-
dating control theory.

Let us begin by considering calculus of variations problems on a fixed time
interval [t, t1]. As endpoint conditions, we require that x(t) = x and x(t1) ∈ M
where M is a given closed subset of IRn. See class (C) in Section 3. We recall
that x(·) satisfying (8.1) is Lipschitz continuous on [t, t1] if and only if u(·) is
bounded and Lebesgue measurable on [t, t1]. If we write · = d/ds, then the
problem is to minimize

(8.2) J =

∫ t1

t

L(s, x(s), ẋ(s))ds+ ψ(x(t1))

among all Lipschitz continuous, IRn-valued functions x(·) which satisfy the
endpoint conditions. We assume that ψ ∈ C3(IRn), L ∈ C3(Q̄0 × IRn) and
that for all (t, x, v) ∈ Q0 × IRn :

(8.3)

(a) Lvv(t, x, v) > 0,

(b)
L(t, x, v)

|v| → +∞ as |v| → ∞.

Here Lvv denotes the matrix of second order partial derivatives Lvivj
. Condi-

tion (8.3a) implies that L(t, x, ·) is a strictly convex function on IRn. Condition
(8.3b) is called a coercivity, or superlinear growth, condition. Additional as-
sumptions about L, of a technical nature, will be made in Section 9. See (9.2).
It will be shown in Section 9, for the special case M = IRn (no constraint on
x(t1)), that there exists x∗(·) which minimizes J . Moreover, x∗(·) ∈ C2([t, t1]).
See Theorem 9.2.

In a calculus of variations problem, f(t, x, v) = v and U = IRn. The control
at time s is u(s) = ẋ(s). The Hamiltonian H in (5.4) takes the form

(8.4) H(t, x, p) = max
v∈IRn

[−v · p− L(t, x, v)].

The following facts are proved in Appendix A. H ∈ C2(Q0 × IRn), and H is
strictly convex in the variable p. Moreover, the dual formula

(8.5) L(t, x, v) = max
p∈IRn

[−v · p−H(t, x, p)]
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holds. The points v and p where the max occurs in (8.4) and (8.5) are related
by the classical Legendre transformation

(8.6) p = −Lv, v = −Hp,

which for each (t, x) is globally one-one from IRn onto itself. The duality
between L and H is related to the duality between Lagrangian and Hamil-
tonian formulations in classical mechanics, in which v has the interpretation
of velocity and p momentum for a particle of mass 1.

The following formulas relating first and second order partial derivatives
of L and H also hold:

(8.7)

(a) Ht = −Lt, Hx = −Lx;

(b) Hpp = (Lvv)−1;

(c) Htp = LtvHpp, Hxip = LxivHpp.

In (8.7) the partial derivatives of L andH are evaluated at (t, x, v) and (t, x, p),
where v and p are related by the Legendre transformation (8.6).

For a calculus of variations problem the adjoint differential equations (6.2)
become Ṗ (s) = −Lx(s, x∗(s), ẋ∗(s)). Condition (6.3) states that u∗(s) = ẋ∗(s)
maximizes −P (s) · v − L(s, x∗(s), v) over IRn. From (8.6) and (8.7a) we then
obtain the following differential equations for the pair x∗(s), P (s):

(8.8)

(a) ẋ∗(s) = −Hp(s, x
∗(s), P (s))

(b) Ṗ (s) = Hx(s, x∗(s), P (s)).

The dynamic programming equation for a calculus of variations problem
is

(8.9) −∂V
∂t

+H(t, x,DxV ) = 0,

with H as in (8.4). Equation (8.9) is also called a Hamilton-Jacobi equation.
If there are no constraints on x(t1), i.e. M = IRn, then

(8.10) V (t1, x) = ψ(x), x ∈ IRn.

Boundary conditions of type (8.10), prescribing V at a fixed time t1, are called
Cauchy data for the partial differential equation (8.9). If M is a proper subset
of IRn (e.g. a single point x1), then the boundary data for V at time t1 are
incompletely specified by (8.10).

A classical method for studying first-order partial differential equations is
the method of characteristics. This method introduces a system of 2n differen-
tial equations for a pair of functions x(s), P (s). These characteristic differen-
tial equations are just (8.8). In general, if x(s), P (s) are any solution to (8.8),
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then x(·) is called an extremal for the calculus of variations problem the
sense that it satisfies the Euler equation. Every extremal satisfies the Euler
differential equation ((10.1) below). However, if x∗(·) is minimizing then ad-
ditional conditions must hold. In particular, (s, x∗(s)) cannot be a conjugate
point for t < s < t1 (the Jacobi necessary condition for a minimum). See [He],
[FR, Chap 1], also Section 10.

The duality between H and L offers the possibility of calculus of varia-
tions descriptions of solutions to certain classes of first-order nonlinear partial
differential equations. If H(t, x, p) satisfies certain conditions, including strict
convexity and superlinearity in p, then (8.5) defines an integrand L(t, x, v)
for the corresponding calculus of variations problem. We shall return to this
point in Section 10.

Example 8.1. Suppose that L = L(v). Then it suffices to consider linear
functions x(·) in(8.2). Indeed, given any Lipschitz continuous x(·) let

v =
1

t1 − t

∫ t1

t

ẋ(s)ds

x̃(s) = x+ v(s− t).

Then x̃(t) = x(t) = x, x̃(t1) = x(t1) and ˙̃x(s) ≡ v. Assumption (8.3a) implies
that L is convex. Hence, by Jensen’s inequality

∫ t1

t

L( ˙̃x(s))ds ≤
∫ t1

t

L(ẋ(s))ds.

(The inequality is, in fact, strict unless ẋ(s)=constant almost everywhere on
[t, t1].) Assume that ψx is bounded. The value function in this example is

V (t, x) = min
v∈IRn

[(t1 − t)L(v) + ψ(x+ v(t1 − t))].

Since ψx is bounded, |ψ(x)| ≤ C(1 + |x|) for some C. This together with
coercivity condition (8.3b) insures that the minimum is attained at some v∗.
The corresponding linear function x∗(s) = x+ v∗(s− t) is optimal. By (8.4),
H = H(p). Any solution x(s), P (s) of the characteristic differential equations
(8.8) has P (s) = constant, ẋ(s) = constant, which is in accord with what was
just shown about minimizing extremals x∗(·).

Control until exit from Q̄. As in Section 3, case (B), let us now consider
the calculus of variations problem of minimizing

(8.11) J =

∫ τ

t

L(s, x(s), ẋ(s))ds+ Ψ(τ, x(τ)),

where τ is the exit time of (s, x(s)) from the closed cylindrical region Q̄ =
[t0, t1] × Ō, and Ψ is as in (3.6). Since U = IRn and f(s, ξ, v) = v, condition
(3.11) is satisfied with v(s, ξ) = η(ξ), where η(ξ) is the exterior unit normal
to ∂O at ξ. The dynamic programming equation is again (8.9), which is to be
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considered in the cylindrical region Q with the data (5.18) at the final time
t1 and the inequality (5.19).

Let us give sufficient conditions for the lateral boundary condition V = g
to be enforced at all (t, x) ∈ [t0, t1) × ∂O. Let us first assume as in (3.10)

(8.12) g = 0, L ≥ 0, ψ ≥ 0.

Then, as already noted in the discussion following (5.19), V (t, x) = 0 for all
(t, x) ∈ [t0, t1) × ∂O.

In the general case, if the function g in (3.5) is sufficiently smooth (for
example, g ∈ C4(Q0)), then

g(τ, x(τ)) = g(t, x) +

∫ τ

t

[gt(s, x(s)) +Dxg(s, x(s)) · ẋ(s)]ds

by the Fundamental Theorem of Calculus. We then rewrite J in (8.11) as

(8.11′) J = J̃ + g(t, x), where

J̃ =

∫ τ

t

L̃(s, x(s), ẋ(s))ds+ ψ̃(x(t1))χτ=t1 ,

(8.13)
(a) L̃(s, y, v) = L(s, y, v) + gt(s, y) +Dxg(s, y) · v,

(b) ψ̃(y) = ψ(y) − g(t1, y).

We minimize J by minimizing J̃ . Thus by replacing L by L̃ and ψ by ψ̃, the
problem has been reduced to one with lateral boundary data 0.

Proposition 8.1. Assume that:

(a) For all (s, y) ∈ Q̄, v ∈ U, gt(s, y) +Dxg(s, y) · v + L(s, y, v) ≥ 0;

(b) For y ∈ Ō, g(t1, y) ≤ ψ(y).

Then
V (t, x) = g(t, x) for all (t, x) ∈ [t0, t1) × ∂O.

Proof. We take L̃, ψ̃ as in (8.13), and g̃ = 0. Then V (t, x) = Ṽ (t, x) +
g(t, x). Since L̃, ψ̃, g̃ satisfy (8.12), Ṽ (t, x) = 0 on the lateral boundary, as
noted above.

�

Remark 8.1. When (a) and (b) hold, then g is called a smooth subsolution
of the Hamilton-Jacobi equation with the boundary conditions. Note that (a)
is equivalent to

(8.14) −gt(s, y) +H(s, y,Dxg(s, y)) ≤ 0.
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Example 8.1. (continued) Again let L = L(v), and let O be convex.
The same argument as above shows that it suffices to minimize J in (8.11)
among linear functions x(s) = x+ v(t− s). For (t, x) ∈ Q, the value function
is

V (t, x) = min
v,τ

[(τ − t)L(v) + Ψ(τ, x+ v(τ − t)].

The minimum is taken over all v ∈ IRn and τ ∈ [t, t1] such that (τ, x+ v(τ −
t)) ∈ ∂∗Q. Suppose that the lateral boundary data do not depend on t, namely,
g = g(x) of class C4(O). The conditions for g to be a smooth subsolution are
H(Dg(y)) ≤ 0 and g(y) ≤ ψ(y) for all y ∈ O.

Let us again suppose that (8.12) holds and indicate how the unknown
scalar λ in the transversality condition can be determined. Since g = 0, the
transversality condition (6.11) takes the form

(8.15) P (τ∗) = λη(x∗(τ∗)), H(τ∗, x∗(τ∗), P (τ∗)) = 0.

Since V ≥ 0 and V (s, ξ) = g(s, ξ) = 0 for (s, ξ) on the lateral boundary, we
must have

(8.16) DxV (s, ξ) · η(ξ) ≤ 0

for each (s, ξ) ∈ [t0, t1)×∂O at which V is differentiable. Under perhaps addi-
tional smoothness assumptions on V near the lateral boundary, we anticipate
that P (τ∗) = DxV (τ∗, x∗(τ∗)). See (6.4). This suggests that we require λ ≤ 0
in (8.15). Let us give two instances in which P (τ∗) is then determined by
(8.15).

Example 8.2. Suppose that H(s, ξ, 0) < 0 for every (s, ξ) ∈ [t0, t1) × ∂O.
Now h(λ) = H(s, ξ, λη(ξ)) is convex, with h(0) < 0 and h(λ) → +∞ as
|λ| → ∞. Hence, there exists a unique λ < 0 such that H(s, ξ, λη(ξ)) = 0. By
taking (s, ξ) = (τ∗, x∗(τ∗)) we get P (τ∗) in (8.15).

Example 8.3. Let L(x, v) = 1
2 |b(x) − v|2, where b(ξ) · η(ξ) < 0 for every

ξ ∈ ∂O. This arises in a large deviations, exit problem discussed later in
Chapter VII. In this example, H(x, p) = 1

2 |p|2 − b(x) · p, and H(ξ, λη(ξ)) = 0
is equivalent to

1

2
|λη(ξ)|2 = b(ξ) · (λη(ξ)).

Since |η(ξ)| = 1, this has two solutions: λ = 0 (which turns out to be irrelevant
in the large deviations exit problem) and λ = 2b(ξ) · η(ξ) < 0.

I.9 Calculus of variations II

In this section we consider calculus of variations problems on a fixed time
interval [t, t1], with no constraints on x(t1), i.e. M = IRn. Our purpose is to
prove existence and smoothness of an optimal trajectory, and also to show
that the value function V satisfies a Lipschitz condition.
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We seek a Lipschitz IRn-valued function x∗(·) which minimizes

(9.1) J =

∫ t1

t

L(s, x(s), ẋ(s))ds+ ψ(x(t1))

subject to the left endpoint condition x(t) = x.
Let us make the following assumptions about L. We assume that L ∈

C3(Q̄0 × IRn), and that for all (t, x, v):

(a) Lvv(t, x, v) > 0;

(b)
L(t, x, v)

|v| ≥ γ(v), where γ(v) → +∞ as |v| → ∞;

(c) For suitable c1, L(t, x, v) ≥ −c1 and L(t, x, 0) ≤ c1;

(d) For suitable c2, c3, |Lx(t, x, v)| ≤ c2L(t, x, v) + c3;

(9.2)
(e) For suitable C(R), |Lv(t, x, v)| ≤ C(R) whenever |v| ≤ R;

(f) ψ ∈ C2
b (IRn) ∩ C4(IRn).

Here c1, c2, c3 are suitable constants, and C(R) a suitable positive function.
Condition (9.2a) states that the matrix Lvv is positive definite.

Assumption (9.2a) is the same as (8.3a) and (9.2b) is a stronger form
of (8.3b). The remaining assumptions (9.2c-f) will be used to obtain various
bounds, for optimal controls and for the value function V .

Example 9.1. Let L(x, v) = 1
2 |v|2 − q(x). This is the classical action

integrand in mechanics, for a particle of mass 1, if q(x) is the potential energy
of a particle at position x. Assumptions (9.2) hold if q ∈ C3(IRn) with q(x)
and Dq(x) bounded, and if ψ ∈ C2

b (IRn) ∩ C4(IRn).
Reduction to Lagrange form. In the remainder of this section we will

assume that ψ(x) = 0. This is the so-called Lagrange form of the calculus
of variations problem. The more general form (9.1) can be reduced to the
Lagrange form as follows. Let

L̃(t, x, v) = L(t, x, v) +Dψ(x) · v.

Then L̃ satisfies (9.2)(a)-(e), with different γ̃(v), C̃(R) and c̃i, i = 1, 2, 3. As
in (8.11′), the Fundamental Theorem of Calculus gives

J = J̃ + ψ(x),

J̃ =

∫ t1

t

L̃(s, x(s), ẋ(s))ds.
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As in Section 8, we regard u(s) = ẋ(s) as a control. In order to prove
existence of a control u∗(·) minimizing J(t, x;u) in (9.1) with ψ = 0, let us
first impose a bound |u(s)| ≤ R < ∞. Then we show that, for R large enough,
the artificially introduced bound on u(s) does not matter. Let

(9.3) UR(t) = {u(·) ∈ U0(t) : |u(s)| ≤ R for all s ∈ [t, t1]}.

For K ⊂ IRn, let L∞([t, t1];K) denote the set of K-valued, bounded mea-
surable functions on [t, t1]. Then U0(t) = L∞([t, t1]; IR

n) and UR(t) =
L∞([t1, t];UR), where UR = {|v| ≤ R}.

Theorem 9.1. For each (t, x) ∈ Q0, there exists u∗
R(·) ∈ UR(t) such that

J(t, x;u∗
R) ≤ J(t, x;u) for all u(·) ∈ UR(t).

Theorem 9.1 is a special case of Theorem 11.1, which is proved below.
The next lemma is a special case of Pontryagin’s principle. See Theorem

6.3. Let u∗
R(·) minimize J(t, x;u) on UR(t), and let

(9.4)

(a) x∗
R(s) = x+

∫ s

t

u∗
R(r)dr,

(b) PR(s) =

∫ t1

s

Lx(r, x∗
R(r), u∗

R(r))dr, t ≤ s ≤ t1.

Since f(s, y, v) = v, and ψ ≡ 0, PR(s) satisfies the integrated form of the
adjoint differential equations (6.2) together with the terminal condition (6.5).
By Pontryagin’s principle:

Lemma 9.1. For almost all s ∈ [t, t1],

(9.5) L(s, x∗
R(s), u∗

R(s)) + u∗
R(s) · PR(s)

= min
|v|≤R

[L(s, x∗
R(s), v) + v · PR(s)].

Let us next consider the value function for the problem with constraint
|u(s)| ≤ R:

(9.6) VR(t, x) = J(t, x;u∗
R) = min

UR(t)
J(t, x;u).

We are going to find bounds for VR and u∗
R(s) which do not depend on R. Let

c1 be as in (9.2c).
Lemma 9.2. |VR(t, x)| ≤ c1(t1 − t). Moreover, there exists R1 such that

|u∗
R(s)| ≤ R1.
Proof. By (9.2c), L(s, y, v) ≥ −c1 . Hence, VR(t, x) ≥ −c1(t1 − t). On the

other hand, by choosing u(s) ≡ 0, x(s) ≡ x

VR(t, x) ≤
∫ t1

t

L(s, x, 0)ds ≤ c1(t1 − t)

by (9.2c). Thus, |VR(t, x)| ≤ c1(t1 − t). By (9.2d) and (9.4b)
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|PR(s)| ≤
∫ t1

t

(c2L(r, x∗
R(r), u∗

R(r))dr + c3)dr

= c2VR(t, x) + c3(t1 − t),

|PR(s)| ≤ (c2c1 + c3)(t1 − t).

Let B = (c2c1 + c3)(t1 − t0). The coercivity condition (9.2b) implies the
following. There exists a constantR1 such that |p| ≤ B and L(s, y, v)+v·p ≤ c1
imply |v| ≤ R1. By (9.2c) and (9.5)

L(s, x∗
R(s), u∗

R(s)) + u∗
R(s) · PR(s) ≤ L(s, x∗

R(s), 0) ≤ c1

for almost all s ∈ [t, t1]. By setting u∗(s) = 0 for s in the remaining set of
measure 0, this holds for all s ∈ [t, t1]. By taking y = x∗

R(s), v = u∗
R(s), p =

PR(s), we get |u∗
R(s)| ≤ R1. �

Since
U0(t) = ∪R>0UR(t),

Lemma 9.2 implies that for R ≥ R1

(9.7) V (t, x) = VR(t, x) = J(t, x;u∗
R),

where V is the value function for the calculus of variations problem formulated
in Section 8. From now on we write, with R ≥ R1,

x∗(s) = x∗
R(s), u∗(s) = u∗

R(s), P (s) = PR(s).

Since L(s, x∗(s), v)+ v ·P (s) has a minimum on IRn at v = u∗(s) = ẋ∗(s), for
almost all s ∈ [t, t1]

(9.8) −Lv(s, x∗(s), ẋ∗(s)) = P (s).

Then (8.6) implies for almost all s ∈ [t, t1]

(9.9) ẋ∗(s) = −Hp(s, x
∗(s), P (s)).

The right side of (9.9) is a continuous function of s. This implies that x∗(·) ∈
C1([t, t1]) and that (9.9) holds for all s ∈ [t, t1]. By differentiating (9.9) with
respect to s, one finds that x∗(·) ∈ C2([t, t1]); and differentiating (9.8) and
(9.4b) with respect to s gives the classical Euler differential equation for x∗(·).

We have proved, in particular, the following:
Theorem 9.2.
(a) For every (t, x) ∈ Q0 there exists x∗(·) which minimizes J in (9.1),

subject to the left end point condition x(t) = x.
(b) Any such minimizing x∗(·) is of class C2([t, t1]). Moreover, |ẋ∗(s)| ≤ R1

for all s ∈ [t, t1] with R1 as in Lemma 9.2.
Let us next obtain a uniform bound and Lipschitz estimates for V .
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Theorem 9.3.
(a) For every (t, x) ∈ Q0, |V (t, x)| ≤ c1(t1 − t) where c1 is as in (9.2c).
(b) There exists M such that, for every (t, x), (t′, x′) ∈ Q0,

(9.10) |V (t, x) − V (t′, x′)| ≤ M(|t− t′| + |x− x′|).

Inequality (9.10) states that V satisfies a Lipschitz condition, with Lip-
schitz constant M .

Proof of Theorem 9.3. Part (a) is immediate from Lemma 9.2, since
V = VR1 . To prove (b), by (9.2c,e) if |v| ≤ R then |L(t, x, v)| ≤ c1 + C(R)R.
Hence, by (9.2d) there exists N1 such that |Lx(s, y, v)| ≤ N1 whenever |v| ≤
R1. For any control u(·) ∈ UR1 , let

x(s) = x+

∫ s

t

u(r)dr, x′(s) = x′ − x+ x(s).

J(t, x;u) − J(t, x′;u) =

∫ t1

t

[L(s, x(s), u(s)) − L(s, x′(s), u(s))]ds,

|J(t, x;u) − J(t, x′;u)| ≤ sup
|v|≤R1

|Lx| · sup
[t,t1]

|x(s) − x′(s)|(t1 − t)

≤ N1|x− x′|(t1 − t).

Since this is true for every u(·) ∈ UR1 , and since VR1 = V ,

(9.11) |V (t, x) − V (t, x′)| ≤ N1|x− x′|(t1 − t).

We may suppose that t′ > t. Let x∗(·) minimize J for initial data (t, x).
Then

V (t, x) =

∫ t′

t

L(s, x∗(s), ẋ∗(s))ds+ V (t′, x∗(t′)).

For N2 = c1 + C(R1)R1 we have |L(s, y, v)| ≤ N2 whenever |v| ≤ R1. Then

|V (t, x) − V (t′, x)| ≤ N2(t
′ − t) + |V (t′, x∗(t′)) − V (t′, x)|.

Moreover, since |ẋ∗(s)| = |u∗(s)| ≤ R1,

|x∗(t′) − x| ≤ R1(t
′ − t).

Therefore, by (9.11)

(9.12) |V (t, x) − V (t′, x)| ≤ (N2 +R1N1(t1 − t))|t′ − t|.

Inequalities (9.11) and (9.12) are uniform Lipschitz estimates for V (t, ·) and
V (·, x). By combining these estimates, we get the Lipschitz estimate (9.10)
with M = N2 + (R1 + 1)N1(t1 − t0). �
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I.10 Generalized solutions to Hamilton-Jacobi equations

The Hamilton-Jacobi equation (8.9) is a first-order nonlinear partial differen-
tial equation for the value function V . By Theorems 6.1 and 9.2, V indeed
satisfies (8.9) at each point (t, x) ∈ Q0 where V is differentiable. However, we
will see that there are generally points where V is not differentiable. In fact,
those points (t, x) are exactly the ones for which the calculus of variations
problem has more than one solution x∗(·). See Theorem 10.2. As in Section
9 we take ψ(x) ≡ 0 (the Lagrange form), and we continue to assume that L
satisfies (9.2). At the end of the section, we will consider an application to
first order nonlinear PDEs, in which H rather than L is given. The idea in
this application is to introduce the calculus of variations problem in which L
is obtained from H by the duality formula (8.5).

We recall from Section 6 the definition of generalized solution. By Theorem
9.3(b), the value function V satisfies a Lipschitz condition on Q0 (not merely
a local Lipschitz condition.) From Theorems 6.1 and 9.2 we then have:

Theorem 10.1. The value function V is a generalized solution to the
Hamilton-Jacobi equation in Q0.

A difficulty with the concept of generalized solution is that (8.9) together
with the boundary data W (t1, x) = 0 typically has many generalized solu-
tions. Among them is one, called a viscosity solution, which is the natural (or
physically relevant) generalized solution. As we shall see in Chapter II, this
unique viscosity solution turns out to coincide with the value function V .

Let us next characterize those points (t, x) at which the value function V
is differentiable.

Definition. A point (t, x) ∈ Q0, with t0 < t < t1, is called a regular point
if there exists a unique x∗(·) which minimizes J in (9.1), subject to the left
endpoint condition x(t) = x.

The condition t0 < t is inessential, since the lower bound t0 was introduced
only for convenience. One can always replace t0 by t̃0 < t0, and assume that
L satisfies (9.2) on [t̃0, t1] × IR2n.

Theorem 10.2. The value function V is differentiable at (t, x) if and only
if (t, x) is a regular point.

In preparation for the proof, let us prove:
Lemma 10.1. Let (t, x) be a regular point and x∗(·) the unique minimizer

of J for left endpoint (t, x). If (τn, yn) → (t, x) as n → ∞ and x∗
n(·) minimizes

J for left endpoint (τn, yn), then ẋ∗
n(τn) → ẋ∗(t) as n → ∞.

Proof. The Euler equation

(10.1) Lx =
d

ds
Lv = Lvt + Lvxẋ

∗
n + Lvvẍ

∗
n

holds, where Lx, Lv, · · · are evaluated at (s, x∗
n(s), ẋ∗

n(s)). Since Lvv > 0 this
can be rewritten as

ẍ∗
n(s) = Φ(s, x∗

n(s), ẋ∗
n(s)), τn ≤ s ≤ t1,
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where Φ = L−1
vv (Lx−Lvt−Lvxv). By Lemma 9.2, |ẋ∗

n(s)| ≤ R1, where R1 does
not depend on n. Suppose that, for a subsequence of n, ẋ∗

n(τn) → v0, where
v0 �= ẋ(t). If we consider this subsequence instead of the original sequence,
then the theory of ordinary differential equations implies that x∗

n(s) → x0(s)
and ẋ∗

n(s) → ẋ0(s), where

ẍ0(s) = Φ(s, x0(s), ẋ0(s)), t ≤ s ≤ t1,

with x0(t) = x, ẋ0(t) = v0. Then

∫ t1

t

L(s, x0(s), ẋ0(s))ds = lim
n→∞

∫ t1

τn

L(s, x∗
n(s), ẋ∗

n(s))ds

= lim
n→∞

V (τn, yn).

By Theorem 9.3(b), V (τn, yn) → V (t, x) as n → ∞. Hence

V (t, x) ≤
∫ t1

t

L(s, x0(s), ẋ0(s))ds = V (t, x).

Thus, x0(·) minimizes J with left endpoint (t, x). Since v0 �= ẋ∗(t), x0(·) �=
x∗(·), which contradicts the assumption that (t, x) is a regular point. �

Proof of Theorem 10.2. If V is differentiable at (t, x), then V satisfies
(8.9) there by Theorem 6.1. Therefore,

0 ≤ Vt(t, x) + L(t, x, v) + v ·DxV (t, x),

with equality when v = v∗ = ẋ∗(t), where x∗(·) is any minimizer of J with
x∗(t) = x. (Recall that by Theorem 9.2(b), u∗(·) = ẋ∗(·) is continuous, and
hence v∗ = lim

s↓t
ẋ∗(s) as required in Theorem 6.1(b).) By (9.2)(a), L(t, x, v) +

v ·DxV (t, x) is a strictly convex function of v. Hence v∗ is unique. Since x∗(·)
is a solution of the Euler equation, it is uniquely determined by its initial data
x∗(t) = x, ẋ∗(t) = v∗. Therefore, (t, x) is a regular point.

Conversely, assume that (t, x) is a regular point. Given ζ = (τ, y, p) ∈
Q0 × IRn, let xζ(·) be the solution of the Euler equation (10.1) for τ ≤ s ≤ t1
with initial data (see (8.8)(a))

(10.2) xζ(τ) = y, ẋζ(τ) = −Hp(τ, y, p).

We also let

G(τ, y, p) =

∫ t1

τ

L(s, xζ(s), ẋζ(s))ds.

Let η = (τ, y) and let x∗
η(·) minimize

∫ t1

τ

L(s, x(s), ẋ(s))ds
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subject to x∗
η(τ) = y. Let ξ = (t, x). Then x∗

ξ(·) = x∗(·) is the unique minimizer
of J for left endpoint (t, x). As in (9.4b) let

(10.3) Pη(s) =

∫ t1

s

Lx(r, x∗
η(r), ẋ∗

η(r))dr, τ ≤ s ≤ t1.

Since x∗
η(·) satisfies the Euler equation (10.1), Lemma 10.1 implies that

x∗
η(r), ẋ∗

η(r) tends to x∗
ξ(r), ẋ

∗
ξ(r) as η → ξ, for t < r ≤ t1. Moreover, x∗

η(r) and
ẋ∗

η(r) are uniformly bounded. Hence, Pη(τ) → Pξ(t) as η → ξ. Now x∗
η(·), Pη(·)

satisfy the characteristic differential equations (8.8), and ẋ∗
η(s), Pη(s) are re-

lated by the Legendre transformation (8.6). In particular,

Pη(τ) = −Lv(τ, y, ẋ∗
η(τ)),

G(τ, y, Pη(τ)) = V (τ, y).

Moreover, for every p ∈ IRn

G(τ, y, p) ≥ V (τ, y).

By taking p = Pξ(t) and p = Pη(τ) we get

G(τ, y, Pη(τ)) −G(t, x, Pη(τ)) ≤ V (τ, y) − V (t, x)

≤ G(τ, y, Pξ(t)) −G(t, x, Pξ(t)).

The function G is of class C1(Q0 × IRn). Let

a = Gt(t, x, Pξ(t)), b = DxG(t, x, Pξ(t)).

Then
G(τ, y, Pη(τ)) −G(t, x, Pη(τ)) − a(τ − t) − b · (y − x)

|y − x| + |τ − t|

≤ V (τ, y) − V (t, x) − a(τ − t) − b · (y − x)

|y − x| + |τ − t|

≤ G(τ, y, Pξ(t)) −G(t, x, Pξ(t)) − a(τ − t) − b · (y − x)

|y − x| + |τ − t| .

Since G ∈ C1(Q0 × IRn), the first and last terms tend to 0 as (τ, y) → (t, x).
Hence V is differentiable at (t, x) and a = Vt(t, x), b = DxV (t, x). �

Corollary 10.1. If x∗(·) minimizes J subject to x(t) = x, then (s, x∗(s))
is a regular point for t < s < t1.

Proof. When restricted to [s, t1], x∗(·) minimizes J with left endpoint
(s, x∗(s)). If x∗∗(·) is another minimizer of J with x∗∗(s) = x∗(s), then
ẋ∗∗(s) �= ẋ∗(s) since both x∗(·) and x∗∗(·) satisfy the Euler equation. Then

x̃(r) =

⎧

⎨

⎩

x∗(r) for t ≤ r ≤ s

x∗∗(r) for s ≤ r ≤ t1
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minimizes J subject to x̃(t) = x; and x̃(·) is not of class C1([t, t1]). This
contradicts Theorem 9.2(b). �

Corollary 10.1 states that only the left endpoint (t, x) of an optimal trajec-
tory γ∗ = {(s, x∗(s)) : t ≤ s ≤ t1} can fail to be regular. Let us next impose
an additional condition on (t, x), which will imply that the value function is
smooth (class C1) in some neighborhood of γ∗. This condition states that
(t, x) is not a conjugate point, a concept which is defined in terms of char-
acteristics as follows. In the proof of Theorem 10.2, we considered a family
of solutions parameterized by initial conditions ζ = (τ, y, p). Let us now con-
sider another family of solutions parameterized by terminal conditions at time
t1. For α ∈ IRn, let x(s, α), P (s, α) denote the solutions to the characteristic
differential equations

(10.4)
(a) Ẋ(s, α) = −Hp(s,X(s, α), P (s, α))

(b) Ṗ (s, α) = Hx(s,X(s, α), P (s, α))

with the data

(10.5)
(a) X(t1, α) = α

(b) P (t1, α) = 0.

[We have taken ψ(x) ≡ 0 in (9.1). In general, condition (10.5b) is P (t1, α) =
Dψ(α)]. In (10.4), · = ∂/∂s as usual. From the theory of ordinary differen-
tial equations, for each α (10.4) with the data (10.5) have a unique solution
X(·, α), P (·, α) on some maximal interval S(α) < s ≤ t1. We also observe that
if x∗

ξ(·) minimizes J with left endpoint ξ = (t, x), then

x∗
ξ(s) = X(s, αξ), where αξ = x∗

ξ(t1),

and S(αξ) < t. In particular, x = X(t, αξ).
The function X(·, ·) is of class C1(∆) where ∆ = {(s, α) : α ∈ IRn, S(α) <

s ≤ t1}. For fixed s, consider the Jacobian matrix

∂X

∂α
(s, α) =

(∂Xi

∂αj
(s, α)), i, j = 1, · · · , n.

Definition. We call (τ, y) a conjugate point of the curve γα = {(s,X(s, α)) :
S(α) < s ≤ t1} if y = X(τ, α) and ∂X

∂α (τ, α) is of rank < n.
The classical Jacobi necessary condition states that if x∗

ξ(·) minimizes J
with left endpoint ξ = (t, x), then (s, x∗

ξ(s)) cannot be a conjugate point of γαξ

for t < s < t1. See [He], [FR]. However, the left endpoint ξ of a minimizing
trajectory may be a conjugate point. If ξ is a regular point, then x∗

ξ(·) is
unique. In this case we simply call ξ a conjugate point, without explicitly
referring to γαξ

.
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In the rest of this section, we assume that L satisfies (9.2) on [t0, t1]×IR2n,
for arbitrary t0 < t1. Thus, we may consider all initial times t < t1. A set N
is called open relative to Q0 if N = Ñ ∩Q0 where Ñ ⊂ IRn+1 is open.

Theorem 10.3. Let (t, x) be a regular point and γ∗ = {(s, x∗(s)) : t ≤
s ≤ t1} the unique minimizing trajectory with left endpoint (t, x). If (t, x) is
not a conjugate point, then there exists a set N open relative to Q0 such that
γ∗ ⊂ N and V ∈ C1(N).

Sketch of proof. Except for one point, Theorem 10.3 is a standard result
in the classical theory of first order partial differential equations. See [CH,
Chap 2], [He, Chap 3]. Hence, we shall only sketch a proof. The method of
characteristics is used to construct a local solution W of the Hamilton-Jacobi
equation (8.9) in a neighborhood of γ∗, as follows. Consider the mapping Y
from ∆ into IRn+1, such that Y (s, α) = (s,X(s, α)). Since ξ = (t, x) is not a
conjugate point, there exist positive ρ0, δ0 such that Y maps {(s, α) : t− δ0 <
s ≤ t1, |α− αξ| < ρ0} in a one-one way onto N0 with N0 open relative to Q0.
Moreover, for each s ∈ (t− δ0, t1], the restriction of Y (s, ·) to {|α−αζ | < ρ0}
has an inverse X−1

s of class C1. Let

w(τ, α) =

∫ t1

τ

L(s,X(s, α), Ẋ(s, α))ds;

and for (τ, y) ∈ N0 let

W (τ, y) = w(τ,X−1
τ (y)).

Then W ∈ C1(N0) and W satisfies (8.9).
It remains to use the fact that (t, x) is regular to show that W = V in a

possibly smaller neighborhood N of γ∗. As in the proof of Theorem 10.2, let
x∗

η(·) be minimizing for left endpoint η = (τ, y), and let αη = x∗
η(t1). Then

x∗
η(s) = X(s, αη), τ ≤ s ≤ t1,

W (τ, y) = w(τ, αη).

By Lemma 10.1, there exists a relatively open set N containing γ∗ such that
|αη − αξ| < ρ0 for any η ∈ N . Then

V (τ, y) =

∫ t1

τ

L(s, x∗
η(s), ẋ∗

η(s))ds = w(τ, αη)

and hence V (τ, y) = W (τ, y) for (τ, y) ∈ N . (Note that V (t1, y) = W (t1, y) =
0 if (t1, y) ∈ N.) �

Remark 10.1. If L is of class C∞(Q0 × IRn) then the method of charac-
teristics shows that V ∈ C∞(N).

Example 10.1. In dimension n = 1, consider the problem of minimizing

J =
1

2

∫ t1

t

|ẋ(s)|2ds+ ψ(x(t1)).



I. Deterministic Optimal Control 47

From Example 8.1 it is seen that any minimizing x∗(·) is a straight line seg-
ment. Thus

(10.6), V (t, x) = min
v∈IR1

[
1

2
(t1 − t)v2 + ψ(x+ (t1 − t)v)]

where v is the slope of the line y = x+ (s− t)v. In this example, L(v) = 1
2v

2

and H(p) = 1
2p

2. The characteristic equations (10.4) become Ẋ = −P, Ṗ = 0;
and (10.5) becomes X(t1, α) = α, P (t1, α) = ψ′(α). Hence

X(s, α) = α+ (t1 − s)ψ′(α)

∂X

∂α
(s, α) = 1 + (t1 − s)ψ′′(α).

A conjugate point appears when (t1 − s)ψ′′(α) = −1.
Let us now suppose that ψ(x) = ψ(−x) and ψ′′(0) < 0 (for example,

ψ(x) = cosx). For left endpoint (t, 0), since −x∗(·) is minimizing whenever
x∗(·) is minimizing there are two possibilities. Either: (1) x∗(s) ≡ 0 is the
unique minimizer, in which case (t, 0) is a regular point; or (2) there is a
minimizer x∗(s) �≡ 0, in which case (t, 0) is not a regular point. Let λ =
(t1 − t)v. From (10.6), (t, 0) is regular if

ψ(λ) − ψ(0) > − λ2

2(t1 − t)
for all λ ∈ IR1, λ �= 0.

Let us assume that there exists K such that ψ(λ) − ψ(0) ≥ −Kλ2 for all
λ. Then (t, 0) is regular if t1 − t < (2K)−1. On the other hand, (t, 0) is
not regular if (t1 − t) > |ψ′′(0)|−1, since there is a conjugate point at (t, 0)
where (t1 − t)ψ′′(0) = −1. The regular points (t, 0) form a line segment with
right endpoint (t1, 0) and left endpoint (t̃, 0), with t ≤ t̃ < t1. Whether t = t̃
depends on the global behavior of ψ(x), not just the local behavior near x = 0.

Let

(10.7)
E = {(t, x) ∈ Q0 : either (t, x) is not regular or

(t, x) is a conjugate point}.

Theorem 10.4. E is a closed subset of Q0, and V ∈ C1(Q0\E).
Proof. An easy modification of the proof of Theorem 10.3 shows that any

point (t1, x1) of the terminal hyperplane {t1}×IRn has a relative neighborhood
N1 which contains no point of E. For (t, x) ∈ N1, V (t, x) = W (t, x) where
W is the solution to the Hamilton-Jacobi equation (8.9) by the method of
characteristics with W (t1, x) = 0. Thus, V ∈ C1(N1). Let (t, x) ∈ Q0\E. By
Theorem 10.3, there is a relative neighborhood N of γ∗ such that V ∈ C1(N).
Moreover, the set N constructed in the proof of Theorem 10.3 contains no
point of E. �

Remark 10.2. It can be shown that E is a set of Hausdorff dimension
≤ n. See [F2, p.521]. Thus, in the sense of Hausdorff dimension, the value
function V is smooth except at points of a “small” closed set E.
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Remark 10.3. In dimension n = 1, there is a close connection between
Hamilton-Jacobi equations and conservation laws. If we let Z(t, x) = Vx(t, x),
then in dimension 1 the Hamilton-Jacobi equation (8.9) is formally equivalent
to the conservation law

−∂Z
∂t

+
∂

∂x
H(t, x, Z) = 0.

A curve in the (t, x) plane across which Vx is discontinuous corresponds to a
shock, in conservation law terminology. See [Daf].

Application to nonlinear PDEs. Consider a Cauchy problem for a first
order nonlinear PDE

(10.8) −Vt +H(t, x,DxV ) = 0, (t, x) ∈ Q0,

(10.9) V (t1, x) = 0,

where now H rather than L is given. We would like to identify (10.8) as a
Hamilton-Jacobi equation, by defining L from the formula (8.5) dual to (8.4).

Let us assume that H ∈ C∞(Q0 × IRn) and that

(10.10)

(a) Hpp(t, x, p) > 0

(b) lim
|p|→∞

H(t, x, p)

|p| = +∞.

We define L by (8.5):

(10.11) L(t, x, v) = max
p∈IRn

[−v · p−H(t, x, p)].

The maximum is attained at p = Γ (t, x, v), where

(10.12) v = −Hp(t, x, Γ (t, x, v)).

The implicit function theorem implies that Γ ∈ C∞(Q0 × IRn). Since
L = −H(t, x, Γ ) − v · Γ, L ∈ C∞(Q0 × IRn). First and second order par-
tial derivatives of H and L are related by (8.7).

Since H satisfies the formula (8.4) dual to (10.11), we can apply Theo-
rems 10.1-10.4 to the Cauchy problem (10.8)-(10.9) provided that L satisfies
assumptions (9.2). For this purpose we assume:

(10.13)

(a) Assumptions (10.10) :

(b) p ·Hp −H ≥ |Hp|γ(Hp), where γ(v) → ∞ as |v| → ∞;

(c) For suitable c1, H(t, x, 0) ≤ c1 and H(t, x, p) ≥ −c1;

(d) For suitable c2, c3, |Hx| ≤ c2(p ·Hp −H) + c3;

(e) For suitable C(R), |Hp| ≤ R implies |p| ≤ C(R).
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Since Hpp is a positive definite symmetric matrix, its inverse Lvv is also
positive definite as required in (9.2a). Since L = p ·Hp −H and v, p are related
by (10.12), (9.2b) is just (10.13b). Similarly, from (8.6) and (8.7a), (9.2d, e)
are just (10.13d, e). Finally, by (10.11),H(t, x, 0) ≤ c1 implies L(t, x, v) ≥ −c1
and H(t, x, p) ≥ −c1 implies L(t, x, 0) ≤ c1.

Example 10.2. Let H(t, x, p) = g(t, x)(1+ |p|2)k where k > 1
2 , g and Dxg

are bounded, and g(t, x) ≥ c > 0. It is elementary to verify (10.13).
Remark 10.4. Assumptions (10.13) imply the following, which will be

used later in proving that the value function V is a viscosity solution to
(10.8)-(10.9). See Theorem II.10.3. Let

(10.14) HR(t, x, p) = max
|v|≤R

[−v · p− L(t, x, v)].

Then there exists R(M) such that

(10.15) HR(t, x, p) = H(t, x, p) if |p| ≤ M,R ≥ R(M).

To see this, let v∗ = −Hp(t, x, p). Then

−c1 ≤ H(t, x, p) = −v∗ · p− L(t, x, v∗) ≤ |v∗|(M − γ(v∗)).

Since γ(v) → ∞ as |v| → ∞, this implies |v∗| ≤ R(M) for some R(M). If
|p| ≤ M , R ≥ R(M), then the maximum in (10.14) equals the unconstrained
maximum over v ∈ IRn. This implies (10.15).

I.11 Existence theorems

An existence theorem for the control problem formulated in Section 3 asserts
that there exists a control u∗(·) which minimizes J(t, x;u) among all admis-
sible controls u(·).

In this section, we prove two such theorems which will be used in later
chapters. For a more complete study of existence theorems we refer to [Bk]
[Ce][FR].

In the first existence result which we prove, control is on the fixed time
interval [t, t1] and hence Q = Q0. Moreover, we assume:

(11.1)

(a) U is compact and convex;

(b) f(t, x, v) = f1(t, x) + f2(t, x)v, where
fi ∈ C1(Q̄0 × U) for i = 1, 2 and
f1x, f2, f2x are bounded;

(c) L ∈ C1(Q̄0 × U) and L(t, x, ·)
is a convex function on U for each (t, x) ∈ Q̄0;

(d) ψ is continuous on IRn.
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The class of admissible controls u(·) is U0(t) = L∞([t, t1];U) and the
criterion to be minimized is

(11.2) J(t, x;u) =

∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1)),

as in (3.4). We say that un(·) → u(·) weakly as n → ∞ if, for every φ(·) ∈
L∞([t, t1]; IR

n)

lim
n→∞

∫ t1

t

un(s) · φ(s)ds =

∫ t1

t

u(s) · φ(s)ds.

Since U is compact and convex, U0(t) is weakly sequentially compact.
Lemma 11.1. Let Λ and Λv be continuous on [t, t1] × U , with Λ(s, ·)

convex for each s ∈ [t, t1]. If un(·) → u(·) weakly, then

lim inf
n→∞

∫ t1

t

Λ(s, un(s))ds ≥
∫ t1

t

Λ(s, u(s))ds.

Proof. Since Λ(s, ·) is convex and of class C1

Λ(s, v) ≥ Λ(s, u(s)) + (v − u(s)) · Λv(s, u(s))

for all v ∈ U . In particular, this is true if v = un(s). Hence
∫ t1

t

Λ(s, un(s))ds ≥
∫ t1

t

Λ(s, u(s))ds

+

∫ t1

t

[un(s) − u(s)] · Λv(s, u(s))ds.

The last term tends to 0 as n → ∞, since un(·) → u(·) weakly. �

Lemma 11.2. Let xn(s) be the solution to (3.2) with u(s) = un(s) and
xn(t) = x. Suppose that un(s) ∈ U , that un(·) tends to u∗(·) weakly and that
xn(s) tends to x∗(s) uniformly on [t0, t1]. Then

(11.3)
dx∗

ds
= f1(s, x

∗(s)) + f2(s, x
∗(s))u∗(s), t ≤ s ≤ t1

and

(11.4) J(t, x;u∗) ≤ lim inf
n→∞

J(t, x;un).

Proof. By (11.1)(b) we have

xn(s) = x+

∫ s

t

[f1(r, xn(r)) + f2(r, xn(r))u∗(r)]dr

+

∫ s

t

[f2(r, xn(r)) − f2(r, x
∗(r))][un(r) − u∗(r)]dr

+

∫ s

t

f2(r, x
∗(r))[un(r) − u∗(r)]dr.
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The last two integrals tend to 0 as n → ∞. Hence

x∗(s) = x+

∫ s

t

[f1(r, x
∗(r)) + f2(r, x

∗(r))u∗(r)]dr,

which is the integrated form of (11.3).
To obtain (11.4) we write

J(t, x;un) =

∫ t1

t

Λ(s, un(s))ds+

∫ t1

t

[L(s, xn(s), un(s)) − L(s, x∗(s), un(s)]ds

+ ψ(xn(t1)),

where Λ(s, v) = L(s, x∗(s), v). The second integral tends to 0 and ψ(xn(t1))
tends to ψ(x∗(t1)) as n → ∞. Then (11.4) follows from Lemma 11.1. �

Theorem 11.1. Under the assumptions (11.1) an optimal control u∗(·)
exists.

Proof. Let un(·) be a sequence in U0(t) such that J(t, x;un) tends to
V (t, x), where V (t, x) is the infimum of J(t, x;u) among all u(·) ∈ U0(t).
Let xn(s) denote the corresponding solution to (3.2)-(3.3). By assumptions
(11.1)(a)(b),

|xn(s)| ≤ |x| +K(1 +

∫ s

t

|xn(r)|dr)

for some constant K. Gronwall’s inequality implies that xn(s) is uniformly
bounded on [t, t1]. By (3.2), the derivatives ẋn(s) are also uniformly bounded.
We use Ascoli’s theorem and weak sequential compactness of U0(t) to choose
a subsequence of (un(·), xn(·)) which satisfies the hypotheses of Lemma 11.2.
If we again denote this subsequence by (un(·), xn(·)), then

V (t, x) ≤ J(t, x;u∗) ≤ lim inf
n→∞

J(t, x;un) = V (t, x).

Thus J(t, x;u∗) = V (t, x). �

In the second existence theorem, we consider a calculus of variations prob-
lem in a bounded cylindrical region Q = [t0, t1) ×O, where ∂O is a manifold
of class C2. Thus

(11.5) J =

∫ τ

t

L(s, x(s), ẋ(s))ds+ Ψ(τ, x(τ))

where τ is the exit time of (s, x(s)) from Q. No constraints are imposed on the
control u(s) = ẋ(s), and thus U = IRn. We make the following assumptions.
L ∈ C3(Q̄× IRn) and the following hold for all (t, x, v) ∈ Q̄× IRn :

(11.6)

(a) L(t, x, v) ≥ 0 and Lvv(t, x, v) > 0;

(b) There exist k > 0, p > 1 and R0 > 0 such that
k|v|p ≤ L(t, x, v) whenever |v| ≥ R0;

(c) There exists K such that
|Lx(t, x, v)| + |Lv(t, x, v)| ≤ K(1 + |v|p).
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The terminal cost function Ψ satisfies:

(11.7)

(a) Ψ(t, x) = 0 for (t, x) ∈ [t0, t1] × ∂O;

(b) Ψ(t1, x) = ψ(x) for x ∈ O, where ψ
is Lipschitz, ψ(x) ≥ 0 and ψ(x) = 0
for x ∈ ∂O.

We admit all controls u(·) ∈ U(t), where U(t) = Lp([t, t1]; IR
n) with p > 1

as in (11.6). Without loss of generality, we may assume that u(s) = 0 for
τ < s ≤ t1, in case τ < t1.

Theorem 11.2. An optimal control u∗(·) exists.
Proof. As in the proof of Theorem 11.1, we choose a sequence un(·) such

that J(t, x;un) tends to V (t, x) as n → ∞, where

V (t, x) = inf
u(·)∈U(t)

J(t, x;u).

By (11.5)

J(t, x;un) =

∫ τn

t

L(s, xn(s), un(s))ds+ Ψ(τn, xn(τn))

where ẋn(s) = un(s), τn is the exit time and un(s) = 0 for τn < s ≤ t1. The
Lp-norm ‖ un(·) ‖p is bounded by (11.6)(b) and the fact that L ≥ 0, Ψ ≥ 0.
By Holder’s inequality, for s1 < s2

|xn(s1) − xn(s2)| = |
∫ s2

s1

un(r)dr| ≤ (s2 − s1)
1
q ‖ un(·) ‖p

where p−1 + q−1 = 1. Hence the functions xn(·) are equicontinuous, and also
uniformly bounded on [t, t1] since xn(t) = x. We take a subsequence (again
denoted by xn(·)) such that xn(s) tends to a limit x∗(s) uniformly on [t, t1]
and un(·) tends weakly to u∗(·), where u∗(s) = ẋ∗(s). Let τ∗ denote the exit
time of (s, x∗(s)) from Q. Then

τ∗ ≤ lim inf
n→∞

τn.

We consider two cases
Case 1. x∗(τ∗) ∈ ∂O. Consider any t2 < τ∗. Then

(11.8)

∫ t2

t

L(s, x∗(s), u∗(s))ds ≤ lim inf
n→∞

∫ t2

t

L(s, xn(s), un(s))ds.

To obtain (11.8), we slightly modify the proof of (11.4), taking into account
that un(·) is bounded in ‖ ‖p norm but not necessarily pointwise. Let Λ(s, v) =
L(s, x∗(s), v), and let χR(s) be the indicator function of {s: |u∗(s)| ≤ R}. As
in Lemma 11.1,
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∫ t2

t

Λ(s, u∗(s))χR(s)ds ≤ lim inf
n→∞

∫ t2

t

Λ(s, un(s))χR(s)ds.

Since Λ ≥ 0, χR(s) ≤ 1 and χR(s) → 1 as R → ∞,

∫ t2

t

Λ(s, u∗(s))ds ≤ lim inf
n→∞

∫ t2

t

Λ(s, un(s))ds.

By the mean value theorem

|
∫ t2

t

[L(s, xn(s), un(s)) − L(s, x∗(s), un(s)]ds|

= |
∫ t2

t

∫ 1

0

Lx(s, xλn(s), un(s)) · (xn(s) − x∗(s))dλds|

≤ K ‖ xn(·) − x∗(·) ‖
∫ t2

t

(1 + |un(s)|p)ds

where K is as in (11.6)(c), ‖ ‖ is the supnorm and xnλ(s) = x∗(s)+λ(xn(s)−
x∗(s)). Since ‖ un(·) ‖p is bounded, the right side tends to 0. Since L ≥ 0,
Ψ ≥ 0, Ψ(τ∗, x∗(τ∗)) = 0 and t2 < τ∗ is arbitrary, we conclude in the same
way as for Lemma 11.2 that

J(t, x;u∗) =

∫ τ∗

t

L(s, x∗(s), u∗(s))ds ≤ lim inf
n→∞

J(t, x;un).

Hence, J(t, x;u∗) = V (t, x) as in the proof of Theorem 11.1.
Case 2. τ∗ = t1 and x∗(τ∗) ∈ O. Since xn(s) tends to x∗(s) uniformly

on [t, t1], τn = t1 for large n. Then (11.8) holds with t2 replaced by t1. Since
ψ(xn(t1))tends to ψ(x∗(t1)) as n → ∞, we again conclude that J(t, x;u∗) =
V (t, x). �

We next show that Euler’s equation holds in integrated form.
Lemma 11.3. Let

(11.9) P̄ (s) =

∫ s

t

Lx(r, x∗(r), u∗(r))dr, t ≤ s ≤ τ∗.

Then for almost all s ∈ [t, τ∗]

(11.10) P̄ (s) = Lv(s, x∗(s), u∗(s)) + C

where C is some constant.
Proof. (Sketch) We follow the classical derivation of Euler’s equation. Let

t2 < τ∗ and consider any ξ(·) ∈ C1([t, t2]; IR
n) such that ξ(t) = ξ(t2) = 0.

For |δ| sufficiently small, 0 ≤ λ ≤ 1 and s ∈ [t, t2], xλ(s) ∈ O where xλ(s) =
x∗(s) + δλξ(s). Then
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0 ≤
∫ t2

t

[L(s, x1(s), ẋ1(s)) − L(s, x∗(s), ẋ∗(s)]ds

= δ

∫ t2

t

∫ 1

0

[Lx(s, xλ(s), ẋλ(s)) · ξ(s) + Lv(s, xλ(s), ẋλ(s)) · ξ̇(s)]dλds.

We divide by δ and let δ → 0 to obtain, using (11.6)(b)(c) and the dominated
convergence theorem

(11.11) 0 =

∫ t2

t

[Lx(s, x∗(s), u∗(s)) · ξ(s) + Lv(s, x∗(s), u∗(s)) · ξ̇(s)]ds.

Since ξ(·) is arbitrary, (11.10) is obtained by integrating the first term in
(11.11) by parts. �

Corollary 11.1. x∗(·) ∈ C2[t, τ∗].
Proof. This is obtained in the same way as Theorem 9.2. By (9.9) we have

(11.12) ẋ∗(s) = −Hp(s, x
∗(s), P (s))

where P (s) = C − P̄ (s). �

Theorem 11.3. There exists R1, which does not depend on the initial
data (t, x) ∈ Q, such that |u∗(s)| ≤ R1.

Proof. Let us first show that |u∗(τ∗)| ≤ R2, where R2 does not depend on
the initial data (t, x). Corollary 11.1 implies that u∗(s) = ẋ∗(s) is continuous
on [t, τ∗]. Let v∗ = u∗(τ∗). If |v∗| < R0, there is nothing to prove. Suppose
that |v∗| ≥ R0.

Case A. τ∗ = t1. For small θ > 0, let x(s) = x∗(t1 −θ) for t1 −θ ≤ s ≤ t1.
Then

∫ t1

t1−θ

L(s, x∗(s), u∗(s))ds+ ψ(x∗(t1)) ≤
∫ t1

t1−θ

L(s, x(s), 0)ds+ ψ(x(t1)).

We let θ → 0 to obtain from (11.6)(b) with ξ∗ = x∗(τ∗),

k|v∗|p ≤ L(τ∗, ξ∗, v∗) ≤ B1 +B2|v∗|,

where L(s, x, 0) ≤ B1 for all (s, x) ∈ Q̄ and B2 is a Lipschitz constant for ψ.
Since p > 1, this implies that |v∗| ≤ R3 for some R3.

Case B. τ∗ < t1. Then ξ∗ ∈ ∂O. For small θ > 0 let τθ = τ∗ − θ,
y = x∗(τθ), ȳ the point of ∂O nearest y and h = |ȳ − y|. Then

(11.13) h ≤ |y − ξ∗| = θ|v∗| + o(θ).

Let x(s) = y+ ν(s− τθ), for τθ −h ≤ s ≤ t1 where ν = h−1(ȳ− y). Then x(s)
exits O at time τθ + h. Then

∫ τ∗

τθ

L(s, x∗(s), u∗(s))ds ≤
∫ τθ+h

τθ

L(s, x(s), ν)ds ≤ B3h,
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where L(s, x, v) ≤ B3 for all (s, x) ∈ Q̄, |v| ≤ R0. From (11.6)(b) and (11.13)
we have as θ → 0

k|v∗|p ≤ L(τ∗, ξ∗, v∗) ≤ B3|v∗|,
if |v∗| ≥ R0. Hence, |v∗| ≤ R4 for some R4. Let R2 = max(R3, R4).

Since 0 ≤ J(t, x;u∗) ≤ J(t, x; 0) and J(t, x; 0) is bounded on Q̄, (11.6)
gives a bound for ‖ u∗(·) ‖p which does not depend on the initial data (t, x).
From (11.6)(c) and (11.9), |P̄ (s)| ≤ M1 where M1 does not depend on (t, x).
In (11.10) take s = τ∗. Since |u∗(τ∗)| ≤ R2, the constant C = C(t, x) is
bounded by some C1. Hence, |P (s)| ≤ M1 + C1 where P (s) = C − P̄ (s). By
(11.12) and u∗(s) = ẋ∗(s), |u∗(s)| ≤ R1 for some R1. �

I.12 Historical remarks

The deterministic optimal control problems considered in Sections 3 – 7 are of
type formulated during the 1950’s by Pontryagin and his associates [PBGM].
The method of dynamic programming was developed by Bellman during the
same time period [Be]. For the Pontryagin optimal control problem, dynamic
programming leads to the Hamilton–Jacobi–Bellman PDE derived in Section
5. In the setting of classical calculus of variations, this connection was known
since Hamilton and Jacobi in the 19th century. It played an important role in
Caratheodory’s approach to calculus of variations [C].

For a good, recent introduction to deterministic control theory, see Sontag
[Sg]. There are many other books dealing with mathematical aspects, includ-
ing [Bk] [Ce] [He] [Y].

Pontryagin - type optimal control theory had roots in calculus of varia-
tions, as well as in older engineering work on control of linear and nonlinear
systems. For a concise introduction to the special class of calculus of variations
problems considered in Section 8, see [FR, Chap. 1]. The classical method of
characteristics for the Hamilton–Jacobi PDE, used in Section 10, was called in
calculus of variations the method of fields of extremals [He, Chap. 3]. For op-
timal control problems, the presence of control switching surfaces adds some
complications. See [F3, Appendix]. Sections 9 and 10 follow [F2]. Theorem 10.2
is due to Kuznetzov and Šǐskin [KSi]. For recent results about representations
of generalized solutions to Hamilton-Jacobi PDEs, see [Ca].

Nonsmooth analysis provides another interesting approach to determinis-
tic control and calculus of variations. See Aubin - Frankowska [AF], Clarke
[Cle1,2], Rockafellar-Wets [RW].





II

Viscosity Solutions

II.1 Introduction

As we saw in the first chapter, the method of dynamic programing provides
a powerful tool for studying deterministic optimal control problems. This
method is equally useful in stochastic control, which will be formulated in
Chapters III, IV and V. In both cases the value function of the control prob-
lem is defined to be the infimum of the payoff as a function of the initial data.
When the value function is smooth enough, it solves a nonlinear equation
which we call the dynamic programing equation. For a deterministic optimal
control problem, this derivation is given in Section I.5. A similar computation
for stochastic problems will be carried out in Section III.7. In general however,
the value function is not smooth enough to satisfy the dynamic programming
equations in the classical or usual sense. Also there are many functions other
than the value function which satisfy the equation almost everywhere, see
Section 2 below. Indeed the lack of smoothness of the value function is more
of a rule than the exception. Therefore a weak formulation of solutions to
these equations is necessary if we are to pursue the method of dynamic pro-
gramming.

In their celebrated 1984 paper Crandall and Lions [CL1] provided such a
weak formulation which they called viscosity solutions. Although the name
“viscosity” refers to a certain relaxation scheme, the definition of a viscosity
solution is an intrinsic one. In particular as we will see in Section 6, viscosity
solutions remain stable under any reasonable relaxation or approximation of
the equation. A uniqueness result for first order equations was another very
important contribution of that paper. Since then elegant equivalent reformu-
lations of viscosity solutions were obtained by Crandall, Evans and Lions.
Jensen proved the uniqueness of viscosity solutions of second order equations
in 1986. The recent article of Crandall, Ishii and Lions [CIL1] provides an ex-
cellent survey of the development of the theory and contains all the relevant
references.
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For a large class of optimal control problems the value function is the
unique viscosity solution of the related dynamic programming equation. In
the case of a deterministic problem this equation is a first order partial dif-
ferential equation, and for a controlled diffusion process the dynamic pro-
gramming equation is a second order parabolic partial differential equation.
However there are dynamic programming equations which are not differential
equations. The optimal control of a Markov chain yields a difference equa-
tion, and a piecewise deterministic process gives rise to a system of first order
differential equations. To capture this variety in dynamic programing equa-
tions we give an abstract discussion of viscosity solutions in Section 4. In this
abstract formulation the dynamic programming operator is viewed as the in-
finitesimal generator of a two parameter nonlinear semigroup satisfying (3.1),
(3.2) and (3.11) below. To define this semigroup, we view a given function ψ
as the terminal data to our optimal control problem. Then the value function
with terminal data ψ is defined to be the evaluation of the semigroup at ψ.
In this formalism, the semigroup property (3.2) is equivalent to the dynamic
programing principle and (3.11) is nothing but the derivation of the dynamic
programing equation for a smooth value function. Then in this abstract setup,
the viscosity property of the value function is a very easy consequence of the
semigroup property (or equivalently the dynamic programing principle) and
(3.11). See Theorem 5.1 below.

We should also note that prior to the formulation of viscosity solutions,
Hamilton–Jacobi equations have been used to formulate sufficient and nec-
essary conditions for deterministic optimal control problems. Clarke and his
students ([Cle1] Section 3.7) used the theory of nonsmooth analysis to obtain
sufficient conditions for optimality. This approach was further developed by
Clarke and Vinter in 1983 [CV].

The theory of viscosity solutions is not limited to dynamic programming
equations. Indeed this theory applies to any equation with maximum principle
as defined in Section 4. In particular second order partial differential equations
of (possibly degenerate) parabolic type and first order equations have this
property. In the special case of a partial differential equation the definition
of a viscosity solution simplifies as we need to consider only local extrema
because of the local character of the equations (Definition 4.2.)

In the second part of this chapter we only consider the first order partial
differential equations. In Section 7, under standard assumptions we verify that
the semigroups related to deterministic optimal control problems have the
property (3.11). Also the semigroup property (3.2) follows from the dynamic
programing principle which is proved in Section I.4. Then Theorem 5.1 implies
that, if the value function is continuous, then it is a viscosity solution of the
dynamic programming equation. Sufficient conditions for the continuity of
the value function are discussed in Section 10. Although in this chapter we
restrict ourselves to continuous viscosity solutions, the theory is not limited
to continuous functions. A discussion of discontinuous viscosity solutions is
given Section VII.4.
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The uniqueness of viscosity solutions is an important property which we
discuss in Section 9 and 14. We prove the uniqueness of viscosity solutions
of a general first order partial differential equation in Section 9. The gener-
alizations of Theorem 9.1 are then stated in Section 14. In these sections we
consider equations which are not necessarily the dynamic programming equa-
tion of a control problem. In the special case of a control problem however,
the value function is the unique viscosity solution of the dynamic program-
ming equation satisfying appropriate boundary and terminal conditions. This
unique characterization of the value function is especially important in the
analysis of related singular perturbation problems (Chapter VII) and in the
numerical analysis of the control problems (Chapter IX).

To characterize a viscosity solution uniquely we need to specify the solution
at the terminal time and at the boundary of the state space. In some cases
however, the value of the solution at the boundary is not a priori known to
us. As an example consider the value function of an optimal control problem
with a state constraint. Since there is no need for the boundary cost function,
the boundary value of the value function is not a priori known. Also at the
boundary of the state space, the value function of an exit time problem may
achieve a value smaller than the given boundary cost. Therefore we have to
give a weak (viscosity) formulation of the boundary condition satisfied by
the value function. This issue of the boundary condition has been given a
satisfactory answer through the theory of viscosity solutions. The main idea
here is to look for a differential type boundary condition instead of a pure
Dirichlet condition. We discuss the state constraint case in Section 12 as a
first step towards a general formulation. We then extend our discussion to the
general exit time problem in Section 13. Also a uniqueness result with this
weak boundary condition is stated in Section 14.

We close the chapter with a brief discussion of the connection between the
adjoint variable and generalized gradients as defined in Section 8 below. The
main result of Section 15 is a generalization of the classical statement I(6.4).
Recall that I(6.4) states that the adjoint variable is equal to the gradient of the
value function evaluated at the optimal trajectory. Since the value function is
not necessarily differentiable, in general the adjoint variable is a generalized
derivative of the value function.

For readers interested in an introduction to viscosity solutions, but not
in control theory, Sections 3 – 6 can be read independently of Chapter I by
omitting those examples arising from control theory. Similarly, Sections 8 and
9 provide a concise introduction to the theory of viscosity solutions for first
order PDEs, independent of any control interpretation.

The following is a partial list of function spaces that will be used in this
chapter. A more complete explanation of these notations is given in the general
list of Notations preceding Chapter I. For a Banach space Σ, M(Σ) = set
of all real-valued functions which are bounded from below, Cp(Σ) = set of
all continuous, real-valued functions which are polynomially growing. For a
measurable subset E of Euclidean IRn, and a positive integer k, the spaces
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Ck(E), C∞(E) consist of those functions which have an extension to some
open set Ē containing E, with continuous partial derivatives of orders ≤ k
(or of all orders), respectively.

Spaces Ck
p (E), and C∞

p (E) are defined similarly by requiring polynomial
growth of the corresponding partial derivatives. Set

Q0 = [t0, t1) × IRn, Q0 = [t0, t1] × IRn.

For a measurable set G ⊂ Q0,

C1,2(G) = set of all real-valued function on G, which are once
continuously differentiable in the t - variable and
twice continuously differentiable in the x - variables.

II.2 Examples

In this section we give three one dimensional examples. These examples il-
lustrate that in general the value function is not differentiable, the lateral
boundary condition I(5.19) may hold with a strict inequality and that there
are many generalized solutions of the dynamic programming equation.

Example 2.1 Consider the calculus of variations problem with t0 = 0, t1 =
1, O = (−1, 1), Ψ ≡ 0 and L(t, x, v) = 1 + 1

4v
2, i.e. the problem is to minimize

∫ τ

t

[

1 +
1

4
(ẋ(s))2

]

ds, t ∈ [0, 1]

where τ is the exit time of (s, x(s)) from the closed region [0, 1]×[−1, 1]. Using
Example I.8.1, we conclude that any optimal control u∗ is constant in time.
Indeed for initial condition (t, x) ∈ [0, 1] × [−1, 1], an elementary calculation
shows that

u∗(s) =

⎧

⎨

⎩

2 if x ≥ t,
0 if |x| < t, s ∈ [t, τ ],

−2 if x ≤ −t,
is an optimal control. Using this control we directly compute that the value
function is given by

V (t, x) =

{

1 − |x| , |x| ≥ t,
1 − t , |x| ≤ t.

Clearly, V is not differentiable if t = |x|. However, V satisfies the correspond-
ing dynamic programming equation

(2.1) − ∂

∂t
V (t, x) +

(

∂

∂x
V (t, x)

)2

− 1 = 0,

for all (t, x) ∈ (0, 1) × (−1, 1) except when t = |x|. Finally we note that, in
this example the value function satisfies the boundary conditions,
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(2.2) V (t, 1) = V (t,−1) = 0, t ∈ [0, 1],

(2.3) V (1, x) = 0, x ∈ [−1, 1]. �

Example 2.2. In the previous example V is a generalized solution of (2.1)
satisfying (2.2) and (2.3). We now construct a sequence of Lipschitz continuous
generalized solutions of (2.1) which also satisfy (2.2) and (2.3).

For a positive integer k define hk(x) by

hk(x) =
1

2k + 1
−
∣

∣

∣

∣

x− 2i

2k + 1

∣

∣

∣

∣

,

if x ∈ [ 2i−1
2k+1 ,

2i+1
2k+1 ] for some i = 0,±1, . . . ,±k.

Then for (t, x) ∈ [0, 1] × [−1, 1], let

Wk(t, x) = min{hk(x), 1 − t}.

Clearly Wk satisfies (2.2) and (2.3), and (1 − t) solves (2.1). Also except at
the corners of its graph, hk is differentiable with [ d

dxhk(x)]2 = 1. Therefore it
is easy to verify that Wk satisfies (2.1) at the points of differentiability. Thus
there are infinitely many generalized solutions to the dynamic programing
equation (2.1) with given boundary conditions (2.2) and (2.3). �

Example 2.3. Consider a simple control problem withQ = [0, 1)×(−1, 1),
ẋ(s) = u(s), L ≡ 0, Ψ(t, x) = x and a control set U = [−a, a] with some
constant a > 0. Since the boundary data is increasing and the running cost is
zero, the optimal control is u∗(s) ≡ −a for all s. Hence the value function is

(2.4) V (t, x) =

{

−1, if x+ at ≤ a− 1,
x+ at− a, if x+ at ≥ a− 1,

for (t, x) ∈ Q. V is differentiable except at x+at = a−1 and it is a generalized
solution of

(2.5) − ∂

∂t
V (t, x) + a

∣

∣

∣

∣

∂

∂x
V (t, x)

∣

∣

∣

∣

= 0.

When t= t1 =1, the corresponding terminal boundary condition I(5.5),

(2.6) V (1, x) = Ψ(1, x) = x, x ∈ [−1, 1],

is satisfied. However V (t, 1) < 1 = Ψ(t, 1) for all t ∈ [0, 1). Hence the lateral
boundary condition I(5.19),

V (t, x) ≤ g(t, x), (t, x) ∈ [0, 1) × ∂O

holds with a strict inequality for (t, x) ∈ [0, 1) × {1}. �
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II.3 An abstract dynamic programming principle

In this section, we discuss a generalization of the dynamic programming prin-
ciple I(4.3). Then in this abstract set-up, the notion of viscosity solution to
dynamic programming equations will be introduced in the next section.

Let Σ be closed subset of a Banach space and C be a collection of functions
on Σ which is closed under addition, i.e.,

φ, ψ ∈ C ⇒ φ+ ψ ∈ C.

The main object of our analysis is a two parameter family of operators {Ttr :
t0 ≤ t ≤ r ≤ t1} with the common domain C. In the applications the exact
choice of C is not important. However, when Σ is compact, we will require
that C contains C(Σ). For noncompact Σ, additional conditions are often
imposed. In most of our examples, Σ ⊂ IRn and in that case we will require
that C contains M(Σ) ∩ Cp(Σ). (See end of Section 1 for notations.)

We assume that for every φ, ψ ∈ C and t0 ≤ t ≤ r ≤ s ≤ t1, Ttrφ is a
function on Σ satisfying

(3.1) Tttφ = φ,

(3.2a) Ttrφ ≤ Ttsψ if φ ≤ Trsψ,

(3.2b) Ttrφ ≥ Ttsψ if φ ≥ Trsψ.

By taking r = s in (3.2) we conclude that the above conditions imply

(3.2′)(monotonicity) Ttrφ ≤ Ttrψ if φ ≤ ψ.

Moreover if Trsψ ∈ C, by taking φ = Trsψ both in (3.2a) and (3.2b) we obtain

(3.3)(semigroup) Ttr(Trsψ) = Ttsψ if Trsψ ∈ C.

In general Ttrψ may not be in C for every ψ ∈ C. In that case (3.2) is
a convenient way of stating the monotonicity and the semigroup conditions.
Also (3.2) is a slightly more general condition than (3.2′) and (3.3). But when
Ttr : C → C for every t and r, (3.2′) and (3.3) are equivalent to (3.2). We will
use this equivalence in the following examples.

Example 3.1. (Deterministic Optimal Control). Let f, L, g be as in Sec-
tion I.3, and O be an open subset of IRn. Set Σ = O and C = M(Σ). We
assume that L and g are also bounded from below. Fix t0 ≤ t ≤ r ≤ t1, x ∈
Σ, u(·) ∈ U(t, x), and ψ ∈ C. Define

Tt,r;uψ(x) =

∫ τ∧r

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r + ψ(x(r))χτ≥r,
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where, as in Section I.3, U(t, x) is a set of controls satisfying the switching
condition I(3.9), x(·) is the solution of I(3.2) and I(3.3), and τ is the exit time
of (s, x(s)) from Q = [t0, t1] ×O. Then the nonlinear semigroup is given by

(3.4) (Tt,rψ)(x) = inf
u(·)∈U(t,x)

Tt,r;uψ(x).

Since L, g and ψ are all bounded from below, Ttrψ is also bounded from
below. Note that U(t, x) is nonempty and therefore for every ψ ∈ C, Ttrψ is
well-defined and belongs to C. Clearly Ttr is monotone. Also with the notation
of Section I.3, V (t, x) = (Ttt1ψ)(x). Thus, the dynamic programming principle
I(4.3) can be rewritten as

(Ttt1ψ)(x) = (Ttr(Trt1ψ))(x),

for (t, x) ∈ Q, and ψ ∈ C. Hence the semigroup property, (3.3), holds with
s = t1. In fact without any change, the proofs of Lemma I.4.1 and I.4.2 yield
(3.3) for any s ∈ [t, t1]. �

Example 3.2. (Diffusion semigroup). Set Σ = IRn and C = Cp(IR
n). For

ψ ∈ C, x ∈ Σ, and t0 ≤ t < r ≤ t1, let

(3.5) (Ttrψ)(x) =

∫

IRn

ψ(x+ z)K(r − t, z)dz,

where for h > 0, z ∈ IRn,

K(h, z) =
1

(4πh)n/2
e−|z|2/4h.

And for t = r, let Ttt be the identity operator. Since ψ is polynomially growing,
there are constants K,m ≥ 0 such that,

|ψ(x+ z)| ≤ K(1 + |x|m + |z|m).

Also for each h > 0 and k ≥ 0, |z|kK(h, z) is an integrable function on IRn.
Hence Ttrψ ∈ C.

The positivity of K implies (3.2′). Also the semigroup property of Ttr is
well known. Indeed (3.3) is proved by using the properties of the kernel K
and several changes of variables in (3.5).

The linear operator Ttr has a probabilistic representation in terms of the
standard Brownian motion. In Chapters III and IV, instead of the Brownian
motion we will use controlled diffusions to obtain nonlinear operators, which
are generalizations of both (3.4) and (3.5). See Section V.3. �

Example 3.3. (Poisson process). Let Σ be the set of nonnegative integers,
C be the set of all sequences {ψ(i) : i ∈ Σ} such that |ψ(i)| grows at most
polynomially as i tends to infinity, and λ(·) be a continuous, strictly positive
function on [t0, t1]. For t0 ≤ t ≤ r ≤ t1, i ∈ Σ, and ψ ∈ C define
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(3.6) (Ttrψ)(i) =

∞
∑

k=0

ψ(i+ k)
1

k!

[
∫ r

t

λ(u)du

]k

exp

(

−
∫ r

t

λ(u)du

)

.

Then it is straightforward to verify that Ttr satisfies (3.1) and (3.2′). Also, for
t0 ≤ t ≤ r ≤ s ≤ t1 and i ∈ Σ,

(Ttr(Trsψ))(i) =
∑∞

k=0

∑∞
m=0 ψ(i+ k +m) 1

k!
1

m! [
∫ r

t
λ(u)du]k·

·[
∫ s

r
λ(u)du]m exp(−

∫ s

t
λ(u)du)

=
∑∞

ℓ=0 ψ(i+ ℓ) 1
ℓ! exp(−

∫ s

t
λ(u)du)·

·
{

∑ℓ
k=0

ℓ!
k!(ℓ−k)! [

∫ r

t
λ(u)du]k[

∫ s

r
λ(u)du]ℓ−k

}

=
∑∞

ℓ=0 ψ(i+ ℓ) 1
ℓ! exp(−

∫ s

t
λ(u)du)[

∫ s

t
λ(u)du]ℓ

= (Ttsψ)(i).

We used the substitution ℓ = k + m in the second step and the Binomial
Theorem in the third. Hence Ttr has the semigroup property (3.3).

This linear operator Ttr also has a probabilistic representation. Instead of
the Brownian motion, a time inhomogeneous Poisson process appears in the
representation of (3.6). Also the nonlinear generalizations of τtr it are related
to the optimal control of jump Markov processes. �

Fix r = t1 and ψ ∈ C. For (t, x) ∈ [t0, t1] ×Σ, define

(3.7) V (t, x) = (Ttt1ψ)(x).

If Ttt1 is as in (3.4), V (t, x) is the value function of the deterministic optimal
control problem. In analogy with this, V (t, x) is called the value function. Us-
ing the semigroup property (3.3), we conclude that the value function satisfies

(3.8) V (t, x) = (TtrV (r, ·))(x), ∀x ∈ Σ, t0 ≤ t ≤ r ≤ t1,

provided that V (r, ·) ∈ C. This identity is just a restatement of the dynamic
programming principle I(4.3), if Ttr is as in (3.4). Hence, we refer to (3.8) as
the (abstract) dynamic programming principle.

Having formulated the dynamic programming principle abstractly, we pro-
ceed to derive the corresponding dynamic programming equation. As in Sec-
tion I.5, let r = t+ h in (3.8). Assume that V (t+ h, ·) ∈ C. Then

(3.9) − 1

h
[(Ttt+hV (t+ h, ·))(x) − V (t, x)] = 0,

for all x ∈ Σ and t0 ≤ t < t+ h ≤ t1. To continue even formally, we need to
assume that the above quantity has a limit as h ↓ 0, when V is “smooth”. So
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we assume that there exist Σ′ ⊂ Σ,D ⊂ C([t0, t1) ×Σ′) and a one-parameter
family of nonlinear operators {Gt}t∈[t0,t1] of functions of Σ, satisfying the
following conditions with

Q = [t0, t1) ×Σ′,

(3.10i) For every w ∈ D, ∂
∂tw(t, x) and (Gtw(t, ·))(x) are continuous on (t, x) ∈ Q,

and w(t, ·) ∈ C for all t ∈ [t0, t1],
(3.10ii) w, w̃ ∈ D, λ ≥ 0 ⇒ w + w̃ ∈ D, λw ∈ D,
(3.11) lim

h↓0

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)] =

∂

∂t
w(t, x) − (Gtw(t, ·))(x),

for all w ∈ D, (t, x) ∈ Q. We refer to the elements of D as test functions and
Gt as the infinitesimal generator of the semigroup {Ttr}. Note that, if w is any
test function, then w(t, x) is defined for all (t, x) ∈ [t0, t1] × Σ even though
(3.11) is required to hold only for (t, x) ∈ Q.

Like the choice of C, the exact choice of D is not important. (See Section 6,
below.) One should think of D as the set of “smooth” functions. For example
if Σ′ = O is a bounded subset of IRn and Σ = O, then we require that
D contains C∞(Q̄), where Q̄ = [t0, t1] × O. Indeed this requirement will be
typical when Gt is a partial differential operator.

If however, Σ′ = O is an unbounded subset of IRn with Σ = O, then we
require that

M(Q) ∩ C∞
p (Q) ⊂ D.

(See end of Section 1 for notations.)
In most applications, Σ′ is simply the interior of Σ. In fact, when Gt is a

partial differential operator, this is always the case. However, in the case of a
controlled jump Markov process which is stopped after the exit from an open
set O ⊂ IRn, we have Σ′ = O, whereas Σ is the closure of the set that can
be reached from O. In that case, Σ may be larger than O, and [t0, t1] ×Σ is
larger than Q.

Now suppose that V ∈ D and let h go to zero in (3.9) to obtain,

(3.12) − ∂

∂t
V (t, x) + (GtV (t, ·))(x) = 0, (t, x) ∈ Q.

Definition 3.1. V ∈ D is called a classical solution of (3.12) if V satisfies
(3.12) for all (t, x) ∈ Q.

In analogy with I(5.3), the above equation is called the (abstract) dynamic
programming equation.

In general, the value function is not in D and therefore it is not a classical
solution of (3.12). In that case the equation (3.12) has to be interpreted in
a weaker sense (as a viscosity solution). This will be the subject of the next
section.

We continue by verifying the assumption (3.11) for the special cases (3.4),
(3.5) and (3.6). For the deterministic optimal control problem in Example 3.1,
(3.11) is formally satisfied by
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(3.13)

(Gtφ)(x) = H(t, x,Dφ(x))

= sup
v∈U

{−f(t, x, v) ·Dφ(x) − L(t, x, v)}

with D = C1(Q) ∩ M(Q) and Σ′ = O. A rigorous verification of this will be
given in Section 7. Note that in this case, (3.12) is the same as I(5.3′).

Now consider Example 3.2, with Ttr is as in (3.5). Let Σ′ = O = IRn and

D = {w ∈ Cp(Q0) and wt, wxi
, wxixj

∈ Cp(Q0) for i, j = 1, · · · , n},
where Q0 = [t0, t1) × IRn. Here the subscript denotes the differentiation with
respect to that variable. Fix w ∈ D, (t, x) ∈ [t0, t1) × IRn. For ψ ∈ C and
t < t+ h ≤ t1 we have,

(Ttt+hψ)(x) =

∫

IRn

ψ(x+ z)K(h, z)dz,

=

∫

IRn

ψ(x+
√
hy)K(1, y)dy,

and similarly

(Ttt+hψ)(x) =

∫

IRn

ψ(x−
√
hy)K(1, y)dy.

Since
∫

K(1, y)dy = 1, we obtain

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)] =

= (Tt,t+h[w(t+h,·)−w(t,·)
h ])(x) + 1

h [(Tt,t+hw(t, ·))(x) − w(t, x)]

=

∫ 1

0

∫

IRn

wt(t+ ρh, x+
√
hy)K(1, y)dydρ+

∫

IRn

M(t, x; y)K(1, y)dy,

with

M(t, x; y) =
1

2h
[w(t, x+

√
hy) + w(t, x−

√
hy) − 2w(t, x)].

Observe that M converges to D2
xw(t, x)y · y/2 as h ↓ 0, where D2

xw(t, x) is
the Hessian matrix of second order spatial derivatives of w at (t, x). Using the
polynomial growth and the continuity of wt and D2

xw, and the exponential
decay of K(1, y), we obtain

lim
h↓0

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)]

=

∫ 1

0

∫

IRn

wt(t, x)K(1, y)dydρ+
1

2

∫

IRn

D2
xw(t, x)y · yK(1, y)dy

= wt(t, x) +∆w(t, x),
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where ∆w(t, x) is Laplacian of w at (t, x). Hence (3.11) is satisfied with

(3.14) (Gtφ)(x) = −∆φ(x) , (t, x) ∈ Q0.

In Chapters IV and V, on controlled Markov diffusions, Gt will be a general,
fully nonlinear, second order, elliptic partial differential operator. We also
remark that the choice of D is not the largest possible one. A more careful
analysis yields that the polynomial growth condition on the derivatives of w
is not necessary. However D contains C∞

p (Q0) and therefore it is large enough
for our purposes.

We close this section by analyzing the operator (3.6) in Example 3.3.
Observe that for any k ≥ 2,

lim
h↓0

1

h
(

∫ t+h

t

λ(s)ds)k exp (−
∫ t+h

t

λ(s)ds) = 0,

and for k = 1 the above limit is λ(t). Now using the identity

∞
∑

k=0

Λk

k!
e−Λ = 1, ∀Λ ≥ 0,

together with the dominated convergence theorem, we obtain

lim
h↓0

1

h
[(Ttt+hφ)(i) − φ(i)] =

lim
h↓0

∞
∑

k=1

[φ(i+ k) − φ(i)]
1

k!

1

h
(

∫ t+h

t

λ(s)ds)k exp(−
∫ t+h

t

λ(s)ds)

= λ(t)[φ(i+ 1) − φ(i)].

Hence

(3.15) Gtφ(i) = −λ(t)[φ(i+ 1) − φ(i)], i = 0, 1, 2, . . . ,

with Σ′ = Σ. Note that the above operator Gt is a nonlocal operator.

II.4 Definition

In this section, we define the notion of viscosity solutions of the abstract dy-
namic programming equation (3.12). This is a straightforward generalization
of the original definition given by Crandall and Lions [CL1]. Also see Cran-
dall, Evans and Lions [CEL] and Lions [L4]. Let Q = [t0, t1) × Σ′,D, and C
be as in Section 3.

Definition 4.1. Let W ∈ C([t0, t1] ×Σ). Then
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(i) W is a viscosity subsolution of (3.12) in Q if for each w ∈ D

(4.1) − ∂

∂t
w(t, x) + (Gtw(t, ·))(x) ≤ 0,

at every (t, x) ∈ Q which is a maximizer of W − w on [t0, t1] × Σ with
W (t, x) = w(t, x).
(ii) W is a viscosity supersolution of (3.12) in Q if for each w ∈ D

(4.2) − ∂

∂t
w(t, x) + (Gtw(t, ·))(x) ≥ 0,

at every (t, x) ∈ Q which is a minimizer of W−w on [t0, t1]×Σ with W (t, x) =
w(t, x).
(iii) W is a viscosity solution of (3.12) in Q if it is both a viscosity subsolution
and a viscosity supersolution of (3.12) in Q.

Any classical solution of (3.12) is also a viscosity solution. See Lemma 5.1.
Although D is the natural set to use in the above definition, in most

applications an equivalent definition is obtained by replacing D with C∞(Q).
Indeed this is always the case when Gt is a partial differential operator. See
Theorem 6.1 below. However, if Σ is not compact and Gt is not a partial
differential operator, additional requirements will be needed to obtain a similar
equivalent definition.

Remark 4.1. Consider the equation

− ∂

∂t
W (t, x) + (GtW (t, ·))(x) = 0, (t, x) ∈ Q

with a nonlinear operator Gt, which is not necessarily the infinitesimal gener-
ator of a two-parameter semigroup Ttr. Set

D = {W ∈ C([t0, t1] ×Σ) : Wt(t, x), (GtW (t, ·))(x) ∈ C(Q)}.
Then we say the W is a classical solution of the above equation if W ∈ D
and if W satisfies the equation at every (t, x) ∈ Q. The viscosity solutions
can also be defined as in Definition 4.1. But to have a meaningful theory
of viscosity solutions, the notion of a viscosity solution has to be consistent
with the notion of classical solutions. That is: every classical solution should
also be a viscosity solution. Indeed, if Gt is the infinitesimal generator of a
two-parameter semigroup, there is a stronger connection between classical
and viscosity solutions (see Lemma 5.1.) When Gt is a general operator, an
elementary argument shows that every classical solution is also a viscosity
solution if Gt has a property which we call the maximum principle: we say
that Gt has the maximum principle if for every t ∈ [t0, t1], and φ, ψ in the
domain of Gt, we have

(Gtφ)(x) ≥ (Gtψ)(x),

whenever x ∈ arg max{(φ − ψ)(x)|x ∈ Σ} ∩ Σ′ with φ(x) = ψ(x). The class
of equations that obey the maximum principle is an interesting one. Any
infinitesimal generator of a two parameter semigroup Ttr has this property.
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Let us now consider the case when Gt is a partial differential operator. We
take Σ′ = O,Σ = O where O ⊂ IRn is open. If Gt is a first order operator,
namely

(Gtφ)(x) = H(t, x,Dφ(x))

for some continuous function H, then Gt has the maximum principle. More
generally, if

(4.3)(i) (Gtφ)(x) = F (t, x,Dφ(x), D2φ(x), φ(x))

for some continuous function F , then Gt obeys the maximum principle if and
only if F is elliptic (possibly degenerate), i.e.,

(4.3)(ii) F (t, x, p, A+B, V ) ≤ F (t, x, p, A, V )

for all (t, x) ∈ Q, p ∈ IRn, V ∈ IR and symmetric matrices A,B with B ≥ 0.
Indeed, let φ, ψ ∈ C2(O) and

x ∈ arg max{(φ− ψ)(x)|x ∈ O} ∩O,

with φ(x) = ψ(x). By calculus Dφ(x) = Dψ(x) and D2φ(x) ≤ D2ψ(x). Hence
for every t ∈ [t0, t1),

F (t, x,Dφ(x), D2φ(x), φ(x)) ≥ F (t, x,Dψ(x), D2ψ(x), ψ(x))

if F satisfies (4.3)(ii). Conversely, suppose that F does not satisfy (4.3)(ii) at
some (t, x) ∈ Q and (p,A, V ), B > 0. Define

ψ(x) = V + p · (x− x) +
1

2
(A+B)(x− x) · (x− x), x ∈ O,

φ(x) = V + p · (x− x) +
1

2
A(x− x) · (x− x) , x ∈ O.

Then x ∈ arg max{(φ− ψ)(x)|x ∈ O} ∩O and φ, ψ ∈ C2(O). So we conclude
that if (4.3)(ii) does not hold inQ,Gt does not have maximum principle. Hence
(4.3)(ii) is equivalent to the maximum principle property of F .

We will now give an equivalent definition of a viscosity subsolution and a
supersolution of nonlinear partial differential equations.

Definition 4.2. Let O be an open subset of IRn, Q = [t0, t1) × O,W ∈
C(O) and F be a continuous function satisfying (4.3)(ii). For (t, x) ∈ Q con-
sider the equation

(4.4) − ∂

∂t
W (t, x) + F (t, x,DxW (t, x), D2

xW (t, x),W (t, x)) = 0.

(a) W is a viscosity subsolution of (4.4) in Q if for each w ∈ C∞(Q),

(4.5) − ∂

∂t
w(t, x) + F (t, x,Dxw(t, x), D2

xw(t, x), w(t, x)) ≤ 0
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at every (t, x) ∈ Q which is a local maximum of W −w on Q, with W (t, x) =
w(t, x).

(b) W is a viscosity supersolution of (4.4) in Q if for each w ∈ C∞(Q),

(4.6) − ∂

∂t
w(t, x) + F (t, x,Dxw(t, x), D2

xw(t, x), w(t, x)) ≥ 0

at every (t, x) ∈ Q which is a local minimum of W −w on Q, with W (t, x) =
w(t, x).

(c) W is a viscosity solution of (4.4) in Q if it is both a viscosity subsolution
and a viscosity supersolution of (4.4) in Q.

When the infinitesimal generator Gt is given by (4.3)(i), Definitions 4.1
and 4.2 are equivalent provided that W ∈ Cp(Q) ∩ M(Q); see Theorem 6.1,
below. This equivalence follows from the local character of Gt and the fact that
every test function w ∈ D can be approximated by functions from C∞(Q).
This approximation property also enables us to use test functions w ∈ D or
w ∈ C∞(Q) or w from any other space which is dense in D; see Remark 6.1
below. Other properties of the second order equations will be the subject of
Chapters IV and V on optimal control of diffusion processes.

Remark 4.2. The viscosity property is often stated in the following
slightly different way, which does not require W (t, x) = w(t, x). A viscosity
subsolution W of (4.4) in Q satisfies

− ∂

∂t
w(t, x) + F (t, x,Dxw(t, x), D2

xw(t, x),W (t, x)) ≤ 0

at every (t, x) ∈ Q which is a local maximum of W − w on Q. Indeed, define

w(t, x) = w(t, x) +W (t, x) − w(t, x) , (t, x) ∈ Q.

Then (t, x) is a local maximum of W − w on Q, and W (t, x) = w(t, x). A
similar result also holds for supersolutions.

If the function F in (4.4) does not depend on W (t, x), i.e. F =F (t, x, p, A),
then (4.5), (4.6) are unchanged if w is replaced by w+ c with c any constant.
In this case, this distinction is irrelevant.

Remark 4.3. Definition 4.1 is a weak formulation of sub and supersolu-
tions of (3.12). However, as we have already discussed in Chapter I, the value
function of a deterministic control problem satisfies certain boundary condi-
tions on {t1}×O and [t0, t1)×∂O. In Sections 12 and 13, a weak formulation
of these boundary conditions will be given for the deterministic control prob-
lems. Also a more general definition which does not require the continuity of
W will be given in Section VII.4.

Let us return to Example 2.1 and verify that

V (t, x) = min{1 − t, 1 − |x|}
is a viscosity solution of (2.1) in Q = [0, 1) × (−1, 1). Let w ∈ C1(Q) and
choose (t, x) ∈ arg max{(V −w)(t, x)|(t, x) ∈ Q} ∩Q. First suppose that V is
differentiable at (t, x) or equivalently |x| �= t. Then
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(4.7)(i)
∂

∂x
V (t, x) =

∂

∂x
w(t, x).

Note that t may equal to t0 = 0 and in that case the time derivatives of V
and w may not be equal. Still we have,

(4.7)(ii)
∂

∂t
V (t, x) ≤ ∂

∂t
w(t, x).

Since V satisfies (2.1) at (t, x), the above inequality implies that (4.1) is
satisfied with (Gtφ)(x) = (φ′(x))2 − 1.

Now suppose that t = |x| > 0. Recall that (t, x) is a maximizer of the
difference V −w. Using the directional derivatives of V at (t, x), we conclude
that

∂

∂t
w(t, x) +

x

|x|
∂

∂x
w(t, x) = −1,

∂

∂t
w(t, x) ≥ −1,

x

|x|
∂

∂x
w(t, x) ≥ −1.

Therefore

(
∂

∂t
w(t, x),

∂

∂x
w(t, x)) = (−λ, (λ− 1)

x

|x| )

for some λ ∈ [0, 1]. Also if t = |x| = 0, then a similar analysis yields

(
∂

∂t
w(t, x),

∂

∂x
w(t, x)) = (−λ+ γ, (λ− 1)p)

for some λ ∈ [0, 1], γ ≥ 0 and |p| ≤ 1. Then

− ∂

∂t
w(t, x) + (

∂

∂x
w(t, x))2 − 1 ≤ λ+ (λ− 1)2 − 1 − γ

≤ λ2 − λ ≤ 0.

Hence V is a viscosity subsolution of (2.1).
To verify the supersolution property of V , let (t, x) be a minimizer of

V − w. Since V is a concave function of its variables and w is differentiable,
V must be differentiable at (t, x). Then we have (4.7)(i) and

∂

∂t
V (t, x) ≥ ∂

∂t
w(t, x).

Therefore (4.2) is satisfied and V is a viscosity supersolution of (2.1).
Now consider Wk defined in Example 2.2. Recall that Wk is a generalized

solution of (2.1). However, we claim that for k > 1 Wk is not a viscosity su-
persolution of (2.1), and consequently not a viscosity solution of (2.1). Indeed,
let w ≡ 0. Then (t, 1

2k+1 ) with t ∈ [0, 1], is one of the several minimizers of
Wk − w = Wk. But
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− ∂

∂t
w(t,

1

k
) + (

∂

∂x
w(t,

1

k
))2 − 1 = −1,

and (4.2) is not satisfied.
From the above discussion it is clear that if

(Gtφ)(x) = H(t, x,Dφ(x)), (t, x) ∈ [t0, t1] ×Σ,

with some continuous functionH, then any viscosity solution of (3.12) satisfies
the equation at the points of its differentiability. But in addition, a viscosity
solution has to satisfy appropriate inequalities when it is not differentiable.
These conditions are summarized in an equivalent pointwise definition that is
discussed in Section 8.

II.5 Dynamic programming and viscosity property

Recall that the value function is defined by

V (t, x) = (Ttt1ψ)(x).

In this section we will show that the abstract dynamic programming princi-
ple (3.8) yields that V is a viscosity solution of the dynamic programming
equation (3.12), whenever it is a continuous function on Q̂ = [t0, t1] ×Σ. For
deterministic optimal control, sufficient conditions for the continuity of the
value function are obtained in Section 10 and Theorem 13.1.

Theorem 5.1. Assume (3.1), (3.2), (3.10), (3.11). Suppose that V ∈ C(Q̂).
Then, V is a viscosity solution of (3.12) in Q.

Proof. Let w ∈ D and (t, x) ∈ Q be a maximizer of the difference V −w on
Q satisfying V (t, x) = w(t, x). Then, w ≥ V . Using (3.2)(b) with φ = w(r, ·)
and s = t1, we obtain for every r ∈ [t, t1],

(Ttrw(r, ·))(x) ≥ (Ttt1
ψ)(x) = V (t, x) = w(t, x).

Recall that by (3.10i) w(r, ·) is in the domain of Ttr. Take r = t + h and use
(3.11) to arrive at

− ∂

∂t
w(t, x) + Gtw(t, ·))(x) = −lim

h↓0

1

h
[(Tt t+hw(t+ h, ·))(x) − w(t, x)] ≤ 0.

Hence (4.1) is satisfied and consequently V is a viscosity subsolution of (3.12)
in Q. The supersolution property of V is proved exactly the same way as the
subsolution property. �

We close this section by showing that the notion of viscosity solution is
consistent with the notion of a classical solution.

Lemma 5.1. Suppose that W ∈ D. Then W is a viscosity solution of
(3.12) in Q if and only if it is a classical solution of (3.12).
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Proof. First suppose that W is a viscosity solution. Since W ∈ D, w ≡ W
is a test function. Moreover every (t, x) is a maximizer and a minimizer of
W −w. Hence (4.1) and (4.2) hold at every (t, x) ∈ Q with w = W . Therefore
W satisfies (3.12), classically, in Q.

To prove the converse, let w ∈ D and (t, x) ∈ Q be a maximizer of W −w
satisfying,

w(t, x) = W (t, x).

Using (3.11) and the monotonicity property (3.2′), together with the inequal-
ity w ≥ W , we obtain

− ∂

∂t
w(t, x) +(Gtw(t, ·))(x) =

= −lim
h↓0

1

h
[(Tt t+hw(t+ h, ·))(x) − w(t, x)]

≤ −lim
h↓0

1

h
[(Tt t+hW (t+ h, ·))(x) −W (t, x)]

= − ∂

∂t
W (t, x) + (GtW (t, ·))(x) = 0.

Hence W is a viscosity subsolution (3.12). The supersolution property is
proved similarly. �

II.6 Properties of viscosity solutions

In this section we obtain equivalent definitions and a stability result (Lemma
6.2), when Gt is a partial differential operator. A stability result for a general
class of equations is also proved at the end of the section. See Lemma 6.3.

Let Gt be a partial differential operator given by (4.3)(i), Σ′ = O be an
open subset of IRn and Σ = O. We also require that the collections C and D
of functions are chosen large enough that

(6.1)(i) Cp(O) ∩ M(O) ⊂ C,

(6.1)(ii) C∞
p (Q) ∩ M(Q) ⊂ D.

As noted earlier, if O is bounded, then (6.1) requires merely that C(O) ⊂ C
and C∞(Q) ⊂ D.

Lemma 6.1. Assume (6.1). Let Gt be a partial differential operator as in
(4.3)(i). Then in Definitions 4.1 and 4.2, it suffices to consider only the strict
extrema of W − w.

Proof. Suppose that (4.2) holds at every strict minimum (t, x) ∈ Q of
W − w with W (t, x) = w(t, x). Let (t, x) ∈ Q be a minimum (not necessarily
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strict) of W − w satisfying W (t, x) = w(t, x). For ε > 0, define wε = w + εξ,
where

ξ(t, x) = e−(|t−t|2+|x−x|2) − 1 , (t, x) ∈ Q.

Clearly εξ ∈ C∞
p (Q) ∩ M(Q), and by (6.1)(ii), εξ ∈ D. Then by (3.10)(ii)

wε ∈ D. Also for every ε > 0, W − wε has a strict minimum at (t, x) with
W (t, x) = wε(t, x). Hence

− ∂

∂t
wε(t, x) + F (t, x,Dxw

ε(t, x), D2
xw

ε(t, x),W (t, x)) ≤ 0.

We now obtain (4.2) by letting ε ↓ 0 in the above inequality.
Hence in Definition 4.1(ii) it suffices to consider only strict minima of

W − w. The remaining assertions are proved similarly. �

Next we will prove that for a partial differential equation, Definitions 4.1
and 4.2 are indeed equivalent. A brief outline of this proof is the following: we
first approximate any test function w by a sequence wn ∈ C∞(Q) satisfying

(wn
t ,Gtw

n) → (wt,Gtw), as n → ∞,

locally uniformly. Hence we only need to consider test functions which are in
C∞(Q). Also, if Gt is a partial differential operator as in (4.3)(i), then

(Gtφ)(x0) = (Gtψ)(x0)

if φ = ψ in a neighborhood of x0. This local behavior of Gt enables us to
consider only the local extrema in our definition.

Theorem 6.1. Assume (6.1). Let W ∈ Cp(Q) ∩ M(Q),Gt be a partial
differential operator as in (4.3)(i) and D ⊂ C1,2(Q). Then W is a viscosity
subsolution (or a supersolution) of (3.12) in the sense of Definition 4.1, if and
only if W is a viscosity solution (or a supersolution, respectively) in the sense
of Definition 4.2.

Proof.
(i) (Necessity) Suppose that W ∈ Cp(Q)∩M(Q) is a viscosity supersolution
of (3.12) in Q. Let w ∈ C∞(Q) and (t, x) ∈ Q be a local minimum of W − w
with W (t, x) = w(t, x). Then there exists an open, bounded neighborhood
N of (t, x) such that W (t, x) ≥ w(t, x) for all (t, x) ∈ N ∩ Q. By Urysohn’s
Lemma there is ξ ∈ C∞(Q) satisfying (i) 0 ≤ ξ(t, x) ≤ 1, (ii) ξ = 1 in a
neighborhood Ñ of (t, x) (iii) ξ(t, x) = 0, (t, x) �∈ N . For (t, x) ∈ Q, define

w̃(t, x) = ξ(t, x)w(t, x) − (1 − ξ(t, x))K,

where −K is a lower bound for W on Q. Since W ≥ w on N ∩Q and ξ = 0
outside of N , ξW ≥ ξw on Q. Therefore

W = ξW + (1 − ξ)W ≥ ξw − (1 − ξ)K = w̃.

Hence we have



II. Viscosity Solutions 75

(6.2)(i) w = w̃ on N ,

(6.2)(ii) (t, x) ∈ arg min{(W − w̃)(t, x)|(t, x) ∈ Q}.

Since N ∩ Q = N ∩ Q, w ∈ C∞(Q) and ξ = 0 outside N , ξw ∈ C∞(Q).
Therefore, w̃ ∈ C∞(Q). Moreover w̃ ∈ C∞(Q) and equals to a constant
outside the compact set N . By (6.1)(ii) w̃ ∈ D and

− ∂

∂t
w̃(t, x) + F (t, x,Dxw̃(t, x), D2

xw̃(t, x),W (t, x)) ≥ 0.

Due to (6.2)(i), all derivatives of w̃ and w agree at (t, x) and the above in-
equality gives (4.6).

Now let W ∈ Cp(Q) ∩ M(Q) be a viscosity subsolution of (3.12) in Q,
and (t, x) be a local maximum of W − w with W (t, x) = w(t, x). Then
w(t, x) > W (t, x) on N ∩ Q, where N is an open, bounded neighborhood
of (t, x) satisfying N ∩ Q = N ∩ Q. Since W is polynomially growing, there
are a constant K ≥ 0 and an integer m ≥ 0 satisfying

|W (t, x)| ≤ K(1 + |x|2m), (t, x) ∈ Q.

Let ξ be as before and for (t, x) ∈ Q, define

w(t, x) = ξ(t, x)w(t, x) + (1 − ξ(t, x))K(1 + |x|2m).

Then w ∈ C∞
p (Q) ∩ M(Q) and satisfies w = w̄ on N , and

(t, x) ∈ arg max{(W − w)(t, x)|(t, x) ∈ Q}.

Continuing as in the supersolution case, we obtain (4.5).
(ii) (Sufficiency) Let W be a viscosity solution according to Definition 4.2.
Let w ∈ D and (t, x) ∈ Q be a maximum of W − w with W (t, x) = w(t, x).
In view of Lemma 6.1, we may assume that (t, x) is a strict maximum. Since
D ⊂ C1,2(Q), w ∈ C1,2(Q). Therefore there is an open set Q∗ ⊃ Q such that
w ∈ C1,2(Q∗). As in Appendix C, extend w to IRn+1 by setting it equal to zero
on IRn+1\Q∗. Let wn ∈ C∞(Q) be a mollification of the extension of w. Since
w ∈ C1,2(Q∗) and Q∗ ⊃ Q, wn, wn

t , w
n
xi
, wn

xixj
converge to w,wt, wxi

, wxixj
,

uniformly on compact subsets of Q, as n → ∞ (see Appendix C.) The uniform
convergence of wn to w implies that there is (tn, xn) → (t̄, x̄), as n → ∞,
such that (tn, xn) is a local maximum of W − wn. Set wn(t, x) = wn(t, x) +
W (tn, xn) − wn(tn, xn). Then (tn, xn) is a local maximum of W − wn with
W (tn, xn) = wn(tn, xn). Also for sufficiently large n, (tn, xn) ∈ Q. So the
hypotheses of the lemma imply

− ∂

∂t
w(tn, xn) + F (tn, xn, Dxw(tn, xn), D2

xw(tn, xn),W (tn, xn)) ≤ 0.
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Now let n go to infinity to arrive at (4.1). Therefore W is a subsolution of
(3.12) in Q. The supersolution property is proved similarly. �

Remark 6.1. Take C = C(O) and D = C1,2(Q)∩M(Q) or D = C1,2(Q)∩
M(Q). Then the above theorem implies that Definition 4.1 with either choice
of D, and Definition 4.2 are equivalent for any partial differential equation with
maximum principle. From the above proof it is also clear that in Definition
4.2 we could use test functions from any function space between C1,2(Q)
and C∞(Q). Therefore when applying the viscosity property or when proving
such a property, we have the freedom to choose the test function w from D or
C∞(Q) or any other dense subset of C1,2(Q) (for example C1,2(Q).) Indeed
this flexibility to choose w from several different classes will be used in the
sequel to simplify the presentation. Also in the sequel we will not specify C and
D, since all choices of C and D satisfying (6.1) and (3.10)(i) yield equivalent
definitions.

Now suppose that Gt is a first order partial differential operator, namely,

(Gtφ)(x) = H(t, x,Dφ(x))

for (t, x) ∈ Q and φ ∈ C1(O). Then the proof of Theorem 6.1 implies that
the definition obtained by using C = M(O) and D = C1(Q) ∩ M(Q) or
D = C1(Q) ∩ M(Q) in Definition 4.1 is equivalent to Definition 4.2. Again
this equivalence enables us to use test functions w from D or C∞(Q) or any
other dense subset of C1(Q) (eg. C1(Q) or C1(Q)). In Sections 8 and 9 we
shall use w ∈ C1(Q).

Stability Results. Next we will prove a stability property of viscosity
solutions. This property states that if the viscosity solutions W ε of approxi-
mate equations depending on a small parameter ε are uniformly convergent as
ε → 0, then the limiting function W is a viscosity solution of the limit equa-
tion. Notice that the equation (3.12) is in many cases of interest a nonlinear
partial differential equation. Therefore, the importance of this property is in
the fact that only the convergence of the solutions, but not their derivatives,
is required. See Chapter VII for a more detailed discussion of this subject.

Let W ε be a viscosity subsolution (or supersolution) of

(6.3)ε − ∂

∂t
W ε(t, x) + (Gε

tW
ε(t, ·))(x) = 0

in Q. One typical example of this situation is

(Gε
t φ)(x) = −ε∆φ(x) +H(t, x,Dφ(x)),

where H(t, x, p) is as in (3.13). But there are other interesting examples such
as,

(Gε
t φ)(x) = sup

v∈U

{

− 1

ε

∫

Rn

[φ(x+ εy) − φ(x)]G(t, x, y, v)dy − L(t, x, v)

}

,
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where G(t, x, y, v) ≥ 0 and yG(t, x, y, v) is an integrable function of y ∈ IRn,
for every (t, x) ∈ Q and v ∈ U .

When both (6.3)ε and (3.12) are partial differential equations, the proof
of the stability result is simpler. So we give two stability results, the second
of which applies to all dynamic programming equations.

Lemma 6.2. (Stability) Let W ε be a viscosity subsolution (or a super-
solution) of

− ∂

∂t
W ε(t, x) + F ε(t, x,DxW

ε(t, x), D2
xW

ε(t, x),W ε(t, x)) = 0

in Q, with some continuous function F ε satisfying the ellipticity condition
(4.3)(ii). Suppose that F ε converges to F , uniformly on every compact subset
of its domain, and W ε converges to W , uniformly on compact subsets of Q.
Then W is a viscosity subsolution (or a supersolution, respectively) of the
limiting equation.

Proof. Let w ∈ C∞(Q) and (t, x) ∈ Q be a strict maximizer of W−w with
W (t, x) = w(t, x). Since W ε converges to W uniformly on compact subsets of
Q, there exists a sequence (tε, xε) → (t, x), as ε → 0, such that (tε, xε) is a
local maximum of W ε −w. Set w̃(t, x) = w(t, x)+W ε(tε, xε)−w(tε, xε). Then
(tε, xε) is a local maximum of W ε − w̃ and W ε(tε, xε) = w̃(tε, xε). Hence the
viscosity property W ε implies that

− ∂

∂t
w̃(tε, xε) + F ε(tε, xε, Dxw̃(tε, xε), D

2
xw̃(tε, xε),W

ε(tε, xε)) ≤ 0.

Let ε go to zero and use the uniform convergence of F ε to F , to conclude that
W is a viscosity subsolution of the limiting equation (4.4). Once again, the
supersolution property is proved similarly.

Lemma 6.3. (Stability) Suppose that for every w, ξ ∈ D, (t, x) ∈ Q and
a positive, continuous function h, with h(0) = 0,

(6.4) lim
ε↓0

(s,y)→(t,x)

(s,y)∈Q

(Gε
s [w(s, ·) + h(ε)ξ(s, ·)])(y) = (Gtw(t, ·))(x).

Let W ε be a viscosity subsolution (or supersolution) of (6.3)ε in Q. Further
assume that there is a nonnegative function η ∈ D such that (W ε−W )/(1+η)
converges to zero as ε → 0, uniformly on Q. Then W is a viscosity subsolution
(or supersolution, respectively) of (3.12) in Q.

Before the proof of the lemma, let us briefly discuss its hypotheses. The
condition (6.4) is a direct analogue of the local uniform convergence assump-
tion made on F ε in Lemma 6.2. The uniform convergence assumption on
(W ε −W )/(1 + η) however, is in general stronger than the assumption made
in Lemma 6.2. Recall that in Lemma 6.2 we only assumed the local uniform
convergence of W ε to W . This minor restriction is caused by the possible
non-local character of Gt.
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Proof. Let w ∈ D and (t, x) ∈ Q be a maximizer of W − w on Q, with
W (t, x) = w(t, x). Set

ξ(t, x) = 1 − exp(−|t− t|2 − |x− x|2), (t, x) ∈ Q,

h(ε) = sup

{

W ε(t, x) −W (t, x)

1 + η(t, x)
: (t, x) ∈ Q

}

,

and for δ > 0,

w̃(t, x) = w(t, x) + h(ε)[1 + η(t, x)] + δξ(t, x), (t, x) ∈ Q.

By (3.10)(ii) and (6.1)(ii), w̃ ∈ D. Consider the difference

Iε(t, x) = W ε(t, x) − w̃(t, x).

Since W ≤ w on Q, for (t, x) ∈ Q,

Iε(t, x) = W (t, x) − w(t, x)

+(W ε(t, x) −W (t, x) − h(ε)[1 + η(t, x)]) − δξ(t, x) ≤ −δξ(t, x)

Recall that W (t, x) = w(t, x) and ξ(t, x) = 0. Hence the above inequality
yields

Iε(t, x) ≤ Iε(t, x) − δξ(t, x) − (W ε(t, x) −W (t, x) − h(ε)[1 + η(t, x)])

≤ Iε(t, x) − δξ(t, x) + 2h(ε)[1 + η(t, x)].

Since h(ε) → 0 as ε → 0, and ξ(t, x) is bounded away from zero out-
side any neighborhood of (t̄, x̄), the above inequality implies that there are
(tε, xε) ∈ arg max{Iε(t, x)|(t, x) ∈ Q} → (t, x) as ε → 0. Therefore the viscos-
ity property of W ε yields,

− ∂

∂t
w̃(tε, xε) + (Gtε

[w̃(tε, ·) +Kε]) ≤ 0,

where Kε = W ε(tε, xε) − w̃(tε, xε). Now let ε and then δ go to zero and use
(6.4), to arrive at (4.1). The supersolution property is proved similarly. �

II.7 Deterministic optimal control and viscosity solutions

In this section, we prove that the value function defined by I(4.1) is a viscos-
ity solution of the dynamic programming equation I(5.3′) under two sets of
assumptions. In the first result (Theorem 7.1) the control space U is assumed
bounded. The second result (Theorem 7.2) has a simpler proof, and does not
require that U is bounded. However, in Theorem 7.2 it is assumed that an
optimal control exists.
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We start with a brief review of the notation and the assumptions of Section
I.3 and Example 3.1. Let O be an open subset of IRn, Σ = O, C = M(Σ) (see
end of Section 1 for the notation) Q = [t0, t1)×O and Q0 = [t0, t1)× IRn. We
assume that f, L ∈ C(Q0 ×U), where U is the control space, and g ∈ C(Q0).
We also assume that f satisfies I(3.1), and L and g are bounded from below.
Let U(t, x) be a set of controls satisfying I(5.2), and the switching condition
I(3.9). Then for ψ ∈ C, t0 ≤ t ≤ r ≤ t1 and x ∈ O, the semigroup is given by

(Ttrψ)(x) = inf
u(·)∈U(t,x)

[
∫ r∧τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))χτ<r

+ψ(x(r))χτ≥r] ,

where x(·) is the solution of I(3.2), I(3.3) and τ is the exit time of (s, x(s))
from the region Q.

In Example 3.1, it is shown that Ttr satisfies (3.1), (3.2), and the value
function is given by

(7.1) V (t, x) = (Ttt1ψ)(x), (t, x) ∈ Q.

Then in view of Theorem 5.1 and Remark 6.1, V is a viscosity solution of the
dynamic programming equation provided that V ∈ C(Q) and the semigroup
satisfies (3.11). That is, for every (t, x) ∈ Q and w ∈ C1(Q) ∩ M(Q),

(7.2) lim
h↓0

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)] =

=
∂

∂t
w(t, x) −H(t, x,Dxw(t, x)),

where for (t, x) ∈ Q , p ∈ IRn,

(7.3) H(t, x, p) = sup
v∈U

{−f(t, x, v) · p− L(t, x, v)}.

We next verify (7.2) under the following assumptions. We assume that for
a suitable constant K,

(7.4) (i) U is bounded,
(7.4) (ii) |f(t, x, v)| ≤ K(1 + |x|), ∀(t, x) ∈ Q, v ∈ U .

In fact, (7.4)(ii) follows from the boundedness of U and I(3.1).
Theorem 7.1. Suppose that (7.4) is satisfied. Then, (7.2) holds for every

w ∈ C1(Q) ∩ M(Q) and (t, x) ∈ Q. In particular, the value function is a
viscosity solution of the dynamic programming equation I(5.3′) in Q provided
that V ∈ C(Q).

Proof. First observe that the viscosity property of the value function
follows from (7.2), and Theorem 5.1. (See Remark 6.1.) Fix (t, x) ∈ Q, v ∈ U
and w ∈ C1(Q) ∩ M(Q). In view of I(5.2), there exists an admissible control
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u(·) ∈ U(t, x) satisfying lim
s↓t

u(s) = v. Let x(·) be the state corresponding

to control u(·) and the initial condition x(t) = x. Let τ be the exit time of
(s, x(s)) from Q. Since x ∈ O and t < t1, τ > t. Therefore for sufficiently small
h > 0, we have x(s) ∈ O for all s ∈ [t, t+h) and t+h < τ . Then the definition
of Ttt+h yields

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)]

≤ 1

h

∫ t+h

t

L(s, x(s), u(s))ds+
1

h
[w(t+ h, x(t+ h)) − w(t, x)]

=
1

h

∫ t+h

t

[

L(s, x(s), u(s)) +
∂

∂t
w(s, x(s)) +

d

ds
x(s) ·Dxw(s, x(s))

]

ds

=
1

h

∫ t+h

t

[

L(s, x(s), u(s)) +
∂

∂t
w(s, x(s))

+f(s, x(s), u(s)) ·Dxw(s, x(s))] ds.

Since (x(s), u(s)) converges to (x, v) as s ↓ t, the continuity of L and f , and
the smoothness of w yield

lim sup
h↓0

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)]

≤ ∂

∂t
w(t, x) − {−f(t, x, v) ·Dxw(t, x) − L(t, x, v)}.

The above inequality holds for every v ∈ U . Therefore,

(7.5) lim sup
h↓0

1

h
[(Ttt+hw(t+ h, ·))(x) − w(t, x)]

≤ ∂

∂t
w(t, x) −H(t, x,Dxw(t, x)).

For later use in the proof of Theorem 7.2, we note that (7.4) has not been
used in the derivation of (7.5).

Fix (t, x) ∈ Q, u(·) ∈ U(t, x). Let x(·) be the solution of I(3.2) and I(3.3).
For any r > t, we integrate I(3.2) over [t, r] and then invoke (7.4)(ii) to obtain,

|x(r) − x| ≤
∫ r

t

|f(s, x(s), u(s))|ds

≤ K(r − t) +K

∫ r

t

|x(s)|ds

≤ K(r − t)(1 + |x|) +K

∫ r

t

|x(s) − x|ds.
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Then, Gronwall’s inequality yields

(7.6) |x(r) − x| ≤ (1 + |x|)[expK(r − t) − 1] , ∀r ≥ t.

Choose r∗ > t satisfying,

(1 + |x|)[expK(r∗ − t) − 1] = distance (x, ∂O).

Hence x(s) ∈ O for all s ∈ [t, r∗) and consequently

τ ≥ r∗ ∧ t1 , ∀u(·) ∈ U(t, x).

In particular, τ ≥ t+ 1
n for every u(·) ∈ U(t, x) and sufficiently large n. So for

n large enough, we may choose an admissible control un(·) ∈ U(t, x) satisfying

(7.7)

(

Ttt+ 1
n
w

(

t+
1

n
, ·
))

(x) ≥ − 1

n2
+

∫ t+ 1
n

t

L(s, xn(s), un(s))ds

+w

(

t+
1

n
, xn

(

t+
1

n

))

,

where xn(s) denotes the state corresponding to the control un(·). We now
estimate that

(7.8) n

[(

Ttt+ 1
n
w

(

t+
1

n
, ·
))

(x) − w(t, x)

]

≥ − 1

n
+n

∫ t+ 1
n

t

L(s, xn(s), un(s))ds+n

[

w

(

t+
1

n
, xn

(

t+
1

n

))

− w(t, x)

]

= − 1

n
+ n

∫ t+ 1
n

t

[

L(s, xn(s), un(s)) +
∂

∂t
w(s, xn(s))+

f(s, xn(s), un(s)) ·Dxw(s, xn(s))] ds

=
∂

∂t
w(t, x) + n

∫ t+ 1
n

t

L(t, x, un(s))ds

+(n

∫ t+ 1
n

t

f(t, x, un(s))ds) ·Dxw(t, x) + e(n),

where

(7.9)

e(n) = − 1

n
+ n

∫ t+ 1
n

t

(

∂

∂t
w(s, xn(s)) − ∂

∂t
w(t, x)

)

ds

+n

∫ t+ 1
n

t

(L(s, xn(s), un(s)) − L(t, x, un(s)))ds
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+n

∫ t+ 1
n

t

[f(s, xn(s), un(s)) ·Dxw(s, xn(s)) − f(t, x, un(s)) ·Dxw(t, x)]ds.

The estimate (7.6) implies that xn(s) → x, as s → t, uniformly in n. Therefore
the continuity of L and f yields

lim
n→∞

e(n) = 0.

We now rewrite (7.8) as

n

[(

Ttt+ 1
n
w

(

t+
1

n
, ·
))

(x) − w(t, x)

]

≥ ∂

∂t
w(t, x)−{−Fn·Dxw(t, x)−Ln}+e(n),

where

(Fn, Ln) = n

∫ t+ 1
n

t

(f(t, x, un(s)), L(t, x, un(s)))ds.

Set

FL(t, x) = {(f, ℓ) ∈ Rn+1 : (f, ℓ) = (f(t, x, v), L(t, x, v)) for some v ∈ U}.

Then (Fn, Ln) belongs to the convex closed hull, co[FL(t, x)], of the set
FL(t, x). Consequently,

1

n

[(

Ttt+ 1
n
w

(

t+
1

n
, ·
))

(x) − w(t, x)

]

≥ ∂

∂t
w(t, x) − sup{−f ·Dxw(t, x) − ℓ : (f, ℓ) ∈ co[FL(t, x)]} + e(n)

=
∂

∂t
w(t, x) −H(t, x,Dxw(t, x)) + e(n).

Here we have used the fact that maximization of a linear function over a set
yields the same value as the maximization over the convex closed hull of the
same set. We now complete the proof of (7.2) after recalling that lim

n→∞
e(n) = 0.

�

The proof of Theorem 7.1 uses the abstract viscosity solution framework
in Section 3, and does not depend on the existence of an optimal control. We
next obtain a similar result assuming that optimal controls exist, but that
condition (7.4) need not hold. The proof uses the alternate Definition 4.2 of
viscosity solutions for PDEs.

Theorem 7.2. Assume that an optimal control u∗(·) ∈ U(t, x) exists, for
each (t, x) ∈ Q. Then the value function is a viscosity solution of the dynamic
programming equation I(5.3′) in Q provided that V ∈ C(Q).

Proof. An argument like the proof of (7.5) above shows that V is a viscos-
ity subsolution of I(5.3′). To show that V is a viscosity supersolution, suppose
that w ∈ C∞(Q) and that V − w has a local minimum at (t̄, x̄) ∈ Q with
w(t̄, x̄) = V (t̄, x̄). Let u∗(·) be optimal for initial data (t̄, x̄), and let x∗(·)
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be the corresponding state with x∗(t̄) = x̄. By the dynamic programming
principle, for small enough h > 0,

V (t̄, x̄) =

∫ t̄+h

t̄

L(s, x∗(s), u∗(s))ds+ V (t̄+ h, x∗(t̄+ h)),

0 ≥
∫ t̄+h

t̄

L(s, x∗(s), u∗(s))ds+ w(t̄+ h, x∗(t̄+ h)) − w(t̄, x̄).

Let F (s, y, v, p) = f(s, y, v) · p+ L(s, y, v). Then

0 ≥
∫ t̄+h

t̄

[

∂

∂t
w(s, x∗(s)) + F (s, x∗(s), u∗(s), Dxw(s, x∗(s))

]

ds

≥
∫ t̄+h

t̄

[

∂

∂t
w(s, x∗(s)) −H(s, x∗(s), Dxw(s, x∗(s))

]

ds.

We let h ↓ 0 and obtain

−∂w
∂t

(t̄, x̄) +H(t̄, x̄, Dxw(t̄, x̄)) ≥ 0.

Thus V is a viscosity supersolution. �

Concerning the existence of optimal controls needed in Theorem 7.2, we
refer to Section I.11.1 and to [FR, Chapter 3].

II.8 Viscosity solutions: first order case

In this section, we consider the viscosity sub and supersolutions of a first order
partial differential equation

(8.1) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x)) = 0, (t, x) ∈ Q,

where H is a continuous function of Q × IRn. We do not assume that H is
necessarily related to an optimal control problem. Recall that the notion of
viscosity solution applies to equation (8.1); see Definition 4.2.

We start our discussion with a definition.
Definition 8.1. Let W ∈ C(Q) and (t, x) ∈ Q.

(a) The set of superdifferentials of W at (t, x), denoted by D+W (t, x), is the
collection of all (q, p) ∈ IR× IRn satisfying

(8.2)(i) (q, p) =

(

∂

∂t
w(t, x), Dxw(t, x)

)

(8.2)(ii) (t, x) ∈ arg max{(W − w)(s, y)|(s, y) ∈ Q},
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for some w ∈ C1(Q).
The set of subdifferentials of W at (t, x), denoted by D−W (t, x), is the col-
lection of all (q, p) ∈ IR× IRn satisfying

(8.3)(i) (q, p) =

(

∂

∂t
w(t, x), Dxw(t, x)

)

,

(8.3)(ii) (t, x) ∈ arg min{(W − w)(s, y)|(s, y) ∈ Q},

for some w ∈ C1(Q).
In view of Remark 6.1, W is a viscosity subsolution of (8.1) in Q if and

only if

(8.4) −q +H(t, x, p) ≤ 0, ∀(p, q) ∈ D+W (t, x), (t, x) ∈ Q.

Similarly W is a viscosity supersolution of (8.1) in Q if and only if

(8.5) −q +H(t, x, p) ≥ 0, ∀(q, p) ∈ D−w(t, x), (t, x) ∈ Q.

Next, we give different characterizations of the sets D+W (t, x) and
D−W (t, x).

Lemma 8.1. Let W ∈ C(Q) and (t, x) ∈ Q. Then,

(8.6) D+W (t, x) =

{

(q, p) ∈ IRn+1 :

lim sup
(s,y)→(t,x)

(s,y)∈Q

W (s, y) −W (t, x) − q(s− t) − p · (x− y)

|s− t| + |x− y| ≤ 0

}

(8.7) D−W (t, x) =

{

(q, p) ∈ IRn+1 :

lim inf
(s,y)→(t,x)

(s,y)∈Q

W (s, y) −W (t, x) − q(s− t) − p · (x− y)

|s− t| + |x− y| ≥ 0

}

.

Proof. Fix (t, x) ∈ Q. Let (q, p) ∈ D+W (t, x) and w ∈ C1(Q) be a test
function satisfying (8.2). Then by (8.2)(ii),

W (s, y) − w(s, y) ≤ W (t, x) − w(t, x),

for every (s, y) ∈ Q. Hence

lim sup
(s,y)→(t,x)

(s,y)∈Q

W (s, y) −W (t, x) − q(s− t) − p · (y − x)

|t− s| + |x− y|
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≤ lim sup
(s,y)→(t,x)

(s,y)∈Q

w(s, y) − w(t, x) − q(s− t) − p · (y − x)

|t− s| + |x− y| = 0.

On the other hand, let (q, p) be an element of the right hand side of (8.6).
For (s, y) ∈ Q, define

w(s, y) = q(s− t) + p · (y − x) +

∫ 2α(s,y)

α(s,y)

h(ρ)dρ,

where
α(s, y) = (|t− s|2 + |x− y|2) 1

2

and for ρ > 0,

h(ρ) = sup{[
W (s, y) −W (t, x) − q(s− t) − p · (y − x)

|s− t| + |x− y| ∧ 0] :

(s, y) ∈ Q, 0 < α(s, y) ≤ ρ},
with h(0) = 0. Then h ∈ C([0,∞)), because (q, p) belongs to the right hand
side of (8.6). Consequently w ∈ C1(Q). Moreover, it is straightforward to
check that w satisfies (8.2). Therefore (q, p) ∈ D+W (t, x). See Proposition
V.4.1 for a more detailed proof of a similar result. The identity (8.7) is proved
similarly. �

Using the above characterization of D+W (t, x) and D−W (t, x), we obtain
the following result

Corollary 8.1. Let W ∈ C(Q).
(a) D+W (t, x) and D−W (t, x) are convex for every (t, x) ∈ Q.
(b) Suppose that (t, x) ∈ (t0, t1)×O. Then W is differentiable at (t, x),

in the sense of Section I.6, if and only if both D+W (t, x) and D−W (t, x) are
non-empty. When W is differentiable, we have

(8.8) D+W (t, x) = D−W (t, x) =

{(

∂

∂t
W (t, x), DxW (t, x)

)}

.

(c) Let W be a viscosity solution of (8.1) in Q. Then W satisfies (8.1),
classically, at every point of differentiability (t, x) ∈ (t0, t1) ×O.

(d) Let N ⊂ (t0, t1)×O be an open, convex set and let W be convex on
N . Then for every (t, x) ∈ N,D−W (t, x) is nonempty and it is equal to the
set of subdifferentials in the sense of convex analysis (see Rockafellar [R1].)

(e) Let N be as in part (d), and W be concave on N . Then D+W (t, x)
is nonempty for every (t, x) ∈ N .

(f) Suppose that W is Lipschitz continuous on Q, i.e.

(8.9) |W (s, y) −W (t, x)| ≤ M1|x− y| +M2|t− s|, (s, y), (t, x) ∈ Q,

for a suitable constants M1,M2. Then,
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(8.10) |p| ≤ M1, |q| ≤ M2

for every (q, p) ∈ D+W (t, x) ∪D−W (t, x) and (t, x) ∈ (t0, t1) ×O.
Proof. The convexity of the sets of sub and superdifferentials follow easily

from Lemma 8.1. Also if W is differentiable at (t, x) ∈ (t0, t1) × O, then
(8.8) follows immediately. Now suppose that (q, p) ∈ D+W (t, x) and (q, p) ∈
D−W (t, x), at some (t, x) ∈ (t0, t1) ×O. Using (8.6) and (8.7), we obtain

lim sup
(h,z)→0

(p− p) · z + (q − q)h

|h| + |z| ≤ 0.

Choose (h, z) = ρ(q − q, p− p) with ρ > 0 and then let ρ go to zero to obtain
|p− p| = |q − q| = 0. Therefore W is differentiable at (t, x) and (8.8) holds.

Suppose W is convex on N . Then, for (t, x) ∈ N the set of subdifferentials
in the sense of convex analysis [R1] is given by

∂W (t, x) = {(q, p) ∈ IRn+1 : W (s, y) −W (t, x) − q(s− t) − p · (y − x) ≥ 0,

∀(s, y) ∈ N}.
It is well known that this set is non-empty at every (t, x) ∈ N . Also, it is clear
that

∂W (t, x) ⊂ D−W (t, x),

at every (t, x) ∈ N . We claim that the above holds with an equality at every
(t, x) ∈ N . Indeed, let (q, p) �∈ ∂W (t, x). Then, there exists (s, y) ∈ N satisfy-
ing

W (s, y) −W (t, x) − qh− p · z = −δ < 0

where h = s− t, and z = y − x. For every integer n, set

(sn, yn) = (t, x) +
1

2n
(h, z).

The convexity of W yields,

W (s1, y1) −W (t, x) ≤ 1

2
(W (s, y) −W (t, x))

=
1

2
(qh+ p · z) − 1

2
δ

= q(s1 − t) + p · (y1 − x) − δ
|s1 − t| + |y1 − x|

|h| + |z|
.

By induction, the above argument yields

W (sn, yn) −W (t, x) ≤ q(sn − t) + p · (yn − x) − δ
|sn − t| + |yn − x|

|h| + |z|
,
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for every n. Therefore

lim inf
(s,y)→(t,x)

(s,y)∈Q

W (s, y) −W (t, x) − q(s− t) − p · (y − x)

|s− t| + |y − x|

≤ lim inf
n→∞

W (sn, yn) −W (t, x) − q(sn − t) − p · (yn − x)

|sn − t| + |yn − x| ≤ − δ

|h| + |z|
< 0.

Hence (q, p) �∈ D−W (t, x). Part (e) is proved by using the identity

D+W (t, x) = −D−[−W ](t, x),

for every (t, x) ∈ Q. Finally, let W be Lipschitz continuous on Q, (t, x) ∈
(t0, t1) × O and (q, p) ∈ D+W (t, x). Let us show that |p| ≤ M1. The proof
that |q| ≤ M2 is similar. Then, (8.6) and (8.9) yield,

−M1 + |p| = −M1 + sup

{

−p · z
|z| : z ∈ IRn

}

= −M1 + lim sup
z→0

−p · z
|z|

≤ lim sup
z→0

W (t, x+ z) −W (t, x) − p · z
|z| ≤ 0.

Hence |p| ≤ M1. Similarly, |q| ≤ M2, which implies (8.10) for every (q, p) ∈
D+W (t, x). The case (q, p) ∈ D−W (t, x) is proved similarly. �

Remark 8.1. A Lipschitz continuous function W of Q, is called semi-
concave, if for every bounded subset B of Q, there exists a constant K(B)
such that

W (t, x) = W (t, x) −K(B)(t2 + |x|2)
is concave on every convex subset of B. W is called semi-convex if −W is
semi-concave.

When W is semi-concave by part (e) of the above corollary, D+W (t, x) is
nonempty. Also by part (b), we conclude that D−W (t, x) is nonempty if and
only if W is differentiable at (t, x). Observe that for any (t, x) ∈ Q

(q, p) ∈ D∓W (t, x) ⇐⇒ (q + 2K(B)t, p+ 2K(B)x) ∈ D∓W (t, x).

Hence, if W is semi-concave then for every (t, x) ∈ (t0, t1) ×O, D+W (t, x) is
non-empty and D−W (t, x) is non-empty if and only if W is differentiable at
(t, x).

The semi-concavity is a natural property of a large class of value functions.
In the special case of controlled diffusions on IRn, the semi-concavity of the
value function in the spatial variable is proved in Section IV.9; see IV(9.7).
Also see [CS]. �
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Corollary 8.2. Let W be a viscosity subsolution (or a supersolution) of
(8.1) in Q. Suppose W satisfies (8.9). Then W is a viscosity subsolution (or
a supersolution, respectively) of

(8.11) − ∂

∂t
W (t, x) +H(t, x,DxW (t, x)) = 0,

in Q if

(8.12) H(t, x, p) = H(t, x, p) , ∀(t, x) ∈ Q and |p| ≤ M1,

where M1 is the constant appearing in (8.9).
Proof. Let (q, p) ∈ D+W (t, x) for some (t, x) ∈ Q. Then (8.4) yields

−q +H(t, x, p) ≤ 0.

Also, (8.10) is satisfied. In particular, |p| ≤ M1 and by (8.12),

−q +H(t, x, p) = −q +H(t, x, p) ≤ 0.

Hence W is a viscosity subsolution of (8.11). The supersolution case is proved
similarly. �

We continue by computing the sets of sub and superdifferentials of several
functions. First consider the value function V defined in Example 2.1. Recall
that for (t, x) ∈ [0, 1] × [−1, 1],

V (t, x) = min{1 − |x|, 1 − t}.

If (t, x) ∈ (0, 1)× (−1, 1) and t �= |x|, then V is differentiable and we compute
the sub and superdifferentials by (8.8). If t = |x| ∈ (0, 1), then

D+V (t, x) = {λ(−1, 0) + (1 − λ)

(

0,− x

|x|

)

: λ ∈ [0, 1]}.

Since V is concave, D−V (t, x) is empty if t = |x| ∈ (0, 1).
Now let Wk be as in Example 2.2. For specificity take k = 1. Then

W1(t, x) = min{h1(x), 1 − t} , ∀(t, x) ∈ [0, 1] × [−1, 1].

Clearly for (t, x) ∈ (0, 2
3 ) × (−1, 1) , W1(t, x) = h1(x) and

D+W1(t, x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{(0, 1)}, x ∈ (−1,− 2
3 ) ∪ (− 1

3 , 0) ∪ ( 1
3 ,

2
3 ),

{(0,−1)}, x ∈ (− 2
3 ,− 1

3 ) ∪ (0, 1
3 ) ∪ ( 2

3 , 1),

{(0, λ) : λ ∈ [−1, 1]}, x = − 2
3 , 0,

2
3 ,

∅, x = − 1
3 ,

1
3 ,
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D−W1(t, x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{(0, λ) : λ ∈ [−1, 1]}, x = − 1
3 ,

1
3 ,

∅, x = − 2
3 , 0,

2
3 ,

D+W (t, x), otherwise.

This shows that W1 is not a supersolution of (2.1), because at x = − 1
3 or 1

3 the
condition (8.5) is not satisfied. The set of subdifferentials or superdifferentials
is not, in general, a line segment. For example

D+W1

(

2

3
, 0

)

= co{(0, 1), (0,−1), (−1, 0)}.

Also at a given point both the subdifferential and the superdifferential sets
may be empty. To see this, extend W1(t, x) to [0, 2] × [−1, 1] by setting

W1(t, x) = −W1(2 − t, x), ∀t ∈ [1, 2].

Then D+W1(1,− 1
3 ) = D−W1(1,− 1

3 ) = D+W1(1,
1
3 ) = D−W1(1,

1
3 ) = ∅.

II.9 Uniqueness: first order case

Let W be a viscosity subsolution of (8.1) in Q and V be a viscosity superso-
lution of (8.1) in Q, satisfying

(9.1) W (t, x) ≤ V (t, x), ∀(t, x) ∈ ∂∗Q.

Recall that ∂∗Q = ([t0, t1) × ∂O) ∪ ({t1} ×Q). Under a technical assumption
on H (see (9.4)), we will prove that

(9.2) W (t, x) ≤ V (t, x), ∀(t, x) ∈ Q.

See Theorem 9.1. In particular Theorem 9.1 implies that there exists at most
one viscosity solution V of (8.1) in Q, satisfying the lateral and terminal
boundary conditions

(9.3)(a) V (t, x) = g(t, x),∀(t, x) ∈ [t0, t1) ×O.

(9.3)(b) V (t1, x) = ψ(x), ∀x ∈ O.

Let us now state our assumption on H. We assume that there are a con-
stant K and h ∈ C([0,∞)) with h(0) = 0, such that for all (t, x), (s, y) ∈ Q,
and p, p ∈ IRn we have,

(9.4) |H(t, x, p) −H(s, y, p)| ≤

≤ h(|t− s| + |x− y|) + h(|t− s|)|p| +K|x− y||p| +K|p− p|.
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When H is differentiable, the following condition is sufficient for (9.4):

(9.4′) |Ht| + |Hx| ≤ K̂(1 + |p|)

and |Hp| ≤ K̂ for a suitable constant K̂.
Theorem 9.1. Let W and V be a viscosity subsolution and a viscosity

supersolution of (8.1) in Q, respectively. If Q is unbounded, we also assume
that W and V are bounded, and uniformly continuous on Q. Then

(9.5) sup
Q

[W − V ] = sup
∂∗Q

[W − V ].

An immediate corollary to this theorem is the following.
Corollary 9.1. (Uniqueness) There is at most one viscosity solution of

(8.1) which is bounded and uniformly continuous on Q, and satisfies the bound-
ary conditions (9.3).

Remark 9.1. In particular, in (8.1) we may take for V the value func-
tion of a deterministic control problem as in I(4.1). Then (8.1) becomes the
dynamic programming equation I(5.3). If V is bounded, uniformly continu-
ous on Q and satisfies the boundary conditions (9.3), then it is the unique
viscosity solution of I(5.3). (See Section 10). Other uniqueness results with a
weak (viscosity) formulation of the boundary condition (9.3)(a) are discussed
in Sections 13 and 14.

To explain the main idea in the proof of Theorem 9.1, we consider the
equation

−Vt(t, x) +H(DV (t, x)) = 0, (t, x) ∈ Q.

To simplify the discussion we assume that Q is bounded, and

W (t, x) ≤ V (t, x), ∀(t, x) ∈ ∂∗Q.

We continue with a brief outline of the proof of (9.5).
First we define an auxiliary function

ψ(t, x; s, y) = W (t, x) − V (s, y) − 1

2ε
(|t− s|2 + |x− y|2) + β(s− t1)

for (t, x), (s, y) ∈ Q and β, ε > 0. Let (t̄, x̄; s̄, ȳ) be a maximizer of ψ on Q×Q.
Then for all (t, x) ∈ Q.

W (t, x) − V (t, x) ≤ ψ(t̄, x̄; s̄, ȳ) + β(t1 − t0).

Hence it suffices to show that

lim sup
ε→0

ψ(t̄, x̄; s̄, ȳ) ≤ 0,

for every β > 0. First suppose that (t̄, x̄), (s̄, ȳ) ∈ Q. Then the map

(t, x) → ψ(t, x; s̄, ȳ)
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has a maximum at (t̄, x̄). Set

w(t, x) =
1

2ε
[|t− s̄|2 + |x− ȳ|2], (t, x) ∈ Q.

Then W − w has a maximum at (t̄, x̄) ∈ Q and by Remark 4.2,

−wt(t̄, x̄) +H(Dxw(t̄, x̄)) ≤ 0.

We rewrite the above inequality as,

−qε +H(pε) ≤ 0,

qε =
1

ε
(t̄− s̄), pε =

1

ε
(x̄− ȳ).

Similarly the map

(s, y) → −ψ(t̄, x̄; s, y)

= V (s, y) − [− 1

2ε
((t̄− s)2 + |x̄− y|2) + β(s− t1) −W (t̄, x̄)]

has a minimum at (s̄, ȳ). Therefore V − w̃ with

w̃(s, y) = − 1

2ε
(|t̄− s|2 + |x̄− y|2) + β(s− t1), (s, y) ∈ Q,

has a minimum at (s̄, ȳ). Since V is a viscosity supersolution,

−w̃s(s̄, ȳ) +H(Dyw̃(s̄, ȳ)) ≥ 0.

We directly calculate that

w̃s(s̄, ȳ) = qε + β, Dyw̃(s̄, ȳ) = pε.

Hence
−β − qε +H(pε) ≥ 0.

Subtracting the two inequalities satisfied by pε and qε, we obtain β ≤ 0. So we
have proved that if (t̄, x̄) ∈ Q and (s̄, ȳ) ∈ Q, then β ≤ 0. But β > 0. Therefore
we have either (t̄, x̄) ∈ ∂∗Q or (s̄, ȳ) ∈ ∂∗Q or both. Also we formally expect
that |t̄− s̄|, |x̄− ȳ| → 0 as ε → 0. Since W and V are continuous and W ≤ V
on ∂∗Q, we have

lim sup
ε↓0

ψ(t̄, x̄; s̄, ȳ) ≤ 0,

for every β > 0. Hence W ≤ V on Q.
In the above argument the parameter ε is used to keep |t̄ − s̄|, |x̄ − ȳ|

small. In the proof of Theorem 9.1 we will use the auxiliary function

Φ(t, x; s, y) = W (t, x) − V (s, y) − 1

2ε
|x− y|2 − 1

2δ
|t− s|2 + β(s− t1),
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instead of ψ. The use of two parameters ε, δ > 0 instead of only ε is technical
and allows us to consider Hamiltonians which are less regular in the t - variable
(See (9.4)).

Proof of Theorem 9.1. (Q bounded case)
For small parameters ε, δ, β > 0, define an auxiliary function for (t, x),

(s, y) ∈ Q by,

Φ(t, x; s, y) = W (t, x) − V (s, y) − 1

2ε
|x− y|2 − 1

2δ
|t− s|2 + β(s− t1).

Since Q is bounded, Φ achieves its maximum on Q × Q, say at (t, x), (s, y).
We prove (9.5) in several steps.

1. In this step, we estimate the differences |t−s| and |x−y|. For ρ ≥ 0,
set

Dρ = {((t, x), (s, y) ∈ Q×Q : |t− s|2 + |x− y|2 ≤ ρ},
mW (ρ) = 2 sup{|W (t, x) −W (s, y)| : ((t, x), (s, y)) ∈ Dρ},
mV (ρ) = 2 sup{|V (t, x) − V (s, y)| : ((t, x), (s, y)) ∈ Dρ},

and
K1 = sup{mW (ρ) : ρ ≥ 0}.

Since W and V are continuous, and Q is compact, W and V are uniformly
continuous on Q. Thus mW ,mV ∈ C([0,∞)) with mW (0) = mV (0) = 0. We
now claim that,

(9.6) |t− s| ≤
√

K1δ,

(9.7) |x− y| ≤
√

εmW (K1[ε+ δ]).

Indeed, the inequality Φ(t, x; s, y) ≥ Φ(s, y; s, y) yields

(9.8)

1

ε
|x− y|2 +

1

δ
|t− s|2 ≤ 2(W (t, x) −W (s, y))

≤ mW (|t− s|2 + |x− y|2).

Since mW (·) is bounded by K1, (9.8) yields (9.6) and |x − y|2 ≤ K1ε. Using
these inequalities, (9.8), and the monotonicity of mW (·), we obtain (9.7).

2. Suppose (t, x) ∈ ∂∗Q. Then we have,

Φ(t, x; s, y) ≤ W (t, x) − V (s, y)

≤ V (t, x) − V (s, y) + sup
∂∗Q

[W − V ]

≤ 1
2mV (|t− s|2 + |x− y|2) + sup

∂∗Q
[W − V ].
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Using (9.6) and (9.7) in the above inequality, we arrive at

(9.9) Φ(t, x; s, y) ≤ 1

2
mV (K1(ε+ δ)) + sup

∂∗Q
[W − V ].

3. Suppose (s, y) ∈ ∂∗Q. Arguing as in the previous step we obtain,

(9.10) Φ(t, x; s, y) ≤ 1

2
mW (K1(ε+ δ)) + sup

∂∗Q
[W − V ].

4. Suppose that (t, x), (s, y) ∈ Q. Consider the test function

w(t, x) =
1

2δ
|t− s|2 +

1

2ε
|x− y|2, (t, x) ∈ Q.

Then, (t, x) ∈ arg max{W (t, x) − w(t, x) : (t, x) ∈ Q} and

(9.11) −qδ +H(t, x, pε) ≤ 0,

where

qδ =
1

δ
(t− s), pε =

1

ε
(x− y).

Next, we consider the test function

w̃(s, y) = − 1

2δ
|t− s|2 − 1

2ε
|x− y|2 + β(s− t1), (s, y) ∈ Q.

Then, (s, y) ∈ arg min{V (s, y) − w̃(s, y) : (s, y) ∈ Q} and therefore

(9.12) −β − qδ +H(s, y, pε) ≥ 0.

Subtract (9.12) from (9.11) and then use (9.4) to obtain,

β ≤ H(s, y, pε) −H(t, x, pε)

≤ h(|t− s| + |x− y|) + h(|t− s|)|pε| +K|x− y||pε|.
The estimates (9.6) and (9.7) imply that

|pε| =
1

ε
|x− y| ≤ 1

ε

√

K1ε =

√

K1

ε
,

and

|x− y||pε| =
|x− y|2

ε
≤ mW (K1[ε+ δ]).

Combining the above inequalities and (9.6), (9.7) we arrive at

(9.13) β ≤ h(
√

K1ε+
√

K1δ) + h(
√

K1δ)

√

K1

ε
+KmW (K1[ε+ δ]).
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5. Let k(ε, δ) denote the right hand side of (9.13). Then,

lim
ε↓0

[lim
δ↓0

k(ε, δ)] = 0.

Since β > 0, there are ε(β) > 0 and δ(ε, β) > 0 such that for all ε ≤ ε(β) and
δ ≤ δ(ε, β), k(ε, δ) < β. So for ε ≤ ε(β), δ ≤ δ(ε, β), (9.13) does not hold and
therefore we have either (t̄, x̄) ∈ ∂∗Q or (s̄, ȳ) ∈ ∂∗Q or both. Then by (9.9)
and (9.10) we obtain,

(9.14) lim sup
ε↓0

lim sup
δ↓0

Φ(t, x; s, y) ≤ sup
∂∗Q

[W − V ],

for every β > 0.
6. For any ε, δ, β > 0 and (t, x) ∈ Q we have,

W (t, x) − V (t, x) + β(t− t1) = Φ(t, x; t, x) ≤ Φ(t, x; s, y).

Hence (9.14) yields (9.5), after taking the limit β ↓ 0.
(Q unbounded case).
SinceW and V are bounded, for every γ > 0 there are (tγ , xγ), (sγ , yγ) ∈ Q

satisfying

(9.15) Φ(tγ , xγ ; sγ , yγ) ≥ sup
Q×Q

Φ− γ.

Perturb the auxiliary function Φ by,

Φγ(t, x; s, y) = Φ(t, x; s, y) − γ

2
[|t− tγ |2 + |s− sγ |2 + |x− xγ |2 + |y − yγ |2],

for (t, x), (s, y) ∈ Q. We claim that the maximum of Φγ on Q×Q is achieved,
say at (t, x), (s, y) ∈ Q. Indeed, for any |x−xγ |2+|y−yγ |2+|t−tγ |2+|s−sγ |2 >
2 we have

(9.16)

Φγ(t, x; s, y) ≤ Φ(t, x; s, y) − γ

≤ Φ(tγ , xγ ; sγ , yγ)

= Φγ(tγ , xγ ; sγ , yγ).

We now follow the steps of the argument given for the bounded Q.
1′. Let mW ,mV and K1 be as in Step 1. Since W and V are assumed to

be bounded and uniformly continuous, K1 is finite and mW ,mV ∈ C([0,∞))
with mW (0) = mV (0) = 0. Then (9.16) yields,

(9.17) |t− tγ |2 + |s− sγ |2 + |x− xγ |2 + |y − yγ |2 ≤ 2.

We claim that for γ ≤ 1
2 , δ ≤ 1

2 and ε ≤ 1
2 ,
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(9.18) |t− s| ≤
√

2(K1 + 1)δ,

(9.19) |x− y| ≤ √
ε
√

2[2γ +mW (2(K1 + 1)ε)].

Indeed, the inequality Φγ(t, x; s, y) ≥ Φγ(s, x; s, y) yields

1

2δ
|t− s|2 ≤ W (t, x) −W (s, x) +

γ

2
[|s− tγ |2 − |t− tγ |2]

≤ 1

2
K1 + γ|t− s|2 +

γ

2
|t− tγ |2

≤ 1

2
K1 + γ|t− s|2 + γ.

Hence for γ, δ ≤ 1
2 , (9.18) follows from the above inequality. To prove (9.19),

use the inequality Φγ(t, x; s, y) ≥ Φγ(t, y; s, y). Then,

1

2ε
|x− y|2 ≤ W (t, x) −W (t, y) +

γ

2
[|y − xγ |2 − |x− xγ |2]

≤ 1

2
mW (|x− y|2) + γ|x− y|2 +

γ

2
|x− xγ |2

≤ 1

2
mW (|x− y|2) + γ|x− y|2 + γ.

For γ, ε ≤ 1
2 , we obtain

1

4ε
|x− y|2 ≤ 1

2
mW (|x− y|2) + γ.

Hence |x− y|2 ≤ 2(K1 + 1)ε and use this in the above inequality to arrive at
(9.19).

2.′ Suppose (t, x) ∈ ∂∗Q. Then proceed exactly as in Step 2 to obtain

(9.20) Φγ(t, x; s, y) ≤ 1

2
mV (2(K1 + 1)(ε+ δ)) + sup

∂∗Q
[W − V ].

3′. Suppose that (s, y) ∈ ∂∗Q and proceed as in Step 3. Then,

(9.21) Φγ(t, x; s, y) ≤ 1

2
mW (2(K1 + 1)(ε+ δ)) + sup

∂∗Q
[W − V ].

4′. Suppose that (t, x), (s, y) ∈ Q. Consider the test function

w(t, x) =
1

2δ
|t− s|2 +

1

2ε
|x− y|2 +

γ

2
|t− tγ |2 +

γ

2
|x− xγ |2, (t, x) ∈ Q.

Then, (t, x) ∈ arg max{W (t, x) − w(t, x) : (t, x) ∈ Q} and
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(9.22) −qδ − qγ +H(t, x, pε + pγ) ≤ 0,

where

qδ =
1

δ
(t− s) , qγ = γ(t− tγ),

and

pε =
1

ε
(x− y) , pγ = γ(x− xγ).

Next, consider the test function

w∗(s, y) = − 1

2δ
|t− s|2 − 1

2ε
|x− y|2 − γ

2
|s− sγ |2 − γ

2
|y − yγ |2 + β(s− t1),

for (s, y) ∈ Q. Then, (s, y) ∈ arg min{V (s, y) − w∗(s, y) : (s, y) ∈ Q} and we
have,

(9.23) −β − qδ − qγ +H(s, y, pε + pγ) ≥ 0,

where
qγ = γ(sγ − s) , pγ = γ(yγ − y).

Subtract (9.23) from (9.22) and use (9.4) to obtain,

β ≤ H(s, y, pε + pγ) −H(t, x, pε + pγ) + qγ − qγ

≤ h(|t− s| + |x− y|) + h(|t− s|)[|pε| + |pγ |] +K|x− y|[|pε| + |pγ |]
+K|pγ − pγ | + qγ − qγ .

The estimates (9.17), (9.18) and (9.19) yield

|pε| =
1

ε
|x− y| ≤

√

2(K1 + 1)

ε
,

|pε||x− y| =
|x− y|2

ε
= 2[2γ +mW (2(K1 + 1)ε)],

and
|pγ |, |pγ |, |qγ |, |qγ | ≤ 2γ.

Combining above inequalities, (9.17) and (9.19) we obtain

(9.24) β ≤ h(
√

2(K1 + 1)(
√
ε+

√
δ)+h(

√

2(K1 + 1)δ)

[
√

2(K1 + 1)

ε
+ 2γ

]

+2K[2γ +mW (2(K1 + 1)ε) +
√

2(K1 + 1)εγ] + 2(K + 1)γ.

5′. Using (9.20), (9.21) and (9.24) as in step 5 we arrive at

lim sup
ε↓0

lim sup
δ↓0

lim sup
γ↓0

Φγ(t, x; s, y) ≤ sup
∂∗Q

[W − V ],
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for every β > 0.
6′. Argue exactly as in step 6 to obtain (9.5). �

Remark 9.2. To analyze the interior maximum case, (t, x), (s, y) ∈ Q, we
used only the modulus of continuity, mW , of W . A symmetric argument can
also be made by using only mV . Hence the analysis of the interior maximum
requires the continuity of only one of the functions. This observation will be
useful in the discussion of semicontinuous viscosity solutions; Chapter VII.
Also there is an alternate proof of Theorem 9.1 due to Ishii, which does not
use the modulus of continuity of either function [I4], [CIL2].

Extensions of Theorem 9.1 to unbounded solutions and Hamiltonians
which do not satisfy (9.4) have been studied by Ishii [I3]. In particular Ishii
proved the uniqueness of a viscosity solution V on Q0 = [t0, t1) × IRn which
satisfies the following growth condition,

lim
|x|→∞

|V (x)|
1 + |x|m = 0

with an exponent m which is determined by the Hamiltonian H. In his analy-
sis, Ishii modified the auxiliary function Φ as follows:

Φα(t, x; s, y) = Φ(t, x; s, y) − α(1 + |x|m + |y|m),

where α > 0 is a parameter. Then for every α > 0, Φα achieves its maximum,
say at (t̄, x̄), (s̄, ȳ). Using an argument similar to the proof of Theorem 9.1,
Ishii first showed that

sup
α>0

Φα(t̄, x̄; s̄, ȳ) < ∞.

Then repeating the proof of Theorem 9.1 he completed his proof of uniqueness.
(See Theorems 2.1, 2.3 in [I3] and Section 5.D of [CIL1].)

Remark 9.3. For a deterministic control problem the Hamiltonian H
takes the form (7.3). When the control set U is bounded, this Hamiltonian H
satisfies (9.4) under standard assumptions on the data (see the proof of The-
orems 10.1 and 10.2 below.) If however, U is not bounded (9.4) is restrictive.
Still Theorem 9.1 and Corollary 8.2 yield comparison and uniqueness results
for Lipschitz continuous sub and supersolutions. Indeed in view of Corollary
8.2 any Lipschitz continuous sub or supersolution of the dynamic program-
ming equation of the original problem is also a sub or supersolution of the
dynamic programming equation of another control problem with a bounded
control set. We then can apply Theorem 9.1, since the Hamiltonian of the
second problem satisfies (9.4). Such an argument is carried out in detail in
the proofs of Theorems 10.3, 10.4 and Theorem VII.8.2.

Remark 9.4. In some applications the Hamiltonian H in (8.1) may de-
pend on V (t, x), i.e.,

(9.25) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x), V (t, x)) = 0, in Q.
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Let W be a viscosity subsolution of (9.25) in Q and V be a viscosity supersolu-
tion of (9.25) in Q. If H is nondecreasing in V (t, x) then a minor modification
of the proof Theorem 9.1 yields

(9.26) sup
Q

[W − V ] ≤ sup
∂∗Q

[(W − V ) ∨ 0].

In general, instead of monotonicity of H we assume that there is β ≥ 0
satisfying

(9.27) H(t, x, p, V + v) −H(t, x, p, V ) ≥ −βv,

for all (t, x) ∈ Q, p ∈ IRn, v ≥ 0 and V ∈ IR. Set

Hβ(t, x, p, V ) = βV + eβtH(t, x, e−βtp, e−βtV ).

Then (9.27) implies that Hβ is nondecreasing in V .
Proposition 9.1. Assume (9.27) and that Hβ satisfies (9.5). Let W and

V be a viscosity subsolution and a supersolution of (9.24) in Q, respectively.
Then

sup
Q

[W − V ] ≤ eβ(t1−t0) sup
∂∗Q

[(W − V ) ∨ 0].

We start the proof with a lemma.
Lemma 9.1. Let W̃ be a viscosity subsolution (or a supersolution) of

(9.25) in Q. For (t, x) ∈ Q and a constant β, define

W (t, x) = eβtW̃ (t, x).

Then W is a viscosity subsolution (or a supersolution, respectively) of

(9.28) − ∂

∂t
W (t, x) +Hβ(t, x,DxW (t, x),W (t, x)) = 0, in Q.

Proof. Let w ∈ C1(Q) and (t, x) be a maximizer of W − w on Q, with
W (t, x) = w(t, x). Set

w(t, x) = e−βtw(t, x), (t, x) ∈ Q.

Then w ∈ C1(Q), (t, x) maximizes W̃ −w on Q and W̃ (t, x) = w(t, x). There-
fore

0 ≥ − ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), w(t̄, x̄))

= e−βt[− ∂

∂t
w(t, x) +Hβ(t, x,Dxw(t, x), w(t̄, x̄)].

The supersolution case is proved exactly the same way. �

Proof of Proposition 9.1. Set

W̄ (t, x) = eβtW (t, x), V̄ (t, x) = eβtV (t, x).
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Then W̄ is a viscosity subsolution of (9.28) in Q and V̄ is a viscosity super-
solution of (9.28) in Q. Also Hβ is nondecreasing in V . So by Remark 9.4, we
have

sup
Q

[W̄ − V̄ ] ≤ sup
∂∗Q

[(W̄ − V̄ ) ∨Q].

In view of the definitions of W̄ , V̄ , the proof of Proposition 9.1 is now complete.
�

II.10 Continuity of the value function

We will prove the continuity of the value function for a deterministic control
problem under two different sets of assumptions. We retain the notation and
the assumptions of Sections I.3 and II.7. In particular, we assume that f, L, ψ
are continuous functions and I(3.1) is satisfied.

Theorem 10.1. Suppose that U is bounded, Q = Q0 = [t0, t1) × IRn,
U(t, x) = U0(t) for every (t, x) ∈ Q0. Moreover assume that f satisfies I(3.1),
that f, L, ψ are bounded and L,ψ are uniformly continuous on Q0 × U and
IRn, respectively. Then the value function is bounded and uniformly continuous
on Q0. In particular, the value function is the unique viscosity solution of the
dynamic programming equation I(5.3′) in Q0, satisfying the terminal condition
I(5.5).

Proof. When the control set is bounded, the Hamiltonian H given by
(7.3) satisfies the condition (9.4). Indeed for any two functions g, g̃ on U , we
have

| sup
v∈U

g(v) − sup
ṽ∈U

g̃(ṽ)| ≤ sup
v∈U

|g(v) − g̃(v)|.

Therefore

|H(t, x, p) − H(s, y, p)|

≤ sup
v∈U

{|L(t, x, v) − L(s, y, v) + f(t, x, v) · p− f(s, y, v) · p|}

≤ sup
v∈U

|L(t, x, v) − L(s, y, v)| + sup
v∈U

|f(s, y, v)||p− p|

+ sup
v∈U

|f(t, x, v) − f(s, y, v)| |p|.

Then the uniform continuity of L, the boundedness of f and the uniform
Lipschitz continuity I(3.1), of f yield (9.4). Hence the last assertion of the
theorem follows from Theorem 7.1 and Theorem 9.1, once we establish the
boundedness and the uniform continuity of the value function.

The boundedness of the value function follows easily from the boundedness
of L and ψ. Fix (t, x), (t, y) ∈ Q0, and u(·) ∈ U0(t). Let x(·) and y(·) be the
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solutions of I(3.2) with initial conditions x(t) = x and y(t) = y, respectively.
Set

Λ(s) = |x(s) − y(s)|, s ∈ [t, t1].

Then, I(3.1) and the boundedness of U yield,

Λ(s) =

∣

∣

∣

∣

x+

∫ s

t

f(r, x(r), u(r))dr − y −
∫ s

t

f(r, y(r), u(r))dr

∣

∣

∣

∣

≤ |x− y| +

∫ s

t

|f(r, x(r), u(r)) − f(r, y(r), u(r))|dr

≤ |x− y| +K

∫ s

t

Λ(r)dr, s ∈ [t, t1].

Gronwall’s inequality implies that

(10.1) Λ(s) ≤ |x− y|eK(s−t), s ∈ [t, t1].

For ρ ≥ 0, define

mL(ρ) = sup{|L(t, x, v) − L(s, y, v)| : |t− s| + |x− y| ≤ ρ, v ∈ U},

and
mψ(ρ) = sup{|ψ(x) − ψ(y)| : |x− y| ≤ ρ}.

The uniform continuity of L and ψ implies that mL,mψ ∈ C([0,∞)) with
mL(0) = mψ(0) = 0. Set T = t1 − t0. By using (10.1) we estimate that,

|J(t, x;u) − J(t, y;u)| ≤
∫ t1

t

|L(s, x(s), u(s)) − L(s, y(s), u(s))|ds

+|ψ(x(t1)) − ψ(y(t1))|

≤
∫ t1

t

mL(Λ(s))ds+mψ(Λ(t1))

≤ TmL(|x− y|eKT ) +mψ(|x− y|eKT ).

Therefore,

(10.2)
|V (t, x) − V (t, y)| ≤ supu(·)∈U0(t)|J(t, x;u) − J(t, y;u)|

≤ TmL(|x− y|eKT ) +mψ(|x− y|eKT ).

Now fix (t, x) ∈ Q0, r ∈ [t, t1] and u(·) ∈ U0(t). The restriction of u(·) on
[r, t1] is an element of U0(r), which we call u(·) again. With this notation we
have,
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|J(t, x;u) − J(r, x;u)| ≤ |J(t, x;u) − J(r, x(r);u)| + |J(r, x(r);u) − J(r, x;u)|

≤
∣

∣

∣

∣

∫ r

t

L(s, x(s), u(s))ds

∣

∣

∣

∣

+ |J(r, x(r);u) − J(r, x;u)|.

Set K1 = sup{|L(t, x, v)| : (t, x) ∈ Q0, v ∈ U}. Then (10.1), (10.2) yield

|J(t, x;u) − J(r, x;u)| ≤ K1|r − t| + TmL(|x(r) − x|eKT )+

+mψ(|x(r) − x|eKT ).

Since f is bounded, |x(r)−x| ≤ K2(r−t) for a suitable constantK2. Therefore,

(10.3) |V (t, x) − V (r, x)| ≤ sup
u(·)∈U0(t)

|J(t, x;u) − J(r, x;u)|

≤ K1|t− r| + TmL(|t− r|K2e
KT ) +mψ(|t− r|K2e

KT ).

Clearly the above argument is symmetric in r and t. Hence (10.3) holds for
every (t, x), (r, x) ∈ Q0. �

Remark 10.1. If the hypotheses of Theorem 10.1 are strengthened to
require that

(10.4)
(a)

(b)

⎧

⎨

⎩

|L(t, x, v) − L(s, y, v)| ≤ KL(|t− s| + |x− y|)

|ψ(x) − ψ(y)| ≤ Kψ|x− y|,

then the value function V is Lipschitz continuous on Q̄0. This follows by taking
mL(ρ) = KLρ, mψ(ρ) = Kψρ in (10.2) and (10.3).

We next study the boundedQ case. As in Section I.3, Q = [t0, t1]×O where
O is bounded and ∂O is a manifold of class C2. We wish to find conditions
under which the value function V is Lipschitz continuous on Q̄. The boundary
data for V are (9.3). However, examples show that V may not continuously
assume the “lateral” boundary data (9.3a) unless further assumptions are
made. Let us assume that g ≡ 0. The more general case can be reduced to
this one by the same methods as in Section I.8 for the calculus of variations
problem.

We recall that the value function is

(10.6) V (t, x) = inf
u(·)∈U0(t)

J(t, x;u),

(10.7) J(t, x;u) =

∫ τ

t

L(s, x(s), u(s)ds+ Ψ(τ, x(τ))

where U0(t) = L∞([t, t1];U) and Ψ(τ, x(τ)) = 0 if τ < t1, Ψ(τ, x(τ)) =
ψ(x(t1)) if τ = t1.

Lemma 10.1. Assume I(3.1), (10.4) and that U is bounded. Moreover,
assume that there exists M such that
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(10.8) |V (t, x)| ≤ M distance (x, ∂O), (t, x) ∈ Q̄.

Then V is Lipschitz continuous on Q̄.
Proof. Given x, y in Ō and u(·) ∈ U0(t), let x(s), y(s) be the solutions to

I(3.2) with x(t) = x, y(t) = y respectively. Let τx, τy denote the exit time of
(s, x(s)), (s, y(s)) from Q, and τ ′ = min(τx, τy). By the dynamic programming
principle,

V (t, y) ≤
∫ τ ′

t

L(s, y(s), u(s))ds+ V (τ ′, y(τ ′))

and given θ > 0, there exists u(·) such that

∫ τ ′

t

L(s, x(s), u(s))ds+ V (τ ′, x(τ ′)) < V (t, x) + θ.

By (10.1), |x(s) − y(s)| ≤ C1|x− y|, where C1 = eK(t1−t0). Hence

V (t, y) ≤ V (t, x) +B1|x− y| + θ + |V (τ ′, x(τ ′)) − V (τ ′, y(τ ′))|

where B1 = C1KL. We consider three cases.
Case 1. τx = τy = t1. Then

|V (τ ′, x(τ ′)) − V (τ ′, y(τ ′))| = |ψ(x(t1)) − ψ(y(t1))| ≤ B2|x− y|

where B2 = C1Kψ.
Case 2. τ ′ = τx < t1. Then V (τ ′, x(τ ′)) = 0 and

|V (τ ′, y(τ ′))| ≤ M distance (y(τ ′), ∂O)

≤ M |x(τ ′) − y(τ ′))| ≤ B3|x− y|

where B3 = C1M.
Case 3. τ ′ = τy < t1. As in Case 2, V (τ ′, y(τ ′)) = 0 and |V (τ ′, x(τ ′))| ≤

B3|x− y|.
Since θ is arbitrary,

V (t, y) ≤ V (t, x) +M1|x− y|

where M1 = B1 +B2 +B3. Since x and y can be exchanged,

(10.9) |V (t, x) − V (t, y)| ≤ M1|x− y|.

We next show that V (·, x) satisfies a uniform Lipschitz condition on [t0, t1].
Let r ∈ [t, t1]. By the dynamic programming principle, given θ > 0 there exists
u(·) such that

(10.10) V (t, x) − V (r, x) ≤
∫ τ1

t

L(s, x(s), u(s))ds+ V (τ1, x(τ1)) − V (r, x)
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< V (t, x) − V (r, x) + θ

where τ1 = min(r, τ). Let K1,K2 be as in the proof of Theorem 10.1. If τ1 = r,
then

|V (τ1, x(τ1)) − V (r, x)| ≤ M1|x(r) − x| ≤ M1K2(r − t).

If τ1 < r, then x(τ1) ∈ ∂O and V (τ1, x(τ1)) = 0. Then

|V (τ1, x(τ1)) − V (r, x)| ≤ M distance (x, ∂O) ≤
≤ M |x(τ1) − x| ≤ MK2(r − t).

Since θ is arbitrary, from (10.10)

(10.11) |V (t, x) − V (r, x)| ≤ M2(r − t)

where M2 = K1 + (M + M1)K2. From (10.9) and (10.11), V is Lipschitz
continuous. �

Lemma 10.2. In addition to the hypotheses on f , L, ψ, U in Lemma 10.1,
assume I(3.10), I(3.11). Then (10.8) holds for some M .

Proof. We first show that such an estimate holds in a neighborhood of
any given point (t̄, x̄) ∈ [t0, t1] × ∂O. Let W (x) = distance (x, ∂O) and let
N2(α2) = {y ∈ Ō: |y − x̄| < α2}. Since ∂O is a manifold of class C2, W ∈
C1(N2(α2)) for small enough α2 > 0. Moreover, DW (x0) = −η(x̄) where η(ξ)
is the exterior unit normal at ξ ∈ ∂O. Let N1(α1) = [t0, t1] ∩ {s: |s− t̄| < α1},
and let N(α1, α2) = N1(α1) × N2(α2). By I(3.11), there exist v0 ∈ U and
positive c, α1, α2 such that

f(s, y, v0) ·DW (y) ≤ −c, (s, y) ∈ N(α1, α2).

Choose β1, β2 such that 0 < β2 < α2 and 0 < c−1β2 + β1 < α1. For (t, x) ∈
N(β1, β2), let x(s) be the solution to I(3.2) with u(s) = v0, x(t) = x, and let
τ1 be the exit time of (s, x(s)) from N(α1, α2). For t ≤ s ≤ τ1,

d

ds
W (x(s)) = f(s, x(s), v0) ·DW (x(s)) ≤ −c.

Hence

(10.12) 0 ≤ W (x(τ1)) ≤ W (x) − c(τ1 − t).

If x(τ1) ∈ ∂O, then from (10.12) and 0 ≤ L(s, x(s), v0) ≤ K1

(10.13) 0 ≤ V (t, x) ≤ K1c
−1W (x).

If x(τ1) �∈ ∂O, then from (10.12) and W (x) < β2,

|τ1 − t̄| ≤ |τ1 − t| + |t− t̄| < c−1β2 + β1 < α1.

Hence τ1 = t1 and
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0 ≤ V (t, x) ≤ K1c
−1W (x) + |ψ(x(t1))|

≤ K1c
−1W (x) + LψW (x(t1))

since ψ(y) = 0 for all y ∈ ∂O. By (10.12), W (x(t1)) ≤ W (x) and hence, for
all (t, x) ∈ N(β1, β2)

(10.14) 0 ≤ V (t, x) ≤ M0W (x)

where M0 = K1c
−1 + Lψ.

Since ∂O is compact, (10.14) implies that there exist M̄1, δ > 0 such
that 0 ≤ V (t, x) ≤ M1W (x) for all (t, x) ∈ Q such that W (x) ≤ δ. Let
M = max(M1, δ

−1M2) where 0 ≤ V (t, x) ≤ M2 for all (t, x) ∈ Q. We obtain
(10.8).

�

Theorem 10.2. (Q bounded) Assume that U is bounded and that I(3.1),
I(3.10), I(3.11), (10.4) hold. Then the value function V is the unique Lipschitz
continuous viscosity solution to the dynamic programming equation I(5.3) in
Q with the boundary data (9.3).

Proof. Lemmas 10.1 and 10.2 imply that V is Lipschitz continuous. The
theorem then follows from Theorem 7.1 and Corollary 9.1. �

We next apply these results to nonlinear PDEs which are Hamilton-Jacobi
equations for some calculus of variations problem on a fixed time interval
considered in Sections I.9 and I.10. Since U = IRn is not compact, a truncation
argument is used in which IRn is replaced by UR = {|v| ≤ R}. Consider
the Cauchy problem I(10.8)-I(10.9) where H(t, x, p) satisfies I(10.13). Define
L(t, x, v) by the duality formula I(8.5). Let V (t, x) be the value function of
the calculus of variations problem in Section I.9 with ψ(x) = 0.

Theorem 10.3. (Q = Q0). Assume that H satisfies I(10.13). Then V is
the unique bounded, Lipschitz continuous viscosity solution to the Hamilton-
Jacobi equation I(10.8) with boundary data I(10.9).

Proof. The function L satisfies I(9.2). By Theorem I.9.3, V is bounded
and Lipschitz continuous, with Lipschitz constant M in I(9.10). Moreover, by
I(9.7) there exists R1 such that V = VR for R ≥ R1, where VR is the value
function when the constraint |u(s)| ≤ R is imposed. By Theorem 7.1, for
R ≥ R1, V is a viscosity solution to

(10.15) −∂V
∂t

+HR(t, x,DxV ) = 0

with HR in I(10.14). Let R2 = max(R1, R(M)) where R(M) is as in I(10.15).
By Corollary 8.1(f), (q, p) ∈ D+V (t, x)∪D−V (t, x) implies |p| ≤ M and hence
H(t, x, p) = HR(t, x, p) for R ≥ R2. By (8.4) and (8.5), V is a viscosity solu-
tion to I(10.8). Finally, let W be any bounded, Lipschitz continuous viscosity
solution to I(10.8)-I(10.9) with Lipschitz constant M1. The same argument
shows that W is a viscosity solution to (10.15) if R ≥ R(M1). By Theorem
10.1, W = VR for R ≥ R(M1). This implies that V = W. �
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We conclude this section with a result about the calculus of variations
problem in a bounded cylindrical region considered in Section I.11. This re-
sult will be applied in Section VII.10 to an exit probability large deviations
problem. Note that condition I(3.11), which is needed in Theorem 10.2, is
satisfied for f(v) = v, U = UR = {|v| ≤ R}.

Theorem 10.4. (Q bounded). Assume that I(11.6), I(11.7) hold. Then
the value function V is Lipschitz continuous on Q. Moreover, V is the unique
Lipschitz continuous viscosity solution to the Hamilton-Jacobi equation I(8.9)
with boundary data V (t, x) = Ψ(t, x) for (t, x) ∈ ∂∗Q.

Proof. By Theorems I.11.2 and I.11.3, there exists R1 such that V (t, x) =
VR(t, x) for all (t, x) ∈ Q and R ≥ R1, where VR is the value function with
control constraint |u(s)| ≤ R. By Theorem 10.2, V is a Lipschitz continuous
viscosity solution to (10.15) and the boundary data, for R ≥ R1. The Hamil-
tonian H, defined by I(8.4), is in C2(Q0 × IRn). Since Q is bounded, there
exists R(M) such that (t, x) ∈ Q, |p| ≤ M imply |Hp(t, x, p)| ≤ R(M). The
proof is completed in the same way as for Theorem 10.3. �

II.11 Discounted cost with infinite horizon

In Section I.7, we studied a class of optimization problems with infinite horizon
(t1 = ∞). In that section, we assumed that for (s, y) ∈ [0,∞) × O, v ∈
U, f(s, y, v) is independent of s, and

L(s, y, v) = e−βsL(y, v),

g(s, y) = e−βsg(y),

for some discount factor β ≥ 0. Then, the value function V (t, x) has a similar
form,

(11.1) V (t, x) = e−βtV (x) , (t, x) ∈ [0,∞) ×O.

The function V (x), which we call the value function, satisfies the dynamic
programming equation

(11.2) βV (x) +H(x,DxV (x)) = 0, x ∈ O,

where

(11.3) H(x, p) = sup
v∈U

{−f(x, v) · p− L(x, v)} , x ∈ O, p ∈ IRn.

First we give a definition of viscosity sub and supersolutions of (11.2) in
O. This definition is obtained by simply substituting the form (11.1) into the
Definition 4.2. The following definition does not require H to satisfy (11.3).

Definition 11.1. Let W ∈ C(O).
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(a) W is a viscosity subsolution of (11.2) in O if for each w ∈ C∞(O),

(11.4) βW (x̄) +H(x̄, Dw(x̄)) ≤ 0,

at every x ∈ O, which is a local maximizer of W − w.
(b) W is a viscosity supersolution of (11.2) in O if for each w ∈ C∞(O),

(11.5) βW (x) +H(x,Dw(x)) ≥ 0,

at every x ∈ O, which is a local minimizer of W − w.
(c) W is a viscosity solution of (11.2) in O if it is both a viscosity subsolution

and a viscosity supersolution of (11.2) in O.

We should emphasize that here the test function w is only a function of
x, not (t, x) as it is the case in Definition 4.2. Recall that in Definition 4.2,
we require W = w at the extrema. In the above definition however, we do
not require this equality but instead, we use βW (x) both in (11.4) and (11.5).
This modification is discussed in detail, in Remark 4.2. Also in the above
definition we can replace w ∈ C∞(O) by w ∈ C1(O) exactly as in the “time
dependent” case considered in Sections 4–6, see Remark 6.1.

A straightforward modification of the proof of Theorem 9.1 yields a com-
parison result for viscosity sub and supersolutions of (11.2), when β > 0.

Theorem 11.1. Suppose that β > 0 and there exists a constant K ≥ 0
satisfying,

|H(x, p) −H(y, p)| ≤ K(1 + |p|)|x− y| +K|p− p|,

for every x, y ∈ O and p, p ∈ IRn. Let W and V be a viscosity subsolution
and a viscosity supersolution of (11.2) in O, respectively. If O is unbounded,
we also assume that W and V are bounded and uniformly continuous on O.
Then for every x ∈ O,

W (x) − V (x) ≤ sup{(W (y) − V (y)) ∨ 0 : y ∈ ∂O}.

The analysis of β = 0 case is more complicated. If however, H(x, 0) ≤
−c0 < 0 for all x ∈ O, then a result similar to the above theorem holds. See
[L4] and [BaS]. This result in particular applies to the dynamic programming
equation of time optimal control problems.

When β > 0, the continuity of the value function can be proved under
the assumptions used in Section 10. The proof of the continuity under these
assumptions is similar to the arguments of the previous section. We leave these
extensions to the reader.

II.12 State constraint

In this section we analyze the optimal control problem with a state constraint.
Recall that this is class D of Section I.3 and the class of admissible controls
U(t, x) is given by
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(12.1) U(t, x) = {u(·) ∈ U0(t) : x(s) ∈ O , ∀s ∈ [t, t1]}.

We assume that for every (t, x) ∈ Q

(12.2) U(t, x) �= ∅.

Also as in Section 7, we assume that f satisfies I(3.1), f, L, ψ are continuous
functions of Q × U,Q × U and O, respectively, and L,ψ are bounded from
below. Since the process x(·) is not allowed to leave the region Q from the
lateral boundary [t0, t1) × ∂O, the function g is irrelevant in this problem.

The admissible control sets U(t, x) satisfy the switching condition I(3.9).
In the next theorem we verify that U(t, x) also satisfies I(5.2).

Theorem 12.1. U(t, x) satisfies I(5.2) at every (t, x) ∈ Q. In particular,
if f, L satisfy the hypotheses of Theorem 7.1 or Theorem 7.2 and the value
function V is continuous on Q, then V is a viscosity solution of the dynamic
programming equation I(5.3′) in Q.

Proof. Fix (t, x) ∈ Q and v ∈ U . Let u(s) = v for s ∈ [t, t1]. Let x(s) be
the solution of I(3.2) and I(3.3) and τ be the exit time of (s, x(s)) from Q.
Then τ > t. Also (τ, x(τ)) ∈ Q and by (12.2) there exists u(·) ∈ U(τ, x(τ)).
Now define a control û(·) by

û(s) =

{

v, if s ∈ [t, τ ]
u(s), if s ∈ [τ, t1].

Since u(·) ∈ U(τ, x(τ)), û(·) ∈ U(t, x). Also lim
s↓t

û(s) = v, and therefore I(5.2)

is satisfied. Finally we use Theorem 7.1 or Theorem 7.2 to conclude that the
value function is a viscosity solution when it is continuous. �

When t = t1, the terminal condition (9.3b) is satisfied. However, there
are many viscosity solutions of I(5.3′) in Q satisfying (9.3b). As an example
consider the equation (2.1). Then both V (t, x) = min{1 − |x|, 1 − t} and
W (t, x) = 1 − t solve (2.1) in (0, 1) × (−1, 1) and they both agree at the final
time W (1, x) = V (1, x) = 0. Indeed in this example W is the value function
with a state constraint, while V is the value function with the lateral boundary
cost g(t, x) ≡ 0. Note that V = g on the lateral boundary {−1, 1} × [0, 1] and
V and W do not agree on the boundary. Also notice that the value of W on
the boundary is not a priori given.

In this section, we derive a (differential) boundary condition satisfied by
the value function when a state constraint is imposed. This condition plays an
essential role in our discussion of boundary conditions when U(t, x) = U0(t)
but O �= IRn. A general uniqueness result covering all these cases is stated in
Theorem 14.1 and a more general result is proved in Section VII.8.

To derive the boundary condition formally, assume that u∗(·) ∈ U(t, x) is
optimal at a boundary point x ∈ ∂O. Suppose that u∗(·) is continuous at t.
Since x∗(·), the state corresponding to control u∗(·), satisfies the constraint,
we have

f(t, x, u∗(t)) · η(x) ≤ 0,
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where η(x) is the outward normal vector at x ∈ ∂O. The continuity of u∗(·)
and Remark I.5.1 imply that

−f(t, x, u∗(t)) ·DxV (t, x) − L(t, x, u∗(t)) = H(t, x,DxV (t, x)),

if V is continuously differentiable. Hence for any γ ≥ 0

(12.4)

H(t, x,DxV (t, x) + γη(x))

≥ −f(t, x, u∗(t)) · [DxV (t, x) + γη(x)] − L(t, x, u∗(t))

= H(t, x,DxV (t, x)) − γf(t, x, u∗(t)) · η(x)

≥ H(t, x,DxV (t, x)).

This condition is an implicit inequality that has to be satisfied by DxV (t, x)
at the boundary point (t, x) ∈ [t0, t1) × ∂O. In fact the convexity of H in the
gradient variable p yields that the condition

Hp(t, x,DxV (t, x)) · η(x) ≥ 0

is equivalent to (12.4), whenever Hp exists.
To obtain a weak formulation of (12.4), suppose that V ∈ C1(Q) and

consider the difference V − w with a smooth function w ∈ C∞(Q). If the
minimum is achieved at a boundary point (t, x) ∈ [t0, t1) × ∂O, then

∂

∂t
w(t, x) ≤ ∂

∂t
V (t, x),

and
Dxw(t, x) = DxV (t, x) + γη(x)

for some γ ≥ 0. Since V is a solution of I(5.3′), (12.4) yields

− ∂

∂t
w(t, x)+H(t, x,Dxw(t, x))

≥ − ∂

∂t
V (t, x) +H(t, x,DxV (t, x) + γη(x))

≥ − ∂

∂t
V (t, x) +H(t, x,DxV (t, x))

= 0.

So we make the following definitions, which require neither V nor the
boundary ∂O to be differentiable.

Definition 12.1. We say that W ∈ C(Q) is a viscosity supersolution of
I(5.3′) on [t0, t1) ×O if for each w ∈ C∞(Q),
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(12.5) − ∂

∂t
w(t, x) +H(t, x,Dxw(t, x)) ≥ 0

at every (t, x) ∈ [t0, t1)×O∩arg min{(W−w)(t, x) : (t, x) ∈ Q} withW (t, x) =
w(t, x).

In view of Remark 4.2, we do not have to require W (t, x) = w(t, x). Also,
in the above definition we can replace w ∈ C∞(Q) by w ∈ C1(Q) as was done
in Section 6. Notice that in the above definition, the minimizer (t, x) may be
an element of the lateral boundary [t0, t1) × ∂O. In that case (t, x) is not an
interior minimum of W − w, but we still require (12.5).

Definition 12.2. W is called a constrained viscosity solution of the dy-
namic programming equation I(5.3′) if W is a viscosity solution of I(5.3′) in
Q and a viscosity supersolution of I(5.3′) on [t0, t1) ×O.

We now have the following characterization of the value function. The
uniqueness of constrained viscosity solutions will be discussed in Section 14.
See Theorem 14.1 and the discussion following Theorem 14.1.

Theorem 12.2. Suppose that f, L satisfy the hypotheses of Theorem 7.1 or
Theorem 7.2. Assume that V is continuous on Q. Then the value function V
of the optimal control problem with a state constraint is a constrained viscosity
solution of I(5.3′).

Proof. In view of Theorem 12.1, it suffices to prove (12.5) for every smooth
function w ∈ C∞(Q) and a minimizer (t, x) ∈ [t0, t1) × ∂O of the difference
V − w with V (t, x) = w(t, x). Since τ = t1 for every control, the dynamic
programming principle I(4.3) states that

V (t, x) = inf
u(·)∈U(t,x)

∫ t+h

t

L(s, x(s), u(s))ds+ V (t+ h, x(t+ h)),

for all h > 0 such that t+ h ≤ t1. Since V (t, x) ≥ w(t, x) for every (t, x) ∈ Q
and V (t̄, x̄) = w(t̄, x̄),

V (t, x) = w(t, x)

≥ inf
u(·)∈U(t,x)

∫ t+h

t

L(s, x(s), u(s))ds+ w(t+ h, x(t+ h)).

We now choose un(·) ∈ U(t, x) satisfying (7.7). Starting from (7.7) we follow
the arguments of the proof of Theorem 7.1 and use the above inequality to
obtain,

− ∂

∂t
w(t, x) +H(t, x,Dxw(t, x)) ≥ 0.

Hence V is a viscosity supersolution on [t0, t1)×O. If an optimal control exists,
then we argue exactly as in Theorem 7.2. �

Example 12.1. As in Example 2.1, take Q = [0, 1) × (−1, 1), U =
IR, f(t, x, v) = v, L(t, x, v) = 1+ 1

4v
2. This is a calculus of variations problem



110 II. Viscosity Solutions

on the fixed time interval t ≤ s ≤ t1, with state constraints −1 ≤ x(s) ≤ 1.
The corresponding dynamic programming equation is,

(12.6) − ∂

∂t
V (t, x) +

(

∂

∂x
V (t, x)

)2

− 1 = 0.

Suppose that W ∈ C2([0, 1] × [−1, 1]) is a constrained viscosity solution of
(12.6). Then (12.6) is satisfied at every interior point (t, x) ∈ (0, 1) × (−1, 1),
and by continuity at every (t, x) ∈ [0, 1] × [−1, 1]. Now suppose that for w ∈
C∞([0, 1] × [−1, 1]),W − w achieves its minimum at (t, 1) for some t ∈ [0, 1).
The differentiability of W yields that

∂

∂t
W (t, 1) ≥ ∂

∂t
w(t, 1)

and
∂

∂x
W (t, 1) ≤ ∂

∂x
w(t, 1).

In fact for every p ≥ ∂
∂xW (t, 1), there is a w ∈ C∞([0, 1] × [−1, 1]), such that

W −w achieves its minimum at (t, 1) and ∂
∂xw(t, 1) = p. Indeed for γ > 0, let

wγ(t, x) = p(x− 1) +
∂

∂t
W (t, 1)(t− t0) + γ(x− 1)2 + γ(t− t)2.

For γ sufficiently large, W −wγ is a concave function, and consequently (t, 1)
is the minimizer of it. Set w = wγ ; then the viscosity supersolution property
of W yields

0 ≤ − ∂

∂t
w(t, 1) + (

∂

∂x
w(t, 1))2 − 1

≤ − ∂

∂t
W (t, 1) + p2 − 1

= − ∂

∂t
W (t, 1) +

(

∂

∂x
W (t, 1)

)2

− 1 +

[

p2 −
(

∂

∂x
W (t, 1)

)2
]

= p2 −
(

∂

∂x
W (t, 1)

)2

for every p ≥ ∂

∂x
W (t, 1). Therefore

(12.7)(i)
∂

∂x
W (t, 1) ≥ 0, ∀t ∈ [0, 1).

A similar analysis yields
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(12.7)(ii)
∂

∂x
W (t,−1) ≤ 0, ∀t ∈ [0, 1).

In fact, in this example (12.7) is equivalent to the supersolution property at
the boundary, when W is continuously differentiable.

Another explanation of the boundary condition (12.7) is obtained by
studying the optimal controls. Let v∗(t, x) be as in I(5.21), i.e.,

v∗(t, x) = arg min
v∈(−∞,∞)

{

v
∂

∂x
W (t, x) + 1 +

1

4
v2

}

=

{

−2
∂

∂x
W (t, x)

}

, (t, x) ∈ Q.

Let W ∈ C2([0, 1] × [−1, 1]) be a constrained viscosity solution of (12.6).
Substitute v∗(·, ·) into I(3.2) to obtain

d

ds
x∗(s) = −2

∂

∂x
W (s, x∗(s)) , s ≥ t

with initial data x∗(t) = x. Then (12.7) yields that x∗(s) ∈ O for all s ∈ [t, t1].
Hence u∗(s) = v∗(s, x∗(s)) is an admissible control.

As a simple example, take ψ ≡ 0. Then the optimal control is u∗(s) ≡ 0
and the value function is given by

V (t, x) = 1 − t , (t, x) ∈ Q.

V is the unique solution of (12.6) satisfying (12.7) and the terminal data
V (1, x) = ψ(x) = 0.

II.13 Discussion of boundary conditions

Consider the deterministic optimal control problem, called class B in Section
I.3. Recall that U(t, x) = U0(t) for every (t, x) ∈ Q and the state x(s) is
controlled up to its exit time from the closed domain Q. When f, L, g and
ψ satisfy the conditions of Section 10, the value function V ∈ C(Q) and the
lateral boundary condition (9.3a) is satisfied. However, in Example 2.3 we
have shown that (9.3a) is not always satisfied.

In this section we will derive a weak (viscosity) formulation of the boundary
condition (9.3). We then verify that the value function satisfies this viscosity
formulation. Also a continuity result for the value function is stated at the
end of the section.

First let us assume that f satisfies I(3.11). Fix (t, x) ∈ [t0, t1) × ∂O and
define u(s) = v(t, x) , s ∈ [t, t1], where v(·, ·) is as in I(3.11). Then the exit
time of the state corresponding to this control and initial data x(t) = x, is
equal to t. Hence,
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(13.1) V (t, x) ≤ g(t, x), (t, x) ∈ [t0, t1) × ∂O.

We continue by a formal derivation of a viscosity formulation of (9.3a). So
suppose that

(13.2) g(t, x) > V (t, x),

at some (t, x) ∈ [t0, t1) × ∂O, and that there exists an optimal control u∗(·) ∈
U0(t) which is continuous at t. Let x∗(·) be the solution of I(3.2) with control
u∗(·) and initial data x∗(t) = x, and τ∗ be the exit time of (s, x∗(s)) from Q.
Then (13.2) yields τ∗ > t. Consequently

(13.3) f(t, x, u∗(t)) · η(x) ≤ 0,

where η(x) is the unit outward normal vector of ∂O at x. Recall that the
above inequality is the starting point in our derivation of (12.4). So formally
we conclude that at every (t, x) ∈ [t0, t1)×∂O, either the boundary condition
(9.3a) is satisfied or (12.4) holds.

We now make the following definition, which does not require that the
Hamiltonian H is related to a control problem.

Definition 13.1. Let W ∈ C(Q).

(a) W is a viscosity subsolution of (8.1) in Q and the lateral boundary con-
dition (9.3a) if it is a viscosity subsolution of (8.1) in Q and for each
w ∈ C∞(Q),

(13.4) min

{

− ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), W (t, x) − g(t, x)

}

≤ 0

at every (t, x) ∈ arg max{(W − w)(t, x)|(t, x) ∈ Q} ∩ [t0, t1) × ∂O.
(b) W is a viscosity supersolution of (8.1) in Q and the lateral boundary

condition (9.3a) if it is a viscosity supersolution of (8.1) in Q and for each
w ∈ C∞(Q),

(13.5) max

{

− ∂

∂t
w(t, x) +H(t, x,Dxw(t, x)),W (t, x) − g(t, x)

}

≥ 0,

at every (t, x) ∈ arg min{(W − w)(t, x)|(t, x) ∈ Q} ∩ [t0, t1) × ∂O.
(c) W is a viscosity solution of (8.1) in Q and (9.3a) if it is both a viscosity

subsolution and a viscosity supersolution of (8.1) in Q and (9.3a).

Notice that (13.1) implies (13.4). Also we have formally argued that if
V (t, x) < g(t, x) then V is a supersolution at (t, x). Hence we have essentially
shown that the value function V is a viscosity solution of I(5.3′) in Q and
(9.3).

The state constraint problem can also be formulated as an exit control
problem with lateral boundary function “g ≡ +∞”. In that case (13.4) is
automatically satisfied and (13.5) is equivalent to (12.5). Hence the formal
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limit, “g ↑ +∞”, of the above definition yields the definition of constrained
viscosity solutions. In fact the value function V of the constrained viscosity is
a viscosity solution of I(5.3′) in Q and (9.3) with any g > V .

Finally observe that the value function V of the exit control problem sat-
isfies (13.1). However, in Definition 13.1 we have used a weaker inequality
(13.4). So if we were only interested in dynamic programming equation I(5.3′)
we could replace (13.4) by (13.1). But, when the Hamiltonian H is not related
to an optimal control problem, the unique viscosity solution of (8.1) in Q and
(9.3a) satisfies (13.4) but not necessarily (13.1). So for a general Hamiltonian,
Definition 13.1 is the correct formulation.

To obtain the continuity of the value function, let us assume that for every
(t, x) ∈ [t0, t1] × ∂O, there exists v(t, x) ∈ U satisfying

(13.6) f(t, x, v(t, x)) · η(x) < 0.

The above condition together with I(3.11) yield that the boundary ∂O is
“reachable” from nearby points and the converse is also true. Then using
the type of argument introduced in Section 10 and the “reachability” of the
boundary, whenever the state is near the boundary, one can prove that the
value function is continuous. We refer to [S2] and [CGS] for the detailed proof
of continuity. Here we only state the result.

Theorem 13.1. (a) Suppose that f satisfies I(3.11). Then the value func-
tion V is a viscosity solution of I(5.3′) in Q and the lateral boundary condition
(9.3a), provided that V ∈ C(Q).
(b) Suppose that L, f, ψ and g satisfy the hypotheses of Theorem 7.1, and f
satisfies I(3.11) and (13.6). Then V ∈ C(Q).

Example 13.1. Consider the equation (2.5) with boundary conditions

(13.7)(i) V (t, 1) = 1 , t ∈ [0, 1],

(13.7)(ii) V (t,−1) = −1, t ∈ [0, 1],

and the terminal condition (2.6). It is straightforward to check that V given
by (2.4), is a viscosity solution of (2.5) in Q = [0, 1) × (−1, 1) and (13.7)(ii) is
satisfied. Moreover, for every t ∈ [0, 1),

V (t, 1) = (−1) ∨ (1 − a+ at) < 1.

Also except at t = [(a− 2)/a] ∨ 0, V is differentiable at (t, 1) and

∂

∂x
V (t, 1) =

{

0 if 0 ≤ t < [(a− 2)/a] ∨ 0,
1 if [(a− 2)/a] ∨ 0 < t ≤ 1.

Since ∂
∂xV (t, 1) ≥ 0, an argument similar to the one given in Example 12.1

yields (13.5). Hence V is a viscosity solution of (2.5) in Q and (13.7).
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II.14 Uniqueness: first-order case

In this section we state a comparison result between viscosity subsolutions
and supersolutions of (8.1) in Q with the lateral boundary condition (9.3a).
As in Theorem 9.1 we assume that H satisfies (9.4). We also assume that the
boundary of O satisfies a regularity condition: there are ε0, r > 0 and an IRn

valued, bounded, uniformly continuous map η̂ of O satisfying

(14.1) B(x+ εη̂(x), rε) ⊂ O, ∀x ∈ O, ε ∈ (0, ε0].

Here B(x, r) denotes the set {y ∈ IRn : |x− y| < r}.
Before we state our comparison result, we give an example to clarify which

domains satisfy (14.1).
Example 14.1. Let O = {(x1, x2) ∈ IR2 : x1 > 0, x2 > 0}. Then η̂(x) ≡

(1, 1) with r = 1/
√

2 and ε0 = 1 satisfies (14.1).
In general any domain with a uniformly C1 boundary or a piecewise linear

boundary satisfies (14.1).
Theorem 14.1. Assume (9.4) and (14.1). Let W be a viscosity subsolution

and V be a viscosity supersolution of (8.1) in Q and the lateral boundary
condition (9.3a), respectively. If Q is unbounded, we also assume that W and
V are bounded and uniformly continuous on Q. Then

sup
Q

[W − V ] ≤ sup
O

(W (t1, x) − V (t1, x)) ∨O.

A discussion of the above theorem is given in Section VII.8, see Re-
mark VII.8.1. Also in that section a generalization of the above theorem for
semi-continuous sub and supersolutions is given. This generalization to semi-
continuous functions is a technically powerful tool. It is used elegantly by
Barles and Perthame [BP1] in their study of problems with vanishing viscos-
ity. Their approach is described in Chapter VII. We refer to [CGS] for the
proof of the above theorem.

We claim that the above result also applies to the constrained viscosity
solutions. Indeed let W be a bounded, uniformly continuous constrained vis-
cosity solution of I(5.3′). Let K be an upper bound for W and the value
function V of the state constrained problem. Then both W and V are vis-
cosity solutions of I(5.3′) in Q with boundary condition (9.3a) with any g
satisfying

g(t, x) > K, (t, x) ∈ [t0, t1) × ∂O.

Then the comparison result Theorem 14.1, yields that V = W provided
that the value function V is bounded, uniformly continuous and V (t1, x) =
W (t1, x). Hence in this case, the value function is the unique constrained vis-
cosity solution of I(5.3′) satisfying the terminal condition (9.3b). Moreover,
the value functions of the constrained and unconstrained problems agree if
the boundary data g is large enough.
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II.15 Pontryagin’s maximum principle (continued)

In Section I.6, we have given a proof of the Pontryagin’s maximum principle
for the fixed finite horizon control problem. The adjoint variable was shown
there to be the gradient of the value function when the value function is
differentiable. In this section we prove that the adjoint variable in general,
belongs to the set of subdifferentials of the value function, as defined in (8.2i).

As in Theorem I.6.2, we assume that U(t, x) = U0(t) and O = IRn.
Theorem 15.1. Let u∗(·) be an optimal control at (t, x) which is right

continuous at each s ∈ [t, t1), and P (s) be the adjoint variable satisfying
I(6.2), I(6.3) and I(6.5). Then for each s ∈ [t, t1),

(15.1) (H(s, x∗(s), P (s)), P (s)) ∈ D+V (s, x∗(s)),

where D+V (t, x) is the set of subdifferentials of V at (t, x), as defined in
(8.2i).

Proof. Consider the function J(r, y;u∗(·)). Since u∗(·) is admissible at
every (r, y),

V (r, y) ≤ J(r, y;u∗(·)), ∀(r, y) ∈ Q0.

Moreover, equality holds at (s, x∗(s)) with s ∈ [t, t1]. Hence by Definition 8.1,
it suffices to show that J is a continuously differentiable function with

(15.2) DyJ(s, x∗(s);u∗(·)) = P (s),

(15.3)
∂

∂r
J(s, x∗(s);u∗(·)) = H(s, x∗(s), P (s)),

for all s ∈ [t, t1). First note that (15.2) is proved in Section I.6. See I(6.8) and
the calculations following it. Using the notation x(s; r, y) to denote the state
at time s ≥ r with initial condition x(r; r, y) = y, we compute as in the proof
of I(6.8) that

(15.4)
∂

∂r
J(r, x∗(r);u∗(·)) = −L(r, x∗(r), u∗(r))+

+

n
∑

j=1

{
∫ t1

r

∂

∂xj
L(s, x∗(s), u∗(s))zj(s; r, x

∗(r))ds

+
∂

∂xj
ψ(t1, x

∗(t1))zj(t1; r, x
∗(r))

}

,

where

z(s; r, y) =
∂

∂r
x(s; r, y).

Since

x(s; r, y) = y +

∫ s

r

f(ρ, x(ρ; r, y), u∗(ρ))dρ,
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by differentiation with respect to r, we obtain for j = 1, · · · , n,

zj(s; r, y)= −fj(r, y, u
∗(r)) +

n
∑

k=1

{
∫ s

r

∂

∂xk
fj(ρ, x(ρ; r, y), u

∗(ρ))zk(ρ; r, y)dρ

}

.

Set z(s) = z(s; r, x∗(r)). Then, for each j = 1, . . . , n,

(15.5)
d

ds
zj(s) =

n
∑

k=1

∂

∂xk
fj(s, x

∗(s), u∗(s))zk(s), ∀s ∈ (r, t1),

and

(15.6) z(r) = −f(r, x∗(r), u∗(r)).

We claim that

∂

∂r
J(r, x∗(r);u∗(·)) = −L(r, x∗(r), u∗(r)) − f(r, x∗(r), u∗(r)) · P (r).

Indeed, (15.5) and I(6.2) yield

d

ds
[z(s) · P (s)] = −

n
∑

j=1

∂

∂xj
L(s, x∗(s), u∗(s))zj(s).

Hence the initial condition (15.6) and the terminal condition I(6.5) yield

−f(r, x∗(r), u∗(r)) · P (r) = z(r) · P (r)

= z(t1) · P (t1) −
∫ t1

r

d

ds
[z(s) · P (s)]ds

=

n
∑

j=1

{ ∂

∂xj
ψ(t1, x

∗(t1))zj(t1)+

+

∫ t1

r

∂

∂xj
L(s, x∗(s), u∗(s))zj(s))ds}.

Therefore using (15.4), we conclude that

∂

∂r
J(r, x∗(r);u∗(·)) = −L(r, x∗(r), u∗(r)) − f(r, x∗(r), u∗(r)) · P (r).

Consequently I(6.3) implies (15.3). �
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II.16 Historical remarks

The definition of viscosity solutions was first given by Crandall and Lions
[CL1] for a general first order partial differential equation. They also proved
the uniqueness of viscosity solutions. Then equivalent definitions were pro-
vided by Crandall, Evans and Lions [CEL]. Lions’ research monograph [L4]
provides an account of the earlier theory for dynamic programming equations.
The second order equations were then studied by Lions [L1-3] and Jensen [J].
For a complete list of the relevant literature, we refer to the recent survey
article of Crandall, Ishii and Lions [CIL1].

In Section 9 we closely followed the proof of Crandall, Evans and Lions.
More sophisticated uniqueness proofs are now available. See Ishii [I4] and
Crandall, Ishii and Lions [CIL2]. These proofs in some cases provide a modulus
of continuity for viscosity solutions. The uniqueness of unbounded solutions
was proved by Ishii [I3]. Barron and Jensen provided an alternate proof for
dynamic programming equations [BJ1]. The proof of Barron and Jensen also
provides more information about the value function.

The analysis of control problems with a state constraint was first given by
Soner [S2], and then by Capuzzo-Dolcetta and Lions [CaL]. The general treat-
ment of exit time problems is due to Ishii [I2], and Barles and Perthame [BP2].
Also see Subbotin [Su2] for a different approach using the characteristics.

The connection between the Pontryagin’s maximum principle and viscos-
ity solutions was first explored by Barron and Jensen [BJ2]. Our discussion is
more closely related to Zhou’s proof [Zh]. The connection between the max-
imum principle and viscosity solutions was extensively studied by Cannarsa
and Frankowska [CF1,2] [Fra]. For an elegant and deep treatment of the max-
imum principle and related topics we refer to Clarke [Cle1,2].

In this book we did not cover several important issues. Existence of viscos-
ity solutions of partial differential equations which are not necessarily dynamic
programming equations, differential games [ES1][KSu][LSo1][Su1,2], Perron’s
method [I6], singularities of viscosity solutions [CS] and the Neumann prob-
lem [L7] are some examples of the topics which are not covered in this book.
An excellent discussion of these topics with a complete list of references is
given by Crandall, Ishii and Lions [CIL1]. Another topic which is not cov-
ered is viscosity solutions in infinite dimensions. See [CL3] [CL4] [Ta]. These
arise, for instance, in optimal control problems in which the state dynamics
are governed by PDEs, rather than ODEs of the type I(3.2).

The sets of sub and superdifferentials defined in Section 8 are closely re-
lated to subgradients of nonsmooth analysis. In 1973 Clarke [Cle3] introduced
a subgradient ∂W (t, x) which is similar to sub- and superdifferentials. Other
subgradients that are more closely related to the sub- and superdifferentials
of Section 8 were then introduced by Rockafellar [R2] and Mordukhovich
[Mu1,2]. We refer to [Cle1,2] for the connection between these subgradients
and their applications to optimal control.





III

Optimal Control of Markov Processes:
Classical Solutions

III.1 Introduction

The purpose of this chapter is to give a concise, nontechnical introduction to
optimal stochastic control for Markov processes. Just as was done in Chapters
I and II for deterministic optimal control problems, the dynamic programming
approach will be followed. For a finite time horizon stochastic control prob-
lem, the dynamic programming equation is a nonlinear evolution equation,
of the form (7.5) below. In the particular case of controlled Markov diffu-
sion processes, the dynamic programming equation becomes a second order
nonlinear partial differential equation. Controlled Markov diffusions will be
considered in much more detail in Chapters IV and V. When there is a suf-
ficiently regular “classical” solution to the dynamic programming equation,
with appropriate terminal data at a final time t1, then a Verification Theorem
provides a solution to the problem. This technique is applied to some illustra-
tive examples in Section 8, and for infinite time horizon models in Section 9.
For deterministic control, corresponding Verification Theorems appeared in
Sections I.5 and I.7.

Sections 2 - 5 are intended to provide a brief background sketch about
continuous time Markov processes, with references and examples of typical
kinds of Markov processes encountered in control applications. Experts on
Markov processes will recognize that the way in which we define domains
for backward evolution operators and generators in Section 2 is not quite
standard. However it is convenient for our purposes.

In Sections 6 and 7 we begin the discussion of controlled Markov processes
at a formal (heuristic) level. Then in Sections 8 and 9 we give a precise de-
finition of value function, denoted by VAS , using the concept of admissible
system and prove the Verification Theorems.

As already seen in case of deterministic control, the value function often
lacks smoothness properties needed to be a classical solution to the dynamic
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programming equation. In succeeding chapters, we study controlled Markov
processes without requiring smoothness of value functions. For controlled
Markov diffusions, the value function is interpreted as a viscosity solution
to the dynamic programming (or Hamilton - Jacobi - Bellman) partial differ-
ential equation. The viscosity solution framework also turns out to be quite
convenient in studying dependence on small parameters (Chapter VII) and
in proving convergence of finite - difference numerical methods for computing
value functions approximately (Chapter IX.) In Section 10 we shall consider
briefly “general” classes of controlled Markov processes, without assuming
that the value function is a classical solution to its dynamic programming
equation. The technique, due to M. Nisio, is to construct a corresponding
nonlinear semigroup. This approach is closely related to the abstract dynamic
programming principle formulated in Section II.3.

III.2 Markov processes and their evolution operators

In this section we summarize some basic concepts and results about continuous
time Markov processes. We use the following notations throughout. Σ denotes
the state space of a continuous time Markov process x(s). We shall always
assume that Σ is a complete separable metric space. In the special case when
Σ is discrete, then x(s) is a continuous time Markov chain. Another case of
particular interest in this book is when Σ = IRn = n - dimensional euclidean
space and x(s) is a Markov diffusion process governed by a system of stochastic
differential equations (Section 4 and Chapter IV). We let B(Σ) denote the
Borel σ - algebra, namely the least σ - algebra containing all open subsets of
Σ.

Elements of the state space Σ will be denoted by x, y, · · ·. Let I0 ⊂ IR1

be an interval half open to the right, and let I0 be the closure of I0. The
elements of I0 will be denoted by s, t, · · ·. We will consider two cases: (1)
I0 = [t0, t1) a finite interval, I0 = [t0, t1], or (2) I0 = I0 = [0,∞). Let
x(s) = x(s, ω) be a Σ- valued stochastic process, defined for s ∈ I and ω ∈ Ω,
where I is some subinterval of I0 and (Ω,F , P ) is some probability space.
Roughly speaking, the Markov property asserts that the state x(t) contains
all probabilistic information relevant to the evolution of the process for times
s > t. This can be expressed precisely as follows. Consider any finite set of
times s1 < s2 < · · · < sm < s in I. Then for all B ∈ B(Σ)

(2.1) P (x(s) ∈ B|x(s1), · · · , x(sm)) = P (x(s) ∈ B|x(sm))

P− almost surely. The conditional probabilities in (2.1) denote versions of
conditional probabilities with respect to the σ - algebras F(x(s1), · · · , x(sm))
and F(x(sm)), generated respectively by the Σ - valued random variables
x(s1), · · · , x(sm) and by x(sm) respectively.

The transition distribution of a Markov process x(s) is defined for t <
s, s, t ∈ I0 and for x ∈ Σ by
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(2.2) P̂ (t, x, s, B) = P (x(s) ∈ B|x(t) = x), ∀B ∈ B(Σ).

It is required that P̂ (t, ·, s, B) is B(Σ) - measurable for fixed s, t, B, and that
P̂ (t, x, s, ·) is a probability measure for fixed t, s, x. Moreover, the Chapman-
Kolmogorov equation

(2.3) P̂ (t, x, s, B) =

∫

Σ

P̂ (r, y, s, B)P̂ (t, x, r, dy)

holds for t < r < s, t, r, s ∈ I0.
For the introductory discussion to follow the reader may find [EK, Chaps.

1, 4], [GS1, Chap. 7], or [Fe, Chaps. IX, X] helpful.
Property (2.1) can be expressed in the following slightly more elegant form.

Let Fx
r = F(x(θ), θ ≤ r) denote the smallest σ− algebra with respect to which

the Σ - valued random variables x(θ) are measurable for all θ ≤ r (θ, r ∈ I).
Then (2.1) is equivalent to

(2.1
′

) P [x(s) ∈ B|Fx
r ] = P̂ (r, x(r), s, B)

for r < s (r, s ∈ I).
Let us now define a family of linear operators Tt,s associated with the

transition distribution of a Markov process. For t < s (s, t ∈ I0), let

(2.4) Tt,sφ(x) =

∫

Σ

φ(y)P̂ (t, x, s, dy),

for all real-valued, B(Σ) - measurable φ such that the integral exists. By the
Chapman - Kolmogorov equation (2.3),

(2.5) Ttr[Trsφ] = Ttsφ, t < r < s.

In the theory of Markov processes, φ is often restricted to belong either to the
space B(Σ) of all bounded, B(Σ) - measurable functions, or to a subspace of
bounded uniformly continuous functions. However, if the state space Σ is not
compact, we shall wish to consider unbounded φ as well.

We shall denote the right side of (2.4) by Etxφ(x(s)), the subscripts indi-
cating that we have specified the data x(t) = x. Thus,

(2.4
′

) Ttsφ(x) = Etxφ(x(s)), t < s.

Backward evolution operators and equations. Let I0 = [t0, t1] be a
finite interval and Φ denote a real - valued function on I0 × IRn. We define a
linear operator A by

(2.6) AΦ(t, x) = lim
h→0+

h−1[EtxΦ(t+ h, x(t+ h)) − Φ(t, x)]

provided the limit exists for each x ∈ Σ and each t which is not the right end
point of I. Let D(A) be a space of functions Φ, such that AΦ is defined for
each Φ ∈ D(A) and moreover the following hold for each Φ ∈ D(A):
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(i) Φ, ∂Φ/∂t and AΦ are continuous on I0 ×Σ;

(ii) Etx|Φ(s, x(s))| < ∞, Etx

∫ s

t

|AΦ(r, x(r))|dr < ∞ for t < s (s, t ∈ I0);

(iii) (Dynkin’s formula) For t < s,

(2.7) EtxΦ(s, x(s)) − Φ(t, x) = Etx

∫ s

t

AΦ(r, x(r))dr.

The Dynkin formula (2.7) is implied by the following property:

(2.7
′

) Φ(s, x(s)) − Φ(t, x) −
∫ s

t

AΦ(r, x(r))dr

is a {Fs, P} martingale, where {Fs} is some increasing family of σ - algebras
such that x(s) is Fs - measurable.

We shall need D(A) to be large enough that the expectations EtxΦ(s, x(s))
for all Φ ∈ D(A) determine the transition distribution P̂ (t, x, s, ·). This will
be true, in particular, if D(A) contains some subset D of the space of bounded
uniformly continuous functions on Ī0 ×Σ, with D dense in the uniform norm.

We shall call A the backward evolution operator, acting on D(A) satisfying
(i), (ii) and (iii) above for all Φ ∈ D(A). If Φ(t, x) = φ(x) does not depend
on t, then the right side of (2.6) equals to lim

h→0+
h−1[Tt,t+hφ(x) − φ(x)]. We

denote minus the left side of (2.6) by Gtφ(x). Thus

(2.8) Gtφ(x) = − ∂

∂s
Ttsφ(x)|s=t+ .

A formal calculation suggests that we should have

(2.9) AΦ =
∂Φ

∂t
−GtΦ(t, ·)

where the notation indicates that the operator Gt acts in the “state variable”
x.

In later sections, the choice of D(A) will depend on the various classes
of Markov processes being studied there. For all Markov process which we
consider, (2.9) holds.

Backward evolution equation. Given continuous functions ℓ(t, x) on
[t0, t1] ×Σ and ψ(x) on Σ, consider the equation

(2.10) 0 = AΦ+ ℓ(t, x), t0 ≤ t ≤ t1,

with the final (Cauchy) data

(2.11) Φ(t1, x) = ψ(x).

The linear inhomogeneous equations (2.10) is called a backward evolution
equation. If it has a solution Φ ∈ D(A) which also satisfies (2.11), then by the
Dynkin formula (2.7) with s = t1
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(2.12) Φ(t, x) = Etx

{
∫ t1

t

ℓ(s, x(s))ds+ ψ(x(t1))

}

.

This gives a probabilistic formula for solutions to the backward evolution
equation. In stochastic control theory, ℓ is often called a running cost function
and ψ a terminal cost function. Formula (2.10) expresses Φ(t, x) as a total
expected cost over the time interval [t0, t1].

III.3 Autonomous (time-homogeneous) Markov
processes

Let us now take I0 = I = [0,∞). A Markov process is called autonomous (or
time-homogeneous) if the transition distribution satisfies

P̂ (t, x, s, B) = P̂ (0, x, s− t, B), 0 ≤ t < s.

In the autonomous case, we will always take initial time t = 0. We also write
Ex = E0x, Ts = T0s. Thus,

(3.1) Tsφ(x) = Exφ(x(s)).

Equation (2.5) becomes the semigroup property

(3.2) Tr+sφ = Tr(Tsφ) , r, s > 0.

In the autonomous case, Gt = G where according to (2.8)

(3.3) Gφ(x) = − lim
h→0+

h−1[Thφ(x) − φ(x)], x ∈ Σ.

We suppose that (3.3) holds for φ ∈ D(G) where D(G) is a subspace of the
space C(Σ) of continuous functions on Σ, which has the following property:
If Φ(t, x) = η(t)φ(x) with η ∈ C1([0,∞)) and φ ∈ D(G), then Φ ∈ D(A) =
D[0,t1](A) for each t1 < ∞, and

A(ηφ) = ηtφ− ηGφ.

We shall call −G the generator of the autonomous Markov process x(s). The
Hille-Yoshida theorem gives sufficient conditions that D(G) contains “suffi-
ciently many” functions φ, and that the transition distributions

P̂ (s, x, ·) = P̂ (0, x, s, ·)

are determined by G. See [EK, Chap. 4].
Discounted infinite horizon expected cost. Let us fix β > 0, which

should be regarded as a discount factor. Let ℓ be continuous on Σ, with
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Ex

∫ ∞

0

e−βs|ℓ(x(s)|ds < ∞

for all x ∈ Σ. Consider the linear inhomogeneous equation

(3.4) βφ = −Gφ+ ℓ(x) , x ∈ Σ.

Suppose that φ ∈ D(G) is a solution to (3.4), with the property that

(3.5) lim
t1→∞

e−βt1Exφ(x(t1)) = 0.

Since A(e−βtφ) = e−βt(−Gφ−βφ), the Dynkin formula (2.7) with Φ = e−βtφ
and s replaced by t1 gives

e−βt1Exφ(x(t1)) − φ(x) = −Ex

∫ t1

0

e−βs(Gφ+ βφ)(x(s))ds.

From (3.4) and (3.5) we get

(3.6) φ(x) = Ex

∫ ∞

0

e−βsℓ(x(s))ds.

The right side of (3.6) is called the discounted infinite horizon expected cost,
for the running cost function ℓ(x).

Remark 3.1. If Σ is compact, then any continuous function φ on Σ is
bounded. In that case, condition (3.5) holds automatically. Formula (3.6) gives
a probabilistic representation of any solution φ to (3.4), among solutions sat-
isfying (3.5). However, for noncompact Σ, property (3.5) implicitly prescribes
some kind of growth condition on φ(x) for “large” x. The following simple
example illustrates this point.

Example 3.1. Let Σ = IR1 = real line and Gφ = − 1
2φ

′′

. Then – G
generates the Markov process x(s) = x+w(s), s ≥ 0, where w(s) is a standard
brownian motion. Let ℓ(x) = x2, β = 1. Then φ(x) = x2 + 1 is the desired
solution to (3.4), for which (3.5) and therefore (3.6) holds. The general solution
to (3.4) is

φ(x) = x2 + 1 + c1 exp(
√

2x) + c2 exp(−
√

2x).

Since exp(−s+
√

2x(s)) is a martingale, (3.5) is satisfied only when c1 = c2 =
0. The other solutions grow exponentially as x → +∞ or x → −∞. These
solutions are excluded by requiring that φ ∈ C2

p(IR1) as defined in Section 9
below.

III.4 Classes of Markov processes

Let us now give examples of some kinds of Markov processes which arise in
stochastic control applications. In the next section we shall discuss in some-
what greater detail the class of Markov diffusion processes on n dimensional
Euclidean IRn.
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(a) Finite state, continuous time Markov chains. In this case, Σ is a finite
set, and

(4.1) Gtφ(x) = −
∑

y �=x

ρ(t, x, y)[φ(y) − φ(x)],

where ρ(s, x, y) represents an infinitesimal rate at which x(s) jumps from x
to y:

ρ(s, x, y) = lim
h→0

h−1P [x(s+ h) = y|x(s) = x].

If ρ(·, x, y) is continuous, then given any (t, x) there is a Markov chain x(s)
for s ≥ t with initial data x(t) = x. The Dynkin formula (2.7) holds for any
Φ such that Φ(·, x) and Φt(·, x) are continuous.

For Markov chains with an infinite number of states there are additional
technical restrictions which we will not discuss. See [Ch].

(b) Deterministic evolution in IRn. Consider an ordinary differential equa-
tion in IRn, written in vector-matrix notation as

(4.2)
dx

ds
= f(s, x(s)) , t ≤ s ≤ t1,

with initial data x(t) = x. Let Q0 = [t0, t1] × IRn. We assume that:

(4.3)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(i) f is continuous on Q0;

(ii) There exists M such that
|f(s, x)| ≤ M(1 + |x|) for all (s, x) ∈ Q0;

(iii) For each a, there exists Ka

such that |f(s, x) − f(s, y)| ≤ Ka|x− y|
whenever |x| ≤ a, |y| ≤ a.

When (4.3) (iii) holds, f(s, ·) is said to satisfy a local Lipschitz condition,
uniformly with respect to s. If f(s, ·) is differentiable at each point x ∈ IRn,
then (iii) is equivalent to the condition |fx(s, x)| ≤ Ka whenever |x| ≤ a,
where fx denotes the gradient of f(s, ·). In case K = Ka can be chosen
independent of a, then f(s, ·) is said to satisfy a uniform Lipschitz condition.
If f is continuous on Q0 and satisfies a uniform Lipschitz condition, then f
also satisfies (4.3) (ii) with M the larger of K and max

0≤s≤T
|f(s, 0)|. In fact,

|f(s, x)| ≤ |f(s, 0)| + |f(s, x) − f(s, 0)| ≤ M(1 + |x|).

The assumptions (4.3) imply that (4.2) with initial data x(t) = x has a
unique solution. Although x(s) is nonrandom, we can regard it as a Markov
process. The Fundamental Theorem of Calculus gives

Gtφ(x) = −f(t, x) ·Dφ(x).
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For the deterministic evolution on IRn defined by (4.2), the backward evolution
operator is a first order linear partial differential operator:

(4.4) AΦ(t, x) = Φt(t, x) + f(t, x) ·DxΦ(t, x).

Here Dφ denotes the gradient of φ, and DxΦ the gradient of Φ(t, ·). We may
take D(A) = C1(Q0), the space of all Φ with continuous first order partial
derivatives. The Dynkin formula (2.7) is a consequence of the Fundamental
Theorem of Calculus.

(c) Random evolution with Markov chain parameters. Let z(s) be a finite
state Markov chain, with state space a finite set Z. We regard z(s) as a
“parameter process”. On any time interval where z(s) = z is constant, x(s)
satisfies the ordinary differential equation

dx

ds
= f(s, x(s), z).

We assume that f(·, ·, z) satisfies the conditions (4.3) for each z ∈ Z. Let
t ≤ s ≤ t1, and let τ1 < τ2 < · · · < τm denote the successive jump times of
the parameter process z(s) during [t, t1]. We let τ0 = t, τm+1 = t1, and define
x(s) by

(4.5)
dx

ds
= f(s, x(s), z(τ+

i )), τi ≤ s < τi+1, i = 0, · · · ,m, x(t) = x,

with the requirement that x(·) is continuous at each jump time τi. The process
x(s) is not Markov. However, (x(s), z(s)) is a Markov process, with state space
Σ = IRn × Z. For each Φ(t, x, z) such that Φ(·, ·, z) ∈ C1(Q0) we have

(4.6) AΦ(t, x, z) = Φt(t, x, z) + f(t, x, z) ·DxΦ(t, x, z)

+
∑

ζ �=z

ρ(t, z, ζ) [Φ(t, x, ζ) − Φ(t, x, z)] .

The Dynkin formula (2.7) is a special case of a result which we will derive
in Appendix B. The middle term on the right side of (4.6) comes from the
deterministic evolution of x(s) during intervals of constancy of z(s), as in
Example (b), and the last term comes from the parameter process z(s).

Example (c) is a special case of a class of Markov processes (x(s), z(s))
called random evolutions, for which the state space is a product Σ = Σ1 ×Σ2.
If for simplicity we consider only the autonomous case, then the generator G
takes the form

Gφ(x, z) = Gz
1φ(·, z)(x) +G2φ(x, ·)(z).

For fixed z ∈ Σ2, −Gz
1 generates a Markov process with state space Σ1; and

−G2 generates the “parameter process” z(s) with state space Σ2.
Example (c) can be generalized in a different direction by allowing x-

dependent jumping rates ρ(s, x, z, ζ) for the z(s) process. The resulting x(s)
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is an example of a piecewise deterministic stochastic process. See [Dav 2].
(d) Jump Markov processes. In this case, A = ∂

∂t −Gt, with

Gtφ(x) = −θ(t, x)
∫

Σ

[φ(y) − φ(x)]Π(t, x, dy).

Here θ(t, x) measures the intensity with which jumps occur from state x at
time t, and Π(t, x, ·) is the probability distribution of the post - jump location
y. See [EK, p.162].

(e) Markov diffusion processes on IRn. This will be discussed in the next
section. The backward evolution operator is a second-order partial differential
operator, of parabolic type (possibly degenerate parabolic.)

(f) Processes with generators of Levy form. This class is sufficiently general
to include most “reasonable” Markov processes on IRn. We shall not give the
expression for the backward evolution operator A, but refer the reader to [EK,
p.379].

III.5 Markov diffusion processes on IRn; stochastic
differential equations

In this section we take Σ = IRn and as before let Q0 = [t0, t1]×IRn. A Markov
process is called an n-dimensional diffusion process if:

(1) For every ε > 0

lim
h→0+

h−1

∫

|x−y|>ε

P̂ (t, x, t+ h, dy) = 0:

(2) There exist functions aij(t, x), fi(t, x), i, j = 1 · · · , n,
such that for every ε > 0

lim
h→0+

h−1

∫

|x−y|≤ε

(yi − xi)P̂ (t, x, t+ h, dy) = fi(t, x)

lim
h→0+

h−1

∫

|x−y|≤ε

(yi − xi)(yj − xj)P̂ (t, x, t+ h, dy) = aij(t, x).

These limits hold for each x ∈ IRn and t ∈ I0. The vector function f =
(fi, · · · , fn) is called the local drift coefficient and the matrix-value function
a = (aij) the local covariance matrix. The justification for these names is as
follows. Suppose that instead of (1) the slightly stronger condition

(1
′

) lim
h→0+

h−1

∫

|x−y|≤ε

|y − x|2P̂ (t, x, t+ h, dy) = 0

holds. Then from (1
′

) and (2), f(s, x(s))h and a(s, x(s))h are good approxi-
mations to the mean and covariance matrix of the increment x(s+ h) − x(s)
conditioned on x(s).
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Let C1,2(Q0) denote the space of Φ(t, x) such that Φ and the partial deriv-
atives Φt, Φxi

, Φxixj
, i, j = 1, · · · , n, are continuous on Q0. For Φ ∈ C1,2(Q0),

let

(5.1) AΦ = Φt +
1

2

n
∑

i,j=1

aij(t, x)Φxixj
+

n
∑

i=1

fi(t, x)Φxi
.

In later chapters, we will often write (5.1) in the more compact form

(5.1′) AΦ = Φt +
1

2
tr a(t, x)D2

xΦ+ f(t, x) ·DxΦ.

The matrices (aij(t, x)) are symmetric and nonnegative definite. If there exists
c > 0 such that for all ξ ∈ IRn,

(5.2)
n
∑

i,j=1

aij(t, x) ξiξj ≥ c|ξ|2,

then A is a uniformly parabolic partial differential operator. If (5.2) holds only
with c = 0, then A is called degenerate parabolic. Similarly, in the autonomous
case f = f(x), a = a(x), we define for φ ∈ C2(IRn)

(5.3) −Gφ =
1

2

n
∑

i,j=1

aij(x)φxixj
+

n
∑

i=1

fi(x)φxi
.

If (5.2) holds, then −G is a uniformly elliptic operator; otherwise −G is de-
generate elliptic.

We need to state conditions on the local drift f and local covariance a
which insure that the corresponding n-dimensional Markov diffusion processes
x(s) exists. Moreover, we must choose a suitable subspace D(A) of C1,2(Q0)
such that the Dynkin formula (2.7) holds for all Φ ∈ D(A). This will be done
by using results about stochastic differential equations.

Diffusions represented as solutions of stochastic differential equa-
tions. Let us suppose that there is a n × d - matrix valued function σ(t, x)
such that

aij =

n
∑

ℓ=1

σiℓσjℓ, i, j = 1, · · · , n.

In other words, σσ′ = a. We suppose that the functions fi, σij are continuous
on Q0 and satisfy the growth and local Lipschitz conditions (4.3) (ii), (iii).
Let t0 ≤ t < t1, and let w(s) be a d - dimensional standard brownian motion
on the interval I = [t, t1]. The Ito - sense stochastic differential equation

(5.4) dx = f(s, x(s))ds+ σ(s, x(s))dw(s), t ≤ s ≤ t1,

with given initial data x(t) = x (x ∈ IRn) has a pathwise unique solution,
which is a Markov diffusion process [EK,Chap. 5], [IW, Chap. 4]. Moreover,
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for each m = 1, 2, · · · there exists a constant Cm (depending on m and t1 − t),
such that

(5.5) Etx|x(s)|m ≤ Cm(1 + |x|m), t ≤ s ≤ t1.

See Appendix D. The formal derivative dw/ds (which in fact does not exist) is
called in engineering literature a white noise. Thus, (5.4) describes a dynamical
system driven by an additive white noise, with state dependent coefficient
σ(s, x(s)). We say that Φ satisfies a polynomial growth condition on Q0 if
there exist constants K and m such that for all (t, x) ∈ Q0,

|Φ(t, x)| ≤ K(1 + |x|m).

We take D(A) = C1,2
p (Q0), where C1,2

p (Q0) denotes the space of Φ ∈
C1,2(Q0) such that Φ,Φt, Φxi,Φxixj

, i, j = 1 · · · , n satisfy a polynomial growth
condition. For x(s) satisfying (5.4) with x(t) = x, the Dynkin formula (2.7)
follows from the Ito differential rule applied to Φ(s, x(s)). By the Ito differen-
tial rule,

(5.6)

Φ(s, x(s)) − Φ(t, x) −
∫ s

t

AΦ(r, x(r))dr

=

∫ s

t

(DxΦ · σ)(r, x(r))dw(r).

Since σ(s, x) satisfies a linear growth condition (4.3)(ii), Φxσ also has polyno-
mial growth. From (5.5), it follows that the right side of (5.6) is a martingale,
and we get (2.7) by taking expectations.

Remark 5.1. The method of diffusion approximation is used to reduce to
problems in partial differential equations more complicated questions about
stochastic processes which are not diffusions. The technique has been ap-
plied to problems from a wide variety of applications, in engineering, chemical
physics and genetics.

One common use of diffusion approximations is to replace a Markov chain
with many states and nearest - neighbor transitions by a diffusion obtained
after rescaling time and state variables and passing to a limit. Convergence of
the rescaled Markov chains is proved by martingale/weak convergence meth-
ods [EK, Chap. 7]. For queuing systems, the diffusion limit is called the heavy
traffic limit. See Harrison [Har] concerning the use of heavy traffic limits for
flow control.

In other applications a diffusion limit is obtained for processes which are
not Markov, or which are Markov on a higher dimensional state space. For a
treatment of such situations and applications in communications engineering,
see [Ku2].
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III.6 Controlled Markov processes

We now consider problems in which the time - evolution of x(s) is actively
influenced by another stochastic process u(s), called a control process. The
control process has values u(s) ∈ U , where U is a complete separable metric
space. We refer to Σ as the state space and U as the control space.

Example 6.1. (Controlled Markov chain.) For each constant control v ∈
U , infinitesimal jumping rates ρ(s, x, y, v) for a finite state Markov chain are
given, as in Section 4, Example (a). If control u(s) is used at time s, the
jumping rates are ρ(s, x, y, u(s)).

Example 6.2. (Controlled Markov diffusion.) In this case we suppose that
x(s) satisfies a stochastic differential equation of the form.

(6.1) dx = f(s, x(s), u(s))ds+ σ(s, x(s), u(s))dw(s).

We will specify later (Chapter IV) conditions of f, σ, and the control process
under (6.1), with initial data x(t) = x, has a unique solution.

In formulating a general class of control problems with a finite time hori-
zon, we suppose that for each constant control v ∈ U , the state process x(s)
is Markov with backward evolution operator Av. The domain D(Av) may de-
pend on v. However, we assume that there is a “large enough” space D such
that D ⊂ D(Av) for all v ∈ U . For instance, for controlled Markov diffusions
on IRn, we shall take D = C1,2

p (Q0) as in Section 5.
One must also specify what kind of information is available to the controller

of time s. Without yet being mathematically precise, throughout this book
the controller is allowed to know the past history of states x(r) for r ≤ s when
control u(s) is chosen. The Markovian nature of the problem suggests that it
should suffice to consider control processes of the form

(6.2) u(s) = u(s, x(s)).

Such a function u from Q0 into U is called a Markov control policy. For-
mally, we expect that when (6.2) holds x(s) should be a Markov process with
backward evolution operator satisfying, for Φ ∈ D,

(6.3) AuΦ(t, x) = Au(t,x)Φ(t, x).

For instance, for a controlled Markov diffusion

(6.4) AuΦ = Φt +
1

2

n
∑

i,j=1

aij(t, x, u(t, x))Φxixj
+

n
∑

i=1

fi(t, x, u(t, x))Φxi
.

Various assumptions, depending on the type of control processes being
considered, are needed to insure that Au indeed defines a Markov process.
Discontinuous Markov policies u must often be admitted, in order to obtain a
policy u∗ which minimizes an expected cost criterion J of the type (6.5) be-
low. This introduces additional mathematical complications; in fact, a Markov
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control policy u∗ satisfying (7.7) below is a natural candidate for an optimal
policy. However, in some cases there is no Markov process corresponding to
u∗. This difficulty is encountered for degenerate controlled Markov diffusions,
and in particular in case of deterministic optimal control (with aij ≡ 0 in
(6.4)). This point will be discussed further in Section IV.3.

For various technical reasons, it will be convenient to allow control processes
u(s) which depend on the past in some more complicated way than through
a Markov policy in (6.2). This will be formalized later through the idea of
admissible control system. In case of controlled diffusions, we shall consider
in Chapter IV a class of admissible control systems in which u(s) is progres-
sively measurable with respect to some increasing family {Fs} of σ - algebras
to which the brownian motion w(s) is adapted.

Criteria to be optimized. Roughly speaking, the control problem on a
finite time interval t ≤ s ≤ t1 is to minimize

(6.5) J = Etx{
∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1))}.

We call L(s, x, v) a running cost function and ψ a terminal cost function We
always assume that L and ψ are continuous, together with further (integra-
bility) assumptions needed to insure that J is well defined. If ψ(x) ≡ 0 then
the problem is said to be in Lagrange form. If L(t, x, v) ≡ 0, the problem is
in Mayer form. These names are used similarly in the calculus of variations.
(Sec. I.9.)

III.7 Dynamic programming: formal description

In this section we shall describe in a purely formal way the principle of dy-
namic programming, the corresponding dynamic programming equation, and
a criterion for finding optimal Markov control policies. Our first mathemati-
cally rigorous statements about dynamic programming for controlled Markov
diffusions will be made in Section 8. These will take the form of “Verifica-
tion Theorems” which require that the dynamic programming equation have
a sufficiently well behaved “classical solution”. It often happens that there
is no classical solution. In such cases, we must resort to solutions to the dy-
namic programming equation which hold in some weaker sense (in particular,
viscosity solutions.)

Finite time horizon. Let t ≤ s ≤ t1. Since the controller is allowed
to observe the states x(s) of the process being controlled, we may as well
assume that the initial state x(t) = x is known (x ∈ Σ). The starting point
for dynamic programming is to regard the infimum of the quantity J in (6.5)
being minimized as a function V (t, x) of the initial data:

(7.1) V (t, x) = inf
C
J(t, x; control),
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the infimum being over the class C of controls admitted. V is called the
value function (or optimal cost function). Since we have not yet specified C,
formula (7.1) remains only heuristic. The next step (at least conceptually) is
to obtain Bellman’s principle of dynamic programming. This states that for
t ≤ t+ h ≤ t1,

(7.2) V (t, x) = inf
C
Etx

{

∫ t+h

t

L(s, x(s), u(s))ds+ V (t+ h, x(t+ h))

}

.

Speaking intuitively, the expression in brackets represents the sum of the run-
ning cost on [t, t+h] and the minimum expected cost obtained by proceeding
optimally on [t+ h, t1] with (t+ h, x(t+ h)) as initial data.

The dynamic programming equation is obtained formally from (7.2) by
the following heuristic derivation. If we take constant control u(s) = v for
t ≤ s ≤ t+ h, then

V (t, x) ≤ Etx

∫ t+h

t

L(s, x(s), v)ds+ EtxV (t+ h, x(t+ h)).

We subtract V (t, x) from both sides, divide by h and let h → 0:

lim
h→0+

h−1Etx

∫ t+h

t

L(s, x(s), v)ds = L(t, x, v),

lim
h→0+

h−1 [EtxV (t+ h, x(t+ h) − V (t, x)] =

lim
h→0+

h−1Etx

∫ t+h

t

AvV (s, x(s))ds = AvV (t, x).

Hence, for all v ∈ U

(7.3) 0 ≤ AvV (t, x) + L(t, x, v).

Among the various assumptions needed to make this argument rigorous would
be an assumption (such as V ∈ D) which justifies using the Dynkin formula.

On the other hand, if u∗ is an optimal Markov control policy, we should
have

V (t, x) = Etx

∫ t+h

t

L(s, x∗(s), u(s, x∗(s))ds+ EtxV (t+ h, x∗(t+ h)),

where x∗(s) is the Markov process generated by Au∗. A similar argument gives,
under sufficiently strong assumptions (including continuity of u∗ at (t, x))

(7.4) 0 = Au∗

V (t, x) + L(t, x, u∗(t, x)).

Inequality (7.3) together with (7.4) are equivalent to the dynamic program-
ming equation



III. Optimal Control of Markov Processes: Classical Solutions 133

(7.5) 0 = min
v∈U

[AvV (t, x) + L(t, x, v)] .

Equation (7.5) is to be considered in [t0, t1] ×Σ, with the terminal (Cauchy)
data

(7.6) V (t1, x) = ψ(x), x ∈ Σ.

The above formal argument also suggests that an optimal Markov control
policy should satisfy

(7.7) u∗(t, x) ∈ arg min[AvV (t, x) + L(t, x, v)],

where
arg min g(v) = {u∗ ∈ U : g(u∗) ≤ g(v) for all v ∈ U}.

The dynamic programming equation (7.5) is a kind of nonlinear evolution
equation. Let x(t) be a controlled Markov chain with finite state space Σ and
jump rates ρ(s, x, y, v). In the notation of Section 4, let

(7.8) F (t, x; φ) = min
v∈U

⎡

⎣

∑

y �=x

ρ(t, x, y, v)[φ(y) − φ(x)] + L(t, x, v)

⎤

⎦ .

In this case (7.5) becomes a system of ordinary differential equations

(7.9)
d

dt
V (t, x) + F (t, x; V (t, ·)) = 0, x ∈ Σ.

These differential equations evolve backward in time, for t0 ≤ t ≤ t1, with the
terminal data (7.6).

Next, consider a controlled random evolution with Markov chain parame-
ters of the kind in Section 4 (c). Now f = f(t, x, z, v) depends on a control
variable v. As in Section I.5, for (t, x, z, p) ∈ Q0 × Z × IRn, let

H(t, x, z, p) = max
v∈U

[−f(t, x, z, v)p− L(t, x, z, v)] .

Then V = V (t, x, z) and (7.5) has the form

(7.10) −∂V
∂t

+H(t, x, z,DxV ) −
∑

ζ �=z

ρ(t, z, ζ)[V (t, x, ζ) − V (t, x, z)] = 0.

In the variables (t, x), (7.10) describes a system of first-order partial differen-
tial equations indexed by z ∈ Z (recall that Z is a finite set.) These equations
are coupled through the zeroth order terms.

For a controlled Markov diffusion, governed by the stochastic differential
equation (6.1), the dynamic programming equation (7.5) becomes a partial
differential equation IV(3.3) of second order for V (t, x). This case will be
studied in detail in Chapter IV.
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Infinite horizon discounted cost control problem. Consider the
problem of minimizing

(7.11) J = Ex

∫ ∞

0

e−βsL(x(s), u(s))ds

and introduce (again formally) the value function

(7.12) V (x) = inf
C1

J(x; control),

where C1 is some class of admissible controls and x = x(0) is the initial
state. By a formal derivation similar to the finite time horizon case, we get
the following dynamic programming equation for the discounted cost control
problem on the infinite time interval [0,∞) :

(7.13) βV (x) = min
v∈U

[−GvV (x) + L(x, v)].

For this problem we may consider stationary Markov control policies u(x).
The formal derivation of (7.13) suggests that an optimal stationary Markov
control policy u∗ should satisfy

(7.14) u∗(x) ∈ arg min[−GvV (x) + L(x, v)].

III.8 A Verification Theorem; finite time horizon

We again consider a finite time horizon, with I0 = [t0, t1). Let us call W (t, x)
a classical solution of the dynamic programming equation (7.5) with terminal
data (7.6) if W ∈ D and

(8.1) 0 = min
v∈U

[AvW (t, x) + L(t, x, v)], (t, x) ∈ I0 ×Σ

(8.2) W (t1, x) = ψ(x), for all x ∈ Σ.

(The space D was defined in Section 6.) In this section, we show that if
W is a classical solution, then W (t, x) equals the minimum total expected
cost among an appropriately defined class of admissible control systems. See
Theorem 8.1. The proof is quite simple, but the assumption that W is a
classical solution is quite restrictive. For the deterministic control problem,
considered in Chapter I, the partial derivatives Wt and Wxi

, i = 1, · · · , n,
of a classical solution must be continuous. For controlled Markov diffusions,
W ∈ D requires in addition continuity of the second order partial derivatives
Wxixj

together with polynomial growth of W and AvW . (Later we show that
polynomial growth of AvW is not, in fact, needed; see Theorem IV.3.1).

Let (Ω,F , P ) be a probability space and x(s) = x(s, ω) a Σ - valued
stochastic process defined on [t, t1] × Ω. This process is called measurable if
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x(·, ·) is measurable with respect to the σ - algebras B([t, t1] × F) and B(Σ).
It is called corlol if the sample paths x(·, ω) are right continuous and have
left hand limits. (Some further background about stochastic processes and
stochastic differential equations is summarized in Appendix D.)

Given initial data (t, x), we call

π = (Ω, {Fs}, P, x(·), u(·))

an admissible control system if (Ω,Ft1 , P ) is a probability space, {Fs} is an
increasing family of σ-algebras (t ≤ s ≤ t1), and x(·), u(·) are stochastic
processes on [t, t1] such that:

(8.3)

(i) x(s) ∈ Σ, t ≤ s ≤ t1, x(t) = x
x(·) is corlol and x(s) is Fs − measurable;

(ii) u(s) ∈ U, t ≤ s ≤ t1,
u(s) is Fs − measurable and u(·, ·) is measurable;

(iii) For all Φ ∈ D, satisfying Etx|Φ(t1, x(t1))| < ∞, and

Etx

∫ t1

t

|Au(s)Φ(s, x(s))|ds < ∞,

the Dynkin formula holds:

EtxΦ(t1, x(t1)) − Φ(t, x) = Etx

∫ t1

t

Au(s)Φ(s, x(s))ds.

The total expected cost corresponding to π is

J(t, x;π) = Etx

{
∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1))

}

.

Theorem 8.1. Let W ∈ D be a classical solution to (8.1) - (8.2). Then
for all (t, x) ∈ [t0, t1] ×Σ:

(a) W (t, x) ≤ J(t, x;π) for every admissible control system π.
(b) If there exists an admissible system π∗ = (Ω∗, {F∗

s }, P ∗, x∗(·), u∗(·)) such
that

u∗(s) ∈ arg min[AvW (s, x∗(s)) + L(s, x∗(s), v)]

for Lebesgue ×P ∗ - almost all (s, ω) ∈ [t, t1] × Ω∗, then W (t, x) =
J(t, x;π∗).

Proof of (a): Let π be any admissible control system. Since u(s) ∈ U,

Au(s)W (s, x(s)) + L(s, x(s), u(s)) ≥ 0.
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From (8.2) and the Dynkin formula

W (t, x) = Etx

{
∫ t1

t

−Au(s)W (s, x(s))ds+ ψ(x(t1))

}

≤ Etx

{
∫ t1

t

L(s, x(s), u(s))ds+ ψ(x(t1))

}

.

This proves (a). For part (b), the inequality becomes equality. �

We call Theorem 8.1 a Verification Theorem. If we let

(8.4) VAS(t, x) = inf
C
J(t, x;π)

where C is the class of all admissible control systems, then VAS = W provided
the assumptions of Theorem 8.1 hold. In addition to the requirement W ∈ D,
it may not be easy to show that π∗ exists with the property required in (b).
A natural way to proceed is to select a Markov control policy u∗ such that,
for each (t, x) ∈ I0 ×Σ,

u∗(t, x) ∈ arg min[AvW (s, x) + L(s, x, v)].

If u∗, together with any initial data (t, x), determine a Markov process x∗(s)
with backward evolution operator Au∗

, then we can take

(8.5) u∗(s) = u∗(s, x∗(s)).

Once the corresponding control system π∗ is verified to be admissible, π∗ is
optimal. When this procedure works, we call u∗ an optimal Markov control
policy.

We conclude this section with two examples, both of which involve con-
trolled Markov diffusions. Additional examples will be given in Section 9.

Example 8.1. (Stochastic linear regulator). This is a stochastic pertur-
bation of the linear quadratic regulator problem (Example I.2.3 and I.5.1).
The stochastic differential equations for x(s) are linear:

(8.6) dx = [A(s)x(s) +B(s)u(s)]ds+ σ(s)dw(s).

There are no control constraints (U = IRm) and the expected total cost is

(8.7) J = Etx{
∫ t1

t

[x(s) ·M(s)x(s) + u(s) ·N(s)u(s)]ds+ x(t1) ·Dx(t1)}.

We make the same assumptions as in Example I.2.3, and assume that σ(·) is
continuous on [t0, t1].

To apply the Verification Theorem 8.1, let us seek a solution W of the
dynamic programming equation (8.1) which has the special form

(8.8) W (t, x) = x · P (t)x+ g(t).
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When t = t1 we must have W (t1, x) = x ·Dx. Thus,

(8.9) P (t1) = D, g(t1) = 0.

A slight modification of the calculation used in Example I.5.1 for the deter-
ministic case shows that P (t) satisfies the Riccati equation I(5.15), with the
same data I(5.16). In addition, dg/ds = −tr a(s)P (s), where a = σσ′ and tr
is the trace. Hence, by (8.9)

(8.10) g(t) =

∫ t1

t

tr a(s)P (s)ds.

The unique v which minimizes AvW (t, x) + L(t, x, v) is v = u∗(t, x), where

(8.11) u∗(t, x) = −N−1(t)B
′

(t)P (t)x.

This feedback control is precisely the same as for the deterministic case. See
I(5.17). In order to verify that u∗ is an optimal Markov control policy, con-
sider any (Ω, {Fs}, P, w), where (Ω,Ft1 , P ) is a probability space, {Fs} is an
increasing family of σ - algebras and w(·) is a Fs - adapted brownian motion
on [t, t1]. (In the terminology of Section IV.2 below, this is called a reference
probability system.) The linear stochastic differential equation

(8.12) dx∗ = [A(s)x∗(s) +B(s)u∗(s, x∗(s))]ds+ σ(s)dw(s)

with initial data x∗(t) = x has a unique solution x∗(·). Let

u∗(s) = u∗(s, x∗(s)).

The system π∗ = (Ω, {Fs}, P, x∗(·), u∗(·)) is admissible, if we take D =
C1,2

p (Q0) as in Section 5 and Example 6.2. By Theorem 8.1, W (t, x) is the
minimum of J(t, x;π) in the class C of all admissible control systems π, and
J(t, x;π∗) = W (t, x). Thus, u∗ is an optimal Markov control policy. A more
detailed treatment of the stochastic linear regulator problem is given in [YZ,
Chapt. 6].

Example 8.2. Let us take Σ = U = IRn, and let x(s) satisfy

(8.13) dx = u(s)ds+ dw(s).

In the setting of Nelson’s theory of stochastic mechanics [Ne], one can regard
x(s) as the position of some “particle” at time s. If (8.13) is the model taken for
the motion, then the velocity is undefined since brownian paths are nowhere
differentiable with probability 1. However, one can regard u(s) as a kind of
local “average velocity”. Consider the problem of minimizing

J = Etx

{
∫ t1

t

[

1

2
|u(s)|2 − q(x(s))

]

ds+ ψ(x(t1))

}
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in the class of admissible systems π. In this example

(8.14) L(x, v) =
1

2
|v|2 − q(x)

is the classical action integrand, if one interprets v as the velocity of a particle
of mass 1 and q(x) as the potential energy when the particle is at position x.
If ψ = 0 we can call J the mean average action.

In Example 8.2, the dynamic programming equation (8.1) becomes

(8.15) 0 =
∂W

∂t
+

1

2
∆xW − 1

2
|DxW |2 − q(x),

with the terminal data (8.2). The procedure used to get (8.5) leads to mini-
mizing 1

2 |v|2 + v ·DxW over U = IRn. We obtain as candidate for an optimal
Markov control policy

(8.16) u∗(t, x) = −DxW (t, x).

The nonlinear term in (8.15) is quadratic inDxW . The dynamic programming
equation is linearizable by the following transformation. Let

Φ(t, x) = exp[−W (t, x)], φ(x) = exp[−ψ(x)].

Then (8.15), (8.2) become

(8.17) 0 =
∂Φ

∂t
+

1

2
∆xΦ+ q(x)Φ

(8.18) Φ(t1, x) = φ(x).

Equation (8.17) is just the backward heat equation with a potential term
q(x)Φ. This kind of substitution will be considered more systematically in
Chapter VI, when we discuss logarithmic transformations.

If q(x) = x · Cx and ψ(x) are quadratic functions, with q(x) ≤ 0 and
ψ(x) ≥ 0, we have a special case of the stochastic linear regulator in Example
8.1. Then Φ(t, x) has the gaussian form

Φ(t, x) = θ(t) exp[−x · P (t)x],

with θ = exp(−g), as could have shown directly from (8.17) - (8.18).
Remark 8.1. This formulation is an oversimplification of Nelson’s ideas.

To allow for time-reversibility in quantum mechanical phenomena, Nelson
allows forward and backward local average velocities.

Stochastic control interpretations for solutions of the Schrödinger equation,
in a stochastic mechanics setting, have been given. See Nelson [Ne], Guerra -
Morato [GM], Zambrini [Za]. There has not been unanimity in deciding which
combination of average forward and backward velocities is most suitable to
replace the kinetic energy term 1

2 |v|2 in (8.14).
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III.9 Infinite Time Horizon

In this section we consider problems of minimizing an infinite horizon, dis-
counted expected cost:

(9.1) J = E

∫ ∞

0

e−βtL(x(s), u(s))ds, β > 0.

In this case, the control problem is specified by a collection {Gv}, v ∈ U , such
that – Gv is the generator of an autonomous Markov process (Section 3.) We
assume that D(Gv) ⊃ D for each v, where D is a “sufficiently large” class of
functions.

Given an initial state x, we call

π = (Ω, {Fs}, P, x(·), u(·))

an admissible control system if (Ω,F , P ) is a probability space, {Fs} an in-
creasing family of σ - algebras (s ≥ 0) with Fs ⊂ F , and x(·), u(·) are sto-
chastic processes on [0,∞) such that:

(9.2)

(a) Assumptions (8.3) (i) (ii) hold for s ≥ 0;

(b) Assumption (8.3) (iii) holds with

Φ(t, x) = e−βtφ(x), for all φ ∈ D and 0 < t1 < ∞;

(c) Ex

∫ ∞

0

e−βs|L(x(s), u(s))|ds < ∞.

We note that, for Φ = e−βtφ, the Dynkin formula becomes

(9.3)

e−βt1Exφ(x(t1)) − φ(x)

= Ex

∫ t1

0

e−βs[−Gu(s)φ− βφ](x(s))ds.

The dynamic programming equation for this infinite time horizon control
problem is

(9.4) βW (x) = min
v∈U

[−GvW (x) + L(x, v)].

We call W a classical solution if W ∈ D and W satisfies (9.4) for all x ∈ Σ.
Lemma 9.1. Let W ∈ D be a classical solution to (9.4). Then:

(a) W (x) ≤ J(x;π) for every admissible π such that

(9.5) lim inf
t1→∞

e−βt1ExW (x(t1)) ≤ 0.
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(b) If there exists an admissible system π∗ such that

u∗(s) ∈ arg min[−GvW (x∗(s)) + L(x∗(s), v)]

for Lebesgue ×P - almost all (s, ω) ∈ [0,∞) ×Ω, and

(9.6) lim sup
t1→∞

e−βt1ExW (x∗(t1)) ≥ 0,

then W (x) ≥ J(x;π∗).
Proof of (a). Since u(s) ∈ U ,

−Gu(s)W (x(s)) − βW (x(s)) + L(x(s), u(s)) ≥ 0.

By applying Dynkin’s formula to Φ = e−βtW , as in the derivation of (9.3),
we get

(9.7) W (x) ≤ Ex

∫ t1

0

e−βsL(x(s), u(s)ds+ e−βt1ExW (x(t1)).

We let t1 → ∞ through a sequence for which the last term tends to a limit
≤ 0.

Proof of (b). In the proof of (a), equality now replaces inequality in (9.7).
We let t1 → ∞ through a sequence for which the last term tends to a limit
≥ 0.

�

Let C1 denote the class of admissible π such that (9.5) holds, and let

(9.8) VAS(x) = inf
C1

J(x;π).

Theorem 9.1. Let W ∈ D be a classical solution to (9.4). Then W (x) ≤
VAS(x). If there exists π∗ ∈ C1 such that (9.6) holds and

u∗(s) ∈ arg min[−GvW (x∗(s)) + L(x∗(s), v)]

for Lebesgue ×P - almost all (s, ω) ∈ [0,∞) ×Ω, then

W (x) = VAS(x) = J(x;π∗).

Theorem 9.1 is an immediate consequence of Lemma 9.1. The control
system π∗ is optimal in the class C1. As in the finite horizon case (Section 8)
we may seek to find an optimal stationary Markov control policy u∗ such that

(9.9) u∗(x) ∈ arg min[−GvW (x) + L(x, u)],

u∗(s) = u∗(x∗(s)),

and x∗(s) is a Markov process for s ≥ 0, with generator −Gu∗

and initial
state x∗(0) = x. However, to prove the existence of u∗ with these properties
is a separate matter from the Verification Theorem 9.1.
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If in Example 6.2 we take f = f(x, v), σ = σ(x, v) we have an infinite time
horizon problem for a controlled Markov diffusion processes. The generator
−Gv is then

(9.10) −Gvφ =
1

2

n
∑

i,j=1

aij(x, v)φxixj
+

n
∑

i=1

fi(x, v)φxi
,

with a = σσ′. To apply Theorem 9.1, we can takeD = C2
p(IRn), where C2

p(IRn)
is the set φ ∈ C2(IRn) such that φ, φxi

, φxixj
, i, j = 1, ·, n satisfy a polynomial

growth condition. Another verification theorem, with less restrictive growth
assumptions on a classical solution W to (9.4), will be proved in Section IV.5.

Example 9.1. Consider an infinite horizon discounted stochastic linear
regulator. For simplicity, we take scalar state x(s), control u(s) and brownian
motion w(s). Using notations similar to Example 8.1

(9.11) dx = [Ax(s) +Bu(s)]ds+ σdw(s), B �= 0,

with x(0) = x. The problem is to minimize

(9.12) J = Ex

∫ ∞

0

e−βs[Mx(s)2 +Nu(s)2]ds,

where M > 0, N > 0. In this example the dynamic programming equation
(9.4) is

(9.13) βW =
σ2

2
W

′′

+AxW
′ − B2

4N
(W

′

)2 +Mx2.

Let us seek a solution of (9.4) of the form

(9.14) W (x) = Kx2 + g

where K > 0 and g are constants. A calculation gives K as the positive root
of the quadratic equation

(9.15) βK = 2AK − B2

N
K2 +M

and g = β−1σ2K. The optimal stationary Markov control policy is linear (as
in (8.11)):

(9.16) u∗(x) = −N−1BKx.

Since M > 0, N > 0, by (9.12) and (9.14)

lim inf
t1→∞

e−βt1ExW (x(t1)) = 0

for any control such that J < ∞. Hence (9.5) holds for every admissible π, and
(9.6) is automatic since W ≥ 0. To verify that u∗ is optimal, we use Theorem
9.1 with
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π∗ = (Ω, {Fs}, P, x∗(·), u∗(·))
where x∗(s), u∗(s) satisfy for s ≥ 0

(9.17) dx∗ = [Ax∗(s) +Bu∗(s)]ds+ σdw(s)

with x∗(0) = x and

(9.18) u∗(s) = −N−1BKx∗(s).

Thus, u∗ is an optimal Markov control policy, and VAS(x) = W (x) is the
minimum expected discounted cost.

The multidimensional infinite horizon, discounted stochastic linear regu-
lator problem can be solved in a similar way, provided that a detectability
condition holds. An expected average cost per unit time criterion can also be
considered. See [Dav1, Sec 5.4].

Example 9.2. This is a highly simplified production planning model, in
which demand is random. Let x(s) be the inventory level of some good at time
s, u(s) the production rate, and z(s) the demand rate. We allow x(s) < 0,
which corresponds to unfilled orders (a shortage). The demand process z(s) is
assumed to be a finite state Markov chain, with state space Z. The production
rate is constrained by u(s) ≥ 0, and the inventory dynamics are

(9.19)
dx

ds
= u(s) − z(s).

The pair (x(s), z(s)) is the state and u(s) is the control. This is an instance
of a controlled random evolution with Markov chain parameters, of the kind
in Section 4(c). Let us take

(9.20)

L(x, v) = h(x) + g(v), where

h(x) =

⎧

⎨

⎩

h1x, x ≥ 0, h1 > 0

h2|x|, x ≤ 0, h2 > 0

g(0) = g′(0) = 0, g′′(v) ≥ c > 0 for v ≥ 0.

If we assume that the Markov chain z(s) has autonomous jumping rates
ρ(z, ζ),

(9.21) −Gvφ(x, z) = (v − z)
∂φ

∂x
+
∑

ζ �=z

ρ(z, ζ)[φ(x, ζ) − φ(x, z)]

Then W (x, z) is a classical solution to the dynamic programming equation
(9.4), if W (·, z) ∈ C1(IR1) for each z ∈ Z, and W satisfies
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βW = min
v≥0

{(v − z)
∂W

∂x
+ g(v)} + h(x) +

∑

ξ �=z

ρ(z, ξ)[W (x, ξ) −W (x, z)].

It can be shown that a classical solution W (x) ≥ 0 exists. Moreover, W (·, z)
is a strictly convex function on IR1, W (x, z) → +∞ as |x| → ∞ and ∂W/∂x
is bounded. See [FSS, Thm. 2.2]. A candidate optimal control policy u∗(x, z)
is found by minimizing g(v) + vWx for v ≥ 0. We get

(9.22) u∗(x, z) =

⎧

⎨

⎩

(g′)−1(−Wx(x, z)) , if Wx(x, z) < 0

0 , if Wx(x, z) ≥ 0.

To use Theorem 9.1, one needs to verify (9.5) for any admissible π. Condition
(9.6) is automatic since W ≥ 0. Since Wx is bounded, |W (x)| ≤ C(1+ |x|) for
suitable C. Then (9.5) holds provided

(9.23) lim inf
t1→∞

e−βt1Ex|x(t1)| = 0.

By (9.20) L(x, v) ≥ k|x|, where k = min(h1, h2) > 0. Therefore, if J(x;π) <
∞, then

Ex

∫ ∞

0

e−βs|x(s)|ds ≤ k−1J(x;π) < ∞.

This implies (9.23) for any admissible system π, and thus π ∈ C1.
If we use u∗ in (9.22), then (9.19) becomes

(9.24)
dx∗

ds
= u∗(x∗(s), z(s)) − z(s).

Since (g′)−1 and Wx(·, z) are nondecreasing continuous functions, u∗(·, z) is
nonincreasing and continuous. This implies that (9.24) with x∗(0) = x has
a unique solution x∗(s). See Hartman [Hn, Thm 6.2]. Moreover, |x∗(s)| is
bounded by a constant depending on the initial data x = x(0) [FSS, Lemma
4.1]. Let u∗(s) = u∗(x∗(s), z(s)); and let (Ω,F , P ) denote the probability
space on which the Markov chain z(s) is defined, with Fs = Fz

s the σ-algebra
generated by z(r), 0 ≤ r ≤ s. By a version of the Dynkin formula proved in
Appendix B,

π∗ = (Ω, {Fs}, P, x∗(·), u∗(·))
is an admissible system, with J(x, π∗) ≤ W (x) < ∞ by Lemma 9.1(b). By
Theorem 9.1, J(x, π∗) = W (x). Thus, u∗ is an optimal Markov control policy
and VAS(x) = W (x) is the minimum expected discounted cost.

Example 9.3. This is another simple production planning model, in which
demand is fixed but random machine breakdown and repairs are allowed.
It was analyzed by Akella–Kumar [AK]. We will formulate the model and
summarize their results. There is one machine, which is either working or
not. If the machine is working, it produces a good at rate u(s), subject to
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0 ≤ u(s) ≤ K. The constant demand is at rate d < K. The inventory x(s)
changes according to

dx

ds
= u(s) − d

during intervals when the machine is working, and according to

dx

ds
= −d

when the machine is not working. Let z(s) be a 2-state Markov chain, with
state space Z = {1, 2}, such that the machine is working when z(s) = 1 and
not working when z(s) = 2. We take L(x, v) = h(x) with h(x) as in (9.20).
Thus, the running cost function depends on holding costs for x > 0 or shortage
costs for x < 0, but not on the production rate v. In this example, the control
space depends on z, namely, U(1) = [0,K] and U(2) is the empty set. This
minor change in the problem formulation does not cause any difficulty. The
dynamic programming equation (9.4) becomes

(9.25) βW (x, z) = min
v∈U(z)

[−GvW (x, z) + h(x)].

When z = 2, the control v does not enter. From (9.21) we get the following
pair of differential equations for W (x, 1) and W (x, 2);
(9.26)
βW (x, 1) = min

0≤v≤K
[(v − d)Wx(x, 1)] + h(x) + ρ(1, 2)[W (x, 2) −W (x, 1)],

βW (x, 2) = −dWx(x, 2) + h(x) + ρ(2, 1)[W (x, 1) −W (x, 2)].

A candidate optimal Markov control policy is

u∗(x, 1) =

⎧

⎨

⎩

0 if Wx(x, 1) > 0
d if Wx(x, 1) = 0
K if Wx(x, 1) < 0.

Akella-Kumar [AK] show that (9.25) has a classical solution W ≥ 0, with
W (x, 1), W (x, 2) strictly convex and Wx(x, 1), Wx(x, 2) continuous and
bounded. Define x by Wx(x, 1) = 0. Then

(9.27) u∗(x, 1) =

⎧

⎨

⎩

0 if x > x
d if x = x
K if x < x.

An explicit formula for x is given in [AK]. Arguments like those in Example
9.2 can be used to verify the W (x, z) = V (x, z) and the u∗(x, 1) is an opti-
mal Markov control policy. It is interesting to note that for some choice of
parameters x = 0.

Additional examples, of controlled Markov diffusion processes on an infi-
nite time horizon will be given in Section IV.5.
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III.10 Viscosity solutions

Let us again consider controlled Markov processes on a finite time horizon.
In Section 8 we assumed that the dynamic programming equation (7.5) with
terminal data (7.6) had a “classical” solution W ∈ D. Under the rather re-
strictive assumptions of Theorem 8.1, it turned out that W = VAS , where
VAS defined by (8.4) is the value function using the class C of all admissible
control systems π. In this section we discuss some results which hold without
such restrictive assumptions. The idea is to consider, as in (7.1),

(10.1) V (t, x) = inf
C
J(t, x;π)

where C is a suitable class of admissible control systems π (not necessarily
including all admissible π.) Although one cannot generally expect V to be a
classical solution of the dynamic programming equation, it is often possible
to interpret V as a viscosity solution in the sense of Definition II.4.1. In this
section, we present briefly some results of this kind, but do not include any
proofs.

Let us rewrite the dynamic programming equation (7.5) in the form
II(3.12), proceeding formally as in Section 7. We recall from Section 6 that a
controlled Markov process is associated with a family Av of backward evolu-
tion operators, v ∈ U . We rewrite Av in the form (2.9):

(10.2) AvΦ =
∂Φ

∂t
−Gv

tΦ(t, ·).

Consider the nonlinear operators Gt, such that

(10.3) Gtψ(x) = sup
v∈U

[Gv
tψ(x) − L(t, x, v)]

Then the dynamic programming equation (7.5) becomes

(10.4) −∂V
∂t

(t, x) + (GtV (t, ·))(x) = 0,

which is just II(3.12).
The case of controlled Markov diffusions will be considered in detail in

Chapters IV and V. In that case, a convenient class C of admissible control
systems turns out to be those which arise via progressively measurable con-
trol processes. See Section IV.2. The dynamic programming equation (10.4)
is a second-order nonlinear partial differential equation, which we call of
Hamilton–Jacobi–Bellman (HJB) type. It will be shown that a dynamic pro-
gramming principle holds, from which it follows that the value function is a
viscosity solution of the HJB equation (Section V.2.) From uniqueness results
for solutions to HJB equations, the particular choice of class C turns out not
to be especially important. Every choice of admissible controls for which a
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dynamic programming principle holds leads to a value function which is the
same as the unique viscosity solution of the HJB equation with given bound-
ary data.

For controlled Markov processes formulated in the general framework of
Section 7, the known results are less complete. To show that the function V
in (10.1) is a viscosity solution, one can try to use Theorem II.5.l. For this
purpose, consider the nonlinear operators Ttr defined (for ψ in a suitable class
C of functions) by

(10.5) Ttrψ(x) = inf
C
Etx

{
∫ r

t

L(s, x(s), u(s))ds+ ψ(x(r))

}

.

The monotonicity property II(3.2
′

) is immediate. However, properties II(3.1)
and II(3.2) are not at all immediate, and indeed depend on further assump-
tions about the Markov process control problem. As already noted in the de-
terministic case (Example II.3.1) the semigroup property II(3.3) corresponds
to a dynamic programming principle. By taking r = t1, we have by (10.1):

(10.6) V (t, x) = Ttt1ψ(x).

Definition II.4.1 of viscosity solutions also requires a set D of “smooth”
test functions such that II(3.10), (3.11) hold. For controlled Markov processes
we typically require that D ⊂ D(Av) for all v ∈ U , that Σ

′

= Σ and that D
is dense in the uniform norm in the space of bounded, uniformly continuous
functions on [t0, t1] ×Σ.

The best results which are known in this general setting can be obtained
from Nisio’s construction of a nonlinear semigroup for controlled Markov
processes [Ni1]. Let us sketch Nisio’s construction, in the case of controlled
time homogeneous Markov processes on Σ = IRn, following [Ni1]. To sim-
plify matters, let us assume that there is no running cost (L ≡ 0.) This is no
real restriction (see Remark 10.2). Let C be the space of bounded, uniformly
continuous on IRn and assume that U is compact. For each v ∈ U , we are
given a semigroup T v

r of positive linear operators on C such that T v
r 1 = 1. In

the stochastic control interpretation, the semigroup T v
r corresponds to a time

homogeneous Feller Markov process under constant control v (Section 3.) Let
L denote the class of all bounded, Lipschitz continuous functions on IRn. For
ψ ∈ L, let

λ(ψ) = sup
x�=y

|ψ(x) − ψ(y)|
|x− y| .

Assume that there exists β ≥ 0 such that

(10.7) λ(T v
r ψ) ≤ eβrλ(ψ), ∀ψ ∈ L and v ∈ U.

For h > 0, r = Mh, M = 1, 2, · · ·, define the nonlinear operator T h
r inductively

by
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(10.8) T h
r+hψ(x) = inf

v∈U
T v

h (T h
r ψ)(x),

with T h
0 ψ = ψ. Then T h

r is monotone, contracting; and using (10.7) it can be
shown that T h

r : C → C. Now let h = hN = 2−N . If r = M2−N0 is a dyadic
rational number, then for N ≥ N0

T hN
r ψ ≥ T hN+1

r ψ.

The basic idea of the Nisio construction is to obtain the nonlinear semigroup
Tr on C by

(10.9) Trψ = lim
N→∞
rN →r

T hN
rN

ψ,

where rN is dyadic rational. The results of [Ni1, Chap. 2] imply that the
operators Ttr = Tr−t satisfy II(3.1)-(3.2). Moreover, the function V defined
by (10.6) is continuous on Q0 = [t0, t1] × IRn.

For constant control v, let Sv
r denote the corresponding semigroup for the

Markov process (s, x(s)):

(10.10) Sv
rΦ(t, x) = T v

r Φ(t+ r, ·)(x).

Corresponding to (10.7), assume that there exists γ ≥ 0 such that

(10.11) λ(Sv
rΦ) ≤ eγrλ(Φ)

for all Lipschitz continuous Φ on IRn+1. In (10.2), Gv
t = Gv where −Gv is

the generator of the semigroup T v
t for a time-homogeneous controlled Markov

process. Assume that there exists a dense subspace D0 of the space of uni-
formly continuous, bounded functions on IRn+1, such that for each Φ ∈ D0;

(10.12) Φt is continuous on IRn+1 and

GvΦ(t, ·)(x) is continuous on IRn+1 × U.

(10.13) sup
v∈U

‖AvΦ‖ < ∞

(10.14) lim
h↓0

h−1‖Sv
hΦ− Φ− hAvΦ‖ = 0.

(As usual, ‖ ‖ is the sup norm.) Let D denote the space of Φ restricted to
Q0, Φ ∈ D0. (In this chapter we denote “smooth” functions of (t, x) by Φ
rather than w as in Chapter II.) Then II(3.10) follows from (10.12). By [Ni1,
Theorem 2.1]

(10.15) lim
h↓0

h−1[ThΦ− Φ] = Φt − GΦ,
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GΦ = sup
v∈U

GvΦ.

Thus, II(3.11) holds for all Φ ∈ D, and by Theorem II.5.1, V is a viscosity
solution of (10.4).

Remark 10.1. Unfortunately, we do not know a uniqueness theorem for
viscosity solutions to dynamic programming equations of the general form
(10.4). However, uniqueness theorems are known if Gt is a second order par-
tial differential operator (Section V.8). Uniqueness results for (10.4) are also
known for some particular classes of nonlocal operators Gt. See [Sa] [S3]
[LeB][AT].

Stochastic control interpretation. Nisio’s construction of the nonlin-
ear semigroup Tr, outlined above, is purely analytical. A stochastic control
interpretation of V (t, x) can be given in terms of piecewise constant controls.
If t1 − t = Mh,M = 1, 2 · · ·, let

V h(t, x) = T h
t1−tψ(x).

Then V h(t, x) turns out to be the value function obtained by requiring that
u(s) is constant on each interval [t + mh, t + (m + 1)h),m = 0, 1, · · · ,M −
1, and (10.8) can be interpreted as a corresponding discrete time dynamic
programming equation. According to (10.9),

V (t, x) = lim
N→∞
tN →t

V hN (tN , x),

where t1 − tN is dyadic rational. In case t1 − t = M2−N0 is dyadic rational,
V (t, x) is the infimum of Etxψ(x(t1)) among controls which are constant on
some dyadic partition of [t, t1], with h = hN and N ≥ N0. For a more precise
formulation of these statements and proofs, we refer to [Ni1, Chap.2].

Remark 10.2. In this section, we assumed that L ≡ 0. This restriction
can be removed by the following device. Consider an “augmented” state space
Σ × IR1, with elements denoted by (x, x̃). At time s, the augmented state is
(x(s), x̃(s)), where

x̃(s) =

∫ s

t

L(x(r), u(r))dr.

Let Ψ(x, x̃) = ψ(x) + x̃. Then

J(t, x;π) = J̃(t, x, 0;π), where

J̃(t, x, x̃;π) = Etxx̃Ψ(x(t1), x̃(t1)).

III.11 Historical remarks

The study of optimal control for continuous time Markov processes began
in the early 1960’s with the stochastic linear regulator problem (Example
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8.1.). That model has several features which are appealing from the view-
point of engineering applications. The problem reduces to solving a matrix
Riccati equation, and optimal control policies are linear in the state. More-
over, the optimal policy is insensitive to the intensity of noise entering the
state dynamics. A good introduction to linear-quadratic models in estimation
and stochastic control is Davis [Dav1]. There is also a substantial literature
on control of discrete time Markov processes and applications. Bertsekas [Bs]
provides a good introduction to this topic.

For continuous time controlled Markov processes, the theory is most ex-
tensively developed for Markov diffusion processes. See [BL1] [Bo] [ElK] [FR]
[Kr1] [L1-L3]. For optimal control of jump markov processes, see [El, Chap
17]; and for control of piecewise deterministic processes see [Dav2] [Ve].

In Section 6 - 9 we formulated a general class of Markov process control
problems. The Verification Theorems 8.1 and 9.1 allow one to solve examples
in which the value function is a classical solution to the dynamic programming
equation. However, these sections include only rather elementary results. The
Nisio nonlinear semigroup in Section 10 provides a further step toward a
theory which does not refer to particular types of controlled Markov processes
(diffusions, jump processes, etc. ).

There are interesting types of control problems for Markov processes which
do not fit the model considered in this chapter. Among them we mention sin-
gular stochastic control (Chapter VIII), impulsive control [BL2] and problems
with switching costs [LeB].





IV

Controlled Markov Diffusions in IRn

IV.1 Introduction

This chapter is concerned with the control of Markov diffusion processes in
n-dimensional IRn. The dynamics of the process x(s) being controlled are
governed by a stochastic differential equation of the form (2.1). Section 2 is
concerned with the formulation of finite time horizon control problems for
Markov diffusions, where control occurs until exit from a given cylindrical
region Q ⊂ IRn+1. Several candidates for the value function are considered,
which are shown later to agree under appropriate assumptions.

For a controlled Markov diffusion, the dynamic programming equation
becomes a second order, nonlinear partial differential equation, which we call a
Hamilton - Jacobi - Bellman (HJB) equation. Sections 3–5 are concerned with
cases when the HJB equation has a sufficiently smooth “classical” solution.
Verification theorems in the same spirit as those in Sections I.5, III.8 and
III.9 are proved. This is done for finite horizon problems in Section 3, and
for infinite horizon discounted problems in Section 5. Section 5 also provides
illustrative examples.

We saw in Chapters I and II that the value function V for a deterministic
control problem is generally not of class C1(Q). Thus, V cannot generally be
a classical solution to the first - order HJB equation of deterministic optimal
control. In contrast, if the second order HJB equation for a controlled Markov
diffusion is of uniformly parabolic type, then the corresponding boundary
problem indeed has a unique classical solution. Theorems of this type de-
pend on the theory of parabolic partial differential equations, and are quoted
without proof in Section 4.

In Sections 6–10 the assumption of uniform parabolicity is abandoned.
Hence, the value function need not be a classical solution to the HJB equa-
tion. The goal of these sections is to provide a systematic analysis of value
functions, for problems on a fixed finite time interval. The methods are prob-
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abilistic. They depend on standard results about stochastic differential equa-
tions, which are reviewed in Appendix D. A strong form of the dynamic pro-
gramming principle is proved in Section 7, by making approximations which
reduce the result to the uniformly parabolic case. In Section 8, we obtain
bounds for first-order difference quotients of the value function V . For second
- order difference quotients, one sided bounds are obtained in Section 9. If
V is a classical solution to the HJB equation, these bounds imply the same
bounds for the corresponding first and second order partial derivatives. The
bounds on difference quotients depend only on certain constants associated
with the functions f, σ describing the state dynamics, and with the cost func-
tion. Hence, they can be shown to hold uniformly if the stochastic control
problem is approximated in various ways. In Section 10, we use such bounds
in studying generalized subsolutions and solutions to HJB equations.

IV.2 Finite time horizon problem

Let us consider a control model in which the state evolves according to an IRn-
valued process x(s) governed by a system of stochastic differential equations
of the form

(2.1) dx = f(s, x(s), u(s))ds+ σ(s, x(s), u(s))dw(s), t ≤ s ≤ t1,

where u(s) ∈ U is the control applied at time s and w(s) is a brownian
motion of dimension d. As in previous chapters, we fix t0 < t1, and let Q0 =
[t0, t1) × IRn, Q0 the closure of Q0.

We make the following assumptions: U ⊂ IRm for some m, and U is closed.
The functions f, σ are continuous on Q0 ×U , and f(·, ·, v), σ(·, ·, v) are of class
C1(Q0). Moreover, for some constant C

(2.2)

(a) |ft| + |fx|≤ C, |σt| + |σx| ≤ C;

(b) |f(t, x, v)|≤ C(1 + |x| + |v|)

|σ(t, x, v)|≤ C(1 + |x| + |v|).

Here ft, σt, fx, σx denote the t-partial derivatives and gradients with respect
to x, respectively. The inequalities (2.2a) are equivalent to the following:

(2.2)(a′)
|f(s, y, v) − f(t, x, v)| ≤ C̄[|s− t| + |y − x|],

|σ(s, y, v) − σ(t, x, v)| ≤ C̄[|s− t| + |y − x|]

for all (s, y), (t, x) ∈ Q0 and suitable constant C̄. The notation |σ| denotes
the operator norm. We also recall that σt, σx denote respectively the t partial
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derivative and the differentialDxσ of the matrix valued function σ(t, x, v); and
|σt|, |σx| are the operator norms. Since σ(·, ·, v) ∈ C1(Q0), the equivalence of
(2.2)(a) and (2.2)(a′) follows from the integrated form of the Mean Value
theorem.

Progressively measurable controls. Let us consider control processes
u(·) which are progressively measurable, in a sense which we now define. Fix
an initial time t ∈ [t0, t1). For t ≤ s ≤ t1, let Bs denote the Borel σ-algebra
on [t, s]. Let (Ω,F , P ) be a probability space, {Fs} an increasing family of
σ-algebras with Fs ⊂ F for all s ∈ [t, t1].

Definition 2.1. A U -valued process u(·), defined on [t, t1] × Ω, is Fs-
progressively measurable if the map (r, ω) → u(r, ω) from [t, s] × Ω into U is
Bs × Fs-measurable for each s ∈ [t, t1].

We call a progressively measurable control process admissible, if moreover

(2.3) E

∫ t1

t

|u(s)|mds < ∞ for m = 1, 2, · · · .

In later sections we shall often assume that the control space U is compact.
For U compact, |u(s)| ≤ M for some M < ∞, and (2.3) automatically holds.

Let w(·) be a Fs-adapted brownian motion on [t, t1], and consider (2.1)
with fixed initial data

(2.4) x(t) = x, x ∈ IRn.

From standard theory of stochastic differential equations with random co-
efficients, (2.1) - (2.4) has a pathwise unique solution x(s) which is Fs-
progressively measurable and has continuous sample paths. Moreover, for each
m = 1, 2, · · ·, the mth order absolute moments Etx|x(s)|m are bounded for
t ≤ s ≤ t1. These facts are reviewed in Appendix D.

Criterion to be minimized. We consider the problem of minimizing a
criterion J similar to the one in III(6.5). However, instead of controlling on
the fixed interval [t, t1] we control up to the smaller of t1 and the exit time of
x(s) from a given open set O ⊂ IRn. We assume that either O = IRn or that
∂O is a compact (n−1)-dimensional manifold of class C3. Let Q = [t0, t1)×O.
for (t, x) ∈ Q, let

(2.5) τ = inf{s : (s, x(s)) �∈ Q}.

Note that τ is the exit time of x(s) from O, if exit occurs by time t1, and
τ = t1 if x(s) ∈ O for all s ∈ [t, t1]. We call τ the exit time from the cylinder
Q. One always has (τ, x(τ)) ∈ ∂∗Q, where

(2.6) ∂∗Q = ([t0, t1] × ∂O) ∪ ({t1} ×O).

Of course, in the particular case O = IRn, Q = Q0 and ∂∗Q is the hyperplane
{t1} × IRn.
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Let L, Ψ be continuous functions which satisfy the following polynomial
growth conditions:

(2.7)

⎧

⎨

⎩

(a) |L(t, x, v)| ≤ C(1 + |x|k + |v|k)

(b) |Ψ(t, x)| ≤ C(1 + |x|k)

for suitable constants C, k. Given initial data (t, x) ∈ Q and any admissible
progressively measurable control process u(·), let

(2.8) J(t, x;u) = Etx

{
∫ τ

t

L(s, x(s), u(s))ds+ Ψ(τ, x(τ))

}

.

The problem is to choose u(·) to minimize J .
Let us restate the problem in a somewhat more systematic way. By a

reference probability system ν let us mean a 4-tuple

ν = (Ω, {Fs}, P, w)

where (Ω,Ft1 , P ) is a probability space, {Fs} is an increasing family of σ-
algebras and w(·) is a Fs-adapted brownian motion on [t, t1]. Let Atν denote
the collection of all Fs-progressively measurable, U -valued processes u(·) on
(t, t1) which satisfy (2.3). We consider the infimum of (2.8) among all u(·) ∈
Atν :

(2.9) Vν(t, x) = inf
Atν

J(t, x;u).

We also consider the infimum of Vν(t, x) among all reference probability sys-
tems ν:

(2.10) VPM (t, x) = inf
ν
Vν(t, x).

We call u∗(·) ∈ Atν ν-optimal if Vν(t, x) = J(t, x;u∗). We call u∗(·) an
optimal admissible progressively measurable control process if u∗(·) ∈ Atν∗ for
some

ν∗ = (Ω∗, {F∗
s }, P ∗, w∗)

and VPM (t, x) = J(t, x;u∗). We will show later in the chapter that, under
suitable assumptions, Vν = VPM for each ν.

Consider the case Q = Q0 and hence τ = t1. We defined the concept of
admissible control system in Chapter III.8 and corresponding candidate VAS

for the “value function”. Given ν, u(·) ∈ Atν and initial data (2.4), let x(·) be
the corresponding solution of (2.1). Then the system

π = (Ω, {Fs}, P, x(·), u(·))

is admissible with respect to the class D = C1,2
p (Q0). To see this, the operators

Av in Section III.6 now have the form
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(2.11) AvΦ = Φt +
1

2

n
∑

i,j=1

aij(t, x, v)Φxixj
+

n
∑

i=1

fi(t,x, v)Φxi
,

where a = σσ′. As in III(5.6) the Ito differential rule applied to Φ ∈ C1,2
p (Q0)

gives

(2.12)

Φ(s, x(s)) − Φ(t, x)−
∫ s

t

Au(r)Φ(r, x(r))dr

=

∫ s

t

DxΦ(r, x(r)) · σ(r, x(r), u(r))dw(r).

Assumption (2.3) and the boundedness of Etx|x(s)|m on [t, t1] for each m
imply

Etx|Φ(s, x(s))| < ∞, Etx

∫ s

t

|Au(r)Φ(r, x(r)|dr < ∞,

Etx

∫ s

t

|DxΦ(r, x(r))|2|σ(r, x(r), u(r)|2dr < ∞.

The right side of (2.12) is then a martingale, and we obtain Dynkin’s formula

(2.13) EtxΦ(t1, x(t1)) − Φ(t, x) = Etx

∫ t1

t

Au(r)Φ(r, x(r))dr.

Therefore, π is an admissible system.
Every admissible, progressively measurable u(·) defines an admissible sys-

tem π, with J(t, x;u) = J(t, x;π). Hence, we always have VAS ≤ VPM , where
VAS was defined by formula III(8.4). While we do not know in general whether
equality holds, this will be proved in many cases. In some instances, the Ver-
ification Theorem in Section 3 can be used to see that VAS = VPM .

Remark 2.1. Additional restrictions are sometimes made on the class
of reference probability systems admitted. One such restriction would be to
require that Fs is the σ - algebra generated by the brownian motion w(·),
instead of assuming (as we have done) only that w(·) is Fs - adapted. In the
formulation of singular stochastic control problems in Chapter VIII, we shall
assume right continuity of the σ - algebras Fs. Since we will make assumptions
under which Vν turns out to be the same for all reference probability systems
ν, such additional restrictions turn out to be unimportant for our purposes.

IV.3 Hamilton-Jacobi-Bellman PDE

For controlled Markov diffusion processes, the dynamic programming equation
III(7.5) becomes a nonlinear partial differential equation (PDE) of second or-
der. See (3.3) below. Let Sn

+ denote the set of symmetric, nonnegative definite
n× n matrices A = (Aij), i, j = 1, · · · , n. Let a = σσ′ and
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(3.1) tr aA =

n
∑

i,j=1

aijAij .

For (t, x) ∈ Q0, p ∈ IRn, A ∈ Sn
+, let

(3.2) H(t, x, p, A) = sup
v∈U

[−f(t, x, v) · p− 1

2
tr a(t, x, v)A− L(t, x, v)].

If U is compact, the supremum is always attained. Otherwise, some extra
conditions are needed to insure this. For each fixed (t, x, v), f · p+ 1

2 tr aA is a
linear function of (p,A). Hence, H(t, x, ·, ·) is a convex function on IRn × Sn

+.
As in Chapter III, let C1,2(B) denote the set of functions Φ(t, x) such that
Φ and its partial derivatives Φt, Φxi

, Φxixj
, i, j = 1, · · · , n are continuous on

B ⊂ IRn+1. Let DxΦ denote the gradient of Φ in x and D2
xΦ = (Φxixj

), i, j =
1, · · · , n. The dynamic programming equation III(7.5) can then be written as

(3.3) −∂V
∂t

+ H(t, x,DxV,D
2
xV ) = 0, (t, x) ∈ Q.

Equation (3.3) is often called the Hamilton-Jacobi-Bellman (HJB) partial dif-
ferential equation associated with the optimal stochastic control problem for-
mulated in Section 2. It is to be considered in the cylinder Q = [t0, t1) × O
with the boundary data

(3.4) V (t, x) = Ψ(t, x) for (t, x) ∈ ∂∗Q.

The HJB partial differential equation is called uniformly parabolic if there
exists c > 0 such that, for all (t, x, v) ∈ Q0 × U and ξ ∈ IRn

(3.5)

n
∑

i,j=1

aij(t, x, v)ξiξj ≥ c|ξ|2.

When (3.5) holds, results from the theory of second order nonlinear PDEs of
parabolic type imply existence and uniqueness of a solution to the boundary
value problem (3.3)-(3.4). These results will be summarized, without proofs,
in Section 4.

When (3.5) does not hold, the HJB equation (3.3) is said to be of de-
generate parabolic type. In this case a smooth solution V (t, x) cannot be ex-
pected. Instead, the value function will be interpreted as a solution in some
broader sense, for instance as a generalized solution (Section 10). Another
convenient interpretation of the value function is as a viscosity solution to
the HJB equation (Chapter V.) In addition, in the degenerate parabolic case
the value function may not assume continuously the boundary data (3.4) at
points (t, x) ∈ [t0, t1)×∂O. An additional assumption will be made in Section
V.2, to insure that VPM (t, x) is continuous in Q.
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Let us next prove a verification result (Theorem 3.1), which has somewhat
different assumptions than Theorem III.8.1. For B ⊂ Q0, let Cp(B) denote
the set of all Φ continuous on B and satisfying a polynomial growth condition

(3.6) |Φ(t, x)| ≤ K(1 + |x|m)

for some constants K and m.
Theorem 3.1. (Verification Theorem). Let W ∈ C1,2(Q) ∩ Cp(Q) be a

solution to (3.3)-(3.4). Then:

(a) W (t, x) ≤ J(t, x;u) for any admissible progressively measurable control
process u(·) and any initial data (t, x) ∈ Q.

(b) If there exist ν∗ = (Ω∗, {F∗
s }, P ∗, w∗) and u∗(·) ∈ Atν∗ such that

(3.7) u∗(s) ∈ arg min[f(s, x∗(s), v) ·DxW (s, x∗(s))

+
1

2
tr a(s, x∗(s), v)D2

xW (s, x∗(s)) + L(s, x∗(s), v)]

for Lebesgue×P ∗ - almost all (s, ω) ∈ [t, τ∗] × Ω∗, then W (t, x) =
VPM (t, x) = J(t, x;u∗).

Here x∗(s) is the solution of (2.1) corresponding to ν∗ and u∗(·), with
x∗(t) = x, and τ∗ is the exit time of (s, x∗(s)) from Q.

Theorem 3.1 will be obtained as a special case of the following result, in
which the exit time τ is replaced by an Fs - stopping time θ with t ≤ θ ≤ τ .
(We recall that θ is an Fs - stopping time provided that the event θ ≤ s is Fs

- measurable for each s ∈ [t, t1].)
Lemma 3.1. Let W be as in Theorem 3.1. Then:

(i) If u(·) ∈ Atν and θ is an Fs-stopping time with t ≤ θ ≤ τ , then

W (t, x) ≤ Etx

{

∫ θ

t

L(s, x(s), u(s))ds+W (θ, x(θ))

}

.

(ii) If ν∗, u∗(·) are as in Theorem 3.1(b), then for every F∗
s -stopping time θ∗

with t ≤ θ∗ ≤ τ∗

W (t, x) = Etx

{

∫ θ∗

t

L(s, x∗(s), u∗(s))ds+W (θ∗, x∗(θ∗))

}

.

Proof of Lemma 3.1 (a). We return to notation Av of Chapter III and
recall that (3.3) is the same as III(7.5) in case of controlled Markov diffusions.
Let us first assume that Q is bounded, i.e. that O is bounded, and that
W ∈ C1,2(Q). For each (t, x) ∈ Q, v ∈ U ,

0 ≤ AvW (t, x) + L(t, x, v).
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Let us replace t, x, v by s, x(s), u(s), t ≤ s ≤ τ :

(3.8) 0 ≤ Au(s)W (s, x(s)) + L(s, x(s), u(s)).

We next use the Ito differential rule, integrated from t to θ in III(5.6), to get

(3.9) W (θ, x(θ)) −W (t, x) −
∫ θ

t

Au(s)W (s, x(s))ds = M(θ)

where

M(s) =

∫ s

t

χτ (r)DxΦ(r, x(r)) · σ(r, x(r), u(r))dw(r)

is a Fs-martingale. Here χτ (r) is the indicator function of the event r ≤ τ .
Then EtxM(θ) = 0. We get (i) by taking expectations in (3.9) and using (3.8).

In the general case, for 0 < ρ−1 < (t1 − t0) let

Oρ = O ∩ {|x| < ρ, dist (x, ∂O) >
1

ρ
} , Qρ = [t0, t1 − 1

ρ
) ×Oρ.

Let τρ be the exit time of (s, x(s)) from Qρ, and θρ = θ ∧ τρ = min(θ, τρ).
Since Qρ is bounded and W ∈ C1,2(Qρ), by part (i)

(3.10) W (t, x) ≤ Etx

{

∫ θρ

t

L(s, x(s), u(s))ds+W (θρ, x(θρ))

}

.

As ρ → ∞, θρ increases to θ with probability 1. Since

Etx

∫ θρ

t

|L(s, x(s), u(s))|ds ≤ Etx

∫ t1

t

|L(s, x(s), u(s))|ds < ∞,

lim
ρ→∞

Etx

∫ θρ

t

L(s, x(s), u(s))ds = Etx

∫ θ

t

L(s, x(s), u(s))ds.

Since W ∈ Cp(Q), W (θρ, x(θρ)) → W (θ, x(θ)) with probability 1 as ρ → ∞,
and

|W (θρ, x(θρ))| ≤ K(1 + |x(θρ)|k| ≤ K(1 + ||x(·)||k)

for suitable k,K, where || || is the sup norm on [t, t1]. By Appendix D,
Etx||x(·)||m < ∞ for each m = 1, 2, · · ·. We take m > k and let α = mk−1.
Then Etx|W (θρ, x(θρ))|α is bounded, which implies uniform integrability of
the random variables W (θρ, x(θρ)). Hence

lim
ρ→∞

EtxW (θρ, x(θρ)) = EtxW (θ, x(θ)).

This proves (i).
Proof of Lemma 3.1(ii). Inequality (3.8) is an equality when u(s) =

u∗(s) and x(s) = x∗(s). Then (3.10) also becomes an equality. �
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Remark 3.1. From (3.8)

(3.11) ζs = W (s ∧ τ, x(s ∧ τ)) −
∫ s∧τ

t

L(r, x(r), u(r))dr

is a local submartingale, and a local martingale when u(s) = u∗(s), x(s) =
x∗(s) and τ = τ∗. While we do not explicitly use this property, it is essentially
the basis for the proof of Lemma 3.1.

Proof of Theorem 3.1. For part (a), take θ = τ . Since W satisfies (3.4),
W (τ, x(τ)) = Ψ(τ, x(τ)). Use Lemma 3.1(i); similarly, use Lemma 3.1(ii) for
part (b). �

Markov control policies. As in earlier chapters we call a Borel measur-
able function u : Q0 → U a Markov control policy. Let L denote the class of
Markov control policies u with the following properties:

(i) u is continuous on Q0;

(3.12) (ii) For each ρ > 0 there exists Kρ such that for t0 ≤ t ≤ t1,

|u(t, x) − u(t, y)| ≤ Kρ|x− y|, |x| ≤ ρ, |y| ≤ ρ;

(iii) There exists C such that |u(t, x)| ≤ C(1 + |x|).
Let u ∈ L. Given any (Ω,F , {Fs}, P ) and Fs-adapted brownian motion

w(s), the stochastic differential equation

(3.13)

⎧

⎨

⎩

dx = f(s, x(s), u(s, x(s))ds+ σ(s, x(s), u(s, x(s))dw(s),

x(t) = x

has a pathwise unique solution. The process

(3.14) u(s) = u(s, x(s))

is Fs progressively measurable and admissible, since Etx|x(s)|m is bounded
on [t, t1] for each m. We then write J(t, x;u) instead of J(t, x;u).

Theorem 3.1 then has the following:
Corollary 3.1. If there exists u∗ ∈ L such that

(3.15)
u∗(s, y) ∈ arg min[f(s, y, v) ·DxW (s, y)

+ 1
2 tr a(s, y, v)D2

xW (s, y) + L(s, y, v)]

for all (s, y) ∈ Q, then W (t, x) = J(t, x;u∗) for all (t, x) ∈ Q.
Proof. Given any reference probability system ν, let x∗(s) be the solution

to (3.13) with u = u∗, and

(3.16) u∗(s) = u∗(s, x∗(s)) , t ≤ s ≤ τ∗.
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Then we use Theorem 3.1(b). �

Remark 3.2. We call u∗ an optimal Markov control policy. For u ∈ L the
reference probability system ν can be arbitrary, since (3.13) has a pathwise
unique solution. Thus, if there is an optimal u∗ ∈ L, then

W (t, x) = Vν(t, x) = VPM (t, x) = J(t, x;u∗).

If, in addition, Q = Q0 and W ∈ C1,2
p (Q0), then Theorem III.8.1 gives

W (t, x) = VAS(t, x). In that case, all of the candidates Vν , VPM , VAS for the
name “value function” agree.

Unfortunately, there is generally no u∗ which satisfies both (3.12) and
(3.15). If, for instance, the control space U is compact and convex, then order
to have a continuous function u∗ satisfying (3.15) one generally needs to know
that f ·DxW+ 1

2 tr aD2
xW+L, considered as a function of v, has a minimum on

U at a unique v∗ = u∗(s, y). When this uniqueness property fails, one generally
must allow discontinuous Markov control policies in order to get an optimal
policy u∗. In Corollary 3.2, u∗ is merely required to be bounded and Borel
measurable. However, in addition the stochastic differential equation (3.13)
with initial data is required to have a solution x∗(s) which has a probability
density. In Section 4 we will show how Corollary 3.2 can be applied in the
uniformly parabolic case.

Corollary 3.2. Let U be compact. Let u∗ be Borel measurable and satisfy
(3.15) for almost all (s, y) ∈ Q. Given (t, x) ∈ Q, assume that there exist
ν∗ = (Ω∗, {F∗

s }, P ∗, w∗) and a solution x∗(·) to

(3.17) dx∗ = f(s, x∗(s), u∗(s, x∗(s))ds+ σ(s, x∗(s), u∗(s, x∗(s))dw∗(s)

with x∗(t) = x, such that

(3.18)

∫ t1

t

Ptx{(s, x∗(s)) ∈ N}ds = 0

for every N ∈ B(Q) with (n+ 1)-dimensional Lebesgue measure 0. Then

W (t, x) = VPM (t, x) = J(t, x;u∗).

Proof. By hypothesis, there exists N ∈ B(Q) with (n + 1)-dimensional
Lebesgue measure 0 such that (3.15) holds for all (s, y) ∈ Q\N . Let χ(s) be
the indicator function of the event (s, x∗(s)) ∈ N . Then

Etx

∫ t1

t

χ(s)ds =

∫ t1

t

Ptx{(s, x∗(s)) ∈ N}ds = 0.

The conclusion follows from Theorem 3.1(b). �

Remark 3.3. The results of this section extend readily to the case when
the criterion J to be minimized has the following more general form. Let
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ℓ(t, x, v) be a continuous function which is bounded above (ℓ ≤ M for some
M). Let

(3.19) J(t, x;u) = Etx

{
∫ τ

t

Γ (s)L(s, x(s), u(s))ds+ Γ (τ)Ψ(τ, x(τ))

}

,

(3.20) Γ (s) = exp

∫ s

t

ℓ(r, x(r), u(r))dr.

In case ℓ = 0, (3.19) becomes (2.8). The Hamilton - Jacobi - Bellman equation
now has the form

(3.21) −∂V
∂t

+ H(t, x,DxV (t, x), D2
xV (t, x), V (t, x)) = 0,

where for (t, x) ∈ Q0, p ∈ IRn, A ∈ Sn
+, V ∈ IR

(3.22) H(t, x, p, A, V ) = sup
v∈U

[−f(t, x, v) · p

−1

2
tr a(t, x, v)A− L(t, x, v) − ℓ(t, x, v)V ].

In contrast to (3.2), the “zeroth order term” −ℓV appears in (3.22). Cor-
respondingly, in the statement of the Verification Theorem 3.1, a term
ℓ(s, x∗(s), v)W (s, x∗(s)) must be added on the right side of formula (3.7).
To prove this form of the Verification Theorem, in the proof of Lemma 3.1 a
Feynman-Kac formula (see Appendix formula (D.15)) is used instead of the
Ito differential rule.

In Section VI.8 we will consider again criteria of the form (3.19)-(3.20), in
case L = 0, Ψ = 1. The problem of minimizing J is called there a risk sensitive
control problem.

IV.4 Uniformly parabolic case

When the condition (3.5) of uniform parabolicity holds we expect the bound-
ary value problem (3.3) - (3.4) to have a unique solution W (t, x) with the
properties required in the Verification Theorem 3.1. In this section we state,
without proof, some results of this kind. These results are proved by methods
in the theory of second order nonlinear parabolic partial differential equations.
In the first result which we cite the following assumptions are made:

(4.1)

(a) U is compact;
(b) O is bounded with ∂O a manifold of class C(3);
(c) For g = a, f, L, the function g and its partial derivatives

gt, gxi
, gxixj

are continuous on Q× U, i, j = 1, · · · , n.
(d) Ψ ∈ C3(Q0).
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Theorem 4.1. If assumptions (3.5) (4.1) hold, then (3.3)-(3.4) has a
unique solution W ∈ C1,2(Q) ∩ C(Q).

This theorem is due to Krylov. For a proof see [Kr2, Chap. 6, esp. pp. 279
and 297].

In case σ(t, x) does not depend on the control parameter v, the HJB equa-
tion (3.3) takes the form

(4.2) −∂V
∂t

− 1

2
tr a(t, x)D2

xV +H(t, x,DxV ) = 0,

where as in the case of deterministic optimal control (see formula I(5.4))

(4.3) H(t, x, p) = sup
v∈U

[−f(t, x, v) · p− L(t, x, v)].

A partial differential equation of the form (4.2) is called semilinear, since
D2

xV appears linearly. Results for semilinear, uniformly parabolic HJB equa-
tions were proved before corresponding results for fully nonlinear uniformly
parabolic PDEs were known. See [LSU]. If some standard technical estimates
for linear, uniformly parabolic PDEs are taken for granted, then one can also
consult [FR, Sec. VI.6 and Appendix E.]

Results like Theorem 4.1 in an unbounded region Q require additional
boundedness or growth assumptions on a, f, L, Ψ and certain of their partial
derivatives. To simplify matters, in the unbounded case let us consider only
O = IRn (hence Q = Q0). Let

(4.4) Ψ(t1, x) = ψ(x).

The next result which we cite is a special case of a theorem of Krylov [Kr
2, p. 301]. We denote by Ck

b (IRn) the space of φ such that φ and its partial

derivatives of orders ≤ k are continuous and bounded. The space Cm,k
b (Q0)

is defined similarly. See the Notation list before Chapter I. The following
assumptions are made:

(4.5)

(a) U is compact;
(b) a, f, L are continuous and bounded on Q0 × U ;
(c) For g = a, f, L, the function g and its partial

derivatives gt, gxi
, gxixj

are continuous and bounded on
Q0 × U, i, j = 1, · · · , n;

(d) ψ ∈ C3
b (IRn).

Theorem 4.2. Let Q = Q0. If assumptions (3.5) (4.5) hold, then (3.3)
with the Cauchy data W (t1, x) = ψ(x) has a unique solution W ∈ C1,2

b (Q0).
When the strong boundedness restrictions in (4.5) do not hold, one can

often find a solution W ∈ C1,2(Q0) ∩ Cp(Q0) by approximating a, f, L, ψ by
functions which satisfy (4.5). Let us cite a result of this type, for the semilinear
case. We assume that σ(t, x) is a nonsingular n× n matrix. Moreover:
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(4.6)

(a) U is compact;

(b) f(t, x, v) = b̃(t, x) + σ(t, x)Θ(t, x, v);

(c) b̃, σ are in C1,2(Q0); moreover, σ, σ−1, σx, b̃x are
bounded on Q0,while Θ ∈ C1(Q0 × U) with
Θ,Θx bounded;

(d) L ∈ C1(Q0 × U), and L, Lx satisfy a polynomial
growth condition;

(e) ψ ∈ C3(IRn), and ψ, ψx satisfy a polynomial
growth condition.

Theorem 4.3. Let Q = Q0 and assume (3.5), (4.6). Then (4.2) with the
Cauchy data W (t1, x) = ψ(x) has a unique solution W ∈ C1,2(Q0) ∩Cp(Q0).

This is [FR, Thm 6.2, p. 169]. The proof of existence of W given there uses
PDE arguments; see [FR, p. 210]. However, uniqueness is obtained using the
stochastic control interpretation of the HJB equation (3.3) and a verification
theorem.

Remark 4.1. The existence Theorems 4.1 - 4.3 all extend readily to HJB
equations of the more general form (3.21) - (3.22). It is sufficient to add the
assumption that (4.1)(c) if Q is bounded, or (4.5)(c) if Q = Q0, also holds for
g = ℓ.

Optimal Markov control policies. Let us next sketch how to apply
Corollary 3.2 to show that an optimal Markov control policy u∗ exists. As
already pointed out in Section 3, the requirement that u∗ ∈ L is generally
too restrictive. Therefore, we seek u∗ which may be only bounded and Borel
measurable. For (s, y, v) ∈ Q× U , let

F (s, y, v) = f(s, y, v) ·DxW (s, y) +
1

2
tr a(s, y, v)D2

xW (s, y) + L(s, y, v),

where W ∈ C1,2(Q) is a solution to the HJB equation (3.3). By a measurable
selection theorem there exist Borel measurable u∗ : Q → U and N ∈ B(Q)
with (n+ 1)-dimensional Lebesgue measure 0, such that

u∗(s, y) ∈ arg minF (s, y, v)

for all (s, y) ∈ Q\N . See [FR, Appendix B]. For (s, y) ∈ Q0\Q, let u∗(s, y) =
v0, where v0 ∈ U is arbitrary. In order to apply Corollary 3.2, we need ν∗ and
a solution x∗(s) to (3.17) with x∗(t) = x, such that (3.18) holds. Let us cite
two results which provided sufficient conditions for this.

Case 1. Let us assume that σ(t, x, v) is an n× n matrix, such that for all
(t, x, v) ∈ Q0 × U ,

(4.7)

n
∑

i,j=1

σij(t, x, v)ξiξj ≥ γ|ξ|2, where γ > 0.

Assumption (4.7) implies that a = σσ′ satisfies the uniform parabolicity as-
sumption (3.5). By a result of Krylov about existence of a solution to a sto-
chastic differential equation with measurable coefficients [Kr 1, p. 87], there
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exist ν∗ and a solution x∗(s) to (3.17) with x∗(t) = x. [It is not asserted that
this solution is unique in probability law.] By an estimate of Krylov [Kr 1, p.
66], for each p ≥ n there exists Mp with the following property. For every g
which is Borel measurable on Q0,

(4.8) Etx

∫ t1

t

|g(s, x∗(s))|ds ≤ Mp||g||p+1,

where || ||p+1 is the norm in Lp+1(Q0;m) and m denotes (n+1)-dimensional
Lebesgue measure. If g is the indicator function of N , with m(N) = 0, the
right side of (4.8) is 0. Therefore, (3.18) holds.

Case 2. Let us assume that σ(t, x) is a nonsingular n × n matrix (which
does not depend on v). Moreover, we assume that there exists C such that,
for all (t, x) ∈ Q0:

(4.9) |σ−1(t, x)| ≤ C.

Assumption (4.9) implies (3.5). In this case, the existence of ν∗ and a solution
x∗(s) to (3.17) with x∗(t) = x is immediate from Girsanov’s Theorem. [This
solution is unique in probability law.] It also follows from Girsanov’s Theorem
that x∗(s) has a probability density p∗(s, y) for t < s ≤ t1. See [FR, p. 143].
If m(N) = 0, then

∫ t1

t

Ptx{(s, x∗(s)) ∈ N}ds =

∫ ∫

N

p∗(s, y)dyds = 0.

Therefore, (3.18) holds.
We summarize these results in the following theorem.
Theorem 4.4. Assume (4.1) if O is bounded, or (4.5) if O = IRn. More-

over, assume either (4.7) or (4.9). Then u∗ is an optimal Markov control
policy, and VPM (t, x) = W (t, x) for all (t, x) ∈ Q.

Theorem 4.4 will not be used in the developments which follow.

IV.5 Infinite time horizon

Let us now suppose that the stochastic differential equations (2.1) which de-
scribe the state dynamics are autonomous: f = f(x, v), σ = σ(x, v). We take
t = 0 as the initial time. Then (2.1) becomes

(5.1) dx = f(x(s), u(s))ds+ σ(x(s), u(s))dw(s), s ≥ 0,

with initial data x(0) = x. We assume that f, σ are continuous on IRn × U ,
with f(·, v), σ(·, v) of class C1(IRn) and (as in (2.2))

(5.2) |fx| ≤ C, |σx| ≤ C
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(5.3) |f(x, v)| ≤ C(1 + |x| + |v|), |σ(x, v)| ≤ C(1 + |x| + v|)

for some constant C. As in Section 2, let O ⊂ IRn be open, with either O = IRn

or ∂O a compact manifold of class C3. Let τ denote the exit time of x(s) from
O, or τ = +∞ if x(s) ∈ O for all s ≥ 0.

Let L be continuous on IRn ×U , and g continuous on IRn. We also assume
that L satisfies the polynomial growth condition (2.7a). Given initial data
x ∈ O, we wish to minimize

(5.4) J(x;u) = Ex

{

∫ τ

0

e−βsL(x(s), u(s))ds+ χτ<∞e
−βτg(x(τ))

}

,

where β ≥ 0 is a discount factor. In order to formulate this problem more
precisely, we define admissible progressively measurable control processes as
follows. Let ν = (Ω, {Fs}, P, w) be a reference probability system (Section 2),
where now (Ω,F , P ) is a probability space, Fs ⊂ F , and w(·) is a Fs-adapted
brownian motion on [0,∞). Let Aν denote the set of all Fs-progressively
measurable, U -valued processes u(·) on [0,∞) which satisfy (2.3) with t = 0
and any t1 < ∞, together with

(5.5) Ex

∫ τ

0

e−βs|L(x(s), u(s))|ds < ∞.

Let

(5.6) Vν(x) = inf
Aν

J(x;u)

(5.7) VPM (x) = inf
ν
Vν(x).

The dynamic programming equation (HJB equation) is now the second
order nonlinear partial differential equation

(5.8) βV + H(x,DV,D2V ) = 0, x ∈ O,

where H(x, p,A) is defined by (3.2). See III(9.4). It is considered with the
boundary data

(5.9) V (x) = g(x), x ∈ ∂O.

If there exists c > 0 such that

(5.10)
n
∑

i,j=1

aij(x, v)ξiξj ≥ c|ξ|2

for all ξ ∈ IRn and v ∈ U , then the HJB equation is uniformly elliptic. In that
case, one may expect (5.8)-(5.9) to have a smooth solution which is unique
if O is bounded. For O unbounded and β > 0 there will generally by many
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solutions to (5.8)-(5.9). Among these solutions the value function turns out
to be the one which does not grow too rapidly as |x| → ∞.

When (5.10) does not hold, then the HJB equation is of degenerate elliptic
type. In that case, one cannot expect the value function VPM to be a smooth
solution to (5.8)-(5.9). Indeed, additional assumptions are needed even to
ensure that VPM is continuous on O, and that VPM satisfies (5.8) and (5.9)
in some weaker sense (e.g. as a viscosity solution as defined in Chapter V).

At the end of this section we will mention, without proof, some results
about existence and regularity of solutions to (5.8)-(5.9). However, we first
prove a Verification Theorem similar to Theorems III.9.1 and 3.1, and give
some examples.

Theorem 5.1 (Verification Theorem). Let W ∈ C2(O) ∩ Cp(O) be a
solution to (5.8)-(5.9). Then for every x ∈ O:

(a) W (x) ≤ J(x;u) for any admissible progressively measurable control
process u(·) such that

(5.11) lim inf
t1→∞

e−βt1Ex

[

χτ≥t1W (x(t1))
]

≤ 0.

(b) Suppose that there exist ν∗ = (Ω∗, {F∗
s }, P ∗, w∗) and u∗(·) ∈ Aν∗ such

that

(5.12) u∗(s) ∈ arg min
[

f(x∗(s), v) ·DW (x∗(s))

+
1

2
tr a(x∗(s), v)D2W (x∗(s)) + L(x∗(s), v)

]

for Lebesgue ×P ∗- almost all (s, ω) such that 0 ≤ s < τ∗(ω), and

(5.13) lim
t1→∞

e−βt1Ex

[

χτ∗≥t1W (x∗(t1))
]

= 0.

Then W (x) = J(x;u∗).
Sketch of proof. We apply the Ito differential rule to Φ(x, t) = W (x)e−βt.

As in the proof of Lemma 3.1, for any t1 < ∞,

W (x) ≤ Ex

{
∫ t1∧τ

0

e−βsL(x(s), u(s))ds

+e−βt1χτ≥t1W (x(t1)) + e−βτχτ<t1g(x(τ))

}

.

For u(·) = u∗(·) equality holds. We then proceed as in the proof of Lemma
III.9.1.

�

Theorem 5.1 does not quite allow us to conclude that W (x) = VPM (x).
However, if we let ṼPM (x) be the infimum of J(x;u) among all ν and u(·) ∈ Aν

such that (5.11) holds, then

W (x) = ṼPM (x) = J(x;u∗).
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This complication can often be avoided. See Corollary 5.1, and also Examples
5.1, 5.2.

Optimal stationary Markov control policies. As in (9.4) we may
seek optimal controls of the form u∗(s) = u∗(x∗(s)), where u∗ is a stationary
Markov control policy such that

(5.14) u∗(x) ∈ arg min[−GvW (x) + L(x, v)]

(5.15) −GvW (x) = f(x, v) ·DW (x) +
1

2
tr a(x, v)D2W (x).

An analogue of Theorem 4.4, asserting the existence of an such optimal u∗

can be proved. However, we shall not do so.
If W is bounded on O (in particular, if O is bounded and W ∈ C(O))

conditions (5.11), (5.13) are readily verified:
Corollary 5.1. Let W ∈ C2(O) ∩ Cb(O) be a solution to (5.8)-(5.9).

Moreover, assume either that β > 0 or that τ < ∞ with probability 1 for
every admissible progressively measurable control process u(·). Then W (x) =
J(x;u∗) = VPM (x).

Minimum mean exit time from O. Let us apply Corollary 5.1 in the
special case L(x, v) ≡ 1, g(x) ≡ 0, β = 0. Let O be bounded and U compact.
Moreover, assume the uniform ellipticity condition (5.10), which implies τ <
∞ with probability 1. Let J(x;u) = Exτ , the mean exit time of x(s) from O.
The HJB equation in this case becomes

(5.16) min
v∈U

[−GvV (x) + 1] = 0, x ∈ O.

The boundary data are

(5.17) V (x) = 0, x ∈ ∂O.

Example 5.1. Let n = 1, O = (−b, b) and let

dx = u(s)ds+ αdw(s), α > 0,

where the control constraint |u(s)| ≤ 1 is imposed. Then (5.16) becomes

α2

2
V

′′

(x) + min
|v|≤1

v · V ′

(x) + 1 = 0, |x| < b,

with V (b) = V (−b) = 0. We expect the value function V (x) = VPM (x) to
be symmetric with V (x) decreasing for 0 < x < b. Moreover, u∗(x) = sgn x
should turn out to be a stationary optimal Markov control policy. With this
in mind let W (x) be the solution to

α2

2
W

′′

(x) +W
′

(x) + 1 = 0, 0 < x < b,
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W
′

(0) = 0, W (b) = 0.

For −b ≤ x ≤ 0, let W (x) = W (−x). The explicit formula for W (x) is

W (x) =
α2

2
[e− 2b

α2 − e−
2|x|

α2 ] + b− |x|.

Then W ∈ C2([−b, b]) and W satisfies (5.16)-(5.17). As in the discussion
preceding Theorem 4.4, Girsanov’s Theorem implies that the stochastic dif-
ferential equation

dx∗ = sgn x∗(s)ds+ αdw∗(s), s ≥ 0,

with initial data x∗(0) = x has a solution for some reference probability system
ν∗ = (Ω∗, {F∗

s }, P ∗, w∗). We take u∗(s) = sgn x∗(s). Corollary 5.1 can then
be applied to show that VPM (x) = W (x) and that u∗(x) = sgn x is an
optimal stationary Markov control policy.

The next example comes from financial economics.
Example 5.2 (Merton’s portfolio problem). Chapter X of this book

is concerned with applications of stochastic control theory to finance. The
earliest such application was Merton’s classical portfolio optimization problem
[Mer1]. This is formulated as follows. An investor has a portfolio consisting
of two assets, one “risk free” and the other “risky”. The price p(s) per share
of the risk-free asset changes according to dp = prds while the price S(s)
of the risky asset changes according to dS = S(µds + σdw(s)). Here r, µ, σ
are constants with r < µ, σ > 0 and w(s) is a brownian motion. Let x(s)
denote the investor’s wealth at time s, π(s) the fraction of wealth in the risky
asset and c(s) the consumption rate. No constraint is imposed on π(s), but
it is required that x(s) ≥ 0, c(s) ≥ 0. Then x(s) changes according to the
stochastic differential equation

(5.18) dx = (1 − π(s))x(s)rds+ π(s)x(s)(µds+ σdw(s)) − c(s)ds.

We stop the process if the wealth x(s) reaches 0 (bankruptcy). Thus O =
(0,∞). If we write u1(s) = π(s), u2(s) = c(s), then the control is the two-
dimensional vector u(s) = (u1(s), u2(s)), subject to the constraint u2(s) ≥ 0.
Thus U = (−∞,∞) × [0,∞) The “running cost” is

(5.19) L(x, v2) = ℓ(v2)

where ℓ(c) is the utility of consuming at rate c > 0. We assume that ℓ(0) =
0, ℓ

′

(0+) = +∞, ℓ
′

(c) > 0, ℓ
′′

(c) < 0 for c > 0. The problem is to maximize
the total expected utility, discounted at rate β > 0:

(5.20) J(x;u1, u2) = Ex

∫ τ

0

e−βsℓ(c(s))ds

where c(s) = u2(s) is the consumption rate and either τ = +∞ or τ is the
bankruptcy time.
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For v = (v1, v2) ∈ U ,

−GvW (x) =
σ2v2

1x
2

2
Wxx + (µ− r)v1xWx + rxWx − v2Wx.

The dynamic programming equation (5.8) can be put in the form:

(5.21) βW = max
v1

[

σ2v2
1x

2

2
Wxx + (µ− r)v1xWx

]

+rxWx + max
v2≥0

[ℓ(v2) − v2Wx].

More precisely, if ℓ is replaced by – ℓ, then the problem is to minimize – J .
Thus – W must satisfy the equation corresponding to (5.21), with min instead
of max and ℓ replaced by – ℓ. This has the form (5.8). The value function V
should be increasing on [0,∞). Moreover, this example has a linear–concave
structure which implies that V is concave. See Example 10.1 below. Accord-
ingly, we look for a solution to (5.21) for x > 0 with Wx > 0,Wxx < 0 and

0 = lim
x→0+

W (x).

By an elementary calculation, we get the following candidates for optimal
investment and consumption policies:

(5.22) u∗
1(x) = − (µ− r)Wx(s)

σ2xWxx(s)
, u∗

2(x) = (ℓ
′

)−1(Wx(x)).

Let us now assume that

(5.23) ℓ(c) =
1

γ
cγ , 0 < γ < 1.

Such an ℓ is called of hyperbolic absolute risk aversion (HARA) type. As a
solution to (5.21), we try

(5.24) W (x) = Kxγ .

Then (5.22) becomes

(5.25) u∗
1(x) =

µ− r

(1 − γ)σ2
, u∗

2(x) = (γK)
1

γ−1x.

Note that u∗
1 does not, in fact, depend on x, and u∗(x) is linear in x.

It remains to determine K. By substituting (5.24) and (5.25) in (5.21) we
get a nonlinear equation for K, which has a positive solution provided

(5.26) β >
(µ− r)2γ

2σ2(1 − γ)
+ rγ.
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Let us verify that u∗
1, u

∗
2 are optimal policies and that W (x) is the max-

imum expected discounted utility. Since W (x) ≥ 0, condition (5.11) is auto-
matically satisfied by −W (recall that signs change for a problem of maximum
rather than minimum). Hence by Theorem 5.1(a) by W (x) ≥ J(x;u1, u2) for
all admissible u1(·), u2(·). Instead of verifying (5.13), let us check directly that,
for all x > 0,

(5.27) W (x) = J(x;u∗
1, u

∗
2).

Since u∗
1 is constant and u∗

2(x) is linear in x, x∗(s) satisfies a linear, constant
coefficient stochastic differential equation (5.18) which can be solved explicitly.
By doing so, we find that x∗(s) > 0 for all s ≥ 0. (In fact by applying the Ito
differential rule to log x∗(s), we find that log x∗(s) is a brownian motion with
drift). Thus τ∗ = +∞. As in the proof of Theorem 5.1

W (x) = Ex

{

1

γ

∫ t1

0

e−βs [u∗
2(x

∗(s))]
γ
ds+ e−βt1W (x∗(t1))

}

for any t1 > 0. Since W (x∗(t1)) ≥ 0 this implies by (5.25)

(5.28) Ex

∫ ∞

0

e−βs[x∗(s)]γds < ∞.

Since W (x∗(t1)) = K[x∗(t1)]
γ , we get (5.27) by sending t1 → ∞ through a

sequence such that e−βt1Ex[x∗(t1)]
γ tends to 0.

Remark 5.1. In this model there is no way to create wealth or to consume
once bankruptcy occurs. The problem which we have formulated is equivalent
to one with a state constraint (x(s) ≥ 0 and τ = +∞ in (5.20)).

Remark 5.2. It was shown by Karatzas - Lehoczky - Sethi - Shreve [KLSS]
that the Merton problem has a relatively explicit solution even if ℓ(c) does
not have the special HARA form (5.23). They show that by introducing a
new “independent variable” the dynamic programming equation for W (x) is
changed into an inhomogeneous second order linear differential equation. This
will be discussed in Section X.4.

When u1(s) > 1, the term (1 − u1(s))x(s) in (5.18) is negative. This term
represents money borrowed by the investor; and it has been implicitly as-
sumed that money is borrowed at the same rate r as the return rate for the
riskless asset. When the borrowing rate is larger than r, the dynamic program-
ming equation no longer has an explicit solution W (x). This case has been
studied by Fleming-Zariphopoulou [FZ] and Fitzpatrick-Fleming [FF] using
viscosity solution techniques and numerical solutions of the dynamic program-
ming equation. Another simplification in Merton’s problem is that transaction
costs were ignored. When these are included in the model, one has a stochas-
tic control problem of “singular” type. The portfolio selection problem with
transaction cost is solved by viscosity solution methods in Section X.5.

For results like Theorem 4.1 concerning the existence of a classical solution
W ∈ C2(O) ∩C(Ō) when O is bounded and the uniform ellipticity condition
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(5.10) holds, we refer to Evans [E1] [E4], Gilbarg - Trudinger [GT, Thm.
17.17], Trudinger [Tu].

IV.6 Fixed finite time horizon problem: Preliminary
estimates

We will take Q = Q0 = [t0, t1) × IRn in the rest of this chapter. Thus, control
occurs on a fixed finite interval [t, t1]. Our goal is to study systematically the
value function VPM , without the uniform parabolicity condition (3.5). For
notational simplicity, let us write

V (t, x) = VPM (t, x).

We can no longer expect that V ∈ C1,2(Q0); hence V cannot be in general
a classical solution at the HJB equation (3.3). However, we will find that V
satisfies (3.3) in some extended sense (as a generalized solution in Section 10,
or a viscosity solution in Chapter V.)

We make the following assumptions:

(6.1)

(a) U is compact;
(b) f, σ are continuous on Q0 × U, and f(·, ·, v), σ(·, ·, v)

are of class C1(Q0) for each v ∈ U ;
(c) For suitable C1, C2

|ft| + |fx| ≤ C1, |σt| + |σx| ≤ C1,
|f(t, 0, v)| + |σ(t, x, v| ≤ C2.

Remark 6.1. The assumptions (6.1) are similar to (2.2). However, compact-
ness of U and boundedness of σ are now assumed. We have not sought ut-
most generality, under the weakest possible assumptions. For example, for
the estimates in this section one could assume instead of class C1(Q0) that
f(t, ·, v), σ(t, ·, v) satisfy a Lipschitz condition uniformly with respect to t, v.

Unless stated otherwise, we shall also suppose that

(6.2) ψ(x) = Ψ(t1, x) = 0, x ∈ IRn.

This is scarcely a restriction. Indeed, if ψ ∈ C1,2
p (Q0) then the Dynkin formula

implies that

J(t, x;u) = ψ(x) + Etx

∫ t1

t

L̃(s, x(s), u(s))ds,

with L̃ = L−Gvψ. The first term ψ(x) on the right side is unaffected by the
control u(·). Hence to minimize J is equivalent to minimizing the last term.

We assume that L is continuous on Q0 × U and that

(6.3) |L(t, x, v)| ≤ C3(1 + |x|k)
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for suitable C3 and k. We shall use standard results about stochastic differ-
ential equations with random (progressively measurable) coefficients. These
are summarized in Appendix D. In the notation of the Appendix D, given a
progressively measurable u(·), let

b(s, y) = f(s, y, u(s)), γ(s, y) = σ(s, y, u(s)).

Then (2.1) can be rewritten (Appendix (D.1)) as

(2.1
′

) dx = b(s, x(s))ds+ γ(s, x(s))dw(s),

with initial data x(t) = x. If we let

Λ(s, y) = L(s, y, u(s))

then

J(t, x;u) = Etx

∫ t1

t

Λ(s, x(s))ds.

From Appendix (D.7)

(6.4) Etx‖x(·)‖m ≤ Bm(1 + |x|m),

where || || is the sup norm on [t, t1]. The constant Bm depends on C1 and
C2 in (6.1c) as well as U and t1 − t0. See Appendix (D.5). By (6.3) and (6.4)
with m = k,

(6.5) |J(t, x;u)| ≤ M(t1 − t)(1 + |x|k),

with M = C3(1 +Bk). From the definition (2.10) of V = VPM and (6.5):

(6.6) |V (t, x)| ≤ M(t1 − t)(1 + |x|k), (t, x) ∈ Q.

The fact the M depends on f, σ, L only through the constants C1, C2, C3 and
k will be useful when we make various approximations to f, σ and L.

Let us first obtain bounds for the change in the value function V when f
and L are approximated by certain functions fρ and Lρ with compact support.
For each ρ > 0 choose αρ ∈ C∞(IRn) such that

0 ≤ αρ(x) ≤ 1, |Dαρ(x)| ≤ 2,

αρ(x) = 1 for |x| ≤ ρ, αρ(x) = 0 for |x| ≥ ρ+ 1.

Let Lρ = αρL, fρ = αρf . Note Lρ and fρ satisfy (6.1) and (6.3) with the same

C2, C3 and C
′

1 which does not depend on ρ.
Given a probability reference system ν and progressively measurable u(·) ∈

Atν , let xρ(s) denote the solution to
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(2.1ρ) dxρ = fρ(s, xρ(s), u(s))ds+ σ(s, xρ(s), u(s))dw(s)

with xρ(t) = x(t) = x. From the theory of stochastic differential equations,
with probability 1

(6.7) xρ(s) = x(s) for t ≤ s ≤ τρ,

where τρ is the exit time of (s, x(s)) from Qρ = [t0, t1) × {|x| < ρ}. See [GS2]
or [IW, Chap. 4]. By (6.4) with m = 1,

(6.8) Ptx(τρ < t1) ≤ Ptx(‖x(·)‖ ≥ ρ) ≤ B1ρ
−1(1 + |x|).

Let
Λρ(s, y) = Lρ(s, y, u(s)).

Lemma 6.1. There exists C such that

(6.9) Etx

∫ t1

t

|Λρ(s, xρ(s)) − Λ(s, x(s))|ds ≤ Cρ− 1
2 (1 + |x|2k+1)

1
2 ,

where k is as in (6.3).
Proof. Let χρ be the indicator function of the event τρ < t1. Using the

Cauchy–Schwarz inequality

Etx

∫ t1

τρ

|Λρ|ds ≤ Etx

∫ t1

t

χρ|Λρ|ds

≤ [(t1 − t)Ptx(τρ < t1)Etx

∫ t1

t

|Λρ|2ds]
1
2 .

By (6.3) and (6.4) with m = 2k, for suitable constant Γ

Etx

∫ t1

t

|Λρ|2ds ≤ Γ (1 + |x|2k).

Thus, by (6.8) and Cauchy-Schwarz, for suitable C

Etx

∫ t1

τρ

|Λρ|ds ≤ C

2
ρ− 1

2 (1 + |x|2k+1)
1
2 .

Similarly,

Etx

∫ t1

τρ

|Λ|ds ≤ C

2
ρ− 1

2 (1 + |x|2k+1)
1
2 .

Finally, by (6.7) and definition of Lρ, Λρ(s, xρ(s)) = Λ(s, x(s)) for t ≤ s ≤ τρ.
�

Let

Jρ(t, x;u) = Etx

∫ t1

t

Lρ(s, xρ(s), u(s))ds.
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Then Lemma 6.1 implies

|Jρ(t, x;u) − J(t, x;u)| ≤ Cρ− 1
2 (1 + |x|2k+1)

1
2 .

Since this is true for all ν and u(·) ∈ Atν ,

(6.10) |Vρ(t, x) − V (t, x)| ≤ Cρ− 1
2 (1 + |x|2k+1)

1
2 ,

where Vρ is the value function with f, L replaced by fρ, Lρ. The same inequal-
ity (6.10) holds for |Vρν − Vν |, where ν is any reference probability system.

Let us next obtain estimates in the sup norm ‖ ‖. Let x̃(s) be the solution
of

(2̃.1) dx̃ = f̃(s, x̃(s), u(s))ds+ σ̃(s, x̃(s), u(s))dw(s),

with x̃(t) = x(t) = x. By Appendix (D.9), there exist B̄m such that

(6.11) Etx‖x(·) − x̃(·)‖m ≤ B̄m[ ‖f − f̃‖m + ‖σ − σ̃‖m ].

We also consider an integrand L̃ instead of L, and let

Λ̃(s, y) = L̃(s, y, u(s)).

Lemma 6.2. Assume that L, L̃, L̃x are continuous, and that L− L̃, L̃x are
bounded on Q0 × U . Then

(6.12) Etx

∫ t1

t

|Λ(s, x(s)) − Λ̃(s, x̃(s))|ds

≤ (t1 − t){‖L− L̃‖ + B̄1‖L̃x‖ [ ‖f − f̃‖ + ‖σ− σ̃‖ ] },
with B̄1 as in (6.11) with m = 1.

Proof. We have

|Λ(s, x(s)) − Λ̃(s, x̃(s))| ≤ |Λ(s, x(s)) − Λ̃(s, x(s))| + |Λ̃(s, x(s)) − Λ̃(s, x̃(s))|

≤ ‖L− L̃‖ + ‖L̃x‖ ‖x(·) − x̃(·)‖.
By (6.11) with m = 1 and Cauchy-Schwarz

E‖x(·) − x̃(·)‖ ≤ B̄1[ ‖f − f̃‖ + ‖σ − σ̃‖ ].

�

If we set

J̃(t, x;u) = Etx

∫ t1

t

L̃(s, x̃(s), u(s))ds,

then |J− J̃ | is no more than the left side of (6.12), for every ν and u(·) ∈ Atν .
Therefore,

(6.13) |V (t, x)− Ṽ (t, x)| ≤ (t1 − t){‖L− L̃‖+ B̄1‖L̃x‖ [ ‖f − f̃‖+‖σ− σ̃‖ ]}.
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The same inequality (6.13) holds for |Vν − Ṽν |, where ν is any reference prob-
ability system.

Let us apply Lemma 6.2 to the case when (2.1) is perturbed by adding a

“small” term ǫ
1
2σ1dw1, where w1(·) is a d1-dimensional brownian motion in-

dependent of w(·). Let u(·) ∈ Atµ, where µ = (Ω, {Fs}, P, w,w1) is a reference
probability system. Let xǫ(s) be the solution of

(6.14) dxǫ = f(s, xǫ(s), u(s))ds+ σ(s, xǫ(s), u(s))dw(s) + ǫ
1
2σ1dw1

with xǫ(t) = x(t) = x. Define

Jǫ(t, x;u) = Etx

∫ t1

t

L(s, xǫ(s), u(s))ds,

(6.15) V ǫ(t, x) = inf
µ

inf
Atµ

Jǫ(t, x;u).

In Lemma 6.2 we take f̃ = f, L̃ = L and σ̃ = (σ, ǫ
1
2σ1). The matrices σ̃(t, x, v)

are n× (d+ d1) dimensional, where d, d1 are the respective dimensions of the
brownian motions w(·), w1(·). Then

(6.16) |J − Jǫ| ≤ Kǫ
1
2 ,

where K = (t1 − t0)B̄1‖Lx‖ |σ1|. From (6.16) we will obtain:
Lemma 6.3. If Lx is continuous and bounded on Q0 × U , then

(6.17) |V (t, x) − V ǫ(t, x)| ≤ Kǫ
1
2 .

Proof. To obtain (6.17) from (6.16) there is the minor difficulty that
V is defined in (2.10) using 4-tuples ν, while V ǫ is defined in terms of 5-
tuples µ. However, given µ = (Ω, {Fs}, P, w,w1), let ν = (Ω, {Fs}, P, w). Any
u(·) ∈ Atµ is also in Atν . By (6.16)

Jǫ(t, x;u) ≥ J(t, x;u) −Kǫ
1
2 ≥ V (t, x) −Kǫ

1
2 ,

and therefore
V ǫ(t, x) ≥ V (t, x) −Kǫ

1
2 .

On the other hand, given ν consider another reference probability system (Ω′,
{F ′

s},P ′, w′), with w′(s) an n-dimensional brownian motion adapted to {F ′
s}.

For (ω, ω′) ∈ Ω ×Ω′, let w1(s, ω, ω
′) = w

′

(s, ω′). Let

µ = (Ω ×Ω′, {Fs × F ′
s}, P × P ′, w, w1).

If u(·) ∈ Atν , we can regard u(·) as an element of Atµ, which does not depend
on ω′. Then

J(t, x;u) ≥ Jǫ(t, x;u) −Kǫ
1
2 ≥ V ǫ(t, x) −Kǫ

1
2 ,

and therefore
V (t, x) ≥ V ǫ(t, x) −Kǫ

1
2 .

�
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IV.7 Dynamic programming principle

Let us next obtain a result which is a stronger version of the traditional
dynamic programming principle. We again write VPM = V . When we refer to
a stopping time θ in this section, we always assume that θ ∈ [t, t1].

Definition 7.1. The fixed finite time horizon problem has property (DP)
if, for every (t, x) ∈ Q0, the following hold: For every ν, u(·) ∈ Atν and {Fs}-
stopping time θ,

(7.1a) V (t, x) ≤ Etx

{

∫ θ

t

L(s, x(s), u(s))ds+ V (θ, x(θ))

}

.

For every δ > 0, there exist ν and u(·) ∈ Atν such that

(7.1b) V (t, x) + δ ≥ Etx

{

∫ θ

t

L(s, x(s), u(s))ds+ V (θ, x(θ))

}

for every {Fs}-stopping time θ.

We will establish property (DP) by using Theorem 4.2 together with an
approximation argument. A similar dynamic programming principle when Q0

is replaced by a cylindrical region Q will be obtained in the next chapter. See
Section V.2.

We shall not use Theorem 4.4 about the existence of optimal Markov con-
trol policies. Instead, under the assumptions of Theorem 4.2 we will construct
directly u(·) with the properties needed in (7.1b). For this purpose we define
the concept of discrete-time Markov control policy. Let uℓ : IRn → U be Borel
measurable for ℓ = 0, 1, · · · ,M − 1, and let u = (u0, u1, · · · , uM−1). We par-
tition [t, t1) into M subintervals Ij = [sj , sj+1), j = 0, 1, · · · ,M − 1, where
t = s0 < s1 < · · · < sM = t1 and sj+1 − sj = (t1 − t)M−1. Then u is called a
discrete-time Markov control policy, relative to this partition.

Given initial data (t, x) and any reference probability system ν, a discrete-
time Markov control policy u defines u(·) ∈ Atν and solution x(·) to (2.1),
such that

(7.2) u(s) = uj(x(sj)), if s ∈ Ij , j = 0, 1, · · · ,M − 1.

This is done by induction on j. For s ∈ Ij , x(s) is the solution to (2.1) with
Fsj

-measurable initial data x(sj).
Lemma 7.1. Assume (3.5) and (4.5). Let W be as in Theorem 4.2. Given

any reference probability system ν and δ > 0, there exists u(·) ∈ Atν such that

(7.3) W (t, x) + δ ≥ Etx

{

∫ θ

t

L(s, x(s), u(s))ds+W (θ, x(θ))

}

for every {Fs}-stopping time θ.
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Proof. Let us fix ρ, α > 0. Since W ∈ C1,2
b (Q0), the partial derivatives

Wt,Wxi
,Wxixj

are uniformly continuous on Qρ = [t, t1] × Oρ, where Oρ =
{|x| < ρ}. Hence, there exists γ > 0 such that |s′ − s| < γ and |y′ − y| < γ
imply

(7.4) |AvW (s, y) + L(s, y, v) −AvW (s′, y′) − L(s′, y′, v)| < α

2

for all v ∈ U and (s, y) ∈ Q̄ρ. Here AvW is as in (2.11), and (3.3) can be
written as

0 = min
v∈U

[AvW + L].

Let Oρ = B1 ∪ · · · ∪BN , where B1, · · · , BN are disjoint Borel sets of diameter
less than γ/2. We choose M large enough that M−1(t1 − t) < min(γ, 1). We
partition [t, t1) into M subintervals Ij = [sj , sj+1) of length M−1(t1 − t), and
choose yk ∈ Bk. Since W satisfies the HJB equation (3.3), there exist vjk ∈ U ,
such that

AvjkW (sj , yk) + L(sj , yk, vjk) <
α

2
.

By (7.4)

(7.5) AvjkW (s, y) + L(s, y, vjk) < α

for all s ∈ Ij and y such that |y − yk| < γ.
We define the discrete time Markov control policy u = (u0, u1, · · · , uM−1)

by

uj(y) =

⎧

⎨

⎩

vjk if y ∈ Bk,

v0 if (s, y) ∈ Q0\Qρ,

where v0 ∈ U is arbitrary. Define, by induction on j, u(·) ∈ Atν and solution
x(s) to (2.1) with x(t) = x such that (7.2) holds. Thus

(7.6) u(s) = vjk if s ∈ Ij , x(sj) ∈ Bk.

Let us show that (7.3) holds, if ρ, α andM are suitably chosen. By Dynkin’s
formula

(7.7) W (t, x) = Etx

{

−
∫ θ

t

Au(s)W (s, x(s))ds+W (θ, x(θ))

}

= Etx

{

∫ θ

t

Lds+W (θ, x(θ))

}

− Etx

{

∫ θ

t

[Au(s)W + L]ds

}

.

In using Dynkin’s formula, we recall that W ∈ C1,2
b (Q0). We must estimate

the last term from below. Let

Γ = {‖x(·)‖ ≤ ρ, |x(s) − x(sj)| <
γ

2
, s ∈ Ij , j = 0, 1, · · · ,M − 1}.
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By (7.5) and (7.6), and the fact that |x(sj)−yk| < γ/2 if x(sj) ∈ Bk, we have
on Γ

(7.8) Au(s)W (s, x(s)) + L(s, x(s), u(s)) < α.

Note that f and σ are bounded by (4.5b). By a standard estimate for solutions
to stochastic differential equations (Appendix (D.12)) there exists C such that

Ptx(max
Ij

|x(s) − x(sj)| ≥ γ

2
) ≤ C(sj+1 − sj)

2

γ4
.

Since sj+1 − sj = M−1(t1 − t) and there are M intervals Ij , we have

(7.9) Ptx(max
j,Ij

|x(s) − x(sj)| ≥ γ

2
) ≤ C(t1 − t)2

Mγ4
.

We then have by (7.8) and the fact that θ ≤ t1,

(7.10) Etx

∫ θ

t

[Au(s)W + L]ds ≤ α(t1 − t) + ‖AvW + L‖Ptx(Γ c).

By (6.8) and (7.9), the last term is less than δ/2, if ρ and M are chosen large
enough. If α(t1 − t) < δ/2, then (7.3) follows from (7.7) and (7.10). �

As a consequence of Lemma 7.1 we have:
Lemma 7.2. Assume (3.5) and (4.5). Let W be as in Theorem 4.2. Then

W = V = Vν for every ν, and property (DP) holds.
Proof. By Dynkin’s formula

(7.11) W (t, x) ≤ Etx

{

∫ θ

t

L(s, x(s), u(s))ds+W (θ, x(θ))

}

for every ν, u(·) ∈ Atv and Fs-stopping time θ. (See proof of Lemma 3.1.). In
particular, if we take θ = t1 and use Lemma 7.1 we get

W (t, x) = inf
Atν

J(t, x;u) = Vν(t, x).

Therefore, W = Vν = V . Property (DP) is then just (7.3) and (7.11).
�

Theorem 7.1. Assume (6.1)-(6.3). Then V is continuous on Q0 and prop-
erty (DP) holds. Moreover, V = Vν for every reference probability system ν.

Proof. Step 1. Assume that (3.5) and (4.5) hold. Then the conclusions of
Theorem 7.1 follow from Lemma 7.2.

Step 2. Next, assume that there exists ρ such that

f(t, x, v) = 0, L(t, x, v) = 0 if |x| ≥ ρ.

By a standard smoothing technique (Appendix C), for n = 1, 2 · · · there exists
continuous Ln such that ||Ln − L|| → 0 as n → ∞ and Ln(·, ·, v) ∈ C1,2

b (Q0).
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Similarly, by smoothing f and σ, there exist fn, σn with the same smoothness
property, such that

lim
n→∞

||Lnx|| [||f − fn|| + ||σ − σn||] = 0.

Choose εn such that 0 < εn < (n||Lnx||)−1, and let

ηn = ||Ln − L|| + B̄1||Lnx||
[

||f − fn|| + ||σ − σn|| + ε
1
2
n

]

,

with B̄1 as in (6.11). Then ηn → 0 as n → ∞. In (2.1) let us replace

f, σ by fn, σn and add a small ε
1
2
ndw1 term, where w1(·) is a brownian mo-

tion independent of w(·). Consider any reference probability system µ =
(Ω, {Fs}, P, w,w1) and u(·) ∈ Atµ. Let xn(s) be the solution to

dxn = fn(s, xn(s), u(s))ds+ σn(s, xn(s), u(s))dw(s) + ε
1
2
ndw1(s),

with xn(t) = x(t) = x. Let

Jn(t, x;u) = Etx

∫ t1

t

Λn(s, xn(s))ds,

Λn(s, y) = Ln(s, y, u(s)),

Vnµ(t, x) = inf
Atµ

Jn(t, x;u)

Vn(t, x) = inf
µ
Vnµ(t, x).

We apply Lemma 6.2 with f̃ = fn, L̃ = Ln, σ̃ = (σn, ε
1
2
n I), I = identity

matrix, to conclude that

(7.12) |Jn(t, x;u) − J(t, x;u)|

≤ Etx

∫ t1

t

|Λ(s, x(s)) − Λn(s, xn(s))|ds ≤ (t1 − t)ηn.

Since this is true for arbitrary u(·) and (t, x) ∈ Q0

(7.13) ||Vnµ − Vµ|| ≤ (t1 − t0)ηn.

By Step 1, for each n = 1, 2, · · ·, property (DP) holds and Vnµ = Vn. Since
each Vn is uniformly continuous on Q0 and ηn → 0 as n → ∞, we conclude
from (7.13) that Vn tends uniformly on Q0 to a limit Ṽ , and Ṽ = Vµ for each
µ. Given any reference probability system ν = (Ω, {Fs}, P, w) and u(·) ∈ Atν ,
the product space construction in the proof of Lemma 6.3 provides a brownian
motion w1 independent of w and reference probability system µ such that
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u(·) ∈ Atµ. Since dw1 appears with coefficient 0 in (2.1), we have Vν = Vµ = V .

Since this is true for each ν, V = Vν = Ṽ .
It remains to verify property (DP). We have

|EtxV (θ, x(θ) − EtxVn(θ, xn(θ))|

≤ ‖V − Vn‖ + Etx|V (θ, x(θ)) − V (θ, xn(θ))|.

By (6.11), for each α > 0

Ptx(‖x(·) − xn(·)‖ > α) ≤ α−2Etx‖x(·) − xn(·)‖2

≤ B̄2α
−2[‖f − fn‖2 + ‖σ − σn‖2 + εn].

From this inequality, (7.13b) and uniform continuity of V ,

lim
n→∞

sup
θ
Etx|V (θ, x(θ)) − Vn(θ, xn(θ))| = 0.

Therefore, from (7.12) and (7.13)
(7.14)

lim
n→∞

sup
θ

∣

∣

∣

∣

∣

Etx

{

∫ θ

t

Lds+ V (θ, x(θ))

}

− Etx

{

∫ θ

t

Lnds+ Vn(θ, xn(θ))

}∣

∣

∣

∣

∣

= 0,

where L = L(s, x(s), u(s)), Ln = Ln(s, xn(s), u(s)). We get (7.1a) from Step
1, (7.13) and passage to the limit as n → ∞. To get (7.1b) we choose µ and
u(·) ∈ Atµ such that

Vn(t, x) +
δ

2
≥ Etx

{

∫ θ

t

Ln(s, xn(s), u(s))ds+ Vn(θ, xn(θ)

}

for all {Fs}-stopping times θ, where n is chosen large enough that in (7.14)

sup
θ

|Etx{· · ·} −Etx{· · ·}| < δ

2
.

Note that u(·) ∈ Atν , where ν = (Ω, {Fs}, P, w) is obtained by omitting the
last component w1 of the 5-tuple µ. Then (7.1b) holds for this choice of ν.
Therefore, property (DP) holds.

Step 3. Given f, σ, L satisfying (6.1)(b)(c) and (6.3), let fρ = αρf, Lρ =
αρL as in Section 6. By Step 2, the corresponding value function Vρ is con-
tinuous and property (DP) holds for the problem determined by fρ, σ, Lρ. By
(6.10), Vρ tends to V uniformly on each compact set as ρ → ∞. Hence V is
continuous. Fix ρ0, and consider |x| ≤ ρ0. Let Q = [t0, t1) × {|x| < ρ0}, and
τ the exit time of (s, x(s)) from Q. If θ ≤ τ and ρ > ρ0, then xρ(θ) = x(θ) by
(6.7). Hence

Etx|Vρ(θ, xρ(θ)) − V (θ, x(θ))| ≤
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≤ sup
Q

|Vρ − V | + Etx[|Vρ(θ, xρ(θ))| + |V (θ, x(θ))|; θ > τ ].

Since V and Vρ satisfy (6.6), by (6.10)

Etx|Vρ(θ, xρ(θ)) − V (θ, x(θ))| ≤ Cρ− 1
2 (1 + ρ2k+1

0 )
1
2

+M(t1 − t0){2Ptx(τ < t1) + Etx[‖xρ(·)‖k + ‖x(·)‖k; τ < t1]}.
Here, we have used {τ < θ} ⊂ {τ < t1}. Let χ be the indicator function of
{τ < t1}. Then, using Cauchy-Schwarz and (6.4), (6.8)

Etx[‖xρ(·)‖k; τ < t1] = Etx[‖xρ(·)‖kχ]

≤ [Etx‖xρ(·)‖2kPtx(τ < t1)]
1
2 ≤ Kρ

− 1
2

0

2
(1 + |x|2k+1)

1
2

for suitable K. The same estimate holds for Etx[‖x(·)‖k; τ ≤ t1]. Hence

Etx|Vρ(θ, xρ(θ)) − V (θ, x(θ))| ≤ Cρ− 1
2 (1 + ρ2k+1

0 )
1
2 +Kρ

− 1
2

0 (1 + |x|2k+1)
1
2 .

Moreover, by (6.9)

|Etx

∫ θ

t

[Lρ(s, xρ(s), u(s)) − L(s, x(s), u(s))]ds| ≤ Cρ− 1
2 (1 + |x|2k+1)

1
2 .

Consequently,

lim sup
ρ→∞

sup
θ

∣

∣

∣

∣

∣

Etx

{

∫ θ

t

Lds+ V (θ, x(θ))

}

− Etx

{

∫ θ

t

Lρds+ Vρ(θ, xρ(θ))

}
∣

∣

∣

∣

∣

,

≤ Kρ
− 1

2
0 (1 + |x|2k+1)

1
2 .

However, given (t, x), the right side can be made arbitrarily small by choosing
ρ0 large enough. As in the last part of Step 2, we conclude that property (DP)
holds. Moreover, V = Vν since Vρ = Vρν for each ρ and Vρν → Vν uniformly
on compact sets as ρ → ∞. �

In the discussion above we have taken terminal data ψ ≡ 0. For nonzero
terminal data ψ, the following extension of Theorem 7.1 holds.

Corollary 7.1. Assume (6.1), (6.3), and that ψ is bounded and uniformly
continuous. Then the conclusions of Theorem 7.1 are true.

Proof. (a) Suppose first that ψ ∈ C2
b (IRn). We replace L by L̃ = L−Gvψ

and ψ by terminal data 0 as in the discussion following (6.2).
(b) If ψ is bounded and uniformly continuous, then a standard smoothing

technique (Appendix C) gives a sequence ψm ∈ C2
b (IRn) such that ‖ψ−ψm‖ →

0 as m → ∞. Let Vmν , Vm be the corresponding value functions. Then

‖Vmν − Vν‖ ≤ ‖ψm − ψ‖, ‖Vm − V ‖ ≤ ‖ψm − ψ‖.
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We obtain Corollary 7.1 from part (a). �

As a particular case, we may consider nonrandom θ = r. For brevity, let
us write

inf
u(·)

· · · = inf
ν

inf
u(·)∈Atν

· · · .

Thus, (2.10) becomes (recall that V = VPM )

V (t, x) = inf
u(·)

J(t, x;u).

Corollary 7.2. Let t < r < t1. Then

V (t, x) = inf
u(·)

Etx

{
∫ r

t1

L(s, x(s), u(s))ds+ V (r, x(r))

}

.

Corollary 7.2 is a traditional statement of the dynamic programming prin-
ciple.

Remark 7.1. As in Remark 3.3, let us consider a more general criterion J
of the form (3.19), where τ = t1, since we consider control on the time interval
[t, t1] and Q = Q0. We again define V = VPM by (2.10). On the right side of
(7.1a) and (7.1b) we now put

(7.15) Etx

{

∫ θ

t

Γ (s)L(s, x(s), u(s))ds+ Γ (θ)V (θ, x(θ))

}

,

with Γ (s) as in (3.20). Theorem 7.1 again holds. In the proof of Theorem 7.1
and Corollary 7.1, we used the Verification Theorem 3.1 and Theorem 4.2,
which guarantees smoothness of the value function under the strong assump-
tions (4.5). If we add to (4.5b) a corresponding smoothness assumption on ℓ
then Theorem 4.2 is still true. See Remark 4.1. Only routine changes are then
needed in the proof of Theorem 7.1.

IV.8 Estimates for first order difference quotients

In Section 6, we obtained a bound (6.6) for the value function V (t, x), which
depends only on certain constants C1, C2, C3 and k associated with f, σ, and
L. In this section we will find bounds for first-order difference quotients of
V , and in Section 9 a one sided bound for certain second-order difference
quotients. In case that V ∈ C1,2(Q0) these estimates provide corresponding
estimates for partial derivatives of V . If V does not possess that degree of
smoothness, then the estimates for difference quotients are useful in showing
that V satisfies the HJB equation in a generalized sense (Section 10).

We continue to assume that (6.1)–(6.3) hold. Let ξ ∈ IRn be a direction
(|ξ| = 1). For any function Φ(t, x) and h > 0 we consider the difference
quotients
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∆xΦ =
1

h
[Φ(t, x+ hξ) − Φ(t, x)]

∆tΦ =
1

h
[Φ(t+ h, x) − Φ(t, x)]

∆2
xΦ =

1

h2
[Φ(t, x+ hξ) + Φ(t, x− hξ) − 2Φ(t, x)].

In order to obtain bounds for ∆xV,∆tV we need a stronger assumption than
(6.3) about L. Let us assume that L is continuous on Q0 ×U , that L(·, ·, v) ∈
C1(Q0) for each v ∈ U and that

(8.1)
(a) |L(t, x, v)| ≤ C3(1 + |x|k)

(b) |Lt| + |Lx| ≤ C4(1 + |x|ℓ)

for suitable constants C3, C4, k ≥ 0, ℓ ≥ 0. Let

∆xJ = ∆xJ(t, ·, u) =
1

h
[J(t, x+ hξ, u) − J(t, x, u)].

Lemma 8.1. There exists M1 such that

(8.2) |∆xJ | ≤ M1(1 + |x|ℓ)

for every direction ξ and 0 < h ≤ 1. The constant M1 depends on C1, C2, C4, ℓ
and t1 − t0.

Proof. Given (t, x0) ∈ Q0 let x(s) be the solution of (2.1) with x(t) = x0;
and let xh(s) be the solution of (2.1) with xh(t) = x0 + hξ. Also, let ∆x(s) =
1
h [xh(s) − x(s)]; and as in Section 6, let L(s, y, u(s)) = Λ(s, y). Then

∆xJ = E

∫ t1

t

1

h
[Λ(s, xh(s)) − Λ(s, x(s))]ds

= E

∫ t1

t

∫ 1

0

Λx(s, xλ(s)) ·∆x(s)dλds,

where xλ(s) = (1 − λ)x(s) + λxh(s). By (8.1b) and Λx = Lx,

|Λx(s, xλ(s))|≤ C4(1 + |xλ(s)|ℓ)

≤ C4(1 + |x(s)|ℓ + |xh(s)|ℓ).

By Cauchy–Schwarz

|∆xJ | ≤ C4[E

∫ t1

t

(1 + |x(s)|ℓ + |xh(s)|ℓ)2ds] 1
2 [E

∫ t1

t

|∆x(s)|2ds] 1
2 .
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We bound the first term on the right side using (6.4) with m = 2ℓ and
x = x0, x0 + hξ. By Appendix (D.10), E|∆x(s)|2 ≤ B, where B depends
on bounds for |fx| and |σx|, and hence on the constant C1 in (6.1)(c). Since
|ξ| = 1, 0 < h ≤ 1,

1 + |x|2ℓ + |x+ hξ|2ℓ ≤ cℓ(1 + |x|2ℓ)

for suitable cℓ. This implies (8.2), for suitable M1 depending on C1, C2, C4, ℓ
and t1 − t0. �

Since the bound in (8.2) is the same for all u(·), we obtain from Lemma
8.1:

(8.3) |∆xV | ≤ M1(1 + |x|ℓ).

In order to estimate ∆tV , let us make a time shift, after which the initial
time is 0. Thus, we let

ū(r) = u(t+ r), w̄(r) = w(t+ r), 0 ≤ r ≤ t1 − t,

and let x̄(r) = x(t+ r) be the corresponding solution to

(8.4) dx̄ = f(t+ r, x̄(r), ū(r))dr + σ(t+ r, x̄(r), ū(r))dw̄(r)

with x̄(0) = x0. Moreover,

(8.5) J(t, x0;u) = E

∫ t1−t

0

L(t+ r, x̄(r), ū(r))dr.

If we denote the right side by J̄(t, x0; ū), then

(8.6) V (t, x0) = inf J̄(t, x0; ū),

where the infimum is taken over reference probability systems ν̄ on the time
interval 0 ≤ r ≤ t1−t and ū ∈ A0ν̄ . If t is replaced by t+h, with 0 < h ≤ t1−t,
then

(8.7) V (t+ h, x) = inf J̄(t+ h, x0; ū), where

(8.8) J̄(t+ h, x0; ū) = E

∫ t1−t−h

0

L(t+ h+ r, x̄h(r), ū(r))dr,

(8.9) dx̄h = f(t+ h+ r, x̄h(r), ū(r))dr + σ(t+ h+ r, x̄h(r), ū(r))dw̄(r),

with x̄h(0) = x̄(0) = x0. The inf in (8.7) is taken over the same class of
ν̄, ū ∈ A0ν̄ as in (8.6). The values of ū(r) for t1 − t − h ≤ r ≤ t1 − t do not
affect J̄ , but it is easy to verify that this makes no difference. Let ∆tJ̄ =
h−1[J̄(t+ h, x0; ū) − J̄(t, x0; ū)].
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Lemma 8.2. There exists M2 such that

(8.10) |∆tJ̄ | ≤ M2(1 + |x|k + |x|ℓ)

for 0 < h ≤ t1−t. The constant M2 depends on Ci, i = 1, · · · , 4, k, ℓ and t1−t0
where k, ℓ are as in (8.1).

Proof. Let

f̃(s, y, v) = f(s+ h, y, v), σ̃(s, y, v) = σ(s+ h, y, v).

Then
‖f̃ − f‖ ≤ ‖ft‖h ≤ C1h, ‖σ̃ − σ‖ ≤ ‖σt‖h ≤ C1h

with C1 as in (6.1c). Fix an initial time t and initial state x = x0. By (6.11)

(8.11) E sup
0≤r≤r1

|x̄(r) − x̄h(r)|m ≤ 2B̄mC
m
1 h

m, m = 1, 2, · · · ,

where r1 = t1 − t. Let

Λ̄(r, y) = L(t+ r, y, ū(r)), Λ̄h(r, y) = L(t+ h+ r, y, ū(r)).

By (8.1b) and the mean value theorem

(8.12)
(a) |Λ̄h(r, x̄h(r)) − Λ̄(r, x̄h(r))| ≤ C4h(1 + |x̄h(r)|ℓ,

(b) |Λ̄(r, x̄h(r)) − Λ̄(r, x̄(r))| ≤ C4|∆x̄(r)|h(1 + |x̄(r)|ℓ + |x̄h(r)|ℓ)

where ∆x̄ = h−1(x̄h − x̄). We have

∆tJ̄ =
1

h
E

∫ r1−h

0

[Λ̄h(r, x̄h(r)) − Λ̄(r, x̄h(r))]dr

+
1

h
E

∫ r1−h

0

[Λ̄(r, x̄h(r)) − Λ̄(r, x̄(r))]dr

− 1

h
E

∫ r1

r1−h

Λ̄(r, x̄(r))dr.

If (i), (ii), (iii) denote the terms on the right side, then by (8.12a) and
(6.4) with x(·) replaced by x̄h(·),

|(i)| ≤ K1(1 + |x|ℓ),

for suitable K1. The same proof as for Lemma 8.1 gives

|(ii)| ≤ K2(1 + |x|ℓ).

By (8.1a) and (6.4)
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|(iii)| ≤ K3(1 + |x|k).

By combining these estimates, we get (8.10). �

From Lemma 8.2, (8.6) and (8.7) we get

(8.13) |∆tV | ≤ M2(1 + |x|k + |x|ℓ)

As an immediate consequence of Lemmas 8.1 and 8.2 we have:
Theorem 8.1. Assume (6.1), (6.2) and (8.1). If V is differentiable at

(t, x) ∈ Q0, then

(8.14)
(a) |DxV (t, x)| ≤ M1(1 + |x|ℓ)

(b) |Vt(t, x)| ≤ M2(1 + |x|k + |x|ℓ).

Proof. Use (8.2) and let h → 0+. Then

|Vξ(t, x)| ≤ M1(1 + |x|ℓ)

where Vξ denotes the derivative of V (t, ·) in direction ξ. Since ξ is arbitrary,
this gives (8.14 a). Similarly, (8.14b) follows from (8.10). �

IV.9 Estimates for second-order difference quotients

We will now obtain a bound for second difference quotients∆2
xJ = ∆2

xJ(t, ·, u).
This will imply a one-sided bound (9.7) for ∆2

xV . In addition to the previ-
ous assumptions let us now assume that f(·, ·, v), σ(·, ·, v), L(·, ·, v) are of class
C1,2(Q0) for each v ∈ U . Moreover, their second order partial derivatives in
x satisfy

(9.1)
(a) |fxx| + |σxx| ≤ C5

(b) |Lxx| ≤ C5(1 + |x|m)

for suitable C5 and m ≥ 0.
Lemma 9.1. There exists M3 such that

(9.2) |∆2
xJ | ≤ M3(1 + |x|ℓ + |x|m)

for every direction ξ and 0 < h ≤ 1. The constant M3 depends on C1, · · · , C5, ℓ,m
and t1 − t0.

Proof. Given (t, x0) ∈ Q0 and u(·), we again let x(s) denote the solution
to (2.1) with x(t) = x0. Let x+

h (s) denote the solution to (2.1) with x+
h (t) =

x0 + hξ, and x−
h (s) the solution to (2.1) with x−

h (t) = x0 − hξ. Let

∆+x(s) =
1

h
[x+

h (s) − x(s)], ∆−x(s) =
1

h
[x−

h (s) − x(s)],
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∆2x(s) =
1

h2
[x+

h (s) + x−
h (s) − 2x(s)].

Similarly, if g ∈ C2(IRn) and x, x+, x− ∈ IRn, let

∆+g =
1

h
[g(x+) − g(x)], ∆−g =

1

h
[g(x−) − g(x)],

∆2g =
1

h2
[g(x+) + g(x−) − 2g(x)] =

1

h
[∆+g +∆−g].

By Taylor’s formula with remainder, applied to g(x+)−g(x) and g(x−)−g(x),

(9.3) ∆2g(x) = gx(x)(∆2x) +
1

2
(∆+x) · g+

xx(∆+x) +
1

2
(∆−x) · g−

xx(∆−x),

where

g±
xx = 2

∫ 1

0

∫ 1

0

gxx(x+ λµ∆±x)λdλdµ.

Since x(s), x+
h (s), x−

h (s) all satisfy (2.1) and

∆2x(t) = h−2[x0 + hξ + x0 − hξ − 2x0] = 0,

∆2x(s) satisfies the stochastic integral equation

∆2x(s) =

∫ s

t

∆2fdr +

∫ s

t

∆2σdw(r).

We apply (9.3) with g = fi, σij , i = 1, · · · , n, j = 1, · · · , d to get

(9.4) ∆2x(s) =

∫ s

t

fx∆2x(r)dr +

∫ s

t

σx∆2x(r)dw(r) + h1(s) + h2(s),

where fx, σx are evaluated at (r, x(r), u(r)) and

h1(s) =
1

2

∫ s

t

[(∆+x(r)) · f+
xx(∆+x(r)) + (∆−x(r)) · f−

xx(∆−x(r))]dr

h2(s) =
1

2

∫ s

t

[(∆+x(r)) · σ+
xx(∆+x(r)) + (∆−x(r)) · σ−

xx(∆−x(r))]dw(r),

f±
xx = 2

∫ 1

0

∫ 1

0

fxx(r, x(r) + λµ∆±x(r), u(r))λdλdµ,

σ±
xx = 2

∫ 1

0

∫ 1

0

σxx(r, x(r) + λµ∆±x(r), u(r))λdλdµ.

By a standard estimate for stochastic differential equations, there exist
constants Γj depending on the constant C1 in (6.1c) and t1 − t0, such that

(9.5) E|∆±x(s)|2j ≤ Γj , j = 1, 2, · · · .
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By (9.1a), fxx and σxx are bounded. Hence, by (9.5) with j = 1,

E[|h1(s)|2 + |h2(s)|2] ≤ K

for suitable K. Since |fx| ≤ C1, |σx| ≤ C1, (9.4) and Gronwall’s inequality
applied to

m(s) = sup
t≤r≤s

E|∆2x(r)|2

imply that

(9.6) E|∆2x(s)|2 ≤ K1 , t ≤ s ≤ t1

for suitable K1.
We again let Λ(s, y) = L(s, y, u(s)). Then

∆2J = E

∫ t1

t

∆2Λ(s, x(s))ds.

From (9.3)

∆2Λ(s, x(s)) = Λx(s, x(s))·∆2x(s)+
1

2
(∆+x(s))·Λ+

xx(∆+x(s))+
1

2
(∆−x(s))·Λ−

xx(∆−x(s)).

By Cauchy - Schwarz

|∆2J | ≤ (E

∫ t1

t

|Λ|2xds)
1
2 (E

∫ t1

t

|∆2x(s)|2ds)
1
2

+
1

2
(E

∫ t1

t

|Λ+
xx|2ds) 1

2 (E

∫ t1

t

|∆+x(s)4|ds) 1
2 .

+
1

2
(E

∫ t1

t

|Λ−
xx|2ds) 1

2 (E

∫ t1

t

|∆−x(s)|4ds) 1
2 .

As in the proof of Lemma 8.1, assumption (8.1b) implies that

E

∫ t1

t

|Λx(s, x(s))|2ds ≤ D1(1 + |x0|ℓ)2

for suitable D1. Since

Λ+
xx(s, x(s)) =

∫ 1

0

∫ 1

0

Lxx(s, x(s) + λµ∆+x(s))λdλdµ,

(9.1b) implies that

|Λ+
xx(s, x(s))| ≤ C5(1 + |x(s)|m + |x+(s)|m).

From (6.4) we then get
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E

∫ t1

t

|Λ+
xx|2ds ≤ D2(1 + |x0|m)2.

The same inequality holds with Λ−
xx instead of Λ+

xx. From these inequalities
together with (9.5) with j = 2 and (9.6), we get (9.2). A careful inspection
of the proof shows that M3 can be chosen to depend only on C1, C2, · · · as
stated in Lemma 9.1. �

From Lemma 9.1, let us obtain a one sided bound for ∆2
xV :

(9.7) ∆2
xV (t, x) ≤ M3(1 + |x|ℓ + |x|m).

To obtain (9.7), given δ > 0 choose u(·) such that

J(t, x;u) < V (t, x) +
δh2

2
.

Then

V (t, x+ hξ) + V (t, x− hξ) − 2V (t, x)

≤ J(t, x+ hξ;u) + J(t, x− hξ;u) − 2J(t, x;u) + δh2

= h2[∆2
xJ + δ],

∆2
xV ≤ ∆2

xJ + δ ≤ M3(1 + |x|ℓ + |x|m) + δ.

Since δ is arbitrary, we get (9.7). Let

(9.8) D2
ξξV (t, x) =

d2

dh2
V (t, x+ hξ)|ξ=0

if this second derivative exists. In particular, if the second order partial deriv-
atives Vxixj

are continuous, then

D2
ξξV (t, x) = lim

h→0+
∆2

xV (t, x).

By (9.7), for every direction ξ

(9.9) D2
ξξV (t, x) ≤ M3(1 + |x|ℓ + |xm|).

In case V is a smooth solution to the HJB partial differential equation
(3.3), the estimates (8.14) and (9.9) provide a bound for AvV . An essential
feature of this bound is that it does not depend on a positive lower bound c
for the eigenvalues of a(t, x, v) as in (3.5).

Theorem 9.2. Assume (6.1), (6.2), (8.1), (9.1). Let Q ⊂ Q0 be an open
set such that V ∈ C1,2(Q) and V satisfies (3.3) in Q. Then there exists M4

such that, for all (t, x) ∈ Q and v ∈ U ,
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(9.10) |AvV (t, x)| ≤ M4(1 + |x|p),

where p = max(k, ℓ+1,m). The constant M4 depends on Ci, i = 1, · · · , 5, k, ℓ,m
and t1 − t0.

Proof. We recall that

AvV = Vt +
1

2
tr aD2

xV + f ·DxV.

By (6.1c) and (8.14)

(9.11)
|Vt| ≤ M2(1 + |x|k + |x|ℓ),

|f ||DxV | ≤ M1C̄(1 + |x|ℓ)(1 + |x|),

where C̄ = max(C1, C2). Given t, x, v choose an orthonormal basis ξ1, · · · , ξn

for IRn, such that

tr a(t, x, v)D2
xV (t, x) =

n
∑

i=1

λi(t, x, v)Dξiξi
V (t, x),

where λ1, · · · , λn are the eigenvalues of the symmetric, nonnegative definite
matrix a. Since a = σσ′, and |σ| ≤ C2 by (6.1c), (9.9) implies for suitable K,

(9.12) tr aD2
xV ≤ K(1 + |x|ℓ + |x|m).

Inequalities (9.11), (9.12) give an upper bound for AvV . On the other hand,
since V satisfies the HJB equation (3.3) in Q,AvV +L(t, x, v) ≥ 0. Hence, by
(8.1a) we have the lower bound

AvV ≥ −L ≥ −C3(1 + |x|k).

These upper and lower bounds give (9.10). �

Remark 9.1. Inequality (9.7) implies that V (t, ·) is a semiconcave func-
tion on IRn (see Remark II.8.1 for the definition.)

IV.10 Generalized subsolutions and solutions

Let us now use the estimates for difference quotients in Sections 8 and 9 to
describe V as a generalized solution to the HJB equation. This will be done
in the semilinear case, when σ(t, x) does not depend on the control. However,
V is shown to be a generalized subsolution without this restriction.

We make the same assumptions about f, σ, L as in Theorem 9.1. These
functions are continuous on Q0×U , are of class C1,2(Q0) as functions of (t, x),
and satisfy (6.1) (8.1) (9.1). Let us introduce the following notations. For 1 ≤
p ≤ ∞, let Lp

ℓoc(Q0) denote the space of Lebesgue measurable functions Ψ such
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χBΨ ∈ Lp(Q0) for every compact B ⊂ Q0, where χB is the indicator function
of B. Let C∞

0 (Q0) denote the space of Φ such that all partial derivatives of
Φ of every order are continuous on Q0, and Φ has compact support in int Q0

(i.e. Φ(t, x) = 0 for (t, x) �∈ B, where B ⊂ int Q0 is compact).
Generalized partial derivatives of V are defined as follows [Zi]. Suppose

that there exists Ψi ∈ L1
ℓoc(Q0) such that

(10.1)

∫

Q0

ΨiΦdxdt = −
∫

Q0

V Φxi
dxdt, for all Φ ∈ C∞

0 (Q0)

Then Ψi is called a generalized first order partial derivative of V with respect
to xi. If such Ψi exists, it is unique up to Lebesgue (n+1)-measure 0. We write
Ψi = Vxi

. Similarly, the generalized partial derivatives Vt, Vxixj
(if they exist)

are defined as those functions in L1
ℓoc(Q0) such that, for all Φ ∈ C∞

0 (Q0),

(10.2)

∫

Q0

VtΦdxdt = −
∫

Q0

V Φtdxdt,

(10.3)

∫

Q0

Vxixj
Φdxdt =

∫

Q0

V Φxixj
dxdt.

Remark 10.1. If V is locally Lipschitz in Q0, then by Rademacher’s
theorem, V is differentiable almost everywhere in Q0. Integrations by parts
show that the usual partial derivatives Vt, Vxi

, which exist at each point of
differentiability, are also generalized first order partial derivatives of V .

We define AvV in the generalized sense, as follows. Consider the formal
adjoint of the linear operator Av:

(10.4) (Av)∗Φ = −Φt +
1

2

n
∑

i,j=1

∂2

∂xi∂xj
(aij(t, x, v)Φ) −

n
∑

i=1

∂

∂xi
(fi(t, x, v)Φ).

If there is a function Ψv ∈ L1
ℓoc(Q0) such that

(10.5)

∫

Q0

ΨvΦdxdt =

∫

Q0

V (Av)∗Φdxdt.

for all Φ ∈ C∞
0 (Q0), then we set AvV = Ψv. The function Ψv is unique up to

Lebesgue (n+ 1)-measure 0.
Remark 10.2. An equivalent interpretation of generalized partial deriva-

tives is in terms of the Schwartz theory of distributions [Zi]. Any function in
L1

ℓoc(Q0) has (by definition) partial derivatives of all orders in the Schwartz
distribution sense. If a distribution theory partial derivative of V can be iden-
tified with a function in L1

ℓoc(Q0), then this function is the corresponding
generalized partial derivative of V . Similarly (10.5) is equivalent to the state-
ment that AvV , regarded as a Schwartz distribution, can be identified with



192 IV. Controlled Markov Diffusions in IRn

the function Ψv ∈ L1
ℓoc(Q0). Note that in defining AvV , we did not require

that the individual generalized second order partial derivatives Vxixj
in (10.3)

exist.
We say that a sequence Ψn converges to Ψ weakly∗ in L∞

ℓoc(Q0) if

(10.6) lim
n→∞

∫

Q0

ΨnΦdxdt =

∫

Q0

ΨΦdxdt

for every Φ ∈ L1(Q0) with support in some compact set B ⊂ Q0.
Lemma 10.1. Let Ψn ∈ L1

ℓoc(Q0) be such that, for every compact set
B ⊂ Q0, |Ψn(t, x)| ≤ KB for all (t, x) ∈ B and n = 1, 2, · · ·.
Then:

(a) There is a subsequence Ψnk
which tends to a limit Ψ weakly∗ in L∞

ℓoc(Q0);
(b) If (10.6) holds for all Φ ∈ C∞

0 (Q0), then Ψn tends to Ψ weakly∗ in
L∞

ℓoc(Q0).
(c) If Ψn ≥ 0, then Ψ ≥ 0.

Lemma 10.1 follows from [Ro, Thm 17, p. 202].
HereKB denotes a suitable constant. In (c) the inequalities are understood

to hold for almost all (t, x).
Lemma 10.2. Let Vn ∈ C1(Q0) for n = 1, 2, · · ·. Assume that, for every

compact set B ⊂ int Q0, Vn → V uniformly on B as n → ∞ and that
|Vnt(t, x)| + |DxVn(t, x)| ≤ KB for all (t, x) ∈ B. Then the generalized par-
tial derivatives Vt, Vxi

exist for i = 1, · · · , n and are the respective limits of
Vnt, Vnxi

weakly∗ in L∞
ℓoc(Q0).

Proof. This is an easy consequence of Lemma 10.1, together with (10.1),
(10.2). �

Let us next consider fn, σn, n = 1, 2, · · ·, and also an = σnσ
′

n. Let (Av
n)∗

denote the formal adjoint as in (10.4). We require that, for every Φ ∈ C∞
0 (Q0),

(10.7) lim
n→∞

(Av
n)∗Φ = (Av)∗Φ, uniformly on every compact set B ⊂ Q0.

In particular, (10.7) holds provided fn, σn, their first order partial deriva-
tives in t, x and fnxixj

, σnxixj
are all continuous and converge uniformly on

compact sets to f, σ and the corresponding partial derivatives.
Lemma 10.3. Assume that:

(a) fn, σn are such that (10.7) holds;
(b) Vn ∈ C1,2(Q0);
(c) For every compact set B ⊂ Q0, Vn → V uniformly on B and |Av

nVn(t, x)| ≤
KB for all (t, x) ∈ B, v ∈ U .

Then AvV exists in the generalized sense, and is the weak∗ limit in L∞
ℓoc(Q0)

of Av
nVn.

Proof. For any Φ ∈ C∞
0 (Q0)

∫

Q0

(Av
nVn)Φdxdt =

∫

Q0

Vn(Av
n)∗Φdxdt,
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lim
n→∞

∫

Q0

Vn(Av
n)∗Φdxdt =

∫

Q0

V (Av)∗Φdxdt.

Since Av
nVn is uniformly bounded on every compact set B ⊂ Q0, Lemma 10.1

implies that Av
nVn tends weakly in L∞

ℓoc(Q0) to a limit Ψv. Since Ψv satisfies
(10.5), Ψv = AvV , interpreted in the generalized sense. �

Definition 10.1. We call W a generalized subsolution of the HJB equation
(3.3) if, for every v ∈ U,AvW exists in the generalized sense and

(10.8) AvW (t, x) + L(t, x, v) ≥ 0

for Lebesgue almost all (t, x) ∈ Q0.
Theorem 10.1. Let V be the value function. Then AvV exists in the gen-

eralized sense. Moreover, V is a generalized subsolution of the HJB equation.
Proof. The same kind of approximations used in the proof of Theorem

6.1 provide fn, σn, Ln with the following properties: (a) fn, σn, Ln converge
uniformly on compact sets to f, σ, L as n → ∞; (b) the partial derivatives of
fn, σn with respect to t, xi, xixj , i, j = 1, · · · , n are continuous on Q0 ×U and
converge uniformly on compact sets to the corresponding partial derivatives of
f, σ; (c) fn, σn, Ln satisfy (6.1), (8.1), (9.1) with the same C1, · · · , C5, k, ℓ,m;
(d) the HJB equation

(10.9) 0 = min
v∈U

[Av
nVn + Ln]

has a solution Vn ∈ C1,2
b (Q0) with Vn(t1, x) = 0. Moreover, Vn → V as n → ∞

uniformly on compact sets. By (9.10) Av
nVn(t, x) is uniformly bounded on each

compact set B ⊂ int Q0. We conclude from Lemma 10.3 that Av
nVn tends to

AvV weakly∗ in L∞
ℓoc(Q0). Since Ln(t, x, v) tends to L(t, x, v) uniformly on

compact sets, Av
nVn + Ln tends to AvV + L weakly∗ in L1

ℓoc(Q0), for each
v ∈ U . Since Av

nVn + Ln ≥ 0, Lemma 10.1(c) implies that AvV + L ≥ 0 for
Lebesgue almost all (t, x) ∈ Q0. �

Remark 10.3. It can be shown that the value function V is the maximal
generalized subsolution. See [L1][L9] for results of this type. Another approach
using convex duality ideas leads to a characterization of the value function as
the supremum of smooth subsolutions. See [VL] [FV].

Generalized solutions to HJB. The HJB partial differential equation
is

(10.10) 0 = min
v∈U

[AvV (t, x) + L(t, x, v)].

Since the HJB equation is nonlinear and convergence of Av
nVn+Ln to AvV +L

is only weakly∗ in L∞
ℓoc(Q0), we cannot pass directly to the limit from (10.9)

to conclude that the value function V satisfies (10.10) in any sense. However
let us now show how this can be done in the semilinear case, with σ = σ(t, x).
In this case

AvΦ(t, x) = A0Φ(t, x) + f(t, x, v) ·DxΦ(t, x),
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(10.11) A0Φ = Φt +
1

2
tr aD2

xΦ,

a(t, x) = σ(t, x)σ(t, x)′.

Equation (10.10) can then be rewritten as

(10.12) 0 = −A0V (t, x) +H(t, x,DxV ),

where as in I(5.4)

(10.13) H(t, x, p) = max
v∈U

[−f(t, x, v) · p− L(t, x, v)].

We will accomplish the passage to the limit from (10.9) to (10.12) by first
showing that DxVn tends to DxV Lebesgue almost everywhere in Q0 as n →
∞.

Lemma 10.4. If V (t, ·) is differentiable at x, then DxVn(t, x) → DxV (t, x)
as n → ∞.

Proof. Consider any direction ξ ∈ IRn (|ξ| = 1). Then Taylor’s formula
with remainder gives, since Vn ∈ C1,2(Q0),

Vn(t, x+ hξ) = Vn(t, x) + hDxVn(t, x) · ξ +
h2

2
DξξVn(t, x+ λhξ).

where 0 < λ < 1. Since Vn satisfies (9.9) for some M3 not depending on n, for
0 < h < 1 we have

(10.14)
1

h
[Vn(t, x+ hξ) − Vn(t, x)] −DxVn(t, x) · ξ ≤ Ch

for suitable C (which may depend on t, x). Since Vn satisfies (8.3) with M1

not depending on n,DxVn(t, x) is a bounded sequence in IRn. If DxVn(t, x)
tends to p as n → ∞ through some subsequence, then by (10.14)

(10.15)
1

h
[V (t, x+ hξ) − V (t, x)] − p · ξ ≤ Ch

for every direction ξ. In particular, (10.15) holds with ξ replaced by −ξ. Since
V (t, ·) is differentiable at x,

DxV (t, x) · ξ = lim
h→0

1

h
[V (t, x+ hξ) − V (t, x)]

for every ξ. Therefore, p = DxV (t, x). Since the limit p is the same for every
convergent subsequence, DxVn(t, x) → DxV (t, x) as n → ∞. �

Lemma 10.5. A0nVn tends to A0V weakly∗ in L∞
ℓoc(Q0), where A0V exists

in the generalized sense.
Proof. A0nVn(t, x) is uniformly bounded on each compact set B ⊂ Q0

since A0n = Av
n − fn · Dx and Av

nVn, fn · DxVn are uniformly bounded on
compact sets. The proof is then the same as for Lemma 10.3. �
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Definition. Let W be locally Lipschitz on Q0. We call W a generalized
solution of the HJB equation if A0W exists in the generalized sense and (10.12)
holds for Lebesgue almost all (t, x) ∈ Q0.

In the deterministic case, σ(t, x) ≡ 0 and A0Φ = Φt. Hence, this definition
of generalized solution agrees with the one in Section I.6.

Theorem 10.2. In the semilinear case (σ = σ(t, x)) the value function V
is a generalized solution the HJB equation (10.12).

Proof. We use the same approximations fn, σn, Ln to f, σ, L as in the
proof of Theorem 10.1. In the semilinear case, (10.9) becomes

(10.16) 0 = −A0nVn +Hn(t, x,DxVn), where

A0nΦ = Φt +
1

2
tr anD

2
xΦ,

Hn(t, x, p) = max
v∈U

[−fn(t, x, v) · p− Ln(t, x, v)]

and an = σnσ
′
n. Since fn → f, Ln → L uniformly on compact sets, we have

H(t, x, p) = lim
n→∞

Hn(t, x, p)

uniformly on compact subsets of Q0 × IRn. By Lemma 10.4 we then have

(10.17) H(t, x,DxV (t, x)) = lim
n→∞

Hn(t, x,DxVn(t, x)),

for each (t, x) at which V (t, ·) is differentiable. However, (8.3) implies that
V (t, ·) satisfies a Lipschitz condition on each compact subset of IRn. By
Rademacher’s theorem, V (t, ·) is differentiable at Lebesgue almost every
x ∈ IRn. Therefore, (10.17) holds for Lebesgue almost every (t, x) ∈ Q0. More-
over Hn(t, x,DxVn(t, x)) is uniformly bounded on compact sets. For every
Φ ∈ C∞

0 (Q0)
∫

Q0

[−A0V +H(t, x,DxV )]Φdxdt

= lim
n→∞

∫

Q0

[−A0nVn +Hn(t, x,DxVn)]Φdxdt = 0.

This implies (10.12) for Lebesgue almost all (t, x). �

Remark 10.4. The upper bound (9.7) for ∆2
xV was used together with

the inequality AvV +L ≥ 0 to obtain the bound (9.10) for |AvV | in case V is
smooth. Then it was shown, by approximating V by smooth value functions
Vn, that AvV exists in the generalized sense. It was not claimed that the
generalized second derivatives Vxixj

exist; and in fact that need not be true.
For instance, if n = 1, σ ≡ 0 (the deterministic case) simple examples show
that Vx(t, ·) may have jump discontinuities. When that occurs, there is no
generalized second derivative Vxx in the sense of (10.3). By (9.7) V (t, ·) is
semiconcave. When n = 1 the Schwartz distribution theory second derivative



196 IV. Controlled Markov Diffusions in IRn

of V (t, ·) can be identified with a measure on IR1. By a theorem of Alexandrov,
V (t, ·) is twice differentiable at almost all points of IR1. See [CIL1, Theorem
A2]. This pointwise second derivative can be identified with the generalized
second derivative Vxx if and only if Vx(t, ·) is absolutely continuous on each
finite subinterval of IR1. Similarly, for n > 1 the semiconcavity of V (t, ·)
implies that the Schwartz distribution second derivatives Vxixj

are measures.
Viscosity solution methods (see [L3]) and Alexandrov’s theorem can then be
used to show that the HJB equation is satisfied almost everywhere. Similar
results were obtained by Lions [L9] for an infinite-horizon discounted problem.

Problems with affine - convex structure. Let us now mention a special
class of problems for which V (t, ·) is a convex function on IRn. Convexity of
V (t, ·) is equivalent to ∆2V ≥ 0. One has then a bound for |∆2

xV |, which will
imply the existence of generalized second derivatives Vxixj

which are bounded
on every compact set.

Let us now assume that:

(a) U is convex and compact, U ⊂ IRm.

(10.18) (b) f(t, x, v) = A1(t)x+A2(t)v +A3(t), σ(t, v) = γ1(t)v + γ2(t),
whereA1, A2, A3, γ1, γ2 are of class C1([t0, t1]).

(c) L is continuous on Q0 × U,L(t, ·, ·) is convex on IRn × U,
and (6.3) holds.

Models with this special structure often arise in such applications as fi-
nance and inventory theory. An instance is the Merton portfolio problem
(Example 10.1 below.)

Let us fix a reference probability system ν. By Theorem 7.1, V = Vν . Since
U is convex, the set Atν of admissible progressively measurable u(·) is also
convex.

Lemma 10.5. J(t, ·, ·) is convex on IRn × Atν .
Proof. Let x0, x1 ∈ IRn and u0(·), u1(·) ∈ Atν . For 0 ≤ λ ≤ 1, let

xλ = (1 − λ)x0 + λx1, uλ(·) = (1 − λ)u0(·) + λu1(·).

Let xλ(s) be the solution to (2.1) for t ≤ s ≤ t1, with xλ(t) = xλ. By
(10.18)(b),

xλ(s) = λx0(s) + (1 − λ)x1(s).

By convexity of L(s, ·, ·)

L(s, xλ(s), uλ(s)) ≤ (1 − λ)L(s, x0(s), u0(s)) + λL(s, x1(s), u1(s)),

which implies

J(t, xλ, uλ) ≤ (1 − λ)J(t, x0, u0) + λJ(t, x1, u1). �
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Lemma 10.6. V (t, ·) is convex on IRn.
Proof. Given x0, x1 ∈ IRn, we define xλ as above. Given δ > 0, choose

u0(·), u1(·) such that

J(t, xi, ui) < V (t, xi) + δ for i = 0, 1.

By Lemma 10.5,

V (t, xλ) ≤ J(t, xλ, uλ) ≤ (1 − λ)V (t, x0) + λV (t, x1) + δ.

Since δ is arbitrary, V (t, ·) is convex. �

Remark 10.5. Lemmas 10.5 and 10.6 remain true if σ = γ0(t)x+γ1(t)v+
γ2(t). Since we have assumed in Sections 6–10 that σ(t, x, v) is bounded
(see(6.1c)), we have omitted the term γ0(t)x.

Let us denote byW 2,∞
ℓoc (IRn) the space of functions g such that g ∈ C1

b (IRn)
and Dxg satisfies a Lipschitz condition on every compact set Γ ⊂ IRn. See
[Zi]. For every g ∈ W 2,∞

ℓoc (IRn) the generalized second derivatives gxixj
, i, j =

1, · · · , n exist and gxixj
∈ L∞

ℓoc(IR
n). If g is both convex and semiconcave, then

for every bounded set B ⊂ IRn, 0 ≤ D2g ≤ K(B) in the sense of Schwartz
distributions. Thus:

Lemma 10.7. If g is both convex and semiconcave, then g ∈ W 2,∞
ℓoc (IRn).

By taking g = V (t, ·) we get:
Theorem 10.3. In addition to (10.18) assume that L(·, ·, v) is of class

C1,2(Q0) and satisfies (8.1b), (9.1b). Then V (t, ·) belongs to W 2∞
ℓoc (IRn) for

each t ∈ [t0, t1).
Example 10.1. Let us return to the Merton portfolio problem in Example

5.2. Let
φ(s) = u1(s)x(s), c(s) = u2(s).

Then φ(s) is the amount of wealth in the risky asset and c(s) is the con-
sumption rate at time s. The wealth dynamics are equation (5.18). Moreover,
L = ℓ(c) is concave. Let us regard φ(s) and c(s) as the controls. Given a
reference probability system (Ω, {Fs}, P, w), s ≥ 0, we admit all Fs - pro-
gressively measurable controls (φ(·), c(·)) such that c(s) ≥ 0, x(s) ≥ 0 and
J < ∞ in (5.20) with τ = +∞. See Remark 5.1. Just as in Lemma 10.6,
the linear-concave structure of this problem implies that the value function is
concave.

IV.11 Historical remarks

The theory of optimal control for Markov diffusion processes had an extensive
development since the 1960’s. This chapter is intended as introduction to some
aspects related to dynamic programming and the Hamilton–Jacobi–Bellman
PDE. For another introduction to older results, see [FR, Chap. 6]. Other
aspects of the theory of controlled Markov diffusions are described in [BL1]
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[Bo] [ElK] [El] [Hau][YZ] as well as other books and research papers cited
there. We have not considered problems with partial state observations, for
which the method of dynamic programming leads to an infinite dimensional
HJB equation. See [L5] [Hi] [I5] [Ni2].

In Section I.4 we showed that it is quite easy to obtain a dynamic pro-
gramming principle for deterministic optimal control problems. At an intu-
itive level, one should be able to proceed similarly in case of stochastic control.
However, various technical difficulties are encountered in doing so. In Section
7 we obtained a dynamic programming principle, for problems on a fixed fi-
nite time horizon, by an approximation method which reduces everything to
the case when the Hamilton–Jacobi–Bellman PDE has a classical solution.
An extension of this result, and a remark about other approaches to dynamic
programming, will be given in Sections V.2 and V.10. The book of Yong-Zhou
[YZ] gives another treatment of controlled Markov diffusions, by dynamic
programming and stochastic maximum principle methods.

The one sided estimate (9.7) for second difference quotients is due to
Krylov [Kr1, Sec. 4.2]. It is useful in proving regularity properties of value
functions, such as the existence of AvV in Theorem 10.1. Krylov’s estimate
was proved for control problems on a fixed time interval [t, t1]. Lions [L3]
proved corresponding estimates for control until exit from a bounded cylin-
drical region Q = [t0, t1) × O, or until exit from O in the infinite horizon
discounted cost problem (Section 5). In the latter case, the discount factor
must be sufficiently large.

Following Krylov [Kr1, p. 209] let us say that the stochastic control prob-
lem is nondegenerate if, for each (t, x), there exists v ∈ U such that the
matrix a(t, x, v) is positive definite. This is weaker than condition (3.5). For
nondegenerate problems, Krylov [Kr1, Sec. 4.7] proved by probabilistic meth-
ods that all generalized derivatives Vt, Vxi

, Vxixj
, i, j = 1, · · · , n of the value

function V exist, and that the Hamilton–Jacobi–Bellman PDE holds almost
everywhere in Q0. Similar results were proved by Lions [L3] for the problem
of control until exit from O (or from Q), using probability and PDE methods.
See also Lions [L9] and Evans [E5]

As already noted in Remark 10.4, the fact that V satisfies the Hamilton
– Jacobi – Bellman PDE almost everywhere can be proved by the theory of
viscosity solutions (Chapter V) and the differentiability properties of semi-
concave functions. In the semilinear case this result however is slightly weaker
than Theorem 10.2 which also proves that A0V ∈ L1

ℓoc, with A0V interpreted
in the generalized sense.

The regularity of solutions to fully nonlinear, elliptic equations of type
(5.8) was proved by Evans [E1] [E4]. Also see [GT, Chapter 17].
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Viscosity Solutions: Second-Order Case

V.1 Introduction

In this chapter we study the exit time control of a Markov diffusion process as
formulated in Section IV.2. With the exception of the last section, we assume
that the state space is a bounded finite-dimensional set. The main purpose of
this chapter is to study viscosity solutions of the dynamic programming equa-
tion which is a second-order, nonlinear parabolic partial differential equation,
(4.1) below. If the controlled Markov process is uniformly parabolic, then there
are classical solutions to this equation and the related results were discussed
in Section IV.4. In this chapter we do not assume the uniform parabolicity
and therefore we only expect the value function to be a viscosity solution.
Indeed when the value function is continuous, Theorem II.5.1 implies that the
value function is a viscosity solution of (4.1).

Among the hypotheses of Theorem II.5.1, condition II(3.2) is equivalent to
the dynamic programming principle. In the literature several proofs of the dy-
namic programming principle were given by using either measurable selection
theorems or compactness type arguments. In Section 2 we give an alternate
proof of Lions when appropriate assumptions are satisfied. See Theorem 2.1.
Lions’ proof is based on an approximation argument and uses the results of
Chapter IV. This proof also shows that under these assumptions, the value
function is continuous and satisfies the boundary data pointwise.

In Sections 4–8, we prove a uniqueness result, or more generally a com-
parison result for viscosity solutions of (4.1). Equation (4.1) is a second-order
equation and the uniqueness results of Chapter II do not apply to (4.1) (see
Section 5, below). Moreover, second-order equations introduce new difficul-
ties which cannot be resolved by simply modifying the techniques discussed
in Chapter II. These difficulties were overcome by Jensen in 1986. Jensen first
extended the classical Alexandrov maximum principle to semi convex func-
tions. At its maxima a semiconvex function is differentiable but may fail to



200 V. Viscosity Solutions: Second-Order Case

be twice differentiable. However, Jensen proved that there are points of twice
differentiability which are arbitrarily close to its maxima and at these points
Hessian is nonnegative and the gradient is small. Jensen used this result to
obtain a first comparison result. To use this generalized maximum principle
in a general uniqueness proof, we need to approximate the subsolutions by
semiconvex subsolutions and supersolutions by semi-concave supersolutions.
The so-called inf and sup convolutions provide exactly that. These approx-
imations are also used as powerful approximations of viscosity solutions in
general. The definition and the properties of these operations are given in
Section 5. The combination of these tools enabled Jensen to prove the first
uniqueness result for second-order equations when the coefficients of equation
(4.1) are state-independent. Later the uniqueness result was generalized to
cover all equations satisfying standard Lipschitz regularity assumptions. The
main tool in this extension is a lemma due to Ishii. Later Crandall and Ishii
streamlined these results in a powerful analysis result about the maxima of
semi-continuous functions. In recent years, Crandall-Ishii lemma has been the
cornerstone of every comparison result proved in the literature. In our pre-
sentation we chose to state the Crandall-Ishii Lemma, Theorem 6.1 and refer
to the survey article ”Users’ Guide to Viscosity Solutions for Second Order
Partial Differential equations” by Crandall, Ishii and Lions [CIL1] and to the
paper of Crandall and Ishii [CI] for its proof. We then prove a general compar-
ison result in Section 8, Theorem 8.1. This result implies that if a continuous
subsolution W of (4.1) and a continuous supersolution V satisfy W ≤ V at
the boundary, then this inequality holds everywhere.

A discussion of viscosity solutions defined on the whole space is given in
Section 9. The techniques of Sections 4–8 can easily be modified to apply to
this case. However, to acquaint the reader with approximation arguments, we
approximate the given equation by a sequence of equations defined on large
balls. We then pass to the limit by letting the radii of the balls go to infinity.

For readers interested in viscosity solutions but not in stochastic control
theory, Sections 4–9 can be read independently of Sections 2 and 3.

V.2 Dynamic programming principle

In Section IV.7 we established a dynamic programming principle for Markov
diffusion processes on a fixed finite time interval [t, t1]. This principle was ob-
tained as a consequence of a somewhat stronger property (DP). See Corollary
IV.7.1 and Corollary IV.7.2. In this section, we will obtain similar results for
the problem of control until time τ of exit from a bounded cylindrical region
Q = [t0, t1)×O. We again write V = VPM , where VPM is as in IV(2.10). Thus

V (t, x) = inf
u(·)

J(t, x;u),

where for brevity
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inf
u(·)

· · · = inf
ν

inf
u(·)∈Atν

· · · .

The definition of property (DP) in Section IV.7 is modified by replacing any
stopping time θ by τ ∧ θ = min(τ, θ) where τ is the exit time of (s, x(s)) from
Q. Thus, property (DP) holds if:

(a) For every ν, u(·) ∈ Atν and {Fs}-stopping time θ,

(2.1a) V (t, x) ≤ Etx

{

∫ τ∧θ

t

L(s, x(s), u(s))ds+ V (τ ∧ θ, x(τ ∧ θ))
}

.

(b) For every δ > 0 there exist ν and u(·) ∈ Atν such that

(2.1b) V (t, x) + δ ≥ Etx

{

∫ τ∧θ

t

L(s, x(s), u(s))ds+ V (τ ∧ θ, x(τ ∧ θ))
}

.

for every {Fs}-stopping time θ.
In particular, by taking θ = r (nonrandom) with t < r < t1, property

(DP) implies

(2.2) V (t, x) = inf
u(·)

Etx

{
∫ τ∧r

t

L(s, x(s), u(s))ds+ V (τ ∧ r, x(τ ∧ r))
}

.

Let us assume that Q and the control set U are bounded, and that IV(6.1),
IV(6.3) hold. We will obtain property (DP) by using a device of Lions to
reduce it to the corresponding result in Section IV.7. However, additional
assumptions will be needed to ensure continuity of the value function V on
Q.

Let us begin by considering an auxiliary control problem, in which the
running cost L and terminal cost Ψ in IV(2.8) are replaced by continuous
functions L̃, Ψ̃ such that:

(2.3)
(a) L̃ ≥ 0, Ψ̃ ≥ 0,

(b) Ψ̃(t, x) = 0, (t, x) ∈ [t, t1] × ∂O.

Let ψ̃(x) = Ψ̃(t1, x) for x ∈ O, and ψ̃(x) = 0 for x ∈ IRn\O. Then ψ̃ is
bounded and uniformly continuous on IRn. The criterion to be minimized is

(2.4) J̃(t, x;u) = Etx

{
∫ τ

t

L̃(s, x(s), u(s))ds+ ψ̃(x(t1))χτ=t1

}

.

Let Ṽ (t, x) be the corresponding value function. By (2.3), Ṽ ≥ 0. If the
reference probability system ν is fixed, Ṽν is defined similarly.

Let us next introduce an approximation of J̃ . Let d̂(x) be the distance
between x and O. For ε > 0, (t, x) ∈ Q0 we define
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(2.5) Jε(t, x;u) = Etx

[
∫ t1

t

Γ (s, ε)L̃(s, x(s), u(s))ds

+Γ (t1, ε)ψ̃(x(t1))

]

,

where

Γ (s, ε) = exp

(

−1

ε

∫ s

t

d̂(x(r))dr

)

.

Clearly Γ depends on (t, x) and u(·), but this dependence is suppressed in our

notation. Since d̂ = 0 on O, we have

(2.6) Γ (s, ε) = 1, s ∈ [t, τ ].

Hence, for (t, x) ∈ Q,

(2.7) Jε(t, x;u) = J̃(t, x;u) + Etx

∫ t1

τ

Γ (s, ε)L̃(s, x(s), u(s))ds

+Γ (t1, ε)ψ̃(x(t1))χτ=t1 .

The positivity of L̃ and ψ̃ imply that Jε ≥ J̃ on Q. Also Γ (s, ε′) ≤ Γ (s, ε) for
ε′ < ε. Hence Jε is nondecreasing in ε > 0. Let

V ε
ν = inf

Atν

Jε, V ε = V ε
PM = inf

ν
V ε

ν .

In Chapter IV it is shown that V ε = V ε
ν for every ν and V ε satisfies property

IV(7.1). See Remark IV.7.1.
Let ρ̂(x) be the signed distance to the boundary of O, i.e., for x �∈ O,

ρ̂(x) = d̂(x) is the distance between x and Ō, and for x ∈ O, −ρ̂(x) is the
distance between x and the complement of O. To prove the convergence of V ε

in Q, we also assume a condition analogous to I(3.11), i.e., assume that ∂O
is smooth and hence ρ̂ is smooth near ∂O and for every (t, x) ∈ [t0, t1] × ∂O,
there exists v(t, x) ∈ U satisfying
(2.8)

Av(t,x)ρ̂(x) =
1

2

n
∑

i,j=1

aij(t, x, v(t, x))ρ̂xixj
(x) + f(t, x, v(t, x)) · ∇ρ̂(x) > 0,

where Au is as in IV(2.11). Further we assume that v has a smooth extension.
We set Ṽ (t, x) = Ψ̃(t, x) on ∂∗Q. Thus,

(2.9)
Ṽ (t, x) = 0, (t, x) ∈ [t0, t1],×∂O,

Ṽ (t1, x) = ψ̃(x), x ∈ O.

We will show that these boundary data are assumed continuously.
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Lemma 2.1. Assume (2.8). Then Ṽ ∈ C(Q) and Ṽ satisfies (2.1a), (2.1b)
with L replaced by L̃. Moreover, Ṽ = Ṽν for each ν.

Proof. Let x ∈ ∂O, t ∈ [t0, t1). Set ū(s) ≡ v(t, x), with v(t, x) as in (2.8).
Then

0 ≤ V ε(t, x) ≤ Jε(t, x; ū)

and we claim that

(2.10) lim
ε↓0

Jε(t, x;u) = 0.

Let x(s) be the state process corresponding the control u and the initial
condition x(t) = x. Then, by Ito’s formula and (2.8), ρ̂(x(s)) is locally a strict

submartingale. Since, d̂ is the positive part of ρ̂, d̂(x(s)) P -almost surely
satisfies

∫ s

t

d̂(x(r))dr > 0, ∀s ∈ [t, t1].

Hence P -almost surely Γ (ε, s) → 0 as ε ↓ 0. Then (2.10) follows from the
dominated convergence theorem.

Hence V ε converges to Ṽ ≡ 0 on [t0, t1) × ∂O, as ε tends to zero. Since
V ε = Ṽ = ψ̃ on {t1} ×O, V ε → Ṽ on ∂∗Q. Observe that ∂∗Q is compact and
since ψ̃(x) = 0 for x ∈ ∂O, Ṽ is continuous on ∂∗Q. Then by Dini’s Theorem
[Ro, p. 162] this monotone convergence is uniform on ∂∗Q. Set

h(ε) = sup{V ε(t, x) − Ṽ (t, x) : (t, x) ∈ ∂∗Q}.

We have just argued that h(ε) → 0 as ε ↓ 0.
Since V ε satisfies the dynamic programming principle and Ṽ (τ, x(τ)) = 0

when τ < t1, yields

V ε(t, x) ≤ J̃(t, x;u) + Et,xΓ (τ, ε)[V ε(τ, x(τ)) − Ṽ (τ, x(τ))],

for any (t, x) ∈ Q and u(·) ∈ Atν . Since (τ, x(τ)) ∈ ∂∗Q and Γ (τ, ε) = 1, we
now have

V ε(t, x) ≤ J̃(t, x;u) + h(ε), ∀(t, x) ∈ Q.

Therefore
Ṽ (t, x) ≤ V ε(t, x) ≤ Ṽ (t, x) + h(ε), ∀(t, x) ∈ Q.

Hence V ε converges to Ṽ uniformly on Q. Consequently Ṽ ∈ C(Q). Also for
a reference probability system ν,

Ṽ ≤ Ṽν ≤ V ε
ν = V ε ≤ Ṽ + h(ε).

Therefore Ṽ = Ṽν for any ν.
It remains to show that Ṽ satisfies (2.1). By Corollary IV.7.1 and Remark

IV.7.1, for every u(·) and stopping time θ,

V ε(t, x) ≤ Etx

{
∫ θ

t

Γ (s, ε)L̃(s, x(s), u(s))ds
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+Γ (θ, ε)V ε(θ, x(θ))

}

.

Since Ṽ = 0 on ∂∗Q, Γ (θ, ε) → 0 when θ > τ , and Γ (s, ε) = 1 for t ≤ s ≤ τ∧θ,
we get (2.1a) by letting ε → 0. For every δ > 0 there exists uε(·) such that

V ε(t, x) ≥ Etx

[
∫ θ

t

Γ (s, ε)L̃(s, x(s), u(s))ds

+Γ (θ, ε)V ε(θ, x(θ))

]

− δ

3

for every stopping time θ. If we take ε small enough that ‖V ε − V ‖ < δ/3,
then u(·) = uε(·) satisfies (2.1b). Here we use the positivity of L̃ and the fact
that Γ (s, ε) = 1 for t ≤ s ≤ τ ∧ θ. �

Let us now consider running cost function L and boundary cost function
Ψ which do not necessarily satisfy (2.3). As in I(3.6) set

g(t, x) = Ψ(t, x), (t, x) ∈ [t0, t1) × ∂O,

ψ(x) = Ψ(t1, x), x ∈ O.

We also assume that g can be extended to Q0 such that g ∈ C3
b (Q0) and

(2.11a) −gt(t, x) + H(t, x,Dxg(t, x), D
2
xg(t, x)) ≤ 0, ∀(t, x) ∈ Q0,

(2.11b) g(t1, x) ≤ ψ(x), ∀x ∈ IRn,

where for (t, x) ∈ Q0, p ∈ IRn and a symmetric matrix A,H(t, x, p, A) is as in
IV(3.2), i.e,
(2.12)

H(t, x, p, A) = sup
v∈U

{

−1

2
tr(σσ′)(t, x, v)A] − f(t, x, v) · p− L(t, x, v)

}

.

Assumptions (2.11) state that g is a smooth subsolution of the HJB equation
IV(3.3). Observe that (2.11) is satisfied if L,ψ ≥ 0 and g ≡ 0, as in (2.3).
Condition (2.11) is very similar to the hypotheses of Proposition I.8.1. See
Remark I.8.1. Using I(8.13) as our motivation, we define

L̃(t, x, v) = L(t, x, v) +Avg(t, x),

ψ̃(x) = ψ(x) − g(t1, x),

for (t, x) ∈ Q0, v ∈ U (see IV(2.11) for the definition ofAv). Then L̃ ≥ 0, ψ̃ ≥ 0
as required in (2.3). Recall that in Section IV.2, Ψ is assumed continuous.
Hence

g(t1, x) = ψ(x), ∀x ∈ ∂O,

and an application of Ito’s formula yields
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g(τ, x(τ)) = g(t, x) + Etx

∫ τ

t

Au(s)g(s, x(s))ds,

and

J̃(t, x;u) + g(t, x) = Et,x

{
∫ τ

t

[L̃(s, x(s), u(s) −Au(s)g(s, x(s))]ds

+ g(τ, x(τ)) + ψ̃(x(t1))χτ=t1

}

= J(t, x;u).

Since this is true for all u(·), we get

(2.13) V = Ṽ + g, Vν = Ṽν + g.

From Lemma 2.1 and (2.13) we obtain the main result of this section.
Theorem 2.1. Assume IV(6.1), IV(6.3), (2.8), (2.11) and that ψ is con-

tinuous on Q. Then V is continuous on Q and property (DP) holds. Moreover,
V = Vν for every reference probability system ν.

Remark 2.1. Our method is to approximate the exit time control problem
by a sequence of problems with state space Q0. We then use the results of
Chapter IV. For a general proof of dynamic programming we refer to the
books of Bensoussan-Lions [BL1], Krylov [Kr1] and Borkar [Bo]. Bensoussan-
Lions and Krylov prove dynamic programming by discretization. Their proof
requires continuity of the value function. Borkar’s proof however [Bo, Sec.
III.1] is more general. Also a probabilistic proof based on a deep measurable
selection theorem of Brown and Purves [BrP] is possible. In the discrete-
time setup such a proof is given in Bertsekas and Shreve [BsS]. Borkar’s [Bo,
Lemma III.1.1] is an analogue of this measurable selection theorem. Recently
this method was used by Soner and Touzi [ST1] to prove a geometric dynamic
programming. El Karoui and her collaborators [ENJ] and Kurtz [Kz] avoid
using measurable selection by proving the compactness of the set of admissible
controls.

V.3 Viscosity property

Except in Section 9, we will take Q to be bounded in the rest of this chapter.
Let ν be a reference probability system and define a two parameter family of
nonlinear operators on C = C(O) by

(Ttrφ)(x) = inf
u(·)

Etx

{
∫ τ∧r

t

L(s, x(s), u(s))ds+ g(τ, x(r))χτ<r
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+φ(x(r))χτ≥r

}

,

where t0 ≤ t ≤ r ≤ t1, φ ∈ C, τ is the exit time of (s, x(s)) from Q and g ∈
C(Q) is a given function, which we call the lateral boundary data. Clearly Ttr

satisfies II(3.1)-II(3.2′). The semigroup property II(3.3) however, is equivalent
to the dynamic programming principle (2.2).

To apply the results of Chapter II to this situation, we also have to verify
II(3.11). Indeed we shall prove that II(3.11) holds with Σ = O, Σ

′

= O,
D = C1,2(Q) and the infinitesimal generator,

(Gtφ)(x) = H(t, x,Dφ(x), D2φ(x)), (t, x) ∈ Q,

where H is as in (2.12). In view of Theorem II.5.1 and Remark II.6.1, this
result will imply that the value function is a viscosity solution of the dynamic
programming equation provided that it is continuous, see Corollary 3.1 below.

Theorem 3.1. Suppose that f, σ satisfy IV(2.2), U is compact, and g and
L are continuous. Then for every w ∈ D and (t, x) ∈ Q we have

lim
h↓0

1

h
[(Tt,t+hw(t+ h, ·))(x) − w(t, x)] =

∂

∂t
w(t, x) − (Gtw(t, ·))(x).

Proof. We start with a probabilistic estimate. Let x(·) be the solution
of IV(2.1) with control u(·) and initial condition x(t) = x ∈ O. Since Q is
bounded, f and σ are bounded and for any positive integer m and h ∈ (0, 1]
we have

(3.1) Etx sup
t≤ρ≤t+h

|x(ρ) − x|2m

= Etx sup
t≤ρ≤t+h

∣

∣

∣

∣

∫ ρ

t

f(s, x(s), u(s))ds+

∫ ρ

t

σ(s, x(s), u(s))dw(s)

∣

∣

∣

∣

2m

≤ ĈmEtx

(

∫ t+h

t

|f(s, x(s), u(s))|ds
)2m

+ ĈmEtx sup
t≤ρ≤t+h

∣

∣

∣

∣

∫ ρ

t

σ(s, x(s), u(s))dw(s)

∣

∣

∣

∣

2m

≤ Ĉm‖f‖2mh2m + C̃m‖σ‖2mhm

≤ Cmh
m,

where ‖·‖ denotes the sup-norm on Q and Cm, Ĉm, C̃m are suitable constants.
(See (D.4) in Appendix D for a more general probabilistic estimate of the
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above type.) Set d(x) = dist(x, ∂O) and recall that τ is the exit time from Q.
Then for t+ h ≤ t1,

(3.2)

Ptx(τ ≤ t+ h) ≤ Ptx( sup
t≤ρ≤t+h

|x(ρ) − x| ≥ d(x))

≤ (Etx sup
t≤ρ≤t+h

|x(ρ) − x|2m)(d(x))−2m

≤ Cmh
m/d(x)2m.

Fix v ∈ U and let u(s) ≡ v. Then the definition of Tt,t+h yields

(3.3)

I(h) =
1

h
[(Tt,t+hw(t+ h, ·))(x) − w(t, x)]

≤ 1

h
Etx

∫ (t+h)∧τ

t

L(s, x(s), v)ds

+
1

h
Etx[w(t+ h, x(t+ h)) − w(t, x)]χτ≥t+h

+
1

h
Etx[g(τ, x(τ)) − w(t, x)]χτ<t+h.

The estimate (3.2) with m = 2 yields

lim
h↓0

1

h
Ptx(τ ≤ t+ h) = 0

for every (t, x) ∈ Q. Hence

lim
h↓0

1

h
Etx

∫ (t+h)∧τ

t

L(s, x(s), v)ds = L(t, x, v)

and

lim
h↓0

1

h
Etx[g(τ, x(τ)) − w(t, x)]χτ<t+h = 0.

Also, by Ito’s formula

lim
h↓0

1

h
Etx[w(t+ h, x(t+ h)) − w(t, x)]χτ≥t+h

= lim
h↓0

1

h
Etx[w((t+ h) ∧ τ, x((t+ h) ∧ τ)) − w(t, x)]

= lim
h↓0

1

h
Etx

∫ (t+h)∧τ

t

Avw(s, x(s))ds

= Avw(t, x).
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Substitute the above into (3.3) to obtain

lim sup
h↓0

I(h) ≤ L(t, x, v) +Avw(t, x),

for all v ∈ U . By taking the infimum over v, we get

lim sup
h↓0

I(h) ≤ ∂

∂t
w(t, x) − (Gtw(t, ·))(x).

For any sequence hn ↓ 0, there exists un(·) satisfying

(Tt,tn
w(tn, ·))(x)

≥ Etx

[
∫ τn

t

L(s, xn(s), un(s))ds+ g(τn, xn(τn))χτn<tn

+w(tn, xn(tn))χτn=tn

]

− (hn)2,

where tn = t+ hn, τn = τ̂n ∧ tn, xn(·) is the solution of IV(2.1), IV(2.4) with
control un, and τ̂n is the exit time of (s, xn(s)) from Q. Therefore

(3.4)

I(hn) ≥ 1

hn
Etx

∫ τn

t

L(s, xn(s), un(s))ds

+
1

hn
Etx[w(tn, x(tn)) − w(t, x)]χτn=tn

+
1

hn
Etx[g(τn, xn(τn)) − w(t, x))]χτn<tn

− hn.

The probabilistic estimate (3.2) with m = 2 implies that the limit of the third
term is zero and

(3.5)

lim
n→∞

∣

∣

∣

∣

1

hn
Etx

(
∫ tn

t

L(t, x, un(s))ds−
∫ τn

t

L(s, xn(s), un(s))ds

)∣

∣

∣

∣

≤ lim
n→∞

‖L‖ 1

hn
Etx(tn − τn)

+ lim
n→∞

1

hn
Etx

∫ tn

t

|L(t, x, un(s)) − L(s, xn(s), un(s))|ds.

Since Q×U is compact, L is uniformly continuous. Also (3.1) implies that for
every δ > 0,

lim
n→∞

P ( sup
t≤ρ≤t+hn

|xn(ρ) − x| ≥ δ) = 0.
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Therefore the uniform continuity of L and (3.1) imply that the limits in (3.5)
are zero. We now use (3.2) and Dynkin’s formula IV(2.13) to obtain

lim
n→∞

1

hn

∣

∣

∣

∣

Etx

{

[w(tn, x(tn)) − w(t, x)]χτn=tn
−
∫ tn

t

Aun(s)w(t, x)ds

}∣

∣

∣

∣

≤ lim
n→∞

1

hn
sup

v
|Avw(t, x)|Etx(tn − τn)

+ lim
n→∞

1

hn
Etx

∫ τn

t

|Aun(s)w(s, xn(s)) −Aun(s)w(t, x)|ds.

Since w ∈ C1,2(Q), Avw(s, y) is a uniformly continuous function of Q×U . As
in (3.5), the dominated convergence theorem and (3.1) imply that the above
limit is zero. Combine this with (3.4) and (3.5) to obtain

I(hn) ≥ Ln +Gn − e(n),

where

Ln =
1

hn
E

∫ t+hn

t

L(t, x, un(s))ds,

Gn =
1

hn
E

∫ t+hn

t

Aun(s)w(t, x)ds,

and the error term e(n) converges to zero as n → ∞. Define a set

Û =

{

(L,G) ∈ IR2 : L = L(t, x, v), G = Avw(t, x) for some v ∈ U

}

.

Then (Ln, Gn) ∈ co(Û), where co denotes the convex, closed hull of Û . Also,

Ln +Gn ≥ inf{L+G : (L,G) ∈ co(Û)}

= inf{L+G : (L,G) ∈ Û}

=
∂

∂t
w(t, x) − (Gtw(t, ·))(x). �

As in Section 2, let V be the value function.

Corollary 3.1. Suppose that V ∈ C(Q) satisfies (2.1). Then V a viscosity
solution of the dynamic programming equation

(3.6) − ∂

∂t
V (t, x) + (GtV (t, ·))(x) = 0 in Q.

Proof. We have shown that the two parameter family of nonlinear opera-
tors {Ttt1} satisfy II(3.1), II(3.2), II(3.11). Hence the viscosity property of V
follows from Theorem II.5.1 and Remark II.6.1. �
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V.4 An equivalent formulation

Recall that in Section II.8 we obtained an equivalent definition for the viscosity
solutions of a first-order equation. In this section, we follow the procedure
devised in Section II.8 to obtain an equivalent definition of viscosity solutions
of

(4.1) − ∂

∂t
W (t, x) + H(t, x,DxW (t, x), D2

xW (t, x),W (t, x)) = 0, (t, x) ∈ Q.

Here we do not assume that (4.1) is related to a control problem.
We start with the definition of second subdifferentials and superdifferen-

tials of continuous functions. Let Sn be the set of all n×n symmetric matrices.

Definition 4.1. Let W ∈ C(Q).
(i) The set of second (parabolic) superdifferentials of W at (t, x) ∈ Q is

D+(1,2)W (t, x) =

{

(q, p, A) ∈ IR× IRn × Sn :

lim sup
(h,y)→0

(t+h,x+y)∈Q

W (t+ h, x+ y) −W (t, x) − qh− p · y − 1
2Ay · y

|h| + |y|2 ≤ 0

}

.

(ii) The set of second (parabolic) subdifferentials of W at (t, x) ∈ Q is

D−(1,2)W (t, x) = −D+(1,2)(−W )(t, x)

=

{

(q, p, A) ∈ IR× IRn × Sn :

lim inf
(h,y)→0

(t+h,x+y)∈Q

W (t+ h, x+ y) −W (t, h) − qh− p · y − 1
2Ay · y

|h| + |y|2 ≥ 0

}

.

In the literature, for instance in the User’s Guide of Crandall, Ishii and
Lions [CIL1, Section 8], the above sets are also parabolic sub or superjets and
the notation P2,± is used.

The closure of the set of sub and superdifferentials are also useful in the
theory. We define,

Definition 4.2. For W ∈ C(Q), (t, x) ∈ Q, (q, p, A) ∈ cD±(1,2)W (t, x)
if and only if there are sequences (tn, xn) ∈ Q → (t, x) and (qn, pn, An) ∈
D±(1,2)W (tn, xn) → (q, p, A).
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It is clear that if (q, p, A) ∈ cD+(1,2)W (t, x), then (q, p, A + B) ∈
cD+(1,2)W (t, x) for any positive semidefinite matrix B. Also for W ∈ C1,2(Q),
and (t, x) ∈ Q,

cD+(1,2)W (t, x) =

{(

∂

∂t
W (t, x), DxW (t, x), D2

xW (t, x) +B

)

: B ≥ 0

}

,

cD−(1,2)W (t, x) =

{(

∂

∂t
W (t, x), DxW (t, x), D2

xW (t, x) −B

)

: B ≥ 0

}

.

Now, also assume that W ∈ C1,2(Q) is a classical solution of (4.1). Since for
every B ≥ 0

tr[(σσ′)(t, x, v)B] ≥ 0,

the above characterization of the second sub- and superdifferentials yields

(4.2) −q + H(t, x, p, A,W (t, x)) ≤ 0, ∀(q, p, A) ∈ cD+(2,1)W (t, x),

(4.3) −q + H(t, x, p, A,W (t, x)) ≥ 0, ∀(q, p, A) ∈ cD−(2,1)W (t, x).

As in the first order equations, the above inequalities form an equivalent
definition for the viscosity solutions. We first prove the following results to-
wards this equivalence.

Lemma 4.1. Let (t, x) ∈ Q be given. Then (q, p, A) ∈ D+(1,2)W (t, x) if
and only if there exists w ∈ C1,2(Q) satisfying

(4.4)

(

∂

∂t
w(t, x), Dxw(t, x), D2

xw(t, x)

)

= (q, p, A).

such that W − w achieves its maximum at (t, x) ∈ Q. Similarly, (q, p, A) ∈
D−(1,2)W (t, x) if and only if there exists w ∈ C1,2(Q) satisfying (4.4) such
that W − w achieves its minimum at (t, x) ∈ Q.

Proof. Suppose that w ∈ C1,2(Q) and W − w achieves its maximum at
(t, x) with W (t, x) = w(t, x). Then it is easy to show that

(

∂

∂t
w(t, x), Dxw(t, x), D2

xw(t, x)

)

∈ D+(1,2)W (t, x).

To prove the opposite direction: Let (q, p, A) ∈ D+(1,2)W (t, x) for some
(t, x) ∈ Q be given. We continue with constructing a test function w ∈
C1,2(Q0) satisfying (4.4) and (t, x) ∈ argmax{(W −w)(t, x): (t, x) ∈ Q} with
W (t, x) = w(t, x). For r ≥ 0 define

h(r) = sup

{

(

W (t+ h, x+ y) −W (t, x) − qh− p · y − 1
2Ay · y

)+

(|y|4 + h2)
1
2

:
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(t+ h, x+ y) ∈ Q, (|y|4 + h2)
1
2 ≤ r

}

.

Since

lim sup
(y,h)→0

|y|2 + |h|
(|y|4 + h2)

1
2

< ∞

and (q, p, A) ∈ D+(1,2)W (t, x), h is continuous and nondecreasing on [0,∞)
with h(0) = 0. Now let

w(t, x) = F (r(t, x)) +W (t, x) + q(t− t) + p · (x− x) +
1

2
A(x− x) · (x− x),

with
r(t, x) = ((t− t)2 + |x− x|4) 1

2 , (t, x) ∈ Q0,

F (r) =
2

3r

∫ 2r

r

∫ 2ξ

ξ

h(ρ)dρdξ, r > 0,

and F (0) = 0. We claim that w ∈ C1,2(Q0). We will verify this by a straight-
forward computation. So to simplify the notation we take (t, x) = (0, 0). Since
by the monotonicity of h, h(ρ) ≤ h(4r) for every ρ ∈ [0, 4r], we obtain

0 ≤ F (r) ≤ rh(4r).

Also for r > 0,

Fr(r) =
4

3r

∫ 4r

2r

h(ξ)dξ − 2

3r

∫ 2r

r

h(ξ)dξ − 1

r
F (r),

Frr(r) =
2

3r
[8h(4r) − 6h(2r) + h(r)] − 2

r
Fr(r).

Again the monotonicity and positivity of h yield

|Fr(r)| ≤ 8

3
h(4r),

|Frr(r)| ≤ 28

3r
h(4r).

Hence F and Fr continuous at r = 0 with F (0) = Fr(0) = 0. We now calculate
that for (t, x) �= (0, 0),

∂

∂t
F (r(t, x)) =

t

r(t, x)
Fr(r(t, x)),

∂

∂xi
F (r(t, x)) =

2|x|2xi

r(t, x)
Fr(r(t, x))

and since |t| ≤ r(t, x) and |x|2|xi| ≤ r(t, x),
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lim
(t,x)→(0,0)

∂

∂t
F (r(t, x)) = 0,

lim
(t,x)→(0,0)

∂

∂xi
F (r(t, x)) = 0.

Also for (t, x) �= (0, 0),

∂2

∂xi∂xj
F (r(t, x)) =

4|x|4
r2

xixjFrr(r(t, x))

+

(

2|x|2
r

δi,j +
4xixjt

2

r3

)

Fr(r(t, x)),

where δi,j = 0 for i �= j and δi,i = 1. Since |x|2, |t| ≤ r(t, x), the previous
estimates of Fr and Frr yield

∣

∣

∣

∣

∂2

∂xi∂xj
F (r(t, x))

∣

∣

∣

∣

≤ 4r|Frr(r)| + 6|Fr(r)| ≤ 160

3
h(4r(t, x)).

Therefore F (r(t, x)) ∈ C1,2(Q0) with zero time derivative, gradient and
Hessian at (t, x) = (0, 0). This also implies that w satisfies (4.4).

We claim thatW−w achieves its maximum at (t, x). Indeed the monotonic-
ity of h yields

(4.5)

F (r) ≥ 2

3r

∫ 2r

r

∫ 2ξ

ξ

h(r)dρdξ

=
2

3r

∫ 2r

r

ξh(r)dξ

= rh(r).

Set

Q(t, x) = W (t, x) + q(t− t) + p · (x− x) +
1

2
A(x− x) · (x− x).

The definition of h implies that

W (t, x) −Q(t, x) ≤ r(t, x)h(r(t, x)).

In view of (4.5), this gives

w(t, x) = F (r(t, x)) +Q(t, x)

≥ r(t, x)h(r(t, x)) +Q(t, x)

≥ W (t, x), ∀(t, x) ∈ Q.
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We complete the proof of this lemma, after observing that w(t, x) = W (t, x).
The second statement is proved in exactly the same way �

An immediate corollary of the above result is this.

Proposition 4.1. Let H be continuous. Then, W ∈ C(Q) is a viscosity
subsolution of (4.1) in Q if and only if (4.2) holds for all (t, x) ∈ Q. Similarly
W ∈ C(Q) is a viscosity supersolution of (4.1) in Q if and only if (4.3) holds
for all (t, x) ∈ Q.

V.5 Semiconvex, concave approximations

In this section we introduce an approximation procedure of Lasry and Lions
[LL] and Jensen [J]. These approximations are used in an essential way in
the comparison proof. In particular, they are used in the proof of Crandall-
Ishii lemma stated in the next section. We record their definition and few
basic properties as they are powerful tools in the analysis of optimal control
problems in addition to their central role in the proof of comparison.

We recall that Q is assumed to be bounded. For ε > 0,W ∈ C(Q), and
(t, x) ∈ Q define

(5.1) W ε(t, x) = sup

{

W (s, y) − 1

2ε2
(|t− s|2 + |x− y|2) : (s, y) ∈ Q

}

,

(5.2) Wε(t, x) = inf

{

W (s, y) +
1

2ε2
(|t− s|2 + |x− y|2) : (s, y) ∈ Q

}

.

Now let (s, y) ∈ Q be a maximizer of (5.1). Then

W ε(t, x) = W (s, y) − 1

2ε2
((t− s)2 + |x− y|2) ≥ W (t, x).

Therefore,
|t− s|2 + |x− y|2 ≤ 4‖W‖ε2

and
0 ≤ W ε(t, x) −W (t, x) ≤ W (s, y) −W (t, x).

Hence W ε converges uniformly to W on Q as ε → 0. Similarly we show that
Wε converges uniformly to W on Q.

Lemma 5.1. On Q, W ε and Wε are semiconvex, and semiconcave, re-
spectively. Moreover, W ε and Wε converge to W uniformly on Q as ε → 0.

Proof. We claim that
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wε(t, x) = W ε(t, x) +
1

2ε2
(t2 + |x|2)

is convex on every convex subset of Q. Indeed let (t+h, x+ z), (t−h, x− z),
(t, x) ∈ Q, and (s, y) be a maximizer of (5.1). Using the definition of W ε, we
obtain

W ε(t± h, x± z) ≥ W (s, y) − 1

2ε2
(|t± h− s|2 + |x± z − y|2).

Therefore,

wε(t+ h, x+ z) + wε(t− h, x− z) − 2wε(t, x)

≥ 1

2ε2
{[(t+ h)2 + (t− h)2 − 2t2]

− [(t+ h− s)2 + (t− h− s)2 − 2(t− s)2]}

+
1

2ε2
{[|x+ z|2 + |x− z|2 − 2|x|2]

− [|x+ z − y|2 + |x− z − y|2 − 2|x− y|2]}

= 0.

Thus wε is convex. The properties of Wε are proved similarly. �

For γ > 0, set k0 = (1 + 4‖W‖)
1
2 , and

Oγ = {x ∈ O : distance(x, ∂O) > γ}, Qγ = [t0 + γ, t1 − γ) ×Oγ .

Lemma 5.2. Fix ε > 0. For each (t, x) ∈ Qεk0 , there exists (s, y) ∈ Q
such that

D+(1,2)W ε(t, x) ⊂ D+(1,2)W (s, y).

Proof. Let (s, y) be a maximizer of (5.1) at (t, x). Then,

W (s, y) − 1

2ε2
(|t− s|2 + |x− y|2) ≥ W (t, x).

Therefore
|t− s|2 + |x− y|2 < ε2k2

0.

Since (t, x) ∈ Qεk0 , (s, y) ∈ (t0, t1) × O. Therefore for every (t, x) sufficiently
near (t, x), the point (s+ t− t, y + x− x) ∈ Q. In particular,

W ε(t, x) ≥ W (s+ t− t, y + x− x) − 1

2ε2
[|s− t|2 + |y − x|2].
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Suppose that w ∈ C1,2(Q) and W ε − w attains its maximum at (t, x).
Since (s, y) maximizes (5.1), this inequality implies that

W (s+ t− t, y + x− x) − w(t, x)

also attains its maximum at (t, x). In view of Lemma 4.1, this completes the
proof of the lemma. �

Proceeding exactly as in the above proof, we obtain the following dual
result.

Lemma 5.3. For each (t, x) ∈ Qεk0 , there exists and (s, y) ∈ Q such that
D−(1,2)Wε(t, x) ⊂ D−(1,2)W (s, y).

V.6 Crandall-Ishii Lemma

In this section we state an analysis lemma formulated by Crandall and Ishii.
It is the cornerstone of the theory of viscosity solution, and is the key result in
the comparison proof that will be given in Section 8. This lemma summarizes
the analytic part of the original comparison proofs of Jensen and Ishii and is
very useful in streamlining the comparison proof. We state it without proof
and refer the reader to Theorem 8.3 in the User’s Guide Crandall, Ishii and
Lions [CIL1] and to the article by Crandall and Ishii [CI].

Theorem 6.1. (Crandall-Ishii maximum principle) Suppose W,V ∈ C(Q̄)
are two semi-continuous functions such that for every M > 0 there exist a
constant C = C(M) so that for any (t, x) ∈ Q,

(6.1)
(q, p, A) ∈ cD+(1,2)W (t, x), ‖(t, x, p, A,W (t, x))‖ ≤ M,

⇒ q ≥ −C(M),

(6.2)
(q, p, A) ∈ cD−(1,2)V (t, x), ‖(t, x, p, A, V (t, x))‖ ≤ M,

⇒ q ≤ C(M),

where ‖ · ‖ is the standard Euclidean norm.
Then, for every ϕ ∈ C1,2([t0, t1] × Ō × Ō), ǫ > 0 and any local maximizer

(t∗, x∗, y∗) ∈ (t0, t1) × O × O) of the difference W (t, x) − V (t, y) − ϕ(t, x, y),
there exist q, q̂ ∈ IR1 and symmetric matrices A, B satisfying,

(6.3)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(i) (q, p, A) ∈ cD+(1,2)W (t∗, x∗), p = Dxϕ(t∗, x∗, y∗),

(ii) (q̂, p̂, B) ∈ cD−(1,2)V (t∗, y∗), p̂ = −Dyϕ(t∗, x∗, y∗),

(iii) q − q̂ = Dtϕ(t∗, x∗, y∗),

(iv) −
(

1

ǫ
+ ‖X‖

)

I ≤
[

A 0
0 −B

]

≤ X + ǫX2,
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where I is the identity matrix with appropriate dimension, X = D2
x,yϕ(t∗, x∗, y∗)

is a 2n× 2n symmetric matrix,

‖X‖ = sup{ Xη · η : |η| = 1 },

and the above inequalities are in the sense of symmetric matrices.

Remark 6.1. Several remarks about the proof and the use of the above
important result are in order.

1. Conditions (6.1) and (6.2) are stated with reverse inequalities in the
User’s Guide. However, we immediately obtain the above result from Theorem
8.3 of the User’s Guide by considering the functions w(t, x) := W (−t, x) and
v(t, x) := V (−t, x). These conditions are needed only in the parabolic case.
Notice that in the above theorem, while we are only doubling up the spatial
variables x and y but not the time variable t. This is the reason for the
additional conditions (6.1) and (6.2). They are used to obtain bounds in the
limiting arguments.

2. An elliptic version of the Crandall-Ishii lemma is available and is very
useful, see the User’s Guide [CIL1] Theorem 3.2. The elliptic version holds
true under minimal assumptions. In particular, conditions like (6.1) and (6.2)
are not needed for the elliptic problem.

3. The unusual form of (6.3)(iv) is extremely important and it follows
from the following classical observation. Suppose that W and V are smooth
functions. Set Φ(t, x, y) := W (t, x)−V (t, y), and apply the classical maximum
principle from calculus to the difference Φ− ϕ. The result is

D2
x,yΦ(t∗, x∗, y∗) =

[

D2W (t∗, x∗) 0
0 −D2V (t∗, y∗)

]

≤ D2
x,yϕ(t∗, x∗, y∗).

4. We will use Crandall-Ishii lemma with ϕ(x, y) = α|x − y|2/2 + h(t),
with a smooth function h. Then,

X = D2
x,yϕ(x∗, y∗) = α

[

I −I
−I I

]

,

and X2 = 2α2X, ‖X‖ = 2α. Further choosing ǫ = 1/α in (6.3)(iv) yields a
symmetric inequality

(6.4) −3α

[

I 0
0 I

]

≤
[

A 0
0 −B

]

≤ 3α

[

I −I
−I I

]

.

5. Finally, we note that since the matrix on the right hand side of the above
inequality annihilates all vectors of the form (η, η), this inequality implies that
A ≤ B. Indeed,

Aη · η −Bη · η =

[

A 0
0 −B

] [

η
η

]

·
[

η
η

]

≤
[

I −I
−I I

] [

η
η

]

·
[

η
η

]

= 0.
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�

In all uses of the Crandall-Ishii lemma, W is a subsolution and V is a
supersolution of the same equation. In this case, the conditions (6.1) and
(6.2) follow from the properties of the equation. We close this section proving
this statement for the sub and supersolutions of the dynamic programming
equation (4.1).

Lemma 6.1. Assume H in (4.1) is continuous. Then, every continuous
viscosity subsolution W of (4.1)satisfies (6.1). Also, every continuous viscosity
supersolution V of (4.1)satisfies (6.2).

Proof. This is an immediate consequence of the continuity of H and (4.2)
or (4.3). Indeed, we simply take

C(M) = sup { |H(t, x, p, A,w)| : ‖(t, x, p, A,w)‖ ≤ M } .

�

V.7 Properties of H

In this section, we prove an elementary property of the nonlinear function H
defined in (2.12). Recall that we always assume that Q is bounded.

Lemma 7.1. Let H be as in (2.12). Assume IV(2.2) and that L(·, ·, v) ∈
C1(Q). Then, there exists a continuous function ω : [0,∞) → [0,∞) that
satisfies ω(0) = 0 such that

(7.1) H(t, y, α(x− y), B) − H(t, x, α(x− y), A) ≤ ω(α|x− y|2 + |x− y|),

for every (t, x), (t, y) ∈ Q, α > 0, and symmetric matrices A, B satisfying
(6.4).

Proof. Recall that

H(t, x, p, A) = sup
v∈U

{

−1

2
tr(σσ′)(t, x, v)A− f(t, x, v) · p− L(t, x, v)

}

.

Set pα = α(x− y), D = σ(t, x, v), C = σ(t, y, v) so that

H(t, y, α(x− y), B) − H(t, x, α(x− y), A) ≤ sup
v∈U

{

1

2
tr(DD′A− CC ′B)

}

+ sup
v∈U

{|f(t, x, v) − f(t, y, v)| |pα| + |L(t, x, v) − L(t, y, v)|} .

By assumption IV(2.2),

|f(t, x, v) − f(t, y, v)| |pα| + |L(t, x, v) − L(t, y, v)| ≤ C|x− y||pα| + C|x− y|
= C[α|x− y|2 + |x− y|].
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We now use (6.4) to obtain,

tr(DD′A− CC ′B) = tr

([

DD′ DC ′

CD′ CC ′

] [

A 0
0 −B

])

≤ 3α tr

([

DD′ DC ′

CD′ CC ′

] [

I −I
−I I

])

= 3α tr(DD′ −DC ′ − CD′ + CC ′)

= 3α tr([D − C][D′ − C ′])

= 3α ‖D − C‖2 = 3α ‖σ(t, x, v) − σ(t, y, v)‖2

≤ Cα|x− y|2.

These inequalities yield (7.1) with ω(r) = Cr. �

V.8 Comparison

In this section we will prove a general comparison result for second order
partial differential equations under the structural assumption (7.1). In par-
ticular, this comparison result applies to the dynamic programming equation
(4.1) provided that the nonlinearity H for the dynamic programming equation
for controlled Markov diffusions defined in (2.12) satisfies (7.1). Therefore, by
Lemma 7.1, the equation (4.1) has comparison under the assumption IV(2.2).
However, since the assumption IV(2.2) yields (7.1) with a linear ω, compari-
son for (4.1) can be proved under assumptions that are considerably weaker
than IV(2.2).

Recall that Q = (t0, t1) ×O and O is open and bounded.

Theorem 8.1. Suppose that H is continuous and satisfies (7.1). Let W ∈
C(Q) be a viscosity subsolution of (4.1) in Q, and V ∈ C(Q) be a viscosity
supersolution of (4.1) in Q. Then

(8.1) sup
Q

(W − V ) = sup
∂∗Q

(W − V ).

Proof. Suppose to the contrary, i.e.,

sup
Q

(W − V ) − sup
∂∗Q

(W − V ) > 0.

1. For ρ > 0 define

W ρ(t, x) = W (t, x) − ρ

t− t0
, (t, x) ∈ Q.

Since
d

dt

(

− ρ

t− t0

)

=
ρ

(t− t0)2
> 0,
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W ρ is a viscosity subsolution of (4.1) in Q.
2. For ρ, β, α > 0 consider the auxiliary function

Φ(t, x, y) = W ρ(t, x) −V (t, y) −α|x− y|2 + β(t− t1), t ∈ [t0, t1], x, y ∈ O.

Note that W , V are continuous on Q. Now proceed as in Step 2 of Theorem
II.9.1 to construct β0, ρ0, α0 > 0 such that for all positive β ≤ β0, ρ ≤ ρ0,
α ≥ α0 we have

sup
[t0,t1]×O×O

Φ > sup
∂[(t0,t1)×O×O]

Φ.

Let (t, x, y) ∈ (t0, t1) ×O×O be a local maximum of Φ. Then the hypotheses
of Theorem 6.1 are satisfied with W ρ, V and

ϕ(t, x, y) = α|x− y|2 − β(t− t1).

In view of Lemma 6.1, and Remark 6.1(3), we conclude that (6.3) and (6.4)
are satisfied with symmetric matrices A and B, i.e.,

(q, pα, A) ∈ cD+(1,2)W ρ(t, x), (q̂, pα, B) ∈ cD−(1,2)V (t, y),

where

pα =
1

α
(x− y), q − q̂ = ϕt(t, x, y) = −β.

3. Viscosity properties of W ρ and V yield,

−q + H(t, x, pα, A) ≤ 0

and
−q̂ + H(t, y, pα, B) ≥ 0.

Recall that q̂ − q = β, and A, B satisfy (6.4). Hence, by Lemma 7.1, (7.1) is
satisfied. Subtract the above inequalities and then use (7.1). The result is

(8.2) β = q̂ − q ≤ H(t, y, pα, B) − H(t, x, pα, A) ≤ ω(α|x− y|2 + |x− y|).

4. Set,

h(r) = sup{|V (t, x) − V (t, y)| : x, y ∈ O, t ∈ [t0, t1], |x− y|2 ≤ r},

so that for any x, y ∈ O, t ∈ [t0, t1],

|V (t, x) − V (t, y)| ≤ h(|x− y|2).

Since (t, x, y) maximizes Φ over [t0, t1] ×O ×O,

Φ(t, x, y) = W ρ(t, x) − V (t, y) − α|x− y|2 + β(t− t0)

≥ Φ(t, x, x)

= W ρ(t, x) − V (t, x) + β(t− t0).
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Hence,
α|x− y|2 ≤ V (t, x) − V (t, y) ≤ h(|x− y|2).

Since, V ∈ C(Q̄) and O is bounded, h is bounded by some constant K. This
implies that

α|x− y|2 ≤ K.

The definition of h yields,

α|x− y|2 + |x− y| ≤ h(|x− y|2) +
√

(K/α) ≤ h(K/α) +
√

(K/α).

Substitute this into (8.2) to obtain

β ≤ k(α) = ω(h(K/α) +
√

(K/α) ).

It is clear that
lim
α↑∞

k(α) = 0.

But this contradicts with the fact that β > 0. �

The following uniqueness result is an immediate consequence of Theorem
8.1.

Corollary 8.1. (Uniqueness). Assume (7.1). Then there is at most one
viscosity solution V ∈ C(Q) of (4.1) in Q satisfying the boundary and terminal
conditions

(8.8a) V (t, x) = g(t, x), (t, x) ∈ [t0, t1) × ∂O,

(8.8b) V (t1, x) = ψ(x), x ∈ O.

In particular, in (4.1) we may take V to be the value function of the
stochastic control problem defined in Chapter IV. Then (4.1) becomes the
dynamic programming equation IV(3.3). If V ∈ C(Q) satisfies (8.8) and the
dynamic programming principle (2.2), then it is the unique viscosity solution
of IV(3.3). See Section 2 and Corollary 3.1.

Remark 8.1. Discontinuous viscosity sub- and supersolutions of (4.1) will
be defined in Chapter VII (see Definition VII.4.2 and Remark VII.4.1). An
attendant modification of this chapter also yields a comparison result for dis-
continuous sub- and supersolutions. More precisely: suppose W and V are a
viscosity subsolution and a viscosity supersolution of (4.1) in Q, respectively.
Assume (7.1) and that W,V are upper semicontinuous and lower semicon-
tinuous on Q, respectively. Then (8.1) holds. In particular W ≤ V on Q if
this inequality holds on ∂∗Q. The elliptic version of the comparison between
semicontinuous sub- and supersolutions was proved by Ishii [I1, Theorem 3.3].
Also the extension of the comparison for semicontinuous sub- and supersolu-
tions on Q0 can be proved exactly as it will be done for continuous solutions
in the next section.

Remark 8.2. As in the first-order case if H depends on V (t, x), a minor
modification of the above proof yields results similar to (8.1) and Corollary
8.1. Indeed, if H is nondecreasing in V (t, x), then we have II(9.26). Also, a
result entirely similar to Proposition II.9.1 holds for second-order equations.
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V.9 Viscosity solutions in Q0

In Section IV.7 we have shown that the value function satisfies the dynamic
programming principle, IV(7.1). In addition to IV(2.2), let us now assume
that

(9.1a) U is compact,

(9.1b) f, σ, L, Lx, and Lt are bounded on Q0 × U.

Then a straightforward modification of results of Section 3 yields that the
value function is a uniformly continuous viscosity solution of the dynamic
programming equation IV(3.3) in Q0.

In this section, we will obtain an analogue of Theorem 8.1 for viscosity
subsolutions and supersolutions of the dynamic programming equation IV(3.3)
in Q0. See Theorem 9.1 below. This result, in particular, implies that the value
function is the unique bounded viscosity solution of IV(3.3) in Q0 satisfying
the terminal data

V (t1, x) = ψ(x), x ∈ IRn.

Indeed an attendant modification of the proof of Theorem 8.1 yields the com-
parison result on Q0. In the case of the first-order equations, an analogous
modification is carried out in detail. See Theorem II.9.1. However to acquaint
the reader with a different technique, we will prove Theorem 9.1 by using
Theorem 8.1 on large balls BR = {x : |x| < R} and then letting R go to
infinity.

To motivate our analysis, let us first suppose that W ∈ C1,2(Q0) is a
classical solution of IV(3.3) in Q0. Let ξR ∈ C2(BR) be a function satisfying
ξR(x) > 0 whenever |x| ≤ R. Set

Ŵ (t, x) = ξR(x)W (t, x), (t, x) ∈ [t0, t1] ×BR.

We directly calculate that

Ŵt = ξRWt, Ŵxi
= ξRWxi

+ ξR
xi
W,

Ŵxixj
= ξRWxixj

+ ξR
xi
Wxj

+ ξR
xj
Wxi

+ ξR
xixj

W.

Multiplying IV(3.3) by ξR(x) we obtain

(9.2) −ξR(x)Wt(t, x) + sup
v∈U

{

−ξR(x)

[

1

2
tr(σσ

′

)(t, x, v)D2
xW (t, x)

+f(t, x, v) ·DxW (t, x) + L(t, x, v)

]}

= 0.

Observe that
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ξRWxi
= Ŵxi

−WξR
xi

ξRWxixj
= Ŵxixj

−WξR
xixj

− ξR
xi
Wxj

− ξR
xj
Wxi

= Ŵxixj
−WξR

xixj
− ξR

xi

ξR
Ŵxj

−
ξR
xj

ξR
Ŵxi

+ 2W
ξR
xi
ξR
xj

ξR
.

Substitute these into (9.2) to obtain

(9.3) −Ŵt(t, x) +HR
W (t, x,DxŴ (t, x), D2

xŴ (t, x)) = 0, (t, x) ∈ QR

where QR = [t0, t1) ×BR and

HR
W (t, x, p, A) = sup

v∈U

{

− 1

2
tr(σσ′)(t, x, v)A− fR(t, x, v) · p− LR

W (t, x, v)

}

,

with

fR(t, x, v) = f(t, x, v) − 1

ξR(x)
(σσ

′

)(t, x, v)DξR(x),

LR
W (t, x, v) = ξR(x)L(t, x, v) −W (t, x)

[

f(t, x, v) ·DξR(x)

+
1

2
tr(σσ′)(t, x, v)D2ξR(x) − 1

ξR(x)
(σσ′)(t, x, v)DξR(x) ·DξR(x)

]

.

Lemma 9.1. Let W ∈ C(Q0) be a viscosity subsolution (or supersolu-
tion) of IV(3.3) in Q0. Then Ŵ is a viscosity subsolution (or supersolution,
respectively) of (9.3) in QR.

Proof. Suppose that ŵ ∈ C∞(QR) and Ŵ − ŵ has a maximum at (t, x) ∈
QR, satisfying (Ŵ − ŵ)(t, x) = 0. Set w(t, x) = ŵ(t, x)/ξR(x). Then w ∈
C∞(QR) and W − w has a maximum at (t, x) ∈ QR. Since W is a viscosity
subsolution of (4.1),

−wt(t, x) +H(t, x,Dxw(t, x), D2
xw(t, x)) ≤ 0.

Also ŵ = ξRw. So the calculations preceding the lemma yield

−ŵt(t, x) +HR
w (t, x,Dxŵ(t, x), D2

xŵ(t, x)) ≤ 0.

Since Ŵ (t, x) = ŵ(t, x), we have W (t, x) = w(t, x) and consequently

HR
w (t, x, p, A) = HR

W (t, x, p, A).

Hence Ŵ is a viscosity subsolution of (9.3) in QR. The supersolution property
is proved similarly. �

Theorem 9.1. Assume IV(2.2) and (9.1). Let W ∈ C(Q0) be a bounded
viscosity subsolution of (4.1) in Q0 and V ∈ C(Q0) be a bounded viscosity
supersolution of (4.1) in Q0. Then,
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(9.4) sup
Q0

(W − V ) = sup
IRn

(W (t1, y) − V (t1, y)).

Proof. Set

ξR(x) =

( |x|2
R2

− 1

)2

+
1

R
, |x| < R.

Then ξR ∈ C2(BR) and for a suitable constant K0

|DξR(x)| ≤ K0

R
, |D2ξR(x)| ≤ K0

R2
,

|DξR(x)|2
ξR(x)

≤ K0

R2
.

Hence the definition of LR
W and the boundedness of W, f and σ yield

|LR
W (t, x, v) − ξR(x)L(t, x, v)| ≤ K1

R
,

with a constant K1 depending on the sup norm of W, f and σ. For (t, x) ∈
QR, p ∈ IRn and a symmetric matrix A, set WR(t, x) = ξR(x)W (t, x)−K1(t−
t1)/R and

HR(t, x, p, A) = sup
v∈U

{

− fR(t, x, v) · p− tr[(σσ′)(t, x, v)A] − ξR(x)L(t, x, v)

}

.

Then WR(t, x) is a viscosity subsolution of

−WR
t (t, x) +HR(t, x,DxW

R(t, x), D2
xW

R(t, x)) ≤ 0, (t, x) ∈ QR.

Similarly there exists K2 such that

|LR
V (t, x, v) − ξR(x)L(t, x, v)| ≤ K2

R

and V R(t, x) = ξR(t, x)V (t, x) +K2(t− t1)/R is a viscosity supersolution of

−V R
t (t, x) +HR(t, x,DxV

R(t, x), D2
xV

R(t, x)) ≥ 0, (t, x) ∈ QR.

Notice that ξR ≥ 1/R and therefore fR satisfies the hypotheses of Lemma
8.1. Therefore HR satisfies (8.1) and by Theorem 8.1 we obtain

(9.5) sup
QR

(WR − V R) = sup
∂∗QR

(WR − V R).

Also as R tends to infinity, WR, V R converge to W and V uniformly on
bounded subsets of Q0, and

sup
[t0,t1]×∂BR

(WR − V R) ≤ 1

R
((K1 +K2)(t1 − t0) + ‖W‖ + ‖V ‖).

Hence we obtain (9.4) by letting R go to infinity in (9.5). �
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V.10 Historical remarks

The first treatment of viscosity solutions of second-order dynamic program-
ming equations was given by Lions [L1-2]. Lions proved that any viscosity
solution is the value function of the related stochastic optimal control prob-
lem. For general second-order equations which are not necessarily dynamic
programming equations, this technique is clearly not appropriate. Jensen was
first to prove a uniqueness result for a general second-order equation [J]. In [J]
semiconvex and concave approximations of a function were given by using the
distance to the graph of the function. Afterward it was observed ([JLS]) that
the construction given by Jensen is the same as the sup and inf convolutions
as defined by Lasry and Lions [LL]. Another important step in the develop-
ment of the second-order problems is Ishii’s lemma [I1]. Since then the proofs
and the statements of the results have been greatly improved. In particular,
the analysis result of Crandall and Ishii [CI], which we quote as Theorem 6.1,
have been used in almost all comparison results. We refer the reader to the
survey article of Crandall, Ishii and Lions [CIL1] and Crandall [Cr] for more
information.

The proof of the dynamic programming principle given in Section 2 is
taken from [L2]. Krylov [Kr1] and Bensoussan-J. Lions [BL1] prove the dy-
namic programming principle by a space discretization. Their method requires
the continuity of the value function. Borkar [Bo] proves the dynamic program-
ming by considering Markov policies. El Karoui et al. [ENJ] and Kurtz [Kz]
first prove that the set of all control processes is compact. Then for each ini-
tial data they choose an optimal control process. Moreover the compactness
of the control processes makes it possible to make this selection in a mea-
surable way. Their approach requires the convexification of the set of control
processes. In the discrete-time setup Bertsekas and Shreve [BsS] prove the dy-
namic programming by using a deep measurable selection theorem of Brown
and Purves. A similar approach in the continuous time case is also possi-
ble. Indeed this approach was recently used to prove a geometric dynamic
programming by Soner and Touzi [ST1].

Several interesting questions arise in defining viscosity solutions for sec-
ond order equations. We refer to [CCKS] and references therein. For uniformly
elliptic equations, an elegant regularity theory has been established by Caf-
farelli [Caf], also see the book by Cabre and Caffarelli [CC]. Several important
research areas related to second order equations are not covered in this book.
We refer to Evans & Spruck [ES] and Chen, Giga & Goto [CGG] for level set
equations and to Ambrosio & Soner [AS] for level set applications in higher
co-dimensions. For homogenization, see Evans [E3], Souganidis [Sou2]. For vis-
cosity solutions of stochastic partial differential equations, we refer to Lions
& Souganidis [LSo2,3] and Buckdahn & Ma [BM]. For effective Hamiltionians
and weak KAM theory, see Evans & Gomes [EG1,2] Fathi & Siconolfi [FS] and
the references therein. Evans, Soner & Souganidis [ESS] and Barles, Soner &
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Souganidis [BSS] used viscosity solutions in analyzing an evolution problem
related to the Ginzburg-Landau functional.



VI

Logarithmic Transformations and Risk
Sensitivity

VI.1 Introduction

In this chapter we are concerned with the idea of risk sensitivity and its
connections with stochastic control. If J is some cost function associated with
a random variable, then not all values of J may be equally significant. For
example, large values of J might be given greater weight. The expectation of
a nonlinear function F (J ) takes this into account. We take F (J ) = exp(ρJ )
of exponential form, where the parameter ρ is a measure of risk sensitivity.
Equivalently, one can consider the certainty-equivalent expectation defined
in Section 2. It is shown that the certainty-equivalent expectation can be
rewritten as an ordinary expectation, after a change of probability measure.

In Section 3 and 4 we consider Markov diffusion processes x(s) governed
by stochastic differential equations, and take J of the form (3.4) involving
a running cost and a terminal cost. To find the certainty-equivalent expec-
tation, we introduce a logarithmic transformation of the following kind. The
expectation of exp(ρJ ) is a function Φ(t, x) of the initial data for x(s). With
Φ is associated the linear PDE (3.16) using the Feynman-Kac formula. The
certainty-equivalent expectation is V (t, x) = ρ−1 logΦ(t, x). It satisfies the
nonlinear PDE (3.19), which turns out to be the H-J-B equation for a con-
trolled Markov diffusion process described in Sections 4 and 5.

Logarithmic transformations of this kind have proved useful in studying
asymptotic problems which arise when x(s) = xε(s) depends on a small pa-
rameter ε and xε(s) tends to a deterministic limit as ε → 0. Included are
problems of “large deviations” of so-called Freidlin-Wentzell type for dynam-
ical systems subject to small random perturbations [FW]. Associated with
large deviations analyses are deterministic control problems, which are seen
in Section 6 to arise in a natural way from the logarithmic transform method.
An example is to estimate asymptotically the probability that xε(s) exits from
a given region O ⊂ IRn during a given time interval.

The theory of H-infinity norms and H-infinity control provides an alter-
native to stochastic dynamical system and stochastic control models. In the
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H-infinity approach, stochastic differential equations are replaced by corre-
sponding ordinary differential equations, in which unknown (deterministic)
disturbances take the place of white noises (formal time derivatives of Brown-
ian motions). A concise introduction to the H-infinity approach to nonlinear
dynamical systems is given in Section 7, using viscosity solution methods and
results from Section 6.

In Section 8 we consider controlled Markov diffusions with expected expo-
nential-of-integral criteria to be minimized. These are called problems of risk
sensitive stochastic control, on a finite time horizon. The methods of Chap-
ter IV extend readily to this case. An extension of the “small noise limit”
analysis in Section 6 leads to a deterministic differential game, which will
be described later in Chapter XI. This analysis again depends on viscosity
solution methods.

Finally, in Section 9 we consider logarithmic transformations for other
classes of Markov processes, besides Markov diffusions. To illustrate the basic
ideas without technical complications, the details are presented only in case
of finite-state Markov chains.

VI.2 Risk sensitivity

Let J denote some random variable, for example a “cost” associated with
the sample paths x(·) of some Markov process x(s). The expectation E0(J )
with respect to a probability measure P 0 is then an “average cost” associated
with J . However, it may happen that not all possible values of J are equally
significant. For example, large values of J might be given greater weight. For
this reason, we consider in this chapter a risk sensitive criterion E0[F (J )]
where F is some nonlinear function. It is assumed that

(2.1) F ′(J ) �= 0, F ′′(J ) �= 0.

The following function rF (J ) is a measure of risk sensitivity:

(2.2) rF (J ) =
|F ′′(J )|
|F ′(J )| .

Large rF (J ) indicates great sensitivity to risk. The certainty-equivalent ex-
pectation E0(J ) is defined, as in [BJ3], by:

(2.3) E0(J ) = F−1(E0[F (J )]).

Example 2.1. Let F (J ) = exp(ρJ ), ρ �= 0, where exp denotes the expo-
nential function. Then rF (J ) = |ρ| is constant. This exponential function F
is the one which will be considered in this chapter. The certainty equivalent
expectation is then

(2.4) E0(J ) = ρ−1 logE0[exp(ρJ )].
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As ρ → 0, the right side is E0(J ) + ρ
2var(J ) + O(ρ2) where var(J ) is the

variance under P 0. Thus, for |ρ| small E0(J ) is approximately a weighted
combination of the mean and variance.

Example 2.2. In mathematical finance applications, the following func-
tion F is often used. (See Chapter X.) For J > 0, let

(2.5) F (J ) =

⎧

⎨

⎩

γ−1J γ if γ < 1, γ �= 0

log J if γ = 0.

F is called a hyperbolic absolute risk aversion (HARA) utility function. The
parameter γ is interpreted as a measure of the risk which an investor will
accept. In this example

rF (J ) =
1 − γ

J .

Thus, an investor who chooses 1 − γ very large is quite risk averse, and an
investor with γ = 1 is “risk neutral”.

In the sections which follow, x(s) will satisfy the stochastic differential
equation (3.1) and J will have the form (3.4). Under certain assumptions,
the certainty equivalent expectation E0(J ) is shown to equal the maximum
expected cost in a suitably defined “auxiliary” stochastic control problem. The
method depends on changes of probability measure. Let us begin by explaining
the basic idea at an abstract level.

We consider changes of probability measure, from P 0 to another P , with
Radon-Nikodym derivative of the form

(2.6)
dP

dP 0
= exp(ρζ),

where ζ is some random variable and ρ �= 0 is a constant. Let Ω,F be the
sample space and σ-algebra of subsets of Ω on which P 0 is defined. Then

∫

Ω

ΦdP =

∫

Ω

Φ exp(ρζ)dP 0

for every nonnegative F-measurable P . In particular, by tking Φ of the form
Φ = exp(−ρζ)Ψ , we see that the Radon-Nikodym derivative of P 0 with respect
to P is

(2.6′)
dP 0

dP
= exp(−ρζ).

Let E0 and E denote expectations under P 0 and under P , respectively. By
Jensen’s inequality and (2.6′)

(2.7) E0[exp(ρJ )] = E{exp[ρ(J − ζ)]} ≥ exp{E[ρ(J − ζ)]}
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provided that the expectation E(J −ζ) exists. Since the exponential function
is strictly convex, equality holds in (2.7) if an only if the random variable
J − ζ is constant P -almost surely.

Case 1. ρ > 0. By (2.4) and (2.7)

(2.8) E0(J ) ≥ E(J − ζ).

We may think of ζ as a “decision variable” in a stochastic optimization prob-
lem, with the goal to maximize E(J − ζ). Suppose that there exists ζ∗ in the
class of admissible decision variables such that J − ζ is constant P -almost
surely when ζ = ζ∗. Then E(J − ζ) achieves its maximum for ζ = ζ∗ and
E0(J ) = E(J − ζ∗).

Case 2. ρ < 0. In this case E0(J ) ≤ E(J − ζ) with equality when J − ζ
is constant P -almost surely. The “decision variable” ζ is chosen to minimize
E(J − ζ), rather than to maximize E(J − ζ) as in Case 1.

Minimizing a certainty-equivalent expectation. Let us take ρ > 0,
and suppose that J = J (α) depends also on some random decision variable α.
Consider the problem of choosing α in some admissible class to minimize the
certainty equivalent expectation E0(J ). The change of probability measure
method outlined above introduces an “auxiliary” decision variable ζ which is
chosen to maximize E(J − ζ). The problem of minimizing E0(J ) turns into
a min-max problem with criterion J − ζ. This idea will be mentioned again
in Section 8 in the context of risk sensitive stochastic control.

If ρ < 0 and α is chosen to maximize E0(J ), then the change of probability
measure method leads to a max-min problem with criterion J −ζ. In this case,
the auxiliary decision variable ζ is minimizing. The case ρ > 0 if often called
“risk averting” and ρ < 0 “risk seeking”.

VI.3 Logarithmic transformations for Markov diffusions

In Section 2 a change of probability measure technique was outlined in an
abstract setting. Let us now use this technique in the context of Markov
diffusion processes, governed by stochastic differential equations (SDEs). The
changes in probability measure correspond to changes of drift in the SDE and
are obtained using Girsanov’s theorem.

Let us take risk sensitivity parameter ρ > 0 in Example 2.1. In the notation
of Section IV.2, let ν0 = (Ω, {Fs}, P 0, w0) be a reference probability system.
Thus w0(·) is a d-dimensional brownian motion under probability P 0, which
is Fs-adapted. Let x(s) be the (pathwise) solution to the SDE

(3.1) dx = b(s, x(s))ds+ ρ− 1
2σ(s, x(s))dw0(s), t ≤ s ≤ t1,

with initial data x(t) = x. Note that (3.1) corresponds to equation III(5.4)

with f replaced by b, σ replaced by ρ− 1
2σ and w(s) by w0(s). As in previous
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chapters, let Q0 = [t0, t1) × IRn. We make the following assumptions:

(3.2)
(i) b ∈ C1(Q̄0) and bx is bounded on Q̄0;

(ii) σ ∈ C1(Q̄0) and σ, σx are bounded on Q̄0.

The process x(·) is a Markov diffusion on IRn and its backward evolution
operator has the form (see III(5.1))

(3.3) AΦ = Φt +
1

2ρ
tr a(t, x)D2

xΦ+ b(t, x) ·DxΦ,

with a = σσ′. Let

(3.4) J =

t1
∫

t

ℓ(s, x(s))ds+ ψ(x(t1)).

Let us assume throughout that the functions ℓ, ψ are continuous on Q0 with
additional assumptions on ℓ, ψ made later as needed.

We consider changes of probability measure, from P 0 to another prob-
ability measure P , via a Girsanov transformation. These changes of prob-
ability measure correspond to change of drift in (3.1), from b(s, x(s)) to
b(s, x(s)) + σ(s, x(s))z(s) where z(s) is a Fs-progressively measurable IRd-
valued process called an auxiliary control process. We write (3.1) as

(3.5) dx = [b(s, x(s)) + σ(s, x(s))z(s)]ds+ ρ− 1
2σ(s, x(s))dw(s)

(3.6) w(s) = w0(s) − ρ
1
2

s
∫

t

z(r)dr,

on the time interval [t, t1]. Let

(3.7) ζ(s) =

s
∫

t

[

ρ− 1
2 z(r) · dw0(r) − 1

2
|z(r)|2

]

dr.

It is assumed that this integral exists and moreover that

(3.8) E0[exp(ρζ(t1))] = 1.

By Girsanov’s theorem [LSh] the process w(s) is a brownian motion under
probability P , where

(3.9) P (dω) = exp(ρζ(t1))P
0(dω).
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We rewrite (3.7) as

(3.10) −ζ(s) =

s
∫

t

[

−ρ− 1
2 z(r) · dw(r) − 1

2
|z(r)|2dr

]

.

By (2.6′) assumption (3.8) implies that

(3.8′) E [exp (−ρζ(t1))] = 1,

(3.9′) P 0(dω) = exp(−ρζ(t1))P (dω),

where E is expectation under probability P . Let us also require that

(3.11) E

t1
∫

t

|z(s)|2ds < ∞.

Then E[ζ(t1)] = E(Z), where

(3.12) Z =
1

2

t1
∫

t

|z(s)|2ds.

Lemma 3.1. Assume (3.8),(3.11) and that the expectation E(J ) exists. Then
(3.13)

(a) E0(J ) ≥ E(J − Z)

(b) E0(J ) = E(J − Z) if J − ζ(t1) is constant P − almost surely.

Proof. This is immediate from Jensen’s inequality. See (2.8) above.�

Lemma 3.2. Assume that |z(s)| ≤ K(1 + |x(s)|) for some constant K. Then
(3.8), (3.11) hold.

Proof. An estimate for solutions to stochastic differential equations (Appen-
dix (D.13)) implies that there exist positive constants k,C such that

E0[exp(k|x(s)|2)] ≤ C

for t ≤ s ≤ t1. Therefore, E0[exp(k1|z(s)|2)] ≤ C1 for some positive constants
k1, C1. This implies (3.8). See [LSh, p. 220]. Property (3.11) follows from (3.2),
(3.5) and the estimate Appendix (D.7) with m = 2. �

To make use of Lemma 3.1, we consider the certainty equivalent expecta-
tion as a function of (t, x), where x = x(t) is the initial data for (3.1) and
(3.5). Let
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(3.14) Φ(t, x) = E0
tx[exp(ρJ )]

(3.15) V (t, x) = E0
tx(J ) = ρ−1 logΦ(t, x).

Associated with (3.14) is the linear PDE

(3.16) AΦ+ ρℓ(t, x)Φ = 0, (t, x) ∈ Q0,

with A as in (3.3). The boundary condition for (3.16) is

(3.17) Φ(t1, x) = exp[ρψ(x(t1))], x ∈ IRn.

If Φ̃ is a smooth solution to (3.16)-(3.17), we would like to verify that Φ̃ = Φ
(under some additional assumptions). One method is to use the Feynman-Kac
formula, as in the following:

Proposition 3.1. Let Φ̃ ∈ C1,2(Q0) ∩ C(Q̄0) be a positive, bounded solution
to (3.16)-(3.17) and assume that ℓ is bounded above. Then Φ̃(t, x) = Φ(t, x).

Proof. For R > 0, let QR = [t0, t1 − R−1) × OR, where OR = {x : |x| < R}.
Let τR be the exit time of (s, x(s)) from QR. By the Feynman-Kac formula
(Appendix (D.15)) and (3.16)

(3.18) Φ̃(t, x) = E0
tx

⎧

⎨

⎩

Φ̃(τR, x(τR)) exp

⎡

⎣ρ

τR
∫

t

ℓ(s, x(s))ds

⎤

⎦

⎫

⎬

⎭

.

Since Φ̃ is bounded, ρ > 0 and ℓ is bounded above, the right side of (3.18)
tends to Φ(t, x) as R → ∞. �

Theorem 3.1 at the end of this section gives sufficient conditions that a
solution Φ̃ exists with the properties required in Proposition 3.1.

Another method for showing that Φ̃ = Φ is based on making a logarithmic
transformation. Let Φ̃ ∈ C1,2(Q̄0) be a positive solution to (3.16)-(3.17), with
Φ̃ not necessarily bounded. Let W = ρ−1 log Φ̃. An elementary calculation
gives the following nonlinear PDE for W :

(3.19) AW +
1

2
a(t, x)DxW ·DxW + ℓ(t, x) = 0

with the boundary condition

(3.20) W (t1, x) = ψ(x).

We now define a particular auxiliary control process z(s) as follows.

(3.21) z(s) = σ′(s, x(s))DxW (s, x(s))
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where x(s) is the solution to

(3.22) dx = [b(s, x(s)) + a(s, x(s))DxW (s, x(s))]ds+ ρ− 1
2σ(s, x(s))dw(s)

with x(t) = x. Note that (3.22) is the same as (3.5) in this case. The solution
x(s) is well defined provided there exists a constant M such that

(3.23) |DxW (s, x)| ≤ M(1 + |x|), (s, x) ∈ Q̄0.

Lemma 3.3. Assume (3.23) and let z(s) be as in (3.21). Then (3.8′) and
(3.11) hold. Moreover, J − ζ(t1) = W (t, x) P -almost surely.

Proof. By (3.2)(ii) and (3.23), |z(s)| ≤ K(1 + |x(s)|) for some K. By Lemma
3.2, (3.8) and (3.11) hold. Since W satisfies (3.19), the Ito differential rule
gives

dW (s, x(s)) = −
[

1

2
a(s, x(s))DxW ·DxW

+ ℓ(s, x(s))
]

ds+ ρ− 1
2DxW · σ(s, x(s))dw0(s)

where DxW is evaluated at (s, x(s)). From (3.7) and (3.21) we can rewrite
this as

(3.24) dW (s, x(s)) = −ℓ(s, x(s))ds+ dζ(s).

The lemma follows by integrating from t to t1 and using (3.20). �

Lemmas 3.1 and 3.3 can be used to characterize the certainty-equivalent
expectation E0

tx(J ) = V (t, x) as the maximum of Etx(J −Z) in an appropriate
class of auxiliary control processes z(·). This will be made precise in Theorem
4.1. In Section 4 we will fix a reference probability system ν = (Ω, {Fs}, P, w),
and will consider solutions x(s) to (3.5). Girsanov’s Theorem gives x(s) as a
solution to (3.1) with P 0, w0 determined from P,w by (3.6) and (3.9′). Note
that the expectation E0[exp(ρJ )] depends only on the probability law of x(·)
and not on the particular reference probability system ν0 = (Ω, {Fs}, P 0, w0).

We conclude this section with a theorem which gives conditions under
which Φ(t, x) defined by (3.14) is a solution to (3.16) in the classical sense.

Theorem 3.1. Assume that (3.2) and either of the following two assump-
tions (3.25) or (3.26) hold. Then Φ ∈ C1,2(Q̄0) is a solution to (3.16)-(3.17)
with Φ and DxΦ bounded.

(i) The matrices a(t, x) = σ(t, x)σ(t, x)′ are positive definite with
bounded inverse a(t, x)−1;

(3.25) (ii) ℓ ∈ C1(Q̄0), ψ ∈ C3(IRn). Moreover ℓ, ψ are bounded above and
have bounded first order partial derivatives.

(i) For φ = b, σ, ℓ, φ ∈ C1,2(Q̄0). Moreover, φ together with its first
(3.26) order partial derivatives and second order partial derivatives φxixj

,
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i, j = 1, . . . , n are bounded.
(ii) ψ ∈ C2

b (IRn).

When (3.25) holds, an existence theorem for linear, uniformly parabolic
PDEs implies that (3.16)-(3.17) has a solution Φ̃ ∈ C1,2(Q̄0) with Φ̃ and DxΦ̃
bounded. See [LSU, Chapt. 4, Thm. 9.1]. By Proposition 3.1, Φ = Φ̃. When
(3.26) holds, probabilistic arguments show that Φ has the properties stated in
Theorem 3.1. The method is based on the fact that the solution x(s) to (3.1)
depends smoothly on the initial state x = x(t). See [GS2,Sec. 11].

Remark 3.1. Theorem 3.1 implies that V = ρ−1 logΦ is a solution to
(3.19)-(3.20). Since ℓ and ψ are bounded, Φ(t, x)−1 is bounded. Hence, DxV =
ρ−1Φ−1DxΦ is bounded on Q̄0. In particular, (3.23) holds with W = V . When
DxV is bounded, it would suffice to consider changes of probability measure
with bounded auxiliary control process z(s).

Remark 3.2. It can be shown under less restrictive assumptions that Φ
is a viscosity solution to (3.16)-(3.17), by the method used to prove Theorem
8.1 below.

VI.4 Auxiliary stochastic control problem

Let us reformulate the maximization problem introduced in Section 3 as a
stochastic control problem of the kind considered in Chapter IV. As in Section
3, we take ρ > 0. Let ν = (Ω, {Fs}, P, w) be a reference probability system,
which is fixed throughout this section. The state is x(s) ∈ IRn and the control
is z(s) ∈ IRd. The state dynamics are

(4.1) dx = [b(s, x(s)) + σ(s, x(s))z(s)]ds+ ρ− 1
2σ(s, x(s))dw(s)

for t ≤ s ≤ t1, with x(t) = x. Let

(4.2) L(t, x, z) = ℓ(t, x) − 1

2
|z|2,

(4.3) J(t, x; z) = Etx

⎧

⎨

⎩

t1
∫

t

L(s, x(s), z(s))ds+ ψ(x(t1))

⎫

⎬

⎭

.

The goal is to find an “auxiliary” control process z(·) ∈ Atν , which maximizes
J(t, x, z), where Atν was defined in Section IV.2. In the notation of Chapter
IV, the “control space” is U = IRd, and z(s) has the role of u(s) there. Also
maximizing J is equivalent to minimizing −J .

We recall the notations of Section IV.3. In particular, let L denote the
class of Markov control policies z(s, x) defined there. Then the solution x(s)
to (4.1) is well defined, with
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(4.4) z(s) = z(s, x(s)).

See IV(3.13)-(3.14).
The dynamic programming equation for this stochastic control problem

is (3.19). The following theorem gives a sufficient condition that the function
V (t, x) in (3.15) is the value function.

Theorem 4.1. Let W ∈ C1,2(Q̄0) be a solution to (3.19)-(3.20) such that
|DxW (t, x)| ≤ M(1 + |x|) for some constant M . Let

(4.5) z∗(s, x) = σ′(s, x)DxW (s, x),

with corresponding z∗(s) as in (4.4). Then V = W where V = ρ−1 logΦ.
Moreover, z∗(·) ∈ Atν and

(4.6)
(a) V (t, x) ≥ J(t, x; z) for all z(·) ∈ Atν ;

(b) V (t, x) = J(t, x; z∗).

Proof. The linear growth condition on DxW (t, x) implies that W ∈ Cp(Q̄0)
with p = 2. By Corollary IV.3.1, W (t, x) ≥ J(t, x; z) with equality when
z(s) = z∗(s), Lemmas 3.1(b) and 3.3 imply that W (t, x) = V (t, x). �

We note that the dynamic programming equation can be rewritten as

(4.7) −∂V
∂t

− 1

2ρ
tr a(t, x)D2

xV +H(t, x,DxV ) = 0,

(4.8) −H(t, x, p) = b(t, x) · p+
1

2
a(t, x)p · p+ ℓ(t, x).

This corresponds to the form IV(3.3) of the dynamic programming PDE used
in Chapters IV and V.

Example 4.1. Using the notation in (3.1), let

dx = A(s)x(s)ds+ ρ− 1
2σ(s)dw0(s)

with x(t) = x and
ℓ(t, x) = −x ·M(t)x

ψ(x) = −x ·Dx
where M(t) and D are nonnegative definite matrices. Then x(s) is a gaussian
process under probability P 0, and

(4.9) Φ(t, x) = E0
tx exp

⎧

⎨

⎩

−ρ

⎡

⎣

t1
∫

t

[x(s) ·M(s)x(s)ds+ x(t1) ·Dx(t1)]

⎤

⎦

⎫

⎬

⎭

.
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Let J̃ = −J . The problem of choosing the control z(s) to minimize J̃ is
a stochastic linear regulator problem (see Example III.8.1). In III(8.6) we
now have B(s) = σ(s), u(s) replaced by z(s) and σ(s)dw(s) replaced by

ρ− 1
2σ(s)dw(s). In III(8.7), J is now replaced by J̃ and 2N(s) is the identity

matrix. The value function Ṽ (t, x) for the problem of minimizing J̃ is

Ṽ (t, x) = x · P (t)x+ ρ−1g(t)

where the symmetric matrix P (t) and g(t) are the same as in Example III.8.1
with B(s) = σ(s) and 2N(s) the identity matrix. By Theorem 4.1, V (t, x) =
ρ−1 logΦ(t, x) has the form

(4.10) V (t, x) = −x · P (t)x− ρ−1g(t).

We recall that P (t) satisfies the Riccati differential equation I(5.15) with ter-
minal data P (t1) = D. From III(8.11), or from (4.5), the optimal auxiliary
control policy is z∗(t, x) = −2σ′(t)P (t)x.

Example 4.2. In Example 4.1, suppose that the assumption that M(t)
and D are nonnegative definite does not hold. Then the stochastic linear
regulator problem is of indefinite sign. The solution in Example 4.1 is valid
for tmin < t ≤ t1, where tmin ≥ −∞ is the same as for the deterministic LQR
problem (Example I.5.1).

The case ρ < 0. In this case we replace ρ by |ρ| in the SDE (4.1). The
logarithmic transformation V = ρ−1 logΦ transforms the linear PDE (3.16)
into

(4.11) −∂V
∂t

− 1

2|ρ| tr a(t, x)D
2
xV + H̄(t, x,DxV ) = 0.

(4.12) −H̄(t, x, p) = b(t, x) · p− 1

2
a(t, x)p · p+ ℓ(t, x).

Equation (4.11) is the HJB PDE for the problem of minimizing

J̄(t, x; z) = Etx

⎧

⎨

⎩

t1
∫

t

[

ℓ(s, x(s)) +
1

2
|z(s)|2

]

ds+ ψ(x(t1)) .

As in Theorem 4.1, if W ∈ C1,2(Q̄0) is a solution to (4.11)-(3.20) such that
|DxW (t, x)| ≤ M(1 + |x|), then W = V . Moreover, the control policy

(4.13) z∗(s, x) = −σ′(s, x)DxW (s, x)

is optimal.
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VI.5 Bounded region Q

Let Q = [t0, t1] × O where O is a bounded open set with ∂O a manifold of
class C3. Let us indicate modifications in the previous results when

(5.1) J =

τ
∫

t

ℓ(s, x(s))ds+ Ψ(τ, x(τ)),

where τ is the exit time of (s, x(s)) from Q. In addition to the previous as-
sumptions (3.2), let us assume that ℓ ∈ C1(Q̄0). Moreover:

(a) The matrices a(t, x) = σ(t, x)σ(t, x)′ are nonsingular with bounded
inverses a(t, x)−1.

(5.2) (b) For x ∈ Ō, Ψ(t1, x) = ψ(x), where ψ ∈ C3(IRn).

(c) For (t, x) ∈ [t0, t1] × ∂O, Ψ(t, x) = g(x) where g ∈ C3(IRn).

Theorem 5.1. Let Φ(t, x) be as in (3.14), with J as in (5.1). Then Φ ∈
C1,2(Q) ∩C(Q̄) and Φ satisfies (3.16) in Q. Moreover, DxΦ is bounded on Q
and continuous on Q̄\({t1} × ∂O).

An existence theorem for linear, uniformly parabolic PDEs implies that
(3.16) with boundary data Φ(t, x) = exp[ρΨ(t, x)], (t, x) ∈ ∂∗Q has a solution
Φ̃ with the properties stated in Theorem 5.1 [LSU, Chap. 4]. The same proof
as for Proposition 3.1 shows that Φ = Φ̃. �

Example 5.1. Let ℓ = 0, g = 0. The PDE (3.16) becomes AΦ = 0, and
(3.14) becomes

(5.3) Φ(t, x) = P 0
tx(τ < t1) + E0

tx {exp[ρψ(x(t1))]; τ = t1} .

The first term on the right side is the exit probability. If we formally set
ψ(x) = −∞, then the second term is 0. We will return to the exit probability
problem in Section 6 and again in Section VII.10.

For the auxiliary stochastic control problem in Section 4, we now have

(5.4) J(t, x; z) = Etx

⎧

⎨

⎩

τ
∫

t

L(s, x(s), z(s))ds+ Ψ(τ, x(τ))

⎫

⎬

⎭

,

which is the same as IV(2.8) with the control u(s) replaced by z(s). An optimal
Markov control policy z∗(s, x) is obtained in a way similar to Theorem 4.1.
For (s, x) ∈ Q, define z∗(s, x) by (4.5), with W = ρ−1 logΦ. The technique
of Appendix C extends z∗(s, x) to Q0, such that z∗ is Lipschitz on [t0, t2] for
each t2 < t1 and z∗(s, x) is bounded. Then z∗(s) in (4.4) is well defined and
is an optimal control process.
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VI.6 Small noise limits

Let ε > 0 be a parameter, and let xε(s) denote the solution to

(6.1ε) dxε = b(s, xε(s))ds+ ε
1
2σ(s, xε(s))dw0(s)

with initial data xε(t) = x. For ε = 0, x0(s) satisfies the ordinary differential
equation

(6.10)
dx0

ds
= b(s, x0(s))

with x0(t) = x. For ε > 0, xε(s) can be regarded as a random perturbation
of x0(s). If J ε is some functional of the sample paths xε(·), then a result
which states that ε logE0[exp(ε−1J ε)] tends to a limit as ε → 0 is called a
large deviations theorem. If ρ = ε−1, then ρ is the risk sensitivity parameter
in previous sections (ρ > 0).

As in (3.4) let us take

(6.2) J ε =

t1
∫

t

ℓ(s, xε(s))ds+ ψ(xε(t1)),

and as in (3.15) let

(6.3) V ε(t, x) = ε logE0
tx[(exp ε−1J ε)].

By (4.7) the dynamic programming PDE for V ε is

(6.4ε) −∂V
ε

∂t
− ε

2
tr a(t, x)D2

xV
ε +H(t, x,DxV

ε) = 0

with H as in (4.8). For ε = 0, (6.4ε) becomes the first order PDE

(6.40) −∂V
0

∂t
+H(t, x,DxV

0) = 0, (t, x) ∈ Q0

(6.5) V 0(t1, x) = ψ(x).

This is the dynamic programming equation for the following deterministic
control problem. Let x(s) denote the state and z(s) the control at time s.
They are deterministic functions of time, not random variables. The state
dynamics are

(6.6)
d

ds
x(s) = b(s, x(s)) + σ(s, x(s))z(s)

with initial data x(t) = x. There are no control constraints. The goal is to
maximize
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(6.7) J0(t, x; z) =

t1
∫

t

[

ℓ(s, x(s)) − 1

2
|z(s)|2

]

ds+ ψ(x(t1)).

Let us assume that b, σ satisfy (3.2) and that:

(6.8)

(a) ℓ ∈ C1(Q̄0) with ℓ and ℓx bounded.

(b) ψ ∈ C1(IRn) with ψ and ψx bounded.

(c) b is bounded.

Let Z(t) = L∞
(

[t, t1]; IR
d
)

denote the space of all bounded, Lebesgue mea-
surable control functions, and ZR(t) the space of such controls such that
|z(s)| ≤ R almost everywhere in [t, t1]. Let

(6.9)

(a) V 0(t, x) = sup
z(·)∈Z(t)

J0(t, x; z)

(b) V 0
R(t, x) = sup

z(·)∈ZR(t)

J0(t, x; z)

Lemma 6.1. There exists z∗
R(·) ∈ ZR(t) such that J(t, x; z∗

R) = V 0
R(t, x).

Lemma 6.1 is a special case of Theorem I.11.1.
Lemma 6.2. There exists R1 such that |z∗

R(s)| ≤ R1 for all R.

Proof. Let x∗(s) be the solution to (6.6) with z(s) = z∗
R(s) and x∗(t1) = x.

Let P (s) be the solution to

(6.10)
dP

ds
= −P ′(s)Fx(s, x∗(s), z∗

R(s)) − ℓx(s, x∗(s))

with P (t1) = ψx(x∗(t1)), where

F (s, x, z) = b(s, x) + σ(s, x)z.

By Pontragin’s principle (Theorem I.6.3), P (s) · σ(s, x∗(s))ξ − 1
2 |ξ|2 is maxi-

mum on the set |ξ| ≤ R when ξ = z∗
R(s). Let us show that |P (s)| is bounded

by a constant which does not depend on R. We have

(6.11) log(1 + |P (s)|2) = log(1 + |P (t1)|2) − 2

t1
∫

s

P (r) · Ṗ (r)

1 + |P (r)|2 .

We use (3.2), (6.8)(a) and (6.10) to get

|P (r) · Ṗ (r)| ≤ |P (r)|2(C1 + C2|z∗
R(r)|) + C3|P (r)|
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for suitable C1, C2, C3. From (6.11) and Cauchy-Schwartz,

log(1 + |P (s)|2) ≤ log(1 + |P (t1)|2) +

s
∫

t1

(C4 + C5|z∗
R(r)|2)dr.

Since ℓ, ψ are bounded,

−K(t) ≤ J0(t, x; 0) ≤ V 0
R(t, x) ≤ K(t)

where K(t) = ‖ℓ‖(t1 − t) + ‖ψ‖ and ‖ ‖ is the sup norm. Since J(t, x; z∗
R) =

V 0
R(t, x), we have

‖z∗
R(·)‖2 ≤ 4K(t)

where ‖ ‖2 is the L2 norm. Since ψx is bounded, |P (t1)| ≤ ‖ψx‖. Therefore,
|P (s)| ≤ M for t ≤ s ≤ t1 where M does not depend on R. Since σ is bounded,
|z∗

R(s)| ≤ R1 for some R1. �

Theorem 6.1. Assume (3.2) and (6.8) and let R1 be as in Lemma 6.2. Then:

(a) V 0
R(t, x) = V 0(t, x) if R ≥ R1;

(b) V 0 is bounded and Lipschitz continuous on Q̄0;
(c) V 0 is a viscosity solution to (6.40)-(6.5);
(d) V 0 is unique in the class of bounded, Lipschitz continuous viscosity so-

lutions to (6.40)-(6.5).

Proof. Part (a) is immediate from Lemma 6.2. From Remark II.10.1 V 0
R is

Lipschitz. Moreover, V 0
R is bounded since ℓ and ψ are bounded. Hence, (b)

follows from (a). By Theorem II.7.1 and part (a), for R ≥ R1, V
0 is a viscosity

solution of

(6.12) −∂V
0

∂t
+HR(t, x,DxV

0) = 0,

(6.13) HR(t, x, p) = −b(t, x) · p− max
|ξ|≤R

[

p · σ(t, x)ξ − 1

2
|ξ|2

]

.

As a function of ξ, p · σξ − 1
2 |ξ|2 has a maximum on IRd at z∗ = σ′p. Since σ

is bounded, |σ′p| ≤ k|p| for some k. Since V 0 = V 0
R1

is Lipschitz,

|V 0(t, x) − V 0(t, y)| ≤ M1|x− y|

for some M1. For R ≥ max(R1, kM1), V
0 is a viscosity solution to (6.40)-(6.5)

by Corollary II.8.1(f). Finally, let Ṽ be any bounded, Lipschitz continuous
viscosity solution to (6.40)-(6.5). Then V 0 and Ṽ are both viscosity solutions
to (6.12)-(6.5) for large R. By Corollary II.9.1, V 0 = Ṽ . �

Remark 6.1. There is another proof of Theorem 6.1 which does not use
the existence theorem I.11.1. See Theorem XI.7.1 for differential games, which
includes Theorem 6.1 as a special case (with no minimizing control u(s)).
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Theorem 6.2. Assume (3.2) and that ℓ, ψ are bounded and uniformly con-
tinuous on Q̄0, IR

n respectively. Then V ε(t, x) tends to V 0(t, x) uniformly on
compact subsets of Q̄0.

Theorem 6.2 will be proved in Section VII.11 using viscosity solution meth-
ods. It can also be obtained by probabilistic methods, based on the Freidlin-
Wentzell theory of large deviations. If σ is constant, there is another rather
easy proof based on the characterization in Section 4 of V ε(t, x) as a value
function. Let us sketch this argument. We suppose that for each ε > 0, the
verification Theorem 4.1 holds. Let xε(s), yε(s) satisfy (6.1ε) with initial data
xε(t) = x, yε(t) = y. Since σ is constant,

|xε(s) − yε(s)| ≤ |x− y| exp(||bx||(s− t)).

If we write J = Jε in (4.3), then for any z(·)

|Jε(t, x; z) − Jε(t, y; z)| ≤ M1|x− y|

where the constant M1 depends on ||bx||, ||ℓx|| and ||ψx||. Hence the value-
function V ε satisfies

(6.14) |V ε(t, x) − V ε(t, y)| ≤ M1|x− y|.

An argument similar to that for Theorem 6.1(c) implies that there exists R1

such that V ε
R(t, x) = V ε(t, x) for R ≥ R1, where V ε

R is the value function
with auxiliary control constraint |z(s)| ≤ R. Lemma IV.6.3 then implies that

|V ε(t, x) − V 0(t, x)| ≤ Kε
1
2 for some K.

Remark 6.2. We recall from Section 2 that V ε(t, x) = E0
tx(J ε) where E0

is the certainty equivalent expectation. The limit V 0(t, x) as ε → 0 is the value
function of the control problem described above. While this control problem
is deterministic, V 0(t, x) does have a “probabilistic” interpretation in terms
of the Maslov idempotent probability calculus. For any bounded functional
J = J (z(·)), define the max-plus expectation as

E+(J ) = sup
z(·)

⎡

⎣J (z(·)) − 1

2

t1
∫

t

|z(s)|2ds

⎤

⎦ .

In particular, let J be as in (3.4) with x(s) the solution to (6.6), x(t) = x.
By (6.7), (6.9)(a), V 0(t, x) = E+

tx(J ). The operator E+ is linear with respect
to max-plus addition and scalar multiplication, in which

a⊕ b = max(a, b), a⊗ b = a+ b.

These ideas are developed in [BCOQ][F6][MS] and references cited there.
Negative logarithmic transformation. For some applications it is

more natural to let
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(6.3′) V ε(t, x) = −ε logE0
tx[exp(ε−1J ε)]

The PDE for V ε is again (6.4ε). However, instead of (4.8) we now have

(6.15) H(t, x, p) = −b(t, x) · p+
1

2
a(t, x)p · p+ ℓ(t, x).

For ε = 0, the auxiliary control z(s) is chosen to minimize −J0(t, x; z) in
(6.7). In particular, let us now assume that the matrices σ(t, x) are n×n non-
singular with σ−1(t, x) bounded. Then from (6.6), z(s) = σ−1(s, x(s))(ẋ(s) −
b(s, x(s))). Let

(6.16) L̄(t, x, v) =
1

2
(b(t, x) − v) · a−1(t, x)(b(t, x) − v) − ℓ(t, x)

(6.17) J̄0 =

t1
∫

t

L̄(s, x(s), ẋ(s))ds− ψ(x(t1)).

Then J0(t, x; z) = −J̄0. Choosing z(s) to maximize J0 is equivalent to the
calculus of variations problem of choosing x(s) to minimize J̄0, subject to the
initial condition x(t) = x.

Example 6.1. Let b = 0, σ the identity matrix, ℓ(t, x) = q(x) and ψ = 0.
Then L̄(x, v) = 1

2 |v|2 − q(x) is the classical action integrand corresponding
to the potential energy function q(x), already mentioned in Example III.8.2
Assume that q ∈ C1

b (IRn) and let

Φε(t, x) = E0
tx

[

exp

(

ε−1

t1
∫

t

q(xε(s))

)

ds

]

.

Then Φε satisfies

(6.18) Φε
t +

ε

2
∆xΦ

ε +
q(x)

ε
Φε = 0

with Φε(t1, x) = 1. As ε → 0, V ε = −ε logΦε tends to V 0, where V 0(t, x) is
the least action for initial data x(t) = x.

If Φε
t were replaced by −iΦε

t (i
2 = −1), then (6.18) would become the

Schrödinger equation of quantum mechanics. For a particle of mass 1 in a field
with the potential function q(x), the parameter ε corresponds to Planck’s con-
stant. Equation (6.18) is sometimes called the “imaginary time” analogue of
Schrödinger’s equation. In this example, Theorem 6.2 becomes an “imaginary
time” analogue of so-called semiclassical limit results, which recover classical
mechanics from quantum mechanics.
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The exit problem. Let O ⊂ IRn be open and bounded, with ∂O a
manifold of class C3. Let θε denote the exit time from O for the solution
xε(s) to (6.1ε), and let

(6.19) Φε(t, x) = P 0
tx(θε < t1), (t, x) ∈ Q,

where as before Q = [t0, t1) ×O. We again make the nondegeneracy assump-
tion that σ(t, x) is n × n and nonsingular with σ−1(t, x) bounded. The exit
probability, as a function of the initial data (t, x), has the following properties:

(6.20)

(a) Φε ∈ C1,2(Q̄\({t1} × ∂O)) and AΦ = 0;

(b) Φε(t, x) > 0 for (t, x) ∈ Q;

(c) Φε(t, x) = 1 for (t, x) ∈ [t0, t1) × ∂O;

(d) Φε(t1, x) = 0 for x ∈ O.

Properties (6.20) can be proved by making continuous approximations to the
discontinuous data for Φε at points (t1, x), x ∈ ∂O, as in [F4], and using a
priori estimates for solutions to linear, uniformly parabolic PDE.

We make the logarithmic transformation V ε = −ε logΦε. Then V ε satisfies
the HJB equation

(6.21) −V ε
t − ε

2
tr a(t, x)D2

xV
ε − b(t, x) ·DxV

ε +
1

2
a(t, x)DxV

ε ·DxV
ε = 0

with the boundary data

(6.22)
V ε(t, x) = 0 for (t, x) ∈ [t0, t1) × ∂O

V ε(t1, x) = +∞ for x ∈ O.

The calculus of variations problem which arises when ε = 0 is to minimize

(6.23) J̄0 =

∫ τ

t

L̄(s, x(s), ẋ(s))ds,

L̄(t, x, v) =
1

2
(b(t, x) − v) · a−1(t, x)(b(t, x) − v)

among all x(·) ∈ C1([t, t1]) such that x(t) = x and τ < t1, where τ is the exit
time of (s, x(s)) from Q. The requirement that x(s) must reach ∂O before
time t1 reflects the data V 0(t1, x) = +∞ for x ∈ O.

The result that V ε → V 0 as ε → 0, where V 0(t, x) is the value function for
this calculus of variations problem, is called a large deviations theorem for exit
probabilities. This large deviations result has been proved probabilistically;
see Freidlin-Wentzell [FW]. Later another proof by stochastic control methods
was given [F4]. In Section VII.10 a different proof, based on PDE-viscosity
solution methods, will be given.
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VI.7 H-infinity norm of a nonlinear system

In this section we consider the following deterministic dynamical system
model. Let x(s) denote the state at time s ≥ 0. It satisfies the ordinary
differential equation

(7.1)
d

ds
x(s) = b(x(s)) + σ(x(s))z(s), s ≥ 0

with initial state x(0) = x0. In (7.1), z(s) represents an unknown “distur-
bance” at time s. Note that (7.1) is the same as (6.6), except that we now
consider “autonomous” state dynamics on the interval 0 ≤ s < ∞. We assume
that z(·) ∈ L2([0, T ]; IRd) for every T < ∞. The class of all such functions z(·)
is denoted by Z. We assume that b, σ ∈ C1(IRn). Moreover,

(7.2)

(a) bx, σ, σx are bounded;

(b) b(0) = 0 and there exists c > 0 such that, for all x, y ∈ IRn

(x− y) · (b(x) − b(y)) ≤ −c|x− y|2.

Condition (7.2)(b) is equivalent to:

(7.2) (b′) b(0) = 0 and bx(x)η · η ≤ −c|η|2 for all x, η ∈ IRn.

It implies that the unperturbed system (with z(s) = 0) is globally asymp-
totically stable to 0. We also consider a “running cost” function ℓ(x) such
that:

(7.3)

(a) ℓ is continuous on IRn;

(b) ℓ(0) = 0, ℓ(x) > 0 for all x �= 0 and there exists K such that
ℓ(x) ≤ K|x|2 for all x ∈ IRn.

Additional assumptions on ℓ will be imposed later as needed.

Definition. For γ > 0, the system described by (7.1) is said to have
L2-gain ≤ γ if there exists W (x) ≥ 0 with W (0) = 0, such that: for every
T, x0, z(·)

(7.4)

T
∫

0

ℓ(x(s))ds ≤ γ2

⎡

⎣

T
∫

0

|z(s)|2ds+ 2W (x0)

⎤

⎦ .

We will see that (7.4) holds if γ is sufficiently large (Example 7.1). The infimum
of those γ for which (7.4) holds is called the H-infinity norm [HJ,p. 47]. This
term came from linear H-infinity systems theory, which we mention later in
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this section. In the linear theory, γ2 can be interpreted as a L2-space operator
norm, which becomes a H-infinity norm in the frequency domain.

It is convenient to rewrite (7.4) as follows. Let µ = (2γ2)−1. Then (7.4) is
equivalent to

(7.4′) µ

T
∫

0

ℓ(x(s))ds ≤ 1

2

T
∫

0

|z(s)|2ds+W (x0),

for all T, x0, z(·).

Definition. A function W is called a storage function if W (x) ≥ 0 for all
x ∈ IRn, W (0) = 0 and: for 0 ≤ t < s and any z(·)

(7.5) W (x(s)) + µ

s
∫

t

ℓ(x(r))dr ≤ 1

2

s
∫

t

|z(r)|2dr +W (x(t)).

Moreover, (7.5) is called a dissipation inequality.

Proposition 7.1. If W (x) is any storage function, then (7.4′) holds.

Proof. Take t = 0, s = T in (7.5) and use the fact that W (x(T )) ≥ 0. �

As in (4.8), let

(7.6) H(x, p) = −b(x) · p− 1

2
a(x)p · p− µℓ(x).

Proposition 7.2. Let W ∈ C1(IRn) satisfy W (x) ≥ 0, W (0) = 0 and
H(x,DxW (x)) ≥ 0 for all x ∈ IRn. Then W is a storage function.

Proof. We have

d

dr
W (x(r)) + µℓ(x(r)) − 1

2
|z(r)|2 ≤ −H(x(r), DW (x(r))) ≤ 0.

We integrate from t to s to obtain (7.5) �

Example 7.1. Let W (x) = B|x|2 , B > 0. Then

H(x,DW (x)) = −2Bb(x) ·x−2B2a(x)x ·x−µℓ(x) ≥ (2Bc−2kB2 −µK)|x|2,

with c,K as in (7.2), (7.3) and k > 0 some constant. Choose B < k−1c. Then
W (x) is a storage function if µ is small enough, by Proposition 7.2.

Let

(7.7) J̃(T, x; z) =

T
∫

0

[

µℓ(x(s)) − 1

2
|z(s)|2

]

ds
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(7.8) Ṽ (T, x) = sup
z(·)∈Z

J̃(T, x; z)

where as usual x = x0 = x(0) is the initial state. Then for 0 < T1 < T2

(7.9) 0 ≤ Ṽ (T1, x) ≤ Ṽ (T2, x).

Since ℓ ≥ 0, the left hand inequality in (7.9) is immediate (take z(s) = 0).
The right hand inequality then follows by taking z(s) = 0 for T1 ≤ s ≤ T2.
Let

(7.10) W̃ (x) = lim
T→∞

Ṽ (T, x).

Proposition 7.3. Assume that W̃ (x) < ∞ for all x ∈ IRn. Then W̃ is a
storage function. Moreover W̃ ≤ W for any storage function W .

Proof. Inequality (7.4′) for all z(·) is equivalent to Ṽ (T, x) ≤ W (x). Hence,
W̃ (x) ≤ W (x) if a storage function W exists. It remains to show that W̃ (x) is
a storage function, if W̃ (x) < ∞. By dynamic programming, for 0 ≤ t < s ≤ T

Ṽ (T − t, x(t)) = sup
z(·)∈Z

⎡

⎣

s
∫

t

[

µℓ(x(r)) − 1

2
|z(r)|2

]

dr + Ṽ (T − s, x(s))

⎤

⎦ .

Since Ṽ (T − t, x(t)) and Ṽ (T − s, x(s)) increase to W̃ (x(t)) and W̃ (x(s)) as
T → ∞, W̃ satisfies the dissipation inequality (7.5). Moreover, W̃ (x) ≥ 0. It
remains to show that W̃ (0) = 0. Given δ > 0, choose xδ such that

W̃ (xδ) < inf
x
W̃ (x) + δ.

The dissipation inequality with t = 0, z(r) = 0 implies that for all s > 0

s
∫

0

µℓ
(

x0(r)
)

dr ≤ δ,

where x0(s) is the solution to (7.1) with z(s) = 0 and x0(0) = xδ. Since
ℓ(x) > 0 for all x �= 0, xδ → 0 as δ → 0. Thus W̃ (x) has a strict minimum at
x = 0. If we take x0 = 0, then the dissipation inequality implies

0 ≤
T
∫

0

µℓ
(

x(s)
)

ds ≤ 1

2

T
∫

0

|z(s)|2ds.

Hence Ṽ (T, 0) = 0 for all T , which implies W̃ (0) = 0. �

The dynamic programming PDE for the value function Ṽ is
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(7.11)
∂Ṽ

∂T
+H(x,DxṼ ) = 0

with initial data Ṽ (0, x) = 0. This is obtained as follows. In Section 6,
write V 0 = V 0(t, x, t1) to indicate dependence on the final time t1. Then
V 0(t, x, t1) = Ṽ (t1 − t, x) and (6.40) becomes (7.11). At least formally, W̃
should satisfy the steady state form of (7.11):

(7.12) H(x,DxW̃ ) = 0.

Later in the section, we will show that (7.12) holds at least in the viscosity
sense, under some additional assumptions.

Linear-quadratic case. Let

(7.13) b(x) = Ax, σ(x) = σ, ℓ(x) = x · M̄x

where Ax · x ≤ −c|x|2 for all x ∈ IRn(c > 0) and M̄ is a positive definite
matrix. Let

(7.14) J =

T
∫

0

[

−µx(s) · M̄x(s) +
1

2
|z(s)|2

]

ds

Then J = −J̃ with J̃ as in (7.7). The problem of minimizing J is equivalent
to a LQRP problem with indefinite sign, considered in Example I.5.1. Let
P̃ (T ) be the n× n symmetric matrix solution to the Riccati equation

(7.15)
dP̃

dT
= 2P̃ (T )aP̃ (T ) +AP̃ (T ) + P̃ (T )A′ + µM̄

with P̃ (0) = 0, where a = σσ′. The solution P̃ (T ) exists for 0 ≤ T < T1,
where either T1 is finite or T1 = +∞. Let

(7.16) W̃ (T, x) = x · P̃ (T )x, 0 ≤ T < T1.

If we fix t1 then in the notation of Section I.5, W̃ (T, x) = −W (t1 −T, x). The
ODE (7.15) is equivalent to I(5.15) with B = σ, N(t) = 1

2I and M(t) = −µM̄
(I is the identity matrix). The Verification Theorem I.5.1 implies that W̃ is
the value function Ṽ in (7.8). Moreover, by (7.9) P̃ (T ) is nonnegative and
is a nondecreasing function of T in the ordering of symmetric matrices. If
T1 = +∞ and P̃ (T ) tends to a finite limit P∞ as T → ∞, then

(7.17) 0 = 2P∞aP∞ +AP∞ + P∞A
′ + µM̄.

Moreover, W∞(x) = x · P∞x is the minimal storage function.
Proposition 7.4. The linear system in (7.13) has H-infinity norm ≤ γ
if and only if (7.17) has a symmetric, nonnegative definite solution P , with
µ = (2γ2)−1.
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Proof. If P is such a solution to (7.17), letW (x) = x·Px. ThenH(x,DxW (x)) =
0 and W (x) is a storage function by Proposition 7.2. Conversely, if the H-
infinity norm is ≤ γ, then the value function Ṽ (T, x) is bounded above by
W (x) in (7.4′). This implies that T1 = +∞ and that Ṽ = W̃ in (7.16). The
limit P∞ of P̃ (T ) is a solution to (7.17) with the required properties. �

In the remainder of this section, we assume in addition to (7.2), (7.3)
that ℓ ∈ C1

b (IRn). By Theorem 6.1, for any T1 < ∞, Ṽ (T, x) is bounded and

Lipschitz continuous on [0, T1] × IRn. Moreover, Ṽ is a viscosity solution to

(7.18)
∂Ṽ

∂T
+H(x,DxṼ ) = 0, T > 0

with Ṽ (0, x) = 0. The Lipschitz constant may depend on T1. However, if σ
is constant, then the following result gives a uniform Lipschitz constant for
Ṽ (T, ·) which does not depend on T .

Theorem 7.1. If σ is constant, then

(7.19) |Ṽ (T, x) − Ṽ (T, y)| ≤ µc−1‖ℓx‖ · |x− y|

where the constant c is as in (7.2) and ‖ ‖ is the sup norm.

Proof. For any z(·) ∈ Z, x and y, let x(s) be the solution to (7.1) with
x(0) = x and y(s) the solution to (7.1) with y(0) = y. Let ζ(s) = x(s) − y(s).
Since σ is constant, the mean value theorem gives ζ̇(s) = A(s)ζ(s) where

A(s) =

1
∫

0

bx(y(s) + λζ(s))dλ.

with ζ(0) = x− y. By (7.2)(b′)

d

ds
|ζ(s)|2 = 2A(s)ζ(s)ζ̇(s) ≤ −2c|ζ(s)|2,

which implies |ζ(s)| ≤ |x− y|e−cs. Then

|J̃(T, x; z) − J̃(T, y; z)| ≤ µ

T
∫

0

|ℓ(x(s)) − ℓ(y(s))|ds

≤ µ‖ℓx‖
T
∫

0

|ζ(s)|ds ≤ µc−1‖ℓx‖ · |x− y|.

Since this is true for all z(·), we obtain (7.19). �
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Corollary 7.1. Assume that σ is constant and that W̃ (x) < ∞ for all x.
Then W̃ is a Lipschitz continuous viscosity solution to (7.11).

Remark 7.1. The proof of Theorem 7.1 uses the bound for ℓx, but not
a bound for ℓ. If ℓx is bounded but not ℓ, then a refinement of the arguments
above give Ṽ (T, x) as a viscosity solution to (7.11) which may grow linearly
with |x| as |x| → ∞. Another interesting case is when ℓ(s) grows quadratically
as |x| → ∞, as for the linear-quadratic problem above. This more difficult case
has been studied in [Mc3][DLM]. In addition, a local Lipschitz estimate for
Ṽ (τ, ·) independent of T is obtained in [Mc3], with σ(x) nonconstant and
weaker assumptions on ℓ. See also [Mc5].

Remark 7.2. If σ(x) is not constant, then it is more difficult to obtain a
Lipschitz estimate for Ṽ (T, ·) independent of T . If |x||σx(x)σ′(x)| is bounded
on IRn, then such an estimate can be found by the method of [MI].

Remark 7.3. Let γ̄ denote the H-infinity norm. By (7.4) if γ̄ < γ then
Ṽ (T, x) tends to the finite limit W (x) which is the smallest storage function
by Proposition 7.3. If γ̄ > γ, then the behavior of Ṽ (T, x) as T increases
depends on the behavior of ℓ(x) for |x| large. We mention two cases.

Case 1. As in the discussion preceding Theorem 7.1, assume that ℓ ∈
C1

b (IRn) and that σ is constant. For γ̄ > γ, T−1Ṽ (T, x) tends to a constant
λ > 0 as T → ∞. See [FM2][FJ]. This result is proved using asymptotic
properties as ε → 0, T → ∞ of solutions to the SDE (see (6.1ε))

dxε = b(xε(s))ds+ ε
1
2σdw0(s), s ≥ 0.

Case 2. Assume (as in the linear-quadratic case above) that ℓ(x) is un-
bounded, with at most quadratic growth as |x| → ∞. For γ̄ > γ, Ṽ (T, x) may
tend to infinity as T → T∞ < ∞. See [BN2][DLM][KN1,2].

VI.8 Risk sensitive control

In this section we again consider controlled Markov diffusion processes. The
criterion J to be minimized is now of the exponential form (8.3) below instead
of the form IV(2.8) considered in Chapter IV. This is called a finite time
horizon, risk-sensitive stochastic control problem. Risk sensitivity is indicated
by a parameter ρ > 0, which has the same role as in Sections 2–5 above. Later
in the section, we mention small noise limits, in a way similar to Section
6. Deterministic, two-controller, zero-sum differential games are obtained as
small noise limits of risk-sensitive stochastic control problems. Such games
will be considered in Section XI.7.
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The state x(s) ∈ IRn for the risk sensitive stochastic control problem
evolves according to the stochastic differential equation

(8.1) dx = f(s, x(s), u(s))ds+ ρ− 1
2σ(s, x(s), u(s))dw0(s), t ≤ s ≤ t1,

where u(s) ∈ U is the control at time s and w0(s) is a d-dimensional brownian
motion. Let

(8.2) J =

t1
∫

t

ℓ(s, x(s), u(s))ds

(8.3) J(t, x;u) = E0
tx[exp(ρJ )].

In (8.3), either J < ∞ or J = +∞. Note that when the control u(s) does not
appear in (8.1) or (8.2), then (8.1) is the same as (3.1) with f = b and (8.2) is
the same as (3.4) with ψ = 0. A terminal cost function ψ could be included,
but this slightly complicates the exposition.

We assume throughout this section that f, σ ∈ C1(Q̄0 × U). Moreover

(8.4)

(a) The first order partial derivatives of f are bounded;

(b) σ and its first order partial derivatives are bounded,
i.e. σ ∈ C1

b (Q̄0 × U).

The “running cost” function ℓ is assumed continuous throughout. Further
assumptions about ℓ will be made as needed.

The risk sensitive stochastic control problem is as follows. Given initial
data x(t) = x, choose the control process u(·) to minimize J(t, x;u). More
precisely (see Section IV.2) a reference probability system ν and a progres-
sively measurable control process u(·) are to be chosen to minimize J(t, x;u).
Let Φ(t, x) denote the value function for this risk sensitive control problem.
It is well defined provided J(t, x;u) < ∞ for some control process u(·). In
particular, Φ(t, x) is a bounded, positive function if ℓ is bounded above. The
associated Hamilton-Jacobi-Bellman PDE is (see IV(3.21)):

(8.5) −∂Φ
∂t

+ H(t, x,DxΦ,D
2
xΦ,Φ) = 0, (t, x) ∈ Q0,

(8.6) H(t, x, p, A, Φ) = − inf
v∈U

[

f(t, x, v) · p+
1

2ρ
tr a(t, x, v)A+ ρℓ(t, x, v)Φ

]

.

Theorem 8.1. Assume that U is compact, that (8.4) holds and that ℓ ∈
C1

b (Q̄0 × U). Then the value function Φ is a Lipschitz continuous viscosity
solution of (8.5) with terminal data Φ(t1, x) = 1.
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Proof. As noted above, Φ is bounded and Φ(t, x) > 0, since ℓ is bounded.
Consider an “augmented” state x̂(s) = (x(s), xn+1(s)), where

(8.7) dxn+1 = ρℓ(s, x(s), u(s))xn+1(s)ds , s ∈ [t, t1]

with xn+1(t) > 0. Then |xn+1(s)| ≤ R|xn+1(t)|, where R = exp(ρ‖ℓ‖(t1−t0)).
Choose h ∈ C2

b (IR1) such that h(xn+1) = xn+1 if |xn+1| ≤ 2R. Let

Ĵ(t, x̂;u) = E0
tx̂ [h(xn+1(t1))] ,

and Φ̂(t, x̂) the infimum of Ĵ over all ν and u(·). Then Φ̂(t, x̂) = xn+1Φ(t, x)
for 0 < xn+1 < 2. By Lemmas IV.8.1, IV.8.2 and comments after IV(6.2), Φ̂
is Lipschitz continuous. Hence Φ(t, x) = Φ̂(t, x, 1) is Lipschitz continuous.

To show that Φ is a viscosity solution to (8.5), suppose that φ ∈ C1,2(Q0)
and that Φ(t, x)−φ(t, x) has a local maximum at (t̄, x̄) with Φ(t̄, x̄) = φ(t̄, x̄).

Let φ̂(t, x̂) = xn+1φ(t, x). Then Φ̂(t, x̂) − φ̂(t, x̂) has a local maximum at
(t̄, x̄, 1) with Φ̂(t̄, x̄, 1) = φ(t̄, x̄, 1). By Theorem V.3.1, Φ̂ is a viscosity solution
of

(8.8) −∂Φ̂
∂t

+ Ĥ(t, x,DxΦ̂,D
2
xΦ̂, Φ̂xn+1) = 0,

Ĥ(t, x, p, A, pn+1) = H(t, x, p, A, xn+1pn+1).

Since φ̂xn+1 = φ in a neighborhood of (t̄, x̄, 1), the definition of viscosity
solution for PDEs implies

−∂φ
∂t

+ H(t̄, x̄, Dxφ,D
2
xφ, φ) ≤ 0

at (t̄, x̄). Hence Φ is a viscosity subsolution. Similarly, Φ is a viscosity super-
solution of (8.5). �

Remark 8.1. Under stronger assumptions, the value function Φ ∈
C1,2

b (Q̄0) and satisfies (8.5) in the classical sense. As in Theorem IV.4.2, it suf-
fices to assume the uniform parabolicity condition IV(3.5) and that a = σσ′,
f and ℓ satisfy IV(4.5)(b)(c).

Remark 8.2. Theorem 8.1 remains true if a terminal cost ψ(x(t1)) is
included in (8.2), provided ψ is bounded and Lipschitz continuous. In the
proof above, take

Ĵ(t, x̂;u) = E0
tx̂ [h(xn+1(t1)) exp(ρψ(x(t1))] .

Logarithmic transformation of Φ. We now let
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(8.9) V (t, x) = ρ−1 logΦ(t, x).

To obtain a PDE for V , we make the following observation. Suppose that
φ ∈ C1,2(Q0) with φ > 0 and let w = ρ−1 log φ. A direct calculation gives

(8.10) −∂φ
∂t

+ H(t, x,Dxφ,D
2
xφ, φ) = φ

[

−∂w
∂t

+ H̄(t, x,Dxw,D
2
xw)

]

(8.11) H̄(t, x, p, A) = −min
v∈U

[

f · p+
1

2ρ
tr aA+

1

2
a p · p+ ℓ

]

with f, a, ℓ evaluated at (t, x, v). From (8.10), Theorem 8.1 and the definition
II.4.2 of viscosity solution for PDEs:

Corollary 8.1. V is a bounded, Lipschitz continuous viscosity solution to

(8.12) −∂V
∂t

+ H̄(t, x,DxV,D
2
xV ) = 0

with terminal data V (t1, x) = 0.

Note that when f, a and ℓ depend only on (t, x) then (8.12) is the same
as (4.7) with b = f . In Sections 3 and 4, the logarithmic transformation
introduced an auxiliary control process z(s). The same happens for the risk-
sensitive stochastic control problem. In (8.11)

(8.13)
1

2
a(t, x, v)p · p = max

ξ∈IRd

[

p · σ(t, x, v)ξ − 1

2
|ξ|2

]

.

In this way, −H̄ becomes a min-max, taken over v ∈ U , ξ ∈ IRd. There is an
associated two-controller, zero-sum stochastic differential game, with controls
u(s) ∈ U , z(s) ∈ IRd. The PDE (8.12) is called the Isaacs equation for this
stochastic differential game [FS3][Sw]. In this book, we will not discuss sto-
chastic differential games further. However, deterministic differential games
which arise as small noise limits of risk sensitive stochastic control problems
are considered in Section XI.7. If we write ε = ρ−1 and let ε → 0, then in
the limit H̄ becomes a first-order partial differential operator, which will be
denoted by H+(t, x, p) in Chapter XI. An analogue of the small noise limit
Theorem 6.2 will be proved there (Theorem XI.7.2).

Verification Theorem. We conclude this section with a result for the
risk sensitive control problem which is similar to the verification Theorem
IV.3.1. For simplicity, let us assume that σ = σ(t, x). Then (8.12) takes the
form:

(8.14) −∂V
∂t

− 1

2ρ
tr a(t, x)D2

xV − 1

2
a(t, x)DxV ·DxV + H̄(t, x,DxV ) = 0,
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(8.15) H̄(t, x, p) = −min
v∈U

[f(t, x, v) · p+ ℓ(t, x, v)] .

Let L denote the class of Markov control policies u defined by IV(3.12).
For u ∈ L, let

bu(t, x) = f(t, x, u(t, x))

ℓu(t, x) = ℓ(t, x, u(t, x)).

The solution x(t) to (8.1) with u(s) = u(s, x(s)) and x(t) = x is the same as
for (3.1) with b = bu. Also J(t, x;u) = J(t, x;u) is the same as (3.14) with
ℓ = ℓu.

Theorem 8.2. Assume that (8.4) holds, that σ = σ(t, x) and that ℓ ∈
C1(Q̄0 × U). Also suppose that W ∈ C1,2(Q̄0) is a solution to (8.14) such
that |DxW (t, x)| ≤ M(1 + |x|) and W (t1, x) = 0. Then:

(a) W (t, x) ≤ ρ−1 log J(t, x;u) for all u ∈ L;
(b) If there exists u∗ ∈ L such that

(8.16) H̄(t, x,DxW (t, x)) = −
[

bu
∗

(t, x) ·DxW (t, x) + ℓu
∗

(t, x)
]

for all (t, x) ∈ Q̄0, then W (t, x) = ρ−1 log J(t, x;u∗).

Proof. We write

(8.17) H̄(t, x,DxW (t, x)) = −bu(t, x) ·DxW (t, x) − Λu(t, x)

where Λu(t, x) ≤ ℓu(t, x) by (8.15). By Theorem 4.1(b) with b = bu, ℓ = Λu,

W (t, x) = ρ−1 logE0
tx

⎡

⎣exp ρ

t1
∫

t

Λu(s, xu(s))ds

⎤

⎦

≤ ρ−1 log J(t, x;u).

Here xu(s) is the solution to (3.1) with x(t) = x and b = bu , which is the
same as x(s) in (8.1) with u(t) = u(t, x(t)). This proves (a). Since Λu∗

= ℓu
∗

we get (b). �

The Markov control policy u∗ in Theorem 8.2(b) is optimal for the risk
sensitive stochastic control problem.

Example 8.1. Linear exponential-of-quadratic regulator (LEQR) prob-
lem. In a way similar to the stochastic linear regulator problem (Example
III.8.1) let U = IRm, f(t, x, v) = A(t)x + B(t)v, σ = σ(t), ℓ(t, x, v) =
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x · M(t)x + v · N(t)v, where M(t), N(t) are symmetric matrices and N(t)
is positive definite. (We now take D = 0 in III(8.7)). The problem of minimiz-
ing J(t, x;u) is the called a LEQR problem. For the LEQR problem, H̄ = H
where H is the Hamiltonian I(5.12) for the linear regulator problem. Then
(8.14) becomes

(8.18) −∂V
∂t

− 1

2ρ
tr a(t)D2

xV +
1

4
ã(t)DxV ·DxV −A(t)x ·DxV −x ·M(t)x = 0

(8.19) ã(t) = B(t)N−1B′(t) − 2a(t).

By the same method as for the stochastic linear regulator problem, there is a
solution W (t, x) to (8.18) with W (t1, x) = 0 of the form

(8.20) W (t, x) = x · P̃ (t)x+ g̃(t), tmin < t ≤ t1,

with either tmin finite or tmin = −∞. The symmetric matrices P̃ (t) satisfy the
matrix Riccati differential equation (see I(5.15))

(8.21)
d

dt
P̃ (t) = P̃ (t)ã(t)P̃ (t) −A(t)P̃ (t) − P̃ (t)A′(t) −M(t), tmin < t ≤ t1

with P̃ (t1) = 0 and

(8.22) g̃(t) = ρ−1

t1
∫

t

tr ã(s)P̃ (s)ds.

The optimal control policy for the LEQR problem is

(8.23) u∗(t, x) = −N−1(t)B′(t)P̃ (t)x, tmin < t ≤ t1.

A sufficient condition that tmin = −∞ is that the matrices M(t) and ã(t) are
positive definite for all t. See the discussion for the linear regulator problem
(Example I.5.1). Similarly, tmin = −∞ if M(t) and ã(t) are negative definite.

VI.9 Logarithmic transformations for Markov
processes

In this section we shall outline how to extend some of the results described
in Sections 3-5 for Markov diffusion processes to other classes of Markov
processes. These results are based mainly on Sheu [Sh1]. Following the no-
tation of Section III.2, let A be the backward evolution operator of a Markov
process x(s), with state space Σ. Let Φ(t, x) be a positive solution to

(9.1) AΦ+ ℓ(t, x)Φ = 0, (t, x) ∈ [t0, t1] ×Σ.
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We make the logarithmic transformation

(9.2) V = − logΦ.

Thus, in the notation of Section 4 we take ρ = −1. An equation for V is
derived formally, as follows. As in III(2.9), write

AΦ =
∂Φ

∂t
−GtΦ.

Then V satisfies (at least formally)

(9.3) −∂V
∂t

+ H(V ) = 0, where

(9.4) H(V ) = −eV Gt(e
−V ) + ℓ.

If A is the backward evolution operator of a Markov diffusion in IRn then (9.3)
becomes the HJB partial differential equation (4.11). We wish to interpret
(9.3) as the dynamic programming equation for a stochastic control problem,
when A is the backward evolution operator for some other kind of Markov
process. To avoid all technical difficulties, we will describe the procedure in
complete detail for finite state Markov chains, and merely indicate how it
extends to other classes of Markov processes.

Logarithmic transformations for Markov chains. We now let Σ be a
finite set. To further simplify matters, we consider time-homogeneous Markov
chains x(s) on the time interval [0,∞) with state space Σ. According to
formula III(4.1)

(9.5) Gφ(x) = −
∑

y �=x

ρ(x, y)[φ(y) − φ(x)], x ∈ Σ,

where ρ(x, y) is the infinitesimal rate at which x(s) jumps from x to y if
x(s) = x. Let v(·) by any positive function on Σ (v(x) > 0 for all x ∈ Σ); and
let Gv be the linear operator defined by

(9.6) Gvφ =
1

v
[G(φv) − φGv].

From (9.5)

(9.7) Gvφ(x) = −
∑

y �=x

ρ(x, y)v(y)

v(x)
[φ(y) − φ(x)].

Thus −Gv is the generator of a Markov chain with infinitesimal jumping rates
v(x)−1ρ(x, y)v(y). It is not difficult to show that the corresponding semigroup
T v

t satisfies
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(9.8) T v
t φ(x) =

1

v(x)
Ex

[

φ(x(s))v(x(s)) exp

{
∫ s

0

Gv(x(r))

v(x(r))
dr

}]

.

(We will not use (9.8).) Let

(9.9) U = {v(·) : v(x) > 0 for all x ∈ Σ}.

U will be the control space for the stochastic control problem which we are
going to formulate. The key step in the construction of this control problem
is the following lemma.

Lemma 9.1. For each v(·) ∈ U , let

(9.10) kv = −Gv(log v) +
Gv

v
.

Then, for each φ,

(9.11) min
U

[−Gvφ+ kv] = eφ(Ge−φ).

The minimum is attained when v = exp(−φ).

Proof. Fix x ∈ Σ and consider the function

F (y)=
1

v(x)

[

(vφ)(y) − φ(x)v(y) + (v log v)(y)

−(log v(x))v(y) − v(y)

]

+ exp(φ(x) − φ(y))

=
v(y)

v(x)
(φ(y) − φ(x)) +

v(y)

v(x)
log

v(y)

v(x)

−v(y)

v(x)
+ exp(φ(x) − φ(y)).

An elementary calculation shows that

(9.12) min
z∈IR1

[e−z + az] = a− a log a, a > 0.

By taking z = φ(y) − φ(x), a = v(x)−1v(y), we obtain

F (y) ≥ 0, all y ∈ Σ , F (x) = 0.

Since F has a minimum at x, GF (x) ≤ 0. This is equivalent to

(9.13) −Gvφ(x) + kv(x) ≥ eφ(x)(Ge−φ)(x),
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for every v = v(·) ∈ U . If we take v = exp(−φ), then F ≡ 0 and hence
GF ≡ 0. In that case equality holds in (9.13). �

As running cost, let

(9.14) L(x, v) = kv(x) − ℓ(x).

As in (4.3), consider the stochastic control problem: minimize

(9.15) J(t, x;u) = Etx

{
∫ t1

t

L(x(s), u(s))ds+ ψ(x(t1))

}

,

where exp(−ψ) = Φ(t1, ·). The dynamic programming equation for this prob-
lem is (see III(7.5))

(9.16) Vt(t, x) + min
v∈U

[

−GvV (t, ·)(x) + L(x, v)

]

= 0.

By Lemma 9.1, with φ = V (t, ·), this is the same as equation (9.3). The
minimum in (9.16) is attained for v = u∗(t, x), where

(9.17) u∗(t, x) = exp(−V (t, x)) = Φ(t, x).

We summarize these results as follows.

Theorem 9.1. (Σ finite) Let Φ be a positive solution to (9.1), with Gt = G,
where – G is the generator of a finite state time-homogeneous Markov chain.
Then V = exp(−Φ) is the value function for a stochastic control problem, with
(9.16) as dynamic programming equation. Moreover, u∗ = Φ is an optimal
Markov control policy.

Extensions of Theorem 9.1. The definitions of Gv and kv in (9.6) and
(9.10), and the proof of Lemma 9.1, do not use at all the particular form (9.5)
of the generator. Hence, it is only a technical matter to extend Theorem 9.1 to
a much wider class of time-homogeneous Markov processes. For simplicity, let
us consider the case when the generator G is a bounded operator on Cb(Σ).
Then Gv and kv are exactly as in (9.6), (9.10), provided v = v(·) ∈ U , where

U = {v(·) : v(x) > 0 for all x ∈ Σ, v(·), v−1(·) ∈ Cb(Σ)}.

In the extension of Theorem 9.1 one needs to assume that Φ ∈ Cb([t0, t1]×Σ),
with Φ(t, ·) ∈ U for each t ∈ [t0, t1].

Example 9.1. Let – G be the generator of a jump Markov process, of the
form

Gφ(x) = −
∫

Σ

ρ(x, y)[φ(y) − φ(x)]λ(dy)

where ρ ∈ Cb(Σ × Σ) and λ is a finite positive measure on B(Σ). Then Gv

has the same form, with ρ(x, y) changed to v(x)−1v(y)ρ(x, y).
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VI.10 Historical remarks

The use of logarithmic transformations goes back at least to Schrödinger [Sch]
in his fundamental work on wave mechanics in 1926. In 1950, E. Hopf [Hf]
connected the Burgers equation and the heat equation using a logarithmic
transformation. This paper was influential for subsequent developments in
the theory of weak solutions to conservation laws. In a stochastic control set-
ting, logarithmic transformations were introduced independently by Fleming
[F4] and by Holland [Ho] in the late 1970’s. Evans and Ishii [EI] were the first
to apply PDE/viscosity solutions methods to the Freidlin Wentzell small-noise
asymptotics for exit problems (Section 6). For further work in that direction
see [BP1] [FS1], and for more refined results in the form of asymptotic se-
ries [FS2] [FSo]. An application of the logarithmic transformation to the exit
problem in Section 5 was made in [Day].

The notions of H-infinity norm and H-infinity control theory were ini-
tially developed for linear systems, using frequency domain methods. See
Green-Limbeer [GL] and references cited there. Glover-Doyle [GD] considered
a state space formulation for the linear case, and its relation to risk sensitive
control. Since then a substantial nonlinear H-infinity theory has developed.
See Ball-Helton [BH], Basar-Bernhard [BB], Helton-James [HJ], Soravia [Sor]
and vander Schaft [VdS]. The treatment of H-infinity norms in Section 7
follows [F6].

In 1973 Jacobson [Jac] found the solution of the LEQR problem. A theory
of linear risk sensitive control, with complete or partial state information, was
developed by Whittle [Wh1] and Bensoussan-van Schuppen [BvS]. For further
results about nonlinear risk sensitive control, with complete state information,
see Bensoussan-Frehse-Nagai [BFN], Nagai [Na1] and Fleming-McEneaney
[FM2]. For the discrete time case, with partial state information, see James-
Baras-Elliott [JBE].





VII

Singular Perturbations

VII.1 Introduction

In Section II.6, we proved that any uniform limit of a sequence of viscosity
solutions is again a viscosity solution of the limiting equation. This stability
of viscosity solutions under any approximation or relaxation is an extremely
important property which has been applied to many different problems in
large deviations, homogenization, numerical analysis, singular perturbations
and large time behavior of reaction-diffusion equations. In this chapter we
outline a procedure of Barles and Perthame which is common in all these ap-
plications. We then apply this procedure to the problem of vanishing viscosity
and to a large deviations problem of probability theory. Analytical applica-
tions to homogenization and to reaction-diffusion equations require nontrivial
modifications of the procedure outlined there. Several papers of Barles, Evans
and Souganidis provide an excellent discussion of these problems [BES], [E3],
[ES2]. Applications to the numerical analysis of control problems will be the
subject of Chapter IX.

Now consider a situation in which we want to prove the convergence of a
sequence of viscosity solutions V ε to the viscosity solution V of the limiting
equation. Examples of this situation are given in Section 2 below. In view of
Lemma II.6.2 or II.6.3, it suffices to show the precompactness of the sequence
V ε in the uniform topology and the uniqueness of viscosity solutions to the
limiting equation with appropriate boundary and terminal data. Then using
the results of Section II.6 we conclude that any uniform limit of the sequence
V ε is a viscosity solution of the limiting equation. We may then obtain the
desired convergence result by invoking the uniqueness result for the limiting
equation. This procedure has been successfully applied to several problems.
However the main difficulty in applying the outlined procedure is to obtain
the precompactness of the sequence V ε in the uniform topology. In some cases
approximating equations can be used to prove a uniform Lipschitz (or Hölder)
estimate for the sequence V ε. Then the precompactness and consequently the
convergence of V ε follows from the Ascoli-Arzela Theorem.
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Barles and Perthame [BP1] modified the above procedure. In their mod-
ified procedure the precompactness condition is replaced by a much weaker
uniform boundedness condition. This assumption enabled them to define two
possible limit functions: V ∗ the largest possible limit point, and V∗ the smallest
possible one, see (3.2) and (3.3) below. Then Barles and Perthame observed
that V ∗ is a discontinuous viscosity subsolution of the limiting equation. Sim-
ilarly V∗ is a discontinuous viscosity supersolution of the same equation. Since
for a large class of problems subsolutions are less than supersolutions, we for-
mally expect that V ∗ ≤ V∗. Also the reverse inequality is evident from the
construction. Therefore the largest limit point V ∗ is equal to the smallest limit
point V∗ and consequently the sequence V ε is uniformly convergent. Moreover
the limit point V = V ∗ = V∗ is both a viscosity subsolution and a viscosity
supersolution of the limiting equation.

The Barles-Perthame procedure requires a discussion of discontinuous vis-
cosity sub and supersolutions. In Definition 4.1 below, we give the definition of
discontinuous viscosity sub and supersolution. The main difference between
Definition 4.1 and Definition II.4.2 is the use of the upper semi-continuous
envelope in the case of a subsolution and the use of the lower semi-continuous
envelope in the case of a supersolution. Implicit in the Barles-Perthame pro-
cedure is a comparison result between a discontinuous viscosity subsolution
and a discontinuous viscosity supersolution of the limiting equation satisfying
the terminal and boundary conditions. We prove several comparison results
in Section 8. However to apply these comparison results to V ∗ and V∗, we
need to show that V ∗ and V∗ satisfy the same terminal and boundary condi-
tions. In Section 5 we show that V ∗ and V∗ pointwise satisfy the terminal data
(2.4)(b). The discussion of the lateral boundary data is more delicate as V ∗

and V∗ satisfy (2.4)(a) only in the viscosity sense. The viscosity formulation
of boundary conditions for continuous solutions was given in Section II.13. In
Section 6 below, we first give an extension of Definition II.13.1 and then show
that V ∗ and V∗ satisfy (2.4)(a) in the viscosity sense. The combination of all
these results yields several convergence results which are stated in Section 7.

We close the chapter with some applications. In the first one we consider
the classical problem of vanishing viscosity. In this application the convergence
of V ε follows immediately from the results of Section 7, if V ε is uniformly
bounded in ε. This uniform bound is an easy consequence of the classical
maximum principle, Theorem 9.1 below. Our second application is a large de-
viations problem for exit probabilities. We prove the exponential convergence
of the exit probabilities in Section 10. In that section we also identify the
rate of their exponential convergence as the value function of a deterministic
control problem. A similar large deviations result on a fixed time interval is
proved in Section 11. The same method will be used in Section XI.7 for small
noise, risk sensitive control limits.
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VII.2 Examples

In Sections 2 through 10 of this chapter we assume that Q = [t0, t1) × O,
where O ⊂ IRn is open and bounded. V ε is a viscosity solution of

(2.1ε) − ∂

∂t
V ε(t, x) + (Gε

t V
ε(t, ·))(x) = 0, (t, x) ∈ Q.

satisfying

(2.2) V ε(t, x) = Ψε(t, x) =

⎧

⎨

⎩

gε(t, x), t ∈ [t0, t1), x ∈ ∂O,

ψε(x), t = t1, x ∈ O.

As remarked in Section II.4, viscosity solutions of (2.1)ε are defined if the
nonlinear operators Gε

t have the maximum principle property. Since the per-
turbation theory we will develop extends to such operators with no difficulty,
we only assume that Gε

t has the maximum principle. Recall that when Gε
t

has the maximum principle property, any classical solution of (2.1)ε is also a
viscosity solution of (2.1)ε in Q.

When Gε
t is a nonlocal infinitesimal generator, the space Σ introduced in

Chapter II may not be equal to O. However to simplify the exposition we
assume Σ = O and that the domain of Gε

t contains C∞(Q).
Let us assume that gε and ψε converge uniformly to g and ψ, respec-

tively, and Gε
t converges to a first order partial differential operator H, in the

following sense:

lim
(s,y)→(t,x)

ε↓0

(Gε
s [w(s, ·) +Kε])(y) = H(t, x,Dxw(t, x), w(t, x)),

for all (t, x) ∈ Q,w ∈ C∞(Q) and real numbers Kε → 0 as ε → 0. (The
theory that will be developed in this chapter also applies to the cases when
the limiting operator is not a first-order partial differential operator.) Then
under these assumptions we formally expect that V ε converges to a solution
of the limiting equation

(2.3) − ∂

∂t
V (t, x) +H(t, x,DxV (t, x), V (t, x)) = 0, (t, x) ∈ Q.

Indeed we will show that for a general class of problems V ε converges, as ε ↓ 0,
to the unique viscosity solution V of (2.3) satisfying the boundary data

(2.4)(a) V (t, x) = g(t, x), (t, x) ∈ [t0, t1) × ∂O,

(2.4)(b) V (t1, x) = ψ(x), x ∈ O,

in the viscosity sense. Recall that a viscosity formulation of the boundary data
is given in Section II.13 and a further discussion is included in Section 6.
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We give two illustrative examples of nonlinear operators Gε
t .

Example 2.1. (Vanishing viscosity) A classical approximation of the
equation (2.3) is

(2.5ε) − ∂

∂t
V ε(t, x) − ε

2
tr a(t, x)D2

xV
ε(t, x) +Hε(t, x,DxV

ε(t, x)) = 0,

where a(t, x) is an (n× n) symmetric matrix satisfying

n
∑

i,j=1

aij(t, x)ξiξj ≥ c|ξ|2, ∀ξ ∈ IRn, (t, x) ∈ Q,

with an appropriate constant c > 0. We also assume that Hε approximates
the nonlinear function H. A special case of this is obtained when Hε is as in
I(5.4),

Hε(t, x, p) = sup
v∈U

{−fε(t, x, v) · p− Lε(t, x, v)}, (t, x) ∈ Q, p ∈ IRn,

and fε, Lε are uniformly convergent to f, L. Then Theorem IV.4.1 implies
that there exists a classical solution V ε of (2.5ε) and (2.2), provided that
a, fε, Lε, gε and Ψε satisfy IV(4.1).

Now suppose that there exists a classical solution V ε of (2.5ε) and (2.2),
and that V ε converges to V uniformly on Q as ε tends zero. Then due to the
stability result, Lemma II.6.2, V is a viscosity solution of (2.3). Hence this
procedure yields an existence result for viscosity solutions of (2.3), when the
equation (2.3) is not necessarily a dynamic programming equation.

This formal discussion also explains the terminology “viscosity solution”.
In fluid mechanics, the coefficient of the second order term is related to the
viscosity of the fluid. Then in the context of fluid mechanics, the viscosity
solution is the zero viscosity limit of solutions with positive but small viscosity.

Example 2.2. (Deterministic limit of controlled jump Markov processes).
For φ ∈ C1(Q), (t, x) ∈ Q and v ∈ U let

(Gtφ)(x) = sup
v∈U

{−b(t, x, v)·Dφ(x) − L(t, x, v)

−λ(t, x, v)

∫

O

[φ(y) − φ(x)]m(t, x, v, dy)},

where λ(t, x, v) ≥ 0 andm(t, x, v, ·) is a probability measure. Then Gt is related
to a controlled jump Markov process {Xs}. Indeed for fixed v ∈ U, λ(t, x, v)
is the jump intensity (or jump rate) and m(t, x, v, ·) is the post-jump location
distribution of {Xs}. We also assume that the support of m(t, x, v, ·) is a
subset of O. Then the state space Σ of {Xs} is O and the domain of Gt

includes C1(O).
Let {Xs} be the corresponding Markov process started at Xt = x with a

fixed control v. Suppose that O is convex and for ε ∈ (0, 1], define a rescaled
process Xε

s by
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Xε
s = x+ ε(Xs/ε − x), s ≥ t.

Then the infinitesimal generator of the rescaled semigroup is

(2.6)

(Gε
t φ)(x) = sup

v∈U
{−b(t, x, v) ·Dφ(x) − L(t, x, v)

−λ(t, x, v)

ε

∫

O

[φ(x+ εz) − φ(x)]m̂(t, x, v, dz)},

where

m̂(t, x, v, A) = m(t, x, v, {y : y = x+ z for some z ∈ A}).

The jump intensity of the rescaled process is λ(t, x, v)/ε. Hence the average
number of jumps in a given time interval is of order ε−1. However the average
size of a jump is of order ε. Therefore one expects to have a limit result,
analogous to the law of large numbers. In particular, the limit of (2.1)ε should
be related to a deterministic process.

Indeed for φ ∈ C1(Q) the limit of (Gε
t φ)(x), as ε tends to zero, is

Gtφ(x) = H(t, x,Dxφ(x)),

where

H(t, x, p) = sup
v∈U

{−b(t, x, v) · p− L(t, x, v) − λ(t, x, v)

∫

O

p · z m̂(t, x, v, dz)}.

Notice that the limiting equation is a first order equation corresponding to a
deterministic optimal control problem with

f(t, x, v) = b(t, x, v) + λ(t, x, v)

∫

O

zm̂(t, x, v, dz).

VII.3 Barles and Perthame procedure

Let V ε be a viscosity solution of (2.1ε) and (2.2). Suppose that on a sub-
sequence εn → 0, V εn converges to V uniformly on Q. Then Lemma II.6.2
implies that V is a viscosity solution of (2.3) and (2.4). If we also know that
there is a unique viscosity solution V of (2.3) satisfying the boundary con-
ditions (2.4), we conclude that the uniform limit V is equal to the unique
viscosity solution V . We now claim that under the above uniqueness assump-
tion, the convergence of V ε to V follows from equicontinuity and uniform
boundedness of the sequence {V ε}. Indeed, from the Ascoli-Arzela theorem
we conclude that any sequence converging to zero has a further subsequence
εn such that V εn is uniformly convergent on Q. Then we have argued that
this limit is equal to V . Therefore V ε converges to V uniformly.
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The above procedure requires the equicontinuity and the uniform bound-
edness of {V ε}. For certain applications one may obtain a uniform Lipschitz
estimate

(3.1) sup
0<ε<ε0

sup
(t,x)∈Q

| ∂
∂t
V ε(t, x)| + |DxV

ε(t, x)| < ∞.

In this case, the equicontinuity of {V ε} is immediate. However, in many appli-
cations it is difficult to establish the equicontinuity of {V ε} by (3.1) or other
means.

In 1988, Barles and Perthame [BP1] devised a procedure which assumes
only the uniform boundedness of the sequence {V ε}, but a slightly stronger
uniqueness (in fact a comparison) result for (2.3) and (2.4). We now outline
this procedure.

For (t, x) ∈ Q, define

(3.2) V ∗(t, x) = lim sup
(s,y)→(t,x)

ε↓0

(s,y)∈Q

V ε(s, y),

(3.3) V∗(t, x) = lim inf
(s,y)→(t,x)

ε↓0

(s,y)∈Q

V ε(s, y).

We assume that both V ∗ and V∗ are finite. These functions however, are not
necessarily continuous. In fact from definitions (3.2) and (3.3) we may only
infer that they are semi-continuous. Still V ∗ and V∗ are viscosity sub and
supersolutions of (2.3) - (2.4), respectively (see Sections 4, 5 and 6). However
the notion of viscosity solutions has to be modified so as to include semi-
continuous functions. This modified definition is given in the next section. We
then use the equation (2.3) and the boundary conditions (2.4), to show that
any viscosity subsolution of (2.3)-(2.4) is dominated by any viscosity superso-
lution of (2.3)-(2.4) (see Section 8). In particular V ∗ ≤ V∗. But by construction
V∗ ≤ V ∗ and therefore V ∗ = V∗. Hence V ε is uniformly convergent on Q.

The main steps of the above procedure are;

(a) V ∗ and V∗ are viscosity sub and supersolutions of (2.3), (2.4), respectively.
(b) A general comparison result for semi-continuous viscosity sub and super-

solutions of (2.3)- (2.4).

These will be the subjects of following sections.

VII.4 Discontinuous viscosity solutions

Let W be a bounded real-valued function on Q. We first define the upper and
lower semi-continuous envelope of W .

Definition 4.1.
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(a) The upper semi-continuous envelope of W is

(4.1) (W )∗(t, x) = lim sup
(s,y)→(t,x)

(s,y)∈Q

W (s, y), ∀(t, x) ∈ Q.

(b) The lower semi-continuous envelope of W is

(4.2) (W )∗(t, x) = lim inf
(s,y)→(t,x)

(s,y)∈Q

W (s, y), ∀(t, x) ∈ Q.

Observe that (W )∗ is the smallest upper semi-continuous function which is
greater than or equal to W and a dual statement holds for (W )∗.

We now are ready to give the definition of viscosity sub and supersolutions
for discontinuous functions next. This definition is very similar to the one for
continuous functions, Definition II.4.2.

Definition 4.2. We say that W is a:

(a) Viscosity subsolution of (2.3) in Q if for each w ∈ C∞(Q),

(4.3) − ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), w(t̄, x̄)) ≤ 0

at every (t, x) ∈ Q which is a strict maximizer of (W )∗ − w on Q with
(W )∗(t̄, x̄) = w(t̄, x̄).

(b) Viscosity supersolution of (2.3) if for each w ∈ C∞(Q)

(4.4) − ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), w(t̄, x̄)) ≥ 0,

at every (t, x) ∈ Q which is a strict minimizer of (W )∗ − w on Q with
(W )∗(t̄, x̄) = w(t̄, x̄).

(c) Viscosity solution of (2.3) in Q if it is both a viscosity subsolution and a
viscosity supersolution of (2.3) in Q.

Notice that for any w̄ ∈ C(Q), the difference (W )∗ − w̄ is an upper semi-
continuous function on Q. Hence (W )∗ − w̄ attains its maximum on Q. This
is an indication why the upper semi-continuous envelope (W )∗ is used in the
definition of a viscosity subsolution. Similarly (W )∗ − w̄ attains its minimum
on Q, and this explains the use of (W )∗ in the definition of a viscosity super-
solution.

Several remarks are now in order.
Remark 4.1. The (discontinuous) viscosity subsolutions and supersolu-

tions of a second order equation,

− ∂

∂t
W (t, x) + F (t, x,DxW (t, x), D2

xW (t, x),W (t, x)) = 0, (t, x) ∈ Q,

are defined exactly the same way.
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Remark 4.2. Following the arguments of Section II.6, we can prove that
it is enough to consider w ∈ C1(Q) or w ∈ C1(Q) and the local extrema
(t, x) ∈ Q, which need not be strict (see Remark II.6.1).

Our goal in this section is to show that V ∗ and V∗ are viscosity subsolution
and supersolutions of (2.3) in Q, respectively. First, observe that V ∗, V∗ are
upper and lower semi-continuous on Q, respectively. Therefore (V ∗)∗ = V ∗

and (V∗)∗ = V∗.
We are now ready to state a stability result which is a generalization of

Lemma II.6.2. We assume that

(4.5) sup
(t,x)∈Q,ε∈(0,1]

|V ε(t, x)| = K1 < ∞,

(4.6) lim
(s,y)→(t,x)

ε↓0

(Gε
s [w(s, ·) +Kε]) = H(t, x,Dxw(t, x), w(t, x)),

for all (t, x) ∈ Q,w ∈ C∞(Q) and real numbers Kε → 0, as ε → 0.
Proposition 4.1 (Stability). Let H in (4.6) be a continuous function.

Then V ∗ is a viscosity subsolution of (2.3) in Q and V∗ is a viscosity super-
solution of (2.3) in Q.

Proof. Let w ∈ C∞(Q) and (t̄, x̄) ∈ Q be a strict maximizer of V ∗ − w
on Q with V ∗(t̄, x̄) = w(t̄, x̄). Choose a sequence

(tε, xε) ∈ arg max{V ε(t, x) − w(t, x) : (t, x) ∈ Q}.

We claim that there is a sequence εn → 0, such that (tn, xn) = (tεn
, xεn

) →
(t, x). Indeed pick εn → 0 and (sn, yn) → (t, x) satisfying

V ∗(t, x) = limV εn(sn, yn).

Since Q is bounded, the sequence (tn, xn) has limit points. Let (t̃, x̃) be one
of them. Set kn = V εn(tn, xn) − w(tn, xn). Then

(4.7)

0 = V ∗(t, x) − w(t, x)= lim[V εn(sn, yn) − w(sn, yn)]

≤ lim inf kn ≤ lim sup kn

≤ V ∗(t̃, x̃) − w(t̃, x̃).

Since (t, x) is a strict maximum of V ∗ − w, we conclude that (t, x) = (t̃, x̃).
Hence (tn, xn) → (t, x) and kn → 0. In particular (tn, xn) ∈ Q for sufficiently
large n. Therefore the equation (2.1)ε gives

− ∂

∂t
w(tn, xn) + (Gεn

tn
[w(tn, ·) + kn])(xn) ≤ 0.

Using the smoothness of w and (4.6), we conclude that the limit of the above
inequality is
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− ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), w(t̄, x̄)) ≤ 0.

Hence V ∗ is a viscosity subsolution of (2.3). The supersolution property of V∗

is proved similarly. �

VII.5 Terminal condition

In this section, we show that V ∗ and V∗ satisfy (2.4)(b). The case (2.4)(a) will
be discussed in the next section.

Proposition 5.1. Suppose that V ε ∈ C(Q) and Ψε ∈ C(Q) converges
uniformly to Ψ on Q, as ε → 0. Then

(5.1) V ∗(t1, x) = V∗(t1, x) = Ψ(t1, x) = ψ(x), ∀x ∈ O.

Proof. Since V ε satisfies (2.2), the construction of V ∗ and V∗ yields
V ∗(t1, x) ≥ ψ(x) ≥ V∗(t1, x) for all x ∈ O. Now suppose that

(5.2) V ∗(t1, x) = ψ(x) + δ

for some δ > 0 and x ∈ O. Since Ψε is uniformly convergent, there are ρ > 0
and ε0 > 0 satisfying

Ψε(t, x) < ψε(x) +
δ

2
, whenever |x− x|2 + t1 − t ≤ ρ, ε ≤ ε0.

Let
w(t, x) = γ(t1 − t) +K|x− x|2, (t, x) ∈ Q,

where γ ≥ K is an arbitrary constant, and

K = (K1 + 1 − ψ(x))/ρ

with K1 as in (4.5). When Ψε(t, x) ≥ ψε(x) + δ
2 , and ε ≤ ε0 we have

|x− x|2 + t1 − t > ρ.

Consequently

w(t, x) ≥ K(t1 − t+ |x− x|2)

≥ Kρ = K1 + 1 − ψ(x)

≥ V ε(t, x) − ψε(x) + [1 + ψε(x) − ψ(x)].

Therefore for sufficiently small ε > 0,

(5.3) w(t, x) > V ε(t, x) − ψε(x), whenever Ψε(t, x) ≥ ψε(x) +
δ

2
.
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For ε > 0, choose

(tε, xε) ∈ arg max{V ε(t, x) − w(t, x) : (t, x) ∈ Q}.

Also the definition of V ∗ implies that there exists εn → 0 and (sn, yn) → (t1, x)
such that

ψ(x) + δ = V ∗(t1, x) = limV εn(sn, yn).

Set (tn, xn) = (tεn
, xεn

). Then,

lim inf
n→∞

V εn(tn, xn) − w(tn, xn) ≥ lim
n→∞

V εn(sn, yn) − w(sn, yn) = ψ(x) + δ.

We claim that (tn, xn) �∈ ∂∗Q for sufficiently large n. Indeed if (tn, xn) ∈ ∂∗Q,
(2.2) yields V εn(tn, xn) = Ψεn(tn, xn). Therefore the above inequality yields
that there is n0 such that, for all n ≥ n0

Ψεn(tn, xn) = V εn(tn, xn) ≥ ψεn(x) +
δ

2
+ w(tn, xn) ≥ ψεn(x) +

δ

2
.

Then using (5.3) we conclude that w(tn, xn) > V εn(tn, xn) − ψεn(x), which
in turn gives

lim supV εn(tn, xn) − w(tn, xn) ≤ ψ(x).

Hence for all n ≥ n0 (tn, xn) �∈ ∂∗Q and the viscosity property of V ε gives

(5.4) 0 ≥ − ∂

∂t
w(tn, xn) + (Gεn

tn
[w(tn, ·) +Kn])(xn)

= γ + (Gεn

tn
[w(tn, ·) +Kn])(xn),

where Kn = V εn(tn, xn) − w(tn, xn). Set Cn = V εn(tn, xn) − K|xn − x|2.
Then Cn is independent of γ and w(tn, x) +Kn = K|x− x|2 + Cn. We now
rewrite (5.4) as

γ + (Gεn

tn
[K| · −x̄|2 + Cn])(xn) ≤ 0,

for all γ and n ≥ n0. Observe that K,Cn and n0 are independent of γ. Also
Cn, (tn, xn) are bounded. Let C, (t̄, x̄) be a limit point of Cn, (tn, xn) as
n → ∞ through a subsequence. Now let n → ∞ on this subsequence in the
above inequality. Then (4.6) yields

γ +H(t̄, x̄, Dxw(t̄, x̄, w(t̄, x̄) + C) ≤ 0.

Therefore

γ ≤ sup{|H(t, x, p, λ)|: (t, x) ∈ Q, |p| ≤ ‖Dw‖, |λ| ≤ ‖w‖ +C}.

Then by taking γ large enough we obtain a contradiction in the above in-
equality. Therefore V ∗(t1, x) = ψ(x) for every x ∈ O. The other equality in
(5.1) is proved similarly. �
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VII.6 Boundary condition

Recall that the viscosity formulation of the boundary value problem (2.3) and
(2.4)(a) is given in Section II.13. In that formulation the lateral boundary
condition is imposed only in the viscosity sense. In the context of singular
perturbations, we also expect that V ∗ and V∗ satisfy (2.4)(a) not pointwise
but in the viscosity sense, which we will define next.

Definition 6.1. We say that
(a) W is a viscosity subsolution of (2.3) and (2.4)(a) if it is a viscosity subso-
lution of (2.3) in Q and for each w ∈ C∞(Q)
(6.1)

min

{

− ∂

∂t
w(t̄, x̄) +H(t̄, x̄, Dxw(t̄, x̄), w(t̄, x̄)), (W )∗(t̄, x̄) − g(t̄, x̄)

}

≤ 0,

at every (t̄, x̄) ∈ [t0, t1) × ∂O which maximizes (W )∗ − w on Q with
(W )∗(t̄, x̄) = w(t̄, x̄).
(b) W is a viscosity supersolution of (2.3) and (2.4)(a) if it is a viscosity
supersolution of (2.3) in Q and for each w ∈ C∞(Q)
(6.2)

max

{

− ∂

∂t
w(t̄, x̄) +H(t̄, x̄, Dxw(t̄, x̄), w(t̄, x̄)), (W )∗(t̄, x̄) − g(t̄, x̄)

}

≥ 0

at every (t̄, x̄) ∈ [t0, t1) × ∂O which maximizes (W )∗ − w on Q with
(W )∗(t̄, x̄) = w(t̄, x̄).
(c) W is a viscosity solution of (2.3) and (2.4)(a) if it is both a viscosity
subsolution and a viscosity supersolution of (2.3) and (2.4)(a).

The above definition is very similar to definition given in Section II.13. In
the case of a subsolution, (6.1) states that if (W )∗ is not less than or equal
to g at a boundary point, then (W )∗ is a subsolution of (2.3) at that point.
In particular if (2.4)(a) holds pointwise, then (6.1) is automatically satisfied
at the boundary points. However when (2.4)(a) fails, we have to interpret
(2.4)(a) in the viscosity sense. It should be emphasized that this formulation
of (2.4)(a) is connected to the equation (2.3).

Proposition 6.1. Suppose that V ε ∈ C(Q) and Ψε ∈ C(Q) converges
to Ψ uniformly on Q, as ε tends to zero. Then V ∗ and V∗ are a viscosity
subsolution and a viscosity supersolution of (2.3)-(2.4)(a), respectively.

Proof. We already know that V ∗ is a viscosity subsolution of (2.3) in Q.
We continue by verifying (2.4)(a) in the viscosity sense, i.e. in the sense of the
above definition. So let w ∈ C∞(Q) and let (t, x) ∈ [t0, t1) × ∂O be a strict
maximizer of V ∗ −w with V ∗(t̄, x̄) = w(t̄, w̄). In view of Remark 4.2 and the
results of Section II.6, we may assume that (t̄, x̄) is a strict maximizer. Notice
that (6.1) holds trivially if V ∗(t, x) ≤ g(t, x). Therefore we may assume that

(6.3) V ∗(t, x) > g(t, x).

Pick (tε, xε) ∈ arg max{V ε(t, x)−w(t, x) : (t, x) ∈ Q}. Then arguing as in the
proof of Proposition 4.1 (see (4.7)), we construct a sequence εn → 0 satisfying
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(tn, xn) = (tεn
, xεn

) → (t, x) and

(6.4) V εn(tn, xn) → V ∗(t, x) > g(t, x) = Ψ(t, x).

Since V εn = Ψεn on ∂∗Q and Ψεn is uniformly convergent to Ψ , we con-
clude that (tn, xn) �∈ ∂∗Q. Consequently the viscosity property of V εn at
(tn, xn) gives

− ∂

∂t
w(tn, xn) + (Gεn

tn
[w(tn, ·) +Kn])(xn) ≤ 0,

where Kn = V εn(tn, xn) − w(tn, xn). Since V ∗(t̄, x̄) = w(t̄, x̄), (6.4) yields
that Kn → 0 as n → ∞. Now let n go to infinity to obtain

− ∂

∂t
w(t, x) +H(t, x,Dxw(t, x), w(t̄, x̄)) ≤ 0.

Hence V ∗ is a viscosity subsolution of (2.3) and (2.4)(a). Similarly V∗ is a
viscosity supersolution of (2.3) and (2.4)(a). �

VII.7 Convergence

To complete the procedure of Barles and Perthame, we need a comparison
between viscosity sub and supersolutions of (2.3) and (2.4). In this section,
we assume that there is such a comparison. Then we prove the convergence
of V ε as ε → 0. A proof of the comparison principle under some structural
conditions on H is given in the next section.

LetW be a viscosity subsolution of (2.3), (2.4)(a), in the sense of Definition
6.1, and a pointwise subsolution of (2.4)(b), i.e. (W )∗(t1, x) ≤ ψ(x) for x ∈ O.
In the sequel we call any such function a viscosity subsolution of (2.3), (2.4).
Similarly we define viscosity supersolutions of (2.3), (2.4). Let W be one of
them.

Definition 7.1. We say that the equation (2.3) with boundary condition
(2.4) has a weak comparison principle if;

(7.1) (W )∗(t, x) ≤ (W )∗(t, x), ∀(t, x) ∈ Q\[t0, t1) × ∂O,

for any viscosity subsolution W and supersolution W of (2.3), (2.4).
We should emphasize that (7.1) is not assumed to hold on the lateral

boundary [t0, t1) × ∂O. In fact if (2.3), (2.4) does not admit a continuous
viscosity solution satisfying (2.4)(a) pointwise, then we do not expect (7.1)
to hold on [t0, t1) × ∂O. Recall that such an equation is given in Example
II.2.3. However, in the next section conditions implying (7.1) on Q are also
discussed.

We continue by applying the comparison principle to V ∗ and V∗. Notice
that Propositions 5.1 and 6.1 imply that V ∗ and V∗ are viscosity sub and su-
persolutions of (2.3), (2.4), respectively. Hence the weak comparison principle
gives
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(7.2) V ∗(t, x) ≤ V∗(t, x), ∀(t, x) ∈ Q\[t0, t1) × ∂O.

Since by construction V∗ ≤ V∗, we have

(7.3) V ∗(t, x) = V∗(t, x), ∀(t, x) ∈ Q\[t0, t1) × ∂O.

However if (7.1) holds on Q, we conclude that V ∗ = V∗ on Q. Therefore
V = V ∗ = V∗ is a continuous viscosity solution of (2.3)-(2.4). Moreover by
definition V = V∗ ≤ Ψ ≤ V ∗ = V on ∂∗Q. Hence V satisfies (2.4) at every
boundary point. We have proved the following theorem.

Theorem 7.1. Suppose that V ε ∈ C(Q) and Ψε ∈ C(Q) converges uni-
formly to Ψ on Q as ε → 0. If in addition (2.3), (2.4) has a weak comparison
principle, then (7.3) holds. In particular V ε converges to V ∗ = V∗ uniformly
on compact subsets of Q\[t0, t1) × ∂O. This convergence is uniform on Q if
(7.1) holds on Q.

VII.8 Comparison

The weak comparison principle as formulated in Definition 7.1, is the main
focus of this section. In the previous section, we argued that (7.1) fails at a
boundary point if the unique viscosity solution of (2.3)-(2.4) does not sat-
isfy (2.4)(a) pointwise. Hence (7.1) is not expected to hold on Q for every
boundary data Ψ . However, under certain circumstances the value function of
the optimal control problem associated with (2.3), satisfies (2.4)(a) pointwise.
See Sections II.10 and I.8. We will first prove the weak comparison principle
when there exists such a viscosity solution. Recall that by Proposition 5.1 the
terminal condition (2.4)(b) is satisfied pointwise. A more general condition
under which the weak comparison holds is stated at the end of the section. To
simplify our discussion we assume that the Hamiltonian H does not depend
on w(t, x), i.e.,

H = H(t, x,Dxw(t, x)).

For our first result, Theorem 8.1, we also assume that H satisfies II(9.4),
i.e. there are a constant K and h ∈ C([0,∞)) with h(0) = 0 such that for all
(t, x), (s, y) ∈ Q and p, p ∈ IRn we have,

(8.1) |H(t, x, p) −H(s, y, p)| ≤

≤ h(|t− s| + |x− y|) + h(|t− s|)|p| +K|x− y||p| +K|p− p|.
Although we are not assuming that H is related to a control problem, the
condition (8.1) is motivated by Hamiltonian given by I(5.4). In particular,
(8.1) holds if U is compact and f, L ∈ C1(Q×U). However if U is not compact
(8.1) holds only locally in the p-variable. The weak comparison principle for
that type of Hamiltonian is obtained in Theorem 8.2.
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We also impose a regularity condition II(14.1) on the boundary of O. The
statement and a discussion of this condition is given in Section II.14. We just
recall its statement here: there are r, ε0 > 0 and an IRn-valued, uniformly
continuous function η̂ on O satisfying

(8.2) B(x+ εη̂(x), εr) ⊂ O, ∀x ∈ O, ε ∈ (0, ε0],

where B(z, ρ) is the ball with radius ρ and center z.
Theorem 8.1. Assume (8.1), (8.2), Ψ ∈ C(Q) and that there exists a

viscosity solution V ∈ C(Q) of (2.3) in Q, satisfying (2.4)(a) pointwise. Then
(2.3)-(2.4) has a weak comparison principle.

Proof. Let W and W be a viscosity subsolution and a supersolution of
(2.3)-(2.4), respectively. Set W ∗ = (W )∗ and W ∗ = (W )∗. We will show that
for (t, x) ∈ Q,

(8.3)(i) W ∗(t, x) ≤ V (t, x)

and

(8.3)(ii) V (t, x) ≤ W ∗(t, x).

Clearly (7.1) follows from the above inequalities. For β ∈ (0, 1], choose

(t̄, x̄) ∈ arg max{W ∗(t, x) − V (t, x) + β(t− t1) : (t, x) ∈ Q}.

Then to prove (8.3)(i), it suffices to show that

(8.4) lim inf
β→0

[W ∗(t, x) − V (t, x)] + β(t̄− t1) ≤ 0.

We analyze several cases separately.
Case 1: t = t1. The inequality (8.4) follows from the fact that (2.4)(b) is

satisfied by V and W ∗(t1, x) ≤ ψ(x).
Case 2: t < t1, x ∈ O. For ε, δ > 0 consider an auxiliary function

φ(t, x; s, y) = W ∗(t, x) − V (s, y) − (t− t̄)2 − |x− x̄|2

− 1

2ε
|y − x|2 − 1

2δ
(t− s)2 + β(t− t1), (t, x), (s, y) ∈ Q.

Let (t∗, x∗), (s∗, y∗) be a maximizer of φ. Then t∗, s∗ → t̄, x∗, y∗ → x̄. In
particular for sufficiently small ε, δ > 0, (t∗, x∗), (s∗, y∗) ∈ Q. We now fol-
low the proof of Theorem II.9.1 to obtain (8.4). Here we should recall that,
in the proof of Theorem II.9.1 the analysis of the interior maximum case
((t∗, x∗), (s∗, y∗) ∈ Q) requires the continuity of only the subsolution or the
supersolution (see Remark II.9.2).

Case 3: t < t1, x ∈ ∂O. Since V satisfies (2.3a) pointwise, V (t, x) =
g(t, x) and therefore we may assume that W ∗(t, x) > g(t, x). For two positive
parameters ε, γ, consider an auxiliary function
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φ(t, x; s, y) = W ∗(t, x) − V (s, y) − (t− t)2 − |x− x|2

−|y − x

ε
− η̂(x)|2 − (

t− s

γ
)2 +β(t− t̄), (t, x), (s, y) ∈ Q,

where η̂ is as in (8.2). Let (t∗, x∗), (s∗, y∗) ∈ Q be a maximizer of φ on Q×Q.
Notice that (t∗, x∗), (s∗, y∗) depend on ε and γ, but for simplicity we suppress
this dependence in the notation.

Before we continue the proof in several steps, one remark is now in order.
The main difference between the above auxiliary function and the ones used
in Section II.9 is the introduction of η̂. This modification enables us to show
that

y∗ ∈ O,

(see Step 2, below.) Since V does not satisfy the equation on ∂O, this modi-
fication is the essential ingredient of this proof.

1. For ρ ≥ 0, set

m(ρ) = sup{|V (t, x) − V (s, y)| : (t, x), (s, y) ∈ Q and |t− s| + |x− y| ≤ ρ.}
Since V ∈ C(Q),m is continuous on [0,∞) with m(0) = 0. We claim that
there is a constant C, independent of ε and γ, such that

(8.5) |t∗ − s∗| ≤ Cγ,

(8.6) |y∗ − x∗| ≤ Cε,

(8.7) |y
∗ − x∗

ε
− η̂(x)|2 + (t− t∗)2 + |x− x∗|2 ≤ 2m(C[ε+ γ]) + Cε2.

Indeed the inequality φ(t∗, x∗; s∗, y∗) ≥ φ(t∗, x∗; t∗, y∗) yields

(
t∗ − s∗

γ
)2 ≤ V (t∗, y∗) − V (s∗, y∗).

Since Q is bounded and V is continuous, V is bounded. Consequently (8.5)
follows from the above inequality. Also for ε ≤ ε0 (where ε0 is as in (8.2)),
x+ εη̂(x) ∈ O. Therefore
(8.8)
φ(t∗, x∗; s∗, y∗) ≥ φ(t, x; t, x+ εη̂(x))

= W ∗(t, x) − V (t, x+ εη̂(x)) − ε2 ‖ η̂‖2

≥ W ∗(t, x) − V (t, x) −m(‖η̂‖ε) − ε2 ‖ η̂‖2

≥ W ∗(t∗, x∗) − V (t∗, x∗) −m(‖η̂‖ε) + β(t∗ − t̄) − ε2 ‖ η̂‖2

≥ W ∗(t∗, x∗) − V (s∗, y∗) + β(t∗ − t̄)

−m(‖η̂‖ε) −m(|t∗ − s∗| + |x∗ − y∗|) − ε2 ‖ η̂‖2,



276 VII. Singular Perturbations

where ‖η̂‖ is the sup-norm of η̂. This inequality gives

(8.9) |y
∗ − x∗

ε
−η̂(x)|2+(t−t∗)2+|x−x∗|2 ≤ m(‖η̂‖ε)+m(|t∗−s∗|+|x∗−y∗|)

+ε2 ‖ η̂‖2 .

Since V is bounded, so is m. Consequently (8.9) implies (8.6). We then obtain
(8.7), by using (8.5) and (8.6) in (8.9) and redefining C, if necessary.

2. Since at the boundary V does not necessarily satisfy the equation in
the viscosity sense, we need to show that

(8.10) y∗ ∈ O.

Indeed, y∗ = x∗ + εη̂(x∗) + εν, where

ν = (
y∗ − x∗

ε
− η̂(x)) + (η̂(x) − η̂(x∗)).

Since η̂ is uniformly continuous and m(0) = 0, (8.7) implies that |ν| converges
to zero as ε, γ tends to zero. Hence for sufficiently small ε and γ, we have
|ν| < r, where r is as in (8.2). Therefore

y∗ ∈ B(x∗ + εη̂(x∗), εr),

and (8.10) follows from (8.2) for all sufficiently small ε, γ.
3. In general, x∗ may be a boundary point. But the viscosity formulation of

the boundary condition (2.4) implies that equation (4.3) still holds at (t∗, x∗),
provided that

(8.11) W ∗(t∗, x∗) > g(t∗, x∗).

Recall that W ∗(t, x) > g(t, x) and that g is continuous. Since for every
(t, x), (s, y) ∈ Q

W ∗(t, x) − V (s, y) + β(t− t̄) ≥ φ(t, x; s, y),

(8.8) yields

lim inf
ε,γ→0

[W ∗(t∗, x∗) − V (s∗, y∗) + β(t∗ − t̄)]

≥ lim inf
ε,γ→0

φ(t∗, x∗; s∗, y∗)

≥ W ∗(t, x) − V (t, x)

≥ lim sup
ε,γ→0

[W ∗(t∗, x∗) − V (s∗, y∗) + β(t∗ − t̄)].

Since V is continuous, and (s∗, y∗), (t∗, x∗) → (t̄, x̄), we have



VII. Singular Perturbations 277

(8.12) lim
ε,γ→0

W ∗(t∗, x∗) = W ∗(t, x) > g(t, x).

Now for small ε and γ, (8.11) follows from the continuity of g.
4. Consider the map (s, y) → φ(t∗, x∗; s, y). It has a maximum at (s∗, y∗) ∈

Q. Since V is a viscosity subsolution of (2.3) in Q,

(8.13) −qγ +H(s∗, y∗, pε) ≥ 0,

where
qγ = 2(t∗ − s∗)/γ2,

pε = 2(x∗ − y∗ + εη̂(x))/ε2.

Notice that (8.10) is used in the derivation of (8.13).
5. Similarly W ∗(t, x) is a viscosity subsolution of (2.3) in Q. Also the map

(t, x) → φ(t, x; s∗, y∗) has a maximum at (t∗, x∗) ∈ [t0, t1) ×O. Suppose that
x∗ ∈ O, then as in Step 4 of the proof of Theorem II.9.1 we have

(8.14) β − qγ − 2(t∗ − t) +H(t∗, x∗, pε + 2(x∗ − x)) ≤ 0.

If x∗ ∈ ∂O, the strict inequality (8.11) and the boundary viscosity formulation
(6.1) implies that (8.14) is still valid in this case.

We should remark that in contrast with the previous step, x∗ is not in
general an interior point of O. But when x∗ ∈ ∂O, the viscosity formulation
of the boundary condition is used to get around this problem.

6. We subtract (8.13) from (8.14), and then use (8.1) with the estimates
(8.9), (8.6), (8.7). This gives

β ≤ 2(t∗ − t) +H(s∗, y∗, pε) −H(t∗, x∗, pε + 2(x∗ − x))

≤ 2(t∗ − t) + h(C[γ + ε]) + h(Cγ)|pε| +KCε|pε| + 2K|x∗ − x|.

In view of (8.7)

|t∗ − t|, ε|pε|, |x− x∗| ≤ (2m(C[ε+ γ]) + Cε2)
1
2 .

Combining these inequalities, we obtain β ≤ k(ε, γ) where

lim
γ↓0

k(ε, γ) = h(Cε) + (2 + CK + 2K)(2m(Cε) + Cε2)
1
2 .

Therefore
lim
ε↓0

[lim
γ↓0

k(ε, γ)] = 0.

Since β > 0, this proves (8.3)(i).
We continue with the proof of (8.3)(ii). Again pick (t, x) ∈ arg max{(V (t, x)−

W∗(t, x))+β(t− t1) : (t, x) ∈ Q}. We will show that V (t, x)−W∗(t, x) ≤ 0. If
t = t1 or t < t1 and x ∈ O, we proceed exactly as in the proof of (8.3)(i). So
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we may assume that t < t1 and x ∈ ∂O. Then V (t, x) = g(t, x) and we need
to consider only the case W∗(t, x) < g(t, x). Then define an auxiliary function
by

φ(t, x; s, y) = V (s, y) −W∗(t, x) − (t− t)2 − |x− x|2

−|y − x

ε
− η̂(x)|2 − (

t− s

γ
)2 + β(t− t̄), (t, x), (s, y) ∈ Q.

Now follow the Steps 1 through 6 with minor and obvious modifications, to
obtain

lim
β→0

[V (t, x) −W∗(t, x)] ≤ 0.

�

Remark 8.1. An attendant modification of the above proof can be used
to prove Theorem II.14.1. See [CGS, Theorem 3.1]. Recall that in Theorem
II.14.1 we assume that sub and supersolutions are continuous on Q. However
the existence of a continuous solution satisfying the boundary condition is not
assumed. Still the above proof with attendant modifications yields a proof for
Theorem II.14.1. So in particular under the hypotheses of Theorems II.13.1
and II.14.1, the value function is the unique continuous viscosity solution of
I(5.3′) in Q and the boundary condition II(9.3). But the value function may
not satisfy II(9.3a) pointwise.

As mentioned earlier the condition (8.1) is restrictive if (2.3) is related to
a control problem with an unbounded control set. In fact in the applications
to the theory of large deviations,

(8.15) H(t, x, p) = −b(t, x) · p+
1

2
a(t, x)p · p , (t, x) ∈ Q, p ∈ IRn,

where b(t, x) ∈ IRn and a(t, x) is a symmetric, n× n, positive-definite matrix
(Section 10 below). Then using the Legendre transform introduced in Section
I.8, we rewrite H as

H(t, x, p) = max
v∈Rn

{−v · p− L(t, x, v)}

with

L(t, x, v) =
1

2
a−1(t, x)[v − b(t, x)] · [v − b(t, x)].

Suppose that a−1, a, b are of class C3(Q × IRn) and Ψ is nonnegative and
Lipschitz continuous on Q with Ψ(t, x) = 0 for all (t, x) ∈ [t0, t1] × ∂O. Then
Theorem II.10.4 implies that the value function is Lipschitz continuous on Q.

Our next result is modelled after the above example. We assume the Lip-
schitz continuity of V , and relax (8.1) to hold only locally. However we do not
assume that H is related to a calculus of variations problem. We assume that
for every R > 0 there are a constant KR and a nondecreasing, continuous
function h(R, ·) with h(R, 0) = 0, such that

(8.16) |H(t, x, p) −H(s, y, p)|
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≤ h(R, |t− s| + |x− y|) + h(R, |t− s|)|p| +KR|x− y||p| +KR|p− p|,
for all (t, x), (s, y) ∈ Q and |p|, |p| ≤ R. Inequality (8.16) is satisfied by the
“large deviations” example if a, a−1 and b are Lipschitz continuous on Q.

Theorem 8.2. Assume (8.2), (8.16) and that there exists a Lipschitz con-
tinuous viscosity solution of (2.3) in Q, satisfying (2.4)(a) pointwise. Then
(2.3)-(2.4) has a weak comparison principle.

Proof. A minor modification of the proof of the previous theorem yields
this result. Indeed follow that proof without a change until the sixth step of
the last case. Replace that step by the following:

6′. Then (qγ , pε) ∈ D+V (s∗, y∗). Since V is Lipschitz continuous, by Corol-
lary II.8.1(f),

(8.17) |qγ | + |pε| ≤ L(V ),

where L(V ) is the Lipschitz constant of V . Then, (8.16) yields

|H(t∗, x∗, pε + 2(x∗ − x)) −H(s∗, y∗, pε)|

≤ h(R, |t∗ −s∗|+ |x∗ −y∗|)+h(R, |t∗ −s∗|)|pε|+KR|x∗ −y∗||pε|+2KR|x∗ −x|,
where R = sup{|pε|+2|x∗−x| : ε ∈ (0, 1]}. Due to (8.17) and the boundedness
of Q,R is uniformly bounded in ε and γ.

Now continue as in the proof of Theorem 8.1, but use the above estimate
instead of (8.1). �

Combining Theorem 7.1, and Theorems 8.1 or 8.2 we obtain a convergence
result for V ε. However the existence of a continuous or a Lipschitz continuous
viscosity solution satisfying (2.4)(a) is assumed in these theorems. The exis-
tence of such functions discussed in Section II.10 when the equation (2.3) is
related to a control problem. So we now assume that H is as in I(5.4), i.e.,

(8.18) H(t, x, p) = sup
v∈U

{−f(t, x, v) · p− L(t, x, v)}.

Then Theorem II.10.2 or Theorem II.10.4 together with Theorems 7.1 and 8.2
yield the following convergence result.

Theorem 8.3. Let V ε ∈ C(Q) be a viscosity solution of (2.1)ε in Q satis-
fying (2.2)ε. Suppose Ψε converges to Ψ uniformly on Q, as ε → 0, ∂O satisfies
(8.2), and H is as in (8.18) with L, f, Ψ satisfying the hypotheses of Theorem
II.10.2 or Theorem II.10.4. Then as ε → 0, V ε converges to the unique Lip-
schitz continuous viscosity solution of (2.3), (2.4) uniformly on Q.

Next we state a more general sufficient condition for the weak comparison
principle. Let us assume that ∂O ∈ C2.

Theorem 8.4. Assume Ψ ∈ C(Q) and let H be as in (8.18) with L, f
satisfying the hypotheses of Theorem II.13.1(b). Then, (2.3)-(2.4) has a weak
comparison principle.

Sketch of proof. Using Theorem II.13.1 we obtain a viscosity solution
V ∈ C(Q) of (2.3), (2.4). Also the assumptions on L and f imply (8.1), and
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the differentiability of ∂O implies (8.2). Then as in the proof of Theorem
8.1, we compare the viscosity subsolution W and the supersolution W to V
separately. But V does not necessarily satisfy (2.4)(a) pointwise. So the proof
of Theorem 8.1 has to be modified to account for this. This modification is
technical and we refer the reader to Barles and Perthame [BP2], or Ishii [I2].
However their results do not directly apply to this case. The conditions I(3.11)
and II(13.6) have to be used once again to verify the hypotheses of theorem
of Barles and Perthame or Ishii. �

Remark 8.2. Under the hypotheses of Theorem II.13.1(b) the two exit
time control problems (classes B and B′ of the Section I.3) are equivalent.
When they are no longer equivalent one may create easy examples with no
weak comparison principle. So the hypotheses of the above theorem are almost
optimal.

VII.9 Vanishing viscosity

Consider a classical solution V ε ∈ C(Q) ∩ C1,2(Q) of (2.5ε) and (2.2). Then
for (t, x) ∈ Q,φ ∈ C2(O),

(Gε
t φ)(x) = −ε

2
tr a(t, x)D2φ(x) +Hε(t, x,Dφ(x)),

and by the classical maximum principle V ε is a viscosity solution of (2.5ε) in
Q. Also the condition (4.6) is equivalent to the uniform convergence of Hε to
H on compact subsets of Q× IRn. We assume this and that H satisfies (8.1)
or (8.16). To be able to apply the results of the previous sections, we have
to show only the uniform boundedness of V ε. This bound is an elementary
consequence of the maximum principle.

We continue with the simple proof of the uniform bound. Set W (t, x) =
Ke−t where K is an arbitrary constant. We claim that for sufficiently large
K,W and −W are sub and supersolutions of (2.5ε), respectively. Indeed, for
all ε ∈ (0, 1],

− ∂

∂t
W (t, x) + (Gε

tW (t, ·))(x) = Ke−t +Hε(t, x, 0) ≥ 0,

provided that K ≥ K∗ = sup{etHε(t, x, 0) : (t, x) ∈ Q, ε ∈ (0, 1]}. Notice that

lim
ε↓0

Hε(t, x, 0) = H(t, x, 0)

and by the continuity of H, H(t, x, 0) is uniformly bounded in (t, x). Since
Hε(t, x, 0) converges to H(t, x, 0) uniformly on Q,K∗ is finite. Similarly one
shows that −W is a supersolution of (2.5ε). Then the classical maximum
principle yields that

|V ε(t, x)| ≤ Ke−t, ∀(t, x) ∈ Q, ε ∈ (0, 1],
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provided that K ≥ max{K∗, et|Ψ(t, x)| : (t, x) ∈ Q}. Therefore V ε satisfies
(4.5) and using the results of the previous section, we obtain the following
convergence result.

Theorem 9.1. Assume that the hypotheses of Theorem 8.1 or Theorem
8.2 or Theorem 8.3 or Theorem 8.4 are satisfied. Then V ε converges uni-
formly to the unique solution of (2.3)-(2.4) on Q or on every compact subset
of Q\[t0, t1) × ∂O, in the case of Theorem 8.4.

We give an example to show that uniform convergence on Q is not true in
general.

Example 9.1. Set

Gε(x) = e−x/ε sinh (

√
1 + 2ε

ε
x), x ∈ [0, 1],

and
V ε(t, x) = e−tGε(x)/Gε(1).

Then V ε is the unique solution of

− ∂

∂t
V ε(t, x) − ε

2

∂2

∂x2
V ε(t, x) − ∂

∂x
V ε(t, x) = 0, (t, x) ∈ (0, 1) × (0, 1),

with the boundary condition

(9.1)(i) V ε(t, 0) = 0, V ε(t, 1) = e−t, ∀t ∈ [0, 1],

and the terminal condition

(9.1)(ii) V ε(1, x) = Gε(x)[eGε(1)]−1, ∀x ∈ [0, 1].

A direct calculation gives,

lim
ε↓0

V ε(t, x) =

⎧

⎨

⎩

e−t+x−1 if (t, x) ∈ [0, 1] × (0, 1]

0 if (t, x) ∈ [0, 1] × {0}.

In fact the function V (x) = e−t+x−1 is the unique viscosity solution of

− ∂

∂t
V (t, x) − ∂

∂x
V (t, x) = 0, ∀(t, x) ∈ (0, 1) × (0, 1)

with the boundary and the terminal conditions (9.1). Clearly V does not
satisfy the boundary condition pointwise (9.1)(i) at x = 0, but (9.1)(i) is
satisfied in the viscosity sense.

Also,
∂

∂x
V ε(0, t) = e−t

√
1 + 2ε

εGε(1)
.

This tends to infinity as ε → 0. Hence V ε forms a boundary layer near x = 0.
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VII.10 Large deviations for exit probabilities

Let us consider the exit probability problem described in Section VI.6. In that
problem,

Φε(t, x) = Ptx(θε < t1)

satisfies a linear equation
(10.1)

− ∂

∂t
Φε(t, x) − 1

2
tr a(t, x)D2

xΦ
ε(t, x) − b(t, x) ·DxΦ

ε(t, x) = 0, (t, x) ∈ Q,

with boundary data

(10.2a) Φε(t, x) = 1, (t, x) ∈ [t0, t1) × ∂O,

(10.2b) Φε(t1, x) = 0, x ∈ O.

The logarithmic transformation

V ε = −ε logΦε,

transforms (10.1) into (2.5ε) with

(10.3) H(t, x, p) = −b(t, x) · p+
1

2
a(t, x)p · p, (t, x) ∈ Q, p ∈ IRn.

Also the boundary data (10.2) yields,

(10.4a) V ε(t, x) = 0, (t, x) ∈ [t0, t1) × ∂O,

(10.4b) lim
t↑t1

V ε(t, x) = +∞ uniformly on compact subsets of O.

Hence with the notation of previous sections, g ≡ 0 and ψ ≡ +∞. Because
of the nonstandard form of the terminal data ψ, the results of the previous
sections are not directly applicable to V ε. However, a careful use of those
results yields a convergence result for V ε (Theorem 10.1, below).

As in Chapter VI, let us assume that a is invertible and that

(10.5) h ∈ C3(Q) for h = a, a−1, b.

Then using the Legendre transform, introduced in Section I.8, we may rewrite
Hε = H as

H(t, x, p) = sup
v∈Rn

{−v · p− L(t, x, v)}, (t, x) ∈ Q, p ∈ IRn,

where
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(10.6) L(t, x, v) =
1

2
a−1(t, x)(v − b(t, x)) · (v − b(t, x)).

Notice that, here U = IRn and f(t, x, v) = v. Also the boundedness of a(t, x)
yields

(10.7) L(t, x, v) ≥ c0|v − b(t, x)|2, (t, x) ∈ Q , v ∈ IRn,

with an appropriate constant c0 > 0. This estimate together with (10.5) imply
that the conditions I(11.6) with p = 2 are satisfied by L. Moreover, there exists
CR such that |H(t, x, p̄)−H(s, y, p)| ≤ CR(|t− s|+ |x− y|+ |p̄− p|) whenever
(t, x), (s, y) ∈ Q and |p|, |p̄| ≤ R. Hence (8.16) is satisfied by H. We continue
with two elementary estimates of V ε. These estimates can also be derived by
probabilistic methods.

Lemma 10.1. Suppose that the boundary of O is the class C3. Then, there
exists a constant K satisfying

(10.8) V ε(t, x) ≤ K dist (x, ∂O)

t1 − t
, (t, x) ∈ Q, ε ∈ (0, 1].

Proof. Since O is bounded, there is a constant µ satisfying x1 +µ > 0 for
all x ∈ O where x1 is the first component of the vector x. For λ, γ > 0, define
an auxiliary function

(10.9) gε(t, x) = exp

(

− λ(x1 + µ)

ε(tγ − t)

)

, (t, x) ∈ Qγ ,

tγ = t1 − γ, Qγ = [t0, tγ) ×O.

Then a simple calculation shows that

− ∂

∂t
gε(t, x) − ε

2
tr a(t, x)D2

xg
ε(t, x) − b(t, x) ·Dxg

ε(t, x)

= − gε(t, x)

ε(tγ − t)2
[
1

2
a11(t, x)λ

2 − λ(x1 + µ) − (tγ − t)λb1(t, x)].

Since a−1(t, x) is bounded, a11(t, x) is uniformly bounded away from zero on
Q. Hence the above expression is non-positive for a sufficiently large λ = λ∗.
Therefore gε is a subsolution of (10.1) in Q and the boundary data (10.2a).
Also gε(tγ , x) ≡ 0 ≤ Φε(tγ , x). Consequently the maximum principle for par-
abolic equations (or an application of Ito’s formula) yields

Φε(t, x) ≥ gε(t, x), (t, x) ∈ Q.

Since ∂O is C3, there is δ > 0 such that d(x) = dist(x, ∂O) is twice continu-
ously differentiable on

Oδ = {x ∈ O : d(x) < δ}.
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Set

g̃ε(t, x) = exp

(

− Kd(x)

ε(tγ − t)

)

, (t, x) ∈ Qγ ,

with K > 0 satisfying

K ≥ 1

δ
sup{λ∗(x1 + µ) : x ∈ O}.

Then g̃ε(t, x) ≤ gε(t, x) ≤ Φε(t, x) whenever d(x) ≥ δ. In particular

(10.10) g̃ε(t, x) ≤ Φε(t, x), ∀(t, x) ∈ [t0, tγ) × (O\Oδ).

Also for (t, x) ∈ [t0, tγ) × ∂O, g̃ε(t, x) = Φε(t, x) = 1. A direct computation
gives

Iε(t, x) = − ∂

∂t
g̃ε(t, x) − ε

2
tr a(t, x)D2

xg̃
ε(t, x) − b(t, x) ·Dxg̃

ε(t, x)

= −Kg̃ε(t, x)

ε(tγ − t)2

[

K

2
a(t, x)Dd(x) ·Dd(x) − ε

(tγ − t)

2
tr a(t, x)D2d(x)

−(tγ − t)b(t, x) ·Dd(x) − d(x)

]

.

Since a−1(t, x) is bounded, there is α0 > 0 such that

a(t, x)ξ · ξ ≥ α0|ξ|2, ∀(t, x) ∈ Q, ξ ∈ IRn.

Using this and the fact that |Dd(x)| = 1 on Oδ we obtain

a(t, x)Dd(x) ·Dd(x) ≥ α0|Dd(x)|2 = α0, ∀(t, x) ∈ Q.

Therefore for (t, x) ∈ [t0, t1) ×Oδ,

Iε(t, x) ≤ −Kg̃
ε(t, x)

ε(tγ − t)

[

Kα0−
ε

2
(tγ−t)|a(t, x)||D2d(x)|+(tγ−t)|b(t, x)|−d(x)

]

.

Since d is C2(Oδ), the above expression is negative for sufficiently large K.
In other words, g̃ε is a subsolution of (10.1) on [t0, tγ) ×Oδ. We have already
shown that g̃ε ≤ Φε on [t0, tγ ]×∂Oδ ∪{tγ}×Oδ. Hence the maximum principle
yields, g̃ε ≤ Φε on [t0, t1]×Oδ. This combined with (10.10) implies (10.8) after
letting γ → 0. �

Lemma 10.2. For any positive constant M and ψ̃ ∈ C2(O) with ψ̃(x) = 0
for all x ∈ ∂O , there exists KM > 0 satisfying

(10.11) V ε(t, x) ≥ Mψ̃(x) −KM (t1 − t), (t, x) ∈ Q, ε ∈ (0, 1].

Proof. Set
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KM = sup
(t,x)∈Q

{

− M

2
tr a(t, x)D2ψ̃(x) +H(t, x,MDψ̃(x))

}

and

gε(t, x) = exp

(

− Mψ̃(x) −KM (t1 − t)

ε

)

.

Then gε is a supersolution of (10.1) and (10.2). Moreover, although Φε is not
continuous at {t1} × ∂O, gε is continuous and gε = 1 on {t1} × ∂O. We now
obtain (10.11) by using the maximum principle. �

Since Φε ≤ 1, V ε ≥ 0. Hence by (10.8), V ε(t, x) is uniformly bounded for
ε ∈ (0, 1], (t, x) ∈ [t0, T ] ×O with any T < t1. In particular, we may use (3.2)
and (3.3) to define V ∗(t, x) and V∗(t, x) at any (t, x) ∈ [t0, t1) ×O. Although
the terminal data (10.4)(b) is infinite, the stability result, Proposition 4.1, still
applies to this situation. Thus we conclude that V ∗ and V∗ are respectively,
viscosity subsolution and supersolution of (2.3) in [t0, T )×O for every T < t1.
Moreover (10.11) implies that V ∗(t, x) and V∗(t, x) converges to +∞, as t ↑ t1,
uniformly on compact subsets of O. But this convergence is controlled by the
estimate (10.8).

The above properties of V∗ and V ∗ will be used to show the convergence
of V ε to V = V∗ = V ∗ which is the unique viscosity solution of (2.3), (2.4)
(with ψ(x) = +∞ in (2.4b)); see Theorem 10.1 below. This unique solution
is the value function of an optimal control problem which we will define now.
Let U = IRn, f(t, x, v) = v, g ≡ 0, L be as in (10.6), and τ the exit time of
(s, x(s)) from Q. Let

U(t, x) = {u(·) ∈ U0(t) : τ < t1}.

Then ẋ(s) = u(s) and

(10.12) V (t, x) = inf
x(·)∈A(t,x)

J(t, x;u)

where

A(t, x) = {x(·) : [t, t1] → IRn : Lipschitz, x(t) = x and τ < t1},

J(t, x;u) =

∫ τ

t

L(s, x(s), ẋ(s))ds.

Lemma 10.3. For every T < t1, V is a viscosity solution of (2.3) in
[t0, T ) × O with H as in (10.3) and it is Lipschitz continuous on [t0, T ] × O.
Moreover it satisfies the boundary condition (10.4).

Proof. We give the proof in several steps.
1. There exists M such that

(10.13) 0 ≤ V (t, x) ≤ Mdist(x, ∂O), (t, x) ∈ [t0, T ] ×O.

To show this, let x̄ be a point of ∂O nearest x,
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x0(s) = x+ v0(s− t), v0 = c|x̄− x|−1(x̄− x),

where c = (t1 − T )−1diam O. Let τ0 be the exit time from O of x0(s). Then

τ0 − t = c−1|x̄− x| ≤ c−1diam O = t1 − T

and hence τ0 < t1 when t ≤ T. For every x(·) ∈ A(t, x),

0 ≤ J(t, x;u) ≤
∫ τ0

t

L(s, x0(s), v0)ds ≤ C(τ0 − t) ≤ Mdist(x, ∂O)

where L(s, y, v) ≤ C for all (s, y) ∈ Q, |v| ≤ c and M = c−1C.
2. From (10.6), there exist k > 0, R0 > 0 such that L(s, y, v) ≥ k|v|2

whenever |v| ≥ R0. By (10.13), V (t, x) is bounded on [t0, T ] × O. Therefore,
there exists C1 such that

(10.14)

∫ τ

t

|ẋ(s)|2ds ≤ C1, (t, x) ∈ [t0, T ] ×O

for all x(·) such that J(t, x;u) < V (t, x) + 1.
3. We next show that V (t, ·) is Lipschitz continuous on O. For any x, y ∈ O

and 0 < θ < 1, choose x(·) ∈ A(t, x) such that J(t, x;u) < V (t, x) + θ. For
0 ≤ λ ≤ 1, let yλ(s) = x(s) + λ(y − x). Let τ1 be the exit time of (s, y1(s))
from Q and τ2 = min(τ, τ1). By the dynamic programming principle,

V (t, y) ≤
∫ τ2

t

L(s, y1(s), ẋ(s))ds+ V (τ2, y1(τ2))

=

∫ τ2

t

L(s, x(s), ẋ(s))ds+

∫ τ2

t

∫ 1

0

Lx(s, yλ(s), ẋ(s))·λ(y−x)dλds+V (τ2, y1(τ2)).

From (10.6) there exists K such that |Lx(s, y, v)| ≤ K(1+ |v|2) for all (s, y) ∈
Q, v ∈ IRn. Hence,

V (t, y) ≤ J(t, x;u) +K|x− y|
∫ τ2

t

(1 + |ẋ(s)|2)ds+ V (τ2, y1(τ2)).

If τ2 = τ1 ≤ τ , then y1(τ2) ∈ ∂O and V (τ2, y1(τ2)) = 0. If τ2 = τ < τ1, then
x(τ2) ∈ ∂O. By (10.13)

V (τ2, y1(τ2)) ≤ M |y1(τ2) − x(τ2)| = M |x− y|.

Therefore,
V (t, y) ≤ V (t, x) + θ +M1|x− y|

whereM1 = K(t1−t0+C1)+M. Since θ is arbitrary and x, y can be exchanged,

(10.15) |V (t, x) − V (t, y)| ≤ M1|x− y|,

for t0 ≤ t ≤ T, x, y ∈ O.
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4. Let QT = [t0, T ) × O. For (t, x) ∈ QT , the dynamic programming
principle implies that

(10.16) V (t, x) = inf
u(·)∈U0(t)

[

∫ τ̃

t

L(s, x(s), u(s))ds+ V (τ̃ , x(τ̃))

]

where τ̃ = min(τ, T ). The integrand L in (10.6) satisfies I(11.6) with p = 2.
Let

(10.17) Ψ̃(t, x) =

⎧

⎨

⎩

0 if (t, x) ∈ [t0, T ] × ∂O

V (T, x) if t = T, x ∈ O.

By Step 3, Ψ̃ satisfies I(11.7). By Theorem II.10.4, V is Lipschitz continuous
in Q̄T and is a viscosity solution to the Hamilton-Jacobi equation (2.3) in QT .

5. We continue by verifying (10.4). First note that the positivity of L yields
V ≥ 0. Then for (t, x) ∈ [t0, t1) × ∂O, choose x(·) ∈ A(t, x) satisfying τ = t.
Hence (10.4a) is satisfied by V . To prove (10.4b), let x ∈ O and x(·) ∈ A(t, x).
Since x(τ) ∈ ∂O, we have

dist(x, ∂O) ≤ |x(τ) − x| =

∣

∣

∣

∣

∫ τ

t

ẋ(s)ds

∣

∣

∣

∣

.

Also (10.7) yields

∫ τ

t

L(s, x(s), ẋ(s))ds ≥ c0

∫ τ

t

|ẋ(s) − b(s, x(s))|2ds

≥ c0

∫ τ

t

|ẋ(s)|2ds−K

≥ c0
τ − t

|
∫ τ

t

ẋ(s)ds|2 −K,

where K is a suitable constant. Since the above inequality holds for every
x(·) ∈ A(t, x), and τ − t ≤ t1 − t, we obtain

(10.18) V (t, x) ≥ c0(dist(x, ∂O))2

t1 − t
−K.

�

We are now ready to prove the convergence of V ε to V .
Theorem 10.1. Suppose ∂O is of class C3. Assume (10.5). Then V ε

converges to V uniformly on compact subsets of [t0, t1) ×O, as ε ↓ 0.
Proof. It suffices to show that for all δ > 0,

(10.19) V ∗(t, x) ≤ V (t+ δ, x), (t, x) ∈ [t0, t1 − δ) ×O,

and
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(10.20) V (t− δ, x) ≤ V∗(t, x), (t, x) ∈ [t0 + δ, t1) ×O.

First we claim that for all δ > 0,

(10.21) lim inf
T↑t1

a(T, δ) ≥ 0,

where

a(T, δ) =

[

sup
x∈O

{V (T, x) − V ∗(T − δ, x)}
]+

.

Indeed, pick any sequence (Tm, xm) → (t1, x). Suppose that x ∈ ∂O, then the
estimate (10.8) and the positivity of V gives (10.21). But if x ∈ O, (10.4)(b)
or equivalently (10.18) together with (10.8) yield (10.21).

Fix δ > 0 and T < t1. Then V (t + δ, x) + a(T, δ) and V ∗(t, x) are a
viscosity subsubsolution and a viscosity supersolution of (2.3) in [t0, T−δ)×O
(with H as in (10.3)) and boundary condition (2.4) with g(t, x) ≡ a(T, δ)
and ψ(x) = V (T, x) + a(T, δ) respectively. Since V is Lipschitz continuous,
Theorem 8.2 applies to this case giving V (t+δ, x)+a(T, δ) ≥ V ∗(t, x), ∀(t, x) ∈
[t0, T − δ] × O. We then obtain (10.19) by letting T go to t1. The inequality
(10.20) again follows from Theorem 8.2 and

lim inf
t↑t1

inf
x∈O

{V∗(t, x) − V (t− δ, x)} ≥ 0.

The above inequality is a consequence of (10.4)(a) and (10.11). �

The above convergence result can be restated as

(10.22) Φε(t, x) = exp(−1

ε
[V (t, x) + hε(t, x)]),

where |hε| converges to zero uniformly on compact subsets of [t0, t1) × O, as
ε → 0. The leading term in this expansion, V (t, x) is non-negative. When
V (t, x) > 0, we conclude that Φε(t, x) → 0 exponentially fast as ε → 0. How-
ever if V (t, x) = 0 the expansion (10.22) does not provide any information. So
it is of some interest to discuss the cases when V > 0 on Q. By a probabilistic
argument we see that the event {θε < t1} is rare if the deterministic flow

d

ds
y(s) = b(s, y(s))

is pointing into the region O. So we claim that V > 0 on Q if

(10.23) b(t, x) · η(x) < 0, x ∈ ∂O, t ∈ [t0, t1],

where η(x) is the unit outward normal vector at x ∈ ∂O. Indeed, let (t, x) ∈ Q
and x(·) ∈ A(t, x). Then by the definition of A(t, x), τ < t1. Set

u(s) = ẋ(s) − b(s, x(s)), s ∈ [t, t1],
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and let ζ(s) be the solution of

ζ̇(s) = b(s, ζ(s)), s ∈ (t, t1)

with initial data ζ(t) = x. Using these equations we obtain the following
estimate for the time derivative of ξ(s) = 1

2 |x(s) − ζ(s)|2,

ξ̇(s) = (ẋ(s) − ζ̇(s)) · (x(s) − ζ(s))

= (b(s, x(s)) − b(s, ζ(s))) · (x(s) − ζ(s)) + u(s) · (x(s) − ζ(s))

≤ Kξ(s) + |u(s)|2,

with a suitable constant K, depending on the Lipschitz constant of b. Using
the Gronwall inequality and the fact that ξ(t) = 0, we have

ξ(s) ≤ eK(s−t)

∫ s

t

|u(z)|2dz , s ∈ [t, τ ].

The condition (10.23), implies that for x ∈ O there is a constant β(x) sat-
isfying dist (ζ(s), ∂O) ≥ β(x) > 0 for all s ∈ [t, t1]. Since x(τ) ∈ ∂O, we
have

[β(x)]2 ≤ dist (ζ(τ), ∂O)2

≤ 2ξ(τ)

≤ 2eK(τ−t)

∫ τ

t

|u(z)|2dz

= 2eK(τ−t)

∫ τ

t

|ẋ(s) − b(s, x(s))|2ds

≤ 2

c0
eK(t1−t)

∫ τ

t

L(s, x(s), ẋ(s))ds.

In the last inequality we used (10.7). Since the above holds for every x(·) ∈
A(t, x), we have

V (t, x) ≥ c0
2
e−K(t1−t)[β(x)]2.

We summarize the above result in the following.
Lemma 10.4. Suppose that the hypotheses of Theorem 10.1 hold and

(10.23) is satisfied. Then V (t, x) > 0 for (t, x) ∈ [t0, t1] × O. In particular
Φε converges to zero exponentially fast on [t0, t1] ×O.
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VII.11 Weak comparison principle in Q0

In this section we prove a weak comparison principle (Theorem 11.1) similar
to Theorem 8.2, which holds when O = IRn and thus Q = Q0 = [t0, t1] × IRn.
Since ∂O is empty, the proof is simpler than the arguments used in Section
8 to prove Theorems 8.1 and 8.2. Theorem 11.1 is then used to prove a large
deviations result (Theorem VI.6.2) for the small noise limit problem. A similar
risk-sensitive control limit result will be proved later (Theorem XI.7.2).

We consider the first order PDE

(11.1) −∂V
∂t

+H(t, x,DxV ) = 0, (t, x) ∈ Q0

with the terminal data (see (2.4b))

(11.2) V (t1, x) = ψ(x).

We assume that:

(11.3)

(a) ψ is bounded and Lipschitz continuous on IRn;

(b) H(t, x, p) is bounded on Q0 × {|p| ≤ R} and
and (8.16) holds, for each R > 0.

Lemma 11.1. Assume (11.3) and that (11.1)-(11.2) has a bounded, Lip-
schitz continuous viscosity solution V . Let W ∗(t, x) be any bounded, upper
semicontinuous viscosity subsolution of (11.1) such that W ∗(t1, x) ≤ ψ(x) for
all x ∈ IRn. Then W ∗ ≤ V.

The proof is a modification of arguments used to prove Theorem II.9.1 in
the unbounded case and uses arguments similar to those for Theorem 8.2. We
merely give a sketch. Introduce the function Φγ(t, x; s, y) as in the proof of
Theorem II.9.1, with W (t, x) replaced by W ∗(t, x). Assume that

sup
(t,x)∈Q0

[W ∗(t, x) − V (t, x)] = α > 0.

If the parameters β, γ in the proof of Theorem II.9.1 are small enough, then
the sup of Φγ on Q0 ×Q0 is at least α/2, and is achieved at some (t̄, x̄), (s̄, ȳ).

The previous proof shows that |t̄ − s̄| ≤ C1δ
1
2 , |x̄ − ȳ| ≤ C2ǫ

1
2 for some

constants C1, C2. Morover, for fixed γ there is a compact set K such that
(t̄, x̄), (s̄, ȳ) ∈ K for ǫ, δ sufficiently small. Let us show that s̄ < t1 and t̄ < t1
for small enough ǫ, δ. Let

φ(θ) = sup{W ∗(t, x) − ψ(x): |t− t1| < θ, (t, x) ∈ K}.

Since W ∗ is upper semicontinuous, ψ is Lipschitz and W ∗(t, x) ≤ ψ(x) for
all (t, x),

lim sup
θ→0

φ(θ) ≤ 0.
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If s̄ = t1, then from the definition of Φγ ,

α

2
< Φγ(t̄, x̄; t1, ȳ) ≤ W ∗(t̄, x̄) − ψ(ȳ)

≤ ψ(x̄) − ψ(ȳ) + φ(C1δ
1/2).

This is impossible for small enough ǫ, δ. If t̄ = t1, then

α

2
<Φγ(t1, x̄; s̄, ȳ) ≤ ψ(x̄) − V (s̄, ȳ)

≤ ψ(x̄) − ψ(ȳ) + ψ(ȳ) − V (s̄, ȳ) ≤ C3(ǫ
1
2 + δ

1
2 ).

since ψ and V are Lipschitz. Hence t̄ < t1, and (t̄, x̄), (s̄, ȳ) ∈ Q0 if ǫ and δ
are small enough.

Define the comparison functions w(t, x), w∗(s, y) as in Step 4′ of the proof
of Theorem II.9.1. Then inequalities II(9.22), II(9.23) hold. Since V is Lip-
schitz, there exist M1, M2 such that

|Dyw
∗(s̄, ȳ)| = |pǫ + p̄γ | ≤ M1

∣

∣

∣

∣

∂w∗

∂s
(s̄, ȳ)

∣

∣

∣

∣

= |β + qδ + q̄γ | ≤ M2,

by Corollary II.8.1(f). If we fix β > 0 and take ǫ, δ, γ small enough, then a
contradiction is obtained. �

In the same way, if W∗(t, x) is a bounded lower semicontinuous supersolu-
tion of (11.1) with ψ(x) ≤ W∗(t1, x), then V ≤ W∗. We have therefore:

Theorem 11.1. Assume (11.3) and that (11.1)-(11.2) has a bounded,
Lipschitz continuous viscosity solution V. Then a weak comparison principle
holds.

An easy consequence of Theorem 11.1 is the following result stated in
Section VI.6.

Proof of Theorem VI.6.2. Since VI(6.8) holds, the HamiltonianH(t, x, p)
in VI(4.8) satisfies (11.3)(b). Moreover, VI(6.8)(a)(b) imply (11.3)(a) and that
|V ǫ(t, x)| ≤ K1 for some K1. By Theorem VI.8.1 and Remark VI.8.2, V ǫ is a
viscosity solution to VI(6.4ǫ) with V ǫ(t1, x) = ψ(x). Define V ∗(t, x), V∗(t, x)
by (3.2), (3.3). By Proposition 4.1, V ∗ is a viscosity subsolution of (11.1) and
V∗ is a viscosity supersolution. By Lemma 5.1, V ∗(t1, x) = V∗(t1, x) = ψ(x).
By Theorem VI.6.1, V 0 is a bounded Lipschitz continuous viscosity solution
of (6.40) with V 0(t1, x) = ψ(x). By Theorem 11.1, V ∗ = V∗ = V 0. Hence, V ǫ

tends to V 0 uniformly on compact subsets of Q0. �

Remark 11.1. The assumptions VI(3.2) VI(6.8) are not enough to guar-
antee that V ǫ ∈ C1,2(Q0), although this is true under the stronger assump-
tions VI(3.25) or VI(3.26).
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VII.12 Historical remarks

Fleming was first to study the vanishing viscosity problem by using control
theoretic techniques [F1]. The probabilistic treatment of exit time problems
and the large deviations theory for Markov diffusion processes is pursued by
Freidlin and Wentzell [FrW]. For other probabilistic results we refer the reader
to Varadhan [V] and Stroock [St].

The first application of the viscosity solutions to large deviations problem
is given by Evans and Ishii [EI]. Since then there have been several such appli-
cations. In [FS2] Fleming and Souganidis obtained asymptotic expansions for
Markov diffusions, Dupuis, Ishii and Soner [DIS] studied the large deviations
problem of a queueing system, and asymptotic expansions for jump Markov
processes were derived by Fleming and Soner [FSo].

The application to homogenization is due to Evans [E3]. Evans and
Souganidis [ES2] used the viscosity theory to analyze the large time asymp-
totic of a reaction-diffusion equation of KPP type. The extension of this
result to a system of reaction-diffusion equations is given by Barles, Evans
and Souganidis [BES]. Along the same direction Evans, Soner and Souganidis
[ESS] studied the asymptotics of the zero level set of a solution of a reaction-
diffusion equation with a cubic nonlinearity. They proved that in the limit the
zero level set moves by motion by mean curvature. Another application is ob-
tained by Soner [S1], who studied a sequence of singularly perturbed optimal
control problems arising in manufacturing.

The discontinuous viscosity solutions were defined independently by Barles-
Perthame [BP1] and by Ishii [12]. See Barles [Ba] for another account of this
theory. The proof of Theorem 8.1 is an extension of [S2, Thm.2.1 ]. The ap-
plications of this definition to singular perturbation problems are included in
[BP2] and [IK2]. Perthame [P] combined these techniques with some other
analytical tools to study the asymptotics of the exit location distribution. Al-
ternate approaches to discontinuous value functions have been formulated by
Frankowska [Fra] and Subbotin [Su2].



VIII

Singular Stochastic Control

VIII.1 Introduction

In contrast to classical control problems, in which the displacement of the
state due to control effort is differentiable in time, the singular control models
we consider allow this displacement to be discontinuous. Bather-Chernoff were
the first to formulate such a problem in their study of a simplified model of
spacecraft control. Since then singular control has found many other applica-
tions in diverse areas of communications, queueing systems and mathematical
finance.

We start our analysis in Section 2 with a formal derivation of the dynamic
programming equation. This discussion leads us to a formulation of singular
control problems with controls which are processes of bounded variation. The
related verification theorem is then proved in Section 4. We discuss the vis-
cosity property of the value function in Section 5. Since we want to emphasize
only the new issues arising in singular control, in Sections 2–5 we restrict our
attention to a simple infinite horizon problem with no absolutely continuous
control component. However the theory is not limited only to these problems.
In Section X.5, we demonstrate the potential of this theory in a portfolio se-
lection problem with transaction costs. The portfolio selection problem has
“mixed” type controls; consumption rate and transactions between the bond
and the stock. Here the consumption rate is an absolutely continuous con-
trol and the transactions between the bond and the stock is a singular type
control.

The dynamic programming equation (2.7) below is a pair of differential
inequalities. Also at every point of the state space either one of the inequal-
ities is satisfied by an equality. So the state space splits into two regions,
the “no-action” region and the “push region,” corresponding to the active
inequality in (2.7). Starting from the push region, the optimal state process
moves immediately into the no-action region, where its exit is prevented by
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reflection at the boundary in an appropriate direction. In Section 4 we exhibit
this qualitative character of the optimal control process in several examples.

The portfolio selection problem with transaction costs is an important
example of a singular control problem. It will be studied in Chapter X. This
problem is a generalization of the Merton’s portfolio problem, Example IV.5.2.
In the portfolio selection problem the Markov diffusion process is degenerate
and there are only two possible push directions. These facts render this prob-
lem difficult. However if the utility function is of HARA type (see Example
IV.5.2), the value function has an homothety property which reduces the prob-
lem to a one-dimensional one. Using this property we prove that the no-action
region is a wedge in the plane, Theorem X.5.2 below.

In the spacecraft control example the cumulative control action is con-
strained by the total amount of the initial fuel. In the literature generalizations
of problems with this type of constraint are known as finite fuel problems.
In Section 6, we formulate the finite fuel problem and derive the dynamic
programming equation. In the case of a single push direction, Chow-Menaldi-
Robin [CMR] discovered a striking connection between the optimal solutions
of finite fuel and the unconstrained problem. We prove this connection in
Proposition 6.1.

VIII.2 Formal discussion

In this section, we consider a special case of the infinite horizon problem
described in Section IV.5. We let O ⊂ IRn and U ⊂ IRn be a closed cone in
IRn, i.e.,

(2.1) v ∈ U, λ ≥ 0 ⇒ λv ∈ U.

We also assume that there are f̂ , σ̂ ∈ C1(IRn) with bounded first order partial
derivatives and ĉ, L̂ ∈ C(IRn) satisfying

(2.2i) f(x, v) = v + f̂(x),

(2.2ii) σ(x, v) = σ̂(x),

(2.2iii) L(x, v) = L̂(x) + ĉ(v),

(2.2iv) ĉ(λv) = λĉ(v), ∀λ ≥ 0,

for all x ∈ IRn, v ∈ U . For simplicity we take the boundary condition g ≡ 0
and L̂, ĉ ≥ 0.

The control set U is not bounded as was often assumed in Chapter IV.
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Let us continue by calculating the Hamiltonian H(x, p,A) defined in
IV(3.2). For x, p ∈ IRn and a symmetric matrix A

H(x, p,A) = −1

2
tr â(x)A− f̂(x) · p− L̂(x) + Ĥ(p),

where â(x) = σ̂(x)σ̂′(x) and

(2.3) Ĥ(p) = sup
v∈U

{−p · v − ĉ(v)}.

Observe that if −p · v− ĉ(v) > 0 for some v ∈ U , then by (2.1) and (2.2iv) we
conclude that Ĥ(p) = +∞. Therefore

Ĥ(p) =

⎧

⎨

⎩

+∞ if H(p) > 0

0 if H(p) ≤ 0,

where

(2.4) H(p) = sup
v∈K̂

{−p · v − ĉ(v)},

K̂ = {v ∈ U : |v| = 1}.
One can think of K̂ as the set of allowable directions in which control may
act.

The above calculation indicates that the dynamic programming equation
IV(3.3) has to be interpreted carefully. However, we formally expect that the
value function V satisfies

(2.5i) H(DV (x)) ≤ 0, x ∈ O,

(2.5ii) LV (x) = βV (x) − 1

2
tr â(x)D2V (x) − f̂(x) ·DV (x) ≤ L̂(x), x ∈ O.

Now suppose H(DV (x)) < 0 for some x ∈ O. Then in a neighborhood of x,
the unique maximizer in (2.3) is zero. Hence at least formally, the optimal
feedback control should be equal to zero in a neighborhood of x. Since the
uncontrolled diffusion processes are related to linear equations, we expect

(2.6) LV (x) = L̂(x), whenever H(DV (x)) < 0.

We now rewrite (2.5) and (2.6) in the following more compact form:

(2.7) max{LV (x) − L̂(x), H(DV (x))} = 0, x ∈ O.

Since g ≡ 0, the boundary condition is

(2.8) V (x) = 0, x ∈ ∂O.
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In Section 4 we will prove a Verification Theorem, Theorem 4.1, for the
dynamic programming equation (2.7) and the boundary condition (2.8). This
provides a rigorous basis to our formal derivation. However due to the linear
dependence of L on v, in general there are no optimal controls and nearly
optimal controls take arbitrarily large values. For this reason it is convenient
to reformulate the above problem by using the integral of u(s) as our control
process. This reformulation will be the subject of the next section.

VIII.3 Singular stochastic control

As in Chapters IV and V, let ν = (Ω, {Fs}, P, w) be a probability reference
system with a right continuous filtration Fs. Let us rewrite the state dynamics
IV(5.1) as follows, taking into account the special form (2.2i) of f : Let

û(s) =

⎧

⎨

⎩

|u(s)|−1u(s) if u(s) �= 0

0 if u(s) = 0,

ξ(t) =

∫ t

0

|u(s)|ds.

Then IV(5.1) becomes

(3.1) dx(s) = σ̂(x(s))dw(s) + f̂(x(s))ds+ û(s)dξ(s), s > 0.

We now regard

(3.2) z(t) =

∫

[0,t)

û(s)dξ(s)

as control variable at time t. However in order to obtain optimal controls,
we must enlarge the class of controls to admit z(t) which may not be an
absolutely continuous function of t. But we assume that each component of
z(t) is a function of bounded variation on every finite interval [0, t]; namely,
each component of z(t) is the difference of two monotone functions of t. Let
µ(·) be the total variation measure of z(·) and

ξ(t) =

∫

[0,t)

dµ(s).

Then

(3.3a) ξ(·) nondecreasing, real-valued, left continuous with ξ(0) = 0.

Moreover by Radon-Nikodynm theorem, there exists û(s) ∈ IRn satisfying
(3.2) and |û(s)| ≤ 1. In this chapter we will identify the process z(·) by the
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pair (ξ(·), û(·)). Note that for a given z(·), ξ(t) is uniquely determined for all
t ≥ 0, and û(s) is uniquely determined for µ-almost every s ≥ 0. Also if z(s)
is Fs-progressively measurable, then ξ(s) is Fs-progressively measurable and
there is a version of û(s) which is Fs-progressively measurable (See Appendix
D). In the sequel we always assume that z(s) is Fs-progressively measurable
and that û(s) is a Fs - progressively measurable function satisfying (3.2).
Further we assume that

(3.3b) û(s) ∈ U, for µ-almost every s ≥ 0,

(3.3c) E|z(t)|m < ∞, m = 1, 2, · · · .

Let Âν denote the set of all progressively measurable z(·) = (ξ(·), û(·))
satisfying (3.3). Then for a given x ∈ O, the usual Picard iteration gives
xm(t),m = 1, 2, · · · such that xm(t) − z(t) converges to x(t) − z(t) with prob-
ability 1, uniformly for bounded t. The process x(·) is the unique, left contin-
uous solution to

(3.4) x(t) = x+

∫ t

0

σ̂(x(s))dw(s) +

∫ t

0

f̂(x(s))ds+ z(t), t ≥ 0,

with
x(t+) − x(t) = z(t+) − z(t).

Observe that x(t) is not in general continuous. Indeed at every t ≥ 0,

x(t+) = lim
s↓t

x(s) = x(t) + z(t+) − z(t) = x(t) + û(t)(ξ(t+) − ξ(t)).

Let τ be the exit time of x(s) from O. Since x(·) is left continuous and Ft is
right continuous, τ is a Ft-stopping time. We now wish to minimize

(3.5) J(x; ξ, û) = Ex

∫

[0,τ ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

over all (ξ(·), û(·)) ∈ Âν and reference probability systems ν. Observe that
since L̂, ĉ ≥ 0, J(x; ξ, û) is defined for all (ξ(·), û(·)) ∈ Âν but it may take the
value +∞. This is why we do not need to impose an additional condition like
IV(5.5) on the control (ξ(·), û(·)). Finally, let

Vν(x) = inf
Âν

J(x; ξ, û),

V (x) = VPM (x) = inf
ν
Vν(x).

We close this section by proving some elementary properties of V .
Lemma 3.1. Let x ∈ O, v̂ ∈ U and h > 0. If x+ hv̂ ∈ O, then

(3.6) V (x) − V (x+ hv̂) ≤ hĉ(v̂).
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In particular if V is differentiable at x, then (2.5i) holds at x.
Proof. In view of (2.2iv), we may assume that |v̂| ≤ 1. For (ξ(·), û(·)) ∈

Âν , let

ξh(s) =

{

0, s = 0
ξ(s) + h, s > 0,

ûh(s) =

{

v̂, s = 0
û(s), s > 0.

Then (ξh(·), ûh(·)) ∈ Âν . Let xh(s) be the solution of (3.1) with control
(ξh(·), ûh(·)) and initial condition xh(0) = x. Then, xh(s) = x(s) + hv̂ for
all s > 0. Moreover,

V (x) ≤ J(x; ξh, ûh) = J(x+ hv̂; ξ, û) + hĉ(v̂).

Since ξ(·) and û(·) are arbitrary, (3.6) follows from the above inequality.
�

Lemma 3.2. Suppose that O = IRn, U is convex, f̂ and σ̂ are affine
functions and L̂, ĉ are convex. Then Vν is also convex for every ν.

Proof. For i = 1, 2, let xi ∈ IRn and (ξi(·), ûi(·)) ∈ Âν . Set

y =
1

2
(x1 + x2),

ξ(t) =
1

2
(ξ1(t) + ξ2(t)), t ≥ 0,

z(t) =

∫

[0,t)

1

2
(û1(s)dξ1(s) + û2(s)dξ2(s)), t ≥ 0.

For a Borel subset B ⊂ [0,∞) define

µi(B) =

∫

B

dξi(s), µ(B) =

∫

B

dξ(s).

Then both µ1 and µ2 are absolutely continuous with respect to µ. For i = 1, 2
let ri(s) be the Radon-Nikodyn derivative of µi with respect to µ. We may
choose r1(s) and r2(s), so that for every s ≥ 0,

1

2
(r1(s) + r2(s)) = 1.

Let |û(s)| ≤ 1 be a progressively measurable function satisfying

z(t) =

∫

[0,t)

û(s)dξ(s), t ≤ 0.

Then for µ-almost every s ≥ 0,

(3.7) û(s) =
1

2
[û1(s)r1(s) + û2(s)r2(s)], s ≥ 0.



VIII. Singular Stochastic Control 299

Also by the convexity of U , û(s) ∈ U for µ-almost every s ≥ 0. Thus z(·) =
(ξ(·), û(·)) ∈ Âν .

Now the convexity of ĉ, together with (2.2iv) and (3.7), yields

ĉ(û(s)) ≤ 1

2
[ĉ(û1(s))r1(s) + ĉ(û2(s))r2(s)],

for µ-almost every s ≥ 0. Multiply both sides of the above inequality by e−βs

and then integrate with respect to dξ(s) to obtain

(3.8)

∫ ∞

0

e−βs 1

2
[ĉ(û1(s))dξ1(s) + ĉ(û2(s))dξ2(s)]

≥
∫ ∞

0

e−βsĉ(û(s))dξ(s).

Finally the convexity of L̂ and (3.8) imply that

Vν(y) ≤ J(y; ξ, û) ≤ 1

2
[J(x1; ξ1, û1) + J(x2; ξ2, û2)].

After taking the inf over (ξi(·), ûi(·)) ∈ Âν we obtain

Vν(y) ≤ 1

2
[Vν(x1) + Vν(x2)].

Now the convexity of Vν follows from elementary considerations. �

The convexity assumption on U and ĉ are satisfied by the following exam-
ples:

(i) K̂ = Sn−1 = {v ∈ IRn : |v| = 1}, ĉ(v) = |v|,

(ii) K̂ = {ν0},

(iii) K̂ = {ν0,−ν0},

where ν0 ∈ Sn−1 and K̂ is as in (2.4).

VIII.4 Verification theorem

We start with the definition of classical solutions of (2.7). Let W 1,∞
ℓoc (O; IRn)

be the set of all IRn-valued functions of O which are Lipschitz continuous on
every bounded subset of O.

Definition 4.1. Let W ∈ Cp(Ō) ∩ C1(Ō) with DW ∈ W 1,∞
loc (O; IRn) be

given. Define
P = {x ∈ IRn : H(DW (x)) < 0} .

We say that W is a (classical) solution of (2.7) if W ∈ C2(P),
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LW (x) = L̂(x), ∀x ∈ P,

H(DW (x)) ≤ 0, ∀x ∈ Ō,

and
LW (x) ≤ L̂(x),

for almost every x ∈ IRn.
At the end of this section we will construct explicit solutions of (2.7) for

specific problems.
The following verification theorem is very similar to Theorem IV.5.1.
Theorem 4.1. (Verification) Assume O is convex. Let W be a classical

solution of (2.7) with the boundary condition (2.8). Then for every x ∈ Ō
(a) W (x) ≤ J(x; ξ, û) for any (ξ(·), û(·)) ∈ Âν such that

(4.1) lim inf
t→∞

e−βtEx[W (x(t))χτ=∞] = 0.

(b) Assume that W ≥ 0 and that there exists (ξ∗(·), u∗(·)) ∈ Âν such that with
probability 1:

(4.2i) x∗(t) ∈ P, Lebesgue almost every t ≤ τ,

(4.2ii)

∫

[0,t)

[u∗(s) ·DW (x∗(s)) + ĉ(u∗(s))]dξ∗(s) = 0, ∀t ≤ τ,

(4.2iii) W (x∗(t)) −W (x∗(t+)) = ĉ(u∗(t))[ξ∗(t+) − ξ(t)], ∀t ≤ τ,

(4.2iv) lim
t→∞

Ex[e−β(t∧τ)W (x∗(t ∧ τ))χτ=∞] = 0.

Then
J(x; ξ∗, u∗) = W (x).

Proof. (a) Extend W to IRn by setting W (x) = 0 for x �∈ O. Since W (x) = 0
for x ∈ ∂O and since W is continuous on Ō, the extension of W is also
continuous on IRn. Let ζ ∈ C∞(IRn) be a nonnegative function satisfying

∫

Rn

ζ(x)dx = 1,

supp ζ ⊂ B1(0) = {x ∈ IRn = |x| < 1}.
For a positive integer m, set ζm(x) = m−nζ(mx) and

Wm = W ∗ ζm, L̂m = L̂ ∗ ζm,

where ∗ denotes the convolution operator. Since W and L̂ are continuous on
IRn, Wm and L̂m converge to W and L̂ uniformly on compact subsets of IRn.
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Similarly since DW ∈ C(Ō), DWm converges to DW uniformly on compact
subset of O. See Appendix C.

Let

Om =

{

x ∈ O : dist (x, ∂O) >
1

m

}

, Om,N = Om ∩BN (0).

Since ζm is supported in B1/m(0), for any function h, h ∗ ζm(x0) depends
only on the values of h in B1/m(x0) = {x ∈ IRn : |x − x0| < 1/m}. Hence if
x0 ∈ Ōm, h ∗ ζm(x0) depends on the values h(x) with x ∈ O. Therefore the
local boundedness of D2W in O and the continuity of the coefficients of the
operator L yield

lim
m→0

sup
x∈Ōm,N

|(LWm)(x) − (LW ∗ ζm)(x)| = 0.

Set
Km,N = sup

x∈Ōm,N

[LWm(x) − L̂m(x)].

Since LW (x) ≤ L̂(x) for almost every x ∈ O,

(LW ∗ ξm)(x) ≤ L̂m(x), ∀x ∈ Om.

Hence
lim sup
m→∞

Km,N ≤ 0.

Also for every v̂ ∈ U and x ∈ Ōm

−v̂ ·DWm(x) − ĉ(v̂) = −[(v̂ ·DW + ĉ(v̂)) ∗ ζm](x) ≤ 0.

Combining the above inequalities, we obtain

(4.3) max{LWm(x) − L̂m(x), H(DWm(x))} ≤ Km,N ∨ 0, ∀x ∈ Ōm,N .

Let x ∈ Om,N and (ξ(·), û(·)) ∈ Âν be given. Since Wm ∈ C∞(IRn),
we may apply the Ito’s rule for semimartingales (Meyer [M, pp. 278-301]) to
e−βtWm(x(t)). Fix N and let τm be the exit time of x(s) from Om,N . Then
for t ≥ 0,

(4.4) Wm(x) = Exe
−β(t∧τm)Wm(x(t ∧ τm))

+Ex

∫ t∧τm

0

e−βsLWm(x(s))ds

+Ex

∫ t∧τm

0

e−βs[−û(s) ·DWm(x(s))]dξc(s)
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+Ex

∑

0≤s<t∧τm

e−βs[Wm(x(s)) −Wm(x(s+))],

where for t ≥ 0
ξc(t) = ξ(t) −

∑

0≤s<t

[ξ(s+) − ξ(s)],

ξJ(t) = ξ(t) − ξc(t) =
∑

0≤s<t

[ξ(s+) − ξ(s)].

Note that both ξc(·) and ξJ(·) are nondecreasing. (When ξ(·) has finitely many
discontinuities with a bounded derivative except at these points, (4.4) can
easily be derived by using the classical Ito’s rule between the discontinuities
of ξ.)

Next we will let m go to infinity in (4.4). Since x(·) is left continuous
as m tends to infinity, τm → θN , where θN is the exit time of x(s) from
ON = O ∩BN (0). Also

lim sup
m→∞

LWm(x(s)) ≤ lim sup
m→∞

[L̂m(x(s)) +Km,N ] ≤ L̂(x(s)),

−û(s) ·DWm(x) ≤ ĉ(û(s)), ∀s ≥ 0, x ∈ Om.

Now by the Mean Value Theorem and x(s+) = x(s) + û(s)[ξ(s+) − ξ(s)], we
obtain

Wm(x(s)) −Wm(x(s+))

= −
∫ 1

0

û(s) ·DWm(x(s) + λ[x(s+) − x(s)])(ξ(s+) − ξ(s))dλ

≤ ĉ(û(s))(ξ(s+) − ξ(s)).

In the above inequality we used the fact that

x(s) + λ[x(s+) − x(s)] ∈ Ō

for every s < τ, λ ∈ [0, 1], since O is convex and x(s), x(s+) ∈ Ō. Therefore
by taking the limit m → ∞ in (4.4), we obtain

W (x) ≤ Exe
−β(t∧θN )W (x(t ∧ θN ))

+Ex

∫ t∧θN

0

e−βsL̂(x(s))ds

+Ex

∫ t∧θN

0

e−βsĉ(û(s))dξc(s)

+Ex

∑

0≤s<t∧θN

e−βsĉ(û(s))(ξ(s+) − ξ(s)).
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Now let N → ∞. By (3.3c) we obtain

lim
N→∞

Exe
−β(t∧θN )W (x(t ∧ θN )) = Exe

−β(t∧τ)W (x(t ∧ τ)).

Also
Ex

∑

0≤s<t∧τ

e−βsĉ(û(s))(ξ(s+) − ξ(s))

= Ex

∫

[0,t∧τ)

e−βsĉ(û(s))dξJ(s).

So we have

W (x) ≤ Exe
−β(t∧τ)W (x(t ∧ τ))

+Ex

∫

[0,t∧τ)

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)].

Send t to infinity and use (4.1) to obtain

W (x) ≤ Exe
−βτW (x(τ))χτ<∞

+Ex

∫

[0,τ)

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)].

We now claim that when τ < ∞ we have

W (x(τ)) ≤ ĉ(û(τ))[ξ(τ+) − ξ(τ)].

Indeed if x(τ) ∈ ∂O, then the above inequality follows from (2.8). Now suppose
that x(τ) ∈ O. Since x(τ+) �∈ O and O is convex, the line segment connecting
x(τ) to x(τ+) intersects ∂O. Let x∗ ∈ ∂O be an intersection point. Then
the line segment connecting x(τ) to x∗ stays entirely in Ō. Hence for every
λ ∈ [0, 1],

−û(τ) ·DW (xλ) − ĉ(û(τ)) ≤ H(DW (xλ)) ≤ 0,

xλ = x(τ) + λ[x∗ − x(τ)].

Also there is γ ∈ (0, 1] such that

x∗ − x(τ) = γ[x(τ+) − x(τ)] = γû(τ)[ξ(τ+) − ξ(τ)].

Now by the Mean Value Theorem and (2.8),

W (x(τ)) = W (x∗) −
∫ 1

0

DW (xλ)dλ · (x∗ − x(τ))

= −γ
∫ 1

0

û(τ) ·DW (xλ)dλ[ξ(τ+) − ξ(τ)]

≤ γĉ(û(τ))[ξ(τ+) − ξ(τ)].
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Then the desired inequality follows from the inequalities ĉ ≥ 0, γ ≤ 1. Hence

W (x) ≤ Exe
−βτ ĉ(û(τ))[ξ(τ+) − ξ(τ)]

+Ex

∫

[0,τ)

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

= J(x; ξ, û),

for all (ξ(·), û(·)) ∈ Âν , satisfying (4.1).
(b) Suppose that at s ≥ 0, x∗(s) ∈ P. Since P is an open set and LW = L̂

on P, we have
LWm(x∗(s)) → L̂(x∗(s)) as m → ∞.

Moreover for fixed N, |LWm(x)| is uniformly bounded in m and x ∈ Om,N .
Hence by (4.2i) and the dominated convergence theorem,

lim
m→∞

Ex

∫ t∧θm

0

e−βsLWm(x∗(s))ds = Ex

∫ t∧θN

0

e−βsL̂(x∗(s))ds.

Now use (4.4) with (ξ∗(·), u∗(·)) and let m → ∞, N → ∞ to obtain

W (x) = Exe
−β(t∧τ)W (x∗(t ∧ τ)) + Ex

∫ t∧τ

0

e−βsL̂(x∗(s))ds

+Ex

∫ t∧τ

0

e−βs[−u∗(s) ·DW (x∗(s))]dξ∗,c(s)

+Ex

∑

0≤s<t∧τ

e−βs[W (x∗(s)) −W (x∗(s+))].

We then let t → ∞ and use (4.2ii), (iii), (iv) to obtain

W (x) = J(x; ξ∗, u∗). �

Remark 4.1. The convexity hypotheses on O is made to simplify the
presentation. The Verification Theorem holds for any domain O which is not
necessarily convex. Indeed let Āν be the set of all (ξ(·), û(·)) ∈ Âν satisfying

x(t) + λ[x(t+) − x(t)] ∈ O

for all t ≤ τ, λ ∈ [0, 1]. Then it is easy to show that for each (ξ(·), û(·)) ∈ Âν

there exists (ξ̄(·), ū(·)) ∈ Āν satisfying J(x; ξ̄, ū) ≤ J(x; ξ, û). (We will not use
this fact in our subsequent analysis.) We then follow the proof of Theorem
4.1 for a control pair (ξ(·), û(·)) ∈ Āν to prove the Verification Theorem for
nonconvex domains.

Example 4.1. Consider a one dimensional problem with O = (−∞,∞),

f̂ ≡ 0, σ̂ ≡
√

2, ĉ(v) = |v|, K̂ = {−1} and L̂ is convex. Then U = (−∞, 0]
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and the hypotheses of Lemma 3.2 are satisfied. Hence the value function V is
convex and equation (2.7) takes the form

(4.5) max
{

βV (x) − Vxx(x) − L̂(x), Vx(x) − 1
}

= 0, x ∈ (−∞,∞).

We will first construct a convex, polynomially growing solution W of (4.5)
and then using the Verification Theorem we will show that W = V . Now
suppose that W is indeed a convex solution of (4.5). Set

a = sup{x : Wx(x) < 1}.

Here a may be equal to +∞. The convexity of W yields

Wx(x) < 1, ∀x < a.

Then using (4.5) we conclude that

(4.6) βW (x) −Wxx(x) = L̂(x), ∀x < a,

and

(4.7) Wx(x) = 1, ∀x ≥ a.

The value of a is not a priori given to us. So we will solve (4.6) and (4.7) for
every real number a, and then determine the value of a by using (4.5) again.
Let Wa(x) be the polynomially growing solution of (4.6) and (4.7). Now we
assume that β = 1, L̂(x) = αx2 for some α > 0. Then, Wa(x) is given by

Wa(x) =

⎧

⎨

⎩

(1 − 2αa)ex−a + αx2 + 2α, x ≤ a

Wa(a) + x− a, x > a.

In addition to (4.6) and (4.7), Wa,x(x) ≤ 1 for every x. Hence Wa solves (4.5)
provided that

Wa(x) −Wa,xx(x) − αx2 ≤ 0, ∀x > a.

Since Wa is linear on (a,∞), the above inequality is equivalent to

0 ≥ Wa(x) − αx2 = Wa(a) + x− a− αx2, ∀x ≥ a.

The above inequality implies

0 ≥ Wa(a) − αa2.

Also from (4.6) we obtain

Wa(a) = lim
x↑a

Wa,xx(x) + αa2.
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Since Wa is convex, the above argument shows that if Wa is a solution of
(4.5), then

(4.8) lim
x↑a

Wa,xx(x) = 0.

Note that (4.8) implies Wa ∈ C2((−∞,∞)) and for that reason Benes-Shepp-
Witsenhausen call (4.8) “the principle of smooth fit” [BSW].

We solve (4.8) to obtain

(1 − 2αa) + 2α = 0 ⇒ a =
1

2α
+ 1.

Now it is easy to check that

(4.9) W (x) =

⎧

⎨

⎩

−2αex−a + αx2 + 2α, x ≤ a

αa2 + x− a, x > a,

is a convex, quadratically growing solution of (4.5). Let (ξ(·), û(·)) ∈ Âν be
such that J(x; ξ, û) < ∞. Then

lim inf
t→∞

e−tEx(x(t))2 = 0.

Since W is growing quadratically, (4.1) is satisfied by (ξ(·), û(·)). Therefore

W (x) ≤ J(x; ξ, û)

for all (ξ(·), û(·)) ∈ Âν with J(x; ξ; û) < ∞. Hence

W (x) ≤ Vν(x),

for every reference probability system ν.
To prove that W (x) = Vν(x), we need to construct (ξ∗(·), u∗(·)) ∈ Âν

satisfying (4.2). Since K̂ = {−1}, we take u∗(s) ≡ −1. Then for a given x, we
look for a process ξ∗(·) satisfying (3.3) and

(4.10) x∗(t) = x+
√

2w(t) − ξ∗(t) < a for a. e. t ≥ 0,

(4.11)

∫

[0,t)

[−DW (x∗(s)) + 1]dξ∗(s) = 0, ∀t ≥ 0.

Since DW (x) − 1 < 0 unless x ≥ a, (4.11) is equivalent to

(4.11′)

∫

[0,t)

χ{x∗(s)≥a}dξ
∗(s) = ξ∗(t), ∀t ≥ 0.

The problem of finding ξ∗(·) satisfying (3.3a), (4.10) and (4.11
′

) is known as
the Skorokhod problem and its solution is given by



VIII. Singular Stochastic Control 307

(4.12) ξ∗(t+) = sup{(x+
√

2w(s) − a) ∨ 0 : s ≤ t}, t ≥ 0.

If x ≤ a, the process x∗(·) is a Brownian motion reflected at a and ξ∗(·)
is the local time at a. (See (3.8) in Chapter 6 of [KS4].) If x > a, ξ∗(0+) =
x − a and x∗(0+) = a. Since W is linearly growing, (4.2iv) is easily verified.
Therefore W = V = Vν for every ν and ξ∗(·) is the optimal control process.

It is well known that the local time is not absolutely continuous. This
is why we need to admit controls ξ(s) which are not necessarily absolutely
continuous functions of s. �

Example 4.2. Consider the same problem as in the previous example but
with K̂ = {1,−1}. Then U = (−∞,∞) and (2.7) takes the form

(4.13) max{V (x) − Vxx(x) − αx2, |Vx(x)| − 1} = 0, ∀x ∈ (−∞,∞).

Following the procedure devised in Example 4.1, we look for a convex, poly-
nomially growing function W and constants −∞ ≤ a < b ≤ +∞ satisfying

W (x) −Wxx(x) = αx2, ∀a < x < b,

Wx(x) = −1, ∀x ≤ a,

Wx(x) = 1, ∀x ≥ b,

lim
x↓a

Wxx(x) = lim
x↑b

Wxx(x) = 0.

The last condition is analogous to (4.8) and it implies that W ∈ C2((−∞,
∞)). Also as in Example 4.1, this last condition follows from (4.13) and the
convexity of W . Now an elementary computation yields

W (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

αx2 + 2α+
(1 − 2αb)

sinh(b)
cosh(x), |x| < b

αb2 + x− b, x ≥ b

αb2 − x+ b, x ≤ −b,
and b = −a is the unique positive solution of

tanh(b) = b− 1

2α
.

Using the explicit form of W , we reduce (4.2) to the following equivalent
form:

x∗(t) ∈ (−b, b) a.e., t ≥ 0,

û∗(t) = 1 if x∗(t) ≤ 0, û∗(t) = −1 if x∗(t) > 0,

∫

[0,t)

χ{|x∗(s)|≥b}dξ
∗(s) = ξ∗(t), ∀t ≥ 0.
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Then the solution x∗(t) of the above equations is the Brownian motion re-
flected at the boundary of (−b, b). Also ξ∗ is the sum of the local times of
x∗(·) at b and −b (see [KS4] or Definition 7.3 in Chapter 4 of [IW]). �

In the above examples we used a procedure based on the convexity of
the value function. Indeed for any one dimensional problem satisfying the
hypotheses of Lemma 3.2, the value function can be constructed by this pro-
cedure. In particular the value function can be shown to be twice continuously
differentiable and the optimal state process to be a diffusion process reflected
in an interval. However when the value function is not convex, neither one of
these hold. We give an example to illustrate this point.

Example 4.3. Let O = (−∞,∞), f̂ ≡ 0, σ̂ ≡
√

2, ĉ(v) = |v| β = 1, U =
(−∞,∞). Set

(4.14) α = (e2 + 1)/4, x0 = 9 − α,

and

W (x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

αx2 + 2α− e coshx, |x| ≤ 1

10 − 2e−(|x|−x0)/2, |x| ≥ x0

|x| − 1 + α, |x| ∈ [1, x0].

We claim that there exists a smooth function L̂ satisfying

(4.15i) L̂(x) = αx2, |x| ≤ 1,

(4.15ii) L̂(x) = 10 − 3

2
e−(|x|−x0)/2, |x| ≥ x0,

(4.15iii) L̂(x) ≥ |x| − 1 + α, |x| ∈ [1, x0].

Indeed for |x| �∈ (1, x0), define L̂(x) by (4.15i) and (ii). Set

h(x) = L̂(x) − ‖x| − 1| − α, |x| �∈ (1, x0)

Then (4.14) yields

h(x0) =
1

2
, h(1) = 0.

Moreover

lim
x↑1

d

dx
h(x) = 2α− 1 =

e2 − 1

2
> 0.

Hence L̂(·) has an extension to (−∞,∞) which satisfies (4.15iii). We then
compute that Wxx(x) ≥ 0 for |x| ≤ x0 and
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W (x) −Wxx(x) = L̂(x), ∀|x| �∈ [1, x0],

|Wx(x)| = 1, ∀|x| ∈ [1, x0],

|Wx(x)| < 1, ∀|x| �∈ (1, x0),

W (x) −Wxx(x) = |x| − 1 + α ≤ L̂(x), ∀|x| ∈ [1, x0].

Hence, W is a classical solution of

max{W (x) −Wxx(x) − L̂(x), |Wx(x)| − 1} = 0, ∀x ∈ (−∞,∞).

We construct the optimal processes in three separate cases:
(a) |x| ≤ 1. Let x∗(·) be the Brownian motion reflected in (−1, 1) and

ξ∗(·) be the sum of its local times at 1 and −1. Let û∗(t) = −x∗(t).
(b) |x| ∈ (1, x0]. Let ξ∗(0+) = |x| − 1 and û∗(0) = − sign x. Then

|x∗(0+)| = 1. For t > 0 we construct x∗(t), u∗(t), ξ∗(t) as in case (a), but
starting from x(0+).

(c) |x| > x0. Let τ be the first time when

|x+
√

2w(τ)| = x0.

We then let ξ∗(t) = 0 for t ≤ τ and ξ∗(τ+) = x0 − 1. Also let û∗(t) =
− sign x for t ≤ τ . Then

x∗(t) = x+
√

2w(t), t ≤ τ,

x∗(τ+) = sign x.

For t > τ we construct x∗(t), ξ∗(t), û∗(t) as in case (a) but starting from
x∗(τ+).

It is easy to check that (ξ∗(·), û∗(·)) ∈ Âν satisfy (4.2). HenceW = V = Vν .
In this example

P = (−∞,−x0) ∪ (−1, 1) ∪ (x0,∞)

is not connected. Also W is not convex and not twice differentiable at x = x0

and −x0.
The following is a simple two-dimensional example.
Example 4.4. In this example O = IR2, f̂ ≡ 0, β = 1, σ̂ is equal to

√
2

times a 2×2 identity matrix,

U = (−∞, 0] × (−∞, 0]

and for v ∈ (v1, v2) ∈ U, x = (x1, x2) ∈ O,

ĉ(v) = −v1 − v2,
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L̂(x) = α(x2
1 + x2

2).

Then (2.7) reduces to

(4.16) max{V (x) −∆V (x) − α|x|2, Vx1(x) − 1, Vx2(x) − 1} = 0, ∀x ∈ IR2.

Let W be the function defined by (4.9). Then

V (x1, x2) = W (x1) +W (x2)

is a classical solution of (4.16). Moreover

P = (−∞, a) × (−∞, a)

and ∂P is not differentiable.
When U = IRn, ĉ(v) = |v|, σ̂ ≡

√
2 times the identity, and f̂ ≡ 0 (2.7)

reduces to

(4.17) max{βV (x) −∆V (x) − L̂(x), |DV (x)| − 1} = 0, ∀x ∈ O.

Then by analytical arguments Evans [E2] proved the following.
Theorem 4.2. Suppose that L̂ ∈ C2(Ō) and O is bounded. Then the value

function V is the unique classical solution of (4.17) and (2.8).
The W 2,∞ regularity proved by Evans is the best possible general result.

However for convex problems (i.e., those satisfying the hypotheses of Lemma
3.2) we expect the value function V to be twice continuously differentiable.
Indeed C2 regularity of the value function is proved by Soner and Shreve
[SSh1-2] under either one of the following assumptions:

(4.18i) O=U= IR2, f̂ ≡ 0, σ̂ = identity, ĉ(v) = |v|, L̂ strictly convex,

(4.18ii) U = {λv0 : λ ≥ 0}, and hypotheses of Lemma 3.2,

where v0 ∈ IRn is any nonzero vector. Also the finite horizon problem for the
second case is considered in [SSh2].

Now consider the case (4.18i). Then in [SSh1] the following change of
variables was useful. Let x∗ be the minimum of V and δ > 0 be sufficiently
small. The existence of x∗ was shown in [SSh1]. For t ≥ 0 and θ ∈ Sn−1 let
z(t; θ) ∈ IRn be the unique solution of

d

dt
z(t; θ) = DV (z(t; θ)), t > 0, θ ∈ Sn−1,

z(0; θ) = x∗ + δθ.

In [SSh1] it is shown that the map

(t, θ) → z(t, θ)
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is a diffeomorphism between [0,∞) ×Sn−1 onto IRn −Bδ(x
∗). Also for t ≥ 0.

d

dt
[|DV (z(t; θ))|2] = 2D2V (z(t; θ))DV (z(t; θ)) ·DV (z(t, θ)).

Since V is convex, |DV (z(t; θ))|2 is nondecreasing in t. Hence we may char-
acterize the region P by

P = Bδ(x
∗) ∪ {z(t; θ) : θ ∈ Sn−1, t < T (θ)},

where
T (θ) = inf{t ≥ 0 : |DV (z(t; θ))|2 ≥ 1}.

This calculation proves that P is a connected subset of IRn. Also the above
characterization of P is the first step in studying the regularity of ∂P and V .

For a general problem with a convex value function the appropriate change
of variables is

d

dt
z(t; θ) ∈ ∂H(DV (z(t; θ))),

where ∂H(p) is the subdifferential of H in the sense of convex analysis. How-
ever the properties of this change of variables have not yet been studied.

We finally remark that the region P does not have a special geometric
property. In particular, P in general is not a convex set even if the hypotheses
of Lemma 3.2 hold. In fact under (4.18ii), an analytical argument based on
the connection between singular control and optimal stopping shows that for
a large class of problems the complement of P is convex.

VIII.5 Viscosity solutions

In this section we will prove that the value function V is a viscosity solu-
tion of (2.7) in O. We assume that V ∈ Cp(O) and it satisfies the dynamic
programming principle, i.e., for every x ∈ O and stopping time θ > 0,

(5.1) V (x) = inf
ν

inf
Aν

{Exe
−β(τ∧θ)V (x(τ ∧ θ))

+Ex

∫

[0,τ∧θ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]},

where τ is the exit time of x(·) from O. Equation (5.1) is a straightforward
modification of V(2.2) and I(7.12). Indeed the continuity of V and (5.1) can
be proved as in Section IV.7 when O = IRn and as in Section V.2 when O is
bounded. In the latter case we need to assume I(3.11) and V(2.3).

Theorem 5.1. Assume V ∈ Cp(O) and (5.1). Then V is a viscosity solu-
tion of (2.7) in O.

Recall that in Sections II.7 and V.2, we proved the viscosity property of
the value function of other control problems by using Theorem II.5.1. The
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following proof however does not use Theorem II.5.1. Instead we will give
a more direct proof. As we will see, the subsolution property follows from
elementary considerations and a counterposition argument is used for the
supersolution part.

Proof. (Subsolution). Let w ∈ C2(O) ∩Cp(O) and x̄ ∈ O be a maximizer
of V − w on O with V (x̄) = w(x̄). Then for any reference probability system
ν, (ξ(·), û(·)) ∈ Âν and h > 0, (5.1) with θ = h implies

(5.2) w(x̄) = V (x̄) ≤ Ex̄

∫

[0,τ∧h]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

+Ex̄e
−β(τ∧h)w(x(τ ∧ h)).

1. For δ > 0 and v̂ ∈ U , set û(s) ≡ v̂ and

ξ(s) =

{

0, s = 0
δ, s > 0.

Then by (3.5), x(0+) = x̄+ δv̂. Let h go to zero in (5.2) to obtain

w(x̄) ≤ δĉ(v̂) + w(x̄+ δv̂),

for every δ > 0, v̂ ∈ U . Now divide both sides by δ and let δ go to zero. Then
in the notation of Section 2,

(5.3) H(Dw(x̄)) ≤ 0.

2. In this step we use (5.2) with ξ ≡ 0. Then the standard Ito’s rule applied
to e−βsw(x(s)) yields

(5.4) Ex̄e
−β(t∧h)w(x(t ∧ h)) = −Ex̄

∫ t∧h

0

e−βsLw(x(s))ds+ w(x̄).

Use (5.4) in (5.2) and recall that ξ ≡ 0. Then a straightforward limiting
argument yields

(5.5) Lw(x̄) − L̂(x̄) ≤ 0.

3. Combining (5.3) and (5.5) we conclude that V is a viscosity subsolution
of (2.7) in O.

(Supersolution). Let w ∈ C2(O) ∩ Cp(O) and x̄ ∈ O be a minimizer of
V − w on O with V (x̄) = w(x̄). We need to show that

(5.6) max{Lw(x̄) − L̂(x̄), H(Dw(x̄))} ≥ 0.

4. Suppose the contrary. Hence the left-hand side of (5.6) is negative and
by the smoothness of w, there are δ, γ > 0 satisfying

(5.7) max{Lw(x) − L̂(x), H(Dw(x))} ≤ −γ, ∀x ∈ Bδ(x̄),
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where Bδ(x̄) = {x : |x− x̄| ≤ δ}. Since O is open by changing δ, if necessary,
we may assume that Bδ(x̄) ⊂ O.

In the next four steps we will obtain a contradiction to (5.7). A brief
summary of these steps is the following. In Step 5, we will use Ito’s rule and
(5.7) to derive (5.14). In Step 6, we will show that the sum of the last two
terms in (5.14) is uniformly negative. See (5.15) and (5.16). We then use the
dynamic programming (5.1) to obtain a contradiction in Step 8.

5. Let (ξ(·), û(·) ∈ Âν be given and θ be the exit time of x(·) from Bδ(x̄).
Since Bδ(x̄) ⊂ O, θ < τ . Moreover, since x(·) is left continuous with right
limits, the filtration Ft is right continuous and Bδ(x̄) is closed, θ is an Ft-
stopping time.

As in (4.4) we apply the Ito’s rule for semimartingales to e−βtw(x(t)) for
t ∈ (0, θ) to obtain

(5.8)

w(x̄) = Ex̄e
−βθw(x(θ))

+Ex̄

∫ θ

0

e−βsLw(x(s))ds

+Ex̄

∫ θ

0

e−βs[−û(s) ·Dw(x(s))]dξc(s)

+Ex̄

∑

0≤s<θ

e−βs[w(x(s)) − w(x(s+))],

where, as in (4.4),

ξc(t) = ξ(t) −
∑

0≤s<t

[ξ(s+) − ξ(s)].

For 0 ≤ s < θ, (5.7) implies that

(5.9) Lw(x(s)) ≤ L̂(x(s)) − γ

H(Dw(x(s))) ≤ −γ.
Taking v = û(s)/|û(s)| in (2.4) and then using (2.2iv) we obtain

(5.10) −û(s) ·Dw(x(s)) ≤ ĉ(û(s)) − γ|û(s)|.

Also

w(x(s)) − w(x(s+)) =

∫ 1

0

−(x(s+) − x(s)) ·Dw(ρx(s+) + (1 − ρ)x(s))dρ,

x(s+) − x(s) = û(s)[ξ(s+) − ξ(s)].

If s < θ, then xρ = ρx(s+) + (1 − ρ)x(s) ∈ Bδ(x̄) for all ρ ∈ [0, 1]. Using (5.7)
at xρ we obtain
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H(Dw(xρ)) ≤ −γ.
Combining the three previous statements, we obtain that for s < θ

(5.11)
w(x(s)) − w(x(s+)) =

∫ 1

0

−û(s)[ξ(s+) − ξ(s)] ·Dw(xρ)dρ

≤ [ĉ(û(s)) − γ|û(s)|] [ξ(s+) − ξ(s)].

Substituting (5.9), (5.10), (5.11) into (5.8),

(5.12)

w(x̄) ≤ Ex̄e
−βθw(x(θ))

+Ex̄

∫

[0,θ)

e−βs[L̂(û(s))ds+ ĉ(û(s))dξ(s)]

− γEx̄

∫

[0,θ)

e−βs[ds+ |û(s)|dξ(s)].

Since x(·) is left continuous and θ is the exit time from Bδ(x̄), x(θ
+) �∈

intBδ(x̄) and x(θ) ∈ Bδ(x̄). Also

x(θ+) = x(θ) + û(θ)[ξ(θ+) − ξ(θ)].

Then there is a random variable λ ∈ [0, 1] such that

xλ = x(θ) + λû(θ)[ξ(θ+) − ξ(θ)] ∈ ∂Bδ(x̄) = {x : |x− x̄| = δ}.

Moreover the argument that led us to (5.11) yields

w(x(θ)) ≤ w(xλ) + λ[ĉ(û(θ)) − γ|û(θ)|] [ξ(θ+) − ξ(θ)].

Since V − w is minimized at x̄ with V (x̄) = w(x̄), w ≤ V . Suppose that
x(θ+) ∈ Ō. Then (3.6) yields

w(xλ) ≤ V (xλ)

≤ V (x(θ+)) + (1 − λ)ĉ(û(θ))[ξ(θ+) − ξ(θ)]

Hence

(5.13) w(x(θ)) ≤ V (x(θ+)) + [ĉ(û(θ)) − λγ|û(θ)|] [ξ(θ+) − ξ(θ)],

if x(θ+) ∈ Ō. If x(θ+) �∈ Ō, we set V (x(θ+)) = 0. Then arguing as in the
proof of Theorem 4.1(a) we obtain (5.13). Now substitute (5.13) into (5.12),
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(5.14)

w(x̄) ≤ Ex̄e
−βθV (x(θ+))

+

∫

[0,θ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

− γEx̄

∫

[0,θ)

e−βs[ds+ |û(s)|dξ(s)]

− γEx̄e
−βθλ|û(θ)|[ξ(θ+) − ξ(θ)].

6. Let

α(ξ, û) = Ex̄

∫

[0,θ)

e−βθ[ds+ |û(s)|dξ(s)]

+Ex̄e
−βθλ|û(θ)|[ξ(θ+) − ξ(θ)].

We claim that there is α0 > 0 satisfying

(5.15) α(ξ, û) ≥ α0 > 0,

for every (ξ(·), û(·)) ∈ Âν and reference probability system ν. Indeed consider
the singular stochastic control problem with O = Bδ(x̄), state dynamics (3.1)
and L̂(x) ≡ 1, ĉ(v̂) = |v̂|, i.e., the payoff functional is given by

J̃(x; ξ, û) = Ex

∫

[0,θ]

e−βs[ds+ |û(s)|dξ(s)].

For (ξ(·), û(·)) ∈ Âν set

ξ̄(t) =

⎧

⎨

⎩

ξ(t), t ≤ θ

ξ(θ) + λ[ξ(θ+) − ξ(θ)], t > θ,

where λ is as in the previous step. Since the random variable λ is an ex-
plicit function of ξ(θ+) and ξ(θ), ξ(·) is progressively measurable. Therefore,
(ξ̄(·), û(·)) ∈ Âν and

α(ξ; û) = J̃(x̄; ξ̄, û).

So we need to show that
Ṽ (x̄) ≥ α0,

where
Ṽ (x) = inf

ν
inf
Aν

J̃(x; ξ, û), |x− x̄| < δ.

For C > 0, set
W (x) = C(δ2 − |x− x̄|2), x ∈ Bδ(x̄).

Then
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LW (x) = C[βδ2 − β|x− x̄|2 + tr â(x) + 2f̂(x) · (x− x̄)] ≤ 1, x ∈ Bδ(x̄),

if

C ≤ C0 =

{

sup
|x−x̄|≤δ

[βδ2 + tr â(x) + 2|f̂(x) · (x− x̄)|]
}−1

.

Hence
max{LW (x) − 1, |DW (x)| − 1} ≤ 0, x ∈ Bδ(x),

W (x) = 0, x ∈ ∂Bδ(x),

provided that

C = C∗ = min

{

C0,
1

2δ

}

.

Now a standard application of Ito’s rule for semimartingales imply that

Ṽ (x) ≥ W (x), x ∈ Bδ(x).

Hence
α(ξ, û) ≥ Ṽ (x̄) ≥ W (x̄) = C∗δ2 > 0.

7. Since α(ξ, û) ≥ α0 > 0, (5.14) yields that

(5.16)

V (x̄) = w(x̄) ≤ Ex̄e
−βθV (x(θ+))

+Ex̄

∫

[0,θ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)] − γα0,

for every (ξ(·), û(·)) ∈ Âν .
8. For h > 0, θ + h is a stopping time. Hence (5.1) yields

V (x̄) = inf
ξ,û,ν

{

Ex̄

∫

[0,(θ+h)∧τ)

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

+Ex̄e
−β((θ+h)∧τ)V (x((θ + h) ∧ τ))

}

.

We let h go to zero. Then the positivity of L̂ and ĉ and the continuity of
V imply that

V (x̄) = inf
ξ,û,ν

{

Ex̄

∫

[0,θ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

+Exe
−βθV (x(θ+))

}

.

Clearly the above equation contradicts (5.16). Hence V is a supersolution of
(2.7) in O. �

Comparison principles for classical solutions were obtained by Evans [E2]
and Soner and Shreve [SSh1-2]. A combination of Evans’ arguments and the
theory developed in Chapter V yields comparison principles for viscosity sub-
and supersolutions. See [Zhu].
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VIII.6 Finite fuel problem

A simplified model of spacecraft control led Bather and Chernoff [BC1-2] to
singular problems similar to the kind formulated in Section 3. In the context
of spacecraft control, the control variable ξ(t) is the total amount of fuel used
by the spacecraft up to time t ≥ 0 and û(t) is the push direction at time t ≥ 0.
With this interpretation it is appropriate to impose a constraint

(6.1) ξ(t) ≤ z, ∀t ≥ 0,

with a given constant z > 0. In the literature the singular stochastic control
problem with the above constraint is called the finite fuel problem.

For x ∈ O and z ≥ 0, let Âν(z) be the set of all controls (ξ(·), û(·)) ∈ Âν

satisfying (6.1). Then the value function is defined by

Vν(x, z) = inf
Âν(z)

J(x; ξ, û),

V (x, z) = inf
ν
Vν(x, z), x ∈ O, z ≥ 0.

The dynamic programming principle takes the form

V (x, z) = inf
ν,Âν(z)

{

E

∫

[0,θ]

e−βs[L̂(x(s))ds+ ĉ(û(s))dξ(s)]

+e−βθV (x(θ), z − ξ(θ))

}

for any stopping time θ ≤ τ . Hence the dynamic programming equation is

(6.2) max{(LV (·, z))(x) − L̂(x), Ĥ(DxV (x, z), DzV (x, z))} = 0,

∀x ∈ O, z > 0,

where L is as in (2.5ii) and for p ∈ IRn, pz ∈ IR,

Ĥ(p, pz) = sup
v∈K̂

{−p · v − ĉ(v)} + pz.

Note that for the finite fuel problem, in addition to x(s), z(s) = z − ξ(s) is
also a state variable. This new state variable gives rise to the extra term pz

in the definition of Ĥ.
Appropriate boundary conditions are (2.8) for x ∈ ∂O, z > 0, whereas for

x ∈ O, z = 0

(6.3) V (x, 0) = h(x) = Ex

∫ τ

0

e−βsL̂(x(s))ds,

where x(s) is the uncontrolled process, i.e.,
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dx(s) = f̂(x(s))ds+ σ̂(x(s))dw(s), s > 0.

When L̂ is convex, polynomially growing, σ̂, f̂ are affine and K̂ = {ν0} an
elegant simple solution of the finite fuel problem was found by Chow-Menaldi-
Robin [CMR]. A probabilistic explanation was then given by
Karatzas [K2]. For simplicity let us assume O = IR, ν0 = −1, ĉ(v) = v,

σ̂ ≡
√

2, f̂ ≡ 0. Then

Lφ(x) = βφ(x) − φxx(x), x ∈ IR,

Ĥ(px, pz) = px + pz − 1.

Proposition 6.1. Let V̂ (x) be the value function of the unconstrained
problem (i.e., with no upper bound z for ξ(t)), and h(x) be as in (6.3). Then

(6.4) V (x, z) = V̂ (x) − V̂ (x− z) + h(x− z), ∀x ∈ IR, z ≥ 0.

Moreover for z > 0 the optimal Markov policy for the finite fuel problem is
equal to that of unconstrained problem.

Proof. Let W (x, z) be the right-hand side of (6.4). We will show that W
is a solution of (6.2). First recall that (see Example 4.1) V̂ ∈ C2(−∞,∞) and
there exists a such that

βV̂ (x) − V̂xx(x) = L̂(x), ∀x ≤ a,

V̂x(x) = 1, ∀x ≥ a.

Then V̂ (x) = V̂ (a) + x− a for x ≥ a. Since V̂ also satisfies

βV̂ (x) − V̂xx(x) ≤ L̂(x), ∀x,

we conclude that
β[V̂ (a) + x− a] ≤ L̂(x), ∀x ≥ a,

and βV̂ (a) = L̂(a). Hence L̂x(a) ≥ β and by convexity of L̂,

(6.5) L̂(x− z) + βz ≤ L̂(x), ∀x− z ≥ a, z ≥ 0.

Also h satisfies the linear equation

(6.6) βh(x) − hxx(x) = L̂(x), ∀x.

Combining above equations we obtain

Ĥ(DW (x, z)) = Wx(x, z) +Wz(x, z) − 1 = V̂x(x) − 1 ≤ 0, ∀x,

Ĥ(DW (x, z)) = 0, ∀x ≥ a,

βW (x, z) −Wxx(x, z) = L̂(x), ∀x ≤ a.
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Also we need to show that

βW (x, z) −Wxx(x, z) ≤ L̂(x), ∀x ≥ a.

The above inequality follows immediately if x ≥ a ≥ x−z. When x ≥ x−z ≥ a,
by (6.5) we obtain

βW (x, z) −Wxx(x, z) = β[V̂ (a) + x− a] − β[V̂ (a) + x− z − a] + L̂(x− z)

= βz + L̂(x− z)

≤ L̂(x).

Hence W is a polynomially growing classical solution of (6.2) and (6.3). Since
ξ(t) is bounded from above by z, an application of Ito’s formula yields (6.4).

Now observe that

βV (x, z) − Vxx(x, z) = L̂(x), ∀x ≤ a, z > 0,

Vx(x, z) + Vz(x, z) = 1, ∀x ≥ a, z > 0.

Therefore if z > 0, then the optimal policy can be summarized as follows,

(i) jump immediately to a, if x > a and z ≥ x− a,
(ii) jump immediately to x− z, if x ≥ a+ z,
(iii) remain in the interval (−∞, a] by reflection, if x < a, z > 0. �.

If n > 1, (6.4) is replaced by

V (x, z) = V̂ (x) − V̂ (x+ zν0) + h(x+ zν0).

VIII.7 Historical remarks

The first examples of stochastic singular control problems were formulated by
Bather and Chernoff [BC1-2]. In 1980 Benes, Shepp and Witsenhaussen ex-
plicitly solved a one dimensional example by observing that the value function
in their example is twice continuously differentiable [BSW]. Since this regu-
larity of the value function reduces to a condition at the interface, Benes et
al. called this regularity property the principle of smooth fit. In the regularity
direction, Evans proved that the gradient of the value function is Lipschitz
continuous [E2]. See also Ishii and Koike [IK1]. In the absence of convexity this
is the best possible regularity result since there are value functions which are
not twice differentiable; see Example 4.3. Recently, Soner and Shreve proved
the twice differentiability of the value function under two sets of assumptions,
(4.18i) and (4.18ii) [SSh1-2].
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One dimensional convex problem received much attention in the early
1980’s. Karatzas [K1], Harrison and Taksar [HT], Menaldi and Robin [MR]
and Chow, Menaldi and Robin [CMR] provided an almost complete analysis
of one dimensional problems. The connection between singular control and
stopping time problems was pursued by Karatzas and Shreve [KS1-2]. Finite
fuel problems were studied by Karatzas [K2], Karatzas and Shreve [KS3] and
Chow, Menaldi and Robin [CMR].

If the value function is smooth, the optimal control can be constructed
by using the reflected Brownian motion. In one space dimension, this is al-
ways possible. However in higher space dimensions the construction of the
reflected Brownian motion requires the smoothness of the interface separat-
ing the two phases of the equation. See Lions and Sznitman [LS] and Varad-
han and Williams [VW] for the construction of reflected Brownian motions.
Soner and Shreve proved the regularity of the interface and then constructed
the optimal process as the reflected Brownian motion in [SSh1-2]. Williams-
Chow-Menaldi [WCM] also proved partial regularity results for the interface
when there are finitely many push directions.

The existence of an optimal control can also be obtained by abstract com-
pactness arguments. In general Krylov introduced a framework in which the
singular control problems are also included; see Section 1.2, Exercise 4 in [Kr1].
For a convex singular control problem Menaldi and Taksar proved existence
by more direct arguments [MT].



IX

Finite Difference Numerical Approximations

IX.1 Introduction

In many of the examples given in earlier chapters to illustrate the theory,
the dynamic programming equation could be solved rather explicitly to ob-
tain the value function and optimal Markov control policies. However, these
examples are exceptional. For most optimal stochastic control models aris-
ing from applications, the dynamic programming equation can only be solved
approximately by numerical computations.

This chapter is intended as a brief introduction to the topic of numerical
solution of HJB partial differential equations. We consider a finite difference
scheme due to Kushner [Ku1] for computing approximately the value func-
tion V (t, x) for a controlled Markov diffusion on a finite time horizon. In this
approximation scheme, first order partial derivatives are replaced by corre-
sponding forward or backward finite difference quotients. Similarly, second
order partial derivatives are replaced by appropriate second order finite dif-
ference quotients (Section 3.) An important feature of Kushner’s scheme is
that the discretized HJB equation is itself the dynamic programming equa-
tion for a suitably defined stochastic control problem for Markov chains. This
fact was exploited by Kushner [Ku1], [Ku3] to give a probabilistic proof of
convergence of the discrete value function to V (t, x) as step sizes tend to zero.
Viscosity solution methods provide another way to prove convergence; and it
is that method which we will follow in Sections 4 and 5. The method was
introduced, in a more abstract setting, by Barles and Souganidis [BS].

Once the HJB equation has been discretized, there remains the important
question of efficient computational methods for solving the discrete dynamic
programming equation. We shall merely allude briefly to the considerable
body of literature in that direction. The reader should consult the book by
Kushner and Dupuis [KuD] which provides a thorough treatment and many
references.
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IX.2 Controlled discrete time Markov chains

In this section we will describe briefly the method of dynamic programming in
discrete time, for finite time horizon and infinite time horizon with discounted
cost criterion. The book by Bertsekas [Bs] provides a good detailed account
of this topic. We first formulate a finite horizon stochastic control problem.
Let Σ be a set, which is either finite or countably infinite. We consider times
ℓ = k, k + 1, · · · ,M , where k denotes an initial time and M a terminal time.
The state at time ℓ is denoted by xℓ and the control chosen at time ℓ by
uℓ. These are discrete-time stochastic processes, with xℓ ∈ Σ, uℓ ∈ U . The
state dynamics are prescribed by a family of one step transition probabilities
pv

ℓ (x, y). In analogy with Section III.8 for the continuous time case, we define
discrete time admissible control systems π as follows. We call

π = (Ω, {Fℓ}, P, x·, u·)

admissible if (Ω,F , P ) is a probability space, {Fℓ} is an increasing family of
σ - algebras (ℓ = k, k + 1, · · · ,M), Fℓ ⊂ F and

(2.1)

(i) xk = x, xℓ is Fℓ − measurable.
(ii) uℓ is Fℓ − measurable.

(iii) P (xℓ+1 = y|Fℓ) = puℓ

ℓ (xℓ, y) P − almost surely for
ℓ = k, · · · ,M − 1.

The problem is to minimize a criterion (or payoff functional) of the form:

(2.2) Jk(x;π) = Ekx

{

M−1
∑

ℓ=k

Lℓ(x
ℓ, uℓ) + ψ(xM )

}

.

To avoid undue technical complications we make the following rather
strong assumptions:

(2.3)

(a) There exists K such that|Lℓ(x, v)| ≤ K, |ψ(x)| ≤ K
for all x ∈ Σ, v ∈ U, ℓ = k, · · · ,M − 1.

(b) U is compact.

(c) pv
ℓ (x, y) is continuous on U, for all x, y ∈ Σ.

(d) For each x ∈ Σ there exists a finite set
Γx such that pv

ℓ (x, y) = 0 for y �∈ Γx.

In analogy with the continuous time case (Section III.7) let us introduce the
value function

(2.4) Vk(x) = inf
π
Jk(x;π), x ∈ Σ.
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A straightforward argument (which we shall omit) shows that the value func-
tion is the unique bounded solution to the dynamic programming equation

(2.5) Vk(x) = min
v∈U

[

∑

y ∈Σ

pv
k(x, y)Vk+1(y) + Lk(x, v)

]

, k < M,

with the terminal data

(2.6) VM (x) = ψ(x).

Moreover, an optimal discrete time Markov control policy u∗
k(x) is found

by taking arg min over U on the right side of (2.5).

Infinite horizon discounted control problem. Let us now consider
times ℓ = 0, 1, 2 · · · and autonomous state dynamics for a controlled Markov
chain, prescribed by one step transition probabilities pv(x, y). The concept of
admissible control system π is defined as above. Let

(2.7) J(x;π) = Ex

∞
∑

ℓ=0

λℓL(xℓ, uℓ),

where λ is a discount factor (0 < λ < 1.) Let us make the same assumptions
about L,U and pv(x, y) as in (2.3). Let

(2.8) V (x) = inf
π
J(x;π).

The dynamic programming equation is now [Bs, Chap V]

(2.9) V (x) = min
v∈U

[L(x, v) + λ
∑

y∈Σ

pv(x, y)V (y)].

An optimal stationary Markov control policy u∗(x) is found by taking arg min
over U . Let us denote the right side of (2.9) by F (V )(x). Then (2.9) states
that V = F (V ); i.e. V is a fixed point of F . It is easy to verify that

(2.10) ||F (V ) − F (W )|| ≤ λ||V −W ||,

where || || is the sup norm. Since 0 < λ < 1, the contraction property (2.10)
implies that there is a unique fixed point V , which is in fact the value function
in (2.8). For proofs of these facts, see Bertsekas [Bs, Sec. 5.3].

For infinite horizon discounted problems, two standard methods for com-
puting the value function V are successive approximation (or value iteration)
and approximation in policy space. The method of value iteration gives V as
the uniform limit of a sequence Wm,m = 0, 1, 2 · · ·, where Wm+1 = F (Wm).
From the definition (2.9), the operator F is monotone:

(2.11) F (φ1) ≤ F (φ2) if φ1 ≤ φ2.
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Therefore, if W 0 is chosen such that W 0 ≤ F (W 0), then the approximating
sequence is monotone nondecreasing: Wm ≤ Wm+1.

The method of approximation in policy space proceeds as follows. Let u0

be an initial choice of stationary Markov control policy. Define Wm, um+1

successively for m = 0, 1, 2, · · · by

(2.12) Wm(x) = L(x, um(x)) + λ
∑

y∈Σ

pum(x)(x, y)Wm(y), x ∈ Σ,

(2.13) um+1(x) ∈ arg min[L(x, v) + λ
∑

y∈Σ

pv(x, y)Wm(y)].

Note that (2.12) is a linear system of equations for Wm(x). The sequence
Wm(x) is monotone nonincreasing (Wm ≥ Wm+1) and it converges to V (x)
as m → ∞. The method is closely related to Newton’s method for solving
nonlinear equations [Bs, p. 236].

For refinements of these methods for computing the value function and
illustrative examples, we refer to [Bs, Chapter 5].

IX.3 Finite difference approximations to HJB equations

In this section we describe a finite difference scheme for approximate solution
of the Hamilton-Jacobi-Bellman PDE IV(3.3) for a controlled Markov diffu-
sion. This approximation scheme is a slight simplification of one introduced
by Kushner [Ku1], who used probabilistic methods to prove convergence as
step sizes tend to 0. In Sections 4 and 5 we will obtain convergence by another
method based on viscosity solution techniques. This method uses a technique
introduced by Barles and Souganidis [BS].

In Kushner’s scheme, a controlled Markov diffusion in IRn is approximated
by a controlled Markov chain on a lattice in IRn with nearest neighbor tran-
sitions. The dynamic programming equation for this controlled Markov chain
turns out to be related to the HJB equation IV(3.3) by replacing first and
second order partial derivatives by appropriate finite difference quotients.

To simplify notations, let us assume autonomous state dynamics and run-
ning cost functions f(x, v), σ(x, v), L(x, v) in Section IV.2. Let us also assume
in addition to IV(2.2) that:

(3.1)
(a) U is compact

(b) f, σ, L, Lx and Lt are bounded on Q0 × U.

We consider the HJB partial differential equation

(3.2) −Vt + H(x,DxV,D
2
xV ) = 0,
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with H(x, p,A) as in IV(3.2). As in Chapters IV and V, we consider (3.2)
either in Q0 with bounded terminal (Cauchy) data

(3.3) V (t1, x) = ψ(x), x ∈ IRn,

or in a cylindrical region Q with the boundary data IV(3.4) on ∂∗Q.
To begin with, let us consider dimension n = 1 and the case of Cauchy

data (3.3). Afterward we include lateral boundary conditions, and outline
extensions to dimension n > 1. According to IV(3.2) we have for n = 1.

H(x, p,A) = max
v∈U

[−f(x, v)p− 1

2
a(x, v)A− L(x, v)]

with a = σ2.
Consider a time step h > 0 and a spatial step δ > 0, which will be related

in such a way that inequality (3.7) below holds. The approximating controlled
discrete time Markov chain has as state space the 1 dimensional lattice

(3.4) Σh
0 = {x = jδ : j = 0,±1,±2, · · ·}.

Let

(3.5)
f+(x, v) = max(f(x, v), 0)

f−(x, v) = max(−f(x, v), 0).

We call f+ and f− the positive and negative parts of f . The dynamics of the
controlled Markov chain are specified by the one step transition probabilities

(3.6)

pv(x, x+ δ) =
h

δ2
[
a(x, v)

2
+ δf+(x, v)]

pv(x, x− δ) =
h

δ2
[
a(x, v)

2
+ δf−(x, v)]

pv(x, x) = 1 − ph(x, x+ δ) − ph(x, x− δ).

If y = x+ jδ with j �= 0,±1, then pv(x, y) = 0. Thus, one-step transitions are
to nearest neighbor states. By definition, pv(x, x±δ) ≥ 0. We also require that
pv(x, x) ≥ 0, which imposes a restriction on h and δ. A sufficient condition
that pv(x, x) ≥ 0 is that

(3.7) h[a(x, v) + δ|f(x, v)|] ≤ δ2

for all (x, v) ∈ IR1×U . From now on we choose δ = δ(h) such that (3.7) holds.
Let us consider the Markov chain control problem of minimizing

(3.8) Jh
k (x;π) = Ekx

{

M−1
∑

ℓ=k

hL(xℓ, uℓ) + ψ(xM )

}
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Thus, in (2.2) we take Lℓ = hL. Let th0 = t1 −Mh, where th0 → t0 as h ↓ 0.
We write

Qh
0 =

{

(t, x) : t = th0 + kh, k = 0, 1, · · · ,M, x ∈ Σh
0

}

.

We denote the value function in (2.4) by

Vk(x) = V h(t, x), (t, x) ∈ Qh
0 .

Thus, one discrete time step corresponds to a step of length h on the time
scale for the controlled Markov diffusion process. The dynamic programming
equation (2.5) becomes

(3.9) V h(t, x) = min
v∈U

[pv(x, x+ δ)V h(t+ h, x+ δ)

+pv(x, x− δ)V h(t+ h, x− δ) + pv(x, x)V h(t+ h, x) + hL(x, v)],

with the terminal data (3.3) for t = t1. In order to rewrite (3.9) in a form
which resembles the HJB equation (3.2) we introduce the following notations.
For any function W (t, x), let

∆+
xW =

W (t, x+ δ) −W (t, x)

δ

∆−
xW =

W (t, x) −W (t, x− δ)

δ

∆2
xW =

W (t, x+ δ) +W (t, x− δ) − 2W (t, x)

δ2

These are respectively the forward and backward first order difference quo-
tients, and second order difference quotient in x. Similarly, we consider the
first order difference quotient backward in time

∆−
t W =

W (t, x) −W (t− h, x)

h
.

Let us replace t by t − h and t + h by t in (3.9). By using (3.6), rearranging
terms and dividing by h we get

(3.9
′

) −∆−
t V

h + H̃(x,∆+
x V

h, ∆−
x V

h, ∆2
xV

h) = 0

where

(3.10) H̃(x, p+, p−, A) = max
v∈U

[−f+(x, u)p+ + f−(x, v)p−

−a(x, v)
2

A− L(x, v)].

Observe that
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(3.11) H̃(x, p, p, A) = H(x, p,A).

Equation (3.9
′

) is called an explicit finite difference scheme, backward in time.
Since

(3.12) V h(t− h, x) = V h(t, x) − hH̃(x,∆+
x V

h, ∆−
x V

h, ∆2
xV

h)

and the difference quotients ∆±
x V

h, ∆2
xV

h are evaluated at (t, x), the values
of V h at time t − h are explicitly expressed in terms of the values of V h at
time t. We expect that V h → V as h → 0, where V is the value function for
the controlled diffusion process. This will be proved in Section 4.

Remark 3.1. If ψ(x) ≤ φ(x) for all x ∈ Σh
0 and ψ(x̄) = φ(x̄), then

∆+ψ(x̄) ≤ ∆+φ(x̄), ∆−ψ(x̄) ≥ ∆−φ(x̄), ∆2ψ(x̄) ≤ ∆2φ(x̄).

By (3.10) we have for x = x̄

H̃(x̄, ∆+
x φ,∆

−
x φ,∆

2
xφ) ≤ H̃(x̄, ∆+

x ψ,∆
−
x ψ,∆

2
xψ).

This form of monotonicity is a direct analogue of the maximum principle
formulated in Section II.4. Since viscosity solution methods depend in an
essential way on maximum principles, this observation will be important when
proving the convergence of V h to V by a viscosity solution method.

Implicit finite difference scheme. If the backward time difference ∆−

in (3.9
′

) is replaced by a forward time difference ∆+, then we obtain instead
of (3.12) the following equation:

(3.13) Wh(t, x) = Wh(t+ h, x) − hH̃(x,∆+
xW

h, ∆−
xW

h, ∆2
xW

h),

where ∆±
xW

h, ∆2
xW

h are again evaluated at (t, x). This is called a backward
implicit finite difference scheme, since (nonlinear) equations must be solved
to determine Wh(t, ·) from Wh(t+ h, ·). The implicit scheme (3.13) also has
a stochastic control interpretation, under restrictions on the step sizes h and
δ similar to (3.7). See Kushner [Ku1, Sec. 7.3].

Boundary conditions. In the discussion above we considered x ∈ Σh
0 ,

where Σh
0 is the infinite lattice defined by (3.4) with δ = δ(h). For actual

numerical calculations Σh
0 must be replaced by some finite subset Σh, and

then the one step transition probabilities must be changed at boundary points
of Σh. Let us suppose that

(3.14) Σh =
{

x ∈ Σh
0 : |x| ≤ Bh

}

,

where Bh represents some finite “cutoff” parameter (Bh ∈ Σh
0 .) We need to

redefine the controlled Markov chain so that xℓ ∈ Σh. If x ∈ Σh and |x| < Bh,
then the one step transition probabilities are again as in (3.6). Thus (3.9) is
again the dynamic programming equation at interior points of Σh. We must
have
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(3.15) pv(Bh, Bh + δ) = pv(−Bh,−Bh − δ) = 0.

If only nearest neighbor transitions are allowed from ±Bh, then the values as-
signed to pv(Bh, Bh −δ) and pv(−Bh,−Bh +δ) effectively prescribe boundary
conditions for V h at ±Bh. We may, for instance, take these to be the same
as in (3.6). This corresponds, roughly speaking, to assigning in continuous
variables the Neumann boundary condition ∂V/∂x = 0 at the endpoints. If
Bh → ∞ as h → 0, it follows from Theorem 5.3 below that the same limit for
V h is obtained no matter which boundary conditions at ±Bh are chosen. The
limit V is the value function for the controlled Markov diffusion on IR1.

The boundary conditions described above were introduced artificially at
the “cutoff” endpoints ±Bh. Let us next consider the problem of optimally
controlling a diffusion until the time τ when (s, x(s)) exits from a finite
rectangle Q = [t0, t1) × (x0, x1). This problem was formulated in Section
IV.2, where now O = (x0, x1) is a finite 1-dimensional interval. We now take
δ = N−1(xh

1 −xh
0 ), where xh

0 , x
h
1 are approximations to x0, x1 with N a “large”

positive integer and

Σh =
{

xh
0 + jδ : j = 0, 1, · · · , N

}

.

For the controlled discrete time Markov chain, the one step transition proba-
bilities are defined by (3.6) at interior points x ∈ Σh, i. e. those points with
1 ≤ j ≤ N − 1. The endpoints of Σh are absorbing:

(3.16) pv(xh
0 , x

h
0 ) = pv(xh

1 , x
h
1 ) = 1.

The objective is to chose an admissible control system π which minimizes

(3.17) Jh
k (x;π) = Ekx

{

µ−1
∑

ℓ=k

hL(xℓ, uℓ) + Ψ(tµ, xµ))

}

where tµ = th0 + µh and either µ is the first step at which xµ is an endpoint
of Σh or µ = M if xℓ is interior to Σh for k ≤ ℓ ≤ M − 1. The dynamic
programming equation (3.9

′

) is satisfied by the value function V h(t, x) if x is
an interior point of Σh. In addition, we have the same boundary condition as
in IV(3.4):

(3.18) V h(t, x) = Ψ(t, x),

for all (t, x) ∈ ([t0, t1) × {xh
0 , x

h
1} ∪ ({t1} × [xh

0 , x
h
1 ]).

Infinite horizon discounted problem. Let us consider the controlled
diffusion problem formulated in Section IV.5. For simplicity, we again take
O = IR1. The dynamics of the approximating discrete time Markov chain are
again (3.6), and the criterion to be minimized is

(3.19) Jh(x;π) = Ex

∞
∑

ℓ=0

hλℓL(xℓ, uℓ), x ∈ Σh
0 ,
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where λ = exp(−βh) and β > 0. The value function

(3.20) V h(x) = inf
π
Jh(x;π)

satisfies (2.9), which becomes after using (3.6) and rearranging terms

(3.21) 0 = (
1 − e−βh

h
)V h + H̃(x,∆+

x V
h, ∆−

x V
h, ∆2

xV
h).

In view of (3.11) this can be regarded as a discretization of the HJB equation
IV(5.8) for the infinite horizon controlled diffusion problem.

Controlled diffusion in IRn, n > 1. We merely indicate the changes
needed in explicit finite difference scheme (3.9

′

) and refer to [Ku1, Sec. 6.2]
for details. We again take autonomous f(x, v), σ(x, v) and L(x, v), where now
x ∈ IRn, f = (f1, · · · , fn) is IRn - valued and a = σσ′ is n×n - matrix valued.
As in the one dimensional case, let f+

i and f−
i denote the positive and negative

parts of fi, i = 1, · · · , n. The matrices a(x, v) = (aij(x, v)), i, j = 1, · · · , n, are
nonnegative definite. Hence aii ≥ 0. For j �= i, let a+

ij , a
−
ij denote the positive

and negative parts of aij . Let us assume that

(3.22) aii(x, v) −
∑

j �=i

|aij(x, v)| ≥ 0,

(3.23) h

n
∑

i=1

⎡

⎣aii(x, v) − 1

2

∑

j �=i

|aij(x, v)| + δ|fi(x, v)|

⎤

⎦ ≤ δ2.

Condition (3.22) is less restrictive than might at first seem. For instance, if
the noise coefficient matrix σ is constant, then (3.22) can always be achieved
by a suitable rotation of coordinates in IRn such that a becomes a diagonal
matrix. For n = 1, condition (3.23) is the same as (3.7).

Let e1, · · · , en denote the standard basis for IRn. Thus

x = (x1, · · · , xn) =

n
∑

i=1

xiei.

The approximating controlled Markov chain has a state space the n-dimensional
lattice

(3.24) Σh
0 =

{

x = δ

n
∑

i=1

jiei

}

where j1, · · · , jm are any integers. The one step transition probabilities are as
follows:
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(3.25)

pv(x, x± δei) =
h

2δ2
[aii(x, v) −

∑

j �=i

|aij(x, v)| + 2δf±
i (x, v)]

pv(x, x+ δei ± δej) =
h

2δ2
a±

ij(x, v), i �= j

pv(x, x− δei ± δej) =
h

2δ2
a+

ij(x, v), i �= j

pv(x, x) = 1 − h

δ2

n
∑

i=1

[aii(x, v) − 1

2

∑

j �=i

|aij(x, v)| + δ|fi(x, v)|].

Moreover, pv(x, y) = 0 for all other y. The dynamic programming equation is

(3.26) V h(t, x) = min
v∈U

[
∑

y∈Σh
0

pv(x, y)V h(t+ h, y) + hL(x, v)],

which is just (3.9) in dimension n = 1. By rearranging terms in (3.26) and
dividing by h, we obtain a n-dimensional analogue of (3.9

′

). Instead of writing
this out explicitly, let us recall the definition IV(3.2) of H(x, p,A) in the HJB
equation and explain which finite difference quotients are used to approxi-
mate the corresponding partial derivatives. For i = 1, · · · , n, and any function
W (t, x) let

∆±
xi
W = δ−1[W (t, x± δei) −W (t, x)]

∆2
xi
W = δ−2[W (t, x+ δei) +W (t, x− δei) − 2W (t, x)].

The time derivative Vt is replaced by ∆−
t V

h, just as in (3.9
′

). If fi(x, v) ≥
0, then Vxi

is replaced by ∆+
xi
V h, and if fi(x, v) < 0 by ∆−

xi
V h. Similarly,

Vxixi
is replaced by ∆2

xi
V h. For the mixed second order partial derivatives,

when i �= j Vxixj
is replaced by ∆+

xixj
V h if aij(x, v) ≥ 0 and by ∆−

xixj
V h if

aij(x, v) < 0, where

∆+
xixj

W =
1

2
δ−2[2W (t, x) +W (t, x+ δei + δej) +W (t, x− δei − δej)]

−1

2
δ−2[W (t, x+ δei) +W (t, x− δei) +W (t, x+ δej) +W (t, x− δej)]

∆−
xixj

W = −1

2
δ−2[2W (t, x) +W (t, x+ δei − δej)] +W (t, x− δei + δej)]

+
1

2
δ−2[W (t, x+ δei) +W (t, x− δei) +W (t, x+ δej) +W (t, x− δej)].

In order to rewrite (3.26) as a backward difference equation like (3.12), we
introduce the following notation. For each x, p±

i , Aii, A
±
ij , i, j = 1, · · · , n, let

(3.27) H̃(x, p±
i , Aii, A

±
ij) = max

v∈U

{

n
∑

i=1

[−f+
i (x, v)p+

i + f−
i (x, v)p−

i
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−aii(s, v)

2
Aii +

∑

j �=i

(

−
a+

ij(x, v)

2
A+

ij +
a−

ij(x, v)

2
A−

ij

)]

− L(x, v)
}

.

Then, as in (3.12),

(3.28) V h(t− h, x) = V h(t, x) − hH̃(x,∆±
xi
V h, ∆2

xi
V h, ∆±

xixj
V h).

For the infinite horizon discounted problem in IRn, the generalization of
(3.21) is obtained in the same way. The discussion of boundary conditions is
essentially the same as for dimension n = 1 above. For the problem of control
until the time of exit from a cylindrical region Q = [t0, t1) × O, we take
Σh ⊂ Σh

0 which “approximates” O and assign absorbing boundary conditions
like (3.16) at “boundary points” of Σh. We postpone this discussion to Section
5.

Computational methods. After the value function has been replaced
by a finite difference approximation V h, it remains to compute V h(t, x). For
the finite time horizon problem, the dynamic programming equation (3.26) or
(3.9) in dimension n = 1 can be solved backward in time, at least in principle.
However, up to now these calculations can only be done in practice for quite
low dimension n. In (3.26) a minimum over U must in general be computed re-
peatedly. Fortunately, in many problems of interest there is an explicit formula
for H(x, p, q), and this tedious step can be avoided. For numerical solutions
of linear parabolic PDEs, implicit finite difference schemes are often found to
be advantageous. See [KuD, Sec. 12.4]. However, there does not seem to be
a great deal of experience with implicit schemes in the context of nonlinear
PDE’s of HJB type.

At the end of Section 2, we mentioned two standard methods for com-
puting V h(x), namely value iteration and approximation in policy space. The
discount factor λ = exp(−βh) in (3.19) is nearly 1 for small h, and the con-
traction in (2.10) is weak. For small h, the successive approximations to V h

through value iteration tend to converge quite slowly. For approximations in
policy space, two computations (2.12) and (2.13) are needed at each iteration.
Multigrid methods have been used by Akian [Ak] to speed up the solution of
the linear system of equations (2.12).

IX.4 Convergence of finite difference approximations I

We wish to show that the value function V h obtained from the finite differ-
ence scheme in Section 3 converges to the value function V for the controlled
Markov diffusion as h → 0. This has been proved by Kushner [Ku1] us-
ing stochastic control and weak convergence of probability measure methods.
Later, another method to show convergence of V h to V by viscosity solu-
tion techniques was introduced by Barles and Souganidis[BS]. This method
is the one which we will follow. Both Kushner’s stochastic control method



332 IX. Finite Difference Numerical Approximations

and the Barles-Souganidis viscosity solution method apply not only to the ex-
plicit scheme described in Section 3, but to other finite difference schemes as
well. The stochastic control method specifically requires that the finite differ-
ence scheme has a Markov chain interpretation. When such an interpretation
is available, one can easily verify the monotonicity and stability properties
(4.3), (4.5) below needed for the viscosity solution method.

Let us first describe the Barles - Souganidis method for the HJB equation
(3.2) in Q0, with the terminal (Cauchy) data (3.3). In Section 5, we will
consider the HJB equation in a cylindrical region Q, with both terminal and
lateral boundary conditions. Let Σh be a discrete subset of IRn, for 0 < h ≤ 1;
and let B(Σh) denote the space of bounded functions on Σh. We assume that

lim
h↓0

dist (x,Σh) = 0, for all x ∈ IRn.

Let Fh be an operator on B(Σh). We consider the “abstract” finite difference
equation, backward in time

(4.1) V h(t, x) = Fh[V h(t+ h, ·)](x), x ∈ Σh,

t = th0 + kh, k = 0, 1, · · · ,M − 1 with

(4.2) V h(t1, x) = ψ(x), x ∈ Σh.

We make the following assumptions:

(4.3) Fh(φ1) ≤ Fh(φ2) if φ1 ≤ φ2. (monotonicity)

(4.4) Fh(φ+ c) = Fh(φ) + c, for all c ∈ IR.

(4.5)
For 0 < h < 1, there exists a solution V h to (4.1), (4.2) and a
constant K such that ‖V h‖ ≤ K. (stability)

(4.6)

lim
(s,y)→(t,x)

h↓0

h−1[Fh[w(s+ h, ·)](y) − w(s, y)]

= wt(t, x) − H(x,Dxw(t, x), D2
xw(t, x))

for every “test function” w ∈ C1,2(IRn+1). (consistency)

Example 4.1. Consider the explicit finite difference scheme (3.26) in Sec-
tion 3. Then

(4.7) Fh(φ)(x) = min
v∈U

[
∑

y∈Σh
0

pv(x, y)φ(y) + hL(x, y)].



IX. Finite Difference Numerical Approximations 333

Then Σh = Σh
0 and pv(x, y) is as in (3.25), or (3.9) when n = 1. ( If a finite

cutoff |xi| ≤ Bh, i = 1, · · · , n, is introduced, then pv(x, y) is suitably redefined
at boundary points. See Section 5.) We define V h(t, x) to be the value function
for the discrete time Markov chain control problem. Properties (4.3) and (4.4)
are immediate since pv(x, y) are one step transition probabilities. From (3.8)
and (M − k)h = t1 − t,

|Jh
k (x;π)| ≤ ‖L‖(t1 − t) + ‖ψ‖.

The value function V h(t, x) therefore satisfies the same inequality, and in (4.5)
we may take K = (t1 − t0)‖L‖ + ‖ψ‖. We can rewrite (4.7) as

(4.7
′

) Fhφ(x) = φ(x) − hH̃(x,∆±
xi
φ,∆2

xi
φ,∆±

xixj
φ).

The explicit scheme (3.26) in this notation becomes (4.1), if in (3.28) we
replace t− h by t and t by t+ h.

In addition to the explicit scheme (3.26), one may expect other first-order
accurate finite difference schemes (including implicit schemes) to satisfy the
monotonicity and stability conditions provided time and spatial step sizes are
related by a condition like (3.23). However, monotonicity can not be expected
for higher-order accurate finite difference schemes.

Remark 4.1. The condition (4.6) is similar to VII(4.6). When the Hamil-
tonian H in (3.2) depends on V (t, x), we need to modify the above conditions.
One possibility is to drop (4.4) and replace (4.6) by following conditions,

lim
(s,y)→(t,x)

h↓0

h−1{F [w(s+ h, ·) −K(h)](y) − [w(s, y) −K(h)]}

= wt(t, x) − H(x,Dxw(t, x), D2
xw(t, x), w(t, x)),

for every test function w ∈ C1,2(IRn+1) and every bounded sequence K(h)
converging to 0 as h ↓ 0.

As in Section VII.4, for (t, x) ∈ Q0 let

(4.8)

V ∗(t, x) = lim sup
(s,y)→(t,x)

h↓0

V h(s, y)

V∗(t, x) = lim inf
(s,y)→(t,x)

h↓0

V h(s, y),

where V h satisfies the abstract finite difference equation (4.1) with terminal
data (4.2).

Note that V ∗ is upper semicontinuous on Q0 and V∗ is lower semicontinu-
ous on Q0. We recall from Remark VII.4.1 the definitions of viscosity sub and
super solution.

Lemma 4.1. V ∗ is a viscosity subsolution of the HJB equation, and V∗ is
a viscosity supersolution.



334 IX. Finite Difference Numerical Approximations

Proof. To show that V ∗ is a viscosity subsolution, suppose that w is a
test function such that V ∗ −w has a maximum at (t̄, x̄) ∈ Q0. As noted earlier
(Definition VII.4.2 and Remark VII.4.2) we can assume that the maximum is
strict. Then there is a sequence converging to zero denoted by h, such that
V h − w has a maximum on Qh

0 at (sh, yh) which tends to (t̄, x̄) as h ↓ 0. For
all y ∈ Σh

0 ,

V h(sh, yh) − w(sh, yh) ≥ V h(sh + h, y) − w(sh + h, y),

w(sh + h, y) − w(sh, yh) ≥ V h(sh + h, y) − V h(sh, yh).

By (4.3), (4.4)

(4.9)
Fh [w(sh + h, ·)] (yh) − w(sh, yh)

≥ Fh

[

V h(sh + h, ·)
]

(yh) − V h(sh, yh).

By (4.1), the right side is 0. We divide by h and let h ↓ 0. By (4.6)

(4.10) wt(r̄, x̄) − H(x̄, Dxw(t̄, x̄), D2
xw(t̄, x̄) ≥ 0.

Thus, V ∗ is a viscosity subsolution. Similarly, V∗ is a viscosity supersolution.
�

We assume that (3.1) and IV(2.2) hold. Let V (t, x) be the value function
for the controlled diffusion process, as in IV(2.10).

We also make the following assumption, which ensures that V h assumes
the terminal data (4.2) in a uniform way:

(4.11) lim
(s,y)→(t1,x)

h↓0

V h(s, y) = ψ(x)

uniformly for x in any compact subset of IRn.

Theorem 4.1. Let V h be a solution to (4.1) and (4.2). Assume that (4.3)
- (4.6) and (4.11) hold. Then

(4.12) lim
(s,y)→(t,x)

h↓0

V h(s, y) = V (t, x)

uniformly on any compact subset of Q0.

Proof. V is a bounded, uniformly continuous viscosity solution of the HJB
equation (3.2) with the terminal data (3.3). (See comment following V(9.1).)
By Lemma 4.1, V ∗ is a bounded uppersemicontinuous subsolution of (3.2)
and by Lemma 4.2 V ∗(t1, x) = ψ(x) pointwise for x ∈ IRn. By a comparison
result (Remark V.8.1). V ∗ ≤ V . Similarly, V∗ ≥ V . Since V∗ ≤ V ∗, we obtain
Theorem 4.1.

�
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Sub and supersolutions. In order to apply Theorem 4.1 to the explicit
finite difference scheme in Section 3, let us first introduce the idea of sub and
supersolutions to difference equations. Sub and supersolutions will also play
a key role in Section 5 in enforcing lateral boundary conditions.

We call a bounded function W (t, x) a supersolution of (4.1) - (4.2) if

(4.13) W (t, x) ≥ Fh [W (t+ h, ·)] (x)

for t = th0 + kh, k = 0, 1, · · · ,M − 1, x ∈ Σh, and

(4.14) W (t1, x) ≥ ψ(x), x ∈ Σh.

Similarly W (t, x) is a subsolution of (4.1), (4.2) if the inequalities are reversed
in (4.13) and (4.14). By using the monotonicity property (4.3) of Fh and back-
ward induction on k, we have:

Lemma 4.2. V h ≤ W for any supersolution W of (4.1) - (4.2), and
Z ≤ V h for any subsolution Z of (4.1) - (4.2).

Theorem 4.2. Let V h(t, x) be defined by (3.26), with terminal data (3.3).
Suppose that ψ is bounded and uniformly continuous in addition to assump-
tions (3.1) and IV(2.2). Then (4.12) holds uniformly on Q0.

Proof. Let us first suppose that ψ, ψxi
ψxixj

, i, j = 1, · · · , n are bounded
and uniformly continuous. By Taylor’s formula, the difference quotients
∆±

xi
ψ,∆2

xi
ψ,∆±

xixj
ψ are also bounded. Let

(4.15) W (t, x) = K(t1 − t) + ψ(x),

where the constant K is chosen large enough that

K > |H̃(x,∆±
xi
ψ,∆2

xi
ψ,∆±

xixj
ψ)|

for all x ∈ Σh. By (4.7
′

)

FhW (t+ h, ·)(x) = W (t+ h, x) − hH̃(x,∆±
xi
ψ,∆2

xi
ψ,∆±

xixj
ψ)

= W (t, x) − h
[

K + H̃(x,∆±
xi
ψ,∆2

xi
ψ,∆±

xixj
ψ)
]

≤ W (t, x).

Thus, W is a supersolution. By Lemma 4.2, V h ≤ W . Similarly,

Z(t, x) = −K(t1 − t) + ψ(x)

is a subsolution, and hence Z ≤ V h. The inequality

|V h(s, y) − ψ(x)| ≤ |V h(s, y) − ψ(y)| + |ψ(y) − ψ(x)|
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≤ K(t1 − s) + ‖Dψ‖ |y − x|
implies that (4.11) holds uniformly for x ∈ IRn. As already noted in Example
4.1, Fh satisfies (4.3) - (4.6). Theorem 4.2 then follows in this case from
Theorem 4.1.

If ψ is bounded and uniformly continuous a standard smoothing technique
(Appendix C) gives for any a > 0 a function ψ̃ such that ‖ψ̃ − ψ‖ ≤ a
with ψ̃, ψ̃xi

, ψ̃xix; bounded and uniformly continuous. Let Ṽ , Ṽ h denote the

corresponding value functions, for terminal cost function ψ̃ instead of ψ. From
the definition of value function,

‖V − Ṽ ‖ ≤ a, ‖V h − Ṽ h‖ ≤ a.

We have already shown that

lim
(s,y)→(t,x)

h↓0

Ṽ h(s, y) = Ṽ (t, x)

uniformly on compact subsets of Q0. Since a is arbitrary, the same is true for
V h and V , as required in (4.12).

�

In Section 5 we will show that the conclusion of Theorem 4.2 remains true
uniformly on compact sets, if in (3.26) the infinite lattice Σh

0 is replaced by
the finite lattice Σh obtained by imposing a numerical cutoff |xi| ≤ Bh, i =
1, · · · , n, where Bh → ∞ as h ↓ 0. The assumption in Theorem 4.2 that ψ is
uniformly continuous will also be removed. See Theorem 5.3.

IX.5 Convergence of finite difference approximations. II

In this section we consider the HJB equation (3.2) in a cylindrical region
Q = [t0, t1) ×O, with boundary data

(5.1) V (t, x) = Ψ(t, x), (t, x) ∈ ∂∗Q.

Let us assume that Ψ is continuous, and that O is bounded with ∂O a manifold
of class C3. We will impose conditions V(2.3) which insure that the value
function V , as defined by IV(2.10), is continuous in Q and is the unique
viscosity solution to (3.2) - (5.1). See Theorem V.2.1 and Corollary V.8.1.

Let Σh ⊂ Σh
0 be a finite lattice. We call x ∈ Σh an interior point of Σh if

all nearest neighbor points x± δei, x± ei ± ej , i, j = 1, · · · , n, are in Σh. Let
∂Σh denote the set of x ∈ Σh which are not interior points of Σh. We assume
that Σh approximates O in the sense that

(5.2) lim
h↓0

dist(∂O, ∂Σh) = 0.
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We define one step transition probabilities pv(x, y), x, y ∈ Σh, as follows. If
x is an interior point of Σh, then pv(x, y) is as in (3.25), which is (3.6) in
dimension n = 1. As in (3.16), boundary points of Σh are absorbing:

(5.3) pv(x, x) = 1, x ∈ ∂Σh.

The objective is to minimize (3.17), where now in (3.17) µ is the smaller of
M and the first time step ℓ such that xℓ ∈ ∂Σh. Let V h(t, x) denote the value
function, for (t, x) ∈ Qh, where

Qh = {(t, x) : t = th0 + kh, k = 0, 1, · · · ,M, x ∈ Σh}.

If x is an interior point of Σh, then V h satisfies the same dynamic program-
ming equation (3.28) as for the case O = IRn. Moreover,

(5.4) V h(t, x) = Ψ(t, x), (t, x) ∈ ∂∗Qh,

where ∂∗Qh = {(t, x) ∈ Qh : t < t1, x ∈ ∂Σh or t = t1, x ∈ Σh}.

Lemma 5.1. Assume that V ∈ C(Q) and that

(5.5) lim
(s,y)→(t,x)

h↓0

V h(s, y) = Ψ(t, x)

uniformly with respect to (t, x) ∈ ∂∗Q. Then

(5.6) lim
(s,y)→(t,x)

h↓0

V h(s, y) = V (t, x)

uniformly on Q.

Sketch of proof. The proof is almost the same as for Theorem 4.1, and
we merely sketch it. For (t, x) ∈ Q, define V ∗(t, x) and V∗(t, x) by (4.8). As in
Lemma 4.1, V ∗ is a viscosity subsolution and V∗ a viscosity supersolution in
Q. By Theorem V.8.l, the value function V is the unique continuous viscosity
solution of the HJB equation with the boundary conditions (5.1). The lemma
then follows from (5.5) and a comparison result, Remark V.8.1.

�

It remains to find conditions under which Lemma 5.1 can be applied. The
discrete time dynamic programming equation for V h is

(5.7) V h(t, x) = Fh[V h(t+ h, ·)](x),

if (t, x) ∈ Qh − ∂∗Qh, with the boundary data (5.4). Here Fh is the same as
in (4.7

′

). In analogy with (4.13) - (4.14) we call W a supersolution of (5.7) -
(5.4) if

(5.8) W (t, x) ≥ Fh[W (t+ h, ·)](x), (t, x) ∈ Qh − ∂∗Qh,
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(5.9) W (t, x) ≥ Ψ(t, x), (t, x) ∈ ∂∗Qh.

By reversing the inequalities in (5.8) and (5.9) we define subsolutions of (5.7)
- (5.4). Just as in Lemma 4.2,

(5.10) Z ≤ V h ≤ W

if W is supersolution and Z a subsolution of (5.7) - (5.4).

Lemma 5.2. Let W ∈ C1,2(Q) be such that

(5.11) −Wt + H(x,DxW,D
2
xW ) ≥ 0, (t, x) ∈ Q,

(5.12) W (t, x) ≥ Ψ(t, x), (t, x) ∈ ∂∗Q.

Then for every a > 0 there exists h0 > 0, such that V h(t, x) ≤ W (t, x)+a for
all (t, x) ∈ Σh, 0 < h < h0.

Proof. There is an open set Q1 such that Q ⊂ Q1 and W has an extension
to Q1 of class C1,2(Q1). Choose b such that

0 < b(t1 − t0 + 1) < a,

and let
W (t, x) = W (t, x) + b(t1 − t+ 1).

For small h,Qh ⊂ Q1, and

−∆−
t W̄ + H̃(x,∆±

xi
W̄ ,∆2

xi
W̄ ,∆±

xixj
W̄ ) ≥ 0

for all (t, x) ∈ Qh. This implies that W̄ satisfies (5.8). By (5.2), W̄ satisfies
(5.9) for small h. Hence V h ≤ W̄ ≤ W + a for small h.

�

Inequalities (5.11) - (5.12) state that W is a smooth supersolution of
the HJB equation with the boundary data (5.1). By reversing inequalities
in Lemma 5.2, we obtain a corresponding statement about subsolutions, and
an estimate for V h from below.

In order to apply Lemma 5.2, let us consider separately the terminal and
lateral parts of ∂∗Q. As in I(3.6) we write

ψ(x) = Ψ(t1, x).

For the terminal part of ∂∗Q we obtain (5.5) from the following lemma.

Lemma 5.3. lim
(s,y)→(t1,x)

h↓0

V h(s, y) = ψ(x) uniformly with respect

to x ∈ O.
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Proof. Choose ψ̃ ∈ C2(O) such that ψ(x) < ψ̃(x) for all x ∈ O. Let

W (t, x) = K(t1 − t) + ψ̃(x).

For K sufficiently large, W satisfies both (5.11) and (5.12). Hence, by Lemma
5.2 given a > 0, for small h

V h(s, y) ≤ K(t1 − s) + ψ̃(y) + a,

V h(s, y) ≤ ψ(x) +K(t1 − s) + |ψ(y) − ψ(x)| + ‖ψ̃ − ψ‖ + a.

Since ψ̃ can be chosen such that ‖ψ̃−ψ‖ is arbitrarily small and a is arbitrary,

lim sup
(s,y)→(t1,x)

h↓0

V h(s, y) ≤ ψ(x)

uniformly with respect to x ∈ O. Similarly, by considering subsolutions of the
form

Z(t, x) = −K(t1 − t)+
≈

ψ(x)

with
≈

ψ∈ C2(Ō) and
≈

ψ< ψ, we get

lim inf
(s,y)→(t1,x)

h↓0

V h(s, y) ≥ ψ(x)

uniformly with respect to x ∈ Ō.
�

To arrive at conditions under which (5.5) holds on the lateral boundary,
let us first consider the case when

(5.13) L ≥ 0, ψ ≥ 0, Ψ(t, x) = 0 for (t, x) ∈ [t0, t1] × ∂O.

Then V h ≥ −αh where αh → 0 as h → 0. We wish to show that V h(s, y) is
uniformly small for small h and for (s, y) near the lateral boundary of Q. For
that purpose we make the following assumption (5.14) and then construct a
suitable strict supersolution in a neighborhood of the lateral boundary.

Let
Oδ = {x ∈ O : dist (x, ∂O) < δ}.

We assume: There exist δ > 0, c > 0 and φ ∈ C2(Ōδ) such that

(5.14)

(i) φ(x) = 0, x ∈ ∂O,

(ii) φ(x) > 0, x ∈ Ōδ − ∂O,

(iii) max
v∈U

Gvφ(x) ≥ c, x ∈ Ōδ, where
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−Gvφ(x) = f(x, v) ·Dφ(x) +
1

2
tr a(x, v)D2φ(x).

Example 5.1. Assume that the uniform ellipticity condition IV(3.5), or
IV(5.10), holds. Choose any v1 ∈ U . The linear elliptic PDE

Gv1φ(x) = 1, x ∈ O,

with the boundary φ(x) = 0, x ∈ ∂O, has a positive solution φ ∈ C2(Ō).
In fact, φ(x) is the mean exit time from O for the solution to the stochastic
differential equation IV(5.1) with u(s) ≡ v1 and x(0) = x. Then (5.14) holds
with δ arbitrary and c = 1.

Example 5.2. Consider a deterministic control problem (a(x, v) ≡ 0) in
which the following slightly stronger form of I(3.11) holds. Assume that for
every ξ ∈ ∂O there exists v(ξ) ∈ U such that

(5.15) f(ξ, v(ξ)) · η(ξ) ≥ b > 0

when η(ξ) is the exterior unit normal at ξ and b is some constant. Let φ(x) =
dist (x, ∂O). Since ∂O is a C3 manifold, φ ∈ C2(Ōδ) for δ small enough.
Moreover, Dφ(ξ) = −η(ξ) for ξ ∈ ∂O. Hence

sup
v∈U

Gvφ(ξ) = sup
v∈U

f(ξ, v) · η(ξ) ≥ f(ξ, v(ξ)) · η(ξ) ≥ b.

Let c = b/2. Then (5.14) holds if δ is small enough. The distance function
φ(x) also can be used in (5.14) if (5.15) holds and |a(x, v)| is sufficiently small,
rather than a(x, v) ≡ 0. This situation arises when small stochastic perturba-
tions of a deterministic control problem are considered (Chapter VII.)

Lemma 5.4. Assume (5.13), (5.14). Then

lim
(s,y)→(t,x)

h↓0

V h(s, y) = 0

uniformly for (t, x) ∈ [t0, t1] × ∂O.

Proof. Let Qδ = [t0, t1) ×Oδ, and let

W (x) = Kφ(x) + a1

where K is to be suitably chosen and a1 > 0 is arbitrary. Then

H(x,DW,D2W ) = max
v∈U

[KGvφ− L(x, v)] ≥ Kc− ‖L‖

with c > 0 as in (5.14)(iii). We have ‖V h‖ ≤ M , whereM = (t1−t0)‖L‖+‖Ψ‖.
We choose K large enough that
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Kc− ‖L‖ ≥ 0, W (x) ≥ ψ(x), x ∈ Oδ, W (x) ≥ M,x ∈ ∂Oδ\∂O.

For the latter inequality we use (5.14)(ii) and the fact that by (5.13) ψ(x) = 0
for x ∈ ∂O. Thus W satisfies (5.11) - (5.12) in Qδ. Let

Σh
δ =

{

x ∈ Σh : dist (x, ∂O) < δ
}

.

Consider the controlled Markov chain with state space Σh
δ , with the same

transition probabilities pv(x, y) for x interior to Σh
δ and pv(x, x) = 1 for x ∈

∂Σh
δ . Instead of (5.4), we take V h(t, x) as boundary data for x ∈ ∂Σh

δ , t < t1
or x ∈ Σh

δ , t = t1. By the dynamic programming principle V h(t, x) is the
value function for this controlled Markov chain, for x ∈ Σh

δ . In Lemma 5.2,
we replace Q by Qδ and Σh by Σh

δ . For small h,

−αh ≤ V h(t, x) ≤ W (x) + a = Kφ(x) + a1 + a.

Since φ(x) = 0 for x ∈ ∂O and a1, a are arbitrary we get Lemma 5.4.
�

Assumptions (5.13), (5.14), I(3.11) imply that the value function V for the
controlled Markov diffusion process is continuous on Q, Theorem V.2.1. From
Lemmas 5.1, 5.3, 5.4 we then obtain:

Theorem 5.1. Let V h(t, x) be the solution to (5.7) for (t, x) ∈ Qh\∂∗Qh

with the boundary data (5.4) for (t, x) ∈ ∂∗Qh. Assume that (5.13), (5.14),
I(3.11) hold. Then

lim
(s,y)→(t,x)

h↓0

V h(s, y) = V (t, x)

uniformly on Q.
Remark 5.1. The continuity of V needed for Theorm 5.1 actually holds

if (5.13), (5.14) but not I(3.11) are assumed. However we shall not prove this.
To remove the special assumptions (5.13) on the running and boundary

cost functions, let us introduce the idea of smooth subsolution.
We recall from section V.2 that a function g ∈ C1,2(Q) is a smooth subso-

lution of the HJB equation with the boundary conditions (5.1) if

(5.16)
−gt + H(x,Dxg,D

2
xg) ≤ 0, (t, x) ∈ Q,

g(t, x) ≤ Ψ(t, x), (t, x) ∈ ∂∗Q.

A smooth subsolution is of course also a viscosity subsolution according
to the definition in Section II.4.

Theorem 5.2. Assume that (5.14) holds and that there exists a smooth
subsolution g such that g(t, x) = Ψ(t, x) for all (t, x) ∈ [t0, t1] × ∂O. Then the
conclusion of Theorem 5.1 is true, provided Σh ⊂ O for small h.
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Proof. To simplify matters slightly let us prove Theorem 5.2 only in case
g = g(x) and Ψ(x) = ψ(x). The case when Ψ and g depend on t is entirely
similar. Thus

H(x,Dg(x), D2g(x)) ≤ 0, x ∈ O,

g(x) ≤ ψ(x), x ∈ O; g(x) = ψ(x), x ∈ ∂O.

We reduce the result to Theorem 5.1 by the following device, already used in
Sections I.8, IV.6 and V.2. Let

L̃(x, v) = L(x, v) −Gvg(x),

ψ̃(x) = ψ(x) − g(x).

Consider the controlled Markov diffusion problem with running cost L̃, with ψ̃
as terminal cost and with Ψ̃(x) = 0 on the lateral boundary of Q. By using the
Dynkin formula, as in Sec. IV. 6, for any admissible progressively measurable
control process u(·)

J(t, x;u) = g(x) + J̃(t, x;u),

J̃(t, x;u) = Etx{
∫ τ

t

L̃(x(s), u(x))ds+ Ψ̃(x(τ))}.

Hence, the respective value functions satisfy

V (t, x) = Ṽ (t, x) + g(x).

Since g is a smooth subsolution, L̃ ≥ 0, ψ̃ ≥ 0 as required in (5.13). Let Ṽ h

be the value function for the discrete control problem, using these running
and terminal cost functions. By Theorem 5.1, Ṽ h(s, y) → Ṽ (t, x) as (s, y) →
(t, x), h ↓ 0, uniformly on Q.

For every admissible control system π for the discrete control problem, we
have from (3.17)

Jh
k (x;π) = Ekx

{

µ−1
∑

ℓ=k

hL(xℓ, uℓ) + ψ(xµ)

}

= J̃h
k (x;π) + Ekx

{

g(xµ) +

µ−1
∑

ℓ=k

hGuℓ

g(xℓ)

}

,

where J̃h
k (x;π) is defined similarly using L̃, ψ̃. [Since Σh ⊂ O, these quantities

are all well defined without considering L(x, v), ψ(x), g(x) for x �∈ O.] Define
Gv

h for x ∈ Σh\∂Σh by

Gv
hφ(x) = − 1

h

∑

y∈Σh

pv(x, y)[φ(y) − φ(x)].

The discrete version of Dynkin’s formula implies that
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Ekxg(x
µ) = g(x) − Ekx

µ−1
∑

ℓ=k

hGuℓ

h g(x
ℓ).

Since g ∈ C2(O), for all (y, v) ∈ O × U ,

|Gvg(y) −Gv
hg(y)| ≤ ch,

where ch → 0 as h ↓ 0. By taking v = uℓ, y = xℓ, we get

|Jh
k (x;π) − J̃h

k (x;π) − g(x)| ≤ ch(t1 − t).

Since this is true for any π,

|V h(t, x) − Ṽ h(t, x) − g(x)| ≤ ch(t1 − t).

We conclude that V h(s, y) → V (t, x) as (s, y) → (t, x), h ↓ 0 uniformly on Q.
�

Numerical Cutoffs. Let us consider as in Section 4 the HJB equation in
Q0, with terminal data ψ. We again assume (3.1) and IV(2.2). In particular,
recall that f, σ, L, ψ are assumed to be bounded. We consider the finite lattice

(5.17) Σh = {x ∈ Σh
0 : |x| ≤ Bh},

where Bh is a “cutoff” parameter such that Bh → ∞ as h ↓ 0. In dimension
n = 1, this is just (3.14). The one step transition probabilities pv(x, y) are as in
(3.25) if x ∈ Σh\∂Σh. At points of ∂Σh, the one step transition probabilities
are assigned arbitrarily. We wish to show that the effect of the cutoff is “small”
provided x ∈ K, where K is any compact set.

Define Qh, ∂∗Qh as in the discussion preceding Lemma 5.1, with Σh as in
(5.17). For (t, x) ∈ Qh, let V̄ h(t, x) denote the value function for this Markov
chain control problem. For (t, x) ∈ Qh\∂∗Qh, V̄ h satisfies the dynamic pro-
gramming equation:

(5.18) V̄ h(t, x) = V̄ h(t+ h, x) − hH̃(x,∆±
xi
V̄ h, ∆2

xi
V̄ h, ∆±

xixj
V̄ h),

where ∆±
xi
V̄ h etc. are evaluated at (t+ h, x). Moreover,

(5.19)
(a) V̄ h(t1, x) = ψ(x), x ∈ Σh.

(b) ‖V̄ h‖ ≤ (t1 − t0)‖L‖ + ‖ψ‖.

As in Section 4, let V h(t, x) denote the value function without numerical
cutoff. Then V h also satisfies (5.18) and (5.19). In order to compare V̄ h and
V h, we first prove the following lemmas.

Lemma 5.5. Let η ∈ C2(IRn) with Dη and D2η bounded. Then there
exists M such that, for all α > 0, (x, p,A) ∈ IR2n × Sn

+
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|H̃(x, p±
i , Aii, A

±
ij) − H̃(x, (pi + αηxi

)±, Aii + αηxixi
,

(Aij + αηxixj
)±)| ≤ Mα.

Proof. We recall the definition (3.27) of H̃, and that f, σ are assumed
bounded. Then

|f+
i (pi + αηxi

)+ − f+
i p

+
i | ≤ α‖f+

i ‖ ‖ηxi
‖,

with similar estimates for the other quantities (pi + αηxi
), · · ·. Lemma 5.5

follows from these estimates.
�

Lemma 5.6. Assume that V h and Ṽ h satisfy (5.18) for (t, x) ∈ Qh\∂∗Qh

and (5.19). Then given any compact set K ⊂ IRn, there exist CK , hK such
that

(5.20) |V h(t, x) − Ṽ h(t, x)| ≤ CK

Bh
(t1 − t)

for all (t, x) ∈ Qh, x ∈ K, and 0 < h < hK .
Proof. There exists rK such that K ⊂ {|x| ≤ rK}. We choose ζ ∈ C2(IR1)

with the following properties:

ζ(r) ≥ 0, ζ(r) = 0 for r ≤ rK ,

ζ
′

(r), ζ ′′(r) are bounded,

ζ(r) ≥ c1r − c2, c1 > 0.

In Lemma 5.5 we take η(x) = ζ(|x|) and choose later α = αh suitably. Let

Wh(t, x) = V h(t, x) + αhη(x) +Mαh(t1 − t).

By (4.7
′

) and Lemma 5.5, for (t, x) ∈ Qh\∂∗Qh

Wh(t, x) − Fh[W (t+ h, ·)](x)

= Wh(t, x) −Wh(t+ h, x) + hH̃(x,∆±
xi
Wh, ∆2

xi
Wh, ∆±

xixj
Wh)

≥ Mαhh+ V h(t, x) − V h(t+ h, x)

+hH̃(x,∆±
xi
V h, ∆2

xi
V h, ∆±

xixj
V h) −Mαhh.

Since V h satisfies (5.18) in Qh\∂∗Qh, the last term is 0, which implies that
Wh satisfies (5.8). Since η(x) ≥ 0 and Ṽ h(t1, x) = ψ(x), we have Wh(t1, x) ≥
Ṽ h(t1, x). For x ∈ ∂Σh, |x| ≥ Bh − γh where γh → 0 as h → 0. Hence, for
x ∈ ∂Σh
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Wh(t, x) ≥ −‖V h‖ + αhζ(|x|)

≥ −M1 + αh[c1(Bh − γh) − c2],

M1 = (t1 − t0)‖L‖ + ‖ψ‖.
We choose

(5.21) αh =
3M1

c1Bh
.

For small h,
Wh(t, x) ≥ M1 ≥ Ṽ h(t, x), x ∈ ∂Σh

Thus, Ṽ h(t, x) ≤ Wh(t, x) for all (t, x) ∈ ∂∗Qh. By (5.10), Ṽ h ≤ Wh. Since
η(x) = 0 for x ∈ K,

Ṽ h(t, x) ≤ V h(t, x) +Mαh(t1 − t)

if (t, x) ∈ Qh, x ∈ K and h is small enough. Since V h and Ṽ h can be ex-
changed, we get Lemma 5.6 with CK = 3c−1

1 MM1.
�

Theorem 5.3. Let V̄ h be the value function for the explicit finite difference
scheme with numerical cutoff. Then

lim
(s,y)→(t,x)

h↓0

V̄ h(s, y) = V (t, x)

uniformly on any compact subset of Q0.
Proof. By Theorem 4.1, we need only verify that (4.11) holds uniformly

on compact sets. If ψ is bounded and uniformly continuous, this follows from
Lemma 5.6 with Ṽ h = V̄ h and Theorem 4.2. Next, suppose that ψ is merely
bounded and continuous. Let K be compact. Chose ψ̃ with compact support
K1, where K ⊂ int K1, ψ(x) = ψ̃(x) for x ∈ K and ‖ψ̃‖ ≤ ‖ψ‖. Let Ṽ h be
the value function for the problem with numerical cutoff and with ψ replaced
by ψ̃. By applying Lemma 5.6 to V̄ h and Ṽ h, we have for x ∈ K, y ∈ K1 and
small h

|V̄ h(s, y) − ψ(x)| ≤ |V̄ h(s, y) − Ṽ h(s, y)| + |Ṽ h(s, y) − ψ̃(x)|

≤ CK1

Bh
(t1 − s) + |Ṽ h(s, y) − ψ̃(x)|.

Since ψ̃ is uniformly continuous, the last term tends to 0 uniformly as (s, y) →
(t, x), h ↓ 0 by Theorem 4.2.

�
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IX.6 Historical remarks

The finite difference numerical method used in this chapter is due to Kushner
[Ku1]. We have given only a concise introduction to the topic, with con-
vergence proofs based on viscosity solution methods following Barles and
Souganidis [BS]. Kushner–Dupuis [KuD] provides a much more thorough ac-
count of the method, together with more refined versions of it and applica-
tions. The convergence proofs in [Ku1, Chap. 9] and [KuD, Chap. 10] use weak
convergence of probability measure techniques.

For further work on numerical approximations in control problems see [BF]
[HW] [FF] [Me], also the survey article [Ku3]. A viscosity solution method
was used in [Zhu] to prove convergence of finite difference approximations
in singular stochastic control. For related work in a mathematical finance
context, see [TZ].



X

Applications to Finance

X.1 Introduction

During the past decade, mathematical finance has matured using optimal
control together with stochastic processes, probability theory and partial dif-
ferential equations. This development has its roots in two seminal papers.
Merton’s 1971 paper [Mer1] on optimal consumption and investment strate-
gies uses optimal control theory to model the utility of a rational investor.
Black & Scholes in their 1973 paper [BSc] on pricing of options uses proba-
bility theory and partial differential equations. Since these papers, stochastic
optimal control has been widely used in the financial economics literature as
an important modelling tool.

In this chapter, we outline several techniques in mathematical finance
through several central examples. The financial model used in all of these
examples is common and it is described in the next section. The classical
Merton problem in a complete financial market is solved in different levels of
generality in Sections 3 and 4. Section 5 is devoted to a financial model with
proportional transaction costs. Mathematically, this is a singular stochastic
control problem. We next consider pricing of derivative securities (options).
After the introduction of the classical Black-Scholes theory, we outline differ-
ent approaches to pricing in Sections 6-10. In the final section, we discuss a
Merton-type model with random coefficients.

X.2 Financial market model

In the literature a simple financial market model is often used to study the
basic properties. This model, already introduced in Example IV.5.2, consists
of two assets; one “risk free” and the other “risky.” We call the risk free asset
as bond and the risky asset as stock. We deviate from the notation used in
Example IV.5.2 and use the familiar notation from the mathematical finance
literature by letting p(t) and S(t), respectively, be the price per share for



348 X. Applications to Finance

the risk-free and risky asset at time t ≥ 0. Following the literature, we make
the further simplifying assumptions that these price processes follow simple
stochastic differential equations with constant coefficients:

(2.1)
dp = p(t)rdt,

dS = S(t)[µdt+ σdw(t)],

where r, µ, σ are constants with 0 < r < µ, σ > 0, and w(·) is a standard one-
dimensional Brownian motion. In Section 11, we will discuss a model with
random coefficients.

Let us now assume that there are no transaction costs and no constraints
on the structure of the portfolio. In particular, any investor in this market
may transfer funds from one account to the other instantaneously and with
no costs. Moreover, she may hold short positions of any size in both accounts.
We will remove these assumptions later in this chapter.

Under these assumptions, the market is complete as defined in the eco-
nomics literature (c.f. Pliska [Pl2]) and the investor’s wealth x(t) at time t
changes according to the stochastic differential equation

dx = x(t)

[

(1 − π(t))
dp(t)

p(t)
+ π(t)

dS(t)

S(t)

]

− c(t)dt,

where π(t) is the fraction of wealth invested in the risky asset at time t and
c(t) is a consumption rate. Then, with initial wealth x, the state equation has
the form

(2.2)
dx = x(t) [(r + π(t)[µ− r])dt+ π(t)σdw(t)] − c(t)dt,

x(0) = x.

The control is the two-dimensional vector u(t) = (π(t), c(t)), subject to the
constraint c(t) ≥ 0. Thus, U = (−∞,∞) × [0,∞). We stop the process if the
wealth x(·) reaches zero (bankruptcy). Thus, O = (0,∞).

X.3 Merton portfolio problem

This is a model problem to study the optimal investment and consumption
strategies of a rational investor. This investor is assumed to make decisions so
as to maximize a certain utility function. There are several alternate utilities
or equivalently objective functionals one may consider, and we will study
several of them in this chapter.

In this section, we start with the classical model already studied in Ex-
ample IV.5.2. We assume that the utility is derived from the consumption
through a consumption utility rate function and then an exponentially dis-
counted integral over the whole future is taken as the objective function:
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(3.1) J(x;π, c) = Ex

∫ ∞

0

e−βtℓ(c(t))dt,

where ℓ(c) is the utility rate of consuming at rate c ≥ 0. Here we refrained
from using the classical notation U for the utility function as it clashes with
our already established notation.

The classical Merton optimal investment consumption problem is to max-
imize the total discounted expected utility, J , discounted at rate β > 0. As
stated earlier, U = (−∞,∞) × [0,∞) and O = (0,∞). In Example IV.5.2 we
formulated the problem as an exit time problem. However, due to the absorb-
ing nature of the boundary x = 0, it is equivalent to consider it as a state
constrained problem. In the present chapter, only control processes π(·)c(·),
will be admitted for which the wealth constraint x(t) ≥ 0 holds for all t. The
boundary point x = 0 is absorbing. If x(τ) = 0, then x(t) = c(t) = ℓ(c(t)) = 0
for all t ≥ τ . Hence the bankruptcy time τ in IV(5.20) is replaced by infinity
in (3.1).

The dynamic programming equation and the optimal control policies are
derived in Example IV.5.2. Also the HARA utility case is solved explicitly in
that example as well.

X.4 General utility and duality

Now we consider the portfolio selection problem with a general utility func-
tion ℓ. A general solution is obtained by Karatzas, Lechozky, Sethi and Shreve
[KLSS] and by Pliska [Pl1]. Here we present an outline of their method through
a differential equations type of arguments. Also to simplify the presentation,
we make several technical assumptions on the utility function. However, their
method applies to more general utility functions. We refer to the book of
Karatzas and Shreve [KS5] for these generalizations and for the general prob-
abilistic approach. For a general utility function ℓ(c), it turns out that the
dynamic programming equation for the value function V (x) can be linearized,
by introducing the variable y = Vx(x). The solution depends on two functions
G(y), W (y), which satisfy the linear differential equations (4.10), (4.13) and
which have Feynman-Kac type representations (4.6), (4.9). The optimal con-
sumption control c∗(t) will be obtained from a convex duality argument. Then
the optimal investment control π∗(t) is obtained from the dynamic program-
ming equation.

We assume that the utility function ℓ(c) is defined for c ≥ 0 and

(4.1) ℓ(0) = 0, ℓ
′

(0+) = +∞, ℓ
′

(∞) = 0, ℓ
′

(c) > 0, ℓ
′′

(c) < 0 for c > 0.

We recall several basic facts from convex analysis (cf. Rockafellar [R1],
Section 3.4 [KS5].) By (4.1), the inverse function I of ℓ′ exists on [0,∞) and
satisfies
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I(0) = ∞, I(∞) = 0, I(p) < ∞, I ′(p) < 0, ∀ p > 0.

The convex dual ℓ∗ is given by

ℓ∗(p) := sup
c≥0

{ ℓ(c) − cp } , for p ≥ 0.

Then,

(4.2) (ℓ∗)′ = −I, and ℓ∗(p) = ℓ(I(p)) − pI(p) ≥ ℓ(c) − pc, ∀ p, c > 0.

In this chapter we say that progressively measurable control processes
π(·), c(·) are admissible at x if the following hold: with probability one

∫ T

0

c(t)dt < ∞,

∫ T

0

π2(t)dt < ∞, ∀ T > 0,

and x(t) ≥ 0 for all t ≥ 0. This is consistent with the usage in [KS5, Section
3.9]. Next, we derive an inequality satisfied by all admissible consumption
processes. Let P0 be the absolutely continuous probability measure so that

(4.3) w0(t) := w(t) + θt, θ =
µ− r

σ
,

is a P0 Brownian motion. By the Girsanov theorem, we know that P0 exists
and for any Ft measurable random variable B

EP0 [B] = EP [z(t)B]

where

(4.4) z(t) = exp

(

−θ
2

2
t− θw(t)

)

.

In terms of w0, the wealth equation (2.2) has the form

dx = x(t)[rdt+ π(t)σdw0(t)] − c(t)dt.

P0 is called the “risk neutral” probability measure. We integrate to obtain

e−rTx(T ) − x =

∫ T

0

e−rtx(t)π(t)σdw0(t) −
∫ T

0

e−rtc(t)dt.

It is standard to show that the stochastic integral is a local martingale and
therefore, for every T ,

E0[

∫ T

0

e−rtc(t)dt] ≤ x,

where E0 is integration with respect to P0. Since c(t) ≥ 0, by Fatou’s lemma
we pass to the limit as T tends to infinity. Then we state the result in terms
of the original measure P using the density z. The result is
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(4.5) E[

∫ ∞

0

e−rtz(t)c(t)dt] ≤ x.

The above constraint is known as the budget constraint in the literature. It is
clear that we would like to saturate the above inequality in order to maximize
J . In fact this is the only relevant constraint in the above problem. The reason
for this is the following result.

Theorem 4.1 [Theorem 3.9.4 [KS5]]. Given x ≥ 0, and a consumption
process c(·) satisfying the budget constraint (4.5) with an equality, there exists
a portfolio process π(·), such that (π, c) is admissible at x. Moreover, the
corresponding wealth process is

x(t) =
1

e−rtz(t)
E

[
∫ ∞

t

e−rρz(ρ)c(ρ)dρ | Ft

]

.

The proof is an application of the martingale representation result. In view
of this result we have the following corollary,

Corollary 4.1. The Merton portfolio selection problem is equivalent to
maximizing (3.1) under the budget constraint (4.5).

We solve the equivalent problem using a Lagrange multiplier technique.
For y ≥ 0, consider

H(x, y, c(·)) := E

∫ ∞

0

e−βtℓ(c(t))dt+ y

(

x− E[

∫ ∞

0

e−rtc(t)z(t)dt]

)

= xy + E

∫ ∞

0

e−βt
[

ℓ(c(t))dt− ye(β−r)tz(t)c(t)
]

dt.

Given x, we want to maximize H over y and c. In view of (4.2), for any y and
c(·) ≥ 0,

H(x, y, c(·)) ≤ xy + E

∫ ∞

0

e−βt
[

ℓ(ĉ(t; y))dt− ye(β−r)tz(t)ĉ(t; y)
]

dt,

with equality when c(t) = ĉ(t, y), where

ĉ(t; y) := I(ye(β−r)tz(t)),

and z(t) is as in (4.4). The above calculation suggests that ĉ with a carefully
chosen y is the optimal consumption process. We determine y by using the
budget constraint (4.5). Set

(4.6) W (y) := E[

∫ ∞

0

e−rtz(t)ĉ(t; y)dt],

so that for ĉ to satisfy (4.5) with equality, y has to be equal to W−1(x), where
W−1 is the inverse function ofW . So for a given initial wealth x, the candidate
for the optimal consumption process is
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(4.7) c∗(t) := ĉ(t;W−1(x)) = I(y(t))

(4.8) y(t) = ye(β−r)tz(t), y = W−1(x).

From (4.7) and (4.8) the value function should equal

(4.9)
V (x) := G(W−1(x)),

G(y) := E
[∫∞

0
e−βtℓ(ĉ(t; y))dt

]

= E[
∫∞

0
e−βtℓ(I(y(t))dt].

Assumption (4.11) below will imply that G(y) is finite. This conjectured re-
lationship between the value function V (x) and G(y) is true (Theorem 4.2),
and the optimal controls π∗(t), c∗(t) can be written as functions of y(t) via
(4.7) and (4.15).

Let us first state some properties of the functions W and G. By (4.4) and
(4.8)

dy = y(t)[(β − r)dt− θdw(t)].

A formal application of the Feynman-Kac formula suggests that G satisfies
the linear differential equation for y > 0

(4.10) βG− (β − r)yGy − θ2y2

2
Gyy − ℓ(I(y)) = 0.

The associated homogeneous linear differential equation has solutions g(y) =
yλ for λ = λ1 < 0 and λ = λ2 > 1 which satisfy

1

2
θ2λ2 −

(

r − β +
1

2
θ2
)

λ− β = 0.

Assume that for any a > 0

(4.11)

a
∫

0

y−λ1I(y)dy < ∞.

Then G(y) is a class C2 solution to (4.10). In fact,

(4.12) G(y) =
2

θ2(λ2 − λ1)

[

yλ1ψ1(y) + yλ2ψ2(y)
]

where ψ1y(y) = y−λ1−1ℓ(I(y)), ψ2y(y) = −y−λ2−1ℓ(I(y)) with ψ1(0) = 0,
ψ2(∞) = 0. See [KS5,Thm. 3.9.18]. To obtain an equation for W , using the
probability measure P0, we rewrite (4.6) as

W (y) = E0

[
∫ ∞

0

e−rt I(y(t))dt

]

,
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where y(t) is as above and we write its dynamics using the Brownian motion
w0(t) = w(t) + θt. The result is

dy = y(t)[(β − r)dt− θdw(t)] = y(t)[(β + θ2 − r)dt− θdw0(t)].

Hence, the associated linear differential equation for W (y) is

(4.13) rW − (β + θ2 − r)yWy − θ2y2

2
Wyy − I(y) = 0.

By [KS5, Thm. 3.9.14], W (y) is a class C2 solution of (4.13) which has a
representation similar to (4.12). Moreover,

(4.14) Gy(y) = yWy(y).

Theorem 4.2. The value function is V (x) = G(W−1(x)) and Vx is the
inverse function of W . The controls π∗(t), c∗(t) are optimal, where c∗(t) is as
in (4.7) and

(4.15) π∗(t) = − θ

σ

y(t)Wy(y(t))

W (y(t))
.

Proof. We rewrite the dynamic programming equation IV(5.21) as

(4.16) βV (x) − rxVx(x) − ℓ∗(Vx(x)) +
θ2

2

Vx(x)2

Vxx(x)
= 0,

where θ = (µ−r)/σ and ℓ∗ are as before. Let V̂ (x) = G(W−1(x)). We directly
calculate that

V̂x(W (y)) = Gy(y)(W−1)x(W (y)) =
Gy(y)

Wy(y)
,

where we used the fact thatW−1(W (y)) = y implies that (W−1)x(W (y))Wy(y) =

1. By (4.14), we conclude that V̂x(W (y)) = y. Hence, W is equal to the inverse
of V̂x. Let

I(x) := βV̂ (x) − rxV̂x(x) − ℓ∗(V̂x(x)) +
θ2

2

(V̂x(x))2

V̂xx(x)
.

In order to show that V̂ solves the dynamic programming equation (4.16), we
need to show that I is identically equal to zero. Equivalently, we will prove
that I(W (y)) = 0 for all y.

By the previous step, V̂ (W (y)) = G(y), V̂x(W (y)) = y and by differenti-
ating V̂xx(W (y))Wy(y) = 1. Hence,

I(W (y)) = βG(y) − ryW (y) − ℓ∗(y) +
θ2

2
y2Wy(y).
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By (4.2), ℓ∗(y) = ℓ(I(y)) − yI(y). We use this together with equation (4.10)
for G. The result is

I(W (y)) =
θ2y2

2
Gyy(y) + (β − r)yGy(y) − ryW (y) + yI(y) +

θ2

2
y2Wy(y).

By (4.14), Gyy = Wy + yWyy. Hence

I(W (y)) =
θ2y2

2
[Wy(y) + yWyy(y)] + (β − r)y2Wy(y) − ryW (y)

+yI(y) +
θ2

2
y2Wy(y)

= y

[

θ2y2

2
Wyy(y) + (β + θ2 − r)yWy(y) − rW (y) + I(y)

]

.

By (4.13), this is zero. Since the range of W is all of [0,∞), we conclude that
V̂ is a solution of the dynamic programming equation (4.16).

It remains to verify that V (x) = V̂ (x) and that the controls π∗(t), c∗(t)
are optimal. We use the dynamic programming technique in Section IV.5.
Since ℓ ≥ 0 and V̂ ≥ 0, we obtain J(x;π, c) ≤ V̂ (x) for all π(·), c(·) as in
Theorem IV.5.1(a). The dynamic programming technique in Section IV.5 gives
the following candidates for optimal stationary control policies (see formula
IV(5.21)):

(4.17)

π∗(x) = − θ
σ

V̂x(x)

xV̂xx(x)

c∗(x) = (ℓ′)−1(V̂x(x)) = I(V̂x(x)).

Let x∗(t) = W (y(t)). The previous calculations show that π∗(t) = π∗(x∗(t)),
c∗(t) = c∗(x∗(t)). Moreover, x∗(t) satisfies (2.2) with π(t) = π∗(t), c(t) =
c∗(t), with initial data x = W−1(y) where x = x(0), y = y(0). By (4.9),

J(x;π∗, c∗) = G(W−1(x)) = V̂ (x).

�

X.5 Portfolio selection with transaction costs

In this section, we outline a model of a portfolio selection problem with trans-
action costs and consumption. It was first introduced in the financial literature
by Constantinides [Co] and analyzed by Davis & Norman [DN]. We refer to
Shreve & Soner [ShS] for the viscosity approach.

As in Merton’s portfolio problem the investor may consume from her in-
vestment in the bond, but simultaneously she may transfer her stock holdings
to the bond. However, this results in a transaction cost. We assume this cost
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is linearly proportional in the size of the transaction. We remark on the fixed
cost case in Remark 5.1 below. Let λ1 ∈ (0, 1) be the proportional cost of
transaction from stock to bond. We also allow transactions from bond to
stock. Let λ2 ∈ (0, 1) be the cost of these type of transactions.

Let x1(t) and x2(t) be the dollars invested at time t in the bond and the
stock, respectively. Using the equation (2.1) we see that x1(·) and x2(·) change
according to

(5.1)
dx1(t) = [rx1(t) − c(t)]dt+ (1 − λ1)dM1(t) − dM2(t),

dx2(t) = µx2(t)dt− dM1(t) + (1 − λ2)dM2(t) + σx2(t)dw(t),

where c(t) ≥ 0 is the consumption rate and M1(t) and M2(t) are the to-
tal transactions up to time t ≥ 0, from stock to bond and bond to stock,
respectively.

The agent’s goal is to maximize his discounted total utility of consumption

J(x1, x2; c,M1,M2) = Ex

∫ ∞

0

e−βtℓ(c(t))dt,

over all progressively measurable c(·) ≥ 0, and progressively measurable, left
continuous, nondecreasing Mi(·)’s with Mi(0) = 0. Moreover, we impose an
additional constraint

x1(t) + (1 − λ1)x2(t) ≥ 0, (1 − λ2)x1(t) + x2(t) ≥ 0, ∀t ≥ 0.

This condition ensures that at any time the investor has sufficient funds so
that if needed her portfolio can be liquidated to result in a non-negative bond
holding and no stock holding. For this reason Davis & Norman [DN] call the
cone O defined below the “solvency region.”

It is more convenient to state the above condition as a state constraint.
Let

O = {x = (x1, x2) ∈ IR2 : x1 + (1 − λ1)x2 > 0, (1 − λ2)x1 + x2 > 0}.

Then, the state x = (x1, x2) is required to satisfy (x1(t), x2(t)) ∈ Ō, for all
t ≥ 0. We claim that for any x ∈ Ō there are c(·),M1(·),M2(·) satisfying (5.1).
Indeed let x ∈ Ō with x1 + (1 − λ1)x2 = 0 be given. Then x2 ≥ 0. Set

c(t) ≡ M2(t) ≡ 0, M1(t) ≡ x2, ∀t > 0.

Then x(t) ≡ (0, 0) for all t > 0, and therefore this control satisfies the state
constraint. Similarly for x ∈ Ō with (1−λ2)x1+x2 = 0, we use c(t) ≡ M2(t) ≡
0 and M2(t) ≡ x1 for all t > 0.

Since there are admissible controls for each boundary point x ∈ ∂O, there
are admissible controls for every x ∈ Ō. Hence the set of all admissible con-
trols Aν(x) is non-empty. Moreover, at the boundary ∂O the only admissible
consumption policy is c(·) ≡ 0. Hence
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(5.2) V (x) = 0, ∀ x ∈ ∂O.

The optimal portfolio selection problem with transaction costs is similar to
the singular stochastic control problems considered in Chapter VIII. However,
the criterion J(x1, x2; c,M1,M2) involves the nonlinear function ℓ(c(t)) of
consumption, and is not of the form VIII(3.5). In the notation of Section
VIII.3

U = {m(1 − λ1,−1) : m ≥ 0} ∪ {n(−1, 1 − λ2) : n ≥ 0},

f̂(x) = (rx1, µx2),

σ̂(x) =

[

0 0
0 σx2

]

.

Although there are differences, the model with consumption is very similar to
the one discussed in Section VIII.3. Indeed one can prove an entirely similar
Verification Theorem. The corresponding dynamic programming equation for
x ∈ O is

(5.3) min{LV − ℓ∗(Vx1) , −(1 − λ1)Vx1 + Vx2 , Vx1 − (1 − λ2)Vx2} = 0,

where

LV = βV −
{

1

2
σ2x2

2Vx2x2 + rx1Vx1 + µx2Vx2

}

.

Let us now assume that ℓ(c), the utility of consuming at rate c ≥ 0, is of
HARA type, i.e., for some γ ∈ (0, 1),

ℓ(c) =
1

γ
cγ , c ≥ 0.

In this book we will not consider the cases γ < 0 and the logarithmic utility
function. However, a similar analysis can be carried out for those cases.

Observe that if (c(·),Mi(·)) ∈ Aν(x) and ρ > 0, then ρ(c(·),Mi(·)) ∈
Aν(ρx) with

J(ρx; ρc, ρMi) = ργJ(x; c,Mi).

Hence

(5.4) V (ρx) = ργV (x), ∀ρ ≥ 0.

Set

Ŵ (z) = V (z, 1 − z), z ∈
(

−1 − λ1

λ1
,

1

λ2

)

,

so that for x ∈ O

V (x) = (x1 + x2)
γŴ (z), z =

x1

x1 + x2
.
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Now, one can rewrite the dynamic programming equation in terms of the
function Ŵ which only has one independent variable. This transformation
makes the problem more accessible to both theoretical and numerical analysis.
Note that there are other possible reductions to one variable. However, this
particular one has the advantage of having the new state variable z to be
confined in a bounded interval.

Studying an equivalent one dimensional problem, Davis & Norman [DN]
constructed a solution Ŵ ∈ C2 of (5.3) and (5.2), under an implicit assump-
tion on the coefficients. Then using this solution, they also constructed the
optimal consumption and transaction strategies. As in the Examples in Sec-
tion VIII.4, the optimal process x∗(t) is a reflected diffusion process. Further
analysis of this problem is carried out in Shreve & Soner [ShS]. They prove
that the value function is smooth enough to carry out the stochastic calculus
needed in the construction of the optimal strategies. The only assumption
they impose is the finiteness of the value function. We formulate their results
without proof in the following theorem.

Theorem 5.1[DN,ShS]. Assume that the value function V is finite.
Then, it is concave and a classical solution of the dynamic programming equa-
tion (5.3) together with the boundary condition (5.2).

We continue by constructing the optimal strategies. First let

P = {x ∈ O : −(1 − λ1)Vx1(x) + Vx2(x) > 0, Vx1(x) − (1 − λ2)Vx2(x) > 0}.

The concavity of V , homothety (5.4) and the dynamic programming equation
yield that P is a connected cone, and there are

z1, z2 ∈ [−1 − λ1

λ1
,

1

λ2
]

such that

P =

{

(x1, x2) ∈ O : z1 <
x1

x1 + x2
< z2

}

.

We call P the no transaction region and define sell bond region SB and sell
stock region SSt by

SB :=

{

(x1, x2) ∈ O :
x1

x1 + x2
> z2

}

, Vx1 − (1 − λ2)Vx2 = 0 ⇔ x ∈ SB,

SSt :=

{

(x1, x2) ∈ O :
x1

x1 + x2
< z1

}

− (1 − λ1)Vx1 + Vx2 = 0, ⇔ x ∈ SSt.

Recall that for p > 0,

ℓ∗(p) = sup
c≥0

{

1

γ
cγ − cp

}

,
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and the minimizer is c = p1/γ−1. Therefore the candidate for an optimal
Markov consumption policy is

c∗(x) = (Vx1(x))
1

γ−1 .

Since γ < 1 and V is concave, we have

c∗(x1, x2) > c∗(x̄1, x2) if x1 > x̄1.

Due to this monotonicity, for every progressively measurable nondecreasing
processes Mi(·) there exists a unique solution x(·) of (4.1) with c(t) = c∗(x(t)).
We refer to [ShS] for details.

We continue by constructing a control (c∗(·),M∗
i (·)) for a given reference

probability system ν. We assume for simplicity that the sets SB and SSt are
non empty and

−1 − λ1

λ1
< z1 < z2 <

1

λ2
.

We refer to [ShS] for the other cases.
1. (x1, x2) ∈ P. Then by a result of Lions and Sznitman [LS] on reflected

diffusion processes (also see Davis and Norman [DN, Theorem 4.1]) there
are unique processes x∗(·) and nondecreasing processes M∗

i (·) such that for
t < τ∗ = inf{ρ : (x∗(ρ)) ∈ ∂O},

M∗
1 (t) =

∫ t

0

χ{(x∗(ρ))∈∂1P}dM
∗
1 (ρ),

M∗
2 (t) =

∫ t

0

χ{(x∗(ρ))∈∂2P}dM
∗
2 (ρ)

x∗(·) solves (5.1) with c(t) = c∗(x∗(t)),

x∗(0) = x, x∗(t) ∈ P, ∀t ≥ 0,

where

∂iP =

{

x ∈ O :
x1

x1 + x2
= zi

}

for i = 1, 2.

Then x∗ is a diffusion process reflected at ∂P. The reflection angle is
(1 − λ1,−1) on ∂1P and (−1, 1 − λ2) on ∂2P. Moreover M∗

i (t)’s are the local
times of x∗ on the lines ∂iP. Since the region P has a corner at the origin, the
result of Lions and Sznitman is not directly applicable to the above situation.
However the process x∗(t) is stopped if it reaches the origin. Hence we may
construct x∗(t) up to any stopping time τ < τ∗ and therefore up to τ∗.

2. Suppose that x ∈ SSt. Then

x1

x1 + x2
∈
(

−1 − λ1

λ1
, z1

)

,

and in particular z1 > −(1 − λ1)/λ1. Set
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M∗
1 (0+) = lim

t↓0
M∗

1 (t) = [z1x2 + (z1 − 1)x1]
1

1 − λ1 + z1λ1
,

and M∗
2 (0+) = 0. Since x ∈ SSt, M∗

1 (0+) > 0. Also

x∗
1(0

+) = x1 + (1 − λ1)M
∗
1 (0+),

x∗
2(0

+) = x2 −M∗
1 (0+),

and we calculate that
x∗

1(0
+)

x∗
1(0

+) + x∗
2(0

+)
= z1.

Therefore x∗(0+) ∈ P. We now construct x∗(·), c∗(·),M∗
i (·) as in Case 1 start-

ing from x∗(0+) and M∗
1 (0+).

3. Suppose that x ∈ SB. Then

x1

x1 + x2
∈
(

z2,
1

λ2

)

,

and in particular z2 < 1/λ2. Set

M∗
2 (0+) =

(1 − z2)x1 − z2x2

1 − z2λ2
,

and M∗
1 (0+) = 0. As in the previous case, M∗

2 (0+) > 0 since x ∈ SB. Also

x∗
1(0

+) = x1 −M∗
2 (0+),

x∗
2(0

+) = x2 + (1 − λ2)M
∗
2 (0+).

Then x∗(0+) ∈ ∂2P and we construct x∗(·), c∗(·),M∗
i (·) starting from x∗(0+)

and M∗
2 (0+).

Theorem 5.2. For any reference probability system ν, and x ∈ O,

J(x; c∗,M∗
i ) = Vν(x) = V (x).

We refer to [ShS] for the proof.

Remark 5.1. In practice it is typical to have a fixed transaction cost
perhaps in addition to a proportional one. However, for a large investor the
proportional transaction costs are much larger than the fixed ones and that
is the main reason for neglecting the fixed transaction costs. However, the
model with of both proportional transaction and fixed costs can be analyzed
by dynamic programming. In such a model, the control processes Mi must be
restricted to piecewise constant functions,

Mi(t) =

∞
∑

k=1

mk
i H(t− τk

i ),
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where H is the heaviside function (H(r) = 0 if r ≤ 0 and H(r) = 1 if r > 0),
τk
i are nondecreasing sequence of stopping times determining when the trans-

actions are made and mk
i ’s positive transaction sizes with usual measurability

conditions. Then, the state x(·) follows an modification of the equation (5.1):

dx1(t) = [rx1(t) − c(t)]dt+ (1 − λ1)dM1(t) − dM2(t)

−α1

∑

k

H(s− τk
1 ),

dx2(t) = µx2(t)dt− dM1(t) + (1 − λ2)dM2(t) + σx2(t)dw(t)

−α2

∑

k

H(s− τk
1 ),

where αi > 0 are fixed transaction costs. This problem is a mixture of an
optimal stopping time and singular control problems. Unfortunately, the value
function does not satisfy the property (5.4) and therefore the optimal solution
is not as elegant. Still the solution is expected to have a similar structure as in
the pure proportional case. Indeed, there must be two concentric continuation
sets P1 ⊂ P2 ⊂ O so that it is optimal to consume according to c∗ in the
continuation set P2. When the state process hits the boundary of P2, it is
pushed onto the boundary of P1 along one of the push directions. If however,
the initial state is outside P2 then again it is optimal to push it on to the
boundary of P1. �

Results about the case of both fixed and proportional transactions costs
are given in [Ko].

X.6 Derivatives and the Black-Scholes price

A contingent claim or equivalently a derivative is a financial instrument whose
future pay-off is determined by a deterministic function of the future (and
therefore random) value of a set of financial instruments, namely the underly-
ing instruments. Although more than one instrument is also used in practice,
for brevity we restrict our attention to the model described in Section 2. Then
the risky asset, or the stock is the underlying instrument. Let T be the pre-
scribed future date of settlement, called maturity. The value of the pay-off of
the derivative is ϕ(S(T )), where ϕ is a given deterministic function and S(·)
is the per share price of the stock.

Example 6.1. Standard examples of derivatives are

ϕC(S(T )) = (S(T ) −K)+, Call option.

In fact, the holder of this call option has the option to buy one share of
the underlying stock for the price of K; the strike price. Of course it is only
rational to exercise this option when the stock price S(T ) at time T is larger
than K resulting in a net gain of S(T )−K, when S(T ) ≥ K. Other important
examples are
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ϕP (S(T )) = (K − S(T ))+, Put option,

which gives the holder the option to sell the stock for a price of K, and

ϕD(S(T )) = H(S(T ) −K), Digital option,

pays one dollar when S(T ) ≥ K. �

Derivatives are essential tools in risk management allowing investors to
reduce the risk of their portfolio. We refer to Hull’s book [Hu] for this very
important point. In this book we concentrate on the mathematical problem
of pricing and hedging. The pricing question is to determine the fair value (or
equivalently the fair price) of this derivative at any time t prior to maturity
T .

Let us introduce the idea of arbitrage pricing in a formal manner. We will
rederive the same pricing formula through two different ways in the following
sections.

Consider the financial market described in Section 2 and suppose that the
fair value is a function V (t, s) of the current stock price s and the time t. If this
is the fair value one can buy or sell this derivative in the market for this value.
Suppose that we sell it and obtain a cash amount of V (t, s). However, this sale
also introduces a future liability of ϕ(S(T )) at time T . To protect ourselves
against this uncertain liability, we invest our in the financial market consisting
of only two instruments. Let π(·) be our adapted investment strategy, i.e., we
invest π(t) times of our wealth in the stock and the rest in the bond. Let x(·)
be the resulting wealth process. Then, x solves the equation (2.2) with no
consumption:

(6.1) dx(ρ) = x(ρ)[(r + π(ρ) [µ− r])dρ+ π(ρ)σdw(ρ)].

with the initial condition x(t) = V (t, s). Arbitrage arguments imply that the
value of the derivative must be equal to the wealth process with an appropriate
investment strategy π(·). Since the pricing equation will be derived rigorously
two different ways, we omit the proof of this statement and refer to the book
of Karatzas & Shreve [KS5] for its proof. Then, by the Ito formula

dV (ρ, S(ρ)) = [Vt + µS(ρ)Vs +
σ2S2(ρ)

2
Vss]dρ+ σS(ρ)Vsdw(ρ).

We argued that V (ρ, S(ρ)) = x(ρ) for all ρ ∈ [t, T ]. We now equate the drift
and the diffusion terms in the above and (6.1). The result is

σS(ρ)Vs(ρ, S(ρ)) = σπ(ρ)x(ρ),

[Vt + µS(ρ)Vs +
σ2S2(ρ)

2
Vss](ρ, S(ρ)) = [r + π(ρ) (µ− r)]x(ρ).

Since V (ρ, S(ρ)) = x(ρ), above equations imply that
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(6.2) π(ρ) =
S(ρ)Vs(ρ, S(ρ))

V (ρ, S(ρ))
,

(6.3) Vt(t, s) + rsVs(t, s) +
σ2s2

2
Vss(t, s) = rV (t, s),

for s > 0, t < T together with the final condition

(6.4) V (T, s) = ϕ(s).

The equation (6.3) is known as the Black-Scholes equation for derivative pric-
ing. It has the following Feynman-Kac representation,

(6.5) V (t, s) = e−r(T−t) E[ϕ(Ŝ(T )) | Ŝ(t) = s],

where
dŜ = Ŝ(ρ)[rdρ+ σdw(ρ)].

See [KS5, Sec. 2.4], also [KS4, Sec. 5.8.B][MR, Sec. 5.1.5]. Note that the mean
return rate coefficient µ does not influence the Black-Scholes price. Also in
the case of a Call option the above expression can be computed using the
standard error function (c.f. Hull [Hu].)

X.7 Utility pricing

The Black-Scholes arbitrage pricing is not available in incomplete markets
or in markets with friction. One has to bring in the risk preferences of the
investor in the pricing theory. Hodges & Neuberger [HN] proposed a utility
based theory to price derivatives. This approach was later developed by Davis,
Panas & Zariphopoulou [DPZ] and applied to models with transactions costs.
Another application is to markets with both traded and non-traded securities
[Z4][MZ][Hen]. We will briefly describe this method and show that in the
financial market described in Section 2, it yields the Black-Scholes price.

Suppose that an investor at time t < T has an initial wealth of x and
can offer the possibility of buying one share of a derivative for a price of v
dollars. So she has two alternatives; one is to sell the derivative. In this case
her wealth will increase to x+ v. She will optimally invest this in the market.
However, at time T she has to pay ϕ(S(T )) dollars from her portfolio. In the
second alternative, she does not sell the derivative and invest x dollars in the
market.

Hodges and Neuberger assume that there is no consumption and the in-
vestor is trying to maximize the utility she gets from her wealth at time T .
Let ℓ be her utility function satisfying the assumptions (4.1). Mathematically
let

(7.1) Vf (t, x) := sup
π(·)

E[ℓ(x(T )) | x(t) = x],
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(7.2) V̂ (t, x, s; v) := sup
π(·)

E[ℓ(x(T ) − ϕ(S(T )) | x(t) = x+ v, S(t) = s],

where in both cases the wealth process x(t) solves the equation (6.1). De-
scription of admissible controls requires a lower bound on the wealth process
which needs to be specified. The exact nature of this condition depends on
the financial model. Here we assume that admissible controls are required to
satisfy x(·) ≥ 0. We refer to Davis, Panas & Zariphopoulou [DPZ] for the
formulation in a market with proportional transaction costs.

If we assume that the utility function ℓ is unbounded, then for large v,
Vf < V̂ and she will choose to sell the derivative for a price of v. On the other

hand, V̂ < Vf when v = 0. So given (t, x, s), there exists a solution of the
algebraic equation

Vf (t, x) = V̂ (t, x, s; v).

Since the dependence of V̂ on v is strictly increasing, the solution is unique.
Hodges and Neuberger call this solution the utility price.

Theorem 7.1. In the financial market of Section 2 (without consumption),
for any (t, s, x) the utility price of a derivative is equal to the Black-Scholes
price given (6.5).

Proof. When consumption c(t) is omitted from the model in Section 2,
equation (2.2) becomes (6.1). Let x and π be as in (6.1). For the purposes of
this proof, it is more convenient to work with α := x π. With this notation,
(6.1) has the form

(7.3) dx = [rx(ρ) + α(ρ)(µ− r)]dρ+ α(ρ)σdw(ρ).

For a given portfolio α(·) and an initial condition x(t) = ξ, let xα
ξ (·) be the

solution of (7.3). By the linearity of the state equation (7.3),

(7.4) xα1

ξ1
(·) + xα2

ξ2
(·) = xα1+α2

ξ1+ξ2
(·).

Let πBS be as in (6.2). Define αBS(ρ) := πBS(ρ) V (ρ, S(ρ)). By the linear-
ity (7.4), α is an admissible portfolio starting from (t, x) if and only if α+αBS

is admissible starting from (t, x+ V (t, s)). Indeed by construction,

xαBS

V (t,s)(·) = V (·, S(·)).

Hence by (7.4) and (6.4),

xα+αBS

x+V (t,s)(T ) − ϕ(S(T ) = xα
x(T ) + xαBS

V (t,s)(T ) − ϕ(S(T )) = xα
x(T ).

Hence,
Vf (t, x) = V̂ (t, x, s;V (t, s)).

�
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Remark 7.1. In the above proof the chief property of the financial model
is the linearity (7.4). Hence the result extends to a more general “linear” cases
easily (cf. Hodges & Neuberger [HN]).

A striking feature of the above result is that the resulting price is inde-
pendent of the utility function. In fact, no particular form of the function ℓ is
used in the proof.

In general, the utility price depends on the utility function and also it
depends on the current wealth of the investor and that it is not linear, i.e., in
general the utility price of n shares of the derivative is not necessarily equal
to n times the price of one share. The dependence of the utility function is
natural, as in incomplete markets there are many possibilities and the in-
vestor chooses the price according to her risk profile. However, linearity is a
desired property and several solutions for it were proposed. In a market with
proportional transaction costs, Barles & Soner [BaS] overcomes this difficulty
through an asymptotic analysis.

Since in markets with friction (markets with portfolio constraints or with
transaction costs) arbitrage pricing is not available, utility price provides an
interesting method of pricing. One alternate approach to pricing will be con-
sidered in the next section. �

X.8 Super-replication with portfolio constraints

In this section, we introduce the concept of super-replication in the particular
problem of portfolio constraints. However, the method of super-replication
applies to other models as well.

The portfolio constraint is simply a bound on the control parameter π in
the equation (6.1). We assume that π(t) satisfies

(8.1) −a ≤ π(t) ≤ b, ∀t ≥ 0,

where a and b are positive constants and we assume that b > 1. Since π(t)
denotes the fraction of the wealth invested in the stock, the constraint π(t) ≤ b
implies that the investor is not allowed to borrow (or equivalently, short-sell
the bond) more than (b− 1) times her wealth. The constraint −a ≤ π(t) puts
a restriction on short-selling the stock. The investor is not allowed to shortsell
stocks of value more than a times her wealth.

Let xπ
t,x(·) be the solution of (6.1) with initial data xπ

t,x(t) = x and St,s(·)
be the solution of the stock equation with initial condition St,s(t) = s. Let A
be the set of all adapted portfolio processes π satisfying the constraint (8.1).

Given a derivative with pay-off ϕ and maturity T , the minimal super-
replication cost is given by

(8.2) V̄ (t, s) := inf{x | ∃π(·) ∈ A such that xπ
t,x(T ) ≥ ϕ(St,s(T )) a.s. }.
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The above problem is not in the standard form of an optimal control
problem. Still, Soner & Touzi [ST1] showed that V̄ satisfies a dynamic pro-
gramming principle; for any stopping time τ ∈ [t, T ],

V̄ (t, s) := inf{x | ∃π(·) ∈ A such that xπ
t,x(τ) ≥ V̄ (τ, St,s(τ)) a.s. }.

Hence, the nonlinear semigroup property is also satisfied by this problem.
Indeed for any function Ψ , the two-parameter semigroup Tt,r is given by

Tt,rΨ(s) := inf{x | ∃π(·) ∈ A such that xπ
t,x(r) ≥ Ψ(St,s(r)) a.s. }.

Then, V̄ (t, s) = Tt,Tϕ(s) and the dynamic programming formally implies the
semigroup property II(3.3). So the viscosity theory for V̄ can be developed as
in Chapter II. We refer to [ST1] for this theory. Here we only state (without
proof) that the infinitesimal operator in II(3.11) is

(8.3) Gtφ(s) =

⎧

⎨

⎩

LΦ(s), if
sΦs(s)

Φ(s)
∈ [−a, b],

∞, otherwise,

where

(8.4) LΦ(s) =
σ2s2

2
Φss(s) + rsΦs(s) − rΦ(s).

We refer to [S4] for an analysis of this problem.

X.9 Buyer’s price and the no-arbitrage interval

In the previous subsection, we considered the problem from the perspective of
the writer of the option. For a potential buyer, there is a different possibility
of arbitrage, if the quoted price x of a certain claim is low. She would take
advantage of a low price by buying the option for a price x. She would finance
this purchase by using the instruments in the market. Mathematically she
tries to optimize her wealth (or minimize her debt)with initial wealth of − x.
If at maturity,

xπ
t,−x(T ) + ϕ(St,s(T )) ≥ 0, a.s.,

then this provides arbitrage. Hence the largest of these initial data provides
the lower bound of all prices that do not allow arbitrage. So we define (after
observing that xπ

t,−x(T ) = −xπ
t,x(T )),

V
¯
(t, s) := sup{x | ∃π(·) ∈ A such that xπ

t,x(T ) ≤ ϕ(St,s(T )) a.s. }.
Then, the no-arbitrage interval is given by

V
¯
(t, s), V̄ (t, s)] .

with V̄ (t, s) as in (8.2).
This approach can be applied to other markets. In general, there are many

approaches to pricing and the above interval must contain all the prices ob-
tained by any method.
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X.10 Portfolio constraints and duality

In general for solving super-replication problems, two approaches are available.
In the first, after a clever duality argument, the problem is transformed into a
standard optimal control problem and then solved by dynamic programming.
We refer to lecture notes of Rogers [Rog] for an introduction. In the second
approach, dynamic programming is used directly. Although, when available
the first approach provides more insight, it is not always possible to apply the
dual method. For instance, the problem with Gamma constraint (c.f. [CST]) is
an example for which the dual method is not yet known. The second approach
is a direct one and applicable to all super-replication problems.

In this section, we solve the super-replication problem through a prob-
abilistic approach. We refer to Karatzas & Shreve [KS5] for details of the
material covered in this section.

Let us recall the problem briefly. We consider a market with one stock
and one bond. By multiplying er(T−t) we may take r = 0, (or equivalently
taking the bond as the numeriare). Also by a Girsanov transformation, we
may take µ = 0. So the resulting simpler equations for the stock price and
wealth processes are

dS(t) = σS(t)dW (t) ,

dx(t) = σπ(t)x(t)dw(t) .

Suppose a derivative with payoff ϕ : [0,∞) → [0,∞) is given. The minimal
super-replication cost (from the seller’s point of view) is as in (8.2)

V̄ (t, s) = inf{x : ∃π(·) ∈ A s.t. xπ
t,x(T ) ≥ ϕ(St,s(T )) a.s. },

where A is the set of all essentially bounded, adapted processes π(·) with
values in a convex set K = [−a, b].

Black-Scholes case. Let us start with the unconstrained case, K =
(−∞,∞). Since xπ

t,x(·) is a martingale, if there is x and a super-replicating
portfolio π(·) ∈ A, then

x = xπ
t,x(t) = E[xπ

t,x(T ) | Ft] ≥ E[ϕ(St,s(T )) | Ft] := x0.

Our claim is that indeed the above inequality is an equality for x = x0. Set

Y (ρ) := E[ϕ(St,s(T )) | Fρ] .

By the martingale representation theorem, Y (·) is a stochastic integral. We
choose to write it as

Y (ρ) = E[ϕ(St,s(T ))| Ft] +

∫ ρ

t

σπ∗(ρ′)Y (ρ′)dw(ρ′) ,

with an appropriate π∗(·) ∈ A. Then, Y (·) = xπ∗

t,x0
(·). Hence, V̄ (t, s) ≥ x0. But

we have already shown that if an initial capital supports a super-replicating
portfolio then, it must be larger than x0. Hence,
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V̄ (t, s) = x0 = E[ϕ(St,s(T )) | Ft] := V (t, s) ,

which is the Black-Scholes price already computed in Section 6. Formula (6.5)
differs from above as we have already discounted the prices. From the above
formula we can obtain (6.5) after appropriate discounting. Finally we note
that in this case, starting with x0, there always exists a replicating portfolio.

In this example, it can be shown that the buyer’s price is also equal to the
Black-Scholes price vBS = V (t, s). Hence, the no-arbitrage interval defined
in the previous subsection is the singleton {vBS}. Thus, that is the only fair
price.

General Case. Let us first introduce several elementary facts from convex
analysis (c.f. [R1]). Set

δK(ν) := sup
π∈K

−πν, K̃ := {ν : δK(ν) < ∞} .

In the convex analysis literature, δK is the support function of the convex set
K. In one dimension, we may directly calculate these functions. However, we
use this notation, as it is suggestive of the multidimensional case. Then, it is
a classical fact that

π ∈ K ⇔ πν + δK(ν) ≥ 0 ∀ν ∈ K̃ .

Let x, π(·) be an initial capital, and respectively, a super-replicating portfolio.
For any ν(·) with values in K̃, let P ν be such that

wν(u) := w(u) +

∫ u

t

ν(ρ)

σ
dρ

is a P ν martingale. This measure exists under integrability conditions on ν(·),
by the Girsanov theorem. Here we assume essentially bounded processes, so
P ν exits. Set

x̃(u) := xπ
t,x(u) exp(−

∫ u

t

δK(ν(ρ))dρ).

By calculus,

dx̃(ρ) = x̃(ρ)[−(δK(ν(ρ)) + π(ρ)ν(ρ))dρ+ σdwν(ρ)].

Since π(ρ) ∈ K and ν(ρ) ∈ K̃ , δK(ν(ρ) + π(ρ)ν(ρ) ≥ 0 for all ρ. Therefore,
x̃(ρ) is a super-martingale and

Eν [x̃(T ) | Ft] ≤ x̃(t) = xπ
t,x(t) = x.

Also xπ
t,x(T ) ≥ ϕ(St,s(T )) P−a.s, and therefore, P ν-a.s. as well. Hence,

x̃(T ) = exp(−
∫ T

t

δK(ν(ρ))dρ) xπ
t,x(T )

≥ exp(−
∫ T

t

δK(ν(ρ))dρ) ϕ(St,s(T )) P ν − a.s. .
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All of these together yield,

V̄ (t, s) ≥ xν := Eν [exp(−
∫ T

t

δK(ν(ρ))dρ)ϕ(St,s(T )) | Ft] .

Since this holds for any ν(·) ∈ K̃,

V̄ (t, s) ≥ sup
ν∈K̃

xν .

The equality is obtained through a super-martingale representation for the
right hand side, c.f. Karatzas & Shreve [KS5]. The final result is

Theorem 10.1 [CK].The minimal super-replicating cost V̄ (t, s) is the
value function of the standard optimal control problem,

V̄ (t, s) = E

[

exp(−
∫ T

t

δK(ν(ρ))dρ) ϕ(Sν
t,s(T )) | Ft

]

,

where Sν
t,s solves

dSν
t,s = Sν

t,s(ρ) [−ν(ρ)dρ+ σdw(ρ)] .

Now this problem can be solved by dynamic programming. Indeed, an
explicit solution was obtained by Broadie, Cvitanic & Soner [BCS]. Here we
state it without proof.

Theorem 10.2 [BCS].The minimal super-replicating cost V̄ (t, s) is equal
to the Black-Scholes price with a modified pay-off ϕ̂ given by

ϕ̂(s) := sup
ν∈K̃

{ e−δK(ν) ϕ(eνs) }.

Then,
V̄ (t, s) = E[ ϕ̂(St,s(T ) ].

Recall that we are assuming that the interest rate is zero. One needs to
discount the above formula appropriately to obtain the formula in models
with non-zero interest rate.

In this problem, buyer’s price can be calculated as above.

X.11 Merton problem with random parameters

In the Merton problem formulated in Section 3, the riskless interest rate r,
the risky mean rate of return µ and the volatility coefficient σ are assumed
to be constant. However, this assumption is unrealistic, particularly over long
time intervals. Instead, we now assume that these parameters may depend on
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some “economic factor” η(t) which is a Markov diffusion process. Instead of
equation (2.2), the wealth x(t) now satisfies

(11.1) dx = x(t) {(r(t) + π(t)[µ(t) − r(t)])} dt+ π(t)σ(t)dw(t) − c(t)dt,

(11.2) r(t) = R(η(t)), µ(t) = M(η(t)), σ(t) = Σ(η(t)).

It is assumed that η(t) satisfies the stochastic differential equation

(11.3) dη = g(η(t))dt+ σ̃
[

λdw(t) + (1 − λ2)
1
2 dw̃(t)

]

where σ̃, λ are constants with |λ| < 1 and w̃(t) is a Brownian motion inde-
pendent of w(t). The constant λ has the role of a correlation coefficient. As in
Section 3, the goal is to choose investment and consumption control processes
π(t), c(t) to maximize (3.1). We assume that ℓ(c) = γ−1cγ is HARA with
0 < γ < 1.

This problem is an infinite time horizon stochastic control problem, with
two dimensional state (x(t), η(t)) governed by equations (11.1), (11.3) and
with controls π(t), c(t). In the notation of Section IV.5, we have O = (0,∞)×
(−∞,∞) and U = (−∞,∞) × [0,∞). We seek a solution W (x, η) to the
dynamic programming equation of the form

(11.4) W (x, η) = γ−1K(η)xγ , K(η) > 0,

where x = x(0), η = η(0). By substituting in the dynamic programming
equation IV(5.8), K(η) must satisfy the differential equation

(11.5) βK = g(η)Kη +
σ̃2

2
Kηη + max

c
[−cγK + cγ ]

+γmax
π

{[

R(η) + (M(η) −R(η))π +
γ − 1

2
π2Σ2(η)

]

K

+σ̃λπΣ(η)Kη

}

This can more conveniently be written in the following logarithmic form. Let
Z(η) = logK(η). A routine calculation shows that Z(η) must satisfy

(11.6) β = ḡ(η)Zη +
σ̃2

2
Zηη +

σ̄2

2
Z2

η + (1 − γ)e
Z

γ−1 + γQ(η)

(11.7) ḡ(η) = g(η) +
γσ̃λ(M(η) −R(η))

(1 − γ)Σ(η)

(11.8) σ̄ = σ̃

[

1 − γ(1 − λ2)

1 − γ

]

1
2
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(11.9) Q(η) = R(η) +
(M(η) −R(η))2

2(1 − γ)Σ2(η)
.

By taking argmax in (11.5), one obtains the following candidates for optimal
control policies:

(11.10) π∗(η) =
M(η) −R(η)

(1 − γ)Σ2(η)
+

σ̃λZη(η)

(1 − γ)Σ(η)

(11.11) c∗(x, η) = x e
Z(η)
γ−1 .

We now make the following assumptions, under which the dynamic pro-
gramming formalism just outlined indeed gives a solution to the Merton port-
folio optimization problem with random parameters. We assume that:

(i) R(η), M(η), Σ(η) are in C1
b (IRn), and Σ(η) ≥ Σ > 0;

(11.12) (ii) β − γQ(η) ≥ β > 0 for all η;

(iii) There exist η1, a1 > 0 such that ḡη(η) ≤ −a1 whenever |η| ≥ η1.

We note in particular that ḡ(η) = g(η) in the “uncorrelated” case λ = 0.
When λ = 0, formula (11.10) for the optimal investment policy π∗(η) has
the same form as IV(5.25) for the classical Merton problem. However, in this
formula the constants r, µ, σ are now replaced by R(η), M(η), Σ(η). We also
note that (11.12) (iii) is implied by the following:

(11.12) (iii′) Rη(η), Mη(η), Ση(η) tend to 0 as |η| → ∞ and there exist
ζ2, a2 > 0 such that gη(η) ≤ −a2 whenever |η| ≥ η2.

Condition (11.12)(iii′) implies that the factor process η(t) is ergodic.

Theorem 11.1. Equation (11.6) has a unique solution Z ∈ C3(IR1) such
that Z(η) is bounded and Zη(η) tends to 0 as |η| → ∞. Moreover, W (x, η) =
γ−1xγeZ(η) is the value function, and π∗, c∗ in (11.10),(11.11) are optimal
control policies.

Proof. (Sketch) We first find K+,K− which are constant super- and sub-
solutions to (11.6). Let β be as in (11.12)(ii) and choose β̄ such that β −
γQ(η) ≤ β̄ for all ζ. We take

Z+ = (γ − 1) log[β(1 − γ)−1]

Z− = (γ − 1) log[β̄(1 − γ)−1].

Standard arguments then imply the existence of a solution Z to (11.6) with
Z− ≤ Z(η) ≤ Z+. See [FP][KSh1]. Let us show that Zη(η) tends to zero as
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n → ∞. The same argument applies as η → −∞. Suppose that Zη(η) has
a positive limsup as η → ∞. Since Z(η) is bounded, the liminf of |Zη(η)| as
η → ∞ is 0. Hence there is a sequence ηn tending to infinity such that Zη(η)
has a local max at ηn with Zη(ηn) ≥ δ > 0. We differentiate with respect to
η in (11.6) and use Zηη(ηn) = 0, Zηηη(ηn) ≤ 0 to obtain for large n

a1

2
Zη(ηn) ≤

(

−ḡη(ηn) + e
Z(ηn)
γ−1

)

Zη(ηn) ≤ γQη(ηn).

Since Qη is bounded, Zη(ηn) is bounded. Then from (11.6), ḡ(ηn)Zη(ηn) is
bounded. Since ḡ(ηn) → −∞ as n → ∞, Zη(ηn) → 0. This is a contradiction.
Similarly, Zη(η) cannot have a negative liminf as η → ∞.

To show that W (x, η) is the value function and π∗, c∗ are optimal control
policies, we use the same verification argument as for the constant parameter
case (Example IV.5.2). Note that π∗(η) is bounded and that x−1c∗(x, η) has
positive upper and lower bounds since Z(η) is bounded. This verification
argument also implies uniqueness of Z. �

Remark 11.1. The sub- and super-solution technique sketched in the
proof above can be used under less restrictive assumptions than (11.12). In
[FP] the case when µ, σ are constant but R(η) = η. Thus, the interest rate
η(t) = r(t) varies according to (11.3). Under the assumptions in [FP], an un-
bounded solution Z(ζ) to (11.6) is obtained with polynomial growth rate as
|ζ| → ∞. The verification argument in this case is considerably more compli-
cated. In [FHH2] the case when r, µ are constant, but σ(t) = Σ(η(t)) varies is
considered.

Merton terminal wealth problem with random parameters.
Another problem which is often considered is the following. Suppose that
consumption is omitted from the model (c(t)) = 0 in equation (11.1), and
that the factor η(t) again satisfies (11.3). The goal is to choose the investment
control on a finite time interval 0 ≤ t ≤ T to maximize the expected HARA
utility of wealth γ−1E(x(T )γ) at the final time T . The value function V is of
the form

(11.13) V (T, x, η) = γ−1xγΨ(T, η),

where as in (11.5) Ψ(T, η) must satisfy the PDE

(11.14)
∂Ψ

∂T
= g(η)Ψη +

σ̃2

2
Ψηη + max

π
[f(η, π)Ψη + γℓ(η, π)Ψ ]

(11.15)

⎧

⎨

⎩

f(η, π) = g(η) + γσ̃λπΣ(η)

ℓ(η, π) = γ
[

R(η) + (M(η) −R(η))π + γ−1
2 π2Σ2(η)

]

.

Ψ(T, η) is the value function for a risk sensitive stochastic control problem of
the kind considered in Section VI.6.8. To see this we use a Girsanov transfor-
mation, as in [FSh1][FHH2]. Let
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ζ(t) = γ

t
∫

0

π(s)Σ(η(s))dw(s) − 1

2
γ2

t
∫

0

π2(s)Σ2(η(s))ds

ŵ(t) = w(t) − γ

t
∫

0

π(s)Σ(η(s))ds.

Then ŵ(t) and w̃(t) are independent Brownian motions under the probability
measure P̂ such that dP̂ = exp(ζ(T ))dP . Then (11.3) becomes

(11.16) dη = f(η(t)), π(t))dt+ σ̃dz(t))

with z(t) = λdŵ(t) +
√

1 − λ2dw̃(t) a Brownian motion. A calculation using
(11.1) and the Ito differential rule gives

(11.17) E(x(T )γ) = Ê

⎡

⎣exp

T
∫

0

ℓ(η(t), π(t))dt

⎤

⎦

with Ê the expectation under P̂ .
In the notation of Section VI.8, let ρ = 1 and let Φ(t̄, η; t1) denote the

value function of the risk sensitive control problem on an interval t̄ ≤ t ≤ t1
with initial data η(t̄) = η. Note that the control π(t) is maximizing, rather
than minimizing as in Section VI.8. Since f(η, π), ℓ(η, π) do not depend on
time, Φ(t̄, η; t̄1) = Ψ(t1 − t̄, η). The dynamic programming equation VI(8.5)
reduces to (11.14).

The Merton terminal wealth problem, and associated risk sensitive control
problems, have been considered by several authors, including [BP][FSh3][KSh3]
[Na2]. In [Z4] it is shown that (11.14) can be transformed into a linear PDE for
ψ(T, η), where Ψ = ψδ and δ = (1− γ+λ2γ)−1(1 − γ). In [FPS, Chap. 10] an
approximate solution is found in case of stochastic volatility (r, µ constant),
using a perturbation analysis. In [FPS] volatility is assumed mean-reverting
on a “fast” time scale.

If R(η),M(η), g(η) are linear functions and σ is constant, then the risk
sensitive control problem is a LEQR problem considered in Example VI.8.1,
with min replaced by max. In this case, the problem has an explicit solution
[BP][FSh3][KSh3].

X.12 Historical remarks

The classical references to the Merton problem are [Mer1], [Mer2]. For the
general utility functions, we refer to [KLSS], [Pl1] and the textbooks [KS5]
and [Pl2]. For option pricing we refer to the original paper by Black & Scholes
[BSc] and the textbooks [KS5] and [Hu].
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The portfolio selection problem with transaction costs was first studied by
Constantinides [Co], then by Davis and Norman [DN] who solved the problem
under an implicit assumption on the coefficients. Later Shreve and Soner
[ShS] studied the problem only assuming that the value function is finite.
A similar problem with no consumption was analyzed by Taksar, Klass and
Assaf [TKA]. The deterministic model was “explicitly” solved by Shreve et al.
[SSX] with a general utility function which is not necessarily a HARA type
function. For the utility based approach, we refer to Hodges & Neuberger [HN].
An interesting application of this approach with proportional transaction costs
is given by Davis, Panas and Zariphopoulou [DPZ]. An asymptotic analysis
of this problem is given in [BaS], [WW] and more recently in [JS]. For other
related models we refer to Zariphopoulou [Z1], [Z2] and [FZ]. We refer to
[KS5] and [ST2] and the references therein for results on super-replication.
References for the model with random coefficients are given in Section 11:
[FHH2], [FP], [FPS], [BP], [FSh3], [KSh3], [Na2].





XI

Differential Games

XI.1 Introduction

In this chapter we give a concise introduction to zero-sum differential games.
The game dynamics are governed by ordinary differential equations, which
are affected by two controllers with opposite goals. One controller chooses at
time s a control u(s) with the goal of minimizing the game payoff P . The
other controller chooses a control z(s) with the goal of maximizing P . The
notion of value function has a key role in the theory of differential games. In
his pioneering work, R. Isaacs [Is] introduced corresponding nonlinear first-
order PDEs which are now called Isaacs equations. As for the HJB equations
of deterministic control (Chapters I,II), solutions to Isaacs PDEs are typically
not smooth and should be considered in the viscosity sense.

We will consider only differential games on a fixed time interval t ≤ s ≤ t1.
Rather strong assumptions will be made about the game dynamics and pay-
off, to simplify the presentation. See (3.4). We begin in Section 2 with the
definition of upper and lower values V+, V− of a static game. The upper value
V+ is obtained if the minimizing control is chosen first, and V− is obtained if
the maximizing control is chosen first. In Section 3, a description of differen-
tial games on [t, t1] is given, and PDEs (3.6), (3.9) for the upper and lower
game values V+(t, x), V−(t, x) are derived formally. For discrete-time dynamic
games, upper and lower value functions are easily defined, by specifying which
controller chooses first at each step. However, this is not so in continuous time,
since control choices can be changed instantaneously. In Section 4 we define
upper and lower value functions using the idea of progressive strategy, in a way
similar to Elliott-Kalton [ElKa]. The upper and lower value functions V+, V−

are shown to satisfy dynamic programming principles (5.1), (5.4). Then V+

and V− are shown in Section 6 to be the unique bounded, Lipschitz continuous
viscosity solutions to the upper and lower Isaacs PDEs with given terminal
data. When the Isaacs minimax condition (3.11) holds upper and lower game
values are equal (V+ = V−).
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In Section 7, we consider differential games which arise as small noise limits
from risk-sensitive stochastic control problems on a finite time interval. The
upper game value V+(t, x) is the limit of the minimum certainty-equivalent
expected cost in the risk sensitive control problem.

At an intuitive level, a progressive strategy α allows the minimizing con-
troller to choose u(s) knowing z(r) for r ≤ s. Such a strategy α can be chosen
which guarantees payoff P no more than the lower value V−(t, x) plus an ar-
bitrarily small constant. In Section 9, the smaller class of strictly progressive
strategies is introduced, which corresponds intuitively to excluding knowl-
edge of z(s) when u(s) is chosen. With strictly progressive α, the upper value
V+(t, x) is obtained (Theorem 9.1). We call the difference V+(t, x) − V−(t, x)
an instantaneous information gap in game value. Our proof of Theorem 9.1
depends on time discretizations. A different proof is given in [KSh2].

This chapter depends on viscosity solution results in Chapter II, and some
ideas from Chapter I. Except for Theorem 7.2, it may be read independently
of the other chapters.

XI.2 Static games

Let us first review some basic concepts concerning zero sum games. Let U
and Z be two sets, and P (u, z) a bounded function on U × Z called the game
payoff. There are two controllers, one of which chooses u ∈ U and wishes to
minimize P . The other controller chooses z ∈ Z and wishes to maximize P .
(In the game theory literature, the term “player” rather than “controller” is
frequently used. See for instance [Au][O][PZ].) To complete the description of
the game, the information available to each controller must be specified. We
distinguish three cases.

Case 1. The minimizing controller chooses u first, and u is known when
the maximizing controller chooses z. Let

(2.1) V+ = inf
u

sup
z
P (u, z).

Case 2. The maximizing controller chooses z first, and z is known when
the minimizing controller chooses u. Let

(2.2) V− = sup
z

inf
u
P (u, z).

V+ and V− are called the upper game value and lower game value respec-
tively. We always have V− ≤ V+. If V− = V+, then the game is said to have a
saddle point.

Case 3. Both controllers choose simultaneously. In this case, a game
value can be defined by introducing “mixed strategies” which are probability
measures on U and Z. This case is not considered in this book.
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The upper game value can be rewritten as follows. Let us call any function
β from U into Z a strategy for the maximizing controller. Since u is known
before z is chosen in Case 1, the maximizing controller chooses a strategy β.
Then (2.1) can be rewritten as

(2.3) V+ = inf
u

sup
β
P (u, β(u)) = sup

β
inf
u
P (u, β(u)).

The first equality in (2.3) is just (2.1), taking z = β(u). The second equality
is a consequence of the following remark: for every θ > 0 there exist uθ, βθ,
such that

(2.4) P (uθ, z) < V+ + θ, P (u, βθ(u)) > V+ − θ

for all u ∈ U , z ∈ Z.
In the same way, a function α from Z into U is called a strategy for the

minimizing controller. We have

(2.5) V− = sup
z

inf
α
P (α(z), z) = inf

α
sup

z
P (α(z), z).

XI.3 Differential game formulation

We consider two controller, zero sum differential games on a finite time interval
[t, t1]. The state of the differential game at time s is x(s) ∈ IRn, which satisfies
the differential equation

(3.1)
d

ds
x(s) = G(s, x(s), u(s), z(s)), t ≤ s ≤ t1,

with initial data

(3.2) x(t) = x.

At time s, u(s) is chosen by a minimizing controller and z(s) is chosen by a
maximizing controller, with u(s) ∈ U , z(s) ∈ Z. The sets U, Z are called the
control spaces. The game payoff is

(3.3) P (t, x;u, z) =

t1
∫

t

L(s, x(s), u(s), z(s))ds+ ψ(x(t1)).

We make the following assumptions:

(a) U ⊂ IRm1 , Z ⊂ IRm2 and U,Z are compact;

(b) G,L are bounded and continuous on Q̄0 × U × Z;

(c) There exist constants KG,KL such that
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(3.4)

|G(t, x, u, z) −G(t, y, u, z)| ≤ KG|x− y|

|L(t, x, u, z) − L(t, y, u, z)| ≤ KL|x− y|

for all t ∈ [t0, t1], x, y ∈ IRn, u ∈ U, z ∈ Z;

(d) ψ is bounded and Lipschitz continuous.

These assumptions could be relaxed in various ways, which would however
complicate the exposition. For example, for differential games which arise in
nonlinear H-infinity robust control, it is often assumed that L(t, x, u, z) may
grow quadratically in x as |x| → ∞. See [Mc3].

In order to complete the description of the differential game, one must take
into account what information is available to the controllers at each time s. To
begin with, let us try to do this at an intuitive level. At time s, both controllers
are allowed complete information about the past before time s. In addition,
one controller is given additional information at time s. At an intuitive level,
the maximizing controller has this advantage if u(s) is known before z(s) is
chosen. Similarly, the minimizing controller has the advantage if z(s) is known
before u(s) is chosen. This idea is easy to make precise for multistage discrete
time games. See [F7][Fr2][PZ]. However, it is not easy to do so in continuous
time, since control choices can be changed instantaneously. This issue will be
addressed in Sections 4 and 9, where the concepts of progressive and strictly
progressive strategies are used.

Upper and lower Isaacs PDEs. The pioneering work of R. Isaacs on
differential games [Is] makes extensive use of first order PDEs, which are
now called Isaacs equations. They correspond to the Hamilton-Jacobi-Bellman
PDEs considered in Chapters I and II when there is no maximizing control
z(s). There are two PDEs, (3.6) and (3.9) below, which are called upper
and lower Isaacs equations. Speaking intuitively, these result from giving the
information advantage to either the maximizing or the minimizing controller.

To derive formally the upper Isaacs PDE, suppose that an “upper value
function” V+(t, x) has been defined which satisfies a dynamic programming
principle. If one could consider only constant controls u(s) = u, z(s) = z on
a small time interval t ≤ s ≤ t+ h, then formally

(3.5) V+(t, x) ≈ inf
u

sup
z

⎡

⎣

t+h
∫

t

L(s, x(s), u, z)ds+ V+(t+ h, x(t+ h))

⎤

⎦ .

Moreover, if V+ were a smooth function, then

V+(t+ h, x(t+ h)) ≈ V+(t, x) +

[

∂V+

∂t
+DxV+ ·G(t, x, u, z)

]

h

where ∂V+/∂t and DxV+ are evaluated at (t, x). If we substitute into (3.5),
divide by h and let h → 0, we get the upper Isaacs PDE:
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(3.6) 0 = −∂V+

∂t
+H+(t, x,DxV+)

(3.7) H+(t, x, p) = −min
u∈U

max
z∈Z

[G(t, x, u, z) · p+ L(t, x, u, z)].

The boundary condition for (3.6) is

(3.8) V+(t1, x) = ψ(x).

The above is merely a formal derivation, not mathematically precise. A rig-
orous definition of upper value function V+ is given in Section 4, and V+ is
shown in Section 6 to satisfy the upper Isaacs PDE in the viscosity sense.

In the same way, the lower Isaacs PDE is derived formally by giving the
minimizing controller the information advantage. This PDE is

(3.9) 0 = −∂V−

∂t
+H−(t, x,DxV−)

(3.10) H−(t, x, p) = −max
z∈Z

min
u∈U

[G(t, x, u, z) · p+ L(t, x, u, z)] .

The lower value function V−, as rigorously defined in Section 4, will satisfy
(3.9) in the viscosity sense.

In many examples, it happens that

(3.11) H+(t, x, p) = H−(t, x, p)

for all (t, x) ∈ Q̄0, p ∈ IRn. This is called the Isaacs minimax condition. When
(3.11) holds, then V+ = V−. See Corollary 6.1.

Control policies. For differential games, control policies can be intro-
duced in a way similar to Markov control policies in Chapter IV. Consider the
upper differential game, in which the maximizing controller has the informa-
tion advantage. A control policy for the minimizing controller is a function
u from Q0 into U . For the maximizer, a control policy is a function z from
Q0 × U into Z. If u is Lipschitz continuous, then for any choice of z(s) equa-
tion (3.1) has a well defined solution x(s) with u(s) = u(s, x(s)) and x(t) = x.
Similarly, if z is Lipschitz continuous, the solution x(s) is well defined for each
u(s) when z(s) = z(s, x(s), u(s)).

At a purely formal level, equations (3.6)-(3.7) suggest the following candi-
dates for optimal control policies u∗, z∗. Let

F (t, x, u, z) = G(t, x, u, z) ·DxV+(t, x) + L(t, x, u, z).

Choose u∗(t, x) and z∗(t, x, u) such that

(3.12) u∗(t, x) ∈ argmin
u∈U

max
z∈Z

F (t, x, u, z)
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(3.13) z∗(t, x, u) ∈ argmax
z∈Z

F (t, x, u, z)

Unfortunately, there are technical obstacles to obtaining a general theorem
which puts this idea on a mathematically rigorous basis. Typically the upper
value function is not of class C1, and thus u∗, z∗ are not well defined. Even
if u∗(t, x) and z∗(t, x, u) were suitably defined at points (t, x) where DxV+

does not exist, but u∗, z∗ are not Lipschitz, there remains the problem of
interpreting (3.1) when these control policies are used.

Control policies have had a limited role in developing a general theory of
value for differential games, which is based instead on the idea of strategies. On
the other hand, if one wishes to solve differential games in specific examples,
then strategies lead to unreasonably large computations and are of little use.
Instead, solutions in terms of optimal control policies are sought, using some
modified version of the procedure outlined above.

We conclude this section with the following result, in which very restrictive
assumptions are made. If u is a Lipschitz continuous policy, then we write (3.3)
as P (t, x;u, z), where as above u(s) = u(s, x(s)). Similarly, if z is Lipschitz
continuous, then we write (3.3) as P (t, x;u, z) where z(s) = z(s, x(s), u(s)).

Theorem 3.1. Let W ∈ C1(Q̄0) be a solution to the upper Isaacs PDE
(3.6) and (3.8). Moreover, let u∗, z∗ be Lipschitz continuous and satisfy
(3.12,(3.13)). Then:

(a) For every z(·) ∈ L∞([t, t1];Z)

(3.14) P (t, x;u∗, z) ≤ W (t, x);

For every u(·) ∈ L∞([t, t1];U)

(3.15) W (t, x) ≤ P (t, x;u, z∗).

Proof. Let F (t, x, u, z) be as above, with V+ replaced by W . Then

F (s, x(s), u∗(s, x(s)), z(s)) ≤ −H+(s, x(s), DxW (s, x(s))

for all s ∈ [t, t1]. Then (3.14) follows from (3.6),(3.8) and the fundamental
theorem of calculus, in the same way as for Theorem I.5.1. The proof of
(3.15) is similar. �

When inequalities (3.14), (3.15) hold we say that the policies u∗, z∗ are
optimal among Lipschitz continuous control policies, for the differential game
corresponding to the upper Isaacs PDE (3.6). Moreover, W (t, x) in Theorem
3.1 turns out to be the same as the upper differential game value V+(t, x),
which is defined in Section 4 using progressive strategies rather than control
policies. See Remark 6.1.
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XI.4 Upper and lower value functions

In this section we give precise definitions of upper and lower value functions.
To introduce the upper value function, we first define the concept of progres-
sive strategy for the maximizing controller. Let

U0(t, t1) = L∞([t, t1];U), Z0(t, t1) = L∞([t, t1];Z).

Let U(t, t1) ⊂ U0(t, t1) be a class of functions u(·) with the following proper-
ties:

(4.1)

(a) U(t, t1) contains all constant functions, u(s) ≡ u ∈ U ;

(b) If t < r < t1, u1(·) ∈ U(t, r), u2(·) ∈ U(r, t1), then
u(·) ∈ U(t, t1), where

u(s) =

⎧

⎨

⎩

u1(s) for t ≤ s < r

u2(s) for r ≤ s ≤ t1.

(c) Conversely, if u(·) ∈ U(t, t1), then the restrictions
u1(·), u2(·) are in U(t, r),U(r, t1) respectively.

As ususal, any two functions which agree for almost all s ∈ [t, t1] define
the same element of U(t, t1). In particular, the value of u(·) for the partic-
ular time s = r is unimportant. From (4.1), U(t, t1) contains all piecewise
constant functions u(·). Similarly, let Z(t, t1) ⊂ Z0(t, t1) be a class of func-
tions with the same properties as in (4.1), with u(t), u1(t), u2(t) replaced by
z(t), z1(t), z2(t).

A progressive strategy β for the maximizing controller is a function
from U(t, t1) into Z(t, t1) with the following property: for t < r < t1, u(s) =
ũ(s) for almost all s ∈ [t, r] implies β(u)(s) = β(ũ)(s) for almost all s ∈ [t, r].
Let ∆(t, t1) denote the class of all progressive strategies β. The upper value
for initial data (t, x) is defined as

(4.2) V+(t, x) = sup
β∈∆

inf
u∈U

P (t, x;u, β(u)),

where for notational brevity we put in (4.2) ∆ = ∆(t, t1), U = U(t, t1).
It will be shown later (Theorem 6.1) that V+(t, x) does not depend on the
particular choices of U(t, t1), Z(t, t1) satisfying (4.1). If U(t, t1) = U0(t, t1)
and Z(t, t1) = Z0(t, t1), then V+(t, x) is called the Elliott-Kalton upper value
[ElKa].

Lemma 4.1. There exists a constant M1 such that

(4.3) |V+(t, x) − V+(t, y)| ≤ M1|x− y|
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for all t ∈ [t0, t1], x, y,∈ IRn.
Lemma 4.1 is proved in the same way as II(10.2), making use of the uniform

Lipschitz bounds in (3.4)(c) and (d).
Similarly, a progressive strategy for the minimizing controller is a function

α from Z(t, t1) into U(t, t1) with the property that z(s) = z̃(s) for almost all
s ∈ [t, r] implies α(z)(s) = α(z̃)(s) for almost s ∈ [t, r] where t < r < t1. Let
Γ (t, t1) denote the class of all progressive strategies α. The lower value for
initial data (t, x) is

(4.4) V−(t, x) = inf
α∈Γ

sup
z∈Z

P (t, x;α(z), z)

where again for brevity Z = Z(t, t1), Γ = Γ (t, t1).

XI.5 Dynamic programming principle

Let us now show that the upper value function V+ satisfies the following
dynamic programming principle. For this purpose, we introduce the following
notation. Given r ∈ (t, t1), let

U1 = U(t, r), U2 = U(r, t1)

∆1 = ∆(t, r), ∆2 = ∆(r, t1).

Theorem 5.1. (Dynamic programming principle) For t < r < t1
(5.1)

V+(t, x) = sup
β1∈∆1

inf
u1∈U1

⎡

⎣

r
∫

t

L(s, x(s), u1(s), β1(u1)(s))ds+ V+(r, x(r))

⎤

⎦ ,

where x(s) is the solution of (3.1) on [t, r] with x(t) = x and controls
u1(s), z1(s) = β1(u1)(s).

Proof. LetW (t, x) denote the right side of (5.1). Given θ > 0, choose β1 ∈ ∆1

such that

W (t, x) − θ <

r
∫

t

Lds+ V+(r, x(r))

for all u1(·) ∈ U1, with L = L(s, x(s), u1(s), z1(s)) as in (5.1). The definition
(4.2) of upper value implies that for any y ∈ IRn, there exists β̃y ∈ ∆2 such
that

V +(r, y) − θ < P (r, y;u2, β̃y(u2))

for all u2(·) ∈ U2. Given any u(·) ∈ U(t1, t2), let u1(·), u2(·) be the restrictions
of u(·) to [t, r) and [r, t1] respectively. Define β0 by
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β0(u)(s) =

⎧

⎨

⎩

β1(u1)(s), t ≤ s < r

β̃x(r)(u2)(s), r ≤ s ≤ t1.

Then β0 ∈ ∆(t, t1). Moreover,

P (t, x;u, β0(u)) =

r
∫

t

Lds+ P (r, x(r);u2, β̃x(r)(u2))

>

r
∫

t

Lds+ V+(r, x(r)) − θ > W (t, x) − 2θ.

Since u(·) is arbitrary,

V+(t, x) ≥ inf
u∈U

P (t, x;u, β0(u)) ≥ W (t, x) − 2θ.

Since θ is arbitrary, W ≤ V+.
To prove the opposite inequality, consider any β ∈ ∆(t, t1). Define β1 ∈ ∆1

by β1(u1)(s) = β(u)(s), where u1(·) is the restriction of u(·) to [t, r). Given
θ > 0 there exists û1 ∈ U1 such that

W (t, x) ≥ inf
u∈U1

⎡

⎣

r
∫

t

Lds+ V+(r, x(r))

⎤

⎦

>

r
∫

t

L(s, x̂(s), û1(s), ẑ1(s))ds+ V+(r, x̂(r)) − θ

where x̂(s) is the solution to (3.1)-(3.2) with controls û1(s), ẑ1(s) = β1(û1)(s).
Define β2 ∈ ∆2 by β2(u2)(s) = β(û1, u2)(s), for s ∈ [r, t1]. Then

V +(r, x̂(r)) ≥ inf
u2∈U2

P (r, x̂(r);u2, β2)

> P (r, x̂(r); û2, β2) − θ

for some û2(·) ∈ U2. Let û(s) = û1(s) for s ∈ [t, r) and = û2(s) for s ∈ [r, t1].
Then

inf
u∈U

P (t, x;u, β(u)) ≤ P (t, x; û, β(û))

=

r
∫

t

L(s, x̂(s), û1(s), ẑ1(s))ds+ P (r, x̂(r); û2, β2(û2))

< W (t, x) + 2θ.

Since β ∈ ∆(t, t1) and θ are arbitrary, V+ ≤ W . �
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Theorem 5.2. The upper value function V+ is bounded and Lipschitz con-
tinuous on Q̄0.

Proof. By the definition (4.2) and (3.4)(b)(d),

(5.2) |V+(t, x)| ≤ (t1 − t)‖L‖ + ‖ψ‖

where ‖ ‖ is the sup norm. Lemma 4.1 gives a uniform Lipschitz bound for
V+(t, ·). For t < r ≤ t1 and any u1(·) ∈ U1, β1 ∈ ∆1,

∣

∣

∣

∣

∣

∣

r
∫

t

L(s, x(s), u1(s), β1(u1)(s))ds+ V +(r, x(r)) − V +(r, x)

∣

∣

∣

∣

∣

∣

≤ ‖L‖(r − t) +M1|x(r) − x| ≤ M2(r − t)

by (4.3), where M2 = ‖L‖+M1‖G‖. Since u1(·) and β1 are arbitrary, Theorem
5.1 implies that

(5.3) |V +(t, x) − V +(r, x)| ≤ M2(r − t).

Hence V+ is Lipschitz continuous. �

In the same way, the lower value function V− is Lipschitz continuous on
Q̄0 and satisfies a dynamic programming principle
(5.4)

V−(t, x) = inf
α1∈Γ1

sup
z1∈U1

⎡

⎣

r
∫

t

L(s, x(s), α1(z1(s)), z1(s))ds+ V−(r, x(r))

⎤

⎦ .

XI.6 Value functions as viscosity solutions

The upper value function V+ is not generally of class C1, although V+ is
Lipschitz continuous according to Theorem 5.2. In this section we show that
V+ satisfies the upper Isaacs PDE in the viscosity sense. Similarly the lower
value V− is a viscosity solution of the lower Isaacs PDE. If the Isaacs minimax
condition (3.11) holds, then V+ = V−. We begin with:
Lemma 6.1. Let Φ be continuous on U × Z. Then for every θ > 0 there
exists a Borel measurable function ζ from U into Z such that

(6.1) max
z∈Z

Φ(u, z) < Φ(u, ζ(u)) + θ, for all u ∈ U.

Proof. Given δ > 0, partition the compact set U into Borel sets A1, · · · , AM

of diameter less than δ. Choose ui ∈ Ai and zi which maximizes Φ(ui, ·) on
Z. Let ζ(u) = zi for all u ∈ Ai. Then for i = 1, · · · ,M, u ∈ Ai
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max
z∈Z

Φ(u, z) < max
z∈Z

Φ(ui, z) +m(δ)

= Φ(ui, zi) +m(δ) < Φ(u, ζ(u)) + 2m(δ),

where m(δ) → 0 as δ → 0. We choose δ small enough that 2m(δ) < θ. �

Given w ∈ C1(Q0) let

(6.2) F (s, y, u, z) = G(s, y, u, z) ·Dxw(s, y) + L(s, y, u, z).

Lemma 6.2. For w ∈ C1(Q0), (t, x) ∈ Q0

(6.3)

lim
h↓0

1

h

⎡

⎣sup
β∈∆

inf
u∈U

t+h
∫

t

F (s, x(s), u(s), β(u)(s))ds

⎤

⎦ = −H+(t, x,Dxw(t, x)),

where ∆ = ∆(t, t+ h), U = U(t, t+ h).

Proof. Since |x(s) − x| ≤ ‖G‖h for s ∈ [t, t+ h],

(6.4) |F (s, x(s), u(s), β(u)(s)) − F (t, x, u(s), β(u)(s)))| ≤ χ1(h)

where χ1(h) does not depend on u(·) or β and χ1(h) → 0 as h → 0. Let
Φ(u, z) = F (t, x, u, z) and note that by (3.7)

min
u∈U

max
z∈Z

Φ(u, z) = −H+(t, x,Dxw(t, x)).

Choose u0(s) = u0 for s ∈ [t, t+ h] where

u0 ∈ arg min
u∈U

max
z∈Z

Φ(u, z).

Let β0(u)(s) = ζ[u(s)] with ζ as in Lemma 6.1. Then for every u(·) and β

(6.5) Φ(u0, β(u0)(s)) ≤ −H+(t, x,Dxw(t, x))

(6.6) Φ(u(s), β0(u)(s) ≥ −H+(t, x,Dxw(t, x)) − θ.

Denote by (∗) the expression in brackets in (6.3). Then by (6.4)-(6.6)

lim sup
h↓0

1

h
(∗) ≤ lim sup

h↓0
sup
β∈∆

1

h

t+h
∫

t

Φ(u0, β(u0)(s))ds ≤ −H+(t, x,Dxw(t, x))

lim inf
h↓0

1

h
(∗) ≥ lim inf

h↓0
inf

u(·)∈U

1

h

t+h
∫

t

Φ(u(s), β0(u)(s))ds ≥ −H+(t, x,Dxw(t, x)) − θ.
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Since θ is arbitrary, we obtain (6.3). �

Theorem 6.1. The upper value function V+ is the unique bounded, uniformly
continuous viscosity solution to the upper Isaacs PDE (3.6) with the terminal
condition (3.8).

Proof. By Theorem 5.2, V+ is bounded and Lipschitz continuous on Q̄0

(hence uniformly continuous on Q̄0). We show that V+ is a viscosity solution
to (3.6). Uniqueness follows from Corollary II.9.1. Following the notation of
Section II.3 let C = {bounded, Lipschitz continuous functions on IRn}. For
φ ∈ C, let

(6.7) Ttrφ(x) = sup
β∈∆

inf
u∈U

⎡

⎣

r
∫

t

L(s, x(s), u(s), β(u)(s))ds+ φ(x(r))

⎤

⎦

where ∆ = ∆(t, r), U = U(t, r). By Lemma 4.1, Ttr maps C into C. It is
immediate that conditions II(3.1), II(3.2) hold and the semigroup property
II(3.3) is a consequence of Theorem 5.1. By Theorem II.5.1 is suffices (see
II(3.11)) to show that, for each (t, x) ∈ Q0 and w ∈ C1(Q0)
(6.8)

lim
h↓0

1

h
[Tt t+hw(t+ h, (·))(x) − w(t, x)] =

∂

∂t
w(t, x) −H+(t, x,Dxw(t, x)).

By the fundamental theorem of calculus, applied to w(t+h, x(t+h))−w(t, x),
this is equivalent to

(6.9) lim
h↓0

1

h

⎧

⎨

⎩

sup
β∈∆

inf
u∈U

t+h
∫

t

[

∂w

∂t
(s, x(s)) + F (s, x(s), u(s), β(u)(s))

]

ds

⎫

⎬

⎭

=
∂

∂t
w(t, x) −H+(t, x,Dxw(t, x)).

Since w ∈ C1(Q0) and |x(s) − x| ≤ ‖G‖(s− t) for t ≤ s ≤ t+ h

∣

∣

∣

∣

∂

∂t
w(s, x(s)) − ∂

∂t
w(t, x)

∣

∣

∣

∣

≤ χ2(h)

where χ2(h) does not depend on u(·) or β and χ2(h) → 0 as h → 0. Then
(6.9) follows from Lemma 6.2. �

Remark 6.1. In particular, if there exists a bounded uniformly continuous
classical solution of (3.6)–(3.8) W ∈ C1(Q̄0), then W = V+.

Remark 6.2. By uniqueness of viscosity solutions in Theorem 6.1, the upper
value function V+ does not depend on the particular choices for U(t, t1) and
Z(t, t1) in the definition (4.2). In particular, V+(t, x) is the same as the Elliott-
Kalton upper value.
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The same proof as for Theorem 6.1 gives:

Theorem 6.2. The lower value function V− is the unique bounded uniformly
continuous viscosity solution to the lower Isaacs PDE (3.9) with the terminal
condition (3.8).

Corollary 6.1. If the Isaacs minimax condition (3.11) holds, then V+ = V−

If (3.11) does not hold, then we may have V−(t, x) < V+(t, x). When that
happens, we call the V+(t, x) − V−(t, x) the instantaneous information gap in
value for the differential game.

Example 6.1. Let n = 1, U = Z = [−1, 1] and ẋ(s) = |u(s)−z(s)|, where
· = d/ds. The game payoff is P (t, x;u, z) = ψ(x(t1)), where ψ ∈ C1(IR1) and
ψx(x) > 0. Since the payoff is a strictly increasing function of x, it suffices to
compute H±(p) for p ≥ 0. We obtain H+(p) = −p and H−(p) = 0 if p ≥ 0.
By explicitly solving (3.6) and (3.8), V+(t, x) = ψ(x + t1 − t). The optimal
control policy for the minimizer is u∗(t, x) = 0 (see Theorem 3.1). Similarly,
V−(t, x) = ψ(x) < V+(t, x) since ψ is strictly increasing.

XI.7 Risk sensitive control limit game

In this section we will assume that the differential game dynamics (3.1) have
the form

(7.1)
d

ds
x(s) = f(s, x(s), u(s)) + σ(s, x(s), u(s))z(s).

Moreover, the game payoff is

(7.2) P (t, x;u, z) =

t1
∫

t

[

ℓ(s, x(s), u(s)) − 1

2
|z(s)|2

]

ds.

We assume that z(s) ∈ IRd. In the notation of Section 3, G = f + σz, L =
ℓ− 1

2 |z|2 and ψ = 0. We also assume that f, σ, ℓ ∈ C1
b (Q̄0 × U).

The differential equation (7.1) is a deterministic analogue of the stochas-
tic differential equation VI(8.1) for the state dynamics of the risk-sensitive
stochastic control problem. Theorem 7.2 below justifies the idea of regarding
such differential games as small noise limits of risk-sensitive control problems.
We also note that if the control u(s) is absent from the model, then (7.1) is
the same as VI(6.6) with f(t, x, u) = b(t, x) and with L(t, x, z) as in VI(4.2).

The upper Isaacs PDE for this differential game is (3.6), where

(7.3) H+(t, x, p) = −min
v∈U

[

f(t, x, v) · p+
1

2
a(t, x, v)p · p+ ℓ(t, x, v)

]

,
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where a = σσ′.
In the definition of upper value in Section 4, the control space is assumed

compact (see (3.4a)). Since Z = IRd is not compact, we now define V+(t, x)
by (4.2) where

△ =
⋃

R>0

△R

and △R = △R(t, t1) is the set of all progressive strategies which map U(t, t1)
into L∞([t, t1];ZR), ZR = {z : |z| ≤ R}. Let V+R(t, x) denote the upper value
with the constraint |z(s)| ≤ R. Then V+R(t, x) tends to V+(t, x) as R → ∞.
In fact, we will show that V+R = V+ for large enough R.

Lemma 7.1. There exists M1 such that

(7.4) |V+R(t, x) − V+R(t, y)| ≤ M1|x− y|

for all t ∈ [t0, t1], x, y ∈ IRn.

Proof. Let β0(u)(s) = 0 for all u(·) ∈ U , s ∈ [t, t1]. Then

(7.5) −(t1 − t)‖ℓ‖ ≤ inf
u∈U

P (t, x;u, β0) ≤ V+R(t, x) ≤ (t1 − t)‖ℓ‖.

By (7.2) and (7.5), it suffices to consider strategies β such that ‖β(u)‖2 ≤ C1

for all u(·), where ‖ ‖2 is the L2-norm. Given β and u(·), let x(s), y(s) satisfy
(7.1) with x(t) = x, y(t) = y, and z(s) = β(u)(s). Let ζ(s) = x(s) − y(s).
Since f(s, ·, u) and σ(s, ·, u) satisfy a uniform Lipschitz condition, there exists
K such that

d

ds
|ζ(s)|2 ≤ 2|ζ(s)||ζ̇(s)| ≤ K(1 + |z(s)|)|ζ(s)|2,

|ζ(s)|2 ≤ |x− y|2 exp

⎡

⎣K

s
∫

t

(1 + |z(r)|)dr

⎤

⎦ .

Since ‖z‖2 ≤ C1, |ζ(s)| ≤ C2|x − y| for some C2. Note that C1, C2 do not
depend on (t, x) ∈ Q0 or on R. Since ℓ(s, ·, u) satisfies a uniform Lipschitz
condition, this implies

(7.6) |P (t, x;u, β(u)) − P (t, y;u, β(u))| ≤ M1|x− y|

for all β such that ‖β(u)‖2 ≤ C1 which satisfy (7.5). This implies Lemma
7.1. �

Theorem 7.1. (a) There exists R1 such that V+R(t, x) = V+(t, x) for every
R ≥ R1.
(b) V+ is the unique bounded, Lipschitz continuous viscosity solution to the
upper Isaacs PDE (3.6) with terminal data V+(t1, x) = 0.
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Proof. Let us prove (a). Part (b) follows from (a) by the same proof as the
Theorem VI.6.1. Let

H+R(t, x, p) = −min
v∈U

max
|ξ|≤R

[

p · (f(t, x, v) + σ(t, x, v)ξ) + ℓ(t, x, v) − 1

2
|ξ|2

]

.

Let M1 be as in Lemma 7.1. Since σ is bounded, there exists k such that
kM1 ≤ R and |p| ≤ M1 imply H+R(t, x, p) = H+(t, x, p). Let R1 = kM1.
For R ≥ R1, Corollary II.8.1(f) implies that |p| ≤ M1 for all (q, p) ∈
D+(V+R(t, x))∪D−(V+R(t, x)). Therefore, by Theorem 6.1, V+R is a bounded,
Lipschitz continuous viscosity solution of

−∂V
∂t

+H+R1(t, x,DxV ) = 0

for every R ≥ R1, with V+R(t1, x) = 0. Since V+R1 is also a viscosity solution,
the uniqueness part of Theorem 6.1 implies that V+R = V+R1 . Since V+R(t, x)
tends to V+(t, x) as R → ∞, this proves (a). �

Remark 7.1. If σ = σ(t, x) does not depend on v, then the Isaacs minimax
condition (3.11) holds. By Corollary 6.1, V+R = V−R. Since V−R ≤ V− ≤
V+ = V+R for R ≥ R1, this implies V− = V+.

Small noise, risk sensitive control limit. In Section VI.8, let us now
take ρ = ε−1 and let Φε(t, x) denote the value function for the risk sensitive
stochastic control problem. As in VI(8.9), let V ε = ε logΦε.

Theorem 7.2. V ε(t, x) tends to V+(t, x) uniformly on compact subsets of
Q̄0.

Proof. By Corollary VI.8.1, V ε is a viscosity solution of

(7.7) −∂V
ε

∂t
+ H̄ε(t, x,DxV

ε, D2
xV

ε) = 0

with H̄ε as in VI(8.11) with ρ = ε−1. Moreover, |V ε(t, x)| ≤ (t1 − t)‖ℓ‖. For
every w ∈ C∞(Q̄0),

lim
ε→0

H̄ε(t, x,Dxw,D
2
xw) = H+(t, x,Dxw)

uniformly for (t, x, p, A) in any compact set. Theorem 7.2 then follows from
Theorem 7.1, by using the weak comparison principle for viscosity solutions
in the same way used to prove Theorem VI.6.2. See Section VII.11. �

Remark 7.2. In the terminology of Chapter VI, V ε(t, x) is the infimum
over admissible control processes u(·) of the certainty equivalent expectation
E0

tx(J ε), where
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J ε =

t1
∫

t

ℓ(s, xε(s), u(s))ds

with xε(s) as in VI(8.1) with ρ = ε−1. According to Theorem 7.2, this tends
to V+(t, x) as ε → 0. The upper game value has a “max-plus stochastic con-
trol” interpretation, in terms of the Maslov idempotent probability calculus
mentioned in Remark VI.6.2. See [F5]. Let

J 0 =

t1
∫

t

ℓ(s, x(s), u(s))ds

with x(s) as in (7.1). Given a strategy α for the minimizing controller,

sup
z∈Z

P (t, x;α(z), z) = E+
tx(J 0)

where E+ denotes the max-plus expectation. The max-plus stochastic control
problem is to minimize E+

tx(J 0) in an appropriate class Γ̄ of strategies α. If
Γ̄ = Γ is the class of all progressive strategies, then the infimum of E+

tx(J 0)
is V−(t, x) by the definition (4.4) of lower value. This does not agree with the
risk sensitive limit in Theorem 7.2 if V−(t, x) < V+(t, x). In Section 9, we will
define a smaller class ΓS of strictly progressive strategies. By Theorem 9.1,
V+(t, x) is the infimum of E+

tx(J 0) among strategies α ∈ ΓS .

XI.8 Time discretizations

In this section and in Section 9, we return to the differential game formu-
lation in Section 3, with game dynamics (3.1) and (3.3). The main result
is a characteriztion of the upper value function V+ in terms of strictly pro-
gressive strategies for the minimizing controller (Theorem 9.1). In prepara-
tion, we first give another characterization of the upper value, using piece-
wise constant controls u(s) for the minimizer. Let π = {r0, r1, · · · , rN} with
t0 = r0 < r1 < · · · < rN = t1. For initial time t = ri in π, let

Uπ(t, t1) =
{

u(·) ∈ U(t, t1) : u(s) = u(rj) for s ∈ [rj , rj+1), j = i, · · · , N − 1
}

.

Each such control is a piecewise constant function. Let

(8.1) V π
+ (t, x) = sup

β∈∆
inf

u(·)∈Uπ

P (t, x;u, β(u)),

where as in (4.2) we let ∆ = ∆(t, t1), Uπ = Uπ(t, t1).

Lemma 8.1. For t = ri, r = rj with i < j, let Uπ1 = Uπ(t, r), ∆1 = ∆(t, r).
Then
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(8.2)

V π
+ (t, x) = sup

β1∈∆1

inf
u1∈Uπ1

⎡

⎣

r
∫

t

L(s, x(s), u1(s), β1(u1(s)))ds+ V π
+ (r, x(r))

⎤

⎦ .

Lemma 8.1 is a discrete time version of the dynamic programming principle
for differential games. It is proved in exactly the same way as Theorem 5.1,
taking t = ri, r = rj and considering only controls u(·) ∈ Uπ(t, t1), u1(·) ∈
Uπ(t, r), u2(·) ∈ Uπ(r, t).

If π ⊂ π̃, then Uπ ⊂ Uπ̃ and hence V π̃
+ ≤ V π

+ . Let

(8.3) V̂+(t, x) = lim
‖π‖→0

ri→t

V π
+ (ri, x)

where ‖π‖ = max
i

(ri+1 − ri).

Theorem 8.1. V̂+ = V+.

Proof. Since Uπ ⊂ U , V+ ≤ V π
+ for every π. Hence V+ ≤ V̂+. From Lemma

7.1 and the same proof as for Theorem 5.2, V π
+ is bounded and Lipschitz

continuous, with the same constants as in (4.3), (5.2), (5.3) which do not
depend on π. Hence V̂+ is bounded and Lipschitz continuous. Moreover,
V̂+(t1, x) = V+(t1, x) = ψ(x). To show that V̂+ ≤ V+, it suffices to show
that V̂+ is a viscosity subsolution of the upper Isaacs PDE (3.6) and to use
the comparison principle Theorem II.9.1.

Suppose that w ∈ C1(Q0) and that V̂+ −w has a strict local maximum at
(t̄, x̄) ∈ Q0. We must show that

(8.4)
∂

∂t
w(t̄, x̄) + min

u∈U
max
z∈Z

F (t̄, x̄, u, z) ≥ 0

with F as in (6.2). Suppose not. Then there exist θ > 0, δ > 0 and u0 ∈ U
such that

(8.5)
∂

∂t
w(s, y) + F (s, y, u0, z) ≤ −θ

for all z ∈ Z and (s, y) ∈ Nδ, where Nδ = {(s, y) ∈ Q0 : |s− t̄|+|+|y−x̄| < δ}.
Since V π

+ has a uniform Lipschitz bound, the limit in (8.3) is uniform on
compact sets. Hence, there exist (tπ, xπ) tending to (t̄, x̄) as in ‖π‖ → 0, with
tπ ∈ π, such that

(8.6) V π
+ (r, y) − w(r, y) ≤ V π

+ (tπ, xπ) − w(tπ, xπ)

for all (r, y) ∈ Nδ such that r ∈ π. Choose r ∈ π such that tπ < r and
2(r − tπ) < δ(1 + ‖G‖)−1. Let u0(s) = u0 and consider any β ∈ ∆(tπ, r). Let



392 XI. Differential Games

x(s) be the corresponding solution to (3.1) with x(tπ) = xπ. For small enough
‖π‖, (s, x(s)) ∈ Nδ for tπ ≤ s ≤ r. By applying the fundamental theorem of
calculus to w(r, x(r)) − w(tπ, xπ) and using (8.6) with y = x(r),

(8.7) V π
+ (r, x(r)) +

r
∫

tπ

L(s, x(s), u0, β(u0)(s))ds− V π
+ (tπ, xπ)

<

r
∫

tπ

[

∂

∂t
w(s, x(s)) + F (s, x(s), u0, β(u0)(s))

]

ds

< −θ(r − tπ).

The left side of (8.7) is decreased when u0 is replaced by the inf over u(·).
Since (8.7) is true for all β, we obtain from Lemma 8.1 a contradiction. Thus
V̂+ is a viscosity subsolution. �

In the next section, we will give another characterization of V π
+ in terms of

strategies for the minimizing controller. This is important for our discussion
there of strictly progressive strategies.

XI.9 Strictly progressive strategies

We now shift attention to strategies for the minimizing controller. The lower
value V−(t, x) is obtained when the inf in (4.4) is taken among progressive
strategies α ∈ Γ . In this section, we will show that the upper value V+(t, x)
is obtained when α is restricted to a smaller class of strategies ΓS which we
call strictly progressive. At an intuitive level, restricting α to ΓS corresponds
to denying the minimizer current information about his opponent’s choice.
Hence, the minimizer loses the information advantage.

A progressive strategy α for the minimizing controller is called strictly
progressive if: for every progressive strategy β for the maximizing controller,
the equations

(9.1) u = α(z), z = β(u)

have a solution û(·) ∈ U(t, t1), ẑ(·) ∈ Z(t, t1). This implies that û(·) is a fixed
point of the composite map α ◦ β.

Example 9.1. Consider any partition of [t0, t1] into subintervals [rj , rj+1),
with endpoints in a finite set π as in Section 8. For t = ri, Uπ(t, t1) consists
of functions u(·) constant on each subinterval with i < j. Let Γπ(t, t1) consist
of those progressive strategies α such that α(z) ∈ Uπ(t, t1) for every z(·) ∈
U(t, t1). Then every α ∈ Γπ(t, t1) is strictly progressive. To see this, given any
β ∈ ∆(t, t1), choose ui ∈ U arbitrarily and let û(s) = ui, ẑ(s) = β(û)(s) for
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s ∈ [ri, ri+1). Proceeding by induction on j, for j > i first choose û(s) and
then ẑ(s) on [rj , rj+1) so that

û(s) = û(rj) = α(ẑ)(rj), ẑ(s) = β(û)(s).

Note that α(ẑ)(rj) depends only on ẑ(s) for s ∈ [t, rj) since α is progressive.
Then û(·), ẑ(·) chosen by this stepwise procedure satisfy (9.1).

Example 9.2. Suppose that there is a “time delay” δ > 0 such that
z(s) = z̃(s) for almost all s ∈ [t, r − δ] implies that α(z)(s) = α(z̃)(s) for
almost all s ∈ [t, r]. A stepwise procedure similar to that in Example 9.1
shows that α is strictly progressive. Note that in this example, û(s) is chosen
on an initial interval [t, t+ δ) with no information about z(·).

Example 9.3. In this example, α is progressive but not strictly pro-
gressive. Let α(z)(s) = φ(z(s)) where φ is a non constant Borel measurable
function from Z into U . There is a partition U = U1 ∪ U2 into Borel sets
such that Z1 = φ−1(U1) and Z2 = φ−1(U2) are both nonempty. Choose
zi ∈ Zi for i = 1, 2 and χ such that χ(u) = z2 if u ∈ U1, χ(u) = z1 if
u ∈ U2. The composite φ ◦ χ has no fixed point. Let β(u)(s) = χ(u(s)). Then
(α ◦ β)(z)(s) = (φ ◦ χ)(z(s)). If (9.1) holds, then û(s) is a fixed point of φ ◦ χ
for almost all s, which is a contradiction. Thus, α is not strictly progressive.

Let ΓU = ΓU (t, t1) denote the class of all strictly progressive strategies α,
and let

(9.2) W (t, x) = inf
α∈ΓS

sup
z∈Z

P (t, x;α(z), z).

The main result of this section is:
Theorem 9.1. W = V+, where V+ is the upper value function.

The following argument shows that V+ ≤ W . Given θ > 0 there exists
β ∈ ∆ such that (see (4.2))

(9.3) P (t, x;u, β(u)) ≥ V+(t, x) − θ

for every u(·) ∈ U . Given any α ∈ ΓS , let û(·), ẑ(·) be a solution to (9.1). Then

sup
z∈Z

P (t, x;α(z), z) ≥ P (t, x;α(ẑ), ẑ) = P (t, x; û, β(û)) ≥ V+(t, x) − θ.

Since α ∈ ΓS and θ are arbitrary, V+ ≤ W .
In order to show that W ≤ V+, we first prove two lemmas about the

functions V π
+ defined by (8.2).

Lemma 9.1. For t = ri, i = 0, 1, · · · , N − 1,

(9.4) V π
+ (ri, x) = inf

u∈U
sup

z1∈Z1

⎡

⎣

ri+1
∫

ri

L(s, x(s), u, z1(s))ds+ V π
+ (ri+1, x(ri+1))

⎤

⎦ ,
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where Z1 = Z(ri, ri+1).

Proof. Denote by (∗) the expression in brackets. In Lemma 8.1, take t = ri,
r = ri+1. Since u(s) = u is a constant on [ri, ri+1), chosen without knowing
z1(·)

V π
+ (ri, x) = sup

β1∈∆1

inf
u∈U

[(∗)] = inf
u∈U

sup
z1∈Z1

[(∗)]

where the second equality is by (2.3). �

Let Γπ = Γπ(t, t1) denote the class of progressive strategies α such that α
maps Z(t, t1) into Uπ(t, t1). By Example 9.1, every α ∈ Γπ is strictly progres-
sive.

Lemma 9.2. For t = ri, i = 0, 1, · · · , N − 1,

(9.5) V π
+ (t, x) = inf

α∈Γπ

sup
z∈Z

P (t, x;α(z), z).

Proof. Denote the right side of (9.5) by Wπ(t, x). Then V π
+ ≤ Wπ by the

argument used above to show that V+ ≤ W . We show that Wπ ≤ V π
+ as

follows. Given (t, x) and θ > 0, with t = ri, we define αθ ∈ Γπ(t, t1) as
follows. By Lemma 9.1, for each ξ ∈ IRn there exists uj(ξ) ∈ U such that
(9.6)

sup
zj∈Zj

⎡

⎢

⎣

rj+1
∫

rj

L(s, xj(s), uj(ξ), zj(s))ds+ V π
+

(

rj+1, xj(rj+1)
)

⎤

⎥

⎦
< V π

+ (rj , ξ)+
θ

N
,

where Zj = Z(rj , rj+1) and xj(s) is the solution of (3.1) on [rj , rj+1] with
xj(rj) = ξ, u(s) = uj(ξ) and z(s) = zj(s). For initial data x(t) = x and
z(·) ∈ Z(t, t1), we define αθ(z) by

αθ(z)(s) = uj(x(rj)), rj ≤ s < rj+1

where x(s) is the solution to (3.1) on [t, t1] with x(t) = x, defined on successive
intervals as follows. For rj ≤ r < rj+1, u(s) = uj(x(rj)). Then

P (t, x;αθ(z), z) =

N−1
∑

j=i

rj+1
∫

rj

L(s, x(s), uj(x(rj)), z(s))ds+ ψ(x(t1))

<

N−1
∑

j=i

[V π
+ (rj , x(rj)) − V π

+ (rj+1, x(rj+1))] + ψ(x(t1)) + θ.

The last term is V π
+ (t, x) + θ. Hence
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Wπ(t, x) ≤ sup
z∈Z

P (t, x;αθ(z), z) ≤ V π
+ (t, x) + θ.

Since θ is arbitrary, Wπ ≤ V π
+ . �

Proof of Theorem 9.1. We already showed that V+ ≤ W . By (9.2) and
Lemma 9.2, W ≤ V π

+ since Γπ ⊂ ΓS . By Theorem 8.1, W ≤ V+. �

Remark 9.1. Let Γ̄S be the closure of ΓS in the uniform norm. Thus, α ∈ Γ̄S

if there exists α ∈ ΓS such that |αn(z)(s) − α(z)(s)| ≤ ηn for all z(·) ∈ Z,
where ηn → 0 as n → ∞. Theorem 9.1 implies that

(9.7) V+(t, x) = inf
α∈Γ̄S

sup
z∈Z

P (t, x;α(z), z).

In particular, if u is a Lipschitz continuous control policy for the minimizer, let
α(z)(s) = u(s) where x(s) is the solution to (3.1)-(3.2) with u(s) = u(s, x(s)).
Then α ∈ Γ̄S . This is seen by approximating α by αn ∈ ΓS , where αn is defined
similarly with a time delay δn tending to 0 as n → ∞. In fact, αn(z)(s) =
un(s), where for some u0 ∈ U , un(s) = u0 if s ∈ [t, t + δn) and un(s) =
u(s, xn(s − δn)) if s ∈ [t + δn, t1], with xn(s) the corresponding solution to
(3.1)-(3.2).

XI.10 Historical remarks

The theory of two-controller, zero sum differential games was initiated by
Isaacs [Is]. He did not have a mathematically rigorous theory of differential
game value. However, he articulated the basic framework of differential game
theory, including what is now called the Isaacs PDE. He also solved many
interesting examples, using the method of characteristics. Early rigorous de-
finitions of differential game value made use of time discretizations. See for
example [F7][Fr2][PZ]. These were superseded by the more convenient Elliott-
Kalton differential game values [ElKa]. See Section 4. Evans and Sougani-
dis [ES1] characterized the upper and lower Elliott-Kalton value functions
as unique viscosity solutions of the corresponding Isaacs PDEs (Section 6).
Souganidis [Sou1] showed using viscosity solution methods that the Elliott-
Kalton value functions are the same as those defined using time discretiza-
tions.

Differential game methods have a natural role in nonlinear H-infinity con-
trol. See [BCD][BB][Sor]. The small noise risk sensitive control limit in Theo-
rem 7.2 was proved in [FM1][Jam1], under some additional assumptions. For
related results, on a finite or infinite time horizon, see [BN2][FM2][KN1,2].
The discretization technique in Section 8 is based on an idea of Nisio. The
definition of strictly progressive strategy in Section 9 is taken from [F5]. See
[KSh2] for another proof of Theorem 9.1 which avoids time discretizations.





A

Duality Relationships

In this Appendix we outline proofs of statements made in Section I.8, in
particular formulas (8.5)–(8.7). Let ξ = (t, x) and let L ∈ C3(Q0 × IRn)
satisfy (see I(8.3))

(A.1) Lvv(ξ, v) > 0

(A.2)
L(ξ, v)

|v| → +∞ as |v| → ∞.

The dual function H(ξ, p), defined by I(8.4), satisfies

(A.3) H(ξ, p) ≥ −v · p− L(ξ, v), ∀v ∈ IRn.

Equality holds if and only if v maximizes the right side. By (A.1) and (A.2),
given (ξ, p) the maximum occurs at the unique v ∈ IRn such that

(A.4) p = −Lv(ξ, v).

We rewrite (A.3) as

(A.5) L(ξ, v) ≥ −v · p−H(ξ, p), ∀p ∈ IRn.

Given (ξ, v) choose p according to (A.4). Then equality holds in (A.3). This
gives the dual formula I(8.5) for H.

The argument above shows that the mapping v → −Lv(ξ, v) is one-one
and onto IRn, for each ξ ∈ Q0. Using (A.1) and the implicit function theorem,
there exists an inverse Γ ∈ C2(Q0 × IRn), such that

(A.6) p = −Lv(ξ, Γ (ξ, p)),

(A.7) H(ξ, p) = −Γ (ξ, p) · p− L(z, Γ (ξ, p)).

Thus H ∈ C2(Q0 × IRn). By taking the gradient with respect to ξ in (A.7)
and using (A.6), we get I(8.7a). By taking the gradient with respect to p in
(A.7), we get Hp = −Γ , which is the second formula in I(8.6). The remaining
formulas I(8.7b,c) then follow by further differentiations.





B

Dynkin’s Formula for Random Evolutions with
Markov Chain Parameters

In this Appendix, we prove a version of Dynkin’s formula cited in Section
III.4(c) and in Example III.9.2. Let z(s) be a finite state continuous time
Markov chain with state space Z. Given an initial state z = z(t), let τ0 = t
and let τ1 < τ2 < · · · be the successive jump times for z(s). Let zi = z(τ+

i )
and let x(s) be a continuous, bounded solution to the differential equation
(see III(4.5))

(B.1)
dx

ds
= f(s, x(s), zi), τi ≤ s < τi+1,

with initial data x(t) = x. For each Φ(t, x, z) such that the partial derivatives
Φt, Φxi

, i = 1, · · · , n, are continuous let (see III(4.6))

(B.2) AΦ = A0Φ−GzΦ,

A0Φ(t, x, z) = Φt(t, x, z) + f(t, x, z) ·DxΦ(t, x, z),

GzΦ(t, x, z) = −
∑

ζ �=z

ρ(t, x, z) [Φ(t, x, ζ) − Φ(t, x, z)] .

Let us show that (see III(2.7))

(B.3) EtxzΦ(s, x(s), z(s)) − Φ(t, x, z)

= Etxz

∫ s

t

AΦ(r, x(r), z(r))dr.

To prove (B.3) we write

Φ(s, x(s), z(s)) − Φ(t, x, z)

=
∑

i≥0

[Φ(s ∧ τi+1, x(s ∧ τi+1), zi) − Φ(s ∧ τi, x(s ∧ τi), zi)]

+
∑

i≥0

[Φ(s ∧ τi+1, x(s ∧ τi+1), zi+1) − Φ(s ∧ τi+1, x(s ∧ τi+1), zi)]

= (1) + (2).
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From the Fundamental Theorem of Calculus

Etxz(1) = Etxz

∫ s

t

A0Φ(r, x(r), z(r))dr.

Set ξi = (τi, zi), ηi = (τi, zi, τi+1),

R(t, z) =
∑

ζ �=z

ρ(t, z, ζ).

Then τi+1 conditioned on ξi is exponentially distributed on [τi,∞) with
rate R(r, zi). Therfore, a straightforward calculation yields

Eξi
φ(s ∧ τi+1) = Eξi

∫ s∧τi+1

s∧τi

R(r, zi)φ(r)dr,

for any continuous φ. Now, by conditioning, we obtain

Eξi
[Φ(s ∧ τi+1, x(s ∧ τi+1), zi+1) − Φ(s ∧ τi+1, x(s ∧ τi+1,), zi)]

= Eξi
Eηi

[Φ(s ∧ τi+1, x(s ∧ τi+1), zi+1) − Φ(s ∧ τi+1, x(s ∧ τi+1), zi)]

= −Eξi
GzΦ(s ∧ τi+1, x(s ∧ τi+1), zi)/R(s ∧ τi+1, zi)

= −Eξi

∫ s∧τi+1

s∧τi

GzΦ(r, x(r), zi)dr

By using the strong Markov property of z(s) we then get

Etxz(2) = −Etxz

∫ s

t

GzΦ(r, x(r), z(r))dr.

This proves (B.3).

In Example III.9.2 we take

f(x, z) = u∗(x, z) − z,

where u∗ is as in formula III(9.22). As noted in the discussion there, equation
(B.1) with initial data x(0) = x has a unique bounded continuous solution
x(s) for s ≥ 0.



C

Extension of Lipschitz Continuous Functions;
Smoothing

In Section VI.5 we used a result about Lipschitz continuous extensions of
functions. Let K ⊂ IRn and let g : K → IRm be Lipschitz continuous, with
Lipschitz constant λ:

|g(x) − g(y)| ≤ λ|x− y|, ∀x, y ∈ K.

For each x ∈ IRn, let

(C.1) g̃(x) = inf
y∈K

[g(y) + λ|x− y|] .

If x ∈ K, y ∈ K, then
g(x) ≤ g(y) + λ|x− y|

with equality when x = y. Thus, g̃(x) = g(x) for all x ∈ K. Moreover,

(C.2) |g̃(x1) − g̃(x2)| ≤ λ|x1 − x2|, ∀x1, x2 ∈ IRn.

Thus, g̃ is a Lipschitz continuous extension of g. If K is bounded, we obtain
a bounded Lipschitz continuous extension ḡ of g, by taking ḡ = αg̃, where α
is real valued and Lipschitz continuous on IRn with α(x) = 1 for x ∈ K and
α(x) = 0 for x �∈ K1 for some compact set K1.

Now let K = O, with O bounded and open. We apply the above construc-
tion for each fixed t to g(·) = z∗(t, ·) with z∗(t, x) as in VI(4.5) when x ∈ O.
The above construction gives an extension

(C.3) z̃∗(t, x) = α(x) min
y∈O

[z∗(t, y) + λ|x− y|]

with the desired properties.
Smoothing. In the proof of the dynamic programming property (Theorem

IV.7.1) and also in Section IX.4 we used the following smoothing technique.
Let g be bounded and uniformly continuous on IRm. For k = 1, 2, · · · let
ζk ∈ C∞(IRm) be such that
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ζk(η) ≥ 0,

∫

IRm

ζk(η)dη = 1

ζk(η) = 0 if |η| ≥ k−1.

We let

(C.4) gk(ξ) =

∫

IRm

g(η)ζk(ξ − η)dη, ∀ξ ∈ IRm,

Then gk ∈ C∞(IRm) for each k = 1, 2, · · · and ‖gk − g‖ → 0 as k → ∞. The
operation in (C.4) is a convolution, and is also denoted by gk = g ∗ ζk. The
function gk is often called a mollification of g. See proof of Theorem V.5.1.

In Section IX.4 we take g(x) = ψ(x). In Step 2 of the proof Theorem IV.7.1
let ξ = (t, x) and g = f, σ or L. Then g depends on ξ, v. By, IV(6.1) and
the assumption in Step 2 that f, L have compact support, g is bounded and
uniformly continuous. We make a bounded uniformly continuous extension of
g from Q0 × U to IRn+1 × U . Then we define as in (C.4)

(C.5) gk(ξ, v) =

∫

IRn+1

g(η, v)ζk(ξ − η)dη.

Then gk is continuous, gk(·, v) ∈ C∞(IRn+1) and ‖gk − g‖ → 0 as k → ∞.
Smoothing on Q. In Section II.6 we take w ∈ C1,2(Q), where as before

Q = [t0, t1) × O. Then there is Q∗ ⊃ Q such that w ∈ C1,2(Q∗). Let w̃ be
an extension of w to IRn+1 that is equal to 0 on the complement of Q∗. We
define wk(t, x) as in (C.4),

wk(t, x) =

∫

IRn+1

w̃(s, y)ζk(t− s, x− y)dsdy.

Then wk ∈ C∞(IRn+1). Moreover for any multi-index α = (α0, α1, · · · , αn)

Dαwk(t, x) =

∫

IRn+1

w̃(s, y)Dαζk(t− s, x− y)dsdy,

where

Dαφ =
∂|α|

∂α0t∂α1x1 · · · ∂αnxn
φ,

|α| = α0 +α1 + · · · +αn. Since w̃ = w on Q∗ and w ∈ C1,2(Q∗), we can show
that

wk
t , w

k
xi
, wk

xixj
→ wt, wxi

, wxixj
,

as k → ∞, uniformly on compact subsets of Q∗, hence on compact subsets of
Q.



D

Stochastic Differential Equations: Random
Coefficients

In this Appendix we review some results about Ito-sense stochastic differential
equations, with random (progressively measurable) coefficients. Let (Ω,F , P )
be a probability space and x(s) = x(s, ω) be a Σ - valued stochastic processes
defined on [t, t1] × Ω. Σ is a complete separable metric space. In this book,
usually Σ ⊂ IRm for some m. This process is called measurable if x(·, ·) is
measurable with respect to B([t, t1]) × F and B(Σ), where B(Σ) is the Borel
σ - algebra.

Let {Fs} be an increasing family of σ - algebras for t ≤ s ≤ t1 with
Ft1 ⊂ F . Then the process is called Fs - progressively measurable if the map
(r, ω) → x(r, ω) from [t, s] × Ω into Σ is Bs × Fs measurable, where Bs =
B([t, s]). The process is called Fs - adapted if x(s, ·) is a Fs - measurable,
Σ - valued random variable for each s ∈ [t, t1]. Every Fs - progressively
measurable process is Fs - adapted. A sufficient condition for a Fs - adapted
process to be Fs - progressively measurable is that the sample paths x(·, ω)
be right continuous (or left continuous.) See [El, p. 15]. In particular, if the
sample paths x(·, ω) are continuous on [t, t1], then Fs - adapted is equivalent
to Fs - progressively measurable.

A random variable θ, with values in the interval [t, t1] is called a Fs -
stopping time if the event θ ≤ s is Fs - measurable for each s ∈ [t, t1].

We begin with some estimates for moments, for which we refer to [Kr1,
Sec. 2.5]. Using the same notation as in Section IV.2, let ν = (Ω, {Fs}, P, w)
be a reference probability system. Thus (Ω,Ft1 , P ) is a probability space,
{Fs} is an increasing family of σ - algebras (t ≤ s ≤ t1) and w is a brownian
motion of dimension d. The brownian motion w is Fs - adapted in the sense
that the increments w(r) − w(s) are independent of Fs for s ≤ r ≤ t1.

Let Q0 = [t0, t1) × IRn. Given t ∈ [t0, t1), let b(s, y, ω), γ(s, y, ω) be func-
tions on Q0 ×Ω which are respectively IRn -valued and n×d - matrix valued.
Moreover, for each y ∈ IRn, the stochastic processes b(·, y, ·), σ(·, y, ·) are Fs

- progressively measurable on [t, t1].
Let x(s) denote a IRn - valued, Fs - progressively measurable process which

satisfies the stochastic differential equation
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(D.1) dx = b(s, x(s))ds+ γ(s, x(s))dw(s), t ≤ s ≤ t1,

with initial data x(t) = x0 (x0 ∈ IRn). In the notation we have now omitted
the dependence on ω ∈ Ω of b, σ, as well as of x(s) and w(s). We make the
following assumptions about b and γ. There exist a constant K and stochastic
processes g(s), h(s), such that:

(D.2)

⎧

⎨

⎩

|γ(s, x) − γ(s, y)| ≤ K|x− y|

|b(s, x) − b(s, y)| ≤ K2|x− y|,

(D.3)

⎧

⎨

⎩

1
2 |γ(s, y)|2 ≤ g(s)2 +K2|y|2

|b(s, y)| ≤ h(s) +K2|y|

E

∫ t1

t

[g(s)m + h(s)m]ds < ∞, ∀m > 0.

(In this Appendix we write Etx0 = E, omitting dependence on the initial data
tx0.) By a standard successive approximation method, (D.1) with the initial
data x(t) = x0 has a pathwise unique solution. See, for example [GS2, Secs
6,7]. Let ‖ ‖ denote the sup norm on [t, t1]. From [Kr1, p.85], for every m ≥ 2
there exists N = N(m,K) such that:

(D.4) E‖x(·) − x0‖m

≤ N(t1 − t)
m
2 −1eN(t1−t)E

∫ t1

t

[|x0|m + g(s)m + h(s)m]ds

(D.5) E‖x(·)‖m

≤ N |x0|m +N(t1 − t)
m
2 −1eN(t1−t)E

∫ t1

t

[

|x0|m + g(s)m + h(s)m
]

ds.

In particular, consider x(s) which satisfies the stochastic differential equa-
tion IV(2.1), where u(·) is a Fs - progressively measurable process (u(·) ∈ Aν).
Let

(D.6) b(s, y, ω) = f(s, y, u(s, ω)), γ(s, y, ω) = σ(s, y, u(s, ω)).

Then (D.2) is immediate from IV(2.2a) if K ≥ max(C, 1). If we require that
2K2 ≥ 3C2 and take

g(s) = (3
2 )

1
2C|u(s)|, h(s) = C|u(s)|

we get (D.3). In view of IV(2.3), (D.5) implies that E‖x(·)‖m < ∞ for each
m ≥ 2 (and hence also for 0 < m < 2.)
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In case the control space U is compact, as in Sections IV.6–10, recall
assumptions IV(6.1). Using the inequality

|f(t, x, v)| ≤ |f(t, x, 0)| + |f(t, x, v) − f(t, x, 0)|

≤ C2 + C1|x|,
assumption IV(6.1c) implies IV(2.2) with C = max(C1, C2). Since u(s) ∈ U
and U is compact, |u(s)| is bounded. By (D.5) for every m ≥ 2 we have, if U
is compact,

(D.7) E‖x(·)‖m ≤ Bm(1 + |x0|m)

where Bm depends on C1, C2 as well as t1 − t0. Also, by Hölder’s inequality,
for each m ∈ (0, 2] we have

E ‖x(·)‖m≤ (E ‖x(·)‖2)m/2 ≤ (B2(1 + |x0|2))m/2 ≤ Bm(1 + |x0|m)

for suitable constant Bm. Hence (D.7) holds for every m > 0.
Let us next consider also x̃(s) satisfying

( ˜(D.1) dx̃ = b̃(s, x̃(s))ds+ γ(s, x̃(s))dw(s), t ≤ s ≤ t1,

with initial data x̃(t) = x̃0(x̃0 ∈ IRn). By [Kr1, p.83], for every m ≥ 2 there
exists N = N(m,K) such that

E‖x(·) − x̃(·)‖m ≤ NeN(t1−t)|x0 − x̃0|m

(D.8) +N(t1 − t)
m
2 −1eN(t1−t)E

∫ t1

t

[|b(s, x̃(s)) − b̃(s, x̃(s))|m

+|γ(s, x̃(s)) − γ̃(s, x̃(s))|m]ds.

In particular, let b, γ be as in (D.6) and b̃(s, y, ω) = f̃(s, y, u(s, ω)), γ̃(s, y, ω) =
σ̃(s, y, u(s, ω)). If x0 = x̃0, the first term on the right side of (D.8) disappears.
We have (see IV(6.11))

(D.9) E‖x(·) − x̃(·)‖m ≤ B̄m[‖f − f̃‖m + ‖σ − σ̃‖m]

for m ≥ 2 where B̄m depends on C1, C2 as well as t1 − t0. As in (D.7), the
case m ∈ (0, 2) is proved using Hölder’s inequality.

In the proof of Lemma IV.8.1, we need an estimate for the case x̃0 =
x0 + hξ, |ξ| = 1 and b̃ = b, γ̃ = γ as in (D.6). Let ∆x(s) = h−1[x̃(s) − x(s)].
Then

∆x(s) = ξ +
1

h

∫ s

t

[f(r, x̃(r), u(r)) − f(r, x(r), u(r))]dr

+
1

h

∫ s

t

[σ(r, x̃(r), u(r)) − σ(r, x(r), u(r))]dw(r).
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If we denote the last terms by (i) and (ii), then

|∆x(s)|2 ≤ 3(|ξ|2 + |(i)|2 + |(ii)|2)

By IV(6.1c), f(s, ·, u(s)) and σ(s, ·, u(s)) are Lipschitz continuous with con-
stant C1. By Cauchy - Schwartz and elementary properties of stochastic inte-
grals,

E|∆x(s)|2 ≤ 3[|ξ|2 + (s− t)C2
1E

∫ s

t

|∆x(r)|2dr

+C2
1E

∫ s

t

|∆x(r)|2dr].

Since |ξ| = 1, Gronwall’s inequality then implies

(D.10) E|∆x(s)|2 ≤ B,

where the constant B depends on C1 and t1 − t0.
In the proof of Lemma IV.7.1 we used an estimate for the oscillation of

x(s) on subintervals of [t, t1]. Assume now that b, γ are bounded, and consider
an interval [τ1, τ2) with t ≤ τ1 < τ2 ≤ t1 and τ2 − τ1 ≤ 1. Let

ζ(s) =

∫ s

τ1

γ(r, x(r))dw(r), τ1 ≤ s ≤ τ2.

By using the Ito differential rule and induction, one can show that for each
ℓ = 1, 2, · · · there exists a constant αℓ such that

(D.11) E‖ζ(·)‖2ℓ ≤ αℓ‖γ‖2ℓ(τ2 − τ1)
ℓ.

Then, for τ1 ≤ s ≤ τ2,

|x(s) − x(τ1)| ≤ |s− τ1| ‖b‖ + |ζ(·)‖,

E‖x(·) − x(τ1)‖2ℓ ≤ βℓ(τ2 − τ1)
ℓ

for suitable constant βℓ, which depends on ‖b‖ and ‖γ‖. Therefore, for each
ρ > 0

P ( max
[τ1,τ2]

|x(s) − x(τ1)| ≥ ρ) ≤ ρ−2ℓβℓ(τ1 − τ1)
ℓ.

For the proof of Lemma IV.7.1. we take b, γ as in (D.6), ℓ = 2, ρ = γ/2, τ1 =
sj , τ2 = sj+1, Ij = [sj , sj+1) to get

(D.12) P (max
Ij

|x(s) − x(sj)| ≥ γ

2
) ≤ C(sj+1 − sj)

2

γ4

with C = 16β2.
Instead of (D.3), let us now assume
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(D.3′)

⎧

⎨

⎩

γ(s, y) is bounded

|b(s, y)| ≤ K(1 + |y|).

Then there exists k > 0 such that

(D.13) E[exp(k ‖ x(·) ‖2)] < ∞.

This inequality is used in Section VI.3. To obtain (D.13), let

η(s) =

∫ s

t

γ(r, x(r))dw(r).

From (D.1) and Gronwall’s inequality,

‖ x(·) ‖≤ K1(1 + |x0|+ ‖ η(·) ‖)

for some constant K1. Hence, (D.13) holds for small enough k > 0 if there
exists k1 > 0 such that

(D.14) E[exp(k1 ‖ η(·) ‖2)] < ∞.

Let Q(λ) = P (‖ η(·) ‖> λ). By an exponential martingale inequality [StV,p.
87]

Q(λ) ≤ 2n exp(−k2λ
2)

for some k2 > 0, which depends on t1 − t and ‖ γ ‖ . Then

E[exp(k1 ‖ η(·) ‖2] = −
∫ ∞

0

ek1λ2

dQ(λ)

= 2k1

∫ ∞

0

λek1λ2

Q(λ)dλ,

which is finite if k1 < k2.
Feynman - Kac formula. We conclude this section of the Appendix

by reviewing the following Feynman - Kac formula (D.15) for the case of
solutions to the stochastic differential equation (D.1). LetW ∈ C1,2(Q), where
Q = [t0, t1) ×O with O ⊂ IRn an open bounded set. Let

Γ (s) = exp

∫ s

t

c(r)dr

where c(·) is a Fs - progressively measurable process and c(r) ≤ M < ∞. Let
θ be any {Fs} - stopping time, such that t ≤ θ ≤ τ , where τ is the exit time
of (s, x(s)) from Q. Then

(D.15) W (t, x0) = E{−
∫ θ

t

Γ (s)(AW (s, x(s)) + c(s)W (s, x(s)))ds
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+Γ (θ)W (θ, x(θ))},

AW (s, x(s)) = Wt(s, x(s)) +
1

2
tr (γγ

′

)(s, x(s))D2
xW (s, x(s))

+b(s, x(s)) ·DxW (s, x(s)).

To obtain (D.15), we apply the Ito differential rule to Γ (s)W (s, x(s)):

d(Γ (s)W (s, x(s)) = W (s, x(s))dΓ (s) + Γ (s)dW (s, x(s)).

By integrating from t to θ and using Γ (t) = 1,

Γ (θ)W (θ, x(θ) −W (t, x0)

=

∫ θ

t

Γ (s)[AW (s, x(s))+c(s)W (s, x(s))]ds+

∫ θ

t

Γ (s)(DxW ·γ)(s, x(s))dw(s).

The expectation of the last term is 0, which gives (D.15).
In Chapter IV (formula IV(3.20)) we take c(s) = l(s, x(s), u(s)), where

u(·) is a Fs -progressively measurable control process. In Chapter VI (formula
IV(3.18)) we take c(s) = l(s, x(s)).

Progressive measurability. As in Section VIII.3, let z(s) be a process of
bounded variation which is progressively measurable with respect to filtration
Fs. We assume that Fs is right continuous. Then the total variation of z(·)
on [0, t) is given by

ξ(t) = sup{
n
∑

i=1

|z(ti) − z(ti−1)| : 0 = t0 < t1 < · · · < tn = t}.

Hence ξ(s) is also Fs - progressively measurable. We continue by constructing
a Fs - progressively measurable Radon–Nikodym derivative û(s) of z(s) with
respect to dξ(s). Set z(s) = 0 for s ≤ 0. Then ξ(s) = 0 for s ≤ 0. For ε > 0
define,

dε(s) = ξ(s+ ε) − ξ(s− ε)

uε(s) =

⎧

⎨

⎩

[z(s+ ε) − z(s− ε)](dε(s))−1 , dε(s) �= 0

u0 , dε(s) = 0,

where u0 is any element of U with |u0| ≤ 1. Then uε(s) is progressively
measurable with respect to Fε

s = Fs+ε. Observe that by the definition of
ξ(s), |uε(s)| ≤ 1. Finally we define

û(s) = lim sup
ε↓0

uε(s).

Then û(s) is progressively measurable with respect to Fε
s for every ε > 0.

Since Fs is right continuous, û(s) is Fs - progressively measurable. Moreover
by a differentiation theorem for Radon measures [EG, Theorem 2 page 40],
we have

z(t) =

∫

[0,t)

û(s)dξ(s), t > 0.
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