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Introduction

Concrete has been in use as a primary building material since Roman times. As it is
strong in compression but weak in tension, it was used in arches, vaults and walls
where it is stressed principally in compression.

In the mid-nineteenth century, it was discovered that iron and later steel bars could
be embedded in the concrete, effectively giving it tensile strength. This allowed it to be
used in beams and slabs, where it worked in bending. Buildings, bridges, retaining walls
and many other structures were made in this reinforced concrete. However, although it
is one of the principal building materials in the world, it has shortcomings. Reinforced
concrete beams and slabs deflect significantly under load, requiring stocky sections to
provide adequate stiffness; as it deflects it cracks which spoils its appearance and leaves
the reinforcing bars vulnerable to corrosion; the large number of bars required to give
the necessary strength to long span beams in bridges and buildings make it difficult to
cast the concrete; it is labour intensive and slow to build.

In the 1930s, Eugeéne Freyssinet invented prestressed concrete. High tensile steel
cables were substituted for the bars. These cables were tensioned by jacks and were
then locked to the concrete. Thus they compressed the concrete, ridding it of its cracks,
improving both its appearance and its resistance to deterioration. The cables could be
designed to counter the deflections of beams and slabs, allowing much more slender
structures to be built. As the cables were some four times stronger than the bars, many
fewer were necessary, reducing the congestion within the beams, making them quicker
to build and less labour intensive.

Most concrete bridges, except for small or isolated structures, now use prestressing.
It is also being used ever more widely in buildings where the very thin flat slabs it
allows afford minimum interference to services and in some circumstances make it
possible to increase the number of floors within a defined envelope.

Despite its manifest advantages and widespread use in bridges, outside a minority of
expert engineers, prestressing is not well understood by the profession, and is not well
taught in most universities. Engineers have to learn as best they can as they practice.

The book has are three principal aims:

e The first is to help improve the quality of the design of prestressed concrete
bridges.

Throughout my career 1 have been amazed by the number of grossly

uneconomical and sometimes virtually unbuildable concrete bridge designs
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produced by consultants. T was fortunate in this lack of competence, as it allowed
me to launch my practice by preparing alternative designs for contractors bidding
for work. In some cases, these alternative designs halved the materials in the
bridge decks, produced very substantial savings in the cost of labour, reduced the
construction programme and improved the appearance of the finished article.

A bridge must be suitable for its site and it must be of appropriate scale, it must
be designed to be built efficiently and without unnecessary risk of failure, it must
be economical and its appearance must be given a high priority. These attributes
depend on the quality of the conceptual design. Design and analysis are often
confused. Design requires engineering knowledge, skill and experience combined
with imagination and intuition, while analysis is a more mechanical process.

I do not know of any other books that deal principally with the design of
bridges as opposed to their analysis.

e The second aim is to explain clearly the basic concepts of prestressed concrete.

Practising engineers are being pressurised to take responsibility for structures
when they do not fully understand how they work. They can do this by using
software packages that may be well written, but are dangerous in the hands of
those who are not familiar with the underlying concepts.

»  Finally, by concentrating on the concepts and principles underlying the design
of bridges, it is hoped that this book will reinforce practising engineers’ intuitive
understanding of the subject.

Most textbooks on the subjects of reinforced and prestressed concrete lose the
essential simplicity of the concepts in a maze of mathematics. I hope this book will
be accessible not only to experienced engineers, but also to students, to architects
wishing to participate more in the design of bridges and to lay people interested
in how bridges work.

When running my practice, [ was frequently approached by younger engineers asking
for guidance on some technical matter. I did not believe that my role was to tell them
what to do, or how to solve a problem. To do so would have limited the outcome to
my own experience and their creativity would have been sidelined. Furthermore, too
often the quick answers to such questions are reduced to explaining the mathematical
procedure to be followed to carry out the analysis, or which software package to
use. Instead, I attempted to explain the underlying structural principles, and left them
to find out for themselves precisely how to complete the design or to carry out the
analysis. This book proceeds on the same principle. Its intention is not to tell the
reader what to do, or how to do it, but to explain the structural principles underlying
any action that needs to be taken.

I have put forward my best understanding of the many complex issues involved
in design. My views are not always conventional, nor do they always comply with
accepted wisdom. Although this understanding has been used for the design of many
structures over a long career, it is necessary to exercise critical judgement when using
this book. Specific guidance, for instance on the spans suitable for a certain type of
bridge deck or the slenderness of slabs or cantilevers, should be considered as the
starting point of design, not the conclusion.

The book is intended to be independent of any code of practice. Although the
British code has been used for some examples, this was only to give them a basis of
reality; they could just as well have been based on some other code of practice. Also,
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the text is intended to be jargon free; one should not need jargon to explain principles.
If some has slipped in due to its familiarity making it difficult for me to distinguish it
from real English, it is unintentional.

The illustrations have been produced to scale, except where distortion was necessary
for polemic reasons. It is vital for engineers of all degrees of experience to draw and
sketch to scale, particularly in the design phase of a project. A distorted scale changes
one’s appreciation of a problem and frequently leads to erroneous conclusions that are
discovered later in the design process, wasting time, effort and credibility.

As the book is based principally on my own experience, the structures used as
examples are those for which T was responsible when working for Europe Etudes or
Arup, or were designed by the practice that I founded in 1980 and ran for 20 years.
This practice was initially called Robert Benaim and Associates, or derivations of that
name appropriate to the countries in which we had offices. It started as a one man
band, and gradually expanded to over a hundred staff with offices in six countries.
Since my withdrawal from the practice and its purchase by the senior managers, it
is currently known as ‘Benaim Group’. All the jobs referred to in the text that were
carried out by the practice are credited to ‘Benaim’.

The book is organised as follows:

¢ The meaning and nature of design as opposed to analysis is discussed in
Chapter 1.

¢ Chapter 2 is an introduction to some basic structural engineering concepts and
to the specialised vocabulary used in the book. It is for the convenience of non-
engineers.

e Chapter 3 is an introduction to reinforced concrete as this is necessary to under-
stand the later chapters.

e Chapters 4, 5 and 6 explain the principles of prestressing.

e Chapter 7 is concerned with the articulation of bridges and the design of sub-
structure.

«  Chapter 8 describes the logic that underpins the design of decks for girder bridges,
and gives benchmarks for the material quantities that should be achieved.

¢ Chapter 9 analyses the function of each of the components of a bridge deck.

e Chapters 10, 11, 12 and 13 describe the different types of bridge deck.

e Chapters 14 and 15 are devoted to the methods of construction of bridge decks.

e Chapter 16 is a synthesis of the preceding chapters, describing how the scale
of a bridge project influences the choice of the type of deck and its method of
construction.

+  Finally, Chapters 17 and 18 deal with arches and suspended decks which follow a
different logic from girder decks.

Cross-referencing to sections elsewhere in the text is by section numbers shown in
italics.



The nature of design

1.1 Design and analysis

The origin of the word design is the Latin ‘designare’, to draw. In classical times, the
stability of a structure depended on its shape, which could be drawn by those with
the special skills. Design now has a much-widened meaning embracing the concept of
anything from bridges to floats for a carnival.

In the context of bridge engineering, design means the conceptual phase, where
harmony is created out of the tumult of data which includes:

«  the physical characteristics of the site;

« the technical aspects concerned with the strength of materials and the theory of
structures;

« the specified design life of the bridge and the maintenance regime;

e the various regulations that must be complied with;

* the economic and time constraints that have to be met;

« the form of contract under which the bridge is to be built;

* the effect the new bridge will have on the community, either by its scale, its
appearance, or by the changes it will make to the local environment;

«  the wishes of the bridge owner.

An inspired designer may attain a state of grace, where original ideas combine with
technical expertise and past experience to create the perfect solution that best fits all
the data, and which in hindsight appears obvious.

Design must be followed by the detailed justification of a project, the analysis, to
demonstrate that it is safe and complies with the relevant regulations. This analysis
is followed by the preparation of drawings which are needed to communicate to the
contractor the information required to build the structure, and the preparation of
the contractual documentation. Although requiring skill and care, these latter phases
of the process are different in nature to the initial conceptual design; they are more
mechanical, and do not require the combination of technical expertise, aesthetic sense
and imagination that are characteristic of conceptual design.

However, in many cases, design is the name given to the mechanical analysis of
the structure, and even to the whole process. This is more than a semantic quibble.
Analysing structures is principally a mathematical, mechanical procedure, whereas
design is largely a matter of judgement in weighing up the importance of the many
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relevant criteria. If the two processes are given the same name, one tends not to notice
the relative weight given to each. The mediocrity of many projects that are built is the
result of the shortening, or virtual absence of the conceptual, the design phase.

Design and analysis are not strictly sequential. Although clearly design must start
first, design development continues in parallel with analysis as ideas evolve or as the
analysis gives rise to further insights into the behaviour of the structure, and opens new
design possibilities. The analysis is an important part of understanding the structure.
It needs to start with simple models which are easy to check, and only gradually build
up to the final verification of the structure as a whole. As the analysis is carried out on
a model of the structure, not the structure itself, the designer must always question
whether the results represent reality or whether they have been distorted by the
assumptions made in preparing the model.

The designer cannot delegate the analysis, he must remain in charge and needs the
required knowledge and skills, in addition to his abilities to imagine, innovate and
communicate.

1.2 A personal view of the design process

The nature of design is uniquely personal. For this reason the following description of
how the author understands design may not be recognised by all readers.

Design is an interactive process, with signals shuttling between three notional centres
in the brain, those responsible for appreciating beauty, for accumulating experience,
and the brain’s calculator. It most definitely is not just a sketching exercise, nor is it a
logical, linear process.

When a client proposes a commission for the design of a new bridge, across say a
river, with an outline description of the purpose of the bridge and the characteristics
of the river, the first engineering response is to imagine a solution that appears to
fit the facts as they have been described (often incorrectly), and is usually based on
some idea that has been tried before, has been imagined or read about, or is the
extrapolation of a previous idea, pushing it further towards some logical conclusion.
As more information on the project becomes available, the suitability of this first idea is
tested and then reinforced, modified or dropped in favour of another ‘guide’ idea. This
process of imagining a solution and then subsequently confronting it with the facts is
in the author’s view the essence of creative design.

At the earliest stages of this design process, calculations are carried out. They are
in general very simple, to compare the cost of alternatives, and to check on the sizes
of members. For most bridges and other civil engineering projects, the structure can
be notionally simplified to the point where the bending moments and shearing forces
may be estimated by simple manual means, generally to within 15-20 per cent of the
correct value.

Similarly, the loading on the bridge can be reduced from the pages of the code
of practice definition to its simplest basics. From these simple beginnings, the size
of members, the density of reinforcement, the intensity of prestress and the basic
deflections of the structure can be calculated. Of course one makes use of books with
charts of bending moments and deflections for beams and portals and safe load tables
for columns and of codes of practice, not to check for detailed compliance, but to
remind oneself of limiting stresses, load combinations, load factors etc. If one is very
computer literate, simple computer models may be invaluable, as long as one can



6 The nature of design

produce them almost automatically, without struggling to understand manuals, sign
conventions etc. One must at all costs not engage one’s brain into an ‘analysis mode’,
or one’s creativity will be swamped by one’s intellect.

It is very important that, at this early stage, all calculations are kept conservative, so
that one is not deluding oneself about the feasibility of a favoured option. These initial
calculations allow the designer to develop his understanding of how the structure
works, of how the forces flow. They also enable him to put sizes to members, and so to
gain a first insight into the appearance of a structure. The aesthetics of structures are
critically dependent on member sizes, and how size varies along a member.

The diagrams of normal forces, bending moments, shear forces and torques may be
drawn along the members, and stresses calculated. As the structure is better understood,
the logic of how it works becomes apparent. Member sizes may be refined to improve
economy, to provide reserves of strength and to affect the appearance. However, one
must not defy the basic logic of the structure; one cannot make a member excessively
slender in defiance of the structural logic, just because it looks better; there must be
a concordance between function and appearance. This does not mean that the size
of members is dictated by their stress levels, but that one must not act contrary to
the structural logic. This usually leaves a considerable margin for discretion in sizing
members. For instance, two members that are equally stressed may be given different
sizes for the sake of appearance.

At this stage, it may become clear that the structure is evolving in a way that is
not satisfactory, either technically or aesthetically. When one embarks on this design
process, it is frequently not clear what the nature of the destination will be. An essential
part of design is the readiness to tear up what one has done and start again. An engineer
who does not have the courage, or the time, to recognise that he is engaged in a dead
end and to start again cannot pretend to be a creative designer.

1.3 Teamwork in design

Design is inevitably a team exercise. At its simplest, the bridge designer will have another
engineer and one or two draftsmen working directly for him, while on large bridge
projects the core team may include ten or more people. Generally, other specialist
disciplines will also be involved for part of the design period, such as geotechnical
engineers, quantity surveyors and the suppliers of proprietary products such as the
bearings, expansion joints etc. An architect may also be involved, either as a partner in
the concept or as a specialist involved in the design of finishes, handrails, lighting and
other decorative aspects. Depending on the form of contract, some decisions are likely
to require input from the client or the contractor.

If the design is to be anything other than banal, the team needs a leader who makes
the project his own. There is no aspect of a bridge design that is not capable of more
than one solution, whether it is the overall concept or the type of bridge bearing.
There is thus great potential for diverging views and for indecision. This multitude
of design decisions must be welded into a coherent project, and this can only be done
successfully through one mind.

This need for a ‘chief designer’ is sometimes challenged by professionals, who claim
that design is the result of collective decision making, with no one dominating the
process. However, it is usually only necessary to consider what the effect on the design
would be if each member of the team were to be substituted in turn. For most of
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the members, the result would be only minor changes to the finished design, while
generally there is one team member whose substitution would change the project
fundamentally.

In order to carry out his synthesising role, the designer must know enough about
all the various specialities involved, so that he can understand the implications on
the design as a whole of making one choice or another. Clearly, the designer is not
expected to be skilled in all these various disciplines, but he must be able to question
the specialists, understand the reasons for their choices, challenge their decisions,
take second opinions and ultimately accept responsibility for them. In particular, the
bridge designer should have a reasonable knowledge of soil mechanics, as decisions on
foundations often determine the type of structure to be built.

This concept of the chief designer and the skills he requires is not new. In Chapter 1
of his first book, Vitruvius discusses the education of architects (which were not
differentiated from engineers) in republican Rome, and puts forward the view that
very few people can be expert in all the disciplines involved in construction, but that
architects must deal with them all, with only imperfect knowledge. He goes on to ask
the reader’s forgiveness for his imperfect grammar, as he is an architect, not a gifted
writer. Perhaps as a civil engineer, I may ask for the same indulgence!

1.4 The specialisation of designers

It is quite clear that society requires a large number of civil engineers to design, build,
administer and maintain its roads, railways, water supply, sewerage system, power
stations, ports and telecommunications infrastructure among other tasks. The great
majority of those tasks do not require a deep and intuitive understanding of the
behaviour of structures or the exercise of aesthetic judgement. It is important that these
engineers be well trained, as they are in positions where they can make a significant
contribution to society, and the more able among them are likely to attain positions
of influence in the private sector or in government. Other engineers will become
specialists in a wide variety of technical disciplines, such as geotechnical engineering,
dynamics, information technology, wind engineering etc.

A minority of those who opt to train as civil engineers will become the designers
of structures which, in addition to their utilitarian function become part of the built
environment. This minority requires different training from the majority. They need
to develop an intuitive understanding of the behaviour of structures, a thorough
understanding of the nature of the various building materials, and an appreciation of
the appearance of their structures.

This distinction is recognised to some extent by the profession in the United
Kingdom. The Institution of Structural Engineers, with a membership of chartered
engineers (MIStructE and FIStructE) in the UK of approximately 9,000, caters for
the minority of designers, and the Institution of Civil Engineers, with a chartered
UK membership (MICE and FICE) of approximately 36,000, represents the majority
of more general civil engineers. In order to become a member of the Institution of
Structural Engineers, suitably qualified graduates with about three years experience
in industry have to pass an examination that tests their knowledge as designers of
structures, while similarly experienced graduates applying for membership of the
Institution of Civil Engineers are subjected to a written assignment that tests their
more general suitability to take professional responsibility. However, the distinction is
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blurred, with many engineers being members of both institutions, and some designers
being members of the Institution of Civil Engineers only.

The specialisation of designers is also recognised in many other countries, where
engineering graduates wishing to take responsibility for the design of structures have
to pass an additional examination some years after graduation, giving them a title such
as Professional Engineer.

The distinction between general civil engineers and designers remains inadequately
recognised by the profession, by the universities and by society. Being a designer is
almost a separate profession from that of general civil engineer. If one were to imagine
the spectrum of skills required in the building industry, extending at one end from
an architect and at the other to a director of a civil engineering contracting firm, the
bridge designer would cover a wide range, but his centre of gravity should be closer to
the architect than to the contractor.

1.5 Qualities required by a bridge designer

Before the age of enlightenment engineers/architects built many splendid structures,
soaring cathedrals, slender stone towers and daring arch bridges without knowledge
of modern theory of structures or of analytical soil mechanics. Then in the eighteenth
and nineteenth centuries, despite the primitive state of mathematics and structural
theory, engineers built huge numbers of structures associated with the development
of the canals, roads and railways, some of which were daring and dramatic, many of
which have survived to the present day.

It is astonishing how little curiosity is shown by engineers and teachers of engineering
about this huge body of successful structures which were built without the benefits of
most of what is considered essential engineering training. It should make us question
what are the basic skills required for a bridge designer.

The designer of engineering structures requires an understanding of how structures
work and how they are to be built, an appreciation of how they look, and the commu-
nication skills required to describe his ideas to others. This understanding develops
gradually, starting with his technical education and continuing with the feedback from
completed projects, snippets of information read or overheard, back-of-the-envelope
doodles or bath-time mental calculations. Sometimes, some item of information acts as
the missing piece of a puzzle, suddenly illuminating an issue that was previously only
partly understood. This process goes on throughout a career, and a creative engineer
becomes progressively more creative until his faculties begin to decline. Clearly, some
people are more gifted than others in this domain, and have an intuitive understanding
of structures. Such natural engineers learn more quickly than others less talented, and
make better use of their experience.

A designer’s appreciation of beauty depends in part on his talent and in part on his
training and experience. In the UK, prospective engineers concentrate on mathematics
and science from the age of 16, and the appreciation and creation of beauty are
absent from the majority of engineering courses. Mathematics and the other technical
disciplines such as theory of structures and the properties of materials are the most
tangible of the skills required by engineers, and thus are the ones that are given priority
in their education. However they have become virtually the only skills that are taught,
whereas the critical criterion that determines whether a structure will rise above the
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mediocre is the quality of the conceptual design. This requires in addition to technical
knowledge and skill, imagination, aesthetic judgement and an appreciation of the
context of the structure. These skills are much more difficult to teach.

Thus engineering designers have to rely on any innate talent for the vital aesthetic
component of their practice, or alternatively seek input from architectural specialists.
Enlisting the help of architects in the design of bridges is far better than simply ignoring
the aesthetic component of design, but is much inferior to both aesthetic and technical
components being in the mind of one person. An engineering designer should have an
education that is reasonably balanced between the technical and the aesthetic.

1.6 Economy and beauty in design

An engineer designing a bridge has twin obligations, to his client to use his money
wisely, and to society to produce a structure that will enhance the built environment.
In fact, beauty in engineering design has its roots in the tension that exists between
designing for economy and designing for appearance.

Economy in this context is not simply saving money; it is a concept of rationality
and frugality. It is fundamental to engineering design that the designer is constantly
planning how he can save materials, and how he can make the construction process
simpler, even if many of these design decisions in isolation would not register on the
overall balance sheet of a project.

An example of this tension between appearance and economy is given by the design
of an access ramp to a high level bridge, Figure 1.1. The main bridge consists of a
trapezoidal box section, 2.4 m deep, allowing it to span 60 m or more. The access
ramp must climb from ground level to merge with the main structure. At the point
of merger, the ramp has the same depth and shape as the main bridge. However, the
2.4 m depth would be out of scale for a deck close to ground level. Consequently, the
ramp is given a depth that gradually reduces to 0.7 m as it approaches the ground, with
the spans shortening correspondingly. This is clearly not the most economical choice,
as the formwork for the downstand webs of the ramp will be continually changing. In
order to mitigate this additional cost of formwork, the geometry of the ramp deck may
be defined by keeping the length of the web shutters constant and equal to those of the
main bridge, but changing their angle. Thus if the ramp is built span-by-span, the side
shutters of the webs may be re-used for each span. This is an intellectual concept based
on an attempt to rationalise the construction method and save cost, which gives rise to
a distinctive appearance. Finally this appearance must be judged on its own merits.

When an engineer designs, whether it is the overall concept of a bridge or an
individual member, he first must understand the structural behaviour, and then seek
rationality and economy. The search will usually leave him many options, which allows
him to make choices concerning the appearance of the structure.

A very simple example is the design of the bridge pier carrying a single bearing,
Figure 1.2. The pier is subjected to a vertical load and to a horizontal load at the top
which produces a bending moment that increases linearly to a maximum at the base
of the pier, Figure 1.2 (a). The size of the pier at the top will be limited by the size of
the bridge bearing, while at the bottom it will be governed by the combined effect of
the compression force and the bending moment. The engineer has a choice between,
for instance:
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e a prismatic column of a generous size that allows minimum reinforcement to be
used throughout, Figure 1.2 (b);

e a smaller prismatic column that needs minimum reinforcement at the top, but
heavy reinforcement at the base, Figure 1.2 (c);

e acolumn that is as small as possible at the top and tapers uniformly to the bottom,
Figure 1.2 (d);

¢ acolumn which is as small as possible at the top and whose width then varies such
that the minimum reinforcement may be used throughout, Figure 1.2 (e);

¢ some combination of any of these.
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Figure 1.2 Options for bridge pier
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His choice will be informed by other aspects of the project, for instance:

*  the number of similar columns in the project;

« the range of heights of such columns;

* the need for variations on the basic column size to cater, for instance, for bridge
expansion joints, anchor piers or different length spans;

« the need for a family of columns to cater for other bridges forming part of the
same project;

e the architectural context of the bridge.

As the engineer considers the economy of the various choices to be made, he
will most probably find that several options have costs that are within the margin of
estimating error. Consequently, although the search for economy is at the heart of his
design, it cannot be used as an alternative to aesthetic judgement; the engineer must
choose the shape he considers is best in all the circumstances.
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Figure 1.3 Options for flared column
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Figure 1.4 STAR Viaduct: typical pier (Photo: Benaim)

Figure 1.5 Byker Viaduct: pier finishes (Photo: Harry Sowden/Arup)
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Once he has made his basic choices, he then has to refine his design, both for
economy and appearance; small changes of shape can greatly affect the appearance,
as may be seen in comparing the options for a column of varying width shown in
Figure 1.3. Reinforced concrete detailing considerations may also suggest minor
dimensional changes, to give a rational arrangement of bars, or to make best use of
standard bar lengths and minimise waste.

What an engineering designer cannot do and retain the integrity of his design is to
fly in the face of rationality and economy, and design a heavily loaded column that, for
instance, tapers towards the bottom, Figure 1.2 (f), creating an artificial problem that
then needs to be solved by misdirected engineering ingenuity. This is true even if the
additional cost as compared with a rational design is negligible.

There is no reason that the column should not be decorated, with corners cut off,
the sides faceted, Figure 1.4, or with ribs or other decorative finish, Figure 1.5 (7.15.4),
as long as the cost of this decoration is reasonable in the context of the project. Some
aspects of such decoration may be functional, for instance to reduce the apparent
bulk of the column by changing the way light reflects off it or to control water runs to
improve its weathering, while some may be just to make it more attractive.

Engineering design is thus driven by the simultaneous consideration of rationality,
economy and appearance. Designing economically alone is not enough. There is no
automatic linkage between economy and beauty; aesthetic judgement is required at
every step of a design.

Engineers have been known to put their faith in the idea that if they design honestly,
and reflect in their structure the flow of forces, the result will inevitably be aesthetically
satisfactory, or even beautiful: the idea that ‘form follows function’. Unfortunately,
this is not sufficient. Within the confines of honesty and economy, the engineer is left
with a wide choice, which requires aesthetic judgement. A useful analogy is to consider
the design of the human face, which is well defined by its function, but which gives rise
to an infinite number of outcomes.

If bridge designers are not confident of their aesthetic ability, they should request
the assistance of an architect, who should be involved from the earliest stages of
the design. If they are lucky, they will find one who understands the special quality
of engineering design, and who does not take over the project with his own, non-
engineering taste. Such collaboration can be very creative, but success depends firstly
on the engineer being skilled and confident in the technical domain, and