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Foreword

This is an impressive book by Wei Cai. It attempts to cover a wide range of topics

in electromagnetics and electronic transport. In electromagnetics, it starts with

low-frequency solutions of Poisson–Boltzmann equations that find wide applica-

tions in electrochemistry, in the interaction between electromagnetic fields and

biological cells, as well as in the drift-diffusion model for electronic transport. In

addition to low-frequency problems, the book also addresses wave physics prob-

lems of electromagnetic scattering, and the Schrödinger equation. It deals with

dyadic Green’s function of layered media and relevant numerical methods such

as surface integral equations, and finite element, finite difference, and discontin-

uous Galerkin methods. It also addresses interesting problems involving surface

plasmons and periodic structures, as well as wave physics in the quantum regime.

In terms of quantum transport, the book discusses the non-equilibrium Green’s

function method, which is a method currently in vogue. The book also touches

upon hydrodynamic electron transport and the germane numerical methods.

This is an excellent book for those who want to study and understand the

relationship between mathematical methods and the many different physical

problems they can model and solve.

Weng Cho Chew, First Y. T. Lo Endowed Chair Professor, UIUC



Preface

-Analects

Electromagnetic (EM) processes play an important role in many scientific and

engineering applications such as the electrostatic forces in biomolecular solvation,

radar wave scattering, the interaction of light with electrons in metallic materials,

and current flows in nano-electronics, among many others. These are the kinds

of electromagnetic phenomena, from atomistic to continuum scales, discussed in

this book.

While the focus of the book is on a wide selection of various numerical methods

for modeling electromagnetic phenomena, as listed under the entry “numerical

methods” in the book index, attention is also given to the underlying physics

of the problems under study. As computational research has become strongly

influenced by the interaction from many different areas such as biology, physics,

chemistry, and engineering, etc., a multi-faceted and balanced approach address-

ing the interconnection among mathematical algorithms and physical principles

and applications is needed to prepare graduate students in applied mathematics,

sciences, and engineering, to whom this book is aimed, for innovative advanced

computational research.

This book arises from courses and lectures the author gave in various univer-

sities: the UNC Charlotte and the UC Santa Barbara in the USA, and Peking

University, Fudan University, and Shanghai Jiao Tong University in China, to

graduate students in applied mathematics and engineering. While attempts are

made to include the most important numerical methods, the materials presented

are undoubtedly affected by the author’s own research experience and knowl-

edge. The principle of selecting the materials is guided by Confucius’s teaching

above – “For a man to succeed in his endeavors, he must first sharpen his tools.”

So, emphasis is on the practical and algorithmic aspects of methods ready for

applications, instead of detailed and rigorous mathematical elucidation.

The book is divided into three major parts according to three broadly defined

though interconnected areas: electrostatics in biomolecules, EM scattering and

guiding in microwave and optical systems, and electron transport in semiconduc-

tor and plasma media. The first two areas are based on atomistic and continuum
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EM theory, while the last one is based on Schrödinger quantum and also Maxwell

EM theories. Part I starts with a chapter on the statistical molecular theory of

dielectric constants for material polarization in response to an electric field, an

important quantity for molecular dynamics simulation of biomolecules and un-

derstanding optical properties of materials addressed in the book. Then, the

Poisson–Boltzmann (PB) theory for solvation is given in Chapter 2, together

with analytical approximation methods such as the generalized Born method

for solvation energy and image methods for reaction fields in simple geometries.

Chapter 3 contains various numerical methods for solving the linearized PB

equations including the boundary integral equation methods, the finite element

methods, and the immersed interface methods. Chapter 4 presents three meth-

ods to handle the long-range electrostatic interactions – a key computational task

in molecular dynamics algorithms: the particle-mesh Ewald, the fast multipole

method, and a reaction field based hybrid method.

Part II contains a large collection of numerical techniques for solving the con-

tinuumMaxwell equations for scattering and propagation in time- and frequency-

domains. This part starts with Chapter 5 on Maxwell equations with physical

and artificial boundary conditions; the former includes dielectric interface con-

ditions and Leontovich impedance boundary conditions for conductors with a

perfect electric conductor (PEC) as a limiting case, and the latter includes lo-

cal absorbing boundary conditions and uniaxial perfectly matched layer (PML)

boundary conditions. Chapter 6 discusses the dyadic Green’s functions in layered

media for the Maxwell equations in the frequency-domain and an algorithm for

fast computation. High-order surface integral methods for electromagnetic scat-

tering form the subject of Chapter 7, which includes the Galerkin method using

mixed vector–scalar potentials and the Nyström collocation method for both the

hyper-singular integral equations and the mixed vector–scalar potential integral

equations, and combined integral equations for the removal of resonance in cavi-

ties. Finally, the high-order surface current basis for the Galerkin integral equa-

tion methods is discussed. Chapter 8 on edge elements begins with Nédélec’s

original construction of the H(curl) conforming basis, and then presents hier-

archical high-order elements in 2-D rectangles and 3-D cubes and simplexes

in both 2-D and 3-D spaces. Next, time-domain methods, including the dis-

continuous Galerkin (DG) methods with a high-order hierarchical basis and

the finite difference Yee scheme, are given in Chapter 9. Numerical methods

for periodic structures and surface plasmons in metallic systems are covered

in Chapter 10, including plane-wave-based methods and transmission spectra

calculations for photonics band structures, finite element methods, and vol-

ume integral equation (VIE) methods for the Maxwell equations. For the

surface plasmons, the DG methods for dispersive media using auxiliary dif-

ferential equations (ADEs) are given for Debye and Drude media. The final

chapter (Chapter 11) of Part II contains numerical methods for Schrödinger

equations for dielectric optical waveguides and quantum dots: a generalized DG

method for the paraxial approximation in optical waveguides, and a VIE method
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for Schrödinger equations in quantum dots embedded in layered semiconductor

materials.

Part III starts with Chapter 12 on the electron quantum transport models

in semiconductors, which also includes the Fermi–Dirac distribution for electron

gas within the Gibbs ensemble theory, density operators, and kinetic descriptions

for quantum systems. The quantum transport topics discussed in this chapter

include the Wigner transport model in phase space for electrons, the Landauer

transmission formula for quantum transport, and the non-equilibrium Green’s

function (NEGF) method. Then, the non-equilibrium Green’s function method

in Chapter 13 contains the treatment of quantum boundary conditions and finite

difference and finite element methods for the NEGF; the latter allows the calcu-

lation of the transmission coefficients in the Landauer current formula for general

nano-devices. Chapter 14 includes numerical methods for the quantum kinetic

Wigner equations with the upwinding finite difference and an adaptive cell aver-

age spectral element method. Chapter 15 first presents the semi-classical Boltz-

mann and continuum hydrodynamic models for multi-species transport, includ-

ing electron transport, and then follows with the numerical methods for solving

the hydrodynamic equations by Godunov methods and WENO and central dif-

ferencing methods. In the final chapter of the book, Chapter 16, we first present

the kinetic Vlasov–Fokker–Planck (VFP) model and the continuum magneto-

hydrodynamic (MHD) transport model for electrons in plasma media. Then,

several numerical methods are discussed including the VFP scheme in phase

space, and the particle-in-cell and constrained transport methods for the MHD

model, where the divergence-free condition for the magnetic field is specifically

enforced.

In making this book a reality, I credit my education and ways of doing research

to my teachers Prof. Zhongci Shi at the University of Science and Technology of

China (USTC), who exposed me to the power of non-conforming finite element

methods and reminded me that computational research must not be devoid of

real science and engineering relevance, and Prof. David Gottlieb (my doctoral

thesis advisor) at Brown University, who taught me that simplicity is the beauty

in sciences. Also, my scientific research has benefited greatly from encourage-

ments and interactions from the late Prof. Steven Orszag over many years. I have

learnt much from interactions with my colleague physicist Prof. Raphael Tsu (a

co-inventor of the resonant tunneling diode and a pioneer in quantum superlat-

tices), whose sharp physics insight has always been an inspiration and pleasure

during many of our discussions. My former colleague Prof. Boris Rozovsky has

provided much encouragement, spurring me to undertake the challenge of writing

this book, which started in 2004 during one of my many research collaboration

visits with Prof. Pingwen Zhang at Peking University through the Beijing In-

ternational Center for Mathematical Research. This book would not be possible

without the joint research work undertaken in the past few decades with my

colleagues Pingwen Zhang and Shaozhong Deng, and my former students and

postdoctoral researchers Tiejun Yu, Yijun Yu, Yuchun Lin, Tiao Lu, Xia Ji,
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Haiyan Jiang, Min hyung Cho, Kai Fan, Sihong Shao, Zhenli Xu, and Jianguo

Xin. Special thanks are given for the many useful discussions with my friends and

other colleagues, which have contributed to my understanding of various topics

in the book, including Achi Brandt, Alexandre Chorin, Weinan E, George Kar-

niadakis, Chiwang Shu, Leslie Greengard, Jan Hesthaven, Tom Hagstrom, Eitan

Tadmor, Shiyi Chen, Roger Temam, Weng Cho Chew, Jian-ming Jin, Dian Zhou,

Xuan Zeng, Jinchao Xu, Jianguo Liu, Shi Jin, Houde Han, Jing Shi, Ann Gelb,

Gang Bao, Jingfang Huang, Bob Eisenberg, Chun Liu, Xianjun Xing, Benzhuo

Lu, Tao Tang, Jie Shen, Huazhong Tang, Tsinghua Her, Andrij Baumketner,

Donald Jacobs, Guowei Wei, Vasily Astratov, and Greg Gbur. I would like to

thank Dr. Shaozhong Deng for his careful reading of the manuscript; many im-

provements in the presentation of the book have resulted from his suggestions.

The author is also grateful for the professional help and great effort of Ms. Irene

Pizzie during the copy-editing of the book.

Finally, special acknowledgements are given to the continual support of the

Advanced Scientific Computing Research, Office of Science at the Department

of Energy (under program managers Sandy Landsberg and Karen Pao) and the

Army Research Office (under program manager Joseph Myers) over the years,

and to NSF and NIH for allowing me to undertake the research that is behind

many results contained in this book.
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Electrostatics in solvation





1 Dielectric constant and fluctuation
formulae for molecular dynamics

The dielectric constant ε of a material describes the collective response of its

constituent molecules to electric fields, which is of fundamental importance in the

study of electromagnetic phenomena in materials. In this chapter, we will present

the statistical molecular theory for the dielectric constant. First, a brief review on

the classical electrostatic theory of charges and dipoles is given. Then we present

the classical Clausius–Mossotti theory for non-polar dielectrics, i.e., materials

that do not have molecular dipole moments in the absence of external fields,

and the Onsager theory for dipolar dielectrics, specifically for dipolar liquids.

Finally, we discuss the statistical molecular theory for the dielectric constant

and dielectric formula in terms of dipole moment fluctuations; the latter can be

obtained over molecular trajectories in molecular dynamics simulations of the

dielectric materials.

1.1 Electrostatics of charges and dipoles

In this section, we review the basics of electrostatics of charges and dipoles. The

Coulombic force of a point charge q at r′ exerting on a test charge Q at r is

given by

F(r) =
1

4πε0

Qq(r− r′)

|r− r′|3 , (1.1)

with the vacuum dielectric constant ε0 = 8.854× 10−12 C2/(N · m2) set in the

SI base units for force (N), distance (m), and charge (C). The force can also be

expressed in terms of the electric field E(r) generated by the source charge q as

F(r) = QE(r), (1.2)

and the electric field E(r) can be written in terms of a scalar electrostatic po-

tential Φ(r) as

E(r) = −∇Φ(r), (1.3)

where

Φ(r) =
1

4πε0

q

|r− r′| . (1.4)
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Meanwhile, the potential energy W for the test charge Q in the electrostatic

potential field Φ(r) is simply

W = QΦ(r). (1.5)

It can be shown easily that the potential Φ(r) satisfies the following Poisson

equation with a Dirac δ source:

−∇2Φ(r) = q
δ(r− r′)

ε0
. (1.6)

Molecules of many materials (such as dipolar liquids) possess permanent dipole

moments (defined below) due to different mass centers for the positive nuclear

charges and the negative electron charges. The dipole moments will experience

change under external fields, i.e., polarization, which plays a fundamental role in

the study of the electrical and optical properties of materials. Moreover, under

the influence of an external field, even non-polar molecules can obtain induced

dipole moments because of the displacement of the mass centers of the positive

and the negative charges.

The electric dipole moment for a pair of opposite charges of magnitude q is

defined as the magnitude of the charges times the distance d between the charges.

The potential of such a dipole is given by

Φ(r) =
1

4πε0

(
q

|r− d
2 |
− q

|r+ d
2 |

)
, (1.7)

where d is the directional vector pointing from the negative charge to the positive

charge. We define the dipole moment vector p as

p = qd (C ·m). (1.8)

In a far-field region, i.e., |r| � d, we have

Φ(r) ≈ 1

4πε0

qd cos θ

r2
=

1

4πε0

p · r
r3

, (1.9)

where θ is the angle between p and r. The electric field due to the dipole p is

then

E(r) = −∇Φ(r) =
1

4πε0

(
3p · r
r5

r− p

r3

)
, (1.10)

which also defines a dipole–dipole tensor T(r) for r = (r1, r2, r3):

Tαβ(r) =
1

4πε0

1

r3

(
3rαrβ
r2

− δαβ

)
, α, β = 1, 2, 3, (1.11)

where δαβ is the Kronecker delta.

An ideal point dipole can be obtained by letting the separation distance d tend

to zero while holding the product qd = μ unchanged. The ideal point dipole can

be represented by a dipole moment density through the Dirac δ function with

an orientation along the unit direction d̂ = d/|d|:

p̃ = μδ(r)d̂, (1.12)

the spatial integration of which will give the total dipole moment μd̂.
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For an individual atom or molecule of a dipole moment p, we assume the

following linear relation between the induced dipole moment Δp(r) (i.e., p→ p

+ Δp(r)) and an external field E(r):

Δp(r) = αE(r), (1.13)

where α (cm3) is the atomic or molecular polarizability. For example, α/4πε0 =

0.667 for H, 0.205 for He, and 24.1 for Na (in units of 10−30m3), respectively

(Griffiths, 1999).

For later use, we consider the potential energy W of a general finite-sized

dipole moment p = q1r1 + q2r2, q1 + q2 = 0, under an external electric field

Eext = −∇Φ. Using (1.5), we have

W = q1Φ(r1) + q2Φ(r2) � q1[Φ(0) +∇Φ(0) · r1] + q2[Φ(0) +∇Φ(0) · r2]
= p · ∇Φ(0).

Therefore, we obtain

W = −p ·Eext. (1.14)

1.2 Polarization P and displacement flux D

The collective response of the constituent molecules of a material to an external

electric field can be described by a phenomenological quantity, the susceptibility

χ of a dielectric material, which measures the displacement (translation or rota-

tion) of permanent dipole moments in polar molecules or the creation of induced

dipole moments in non-polar molecules. This process is the so-called polarization

process. The susceptibility χ and the dielectric constant ε are macroscopic quan-

tities; the former links the Maxwell total electric field E(r) inside the material

and the polarization density P(r) per unit volume by

P(r) = ε0χE(r), (1.15)

where both E(r) and P(r) are averaged quantities over a scale larger than the

molecular size but smaller than the overall macroscopic scale of the dielectric

material under investigation. Specifically, over a physical region Vc around a

location r, we define the polarization density function P(r) through

P(r)|Vc| =
∑
i∈Vc

pi, (1.16)

where |Vc| represents the volume of the region Vc, and pi is the dipole moment of

the ith molecule inside Vc. Therefore, a complete understanding of the dielectric

constant can be traced back to the response of each individual molecule under

the influence of the external electric field.
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1.2.1 Bound charges induced by polarization

For a given polarization density P(r) within a volume V , and by the linear

superposition principle and the far-field approximation of (1.9), the potential

Φ(r) for r /∈ V is

Φ(r) =
1

4πε0

∫
V

P(r′) · (r− r′)

|r− r′|3 dr′, (1.17)

which can be rewritten as

Φ(r) =
1

4πε0

∫
V

P(r′) · ∇′
(

1

|r− r′|

)
dr′

=
1

4πε0

[∫
V

∇′ · P(r′)

|r− r′| dr
′ −

∫
V

1

|r− r′|∇
′ ·P(r′)dr′

]
=

1

4πε0

[∫
S

P(r′) · n
|r− r′| ds′ −

∫
V

1

|r− r′|∇
′ ·P(r′)dr′

]
, (1.18)

where ∇′ denotes differentiation with respect to r′, S = ∂V is the surface of the

volume V , and n represents the outward unit normal vector to the surface. From

the last equation, we can conclude that the potential Φ(r) due to the polarization

density P(r) can be identified as those created by a surface bound charge σb on

the surface S,

σb(r) = P(r) · n, (1.19)

and a volume bound charge ρb inside the volume V,

ρb(r) = −∇ ·P(r). (1.20)

Namely, we have

Φ(r) =
1

4πε0

∫
S

σb(r
′)

|r− r′| ds
′ +

1

4πε0

∫
V

ρb(r
′)

|r− r′| dr
′. (1.21)

It should be noted that the volume bound charge ρb and the surface bound

charge σb cancel each other to reflect the overall charge neutrality of the dielec-

tric, namely,∫
V

ρb(r
′)dr′ = −

∫
V

∇′ ·P(r′)dr′ = −
∫
S

P(r′) · n ds′ = −
∫
S

σb(r
′)ds′. (1.22)

Accounting for the volume bound charge, the Gauss law for the electric field

now becomes

∇ · ε0E(r) = q(r) + ρb(r), (1.23)

where q(r) is the free charge inside the material (in contrast to the charge ρb(r)

induced by polarization, which is bound to nuclear sites). Using the definition of

the volume bound polarization charge ρb(r) (1.20), we have

∇ · (ε0E(r) +P(r))=q(r). (1.24)
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Introducing a displacement flux D(r) to account for the polarization effect due

to the “displacement” of the dipoles in the dielectric material,

D(r) = ε0E(r) +P(r) = ε0(1 + χ)E(r) = εE(r), (1.25)

where the material dielectric constant ε is defined by

ε = ε0(1 + χ), (1.26)

we arrive at the Gauss law inside the dielectric material:

∇ ·D(r) = q(r). (1.27)

For convenience, we also define a relative dielectric constant εr with respect to

that of the vacuum ε0 by

εr =
ε

ε0
= 1 + χ. (1.28)

1.2.2 Electric field Epol(r) of a polarization density P(r)

The macroscopic electric polarization field from the potential (1.17) is

Epol(r) = −∇Φ(r) = − 1

4πε0
∇

∫
V

P(r′) · (r− r′)

|r− r′|3 dr′, r /∈ V. (1.29)

For a field point r /∈ V , the integrand in (1.29) is a smooth function; thus we

can move the gradient operator inside the integral to obtain

Epol(r) =

∫
V

T(r− r′)P(r′)dr′, r /∈ V, (1.30)

where the dipole–dipole tensor T is defined in (1.11).

For a field point r inside V , however, the integrand for the potential Φ(r)

in (1.29) will be singular, and more so for the dipole tensor in the expression

(1.30) for the electric field Epol(r). Nonetheless, we will show in the following

that (1.29) still holds even for r ∈ V ; however, (1.30) will be interpreted as a

Cauchy principal value integral with an additional term in (1.43).

For a field point r ∈ V , the polarization field Epol(r) from the molecular

polarization pi can be split into two parts as follows:

Epol(r) = Eout(r) +Ein(r), (1.31)

where Eout(r) and Ein(r) are the field generated by the dipoles pi outside and

inside, respectively, a sphere ΩR of radius R centered at r. Using a far-field

approximation similar to (1.17), we have

Eout(r) = −∇Φout(r), (1.32)

where

Φout(r) =
1

4πε0

∫
V/ΩR

P(r′) · (r− r′)

|r− r′|3 dr′. (1.33)
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Meanwhile, to be consistent with the fact that the Maxwell electric field is

an averaging quantity, Ein(r) is defined as the average field generated by all

dipoles pi inside the sphere ΩR. Each of these dipoles pi, represented by two

point charges qiδ(r− ri − di/2) and −qiδ(r− ri + di/2), with pi = qidi, will

generate a microscopic electric field ei(r), given by

ei(r) =
1

4πε0

(
qi(r− ri − di/2)

|r− ri − di/2|3
− qi(r− ri + di/2)

|r− ri + di/2|3
)
, (1.34)

which will contribute to the macroscopic electric field Ein(r) through its average

value over the region ΩR. Using the result (1.140) in Appendix A (Section 1.5.1),

we can compute this average field quantity as

Ein(r) =
∑
i

ei(r) = −
1

4πε0

1

R3

∑
i

pi = −
1

3ε0
P(r), (1.35)

where the last equality follows from∑
i

pi = |ΩR|P(r) =
4

3
πR3P(r). (1.36)

Therefore, from (1.31), for a field point r ∈ V , the polarization field Epol(r)

can be expressed as

Epol(r) = −
1

4πε0
∇

∫
V/ΩR

P(r′) · (r− r′)

|r− r′|3 dr′ − 1

3ε0
P(r). (1.37)

On the other hand, if we assume that the polarization density P(r) is uniform

inside the sphere ΩR, then from (1.146) in Appendix B (Section 1.5.2), we know

that a uniform electric field is created inside the sphere given by

− 1

3ε0
P(r) =− 1

4πε0
∇

∫
ΩR

P(r
′
) · (r− r′)

|r− r′|3 dr′. (1.38)

As a result, we have

Epol(r) = −
1

4πε0
∇

∫
V/ΩR

P(r′) · (r− r′)

|r− r′|3 dr′ − 1

4πε0
∇

∫
ΩR

P(r′) · (r− r′)

|r− r′|3 dr′

(1.39)

= −∇Φ(r),

where

Φ(r) =
1

4πε0

∫
V

P(r′) · (r− r′)

|r− r′|3 dr′. (1.40)

Therefore, for a material with a locally uniform polarization density (i.e., no

interior material interfaces), the macroscopic electric polarization field Epol(r)

can be computed by (1.39), namely, as the negative of the gradient of the po-

tential (1.40) in the whole space R3.
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1.2.3 Singular integral expressions of Epol(r) inside dielectrics

For the electric field inside a dielectric with polarization density P, we can extend

(1.30) to the case of r ∈ V using Cauchy principal integrals. First we define a

de-singularized dipole tensor with δ > 0 by

Tδ(r− r′) =

{
0, if |r− r′| ≤ δ,

T(r− r′), if |r− r′| > δ.
(1.41)

Then, we have from (1.37) that

Epol(r) = −
1

4πε0
∇

∫
V/Ωδ

P(r′) · (r− r′)

|r− r′|3 dr′ − 1

3ε0
P(r)

=

∫
V

Tδ(r− r′)P(r′)dr′ − 1

3ε0
P(r). (1.42)

Now, letting δ → 0, the first term becomes the Cauchy principal value (p.v.)

of the singular integral, and we thus have

Epol(r) = p.v.

∫
V

T(r− r′)P(r′)dr′ − 1

3ε0
P(r). (1.43)

More discussion on the Cauchy principal value of singular integrals can be found

in Section 3.1.1.

1.3 Clausius–Mossotti and Onsager formulae for dielectric constant

1.3.1 Clausius–Mossotti formula for non-polar dielectrics

In this section, we derive a relation between the polarization density P(r) and

the Maxwell electric field E(r) inside dielectrics. First, from the definition of the

polarization density (1.16), the polarization is the combined polarization of all

individual molecules, which will be under the effect of a local field Elocal(r) at

molecule sites. This local field Elocal(r) is the Lorentz field and should be distin-

guished from the macroscopic Maxwell field E(r). Thus, the polarization density

P(r) can be expressed in terms of the polarization of all individual molecules in

a linear sum as

P(r) =
∑
i

Niαi(Elocal(r))i, (1.44)

where αi is the polarizability of the ith type particle (molecule) and Ni is the

number density of the ith type particle (per unit volume), respectively.

From (1.10), the microscopic local Lorentz field on each individual molecule is

defined as (Kantorovich, 2004)
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Elocal(r) = E′(r) +
1

4πε0

∑
j∈V

[
3pj · (r− rj)

|r− rj |5
(r− rj)−

pj

|r− rj |3
]

= E′(r)− 1

4πε0

∑
j∈V

∇ pj · (r− rj)

|r− rj |3
, (1.45)

where E′(r) denotes the external electric field when the dielectric material is

absent, and pj is the dipole moment of the molecule at rj .

We split the summation in (1.45) into two groups of dipoles: those dipoles

inside a sphere ΩR around r and the rest in the exterior of the sphere Ωc
R =

V \ΩR. Then, we have

Elocal(r) = E′(r)− 1

4πε0
∇

⎛⎝ ∑
j∈ΩR

+
∑
j∈Ωc

R

⎞⎠ pj · (r− rj)

|r− rj |3

= E′(r)− 1

4πε0

⎡⎣∇ ∑
j∈ΩR

pj · (r− rj)

|r− rj |3
+∇

∫
Ωc

R

P(r′) · (r− r′)

|r− r′|3 dr′

⎤⎦ ,

(1.46)

where a far-field approximation has been used in replacing pj by P(r′) for the

summation over Ωc
R. It should be noted that a more appropriate expression for

the field of the dipole pj inside ΩR should be (1.34), however, it would not affect

the discussion and conclusion below.

Meanwhile, the Maxwell electric field E(r), being the sum of the external

field E′(r) and the field generated by the polarizations Epol(r) in (1.37), can be

expressed as

E(r) = E′(r)− 1

4πε0
∇

∫
Ωc

R

P(r′) · (r− r′)

|r− r′|3 dr′ − 1

3ε0
P(r). (1.47)

Subtracting (1.47) from (1.46), we have

Elocal(r)−E(r) = − 1

4πε0
∇

∑
j∈ΩR

pj · (r− rj)

|r− rj |3
+

1

3ε0
P(r).

The summation over j ∈ ΩR will vanish if we assume a cubic lattice for

the material (Böttcher, 1973, p. 168) and a constant polarization pj inside ΩR.

Therefore, we have

Elocal(r) = E(r) +
1

3ε0
P(r), (1.48)

which is defined as the Lorentz local field (Kittel, 2004, p. 388) acting on an

individual molecule. From (1.146) and (1.144), it can be seen that the field cor-

rection P(r)/(3ε0) over the Maxwell field E(r) in the Lorentz local field Elocal(r)

is caused by the surface bound polarization charge on the boundary of the region
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ΩR (zero volume bound charge due to the assumption of a uniform polarization

inside).

Next, using the ansatz of a linear relation (1.15) between the polarization and

the Maxwell field, (1.48) becomes

Elocal(r) = E(r) +
χ

3
E(r) =

(
1 +

χ

3

)
E(r). (1.49)

Substituting (1.49) into the right-hand side of (1.44) and using (1.15) for its

left-hand side, we have

ε0χE(r) =
∑
i

Niαi

(
1 +

χ

3

)
E(r),

and, after eliminating the field E(r), we get

χ

3 + χ
ε0 =

1

3

∑
i

Niαi, (1.50)

which gives the well-known Clausius–Mossotti formula by using (1.28) (Mossotti,

1850; Clausius, 1879; Böttcher, 1973):

εr − 1

εr + 2
ε0 =

1

3

∑
i

Niαi. (1.51)

1.3.2 Onsager dielectric theory for dipolar liquids

In the Onsager dielectric theory for a material with permanent molecular dipole

moments, the polarization of the material is considered to come from two differ-

ent sources, i.e.,

P = Pα +Pμ, (1.52)

where Pα is the induced polarization from the translation of the atom’s elec-

tron/nuclear charges and Pμ is the dipole polarization by the orientation change

of permanent dipoles, respectively. If αi is the atomistic polarizability of the ith

type particle, then

Pα =

(∑
i

Niαi

)
Elocal (1.53)

and

Pμ =
∑
i

Niμi, (1.54)

where μi is the permanent dipole vector obtained through Gibbs-averaging over

all orientations under the effect of a directing field Ed; the latter is only part of

the local field Elocal(r) acting on the molecules.

In deriving the Onsager theory, we will take a different approach from the pro-

cedure used in deriving (1.48), where a virtual sphere ΩR of uniform polarization
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is used. Here, in order to find Elocal and Ed, we enclose each molecule in a spher-

ical cavity ΩR (a real physical cavity) without any other molecules inside (i.e.,

assuming no rotation hindrance from neighboring molecules). The electric field

inside the spherical cavity acting on the molecule now comes from two sources,

the first being the reaction field of the surrounding dielectric continuum outside

the cavity on the dipole moment of the molecule, and the second being the field

generated by the presence of the cavity, termed the cavity field. For both fields,

a self-consistent argument will be needed as the dipole is polarizable, namely the

reaction field or the directional field will change the dipole moment, which in

turn will affect the reaction field or the directional field, respectively.

In the following, we will follow the discussion from Böttcher (1973). First, we

will find the average direction for the molecular permanent dipole. We recall

from (1.14) that the energy of a dipole μ under Ed is

W = −μ ·Ed = −μEd cos θ, (1.55)

where the angle θ is the inclination angle measured from the direction of Ed,

which is taken to be the x-axis.

The relative probability of the orientations of the dipole μ follows Boltzmann’s

distribution. If Ed = 0, all directions θ have the same probability, so

p(θ)dθ =
2πr(sin θ)r dθ

4πr2
=

sin θ

2
dθ, (1.56)

where the numerator in the first fraction is the surface area of a ring patch of

inclination angle between θ and θ + dθ on the surface of the sphere of radius r.

If Ed 	= 0, then we should have

p(θ)dθ =
e
− W

kBT

Z

sin θ

2
dθ, (1.57)

where kB is the Boltzmann constant, T is the temperature, and

Z =

∫ π

0

eμEd cos θ/kBT sin θ

2
dθ. (1.58)

In order to find the average of the dipole moments under the directing field

Ed, we consider the average energy 〈W 〉 of the dipole, which requires the average

of cos θ:

〈cos θ〉 ≡ cos θ =

∫ π

0
cos θ eμEd cos θ/kBT 1

2
sin θ dθ

Z

=
1

a

∫ a

−a
xex dx∫ a

−a
ex dx

= coth a− 1

a
= L(a), (1.59)

where a = μEd/(kBT ), coth is the hyperbolic cotangent function, and L(a) is

the so-called Langevin function. For a
 1, we have

L(a) =
a

3
− a3

45
+

2a5

945
+ · · · . (1.60)



1.3 Clausius–Mossotti and Onsager formulae for dielectric constant 13

Therefore, we obtain

〈cos θ〉 = a

3
=

μEd

3kBT
, (1.61)

and the average energy 〈W 〉 can be identified with an averaged dipole moment

μ ‖ Ed (by a symmetric argument) with a magnitude

μ = μ 〈cos θ〉 = μ2

3kBT
Ed. (1.62)

Thus, from (1.52)–(1.54) we have

P = ε0χE =
∑
i

Ni

(
αiElocal +

μ2
i

3kBT
Ed

)
. (1.63)

Calculation of Elocal and Ed

• Reaction field of non-polarizable dipoles

A dipole μ inside a spherical cavity ΩR of radius R of molecular scale will induce

a reaction field from the surrounding dielectric material with a relative dielectric

constant εr outside the cavity, and the potential can be written as (Jackson, 2001)

φ1(r) =

∞∑
n=0

Bn

rn+1
Pn(cos θ), if |r| ≥ R, (1.64)

φ2(r) =
1

4πε0

μ

r2
cos θ +

∞∑
n=0

Cnr
nPn(cos θ), if |r| ≤ R, (1.65)

where the series sum in φ2(r) is the reaction potential, Pn(x) is the Legendre

polynomial of order n, and Bn and Cn are expansion coefficients to be determined

by the following boundary conditions:

φ1 → 0 as |r| → ∞, (1.66)

φ1 = φ2|r=R, ε1
∂φ1

∂n
= ε2

∂φ2

∂n

∣∣∣∣
r=R

, (1.67)

where ε1 = εrε0 and ε2 = ε0.

Using the boundary conditions, we can show that all coefficients are zero except

B1 =
3

2εr + 1

μ

4πε0
, C1 = − 1

4πε0

2(εr − 1)

2εr + 1

μ

R3
.

Therefore, the reaction field at the center of ΩR is

Erf = −∇C1x =
1

4πε0

1

R3

2(εr − 1)

2εr + 1
μ = fμ, (1.68)
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where μ is assumed to be in the x-coordinate direction, and

f =
1

4πε0

1

R3

2(εr − 1)

2εr + 1
. (1.69)

• Reaction field of polarizable dipoles

A polarizable dipole μ will produce a reaction field Erf inside the cavity ΩR

which is parallel to the dipole itself, as shown in (1.68) above; as a result, the

dipole moment μ will be increased to μ+αErf . To be self-consistent, the reaction

field Erf should then be related to the total dipole moment, i.e.,

Erf = f(μ+ αErf). (1.70)

Therefore

Erf =
f

1− fα
μ. (1.71)

It is noted that the reaction field to a dipole μ, being parallel to μ, will not

change the orientation of the dipole.

• Cavity field Ec as part of the directing field Ed

From (1.71), the reaction field from a permanent dipole of any orientation is

parallel to the dipole itself, so it will not contribute to the rotation of that

dipole. Therefore, there is no need to include as part of Ed the reaction field of

the Gibbs-averaged permanent dipole moment μ.

A cavity in a dielectric system will modify a given field E = (E, 0, 0) far away

from the cavity, however, resulting in a cavity field Ec parallel to the external

field E inside the cavity. Thus, the cavity field Ec is not parallel to the permanent

dipole, and it will contribute to the overall directing field Ed affecting the dipole.

Let us first find the cavity field Ec. Assume that the external field is along

the x-direction for illustration, namely E = (E, 0, 0). Then, the potential outside

and inside the cavity is given as (Jackson, 2001)

φ1(r) =

∞∑
n=0

Bn

rn+1
Pn(cos θ)− Er cos θ, if |r| ≥ R, (1.72)

φ2(r) =
∞∑

n=0

Cnr
nPn(cos θ), if |r| ≤ R. (1.73)

By using the interface continuity conditions (1.66) and (1.67), we obtain

B1 =
ε2 − ε1
ε2 + 2ε1

R3E, C1 = − 3ε1
2ε1 + ε2

E, Bn = Cn = 0, n 	= 1,

where ε1 and ε2 are the dielectric constants outside and inside the cavity, respec-

tively. Therefore we have

φ2(r) = −
3ε1

2ε1 + ε2
Ex. (1.74)
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For ε1 = εrε0 and ε2 = ε0, the field inside the cavity, Ec, will be

Ec =
3εr

2εr + 1
E. (1.75)

The cavity field Ec will be part of the directing field Ed producing a rotation

polarization of the dipole inside the cavity; however, there are other fields there

which will contribute to Ed. Due to the polarizability of the molecule inside the

cavity, the directing field Ed will induce a dipole moment αEd, which in turn

will give a reaction field fαEd inside the cavity. Together with the cavity field

Ec, we then have the total directing field Ed in a self-consistent manner as

Ed = Ec + fαEd. (1.76)

It should be noted that a more accurate reaction field factor, namely f/(1− fα)

from (1.71), could be used here. As a result, we get

Ed =
1

1− fα
Ec. (1.77)

Finally, combining (1.75) and (1.76) will give

Ed =
1

1− fα
Ec =

1

1− fα

3εr
2εr + 1

E. (1.78)

• Local field Elocal

The local field acting on a molecule with a permanent dipole moment will now

consist of two parts: the reaction field from the permanent dipole μ and the

directing field Ed. Namely, we have

Elocal = Ed + Erf . (1.79)

The reaction field Erf due to the Gibbs-averaged permanent dipole moment μ is

obtained from (1.71) and (1.62):

Erf =
f

1− fα
μ =

f

1− fα

μ2

3kBT
Ed. (1.80)

Thus, it follows from (1.78), (1.79), and (1.80) that

Elocal =

(
1 +

f

1− fα

μ2

3kBT

)
Ed

=

(
1 +

f

1− fα

μ2

3kBT

)
1

1− fα

3εr
2εr + 1

E. (1.81)

Now substituting (1.81) and (1.78) into (1.63) and eliminating E, and using the

identity χ = εr − 1, we arrive at the following Onsager equation (Onsager, 1936):

(εr − 1)(2εr + 1)ε0
3εr

=
∑
i

Ni
1

1− fαi

(
αi +

1

3kBT

μ2
i

1− fαi

)
, (1.82)
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where f also depends on εr and is given by

f =
1

4πε0

1

R3

2(εr − 1)

2εr + 1
.

1.4 Statistical molecular theory and dielectric fluctuation formulae

In this section we will derive fluctuation formulae for computing dielectric con-

stants using dipole moment fluctuations obtained through molecular dynamics

simulations of dipolar liquids, which allow realistic modeling of the material sys-

tems. We consider a classical system V of molecules specified by a microstate Γ

of discrete dipole moments,

Γ = {(ri,μi), i = 1, 2, . . . , N} , (1.83)

where ri and μi are the position and the point dipole moment of the ith molecule,

respectively. Also, we assume that each individual point dipole μi, in the absence

of all other dipoles μj , j 	= i, has a polarizability matrix αi as defined in (1.13),

namely a change of dipole moment Δμi will be induced on the individual dipole

μi under an external field Eext:

Δμi = αiE
ext, (1.84)

where in general αi should be a matrix quantity, i.e., αi = (αiαβ)3×3.

The polarization density of (1.16) can be rewritten to include all the point

dipole moments:

P(r) =
∑
i

μiδ(r− ri), (1.85)

and the total dipole moment M of the polarization density is then given by

M =

∫
V

P(r)dr =
∑
i

μi. (1.86)

Our objective is to relate the dielectric constant ε of (1.26) to the fluctuation

in the total dipole moment M. We could achieve this goal by first finding the

polarization of the system in response to the external field macroscopically with

the classical electrostatics and microscopically with statistical Gibbs averages,

respectively. Then, we combine these two results to yield a relation between the

dielectric constant and the dipole moment fluctuations.

The dipole moment at ri with the zero external field E′ = 0 is μi. Once

an external field E′ is applied, there will be a change in the dipole moment,

μi → μi+Δμi. We will need to calculate the change of all dipole moments Δμi.

The key to this computation is to realize that a change in a given dipole moment

will induce an electric field, which will in turn polarize further the rest of the

dipoles (Stern & Feller, 2003). So, to find all Δμi, a self-consistent approach is

required.
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Using the local (atomic) polarizability matrix αi in (1.84) and considering the

total contribution of polarization field from all other dipoles Δμj , the induced

change in the dipole moment at the location ri will be

Δμi = αi

⎡⎣E′ +
∑
j �=i

T(ri − rj)Δμj

⎤⎦ , (1.87)

i.e.,

Δμiα = αiαβ

⎡⎣E′
β +

∑
j �=i

T βγ(ri − rj)Δμjγ

⎤⎦ ,

and the change in the total dipole moment of the system is

ΔM =
∑
i

Δμi. (1.88)

We rewrite (1.87) as ∑
j

BijαβΔμjβ = E′
α, (1.89)

where

B =

⎡⎢⎢⎢⎣
α−1

1 T(r1 − r2) · · ·
T(r2 − r1) α−1

2 · · ·
...

...
. . .

⎤⎥⎥⎥⎦ , (1.90)

Δμiα =
∑
j

B−1
ijαβE

′
β . (1.91)

Then, the induced polarization density should increase by the amount

(ΔP)α = (P′ −P)α =
∑
i

Δμiαδ(r− ri) =
∑
ij

B−1
ijαβδ(r− ri)E

′
β . (1.92)

Let us define a local polarizability of the whole system as

a(r) =
∑
ij

B−1
ij δ(r− rj), (1.93)

and the total system polarizability as

A =

∫
V

a(r)dr =
∑
ij

B−1
ij . (1.94)

Thus, the change in the total dipole moment ΔM from (1.92) is simply

ΔM = AE′, (1.95)

where

ΔM =

∫
V

ΔP dr. (1.96)
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1.4.1 Statistical methods for polarization density change ΔP

The statistical mechanics theory of dielectric constant introduced by Kirkwood

(1939) and Fröhlich (1958) is based on a linear response of the molecule’s dipole

moments to an external field. In this statistical theory, the average polarization

density at a thermal equilibrium of temperature T is defined through the Gibbs

average (refer to Section 12.1.3 for discussion on the Gibbs ensemble averages)

as follows:

〈P(r)〉 =

∫
P(r)e−H/kBTdNΓ∫

e−H/kBTdNΓ

, (1.97)

where dNΓ = dr1 . . . drNdμ1 . . . dμN , T is the temperature, andH, the Hamilto-

nian of the N -molecular system in the absence of any external field, is

given by

H =
1

2

∑
i

m
( .
ri
)2

+
∑
i<j

U(ri − rj), (1.98)

where m is the mass of the molecule and U(ri−rj) is the binary molecular force

potential, which could include bond (valance, angle, and torque) and non-bond

(electrostatic and van der Waals) forces (Leach, 2001).

Let E′ be a uniform external field. In the linear response theory, the polariza-

tion of the dipoles under the external field is assumed to be

P ′
α(r) = Pα(r) + aαβ(r)E

′
β , (1.99)

while the Hamiltonian of the polarized system is changed from H to

H ′ = H −M ·E′ − 1

2
ΔM ·E′, (1.100)

where M is the zero-field total dipole moment, and the third term is the self-

energy (Fröhlich, 1958, p. 169) due to the induced dipole moment change ΔM

which is given in (1.95). Therefore, we have

H ′ = H −MαE
′
α −

1

2
E′

αAαβE
′
β . (1.101)

Similar to (1.97), we calculate the Gibbs average of the polarization density

P′ under the external field E′ by

〈P ′
α(r)〉E′ =

∫
[Pα(r) + aαβ(r)E

′
β ]e

−H′/kBTdNΓ∫
e−H′/kBTdNΓ

≡ F

G
, (1.102)

where H ′ is given in (1.101).
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For small E′ 
 1, by a Taylor expansion

〈P ′
α(r)〉E′ ≈ 〈Pα(r)〉+

∂

∂E′
β

〈P ′
α(r)〉

∣∣∣∣∣
E′=0

E′
β , (1.103)

and

∂ 〈P ′
α(r)〉E′

∂E′
β

=
F ′G− FG′

G2
, (1.104)

we have

F ′ =
∂F (E′)

∂E′
β

∣∣∣∣∣
E′=0

=

∫
aαβe

−H/kBTdNΓ

− 1

kBT

∫
Pαe

−H/kBT · (−Mβ −AαβE
′
β)d

NΓ

=

∫
aαβe

−H/kBTdNΓ +
1

kBT

∫
PαMβe

−H/kBTdNΓ, (1.105)

G′ =
1

kBT

∫
Mβe

−H/kBTdNΓ. (1.106)

Therefore, we get

∂ 〈P ′
α(r)〉E′

∂E′
β

∣∣∣∣∣
E′

β=0

= 〈aαβ〉+
1

kBT
[〈PαMβ〉 − 〈Pα〉 〈Mβ〉] . (1.107)

So

〈P ′
α(r)〉E′ ≈ 〈Pα(r)〉

+

{
1

kBT
[〈PαMβ〉 − 〈Pα〉 〈Mβ〉] + 〈aαβ〉

}
E′

β , (1.108)

which yields a local polarization formula in terms of the dipole moment averages,

ΔPα = hαβ(r)E
′
β , (1.109)

where

hαβ(r) =
1

kBT
[〈PαMβ〉 − 〈Pα〉 〈Mβ〉] + 〈aαβ(r)〉 .

To obtain a relation for the total polarization of the system, we integrate

(1.109) over the whole system sample V to arrive at

ΔMα = HαβE
′
β , (1.110)

where

Hαβ =

∫
V

hαβ(r)dr =
1

kBT
[〈MαMβ〉 − 〈Mα〉 〈Mβ〉+ 〈Aαβ〉] . (1.111)
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1.4.2 Classical electrostatics for polarization density change ΔP

In the classical linear theory of polarization, the Maxwell field is defined in

(1.47) as the superposition of the external field and the polarization field Epol(r),

namely

E(r) = Eext(r) +Epol(r), (1.112)

where Eext(r) is the external field and Epol(r) is the polarization field produced

by the polarization density P(r) in (1.39),

Epol(r) = −∇Φ(r), (1.113)

with

Φ(r) =
1

4πε0

∫
V

P(r′) · (r− r′)

|r− r′|3 dr′. (1.114)

Equivalently, from (1.43), we have the singular integral representation for the

polarization field

Epol(r) = p.v.

∫
V

T(r− r′)P(r′)dr′ − 1

3ε0
P(r). (1.115)

Therefore, (1.112) becomes

E(r) = Eext(r) + p.v.

∫
V

T(r− r′)P(r′)dr′ − 1

3ε0
P(r), (1.116)

which can be simplified by using (1.15) to

1

λ
P(r) = Eext(r) + p.v.

∫
V

T(r− r′)P(r′)dr′, (1.117)

where
1

λ
=

1

ε0

(
1

χ
+

1

3

)
.

To obtain P(r), we need to solve the above integral equation, which is in fact

a continuous analog of (1.87). There are different ways to solve this integral

equation depending on how system V is arranged (whether confinement by a

vacuum (Fröhlich, 1958) and the surrounding dielectrics (Neumann, 1983), or

the geometry of the system, for example layered or spherical (Stern & Feller,

2003; Ballenegger & Hansen, 2005)). Let us assume a periodic system with a

truncated dipole interaction. We can then use Fourier series to solve the integral

equation (1.116) (Neumann, 1983) when the Fourier series of P(r) is defined as

P̂(k) =
1

|V |

∫
V

P(r)e−ik·r dr. (1.118)

Then, as δ → 0, (1.117) in the Fourier space becomes

P̂(k) = λ
[
Êext(k) + T̂δ(k)P̂(k)

]
. (1.119)
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Setting k = 0, we get

P̂(0) = λÊext(0). (1.120)

Due to anti-symmetry, we can show T̂δ(0) = 0 (Neumann, 1983), and

Êext(0) =
1

|V |

∫
V

Eext(r)dr = Eext, for a constant field. (1.121)

Now, varying the external field by an increment E′,

Eext → Eext +E′,

we have

P→ P+ΔP.

The variation of (1.120) yields

ΔP̂(0) = λÊ′(0). (1.122)

However, by definition,

ΔP̂(0) =
1

|V |

∫
V

ΔP dr =
1

|V |ΔM. (1.123)

Therefore, (1.122) gives for a constant external field E′

ΔM = λ|V |E′. (1.124)

Assuming a z-directed uniform external field

E′ = (0, 0, E′
z),

we have

ΔMz = λ|V |E′
z. (1.125)

1.4.3 Fluctuation formulae for dielectric constant ε

Assuming a z-directed uniform external field and forming the ratio between

(1.110) and (1.125), we have

λ =
Hzz

|V | , (1.126)

namely

3(εr − 1)ε0
εr + 2

=
Hzz

|V | , (1.127)

where, assuming the zero average of the total polarization, i.e., 〈Aαβ〉 = 0,

Hzz =
1

kBT

[
〈MzMz〉 − 〈Mz〉2

]
. (1.128)
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For a general external field

〈Mz〉 =
1

3
〈M〉 ,

〈
M2

z

〉
=

1

3

〈
M2

〉
, (1.129)

we have the Clausius–Mossotti type fluctuation formula (Neumann, 1983; Stern

& Feller, 2003) for the dielectric constant:

3(εr − 1)

εr + 2
=

1

3ε0|V |kBT
[〈
M2

〉
− 〈M〉2

]
. (1.130)

The Gibbs-averaged quantities 〈 〉 in (1.130) can be obtained by molecular

dynamics simulation of the system in various ensembles (constant temperature

in this case) (Frenkel & Smit, 2001).

To close the discussion on fluctuation formulae, it should be mentioned that

the formula (1.130) is for a periodic system and other fluctuation formulae for

different configurations are derived for planar layers (Ballenegger & Hansen,

2005) and liquids encapsulated in spherical cavities (Berendsen, 1972; Adams &

McDonald, 1976; Powles, Fowler, & Evans, 1984).

Formulae for the dielectric constants of liquids encapsulated in spherical cavi-

ties have been derived previously (Berendsen, 1972; Adams & McDonald, 1976;

Powles, Fowler, & Evans, 1984; Ballenegger & Hansen, 2005). In the model de-

vised by Berendsen (1972), a central sphere of radius Rc with a permittivity εr
is enclosed in a spherical layer of thickness τ with permittivity ε′, and then the

larger spherical region of radius Rc + τ is embedded in a dielectric continuum

with permittivity εext. This model generalizes the cavity model to cases where a

transitional dielectric layer may exist. The simple cavity model is recovered by

setting ε′ to either εr or εext. The dielectric constant in this model for 〈M〉 = 0

is given by

εr =

1 +
B

A
2ε′

[
(2εext + ε′) +

(
R

Rc + τ

)3

(εext − ε′)

]

1− B

A

[
(2εext + ε′) + 2

(
R

Rc + τ

)3

(εext − ε′)

] , (1.131)

where

A = (2εext + ε′)(2ε′ + 1)− 2

(
R

Rc + τ

)3

(εext − ε′)(1− ε′), (1.132)

B =
1

ε0

〈M2〉
3kBT |V (R)| . (1.133)

Here, B describes the fluctuation of the total dipole moment M(R) of a spherical

sample V with radius R, and |V (R)| is the volume of the sample.
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Equation (1.131) is reduced to a simpler expression in Ballenegger & Hansen

(2005) for the dielectric cavity if ε′ is set to εext:

εr =
1 +B 2εext

2εext+1

1−B 1
2εext+1

. (1.134)

This latter expression can be further reduced to the known Kirkwood–Fröhlich

expression if εext is set to εr (Kirkwood 1939; Fröhlich, 1948, 1958)

(εr − 1)(2εr + 1)

3εr
= B, (1.135)

and to the Clausius–Mossotti type formulae in (1.130) if εext is set to 1.

1.5 Appendices

1.5.1 Appendix A: Average field of a charge in a dielectric sphere

For a source charge q located at r′ ∈ ΩR, the electric field e at a distance r from

r′ is given by

e(r) =
q

4πε0

r

|r|3 . (1.136)

The average of the field over the sphere ΩR is defined as

〈e〉 = 1

|ΩR|

∫
ΩR

e(r) dr =
1

4
3πR

3

∫
ΩR

q

4πε0

r

|r|3 dr = −
∫
ΩR

ρd(−r)
4πε0

−r
| − r|3 .

(1.137)

With the constant ρ = q/
(
4
3
πR3

)
, the term ρ d(−r)

4πε0
−r

|−r|3 can be viewed as the

electric field at r′ due to a charge element ρd(−r). As a result, 〈e〉 is exactly the

electric field at r′ from a uniformly ρ-charged sphere (Griffiths, 1999, p. 156).

Now, using Gauss’s theorem and the symmetry of the field inside a uniformly

charged sphere, we can calculate the amount of charge inside the sphere |r| ≤ r′

and obtain

4πr′
2
ε0e =

∫
|r|=r′

ε0e · n ds = ρ
4

3
πr′

3
. (1.138)

Therefore, we have

e =
1

4πr′2ε0
ρ
4

3
πr′

3
=

q

4πε0R3
r′, (1.139)

which implies that

〈e〉 = − q

4πε0

1

R3
r′. (1.140)
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1.5.2 Appendix B: Electric field due to a uniformly polarized sphere

Assume a constant polarization density P(r) = P = (0, 0, p) inside the sphere

ΩR, namely, in the spherical polar coordinates (ρ, φ, θ),

ρb = −∇ ·P = 0,

σb = P · n = p cos θ, (1.141)

for which the potential Φ(r) can be shown to be

Φ(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∞∑
n=0

Anr
nPn(cos θ), if |r| ≤ R,

∞∑
n=0

Bn

rn+1
Pn(cos θ), if |r| ≥ R.

(1.142)

Note that the potential satisfies the following interface conditions (refer to (5.65)):

Φ(R+, θ)− Φ(R−, θ) = 0,

ε0
∂Φ

∂r
(R+, θ)− ε0

∂Φ

∂r
(R−, θ) = −σb.

We can show that

Φ(r) =

⎧⎪⎨⎪⎩
p

3ε0
r cos θ, if |r| ≤ R,

p

3ε0

R3

r2
cos θ, if |r| ≥ R.

(1.143)

On the other hand, from (1.17) the potential from the polarized sphere is

Φ(r) =
1

4πε0

∫
ΩR

P(r′) · (r− r′)

|r− r′|3 dr′ =
1

4πε0

∫
ΩR

P(r′) · ∇′ 1

|r− r′| dr
′

=
1

4πε0

∫
ΩR

∇′ · P(r′)

|r− r′| dr
′ =

1

4πε0

∫
∂ΩR

P(r′) · n
|r− r′| ds′. (1.144)

The electric field is

Ez = −∂Φ

∂z
= − 1

4πε0

∫
∂ΩR

(z − z′)P(r′) · n
|r− r′|3 ds′.

Consequently, we have

Ez|r=0 = − 1

4πε0

∫ π

0

dθ

∫ 2π

0

dφ
R cos θp cos θ

R3
R2 sin θ = − 1

3ε0
p. (1.145)

Note that

Ex = Ey = 0.

Therefore, finally we have

E = −∇Φ(r) = − 1

4πε0
∇

∫
ΩR

P(r′) · (r− r′)

|r− r′|3 dr′ = − 1

3ε0
P. (1.146)
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1.6 Summary

The simple Clausius–Mossotti and Onsager formulae of dielectric constants in

terms of atomistic/molecular polarizability are based on a continuum environ-

ment for individual atoms/molecules and its reaction field effect on the latter;

however, more detailed molecular-level interactions, such as the van der Waals

force, are not accounted for. On the other hand, the statistical molecular the-

ory allows the incorporation of specific molecular interactions in its formulation;

together with molecular dynamics simulations with appropriate force fields rep-

resenting those interactions, a general way of computing dielectric properties of

materials at thermal equilibrium is made possible.



2 Poisson–Boltzmann electrostatics
and analytical approximations

In this chapter, firstly we introduce the Poisson–Boltzmann (PB) equation, based

on the Debye–Hückel potential of mean force (PMF) approximation for electro-

static interactions for biomolecules in ionic solvent, and then secondly we in-

troduce the concept of electrostatic solvation energy. Several analytical approx-

imation methods for solving electrostatic solvation problems will be discussed.

First, the generalized Born approximation is described for the electrostatic sol-

vation energy using Born radii for atoms embedded in molecules. A fast Fourier

transform (FFT)-based algorithm for calculating the Born radii is given. Then

we present various image approximations to electrostatic reaction fields in the

Poisson and Poisson–Boltzmann electrostatic models in the presence of dielec-

tric or perfectly conducting materials with boundaries such as single or multiple

planes, with spherical and cylindrical geometries.

2.1 Poisson–Boltzmann (PB) model for electrostatic solvation

The electrostatic force is one of the most important forces in ion–ion, ion–

solvent, and solute molecule–solvent interactions (Milner, 1912; Bockris, Reddy,

& Gamboa-Aldeco, 2000) for understanding the structure and stability of bio-

molecules in an aqueous environment. Such interactions are defined as a solvation

process of ions or solutes by solvent molecules such as the formation of the hy-

dration shells around ions by water molecules. The classical electrostatic theory

can be applied to the system comprising the solute macromolecule and the sur-

rounding ionic solvent environment (Honig & Nicholls, 1995; Fogolari, Brigo, &

Molinari, 2002). In this classical continuum approach, the solute is described as a

region with a low dielectric constant εi, typically εi = 1 ∼ 4, and partial charges

qj are assigned to atomic locations rj , leading to an interior charge density

ρ(r) =
N∑
j=1

qjδ(r− rj), (2.1)

where the partial charges qj can be computed using quantum mechanics calcu-

lations (Davis & McCammon, 1990) or molecular mechanics force fields (Leach,

2001), and the atomic locations rj are taken as the nuclear centers of the atoms
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Figure 2.1. Molecular surfaces of carbonic anhydrase-II. (Left) van der Waals surface
and (right) solvent accessible surface (SAS). This image was made with VMD
software. VMD is developed with NIH support by the Theoretical and Computational
Biophysics group at the Beckman Institute, UIUC.

inside the solute. The solute boundary Γ is defined by the molecular surface

(see Fig. 2.1, which was produced using visual molecular dynamics (VMD) soft-

ware (Humphrey, Dalke, & Schulten, 1996)), employing either the van der Waals

(vdW) surface (composed of the sum of overlapping vdW spheres), or the sol-

vent accessible surface (SAS) (generated by rolling a small sphere on the vdW

surface) (Lindskog, 1997). The solvent, occupying the exterior of the solute, is

assigned a higher dielectric constant εo ≈ 80, and, in general, is an ionic liquid

with the mobile ionic charge number density ni(r) for the ions of the type i.

The macroscopic potential Φ(r), due to the embedded charges in the solute

and the mobile ionic charges in the solvent, is then governed by the Poisson

equation

−∇ · ε(r)∇Φ(r) = ρ(r) + ρion(r), (2.2)

where the total ion charge density ρion(r) =
∑

i ezini(r), zi is the charge of

individual i-type ions, and ni(r) is the number density of i-type ions at the

position r. Due to the discontinuities of dielectric constants inside and outside

the solute, two interface conditions on Γ for the continuities of the potential Φ(r)

and the normal displacement flux are required, i.e.,

Φ(r−) = Φ(r+), εi
∂Φ(r−)

∂n
= εo

∂Φ(r+)

∂n
, (2.3)

for r ∈ Γ, where r− and r+ are, respectively, the inner and the outer limits at

the position r, and n is the outward unit normal to the surface of the solute.

2.1.1 Debye–Hückel Poisson–Boltzmann theory

To determine the electrostatic potential Φ(r) by (2.2) and (2.3), we need to

know the i-type ion density distribution ni(r), which will be derived based on the
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Debye–Hückel theory for homogeneous electrolytes of various ions. In the Debye–

Hückel theory of ionic solvent of electrolytes, to compute the electric potential

of an overall neutral system, an ion-cloud model is adopted (Bockris, Reddy, &

Gamboa-Aldeco, 2000). In this model a single ion is selected as the reference

point of the system, called a j-ion (due to the homogeneity of the electrolytes,

which j-ion is selected is not essential), and the rest of the ions in the solvent

will be modeled as a cloud made of continuous charge density distribution. The

resulting potential is denoted as Φj(r), whereas the j-ion is represented by a

spherical cavity of radius a with a total charge at its center ezj (the ions are

considered non-polarizable by other ions or external charges). Despite the fact

that all types of ions are of finite size, in the ion-cloud model (Gouy, 1910) all ions

except the j-ion will be represented by a continuous charge number distribution

nj
i (r) per unit volume, centering around the j-ion. Therefore, Φj(r) satisfies the

following Poisson equation (Hill, 1987):

− ε∇2Φj(r) =

{
ezjδ(r), if r < a,

e
∑
i

zin
j
i (r), if r > a, (2.4)

where nj
i (r) denotes the number concentration per unit volume of the i-type ions

around the selected j-ion. The distribution of the i-type ion around the j-ion is

a function of the distance r only due to the homogeneity of the system, given in

terms of a radial distribution function gij(r):

nj
i (r) = n0

i gij(r), (2.5)

where n0
i is the number density of the i-type ions in the bulk, and gij(r)→ 1 as

r →∞.

The function gij(r) is the radial distribution between two types of ions, where

4πr2gij(r)dr gives the probability of finding an i-type ion in the shell of [r, r+dr]

surrounding the j-ion. Note that gij(r) can be expressed in terms of a Gibbs

average over all other ions and charge configurations, i.e., by a Boltzmann factor

weighted integration over all other ion and charge positions in phase space (Hill,

1987, sect. 17-4), i.e.,

gij(r) = gij(ri, rj) = N(N − 1)

∫
e−U/kBTdΓ′

Z
, (2.6)

where dΓ′ = dr1 . . . drN/dridrj , U(r1, . . . , rN ) is the interaction potential among

all N particles (ions, solvent molecules, etc.), and Z is the normalizing factor

(partition function):

Z =

∫
e−U/kBTdr1 . . . drN . (2.7)

To see the physical meaning of gij(ri, rj), we rewrite (2.6) in the following

form:

gij(ri, rj) = e−w(ri,rj)/kBT = e−wij/kBT . (2.8)
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Then, we have

− wij = kBT ln

∫
e−U/kBT dΓ′ + C, (2.9)

where C is a constant. Differentiating wij with respect to the position of one of

the two particles, say ri, we have

−∇iwij =

∫
e−U/kBT (−∇iU)dΓ′∫

e−U/kBT dΓ′
≡

∫
e−U/kBT fi dΓ

′∫
e−U/kBT dΓ′

≡ 〈fi〉mean , (2.10)

where fi = −∇iU is the force acting on the particle i for any given configuration

of other N − 1 particles. Therefore, −∇iwij gives the mean force 〈fi〉mean on the

particle i from all possible configurations of the other N − 1 particles. In this

sense, wij is called the potential of mean force (PMF).

In the Debye–Hückel theory (Debye & Hückel, 1923), an important assumption

is made that the mean force on the i-type ions is just the electrostatic force,

namely, in terms of the electric potentials, the PMF

wij = eziΦj(r). (2.11)

Therefore, non-electrostatic potentials such as short-range van der Waals poten-

tials are ignored in this theory.

Combining (2.11) and (2.8) into (2.5), we have the distribution of the i-type

ions as follows:

ni(r) = n0
i exp

(
−eziΦj

kBT

)
. (2.12)

Substituting (2.12) into (2.2), we obtain a nonlinear Poisson–Boltzmann (PB)

equation for the electrostatic potential Φ(r) (after dropping the subscript j ) for

the solute–solvent system:

−∇ · ε(r)∇Φ(r) = ρ(r) +
∑
i

ezin
0
i exp

(
−eziΦ

kBT

)
. (2.13)

In the Debye–Hückel theory of electrolytes, a linearization of (2.13) is made

(Hill, 1987, p. 325) to give

−∇ · ε(r)∇Φ(r) = ρ(r) +
∑
i

ezin
0
i

(
1− eziΦ

kBT

)
, (2.14)

provided that

eziΦ

kBT

 1. (2.15)
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Equation (2.14) can be further simplified due to the neutrality of the solution∑
i ezin

0
i = 0 to

∇2Φ(r)− κ2Φ(r) = −1

ε
ρ(r), (2.16)

where the Debye–Hückel inverse length κ is given by

κ2 =
e

εkBT

∑
i

en0
i z

2
i =

2e

εkBT
I, (2.17)

and the ionic strength I is defined as

I =
1

2

∑
i

en0
i z

2
i . (2.18)

Although in some biological systems the assumption of small Φ in (2.15) is

not justified, the linearized Poisson–Boltzmann equation has been widely used

in biomolecular applications. Various work has been carried out on its mathe-

matical analysis (Li, 2009), numerical solutions (Lu et al., 2008), and dynamic

simulations (Feig & Brooks, 2004).

To simplify the notation in the rest part of this chapter, we will write the

Poisson equation in the solute and the PB equation in the ionic solvent in a

unified form as follows:

−∇ · ε(r)∇Φ(r) + λ2Φ(r) = ρ, r ∈ Ωi or r ∈ Ωo, (2.19)

where the dielectric constant and the ionic density are assumed to be constants

inside Ωi and Ωo:

ε(r) =

{
εi, if r ∈ Ωi,

εo, if r ∈ Ωo,
λ2 =

{
εiκ

2
i , if r ∈ Ωi,

εoκ
2
o, if r ∈ Ωo.

(2.20)

Here κi = 0 as the solute interior is modeled by the Poisson equation. The

potential Φ(r) satisfies the interface condition (2.3) and a decaying condition at

infinity, namely

lim
r→∞

Φ(r) = 0. (2.21)

2.1.2 Helmholtz double layer and ion size effect

In the derivation of the Debye–Hückel theory, which leads to the PB model of

electrostatic solvation of biomolecules, we have ignored the finite size of various

i-types of ions and also ion correlations beyond those associated with the for-

mation of ion clouds around an opposite j-type ion in (2.4). It has been found

(Borukhov, Andelman, & Orland, 1997) that the PB model overestimates the

ion density near charged surfaces such as DNA and amino acids. Near a charged

surface, ions of opposite signs will be attracted to the surface, whereas ions

of the same sign will be repelled to form a so-called Helmholtz double layer,

first studied by Helmholtz (1853). The width of the Helmholtz layer is about
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Figure 2.2. The Stern model indicating the Helmholtz double layer: inner Helmholtz
plane; outer Helmholtz plane.

the same as the radius of the attracted ions, possibly including the hydration

shells of water. Later, it was found that some of the dehydrated ions (usually

of the same sign as the charges on the surface) or polar water molecules could

be adsorbed to the charged surface due to the van der Waals force to form

another layer, which is defined as the inner Helmholtz plane (IHP), the former

being known as the outer Helmholtz plane (OHP) (Hamann, Hamnett, & Viel-

stich, 2007). The Helmholtz double layer of two oppositely charged planes (the

charged surface and the OHP) defines a potential drop from the charged sur-

face to the OHP. In this model of electrostatic potential, the thermal motion of

the ions is not considered, contrary to Gouy and Chapman (Gouy, 1910; Chap-

man, 1913), who introduced a diffused “double layer” due to the thermal motion

of the ions. In their diffused layer, the ions obey the Boltzmann distribution,

resulting in excess ions of opposite signs near the charged surface and reduced

ions of the same sign. However, the Helmholtz double layer is ignored in their

model. Later, Stern (1924) proposed combining the Helmholtz double layer and

the Gouy and Chapman diffused double layer, the latter starting from the OHP.

In practice, due to the long-range correlations and finite-size effects of the ions,

the structure of ionic solutions near a charged surface is more complex (such as

non-monotonic charge profile and layering) than is predicted by the PB theory

(Boda et al., 2002; Henderson & Boda, 2009).

Figure 2.2 shows the overall picture of the Stern model for a simple pla-

nar surface with negative charges (Hamann, Hamnett, & Vielstich, 2007). A

consequence of the Stern model is that the OHP depends on the type and

the amount of ions or water molecules adsorbed on the charged surface. Let

the OHP be at x = d (where d is the width of the IHP plus a/2, with a

being the diameter of hydrolated ions of positive sign). Then the potential
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will satisfy a 1-D PB equation, and the ion distribution has the following form

based on (2.12):

ni(x) = n0
i exp

(
−zie[φ(x)− φ∞]

kBT

)
, (2.22)

where the potential φ∞ at infinity is introduced to reflect the fact that when

x → ∞, ni(x) → n0
i . Also, the linearized version of the 1-D PB equation takes

the form

d2

dx2
φ(x)− κ2 [φ(x)− φ∞] = 0, (2.23)

whose solution is given by

φ(x)− φ∞ = (φOHP − φ∞) e−κ(x−d). (2.24)

We can calculate the double layer width ldouble-layer by considering the potential

drop from the OHP by a factor of e−1, i.e., φ(x)−φ∞ = (φOHP − φ∞) e−1, giving

ldouble-layer = d+ κ−1. (2.25)

The existence and the size of the double layer demonstrate the need to include

the ion size in a theory for ionic solvents, especially in the presence of a charged

surface associated with biomolecules. It is clear that the packing density of the

ions near the charged surface within the Helmholtz layer will generate a satura-

tion limit for the ion density near the charged surface, while, on the contrary,

the PB model is known to produce unbounded ion density as the surface charge

increases. To remedy this overestimation of the ion density, attempts are made

to introduce the ion-size effect into electrolyte theory within the easy-to-use PB

framework. For this purpose, Borukhov introduced a mean field free energy for

the electrolyte, which explicitly includes the ion size, and a modified PB model is

derived from its Euler–Lagrange equations, presented below based on Borukhov,

Andelman, & Orland (1997) and Lu & Zhou (2011).

Let us consider the free energy of a 1 : z asymmetric electrolyte of two ion

species. Both ion species and the solvent molecules have the same size, a3.

The grand canonical Gibbs free energy functional for the electrolyte can be ex-

pressed in terms of the electric potential Φ(r) and ion concentrations n−(r) and

n+(r) as

F = U − TS − V, (2.26)

where the electrostatic energy is defined as

U =

∫ (
− ε

2
|∇Φ|2 + en+Φ− zen−Φ

)
dr, (2.27)

the entropy in terms of the ion concentrations and solvent density is given by

−TS =
kBT

a3

∫
[n+a

3 ln(n+a
3) + n−a

3 ln(n−a
3)

+ (1− n+a
3 − n−a

3) ln(1− n+a
3 − n−a

3)]dr, (2.28)
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and the chemical potential is defined as

V =

∫
(μ+n+ + μ−n−) dr, (2.29)

respectively.

The entropy function contains the solvent density (1/a3)(1 − n+a
3− n−a

3)

ln(1− n+a
3 − n−a

3) to include the steric effect of the ion exclusion volume by

requiring the density to remain positive.

The extreme conditions at equilibrium,

δF

δn+
= 0,

δF

δn−
= 0, (2.30)

imply that

eΦ− μ+ +
kBT

a3
[
a3 ln(n+a

3)− a3 ln(1− n+a
3 − n−a

3)
]
= 0, (2.31)

−zeΦ− μ− +
kBT

a3
[
a3 ln(n−a

3)− a3 ln(1− n+a
3 − n−a

3)
]
= 0. (2.32)

Subtracting (2.32) from (2.31) gives

n+ = n−e
β(μ+−μ−)−β(1+z)eΦ, (2.33)

where β = 1/ (kBT ) .

In the region away from the molecules where Φ is small, the ion density will

approach its bulk density n0
+ and n0

− and the neutrality implies that n0
+ = zn0

− ≡
zn0. Therefore, (2.33) with Φ = 0 implies that

eβ(μ+−μ−) = z, (2.34)

and

n+ = zn−e
−β(1+z)eΦ. (2.35)

Rewrite (2.31) as

n+a
3

1− n+a3 − n−a3
= eβ(μ+−eΦ), (2.36)

and use (2.35) to eliminate n+ in (2.32), which can be then rewritten as

n−a
3

1− zn−e−β(1+z)eΦa3 − n−a3
= eβ(μ−+zeΦ) =

1

e−βμ−e−zβeΦ
. (2.37)

Solving n− in (2.37) we have

n− =
1

a3
1

1 + e−βμ−e−zβeΦ + ze−β(1+z)eΦ
. (2.38)

Meanwhile, note that n− → n0 as Φ→ 0. From (2.38), we obtain

e−βμ− =
1− v0
a3n0

, (2.39)

where v0 is the ion volume fraction: v0 = za3n0.
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Plugging (2.39) into (2.38), we have

n− =
n0eβzeΦ

1− v0 + v0(eβzeΦ + ze−βeΦ)/(1 + z)
, (2.40)

and with (2.33)

n+ =
zn0e−βeΦ

1− v0 + v0(eβzeΦ + ze−βeΦ)/(1 + z)
. (2.41)

Finally, we have an ion-size modified Poisson–Boltzmann equation from (2.2):

∇2Φ =
zen0

ε

ezβeΦ − e−βeΦ

1− v0 + v0(eβzeΦ + ze−βeΦ)/(1 + z)
. (2.42)

Other modified PB theories for ions with different sizes can be found in Chu

et al. (2007), Eisenberg, Hyon, & Liu (2010), and Lu & Zhou (2011).

2.1.3 Electrostatic solvation energy

The potential energy of a solute–solvent system comes from short-range forces

such as van der Waals forces and long-range electrostatic forces. The solvation

of a solute inside a solvent involves the competition between these forces. The

free energy required during the solvation, denoted as ΔGsol, corresponds to the

energy associated with the transfer of a solute molecule from a vacuum to a

solvent environment (the symbol Δ indicates that only potential energy change

is relevant as a reference value for potential energy is always implicitly implied).

The solvation energy is most conveniently decomposed into two components,

ΔGpol and ΔGnp, which are referred to as the polar and non-polar solvation

energy, respectively (Roux, 2001). The non-polar part is associated with the

step of an insertion process into the solvent, where an empty space is created

to form a cavity to accommodate the solute atoms whose charges are nullified

at this step. The polar solvation energy ΔGpol results from the electrostatic

interaction in the form of solvent polarization and redistribution of the mobile

ion charges (Hill, 1987).

The solvation energy was computed by Born (1920) for an ion of charge q,

modeled as a spherical cavity of radius a containing both the bare ion and the

first water molecules around the ion (the so-called solvation shell), which is sur-

rounded by a dielectric continuum solvent of dielectric constant εo. The solvation

energy can be obtained by introducing a coupling parameter λ between the ion

and the solvent, where λ = 0 indicates no electrostatic coupling and λ = 1

restores the full Coulombic coupling, respectively. The electrostatic potential

energy U (el)(λ) of the ion and the solvent outside the cavity is given by the reac-

tion field Φrf (0, λ), where λ indicates the λ-reduction of the Coulomb potential

(Hill, 1987, eq. (18.20)):

U (el)(λ) = qΦrf(0, λ) = qλΦrf(0, 1) =
1

4π

q2

a
λ

(
1

εo
− 1

εi

)
, (2.43)
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where Φrf(0, 1) is given by (2.115). Here U (el)(λ)dλ equals the work needed for

the increase of the coupling parameter by dλ. As usual, the infinite self-energy

created by the ion’s Coulomb field at the ion itself is ignored. Therefore, the

total work required to effect the complete coupling of the ion to the solvent can

be additively computed as

W =

∫ 1

0

λqΦrf(0, 1)dλ. (2.44)

Substituting (2.43) into (2.44), we obtain the well-known Born formula for the

electrostatic solvation energy:

ΔGBorn
pol =

1

4π

1

2

q2

a

(
1

εo
− 1

εi

)
. (2.45)

As seen in (2.44), the effect of the coupling parameter λ can be viewed equiv-

alently as a scaling factor of the ion charge. Therefore, this coupling process can

also be considered as a charging process, first proposed by Onsager (1933) and

Kirkwood (1935), where λ = 0 is the uncharged state and λ = 1 is the fully

charged state. The work in (2.44) can now be identified as the charging energy.

Thus, for a general solute molecule, we can treat the electrostatic free energy

ΔGpol as the work needed to charge the solute atomic charge from zero to its

full charge value in the ionic solvent environment (Sharp & Honig, 1990; Zhou,

1994; Fogolari, Brigo, & Molinari, 2002):

ΔGpol = Wch, (2.46)

where the charging energy Wch is defined similarly as in (2.44):

ΔGpol = Wch ≡
∫ 1

0

dλ

∫
drρ(r)Φrf(r, λ). (2.47)

In order to find the reaction field Φrf, (2.13) will be solved twice and the dielec-

tric constant ε(r) is described with a two-constant model, i.e., ε(r) = εi inside the

solute and ε(r) = εext for the exterior of the solute. Firstly, (2.13) is solved with

εext = εo to produce a potential Φ(r) in the solvent environment; secondly, it is

solved with εext = εi to produce a potential in a reference environment (Bashford

& Case, 2000), denoted as Φref(r). The difference of these two potentials then

gives the reaction field Φrf = Φ−Φref. For the linearized PB electrostatic model,

Φrf(r, λ) = λΦrf(r), and the electrostatic free energy ΔGpol is given by

ΔGpol =
1

2

∫
R3

Φrf(r)ρ(r)dr, (2.48)

which is the electrostatic energy needed to transfer the solute from the reference

environment to the solvent dielectric (Sharp & Honig, 1990; Zhou, 1994; Bashford

& Case, 2000; Sigalov, Scheffel, & Onufriev, 2005).

The exact solution of the reaction field Φrf(r) from the PB equation (2.13)

is unknown due to the nonlinearity of the equation and the complex geometric
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shape of the solute biomolecule. Approximate solutions are given later in

this chapter.

From a different point of view, the electrostatic free energy of the system

can be defined using an energy density in a variational principle for an energy

functional Wed for the nonlinear PB electrostatic model for the solute–solvent

system (Sharp & Honig, 1990):

Wed =

∫
dr

[
ρ(r)Φ(r)−

∫ Φ(r)

0

S(φ)dφ− ε(r)

2
|∇Φ(r)|2

]
, (2.49)

where

S(φ) = −
∑
i

qin
0
i exp

(
− qiφ

kBT

)
.

By using Gauss’s law, Wed can be shown (Zhou, 1994) to be equivalent to

Wed =

∫
dr

[
1

2
ρ(r)Φ(r) +

1

2
S(Φ(r))Φ(r)−

∫ Φ(r)

0

S(φ)dφ

]
, (2.50)

which, for the linearized PB equation (2.16) where S becomes a linear function,

can be further simplified to

Wed =
1

2

∫
drρ(r)Φ(r). (2.51)

This result is consistent with (2.47) for the linearized PB model except for the

included additional self-energy term from the Coulomb potential generated by

the density ρ(r) in the reference environment, usually taken to be the vacuum.

2.2 Generalized Born (GB) approximations of solvation energy

Using (2.48) to find the solvation energy is not a trivial task as finding the reac-

tion field involves large costs in solving the PB equations in 3-D spatial regions

with complex solute molecular shapes. In Chapter 3, several numerical methods

will be discussed. Meanwhile, in this section we present an analytical method, a

generalized Born (GB) approximation method, to find the solvation energy with-

out solving the reaction potential explicitly. The GB theory (Still et al., 1990)

generalizes the Born formula (2.45) by extending the concept of the ion radius

to any atom embedded inside a solute. The resulting Born radius for an atom in

some sense measures how deeply the atom is buried inside the molecule. Here,

we present a brief overview of the methodology of the GB methods. Interested

readers may refer to the works of Bashford and Case (2000), Feig and Brooks

(2004), Onufriev, Ralph, & David (2008), and Onufriev (2010) for more system-

atic reviews and discussions.
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2.2.1 Still’s generalized Born formulism

Still et al. (1990) proposed the GB method to approximate the solvation free

energy by an analytical pairwise sum over the atoms in the molecule:

ΔGpol =
1

4π

1

2

(
1

εo
− 1

εi

)∑
i,j

qiqj
fij

, (2.52)

and

fij =

√√√√r2ij +RiRj exp

(
−

gr2ij
RiRj

)
, (2.53)

where g is a positive constant and Ri is the so-called effective Born radius of

atom i, defined through its self-energy ΔGi
pol using the Born solvation energy

formula (2.45):

Ri =
1

2

(
1

εo
− 1

εi

)
1

4π

q2i
ΔGi

pol

. (2.54)

The self-energy ΔGi
pol of atom i in (2.54) can be computed directly from solving

the Poisson equation by setting atomic charges of all atoms to zero except that

of atom i itself (Onufriev, Case, & Bashford, 2002), namely the work needed

to charge only atom i in the presence of the solvent following the argument of

(2.44). In practice, the self-energy ΔGi
pol will be approximated.

Equation (2.52) is an interpolation between two extreme cases, for which (2.52)

is exact, of the inter-particle distance: the Born limit (2.45) (Born, 1920) at small

distances (rij = 0) and the Coulomb limit at large distances. The ionic effects can

be incorporated by substituting e−κrij/εo for 1/εo in the formulation, which also

satisfies the limit conditions at the Debye–Hückel level (Srinivasan et al., 1999).

Here, κ is the inverse Debye–Hückel screening parameter in the linearized PB

equation (2.16)–(2.17). The inverse of the parameter g in (2.53) can be a value

from 0.1 to 0.5; most commonly 0.25 is used due to historical reasons (Still

et al., 1990). The zero limit of g = 0 was suggested by Grycuk (2003), resulting

in a simpler function, fij =
√

r2ij +RiRj . Other variations of Still’s pairwise

formula (2.53) were also used, such as fij = rij + 0.5(Ri +Rj) exp[−2rij/(Ri +

Rj)], which also has a better performance than the original one for the spherical

case (Lee, Salsbury, & Olson, 2004).

2.2.2 Integral expression for Born radii

In the GB models, a Coulomb field approximation (CFA) (Bashford & Case,

2000) was used. The basic assumption of the CFA is that the electric displace-

ment flux D due to charge i at r = 0 remains in Coulombic form, i.e.,

Di ≈
1

4π

qir

r3
, (2.55)
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even for dielectrics outside the solute molecule varying from εi to εo during the

solvation process. Thus, the work of assembling the charge i at its location within

the molecule is

Wi =
1

2

∫
R3

(E ·D)dr ≈ 1

(4π)
2

1

2

∫
R3

q2i
ε(r)r4

dr, (2.56)

where the origin is set at the charge location, and a linear response D = ε(r)E

is used to define the relation of the electric field E and the displacement D. The

formula for the work in (2.56) using the electric field E and the displacement

vector D is equivalent to the electrostatic solvation energy (2.48) after excluding

the infinite self-energy terms associated with point charges (Jackson, 2001, sect.

4.7). The electrostatic free energy of solvation is then obtained by taking the

difference of the work done Wi between the solvent environment εext = εo and

the reference environment εext = εi of the exterior domain of the molecule:

ΔGi
pol =

1

(4π)
2

(
1

2

∫
R3

q2i
ε(r)r4

dr − 1

2

∫
R3

q2i
εir4

dr

)
=

1

(4π)
2

q2i
2

(
1

εo
− 1

εi

)∫
Ωo

1

r4
dr. (2.57)

Comparing (2.57) with the Born solvation energy form (2.45), we can define a

generalized Born radius Ri as

1

Ri
=

1

4π

∫
Ωo

1

r4
dr. (2.58)

In the following we introduce a method to calculate the generalized Born radius

where the singularity of the kernel around the atom site in (2.58) is replaced by

a smoother function. We rewrite (2.58) in the following form:

1

Ri
=

1

4π

∫
R3

G(r− ri)dr−
1

4π

∫
Ωi

G(r− ri)dr, (2.59)

where we assume that the atomic excluded sphere Si, embedded inside the

molecule, has a common radius ai = a for every atom i. Note that G is a

smoothed version of the function 1/r4 inside the excluded sphere Si, i.e.,

G(r) =

{
Wn

a (r), if r ≤ a,

1/r4, if r > a,
(2.60)

where the smoother Wn
a (r) produces an nth-order continuity of G(r) at r = a.

For example,

W 1
a (r) = −

2

a6
r2 +

3

a4
, (2.61)

W 2
a (r) =

3

a8
r4 − 8

a6
r2 +

6

a4
, (2.62)

W 3
a (r) = −

4

a10
r6 +

15

a8
r4 − 20

a6
r2 +

10

a4
. (2.63)

Note that a larger n will lead to a faster decay in the spectrum of G(r) in the

Fourier frequency domain, and such a fast decay makes an efficient method for
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calculating the Born radius with the FFT possible. The first integration on the

right-hand side of (2.59) can be calculated analytically as

1

4π

∫
R3

G(r− ri)dr =
1

4π

∫
R3\Si

1

|r− ri|4
dr+

1

4π

∫
Si

G(r− ri)dr. (2.64)

In (2.64), the first integral on the right-hand side equals to 1/a while the second

term is the integral of the smoother Wn
a (r) inside Si and equals 1

4π

∫
Si

Wn
a (r)dr

= 3/(5a), 29/(35a), and 65/(63a) when n = 1, 2, and 3, respectively.

The radius a can be chosen arbitrarily, and if it is taken as an atomic radius,

for instance the van der Waals radius, the sphere Si is completely inside Ωi.

On the other hand, if the sphere Si is not completely inside Ωi, (2.59) can be

rewritten as

1

Ri
=

1

4π

∫
R3

G(r − ri)dr −
1

4π

∫
Ωi

G(r− ri)dr

+
1

4π

∫
Ai

[
1

|r− ri|4
−G(r− ri)

]
dr, (2.65)

in which Ai is the portion of Si outside Ωi. Since the center of Si is inside

Ωi, the integral over the region Ai is not singular, and it can be calculated by

a numerical quadrature or by an approximate analytical formula (Cai, Xu, &

Baumketner, 2008).

2.2.3 FFT-based algorithm for the Born radii

The FFT can be used for the evaluation of the second integral on the right-hand

side of (2.59) or (2.65), which takes on the form

Φ(r) =

∫
Ωi

G(r− r′)dr′. (2.66)

Once Φ(r) is calculated on grid lattice points, the value Φ(ri) corresponding to

the ith off-grid lattice atom can be obtained by a simple interpolation from the

nearby data on the lattice sites surrounding the atom. In order to use the FFT,

we define an indicator function for the molecular volume domain Ωi as follows:

f(r) =

{
1, if r ∈ Ωi,

0, if r /∈ Ωi.
(2.67)

Then, the integral in (2.66) can be extended to the full space as

Φ(r) =

∫
R3

G(r− r′)f(r′)dr′ = G ∗ f(r), (2.68)

which is a convolution suitable for evaluation using the Fourier transform

f̂(ξ) =
1

(2π)3/2

∫
R3

f(r)e−ir·ξ dr

and the discrete fast Fourier transform.



40 PB electrostatics and analytical approximations

The FFT-based method will give Φ(rijk) on the grid lattice sites rijk =

(xi, yj , zk), 0 ≤ i, j, k ≤ N , at a cost of O(N3 logN). Then, Φ(rα) for the αth

off-grid lattice site atom can be obtained by an interpolation from Φ(rijk) at a

cost of O(M), for instance with a linear interpolation for M atom sites. Here, N

is independent of M and only depends on the shape of the molecule Ωi, i.e., the

lattice should be fine enough to resolve the boundary of the molecule within a

prescribed accuracy. Therefore, the total complexity of the FFT-based method

is O(N3 logN +M).

Using the FFT to compute (2.68) with the smoother kernel G

The FFT algorithm has an O(N logN) complexity of evaluating the following two

transforms between data {f(xj) : −N/2 ≤ j ≤ N/2 − 1} and discrete Fourier

coefficients {f̂k : −N/2 ≤ k ≤ N/2− 1}:

f(xj) =

N/2−1∑
k=−N/2

f̂ke
ikxj , for xj = j

2π

N
, − N

2
≤ j ≤ N

2
− 1, (2.69)

f̂k =
1

N

N/2−1∑
j=−N/2

f(xj)e
−ikxj ,

N

2
≤ k ≤ N

2
− 1. (2.70)

To illustrate the idea of using the FFT for (2.66), let us consider the 1-D

analog of (2.66) for the evaluation of

Φ(x) =

∫ b

−b

G(x− x′)dx′, (2.71)

for x ∈ V = (−b, b) and

G(x− x′) =

{
Wn

a (|x− x′|), if |x− x′| ≤ a,
1

|x−x′|4 , if |x− x′| > a.

If f(x) is the indicator function for the domain V as defined in (2.67), then the

1-D convolution corresponding to (2.68) is given by

Φ(x) =

∫ ∞

−∞
G(x− x′)f(x′)dx′ = G ∗ f(x). (2.72)

Applying the Fourier transform, we have

Φ̂(ξ) = Ĝ(ξ)f̂(ξ), (2.73)

with

Ĝ(ξ) = F{G(x)} = 1√
2π

∫ ∞

−∞
G(x)e−iξx dx, (2.74)

f̂(ξ) = F{f(x)} = 1√
2π

∫ ∞

−∞
f(x)e−iξx dx, (2.75)
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and using the inverse Fourier transform we have

Φ(x) = F−1
{
Ĝ(ξ)f̂(ξ)

}
=

1√
2π

∫ ∞

−∞
Ĝ(ξ)f̂(ξ)e+iξx dξ. (2.76)

Due to the fact that f(x) is discontinuous at x = ±b andG(x) is Cn-continuous

at x = ±a with the smoother Wn
a , the decay conditions of f̂(ξ) and Ĝ(ξ) are

f̂(ξ) = O

(
1

ξ

)
, |ξ| → +∞, (2.77)

Ĝ(ξ) = O

(
1

ξn+1

)
, |ξ| → +∞. (2.78)

Let ε be an error tolerance of the whole algorithm, against which we truncate

the integral over ξ ∈ (−∞,+∞), i.e.,

Φ(x) =
1√
2π

∫ ∞

−∞
eiξxf̂(ξ)Ĝ(ξ)dξ ≈ 1√

2π

∫ Ωπ

−Ωπ

eiξxf̂(ξ)Ĝ(ξ)dξ, (2.79)

with the truncation parameter Ω defined as follows based on the decay conditions

(2.77) and (2.78):

1

(πΩ)n+1
= ε. (2.80)

An N -point rectangular quadrature rule for the integral in (2.79) yields

Φ(x) ≈
√
2πΩ

N

N/2−1∑
k=−N/2

eiξkxf̂(ξk)Ĝ(ξk), (2.81)

where ξk = k(2πΩ/N) and N will be selected based on the Shannon sampling

rate of T = π/L (Shannon & Weaver, 1963; Daubechies, 1992) for a plane wave

eiξL of wave number L in the ξ variable:

N =
2πΩ

T
= 2ΩL. (2.82)

In principle, the selection of N should also depend on the oscillatory behavior

of the spectral functions f̂(ξ) and Ĝ(ξ). In the case that a larger N is needed to

resolve the oscillations in f̂(ξ) and Ĝ(ξ), we can achieve that by increasing the

size of L.

Calculation of Φ(xj), xj = j(2L/N) ∈ [−L,L], −N/2 ≤ j ≤ N/2− 1

Next, we calculate the value of Φ(xj) at N points inside the interval [−L,L].
Again, the size of N will be based on the Shannon sampling rate T = 1/Ω for

function e±iΩπx in the x variable, which gives

N =
2L

T
= 2ΩL. (2.83)

Let

xj = j
2L

N
∈ [−L,L], − N

2
≤ j ≤ N

2
− 1. (2.84)
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Then

Φ(xj) ≈
√
2πΩ

N

N/2−1∑
k=−N/2

f̂(ξk)Ĝ(ξk)e
ik 2πΩ

N j 2L
N =

√
2πΩ

N

N/2−1∑
k=−N/2

f̂(ξk)Ĝ(ξk)e
ikj 2π

N ,

(2.85)

which can be evaluated by one FFT at a cost of O(N logN).

Calculation of f̂(ξk), ξk = k(2πΩ/N), |k| ≤ N/2

As sup(f) ⊂ [−L,L], we have

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x)e−iξx dx =

1√
2π

∫ L

−L

f(x)e−iξx dx, (2.86)

which is approximated by an N -point rectangular quadrature rule

f̂(ξ) ≈ 2L

N
√
2π

N/2−1∑
j=−N/2

f(xj)e
−iξxj , (2.87)

where xj = j(2L/N). As N = 2ΩL, we have for −N/2 ≤ k ≤ N/2

f̂(ξk) =
2L

N
√
2π

N/2−1∑
j=−N/2

f(xj)e
−ik 2πΩ

N j 2L
N =

2L

N
√
2π

N/2−1∑
j=−N/2

f(xj)e
−ikj 2π

N , (2.88)

to be evaluated by one FFT at a cost of O(N logN).

Calculation of Φ(xm, yn, zl) in the 3-D case

The 3-D Fourier transform Ĝ(ξ) can be found analytically, which is defined by

Ĝ(ξ) =
1

(2π)3/2

∫
R3

G(r)eiξ·r dr, (2.89)

and is a spherically symmetric function of ξ due to the spherical symmetry of

G(r) in the spatial domain. Therefore, the Fourier transform at a radial distance

ρ (by letting ξ = (0, 0, ρ)) is

Ĝ(ξ) =
1

(2π)3/2

∫ 2π

0

∫ π

0

∫ ∞

0

G(r)eirρ cosψr2 sinψ dr dψ dθ, (2.90)

where ρ = |ξ|, and (r, θ, ψ) are the spatial spherical coordinates with x =

r cos θ sinψ, y = r sin θ sinψ, and z = r cosψ. Integration in ψ and substitu-

tion of the piecewise definition of G(r) yield

Ĝ(ξ) =

√
2

π

∫ ∞

0

G(r)r
sin(rρ)

ρ
dr

=

√
2

π

[∫ a

0

Wn
a (r)r

sin(rρ)

ρ
dr +

∫ ∞

a

sin(rρ)

r3ρ
dr

]
=

√
2

π
(In + II). (2.91)



2.2 Generalized Born approximations 43

The second integral II can be integrated to give∫ ∞

a

sin(rρ)

r3ρ
dr =

1

a

[
−πδ

4
+1F2

(
−1

2
;
1

2
,
3

2
;−1

4
δ2
)]

, (2.92)

where δ = aρ, and 1F2(α;β, γ;x) is the hypergeometric function

1F2(α;β, γ;x) =
∞∑

m=0

(α)m
(β)m(γ)m

xm

m!
,

with (α)m = α(α+ 1) . . . (α+m− 1) as the rising factorial.

For the first integral in (2.91), we have, for n = 1, 2, and 3,

I1 =− 1

aδ5
[
δ(δ2 + 12) cos δ + 3(δ2 − 4) sin δ

]
, (2.93)

I2 =− 1

aδ7
[
δ(δ4 − 12δ2 + 360) cos δ + 3(δ4 + 44δ2 − 120) sin δ

]
, (2.94)

I3 =− 1

aδ9
[
δ(δ6 − 12δ4 − 1560δ2 + 20160) cos δ

+ 3(δ6 − 20δ4 + 2760δ2 − 6720) sin δ
]
. (2.95)

It should be noted that the form for In as defined is not usable at δ = 0 due

to the denominator in In having higher-order infinitesimals than the numerator.

Therefore, In(0) should be calculated by an extrapolation; for example, for a

first-order accurate extrapolation we can use In(0) � 2In(a/2)− In(a).

Algorithm

Let the molecule be contained in a rectangular box of size [−Lx, Lx] × [−Ly, Ly]

× [−Lz, Lz]. If the smallest box that contains the molecule is [−a, a]× [−b, b]×
[−c, c], then, due to the periodicity of the FFT, the computational box [−Lx, Lx]

× [−Ly, Ly] × [−Lz, Lz] should be chosen such that Lx ≥ 2a, Ly ≥ 2b, and

Lz ≥ 2c to avoid the overlap of the images of f and G.

The following steps form the flow of the algorithm in the 3-D case (Cai, Xu,

& Baumketner, 2008).

• Step 1: For an nth-order smoother Wn
a (r) in (2.60) and an error tolerance

ε > 0, choose the truncation parameter Ω by

Ω =
1

πε1/(n+1)
(2.96)

and set

Nx = 2ΩLx, Ny = 2ΩLy, Nz = 2ΩLz, (2.97)

and

N = NxNyNz.
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• Step 2: Compute f̂(ξi, ηj , χk), (ξi, ηj , χk) = (i 2πΩNx
, j 2πΩ

Ny
, k 2πΩ

Nz
),−Nx/2 ≤ i ≤

Nx/2 − 1,−Ny/2 ≤ j ≤ Ny/2 − 1,−Nz/2 ≤ k ≤ Nz/2 − 1, using one 3-D

FFT for the following sums at a cost of O(N logN):

f̂(ξi, ηj , χk) =
8LxLyLz

(2π)3/2N

Nx/2−1∑
m=−Nx/2

Ny/2−1∑
n=−Ny/2

Nz/2−1∑
l=−Nz/2

f(xm, yn, zl)

· exp
(
−i2π

(
mi

Nx
+

nj

Ny
+

lk

Nz

))
. (2.98)

• Step 3: Compute Φ(xm, yn, zl), (xm, yn, zl) = (m 2Lx

Nx
, n

2Ly

Ny
, l 2Lz

Nz
) ∈ [−Lx, Lx]×

[−Ly, Ly] × [−Lz, Lz],−Nx/2 ≤ m ≤ Nx/2 − 1,−Ny/2 ≤ n ≤ Ny/2 −
1,−Nz/2 ≤ l ≤ Nz/2 − 1, using one 3-D FFT for the following sums at a

cost of O(N logN):

Φ(xm, yn, zl) =
(2π)3/2Ω3

N

Nx/2−1∑
i=−Nx/2

Ny/2−1∑
j=−Ny/2

Nz/2−1∑
k=−Nz/2

f̂(ξi, ηj , χk)Ĝ(ξi, ηj , χk)

· exp
(
i2π

(
mi

Nx
+

nj

Ny
+

lk

Nz

))
. (2.99)

In the 3-D case, the function f(x, y, z) is the indicator function of the so-

lute molecule. Therefore, Nx, Ny, and Nz should be large enough such that the

boundary of the solute molecule is well resolved on the NxNyNz-lattice grid to

ensure a prescribed accuracy in the Fourier transform.

2.3 Method of images for reaction fields

Image methods with virtual charges were first used by Lord Kelvin in the nine-

teenth century to represent the polarization field of dielectric materials (Thomson,

1884). In the Poisson electrostatic model, the electrostatic potential Φ(r) of a

source charge q located at rs inside a region Ω satisfies the Poisson equation

∇ · (ε(r)∇Φ(r)) = −qδ(r− rs), r ∈ Ω, (2.100)

together with a homogeneous boundary condition on the boundary ∂Ω if Ωc (the

exterior of Ω) is a perfect conductor,

Φ(r) = 0, r ∈ ∂Ω, (2.101)

or a continuity condition if both Ω and Ωc are dielectric materials:

Φ(r+) = Φ(r−),

εo
∂Φ(r+)

∂n
= εi

∂Φ(r−)

∂n
, (2.102)

where n is the external normal to the boundary, εi is the dielectric constant

inside Ω and εo the dielectric constant outside Ω, and + and − denote the limit
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taken from outside and inside Ω, respectively. Meanwhile, the potential Φ(r) is

assumed to decay to zero when r→∞.

In general, the solution to (2.100) has to be solved with numerical methods as

discussed in Chapter 3, and analytical forms of the solution are only available for

simple geometries. Still, the potential Φ(r) can be decomposed into two parts:

one part for the potential due to the source charge q at rs and the other part

for the reaction field Φ
rf
(r) that reflects the polarization of the material in Ωc,

namely

Φ(r) =
q

4πεi|r− rs|
+Φ

rf
(r). (2.103)

2.3.1 Methods of images for simple geometries

For selected geometries, methods of images can provide simple and analytical

solutions to the reaction field Φ
rf
(r) in (2.103). The following are some classical

image solutions to simple geometries of conducting bodies and dielectrics. More

details on other types of dielectric shapes can be found in Smythe (1989).

• Potential of a point charge in the presence of a conducting sphere

For a charge q outside a conducting sphere of radius a, the potential in Ω =

{r: |r| >a} outside the sphere is given as the sum of the primary potential from

the charge at rs = (rs, θs, φs) in the spherical coordinates and the potential of

an image charge −q at the Kelvin image location (Thomson, 1884) inside the

sphere, which is the inversion point

rk =

(
a2

rs
, θs, φs

)
(2.104)

with respect to the sphere

Φ(r) =
q

4πεi|r− rs|
− q

4πεi|r− rk|
, r ∈ Ω. (2.105)

• Potential of a point charge in the presence of a conducting 3-D half

space

Consider a point charge located at rs = (0, 0, d) along the z-axis above a conduct-

ing plane (z = 0) at zero potential. So, we have Ω = {r = (x, y, z): z ≥ 0}, and
the homogeneous boundary condition (2.101) is assumed at z = 0. The solution

to (2.100) is given by (2.103). The reaction field in this case can be represented

by an image charge q′ = −q located below the conducting plane z = 0 at the

mirror image location rim = (0, 0,−d), and the effect of this image potential (the

reaction potential) is to satisfy the required zero potential boundary condition

(2.101). So, we have

Φ
rf
(r) = − q

4πεi|r− rim|
. (2.106)
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• Potential of a point charge in the presence of a dielectric 3-D half

space

Here we have a point charge located at rs = (0, 0, d) ∈ Ω = {r = (x, y, z) : z ≥ 0}
above a dielectric half space, and the potential will have to satisfy the continuity

condition (2.102) at the interface z = 0. Again, the potential in the upper half

space is given by (2.103), where the reaction field can be represented by an image

charge. Specifically, for z > 0 we have

Φ
rf
(r) =

q′

4πεi|r− rim|
, (2.107)

where

rim = (0, 0,−d), q′ = −
(
εo − εi
εo + εi

)
q .

The potential in the lower half space can also be represented by another image

located at the source point in the upper half space, consistent with the non-

singular feature of the potential for z < 0:

Φ(r) =
q′′

4πεo|r− rs|
, (2.108)

where

q′′ =

(
2εo

εo + εi

)
q.

• Potential of a line charge and a dielectric cylinder

In this case, the potential problem is a 2-D one for the cross section of the

cylinder. Let Ω = {r = (r, θ) : r > a} denote the exterior of the cylinder of

radius a which contains a line source charge q at the location rs = (rs, θs = 0),

rs > a, in polar coordinates.

The potential in Ω is the superposition of the potential from the source charge

and two images at 0 and rim = (a2/rs, 0), respectively (Smythe, 1989), i.e.,

Φ(r) = − q

2πεi
ln(|r− rs|) +

q

2πεi
ln(|r|)− q′

2πεi
ln(|r− rim|), |r| > a, (2.109)

where

q′ = −
(
εo − εi
εo + εi

)
q.

Meanwhile, the potential inside the cylinder is given by a second image q′′ at the

location rs:

Φ(r) = − q′′

2πεo
ln(|r− rs|), |r| < a, (2.110)

where

q′′ =

(
2εo

εo + εi

)
q.
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Figure 2.3. A point charge and a dielectric sphere. The point charge is inside the
sphere (rs < a). From Cai et al. (2007), copyright (2007) by Elsevier.

• Potential of a line charge and a conducting cylinder

As a limiting case of (2.109), we can find the potential outside the cylinder

centered at the origin due to a line charge placed at (rs, θs = 0), rs > a, as

Φ(r) = − q

2πεi
ln(|r− rs|) +

q

2πεi
ln(|r− rim|), |r| > a, (2.111)

where rim = (a2/rs, 0).

2.3.2 Image methods for dielectric spheres

In this section, we will present discrete image approximations to the reaction

field for a dielectric sphere Ω = {r: |r| <a} with a dielectric constant εi; the

dielectric constant outside the sphere is assumed to be εo. The starting point is

the classical Kirkwood series expansion (Kirkwood, 1934) for the reaction fields.

Extension to the Poisson–Boltzmann equation will be discussed in Section 2.3.3

where the medium outside the sphere has a mobile ion density.

Friedman’s one image approximation

For a charge q inside a dielectric sphere Ω (see Fig. 2.3), the potential is the

solution of (2.100) and (2.102) for Ω, given by (2.103). The reaction field Φrf(r)

at an observation point r = (r, θ, φ) inside the sphere can be expressed in terms

of the Legendre polynomials of cos θ (Kirkwood, 1934):
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Φ
rf
(r) =

q(εi − εo)

4πεia

∞∑
n=0

(
n+ 1

εin+ εo(n+ 1)

)(rrs
a2

)n

Pn(cos θ)

=

∞∑
n=0

Anr
nPn(cos θ), (2.112)

where Pn(x), n = 0, 1, 2,. . ., are the Legendre polynomials,

An =
q

4πεi
· rns
a2n+1

· γ ·
(
1 +

1 + γ

1− γ + 2n

)
, n ≥ 0, (2.113)

and

γ =
εi − εo
εi + εo

. (2.114)

In particular, the first coefficient A0 is used in the Born solvation energy

in (2.45):

Φ
rf
(0) = A0 =

q

4πεi

1

a

(
1

εo
− 1

εi

)
. (2.115)

The well-known Kirkwood expansion (2.112) converges fast when r is away

from the boundary of the sphere. However, in the case that the point charge is

close to the boundary, the convergence rate by the Kirkwood series expansion is

slow due to rrs/a
2 ≈ 1, requiring a great number of terms in the expansion to

achieve reasonable accuracy for the reaction field.

Before we proceed to derive the image approximation, we quote a useful iden-

tity, namely the harmonic expansion of the potential at r from a point charge q

at rs in a homogeneous dielectric:

q

4πε|r− rs|
=

q

4πεr

∞∑
n=0

(rs
r

)n

Pn(cos θ), if r > rs, (2.116)

or

q

4πε|r− rs|
=

q

4πεrs

∞∑
n=0

(
r

rs

)n

Pn(cos θ), if r < rs. (2.117)

Following Deng, Cai, & Jacobs (2007), by expanding the term (n+ 1)/(εin+

εo(n+ 1)) in (2.112) in terms of εi/((εi + εo)(n+ 1)) < 1, we obtain

n+ 1

εin+ εo(n+ 1)
=

1

εi + εo

[
1 +

εi
εi + εo

1

n+ 1
+

(
εi

εi + εo

)2 (
1

n+ 1

)2

+ . . .

]
,

(2.118)

allowing us to write the reaction field given in (2.112) as

Φ
rf
(r) = R(0)(r) +R(1)(r) +R(2)(r) + . . . , (2.119)
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where for k=0, 1, 2, . . . we have

R(k)(r) =
(εi − εo)ε

k
i

4πεi(εi + εo)k+1

a

rs

q

(a2/rs)

∞∑
n=0

(
1

n+ 1

)k (
r

a2/rs

)n

Pn(cos θ).

(2.120)

In particular, the first term in (2.119) is

R(0)(r) =
εi − εo

4πεi(εi + εo)

a

rs

q

(a2/rs)

∞∑
n=0

(
r

a2/rs

)n

Pn(cos θ), (2.121)

which is the Legendre polynomial expansion of the Coulomb potential at the

point r inside the sphere due to a point charge of strength q
F
outside the sphere

at the Kelvin image location rk in (2.104), namely

R(0)(r) =
q
F

4πεi|r− rk|
, (2.122)

where

qF
= −

(
εo − εi
εo + εi

)
a

rs
q.

The Friedman image approximation to the reaction field (Friedman, 1975) is

thus defined as

Φ
rf
(r) ≈ ΦF(r) = R(0)(r). (2.123)

The Friedman image approximation has been applied in many areas, includ-

ing molecular dynamics or Monte Carlo simulations (Rullmann & Duijnen, 1987;

Wallqvist, 1993; Wang & Hermans, 1995). It is clear from (2.120) that the ap-

proximation holds even when the source charge rs approaches the boundary of

the sphere.

Multiple image approximations with controllable accuracy

The source charge location rs can be inside or outside the sphere Ω = {r: |r| ≤ a},
and, to illustrate the procedure used to derive the multiple image approximation

to the electrostatic potential in the whole space, we will consider the case where

a source charge q at rs = (rs, θs, φs) ∈ Ω is inside the sphere, as shown in Fig.

2.3. First, let us recall that the Kelvin image point

rk = (a2/rs, θs, φs). (2.124)

We will show that the potentials inside and outside the sphere can be approxi-

mated by those of a point charge at the Kelvin image location and a line image

charge with a power law distribution density along a ray extending from the

Kelvin image point rk to infinity (for the reaction field inside the sphere) or

along a line segment between the origin and the Kelvin image point (for the

reaction field outside the sphere if the source charge is outside the sphere). This

representation has been discovered independently by several authors. The result
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was first obtained by Neumann (1883), and then by Finkelstĕın (1977), and was

rediscovered in the 1990s independently by Lindell (1992) and Norris (1995).

To obtain the potential inside the sphere due to the polarization, we plug the

expansion coefficients An in (2.113) into (2.112) to obtain the reaction field:

Φ
rf
(r) =

∞∑
n=0

Anr
nPn(cos θ)

=
∞∑

n=0

q

4πεi
·

rn
s

a2n+1
· γ

(
1 +

1 + γ

1− γ + 2n

)
rnPn(cos θ)

=
γq

4πεirk

a

rs

∞∑
n=0

(
r

rk

)n

Pn(cos θ)

+
q

4πεi

γ(1 + γ)

2

∞∑
n=0

rn
s

a2n+1
· 2

1− γ + 2n
· rnPn(cos θ)

=S1 + S2.

The first part, S1, becomes exactly the expansion obtained from (2.117) by

putting rs = rk and ε = εi for a point charge of magnitude

qk = γ
a

rs
q, (2.125)

outside the sphere at the inversion point rk. For the second part, we use the

following simple integral identity for α = (1− γ)/2 + n > 0:

1

αrαk
=

∫ ∞

rk

1

xα+1
dx, for α > 0, (2.126)

which expresses the fraction 2/(1− γ + 2n) = 1/α as an integral. As a result,

we have

S2 =
q

4πεi

γ(1 + γ)

2

∞∑
n=0

[
a−γ

r
1−γ
2

s

∫ ∞

rk

1

x
1−γ
2 +n+1

dx

]
rnPn(cos θ)

=

∫ ∞

rk

[
q

4πεix

1

a

γ(1 + γ)

2

(
x

rk

)− 1−γ
2

∞∑
n=0

( r

x

)n

Pn(cos θ)

]
dx

=

∫ ∞

rk

[
q′(x)

4πεix

∞∑
n=0

( r

x

)n

Pn(cos θ)

]
dx, (2.127)

where

q′(x) =
q

a

γ(1 + γ)

2

(
x

rk

)− 1−γ
2

, rk ≤ x. (2.128)

Putting rs = x and ε = εi in (2.117), we can see that the inside of the above

integral in (2.127) represents the potential generated by charge q′(x) at x.

This result shows that the reaction field Φ
rf
(r) inside the sphere is

Φ
rf
(r) =

qk
4πεi|r− rk|

+

∫ ∞

rk

q′(x)

4πεi|r− x| dx, r ∈ Ω, (2.129)
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Table 2.1. Positions and magnitudes of image charges
From Cai, Deng, & Jacobs (2007), copyright (2007) by Elsevier

Position Magnitude Distributed image line charges

Internal source
(rs < a)

Interior field rk (≥ a) q′ii = γ a
rs
q q′′ii(x) =

q
a

γ(1+γ)
2

(
x
rk

)− 1−γ
2

rk ≤ x

Exterior field rs (≤ a) q′io = (1 + γ)q q′′io(x) =
q
rs

γ(1+γ)
2

(
x
rs

)− 1+γ
2

0 ≤ x ≤ rs

External source
(rs > a)

Exterior field rk (≤ a) q′oo = −γ a
rs
q q′′oo(x) =

q
a

γ(1−γ)
2

(
x
rk

)− 1+γ
2

0 ≤ x ≤ rk

Interior field rs (≥ a) q′oi = (1− γ)q q′′oi(x) =
q
rs

γ(1−γ)
2

(
x
rs

)− 1−γ
2

rs ≤ x

where

x =
x

rs
rs, qk = γ

a

rs
q, rk =

a2

rs
, (2.130)

and

q′(x) =
εi(εi − εo)

(εi + εo)2
q

a

(rk
x

)− 1−γ
2

, rk ≤ x. (2.131)

The potential outside the sphere can also be represented by a point charge

and a line image charge. Similar results can be obtained for the case when the

source charge q is outside the dielectric sphere. Table 2.1 summarizes the results

for all cases. The first subscript on the images indicates the location rs of the

source charge q and the second indicates the field location.

Note: a is the radius of the sphere; rs is the radial position of the source charge

q; rk = a2/rs is the inversion point, and −1 < γ < 1. The potential from the

source point charge q at rs will be added to the potential from the images for

interior field points when q is inside the sphere, and for exterior field points when

q is outside the sphere.

Next, we derive discrete image charge approximation of the potentials based

on the line image representation (2.129). In order to achieve this, we discretize

the following line integral by an appropriate numerical quadrature

I =

∫ ∞

rk

1

|r− x|

(
x

rk

)− 1−γ
2

dx. (2.132)
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Table 2.2. Positions and magnitudes of discrete image point charges
From Cai, Deng, & Jacobs (2007), copyright (2007) by Elsevier

Magnitude Position

Internal source
(rs < a)

Interior field qiim = 2
γ−1
2

τ−1γ(1 + γ)τωmq · xii
m
a

xii
m = rk ·

(
2

1−sm

)τ

Exterior field qiom = 2
γ−1
2

τ−1γ(1 + γ)τωmq xio
m = rs ·

(
1−sm

2

)τ
m = 0, 1, 2, . . . ,M

External source
(rs > a)

Exterior field qoom = 2
γ−1
2

τ−1γ(1− γ)τωmq · a
rs

xoo
m = rk ·

(
1−sm

2

)τ
Interior field qoim = 2

γ−1
2

τ−1γ(1− γ)τωmq · xoi
m
rs

xoi
m = rs ·

(
2

1−sm

)τ

m = 0, 1, 2, . . . ,M

Firstly, by introducing the change of variables rk/x = ((1− s)/2)
τ
with τ > 0,

we have

I = τ · 2
γ−1
2 τ

∫ 1

−1

(1− s)
α · h(r, s; τ)ds, (2.133)

where α = (1− γ)τ/2− 1 and

h(r, s; τ) =
2τrk

|(1− s)
τ
r− 2τrk|

. (2.134)

Next, we employ a numerical quadrature to approximate the integral I in

(2.133). Note that s = −1 corresponds to the Kelvin image location x = rk. Also

we have α > −1 since −1 < γ < 1 and τ > 0. Therefore, we can choose the

Gauss–Radau quadrature based on Jacobi polynomials. The Jacobi polynomials

Pα,β
n (s) on the interval [−1, 1] are orthogonal polynomials under the Jacobi

weight w(s) = (1− s)
α
(1 + s)

β
, i.e.,∫ 1

−1

(1− s)
α
(1 + s)

β
Pα,β
j (s)Pα,β

k (s) ds = δjk,

where α > −1 and β > −1 (Gautschi, 1994).

Let sm and ωm,m = 0, 1, 2, . . . ,M , be the Jacobi–Gauss–Radau points and

weights on the interval [−1, 1] with s0 = −1, sM < 1, and α = (1−γ)τ/2−1, β =

0. Then, the numerical quadrature for approximating I in (2.133) is

I ≈ τ · 2
γ−1
2 τ

M∑
m=0

ωmh(r, sm; τ), (2.135)

which yields ∫ ∞

rk

q′(x)

4πεi |r− x| dx ≈
M∑

m=0

qm
4πεi|r− xm|

, (2.136)
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where for m = 0, 1, 2, . . . ,M

qm = 2
γ−1
2 τ−1γ(1 + γ)τωmq · xm

a
, (2.137)

and

xm = rk ·
(

2

1− sm

)τ

. (2.138)

Finally, we have an approximation of the total potential inside the sphere in

terms of the potentials of the source charge at rs and those of M + 1 image

charges (Cai, Deng, & Jacobs, 2007):

Φ(r) ≈ q

4πεi |r− rs|
+

qk
4πεi |r− rk|

+

M∑
m=0

qm
4πεi|r− xm|

. (2.139)

Due to the use of the Jacobi–Gauss–Radau points, the first image location x0

coincides with the Kelvin image location rk, i.e., x0 = rk.

Table 2.2 summarizes the magnitudes and locations of discrete images (qm,xm)

for potentials inside (internal field) and outside (external field) the sphere for

both cases of inside and outside source charge q. Again, the first subscript on the

images indicates the location rs of the source charge q and the second indicates

the field location.

2.3.3 Image methods for dielectric spheres in ionic solvent

In this section, we consider the case when there is a mobile ion density in the

solvent outside the sphere. As discussed earlier in the Debye–Hückel theory, the

mobile ion concentration in the ionic solvent is given by a Boltzmann distribu-

tion in the mean field approximation. For a solvent of weak ionic strength, the

linearized Poisson–Boltzmann equation (2.19) can be used outside the sphere.

The reaction field inside the sphere is defined by

Φrf(r) =

∞∑
n=0

Anr
nPn(cos θ). (2.140)

The expansion coefficients An are found from the boundary conditions in (2.102)

to be

An =
q

4πεia

1

rnk

ε(n+ 1)kn(u) + uk′n(u)

εnkn(u)− uk′n(u)
=

q

4πεia

1

rnk

ε(n+ 1)Sn(u) + 1

εnSn(u)− 1
, (2.141)

where u = λa, ε = εi/εo, and Sn(u) = kn(u)/(uk
′
n(u)). Here, kn(r) is the modified

spherical Hankel function of order n defined by

kn(r) =
πe−r

2r

n∑
k=0

(n+ k)!

k!(n− k)!

1

(2r)k
. (2.142)
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For an ionic solvent, the modified spherical Hankel function has the following

asymptotic expansion in terms of u = λa < 1:

kn(u) = π
(2n)!

n!

1

(2u)n+1
+O

(
1

un−1

)
, for n ≥ 1, (2.143)

and

kn(u) = π
(2n)!

n!

1

(2u)n+1
− π

2
+O

(
1

un−1

)
, for n = 0. (2.144)

We then have, for n ≥ 0,

Sn(u) = −
1

n+ 1 + u
+O

(
1

u2

)
, u→∞,

Sn(u) = −
1

n+ 1 + u
+O

(
u2

)
, u→ 0. (2.145)

Plugging (2.145) into (2.141) leads to an approximation of the expansion co-

efficient An as

An ≈
q

4πεia

1

rnk

(
γ +

δ

n+ σ

)
, (2.146)

where

σ =
1 + u

1 + ε
, δ = γ (1− σ)− u

1 + ε
.

As σ and rk are both positive real constants, by the integral identity (2.126)

with α = n + σ, we can rewrite the approximation of the reaction field

(2.140) as

Φrf(r) ≈
qγa

4πεirs

1

rk

∞∑
n=0

(
r

rk

)n

Pn(cos θ)

+

∫ ∞

rk

qδ

4πεia

(
x

rk

)−σ
1

x

∞∑
n=0

( r

x

)n

Pn(cos θ)dx. (2.147)

Using the expansion of (2.117), we obtain the following line image approximation

for the reaction field (Xu, Deng, & Cai, 2009):

Φrf(r) ≈
qk

4πεi|r− rk|
+

∫ ∞

rk

q′(x)

4πεi|r− x| dx, (2.148)

where qk is defined in (2.125), and the line image charge is now

q′(x) = q
δ

a

(
x

rk

)−σ

, for rk ≤ x. (2.149)

To obtain multiple discrete image charge approximations to the reaction field,

the line image charge introduced in (2.148) can be similarly discretized as

in (2.136).
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Membrane

Ionic solvent I

II

Ionic solvent
Point charge

III

εm

εs, λ1

εs, λ2

Figure 2.4. A three-layer dielectric medium model for a membrane. From Lin et al.
(2011a), copyright (2011) by Springer Science+Business Media, LLC.

2.3.4 Image methods for multi-layered media

Series solution for a layered medium for PB equations

Consider a three-layer model representing the dielectric environment of a cell

membrane immersed in ionic fluids (Lin et al., 2011a), as shown in Fig. 2.4. The

cell membrane is treated as an infinite layer (region II), separated from the bulk

solvents (regions I and III) by two parallel planar boundaries. A point charge qs
is located at xs inside region II. As the membrane is made of hydrocarbons, it can

be described by a dielectric continuum with a dielectric constant εm. The electric

potential Φm in the membrane layer, i.e., in the intermediate layer, satisfies a

Poisson equation (2.100) with ε = εm. The potentials in regions I and III are

denoted by Φup(x,xs) and Φdown(x,xs), respectively.

The ionic solvents in areas I and III are characterized by a dielectric per-

mittivity εs and parameters λ1 and λ2. The potentials in these two regions are

governed by the linearized Poisson–Boltzmann equation (2.16).

The potential inside the membrane layer can be decomposed as in (2.103). By

expanding both sides of the Poisson equation (2.100) with orthonormal functions

and noting the vanishing of the Coulombic potential at infinity, the potential from

the source can be expanded as follows:

qs
εm|x− xs|

=

∫ ∞

0

∫ ∞

0

dα dβ cosα(x−xs) cosβ(y− ys)
2qs

εmπu
e−u|z−zs|, (2.150)

where u =
√

α2 + β2. Equation (2.150) is a Sommerfeld-type identity well known

in electromagnetic scattering theory (Sommerfeld, 1949; Chew, 1990).
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As Φrf satisfies the Laplace equation and Φup and Φdown satisfy the linearized

Poisson–Boltzmann equation, these three potentials can also be expanded, re-

spectively, as follows:

Φrf(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)

· [A(α, β)euz +B(α, β)e−uz ], (2.151)

Φup(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)C(α, β)e−
√

u2+λ2
1z,

(2.152)

Φdown(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)D(α, β)e
√

u2+λ2
2z,

(2.153)

where λ2
i = εsκ

2
i , i = 1, 2.

Suppose the planar surfaces are located at z = 0 and z = l, with l being the

thickness of the membrane. Two interface conditions for the continuities of the

potential and the normal displacements at each interface are given by

Φm = Φdown, εm
∂Φm

∂z
= εs

∂Φdown

∂z
, for z = 0, (2.154)

Φm = Φup, εm
∂Φm

∂z
= εs

∂Φup

∂z
, for z = l. (2.155)

Substituting (2.151)–(2.153) into the boundary conditions (2.154) and (2.155)

yields a linear system for the coefficients A,B,C, and D:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2q

εmπu
e−uzs +A+B = D,

2q

εmπ
e−uzs + uA− uB =

εs
εm

√
u2 + λ2

2D,

2q

εmπu
e−u(l−zs) +Aeul +Be−ul = Ce−

√
u2+λ2

1l,

− 2q

εmπ
e−u(l−zs) + uAeul − uBe−ul = − εs

εm

√
u2 + λ2

1Ce−
√

u2+λ2
1l.

(2.156)

For convenience, let ε = εs/εm, τi = ε
√

u2 + λ2
i , i = 1, 2. Solving the linear

system (2.156) leads to the coefficients in the reaction potential Φrf:

A(α, β) =
2qs

εmπu

e−u(l−zs)(u− τ1)(u+ τ2) + e−u(l+zs)(u− τ1)(u− τ2)

(u+ τ1)(u+ τ2)eul − (u− τ1)(u− τ2)e−ul
, (2.157)

B(α, β) =
2qs

εmπu

eu(l−zs)(u+ τ1)(u− τ2) + e−u(l−zs)(u− τ1)(u− τ2)

(u+ τ1)(u+ τ2)eul − (u− τ1)(u− τ2)e−ul
. (2.158)
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Method of images in a layered non-ionic solution

First, we consider the case of pure water where no mobile charges are present

in the solvents (pure water). Then, the parameters λ1 = λ2 = 0. Here, we will

illustrate the mathematical equivalence between (2.151) and an image represen-

tation. Recall that τ1 = τ2 = εu in this case. Equation (2.151) can be rewritten

in four parts as follows:

Φrf(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x−xs) cosβ(y−ys)[I+II+III+IV ], (2.159)

where

I =
2q

εmπu

e−u(2l−zs−z)σ

1− e−2ulσ2
, II =

2q

εmπu

e−u(2l+zs−z)σ2

1− e−2ulσ2
,

III =
2q

εmπu

eu(−zs−z)σ

1− e−2ulσ2
, IV =

2q

εmπu

e−u(2l−zs+z)σ2

1− e−2ulσ2
,

and

σ =
1− ε

1 + ε
.

As
∣∣e−2ulσ2

∣∣ < 1, we have the following geometric progression:

1

1− e−2ulσ2
=

+∞∑
k=0

e−2kulσ2k =
−∞∑
k=0

e2kulσ−2k.

Then, (2.159) becomes

Φrf(x,xs) =
+∞∑
k=0

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)
2q

εmπu

×
(
e−u(2kl+2l−zs−z)σ2k+1 + e−u(2kl+2l+zs−z)σ2k+2

)
+

−∞∑
k=0

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)
2q

εmπu

×
(
eu(2kl−zs−z)σ−2k+1 + e−u(−2kl+2l−zs+z)σ−2k+2

)
=

+∞∑
k=0

Q2k+1

εm|x− x2k+1|
+

Q2k+2

εm|x− x2k+2|

+

−∞∑
k=0

Q2k−1

εm|x− x2k−1|
+

Q2k−2

εm|x− x2k−2|

=

+∞∑
k=−∞, k �=0

Qk

εm|x− xk|
, (2.160)
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where the second to last equation holds from the Sommerfeld identity (2.150).

Hence, we have the following image representation (Yang, Liaw, & Lim, 2002; Lin

et al., 2011a) of the reaction field:

Φrf(x,xs) =
+∞∑

k=−∞, k �=0

Qk

εm|x− xk|
, (2.161)

with

xk =

(
xs, ys, (−1)k

(
zs −

l

2

)
+

(
k +

1

2

)
l

)
, Qk = qs

(
εm − εs
εm + εs

)|k|
.

(2.162)

Method of images in layered ionic solutions

In the following the locations and the magnitudes of the image charges will

be produced through a Prony-type approximation to the Fourier transform of

the reaction potential and the Sommerfeld-type identity (2.150). In the Prony

approximation (Prony, 1795; Weiss & McDonough, 1963), a sum of exponentials

is used to approximate the Fourier transform of the exact reaction field potential.

Rewrite the exact reaction field (2.151) in the following form:

Φrf(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)
2qs

εmπu
[Âeuz + B̂e−uz],

(2.163)

where

Â(u) =
e−u(l−zs)(u− τ1)(u+ τ2) + e−u(l+zs)(u− τ1)(u− τ2)

(u+ τ1)(u+ τ2)eul − (u− τ1)(u− τ2)e−ul
,

B̂(u) =
eu(l−zs)(u+ τ1)(u− τ2) + e−u(l−zs)(u− τ1)(u− τ2)

(u+ τ1)(u+ τ2)eul − (u− τ1)(u− τ2)e−ul
. (2.164)

By comparing (2.163) with the Sommerfeld identity (2.150), and using the sym-

metry of the rectangular system, a natural approach can be obtained to approx-

imate the functions Â(u) and B̂(u) by a sum of K exponential functions as

Âapp(u) =

K∑
k=1

(
a2k−1e

−(z2k−1−ck)u + a2ke
−(z2k+ck)u

)
,

B̂app(u) =

−K∑
k=−1

(
a2k+1e

(z2k+1+ck)u + a2ke
(z2k−ck)u

)
, (2.165)

where zk = (−1)k(zs− l/2)+ (k+1/2)l are the locations of image charges in the

case λ1 = λ2 = 0, a±k and c±k are unknown variations of the kth pair of image

charges. Imposing the following conditions:

z2k−1 − ck > l, z2k + ck > l, for k > 0, (2.166)

z2k+1 + ck < 0, z2k − ck < 0, for k < 0, (2.167)
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and then applying the Sommerfeld-type identity (2.150) yields (Lin et al., 2011a)

Φrf(x,xs) =

∫ ∞

0

∫ ∞

0

dα dβ cosα(x− xs) cosβ(y − ys)
2qs

εmπu

×
[

K∑
k=1

(a2k−1e
−(z2k−1−ck−z)u + a2ke

−(z2k+ck−z)u)

+

−K∑
k=−1

(a2k+1e
−(z−z2k+1−ck)u + a2ke

−(z−z2k+ck)u)

]

=
K∑

k=1

qs
εm

[
a2k−1

x− x2k−1
+

a2k
x− x2k

]
+

−K∑
k=−1

qs
εm

[
a2k+1

x− x2k+1
+

a2k
x− x2k

]
,

(2.168)

with

x2k−1 = (xs, ys, z2k−1 − ck), x2k = (xs, ys, z2k + ck), k > 0, (2.169)

x2k+1 = (xs, ys, z2k+1 + ck), x2k = (xs, ys, z2k − ck), k < 0. (2.170)

Once ak and ck are found, the image charges are given by the Sommerfeld-type

identity (2.150). As the functions Â(u) and B̂(u) are damped exponentials, such

an approximation is reasonable and effective. The parameters ak and ck can be

calculated by solving a simple minimization problem of the L2 errors, sampling

u at selected uj , j = 1, 2, . . . , J .

2.4 Summary

The Poisson–Boltzmann theory of electrostatic interactions in ionic solutions is

based on the Debye–Hückel mean field theory of the ions where the ions’ discrete-

ness and long-range correlation effects beyond the Debye screen effect are not

included. As a result, the PB theory may lose accuracy near charged surfaces such

as a protein’s surface and along an ion channel wall. A size modified PB equation

is introduced to address the steric effect of ions of finite size near surfaces. Mean-

while, the Born solvation model and the generalized Born (GB) formula provide

analytical ways to compute the electrostatic solvation energy, for molecules of

general shape with the GB formula. We have provided an FFT-based method

to compute the Born radius required in the GB formula. For simple geometries,

including dielectric spheres and layered media, the image approximation of the

reaction field for the PB electrostatics allows a quick calculation of the solvation

energy. More discussion on analytical approximations to PB electrostatic theory

can be found in the review of Xu & Cai (2011).



3 Numerical methods for
Poisson–Boltzmann equations

Numerical methods for solving the PB equations are indispensable for finding

accurate solutions for molecular solvation energies; three methods, including the

boundary element method, the finite element method, and the finite difference

immersed interface method (IIM), will be discussed in this chapter.

Achieving accuracy and speed in solving the PB equations requires the ca-

pabilities to handle complicated molecular surfaces and singular source charges

inside the solute molecules. The integral equation method transforms the infinite

domain problem to the molecular surface, thus removing the issue of the interior

singular source charges. For both finite element and finite difference methods,

singularity subtraction techniques can be used to remove the effect of the singu-

lar point sources. Meanwhile, to treat the molecular surfaces, the finite difference

IIM uses special difference formula near the surfaces. On the other hand, finite

element methods, based on an unstructured mesh, allow highly accurate reso-

lution of the complicated molecular surfaces and fast multigrid solutions of the

resulting matrix equations.

3.1 Boundary element methods (BEMs)

Let us consider a second-order elliptic equation in R3:

Lu = f(r), (3.1)

where

L = Δ+ k2. (3.2)

The fundamental solution to (3.1) is given by

Gk(r) =
1

4π

e−ikr

r
, (3.3)

namely

LGk(r) = −δ(r). (3.4)
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For a real k, we have the Helmholtz equation for wave propagation, while for

a pure imaginary k = −iκ, we have the linearized PB equation (2.16):

Lu = Δu− κ2u = f(r). (3.5)

Equations (3.1) and (3.5) require a boundary condition at infinity, that is, a Som-

merfeld radiation condition for the Helmholtz equation or a vanishing condition

for the PB equation, i.e.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Helmholtz equation)

(
∂
∂r

+ ik
)
u(r) = O

(
1

r2

)
, r →∞

Sommerfeld radiation condition

(PB equation) lim
r→∞

u(r) = 0.

(3.6)

These boundary conditions will ensure the uniqueness of the solution of both

equations (Nédélec, 2001).

3.1.1 Cauchy principal value (CPV) and Hadamard finite part (p.f.)

A surface charge or dipole density generates electrostatic potentials in the whole

space, which can be expressed as linear superpositions of the potential of a single

point charge in (1.4) or a dipole moment in (1.9), resulting in the so-called single-

or double-layer potentials. These potentials also appear naturally in the direct

integral equation for (3.1) based on Green’s second identity in Section 3.1.2.

Let us consider the following three types of singular potentials defined on the

interface Γ between the interior region Ωi and its complement exterior region

Ωo,Ωi ∪ Ωo = R3.In this section G(r, r′) = Gk(r− r′).

Definition 3.1 A single-layer potential u(r) is defined by

u(r) = S(q) ≡
∫
Γ

G(r, r′)q(r′)ds′, r /∈ Γ, (3.7)

where q(r) is the charge density on Γ. Then, u(r) satisfies the elliptic equation

(3.1) with f = 0 in both Ωi and Ωo, and also the boundary condition (3.6) at

infinity.

Definition 3.2 A double-layer potential u(r) is defined by

u(r) = D(φ) ≡
∫
Γ

∂G(r, r′)

∂n′ φ(r′)ds′, r /∈ Γ, (3.8)

where φ(r) is the dipole surface density and n′ is the outward normal on the

boundary Γ. Again, u(r) satisfies the elliptic equation (3.1) with f = 0 in both

Ωi and Ωo, and also the boundary condition (3.6) at infinity.
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Definition 3.3 A hyper-singular potential is defined by

u(r) = N(σ) ≡ ∂

∂n

∫
Γ

∂G(r, r′)

∂n′ σ(r′)ds′

=

∫
Γ

∂2G(r, r′)

∂n∂n′ σ(r′)ds′, r /∈ Γ, (3.9)

where σ(r) is the dipole density. Again, u(r) satisfies the elliptic equation (3.1)

with f = 0 in both Ωi and Ωo, and also the condition (3.6) at infinity.

The functions u(r) given by the singular potentials above are well defined for

all r ∈ R3\Γ and satisfy the Helmholtz (or PB) equation there. However, to

find the limiting values of u(r) or ∂u/∂n(r) at the defining surface Γ, care is

needed as the surface integrals over Γ involve unbounded functions when r ∈ Γ.

Specifically, the concept of Cauchy principal values of singular integrals will be

needed.

The Cauchy principal value (CPV) of a singular function f(r) over Γ is

defined as

p.v.

∫
Γ

f(r′)ds′ = lim
ε→0

∫
Γ\Sε

f(r′)ds′ (3.10)

if the limit on the right-hand side exists, where the surface patch Sε of area size

ε contains the singularity of the integrand.

Even though for r ∈ Γ the surface integrals in (3.7), (3.8), and (3.9) themselves

could be divergent, the limits of u(r) as r approaches the surface Γ are expected

to remain finite and well defined for smooth Γ, as in electrostatics u(r) and its

derivatives represent a physical potential and an electric field, respectively, gen-

erated by finite charges or dipole densities. The concept of the Cauchy principal

value or, for that matter, the Hadamard finite part comes into play due to the

specific way of taking the limit of the potential toward the boundary. We illus-

trate this concept by considering the well-known Hilbert transform of a function

φ(x) (Muskhelishvili, 1953), x ∈ R = (−∞,∞):

H(φ)(z) =
1

2πi

∫ ∞

−∞

φ(x)

x− z
dx, z /∈ R. (3.11)

To compute the limit of z = x+ iy ∈ C→ x0, i.e., y → 0+, we can deform the

real line contour to include a semi-circle Sε(x0) of radius ε centered at x0 in the

lower half plane. Then, we have

lim
z→x0

H(φ)(z)

=
1

2πi
lim
z→x0

[∫ x0−ε

−∞
+

∫ ∞

x0+ε

]
φ(x)

x− z
dx+

1

2πi
lim
z→x0

∫
Sε(x0)

φ(z′)

z′ − z
dz′

=
1

2πi

[∫ x0−ε

−∞
+

∫ ∞

x0+ε

]
φ(x)

x− x0
dx+

1

2πi

∫
Sε(x0)

φ(z′)

z′ − x0
dz′

=
1

2πi

[∫ x0−ε

−∞
+

∫ ∞

x0+ε

]
φ(x)

x− x0
dx+

φ(x0)

2
+O(ε). (3.12)
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Now let ε → 0. Assuming the two integrals in the square bracket of the last

equation above have a limit, we have

lim
z→x0

H(φ)(z) =
1

2πi
p.v.

∫ ∞

−∞

φ(x)

x− x0
dx+

φ(x0)

2
, (3.13)

where the first term is the Cauchy principal value of the form (3.10), i.e.,

p.v.

∫ ∞

−∞

φ(x)

x− x0
dx = lim

ε→0

[∫ x0−ε

−∞
+

∫ ∞

x0+ε

]
φ(x)

x− x0
dx. (3.14)

In fact, for a smooth function φ(x), the Cauchy principal value of (3.14) can

be calculated as follows. For example, for φ(x) = 1, we have

p.v.

∫ b

a

1

x− c
dx = lim

ε→0

[∫ c−ε

a

+

∫ b

c+ε

]
1

x− c
dx = ln

(
b− c

c− a

)
, (3.15)

and for a Hölder continuous function φ(x) with index λ > 0, we have

p.v.

∫ b

a

φ(x)

x− c
dx =

∫ b

a

φ(x)− φ(c)

x− c
dx+ φ(c) p.v.

∫ b

a

1

x− c
dx

=

∫ b

a

φ(x)− φ(c)

x− c
dx+ φ(c) ln

(
b− c

c− a

)
, (3.16)

where the first integral in the last equation is a well-defined regular integral.

For the hyper-singular integral as in (3.9), the above procedure may fail, as

the limit of the integral over Γ\Sε(r0) may diverge as ε→ 0. In many cases that

integral takes the form∫
Γ\Sε(r0)

∂2G(r0, r
′)

∂n∂n′ σ(r′)ds′ = C + Λ(r0; ε, σ), r0 ∈ Γ, (3.17)

where Λ(r0; ε, σ) = O(1/ελ), λ > 0, and C is some finite value. Therefore, (3.17)

will become infinite as ε → 0. But this does not necessarily imply that limr→r0

u(r) in (3.9) will be unbounded, as the limit is usually well defined and actually

could be computed directly by using Gauss’s theory on the surface patch Sε(r0)

of finite size ε to reduce the singularity of the surface integral (3.9) (as in Section

7.1.2), and then taking the limit r → r0. The fact is that the surface integral

over Sε(r0) will in general produce a similar term O(1/ελ) but of opposite sign,

thus canceling the ε-divergent term in (3.17). Therefore, only the finite value C

in (3.17) is of significance as far as the limit of the potential toward the surface

is concerned. In fact, the Hadamard finite part (p.f.) (Hadamard, 2003) takes

this finite value C in (3.17), by subtracting the divergent term O(1/ελ), i.e.,

p.f.

∫
Γ

∂2G(r0, r
′)

∂n∂n′ σ(r′)ds′ = lim
ε→0

⎡⎢⎣ ∫
Γ\Sε(r0)

∂2G(r0, r
′)

∂n∂n′ σ(r′)ds′ − Λ(r0; ε, σ)

⎤⎥⎦ .

(3.18)
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The exact form of the O(1/ελ) term Λ(r0; ε, σ) depends on the type of the kernel

∂2G/∂n∂n′ in question and the density function σ (Hsiao & Wendland, 2008,

sect. 3.2). For example, the Hadamard finite part of the following 1-D hyper-

singular integral is defined in Fox (1957) as

p.f.
1

π

∫ 1

−1

σ(t)

(t− x)
2 dt =

1

π
lim
ε→0

[∫ x−ε

−1

σ(t)

(t− x)
2 dt+

∫ 1

x+ε

σ(t)

(t− x)
2dt− Λ(x; ε, σ)

]
,

(3.19)

where

Λ(x; ε, σ) =
σ(x− ε) + σ(x+ ε)

ε
. (3.20)

Moreover, for a curve Γ in R2 of smoothness C2+α, 0 < α < 1, for G(r0, r) =

−(1/2π) ln |r− r0|, in the Hadamard finite part of the hyper-singular integral

(3.18) it can be shown (Hsiao & Wendland, 2008, p. 107) that

Λ(r0; ε, σ) = −
σ(r0)

πε
+O(εα). (3.21)

With the concept of the Cauchy principal value and the Hadamard finite part,

we are ready to study the limiting property toward the surface Γ for functions

u(r) defined by the three types of layer potential operators (3.7), (3.8), and (3.9).

Firstly, let us define the interior and the exterior trace on Γ, for r ∈ Γ,

ui(r) = lim
x∈Ωi→r

u(x), (3.22)

uo(r) = lim
x∈Ωo→r

u(x), (3.23)

and denote the jump of the traces on Γ as

[u] = uo − ui. (3.24)

Moreover, we define the limiting value of the normal derivative of u as(
∂u

∂n

)
i

(r) = lim
x∈Ωi→r

∂u

∂n
(x), (3.25)(

∂u

∂n

)
o

(r) = lim
x∈Ωo→r

∂u

∂n
(x), (3.26)

where n is the outer normal of the boundary ∂Ωi = Γ.

We also define the difference of the normal derivatives as[
∂u

∂n

]
=

(
∂u

∂n

)
o

−
(
∂u

∂n

)
i

. (3.27)

Theorem 3.4 (Nédélec, 2001, thm. 3.1.2) (a) The single-layer potential u(r) =

S(q) is a continuous function across Γ, and

u(r) = p.v.

∫
Γ

G(r, r′)q(r′)ds′ for r ∈ Γ, (3.28)
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while ∂u/∂n has a jump, namely for r ∈ Γ we have(
∂u

∂n

)
i

(r) =
q(r)

2
+ p.v.

∫
Γ

∂G(r, r′)

∂n
q(r′)ds′, (3.29)(

∂u

∂n

)
o

(r) = −q(r)

2
+ p.v.

∫
Γ

∂G(r, r′)

∂n
q(r′)ds′, (3.30)

which implies [
∂u

∂n

]
= −q(r) for r ∈ Γ. (3.31)

(b) The double-layer potential u(r) = D(φ) is discontinuous across Γ, and for

r ∈ Γ we have

ui(r) = −
φ(r)

2
+ p.v.

∫
Γ

∂G(r, r′)

∂n′ φ(r′)ds′, (3.32)

uo(r) =
φ(r)

2
+ p.v.

∫
Γ

∂G(r, r′)

∂n′ φ(r′)ds′, (3.33)

and

[u] = φ(r). (3.34)

Meanwhile, the normal derivative of the double-layer potential is continuous

across Γ, and for r ∈ Γ we have

∂u

∂n
(r) = p.f.

∫
Γ

∂2G(r, r′)

∂n∂n′ φ(r′)ds′. (3.35)

Remark 3.5 (Physical meaning of the jump conditions) (1) In interpreting

the meaning of q in the single-layer potential (3.7) and (3.31), we can consider the

displacement flux D given in terms of u, i.e., D = −∇u. Then the normal compo-

nent of D should satisfy the physical boundary condition [D ·n] = − [∂u/∂n] = q

(see (5.65)) as there is a charge distribution q on Γ, which is consistent with the

conclusion in (3.31). (2) Similarly, for the double-layer potential generated by a

dipole density φ(r) on Γ, the electric potential will have a drop (jump) (3.34)

from the negative to positive charges inside a dipole on the surface. However, as

the dipole is charge neutral, no net surface charge exists on the surface. There-

fore, the electric field (the normal derivative of the potential in (3.35)) will be

continuous, consistent with (5.65) with zero surface charges.

3.1.2 Surface integral equations for the PB equations

In this section, we will derive the surface integral equations for the solution of the

PB equation in (2.19) using fundamental solutions and Green’s second identity.

For simplicity of notation, we will write the equations in Ωi and Ωo in a uniform

format as

Lu(r) = −ρ(r), (3.36)
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where L = Δ+ k2 is defined in (3.2). For the PB equation (3.5) of main concern

here, we have k = −iκ and

κ2 =

{
κ2
i = λ2

i /εi, if r ∈ Ωi,

κ2
o = λ2

o/εo, if r ∈ Ωo,
(3.37)

and

ρ(r) =

⎧⎪⎨⎪⎩
1

εi

N∑
j=1

qjδ(r− rj), if r ∈ Ωi,

0, if r ∈ Ωo.

(3.38)

Theorem 3.6 Let u(r) satisfy the elliptic equation in (3.36)–(3.38) for r ∈
Ωi ∪Ωo with k = 0 inside Ωi and also either the Sommerfeld radiation condition

at infinity for the case of real k, |∂u/∂r + iku| = O
(
1/r2

)
, or the vanishing

condition (2.21) at infinity for the case of a pure imaginary k = −iκ. Then for

r ∈ Ωi, we have the representation for the solution of the Poisson equation

u(r) =

∫
Γ

[
G0(r, r

′)

(
∂u(r′)

∂n′

)
i

− ∂G0(r, r
′)

∂n′ ui(r
′)

]
ds′

+
1

εi

N∑
j=1

qjG0(r, rj), (3.39)

where n′ is the outer normal of the boundary Γ = ∂Ωi, and for r ∈ Ωo we have

the representation for the solution of the PB equation (3.5):

u(r) = −
∫
Γ

[
G−iκ(r, r

′)

(
∂u(r′)

∂n′

)
o

− ∂

∂n′G−iκ(r, r
′)uo(r

′)

]
ds′. (3.40)

For the Helmholtz equation, replace G−iκ(r, r
′) by Gk(r, r

′). Moreover, for r ∈ Γ

we have

1

2
ui(r) = p.v.

∫
Γ

[
G0(r, r

′)

(
∂u(r′)

∂n′

)
i

− ∂

∂n′G0(r, r
′)ui(r

′)

]
ds′

+
1

εi

N∑
j=1

qjG0(r, rj) (3.41)

and

1

2
uo(r) = p.v.

∫
Γ

[
−G−iκ(r, r

′)

(
∂u(r′)

∂n′

)
o

+
∂

∂n′G−iκ(r, r
′)uo(r

′)

]
ds′. (3.42)

Again for the Helmholtz equation, replace G−iκ(r, r
′) by Gk(r, r

′).

Proof We follow the idea of the proof of thm. 3.1.1 in Nédélec (2001). For any

domain Ω and a point r′ /∈ Ω, the fundamental solution Gk(r, r
′) in the domain

satisfies the homogeneous elliptic equation

LGk(r, r
′) = 0,
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while the solution u(r) satisfies

Lu = −ρ.

Then, we have ∫
Ω

(GkLu− uLGk)dr = −
∫
Ω

ρGkdr.

By using Green’s second identity, we have

−
∫
Ω

ρGkdr =

∫
∂Ω

(
∂u

∂n
Gk −

∂Gk

∂n
u

)
ds, (3.43)

where n is the outer normal on ∂Ω.

We apply (3.43) to (BR ∩ Ωo) \Bε, where Bε = Bε(r
′) is a ball of radius ε

centered at r′ and BR = BR(0) is a ball of radius R enclosing Ωi, to get

−
∫

(BR∩Ωo)\Bε

ρG dr =

(∫
Sε

+

∫
SR

)[
∂u

∂n
(r)G(r, r′)− ∂

∂n
G(r, r′)u(r)

]
ds

+

∫
Γ

[
∂u

∂ni
(r)G(r, r′)− ∂

∂ni
G(r, r′)u(r)

]
ds, (3.44)

where G(r, r′) = Gk(r, r
′), and ni is the normal pointing into Ωi;n on Sε also

points into Bε. We will examine the surface integrals as follows.

(a) We firstly examine the first surface integral:∣∣∣∣∫
Sε

∂u

∂n
G(r, r′)ds

∣∣∣∣ ≤ sup
r∈Bε

∣∣∣∣∂u∂n (r)

∣∣∣∣ ∫
Sε

|G(r, r′)|ds

= sup
r∈Bε

∣∣∣∣∂u∂n
∣∣∣∣ 4πε2 1

4πε
= ε sup

r∈Bε

∣∣∣∣∂u∂n
∣∣∣∣→ 0 as ε→ 0.

Secondly, for a fixed r′ we have∫
Sε

∂

∂n
G(r, r′)u(r)ds = u(r′)

∫
Sε

∂

∂n
G(r, r′)ds

+

∫
Sε

∂

∂n
G(r, r′)(u(r)− u(r′))ds. (3.45)

To estimate the second term in (3.45), we write R = |r− r′| to obtain∣∣∣∣ ∂

∂n
G(r, r′)

∣∣∣∣ = ∣∣∣∣∂G∂r
∣∣∣∣ = ∣∣∣∣(− ik

4πR
− 1

4πR2

)
e−ikR

∣∣∣∣
≤ k

4πR
+

1

4πR2
=

k

4πε
+

1

4πε2
,
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so that∣∣∣∣∫
Sε

∂

∂n
G(r, r′)(u(r)− u(r′))ds

∣∣∣∣ ≤ sup
r,r′∈Bε

|u(r)− u(r′)|
∫
Sε

(
k

4πε
+

1

4πε2

)
ds

= (εk + 1) sup
r,r′∈Bε

|u(r)− u(r′)| → 0 as ε→ 0.

As for the first term on the right-hand side of (3.45), we have∫
Sε

∂

∂n
G(r, r′)ds = −

∫
Sε

∂

∂r
G(r, r′)ds = (1 + ikε)e−ikε → 1 as ε→ 0.

Thus ∫
Sε

[
∂u

∂n
(r)G(r, r′)− ∂

∂n
G(r, r′)u(r)

]
ds→ −u(r′). (3.46)

(b) Next, we look at the second surface integral in (3.44) in the case of real k

(Helmholtz equation):∫
SR

[
∂u

∂n
(r)G(r, r′)− ∂G(r, r′)

∂n
u(r)

]
ds

=

∫
SR

[(
∂u

∂n
+ iku

)
G(r, r′) −

(
∂G(r, r′)

∂n
+ ikG(r, r′)

)
u(r)

]
ds

= E1 + E2.

Using the Sommerfeld radiation condition (for the PB equation, there is no

need to insert the term iku above), we have

|E1| ≤
C

R2

∫
SR

1

4πR
ds =

C

R
→ 0 as R→ +∞;

also ∣∣∣∣∂G∂r + ikG

∣∣∣∣ ≤ 1

4πR2
,

as the maximum supr∈SR
|u(r)| decays as O(1/R) (Nédélec, 2001), and

|E2| ≤
1

4πR2

∫
SR

|u(r)|ds ≤ sup
r∈SR

|u(r)| → 0 as R→ +∞.

Therefore, we have∫
SR

[
∂u

∂n
(r)G(r, r′)− ∂G(r, r′)

∂n
u(r)

]
ds→ 0 as R→∞. (3.47)

Finally, (3.44) together with (3.46) and (3.47) implies (3.40) after using the

definition of ρ from (3.38) and G(r, r′) = G−iκ(r, r
′) in Ωo and replacing r′ by

r. Equation (3.39) can be proven similarly.

Moreover, (3.41) and (3.42) result from the limiting results of the singular

boundary operator in (3.28)–(3.35).
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Remark 3.7 As an alternative and direct way to obtain (3.41) for r ∈ Γ, we

can select a local patch γε of size ε on Γ, which can be just the intersection of

Γ with a ball Vε(r) centered at r, namely γε = Vε(r) ∩ Γ. Then we perturb the

part γε of the boundary Γ around r to obtain a larger domain Ωi ∪ Vε, within

which r will be an interior point. We denote Sε = ∂(Vε\Ωi), namely the part of

the spherical surface of Vε(r) outside Ωi. Then we apply the representation result

(3.39) to the expanded domain Ωi ∪ Vε and, as ε→ 0, the boundary integration

over Sε will modify the coefficient of u(r) on the left-hand side of (3.39) to be

1/2 if r ∈ Γ is a smooth point (with a uniquely defined tangential plane) while

the surface integral over Γ\γε becomes the Cauchy principal value (CPV) on the

right-hand side, as indicated in (3.41). Equation (3.42) can be similarly derived,

but from the side of the domain Ωo. More discussions on the contribution of the

surface Sε are given in Section 3.1.3, where methods of direct computation of

the CPV and the Hadamard finite part are discussed.

Remark 3.8 (Hyper-singular integral equations) By applying a differen-

tial operation ∂/∂n to (3.39) and (3.40), and then allowing r to approach the

boundary Γ, with the limit properties in (3.29), (3.30), and (3.35), we obtain the

following hyper-singular equations for r ∈ Γ:

1

2

∂

∂n
ui(r) = p.v.

∫
Γ

∂

∂n
G0(r, r

′)

(
∂u(r′)

∂n′

)
i

ds′

− p.f.

∫
Γ

∂2

∂n∂n′G0(r, r
′)ui(r

′)ds′ +
1

εi

N∑
j=1

qj
∂

∂n
G0(r, rj) (3.48)

and

1

2

∂

∂n
uo(r) =−p.v.

∫
Γ

∂

∂n
G−iκ(r, r

′)

(
∂u(r′)

∂n′

)
o

ds′

+ p.f.

∫
Γ

∂2

∂n∂n′G−iκ(r, r
′)uo(r

′)ds′. (3.49)

Equations (3.41) and (3.42) will be completed with the continuity equations

for the potential and the displacement fluxes for r ∈ Γ:

ui(r) = uo(r), (3.50)

εi

(
∂u(r)

∂n

)
i

= εo

(
∂u(r)

∂n

)
o

. (3.51)

Introducing the density variables

q(r) =

(
∂u(r)

∂n

)
i

, (3.52)

σ(r) = ui(r), (3.53)
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then from (3.51) we have (
∂u(r)

∂n

)
o

= γq(r), (3.54)

where γ = εi/εo.

In terms of the density variables, (3.41) and (3.42) can be expressed as

1

2
σ(r) = p.v.

∫
Γ

[
G0(r, r

′)q(r′)− ∂

∂n′G0(r, r
′)σ(r′)

]
ds′ +

1

εi

N∑
j=1

qjG0(r, rj)

(3.55)

and

1

2
σ(r) = p.v.

∫
Γ

[
−G−iκ(r, r

′)γq(r′) +
∂

∂n′G−iκ(r, r
′)σ(r′)

]
ds′, (3.56)

or by using the single- and the double-layer potential operators as follows:

1

2
σ = S0(q)−D0(σ) +

1

εi

N∑
j=1

qjG0(r, rj) (3.57)

and
1

2
σ = −γS−iκ(q) +D−iκ(σ). (3.58)

It turns out that (3.57) and (3.58) are in fact ill-conditioned and not suitable

for numerical solutions. To obtain a better conditioned integral equation, we can

combine (3.48) with (3.49), and (3.55) with (3.56), respectively, to arrive at two

new integral equations for the densities (Juffer et al., 1991; Lu et al., 2006):(
1

2
+

1

2γ

)
σ = p.v.

∫
Γ

[G0(r, r
′)−G−iκ(r, r

′)]q(r′)

−
[
1

γ

∂

∂n′G0(r, r
′)− ∂

∂n′G−iκ(r, r
′)

]
σ(r′)ds′

+
1

εi

N∑
j=1

qjG0(r, rj), r ∈ Γ, (3.59)

and (
1

2
+

γ

2

)
q = p.v.

∫
Γ

[
∂

∂n
G0(r, r

′)− γ
∂

∂n
G−iκ(r, r

′)

]
q(r′)ds′

− p.f.

∫
Γ

[
∂2

∂n∂n′G0(r, r
′)− ∂2

∂n∂n′G−iκ(r, r
′)

]
σ(r′)ds′

+
1

εi

N∑
j=1

qj
∂

∂n
G0(r, rj), r ∈ Γ. (3.60)
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Due to the difference between the two hyper-singular integrands used in (3.60),

the Hadamard finite part (p.f.) of the singular integral is just the normal Cauchy

principal value (CPV). This type of cancelation of hyper-singularity through a

difference was first used in sect. 23 of Müller (1969) and also in Rokhlin (1983).

3.1.3 Computations of CPV and Hadamard p.f. and collocation BEMs

The surface singular integral equations (3.41) and (3.42) or the surface hyper-

singular integral equations (3.48) and (3.49) are derived using the potential rep-

resentation formula through a limiting process as mentioned in Remarks 3.7 and

3.8, respectively. The CPV and the Hadamard finite part integrals are introduced

as a result, and how we compute these is important for a successful implemen-

tation. In this section, two methods will be presented on how to handle these

singular integrals in collocation boundary element methods (BEMs) for the sur-

face integral equations. The first is a regularization method using simple solutions

of the electrostatics problems (Laplace equations) (Giroire & Nédélec, 1978; Liu

& Rizzo, 1992; Liu, 2009). The second is a direct calculation with regular Gauss

quadratures (Guiggiani & Gigante, 1990; Guiggiani et al., 1992; Guiggiani, 1998).

Collocation BEMs

In a collocation method of the surface integral equations, the surface is usually

decomposed into patches {Si}Ni=1 of triangular and quadrilateral shapes, each of

which is parameterized by an analytical mapping

r = χ(u) = (χ1(u),χ2(u),χ3(u)), r ∈ Si, (3.61)

with variables u =(u1, u2) in a reference triangle

T0 = {(u1, u2) : 0 ≤ u1, u2, u1 + u2 ≤ 1} (3.62)

or square

Ω0 = {(u1, u2) : 0 ≤ u1, u2 ≤ 1}, (3.63)

and shape functions Nl(r) are constructed on the reference domains and mapped

into the patches to represent the physical density (charge or dipole). The density

u(r) will be approximated by the following shape functions:

u(r) =
∑
l

u(rl)Nl(r), r ∈ Si, (3.64)

where u(rl) are the nodal values at rl on each patch Si. For a piecewise constant

approximation, the center of each patch can be used as the only node, and for

a piecewise linear approximation, the three (or four) vertices of the triangular

(quadrilateral) patch can be used as the nodes. The shape functions for the linear

approximation on the reference triangle or square can be found in Sections 7.4.3

and 7.4.4.
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Regularization of singular integrals

A regularization of the singular equations (3.41) and (3.42) and the hyper-

singular equations (3.48) and (3.49) can be achieved using the following identities

of Green’s function G0(r, r
′) (Liu & Rudolphi, 1991, 1999), and the collocation

method can then be applied to the resulting weakly singular integral equations

(of only O(1/r)). Other regularization methods using Stokes’ theorem have also

been studied (Krishnasamy et al., 1990; Rudolphi, 1991; Liu & Rizzo, 1992).

Let n and n′ be the outer normals on ∂Ωi. We then have the following identi-

ties:

• The first identity ∫
Γ

∂

∂n′G0(r, r
′)ds′ =

{
−1, ∀r ∈ Ωi,

0, ∀r ∈ Ωo.
(3.65)

• The second identity∫
Γ

∂2

∂n∂n′G0(r, r
′)ds′ = 0, ∀r ∈ Ωi ∪ Ωo. (3.66)

• The third identity∫
Γ

∂

∂n
G0(r, r

′)nk(r
′)ds′ −

∫
Γ

∂2

∂n∂n′G0(r, r
′)(x′

k − xk)ds
′

=

{
nk(r), ∀ r ∈ Ωi,

0, ∀ r ∈ Ωo.
(3.67)

Remark 3.9 The identity (3.65) can be obtained by using the simple solution

u = 1 in the representation formula (3.39) with no source term for r ∈ Ωi, while

for r ∈ Ωo we can enclose Ωo with a large ball BR(r) of radius R centered at r

and then apply the representation formula on Ωo ∩ BR(r). The identity (3.66)

can be obtained by differentiating (3.65), and the identity (3.67) is obtained by

using the simple solution u (r) = (r)k = x′
k − xk in the representation formula

(3.39), followed by a differentiation with respect to n.

In order to regularize the CPV boundary integral, we consider the represen-

tation for the domain

Ωε = Ωi ∪ Vε(r), (3.68)

which is an enlarged version of Ωi by the ball of Vε(r) (refer to Fig. 3.1 for the

case where Ωε is formed by excluding Vε(r) from Ωi), and we denote the part

of the spherical surface ∂Vε(r) outside Ωi by sε and the intersection of Γ = ∂Ωi

with Vε(r) as γε, i.e., γε = Γ∩Vε, respectively. The boundary of Ωε is denoted by

Γε ≡ ∂Ωε = Γ−γε + sε. (3.69)



3.1 Boundary element methods (BEMs) 73

We apply Green’s second formula to the domain Ωε and assume all interior

charges qj in (3.38) are zero. Then, as in (3.39), we have for all ε > 0

Π1(r) ≡
∫
Γε

[
G0(r, r

′)
∂u(r′)

∂n′ − ∂

∂n′G0(r, r
′)u(r′)

]
ds′ = cu(r), (3.70)

where c = 1 for r ∈ Ωε, and c = 0 for r ∈ Ωc
ε. As r is not on the surface Γε, a

differentiation ∂/∂n can be applied and moved inside the integral of (3.70), so

we also have

Π2(r) ≡
∫
Γε

[
∂

∂n
G0(r, r

′)
∂u(r′)

∂n′ − ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′ = c

∂u(r)

∂n
. (3.71)

By using the identity (3.65) on the surface Γε, (3.70) can be rewritten, for

c = 1, as

cu(r) =− u(r)

∫
Γε

∂G0(r, r
′)

∂n′ ds′

+

∫
Γε

{
G0(r, r

′)
∂u(r′)

∂n′ − ∂G0(r, r
′)

∂n′ [u(r′)− u(r)]

}
ds′

=

(∫
Γ−γε

+

∫
sε

){
G0(r, r

′)
∂u(r′)

∂n′ − ∂

∂n′G0(r, r
′) [u(r′)− u(r)]

}
ds′ + u(r).

(3.72)

The integral over sε vanishes as ε→ 0 if the potential u is Hölder continuous,

i.e., there are α > 0 and β > 0 such that

|u(x)− u(y)| ≤ β|x− y|α, ∀x,y ∈ Γ. (3.73)

Namely, as ε→ 0 the surface area of sε is of the order O(ε2) and the integrand

is of the order of O(1/ε2−α). Therefore, we have the following weakly singular

form of the CPV singular integral equation (3.39) with no source charges (i.e.

qj = 0) for c = 1

(c − 1)u(r) =

∫
Γ

{
∂

∂n′G0(r, r
′) [u(r)− u(r′)] +G0(r, r

′)
∂u(r′)

∂n′

}
ds′, r ∈ Γ.

(3.74)

Next, in order to regularize the hyper-singular integral equation (3.48) with

no source charges (i.e., qj = 0), we take the normal derivative ∂/∂n of (3.39)

over Γε and rewrite the resulting equation as follows:

∂u(r)

∂n
=

∫
Γε−γε

[
∂

∂n
G0(r, r

′)
∂u(r′)

∂n′ − ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′

+

∫
sε

[
∂

∂n
G0(r, r

′)
∂u(r′)

∂n′ − ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′. (3.75)
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Let us examine the two integrals over sε. By using the mean value theorem, the

first integral over sε in (3.75) can be rewritten as

lim
ε→0

∫
sε

∂

∂n
G0(r, r

′)
∂u(r′)

∂n′ ds′ = lim
ε→0

[∫
sε

∂

∂n
G0(r, r

′)nk(r
′)ds′

]
∂u(r)

∂xk

= lim
ε→0

[∫
Γε

∂

∂n
G0(r, r

′)nk(r
′)ds′ −

∫
Γ−γε

∂

∂n
G0(r, r

′)nk(r
′)ds′

]
∂u(r)

∂xk
,

where the double index indicates a summation.

Using the identity (3.67) for the integral over the closed surface Γε we have

lim
ε→0

∫
sε

∂

∂n
G0(r, r

′)
∂u(r′)

∂n′ ds′

= lim
ε→0

[
nk(r) +

∫
Γε

∂2

∂n∂n′G0(r, r
′)(x′

k − xk)ds
′
]
∂u(r)

∂xk

− lim
ε→0

∫
Γ−γε

∂

∂n
G0(r, r

′)nk(r
′)ds′

∂u(r)

∂xk

=
∂u(r)

∂n
+ lim

ε→0

∫
Γε

∂2

∂n∂n′G0(r, r
′)

[
(x′

k − xk)
∂u(r)

∂xk

]
ds′

− lim
ε→0

∫
Γ−γε

∂

∂n
G0(r, r

′)
∂u(r)

∂xk
nk(r

′)ds′. (3.76)

On the other hand, the second integral over sε in (3.75) can be rewritten as

lim
ε→0

∫
sε

∂2

∂n∂n′G0(r, r
′)u(r′)ds′

= lim
ε→0

∫
sε

∂2

∂n∂n′G0(r, r
′)

[
u(r) + (x′

k − xk)
∂u(r)

∂xk
+O(ε2)

]
ds′

= lim
ε→0

(∫
Γε

−
∫
Γ−γε

)
∂2

∂n∂n′G0(r, r
′)u(r)ds′

+ lim
ε→0

∫
sε

∂2

∂n∂n′G0(r, r
′)

[
(x′

k − xk)
∂u(r)

∂xk
+O(ε2)

]
ds′

=− lim
ε→0

∫
Γ−γε

∂2

∂n∂n′G0(r, r
′)u(r)ds′

+ lim
ε→0

∫
sε

∂2

∂n∂n′G0(r, r
′)

[
(x′

k − xk)
∂u(r)

∂xk

]
ds′, (3.77)

where the identity (3.66) was used in the last equation of (3.77) over the closed

surface Γε.

Substituting (3.76) and (3.77) into (3.75) and using the fact that Γε − sε =

Γ− γε, we arrive at

lim
ε→0

∫
Γ−γε

∂2

∂n∂n′G0(r, r
′)

[
u(r′)− u(r)− (x′

k − xk)
∂u(r)

∂xk

]
ds′

= lim
ε→0

∫
Γ−γε

∂

∂n
G0(r, r

′)

[
∂u(r′)

∂n′ − ∂u(r)

∂n′

]
ds′,
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which results in the weakly singular integral formulation of the hyper-singular

integral equation (3.48):∫
Γ

∂2

∂n∂n′G0(r, r
′)

[
u(r′)− u(r)− (x′

k − xk)
∂u(r)

∂xk

]
ds′

=

∫
Γ

∂

∂n
G0(r, r

′)

[
∂u(r′)

∂n′ − ∂u(r)

∂n′

]
ds′, (3.78)

provided that ∇u is Hölder continuous, i.e., there are α > 0 and β > 0 such that∣∣∣∣ ∂

∂xi
u(x)− ∂

∂yi
u(y)

∣∣∣∣ ≤ β|x− y|α, ∀x,y ∈ Γ, i = 1, 2, 3. (3.79)

In the weakly singular integral equations (3.74) and (3.78), the potential u

is from the interior domain Ωi, and similar weakly integral equations can also

be obtained for the potential u from the outside domain by using the identities

(3.65)–(3.67) for r ∈ Ωo. Also, the regularization methods can be applied to

Green’s function Gk(r, r
′) by rewriting

Gk(r, r
′) = [Gk(r, r

′)−G0(r, r
′)] +G0(r, r

′) ≡ H(r, r′) +G0(r, r
′),

where H(r, r′) will be a regular smooth kernel and only regularization for the

G0(r, r
′) is required (Liu & Rizzo, 1992).

Direct computations of CPV and Hadamard p.f. integrals

In the regularization procedures discussed above, the identities of Green’s func-

tions (3.65)–(3.67) are required, which will not be available for Green’s functions

of non-homogeneous media, such as the layered media discussed in Chapter 2.

In the following, methods of direct computation of the singular integrals will be

presented which are applicable for more general Green’s functions.

For a collocation point r ∈ Γ, let us define a domain excluding a vanishing

volume Vε around r, which is usually taken to be a ball of radius ε centered at

r, and denote the part of the surface of Vε inside Ωi as sε, i.e., sε = Ωi ∩ ∂Vε

and the intersection of Γ and Vε as γε, i.e., γε = Γ ∩ Vε, respectively. The new

domain as depicted in Fig. 3.1, which excludes r, is denoted as

Ωε = Ωi\Vε. (3.80)

It is noted that a different definition is used in (3.68) where r is included in Ωε

and sε is the part of the spherical surface ∂Vε(r) outside Ωi.

In both (3.70) and (3.71) the potential and its normal derivative are the interior

fields from the domain Ωi where the subscript i is omitted for simplicity.

Equations (3.70) and (3.71) will be the starting point to derive the surface

integral equations for the potential and its derivative, and in the process of

taking the limit ε → 0, the CPV and the Hadamard finite part together with

free term coefficients will be clarified and computed.

As Gk(r, r
′) and G0(r, r

′) share the same type of singularity at r = r′, the

direct calculation methods described below will be applicable for both kernels.
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Figure 3.1. Ωε, excluding the singular point on the boundary of Γ = ∂Ωi.

• Computation of CPV

In this case, as r /∈ Ωε, similar to the way in which (3.72) is derived using Green’s

second identity, we can show that Π1(r) = 0, where Π1(r) is defined in (3.70).

We can also rewrite Π1(r) as

Π1(r) =

∫
Γ−γε

[
G0(r, r

′)
∂u(r′)

∂n′ − ∂

∂n′G0(r, r
′)u(r′)

]
ds′

+

∫
sε

[
G0(r, r

′)
∂u(r′)

∂n′ − ∂

∂n′G0(r, r
′) [u(r′)− u(r)]

]
ds′

− u(r)

∫
sε

∂

∂n′G0(r, r
′)ds′. (3.81)

As ε→ 0, the second integral above will vanish, as the surface area of sε is on

the order of O(ε2) and the integrand is on the order of O(1/ε). The limit of the

third integral defines the so-called free term coefficient denoted by

c(r) = lim
ε→0

∫
sε

∂

∂n′G0(r, r
′)ds′, (3.82)

where the normal n′ points to the interior of the exclusion volume Vε(r).

Now, (3.81) becomes

c(r)u(r) =

∫
Γ

G0(r, r
′)
∂u(r′)

∂n′ ds′ − lim
ε→0

∫
Γ−γε

∂

∂n′G0(r, r
′)u(r′)ds′. (3.83)

If r is a smooth point on Γ (as a result, Γ will have a unique tangent plane at

r), then c(r) = 1/2, and (3.83) is exactly (3.41) with qj = 0. For a point r at an

edge or a corner (i.e., Γ has multiple tangent planes), the free term coefficient

c(r) will depend on the geometry of sε, which can still be calculated (Guiggiani

& Gigante, 1990).

The collocation method requires that (3.83) is satisfied at specific locations r,

which could be the same nodes that define the shape functions on each patch or

some other points inside the patch. Let Si
p, i = 1, 2, . . . ,m, be the patches which

share the node r as one of its vertices and let a composite patch Sp be
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Sp =

m⋃
i=1

Si
p, (3.84)

which contains r at the center. In the limit of (3.83), we only need to show how

to compute the limit of the integral over Sp−γε, i.e.,

p.v.

∫
Sp

∂

∂n′G0(r, r
′)u(r′)ds′ ≡ lim

ε→0

∫
Sp−γε

∂

∂n′G0(r, r
′)u(r′)ds′

= lim
ε→0

m∑
i=1

∫
Si
p−γi

ε

∂

∂n′G0(r, r
′)u(r′)ds′, (3.85)

where

γi
ε = γε

⋂
Si
p, and γε =

m⋃
i=1

γi
ε. (3.86)

For each i, the integral over Si
p−γi

ε will be calculated over the corresponding

region χ−1(Si
p) in the reference domain in the polar coordinates

χ−1(Si
p) =

{
(ρ, θ) : θi1 ≤ θ ≤ θi2, α

i(θ, ε) ≤ ρ ≤ ρi(θ)
}
, (3.87)

where the center of the polar coordinates is u∗ = (ρ∗, θ∗):

r = χ(u∗) = χ(ρ∗, θ∗), r′ = χ(u) = χ(ρ, θ). (3.88)

Here we have assumed that the node r is mapped to one of the vertices of the

reference domain, and the end range ρi(θ) for ρ is then independent of ε.

As

∂

∂n′G0(r, r
′) =

1

4π

∂

∂n′
1

|r− r′| =
1

4π

1

|r− r′|2
3∑

k=1

(xk − x′
k)

|r− r′| nk, (3.89)

we consider a typical term in ∂G0(r, r
′)/∂n′:

Tk(r, r
′) =

1

|r− r′|2
(x′

k − xk)

|r− r′| nk, k = 1, 2, 3, (3.90)

where n = (n1, n2, n3), r = (x1, x2, x3), and r′= (x′
1, x

′
2, x

′
3).

Meanwhile, we assume that the potential has been expressed in terms of the

shape functions over each patch, so we can set u(r′) to be one of the shape

functions Nl(r
′) and consider∫

Si
p−γi

ε

Tk(r, r
′)Nl(r

′)ds′ =

∫ θi
2

θi
1

∫ ρi(θ)

αi(θ,ε)

Tk ((ρ
∗, θ∗), (ρ, θ))Nl(ρ, θ)J(ρ, θ)ρ dρ dθ

=

∫ θi
2

θi
1

dθ

∫ ρi(θ)

αi(θ,ε)

Fk(ρ, θ)dρ, (3.91)
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where the Jacobian of the parametric mapping χ is given by

J(ρ, θ) =

∣∣∣∣ ∂χ∂u1
× ∂χ

∂u2

∣∣∣∣ , (3.92)

and

Fk(ρ, θ) = Tk ((ρ
∗, θ∗), (ρ, θ))Nl(ρ, θ)J(ρ, θ)ρ. (3.93)

Consider the Taylor expansion of the parametric mapping χk:

x′
k − xk =

∂χk

∂u1
(u1 − u∗

1) +
∂χk

∂u2
(u2 − u∗

2) +

2∑
i,j=1

1

2

∂2χk

∂ui∂uj
(ui − u∗

i )(uj − u∗
j )

≡ ρAk(θ) + ρ2Bk(θ) +O(ρ3),

where, in terms of the polar angle,

Ak(θ) =
∂χk

∂u1
(u∗) cos θ +

∂χk

∂u2
(u∗) sin θ, (3.94)

Bk(θ) =
∂2χk

∂u2
1

(u∗)
cos2 θ

2
+

∂2χk

∂u1∂u2
(u∗) cos θ sin θ +

∂2χk

∂u2
2

(u∗)
sin2 θ

2
. (3.95)

It can be shown (Guiggiani et al., 1992) that

x′
k − xk

|r− r′| =
Ak(θ)

A(θ)
+O(ρ), (3.96)

where

A(θ)2 =
3∑

k=1

|Ak(θ)|2

and

|r− r′|2 = ρ2
3∑

k=1

|Ak(θ)|2 + 2ρ3
3∑

k=1

Ak(θ)Bk(θ) +O(ρ4). (3.97)

So on γε we should have

ε2 = ρ2
3∑

k=1

|Ak(θ)|2 + 2ρ3
3∑

k=1

Ak(θ)Bk(θ) +O(ρ4),

which implies that on ρ = α(θ, ε) = χ−1(γε) in polar coordinates

α(θ, ε) = ε
1

A(θ)
− ε2

3∑
k=1

Ak(θ)Bk(θ)

A4(θ)
+O(ε3)

≡ εβ(θ) + ε2γ(θ) +O(ε3), (3.98)

where the final equation defines β(θ) and γ(θ).

Therefore, due to the continuity of Nl(ρ, θ) and the Jacobian J(ρ, θ), we have

Fk(ρ, θ) =
1

ρ
[fk(θ) +O(ρ)] , (3.99)
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where

fk(θ) =
Ak(θ)

A3(θ)
Nl(ρ

∗, θ∗)J(ρ∗, θ∗). (3.100)

Finally, (3.85) becomes

p.v.

∫
Sp

∂

∂n′G0(r, r
′)u(r′)ds′

=
1

4π

3∑
k=1

m∑
i=1

lim
ε→0

∫ θi
2

θi
1

dθ

∫ ρi(θ)

αi(θ,ε)

Fk(ρ, θ)dρ

=
1

4π

3∑
k=1

m∑
i=1

lim
ε→0

∫ θi
2

θi
1

dθ

∫ ρi(θ)

αi(θ,ε)

[
Fk(ρ, θ)−

fk(ρ, θ)

ρ

]
dρ

+
1

4π

3∑
k=1

m∑
i=1

lim
ε→0

∫ θi
2

θi
1

fk(θ) ln

(
ρi(θ)

αi(θ, ε)

)
dθ.

From (3.98), as ε→ 0, we finally obtain the CPV through two regular integrals

which can be readily computed by Gauss quadratures:

p.v.

∫
Sp

∂

∂n′G0(r, r
′)u(r′)ds′ =

1

4π

3∑
k=1

m∑
i=1

∫ θi
2

θi
1

dθ

∫ ρi(θ)

0

[
Fk(ρ, θ)−

fk(ρ, θ)

ρ

]
dρ

+
1

4π

3∑
k=1

m∑
i=1

∫ θi
2

θi
1

fk(θ) ln

(
A(θ)

ρi(θ)

)
dθ, (3.101)

provided that

lim
ε→0

(ln ε)

m∑
i=1

∫ θi
2

θi
1

fk(θ)dθ = 0, for k = 1, 2, 3. (3.102)

Equation (3.101) shows that the CPV can be computed directly with regu-

lar 1-D Gauss quadratures applied to the θ and ρ integrations if the solution

u(r) satisfies the Hölder continuity condition (3.73) and the parameterization

mapping χ(u) satisfies the smoothness condition (3.102).

• Computation of Hadamard finite part (p.f.)

Introducing a variable

q(r) =
∂u(r)

∂n
, (3.103)

we will assume the following regularity conditions on u(r) and q(r):

u ∈ C1,α, q ∈ C0,α. (3.104)

Thus, we have

u(r′) = u(r) +∇u(r) · (r′ − r)+O(|r′ − r|1+α
),

q(r′) ≡ ∇u(r′) · n′ = ∇u(r) · n+O(|r′ − r|α). (3.105)
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The smoothness of the densities is required for the existence of the Hadamard fi-

nite part at a collocation point; detailed discussions can be found in Gunter

(1967), Martin & Rizzo (1989, 1996), and Krishnasamy, Rizzo, & Rudolphi

(1992).

Using (3.105), we first rewrite Π2 of (3.71) as

Π2(r) =

∫
Γε

[
∂

∂n
G0(r, r

′)q(r′)− ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′

=

∫
Γ−γε

[
∂

∂n
G0(r, r

′)q(r′)− ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′

+

∫
sε

{
∂G0(r, r

′)

∂n
[q(r′)−∇u(r) · n]

−∂2G0(r, r
′)

∂n∂n′ [u(r′)− u(r)−∇u(r) · (r′ − r)]

}
ds′

−∇u(r) ·
∫
sε

{
∂2G0(r, r

′)

∂n∂n′ (r′ − r)−∂G0(r, r
′)

∂n
n

}
ds′

− u(r)

∫
sε

∂2G0(r, r
′)

∂n∂n′ ds′. (3.106)

The second integral in (3.106) will go to zero as the surface area of sε is on

the order of O(ε2) and the integrand is of at most order of O(1/ε) as a result of

(3.105). The third integral will give a free matrix term c = (cki(r))3×3, where,

for i, k = 1, 2, 3:∫
sε

[
∂2

∂xi∂n′G0(r, r
′)(x′

k − xk)−
∂

∂xi
G0(r, r

′)nk

]
ds′ = cki(r) +O(ε). (3.107)

The fourth integral can be shown (Guiggiani, 1998) to have the following expan-

sion for i = 1, 2, 3:∫
sε

∂2

∂xi∂n′G0(r, r
′)ds′ =

bi(r)

ε
+ ai(r) + O(ε). (3.108)

As r /∈ Ωε, (3.71) becomes Π2(r) = 0. Substituting (3.107) and (3.108) into

(3.106), and taking the limit ε→ 0, then the equation Π2(r) = 0 can be rewrit-

ten as

nT · a(r)u(r) + nTc(r)∇u(r) (3.109)

− lim
ε→0

[∫
Γ−γε

[
∂

∂n
G0(r, r

′)q(r′)− ∂2

∂n∂n′G0(r, r
′)u(r′)

]
ds′ − b(r) · n

ε
u(r)

]
= 0.

If r is a smooth point on Γ (as a result, Γ will have a unique tangent plane at r),

then a(r) = 0, c(r) = (1/2)I, and the second integral in (3.83) will be shown later

to be finite, which is exactly the Hadamard finite part. Also, the divergent part is

explicitly identified in (3.109), which will be canceled by a similar divergent term

with opposite sign from the integration over Γ− γε. Finally, (3.109) becomes the
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hyper-singular integral equation, where the Hadamard finite part concept can be

used to represent the limit of the second integral in (3.109), i.e.,

∂u(r)

∂n
+ p.f.

∫
Γ

∂2

∂n∂n′G0(r, r
′)u(r′)ds′ − p.v.

∫
Γ

∂

∂n
G0(r, r

′)
∂u(r′)

∂n
ds′ = 0.

(3.110)

Next, as in the case of the CPV, we show how to compute the Hadamard finite

part explicitly using regular Gauss quadratures. The evaluation of the limit of the

first term in (3.109) involving ∂
∂n

G0(r, r
′) is a Cauchy principal value integral.

We need only show how to compute the following limit over a patch Sp, and u

is taken to be one of the shape functions over Sp in (3.64):

Σi = lim
ε→0

[∫
Sp−γε

∂2

∂xi∂n′G0(r, r
′)Nl(r

′)ds′ +
bi(r)

ε
Nl(r)

]
, i = 1, 2, 3. (3.111)

Remark 3.10 It should be noted that if r is at a vertex shared by many patches,

the continuity condition of u and q will be hard to satisfy, as a C1,α approxima-

tion to u will be required. If such a continuity is not met, the collocation point

r will be taken to be inside one patch; in this case, Sp will just consist of one

patch.

For simplicity, we will assume that r is an interior collocation point to the

single patch Sp. Then

χ−1(Sp) = {(ρ, θ) : 0 ≤ θ ≤ 2π, α(θ, ε) ≤ ρ ≤ ρ(θ)}. (3.112)

Using the polar coordinates in the parametric space, we have for i = 1, 2, 3

Σi = lim
ε→0

[∫
Sp−γε

∂2

∂xi∂n′G0(r, r
′)Nl(r

′)ds′ +
bi(r)

ε
Nl(r)

]

= lim
ε→0

[∫ 2π

0

dθ

∫ ρ(θ)

α(θ,ε)

Fi(ρ, θ)dρ+
bi(r)

ε
Nl(r)

]
, (3.113)

where

Fi(ρ, θ) =
∂2

∂xi∂n′G0 ((ρ
∗, θ∗), (ρ, θ))Nl(ρ, θ)J(ρ, θ)ρ. (3.114)

The hyper-singularity of the integral implies that

Fi(ρ, θ) =
F−2(θ)

ρ2
+

F−1(θ)

ρ
+O(1), (3.115)

where the coefficients F−1(θ) and F−2(θ) are given in Guiggiani et al. (1992, eq.

(C19) of app. C).
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Then we get

Σi = lim
ε→0

[∫ 2π

0

dθ

∫ ρ(θ)

α(θ,ε)

(
Fi(ρ, θ)−

F−2(θ)

ρ2
− F−1(θ)

ρ

)
dρ

]

+ lim
ε→0

∫ 2π

0

dθ

∫ ρ(θ)

α(θ,ε)

F−1(θ)

ρ
dρ

+ lim
ε→0

[∫ 2π

0

dθ

∫ ρ(θ)

α(θ,ε)

F−1(θ)

ρ
dρ+

bi(r)

ε
Nl(r)

]
. (3.116)

Each of the three limits has been shown to be finite (Guiggiani et al., 1992),

with (3.98) giving the Hadamard finite part over Sp as

Σi = p.f.

∫
Sp

∂2

∂xi∂n′G0(r, r
′)Nl(r

′)ds′

=

∫ 2π

0

dθ

∫ ρ(θ)

0

[
Fi(ρ, θ)−

F−2(θ)

ρ2
− F−1(θ)

ρ

]
dρ

+

∫ 2π

0

F−1(θ) ln

∣∣∣∣ ρ(θ)β(θ)

∣∣∣∣ dθ − ∫ 2π

0

F−2(θ)

[
γ(θ)

β2(θ)
+

1

ρ(θ)

]
dθ. (3.117)

3.2 Finite element methods (FEMs)

The difficulties in solving the PB equations (2.19)–(2.21) numerically are due to

the following factors: (1) the singular behavior of the solution at the point charges

qj ; (2) accurate approximations of solutions near the molecular surfaces; and (3)

the treatment of the infinite domain of the exterior region of the molecules.

For the finite element method, we first truncate the whole space R3 to a finite

computational domain Ω ⊃ Ωi and consider a numerical boundary condition

on ∂Ω:

u|∂Ω = g. (3.118)

Various choices of g can be considered, such as the Coulomb potential of the

point charges with the dielectric constant εo. However, for simplicity we will set

g = 0. The finite element method is based on a weak formulation of (2.19) with

the boundary condition (3.118) (Ciarlet, 1978).

Due to the singular source terms in (3.38), the potential u will have large gra-

dients near the point charges at rj . To resolve these gradients, a singular function

G is defined with screened Coulomb potentials from these charges (Chern, Liu,

& Wang, 2003; Chen, Holst, & Xu, 2007)

G(r) =
N∑
j=1

qj
4πεi

e−λi|r−rj |

|r− rj |
, (3.119)
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which satisfies the following inhomogeneous PB equation:

−∇ · εi∇G+ λ2
i G = ρ, r ∈ R3. (3.120)

Now we consider the function w:

w = u−G− g̃, (3.121)

where g̃ is any locally supported function near ∂Ω such that the support has no

intersection with Γ = ∂Ωi, i.e.,

sup(g̃) ∩ Γ = ∅, (3.122)

and also

g̃(r) = G(r)− g, r ∈ ∂Ω, (3.123)

which produces a homogeneous boundary condition for w, i.e.,

w|∂Ω = 0. (3.124)

Next, by subtracting (3.120) from (2.19), we can see that w satisfies the fol-

lowing inhomogeneous PB equation with a much smoother right-hand side:

−∇ · ε∇w + λ2w = f(r), r ∈ Ωi or r ∈ Ωo, (3.125)

where

f(r) =

{
0, if r ∈ Ωi,
εoλ

2
i −εiλ

2
o

εi
G(r) +

(
εo∇2 − λ2

o

)
g̃(r), if r ∈ Ωo.

(3.126)

Moreover, a transmission condition for w can be derived from (2.3):

wi − wo = 0, (3.127)

εi

(
∂w

∂n

)
i

− εo

(
∂w

∂n

)
o

= (εo − εi)
∂G

∂n
≡ σΓ. (3.128)

Now, by integrating (3.125) over Ωi ∪Ωo with a test function v ∈ H0(Ω) (sub-

space of the Sobolev space H(Ω) of functions with L2-integrable first derivatives

where boundary trace is zero (Ciarlet, 1978)) and using integration by parts and

the transmission condition (3.127) and (3.128), we have the following weak form

of (3.125).

Find w ∈ H0(Ω), such that

∀v ∈ H0(Ω), a(w, v) = F (v), (3.129)

where a(w, v) is a bilinear form

a(w, v) =

∫
Ω

(
ε∇w∇v + λ2wv

)
dr, (3.130)
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and the functional F (v) is

F (v) =

∫
Ω

fv dr+

∫
Γ

σΓv ds. (3.131)

The finite element is based on a triangulation of the solution domain Ω into

elements K which conform to the molecular interface Γ. A polynomial space

Pk(K) is used for the element subspace, where the basis functions are usually

associated with the nodal values at specific points onK, such as the vertices of K

or middle points on the edges of the element K. For a reference tetrahedron K̂

with vertices {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ≡ {vi}3i=0, the following basis

functions for P1(K) can be used:

φ̂0(x̂, ŷ, ẑ) = 1− x̂− ŷ − ẑ,

φ̂1(x̂, ŷ, ẑ) = x̂,

φ̂2(x̂, ŷ, ẑ) = ŷ,

φ̂3(x̂, ŷ, ẑ) = ẑ. (3.132)

The basis functions on a general tetrahedron K are defined by a pull-back func-

tion F (x̂, ŷ, ẑ):

(x̂, ŷ, ẑ) ∈ K̂ → (x, y, z) = F (x̂, ŷ, ẑ) ∈ K, (3.133)

and the basis functions on K take the following form

φi(x, y, z) = φ̂i ◦ F−1(x, y, z) = φi(x̂, ŷ, ẑ), i = 0, 1, 2, 3. (3.134)

A finite element subspace Vh ⊂ H(Ω) can be constructed by combining the

element subspace where the common nodal values at the shared vertices between

adjacent elements will ensure the global continuity of the function in Vh:

Vh = {vh : vh|K ∈ Pk(K)}. (3.135)

Let {φi(x, y, z)}|NK
i=1 be the basis functions indexed by the NK vertices of the

triangulation. Then

Vh =

{
vh : vh =

NK∑
i=1

viφi(x, y, z)

}
⊂ H(Ω), (3.136)

where the nodal unknown is vi = vh(αi) at the node αi. Correspondingly, a

subspace for H0(Ω) can be defined by setting the nodal values at the boundary

nodes as zero. Let Nint denote the total number of the interior nodes and Nb

the total number of the boundary nodes as listed in the summation. Then NK =

Nint +Nb, and

V0h =

{
vh : vh =

Nint∑
i=1

viφi(x, y, z)

}
⊂ H0(Ω). (3.137)

The finite element solution to the weak form (3.129) is as follows.
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Find wh ∈ V0h, such that

∀vh ∈ V0h, a(wh, vh) = F (vh). (3.138)

By taking vh = φj(x, y, z), j = 1, 2, . . . , Nint, we arrive at the following linear

system for the unknowns w = (w1, . . . , wNint
)T :

Aw = f , (3.139)

where the stiffness matrix A is defined through

aij = a(φi, φj), 1 ≤ i, j ≤ Nint, (3.140)

and the source f is defined through

fi = F (φi), 1 ≤ i ≤ Nint. (3.141)

The matrix equation is a sparse linear system, and for large Nint a multigrid

iterative method is usually used to solve (3.139) (Chen, Holst, & Xu, 2007).

3.3 Immersed interface methods (IIMs)

Because of the dissimilarity of the dielectric constants of the molecule and its

solvent, the derivative of the potential is discontinuous as shown in (3.128), which

poses difficulties in finite difference discretization of the PB equation. The finite

difference IIM for (3.125) (Wang et al., 2009) incorporates the jump condition

on the molecular surface Γ into the construction of the difference formula near

the molecular boundary. Other types of modified finite difference methods, such

as the matched interface and boundary (MIB) method, have been applied to

treat the molecular interfaces in the solutions of PB equations (Yu, Geng, &

Wei, 2007).

Let us consider the PB equation in (3.125) and write the transmission condition

(3.127) and (3.128) in a more general notation:

w+ − w− = u, ε+
(
∂w

∂n

)+

− ε−
(
∂w

∂n

)−
= v, (3.142)

where + indicates the limit taken from Ωo and − the limit from Ωi, and n is the

outer normal on ∂Ωi = Γ.

A uniform mesh will be used to discretize (3.125), and the mesh point is

indexed by (i, j, k) with a spacing h in all three directions. The interface is

described by a level set function ϕ (Sethian, 1999; Osher & Fedkiw, 2002)

Γ = {(x, y, z) : ϕ(x, y, z) = 0}, (3.143)

and the interior and the exterior of the molecule are described by

Ωi = {(x, y, z) : ϕ(x, y, z) < 0}, Ωo = {(x, y, z) : ϕ(x, y, z) > 0}, (3.144)

respectively.
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By using the level set function ϕ, a mesh point (i, j, k) is identified as an

irregular point if

ϕmin
ijk ϕmax

ijk < 0, (3.145)

where

ϕmin
ijk = min{ϕ(i± 1, j, k), ϕ(i, j ± 1, k), ϕ(i, j, k ± 1)},

ϕmax
ijk = max{ϕ(i± 1, j, k), ϕ(i, j ± 1, k), ϕ(i, j, k ± 1)}.

The rest of the mesh points will be considered as regular points where the

following difference equation for (3.125) is used (Li & Ito, 2006; Wang et al.,

2009):

ε

(
i− 1

2
, j, k

)
[w(i− 1, j, k)− w(i, j, k)]

+ ε

(
i+

1

2
, j, k

)
[(w(i+ 1, j, k)− w(i, j, k)]

+ ε

(
i, j − 1

2
, k

)
[w(i, j − 1, k)− w(i, j, k)]

+ ε

(
i, j +

1

2
, k

)
[(w(i, j + 1, k)− w(i, j, k)]

+ ε

(
i, j, k − 1

2

)
[w(i, j, k − 1)− w(i, j, k)]

+ ε

(
i, j, k +

1

2

)
[(w(i, j, k + 1)− w(i, j, k)]

− λ2(i, j, k)w(i, j, k) = −f(i, j, k)

h
. (3.146)

For irregular mesh points identified by (3.145), a different difference formula

is used in the IIM in the following form:

ns∑
m

γmw(i+ im, j + jm, k + km) = f(i, j, k) + C(i, j, k), (3.147)

where ns is the number of the mesh points around (i, j, k) used in the difference

formula, and the coefficients γm are to be determined by a requirement on the

truncation error at X∗,

T (i, j, k) =

ns∑
m

γmw(i + im, j + jm, k + km) − f(i, j, k) − C(i, j, k) = O(h),

(3.148)

where X∗ is the projection of the mesh point (i, j, k) onto the interface Γ.

To satisfy the requirement of (3.148), we expand all terms in T (i, j, k) by a

Taylor expansion at X∗ and use the jump conditions for the partial derivatives

of u and v to obtain (Li & Ito, 2006)
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w+ = w− + u,

w+
ξ =

ε−

ε+
w−

ξ +
v

ε+
,

w+
η = w−

η + uη,

w+
τ = w−

τ + uτ ,

w+
ητ = w−

ητ + (w−
ξ − w+

ξ )χητ + uητ ,

w+
ηη = w−

ηη + (w−
ξ − w+

ξ )χηη + uηη,

w+
ττ = w−

ττ + (w−
ξ − w+

ξ )χττ + uττ ,

w+
ξη =

ε−

ε+
w−

ξη +

(
w+

η −
ε−

ε+
w−

η

)
χηη +

(
w+

τ −
ε−

ε+
w−

τ

)
χητ +

vη
ε+

,

w+
ξτ =

ε−

ε+
w−

ξτ +

(
w+

η −
ε−

ε+
w−

η

)
χητ +

(
w+

τ −
ε−

ε+
w−

τ

)
χττ +

vτ
ε+

,

w+
ξξ =

ε−

ε+
w−

ξξ +

(
ε−

ε+
− 1

)
w−

ηη +

(
ε−

ε+
− 1

)
w−

ττ

+ (w+
ξ − w−

ξ )(χηη + χττ )− uηη − uττ +
1

ε+
([λ2]w− −

(
λ2

)+
[w]),

(3.149)

where [w] = w+ − w−.

Then it can be shown that the truncation error is given by

T (i, j, k) = a1w
− + a2w

−
ξ + a3w

−
η + a4w

−
τ + a5w

−
ητ + a6w

−
ηη + a7w

−
ττ

+ a8w
−
ξη + a9w

−
ξτ + a10w

−
ξξ + (T̂ − C(i, j, k)) +O(h), (3.150)

where all ai and T̂ are functions of the 27 coefficients γm. Therefore, in order

to satisfy (3.148), we require all coefficients ai to be zero and set C(i, j, k) = T̂ ,

which results in an over-determined system for γm:

Bγ = b. (3.151)

To determine the 27 unknown coefficients, the following minimization problem

is solved for the optimal choice:

min
γm

1

2

∑
m

(γm − dm)2 (3.152)

subject to Bγ = b,

γm < 0, (im, jm, km) = (0, 0, 0),

γm > 0, (im, jm, km) 	= (0, 0, 0),



88 Numerical methods for Poisson–Boltzmann equations

where the reference coefficients are

dm =
εi+ im

2 ,j+ jm
2 ,k+ km

2

h2
, if i2m + j2m + k2m = 1,

dm = 0, otherwise, and d0 = − 1

h2

∑
m �=0

εi+ im
2 ,j+ jm

2 ,k+ km
2
. (3.153)

3.4 Summary

Boundary element methods based on singular integrals are popular methods, es-

pecially coupled with fast multipole methods to be discussed in the next chapter,

for molecules of general shapes. The singular integrals in the BEMs in the form

of Cauchy principal values and the Hadamard finite part of Green’s functions

can be treated with subtraction and direct evaluation techniques, where the lat-

ter technique is also applicable to more general Green’s functions. Mesh-based

methods such as finite element and finite difference methods produce sparse lin-

ear systems for which fast solvers such as multigrid methods (Brandt, 1982) can

be used.



4 Fast algorithms for long-range
interactions

Fast algorithms are indispensable for computing long-range interactions between

electric charges or current sources, which is one of the most important computa-

tional efforts in molecular dynamics simulations of biological systems (Allen &

Tildesley, 1989), and the simulations of wave interactions. Three methods will

be discussed. The first is the well-known Ewald summation (Ewald, 1921) for a

periodic system of charges and/or dipoles, and its particle-mesh Ewald (PME)

implementation. The PME uses charge interpolation onto a regular lattice and

the fast Fourier transformation (FFT) to produce an algorithm of O(N logN)

complexity for an N -charge and/or dipole system. The second is the fast multi-

pole method (FMM) (Greengard & Rokhlin, 1987) for N particles, applicable to

both periodic and non-periodic systems, using multipole expansions to reduce the

cost of computing the far-field potential of charges (or current sources) and a hi-

erarchical oct-tree structure for an O(N) (electrostatics) or O(N logN) (current

sources) multi-level algorithm. Finally, a hybrid multi-scale method combines

the image charge approximation to the reaction field of charges inside a spheri-

cal cavity surrounded by a dielectric medium and the FMM for the interaction

of all charges and their image charges, resulting in an overall O(N) algorithm.

4.1 Ewald sums for charges and dipoles

In 1921, Ewald proposed a method to compute the potential due to an infinite

array of charges from periodic image copies of N charges qi in a primary box Λ

with an overall charge neutrality, i.e.,

N∑
j=1

qj = 0. (4.1)

The primary box Λ is defined by three elementary lattice vectors {ai, i =

1, 2, 3}, the so-called Bravais lattice vectors (Kittel, 2004). The three correspond-

ing elementary reciprocal lattice vectors {bk, k = 1, 2, 3} are also defined such

that

ai · bk = 2πδik, (4.2)
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where δik is the Kronecker delta. The general reciprocal lattice vector G is

given by

G = m1b1 +m2b2 +m3b3, mk ∈ Z, k = 1, 2, 3, (4.3)

where Z represents the set of all integers.

The N charge locations rj ∈ Λ are identified by a triplet of fractional coordi-

nates (f1j ,f2j ,f3j):

rj = f1ja1 + f2ja2 + f3ja3, (4.4)

where, for 1 ≤ j ≤ N, 1 ≤ k ≤ 3,

fkj = rj · bk. (4.5)

The periodic image Λn of the box Λ is constructed by n = (n1,n2,n3)-shifts,

ni ∈ Z, i = 1, 2, 3, as

Λn = Λ+ n1a1 + n2a2 + n3a3 ≡ Λ + na, (4.6)

and the image copies of the N charges in the primary box Λ are then defined by

the same shifts in the corresponding box Λn:

rjn = rj + na. (4.7)

The Ewald summation is used to evaluate the potential V (r) from the N

charges at rj , 1 ≤ j ≤ N , in Λ and their periodic images at rjn in Λn, i.e.,

V (r) =
∑
n

∑
j

qj
4πε0|r− rjn|

. (4.8)

As the series (4.8) is only conditionally convergent and the limit in fact depends

on the order of the summation in n, Ewald (1921) proposed to split the series

into two parts: a direct part Vdir(r) (carried out in the physical space) and a

reciprocal part Vrec(r) (carried out in the reciprocal Fourier G-space) (see Fig.

4.1). This splitting is done by placing a diffused charge density σjn(r) with a

total charge −qj centered at each charge rjn:

σjn(r) = −qjσ(|r− rjn|), (4.9)

where σ is usually taken to be a Gaussian with a variance 1/(
√
2α) (other types

of local density shape have also been studied (Heyes, 1981))

σ(u) =
α3

π3/2
e−α2u2

. (4.10)

The diffused charge σjn(r) of opposite sign imposed on each charge qj at

rjn effectively screens the latter charge, resulting in a short-ranged interaction

potential. The potential of all these screened charges is denoted as Vdir(r). The

potential φσ(r) due to a single Gaussian charge density σ(|r− rj |) satisfies the
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sum in real space

sum in Fourier space

+ +

+ +

+

––

– –

Figure 4.1. Ewald summation with real and reciprocal spaces.

Poisson equation (4.13) with −σ(|r− rj |) as the right-hand side, whose solution

is given by the erf(x) function (Evans, 1998):

φσ(r) =
1

4πε0

erf(α|r− rj |)
|r− rj |

, (4.11)

where

erf(x) =
2√
π

∫ x

0

e−u2

du.

Therefore, the direct potential Vdir(r) is simply

Vdir(r) =
∑
n

∑
j

qj
4πε0

(
1

|r− rjn|
− erf(α|r− rjn|)

|r− rjn|

)

=
∑
n

∑
j

qj
4πε0

erfc(α|r− rjn|)
|r− rjn|

, (4.12)

where the complementary error function erfc(x) = 1− erf(x).

The exponential decay of the function erfc(x) reflects the screening effect of the

diffused Gaussian density σjn(r) superposed on the charge qj at rjn. Therefore,

for each given field location r = ri, only a few terms need to be included in

the summation (4.12) by using a simple truncation cut-off (proportional to 1/α)

based on the distance |rjn − ri|. As a result, the computation of Vdir(ri) at all

field locations ri, i = 1, 2, . . . , N , will only cost O(N) operations.
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Next, we consider the potential Vrec(r) from all the diffused charges σjn(r),

which in fact satisfies the following Poisson equation:

ε0∇2Vrec(r) = −ρ(r), (4.13)

where

ρ(r) =
∑
n

∑
j

σjn(r) =
∑
n

∑
j

qjσ(|r− rjn|). (4.14)

From the periodicity of the density ρ(r), we can expand both Vrec(r) and ρ(r) in

terms of Fourier series:

Vrec(r) =
∑
G

Vrec(G)eiG·r (4.15)

and

ρ(r) =
∑
G

ρ(G)eiG·r, (4.16)

where

ρ(G) =
1

|Λ|

∫
Λ

ρ(r)e−iG·r dr. (4.17)

The Fourier coefficient ρ(G) in (4.17) can be calculated as follows:

ρ(G) =
1

|Λ|

∫
Λ

∑
n

∑
j

qjσ(|r− rj − na|)e−iGr dr

=
1

|Λ|
∑
j

∑
n

∫
Λ

qjσ(|r− rj − na|)e−iG·r dr

=
1

|Λ|
∑
j

∑
n

∫
Λn

qjσ(|r− rj |)e−iG·r dr,

where exp(−iG · na) = 1 is used in the final equality, and then

ρ(G) =
1

|Λ|
∑
j

∫
R3

qjσ(|r− rj |)e−iG·r dr =
1

|Λ|
∑
j

∫
R3

qjσ(|r|)e−iG·(r+rj) dr

=
1

|Λ|
∑
j

qje
−iG·rj

∫
R3

σ(|r|)e−iG·r dr =
S(G)

|Λ|

∫
R3

σ(|r|)e−iG·r dr

=
α3

π3/2

1

|Λ|e
− G2

4α2 S(G)

∫
R3

e−|αr+ i
2αG|2 dr =

1

|Λ|S(G)e−
G2

4α2 , (4.18)

where a quantity S(G) (termed the structure factor (Kittel, 2004)) has been

introduced as follows:

S(G) =

N∑
j=1

qje
−iG·rj . (4.19)
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Plugging (4.15) and (4.16) into the Poisson equation (4.13), and equating the

Fourier coefficients, we have

Vrec(G) =
1

ε0|Λ|G2
S(G)e−

G2

4α2 , G 	= 0, (4.20)

for which we obtain the solution for Vrec(r) in the Fourier space as

Vrec(r) =
1

ε0|Λ|
∑
G �=0

1

G2
S(G)e−

G2

4α2 eiG·r, (4.21)

where the constant term Vrec(G = 0) for the potential function Vrec(r) can be

set to be zero.

Finally, the potential at r = ri can be computed as follows:

V (ri) = Vdir(ri) + Vrec(ri)−
2αqi

4πε0
√
π
+

1

ε0(2εsur + 1)|Λ|ri
∑
j

qjrj

=
∑′

n

∑
j

1

4πε0

qj erfc(α|ri−rjn|)
|ri−rjn|

+
1

ε0|Λ|
∑
G �=0

1

G2
S(G)e−

G2

4α2 eiG·ri

− 2αqi
4πε0

√
π
+

1

ε0(2εsur + 1)|Λ|ri
∑
j

qjrj , (4.22)

where the prime on the n-summation indicates the exclusion of the self-interaction

potential (unbounded) at ri = rj for n = 0. Two correction terms have been in-

troduced in (4.22): the first accounts for the self-interaction of the Gaussian

density qjσ(|r− rj |), and the second is a surface term coming from the exterior

surface of the finite crystal system during the summation process. Here, εsur is

the dielectric constant assumed for the environment outside the finite system

(Roberts & Schnitker, 1994; Nymand & Linse, 2000).

The potential energy of the primary cell within the periodic charge system is

U =
1

2

∑′

n

N∑
i=1

N∑
j=1

1

4πε0

qiqj
|ri−rjn|

, (4.23)

which, under the Ewald splitting procedure for the electric potential (4.22), can

be computed as

U =
1

2

∑
i

∑
j

∑′

n

1

4πε0

qiqj erfc(α|ri−rjn|)
|ri−rjn|

+
1

2ε0|Λ|
∑
i

qi
∑
G �=0

1

G2
S(G)e−

G2

4α2 eiG·ri

− α

4πε0
√
π

N∑
i=1

q2i +
1

2ε0(2εsur + 1)|Λ|

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

, (4.24)

where the second to last term subtracts the self-interaction energy of each charge

and, again, the final correction term (de Leeuw, Perram, & Smith, 1980; Nymand

& Linse, 2000) is the polarization energy of the total dipole moment of the

system charges from the surrounding dielectric media outside the regions where

the summation over the finite range of n is taken. The final term is sometimes
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also identified as an extrinsic potential (Redlack & Grindlay, 1972, 1975; Roberts

& Schnitker, 1994).

The Ewald sum (4.24) for the potential energy was given a strict mathematical

derivation in (de Leeuw, Perram, & Smith, 1980) by using a convergence factor

in the form of e−s|n| in (4.23) and taking the limit s→ 0.

Ewald sums for systems with dipoles

In a periodic molecular system, where the interaction of the molecules can be

described through their partial charges and dipole moments, the Ewald sums

can be extended to compute the interaction of charges and dipoles (Nymand &

Linse, 2000).

The potential of a collection of molecules (or particles) described by partial

charges qj and dipole moments μj , 1 ≤ j ≤ N, is given at location ri by the

following Ewald sum:

V (ri) = Vdir(ri) + Vrec(ri) + Vself(ri) + Vsurf(ri), (4.25)

where the direct part evaluated in the real space is given by

Vdir(ri) =
∑
j �=i

(
T̂ijqj + T̂α

ijμj,α

)
, (4.26)

and, for simplicity of notation, the screened electric potential T̂ij and its deriva-

tives T̂α
ij and T̂αβ

ij are denoted as

T̂ij =
1

4πε0

erfc(α|ri−rj |)
|ri−rj |

, (4.27)

T̂α
ij = ∇αT̂ij , (4.28)

T̂αβ
ij = ∇α∇βT̂ij . (4.29)

The reciprocal potential part evaluated in the Fourier space is given by

Vrec(ri) =
1

ε0|Λ|
∑
G �=0

1

G2
e−

G2

4α2 Sqμ(G)eiG·ri , (4.30)

where the structure factor Sqμ(G) for the charge–dipole system is

Sqμ(G) =
N∑
j=1

(
qj − iμj ·G

)
e−iG·rj . (4.31)

The self-energy potential,

Vself(ri) = −
2αqi

4πε0
√
π
−

∑
j �=i;i,j∈p

(
T̃ijqj + T̃α

ijμj,α

)
, (4.32)
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where i, j ∈ p indicates that sites i and j both belong to the same particle

(or molecule), and a modified intra-molecular interaction potential T̃ij and its

derivatives T̃α
ij are used:

T̃ij =
1

4πε0

erf(α|ri−rj |)
|ri−rj |

, (4.33)

T̃α
ij = ∇αT̃ij , (4.34)

T̃αβ
ij = ∇α∇βT̃ij . (4.35)

Finally, the surface potential

Vsurf(ri) =
1

ε0(2εsur + 1)|Λ|ri
∑
j

(
qjrj + μj

)
. (4.36)

Meanwhile, the potential energy of the system of charges and dipoles can also

be found by the Ewald sum as

U = Udir + Urec + Uself + Usurf, (4.37)

where the potential energy of the screened charges and dipoles evaluated in the

real space is given by

Udir =
1

2

∑′

n

∑
i

∑
i,j

(
qiqjT̂ij + qiT̂

α
ijμj,α − μi,αT̂

α
ijqj − μi,αT̂

α,β
ij μi,β

)
; (4.38)

the potential energy of the screening Gaussian charges evaluated in the Fourier

space is given by

Urec =
1

2ε0|Λ|

⎛⎝∑
G �=0

1

G2
e−

G2

4α2 |Sqμ(G)|2
⎞⎠ ; (4.39)

the self-energy consists of that of the Gaussian density and the charges and the

dipoles inside each individual molecule:

Uself =− 1

4πε0

N∑
i=1

(
α√
π
q2i +

2α3

3
√
π
μ2
i

)
(4.40)

− 1

2

∑
p

∑
j �=i;i,j∈p

(
qiT̃ijqj + qiT̃

α
ijμj,α − μi,αT̃

α
ijqj − μi,αT̃

αβ
ij μj,β

)
;

and, finally, the surface energy due to the exterior εsur dielectric environment is

given by

Usurf =
1

2ε0(2εsur + 1)|Λ|

⎡⎣∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

+ 2

(
N∑
i=1

qiri

)
·
(

N∑
i=1

μi

)
+

∣∣∣∣∣
N∑
i=1

μi

∣∣∣∣∣
2
⎤⎦ .

(4.41)
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The Ewald sum can also be extended to a system of quadrupoles (Aguado &

Madden, 2003; Laino & Hutter, 2008) and polarizable dipoles (Nymand & Linse,

2000; Sala, Guàrdia, & Masia, 2010).

4.2 Particle-mesh Ewald (PME) methods

The cost for the original Ewald sum (Ewald, 1921) is expensive due to the com-

putation of the structure factors for non-uniform charges in (4.19) (or charges–

dipoles in (4.31)). In applying (4.21) in computer simulation, a truncation, pro-

portional to α, on the reciprocal vector G space will be required. Assuming

that the Fourier indices G = (m1,m2,m3) for Vrec(r) are truncated within the

following range:

− Mα

2
≤ mα ≤

Mα

2
, Mα = O(N1/3), α = 1, 2, 3, (4.42)

for which S(G) will be computed, the cost of computing each S(G) in (4.19)

will be O(N). So, the total cost will be O(N2).

Thus, in order to reduce the cost in computing Vrec(r), the key is to reduce the

computation of all structure factors S(G) in (4.19), which involves the evaluation

of the exponential exp(−iG · rj) at irregular locations rj . To achieve this goal,

an auxiliary regular lattice mesh, previously proposed in the particle-particle

particle-mesh (PPPM) method (Hockney & Eastwood, 1981), is introduced in the

PME method (Darden, York, & Pedersen, 1993; Essmann et al., 1995; Toukmaji

& Board, 1996):

rk =
k1
K1

a1 +
k2
K2

a2 +
k3
K3

a3, 0 ≤ kα ≤ Kα, α = 1, 2, 3, (4.43)

where Kα is the total number of mesh points along the aα direction. Associated

with this mesh, we define an interpolation function Lk(r),k = (k1, k2, k3):

Lk(r) = Lk1
(f1)Lk2

(f2)Lk3
(f3), if r = f1a1 + f2a2 + f3a3, (4.44)

where Lk can just be the piecewise linear hat function in the finite element

method such that Lk(l) = δkl, and supp(Lk) = (k − 1, k + 1), ensuring that

Lk(rm) = δkm. (4.45)

As in the finite element method, the function Lk(r) can be used to interpolate

a function at r using its values at rk by the following formula:

f(r) =
∑
k

f(rk)Lk(r). (4.46)

Next, the interpolation formula (4.46) is applied to the exponential function

e−iG·rj =
∑
k∈Δ

e−iG·rkLk(rj), (4.47)
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where the index set Δ is

Δ = {(k1, k2, k3) : 0 ≤ kα ≤ Kα − 1, α = 1, 2, 3}. (4.48)

In obtaining (4.47), we have used the compact support of the interpolant func-

tions and we have also assumed implicitly that no charge qj falls into the sup-

port of the boundary interpolant functions Lk, when δk1K1
+ δk2K2

+ δk3K3
	= 0.

For those charges, we can treat their contributions to S(G) separately without

changing the overall complexity of the algorithm.

From (4.19) we have

S(G) =
∑
j

qj
∑
k∈Δ

e−iG·rkLk(rj) =
∑
k∈Δ

e−iG·rk
∑
j

qjLk(rj)

=

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

Qke
−iG·rk =

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

Qke
−i2π

(
m1k1
K1

+
m2k2
K2

+
m3k3
K3

)
,

(4.49)

where the definitions of G in (4.3) and of rk in (4.43) and relation (4.2) have

been used, along with

Qk =
∑
j

qjLk(rj), k ∈Δ. (4.50)

The calculation of each Qk will involve only a few charges due to the small

support of the function Lk(rj). Therefore, Q = {Qk : k ∈Δ} can be calculated

in O(N) operations. From (4.49), S(G) is simply the discrete Fourier transform

of the 3-D data array Q defined on a regular lattice, readily achieved using the

FFT at a cost of O(N logN) if we select Kα = Mα = O(N1/3), α = 1, 2, 3.

The reciprocal potential Vrec(rk) on the auxiliary mesh lattices can be approx-

imated by truncating the Fourier series in (4.21), namely

Vrec(rk) �
1

ε0|Λ|

M1
2 −1∑

m1=−M1
2

M2
2 −1∑

m2=−M2
2

M3
2 −1∑

m3=−M3
2

e−
G2

4α2 S(G)

G2
e
i2π

(
m1k1
M1

+
m2k2
M2

+
m3k3
M3

)
,

(4.51)

(assuming Kα = Mα, α = 1, 2, 3), which again can be implemented by an FFT.

Finally, the potential Vrec(ri) off the lattice is obtained by using the interpo-

lation formula (4.46) from Vrec(rk).

The accuracy of the PME can be easily controlled by the size of the auxiliary

mesh K = K1K2K3, and the truncation used in the Fourier series for Vrec(r)

above (which depends on the magnitude of α), and also the type of the inter-

polant function Lk in (4.46). The linear Lagrange interpolation is used in the

original paper of Darden, York, & Pedersen (1993), and later a smoother cubic

spline is used, which allows continuous differentiation of the potential for force

calculations that require the derivatives of the potentials (Essmann et al., 1995).
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4.3 Fast multipole methods for N-particle electrostatic interactions

The fast multipole method (FMM) is used to compute N -body interactions from

discrete charges, whose potential field is given by Green’s functions for the fol-

lowing Poisson equations:

(2-D) −�Φ(r) = δ(r), Φ(r) = − 1

2π
log(|r|), (4.52)

(3-D) −�Φ(r) = δ(r), Φ(r) =
1

4π|r| . (4.53)

The FMM can be illustrated in a 2-D electrostatic problem (Greengard &

Rokhlin, 1987), with a potential given by (4.52). The goal is to evaluate the po-

tential field atM points fromN charges q1, q2, . . . , qN distributed at r1, r2, . . . , rN .

The potential at a field point r due to a charge qi is given by (1/(2π) is omitted

for simplicity)

Φi(r) = −qi log(|r− ri|). (4.54)

From the principle of linear superposition, the total potential at r is given by

Φ(r) =

N∑
i=1

Φi(r) = −
N∑
i=1

qi log(|r− ri|). (4.55)

The calculation of the potential from all N charges for each field point requires

O(N) flops (floating point operations). Therefore, for M field points, the cost by

direct evaluation of (4.55) is O(MN) operations.

• The goal of the FMM is to reduce the complexity for N -particle electrostatic

interactions from O(N 2) to O(N) when M = N .

4.3.1 Multipole expansions

Key idea

The key idea of multipole expansion is that it applies to a potential in the far

field (i.e., at a distance greater than 2a from the source charges inside a sphere of

radius a). We make this observation: far away from a group of source charges, the

combined potential from those source charges could be represented by a source at

one point, located in the center of the group of the source charges, with multipole

source components beyond the single pole of the original Coulomb potential, such

as dipole, quadrupole, etc.

Mathematically, this amounts to an expansion of negative powers for the com-

bined potential from all charges at a common point. We illustrate this idea using

the 2-D potential (4.54), where the total potential at r = (x, y) is given by (4.55).
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To facilitate the calculation, we introduce the complex number z = x+iy, and

then the potential for the 2-D Poisson equation will be just the real part of an

analytical complex function away from zi, i.e.,

Φi(r) = −qi log (|r− ri|) = −qiRe(log(z − zi)), (4.56)

where

log z = log
(√

x2 + y2eiθ
)
= log

(√
x2 + y2

)
+ iθ. (4.57)

Furthermore, the total complex potential at z can be computed by the following

multipole expansion (ME):

Φ(z) =
N∑
i=1

Φi(z) = −
N∑
i=1

qi log (z − zi)

= Q log z +

∞∑
k=1

ak
zk

, (4.58)

where

Q = −
N∑
i=1

qi, ak = −
N∑
i=1

qiz
k
i

k
. (4.59)

The proof of (4.58) is based on a simple Taylor expansion as follows:

log(z − z0) = log(z) + log
(
1− z0

z

)
= log(z)−

∞∑
k=1

1

k

(z0
z

)k

. (4.60)

As |z0/z| < 1, we have log(1− x) =
∑∞

k=1(x
k/k) for x = |z0/a| , |x| < 1, and we

can truncate the series to the P th term with an error estimate as follows:∣∣∣∣∣Φ(z)−Q log(z)−
P∑

k=1

ak
zk

∣∣∣∣∣ ≤
(

A

C − 1

)(
1

C

)P

= A

(
1

2

)P

, (4.61)

where C = |z/a| ≥ 2.

For example, for an accuracy at 10−4, we require(
1

2

)P

= 10−4 → P ∼ 13,

and the following approximation will have the desired accuracy:

Φ(z) ≈ Q log z +
P∑

k=1

ak
zk

, for |z| ≥ 2a. (4.62)

• Cost of the multipole expansion

We see that

the cost of calculating the charge Q = N,

the cost of calculating all ak = 4NP, (4.63)
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so the total cost is given by

(4P + 1)N ∼ O(N). (4.64)

Now with

Φ(zj) = Q log zj +

P∑
k=1

ak
zkj

, (4.65)

for M field points there will be (3P + 1)M operations. Therefore, the total cost

for computing the potential at all M field points is given by

(4P + 1)N + (3P + 1)M ∼ 7PN = O(N) if M = N. (4.66)

Multi-level algorithm

As illustrated above, when the field point is far away from the source charges, a

substantial cost reduction can be achieved by using Taylor expansions and pre-

calculating the multipole expansion coefficients. However, in most application

problems, the source charges and the potential field points are intermingled, and

sometimes, they are at the same set of physical locations. So, in general, it will

be difficult to satisfy the far-field requirement between the potential field loca-

tions and all source charge locations. The solution to this problem is to create

a hierarchical structure of subdivision of the physical region into nested rectan-

gular/cubic boxes (Barnes & Hut, 1986), as the far-field concept is applicable to

every scale of distance. This means that at each given level of boxes of size a,

the multipole expansion idea can be used at that level.

In practice, the tree structure of the nested rectangular boxes in Fig. 4.2 is so

formed such that the smallest box contains only 3 ∼ 4 charges. For an L-level

hierarchical structure of nested boxes, there are 4L boxes in 2-D (8L boxes in

3-D) at the finest level (Lth level).

• Concept of local expansion for far field

We consider any i-box at the level l. Our goal is then to calculate the potential

at z inside the i-box, which can be decomposed as follows:

Φ(z) =
∑

qi inside i-box
& its neighbors

Φqi(z) + potential from all other charges outside. (4.67)

The potential contribution to the i-box from all charges in a j-box centered at

z0 from the second group in (4.67) can be represented by a multipole expansion

as (4.58), as each j-box is one box away from the i-box. This procedure can

be carried out for all j-boxes, resulting in a multipole expansion at the center

of each j-box, which together can give the potential inside the i-box. To avoid

using many centers from all the multipole expansions, after realizing the fact

that it is the potential inside the same i-box that we are interested in and that

all multipole expansions are smooth functions inside the i-box, we can convert
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Figure 4.2. FMM mesh setup, showing i-box (dark shaded box) and its parent (light
shaded boxes); the interaction boxes (marked by x), which are bounded by thinner
and thicker rectangular boundaries; the thinner rectangular boundary outside which
the charges define the local expansion ψl,i for the i-boxes; the thicker rectangular
boundary outside which the charges define ψ̃l,i for the i-boxes.

all the multipole expansions to a Taylor expansion at x = 0, the center of the

i-box. This Taylor expansion is defined as a local expansion.

Our ultimate goal is to find the local expansion of all i-boxes on the Lth level

by converting all multipole expansions from charges outside the i-box using the

following translations.

• Multipole to local translation

Consider a multipole expansion (ME) at z0:

Φ(z) = Q log(z − z0) +

P∑
k=1

ak
(z − z0)k

, (4.68)

which diverges to ∞ at z0. However, if we are only concerned with the region

|z − z0| > 2a, then we can convert the ME there to a local (Taylor) expansion

at z = 0. Namely, by using the Taylor expansion of f(z) = 1/(z − z0)
k,

1

(z − z0)k
= z−k

0

(
z

z0
− 1

)−k

=
∞∑
k=0

f (k)(0)

k!
zk, (4.69)
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the ME (4.68) can be expressed as a local Taylor expansion at 0, i.e.,

Φ(z) =

∞∑
l=0

blz
l, (4.70)

where

b0 =
P∑

k=1

ak
zk0

(−1)k + a0 log(−z0),

bl =

[
1

zl0

P∑
k=1

ak

zk0

(
l + k − 1

k − 1

)
(−1)k

]
− a0

lzl0
, l ≥ 1. (4.71)

4.3.2 A recursion for the local expansions (0 → L-level)

Denote the potential due to all charges outside the i-box and its eight neighbors

by a function ψl,i(z), i.e.,

ψl,i(z) = local expansion for the potential

due to all charges outside the i-box and

the eight neighbors of the i-box, (4.72)

where 0 ≤ l ≤ L is the level of the tree structure.

To generate a recursive process, we also define another function ψ̃l,j(z) for the

parent of a j-box on level l in the same spirit, namely

ψ̃l,j(z) = local expansion for the potential

due to all charges outside the parent of the j-box and

the eight neighbors of the parent. (4.73)

Therefore, if the i-box at level l has four children j = 1, 2, 3, 4 at level l + 1,

then it is clear that by identifying the “i-box” as “parent of the j-box” above,

and we have

ψ̃l+1,j(z) = ψl,i(z), for j = 1, 2, 3, 4. (4.74)

This relation is the crucial step in building the recursion among the local

expansions from l = 0 to L, which is done as follows.

Firstly, it should be mentioned that the difference between ψl,i(z) and ψ̃l,j(z)

is that the former includes more charges from additional 27 boxes which are

defined as “Interaction List”, marked by “x” in the boxes in Fig. 4.2. If all

charges are positive, we have

ψl,i(z) > ψ̃l,i(z), (4.75)

and in general we can interpret the > sign as “more charges are involved” count-

ing both positive and negative charges.

By a recursive manner, we start at level 0, where ψ̃0,i = 0, to form a recursion

ψ̃l,j → ψ̃l+1,j , and also a recursion for ψl,i → ψl+1,i, until the level index l = L
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is reached. Then we will have obtained the potential of all charges outside the

i-box and its neighbors, which will be calculated by direct calculation.

• Step 1: Start at the l = 0 level, ψ0,1(z) = 0 and ψ̃0,1 = 0.

• Step 2: For l = 0, 1, . . . , L,

we define for all 4l i-boxes at level l

ψl,i(z) = ψ̃l,i(z) + potential from the charges qi inside the 27 boxes

from the interaction list

= ψ̃l,i(z) +
27∑
k=1

Φl,k(z), (4.76)

where Φl,k(z) is the ME of the charges in the kth box from the interaction

list, which is assumed as having been converted into a local expansion

centered in the i-box.

Meanwhile, for l < L we update to

ψ̃l+1,j(z) = ψl,i(z), j = 1, 2, 3, 4, (4.77)

where the i-box is the parent of the four children j-boxes.

In the updating step (4.77), the local expansion for the i-box will have its

center shifted to the center of the four children j-boxes, which is made possible

by the following translation operation.

• Local to local translation

A local expansion centered at z0 can be translated to a local expansion centered

at 0 by the following identity:

∞∑
k=1

ak(z − z0)
k =

n∑
l=0

blz
l, (4.78)

where

bl =
n∑

k=l

ak

(
k

l

)
(−z0)k−l. (4.79)

As seen from (4.76), the key ingredient in completing the recursion for the

local expansions is the multipole expansions for boxes in the interaction list

on all levels, and those multipole expansions can be obtained with a separate

(upward) recursion to be discussed in Section 4.3.3.
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4.3.3 A recursion for the multipole expansions (L→ 0-level)

• Step 1: Start at the Lth level, and compute ME ΦL,j(z), j = 1, 2, . . . , 4L.

• Step 2: For l = L−1, . . . , 0, for each i-box on the lth level, translate the center

of the ME for each of its four children j-boxes, j = 1, 2, 3, 4, to the center

of the i-box, i.e.,

Φl,i(z) = Φl+1,1(z) + Φl+1,2(z) + Φl+1,3(z) + Φl+1,4(z), (4.80)

where the center of the ME Φl+1,j(z), j = 1, 2, 3, 4, has been shifted to the

center of the i-box, made possible by the following operation.

• Multipole to multipole translation

Given a ME centered at z0:

Φ(z) = a0 log(z − z0) +

P∑
k=1

ak
(z − z0)k

, (4.81)

it can be translated into another ME centered at zero:

Φ(z) = a0 log(z) +

∞∑
l=1

bl
zl
, (4.82)

where

bl =
l∑

k=1

akz
l−k
0

(
l − 1

k − 1

)
− a0z

l
0

l
(4.83)

and ∣∣∣∣∣Φ(z)− a0 log(z)−
P∑
l=1

bl
zl

∣∣∣∣∣ ≤ O

(
|z0|+R

z

)P+1

, |z| > z0 +R, (4.84)

for any R > 0.

4.3.4 A pseudo-code for FMM

Finally, we summarize the O(N) FMM for electrostatic interactions (Greengard

& Rokhlin, 1987; Greengard, 1988) with the following pseudo-code for the two

recursions involved:

• Upward recursion for multipole expansions (ME) Φl,i(z)

Initial: L-level, compute all multipole expansions, ΦL,i(z), i = 1, 2, . . . , 4L.

Loop: do

If L− 1 ≥ l ≥ 0, i = 1, 2, . . . , 4l,

Φl,i(z) =

4∑
j=1

Φl+1,j(z)
Φl+1,j(z) – ME for four children of the i-box

with centers shifted to the center of the i-box

(4.85)
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• Downward recursion for local expansions (LE) ψl,i(z)

Initial: l = 0, ψ0,1 = 0 and ψ̃0,1 = 0.

Loop: do

If 0 < l ≤ L, for all 4l i-boxes at level l (4.86)

ψl,i(z) = ψ̃l,i(z) +

27∑
k=1

Φl,k(z)

ME Φl,k(z) for 27 boxes in the

interaction list of the i-box

converted to LE centered at the i-box

ψ̃l+1,j := ψl,i
j-box is one of the four children of the i-box,

loop over 4l+1 i-boxes at level l + 1

4.3.5 Conversion operators for electrostatic FMM in R3

The potential of N charges qi in R3 is given by the following form:

Φ(r) =

N∑
i=1

Φi(r) =
1

4πε0

N∑
i=1

qi
|r− ri|

. (4.87)

An L-level oct-tree of nested cubes can be constructed for a cubic box containing

all charges. The same upward pass recursion for the ME and downward recursion

for the LE can be constructed as in the 2-D case. On the lth level, there will

be 8l cubic boxes, and for any i-box at a given lth level, its interaction list now

will contain 189 boxes, which are one box away from the i-box. We will need

the following results on the construction of the ME from a group of charges, a

multipole to multipole translation, a multipole to local conversion, and a local

to local translation (Greengard, 1988).

• Multipole expansion

Given l charges of strengths {qi}li=1 located at {Qi = (ρi, αi, βi)}li=1 within a

sphere of radius a centered at the origin, the potential at P = (r, θ, φ) with

r > a from all l charges can be approximated by the following p-term multipole

expansion using spherical harmonics with a truncation error:∣∣∣∣∣Φ(P)−
p∑

n=0

n∑
m=−n

Mm
n

rn+1
Y m
n (θ, φ)

∣∣∣∣∣ ≤ A

r − a

(a
r

)p+1

, (4.88)

where

A =
l∑

i=1

|qi| (4.89)

and

Mm
n =

l∑
i=1

qiρ
n
i Y

−m
n (αi, βi), (4.90)
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and the spherical harmonics are defined as

Y m
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimφ. (4.91)

• Translation of multipole expansions

For l charges of strengths {qi}li=1 located at {Qi = (ρi, αi, βi)}li=1 within a sphere

of radius a centered at Q = (ρ, α, β), the potential at P = (r, θ, φ) outside this

sphere is represented by a multipole expansion

Φ(P) =

∞∑
n=0

n∑
m=−n

Om
n

r′n+1
Y m
n (θ′, φ′), r′ > a, (4.92)

where P − Q = (r′, θ′, φ′). Then, the ME can be rewritten as another ME

centered at the origin

Φ(P) =
∞∑
j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ), if r > a+ ρ, (4.93)

where

Mk
j =

j∑
n=0

n∑
m=−n

Ok−m
j−n Jk−m

m Am
n Ak−m

j−n ρnY −m
n (α, β)

Ak
j

, (4.94)

and

Am
n =

(−1)n√
(n−m)!(n+m)!

and Jm
n =

{
(−1)min{|n|,|m|}, if mn < 0,

1, otherwise.

(4.95)

Moreover, the series (4.93) can be truncated with the following error estimate:∣∣∣∣∣∣Φ(P)−
p∑

j=0

j∑
k=−j

Mk
j

rj+1
Y k
j (θ, φ)

∣∣∣∣∣∣ ≤ 1

r − (a+ ρ)

l∑
i=1

|qi|
(
a+ ρ

r

)p+1

. (4.96)

• Multipole to local expansion conversion

For l charges of strengths {qi}li=1 located at {Qi = (ρi, αi, βi)}li=1 within a sphere

of radius a centered at Q = (ρ, α, β) with ρ > (c+ 1)a and c > 1, the multipole

expansion (4.92) can be rewritten as the following local expansion inside the

sphere of radius a centered at the origin:

Φ(P) =
∞∑
j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)rj , r < a, (4.97)



4.4 Helmholtz FMM of wideband of frequencies 107

where P = (r, θ, φ) and

Lk
j =

∞∑
n=0

n∑
m=−n

Om
n Jm

k Am
n Ak

jY
m−k
j+n (α, β)

Am−k
j+n ρj+n+1

, (4.98)

where

Jm′

m =

{
(−1)m′

(−1)min{|m′|,|m|}, if mm′ > 0,

(−1)m′
, otherwise,

(4.99)

and Am
n is defined as in (4.95).

Moreover, the series (4.97) can be truncated with the following error estimate:∣∣∣∣∣∣Φ(P)−
p∑

j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)rj

∣∣∣∣∣∣ ≤ 1

(c− 1)a

l∑
i=1

|qi|
(
1

c

)p+1

. (4.100)

• Translation of local expansions

Let Q = (ρ, α, β) be the origin of a local expansion:

Φ(P) =

p∑
n=0

n∑
m=−n

Om
n Y m

n (θ′, φ′)r′n, (4.101)

where P = (r, θ, φ) and P − Q = (r′, θ′, φ′). Then, the local expansion can be

rewritten as another local expansion centered at the origin:

Φ(P) =

p∑
j=0

j∑
k=−j

Lk
jY

k
j (θ, φ)rj , (4.102)

where

Lk
j =

p∑
n=j

n∑
m=−n

Om
n Jm

n−j,m−kA
m−k
n−j A

k
j ρ

n−jY m−k
n−j (α, β)

Am
n

, (4.103)

and

Jm′

n,m =

⎧⎨⎩
(−1)n+m, if mm′ < 0,

(−1)n(−1)m′−m, if mm′ > 0, |m′| < |m|,
(−1)n, otherwise.

(4.104)

4.4 Helmholtz FMM of wideband of frequencies for N-current
source interactions

In this section, we will consider the interaction from N sources distributed at Xi

with strength Ii, i = 1, 2, . . . , N . Each of the (current) sources Ii will generate an

oscillating field at a location r away from Xi governed by a Helmholtz equation:

(2-D) − (�+ k2)Φ = δ(r), Φ(r) =
i

4
H

(2)
0 (k|r|), (4.105)
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and

(3-D) − (�+ k2)Φ = δ(r), Φ(r) =
e−ik|r|

4π|r| . (4.106)

Therefore, in the 2-D case, the interactions between all the sources can be

written as

Φ(Xi) =

N∑
j=1,j �=i

IjH
(2)
0 (k|Xi −Xj |), i = 1, 2, . . . , N, (4.107)

where H
(2)
0 denotes the zeroth-order Hankel function of the second kind and k

represents the wave number. The FMM will calculate (4.107) with a complexity

of O(N logN) (Cheng et al., 2006b) with a hierarchical quad-tree data structure

by utilizing two kinds of partial wave expansions corresponding, respectively, to

the multipole and local expansions for the electrostatic FMM. For X = (x, y),

denote by ρ the distance between X and the center of the expansion, by θ the

angle between X and the x-axis, and let Hm and Jm denote the mth-order

Hankel and Bessel functions. Then we have

• H- or multipole expansion:

Φ(X) = ψ(X) ≡
∞∑

m=−∞
βmHm(kρ)eimθ, for |X| > max

i
|Xi|, (4.108)

where

βm =

N∑
i=1

IiJm(k|Xi|)e−imθi . (4.109)

• J- or local expansion:

Φ(X) = φ(X) ≡
∞∑

m=−∞
αmJm(kρ)eimθ, for |X| < min

i
| Xi |, (4.110)

where

αm =

N∑
i=1

IiHm(k|Xi|)e−imθi . (4.111)

Equations (4.108) and (4.110) will be referred to as the H- and J-expansions,

respectively, and they are equivalent, respectively, to multipole and local expan-

sions for the case of the Laplace equation. The H- and J-expansions can be

derived from the addition theorem for the Bessel functions (Abramowitz & Ste-

gun, 1972). In the high-frequency FMM (HF-FMM), the diagonalized form of

translation and conversion operators through far-field forms of wave expansions

is used instead; this, however, will fail to converge when k is very small or the

level of refinement is high. This is due to a divergent property of the Hankel
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function in the conversion operator. Specifically, the far-field forms of the H-

and J-expansions are defined by

F (θ) =
∞∑

m=−∞
βme−i(mπ/2)eimθ, (4.112)

G(θ) =
∞∑

m=−∞
αme−i(mπ/2)eimθ, (4.113)

respectively, where {βm}+∞
m=−∞ and {αm}+∞

m=−∞ are coefficients of the H- and

J-expansions from (4.108) and (4.110). Then, F (θ) is converted to G(θ) via a

diagonalized operator (Rokhlin, 1990) as follows:

Gc3(θ) = νn(θ) · Fc1(θ), (4.114)

where

νn(θ) =

n∑
m=−n

eim(θ+θ13−π)Hm(kρ13), (4.115)

and a subscript in F (θ) and G(θ) denotes the center of the expansions, ρ13 is the

distance between two centers defined by |c3−c1|, and θ13 is the angle between the

x-axis and ρ13. The diagonalized conversion operator νn(θ) diverges quickly when

the order of the Hankel function is larger than its argument (m > kρ13) because

of the asymptotic behavior of the Hankel function (Abramowitz & Stegun, 1972),

namely

lim
m→∞

Ym(z)
( ez

2m

)m
√
πm√
2

= −1, (4.116)

where Hm(z) = Jm(z) + iYm(z).

The quad-tree structure as shown in Fig 4.3 for the 2-D Helmholtz FMM is

divided into a low-frequency part and a high-frequency part based on the value of

kR, where R is the size of the box at a level of the tree. In order to overcome the

divergence problem for small k, the tree is divided into two parts, with a cut-off

level based on the quantity of kR. In the tree level with kR < 4/e = 1.471518

(boxes below the cut-off level), a low-frequency FMM (LF-FMM), which uses

the H- and J-expansions and non-diagonalized conversion operator based on the

addition theorem (Abramowitz & Stegun, 1972),

αm =

n∑
j=−n

e−ij(θ13−π)βm−jHj(kρ13), (4.117)

is used directly to avoid divergence of the conversion operator. Then, at and

above the cut-off level, coefficients of the H- and J-expansions are converted

into far-field forms using (4.112) and (4.113), and the regular HF-FMM is used

for the boxes above the cut-off level. In the actual implementation, kR = 1.5 is
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Figure 4.3. A quad-tree structure with low- and high-frequency splitting. From Cho &
Cai (2010), copyright (2010) by Elsevier.

used for a safe determination of the cut-off level. The resulting FMM is applicable

for a wide band of frequencies associated with 2-D Helmholtz wave propagations

(Cheng et al., 2006a; Cho & Cai, 2010), and the 3-D version for the Helmholtz

can be found in Cheng et al. (2006b).

4.5 Reaction field hybrid model for electrostatics

In Section 2.3, we constructed efficient image methods to represent the reaction

field of dielectric and electrolyte solutions to charges inside a spherical cavity. As

a third method that we can use to handle the electrostatic interaction, we con-

sider a hybrid multi-scale approach which combines the explicit atomic Coulomb

interaction and the implicit dielectric model of electrostatic interactions. For ex-

ample, in a hybrid model for biomolecular solvation a central part of the simu-

lated system contains the solute and some solvent, which is considered in atomic

detail, while the remaining part is treated as a dielectric continuum. Figure 4.4

(left) describes such a model (Lin et al., 2009, 2011b): the larger sphere contains

the particles to be simulated by the molecular dynamics based on Newtonian

mechanics with electrostatic and non-electrostatic forces acting on each particle;

outside the larger sphere, the solvent medium is represented by a dielectric con-

tinuum with dielectric constant εo, and possibly also with an ionic concentration.

Within the larger sphere, a smaller sphere with radius Rc is embedded with a

separation τ . The region between the two concentric spheres is a buffer region,

which is an important component of the hybrid model to reduce the surface effect
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Figure 4.4. A hybrid model with (left) a cubic simulation box and (right) a truncated
octahedron (TO) simulation box. From Lin et al. (2009), copyright (2009) by
American Institute of Physics.

and produce a homogeneous environment within the central region of the model.

Finally, a simulation region in the shape of a cubic box is embedded inside the

smaller sphere, away from the buffer region. Only the particles inside the cubic

box will be simulated dynamically; the particles outside the cubic box but inside

the larger sphere are in fact periodic image copies of those inside the cubic box,

and therefore they are not independent particles and will not be used for calcu-

lating structural (radial distribution function, RDF) and dynamical (dielectric

constant) quantities for the system under simulation.

In the model shown in Fig. 4.4 (left), the larger sphere surface, where the

explicit and implicit model of electrostatic interaction meet, is used for the cal-

culation of the reaction field for all particles inside. The cubic box will also be

used for the periodic treatment of non-electrostatic forces such as van der Waals

forces, etc. The region inside the cubic box, which is not imaged outside the

cubic box, will be considered as the effective production region where statistics

on the particle trajectories during molecular dynamics simulation will be used

for analysis of the biomolecules embedded within the production region.

Two types of potentials are acting on the charges in the explicit solvent part

of the larger sphere. Firstly, it is the direct Coulomb potential, through which

the charges interact with one another, ΦS . Secondly, it is an indirect potential

that results from the polarization of the continuum solvent region by the explicit

charges inside the larger sphere, referred to as the reaction field, Φrf. The total

potential inside the explicit region is expressed as Φ = ΦS +Φrf.

Based on the result in Section 2.3.2, the reaction field potential can be ap-

proximated by Ni = Mi + 1 image charges as follows:

Φrf(r) ≈
qk

4πεi |r− rk|
+

1

4πεi

Mi∑
m=0

qm
|r− xm|

, (4.118)
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where the Kelvin image charge and location qk, rk are given in (2.124) and (2.125)

and the rest image charges qm and xm, 0 ≤ m ≤ Mi, are given in (2.137) and

(2.138), respectively.

In summary, let (qi, ri), 1 ≤ i ≤ N , be all the charges and their locations

inside the bigger sphere where the electrostatic interaction will be computed.

Then, the electrostatic potential acting on any given charge rj will be calculated

by the following two sums:

Φ(rj) =
N∑

i=1,i �=j

1

4πεi

qi
|ri − rj |

+

N∑
i=1

Φi
rf(rj), (4.119)

where the first sum corresponds to the direct Coulomb interaction from all other

charges except rj itself, and the second sum is due to the reaction field of all

charges ri inside the sphere, and the Ni image charge approximation (4.118) is

used to compute all reaction fields.

A periodic boundary condition (PBC) will be used, in reference to the cubic

box, or better a truncated octahedron (TO) box, for non-electrostatic interac-

tions to suppress surface effects in computer simulations.

A TO box (shown in Fig. 4.4 (right)) is preferred in order to maximize the

size of the production region. In Fig. 4.4 (right), the TO box Λ is built from a

cube of length L by cutting eight corners at a distance L/(4
√
2) from the center

of its sides, and the figure shows the cross-section of the truncated octahedron

in the xz plane if the cubic box from which it is created is centered around

the origin. The simulation TO box has 14 faces, including 8 hexagonal faces

and 6 square faces, and 24 corners, all of which are equivalent. The distance

from the origin to a square face is L/2, to a hexagonal face
√
3L/4, and to a

corner Rc =
√
5L/4. There are 14 nearest neighbors of the central simulation

box, each resulting from a translation through an appropriate side of the TO.

Particles in these neighboring boxes that are at a distance Rc + τ or less from

the origin form a buffer layer around the central simulation box, which we refer

to as Region III. Together with the simulation box Λ, the buffer layer forms the

local volume of a spherical cavity Γ. All charges in Γ will produce the reaction

field, to be computed using the image charge method. The particles inside the

simulation box that give rise to Region III through periodic imaging are denoted

as Region II. The remaining particles in Λ, which are not periodically imaged,

are labeled as Region I. This region is the productive part of the simulation

box in which a solute may be solvated presumably without experiencing many

artificial electrostatic solute–solute interactions. The size of this region, d, can

be determined by comparing the points of furthest and nearest separation of

particles in Λ from the center of the box. For a TO shown in Fig. 4.4, d =

L(
√
3 −

√
5/2) − 2τ = 0.61L − 2τ . The same quantity for a cubic box is d =

L(2 −
√
3) − 2τ = 0.27L − 2τ . Comparing these two quantities, the advantage

of using the TO box becomes obvious. For L = 45 Å and τ = 5 Å, for instance,

the TO box allows simulations of solute molecules with diameter < 17 Å. These
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same parameters for a cubic box result in d = 2 Å, which is not meaningful from

the molecular size point of view.

To evaluate the electrostatic forces within the simulation box Λ, the FMM is

used for the interaction of all charges in the box Λ, plus their periodic images in

Region III and all image charges outside the cavity Γ, with all charges being taken

as acting in a homogeneous medium of dielectric permittivity εi. Considering that

only the force within the simulation box Λ needs to be evaluated, a simple but

more efficient way would be to calculate the interaction between the charges in

Λ and the periodic/image charges far away from Λ directly by a local expansion.

Specifically, we introduce another reference sphere Sr of radius κRc centered at

the origin with κ > 1. The evaluation of the field within the TO box Λ due

to the charges inside this reference sphere is carried out by the FMM. For all

periodic/image charges outside this reference sphere, the potential field at a point

r = (r, θ, φ) inside the box Λ generated by these periodic/image charges can be

described by a local expansion

Φ(r) ≈
p∑

j=0

j∑
k=−j

Lk
j · Y k

j (θ, φ) · rj , (4.120)

where p is the local expansion order, Y k
j (θ, φ) are the spherical harmonics, and

Lk
j are the local expansion coefficients given by

Lk
j =

L∑
l=1

q̂l ·
Y −k
j (αl, βl)

ρj+1
l

. (4.121)

Here, q̂l, l = 1, 2, . . . , L, are the periodic/image charges outside Sr with (ρl, αl, βl)

as their locations. Consequently, the force f(r) = (fx(r), fy(r), fz(r)) exerted on

a particle q at r = (r, θ, φ) inside Λ by these periodic/image charges can be

calculated using

fx(r) = −q
∂

∂x
Φ(r) = −q · Re (H2 −H3) , (4.122)

fy(r) = −q
∂

∂y
Φ(r) = −q · Im (H2 +H3) , (4.123)

fz(r) = −q
∂

∂z
Φ(r) = −q · (H0 + 2Re(H1)) , (4.124)

where Re(· · · ) and Im(· · · ) represent the real part and the imaginary part of a

complex number, respectively, and
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Figure 4.5. Density across the diagonal of the truncated octahedron (TO) box: (left)
45 Å simulation TO box; (right) 60 Å simulation TO box. From Lin et al. (2009),
copyright (2009) by American Institute of Physics.

H0 =

p∑
j=1

jL0
jPj−1(cos θ)r

j−1,

H1 =

p∑
j=1

j−1∑
k=1

(j + k)Ck
j · Lk

j e
ikφP k

j−1(cos θ)r
j−1,

H2 =

p∑
j=1

L0
je

iφP 1
j−1(cos θ)r

j−1 +

p∑
j=1

j∑
k=1

Ck
j L

k
j e

i(k+1)φP k+1
j−1 (cos θ)r

j−1,

H3 =

p∑
j=1

C−1
j L1

jPj−1(cos θ)r
j−1 +

p∑
j=1

j∑
k=2

Bk
jC

k
j L

k
j e

i(k−1)φP k−1
j−1 (cos θ)r

j−1,

and

Bk
j = (j + k)(j + k − 1), Ck

j =

√
(j − k)!

(j + k)!
.

The model has been validated by several biological systems (Lin et al., 2009,

2011b) including homogeneous pure water and ions solvated inside water. In

those studies, the structural and dynamical properties have been shown to agree

well with results from the PME, which is known to be accurate for homogeneous

systems. Figure 4.5 shows the relative particle density ρr as a function of the

position in the simulation box with L = 45 Å and 60 Å and τ = 2 Å, 4 Å, 6 Å,

and 8 Å (sampled at 11 equi-spaced positions along a line that connects two

opposite vertices of the TO box). It is seen that τ = 2 Å produces a noticeably

non-uniform density where the density at the edges of the simulation box is
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Figure 4.6. Dielectric constant calculated within a spherical region of radius indicated
by the horizontal axis. Left: Dielectric constant vs the thickness of the buffer region τ ;
right: dielectric constant vs the number of image charges in approximating the
reaction field. Ni = 0 indicates no reaction field. From Lin et al. (2009), copyright
(2009) by American Institute of Physics.

about 10% lower than the average density. Buffer size τ > 2 Åleads to a uniform

density distribution.

In addition, dielectric properties were evaluated by computing the dielectric

permittivity constant ε using the formula given in (1.131) in terms of the total

dipole moment M(R) of a spherical sample with radius R. The radius of the

sample also has an upper bound, Rc + τ , defined by the geometry of the model.

The maximum allowed R cannot be used in the calculations, however, because

the sphere then contains periodic images of water molecules. As a linear response

approximation, the dielectric constant relies on the quadratic fluctuations of the

total dipole moment M(R), which, as (1.131) shows, scale linearly with the

sample volume. If periodic images are present in a sample, the linear scaling

of 〈M2(R)〉 is violated, thus invalidating the fluctuation formula. Therefore the

radii in the calculations are limited to R ≤ Rmax =
√
3L/4, ensuring that only

one copy of each water molecule is considered. The remaining layer of water

Rmax < R < Rc + τ acts as part of the dielectric continuum. Its dielectric

permittivity ε′ = ε is set self-consistently in the calculations using (1.131). It

was found that only a few iterations are needed between ε and ε′ to achieve

convergence.

Figure 4.6 shows the dielectric constant ε(R) with the number of image charges

Ni varying from 0 to 3 for L = 60 Å and τ = 4 Å, as a function of the radius of

the sampled sphere in the total dipole moment fluctuation M(R) in (1.131). Note

that Ni = 0 means that no reaction field contribution is included in the model,

and the data shown in Fig. 4.6 (right) therefore reveal that the reaction field is

essential for maintaining a uniform dielectric response throughout the simulation

box (Wang & Hermans, 1995; Rodgers & Weeks, 2008; Song et al., 2013).
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4.6 Summary

Many-body interactions form the key computational step in computing the ef-

fects of long-range forces. The PME provides an O(N logN) solution for peri-

odic systems in lattice systems, while the FMM gives an O(N) for electrostatic

interactions and O(N logN) for waves in a finite system with or without peri-

odic boundary conditions. The reaction field approach, together with its image

charge representation, provides a multi-scale model for treating electrostatic in-

teractions, and reduces the size of the many-body systems, which can be readily

handled by the FMM or other related fast algorithms (Barnes & Hut, 1986; Ying,

Biros, & Zorin, 2004).



Part II

Electromagnetic scattering





5 Maxwell equations, potentials, and
physical/artificial boundary
conditions

In this chapter, we will first introduce the time-dependent Maxwell equations

and solution representations using scalar and vector potentials. Then, physical

boundary conditions involving interfaces between dielectrics and conductors will

be discussed. For computing scattering fields in infinite domains, several types

of local artificial boundary conditions for computational domains will be pre-

sented, including the Engquist–Majda one-way boundary conditions, the high-

order Bayliss–Turkel boundary conditions in auxiliary variable forms, and the

uniaxial perfectly matched layered (UPML) boundary conditions.

5.1 Time-dependent Maxwell equations

The electric field E and the magnetic flux density (or induction) B in media are

related by Faraday’s law of magnetic induction:

∇×E = −∂B

∂t
− Jm, (5.1)

where a magnetic current Jm is introduced for mathematical symmetry of the

Maxwell equations only as there are no naturally found magnetic charges.

The electric field E gives the electric force experienced by a test charge Q in

(1.2), and the magnetic flux density B together with the electric field E will

produce a Lorentz force on a moving test charge Q with a velocity v in the

Lorentz force law,

F = Q(E+ v ×B), (5.2)

and a torque N on an atomic magnetic dipole m,

N = m×B, (5.3)

where the atomic magnetic dipole moment m is produced by an electron circu-

lating around the nucleus, the direction of which is normal to the plane of the

moving electron. As there are no magnetic charges, the term “magnetic dipole”

has no direct analogy with the definition of an electric dipole moment (1.8).

In (5.1), E and B are considered to be the fundamental physical quantities in

electrodynamics, whereas the displacement flux D and the magnetic field H are

derived quantities.
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5.1.1 Magnetization M and magnetic field H

As in the polarization of electric dipole moments under external electric fields in

dielectrics discussed in Chapter 1, a similar physical process called magnetiza-

tion acts on the atomic magnetic dipole moment mi inside the material under

external magnetic fields, and this is represented by a magnetization density M.

In analogy to the polarization density P discussed in Section 1.2, we define the

magnetization density M as

M =
∑
i

Ni 〈mi〉 , (5.4)

whereNi is the number density of i-type atoms with atomistic magnetic moments

mi. A magnetization current Jm = ∇×M will be generated to produce magnetic

fields similar to those produced by a charge current J; both currents together

will form the total magnetic flux density B inside a material, in a similar manner

as for the electric field E inside a dielectric material, (1.47).

The magnetic flux density B under a steady free charge current density Je

along any loop C is given by the Biot–Savart law (Jackson, 2001):

B(r) =
μ0

4π

∫
C

Je × (r− r′)

|r− r
′|3

dr′, (5.5)

where μ0 is the vacuum permeability, μ0 = 1.257× 10−6 H · m−1. By using the

identity (r− r′) /|r− r
′|3 = −∇(1/|r− r

′|), B(r) can be rewritten in terms of a

vector potential A as

B = ∇×A, (5.6)

where

A(r) =
μ0

4π

∫
C

Je

|r− r
′|

dr′. (5.7)

By a simple calculation, Ampère’s law,

∇×B = μ0Je, (5.8)

is obtained, and Gauss’s law for the magnetic induction holds (by the virtue of

the curl form in (5.6)):

∇ ·B = 0. (5.9)

With magnetization M in a material, the magnetization current Jm = ∇ ×M

will contribute to the magnetic flux density, which can be included by modifying

the vector potential A in (5.7) to

A(r) =
μ0

4π

∫
C

(Je + ∇×M)

|r− r
′|

dr′. (5.10)

Then, Ampère’s law (5.8) becomes

∇×B = μ0(Je + ∇×M). (5.11)
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Next, we define a constitutive relation between the magnetic flux density B and

the derived magnetic field H:

H =
1

μ0
B−M. (5.12)

For isotropic linear media, (5.12) will give a linear relation between H and B,

H =
1

μ
B, (5.13)

which transforms (5.11) into Ampère’s law in materials:

∇×H = Je. (5.14)

For a time-dependent electric field, the displacement current ∂D/∂t was added

by Maxwell in 1865 (Maxwell, 1891) to the right-hand side of (5.14), resulting

in the Ampère–Maxwell law:

∇×H =
∂D

∂t
+ Je, (5.15)

where the electric current Je measures the flow of free electron charge ρe in

amperes/square meter (A/m2) and the unit for the magnetic current density Jm

is the weber/square meter (web/m2).

We can examine the various current contributions on the right-hand side of

(5.15). By using the definition of the electric displacement flux D in terms of

the polarization density P in (1.25), the Ampère–Maxwell law (5.15) can be

rewritten as

∇×H = ε0
∂E

∂t
+ Jp + Je, (5.16)

where a polarization current Jp is defined by

Jp =
∂P

∂t
. (5.17)

In addition, we have two Gauss’s laws for D and B, respectively:

∇ ·D = ρe, (5.18)

∇ ·B = ρm(≡ 0). (5.19)

Equations (5.1), (5.15), (5.18), and (5.19) form the complete time-dependent

Maxwell equations in materials.

As a result of the Maxwell equations, the electric charge ρe, the magnetic

charge ρm, and the corresponding current densities obey the following continuity

equations:

∇ · Je +
∂ρe
∂t

= 0, (5.20)

∇ · Jm +
∂ρm
∂t

= 0. (5.21)
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Inside a conducting material the electric current Je is related to the electric

field through Ohm’s law:

Je = σE, (5.22)

where σ is the conductivity of the material.

For time-harmonic fields, where the time dependence is assumed to be har-

monic, i.e., exp(iωt), the Maxwell equations (5.1), (5.15), (5.18), and (5.19),

with the time-harmonic dependence factored out, and the constitutive relations

D = εE and B = μH, can be rewritten for the Fourier transform of the fields

(keeping the same notation):

∇×E = −iωμH− Jm, (5.23)

∇×H = iωεE+ Je, (5.24)

∇ ·D = ρe, (5.25)

∇ ·B = ρm. (5.26)

Then the continuity equations will read

∇ · Je + iωρe = 0, (5.27)

∇ · Jm + iωρm = 0. (5.28)

• Vector wave equations

The electromagnetic fields E and H can be shown individually to satisfy the

following vector wave equations. By dividing (5.23) by μ and applying the curl

operator ∇×, we have

∇× 1

μ
∇×E = −iω∇×H−∇× 1

μ
Jm. (5.29)

By using (5.24), the following vector equation for the electric field E is obtained:

∇× 1

μ
∇×E − ω2εE = −iωJe −∇×

1

μ
Jm. (5.30)

Similarly, we can derive a vector equation for the magnetic field H:

∇× 1

ε
∇×H − ω2μH = −iωJm +∇× 1

ε
Je. (5.31)

5.2 Vector and scalar potentials

Vector and scalar potentials are quantities useful in constructing solutions to the

Maxwell equations, especially when we discuss the integral equation representa-

tions of electromagnetic fields in Chapter 7. These potentials are based on the

following Helmholtz vector decompositions (the Hodge decompositions).
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Theorem 5.1 (Helmholtz vector decomposition) For a differentiable vec-

tor field W(r) = (W1(r),W2(r),W3(r))
T, r ∈ Ω ⊂ R3, where Ω is simply con-

nected with a Lipschitz-continuous boundary, there exist a unique vector potential

Φ(r) and a scalar potential q(r) (unique up to a constant) such that the following

orthogonal decomposition holds:

W = W1 +W2 ≡ ∇×Φ+∇q, (5.32)

where W1 = ∇ ×Φ is the solenoid field with zero divergence and W2 = ∇q is

the irrotational field with zero vorticity, and Φ(r) and q(r) satisfy the following

elliptic systems with corresponding boundary conditions:

−∇2Φ = ∇×W, ∇ ·Φ = 0, (5.33)

n×Φ = 0 on ∂Ω, (5.34)

and

∇2q = ∇ ·W, (5.35)

∇q · n = W · n on ∂Ω. (5.36)

The proof for the above Helmholtz decomposition can be found in Girault &

Raviart (1986, corol. 3.4) for more general vector fields with weaker smoothness.

If Ω = R3, then a boundary condition at infinity will be given instead.

5.2.1 Electric and magnetic potentials for time-harmonic fields

Based on the Helmholtz vector decomposition (5.32) in R3, we can express the

electromagnetic fields E and H in R3 in terms of potentials (Harrington, 2001).

As the Maxwell equations (5.23) and (5.24) are linear, by the principle of linear

superposition, we will consider the fields caused by the electric currents and

charges and those by the magnetic currents and charges separately.

Firstly, we will assume zero magnetic current and charge, i.e., Jm = 0 and

ρm = 0. Then we have from (5.26)

∇ ·B = 0. (5.37)

Using (5.35) and (5.36) in R3 (with the vanishing boundary condition at infinity)

with zero right-hand side, we can see that the Helmholtz decomposition (5.32)

for the vector B implies that there exists a vector potential, say A, such that

B = ∇×A. (5.38)

Substituting (5.38) into (5.23), we have

∇× (E+ iωA) = 0. (5.39)



124 Maxwell equations, potentials, boundary conditions

As a result, using (5.33) and (5.34) with zero right-hand side, the Helmholtz

decomposition (5.32) for the vector field E + iωA implies that there exists a

scalar function, say Ve, such that

E+ iωA = −∇Ve. (5.40)

Thus, we have

E = −iωA−∇Ve. (5.41)

Substituting (5.41) into the vector wave equation (5.30) for E, we obtain

∇× 1

μ
∇×A − ω2εA + iωε∇Ve = Je, (5.42)

and, after using the vector identities

∇× cf = ∇c× f + c∇× f (5.43)

and

∇×∇×A = −∇2A+∇(∇ ·A), (5.44)

(5.42) becomes

−∇2A− k2A+∇(∇ ·A) + iωεμ∇Ve + μ

(
∇ 1

μ

)
×∇×A = μJe. (5.45)

As (5.38) only specifies the vorticity of the vector field A, there is one more

degree of freedom on A, namely the divergence of A, which is set in the Lorentz

gauge (Stratton, 1941) as

∇ ·A = −iωεμVe. (5.46)

Then, (5.45) for A is simplified to

∇2A+ k2A− μ

(
∇ 1

μ

)
×∇×A = −μJe, (5.47)

where the wave number k is defined as

k2 = ω2εμ, (5.48)

and, when μ is a constant, (5.47) becomes a Helmholtz equation for the compo-

nents of A:

∇2A+ k2A = −μJe. (5.49)

By taking the divergence ∇ of (5.49) and using the continuity equation (5.27)

and the Lorentz gauge condition (5.46), the scalar potential Ve is shown to satisfy

∇2Ve + k2Ve = −
1

ε
ρe. (5.50)

Finally, the electric field E has the following representation in terms of the

magnetic potential A:

E = −iωA+
1

iωεμ
∇(∇ ·A), (5.51)
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and the magnetic field H is given by

H =
1

μ
∇×A. (5.52)

Similarly, we can construct the fields in terms of potentials when Je = 0 and

ρe = 0, where an electric vector potential F satisfies

∇2F+ k2F− ε∇1

ε
×∇× F = εJm, (5.53)

which simplifies to the following equation when ε is a constant:

∇2F+ k2F = εJm, (5.54)

and the scalar potential given by a similar gauge condition to (5.46) satisfies

∇2Vm + k2Vm =
1

μ
ρm. (5.55)

As a result, we have

E =
1

ε
∇× F, (5.56)

H = iωF− 1

iωεμ
∇(∇ · F). (5.57)

Finally, for general non-zero electric and magnetic currents, with the principle

of superposition, combining (5.51) with (5.56) and (5.52) with (5.57) we have

the potential representation of the electromagnetic fields (Harrington, 2001) as

follows:

E =
1

ε
∇× F− iωA+

1

iωεμ
∇(∇ ·A), (5.58)

H =
1

μ
∇×A+ iωF− 1

iωεμ
∇(∇ · F). (5.59)

5.3 Physical boundary conditions for E and H

5.3.1 Interface conditions between dielectric media

Skin depth of conductors and surface currents Je(s)

For a conductor with finite conductivity, the electromagnetic fields can only

exist within a thin layer (with a skin depth δ) in the conductor. The skin depth

δ depends on the frequency ω of the electromagnetic fields and the permeability

μ and conductivity σ of the medium (Ramo, Whinnery, & van Duzer, 1994):

δ =

√
2

ωμσ
=

1√
πfμσ

, (5.60)

where the frequency f = ω/(2π).
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Within the skin depth δ, E and H decay exponentially into the conductor. For

most applications, we could model the effect of the skin depth by means of an

effective surface current Je(s) by ignoring the skin depth, defined as

Je(s)(p) =

∫ δ

0

Je(p, ξ)dξ (A/m) (5.61)

for any point p on the conductor surface S, with the integration along the normal

of S. Note that the surface current Je(s) only has components tangential to S.

As the conductivity increases, the electromagnetic fields of non-zero time fre-

quency ω will tend to zero inside the conductor, and will eventually become

zero for a perfect electric conductor (PEC), for which σ = ∞. The static elec-

tric and magnetic fields for a PEC are defined by a limiting process of ω → 0

(Jackson, 2001, sect. 5.13, p. 203) while still maintaining ωμσ → ∞; therefore,

they are also zero inside the PEC.

Interface conditions between media

When two media with different electric and magnetic properties, (ε1, μ1) and

(ε2, μ2), meet at an interface S with a normal n pointing towards medium 2, the

Maxwell equations should be supplemented with the following interface condi-

tions:

[n×H] = n× (H2 −H1) = Je(s), (5.62)

[n×E] = n× (E2 −E1) = −Jm(s), (5.63)

[n ·B] = n · (μ2H2 − μ1H1) = ρm(s), (5.64)

[n ·D] = n · (ε2E2 − ε1E1) = ρe(s). (5.65)

In (5.62)–(5.65), possible surface currents and charges are assumed to reside

on S; this occurs as an idealization of a metallic thin layer sandwiched between

the two dielectric media, as discussed in (5.61), or artificial surface currents could

be introduced as equivalent sources on S to represent the field effects from the

medium to one side of the interface (Harrington, 2001). This equivalence principle

will be discussed in the formulation of integral equations for the electromagnetic

fields in Chapter 7.

In particular, if one medium (medium 1) is a PEC in which both the electric

and the magnetic fields vanish, we have the following boundary conditions for

the field tangential components on the surface of the PEC:

n×E2 = 0, (5.66)

n×H2 = Je(s), (5.67)

where the surface current Je(s) is supported on the surface of the conductor, and,

for the normal components,

n ·E2 = ρe(s), (5.68)

n ·H2 = 0. (5.69)
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5.3.2 Leontovich impedance boundary conditions for conductors

Surface impedance Zs and impedance boundary conditions

In many scattering applications, we are interested only in the electromagnetic

fields external to the scatterer, without much need for the explicit fields in-

side. The effect of the interior fields could be taken into account by introducing

appropriate boundary conditions on the surface S of the scatterer through a sur-

face impedance quantity zs (Ramo, Whinnery, & van Duzer, 1994). The surface

impedance represents the energy dissipation of the electromagnetic fields by the

scatterer’s surface, and is related to the skin depth δ and the conductivity σ of

the scatterer medium by

zs =
(1 + i)

σδ
= Rs + iωLi, (5.70)

where Rs = 1/(σδ) and Li = Rs/ω = 1/(ωσδ) are the surface resistivity and the

inner inductance, respectively. For typical metals, at 300 K we have for silver

σ = 6.17 × 107 S/m, δ = 0.0642f−1/2 m, Rs = 2.52 × 10−7f1/2 Ω, and for

aluminum σ = 3.72× 107 S/m, δ = 0.0826f−1/2 m, and Rs = 3.26× 10−7f1/2 Ω

(Ramo, Whinnery, & van Duzer, 1994).

To derive the impedance boundary conditions on a conductor, we consider the

interface conditions between two dielectric materials:

[n×E] = 0,

[n×H] = 0,

[εn ·E] = 0,

[μn ·H] = 0. (5.71)

Inside the conductor, from Ohm’s law (5.22), the conduction current Je = σE

and the time-harmonic Maxwell equations (5.23) and (5.24) become

∇×E =− iωμH,

∇×H = iωε̃E,
(5.72)

where

ε̃ = ε− σ

ω
i. (5.73)

Using the vector identity

∇×
(√

ε̃ E
)
= ∇

(√
ε̃
)
×E+

√
ε̃ ∇×E, (5.74)

we obtain an equation for the scaled electric field (Senior & Volakis, 1995):

∇×
(√

ε̃ E
)
+
√
ε̃ E×∇ ln

√
ε̃ = −ik0n

√
μ H, (5.75)

where the wave number and the refractive index are given by

k20 = ε0μ0ω
2, n =

√
ε̃μ

ε0μ0
. (5.76)
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Similarly, we can derive an equation for the scaled magnetic field:

∇× (
√
μ H) +

√
μ H × ∇ (ln

√
μ) = ik0n

√
ε̃ E. (5.77)

For a good conductor, we can assume that the refractive index n is large,

expressed in terms of a small parameter q:

n =
ω

q
, q 
 1, (5.78)

and the field quantities E′ and H′ inside the conductor are assumed to have the

following representations in terms of a phase function ψ:
√
ε̃ E′ = Ae−ik0ψ/q, (5.79)

√
μ H′ = Be−ik0ψ/q. (5.80)

Using the identities

∇×
(√

ε̃ E′
)
=

(
∇×A− ik0

q
∇ψ ×A

)
e−ik0ψ/q, (5.81)

∇× (
√
μ H′) =

(
∇×B− ik0

q
∇ψ ×B

)
e−ik0ψ/q, (5.82)

(5.75) and (5.77) become

ωA+∇ψ ×B =
q

ik0

√
μ ∇× B

√
μ
, (5.83)

ωB−∇ψ ×A =− q

ik0

√
ε̃ ∇× A√

ε̃
. (5.84)

By considering an asymptotic expansion for both A and B in terms of the

small parameter q,

A = A0 + qA1 + q2A2 + · · · , (5.85)

B = B0 + qB1 + q2B2 + · · · , (5.86)

and substituting the series into (5.83) and (5.84) and equating the coefficients

according to the powers of q, the zeroth power of q yields

ωA0 +∇ψ ×B0 = 0, (5.87)

ωB0 −∇ψ ×A0 = 0. (5.88)

After eliminating B0, we have(
ω2 − |∇ψ|2

)
A0 = 0, (5.89)

and the following Eikonal equation is obtained for the phase function:

|∇ψ| = ω. (5.90)
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To proceed, we assume that the interface S is smooth, and that E and H vary

slowly along the surface S. For a zeroth-order approximation, we can assume

that ψ is constant on S, namely that S is a level set curve of the function ψ.

Thus,

∇ψ ‖ n. (5.91)

Therefore, (5.90) implies

∇ψ = −ωn. (5.92)

From (5.87) and (5.88), we have

A0 = n×B0, B0 = −n×A0, (5.93)

which imply

A0 ⊥ B0 ⊥ n. (5.94)

Let us introduce local coordinates (α, β, γ) on the surface S. The continuity

condition of the tangential components of E and H becomes

A0,(α,β) =
√
ε̃ E′

(α,β) =
√
ε̃ E(α,β),

B0,(α,β) =
√
μ H ′

(α,β) =
√
μ H(α,β), (5.95)

resulting in

Eα = −ZsHβ , Eβ = ZsHα, (5.96)

where Zs =
√
μ/ε̃ is the intrinsic surface impedance.

Finally, the zeroth-order impedance boundary condition reads (Leontovich,

1948)

n×E = Zsn× (n×H). (5.97)

Higher-order impedance boundary conditions taking into account the surface

curvature effects have also been derived in Senior & Volakis (1995) in addition

to the zeroth-order boundary condition given above.

5.3.3 Sommerfeld and Silver–Müller radiation conditions

The behavior of electromagnetic fields at infinity is characterized by a radiation

or outgoing wave condition, which embodies the physical reality of scattering

waves from finite objects radiating away to infinity without reflection from infin-

ity. Such a condition also ensures mathematically the uniqueness of the solution

of the exterior Helmholtz wave equations. In the case of a scalar wave equation,

the radiation is given by the Sommerfeld radiation condition (Sommerfeld, 1949)

while for electromagnetic wave scattering it is given by the Silver–Müller radia-

tion condition (Colton & Kress, 1992).
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• Sommerfeld radiation condition for an exterior time-harmonic scalar wave:

consider the Helmholtz equation in the exterior Ωc of a finite domain Ω,⎧⎨⎩
Δu+ k2u = 0, r ∈ Ωc,

u|∂Ω = ud or
∂u

∂n

∣∣∣∣
∂Ω

= un,
(5.98)

together with the Sommerfeld radiation condition,∣∣∣∣∂u∂r + iku

∣∣∣∣ = O(r−2) as r →∞. (5.99)

• Silver–Müller radiation condition for an exterior time-harmonic electro-

magnetic scattering: denote by E andH the time-harmonic electromagnetic

fields generated by sources in a finite region. Then, as r →∞, we have

|√μ H × r̂−
√
ε E| = O(r−2), (5.100)

|
√
ε E × r̂+

√
μ H| = O(r−2), (5.101)

where r̂ is the unit normal for r. By Faraday’s and Ampère’s laws, (5.100)

and (5.101) can be rewritten in terms of E and H only (Müller, 1969, p.

137) as

|r̂×∇×E− ikE| = O(r−2), (5.102)

|r̂×∇×H− ikH| = O(r−2). (5.103)

The radiation conditions ensure the uniqueness of the solution of the exterior

wave problems, as illustrated below for the scalar Helmholtz equations for the

scalar wave problem (Nédélec, 2001).

Theorem 5.2 The exterior Helmholtz problem has at most one solution.

Proof To prove the uniqueness, we can let ud = 0 or un = 0 and integrate

(5.98) multiplied by the function u and apply Green’s formula to arrive at

−
∫
V

∇u∇u dr+

∫
|r|=R

u
∂u

∂r
ds+ k2

∫
V

|u|2 dr = 0, (5.104)

where V = Ωc ∩ {r : |r| > R}.
For r ∈ Bc

R = {r : |r| > R}, we have the Fourier expansion for the solution u:

u(r, θ, φ) =

∞∑
l=0

l∑
m=−l

(
αm
l

h
(1)
l (kr)

h
(1)
l (kR)

+ βm
l

h
(2)
l (kr)

h
(2)
l (kR)

)
Y m
l (θ, φ),

where h
(1)
l (r) and h

(2)
l (r) are the Hankel functions of the first and second kind

of order l, respectively.
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We need to show that αm
l = βm

l = 0. Using the asymptotics as r → +∞:

h
(1)
l (kr) ≈ (−i)l e

ikr

r
, h

(2)
l (kr) ≈ (−i)l e

−ikr

r
,

and

∂u

∂r
+ iku =

∞∑
l=0

l∑
m=−l

[
kαm

l

h
(1)
l (kR)

(
∂

∂r
h
(1)
l (kr) + ih

(1)
l (kr)

)

+
kβm

l

h
(2)
l (kR)

(
∂

∂r
h
(2)
l (kr) + ih

(2)
l (kr)

)]
Y m
l (θ, φ),

the Sommerfeld radiation condition implies that

αm
l ≡ 0, ∀ l,m.

Next, taking the imaginary part of (5.104), we get

Im

(∫
|r|=R

(TR(u), u)ds

)
= 0, (5.105)

where TR(w) is a capacitance operator defined for any w =
∑∑

γm
l Y m

l (θ, φ):

TR(w) =
∞∑
l=0

l∑
m=−l

1

R
Zl(kR)γm

l Y m
l (θ, φ),

with Zl(r) = r
∂

∂r

(
h
(2)
l (r)

)
/h

(2)
l (r).

Using the orthogonality property of the basis functions Y m
l (θ, φ) over the

sphere |r| = R, for any two functions u =
∑

l

∑
m αm

l Y m
l (θ, φ) and v =

∑
l

∑
m

βm
l Y m

l (θ, φ), we have the following identity (Nédélec, 2001):∫
|r|=R

(u, v)ds =
∑
l

∑
m

αm
l βm

l .

Then we have

Im

(∑
l

∑
m

βm
l

1

R
Zl(kR) βm

l

)
= 0.

As Im(Zl(kR)) > 0, we have |βm
l | ≡ 0; thus, u ≡ 0 for r ≥ R. As a result

of the analyticity of the solution u in Ωc (assuming that the boundary of Ω is

smooth enough), we conclude that u ≡ 0 in Ωc.

Remark 5.3 The Sommerfeld radiation condition can be also given in a weaker

integral form:

∫
|r|=R

∣∣∣∣∂u∂r + iku

∣∣∣∣2 ds→ 0 as R→ +∞. (5.106)
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5.4 Absorbing boundary conditions for E and H

In this section, we will discuss artificial absorbing boundary conditions, which are

imposed on the boundary of a truncated infinite physical domain within which

numerical solutions for wave equations are sought. These boundary conditions

ensure minimum non-physical reflection at the boundary and overall stability

and accuracy of the numerical schemes, while being easy to implement. There

are two types of artificial boundary conditions, local and global. In the former,

only local values of the solutions or the derivatives of the solutions are used

for the boundary conditions at a given boundary location, whereas the latter

involves global information from the solution on the boundary. Here, we will

mainly discuss the local boundary conditions due to their easy and cost-efficient

way of implementation.

Global boundary conditions can be obtained by the Dirichlet-to-Neumann

(DtN) mapping for the time-harmonic wave equations (Keller & Givoli, 1989;

Givoli & Keller, 1990; Han &Wu, 2009) and its inverse Fourier or inverse Laplace

transform for the time-domain wave equations (Hagstrom & Lau, 2007; Chen &

Nédélec, 2008). This approach is global on the boundary and also involves a time-

convolution integral of global nature for transient problems. In order to reduce

the cost and memory associated with the time convolutions efficient calculations

have been proposed in Alpert, Greengard, & Hagstrom (2000, 2002). Meanwhile,

local in time/global in space boundary conditions have been proposed by Grote

& Keller (1996) (for spherical boundaries) or with Kirchhoff representation (Ting

& Miksis, 1986; Teng, 2003) (for general boundaries) or equivalent sources on

the boundary (Tsynkov, 2004). Global boundary conditions based on the DtN

mapping for a scalar Helmholtz equation will be discussed in Section 13.2.1.

5.4.1 One-way wave Engquist–Majda boundary conditions

Engquist & Majda (1977) introduced the one-way wave differential equation on

the solution domain boundary where only waves propagating in one direction

(the out-going direction) will pass the boundary without reflection. The original

derivation of the Engquist–Majda boundary condition is based on the factoriza-

tion of the second-order wave operators with pseudo-differential operators, and

the latter is then approximated by the Padé approximations, resulting in a one-

way differential operator on the boundary. Here, a derivation based on the wave

dispersion relation given in Trefethen & Halpern (1986) will be shown instead.

Consider the 2-D scalar wave equation with wave speed c = 1 for u(x, y, t):

utt = uxx + uyy. (5.107)

The plane wave solution for (5.107) with wave numbers (ξ, η) and frequency

ω is

u(x, y, t) = ei(ωt+ξx+ηy). (5.108)
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For (5.108) to be a solution of (5.107), the following dispersion relation should

hold between the frequency and the wave numbers:

ω2 = ξ2 + η2. (5.109)

To examine the waves propagating along the ±x direction, we solve for the

wave number ξ in terms of the frequency ω and wave number η:

ξ = ±ω
√
1− s2, (5.110)

where

s =
η

ω
. (5.111)

For a given wave frequency and a fixed wave number along the y-direction,

(5.110) clearly shows two wave speeds along the +x and −x directions, respec-

tively. If x = 0 is the right-most boundary and we only want to have right-going

waves as our physical solution, then we should select the + sign solution of

(5.110), namely

ξ = +ω
√
1− s2, (5.112)

which can be considered as the dispersion for an ideal one-way wave problem to

be imposed on the boundary x = 0.

However, the square root in the wave number–frequency space does not corre-

spond to a differential operator in the physical space. To derive an approximation

using a differential equation out of (5.112), we approximate the square root by

a rational function (Engquist & Majda, 1977; Trefethen & Halpern, 1986) as√
1− s2 ≈ pm(s)

qn(s)
, (5.113)

where m = n + 2 or m = n is shown to be able to produce a well-posed boundary

value problem for (5.107). In particular, if we have√
1− s2 ≈ 1− 1

2
s2, (5.114)

then the ideal one-way wave dispersion (5.112) reduces to

ξ = ω

(
1− 1

2

η2

ω2

)
, (5.115)

or, equivalently,

ξω = ω2 − 1

2
η2, (5.116)

which is exactly the dispersion relation for the following differential equation:

1

c
uxt =

1

c2
utt −

1

2
uyy, (5.117)

where the wave speed c is added back.
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Equation (5.117) is the second-order Engquist–Majda equation and is also

known as Mur’s boundary condition (Mur, 1981). The first-order boundary con-

dition can be obtained if the approximation in (5.114) is replaced instead by√
1− s2 ≈ 1, resulting in a linear dispersion

ξ = ω, (5.118)

or, equivalently, a first-order one-way wave equation:

ut − cux = 0. (5.119)

By using different Padé approximations, various one-way wave equation bound-

ary conditions can be derived, including the following Higdon boundary condi-

tion, where non-reflection can be achieved for waves incident to the boundary at

multiple angles (Higdon, 1987):

p∏
j=1

(
cosαj

∂

∂t
− c

∂

∂x

)
u = 0, (5.120)

which can be implemented with the method of auxiliary variables on the bound-

ary as in (5.135) (Givoli & Neta, 2003).

5.4.2 High-order local non-reflecting Bayliss–Turkel conditions

Scalar waves

The Bayliss–Turkel local boundary conditions are based on the asymptotic be-

havior of the wave solutions at infinity (far-field pattern). It can be shown

(Wilcox, 1956) that, consistent with the Sommerfeld radiation condition (5.99),

for r →∞, the following asymptotic expansion holds:

u(r, θ, φ) =
e−ikr

r

∞∑
j=0

Fj(θ, φ)

(kr)j
=

e−ikr

r
F0(θ, φ) +O

(
1

r2

)
, (5.121)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, and F0(θ, φ) is considered as the far-field

pattern of the wave function u.

For j ≥ 1,

Fj(θ, φ) =
1

(2i)j

j∏
l=0

[l(l − 1) + ΔS ]F0(θ, φ), (5.122)

where ΔS is the Laplace–Beltrami operator on the unit sphere:

ΔS =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
.

The Bayliss–Turkel boundary conditions (Bayliss & Turkel, 1980) create bound-

ary operators Bm on ΓR = {r : |r| = R}, which will eliminate as many terms as

possible from the asymptotic expansion (5.121).
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Let

B1 =
∂

∂r
+ ik +

1

r
.

Then it can be shown that

B1

(
e−ikr

r
F0

)
= 0. (5.123)

Thus we have

B1(u) = B1

⎡⎣e−ikr

r

∞∑
j=1

Fj(θ, φ)

(kr)j

⎤⎦ = O

(
1

r3

)
. (5.124)

• First-order Bayliss–Turkel artificial boundary condition:

B1(u) =

(
∂

∂r
+ ik +

1

r

)
u = 0, r ∈ ΓR. (5.125)

In general, we define the mth-order boundary operator Bm as follows:

Bm =

1∏
j=m

(
∂

∂r
+ ik +

2j − 1

r

)

=

(
∂

∂r
+ ik +

2m− 1

r

)
Bm−1. (5.126)

• The mth-order Bayliss–Turkel artificial boundary condition

Bm(u) = 0, r ∈ ΓR, (5.127)

and

Bm(u) = O

(
1

R2m+1

)
. (5.128)

The time-domain version of the Bayliss–Turkel boundary condition can be

obtained by replacing ik by (1/c)∂/∂t in the following:

Bmu =

1∏
j=m

(
∂

∂r
+

1

c

∂

∂t
+

2j − 1

r

)
u(r, t) = 0, r ∈ ΓR. (5.129)

Bayliss–Turkel boundary condition using auxiliary variables

There are two difficulties associated with the boundary condition in (5.129): the

normal derivative and the high-order differential operators. Both difficulties can
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be addressed by the introduction of auxiliary variables wk defined on the surface

of the sphere ΓR (Hagstrom & Hariharan, 1998):

wk+1 =

(
∂

∂r
+

1

c

∂

∂t
+

2k + 1

R

)
· · ·

(
∂

∂r
+

1

c

∂

∂t
+

1

R

)
u. (5.130)

It is clear that we have the following recursion:(
∂

∂r
+

1

c

∂

∂t
+

2k + 1

R

)
wk = wk+1, for k ≥ 1. (5.131)

The boundary condition (5.129) is simply given by

wm+1 = 0, (5.132)

together with the recursion (5.131) starting with

w0 = u, w1 =

(
∂

∂r
+

1

c

∂

∂t
+

1

R

)
u. (5.133)

In addition, the radial derivative ∂/∂r in (5.131) can be eliminated by using the

following identity (Huan & Thompson, 1999) on ΓR,(
∂

∂r
− 1

c

∂

∂t
+

1

R

)
wk = − 1

R2
(ΔS + k(k − 1))wk−1. (5.134)

Subtracting (5.134) from (5.131), we have (Hagstrom, 2003)(
1

c

∂

∂t
+

k

R

)
wk =

1

2R2
(ΔS + k(k − 1))wk−1 +

1

2
wk+1, (5.135)

which implies that the auxiliary variables have to be defined only over the spher-

ical surface ΓR.

Finally, (5.132), (5.133), and (5.135) reformulate the Bayliss–Turkel boundary

condition with the auxiliary variables {wk}m+1
k=0 on ΓR, which can be implemented

with finite element methods (Huan & Thompson, 1999).

Maxwell equations

Even though the scalar Bayliss–Turkel boundary condition can be applied to

each component of the electromagnetic field with auxiliary variables for each

component, there is an analog of the Bayliss–Turkel boundary condition (5.126)

specifically for electromagnetic waves (Peterson, 1988):

2∏
j=m

[
r̂× (∇×)− ik − 2(j − 1)

r

]
[r̂× (∇×E)− ikEtan] = 0, r ∈ ΓR, (5.136)

where Etan = −r̂ × (r̂×E) is the tangential component of E on the spherical

surface. For example, the first-order condition is

r̂× (∇×E)− ikEtan = 0, r ∈ ΓR, (5.137)
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which is the tangential component of the Silver–Müller condition (5.102), while

the second-order condition is

r̂× (∇×E) = α(r)Etan + β(r)∇× [r̂(r̂ · ∇ ×E)]

+
γ(r)

r
∇s(r̂ ·E), r ∈ ΓR, (5.138)

where ∇s is defined below in (5.145) and

α(r) = ik, β(r) =
1

2ik + 2
r

, γ(r) =
ik

2ik + 2
r

.

Again, the above boundary conditions involve higher-order derivatives on the

boundary. To address this problem, a local boundary condition with auxiliary

variables is given in Grote (2006) for the electromagnetic fields as follows:

r̂× (∇×E) =
1

c

∂Etan

∂t
+w1, (5.139)(

1

c

∂

∂t
+

1

r

)
w1 =

1

2r2

[−−→
curls × curlsE+

√
μ

ε
r̂×−−→curlscurlsH

]
+ w2, (5.140)(

1

c

∂

∂t
+

j

r

)
wj =

1

4r2

(−→
ΔS + j(j − 1)

)
wj−1 +wj+1, 2 ≤ j ≤ m, (5.141)

and the recursion is terminated at j = m+ 1,

wm+1 = 0, (5.142)

where the surface vorticity operators are defined as follows:

−−→
curlsu =

1

sin θ

∂u

∂φ
θ̂ − ∂u

∂θ
φ̂, (5.143)

curlsu =
1

sin θ

(
∂ (uφ sin θ)

∂θ
− ∂uθ

∂φ

)
, (5.144)

∇su =
∂u

∂θ
θ̂ +

1

sin θ

∂u

∂φ
φ̂, (5.145)

divsu =
1

sin θ

(
∂ (uθ sin θ)

∂θ
+

∂uφ

∂φ

)
, (5.146)

and the surface Laplace–Beltrami operator
−→
ΔS is defined as

−→
ΔSu =∇sdivsu−

−−→
curlscurlsu. (5.147)

The implementation of the boundary condition on the field (5.139) is straightfor-

ward, as the weak form for the vector Helmholtz equation will have a boundary

term which involves r̂ × (∇×E), which can be replaced by the right-hand side

of (5.139). The auxiliary variables on the boundary can be discretized on the

induced mesh on the boundary from the internal mesh, and their time evolution

can be calculated using typical time marching schemes.
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5.4.3 Uniaxial perfectly matched layer (UPML)

A perfectly matched layer (PML) boundary condition uses a layer of artificial

absorbing material designed in such a way that the scattering wave will pass

the boundary adjacent to the inner computational domain without reflection,

hence perfectly matched. Meanwhile, the absorbing layer attenuates the scatter-

ing wave entering the layer. The PML was originally proposed in the ingenious

work of Berenger (1994) based on a split formulation of the Maxwell fields.

Later, a uniaxial material (Sacks et al., 1995; Ziolkowski, 1997) was constructed,

on which the following presentation is based. The designed uniaxial medium can

achieve the same effect of absorbing entering waves as Berenger’s PML without

using non-physical splitting of the electromagnetic fields. A polarization field

is involved in the PML region, which makes the medium in the PML region

lossy and dispersive such that fields will decay exponentially through the region

(Abarbanel & Gottlieb, 1998). Usually, a PEC boundary condition is given at

the terminating outer boundary and any reflection from there will not be able to

propagate back significantly into the computational region of physical interest.

It is shown (Ziolkowski, 1997) that the polarization in the PML region can be

viewed as produced from a time-derivative Lorentz dispersive medium, where the

electron displacement x away from the nucleus satisfies the following oscillator

equation:

mx′′ +mγx′ +mω2
0x = −eE+ δ

∂E

∂t
, (5.148)

and the x component of the polarization density is defined by Px = nex, where

n is the electron density and e is the electron charge.

Construction of UPML

An important idea of an absorbing layer boundary condition is to design the

absorber material such that there is no reflection when the waves coming from

the inner physical region enter the absorbing layer, i.e., a perfectly matched

layer. The following analysis from Taflove & Hagness (2000) demonstrates how

the PML can be designed using uniaxial materials, where the dielectric constant

and the permeability are diagonal matrices with uniaxial symmetry.

Consider a time-harmonic plane wave with arbitrary polarization Hinc =

H0exp(−iβ1xx− iβ1yy) propagating in the isotropic Region 1 (x < 0) and im-

pinging on Region 2 (x > 0); the latter is assumed to have uniaxial (along the

x-axis) electric and magnetic permittivity tensors:

¯̄ε2 = ε2

⎡⎣a 0 0

0 b 0

0 0 b

⎤⎦ , ¯̄μ2 = μ2

⎡⎣c 0 0

0 d 0

0 0 d

⎤⎦ . (5.149)

In Region 2, the transmitted fields are plane waves also and satisfy the follow-

ing Maxwell equations:

β2 ×E = ω ¯̄μ2H, β2 ×H = −ω¯̄ε2E, (5.150)
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where β2 = x̂β2x + ŷβ2y is the anisotropic wave vector. By eliminating the E

field, we arrive at the following wave equation:

β2 × ¯̄ε −1
2 (β2 ×H) + ω2 ¯̄μ2H = 0, (5.151)

which can be rewritten in the following matrix form:⎡⎣k22c− (β2y)
2b−1 β2xβ2yb

−1 0

β2xβ2yb
−1 k22d− (β2x)

2b−1 0

0 0 k22d− (β2x)
2b−1 − (β2y)

2a−1

⎤⎦⎡⎣Hx

Hy

Hz

⎤⎦ = 0,

where k22 = ω2μ2ε2. The dispersion relation can be derived from the determinant

of the above matrix for TEz and TMz modes, respectively:

k22 − (β2x)
2b−1d−1 − (β2y)

2a−1d−1 = 0 : TEz (Hx, Hy = 0), (5.152)

k22 − (β2x)
2b−1d−1 − (β2y)

2b−1c−1 = 0 : TMz (Hz = 0). (5.153)

If the incident wave in Region 1 is a TEz wave, then the total field is expressed

as the sum of the incident and a reflected wave:

H1 = ẑH0(1 + Γe2iβ1xx)e−iβ1xx−iβ1yy,

E1 =

(
−x̂ β1y

ωε1
(1 + Γe2iβ1xx) + ŷ

β1x

ωε1
(1− Γe2iβ1xx)

)
H0e

−iβ1xx−iβ1yy. (5.154)

After transmitting into Region 2, the wave maintains a TEz wave, the propa-

gation characteristics are determined by (5.152), and the fields are given by

H2 = ẑH0τe
−iβ2xx−iβ2yy,

E2 =

(
−x̂ β2y

ωε2a
+ ŷ

β2x

ωε2b

)
H0τe

−iβ2xx−iβ2yy, (5.155)

where Γ and τ are the reflection and transmission coefficients, respectively, which

are given by the continuity of the tangential components of E and H at the

interface x = 0:

Γ =
β1x − β2xb

−1

β1x + β2xb−1
, τ = 1 + Γ =

2β1x

β1x + β2xb−1
. (5.156)

Furthermore, at the interface x = 0, the field tangential continuity implies

that

β2y = β1y. (5.157)

After plugging (5.157) into (5.152), we obtain β2x:

β2x =
√

k22bd− β2
1ya

−1b. (5.158)

If we set ε1 = ε2, μ1 = μ2, d = b, and a−1 = b, we have k1 = k2 and

β2x =
√

k21b
2 − (β1y)2b2 = b

√
k21 − (β1y)2 = bβ1x. (5.159)

Now plugging (5.159) into (5.156), we obtain a zero reflection

Γ = 0 for any β1x,

namely Regions 1 and 2 are perfectly matched.
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The case of the TMz wave can be treated similarly. As a matter of fact, the

reflection coefficient for E is dual to (5.156) if we replace b by d and a by c; then

the no-reflection condition is achieved. So if we have b = d and c−1 = a, there

will be no reflection for both TEz and TMz waves. Therefore, the conditions for

no reflection, for all incident angles, polarization, and frequencies, on ε and μ

tensors, are the following:

¯̄ε2 = ε1 ¯̄s, ¯̄μ2 = μ1 ¯̄s, ¯̄s =

⎡⎣s−1
x 0 0

0 sx 0

0 0 sx

⎤⎦ , (5.160)

which define the uniaxial perfectly matched layer (Sacks et al., 1995).

Similar to Berenger’s PML (Berenger, 1994), the no-reflection property of the

UPML in Region 2 holds for any sx. For example, we can set

sx = 1 +
σx

iωε1
= 1− σx

ωε1
i.

Then, from (5.159) we have

β2x =

(
1− i

σx

ωε1

)
β1x. (5.161)

Noting that the real part of β2x is the same as that of β1x, with (5.157) we

conclude that the phase velocity of both the incident and transmitted waves are

the same in both regions.

If we put (5.157) into (5.155), then the transmitted wave in Region 2 for an

incident TEz wave is given by

H2 = ẑH0τe
−iβ1xx−iβ1yye−σxxη1 cos θ,

E2 = (−x̂sxη1 sin θ + ŷη1 cos θ)H0e
−iβ1xx−iβ1yye−σxxη1 cos θ, (5.162)

where η1 =
√

μ1/ε1, and θ is the incident angle with respect to the x-axis, which

propagates in the UPML region with the same velocity as that of H1 and E1 in

Region 1, although with an attenuation factor (independent of frequency, though

dependent on θ and the conductivity function σx in the UPML).

The UPML losses σx(x) are usually taken to have a polynomial profile (Lu,

Zhang, & Cai, 2004):

σx(x) =

(
l

Δ

)m

σx,max, (5.163)

where l is the distance into the UPML region measured from the interface be-

tween the UPML and the physical solution domain, and Δ is the thickness of the

UPML. The definition of σy(y) is similar. The reflection factor for the UPML is

R(θ) = exp

[
−2ησx,maxΔcos θ

εr(m+ 1)

]
, (5.164)
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where θ is the incident angle, εr is the relative electric permittivity of the medium,

and η is the UPML’s characteristic wave impedance.

UPML in 3-D

In a rectangular truncation for the solution domain, 2-D coordinate planes and

3-D corner blocks will appear in the absorbing region. The construction of the

UPML will be carried out in a multiplicative manner, as shown in a 3-D corner

block case where the time-harmonic Maxwell equations can be written as

∇×H = iωε¯̄sE, (5.165)

∇×E = −iωε¯̄sH. (5.166)

Here ¯̄s is a diagonal tensor defined as follows:

¯̄s =

⎡⎣s−1
x 0 0

0 sx 0

0 0 sx

⎤⎦⎡⎣sy 0 0

0 s−1
y 0

0 0 sy

⎤⎦⎡⎣sz 0 0

0 sz 0

0 0 s−1
z

⎤⎦
=

⎡⎣syszs−1
x 0 0

0 sxszs
−1
y 0

0 0 sxsys
−1
z

⎤⎦ . (5.167)

Allowing for general real parts in s, we have

st = κt +
σt

iωε
, t = x, y, z. (5.168)

With the general definition, we can give the definition for special cases en-

countered in a typical numerical calculation.

(1) Lossless interior region: ¯̄s is the identity tensor, and set sx = sy = sz = 1.

(2) In the UPML region, ¯̄s is given by (5.167), with sx, sy, and sz given as

follows:

in xmin ≤ x ≤ xmax of the UPML, set sy = sz = 1;

in ymin ≤ y ≤ ymax of the UPML, set sx = sz = 1;

in zmin ≤ z ≤ zmax of the UPML, set sx = sy = 1;

in the intersection of xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax of the UPML, set

sz = 1;

in the intersection of xmin ≤ x ≤ xmax and zmin ≤ z ≤ zmax of the UPML, set

sy = 1;

in the intersection of ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax of the UPML, set

sx = 1;

and in the corner regions of the UPML, use (5.167).
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Time-domain Maxwell equations in UPML regions

In the following, we will give the time-domain form for the time-harmonic Maxwell

equations (5.165)–(5.168) in the uniaxial perfectly matched layer (UPML).

For simplicity, we just consider the 2-D TMz case, namely sz = 1 (Lu, Zhang,

& Cai, 2004). The time-harmonic Maxwell equations for the Fourier transform

of the TMz wave in the corner blocks will be

∂Ĥy

∂x
− ∂Ĥx

∂y
= iωε0 sxsyÊz, (5.169)

∂Êz

∂y
= −iωμ0

sy
sx

Ĥx, (5.170)

−∂Êz

∂x
= −iωμ0

sx
sy

Ĥy. (5.171)

Equation (5.169) can be written as

∂Ĥy

∂x
− ∂Ĥx

∂y
= iωε0Êz + Ĵz(ω), (5.172)

where

Ĵz(ω) = iωε0(sxsy − 1)Êz.

After substituting sx and sy from (5.168) with κx = κy = κz = 1, we have

Ĵz(ω) = iωε0

[(
1 +

σx

iωε0

)(
1 +

σy

iωε0

)
− 1

]
Êz

= iωε0

[
σx + σy

iωε0
+

σxσy

(iωε0)2

]
Êz

= (σx + σy)Êz +
1

iωε0
σxσyÊz. (5.173)

Now considering (5.172), we apply the inverse Fourier transform using the iden-

tity iωf(ω) → (∂/∂t)f(t). This yields a time-domain differential equation for

(5.172):

∂Hy

∂x
− ∂Hx

∂y
= ε0

∂Ez

∂t
+ Jz(t). (5.174)

Next we derive dynamic equations for all other quantities. The way to obtain

a dynamic equation for Jz from (5.173) is first to multiply both sides of this

equation by iω, which gives

iωĴz = iω(σx + σy)Êz +
1

ε0
σxσyÊz. (5.175)

Exploiting the differentiation equivalence for the Fourier transform, we perform

an inverse Fourier transform of each term in (5.175):

∂Jz(t)

∂t
= (σx + σy)

∂Ez

∂t
+

1

ε0
σxσyEz. (5.176)
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We will further simplify the differential equations for the polarization currents

Jz so that they will become just ordinary differential equations.

Considering (5.176), we introduce a new parameter

Pz = −Jz + (σx + σy)Ez, (5.177)

or

Jz = −Pz + (σx + σy)Ez. (5.178)

Then (5.176) can be written as

∂Pz

∂t
= − 1

ε0
σxσyEz. (5.179)

After substituting Jz from (5.178) into (5.174), we have

∂Hy

∂x
− ∂Hx

∂y
= ε0

∂Ez

∂t
+ (σx + σy)Ez − Pz. (5.180)

Similar operations can be performed on Faraday’s law (5.170) and (5.171), and

we end up with the following equations:

∂Ez

∂y
= −μ0

∂Hx

∂t
− μ0

σy − σx

ε0
Hx +Qx, (5.181)

−∂Ez

∂x
= −μ0

∂Hy

∂t
− μ0

σx − σy

ε0
Hy +Qy, (5.182)

∂Qx

∂t
= −σx

ε0
Qx +

μ0σx(σy − σx)

ε20
Hx, (5.183)

∂Qy

∂t
= −σy

ε0
Qy +

μ0σy(σx − σy)

ε20
Hy. (5.184)

From (5.180), (5.181), (5.182), (5.179), (5.183), and (5.184), we get a new set

of equations for Ez, Hx, Hy, Pz, Qx, and Qy as follows:

ε0
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− (σx + σy)Ez + Pz, (5.185)

μ0
∂Hx

∂t
= −∂Ez

∂y
− μ0

σy − σx

ε0
Hx +Qx, (5.186)

μ0
∂Hy

∂t
=

∂Ez

∂x
− μ0

σx − σy

ε0
Hy +Qy, (5.187)

∂Pz

∂t
= − 1

ε0
σxσyEz, (5.188)

∂Qx

∂t
= −σx

ε0
Qx +

μ0σx(σy − σx)

ε20
Hx, (5.189)

∂Qy

∂t
= −σy

ε0
Qy +

μ0σy(σx − σy)

ε20
Hy. (5.190)



144 Maxwell equations, potentials, boundary conditions

Note that (5.188)–(5.190) contain no spatial derivatives and hence they are

simply ordinary differential equations for Pz, Qx, and Qy. The system (5.185)–

(5.187), after dropping the undifferentiated terms, becomes the original 3 × 3

Maxwell system in the form of a hyperbolic system, which can be shown to be

well-posed (Abarbanel & Gottlieb, 1997).

5.5 Summary

The key to obtaining accurate and stable solutions for electromagnetic wave

propagation over long time is (and this cannot be over-emphasized) the correct

treatment of boundary conditions for material interfaces and numerical artificial

boundaries. Discussed in this chapter were the impedance boundary conditions

for the conductor boundary, as well as several local absorbing boundary con-

ditions for the computational boundary, due to their ease of implementation

and high accuracy. Analytical boundary conditions, such as the Bayliss–Turkel

and Engquist–Majda boundary conditions, can be implemented directly on the

boundary of the computational domain. Meanwhile, the UPML boundary treat-

ment allows for the more complicated computational regions encountered in engi-

neering applications, and in general provides better accuracy for waves of a wide

range of incident angles on the boundary, though at the expense of additional

mesh points in the UPML regions.



6 Dyadic Green’s functions in layered
media

The dyadic Green’s functions are the key component in forming an integral

representation of electromagnetic fields in Chapter 7. Here, we will derive the

dyadic Green’s functions for time-harmonic Maxwell equations in layered media,

and spectral forms of Green’s functions and their potentials will be given. Fast

algorithms for calculating the Hankel transform for Green’s functions in the

physical domain will be discussed.

6.1 Singular charge and current sources

Charges and currents in concentrated regions are represented by the Dirac delta

distribution function δ(r), and they are considered as singular sources for elec-

tromagnetic fields (van Bladel, 1991).

6.1.1 Singular charge sources

A singular charge density ρe(r) = δ(r) in terms of the Dirac delta function

represents the limiting case of a concentrated electric charge δΩ(r) in a small

volume Ω as the volume size |Ω| tends to zero while the total amount of charge

in the volume remains one unit, namely

ρe(r) = δ(r) ≡ lim
|Ω|→0

δΩ(r), (6.1)

where

δΩ(r) =

⎧⎨⎩
1

|Ω| , if r ∈ Ω,

0, if r /∈ Ω.
(6.2)

Therefore, we have∫
R3

δ(r)dr = 1 and δ(r) = 0, for r 	= 0, (6.3)

and the sifting property of the Dirac delta function δ(r) for a continuous function

f(r): ∫
R3

f(r′)δ(r′ − r)dr′ = f(r). (6.4)
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Consequently, for any volume charge density ρ(r) in V , we have formally

ρ(r) =

∫
R3

ρ(r′)δ(r′ − r)dr′ = lim
|Δr′i|→0

∑
i

ρ(r′i)δ(r
′
i − r)Δr′i, (6.5)

which heuristically implies that a general charge density can be viewed as a

superposition of singular charge density distributions.

Consider a surface S ⊂ R3, parameterized by a vector function r(u, v). Then,

the lines of constant u over S, the lines of constant v over S, and the normal

direction n form a local curvilinear coordinate system (u, v, w), with w being the

coordinate along the normal direction.

If there is a volume charge density ρ(u, v, w) concentrated around the surface

S with dimension d along the normal direction n being small, then we can de-

fine a surface charge density ρs(u, v) by integrating ρ(u, v, w) along the normal

direction:

ρs(u, v) =

∫ d

−d

ρ(u, v, w)dw. (6.6)

On the other hand, using the 1-D form of (6.3) we have, for all d > 0,

ρs(u, v) =

∫ d

−d

ρs(u, v)δ(w)dw. (6.7)

Therefore, as d→ 0, the concentrated surface charge density can be represented

as follows:

ρ(u, v, w) = ρs(u, v)δ(w). (6.8)

Similarly, we can consider the charge density ρc(u) along a curve C which, for

simplicity, is assumed to be the line of constant v = v0 = 0 over the surface S.

Suppose that the line charge is distributed within a small interval [v0−d, v0+d].

Then, we can define the line charge density ρc(u) as

ρc(u) =

∫ d

−d

ρs(u, v)dv. (6.9)

Again using the 1-D form of (6.3) we have, for all d > 0,

ρc(u) =

∫ d

−d

ρc(u)δ(v)dv. (6.10)

Hence, as d→ 0, the line charge density ρc(u) can be seen over the surface S as

ρs(u, v) = ρc(u)δ(v), (6.11)

or, combining with (6.8), in the volume V as

ρ(u, v, w) = ρc(u)δ(v)δ(w). (6.12)

In particular, in the Cartesian coordinate system (x, y, z), the three types of

singular charge sources are
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(a) ρe = δ(x, y, z), a singular volume (point) charge source located at (0, 0, 0);

(b) ρe = ρs(x, y)δ(z), a singular surface charge source over the xy-plane, where

ρs(x, y) is the surface density per unit area over the xy-plane, etc.; and

(c) ρe = ρc(x)δ(y)δ(z), a singular line charge source along the x-axis, where

ρc(x) is the line density per unit length along the x-axis.

6.1.2 Singular Hertz dipole current sources

An important concentrated current source is the Hertz dipole current, which

models a small linear antenna with a length d composed of two time-variant

charges q1(t) = −qeiωt and q2(t) = qeiωt, located at (−d/2, 0, 0) and (d/2, 0, 0),

respectively. The dipole moment of the antenna is then p = dqeiωt, with d =

(d, 0, 0). A Hertz dipole is obtained if we consider the limit of d → 0 while

maintaining the dipole moment as μ =qd, resulting in a point dipole density of

the form (1.12), namely

p̃ = μeiωtδ(r), and

∫
p̃ dr = μeiωt. (6.13)

The corresponding charge density for the Hertz dipole is

ρe(x, y, z) = lim
d→0

[
−qeiωtδ

(
x+

d

2

)
δ(y)δ(z) + qeiωtδ

(
x− d

2

)
δ(y)δ(z)

]
= −μeiωt lim

d→0
δ(y)δ(z)

[
δ
(
x+ d

2

)
− δ

(
x− d

2

)
d

]

= −μeiωt lim
d→0

[
δ
(
x+ d

2
, y, z

)
− δ

(
x− d

2
, y, z

)
d

]
,

i.e.,

ρe(x, y, z) = −μδ′(x)δ(y)δ(z)eiωt. (6.14)

Here the derivative δ′(x) of the 1-D Dirac delta function δ(x) defines a distribu-

tion such that for f(x) ∈ C∞
0 (−∞,∞)∫ ∞

−∞
δ′(x)f(x)dx = −f ′(0). (6.15)

The polarization current density Jp defined in (5.17) is then

Jp =
∂p̃

∂t
= iωeiωtμδ(r), (6.16)

which is identified as the Hertz dipole current source.

Similarly, Hertz dipole type surface current sources over the coordinate planes

can be defined by integrating (6.16) along the normal direction of the surfaces

(assuming a unit Hertz dipole current source). For instance, we can define the

following.
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(a) Surface Hertz dipole current over the xy-plane:

Je(s)(x, y, z) = δ(x)δ(y)t̂, t̂ = x̂ or ŷ, (6.17)

where t̂ denotes the unit direction of a coordinate axis.

(b) Surface Hertz dipole current over the zx-plane:

Je(s)(x, y, z) = δ(x)δ(z)t̂, t̂ = x̂ or ẑ. (6.18)

The above surface currents flow tangentially to the xy- and zx-planes, respec-

tively. The corresponding surface charge density can be found in a similar way.

For instance, over the xy-plane for an x̂-directed surface current source,

ρe(s)(x, y, z) = −
1

iω
δ′(x)δ(y). (6.19)

6.2 Dyadic Green’s functions GE(r|r′) and GH(r|r′)

From the sifting property (6.4) of the Dirac delta function, a general current

source J(r) = (Jx, Jy, Jz) in a volume V can be written as a superposition of x̂-,

ŷ-, or ẑ-directed Hertz dipole singular sources, namely

J(r) =

∫
V

[Jx(r
′)δ(r′ − r)x̂+ Jy(r

′)δ(r′ − r)ŷ + Jz(r
′)δ(r′ − r)ẑ] dr′. (6.20)

Accordingly, the electromagnetic fields generated by J(r) can be expressed as a

superposition of the fields generated by these Hertz dipoles; the latter defines

the dyadic Green’s functions.

Specifically, let Gt
E(r|r′) = (Gxt

E , Gyt
E , Gzt

E )T and Gt
H(r|r′) = (Gxt

H , Gyt
H , Gzt

H)T,

t = x, y, z, be the electric and magnetic fields at location r generated by a t̂-

directed −1/(iωμ)-Hertz dipole of current moment located at r′, i.e.,

Je(r) = −
1

iωμ
δ(r− r′)t̂, t ∈ {x, y, z} . (6.21)

Then, the dyadic Green’s functions for the electric and the magnetic fields are

defined, respectively, as

GE(r|r′) = [Gx
E ,G

y
E ,G

z
E ] =

∑
s,t∈(x,y,z)

ŝGst
E t̂ (6.22)

and

GH(r|r′) = [Gx
H ,Gy

H ,Gz
H ] =

∑
s,t∈(x,y,z)

ŝGst
H t̂. (6.23)

It can be seen from (5.30) and (5.31) that the dyadic Green’s functions satisfy

the following matrix equations (viewed in a column-wise manner):

∇× 1

μ
∇×GE(r|r′) − ω2εGE(r|r′) =

1

μ
Iδ(r− r′), (6.24)
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∇× 1

ε
∇×GH(r|r′) − ω2μGH(r|r′) = −∇× 1

iωεμ
Iδ(r− r′), (6.25)

where I is the identity matrix. From the Maxwell equation (5.23), we have

GH(r|r′) = − 1

iωμ(r)
∇×GE(r|r′). (6.26)

The electric field generated by Je(r) (assuming Jm(r) = 0) can then be ob-

tained through the principle of linear superposition:

Es(r) = −iω
∫
V

μ (Gsx
E Je,x +Gsy

E Je,y +Gsz
E Je,z) dr

′, s = x, y, z, (6.27)

i.e.,

E(r) = −iω
∫
V

μ(r′)GE(r|r′) · Je(r
′)dr′. (6.28)

Similarly, the magnetic field can be obtained through

H(r) = −iω
∫
V

μ(r′)GH(r|r′) · Je(r
′)dr′ =

∫
V

∇×GE(r|r′) · Je(r
′)dr′, (6.29)

where a constant μ is assumed to obtain the second equality.

6.2.1 Dyadic Green’s functions for homogeneous media

For a homogeneous medium, the electromagnetic fields generated by a Hertz

dipole (6.21) can be written in terms of a vector potentialA and a scalar potential

Ve as in (5.41), for example

Gt
E(r|r′) = GE(r|r′) · t̂ = −iωA−∇Ve, (6.30)

where the vector potential A, from (5.49), satisfies

∇2A+ k2A =
1

iω
δ(r− r′)t̂. (6.31)

Here, k = ω
√
εμ is the wave number of the homogeneous medium. Then, from

(3.4), the solution to the above Helmholtz equation is

A = − 1

iω
g(r− r′)t̂, (6.32)

where

g(r− r′) =
e−ik|r−r′|

4π|r− r′| . (6.33)

Meanwhile, the Lorentz gauge condition (5.46) implies that

Ve = − 1

iωεμ
∇ ·A = − 1

k2
∇g(r− r′)t̂. (6.34)
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Therefore, from (6.30) we have

GE(r|r′) · t̂ = g(r− r′)t̂+
1

k2
∇∇g(r− r′)t̂ =

(
1 +

∇∇
k2

)
g(r− r′)t̂,

and thus the dyadic Green’s function for the electric field in a homogeneous

medium is given by

GE(r|r′) =
(
I+

∇∇
k2

)
g(r− r′). (6.35)

From (6.26), the dyadic Green’s function for the magnetic field is given by

GH(r|r′) = − 1

iωμ
∇×

(
I+

∇∇
k2

)
g(r− r′). (6.36)

6.2.2 Dyadic Green’s functions for layered media

The layered medium to be considered here is shown in Fig. 7.1; it is a stratified

structure consisting of N + 1 dielectric layers separated by N planar interfaces

at z = −dl, l = 0, 1, . . . , N . The lth layer of the medium is characterized by

permeability μl and permittivity εl. The permittivity is complex if the medium

is lossy:

εl = ε0

(
εrl +

σl

iωε0

)
, (6.37)

where σl is the conductivity of the medium in the lth layer.

To derive the dyadic Green’s functions for the layered medium, we consider a

Hertz dipole current source at r′ = (x′, y′, z′) embedded in the ith layer, whereas

the observation point at r = (x, y, z) is assumed to be in the jth layer. We

will find the electromagnetic fields at r excited by a unit-strength, arbitrarily

oriented current Hertz dipole located at r′, namely Green’s functions GE(r|r′)
and GH(r|r′).

6.2.3 Hankel transform for radially symmetric functions

As the multi-layered medium is radially symmetric in the xy-plane, we can use

the 2-D Fourier transform F to solve the Maxwell equations for the dyadic

Green’s functions in the Fourier transform (spectral) domain, G̃E and G̃H .

Once the spectral Green’s functions are obtained, Green’s functions in the phys-

ical domain, GE(r|r′) and GH(r|r′), can be found by using the inverse Fourier

transform F−1, where F and F−1 are defined by

f̃(kx, ky) = F {f(x, y)} =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(kxx+kyy) dx dy,

f(x, y) = F−1
{
f̃(kx, ky)

}
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
f̃ (kx, ky) e

i(kxx+kyy) dkx dky.

(6.38)
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The inverse Fourier integral in (6.38) can be expressed in terms of a Hankel trans-

form if f(x, y) is a radially symmetric function. Introducing polar coordinates in

both the space and the transform domains,

x =ρ cosα, y = ρ sinα,

kx =kρ cosβ, ky = kρ sinβ, (6.39)

where

ρ =
√

x2 + y2, α = arctan (y/x) ,

kρ =
√
k2x + k2y, β = arctan (ky/kx) , (6.40)

it can be shown that

f(ρ) = F−1
{
f̃(kρ)

}
= S0

[
f̃(kρ)

]
(ρ), (6.41)

where the nth-order Hankel transform Sn

[
f̃(kρ)

]
for an integer n≥ 0 is

defined as

Sn

[
f̃(kρ)

]
(ρ) =

∫ ∞

0

f̃(kρ)Jn(kρρ)k
n+1
ρ dkρ. (6.42)

Here, Jn(z) is the nth-order Bessel function

Jn(z) =
1

π

∫ π

0

cos(nθ − z sin θ)dθ. (6.43)

Moreover, we have the following identities:

F−1
{
−ikxf̃(kρ)

}
= − cosα S1

[
f̃(kρ)

]
, (6.44)

F−1
{
−iky f̃(kρ)

}
= − sinα S1

[
f̃(kρ)

]
, (6.45)

F−1
{
k2xf̃(kρ)

}
= −1

2

{
cos 2α S2

[
f̃(kρ)

]
− S0

[
k2ρf̃(kρ)

]}
, (6.46)

F−1
{
k2y f̃(kρ)

}
=

1

2

{
cos 2α S2

[
f̃(kρ)

]
+ S0

[
k2ρf̃(kρ)

]}
, (6.47)

F−1
{
kxky f̃(kρ)

}
= −1

2
sin 2α S2

[
f̃(kρ)

]
. (6.48)

In order to derive the dyadic Green’s functions in the spectral domain, we note

that (5.30) in a source-free region simplifies to

∇2E+ k2E = 0. (6.49)

Let Ẽ be the 2-D Fourier transform of E in the xy-plane, namely Ẽ(kx, ky, z) =

F{E(x, y, z)}. Then, under a Fourier transform, (6.49) yields the following second-

order ordinary differential equation for Ẽs, s = x, y, z:

d2Ẽs

dz2
+

(
k2 − k2ρ

)
Ẽs = 0. (6.50)



152 Dyadic Green’s functions in layered media

6.2.4 Transverse versus longitudinal field components

Before we proceed to find all the components of Green’s functions GE and GH ,

we will show that in layered media the transverse components of the electric

and the magnetic fields, Ex, Ey, Hx, and Hy, can be expressed in terms of the

longitudinal components Ez and Hz. In fact, applying the 2-D Fourier transform

to the Maxwell equations (5.23)–(5.24) in a source-free region (Je = 0 and

Jm = 0), we have

∇̃ ×E = −iωμH̃, (6.51)

∇̃ ×H = iωεẼ, (6.52)

or ⎧⎪⎪⎨⎪⎪⎩
−ikyẼz +

˜̇Ey = iωμH̃x,

ikxẼz − ˜̇Ex = iωμH̃y,

−ikxẼy + ikyẼx = iωμH̃z

(6.53)

and ⎧⎪⎪⎨⎪⎪⎩
ikyH̃z − ˜̇Hy = iωεẼx,

−ikxH̃z +
˜̇Hx = iωεẼy,

ikxH̃y − ikyH̃x = iωεẼz,

(6.54)

where the dot denotes ∂/∂z.

After some calculations, the transverse components Ẽx, Ẽy, H̃x, and H̃y can

be expressed as follows:

Ẽx =
1

k2ρ

(
ikx

˜̇Ez + ωμkyH̃z

)
, Ẽy =

1

k2ρ

(
iky

˜̇Ez − ωμkxH̃z

)
, (6.55)

H̃x =
1

k2ρ

(
ikx

˜̇Hz − ωεkyẼz

)
, H̃y =

1

k2ρ

(
iky

˜̇Hz + ωεkxẼz

)
. (6.56)

Correspondingly, in the time domain we have

Ex =
∂

∂x
F−1

⎛⎝ ˜̇Ez

k2ρ

⎞⎠− iωμ
∂

∂y
F−1

(
H̃z

k2ρ

)
, (6.57)

Ey =
∂

∂y
F−1

⎛⎝ ˜̇Ez

k2ρ

⎞⎠+ iωμ
∂

∂x
F−1

(
H̃z

k2ρ

)
, (6.58)

Hx =
∂

∂x
F−1

⎛⎝ ˜̇Hz

k2ρ

⎞⎠+ iωε
∂

∂y
F−1

(
Ẽz

k2ρ

)
, (6.59)
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Hy =
∂

∂y
F−1

⎛⎝ ˜̇Hz

k2ρ

⎞⎠− iωε
∂

∂x
F−1

(
Ẽz

k2ρ

)
. (6.60)

The above relations will hold for the components of Green’s functions Gxt
E and

Gxt
H for t = x, y, z.

6.2.5 Longitudinal components of Green’s functions

To calculate the longitudinal components of Green’s functions in the spectral

domain, Ẽz = G̃zt
E and H̃z = G̃zt

H , we will follow the procedures in Mosig (1989)

and Michalski & Zheng (1990), but with details for the spectral quantities for

the field components (Yu & Cai, 2006). Both Ẽz and H̃z satisfy (6.50) with

appropriate boundary conditions at z = −dl, l = 0, 1, . . . , N , and z = z′i (source

location). To derive the interface conditions for Ẽz and H̃z, we use the Maxwell

equations and (5.62)–(5.65).

Interface conditions for Ẽz and H̃z

Let us first consider H̃z. From the interface condition on the normal component

of the magnetic field, we have

μlHz,l = μl+1Hz,l+1 + ρm(s), (6.61)

where ρm(s) denotes the surface magnetic charge if any. Meanwhile, the tangential

interface condition (5.62) [n×H] = Je(s), n = (0, 0, 1), implies that

[Hy] = −Je(s),x, [Hx] = Je(s),y, (6.62)

where Je(s) =
(
Je(s),x, Je(s),y, 0

)T
is the surface electric current.

From Gauss’s law away from an interface, ∇·H = 0, we see that the jumps of

the magnetic field components across the interface satisfy the following condition:

∂

∂x
[Hx] +

∂

∂y
[Hy] +

∂

∂z
[Hz] = 0, (6.63)

which in the Fourier spectral domain becomes[ ˜̇Hz

]
= −ikx

[
H̃x

]
− iky

[
H̃y

]
= ikyJ̃e(s),x − ikxJ̃e(s),y. (6.64)

As a result, the interface conditions at z = z′ for H̃z are given by

μlH̃z,l = μl+1H̃z,l+1 + ρ̃m(s), (6.65)˜̇Hz,l =
˜̇Hz,l+1 + iky J̃e(s),x − ikxJ̃e(s),y. (6.66)

Similarly, the interface conditions at z = z′ for Ẽz are given by

εlẼz,l = εl+1Ẽz,l+1 + ρ̃e(s), (6.67)˜̇Ez,l =
˜̇Ez,l+1 − ikyJ̃m(s),x + ikxJ̃m(s),y. (6.68)
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As neither electric nor magnetic sources are present at z = −dl, J̃e(s) = 0,

J̃m(s) = 0, ρ̃e(s) = 0, and ρ̃m(s) = 0. At z = z′i (source location), where a t̂-

directed electric Hertz dipole is located, using (6.17)–(6.18) we then have the

following boundary conditions at the source location z = z′i:

(a) horizontal electric dipole (HED), x̂-directed unit Hertz dipole

J̃e(s) =
1

2π
x̂, ρ̃e(s) =

−ikx
2πiω

, J̃m(s) = 0, ρ̃m(s) = 0; (6.69)

(b) HED, ŷ-directed unit Hertz dipole

J̃e(s) =
1

2π
ŷ, ρ̃e(s) =

−iky
2πiω

, J̃m(s) = 0, ρ̃m(s) = 0. (6.70)

Now let ψl, l = 0, 1, . . . , N , represent either (−iωμ)Ẽz or (−iωμ)H̃z, satisfying

(6.50) in each layer, subject to the following boundary conditions at the interface

between layers l and l + 1:

αlψl = αl+1ψl+1, (6.71)

ψ̇l = ψ̇l+1, (6.72)

with αl = εl for Ẽz or αl = μl for H̃z. From Fig. 7.1, we define

hl = dl − dl−1. (6.73)

Introducing a local coordinate for each layer as

zl = z + dl, (6.74)

we can write the fields in a layer without sources as

ψl = al coshulzl + bl sinhulzl

= (coshulzl, sinhulzl)

(
al
bl

)
≡ (cl, sl)Vl, (6.75)

where

ul =
√

k2ρ − k2l , k2l = ω2εlμl, (6.76)

and

cl = coshulzl, sl = sinhulzl.

Between any two adjacent layers, say layers l and l+1, there exists the relation

Vl = Tl,l+1Vl+1, (6.77)

where

Tl,l+1 =

⎡⎣ αl+1

αl
c̄l+1,

αl+1

αl
s̄l+1

ul+1

ul
s̄l+1,

ul+1

ul
c̄l+1

⎤⎦ (6.78)



6.2 Dyadic Green’s functions GE(r|r′) and GH(r|r′) 155

and

(c̄l, s̄l) = (coshulhl, sinhulhl) . (6.79)

On the other hand, in the ith layer with the source, the fields can be written as

ψi = ψ∞
i + (ci, si)Vi =

{ (
cUi , s

U
i

)
V U
i , if D ≤ zi ≤ hi,(

cLi , s
L
i

)
V L
i , if 0 ≤ zi ≤ D,

(6.80)

where D = z′i + di and

ψ∞
i =

{
Uie

−ui(zi−D), if D ≤ zi ≤ hi,

Lie
+ui(zi−D), if 0 ≤ zi ≤ D,

(6.81)(
cUi , s

U
i

)
= (cosh ui (zi −D) , sinh ui (zi −D)) , (6.82)(

cLi , s
L
i

)
= (cosh uizi, sinh uizi) . (6.83)

At the location z = z′ (or zi = D) inside the ith layer with (εi, μi), similar to

(6.65), (6.66) and (6.67), (6.68), we have the following interface conditions for a

horizontally directed unit-Hertz dipole source:

H̃+
z = H̃−

z , (6.84)˜̇H+

z = ˜̇H−
z + J̃s, (6.85)

εiẼ
+
z = εiẼ

−
z + ρ̃e(s), (6.86)˜̇E+

z = ˜̇E−
z , (6.87)

where + indicates the value at z′+, and

J̃s = ikyJ̃e(s),x − ikxJ̃e(s),y, (6.88)

and ρ̃e(s) is given in (6.69) or (6.70). For a z-directed Hertz dipole, we can

solve for G̃zz
E from the z-component of the vector wave equation (6.24) with the

help of (6.55) and (6.56) and the fact that G̃zz
H = 0 as discussed at the end of

Section 6.3.1.

Applying the interface conditions (6.84)–(6.87), we arrive at the following

relation for the coefficients of ψi in (6.80) at zi = D:

V U
i = CiV

L
i + Si, (6.89)

Ci =

[
coshuiD, sinhuiD

sinhuiD, coshuiD

]
, Si =

(
−Li + Ui

−Li − Ui

)
. (6.90)

Table 6.1 lists the corresponding Ui and Li in (6.81) and Si in (6.90) when(
− 1

iωμ

)
· ψ can represent G̃zx

H , G̃zy
H , G̃zx

E , G̃zy
E , and G̃zz

E .

Using the recursive relation (6.77), we arrive at (note that G̃zz
H = 0):

ψj = (−iωμ) {G̃zx
H , G̃zy

H , G̃zx
E , G̃zy

E , G̃zz
E } = (cj , sj)Vj , (6.91)

where

(cj , sj) = (coshujzj , sinhujzj) (6.92)
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Table 6.1. Ui, Li, and Si

G̃zx
H G̃zy

H G̃zx
E G̃zy

E G̃zz
E

Ui − iky

4πui

ikx
4πui

−ikx
4πiωεi

−iky

4πiωεi

−1
4πiωμiui

Li − iky

4πui

ikx
4πui

ikx
4πiωεi

iky

4πiωεi

−1
4πiωμiui

Si

(
0
iky

2πui

) (
0

−ikx
2πui

) ( −ikx
2πiωεi

0

) (
−iky

2πiωεi

0

) (
0
1

2πiωμiui

)

and

Vj =

(
aj
bj

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
N∏

l=j+1

Tl−1,l

)
VN , j > i,

(
i∏

l=j+1

Tl−1,l

)[
Si +

(
Ci

N∏
l=i+1

Tl−1,l

)
VN

]
, j ≤ i,

(6.93)

VN =

(
aN
bN

)
=

⎧⎪⎪⎨⎪⎪⎩
BN

(
ηH
1

)
, for TE waves,

AN

(
1

ηE

)
, for TM waves,

(6.94)

with AN , BN , ηE , and ηH being defined by the following formulae:

AN =
−(e1 + e2)

τ11 + τ21 + ηE (τ12 + τ22)
, BN =

−(e1 + e2)

τ12 + τ22 + ηH (τ11 + τ21)
,

ηH = iZsY
TE
N , ηE = iZsY

TM
N , (6.95)

where

Y TM
N =

ωεN
uN

, Y TE
N =

uN

ωμN
,

(
e1
e2

)
= T+Si, T =

[
τ11 τ12
τ21 τ22

]
= T+CiT

−,

T+ =

[
t+11 t+12
t+21 t+22

]
=

i−1∏
l=0

Tl,l+1, T− =

[
t−11 t−12
t−21 t−22

]
=

N−1∏
l=i

Tl,l+1.

In (6.95), Zs represents the boundary intrinsic impedance at z = −dN . In par-

ticular, if the boundary is a perfect electric conductor (PEC) plane, then Zs = 0.

In addition, some attention should be paid to the definition of Ti−1,i, since it

is different from the definition of other Tl,l+1 in (6.78):

Ti−1,i =

[
αi

αi−1
cosh ui (hi −D) , αi

αi−1
sinh ui (hi −D)

ui

ui−1
sinh ui (hi −D) , ui

ui−1
cosh ui (hi −D)

]
. (6.96)
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The coefficients in the top and bottom layers (if not terminated by a PEC ground

plane at z = 0 or z = −dN ) can be determined by the two algebraic equations

resulting from (6.93) for j = 0 and the fact that a0+b0 = 0, aN−bN = 0 from the

boundedness of the fields as z →∞, z → −∞, respectively. For a PEC boundary

termination at the bottom (or top) layer, we should have G̃xt
E = 0, G̃yt

E = 0 and

G̃zt
H = 0, t = x, y, z, which also implies from Gauss’s law for the electric field that

∂
∂z G̃

zt
E = 0. Then, boundary conditions in (6.94) can be then used at z = −dN .

Finally, we have Green’s functions in the spectral domain,

G̃E =

⎡⎢⎣ G̃xx
E G̃xy

E G̃xz
E

G̃yx
E G̃yy

E G̃yz
E

G̃zx
E G̃zy

E G̃zz
E

⎤⎥⎦ , G̃H =

⎡⎢⎣ G̃xx
H G̃xy

H G̃xz
H

G̃yx
H G̃yy

H G̃yz
H

G̃zx
H G̃zy

H G̃zz
H

⎤⎥⎦ , (6.97)

where the components of Green’s functions are given as follows.

(a) HED, Jx source:

G̃xx
E = (−ikx)2 G̃exx1 − (−iky)2 G̃exx2, G̃xx

H = (−ikx) (−iky) G̃azx,

G̃yx
E = (−ikx) (−iky) G̃eyx, G̃yx

H = (−iky)2 G̃hyx1
− (−iky)2 G̃hyx2

,

G̃zx
E = −ikxG̃2, G̃zx

H = −ikyG̃1. (6.98)

(b) HED, Jy source:

G̃xy
E = G̃yx

E , G̃xy
H = − (−iky)2 G̃hyx1

+ (−iky)2 G̃hyx2
,

G̃yy
E = (−iky)2 G̃exx1 − (−ikx)2 G̃exx2 , G̃yy

H = − (−ikx) (−iky) G̃azx,

G̃zy
H = +ikxG̃1, G̃zy

E = −ikyG̃2. (6.99)

(c) VED (vertical electric dipole), Jz source:

G̃xz
E = −ikxG̃exz, G̃xz

H = −iωε (−iky) G̃hxz,

G̃yz
E = −ikyG̃exz, G̃yz

H = −iωε (−ikx) G̃hxz,

G̃zz
H = 0, G̃zz

E = G̃3. (6.100)

In the above formulations, G̃1, G̃2, G̃3, G̃exx1
, G̃exx2

, G̃eyx, G̃hyx1
, G̃hyx2

, G̃azx,

G̃exz, and G̃hxz are radially symmetric, and their inverse Fourier transforms can

be calculated by Hankel transforms. Their explicit formulae (Yu & Cai, 2006)

are given in the appendices to this chapter, Section 6.5.1.

6.3 Dyadic Green’s functions for vector potentials GA(r|r′)

In this section, we derive the dyadic Green’s functions for the vector and the

scalar potentials, which will be used for the mixed potential integral equation

(MPIE) of scattering problems in Chapter 7. The approach here is to express

Green’s functions for potentials in terms of the field components, specifically only

the z-components of Green’s functions for the E and H fields. It is noted that
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the vector potentials used to represent the magnetic field H in (5.52) are math-

ematically not unique if no boundary condition on A is specified, as A + ∇φ,

with φ being any scalar function, also satisfies (5.52) if A does. Therefore, there

are many ways of defining the vector potentials. Two popular approaches are

the Sommerfeld potentials (Sommerfeld, 1949), used to study the Hertz dipole

antenna, and transverse potentials (Erteza & Park, 1969). Other potentials in-

clude Hertz–Debye potentials (Debye, 1909). Based on the fact that only two

components of the magnetic field are independent, then only two components

of the magnetic field are independent in the Maxwell equations; thus only two

components of these vector potentials are sufficient. Dyadic Green’s functions

can also be derived using vector wave functions as in Chew, Xiong, & Saville

(2006).

6.3.1 Sommerfeld potentials

In the Sommerfeld potential formulation (Sommerfeld, 1949), it is stipulated

that the electromagnetic fields from a HED can be represented by a horizontal

component of A in the same direction of the HED and a z-component of A,

while the fields from a VED can be represented by just the z-component of A.

So the dyadic Green’s function GA for the Sommerfeld vector potential A has

the following form:

GA = (x̂Gxx
A + ẑGzx

A ) x̂+ (ŷGyy
A + ẑGzy

A ) ŷ + ẑGzz
A ẑ, (6.101)

or the matrix form

GA =

⎡⎣ Gxx
A 0 0

0 Gyy
A 0

Gzx
A Gzy

A Gzz
A

⎤⎦ . (6.102)

To derive the components of GA, we consider (5.41) in the Fourier spectral

domain, namely

Ẽ = −iωÃ−
(
ikx, iky,

∂

∂z

)
Ṽe. (6.103)

(a) HED, Jx source

In this case, we have

Ã =
(
G̃xx

A , 0, G̃zx
A

)
. (6.104)

From the Lorentz gauge condition (5.46), we get

Ṽe = −
1

iωεμ

(
ikxG̃

xx
A +

∂

∂z
G̃zx

A

)
. (6.105)

Taking the z-component of (6.103) and using (6.105), we have

G̃zx
E = −iωG̃zx

A − ∂

∂z
Ṽe = −iωG̃zx

A +
kx
ωεμ

∂

∂z
G̃xx

A +
1

iωεμ

∂2

∂z2
G̃zx

A . (6.106)
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Meanwhile, (5.49) in the spectral domain for the z-component G̃zx
A yields

∂2

∂z2
G̃zx

A =
(
k2ρ − k2

)
G̃zx

A . (6.107)

Substituting (6.107) into (6.106), we obtain

k2ρG̃
zx
A = iωεμG̃zx

E − ikx
∂

∂z
G̃xx

A . (6.108)

In the spectral domain (5.52) becomes

H̃ =
1

μ
∇̃ × Ã, (6.109)

where ∇̃ = (ikx, iky, ∂/∂z). From the z-component of this equation, we have

G̃xx
A = − μ

iky
G̃zx

H . (6.110)

Substituting (6.110) into (6.108), we obtain

k2ρG̃
zx
A = iωεμG̃zx

E +
kx
ky

μ
∂

∂z
G̃zx

H . (6.111)

(b) HED, Jy source

In this case, we have

Ã =
(
0, G̃yy

A , G̃zy
A

)
. (6.112)

Similarly, we can express G̃yy
A and G̃zy

A in terms of the z-components of the E

and H fields as

G̃yy
A =

μ

ikx
G̃zy

H (6.113)

and

k2ρG̃
zy
A = iωεμG̃zy

E − ky
kx

μ
∂

∂z
G̃zy

H . (6.114)

(c) VED, Jz source

As for a ẑ-directed Hertz dipole current source, from the vector wave equation

for the H field (5.31), Hz satisfies a homogeneous scalar Helmholtz equation and

continuous interface conditions at layer interfaces; thus we have Hz = 0, and, as

a result, G̃zz
H = 0. Therefore, we have

Ã =
(
0, 0, G̃zz

A

)
,

which is consistent with the scalar Helmholtz equation (5.49) for components of

A. The z-component G̃zz
A can be similarly derived as in (a) and (b), leading to

k2ρG̃
zz
A = iωεμG̃zz

E . (6.115)
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6.3.2 Transverse potentials

In the transverse potential formulation (Erteza & Park, 1969), HED-generated

electromagnetic fields are represented by two transverse components of A, while

VED-generated fields are still represented by only the z-component of A. So

the dyadic Green’s function GA for the transverse vector potential A has the

following form:

GA = (x̂Gxx
A + ŷGyx

A ) x̂+ (x̂Gxy
A + ŷGyy

A ) ŷ + ẑGzz
A ẑ,

or the matrix form

GA =

⎡⎣ Gxx
A Gxy

A 0

Gyx
A Gyy

A 0

0 0 Gzz
A

⎤⎦ . (6.116)

By a discussion similar to that for the Sommerfeld potential, we can obtain

the following identities.

(a) HED, Jt source, t = x, y

k2ρG̃
xt
A =

ωεμkx
u2

∂

∂z
G̃zt

E + iμkyG̃
zt
H , (6.117)

k2ρG̃
yt
A =

ωεμky
u2

∂

∂z
G̃zt

E − iμkxG̃
zt
H , (6.118)

where u2 = k2ρ − k2.

(b) VED, Jz source

k2ρG̃
zz
A = iωεμG̃zz

E . (6.119)

6.4 Fast computation of dyadic Green’s functions

In this section, we describe fast algorithms for computing the Hankel transform

needed for the physical form of the dyadic Green’s functions in layered media.

The kernel of the Hankel transform contains a Bessel function which oscillates

quickly (especially for large ρ) and decays slowly (especially when z ∼ z′). More-

over, the spectral Green’s functions are not well-behaved for high-frequency scat-

tering. General fast algorithms for numerical evaluation of the Hankel transform

can be found in Siegman (1977) and in the references in Markham & Conchello

(2003). Other semi-analytical methods have also been proposed, including the

complex image method (CIM) (Chow et al., 1991), an approach based on the

Prony method and the well-known Sommerfeld identity (Sommerfeld, 1949), and

integration along the steepest-descent path (SDP) for a half-space problem (Cui

& Chew, 1999). In this section, we will describe a window-function-based fil-

tering approach (Cai & Yu, 2000) to speed up the slow decay of the Hankel

kernel, thus reducing the length of the contour of the contour integral in the

Hankel transform. With a shortened contour length, the fast Hankel transform
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techniques (Siegman, 1977; Markham & Conchello, 2003) can be used to speed

up the computations further.

Firstly, a radially symmetric bell-shaped window function ψa(x, y) with a sup-

port size a is defined as

ψa(x, y) = ψa(ρ) =

⎧⎨⎩
[
1−

(ρ
a

)2
]m

, if ρ ≤ a,

0, otherwise,
(6.120)

where ρ =
√
x2 + y2, and m > 0 is the order of the window function.

The 2-D Fourier transform of the window function ψa(x, y) is

ψ̃a (kx, ky) = F {ψa(x, y)} =
1

2π

∫ ∞

−∞

∫ ∞

−∞
ψa(x, y)e

−i(kxx+kyy) dx dy, (6.121)

which can also be conveniently expressed in terms of the zeroth-order Hankel

transform:

ψ̃a(kρ) = S0 [ψa(ρ)] (kρ) =

∫ a

0

ψa(ρ)J0(kρρ)ρ dρ. (6.122)

It should be noted that the window function ψa(x, y) defined above has some

unique properties in both the spatial and the spectral domains. In addition to the

compact support in the physical space, the window function ψa(x, y) is smooth,

especially when the order m is large, and its spectral form decays quickly at high

frequency and thus gives a low pass filter. Specifically, ψ̃a(kρ) has the following

property.

Lemma 6.1 The Hankel transform ψ̃a(kρ) for ψa(ρ) has the following decaying

property:

ψ̃a(kρ) = o

(
1

kmρ

)
as kρ → +∞. (6.123)

Proof As the window function ψa(x, y) is radially symmetric, so is its Fourier

transform ψ̃a (kx, ky). Therefore, we have

ψ̃a(kx, ky) = ψ̃a(kρ, 0),

namely

ψ̃a(kρ) = ψ̃a(kρ, 0) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
ψa(x, y)e

−ikρx dx dy

=
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
ψa(x, y)e

−ikρx dx.
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Due to the compact support of ψa(x, y), we then have

ψ̃a(kρ) =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
ψa(x, y)e

−ikρx dx

=
1

2π

∫ ∞

−∞
dy

[
ψa(x, y)

(
−e−ikρx

ikρ

)∣∣∣∣∞
−∞

+
1

ikρ

∫ ∞

−∞

∂ψa

∂x
e−ikρx dx

]

=
1

2π

∫ ∞

−∞
dy

(
1

ikρ

∫ ∞

−∞

∂ψa

∂x
e−ikρx dx

)
.

Continuing to integrate by parts, we get

ψ̃a(kρ) =
1

2π

∫ ∞

−∞
dy

[(
1

ikρ

)m ∫ ∞

−∞

∂mψa

∂xm
e−ikρx dx

]
.

We stop at the mth step since the mth derivative of the window function is

discontinuous. Now, since∫ ∞

−∞

∂mψa

∂xm
e−ikρx dx→ 0 as kρ →∞,

we have

ψ̃a(kρ) = o

(
1

kmρ

)
.

In addition, by the convolution theorem of the Fourier transform and (6.41),

we immediately have the following lemma.

Lemma 6.2 For any cylindrically symmetric function f(x, y), the convolution

f ∗ ψa can be written as

f(x, y) ∗ ψa(x, y) = S0

[
f̃(kρ)ψ̃a(kρ)

]
(ρ), (6.124)

where

f̃(kρ) = S0 [f(ρ)] (kρ).

To recover the value of f(x, y) from its Hankel transform, we also need the

following result.

Lemma 6.3 Let f(x, y) be a C2 function. Then it can be shown that

f(x, y) ∗ ψa(x, y) = M0f(x, y) +
M2

2

[
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y)

]
+O(a6), (6.125)

where

M0 =
1

2π

∫∫
ρ≤a

ψa(x, y)dx dy =
a2

2(m+ 1)
,

M2 =
1

2π

∫∫
ρ≤a

ψa(x, y)x
2 dx dy = O(a4).
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The proof is elementary and thus omitted here.

From (6.125), we have

f(x, y) =
1

M0
f(x, y) ∗ ψa(x, y) +O(a2). (6.126)

So, as a result of (6.124) and (6.126), we can approximate f(x, y) as

f(x, y) =
1

M0
S0

[
f̃(kρ)ψ̃a(kρ)

]
(ρ) +O(a2), as a→ 0. (6.127)

Window-function-based acceleration algorithms are described in the following.

Algorithm 6.4 Fast algorithm for G(ρ, z; z′) with ρ ≥ a.

If ρ > a, then, as a→ 0, we have

G(ρ, z; z′) =
1

M0
W0(ρ) +O(a2), (6.128)

where

W0(ρ) = S0

[
G̃ (kρ, z; z

′) ψ̃ (kρ)
]
(ρ). (6.129)

Proof Algorithm 6.4 is the direct result of (6.127) applied to G(ρ, z; z′).

Algorithm 6.4 requires that ρ ≥ a, as otherwise Green’s functions will not

be smooth and the estimate in (6.125) will be invalid. Therefore, to apply

the approximation (6.127) to the function G(ρ, z; z′) for ρ < a, we rewrite

G(ρ, z; z′) as

G(ρ, z; z′) =
r2G(ρ, z; z′)

r2
≡ G2(ρ, z; z

′)

r2
, (6.130)

where r =
√
ρ2 + (z − z′)2. From the singularity property of Green’s func-

tions of the vector and the scalar potentials, we can assume that G2(ρ, z; z
′) =

r2G(ρ, z; z′) is a smooth function, and the approximation (6.127) can thus be

used.

Algorithm 6.5 Fast algorithm for G(ρ, z; z′) with ρ > 0.

If ρ > 0, then, as a→ 0, we have

G(ρ, z; z′) =
1

M0r2
[
r2W0(ρ)− 2ρW1(ρ) +W2(ρ)

]
+O(a2), (6.131)

where r =
√
ρ2 + (z − z′)2, W0(ρ) is defined in (6.129), and

W1(ρ) = S1

[
G̃(kρ, z; z

′)ψ̃1(kρ)/kρ

]
(ρ), (6.132)

W2(ρ) = S0

[
G̃(kρ, z; z

′)ψ̃2(kρ)
]
(ρ), (6.133)
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where

ψ̃1(kρ) = S1 [ψ(ρ)] =

∫ a

0

ψ(ρ)J1(kρρ)ρ
2 dρ, (6.134)

ψ̃2(kρ) = S0

[
ψ(ρ)ρ2

]
=

∫ a

0

ψ(ρ)J0(kρρ)ρ
3 dρ. (6.135)

Proof As G2(ρ, z; z
′) = r2G(ρ, z; z′) and Δz = z− z′, from the definition of the

convolution and using

x′2 = x2 − 2x(x− x′) + (x− x′)2,

y′
2
= y2 − 2y(y − y′) + (y − y′)2,

we have

G2 ∗ ψa =
1

2π

∫∫
R2

[
x′2 + y′

2
+Δz2

]
G(x′, y′)ψa(x− x′, y − y′)dx′ dy′

=
[
x2 + y2 +Δz2

] 1

2π

∫∫
R2

G(x′, y′)ψa(x− x′, y − y′)dx′ dy′

− 2x
1

2π

∫∫
R2

G(x′, y′)(x− x′)ψa(x− x′, y − y′)dx′ dy′

− 2y
1

2π

∫∫
R2

G(x′, y′)(y − y′)ψa(x− x′, y − y′)dx′ dy′

+
1

2π

∫∫
R2

G(x′, y′)
[
(x− x′)2 + (y − y′)2

]
ψa(x− x′, y − y′)dx′ dy′

= r2 [G ∗ ψa]− 2x [G ∗ (xψa)]− 2y [G ∗ (yψa)] +G ∗
[
(x2 + y2)ψa

]
.

(6.136)

On the one hand, from (6.124) we have

G ∗ ψa = S0

[
G̃ (kρ, z; z

′) ψ̃ (kρ)
]
(ρ) = W0(ρ). (6.137)

On the other hand, using the integral definition of the Bessel function

Jn(z) =
i−n

π

∫ π

0

eiz cos θ cosnθ dθ,

we can show that

V1 ≡ G ∗ (xψa) = cosα

∫ ∞

0

G̃(kρ, z; z
′)J1(ρkρ)ψ̃1(kρ)kρ dkρ,

V2 ≡ G ∗ (yψa) = sinα

∫ ∞

0

G̃(kρ, z; z
′)J1(ρkρ)ψ̃1(kρ)kρ dkρ,

and consequently

xV1 + yV2 = (x cosα+ y sinα)

∫ ∞

0

G̃(kρ, z; z
′)J1(ρkρ)

ψ̃1(kρ)

kρ
k2ρ dkρ

= ρS1

[
G̃(kρ, z; z

′)ψ̃1(kρ)/kρ

]
(ρ) = ρW1(ρ). (6.138)
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Similarly, we can show that

G ∗
[
(x2 + y2)ψa

]
= S0

[
G̃(kρ, z; z

′)ψ̃2(kρ)
]
= W2(ρ). (6.139)

Substituting (6.137)–(6.139) into (6.136), we have

G2 ∗ ψa = r2W0(ρ)− 2ρW1(ρ) +W2(ρ). (6.140)

Finally, combining (6.126) applied to G2(ρ, z; z
′) and (6.140), we have the proof

of (6.131).

Lemma 6.6 The functions ψ̃1(kρ) and ψ̃2(kρ) have the following decaying prop-

erty:

ψ̃1(kρ) = o

(
1

km−1
ρ

)
, ψ̃2(kρ) = o

(
1

km−1
ρ

)
, as kρ → +∞. (6.141)

As a result of the fast decay of the functions ψ̃(kρ), ψ̃1(kρ), and ψ̃2(kρ), the

contour integration in the definition of W0(ρ),W1(ρ), and W2(ρ) can be carried

out efficiently with a much shorter contour in the kρ space.

Finally, higher-order fast algorithms can be developed using the Richardson

extrapolation with two different window sizes in Algorithm 6.4. For instance, we

can arrive at the following fourth-order algorithm.

Algorithm 6.7 Fourth-order accurate fast algorithm for G(ρ, z; z′).

If ρ > γa, 1 < γ < 2, then, as a→ 0, we have

G(ρ, z; z′) =
1

γ2 − 1

[
γ2

M0(a)
W0(ρ, a)−

1

M0(γa)
W0(ρ, γa)

]
+O(a4). (6.142)

For ρ ≤ γa, a similar O(a4) version of Algorithm 6.5 can also be obtained.

6.5 Appendix: Explicit formulae

6.5.1 Formulae for G̃1, G̃2, and G̃3, etc.

We introduce the following shorthand:

Tj =

[
t11 t12
t21 t22

]
=

N∏
l=j+1

Tl−1,l, (6.143)

T∨
ij =

[
t∨11 t∨12
t∨21 t∨22

]
=

i−1∏
l=j

Tl,l+1, T∧
ij =

[
t∧11 t∧12
t∧21 t∧22

]
= T∨

ijCiT
−. (6.144)
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In fact, among the eleven quantities for Green’s functions in the spectral do-

main as discussed at the end of Section 6.2.5, only three are independent, and

they are G̃1, G̃2, and G̃3, which are explicitly listed below (Yu & Cai, 2006):

G̃k = (cj , sj)

(
ajk
bjk

)
, k = 1, 2, 3,

where (cj , sj) are given in (6.92), and

aj1 =

{
(t11ηH + t12)BN , j > i,

1
2πui

t∨12 + (t∧11ηH + t∧12)BN , j ≤ i,
(6.145)

bj1 =

{
(t21ηH + t22)BN , j > i,

1
2πui

t∨22 + (t∧21ηH + t∧22)BN , j ≤ i,
(6.146)

aj2 =

{
(t11 + ηEt12)AN , j > i,(
− 1

2πiωεi

)
t∨11 + (t∧11 + t∧12ηE)AN , j ≤ i,

(6.147)

bj2 =

{
(t21 + ηEt22)AN , j > i,(
− 1

2πiωεi

)
t∨21 + (t∧21 + t∧22ηE)AN , j ≤ i,

(6.148)

aj3 =

{
(t11 + ηEt12)AN , j > i,(
− k2

ρ

2πiωεiui

)
t∨12 + (t∧11 + t∧12ηE)AN , j ≤ i,

(6.149)

bj3 =

{
(t21 + ηEt22)AN , j > i,(
− k2

ρ

2πiωεiui

)
t∨22 + (t∧21 + t∧22ηE)AN , j ≤ i.

(6.150)

Note that Tj , T
∨
ij , and T∧

ij are given in (6.143) and (6.144), AN , BN , ηE , and ηH
are given in (6.95).

The other eight quantities can be derived from G̃1, G̃2, and G̃3 as follows:

G̃exx1 =
1

k2ρ

˜̇G2 =
uj

k2ρ
(sj , cj)

(
aj2
bj2

)
, (6.151)

G̃exx2 =
iωμj

k2ρ
G̃1 =

iωμj

k2ρ
(cj , sj)

(
aj1
bj1

)
, (6.152)

G̃eyx = G̃exx1
+ G̃exx2

, (6.153)

G̃hyx1
=

1

k2ρ

˜̇G1 =
uj

k2ρ
(sj , cj)

(
aj1
bj1

)
, (6.154)

G̃hyx2 =
iωεj
k2ρ

G̃2 =
iωεj
k2ρ

(cj , sj)

(
aj2
bj2

)
, (6.155)

G̃azx = G̃hyx1
+ G̃hyx2

, (6.156)
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G̃exz =
1

k2ρ

˜̇G3 =
uj

k2ρ
(sj , cj)

(
aj3
bj3

)
, (6.157)

G̃hxz =
1

k2ρ
G̃3 =

1

k2ρ
(cj , sj)

(
aj3
bj3

)
. (6.158)

6.5.2 Closed-form formulae for ψ̃(kρ)

The 2-D Fourier transform ψ̃(kρ) of the window function is listed below. For

ψ̃1(kρ) and ψ̃2(kρ), similar closed-form approximation formulae can also be ob-

tained (Yu & Cai, 2001).

Analytical formulae

To derive the analytical formulae for ψ̃(kρ), we consider two different cases,

kρa < 1 and kρa ≥ 1, separately.

(a) Case 1: kρa < 1

In this case, we use the following Taylor expansion of the Bessel function:

Jn(z) =

∞∑
l=0

(−1)l

l!

1

(n+ l)!

(z
2

)2l+n

. (6.159)

According to the definition of ψ̃(kρ), by setting z = ρ/a and y = kρa, we get

ψ̃(kρ) =

∫ a

0

[
1−

(ρ
a

)2
]m

J0(kρρ)ρdρ

= a2
∫ 1

0

m∑
i=0

(−1)i z2i+1Ci
m

∞∑
j=0

(−1)j 1

j!j!

(yz
2

)2j

dz

= a2
m∑
i=0

∞∑
j=0

hi,jy
2j , (6.160)

where Ci
m = m!

i!(m−i)!
and

hi,j = (−1)i+j m!

(m− i)!i!j!j!

1

22j+1

1

i+ j + 1
.

(b) Case 2: kρa ≥ 1

In this case, we use the fact that

ψ̃(kρ) =
1

k2ρ

m∑
i=0

(−1)i Ci
m

Ii

(kρa)
2i
. (6.161)

Here,

Ii =

∫ kρa

0

J0(u)u
2i+1 du
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Table 6.2. First- to seventh-order window function coefficients Hmj

m Hm0 × 102 Hm1 × 103 Hm2 × 105 Hm3 × 107

1 25.00 20.83333 65.1041666 108.5069444
2 16.6667 10.41667 26.04166 36.16898
3 12.50 6.25 11.574074 15.50099
4 10.00 4.166666 7.440476 7.750496
5 8.33333 2.9761905 4.650297 4.305831
6 7.1428571 2.2321429 3.100198 2.583498
7 6.250 1.7361111 2.170138 1.644044

m Hm4 × 1010 Hm5 × 1012 Hm6 × 1015

1 1130.28067 807.343336 4204.9132
2 322.9373 201.8358 934.4251
3 121.1015 67.27861 280.3275
4 53.82288 26.91144 101.9372
5 26.91144 12.23247 42.47387
6 14.67897 6.116237 19.60332
7 8.562732 3.293358 9.801662

can be obtained from the identity

∫ 1

0

xμJν(ax)dx =

2μΓ

(
ν + μ+ 1

2

)
aμ+1Γ

(
ν − μ+ 1

2

)
+ a−μ [(μ+ ν − 1) Jν(a)Sμ−1,ν−1 (a)− Jν−1(a)Sμ,ν (a)] ,

(6.162)

where a > 0, Re(μ+ ν) > −1, and Sμ,ν(z) are the Lommel functions.

Approximation formulae

We can obtain the following approximation formulae for ψ̃(kρ).

(a) Case 1: kρa < 1

By truncating the series expansions in (6.160), we get the following approxi-

mation in a nested format:

ψ̃(kρ) = a2
{
Hm0 − y2

[
Hm1 − y2

(
Hm2 − y2 {Hm3

− y2
[
Hm4 − y2

(
Hm5 − y2Hm6

)]})]}
, (6.163)

where m indicates the order of the window function and y = kρa. The coefficients

in (6.163) for window functions of order 1 to 7 are given in Table 6.2.



6.6 Summary 169

(b) Case 2: kρa ≥ 1

By using the definition of the Lommel and the Bessel functions, we have the

following approximation:

ψ̃(kρ) = gm(y), (6.164)

where y = kρa, m is the order of the window function, and

g1 =
a2

y2

[
−2J0(y) + 4

J1(y)

y

]
,

g2 =
a2

y2
8

y

[
−4
y

J0(y) +

(
8

y2
− 1

)
J1(y)

]
,

g3 =
a2

y2
48

y2

[(
1− 24

y2

)
J0(y)−

8

y

(
1− 6

y2

)
J1(y)

]
,

g4 =
a2

y2
182

y3

{
24

y

(
1− 16

y2

)
J0(y) + 2

[
1− 24

y2

(
3− 16

y2

)]
J1(y)

}
,

g5 =
a2

y2
1920

y4

{[
−2 + 96

y2

(
3− 40

y2

)]
J0(y) +

[
36− 1536

y2

(
1− 5

y2

)]
J1(y)

y

}
,

g6 =
a2

y2
46080

y5

(
24

y

[
−1 + 80

y2

(
1− 12

y2

)]
J0(y)

+

{
−1 + 96

y2

[
3− 20

y2

(
5− 24

y2

)]}
J1(y)

)
,

g7 =
a2

y2
645120

y6

({
1− 480

y2

[
1− 4

y2

(
15− 168

y2

)]}
J0(y)

+
32

y

{
−1 + 5

y2

[
30− 144

y2

(
6− 28

y2

)]}
J1(y)

)
.

6.6 Summary

Green’s functions and their computation are the main components of integral

equation methods for wave scattering, and they also influence the solution pro-

cedure for the resulting linear systems. For the dyadic Green’s functions of the

Maxwell equations in layered media, using the spectral domain is the usual way

to derive their analytical forms in terms of Hankel transforms involving Som-

merfeld integrals. The slow convergence of these integrals due to the oscillatory

Hankel kernel is improved by a window-function-based filtering technique in the

spectral domain.



7 High-order methods for surface
electromagnetic integral equations

In this chapter, we will present surface integral equations for electromagnetic

scattering. Galerkin methods using mixed vector–scalar potentials and Nyström

collocation methods using hyper-singular formulation will be discussed. Also, we

will discuss the issue of removing resonance from cavity modes with a combined

integral equation approach. Finally, the high-order Rao–Wilton–Glisson (RWG)

current basis for the Galerkin methods will be given. The volume integral equa-

tion method for Maxwell equations will be discussed in Section 10.4.

7.1 Electric and magnetic field surface integral equations in layered
media

7.1.1 Integral representations

We consider the N -layered medium discussed in Section 6.2.2 with planar inter-

faces at z = −di, 0 ≤ i ≤ N , as shown in Fig. 7.1. The electric and magnetic

fields will satisfy boundary conditions at the planar interfaces and also on the

bottom terminal layer, or the Sommerfeld radiation conditions at z → ±∞ if

either the lower or the upper space is not terminated at a finite location. Each

of the layers is assumed to be an isotropic material with permittivity ε = ε(r)

and permeability μ = μ(r). Embedded in this multi-layered medium is a 3-D

conducting object with a surface S which has an outward normal n. Let V1 be

the multi-layered medium outside the scatterer S and V2 the volume inside the

scatterer S. Denote the ith layer in V1 by V i
1 = {(x, y, z) ∈ V1 : −di < z <

−di−1}, 0 ≤ i ≤ N + 1, d0 = 0, d−1 = −∞, and dN+1 =∞. Thus

V1 =
⋃

0≤i≤N+1

V i
1 , (7.1)

and the interfaces in V1 are denoted by Σi = {(x, y, z) ∈ V1 : z = −di} and

Σ =
⋃

0≤i≤N

Σi. (7.2)
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Ground plane 

Figure 7.1. Multi-layered medium with an embedded scatterer.

Let Je(r) be some electric source outside S and in V 0
1 , and let E1,H1 and

E2,H2 be the electric field and the magnetic field in V1 and V2, respectively.

From (5.30) and (5.31), they satisfy the following vector equations:

∇× 1

μ(r)
∇×E1(r) − ω2ε(r)E1(r) = −iωJe(r), r ∈ V1\Σ, (7.3)

∇× 1

ε(r)
∇×H1(r) − ω2μ(r)H1(r) = ∇×

1

ε(r)
Je(r), r ∈ V1\Σ, (7.4)

with the boundary conditions (5.62)–(5.65) along the interfaces Σi, 0 ≤ i ≤ N.

To derive an integral representation for the fields in V1, we consider the dyadic

Green’s functions G
1

E(r, r
′) and G

1

H(r, r′). The former satisfies

∇× 1

μ(r)
∇×G

1

E(r, r
′) − ω2ε(r)G

1

E(r, r
′) =

1

μ(r)
Iδ(r− r′), r ∈ V1\Σ, (7.5)

and from Faraday’s law in the Maxwell equations the magnetic dyadic Green’s

function is given by

G
1

H(r, r′) = − 1

iωμ(r)
∇×G

1

E(r, r
′), (7.6)

which satisfies

∇× 1

ε(r)
∇×G

1

H(r, r′) − ω2μ(r)G
1

H(r, r′)

=− I∇× 1

iωμ(r)ε(r)
δ(r− r′), r ∈ V1\Σ. (7.7)
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Along the interfaces between adjacent layers, both tangential components of

each column vector in the dyadic Green’s functions are continuous for r ∈ Σi

and r′ ∈ V1\Σ:

n×
[
G

1

E(r, r
′)
]
= 0, (7.8)

n×
[
G

1

H(r, r′)
]
= −n×

[
1

μ(r)
∇×G

1

E(r, r
′)

]
= 0, (7.9)

where [ ] denotes the difference from both sides of Σi.

Following Chew (1990), we multiply (7.3) by G
1

E(r, r
′) ·e, with e being any of

the three coordinate axis unit vectors, and we have[
∇× 1

μ
∇×E1(r)

]
·G1

E(r, r
′)·e − ω2εE1(r)·G

1

E(r, r
′)·e = −iωJe(r)·G

1

E(r, r
′)·e.

(7.10)

Next, we pre-multiply (7.5) by E1(r) and then post-multiply it by e to arrive at

the following equation:

E1(r) ·∇×
1

μ
∇×G

1

E(r, r
′) ·e − ω2εE1(r) ·G

1

E(r, r
′) ·e =

1

μ(r′)
E1(r) ·eδ(r−r′).

(7.11)

Subtracting (7.11) from (7.10) gives[
∇× 1

μ
∇×E1(r)

]
·G1

E(r, r
′) · e−E1(r) · ∇ ×

1

μ
∇×G

1

E(r, r
′) · e

= −iωJe(r) ·G
1

E(r, r
′) · e − 1

μ
E1(r) · eδ(r− r′). (7.12)

Integrating (7.12) over the region V i
1 yields∫

V i
1

dr

[(
∇× 1

μ
∇×

)
E1(r) ·G

1

E(r, r
′) · e

− E1(r) ·
(
∇× 1

μ
∇×

)
G

1

E(r, r
′) · e

]
= −iω

∫
V i
1

dr
[
Je(r) ·G

1

E(r, r
′) · e

]
− ci

1

μ
E1(r

′) · e, (7.13)

where ci = 1 if r′ ∈ V i
1 , and ci = 0 if r′ /∈ V i

1 .

The integrand on the left-hand side of (7.13) can be simplified using the fol-

lowing vector identity for the vector operator L = ∇× 1
μ∇×:

(Lf) · g − f · (Lg) = ∇ · 1
μ
[ (∇× f)× g + f × (∇× g)], (7.14)

and thus (7.13) can be rewritten as∫
V i
1

dr ∇ · 1
μ

[
(∇×E1(r))×G

1

E(r, r
′) · e+E1(r)×

(
∇×G

1

E(r, r
′) · e

)]
= −iω

∫
V i
1

dr Je(r) ·G
1

E(r, r
′) · e − ci

1

μ
E1(r

′) · e, (7.15)
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and the volume integral on the left-hand side of (7.15) could be reduced to a

surface integral by Gauss’s theorem. So, we have

−
∫
Si∪Σi−1∪Σi

ds n · 1

μ(r)

[
(∇×E1(r))×G

1

E(r, r
′) · e

+ E1(r)×
(
∇×G

1

E(r, r
′) · e

)]
= −iω

∫
V i
1

dr
[
Je(r) ·G

1

E(r, r
′) · e

]
− ci

1

μ(r′)
E1(r

′) · e, (7.16)

where Si = S ∩ V i
1 , and n is the normal pointing to the interior of V i

1 .

Next, by using the vector identity u · (v ×w) = (u× v) ·w and Faraday’s law

in the Maxwell equations ∇×E1(r) = −iωμH1(r), we obtain

ciE1(r
′) · e = −iωμ(r′)

∫
V i
1

dr
[
Je(r) ·G

1

E(r, r
′) · e

]
− μ(r′)

∫
Si∪Σi−1∪Σi

ds[
iωn×H1(r) ·G

1

E(r, r
′) · e− n×E1(r) ·

1

μ(r)
∇×G

1

E(r, r
′) · e

]
. (7.17)

It can be shown that the surface integrals over each Σi will be canceled from

adjacent domains V i+1
1 and V i

1 . To see this, let us write g = G
1

E(r, r
′) · e and

h = 1
μ(r)

∇×G
1

E(r, r
′) · e. With the identity

f = n× (f × n) + (f · n)n,

the integrands in the surface integral can be written as

n×H1(r) · g= [n×H1(r)] · [n× (g × n)] ,

n×E1(r) · h= [n×E1(r)] · [n× (h× n)] , (7.18)

after using the vector identity (n× f) · n = 0. As the tangential components of

Green’s functions (7.8)–(7.9) as well as those of E1(r) and H1(r) are continuous

across the interfaces Σi, i.e.,

[n× (g × n)]Σi = 0, [n× (h× n)]Σi = 0,

n× [E1(r)]Σi
= 0, n× [H1(r)]Σi

= 0, (7.19)

the surface integrals from both sides of Σi will cancel each other when (7.17) is

summed up over all V i
1 . As e is any of the three coordinate axis unit vectors,

after all surface integrals over Σi cancel out, the following integral representation

for the electric field E1(r) is obtained (with r and r′ switched):

E1(r) = Einc(r)− μ(r)

∫
S

ds′
[
iωn×H1(r

′) ·G1

E(r
′, r)

− n×E1(r
′) · 1

μ(r′)
∇′ ×G

1

E(r
′, r)

]
, r ∈ V1, (7.20)
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where Einc(r) would be the incident electric field generated by the source Je(r
′)

in V1, i.e.,

Einc(r) = −iωμ(r)
∫
V1

dr′ Je(r
′) ·G1

E(r
′, r). (7.21)

From the proceeding derivation, if r′ ∈ V2, then ci in (7.17) is replaced with

zero, and we have (after switching r and r′)

0 = Einc(r)− μ(r)

∫
S

ds′
[
iωn×H2(r

′) ·G1

E(r
′, r)

− n×E2(r
′) · 1

μ(r′)
∇′ ×G

1

E(r
′, r)

]
, r ∈ V2. (7.22)

Let us define the equivalent surface magnetic current Jm(s) and the electric

current Je(s) over S, i.e., for r ∈ S,

Je(s)(r) ≡ n×H1(r) = n×H2(r), (7.23)

Jm(s)(r) ≡ −n×E1(r) = −n×E2(r). (7.24)

Equations (7.20) and (7.22) imply that those currents, together with the vol-

ume current source Je(r) in V 0
1 , will produce the same field as E1(r) outside

S, but zero field inside S. After using the following reciprocal property for the

dyadic Green’s function in a layered medium (Tai, 1994, sect. 4.4):

1

k2(r′)

[
∇′ ×G

1

E(r
′, r)

]T
=

1

k2(r)
∇×G

1

E(r, r
′), (7.25)

1

μ(r′)
G

1

E(r
′, r)T =

1

μ(r)
G

1

E(r, r
′), (7.26)

we have finally the following electric field integral representation (assuming

μ(r) = μ(r′)):

E1(r) = Einc(r)− μ(r)

∫
S

ds′
[
iωG

1

E(r, r
′) · Je(s)(r

′)

+
1

μ(r)

ε(r′)

ε(r)
∇×G

1

E(r, r
′) · Jm(s)(r

′)

]
, r ∈ V1, (7.27)

where k2(r) = ω2ε(r)μ(r), and

0 = Einc(r)− μ(r)

∫
S

ds′
[
iωG

1

E(r, r
′) · Je(s)(r

′)

+
1

μ(r′)
∇×G

1

E(r, r
′) · Jm(s)(r

′)

]
, r ∈ V2. (7.28)

Remark 7.1 Equivalent surface currents Je(s) and Jm(s) produce the total field

E1 and H1 outside S and zero field inside; the former fact is Huygens’ principle

(Sommerfeld, 1954) and the latter (7.28) is the extinction principle (Harrington,

2001).
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Similarly, we can obtain the following magnetic field integral representation:

H1(r) = Hinc(r) + ε(r)

∫
S

ds′
[

1

ε(r′)
∇×G

1

E(r, r
′) · Je(s)(r

′)

− iωG
1

E(r, r
′) · Jm(s)(r

′)
]
, r ∈ V1, (7.29)

0 = Hinc(r) + ε(r)

∫
S

ds′
[

1

ε(r′)
∇×G

1

E(r, r
′) · Je(s)(r

′)

− iωG
1

E(r, r
′) · Jm(s)(r

′)
]
, r ∈ V2, (7.30)

whereHinc(r) would be the incident magnetic field generated by the source Je(r
′)

located within V1, i.e.,

Hinc(r) = ε(r)

∫
V1

dr′
1

ε(r′)
∇×G

1

E(r, r
′) · Je(r

′). (7.31)

7.1.2 Singular and hyper-singular surface integral equations

To derive surface integral equations for electric and magnetic fields E1 and H1

over S, we would have to let r reside on S. As the dyadic Green’s functions

become singular when r approaches S, (7.27)–(7.30) for r on S would be obtained

by considering the limits of r approaching S. As a result, the Cauchy principal

value or the Hadamard finite part discussed previously in Sections 3.1.1 and 3.1.3

will appear for the electromagnetic fields.

Let r0 = (x0, y0, z0) ∈ S not on any of the interfaces Σi, which, for simplicity,

is assumed to be (0, 0, 0), and let Sa be a circular patch of radius a over S

centered at r0. As the dyadic Green’s function G
1

E(r
′, r) shares the same type

of singularity as the free-space Green’s function, we can assume that, near the

singularity, G
1

E(r, r
′) is given by (6.35).

Denote the first and second integrals in (7.27) as the contribution by the

electric and the magnetic currents, respectively, by

Eelec(r) = iωμ(r)

∫
S

ds′ G
1

E(r, r
′) · Je(s)(r

′), (7.32)

Emag(r) = μ(r)

∫
S

ds′
1

μ(r′)
∇×G

1

E(r, r
′) · Jm(s)(r

′). (7.33)

Therefore, (7.27) can be rewritten as

E1(r) = Einc(r)−Eelec(r)−Emag(r), r ∈ V1. (7.34)
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Principal value of Emag(r)

By using the identity

∇×G
1

E(r, r
′) = ∇×

(
I+

1

k2
∇∇

)
g(r, r′)

= ∇×
[
g(r, r′)I

]
, (7.35)

the integral over Sa can be written as∫
Sa

ds′ ∇×G
1

E(r, r
′) · Jm(s)(r

′)

=

∫
Sa

ds′ ∇×
[
g(r, r′)I

]
· Jm(s)(r

′) =

∫
Sa

ds′ ∇g(r, r′)× Jm(s)(r
′)

≈
[∫

Sa

ds′ ∇g(r, r′)

]
× Jm(s)(r0). (7.36)

If we assume that Sa is flat with local coordinates (x′, y′, z′ = 0), Jm(s)(r0) =

(Jsx, Jsy, 0)
T, then the contribution of the tangential component above is∫

Sa

∇sg(r, r
′)ds′ =

∫ a

0

∫ 2π

0

(
∂

∂x′ ,
∂

∂y′

)
g(R)ρ dρ dφ

=

∫ a

0

∫ 2π

0

g′(R)

(
x′

R
,
y′

R

)
ρ dρ dφ = 0, (7.37)

where R =

√
ρ2 + (z − z′)2.

On the other hand, along the normal z-direction, we have∫
Sa

∂

∂n
g(r, r′)ds′ =

∫ a

0

∫ 2π

0

∂

∂z
g(R) |z′=0 ρ dρ dφ

=

∫ a

0

∫ 2π

0

g′(R)
z

R
ρ dρ dφ = − z

2

∫ a

0

(ikR+ 1)e−ikR

R3
ρ dρ, (7.38)

and if a is small and z → z′ = 0, then R =
√

ρ2 + z2 → 0, and we have∫
Sa

∂

∂n
g(r, r′)ds′ ≈ 1

2

(
z√

a2 + z2
− z

|z|

)
→ −1

2
. (7.39)

Therefore, substituting (7.37) and (7.39) into (7.36), we have

μ(r)

∫
Sa

ds′
[

1

μ(r′)
∇×G

1

E(r, r
′) · Jm(s)(r

′)

]
≈

⎛⎝ 0

0∫
Sa

∂g
∂n ds′

⎞⎠× Jm(s)(r0)

= (−Jsy, Jsx, 0)T
∫
Sa

∂

∂n
g(r, r′) ds′ → −1

2
(−Jsy, Jsx, 0)T =

1

2
Jm(s)(r0)× n.

(7.40)
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Let r→ r0 (along the normal direction n) in (7.33), so we have (after replacing

r0 by r)

Emag(r) = μ(r) p.v.

∫
S

ds′
1

μ(r′)
∇×G

1

E(r, r
′) · Jm(s)(r

′) +
1

2
Jm(s)(r)× n

= μ(r) p.v.

∫
S

ds′
1

μ(r′)
∇g(r, r′)× Jm(s)(r

′) +
1

2
Jm(s)(r)× n. (7.41)

Hadamard finite part of Eelec(r) and its CPV representation

Here, we have

Eelec(r) = iωμ(r)

∫
S

ds′
(
I+

1

k2
∇∇

)
g(r, r′) · Je(s)(r

′)

= iωμ(r)

∫
S

ds′g(r, r′)Je(s)(r
′) +

iωμ(r)

k2

∫
S

ds′ ∇′∇′g(r, r′) · Je(s)(r
′)

≡ S1(r) + S2(r). (7.42)

Firstly, let us examine the limit of S1(r) as r→ r0:

S1(r) = iωμ

(∫
S\Sa

+

∫
Sa

)
ds′g(r, r′)Je(s)(r

′). (7.43)

The term Je(s)(r
′) in the second integral in (7.43) can be approximated as

Je(s)(r0); thus

iωμ

∫
Sa

ds′g(r, r′)Je(s)(r
′) ≈ iωμJe(s)(r0)

∫
Sa

g(r, r′)ds′

=
iωμJe(s)(r0)

4π

∫ a

0

∫ 2π

0

e−ikR

R
ρ dρ dφ

≈
iωμJe(s)(r0)

4π

∫ a

0

∫ 2π

0

ρ√
ρ2 + z2

dρ dφ

=
iωμJe(s)(r0)

2

(√
a2 + z2 − |z|

)
= O(a), as z → z′ = 0. (7.44)

Therefore, as r→ r0 and a→ 0, we have

lim
r→r0

S1(r) = iωμ p.v.

∫
S

ds′g(r, r′)Je(s)(r
′). (7.45)

Next, we consider the limiting value of S2(r) above as r → r0 ∈ S. As the

kernel is hyper-singular, the limit will be of a Hadamard finite part for the hyper-

singular integral (Hadamard, 2003) as discussed in Section 3.1.1. Now we have

S2(r) =
iωμ(r)

k2

∫
S

ds′ ∇′∇′g(r, r′) · Je(s)(r
′)

=
i

ωε

(∫
S\Sa

+

∫
Sa

)
ds′ ∇′∇′g(r, r′) · Je(s)(r

′). (7.46)
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We will show that the Hadamard finite part of S2(r) can be computed by the

Cauchy principal values of a weaker singular kernel. Let us first examine the

integral over the patch Sa and denote the integrand as

f =∇′∇′g(r, r′) · Je(s)(r
′), (7.47)

which in component form reads

fi =
∂2

∂x′
i∂x

′
j

g(r, r′)Jj , (7.48)

where Jj = Je(s),j . We can rewrite fi as

fi =
∂

∂x′
j

(
∂g

∂x′
i

Jj

)
− ∂g

∂x′
i

∂Jj
∂x′

j

= ∇′ ·
(

∂g

∂x′
i

Je(s)

)
− ∂g

∂x′
i

(
∇′ · Je(s)

)
= ∇′ ·

(
∂g

∂x′
i

Je(s)

)
+ iωρe(s)

∂g

∂x′
i

,

where the continuity equation iωρe(s) +∇′
s ·Je(s) = 0 has been used for the final

equality.

Using the fact that ∇′ = ∇′
s + n ∂

∂n and n ⊥ Je(s), we have

fi = ∇′
s ·

(
∂g

∂x′
i

Je(s)

)
+ iωρe(s)

∂g

∂x′
i

. (7.49)

Using Gauss’s theorem, we can compute the integral over Sa in (7.46) as follows:∫
Sa

fi ds
′ =

∫
Sa

[
∇′

s ·
(

∂g

∂x′
i

Je(s)

)
+ iωρe(s)

∂g

∂x′
i

]
ds′

=

∫
∂Sa

∂g

∂x′
i

Je(s)(r
′) · τ dl′ + iω

∫
Sa

ρe(s)
∂g

∂x′
i

ds′, (7.50)

where τ is the outer normal of ∂Sa:

τ = (cosφ, sinφ, 0). (7.51)

Using (7.37) and (7.39), we obtain

∫
Sa

f ds′ ≈
∫
∂Sa

∇′g
[
Je(s)(r

′) · τ
]
dl′ +

iω

2
ρe(s)(r0)n

≈
∫
∂Sa

g′(R)aR

[
Je(s)(r0) · τ

]
dl′ +

iω

2
ρe(s)(r0)n, (7.52)

where

aR = ∇′R =
r′ − r

|r′ − r| = −n cos θ + τ sin θ, (7.53)

and θ is the angle between vector r′ − r and −n at r0.

Assuming that

Je(s)(r0) = |Je(s)(r0)|(cosφ0, sinφ0, 0), (7.54)
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then the line integral in (7.52) can be simplified as follows:∫
∂Sa

g′(R)aR

[
Je(s)(r0) · τ

]
dl′

= a|Je(s)(r0)|g′(R)

∫ 2π

0

(−n cos θ + τ sin θ) cos(φ− φ0)dφ

= a|Je(s)(r0)|g′(R) sin θ

∫ 2π

0

τ cos(φ− φ0)dφ

= πa|Je(s)(r0)|g′(R) sin θ(cosφ0, sinφ0, 0)

= πaJe(s)(r0)g
′(R) sin θ → −

Je(s)(r0)

4a
as z → z′ = 0, θ → π

2
.

Finally, we have the integral over Sa:∫
Sa

ds′ ∇′∇′g(r, r′) ·Je(s)(r
′) =

∫
Sa

f ds′ = −
Je(s)(r0)

4a
+

iω

2
ρe(s)(r0)n. (7.55)

The term Je(s)(r0)/4a becomes unbounded as a goes to zero, but we can use

the idea of the Hadamard finite part since a similar unbounded term with an

opposite sign, as for all finite parts of Hadamard integrals, will come from the

following integral:∫
S\Sa

ds′ ∇′∇′g(r, r′) · Je(s)(r
′) = iω

∫
S\Sa

ds′ ∇′g(r, r′)ρe(s)(r
′) +

Je(s)(r0)

4a
.

(7.56)

Therefore, limr→r0 S2(r) as the finite part (p.f.) of the Hadamard integral

lim
r→r0

S2(r) = p.f.
iωμ(r)

k2

∫
S

ds′ ∇′∇′g(r, r′) · Je(s)(r
′) (7.57)

can be computed using the following Cauchy principal integral after combining

(7.55) and (7.56) and canceling the divergent term Je(s)(r0)/4a:

S2(r) = −p.v.
1

ε

∫
S

ds′ ∇′g(r, r′)ρe(s)(r
′)− 1

2ε
ρe(s)(r0)n. (7.58)

As a result, we have two equivalent representations for Eelec(r) with r ∈ S:

one by a Hadamard finite part integral

Eelec(r) = iωμ(r) p.f.

∫
S

ds′
(
I+

1

k2
∇∇

)
g(r, r′) · Je(s)(r

′)

= iωμ p.f.

∫
S

ds′ G
1

E(r, r
′) · Je(s)(r

′), (7.59)
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and the other one by a Cauchy principal value integral:

Eelec(r) =iωμ p.v.

∫
S

ds′ g(r, r′)Je(s)(r
′)

− p.v.
1

ε

∫
S

ds′ ∇′g(r, r′)ρe(s)(r
′)− 1

2ε
ρe(s)(r0)n. (7.60)

Electric field integral equation (EFIE)

Substituting (7.41) and (7.59) or (7.41) and (7.60) into (7.34) and taking the

tangential component (using the fact that n×
(
Jm(s)(r)× n

)
= Jm(s)(r)), we

arrive at the EFIE:

−1

2
Jm(s)(r) = n×Einc(r)− iωμn× p.f.

∫
S

ds′ G
1

E(r, r
′) · Je(s)(r

′)

− μn× p.v.

∫
S

ds′
1

μ(r′)
∇×G

1

E(r, r
′) · Jm(s)(r

′), r ∈ S.

(7.61)

The first singular integral should be understood in terms of the finite part of the

Hadamard integral and, as shown in (7.60), for homogeneous media it can be

converted into a regular Cauchy principal value for the charge density (noting

that the term (ρe(s)(r0)/2ε)n in (7.60) is orthogonal to the surface tangents) as

follows:

−1

2
Jm(s)(r) = n×Einc(r)− n×

[
iωμp.v.

∫
S

ds′ Je(s)(r
′)g(r, r′)

− p.v.
1

ε(r)

∫
S

ds′∇′g(r, r′)ρe(s)(r
′)

+ μ(r) p.v.

∫
S

ds′
1

μ(r′)
∇g(r, r′)× Jm(s)(r

′)

]
, r ∈ S. (7.62)

This integral equation is attributed to Maue (1949) and is also known as the

Stratton–Chu representation (without 1/2 if r /∈ S) (Stratton & Chu, 1939).

Magnetic field integral equation (MFIE)

Similarly, a surface MFIE can be obtained:

1

2
Je(s)(r) = n×Hinc(r)

+ ε(r)n× p.v.

∫
S

ds′
[

1

ε(r′)
∇×G

1

E(r, r
′) · Je(s)(r

′)

− iωG
1

E(r, r
′) · Jm(s)(r

′)
]
, r ∈ S. (7.63)
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From (7.41) and (7.59), we can define integral operators T (J) and K(J) (Hsiao

& Kleinman, 1997) as follows:

T (J) = −ikn× p.f.

∫
S

ds′ G
1

E(r, r
′) · J(r′), (7.64)

K(J) = n× p.v.

∫
S

ds′∇×G
1

E(r, r
′) · J(r′)

= n× p.v.

∫
S

ds′∇g(r, r′)× J(r′). (7.65)

As shown in (7.62), the electric integral operator T (J) using the Hadamard

finite part can also be defined using the Cauchy principal value of the integral

with weaker singularity:

T (J) =− ikn× p.v.

∫
S

ds′ J(r′)g(r, r′)

− i

k
n× p.v.

∫
S

ds′∇′g(r, r′)∇′
s · J(r′). (7.66)

The surface integral equations (7.61) and (7.63) become(
1

2
I −K

)
Jm(s) + T

(
ZJe(s)

)
=− n×Einc(r) (EFIE for exterior scattering),

(7.67)(
1

2
I −K

)(
ZJe(s)

)
− T Jm(s) = Zn×Hinc(r) (MFIE for exterior scattering),

(7.68)

where the impedance of the exterior medium Z =
√

μ/ε.

According to the impedance boundary condition in (5.97) for conductors, we

have a relation between these two currents:

Jm(s) = −Zsn× Je(s), (7.69)

which can be used with either (7.67) or (7.68) to form a closed system of equa-

tions.

For a PEC (perfect electric conductor), the intrinsic surface impedance Zs = 0,

so we have Jm(s) = 0; the surface integral equations for the electric current

J = Je(s) are given by

T (ZJ) =− n×Einc(r), (7.70)(
1

2
I −K

)
J = n×Hinc(r). (7.71)
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Meanwhile, for the electromagnetic fields inside the cavity, similar surface inte-

gral equations can be obtained with Green’s function G
2

E(r
′, r) for the definition

of the surface integral operators in (7.64) and (7.65):(
1

2
I +K

)
Jm(s) − T

(
ZJe(s)

)
= −n×Einc(r) (EFIE for interior scattering),

(7.72)(
1

2
I +K

)(
ZJe(s)

)
+ T Jm(s) = Zn×Hinc(r) (MFIE for interior scattering),

(7.73)

where

Je(s)(r) = n×H2(r), (7.74)

Jm(s)(r) = −n×E2(r), (7.75)

and the incident waves Einc(r) and Hinc(r) come from sources inside V2:

Einc(r) = −iωμ(r)
∫
V2

dr′ G
2

E(r, r
′) · Je(r

′), (7.76)

Hinc(r) = ε(r)

∫
V2

dr′
1

ε(r′)
∇′ ×G

2

E(r, r
′) · Je(r

′). (7.77)

If the cavity has a PEC boundary, then the surface electric current J = Je(s)

will satisfy the following integral equations:

T (ZJ) = −n×Einc(r), (7.78)(
1

2
I +K

)
J = n×Hinc(r). (7.79)

Remark 7.2 (Surface integral equations on dielectric scatterers) As

an electromagnetic field can penetrate into dielectric media, both interior and

exterior field scattering will occur. By using the continuity of the tangential

components of the electromagnetic fields, we can see that Jm(s) and Je(s) in

(7.67) and (7.72) are the same. Therefore, combining these two equations will

give the surface EFIE for a dielectric scatterer. Similarly, (7.68) and (7.73) will

form the surface MFIE for a dielectric scatterer.

7.2 Resonance and combined integral equations

The surface EFIE and MFIE have unique solutions except at resonant frequencies

k when V2 (as a cavity) has non-zero solutions with the PEC boundary condition

on S, i.e., n × E|S = 0. These solutions are called resonant eigen-modes of the

cavity and k is the eigen-frequency of the cavity. We will discuss these modes for

a spherical cavity V2 with radius a.

According to the general solution for the Maxwell equations using the magnetic

and electric vector potentials (5.58) and (5.59), together with the identity
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∇(∇ ·A) = ∇×∇×A+∇2A

and the fact that

∇2A+ k2A = 0

(the same for F in (5.58)) in source-free cases, we have

E = −1

ε
∇× F +

1

iωεμ
∇×∇×A, (7.80)

H =
1

μ
∇×A +

1

iωεμ
∇×∇× F. (7.81)

To find the cavity resonant modes inside the sphere, we consider the following

vector potential (Harrington, 2001, p. 267)

A = rAr, F = rFr.

Then, the electric and the magnetic fields are given as

Er =
1

ε

1

α

(
∂2

∂r2
+ k2

)
Ar,

Eθ =
1

ε

(
−1

r sin θ

∂Fr

∂φ
+

1

αr

∂2Ar

∂r∂θ

)
,

Eφ =
1

ε

(
1

r

∂Fr

∂θ
+

1

αr sin θ

∂2Ar

∂r∂φ

)
, (7.82)

Hr =
1

μ

1

β

(
∂2

∂r2
+ k2

)
Fr,

Hθ =
1

μ

(
1

r sin θ

∂Ar

∂φ
+

1

βr

∂2Fr

∂r∂θ

)
,

Hφ =
1

μ

(
−1

r

∂Ar

∂θ
+

1

βr sin θ

∂2Fr

∂r∂φ

)
, (7.83)

where α = iωμ and β = iωε.

• TE eigen-modes. By setting Ar = 0, then Er = 0, so E has only transverse

(θ, φ) components inside the sphere and takes

Fr = ĵn(kr)P
m
n (cos θ)

{
cosmφ

sinmφ

}
, (7.84)

where

ĵn(kr) =

√
2πkr

2
jn+ 1

2
(kr), (7.85)

and jn+ 1
2
(x) is the Bessel function of fractional order and ĵn(kr) satisfies

the following differential equation (Harrington, 2001):(
d2

dr2
+ k2 − n(n+ 1)

r2

)
ĵn(kr) = 0. (7.86)
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We can see that the PEC boundary condition is satisfied, namely that

the tangential components Eθ and Eφ of E will vanish if ka are the roots

of the spherical Bessel functions

ĵn(ka) = 0. (7.87)

• TM eigen-modes. By setting Fr = 0, then Hr = 0, so H has only transverse

(θ, φ) components inside the sphere, and takes Ar in the same form as

(7.84). Again in this case we can see that the PEC boundary condition

is satisfied, namely that the tangential components Eθ and Eφ of E will

vanish if ka are the roots of the derivatives of the spherical Bessel functions

ĵ′n(ka) = 0. (7.88)

As ĵn(ka) and ĵ′n(ka) cannot be zero simultaneously, the transverse (θ, φ)

components of the magnetic field r̂ × H are non-zero for both TE and TM

modes above. Because there is no source inside the cavity, the non-zero electric

current on the surface of the sphere,

Jmode(r) = r̂×Heigen-mode, (7.89)

will satisfy a homogeneous version of (7.78) and (7.79):

T (Jmode) = 0, (7.90)(
1

2
I +K

)
Jmode = 0. (7.91)

Thus, from (7.90), we conclude that the surface integral equation for the ex-

terior scattering surface EFIE is not uniquely solvable, as the same operator T
is used in (7.70) and (7.90). Also, (7.91) implies that λ = −1/2 is an eigenvalue

for the operator K, and it can be proven (Hsiao & Kleinman, 1997) that 1/2 will

also be an eigenvalue for K. Therefore, the surface MFIE (7.71) for the scatter-

ing problem does not have a unique solution either for a perfectly conducting

scatterer when k is an eigen-frequency.

The mathematical non-uniqueness of the surface integral equations for the

exterior scattering problem for a PEC is found to be related to the fact that

the solution of the EFIE fails to give the zero normal magnetic field on the

boundary: n ·H = 0. There are various remedies to resolve the non-unique so-

lution problem for the EFIE and MFIE. One is to supplement the EFIE with

an explicit condition n ·H = 0 on S, the so-called augmented EFIE (A-EFIE)

(Yaghjian, 1981). The most popular solution is to use the combined field integral

equation approach by Mautz & Harrington (1978), which combines the operators

T and K such that the spectra of the new operator stays away from zero. The

combined field operator C is defined as

C =

(
1

2
I −K

)
+ηn× T . (7.92)
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The eigenvalues and the eigenfunctions for C for a unit PEC sphere (a = 1)

can be explicitly computed as follows (Hsiao & Kleinman, 1997):

C(∇sY
m
n ) =

(
1

2
+ λn − ηαn

)
∇sY

m
n , (7.93)

C(∇s × Y m
n ) =

(
1

2
− λn + ηβn

)
∇s × Y m

n , (7.94)

where

λn =
ik

2

{
jn(k)[kh

(1)
n (k)]′ + h(1)

n (k)[kjn(k)]
′
}
, (7.95)

αn = [kjn(k)]
′[kh(1)

n (k)]′, (7.96)

βn = −k2jn(k)h(1)
n (k). (7.97)

Therefore, the eigenvalues for the combined field operator C cluster around 1/2

away from zero for appropriate choices of η.

The eigen-equations (7.93) and (7.94) can be easily verified using the following

identities for the operators T and K on the unit spherical surface (Hsiao &

Kleinman, 1997):

T (∇sY
m
n ) = αn∇s × Y m

n , (7.98)

T (∇s × Y m
n ) = βn∇sY

m
n , (7.99)

and

K(∇sY
m
n ) = −λn∇sY

m
n , (7.100)

K(∇s × Y m
n ) = λn∇s × Y m

n , (7.101)

as well as the identities ∇s × f = ∇sf × n and n× (∇sf × n) = −∇sf.

With the combined integral operator C, Mautz & Harrington (1978) proposed

the following CFIE for general scattering surfaces:

C(J) = n×Hinc − ηn× n×Einc, on S (CFIE). (7.102)

7.3 Nyström collocation methods for Maxwell equations

7.3.1 Surface differential operators

Assume that the surface S in R3 is smooth and parameterized by r = r (u1, u2).

Firstly, we define the metric tensors and various surface differential operators.

Tangential vectors: ∂ir, i = 1, 2, are defined as

∂ir =
∂r

∂ui
, i = 1, 2. (7.103)

Metric tensors : the distance between two points on S parameterized by (u1, u2)

and (u1 + du1, u2 + du2) is given by

(ds)
2
= gμν (u) duμduν , (7.104)
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where the repeated indices imply a summation and

gμν =
∂r

∂uμ
· ∂r

∂uν
, 1 ≤ μ, ν ≤ 2, (7.105)

and {gμν} is defined as the covariant tensor (Kreyszig, 1991). The contra-variant

tensor
{
gαβ

}
is defined by

gανg
νβ = δαβ. (7.106)

The determinant of {gμν} is denoted by

g = det {gμν} = g11g22 − g212 = |∂1r× ∂2r|2 . (7.107)

Normal to the surface:

n =
∂1r× ∂2r

|∂1r× ∂2r|
. (7.108)

Differential operators on S: ∇s.

• Scalar ∇sφ – the surface gradient of a scalar function φ(u1, u2):

∇sφ = gμv
∂φ

∂uμ

∂r

∂uν
, (7.109)

and g12 = 0 if we have orthogonal parametric coordinates, i.e., the u1 and

u2 coordinate axes are orthogonal, and

∇sφ = g11
∂φ

∂u1

∂r

∂u1
+ g22

∂φ

∂u2

∂r

∂u2
= g11∂1φ∂1r+ g22∂2φ∂2r. (7.110)

• Divergence ∇s · f – the surface divergence of a vector field f = f(u1, u2) on S:

∇s · f = gμv∂μf · ∂vr (7.111)

7.3.2 Locally corrected Nyström method for hyper-singular EFIE

Consider an integral equation for an unknown function ψ(r),∫
S

G(r− r′)ψ(r′)ds′ = φ(r), (7.112)

where φ(r) is assumed given. The conventional Nyström method for (7.112) is

based on a quadrature formula to discretize the integral operator, i.e.,∫
S

f(r′)ds′ ≈
N∑

n=1

ωnf(rn). (7.113)

The weights and the abscissas are obtained by first transforming the inte-

gral to a regular reference (square) parameter domain where the usual Gauss

quadratures {�n,un} are used. Then, we have
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ωn =
√

g(un) �n, (7.114)

rn = r(un), (7.115)

where r(u) is the parameterization mapping between the reference domain and

S, and g(u) is the determinant of the mapping function. The discretized system

for the integral equation is simply

N∑
n=1

ωnG(rm−rn)ψ(rn) = φ(rm), m = 1, 2, . . . , N. (7.116)

The accuracy of the solution of (7.116) is determined by that of the quadrature

formula and the smoothness of the surface, namely the mapping function r(u).

However, the accuracy of (7.116) will be lost once the kernel function G becomes

singular or even hyper-singular. To retain the high-order accuracy, new types of

specially designed quadrature formulae will be needed to account for the specific

nature of the kernel function when rm and rn are close. This is achieved by

the local correction strategy in Strain (1995) where the local corrections are

introduced:

G̃mn ≡
{

Lmn, if rn ∈ Dm,

G(rm−rn), otherwise,
(7.117)

where Dm is a neighborhood of rm.

The correction Lmn is obtained by constructing a quadrature formula for a G-

weighted integral, which is required to be exact for some classes of test functions.

Therefore, Lmn depends on G(r) for each m. For each rm and its neighborhood

Dm, the new quadrature for the G-weighted integral is found by satisfying K

constraints:∫
Dm

G(rm−r′)f (k)(r′)ds′ =
J∑

n=1

Lmnf
(k)(rm − rn), k = 1, 2, . . . ,K, (7.118)

where the test functions f (k)(r) are pre-selected functions, usually polynomials.

As K and J are small, the correction coefficients can be pre-calculated for each

rm with small cost.

Now, the high-order Nyström method (Canino et al., 1998) for the singular

kernel G becomes

N∑
n=1

ωnG̃mnψ(rn) = φ(rm), m = 1, 2, . . . , N. (7.119)

The locally corrected quadrature Lmn in (7.117) requires accurate evaluation

of the left-hand side of (7.118), which is singular or even hyper-singular. In

treating the hyper-singular integrals in the EFIE (7.61), there are methods of

direct calculations as discussed in Section 3.1.3 for general curved surfaces or

see Tong & Chew (2007) for flat patches. There is also a reformulation of the
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singular integral in terms of weaker singular integrals as in (7.66). A similar

approach was used in Canino et al. (1998) where the hyper-singular terms are

handled by using Stokes’ theorem (see the review in Gray, Glaeser, & Kaplan

(2004)) to avoid integrating the hyper-singular terms directly, as reviewed below.

Three main types of singularities for the EFIE are listed as follows.

• Type 1:

G(R)t(r) · t′(r′); (7.120)

• Type 2:

t(r)·
(
∇G(R)× t′(r′)

)
; (7.121)

• Type 3:

(t(r) · ∇)
(
∇′G(R) · t′(r′)

)
, (7.122)

where

G(R) =
e−ikR

R
= Gr(R)− i

sin kR

R

and

Gr(R) = Gr(r, r′) =
cos kR

R
, R = |r− r′|. (7.123)

We will show how to handle Type 3 hyper-singularities for a given field point

r = r0 ∈ S, and the other two types can be treated similarly (Canino et al., 1998).

The key is to convert the integral into smooth or less singular integrals as field

point r approaches r0 on S so it can be computed accurately for selected test

functions:

(t(r) · ∇)
(
∇′G(R) · t′(r′)

)
=−ik3

[
sin kR
kR − cos kR

(kR)
2 t · t′ + k2

sin kR
kR

− 3
(
sin kR
kR

− cos kR
)
/(kR)

2

(kR)
2 (t · r) (t′·r)

]
+ (t · ∇) (∇′Gr(R) · t′) . (7.124)

Whereas the first term in the right-hand side of (7.124) is regular, the second

term is hyper-singular to be simplified using Gauss’s theorem on the surface

patch:∫
S

ds′ (t(r) · ∇)
(
∇′Gr(r, r′) · t′(r′)

)
=

∫
S

ds′ t′(r′) · ∇′
s (t(r) · ∇Gr(r, r′))

=

∫
S

ds′ ∇′
s ·

[
t′(r′) (t(r) · ∇Gr(r, r′))

]
−

∫
S

ds′ [t(r) · ∇Gr(r, r′)]
(
∇′

s · t′(r
′
)
)

=

∫
∂S

dl
(
τ · t′(r′)

)
(t(r) · ∇Gr(r, r′)) +

∫
S

ds′ ∇′Gr(r, r′) ·
[
t(r)

(
∇′

s · t′(r
′
)
)]

,

(7.125)
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where τ still denotes the outer normal of the curve ∂S tangential to the

surface S.

The first term will be void of singularities as long as the field point r is not on

the boundary ∂S, whereas the second term can be regularized at r − r′ by the

following splitting

t(r)∇′
s · t(r

′
) =

[
t(r)

(
∇′

s · t(r
′
)
)
− αμ

∂′
μr

′√
g(u)

]
+ αμ

∂′
μr

′√
g(u)

, (7.126)

where the coefficient vector α = (αμ) is selected to make the first term vanish at

r′ = r, namely

αμ = αμ(r) ≡
√
g(u)gμν(t(r) · ∂′

μr
′)
(
∇′

s · t′(r
′
)
)

=
√
g(u)gμν(t(r) · ∂′

μr
′) (gκσ∂′

κt
′ · ∂′

σr
′) |r′=r. (7.127)

Then, the second term in (7.125) can be split as follows:∫
S

ds′ ∇′Gr(r, r′) ·
[
t(r)∇′

s · t′(r
′
)
]

=

∫
S

ds′ ∇′Gr(r, r′) ·
[
t(r)∇′

s · t(r
′
)− c(r, r′)

]
+

∫
S

ds′ ∇′Gr(r, r′) · c(r, r′),

(7.128)

where

c(r, r′) ≡ αμ(r)
∂′
μr

′√
g(u)

.

Due to the choice in (7.127), the first term has a singularity at most of 1/|r−r′|,
whereas the second term can be converted into a boundary integral as follows:∫

S

ds′ ∇′Gr(r, r′) · c(r, r′) =
∫
S

ds′ ∇′
sG

r(r, r′) · c(r, r′)

=

∫
∂S

dl′ τ ·Gr(r, r′)c(r, r′). (7.129)

Finally, the integral in (7.125) can be computed as∫
S

ds′ (t(r) · ∇)
(
∇′Gr(r, r′) · t′(r′)

)
=

∫
S

ds′ ∇′Gr(r, r′) ·
[
t(r)∇′

s · t′(r
′
)− c(r, r′)

]
+

∫
∂S

dl′ τ ·
[
t′(r′) (t(r) · ∇Gr(r, r′)) +Gr(r, r′)c(r, r′)

]
. (7.130)

The test function used in defining Lmn in (7.118) is taken as

t′(r′) = t
′(k)

(r′) =
∂μr

′√
g(u)

f (k)(u), (7.131)
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where u is the parameterization of r′ ∈ S, i.e., r′ = r′(u) while, for a fixed field

point r = r(u0), the basis function is given by

tμ(r) = ∂μr(u)|u=u0
. (7.132)

Thus, (7.125) becomes (Canino et al., 1998)∫
S

ds′ (t(r) · ∇)
(
∇′Gr(r, r′) · t′(r′)

)
=

∫
S

ds′ ∇′Gr(r, r′)
[
∂μr(u)∂

′
νf

(k)(u) − ∂′
μr

′∂′
νf

(k)(u0)
]
/
√

g(u)

+

∫
∂S

dl′τ ·
[
∂μr(u) · ∇Gr(r, r′)f (k)(u)∂′

νr
′ +Gr(r, r′)∂′

νf
(k)(u0)∂

′
μr

′
]
.

(7.133)

Here the field point r = r(u0) as r tends to the surface S.

The first term in (7.133) has at most a singularity of 1/|r − r′| due to the

selection of (7.127) at r − r′, which can be handled by a Duffy mapping (see

Section 7.3.3), and the boundary integral will be finite as long as the field point

r is not on the boundary ∂S in the limiting process, and thus can be evaluated

by a regular quadrature on ∂S.

Remark 7.3 The Nyström collocation method (Nyström, 1930) discussed here

requires the surface EFIE to hold at some specific points on the surface S. The

resulting algebraic equation can be conditioned by the Calderon identity (Hsiao &

Kleinman, 1997), which is addressed in various literatures (Contopanagos et al.,

2002; Christiansen & Nédélec, 2002; Borel, Levadoux, & Alouges, 2005; Andriulli

et al., 2008).

7.3.3 Nyström method for mixed potential EFIE

A high-order Nyström method by Tong & Chew (2005) is based on the Stratton–

Chu representation (7.62), where only singular integrals are involved, in contrast

to the hyper-singular integrals in (7.61) with the dyadic Green’s functions. Here

we will only consider the free-space Green’s function and the media inside or

outside the scatterer will be homogeneous. We consider the following singular

term in the EFIE (7.62) over a patch S:

n×
∫
S

ds′ ∇′g(r, r′)ρs(r
′
)

=

∫
S

ds′ n×∇′g(r,r′)ρs(x
′
) =

∫
S

ds′ n×∇′
sg(r,r

′)ρs(r
′
)

=

∫
S

ds′n×∇′
sg(r,r

′)
[
ρs(r

′
)− ρs(r)

]
+ρs(r)

∫
S

ds′n×∇′
sg(r,r

′)

=

∫
S

ds′ n×∇′
sg(r,r

′)
[
ρs(r

′
)− ρs(r)

]
+ρs(r)

∫
∂S

dl′ g(r, r′). (7.134)
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Now the first term has only a 1/|r − r′| singularity which can be treated

by using the Duffy transform (Duffy, 1982). This transform maps a triangular

domain T = {(u1, u2) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ u1} in the parametric variables

of the surface S into a square Q = {(ζ, η) : 0 ≤ ζ, η ≤ 1} through a collapsing

transform:

u1 = ζ, u2 = u1η = ζη, (7.135)

and the Jacobian of the mapping (7.135), J = ∂(u1, u2)/∂(ζ, η) = ζ, will then

be able to cancel the singularity 1/|r − r′| = 1/|r(u1, u2) − r(u′
1, u

′
2)| once the

integration of the first term in (7.134) is carried out in the (ζ, η) variables.

Alternatively, a local polar coordinate system on the surface where (ζ, η) ≡
(ρ, θ) can also achieve the same effect of singularity cancelation (Cai, Yu, &

Yuan, 2002). Meanwhile, the second term in (7.134) remains finite as r is away

from ∂S as it approaches S.

Similarly, in the MFIE, we need to compute the following integral accurately:∫
S

ds′ n×
(
∇′g(r, r′)× J(r

′
)
)

=

∫
S

ds′
[(
n · J(r′)

)
R− (n ·R)J(r

′
)
]
× (−ikR− 1)

R2
e−ikR, (7.136)

where the integrand is of 1/R singularity because R = r− r′ becomes orthogonal

to n as r tends to the surface S.

7.4 Galerkin methods and high-order RWG current basis

7.4.1 Galerkin method using vector–scalar potentials

The Galerkin method for the electric field integral equation is usually based on

a vector and scalar potential representation of the electric field (Mosig, 1989),

which involves a weaker singular kernel in (7.62), and the unknowns will be the

surface current. Such a procedure was first proposed in Harrington (1993).

For a PEC (perfect electric conductor), Zs = 0, so (7.62) becomes

iωμn× p.v.

∫
S

ds′ Je(s)(r
′)g(r, r′)− n× p.v.

1

ε(r)

∫
S

ds′ ∇′g(r, r′)ρe(s)(r
′)

= n×Einc(r). (7.137)

Let Jl(r), l = 1, 2, . . . , N , be the RWG current basis functions given in Sections

7.4.3 and 7.4.4, and let the current Js and the charge ρs be expressed in terms

of these basis functions, namely
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Js(r) =

N∑
l=1

IlJl(r), (7.138)

ρs(r) =
N∑
l=1

Ilρl(r), (7.139)

where

ρl(r) = −
1

iω
∇s · Jl(r). (7.140)

We apply the Galerkin projection procedure to (7.137) by multiplying it with

a test function Jk(r
′) and then integrating over the whole surface S to obtain

the following algebraic equation:

N∑
l=1

ZklIl = Vk, k = 1, 2, . . . , N, (7.141)

where, after using integration by parts to transfer the gradient operator ∇ in

(7.137) to the test function Jl(r), and using the continuity equation for the

surface charge (7.140), we have

Zkl = iωμ

∫
S

∫
S

g(R)Jk(r
′) · Jl(r)ds

′ds+
iω

ε

∫
S

∫
S

g(R)ρk(r
′)ρl(r) ds

′ds,

(7.142)

and

Vk =

∫
S

n×Einc(r) · Jk(r)ds. (7.143)

7.4.2 Functional space for surface current J(r)

In order to transfer the ∇ operator in the second term in (7.137) to the cur-

rent function J(r), the divergence of the current basis functions should be L2

integrable, which implies a continuous normal component of the basis functions

across the common interface of any two patches when S is decomposed into either

triangular or quadrilateral patches. The normal continuity of the current basis

function insures no non-physical accumulation of charges on the patch interfaces.

Let us examine more closely the smoothness property of the surface cur-

rents. From the tangential continuity of the electric and magnetic fields, we

have {E,H} ∈ Hloc(curl, V ), where

Hloc(curl, V ) =

{
u :

∫
Ω

| curlu|2 dr <∞,

∫
Ω

|u|2 dr <∞, ∀Ω ⊂ V

}
. (7.144)

Similarly, we can define the space Hloc(div, V ) as

Hloc(div, V ) =

{
u :

∫
Ω

|div u|2 dr <∞,

∫
Ω

|u|2 dr <∞, ∀Ω ⊂ V

}
. (7.145)
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Meanwhile, the Sobolve space H1(V ) is defined as

H1(V ) =

{
u :

∫
V

|u|2 dr+
3∑

i=1

∫
V

|∇ui|2 dr <∞
}
, (7.146)

which can be shown to have the following property:

H1(V ) ⊂ Hloc(curl, V ) ∩Hloc(div, V ). (7.147)

The fact that {E,H} ∈ Hloc(curl, V ) implies that their traces (Duvaut & Lions,

1976, lemma 4.2, p. 341) satisfy

n×E|s,n×H|s ∈ H−1/2(S) = (H1/2(S))∗. (7.148)

The definition of the trace of Hloc(curl, V ) for smooth domains can be found

in Nédélec (2001) while that for non-smooth domains are in Buffa, Costabel, &

Sheen (2002) and Buffa, Costabel, & Schwab (2002). On applying the surface

divergence to n×E, we have

∇s · (n×E) = −n · (∇×E) = n · (iωμH), (7.149)

and by using Faraday’s law in the second equation in (7.149) and the following

gradient operator identity in the first equation:

∇s = ∇− n
∂

∂n
. (7.150)

Therefore, assuming that n ·H has a trace in H−1/2(S), namely that the field

has no singularity near the surface S, then we have

∇s · (n×E) ∈ H−1/2(S). (7.151)

Together with (7.148), we can see that

Jm(s) = −n×E ∈ H−1/2(divs, S) =
{
u : u,∇su ∈ H−1/2(S)

}
, (7.152)

to which

H(divs, S) =

{
u :

∫
S

|u|2 ds <∞,

∫
S

|divsu|2 ds <∞
}

(7.153)

is a dense subspace.

In the following, we present the construction of high-order current basis func-

tions in H(divs, S) (Cai et al., 2001), which generalizes the zeroth-order RWG

basis functions (Rao, Wilton, & Glisson, 1982).
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Figure 7.2. Two triangular patches.

7.4.3 Basis functions over triangular–triangular patches

Consider two curved triangular patches T+ and T− with a common interface

AC with length l in Fig. 7.2. Let T+ and T− be parameterized, respectively, by

r = r+ (u1, u2) : T0 → T+,

r = r− (u1, u2) : T0 → T−. (7.154)

We assume that the interface AC in both T+ and T− is parameterized by u1 +

u2 = 1 and is labeled as side e+2 in T+ and side e−2 in T−. In Cai et al. (2001), the

following basis functions with continuous normal components are constructed.

High-order basis functions for a triangular–triangular patch in Fig. 7.2 can be

written in terms of the tangential vectors ∂1r and ∂2r defined in (7.103) with

variable coefficients in the following form (Wandzura, 1992):

f(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l√
g+

(
P+
1 (u1, u2) ∂1r+ P+

2 (u1, u2) ∂2r
)
,

if r = r+ (u1, u2)∈ T+,

l√
g−

(
P−
1 (u1, u2) ∂1r+ P−

2 (u1, u2) ∂2r
)
,

if r = r− (u1, u2)∈ T−.

(7.155)

On the common interface AC : u1 + u2 = 1, we have the tangential direction

t‖ of
−→
AC as

t‖ =
∂1r− ∂2r

|∂1r− ∂2r|
=

∂1r− ∂2r√
g11 + g22 − 2g12

, (7.156)
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and the direction t⊥ normal to AC and n is given by

t⊥ = −t‖ × n = − ∂1r− ∂2r√
g11 + g22 − 2g12

× (∂1r× ∂2r)√
g

=
∂2r× (∂1r× ∂2r)− ∂1r× (∂1r× ∂2r)√

g
√
g11 + g22 − 2g12

=
∂1r(g22 − g12) + ∂2r(g11 − g12)√

g
√
g11 + g22 − 2g12

. (7.157)

Therefore, on the interface AC = T+∩T−, the projection of the basis function

f(r) along the normal direction t⊥ is

f · t⊥ =
l
√
g
(P1∂1r+ P2∂2r) · t⊥

=
l√

g11 + g22 − 2g12
(P1(u1, u2) + P2(u1, u2)) , (7.158)

where the length element
√
g11 + g22 − 2g12 is the same for both triangles.

Since t+⊥ = −t−⊥, the continuity of the normal component of the vector basis

function f over the surface S implies that

f · t+⊥ = f · t−⊥, (7.159)

namely

P+
1 + P+

2 = −(P−
1 + P−

2 ), (7.160)

for u1 + u2 = 1 on AC.

In order to satisfy the constraint in (7.160) for coefficients P1(u1, u2) and

P2(u1, u2) taken in the polynomial spaces, we will employ the hierarchical polyno-

mial basis over the reference triangle T0 whose vertices are a = (1, 0), b = (0, 0),

and c = (0, 1). We group (u1, u2) polynomials into three modes: vertex modes,

edge modes, and internal modes (Szabó & Babuska, 1991).

• Vertex modes:

ga(u1, u2) = u1,

gb(u1, u2) = 1− u1 − u2,

gc(u1, u2) = u2. (7.161)

Each vertex mode will take value 1 at one vertex and zero at the other two

vertices.

• Edge modes: for 2 ≤ l ≤M ,

gabl (u1, u2) = ga(u1, u2)gb(u1, u2)Pl−2(gb − ga),

gbcl (u1, u2) = gb(u1, u2)gc(u1, u2)Pl−2(gc − gb),

gcal (u1, u2) = gc(u1, u2)ga(u1, u2)Pl−2(ga − gc), (7.162)

where Pl(ξ), ξ ∈ [−1, 1], is the lth-order Legendre polynomial.
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Each of the edge modes is non-zero only along one edge of the triangle T0.

• Internal modes: 0 ≤ k + l ≤M − 3,

gintl,k (u1, u2) = ga(u1, u2)gb(u1, u2)gc(u1, u2)Pk(2gc−1)Pl(gb−ga). (7.163)

Each of the internal modes will vanish over all edges of T0.

Now we set the coefficients P±
1 and P±

2 in the following form in terms of the

hierarchical polynomials in (7.161)–(7.163):

P+
1 (u1, u2) = Ianga(u1, u2) +

M∑
m=2

I
(m)
n − Ĩ

(m)
t

2
g
e+2
m (u1, u2) +

∑
(l,m)∈LΔ

c1lmgintlm ,

P+
2 (u1, u2) = Icngc(u1, u2) +

M∑
m=2

I
(m)
n + Ĩ

(m)
t

2
g
e+2
m (u1, u2) +

∑
(l,m)∈LΔ

c2lmgintlm ,

(7.164)

and

P−
1 (u1, u2) = −Ianga(u1, u2) +

M∑
m=2

−I(m)
n − Î

(m)
t

2
g
e−2
m (u1, u2) +

∑
(l,m)∈LΔ

d1lmgintlm,

P−
2 (u1, u2) = −Icngc(u1, u2) +

M∑
m=2

−I(m)
n + Î

(m)
t

2
g
e−2
m (u1, u2) +

∑
(l,m)∈LΔ

d2lmgintlm,

(7.165)

with

LΔ = {(l,m) : 0 ≤ l +m ≤M − 3}. (7.166)

Unknowns for each edge are

Ian, I
c
n, I

(m)
n , Ĩ

(m)
t , Î

(m)
t , 2 ≤ m ≤M, (7.167)

and interior unknowns for each triangular patch are

c1lm, c2lm, d1lm, d2lm, (l,m) ∈ LΔ. (7.168)

• RWG basis

If we assume that the normal components of the current basis function remain

constant, Ian = Icn = In, along the common edge AC, we have

f(r) = In

⎧⎨⎩
l√
g+

(ga(u1, u2)∂1r+ gc(u1, u2)∂2r), if r = r+ (u1, u2)∈ T+,

− l√
g−

(ga(u1, u2)∂1r+ gc(u1, u2)∂2r), if r = r− (u1, u2)∈ T−,

(7.169)

and the unknown for each edge AC is just In.

In particular, for flat triangular patches, we have in T+ the following:

r = r+ (u1, u2) = ga(u1, u2)rA + gb(u1, u2)rB + gc(u1, u2)rC. (7.170)
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Then the tangential vectors are

∂1r = rA − rB,

∂2r = rC − rB. (7.171)

Similarly, we have in T−:

r = r− (u1, u2) = ga(u1, u2)rA + gd(u1, u2)rD + gc(u1, u2)rC, (7.172)

where gd(u1, u2) = gb(u1, u2), and the tangential vectors are

∂1r = rA − rD,

∂2r = rC − rD. (7.173)

Substituting (7.171) and (7.173) into (7.169), we get the original RWG basis

function (Rao, Wilton, & Glisson, 1982):

f(r) = In

⎧⎪⎨⎪⎩
l

2A+
(r− rB), if r = r+ (u1, u2)∈ T+,

− l

2A− (r− rD), if r = r− (u1, u2)∈ T−,
(7.174)

where A+ and A− are the areas of the triangles T+ and T−, respectively.

From (7.174), it can easily be seen that the normal component of f(r) from

each triangle is exactly the height of the triangle from vertex B (or D) to the

common edge AC, which cancels the area A+ (or A−) of each triangle exactly

after being multiplied by the length l of the common edge AC.

• First-order basis

From (7.155) and (7.164)–(7.165), we get two first-order basis functions for each

edge:

f1(r) =Ian

⎧⎪⎪⎨⎪⎪⎩
1√
g+

u1∂1r
+
s , if r = r+s (u1, u2)∈ T+,

− 1√
g−

u1∂1r
−
s , if r = r−s (u1, u2)∈ T−,

(7.175)

f2(r) =Icn

⎧⎪⎪⎨⎪⎪⎩
1√
g+

u2∂2r
+
s , if r = r+s (u1, u2)∈ T+,

− 1√
g−

u2∂2r
−
s , if r = r−s (u1, u2)∈ T−,

(7.176)

where the unknowns for each edge AC are Ian for f1(r) and Icn for f2(r).
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Figure 7.3. A triangular patch and a quadrilateral patch.

• Second-order basis

From (7.155) and (7.164)–(7.165), we get five second-order basis functions for

each edge. Note that f1(r) and f2(r) are given in (7.175) and (7.176), and

f3(r) =Ĩ
(2)
t

⎧⎨⎩
1√
g+

u1u2 (−∂1r+s + ∂2r
+
s ) , if r = r+s (u1, u2)∈ T+,

0, if r = r−s (u1, u2)∈ T−,
(7.177)

f4(r) =Î
(2)
t

⎧⎨⎩
0, if r = r+s (u1, u2)∈ T+,

1√
g−

u1u2 (−∂1r−s + ∂2r
−
s ) , if r = r−s (u1, u2)∈ T−,

(7.178)

and

f5(r) =I(2)n

⎧⎪⎪⎨⎪⎪⎩
1√
g+

u1u2∂1r
+
s , if r = r+s (u1, u2)∈ T+,

− 1√
g−

u1u2∂1r
−
s , if r = r−s (u1, u2)∈ T−.

(7.179)

7.4.4 Basis functions over triangular–quadrilateral patches

Consider a curved quadrilateral patch Ω and a curved triangular patch T which

are parameterized separately by two mappings ri (u1, u2) , i = 1, 2, i.e.,

r1 (u1, u2) : Ω0 → Ω (u1, u2) ∈ Ω0,

r2 (u1, u2) : T0 → T (u1, u2) ∈ T0. (7.180)

The edges of Ω and T are labeled as in Fig. 7.3. The common interface is BC,

which is parameterized by u1 = 0.
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We consider mixed high-order basis functions for a triangular–quadrilateral

patch in the following form:

f(r) =

⎧⎪⎪⎨⎪⎪⎩
l√
gΩ

(Q1 (u1, u2) ∂1r+Q2 (u1, u2) ∂2r), if r = r1 (u1, u2)∈ Ω,

− l√
gT

(P1 (u1, u2) ∂1r+ P2 (u1, u2) ∂3r)

= l√
gT

(−(P1 + P2)∂1r+ P2 (u1, u2) ∂2r),
if r = r2 (u1, u2)∈ T,

(7.181)

where for r = r2 (u1, u2)∈ T we have

∂3r = ∂1r− ∂2r. (7.182)

Along the common edge BC, the vector tΩ‖ tangential to the common edge is

tΩ‖ =
∂2r

|∂2r|
=

∂2r√
gΩ22

, (7.183)

while the vector tΩ⊥ orthogonal to both the edge and the normal nΩ of the surface

S is

tΩ⊥ = tΩ‖ × nΩ =
∂2r√
gΩ22

× ∂1r×∂2r√
gΩ

=
gΩ22∂1r−gΩ12∂2r√
gΩ22

√
g11g22 − g212

. (7.184)

Therefore, from the side of Ω, the normal component of f(r) satisfies

f(r) · tΩ⊥ =
l√
gΩ22

Q1 (u1, u2) . (7.185)

Meanwhile, the vector tT‖ tangential to the common edge is

tΩ‖ =
∂2r

|∂2r|
=

∂2r√
gT22

, (7.186)

while the vector tT⊥ orthogonal to both the edge and the normal nT of the surface

S is

tT⊥ = −tT‖ × nT = − ∂2r√
gT22

× ∂1r×∂2r√
gT

=
gT12∂2r − gT22∂1r√
gT22

√
gT11g

T
22 −

(
gT12

)2 . (7.187)

Thus, from the side of T , the normal component of f(r) satisfies

f(r) · tT⊥ =
l√
gT22

(P1 (u1, u2) + P2 (u1, u2)). (7.188)

Along the common edge BC, we have the identity of the two parameterizations

of the triangular and the quadrilateral patches. Therefore,

gT22 =
√

∂2r · ∂2r = gΩ22. (7.189)
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As a result, in order to have continuity of the normal component of the current

f(r), namely

f(r) · tΩ⊥ = f(r) · tT⊥, (7.190)

we require that along BC (u1 = 0)

P1 (u1, u2) + P2 (u1, u2) = −Q1 (u1, u2) . (7.191)

In order to satisfy the constraint in (7.191) for coefficients Q1(u1, u2) taken

in the polynomial spaces, we employ the hierarchical polynomial basis over the

reference square Ω0 with vertices b, c, d, and e, as in Fig. 7.3. We group (u1, u2)

hierarchical polynomials of order M over Ω0 into three modes: vertex modes,

edge modes, and internal modes (Szabó & Babuska, 1991).

• Vertex modes:

Nb(u1, u2) = (1 + u1)(1− u2),

Nc(u1, u2) = (1 + u1)u2,

Nd(u1, u2) = −u1u2,

Ne(u1, u2) = −u1(1− u2). (7.192)

Each vertex mode will take value 1 at one vertex and zero at the other three

vertices.

• Edge modes: 2 ≤ l ≤M

Neb
l (u1, u2) = (1− u2)φl(2u1 + 1),

Nbc
l (u1, u2) = (1 + u1)φl(2u2 − 1),

Ncd
l (u1, u2) = u2φl(2u1 + 1),

Nde
l (u1, u2) = −u1φl(2u2 − 1), (7.193)

where

φl(ξ) =
1

4

(
1− ξ2

)
Pl−2(ξ). (7.194)

Each of the edge modes is non-zero only along one edge of the rectangle Ω0.

• Internal modes: 2 ≤ k, l ≤M

N int
l,k (u1, u2) = φl(2u1 + 1)φk(2u2 − 1). (7.195)

Each of the internal modes will vanish over all edges of Ω0.



7.4 Galerkin methods and RWG current basis 201

Now we set the coefficients in (7.181) in the following form (Cai, 1999):

Q1 (u1, u2) = IbnNb(u1, u2) + IcnNc (u1, u2)

+

M∑
l=2

I(l)n Ne2
l (u1, u2) +

∑
2≤l,m≤M

γ1
lmN int

lm ,

Q2 (u1, u2) =
M∑
l=2

Î
(l)
t Ne2

l (u1, u2) +
∑

2≤l,m≤M

γ2
lmN int

lm , (7.196)

and

P1 (u1, u2) = −Ibngb(u1, u2)−
M∑
l=2

I
(l)
n − Ĩ

(l)
t

2
g
e′3
l (u1, u2) +

∑
(l,m)∈LΔ

c1lmgintlm,

P2 (u1, u2) = −Icngc(u1, u2)−
M∑
l=2

I
(l)
n + Ĩ

(l)
t

2
g
e′3
l (u1, u2) +

∑
(l,m)∈LΔ

c2lmgintlm,

(7.197)

where e′3 = e2 = BC. The unknowns for each edge BC are

Ibn, I
c
n, I

(l)
n , Ĩ

(l)
t , Î

(l)
t , 2 ≤ l ≤M, (7.198)

and the interior unknowns for each triangular element are

c1lm, c2lm, (l,m) ∈ LΔ, (7.199)

while the interior unknowns for each quadrilateral element are

γ1
lm, γ2

lm, 2 ≤ l,m ≤M. (7.200)

• Mixed RWG basis

If we assume that the normal components of the current basis function remain

constant, then we have

f(r) = In

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l√
gΩ

[Nb(u1, u2) +Nc (u1, u2)]∂1r, if r = r1 (u1, u2)∈ Ω,

− l√
gT

[−(gb(u1, u2) + gc(u1, u2))∂1r

+ gc(u1, u2)∂2r],
if r = r2 (u1, u2)∈ T.

(7.201)

For flat triangular and quadrilateral patches,
√
gT = 2AT , where AT denotes

the area of T . In Ω,

∂1r = ∂1r1 = (1− u2)(rB − rE) + u2(rC − rD),

∂2r = ∂2r1 = −u1(rD − rE) + (1 + u1)(rC − rB), (7.202)
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and in T

∂1r = ∂1r2 = rA − rB,

∂2r = ∂2r2 = rC − rB,

∂3r = ∂3r2 = ∂1r2 − ∂2r2 = rA − rC. (7.203)

Thus, we have the mixed RWG basis functions

f(r) = In

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l(1+u1)√

gΩ
[(1− u2)(rB − rE)

+u2(rC − rD)],
if r = r1 (u1, u2)∈ Ω,

− l
2AT (r− rA), if r = r2 (u1, u2)∈ T.

(7.204)

The unknown for each edge BC is In.

• Mixed first-order basis

From (7.181) and (7.196)–(7.197), we get two first-order basis functions:

f1(r) = Ibn

⎧⎨⎩
l√
gΩ

Nb(u1, u2)∂1r, if r = r1 (u1, u2)∈ Ω,

l√
gT

gb(u1, u2)∂1r, if r = r2 (u1, u2)∈ T,
(7.205)

f2(r) = Icn

⎧⎨⎩
l√
gΩ

Nc (u1, u2)∂1r, if r = r1 (u1, u2)∈ Ω,

l√
gT

gc(u1, u2)∂3r, if r = r2 (u1, u2)∈ T.
(7.206)

The unknowns for each edge BC are Ibn and Icn.

• Mixed second-order basis

In this case, there are seven basis functions (five associated with the common

edge and two for the quadrilateral patch). Again, f1(r) and f2(r) are given in

(7.205) and (7.206), and

f3(r) = I(2)n

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l√
gΩ

Ne2
2 (u1, u2)∂1r, if r = r1 (u1, u2)∈ Ω,

l

2
√

gT

[
g
e′3
2 (u1, u2)∂1r

+ g
e′3
2 (u1, u2)∂3r

]
,

if r = r2 (u1, u2)∈ T,

(7.207)

f4(r) = Î
(2)
t

{
l√
gΩ

Ne2
2 (u1, u2)∂2r, if r = r1 (u1, u2)∈ Ω,

0, if r = r2 (u1, u2)∈ T,
(7.208)

f5(r) = Ĩ
(2)
t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if r = r1 (u1, u2)∈ Ω,

l

2
√

gT

[
−ge

′
3

2 (u1, u2)∂1r

+ g
e′3
2 (u1, u2)∂3r

]
,

if r = r2 (u1, u2)∈ T,

(7.209)
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Figure 7.4. Current distribution over a filter calculated by the first-order mixed RWG
basis. Lighter color corresponds to higher current density. From Cai et al. (2001),
copyright (2001) by IEEE, Inc.

f6(r) = γ1
22

{
l√
gΩ

N int
22 (u1, u2)∂1r, if r = r1 (u1, u2)∈ Ω,

0, if r = r2 (u1, u2)∈ T,
(7.210)

f7(r) = γ2
22

{
l√
gΩ

N int
22 (u1, u2)∂2r, if r = r1 (u1, u2)∈ Ω,

0, if r = r2 (u1, u2)∈ T,
(7.211)

where e2 = e′3 = BC.

The unknowns for each edge BC are Ibn, I
c
n, I

(2)
n , Î

(2)
t , and Ĩ

(2)
t , and the un-

knowns for each quadrilateral are γ1
22 and γ2

22.

Figure 7.4 shows the current distribution over a microwave filter surface cal-

culated with the first-order mixed RWG basis (Cai et al., 2001).

7.5 Summary

Surface integral representation of electromagnetic fields using equivalent sur-

face currents (i.e., tangential components of electric and magnetic fields) is a

useful method for both the theoretical and computational study of scattering

off conducting or dielectric scatterers. The Nyström collocation method and

the Galerkin method can be used to discretize the boundary integral equations

(BIEs) derived from the impedance boundary conditions on conductors or conti-

nuities of field tangential components on the boundary of dielectric scatterers. In

both cases, the treatment of the hyper-singularity of the electric Green’s function

is critical for the success of the BIEs. For the Nyström collocation method, the

singularity of the integrals is handled by using locally corrected quadratures for

specific singular kernels. For the Galerkin method, however, the singularity of
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the integral kernel can be reduced by using a mixed (vector and scalar) potential

representation of the electric field and an integration by parts, provided that

the current unknowns have normal continuity. Basis functions with such normal

continuity are provided by the traditional RWG basis and its higher-order exten-

sions discussed here. Either the Nyström collocation or the Galerkin method can

achieve high-order convergence if the surface is given with a parameterization

with sufficient smoothness. For surface triangulations with limited smoothness

such as piecewise flat triangular patches or spline patches, Galerkin methods

with normal continuous current basis functions of appropriate order should be

preferred. As a matter of fact, maintaining good accuracy of either Nyström or

Galerkin methods near geometric singularities such as corners and edges remains

a challenging issue for integral equation methods and special techniques such as

graded meshes are used near the singularities to improve numerical accuracy

(Chandler, 1984; Atkinson & Graham, 1990; Kress, 1990).

Many important topics for integral equation methods for Maxwell equations

have not been addressed here, including pre-conditioning of the hyper-singular

BIEs or the combined integral equations by Calderon operators (Contopanagos

et al., 2002; Christiansen & Nédélec, 2002; Bruno et al., 2009), and fast solu-

tions of the resulting dense linear system (Brandt & Lubrecht, 1990; Bleszyn-

ski, Bleszynski, & Jaroszewicz, 1996; Chew et al., 2001; Cho & Cai, 2012), and

the breakdown of the EFIE at low frequency (Chew, Tong, & Hu, 2008) (ill-

conditioning of the matrix system in (7.141) as ω → 0). Some solutions to address

these problems can be found in the references cited here.



8 High-order hierarchical Nédélec
edge elements

The Nédélec edge elements (Nédélec, 1980, 1986) form the natural choices of ba-

sis functions to approximate electromagnetic fields, as the field tangential con-

tinuity is built into the basis functions. The edge elements have been applied

extensively in microwave and optical devices (Jin, 2002). In this chapter, we will

first present the original construction of the Nédélec edge element basis including

some mathematical detail. Then, explicit high-order hierarchical versions of the

Nédélec basis with good conditioning properties will be presented.

8.1 Nédélec edge elements in H(curl)

In the two seminal papers Nédélec (1980, 1986) proposed to use quantities (mo-

ments of tangential components of vector fields) on edges and faces to define the

finite dimensional space in H(curl), thus the name edge element. This work lays

the foundation of vector finite elements for solving the Maxwell equations.

It can be shown that the tangential continuities of the electric and magnetic

fields in a domain Ω imply that their appropriate solution spaces should be

H(curl,Ω). This fact can be illustrated with a simple example in a 2-D problem.

For a more precise mathematical argument, refer to Monk (2003).

In a finite element method, the solution domain Ω will be tessellated with a

partition Th as follows:

Th = {Ki : Ki ∩Kj = ∅, i 	= j,
⋃
i

Ki = Ω}, (8.1)

where each Ki may be a triangle or quadrilateral in 2-D or a tetrahedron or

hexahedron in 3-D. The finite element space consists of a triplet (K,P,A), where

P defines the solution space over each K (polynomials or other specially selected

functions) and A specifies the degree of freedom (d.o.f.), which uniquely defines

the function in the finite element space. For illustration purposes, consider the

2-D problem of a TE wave E = (E1(x, y), E2(x, y), 0) and H = (0, 0, Hz(x, y)),

where (x, y) ∈ R2. The Maxwell equations are simplified to

ε
∂E

∂t
−−−→curlsHz = −J, (8.2)

μ
∂Hz

∂t
+ curls E = 0, (8.3)
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where two types of the 2-D curl operators in the Cartesian coordinates are used:

• −−→
curls:

−−→
curlsHz =

(
∂Hz

∂y
,−∂Hz

∂x
, 0

)
, (8.4)

• curls :

curls E =
∂E2

∂x
− ∂E1

∂y
. (8.5)

The finite element solution E is assumed to be a polynomial function on each

elementK. Let the interface between two elementsKi andKj , S = Ki∩Kj, be on

the x-axis. Then, E1 will be the tangential component of E. If E1 is discontinuous

across S, then curls E /∈ L2(Ki ∪Kj) as ∂E1/∂y = cδ(y) for some constant c. In

other words, if E1 is continuous, we will have curls E ∈ L2(Ki ∪Kj), namely E

∈ H(curls,Ki∪Kj), which shows that the correct function space for E is indeed

H(curls,Ω).

8.1.1 Finite element method for E or H wave equations

From (5.30), by replacing iω by ∂/∂t, we have the following time-dependent

vector wave equation for E(x, t):

ε
∂2E

∂t2
+∇× 1

μ
∇×E = −∂J

∂t
, x ∈ Ω, (8.6)

with the initial conditions

E(x, 0) = E0(x),

Et(x, 0) =
1

ε
(−J(x,0) +∇×H(x,0)) , (8.7)

where (8.7) results from the Ampère–Maxwell equation. Meanwhile, a PEC

boundary condition is set on Γ = ∂Ω:

(n×E)|Γ = 0. (8.8)

The weak formulation of the Maxwell equations can now be defined with the

following Sobolev spaces:

H(curl,Ω) =
{
u ∈ L2(Ω)

3 : ∇× u ∈ L2(Ω)
3
}

(8.9)

and

H0(curl,Ω) =
{
u ∈ L2(Ω)

3 : ∇× u ∈ L2(Ω)
3, (n× u)|Γ = 0

}
. (8.10)
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The weak formulation of the Maxwell equations in E is given as follows. Find

E ∈ H0(curl,Ω) such that ∀v ∈ H0(curl,Ω),

ε
∂2

∂t2
(E,v) +

(
1

μ
∇×E, ∇× v

)
= −

(
∂J

∂t
,v

)
. (8.11)

The finite element method will be a finite dimensional analog of (8.11) in a

subspace Uh0 ⊂ H0(curl,Ω), resulting in a semi-discretization method.

Semi-discretization finite element method

Find Eh ∈ Uh0 such that ∀vh ∈ Uh0,

ε
∂2

∂t2
(Eh,v) +

(
1

μ
∇×Eh,∇× vh

)
= −

(
∂J

∂t
,vh

)
. (8.12)

Let {vi
h}Ni=1 be a basis for Uh0, where {vi

h}N0
i=1 are the internal basis functions

associated with interior edges and faces of the tessellation of the domain, and

{vi
h}Ni=N0+1 are the basis functions associated with the domain boundary Γ.

After using the zero boundary condition Eh × n = 0, we have

Eh(x, t) =

N0∑
i=1

ei(t)v
i
h(x). (8.13)

Setting e = (e1(t), . . . , eN0
(t))

T
, the finite element method produces the fol-

lowing matrix equation:

M
d2e

dt2
+Ae = j, (8.14)

where the mass matrix M is defined as

Mij =
(
εvi

h,v
j
h

)
, (8.15)

and the stiffness matrix A is given by

Aij =

(
1

μ
∇× vi

h,∇× vj
h

)
. (8.16)

The right-hand side j is defined by

ji = −
(
∂J

∂t
,vi

h

)
. (8.17)

The system of ordinary differential equations (8.14) for the unknown vector

en, which approximates e(tn) at time step tn = nΔt, can be solved by various

time marching algorithms, for example a second-order central scheme:

M
en+1 − 2en + en−1

Δt2
+Aen = jn. (8.18)

The explicit time discretization requires a CFL type condition,

Δt = O

(
1√
λmax

)
, (8.19)
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where λmax is the largest eigenvalue of the matrix M−1A. Implicit time dis-

cretization can also be used for better stability and larger time step but with the

additional cost of solving a linear matrix system at each time step.

8.1.2 Reference elements and Piola transformations

In defining the Nédélec elements, moments of the solution’s tangential compo-

nents along the edges and the faces of the elements are used as degrees of freedom

(d.o.f.). To ensure the H(curl) conformity in the physical space, an appropriate

mapping between the reference element and the physical element is required

such that the moments of the tangential components of solutions in the phys-

ical space will be identified with the correct moments’ d.o.f. on the reference

element, and basis functions thus constructed will have matching tangential mo-

ments along the shared faces/edges in the physical space. Also, the tangential

vectors for the physical elements and the reference element, required in the defini-

tion of the d.o.f., along the faces and the edges, will be mapped correspondingly.

The Piola transformations are designed to meet such a requirement (Girault &

Raviart, 1986).

Consider a trilinear mapping FK : K̂ → R3, such that K = FK(K̂), whose

Jacobian isDF = DFK(x̂)/Dx̂ with JF= det(DF). For a vector valued function

û : K̂ → R3, we define u = PF û : K → R3 by

u(x) = PF û ≡ (DF)
−T

(x̂)û(x̂), for x = F(x̂). (8.20)

The above mapping relates the moments of the tangential components of func-

tions u(x) and û(x̂) in the following manner. Moreover, if t and t̂ are the tangen-

tial vectors on a corresponding edge of the elements K and K̂, respectively, and

n and n̂ are the normal vectors of a corresponding face of K and K̂, respectively,

we have

n(x) =
[DF (x̂)]−T n̂(x̂)

| [DF (x̂)]
−T n̂(x̂)|

, t(x) =
[DF (x̂)]T t̂(x̂)

| [DF (x̂)]
T t̂(x̂)|

. (8.21)

For test functions p̂, q̂, and ŵ defined on K̂, we then have∫
e

u · tp dl = sign(det(DF))

∫
ê

û · t̂p̂ dl̂, for p = p̂ ◦ F−1, (8.22)∫
f

u× n ·w ds = sign(det(DF))

∫
f̂

û × n̂ · ŵ dŝ, for w = PF ŵ, (8.23)∫
K

u · q dΩ = sign(det(DF))

∫
K̂

û · q̂ dΩ̂, for q = RF q̂, (8.24)

where

q = RF q̂ ≡ (JF )
−1

(x̂)DF(x̂)q̂(x̂), for x = F(x̂). (8.25)

Relations (8.22), (8.23), and (8.24) map the edge and face moments of tangen-

tial components of a solution and the element moments of the solution between

K and K̂, respectively.
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8.1.3 Nédélec finite element basis in H(curl)

In this section, we present the original construction of the Nédélec elements

following closely the presentations in Nédélec (1980, 1986). The reference element

is denoted by K.

2-D edge elements in a rectangle

Denote Qp,q as the polynomial space in (x, y) of degree p in x and q in y,

respectively, i.e.,

Qp,q = span{xiyj : 0 ≤ i ≤ p, 0 ≤ j ≤ q}, (8.26)

and Pk as the polynomial space of degree k in one variable,

Pk = span{xi : 0 ≤ i ≤ k}. (8.27)

Consider the finite element triplet (K,P,A), where

K = a unit square in 2-D = {(x, y) : 0 ≤ x, y ≤ 1},
P = {u = (u1, u2) : u1 ∈ Qk,k+1, u2 ∈ Qk+1,k},
A = {αi(u), degree of freedom (d.o.f.)}, (8.28)

and dim(P ) = 2(k + 1)(k + 2). If e denotes an edge of K and t denotes the unit

tangential vector of the edge, the following moments of a vector solution will be

used as degrees of freedom.

• Edge d.o.f. with edge moments:

αe(u) =

∫
e

u · tq dl, q ∈ Pk(e), (8.29)

with k + 1 d.o.f. for each edge and a total of 4(k + 1) d.o.f. for four edges.

• Quadrilateral d.o.f. with element moments:

αK(u) =

∫
K

u · q dΩ, q ∈ Qk,k−1 ×Qk−1,k, (8.30)

with a total of 2(k + 1)k d.o.f. for the element.

Altogether the total number of all degrees of freedom is

4(k + 1) + 2(k + 1)k = 2(k + 1)(k + 2) = dim (Qk,k+1 ×Qk+1,k) = dim(P ).

Next, we will show the uni-solvent property of the above d.o.f., namely func-

tions in the finite element space over each element K can be uniquely defined by

using those 2(k + 1)(k + 2) d.o.f. Equivalently, we want to show the following.
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Lemma 8.1 (Uni-solvence) If αe(u) = 0 and αK(u) = 0, then u ≡ 0 in K.

Proof Let

u ∈ Qk,k+1 ×Qk+1,k

for the edge e1 = {(x, 0) : 0 ≤ x ≤ 1} whose tangential is t = (1, 0). Then

u · t = u1 ∈ Qk,k+1,

and thus

u · t|e1 ∈ Pk(e1).

With αe1(u) = 0, we have∫
e1

u · tq dl =
∫
e1

u1q dl = 0, ∀q ∈ Pk(e1). (8.31)

Set q = u1 in (8.31). Then
∫
e1
u2
1 dl = 0, which implies u1 = 0 on e1. Sim-

ilarly, on e3 = {(x, 1) : 0 ≤ x ≤ 1}, u1 = 0. Together, we conclude that

u1 = y(1− y)v1(x, y) for some v1 ∈ Qk,k−1.

Similarly, we can show that u2 = x(1− x)v2(x, y) for some v2 ∈ Qk−1,k.

Next, consider the condition that the element d.o.f. αK(u) = 0. As αK(u) =∫
K
u · q dΩ =

∫
K
(u1q1 + u2q2)dΩ with (q1, q2) ∈ Qk,k−1 ×Qk−1,k, we have

0 = αK(u) =

∫
K

(u1q1 + u2q2)dΩ =

∫
K

[y(1− y)v1q1 + x(1− x)v2q2] dΩ.

Let qi = vi for i = 1, 2, and we get∫
K

[
y(1− y)v21 + x(1− x)v22

]
dΩ = 0,

which means v1 = v2 = 0. Therefore, we have u ≡ 0.

Lemma 8.2 If αe(u
+) = αe(u

−), then u+ · t = u− · t (the tangential compo-

nent is continuous), i.e., u ∈ H(curl,K+∪K−) with u|K+ = u+ and u|K− = u−.

Proof Since αe(u
+) =

∫
e
u+ · tq dl and αe(u

−) =
∫
e
u− · tq dl, we have

αe(u
+)− αe(u

−) =

∫
e

(u+ − u−) · tq dl.

Consider the case of t = (0, 1). We have (u+ − u−) · t ∈ Pk(e) on e. So we can

set q = (u+ − u−) · t:∫
e

(u+ − u−) · tq dl =
∫
e

|(u+ − u−) · t|2 dl = 0,

which means u+ · t = u− · t, i.e., the tangential component is continuous, which

in turn implies (Monk, 2003) that u ∈ H(curl,K+ ∪K−), as illustrated at the

beginning of this section.



8.1 Nédélec edge elements in H(curl) 211

2-D edge elements in a triangle

Let K = {(x, y) : 0 ≤ x, y, x + y ≤ 1} be the reference triangle in Fig. 7.2 and

let the finite element be (K,P,A), where

P = (Pk(K))2, (8.32)

where

Pk(K) = span{xiyj : 0 ≤ i+ j ≤ k} (8.33)

and

dim(P ) = (k + 2)(k + 1). (8.34)

We also define the following spaces to be used in the definition of moments

(Nédélec, 1986):

Dk = (Pk−1(K))2 ⊕ P̃k−1 · r, (8.35)

where P̃k is the kth homogeneous polynomial space in r =(x1, x2),

P̃k = span{xiyj : i+ j = k}, (8.36)

dim(P̃k) = k + 1 in 2-D, and the dimension of the space Dk is

dim(Dk) = k(k + 2). (8.37)

Due to the special design of Dk, the image of Dk by the divergence operator is

exactly Pk−1, namely

∇(Dk) = Pk−1(K). (8.38)

Now the degrees of freedom for the element A = {αi(u)} are grouped with

respect to the geometric identities of the triangle.

• Edge d.o.f. with edge moments:∫
e

u · tq dl, q ∈ Pk(e), (8.39)

with a total of 3(k + 1) edge d.o.f.

• Element d.o.f. with element moments:∫
K

u · q dΩ, q ∈ Dk−1, (8.40)

with a total of (k − 1)(k + 1) element d.o.f.

The total number of all degrees of freedom is then

Nk = 3(k + 1) + (k − 1)(k + 1) = (k + 2)(k + 1) = dim(P ). (8.41)

The proof of the uni-solvence for this set of d.o.f., A, is a 2-D version of the 3-D

tetrahedron edge element given later, and thus is omitted here.
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3-D edge elements in a cube

Consider the finite element triplet (K,P,A), where

K = a cube in 3-D = {(x, y, z) : 0 ≤ x, y, z ≤ 1},
P = {u = (u1, u2, u3) : u1 ∈ Qk−1,k,k, u2 ∈ Qk,k−1,k, u3 ∈ Qk,k,k−1},
A = {d.o.f.}, (8.42)

and dim(P ) = 3k(k+1)2. The following moments of the solution will be used as

degrees of freedom.

• Edge d.o.f. with edge moments:

α(u) =

∫
e

u · tq dl, q ∈ Pk−1(e), (8.43)

with a total of 12k edge d.o.f. for twelve edges.

• Face d.o.f. with face moments:

α(u) =

∫
f

u× n · q ds, q = (q1, q2) ∈ Qk−2,k−1 ×Qk−1,k−2, (8.44)

with 2k(k − 1) d.o.f. for each face and a total of 12k(k − 1) face d.o.f.

• Cube d.o.f. with element moments:

α(u) =

∫
K

u · q dΩ,

for q = (q1, q2, q3) ∈ Qk−1,k−2,k−2 ×Qk−2,k−1,k−2 ×Qk−2,k−2,k−1,

(8.45)

with a total of 3k(k − 1)2 element d.o.f. as each of the three Q subspaces

has a dimension k(k − 1)2.

In summary, the total degrees of freedom for the cubic element is

12k + 12k(k − 1) + 3k(k − 1)2 = 3k(k + 1)2 = dim(P ). (8.46)

3-D edge elements in a tetrahedron

Let K be the reference tetrahedron shown in Fig. 8.1, and let the finite element

be (K,P,A), where

P = (Pk(K))3, (8.47)

where

Pk(K) = span{xlymzn : 0 ≤ l +m+ n ≤ k} (8.48)
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and

dim(P ) =
(k + 3)(k + 2)(k + 1)

2
. (8.49)

As in (8.35), we define the following spaces for the definition of moments:

Dk = (Pk−1)
3 ⊕ P̃k−1 · r, (8.50)

where P̃k is the kth homogeneous polynomial space, dim(P̃k) = (k + 1)(k + 2)/2

in 3-D, r = (x1, x2, x3), and the dimension of the space Dk (Nédélec, 1986) is

given by

dim(Dk) =
(k + 3)(k + 1)k

2
. (8.51)

Again, it is easy to verify that the image of Dk by the divergence operator is

exactly Pk−1, namely

∇(Dk) = Pk−1(K). (8.52)

Now, the degrees of freedom for the element A = {αi(u)}ni=1 are grouped with

respect to the geometric identities of the tetrahedron.

• Edge d.o.f. with edge moments:∫
e

u · tq dl, q ∈ Pk(e), (8.53)

with a total of 6(k + 1) edge d.o.f.

• Face d.o.f. with face moments:∫
f

u× n · q ds, q ∈ Dk−1(f), (8.54)

with a total of 4(k − 1)(k + 1) face d.o.f.

• Volume d.o.f. with element moments:∫
K

u · q dΩ, q ∈ Dk−2(K), (8.55)

with a total of (k + 1)(k − 1)(k − 2)/2 volume d.o.f.

The total number of all degrees of freedom in A is then

Nk = 6(k + 1) + 4(k − 1)(k + 1) +
(k + 1)(k − 1)(k − 2)

2

=
(k + 3)(k + 2)(k + 1)

2
= dim(P ). (8.56)

In the following, we will prove the uni-solvence for the finite element and

H(curl) conformity, following the work of Nédélec (1986). To prove the H(curl)

conformity, we only need to show the continuity of the tangential components

uf = n × (u× n) of the finite element solutions on any common interface f =

K+ ∩K− with a normal n if

αi(u
+) = αi(u

−) for d.o.f. αi.



214 High-order hierarchical Nédélec edge elements

Equivalently, due to the linearity of the functional αi(u), we need only show that

uf = 0 if αi(u) = 0 for all edge and face d.o.f. (8.57)

Theorem 8.3 The finite element (K,P,A) defined in (8.47) and (8.53)–(8.55)

is conforming in the space H(curl).

Proof Given a common face f = K+ ∩K− between two neighboring elements,

we assume all edge and face d.o.f. associated with f to be zero. As

u · t ∈ Pk(e), (8.58)

by setting q = u · t ∈ Pk(e) in the edge moment d.o.f. in (8.53) on each face f,

we have

α(u) =

∫
e

(u · t)2 dl = 0. (8.59)

Therefore, u · t = 0 on e ∈ ∂f . Applying Stokes’ formula on the tangential

component uf = n × (u× n) ≡ (u1, u2) over a face f , we have∫
f

(−−→
curlsq · uf − q curls uf

)
ds =

∫
∂f

(uf · t)q dl =
∫
∂f

(u · t)q dl = 0, (8.60)

where in the second to last equality we have used the facts that t ⊥ n and

u = (u · n)n+ uf = (u · n)n+ n × (u× n) ,

u · t = uf · t.

Next, for q ∈ Pk−1(f),
−−→
curlsq ∈ (Pk−2)

2 ⊂ Dk−1(f), and, along with the fact

that the following face moments vanish:∫
f

−−→
curlsq · uf ds = 0 , (8.61)

and (8.60), we have∫
f

q curls uf ds = 0 for q ∈ Pk−1(f). (8.62)

As uf ∈ Pk, we can set in (8.62)

q = curls uf ∈ Pk−1,

yielding ∫
f

(curls uf )
2
ds = 0 on f. (8.63)

Thus, we get

curls uf = 0 on f. (8.64)

Therefore, on each face f , we have

uf = �fφ for some φ ∈ Pk+1(f), (8.65)

with �f = (∂/∂ξ1, ∂/∂ξ2) being the surface gradient operator on the face f .
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However, from vanishing tangential components of u along each edge of f ,

uf · t = 0 on ∂f, namely (�fφ) · t = 0, (8.66)

we have

dφ

dt
= 0 on ∂f. (8.67)

Then φ|∂f = constant. As the constant here can be set to be zero, we obtain the

following form for φ:

φ = λ1λ2λ3ψ, ψ ∈ Pk−2, φ ∈ Pk+1, (8.68)

where λ1, λ2, and λ3 are the area coordinates on the face f .

Now consider the vanishing face moment d.o.f.∫
f

uf · q ds =

∫
f

�fφ · q ds = 0, ∀ q ∈ Dk−1(f), (8.69)

which, using integration by parts, can be rewritten as

0 =

∫
f

φ(�f · q)ds−
∫
∂f

φq · n dl =

∫
f

λ1λ2λ3ψ(�f · q)ds, (8.70)

where φ|∂f = 0 is used in the second equality.

As ψ ∈ Pk−2 and �fDk−1(f) = Pk−2, we can always find a q ∈ Dk−1(f) such

that �f · q = ψ. Then (8.70) becomes∫
f

λ1λ2λ3ψ
2 ds = 0.

Since λi ≥ 0 for i = 1, 2, 3, ψ = 0. Therefore, φ = 0, which implies that uf = 0,

or equivalently u ∈ H(curl).

Theorem 8.4 (K,P,A) defined in (8.47) and (8.53)–(8.55) is uni-solvent, i.e.,

αi(u) = 0, ∀αi(u) if and only if u = 0 on K.

Proof We need only to prove the uni-solvence on a reference tetrahedron K,

due to the invariant transforms (8.22) and (8.23).

Step 1: First we prove v = curl(u) = 0 on K.

Applying Stokes’ theorem on f , we have∫
f

(−−→
curlsq · uf − q curls uf

)
ds =

∫
∂f

(uf · t)q dl = 0, q ∈ Pk(f). (8.71)

Let us orientate f to be on the xy-plane. Then, for u = (u1, u2, u3)
T,

uf =

[
u1

u2

]
, curlu = k

(
∂u2

∂x
− ∂u1

∂y

)
+ i(�) + j(�),
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where the last two terms are not relevant for our discussion. Note that curls uf =

∂u2/∂x − ∂u1/∂y, which is exactly the normal component of curlu, i.e., curls
uf = curlu · k = v · n. So (8.71) implies that∫

f

(−−→
curlsq · uf − qv · n

)
ds = 0, q ∈ Pk(f). (8.72)

As the first term vanishes for q ∈ Pk−1(f) because
−−→
curlsq ∈ (Pk−2)

2 ⊂ Dk−1, we

have

0 =

∫
f

qv · n ds, ∀q ∈ Pk−1(f). (8.73)

Setting q = v · n ∈ Pk−1(f) in (8.73) gives∫
f

(v · n)2 ds = 0,

i.e., v · n = 0 on f for v ∈ (Pk−1)
3, implying that

v3 = zψ3 = x3ψ3,

v2 = yψ2 = x2ψ2,

v1 = xψ1 = x1ψ1,

where ψi ∈ Pk−2 for i = 1, 2, 3 as v ∈(Pk−1)
3.

Finally, we apply Stokes’ theorem on K:∫
K

(curl u · q − curl q · u)dΩ =

∫
∂K

q · n× u ds = 0, ∀ q ∈ (Pk−2)
3,

where the last equality is due to the fact that q|f ∈ (Pk−2(f))
2 ⊂ Dk−1(f) and

the vanishing of the face d.o.f. in (8.54). As curl q ∈ (Pk−3)
3 ⊂ Dk−2, the second

integral on the left-hand side vanishes from the vanishing of the element d.o.f.

in (8.55); thus∫
K

v · q dΩ =

∫
K

(x1ψ1q1 + x2ψ2q2 + x3ψ3q3)dΩ = 0, ∀q ∈(Pk−2)
3 ⊂ Dk−1(f).

(8.74)

On setting qi = ψi ∈ Pk−2, i = 1, 2, 3, in (8.74), we have∫
K

(
x1ψ

2
1 + x2ψ

2
2 + x3ψ

2
3

)
dΩ = 0

and

ψi = 0, i = 1, 2, 3,

which proves that v = curl(u) = 0 on K.

Step 2: We now show that u = 0.

As curl(u) = 0 on K, we get

u = �φ, for some φ ∈ Pk+1(K).
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Because αi(u) = 0, ∀αi (face and edge d.o.f.), from the proof of Theorem 8.3 we

have uf = 0 on all faces. On the xy-plane,

uf = (u1, u2)|f = 0;

thus

u1 =
∂φ

∂x
= 0, u2 =

∂φ

∂y
= 0,

on f , which implies that φ = constant, possibly set to be zero on all faces from

the continuity of the function φ on K. In terms of the barycentric coordinates

λ1, . . . , λ4:

λ1 =
|V1|
|V | , λ2 =

|V2|
|V | , λ3 =

|V3|
|V | , λ4 =

|V4|
|V | ,

through sub-volume Vi, which is formed by the point x ∈ K with three vertices

of K other than the ith vertex. We have

φ =

(
4∏

i=1

λi

)
ψ, ψ ∈ Pk−3. (8.75)

For q ∈ Dk−2, the vanishing of the element d.o.f. in (8.55) with an integration

by parts says that

0 =

∫
K

u · q dΩ =

∫
K

�φ · q dΩ =

∫
K

φ� · q dΩ−
∫
∂K

φq · n ds,

together with φ|∂K = 0 and (8.75), resulting in

0 =

∫
K

φ� · q dΩ =

∫
K

(λ1λ2λ3λ4ψ� · q)dΩ, q ∈ Dk−2. (8.76)

Finally, from (8.52), we can find a q such that � · q = ψ, and then∫
K

λ1λ2λ3λ4(ψ)
2 dΩ = 0, λi ≥ 0 (i = 1, . . . , 4),

which implies that ψ = 0, so u = 0 in K.

8.2 Hierarchical Nédélec basis functions

In this section, we present the explicit formula for the Nédélec basis for dif-

ferent elements in 2-D and 3-D spaces. For the convenience of the adaptive

p-refinement (Rachowicz & Demkowicz, 2002) (i.e., adaptively adjusting the de-

gree of the polynomials on individual elements on a fixed mesh), the hierarchical

Nédélec basis will be presented in this section. Since the proposal of the Nédélec

curl-conforming basis, many types of hierarchical bases have been developed,

including the work of Graglia, Wilton, & Peterson (1997), Andersen & Volakis

(1999), Webb (1999), Ainsworth & Coyle (2001, 2003), Schöberl & Zaglmayr
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(2005), Ingelström (2006), Abdul-Rahman & Kasper (2008), and Graglia, Pe-

terson, & Andriulli (2011). The constructed basis functions can span or contain

either of the polynomial spaces proposed in Nédélec (1980) or Nédélec (1986),

and a detailed classification was given in Graglia, Peterson, & Andriulli (2011)

based on the type of spaces generated by the basis functions. Meanwhile, using

the perspective of differential forms, Hiptmair (1999) laid a general framework for

canonical construction of H(curl)- and H(div)-conforming finite elements. More

details can be found in Hiptmair (2001), Rapetti (2007), Rapetti & Bossavit

(2009), and the monograph by Bossavit & Mayergoyz (1997).

The basis functions described in this section try to achieve the maximal partial

orthogonality among the basis functions to produce a better conditioned mass

matrix and stiffness matrices when applied to the Maxwell systems (Xin & Cai,

2011a; Xin, Guo, & Cai, 2011). Their constructions are based upon the studies

by Ainsworth & Coyle (2001, 2003) and the orthogonal polynomials of several

variables in Dunkl & Xu (2001).

8.2.1 Construction on 2-D quadrilaterals

Using the notation in Ainsworth & Coyle (2001), we consider a reference square

element K,

K :=
{
(ξ, η) ∈ R2 : −1 ≤ ξ, η ≤ 1

}
, (8.77)

and the edges are denoted by γi, i = 1, . . . , 4, with γ1 as the bottom edge (η =

−1), γ2 as the top edge (η = 1), γ3 as the left edge (ξ = −1), and γ4 as the right

edge (ξ = 1), respectively.

Edge basis

• Lowest-order basis

The lowest-order H(curl)-conforming basis consists of four shape functions with

one on each edge:

Φγ1

0 =
1

2
(1− η) tγ1

, Φγ2

0 =
1

2
(1 + η) tγ2

,

Φγ3

0 =
1

2
(1− ξ) tγ3

, Φγ4

0 =
1

2
(1 + ξ) tγ4

, (8.78)

where tγi
is the unit tangential vector along the edge γi.

• (pth)-order basis p ≥ 1 :

Φγ1
p =

1

2
(1− η)Pp(ξ)tγ1 , Φγ2

p =
1

2
(1 + η)Pp(−ξ)tγ2 ,

Φγ3
p =

1

2
(1− ξ)Pp(−η)tγ3

, Φγ4
p =

1

2
(1 + ξ)Pp(η)tγ4

. (8.79)
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Interior basis

For j = 0, . . . , p and k = 2, . . . , p+ 1, the interior basis is given by

ΦIξ
j,k = Pj(ξ)lk(η)êξ,

ΦIη
j,k = Pj(η)lk(ξ)êη, (8.80)

where êξ and êη are the unit vectors along ξ and η axes, respectively.

Here Pp(η) is the pth-order Legendre polynomial, and the polynomials lk(x)

are defined as the integrated Legendre polynomials (Szabó & Babuska, 1991) as

follows:

l0(x) =
1− x

2
, l0(−1) = 1, l0(1) = 0,

l1(x) =
1 + x

2
, l1(−1) = 0, l1(1) = 1,

lk(x) =

√
2k − 1

2

∫ x

−1

Pk−1(σ)dσ, k ≥ 2, (8.81)

where Pk−1(σ) is the Legendre polynomial of degree k − 1.

The expression in (8.81), except for a scaling factor, was used by Jørgensen

et al. (2004) to construct hierarchical Legendre basis functions. It is clear that

the newly defined polynomials have the following properties (Szabó & Babuska,

1991). By using the symmetry and differentiation properties of the Legendre

polynomials, the above integral can be readily shown to take the form

lk(x) =
Pk(x)− Pk−2(x)√

2(2k − 1)
, k ≥ 2, (8.82)

and has the property

lk(−1) = lk(1) = 0, k ≥ 2,∫ 1

−1

dli+1(τ)

dτ

dlj+1(τ)

dτ
dτ = δij , i, j ≥ 1, (8.83)

where δij is the Kronecker delta.

8.2.2 Construction on 2-D triangles

In this case, the following reference triangle K is used to construct the basis

functions

K :=
{
(ξ, η) ∈ R2 : 0 ≤ ξ, η, ξ + η ≤ 1

}
. (8.84)

The coordinates for the vertices are V1(1, 0), V2(0, 1), and V3(0, 0). Each edge is

the directed line segment which is labeled in terms of the opposite vertex, i.e.,

e1 := V2 → V3, e2 := V3 → V1, and e3 := V1 → V2, and their corresponding unit

direction vectors are denoted as Γ̂i, i = 1, 2, 3.
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The barycentric coordinates of the reference element are simply

λ1 = ξ, λ2 = η, λ3 = 1− ξ − η. (8.85)

In terms of the barycentric coordinates, each edge can be parameterized as

τ1|e1
= λ3 − λ2, τ2|e2

= λ1 − λ3, τ3|e3
= λ2 − λ1. (8.86)

The parameter varies in the range τi = [−1, 1], i = 1, 2, 3. The normal vector on

each edge is

n1 = ∇λ1 =

[
1

0

]
, n2 = ∇λ2 =

[
0

1

]
, n3 = ∇λ3 =

[
−1
−1

]
. (8.87)

We now construct basis functions for the H(curl)-conforming elements on the

reference element as in Ainsworth & Coyle (2001) and Xin & Cai (2011a).

First-order basis

The lowest-order elements first constructed by Whitney, now called the Whitney

elements (Whitney, 1957), consist of three shape functions with one on each edge,

namely

Φ
ej

0 = |ej |(λj1nj2 − λj2nj1), j = 1, 2, 3, (8.88)

where

j1 =

{
mod(j + 1, 3), if j + 1 	= 3,

3, otherwise,

j2 =

{
mod(j + 2, 3), if j + 2 	= 3,

3, otherwise.
(8.89)

The following functions will complete the first-order basis:

Φ
ej

1 = |ej |(λj1nj2 + λj2nj1), j = 1, 2, 3. (8.90)

It is easy to verify that the above basis functions have the following property:

ek ·Φej

0 = ek ·Φej

1 = δjk, j, k = 1, 2, 3. (8.91)

So each basis function has a constant unit tangential component on its associated

edge and a zero tangential component on the other two edges.

Higher-order basis

The functions for a higher-order basis can be grouped into two classes according

to their associated geometric identities on the reference element.
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• Edge-based functions

The higher-order edge-based functions are given in Ainsworth & Coyle (2001) as

Φ
ej

i+1 =
2i+ 1

i+ 1
Pi(τj)Φ

ej

1 −
i

i+ 1
Pi−1(τj)Φ

ej

0 , i = 1, 2, . . . , p− 1, j = 1, 2, 3,

(8.92)

where again each basis function has a non-zero tangential component on its

associated edge and has a zero tangential component on the other two edges.

• Interior functions

For a complete polynomial approximation of the Nédélec space with degree p ≥
2, interior functions are needed. The interior functions are separated into two

groups: normal functions and bubble functions (Webb, 1999; Ainsworth & Coyle,

2001; Xin & Cai, 2011a). All interior functions have no tangential contribution

along any edge. However, the normal functions will have normal components

on their associated edges, whereas the bubble functions are free of normal and

tangential on all edges.

Normal functions

Using the Jacobi polynomials, the following interior normal functions are or-

thonormal on the reference element:

Φ
ej ,n
k+2 = 8

√
k + 3 (1− λj)

k
P

(2,2)
k

(
τj

1− λj

)
λj1λj2

nj

|nj |
, k = 0, 1, 2, . . . , p− 2,

(8.93)

where P
(α,β)
k (·) is the orthonormal Jacobi polynomial of degree k on interval

[−1, 1] with weight (1 − x)α(1 + x)β. The subscripts j1 and j2 are defined in

(8.89), and the scaling constant |nj | for each edge is given by

|n1| = 1, |n2| = 1, |n3| =
√
2. (8.94)

The interior normal functions (8.93) have two important properties:

ej ·Φei,n
k+2 = 0, i, j = 1, 2, 3; k = 0, 1, 2, . . . , p− 2, (8.95)

and 〈
Φ

ej ,n
i+2 ,Φ

ej ,n
k+2

〉∣∣
K

= δik, j = 1, 2, 3; i, k = 0, 1, 2, . . . , p− 2. (8.96)

The property (8.95), i.e., free of tangential component, can be readily seen

as the normal functions (8.93) vanish on two edges and are perpendicular to

the third one. The orthonormal property (8.96) can be proved directly by using

Dunkl & Xu (2001, prop. 2.3.8), which is cited in Theorem 9.1.
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Bubble functions

Using the orthogonal polynomials of several variables of Theorem 9.1, the fol-

lowing bubble functions are orthonormal on the reference triangle:

Φb
i,j = {eξ, eη} ⊗ hK

i,j λ1λ2λ3 (1− λ1)
i
P

(2,2)
i

(
λ2 − λ3

1− λ1

)
P

(2i+5,2)
j (2λ1 − 1) ,

(8.97)

where

hK
i,j = 2i+13/2, 0 ≤ i, j, i+ j ≤ p− 3. (8.98)

The interior bubble functions have the following two properties:

Φb
i,j |∂K = 0, 0 ≤ i, j, i+ j ≤ p− 3, (8.99)

and 〈
Φb

i,j,Φ
b
k,�

〉∣∣
K

= δik δj�, 0 ≤ i, j, k, �, i+ j, k + � ≤ p− 3. (8.100)

The first property, (8.99), which states that the bubble functions have van-

ishing tangential and normal components on the boundary (three edges) of the

reference element, can be seen by noting that the factor λ1λ2λ3 is included

with each shape function in (8.97). The orthonormal property (8.100) can be

proved by using the result in Theorem 9.1 by identifying λ1 = x1, λ2 = x2,

and λ3 = 1 − x1 − x2. Also, by following the argument by Ainsworth & Coyle

(2001), it can be shown that the basis above is a hierarchical basis for triangular

H(curl)-conforming elements.

8.2.3 Construction on 3-D cubes

The reference cube K is given by (Ilić & Notaroš, 2003)

K :=
{
(ξ, η, ζ) ∈ R3 : −1 ≤ ξ, η, ζ ≤ 1

}
. (8.101)

The basis functions in this case can be simply grouped in three coordinate

directions, where each group has components along only one coordinate direction.

• ξ̂-directed basis:

Φξ
ijk(ξ, η, ζ) = Pi(ξ)lj(η)lk(ζ)ξ̂, 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p, 0 ≤ k ≤ p.

(8.102)

• η̂-directed basis:

Φη
ijk(ξ, η, ζ) = li(ξ)Pj(η)lk(ζ)η̂, 0 ≤ i ≤ p, 0 ≤ j ≤ p− 1, 0 ≤ k ≤ p.

(8.103)

• ζ̂-directed basis:

Φζ
ijk(ξ, η, ζ) = li(ξ)lj(η)Pk(ζ)ζ̂ , 0 ≤ i ≤ p, 0 ≤ j ≤ p, 0 ≤ k ≤ p− 1.

(8.104)
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Figure 8.1. Reference tetrahedron.

8.2.4 Construction on 3-D tetrahedra

The shape functions are again grouped into several categories based upon their

topological entities on the reference tetrahedron in Fig. 8.1. If possible, the basis

functions in each category are constructed so that they are orthonormal on the

reference element. The vertices are numbered as v0(0, 0, 0),v1(1, 0, 0), v2(0, 1, 0),

and v3(0, 0, 1). The barycentric coordinates are given as

λ0 = 1− ξ − η − ζ, λ1 = ξ, λ2 = η, λ3 = ζ. (8.105)

A generic edge can be uniquely identified with

ej = [j1, j2], j1 = 0, 1, 2, j1 < j2 ≤ 3, j = j1 + j2 + sign(j1), (8.106)

where sign(0) = 0. Specifically,

e1 = v1 − v0, e2 = v2 − v0, e3 = v3 − v0, (8.107)

e4 = v2 − v1, e5 = v3 − v1, e6 = v3 − v2. (8.108)

The directed tangent on a generic edge ej = [j1, j2] is defined as

τ ej := τ [j1,j2] = vj2 − vj1 , j1 < j2. (8.109)

The edge is parameterized by

γej := λj2 − λj1 , j1 < j2. (8.110)
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Edge functions

• First-order basis

The shape functions for the lowest order, also called the Whitney element

(Whitney, 1957; Bossavit & Mayergoyz, 1997), are given as

Φ
ej

0 = |τej | (λj2∇λj1 − λj1∇λj2) , (8.111)

and, together with the following additional function, they will complete the first-

order basis,

Φ
ej

1 = |τej | (λj2∇λj1 + λj1∇λj2) . (8.112)

The tangential component of the function Φ
ej

0 and Φ
ej

1 on its associated edge is

of unit size and vanishes on other edges, namely it has the property

ek ·
(
Φ

ej

0

)
= ek ·

(
Φ

ej

1

)
= δjk, j, k = 1, 2, . . . , 6, (8.113)

where δjk is the Kronecker delta.

• Higher-order basis

The shape functions for higher-order approximation are given in Ainsworth &

Coyle (2003) for i = 1, 2, . . . , p− 1, j = 1, 2, . . . , 6, as

Φ
ej

i+1 =
2i+ 1

i+ 1
Pi(γej

)Φ
ej

1 − i

i+ 1
Pi−1(γej

)Φ
ej

0 , (8.114)

where the property (8.113) also holds for Φ
ej

i+1.

For each edge, there are p + 1 basis functions; therefore, altogether there are

6(p+ 1) edge basis functions per element.

Face functions

Each face on the tetrahedron is uniquely defined as

fj1 = [j2, j3, j4], 0 ≤ j1, j2, j3, j4 ≤ 3, j2 < j3 < j4. (8.115)

The face functions are further grouped into two categories: edge-based face

functions and face bubble functions (Ainsworth & Coyle, 2003; Xin, Guo, &

Cai, 2011).

• Edge-based face functions

These functions are associated with the three edges of a certain face fj1 , and

have non-zero tangential components only on the associated face fj1 . By using

the results in Theorem 9.1, the orthonormal shape functions are given by

Φ
fj1 ,i

e[k1,k2]
= Ciλk1λk2(1− λk1)

iP
(1,2)
i

(
2λk2

1− λk1

− 1

)
∇λk3

|∇λk3
| , (8.116)
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where Ci = (i + 3)
√

(2i+ 4)(2i+ 5)(2i+ 7)/(i+ 1), 0 ≤ i ≤ p − 2, and k1 =

{j2, j3}, k2 = {j3, j4}, k1 < k2, k3 = {j2, j3, j4} \ {k1, k2}.
In (8.116), the function P

(1,2)
i (·) is the Jacobi polynomial of degree i with a

single variable. Again, by using the results in Theorem 9.1, one can prove the

orthonormal property of the edge-based face functions,〈
Φ

fj1 ,m

e=[k1,k2]
,Φ

fj1 ,n

e=[k1,k2]

〉∣∣∣
K3

= δmn, m, n = 0, 1, . . . , p− 2. (8.117)

For each face, there are 3(p−1) edge-based face functions; therefore, altogether

there are 12(p− 1) edge-based face functions for the four faces of an element.

• Face bubble functions

The face bubble functions, which belong to each specific set and are associated

with a particular face fj1 , vanish on all other three faces. In view of the results

in Theorem 9.1, the explicit formulae are given by

Φ
fj1 ,j3
m,n = Λ(1− λj2)

m(1− λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1− λj2

− 1

)
· P (0,2)

n

(
2λj4

1− λj2 − λj3

− 1

)
τ [j2,j3]∣∣τ [j2,j3]∣∣ , (8.118)

Φ
fj1 ,j4
m,n = Λ(1− λj2)

m(1− λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1− λj2

− 1

)
· P (0,2)

n

(
2λj4

1− λj2 − λj3

− 1

)
τ [j2,j4]∣∣τ [j2,j4]∣∣ , (8.119)

where 0 ≤ m,n,m+ n ≤ p− 3, and

Λ = Cn,1
m Cn,2

m λj2λj3λj4 , (8.120)

where

Cn,1
m =

√
(2n+ 3)(m+ n+ 3)(m+ 2n+ 4)(m+ 2n+ 5) (8.121)

and

Cn,2
m =

√
(2m+ 2n+ 7)(2m+ 2n+ 8)(2m+ 2n+ 9)√

(m+ 1)(m+ 2)
. (8.122)

The face bubble functions again share the orthonormal property on the refer-

ence tetrahedron for 0 ≤ m1,m2, n1, n2,m1 + n1,m2 + n2 ≤ p− 3:〈
Φ

fj1 ,j3
m1,n1 ,Φ

fj1 ,j3
m2,n2

〉∣∣∣
K3

= δm1m2
δn1n2

, (8.123)

〈
Φ

fj1 ,j4
m1,n1 ,Φ

fj1 ,j4
m2,n2

〉∣∣∣
K3

= δm1m2δn1n2 . (8.124)

For each face, there are (p−1)(p−2) face bubble functions; therefore, altogether

there are 4(p− 1)(p− 2) face bubble functions for the four faces of an element.
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Interior functions

The interior functions are also classified into two categories: face-based interior

functions and interior bubble functions (Ainsworth & Coyle, 2003; Xin, Guo, &

Cai, 2011).

• Face-based interior functions

The face-based interior functions that are associated with a particular face

fj1 have non-zero normal components on the associated face, and have zero

tangential components on all four faces. The formulae of these functions are

given by

Φ
t,fj1
m,n = Λ(1− λj2)

m(1− λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1− λj2

− 1

)
· P (0,2)

n

(
2λj4

1− λj2 − λj3

− 1

)
∇λj1

|∇λj1 |
, (8.125)

where 0 ≤ m,n,m+ n ≤ p− 3.

The face-based interior functions enjoy the orthonormal property on the ref-

erence 3-simplex for 0 ≤ m1,m2, n1, n2,m1 + n1,m2 + n2 ≤ p− 3:〈
Φ

t,fj1
m1,n1 ,Φ

t,fj1
m2,n2

〉∣∣∣
K3

= δm1m2
δn1n2

. (8.126)

For each element, there are 2(p− 1)(p− 2) face-based interior functions.

• Interior bubble functions

The interior bubble functions have both vanishing tangential and normal compo-

nents on all four faces of the reference 3-simplex. Similarly, by using the results

in Theorem 9.1, the formulae of these functions are given by

Φt,ed

�,m,n = ΓP
(2m+2n+8,2)
� (2λ1 − 1)P (2n+5,2)

m

(
2λ2

1− λ1
− 1

)
· P (2,2)

n

(
2λ3

1− λ1 − λ2
− 1

)
ed, (8.127)

where

Γ = C�,m,nλ0λ1λ2λ3(1− λ1)
m(1− λ1 − λ2)

n, (8.128)

where 0 ≤ �,m, n, �+m+ n ≤ p− 4, d = 1, 2, 3, C�,m,n = C1
�,m,nC

2
�,m,n, and

C1
�,m,n =

√
(�+ 2m+ 2n+ 9)(�+ 2m+ 2n+ 10)(2�+ 2m+ 2n+ 11)(m+ 2n+ 6)

(�+ 1)(m+ 1)(n+ 1)
,

(8.129)

C2
�,m,n =

√
(m+ 2n+ 7)(2m+ 2n+ 8)(n+ 3)(n+ 4)(2n+ 5)

(�+ 2)(m+ 2)(n+ 2)
. (8.130)
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Again, one can show the orthonormal property of the interior bubble functions:〈
Φ

t,ed1

�1,m1,n1
,Φ

t,ed2

�2,m2,n2

〉∣∣∣
K3

= δ�1�2δm1m2δn1n2 , (8.131)

where

0 ≤ �1, �2,m1,m2, n1, n2, �1 +m1 + n1, �2 +m2 + n2 ≤ p− 4, d1, d2 = 1, 2, 3.

For each element, there are (p− 1)(p− 2)(p− 3)/2 interior bubble functions.

Finally, by a simple calculation the number of all the basis functions for each

element adds to (p+ 1)(p+ 2)(p+ 3)/2 = dim(Pp(K))3.

8.3 Summary

The Nédélec edge element forms the conforming basis for the electric and mag-

netic fields where tangential continuities of the fields are required on material

interfaces. The explicit form of 2-D and 3-D hierarchical high-order Nédélec

edge elements presented here facilitates their use in arbitrary orders when high-

frequency wave phenomena demand higher resolution of the wave structures.

The fast solution of the linear system by iterative solvers such as multigrid

methods is not addressed in this book, and work in this important area can be

found in Hiptmair & Xu (2007). Also, the mathematical properties such as the

discrete de Rham commutativity and the convergence analysis of the Nédélec

elements for Maxwell equations including cavity problems can be found in Monk

(2003) and in the following: Kikuchi (1989), Boffi et al. (1999), and Caorsi,

Fernandes, & Raffetto (2000, 2001).



9 Time-domain methods –
discontinuous Galerkin method and
Yee scheme

Time-domain solutions of the Maxwell equations provide information on wave

interactions involving multiple frequencies, and can describe nonlinear phenom-

ena such as second harmonic generation and parametric amplification in nonlin-

ear optical materials. In this chapter, we will discuss two time-domain numerical

methods for solving transient Maxwell equations. The first one is a high-order dis-

continuous Galerkin (DG) method on unstructured finite element meshes. High-

order hierarchical basis functions for the DG discretization will be presented.

The second is the popular finite difference Yee scheme on staggered Cartesian

grids.

9.1 Weak formulation of Maxwell equations

The Maxwell equations for non-dispersive materials can be written in the follow-

ing conservative form:

ut +∇ · F = S, r ∈ Ω, (9.1)

where u =

(
B

D

)
,F(u) = (f ,g,h), and

∇ · F ≡ ∂

∂x
f+

∂

∂y
g+

∂

∂z
h, (9.2)

f =

(
x̂×E

−x̂×H

)
,g =

(
ŷ ×E

−ŷ ×H

)
,h =

(
ẑ ×E

−ẑ ×H

)
, (9.3)

and x̂, ŷ, and ẑ are the unit vectors along the x-, y-, and z-axes, respectively.

The source term S = (−Je,−Jm)T contains currents in a conducting material.

Vector functions (B,D) are weak solutions to (9.1), without a source (S = 0),

if ∀φ(r) ∈ (C1
0(Ω))

3:∫
Ω

∂u

∂t
· φ dr−

∫
Ω

F(u)∇ · φ dr+

∫
∂Ω

(
F(u) · n

)
· φ ds = 0, (9.4)
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where F(u)∇ = f ∂
∂x + g ∂

∂y +h ∂
∂z . Equation (9.4) can be rewritten for B and D

separately as follows:∫
Ω

∂B

∂t
· φ dr−

∫
Ω

E · (∇× φ) dr+

∫
∂Ω

n×E · φ ds = 0, (9.5)

∫
Ω

∂D

∂t
· φ dr+

∫
Ω

H · (∇× φ) dr−
∫
∂Ω

n×H · φ ds = 0, (9.6)

with appropriate boundary conditions for B and D.

Usually, (9.1) and (9.4) are formulated in a computational domain whose co-

ordinates are, say (ξ, η, ζ). By introducing a new conservative quantity

ũ = Ju, (9.7)

the Maxwell equations (9.1) are recast as

ũt +∇ · F̃ = S̃, (9.8)

where J = ∂(x, y, z)/∂(ξ, η, ς) is the Jacobian for the transformation between the

physical domain and the computational domain r = r(ξ, η, ζ), the flux function

F̃ = (f̃ , g̃, h̃) is given by

f̃ = J(ξxf + ξyg + ξzh),

g̃ = J(ηxf + ηyg + ηzh),

h̃ = J(ζxf + ζyg + ζzh), (9.9)

and the source term S̃ is

S̃ = JS.

9.2 Discontinuous Galerkin (DG) discretization

Let Th be a discretization of the solution domain Ω. For each element K ∈
Th, εr and μr are assumed constant. We denote a finite dimensional space of

smooth functions defined on the element K by P(K). This space will be used to

approximate the variable u. Set

Vh := {v ∈ L2(Ω) : v|K ∈ P(K) ∀K ∈ Th}. (9.10)

Let uh =

(
Bh

Dh

)
be the approximate solution to u belonging to the finite

element space

V 6
h := Vh × Vh × · · · × Vh︸ ︷︷ ︸

6

. (9.11)

For each Kj ∈ Th, ∀φh ∈ (P(Kj))
3,∫

Kj

∂Bh

∂t
· φh dr−

∫
Kj

Eh · (∇× φh)dr+

∫
∂Kj

n×Eh · φh ds = 0, (9.12)
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∫
Kj

∂Dh

∂t
· φh dr+

∫
Kj

Hh · (∇× φh)dr−
∫
∂Kj

n×Hh · φh ds = 0. (9.13)

Thus, the weak form for the DG discretization is formed on each individual el-

ement for the element-supported test function φh, and the numerical solution uh

will comprise discontinuous functions made of piecewise polynomials, hence the

name discontinuous Galerkin (DG) method (Cockburn & Shu, 1998; Hesthaven

& Warburton, 2008). The solution in a DG approximation will have two different

values on a common interface between two elements, and the DG method will

use a common numerical flux h(u−,u+) to couple the solutions from different

elements while guaranteeing the conservative property of the numerical solution.

For consistency, the numerical flux h(u−,u+) should approximate the exact flux

F(u) · n =

(
n×E

−n×H

)
; (9.14)

namely if u− = u+ = u, then

h(u,u) = F(u) · n. (9.15)

The finite element solution uh =

(
Bh

Dh

)
is then required to satisfy the following

weak form. For j = 1, 2, . . . , N,∀φh ∈ (P(Kj))
3,∫

Kj

∂Bh

∂t
·φh dr−

∫
Kj

Eh · (∇×φh)dr+

∫
∂Kj

hB(u
−,u+) ·φh ds = 0, (9.16)

∫
Kj

∂Dh

∂t
·φh dr+

∫
Kj

Hh · (∇×φh)dr−
∫
∂Kj

hD(u−,u+) ·φh ds = 0, (9.17)

where hB(u
−,u+) and hD(u−,u+) are the components of the numerical flux:

h(u−,u+) =

(
hB(u

−,u+)

hD(u−,u+)

)
.

9.3 Numerical flux h(u−,u+)

Let us assume that x = 0 is a point on the interface with an external normal n

= x̂, and the material constants are

ε =

{
ε−, if x < 0,

ε+, if x > 0,
μ =

{
μ−, if x < 0,

μ+, if x > 0.
(9.18)

The projection of the analytical flux function F(u) · n along the normal of an

interface n can be shown to be

fn(u) = F(u) · n =

{
A−u, if x < 0,

A+u, if x > 0,
(9.19)
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where

A± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 − 1
ε±

0 0 0 0 1
ε± 0

0 0 0 0 0 0

0 0 1
μ± 0 0 0

0 − 1
μ± 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9.20)

In order to derive the numerical flux along the normal direction n, the follow-

ing 1-D Riemann problem for the linear system will be considered as, for any

conservation law with discontinuous solutions,

ut + (fn(u))x = 0, (x, t) ∈ (−∞,+∞)× (0, T ), (9.21)

with the initial condition

u(x, 0) =

{
u−, if x < 0,

u+, if x > 0,

where fn(u) is defined in (9.19).

For simplicity of derivation, we introduce the following scaling of the fields:

B̃ =
√
μ B, D̃ =

√
ε D, (9.22)

and denote ũ =

(
B̃

D̃

)
. Then (9.21) can be rewritten as

ũt +
(
f̃n(ũ)

)
x
= 0, (x, t) ∈ (−∞,+∞)× (0, T ), (9.23)

with the initial condition

ũ(x, 0) =

{
ũ−, if x < 0,

ũ+, if x > 0,

where f̃n(ũ) is defined as

f̃n(ũ) =

{
Ã−ũ, if x < 0,

Ã+ũ, if x > 0.
(9.24)

Here Ã− and Ã+ are given by

Ã± =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 −c±
0 0 0 0 c± 0

0 0 0 0 0 0

0 0 c± 0 0 0

0 −c± 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (9.25)

respectively, where c± = 1/
√

ε±μ±. At x = 0, ũ is discontinuous and a clas-

sical solution to (9.21) does not exist. Therefore, a weak solution will have to

be defined in the following weak sense (Lax, 1972; Smoller, 1983): ∀Φ(x, t) ∈
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(C1
0 (R × R+))6, where R+ = (0,∞) and Φ(x, t = 0) has a non-empty compact

support in R:∫ ∞

0

∫ ∞

−∞
(Φ · ũ−Φx · fn(ũ)dx dt = −

∫ ∞

−∞
Φ · ũ(x, 0)dx. (9.26)

Noting that

f̃n(ũ) = Ã(x)ũ = A(x)u = fn(u), (9.27)

we see that (9.21) and (9.23) are equivalent. Therefore, we will only have to

consider (9.23). Now A+ and A− both have six eigenvalues and eigenvectors,

where three of the eigenvalues are distinct. For instance, A−’s eigenvalues are

λ1 = −c−, λ2 = 0, λ3 = c−. (9.28)

Each of the eigenvalues defines one of the three characteristics across which the

solution will, in general, be discontinuous in the (x, t)-space. If we assume the

solutions are constant in the regions bounded by the characteristics (Godlewski &

Raviart, 1996), the weak formulation (9.26) will result in the following Rankine–

Hugoniot condition:

s[ũ] = [fn(ũ)], (9.29)

where s = ±c and 0 are the inverse reciprocals of the slopes of the characteristics

in the (x, t)-plane.

In the region of x < 0 and x+ c−t < 0, ũ(x, t) = ũ− assumes the value given

by the initial condition at t = 0. For the region 0 < x + c−t and x < 0, we let

ũ(x, t) = ũ∗, t > 0; then ũ− and ũ∗ will satisfy the Rankine–Hugoniot condition,

namely

− c−(ũ− − ũ∗) = A−(ũ− − ũ∗). (9.30)

Similarly, for the region x > 0 and x−c+t > 0, u(x, t) = u+ assumes the value

given by the initial condition at t = 0, ũ(x, t) = ũ+. In the region x > 0 and

x − c+t < 0, we let ũ(x, t) = ũ∗∗, t > 0; therefore, ũ+ and ũ∗∗ at the interface

x− c+t = 0 will also satisfy the Rankine–Hugoniot condition:

c+(ũ+ − ũ∗∗) = A+(ũ+ − ũ∗∗). (9.31)

Next, we decide the conditions to be satisfied by ũ∗ and ũ∗∗ at x = 0 by the

Rankine–Hugoniot condition:

0 = A−ũ∗ −A+ũ∗∗. (9.32)

From (9.24), we can see that the numerical flux should be defined by

h(ũ−, ũ+) ≡ A−ũ∗ = A+ũ∗∗. (9.33)

To find the intermediate states ũ∗ and ũ∗∗, we solve (9.30), (9.31), and (9.32),

which can be rewritten as follows:
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Figure 9.1. Characteristics for Rankine–Hugoniot conditions

−Z−(H− −H∗) = x̂× (E− −E∗),

−Y −(E− −E∗) = x̂× (H− −H∗), (9.34)

Z+(H+ −H∗∗) = x̂× (E+ −E∗∗),

Y +(E+ −E∗∗) = x̂× (H+ −H∗∗), (9.35)

0 = x̂× (E∗ −E∗∗),

0 = x̂× (H∗ −H∗∗), (9.36)

where the local impedance Z and the admittance Y are defined as Z = 1/Y =√
μ/ε. By applying the vector cross product x̂ × on both sides of (9.34) and

(9.35), we transform (9.34)–(9.36) involving only quantities x̂ × E∗, x̂ × H∗, x̂

× E∗∗, and x̂ × H∗∗. From these new equations, we can obtain

x̂×E∗ = x̂× (YE− x̂×H)− + (YE+ x̂×H)+

Y − + Y +
,

x̂×H∗ = x̂× (ZH+ x̂×E)− + (ZH− x̂×E)+

Z− + Z+
. (9.37)

Using (9.36) and (9.37), we obtain the two states ũ∗ and ũ∗∗ in (9.34) and

(9.35). Moreover, from (9.33), (9.27), and (9.14), we can define the numerical

flux as

h(u−,u+) = h(ũ−, ũ+) =

(
x̂×E∗

−x̂×H∗

)
, (9.38)

which can be shown to be consistent with f(u) · x̂. For a general normal direction

n we can show that a consistent numerical flux is defined as

h(u−,u+) =

(
n×E∗

−n×H∗

)
, (9.39)
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where n × E∗ and n × H∗ are defined as in (9.37) with x̂ replaced by n,

respectively (Mahammadian, Shankar, & Hall, 1991).

9.4 Orthonormal hierarchical basis for DG methods

9.4.1 Orthonormal hierarchical basis on quadrilaterals or hexahedra

Let Qn = [−1, 1]n be the reference cube in Rn, n = 2, 3. A set of orthogonal

hierarchical basis functions in 2-D will be

Qp,p = span{Pi(ξ)Pj(η) : 0 ≤ i, j ≤ p}, (9.40)

where Pi(·) is the Legendre polynomial of order i.

Similarly, the orthogonal hierarchical basis functions in 3-D will be

Qp,p,p = span{Pi(ξ)Pj(η)Pk(ζ) : 0 ≤ i, j, k ≤ p}. (9.41)

9.4.2 Orthonormal hierarchical basis on triangles or tetrahedra

We construct orthonormal hierarchical basis functions on the reference simplicial

elements. Let Kn be the simplex in Rn, i.e.,

Kn :=

{
x ∈ Rn : 0 ≤ xi;

n∑
i=1

xi ≤ 1

}
. (9.42)

The notation |x| means the discrete �1 norm for a generic point x ∈ Kn, i.e.,

|x| =
n∑

i=1

|xi|. (9.43)

Denote by xi the truncation or projection of the point x in the first i dimensions,

i.e.,

x0 ≡ 0, xi ≡ (x1, x2, . . . , xi), 1 ≤ i ≤ n. (9.44)

For a point α ∈ Nn
0 , N0 = {0, 1, 2, . . . , }, denote by αi the truncation or projec-

tion of the point α from the ith dimension, i.e.,

αi ≡ (αi, αi+1, . . . , αn), 1 ≤ i ≤ n. (9.45)

For a point τ ∈ Rn+1, the notation τ i is similarly defined as in αi, namely

τ i ≡ (τi, τi+1, . . . , τn+1), 1 ≤ i ≤ n+ 1. (9.46)
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Orthogonal basis functions for DG methods will be constructed using orthogonal

polynomials over an n-simplex Kn given in the following theorem from Dunkl &

Xu (2001) under the following weight function:

W (Kn)
τ (x) = (1− |x|)τn+1− 1

2

n∏
i=1

x
τi− 1

2
i , x ∈ Kn, τi ≥ −

1

2
, i = 1, 2, . . . , n+ 1.

(9.47)

Theorem 9.1 The polynomials

Pα

(
W (Kn)

τ ;x
)
= [hα]

−1
n∏

i=1

(
1− |xi|

1− |xi−1|

)|αi+1|
P

(ρ1
i ,ρ

2
i )

αi

(
2xi

1− |xi−1|
− 1

)
,

(9.48)

where P
(ρ1

i ,ρ
2
i )

αi are the orthonormal Jacobi polynomials of one variable, ρ1i =

2|αi+1|+ |τ i+1|+(n− i− 1)/2 and ρ2i = τi− 1/2, are orthonormal over Kn, the

normalization constant h
(Kn)
α is given by

[hα]
−2

=

n∏
i=1

2ρ
1
i+ρ2

i+1, (9.49)

and the weight function takes the form in (9.47).

Using the result in Theorem 9.1, the orthonormal hierarchical shape functions

on the reference element in two and three dimensions are given as follows (Xin

& Cai, 2011b).

• Orthonormal hierarchical basis in a 2-D triangle: for 0 ≤ i, j, i+ j ≤ p,

Φi,j = κ(1− x1)
jP

(2j+1,0)
i (2x1 − 1)P

(0,0)
j

(
2x2

1− x1
− 1

)
, (9.50)

where κ =
√

2(i+ j + 1)(2j + 1).

• Orthonormal hierarchical basis in a 3-D tetrahedron: for 0 ≤ i, j, k,

i+ j + k ≤ p,

Φi,j,k = λ(1− x1)
j(1− x1 − x2)

k

×P (2j+2k+2,0)
i (2x1 − 1)P

(2k+1,0)
j

(
2x2

1− x1
− 1

)
P

(0,0)
k

(
2x3

1− x1 − x2
− 1

)
,

(9.51)

where λ =
√

(2k + 1)(2j + 2k + 2)(2i+ 2j + 2k + 3).
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From Theorem 9.1, we have the following orthonormal conditions of the basis

functions:

M�1,�2 := 〈Φ�1 ,Φ�2〉 |Kd = δ�1,�2 (9.52)

where � = (i, j) in 2-D and � = (i, j, k) in 3-D.

In deriving (9.50) and (9.51), the parameter τi in Theorem 9.1 takes the value

of 1/2. The function P
(α,β)
n (x) comprises the Jacobi polynomials of a single

variable.

Remark 9.2 A special case of the orthonormal basis functions above can be

found in Dubiner (1991), where the parameter of the weight function in (9.47)

takes the particular value τi = 0 (Dunkl & Xu, 2001) for the Dubiner basis

(Dubiner, 1991; Karniadakis & Sherwin, 2005). In the construction presented

here, this parameter has the value τi = 1/2.

Theorem 9.3 Let k ∈ N0. The bases for the spaces Pk(K
n), n = 2, 3, of

polynomials of total degree at most k are given in (9.50) and (9.51), respectively,

namely

Pk(K
2) = span{Φi,j : 0 ≤ i, j, i+ j ≤ k}, (9.53)

Pk(K
3) = span{Φl,m,n : 0 ≤ l,m, n, l +m+ n ≤ k}. (9.54)

Proof Firstly, for each basis function, we have Φi,j ∈ Pk(K
2) and Φi,j,k ∈

Pk(K
3). Further, it is noticed that with different indexes the shape functions

given in (9.50) and (9.51) are linearly independent. Secondly, the numbers of

independent shape functions are (k + 1)(k + 2)/2 and (k + 1)(k + 2)(k + 3)/6

for two and three dimensions, respectively, which coincide with the respective

dimensions of Pk(K
2) and Pk(K

3).

9.5 Explicit formulae of basis functions

Polynomial basis functions up to third order and in terms of the coordinates for

the reference element are given in the following.

Basis functions in 2-D triangles

• Zeroth-order:

Φ0,0 =
√
2.

• First-order:

Φ1,0 = 3(x1 − 1), Φ0,1 = 2
√
3(x1 + 2x2 − 1).
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• Second-order:

Φ2,0 =
√
6(1− 8x1 + 10x2

1),

Φ0,2 =
√
30(1− 2x1 + x2

1 − 6x2 + 6x1x2 + 6x2
2),

Φ1,1 = 3
√
2(x1 + 2x2 − 1)(5x1 − 1).

• Third-order:

Φ3,0 = 2
√
2(15x1 − 45x2

1 + 35x3
1 − 1),

Φ0,3 = 2
√
14(3x1 − 3x2

1 + 12x2 + x3
1 − 24x1x2 − 30x2

2 + 20x3
2

+ 12x2x
2
1 + 30x1x

2
2 − 1),

Φ2,1 = 2
√
6(x1 + 2x2 − 1)(1− 12x1 + 21x2

1),

Φ1,2 = 2
√
10(7x1 − 1)(1− 2x1 + x2

1 − 6x2 + 6x1x2 + 6x2
2).

Basis functions in 3-D tetrahedra

• Zeroth-order:

Φ0,0,0 =
√
6.

• First-order:

Φ1,0,0 =
√
10(4x1 − 1), Φ0,1,0 = 2

√
5(x1 + 3x2 − 1),

Φ0,0,1 = 2
√
15(x1 + x2 + 2x3 − 1).

• Second-order:

Φ2,0,0 =
√
14(1− 10x1 + 15x2

1),

Φ0,2,0 =
√
42(1− 2x1 + x2

1 − 8x2 + 8x1x2 + 10x2
2),

Φ0,0,2 =
√
210(1− 2x1 − 2x2 + x2

1 + 2x1x2

+ x2
2 − 6x3 + 6x1x3 + 6x2x3 + 6x2

3),

Φ1,1,0 = 2
√
7(x1 + 3x2 − 1)(6x1 − 1),

Φ1,0,1 = 2
√
21(x1 + x2 + 2x3 − 1)(6x1 − 1),

Φ0,1,1 = 3
√
14(x1 + 5x2 − 1)(x1 + x2 + 2x3 − 1).

• Third-order:

Φ3,0,0 = 3
√
2(18x1 − 63x2

1 + 56x3
1 − 1),

Φ0,3,0 = 6
√
2(3x1 + 15x2 + x3

1 + 35x3
2 − 30x1x2 − 45x2

2 − 3x2
1

+ 15x2x
2
1 + 45x1x

2
2 − 1),

Φ0,0,3 = 6
√
14

(
12x3(1− x1 − x2)

2 + 30g(x)2(1− x1 − x2) + 20g(x)3

−11(1− x1 − x2)
3
)
,
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Φ2,1,0 = 6(x1 + 3x2 − 1)(1− 14x1 + 28x2
1),

Φ2,0,1 = 6
√
3(2x3 + x1 + x2 − 1)(1− 14x1 + 28x2

1),

Φ1,2,0 = 3
√
6(8x1 − 1)(1− 2x1 + x2

1 − 8x2 + 8x1x2 + 10x2
2),

Φ0,2,1 = 6
√
6(2x3 + x1 + x2 − 1)

· (1− 2x1 + x2
1 − 12x2 + 12x1x2 + 21x2

2),

Φ1,0,2 = 3
√
30(8x1 − 1)(1− 2x1 − 2x2 + x2

1 + 2x1x2 + x2
2 − 6x3

+ 6x1x3 + 6x2x3 + 6x2
3),

Φ0,1,2 = 6
√
10(1− 2x1 − 2x2 + x2

1 + 2x1x2 + x2
2 − 6x3 + 6x1x3

+ 6x2x3 + 6x2
3)(x1 + 7x2 − 1),

Φ1,1,1 = 9
√
2(8x1 − 1)(x1 + 5x2 − 1)(2x3 + x1 + x2 − 1),

where g(x) = x1 + x2 + x3 − 1.

9.6 Computation of whispering gallery modes (WGMs) with DG
methods

In this section, we demonstrate the high accuracy of the DG methods by simulat-

ing whispering gallery modes (WGMs) in coupled resonator optical waveguides

(CROWs) made of 2-D cylinders (Yariv et al., 1999). WGMs are traveling elec-

tromagnetic resonances confined within dielectric media of circular symmetric

structure such as circular rods, micro-disks, and micro-spheres. In the case of a

dielectric rod, the WGMs were first studied by Lord Rayleigh (1914) who tried

to understand the acoustic waves clinging to the dome of St. Paul’s Cathedral;

the waves were shown to be trapped between the cylindrical boundary and a

caustic inside the rod (Wait, 1967).

9.6.1 WGMs in dielectric cylinders

Electromagnetic WGMs exist in a circular dielectric cylinder, which is assumed

to be of radius a and infinite length with dielectric constant ε1 and magnetic

permeability μ1, embedded in an infinite homogeneous medium of material pa-

rameters ε2 and μ2. In the cylindrical coordinate system (r, θ, z), the components

of the magnetic field H = (Hr, Hθ, Hz) and the electric field E = (Er, Eθ, Ez)

of time-harmonic WGMs (with time dependence as exp(−iωt)) are given by the

following equations (Stratton, 1941):



9.6 Whispering gallery modes with DG methods 239

Hr =

[
an

nk2

μωλ2r
Gn(λr) + bn

ih

λ
G′

n(λr)

]
Fn,

Hθ =

[
an

ik2

μωλ
G′

n(λr)− bn
nh

λ2r
Gn(λr)

]
Fn,

Hz = bnGn(λr)Fn, (9.55)

Er =

[
an

ih

λ
G′

n(λr)− bn
μωn

λ2r
Gn(λr)

]
Fn,

Eθ = −
[
an

nh

λ2r
Gn(λr) + bn

iμω

λ
G′

n(λr)

]
Fn,

Ez = anGn(λr)Fn, (9.56)

where Fn = exp(inθ + ihz − iωt), with h being the axial propagation constant.

The function Gn ≡ Jn for r < a and H
(1)
n for r > a, where Jn is the Bessel

function of the first kind and H
(1)
n is the Hankel function of the first kind. Also,

for r < a, k = k1 = ω
√
ε1μ1, λ = λ1, where λ2

1 = k21 − h2, and, for r > a,

k = k2 = ω
√
ε2μ2, λ = λ2, where λ2

2 = k22 − h2. The coefficients an and bn are

determined by the tangential continuity boundary condition at the cylindrical

boundary r = a. For a non-trivial solution, the axial propagation constant h

satisfies the following characteristic equation (Wait, 1967):[
μ1

u

J ′
n(u)

Jn(u)
− μ2

v

H
(1)′

n (v)

H
(1)
n (v)

][
k21
μ1u

J ′
n(u)

Jn(u)
− k22

μ2v

H
(1)′

n (v)

H
(1)
n (v)

]

= n2h2

(
1
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)2

, (9.57)

where u = λ1a and v = λ2a. For a given mode number n, (9.57) does not have a

unique solution, and the electromagnetic WGMs are represented by solutions of

(9.57) when n is of the order of λ1a. Note that the mode number n is also the

number of maxima in the field intensity in the azimuthal direction and is thus

called the azimuthal number of the WGMs. We will confine ourselves to WGMs

with an axial propagation constant h between k1 and k2, i.e., k1 > h > k2. In

this case, λ2 = −i|λ2| and λ1 = |λ1|, which prevents any ohmic losses, and the

WGMs would be un-attenuated along a perfectly straight cylinder (Wait, 1967).

9.6.2 Optical energy transfer in coupled micro-cylinders

We now study the optical energy coupling by WGMs between micro-cylinders

(Deng & Cai, 2005). For a WGM with axial propagation constant h, the magnetic

field H = (Hx, Hy, Hz) and the electric field E = (Ex, Ey, Ez) in a rectangular

coordinate system (x, y, z) may be expressed as

H(x, y, z, t) = H(x, y, t) exp(ihz), E(x, y, z, t) = E(x, y, t) exp(ihz). (9.58)
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Substituting (9.58) into the sourceless Maxwell equations (9.1), we obtain the

following system of equations in matrix form:

∂u

∂t
+ A(ε, μ)

∂u

∂x
+ B(ε, μ)

∂u

∂y
= S, (9.59)

where

u =

[
μH

εE

]
,

A(ε, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 − 1
ε

0 0 0 0 1
ε 0

0 0 0 0 0 0

0 0 1
μ 0 0 0

0 − 1
μ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B(ε, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
ε

0 0 0 0 0 0

0 0 0 − 1
ε 0 0

0 0 − 1
μ 0 0 0

0 0 0 0 0 0
1
μ 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(9.60)

and S = (ihEy,−ihEx, 0,−ihHy, ihHx, 0)
T.

Here, for the purpose of non-dimensionalization, the reference length is chosen

as the free space wave length of an electromagnetic field with frequency 100

THz; that is 3 μm. Therefore, one unit of length corresponds to 3 μm and one

unit of time corresponds to 10 fs. We consider a model CROW system of two

identical circular dielectric cylinders of infinite length in contact with each other.

The radii of the cylinders are r1 = r2 = 0.5775 and the cylinders have material

refractive index 3.2, i.e., ε1 = 10.24 and μ1 = 1, and the external medium is a

vacuum.

By setting the angular frequency ω = 2π and the azimuthal number n = 8,

we find that the characteristic equation (9.57) has a solution h = 6.80842739

between k1 = 6.4π and k2 = 2π; the resulting WGM is denoted by WGM8,1,0.

To investigate the optical energy transport by WGMs from one cylinder to the

other, we assume that initially there exists a WGM in the left cylinder and that

no fields exist inside the right cylinder. As initial conditions, the exact values

of WGM8,1,0 in the left cylinder are taken in the entire computational domain,

except for the inside of the right cylinder, where a zero field is initialized. To

ensure that the initial field satisfies the interface condition on the surface of the

right cylinder, we impose artificial surface magnetic and electric currents over

the surface of the right cylinder for a short duration:

Jm(r, t) = J0
m(r) exp(−αt), Je(r, t) = J0

e(x) exp(−αt), (9.61)

where the constant α > 0 is chosen so the surface currents become negligible in

a short time, and J0
m and J0

e are calculated from the initial fields E(r, 0) and

H(r, 0) as follows:

J0
m(r) = −n× [E+(r, 0)−E−(r, 0)], J0

e(r) = n× [H+(r, 0)−H−(r, 0)].
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Ez(x,y,2): Ez(x,y,6):

Ez(x,y,8): Ez(x,y,10):

(a) (b)

(c) (d)

Figure 9.2. Optical energy transport by WGMs between two identical micro-cylinders
in contact. The four sequential snapshots at t = 2, 6, 8, and 10 (fs) illustrate the
generation of a clockwise WGM in the right cylinder due to resonant optical coupling.
From Deng & Cai (2005), copyright (2005) by the Optical Society of America (OSA).

For such boundary currents, the numerical normal flux will have to be modified

on both sides of the surface. Given two states u− and u+, the numerical normal

flux can be written as

(F · n)− =

[
n× (YE−n×H)−+(YE+n×H)+−Je

Y −+Y + + Y +

Y −+Y +Jm

−n× (ZH+n×E)−+(ZH−n×E)+−Jm

Z−+Z+ + Z+

Z−+Z+Je

]
, (9.62)

for the − side, and

(F · n)+ =

[
n× (YE−n×H)−+(YE+n×H)+−Je

Y −+Y + − Y −

Y −+Y +Jm

−n× (ZH+n×E)−+(ZH−n×E)+−Jm

Z−+Z+ − Z−

Z−+Z+Je

]
, (9.63)

for the + side, respectively.

The computational domain will be decomposed into quadrilateral elements

where the cylindrical boundary will conform to the triangulation. On each quadri-

lateral element the order of the polynomial basis in (9.40) is p = 10, while the

constant α = 10 in (9.61). To demonstrate the dynamics of the optical energy

transport by WGMs from the left cylinder to the right cylinder, the snapshots of

the Ez component at four different times are given in Fig. 9.2. The initial state

of the system is represented by a counterclockwise circulating wave, i.e., the

fundamental mode WGM8,1,0 in the left cylinder. The four sequential snapshots

Fig. 9.2 (a)–(d) then illustrate the generation of a clockwise WGM in the right
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cylinder due to the optical coupling, which indicates an optical energy transport

from the left cylinder to the right cylinder.

9.7 Finite difference Yee scheme

The differential form of the Maxwell equations has an equivalent and general

integral form. For any given surface S, on integrating Faraday’s law (5.1) over

S, we have

d

dt

∫
S

B · ds+
∫
S

∇×E · ds = 0, (9.64)

and using Stokes’ theorem we arrive at

d

dt

∫
S

B · ds+
∫
∂S

E · dl = 0. (9.65)

Similarly, the integral form of the Ampère–Maxwell law (5.15) is

d

dt

∫
S

D · ds−
∫
∂S

H · dl = −
∫
S

J · ds. (9.66)

The Yee scheme is based on a dual grid on a rectangular lattice consisting

of (xi, yj , zk) = (iΔx, jΔy, kΔz), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz; the

unknowns are located on the faces and the edges of the primary cell centered at

(xi, yj , zk). Namely, the E-field unknowns are on the boundaries of the faces of

the cell, and the H-field unknowns are at the centers of the faces of the primary

cell (see Fig. 9.3). A dual cell can be obtained by translating the primary cell

one-half a cell unit in each direction, which creates the staggered grid for the

Yee scheme.

• Cell edge unknowns for the electric-field component tangential along the edges:

Ex,i,j+ 1
2 ,k+

1
2
, Ey,i+ 1

2 ,j,k+
1
2
, Ez,i+ 1

2 ,j+
1
2 ,k

. (9.67)

• Cell face unknowns for the magnetic-field components in the face normal:

Hx,i+ 1
2 ,j,k

, Hy,i,j+ 1
2 ,k

, Hz,i,j,k+ 1
2
. (9.68)

It should be noted that the magnetic normal components on the faces of the

primary cell are also tangential components along the edges of the dual cell. To

obtain a finite difference equation for Faraday’s law, we apply equation (9.69)

on S (the right-most face with +x̂ as normal):

d

dt

∫
S

B · ds+
∫
Γ

E · dl = 0. (9.69)

Firstly, we approximate the surface integral with a middle point rule,∫
S

B · ds = Bi+ 1
2 ,j,k

· (1, 0, 0)ΔyΔz +O((ΔyΔz)
4) ≈ Bx,i+ 1

2 ,j,k
ΔyΔz. (9.70)
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Figure 9.3. E- and H-field unknowns in a Yee cell.

Next, we approximate the line integral along the boundary Γ = ∂S of S, using

again the middle point rule for each of the four edges of the surface S:∫
Γ

E · dl =
∫
Γ1

E · (0, 1, 0)dy +

∫
Γ2

E · (0, 0, 1)dz

+

∫
Γ3

E · (0,−1, 0)dy +

∫
Γ4

E · (0, 0,−1)dz

≈Ey,i+ 1
2 ,j,k−

1
2
Δy + Ez,i+ 1

2 ,j+
1
2 ,k

Δz

− Ey,i+ 1
2 ,j,k+

1
2
Δy − Ez,i+ 1

2 ,j−
1
2 ,k

Δz. (9.71)

Combining (9.70) and (9.71), we obtain the semi-discretized second-order ac-

curate Yee scheme:

d

dt
Bx,i+ 1

2 ,j,k
=+

1

Δz

(
Ey,i+ 1

2 ,j,k+
1
2
− Ey,i+ 1

2 ,j,k−
1
2

)
− 1

Δy

(
Ez,i+ 1

2 ,j+
1
2 ,k
− Ez,i+ 1

2 ,j− 1
2 ,k

)
. (9.72)

Repeating the same procedure on the other faces with ŷ and ẑ as normals, we

obtain similar equations for ŷ- and ẑ-components for the magnetic induction:

d

dt
By,i,j+ 1

2 ,k
=+

1

Δx

(
Ez,i+ 1

2 ,j+
1
2 ,k
− Ez,i− 1

2 ,j+
1
2 ,k

)
− 1

Δz

(
Ex,i,j+ 1

2 ,k+
1
2
− Ex,i,j+ 1

2 ,k− 1
2

)
, (9.73)
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d

dt
Bz,i,j,k+ 1

2
=− 1

Δx

(
Ey,i+ 1

2 ,j,k+
1
2
− Ey,i− 1

2 ,j,k+
1
2

)
+

1

Δy

(
Ex,i,j+ 1

2 ,k+
1
2
− Ex,i,j− 1

2 ,k+
1
2

)
. (9.74)

To obtain the finite difference equations for Ampère’s law, we select the surface

S on the dual cells and repeat the same numerical quadrature of the related

surface and edge integrals, which will give the following:

d

dt
Dx,i,j+ 1

2 ,k+
1
2
=− 1

Δz

(
Hy,i,j+ 1

2 ,k+1 −Hy,i,j+ 1
2 ,k

)
+

1

Δy

(
Hz,i,j+1,k+ 1

2
−Hz,i,j,k+ 1

2

)
− Jx,i,j+ 1

2 ,k+
1
2
, (9.75)

d

dt
Dy,i+ 1

2 ,j,k+
1
2
=− 1

Δx

(
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2
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2

)
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1

Δz

(
Hx,i+ 1

2 ,j,k+1 −Hx,i+ 1
2 ,j,k

)
− Jy,i+ 1

2 ,j,k+
1
2
, (9.76)

d

dt
Dz,i+ 1

2 ,j+
1
2 ,k

=+
1

Δx

(
Hy,i+1,j+ 1

2 ,k
−Hy,i,j+ 1

2 ,k

)
− 1

Δy

(
Hx,i+ 1

2 ,j+1,k −Hx,i+ 1
2 ,j,k

)
− Jz,i+ 1

2 ,j+
1
2 ,k

. (9.77)

To obtain the fully discretized Maxwell equations, we will use a leap-frog type

discretization in time for the B and D variables with a staggered grid in time,

i.e.,

∂B

∂t

∣∣∣∣
tn

=
Bn+1/2 −Bn−1/2

Δt
, (9.78)

∂D

∂t

∣∣∣∣
tn+1/2

=
Dn+1 −Dn

Δt
. (9.79)

Finally, we have the fully discretized Yee scheme as follows.

Yee scheme

Given Bn−1/2 at tn−1/2 = (n− 1/2)Δt, and Dn at tn = nΔt, the following time

marching scheme calculates Bn+1/2 and Dn+1:

B
n+1/2

x,i+ 1
2 ,j,k

= B
n−1/2

x,i+ 1
2 ,j,k

+
Δt

Δz

(
En

y,i+ 1
2 ,j,k+

1
2
− En

y,i+ 1
2 ,j,k−

1
2

)
− Δt

Δy

(
En

z,i+ 1
2 ,j+

1
2 ,k
− En

z,i+ 1
2 ,j− 1

2 ,k

)
, (9.80)

B
n+1/2

y,i,j+ 1
2 ,k

= B
n+1/2

y,i,j+ 1
2 ,k

+
Δt

Δx

(
En

z,i+ 1
2 ,j+

1
2 ,k
− En

z,i− 1
2 ,j+

1
2 ,k

)
− Δt

Δz

(
En

x,i,j+ 1
2 ,k+

1
2
− En

x,i,j+ 1
2 ,k− 1

2

)
, (9.81)
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B
n+1/2
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2
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)
, (9.82)

Dn+1
x,i,j+ 1

2 ,k+
1
2

= Dn
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2
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H
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2
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1
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, (9.83)

Dn+1
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2
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Dn+1
z,i+ 1

2 ,j+
1
2 ,k

= Dn
z,i+ 1

2 ,j+
1
2 ,k

+
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(
H
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2
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2 ,k
−H

n+ 1
2

y,i,j+ 1
2 ,k

)
− Δt
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H

n+ 1
2
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−ΔtJ

n+ 1
2

z,i+ 1
2 ,j+

1
2 ,k

. (9.85)

One of the most important features of the Yee scheme lies in the fact that the

divergence of the magnetic field of the numerical solution will remain zero if it is

zero initially. The proof is given in Section 16.4 when such a condition is critical

for the magneto-hydrodynamic (MHD) equations of plasmas. The proof of the

second-order convergence of the Yee scheme has been obtained in Monk & Süli

(1994).

Remark 9.4 (Treatment of curved boundaries) The Yee scheme suffers a

loss of accuracy near curved boundaries or material interfaces due to the phe-

nomena of “staircases” from the lattice representation of boundaries not aligned

with coordinate lines. Various numerical techniques have been proposed to han-

dle the difficulties associated with the curved boundaries, including, to list a few,

the contour path finite difference method derived as above but with a contour

conforming to the curved boundary (Jurgens et al., 1992), the local conformal fi-

nite difference method (Dey & Mittra, 1997), the embedded boundary upwinding

finite difference method (Cai & Deng, 2003; Xiao & Liu, 2004), and the locally

modified finite difference method (Ditkowski, Dridi, & Hesthaven, 2001).

9.8 Summary

The discontinuous Galerkin method for Maxwell equations offers a highly par-

allel algorithm for computing electromagnetic wave propagations in complex

media, including dispersive materials, with the help of auxiliary differential equa-

tions to handle the frequency-dependent dielectric constants. A well-conditioned
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hierarchical basis for the DG method is also introduced. Meanwhile, the simple

Yee scheme offers a second-order approximation which satisfies the divergence-

free constraint for the magnetic field (a condition not addressed explicitly in

the DG approximation), but, however, suffers a degeneracy in accuracy near

boundaries not aligned with mesh coordinate lines.



10 Scattering in periodic structures
and surface plasmons

In this chapter, we will discuss numerical methods for computing wave scatter-

ing in periodic structures in photonics, and surface plasmons of electron density

waves at interfaces between metallic materials and dielectrics. Both types of elec-

tromagnetic phenomena have many applications in nano-photonics and near-field

optics. Firstly, we present the general Bloch theory and Bloch wave expansions

for electromagnetic waves in periodic structures. Several numerical methods are

discussed that can be used for the calculation of the photonic band structure, in-

cluding a plane wave method and a calculation of transmission spectra by Fourier

methods. Then, a modified Nédélec edge element for periodic structure eigen-

value problems in the frequency domain, and a time-domain finite element with

Bloch wave transparent boundary conditions, are presented. Finally, we present

a volume integral equation method for surface plasmons through nano-holes in

thin films, and a time-domain discontinuous Galerkin method, using auxiliary

differential equations (ADEs) to treat dispersive materials, for a resonant cou-

pling of surface plasmons in nano-silver wires.

10.1 Bloch theory and band gap for periodic structures

The electric and magnetic properties in a 3-D periodic structure are described

by the following eigenvalue problems for the vector Helmholtz operator LE(E)

or LH(H).

• Electric field E(r):

LE(E) ≡ −∇×
(
1

μ
∇×E

)
+ ω2ε E = 0. (10.1)

• Magnetic field H(r):

LH(H) ≡ −∇×
(
1

ε
∇×H

)
+ ω2μ H = 0. (10.2)

Here, ω is the frequency of the electromagnetic wave and ε is the dielectric

constant of the structure, respectively.

The 3-D periodic structure of the medium is defined by its Bravais vectors

{ai, i = 1, 2, 3} and their corresponding elementary reciprocal lattice vectors
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{bj , j = 1, 2, 3} defined in (4.2). The dielectric constant ε is assumed to be a

periodic function over the periodic structure, namely

ε(r+ ai) = ε(r), i = 1, 2, 3. (10.3)

The Bloch theory of eigenvalue problems (10.1) and (10.2) states that the

eigenfunctions, for (10.1) for instance, should take the following form:

Ek(r) = eik·ruk(r), (10.4)

where the Bloch wave vector (continuous) k is given by

k = m1b1 +m2b2 +m3b3, mj ∈ (−∞,∞), j = 1, 2, 3, (10.5)

and the function uk is a periodic function over the lattice, which can be repre-

sented in the following form of a Fourier series:

uk(r) =
∑
G

Ê(k−G)e−iG·r, (10.6)

where the reciprocal vector G is defined in (4.3), and

uk(r+ ai) = uk(r), i = 1, 2, 3. (10.7)

The proof of the Bloch theory for the 3-D case follows the same procedure as

for the 1-D case given below by utilizing the Fourier series of periodic functions

over lattices.

10.1.1 Bloch theory for 1-D periodic Helmholtz equations

The Helmholtz equation for a 1-D periodic structure of a lattice period a is

L(E) =
d2E

dx2
+

ω2

c2
ε(x)E = 0, x ∈ (−∞,∞), (10.8)

where c = 1/
√
ε0μ0 is the speed of light in the vacuum, and the relative dielectric

constant ε(x) is an a-periodic function, i.e.,

ε(x+ a) = ε(x). (10.9)

The Bloch theory in this case implies that the solution of (10.8) takes the fol-

lowing form:

Ek(x) = eikxuk(x), k ∈ (−∞,∞), (10.10)

where uk(x) is an a-periodic function, namely

uk(x+ a) = uk(x). (10.11)

The proof of the above statement is based on Fourier expansions of periodic

functions. As the electric field is defined for the whole interval, we consider the
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solution of (10.8) on a finite domain [−L/2, L/2] with L = Na, where N is a

positive integer, satisfying a periodic boundary condition, i.e.,

E

(
−L

2

)
= E

(
L

2

)
. (10.12)

So, the electric field E(x) can be expressed by the following Fourier series:

E(x) =
∑
k′∈Z

Ê(k)eikx, k =
2π

L
k′, x ∈

[
−L

2
,
L

2

]
. (10.13)

Meanwhile, the dielectric constant ε(x) also admits the following Fourier series

with reciprocal index g:

ε(x) =
∑
g∈G

ε̂(g)eigx, x ∈
[
−L

2
,
L

2

]
, (10.14)

where G = {g = (2π/a)n : n ∈ Z}. Substituting (10.13) and (10.14) into (10.8),

we have ∑
k′∈Z

⎡⎣−k2Ê(k)eikx +
ω2

c2

∑
g∈G

Ê(k)ε̂(g)ei(k+g)x

⎤⎦ = 0, (10.15)

which can be rearranged as follows by changing the summation index k + g → k

(and k → k − g):

∑
k′∈Z

⎡⎣−k2Ê(k) +
ω2

c2

∑
g∈G

Ê(k − g)ε̂(g)

⎤⎦ eikx = 0, x ∈
[
−L

2
,
L

2

]
. (10.16)

Due to the orthogonality of the trigonometric functions, we have

− k2Ê(k) +
ω2

c2

∑
g∈G

Ê(k − g)ε̂(g) = 0, k =
2π

L
k′, k′ ∈ Z. (10.17)

Equation (10.17) imposes coupling conditions on the Fourier coefficients Ê(k)

in (10.13), implying that an eigenfunction can be completely defined with only

those coefficients related through the reciprocal index g, whereas other coeffi-

cients could be set independently to zero. Namely, for each given k, the following

E(x) makes a solution for (10.8) for x ∈ [−L/2, L/2] with “periodic boundary

conditions” (10.12):

E(x) =
∑
g∈G

Ê(k − g)ei(k−g)x, (10.18)

which in turn can be rewritten as

E(x) = eikx
∑
g∈G

Ê(k − g)e−igx ≡ eikxuk(x), x ∈
[
−L

2
,
L

2

]
, (10.19)

where uk(x) satisfies the a-periodicity condition, i.e.,

uk(x+ a) =
∑
g∈G

Ê(k − g)e−ig(x+a) =
∑
g∈G

Ê(k − g)e−igx = uk(x), (10.20)
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using the fact that e−iga = 1. Next, let the interval length L → ∞. Then uk(x)

will continue to be an a-periodic function, while {k = (2π/L)k′ : k′ ∈ Z} becomes

a dense subset of the continuous wave number k ∈ (−∞,∞). This concludes the

proof of (10.10)–(10.11).

If two wave numbers k and k′ are related as k′ = k± n(π/a), they apparently

correspond to the same plane wave function eikx for x ∈ [0, a] (see (10.26) below).

Therefore we only have to consider k ∈ B = [−π/a, π/a], which is defined as the

first Brillouin zone (Kaxiras, 2003).

10.1.2 Bloch wave expansions

The eigenfunctions ψn(x, k) for the operator L for almost all k (except for a set

of zero measure) in the first Brillouin zone B = [−π/a, π/a] are defined as

L(ψn) = λnψn, (10.21)

where 0 < λ1 < λ2 < · · · < λn < · · · , and, based on (10.10), the Bloch general-

ized eigenfunctions ψn have the form

ψn(x, k) = eikxφn(x), (10.22)

with an a-periodic function φn(x).

The eigenfunctions ψn(x, k) form an orthonormal sequence (Wilcox, 1978),

i.e., ∫ a

0

ψ∗
m(x, k)ψn(x, k)dx =

∫ a

0

φ∗
m(x)φn(x)dx = δmn. (10.23)

Also, it can be shown that the union of all eigenfunctions {ψn(x, k)}k∈B,n=1,2,...

expands L2(−∞,∞). Namely, for any function f(x) ∈ L2(−∞,∞), the following

Fourier series with the Bloch generalized eigenfunctions ψn(x, k) holds in the L2

limit:

f(x) =

∞∑
n=1

∫
B

f̂n(k)ψn(x, k)dk, (10.24)

where the “Fourier” coefficients are defined as

f̂n(k) =

∫ ∞

−∞
f(x)ψ∗

n(x, k)dx. (10.25)

This Fourier series can be used to build a spectral method for problems with

periodic potentials (Huang et al., 2009).

10.1.3 Band gaps of photonic structures

For each n, λn(k) defines one of many dispersion curves for the periodic structure,

while the set {λn(k), k ∈ B}∞n=1 defines the band structure for the periodic

potential operator L (refer to Fig. 10.1). One of the most important properties of

a periodic dielectric medium is the existence of a band gap in the dispersion curve
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Figure 10.1. The band gap structure of a 3-D diamond lattice using 434 plane waves.
The insert shows the unit cell of the diamond lattice. From Guo & Albin (2003),
copyright (2003) by the Optical Society of America (OSA).

for the eigenfunctions of (10.1) and (10.2). If the frequency of the electromagnetic

wave ω falls within one of the band gaps, then propagation through the photonic

structure will be forbidden. Therefore, the calculation of the band gap of a given

periodic structure is one of the most important tasks in the study of periodic

systems.

As shown above, the eigenfunctions are enumerated with a k-vector in (10.4)

for the photonic structure of infinite extent. For all practical purposes, consid-

ering a photonic structure of a finite dimension L with L = Na,N � 1, will be

sufficient to determine the band gap. In this case, the eigenfunctions for (10.1)

with a periodic boundary condition E(0) = E(L) are given by (10.4), (10.6), and

(10.7). The selection of k is then given by (10.5); we can show that two k vectors

differing by a reciprocal vector will yield the same eigenfunctions. Let k′ = k

+ G0 for some reciprocal vector G0. By definition, the eigenfunction for k′ is

given as

Ek′(r) = eik
′·r
∑
G

Ê(k′ −G)e−iG·r = eik
′·r
∑
G

Ê(k+G0 −G)e−iG·r

= eik·r
∑
G′

Ê(k−G′)e−iG′·r = Ek(r). (10.26)

As a result, only those k that belong to the range

B =

{
k = α1b1 + α2b2 + α3b3 : αi ∈

[
−1

2
,
1

2

]
, i = 1, 2, 3

}
(10.27)
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will yield distinctive eigenfunctions, and this k-range B is the first Brillouin zone

for the 3-D periodic structure .

10.1.4 Plane wave method for band gap calculations

The problem of finding the band gap of a photonic crystal can be reduced to

an eigenvalue problem based on (10.1) or (10.2) and the Bloch theory. Let us

consider the Hermitian eigenvalue problem (10.2) and let Hk(r) = eik·ruk(r).

Then, the function uk(r) satisfies the following eigenvalue problem with periodic

boundary conditions:

− (∇+ ik)×
(
1

ε
(∇+ ik)× uk(r)

)
+

ω2

c2
uk(r) = 0, (10.28)

with k = k1b1 + k2b2 + k3b3, −1/2 ≤ ki ≤ 1/2, i = 1, 2, 3.

The periodic eigenfunctions uk(r) at r =
∑3

k=1 nkak/Nk will be expanded in

terms of plane waves due to the fact that they are eigenfunctions of the differ-

ential operators (Johnson & Joannopoulos, 2001):

uk(r) =
∑

m={mj}
hm exp

⎛⎝i
∑
j,k

mjbj · nkak/Nk

⎞⎠

=
∑

m={mj}
hm exp

⎛⎝2πi
∑
j

mjnj/Nj

⎞⎠ . (10.29)

Here, the reciprocal indices mj = −Nj/2 + 1, . . . , Nj/2, j = 1, 2, 3, and nk =

0, 1, . . . , Nk − 1, k = 1, 2, 3, are the spatial coordinates on an N1 × N2 × N3

affine grid defined by the Bravais lattice vectors. Summation in (10.29) can be

implemented by the discrete fast Fourier transform (FFT). Plugging (10.29) into

(10.28) results in a linear algebraic system for the expansion coefficients hm:

Ah =
ω2

c2
Bh, (10.30)

where A and B are N×N matrices, with N being the number of basis functions.

This system will, in general, be solved by an iterative method such as the GMRES

method (Saad, 2003). The main operation in the iteration is the matrix–vector

product, which in this case can be achieved straightforwardly using the FFT

in O(N logN) operations in the following manner. As the operation of the curl
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operator is equivalent to a cross product in the k-vector space, i.e., (∇+ik)× ↔
(k+ bm)×, we can compute Ah in the following manner:

(k+ bl)× · · ·FFT−1 · · · ε̃−1 · · ·FFT · · · (k+ bm)× h. (10.31)

Figure 10.1 shows the band gap structure of a 3-D diamond lattice using 434

plane waves, and the insert shows the unit cell of the diamond lattice (Guo &

Albin, 2003). The letters, X, U, L, etc., on the k-vector axis indicate points of

symmetry in the first Brillouin zone resulting from the symmetry of the unit cell

in the photonic crystal structure (Kaxiras, 2003, sect. 3.7).

10.1.5 Rayleigh–Bloch waves and band gaps by transmission spectra

The transmittance spectrum of a photonic crystal of periodic dielectric structure

is closely related to its band gap as the latter contains the range of wave fre-

quencies with no transmission through the structure. In this section, we present

a plane-wave-based calculation of the transmittance spectrum by Sakoda (1995a,

1995b), which is similar in nature to the rigorous coupled wave analysis (RCWA)

method (Moharam & Gaylord, 1981). Consider a photonic crystal slab with an

incident wave Einc impinging from the top. Region 1 is above the top of the pho-

tonic crystal (y ≥ 0), Region 2 is the crystal itself (−L ≤ y ≤ 0), and Region 3 is

below the photonic crystal (y ≤ −L) where the transmitted wave Et is measured

for the transmittance spectrum T (ω), which is defined as

T (ω) =
∣∣Et

∣∣2 / ∣∣Einc
∣∣2 . (10.32)

Each region is described by a periodic relative dielectric function εi(r); how-

ever, ε1(r) ≡ ε1 and ε3(r) ≡ ε3 are assumed to be constant. Let us consider a

transverse electric (TE) wave where H = (0, 0, Hz) and E = (Ex, Ey, 0). Note

that Hz satisfies the following scalar Helmholtz equation (with no z-dependence,

∇ = (∂/∂x, ∂/∂y),x = (x, y)):

L(Hz) = ∇ ·
(

1

ε(x)
∇Hz

)
+

ω2

c2
Hz = 0. (10.33)

• Region 1: y ≥ 0

Here, for a given incident wave with a directional wave number ki = (kx, k1y),

there will be multiple reflection directions k
(n)
r with individual reflection co-

efficients as shown in Fig. 10.2, a situation different from the single specular

reflection from a half-plane space in the classical Snell’s law. Consequently, the

magnetic field in this region can be expressed as

H1z(x, y) = H0e
iki·x +

∑
n

Rne
ik(n)

r ·x, (10.34)

where Rn is called the nth-order Bragg reflection coefficient.
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Figure 10.2. Rayleigh–Bloch reflections on the top and transmissions at the bottom.

• Region 3: y ≤ −L

Similarly, the transmitted wave in Region 3 has multiple transmitted directions

k
(n)
t with individual transmission coefficients, as shown in Fig. 10.2:

H3z(x, y) =
∑
n

Tne
ik

(n)
t ·(x−L), L = (0,−L), (10.35)

where Tn is called the nth-order Bragg transmission coefficient.

In order to satisfy the Helmholtz equation (10.33), the y-component of the

k-vectors will be related to their x-component as follows:

k(n)r,y =

⎧⎪⎪⎨⎪⎪⎩
+

√
k21 −

(
k
(n)
r,x

)2

, if k1 >
∣∣∣k(n)r,x

∣∣∣ ,
+i

√(
k
(n)
r,x

)2

− k21 , otherwise,

(10.36)

and

k
(n)
t,y =

⎧⎪⎪⎨⎪⎪⎩
−
√

k23 −
(
k
(n)
t,x

)2

, if k3 >
∣∣∣k(n)t,x

∣∣∣ ,
−i

√(
k
(n)
t,x

)2

− k23 , otherwise,

(10.37)
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where k1 =
√
ε1ω/c and k3 =

√
ε3ω/c, respectively, and ω is the frequency of the

incident field.

• Region 2: −L < y < 0

In this region, the field H2z satisfies the following scalar Helmholtz equation:

L(H2z) =
∂

∂x

(
1

ε(x, y)

∂H2z

∂x

)
+

∂

∂y

(
1

ε(x, y)

∂H2z

∂y

)
+

ω2

c2
H2z = 0, (10.38)

where H2z is periodic in x and continuous at y = 0 and y = −L with H1z

and H3z , respectively. To find the solution of (10.38) in Region 2, let us handle

the inhomogeneous interface boundary conditions at y = 0 and y = −L by

introducing a function

f(x, y) =
1

L

∞∑
n=−∞

[−yTn + (y + L)(δn0H0 +Rn)] e
ik(n)

x x. (10.39)

Then, the difference between H2z(x, y) and f(x, y) is given by

ψ(x, y) = H2z(x, y)− f(x, y), (10.40)

which vanishes at y = 0 and y = −L and satisfies the following equation:

L(ψ) = −L(f). (10.41)

As a result of its vanishing boundary values, ψ(x, y) has the following sine series

expansion in the interval [−L, 0]:

ψ(x, y) =
∞∑

n=−∞

∞∑
m=1

Anmeik
(n)
x x sin

(mπ

L
y
)
. (10.42)

The continuity of the tangential component of the H field (Hz) imposes the

following conditions on the x-component of the k-vectors in all three regions:

k(n)r,x = k
(n)
t,x = k(n)x = kx +Gn, (10.43)

where Gn = (2π/a1)n, n ∈ Z, is the x-component of the reciprocal vectors in

Region 2. Each of the nth k-vectors defines a Rayleigh–Bloch (R–B) wave for

the reflection and transmission waves in the form of (10.19). For instance, the

reflection wave is expressed in terms of the R–B reflection mode for each k
(n)
r,y :

H1z(x, y) = ei(kx,0)·x

[
H0e

ik1yy +
∑
n

Rne
i(Gn,k

(n)
r,y )·x

]
= ei(kx,0)·xu(x, y),

where u(x, y) is an a-periodic function in x.

Meanwhile, the periodic inverse dielectric function 1/ε(x, y) can also be ex-

pressed as

1

ε(x, y)
=

∞∑
m,n=−∞

κnmei(Gnx+
mπ
L y), − L ≤ y ≤ 0, (10.44)
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where the expansion coefficients κnm are defined in Sakoda (1995a). Plugging

(10.42) and (10.44) into (10.41), and using the following Fourier series expansions

of functions (y and 1) over the interval [−L, 0] in f(x, y):

2L

π

∞∑
m=1

(−1)m−1

m
sin

(mπ

L
y
)
= y, − L < y < L,

2

π

∞∑
m=1

1− (−1)m
m

sin
(mπ

L
y
)
=

{
1, 0 < y < L,

−1, − L < y < 0,
(10.45)

we obtain the following algebraic equations for the coefficients Anm (Sakoda,

2001):

ω2

c2
Anm −

∞∑
n′=−∞

∞∑
m′=1

⎡⎣ (
mm′π2

L2 + k
(n)
x k

(n′)
x

)
κn−n′,|m−m′|

+
(

mm′π2

L2 − k
(n)
x k

(n′)
x

)
κn−n′,m+m′

⎤⎦An′m′ = Bmn,

(10.46)

where

Bmn =− 2ω2

πc2
(−1)m−1Tn +Rn + δn0H0

m

+
2mπ

L2

∞∑
n′=−∞

(Tn′ −Rn′ − δn′0H0)κn−n′,m

+
2k

(n)
x

π

∞∑
n′=−∞

∞∑
m′=1

k(n
′)

x (κn−n′,|m−m′| − κn−n′,m+m′)

· (−1)m′−1Tn′ +Rn′ + δn′0H0

m′ . (10.47)

The infinite summations in (10.46) and (10.47) will be truncated to a finite sum

for n ∈ [−N,N ] and m ∈ [1,M ], to yield a total of (2N +1)M equations for the

(2N+1)(M+2) unknowns Rn, Tn, Anm, n = −N, . . . , N,m = 1, . . . ,M . To close

the system of equations, 2(2N + 1) more equations will be needed, which can

be derived from the boundary conditions at y = 0 and y = −L for the electric

field E.

From the Ampère–Maxwell equations

∇×H = iωεE, (10.48)

we have that the tangential component of the electric field, Ex, satisfies

iωEx =
1

ε

∂Hz

∂y
.

The continuity of Ex at the interfaces y = 0 and y = −L implies that

1

ε1

∂H1z

∂y
=

1

ε2

∂H2z

∂y
, y = 0, (10.49)

1

ε2

∂H2z

∂y
=

1

ε3

∂H3z

∂y
, y = −L. (10.50)
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Equation (10.49) implies that, for −N ≤ n ≤ N ,

πε1

M∑
m=1

mAnm =
(
iε2Lk

(n)
r,y − ε1

)
Rn + ε1Tn +H0 (iε2Lk1,y − δn0ε1) , (10.51)

while (10.50) gives

πε3

M∑
m=1

m(−1)mAnm = −ε3Rn +
(
iε2Lk

(n)
t,y + ε3

)
Tn − δn0H0ε3. (10.52)

Thus, (10.51) and (10.52) will provide the needed additional 2(2N+1) equations,

which allow the solution of Anm in (10.42).

10.2 Finite element methods for periodic structures

The Fourier plane wave approximations employed in Section 10.1 suffer accuracy

degeneracy for a large contrast of dielectric discontinuities; an alternative method

is the finite element method for solving Maxwell equations in the frequency- or

time-domain.

10.2.1 Nédélec edge element for eigen-mode problems

The calculation of eigen-modes for the Maxwell systems by finite element meth-

ods has been an active research topic of both engineering and mathematical

interest (Costabel & Dauge, 2003; Boffi, 2010). Initial applications of nodal fi-

nite element methods, where the components of the electromagnetic fields are

approximated by continuous finite element bases whose degrees of freedom are

nodal values of the solutions at vertices or selected points on edges or interior

of elements, have generated non-physical “spurious modes” in the calculation

of resonant modes of cavities with perfectly conducting boundaries (Csendes &

Silvester, 1970; Davies, Fernandez, & Philippou, 1982; Hara et al., 1983). This

phenomenon is mostly related to the treatment of the zero frequency ω = 0,

though the spurious modes can also pollute the positive eigen-mode spectrum

(Costabel & Dauge, 2003).

Consider the E-field eigenvalue problem (10.1) in a cavity Ω with the perfectly

conducting boundary condition

n×E|∂Ω= 0. (10.53)

The electric field E belongs to the following Sobolev space:

H0(curl,Ω) =
{
u ∈L2(Ω)3 : ∇× u ∈L2(Ω)3, n× u|∂Ω= 0

}
, (10.54)

and, in addition, in the absence of a source, as in a typical cavity resonant mode

problem, we have

∇ · εE = 0, (10.55)
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namely E also belongs to the space of H(div0,Ω; ε),

H(div0,Ω; ε) = {u ∈L2(Ω)3 : ∇ · u ∈L2(Ω), ∇·εu = 0}. (10.56)

Thus the weak form for the eigenvalue problem, on which a standard conform-

ing Galerkin method can be constructed, can be posed as follows:

find ω ∈ R, s.t. there exists 0 	= u ∈ H0(curl,Ω) ∩H(div0,Ω; ε) :

(μ−1∇× u,∇× v) = ω2(εu,v) ∀v ∈ H0(curl,Ω) ∩H(div0,Ω; ε). (10.57)

It can be shown (Boffi et al., 1999) that the bilinear form on the left-hand

side of (10.57) is symmetric, continuous, and coercive on the space H0(curl; Ω)∩
H(div0,Ω; ε), and the operator associated with the problem (10.57) is compact

and self-adjoint. Therefore the eigenvalue problem (10.57) (or (10.1) and (10.55))

has a countable set of real and positive eigenvalues, and each eigenspace is finite

dimensional. It should be emphasized that 0 is in fact not an eigenvalue of the full

Maxwell problem (10.57). If ω = 0 happens in (10.57), then, by setting v = u,

we have ∇×u = 0. Then, using the zero-divergence condition ∇ ·E = 0 and the

boundary condition (10.53), the Helmholtz decomposition theorem implies that

u = 0 (Girault & Raviart, 1986).

The problem of spurious modes appears if we ignore the divergence-free condi-

tion on the electric field and consider the weak form of (10.1) in the larger space

H0(curl; Ω) instead. Namely, the following eigenvalue problem is considered:

find ω ∈ R, s.t. there exists 0 	= u ∈H0(curl,Ω):

(μ−1∇× u,∇× v) = ω2(εu,v) ∀v ∈ H0(curl,Ω). (10.58)

It is evident that an additional zero eigenvalue ω = 0 is created whose eigen-

space is denoted as

K = {u ∈H0(curl,Ω) : ∇× u = 0} ≡ H0(curl
0,Ω), (10.59)

which consists of the gradient of all scalar functions for a simply connected

domain, i.e.,

K ⊆ {u = ∇p : p ∈ H1
0 (Ω)} (equality holds for simply connected Ω). (10.60)

As a matter of fact, K is the kernel space of the differential operator L =

∇×μ−1∇×, i.e.,K = Null(L). Therefore, finite element spaces Vh ⊂ H0(curl; Ω),

to be free of spurious modes based on the weak form in the space H0(curl,Ω),

will be the ones that can in fact reproduce this 0-eigenspace (or kernel) K. The

Nédélec edge element is shown to contain the gradient of the first-order nodal

element basis (Bossavit, 1990), which is dense in H1
0 (Ω) as the mesh is refined,

and the lowest order of the Nédélec element on tetrahedra in fact does produce

a spurious-mode-free approximation to the non-zero eigen-spectrum of the full

Maxwell eigen-problem (Boffi et al., 1999). Later, a complete analysis on the

Nédélec edge elements of both types and any orders on tetrahedra shows the
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spurious-mode-free approximations to the non-zero spectrum using the concept

of discrete compactness of finite element spaces (Kikuchi, 1989; Caorsi, Fernan-

des, & Raffetto, 2000, 2001).

An alternative way to enforce the divergence free condition of the eigen-modes

(10.55) is to use a penalty type approximation in a mixed type method proposed

by Kikuchi (Brezzi, 1974; Kikuchi, 1987; Fortin & Brezzi, 1991), thus getting rid

of the issue of the kernel space. Here, we consider the discrete form of the mixed

formulation.

Find (uh, ph) ∈ Vh × Ph, such that ∀ (vh, qh) ∈ Vh × Ph:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ω

[
1
μ
∇× uh · ∇ × vh +∇ph · vh

]
dr = ω2

h

∫
Ω

uh · vh dr,

∫
Ω

uh · ∇qh dr = 0.

(10.61)

The mixed formulation (10.61) can be shown to approximate Maxwell’s eigen-

values of (10.57) without spurious modes (Boffi, Brezzi, & Gastaldi, 1997, 2000).

For domains with corners and edges, the electromagnetic fields possess singu-

larities (Costabel, Dauge, & Nicaise, 1999), whose singular behavior is related to

a corresponding Dirichlet or Neumann problem for Laplace operators in irreg-

ular domains (Costabel & Dauge, 1997). The existence of the singularities has

also to be taken care of when eigenvalues of the Maxwell equations are calculated

(Costabel & Dauge, 2003).

Next, for the computation of band gaps of periodic structures, the Nédélec

element can be modified (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi,

2006) based on the Bloch modes of the electromagnetic fields. For instance, the

magnetic field H will be assumed to be in the form of (10.4) and the periodic

part of the Bloch wave will satisfy the following Helmholtz equations:

∇k ×
1

ε
∇k × u = ω2u (10.62)

and

∇k · u = 0, (10.63)

where the shift gradient operator ∇k is defined as

∇k = ∇+ ik. (10.64)

To set up the finite element approximation of (10.62) and (10.63), we need the

following spaces for periodic functions for the unit cell Ω:

H1
p (Ω) =

{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)3

}
,

Hp(curl,Ω) =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3

}
,

Hp(div,Ω) =
{
v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)

}
,

Hp(div
0
k,Ω) = {v ∈ Hp(div,Ω) : ∇k · v = 0} . (10.65)
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The weak formulation for (10.62) will be: find ω2 ∈ R, (0,0) 	= (u, p) ∈
Hp(curl,Ω)×H1

p(Ω), such that ∀(v, q) ∈ Hp(curl,Ω)×H1
p(Ω),⎧⎨⎩

a(u,v) + b(p,v) = ω2(u,v),

b(q,u) = 0,

(10.66)

where the over-bar denotes the complex conjugate, and

a(u,v) =

∫
Ω

1

ε
∇k × u · ∇k × v dr, (10.67)

b(p,v) =

∫
Ω

∇kp · v dr. (10.68)

The unit cell Ω is assumed to be triangulated into tetrahedra, i.e., Ω = ∪K,

and the finite element space used to discretize (10.66) is based on a modified

Nédélec element (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi, 2006) of

mth-order on the tetrahedra of Section 8.1. The space for the electric field will

be Uh:

Uh =
{
u ∈ Hp(curl,Ω) : u|K = e−ik·xũ, for some ũ ∈ (Pm(K))3

}
, (10.69)

and the modified space for the scalar Lagrange multiplier q is Qh:

Qh =
{
q ∈ H1

p (Ω) : q|K = e−ik·xq̃, for some q̃ ∈ Pm+1(K)
}
. (10.70)

For a periodic vector function v ∈ H1
p (Ω), its projection Πhv ∈ Uh is defined

by the following degrees of freedom (refer to (8.53)–(8.55)).

• Edge moments:∫
e

[
eik·(x−xe)(v −Πhv) · t

]
q dl = 0, ∀q ∈ Pm(e), (10.71)

where xe is selected as the center of the edge e and t is the tangential

direction of the edge e.

• Face moments:∫
f

[
eik·(x−xf )(v −Πhv)× n

]
· q ds = 0, ∀q ∈ Dm−1(f), (10.72)

where xf is selected as the barycenter of the face f and n is the normal

direction of face f.

• Element moments:∫
K

[
eik·(x−xK)(v −Πhv)

]
· q dΩ = 0, ∀q ∈ Dm−2(K), (10.73)

where xK is selected as the barycenter of the element K.
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For edges and faces on the periodic boundaries of Ω, the edge and the face

moments will be the same to enforce the periodic condition.

The discrete form for the mixed formulation of the eigenvalue problem is:

find ω2
h ∈ R, (0,0) 	= (uh, ph) ∈ Uh ×Qh, such that ∀(vh, qh) ∈ Uh ×Qh,⎧⎨⎩

a(uh,vh) + b(ph,vh) = ω2
h(uh,vh),

b(qh,uh) = 0,

(10.74)

which will result in the following matrix system:(
A B∗

B 0

)(
U

p

)
= ω2

h

(
M 0

0 0

)(
U

p

)
, (10.75)

where U contains all the degrees of freedom for the numerical solution uh defined

in (10.71)–(10.73), p contains the nodal values of ph, and the hermitian stiffness

matrix A, the matrix B, and the mass matrix M are given as follows:

Aij = a(ψi, ψj),

Bij = b(ψi,φj),

Mij = (ψi, ψj), (10.76)

respectively. Note that Uh = span{ψi}N(h)
i=1 , where the basis function ψi is the

hierarchical basis defined in Section 8.2 and Qh = span{φj}, where φj is the

normal nodal finite element basis.

It is proven (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi, 2006)

that the finite elements used in the mixed formulation (10.74) satisfy the LBB

(Ladyzhenskaya–Babuska–Brezzi) condition (Fortin & Brezzi, 1991) for stability

of the finite element methods, and the linear system will have exact N(h) =

dim(Uh) real and positive eigenvalues, which will approximate the Maxwell

eigenvalues of (10.62)–(10.63).

10.2.2 Time-domain finite element methods for periodic array antennas

A phased array antenna consists of a periodic array of patch antennas, where

the electromagnetic fields will have a given phase shift on opposite sides of a

unit cell, which can be described by the Bloch modes. Due to the large con-

trast of dielectric constants in this system or some photonic crystals, the Fourier

method introduced for periodic structure in Section 10.1.5 may suffer degener-

acy of accuracy as the series expansion for the inverse dielectric constant (10.44)

and the field variables (10.42) may converge too slowly. In this case, the time-

domain finite element can be used for the scattering of an electromagnetic wave

by a unit cell in a periodic structure with periodicity (Lx, Ly), which will yield

the band structure property of the periodic structure. Here, we will describe

such a time-domain finite element for the unit cell problem (Rickard Petersson

& Jin, 2006a, 2006b), where the computational domain will be the unit cell in
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the horizontal direction with periodic boundary conditions, while the vertical

direction will be truncated and equipped with local transparent boundary con-

ditions for Rayleigh–Bloch waves. Alternatively, Dirichlet-to-Neumann mapping

type transparent boundary conditions, which are global on the boundary, can be

used for the truncation of the computational domain in the vertical direction for

the diffraction of periodic gratings (Bao, Dobson, & Cox, 1995).

The time-Fourier-transformed electric field E(x, y, z;ω) satisfies the vector

Helmholtz equation (5.30) when the electric current Je is related to the electric

field by Ohm’s law (5.22); in addition, source currents Je,imp and Jm,imp may

exist from the feeds to the antennas. The vector wave equation (5.30) becomes

∇×
(

1

μr
∇×E

)
−k20εrE+iωμ0σE = −iωμ0Je,imp−∇×

(
1

μr
Jm,imp

)
, (10.77)

where k0 = ω/c = ω
√
ε0μ0 is the wave number, Z0 =

√
μ0/ε0 is the wave

impedance in free space, σ is the conductivity, ε is the relative permittivity, and

μ is the relative permeability.

The electric field above the structure is in the Bloch wave form given by (10.4).

For a given scan angle of the antenna array at (θs, φs) (with θs as the angle with

the z-axis, which is assumed to be perpendicular to the periodic layer structure),

the transverse wave vector in the x- and the y-directions is given by

ks
t =

(
ksx, k

s
y

)
≡ k0(sin θs cosφs, sin θs sinφs, 0) = k0k̂

s
t,

and the Bloch wave mode for the electric field is then

E(x, y, z;ω) = e−i(ks
xx+ks

yy)P(x, y, z;ω), (10.78)

where P(x, y, z;ω) is a periodic function in (x, y) coordinates, i.e.,

P(x+ Lx, y, z;ω) = P(x, y, z;ω), P(x, y + Ly, z;ω) = P(x, y, z;ω). (10.79)

Substituting (10.78) into (10.77), and recasting the resulting equation for P

back in the time domain with the replacement of iω → ∂/∂t, we can show that

P(x, y, z; t) satisfies the following wave equation (Rickard Petersson & Jin, 2006a,

2006b; Jin & Riley, 2008):

εr
c2

∂2P

∂t2
+

1

c2
k̂s
t ×

1

μr

(
k̂s
t ×

∂2P

∂t2

)
+ μ0σ

∂P

∂t
− 1

c
∇×

(
k̂s
t

μr
× ∂P

∂t

)

− 1

cμr
k̂s
t ×

(
∇× ∂P

∂t

)
+∇×

(
1

μr
∇×Ps

)
= G(Je,imp,Jm,imp), (10.80)

where

G(Je,imp,Jm,imp) =− μ0
∂

∂t
Je,imp

(
t+

k̂s
t · r
c

)
−∇×

[
1

μr
Jm,imp

(
t+

k̂s
t · r
c

)]

+
k̂s
t

c
×

[
1

μr

∂

∂t
Jm,imp

(
t+

k̂s
t · r
c

)]
.
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The weak form of (10.80) can be derived by multiplying it by a test vector

function N and performing an integration by parts as follows:

∫
Ω

{
(∇×N) · 1

μr
(∇×P) +

1

c2
εrN · ∂

2P

∂t2
− 1

c2

(
k̂s
t ×N

) 1

μr
·
(
k̂s
t ×

∂2P

∂t2

)
+ μ0σN · ∂P

∂t
+

1

c

[(
k̂s
t ×N

)
· 1

μr

(
∇× ∂P

∂t

)
− (∇×N) · 1

μr

(
k̂s
t ×

∂P

∂t

)]
dr

+

∫
∂Ω

N ·
[
n×

(
1

μr
∇×P− 1

c
k̂s
t ×

∂P

∂t

)]
ds =

∫
Ω

N ·G(Je,imp,Jm,imp)dr.

(10.81)

Equation (10.81) will be solved in a computational domain Ω made of a unit cell

in the (x, y) domain [0, Lx]× [0, Ly] and a truncated interval z ∈ [z1, z2], namely

Ω = [0, Lx] × [0, Ly] × [z1, z2]. Naturally, the periodic boundary conditions will

be used on the side walls of the domain,

P(0, y, z; t) = P(Lx, y, z; t), P(x, 0, z; t) = P(x, Ly, z; t), (10.82)

while transparent boundary conditions at the top and the bottom of the com-

putational domain will be designed for Rayleigh–Bloch waves discussed for the

slab photonics in (10.43).

Rayleigh–Bloch waves and transparent boundary conditions

To derive the transparent boundary conditions, we first express the periodic

function P in a Fourier series:

P(x, y, z = z1;ω) =

∞∑
n,m=−∞

P̂mn(ω, z = z1) exp

[
i

(
2πm

Lx
x+

2πn

Ly
y

)]
. (10.83)

The z-dependence in P̂mn(ω, z) is assumed to be of the form exp(±ikz,mn(z−
z1)), which can be shown to be related to the wave numbers in the x- and y-

directions by

kz,mn =

⎧⎨⎩
√
k20 − |kt,mn|2, if |kt,mn| ≤ k0,

−i
√
|kt,mn|2 − k20, otherwise,

(10.84)

where kt,mn = (kxm, kyn, 0).

The coefficients P̂mn(ω) can be related to the values of P at the top and the

bottom boundaries of the computational domain z = z1 and z = z2 as follows:

P̂mn(ω, z1) =
1

LxLy

∫ Ly

0

∫ Lx

0

P(x, y, z1;ω) exp

[
−i

(
2πm

Lx
x+

2πn

Ly
y

)]
dx dy.

(10.85)
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Combining (10.78) and (10.83), the electric field takes the Rayleigh–Bloch wave

form,

E(x, y, z;ω) =
∞∑

n,m=−∞
Êmn(ω) exp {i [kxmx+ kyny ± kz,mn(z − z1)]} , (10.86)

where

kxm =
2πm

Lx
− ksx, kyn =

2πn

Ly
− ksy. (10.87)

Moreover, due to the transverse wave nature of the electric field in free space as

a result of Gauss’s law

∇ ·E = 0, (10.88)

we should have

ks
mn · Êmn = 0, ks

mn = kt,mn + (0, 0, kz,mn). (10.89)

Based on the expansion (10.86), it was shown that the following approximate

boundary condition (Jin & Riley, 2008),

ẑ× (∇×E) =
ik0

cos θs
k̂s
t

(
k̂s
t ·E

)
− ik0 cos θsẑ× (ẑ×E) , z = z1, z2, (10.90)

absorbs perfectly the fundamental Bloch mode (m,n) = (0, 0) in (10.86). Higher-

order absorbing boundary conditions can also be designed to absorb higher-order

Rayleigh–Bloch modes, however, which will involve expensive time convolutions.

Again, substituting (10.78) into (10.90), we have

ẑ×
(
∇×P− ik0k̂

s
t ×P

)
=

ik0
cos θs

k̂s
t

(
k̂s
t ·P

)
−ik0 cos θsẑ×(ẑ×P) , z = z1, z2,

(10.91)

which can be recast in the time domain with the replacement iω → ∂/∂t as, for

z = z1, z2,

ẑ×
(
∇×P− 1

c
k̂s
t ×

∂P

∂t

)
=

1

c cos θs
k̂s
t

(
k̂s
t ·

∂P

∂t

)
− 1

c
cos θsẑ×

(
ẑ× ∂P

∂t

)
.

(10.92)

Equation (10.81) can be solved by a Galerkin finite element method by ex-

panding P(x, y, z; t) in terms of the Nédélec edge element basis function Ni,

P(x, y, z; t) =

N∑
j=1

uj(t)Nj(x, y, z), (10.93)

and setting N = Ni in (10.81); we obtain a second-order ordinary differential

equation (ODE) in time for the unknown coefficients U(t) = (u1(t), . . . , uN (t))T:

M
d2U

dt2
+ (R+RABC)

dU

dt
+ SU = f , (10.94)
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where

Mij =
1

c2

∫
Ω

[
εrNi ·Nj −

(
k̂s
t ×Ni

) 1

μr

(
k̂s
t ×Nj

)]
dr, (10.95)

Rij =
1

c

∫
Ω

[(
k̂s
t ×Ni

)
· 1

μr
(∇×Nj)− (∇×Ni) ·

1

μr

(
k̂s
t ×Nj

)]
dr

+

∫
Ω

μ0σNi ·Nj dr, (10.96)

RABC =

∫
∂Ω′

[
cos θs
c

(n×Ni) · (n×Nj)

+
1

c cos θs

(
k̂s
t ·Ni

)(
k̂s
t ·Nj

)]
ds, (10.97)

Sij =

∫
Ω

1

μ
(∇×Ni) · (∇×Nj) dr, (10.98)

fi =

∫
Ω

Ni·G(Je,imp,Jm,imp)dr, (10.99)

with ∂Ω′ consisting of the top and bottom surfaces of the computational domain

(ABC boundaries), and the boundary condition (10.92) has been used to derive

(10.97).

10.3 Physics of surface plasmon waves

Surface plasmon waves are electron density waves confined to the interface be-

tween a metallic material and a dielectric medium (Ritchie, 1957), which are

transverse electric (TE) wave solutions to the Maxwell equations for a flat

interface. There are two types of plasmon waves, propagating and localized

(Maier, 2007; Pitarke et al., 2007).

10.3.1 Propagating plasmons on planar surfaces

Let x be the normal direction of the interface, let y be along the interface, and let

z point into the xy-plane as in Fig. 10.3. A TEz wave has the following surface

evanescent nature:

Eα = (Eα
x , E

α
y , 0)e

−δα|x|ei(kαy−ωt), (10.100)

Hα = (0, 0, Hα
z )e

−δα|x|ei(kαy−ωt), (10.101)

where α = 1 is for the field in the metallic medium (x < 0) with relative dielectric

constant ε1, and α = 2 for the field inside the dielectric material (x > 0) with

relative dielectric constant ε2.
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metal 1

Figure 10.3. A metal and dielectric interface.

The Ampère–Maxwell law (5.15) implies that

−δ1H1
z = iωε1ε0E

1
y , (10.102)

δ2H
2
z = iωε2ε0E

2
y , (10.103)

and the Helmholtz equations for each field component imply that

δα =
√
k2α − εαk20 , α = 1, 2, (10.104)

where the wave number in the vacuum is defined as

k20 =
ω2

c2
. (10.105)

Meanwhile, we have the continuity of the tangential fields Eα
y and Hα

z , i.e.,

E1
y = E2

y , (10.106)

H1
z = H2

z . (10.107)

Using (10.102) and (10.103) in (10.106) to replace the E fields yields

δ1
ε1
H1

z +
δ2
ε2
H2

z = 0. (10.108)

Therefore, (10.107) and (10.108) imply that

δ1
ε1

+
δ2
ε2

= 0, (10.109)

and the continuity of Hz in (10.107) also means that the wave number k should

be the same for both media:

k1 = k2 ≡ k. (10.110)
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Solving (10.109) and (10.110) gives the dispersion relation ω = ω(k) for the

surface plasmon:

k2 =
ω2

c2
ε1ε2

ε1 + ε2
. (10.111)

For a propagating wave along the metal/dielectric interface, a positive k value is

required. Due to the negative real part of the metallic dielectric constant for the

frequency range considered, we have the following conditions for the existence of

the surface plasmon:

ε1ε2 < 0, (10.112)

ε1 + ε2 < 0. (10.113)

The exact dispersion curve for the surface plasmon depends on the specific

frequency-dependent dielectric constant for the metallic material. For instance,

in a Drude–Sommerfeld model (Kittel, 2004, chap. 10) based on a free electron

gas (no correlation effects among electrons considered), we have

ε1 = ε1(ω) = ε0

(
1−

ω2
p

ω2 + Γω

)
, (10.114)

where ωp is the plasmon frequency for an electron gas of charge e and density n

with electron mass me, given by:

ωp =

√
ne2

me
. (10.115)

Thus, for a metal of the Drude-Sommerfeld model of (10.114) with damping

parameter Γ = 0, the dispersion relation for the surface plasmon is given by

ωsp(k) =

√
ω2
s + k2c2 −

√
ω4
s + k4c4, (10.116)

as shown in Fig. 10.4 and the surface plasmon frequency ωs is defined as

ωs =
ωp√
2
. (10.117)

As seen in Fig. 10.4, the dispersion curve for the surface plasmon is to the right

of the light dispersion curve in the dielectric medium (or vacuum), so the surface

plasmon on a smooth flat interface cannot be excited by the light radiation

from the dielectric medium (or vacuum). In order to cause the excitation of the

surface plasmon in the metallic material, two approaches can be used to produce

the intersection of the light dispersion line with that of the surface plasmon.

The first one is to pass the light through a prism such that a total internal

reflection at the base of the prism will generate an evanescent light wave to

the outside of the prism base, for which the dispersion curve of the light will

be effectively rotated downward to intersect with that of the surface plasmon.

The prism settings are achieved by either the Otto (Otto, 1968) or Kretschmann

(Kretschmann & Raether, 1968) methods, as seen in Fig. 10.5. The other way
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k

ω

 

ω=ck 

ω=ω
sp

(k) 

Figure 10.4. Dispersion curves: (solid) surface plasmon ω = ωsp(k) and (dashed) light
in the vacuum ω = ck.

metal 1

metal 1

Figure 10.5. Excitation of surface plasmon via a prism: (left) Kretschmann
configuration, and (right) Otto configuration.

to excite the surface plasmon is to incorporate a periodic grating structure on

the metallic surface to produce Bloch waves whose dispersion curve will be a

folding over of (10.116). The resulting surface plasmon wave excited by the light

radiation is called the surface plasmon polariton (SPP) (Pitarke et al., 2007).

10.3.2 Localized surface plasmons

Localized plasmon waves can be found in a metallic object of spherical or cylin-

drical shape, and they are easily excited by incident light radiation due to the

curvature of the boundary of the object.

Consider a sphere of radius a with a complex dielectric constant ε1 and per-

meability μ1 embedded in a dielectric medium of dielectric constant ε2 and
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permeability μ2. The sphere is impacted by an incident plane wave polarized

in the x-direction:

Einc = E0e
ikr cos θex, (10.118)

or, in terms of spherical coordinate vectors,

ex = sin θ cosφer + cos θ cosφeθ − sinφeφ. (10.119)

The scattering wave off the sphere can be expressed (Stratton, 1941; Bohren &

Huffman, 1998) as follows:

Es =
∞∑

n=1

En(ianNe1n − bnMo1n), (10.120)

Hs =
k2
ωμ2

∞∑
n=1

En(ibnNo1n + anMe1n), (10.121)

where k2 = ω
√
ε2μ2, the vector functions M and N are defined through scalar

potentials as

Memn = ∇× (rψemn), Momn = ∇× (rψomn), (10.122)

Nemn =
1

k2
∇×Memn, Nomn =

1

k2
∇×Momn, (10.123)

and

ψemn = cosmφPm
n (cos θ)h(2)

n (k2r), (10.124)

ψomn = sinmφPm
n (cos θ)h(2)

n (k2r), (10.125)

where h
(2)
n (r) is the spherical Hankel function of the second kind.

The scattering coefficients in (10.120) and (10.121) can be obtained by the

interface condition of the electromagnetic fields:

an =
μ2m

2jn(mx)[xjn(x)]
′ − μ1jn(x)[mxjn(mx)]′

μ2m2jn(mx)[xh
(2)
n (x)]′ − μ1h

(2)
n (x)[mxjn(mx)]′

, (10.126)

bn =
μ1jn(mx)[xjn(x)]

′ − μ2jn(x)[mxjn(mx)]′

μ1jn(mx)[xh
(2)
n (x)]′ − μ2h

(2)
n (x)[mxjn(mx)]′

, (10.127)

where

x = k2a, m =
k1
k2

, (10.128)

and the wave numbers are defined as k2α = ω2εαμα, α = 1, 2.
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A specific nth mode in the scattering field will be dominant if the denominator

in either an or bn becomes vanishingly small. Using the asymptotics of the spher-

ical Hankel function for small argument (small sphere x ∼ 0), the denominator

of an will vanish approximately once

ε1n+ ε2(n+ 1) = 0, (10.129)

which yields a Mie plasmon frequency

ωn = ωp

√
n

2n+ 1
, (10.130)

provided that the dielectric constant of the sphere is given by the Drude formula

(10.114).

It can also be easily checked (Bohren & Huffman, 1998, sect. 12.1) that the

radial component of the Mie plasmon mode inside the sphere has the following

profile along the radial direction:

E1(r) ∝ rn−1, (10.131)

which is confined to the spherical surface; therefore, these Mie plasmon modes

are identified as the localized surface plasmons.

10.4 Volume integral equation (VIE) for Maxwell equations

In this section, we present a volume integral equation method based on the

dyadic Green’s function from Chapter 6 for plasmon waves in layered metallic

structures. A typical structure is given in Fig. 10.6, where the inclusion Ω in

the form of holes or impurities of nano-scales is made into background layered

metallic materials. The derivation of the volume integral equation is based on

the vector identity (7.14) in Section 7.1.1.

Firstly, we have

LE(r) − ω2ε(r)E(r) = −iωJe(r), r ∈ R3\(Σ ∪ ∂Ω), (10.132)

where Σ consists of all the interfaces of the layered materials,

L = ∇× 1

μ
∇×,

and Je(r) is the far-field source (assumed to be away from the layered structure),

which produces the incident waves impinging on the layered structure from the

top, i.e.,

Einc(r) = −iωμ(r)
∫
R3

GE(r, r
′) · Je(r

′)dr′, (10.133)

and GE(r, r
′) is the dyadic Green’s function for the layered media. The inclusion

Ω is characterized by a different dielectric constant from the layered background

dielectrics, i.e.,

ε(r) = εL(r) + Δε(r), (10.134)



10.4 VIE for Maxwell equations 271

where Δε(r) = 0, r /∈ Ω. Then, (10.132) can be rewritten as

LE(r) − ω2εL(r)E(r) = −iωJ(r), (10.135)

where

J(r) = Je(r) + Jeq(r), (10.136)

and the equivalent current source Jeq(r) is defined to reflect the existence of the

inclusion Ω:

Jeq(r) = iωΔε(r)E(r). (10.137)

Let us consider any interior point inside the inclusion r′ ∈ Ω and a small

volume Vδ = Vδ(r
′) ⊂ Ω centered at r′. The dyadic Green’s function GE(r, r

′)

satisfies

LGE(r, r
′) − ω2εL(r)GE(r, r

′) =
1

μ(r)
Iδ(r− r′), r ∈ R3. (10.138)

On multiplying (10.135) by GE(r, r
′) and (10.138) by E(r) and forming the

difference, and then integrating over the domain R3\Vδ, with the help of the

identity (7.14) and Gauss’s theorem (following the same procedure leading to

(7.28) in Section 7.1.1), we arrive at the following (after switching r and r′):

− iωμ(r)

∫
R3\Vδ

dr′ GE(r, r
′) · J(r′)− μ(r)

∫
Sδ

ds′
[
iω GE(r, r

′) · (n×H(r′))

− 1

μ(r′)
∇×GE(r, r

′) · (n×E(r′))

]
= 0, r ∈ Ω, (10.139)

where Sδ = ∂Vδ(r), n is the normal of Sδ pointing out of Vδ(r), and the right-

hand side being zero is due to the fact that the singularity of the delta function

is outside the integration domain.

As δ → 0, the first integral will approach the Cauchy principal value of a sin-

gular integral, while the boundary integrals will in fact depend on the geometric

shape of the volume Vδ. Without loss of generality, we can assume the dyadic

Green’s function on Sδ to be the dyadic Green’s function for a homogeneous

medium:

GE(r, r
′) = GE(r

′, r) =

(
I +

1

k2
∇∇

)
g(r, r′), (10.140)

where k2 = ω2εiμi, εi = εL(r),

g(r, r′) =
1

4π

e−ikR

R
, R = |r− r′|. (10.141)

In order to estimate the surface integrals, we have the following asymptotics

for small kR
 1:

GE(r, r
′) =

1

4πk2R3
(I− 3uRuR) +O

(
1

R2

)
, (10.142)

∇′ ×GE(r, r
′) =

1

4πR2
uR × I+O

(
1

R

)
, (10.143)
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where uR = (r
′−r)/R, which implies that (Collin, 1990; van Bladel, 1991, p. 87):

lim
δ→0

∫
Sδ

ds′ n×E(r′) · ∇ ×GE(r
′, r) = − [I− LVδ

] ·E(r), (10.144)

lim
δ→0

∫
Sδ

ds′ n×H(r′) ·GE(r
′, r) = − 1

k2
LVδ

· ∇ ×H(r), (10.145)

and the L-dyadics for Vδ of various geometric shapes are given as follows

(Yaghjian, 1980):

LVδ
=

1

3
I (10.146)

for a sphere;

LVδ
= diag(α, α, 1− α) (10.147)

for a cylinder with radius a and height 2h, α = h/(2
√
a2 + h2); and

LVδ
=

1

4π
diag(Ωx,Ωy,Ωz) (10.148)

for a rectangular box where Ωx, Ωy, and Ωz are twice the solid angle subtended

at point r by the side of the rectangular box perpendicular to the x-, y-, and z-

directions, respectively.

Substituting (10.144) and (10.145) into (10.139), we have

0 =− iωμ(r)

∫
R3\Vδ

dr′ J(r′) ·GE(r
′, r)

+ iωμ(r)
1

k2
LVδ

· ∇ ×H(r)− [I− LVδ
] ·E(r), r ∈ Ω, (10.149)

or

0 = Einc(r)− iωμ(r)p.v.

∫
R3

dr′Jeq(r
′) ·GE(r

′, r)

+ LVδ
·
[
iωμ(r)

1

k2
∇×H(r′) +E(r)

]
− E(r), r ∈ Ω. (10.150)

After using Ampère’s law (5.24), we obtain

0 = Einc(r)− iωμ(r)p.v.

∫
R3

dr′ Jeq(r
′) ·GE(r

′, r)

+ LVδ
·
(

i

ω
J

)
− E(r), r ∈ Ω. (10.151)

Finally, noting that J(r) = Jeq(r) = iωΔε(r)E(r) inside Ω, we have the volume

integral equation for r ∈ Ω:

C ·E(r) = Einc(r)− iωμ(r) p.v.

∫
Ω

dr′ iωΔε(r′)E(r′) ·GE(r
′, r), (10.152)

where the coefficient matrix is given by

C = I+ LVδ
·Δε(r). (10.153)
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Figure 10.6. Two thin silver films of thickness t = 100 nm (with a separation g = 20
nm) with pits to excite surface plasmons: the pits are 40 nm in width and height and
separated by a spacing γ = 80 nm. From Gan & Gbur (2009), copyright (2009) by the
Optical Society of America (OSA).

10.5 Extraordinary optical transmission (EOT) in thin metallic films

The volume integral equation (10.152) can be applied to simulate the transmis-

sion of optical waves through corrugated thin metallic films and subwavelength-

aperture arrays in metal plates, which have been shown to have extraordi-

nary transmissions due to the surface plasmons (Ebbesen et al., 1998; Liu &

Lalanne, 2008). A typical 2-D structure (assuming a long dimension in the in-

plane y-direction) is shown in Fig. 10.6, in which (plasmon) pits are etched

on both sides or one side of the metal films. Plasmon pits can be described

by the perturbation Δε(r) of their dielectric constants in (10.134) from the

background layered media (composed of air and silver with a refractive index

nAg = 0.05− 2.87i).

The transmission of the power of the incident optical signal (taken to be a

Gaussian beam of 500 nm wave length) is measured by means of the optical

transmission coefficient T :

T =

∫ ∞

−∞
Sz dx

Y0

∫ ∞

−∞
|Einc(x, z)|dx

,

where Y0 =
√
ε0/μ0 is the impedance of the air and Sz is the z-component of

the time-averaged Poynting vector S measured at the top exit side, where

〈S〉 = 1

2
Re[E×H∗].
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Figure 10.7. Left: the transmission of three or five thin silver films with the same
spacing as in Fig. 10.6; right: the transmission of one silver plate with the same metal
volume and the thickness. The darker color above the grating indicates a stronger
field strength. From Gan & Gbur (2009), copyright (2009) by the Optical Society of
America (OSA).

Figure 10.7 shows the increased transmission for the three- and five-layer thin

silver films with plasmon pits (left) compared with the single layer of silver plate

with equivalent metal volume and thickness (right) (Gan & Gbur, 2009); the

former shows a much larger transmission of optical power.

10.6 Discontinuous Galerkin method for resonant plasmon couplings

In a linear dispersive material, the constitutive relation between the displacement

flux D and the electric field E and that between the magnetic inductance flux

B and the magnetic field H are given as follows:

D = ε0εr,∞E+P, (10.154)

B = μ0μr,∞H+M, (10.155)

where ε0 and μ0 are the electric permittivity and the magnetic permeability of

free space, εr,∞ and μr,∞ are the relative electric permittivity and the relative

magnetic permeability of the medium at infinite frequency, and P and M are

the electric polarization and the magnetization densities, respectively.

As discussed in (1.15), in a linear and isotropic medium,

P̂ = ε0χ(ω)Ê, (10.156)
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where χ(ω) is the electric susceptibility of the medium in the frequency domain

and P̂ denotes the time-Fourier transform of P(t). Here we assume that the

magnetization M is zero, i.e., there are no magnetic effects.

The Maxwell equations in dispersive media can be recast for the field variables

U(1) with auxiliary polarization current variables U(2) as

∂U

∂t
+∇ · (ĀU) = S, (10.157)

where U = (U(1),U(2))T is defined explicitly in Section 10.7. We can divide the

above conservation system into two parts:

∂U(1)

∂t
+∇ · (AU(1)) = S(1), (10.158)

∂U(2)

∂t
= S(2), (10.159)

and Ā, A, and S = (S(1),S(2))T are given in (10.207)–(10.211) or (10.213)–

(10.217) of the appendix (Section 10.7). The conservation law (10.157) can be

solved by the DG method described in Section 9.2.

Resonant coupling of local plasmons in nano-silver wires

Firstly, we study the cross section and the time-domain behavior of coupled

plasmon resonant modes for coupled Ag nano-wires (Ji, Cai, & Zhang, 2007).

The integration path for the calculation of the cross section (Bohren & Huffman,

1998) is selected to be a circle of large radius r∞, which will encircle all the Ag

cylindrical nano-wires. The circle does not have to be very large as all Ag nano-

wires are placed in the non-absorbing free space.

After choosing the radius r∞, we compute the time-averaged Poynting vector

S along this circle using

Ssca =
1

2
Re{Esca ×H∗

sca}, Sext =
1

2
Re{Ei ×H∗

sca +Esca ×H∗
i },

where the footnote “sca” represents “scattering”, “i” represents “incident”, and

“ext” represents “extinction”; all the variables are functions of frequency, ob-

tained by the Fourier transform from the time domain. Then we compute the

following values:

Wsca =

∫
A

Ssca · êrds, Wext = −
∫
A

Sext · êrds, Wabs = Wext −Wsca,

where “abs” represents “absorption”, the integration is performed along the cir-

cle, and êr is the outward unit normal to the circle. Finally, we get the cross

sections:

Cext =
Wext

Ii
, Cabs =

Wabs

Ii
, Csca =

Wsca

Ii
,

where Ii is the incident irradiance.
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We use curved triangles to describe the circle exactly; these curved triangles

can be mapped by an isoparametric transformation (Szabó & Babuska, 1991)

onto a reference triangle {(x, y) : 0 ≤ x, y, x+ y ≤ 1}. We set the UPML param-

eters m = 3, R(0) = exp(−16) in (5.163)–(5.164), fourth-order basis functions

are used for the space discretization, and a fourth-order Runge–Kutta method

is used for the time integration. A Gaussian pulsed source modulating a carrier

wave is used to excite the plasmon modes inside the nano-wires, and the pulse

can be obtained as follows (Ji et al., 2005).

(1) Assume the time dependence for the pulse is

f(t) = exp[iωc(t− t0)] exp

[
−

(
t− t0
tdecay

)2
]
,

where ωc is the central frequency.

(2) Take the Fourier transform of f(t):

f̂(ω) =
tdecay√

2
exp

(
−
(ωc − ω)2t2decay

4

)
exp(−it0ω).

(3) Set

f(x, y, z, t) =
1√
2π

∫
F (x, y, z, ω)f̂(ω) exp(iωt)dω,

where F (x, y, z, ω) is the distribution of the desired mode in the case of the

sinusoidal excitation mentioned above; f(x, y, z, t) so defined will satisfy the

Maxwell equations and contain a range of frequencies around ωc.

Normal illumination of two nano-wires

We consider TE scattering off two Ag nano-wires. The Drude parameters for the

Ag nano-wires are taken from Lynch & Hunter (1985):

εr,∞ = 8.926, ωp = 11.585 eV, γ = 0.203 eV.

Figure 10.8 presents the cross sections for two nano-wires with a radius r = 15

nm. In addition to the one weak maximum close to the resonance of an isolated

nano-wire, an additional stronger resonance due to the interaction of the nano-

wires is present. The results show clearly a distinct secondary resonance.

10.7 Appendix: Auxiliary differential equation (ADE) DG methods
for dispersive Maxwell equations

The ADE formulation (Taflove & Hagness, 2000) for the dispersive Maxwell

equations will be derived for the discontinuous Galerkin method.
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Figure 10.8. Two r = 15 nm circular Ag nano-wires: (left) cross sections; (right)
scattering, absorption, and extinction. From Ji et al. (2005), copyright (2005) by John
Wiley and Sons.

10.7.1 Debye material

Consider an inhomogeneous, conductive, and electrically dispersive medium with

relative magnetic permeability μr and conductivity σ. For a single-pole Debye

medium, the electric susceptibility in the frequency domain can be expressed as

the relative permittivity with a single pole:

εr(ω) = εr,∞ +
εr,s − εr,∞
1 + iωτ

, (10.160)

where εr,s is the static zero-frequency relative electric permittivity and τ is the

pole relaxation time. Then, a general time-harmonic form (with eiωt time de-

pendence) of the Maxwell equations in a Debye medium including the artificial

material in a uniaxial perfectly matched layer (UPML) can be written in a unified

form as follows (Lu, Zhang, & Cai, 2004):

∇× Ĥ = iωε0

(
εr +

σ

iωε0

)
¯̄ε Ê, (10.161)

∇× Ê = −iωμ0μr ¯̄μ Ĥ, (10.162)

where

¯̄ε = ¯̄μ =

⎡⎢⎣
sysz
sx

0 0

0 sxsz
sy

0

0 0
sxsy
sz

⎤⎥⎦ (10.163)

and

si = 1 +
σi

iωε0
, i = x, y, z. (10.164)

Here, εr is the relative permittivity of the dispersive medium, σi = 0 corresponds

to a physical dispersive medium, and σi 	= 0 is used for the UPML region.
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For simplicity, we will consider the 2-D transverse magnetic (TM) case (sz =

1); the Maxwell equations for the TM wave for the Debye medium can be writ-

ten as

∂Ĥy

∂x
− ∂Ĥx

∂y
= iωε0

(
εr,∞ +

εr,s − εr,∞
1 + iωτ

+
σ

iωε0

)
sxsyÊz, (10.165)

∂Êz

∂y
= −iωμ0μr

sy
sx

Ĥx, (10.166)

−∂Êz

∂x
= −iωμ0μr

sx
sy

Ĥy. (10.167)

Equation (10.165) can be written as

∂Ĥy

∂x
− ∂Ĥx

∂y
= iωε0εr,∞Êz+σÊz+Ĵz,1(ω)+Ĵz,2(ω)+Ĵz,3(ω)+Ĵz,4(ω), (10.168)

where

Ĵz,1(ω) = iωε0εr,∞(sxsy − 1)Êz, (10.169)

Ĵz,2(ω) = iωε0
εr,s − εr,∞
1 + iωτ

Êz, (10.170)

Ĵz,3(ω) = iωε0
εr,s − εr,∞
1 + iωτ

(sxsy − 1)Êz

= (sxsy − 1)Ĵz,2(ω) =
εr,s − εr,∞

εr,∞(1 + iωτ)
Ĵz,1(ω), (10.171)

Ĵz,4(ω) = σ(sxsy − 1)Êz =
σ

iωε0εr,∞
Ĵz,1(ω). (10.172)

After substituting sx and sy from (10.164), we have

Ĵz,1(ω) = iωε0εr,∞

[(
1 +

σx

iωε0

)(
1 +

σy

iωε0

)
− 1

]
Êz

= iωε0εr,∞

(
σx + σy

iωε0
+

σxσy

(iωε0)2

)
Êz

= εr,∞(σx + σy)Êz +
εr,∞
iωε0

σxσyÊz, (10.173)

Ĵz,2(ω) = iωε0
εr,s − εr,∞
1 + iωτ

Êz, (10.174)

Ĵz,3(ω) =
εr,s − εr,∞

εr,∞(1 + iωτ)
Ĵz,1, (10.175)

Ĵz,4(ω) =
σ

iωε0εr,∞
Ĵz,1. (10.176)

Now considering (10.168), we apply the inverse Fourier transform using the iden-

tity iωf(ω)→ (∂/∂t)f(t). This yields an equivalent equation of the time-domain

differential equation for (10.168):

∂Hy

∂x
− ∂Hx

∂y
= ε0εr,∞

∂Ez

∂t
+σEz +Jz,1(t)+Jz,2(t)+Jz,3(t)+Jz,4(t). (10.177)
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Next we derive dynamic equations for (10.169)–(10.172). The way to obtain a

dynamic equation for Jz,1 is first to multiply both sides of (10.169) by iω, which

gives

iωĴz,1 = iωεr,∞(σx + σy)Êz +
εr,∞
ε0

σxσyÊz. (10.178)

Exploiting the differentiation equivalence for the Fourier transform, we perform

an inverse Fourier transform of each term in (10.178):

∂Jz,1(t)

∂t
= εr,∞(σx + σy)

∂Ez

∂t
+

εr,∞
ε0

σxσyEz. (10.179)

To obtain the dynamic equation for Jz,2 from (10.170), we again multiply both

sides of this equation by (1 + iωτ):

Ĵz,2 + iωτĴz,2 = iωε0(εr,s − εr,∞)Êz. (10.180)

Similarly, using the inverse Fourier transform, we get

Jz,2 + τ
∂Jz,2
∂t

= ε0(εr,s − εr,∞)
∂Ez

∂t
, (10.181)

and, by the same token, from (10.171) and (10.172) we have

Jz,3 + τ
∂Jz,3
∂t

=
εr,s − εr,∞

εr,∞
Jz,1, (10.182)

∂Jz,4
∂t

=
σ

ε0εr,∞
Jz,1. (10.183)

Therefore, (10.179), (10.181), (10.182), and (10.183) are the time-domain differ-

ential equations for all Jz.

We further simplify the differential equations for the polarization currents Jz
so that they will become simply ordinary differential equations.

Considering (10.179), we introduce a new parameter

Pz,1 = −Jz,1 + εr,∞(σx + σy)Ez. (10.184)

Then (10.179) can be written as

∂Pz,1

∂t
= −εr,∞

ε0
σxσyEz. (10.185)

Similarly for (10.181), on introducing a new parameter

Pz,2 = −Jz,2 +
ε0(εr,s − εr,∞)

τ
Ez, (10.186)

we have
∂Pz,2

∂t
=

1

τ
Jz,2. (10.187)

From (10.184) and (10.186), we can obtain

Jz,1 = −Pz,1 + εr,∞(σx + σy)Ez, (10.188)

Jz,2 = −Pz,2 +
ε0(εr,s − εr,∞)

τ
Ez. (10.189)
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After substituting for Jz,1 and Jz,2 from (10.188) and (10.189) into (10.177), we

have

∂Hy

∂x
− ∂Hx

∂y
= ε0εr,∞

∂Ez

∂t
+ σEz − Pz,1 + εr,∞(σx + σy)Ez − Pz,2

+
ε0(εr,s − εr,∞)

τ
Ez + Jz,3(t) + Jz,4(t)

= ε0εr,∞
∂Ez

∂t
+

[
σ + εr,∞(σx + σy) +

ε0(εr,s − εr,∞)

τ

]
Ez

− Pz,1 − Pz,2 + Jz,3 + Jz,4.

(10.190)

Next, considering (10.187), after substituting for Jz,2 from (10.189), we have

∂Pz,2

∂t
= −1

τ
Pz,2 +

ε0(εr,s − εr,∞)

τ2
Ez. (10.191)

Similarly for (10.182), after substituting for Jz,1 from (10.188), we have

∂Jz,3
∂t

= −1

τ
Jz,3 +

εr,s − εr,∞
εr,∞τ

[−Pz,1 + εr,∞(σx + σy)Ez]

= −1

τ
Jz,3 −

εr,s − εr,∞
εr,∞τ

Pz,1 +
(εr,s − εr,∞)(σx + σy)

τ
Ez. (10.192)

Finally, for (10.183), after substituting for Jz,1 from (10.188), we have

∂Jz,4
∂t

= − σ

ε0εr,∞
Pz,1 +

σ(σx + σy)

ε0
Ez. (10.193)

Similar operations can be applied to Faraday’s law (10.166) and (10.167), and

we have the following equations:

∂Ez

∂y
= −μ0μr

∂Hx

∂t
− μ0μr

σy − σx

ε0
Hx +Qx, (10.194)

−∂Ez

∂x
= −μ0μr

∂Hy

∂t
− μ0μr

σx − σy

ε0
Hy +Qy, (10.195)

∂Qx

∂t
= −σx

ε0
Qx +

μ0μrσx(σy − σx)

ε20
Hx, (10.196)

∂Qy

∂t
= −σy

ε0
Qy +

μ0μrσy(σx − σy)

ε20
Hy. (10.197)

For consistency of notation, we let Pz,3 = Jz,3 and Pz,4 = Jz,4; then, from

(10.190), (10.194), (10.195), (10.185), (10.191), (10.192), (10.193), (10.196), and
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(10.197), we get a new set of equations for Ez, Hx, Hy, Pz,1, Pz,2, Pz,3, Pz,4, Qx,

and Qy as follows:

ε0εr,∞
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y

−
[
σ + εr,∞(σx + σy) +

ε0(εr,s − εr,∞)

τ

]
Ez

+ Pz,1 + Pz,2 − Pz,3 − Pz,4, (10.198)

μ0μr
∂Hx

∂t
=− ∂Ez

∂y
− μ0μr

σy − σx

ε0
Hx +Qx, (10.199)

μ0μr
∂Hy

∂t
=
∂Ez

∂x
− μ0μr

σx − σy

ε0
Hy +Qy, (10.200)

∂Pz,1

∂t
= −εr,∞

ε0
σxσyEz, (10.201)

∂Pz,2

∂t
= −1

τ
Pz,2 +

(εr,s − εr,∞)

τ2
Ez, (10.202)

∂Pz,3

∂t
= −1

τ
Pz,3 −

εr,s − εr,∞
εr,∞τ

Pz,1 +
(εr,s − εr,∞)(σx + σy)

τ
Ez, (10.203)

∂Pz,4

∂t
= − σ

ε0εr,∞
Pz,1 +

σ(σx + σy)

ε0
Ez, (10.204)

∂Qx

∂t
= −σx

ε0
Qx +

μ0μrσx(σy − σx)

ε20
Hx, (10.205)

∂Qy

∂t
= −σy

ε0
Qy +

μ0μrσy(σx − σy)

ε20
Hy. (10.206)

Note that (10.201)–(10.206) contain no spatial derivatives and hence they are

simply ODEs for Pz,1, Pz,2, Pz,3, Pz,4, Qx, and Qy. Abarbanel & Gottlieb (1998)

pointed out that the system using the split-field PML terminating the computa-

tional domain was only weakly well-posed for the initial value problem. In con-

trast, the system (10.198)–(10.206), after dropping the undifferentiated terms,

becomes the original 3× 3 Maxwell system, which is symmetric and hyperbolic

and therefore strongly well-posed.

The new auxiliary polarization currentsP andQ have decoupled the frequency-

dependent constitutive relations (10.154) and (10.156). Note that Pz,1, Qx, and

Qy are auxiliary variables introduced by the UPML, Pz,2 is introduced by the

medium dispersion, Pz,3 is introduced by the medium dispersion and the PML,

Pz,4 is introduced by the medium loss and the UPML, σ is the relative electric

conductivity, and σx and σy are the parameters for the UPML. In the case that

σx = σy = 0, the above equations reduce to the original Maxwell equations in

the physical dispersive region.

We can put (10.198)–(10.206) in the general form of (10.157)–(10.159) by defin-

ingU(1) = (ε0εr,∞Ez, μ0μrHx, μ0μrHy)
T,U(2) = (Pz,1, Pz,2, Pz,3, Pz,4, Qx, Qy)

T,

U = (U(1),U(2))T, S = (S(1),S(2))T, and A, Ā are given as
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A = (Ax, Ay), Ā = (Āx, Āy), (10.207)

where

Ax =

⎛⎝ 0 0 −1/μr

0 0 0

−1/εr,∞ 0 0

⎞⎠ , Ay =

⎛⎝ 0 1/μr 0

1/εr,∞ 0 0

0 0 0

⎞⎠ , (10.208)

and

Āx =

(
Ax 03×6

06×3 06×6

)
, Āy =

(
Ay 03×6

06×3 06×6

)
. (10.209)

Here 0n×m denotes the zero matrix with n rows and m columns. The source

terms S(1) and S(2) represent body forces, e.g., currents:

S(1) =

⎛⎜⎝ −
[
σ + εr,∞(σx + σy) +

εr,s−εr,∞
τ

]
Ez + Pz,1 + Pz,2 − Pz,3 − Pz,4

−μrμ0(σy − σx)Hx/ε0 +Qx

−μrμ0(σx − σy)Hy/ε0 +Qy

⎞⎟⎠ ,

(10.210)

S(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−εr,∞σxσyEz

− 1
τ Pz,2 +

εr,s−εr,∞
τ2 Ez

− 1
τ
Pz,3 − εr,s−εr,∞

εr,∞τ
Pz,1 +

(εr,s−εr,∞)(σx+σy)
τ

Ez

− σ
εr,∞

Pz,1 + σ(σx + σy)Ez/ε0

−σxQx + μrμ0σx(σy − σx)Hx/ε
2
0

−σyQy + μrμ0σy(σx − σy)Hy/ε
2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (10.211)

10.7.2 Drude material

We consider a dispersive material described by a single-pole Drude medium,

whose relative electric permittivity is rewritten here as

εr(ω) = εr,∞ −
ω2
p

ω2 + iΓω
, (10.212)

where ωp is the plasmon frequency, Γ is the damping constant, and εr,∞ is the

relative electric permittivity at infinite frequency.

The augmented Maxwell equations for a transverse electric (TE) wave with

auxiliary polarization currents for the new augmented variables U(1) = (μ0μrHz,

ε0εr,∞Ex, ε0εr,∞Ey)
T, U(2) = (Qz, Px,2, Px,3, Px,4, Py,2, Py,3, Py,4)

T, U = (U(1),

U(2))T, and S = (S(1), S(2))T can be cast in the form of (10.157)–(10.159), and

A, Ā are given as

A = (Ax, Ay), Ā = (Āx, Āy), (10.213)

where

Ax =

⎛⎝ 0 0 1/εr,∞
0 0 0

1/μr 0 0

⎞⎠ , Ay =

⎛⎝ 0 −1/εr,∞ 0

−1/μr 0 0

0 0 0

⎞⎠ , (10.214)
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and

Āx =

(
Ax 03×7

07×3 07×7

)
, Āy =

(
Ay 03×7

07×3 07×7

)
. (10.215)

Meanwhile, the source terms S(1) and S(2) represent body forces, e.g., polariza-

tion currents (Ji, Cai, & Zhang, 2007):

S(1) = −

⎛⎝ μrd0,zHz + μrd1,zQz

εr,∞c1,xEx + ω2
pPx,4 + ω2

pc1,xPx,3 + c2,xPx,2

εr,∞c1,yEy + ω2
pPy,4 + ω2

pc1,yPy,3 + c2,yPy,2

⎞⎠ , (10.216)

S(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hz

ω2
pPx,3 + εr,∞Ex − σxPx,2

Px,4

Ex − γPx,4

ω2
pPy,3 + εr,∞Ey − σyPy,2

Py,4

Ey − γPy,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.217)

where

c1,x = σy − σx, c2,x = −σx(σy − σx),

c1,y = σx − σy, c2,y = −σy(σx − σy),

d0,z = σx + σy, d1,z = σxσy. (10.218)

10.8 Summary

Wave scattering and propagation in periodic media offer a wide range of in-

teresting physical and mathematical properties, including the band gap of di-

electric photonics, the excitation of plasmon waves, and the field enhancement

near metallic surfaces. In the frequency domain, plane wave methods and trans-

mission spectra calculations using Fourier series and Nédélec edge elements are

discussed for the study of band-gap properties of periodic structures. While the

first two methods give a diagonal representation of the Laplace operator in the

eigen-mode problem, they may suffer Gibbs phenomenon oscillations when the

material contrast becomes large. The Nédélec edge element and the volume in-

tegral methods offer flexibility in handling complex material interfaces and large

material contrasts. In the time domain, finite element methods with the con-

forming Nédélec basis and discontinuous Galerkin implementations can be used

to study the transient wave interactions, including nonlinear phenomena.

Nonlinear optical properties of materials which could occur under strong in-

cident light sources such as lasers have not been discussed in this book, and

important nonlinear behaviors, such as second harmonic generations and para-

metric amplifications and stimulated Raman scattering, are discussed in Yariv

(1989) and Butcher & Cotter (1991).



11 Schrödinger equations for
waveguides and quantum dots

Schrödinger equations are used for paraxial approximations of Maxwell equations

in optical waveguides or for describing electron density wave functions in quan-

tum dots embedded in layered media. In this chapter, we will discuss numerical

methods for computing their solutions, which may be discontinuous in values or

derivatives due to the existence of discontinuities in material dielectric properties

inside the waveguides or electric potentials experienced by the electrons confined

in quantum dots. In the case of optical waveguides, the Schrödinger equations

are reformulated with generalized functions (distributions) by using Dirac δ func-

tions as source terms to represent the discontinuities in the solutions. Then, a

generalized discontinuous Galerkin (DG) beam propagation method is discussed

for the guided waves in optical waveguides. For quantum dots, a volume integral

equation for the density wave functions is presented with Green’s functions for

layered media.

11.1 Generalized DG (GDG) methods for Schrödinger equations

In this section, we introduce a generalized discontinuous Galerkin method for

Schrödinger equations with discontinuities in either the solution or the derivative

of the solution.

11.1.1 One-dimensional Schrödinger equations

Let us consider a model 1-D problem:

i
∂ϕ(x, t)

∂t
=

∂2ϕ(x, t)

∂x2
, for x ∈ [a, b]\{τ}, (11.1)

where ϕ is a complex-valued wave function.

With the shorthand notation

[u(τ, t)] = u(τ+, t)− u(τ−, t), (11.2)
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we denote the jump conditions at the interface τ by

[ϕ(τ, t)] = f(t), (11.3)[
∂ϕ(τ, t)

∂x

]
= g(t). (11.4)

We can incorporate the jump conditions into (11.1) using δ and δ′ source terms

at τ , namely

i
∂ϕ(x, t)

∂t
=

∂2ϕ(x, t)

∂x2
− g(t)δ(x− τ)− f(t)δ′(x− τ), for x ∈ [a, b]. (11.5)

The use of the δ and δ′ source terms compensates for the singularity introduced

by the jump conditions at the interface. Furthermore, to avoid dealing with δ′

in (11.5), we introduce an auxiliary distributional variable p to rewrite (11.5) as

i
∂ϕ

∂t
=

∂p

∂x
− g(t)δ(x− τ), (11.6a)

p =
∂ϕ

∂x
− f(t)δ(x− τ). (11.6b)

Now, both ϕ and p are piecewise continuous functions over [a, b], while ∂ϕ/∂x

and ∂p/∂x are treated as distributions.

To derive a finite element approximation of (11.6a) and (11.6b), we first divide

Ω = [a, b] into N elements,

{a = x0 < · · · < xk∗ = τ < · · · < xN = b}, (11.7)

and denote a general element by

K = [xk, xk+1], for k = 0, 1, . . . , N − 1. (11.8)

To proceed, we introduce the concept of an evenly split δ function:

∫ 0

±a

v(x)δ(x)dx = ∓1

2
v(0), for a > 0, v(x) ∈ C(±a, 0], (11.9)

and the following integration-by-parts identities for distributional variables ∂ϕ/∂x

and ∂p/∂x over a closed interval:∫ τ+h

τ

∂ϕ

∂x
v(x)dx = ϕ(τ + h)v(τ + h)− {ϕ}v(τ)−

∫ τ+h

τ

∂v

∂x
ϕ(x)dx, (11.10)∫ τ+h

τ

∂p

∂x
v(x)dx = p(τ + h)v(τ + h)− {p}v(τ)−

∫ τ+h

τ

∂v

∂x
p(x)dx, (11.11)

where {u} = (u(τ+)+u(τ−))/2 denotes the average of the values of the function

u at the interface τ . The proof of (11.10) and (11.11) is given in Fan, Cai, & Ji

(2008b).

Let PJ(K) be the space of polynomials in K of degree at most J , and let v ∈
L1[a, b] be the test function, where v|K ∈ PJ (K). First, we consider the element
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adjacent to the right-hand side of the interface, say K = [xk∗ , xk∗+1], xk∗ = τ .

By multiplying (11.6a) by v and then using integration-by-parts formula (11.10)

on K, we get

i

∫
K

∂ϕ

∂t
v dx = pv|x−

k∗+1
− {p}(τ)v(x+

k∗)−
∫
K

p
dv

dx
dx− g(t)

∫
K

δ(x− τ)v dx

= pv|x−
k∗+1

−
(
{p}(τ) + 1

2
g(t)

)
v(x+

k∗)−
∫
K

p
dv

dx
dx, (11.12)

where the factor 1/2 in front of g(t) comes from (11.9). Equation (11.12) sug-

gests that we should define the fluxes on the right-hand side of the interface

x+
k∗ = τ+ as

hϕ(x
+
k∗) = {p}(xk∗) +

1

2
g(t), (11.13)

and those at x−k∗+1 as

hϕ(x
−
k∗+1) = p(x−

k∗+1). (11.14)

Repeating the above procedure for the element K = [xk∗−1, xk∗ ], one obtains

the fluxes on the left-hand side of the interface x−
k∗ = τ− as

hϕ(x
−
k∗) = {p}(xk∗)− 1

2
g(t), (11.15)

and those at x+k∗−1 as

hϕ(x
+
k∗−1) = p(x+

k∗−1). (11.16)

As the exact solution is continuous at xk∗±1, we can replace (11.14) and

(11.16) by

hϕ(x
±
k∗±1) = {p}(xk∗±1). (11.17)

Similarly, we can define the fluxes for p as

hp(x
±
k∗) = {ϕ}(xk∗)± 1

2
f(t), (11.18)

hp(x
±
k∗±1) = {ϕ}(xk∗±1). (11.19)

Finally, for all elements K = [xk, xk+1], we will have the following method for

the 1-D Schrödinger equation (11.6a) and (11.6b).

1-D generalized discontinuous Galerkin (GDG) method

We have

i

∫
K

∂ϕ

∂t
v dx = hϕ(x

−
k+1)v(x

−
k+1)− hϕ(x

+
k )v(x

+
k )−

∫
K

p
dv

dx
dx, (11.20)∫

K

pv dx = hp(x
−
k+1)v(x

−
k+1)− hp(x

+
k )v(x

+
k )−

∫
K

ϕ
dv

dx
dx, (11.21)
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where, if xk 	= τ ,

hϕ(x
±
k ) = {p}(xk), (11.22)

hp(x
±
k ) = {ϕ}(xk), (11.23)

and at τ

hϕ(τ
±) = {p}(τ)± 1

2
g(t), (11.24)

hp(τ
±) = {ϕ}(τ)± 1

2
f(t). (11.25)

Let φj(x), j = 0, 1, . . . , J, be the basis functions, and let ϕ and p be expanded as

ϕ(x, t) =

J∑
j=0

αj(t)φj(x), p(x, t) =

J∑
j=0

pj(t)φj(x). (11.26)

In each K, by choosing the test function v = φl(x) for l = 0, 1, . . . , J , and

denoting mlj and mx
lj as

mlj =

∫
K

φlφj dx, mx
lj =

∫
K

dφl

dx
φj dx, (11.27)

we have

i
∑
j

mlj
dαj

dt
= hϕ(xk+1)φl(x

−
k+1)− hϕ(xk)φl(x

+
k )−

∑
j

mx
ljpj , (11.28a)

∑
j

mljpj = hp(xk+1)φl(x
−
k+1)− hp(xk)φl(x

+
k )−

∑
j

mx
ljαj . (11.28b)

Equation (11.28b) can be used to eliminate the variables {pj} in terms of {αj}
on each element locally.

11.1.2 Two-dimensional Schrödinger equations

Let the solution domain Ω be decomposed into regions Ωi with jumps across

their interfaces, i.e., Ω = ∪iΩi. We consider the following time-dependent scalar

2-D Schrödinger equation: for (x, y) /∈ Γ = ∪i∂Ωi,

i
∂ϕ

∂t
=

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+ S(ϕ), (11.29)

where S is a source term. The jumps at (x∗, y∗) ∈ Γ are given by

f(x∗, y∗, t) = [ϕ(x∗, y∗, t)] = ϕ(x∗+, y∗+, t)− ϕ(x∗−, y∗−, t), (11.30)

g(x∗, y∗, t) =

[
∂ϕ(x∗, y∗, t)

∂n

]
=

∂ϕ(x∗+, y∗+, t)

∂n
− ∂ϕ(x∗−, y∗−, t)

∂n
, (11.31)

where n is the normal to the interface Γ pointing to the + side.

On the interface Γ, local coordinates (ξ, η) will be introduced, where ξ is along

the normal direction and η is along the tangential direction(s). Following the
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same procedure as for (11.6a) and (11.6b), we can rewrite (11.29) as follows (Fan,

Cai, & Ji, 2008b):

i
∂ϕ

∂t
=

∂p

∂x
+

∂q

∂y
− δ(ξ − ξ∗)|∇ξ|2g + S, (11.32a)

p =
∂ϕ

∂x
− δ(ξ − ξ∗)f

∂ξ

∂x
, (11.32b)

q =
∂ϕ

∂y
− δ(ξ − ξ∗)f

∂ξ

∂y
. (11.32c)

As in the 1-D case, for each element K in the discretization of Ω, let PJ (K)

denote the space of polynomials in K of degree at most J , and let v ∈ L1(Ω) be

the test function, where v|K ∈ PJ (K). Multiplying (11.32a)–(11.32c) by v and

integrating by parts in K, we obtain the following.

2-D generalized discontinuous Galerkin (GDG) method

We have

i

∫
K

∂ϕ

∂t
dx dy =

∫
∂K

hx
ϕvnx ds−

∫
K

p
∂v

∂x
dx dy

+

∫
∂K

hy
ϕvny ds−

∫
K

q
∂v

∂y
dx dy +

∫
K

Sv dx dy, (11.33a)∫
K

pv dx dy =

∫
∂K

hpvnxds−
∫
K

ϕ
∂v

∂x
dx dy, (11.33b)∫

K

qv dx dy =

∫
∂K

hqvny ds−
∫
K

ϕ
∂v

∂y
dx dy, (11.33c)

where (nx, ny) is the external normal of ∂K and (hx
ϕ, h

y
ϕ, hp = hq) are numerical

fluxes which relate to (p, q, ϕ) at ∂K and are given by, for x = (x, y) ∈ ∂K,

hx
ϕ(x

±) = {p} ± ax, hy
ϕ(x

±) = {q} ± ay, hp(x
±) = {ϕ} ± b, (11.34)

where + indicates the exterior side of ∂K, and ax, ay, and b are from the jump

conditions and are defined as

(ax, ay, b) =

⎧⎨⎩
(
1

2
g|∇ξ|nx,

1

2
g|∇ξ|ny,

1

2
f

)
, if Γ ∩K 	= ∅,

(0, 0, 0), if Γ ∩K = ∅.
(11.35)

As in (11.22)–(11.25) for the 1-D case, simple averages are used in (11.34) for

all element boundaries except the material interface, where averages plus/minus

one half of the jump are used (Fan, Cai, & Ji, 2008b).

Let φj(x, y), j = 0, 1, . . . , nJ , be the basis functions, where nJ + 1 is the

number of basis functions required for the Jth-order approximation. We expand

ϕ, p, and q as follows:

ϕ =

nJ∑
j=0

αj(t)φj(x, y), q =

nJ∑
j=0

qj(t)φj(x, y), p =

nJ∑
j=0

pj(t)φj(x, y), (11.36)
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and choose the test function v(x, y) = φl(x, y) for l = 0, 1, . . . , nJ , and we get

i
∑
j

mlj
dαj

dt
=

∫
∂K

(hx
ϕnx + hy

ϕny)φl ds−
∑
j

(mx
ljpj +my

ljqj) + sl, (11.37a)

∑
j

mljpj =

∫
∂K

hpnxφl ds−
∑
j

mx
ljαj , (11.37b)

∑
j

mljqj =

∫
∂K

hqnyφl ds−
∑
j

my
ljαj , (11.37c)

where sl =
∫
K
Sφl dx dy and

mlj =

∫
K

φlφj dx dy, mx
lj =

∫
K

∂φl

∂x
φj dx dy, my

lj =

∫
K

∂φl

∂y
φj dx dy.

(11.38)

Again, the local variables {pj} and {qj} can be eliminated in terms of {αj}
on each element K locally by using (11.37b) and (11.37c).

11.2 GDG beam propagation methods (BPMs) for optical
waveguides

Beam propagation methods (BPMs) (Feit & Fleck, 1978, 1980) are based on

paraxial approximations for wave propagations in optical waveguides, where

time-harmonic Maxwell equations are approximated by Schrödinger equations

and the propagation direction is treated as the time axis. By propagating a gen-

eral wave of complex cross section mode profile down the waveguide for some dis-

tance using the BPMs, we can identify the guided modes for a specific waveguide.

Due to the mismatch of refractive indices in the cross section of the waveguides,

the electromagnetic fields are discontinuous solutions to the Schrödinger equa-

tions. Different variants of the BPM, using various types of spatial discretization

in the cross section of waveguides, exist, such as the finite element (FE)-BPM

(Tsuji, Koshiba, & Takimoto, 1999), the fast Fourier transform (FFT)-BPM

(Thylen & Yevick, 1982), and the finite difference (FD)-BPM (Xu et al., 1994).

In this section, we discuss GDG-BPMs to address specifically the discontinuities

in fields across dielectric interfaces (Fan, Cai, & Ji, 2008a).

11.2.1 Guided modes in optical waveguides

Light at optical frequencies can be confined within the core of an optical fiber

or the inner layer of layered dielectrics through the mechanism of total internal

reflection, when the refractive index of the interior dielectric n1 is larger than

that of the surrounding medium (called cladding in the case of optical fibers) n0

(Okamoto, 2005). The refractive index of a dielectric medium is defined by

n =
√
εr, (11.39)
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Figure 11.1. Total internal reflection.

where εr is the relative dielectric constant. An incident plane wave with a wave

vector ki from the side with larger refractive index (Fig. 11.1) will have its energy

reflected completely if the incident angle

θi ≥ θc, (11.40)

where θc is the critical angle defined by

θc = sin−1

(
n0

n1

)
. (11.41)

In this case, the transmitted plane wave on the side with the smaller refractive

index will have a complex wave vector kt, which corresponds to an evanescent

wave.

Once condition (11.40) is satisfied, guided wave modes can exist in optical

fibers such as that shown in Fig. 11.2 with cylindrical core Ω1 and cladding Ω2:

Ω1 = {(x, y) : x2 + y2 ≤ a}, Ω2 = {(x, y) : a ≤ x2 + y2 <∞}, (11.42)

where we have assumed the cladding Ω2 is of infinite extent for simplicity.

The guided modes are assumed to be in the following forms:

E or H = (ϕ1(x, y), ϕ2(x, y), ϕ3(x, y))e
−iβz , (11.43)

where e−iβz indicates the propagation nature of the modes along the z-direction.
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Figure 11.2. Optical fiber with cylindrical core and cladding of finite thickness. From
Fan et al. (2008a), copyright (2008) by Elsevier.

The Maxwell equations in the cylindrical coordinates (r, θ) are

1

r

∂Ez

∂θ
+ iβEθ = −iωμ0Hr,

−iβEr −
∂Ez

∂r
= −iωμ0Hθ,

1

r

∂ (rEθ)

∂r
− 1

r

∂Er

∂θ
= −iωμ0Hz,

1

r

∂Hz

∂θ
+ iβHθ = iωε0n

2Er,

−iβHr −
∂Hz

∂r
= iωε0n

2Eθ,

1

r

∂ (rHθ)

∂r
− 1

r

∂Hr

∂θ
= iωε0n

2Ez, (11.44)

where the dielectric constant ε(r) = ε0n
2 = ε0εr is assumed to be a function of

r only for optical fibers.

Meanwhile, the vector Helmholtz equations (5.30) and (5.31) for the z-compo-

nents of the fields (with e−iβz factored out) in the cylindrical coordinates are

given by

∂2Ez

∂z2
+

1

r

∂Ez

∂r
+

1

r2
∂2Ez

∂θ2
+

[
k2n(r, θ)2 − β2

]
Ez = 0, (11.45)

∂2Hz

∂z2
+

1

r

∂Hz

∂r
+

1

r2
∂2Hz

∂θ2
+

[
k2n(r, θ)2 − β2

]
Hz = 0, (11.46)



292 Schrödinger equations

and the transverse components can be expressed in terms of the z-components by

Er = − i

[k2n(r, θ)2 − β2]

(
β
∂Ez

∂r
+

ωμ0

r

∂Hz

∂θ

)
, (11.47)

Eθ = − i

[k2n(r, θ)2 − β2]

(
β

r

∂Ez

∂θ
− ωμ0

r

∂Hz

∂r

)
, (11.48)

Hr = − i

[k2n(r, θ)2 − β2]

(
β
∂Hz

∂r
− ωε0n(r)

2

r

∂Ez

∂θ

)
, (11.49)

Hθ = − i

[k2n(r, θ)2 − β2]

(
β

r

∂Hz

∂θ
+

ωε0n(r)
2

r

∂Ez

∂r

)
. (11.50)

Solutions to (11.45) and (11.46) can be found in transverse modes such as TE

modes (Ez = 0) and TM modes (Hz = 0) as well as hybrid modes, or HE modes

(both of the z-components are non-zero). To find the hybrid modes, methods of

separation of variables are used by looking for the z-components in the following

form (with continuity implied at r = a) (Okamoto, 2005):

Ez(r, θ) =

⎧⎪⎨⎪⎩
AJn

(
u
a r

)
cos(nθ +Ψ), if 0 ≤ r ≤ a,

A Jn(u)
Kn(w)Kn

(
w
a r

)
cos(nθ +Ψ), if r ≥ a,

(11.51)

and

Hz(r, θ) =

⎧⎪⎨⎪⎩
BJn

(
u
a
r
)
sin(nθ +Ψ), if 0 ≤ r ≤ a,

B Jn(u)
Kn(w)

Kn

(
w
a
r
)
sin(nθ +Ψ), if r ≥ a,

(11.52)

where Jn(r) is the nth-order Bessel function of the first kind, Kn(r) is the nth-

order modified Bessel function of the second kind, Ψ is a phase parameter defining

the polarization of the HE mode, and the following shorthand notation is used:

u = a
√
k2n2

1 − β2, w = a
√

β2 − k2n2
0. (11.53)

The coefficients A and B, as well as the propagation constant β, will be de-

termined by the continuity condition of the tangential components Eθ and Hθ,

given by (11.48) and (11.50), at the core/cladding interface r = a, yielding the

following relations, respectively:

Aβ

(
1

u2
+

1

w2

)
= −Bωμ0

[
J ′
n(u)

uJn(u)
+

K′
n(w)

wKn(w)

]
(11.54)

and

Aωε0

[
n2
1

J ′
n(u)

uJn(u)
+ n2

0

K ′
n(w)

wKn(w)

]
= −Bβ

(
1

u2
+

1

w2

)
n. (11.55)
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Combining (11.54) and (11.55), we obtain the following nonlinear equation

(characteristic equation) for the propagation constant β:[
J ′
n(u)

uJn(u)
+

K ′
n(w)

wKn(w)

] [
J ′
n(u)

uJn(u)
+

(
n0

n1

)2
K ′

n(w)

wKn(w)

]

= n2

(
1

u2
+

1

w2

)[
1

u2
+

(
n0

n1

)2
1

w2

]
. (11.56)

With β obtained, the coefficients A and B are found from (11.54) to be

related by

B = −A β

ωμ0
s, (11.57)

where

s =
n(1/u2 + 1/w2)[
J ′
n(u)

uJn(u)
+

K′
n(w)

wKn(w)

] . (11.58)

For n = 1, the HE mode is called the fundamental hybrid mode, denoted by

HE11, whose field components in (x, y)-coordinates can be computed by

Ex = Er cos θ − Eθ sin θ,

Ey = Er sin θ + Eθ cos θ,

along with a similar relation for Hx and Hy, resulting in

Ex =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−iAβ a

u

[
1−s
2 J0(

u
a r) cos(Ψ)

− 1+s
2

J2(
u
a
r) cos(2θ +Ψ)

]
, in Ω1,

−iAβ aJ1(u)
wK1(w)

[
1−s
2

K0(
w
a
r) cos(Ψ)

+ 1+s
2 K2(

w
a r) cos(2θ +Ψ)

]
, in Ω2,

(11.59)

Ey =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iAβ a

u

[
1−s
2 J0(

u
a r) sin(Ψ)

+ 1+s
2 J2(

u
a r) sin(2θ +Ψ)

]
, in Ω1,

iAβ aJ1(u)
wK1(w)

[
1−s
2 K0(

w
a r) sin(Ψ)

− 1+s
2 K2(

w
a r) sin(2θ +Ψ)

]
, in Ω2,

(11.60)

Ez =

⎧⎪⎨⎪⎩
AJ1(

u
a r) cos(θ +Ψ), in Ω1,

A J1(u)
K1(w)K1(

w
a r) cos(θ +Ψ), in Ω2,

(11.61)

and

Hx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−iAωε0n2

1
a
u

[
1−s1
2 J0(

u
a r) sin(Ψ)

+ 1+s1
2 J2(

u
a r) sin(2θ +Ψ)

]
, in Ω1,

−iAωε0n2
0

aJ1(u)
wK1(w)

[
1−s0
2 K0(

w
a r) sin(Ψ)

− 1+s0
2 K2(

w
a r) sin(2θ +Ψ)

]
, in Ω2,

(11.62)
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Hy =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−iAωε0n2

1
a
u

[
1−s1

2
J0(

u
a
r) cos(Ψ)

− 1+s1
2 J2(

u
a r) cos(2θ +Ψ)

]
, in Ω1,

−iAωε0n2
0

aJ1(u)
wK1(w)

[
1−s0

2 K0(
w
a r) cos(Ψ)

+ 1+s0
2

K2(
w
a
r) cos(2θ +Ψ)

]
, in Ω2,

(11.63)

Hz =

⎧⎪⎨⎪⎩
−A βs

ωμ0
J1(

u
a r) sin(θ +Ψ), in Ω1,

−A βs
ωμ0

J1(u)
K1(w)K1(

w
a r) sin(θ +Ψ), in Ω2,

(11.64)

where

s0 =
β2

k2n2
0

s, s1 =
β2

k2n2
1

s. (11.65)

Here Ψ = 0 and Ψ = π/2 correspond to the x-polarized (HEx
11) mode and the

y-polarized (HEy
11) mode, respectively.

11.2.2 Discontinuities in envelopes of guided modes

In a BPM for optical waveguides, we assume that the electric or magnetic field

takes the envelope form (11.43). The envelope functions ϕj , j = 1, 2, 3, are as-

sumed to vary slowly along the propagation direction z, which will be denoted

as the time variable t (Feit & Fleck, 1978, 1980).

Figure 11.2 shows the cross section Ω of an optical waveguide with a core

Ω1, a cladding Ω2, and an interface at Γ = Ω1 ∩ Ω2 with an exterior normal

direction n = (nx, ny). Let us denote the jump of a function ϕ at position τ

along n = (nx, ny) on Γ as

[ϕ(τ, t)] = ϕ(τ+, t)− ϕ(τ−, t). (11.66)

Then, for any point (x∗, y∗) on the interface, for j = 1, 2, 3, the jump data

fj(x
∗, y∗, t) = [ϕj(x

∗, y∗, t)] = ϕj(x
∗+, y∗+, t)− ϕj(x

∗−, y∗−, t),

gj(x
∗, y∗, t) =

[
∂ϕj(x

∗, y∗, t)

∂n

]
=

∂ϕj(x
∗+, y∗+, t)

∂n
− ∂ϕj(x

∗−, y∗−, t)

∂n
,

(11.67)

can be shown to satisfy identities based on the interface conditions for the elec-

tromagnetic fields and the Maxwell equations as follows.

To derive the jump data fj of the electric field, we start from the interface

conditions of the electric field,

ε1E
−
ξ = ε2E

+
ξ , E−

η = E+
η , E−

z = E+
z , (11.68)

where ξ and η are the local normal and the tangential coordinates on the interface

Γ, and Eξ = Exnx + Eyny and Eη = −Exny + Eynx are the normal and the
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tangential electric field components, respectively. Using the envelope assumption

of (11.43), and denoting

ϕξ = ϕ1nx + ϕ2ny, ϕη = −ϕ1ny + ϕ2nx, (11.69)

γf =
ε1
ε2
, (11.70)

we can obtain

γfϕ
−
ξ = ϕ+

ξ , ϕ−
η = ϕ+

η , ϕ−
3 = ϕ+

3 . (11.71)

From (11.71), fj can be written in terms of (ϕ−
ξ , ϕ−

η , ϕ
−
3 ) and (ϕ+

ξ , ϕ
+
η , ϕ+

3 )

in a symmetric form:⎧⎨⎩
(

f1
f2

)
= 1

2

[
nx −ny

ny nx

](
(γf − 1)ϕ−

ξ + (1− γ−1
f )ϕ+

ξ

0

)
,

f3 = 0,

(11.72)

which recasts the interface conditions (11.68) of the electric field in terms of the

envelope functions.

To derive the jump data gj for the normal derivative of the electric field, we

consider the interface conditions of the magnetic field,

μ1H
−
ξ = μ2H

+
ξ , H−

η = H+
η , H−

z = H+
z . (11.73)

With the envelope assumption (11.43) and Ampère’s law

∇×E = −iωμH, (11.74)

defining

γg =
μ2

μ1
, (11.75)

we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂ϕ3

∂η −
(

∂ϕη

∂t − iβϕη

)]−
=

[
∂ϕ3

∂η −
(

∂ϕη

∂t − iβϕη

)]+
,

γg

[(
∂ϕξ

∂t
− iβϕξ

)
− ∂ϕ3

∂ξ

]−
=

[(
∂ϕξ

∂t
− iβϕξ

)
− ∂ϕ3

∂ξ

]+
,

γg

(
∂ϕη

∂ξ −
∂ϕξ

∂η

)−
=

(
∂ϕη

∂ξ −
∂ϕξ

∂η

)+

.

(11.76)

From the second equation, g3 can be expressed in terms of ∂ϕ−
3 /∂ξ and ∂ϕ+

3 /∂ξ

in a symmetric form:

g3 =
1

2

[
(1 + γ−1

g )

(
∂ϕ+

ξ

∂t
− iβϕ+

ξ

)
+ (γg − 1)

∂ϕ−
3

∂ξ

− (1 + γg)

(
∂ϕ−

ξ

∂t
− iβϕ−

ξ

)
+ (1− γ−1

g )
∂ϕ+

3

∂ξ

]
. (11.77)
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The right-hand side of (11.77) actually involves time derivatives of ϕ1 and ϕ2

on both sides of the interface, which can be replaced with spatial derivatives by

using the time-dependent Schrödinger equations for ϕ1 and ϕ2.

Next, using the identity

nxg1 + nyg2 =
∂ϕ+

ξ

∂ξ
−

∂ϕ−
ξ

∂ξ
, (11.78)

and the third equation in (11.76), and after some manipulation, we find g1 and

g2 in terms of (∂ϕ−
ξ /∂ξ, ∂ϕ

−
η /∂ξ) and (∂ϕ+

ξ /∂ξ, ∂ϕ
+
η /∂ξ) in a symmetric form:

(
g1
g2

)
=

1

2

[
nx −ny

ny nx

]
⎛⎜⎜⎜⎜⎜⎜⎜⎝

2
∂ϕ+

ξ

∂ξ
− 2

∂ϕ−
ξ

∂ξ

(γg − 1)
∂ϕ−

η

∂ξ +
(
1− 1

γg

)
∂ϕ+

η

∂ξ +

(
1 + 1

γg

)
∂ϕ+

ξ

∂η
− (1 + γg)

∂ϕ−
ξ

∂η

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (11.79)

Similarly, the jump data fj for the magnetic field components and gj for their

normal derivatives can be shown to satisfy (11.72), (11.77), and (11.79), with

γf =
μ1

μ2
, γg =

ε2
ε1
. (11.80)

11.2.3 GDG-BPM for electric fields

In this section, we use the GDG method to obtain a full vectorial GDG-BPM

for optical waveguides where the electromagnetic fields and/or their derivatives

can be discontinuous across material interfaces. To illustrate the GDG-BPM, we

consider the paraxial approximation of a standard cylindrical optical fiber (Fig.

11.2).

Assuming that the field is time-harmonic with frequency ω and that there are

no charge or current sources, the vector wave equation for E(x, y, z = t) in (5.30)

simplifies to

∇×∇×E = ω2εμE, (11.81)

which leads to

∇2E+ ω2εμE = ∇(∇ ·E). (11.82)

Since ∇ · (εE) = 0, we have

∇ ·E = ∇ ·
(
1

ε
εE

)
= −1

ε
(∇ε ·E) = −∇ε̂ ·E, (11.83)

where

ε̂ ≡ ln ε. (11.84)
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Assuming that ε = ε(x, y) is uniform along the fiber propagation direction, the

vector Helmholtz equation (11.82) becomes

∇2E+ ω2εμE = −∇
(
∂ε̂

∂x
Ex +

∂ε̂

∂y
Ey

)
. (11.85)

Based on the slow envelope assumption for (11.43) (paraxial approximation,

Snyder & Love (1983)), i.e.,∣∣∣∣∂2ϕj

∂t2

∣∣∣∣
 2β

∣∣∣∣∂ϕj

∂t

∣∣∣∣ , j = 1, 2, 3, (11.86)

we can ignore the second-order derivative in t to obtain the following coupled

equations at (x, y) /∈ Γ:

i2β
∂ϕ1

∂t
=

∂2ϕ1

∂x2
+

∂2ϕ1

∂y2
+ (ω2εμ− β2)ϕ1

+
∂2ε̂

∂x2
ϕ1 +

∂2ε̂

∂x∂y
ϕ2 +

∂ε̂

∂x

∂ϕ1

∂x
+

∂ε̂

∂y

∂ϕ2

∂x
, (11.87)

i2β
∂ϕ2

∂t
=

∂2ϕ2

∂x2
+

∂2ϕ2

∂y2
+ (ω2εμ− β2)ϕ2

+
∂2ε̂

∂x∂y
ϕ1 +

∂2ε̂

∂y2
ϕ2 +

∂ε̂

∂x

∂ϕ1

∂y
+

∂ε̂

∂y

∂ϕ2

∂y
, (11.88)

i2β
∂ϕ3

∂t
=

∂2ϕ3

∂x2
+

∂2ϕ3

∂y2
+ (ω2εμ− β2)ϕ3

+
∂ε̂

∂x

(
∂ϕ1

∂t
− iβϕ1

)
+

∂ε̂

∂y

(
∂ϕ2

∂t
− iβϕ2

)
. (11.89)

For convenience, we define the jump data for the dielectric constant ε as

fε̂(x
∗, y∗, t) = [ε̂(x∗, y∗, t)] = ε̂(x∗+, y∗+, t)− ε̂(x∗−, y∗−, t),

gε̂(x
∗, y∗, t) =

[
∂ε̂(x∗, y∗, t)

∂n

]
=

∂ε̂(x∗+, y∗+, t)

∂n
− ∂ε̂(x∗−, y∗−, t)

∂n
.

Following the procedure proposed in Section 11.1 (Fan, Cai, & Ji, 2008b), we

can rewrite the system (11.87)–(11.89) using Dirac δ functions as follows.

Formulation A

For j = 1, 2, 3,

i2β
∂ϕj

∂t
=

∂pj
∂x

+
∂qj
∂y

− δ(ξ − ξ∗)|∇ξ|2gj + Sj , (11.90)

pj =
∂ϕj

∂x
− δ(ξ − ξ∗)fj

∂ξ

∂x
, (11.91)

qj =
∂ϕj

∂y
− δ(ξ − ξ∗)fj

∂ξ

∂y
, (11.92)
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where the jump data fj and gj are given by (11.72), (11.77), and (11.79) to

enforce the physical jump conditions for the electromagnetic field components.

The lower-order terms above are given by

S1(ϕ1, ϕ2, p1, p2) = (ω2εμ− β2)ϕ1 + pxε̂ϕ1 + qxε̂ ϕ2 + pε̂p1 + qε̂p2,

S2(ϕ1, ϕ2, q1, q2) = (ω2εμ− β2)ϕ2 + pyε̂ϕ1 + qyε̂ϕ2 + pε̂q1 + qε̂q2,

S3(ϕ1, ϕ2, ϕ3) = (ω2εμ− β2)ϕ3 + pε̂

(
∂ϕ1

∂t
− iβϕ1

)
+ qε̂

(
∂ϕ2

∂t
− iβϕ2

)
,

where ∂ϕ1/∂t and ∂ϕ2/∂t in S3 can be replaced by (11.90), with j = 1, 2, and

pε̂ =
∂ε̂

∂x
− δ(ξ − ξ∗)fε̂

∂ξ

∂x
,

qε̂ =
∂ε̂

∂y
− δ(ξ − ξ∗)fε̂

∂ξ

∂y
,

pxε̂ =
∂pε̂
∂x

− δ(ξ − ξ∗)

(
∂fε̂
∂x

+ gε̂
∂ξ

∂x

)
∂ξ

∂x
,

pyε̂ =
∂pε̂
∂y

− δ(ξ − ξ∗)

(
∂fε̂
∂x

+ gε̂
∂ξ

∂x

)
∂ξ

∂y
,

qxε̂ =
∂pε̂
∂x

− δ(ξ − ξ∗)

(
∂fε̂
∂y

+ gε̂
∂ξ

∂y

)
∂ξ

∂x
,

qyε̂ =
∂pε̂
∂y

− δ(ξ − ξ∗)

(
∂fε̂
∂y

+ gε̂
∂ξ

∂y

)
∂ξ

∂y
.

Here, pε̂, qε̂, p
x
ε̂ , p

y
ε̂ , q

x
ε̂ , and qyε̂ will be zero if ε is piecewise constant.

In the above derivations, partial derivatives of f(x, y) on Γ are used, while

f(x, y) is only given on the interface Γ. Therefore, some types of smooth extension

away from the interface will be needed to yield those partial derivatives. The

simplest one is to use a constant extension locally along the normal direction to

the interface Γ, i.e., assuming ∂f/∂ξ = 0. Then we have

∂f

∂x
=

∂f

∂ξ

∂ξ

∂x
+

∂f

∂η

∂η

∂x
=

∂f

∂η

∂η

∂x
,

∂f

∂y
=

∂f

∂ξ

∂ξ

∂y
+

∂f

∂η

∂η

∂y
=

∂f

∂η

∂η

∂y
.

The extension is by no means unique. However, the accuracy of the resulting

numerical methods will not be affected by a specific choice of the extension as

long as the extension produces a locally smooth function.

Alternatively, we can use Gauss’s law ∇ · (εE) = 0 to solve for the Ez compo-

nent, which results in the following equation for ϕ3(x, y, z ≡ t):

ε
∂ϕ3

∂t
= −ε∂ϕ1

∂x
− ε

∂ϕ2

∂y
− εxϕ1 − εyϕ2 − (εt − iβε)ϕ3. (11.93)

If the evolution equation (11.93) is used for ϕ3, instead of (11.90) with j = 3,

we have the following alternative version of the GDG-BPM for the electric field.
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Formulation B

For j = 1, 2,

i2β
∂ϕj

∂t
=

∂pj
∂x

+
∂qj
∂y

− δ(ξ − ξ∗)|∇ξ|2gj + Sj , (11.94)

ε
∂ϕ3

∂t
= −εp1 − εq2 − εxϕ1 − εyϕ2 − (εt − iβε)ϕ3, (11.95)

pj =
∂ϕj

∂x
− δ(ξ − ξ∗)fj

∂ξ

∂x
, (11.96)

qj =
∂ϕj

∂y
− δ(ξ − ξ∗)fj

∂ξ

∂y
. (11.97)

The time evolution equation for ϕ3 in formulation B is a simple ODE, thus

requiring less computational cost compared to the corresponding equation for

ϕ3 in formulation A.

11.2.4 GDG-BPM for magnetic fields

We obtain a wave equation for H as follows:

∇×
(
1

ε
∇×H

)
= ω2μH. (11.98)

Assuming that μ is a constant (implying ∇ ·H = 0), we get

∇×
(
1

ε
∇×H

)
= −1

ε
∇2H+

(
∇1

ε

)
× (∇×H). (11.99)

Therefore, we have

1

ε
∇2H = ∇1

ε
× (∇×H)− ω2μH. (11.100)

Again, we assume H has an envelope formulation:

H = (Hx(x, y, z), Hy(x, y, z), Hz(x, y, z))
T

= (ϕ1(x, y, z), ϕ2(x, y, z), ϕ3(x, y, z))
Te−iβz. (11.101)

On dropping the term ∂2ϕj/∂z
2 based on the paraxial approximation, replacing

z by t, and assuming that ε̂ ≡ ln ε is independent of z, we get the following

coupled equations at (x, y) /∈ Γ:

i2β
∂ϕ1

∂t
=

∂2ϕ1

∂x2
+

∂2ϕ1

∂y2
+ (ω2εμ− β2)ϕ1 +

∂ε̂

∂y

(
∂ϕ2

∂x
− ∂ϕ1

∂y

)
, (11.102)

i2β
∂ϕ2

∂t
=

∂2ϕ2

∂x2
+

∂2ϕ2

∂y2
+ (ω2εμ− β2)ϕ2 −

∂ε̂

∂x

(
∂ϕ2

∂x
− ∂ϕ1

∂y

)
, (11.103)

i2β
∂ϕ3

∂t
=

∂2ϕ3

∂x2
+

∂2ϕ3

∂y2
+ (ω2εμ− β2)ϕ3

+
∂ε̂

∂x

(
∂ϕ1

∂t
− iβϕ1 −

∂ϕ3

∂x

)
+

∂ε̂

∂y

(
∂ϕ2

∂t
− iβϕ2 −

∂ϕ3

∂y

)
. (11.104)
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Similar to Section 11.2.3, for the interface conditions, we use fj and gj to

denote the jumps of ϕj and ∂ϕj/∂n on the interface, respectively.

Now, we use the δ function and the auxiliary variables p and q to rewrite

(11.102)–(11.104) as follows:

Formulation C

For j = 1, 2, 3,

i2β
∂ϕj

∂t
=

∂pj
∂x

+
∂qj
∂y

− δ(ξ − ξ∗)|∇ξ|2gj + Sj , (11.105)

pj =
∂ϕj

∂x
− δ(ξ − ξ∗)fj

∂ξ

∂x
, (11.106)

qj =
∂ϕj

∂y
− δ(ξ − ξ∗)fj

∂ξ

∂y
, (11.107)

where the jump data fj and gj are again given by (11.72), (11.77), and (11.79)

with (11.80) to enforce the physical interface conditions for the electromagnetic

field components. The lower-order source terms are given by

S1(ϕ1, ϕ2, p2, q1) = (ω2εμ− β2)ϕ1 + qε̂(p2 − q1),

S2(ϕ1, ϕ2, p2, q1) = (ω2εμ− β2)ϕ2 − pε̂(p2 − q1),

S3(ϕ1, ϕ2, ϕ3, p3, q3) = (ω2εμ− β2)ϕ3 + pε̂

(
∂ϕ1

∂t
− iβϕ1 − p3

)
+ qε̂

(
∂ϕ2

∂t
− iβϕ2 − q3

)
,

where ∂ϕ1/∂t and ∂ϕ2/∂t in S3 can be replaced by (11.105), and

pε̂ =
∂ε̂

∂x
− δ(ξ − ξ∗)fε̂

∂ξ

∂x
, qε̂ =

∂ε̂

∂y
− δ(ξ − ξ∗)fε̂

∂ξ

∂y
.

Note that pε̂ and qε̂ will be zero if ε is piecewise constant.

Similarly, we can solve the Hz component in terms of Hx and Hy using ∇ ·
H = 0 to obtain

∂ϕ3

∂t
= −∂ϕ1

∂x
− ∂ϕ2

∂y
+ iβϕ3. (11.108)

As a result, we have the following alternative formulation for the magnetic field.
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Figure 11.3. E- and H-fields of a hybrid mode HE11 inside the core, calculated using
formulation A. From Fan et al. (2008a), copyright (2008) by Elsevier.

Formulation D

For j = 1, 2,

i2β
∂ϕj

∂t
=

∂pj
∂x

+
∂qj
∂y

− δ(ξ − ξ∗)|∇ξ|2gj + Sj , (11.109)

∂ϕ3

∂t
= −p1 − q2 + iβϕ3, (11.110)

pj =
∂ϕj

∂x
− δ(ξ − ξ∗)fj

∂ξ

∂x
, (11.111)

qj =
∂ϕj

∂y
− δ(ξ − ξ∗)fj

∂ξ

∂y
. (11.112)

Again, the time evolution equation for ϕ3 in formulation D is a simple ODE,

thus requiring less computational cost compared with the corresponding equation

for ϕ3 in formulation C.

11.2.5 Propagation of HE11 modes

In the numerical test, the exact HE11 mode is used as the initial condition

ϕ(z ≡ t = 0) and the exact boundary condition at r = R is used. For both

formulations A and B, the parameters for the HE11 mode are chosen as Ψ = 0,

radius of core r0 = 10 μm, radius of cladding R = 20 μm, wave length λ = 1 μm,

wave number k0 = 2π/λ, dielectric constant in the core ε1 = 1.552, and dielectric
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constant in the cladding ε2 = 1.5452, respectively. Using formulation A with

a third-order spatial approximation, Fig. 11.3 shows the intensity contours for

each component and the overall relative error after propagating along the fiber for

1 cm. Formulation B gives similar results. Both formulations give an exponential

convergence for the L2 error as the degree of the polynomial increases.

11.3 Volume integral equations for quantum dots

11.3.1 One-particle Schrödinger equation for electrons

The motion of a quantum particle such as an electron with charge q and mass m

under the influence of an electric potential V (x) is described by the probability

wave function Ψ(x, t), which satisfies the following

• one-electron Schrödinger equation:

i�
∂Ψ

∂t
=

(
− �2

2m
∇2 + U

)
Ψ(x, t), (11.113)

where 2π� = 4.135667516 × 10−15 eV· s is the Planck constant and the

potential energy U is related to the potential V by

U = qV. (11.114)

The potential in such a one-electron description consists of the effect from the

periodic lattice potentials VL(x) due to the ions of the nucleus, the potential due

to the other electrons in the system, which is treated by an average potential

US(x) such as the Kohn–Sham potential in the density functional theory (Parr &

Yang, 1989), and the external macroscopic potential UE(x). Namely, we should

in general have

U(x) = UE(x) + UL(x) + US(x). (11.115)

The solution for a periodic potential UL(x) only is given by the Bloch theory

discussed in Chapter 10 as

Ψ(x, t) = exp

(
− iE(k)t

�

)
eik·xuk(x), (11.116)

where the dispersion relation of the electrons for the nth band under the given

periodic potential is denoted by

E = E(k) = En(k), (11.117)

the computation of which by numerical methods has been discussed in Chapter

10. The effect of the periodic potential can be modeled by an effective mass

Schrödinger equation.
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• Effective mass Schrödinger equation:

i�
∂ψ

∂t
= E(−i∇)ψ(x, t) + (UE(x) + US(x))ψ(x, t). (11.118)

The differential operator E(−i∇) is obtained by replacing k in (11.117) by

(−i∇). For a parabolic dispersion at the edge of the lowest conduction band

(n = 1), we have

E(k) ≈ EC +
�2

2m∗ (k
2
x + k2y + k2z), (11.119)

where EC is the conduction band-edge, and m∗ is related to the curvature of

the dispersion curve, considered to be the effective mass of the electron while

moving through the periodic lattice potential:

1

m∗ =
1

�2
∂2E

∂k2
. (11.120)

Therefore, the effective mass equation for the one-electron Schrödinger equa-

tion (11.113) becomes

i�
∂ψ

∂t
=

[
− �2

2m∗∇
2 + EC + UE(x) + US(x)

]
ψ(x, t). (11.121)

It can been shown (Datta, 1989) that the original wave function Ψ(x, t) is

related to the Bloch wave solutions as follows:

Ψ(x, t) = ψ(x, t)uk(x). (11.122)

As a result, the probability of finding the electron in the region [x,x+ dx] is

given by the squared modulus of the wave function, i.e.,

|Ψ(x, t)|2 dx = |ψ(x, t)|2|uk(x)|2 (11.123)

∝ probability of finding the particle inside the region [x,x+ dx],

and the electron density is

ρ(x)dx = q|ψ(x, t)|2|uk(x)|2 dx (11.124)

∝ charge density in [x,x+ dx].

• Charge continuity equation

The current density J is defined as (Datta, 1989)

J =
�q

2im

(
ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗

)
, (11.125)

and the conservation of charge can be obtained from the Schrödinger equation

(11.121):

∂ρ

∂t
+∇ · J = 0. (11.126)
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z

S0

Ω+
C(Ω0)

Ω+
C(ΩN )

ΩQD

Si

Si+1

SN-1

SN

Ωi

Ωi+1

ψinc ψr

ψext

ψint

r
Ω

Figure 11.4. Quantum dot in a layered medium: Ω+
C denotes a contact; and ΩQD

represents a quantum dot. Note that Si and Si+1 are the boundaries of Ωi+1, and Ωε

is a small circle around r′ with radius ε used for deriving the volume integral equation.

11.3.2 VIE for electrons in quantum dots

We consider a quantum dot embedded in a layered medium with different dielec-

tric constant as in Fig. 11.4, which is under the impact of an incident plane wave

ψinc(r, t) = exp (−iωt)ψinc(r). The scattering wave function and the transmitted

wave function will satisfy the following time-harmonic Schrödinger equation:(
∇ 1

m(r)
∇+ k̄2

)
ψ(r) = 0, (11.127)

where E = �ω and

k̄2 =
2(E − V (r))

�2
. (11.128)

The electron potential V (r) is determined by the potentials given at the top and

the bottom contacts and the band structure of the layered medium. In principle,

a self-consistent potential via a Poisson equation should be used. Here, we will

assume that V (r) is provided a priori and that constant Vi is in the ith layer

outside the quantum dot.

As the quantum dot is embedded in the (N+1)-homogeneous-layered medium

with piecewise V (r), the Schrödinger equation in the ith layer outside the quan-

tum dot can be written as(
1

mi
∇2 + k̄2i

)
ψi(r) = 0, r ∈ Ωc

QD, (11.129)
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where ψi(r) denotes the wave function in the ith layer, and

k̄2i =
2(E − Vi)

�2
. (11.130)

Meanwhile, inside the quantum dot region ΩQD, the Schrödinger equation can

be written as [
1

mi
∇2 +

(
k̄2i +Δk2i

)]
ψi(r) = 0, r ∈ ΩQD, (11.131)

where

Δk2i =
2(E − VQD,i)

�2
mQD

mi
− 2(E − Vi)

�2
. (11.132)

Altogether, the Helmholtz equation can be cast into one equation as[
1

mi
∇2 +

(
k̄2i +Δk2i

)]
ψi(r) = 0, (11.133)

where

Δk2i =

⎧⎨⎩
2(E − VQD,i)

�2
mQD

mi
− k̄2i , if r ∈ ΩQD,

0, if r ∈ Ωc
QD.

(11.134)

Introducing the differential operator

L̂i =
1

mi
∇2 + k̄2i , (11.135)

(11.133) becomes

L̂iψi(r) = −Δk2iψi(r). (11.136)

To derive a volume integral equation for ψ(r), we use Green’s function G(r, r′)

for the layered medium,

L̂iG(r, r′) = − 1

mi
δ(r, r′), (11.137)

and the computation of G(r, r′) has been detailed in Section 6.2.5.

It can be shown in Section 11.3.3 that the wave function inside the quan-

tum dot satisfies the following volume integral equation with a special surface

contribution: (
1

mi(r)
− S − V

)
ψint(r) = f(r), r ∈ ΩQD, (11.138)

where

S
(
ψint

)
(r) =

∫
∂ΩQD

(
1

mi(r′)
− 1

mQD

)
G(r, r′)

∂ψint(r′)

∂nQD
ds′, (11.139)

V
(
ψint

)
(r) = p.v.

∫
ΩQD

G(r, r′)Δ2
k(r

′)ψint(r′)dr′, (11.140)

f(r) =

∫
S0

1

m0

(
G0(r

′, r)
∂ψinc(r′)

∂z′
− ψinc(r′)

∂G0(r
′, r)

∂z′

)
ds′. (11.141)
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The transmission of electron waves through three quantum dots calculated by

(11.138) is shown on the cover of this book (courtesy of Dr. Min Hyung Cho).

11.3.3 Derivation of the VIE for quantum dots embedded in layered media

By subtracting (11.137) × ψ(r) from (11.136) × G(r, r′), we obtain

G(r, r′)L̂iψ(r)−ψ(r)L̂iG(r, r′) = −G(r, r′)Δk2i ψ(r)+
1

mi
δ(r, r′)ψ(r). (11.142)

Excluding a small sphere Ωε(r
′) as depicted in Fig. 11.4, we integrate over

R3\Ωε(r
′) to obtain∫

R3\Ωε(r′)
{G(r, r′)L̂iψ(r)−ψ(r)L̂iG(r, r′)}dr = −

∫
ΩQD\Ωε(r′)

G(r, r′)Δk2i ψ(r)dr.

(11.143)

Denote the reflected wave in the contact (z > 0) by ψr, the wave exterior to the

quantum dot (z < 0) by ψext, and the wave interior to the quantum dot (z < 0)

by ψint, respectively. We will derive a volume integral equation for ψint.

Equation (11.143) can be rewritten as follows:

−
∫
ΩQD\Ωε(r′)

G(r, r′)Δk2i ψ
int(r)dr

=

∫
z>0

[
G(r, r′)L̂iψ

r(r)− ψr(r)L̂iG(r, r′)
]
dr

+

∫
z<0,Ωc

QD

[
G(r, r′)L̂iψ

ext(r)− ψext(r)L̂iG(r, r′)
]
dr

+

∫
z<0,ΩQD\Ωε(r′)

[
G(r, r′)L̂iψ

int(r)− ψint(r)L̂iG(r, r′)
]
dr.

Replacing L̂i by ∇2/mi, introducing a contour Γ∞ made of two semi-spherical

surfaces Γ∞ over the interface (S0) z = 0, and under the interface (SN ) z = zN ,

respectively, and applying Green’s second identity, we have

−
∫
ΩQD\Ωε(r′)

G(r, r′)Δk2i ψ
int(r)dr

=

∫
S0

[
− 1

m0
G0(r, r

′)
∂ψr(r)

∂z
+

1

m0
ψr(r)

∂G0(r, r
′)

∂z

]
ds

+

∫
Γ∞

[
1

m0
G0(r, r

′)
∂ψr(r)

∂n
− 1

m0
ψr(r)

∂G0(r, r
′)

∂n

]
ds

+

∫
S0

[
1

m1
G1(r, r

′)
∂ψext

1 (r)

∂z
− 1

m1
ψext
1 (r)

∂G1(r, r
′)

∂z

]
ds
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+

∫
∂ΩQD

[
− 1

mi
Gi(r, r

′)
∂ψext

i (r)

∂nQD
+

1

mi
ψext
i (r)

∂Gi(r, r
′)

∂nQD

]
ds

+

∫
Γ∞

[
1

mN
GN (r, r′)

∂ψext
N (r)

∂n
− 1

mN
ψext
N (r)

∂GN (r, r′)

∂n

]
ds

+
N−1∑
i=1

∫
Si

[
− 1

mi
Gi(r, r

′)
∂ψext

i (r)

∂z
+

1

mi
ψext
i (r)

∂Gi(r, r
′)

∂z

]
ds

+
N−1∑
i=1

∫
Si

[
1

mi+1
Gi+1(r, r

′)
∂ψext

i+1(r)

∂z
− 1

mi+1
ψext
i+1(r)

∂Gi+1(r, r
′)

∂z

]
ds

+

∫
∂ΩQD

[
1

mi
Gi(r, r

′)
∂ψint

i (r)

∂nQD
− 1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nQD

]
ds

+

∫
∂Ωε

[
− 1

mi
Gi(r, r

′)
∂ψint

i (r)

∂nΩε

+
1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nΩε

]
ds,

where Si is the planar interface between layers, and nΩε
and nQD are the outer

normal of the region Ωε and ΩQD, respectively. So, we have

−
∫
ΩQD\Ωε(r′)

G(r, r′)Δk2i ψ
int(r)dr = I + II + III + IV + V, (11.144)

where

I =

N−1∑
i=1

∫
Si

[
− 1

mi
Gi(r, r

′)
∂ψext

i (r)

∂z
+

1

mi
ψext
i (r)

∂Gi(r, r
′)

∂z

]
ds

+
N−1∑
i=1

∫
Si

[
1

mi+1
Gi+1(r, r

′)
∂ψext

i+1(r)

∂z
− 1

mi+1
ψext
i+1(r)

∂Gi+1(r, r
′)

∂z

]
ds,

II =

∫
S0

[
− 1

m0
G0(r, r

′)
∂ψr(r)

∂z
+

1

m0
ψr(r)

∂G0(r, r
′)

∂z

]
ds

+

∫
S0

[
1

m1
G1(r, r

′)
∂ψext

1 (r)

∂z
− 1

m1
ψext
1 (r)

∂G1(r, r
′)

∂z

]
ds,

III =

∫
Γ∞

[
1

m0
G0(r, r

′)
∂ψr(r)

∂n
− 1

m0
ψr(r)

∂G0(r, r
′)

∂n

]
ds

+

∫
Γ∞

[
1

mN
GN (r, r′)

∂ψext
N (r)

∂n
− 1

mN
ψext
N (r)

∂GN (r, r′)

∂n

]
ds,

IV =

∫
∂ΩQD

[
− 1

mi
Gi(r, r

′)
∂ψext

i (r)

∂nQD
+

1

mi
ψext
i (r)

∂Gi(r, r
′)

∂nQD

]
ds

+

∫
∂ΩQD

[
1

mi
Gi(r, r

′)
∂ψint

i (r)

∂nQD
− 1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nQD

]
ds,



308 Schrödinger equations

V =

∫
∂Ωε

[
− 1

mi
Gi(r, r

′)
∂ψint

i (r)

∂nΩε

+
1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nΩε

]
ds.

Using the interface condition at the interface Si, we have

ψext
i = ψext

i+1, (11.145)

1

mi

∂ψext
i

∂z
=

1

mi+1

∂ψext
i+1

∂z
, (11.146)

Gi = Gi+1, (11.147)

1

mi

∂Gext
i

∂z
=

1

mi+1

∂Gext
i+1

∂z
. (11.148)

It is clear that I = 0. The Sommerfeld radiation condition implies that III = 0.

To simplify integral II, we use the interface condition at S0, z = 0, between the

total wave ψr + ψinc for z > 0 and ψext for z < 0:

ψext = ψr + ψinc, (11.149)

G0 = G1, (11.150)

1

m1

∂ψext

∂z
=

1

m0

∂ψinc

∂z
+

1

m0

∂ψr

∂z
, (11.151)

1

m0

∂G0

∂z
=

1

m1

∂G1

∂z
. (11.152)

We obtain

II =

∫
S0

[
1

m1
G1(r, r

′)
∂ψext

1 (r)

∂z
− 1

m0
G0(r, r

′)
∂ψr(r)

∂z

]
ds

+

∫
S0

[
− 1

m1
ψext
1 (r)

∂G1(r, r
′)

∂z
+

1

m0
ψr(r)

∂G0(r, r
′)

∂z

]
ds

=

∫
S0

[
G0(r, r

′)

(
1

m1

∂ψext
1 (r)

∂z
− 1

m0

∂ψr(r)

∂z

)
− 1

m0

∂G0(r, r
′)

∂z

(
ψext
1 (r)− ψr(r)

)]
ds

=

∫
S0

[
G0(r, r

′)
1

m0

∂ψinc(r)

∂z
− 1

m0

∂G0(r, r
′)

∂z
ψinc(r)

]
ds

=

∫
S0

1

m0

(
G0

∂ψinc(r)

∂z
− ψinc(r)

∂G0(r, r
′)

∂z

)
ds ≡ f(r).

For integral V , we let ε approach zero. Then

V =
1

mi
ψint(r′). (11.153)



11.4 Summary 309

Finally, along the boundary of the quantum dot, we have

ψext
i = ψint

i , (11.154)

1

mi

∂ψext
i

∂nQD
=

1

mQD

∂ψint
i

∂nQD
, (11.155)

so integral IV becomes

IV =

∫
∂ΩQD

[
− 1

mi
Gi(r, r

′)
mi

mQD

∂ψint
i (r)

∂nQD
+

1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nQD

]
ds

+

∫
∂ΩQD

[
1

mi
Gi(r, r

′)
∂ψint

i (r)

∂nQD
− 1

mi
ψint
i (r)

∂Gi(r, r
′)

∂nQD

]
ds

=

∫
∂ΩQD

1

mi

(
1− mi

mQD

)
Gi(r, r

′)
∂ψint

i (r)

∂nQD
ds ≡ S

(
ψint

)
(r).

Therefore, the volume integral equations (11.138)–(11.141) are obtained for a

quantum dot embedded in a layered medium, illuminated by an incident electron

wave ψinc(r′), where the effective mass of the quantum dot is different from that

of the surrounding layered medium.

11.4 Summary

Schrödinger equations occur in both optical waveguides and quantum dots, where

the solution may be not smooth due to the material inhomogeneity in the former

case and potential jumps in the latter. A generalized DG method, based on the

distributional representation of the solution to the Schrödinger equation, designs

the DG approximation accordingly to provide accurate treatment of material

interfaces inside the waveguides. For quantum dots, a volume integral equation

allows the treatment of dissimilar effective mass and potential discontinuities, in

addition to the natural enforcement of the boundary conditions at infinity.





Part III

Electron transport





12 Quantum electron transport in
semiconductors

The transport of carriers (electrons and holes) in semiconductor devices such

as hetero-junctions, MOSFETs, and superlattices can be described by classi-

cal hydrodynamics, drift diffusion models, or semi-classical models (Boltzmann

equations) when the devices are of micron or sub-micron scales, and by quantum

models (such as Wigner distributions) for devices at nano-scales. The key factor

in selecting a specific proper transport model is the mean free path of the carriers

inside a device in comparison to the size of the device.

In this chapter, we present an overview of quantum transport models, firstly

by deriving the Fermi–Dirac distribution for electrons in an equilibrium system

using quantum ensemble theories. Secondly, we define the density matrix for

nano-devices, Wigner distributions, and Wigner–Moyal expansions. The Lan-

dauer transmission theory for quantum transport models will be reviewed. Fi-

nally, the non-equilibrium Green’s function (NEGF) method is introduced for

computing the transmission coefficients of quantum devices. The semi-classical

Boltzmann model, the classical hydrodynamic models, and their numerical meth-

ods, will be discussed in Chapter 15. For Part III of this book, the time depen-

dence of a time-harmonic wave function in the Schrödinger equation will be

assumed to be in the form e−iEt/� for reasons of convention.

12.1 Ensemble theory for quantum systems

12.1.1 Thermal equilibrium of a quantum system

For a quantum subsystem S with given macroscopic state variables such as the

particle number N , the overall energy E, and the volume V , Ω(N,V,E) denotes

the number of quantum states (also called microstates) accessible to S. Each

of the quantum states can be obtained as the stationary eigenstate solution

Ψ(r1, r2, . . . , rN , t) = e−iEt/�ψ(r1, r2, . . . , rN ) of a many-particle Schrödinger

equation

Hψ = Eψ, (12.1)

where

H(r1, r2, . . . , rN ) = − �2

2m

N∑
i=1

∇2
i + U(r1, r2, . . . , rN ). (12.2)
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In general, the system S will be found among the Ω(N,V,E) quantum micro-

states, i.e., the eigenstates of the Schrödinger equation (12.1) with some given

energy E.

If we bring two systems S1 and S2 into contact, allowing exchange of energy

and particles, the combined system S(0) is assumed to be isolated (i.e., there is

no exchange of energy or particles with the outside environment), and eventually,

it reaches its own equilibrium (Pathria, 1996). The combined system will have

constant total energy and number of particles:

E(0) = E1 + E2, (12.3)

N (0) = N1 +N2. (12.4)

If we ignore the interaction energy between the two subsystems S1 and S2, the

number of quantum states for the combined system S(0) is given by

Ω(0)(E1, N1;E2, N2) = Ω1(E1, N1)Ω2(E2, N2),

or

Ω(0)(E1, N1;E
(0)−E1, N

(0)−N1) = Ω1(E1, N1)Ω2(E
(0)−E1, N

(0)−N1). (12.5)

As E1 and N1 are variables due to the exchanges between the two systems, the

number of quantum microstates Ω(0) will then take on different values. When the

macroscopic system S(0) settles down to equilibrium, we expect that Ω(0) will be

maximized, namely that the entropy log Ω(0) will be maximized (i.e., the system

S(0) arrives at its maximum entropy state). Thus, when S(0) is at equilibrium

we have

0 =
∂Ω(0)

∂E1

∣∣∣∣
E1=E1

=
∂Ω1

∂E1

∣∣∣∣
E1=E1

Ω2(E2)− Ω1(E1)
∂Ω2

∂E2

∣∣∣∣
E2=E2

, (12.6)

after using the fact that ∂E2/∂E1 = −1, resulting in the following equality for

the subsystems S1 and S2:

∂ lnΩ1

∂E1

∣∣∣∣
E1=E1

=
∂ lnΩ2

∂E2

∣∣∣∣
E2=E2

, (12.7)

where E1 and E2 are the equilibrium values of the variables E1 and E2, respec-

tively.

The above equality for the two systems in contact allows us to define a ther-

modynamic temperature T of a macroscopic system in equilibrium with its en-

vironment as follows:

1

kBT
= β =

∂ lnΩ(N,V,E)

∂E

∣∣∣∣
N,V,E=E

. (12.8)

A similar calculation can show that the quantity ∂ ln Ω(N,V,E)
∂N

∣∣∣
N=N,V,E

at equi-

librium should also become equal for the two subsystems, and correspondingly

the chemical potential μ for the system is defined as
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μ = −kBT
∂ lnΩ(N,V,E)

∂N

∣∣∣∣
N=N,V,E

. (12.9)

12.1.2 Microcanonical ensembles

An isolated Hamiltonian system, i.e., a system without exchange of energy or par-

ticles with the outside environment, is supposed to occupy any of its microstates

with a prior equal probability (this is the sole assumption of equilibrium classical

statistical mechanics):

P0 =
1

Ω(N,V,E)
, (12.10)

where the energy E is assumed to be fixed (i.e., we invoke the conservation of

energy).

Moreover the system is assumed to be ergodic, namely, starting from any given

microstate at the initial time t = 0, it will eventually come arbitrarily close to

any other microstates. Its dynamics, given by the time-dependent Schrödinger

equations for the quantum system or the Hamiltonian equations for the classical

system, allows one to define a time average of any dynamical variable operator

A (for example, the momentum operator A = −�∇):

A = lim
T→∞

1

T

∫ T

0

〈ψ|A|ψ〉 dt, (12.11)

where 〈ψ|A|ψ〉 denotes the quantum average with respect to a given state ψ:

〈ψ|A|ψ〉 ≡
∫
R3N

ψ∗(r1, . . . , rN , t)Aψ(r1, . . . , rN , t) d3Nr. (12.12)

The time average of a dynamical variable is an experimentally measurable quan-

tity that can be obtained by solving the dynamic equations with computer solu-

tions of the Schrödinger equations or the Hamiltonian equations, as in molecular

dynamics simulations.

Meanwhile, Gibbs (1902) proposed an ensemble formulation to describe the

isolated system, which samples the high-dimensional phase space with the given

probability (12.10), and the resulting collection of N microstates,

{ψ(k)}Nk=1 (an ensemble of microstates), (12.13)

is termed “an ensemble” of the isolated system. For an N -particle classical sys-

tem, the phase space is simply the 6N -dimensional space

Γ = {(q1, . . . ,qN ;p1, . . . ,pN )}, (12.14)

for position q and conjugate momentum variables p. For quantum systems, the

phase space can be defined as the expansion coefficients of the wave functions

under some orthonormal basis {φi}|∞i=1 (Bloch & Walecka, 2001), i.e.,

Γ = {(a1, . . . , ak, . . .)}, (12.15)
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where

ψ =

∞∑
k=1

akφk. (12.16)

The ensemble should sample the phase space with a uniform distribution given

by (12.10) for a finite microstate number Ω, and such an ensemble is called a

“microcanonical ensemble”, particularly for an isolated system where the energy

is at a fixed value. In the Gibbs ensemble theory, a microcanonical ensemble

average is defined as

〈A〉me =
1

N

∞∑
k=1

〈
ψ(k)|A|ψ(k)

〉
. (12.17)

Within the Gibbs ensemble theory, for an ergodic system we can expect that

the time average and the microcanonical ensemble average should agree, namely

A = 〈A〉me (12.18)

for any initial microstate in the definition of the time average.

12.1.3 Canonical ensembles

Let A be a subsystem of a bigger system A(0) at thermal equilibrium of tem-

perature T , which does not exchange particles with the rest of A(0), which is

considered isolated. To construct a Gibbs ensemble to represent such a subsys-

tem at the given temperature T in its environment, identified by the macrostate

variables (N,V, T ), we examine its microstates from the perspective of the big-

ger system A(0). For any N microstates of A(0), we will have a corresponding

set of N microstates for the subsystem A; the latter will be called a “canonical

ensemble” (C.E.) of the system A. It is also referred to as the NVT ensemble.

Due to the exchange of energy between the system A and its environment

A(0)\A, the energy of A will fluctuate while the energy of the bigger system A(0)

remains constant. It can be shown that, in fact, the energy fluctuation is very

small around some average value. Let us denote by nr the number of microstates

in a canonical ensemble of A whose energy is Er. Then∑
r

nr = N . (12.19)

Finding the exact energy level Er for a given N -particle system in a volume V

is a many-body eigenvalue problem, as in (12.1), which is usually too complicated

to be solved directly. Therefore, approximations such as the density functional

theory (DFT) (Parr & Yang, 1989) will be used. However, our discussion on the

canonical ensemble can proceed, assuming the energy levels are Er, r = 1, 2, . . .,

as given.
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We denote the total energy of the ensemble by E . We would like to see how this

amount of energy E will be shared by the microstates in this ensemble. Firstly,

we should have ∑
r

nrEr = E . (12.20)

As expected, the average energy within this ensemble E = E/N will correspond

to the real physical subsystem under study, where E should approach the en-

ergy of the specific system A as the ensemble size N →∞. Therefore, we could

consider the total energy of the ensemble E as a constant for a given N .

The canonical ensemble of A characterized by {nr} with the constraints (12.19)

and (12.20) is not unique, and the possible number of such canonical ensembles

will be given by

W{nr} =
N !

n1!(N − n1)!

(N − n1)!

n2!(N − n1 − n2)!
· · · = N !

n1!n2!n3! · · ·
. (12.21)

The first term in (12.21), N !/(n1!(N − n1)!), gives the probability of n1 out

of the N microstates taking the energy E1, and the second term, (N − n1)!/

(n2! (N−n1 − n2)!), gives the probability of n2 out of the remaining (N − n1)

microstates taking the energy E2, etc. The occurrence of a specific {nr} will be

determined by how the initial N microscopic states of A(0) are selected. As each

selection of the N microstates of A(0) will have the same probability according

to the equal probability postulate for the isolated system A(0), the most likely

choice for {nr}, denoted by {n∗
r}, will be the one for which W{nr} is maximized.

For the canonical ensemble with an energy distribution given by this {n∗
r}, we

will have the most likely energy for the system A, i.e.,

E∗ =
∑
r

n∗
r

N Er. (12.22)

To find {n∗
r}, we consider lnW instead, where

lnW = ln(N !)−
∑
r

ln(nr!). (12.23)

Using the Stirling formula, lnn! ≈ n lnn− n, (12.23) can be rewritten as

lnW = N lnN −
∑
r

nr lnnr. (12.24)

Thus, if the set {nr} is shifted to a slightly different set {nr + δnr}, then the

variation of lnW is given by

δ(lnW ) = −
∑
r

(lnnr + 1)δnr. (12.25)

At an extreme value of lnW , we should have

δ(lnW ) = −
∑
r

(lnn∗
r + 1)δnr = 0. (12.26)
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In addition, from the constraints (12.19) and (12.20), we have∑
r

δnr = 0, (12.27)∑
r

Erδnr = 0. (12.28)

Equations (12.26)–(12.28) form a constrained maximization problem, which

can be reformulated in terms of two Lagrange multipliers,∑
r

[−(lnn∗
r + 1)− α− βEr]δnr = 0, (12.29)

where δnr is now unrestricted. Therefore, we have

lnn∗
r = −(α+ 1)− βEr, (12.30)

which implies

n∗
r = C exp(−βEr), (12.31)

where the constant C can be determined from (12.19):

C =
N∑

r
exp(−βEr)

. (12.32)

Thus, the most likely energy for the system A will be

E∗ =
∑
r

n∗
r

N Er =

∑
r
Er exp(−βEr)∑
r
exp(−βEr)

. (12.33)

The Lagrange multiplier β can be shown (Pathria, 1996) to be related to the

thermodynamic temperature T as follows:

β =
1

kBT
. (12.34)

On the other hand, we should consider the mean value, the expectation value

〈nr〉, among all possible choices of {nr} subject to the constraints (12.19) and

(12.20) defined as

〈ns〉 =

∑
{nr}

′
nsW{nr}∑

{nr}

′
W{nr}

, (12.35)

where
∑′

{nr} indicates the summation only over {nr} satisfying the constraints

(12.19) and (12.20).

Considering 〈nr〉 as a fraction of the total ensemble number N , the probability

Pr that a macro-system of (N,V, T ) is found in a microstate with energy Er

should be just

Pr ≡
〈nr〉
N . (12.36)
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WhenN is large, the only dominant term in (12.35) isW{n∗
r}, and all the other

terms in the summations can be ignored. It may be shown with mathematical

rigor (Pathria, 1996) that, as N →∞, we indeed have

〈nr〉 = n∗
r . (12.37)

Therefore, we have

Pr =
n∗
r

N =
exp(−βEr)∑
r
exp(−βEr)

=
exp(−βEr)

ZN (T )
, (12.38)

where a partition function ZN (T ) for the canonical ensemble is defined as

ZN (T ) =
∑
r

exp(−βEr). (12.39)

Now, the canonical ensemble (C.E.) average energy 〈E〉 for a sufficiently large

C.E. of the system A is given by

〈E〉 = 〈E〉ce ≡
∑
r

PrEr =

∑
r
Er exp(−βEr)

ZN (T )
, (12.40)

which is the same as E∗; namely, the most likely energy E∗ of the system A is in

fact the same as the canonical ensemble average 〈E〉 of the system – the latter is

what experimental measurement yields for the system A. Finally, the constant

β can be found from (12.40) for a measured energy 〈E〉 of the system A.

12.1.4 Grand canonical ensembles

In device transport, the particle number in a device subsystem A is not neces-

sarily a fixed quantity as it is in the canonical ensemble theory. To accommodate

this situation, a grand canonical ensemble theory will be used. In the grand

ensemble, the number of particles Nr and the energy Es in the subsystem A

are both variables, and Ω(Nr, Es) denotes the number of microstates (quantum

states) available to the subsystem A. Meanwhile, N ′
r and E′

s are the number of

particles and the energy in A′ = A(0)\A, respectively – the rest of an isolated

system A(0). And we have

Nr +N ′
r = N (0), (12.41)

Es + E′
s = E(0). (12.42)

We consider an ensemble of N copies of the macroscopic system A with Nr

particles and energy Es. For each possible choice of the particle number Nr, we

denote the number of copies at energy Es by nr,s; then we have
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∑
r,s

nr,s = N , (12.43)

∑
r,s

nr,sNr = N N, (12.44)

∑
r,s

nr,sEs = N E, (12.45)

where E and N denote the average energy and the average particle number of

the ensemble, respectively, which are supposed to approach those of the system

A during the experimental measurement of the system under study as N →∞.

Following the same Lagrange multiplier technique as in the canonical ensemble,

we can show that the probability Pr,s that the system is described by (Nr, Es)

is given by the following Boltzmann factor:

Pr,s =
exp(−αNr − βEs)

ZG(μ, V, T )
, (12.46)

where the grand canonical partition function is defined as

ZG(μ, V, T ) =
∑
r,s

exp(−αNr − βEs), (12.47)

and

α = − μ

kBT
. (12.48)

12.1.5 Bose–Einstein and Fermi–Dirac distributions

The N identical particles in a quantum system differ from those in a classical

system due to the formers’ indistinguishability, and also because of the Pauli

exclusion principle for fermion particles (such as electrons). As a result, the

ensemble distributions for the canonical and the grand canonical will be modified

to reflect these unique features of many-particle quantum systems.

Due to the indistinguishability of the identical quantum particles, no individ-

uality such as an enumeration and distinct labeling can be associated with each

particle in the quantum system. Therefore, an occupation number representation

ns ≡{ns, s = 1, 2, . . .} will be used to describe the N -particle system, where ns

denotes the number of particles with energy εs:

∞∑
s=1

ns = N, (12.49)

and the total energy for the system is then given by

Ens =

∞∑
s=1

nsεs. (12.50)

The N -particle wave function φN (r1, r2, . . . , rN ) for a quantum system of iden-

tical and indistinguishable particles satisfies an anti-symmetric or symmetric
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property in terms of the permutation of the particle labels in the wave function

(Greiner, Neise, & Stöcker, 1995).

• Fermion particles (anti-symmetric): φN (r1, r2, . . . , rN ) = −φN (r2, r1, . . . , rN ),

e.g., electrons, protons, neutrons.

• Boson particles (symmetric): φN (r1, r2, . . . , rN ) = φN (r2, r1, . . . , rN ), e.g.,

photons, 4He.

As an illustration (Greiner, Neise, & Stöcker, 1995), let us consider a box of

size L with N free non-interacting particles of momentum p represented by the

wave function

φp(r) =
1√
L3

eip·r/�, (12.51)

with periodic boundary conditions and p = (px, py, pz)
T:

pi =
2π�

L
ni, ni = 0,±1,±2, . . ., i = x, y, z. (12.52)

The N -particle total wave function labeled by its momentum vector for the

Hamiltonian (12.2) with U = 0 takes the following form in coordinate represen-

tation:

φp1,...,pN
(r1, . . ., rN ) =

N∏
s=1

φps
(rs), (12.53)

with a total energy given by

E =

N∑
s=1

p2s
2m

. (12.54)

This N -particle wave function does not satisfy the symmetry properties for

identical particles, however, which can be achieved by symmetrizing or anti-

symmetrizing, for example, through a Slater determinant for the fermions:

φa
p1,...,pN

(r1, . . ., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
φp1

(r1) φp1
(r2) · · · φp1

(rN )

φp2
(r1) φp2

(r2) · · · φp2
(rN )

...
...

. . .
...

φpN
(r1) φpN

(r2) · · · φpN
(rN )

∣∣∣∣∣∣∣∣∣
=

1√
N !

∑
{p′

1,p
′
2,...,p

′
N}

(−1)σφp′
1
(r1)φp′

2
(r2) · · ·φp′

N
(rN ), (12.55)

where {p′
1,p

′
2, . . . ,p

′
N} denotes any permutation of the indices {p1, . . . ,pN}

and σ is the parity of the permutation. The Slater determinant form of the wave

function of (12.55) also conforms to the Pauli exclusion principle, which states

that no two fermions can occupy the same energy level. This is clear as the

determinant will vanish if two momentum indices for any two rows are the same

(namely, the corresponding energy levels hold two fermions).
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For the bosons, a similar symmetrization procedure can be defined by dropping

the sign factor (−1)σ, i.e.,

φs
p1,...,pN

(r1, . . ., rN )

=
1√

N !n1!n2! · · ·
∑

{p′
1,p

′
2,...,p

′
N}

φp′
1
(r1)φp′

2
(r2) · · ·φp′

N
(rN ), (12.56)

where a different normalization factor is used for the bosons due to the fact that

more than one boson can occupy the same energy level, and ns, s = 1, 2, . . ., is

the number of bosons occupying the s-energy level. The factor
√
ns! accounts

for the number of possible permutations among those ns bosons within the same

energy level, which gives the same product in the sum of (12.56) and a non-

zero contribution to the computation of the norm of the wave function φs
p1,...,pN

(Greiner, Neise, & Stöcker, 1995, p. 289).

In both cases, the total energy of the non-interacting particles is given by

Ens
=

∞∑
s=1

ns
p2s
2m

. (12.57)

Moreover, we have, for 1 ≤ s <∞,

• bosons:

ns = 0, 1, 2, 3, . . ., N ; (12.58)

• fermions:

ns = 0, 1. (12.59)

We now discuss the partition functions for various ensembles for the quantum

system. As each of the microstates identified by ns is in fact an eigenstate of

the non-interacting system (12.2) with U = 0 with energy (12.57), the partition

functions can be defined similarly as in (12.39) or (12.47).

Canonical ensemble

For an NVT ensemble, the partition function simply sums over all occupation

numbers ns subject to the constraint
∑∞

s=1 ns = N indicated by the notation∑′
ns
:

ZN (T ) =

′∑
ns

e−βEns =

′∑
ns

e−β
∑∞

s=1 nsεs . (12.60)

It should be noted that the sum in (12.60) could involve degenerate energy

levels, namely that eigenstates represented by different ns can have the same

energy level Ens . When degeneracy arises, the probability Pr for Er = Ens in

(12.36) will be given a different formula to reflect the degeneracy (Pathria, 1996,

p. 55).
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Due to the constraint on ns, no further simplifications on the partition function

will in general be carried out.

Grand canonical ensemble

In this case, we have

ZG(μ, T ) =
∞∑

Nr=1

′∑
ns

e−αNr−βEns =
∞∑

Nr=1

e−αNr

′∑
ns

e−βEns

=

∞∑
Nr=1

e−αNrZNr
(T ), (12.61)

with the understanding again that degenerate energy levels could be involved in

this sum.

The average particle number for the system can be calculated using

N =

∑
Nr

Nre
−αNrZNr

(T )

ZG(μ, T )
= −

(
∂ lnZG

∂α

)
β,V

=
1

β

(
∂ lnZG

∂μ

)
β,V

. (12.62)

Meanwhile, the constrained sum over ns subject to
∑∞

s=1 ns = Nr can be

turned into an unconstrained sum by considering the fact that 1 ≤ Nr < ∞,

namely by using (12.49) and (12.50) we have

ZG(μ, T ) =

n∞
s∑

ns=(0,0,...)

e−β
∑∞

s=1 ns(εs−μ)

=

n∞
s∑

ns=(0,0,...)

(e−β(ε1−μ))n1(e−β(ε2−μ))n2 · · · =
∞∏
s=1

n∞
s∑

ns=0

e−βns(εs−μ), (12.63)

where n∞
s = (∞,∞, . . .) for bosons and n∞

s = (1, 1, . . .) for fermions.

It should be noted that the single-particle energy level εs for a many-particle

system in general is unknown, especially if electron–electron or electron–phonon

interactions are involved.

Bose statistics (ns = 0, 1, 2, . . .)

For bosons, we have n∞
s = (∞,∞, . . .); thus

ZG(β, T ) =

∞∏
s=1

∞∑
ns=0

e−βns(εs−μ) =

∞∏
s=1

1

1− e−β(εs−μ)
, (12.64)

and then

lnZG(β,T ) = −
∞∑
s=1

ln
[
1− e−β(εs−μ)

]
. (12.65)
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We have, from (12.62):

N =
1

β

(
∂ lnZG

∂μ

)
β,V

=
∞∑
s=1

1

eβ(εs−μ) − 1
=

∞∑
s=1

ns, (12.66)

where

ns ≡
1

eβ(εs−μ) − 1

is the average number of particles at the energy εs, also identified as the Bose–

Einstein distribution for bosons at the chemical potential μ:

fBE(εs − μ) =
1

eβ(εs−μ) − 1
. (12.67)

Fermi statistics (ns = 0, 1)

For fermions, we have instead n∞
s = (1, 1, . . .); therefore

ZG(μ, T ) =

∞∏
s=1

1∑
ns=0

e−βns(εs−μ) =

∞∏
s=1

[
1 + e−β(εs−μ)

]
.

Now

lnZG =

∞∑
s=1

ln
[
1 + e−β(εs−μ)

]
. (12.68)

Then

N =
1

β

(
∂ lnZG

∂μ

)
β,V

=
1

β

∞∑
s=1

βe−β(εs−μ)

1 + e−β(εs−μ)

=
∞∑
s=1

1

1 + eβ(εs−μ)
=

∞∑
s=1

ns, (12.69)

where

ns ≡
1

1 + eβ(εs−μ)

is the average number of particles at energy εs, also identified as the Fermi–Dirac

distribution for fermions at the chemical potential μ:

fFD(εs − μ) =
1

1 + eβ(εs−μ)
. (12.70)

12.2 Density operator ρ̂ for quantum systems

From the discussion in Section 12.1, the probability that a quantum fermion sys-

tem at thermal equilibrium with its environment can be found in a microstate
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with energy Er is given by the Fermi–Dirac distribution in (12.70), and the aver-

age energy of the system can be calculated using this distribution. A dynamical

variable in a quantum system is represented by a Hamiltonian operator and an

observable of the dynamical variable as quantum average with respect to the

microstate wave function. For systems with an ensemble distribution as given in

Section 12.1, the concept of the density operator ρ̂ introduced by von Neumann

(von Neumann, 1927; Tolman, 1950) embodies the statistical distributional char-

acteristics of the ensemble. With this density operator, the trace of the product

of the dynamic operator with ρ̂ will accomplish both the quantum and the statis-

tical averages. Moreover, the coordinate representation of the density operator,

the density matrix, can be used to define the quantum mechanics analog of the

Boltzmann distribution in phase space, the Wigner distribution, and its kinetic

theory for non-equilibrium systems (Liboff, 2003).

For a given N -particle quantum system represented by a wave function |ψ〉 ,
we introduce a coordinate representation as

ψ(x) ≡ 〈x|ψ〉 , (12.71)

where |x〉= (x1, . . ., xN )T.

If the state of the quantum system is prepared such that it is described by

one microstate |ψ〉 , namely the system is in a pure state, we have a complete

knowledge of the system within the context of quantum mechanics. Then, the

average of any physical dynamical variable Â can be calculated by considering

the quantum average with respect to the wave function:〈
Â
〉
=

〈
ψ
∣∣∣Â∣∣∣ψ〉 . (12.72)

This average can also be calculated via a density operator ρ̂ defined as the

projection operator onto the 1-D subspace spanned by |ψ〉:

ρ̂ = P |ψ = |ψ〉 〈ψ| , (12.73)

through a trace operation, i.e.,

tr(ρ̂Â) = tr( |ψ〉 〈ψ| |Â) = tr
(〈

ψ
∣∣∣Â∣∣∣ψ〉) =

〈
Â
〉
. (12.74)

In general, the trace operation tr(Ô) on an operator is defined as

tr(Ô) =

∞∑
i=1

Oii, (12.75)

where Oii =
〈
φi|Ô|φi

〉
is the diagonal element of the operator Ô under any

complete basis { |φn〉} |∞n=1 in the space where Ô is defined. Equation (12.74)

can also be shown by setting |φ1〉 = |ψ〉 in an orthogonal augmentation for the

complete basis.

In practice, only partial information about the state of a system is available. As

a result, a statistical description of the state of the system is required due to the
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uncertain effects arising from the variables outside the given (partial) system. In

other words, no single wave function can completely define this system. Instead,

a probability distribution will be used to describe the chance of the system in

one of the many microstates { |ψi〉}, with some probability ωi; such a quantum

system is said to be in a mixed state. The probability ωi is exactly the frequency

of the wave function |ψi〉 that appears in the ensemble collection of N copies

of microstates of the system
{
|ψ(k)

〉}N
k=1

of (12.13) for the system under study.

Namely,

ωi =
# of |ψ(k)

〉
= |ψi〉

N , N →∞, (12.76)

where

ωi ≥ 0,
∑
i

ωi = 1.

Therefore, the average of the dynamical variable Â can be simply defined as

in (12.17):〈
Â
〉
≡ 1

N

N∑
k=1

〈
ψ(k)

∣∣∣Â∣∣∣ψ(k)
〉

=
∑
i

ωi

〈
ψi

∣∣∣Â∣∣∣ψi

〉
=

∑
i

ωitr(P |ψiÂ) = tr(ρ̂Â), (12.77)

where the density operator has been identified to take the following equivalent

forms (Cohen-Tannoudji, Diu, & Laloe, 2006):

ρ̂ =
1

N

N∑
k=1

|ψ(k)
〉〈

ψ(k)| =
∑
i

ωiP |ψi
=

∑
i

ωi |ψi〉 〈ψi| . (12.78)

In (12.77), two types of averages are involved: the statistical average, with

probability ωi due to the statistical description of the system, and the quantum

average with respect to each microstate |ψi〉 .
The density operator can have different matrix representations, giving different

forms of a density matrix, under various bases such as the physical coordinates

or energy eigenstates of the Hamiltonian of the system. In the physical coordi-

nates, the density matrix for a canonical ensemble of an N -particle system is

defined as

ρ(x,x′) = 〈x|ρ̂|x′〉 =
∑
i

ωiψ
∗
i (x

′)ψi(x), (12.79)

where |x〉 is identified as a complete basis for the physical coordinate space.

To get a representation of the density operator under any other complete basis

{ |φn〉} |∞n=1, we express each of the microstates in the ensemble as (Tolman, 1950;

Pathria, 1996)

|ψ(k)
〉
=

∞∑
n=1

a(k)n |φn〉 , k = 1, 2, . . . . (12.80)
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Therefore

ρ̂ =
1

N

N∑
k=1

∞∑
m=1

∞∑
n=1

a(k)∗n a(k)m |φm〉 〈φn|

=

∞∑
m=1

∞∑
n=1

1

N

( N∑
k=1

a(k)∗n a(k)m

)
|φm〉 〈φn|

=
∞∑

m=1

∞∑
n=1

ρmn |φm〉 〈φn| , (12.81)

where

ρmn =
1

N

( N∑
k=1

a(k)∗n a(k)m

)
(12.82)

is the entry in the matrix representation of the density operator under the basis

{ |φn〉} |∞n=1.

Finally, we want to appreciate better the source of statistical uncertainty em-

bodied in the statistical density operator, arising from the lack of complete knowl-

edge of the outside environment for the system under study (whose variables are

denoted by y, while x denotes the coordinates for the subsystem). If ψ(y,x) is a

microstate wave function for the combined system, we can expand the wave func-

tion under an orthogonal basis { |φn〉} above with y-dependence coefficients, i.e.,

ψ(y,x) =

∞∑
n=1

Cn(y)φn(x), (12.83)

where

Cn(y) = 〈φn|ψ〉 . (12.84)

Then, the quantum average of the dynamical variable of the subsystem Â =

Â(x) is given by

〈
Â
〉
=

〈
ψ|Â|ψ

〉
=

∞∑
n=1

∞∑
n′=1

〈Cn(y)|Cn′(y)〉
〈
φn

∣∣∣Â∣∣∣φn′

〉
=

∞∑
n=1

∞∑
n′=1

ρnn′An′n = tr(ρ̂Â), (12.85)

where the density matrix element ρnn′ can be identified with

ρnn′ = 〈Cn(y)|Cn′(y)〉 , (12.86)

indicating clearly the dependence on the outside y-variable (Feynman, 1972;

Greiner, Neise, & Stöcker, 1995).
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12.2.1 One-particle density matrix ρ(x, x′)

The density matrix defined for the many-particle system in (12.79) is difficult

to compute in practice as the wave functions |ψi〉 are impossible to obtain for a

many-particle Hamiltonian. Fortunately, for electron transport, the one-particle

Schrödinger description of the quantum device in Section 11.3.1 is a very good

approximation, with good selections of the effective mean field potential to model

the many-electron interactions (Hartree and correlations) (Datta, 2005, sect. 3.1–

3.2) as in the density functional theory (Parr & Yang, 1989). For the rest of Part

III of this book, we will use the one-particle Schrödinger equation, for which the

density matrix is simply

ρ(x, x′) = 〈x|ρ̂|x′〉 . (12.87)

If { |φα〉}α are the one-particle energy eigenstates for the Schrödinger equation,

the density operator is given by

ρ̂ =
∑
α

ωα |φα〉 〈φα| , (12.88)

with a given probability ωα. Then, the density matrix representation of the

density operator becomes

ρ(x, x′) = 〈x|
∑
α

ωα |φα〉 〈φα| x′〉 =
∑
α

ωαφα(x)φ
∗
α(x

′). (12.89)

From (12.70), the occupation for electrons at energy εα obeys the Fermi–Dirac

distribution; thus we have

ωα = fFD(εα − μ). (12.90)

The diagonal element of the density matrix gives the density distribution of the

electron:

ρ̂(x, x) =
∑
α

fFD(εα − μ)|φα(x)|2. (12.91)

As |φα〉 are the eigenstates of the Hamiltonian of the quantum system, we

have

fFD(Ĥ − μI) |φα〉 = fFD(εα − μ) |φα〉 , (12.92)

which implies that

ρ̂ =
∑
α

fFD(εα − μ) |φα〉 〈φα| =
∑
α

fFD(Ĥ − μI) |φα〉 〈φα|

= fFD(Ĥ − μI)
∑
α

|φα〉 〈φα| , (12.93)
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namely

ρ̂ = fFD(Ĥ − μI), (12.94)

due to the completeness and the orthogonality of the basis |φα〉 .

12.3 Wigner transport equations and Wigner–Moyal expansions

In order to describe the dynamics of a quantum system in phase space, like the

Boltzmann distribution for classical mechanics system, Wigner introduced the

concept of the Wigner distribution (Wigner, 1932; Tatarskĭi, 1983). Although

the Wigner distribution is not a real probability distribution function due to

its possible negative values, the Wigner function can serve as a distribution

(Jacoboni et al., 2001; Markowich, Ringhofer, & Schmeiser, 2002; Jacoboni &

Bordone, 2004), for example, in calculating number densities, current densities,

etc. Using the Wigner equation to investigate quantum transport has become

more relevant (Frensley, 1987; Kluksdahl et al., 1989) when the quantum behavior

of semiconductor devices cannot be neglected as the size is down to nano-scale.

The Wigner distribution function f(x, k, t) for a pure state ψ(x) in the phase

space (x, k) ∈ R2 for position x and wave number k is defined through a Fourier

transform (Wigner, 1932; Liboff, 2003)

fψ(x, k, t) =
1

2π

∫ ∞

−∞
exp(−iky)ψ

(
x+

y

2

)
ψ∗

(
x− y

2

)
dy. (12.95)

It is easy to show that the Wigner distribution function defined above is a real

quantity; however, it is not necessarily positive. Meanwhile, the density operator

for the pure state defined in (12.73) and (12.87) is given by a projection operator,

i.e.,

ρ̂ψ ≡ |ψ〉 〈ψ| ,

whose matrix representation is simply

ρψ(x, x
′) = 〈x|ρ̂ψ |x′〉 = ψ (x)ψ∗ (x′) .

Therefore, the Wigner function for the pure state in terms of the density

matrix is

fψ(x, k, t) =
1

2π

∫ ∞

−∞
exp(−iky)ρψ

(
x+

y

2
, x− y

2
, t
)
dy. (12.96)

The density matrix entry ρψ (x+ y/2, x− y/2) reflects the correlation of elec-

trons at locations x ± y/2, with x identified as the center of mass of the two

electrons and y as the distance in between. The former can be considered as

the slow variable and the latter as the fast variable; the Wigner distribution

fψ(x, k, t) via the Fourier transform contains the frequency information of the

density matrix in the fast variable.
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For a general quantum system in a mixed state involving microstates |ψα〉 ,
the density operator is a linear superposition of the density operators associated

with each microstate (refer to (12.78)), i.e.,

ρ̂ =
∑
α

ωα |ψα〉 〈ψα| =
∑
α

ωαρ̂ψα
, (12.97)

whose matrix representation is

ρ(x, x′) =
∑
α

ωαψα (x)ψ∗
α (x′) =

∑
α

ωαρψα
(x, x′). (12.98)

Equation (12.98) indicates a linear superposition property of the density ma-

trices. Therefore, the Wigner distribution function can also be defined as a linear

superposition of the corresponding Wigner distributions of the density matrices

as follows:

f(x, k, t) ≡
∑
α

ωαfψα
(x, k, t)

=
∑
α

ωα
1

2π

∫ ∞

−∞
exp(−iky)ρψα

(
x+

y

2
, x− y

2
, t
)
dy

=
1

2π

∫ ∞

−∞
exp(−iky)

∑
α

ωαρψα

(
x+

y

2
, x− y

2
, t
)
dy, (12.99)

resulting in the following definition of the Wigner distribution for a general

quantum system:

f(x, k, t) =
1

2π

∫ ∞

−∞
exp(−iky)ρ

(
x+

y

2
, x− y

2

)
dy. (12.100)

The dynamic equations for the Wigner distribution can be directly obtained

from the Schrödinger equations governing the time evolution of a pure state or

the microstate involved in the definition of the density operator (12.98). Due

to the principle of linear superposition in the definition of the Wigner distribu-

tion function for the mixed states (12.99), we only have to derive the dynamic

equation for the case of a pure state, i.e., ρ(x, x′) = ψ(x)ψ∗(x′), where the wave

function is assumed to satisfy the following Schrödinger equation:

∂

∂t
ψ(x, t) =

i�

2m

∂2

∂x2
ψ(x, t) +

q

i�
V (x)ψ(x, t). (12.101)
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From (12.95), we have

∂

∂t
f(x, k, t)

=
1

2π

∫ ∞

−∞
e−iky

[
∂

∂t
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂

∂t
ψ
(
x+

y

2
, t
)]

dy

=
i�

2m

1

2π

∫ ∞

−∞
e−iky

[
− ∂2

∂x2
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂2

∂x2
ψ
(
x+

y

2
, t
)]

dy

+
q

i�

1

2π

∫ ∞

−∞
e−iky

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

= I + II. (12.102)

We will simplify both terms I and II individually. By using the identities

∂

∂y
ψ∗

(
x+

y

2

)
=

1

2

∂

∂x
ψ∗

(
x+

y

2

)
, (12.103)

∂

∂y
ψ
(
x− y

2

)
= −1

2

∂

∂x
ψ
(
x− y

2

)
, (12.104)

the first term can be rewritten as

I =
4i�

2m

1

2π

∫ ∞

−∞
e−iky

[
− ∂2

∂y2
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂2

∂y2
ψ
(
x+

y

2
, t
)]

dy

=
2i�

m

1

2π

∫ ∞

−∞
e−iky ∂

∂y

[
− ∂

∂y
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂

∂y
ψ
(
x+

y

2
, t
)]

dy. (12.105)

Using integration by parts, assuming the vanishing boundary condition of the

wave functions at infinity, and using the identities (12.103) and (12.104) again,
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I can be further simplified as follows:

I = −2i�

m
(−ik) 1

2π

∫ ∞

−∞
e−iky

[
− ∂

∂y
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂

∂y
ψ
(
x+

y

2
, t
)]

dy

= −k�

m

1

2π

∫ ∞

−∞
e−iky

[
∂

∂x
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)

+ ψ∗
(
x− y

2
, t
) ∂

∂x
ψ
(
x+

y

2
, t
)]

dy

= −k�

m

∂

∂x

1

2π

∫ ∞

−∞
e−ikyψ

(
x+

y

2
, t
)
ψ∗

(
x− y

2
, t
)
dy

= −k�

m

∂

∂x
f(x, k, t). (12.106)

Next, to simplify II, we will express the potential difference V (x + y/2) −
V (x − y/2) in terms of its Fourier transform, the Wigner potential Vw(x, k) as

follows:

Vw(x, k) = i

∫ ∞

−∞
e−iky

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
dy

= 2

∫ ∞

0

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
sin ky dy

= 4

∫ ∞

0

[V (x+ y)− V (x− y)] sin 2ky dy, (12.107)

namely

V
(
x+

y

2

)
− V

(
x− y

2

)
=

1

2πi

∫ ∞

−∞
exp(iky)Vw(x, k)dk. (12.108)

Using (12.108), II becomes

II =
q

i�

1

2π

∫ ∞

−∞
e−iky

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

= − q

2π�

1

2π

∫ ∞

−∞
e−iky

∫ +∞

−∞
eik

′yVw(x, k
′)dk′ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

= − q

2π�

1

2π

∫ ∞

−∞
Vw(x, k

′)dk′
∫ ∞

−∞
e−i(k−k′)yψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

= − q

2π�

∫ ∞

−∞
Vw(x, k

′)f(x, k − k′, t)dk′. (12.109)

Finally, a dynamic equation for the Wigner distribution can be obtained:

∂

∂t
f(x, k, t) +

�k

m

∂

∂x
f(x, k, t) +

q

2π�

∫ ∞

−∞
Vw(x, k − k′)f(x, k′, t)dk′ = 0.

(12.110)
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An alternative form of the Wigner equation can be obtained by using a Taylor

expansion for the potential function, if it exists,

V
(
x+

y

2

)
− V

(
x− y

2

)
= 2

∞∑
s=0

V (2s+1)(x)

(2s+ 1)!

(y
2

)2s+1

, (12.111)

and the identity

∂n

∂kn
f(x, k, t) =

1

2π

∫ ∞

−∞
(−iy)ne−ikyψ

(
x+

y

2

)
ψ∗

(
x− y

2

)
dy. (12.112)

Then the second term II becomes

II =
q

i�

1

2π

∫ ∞

−∞
e−iky

[
V

(
x+

y

2

)
− V

(
x− y

2

)]
ψ∗

(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

=
2q

i�

1

2π

∫ ∞

−∞
e−iky

∞∑
s=0

V (2s+1)(x)

(2s+ 1)!

(y
2

)2s+1

ψ∗
(
x− y

2
, t
)
ψ
(
x+

y

2
, t
)
dy

=
2q

i�

∞∑
s=0

1

(2s+ 1)!
V (2s+1)(x)

(
1

−2i

)2s+1
∂2s+1

∂k2s+1
f(x, k, t)

=
q

�

∞∑
s=0

(−1)s

4s(2s+ 1)!
V (2s+1)(x)

∂2s+1

∂k2s+1
f(x, k, t), (12.113)

resulting in the following Wigner–Moyal expansion (Liboff, 2003).

• Wigner–Moyal expansion of the Wigner equation:

∂

∂t
f(x, k, t) +

�k

m

∂

∂x
f(x, k, t) =

q

�

∞∑
s=0

(−1)s V (2s+1)(x)

4s(2s+ 1)!

∂2s+1

∂k2s+1
f(x, k, t).

(12.114)

Furthermore, we can rewrite (12.114) using the pseudo-differential operator

notation as follows by continuing from the third line of (12.113):

II =
2q

i�

∞∑
s=0

V (2s+1)(x)

(2s+ 1)!

(
1

−2i

)2s+1
∂2s+1

∂k2s+1
f(x, k, t)

=
2q

i�

[
V

(
x+

1

−2i
∂

∂k

)
− V

(
x− 1

−2i
∂

∂k

)]
f(x, k, t)

=
2q

i�

[
V

(
x+

i

2

∂

∂k

)
− V

(
x− i

2

∂

∂k

)]
f(x, k, t), (12.115)

and the Wigner equation becomes (Markowich & Ringhofer, 1989)

∂

∂t
f(x, k, t)+

�k

m

∂

∂x
f(x, k, t)+

2q

i�

[
V

(
x− i

2

∂

∂k

)
− V

(
x+

i

2

∂

∂k

)]
f(x, k, t)= 0.

(12.116)

Even though the Wigner distribution function is not positive, and thus cannot

be treated as a joint probability in the phase space as the Boltzmann distribution
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would be, it can be shown (Liboff, 2003) that for a pure state density operator

ρ(x, x′) = ψ(x)ψ∗(x′), using the plane wave representation of the Dirac δ function

δ(x) =
1

2π

∫ ∞

−∞
eikx dk, (12.117)

the integration over the momentum will give a coordinate probability density,∫ ∞

−∞
f(x, k, t)dk = |ψ(x, t)|2 = n(x, t), (12.118)

while the integration over the spatial coordinate gives a momentum probability

density, ∫ ∞

−∞
f(x, k, t)dx = 2π|ψ̂(k, t)|2, (12.119)

where ψ̂(k, t) is the Fourier transform of the wave function ψ(x, t), i.e.,

ψ̂(k) =
1

2π

∫ ∞

−∞
e−ikxψ(x)dk. (12.120)

Most importantly, like the Boltzmann probability distribution, the Wigner

distribution can be used to compute the average of any quantum variable Â

(Liboff, 2003, p. 354)〈
Â
〉
= tr(ρ̂Â) =

∫ ∞

−∞

∫ ∞

−∞
A(x, k)f(x, k) dx dk, (12.121)

provided that the dynamical function A(x, k) is defined through the Weyl corre-

spondence (Liboff, 2003, eq. (2.55))

A(x, k) = 2

∫ ∞

−∞
e2iky

〈
x+ y

∣∣∣Â∣∣∣x− y
〉
dy. (12.122)

Moreover, the Wigner function can be used to calculate the electron density

n(x, t) as in (12.118) and the current density j(x, t) by

j(x, t) =
�

m

∫ ∞

−∞
kf(x, k, t)dk, (12.123)

and, by integrating the Wigner equation (12.110) over k, the following continuity

equation for the electron is obtained:

∂

∂t
n(x, t) +

∂

∂x
j(x, t) = −p(x, t) = 0, (12.124)

where

p(x, t) =
q

2π�

∫ ∞

−∞
dk

∫ ∞

−∞
dk′Vw(x, k − k′)f(x, k′, t) = 0, (12.125)

due to the anti-symmetry of Vw(x, k) in k. This continuity equation corresponds

to the conservation of the zeroth moment, i.e., the charge conservation.
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12.4 Quantum wave transmission and Landauer current formula

Due to the wave nature of electrons in nano-devices, the transport of the elec-

trons should be described by transmission coefficients as the waves pass through

potential barriers created by either impurities or hetero-junctions. The major

difference between a classical particle and a quantum electron is the tunneling

phenomena through potential barriers shown by the latter. The Landauer the-

ory treats the transmission coefficient as the probability of an electron passing

through a conductor. The Landauer current formula was used for the current–

voltage in the early 1930s to describe tunneling junctions (Duke, 1969) and later

was derived by Tsu and Esaki to calculate the I-V characteristics of the resonant

tunneling diode, which they co-invented (Esaki & Tsu, 1970; Tsu & Esaki, 1973).

12.4.1 Transmission coefficient T (E)

Transmission over a semi-infinite potential step

Consider the transmission of a free electron ψinc(x) = eik1x, x < 0, over a semi-

infinite potential step:

V (x) =

{
0, if x < 0,

V0, if x > 0.
(12.126)

The solution to the Schrödinger equation,

− �2

2m
ψ′′ + V (x)ψ = Eψ, (12.127)

is composed of the reflected (x < 0, region 1) and the transmitted waves (x > 0,

region 2):

ψ(x) =

{
Aeik1x +Be−ik1x, if x < 0,

Ceik2x +De−ik2x, if x > 0,
(12.128)

where

A = 1, k21 =
2mE

�2
, k22 =

2m(E − V0)

�2
. (12.129)

The continuity of the wave function and its derivative (due to the uniform effec-

tive electron mass m) at x = 0 relates the coefficients A and B to C and D by

a transmission matrix T 21: [
C

D

]
= T 21

[
A

B

]
, (12.130)

where

T 21 ≡ T (k1, k2) =
1

2k2

[
k2 + k1 k2 − k1
k2 − k1 k2 + k1

]
. (12.131)
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For the incident free electron defined by a plane wave transmitting over a

semi-infinite potential step, we have A = 1 and D = 0; meanwhile, we denote

B = r and C = t, where

t =
2k1

k1 + k2
, r =

k1 − k2
k1 + k2

. (12.132)

Define the flux transmission coefficient T and the reflection coefficient R as the

ratio of the incident wave current (as defined in (11.125)) over the transmitted

current and the reflected current, respectively. We have

T =
�k2/m

�k1/m
|t|2 =

k2
k1
|t|2 =

4k1k2
(k1 + k2)2

, (12.133)

R =
�k1/m

�k1/m
|r|2 = |r|2 =

(k1 − k2)
2

(k1 + k2)2
. (12.134)

Remark 12.1 If E < V0, then

t =
2k1

k1 + iκ2
, r =

k1 − iκ2

k1 + iκ2
, (12.135)

ψ = te−k2x. Thus, the transmission current is zero, J = 0, and the transmission

coefficient will vanish, i.e., T = 0, and as a result the reflection coefficient R = 1.

Thus, there is no transmitted current, and we have a case of total reflection.

Transmission over a single barrier

A single finite barrier with width a is given by the potential function

V (x) =

{
0, if |x| > a/2,

V0, if |x| < a/2.
(12.136)

The transmission matrix over a single finite barrier can be obtained by the

composition of the transmission matrix defined in (12.131) by (Davis, 1997)

T 31 =

[
e−ik1a/2 0

0 eik1a/2

]
T (k1, k2)

[
eik2a/2 0

0 e−ik2a/2

]
∗
[

eik2a/2 0

0 e−ik2a/2

]
T (k2, k1)

[
e−ik1a/2 0

0 eik1a/2

]
=

[
T 31
11 T 31

12

T 31
21 T 31

22

]
, (12.137)

where k1 =
√
2mE/�2, k2 =

√
2m(E − V0)/�2, and

T 31
21 =

i(k21 − k22) sin k2a

2k1k2
, (12.138)

T 31
22 =

2k1k2 cos k2a− i(k21 + k22) sin k2a

2k1k2
eik1a, (12.139)
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Figure 12.1. Transmission coefficient through one barrier: quantum transmission (solid
line), and classical transmission (dashed line).

T11 = T ∗
22, T12 = T ∗

21. (12.140)

For the transmitted wave magnitude behind the barrier, we have

t =
T11T

∗
22 − T12T

∗
21

T22
=

1

T22
=

2k1k2e
−ik1a

2k1k2 cos k2a− i(k21 + k22) sin k2a
; (12.141)

the transmission flux coefficient is given by

T = |t|2 =
1

1 +
V 2
0

4E(E−V0)
sin2 k2a

,

and the reflection flux coefficient is

R = 1− T.

Remark 12.2 Again for E < V0, we have

k2 = iκ2, κ2 =

√
2m(V0 − E)

�2
, T =

1

1 +
V 2
0

4E(E−V0)
sinh2 k2a

. (12.142)

Figure 12.1 shows the quantum transmission coefficient T (E) for one barrier,

together with the classical transmission coefficient, which shows no transmission

when E < V0 and total transmission otherwise.

12.4.2 Current formula through barriers via T (E)

Density of states in contacts

To describe the current through potential barriers, we first need to know the

density of states of the electrons for the contacts in various physical dimensions



338 Quantum electron transport in semiconductors

in terms of the momentum vector k. This can be achieved simply by counting

the states in k space for one to three dimensions.

• 1-D device contact

For electrons in a 1-D system [0, L] with the periodic boundary condition ψ(0) =

ψ(L) and ψ′(0) = ψ′(L), the quantum states are given by

ψn(x, t) = Ane
−i εn

�
teiknx, (12.143)

with discrete energy levels

εn =
�2k2n
2m

, kn = n
2π

L
, n = 1, 2, 3, . . . . (12.144)

Denote by n(k) the number of quantum states per unit k and per unit length.

Then N(k) = n(k) ∗L is the number of quantum states per unit k for the whole

device, and

N(k)δk = 2(spins)
δk

2π/L
=

L

π
δk ⇒ N(k) =

L

π
. (12.145)

Thus

n(k) =
1

π
. (12.146)

We could also consider the number of states n(E) per unit energy by relating

the momentum k to the energy E using the dispersion relation for the electrons:

E = E(k) =
�2k2

2m
. (12.147)

Next, using the fact that E(−k) = E(k) and

n(E)δE = 2n(k)δk =
2

π
δk, (12.148)

we have

n(E) =
2

π

(
dE

dk

)−1

=
2

π�vg(E)
, (12.149)

where, using the relation ω = E/�, the group velocity is given by

vg =
dω

dk
=

1

�

dE

dk
=

�k

m
, (12.150)

and

n1D(E) =
2m

π�2k
=

1

π�

√
2m

E
. (12.151)

Similarly, it can be shown (Davis, 1997) that the density state per unit energy

per unit volume of 2-D and 3-D devices are as given in the following:
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• 2-D device contact

n2D(E) =
m

π�2
; (12.152)

• 3-D device contact

n3D(E) =
mk

π2�2
=

m

π2�3
√
2mE. (12.153)

Current through 1-D devices and Tsu–Esaki formula

In the Landauer theory, the electron current is defined with charge q, velocity v,

and electron density n by

J = nqv, (12.154)

which is applied in the calculation of the right-going current through a 1-D device

by integrating the electron distribution from the contact over the whole range of

the positive momentum k > 0 vector:

IL = q

∫ ∞

0

fFD(ε(k), μL)v(k)T (k)n1D(k)dk

= q

∫ ∞

0

fFD(ε(k), μL)v(k)T (k)
dk

π
, (12.155)

where fFD(ε(k), μL) is the Fermi–Dirac distribution probability, v(k) is the ve-

locity of the electron, T (k) is the transmission coefficient, n1D(k)dk = dk/π is

the density of states in the range of dk as shown in (12.146), and the transmission

coefficient T (k) is the probability of a given electron with momentum k going

through the device barrier.

Now, using the dispersion relation again in (12.152) to convert the integration

over the momentum k to that of the energy E via the group velocity (the velocity

of the electron v(k) = v(E) = vg(E)), we have

IL = q

∫ ∞

EL
c

fFD(E, μL)v(E)T (E)
dE

π�vg

=
2q

h

∫ ∞

EL
c

fFD(E, μL)T (E)dE, (12.156)

where h = 2π�.
Similarly, we can calculate the left-going current from the other contact using

IR = −2q

h

∫ ∞

ER
c

fFD(E, μR)T (E)dE. (12.157)

By combining (12.156) and (12.157), we obtain the total current through the

device as

I = IL + IR =
2q

h

∫ ∞

EL
c

[fFD(E, μL)− fFD(E, μR)]T (E)dE, (12.158)
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after assuming that no electrons exist in [ER
c , E

L
c ]. Equation (12.158) is the Tsu–

Esaki formula (Esaki & Tsu, 1970; Tsu & Esaki, 1973).

At low temperature T → 0, the Fermi–Dirac distribution tends to be a step

function, i.e., for T = 0,

I =
2q

h

∫ μL

μR
c

T (E)dE. (12.159)

For T > 0,

μL = μ+
qV

2
, μR = μ− qV

2
,

we have the following approximation:

fFD(E, μL)− fFD(E, μR) ≈ qV
∂fFD(E, μ)

∂μ
= −qV ∂fFD

∂E
;

then, the current formula (12.158) simplifies to

I =
2q2V

h

∫ ∞

EL
c

(
−∂fFD

∂E

)
T (E)dE. (12.160)

Therefore, the conductance is given by

G =
I

V
=

2q2

h

∫ ∞

EL
c

(
−∂fFD

∂E

)
T (E)dE;

as T → 0, the Fermi–Dirac distribution function fFD becomes a step function;

thus

−∂fFD
∂E

= δ(E − μ),

and we obtain the well-known Landauer formula (Datta, 2005):

G =
2q2

h
T (μ). (12.161)

Current through quasi-2-D devices

Consider a potential as a function of only the longitudinal variable z, i.e., V (x, y, z)

= V (z), such as quantum wells with infinite size in transverse dimensions, and

denote r = (x, y),k = (kt, kz), where kt = (kx, ky) is the transverse momentum

vector. Then the free electrons in the contact are given by the following plane

wave form:

Ψkt,kz = eikt·rukt(z), (12.162)

ε(k) = EL
c +

�2|kt|2
2m

+
�2k2z
2m

, (12.163)
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and, using the density of states for the 2-D electrons, the right-going current

from the left contact will be

JL = 2q

∫
dkt

(2π)2

∫ ∞

0

dkz
2π

fFD(ε(k), μL)vz(k)T (kz)

= q

∫ ∞

0

dkz
2π

�kz
m

T (kz)

[
2

∫
dkt

(2π)2
fFD

(
EL

c +
�2|kt|2
2m

+
�2k2z
2m

,μL

)]
= q

∫ ∞

0

dkz
2π

�kz
m

T (kz)f2D

(
μL − EL

c −
�2kz

2

2m

)
, (12.164)

where

f2D(μ) =
mkBT

π�2
ln

(
1 + e

μ
kBT

)
=

∫ ∞

0

m

π�2
1

1 + e
E−μ
kBT

dE. (12.165)

Thus,

JL =
q

h

∫ ∞

EL
c

f2D(μL − E)T (E)dE. (12.166)

Similarly, we have, for the right contact,

JR = − q

h

∫ ∞

ER
c

f2D(μR − E)T (E)dE. (12.167)

The total current is then given by

J = JL + JR =
q

h

∫ ∞

EL
c

[f2D(μL − E)− f2D(μR − E)]T (E)dE. (12.168)

12.5 Non-equilibrium Green’s function (NEGF) and transport
current

In this section, we will define the NEGF and show how to use it to compute the

transmission coefficient T (E) in the Tsu–Esaki formula (12.158) or the Landauer

current formula (12.161) for general nano-devices. First, we rewrite the density

operator using the identity from the Sokhatsky–Weierstrass theorem (Blanchard

& Brüning, 2002):

2πδ(E − εα) = i

(
1

E − εα + i0+
− 1

E − εα − i0+

)
. (12.169)

Under a complete orthogonal basis { |φα〉}, we have

ρ̂αβ = 〈φβ |fFD(εα − μ)|φα〉

=

∫ ∞

−∞
〈φβ |fFD(E − μ)δ(E − εα)|φα〉 dE. (12.170)
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On defining non-equilibrium Green’s functions of the device as

G(E) = [(E + i0+)I−Hd]
−1,

G+(E) = [(E − i0+)I−Hd]
−1 (12.171)

in the { |φα〉} basis, which is formed with the eigen-functions of the Hamiltonian

Hd of the device (to be specified in Section 12.5.1 and Chapter 13), we have the

following diagonal matrix representation, with the α-diagonal entry given by

G(E)←→ 1

(E + 0i)− εα
,

G+(E)←→ 1

(E − 0i)− εα
. (12.172)

Then

ρ̂αβ =

∫ ∞

−∞
fFD(E − μ)

i

2π
[G(E)−G+(E)]dE. (12.173)

Denoting the spectral operator

A(E) = i(G−G+) (12.174)

in the energy E-space, which indicates the available states for the quantum

system, we have

ρ̂ =
1

2π

∫ ∞

−∞
fFD(E − μ)A(E)dE. (12.175)

Most of the time, a quantum device is considered as an open system consisting

of a local device region Ω and contacts which extend to the outside environment.

If we are only interested in the local device region, we can define the device

density operator ρ̂ similarly. We follow the presentation of Datta (2005, sect.

9.2) closely in the following.

12.5.1 Quantum devices with one contact

Let us denote

[0, L]− device, (−∞, 0)− contact, (12.176)

and decompose the wave function for the contact–device system according to the

physical partition

ψ =

(
ψc

ψd

)
, (12.177)

where ψc is for the contact and ψd is for the device, and ψc(0) = ψd(0) .

The electrons in a contact at chemical potential μ are distributed according

to the equilibrium Fermi–Dirac distribution. Once the contact is attached to

the nano-device, each incident electron wave function ψc
inc will induce a wave

function ψd inside the device, while the latter will produce a reflecting wave χ



12.5 NEGF and transport current 343

into the contact. Therefore, the wave function for the combined contact–device

system can be decomposed into the following so-called scattering states (Jacoboni

et al., 2001; Jacoboni & Bordone, 2004; Datta, 2005):

ψc = ψinc + χ. (12.178)

The Hamiltonian for the contact is given by

H = Uc −
�2

2me

d2

dx2
, (12.179)

and the electrons are assumed to occupy the eigenstates |φα〉 over the contact

[−R, 0] with |R| � 1:

φα(x) = φkα
(x) =

1√
R

exp (ikαx) , (12.180)

with discrete energy levels given by

εα = Uc +
�2k2α
2m

, kα = ±2απ

R
, α = 0, 1, 2, 3, . . . . (12.181)

The contact system can be described by its density matrix ρc(x, x
′) given in

(12.89):

ρc(x, x
′) =

∑
α

φα(x)fFD(εα − μ)φ∗
α(x

′). (12.182)

Let us consider a finite difference discretized version of the Hamiltonian on a

mesh xi = ia, where x0 = 0 is considered to be the left-most point of the device

and x−1 = −a is the right-most point of the contact, and

H � Un − τ(Δ+ +Δ− − 2), (12.183)

where Un = U(xn),Δ+ and Δ− are the +1 and −1 shift operator on the index,

respectively, and

τ =
�2

2mea2
. (12.184)

We define the Hamiltonian for the contact withM mesh points {−∞ < x−M <

· · · < x−1 < 0} as

Hc =

⎛⎜⎜⎜⎜⎜⎝
U−M + 2τ −τ 0 · · · 0

−τ U−M+1 + 2τ −τ · · · 0
...

. . .
. . .

. . .
...

0 0 −τ U−2 + 2τ −τ
0 0 0 −τ U−1 + 2τ

⎞⎟⎟⎟⎟⎟⎠
M×M

,

(12.185)
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and the Hamiltonian for the device with N mesh points as

Hd =

⎛⎜⎜⎜⎜⎜⎝
U0 + 2τ −τ 0 · · · 0

−τ U1 + 2τ −τ · · · 0
...

. . .
. . .

. . .
...

0 0 −τ UN−2 + 2τ −τ
0 0 0 −τ UN−1 + 2τ

⎞⎟⎟⎟⎟⎟⎠
N×N

. (12.186)

The reflective wave in (12.178) can be considered as having been caused by a

source term resulting from the incident wave ψinc (Datta, 2005):

sinc = (EI −Hc)ψinc, (12.187)

where

ψinc = (ψinc(x−M ), . . . , ψinc(x−1))
T. (12.188)

It was then proposed (Datta, 2005, eq. (9.2.1)) that the wave function for the

contact–device system satisfies the following inhomogeneous Schrödinger equa-

tion: [
EI−Hc + iη −C+

−C EI−Hd

] [
ψinc + χ

ψd

]
=

[
sinc
0

]
, (12.189)

where η > 0 is a small perturbation and C is the coupling matrix in the Hamil-

tonian for the combined contact–device system, and

ψd = (ψd(x0), . . . , ψ
d(xN−1))

T. (12.190)

The first equation in (12.189), together with the definition of sinc in (12.187),

gives

[EI−Hc + iη]χ−C+ψd = 0, (12.191)

implying that the reflection wave is given by

χ = GcC
+ψd, (12.192)

where the device Green’s function is defined as

Gc = (EI−Hc + iη)−1. (12.193)

If g(x, x′) is the analytical form for the device Green’s function, then

Gc
i,j = g(xi, xj ;E), −M ≤ i, j ≤ −1. (12.194)

Meanwhile, the second equation in (12.189) reads

(EI−Hd)ψ
d −Cχ = Cψinc. (12.195)

Substituting (12.192) into (12.195), we have

(EI−Hd)ψ
d −CGcC

+ψd = Cψinc, (12.196)
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namely

[EI−Hd−Σ]ψd = s, (12.197)

where

Σ = CGcC
+, (12.198)

s = Cψinc. (12.199)

So we have

ψd = Gs = GCψinc, (12.200)

where the device Green’s function is defined as

G = (EI−Hd−Σ)
−1

. (12.201)

Now, from (12.199) and (12.200), for each of the eigenstates φα as the incident

excitation electron wave, we have sα = Cψc
inc = Cφα, and the corresponding

device wave function is

ψd
α = GCφα.

Assuming a non-correlation among the states of { |ψd
α

〉
}, the density operator

ρ̂d for the device can be written as

ρ̂d =
∑
kα

fFD(εα − μ) |ψd
α

〉 〈
ψd
α|

=

∫
dEfFD(E − μ)

∑
kα

δ(E − εα) |ψα〉 〈ψα|

=

∫
dEfFD(E − μ)GC

∑
kα

δ(E − εα) |φα〉 〈φα| C+G+

=

∫
dEfFD(E − μ)GCAc(E)C+G+, (12.202)

where a spectral function Ac(E) for the contact is defined as

Ac(E) = 2π
∑
kα

δ(E − εα) |φα〉 〈φα| . (12.203)

It should be noted that for devices with one contact only, the summation over kα
in (12.202) is limited over kα > 0 as only right-going electron waves are involved.

However, in a real device, at least two contacts are involved as input and output;

therefore, in general all values of kα will be used as in the derivation above.

Now define the dissipation Γ for the contact as

Γ = CAc(E)C
+
, (12.204)

a spectral function for the device

A(E) = GΓG
+
, (12.205)
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and an electron correlation in the device

Gn(E) = fFD(E − μ)A(E). (12.206)

Then, similar to (12.175), the density matrix for the device can be written as

ρ̂d =
1

2π

∫
fFD(E − μ)A(E)dE =

∫
dE

2π
Gn(E). (12.207)

Next, we will show that the device spectral function A(E) can in fact be

obtained directly from the device Green’s function, instead of using the contact

spectral function Ac(E).

The device Green’s function g(x, x′) can be represented through the eigen-

function expansion following the completeness of the eigenfunctions as follows:

g(x, x′, E) =
∑
kα

φα(x)φ
∗
α(x

′)

E − εα + i0+
, −R ≤ x, x′ ≤ 0, (12.208)

which, by using the identity (12.169), implies that the contact spectral function

Ac(x, x
′, E) in the matrix notation is given by

Ac(x, x
′, E) = i [g(x, x′, E)− g∗(x, x′, E)] (12.209)

or

Ac(E)i,j = i
[
Gc

i,j −Gc+
i,j

]
.

Then, using (12.198), we have

Γ = CAc(E)C
+
= iC(Gc−G

+
c )C

+

= i(Σ−Σ
+
) = −2 Im(Σ). (12.210)

Moreover, from the definition of the device Green’s function in (12.201), we can

see that

Γ = i(Σ−Σ+
) = −i

[
G−1−(G+

)
−1

]
. (12.211)

Finally, substituting (12.211) into (12.205), we have the spectral function for

the device only in terms of the device Green’s function:

A(E) = GΓG+ = i(G−G+) = −2 Im(G). (12.212)

12.5.2 Quantum devices with two contacts

A nano-device [0, L] usually has at least two contacts, such as the source and

the drain in a metal-oxide-semiconductor field-effect transistor (MOSFET), so

we will need the density matrix for a device with two contacts. In general, the

chemical potentials for different contacts are not the same, so the contact–device

system cannot be treated as a thermal equilibrium system in the strictest sense.
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However, we will follow the same procedure as before to obtain the results (Datta,

2005) for the density operator:

ρ̂d =

∫
dE

2π
Gn(E), (12.213)

where

Gn(E) = A(1)(E)fFD(E − μ1) +A(2)(E)fFD(E − μ2), (12.214)

and the device partial spectral functions A(1)(E) and A(2)(E) associated with

the contacts are defined as

A(1)(E) = GΓ1G
+, A(2)(E) = GΓ2G

+. (12.215)

Here, the device Green’s function G is given in (12.201); however, the self-energy

Σ will now consist of the self-energies from the two contacts, i.e.,

Σ = Σ(1) +Σ(2), (12.216)

where

Σ(i) = CiGc,iC
+
i (12.217)

and C1 and C2 are the coupling matrices for the two contacts, and Gc,i is the

contact Green’s function,

Gc,i = [EI−Hci + iη]−1, i = 1, 2. (12.218)

Similar to (12.204), for the two contacts we define their dissipations as

Γ1 = C1A
(1)
c (E)C+

1 , Γ2 = C2A
(2)
c (E)C+

2 , (12.219)

and the spectral functions for the two contacts are defined through their respec-

tive Green’s functions as follows:

A(i)
c (E) = i(Gc,i −G+

c,i) = −2 Im(Gc,i). (12.220)

From (12.219), (12.220), and (12.217), we can see that the dissipation Γi is

again related to the imaginary part of the self-energy Σ(i) as

Γi = −2 Im(Σ(i)), i = 1, 2. (12.221)

In Chapter 13, details of how to obtain the self-energies Σ(i) for the two

contacts will be given in terms of the boundary treatment for the device region

in the framework of both finite difference and finite element discretization of the

Hamiltonians.
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12.5.3 Green’s function and transport current formula

The device NEGF introduced in this section can be shown (Datta, 1997) to be

related to the transmission coefficients for the quantum device. Specifically, the

transmission coefficient T 1-2 from a source input (1) to a drain output (2) can

be expressed in terms of the device Green’s function (12.201) and the imaginary

part of the self-energy (dissipation) (12.221) as follows:

T 1-2(E) = tr
(
Γ1GΓ2G

+
)
= tr

(
Γ2GΓ1G

+
)
. (12.222)

The electron current between contacts 1 and 2 is given for a ballistic transport

by the Tsu-Esaki formula (12.158):

I =
q

π�

∫ +∞

−∞
T 1-2(E)(fFD(E − μ1)− fFD(E − μ2))dE. (12.223)

12.6 Summary

The averaged physical quantities in a quantum system, such as the electron

density, can be calculated using the density operator or its matrix representa-

tion (i.e., the density matrix). The electron transport can be described by the

quantum analog of the Boltzmann kinetic theory, namely the kinetic equation

of the Wigner distribution in the phase space, which is the Fourier transform

of the density operator. Alternatively, the transport current can be described

by the Landauer formula using the transmission coefficient T (E) of an electron

at energy level E as the probability of the electron propagating from an input

to an output. Finally, the non-equilibrium Green’s function (NEGF) method,

which originates from the quantum field theory of many-particle quantum sys-

tems (Fetter &Walecka, 1971; Abrikosov, Gorkov, & Dzyaloshinski, 1975), allows

the numerical calculation of the transmission coefficient T (E) for a device of gen-

eral shape (Datta, 1997; Haug & Jauho, 2007). Chapters 13 and 14 describe the

numerical methods used for solving the NEGF and the Wigner distributions,

respectively.



13 Non-equilibrium Green’s function
(NEGF) methods for transport

In this chapter, we will present the quantum transport method based on non-

equilibrium Green’s functions (NEGFs) for computing electron currents in an

open quantum system. The system is usually connected to surrounding envi-

ronments at different chemical potentials, such as nano-electronics connected to

input contacts at different electric potentials. The NEGF allows the calculation

of electron transmission coefficients through general devices; the latter are then

used for current calculations with the Landauer transport theory discussed in

Section 12.4.

13.1 NEGFs for 1-D devices

13.1.1 1-D device boundary conditions for Green’s functions

For a 1-D ultra-small device with two large contacts as shown in Fig. 13.1, the

electric potential is of the form

V (x) =

⎧⎨⎩
v(1), if −∞ < x < x1,

v(x), if x1 ≤ x ≤ xN ,

v(2), if xN < x < +∞,

(13.1)

where v(α) is the constant potential in the contact α (α = 1, 2). A Green’s

function is defined by(
E − V (x) +

�2

2

∂

∂x

1

m

∂

∂x

)
G(x, x′) = δ(x− x′), x, x′ ∈ (−∞,+∞). (13.2)

1 N

N+10
x x

xx

a

DeviceContact   Contact  

x

1 2

Figure 13.1. A 1-D uniform mesh with grid size a for the computational domain
ΩD = [x1, xN ] (the device region). From Jiang et al. (2008), copyright (2010) by
Elsevier.
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To compute the electron current through the device region, taken to be the

interval [x1, xN ], we only need Green’s function within the device. Therefore,

boundary conditions at x = x1 and x = xN are needed to determine Green’s

function G inside the device. To illustrate, let us consider the left boundary point

x = x1; x = xN can be handled similarly. First, an auxiliary Green’s function

g(x, x′
e) is defined in the contact-1 domain Ω1 = (−∞, x1) by(
E − v(1) +

�2

2m(1)

∂2

∂x2

)
g(x, x′

e) = δ(x− x′
e), x, x′

e ∈ (−∞, x1), (13.3)

which can be viewed as the restriction of (13.2) onto the semi-infinite region Ω1

plus a yet to be determined boundary condition on x = x1. Here, the subscript e

denotes the exterior of the device domain ΩD. Subtracting the product of (13.2)

and g(x, x′
e) from the product of (13.3) and G(x, x′) with x′ ∈ ΩD, integrating

with respect to x on Ω1, and then using Green’s formula, we have

G(x′
e, x

′) =

∫
Ω1

G(x, x′)δ(x− x′
e)dx−

∫
Ω1

g(x, x′
e)δ(x− x′)dx

=

∫
Ω1

�2

2m(1)

(
∂2

∂x2
g(x, x′

e)G(x, x′)− ∂2

∂x2
G(x, x′)g(x, x′

e)

)
dx

=
�2

2m(1)

(
∂g(x, x′

e)

∂x
G(x, x′)− ∂G(x, x′)

∂x
g(x, x′

e)

)∣∣∣∣x1

x=−∞

=
�2

2m(1)

(
∂g(x1, x

′
e)

∂x
G(x1, x

′)− ∂G(x1, x
′)

∂x
g(x1, x

′
e)

)
, (13.4)

where m(1) is the effective mass in contact 1. Here we have used the facts that

m(1) is independent of position inside the contact region Ω1, and that both

G(x, x′) and g(x, x′
e) satisfy the Sommerfeld radiation condition as x→ −∞.

According to (13.4), by assuming different boundary conditions for the aux-

iliary Green’s function g(x, x′
e), we can arrive at different boundary conditions

for Green’s function G(x, x′).

(1) Homogeneous Dirichlet condition, i.e., g(x, x′
e)|x=x1

= 0. It can be

shown using the method of images that g(x, x′
e) is just

g(x, x′
e) = g0(x, x

′
e)− g0(2x1 − x, x′

e), (13.5)

where g0(x, x
′
e) is a retarded Green’s function in the infinite 1-D wire which

satisfies(
E − v(1) +

�2

2m(1)

∂2

∂x2

)
g0(x, x

′
e) = δ(x− x′

e), x ∈ (−∞,∞), (13.6)

namely

g0(x, x
′) =

m(1)

ik(1)�2
exp(ik(1)|x− x′

e|), (13.7)

where k(α) =
√

2m(α)(E − v(α))/�2 for α = 1, 2.
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Using this homogeneous auxiliary Green’s function in (13.4), we obtain

the following boundary condition for the device Green’s function:

G(x′
e, x

′) =
�2

2m(1)

∂g(x1, x
′
e)

∂x
G(x1, x

′), x′
e ∈ (−∞, x1), x

′ ∈ [x1, xN ]. (13.8)

This boundary condition relates the value of Green’s function G(x′
e, x

′) at

a location x′
e outside the device region to the value at the left boundary of

the device x = x1. Such a condition will be useful for the finite difference

discretization of (13.2) at the boundaries of the device, as solution unknowns

at “ghost” points outside the device region will be needed.

(2) Homogeneous Neumann condition, i.e.,
∂g(x,x′

e)
∂x |x=x1

= 0. Then

g(x, x′
e) = g0(x, x

′
e) + g0(2x1 − x, x′

e), (13.9)

and, after plugging (13.9) into (13.4), we obtain the following boundary

condition for the device Green’s function:

G(x′
e, x

′) = − �2

2m(1)

∂G(x1, x
′)

∂x
g(x1, x

′
e), x′

e ∈ (−∞, x1], x
′ ∈ [x1, xN ],

(13.10)

and, in particular, for x′
e = x1,

G(x1, x
′) = − �2

2m(1)

∂G(x1, x
′)

∂x
g(x1, x

−
1 ) = −

1

ik(1)
∂G(x1, x

′)

∂x
, x′ ∈ [x1, xN ].

(13.11)

The boundary condition (13.11) relates the derivative of Green’s function

∂G(x1, x
′)/∂x at the boundary to the boundary value of Green’s function

G(x1, x
′), which in fact defines the so-called Dirichlet-to-Neumann (DtN) map-

ping. This boundary condition will be useful when a finite element method is

used to discretize (13.2).

13.1.2 Finite difference methods for 1-D device NEGFs

Equation (13.2) over the device region [x1, xN ] can be discretized by a second-

order central difference scheme over the mesh x1 < x2 < · · · < xN , xi = x1 +

(i− 1)a, using the following difference formula:

∂

∂x

(
1

m

∂u

∂x

)
x=xi

≈ 1

a2

(
ui+1 − ui

mi+1/2
− ui − ui−1

mi−1/2

)
, (13.12)

where ui = u(xi) and mi±1/2 = m((xi + xi±1)/2), i = 1, 2, . . . , N . For i = 1, the

finite difference scheme becomes

∂

∂x

(
1

m

∂u

∂x

)
x=x1

≈ 1

a2

(
u2 − u1

m3/2
− u1 − u0

m1/2

)
, (13.13)

which implies that we need to specify the nodal value u0 ≡ G0,j = G(x0, xj)

in terms of the nodal values ui ≡ Gi,j , i = 1, 2, . . . , N , for any given j ∈
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{1, 2, . . . , N}. This can be achieved by using the boundary condition (13.8).

Setting x′
e = x0 in (13.8), we have

u0 = G(x0, x
′) =

�2

2m(1)

∂g(x1, x0)

∂x
G(x1, x

′) ≡ ω
(1)
1 u1, (13.14)

where

ω(1)
q =

�2

2m(1)

∂g(x1, x0)

∂x
δq,1 = exp(ik(1)a)δq,1, 1 ≤ q ≤ N. (13.15)

Similarly, at the right end boundary x = xN , we have the following boundary

condition:

uN+1 = G(xN+1, x
′) = ω

(2)
N uN , (13.16)

where

ω(2)
q = exp(ik(2)a)δq,N , 1 ≤ q ≤ N. (13.17)

Applying the discretization (13.12) in (13.2) at xi, i = 1, 2, . . . , N, together

with the boundary conditions (13.14) and (13.16), we arrive at the linear system

(E −Hd −Σ)G = I, (13.18)

where E = EI, the jth column of the matrix G contains ui ≡ Gi,j = G(xi, xj),

i = 1, 2, . . . , N, the matrix Hd is the device (discrete) Hamiltonian

Hd = V +
�2

2a2
DN , (13.19)

where V = diag(V (x1), V (x2), . . . , V (xN )), and the difference derivative matrix

DN =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
m1/2

− 1
m3/2

1
m3/2

· · · · · · 0

1
m3/2

− 1
m3/2

− 1
m5/2

. . .
. . .

...

0 1
m5/2

. . .
. . .

...

...
. . .

. . .
. . . 0

...
. . .

. . . − 1
mN−3/2

− 1
mN−1/2

1
mN−1/2

0 · · · 0 1
mN−1/2

− 1
mN−1/2

− 1
mN+1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13.20)

Moreover, the matrix Σ = (Σp,q) contains the coefficients in the boundary con-

ditions (13.14) and (13.16). Specifically,

Σp,q = Σ(1)
p,q +Σ(2)

p,q, (13.21)
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where

Σ(1)
p,q = − �2

2m1/2a2
ω(1)
q δp,1 = − �2

2m(1)a2
exp(ik(1)a)δq,1δp,1, (13.22)

Σ(2)
p,q = − �2

2mN+1/2a2
ω(2)
q δp,N = − �2

2m(2)a2
exp(ik(2)a)δq,Nδp,N . (13.23)

Here, the complex quantities Σ(1) and Σ(2) are called the self-energies (Datta,

1997) of contacts 1 and 2, respectively, which represent the influence of the

contacts on the current transport through the device.

13.1.3 Finite element methods for 1-D device NEGFs

Denote by ϕi(x) the nodal shape function of a finite element space, namely

ϕi(xj) = δi,j , (13.24)

and assume that Green’s function over the device region ΩD = [x1, xN ] is ap-

proximated by

Gh(x, xj) =
N∑
i=1

Gi,jϕi(x), x, xj ∈ [x1, xN ]. (13.25)

The weak form of (13.2) for the device region implies that, for any test function

ϕ(x), we have

E

∫
ΩD

Ghϕ dx− �2

2

∫
ΩD

1

m

∂Gh

∂x

∂ϕ

∂x
dx−

∫
ΩD

V Ghϕ dx

− �2

2

1

m

∂Gh

∂x
ϕ

∣∣∣∣
x=x1

+
�2

2

1

m

∂Gh

∂x
ϕ

∣∣∣∣
x=xN

= ϕ(xj), (13.26)

where we have set the source x′ = xj in (13.2).

The derivative of Green’s function ∂Gh/∂x at the boundaries will be replaced

by the DtN boundary condition in (13.11), which can be rewritten as

∂Gh(x1, xj)

∂x
=

N∑
i=1

ω
(1)
i Gi,j,

∂Gh(xN , xj)

∂x
=

N∑
i=1

ω
(2)
i Gi,j , (13.27)

where

ω
(1)
i = −ik(1)δi,1, ω

(2)
i = −ik(2)δi,N . (13.28)

Therefore, plugging (13.27) into (13.26), we obtain the following linear system:

(E −Hd −Σ)G = I, (13.29)

where E = ES, in which S = (Sp,q), with

Sp,q =

∫
ΩD

ϕqϕp dx, (13.30)
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and

(Hd)p,q =
�2

2

∫
ΩD

1

m

∂ϕq

∂x

∂ϕp

∂x
dx+

∫
ΩD

V ϕqϕp dx, (13.31)

and again the self-energies Σ(1) and Σ(2) contain the coefficients resulting from

the boundary conditions:

Σ(1)
p,q =

�2

2m1
ω(1)
q δp,1, Σ(2)

p,q = − �2

2mN
ω(2)
q δp,N . (13.32)

Finally, by inverting the matrix system (13.18) or (13.29), we obtain the device

Green’s function, as defined in (12.201), which will play a key role in the NEGF

method for electron transport:

G(E) = (E(E)−Hd(E)−Σ(E))
−1

, (13.33)

where the self-energy is given by

Σ(E) = Σ(1)(E) +Σ(2)(E). (13.34)

13.2 NEGFs for 2-D devices

In this section, we will extend the preceding results on 1-D devices to 2-D devices

(Jiang et al., 2008); as a matter of fact, all derivations are directly applicable

to 3-D devices. Green’s function in two dimensions is defined on the domain

Ω = ΩD ∪ (
∑

α Ωα), which consists of the device and the contacts, Γ = ∂Ω, as

depicted in Fig. 13.2. Here, ΩD is the device region, Ωα is the area of the contact

α which extends to infinity, and Γα = ΓD ∩ ∂Ωα with ΓD = ∂ΩD. For a given

energy E, Green’s function G(r, r′) is defined by

(E −H)G(r, r′) = δ(r− r′), r, r′ ∈ Ω, (13.35)

where

H = −�2

2
∇ ·

(
1

m(r)
∇
)
+ V (r) (13.36)

is the Hamiltonian of the infinite system with an effective mass m(r), Planck

constant is given by 2π�, and V (r) is the potential energy. Here we assume

that Green’s function G(r, r′) vanishes on the boundary Γ and satisfies the Som-

merfeld radiation condition at infinity. Again, we only need to compute Green’s

function on the device region ΩD, without the need for details of Green’s function

in the remaining infinite exterior domain.

13.2.1 2-D device boundary conditions for Green’s functions

We assume that, in the contact region, the potential V (r) is invariant by trans-

lation along the transport direction, and also that the effective mass m(r) is
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Figure 13.2. A device ΩD and its contacts: ΩD is indicated by the bold curve, and Ωα

is the contact α with α = 1, 2, . . .. The boundary between ΩD and Ωα is denoted by
Γα, while the rest of ∂Ωα is Γα,0; ΓD = ∂ΩD. From Jiang et al. (2008), copyright
(2008) by Elsevier.

independent of position. As before, an auxiliary Green’s function g(r, r′e) is de-

fined (Havu et al., 2004) by

(E −H)g(r, r′e) = δ(r− r′e), r, r′e ∈ Ωα, (13.37)

which can be viewed as the restriction of (13.36) onto the semi-infinite region

Ωα plus a yet to be determined boundary condition on Γα. Here, the subscript

e denotes the exterior of the device ΩD. Subtracting the product of (13.35) and

g(r, r′e) from the product of (13.37) and G(r, r′) with r′ ∈ ΩD, integrating with

respect to r on Ωα, and using Green’s formula, we have

G(r′e, r
′) =

∫
Ωα

G(r, r′)δ(r− r′e)dr−
∫
Ωα

g(r, r′e)δ(r− r′)dr

=

∫
Ωα

�2

2m(α)

(
∇2g(r, r′e)G(r, r′)−∇2G(r, r′)g(r, r′e)

)
dr

=

∫
∂Ωα

�2

2m(α)

(
∂g(r, r′e)

∂n
G(r, r′)− ∂G(r, r′)

∂n
g(r, r′e)

)
ds

=

∫
Γα

�2

2m(α)

(
∂g(r, r′e)

∂n
G(r, r′)− ∂G(r, r′)

∂n
g(r, r′e)

)
ds, (13.38)

where m(α) is the effective mass in the contact α and n is the normal vector exte-

rior to the boundary ∂Ωα. Here we have used the facts that m(α) is independent

of position and that both G(r, r′) and g(r, r′e) satisfy the Sommerfeld radiation

condition at infinity and the homogeneous Dirichlet conditions on Γα,0.
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(1) Homogeneous Dirichlet condition, g(r, r′e) = 0 for r ∈ Γα; then

G(r′e, r
′) =

∫
Γα

�2

2m(α)

∂g(r, r′e)

∂n
G(r, r′)ds, r′e ∈ Ωα, r

′ ∈ ΩD. (13.39)

(2) Homogeneous Neumann condition,
∂g(r,r′e)

∂n = 0 for r ∈ Γα; then

G(r′e, r
′) = −

∫
Γα

�2

2m(α)

∂G(r, r′)

∂n
g(r, r′e)ds, r′e ∈ Ωα, r

′ ∈ ΩD. (13.40)

The auxiliary Green’s function g(r, r′e) for both boundary conditions above

are given in Section 13.4 for a strip-shaped contact.

We note that Green’s function satisfies the following continuity conditions for

r ∈ Γα and r′ ∈ ΩD:{
G(r−, r

′) = G(r+, r
′),

1
m(r−)

∂
∂n

G(r−, r
′) = 1

m(r+)
∂
∂n

G(r+, r
′),

(13.41)

where − (+) denotes the limit from the exterior (interior) of ΩD.

Remark 13.1 The continuity equation (13.41) needs some delicate interpre-

tation when both the source point r′ and the field point r are on the device

boundary Γα in deriving the device Green’s function. For this case, we will con-

sider the source point r′ by a limiting process from inside the device toward

the device boundary, and in this way the continuity conditions (13.41) for the

device Green’s function can be used on the device boundary. This continuity is

necessary to connect the values of the device Green’s function from both sides

of the device boundary and obtain the self-energies Σ(α) for the contacts.

Equations (13.39) and (13.40) yield boundary conditions for G(r, r′) provided

that g(r, r′e) is known. As shown in the case of 1-D devices, these boundary con-

ditions will define the self-energy Σ(α) corresponding to the contact α. Equation

(13.39) can be used in a finite difference method to eliminate the unknowns at

“ghost” points r′e in Ωα outside the computational domain ΩD in terms of the

solutions at the boundary points r. Equation (13.40) is the so-called Neumann-

to-Dirichlet (NtD) mapping on Γα by letting r′e → rα with rα ∈ Γα, and can be

used in the finite element method to connect the solution and its normal deriva-

tive. In practice, it is more convenient to use a Dirichlet-to-Neumann (DtN)

mapping, which is the inverse of (13.40). We could get the DtN mapping from

(13.39). Differentiating (13.39) with respect to r′e, letting r′e → rα, and taking

the normal derivative at rα, we obtain

∂G(rα−, r′)
∂nα

=
�2

2m(α)

∫
Γα

∂2g(r, rα−)
∂nα∂n

G(r, r′)ds, (13.42)

where nα denotes the outward normal of ΩD at rα. Equation (13.42) is to be

treated as the Hadamard finite part when r′ is on the boundary.

We will use (13.38), (13.39), and (13.42) to derive the self-energies Σ(α) for

all contacts and then calculate Green’s function.
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Figure 13.3. A 2-D uniform mesh (gray lines) with grid space a in the x-direction and
b in the z-direction. The computational domain ΩD is indicated by the bold black
lines. The width in the z-direction is L. The homogeneous Dirichlet conditions on the
top and bottom boundaries are used. From Jiang et al. (2008), copyright (2008) by
Elsevier.

13.2.2 Finite difference methods for 2-D device NEGFs

If a 2-D quantum device is wide in the y-direction, we can assume that G(r, r′)

is independent of y, i.e., it is a function of (x, z) only. We consider an ultra-small

MOSFET simulation in the strip region Ω (see Fig. 13.3), which consists of

three sub-domains: the contact-1 area Ω1, the device area ΩD, and the contact-2

area Ω2.

As in the 1-D case, the computational domain is denoted as ΩD. Let L be the

thickness of the silicon layer, or the combined thickness of the silicon layer and

the oxide layers if tunneling effects are to be included. When electron tunneling

into the oxide regions is neglected, the homogeneous Dirichlet conditions can be

used on the top and bottom boundaries. We also assume that the band structure

of the contact is independent of x; thus, we have

V (r) =

⎧⎨⎩
v(1)(z), if r ∈ Ω1,

v(x, z), if r ∈ ΩD,

v(2)(z), if r ∈ Ω2,

(13.43)

where r = (x, z) ∈ Ω. The relevant Green’s function is defined by[
E − V (r) +

�2

2
∇ ·

(
1

m
∇
)]

G(r, r′) = δ(r− r′), r, r′ ∈ Ω, (13.44)

where ∇ = (∂/∂x, ∂/∂z). In order to obtain a finite discrete system, we need to

set suitable boundary conditions on Γα, to obtain the self-energiesΣ(α) (α = 1, 2)

as in the 1-D case. Let us deal only with Γ1 as an example, i.e., the computation

of Σ(1). The calculation of Σ(2) is similar. Again, we define an auxiliary Green’s

function g(r, r′e), which satisfies in Ω1 the following:(
E − v(1)(z) +

�2

2m(1)
∇2

)
g(r, r′e) = δ(r− r′e), r, r′e ∈ Ω1. (13.45)
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We will consider the finite difference method first for Green’s function G.

The unknowns are at the nodes rq = ri,j (see Fig. 13.3). For a given source

r′ = rq′ = ri′,j′ , denoting Gq,q′ = G(rq, rq′) and G = [Gq,q′ ]N×N , the unknown

vector is the q′th column of G, with N = NxNz being the number of unknowns.

The relation between the indices q and (i, j) is based on the dictionary order of

the mesh points inside the device (Fig. 13.3), i.e.,

q = j + (i− 1)Nz. (13.46)

The notations Gi,j,i′,j′ , Gi,j,q′ , and Gq,q′ will be used interchangeably. While

using the second-order central difference scheme, we need boundary conditions

when computing the unknowns at Γ1. To compute G1,j,q′ (q′ is fixed), j =

1, . . . , Nz, we need to know the “ghost values” G0,j,q′ using Gq,q′ , q = 1, . . . , N .

For this purpose, we insert the analytical expression of g(r, r′e) from Section 13.4

into (13.39) to obtain

G(x′
e, z

′
e, x

′, z′) =

∫ L

0

G(x1, z, x
′, z′)

∑
l

χ
(1)
l (z)χ

(1)
l (z′e) exp

(
−ik(1)l (x′

e − x1)
)
dz,

(13.47)

with χ
(α)
l (z) and k

(α)
l defined in Section 13.4. From (13.47) with a Nz-point

trapezoidal rule for the integration along Γ1, we have

G(x0, zj , x
′, z′) =

∑
l

∫ L

0

G(x1, z, x
′, z′)χ

(1)
l (z)χ

(1)
l (zj) exp

(
ik

(1)
l a

)
dz

≈
∑
l

Nz∑
j1=1

bG(x1, zj1 , x
′, z′)χ

(1)
l (zj1)χ

(1)
l (zj) exp

(
ik

(1)
l a

)

=

Nz∑
j1=1

∑
l

bG(x1, zj1 , x
′, z′)χ

(1)
l (zj1)χ

(1)
l (zj) exp

(
ik

(1)
l a

)
,

(13.48)

which implies that

G0,j,q′ =
N∑

q=1

ω(1,j)
q Gq,q′ , (13.49)

and

ω(1,j)
q =

⎧⎨⎩
∑

l bχ
(1)
l (zq)χ

(1)
l (zj) exp

(
ik

(1)
l a

)
, if q ∈ {1, . . . , Nz},

0, otherwise.
(13.50)

As a result, Green’s function satisfies a similar equation as in (13.18) with the

following Hamiltonian form:

HdG = VG+
�2

2a2
G � DNx +

�2

2b2
DNz �G, (13.51)
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where the 2-D finite difference operator G �DNx
is applied to each q′-column of

G, denoted as a vector u = G(·, q′) ∈ RN , as follows. If the vector u is arranged

into an Nz ×Nx matrix UNz×Nx
, then we have

G � DNx = UNz×Nx ⊗ (DNx)
T
, (13.52)

where ⊗ indicates the multiplication of each row of the matrix UNz×Nx
by the

matrix (DNx)
T
; DNz �G can be defined similarly.

Meanwhile, the self-energy for the contacts is given by

Σ(1)
p,q =

⎧⎪⎨⎪⎩−
�2

2m1/2,pa2
ω(1,p)
q , if p ∈ {1, . . . , Nz},

0, otherwise,

(13.53)

where m1/2,p = m((x0 + x1)/2, zp).

Truncating the infinite series for ω
(1,j)
q to a finite order M , we obtain the

self-energy as

Σ(1) = QΛQT, (13.54)

where

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ
(1)
1 (z1) χ

(1)
2 (z1) · · · χ

(1)
M (z1)

χ
(1)
1 (z2) χ

(1)
2 (z2) · · · χ

(1)
M (z2)

...
...

. . .
...

χ
(1)
1 (zNz

) χ
(1)
2 (zNz

) · · · χ
(1)
M (zNz

)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×M

(13.55)

and

Λ = − �2b

2m(1)a2
diag

(
exp

(
ik

(1)
1 a

)
, exp

(
ik

(1)
2 a

)
, . . . , exp

(
ik

(1)
M a

))
M×M

.

(13.56)

13.2.3 Finite element methods for 2-D device NEGFs

The nodal shape function ϕq(r), corresponding to the node rq, satisfies

ϕq(rq′) = δq,q′ . (13.57)

The approximate Green’s function, for a given source point rq′ , can be

written as

Gh(r, rq′) =
N∑
q=1

Gq,q′ϕq(r). (13.58)
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The weak form of (13.44) in the computational domain ΩD for any test function

ϕ(r) is then given by

E

∫
ΩD

Ghϕ dr −
∫
ΩD

V Ghϕ dr− �2

2

∫
ΩD

1

m
∇Gh · ∇ϕ dr

+
�2

2

∫
ΓD

1

m

∂Gh

∂n
ϕ ds = ϕ(rq′), (13.59)

where n is the outward unit normal of ΩD, and the source is located at rq′ . By

noting that ΩD is the rectangular region shown in Fig. 13.3, the surface integral

in (13.59) can be rewritten as

�2

2

∫ L

0

(
1

m

∂Gh

∂x
ϕ

)∣∣∣∣x=xNx

x=x1

dz +
�2

2

∫ xNx

x1

(
1

m

∂Gh

∂z
ϕ

)∣∣∣∣z=L

z=0

dx. (13.60)

The second integral in (13.60) is zero due to the homogeneous Dirichlet condi-

tions, while the first one is as follows:

−�2

2

∫ L

0

1

m(x1, z)

∂Gh(x1, z, rq′)

∂x
ϕ(x1, z)dz

+
�2

2

∫ L

0

1

m(xNx , z)

∂Gh(xNx
, z, rq′)

∂x
ϕ(xNx

, z)dz. (13.61)

Again, the derivatives of Green’s function at the boundary will be replaced

by the boundary condition (13.42), which becomes after using the analytical

expression of g(r, r′e) from (13.73)

∂G(x−
1 , z

′
e, x

′, z′)

∂x
=

∫ L

0

G(x1, z, x
′, z′)

∑
l

χ
(1)
l (z)χ

(1)
l (z′e)(−ik

(1)
l )dz, (13.62)

which can be rewritten as

∂Gh(x1, z, rq′)

∂x
= Σ̂(1) ·Gh(x1, z̃, rq′), (13.63)

where

Σ̂(1) · ϕq(x1, z̃) =
m(x1, z)

m(1)

∫ L

0

ϕq(x1, z̃)
∑
l

χ
(1)
l (z̃)χ

(1)
l (z)(−ik(1)l )dz̃. (13.64)



13.3 simulation of a 29 nm double gate MOSFET 361

Using (13.63), the first integral in (13.61) can be written as

�2

2

∫ L

0

1

m(x1, z)

∂Gh(x1, z, rq′)

∂x
ϕ(x1, z)dz

=
�2

2

∫ L

0

1

m(x1, z)

(
Σ̂(1) ·Gh(x1, z̃, rq′)

)
ϕ(x1, z)dz

=
�2

2

∫ L

0

1

m(x1, z)

[
Σ̂(1) ·

(
N∑
q=1

Gq,q′ϕq(x1, z̃)

)]
ϕ(x1, z)dz

=
N∑

q=1

Gq,q′
�2

2

∫ L

0

1

m(x1, z)
(Σ̂(1) · ϕq(x1, z̃))ϕ(x1, z)dz, (13.65)

from which we see that the self-energy Σ(1) can be defined as

Σ(1)
p,q =

�2

2

∫ L

0

1

m(x1, z)
(Σ̂(1) · ϕq(x1, z̃))ϕp(x1, z)dz, (13.66)

namely

Σ(1)
p,q =

�2

2

∫ L

0

1

m(x1, z)

(
m(x1, z)

m(1)

∫ L

0

ϕq(x1, z̃)

×
∑
l

χ
(1)
l (z̃)χ

(1)
l (z)(−ik(1)l )dz̃

)
ϕp(x1, z)dz

=
�2

2

∑
l

−ik(1)l

m(1)

[∫ L

0

χ
(1)
l (z)ϕp(x1, z)dz

][∫ L

0

χ
(1)
l (z̃)ϕq(x1, z̃)dz̃

]
.

(13.67)

In computation, the summation in (13.67) is truncated to a finite order and the

device Green’s function is defined by the 2-D version of (13.29).

13.3 NEGF simulation of a 29 nm double gate MOSFET

The transport current for the NEGF is computed by the Tsu–Esaki/Landauer

formula (12.158), where the self-energies for contacts for finite difference and

finite element have been detailed in Sections 13.1 and 13.2. The electron density

n(r) is given by the diagonal elements of the density matrix ρ̂d in (12.213),

which depends on the potential V (r) in the device by the definition of the device

Green’s function (12.201). To account for the space charge effect, a self-consistent

procedure with a Poisson equation for the potential will be needed, where the

potential distribution is then determined by

−∇ · (ε(r)∇V (r)) = q(−n(r) +Nd(r)), (13.68)

where Nd(r) is the doping density, ε(r) is the dielectric constant, and q is the

electron charge.
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Figure 13.4. An ultra-thin double gate MOSFET structure. The rectangle ABCD is
the computational domain. From Jiang et al. (2008), copyright (2008) by Elsevier.

The geometry of a double gate MOSFET is shown in Fig. 13.4 (Ren et al.,

2003). The width of the device is assumed to be large, and the potential is

invariant along the y-direction. The silicon layer is sandwiched by two symmetric

oxide layers. The source and the drain are heavily doped.

Both finite difference and finite element methods are used to solve the 2-D

coupled Poisson equation and NEGF. The meshes are shown in Fig. 13.3. The

second-order central difference scheme and the linear finite element will be used

in finite difference and finite element methods, respectively.

The self-consistent iteration solution is obtained as follows.

(1) Start with an initial potential distribution V (r) = V0; let Vj be the resulting

potential of the jth iteration, and we will compute Vj+1.

(2) For a given energy E, solve Green’s function G(E) and self-energies Σ(α)(E)

as discussed in Sections 13.1 and 13.2 based on Vj , and then the spectral

function A(α)(E) as defined in (12.215).

(3) Calculate the electron density n(r) by integrating the density matrix ρ̂d
defined in (12.213) with respect to energy E. It is noted that we need to

repeat Step 2 for different sampling values of E for such an integration.

(4) Insert the electron density n(r) into the Poisson equation (13.68) to obtain

a new potential, namely Vj+1.

(5) Check |Vj+1 − Vj | < ε (a given stop accuracy): if yes, stop; otherwise go to

Step 2.

Remark 13.2 Direct use of (13.68) leads to slow convergence. Instead, we will

solve a nonlinear Poisson equation using a Newton method (Ren et al., 2003).

The Poisson equation is solved in the rectangular region ABCD including the

silicon layer and the oxide layers with the boundary condition
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Figure 13.5. Double gate MOSFET: the potential distribution and the density in the
silicon layer; Vg = 0.4 eV, Vds = 0.4 eV. From Jiang et al. (2008), copyright (2008) by
Elsevier.

⎧⎨⎩V (r) = Vg, if r ∈ EF, GH,
∂V (r)

∂n
= 0, if r ∈ AB, BG, HC, CD, DF, EA,

(13.69)

where n is the outward normal of the rectangular region and Vg is the gate

voltage. Here, electron penetration into the oxide regions is neglected, so the

transport equation is considered only in the silicon layer, and the gate voltage

Vg is imposed on gates EF and GH. The floating boundary condition, i.e., a ho-

mogeneous Neumann condition, maintains macroscopic space charge neutrality

at the source (drain) end despite the biasing condition. The rectangular region

is taken to be the computational domain for Green’s function.

Figure 13.5 shows the potential distribution and the density under the gate

bias Vg = 0.4 eV and the drain bias Vds = 0.4 eV in the silicon layer.

13.4 Derivation of Green’s function in 2-D strip-shaped contacts

The retarded Green’s function in an infinite strip wire satisfies(
E − v(α)(z) +

�2

2m(α)
∇2

)
g0(r, r

′) = δ(r− r′), (13.70)

the solution of which reads, for r = (x, z) and r′ = (x′, z′),

g0(r, r
′) =

∑
l

m(α)

ik
(α)
l �2

χ
(α)
l (z)χ

(α)
l (z′) exp

(
ik

(α)
l |x− x′|

)
, (13.71)

where χ
(α)
l (z) satisfies(

− �2

2m(α)

∂2

∂z2
+ v(α)(z)

)
χ
(α)
l (z) = λ

(α)
l χ

(α)
l (z) (13.72)
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and kαl =

√
2m(α)(E − λ

(α)
l )/�2. Then, Green’s function in a semi-infinite strip

wire with a straight line boundary x = d is as follows:

(1) if g(d, z, r′) = 0, then

g(r, r′) = g0(x, z, r
′)− g0(2d− x, z, r′); (13.73)

(2) if ∂g(d, z, r′)/∂x = 0, then

g(r, r′) = g0(x, z, r
′) + g0(2d− x, z, r′). (13.74)

13.5 Summary

The transmission coefficient T (E) of a nano-device, the key quantity in the Lan-

dauer transport theory for nano-devices, is related to the non-equilibrium Green’s

function, which can be computed by either finite element methods or finite dif-

ference methods. Treatment of the boundary condition at the input and output

contacts of the device for both methods can be formulated in terms of a bound-

ary Dirichlet-to-Neumann mapping, which reflects the effect of the contacts on

the transport of the electron through the nano-devices. Simulation tools based

on the NEGF for nano-electronics have been developed in Ren et al. (2003).



14 Numerical methods for Wigner
quantum transport

As a kinetic approach, Wigner equations for quantum transport in nano-devices

and their numerical solutions will be discussed in this chapter. First, we ad-

dress the issues of the phase space truncations for the Wigner distributions in

computational simulations and the Frensley inflow boundary conditions at the

physical boundaries of the devices. Then, a conservative adaptive spectral el-

ement method based on cell averages will be given, followed by an upwinding

finite difference method. Numerical results on a resonant tunneling diode (RTD)

will be presented using both methods.

14.1 Wigner equations for quantum transport

Let us consider the Wigner equation for the Wigner distribution f(x, k, t) of a

1-D quantum device in the phase space (x, k) ∈ R2:

∂

∂t
f(x, k, t) +

�k

m

∂

∂x
f(x, k, t) = ΘV [f ](x, k, t), (14.1)

where

ΘV [f ](x, k, t) = −
q

2π�

∫ ∞

−∞
Vw(x, k − k′)f(x, k′, t)dk′, (14.2)

and the non-local Wigner potential Vw(x, k) is defined in (12.107).

14.1.1 Truncation of phase spaces and charge conservation

The definition of the Wigner potential Vw(x, k) in (12.107) has no meaning when

the Fourier transform of [V (x+ r/2) − V (x− r/2)] does not exist. However, as

(12.100) implies that ρ(x+ r/2, x− r/2) is the inverse Fourier transform of the

Wigner function f(x, k), i.e.,

ρ
(
x+

r

2
, x− r

2

)
=

∫ ∞

−∞
f(x, k′) exp(ik′r)dk′; (14.3)

the right-hand side of (14.1) can be shown to be equivalent to∫ ∞

−∞

[
V

(
x+

r

2

)
− V

(
x− r

2

)]
ρ
(
x+

r

2
, x− r

2

)
exp(−ikr)dr. (14.4)
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As in many cases it is reasonable to assume finite coherence length in the density

operator, i.e.,

ρ
(
x+

r

2
, x− r

2

)
→ 0, as r →∞,

so the Fourier transform in (14.4) is then well defined. For numerical calculations,

it is necessary to truncate the infinite integration domain in (14.4) to a finite

coherence interval [−Lcoh, Lcoh], i.e.,∫ Lcoh

−Lcoh

[
V

(
x+

r

2

)
− V

(
x− r

2

)]
ρ
(
x+

r

2
, x− r

2

)
exp(−ikr)dr, (14.5)

which defines an effective Wigner potential for (14.1):

V̂ eff
w (x, k) = 2

∫ Lcoh

0

sin(ky)
[
V

(
x+

y

2

)
− V

(
x− y

2

)]
dy. (14.6)

Moreover, we only need to compute the Wigner distribution for |k| < Lk/2

for some large value Lk; therefore, we will zero out the distribution function

f(x, k) = 0 if |k| > Lk/2, and thus (14.1) is only solved for |k| < Lk/2 in the

following modified form. For (x, k) ∈ X ×K,

∂

∂t
f(x, k, t) +

�k

m

∂

∂x
f(x, k) +

q

2π�

∫ Lk/2

−Lk/2

V̂ eff
w (x, k − k′)f(x, k′)dk′ = 0, (14.7)

where X is the computational domain in x-space and K = [− Lk/2, Lk/2].

Next, the Wigner potential V̂ eff
w (x, k) will be replaced by a discretized version,

say a Ncoh point trapezoidal rule with a spacing hcoh as follows:

V̂ eff
w (x, k) ≈ V h

w (x, k) = 2hcoh

Ncoh∑
μ=1

sin(kyμ) [V (x+ yμ/2)− V (x− yμ/2)] ,

(14.8)

where

Ncohhcoh = Lcoh, yμ = μhcoh, μ = 1, 2, . . . , Ncoh. (14.9)

In order to keep the charge conservation, we require∫
K
dk

∫
K
dk′ V h

w (x, k − k′)f(x, k′, t) = 0, (14.10)

for V h
w (x, k) with k ∈ K. Frensley (1987, 1990) suggested a sufficient condition

|K|hcoh = 2π, (14.11)
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which guarantees that V h
w (x, k) is not only odd, but also periodic in k with a

period |K|. Equation (14.10) can then be easily verified by noting that, with the

condition (14.11),∫
K
sin[(k − k′)yμ]dk =

cos[yμ(kmin − k′)]− cos[yμ(kmax − k′)]

yμ

=
1

μhcoh
(cos [μhcoh(kmin − k′)]− cos [μhcoh(kmin − k′) + μhcoh|K|]) = 0.

(14.12)

14.1.2 Frensley inflow boundary conditions

The Wigner equation only contains a first-order spatial x-derivative, and there-

fore we need to specify only one boundary condition in x-space. For instance, we

can use the following inflow boundary conditions (Frensley, 1987):

f(xmin, k, t) = fL(k), if k > 0,

f(xmax, k, t) = fR(k), if k < 0.
(14.13)

For open systems, as free electrons are supposed to be injected from infinity,

their dispersion relation in the left contact E = E(k) is given by

E(k1) =
�2k21
2m

+ v1, (14.14)

and a similar dispersion relation holds for the electrons in the right contact.

The left boundary condition for the Wigner function will be

fL(k) =
mkBT

π�2
log

[
1 + exp

(
μs − �

2k2

2m
− v1

kBT

)]
, k > 0, (14.15)

and the right boundary condition is given by

fR(k) =
mkBT

π�2
log

[
1 + exp

(
μd − �

2k2

2m
− v2

kBT

)]
, k < 0, (14.16)

where μs and μd are the Fermi energies of the left contact and the right contact,

and v1 and v2 are the external bias potentials of the left contact and the right

contact, respectively.

14.2 Adaptive spectral element method (SEM)

We will present an adaptive conservative SEM (Shao, Lu, & Cai, 2011), which

uses cell averages centered at Gauss–Chebyshev points in k-space and Gauss–

Lobatto collocation points in x-space. The computational domain X × K is di-

vided into Q×R non-overlapping elements (sub-domains) as follows:

X ×K =

Q⋃
q=1

R⋃
r=1

Xq ×Kr, Xq = [gq−1, gq], Kr = [dr−1, dr], (14.17)
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dr dr−1

+1/2
kj

jI

kj−1/2
kj

Figure 14.1. The k-mesh in the sub-domain Kr = [dr−1, dr]. The black points are the
Gauss–Chebyshev collocation points, denoted by kj . The ends of cells are kj∓1/2

displayed in small circles. From Shao et al. (2011), copyright (2011) by the Global
Science Press.

with g0 = xmin, gQ = xmax, d0 = kmin, and dR = kmax. In an element Xq×Kr (q =

1, 2, . . . , Q and r = 1, 2, . . . , R), the collocation points are {(xi;q,r, kj;q,r)}, with
i = 0, 1, . . . ,Mq,r and j = 1, . . . , Nq,r, so we have (Mq,r + 1) × Nq,r collocation

points. Here, we set xi;q,r to be the Gauss–Lobatto points and kj;q,r to be the

Gauss–Chebyshev points to take advantage of the fast Fourier transforms (Boyd,

2001):

(Gauss–Lobatto) xi;q,r = gq−1 +
Gq

2

(
1 + cos

iπ

Mq,r

)
,

(Gauss–Chebyshev) kj;q,r = dr−1 +
Dr

2

[
1 + cos

(
j − 1

2

)
π

Nq,r

]
, (14.18)

where Gq = gq − gq−1 and Dr = dr − dr−1. Denote by fq,r(x, k, t) the restric-

tion of the Wigner function f(x, k, t) on the element Xq × Kr, and fj,i;q,r(t) :=

fq,r(xi;q,r, kj;q,r, t).

A non-adaptive SEM means choosing the same (Mq,r, Nq,r) for all (q, r)-

elements, i.e., Mq,r and Nq,r are two constants, while an adaptive SEM allows

different (Mq,r, Nq,r) in different elements. The total number of unknowns is

denoted by N :

N =

Q∑
q=1

R∑
r=1

(Mq,r + 1)×Nq,r. (14.19)

We will take the element Xq × Kr as an example to illustrate the adaptive

conservative cell average SEM, and the subscripts q and r for the (q, r)-element

under consideration will be dropped from xi;q,r, kj;q,r, Mq,r, Nq,r, fq,r(x, k, t),

and fj,i;q,r(t).

14.2.1 Cell averages in k-space

A cell Ij in k-space is given as (see Fig. 14.1)

Ij = [kj+1/2, kj−1/2], (14.20)

with

kj∓1/2 = dr−1 +
Dr

2

[
1 + cos

(
j − 1

2
∓ 1

2

)
π

N

]
. (14.21)
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Obviously, we have Kr =
⋃N

j=1 Ij . We define local quantities corresponding to

n(x, t), j(x, t), and p(x, t) in each computational cell as follows:

nj(x, t) =

∫
Ij

f(x, k, t)dk, (14.22)

jj(x, t) =
�

m

∫
Ij

kf(x, k, t)dk, (14.23)

pj(x, t) =
q

2π�

∫
Ij

∫
K
V h
w (x, k − k′)f(x, k′, t) dk′ dk. (14.24)

Then, a local continuity equation for the cell Ij is defined as

∂

∂t
nj(x, t) +

∂

∂x
jj(x, t) + pj(x, t) = 0. (14.25)

From (14.22)–(14.24), we can see that both cell averages and point values of

the Wigner function f(x, k, t), expressed in terms of the Chebyshev polynomials

of the k-variable over each cell, are involved in (14.25). Fortunately, in the Cheby-

shev polynomial space, there is an analytical relation between the expansions for

nj(x, t), jj(x, t), and pj(x, t) as shown below.

For k ∈ Kr, η ∈ [−1, 1], and θ ∈ [0, π], we use the following transform:

k = dr−1 +
Dr

2
(1 + η) , η = cos θ, (14.26)

to define

Cl(k) = Tl(η) = cos lθ, Sl(k) = sin(l + 1)θ, l = 0, 1, . . . , N − 1, (14.27)

where Tl(η) is the Chebyshev polynomial of the first kind. Then, we have a

spectral approximation

f(x, k, t) ≈ f̃(x, k, t) =
N−1∑
l=0

al(x, t)Cl(k), k ∈ Kr. (14.28)

Consequently, plugging the approximation for the Wigner function into (14.22)–

(14.24), we have spectral approximations for nj , jj , and pj , which are denoted

by ñj , j̃j , and p̃j , respectively.

We proceed by substituting the above expansion (14.28) into (14.22) and

(14.23), and using the following two identities for θ, θ ± Δθ/2 ∈ [0, π], which

relate the cell averages of the first kind of the Chebyshev polynomials to the

second kind (Cai, Gottlieb, & Harten, 1992):∫ cos(θ+Δθ/2)

cos(θ−Δθ/2)

dη Tl(η) =

{
− sinΔθ

2 sin 2θ, l = 1,
sin

(l−1)Δθ
2

l−1 sin(l − 1)θ − sin
(l+1)Δθ

2

l+1 sin(l + 1)θ, l 	= 1,

∫ cos(θ+Δθ/2)

cos(θ−Δθ/2)

dη ηTl(η) =

⎧⎨⎩−
sin 2Δθ

8 sin 4θ, l = 2,
sin

(l−2)Δθ
2

2(l−2) sin(l − 2)θ − sin
(l+2)Δθ

2

2(l+2) sin(l + 2)θ, l 	= 2,
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and with (14.22), (14.23), and (14.27) we obtain

ñj(x, t) =
N−1∑
l=0

al(x, t)

[∫
Ij

Cl(k)dk

]
= −

N−1∑
l=0

bl(x, t)Sl(kj), (14.29)

j̃j(x, t) =
�

m

N−1∑
l=0

al(x, t)

[∫
Ij

kCl(k)dk

]
= − �

m

N∑
l=0

cl(x, t)Sl(kj). (14.30)

Here, the expansion coefficients bl and cl can be expressed in terms of al recur-

sively as follows:

al =

⎧⎪⎪⎨⎪⎪⎩
−bl/σl, l = N − 1, N − 2,

al+2 − bl/σl, l = N − 3, . . . , 1,
1
2 (a2 − b0/σ0), l = 0,

(14.31)

bl =

⎧⎪⎪⎨⎪⎪⎩
σ0(a2 − 2a0), l = 0,

σl(al+2 − al), l = 1, 2, . . . , N − 3,

−σlal, l = N − 2, N − 1,

(14.32)

cl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d̄rb0 +
Drσ0

4
(a3 − a1), l = 0,

d̄rb1 +
Drσ1

4 (a4 − 2a0), l = 1,

d̄rbl +
Drσl

4 (al+3 − al−1), l = 2, 3, . . . , N − 4,

d̄rbl − Drσl

4 al−1, l = N − 3, N − 2, N − 1,

−DrσN

4 aN−1, l = N,

(14.33)

where d̄r denotes the center of Kr, and

σl =
Dr sin[(l + 1) π

2N
]

2(l + 1)
, l = 0, 1, . . . , N. (14.34)

It is easily seen that we can transform bl(x, t) to ñj(x, t) in (14.29) via a fast sine

transform (FST), and cl(x, t) to j̃j(x, t) in (14.30) via another FST.

Meanwhile, substituting (14.28) into (14.24) and carrying out some careful

algebraic calculations, we can show that pj(x, t) ≈ p̃j(x, t), with

p̃j(x, t) =
qΔy

π2�

Ny∑
μ=1

[V (x+ yμ)− V (x− yμ)]

R∑
r′=1

∫
Kr′

dk′

{∫
Ij

sin[2yμ(k − k′)]dk

}Nq,r′−1∑
l=0

al;q,r′(x, t)Cl;q,r′(k
′)

=− qΔy

π2�

Ny∑
μ=1

sin(yμΔkj)χ(x, yμ)

R∑
r′=1

Dr′

×
{
sin[2yμ(k̄j − d̄r′)]Re[λ(x, yμ, t, r

′)]

− cos[2yμ(k̄j − d̄r′)]Im[λ(x, yμ, t, r
′)]

}
, (14.35)
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where

χ(x, yμ) =
V (x+ yμ)− V (x− yμ)

2yμ
,

λ(x, y, t, r′) =

Nq,r′−1∑
l=0

al;q,r′(x, t)Ol(Dr′y), (14.36)

k̄j is the middle point of the cell Ij, and we have used the spectral expansion in

the element Xq ×Kr′ , i.e.,

fq,r′(x, k, t) ≈
Nq,r′−1∑

l=0

al;q,r′(x, t)Cl;q,r′(k). (14.37)

Here r′ comes from the integral with respect to k′ in the sub-domain Kr′ , Δkj =

kj−1/2 − kj+1/2, and Ol(z) is an oscillatory integral given in (14.66) of Section

14.4.

In order to determine the expansion coefficients al in (14.28), we solve the

approximated local continuity equation

∂

∂t
ñj(x, t) +

∂

∂x
j̃j(x, t) + p̃j(x, t) = 0, (14.38)

with the spectral approximations (14.29), (14.30), and (14.35). It is noted that

there are only spectral errors associated with the Chebyshev polynomial expan-

sion of f(x, k, t) in (14.28), since all the integrals in (14.22), (14.23), and (14.24)

are calculated analytically.

Remark 14.1 (Exact charge conservation) The cell equation (14.38) involves

the cell averages of the Wigner function, the cell fluxes, involving the point values

of f(x, k, t) over the whole cell, and the local Wigner potential term pj , involving

f(x, k, t) and the Wigner potential, where all integrals are carried out exactly. If

our primary unknowns are selected to be the cell averages ñj(x, t), such an exact

calculation is only possible if the distribution function f(x, k, t) is represented

by a global (Chebyshev) polynomial in the domain Kr due to the analytical

relation between the cell averages of f̃(x, k, t) (ñj(x, t)) and the point values

without numerical errors. As a result, we can sum all cell equations for f̃(x, k, t),

and the summation of p̃j(x, t) for all elements will be zero, i.e., for all x, we have

Θ(x, t) =
R∑

r=1

Nq,r∑
j=1

p̃j;q,r(x, t) =

∫
K
dk

∫
K
dk′ V h

w (x, k−k′)f̃(x, k′, t) = 0, (14.39)

thanks to (14.12). Therefore, we can see that the cell average SEM is capable of

maintaining the charge conservation exactly for the spectral solution f̃(x, k, t) in

a non-uniform mesh.
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14.2.2 Chebyshev collocation methods in x-space

After forming the above conservative cell average SEM in k-space, we will solve

the local continuity equation (14.38) to obtain the expansion coefficients in

(14.28) by using a traditional collocation SEM with the Gauss–Lobatto points

in x-space for easy implementation of boundary conditions and fast cosine trans-

forms.

For x ∈ Xq, η ∈ [−1, 1], and θ ∈ [0, π], the transform

x = gq−1 +
Gq

2
(1 + η) , η = cos θ,

is used to define

φν(x) = Tν(η) = cos νθ, ν = 0, 1, . . . ,M. (14.40)

Then, we have the spectral expansion for the coefficients in (14.28) as

al(x, t) ≈
M∑
ν=0

βl,ν(t)φν(x), x ∈ Xq, (14.41)

where βl,ν are the expansion coefficients. Based on such an expansion, we can

obtain the first derivative by a recurrence (Press et al., 1992; Boyd, 2001) with

O(M) operations. Namely, if a function is expressed in terms of the Chebyshev

polynomials, then its first derivative can be obtained directly as (Gottlieb &

Orszag, 1987; Shen, Tang, & Wang, 2011)

∂al(x, t)

∂x
≈

M∑
ν=0

β̃l,ν(t)φν(x), x ∈ Xq, (14.42)

where

β̃l,ν(t) =
2

Gq
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, ν = M,

2Mβl,M (t), ν = M − 1,

β̃l,ν+2(t) + 2(ν + 1)βl,ν+1(t), ν = M − 2, . . . , 1,
1
2 β̃l,2(t) + βl,1(t), ν = 0.

(14.43)

Hence, we could obtain the x-spatial derivative term via a fast cosine transform

(FCT) and a recurrence, and the total cost is O(M logM).

14.2.3 Time discretization

For the time discretization, we employ explicit multi-step Runge–Kutta methods.

If a system of ordinary differential equations is given in a compact operator form,

d

dt
U(t) = L(U), (14.44)



14.2 Adaptive spectral element method (SEM) 373

then the fourth-order Runge–Kutta scheme is given by (Gottlieb & Shu, 1998)

U (1) = Un +
1

2
ΔtL(Un),

U (2) = Un +
1

2
ΔtL(U (1)),

U (3) = Un +ΔtL(U (2)),

Un+1 =
1

3

[
U (1) + 2U (2) + U (3) − Un +

1

2
ΔtL(U (3))

]
. (14.45)

Let tn = nΔt, n = 0, 1, 2, . . ., and fn
j,i ≡ fj,i(t

n). The time step size Δt is

restricted by the Courant–Friedrichs–Lewy (CFL) condition as follows:

Δt

min
i
{Δxi}

≤ m

�max
k∈K

{|k|} , (14.46)

where Δxi = |xi+1 − xi|. After discretization in both k-space and x-space, we

have the spectral element approximation at the time step tn:

fn
j,i ≈ f̃n

j,i =
N−1∑
l=0

anl,iCl(kj) =
N−1∑
l=0

M∑
ν=0

βn
l,νφν(xi)Cl(kj). (14.47)

Once the coefficients βn
l,ν are obtained, we are able to compute the Wigner func-

tion at any position (x, k) in the element Xq×Kr at t
n through the global spectral

approximation

f(x, k, tn) ≈
N−1∑
l=0

M∑
ν=0

βn
l,νφν(x)Cl(k). (14.48)

When evolving from tn to tn+1, we need boundary conditions in Xq×Kr. These

boundary conditions are given according to the inflow rule, from the solution in

the adjacent elements at tn, i.e.,

(a) if k < 0, then

fq,r(gq, k, t
n+1) =

{
fq+1,r(gq, k, t

n), 1 ≤ q < Q,

fR(k, t
n), q = Q;

(14.49)

(b) if k > 0, then

fq,r(gq−1, k, t
n+1) =

{
fq−1,r(gq−1, k, t

n), 1 < q ≤ Q,

fL(k, t
n), q = 1.

(14.50)

Here, we set k = 0 to be the end point of an element, so k = 0 is not a collocation

point.
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Figure 14.2. Calculated Wigner functions with corresponding meshes in (x, t) phase
space at t = 7.5 (top figures) and t = 20 (bottom figures). The GWP of energy level
E0 ≈ 1.12, interacting with a Gauss barrier with a barrier height H = 1.3, is separated
into two wave packets: one traveling across the barrier while the other being reflected
by the barrier. From Shao et al. (2011), copyright (2011) by the Global Science Press.

14.2.4 Adaptive meshes for Wigner distributions

Following Kluksdahl et al. (1989) and Biegel (1997), we simulate the motion of

a Gauss wave packet (GWP) to investigate the performance of the SEM (Shao,

Lu, & Cai, 2011). The GWP in free space is given by

f(x, k, t) = 2 exp

[
− (x− x0 − v0t)

2

2a2(1 + β2t2)

]
× exp

{
−2a2(1 + β2t2)

[
(k − k0)−

βt(x− x0 − v0t)

2a2(1 + β2t2)

]2}
,

(14.51)

where x0 is the center of the GWP at t = 0, a is the minimum position spread,

v0 = �k0/m is the average velocity, and β = �/(2ma2). The kinetic energy of

such a GWP is E0 = �2k20/(2m). Actually, the GWP given in (14.51) is the

analytical solution to the Wigner equation without a Wigner potential (Biegel,

1996, 1997). In the numerical simulations, we take a = 2.825 and m = 0.0665me.

The distributions and the corresponding meshes at different instants for the

case H = 1.3 are shown in Fig. 14.2, from which we conclude that the p-adaptive

methods capture the movement of the GWP accurately.
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14.3 Upwinding finite difference scheme

Next, let us consider a finite difference method for the time-independent Wigner

equation in (x, k) ∈ [−L/2, L/2]× [−Lk/2, Lk/2]. We set hx as the mesh size of

x-space, and let N be the number of mesh points

hx =
L

N
, xi = −

L

2
+ ihx, i = 0, 1, 2, . . . , N. (14.52)

From (14.1), only the boundary condition in x-space is required. An upwinding

difference method can be used to approximate the first-order derivative in x. Let

Ncoh denote the mesh points in [0, Lcoh/2] with a spacing hcoh = Lcoh/Ncoh.

Similarly, Lk is the integration length in (14.7), Nk is the number of mesh points

in k-space, and hk = Lk/Nk is the corresponding mesh spacing. In order to avoid

k = 0, which would lead to a zero diagonal element in the discretization matrix,

we choose the mesh points as kj = Lk/2− (j + 1/2)hk, j = 0, 1, . . . , Nk − 1.

Using a middle point formula for the integration with respect to k′ in (14.7)

and a first-order upwinding finite difference scheme for the spatial derivative, we

arrive at the finite difference equation at (xi, kj):

�kj
mx

f(xi, kj)− f(xi−1, kj)

hx
+

qhk

2π�

Nk−1∑
j′=0

V̂w(xi, kj − k′j′)f(xi, k
′
j′) = 0, kj > 0,

�kj
mx

f(xi+1, kj)− f(xi, kj)

hx
+

qhk

2π�

Nk−1∑
j′=0

V̂w(xi, kj − k′j′)f(xi, k
′
j′) = 0, kj < 0,

(14.53)

for i = 1, 2, . . . , N − 1, j = 0, 1, . . . , Nk − 1. Here, V̂w(xi, kj − k′j′) is calculated

in (14.8) by a Ncoh-point trapezoidal rule with a spacing hcoh, which in practice

can be taken as hcoh = 2hx.

Meanwhile, the current density can be simply computed as

j

(
x+

hx

2

)
=

hk

2π

⎡⎣∑
kj<0

�kj
m

f(x+ hx, kj) +
∑
kj>0

�kj
m

f(x, kj)

⎤⎦ . (14.54)

The above definition ensures that the current density calculated for the steady-

state solution is independent of x. In Section 14.3.1, we will address the issue

of how to choose Lk and Lcoh to ensure the conservation of the electrons and

applicability of discrete fast Fourier transforms.

14.3.1 Selections of Lcoh, Ncoh, Lk, and Nk

Firstly, for the conservation of electrons in k-space, we have from (14.11) that

Lkhcoh = 2π. (14.55)

Secondly, as Lcoh is the coherence length in the density operator which defines

the effective Wigner potential (14.6), the latter is discretized into a sum (14.8).
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As the continuous Fourier transform is changed to a discrete one, in order to

take advantage of the fast discrete Fourier transform (DFT) to evaluate the sum

(14.8), we like to have the following equality:

kjyμ = jμ
hkLcoh

Ncoh
= jμ

2π

Ncoh
;

namely, we require that

Lcohhk = 2π. (14.56)

In summary, the values of Lk and Lcoh and the corresponding discretization mesh

points Nk and Ncoh are related by

Nk =
Lk

hk
=

Lcoh

hcoh
= Ncoh. (14.57)

It is important to satisfy (14.55), (14.56), and (14.57) in solving the Wigner

equation numerically with a finite difference scheme.

14.3.2 Self-consistent algorithm through the Poisson equation

So far, we have introduced two quantum transport models: the NEGF and the

Wigner equation. For a 1-D device imposed with a bias potential V , the self-

consistent potential energy vs(x) is related to the static potential ν(x) by vs(x) =

qν(x), which should be determined by a Poisson equation,

− ∂

∂x

(
ε(x)

∂

∂x

)
ν(x) = q (−n(x) +Nd(x)) , (14.58)

with a Dirichlet boundary condition at X1 and X2:

ν(X1) = 0, ν(X2) = −V,

where ε(x) is the dielectric constant andNd(x) is the doping density. The intrinsic

Fermi energy level is always set to zero as the reference energy.

• The Wigner equation method with the Poisson equation

Given an error tolerance ε > 0:

(1) guess an initial potential function ν(x);

(2) solve the transport equation with the Wigner equation method (14.7) to

calculate the electron density n(x) with the formula (12.118);

(3) solve the Poisson equation (14.58) with a Newton iteration method – with the

updated potential ν(x); repeat Steps 2 and 3 until the potential distribution

ν(x) is convergent within the given error tolerance ε;

(4) solve the Wigner equation (14.1) with the convergent potential ν(x), and

calculate the current by (14.54).
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GaAs GaAsGaAs

AlGaAs
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n+ n+
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Figure 14.3. Resonant tunneling diode structure with contacts doped. From Jiang et
al. (2011), copyright (2011) by Elsevier.

14.3.3 Currents in RTD by NEGF and Wigner equations

The RTD structure (Esaki & Tsu, 1970; Tsu & Esaki, 1973) as shown in Fig. 14.3

is the classical 1-D hetero-structure device with a negative resistance.

Two thin AlGaAs layers are sandwiched by GaAs layers to form two energy

barriers and one quantum well. For a space-dependent effective mass in the RTD,

the 1-D Schrödinger equation should be

− �2

2

∂

∂x

(
1

m(x)

∂

∂x

)
ψ(x) + v(x)ψ(x) = Eψ(x), (14.59)

where the effective mass of GaAs is mGaAs = 0.067m0, mAlGaAs = 0.0919m0

for AlGaAs, and m0 is the electron mass in the vacuum. However, here a con-

stant effective mass mx = mGaAs = 0.067m0 is used. The prototype RTD is a

symmetric structure, and we state that Lij = Lj − Li, where Li is the position

of the material interface in the hetero-structure. Then, the length of the device

is L = X2 − X1 = L70. The black barrier region is set to L32 = L54 = 2.825

nm, the length of the quantum well is L43 = 4.52 nm, the length of the contact

regions is denoted by Lc = L10 = L76, depicted as the gray area, and the buffer

region Lb = L12 = L56 is introduced to decrease the scattering of electrons. We

set the intrinsic Fermi energy in GaAs as the benchmark of the energy. So the

conduction band energy ve(x) = 0 eV in GaAs and ve(x) = 0.27 eV in AlGaAs,

where 0.27 eV is the conduction band gap between GaAS and AlGaAs. A coarse

mesh size a = 0.565 nm is equal to the lattice constant of GaAs. The length of

the contacts Lc and the length of the buffer Lb are important parameters which

will affect the density and the current. Also we will adjust Lc and Lb to analyze

the accuracy of the inflow boundary condition. For self-consistent simulations,

the doping profile in the contacts is depicted as Fig. 14.3, where the gray areas

are doped with a concentration 0.2 × 1019 cm−3 and the white and the black

areas are doped intrinsically.

The I-V curves (Jiang, Cai, & Tsu, 2011) obtained by the NEGF method and

by the Wigner function method are plotted in Fig. 14.4, in which the length of
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Figure 14.4. The I-V curves by the Wigner function and the NEGF with different Lc

and Lb. From Jiang et al. (2011), copyright (2011) by Elsevier.

the contacts is the same as the size of the buffer layer. The I-V curves obtained by

the Wigner function method approach those obtained by the NEGF method for

low bias potentials as the lengths of the contacts and the buffer layers increase,

which verifies that the boundary condition of the Wigner function method is

valid for large enough contact length.

14.4 Calculation of oscillatory integrals On(z)

The oscillatory integrals are defined as

On(z) =

∫ 1

−1

eizxTn(x)dx. (14.60)

Firstly, we exploit the expansion of eizx in terms of the spherical Bessel func-

tions of the first kind jk(z) and the Legendre polynomials Pk(x); see Abramowitz

& Stegun (1972, eq. (10.1.47)):

eizx =

∞∑
k=0

(2k + 1)ikjk(z)Pk(x), (14.61)

and then we have ∫ 1

−1

eizxPn(x)dx = 2injn(z), (14.62)

where we have used the orthogonality relation,∫ 1

−1

Pn(x)Pk(x) =
2

2n+ 1
δn,k. (14.63)

Secondly, we can express the Chebyshev polynomials Tn(x) using the Legendre

polynomials Pk(x) as

Tn(x) =
n∑

k=0

ck,nPk(x), (14.64)
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where the coefficient ck,n is defined by

ck,n =
2k + 1

2

∫ 1

−1

Tn(x)Pk(x)dx, (14.65)

and has a recurrence relation

c0,n =

{
0, n = 1,
1
2 ·

1+(−1)n

1−n2 , n 	= 1,

c1,n =

{
0, n = 2,
3
2 ·

−1+(−1)n

n2−4 , n 	= 2,

ck+2,n =

{
0, k = n− 3,
2k+5
2k+1 ·

n2−k2

n2−(k+3)2 · ck,n, k = 0, 1, 2, . . . , n− 4, n− 2.

Therefore, we get the final formula (Kythe & Schäferkotter, 2005):

On(z) =

∫ 1

−1

eizx

[
n∑

k=0

ck,nPk(x)

]
dx =

n∑
k=0

ck,n

∫ 1

−1

eizxPk(x)dx

= 2

n∑
k=0

ikck,njk(z). (14.66)

14.5 Summary

The Wigner transport equation for nano-devices provides a direct link to the

classical Boltzmann transport model for micro-devices and allows easy inclu-

sion of scattering effects between electrons and phonons or impurities by using

appropriate quantum or even classical collision operators. The Frensley inflow

boundary condition for the Wigner distribution assumes that the electrons from

the input contact enter into the device active region, without reflection while

passing the inflow boundary. Due to the high dimensionality of the phase space,

appropriate truncation of the computational domain in the phase space and

adaptive meshing are detailed here, as both are important to reduce the overall

cost of numerical methods (e.g., an adaptive spectral element and an upwind-

ing finite difference method) so the Wigner transport model can be applied to

realistic low-dimensional nano-devices.



15 Hydrodynamic electron transport
and finite difference methods

Having discussed quantum transport models in the preceding two chapters, we

now turn to the semi-classical Boltzmann descriptions and their moment equa-

tions in the hydrodynamic model in electron transport in complex media in-

cluding semiconductors and plasmas. Then, finite difference methods for solving

the hydrodynamic equations for semiconductor devices will be discussed. Be-

cause of the high field effect in sub-micron devices, the electron velocity may

develop a sharp transition profile resembling shock waves (Gardner, 1991), as

in high-speed gas dynamics. Therefore, shock capturing schemes developed for

gas dynamics (LeVeque, 2002; Hirsch, 2011) can be applied for device simula-

tions. Here, we will present three methods: the traditional Godunov methods,

the weighted essentially non-oscillatory (ENO) finite difference methods, and

the central differencing methods. It should be mentioned that the discontinuous

Galerkin method can also be used to compute the semiconductor hydrodynamic

equations (Liu & Shu, 2007).

15.1 Semi-classical and hydrodynamic models

15.1.1 Semi-classical Boltzmann equations

A classical Boltzmann equation can be derived from a semi-classical limit of the

Wigner–Moyal expansion of the 3-D Wigner equation (12.114) by keeping only

the first few terms of the expansion and adding a collision term to account for

the scattering of particles such as electrons with other particles or impurities.

For r,k ∈ R3, the Wigner–Moyal expansion including collision effects becomes

∂

∂t
f(r,k, t) +

�k

m
· ∇rf(r,k, t) =

q

�

∞∑
s=0

(−1)s

4s(2s+ 1)!
∇(2s+1)

r V (r) · ∇(2s+1)
k f(r,k, t)

+

(
∂f

∂t

)
coll

, (15.1)

where the collision (∂f/∂t)coll is defined by the following integral operator:(
∂f

∂t

)
coll

(r,k) =
1

(2π)3

∑
j

∫ [
f(r,k′, t)Sj(k

′,k)− f(r,k, t)Sj(k,k
′)
]
dk′.

(15.2)
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Here the j summation is over all types of scattering events (electron–electron,

electron–ion, and electron–impurity, etc.), and the scattering rate Sj(k
′,k) is

calculated from the Fermi golden rule (Datta, 1989).

Meanwhile, a Poisson equation for the potential is coupled to (15.1) as follows:

∇2V (r) =
q

ε

[∫
f(r,k, t)dk− p(r, t) +NA(r)−ND(r)

]
, (15.3)

where p(r, t) is the hole concentration and NA(r) and ND(r) are the acceptor and

donor concentrations, respectively. The hole concentration satisfies the following

drift-diffusion equation (Lundstrom, 2000) (together with (15.3) forming the

Poisson–Nernst–Planck (PNP) semiconductor model):

∂p(r, t)

∂t
+∇r [μpp(r, t)∇rV (r) + μpVt∇rp(r)] = R(V, n, p)−Gii(n, p), (15.4)

where μp is the hole mobility, Vt = kBT/q denotes the thermal voltage, and

R(V, n, p) and Gii(n, p) are the recombination rate and the hole generation rate

from impact ionization, respectively.

From (15.1), we can obtain the classical Boltzmann equation for f by keeping

only the first term in the expansion (15.1):

∂f

∂t
+

�k

m
· ∇rf(r,k, t)−

q

�
∇rV (r) · ∇kf(r,k, t) =

(
∂f

∂t

)
coll

, (15.5)

which is also called the semi-classical Boltzmann equation as the scattering

rates in the collision term can be calculated using quantum mechanical ap-

proaches. The Boltzmann kinetic equation for the one-particle distribution func-

tion f(r,k, t) can also be derived directly by considering the rates of particles

entering and exiting a phase space element due to the collisions between particles

(Huang, 1987; Liboff, 2003; Li & Qin, 2012).

The higher terms in the summation in (15.1) will be identified as quantum cor-

rections to the classical description of the electrons. The first quantum correction

model will be

∂f

∂t
+

�k

m
· ∇rf(r,k, t) −

q

�
∇rV (r) · ∇kf(r,k, t) +

q

24�
∇3

rV (r) · ∇3
kf(r,k, t)

=

(
∂f

∂t

)
coll

. (15.6)

15.1.2 Hydrodynamic equations

The phase space description of the electrons or ions by the Wigner or Boltzmann

distributions still poses great challenges for two- and three-dimensional systems

as it demands a (2d + 1)-dimensional (2d dimensions in space and one in time)

computational effort for a d-dimensional system. Thus, in many situations, es-

pecially for micro-scale devices where the quantum phenomena are not strong,

moment equations for (15.5) are used instead. Two popular models can be de-

rived based on the first one or the first three moments of (15.5): drift-diffusion
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and hydrodynamic models, respectively. The hydrodynamic model resembles the

conservation laws for the Newtonian fluid flows and takes into consideration the

temperature and the energy gradient of the electrons in the model, while a con-

stant temperature is assumed for the drift-diffusion model.

Using the definition of the momentum p = �k in quantum mechanics, we will

denote by fα(r,v, t) the classical Boltzmann distribution of (15.6) for the α-

type particles (which could be electrons, ions, or neutral particles) in terms of

the position r and the velocity variable v:

v =
p

m
=

�k

m
, (15.7)

and we have

∇v =
m

�
∇k. (15.8)

Introducing the notation

a =
F

m
, (15.9)

where F represents the force on a charged particle of charge q, which is the electric

force F = −q∇V (r), then the Boltzmann equation (15.5) takes the following form

for a classical particle system:

∂fα
∂t

+ v · ∇rfα(r,v, t) + a · ∇vfα(r,v, t) =

(
∂fα
∂t

)
coll

. (15.10)

In the original Boltzmann kinetic theory of dilute gas, the collisions between par-

ticles are assumed to be instantaneous and binary, namely many-body collisions

are not considered and the process is Markovian, such that two particles after a

collision will have no memory of their past, and their dynamics will only depend

on their states after the collision. In this case, the collision in (15.10) can be ex-

pressed in terms of the following Boltzmann collision operator (Liboff, 2003) for

two particles (r,v) and (r1,v1), while (r′,v′) and (r′1,v
′
1) denote their position

and velocities after a collision, respectively:(
∂fα
∂t

)
coll

(r,v) =
∑
β

∫
dv1 [fα(r,v

′)fβ(r,v
′
1)− fα(r,v)fβ(r,v1)] gσ(Ω)dΩ,

(15.11)

where g = |v − v1| and σ(Ω) is the scattering cross section which depends on

the specific potential governing the interaction of the two particles. The physical

meaning of σ(Ω) is given as follows (Liboff, 2003):

Iσ(Ω)dΩ = number of particles deflected into the element

of solid angle dΩ about Ω per second

for an incident beam of particle of intensity I (number/s · cm2).

Next, we will derive a general macroscopic equation using moment equations

for the Boltzmann equation for various conservative quantities following Bit-

tencourt (2004). Given any conservative quantity χ(r,v), we have the following
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moment equation by integrating over the velocity variable the product of χ(r,v)

and (15.10):∫
χ(r,v)

[
∂fα
∂t

+ v · ∇rfα(r,v,t) + a·∇vfα(r,v, t)

]
dv

=

∫
χ(r,v)

(
∂fα
∂t

)
coll

dv. (15.12)

To proceed, the number density per unit volume is defined as

nα(r, t) =

∫
fα(r,v, t) dv, (15.13)

and the average 〈χ〉α of the quantity χ(r,v) in the phase space is defined as

〈χ〉α =

∫
χ(r,v)fα dv∫
fα(r,v, t) dv

=

∫
χ(r,v)fα dv

nα(r, t)
. (15.14)

Then, the first term on the left-hand side of (15.12) becomes∫
χ(r,v)

∂fα
∂t

dv =
∂

∂t

∫
χ(r,v)fα dv =

∂

∂t
(nα 〈χ〉α) , (15.15)

and the second term, after using the fact that ∇r · v = 0, becomes∫
χ(r,v) v · ∇rfα(r,v,t) dv = ∇r ·

∫
χ(r,v) vfα(r,v,t) dv = ∇r · (nα 〈χv〉α) .

(15.16)

Meanwhile, the third term can be obtained by using integration by parts to

become ∫
χ(r,v)a · ∇vfα(r,v, t)dv =

∫
χ(r,v) ∇v · (afα(r,v,t)) dv

= −
∫
a · ∇vχ(r,v) fα(r,v, t)dv = −nα 〈a · ∇vχ〉α , (15.17)

provided that

∇v · a = 0, (15.18)

which is used in the second equality of (15.17). Condition (15.18) is true for

many types of forces F in (15.9) when they do not depend on the velocity v,

for instance the electric force F(r) = −q∇V (r), which depends only on the

position r.

Substituting (15.15), (15.16), and (15.17) into (15.12), we obtain the general

transport equation:

∂

∂t
(nα 〈χ〉α) +∇r · (nα 〈χv〉α)− nα 〈a · ∇vχ〉α =

(
∂fα
∂t

)
coll

, (15.19)
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where nα 〈χv〉α in the second term is identified as the conserved quantity

flux Jχ:

Jχ = nα 〈χv〉α . (15.20)

By setting χ = mα, the mass of the α-type particle, we have the continuity

equation

∂

∂t
ρα +∇r · (ραuα) = Sα, (15.21)

where the density of the α-type particle ρα is defined as

ρα = mαnα, (15.22)

the average velocity of the α-type particle at the location r is given by

uα(r, t) = 〈v〉α , (15.23)

and the source term Sα results from the collision experienced by the α-type

particle:

Sα = mα

∫ [
∂fα
∂t

]
coll

dv; (15.24)

for mass conservation, ∑
α

Sα = 0. (15.25)

Next, setting χ = mαv, (15.19) becomes

∂

∂t
(nα 〈mαv〉α) +∇r · (nα 〈mαvv〉α)− nα 〈a·∇vmαv〉α =

(
∂ (mαv)

∂t

)
coll

.

(15.26)

The first term in (15.26) is

∂

∂t
(nα 〈mαv〉α) =

∂

∂t
ρα 〈v〉α =

∂

∂t
ραuα, (15.27)

and the second term in (15.26) is

∇r · (nα 〈mαvv〉α) = ∇r (ρα 〈vv〉α) , (15.28)

which involves the second moment vv. Consider the velocity fluctuation with

respect to the average velocity uα of the α-type particle:

v = uα + v′, (15.29)

and

〈v′〉α = 0. (15.30)

It follows from (15.30) that the term following ∇r in (15.28) becomes

ρα 〈vv〉α = ρα 〈(uα + v′) (uα + v′)〉α
= ραuαuα + ρα 〈v′v′〉α = ραuαuα + Pα, (15.31)
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where the pressure dyadic Pα is defined as

Pα = ρα 〈v′v′〉α , (15.32)

i.e.,

(Pα)ij = ρα
〈
v′iv

′
j

〉
α
. (15.33)

So the second term in (15.26) becomes

∇r · (nα 〈mαvv〉α) = ∇r · (ραuαuα +Pα) , (15.34)

where the divergence operator ∇r applies to each column of the dyadics uαuα

and Pα.

Next, the third term in (15.26) is

nα 〈a · ∇vmαv〉α = nα 〈(F · ∇v)v〉α = nα 〈F〉α . (15.35)

Putting (15.27), (15.34), and (15.35) into (15.26), we have the momentum

equation for the α-type particle:

∂ραuα

∂t
= −∇ · (ραuαuα)− nαFα −∇Pα +Aα, (15.36)

where

Fα = 〈F〉α
and

Aα = mα

∫
v

[
δfα
δt

]
coll

dv; (15.37)

for momentum conservation ∑
α

Aα = 0. (15.38)

For later use, we can also define a scalar pressure via the trace of the dyadic

Pα as

pα =
1

3

3∑
i=1

(Pα)ii . (15.39)

For an isotropic gas, we have a diagonal dyadic with Pα = diag(pα, pα, pα) and

pα =
ρα
3

〈
v′2

〉
α
, (15.40)

where v′2 ≡ |v′|2.
Meanwhile, the temperature Tα for the α-type particle is defined as

kBTα =
mα

3

〈
v′2

〉
α
=

mα

3nα

∫
v′2fα(r,v)dv

=
mα

3nα

∫
(v − uα)

2
fα(r,v)dv, (15.41)
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and, comparing (15.40) and (15.41), we have the equation of state for an

ideal gas:

pα = nαkBTα. (15.42)

To derive the energy equation for the α-type particle, we take χ = mαv
2/2.

The general transport equation (15.19) now becomes

∂

∂t

1

2
ρα

〈
v2

〉
α
+∇r ·

ρα
2

〈
v2v

〉
α
− nα 〈F · v〉α = 0. (15.43)

The first term on the left-hand side of (15.43) is

1

2
ρα

〈
v2

〉
α
=

1

2
ραu

2
α +

1

2
ρα

〈
v′2

〉
α
+ ραuα · 〈v′〉α =

1

2
ραu

2
α +

3

2
pα. (15.44)

Next, we examine the term inside the second term in (15.43):〈
v2v

〉
α
=

〈
(u2

α + 2uα · v′ + v′2)(uα + v′)
〉
α

=
[
u2
αuα + 2uα · 〈v′〉α uα +

〈
v′2

〉
α
uα

]
+

[
u2
α 〈v′〉α + 2uα 〈v′v′〉α +

〈
v′2v′〉

α

]
= u2

αuα+
〈
v′2

〉
α
uα + 2uα 〈v′v′〉α +

〈
v′2v

′〉
α
. (15.45)

Therefore, the second term in (15.43) (inside the divergence operator ∇r) be-

comes

ρα
2

〈
v2v

〉
α
=

ρα
2
u2
αuα +

ρα
2

〈
v′2

〉
α
uα

+ ραuα 〈v′v′〉α +
ρα
2

〈
v′2v′〉

α

=
ρα
2
u2
αuα +

3

2
pαuα + Pαuα + qα, (15.46)

where a heat flux qα is defined as

qα =
1

2
ρα

〈
v′2v′〉

α
. (15.47)

The third term in (15.43) is

nα 〈F · v〉α =

∫
fαF · vdv = F·

∫
fα·vdv = F · uα. (15.48)

Substituting (15.44), (15.46), and (15.48) into (15.43), we obtain the energy

equation for the α-type particle as follows:

∂Wα

∂t
+∇ ·

[(
ρα
2
u2
α +

3

2
pα + Pα

)
uα + qα

]
= F · uα +Mα, (15.49)

where the energy density for the α-type particle Wα is defined as

Wα =
1

2
ραu

2
α +

3

2
pα =

1

2
ραu

2
α +

3

2
nαkBTα, (15.50)
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and the energy source term from the collision is given by

Mα =
mα

2

∫
v2

[
∂fα
∂t

]
coll

dv, (15.51)

and the energy conservation ∑
α

Mα = 0. (15.52)

Finally, the heat flux in semiconductor devices can usually be approximated

by the gradient of the temperature as follows (Bløtekjaer, 1970):

q = −κ∇T, (15.53)

with κ being the thermal conductivity of the semiconductor material of the

device, approximated by (Baccarani & Wordeman, 1985)

κ =
5k2BnαTα

2mαvp(w)
. (15.54)

Then, we can obtain the energy flux as

Jw =

(
ρα
2
u2
α +

3

2
pα + Pα

)
uα + qα = uα (Wα + Pα) + qα

= uαWα +

(
nuα −

κ

kB
∇
)
kBTα. (15.55)

Using (15.50) to eliminate the temperature kBTα, we finally obtain the energy

equation:

∂Wα

∂t
= −∇ ·

[
uαWα +

2

3

(
nαuα −

κ

kB
∇
)(

Wα

nα
− mαu

2
α

2

)]
+ nFα · uα +Mα.

(15.56)

In summary, (15.21), (15.36), and (15.56) form the hydrodynamic model for a

multiple-species particle system.

In the following, we will consider a system of electrons only without the heat

flux term (dropping the index α) whose hydrodynamic equations are written in

a conservative divergence form:

Ut +∇f(U) = s(U), (15.57)

and

U = (ρ, ρu,W )
T
, (15.58)

f(q) = (ρv, ρu2 + P,u(W + P ))
T
, (15.59)

W =
1

2
ρu2 +

3

2
nkBT, (15.60)

P = nkBT = (γ − 1)

(
W − 1

2
ρu2

)
, (15.61)
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where γ = 5/3 , and the source term contains the collision relaxation:

s(U) = (0, qnF + A, qnF · u+M)T. (15.62)

In many cases, the collision term can be modeled with the relaxation times τρ,

τp, and τw for the mass density, the momentum, and the energy, respectively,

i.e.,

s(U) =

(
ρ− ρ0
τρ

, qnF +
ρu

τp
, qnF · u+

W − 3
2nkBT0

τw

)T

, (15.63)

where m, ρ, u, P , and W are the mass, mass density, velocity, pressure, and total

energy, respectively. Note that ρ0 and T0 are the mass density and temperature,

respectively, in an equilibrium state of the system (Tomizawa, 1993). Moreover,

the electric field F = −∇φ and the potential energy V = −qφ; the latter is

governed by a Poisson equation,

∇ · ε∇V = q2(N − n), (15.64)

where N is a given doping density for the semiconductors.

15.2 High-resolution finite difference methods of Godunov type

Consider the 1-D version of the nonlinear conservation law (15.57) with s = 0:

Ut + fx(U) = 0. (15.65)

The Godunov method is based on a finite volume formulation of (15.65) by

integrating between any two points a < b to arrive at

∂

∂t
U =

∂

∂t

1

b− a

∫ b

a

U(x, t)dx = − 1

b− a
[f(U(b))− f(U(a))] , (15.66)

where the overbar indicates the cell-averaged values of the related quantity.

The cell-averaged value Uj over the interval [xj−1/2, xj+1/2] is defined as

Uj(t) =
1

xj+ 1
2
− xj− 1

2

∫ x
j+1

2

x
j− 1

2

U(x, t)dx, (15.67)

for which the time evolution is

∂

∂t
Uj +

1

Δx

[
f(Uj+ 1

2
)− f(Uj− 1

2
)
]
= 0. (15.68)

It should be noted that both the point values Uj+1/2 and the cell-averaged value

Uj of the physical quantity are involved in (15.68), while the time evolution is

given for the cell-averaged values. Once we know the cell averages at a given

time instant, the point values at the cell boundaries must be established in order

to evaluate the flux terms (which allows the cell averages to be predicted at a

new time); this is called the “reconstruction step” in the Godunov-type scheme

(Harten et al., 1997).
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A semi-discretization scheme for the conservation law can be constructed based

on (15.68) for the cell averages on a given mesh:

∂

∂t
Uj +

1

Δx

(
f̂j+ 1

2
− f̂j− 1

2

)
= 0, (15.69)

where the numerical flux f̂j+1/2 is expected to approximate the analytical flux

f(Uj+1/2) if the numerically computed cell averages Uj approximate those of

the exact solution. Therefore, the key step in the semi-discretization scheme

(15.69) is how to define the numerical fluxes once the cell averages {Uj}Nj=1 at

the current time t are given. In the original Godunov scheme (Godunov, 1959),

this numerical flux is obtained by solving an initial value problem for (15.65)

around the cell interface xj+1/2 with the initial data at time t made of two

constants Uj and Uj+1 to the left and right sides of xj+1/2, respectively. This

solution is called a Riemann problem, whose solution is self-similar in time for

the hydrodynamic equations, and is denoted as

U(R)
(
x− xj+ 1

2
, t+ τ ;Uj ,Uj+1

)
= U(R)

(
ξ;Uj ,Uj+1

)
, (15.70)

where ξ=(x− xj+1/2)/τ . Then, the Godunov numerical flux is defined

simply as

f̂j+ 1
2
= f

(
u(R)

(
ξ = 0;Uj ,Uj+1

))
. (15.71)

High-resolution schemes of Godunov type can be similarly defined if the initial

data for the above Riemann problem are replaced with piecewise polynomials of

first, or second, or even higher orders. This step thus requires a reconstruction of

the point values of the solution from its cell averages using higher-order piecewise

polynomials such as the MUSCL (monotone upstream scheme for conservation

laws) introduced by van Leer (van Leer, 1977, 1979; Colella & Woodward, 1984).

In the case of piecewise linear polynomials, the reconstruction can be defined for

each component as follows:

UL
j+ 1

2
= Uj +

1

2
Φ(rj+ 1

2
)
(
Uj −Uj−1

)
, (15.72)

UR
j+ 1

2
= Uj+1 −

1

2
Φ

(
1

rj+ 3
2

)(
Uj+2 −Uj+1

)
, (15.73)

where rj+1/2 is the ratio of the kth component of the differences of the cell

averages,

rj+ 1
2
=

(
Uj+1 −Uj

)
k(

Uj −Uj−1

)
k

, k = 1, 2, 3,

and a “limiter” Φ(r) is introduced to limit the slope of the linear interpolation

such that the overall piecewise polynomial maintains a monotonic profile if the

given data {Uj}Nj=1 are monotone componentwise. Many limiter functions have
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been studied (for a review refer to Sweby (1984)); for example, the so-called

“superbee” limiter proposed by Roe (1985) is given by

Φ(r) = max[0,min(2r, 1),min(r, 2)]. (15.74)

The numerical flux for the higher-order spatial resolution approximation is

given by

f̂j+ 1
2
= f

(
U(R)

(
ξ = 0;UL

j+ 1
2
,UR

j+ 1
2

))
, (15.75)

where UL
j+ 1

2

and UR
j+ 1

2

are the point values at the left and right side of xj+ 1
2
,

respectively

The remaining issue is to get the Riemann solution U(R)(·;UL
j+1/2,U

R
j+1/2)

for general piecewise polynomial reconstructed initial data (point values). We

should note that the Godunov numerical flux, using the Riemann solutions, is in

essence a generalization of an upwinding finite difference method, which can be

seen for a linear wave equation

f(u) = au, (15.76)

so, the solution to the Riemann problem in this case is a simple convection of

the initial data to the left or right according to the sign of the wave speed a, and

we have

u(R)(0;uj , uj+1) =

{
uj , if a > 0,

uj+1, if a < 0,
(15.77)

resulting in a numerical flux for the positive speed a,

f̂j+ 1
2
= uj , (15.78)

and a downwind finite difference approximation to the scalar version of (15.65)

with (15.76),

∂

∂t
uj +

a

Δx
(uj − uj−1) = 0. (15.79)

We now consider a system of linear equations (15.65) with the flux defined by

a constant matrix A:

f(U) = AU, (15.80)

where A could have both positive and negative eigenvalues, and we could split the

matrix A into A+ and A− with positive and negative eigenvalues, respectively,

i.e.,

A+ = PΛ+P−1, A− = PΛ−P−1, (15.81)

where P contains the right eigenvectors of the matrix A as its columns and

A = PΛP−1, Λ = diag(λ1, . . . , λn),

Λ+ =
1

2
diag(λ1 + |λ1|, . . . , λn + |λn|),
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Λ− =
1

2
diag(λ1 − |λ1|, . . . , λn − |λn|),

|Λ| = Λ+ − Λ−, |A| = A+ −A−. (15.82)

Then, the upwinding scheme applied to (15.80) will be

∂

∂t
Uj +

A+

Δx

(
Uj −Uj−1

)
+

A−

Δx

(
Uj+1 −Uj

)
= 0, (15.83)

which can be rewritten in the conservative form of (15.69) with the following

numerical flux:

f̂j+ 1
2
=

1

2
(fj + fj+1)−

1

2
|A|(Uj+1 −Uj). (15.84)

The Riemann problem and the definition of the numerical flux for the hydrody-

namic system, a nonlinear system of conservation laws, are much more difficult.

However, approximate Riemann solvers can be found; one of the most popular

is the Roe–Riemann solver, which in principle linearizes the flux function at a

reference state, called the Roe-averaged state Û.

Consider the eigenvalues of the Jacobian matrix of the flux function f(U):

A(U) =
∂f(U)

∂U
, (15.85)

which are, for a 1-D problem (Harten et al., 1997),

λ1(U) = u− c, λ2(U) = u, λ3(U) = u+ c, (15.86)

where the speed of sound is c = (γP/ρ)1/2 and ρ = mn is the mass density. The

corresponding right eigenvectors are

r1(U) =

⎛⎝ 1

u− c

H − uc

⎞⎠ , r2(U) =

⎛⎝ 1

u
1
2u

2

⎞⎠ , r3(U) =

⎛⎝ 1

u+ c

H + uc

⎞⎠ , (15.87)

where H = (W + P )/ρ = c2/(γ − 1) + u2/2 is the enthalpy.

The corresponding left eigenvectors {lk(U)}, which are bi-orthonormal to

{rk(U)}, are given by

l1(U) =
1

2
(b2 + u/c,−b1u− 1/c, b1),

l2(U) =
1

2
(1− b2, b1u,−b1),

l3(U) =
1

2
(b2 − u/c,−b1u+ 1/c, b1), (15.88)

where

b1 =
γ − 1

c2
, b2 =

1

2
u2b1.

Then, the Roe averages are defined as follows (Roe, 1981):

û = 〈√ρu〉 / 〈√ρ〉 ,
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Ĥ = 〈√ρH〉 / 〈√ρ〉 ,

ĉ =
√

γ − 1

√
Ĥ − 1

2
û2, (15.89)

where the angled brackets denote the arithmetic average of two states:

〈b〉 = 1

2

[
b
(
UL

j+ 1
2

)
+ b

(
UR

j+ 1
2

)]
. (15.90)

The Jacobian matrix A(U) evaluated at the Roe-averaged state will be

denoted as

Âj+ 1
2
= A

(
Ûj+ 1

2

)
, (15.91)

and we have

Âj+ 1
2
= PΛP−1, (15.92)

where

P =
(
r1(Û), r2(Û), r3(Û)

)
. (15.93)

Finally, the Godunov–Roe flux is given in a form similar to (15.84) by

f̂
(Roe)

j+ 1
2

=
1

2

[
f
(
UL

j+ 1
2

)
+ f

(
UR

j+ 1
2

)]
− 1

2
|Âj+ 1

2
|
(
UR

j+ 1
2
−UL

j+ 1
2

)
. (15.94)

The Godunov–Roe flux needs an entropy fix to avoid the generation of non-

physical expansion shock waves. It was given in Harten & Hyman (1983) by

modifying the eigenvalue |λ̂j+ 1
2
| of |Âj+ 1

2
| as follows:

|λ̂j+1/2|mod =

⎧⎨⎩ |λ̂j+1/2|, if |λ̂j+1/2| ≥ ε,

1
2

(
λ̂2
j+1/2

ε + ε

)
, if |λ̂j+1/2| < ε,

(15.95)

where ε = max
[
0, (λ̂j+ 1

2
− λj), (λj+1 − λ̂j+ 1

2
)
]
.

15.3 Weighted essentially non-oscillatory (WENO) finite difference
methods

We illustrate the idea of the WENO finite difference method for a 1-D scalar

conservation law:

ut + fx(u) = 0. (15.96)

Extensions to the system of conservation laws will be discussed later. The time

derivative and the spatial derivative will be discretized separately. For illustration

purposes, we use the Euler forward difference method for the time derivative,

and the numerical scheme will be written in the following conservative form:

un+1
j = un

j − λ
(
f̂j+ 1

2
− f̂j− 1

2

)
, (15.97)
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where un
j ≈ u(xj , t

n), xj = jΔx, tn = nΔt, Δx and Δt are the spatial mesh size

and the time step size, respectively,

λ =
Δt

Δx
, (15.98)

and f̂j±1/2 are the numerical fluxes which should approximate the analytical

fluxes f(u(xj±1/2)). In order to construct an accurate numerical flux, we consider

a function h(x) which is related to f(u) in the following cell-averaging operation

(Shu & Osher, 1989):

f(u(x)) =
1

Δx

∫ x+Δx
2

x−Δx
2

h(ξ)dξ. (15.99)

Equation (15.99) implies that the derivative fx(u) can be expressed as

fx(u(xj)) =
h
(
xj +

Δx
2

)
− h

(
xj − Δx

2

)
Δx

, (15.100)

which suggests that the numerical fluxes f̂j+1/2 should approximate h(xj +

Δx/2) as Δx→ 0.

Therefore, our goal is to find the function h(x) from knowledge of the solution

u(x), which will be achieved as follows. Define the primitive function H(x) of

h(x) as

H(x) =

∫ x

−Δx
2

h(ξ)dξ. (15.101)

Assuming that (15.99) holds, then, for 0 ≤ j ≤ N , we have

H(xj+ 1
2
) =

∫ x
j+1

2

−Δx
2

h(ξ)dξ =

j∑
k=0

∫ x
k+1

2

x
k− 1

2

h(ξ)dξ = Δx

j∑
k=0

f(u(xk)). (15.102)

Now let qr(x) be an rth-order polynomial over the interval [xj , xj+1], which

interpolates H(xj+1/2) over r + 1 mesh points including xj and xj+1. There

are, however, r choices of the stencil for this purpose, as we can use each of the

following stencils Sk, k = 0, 1, . . . , r − 1:

Sk = {xj+k−r+1, xj+k−r+2, . . . , xj+k}, (15.103)

and we have

qr(xj) = H(xj+ 1
2
), for j + k − r + 1 ≤ i ≤ j + k. (15.104)

Then, the numerical flux can be defined as

f̂j+ 1
2
=

d

dx
qr(xj+ 1

2
). (15.105)

It should be noted that the numerical scheme thus obtained is based on a

direct finite difference type approximation to the differential equation (15.96),
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Table 15.1. Coefficients ar
k,l

r k l = 0 l = 1 l = 2

2 0 −1/2 3/2
1 1/2 1/2

3 0 1/3 −7/6 11/6
1 −1/6 5/6 1/3
2 1/3 5/6 −1/6

different from the finite volume type approximation in the Godunov scheme in

Section 15.2. However, the approach in this section can be extended to multi-

dimensional problems without much more cost, while the reconstruction step in

the Godunov-type method involves finding the point values of a function from

its multi-dimensional cell averages, which is not an easy task.

As the primitive function of h(x) is related to qr(xj+1/2) through a derivative

operation in (15.102), equation (15.105) implies that the numerical flux will be

a linear combination of the values f(u(xi)), j + k − r + 1 ≤ i ≤ j + k, i.e.,

f̂j+ 1
2
= Lr,k(fj+k−r+1, fj+k−r, . . . , fj+k), (15.106)

where Lr,k is a linear operator of the following form:

Lr,k(g0, . . . , gr−1) =

r−1∑
l=0

ark,lgl. (15.107)

Here the coefficients ark,l can be obtained from the interpolating polynomial qr(x)

in (15.105). Table 15.1 contains the coefficients ark,l for r = 2 and 3 (Jiang &

Shu, 1996).

The original essentially non-oscillatory (ENO) idea selected a stencil Sk that

had the smoothest numerical data based on comparing the relative magnitude of

undivided differences for the numerical solution in a recursive manner (namely,

starting from the first undivided difference (15.113) up to the rth undivided

difference (15.114)) (Shu & Osher, 1989; Harten et al., 1997). In contrast, the

weighted ENO will use the result of (15.106) on all stencils Sk in a weighted

convex combination as follows (Liu, Osher, & Chan, 1994):

f̂j+ 1
2
= L2r−1,r−1(fj−r+1, . . . , fj+r−1)

+

r−1∑
k=0

(ωk − Cr
k)Lr,k(fj+k−r+1, fj+k−r, . . . , fj+k), (15.108)

where coefficients Cr
k are defined by the following conversion formula:

L2r−1,r−1(fj−r+1, . . . , fj+r−1) =

r−1∑
k=0

Cr
kLr,k(fj+k−r+1, fj+k−r, . . . , fj+k).

(15.109)
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Some optimal choices for Cr
k are C2

0 = 1/3, C2
1 = 2/3; C3

0 = 1/10, C3
1 = 6/10,

and C3
2 = 3/10 (Jiang & Shu, 1996). The weights ωk are defined as

ωk =
αk

α0 + · · ·+ αr−1
, k = 0, 1, . . . , r − 1, (15.110)

where

αk =
Cr

k

(ε+ ISk)p
. (15.111)

Here ISk is a smoothness indicator of the solution, i.e.,

ISk =

r−1∑
l=1

r−l∑
i=1

(f [j + k + i− r, l])
2

r − l
, (15.112)

where f [·, ·] is the lth undivided difference:

f [j, 0] = fj , (15.113)

f [j, l] = f [j + 1, l − 1]− f [j, l − 1], l = 1, 2, . . . , r − 1. (15.114)

• WENO finite difference for hydrodynamic equations of electron

transport

In order to apply the WENO scheme for the hydrodynamic equations (15.57), we

apply the WENO formula (15.108) to each of the s-characteristic fields, where the

characteristic directions are defined by the left eigenvectors ls(uj+1/2), s = 1, 2, 3,

where the overbar indicates the Roe-averaged state between uj and uj+1, (15.89).

We define the flux for the system as

f̃j+ 1
2 ,s

=

r−1∑
k=0

wk,sLr,k(ls · fj+k−r+1, . . . , ls · fj+k), (15.115)

where wk,s are the weights to be used for the sth characteristic field:

wk,s = ωk(ls · fj−r+1, . . . , ls · fj+r), (15.116)

defined in (15.110)–(15.112).

Finally, the numerical flux is computed by combining the fluxes for all s-

components:

f̂j+ 1
2
=

3∑
k=1

f̃j+ 1
2 ,k

rk, (15.117)

where rk = rk(uj+1/2).
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15.4 Central differencing schemes with staggered grids

The NT central differencing scheme of Nessyahu & Tadmor (1990) is based on

the cell-average form of the conservation law of (15.96). Consider a cell average

centered at x:

u(t) =
1

Δx

∫ x+Δx
2

x−Δx
2

u(ξ, t)dξ. (15.118)

In particular, we could define the cell average uj+1/2(t) centered at xj+1/2 as

uj+ 1
2
(t) =

1

Δx

∫ x
j+1

2
+Δx

2

x
j+1

2
−Δx

2

u(x, t)dx, (15.119)

or the cell average uj(t) centered at xj as

uj(t) =
1

Δx

∫ xj+
Δx
2

xj−Δx
2

u(x, t)dx. (15.120)

These two sets of cell averages are defined on a staggered grid, and the NT

central differencing scheme will provide the procedure for obtaining one set of

the two cell averages at tn+1 from the other set at tn, for instance{
un
j

}
→

{
un+1
j+1/2

}
.

To illustrate this procedure, let us assume that the cell averages un
j over the

interval [xj−1/2, xj+1/2] are given at tn. To find the cell averages un+1
j+1/2 over the

staggered interval [xj , xj+1] at tn+1, we integrate the conservation law in the

space–time volume [xj , xj+1]× [tn, tn +Δt] as indicated by the shaded region in

Fig. 15.1, and we obtain the evolution equation for the cell averages uj+1/2(t):

uj+ 1
2
(tn +Δt) = uj+ 1

2
(tn)

− 1

Δx

[∫ tn+Δt

tn

f(u(xj+1, τ))dτ −
∫ tn+Δt

tn

f(u(xj , τ))dτ

]
.

(15.121)

The evolution equation for uj+1/2(tn + Δt) is exact provided that the flux

function f(u(xj , t)) is known for all t ∈ [tn, tn + Δt] at all mesh points xj .

The second-order NT scheme is based on a middle-point approximation of the

integrals on the right-hand side of (15.121), whose second-order accuracy will

be ensured if the function f(u(xj , t)) is smooth along the time interval. The

latter smoothness condition is made possible if we assume the solution at tn is

represented by a piecewise polynomial with breaking points at xj+1/2 and is due

to the finite speed of propagation of the discontinuity, for sufficiently small Δt,

such that
Δt

Δx
ρ(A(u)) <

1

2
, (15.122)
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Figure 15.1. Staggered grids for the NT central differencing scheme.

where A(u) = ∂f(u)/∂u is the Jacobian matrix of the flux function and ρ(A)

denotes the spectral radius of the matrix A.

The time integral of the flux function is calculated using the middle-point rule

∫ tn+Δt

tn

f(u(xj , τ))dτ = Δtf

(
u

(
xj , tn +

Δt

2

))
+O(Δt3). (15.123)

Next, the quantity u(xj , tn +Δt/2) will be approximated by a Taylor expansion

in time and a Lax–Wendroff technique, which replaces the time derivative by the

spatial derivative with the help of the partial differential equations:

u

(
xj , tn +

Δt

2

)
= u(xj , tn) +

Δt

2
ut(xj , tn) +O(Δt2)

= u(xj , tn)−
Δt

2
f ′(u(xj , tn)) +O(Δt2). (15.124)

Then, (15.121), (15.123), and (15.124) give the following approximate scheme

for un+1
j+1/2:

un+1
j+ 1

2

= un
j+ 1

2
− Δt

Δx

[
f

(
u(xj+1, tn)−

Δt

2
f ′(u(xj+1, tn))

)
−f

(
u(xj , tn)−

Δt

2
f ′(u(xj , tn))

)]
. (15.125)

Next, we will try to approximate cell average un
j+1/2 from the given cell aver-

age un
j . The numerical solution at each time tn can be assumed to be a piece-
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wise polynomial over the interval [xj−1/2, xj+1/2]. For instance, for second-order

accuracy,

u(x, t) = Lj(x, t) ≡ uj(t) + (x− xj)
1

Δx
u′
j , x ∈ [xj− 1

2
, xj+ 1

2
], (15.126)

and the cell average of the solution coincides with the point value at the center

of the cell:

uj(t) = uj(t). (15.127)

To ensure the second-order accuracy of the approximation in (15.126), we

require the approximate derivative u′
j to satisfy

1

Δx
u′
j =

∂

∂x
u(xj , t) +O(Δx). (15.128)

The ENO idea could be used for this purpose (Liu & Tadmor, 1998; Bianco,

Puppo, & Russo, 1999; Romano & Russo, 2000):

u′
j = MM

(
dj− 1

2
u+

1

2
MM(Dj−1u,Dju), dj+ 1

2
u− 1

2
MM(Dju,Dj+1u)

)
,

(15.129)

where

dj+ 1
2
u = uj+1 − uj , (15.130)

Dju = uj+1 − 2uj + uj−1, (15.131)

and the min-mod function

MM(x, y) =

{
sign(x) ·min(|x|, |y|), if sign(x) = sign(y),

0, otherwise.
(15.132)

The staggered cell average uj+1/2(tn) can be computed from the piecewise

polynomial representation (15.126) of the solution at t = tn, i.e.,

uj+ 1
2
(t) =

1

Δx

[∫ x
j+1

2

xj

Lj−1(x, t)dx+

∫ xj+1

xj+
1
2

Lj(x, t)dx

]

=
1

2
[uj(t) + uj+1(t)] +

1

8

(
u′
j − u′

j+1

)
. (15.133)

Finally, substituting (15.133) into the approximate evolution formula (15.125),

we obtain the following relation:

uj+ 1
2
(tn +Δt) =

1

2
[uj(t) + uj+1(t)] +

1

8

(
u′
j − u′

j+1

)
− λ

[
f

(
u(xj+1, tn)−

Δt

2
f ′(u(xj+1, tn))

)
− f

(
u(xj , tn)−

Δt

2
f ′(u(xj , tn))

)]
+O(Δt3), (15.134)
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Figure 15.2. A n+–n–n+ diode.

which gives the following evolution of the cell averages between two staggered

grids from tn to tn+1.

Second-order NT central differencing scheme over the staggered mesh:

{un
j } → {un+1

j+1/2}

(1) Predictor step

Given the cell averages over the cell [xj−1/2,xj+1/2] at tn, namely un
j , calculate

u
n+ 1

2
j = unj −

Δt

2
f ′(un

j ), (15.135)

where the derivative f ′(un
j ) can be computed through the Jacobian matrix:

f ′(un
j ) = A(un

j )u
′n
j , (15.136)

with u′n
j computed using (15.129)–(15.131) and(15.127):

u′nj = MM

(
dj− 1

2
un +

1

2
MM(Dj−1u

n, Dju
n), dj+ 1

2
un−1

2
MM(Dju

n, Dj+1u
n)

)
.

(15.137)

(2) Corrector step

un+1
j+ 1

2

=
1

2

(
un
j + un

j+1

)
− λ (gj+1 − gj) , (15.138)

where

gj = f
(
u
n+ 1

2
j

)
+

1

8λ
u′n
j . (15.139)

• Numerical results of a 1-D n+–n–n+ diode

In the following, we present some numerical results for a 1-D GaAs diode, as

shown in Fig. 15.2, which consists of 0.25 μm source and drain sections, highly

doped with electron donors n+, and a 0.25 μm channel section of n-type lightly
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Figure 15.3. Results for a n+–n–n+ diode. Top left: electron velocity; top right:
electron density; bottom left: electron temperature; bottom right: electric field. The
solid line depicts a Godunov method and, the dotted line depicts the central
differencing scheme. The x-unit is 0.1 μm. From Gardner, Gelb, & Hernandez (2002),
copyright (2002) by Hindawi.com.

doped material. In the n+ doped region, the doping density N = 5× 1017 cm−3,

while the channel region dope density N = 2 × 1015 cm−3. The effective mass

of the electron for GaAs is m = 0.063me at temperature T = 300 K, where me

is the free electron mass, and the relative dielectric constant for GaAs ε = 12.9.

The relaxation times are τp = τw = 0.2 ps. At the left and right boundaries of

the diode, the constant number density n = N is used, and T = T0 is given at

the left boundary; finally, the potential φ = 0 at the left and φ = 1 V at the right

boundary. Figure 15.3 (Gardner, Gelb, & Hernandez, 2002) shows the velocity,

density, temperature, and electric field across the diode. It shows the formation

of a shock wave at x = 0.2 μm into the channel section and a high temperature

increase as the electron leaves the channel to go into the drain section to the

right, and also the space charge profile in the device. The solid lines are results

obtained by the Godunov-type scheme implemented in the software CLAWPACK

(LeVeque, 2002), and the dotted lines are those by the central differencing scheme

presented in this section.

15.5 Summary

While devices at micron scales can be simulated by drift-diffusion models, for de-

vices of sub-micron sizes but still above the scales of quantum transport regimes,

temperature variance and large electric field will occur (as shown in Fig. 15.3).

Therefore, hydrodynamic equations should be used to describe the transport
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of the so-called hot electrons, i.e., electrons that have gained energy from the

large electric field and obtained a velocity distribution far away from that of an

equilibrium Maxwellian. The shock profile of the electron velocity and density

requires the non-oscillatory approximation of the numerical solutions, which is

achieved by limiters in the reconstruction steps in Godunov-type methods or

schemes using the weighted essentially non-oscillatory (WENO) interpolation

techniques.



16 Transport models in plasma media
and numerical methods

In this, the final chapter of the book, we study the transport phenomena in

plasma due to electrons and ions. These phenomena have wide applications in

astrophysics, confined nuclear thermal reactions, and in high-density laser plasma

interactions, etc. Plasma, considered as the fourth state of matter in the universe,

differs from solids, liquids, and gases, in that there is a much weakened bond

strength between its constituent particles. The plasma state of a medium is cre-

ated via high-temperature external heating, which results in an increase in both

the thermal energy and the number of atomic ionizations (i.e., an electron in an

outer shell of an atom escapes from its nuclear force confinement once it obtains

enough external energy from photon excitation or collision), which produces free-

moving electrons and ions. The primary force in a plasma medium is described

by the long-range Coulomb forces of electrostatics. The motions of the electrons

and the ions can be described by a kinetic theory with special treatment of the

collision under the long-range electric potential, which includes the Boltzmann–

Fokker–Planck equations or the Balescu–Lenard equations. A macroscopic de-

scription of the electron/ion density can also be obtained through the moments

of the kinetic equation as the magneto-hydrodynamic (MHD) equations. Three

types of numerical methods based on kinetic and hydrodynamic models will be

discussed in this chapter. The first type is the Boltzmann–Fokker–Planck solver

in phase space, and the second is the particle-in-cell method, which tracks the

dynamics of individual particles under the Lorentz force of the electromagnetic

fields; the latter is also coupled to the charge distributions of the moving parti-

cles. Finally, the third type is a constrained transport method of finite difference

type for the MHD equations, which observes the divergence-free constraint on

the magnetic field.

16.1 Kinetic and macroscopic magneto-hydrodynamic (MHD)
theories

16.1.1 Vlasov–Fokker–Planck equations

The kinetic Boltzmann–Vlasov equation given in (15.10) will be used to describe

electron and ion transport in a plasma medium. However, due to the long-range

interaction of the Coulomb force, the binary collision mechanism (15.2) in the
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Boltzmann collision (Section 15.1.1) will not apply here as each electron will

interact with many electrons or ions over a large distance, i.e., they will expe-

rience multiple Coulombic collisions, as well as interact with neutral particles

in the system though through a different interaction potential. However, if the

multiple Coulombic collisions can be considered as a sequence of binary collisions

at grazing angles, the binary Boltzmann collision operator can be used to arrive

at the Fokker–Planck equation (Landau, 1936).

Let fα(r,v, t) denote the distribution function for the α-type particles (such

as electrons, ions, and neutral particles). The Boltzmann collision operator for a

conserved quantity χ (15.11) can be rewritten as

[
δnα 〈χ〉

δt

]
coll

=
∑
β

∫
v1

∫
v

∫
Ω

fαfβ1
(χ′ − χ)gσ(Ω)dΩ dv dv1, (16.1)

by using the identity

∑
β

∫
v1

∫
v

∫
Ω

f ′
αf

′
β1
χgσ(Ω)dΩdvdv1 =

∑
β

∫
v1

∫
v

∫
Ω

fαfβ1
χ′gσ(Ω)dΩdvdv1,

(16.2)

where fα = fα(r,v, t), fβ1
= fβ1

(r,v1, t), f
′
α = fα(r,v

′, t), and f ′
β1

= fβ1
(r,v′

1, t).

Assuming that only the grazing angle collision is involved in (16.1), namely

v′ = v +Δv, (16.3)

where |Δv| 
 1, we can apply the Taylor expansion to χ′ = χ(v′):

χ′ = χ(v +Δv) = χ(v) +
∑
i

∂χ

∂vi
Δvi +

1

2

∑
i,j

∂2χ

∂vi∂vj
ΔviΔvj + · · · . (16.4)

Then, the time rate of change of the quantity χ due to the collision between the

α- and β-type particles is given by

∫
v

χ(v)

[
δfα
δt

]
dv

=
∑
β

∫
v1

∫
v

∫
Ω

fαfβ1

⎡⎣∑
i

∂χ

∂vi
Δvi +

1

2

∑
i,j

∂2χ

∂vi∂vj
ΔviΔvj

⎤⎦ gσ(Ω)dΩ dv dv1.

(16.5)
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Applying integration by parts for terms with ∂χ/∂vi and ∂2χ/∂vi∂vj , and

using the fact that fα and ∂fα/∂vi vanish as |v| → ∞, we obtain∫
v

χ(v)

[
δfα
δt

]
coll

dv

=
∑
β

∫
v1

∫
v

∫
Ω

χ(v)fβ1

[
−
∑
i

∂

∂vi
Δvifαgσ(Ω)dΩ

+
1

2

∑
i,j

∂2

∂vi∂vj
fαΔviΔvjgσ(Ω)dΩ

⎤⎦ dv dv1

=

∫
v

χ(v)

⎛⎝−∑
i

∂

∂vi
fα 〈Δvi〉+

1

2

∑
i,j

∂2

∂vi∂vj
fα 〈ΔviΔvj〉

⎞⎠ dv, (16.6)

where the averaging operators 〈Δvi〉 and 〈ΔviΔvj〉 are defined as

〈Δvi〉 =
∑
β

∫
v1

∫
Ω

fβ(r,v1, t)(v
′
i − vi)gσ(Ω)dΩ dv1, (16.7)

and

〈ΔviΔvj〉 =
∑
β

∫
v1

∫
Ω

fβ(r,v1, t)(v
′
i − vi)(v

′
j − vj)gσ(Ω)dΩ dv1, (16.8)

respectively.

It follows from (16.6) that the collision term for the plasma takes the following

form: [
∂fα
∂t

]
coll

= −
∑
i

∂

∂vi
(cifα) +

1

2

∑
i,j

∂2

∂vi∂vj
(μijfα) ≡ Lfp(fα), (16.9)

which resembles a Fokker–Planck differential operator with friction and diffusion

coefficients defined as

ci = 〈Δvi〉 , μij = 〈ΔviΔvj〉 . (16.10)

The Boltzmann–Vlasov equation in (15.10), together with (16.9), makes the

Vlasov–Fokker–Planck kinetic equation for the plasma:

∂fα
∂t

+ v · ∇fα + a·∇vfα = Lfp(fα). (16.11)

16.1.2 MHD equations for plasma as a conducting fluid

As the kinetic equation is difficult to solve due to its six-dimensional phase space

variables, macroscopic equations can be derived from its moment equation. For

plasma, the force on the electrons or ions will be the Lorentz force:

F = q(E+ v ×B). (16.12)
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It is easy to verify that

∇v · F = 0, (16.13)

as the ith component of F will not involve the ith component of the velocity

vector v from the definition of the vector cross product. Therefore, the condition

in (15.18) is satisfied, and we can obtain the macroscopic equations for the plasma

using the general moment equation (15.19) in Section 15.1.2.

MHD for plasma as a single conducting fluid

For many situations, we can use a single-fluid model where we can define an

average mass density ρ,

ρ =
∑
α

ρα, ρα = mαnα, (16.14)

and an average charge density ρe,

ρe =
∑
α

nαqα. (16.15)

An average velocity u is defined by

ρu =
∑
α

ραuα, (16.16)

namely through a mass density weighted average of the velocity of each type of

particle.

The velocity fluctuation v′ with respect to the average velocity uα defined in

(15.23) for the α-type particle has been defined previously and is repeated here:

v = uα + v′, (16.17)

and

〈v′〉α = 0. (16.18)

In reference to the average velocity u of the single-fluid model, a new velocity

fluctuation v∗ can be defined as

v = u+ v∗, (16.19)

with which we define a different pressure dyadic P∗
α for each α-type particle:

(P ∗
α)ij = ρα

〈
v∗i v

∗
j

〉
α
. (16.20)

For the single plasma fluid, an overall pressure dyadic P is defined by

P =
∑
α

ρα 〈v∗v∗〉α , (16.21)

and the global scalar pressure p is then

p =
1

3

3∑
i=1

Pii =
1

3

∑
α

ρa
〈
v∗2

〉
α
. (16.22)
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The mass density averaged pressure dyadic in (16.21) is in general different

from the linear sum of the pressure pα of (15.39) for each individual type of

particle. In fact, by subtracting (16.17) from (16.19), we can see that the fluc-

tuation with respect to the average velocity uα of the α-type particle and the

global mean velocity of the one-fluid plasma u are related by

v∗ = v′ + (uα−u) = v′ −wα (16.23)

and

wα = u− uα, (16.24)

wherewα is considered as the diffusive velocity of the α-type particle with respect

to the overall plasma velocity, and we also have the following identity using

(16.18):

〈v∗〉α = −wα. (16.25)

Now, substituting (16.23) into (16.21), we have

P =
∑
α

Pα +
∑
α

ρα wαwα. (16.26)

Thus, the total scalar pressure p (trace of the dyadic) can be shown to be

related to the individual scalar pressure pα of (15.39) as follows:

p =
∑
α

pα +
1

3

∑
α

ρα w2
α. (16.27)

Next, the hydrodynamic equations for the single-fluid plasma can be obtained

from (15.21), (15.36), and (15.49). Firstly, by summing the continuity equation

(15.21) over α and using the definition (16.16) and the conservation identity

(15.25), we have the continuity equation for the plasma fluid :

∂ρ

∂t
+∇ · (ρu) = 0. (16.28)

Secondly, summing the momentum equation (15.36) over α, after using (16.16)

and (15.38), we have

∂ρu

∂t
=

∂

∂t

∑
α

ραuα = −∇
∑
α

ραuαuα −
∑
α

nαFα −∇
∑
α

Pα. (16.29)

Using the decomposition (16.24), the sum in the first term on the right-hand

side of (16.29) becomes∑
α

ραuαuα =
∑
α

ραuα(u−wα) =
∑
α

ραuαu−
∑
α

ραuαwα

= ρuu +

(
−2

∑
α

ραuwα +
∑
α

ραwαwα

)
= ρuu +

∑
α

ραwαwα. (16.30)
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The last equation in (16.30) holds due to the fact that∑
α

ραwα = −
∑
α

ρα (uα−u) = −
∑
α

ραuα +
∑
α

ραu

= −ρu + ρu = 0. (16.31)

The second term on the right-hand side of (16.29) is

∑
α

nαFα =
∑
α

nαqα (E+ uα ×B) = ρeE+

(∑
α

nαqαuα

)
×B

= ρeE+ J×B, (16.32)

where the current J is defined as

J =
∑
α

nαqαuα. (16.33)

Substituting (16.30) and (16.32) into (16.29), and using the definition of the

global pressure dyadic in (16.26), we have the momentum equation for the plasma

fluid :

∂ρu

∂t
= −∇(ρuu)− (ρeE+ J×B)−∇P. (16.34)

Finally, to arrive at an energy equation for the single plasma fluid, we use the

energy equation for the α-type particle with the general macroscopic equation

(15.19):

∂

∂t
nα 〈χ〉α +∇ · (nα 〈χv〉α)− nα 〈aα · ∇vχ〉α =

δ

δt
[nα 〈χ〉α]coll , (16.35)

with χ = mαv
2/2, and the facts that

aα =
1

mα
Fα, Fα = qα(E+ v ×B), and ∇vχ =

1

2
mαv. (16.36)

After a summation over α (the energy loss terms cancel due to conservation), we

have

∂

∂t

1

2

∑
α

ρα
〈
v2

〉
α
+∇ ·

∑
α

ρα
2

〈
v2v

〉
α
−

∑
α

nα 〈F · v〉α = 0. (16.37)

Now we use the velocity decomposition with respect to the global velocity u

in (16.19) to evaluate each of the terms in (16.37). To simplify the first term on

the left-hand side of (16.37), we consider

1

2

∑
α

ρα
〈
v2

〉
α
=

1

2

∑
α

ραu
2 +

1

2

∑
α

ρα
〈
v∗2

〉
α

+
∑
α

ρα 〈uv∗〉α =
1

2
ρu2 +

3

2
p. (16.38)
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The last equality is due to the fact that∑
α

ρα 〈uv∗〉α = u
∑
α

ρα 〈v∗〉α = −u
∑
α

ραwα = 0, (16.39)

where the identity (16.25) is used for the second equality and the final equality

is due to (16.31).

Here, the energy density W of the plasma is defined as

W =
3

2
p+

1

2
ρu2. (16.40)

Next, we examine the term inside the second summation in (16.37):〈
v2v

〉
α
=

〈
(u2 + 2u ·v∗ + v∗2)(u+ v∗)

〉
α

=
[
u2u + 2u · 〈v∗〉α u +

〈
v∗2

〉
α
u
]

+
[
u2 〈v∗〉α + 2u 〈v∗v∗〉α +

〈
v∗2v∗〉

α

]
=

[
u2u − 2u ·wαu +

〈
v∗2

〉
α
u
]

+
[
−u2wα + 2u 〈v∗v∗〉α +

〈
v∗2v∗〉

α

]
. (16.41)

Therefore, using (16.31), the second term in (16.37) becomes∑
α

ρα
2

〈
v2v

〉
α
=

∑
α

ρα
2
u2u +

∑
α

ρα
2

〈
v∗2

〉
α
u

+
∑
α

ραu 〈v∗v∗〉α +
∑
α

ρα
2

〈
v∗2v∗〉

α

=
ρ

2
u2u +

3

2
pu + Pu + q, (16.42)

where the heat flux q is defined as

q =
1

2

∑
α

ρα
〈
v∗2v∗〉

α
. (16.43)

The third term in (16.37) is∑
α

nα 〈F · v〉α =
∑
α

nα

∫
v

fαqα(E+ v ×B) · v dv

=
∑
α

nα

∫
v

fαqαE · v dv =

(∑
α

nαqαuα

)
·E

= J ·E. (16.44)

Substituting (16.38), (16.42), and (16.44) into (16.37), we obtain the energy

equation for the plasma fluid :

∂W

∂t
+∇ · (W + P )u+∇ · q = J ·E. (16.45)
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Also, a single global temperature for the plasma fluid can be defined through

the relation

p = nkBT, (16.46)

where n =
∑
α

nα.

In many situations concerning plasmas, the time dependence of the electric

field (displacement current) in the Maxwell equations is ignored. The magnetic

flux is then related to the current by the simplified static Ampère’s law,

∇×B = μ0J, (16.47)

where the current J is given by a generalized Ohm’s law (Bittencourt, 2004) for

the plasma conducting fluid:

J = σ(E+ u×B). (16.48)

Using Faraday’s law, and (16.48) to replace E, we have

∂B

∂t
= −∇×E =−∇×

(
1

σ
J− u×B

)
= −∇×

(
1

σμ0
∇×B− u×B

)
,

where (16.47) is used to obtain the final equation. Next, using the zero divergence

of the magnetic induction B, we finally have the dynamic equation

∂B

∂t
= ∇× (u×B) +

1

σμ0
∇2B. (16.49)

The complete ideal MHD equations (σ = ∞), consisting of (16.28), (16.34),

(16.45), and (16.49), can be written in the following system of conservation laws:

∂U

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= s, (16.50)

where the unknown U consists of the conserved density, momentum, total energy

E = W + |B|2/2 = ρu2/2 + p/(γ − 1) + |B|2/2, and the magnetic induction in

(16.49)

U = (ρ, ρu, E ,B)
T
. (16.51)

The fluxes are defined as

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

ρu2
x + p+ 1

2 |B|2 −B2
x

ρuxuy −BxBy

ρuxuz −BxBz

ux

(
E + p+ 1

2 |B|2
)
−Bx(u ·B)

0

uxBy − uyBx

− (uzBx − uxBz)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16.52)
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g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuy

ρuxuy −BxBy

ρu2
y + p+ 1

2 |B|2 −B2
y

ρuyuz −ByBz

uy

(
E + p+ 1

2
|B|2

)
−By(u ·B)

− (uxBy − uyBx)

0

uyBz − uzBy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16.53)

and

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuz

ρuxuz −BxBz

ρuyuz −ByBz

ρu2
z + p+ 1

2
|B|2 −B2

z

uz

(
E + p+ 1

2 |B|2
)
−Bz(u ·B)

uzBx − uxBz

− (uyBz − uzBy)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16.54)

where the equation for the energy E is obtained by combining (16.45) and the

conservation of the magnetic second moment |B|2 based on (16.49), and the

source term s contains the remaining undifferentiated terms.

16.2 Vlasov–Fokker–Planck (VFP) schemes

A fundamental microscopic approach to model electron transport and plasma-

laser interaction is to solve the Boltzmann equation in (15.10) directly within

the Landau approximation of the collision operator in the form of nonlinear

Fokker–Planck operator (Alouani-Bibi, Shoucri, & Matte, 2004; Bell et al., 2006;

Tzoufras et al., 2011). This kinetic approach is particularly required when there

is a large temperature gradient in the plasma medium so that the heat flux

approximation in the hydrodynamic model fails and the heat flux will have a

non-local dependence on temperature and density (Spitzer & Härm, 1953). When

there is a strong non-local effect due to the comparable scale of the electron

mean free path (mfp) and the plasma (Alouani-Bibi & Matte, 2002), or a strong

collision heating by the laser field (Langdon, 1980), the electron distribution

function will be non-Maxwellian, which was used for moment closure for the

hydrodynamic model.

In the VFP scheme (Tzoufras et al., 2011), the electron distribution function

f(r,p, t) is approximated by the spherical harmonics as follows:
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f(r,p, t) =
∞∑
l=0

l∑
m=−l

fm
l (r, |p|, t)P |m|

l (cos θ)eimϕ, f−m
l = (fm

l )
∗
. (16.55)

The Boltzmann equation (15.10) can be rewritten in terms of the expansion

coefficients as

∂fm
l

∂t
−Am

l,x −Am
l,y −Am

l,z − Eml,x − Eml,y − Eml,z − Bm
l = Cml,i + Cml,e + S, (16.56)

where various terms in (16.56) are projections under the spherical harmonics

basis for the spatial advection, electric and magnetic forces, and collisions, and S

is the source term from possible laser fields. Note that Cml,i and Cml,e are the angular
scattering contributions of electrons off ions and between electrons, respectively

(Bell et al., 2006). The spatial advection terms are given by

Am≥0
l,x =− v∂x

[(
l −m

2l − 1

)
fm
l−1 +

l +m+ 1

2l + 3
fm
l+1

]
,

Am>0
l,y +Am>0

l,z =− v

2

[
∂y − i∂z
2l − 1

fm−1
l−1 − ∂y + i∂z

2l − 1
(l −m)(l −m− 1)fm+1

l−1

− ∂y − i∂z
2l + 3

fm−1
l+1 +

∂y + i∂z
2l + 3

(l +m+ 1)(l +m+ 2)fm+1
l+1

]
,

A0
l,y +A0

l,z = Re

{
−v(∂y + i∂z)

[
− l(l − 1)

2l − 1
f1
l−1 +

(l + 1)(l + 2)

2l + 3
f1
l+1

]}
.

(16.57)

The electric field terms are given by

Em≥0
l,x = Ex

[
l −m

2l − 1
Gm

l−1 +
l +m+ 1

2l + 3
Hm

l+1

]
,

Em>0
l,y + Em>0

l,z =
1

2

[
Ey − iEz

2l − 1
Gm−1

l−1 − Ey + iEz

2l − 1
(l −m)(l −m− 1)Gm+1

l−1

− Ey − iEz

2l + 3
Hm−1

l+1 +
Ey + iEz

2l + 3
(l +m+ 1)(l +m+ 2)Hm+1

l+1

]
,

E0l,y + E0l,z = Re

{
(Ey + iEz)

[
− l(l − 1)

2l − 1
G1

l−1 +
(l + 1)(l + 2)

2l + 3
H1

l+1

]}
,

(16.58)

where

Gm
l = pl∂p(p

−lfm
l ), Hm

l = p−l−1∂p(p
l+1fm

l ),

and the magnetic field terms are

Bm>0
l =− iBxmfm

l

+
1

2

[
(l −m)(l +m+ 1)(Bz − iBy)f

m+1
l − (Bz + iBy)f

m−1
l

]
, (16.59)

B0
l = l(l + 1)Re

{
(Bz − iBy)f

1
l

}
. (16.60)
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The periodic or reflection boundary condition can be used for the distribution;

for the latter case, we have

fRx(xb ± x, px) = f(xb ∓ x,−px) =
∞∑
l=0

l∑
m=−l

(−1)l+mfm
l P

|m|
l (cos θ)eimϕ,

fRy(yb ± y, py) = f(yb ∓ y,−py) =
∞∑
l=0

l∑
m=−l

(−1)l+mf−m
l P

|m|
l (cos θ)eimϕ.

(16.61)

Next, we investigate the collision in the Boltzmann equation (15.10) between a

particle of massm and charge q = ze (e is the electron charge here) corresponding

to the distribution f and a scattering center (electron or ion) of mass M = μm

and charge Q = Ze, described by a distribution F. The Fokker–Planck collision

operator (Shkarofsky, Johnston, & Bachynski, 1966), which is given by

1

ΓzZ

(
δf

δt

)
=

4π

μ
Ff +

μ− 1

μ+ 1
∇H(F ) · ∇f +

∇∇G(F ) · ∇∇f

2
, (16.62)

where ∇ is the gradient operator in the velocity space,

ΓzZ = 4π(zZe2)2 ln Λ/m2, Λ =
3T

Ze2
λD. (16.63)

Note that λD is the Debye length in the plasma medium (λD = κ−1, where κ is

defined in (2.17)), andH(F ) andG(F ) are the Rosenbluth potentials (Rosenbluth,

MacDonald, & Judd, 1957) in the form of integral operators for F :

H(F ) =
1 + μ

μ

∞∑
l=0

l∑
m=−l

1/v

2l + 1
[Il(F

m
l ) + J−1−l(F

m
l )]P

|m|
l (cos θ)eimϕ,

(16.64)

G(F ) =
∞∑
l=0

l∑
m=−l

v

[
Il+2(F

m
l ) + J−1−l(F

m
l )

(2l + 1)(2l + 3)

− Il(F
m
l ) + J1−l(F

m
l )

(2l − 1)(2l + 1)

]
P

|m|
l (cos θ)eimϕ, (16.65)

where

Ij =
4π

vj

∫ v

0

Fm
l (u)uj+2 du, (16.66)

Jj =
4π

vj

∫ ∞

v

Fm
l (u)uj+2 du. (16.67)

Appropriate finite difference discretization for the spatial derivatives can be

used in (16.57), and numerical quadratures will be used for the integrations in

(16.66) and (16.67) (Tzoufras et al., 2011).
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16.3 Particle-in-cell (PIC) schemes

The motion of charges follows Newton’s law according to the Lorentz force of

the electromagnetic fields E and B, which are coupled self-consistently to the

charge distribution and current in the Maxwell equations. The particle-in-cell

(PIC) schemes are designed to simulate the motion of particles in space, while

a fixed mesh is used to define the electromagnetic fields (Hockney & Eastwood,

1981; Birdsall & Langdon, 2004). Consider Np charged particles located at xi(t)

with velocity vi(t) and mass m, 1 ≤ i ≤ Np, which are moved by the Lorentz

force according to the following set of equations:

dxi

dt
= vi,

dmvi

dt
= q [E(xi) + vi ×B(xi)] . (16.68)

The electromagnetic fields E and B are defined on a fixed mesh in the space,

which could be the Yee mesh in the finite difference method or given as piecewise

polynomials in a discontinuous Galerkin (DG) method. In the Maxwell equa-

tions, the current J(x) in the Ampère–Maxwell equation can be computed by

interpolating the individual point-charge currents

J(x) =

Np∑
i=1

qiviS(|xi − x|), (16.69)

where the weight function S(|xi − x|) interpolates the point-charge current qivi

to the location x, and the space charge density ρ(x) can be similarly defined:

ρ(x) =

Np∑
i=1

qiS(|xi − x|). (16.70)

Various weight functions S can be used; the simplest one can be of a polynomial

type:

S(r) =

⎧⎨⎩
n+ 1

πa2

[
1−

( r
a

)2
]n

, if r ≤ a,

0, if r > a,
(16.71)

where n is an integer.

With the current so defined in (16.69), the electromagnetic fields E and B can

be found at a new time step by using either the finite difference method (Birdsall

& Langdon, 2004) or the DG method (Jacobs & Hesthaven, 2006). Then, the

particle position and velocity can be advanced by (16.68). However, as the field

quantities at the particle locations xi are required, which are not at the lattice

points of a finite difference mesh, an interpolation of the field quantities to the

particle location will also be needed. In the case of finite element approximations

(including DG) for the field quantities, such an interpolation is not required as
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the finite element solutions are provided at all spatial locations by the basis

function representation of the solutions.

The self-consistent procedure above, however, does not take the Gauss equa-

tion for the electric field into consideration, so in general the electric field E thus

computed does not satisfy Gauss’s law for the given charge density defined in

(16.70), which implies that the continuity equation is violated. Various meth-

ods have been proposed to enforce Gauss’s law in the PIC schemes (Villasenor

& Buneman, 1992; Esirkepov, 2001; Umeda et al., 2003). A global projection

method (Birdsall & Langdon, 2004) (similar to the projection methods for en-

forcing the divergence-free condition of the velocity field in incompressible fluids

(Chorin, 1968; Temam, 1968)) will make corrections to the electric field based

on a Helmholtz decomposition for the provisional value of the electric field at a

current time step, denoted by E∗, i.e.,

E∗ = E+∇φ, (16.72)

where E will assume the given divergence, namely it satisfies the Gauss equation

ε0∇ ·E = ρ(x), (16.73)

and the correction potential will satisfy the following Poisson equation with a

zero boundary condition on the computational domain Ω:{
ε0∇2φ = ε0∇ ·E∗−ρ(x),
φ|∂Ω = 0.

(16.74)

16.4 ∇ ·B = 0 constrained transport methods for MHD equations

The MHD equations describe the dynamics of a charged system under an in-

teraction with a magnetic field and the conservation of the mass, momentum,

and energy for the plasma system. The dynamics is considered constrained, as

the magnetic field of the system develops with the constraint of zero divergence,

namely ∇ · B = 0. Numerical modeling of plasmas has shown that the obser-

vance of the zero divergence of the magnetic field plays an important role in

reproducing the correct physics in the plasma fluid (Brackbill & Barnes, 1980).

Various numerical techniques have been devised to ensure that the computed

magnetic field remains divergence free (Tóth, 2000). In the original work of

Brackbill & Barnes (1980) a projection approach as discussed in Section 16.3

was used to correct the magnetic field to ensure zero divergence.

A more natural way of satisfying this constraint is through a class of so-

called constrained transport (CT) numerical methods based on the ideas in Evans

& Hawley (1988). As noted in Monk (2003), a piecewise H(div) vector field

on a finite element triangulation of a spatial domain can be a global H(div)

field if and only if the normal components on the interface of adjacent elements

are continuous. Thus, in most of the CT algorithms for the MHD equations,



16.4 ∇·B = 0 constrained transport methods for MHD equations 415

the surface-averaged magnetic flux over the surfaces of a 3-D element will be

used to represent the magnetic field, while the volume-averaged quantities are

used for mass, momentum, and energy. In this section, we briefly illustrate the

key ideas of the CT numerical methods using a second-order Godunov scheme

(Balsara, 2001). Various higher-order methods have been developed to increase

the accuracy under the same framework of the CT methods.

Consider a cubic cell Cijk whose center is indexed with (i, j, k). The unknowns

in a Godunov scheme will be the cell-averaged values for the solution of the

conserved hydrodynamic variables in (16.50):

Ui,j,k ≈
1

|Cijk|

∫
Cijk

U(x, t)dx, (16.75)

and also the cell-surface-averaged magnetic flux variables defined over the sur-

faces of each cell Cijk (refer to Fig. 9.3):

Bx,i+ 1
2 ,j,k

, By,i,j+ 1
2 ,k

, Bz,i,j,k+ 1
2 ,

(16.76)

which correspond to the cell-surface-averaged magnetic flux on the front, the

right, and the top surfaces of the cube (refer to Fig. 9.3). These surface-averaged

magnetic fluxes will be the primary variables for the magnetic field, whose evo-

lution will be based on the integral form of the induction equation (9.65), as in

the case of the Yee scheme.

As shown in the Yee scheme, it can be directly verified by using (9.80)–(9.82)

that a discrete version of divergence satisfies(
∇hB

n+1
)
ijk

= (∇hB
n)ijk , (16.77)

where(
∇hB

n+1
)
ijk
≡ 1

Δx

(
Bn+1

x,i+ 1
2 ,j,k

−Bn+1
x,i− 1

2 ,j,k

)
+

1

Δy

(
Bn+1

y,i,j+ 1
2 ,k
−Bn+1

y,i,j− 1
2 ,k

)
+

1

Δz

(
Bn+1

z,i,j,k+ 1
2

−Bn+1
z,i,j,k− 1

2

)
; (16.78)

thus if initially ∇hB
0 = 0, then ∇hB

n = 0 for all later times.

In (9.80)–(9.82), the electric field E along the edge of the cell is needed at

tn+1/2. Using the fact that in an ideal plasma fluid the electric field is related to

the magnetic field by

E = −u×B, (16.79)

and also noting (Balsara, 2001) that the components of the right-hand side of

(16.79) appear in the last three components of the fluxes in (16.52), (16.53), and

(16.54), we can use the fluxes to compute the required electric field quantities

once the former are defined from the Riemann solver of the underlying Godunov

scheme at the same time level. Thus, as in Balsara (2001), the following formulae

can be used:

E
n+ 1

2

x,i,j+ 1
2 ,k+

1
2

=
1

4

(
ĥ
n+ 1

2

7,i,j,k+ 1
2

+ ĥ
n+ 1

2

7,i,j+1,k+ 1
2

− ĝ
n+ 1

2

8,i,j+ 1
2 ,k
− ĝ

n+ 1
2

8,i,j+ 1
2 ,k+1

)
,

(16.80)
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E
n+ 1

2

y,i+ 1
2 ,j,k+

1
2

=
1

4

(
f̂
n+ 1

2

8,i+ 1
2 ,j,k

+ f̂
n+ 1

2

8,i+ 1
2 ,j,k+1

− ĥ
n+ 1

2

6,i,j,k+ 1
2

− ĥ
n+ 1

2

6,i+1,j,k+ 1
2

)
, (16.81)

E
n+ 1

2

z,i+ 1
2 ,j+

1
2 ,k

=
1

4

(
ĝ
n+ 1

2

6,i,j+ 1
2 ,k

+ ĝ
n+ 1

2

6,i+1,j+ 1
2 ,k
− f̂

n+ 1
2

7,i+ 1
2 ,j,k

− f̂
n+ 1

2

7,i+ 1
2 ,j+1,k

)
,

(16.82)

where f̂ , ĥ, and ĝ are the numerical fluxes of a Godunov scheme for (16.50).

The enforcement of the zero divergence for the magnetic field in higher-order

schemes can be ensured for the Godunov type (Balsara, 2004; Gardiner & Stone,

2008), central differencing (Li, 2010), and WENO schemes (Balsara, 2009). A

key step towards generating the higher-order divergence-free discretizations of

the MHD equations is to obtain a divergence-free magnetic field B (required

to compute with high accuracy the energy density and the pressure in the mo-

mentum equation) composed of piecewise polynomials and consistent with the

primary-face-averaged magnetic flux unknowns on the element faces. Such a

high-order reconstruction can be found in Balsara (2004, 2009).

Finally, we present the eigensystems for the MHD fluxes which are needed in

the characteristic projection during the WENO interpolation in Section 15.3 or

the Roe–Riemann solver for the definition of numerical fluxes in the Godunov

scheme of Section 15.2. Let us consider the 1-D version of the MHD system

(16.50), i.e., all physical quantities are functions of one variable only, say x.

Define the primitive variables

V = (ρ, ux, uy, uz, By, Bz, p)
T, (16.83)

where the magnetic field Bx is a constant due to the zero divergence of the

magnetic induction flux B. The MHD system can be rewritten as the following

hyperbolic system in a non-conservative form:

∂V

∂t
+A(V)

∂V

∂x
= 0, (16.84)

where the coefficient matrix A(V) is related to the Jacobian matrix of the nu-

merical flux f(U) by

A(V) = Uv
∂f

∂U
U−1
v , Uv =

∂U

∂V
, (16.85)

and

A(V) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ux ρ 0 0 0 0 0

0 ux 0 0
By

ρ
Bz

ρ
1
ρ

0 0 ux 0 −Bx

ρ
0 0

0 0 0 ux 0 −Bx

ρ 0

0 By −Bx 0 ux 0 0

0 Bz 0 −Bx 0 ux 0

0 ρc2 0 0 0 0 ux

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16.86)
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where c is the speed of sound in the plasma

c2 = γp/ρ. (16.87)

The matrix A(V) has seven eigenvalues which define seven plane wave struc-

tures of the hyperbolic system with corresponding left eigenvectors lk and right

eigenvectors rk listed as follows (Powell, 1994; Roe & Balsara, 1996).

• One entropy wave:

λe = ux,

le =

(
1, 0, 0, 0, 0, 0,− 1

c2

)
,

re = (1, 0, 0, 0, 0, 0, 0)T. (16.88)

• Two Alfvén waves:

λe = ux ±
Bx√
ρ
,

la =

(
0, 0,−Bz, By,±

Bz√
ρ
,∓By√

ρ
, 0

)
,

ra = (0, 0,−Bz, By,±
√
ρBz,∓

√
ρBy, 0)

T. (16.89)

• Four magneto–acoustic waves:

λf,s = ux ± cf,s,

lf,s =

(
0,±ρcf,s,∓

BxByρcf,s
ρc2f,s −B2

x

,∓BxBzρcf,s
ρc2f,s −B2

x

,
Byρc

2
f,s

ρc2f,s −B2
x

,
Bzρc

2
f,s

ρc2f,s −B2
x

, 1

)
,

rf,s =

(
ρ,±cf,s,∓

BxByρcf,s
ρc2f,s −B2

x

,∓BxBzρcf,s
ρc2f,s −B2

x

,
Byρc

2
f,s

ρc2f,s −B2
x

,
Bzρc

2
f,s

ρc2f,s −B2
x

, γp

)T

,

(16.90)

where cf and cs are the fast and slow magneto–acoustic wave speeds,

respectively, i.e.,

c2f,s =
1

2

[
c2 +

|B|2
ρ
±

√(
c2 +

|B|2
ρ

)
− 4

c2B2
x

ρ

]
. (16.91)

We can also label all the eigenvalues in the increasing order as λk, i.e.,

λ1 < λ2 < · · · < λ7.

Then, we have

lkA = λklk, Ark = λkrk, (16.92)

and

lirj = 0, i 	= j. (16.93)
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Next, a numerical upwinding flux based on the Roe–Riemann solver can be

defined for any two states on both sides of x = 0 as

f̃(UL,UR) =
1

2
[f(UL) + f(UR)]−

1

2

7∑
k=1

αk|λk|Rk, (16.94)

where Rk = Uv(U)rk(U),U is the Roe-averaged state, and αk is the projection

of the difference vector UL −UR along the Rk direction.

16.5 Summary

The foundation of the transport theory in plasma is based on the Boltzmann–

Vlasov–Landau kinetic equation for the statistical distribution function f(r,v, t)

in the 6-D (r,v) phase space, self-consistently coupled with the Maxwell equa-

tions. The kinetic theory is based on the critical assumption that two-particle

(electron or ion) correlation in the system will go to zero as the intra-particle

distance grows, similar to Boltzmann’s molecular chaos assumption. Consider-

ing the Debye screening effect and small-angle collision assumptions, the Landau

or Fokker–Planck collision operator is obtained, based on which the VFP algo-

rithm is developed here. In order to avoid the cost from the 6-D phase space, the

particle-in-cell (PIC) method can be used, where the distribution function in the

phase space can be used for sampling the initial “super” particle; then, the self-

consistent evolution of the particles under the Lorentz force can be materialized,

just as in a typical molecular dynamics simulation. Even so, the charge conserva-

tion in a PIC scheme needs careful attention when observing the ever-important

Gauss’s law in a charged system. Finally, for a faster and more macroscopic

simulation of the electron transport in the plasma, the MHD equations for the

plasma treated as a conducting fluid can be derived from the moment equa-

tions of the Boltzmann–Vlasov equation and a generalized Ohm’s law relating

the current and the electric field in the plasma; finite difference methods can

then be used, with special attention paid to the divergence-free constraint of the

magnetic field, i.e., ∇ ·B = 0.
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Clausius, R. (1879), Die mechanische Wärmetheorie II. Braunschweig: Friedrich Vieweg

und Sohn, pp. 62–97.

Cockburn, B. & Shu, C.-W. (1998), “The local discontinuous Galerkin method for time-

dependent convection–diffusion systems,” SIAM J. Numer. Anal. 35, 2440–2463.

Cohen-Tannoudji, C., Diu, B., & Laloe, F. (2006), Quantum Mechanics, vol. I. New

York: Wiley-Interscience.

Colella, P. & Woodward, P. R. (1984), “The piecewise-parabolic method (PPM) for

gas-dynamical simulations,” J. Comput. Phys. 54, 174–201.

Collin, R. E. (1990), Field Theory of Guided Waves. Hoboken, NJ: Wiley-IEEE Press.

Colton, D. & Kress, R. (1992), Inverse Acoustic and Electromagnetic Scattering Theory.

Berlin: Springer.

Contopanagos, H., Dembart, B., Epton, M., et al. (2002), “Well-conditioned boundary

integral equations for three-dimensional electromagnetic scattering,” IEEE Trans.

Antenn. Propag. 50, 1824–1830.

Costabel, M. & Dauge, M. (1997), “Singularities of electromagnetic fields in polyhedral

domains,” Arch. Ration. Mech. Anal. 151, 221–276.



424 References

Costabel, M. & Dauge, M. (2003), “Computation of resonance frequencies for Maxwell

equations in non smooth domains,” in M. Ainsworth, P. Davies, D. Duncan, P. Mar-

tin, & B. Rynne, eds., Topics in Computational Wave Propagation: Direct and In-

verse Problems. Berlin: Springer, pp. 127–164.

Costabel, M., Dauge, M., & Nicaise, S. (1999), “Singularities of Maxwell interface

problems,” Math. Model Numer. Anal. 33, 627–649.

Csendes, Z. J. & Silvester, P. (1970), “Numerical solution of dielectric loaded wave-

guides: I – finite-element analysis,” IEEE Trans. Microw. Theory Tech. 18, 1124–

1131.

Cui, T. J. & Chew, W. C. (1999), “Fast evaluation of Sommerfeld integrals for EM

scattering and radiation by three-dimensional buried objects,” IEEE Trans. Geosci.

Remote Sens. 37, 887–900.

Darden, T., York, D., & Pedersen, L. (1993), “Particle mesh Ewald: anN log(N) method

for Ewald sums in large systems,” J. Chem. Phys. 98, 10089–10092.

Datta, S. (1989), Quantum Phenomena. Reading, MA: Addison-Wesley.

Datta, S. (1997), Electronic Transport in Mesoscopic Systems. Cambridge, UK:

Cambridge University Press.

Datta, S. (2005), Quantum Transport: Atom to Transistor. Cambridge, UK: Cambridge

University Press.

Daubechies, I. (1992), Ten Lectures on Wavelets. Philadelphia, PA: SIAM.

Davies, J. B., Fernandez, F. A., & Philippou, G. Y. (1982), “Finite element and analysis

of all modes in cavities with circular symmetry,” IEEE Trans. Microw. Theory Tech.

30, 1975–1980.

Davis, J. H. (1997), Physics of Low Dimensional Semiconductors: An Introduction.

Cambridge, UK: Cambridge University Press.

Davis, M. E. & McCammon, J. A. (1990), “Electrostatics in biomolecular structure

and dynamics,” Chem. Rev. 90, 509–521.

de Leeuw, S. W., Perram, J. W., & Smith, E. R. (1980), “Simulation of electrostatic

systems in periodic boundary conditions. I. Lattice sums and dielectric constants,”

Proc. R. Soc. Lond. A 373, 27–56.

Debye, P. (1909), “Der lichtdruck auf Kugeln von beliegigem Material,” Ann. Phys.

(Leipzig) 30, 57–136.

Debye, P. & Hückel, E. (1923), “The theory of electrolytes. I. Lowering of freezing point

and related phenomena,” Physik. Z. 24, 185–206.

Deng, S. & Cai, W. (2005), “Discontinuous spectral element method modeling of optical

coupling by whispering gallery modes between microcylinders,” J. Opt. Soc. Am. A

22, 952–960.

Deng, S., Cai, W., & Jacobs, D. (2007), “A comparable study of image approximations

to the reaction field,” Comput. Phys. Commun. 177, 689–699.

Dey, S. & Mittra, R. (1997), “A locally conformal finite difference time-domain (FDTD)

algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Mi-

crow. Guided Wave Lett. 7, 273–275.

Ditkowski, A., Dridi, K., & Hesthaven, J. S. (2001), “Convergent Cartesian grid meth-

ods for Maxwell’s equations in complex geometries,” J. Comput. Phys. 170, 39–80.

Dobson, D. C. & Pasciak, J. E. (2001), “Analysis of an algorithm for computing elec-
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Index

absorbing boundary conditions

Bayliss–Turkel for Maxwell equations, in
auxiliary variables, 136

Bayliss–Turkel for scalar wave, in auxiliary
variables, 134

Engquist–Majda one-way wave, 132

Higdon boundary condition, 134

uniaxial PML (UPML), 138

auxiliary differential equation

Debye materials, 277

Drude materials, 282

band gap calculations

finite element, frequency domain, 257

finite element, time domain, 261

plane wave methods, 252

transmission spectra, 253

band gap, photonic structures, 250

beam propagation, discontinuous Galerkin
method, 296

Bloch theory for periodic structure, 248

Bloch wave expansions, 250

Boltzmann equations, 381

moment equations, 383

bosons, 322

boundary conditions

dielectric interfaces, 125

Leontovich impedance, 127

boundary element method (BEM)

Nyström hyper-singular method for
Maxwell equations, 186

Nyström weak singular integral method
for Maxwell equations, 190

Poisson–Boltzmann equation, 71

Bragg reflection coefficients, 253

Bragg transmission coefficients, 254

Bravais lattice vectors, 89

Cauchy principal integrals, 61

direct computation, 75

cavity field, 14

cavity resonance, 182

central difference scheme, 396

charges, bound, 6

charging, 35

charging energy, 35

charging process, 35

Clausius–Mossotti formula, 9

collision operators

Boltzmann, 382

Fokker–Planck, 404

combined integral equations and resonance,
182

constrained transport methods for MHD
equations, 414

Debye–Hückel inverse length, 30

Debye–Hückel theory, 29

density matrix, 328

device with contacts, 341

density of states, electron in contacts, 338

density operator, 326

dielectric fluctuation formula, 21

total dipole moment, 16

dielectric formula

Clausius–Mossotti, 9

Onsager formula for dipolar liquid, 11

diode, n+–n–n+, 399

dipole, 3

directing field, 11

discontinuous Galerkin methods for Maxwell
equations, 230

displacement flux D, 7

drift-diffusion model, 381

Duffy mapping, 191

dyadic Green’s functions

homogeneous media, 149

layered media, 148

longitudinal components, 153

transverse components, 152

vector potential, 158

electric field integral equation (EFIE), 180

electron continuity equation, 303

electron correlation function, 346

ensemble theory

canonical ensemble, 316

grand canonical ensemble, 319

microcanonical ensemble, 315

Ewald summation for charges and dipoles, 89
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extinction principle, 174

extraordinary optical transmission (EOT),
273

fast multipole method (FMM), 98

conversion operators for 3-D electrostatics,
105

for Helmholtz equations, wideband, 107

interaction list, 102

local expansions, 100

local to local translations, 103

multipole expansions, 98

multipole to local translations, 101

multipole to multipole translations, 104

pseudo-code, 104

recursion for local expansions (downward),
102

recursion for multipole expansions
(upward), 104

fermions, 322

generalized Born approximations, 36

Born radius, FFT-based calculations, 39

Born radius, integral expression, 38

Godunov scheme, 389

plasma MHD models, 416

semiconductor hydrodynamic models, 389

guided modes of optical waveguides, 289

Hadamard finite part integrals, 61

direct computation, 75

Hankel transform, 151

fast calculation with window-based
filtering, 160

Helmholtz double layer, 31

Helmholtz vector decomposition, 123

Hertz dipoles, 147

horizontally directed, 154

vertically directed, 154

hierarchical basis for DG methods, 234

2-D and 3-D quadrilateral elements, 234

2-D triangular elements, 235

3-D tetrahedral elements, 235

Huygens’ principle, 174

hybrid model for electrostatics, 111

dielectric constant calculated, 115

molecular dynamics, 115

reaction field, 111

hydrodynamic equations, 387

central difference scheme, 396

WENO (weighted essentially
non-oscillatory) method, 392

hyper-singular integrals, 62

direct computation, 75

regularization method, 72

image charges, 45

conducting cylinder, 47

conducting half-space, 45

conducting sphere, 45

dielectric cylinder, 46

dielectric half-space, 46

dielectric sphere in ionic solvent, 53

dielectric sphere, Friedman, 49

dielectric sphere, multiple discrete images,
53

dielectric sphere, Neumann’s line images,
50

layered ionic solvent, 58

layered non-ionic solvent, 57

impedance boundary condition, Leontovich,
127

integral equations

combined integral equations and
resonance, 182

electric field integral equation, 180

Galerkin method, 191

magnetic field integral equation, 180

Nyström collocation method, 186

singular and hyper-singular integral
equations, 175

Stratton–Chu formula, 180

surface IE for conductors, 181

surface IE for dielectrics, 182

surface IE for PEC, 181

volume integral equations for Maxwell
equations, 270

volume integral equations for quantum
dots, 304

ionic strength, 30

Kirkwood expansion, 47

Landauer formula, 340

Laplace–Beltrami operator, 137

longitudinal field components, 153

Lorentz local field, 10

magnetic field integral equation (MFIE), 180

magnetization, 120

magneto-hydrodynamics (MHD), 404

eigen-systems, 416

Maxwell equations, 121

Ampère–Maxwell law, 121

discontinuous Galerkin methods, 230

Faraday’s law, 119

finite difference Yee scheme, 242

Galerkin integral equation methods, 191

Gauss’s law, 121

integral form, 242

magnetization, 120

Nyström method for hyper-singular
integral equations, 186

Nyström method for weak singular
integral equations, 190

potentials, electric and magnetic, 123

Rankine–Hugoniot conditions, 232
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singular and hyper-singular integral
equations, 175

time-harmonic, 122

uniaxial PML, 142

vector wave equations, 122

volume integral equations, 270

weak form, 228

MOSFET, double gate, 362

Nédélec edge elements, 209

2-D hierarchical basis in a quadrilateral,
218

2-D hierarchical basis in a triangle, 219

2-D reference square, 209

2-D reference triangle, 211

3-D hierarchical basis in a 3-D cube, 222

3-D hierarchical basis in a 3-D
tetrahedron, 223

3-D reference cube, 212

3-D reference tetrahedron, 212

Piola transform, 208

non-equilibrium Green’s function (NEGF),
349

1-D device, 349

1-D device, boundary conditions, 351

1-D device, finite difference method, 351

1-D device, finite element method, 353

1-D device, self-energy, 353

2-D device, 354

2-D device, boundary conditions, 356

2-D device, finite difference method, 357

2-D device, finite element method, 359

2-D device, self-energy, 361

transmission coefficients, 348

numerical DG fluxes for Maxwell equations,
233

numerical methods

adaptive spectral element method, 367

central difference scheme, 396

collocation boundary element methods, 71

constrained transport methods for MHD
equations, 414

discontinuous Galerkin methods for
dispersive media, 274

discontinuous Galerkin methods for
Maxwell equations, 230

discontinuous Galerkin methods for
Schrödinger equations, 284

Ewald summation, 89

fast multipole method (FMM), 98

finite element methods for vector
Helmholtz eigenvalues, 257

Galerkin integral equation methods for
Maxwell equations, 191

generalized DG beam propagation
method, 296

Godunov scheme, 389

image charge method, 44
Nédélec edge elements for Maxwell

equations, 209
non-equilibrium Green’s function (NEGF),

349
Nyström hyper-singular integral method

for Maxwell equations, 186
Nyström weak singular integral method

for Maxwell equations, 190
particle-in-cell (PIC) schemes for plasmas,

413
particle-mesh Ewald (PME) method, 96
plane wave methods for band gaps, 252
Poisson–Boltzmann equation

collocation boundary element methods,
71

finite element methods, 82
immersed interface methods (IIM), 85

upwinding finite difference method, 375
Vlasov–Fokker–Planck (VFP) schemes,

410
volume integral equations for Maxwell

equations, 270
volume integral equations for quantum

dots, 304
WENO (weighted essentially

non-oscillatory) method, 392
Yee scheme for Maxwell equations, 242

Onsager formula for dipolar liquids, 11

particle-in-cell (PIC) schemes, 413
particle-mesh Ewald (PME) method, 96
perfectly matched layer (PML), uniaxial

absorbing media, 138
Planck constant h, 302
plasma transport models

MHD single-fluid, 404
particle-in-cell, 413
Vlasov–Fokker–Planck kinetic, 403

Poisson equation, 27
Poisson–Boltzmann equation, 29

energy variational, 36
hyper-singular surface integral equations,

70
linearized, 30
modified with steric size effect, 30
surface integral representations, 65

Poisson–Nernst–Planck (PNP) model, 381
polarization density, 5
polarization field, 7
potentials of electromagnetic fields, 123

Sommerfeld, 158
transverse, 160

quantum dots, volume integral equation
method, 304

quantum many particles
bosons, 323
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fermions, 324
partition functions, 322
Pauli exclusion principle, 321
Slater determinants, 321

radiation conditions
Silver–Müller, 129
Sommerfeld, 129

Rayleigh–Bloch waves, 263
RCWA (rigorous coupled wave analysis)

transmission spectra, 253
reciprocal lattice vectors G, 90
resonant tunneling diode

I-V curves by Wigner equation and
NEGF, 378

resonant tunneling diode (RTD), 377
RWG current basis, 193

hierarchical basis, 193
triangular–quadrilateral patches, 201
triangular–triangular patches, 194

Schrödinger equations
for electrons with an effective mass, 302
paraxial approximation in

waveguides, 297
singular integral potentials

double-layer, 61
single-layer, 61

singular sources
charges, 145
currents, 147
Hertz dipoles, 147

solvation, 26
solvation energy

Born, 34
charging process, 35
electrostatic, 35
Still’s generalized Born approximations, 36

Sommerfeld radiation condition and
uniqueness, 130

spectral function, 345
statistical distribution

bosons, 324
fermions, 324

Stratton–Chu formula, 180
surface differential operators, 185

surface plasmons
dispersion relation, 267
localized modes, 268
propagating modes, 265
resonant coupling, 274

thermal equilibrium, 313
time-harmonic Maxwell equations, 122
transmission coefficient, 335

single-barrier, 336
transport models (classical)

hydrodynamic equations, 387

semi-classical Boltzmann equations, 381
transport models (quantum)

non-equilibrium Green’s function, 348
Wigner equations, 332

transverse electric (TE) wave, 205
transverse field components, 152
transverse magnetic (TM) wave, 278
Tsu–Esaki current formula, 339

uniformly polarized sphere, 24

Vlasov–Fokker–Planck (VFP) equations, 404
Vlasov–Fokker–Planck (VFP) schemes, 410

weak form of Maxwell equations, 228
WENO (weighted essentially non-oscillatory)

method, 392
Weyl correspondence of quantum operators,

334
WGM (whispering gallery mode), 238
Wigner distribution, 329
Wigner equation

adaptive spectral element method, 367
continuity equation, 334
current density, 334
derivation, 330
electron density, 334
Frensley inflow boundary condition, 367
mesh selection for finite difference method,

376
truncation in phase space, 365
upwinding finite difference method, 375

Wigner–Moyal expansion, 333

Yee finite difference method for Maxwell
equations, 242


	Computational Methods for Electromagnetic Phenomena����������������������������������������������������������
	Foreword���������������
	Preface��������������
	Part I Electrostatics in solvation�����������������������������������������
	1 Dielectric constant and fluctuation formulae for molecular dynamics����������������������������������������������������������������������������
	1.1 Electrostatics of charges and dipoles������������������������������������������������
	1.2 Polarization P and displacement flux D�������������������������������������������������
	1.2.1 Bound charges induced by polarization��������������������������������������������������
	1.2.2 Electric field Epol(r) of a polarization density P(r)������������������������������������������������������������������
	1.2.3 Singular integral expressions of Epol(r) inside dielectrics������������������������������������������������������������������������

	1.3 Clausius–Mossotti and Onsager formulae for dielectric constant�������������������������������������������������������������������������
	1.3.1 Clausius–Mossotti formula for non-polar dielectrics����������������������������������������������������������������
	1.3.2 Onsager dielectric theory for dipolar liquids����������������������������������������������������������

	1.4 Statistical molecular theory and dielectric fluctuation formulae���������������������������������������������������������������������������
	1.4.1 Statistical methods for polarization density change Delta P������������������������������������������������������������������������
	1.4.2 Classical electrostatics for polarization density change Delta P�����������������������������������������������������������������������������
	1.4.3 Fluctuation formulae for dielectric constant epsilon�����������������������������������������������������������������

	1.5 Appendices���������������������
	1.5.1 Appendix A: Average field of a charge in a dielectric sphere�������������������������������������������������������������������������
	1.5.2 Appendix B: Electric field due to a uniformly polarized sphere���������������������������������������������������������������������������

	1.6 Summary������������������

	2 Poisson–Boltzmann electrostatics and analytical approximations�����������������������������������������������������������������������
	2.1 Poisson–Boltzmann (PB) model for electrostatic solvation�������������������������������������������������������������������
	2.1.1 Debye–Hückel Poisson–Boltzmann theory��������������������������������������������������
	2.1.2 Helmholtz double layer and ion size effect�������������������������������������������������������
	2.1.3 Electrostatic solvation energy�������������������������������������������

	2.2 Generalized Born (GB) approximations of solvation energy�������������������������������������������������������������������
	2.2.1 Still's generalized Born formulism�����������������������������������������������
	2.2.2 Integral expression for Born radii�����������������������������������������������
	2.2.3 FFT-based algorithm for the Born radii���������������������������������������������������

	2.3 Method of images for reaction fields�����������������������������������������������
	2.3.1 Methods of images for simple geometries����������������������������������������������������
	2.3.2 Image methods for dielectric spheres�������������������������������������������������
	2.3.3 Image methods for dielectric spheres in ionic solvent������������������������������������������������������������������
	2.3.4 Image methods for multi-layered media��������������������������������������������������

	2.4 Summary������������������

	3 Numerical methods for Poisson–Boltzmann equations����������������������������������������������������������
	3.1 Boundary element methods (BEMs)������������������������������������������
	3.1.1 Cauchy principal value (CPV) and Hadamard finite part (p.f.)�������������������������������������������������������������������������
	3.1.2 Surface integral equations for the PB equations������������������������������������������������������������
	3.1.3 Computations of CPV and Hadamard p.f. and collocation BEMs�����������������������������������������������������������������������

	3.2 Finite element methods (FEMs)����������������������������������������
	3.3 Immersed interface methods (IIMs)��������������������������������������������
	3.4 Summary������������������

	4 Fast algorithms for long-range interactions����������������������������������������������������
	4.1 Ewald sums for charges and dipoles���������������������������������������������
	4.2 Particle-mesh Ewald (PME) methods��������������������������������������������
	4.3 Fast multipole methods for N-particle electrostatic interactions���������������������������������������������������������������������������
	4.3.1 Multipole expansions���������������������������������
	4.3.2 A recursion for the local expansions (0 rightarrow L-level)������������������������������������������������������������������������
	4.3.3 A recursion for the multipole expansions (L rightarrow 0-level)����������������������������������������������������������������������������
	4.3.4 A pseudo-code for FMM����������������������������������
	4.3.5 Conversion operators for electrostatic FMM in mathbb R3��������������������������������������������������������������������

	4.4 Helmholtz FMM of wideband of frequencies for N-current source interactions�������������������������������������������������������������������������������������
	4.5 Reaction field hybrid model for electrostatics���������������������������������������������������������
	4.6 Summary������������������

	Part II Electromagnetic scattering�����������������������������������������
	5 Maxwell equations, potentials, and physical/artificial boundary conditions�����������������������������������������������������������������������������������
	5.1 Time-dependent Maxwell equations�������������������������������������������
	5.1.1 Magnetization M and magnetic field H�������������������������������������������������

	5.2 Vector and scalar potentials���������������������������������������
	5.2.1 Electric and magnetic potentials for time-harmonic fields����������������������������������������������������������������������

	5.3 Physical boundary conditions for E and H���������������������������������������������������
	5.3.1 Interface conditions between dielectric media����������������������������������������������������������
	5.3.2 Leontovich impedance boundary conditions for conductors��������������������������������������������������������������������
	5.3.3 Sommerfeld and Silver–Müller radiation conditions��������������������������������������������������������������

	5.4 Absorbing boundary conditions for E and H����������������������������������������������������
	5.4.1 One-way wave Engquist–Majda boundary conditions������������������������������������������������������������
	5.4.2 High-order local non-reflecting Bayliss–Turkel conditions����������������������������������������������������������������������
	5.4.3 Uniaxial perfectly matched layer (UPML)����������������������������������������������������

	5.5 Summary������������������

	6 Dyadic Green's functions in layered media��������������������������������������������������
	6.1 Singular charge and current sources����������������������������������������������
	6.1.1 Singular charge sources������������������������������������
	6.1.2 Singular Hertz dipole current sources��������������������������������������������������

	6.2 Dyadic Green's functions bar GE(r|r') and bar GH(r|r')�����������������������������������������������������������������
	6.2.1 Dyadic Green's functions for homogeneous media�����������������������������������������������������������
	6.2.2 Dyadic Green's functions for layered media�������������������������������������������������������
	6.2.3 Hankel transform for radially symmetric functions��������������������������������������������������������������
	6.2.4 Transverse versus longitudinal field components������������������������������������������������������������
	6.2.5 Longitudinal components of Green's functions���������������������������������������������������������

	6.3 Dyadic Green's functions for vector potentials bar GA(r|r')����������������������������������������������������������������������
	6.3.1 Sommerfeld potentials����������������������������������
	6.3.2 Transverse potentials����������������������������������

	6.4 Fast computation of dyadic Green's functions�������������������������������������������������������
	6.5 Appendix: Explicit formulae��������������������������������������
	6.5.1 Formulae for tilde G1, tilde G2, and tilde G3, etc.����������������������������������������������������������������
	6.5.2 Closed-form formulae for tilde psi (k rho)�������������������������������������������������������

	6.6 Summary������������������

	7 High-order methods for surface electromagnetic integral equations��������������������������������������������������������������������������
	7.1 Electric and magnetic field surface integral equations in layered media����������������������������������������������������������������������������������
	7.1.1 Integral representations�������������������������������������
	7.1.2 Singular and hyper-singular surface integral equations�������������������������������������������������������������������

	7.2 Resonance and combined integral equations����������������������������������������������������
	7.3 Nyström collocation methods for Maxwell equations������������������������������������������������������������
	7.3.1 Surface differential operators�������������������������������������������
	7.3.2 Locally corrected Nyström method for hyper-singular EFIE���������������������������������������������������������������������
	7.3.3 Nyström method for mixed potential EFIE����������������������������������������������������

	7.4 Galerkin methods and high-order RWG current basis������������������������������������������������������������
	7.4.1 Galerkin method using vector–scalar potentials�����������������������������������������������������������
	7.4.2 Functional space for surface current J(r)������������������������������������������������������
	7.4.3 Basis functions over triangular–triangular patches���������������������������������������������������������������
	7.4.4 Basis functions over triangular–quadrilateral patches������������������������������������������������������������������

	7.5 Summary������������������

	8 High-order hierarchical Nédélec edge elements������������������������������������������������������
	8.1 Nédélec edge elements in H(curl)�������������������������������������������
	8.1.1 Finite element method for E or H wave equations������������������������������������������������������������
	8.1.2 Reference elements and Piola transformations���������������������������������������������������������
	8.1.3 Nédélec finite element basis in H(curl)����������������������������������������������������

	8.2 Hierarchical Nédélec basis functions�����������������������������������������������
	8.2.1 Construction on 2-D quadrilaterals�����������������������������������������������
	8.2.2 Construction on 2-D triangles������������������������������������������
	8.2.3 Construction on 3-D cubes��������������������������������������
	8.2.4 Construction on 3-D tetrahedra�������������������������������������������

	8.3 Summary������������������

	9 Time-domain methods – discontinuous Galerkin method and Yee scheme���������������������������������������������������������������������������
	9.1 Weak formulation of Maxwell equations������������������������������������������������
	9.2 Discontinuous Galerkin (DG) discretization�����������������������������������������������������
	9.3 Numerical flux h(u-,u+)����������������������������������
	9.4 Orthonormal hierarchical basis for DG methods��������������������������������������������������������
	9.4.1 Orthonormal hierarchical basis on quadrilaterals or hexahedra��������������������������������������������������������������������������
	9.4.2 Orthonormal hierarchical basis on triangles or tetrahedra����������������������������������������������������������������������

	9.5 Explicit formulae of basis functions�����������������������������������������������
	9.6 Computation of whispering gallery modes (WGMs) with DG methods�������������������������������������������������������������������������
	9.6.1 WGMs in dielectric cylinders�����������������������������������������
	9.6.2 Optical energy transfer in coupled micro-cylinders���������������������������������������������������������������

	9.7 Finite difference Yee scheme���������������������������������������
	9.8 Summary������������������

	10 Scattering in periodic structures and surface plasmons����������������������������������������������������������������
	10.1 Bloch theory and band gap for periodic structures�������������������������������������������������������������
	10.1.1 Bloch theory for 1-D periodic Helmholtz equations���������������������������������������������������������������
	10.1.2 Bloch wave expansions�����������������������������������
	10.1.3 Band gaps of photonic structures����������������������������������������������
	10.1.4 Plane wave method for band gap calculations���������������������������������������������������������
	10.1.5 Rayleigh–Bloch waves and band gaps by transmission spectra������������������������������������������������������������������������

	10.2 Finite element methods for periodic structures����������������������������������������������������������
	10.2.1 Nédélec edge element for eigen-mode problems����������������������������������������������������������
	10.2.2 Time-domain finite element methods for periodic array antennas����������������������������������������������������������������������������

	10.3 Physics of surface plasmon waves��������������������������������������������
	10.3.1 Propagating plasmons on planar surfaces�����������������������������������������������������
	10.3.2 Localized surface plasmons����������������������������������������

	10.4 Volume integral equation (VIE) for Maxwell equations����������������������������������������������������������������
	10.5 Extraordinary optical transmission (EOT) in thin metallic films���������������������������������������������������������������������������
	10.6 Discontinuous Galerkin method for resonant plasmon couplings������������������������������������������������������������������������
	10.7 Appendix: Auxiliary differential equation (ADE) DG methods for dispersive Maxwell equations�������������������������������������������������������������������������������������������������������
	10.7.1 Debye material����������������������������
	10.7.2 Drude material����������������������������

	10.8 Summary�������������������

	11 Schrödinger equations for waveguides and quantum dots���������������������������������������������������������������
	11.1 Generalized DG (GDG) methods for Schrödinger equations������������������������������������������������������������������
	11.1.1 One-dimensional Schrödinger equations���������������������������������������������������
	11.1.2 Two-dimensional Schrödinger equations���������������������������������������������������

	11.2 GDG beam propagation methods (BPMs) for optical waveguides����������������������������������������������������������������������
	11.2.1 Guided modes in optical waveguides������������������������������������������������
	11.2.2 Discontinuities in envelopes of guided modes����������������������������������������������������������
	11.2.3 GDG-BPM for electric fields�����������������������������������������
	11.2.4 GDG-BPM for magnetic fields�����������������������������������������
	11.2.5 Propagation of HE11 modes���������������������������������������

	11.3 Volume integral equations for quantum dots������������������������������������������������������
	11.3.1 One-particle Schrödinger equation for electrons�������������������������������������������������������������
	11.3.2 VIE for electrons in quantum dots�����������������������������������������������
	11.3.3 Derivation of the VIE for quantum dots embedded in layered media������������������������������������������������������������������������������

	11.4 Summary�������������������

	Part III Electron transport����������������������������������
	12 Quantum electron transport in semiconductors������������������������������������������������������
	12.1 Ensemble theory for quantum systems�����������������������������������������������
	12.1.1 Thermal equilibrium of a quantum system�����������������������������������������������������
	12.1.2 Microcanonical ensembles��������������������������������������
	12.1.3 Canonical ensembles���������������������������������
	12.1.4 Grand canonical ensembles���������������������������������������
	12.1.5 Bose–Einstein and Fermi–Dirac distributions���������������������������������������������������������

	12.2 Density operator hat rho for quantum systems��������������������������������������������������������
	12.2.1 One-particle density matrix rho(x,x')���������������������������������������������������

	12.3 Wigner transport equations and Wigner–Moyal expansions������������������������������������������������������������������
	12.4 Quantum wave transmission and Landauer current formula������������������������������������������������������������������
	12.4.1 Transmission coefficient T(E)�������������������������������������������
	12.4.2 Current formula through barriers via T(E)�������������������������������������������������������

	12.5 Non-equilibrium Green's function (NEGF) and transport current�������������������������������������������������������������������������
	12.5.1 Quantum devices with one contact����������������������������������������������
	12.5.2 Quantum devices with two contacts�����������������������������������������������
	12.5.3 Green's function and transport current formula������������������������������������������������������������

	12.6 Summary�������������������

	13 Non-equilibrium Green's function (NEGF) methods for transport�����������������������������������������������������������������������
	13.1 NEGFs for 1-D devices���������������������������������
	13.1.1 1-D device boundary conditions for Green's functions������������������������������������������������������������������
	13.1.2 Finite difference methods for 1-D device NEGFs������������������������������������������������������������
	13.1.3 Finite element methods for 1-D device NEGFs���������������������������������������������������������

	13.2 NEGFs for 2-D devices���������������������������������
	13.2.1 2-D device boundary conditions for Green's functions������������������������������������������������������������������
	13.2.2 Finite difference methods for 2-D device NEGFs������������������������������������������������������������
	13.2.3 Finite element methods for 2-D device NEGFs���������������������������������������������������������

	13.3 NEGF simulation of a 29 nm double gate MOSFET���������������������������������������������������������
	13.4 Derivation of Green's function in 2-D strip-shaped contacts�����������������������������������������������������������������������
	13.5 Summary�������������������

	14 Numerical methods for Wigner quantum transport��������������������������������������������������������
	14.1 Wigner equations for quantum transport��������������������������������������������������
	14.1.1 Truncation of phase spaces and charge conservation����������������������������������������������������������������
	14.1.2 Frensley inflow boundary conditions�������������������������������������������������

	14.2 Adaptive spectral element method (SEM)��������������������������������������������������
	14.2.1 Cell averages in k-space��������������������������������������
	14.2.2 Chebyshev collocation methods in x-space������������������������������������������������������
	14.2.3 Time discretization���������������������������������
	14.2.4 Adaptive meshes for Wigner distributions������������������������������������������������������

	14.3 Upwinding finite difference scheme����������������������������������������������
	14.3.1 Selections of L coh, N coh, L k, and N k������������������������������������������������������
	14.3.2 Self-consistent algorithm through the Poisson equation��������������������������������������������������������������������
	14.3.3 Currents in RTD by NEGF and Wigner equations����������������������������������������������������������

	14.4 Calculation of oscillatory integrals On(z)������������������������������������������������������
	14.5 Summary�������������������

	15 Hydrodynamic electron transport and finite difference methods�����������������������������������������������������������������������
	15.1 Semi-classical and hydrodynamic models��������������������������������������������������
	15.1.1 Semi-classical Boltzmann equations������������������������������������������������
	15.1.2 Hydrodynamic equations������������������������������������

	15.2 High-resolution finite difference methods of Godunov type���������������������������������������������������������������������
	15.3 Weighted essentially non-oscillatory (WENO) finite difference methods���������������������������������������������������������������������������������
	15.4 Central differencing schemes with staggered grids�������������������������������������������������������������
	15.5 Summary�������������������

	16 Transport models in plasma media and numerical methods����������������������������������������������������������������
	16.1 Kinetic and macroscopic magneto-hydrodynamic (MHD) theories�����������������������������������������������������������������������
	16.1.1 Vlasov–Fokker–Planck equations��������������������������������������������
	16.1.2 MHD equations for plasma as a conducting fluid������������������������������������������������������������

	16.2 Vlasov–Fokker–Planck (VFP) schemes����������������������������������������������
	16.3 Particle-in-cell (PIC) schemes������������������������������������������
	16.4 nabla cdot B = 0 constrained transport methods for MHD equations����������������������������������������������������������������������������
	16.5 Summary�������������������

	References�����������������
	Index������������


