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Foreword

This is an impressive book by Wei Cai. It attempts to cover a wide range of topics
in electromagnetics and electronic transport. In electromagnetics, it starts with
low-frequency solutions of Poisson—Boltzmann equations that find wide applica-
tions in electrochemistry, in the interaction between electromagnetic fields and
biological cells, as well as in the drift-diffusion model for electronic transport. In
addition to low-frequency problems, the book also addresses wave physics prob-
lems of electromagnetic scattering, and the Schrodinger equation. It deals with
dyadic Green’s function of layered media and relevant numerical methods such
as surface integral equations, and finite element, finite difference, and discontin-
uous Galerkin methods. It also addresses interesting problems involving surface
plasmons and periodic structures, as well as wave physics in the quantum regime.

In terms of quantum transport, the book discusses the non-equilibrium Green’s
function method, which is a method currently in vogue. The book also touches
upon hydrodynamic electron transport and the germane numerical methods.

This is an excellent book for those who want to study and understand the
relationship between mathematical methods and the many different physical
problems they can model and solve.

Weng Cho Chew, First Y. T. Lo Endowed Chair Professor, UIUC



Preface

THEHSE  XERHSF

-Analects

Electromagnetic (EM) processes play an important role in many scientific and
engineering applications such as the electrostatic forces in biomolecular solvation,
radar wave scattering, the interaction of light with electrons in metallic materials,
and current flows in nano-electronics, among many others. These are the kinds
of electromagnetic phenomena, from atomistic to continuum scales, discussed in
this book.

While the focus of the book is on a wide selection of various numerical methods
for modeling electromagnetic phenomena, as listed under the entry “numerical
methods” in the book index, attention is also given to the underlying physics
of the problems under study. As computational research has become strongly
influenced by the interaction from many different areas such as biology, physics,
chemistry, and engineering, etc., a multi-faceted and balanced approach address-
ing the interconnection among mathematical algorithms and physical principles
and applications is needed to prepare graduate students in applied mathematics,
sciences, and engineering, to whom this book is aimed, for innovative advanced
computational research.

This book arises from courses and lectures the author gave in various univer-
sities: the UNC Charlotte and the UC Santa Barbara in the USA, and Peking
University, Fudan University, and Shanghai Jiao Tong University in China, to
graduate students in applied mathematics and engineering. While attempts are
made to include the most important numerical methods, the materials presented
are undoubtedly affected by the author’s own research experience and knowl-
edge. The principle of selecting the materials is guided by Confucius’s teaching
above — “For a man to succeed in his endeavors, he must first sharpen his tools.”
So, emphasis is on the practical and algorithmic aspects of methods ready for
applications, instead of detailed and rigorous mathematical elucidation.

The book is divided into three major parts according to three broadly defined
though interconnected areas: electrostatics in biomolecules, EM scattering and
guiding in microwave and optical systems, and electron transport in semiconduc-
tor and plasma media. The first two areas are based on atomistic and continuum
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EM theory, while the last one is based on Schrodinger quantum and also Maxwell
EM theories. Part I starts with a chapter on the statistical molecular theory of
dielectric constants for material polarization in response to an electric field, an
important quantity for molecular dynamics simulation of biomolecules and un-
derstanding optical properties of materials addressed in the book. Then, the
Poisson-Boltzmann (PB) theory for solvation is given in Chapter 2, together
with analytical approximation methods such as the generalized Born method
for solvation energy and image methods for reaction fields in simple geometries.
Chapter 3 contains various numerical methods for solving the linearized PB
equations including the boundary integral equation methods, the finite element
methods, and the immersed interface methods. Chapter 4 presents three meth-
ods to handle the long-range electrostatic interactions — a key computational task
in molecular dynamics algorithms: the particle-mesh Ewald, the fast multipole
method, and a reaction field based hybrid method.

Part II contains a large collection of numerical techniques for solving the con-
tinuum Maxwell equations for scattering and propagation in time- and frequency-
domains. This part starts with Chapter 5 on Maxwell equations with physical
and artificial boundary conditions; the former includes dielectric interface con-
ditions and Leontovich impedance boundary conditions for conductors with a
perfect electric conductor (PEC) as a limiting case, and the latter includes lo-
cal absorbing boundary conditions and uniaxial perfectly matched layer (PML)
boundary conditions. Chapter 6 discusses the dyadic Green’s functions in layered
media for the Maxwell equations in the frequency-domain and an algorithm for
fast computation. High-order surface integral methods for electromagnetic scat-
tering form the subject of Chapter 7, which includes the Galerkin method using
mixed vector—scalar potentials and the Nystrom collocation method for both the
hyper-singular integral equations and the mixed vector—scalar potential integral
equations, and combined integral equations for the removal of resonance in cavi-
ties. Finally, the high-order surface current basis for the Galerkin integral equa-
tion methods is discussed. Chapter 8 on edge elements begins with Nédélec’s
original construction of the H(curl) conforming basis, and then presents hier-
archical high-order elements in 2-D rectangles and 3-D cubes and simplexes
in both 2-D and 3-D spaces. Next, time-domain methods, including the dis-
continuous Galerkin (DG) methods with a high-order hierarchical basis and
the finite difference Yee scheme, are given in Chapter 9. Numerical methods
for periodic structures and surface plasmons in metallic systems are covered
in Chapter 10, including plane-wave-based methods and transmission spectra
calculations for photonics band structures, finite element methods, and vol-
ume integral equation (VIE) methods for the Maxwell equations. For the
surface plasmons, the DG methods for dispersive media using auxiliary dif-
ferential equations (ADEs) are given for Debye and Drude media. The final
chapter (Chapter 11) of Part IT contains numerical methods for Schrodinger
equations for dielectric optical waveguides and quantum dots: a generalized DG
method for the paraxial approximation in optical waveguides, and a VIE method
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for Schrédinger equations in quantum dots embedded in layered semiconductor
materials.

Part III starts with Chapter 12 on the electron quantum transport models
in semiconductors, which also includes the Fermi—Dirac distribution for electron
gas within the Gibbs ensemble theory, density operators, and kinetic descriptions
for quantum systems. The quantum transport topics discussed in this chapter
include the Wigner transport model in phase space for electrons, the Landauer
transmission formula for quantum transport, and the non-equilibrium Green’s
function (NEGF) method. Then, the non-equilibrium Green’s function method
in Chapter 13 contains the treatment of quantum boundary conditions and finite
difference and finite element methods for the NEGF; the latter allows the calcu-
lation of the transmission coefficients in the Landauer current formula for general
nano-devices. Chapter 14 includes numerical methods for the quantum kinetic
Wigner equations with the upwinding finite difference and an adaptive cell aver-
age spectral element method. Chapter 15 first presents the semi-classical Boltz-
mann and continuum hydrodynamic models for multi-species transport, includ-
ing electron transport, and then follows with the numerical methods for solving
the hydrodynamic equations by Godunov methods and WENO and central dif-
ferencing methods. In the final chapter of the book, Chapter 16, we first present
the kinetic Vlasov—Fokker—Planck (VFP) model and the continuum magneto-
hydrodynamic (MHD) transport model for electrons in plasma media. Then,
several numerical methods are discussed including the VFP scheme in phase
space, and the particle-in-cell and constrained transport methods for the MHD
model, where the divergence-free condition for the magnetic field is specifically
enforced.

In making this book a reality, I credit my education and ways of doing research
to my teachers Prof. Zhongci Shi at the University of Science and Technology of
China (USTC), who exposed me to the power of non-conforming finite element
methods and reminded me that computational research must not be devoid of
real science and engineering relevance, and Prof. David Gottlieb (my doctoral
thesis advisor) at Brown University, who taught me that simplicity is the beauty
in sciences. Also, my scientific research has benefited greatly from encourage-
ments and interactions from the late Prof. Steven Orszag over many years. I have
learnt much from interactions with my colleague physicist Prof. Raphael Tsu (a
co-inventor of the resonant tunneling diode and a pioneer in quantum superlat-
tices), whose sharp physics insight has always been an inspiration and pleasure
during many of our discussions. My former colleague Prof. Boris Rozovsky has
provided much encouragement, spurring me to undertake the challenge of writing
this book, which started in 2004 during one of my many research collaboration
visits with Prof. Pingwen Zhang at Peking University through the Beijing In-
ternational Center for Mathematical Research. This book would not be possible
without the joint research work undertaken in the past few decades with my
colleagues Pingwen Zhang and Shaozhong Deng, and my former students and
postdoctoral researchers Tiejun Yu, Yijun Yu, Yuchun Lin, Tiao Lu, Xia Ji,
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Haiyan Jiang, Min hyung Cho, Kai Fan, Sihong Shao, Zhenli Xu, and Jianguo
Xin. Special thanks are given for the many useful discussions with my friends and
other colleagues, which have contributed to my understanding of various topics
in the book, including Achi Brandt, Alexandre Chorin, Weinan E, George Kar-
niadakis, Chiwang Shu, Leslie Greengard, Jan Hesthaven, Tom Hagstrom, Eitan
Tadmor, Shiyi Chen, Roger Temam, Weng Cho Chew, Jian-ming Jin, Dian Zhou,
Xuan Zeng, Jinchao Xu, Jianguo Liu, Shi Jin, Houde Han, Jing Shi, Ann Gelb,
Gang Bao, Jingfang Huang, Bob Eisenberg, Chun Liu, Xianjun Xing, Benzhuo
Lu, Tao Tang, Jie Shen, Huazhong Tang, Tsinghua Her, Andrij Baumketner,
Donald Jacobs, Guowei Wei, Vasily Astratov, and Greg Gbur. I would like to
thank Dr. Shaozhong Deng for his careful reading of the manuscript; many im-
provements in the presentation of the book have resulted from his suggestions.
The author is also grateful for the professional help and great effort of Ms. Irene
Pizzie during the copy-editing of the book.

Finally, special acknowledgements are given to the continual support of the
Advanced Scientific Computing Research, Office of Science at the Department
of Energy (under program managers Sandy Landsberg and Karen Pao) and the
Army Research Office (under program manager Joseph Myers) over the years,
and to NSF and NIH for allowing me to undertake the research that is behind
many results contained in this book.
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Electrostatics in solvation






1.1

Dielectric constant and fluctuation
formulae for molecular dynamics

The dielectric constant € of a material describes the collective response of its
constituent molecules to electric fields, which is of fundamental importance in the
study of electromagnetic phenomena in materials. In this chapter, we will present
the statistical molecular theory for the dielectric constant. First, a brief review on
the classical electrostatic theory of charges and dipoles is given. Then we present
the classical Clausius—Mossotti theory for non-polar dielectrics, i.e., materials
that do not have molecular dipole moments in the absence of external fields,
and the Onsager theory for dipolar dielectrics, specifically for dipolar liquids.
Finally, we discuss the statistical molecular theory for the dielectric constant
and dielectric formula in terms of dipole moment fluctuations; the latter can be
obtained over molecular trajectories in molecular dynamics simulations of the
dielectric materials.

Electrostatics of charges and dipoles

In this section, we review the basics of electrostatics of charges and dipoles. The
Coulombic force of a point charge ¢ at r’ exerting on a test charge @ at r is
given by

1 Qq(r—1')

T dmey r—rP

F(r) (L.1)

with the vacuum dielectric constant ¢y = 8.854 x 1072 C2/(N - m?) set in the
ST base units for force (N), distance (m), and charge (C). The force can also be
expressed in terms of the electric field E(r) generated by the source charge ¢ as

F(r) = QE(r), (1.2)

and the electric field E(r) can be written in terms of a scalar electrostatic po-
tential ®(r) as

E(r) = —Vo(r), (1.3)

where

a( L 4

= . 1.4
dmeg [r — /| (14)
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Meanwhile, the potential energy W for the test charge ) in the electrostatic
potential field ®(r) is simply

W = Qa(r). (1.5)

It can be shown easily that the potential ®(r) satisfies the following Poisson
equation with a Dirac § source:

6(r—r’).

—Vi(r)=¢
€0

(1.6)

Molecules of many materials (such as dipolar liquids) possess permanent dipole
moments (defined below) due to different mass centers for the positive nuclear
charges and the negative electron charges. The dipole moments will experience
change under external fields, i.e., polarization, which plays a fundamental role in
the study of the electrical and optical properties of materials. Moreover, under
the influence of an external field, even non-polar molecules can obtain induced
dipole moments because of the displacement of the mass centers of the positive
and the negative charges.

The electric dipole moment for a pair of opposite charges of magnitude ¢ is
defined as the magnitude of the charges times the distance d between the charges.
The potential of such a dipole is given by

1 q q
P(r) = , 1.7
(I') drey <|r—d |r+‘2i> ( )

2|

where d is the directional vector pointing from the negative charge to the positive
charge. We define the dipole moment vector p as

p=g¢d (C-m). (1.8)
In a far-field region, i.e., |r| > d, we have

1 gdcos 1 p-r

(I)(I') 2

~ - 7 1.9
dmeg 7 4meg 13 (1.9)
where 6 is the angle between p and r. The electric field due to the dipole p is

then

1 3p-r P
E(r) = -Vo(r) = — - P 1.10
(r) (1) = ( T ) ) (1.10)
which also defines a dipole—dipole tensor T(r) for r = (11,79, 73):
1 1 [(3rarg
Toa(r) = — — —6as ), B=1,23, 1.11
o) = s (U552~ bas) e (111)

where 0,3 is the Kronecker delta.

An ideal point dipole can be obtained by letting the separation distance d tend
to zero while holding the product gd = p unchanged. The ideal point dipole can
be represented by a dipole moment density through the Dirac § function with
an orientation along the unit direction d = d/|d|:

p = ué(r)d, (1.12)

the spatial integration of which will give the total dipole moment ua.
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For an individual atom or molecule of a dipole moment p, we assume the
following linear relation between the induced dipole moment Ap(r) (i.e., p — p
+ Ap(r)) and an external field E(r):

Ap(r) = oE(r), (1.13)

where a (cm?) is the atomic or molecular polarizability. For example, a/4req =
0.667 for H, 0.205 for He, and 24.1 for Na (in units of 1073°m?), respectively
(Griffiths, 1999).

For later use, we consider the potential energy W of a general finite-sized
dipole moment p = ¢1r1 + g2ra2, g1 + g2 = 0, under an external electric field
E®t = —V®. Using (1.5), we have

W = q®(r1) + 22(r2) = @1[®(0) + V&(0) - r1] + g2[®(0) + VE(0) - r5]
=p - VP(0).

Therefore, we obtain

W =—p E™". (1.14)

Polarization P and displacement flux D

The collective response of the constituent molecules of a material to an external
electric field can be described by a phenomenological quantity, the susceptibility
x of a dielectric material, which measures the displacement (translation or rota-
tion) of permanent dipole moments in polar molecules or the creation of induced
dipole moments in non-polar molecules. This process is the so-called polarization
process. The susceptibility x and the dielectric constant € are macroscopic quan-
tities; the former links the Maxwell total electric field E(r) inside the material

and the polarization density P(r) per unit volume by
P(r) = eoxE(r), (1.15)

where both E(r) and P(r) are averaged quantities over a scale larger than the
molecular size but smaller than the overall macroscopic scale of the dielectric
material under investigation. Specifically, over a physical region V. around a
location r, we define the polarization density function P(r) through

PVl = 3 p. (1.16)

1€Ve

where | V.| represents the volume of the region V., and p; is the dipole moment of
the 7th molecule inside V.. Therefore, a complete understanding of the dielectric
constant can be traced back to the response of each individual molecule under
the influence of the external electric field.
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Bound charges induced by polarization

For a given polarization density P(r) within a volume V, and by the linear
superposition principle and the far-field approximation of (1.9), the potential

O(r) forr ¢ V is
o) = o [ PO (1.17)

which can be rewritten as

. 1 ! ! # /
O(r) = Tres /VP(I‘) \Y <|r—r’|> dr
1 / P(r/) / ]' / / /
- . | - v.P
47eq {/VV [r — 1’| dr /V|r—r’|v (r)dr
1 P(rl) -n / 1 / / /
_ N P(r')d 1.1
4meg {/S [r — /| ds /Vr—r’|V (r)dr] (1.18)

where V’ denotes differentiation with respect to r’, S = 9V is the surface of the
volume V', and n represents the outward unit normal vector to the surface. From

the last equation, we can conclude that the potential ®(r) due to the polarization
density P(r) can be identified as those created by a surface bound charge o}, on
the surface S,

op(r) = P(r) - n, (1.19)
and a volume bound charge p; inside the volume V,
pp(r) ==V -P(r). (1.20)

Namely, we have

B(r) = — /U”(rl) s + /pb(r/) dr’ (1.21)

 dmey Jg v — /| dmey Jy v —1/|

It should be noted that the volume bound charge p, and the surface bound
charge o}, cancel each other to reflect the overall charge neutrality of the dielec-
tric, namely,

/Vpb(r')dr/ =- /V V' - P(r)dr = —/SP(I‘/) ‘nds = —/Sab(r')dsl. (1.22)

Accounting for the volume bound charge, the Gauss law for the electric field
now becomes

V- eE(r) = q(r) + pp(r), (1.23)

where ¢(r) is the free charge inside the material (in contrast to the charge pp(r)
induced by polarization, which is bound to nuclear sites). Using the definition of
the volume bound polarization charge p,(r) (1.20), we have

V- (eoE(r) + P(r)) =q(r). (1.24)
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Introducing a displacement flux D(r) to account for the polarization effect due
to the “displacement” of the dipoles in the dielectric material,

D(r) = ¢oE(r) + P(r) = eo(1 + x)E(r) = ¢E(r), (1.25)
where the material dielectric constant € is defined by
e=¢o(1+ x), (1.26)
we arrive at the Gauss law inside the dielectric material:
V- -D(r) = q(r). (1.27)

For convenience, we also define a relative dielectric constant €, with respect to
that of the vacuum ¢y by

r=—=1+y. (1.28)
€0

Electric field Eyqi(r) of a polarization density P(r)

The macroscopic electric polarization field from the potential (1.17) is

1 P') (r—1')
Epo(r) = Vo) = ——v [ —= 1) g V. (129

poi(F) (x) dmeq /V v — /|3 r r¢ (1.29)
For a field point r ¢ V, the integrand in (1.29) is a smooth function; thus we
can move the gradient operator inside the integral to obtain

Eyo(r) = /VT(I' — ' )P(r')dr/, ré¢V, (1.30)

where the dipole-dipole tensor T is defined in (1.11).

For a field point r inside V', however, the integrand for the potential ®(r)
in (1.29) will be singular, and more so for the dipole tensor in the expression
(1.30) for the electric field Epqi(r). Nonetheless, we will show in the following
that (1.29) still holds even for r € V; however, (1.30) will be interpreted as a
Cauchy principal value integral with an additional term in (1.43).

For a field point r € V, the polarization field Eyqi(r) from the molecular
polarization p; can be split into two parts as follows:

EPOI(P) = Eout (I‘) + Ein (I‘), (131)

where Equ(r) and Eiy(r) are the field generated by the dipoles p; outside and
inside, respectively, a sphere Qpr of radius R centered at r. Using a far-field
approximation similar to (1.17), we have

Eout (r) = =V ®oui(r), (1.32)

where

1 P AN -
Do (1) = / PE)-(—r) 4. (1.33)
47TEO V/QR |I‘ — I'/|3
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Meanwhile, to be consistent with the fact that the Maxwell electric field is
an averaging quantity, Ei,(r) is defined as the average field generated by all
dipoles p; inside the sphere Q. Each of these dipoles p;, represented by two
point charges ¢;6(r — r; — d;/2) and —¢;6(r — r; + d,/2), with p; = ¢;d;, will
generate a microscopic electric field e;(r), given by

1 (q(r—r;—d;/2) q(r—r;+d;/2)
— ( _ ) (1.34)

eir) = t—r —d; /27 |r—r;+d;/2P

which will contribute to the macroscopic electric field E;, (r) through its average
value over the region Q. Using the result (1.140) in Appendix A (Section 1.5.1),
we can compute this average field quantity as

Zez = 47760 = sz = _3TOP( r), (1.35)

where the last equality follows from

Zpl |Qg|P(r) = %WR?’P(I‘). (1.36)

Therefore, from (1.31), for a field point r € V, the polarization field E,q(r)
can be expressed as

1 P') -(r—7v') 1
Epo(r) = — \% —— 2 dr' — —P(r). 1.37
i) = oy [ PRI ) (137

On the other hand, if we assume that the polarization density P(r) is uniform
inside the sphere Qg, then from (1.146) in Appendix B (Section 1.5.2), we know
that a uniform electric field is created inside the sphere given by

1 1 Px')-(r—1)
——P =— ———= dr’. 1.38
3eo (x) 47T€ov/9 r—r'|? ' (3%)
As a result, we have
1 P AN - 1 P A —
Epol(r) — v/ (I' ) (I' r ) dr/ _ V/ (I' ) (I‘ r ) dr/
4meq V/On v — r/|3 47eg Qn [r — /|3
(1.39)
= *V‘p(l‘),

where

_ 1 P -(t—11) .
(I)(r)_47T60/v P (1.40)

Therefore, for a material with a locally uniform polarization density (i.e., no
interior material interfaces), the macroscopic electric polarization field Epq(r)
can be computed by (1.39), namely, as the negative of the gradient of the po-
tential (1.40) in the whole space R3.
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Singular integral expressions of E,(r) inside dielectrics

For the electric field inside a dielectric with polarization density P, we can extend
(1.30) to the case of r € V using Cauchy principal integrals. First we define a
de-singularized dipole tensor with § > 0 by

_ 0, if |r—1r'] <9,
Ts(r—1')=< _ (1.41)

T(r—r'), if [r—1'|>0.

Then, we have from (1.37) that
1 P -(r—1) ., 1
E S i S 0 A Y
pot(r) 47reov/v/9(S v — /|3 dr 3eo (r)
— / Ty(r — ¢)P()dr’ — —P(r). (1.42)
1% 3eo

Now, letting § — 0, the first term becomes the Cauchy principal value (p.v.)
of the singular integral, and we thus have

E,o(r) = p.v. /‘/T(r — 1 )P(r)dr’ — SLP(I‘). (1.43)

More discussion on the Cauchy principal value of singular integrals can be found
in Section 3.1.1.

Clausius—Mossotti and Onsager formulae for dielectric constant

Clausius—Mossotti formula for non-polar dielectrics

In this section, we derive a relation between the polarization density P(r) and
the Maxwell electric field E(r) inside dielectrics. First, from the definition of the
polarization density (1.16), the polarization is the combined polarization of all
individual molecules, which will be under the effect of a local field Ejocai(r) at
molecule sites. This local field Ejocai(r) is the Lorentz field and should be distin-
guished from the macroscopic Maxwell field E(r). Thus, the polarization density
P(r) can be expressed in terms of the polarization of all individual molecules in
a linear sum as

P(r) = ZNiai(Elocal(r))i; (1.44)

where «; is the polarizability of the ith type particle (molecule) and N; is the
number density of the ith type particle (per unit volume), respectively.

From (1.10), the microscopic local Lorentz field on each individual molecule is
defined as (Kantorovich, 2004)
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Elocal(r) _ E/(I‘) + 1 Z |:3pj i (I‘ — rj) (I‘ _ rj) _ Pj

47eg = v —r;[5 v —r;[3
—E(r) - ! SV w’ (1.45)
471'60] v |I‘—I'j|3

where E'(r) denotes the external electric field when the dielectric material is
absent, and p; is the dipole moment of the molecule at r;.

We split the summation in (1.45) into two groups of dipoles: those dipoles
inside a sphere Qp around r and the rest in the exterior of the sphere Q% =
V\Qgr. Then, we have

Bloea(r) = B(r) - v [ " 4 3 | P lr=r)

.3
4meg jeon e |r —r;]

=FE(r) -

_ N
Z pg 3 v P(I‘) (I‘ I‘) ar'| |
—I'l

47760 Q% |I‘ — I'/|3

(1.46)

where a far-field approximation has been used in replacing p; by P(r’) for the
summation over Q%. It should be noted that a more appropriate expression for
the field of the dipole p; inside Qz should be (1.34), however, it would not affect
the discussion and conclusion below.

Meanwhile, the Maxwell electric field E(r), being the sum of the external
field E'(r) and the field generated by the polarizations Epq(r) in (1.37), can be
expressed as

E(r) = E'(r) - ! v/c PE)-(r=x) 4o 1 —P(r). (1.47)

d7eg r —r/|3 3ep
Subtracting (1.47) from (1.46), we have

1 pi-(r-r) 1
|I'*I‘j‘3 360

Elocal(r) - E(I‘) = - P(I‘)

The summation over j € Qg will vanish if we assume a cubic lattice for
the material (Bottcher, 1973, p. 168) and a constant polarization p; inside Q.
Therefore, we have

Eloea(r) = E(r) + —P(x), (1.48)

3€g
which is defined as the Lorentz local field (Kittel, 2004, p. 388) acting on an
individual molecule. From (1.146) and (1.144), it can be seen that the field cor-
rection P(r)/(3eg) over the Maxwell field E(r) in the Lorentz local field Ejocai(r)
is caused by the surface bound polarization charge on the boundary of the region
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Qr (zero volume bound charge due to the assumption of a uniform polarization
inside).

Next, using the ansatz of a linear relation (1.15) between the polarization and
the Maxwell field, (1.48) becomes

Eloeal (r) = E(r) + %E(r) - (1 + %) E(r). (1.49)

Substituting (1.49) into the right-hand side of (1.44) and using (1.15) for its
left-hand side, we have

coxE(r) = Z:Niai (1 + g) E(r),

and, after eliminating the field E(r), we get

X 1
== Ny, 1.50
3+X€0 321,: “ (1.50)

which gives the well-known Clausius—Mossotti formula by using (1.28) (Mossotti,
1850; Clausius, 1879; Bottcher, 1973):

€ — 1 1
- 15" N 151
e +2 3; “ (1.51)

Onsager dielectric theory for dipolar liquids

In the Onsager dielectric theory for a material with permanent molecular dipole
moments, the polarization of the material is considered to come from two differ-
ent sources, i.e.,

P=P,+P,, (1.52)

where P, is the induced polarization from the translation of the atom’s elec-
tron/nuclear charges and P, is the dipole polarization by the orientation change
of permanent dipoles, respectively. If «; is the atomistic polarizability of the ith
type particle, then

P, = (Z Niozi> Elocal (1.53)

and

where f; is the permanent dipole vector obtained through Gibbs-averaging over
all orientations under the effect of a directing field Eg4; the latter is only part of
the local field Ej,ca1(r) acting on the molecules.

In deriving the Onsager theory, we will take a different approach from the pro-
cedure used in deriving (1.48), where a virtual sphere Qg of uniform polarization
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is used. Here, in order to find Ejc.1 and E4, we enclose each molecule in a spher-
ical cavity Qi (a real physical cavity) without any other molecules inside (i.e.,
assuming no rotation hindrance from neighboring molecules). The electric field
inside the spherical cavity acting on the molecule now comes from two sources,
the first being the reaction field of the surrounding dielectric continuum outside
the cavity on the dipole moment of the molecule, and the second being the field
generated by the presence of the cavity, termed the cavity field. For both fields,
a self-consistent argument will be needed as the dipole is polarizable, namely the
reaction field or the directional field will change the dipole moment, which in
turn will affect the reaction field or the directional field, respectively.

In the following, we will follow the discussion from Bottcher (1973). First, we
will find the average direction for the molecular permanent dipole. We recall
from (1.14) that the energy of a dipole g under Eg is

W=-u -Egy=—uE4cosb, (1.55)

where the angle € is the inclination angle measured from the direction of Eg,
which is taken to be the z-axis.

The relative probability of the orientations of the dipole p follows Boltzmann’s
distribution. If E; = 0, all directions # have the same probability, so

277 (sin@)r o sin6
472 2
where the numerator in the first fraction is the surface area of a ring patch of

inclination angle between 6 and 6 + df on the surface of the sphere of radius r.
If E4 # 0, then we should have

p(6)d9 =

ae, (1.56)

_w
e *sT ginf

p(0)do = 7 5 de, (1.57)
where kp is the Boltzmann constant, T is the temperature, and
™ ) M 9
A :/O ehBacosd/kpT % ) (1.58)

In order to find the average of the dipole moments under the directing field
E,, we consider the average energy (W) of the dipole, which requires the average
of cos0:

foﬂ cos 0 enFacos0/kpT % sin@ do

Z

(cos ) = cosh =
1 [ ze*dx 1

= ffifi = coth a — = = L(a), (1.59)
a [? evdx a

where a = pFEy/(kgT), coth is the hyperbolic cotangent function, and L(a) is
the so-called Langevin function. For ¢ < 1, we have

La)=-——=+—+ . (1.60)
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Therefore, we obtain

a ,LLEd
) = — —
(osO) =3 = 51 7

(1.61)

and the average energy (W) can be identified with an averaged dipole moment
2 || Eq (by a symmetric argument) with a magnitude

12

= u{cosf) = SkBTEd' (1.62)
Thus, from (1.52)—(1.54) we have
2
P = cxE = ZN (aiElocal + 3:;TEd> . (1.63)

Calculation of Ej,., and E4

e Reaction field of non-polarizable dipoles

A dipole p inside a spherical cavity Qg of radius R of molecular scale will induce
a reaction field from the surrounding dielectric material with a relative dielectric
constant €, outside the cavity, and the potential can be written as (Jackson, 2001)

— B, .
(bl(r) = ZO mpn(cos 6)7 if |I'| Z R7 (1.64)
¢a(r) L cosf + i Cpr" Pp(cos0) if [r|] <R (1.65)
= —_ nT 5 1 = ’ .
2 dmeq 2 s v

where the series sum in ¢»(r) is the reaction potential, P, (x) is the Legendre
polynomial of order n, and B,, and C), are expansion coefficients to be determined
by the following boundary conditions:

$1 =0 as |r| = oo, (1.66)
_ 01 _ _9¢2
¢1 = P2lr=r, 150 = 2 n . (1.67)

where €1 = €,¢p and €5 = €.
Using the boundary conditions, we can show that all coefficients are zero except

3 I Cn 1 2(er—1) p
T 2, + 1dweg’ e Amey 26, +1 R3’

B,

Therefore, the reaction field at the center of Q2y is

1 120 —1)
dmeg R3 2¢, + 1

Ei=-VCiz = B = f/'l’a (168)
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where p is assumed to be in the x-coordinate direction, and
1 12 —1)
dreg B3 2¢, +1 -

f= (1.69)
e Reaction field of polarizable dipoles

A polarizable dipole g will produce a reaction field E,¢ inside the cavity Qg
which is parallel to the dipole itself, as shown in (1.68) above; as a result, the
dipole moment g will be increased to p+aE,¢. To be self-consistent, the reaction
field E,¢ should then be related to the total dipole moment, i.e.,

E; = f(p, + OéErf). (1.70)

Therefore

E; = L. (1.71)

1—- fa
It is noted that the reaction field to a dipole p, being parallel to p, will not
change the orientation of the dipole.

e Cavity field E, as part of the directing field E,

From (1.71), the reaction field from a permanent dipole of any orientation is
parallel to the dipole itself, so it will not contribute to the rotation of that
dipole. Therefore, there is no need to include as part of E4 the reaction field of
the Gibbs-averaged permanent dipole moment .

A cavity in a dielectric system will modify a given field E = (E,0,0) far away
from the cavity, however, resulting in a cavity field E. parallel to the external
field E inside the cavity. Thus, the cavity field E. is not parallel to the permanent
dipole, and it will contribute to the overall directing field E; affecting the dipole.

Let us first find the cavity field E.. Assume that the external field is along
the z-direction for illustration, namely E = (F,0,0). Then, the potential outside
and inside the cavity is given as (Jackson, 2001)

— B, .
¢1(r) = ;} mPn(cos 0) — Ercos®, if |r| > R, (1.72)
(oo}
$2(r) = Cor™ Py(cosb), if |r| <R. (1.73)
n=0
By using the interface continuity conditions (1.66) and (1.67), we obtain
€ — €71 3 361
Bj=—FREFE, Ci=——EFE, B,=C,=0, 1,
! €o + 2¢q ’ ! 2¢1 + €2 n

where €; and €5 are the dielectric constants outside and inside the cavity, respec-
tively. Therefore we have

361

=——F
¢2(I‘) 261 + €9 v

(1.74)
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For €; = €.¢9 and €5 = €, the field inside the cavity, E., will be

3€,
26, + 1

e = (1.75)

The cavity field E. will be part of the directing field E4 producing a rotation
polarization of the dipole inside the cavity; however, there are other fields there
which will contribute to E;4. Due to the polarizability of the molecule inside the
cavity, the directing field E4 will induce a dipole moment aE4, which in turn
will give a reaction field faE, inside the cavity. Together with the cavity field
E., we then have the total directing field E; in a self-consistent manner as

E; =E.+ faE,. (176)

It should be noted that a more accurate reaction field factor, namely f/(1 — fa)
from (1.71), could be used here. As a result, we get

1
E; = E. 1.77
‘T fa (L77)
Finally, combining (1.75) and (1.76) will give
1 1
E, = E, = S g, (1.78)

1_fa ¢ 1—fa267+1
e Local field E .,

The local field acting on a molecule with a permanent dipole moment will now
consist of two parts: the reaction field from the permanent dipole @ and the
directing field E,4. Namely, we have

Elocal = Ed + Erf~ (179)

The reaction field E,¢ due to the Gibbs-averaged permanent dipole moment z is
obtained from (1.71) and (1.62):

= _ f _ f
et =17 fa" "1 fa SkBTEd' (1.80)

Thus, it follows from (1.78), (1.79), and (1.80) that

2
Elocal = (1 + f K ) Ed

1— fa3ksT
f > 1 3e,
=11 E. 1.81
( +1—fa3kBT 1—fa2e +1 (1.81)

Now substituting (1.81) and (1.78) into (1.63) and eliminating E, and using the
identity x = €, — 1, we arrive at the following Onsager equation (Onsager, 1936):

(er — 1)(2e, + 1)e 1 w2
1.
3€, ZN 1— foy &+ 3kpT 1 — fo (1.82)
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where f also depends on €, and is given by

1 12— 1)
C Ameg R3 2, +1

f

Statistical molecular theory and dielectric fluctuation formulae

In this section we will derive fluctuation formulae for computing dielectric con-
stants using dipole moment fluctuations obtained through molecular dynamics
simulations of dipolar liquids, which allow realistic modeling of the material sys-
tems. We consider a classical system V' of molecules specified by a microstate I"
of discrete dipole moments,

I={(r;,p;), i=1,2,...,N}, (1.83)

where r; and p,; are the position and the point dipole moment of the ith molecule,
respectively. Also, we assume that each individual point dipole p;, in the absence
of all other dipoles p;, j # i, has a polarizability matrix «; as defined in (1.13),
namely a change of dipole moment A, will be induced on the individual dipole
p; under an external field E®':

Ap; = a; E™Y (1.84)

where in general o; should be a matrix quantity, i.e., a; = (®ag)3x3-
The polarization density of (1.16) can be rewritten to include all the point
dipole moments:

P(r) =Y pd(r—r), (1.85)
and the total dipole moment M of the polarization density is then given by
M:/Pmmzzm. (1.86)
v i

Our objective is to relate the dielectric constant € of (1.26) to the fluctuation
in the total dipole moment M. We could achieve this goal by first finding the
polarization of the system in response to the external field macroscopically with
the classical electrostatics and microscopically with statistical Gibbs averages,
respectively. Then, we combine these two results to yield a relation between the
dielectric constant and the dipole moment fluctuations.

The dipole moment at r; with the zero external field E' = 0 is p,. Once
an external field E’ is applied, there will be a change in the dipole moment,
w; — p;+Ap;. We will need to calculate the change of all dipole moments A, .
The key to this computation is to realize that a change in a given dipole moment
will induce an electric field, which will in turn polarize further the rest of the
dipoles (Stern & Feller, 2003). So, to find all Ay, a self-consistent approach is
required.
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Using the local (atomic) polarizability matrix ey; in (1.84) and considering the
total contribution of polarization field from all other dipoles Ap;, the induced
change in the dipole moment at the location r; will be

Ap; =i |E +> T(r; —r))Ap; |, (1.87)
J#i

ie.,
Aftic = tiap | Ej+ Y Tpy(ri —15) Ay |
i#i

and the change in the total dipole moment of the system is

AM =Y Ap,. (1.88)
We rewrite (1.87) as
ZBijaﬁA,ujﬂ = E(/x, (189)
J
where
ot T(r;l — 1)

T(ry—11) o
B=| . S r (1.90)
Apti = Z B 5B} (1.91)

Then, the induced polarlzatlon density should increase by the amount

(AP), = (P'-P), = ZAMm(S(I‘ - ZBwaﬁ —r;) . (1.92)

Let us define a local polarizability of the whole system as

=Y B;'(r-r)), (1.93)

j

and the total system polarizability as
A= / r)dr = ZB ! (1.94)

Thus, the change in the total dipole moment AM from (1.92) is simply
AM = AE’, (1.95)
where

AM :/ AP dr. (1.96)
\4
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Statistical methods for polarization density change AP

The statistical mechanics theory of dielectric constant introduced by Kirkwood
(1939) and Frohlich (1958) is based on a linear response of the molecule’s dipole
moments to an external field. In this statistical theory, the average polarization
density at a thermal equilibrium of temperature T is defined through the Gibbs
average (refer to Section 12.1.3 for discussion on the Gibbs ensemble averages)
as follows:

/P(r)e_H/kBTdNF

P(r)) = , 1.97
I0) T (1.97)

where dV¥T' = dr; ...drydp, ... dpy, T is the temperature, and H, the Hamilto-
nian of the N-molecular system in the absence of any external field, is
given by

H = %Zm (i‘i)2+ZU(r¢—rj), (198)
% 1<J
where m is the mass of the molecule and U (r; —r;) is the binary molecular force
potential, which could include bond (valance, angle, and torque) and non-bond
(electrostatic and van der Waals) forces (Leach, 2001).
Let E’ be a uniform external field. In the linear response theory, the polariza-
tion of the dipoles under the external field is assumed to be

Pé(l‘) :Pa(r)"—aaﬂ(r)Eév (199)

while the Hamiltonian of the polarized system is changed from H to
1
H’:H—M-E’—§AM~E'7 (1.100)

where M is the zero-field total dipole moment, and the third term is the self-
energy (Frohlich, 1958, p. 169) due to the induced dipole moment change AM
which is given in (1.95). Therefore, we have

H' = 1~ M,E, ~ 3,

AnsEl. (1.101)

Similar to (1.97), we calculate the Gibbs average of the polarization density
P’ under the external field E’ by

/ [Po(r) + aap(r)Ejle= ' /ksTaNT

(Po(r)) pr = =
/e—H’/kBTdNF

, (1.102)

Q=

where H' is given in (1.101).
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For small E' < 1, by a Taylor expansion

0

(Po(r)) g = (Pa(r)) (P (r)) Eg, (1.103)
aEﬁ
E’'=0
and
0(P,(r))p F'G-FG
we have
!
ja 31;;5) _ /aaﬁefH/kBTdNF
B lE=o0
_ L —H/kpT _(_ _ 1\ AN
:/aage*H/kBTdNr+ L /PaMﬁe*H/kBTdNr, (1.105)
/ M —H/kpT AN .
G kBT/ e d*Tr. (1.106)
Therefore, we get
O (P(r)) g 1
— (aap) + 7—= [(PaMpg) — (Pa) (Mg)]. (1.107)
OE} kT
E,=0
So
(Po(r)) g = (Pa(r))
1
+{ g lPMa) = (2o} (M3l + (aas) B3, (1.108)

which yields a local polarization formula in terms of the dipole moment averages,
APy = hap(r)Ej, (1.109)

where

hop() = (P M) = (Pa) (M) + {aas(r)

To obtain a relation for the total polarization of the system, we integrate
(1.109) over the whole system sample V' to arrive at

AM, = HopE}, (1.110)

where

Hog = | Bas(e)de = o [(MoM5) = (Ma) (M) + (Aus)]. (1111)
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Classical electrostatics for polarization density change AP

In the classical linear theory of polarization, the Maxwell field is defined in
(1.47) as the superposition of the external field and the polarization field Epq(r),
namely

E(r) = E*(r) + Epol(r), (1.112)

where E®*(r) is the external field and Eq(r) is the polarization field produced
by the polarization density P(r) in (1.39),

Epol(r) = =VO(r), (1.113)
with
d(r) = 47360/‘/P(72;(I,|;r) dr’. (1.114)

Equivalently, from (1.43), we have the singular integral representation for the
polarization field

Epoi(r) = p.v. /VT(I‘ —r)P(r')dr’ — %P(r). (1.115)

Therefore, (1.112) becomes

_ 1
E(r) = E®(r) + p.v./ T(r —r)P(r')dr’ — 3—P(r), (1.116)
v €0
which can be simplified by using (1.15) to
1 _
XP(r) = E™'(r) + p.v./ T(r — ' )P(r')dr’, (1.117)
%

where
1 1+1
A e \x 3/

To obtain P(r), we need to solve the above integral equation, which is in fact
a continuous analog of (1.87). There are different ways to solve this integral
equation depending on how system V is arranged (whether confinement by a
vacuum (Frohlich, 1958) and the surrounding dielectrics (Neumann, 1983), or
the geometry of the system, for example layered or spherical (Stern & Feller,
2003; Ballenegger & Hansen, 2005)). Let us assume a periodic system with a
truncated dipole interaction. We can then use Fourier series to solve the integral
equation (1.116) (Neumann, 1983) when the Fourier series of P(r) is defined as

N 1 .
P(k) = —/ P(r)e T dr. (1.118)
VI Jy
Then, as 6 — 0, (1.117) in the Fourier space becomes

P(k) = A [Eext(k) +Ts(k)P (k)] - (1.119)
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Setting k = 0, we get
P(0) = AE™(0). (1.120)

Due to anti-symmetry, we can show T5(0) = 0 (Neumann, 1983), and

1
| / E™(r)dr = E®™*, for a constant field. (1.121)
v

Eext (0) _ |7

Now, varying the external field by an increment E/,

Eext N Eext + E/,

we have
P — P+ AP.
The variation of (1.120) yields
AP(0) = AE/(0). (1.122)
However, by definition,
AP(0) = % /V AP dr = |71|AM. (1.123)

Therefore, (1.122) gives for a constant external field E’
AM = \|V|E. (1.124)
Assuming a z-directed uniform external field
E' = (0,0,E.),

we have

AM, = \|V|E.. (1.125)

Fluctuation formulae for dielectric constant ¢

Assuming a z-directed uniform external field and forming the ratio between
(1.110) and (1.125), we have
HZZ

A=
Vi

(1.126)

namely
3(€r — 1)60 o sz

= —— 1.127
€+ 2 V]~ ( )

where, assuming the zero average of the total polarization, i.e., (Aag) =0,
1

Heo = o [(MeAL) — (002 (1.128)
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For a general external field

(M), (M2)==(M?), (1.129)

W =

we have the Clausius—Mossotti type fluctuation formula (Neumann, 1983; Stern
& Feller, 2003) for the dielectric constant:

3(e, — 1) 1 ) )
& +2  3e|V]ksT [<M )~ (M) } : (1.130)

The Gibbs-averaged quantities () in (1.130) can be obtained by molecular
dynamics simulation of the system in various ensembles (constant temperature
in this case) (Frenkel & Smit, 2001).

To close the discussion on fluctuation formulae, it should be mentioned that
the formula (1.130) is for a periodic system and other fluctuation formulae for
different configurations are derived for planar layers (Ballenegger & Hansen,
2005) and liquids encapsulated in spherical cavities (Berendsen, 1972; Adams &
McDonald, 1976; Powles, Fowler, & Evans, 1984).

Formulae for the dielectric constants of liquids encapsulated in spherical cavi-
ties have been derived previously (Berendsen, 1972; Adams & McDonald, 1976;
Powles, Fowler, & Evans, 1984; Ballenegger & Hansen, 2005). In the model de-
vised by Berendsen (1972), a central sphere of radius R, with a permittivity e,
is enclosed in a spherical layer of thickness 7 with permittivity ¢, and then the
larger spherical region of radius R. + 7 is embedded in a dielectric continuum
with permittivity €ext. This model generalizes the cavity model to cases where a
transitional dielectric layer may exist. The simple cavity model is recovered by
setting €’ to either €, or €qxt. The dielectric constant in this model for (M) = 0

is given by
B R \*°
€ = . , (1.131)
B , R ,
1-— 1 [(266,“—1—6)—1—2 (RC+T> (Eext —6)‘|
where
R 3
A= (2€exs +€)(2¢ +1) =2 (Rc " T) (€oxt — €' )(1 =€), (1.132)
1 M?
pot M) (1.133)

co 3kpT|V(R)|’

Here, B describes the fluctuation of the total dipole moment M(R) of a spherical
sample V with radius R, and |V(R)| is the volume of the sample.
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Equation (1.131) is reduced to a simpler expression in Ballenegger & Hansen
(2005) for the dielectric cavity if €’ is set to €exy:

1 + B 2€ext
€ = ——2coatl (1.134)
1= 2€ex:+1

This latter expression can be further reduced to the known Kirkwood—Frohlich
expression if €ext 18 set to €, (Kirkwood 1939; Frohlich, 1948, 1958)

(e — 1)(2e, + 1)
3€,

=B, (1.135)

and to the Clausius—Mossotti type formulae in (1.130) if eqxt is set to 1.

Appendices

Appendix A: Average field of a charge in a dielectric sphere

For a source charge ¢ located at v’ € Qg, the electric field e at a distance r from
r’ is given by

q T
= —. 1.136
e(r) dreg |r]3 ( )

The average of the field over the sphere 1y is defined as

1 1 q r pd(-r) —r
(e) = 1Qg| Qn e(r)dr = TR /QR dmeq |r3 dr = _/QR dreg | =3
(1.137)
With the constant p = q/( 7TR3) the term pﬁ;or) ‘::|3 can be viewed as the
electric field at r’ due to a charge element pd(—r). As a result, (e) is exactly the
electric field at r’ from a uniformly p-charged sphere (Griffiths, 1999, p. 156).

Now, using Gauss’s theorem and the symmetry of the field inside a uniformly

charged sphere, we can calculate the amount of charge inside the sphere |r| < ¢/

and obtain
4
dnr’*ege = / €pe-nds = pgmﬁ. (1.138)
|r|=r'
Therefore, we have
1 4 3 q /
= 1.139
T am?6"3" T dreoR? (1.139)
which implies that
1
(@) = ——L . (1.140)
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Appendix B: Electric field due to a uniformly polarized sphere

Assume a constant polarization density P(r) = P = (0,0, p) inside the sphere
Qr, namely, in the spherical polar coordinates (p, ¢, 6),

Po = -V-P= Oa
o, =P -n = pcosb, (1.141)

for which the potential ®(r) can be shown to be

o0
ST APy (cost), if |r| <R,
n=0

R B (1.142)
Y it Palcost), if [r[> R.
n=0

Note that the potential satisfies the following interface conditions (refer to (5.65)):

O(RT,0) — d(R™,0) =0,

0P ov,
EOE(RJrv@) - GOE(R 0) = —oy.
We can show that
3£7’ cos ), it |r| <R,
b(r) = ") g3 (1.143)
——cosf, if |r|>R.
360 ’)"2

On the other hand, from (1.17) the potential from the polarized sphere is

P(r) = ! /Q PE)-—r) 4y 1 /QP(r’)-V’ ! ,|dr’

 d7eg [r — /|3  drey r —r
1 P(r’ 1 P(r)-
_ 7/ v PO g / LORL (1.144)
drey Jo, |r — r/| drey Joq, |r—1'|
The electric field is
PR Ry ) IR0
0z dmen Joa, [r — /|3
Consequently, we have
1 4 2™ Rcosbpcosb 1
E.|lp—o = — de dp—— = """ R?sin = ——p. 1.145
Ir=o0 4meg /0 /0 ¢ R3 S 360p ( )
Note that
E,=E,=0.

Therefore, finally we have

A
E=-Vo() = —41 v/ P -r-r) 4w Lp (1.146)
TEQ Qr
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Summary

The simple Clausius—Mossotti and Onsager formulae of dielectric constants in
terms of atomistic/molecular polarizability are based on a continuum environ-
ment for individual atoms/molecules and its reaction field effect on the latter;
however, more detailed molecular-level interactions, such as the van der Waals
force, are not accounted for. On the other hand, the statistical molecular the-
ory allows the incorporation of specific molecular interactions in its formulation;
together with molecular dynamics simulations with appropriate force fields rep-
resenting those interactions, a general way of computing dielectric properties of
materials at thermal equilibrium is made possible.



2.1

Poisson—Boltzmann electrostatics
and analytical approximations

In this chapter, firstly we introduce the Poisson-Boltzmann (PB) equation, based
on the Debye-Hiickel potential of mean force (PMF) approximation for electro-
static interactions for biomolecules in ionic solvent, and then secondly we in-
troduce the concept of electrostatic solvation energy. Several analytical approx-
imation methods for solving electrostatic solvation problems will be discussed.
First, the generalized Born approximation is described for the electrostatic sol-
vation energy using Born radii for atoms embedded in molecules. A fast Fourier
transform (FFT)-based algorithm for calculating the Born radii is given. Then
we present various image approximations to electrostatic reaction fields in the
Poisson and Poisson—Boltzmann electrostatic models in the presence of dielec-
tric or perfectly conducting materials with boundaries such as single or multiple
planes, with spherical and cylindrical geometries.

Poisson—Boltzmann (PB) model for electrostatic solvation

The electrostatic force is one of the most important forces in ion—ion, ion—
solvent, and solute molecule—solvent interactions (Milner, 1912; Bockris, Reddy,
& Gamboa-Aldeco, 2000) for understanding the structure and stability of bio-
molecules in an aqueous environment. Such interactions are defined as a solvation
process of ions or solutes by solvent molecules such as the formation of the hy-
dration shells around ions by water molecules. The classical electrostatic theory
can be applied to the system comprising the solute macromolecule and the sur-
rounding ionic solvent environment (Honig & Nicholls, 1995; Fogolari, Brigo, &
Molinari, 2002). In this classical continuum approach, the solute is described as a
region with a low dielectric constant €;, typically ¢ = 1 ~ 4, and partial charges
q; are assigned to atomic locations rj, leading to an interior charge density

N
pr) = a4;b(r —xj), (2.1)
j=1

where the partial charges ¢; can be computed using quantum mechanics calcu-
lations (Davis & McCammon, 1990) or molecular mechanics force fields (Leach,
2001), and the atomic locations r; are taken as the nuclear centers of the atoms
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Figure 2.1. Molecular surfaces of carbonic anhydrase-11. (Left) van der Waals surface
and (right) solvent accessible surface (SAS). This image was made with VMD
software. VMD is developed with NIH support by the Theoretical and Computational
Biophysics group at the Beckman Institute, UIUC.

inside the solute. The solute boundary I' is defined by the molecular surface
(see Fig. 2.1, which was produced using visual molecular dynamics (VMD) soft-
ware (Humphrey, Dalke, & Schulten, 1996)), employing either the van der Waals
(vdW) surface (composed of the sum of overlapping vdW spheres), or the sol-
vent accessible surface (SAS) (generated by rolling a small sphere on the vdW
surface) (Lindskog, 1997). The solvent, occupying the exterior of the solute, is
assigned a higher dielectric constant ¢, ~ 80, and, in general, is an ionic liquid
with the mobile ionic charge number density n;(r) for the ions of the type i.

The macroscopic potential ®(r), due to the embedded charges in the solute
and the mobile ionic charges in the solvent, is then governed by the Poisson
equation

=V e(r)Ve(r) = p(r) + pion(r), (2.2)

where the total ion charge density pion(r) = ) ,ez;in;(r),z; is the charge of
individual i-type ions, and n;(r) is the number density of i-type ions at the
position r. Due to the discontinuities of dielectric constants inside and outside
the solute, two interface conditions on I for the continuities of the potential ®(r)
and the normal displacement flux are required, i.e.,

o) = a(rt), 6200 02T

for r € I', where r~ and r" are, respectively, the inner and the outer limits at
the position r, and n is the outward unit normal to the surface of the solute.

(2.3)

Debye—Hiickel Poisson—Boltzmann theory

To determine the electrostatic potential ®(r) by (2.2) and (2.3), we need to
know the i-type ion density distribution n;(r), which will be derived based on the
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Debye—Hiickel theory for homogeneous electrolytes of various ions. In the Debye—
Hiickel theory of ionic solvent of electrolytes, to compute the electric potential
of an overall neutral system, an ion-cloud model is adopted (Bockris, Reddy, &
Gamboa-Aldeco, 2000). In this model a single ion is selected as the reference
point of the system, called a j-ion (due to the homogeneity of the electrolytes,
which j-ion is selected is not essential), and the rest of the ions in the solvent
will be modeled as a cloud made of continuous charge density distribution. The
resulting potential is denoted as ®;(r), whereas the j-ion is represented by a
spherical cavity of radius a with a total charge at its center ez; (the ions are
considered non-polarizable by other ions or external charges). Despite the fact
that all types of ions are of finite size, in the ion-cloud model (Gouy, 1910) all ions
except the j-ion will be represented by a continuous charge number distribution
J(r) per unit volume, centering around the j-ion. Therefore, ®;(r) satisfies the

following Poisson equation (Hill, 1987):

n

) ezjé(r),' if r<a,
—eV70;(r) = ey znl(r), if r>a, (24)

where n? (r) denotes the number concentration per unit volume of the i-type ions
around the selected j-ion. The distribution of the i-type ion around the j-ion is
a function of the distance r only due to the homogeneity of the system, given in

terms of a radial distribution function g;;(r):
ni (r) = nfgs;(r), (2.5)

where n{ is the number density of the i-type ions in the bulk, and gij(r) — 1 as
T — 00.

The function g;;(r) is the radial distribution between two types of ions, where
4712 g,;(r)dr gives the probability of finding an i-type ion in the shell of [r, r+dr]
surrounding the j-ion. Note that g;;(r) can be expressed in terms of a Gibbs
average over all other ions and charge configurations, i.e., by a Boltzmann factor
weighted integration over all other ion and charge positions in phase space (Hill,
1987, sect. 17-4), i.e.,

/e—U/kBTdF/
gij(r) = gij(ri,r;) = N(N — 1)#,

where dI" = dry ...dry/dridrj, U(ry, ..., ry) is the interaction potential among

(2.6)

all N particles (ions, solvent molecules, etc.), and Z is the normalizing factor
(partition function):

Z= /e_U/kBTdrl...drN. (2.7)

To see the physical meaning of g;;(r;,r;), we rewrite (2.6) in the following
form:

gig (i, xj) = e W) BBT — g /ksT (2.8)
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Then, we have
—wij = kBTln/e_U/kBT dr’ + ¢, (2.9)

where C'is a constant. Differentiating w;; with respect to the position of one of
the two particles, say r;, we have

/e‘U/’fBT(—ViU)dF’ /e_U/kBTfi ar’

- Vzw” = = = <fi>mean y (210)
/er/kBT dr’ /er/kBT dr’

where f; = —V,;U is the force acting on the particle ¢ for any given configuration

of other NV — 1 particles. Therefore, —V;w;; gives the mean force (f;) . —on the

particle ¢ from all possible configurations of the other N — 1 particles. In this
sense, w;; is called the potential of mean force (PMF).

In the Debye—Hiickel theory (Debye & Hiickel, 1923), an important assumption
is made that the mean force on the i-type ions is just the electrostatic force,
namely, in terms of the electric potentials, the PMF

Wy = BZi(I)j(I‘). (211)

Therefore, non-electrostatic potentials such as short-range van der Waals poten-
tials are ignored in this theory.

Combining (2.11) and (2.8) into (2.5), we have the distribution of the i-type
ions as follows:

ni(r) = nd exp <— e]:iij)j) . (2.12)
B

Substituting (2.12) into (2.2), we obtain a nonlinear Poisson-Boltzmann (PB)
equation for the electrostatic potential ®(r) (after dropping the subscript j ) for
the solute—solvent system:

— V- e(r)VO(r) = p(r) + Z ezin? exp ( ::?) . (2.13)

In the Debye—Hiickel theory of electrolytes, a linearization of (2.13) is made
(Hill, 1987, p. 325) to give

— V.- ¢(r)VO(r) = p(r) + Zezm? (1 — Zi;;%) , (2.14)

provided that

ez; ®
kT

< 1. (2.15)
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Equation (2.14) can be further simplified due to the neutrality of the solution
Yiezind =0 to

1
V20(r) — x%®(r) = —Ep(r), (2.16)
where the Debye—Hiickel inverse length x is given by
2 € 0,2 2e
= P I 2.1
" €]<JBT zi:enlzz 6kBT ’ ( 7)

and the ionic strength I is defined as
1
I= 3 ; endz?. (2.18)

Although in some biological systems the assumption of small ® in (2.15) is
not justified, the linearized Poisson—Boltzmann equation has been widely used
in biomolecular applications. Various work has been carried out on its mathe-
matical analysis (Li, 2009), numerical solutions (Lu et al., 2008), and dynamic
simulations (Feig & Brooks, 2004).

To simplify the notation in the rest part of this chapter, we will write the
Poisson equation in the solute and the PB equation in the ionic solvent in a
unified form as follows:

—V-e(r)VO(r) + N?®(r)=p, recQorre, (2.19)

where the dielectric constant and the ionic density are assumed to be constants
inside €; and Q,:

B €i, if re Qi, 2 Giliiz, if re Qi,
€(r) _{ € ifreq, _{ o2, if T € Q. (2.20)

Here x; = 0 as the solute interior is modeled by the Poisson equation. The
potential ®(r) satisfies the interface condition (2.3) and a decaying condition at
infinity, namely

lim ®(r) = 0. (2.21)

T—00

Helmholtz double layer and ion size effect

In the derivation of the Debye—Hiickel theory, which leads to the PB model of
electrostatic solvation of biomolecules, we have ignored the finite size of various
i-types of ions and also ion correlations beyond those associated with the for-
mation of ion clouds around an opposite j-type ion in (2.4). It has been found
(Borukhov, Andelman, & Orland, 1997) that the PB model overestimates the
ion density near charged surfaces such as DNA and amino acids. Near a charged
surface, ions of opposite signs will be attracted to the surface, whereas ions
of the same sign will be repelled to form a so-called Helmholtz double layer,
first studied by Helmholtz (1853). The width of the Helmholtz layer is about
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Figure 2.2. The Stern model indicating the Helmholtz double layer: inner Helmholtz
plane; outer Helmholtz plane.

the same as the radius of the attracted ions, possibly including the hydration
shells of water. Later, it was found that some of the dehydrated ions (usually
of the same sign as the charges on the surface) or polar water molecules could
be adsorbed to the charged surface due to the van der Waals force to form
another layer, which is defined as the inner Helmholtz plane (IHP), the former
being known as the outer Helmholtz plane (OHP) (Hamann, Hamnett, & Viel-
stich, 2007). The Helmholtz double layer of two oppositely charged planes (the
charged surface and the OHP) defines a potential drop from the charged sur-
face to the OHP. In this model of electrostatic potential, the thermal motion of
the ions is not considered, contrary to Gouy and Chapman (Gouy, 1910; Chap-
man, 1913), who introduced a diffused “double layer” due to the thermal motion
of the ions. In their diffused layer, the ions obey the Boltzmann distribution,
resulting in excess ions of opposite signs near the charged surface and reduced
ions of the same sign. However, the Helmholtz double layer is ignored in their
model. Later, Stern (1924) proposed combining the Helmholtz double layer and
the Gouy and Chapman diffused double layer, the latter starting from the OHP.
In practice, due to the long-range correlations and finite-size effects of the ions,
the structure of ionic solutions near a charged surface is more complex (such as
non-monotonic charge profile and layering) than is predicted by the PB theory
(Boda et al., 2002; Henderson & Boda, 2009).

Figure 2.2 shows the overall picture of the Stern model for a simple pla-
nar surface with negative charges (Hamann, Hamnett, & Vielstich, 2007). A
consequence of the Stern model is that the OHP depends on the type and
the amount of ions or water molecules adsorbed on the charged surface. Let
the OHP be at @ = d (where d is the width of the IHP plus a/2, with a
being the diameter of hydrolated ions of positive sign). Then the potential
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will satisfy a 1-D PB equation, and the ion distribution has the following form
based on (2.12):

ni(z) = nf exp (—W) ) (2.22)

where the potential ¢, at infinity is introduced to reflect the fact that when
x — 00,n;(z) — nY. Also, the linearized version of the 1-D PB equation takes

the form
d2
120@) = £ [8(2) = doc] = 0, (2.23)
whose solution is given by
B(x) — oo = (Poup — Poc) e "D, (2.24)

We can calculate the double layer width lqouble-1ayer Dy considering the potential
drop from the OHP by a factor of e71, i.e., ¢(7) — oo = (PoHP — Poo) €1, giving

ldouble—layer =d+ /iil. (225)

The existence and the size of the double layer demonstrate the need to include
the ion size in a theory for ionic solvents, especially in the presence of a charged
surface associated with biomolecules. It is clear that the packing density of the
ions near the charged surface within the Helmholtz layer will generate a satura-
tion limit for the ion density near the charged surface, while, on the contrary,
the PB model is known to produce unbounded ion density as the surface charge
increases. To remedy this overestimation of the ion density, attempts are made
to introduce the ion-size effect into electrolyte theory within the easy-to-use PB
framework. For this purpose, Borukhov introduced a mean field free energy for
the electrolyte, which explicitly includes the ion size, and a modified PB model is
derived from its Euler-Lagrange equations, presented below based on Borukhov,
Andelman, & Orland (1997) and Lu & Zhou (2011).

Let us consider the free energy of a 1 : z asymmetric electrolyte of two ion
species. Both ion species and the solvent molecules have the same size, a®.
The grand canonical Gibbs free energy functional for the electrolyte can be ex-
pressed in terms of the electric potential ®(r) and ion concentrations n_(r) and
n4(r) as

F=U-TS-YV, (2.26)
where the electrostatic energy is defined as
U= / <f%|v<1>|2 +eny® — zenJI’) dr, (2.27)
the entropy in terms of the ion concentrations and solvent density is given by
-TS = 5 /[n+a3 In(nya®) +n_a®In(n_a®)

+(1—-nya®—n_a®)In(1 —nya® —n_a®)]dr, (2.28)
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and the chemical potential is defined as

V= /(u+n+ + p—_n_)dr, (2.29)

respectively.

The entropy function contains the solvent density (1/a®)(1 — nya®— n_a®)
In(1— nya® — n_a®) to include the steric effect of the ion exclusion volume by
requiring the density to remain positive.

The extreme conditions at equilibrium,

oF oF
— =0, — =0, 2.30
ony on_ ( )
imply that
kpT [ 3 3 3 3 3
e® —pp + —3 [a®In(nya®) — a®In(1 — nya® —n_a®)] =0, (2.31)
a
kT
—ze® — u_ + BS [a®In(n_a®) — a®In(1 — nya® — n_a®)] = 0. (2.32)

a
Subtracting (2.32) from (2.31) gives

ny = n_es—n)=pltz)ed (2.33)

where 5 =1/ (kgT).
In the region away from the molecules where ® is small, the ion density will
approach its bulk density ng and n° and the neutrality implies that n?r =Y =

znY. Therefore, (2.33) with ® = 0 implies that

ePlue—n-) = 5 (2.34)
and
ny = zn_e P+, (2.35)
Rewrite (2.31) as
nia — oPlur—e®), (2.36)

1—nya®—n_a?
and use (2.35) to eliminate ny in (2.32), which can be then rewritten as
3

n-t _ Bpgzen) _ L
1— on_eBU+2)e®g3 _p_g3  © e Bu-g—zfed’ (2.37)

Solving n_ in (2.37) we have

1 1

- E 1+ e Bu—g—28e® | yo—B(l+2)ed’ (2'38)
Meanwhile, note that n_ — n" as ® — 0. From (2.38), we obtain
_ 1-— Vo
e B — T (2.39)

where vg is the ion volume fraction: vy = za®n?.
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Plugging (2.39) into (2.38), we have

nOeBZGCD
n_ = , (2.40)
1 — vg + vg(eP?e® 4 ze=Fe®) /(1 + 2)

and with (2.33)

ZnOef,Be@

= . 241
A g vo(eP#e® + ze=Pe®) /(1 4 2) (241)

Finally, we have an ion-size modified Poisson-Boltzmann equation from (2.2):

v2q> - ZG’I’LO ezﬂe‘b _ e—ﬁe‘i’
€ 1 —wy+vp(efe® 4 ze=Be?) /(1 +2)°

(2.42)

Other modified PB theories for ions with different sizes can be found in Chu
et al. (2007), Eisenberg, Hyon, & Liu (2010), and Lu & Zhou (2011).

Electrostatic solvation energy

The potential energy of a solute—solvent system comes from short-range forces
such as van der Waals forces and long-range electrostatic forces. The solvation
of a solute inside a solvent involves the competition between these forces. The
free energy required during the solvation, denoted as AGgo, corresponds to the
energy associated with the transfer of a solute molecule from a vacuum to a
solvent environment (the symbol A indicates that only potential energy change
is relevant as a reference value for potential energy is always implicitly implied).
The solvation energy is most conveniently decomposed into two components,
AGpor and AG,p, which are referred to as the polar and non-polar solvation
energy, respectively (Roux, 2001). The non-polar part is associated with the
step of an insertion process into the solvent, where an empty space is created
to form a cavity to accommodate the solute atoms whose charges are nullified
at this step. The polar solvation energy AG,. results from the electrostatic
interaction in the form of solvent polarization and redistribution of the mobile
ion charges (Hill, 1987).

The solvation energy was computed by Born (1920) for an ion of charge g,
modeled as a spherical cavity of radius a containing both the bare ion and the
first water molecules around the ion (the so-called solvation shell), which is sur-
rounded by a dielectric continuum solvent of dielectric constant €,. The solvation
energy can be obtained by introducing a coupling parameter A\ between the ion
and the solvent, where A = 0 indicates no electrostatic coupling and A = 1
restores the full Coulombic coupling, respectively. The electrostatic potential
energy U(€) (M) of the ion and the solvent outside the cavity is given by the reac-
tion field ®,¢ (0, A), where X indicates the A-reduction of the Coulomb potential
(Hill, 1987, eq. (18.20)):

(el) 1 q2 1 1
U () = g8,e(0,3) = A2ie(0,1) = =LA (= - ) (2.43)
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where ®,¢(0,1) is given by (2.115). Here U ()\)d\ equals the work needed for
the increase of the coupling parameter by d\. As usual, the infinite self-energy
created by the ion’s Coulomb field at the ion itself is ignored. Therefore, the
total work required to effect the complete coupling of the ion to the solvent can
be additively computed as

1
W = / Aq®y(0, 1)dA. (2.44)
0

Substituting (2.43) into (2.44), we obtain the well-known Born formula for the
electrostatic solvation energy:

2
agpom - L1400 (1 - 1) . (2.45)

As seen in (2.44), the effect of the coupling parameter A can be viewed equiv-
alently as a scaling factor of the ion charge. Therefore, this coupling process can
also be considered as a charging process, first proposed by Onsager (1933) and
Kirkwood (1935), where A = 0 is the uncharged state and A = 1 is the fully
charged state. The work in (2.44) can now be identified as the charging energy.

Thus, for a general solute molecule, we can treat the electrostatic free energy
AGpo1 as the work needed to charge the solute atomic charge from zero to its
full charge value in the ionic solvent environment (Sharp & Honig, 1990; Zhou,
1994; Fogolari, Brigo, & Molinari, 2002):

AGpo = Wep, (2.46)

where the charging energy Wy, is defined similarly as in (2.44):

1
AGpor = Wen E/ d)\/drp(r)@rf(r,)\). (2.47)
0

In order to find the reaction field ®.¢, (2.13) will be solved twice and the dielec-
tric constant €(r) is described with a two-constant model, i.e., e(r) = ¢; inside the
solute and €(r) = eqy for the exterior of the solute. Firstly, (2.13) is solved with
€oxt = €o t0 produce a potential ®(r) in the solvent environment; secondly, it is
solved with €.xt = ¢ to produce a potential in a reference environment (Bashford
& Case, 2000), denoted as ®qf(r). The difference of these two potentials then
gives the reaction field ¢, = ® — ®.¢. For the linearized PB electrostatic model,
D,¢(r, \) = AD.(r), and the electrostatic free energy AGp is given by

1

AGpe1 = 3 /R3 D,¢(r)p(r)dr, (2.48)

which is the electrostatic energy needed to transfer the solute from the reference
environment to the solvent dielectric (Sharp & Honig, 1990; Zhou, 1994; Bashford
& Case, 2000; Sigalov, Scheffel, & Onufriev, 2005).

The exact solution of the reaction field ®,¢(r) from the PB equation (2.13)
is unknown due to the nonlinearity of the equation and the complex geometric
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shape of the solute biomolecule. Approximate solutions are given later in
this chapter.

From a different point of view, the electrostatic free energy of the system
can be defined using an energy density in a variational principle for an energy
functional Weq for the nonlinear PB electrostatic model for the solute—solvent
system (Sharp & Honig, 1990):

Wed = /dr

P(r) e(r
pwew) - [ s@as- Pvewp|, )

where

S(@) ==Y qnexp (— qua;) :

By using Gauss’s law, W4 can be shown (Zhou, 1994) to be equivalent to

P(r)
Wed:/dr [;p(r)q)(r)—l—;S(@(r))@(r)—/o S(¢>d¢], (2.50)

which, for the linearized PB equation (2.16) where S becomes a linear function,
can be further simplified to

Woa = %/drp(r)fb(r). (2.51)

This result is consistent with (2.47) for the linearized PB model except for the
included additional self-energy term from the Coulomb potential generated by
the density p(r) in the reference environment, usually taken to be the vacuum.

Generalized Born (GB) approximations of solvation energy

Using (2.48) to find the solvation energy is not a trivial task as finding the reac-
tion field involves large costs in solving the PB equations in 3-D spatial regions
with complex solute molecular shapes. In Chapter 3, several numerical methods
will be discussed. Meanwhile, in this section we present an analytical method, a
generalized Born (GB) approximation method, to find the solvation energy with-
out solving the reaction potential explicitly. The GB theory (Still et al., 1990)
generalizes the Born formula (2.45) by extending the concept of the ion radius
to any atom embedded inside a solute. The resulting Born radius for an atom in
some sense measures how deeply the atom is buried inside the molecule. Here,
we present a brief overview of the methodology of the GB methods. Interested
readers may refer to the works of Bashford and Case (2000), Feig and Brooks
(2004), Onufriev, Ralph, & David (2008), and Onufriev (2010) for more system-
atic reviews and discussions.
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Still's generalized Born formulism

Still et al. (1990) proposed the GB method to approximate the solvation free
energy by an analytical pairwise sum over the atoms in the molecule:

AGpor=—= | ——— — 2.52
=g (o ) L (252)
and
gr3;
fij = |73 + RiRjexp _RiR]j ) (2.53)

where ¢ is a positive constant and R; is the so-called effective Born radius of
atom 4, defined through its self-energy AG;OI using the Born solvation energy
formula (2.45):

1/1 1\ 1 ¢
== === ] =——=—. 2.54
R 2 (eo ei> 47 AG;OI (2.54)

The self-energy AG;OI of atom 7 in (2.54) can be computed directly from solving
the Poisson equation by setting atomic charges of all atoms to zero except that
of atom 7 itself (Onufriev, Case, & Bashford, 2002), namely the work needed
to charge only atom ¢ in the presence of the solvent following the argument of
(2.44). In practice, the self-energy AG;OI will be approximated.

Equation (2.52) is an interpolation between two extreme cases, for which (2.52)
is exact, of the inter-particle distance: the Born limit (2.45) (Born, 1920) at small
distances (r;; = 0) and the Coulomb limit at large distances. The ionic effects can
be incorporated by substituting e "7 /e, for 1/¢, in the formulation, which also
satisfies the limit conditions at the Debye—Hiickel level (Srinivasan et al., 1999).
Here, k is the inverse Debye—Hiickel screening parameter in the linearized PB
equation (2.16)—(2.17). The inverse of the parameter g in (2.53) can be a value
from 0.1 to 0.5; most commonly 0.25 is used due to historical reasons (Still
et al., 1990). The zero limit of g = 0 was suggested by Grycuk (2003), resulting
in a simpler function, f;; = 4/ r?j + R;R;. Other variations of Still’s pairwise
formula (2.53) were also used, such as f;; = r;; + 0.5(R; + R;) exp[—27;;/(R; +
R;)], which also has a better performance than the original one for the spherical
case (Lee, Salsbury, & Olson, 2004).

Integral expression for Born radii

In the GB models, a Coulomb field approximation (CFA) (Bashford & Case,
2000) was used. The basic assumption of the CFA is that the electric displace-
ment flux D due to charge i at r = 0 remains in Coulombic form, i.e.,

D, ~ L &F

PSR g 2.55
4 73 (2.55)
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even for dielectrics outside the solute molecule varying from ¢; to €, during the
solvation process. Thus, the work of assembling the charge i at its location within
the molecule is

1 1 1 q?
Wi=- [ (E-D)dr = 55 5 dr, (2.56)
2 R3 (471') 2 R3 6(1')7"
where the origin is set at the charge location, and a linear response D = ¢(r)E
is used to define the relation of the electric field E and the displacement D. The

formula for the work in (2.56) using the electric field E and the displacement

vector D is equivalent to the electrostatic solvation energy (2.48) after excluding
the infinite self-energy terms associated with point charges (Jackson, 2001, sect.
4.7). The electrostatic free energy of solvation is then obtained by taking the
difference of the work done W; between the solvent environment €.y = €, and
the reference environment e, = €; of the exterior domain of the molecule:

. 1 1 2 1 2
AGL, = — (/ qz4dr—f/ ql4dr)
(4m)? \2 Jps €(r)r 2 Jrs &r
1 ¢ /(1 1 1
=% ( - ) / — dr. (2.57)
(4m)° 2 \& €/ Jo, T

Comparing (2.57) with the Born solvation energy form (2.45), we can define a
generalized Born radius R; as

1 1 1

— / dr. (2.58)

Ry Am Jo rt

In the following we introduce a method to calculate the generalized Born radius
where the singularity of the kernel around the atom site in (2.58) is replaced by
a smoother function. We rewrite (2.58) in the following form:

1 1 1
— = —r N —r: 2.
) 17 Jpe G(r —r;)dr 1 /i G(r r;)dr, ( 59)

where we assume that the atomic excluded sphere S;, embedded inside the
molecule, has a common radius a; = a for every atom ¢. Note that G is a
smoothed version of the function 1/7* inside the excluded sphere S;, i.e.,

| WE(r), if r<a,
Glr) = { 1/rt, if r>a, (2:60)

where the smoother W (r) produces an nth-order continuity of G(r) at r = a.
For example,

2 3
1 2
W, (r) = PUE (2.61)
3 8 6
2 _ 4 2
Wa (7") = ET’ — ET + g, (262)
4 15 20 10
3 _ 6 4 2
Wa (T‘) = —70(107' + $ - 57’ + g (263)

Note that a larger n will lead to a faster decay in the spectrum of G(r) in the
Fourier frequency domain, and such a fast decay makes an efficient method for
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calculating the Born radius with the FFT possible. The first integration on the
right-hand side of (2.59) can be calculated analytically as

1 1 1 1
yp= . G(r —r;)dr = yp= /]R3\Si m dr + y= /sl G(r — r;)dr. (2.64)
In (2.64), the first integral on the right-hand side equals to 1/a while the second
term is the integral of the smoother W'(r) inside S; and equals - fs W (r)dr
= 3/(5a), 29/(35a),and 65/(63a) when n = 1,2, and 3, respectively.

The radius a can be chosen arbitrarily, and if it is taken as an atomic radius,
for instance the van der Waals radius, the sphere S; is completely inside €;.
On the other hand, if the sphere S; is not completely inside €2;, (2.59) can be
rewritten as

1 1 1
E _E - G(I’ — I‘i)dI‘ — 47_(/;2‘ G(I‘—I‘i)dr
+L/ L Gr—r)|dr (2.65)
Am Ja, LI —rl* ' , .

in which A; is the portion of S; outside ;. Since the center of S; is inside
Q;, the integral over the region A; is not singular, and it can be calculated by
a numerical quadrature or by an approximate analytical formula (Cai, Xu, &
Baumbketner, 2008).

FFT-based algorithm for the Born radii

The FFT can be used for the evaluation of the second integral on the right-hand
side of (2.59) or (2.65), which takes on the form

O(r)= [ G(r—r')dr'. (2.66)

ol
Once @(r) is calculated on grid lattice points, the value ®(r;) corresponding to
the ith off-grid lattice atom can be obtained by a simple interpolation from the
nearby data on the lattice sites surrounding the atom. In order to use the FFT,
we define an indicator function for the molecular volume domain €2; as follows:

1, if re Qi7
Jr) = { 0, if r¢Q;. (2.67)
Then, the integral in (2.66) can be extended to the full space as
O(r)= | G—1)f(r')dr' =G f(r), (2.68)
R3

which is a convolution suitable for evaluation using the Fourier transform

¢ 1 —ir-
&) = @2 Jos (r)e”™¢ dr

and the discrete fast Fourier transform.
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The FFT-based method will give ®(r;;,) on the grid lattice sites r;;; =
(zi,yj,21), 0 <4,5,k < N, at a cost of O(N?log N). Then, ®(r,) for the ath
off-grid lattice site atom can be obtained by an interpolation from ®(r;;;) at a
cost of O(M), for instance with a linear interpolation for M atom sites. Here, N
is independent of M and only depends on the shape of the molecule €, i.e., the
lattice should be fine enough to resolve the boundary of the molecule within a
prescribed accuracy. Therefore, the total complexity of the FFT-based method
is O(N3log N + M).

Using the FFT to compute (2.68) with the smoother kernel G

The FFT algorithm has an O(NlogN) complexity of evaluating the following two
transforms between data {f(x;) : —N/2 < j < N/2 — 1} and discrete Fourier
coefficients {f : —N/2 <k < N/2—1}:

N/2—1

5 ik 21 N . _ N
f('rj) = k__EN/kaek 7, for Z 5 :]ﬁ, - 5 < J < ? - 17 (269)
N/2—1
. 1 ke N N
fe=% > flay)e 5 Skso -1 (2.70)
j=—N/2

To illustrate the idea of using the FFT for (2.66), let us consider the 1-D
analog of (2.66) for the evaluation of

b
O(z) = / G(x — z')da’, (2.71)
for x € V = (—b,b) and

We(lz —2'l), if |z —2'|<a,
it |z —2a'| > a.

Glx—2a)= {

Jo—a’|%

If f(x) is the indicator function for the domain V' as defined in (2.67), then the
1-D convolution corresponding to (2.68) is given by

B(z) = /_: Glz — 2/)f(@')de’ = G+ f(x). (2.72)
Applying the Fourier transform, we have
& (€) = GOf(©), (2.73)
with
G(6) = F{G(x)} = i /_ o; Glz)e € da, (2.74)
fO = FU@) = o= [ e da (2.75)



2.2 Generalized Born approximations 41

and using the inverse Fourier transform we have
o) =7 {GOHO) = o= [ Gofoerea @)

Due to the fact that f(z) is discontinuous at 2 = £b and G/(x) is C"-continuous
at x = +a with the smoother W, the decay conditions of f(¢) and G(€) are

fe =0 (2) = 4o, (2.77)
GE) =0 <§n1+1> , €] = +oo. (2.78)

Let e be an error tolerance of the whole algorithm, against which we truncate
the integral over £ € (—o0, +0), i.e.,

B(2) &6 F(€)GE)AE ~ —— / S f(O)GE)dE,  (2.79)

vl

with the truncation parameter (2 defined as follows based on the decay conditions
(2.77) and (2.78):
1
()t

An N-point rectangular quadrature rule for the integral in (2.79) yields

\/EQ N§:—1

k=—N/2

= (2.80)

D(z) ~ T F(&)G(&), (2.81)

where & = k(27Q2/N) and N will be selected based on the Shannon sampling
rate of T = 7 /L (Shannon & Weaver, 1963; Daubechies, 1992) for a plane wave

e'“L of wave number L in the & variable:
2mQ)
N = % = 20L. (2.82)

In principle, the selection of N should also depend on the oscillatory behavior
of the spectral functions f(£) and G(€). In the case that a larger N is needed to
resolve the oscillations in f(£) and G(€), we can achieve that by increasing the
size of L.

Calculation of ®(z;), z; = j(2L/N) € [-L,L], —-N/2<j < N/2-1

Next, we calculate the value of ®(z;) at N points inside the interval [—L, L].
Again, the size of N will be based on the Shannon sampling rate T'= 1/ for

function e*¥™® in the x variable, which gives
2L
N =2 — 901 (2.83)
T
Let
2L N N
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Then
5277(2 N/2—-1 I 5 N2 A o
D(z;) = Z f&n)G NI = — Y fE)GE)e™F,
—N/2 k=—N/2
(2.85)

which can be evaluated by one FEFT at a cost of O(N log N).
Calculation of f(&), &, = k(2rQ/N), |k| < N/2

As sup(f) C [-L, L], we have

1 o _ifx o 1 L —ix
for = o= [t ae= = [ e a, (2.86)

which is approximated by an N-point rectangular quadrature rule

N/2—1
f e i€ 2.87
fO =~ m E;mf (2.87)

where z; = j(2L/N). As N = 2QL, we have for —N/2 <k < N/2

N/2—1 N/2—1

2L 27 ;2L 2L - 27
Z fla)e W RIN = —— Z la)e ™F, (2.88)
Nv2r - s N\/27r i

to be evaluated by one FFT at a cost of O(N log N).

f&) =

Calculation of ®(z,,,y,,2) in the 3-D case

The 3-D Fourier transform G’(ﬁ) can be found analytically, which is defined by

G(&) = W /R ) G(r)e'®™ dr, (2.89)

and is a spherically symmetric function of & due to the spherical symmetry of
G(r) in the spatial domain Therefore, the Fourier transform at a radial distance
p (by letting & = (0,0, p))

27
G(¢ @ 3/2/ // G(r)e? Y2 sin gy dr dep db), (2.90)
7T

where p = [£], and (r,0,1) are the spatial spherical coordinates with = =
rcosfsiny, y = rsinfsinty, and z = rcost. Integration in ¢ and substitu-
tion of the piecewise definition of G(r) yield

p f/ mmm

— [/0 Wf(r)rsm(prp) dr—l—/aOOSiI;g;p) dr]

= Q(IHJFII). (2.91)

™
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The second integral I] can be integrated to give

Tsin(rp) 4o L[ 70 113 1o
/a T‘Sp dr = a |: 1 +1F5 2157 4(5 , (2.92)

where § = ap, and 1 Fy(«; 8,7; z) is the hypergeometric function

1 Fy(e; Bviw) = ) %L

m=0

with (@), = a(a+1)...(a+m — 1) as the rising factorial.
For the first integral in (2.91), we have, for n = 1,2, and 3,

Li=-— [6(6% + 12) cos & + 3(6° — 4) sin 4], (2.93)
1
L=-— [6(5* — 120 4 360) cos 6 + 3(6" + 446° — 120) sin 5], (2.94)
1 6 4 2
Iy=—— [6(6° — 126* — 156052 + 20160) cos §
+ 3(8% — 206" + 27605 — 6720) sin 4] . (2.95)

It should be noted that the form for I,, as defined is not usable at § = 0 due
to the denominator in I,, having higher-order infinitesimals than the numerator.
Therefore, I,,(0) should be calculated by an extrapolation; for example, for a
first-order accurate extrapolation we can use I,,(0) ~ 21, (a/2) — I,,(a).

Algorithm

Let the molecule be contained in a rectangular box of size [—L,, L,] X [—Ly, L]
X [=Ly, L.]. If the smallest box that contains the molecule is [—a, a] x [=b, b] x
[—¢, ¢], then, due to the periodicity of the FFT, the computational box [—L,, L]
X [=Ly,Ly,| x [-L,,L,] should be chosen such that L, > 2a, L, > 2b, and

L. > 2c¢ to avoid the overlap of the images of f and G.

The following steps form the flow of the algorithm in the 3-D case (Cai, Xu,
& Baumketner, 2008).

e Step 1: For an nth-order smoother W (r) in (2.60) and an error tolerance
€ > 0, choose the truncation parameter € by

1
and set
N, = 2QL,, N, =2QL,, N.=2QL., (2.97)
and

N = N,N,N..
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L4 Step 2: Compute f(§Z777j7Xk)7 (fzﬂ?g»Xk) ( 2]7\;? jQTrQ kQT(Q) _Nz/2 S ) S
N;/2—-1,-N,/2<j<N,/2—-1,-N,;/2 <k < N,/2—1, using one 3-D
FFT for the following sums at a cost of O(N log N):

N,/2-1 N,/2—1 N,/2—

A 8L, L,L.,
f(&‘ﬂ?j,Xk-) :mm Z Z Z f(xm7ynazl)

=—N,/2n=—N,/21=—N. /2

o (T 1k
exp( 127T<Nz +Ny+NZ>>. (2.98)

e Step 3: Compute P (n, Yn, 21), (T, Yn, 21) = (m%:,nQNL;f,ZQJ\%:) € [-L,, L.]x
[~L,,L,] x [-L.,L.],—-No/2 < m < N,/2 —1,-N,/2 < n < N,/2 —
1,—N./2 <1< N./2—1, using one 3-D FFT for the following sums at a
cost of O(N log N):

(2m)3/203 N./2-1 Ny/2-1 N./2-1

= > > > FEmaxanGEn )

=—N,/2j=—N,/2k=—N,/2

. mi . nj Lk
. 2| — 4+ — + — . 2.99
eXp<l7T<N$+Ny+NZ)> ( )

In the 3-D case, the function f(z,y,z) is the indicator function of the so-
lute molecule. Therefore, N,, N,, and IV, should be large enough such that the
boundary of the solute molecule is well resolved on the N,N,N.-lattice grid to
ensure a prescribed accuracy in the Fourier transform.

(I>(£L'm, Yn,s Zl)

2.3 Method of images for reaction fields

Image methods with virtual charges were first used by Lord Kelvin in the nine-
teenth century to represent the polarization field of dielectric materials (Thomson,
1884). In the Poisson electrostatic model, the electrostatic potential ®(r) of a
source charge ¢ located at ry inside a region 2 satisfies the Poisson equation

V- (e(r)VO(r)) = —¢d(r — 1), 1€, (2.100)

together with a homogeneous boundary condition on the boundary 92 if Q¢ (the
exterior of ) is a perfect conductor,

O(r) = 0, r € 00, (2.101)

or a continuity condition if both 2 and Q¢ are dielectric materials:

D) = D),
oP(rt)  9%(r7)
€o 0 =g o (2.102)

where n is the external normal to the boundary, ¢; is the dielectric constant
inside 2 and ¢, the dielectric constant outside 2, and + and — denote the limit
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taken from outside and inside €2, respectively. Meanwhile, the potential ®(r) is
assumed to decay to zero when r — oc.

In general, the solution to (2.100) has to be solved with numerical methods as
discussed in Chapter 3, and analytical forms of the solution are only available for
simple geometries. Still, the potential ®(r) can be decomposed into two parts:
one part for the potential due to the source charge ¢ at rg and the other part
for the reaction field @, (r) that reflects the polarization of the material in Q°,
namely

_ q
d(r) = prrem iy o (r). (2.103)

Methods of images for simple geometries

For selected geometries, methods of images can provide simple and analytical
solutions to the reaction field ® ,(r) in (2.103). The following are some classical
image solutions to simple geometries of conducting bodies and dielectrics. More
details on other types of dielectric shapes can be found in Smythe (1989).

e Potential of a point charge in the presence of a conducting sphere

For a charge g outside a conducting sphere of radius a, the potential in ) =
{r: |r| >a} outside the sphere is given as the sum of the primary potential from
the charge at ry = (7,0, @) in the spherical coordinates and the potential of
an image charge —¢ at the Kelvin image location (Thomson, 1884) inside the
sphere, which is the inversion point

2
rk - <i3957¢s) (2104)

with respect to the sphere

B(r) = q ? re Q. (2.105)

T drmelr —rg|  4melr —ry]

e Potential of a point charge in the presence of a conducting 3-D half
space

Consider a point charge located at ry = (0,0, d) along the z-axis above a conduct-
ing plane (z = 0) at zero potential. So, we have Q = {r = (z,y, 2): z > 0}, and
the homogeneous boundary condition (2.101) is assumed at z = 0. The solution
to (2.100) is given by (2.103). The reaction field in this case can be represented
by an image charge ¢ = —q located below the conducting plane z = 0 at the
mirror image location ry, = (0,0, —d), and the effect of this image potential (the
reaction potential) is to satisfy the required zero potential boundary condition
(2.101). So, we have

o (r)=-—— L (2.106)

—47T6i|1‘ — rim|.
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e Potential of a point charge in the presence of a dielectric 3-D half
space

Here we have a point charge located at rs = (0,0,d) € Q = {r = (z,y,2) : z > 0}
above a dielectric half space, and the potential will have to satisfy the continuity
condition (2.102) at the interface z = 0. Again, the potential in the upper half
space is given by (2.103), where the reaction field can be represented by an image
charge. Specifically, for z > 0 we have

/

- T
47T61|I‘ — rim|7

o, (r) (2.107)

where

€ 1+ €

€o — €
rim:(0307_d)7 qI:_<0 )q
The potential in the lower half space can also be represented by another image
located at the source point in the upper half space, consistent with the non-

singular feature of the potential for z < 0O:

o) - — (2.108)

 Armeg|r — 1|’

¢ = ()
€ + € ’

e Potential of a line charge and a dielectric cylinder

where

In this case, the potential problem is a 2-D one for the cross section of the
cylinder. Let © = {r = (r,0) : » > a} denote the exterior of the cylinder of
radius a which contains a line source charge ¢ at the location ry = (rs, 05 = 0),
rs > a, in polar coordinates.

The potential in € is the superposition of the potential from the source charge
and two images at 0 and ry, = (a?/r,0), respectively (Smythe, 1989), i.e.,

/
o(r) = — 5 In(r —xaf) + 57 In(je]) — 57

q =~ E°€i>q
€o T € '

Meanwhile, the potential inside the cylinder is given by a second image ¢” at the

In(jr — rinl), |r| >a, (2.109)

location rg:
1

o) = —si—In(r—n|), I/ <a (2.110)

¢ = ()
€ + €

where
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Figure 2.3. A point charge and a dielectric sphere. The point charge is inside the
sphere (rs < a). From Cai et al. (2007), copyright (2007) by Elsevier.

e Potential of a line charge and a conducting cylinder
As a limiting case of (2.109), we can find the potential outside the cylinder
centered at the origin due to a line charge placed at (7,05 = 0), 15 > a, as

q
27e; 27e;

In(|r — rinl), |r|> a, (2.111)

Image methods for dielectric spheres

In this section, we will present discrete image approximations to the reaction
field for a dielectric sphere ©Q = {r: |r| <a} with a dielectric constant ¢;; the
dielectric constant outside the sphere is assumed to be ¢,. The starting point is
the classical Kirkwood series expansion (Kirkwood, 1934) for the reaction fields.
Extension to the Poisson—Boltzmann equation will be discussed in Section 2.3.3
where the medium outside the sphere has a mobile ion density.

Friedman’s one image approximation

For a charge ¢ inside a dielectric sphere Q (see Fig. 2.3), the potential is the
solution of (2.100) and (2.102) for €, given by (2.103). The reaction field ®,¢(r)
at an observation point r = (1,0, ¢) inside the sphere can be expressed in terms
of the Legendre polynomials of cos (Kirkwood, 1934):
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o (r) = q(e — &) ni:o( n+1 )) (%)n P (cos)

4deia en+ e(n+1 a?
= Z Apr" Py (cos ), (2.112)
n=0

where P, (z),n =0,1,2,..., are the Legendre polynomials,

q re 1+~
A, =— — v (1 +—, >0, 2.113
e a?ntl 7 ( * l—fy+2n> "= ( )
and
€ — €o
= —. 2.114
7= T ( )

In particular, the first coefficient Ay is used in the Born solvation energy
in (2.45):

qg 1 /1 1
O .(0)=Ap = I a (60 — 61) . (2.115)

The well-known Kirkwood expansion (2.112) converges fast when r is away
from the boundary of the sphere. However, in the case that the point charge is
close to the boundary, the convergence rate by the Kirkwood series expansion is
slow due to rrs/a? ~ 1, requiring a great number of terms in the expansion to
achieve reasonable accuracy for the reaction field.

Before we proceed to derive the image approximation, we quote a useful iden-
tity, namely the harmonic expansion of the potential at r from a point charge ¢
at rg in a homogeneous dielectric:

o0

¢ ¢ (TS)HP,L(COSG)7 if r > g, (2.116)

drelr — | dmer
n=

r
0

or

q q Z(Z) Py(cos0), ifr <rs. (2.117)

dmelr — 1y = dmer, s

Following Deng, Cai, & Jacobs (2007), by expanding the term (n 4 1)/(en +
€o(n+1))in (2.112) in terms of € /((& + €,)(n + 1)) < 1, we obtain

2 2
€5 1 € 1
+ + + ...
&+e,n—+1 & + € n+1

(2.118)

n+1 1

en—+en+1) €6+e

)

allowing us to write the reaction field given in (2.112) as

®,(r)=RYr)+ RV )+ RP(r)+..., (2.119)



2.3 Method of images for reaction fields 49

where for k=0, 1,2, ... we have

(k) r) = (Ei - 60)65C a q = 1 k r n .
B () = dmei(€ + €)1 g (a2/rs)§<n+1> (az/rs) P (cos0).
(2.120)

In particular, the first term in (2.119) is

R(O)(r) __f~6 a ¢ i (a;;?“s)n P, (cos®), (2.121)

dmei(€i + €0) 15 (a2 /15) =

which is the Legendre polynomial expansion of the Coulomb potential at the
point r inside the sphere due to a point charge of strength g, outside the sphere
at the Kelvin image location ry in (2.104), namely

ROy = — % 2.122
(x) dmeilr — 1|’ ( )

_ €0 — € a
e = € t € Ts e

The Friedman image approximation to the reaction field (Friedman, 1975) is
thus defined as

where

®,(r) = &, (r) = RO(r). (2.123)

The Friedman image approximation has been applied in many areas, includ-
ing molecular dynamics or Monte Carlo simulations (Rullmann & Duijnen, 1987;
Wallqvist, 1993; Wang & Hermans, 1995). It is clear from (2.120) that the ap-
proximation holds even when the source charge rs approaches the boundary of
the sphere.

Multiple image approximations with controllable accuracy

The source charge location ry can be inside or outside the sphere Q = {r: |r| < a},
and, to illustrate the procedure used to derive the multiple image approximation
to the electrostatic potential in the whole space, we will consider the case where
a source charge g at ry = (74,05, ¢s) € Q is inside the sphere, as shown in Fig.
2.3. First, let us recall that the Kelvin image point

ri = (a®/rg, b, ¢s). (2.124)

We will show that the potentials inside and outside the sphere can be approxi-
mated by those of a point charge at the Kelvin image location and a line image
charge with a power law distribution density along a ray extending from the
Kelvin image point ri to infinity (for the reaction field inside the sphere) or
along a line segment between the origin and the Kelvin image point (for the
reaction field outside the sphere if the source charge is outside the sphere). This
representation has been discovered independently by several authors. The result
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was first obtained by Neumann (1883), and then by Finkelstein (1977), and was

rediscovered in the 1990s independently by Lindell (1992) and Norris (1995).
To obtain the potential inside the sphere due to the polarization, we plug the

expansion coefficients A4,, in (2.113) into (2.112) to obtain the reaction field:

D (r)= Z A,r" Py (cos )
n=0

(o] n 1
— q : .Ts.7<1+ﬂ> r" Py, (cos 6)

s 4e;  a?ntl 1—v4+2n
= — — | P, 0
4mery Ty 20 (rk) (cos 0)
¢ Y(14+7) < " 2
s __ . -r" P, (cos
dre; 2 Z a?ntl 1 —~y+2n " Pa(cos )

=51 + Ss.

The first part, S, becomes exactly the expansion obtained from (2.117) by
putting 7y = rx and € = ¢ for a point charge of magnitude

a
qx =774, (2.125)
Ts

outside the sphere at the inversion point ri. For the second part, we use the
following simple integral identity for « = (1 —v)/24+n > 0:

1 <1
— :/ —g o, for >0, (2.126)
ary e T¢

which expresses the fraction 2/(1 — v +2n) = 1/« as an integral. As a result,

we have
¢ Y14+ < |a? /°° 1 0
S. e d 'P, 0
1—v
o0 1 1 -2 = n
:/ ¢ 170+7) (= Z(f) Py(cos)| dz
n | 4TET a 2 Tk T
n=0
[ d @) &<y
/Tk [MQCCZ(:C) Pn(COSG)] dz, (2.127)
n=0
where
1—v
1 -
qd(z) = ZL ;W) (i) . <. (2.128)

Putting rs = = and € = ¢ in (2.117), we can see that the inside of the above
integral in (2.127) represents the potential generated by charge ¢/(z) at x.
This result shows that the reaction field ® (r) inside the sphere is

G > d(2)
(0] = ——d 9] 2.129
+(r) PR R— + /rk Trar—x & T € Q, ( )
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Table 2.1. Positions and magnitudes of image charges
From Cai, Deng, & Jacobs (2007), copyright (2007) by Elsevier

Position  Magnitude Distributed image line charges
Internal source
(rs < a)
_ 1
Interior field e (>a) q;= ’Y%q qii () = %w (%) ’
Tk < T
_ 14y
Exterior field rs (€a) go=0+7vq gilx)= %w (T%) 2
0<z<rs
External source
(rs > a)
_ 1ty
M a - X 2
Exterior field re (<a)  qho = —7q ¢ (z) = %M (E)
0<z<r
_ 1=
Interior field rs (>a) qi=01-7)q guiz)= %@ (i) ’
rs < x
where
2
x a a
X=—Tgs, qx=7—¢q, Tx=—, (2.130)
Ts Ts Ts
and
1—o
, (6 —€) ¢ (rk)*T
r)=—"—7=-|— re < a. 2.131
(@) =TI (2) T ns (2131)

The potential outside the sphere can also be represented by a point charge
and a line image charge. Similar results can be obtained for the case when the
source charge ¢ is outside the dielectric sphere. Table 2.1 summarizes the results
for all cases. The first subscript on the images indicates the location rg of the
source charge ¢ and the second indicates the field location.

Note: a is the radius of the sphere; ry is the radial position of the source charge
¢; T« = a®/rs is the inversion point, and —1 < v < 1. The potential from the
source point charge g at rg will be added to the potential from the images for
interior field points when ¢ is inside the sphere, and for exterior field points when
q is outside the sphere.

Next, we derive discrete image charge approximation of the potentials based
on the line image representation (2.129). In order to achieve this, we discretize
the following line integral by an appropriate numerical quadrature

11—y

oo 1 T2
I= / £ da. (2.132)
e 1T =X \ric
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Table 2.2. Positions and magnitudes of discrete image point charges
From Cai, Deng, & Jacobs (2007), copyright (2007) by Elsevier

Magnitude Position
Internal source
(rs <a) )
Interior field @i = 2%17717(1 + V) Twmq - z:’jl ol = (17257”
Exterior field g = QWT_IT_lfy(l + ) Twmg zio =1y - ()T
m=20,1,2,...,. M
External source
(rs > a)
-1
Exterior field ¢ =2"7 "'yl = ) Twmq - = a9y =i ()T
Interior field @ = 277717*17(1 — ) TWmq - ””Tv: 2% = - (1_237")
m=01,2,...,M

Firstly, by introducing the change of variables ry/z = ((1 — s)/2)" with 7 > 0,
we have

1
I=r1- 2%17/ (1—3s)"h(r,s;7)ds, (2.133)
-1
where « = (1 —)7/2 — 1 and

QTTk
|(1—5)"r—2"r|

h(r,s;7T) = (2.134)

Next, we employ a numerical quadrature to approximate the integral I in
(2.133). Note that s = —1 corresponds to the Kelvin image location x = ry. Also
we have o > —1 since —1 < v < 1 and 7 > 0. Therefore, we can choose the
Gauss—Radau quadrature based on Jacobi polynomials. The Jacobi polynomials
P28 (s) on the interval [—1,1] are orthogonal polynomials under the Jacobi
weight w(s) = (1 — s)* (1+s)°, ie.,

1
[ a9 @) B ) P (s)ds = 3,
-1
where o > —1 and 8 > —1 (Gautschi, 1994).

Let s, and w,,,m = 0,1,2,..., M, be the Jacobi-Gauss-Radau points and
weights on the interval [—1, 1] with s = —1,sp; < 1, and a = (1—7)7/2—1, 8 =
0. Then, the numerical quadrature for approximating I in (2.133) is

M
~To2TT Z W (T, Sm; T), (2.135)
m=0
which yields

/°° @) gy g m (2136)
——— dr ~ — :
e Ame r — x| = Amei|r — X |
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where for m =0,1,2,..., M
I=l,_q Lm
qm = 27z ’Y(l + V)TWmQ' 77 (2137)

and

xm:rk-< 2 >T. (2.138)

1—s,

Finally, we have an approximation of the total potential inside the sphere in
terms of the potentials of the source charge at rs and those of M + 1 image
charges (Cai, Deng, & Jacobs, 2007):

M
Blr) m g Yy I (2.139)

T dme|r —ry| | Ame|r — 1y Ame|r — X |

m=0

Due to the use of the Jacobi-Gauss—Radau points, the first image location xg
coincides with the Kelvin image location ry, i.e., xg = ry.

Table 2.2 summarizes the magnitudes and locations of discrete images (¢, Xm)
for potentials inside (internal field) and outside (external field) the sphere for
both cases of inside and outside source charge ¢q. Again, the first subscript on the
images indicates the location rg of the source charge ¢ and the second indicates
the field location.

Image methods for dielectric spheres in ionic solvent

In this section, we consider the case when there is a mobile ion density in the
solvent outside the sphere. As discussed earlier in the Debye—Hiickel theory, the
mobile ion concentration in the ionic solvent is given by a Boltzmann distribu-
tion in the mean field approximation. For a solvent of weak ionic strength, the
linearized Poisson—Boltzmann equation (2.19) can be used outside the sphere.
The reaction field inside the sphere is defined by

De(r) = i Apr" Py, (cosf). (2.140)

n=0

The expansion coefficients A,, are found from the boundary conditions in (2.102)
to be
g 1 e(n+Dk,(u)+ ukl (u) g 1en+1)S,(u)+1

_ 1 _ < 2.141
dreary  enk,(u) — ukl (u) dreary  enS,(u) -1 ( )

An

where u = Aa, € = € /€., and Sy, (u) = ky(u)/(uk],(u)). Here, ky,(r) is the modified
spherical Hankel function of order n defined by

e o~ (n+k) 1
Fin(r) = 2r k;o k:('(n — li)' (2r)k” (2.142)
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For an ionic solvent, the modified spherical Hankel function has the following
asymptotic expansion in terms of u = Aa < 1:

(@) 1 1
and
@)t 1 0 1 B
kn(u) =7 o w2 +0 e R for n = 0. (2.144)

We then have, for n > 0,

1 1
S““)‘M*O(qﬂ)v %= o0,
_ 1 2

Plugging (2.145) into (2.141) leads to an approximation of the expansion co-
efficient A,, as

qg 1 1)
A, = — , 2.146
dreia ry (7+ n+a> ( )
where
1+u U
= (S = 1 - - .
0=10 v(l-o) -1
As o and ry are both positive real constants, by the integral identity (2.126)
with @ = n + o, we can rewrite the approximation of the reaction field
(2.140) as
Br) 22 LS () eoso)
(1) & — — ) (cos
f 47‘(617‘5 Tk "0 Tk
< ¢ ) 71— (7‘)”
— — - P, 0)dzx. 2.147
+/Tk Ired (Tk) x; . (cos )dx ( )

Using the expansion of (2.117), we obtain the following line image approximation
for the reaction field (Xu, Deng, & Cai, 2009):

ax * 4@
Dy(r) m — B T 4, 2.148
i(x) 4ei|r — ri| + /,,k 4e;|r — x| . ( )
where ¢y is defined in (2.125), and the line image charge is now
, 5 [z 7
¢(x)=q-(—) , for ne<uz (2.149)
a Tk

To obtain multiple discrete image charge approximations to the reaction field,
the line image charge introduced in (2.148) can be similarly discretized as
in (2.136).
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€5y A1 lonic solvent I
Membrane €m, I
L]
AN
Point charge
€5y A2 lonic solvent n

Figure 2.4. A three-layer dielectric medium model for a membrane. From Lin et al.
(2011a), copyright (2011) by Springer Science+Business Media, LLC.

Image methods for multi-layered media

Series solution for a layered medium for PB equations

Consider a three-layer model representing the dielectric environment of a cell
membrane immersed in ionic fluids (Lin et al., 2011a), as shown in Fig. 2.4. The
cell membrane is treated as an infinite layer (region II), separated from the bulk
solvents (regions I and III) by two parallel planar boundaries. A point charge ¢s
is located at xg inside region II. As the membrane is made of hydrocarbons, it can
be described by a dielectric continuum with a dielectric constant €,,. The electric
potential ®,, in the membrane layer, i.e., in the intermediate layer, satisfies a
Poisson equation (2.100) with € = ¢,,. The potentials in regions I and III are
denoted by ®p,(x,xs) and Pgown (X, Xs), respectively.

The ionic solvents in areas I and III are characterized by a dielectric per-
mittivity €; and parameters A; and As. The potentials in these two regions are
governed by the linearized Poisson—Boltzmann equation (2.16).

The potential inside the membrane layer can be decomposed as in (2.103). By
expanding both sides of the Poisson equation (2.100) with orthonormal functions
and noting the vanishing of the Coulombic potential at infinity, the potential from
the source can be expanded as follows:

2 —ulz=zl (2.150)
U

€m

4 :/ / da df cos a(x — ) cos By — ys)
Xs‘ 0 0

Em|x —

where u = /a2 + $2. Equation (2.150) is a Sommerfeld-type identity well known
in electromagnetic scattering theory (Sommerfeld, 1949; Chew, 1990).
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As @, satisfies the Laplace equation and @, and ®qown satisfy the linearized
Poisson—Boltzmann equation, these three potentials can also be expanded, re-
spectively, as follows:

Dyp(x, Xs) = /000 /OOO da df cosa(x — xg) cos By — ys)
-[A(a, B)e"* 4+ B(a, B)e™ "], (2.151)
Dyp(x,x5) = /OO /00 da dB cos ax — x5) cos By — ys)(j'(o[?5)@*\/1ﬁ)‘fz7
C (2.152)
Qiown (X, Xs) = /OO /OO da df cos a(x — xg) cos B(y — ys) D(a, 5)6\/mz,
C (2.153)
where \? = e,k2,i = 1,2.
Suppose the planar surfaces are located at z = 0 and z = [, with [ being the

thickness of the membrane. Two interface conditions for the continuities of the
potential and the normal displacements at each interface are given by

a(I)m, a(Ddown

b, = Py, n» m = €s 5 f =0, 2.154

dow m=p, &5, or z=20 (2.154)
ém ¢11

D, = Py, em% =€ aazp’ for z =1. (2.155)

Substituting (2.151)—(2.153) into the boundary conditions (2.154) and (2.155)
yields a linear system for the coefficients A, B, C, and D:

20 v g4 = D,
EmTU
2q —uzg €s 2 2
—e " 4+ uAd—uB=—\/u?>+ A\3D,
EmT €m
(2.156)
2q efu(lfzs) + Aeul + Beful _ Ce*w/uer)\?l?
EmTU
2 ,
_ 29 gul=z) Aot — yBeW = 52 fy2 4 \2Ce™ ut AL
EmT €m

For convenience, let € = €5/€,, 7, = ey/u?+ \2,i = 1,2. Solving the linear
system (2.156) leads to the coefficients in the reaction potential @,
2qs e %) (4 — 1) (u + 7o) + e ) (4 — 1) (u — 72)

= 2.1
€T (u+71)(u+7)ew — (u—71)(u—7p)e » (2157)

2¢s e"(2) (u + 1) (u — o) + eI (u — 1) (u — T2)
EmTTU (w4 71)(u+ 12)e" — (u—71)(u —T2)e™ '

(2.158)
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Method of images in a layered non-ionic solution

First, we consider the case of pure water where no mobile charges are present
in the solvents (pure water). Then, the parameters A\; = A2 = 0. Here, we will
illustrate the mathematical equivalence between (2.151) and an image represen-
tation. Recall that 71 = 7o = eu in this case. Equation (2.151) can be rewritten
in four parts as follows:

D,e(x, Xs) :/ / da df cos a(z—xs) cos B(y—ys)[I+II+IIT+1V], (2.159)
o Jo

where
2 —u(2l—2s—2) 2 —u(2l+2s—2) 42
I q e O" 7= q e o ’
Emmu 1 — e 2ulg2 Emmu 1 — e 2ulg2
2 u(—zs—2) ) —u(2l—2zs+2) 42
r=-"4.° c. v=_"4° 7
€T 1 — e 2ulg2 €U 1 — e 2ulg2
and
1—c¢
o= .
1+e¢

As |e_2“l02| < 1, we have the following geometric progression:

+
1 _ i —2kul 2k Z 2kul 3 —2k
1— 672ul02 -
k=0
Then, (2.159) becomes
D¢(x, Xs) :i/w/wda dBcosa(z — z5) cos By — ys) 24
AT s —Jo Jo s U

% (efu(Zkl+2l7zsfz)o,2k+1 +efu(2kl+2l+zsfz)o,2k+2)

+ Z/ / da df cos a(x — xs) cos By — yq)

% (eu(2kl—zs—z)0_—2k+1 +e—u(—2kl+2l—zs+z)0_—2k+2)

EmTU

+
_ f Qar+1 n Q2r+2

= em|x = Xopt1]|  €m[x — Xok4o

n Z Qar—1 n Qaor—2

k=0 Em|x —Xop—1|  €m[x — Xop2]
+oo
= > Qe (2.160)
€m|X — X |

k=—o00, k#0
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where the second to last equation holds from the Sommerfeld identity (2.150).
Hence, we have the following image representation (Yang, Liaw, & Lim, 2002; Lin
et al., 2011a) of the reaction field:

“+oo
Qk
Oup(x, %) = P (2.161)
k=—oc, k#0
with
l 1 €Em — €s Ikl
Xk—<xbaysa( 1)k<zb_2>+<k+2>l)a Qk: 5(6 +€)
(2.162)

Method of images in layered ionic solutions

In the following the locations and the magnitudes of the image charges will
be produced through a Prony-type approximation to the Fourier transform of
the reaction potential and the Sommerfeld-type identity (2.150). In the Prony
approximation (Prony, 1795; Weiss & McDonough, 1963), a sum of exponentials
is used to approximate the Fourier transform of the exact reaction field potential.
Rewrite the exact reaction field (2.151) in the following form:

[e e} oo 2q A A~
De(x,x5) = / / da df cosa(x — x5) cos By — ys) ;u [Ae"* + Be™"7],
o Jo

€m

(2.163)
where
iy e =2 (4 — 1) (u 4 7o) + e %) (4 — 1) (u — 7o)
Alw) = (u+7)(u+m2)e" — (u—711)(u—To)e~ ’
B(u) = 072 (u+ ) (u— 1) + 7072 (w — ) (u — ) (2.164)

(u+71)(u+7)e" — (u—71)(u—To)ew

By comparing (2.163) with the Sommerfeld identity (2.150), and using the sym-
metry of the rectangular system, a natural approach can be obtained to approx-
imate the functions A(u) and B(u) by a sum of K exponential functions as

K
AP () =y (azk—le_(zz"’l_c’“)" + azke_(mJFCk)u) ;
k=1

K
Bapp(u) _ Z <a2k+1e(zzk+1+ck)u + Gle(ZQkick)u> 7 (2.165)
k=—1

where zj, = (—1)%(2zs —1/2) + (k+1/2)l are the locations of image charges in the
case \1 = Ao =0, a4, and c4p are unknown variations of the kth pair of image
charges. Imposing the following conditions:

Zop_1 —Cp > 1, zop+cp > 1, for k>0, (2.166)

Zok41 + i <0, 2o —crp <0, for k<O, (2.167)



2.4

2.4 Summary 59

and then applying the Sommerfeld-type identity (2.150) yields (Lin et al., 2011a)

2qs
ENTU

buxx) = [ [ da dgcosa(e - a) cos iy - )
K

X [E (azk_le*(zqu*%*z)u + a2ke*(zzk+ck*2)u)
k=1

K
+ Z (agpyre” GmRamrimen)u 4 a%e_(z_@ﬁ@c)“)]
k=—1

q a a q a a
Z s 2k—1 2k s 2k+1 2k
N €m { - Txe } " €m [ - Tx- ] ’
i€ X — Xokp_1 X — Xof W Em (X = Xokp1 X — Xog

(2.168)
with
Xop—1 = (Ts, Ys, 22k—1 — Ck),  Xok = (Ts, Ys, 22k + Ck), k>0, (2.169)

Xok+1 = (Ts, Ys, 22k+1 + Ck)y  Xok = (Ts, Ysy 226 — C), k <O0. (2.170)

Once ay, and ¢, are found, the image charges are given by the Sommerfeld-type
identity (2.150). As the functions A(u) and B(u) are damped exponentials, such
an approximation is reasonable and effective. The parameters a; and c; can be
calculated by solving a simple minimization problem of the Lo errors, sampling
u at selected uj,j =1,2,...,J.

Summary

The Poisson—Boltzmann theory of electrostatic interactions in ionic solutions is
based on the Debye—Hiickel mean field theory of the ions where the ions’ discrete-
ness and long-range correlation effects beyond the Debye screen effect are not
included. As a result, the PB theory may lose accuracy near charged surfaces such
as a protein’s surface and along an ion channel wall. A size modified PB equation
is introduced to address the steric effect of ions of finite size near surfaces. Mean-
while, the Born solvation model and the generalized Born (GB) formula provide
analytical ways to compute the electrostatic solvation energy, for molecules of
general shape with the GB formula. We have provided an FFT-based method
to compute the Born radius required in the GB formula. For simple geometries,
including dielectric spheres and layered media, the image approximation of the
reaction field for the PB electrostatics allows a quick calculation of the solvation
energy. More discussion on analytical approximations to PB electrostatic theory
can be found in the review of Xu & Cai (2011).



3.1

Numerical methods for
Poisson—Boltzmann equations

Numerical methods for solving the PB equations are indispensable for finding
accurate solutions for molecular solvation energies; three methods, including the
boundary element method, the finite element method, and the finite difference
immersed interface method (IIM), will be discussed in this chapter.

Achieving accuracy and speed in solving the PB equations requires the ca-
pabilities to handle complicated molecular surfaces and singular source charges
inside the solute molecules. The integral equation method transforms the infinite
domain problem to the molecular surface, thus removing the issue of the interior
singular source charges. For both finite element and finite difference methods,
singularity subtraction techniques can be used to remove the effect of the singu-
lar point sources. Meanwhile, to treat the molecular surfaces, the finite difference
IIM uses special difference formula near the surfaces. On the other hand, finite
element methods, based on an unstructured mesh, allow highly accurate reso-
lution of the complicated molecular surfaces and fast multigrid solutions of the
resulting matrix equations.

Boundary element methods (BEMs)

Let us consider a second-order elliptic equation in R3:

Lu= f(r), (3.1)
where

L=A+k. (3.2)
The fundamental solution to (3.1) is given by

1 e—ikr

A r

Gr(r)

namely

LGy(r) = —5(x). (3.4)
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For a real k, we have the Helmholtz equation for wave propagation, while for
a pure imaginary k = —ik, we have the linearized PB equation (2.16):

Lu=Au— r*u = f(r). (3.5)

Equations (3.1) and (3.5) require a boundary condition at infinity, that is, a Som-
merfeld radiation condition for the Helmholtz equation or a vanishing condition
for the PB equation, i.e.,

) (59T+ik)u(r)—0<:2>, r— 00

Sommerfeld radiation condition

(Helmholtz equation
(3.6)

(PB equation) lim u(r) = 0.
700

These boundary conditions will ensure the uniqueness of the solution of both
equations (Nédélec, 2001).

Cauchy principal value (CPV) and Hadamard finite part (p.f.)

A surface charge or dipole density generates electrostatic potentials in the whole
space, which can be expressed as linear superpositions of the potential of a single
point charge in (1.4) or a dipole moment in (1.9), resulting in the so-called single-
or double-layer potentials. These potentials also appear naturally in the direct
integral equation for (3.1) based on Green’s second identity in Section 3.1.2.

Let us consider the following three types of singular potentials defined on the
interface I" between the interior region €); and its complement exterior region
0o, 2 U Q, = R3.In this section G(r,r’) = G(r —1').

Definition 3.1 A single-layer potential u(r) is defined by

u(r) = S(q) = /FG(r, r')g(r')ds’, r¢T, (3.7)

where ¢(r) is the charge density on I'. Then, u(r) satisfies the elliptic equation
(3.1) with f = 0 in both €; and €,, and also the boundary condition (3.6) at
infinity.

Definition 3.2 A double-layer potential u(r) is defined by

u(r) = D() = /F %dr’)ds’, rgT, (3.9)

where ¢(r) is the dipole surface density and n’ is the outward normal on the
boundary I'. Again, u(r) satisfies the elliptic equation (3.1) with f = 0 in both
Q; and €, and also the boundary condition (3.6) at infinity.
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Definition 3.3 A hyper-singular potential is defined by

u(r) = N(o) = 9 /F Ma(r/)ds/

on on’
PG(rx)
= . WU(I‘ )ds , T ¢ F, (39)

where o(r) is the dipole density. Again, u(r) satisfies the elliptic equation (3.1)
with f =0 in both €; and €2,, and also the condition (3.6) at infinity.

The functions u(r) given by the singular potentials above are well defined for
all r € R\ and satisfy the Helmholtz (or PB) equation there. However, to
find the limiting values of u(r) or du/dn(r) at the defining surface I', care is
needed as the surface integrals over I' involve unbounded functions when r € T'.
Specifically, the concept of Cauchy principal values of singular integrals will be
needed.

The Cauchy principal value (CPV) of a singular function f(r) over I' is
defined as

p.v. / f(r')ds’ = lim f(r)ds' (3.10)
e—0 I'\S.
if the limit on the right-hand side exists, where the surface patch S, of area size
€ contains the singularity of the integrand.

Even though for r € T" the surface integrals in (3.7), (3.8), and (3.9) themselves
could be divergent, the limits of u(r) as r approaches the surface I' are expected
to remain finite and well defined for smooth I, as in electrostatics u(r) and its
derivatives represent a physical potential and an electric field, respectively, gen-
erated by finite charges or dipole densities. The concept of the Cauchy principal
value or, for that matter, the Hadamard finite part comes into play due to the
specific way of taking the limit of the potential toward the boundary. We illus-
trate this concept by considering the well-known Hilbert transform of a function
¢(x) (Muskhelishvili, 1953), z € R = (—o00, 00):
(o]

o),

H@)(z) = 5= | de, ¢ R (3.11)

To compute the limit of z = x +iy € C — =z, i.e., y — 0T, we can deform the
real line contour to include a semi-circle Se () of radius e centered at z( in the
lower half plane. Then, we have

lim H(gb)(z)
/
—hm [/ / } @ da:—|—ihm () dz’
2miz—zo zotel] T—Z 2miz—ao Se (z0) 2=z
1 /
27 | o zo+el T — o 271 Js_(29) 2’ — To

T — 2o
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Now let ¢ — 0. Assuming the two integrals in the square bracket of the last
equation above have a limit, we have

lim H()() = — pv /Oo 92) gy 4 HE0), (3.13)

z—o 2mi oo T — X 2

where the first term is the Cauchy principal value of the form (3.10), i.e

) = o)
p.v./_oo pr— dz = gl_I}%) [/ /zo+J o dz. (3.14)

In fact, for a smooth function ¢(x), the Cauchy principal value of (3.14) can
be calculated as follows. For example, for ¢(x) = 1, we have

D!
p-v. / / dz =1In (b ) , (3.15)
a T +e c—a
and for a Holder continuous function ¢(x) with index A > 0, we have
b
p.v. / ¢lz) = 4(c) dx+¢( ) p / ! dz
e« T—C r—c e T—C
:/ de+¢(c)1n<bc), (3.16)

Tr—cC cC—a

r—cC

where the first integral in the last equation is a well-defined regular integral.

For the hyper-singular integral as in (3.9), the above procedure may fail, as
the limit of the integral over I'\S:(rg) may diverge as ¢ — 0. In many cases that
integral takes the form

2 !
/r\s . %U(r')ds/ =C+ A(rg;e,0), roeT, (3.17)
where A(rg;e,0) = O(1/e*), A > 0, and C is some finite value. Therefore, (3.17)
will become infinite as € — 0. But this does not necessarily imply that lim,_,,,
u(r) in (3.9) will be unbounded, as the limit is usually well defined and actually
could be computed directly by using Gauss’s theory on the surface patch Sc(rp)
of finite size & to reduce the singularity of the surface integral (3.9) (as in Section
7.1.2), and then taking the limit r — ry. The fact is that the surface integral
over S.(rg) will in general produce a similar term O(1/¢*) but of opposite sign,
thus canceling the e-divergent term in (3.17). Therefore, only the finite value C'
in (3.17) is of significance as far as the limit of the potential toward the surface
is concerned. In fact, the Hadamard finite part (p.f.) (Hadamard, 2003) takes
this finite value C' in (3.17), by subtracting the divergent term O(1/e"), i.e

2 / 2 !
p.f./ Ma(r’)ds' = lim / Mo(r’)ds’ — A(rg;e,0)
r

onon e—0 onon’
F\SE (1‘0)

(3.18)
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The exact form of the O(1/¢*) term A(ro; ¢, o) depends on the type of the kernel
0?G/Ondn’ in question and the density function o (Hsiao & Wendland, 2008,
sect. 3.2). For example, the Hadamard finite part of the following 1-D hyper-
singular integral is defined in Fox (1957) as

10 o) Ly | [T ) R ORIV
pit [ =y Vl s [ i),
(3.19)

where

A(z;e,0) = a(x—a)—;—a(x—ke). (3.20)

Moreover, for a curve I' in R? of smoothness C?** 0 < a < 1, for G(rg,r) =
—(1/27)In|r — ry|, in the Hadamard finite part of the hyper-singular integral
(3.18) it can be shown (Hsiao & Wendland, 2008, p. 107) that

r
A(rg;e,0) = _olro) + O(e%). (3.21)
e

With the concept of the Cauchy principal value and the Hadamard finite part,
we are ready to study the limiting property toward the surface I' for functions
u(r) defined by the three types of layer potential operators (3.7), (3.8), and (3.9).
Firstly, let us define the interior and the exterior trace on I', for r € T,

ui(r) = Xelgzr_nﬁru(x)7 (3.22)
Uo(r) = xelfizm_wu(x), (3.23)

and denote the jump of the traces on I as
[u] = uo — ;. (3.24)

Moreover, we define the limiting value of the normal derivative of u as

(a“>i )= lim 2%x), (3.25)

ain xXEQ;—r on
ou . ou
(an>o ()= dim 5 &) (3:26)

where n is the outer normal of the boundary 0€; =T
We also define the difference of the normal derivatives as

[gﬂ N (gﬁ)o - (gﬁ)i- (3.27)

Theorem 3.4  (Nédélec, 2001, thm. 8.1.2) (a) The single-layer potential u(r) =
S(q) is a continuous function across T', and

u(r) = p.v. /F G(r,r')q(r')ds’  for reT, (3.28)
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while Ou/On has a jump, namely for r € T we have

(g)i (r) = @ TP /F %q(r’)d% (3.29)
(gﬁ)o (r) = _@ + P-”-/F %q(r’)d% (3.30)

which implies
Bz] = —q(r) forreTl. (3.31)

(b) The double-layer potential u(r) = D(¢) is discontinuous across I, and for
r € I' we have

wi(r) = —@ + .. /F %(b(r')ds', (3.32)
Uo(r) = @ +po. /F 7608(:1’,1"1)(;)({)(15’, (3.33)

and
[u] = ¢(r). (3.34)

Meanwhile, the normal derivative of the double-layer potential is continuous
across ', and for r € I' we have

ou, . ?G(r,x’) . .,
) _p.f./rm(b(r ds'. (3.35)

Remark 3.5 (Physical meaning of the jump conditions) (1) Ininterpreting
the meaning of ¢ in the single-layer potential (3.7) and (3.31), we can consider the
displacement flux D given in terms of u, i.e., D = —Vu. Then the normal compo-
nent of D should satisfy the physical boundary condition [D -n] = — [0u/dn] = ¢
(see (5.65)) as there is a charge distribution ¢ on T', which is consistent with the
conclusion in (3.31). (2) Similarly, for the double-layer potential generated by a
dipole density ¢(r) on T, the electric potential will have a drop (jump) (3.34)
from the negative to positive charges inside a dipole on the surface. However, as
the dipole is charge neutral, no net surface charge exists on the surface. There-
fore, the electric field (the normal derivative of the potential in (3.35)) will be
continuous, consistent with (5.65) with zero surface charges.

Surface integral equations for the PB equations

In this section, we will derive the surface integral equations for the solution of the
PB equation in (2.19) using fundamental solutions and Green’s second identity.

For simplicity of notation, we will write the equations in €; and €2, in a uniform
format as

Lu(r) = —p(r), (3.36)



66

Numerical methods for Poisson—Boltzmann equations

where £ = A + k? is defined in (3.2). For the PB equation (3.5) of main concern
here, we have k = —ik and

2 if rey,

i2 = )‘i2/€i’
" { K2 =M/eo, if TE€Q,, (3:37)

and

|

;qué(r—rj), if reQy,
IJZI

0, if reQ,.

plr) = (3.38)

Theorem 3.6 Let u(r) satisfy the elliptic equation in (3.36)-(5.38) for r €
QU Q, with k = 0 inside ; and also either the Sommerfeld radiation condition
at infinity for the case of real k, |0u/0r + iku| = O (1/r2), or the vanishing
condition (2.21) at infinity for the case of a pure imaginary k = —ik. Then for
r € i, we have the representation for the solution of the Poisson equation

u(r) = /F [Go(r,r')(agg))i— 8Gg§;r/)ui(r’) ds’

N
1
72 G ; 3.39
+€ij:1qj 0<r’r])’ ( )

where n’ is the outer normal of the boundary T' = 0, and for r € Q, we have

the representation for the solution of the PB equation (3.5):

u(r) = — /F [G_m(r,r’) (%:”) 0 G_m(r,r’)uo(r’)} ds’.  (3.40)

-
o, On

For the Helmholtz equation, replace G _;(r,r") by Gi(r,r"). Moreover, forr € T’
we have

%ui(r): oo /F {Go(r,r’) <aggl)>i—;ano(r,r')ui(r’)] ds’

N
1
— ; i A1
52Ty (3.41)

and

1 _ / 6u(r/) a / /! /
§uo(r) = p.v./F {Gm(r, r’) ( o ). + %Gﬂn(r,r Juo(r') | ds’. (3.42)
Again for the Helmholtz equation, replace G_;.(r,r’) by G(r,1’).

Proof We follow the idea of the proof of thm. 3.1.1 in Nédélec (2001). For any
domain Q and a point v’ ¢ Q, the fundamental solution G (r,r’) in the domain
satisfies the homogeneous elliptic equation

LG (r,x") =0,
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while the solution u(r) satisfies
Lu = —p.
Then, we have

/(Gkﬁu —uLlGy)dr = —/ pGpdr.
Q Q

By using Green’s second identity, we have

B ou 0G},
- /Qkadr = /69 <8nGk - anu) ds, (3.43)

where n is the outer normal on 0f2.
We apply (3.43) to (Br N Q) \Be, where B. = B.(r') is a ball of radius &
centered at r’ and Br = Bg(0) is a ball of radius R enclosing ), to get

- / pG dr = (/S +/SR> Bz(r)a(r, r') — ;nG(r,r’)u(r)] ds

(BROQO)\BE

+/F{g:fi(r)(?(r,r/)—aaniG(r,r’)u(r)} ds,  (3.44)

where G(r,r') = Gi(r,r’), and n; is the normal pointing into Q;;n on S. also
points into B.. We will examine the surface integrals as follows.

(a) We firstly examine the first surface integral:

ou ou
—G(r,r')ds| < sup |=—(r / G(r,r')|ds
[ Gaotras| < sp | )| [ G|
ou 5 1
—:Eugs n 4de Tm—arsglgg n —0 as e—0.
Secondly, for a fixed r’ we have
/ 3G(r r')u(r)ds = u(r’)/ 2G(r r')ds
S, 811 ’ S, 6 ’
+/ iG(r, r')(u(r) — u(r'))ds. (3.45)
S, 6n

To estimate the second term in (3.45), we write R = |r — 1’| to obtain
_ oG

0G| (k1N s
or 4TR  4mR?

k 1 k 1

< v o4y s M 0
~ 47R + A47rR?  4rwe + Ame?’

. /
nG(r,r)
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so that

0 , /
/Sg %G(r, r')(u(r) —u(r'))ds

k 1
< —u(r —+—]d
o rf/ue%Ju(r) u(’) /55 (47‘(6 + 471'52) 5

= (ek+1) sup |u(r) —u(r’)| =0 as & — 0.
r,r'€B.

As for the first term on the right-hand side of (3.45), we have
/—Grr /—Grr )ds = (1 +ike)e ™™ 51 as e — 0.

Thus
[ |Gt - gree i as s —uw). @)

(b) Next, we look at the second surface integral in (3.44) in the case of real k
(Helmholtz equation):

/SR [gz“)G(“ ™) - E)Ggrf/)u(r)] s

B ou , oG (r,r") . ,
= / Kan + 1ku) G(r,r') — (an +1kG(r,r") | u(r)| ds
= F| + Es.
Using the Sommerfeld radiation condition (for the PB equation, there is no

need to insert the term iku above), we have

1
Sr

also

’—I—lkG’ S R

as the maximum sup,cg,. |u(r)| decays as O(1/R) (Nédélec, 2001), and

1
|Es| < p R2/ |u(r)|ds < sup |u(r)] — 0 as R — +oo.
reSr
Therefore, we have
ou n OG(r,r)
/ [&I(T)G(T,I‘ ) — Tu(r) ds — 0 as R — oo. (3.47)

Finally, (3.44) together with (3.46) and (3.47) implies (3.40) after using the
definition of p from (3.38) and G(r,r’) = G_i(r,r’) in Q, and replacing r’ by
r. Equation (3.39) can be proven similarly.

Moreover, (3.41) and (3.42) result from the limiting results of the singular
boundary operator in (3.28)—(3.35). O
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Remark 3.7 As an alternative and direct way to obtain (3.41) for r € I", we
can select a local patch 4. of size € on I', which can be just the intersection of
I’ with a ball V.(r) centered at r, namely v. = V.(r) N I". Then we perturb the
part 7. of the boundary I'" around r to obtain a larger domain 2; U V,, within
which r will be an interior point. We denote S. = 9(V:\), namely the part of
the spherical surface of V(r) outside ;. Then we apply the representation result
(3.39) to the expanded domain Q; UV, and, as ¢ — 0, the boundary integration
over S, will modify the coefficient of u(r) on the left-hand side of (3.39) to be
1/2 if r € T is a smooth point (with a uniquely defined tangential plane) while
the surface integral over I'\. becomes the Cauchy principal value (CPV) on the
right-hand side, as indicated in (3.41). Equation (3.42) can be similarly derived,
but from the side of the domain §2,. More discussions on the contribution of the
surface S are given in Section 3.1.3, where methods of direct computation of
the CPV and the Hadamard finite part are discussed.

Remark 3.8 (Hyper-singular integral equations) By applying a differen-
tial operation 9/dn to (3.39) and (3.40), and then allowing r to approach the
boundary T', with the limit properties in (3.29), (3.30), and (3.35), we obtain the
following hyper-singular equations for r € I':

10 B ou(r’) ,
ia—n r—pv/aGo (8,>ids

—p. /88’ (r,r")u(r")ds’ + qua o(r,r;) (3.48)

and

N | =
QJQJ

) (22

82

) / N
Fanan/G_m(r,r Yuo(r')ds'. (3.49)

+p.f.

Equations (3.41) and (3.42) will be completed with the continuity equations
for the potential and the displacement fluxes for r € I":

u;(r) = uo(r), (3.50)

€ <8gg)>i = ¢ (%T)O. (3.51)

Introducing the density variables

q(r) = (agg))’ (3.52)
o(r) = u;(r), (3.53)
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then from (3.51) we have

(ng‘))o — q(r), (3.54)

where v = € /¢,.

In terms of the density variables, (3.41) and (3.42) can be expressed as

N
%a(r) = p.v./F [Go(r, r')q(r') — ({)an/Go(r,r')a(r’)} ds’ + ;;quo(r,rj)
(3.55)
and

1 0
—o(r) = p.v./ [—Gin(r,r’)fyq(r') + Gm(r,r’)a(r’)} ds’, (3.56)
2 T 311/

or by using the single- and the double-layer potential operators as follows:

1

N
50 = Sola) — Dolo) + ;;qjc()(r, ) (3.57)

and

%g = —7S_1(q) + D_in(0). (3.58)

It turns out that (3.57) and (3.58) are in fact ill-conditioned and not suitable
for numerical solutions. To obtain a better conditioned integral equation, we can
combine (3.48) with (3.49), and (3.55) with (3.56), respectively, to arrive at two
new integral equations for the densities (Juffer et al, 1991; Lu et al., 2006):

(; + 217) o=puv. /F [Go(r,x') — G_ix(r,r")]q(r")

_ Bai/Go(r,r') - ;II,G_m(IUF/)} o(r')ds’

N
1
+ p E 1qu0(r, rj), rel, (3.59)
J:

and
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Due to the difference between the two hyper-singular integrands used in (3.60),
the Hadamard finite part (p.f.) of the singular integral is just the normal Cauchy
principal value (CPV). This type of cancelation of hyper-singularity through a
difference was first used in sect. 23 of Miiller (1969) and also in Rokhlin (1983).

Computations of CPV and Hadamard p.f. and collocation BEMs

The surface singular integral equations (3.41) and (3.42) or the surface hyper-
singular integral equations (3.48) and (3.49) are derived using the potential rep-
resentation formula through a limiting process as mentioned in Remarks 3.7 and
3.8, respectively. The CPV and the Hadamard finite part integrals are introduced
as a result, and how we compute these is important for a successful implemen-
tation. In this section, two methods will be presented on how to handle these
singular integrals in collocation boundary element methods (BEMs) for the sur-
face integral equations. The first is a regularization method using simple solutions
of the electrostatics problems (Laplace equations) (Giroire & Nédélec, 1978; Liu
& Rizzo, 1992; Liu, 2009). The second is a direct calculation with regular Gauss
quadratures (Guiggiani & Gigante, 1990; Guiggiani et al., 1992; Guiggiani, 1998).

Collocation BEMs

In a collocation method of the surface integral equations, the surface is usually
decomposed into patches {S;}¥, of triangular and quadrilateral shapes, each of
which is parameterized by an analytical mapping

r = x(u) = (x1(u),x2(u),x3(0)), re S5, (3.61)
with variables u =(u1,u2) in a reference triangle
To = {(u1,uz) : 0 <y, up, uy +up < 1} (3.62)
or square
Qo = {(u1,u2) : 0 < ur,up < 1}, (3.63)

and shape functions N;(r) are constructed on the reference domains and mapped
into the patches to represent the physical density (charge or dipole). The density
u(r) will be approximated by the following shape functions:

u(r) = ulr)Ni(r), resS;, (3.64)

1
where u(r;) are the nodal values at r; on each patch S;. For a piecewise constant
approximation, the center of each patch can be used as the only node, and for
a piecewise linear approximation, the three (or four) vertices of the triangular
(quadrilateral) patch can be used as the nodes. The shape functions for the linear

approximation on the reference triangle or square can be found in Sections 7.4.3
and 7.4.4.
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Regularization of singular integrals

A regularization of the singular equations (3.41) and (3.42) and the hyper-
singular equations (3.48) and (3.49) can be achieved using the following identities
of Green’s function Go(r,r’) (Liu & Rudolphi, 1991, 1999), and the collocation
method can then be applied to the resulting weakly singular integral equations
(of only O(1/r)). Other regularization methods using Stokes’ theorem have also
been studied (Krishnasamy et al., 1990; Rudolphi, 1991; Liu & Rizzo, 1992).

Let n and n’ be the outer normals on 9€);. We then have the following identi-
ties:

e The first identity

0 , ;o -1, Vr €
/F o Golr.')ds _{ 0w (3.65)
e The second identity
82 / /
‘/1_‘ mGO(I‘, r )ds = O, Vr € Qi U Qo- (366)
e The third identity
/ n (r,x")ng(r')ds’ —/ 6n8n’G o(r,r’)(z), — xp)ds’
. k(r), Vre
B { 0, Vre Q.. (3.67)

Remark 3.9 The identity (3.65) can be obtained by using the simple solution
u =1 in the representation formula (3.39) with no source term for r € €, while
for r € Q, we can enclose €2, with a large ball Br(r) of radius R centered at r
and then apply the representation formula on 2, N Br(r). The identity (3.66)
can be obtained by differentiating (3.65), and the identity (3.67) is obtained by
using the simple solution u (r) = (r), = xj, — x} in the representation formula
(3.39), followed by a differentiation with respect to n.

In order to regularize the CPV boundary integral, we consider the represen-
tation for the domain

Q. = QU V(r), (3.68)
which is an enlarged version of €; by the ball of V.(r) (refer to Fig. 3.1 for the
case where ). is formed by excluding V.(r) from ), and we denote the part

of the spherical surface OV, (r) outside € by s. and the intersection of I' = 9€);
with VZ(r) as 7., i.e., 7 = I'NV,, respectively. The boundary of €). is denoted by

T. =00, =T—. + s.. (3.69)
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We apply Green’s second formula to the domain €. and assume all interior
charges ¢; in (3.38) are zero. Then, as in (3.39), we have for all ¢ > 0

ou(r’ 0
= [ Golrr!) 25 = Gt 0 = eutr), (370)
where ¢ =1 for r € Q., and ¢ = 0 for r € Q. As r is not on the surface I';, a

differentiation 9/0n can be applied and moved inside the integral of (3.70), so
we also have

u(r’ 2 u(r
Iy(r) = /FE [;HGO(r,r’) 8851’) - c’)naan’ Go(r7r’)u(r')} ds’ = 08851)' (3.71)

By using the identity (3.65) on the surface I'., (3.70) can be rewritten, for
c=1, as

cu(r) = — u(r)/ Mds’

T ow
“. {Gatrr) 25 - PRI )~ i) fa
- </F% " /sg) {GO(n r) 331(:,/) N 0?1/ Go(r,r') [u(r) - u(r)]} ds’ + u(r).

(3.72)

The integral over s. vanishes as ¢ — 0 if the potential u is Holder continuous,
i.e., there are a > 0 and 8 > 0 such that

lu(x) —u(y)] < plx —y[*, vxyeT. (3.73)

Namely, as ¢ — 0 the surface area of s, is of the order O(¢?) and the integrand
is of the order of O(1/27%). Therefore, we have the following weakly singular
form of the CPV singular integral equation (3.39) with no source charges (i.e.
gj=0)forc=1

(¢ — Lu(r) = /F { 2 G, [utr) u(r'>]+Go<r,r')ag£f,'>}ds', rer.
(3.74)

Next, in order to regularize the hyper-singular integral equation (3.48) with

no source charges (i.e., ¢; = 0), we take the normal derivative 9/dn of (3.39)
over I'. and rewrite the resulting equation as follows:

8U(r) o i , 3u(r’) 82 / / /
on _/stys [anGo(I‘,I‘) on’ anan/GO(m)U(r) ds

a / au(r) 82 / / !/
—|—/SE [anGo(r,r) v anan/Go(r,r Ju(r')| ds’. (3.75)
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Let us examine the two integrals over s.. By using the mean value theorem, the
first integral over s, in (3.75) can be rewritten as

0ulr) 4 — timg [

. 0
lim —GO( ') In lim

%,
/ a—nGO(r,r’)nk(r’)ds'

Se

| 5ot

1 K N Kl ] Bulr)
_&113% U 2 Goe, i) ds /F%anGo(r,r)nk(r s | S

where the double index indicates a summation.
Using the identity (3.67) for the integral over the closed surface I'. we have

du(r’) .,
ilﬁ%/ an o) g s
o N | Qulr)
= 31_1)% {nk(r) +/FE mGo(r,r ) (2 —xk)ds} i
0 ,0u(r)
_;13% - a—GO(r r')ng(r')ds O,
o du(r) /
on 5—)0/ 8n8n’ ) |:( Tk .’Ek) 8zk ds
~ lim 9 ot )8“( r) L(r))ds’. (3.76)

&Tk

e—0 L. on

On the other hand, the second integral over s. in (3.75) can be rewritten as

: & N (N !
E11_r>r(1)/56ar@n/Go(r, ru(r’)ds

— gg%/ %GO(I"IJ) {U(r) + (932 - l’k)a;g:) =+ 0(52)} ds’
o104 /M>anaf ol (e
+£%/ g Colr ) | (2 —xk)agik) +0(e )] /
- _ 611_% v Go(r,r’)u(r)ds’
+lim | anan/Go(r,r/) :(xgc —z )aggfk)} ds’, (3.77)

where the identity (3.66) was used in the last equation of (3.77) over the closed
surface I';.

Substituting (3.76) and (3.77) into (3.75) and using the fact that T — s, =
I' — 7., we arrive at

82 / / / au(r) /

glgtl) - mGo(rar) {u(r)—u(r)—(xk—xk) Ozx ] ds
L 0 [ Ou(x’)  ou(r)]
=l P BnGO(r’r ) [ on’ o/ ds’,
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which results in the weakly singular integral formulation of the hyper-singular
integral equation (3.48):

/Far?;n,Go(r,r’) [u(r’) —u(r) — (2 — xk)au(r)} i

8.Tk
[0 [ Ou(r’)  ou(r)]
= /FanGO(r,r ) [ o’ on ds’, (3.78)
provided that Vu is Holder continuous, i.e., there are a« > 0 and 8 > 0 such that
0 0 o .
Ox; yi

In the weakly singular integral equations (3.74) and (3.78), the potential u
is from the interior domain €;, and similar weakly integral equations can also
be obtained for the potential u from the outside domain by using the identities
(3.65)—-(3.67) for r € €Q,. Also, the regularization methods can be applied to
Green’s function Gg(r,r’) by rewriting

Gi(r,v") = [Gi(r,r") — Go(r,v)] + Go(r,r’') = H(r,r') + Go(r,1’'),

where H(r,r’) will be a regular smooth kernel and only regularization for the
Go(r,r’) is required (Liu & Rizzo, 1992).

Direct computations of CPV and Hadamard p.f. integrals

In the regularization procedures discussed above, the identities of Green’s func-
tions (3.65)—(3.67) are required, which will not be available for Green’s functions
of non-homogeneous media, such as the layered media discussed in Chapter 2.
In the following, methods of direct computation of the singular integrals will be
presented which are applicable for more general Green’s functions.

For a collocation point r € I'; let us define a domain excluding a vanishing
volume V. around r, which is usually taken to be a ball of radius € centered at
r, and denote the part of the surface of V. inside € as s., i.e., s. = Q; NIV,
and the intersection of I" and V. as 7., i.e., 7. = I' N V_, respectively. The new
domain as depicted in Fig. 3.1, which excludes r, is denoted as

0. = OV, (3.80)

It is noted that a different definition is used in (3.68) where r is included in €.
and s, is the part of the spherical surface OV (r) outside ;.

In both (3.70) and (3.71) the potential and its normal derivative are the interior
fields from the domain §2; where the subscript i is omitted for simplicity.

Equations (3.70) and (3.71) will be the starting point to derive the surface
integral equations for the potential and its derivative, and in the process of
taking the limit ¢ — 0, the CPV and the Hadamard finite part together with
free term coefficients will be clarified and computed.

As Gi(r,r’) and Go(r,r’) share the same type of singularity at r =r’, the
direct calculation methods described below will be applicable for both kernels.
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Figure 3.1. Q., excluding the singular point on the boundary of I' = 9.

¢ Computation of CPV

In this case, as r ¢ ()., similar to the way in which (3.72) is derived using Green’s
second identity, we can show that II;(r) = 0, where II;(r) is defined in (3.70).
We can also rewrite IT; (r) as

I, (r) = /F N [Go(r,r')égg‘//) ai/ Go(r,r')u(r')} ds’

+/ {Go(r,r’)ag](;’) _ 8?1/6'0(1',1'/) [u(r') _u(r)]} s’

0
— u(r)/ss EG’O(I', r')ds’. (3.81)
As e — 0, the second integral above will vanish, as the surface area of s, is on

the order of O(¢?) and the integrand is on the order of O(1/¢). The limit of the
third integral defines the so-called free term coefficient denoted by

¢(r) = lim iGo(r, r')ds’, (3.82)

=0/, on’
€

where the normal n’ points to the interior of the exclusion volume V_(r).
Now, (3.81) becomes

du(r’) . 9]
o ds’ — lim 1“_%@Go(r,r’)u(r’)ds’. (3.83)

c(r)u(r) = /FGO(r,r')

If r is a smooth point on T' (as a result, I' will have a unique tangent plane at
r), then ¢(r) = 1/2, and (3.83) is exactly (3.41) with ¢; = 0. For a point r at an
edge or a corner (i.e., I" has multiple tangent planes), the free term coefficient
¢(r) will depend on the geometry of s., which can still be calculated (Guiggiani
& Gigante, 1990).

The collocation method requires that (3.83) is satisfied at specific locations r,
which could be the same nodes that define the shape functions on each patch or
some other points inside the patch. Let S;j,i =1,2,...,m, be the patches which
share the node r as one of its vertices and let a composite patch S, be
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S =S, (3.84)

which contains r at the center. In the limit of (3.83), we only need to show how
to compute the limit of the integral over S,—~,, i.e.,

p.v./ 8031’ Go(r,r)u(r')ds’ = lim iGo(r r)u(r')ds’
Sp

e—0 a /

e—0

= lim Z/ _ (r,r")u(r')ds’,  (3.85)
where

= e m S;;a and 7. = U P)/;—' (386)
=1

For each 7, the integral over S;,—fyé will be calculated over the corresponding
region Xfl(S;')) in the reference domain in the polar coordinates

TS = {(p,0) 1 01 <6 < 05,07(0,2) < p<P'(0)}, (3.87)
where the center of the polar coordinates is u* = (p*, 6*):
r=x(u") =x(p",0%), r'=x(u)=x(p.0). (3.88)

Here we have assumed that the node r is mapped to one of the vertices of the
reference domain, and the end range p°(6) for p is then independent of ¢.
As

9 10 1 (o =)
on’ (r,r') = An 3n’|r—r| 47”1.71./‘2 Z r—r/| ks (3.89)
we consider a typical term in 0Gg(r,r’)/On’:
1 -
Ty (r,x') = (), xk)nm k=1,23, (3.90)

r—r'? | —r'|

where n = (ny,ng, n3), r = (z1,22,23), and r'= (2], 25, z%).

Meanwhile, we assume that the potential has been expressed in terms of the
shape functions over each patch, so we can set u(r’) to be one of the shape
functions N;(r’) and consider

i Jai(,e)

7'(0)
:/iw/ 6)dp, (3.91)
0 (6 5)

05 (5 (0)
[ s - / [ 18, (0,0) N0, 0) p.0)p dp @9
Si—~i a
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where the Jacobian of the parametric mapping x is given by

T0.0) = | 2% x X (3.92)
and
Fi(p,0) =Tk ((p*,07), (p,6)) Ni(p,0)J (p, 0)p- (3.93)

Consider the Taylor expansion of the parametric mapping y:

/ OXk « 8Xk( . 1 9*x

2

X * *
T — T = a—m(ul—ul)ﬁ—afu2 us —ujy) + Z 350 8u](u —ui)(uj — uj)
4,j=1

= pAr(0) + p*Bi(0) + O(p*),

where, in terms of the polar angle,

WXk OXk
Ar(0) = o, (u*) cosd + Dy (u*)siné, (3.94)
?xr, ,.cos?0 Pxe . . Xk ,.sin’6
By(0) = a2 (u®) 5 Ju 00y (u*) cosfsinh + 2 (u") 5 (3.95)
It can be shown (Guiggiani et al., 1992) that
w — k. _ Ar(0)
|I' _ r/l A(@) + O(p), (3'96)
where
3
2= 1A
k=1
and
e —r? = p? Z AR (0)]? +2pBZAk )Bi(6) + O(p"). (3.97)
k=1
So on v, we should have
e = p2z |A(0)[? +2p3ZAk )Bi(0) + O(p*),
k=1
which implies that on p = a(f,¢) = x~'(7.) in polar coordinates
3
> Ar(0)Bi(0)
alf,e) =« L g2k=l + 0(e?)
’ A(0) A%(0)
= B(0) + e*v(0) + O(?), (3.98)

where the final equation defines 5(60) and ~(0).
Therefore, due to the continuity of N;(p,#) and the Jacobian J(p,6), we have

Fi(p.0) = % F4(6) + Op)] (3.99)
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where
70 = 5

Finally, (3.85) becomes

Ni(p*,0%)J(p*,0%). (3.100)

3 m ot 5°(0)
_ 1 : 2 g fk(pve)
- Zhg(l)/ de/ [Fk(p,e)—p dp

1 “(0.¢)
0

e I O (f(é@)) a0.

From (3.98), as e — 0, we finally obtain the CPV through two regular integrals
which can be readily computed by Gauss quadratures:

pv/?Gorr) ZZ/ dﬁ/pe{Fk f(pe):|dp

k=11i=1
3
1 (0)
— )1 .
+ 4”21;/ fi(0 n<1(9)>d0, (3.101)
provided that
lim (Ine) Z/ fe(0)d8 =0, for k=1,2,3. (3.102)

Equation (3.101) shows that the CPV can be computed directly with regu-
lar 1-D Gauss quadratures applied to the # and p integrations if the solution
u(r) satisfies the Holder continuity condition (3.73) and the parameterization
mapping x(u) satisfies the smoothness condition (3.102).

e Computation of Hadamard finite part (p.f.)

Introducing a variable

Ou(r)
= 3.103
ofr) = 25, (3.103)
we will assume the following regularity conditions on u(r) and ¢(r):
uwe e, ge¥ (3.104)

Thus, we have

u(r') = u(r) + Vu(r) - (¢' = r)+O(r' — x["*),
q(r') = Vu(r') -n’ = Vu(r) - n+O0(r’ —r|%). (3.105)
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The smoothness of the densities is required for the existence of the Hadamard fi-
nite part at a collocation point; detailed discussions can be found in Gunter
(1967), Martin & Rizzo (1989, 1996), and Krishnasamy, Rizzo, & Rudolphi
(1992).

Using (3.105), we first rewrite I of (3.71) as

() = | o Golr ) — o Gl )| a8

o 0 / ’ 62 ’ ’ /
=] a0t 0 - G Gotr )|

# [ {2 o) - Vate)

D?Go(r, 1) , / /
—W [u(r’) —u(r) = Vu(r) - (r' — r)]} ds

V() - / {8200(‘”’”/)@' ~ r)_wn} a4

Oonon’ on

2 /
—u(r) / agﬁing) ds’. (3.106)

The second integral in (3.106) will go to zero as the surface area of s. is on
the order of O(¢?) and the integrand is of at most order of O(1/¢) as a result of
(3.105). The third integral will give a free matrix term € = (c¢g;(r))sx3, where,
fori,k=1,2,3:

0? 0
/ [MGO(r’ r')(z), — xk)—amGo(r,r’)nk ds’ = ci(r) + O(e).  (3.107)

The fourth integral can be shown (Guiggiani, 1998) to have the following expan-

sion for 1 = 1,2, 3:

02 oy bir)
/SaaxianfGO(r’r)ds = * ailr) + O(e). (3.108)

Asr ¢ Q., (3.71) becomes II3(r) = 0. Substituting (3.107) and (3.108) into
(3.106), and taking the limit e — 0, then the equation IIz(r) = 0 can be rewrit-
ten as

n! - a(r)u(r) + ne(r)Vu(r) (3.109)

e—0 3

. 0 ’ / 9? / / ’ b(r) ‘n _
— lim l/r_% [%Go(r,r Ja(r') = 55 Go(r, )u(r’) | ds’ — u(r)l =0.

If r is a smooth point on T" (as a result, I will have a unique tangent plane at r),
then a(r) = 0, €(r) = (1/2)I, and the second integral in (3.83) will be shown later
to be finite, which is exactly the Hadamard finite part. Also, the divergent part is
explicitly identified in (3.109), which will be canceled by a similar divergent term
with opposite sign from the integration over I" — +,. Finally, (3.109) becomes the
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hyper-singular integral equation, where the Hadamard finite part concept can be
used to represent the limit of the second integral in (3.109), i.e.,
Ou(r’
u(r’) ds’ = 0.
(3.110)
Next, as in the case of the CPV, we show how to compute the Hadamard finite
part explicitly using regular Gauss quadratures. The evaluation of the limit of the
first term in (3.109) involving %Go (r,r’) is a Cauchy principal value integral.
We need only show how to compute the following limit over a patch S,, and u
is taken to be one of the shape functions over S, in (3.64):

a 82 8
SS) +p'f'/1~8n8n’ Go(r, " )u(r')ds’ — p'v'A%GO(r’r/)

2 .
¥; = lim [/ 0 Go(r,r")N,(r')ds’ + blir)Nl(r)] , 1=1,2,3. (3.111)
s

. li
e—0 a— Ox;0n

Remark 3.10 1t should be noted that if r is at a vertex shared by many patches,
the continuity condition of u and ¢ will be hard to satisfy, as a C® approxima-
tion to u will be required. If such a continuity is not met, the collocation point
r will be taken to be inside one patch; in this case, S, will just consist of one
patch.

For simplicity, we will assume that r is an interior collocation point to the
single patch S),. Then
X 1(S,) = {(p.0) : 0<0<2m a(6,) < p <O} (3.112)

Using the polar coordinates in the parametric space, we have for i = 1,2,3

, 8 bi(r)
Ei = ilj}%) [\/SVP_WEWGO(r,rl)Nl(r/)dSI + ?Nl(r)
27 p(0) bi(r)
= lim / de Fi(p,0)dp + ——=N,(r)|, (3.113)
e=01Jo a(0,e) €
where
2

The hyper-singularity of the integral implies that

Fo(0) | Foi(0)
02

Fy(p,0) = +0(1), (3.115)

where the coefficients F_1(0) and F_5(0) are given in Guiggiani et al. (1992, eq.
(C19) of app. C).
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Then we get
2
2 = lim V da/ ( - F*QQ(‘L)) - Fl(e)) dp]
e—0 P P
27 0)

+ lim do Fa ) dp

=0 a(f, s) P

2m

- bi(r)

Jr;l_r% / dﬂ/ dp + 5 Nl(r)l. (3.116)

Each of the three limits has been shown to be finite (Guiggiani et al., 1992),
with (3.98) giving the Hadamard finite part over S, as

82
Ei = pf/ WGO(I" I")Nl(r/)dsl

:/2Tr dﬁ/p(a)[ (0.0 F_p22(9) B F_;(G)} dp

PO |4 o plCO N
+/o Fa(f)in 5(9)’ [0 Gy )0 60
3.2 Finite element methods (FEMs)

The difficulties in solving the PB equations (2.19)-(2.21) numerically are due to
the following factors: (1) the singular behavior of the solution at the point charges
gj; (2) accurate approximations of solutions near the molecular surfaces; and (3)
the treatment of the infinite domain of the exterior region of the molecules.

For the finite element method, we first truncate the whole space R? to a finite
computational domain 2 D € and consider a numerical boundary condition
on 02

u|,99 =4d. (3118)

Various choices of g can be considered, such as the Coulomb potential of the
point charges with the dielectric constant €,. However, for simplicity we will set
g = 0. The finite element method is based on a weak formulation of (2.19) with
the boundary condition (3.118) (Ciarlet, 1978).

Due to the singular source terms in (3.38), the potential « will have large gra-
dients near the point charges at r;. To resolve these gradients, a singular function
G is defined with screened Coulomb potentials from these charges (Chern, Liu,
& Wang, 2003; Chen, Holst, & Xu, 2007)

—Ai|r—r;|

q; €
A1
2471'61 v —r;| (3:119)
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which satisfies the following inhomogeneous PB equation:
—V-6VG+MNG=p, reR> (3.120)
Now we consider the function w:
w=u—G-—g, (3.121)

where g is any locally supported function near 9) such that the support has no
intersection with I' = 99, i.e.,

sup(g)NT =0, (3.122)
and also
g(r)=G(r)—g, redQ, (3.123)
which produces a homogeneous boundary condition for w, i.e.,
wlog = 0. (3.124)

Next, by subtracting (3.120) from (2.19), we can see that w satisfies the fol-
lowing inhomogeneous PB equation with a much smoother right-hand side:

—V-eVw+Nw=f(r), reQ or reQ,, (3.125)
where
0, if re O,
f(r) :{ eoxf:ixga(r) (V% A2) (), if T e Q. (3.126)
Moreover, a transmission condition for w can be derived from (2.3):
w; — w, = 0, (3.127)

Now, by integrating (3.125) over §; U, with a test function v € Hp(€2) (sub-
space of the Sobolev space H () of functions with L2-integrable first derivatives
where boundary trace is zero (Ciarlet, 1978)) and using integration by parts and
the transmission condition (3.127) and (3.128), we have the following weak form
of (3.125).

Find w € Hy(f2), such that

Yo € Ho(Q),  a(w,v) = F(v), (3.129)

where a(w,v) is a bilinear form

a(w,v) = / (eVwVv + XNwv)dr, (3.130)
Q
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and the functional F(v) is

Fv) = /va dr + /Fapv ds. (3.131)

The finite element is based on a triangulation of the solution domain €2 into
elements K which conform to the molecular interface I'. A polynomial space
P (K) is used for the element subspace, where the basis functions are usually
associated with the nodal values at specific points on K, such as the vertices of K
or middle points on the edges of the element K. For a reference tetrahedron K
with vertices {(0,0,0),(1,0,0),(0,1,0),(0,0,1)} = {v;}?_,, the following basis
functions for P;(K) can be used:

Go(#,9,2)=1—d—§—%,

¢1(2,9,2) = &,

$2(,9,2) = 0,

bs(#,9,2) = 2. (3.132)

The basis functions on a general tetrahedron K are defined by a pull-back func-
tion F(&,9, 2):

(2,9,2) € K = (2,y,2) = F(2,9,2) € K, (3.133)
and the basis functions on K take the following form

¢i(I,y7Z) = le © F_l(x,y,z) = (,257(‘%,21372), 1= 07 17273' (3]‘34)

A finite element subspace V;, C H(2) can be constructed by combining the
element subspace where the common nodal values at the shared vertices between
adjacent elements will ensure the global continuity of the function in Vj:

Vi, = {Uh : Uh‘K < Pk(K)} (3.135)

Let {¢i(z,y,2)}|Y% be the basis functions indexed by the Ny vertices of the
triangulation. Then

Nk
Vi = {vh Doy = Zvi@(ﬂfay,z)} C H(Q), (3.136)
i=1

where the nodal unknown is v; = vp(«;) at the node «;. Correspondingly, a
subspace for Hy(€2) can be defined by setting the nodal values at the boundary
nodes as zero. Let N;,; denote the total number of the interior nodes and Ny,
the total number of the boundary nodes as listed in the summation. Then Ng =
Nint + Ny, and

Nint

Von = {vh Doup = Zvigbi(x,y,z)} C Ho(Q). (3.137)
i=1

The finite element solution to the weak form (3.129) is as follows.
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Find wy, € Vyj, such that

Yo € Von, a(wh,vh) = F(’Uh). (3.138)

By taking vp, = ¢;(x,y,2),7 = 1,2,..., Nint, we arrive at the following linear
system for the unknowns w = (wy,...,wx,, )" :

Aw = f, (3.139)

where the stiffness matrix A is defined through
aij = a(¢i, ¢;5), 1<1i,j < Nins, (3.140)
and the source f is defined through
fi=F(¢i), 1 <4< Ning. (3.141)

The matrix equation is a sparse linear system, and for large Nj,; a multigrid
iterative method is usually used to solve (3.139) (Chen, Holst, & Xu, 2007).

Immersed interface methods (11Ms)

Because of the dissimilarity of the dielectric constants of the molecule and its
solvent, the derivative of the potential is discontinuous as shown in (3.128), which
poses difficulties in finite difference discretization of the PB equation. The finite
difference IIM for (3.125) (Wang et al., 2009) incorporates the jump condition
on the molecular surface I' into the construction of the difference formula near
the molecular boundary. Other types of modified finite difference methods, such
as the matched interface and boundary (MIB) method, have been applied to
treat the molecular interfaces in the solutions of PB equations (Yu, Geng, &
Wei, 2007).

Let us consider the PB equation in (3.125) and write the transmission condition
(3.127) and (3.128) in a more general notation:

ow\ ™" ow\
+_ T = + e — € e =
wh —w u, € (8n) € <6n> v, (3.142)

where + indicates the limit taken from €, and — the limit from €2;, and n is the
outer normal on 9§ =T'.

A uniform mesh will be used to discretize (3.125), and the mesh point is
indexed by (¢,7,k) with a spacing h in all three directions. The interface is
described by a level set function ¢ (Sethian, 1999; Osher & Fedkiw, 2002)

I'={(z,y,2) : o(x,y,2) =0}, (3.143)

and the interior and the exterior of the molecule are described by

O ={(z,y,2): p(z,y,2) <0}, Q={(z,y,2): (x,y,2z) >0}, (3.144)

respectively.
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By using the level set function ¢, a mesh point (7,7, k) is identified as an
irregular point if

IO <0, (3.145)
where
pin = min{p(i £ 1,5.k), ¢(i,j £ 1,k), @i, 4,k £ 1)},
ot =max{p(i £1,5,k),0(i,j + 1,k), (i, 5,k £1)}.

The rest of the mesh points will be considered as regular points where the
following difference equation for (3.125) is used (Li & Ito, 2006; Wang et al.,
2009):

o1 . . .
€ Z_ia‘%k [’U)(Z—Lj,k)—w(l,j,k)]

1
+eG+2mk[ww+LmM—w@%W

+ e (g = ok ) Bolisg = 1)~ wio s )
e (H + ;k) [(w(ing + 1, k) — w(i, j, k)
+ e ik g ) WGk = 1) - (i, k)
+ e ik g ) [tk + D) - uli, )
— N(i, 4, k)w(i, j, k) = —M (3.146)

For irregular mesh points identified by (3.145), a different difference formula
is used in the IIM in the following form:

> A (i + i, + G b+ k) = [0, 4, k) + C(i, 4, k), (3.147)

where ng is the number of the mesh points around (i, j, k) used in the difference
formula, and the coefficients =, are to be determined by a requirement on the
truncation error at X*,

Ns

T(i5,k) =Y Amw(i + imyd + Jmik + km) — f(i,4,k) — C(i,5,k) = O(h),

(3.148)
where X* is the projection of the mesh point (7, j, k) onto the interface I'.
To satisfy the requirement of (3.148), we expand all terms in T'(7, j, k) by a
Taylor expansion at X* and use the jump conditions for the partial derivatives
of u and v to obtain (Li & Ito, 2006)
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nr nr

+ - +
Wan m T (w§ We )X"" - U,
wj‘r = w;T + (wg_ - wg )XTT + Urr,

+ (wgr - wg)(er + X‘rr) — Upy — Urr + ei_‘—([)\g]w_ B (}\2)+ [w])’
(3.149)

where [w] =w™ —w™.

Then it can be shown that the truncation error is given by
T(i,5,k) = aqw™ + aswg + azw, + asw; + asw, . + agw,, + arw

+ agwg, + agwg, + arowg, + (T = C(i,5,k)) + O(h),  (3.150)

where all a; and T are functions of the 27 coefficients Ym- Therefore, in order
to satisty (3.148), we require all coefficients a; to be zero and set C'(4,5,k) =T,
which results in an over-determined system for ~,,:

By=h. (3.151)

To determine the 27 unknown coefficients, the following minimization problem
is solved for the optimal choice:

1
min= Y (Ym — dm)? (3.152)
TYm 2 —

subject to By = Db,
A/m < 07 (Zma jm7
Y >0, (im, Jms
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where the reference coefficients are

€. i S k
l+%,j+J72” ,k+ ;L

d,, = 5 ,if iR 4R 4k =1,
. 1
dm =0, otherwise, and dy = 72 Z€i+%,j+j7m,k+k7m'
m#0
Summary

(3.153)

Boundary element methods based on singular integrals are popular methods, es-
pecially coupled with fast multipole methods to be discussed in the next chapter,
for molecules of general shapes. The singular integrals in the BEMs in the form
of Cauchy principal values and the Hadamard finite part of Green’s functions
can be treated with subtraction and direct evaluation techniques, where the lat-
ter technique is also applicable to more general Green’s functions. Mesh-based
methods such as finite element and finite difference methods produce sparse lin-
ear systems for which fast solvers such as multigrid methods (Brandt, 1982) can

be used.



4.1

Fast algorithms for long-range
Interactions

Fast algorithms are indispensable for computing long-range interactions between
electric charges or current sources, which is one of the most important computa-
tional efforts in molecular dynamics simulations of biological systems (Allen &
Tildesley, 1989), and the simulations of wave interactions. Three methods will
be discussed. The first is the well-known Ewald summation (Ewald, 1921) for a
periodic system of charges and/or dipoles, and its particle-mesh Ewald (PME)
implementation. The PME uses charge interpolation onto a regular lattice and
the fast Fourier transformation (FFT) to produce an algorithm of O(N logN)
complexity for an N-charge and/or dipole system. The second is the fast multi-
pole method (FMM) (Greengard & Rokhlin, 1987) for N particles, applicable to
both periodic and non-periodic systems, using multipole expansions to reduce the
cost of computing the far-field potential of charges (or current sources) and a hi-
erarchical oct-tree structure for an O(N) (electrostatics) or O(N logN) (current
sources) multi-level algorithm. Finally, a hybrid multi-scale method combines
the image charge approximation to the reaction field of charges inside a spheri-
cal cavity surrounded by a dielectric medium and the FMM for the interaction
of all charges and their image charges, resulting in an overall O(N) algorithm.

Ewald sums for charges and dipoles

In 1921, Ewald proposed a method to compute the potential due to an infinite
array of charges from periodic image copies of N charges ¢; in a primary box A
with an overall charge neutrality, i.e.,

N
> 4 =0, (4.1)

The primary box A is defined by three elementary lattice vectors {a;,i =
1,2, 3}, the so-called Bravais lattice vectors (Kittel, 2004). The three correspond-
ing elementary reciprocal lattice vectors {bg,k = 1,2,3} are also defined such
that

a; - bk = 27T5i1€, (42)
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where §;; is the Kronecker delta. The general reciprocal lattice vector G is
given by

G =myby +mobs +msbs, mp €Z, k=1,2,3, (43)
where Z represents the set of all integers.

The N charge locations r; € A are identified by a triplet of fractional coordi-
nates (f1j,f2j,f35):

r; = fijar + fojas + f3jas, (4.4)

where, for 1 <j < N,1 <k <3,
frj =1j - bg. (4.5)

The periodic image A, of the box A is constructed by n = (nq,ns,n3)-shifts,
n, €Z, i1 =1,2,3, as

An =A + nia; +ngas +nzaz = A + n,, (46)

and the image copies of the IV charges in the primary box A are then defined by
the same shifts in the corresponding box Ay:

Ijn =T, +n,. (4.7)

The Ewald summation is used to evaluate the potential V(r) from the N
charges at rj,1 < j < N, in A and their periodic images at r;, in Ay, ie.,

Vir) = sz. (4.8)

As the series (4.8) is only conditionally convergent and the limit in fact depends
on the order of the summation in n, Ewald (1921) proposed to split the series
into two parts: a direct part Vg (r) (carried out in the physical space) and a
reciprocal part Viec(r) (carried out in the reciprocal Fourier G-space) (see Fig.
4.1). This splitting is done by placing a diffused charge density ojn(r) with a
total charge —g; centered at each charge rjn:

Tjn(r) = —gjo (|t —t;nl), (4.9)

where o is usually taken to be a Gaussian with a variance 1/(v/2a) (other types
of local density shape have also been studied (Heyes, 1981))
o « —a2u?

The diffused charge o;n(r) of opposite sign imposed on each charge g; at
r;n effectively screens the latter charge, resulting in a short-ranged interaction
potential. The potential of all these screened charges is denoted as Vg;,(r). The
potential ¢,(r) due to a single Gaussian charge density o(|r —r;|) satisfies the
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v ‘ \/ ‘ sum in real space

V \/ sum in Fourier space

Figure 4.1. Ewald summation with real and reciprocal spaces.

Poisson equation (4.13) with —o(|r — r;|) as the right-hand side, whose solution
is given by the erf(x) function (Evans, 1998):

1 erf(alr —ryl)

bq(r) = , (4.11)

dmey  |r —rj|

where

erf(z / — Q.
G

Therefore, the direct potential Vg, (r) is simply

erf(afr —rjn|)
VII' J
d Zzzmeo ( v — rjn| Ir — rjn|

ZZ g; erfe(alr —rjml) (4.12)
dteg  |r—rjm| '

where the complementary error function erfe(x) = 1 — erf(x).

The exponential decay of the function erfc(z) reflects the screening effect of the
diffused Gaussian density o,n(r) superposed on the charge g; at r;,. Therefore,
for each given field location r =r;, only a few terms need to be included in
the summation (4.12) by using a simple truncation cut-off (proportional to 1/«)
based on the distance |rj, — r;|. As a result, the computation of Vi, (r;) at all
field locations r;, ¢ = 1,2,..., N, will only cost O(N) operations.



92 Fast algorithms for long-range interactions

Next, we consider the potential Viec(r) from all the diffused charges o;n(r),
which in fact satisfies the following Poisson equation:

€0V Vieo(r) = —p(x), (4.13)
where

r) = ZZUJ‘H ZZQJ —Tjnl). (4.14)

From the periodicity of the density p(r), we can expand both Vie.(r) and p(r) in
terms of Fourier series:

ZV elGT (4.15)

and

Zp G, (4.16)

where
1 .
p(G)=— / p(r)e ¢ T dr. (4.17)
Al Ja

The Fourier coefficient p(G) in (4.17) can be calculated as follows:

1 —iGr
p@) = o /A SN gl — 1) — ngl)e 1S dr
n j
1 —iG-r
ZWZZquJ(|r—rj—na\)e G dqr
j n
1 —iGr
ZWZZ/A g0 ([ — v;)e"C dr,
j n n

where exp(—iG - n,) = 1 is used in the final equality, and then

G = 3 ol se S ae = 57 [ e a

—iG-r; —iGr S(G —iG'r
- e / (e dr=A|) [ oheer ar

a® 1

= 4012 |ar+2ﬂG| = i _%
oy |A‘e S(G )/Rd dr = |A|S( Je , (4.18)

where a quantity S(G) (termed the structure factor (Kittel, 2004)) has been
introduced as follows:

N
G) =) g (4.19)
j=1
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Plugging (4.15) and (4.16) into the Poisson equation (4.13), and equating the
Fourier coefficients, we have

1 G2

‘/;‘eC(G) = WS(G)eim, G 7é 0, (420)

for which we obtain the solution for Vrcc(r) in the Fourier space as

Z G)e £7C, (4.21)

G;éO

Viec(r) =
rec 60|A|
where the constant term Vie.(G = 0) for the potential function Vie.(r) can be
set to be zero.
Finally, the potential at r = r; can be computed as follows:

2avq; 1
Vi(r;) = Vai(r; Viee(T;) — . T
(ri) = Vae i) Ve ) 4weoﬁ+eo<2em+1>|A|“Z b

1 gjerfe(alri—rjnl) iGor,
SE el s s s

20vq; 1
f irj, 4.22
4760\f €0(2€sur + 1)[A| ' zj:qu] | !

where the prime on the n-summation indicates the exclusion of the self-interaction
potential (unbounded) at r; = r; for n = 0. Two correction terms have been in-
troduced in (4.22): the first accounts for the self-interaction of the Gaussian
density g;o(Jr —r;|), and the second is a surface term coming from the exterior
surface of the finite crystal system during the summation process. Here, €, is
the dielectric constant assumed for the environment outside the finite system
(Roberts & Schnitker, 1994; Nymand & Linse, 2000).

The potential energy of the primary cell within the periodic charge system is

qid;
-5 >y 47760 el (4.23)

n =1j5=

which, under the Ewald splitting procedure for the electric potential (4.22), can
be computed as

1 % f( | i n| iGr;
VY g M quzz@ e

G#0

1

e — 4.24
47T60\fz 2e0(2€sur + 1)|A| ( )

z% y
where the second to last term subtracts the self-interaction energy of each charge
and, again, the final correction term (de Leeuw, Perram, & Smith, 1980; Nymand
& Linse, 2000) is the polarization energy of the total dipole moment of the
system charges from the surrounding dielectric media outside the regions where
the summation over the finite range of n is taken. The final term is sometimes

)
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also identified as an extrinsic potential (Redlack & Grindlay, 1972, 1975; Roberts
& Schnitker, 1994).

The Ewald sum (4.24) for the potential energy was given a strict mathematical
derivation in (de Leeuw, Perram, & Smith, 1980) by using a convergence factor
in the form of e=*I?l in (4.23) and taking the limit s — 0.

Ewald sums for systems with dipoles

In a periodic molecular system, where the interaction of the molecules can be
described through their partial charges and dipole moments, the Ewald sums
can be extended to compute the interaction of charges and dipoles (Nymand &
Linse, 2000).

The potential of a collection of molecules (or particles) described by partial
charges ¢; and dipole moments p;, 1 < j < N, is given at location r; by the
following Ewald sum:

V(ri) = Vair(ri) + Viec(ri) + Veerr(rs) + Veure(ri), (4.25)

where the direct part evaluated in the real space is given by

Vdir(ri) = Z (ﬁj% + Tj,u'] a) , (426)
J#i

and, for simplicity of notation, the screened electric potential Tij and its deriva-
tives T3 and Tf;ﬁ are denoted as

. 1 erfe(alr;—r;|)

T, = , 4.27
J 471'6() |I‘i—I'j| ( )
TS = \Y% Tijv (428)

T“ﬁ VaVsTij. (4.29)

The reciprocal potential part evaluated in the Fourier space is given by

V;ec rz = e 40¢2 Squ ) iGTi, (430)
T

where the structure factor S%(G) for the charge-dipole system is

N
SMG) = (g G)e G, (4.31)
j=1
The self-energy potential,
2aq; ~
Vselt(ri) = —W - Z (Tijq] —l-Tj/LJ, ) (4.32)

J#41,J €D
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where 7,7 € p indicates that sites ¢ and j both belong to the same particle
(or molecule), and a modified intra-molecular interaction potential 7;; and its
derivatives T} are used:

~ 1 erf(afr;—rjl)

T;; = , 4.33
J 47T€0 |I'7;—I‘j| ( )
Tz(; = vozj:‘ija (434)
= Vo VTij. (4.35)
Finally, the surface potential

1
Vvsur i) — — 7 Li i ). 4.36
) S )

Meanwhile, the potential energy of the system of charges and dipoles can also
be found by the Ewald sum as

U= Udir + Urec + Uself + Usurf: (437)

where the potential energy of the screened charges and dipoles evaluated in the
real space is given by

Udir = Z ZZ (qzqg A 6T o — pia T — ui,aﬂ?’ﬁm,ﬂ) ;o (4.38)

the potential energy of the screening Gaussian charges evaluated in the Fourier
space is given by

f— 741(272 ar N .
Urec 2€0|A| Z Gze |S ( )‘ ’ (4 39)

G#0
the self-energy consists of that of the Gaussian density and the charges and the
dipoles inside each individual molecule:

N

1 « 203
Use = 2 2 4.40
1f 47T€0,Z (\/qu + 3\/EMZ> ( )

- 72 Z ((h ij4j + QzT»L],u], — Mi, aT — M, (xT Hj.p )
P j#i;i,jEp

and, finally, the surface energy due to the exterior ey, dielectric environment is

given by
N
Usurf +2 (Z%ﬁ) : <ZN’1> +
=1

iLq

260(26511r + 1)|A]

(4.41)
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The Ewald sum can also be extended to a system of quadrupoles (Aguado &
Madden, 2003; Laino & Hutter, 2008) and polarizable dipoles (Nymand & Linse,
2000; Sala, Guardia, & Masia, 2010).

Particle-mesh Ewald (PME) methods

The cost for the original Ewald sum (Ewald, 1921) is expensive due to the com-
putation of the structure factors for non-uniform charges in (4.19) (or charges—
dipoles in (4.31)). In applying (4.21) in computer simulation, a truncation, pro-
portional to «, on the reciprocal vector G space will be required. Assuming
that the Fourier indices G = (my,ma, m3) for Viec(r) are truncated within the
following range:

M, M,
-5 Sma< 5, Ma= O(NY3), a=1,2,3, (4.42)
for which S(G) will be computed, the cost of computing each S(G) in (4.19)
will be O(N). So, the total cost will be O(N?).

Thus, in order to reduce the cost in computing Vie.(r), the key is to reduce the
computation of all structure factors S(G) in (4.19), which involves the evaluation
of the exponential exp(—iG - r;) at irregular locations r;. To achieve this goal,
an auxiliary regular lattice mesh, previously proposed in the particle-particle
particle-mesh (PPPM) method (Hockney & Eastwood, 1981), is introduced in the
PME method (Darden, York, & Pedersen, 1993; Essmann et al., 1995; Toukmaji
& Board, 1996):

k k k
I = fllalJréang?iag, 0<ky <K, a=1,23, (4.43)
where K4, is the total number of mesh points along the a, direction. Associated
with this mesh, we define an interpolation function Ly (r),k = (k1, ko, k3):

Ly(r) = Ly, (f1) Ly (f2) Lies (f3), if = fia; + foas + faas, (4.44)

where L can just be the piecewise linear hat function in the finite element
method such that Ly (l) = i, and supp(Ly) = (k — 1,k + 1), ensuring that

Lk(rm) = 5km' (445)

As in the finite element method, the function Ly(r) can be used to interpolate
a function at r using its values at ry by the following formula:

Fr) = fr)Li(r). (4.46)
k

Next, the interpolation formula (4.46) is applied to the exponential function

e—iG~rj _ Z e_iG.rkLk(rj), (447)
keA
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where the index set A is
A:{(k}l,k27k3) : ng‘a SKa—l,a:1,2,3}. (448)

In obtaining (4.47), we have used the compact support of the interpolant func-
tions and we have also assumed implicitly that no charge g; falls into the sup-
port of the boundary interpolant functions Ly, when g, x, + 0k, iy + Ok ks 7 0.
For those charges, we can treat their contributions to S(G) separately without
changing the overall complexity of the algorithm.

From (4.19) we have

5(G) = qu Z e IGT L, (r Z e e l”“Zq]Lk r;)
i keA keA
Ki—1Ky—1K3—1 Ki—1Ky—1K3—1 1k1 2k2 3’“3)
— —iGr, _ 127r +0252 4 375
=22 2 Qe =) ) ) Qe >/
k1=0 ko=0 k3=0 k1=0 ko=0 k3=0

(4.49)

where the definitions of G in (4.3) and of rx in (4.43) and relation (4.2) have
been used, along with

Q=Y ¢Lk(rj), keA. (4.50)

The calculation of each Qx will involve only a few charges due to the small
support of the function Li(r;). Therefore, Q = {Qx : k € A} can be calculated
in O(N) operations. From (4.49), S(G) is simply the discrete Fourier transform
of the 3-D data array Q defined on a regular lattice, readily achieved using the
FET at a cost of O(N logN) if we select K, = M, = O(N'/3),a =1,2,3.

The reciprocal potential Vie.(rk) on the auxiliary mesh lattices can be approx-
imated by truncating the Fourier series in (4.21), namely

%7 %*1 %71 a2
Vel = 10 > €T S(G) o (gl gl )
€olA| s " » G2
m1=—-—%- Ma=— "5 M3=——5>
(4.51)

(assuming K, = M,,«a = 1,2,3), which again can be implemented by an FFT.

Finally, the potential Vie.(r;) off the lattice is obtained by using the interpo-
lation formula (4.46) from Viec(rk).

The accuracy of the PME can be easily controlled by the size of the auxiliary
mesh K = K;K>K3, and the truncation used in the Fourier series for Vie(r)
above (which depends on the magnitude of «), and also the type of the inter-
polant function Ly in (4.46). The linear Lagrange interpolation is used in the
original paper of Darden, York, & Pedersen (1993), and later a smoother cubic
spline is used, which allows continuous differentiation of the potential for force
calculations that require the derivatives of the potentials (Essmann et al., 1995).
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Fast algorithms for long-range interactions

Fast multipole methods for N-particle electrostatic interactions

The fast multipole method (FMM) is used to compute N-body interactions from
discrete charges, whose potential field is given by Green’s functions for the fol-
lowing Poisson equations:

@D) - ASm)=i().  B) = —-loa(r). (452
(3D) - ABE) =), ()= %Irl' (4.53)

The FMM can be illustrated in a 2-D electrostatic problem (Greengard &
Rokhlin, 1987), with a potential given by (4.52). The goal is to evaluate the po-
tential field at M points from N charges g1, g2, . . ., qn distributed at r1,ro, ... ry.
The potential at a field point r due to a charge g; is given by (1/(27) is omitted
for simplicity)

B, (r) = —q; log(|r — 14]). (4.54)

From the principle of linear superposition, the total potential at r is given by

O(r) = Z@i(r) =— Zqi log(Jr — ;). (4.55)

The calculation of the potential from all N charges for each field point requires
O(N) flops (floating point operations). Therefore, for M field points, the cost by
direct evaluation of (4.55) is O(M N) operations.

e The goal of the FMM is to reduce the complexity for N-particle electrostatic
interactions from O(N?) to O(N) when M = N.

Multipole expansions

Key idea

The key idea of multipole expansion is that it applies to a potential in the far
field (i.e., at a distance greater than 2a from the source charges inside a sphere of
radius a). We make this observation: far away from a group of source charges, the
combined potential from those source charges could be represented by a source at
one point, located in the center of the group of the source charges, with multipole
source components beyond the single pole of the original Coulomb potential, such
as dipole, quadrupole, etc.

Mathematically, this amounts to an expansion of negative powers for the com-
bined potential from all charges at a common point. We illustrate this idea using
the 2-D potential (4.54), where the total potential at r = (x,y) is given by (4.55).
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To facilitate the calculation, we introduce the complex number z = x +iy, and
then the potential for the 2-D Poisson equation will be just the real part of an
analytical complex function away from z;, i.e.,

D,(r) = —g;log (|r — r;]) = —q;Re(log(z — %)), (4.56)
where

log z = log (\/:172 + erw) = log (\/I2 + y2) +1i6. (4.57)

Furthermore, the total complex potential at z can be computed by the following
multipole expansion (ME):

N
P(z) = Z‘I’i(z) = - Zqi log (z — 2;)

_ S O
—Qlogz—i—z e (4.58)
k=1
where
N N g2k
= — i7 = — v Z . 4.59
Q ;q ak ; 3 (4.59)
The proof of (4.58) is based on a simple Taylor expansion as follows:
20 > 1 Z0 k
log(z — 2z0) = log(z) + log (1 - ;) = log(z) — ; z (;) . (4.60)

As |20/z] < 1, we have log(1 —z) = ;= (¥ /k) for © = |20/al, |z| < 1, and we
can truncate the series to the Pth term with an error estimate as follows:

() )4
where C = |z/a| > 2.

For example, for an accuracy at 10~%, we require

1 P
(2> =107* - P~ 13,

P
D(z) - Qlog(z) - >
k=1

and the following approximation will have the desired accuracy:
"a
E
O(z) = Qlog z + g ok for |z| > 2a. (4.62)

k=1

e Cost of the multipole expansion

We see that
the cost of calculating the charge Q = N,

the cost of calculating all a, = 4N P, (4.63)
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so the total cost is given by

(4P 4+ 1)N ~ O(N). (4.64)
Now with
P
k
(z;) = Qlogz; + Y ., (4.65)
k=1 "J

for M field points there will be (3P + 1) M operations. Therefore, the total cost
for computing the potential at all M field points is given by

(4P + 1)N + (3P + 1)M ~ 7PN = O(N) if M = N. (4.66)

Multi-level algorithm

As illustrated above, when the field point is far away from the source charges, a
substantial cost reduction can be achieved by using Taylor expansions and pre-
calculating the multipole expansion coefficients. However, in most application
problems, the source charges and the potential field points are intermingled, and
sometimes, they are at the same set of physical locations. So, in general, it will
be difficult to satisfy the far-field requirement between the potential field loca-
tions and all source charge locations. The solution to this problem is to create
a hierarchical structure of subdivision of the physical region into nested rectan-
gular /cubic boxes (Barnes & Hut, 1986), as the far-field concept is applicable to
every scale of distance. This means that at each given level of boxes of size a,
the multipole expansion idea can be used at that level.

In practice, the tree structure of the nested rectangular boxes in Fig. 4.2 is so
formed such that the smallest box contains only 3 ~ 4 charges. For an L-level
hierarchical structure of nested boxes, there are 4% boxes in 2-D (8% boxes in
3-D) at the finest level (Lth level).

e Concept of local expansion for far field

We consider any i-box at the level I. Our goal is then to calculate the potential
at z inside the i-box, which can be decomposed as follows:

D(2) = Z ®,.(z) + potential from all other charges outside. (4.67)

q; inside i-box
& its neighbors

The potential contribution to the i-box from all charges in a j-box centered at
2o from the second group in (4.67) can be represented by a multipole expansion
as (4.58), as each j-box is one box away from the i-box. This procedure can
be carried out for all j-boxes, resulting in a multipole expansion at the center
of each j-box, which together can give the potential inside the i-box. To avoid
using many centers from all the multipole expansions, after realizing the fact
that it is the potential inside the same i-box that we are interested in and that
all multipole expansions are smooth functions inside the i-box, we can convert
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Figure 4.2. FMM mesh setup, showing i-box (dark shaded box) and its parent (light
shaded boxes); the interaction boxes (marked by x), which are bounded by thinner
and thicker rectangular boundaries; the thinner rectangular boundary outside which
the charges define the local expansion 1);,; for the i-boxes; the thicker rectangular
boundary outside which the charges define z/;l’i for the i-boxes.

all the multipole expansions to a Taylor expansion at z = 0, the center of the
i-box. This Taylor expansion is defined as a local expansion.

Our ultimate goal is to find the local expansion of all i-boxes on the Lth level
by converting all multipole expansions from charges outside the i-box using the
following translations.

e Multipole to local translation

Consider a multipole expansion (ME) at zg:

P

®(2) = Qlog(z — 20) +Z (4.68)

Z—Z
k=1 0)

which diverges to oo at zg. However, if we are only concerned with the region
|z — 20| > 2a, then we can convert the ME there to a local (Taylor) expansion
at z = 0. Namely, by using the Taylor expansion of f(z) = 1/(z — 20)*,

()
k=0 ’
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the ME (4.68) can be expressed as a local Taylor expansion at 0, i.e.,

2)=> b, (4.70)
=0

where
D a
k
boiZ;(*l) + ag log(—20),

k=170

1 & l+k-1 a

—N = (-1)F = =2 1>1. (4.71)
lzé; (’f( k-1 ) R

A recursion for the local expansions (0 — L-level)

Denote the potential due to all charges outside the i-box and its eight neighbors
by a function v ;(z), i.e.,

(%) = local expansion for the potential

due to all charges outside the i-box and
the eight neighbors of the i-box, (4.72)

where 0 <[ < L is the level of the tree structure.
To generate a recursive process, we also define another function ¢ ;(z) for the
parent of a j-box on level | in the same spirit, namely

1.j(2) = local expansion for the potential
due to all charges outside the parent of the j-box and

the eight neighbors of the parent. (4.73)

Therefore, if the i-box at level [ has four children j = 1,2,3,4 at level [ + 1,
then it is clear that by identifying the “i-box” as “parent of the j-box” above,
and we have

Yri15(2) = Pri(z), for j=1,2,3,4. (4.74)

This relation is the crucial step in building the recursion among the local
expansions from [ = 0 to L, which is done as follows.

Firstly, it should be mentioned that the difference between vy ;(z) and 1 ;(z)
is that the former includes more charges from additional 27 boxes which are
defined as “Interaction List”, marked by “x” in the boxes in Fig. 4.2. If all
charges are positive, we have

Pra(z) > (2), (4.75)

and in general we can interpret the > sign as “more charges are involved” count-
ing both positive and negative charges.

By a recursive manner, we start at level 0, where 1;0,,' = 0, to form a recursion
z/;l,j — 1/~Jl+1,j, and also a recursion for i ; — 414, until the level index | = L
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is reached. Then we will have obtained the potential of all charges outside the
i-box and its neighbors, which will be calculated by direct calculation.

e Step 1: Start at the [ = 0 level, 1 1(2) = 0 and 11 = 0.
e Step 2: For 1 =0,1,...,L,

we define for all 4! i-boxes at level [

Pi(z) = 1[)11(2) + potential from the charges ¢; inside the 27 boxes

from the interaction list
) 27
=Yi(2) + Z Q11(2), (4.76)
k=1

where ®; ;,(2) is the ME of the charges in the kth box from the interaction
list, which is assumed as having been converted into a local expansion
centered in the i-box.

Meanwhile, for [ < L we update to

&H‘l,j(z) = djl,i(’z)? j = 17273743 (477)
where the i-box is the parent of the four children j-boxes.
In the updating step (4.77), the local expansion for the i-box will have its

center shifted to the center of the four children j-boxes, which is made possible
by the following translation operation.

e Local to local translation

A local expansion centered at zy can be translated to a local expansion centered
at 0 by the following identity:

Z ap(z — 20)* = Z b2, (4.78)
k=1 1=0
where

7na AR WA
bz—kz::l k<l>( 0) " (4.79)

As seen from (4.76), the key ingredient in completing the recursion for the
local expansions is the multipole expansions for boxes in the interaction list
on all levels, and those multipole expansions can be obtained with a separate
(upward) recursion to be discussed in Section 4.3.3.
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A recursion for the multipole expansions (L — 0-level)

e Step 1: Start at the Lth level, and compute ME @, ;(2),j =1,2,... AL,
e Step 2: Forl=L—1,...,0, for each i-box on the Ith level, translate the center
of the ME for each of its four children j-boxes, j = 1,2, 3,4, to the center
of the i-box, i.e.,
D1,i(2) = r11,1(2) + Prg1,2(2) + Pig1,3(2) + Prg1,4(2), (4.80)

where the center of the ME ®;44 (2),j = 1,2, 3,4, has been shifted to the
center of the i-box, made possible by the following operation.

e Multipole to multipole translation

Given a ME centered at zp:

P(2) = agl - —_— 4.81
(2) = aglog(: zﬁkzlz_%)k, (451)
it can be translated into another ME centered at zero:
®(2) = aglog(z 4—2{3 (4.82)
where
: -1 apzt
_ -k - _ GoZg
bl = Zakzo ( E—1 ) 71 (4.83)
k=1
and

D(z) — aplog(z) — Z b—ll

=1

P+1
<OCM+R) . |zl > 20+ R, (4.84)

z

N

for any R > 0.

A pseudo-code for FMM

Finally, we summarize the O(N) FMM for electrostatic interactions (Greengard
& Rokhlin, 1987; Greengard, 1988) with the following pseudo-code for the two
recursions involved:

e Upward recursion for multipole expansions (ME) &, ;(z)

Initial: L-level, compute all multipole expansions, @y, ;(z), i = 1,2,...,4".

Loop: do
HL—1>l>0i:12.w&

® Z ® ®;11,(2) - ME for four children of the i-box
i b2 with centers shifted to the center of the i-box

(4.85)
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e Downward recursion for local expansions (LE) ¢ ;(z)

Initial: 1 =0, ¢p1 = 0 and g1 = 0.

Loop: do
If 0 <1< L, for all 4 i-boxes at level I (4.86)
ME ®; j(z) for 27 boxes in the
Yi(2) 1/}1 i(2) + Z Dy 1 ( interaction list of the i-box
converted to LE centered at the i-box
Brot i = s j-box is one of the four children of the i-box,
Bl = P loop over 41 i-boxes at level [ + 1

Conversion operators for electrostatic FMM in R3

The potential of N charges ¢; in R? is given by the following form:

N 1 N 4
= P, = L 4.87
POLIOR e Brsery (4.87)

An L-level oct-tree of nested cubes can be constructed for a cubic box containing

all charges. The same upward pass recursion for the ME and downward recursion
for the LE can be constructed as in the 2-D case. On the [th level, there will
be 8 cubic boxes, and for any i-box at a given [th level, its interaction list now
will contain 189 boxes, which are one box away from the i-box. We will need
the following results on the construction of the ME from a group of charges, a
multipole to multipole translation, a multipole to local conversion, and a local
to local translation (Greengard, 1988).

e Multipole expansion

Given [ charges of strengths {g;}\_, located at {Q; = (p;, v, ;) }}_, within a
sphere of radius a centered at the origin, the potential at P = (r,0,¢) with
r > a from all [ charges can be approximated by the following p-term multipole
expansion using spherical harmonics with a truncation error:

Z Z 1 Yo (0,9)] < 4 (9>p+1, (4.88)

r—a \r
n=0m=-—n

where
l
A=Y lal (4.89)
i=1
and

Mm Z% 041751)7 (490)
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and the spherical harmonics are defined as

|| cos im )
7(n+|m|)P (cos §)e™?. (4.91)

e Translation of multipole expansions

For [ charges of strengths {g; }._, located at {Q; = (p;, v, 3;)}._; within a sphere
of radius a centered at Q = (p, o, B), the potential at P = (r,0, ¢) outside this
sphere is represented by a multipole expansion

n om
Z > Y (0, 6), 1 > a, (4.92)

n= Om_—n

where P — Q = (17,0, ¢’). Then, the ME can be rewritten as another ME
centered at the origin

Z Z T‘J'H ] 0,9), if r>a+p, (4.93)

J=0k=~j
where
Ok ka mAmAJ m p"Y m( ﬁ)
Z Z i : (4.94)
n=0m=—n J
and
" \/(n —m)!l(n+m " 1, otherwise.
(4.95)

Moreover, the series (4.93) can be truncated with the following error estimate:

+1
ZZ prEaRd 50, 9) (iﬂ) Z\ ai (a+p) . (4.96)

j=0k=—j

e Multipole to local expansion conversion

For [ charges of strengths {g; }!_; located at {Q; = (p;, v, 3;) }._; within a sphere
of radius a centered at Q = (p, «v, 8) with p > (¢ + 1)a and ¢ > 1, the multipole
expansion (4.92) can be rewritten as the following local expansion inside the
sphere of radius a centered at the origin:

00 J

P)=>" > LYY/ (0.0)0, r<a, (4.97)

7=0 k=—j
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where P = (1,6, ¢) and
n OmeAnLAkYm k ,
Z 3 2 ]+n1 (a ﬁ)’ (4.98)
Aj+n p]+n+

n=0 m=—n

where

(4.99)

m

g _ (=1)™ (=1)mindlm LIm} i mm > 0,
T (=™, otherwise,

and A™ is defined as in (4.95).
Moreover, the series (4.97) can be truncated with the following error estimate:

p J o ; 1 l 1 p+1
_ Z Z LIY(0,0)r7| < (e 1)a- |4 (C) . (4.100)

j=0k=—j i=1

e Translation of local expansions
Let Q = (p, a, 8) be the origin of a local expansion:

P n
P)=> > oy, ¢, (4.101)

n=0 m=—-n

where P = (r,0,¢) and P — Q = (+',0’,¢'). Then, the local expansion can be
rewritten as another local expansion centered at the origin:

= Ep: i: NYF(0, 0)r (4.102)

j=0 k=—
where
p n Ome Am—kAl@pnijmfk(a ﬂ)
_ n—jm—k*n—j “%j n—j )
=> > Yo : (4.103)
n=j m=-—n
and
(—=1)ntm, if mm’ <0,
Jmo=S (=0 (=)™ i mm > 0, |m!| < |ml, (4.104)
(=)™, otherwise.

Helmholtz FMM of wideband of frequencies for N-current
source interactions

In this section, we will consider the interaction from N sources distributed at X;
with strength I;, i = 1,2,..., N. Each of the (current) sources I; will generate an
oscillating field at a location r away from X; governed by a Helmholtz equation:

(2-D) - (A+E)®=6(r), O(r)= iHSQ)(MrD, (4.105)
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and
) e—ik|r|
(3-D) — (A+ k)P =6(r), O(r)= —. (4.106)
4rr|
Therefore, in the 2-D case, the interactions between all the sources can be
written as

N
(X)) = Y. LHP (KX, - X)), i=12... N, (4.107)
J=1,j#i

where H ) denotes the zeroth-order Hankel function of the second kind and k
represents the wave number. The FMM will calculate (4.107) with a complexity
of O(N logN) (Cheng et al., 2006b) with a hierarchical quad-tree data structure
by utilizing two kinds of partial wave expansions corresponding, respectively, to
the multipole and local expansions for the electrostatic FMM. For X = (z,v),
denote by p the distance between X and the center of the expansion, by 6 the
angle between X and the z-axis, and let H,, and J,, denote the mth-order
Hankel and Bessel functions. Then we have

e H- or multipole expansion:

d(X) = Z B Hin(kp)e™”, for |X| > max|X,|,  (4.108)
m=—00
where
N
B =3 Lidm (K| X[ ). (4.109)
i=1

e J- or local expansion:

[ee]
O(X)=¢(X)= D amJm(kp)e™, for | X| < min| X; |, (4.110)
where
N
O = 3 LiHp (K| X[ )e™ ™. (4.111)

i=1

Equations (4.108) and (4.110) will be referred to as the H- and J-expansions,
respectively, and they are equivalent, respectively, to multipole and local expan-
sions for the case of the Laplace equation. The H- and J-expansions can be
derived from the addition theorem for the Bessel functions (Abramowitz & Ste-
gun, 1972). In the high-frequency FMM (HF-FMM), the diagonalized form of
translation and conversion operators through far-field forms of wave expansions
is used instead; this, however, will fail to converge when k is very small or the
level of refinement is high. This is due to a divergent property of the Hankel
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function in the conversion operator. Specifically, the far-field forms of the H-
and J-expansions are defined by

F(e) — Z ﬁrne—i(m‘n'/Q)eime7 (4112)
m=—0oQ
GO)= Y e ("M, (4.113)
respectively, where {3,,}° _ and {a,,},,° __ are coefficients of the H- and

J-expansions from (4.108) and (4.110). Then, F(0) is converted to G(6) via a
diagonalized operator (Rokhlin, 1990) as follows:

Gey(0) = v,(0) - Fe (0), (4.114)
where

va(0) = Y TSI (kpys), (4.115)

m=—n

and a subscript in F(f) and G(6) denotes the center of the expansions, p;3 is the
distance between two centers defined by |c3—c1|, and 613 is the angle between the
x-axis and p13. The diagonalized conversion operator v, (#) diverges quickly when
the order of the Hankel function is larger than its argument (m > kp13) because
of the asymptotic behavior of the Hankel function (Abramowitz & Stegun, 1972),
namely

ﬁHl)%AZ)(Ei)nlvﬁﬁﬁ::<—l, (4.116)
m—00 2m \/§
where Hp,(2) = Jn(2) + 1Y (2).

The quad-tree structure as shown in Fig 4.3 for the 2-D Helmholtz FMM is
divided into a low-frequency part and a high-frequency part based on the value of
kR, where R is the size of the box at a level of the tree. In order to overcome the
divergence problem for small k, the tree is divided into two parts, with a cut-off
level based on the quantity of kR. In the tree level with kR < 4/e = 1.471518
(boxes below the cut-off level), a low-frequency FMM (LF-FMM), which uses
the H- and J-expansions and non-diagonalized conversion operator based on the
addition theorem (Abramowitz & Stegun, 1972),

n
=y e OB H(kpaa), (4.117)

j=—n

is used directly to avoid divergence of the conversion operator. Then, at and
above the cut-off level, coefficients of the H- and J-expansions are converted
into far-field forms using (4.112) and (4.113), and the regular HF-FMM is used
for the boxes above the cut-off level. In the actual implementation, kR = 1.5 is
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Level 0,R=20
Level 1,R=10 kR=5
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/ \\ \ LFFMM %\
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Figure 4.3. A quad-tree structure with low- and high-frequency splitting. From Cho &
Cai (2010), copyright (2010) by Elsevier.

used for a safe determination of the cut-off level. The resulting FMM is applicable
for a wide band of frequencies associated with 2-D Helmholtz wave propagations
(Cheng et al., 2006a; Cho & Cai, 2010), and the 3-D version for the Helmholtz
can be found in Cheng et al. (2006b).

Reaction field hybrid model for electrostatics

In Section 2.3, we constructed efficient image methods to represent the reaction
field of dielectric and electrolyte solutions to charges inside a spherical cavity. As
a third method that we can use to handle the electrostatic interaction, we con-
sider a hybrid multi-scale approach which combines the explicit atomic Coulomb
interaction and the implicit dielectric model of electrostatic interactions. For ex-
ample, in a hybrid model for biomolecular solvation a central part of the simu-
lated system contains the solute and some solvent, which is considered in atomic
detail, while the remaining part is treated as a dielectric continuum. Figure 4.4
(left) describes such a model (Lin et al., 2009, 2011b): the larger sphere contains
the particles to be simulated by the molecular dynamics based on Newtonian
mechanics with electrostatic and non-electrostatic forces acting on each particle;
outside the larger sphere, the solvent medium is represented by a dielectric con-
tinuum with dielectric constant €,, and possibly also with an ionic concentration.
Within the larger sphere, a smaller sphere with radius R, is embedded with a
separation 7. The region between the two concentric spheres is a buffer region,
which is an important component of the hybrid model to reduce the surface effect
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Figure 4.4. A hybrid model with (left) a cubic simulation box and (right) a truncated
octahedron (TO) simulation box. From Lin et al. (2009), copyright (2009) by
American Institute of Physics.

and produce a homogeneous environment within the central region of the model.
Finally, a simulation region in the shape of a cubic box is embedded inside the
smaller sphere, away from the buffer region. Only the particles inside the cubic
box will be simulated dynamically; the particles outside the cubic box but inside
the larger sphere are in fact periodic image copies of those inside the cubic box,
and therefore they are not independent particles and will not be used for calcu-
lating structural (radial distribution function, RDF) and dynamical (dielectric
constant) quantities for the system under simulation.

In the model shown in Fig. 4.4 (left), the larger sphere surface, where the
explicit and implicit model of electrostatic interaction meet, is used for the cal-
culation of the reaction field for all particles inside. The cubic box will also be
used for the periodic treatment of non-electrostatic forces such as van der Waals
forces, etc. The region inside the cubic box, which is not imaged outside the
cubic box, will be considered as the effective production region where statistics
on the particle trajectories during molecular dynamics simulation will be used
for analysis of the biomolecules embedded within the production region.

Two types of potentials are acting on the charges in the explicit solvent part
of the larger sphere. Firstly, it is the direct Coulomb potential, through which
the charges interact with one another, ®g. Secondly, it is an indirect potential
that results from the polarization of the continuum solvent region by the explicit
charges inside the larger sphere, referred to as the reaction field, ®,s. The total
potential inside the explicit region is expressed as & = g + D,y.

Based on the result in Section 2.3.2, the reaction field potential can be ap-
proximated by N; = M; + 1 image charges as follows:

M;
qx 1 dm

R + dme = |r — x|’

Pye(r) (4.118)
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where the Kelvin image charge and location gy, ry are given in (2.124) and (2.125)
and the rest image charges ¢, and x,,,, 0 < m < M;, are given in (2.137) and
(2.138), respectively.

In summary, let (g;,r;), 1 < i < N, be all the charges and their locations
inside the bigger sphere where the electrostatic interaction will be computed.
Then, the electrostatic potential acting on any given charge r; will be calculated
by the following two sums:

N

K3
l 12;# 4% Irl - r]‘ + z;<I>rf(rj), (4.119)
where the first sum corresponds to the direct Coulomb interaction from all other
charges except r; itself, and the second sum is due to the reaction field of all
charges r; inside the sphere, and the NV; image charge approximation (4.118) is
used to compute all reaction fields.

A periodic boundary condition (PBC) will be used, in reference to the cubic
box, or better a truncated octahedron (TO) box, for non-electrostatic interac-
tions to suppress surface effects in computer simulations.

A TO box (shown in Fig. 4.4 (right)) is preferred in order to maximize the
size of the production region. In Fig. 4.4 (right), the TO box A is built from a
cube of length L by cutting eight corners at a distance L/(41/2) from the center
of its sides, and the figure shows the cross-section of the truncated octahedron
in the xz plane if the cubic box from which it is created is centered around
the origin. The simulation TO box has 14 faces, including 8 hexagonal faces
and 6 square faces, and 24 corners, all of which are equivalent. The distance
from the origin to a square face is L/2, to a hexagonal face v/3L/4, and to a
corner R, = \/5L/4. There are 14 nearest neighbors of the central simulation
box, each resulting from a translation through an appropriate side of the TO.
Particles in these neighboring boxes that are at a distance R. + 7 or less from
the origin form a buffer layer around the central simulation box, which we refer
to as Region III. Together with the simulation box A, the buffer layer forms the
local volume of a spherical cavity I'. All charges in I will produce the reaction
field, to be computed using the image charge method. The particles inside the
simulation box that give rise to Region III through periodic imaging are denoted
as Region II. The remaining particles in A, which are not periodically imaged,
are labeled as Region I. This region is the productive part of the simulation
box in which a solute may be solvated presumably without experiencing many
artificial electrostatic solute-solute interactions. The size of this region, d, can
be determined by comparing the points of furthest and nearest separation of
particles in A from the center of the box. For a TO shown in Fig. 4.4, d =
L(vV3 —/5/2) — 21 = 0.61L — 27. The same quantity for a cubic box is d =
L(2 —V/3) — 27 = 0.27L — 27. Comparing these two quantities, the advantage
of using the TO box becomes obvious. For L = 45 A and 7 = 5 A, for instance,
the TO box allows simulations of solute molecules with diameter < 17 A. These
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same parameters for a cubic box result in d = 2 A, which is not meaningful from
the molecular size point of view.

To evaluate the electrostatic forces within the simulation box A, the FMM is
used for the interaction of all charges in the box A, plus their periodic images in
Region IIT and all image charges outside the cavity I', with all charges being taken
as acting in a homogeneous medium of dielectric permittivity €;. Considering that
only the force within the simulation box A needs to be evaluated, a simple but
more efficient way would be to calculate the interaction between the charges in
A and the periodic/image charges far away from A directly by a local expansion.
Specifically, we introduce another reference sphere S, of radius kR, centered at
the origin with £ > 1. The evaluation of the field within the TO box A due
to the charges inside this reference sphere is carried out by the FMM. For all
periodic/image charges outside this reference sphere, the potential field at a point
r = (r,0,¢) inside the box A generated by these periodic/image charges can be
described by a local expansion

p J

o)~y > LE-YO,6) 17, (4.120)

J=0k=—j

where p is the local expansion order, ij(ﬂ, @) are the spherical harmonics, and
L? are the local expansion coefficients given by

L —k
Y (o, Bir)
k N )
=Yg JpT, (4.121)
=1 1

Here, ¢;,1 = 1,2,..., L, are the periodic/image charges outside S, with (p;, ay, 8;)
as their locations. Consequently, the force f(r) = (f4(r), f,(r), f-(r)) exerted on
a particle ¢ at r = (r,0,¢) inside A by these periodic/image charges can be
calculated using

fulr) = —q%@(r) — —q-Re(H; — Hs), (4.122)
fy(r) = —qagy@(r) = —q-Tm (Hz + H3), (4.123)
f.(r) = —q%@(r) = —q- (Ho + 2Re(H))), (4.124)

where Re(---) and Im(---) represent the real part and the imaginary part of a
complex number, respectively, and
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Figure 4.5. Density across the diagonal of the truncated octahedron (TO) box: (left)
45 A simulation TO box; (right) 60 A simulation TO box. From Lin et al. (2009),
copyright (2009) by American Institute of Physics.
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The model has been validated by several biological systems (Lin et al., 2009,
2011b) including homogeneous pure water and ions solvated inside water. In
those studies, the structural and dynamical properties have been shown to agree
well with results from the PME, which is known to be accurate for homogeneous
systems. Figure 4.5 shows the relative particle density p, as a function of the
position in the simulation box with L =45 A and 60 A and 1 =2 A, 4 A, 6 A,
and 8 A (sampled at 11 equi-spaced positions along a line that connects two
opposite vertices of the TO box). It is seen that 7 = 2 A produces a noticeably
non-uniform density where the density at the edges of the simulation box is
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Figure 4.6. Dielectric constant calculated within a spherical region of radius indicated
by the horizontal axis. Left: Dielectric constant vs the thickness of the buffer region 7;
right: dielectric constant vs the number of image charges in approximating the
reaction field. N; = 0 indicates no reaction field. From Lin et al. (2009), copyright
(2009) by American Institute of Physics.

about 10% lower than the average density. Buffer size 7 > 2 Aleads to a uniform
density distribution.

In addition, dielectric properties were evaluated by computing the dielectric
permittivity constant e using the formula given in (1.131) in terms of the total
dipole moment M(R) of a spherical sample with radius R. The radius of the
sample also has an upper bound, R. + 7, defined by the geometry of the model.
The maximum allowed R cannot be used in the calculations, however, because
the sphere then contains periodic images of water molecules. As a linear response
approximation, the dielectric constant relies on the quadratic fluctuations of the
total dipole moment M(R), which, as (1.131) shows, scale linearly with the
sample volume. If periodic images are present in a sample, the linear scaling
of (M?(R)) is violated, thus invalidating the fluctuation formula. Therefore the
radii in the calculations are limited to R < Rpax = \/?;L/4, ensuring that only
one copy of each water molecule is considered. The remaining layer of water
Ruax < R < R.+ 7 acts as part of the dielectric continuum. Its dielectric
permittivity € = e is set self-consistently in the calculations using (1.131). It
was found that only a few iterations are needed between e and € to achieve
convergence.

Figure 4.6 shows the dielectric constant e(R) with the number of image charges
N; varying from 0 to 3 for L = 60 A and 7 = 4 A, as a function of the radius of
the sampled sphere in the total dipole moment fluctuation M(R) in (1.131). Note
that N; = 0 means that no reaction field contribution is included in the model,
and the data shown in Fig. 4.6 (right) therefore reveal that the reaction field is
essential for maintaining a uniform dielectric response throughout the simulation
box (Wang & Hermans, 1995; Rodgers & Weeks, 2008; Song et al., 2013).
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Summary

Many-body interactions form the key computational step in computing the ef-
fects of long-range forces. The PME provides an O(N logN) solution for peri-
odic systems in lattice systems, while the FMM gives an O(N) for electrostatic
interactions and O(N logN) for waves in a finite system with or without peri-
odic boundary conditions. The reaction field approach, together with its image
charge representation, provides a multi-scale model for treating electrostatic in-
teractions, and reduces the size of the many-body systems, which can be readily
handled by the FMM or other related fast algorithms (Barnes & Hut, 1986; Ying,
Biros, & Zorin, 2004).
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5.1

Maxwell equations, potentials, and
physical/artificial boundary
conditions

In this chapter, we will first introduce the time-dependent Maxwell equations
and solution representations using scalar and vector potentials. Then, physical
boundary conditions involving interfaces between dielectrics and conductors will
be discussed. For computing scattering fields in infinite domains, several types
of local artificial boundary conditions for computational domains will be pre-
sented, including the Engquist-Majda one-way boundary conditions, the high-
order Bayliss—Turkel boundary conditions in auxiliary variable forms, and the
uniaxial perfectly matched layered (UPML) boundary conditions.

Time-dependent Maxwell equations

The electric field E and the magnetic flux density (or induction) B in media are
related by Faraday’s law of magnetic induction:

0B
E:_if‘]ma 1
V x ot (5.1)

where a magnetic current J,, is introduced for mathematical symmetry of the
Maxwell equations only as there are no naturally found magnetic charges.

The electric field E gives the electric force experienced by a test charge @) in
(1.2), and the magnetic flux density B together with the electric field E will
produce a Lorentz force on a moving test charge Q with a velocity v in the
Lorentz force law,

F=Q(E+v xB), (5.2)
and a torque N on an atomic magnetic dipole m,
N =m x B, (5.3)

where the atomic magnetic dipole moment m is produced by an electron circu-
lating around the nucleus, the direction of which is normal to the plane of the
moving electron. As there are no magnetic charges, the term “magnetic dipole”
has no direct analogy with the definition of an electric dipole moment (1.8).
In (5.1), E and B are considered to be the fundamental physical quantities in
electrodynamics, whereas the displacement flux D and the magnetic field H are
derived quantities.
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Magnetization M and magnetic field H

As in the polarization of electric dipole moments under external electric fields in
dielectrics discussed in Chapter 1, a similar physical process called magnetiza-
tion acts on the atomic magnetic dipole moment m; inside the material under
external magnetic fields, and this is represented by a magnetization density M.
In analogy to the polarization density P discussed in Section 1.2, we define the
magnetization density M as

M = ZN (m,), (5.4)

where N; is the number density of i-type atoms with atomistic magnetic moments
m;. A magnetization current J,,, = V x M will be generated to produce magnetic
fields similar to those produced by a charge current J; both currents together
will form the total magnetic flux density B inside a material, in a similar manner
as for the electric field E inside a dielectric material, (1.47).

The magnetic flux density B under a steady free charge current density J.
along any loop C' is given by the Biot—Savart law (Jackson, 2001):

B(r) = Ho /C Je x (=) dr’, (5.5)

 A4n |r—r/\3

where 1 is the vacuum permeability, jo = 1.257 x 1075 H - m~!. By using the
identity (r —r') /v — r'|> = =V(1/|r — r|), B(r) can be rewritten in terms of a
vector potential A as

B=VxA, (5.6)

where
_ Mo Je

A(r) =
(r) 47_(_ c ‘r_r/|

dr’. (5.7)

By a simple calculation, Ampere’s law,
V x B = pgde, (5.8)

is obtained, and Gauss’s law for the magnetic induction holds (by the virtue of
the curl form in (5.6)):

V-B=0. (5.9)

With magnetization M in a material, the magnetization current J,,, =V x M

will contribute to the magnetic flux density, which can be included by modifying
the vector potential A in (5.7) to

A(r) = @/ e + VxM) dr’. (5.10)
4 J o |r—r/|

Then, Ampere’s law (5.8) becomes

V x B = pp(Je + V x M). (5.11)
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Next, we define a constitutive relation between the magnetic flux density B and
the derived magnetic field H:

1
H=—B-M. (5.12)
Ho

For isotropic linear media, (5.12) will give a linear relation between H and B,
1
H=-B, (5.13)
1

which transforms (5.11) into Ampere’s law in materials:
VxH=1J,. (5.14)

For a time-dependent electric field, the displacement current 0D /0t was added
by Maxwell in 1865 (Maxwell, 1891) to the right-hand side of (5.14), resulting
in the Ampere-Maxwell law:

Vtza—D+JE, (5.15)
ot
where the electric current J. measures the flow of free electron charge p. in
amperes/square meter (A/m?) and the unit for the magnetic current density J,,
is the weber /square meter (web/m?).

We can examine the various current contributions on the right-hand side of
(5.15). By using the definition of the electric displacement flux D in terms of
the polarization density P in (1.25), the Ampere-Maxwell law (5.15) can be
rewritten as

OE
VXHZGOE—FJP‘FJE, (5.16)
where a polarization current J, is defined by
oP
J,=—. 5.17
p at ( )
In addition, we have two Gauss’s laws for D and B, respectively:
V-D = p,, (5.18)
VB =pn(=0). (5.19)

Fquations (5.1), (5.15), (5.18), and (5.19) form the complete time-dependent
Mazwell equations in materials.

As a result of the Maxwell equations, the electric charge p., the magnetic
charge p,,, and the corresponding current densities obey the following continuity
equations:

Ipe _
Vo Jo+ 5 =0, (5.20)
V.3, 4+ 2y (5.21)

ot
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Inside a conducting material the electric current J. is related to the electric
field through Ohm’s law:

J.=0oFE, (5.22)

where o is the conductivity of the material.

For time-harmonic fields, where the time dependence is assumed to be har-
monic, i.e., exp(iwt), the Maxwell equations (5.1), (5.15), (5.18), and (5.19),
with the time-harmonic dependence factored out, and the constitutive relations
D = ¢E and B = pyH, can be rewritten for the Fourier transform of the fields
(keeping the same notation):

VXxE=—-iwuH-1J,,

(5.23)

V x H = iweE + J., (5.24)
V-D=p,, (5.25)
V-B=pn. (5.26)

Then the continuity equations will read

V- Je +iwp. =0, (5.27)
V- Jn +iwp, = 0. (5.28)

e Vector wave equations

The electromagnetic fields E and H can be shown individually to satisfy the
following vector wave equations. By dividing (5.23) by u and applying the curl
operator VX, we have

1 1
VXx -VXxE=—-iwVxH-Vx—-J,,. (5.29)
M M
By using (5.24), the following vector equation for the electric field E is obtained:
1 1
Vx—-VXE - wE = —iwJ, =V x —J,,. (5.30)
H Iz

Similarly, we can derive a vector equation for the magnetic field H:

1 1
Vx-VxH-wpH=—-iwl, +Vx-J. (5.31)
€ €

Vector and scalar potentials

Vector and scalar potentials are quantities useful in constructing solutions to the
Maxwell equations, especially when we discuss the integral equation representa-
tions of electromagnetic fields in Chapter 7. These potentials are based on the
following Helmholtz vector decompositions (the Hodge decompositions).
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Theorem 5.1 (Helmholtz vector decomposition) For a differentiable vec-
tor field W (r) = (Wy(r), Wa(r), Ws(r))T, r € Q C R3, where Q is simply con-
nected with a Lipschitz-continuous boundary, there exist a unique vector potential
®(r) and a scalar potential q(r) (unique up to a constant) such that the following
orthogonal decomposition holds:

W=W; +Wy =V x®+ Vg, (5.32)

where W1 = V X ® is the solenoid field with zero divergence and Wo = Vq is
the irrotational field with zero vorticity, and ®(r) and q(r) satisfy the following
elliptic systems with corresponding boundary conditions:

—V®=VxW, V-®&=0, (5.33)
nx®=0 on 09, (5.34)
and
V=V W, (5.35)
Vg-n=W-n on 00. (5.36)

The proof for the above Helmholtz decomposition can be found in Girault &
Raviart (1986, corol. 3.4) for more general vector fields with weaker smoothness.
If Q = R3, then a boundary condition at infinity will be given instead.

Electric and magnetic potentials for time-harmonic fields

Based on the Helmholtz vector decomposition (5.32) in R3, we can express the
electromagnetic fields E and H in R? in terms of potentials (Harrington, 2001).
As the Maxwell equations (5.23) and (5.24) are linear, by the principle of linear
superposition, we will consider the fields caused by the electric currents and
charges and those by the magnetic currents and charges separately.

Firstly, we will assume zero magnetic current and charge, i.e., J,, = 0 and
pm = 0. Then we have from (5.26)

V-B=0. (5.37)

Using (5.35) and (5.36) in R? (with the vanishing boundary condition at infinity)
with zero right-hand side, we can see that the Helmholtz decomposition (5.32)
for the vector B implies that there exists a vector potential, say A, such that

B=VxA. (5.38)
Substituting (5.38) into (5.23), we have

V x (E +iwA) = 0. (5.39)
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As a result, using (5.33) and (5.34) with zero right-hand side, the Helmholtz
decomposition (5.32) for the vector field E + iwA implies that there exists a
scalar function, say V., such that

E +iwA = —VV,. (5.40)
Thus, we have
E=—-iwA -VV,. (5.41)
Substituting (5.41) into the vector wave equation (5.30) for E, we obtain
V x iv x A — wPeA + iweVV, = I, (5.42)
and, after using the vector identities
Vxcef =Vexf+4+cVxf (5.43)
and
VxVxA=-V*A+V(V-A), (5.44)

(5.42) becomes
1
—V2A - KA +V(V - A) +iweuVV, + u (vﬂ) xVxA=puJ,. (545)

As (5.38) only specifies the vorticity of the vector field A, there is one more
degree of freedom on A, namely the divergence of A, which is set in the Lorentz
gauge (Stratton, 1941) as

V- A =—iweuVs. (5.46)
Then, (5.45) for A is simplified to

1
VZA + KA —p (vu) XV xA=—nJ., (5.47)
where the wave number k is defined as

k?* = w?ep, (5.48)

and, when p is a constant, (5.47) becomes a Helmholtz equation for the compo-
nents of A:

VA + E*A = —uJ.. (5.49)

By taking the divergence V of (5.49) and using the continuity equation (5.27)
and the Lorentz gauge condition (5.46), the scalar potential V. is shown to satisfy

1
V3V, + k*V, = —pe. (5.50)

Finally, the electric field E has the following representation in terms of the
magnetic potential A:

E = —iwA +

V(V-A), (5.51)

iwep
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and the magnetic field H is given by
1
H= EV x A. (5.52)

Similarly, we can construct the fields in terms of potentials when J. = 0 and
pe = 0, where an electric vector potential F satisfies

1
V2F 4+ k?F —eV= x VX F = eJ,,, (5.53)
€
which simplifies to the following equation when € is a constant:
V2F 4 k?F = eJ,,, (5.54)
and the scalar potential given by a similar gauge condition to (5.46) satisfies
1
V2V, + KV, = P (5.55)
As a result, we have
1
E= EV x F, (5.56)
) 1
H=iwF — - V(V-F). (5.57)
iwep

Finally, for general non-zero electric and magnetic currents, with the principle
of superposition, combining (5.51) with (5.56) and (5.52) with (5.57) we have
the potential representation of the electromagnetic fields (Harrington, 2001) as

follows:
1
E=-VXF —iwA + - V(V-A), (5.58)
€ iwep
1 1
H= -V x A +iwF — - V(V-F). (5.59)
I iwep

Physical boundary conditions for E and H

Interface conditions between dielectric media

Skin depth of conductors and surface currents J. ()

For a conductor with finite conductivity, the electromagnetic fields can only
exist within a thin layer (with a skin depth 0) in the conductor. The skin depth
0 depends on the frequency w of the electromagnetic fields and the permeability
w1 and conductivity o of the medium (Ramo, Whinnery, & van Duzer, 1994):

(5.60)

where the frequency f = w/(27).
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Within the skin depth §, E and H decay exponentially into the conductor. For
most applications, we could model the effect of the skin depth by means of an
effective surface current J,(4) by ignoring the skin depth, defined as

)
Joi() = / J.(p.€)d¢ (A/m) (5.61)

for any point p on the conductor surface S, with the integration along the normal
of S. Note that the surface current J.(,) only has components tangential to S.

As the conductivity increases, the electromagnetic fields of non-zero time fre-
quency w will tend to zero inside the conductor, and will eventually become
zero for a perfect electric conductor (PEC), for which 0 = oco. The static elec-
tric and magnetic fields for a PEC are defined by a limiting process of w — 0
(Jackson, 2001, sect. 5.13, p. 203) while still maintaining wuo — oo; therefore,
they are also zero inside the PEC.

Interface conditions between media

When two media with different electric and magnetic properties, (e, p1) and
(€2, p2), meet at an interface S with a normal n pointing towards medium 2, the
Maxwell equations should be supplemented with the following interface condi-
tions:

mxH =nx (H —H)=J.., (5.62)
mxE]=nx (Ey—E;)=—J,), (5.63)
m-B]=n-(ueHs — p1iHy) = pin(s), (5.64)
D] =n-(E; — e E1) = pe(s). (5.65)

In (5.62)—(5.65), possible surface currents and charges are assumed to reside
on S; this occurs as an idealization of a metallic thin layer sandwiched between
the two dielectric media, as discussed in (5.61), or artificial surface currents could
be introduced as equivalent sources on S to represent the field effects from the
medium to one side of the interface (Harrington, 2001). This equivalence principle
will be discussed in the formulation of integral equations for the electromagnetic
fields in Chapter 7.

In particular, if one medium (medium 1) is a PEC in which both the electric
and the magnetic fields vanish, we have the following boundary conditions for
the field tangential components on the surface of the PEC:

nx E; =0, (5.66)
n X H2 = Je(5)7 (5.67)

where the surface current J,) is supported on the surface of the conductor, and,
for the normal components,

n-E; = Pe(s)s (568)
n-H, = 0. (5.69)
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Leontovich impedance boundary conditions for conductors

Surface impedance Z; and impedance boundary conditions

In many scattering applications, we are interested only in the electromagnetic
fields external to the scatterer, without much need for the explicit fields in-
side. The effect of the interior fields could be taken into account by introducing
appropriate boundary conditions on the surface S of the scatterer through a sur-
face impedance quantity z, (Ramo, Whinnery, & van Duzer, 1994). The surface
impedance represents the energy dissipation of the electromagnetic fields by the
scatterer’s surface, and is related to the skin depth § and the conductivity o of
the scatterer medium by
(1+1)

ad
where Ry = 1/(0d) and L; = Rs/w = 1/(wod) are the surface resistivity and the
inner inductance, respectively. For typical metals, at 300 K we have for silver
o = 6.17 x 10" S/m, § = 0.0642f/2 m, R, = 2.52 x 1077 f%/2 Q, and for
aluminum o = 3.72 x 107 S/m, § = 0.0826 /2 m, and R, = 3.26 x 10~7 f1/2 Q
(Ramo, Whinnery, & van Duzer, 1994).

To derive the impedance boundary conditions on a conductor, we consider the
interface conditions between two dielectric materials:

Zs —

= R, +iwL;, (5.70)

[n x E] =0,
[n x H] =0,
[en - E] =0,
[un-H] =0 (5.71)

Inside the conductor, from Ohm’s law (5.22), the conduction current J, = cE

and the time-harmonic Maxwell equations (5.23) and (5.24) become
V xE=—iwuH,
(5.72)
V x H = iwéE,

where
i (5.73)

™
Il
a
\
ISHES

Using the vector identity
VX(\fEE)zv(\fz)xEJr\/évXE, (5.74)
we obtain an equation for the scaled electric field (Senior & Volakis, 1995):
V x (fg E) +VEE x VInvVe = —ikony/ H, (5.75)

where the wave number and the refractive index are given by

k3 = eoprow?, n=y| GZZO. (5.76)
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Similarly, we can derive an equation for the scaled magnetic field:
V x (Vi H) + i H x V (In /i) = ikgnVe E. (5.77)

For a good conductor, we can assume that the refractive index n is large,
expressed in terms of a small parameter ¢:

n= % g<1, (5.78)

and the field quantities E' and H’ inside the conductor are assumed to have the
following representations in terms of a phase function :

VEE = Ae kov/a, (5.79)
Vi H = Be hov/a, (5.80)
Using the identities
V x (\fg E') = (v x A — ”i‘)vw X A) e~ tkov/a (5.81)
q
Vx(ypH) = (V x B — lk—ovw X B) e tkov/a, (5.82)
q

(5.75) and (5.77) become

q B
WA+ VY xB=—"t/uVx —, 5.83
P lkO\/ﬁ NG (5.83)
q = A
WB-ViyxA=— —Vevx . 5.84
v iko Ve ( )

By considering an asymptotic expansion for both A and B in terms of the
small parameter ¢,

A=A0+qA1+C]2A2+"'7 (5.85)
B=B)+¢Bi+¢By+---, (5.86)

and substituting the series into (5.83) and (5.84) and equating the coefficients
according to the powers of ¢, the zeroth power of ¢ yields

wAp+ Vi x By =0, (5.87)

wBy — VY x Ay =0. (5.88)
After eliminating By, we have

(w? = |V¥l*) Ag =0, (5.89)
and the following Eikonal equation is obtained for the phase function:

VY| = w. (5.90)
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To proceed, we assume that the interface S is smooth, and that E and H vary
slowly along the surface S. For a zeroth-order approximation, we can assume
that ¢ is constant on S, namely that S is a level set curve of the function .
Thus,

Vi | n. (5.91)
Therefore, (5.90) implies
Vi = —wn. (5.92)
From (5.87) and (5.88), we have
Ap=nxBjy, By=-nxAy, (5.93)
which imply
Ao L By L n. (5.94)

Let us introduce local coordinates (a, 3,7) on the surface S. The continuity
condition of the tangential components of EE and H becomes

Ao (0. = VE Elas) = VE Eap),
Bo(.p) = VI Hio gy = VIt Hiap)s (5.95)

resulting in

E, =-Z,Hs, Eg = Z H,, (5.96)

where Z, = /p1/€ is the intrinsic surface impedance.
Finally, the zeroth-order impedance boundary condition reads (Leontovich,
1948)

nx E=Zmnx (nxH). (5.97)

Higher-order impedance boundary conditions taking into account the surface
curvature effects have also been derived in Senior & Volakis (1995) in addition
to the zeroth-order boundary condition given above.

Sommerfeld and Silver—Miiller radiation conditions

The behavior of electromagnetic fields at infinity is characterized by a radiation
or outgoing wave condition, which embodies the physical reality of scattering
waves from finite objects radiating away to infinity without reflection from infin-
ity. Such a condition also ensures mathematically the uniqueness of the solution
of the exterior Helmholtz wave equations. In the case of a scalar wave equation,
the radiation is given by the Sommerfeld radiation condition (Sommerfeld, 1949)
while for electromagnetic wave scattering it is given by the Silver—Miiller radia-
tion condition (Colton & Kress, 1992).
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e Sommerfeld radiation condition for an exterior time-harmonic scalar wave:
consider the Helmholtz equation in the exterior 2¢ of a finite domain 2,

Au+ ku =0, r € Q°,

ou (5.98)
ulon =uq or —| = up,
on |5,
together with the Sommerfeld radiation condition,
‘ +iku| = O(r™?) as r — oco. (5.99)

e Silver—Miiller radiation condition for an exterior time-harmonic electro-
magnetic scattering: denote by E and H the time-harmonic electromagnetic
fields generated by sources in a finite region. Then, as r — oo, we have

Ve H x & —eE|=0(?), (5.100)
Ve E x t+p H| = 0(r?), (5.101)

where t is the unit normal for r. By Faraday’s and Ampere’s laws, (5.100)
and (5.101) can be rewritten in terms of E and H only (Miiller, 1969, p.
137) as

|t x V x E—ikE| = O(r~?), (5.102)
|t x V x H—ikH|=0(r?). (5.103)

The radiation conditions ensure the uniqueness of the solution of the exterior
wave problems, as illustrated below for the scalar Helmholtz equations for the
scalar wave problem (Nédélec, 2001).

Theorem 5.2 The exterior Helmholtz problem has at most one solution.

Proof To prove the uniqueness, we can let ug = 0 or v, = 0 and integrate
(5.98) multiplied by the function @ and apply Green’s formula to arrive at

—/ VuVu dr+/ % ds+k2/ |u|? dr = 0, (5.104)
% Ir|=R “or %

where V =Q°N{r: |r| > R}.
For r € B, = {r: |r| > R}, we have the Fourier expansion for the solution u:

NS (kr) h(2)(k)>
u(r, 0, My_(kr) ——= | Y""(0, ¢),
9=3° 3 (or it o gt ) v

where hl(l)(r) and hl@) (r) are the Hankel functions of the first and second kind
of order [, respectively.
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We need to show that ;" = 3" = 0. Using the asymptotics as r — +o0:
ikr —ikr
1 1€ 2 1€
hi (k) ~ (<) —, P (k) = (D) —,
r r
and
. + iku = Z Z [ (f)al <86 h(l)(kT) +ih 1)(kr)>
=0 m=—1 Ly " (kR) \OT
kB ( 9 (2 . (2)
hy™ (kr) +1h" (kr) | | Y™(0, 9),
h (kr) \Or : l
the Sommerfeld radiation condition implies that
o' =0, Vim.
Next, taking the imaginary part of (5.104), we get
Im < / (TR(u),u)ds> ~0, (5.105)
|r|=R
where Tr(w) is a capacitance operator defined for any w =" 4/"Y;"(6, ¢):
[’} l 1
Z Z RZZ (ER)"Y,™ (0, 9),
1=0 m=—1

with Z(r) = raﬁ (h<2>( )) /P ().

Using the orthogonality property of the basis functions Y;*(,$) over the
sphere [r| = R, for any two functions u = >, > a"Y;"(6,¢) and v = >, >

BY;™ (0, ¢), we have the following identity (Nédélec, 2001):

/| R(u,f)ds = Z Z o B
ri= I m

Then we have

Im(ZZBl —7Z;(kR) Bl>=0.

As Im(Z;(kR)) > 0, we have |f]"| = 0; thus, u = 0 for 7 > R. As a result
of the analyticity of the solution u in ¢ (assuming that the boundary of 2 is

smooth enough), we conclude that u = 0 in Q°.

O

Remark 5.8 The Sommerfeld radiation condition can be also given in a weaker

integral form:

@Jrik:u
,

2
ds — 0 as R — +o0. (5.106)
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Absorbing boundary conditions for E and H

In this section, we will discuss artificial absorbing boundary conditions, which are
imposed on the boundary of a truncated infinite physical domain within which
numerical solutions for wave equations are sought. These boundary conditions
ensure minimum non-physical reflection at the boundary and overall stability
and accuracy of the numerical schemes, while being easy to implement. There
are two types of artificial boundary conditions, local and global. In the former,
only local values of the solutions or the derivatives of the solutions are used
for the boundary conditions at a given boundary location, whereas the latter
involves global information from the solution on the boundary. Here, we will
mainly discuss the local boundary conditions due to their easy and cost-efficient
way of implementation.

Global boundary conditions can be obtained by the Dirichlet-to-Neumann
(DtN) mapping for the time-harmonic wave equations (Keller & Givoli, 1989;
Givoli & Keller, 1990; Han & Wu, 2009) and its inverse Fourier or inverse Laplace
transform for the time-domain wave equations (Hagstrom & Lau, 2007; Chen &
Nédélec, 2008). This approach is global on the boundary and also involves a time-
convolution integral of global nature for transient problems. In order to reduce
the cost and memory associated with the time convolutions efficient calculations
have been proposed in Alpert, Greengard, & Hagstrom (2000, 2002). Meanwhile,
local in time/global in space boundary conditions have been proposed by Grote
& Keller (1996) (for spherical boundaries) or with Kirchhoff representation (Ting
& Miksis, 1986; Teng, 2003) (for general boundaries) or equivalent sources on
the boundary (Tsynkov, 2004). Global boundary conditions based on the DtN
mapping for a scalar Helmholtz equation will be discussed in Section 13.2.1.

One-way wave Engquist—-Majda boundary conditions

Engquist & Majda (1977) introduced the one-way wave differential equation on
the solution domain boundary where only waves propagating in one direction
(the out-going direction) will pass the boundary without reflection. The original
derivation of the Engquist—-Majda boundary condition is based on the factoriza-
tion of the second-order wave operators with pseudo-differential operators, and
the latter is then approximated by the Padé approximations, resulting in a one-
way differential operator on the boundary. Here, a derivation based on the wave
dispersion relation given in Trefethen & Halpern (1986) will be shown instead.
Consider the 2-D scalar wave equation with wave speed ¢ = 1 for u(z,y, t):

The plane wave solution for (5.107) with wave numbers (£,7) and frequency
w is

u(a,y,t) = el@tsetny), (5.108)
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For (5.108) to be a solution of (5.107), the following dispersion relation should
hold between the frequency and the wave numbers:

w? =& 4192 (5.109)

To examine the waves propagating along the £x direction, we solve for the
wave number £ in terms of the frequency w and wave number 7:

§=+wV1-s? (5.110)

where
-n
s= . (5.111)
w

For a given wave frequency and a fixed wave number along the y-direction,
(5.110) clearly shows two wave speeds along the +x and —x directions, respec-
tively. If z = 0 is the right-most boundary and we only want to have right-going
waves as our physical solution, then we should select the + sign solution of
(5.110), namely

§=+wyV1—s? (5.112)

which can be considered as the dispersion for an ideal one-way wave problem to
be imposed on the boundary x = 0.

However, the square root in the wave number—frequency space does not corre-
spond to a differential operator in the physical space. To derive an approximation
using a differential equation out of (5.112), we approximate the square root by
a rational function (Engquist & Majda, 1977; Trefethen & Halpern, 1986) as

V1-s?~ 1;:((5)), (5.113)

where m = n 4 2 or m = n is shown to be able to produce a well-posed boundary
value problem for (5.107). In particular, if we have

1
V11— s2 z1—§s2, (5.114)

then the ideal one-way wave dispersion (5.112) reduces to

1n?
= 1-=-=, 5.115
e=w(1-3%) (5.115)
or, equivalently,
1
fw=w?— 5772, (5.116)
which is exactly the dispersion relation for the following differential equation:
1 1 1
Eu¢t = gutt — §Uyy, (5117)

where the wave speed ¢ is added back.
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Equation (5.117) is the second-order Engquist-Majda equation and is also
known as Mur’s boundary condition (Mur, 1981). The first-order boundary con-
dition can be obtained if the approximation in (5.114) is replaced instead by
V1 — 52 & 1, resulting in a linear dispersion

{=w, (5.118)
or, equivalently, a first-order one-way wave equation:
uy — cuy, = 0. (5.119)

By using different Padé approximations, various one-way wave equation bound-
ary conditions can be derived, including the following Higdon boundary condi-
tion, where non-reflection can be achieved for waves incident to the boundary at
multiple angles (Higdon, 1987):

P
0 0
e =0 5.120
H (cosajat cax>u , ( )
j=1
which can be implemented with the method of auxiliary variables on the bound-
ary as in (5.135) (Givoli & Neta, 2003).

High-order local non-reflecting Bayliss—Turkel conditions

Scalar waves

The Bayliss—Turkel local boundary conditions are based on the asymptotic be-
havior of the wave solutions at infinity (far-field pattern). It can be shown
(Wilcox, 1956) that, consistent with the Sommerfeld radiation condition (5.99),

for r — oo, the following asymptotic expansion holds:

u(r, 0, 6) = e:m S 509 e g0 ( ! ) , (5.121)

(kr)i r r2

=0
where 0 < 0 < 7 and 0 < ¢ < 27, and Fy(0, @) is considered as the far-field

pattern of the wave function wu.
For j > 1,

F;(0,0) =

1 J
(21)7 :OW — 1)+ As]Fo(0, ), (5.122)

where Ag is the Laplace—Beltrami operator on the unit sphere:

L 0 (409 N 1 9?
= — | sinf— —_— .
%7 sing 99 90) " sin® 6 0¢°
The Bayliss—Turkel boundary conditions (Bayliss & Turkel, 1980) create bound-
ary operators B,, on I'r = {r : |r| = R}, which will eliminate as many terms as
possible from the asymptotic expansion (5.121).
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Let

Then it can be shown that

efikr
Bl< - FO)—O. (5.123)

Thus we have

efik:r oo .
Bi(u) = By | — > leii)f) =0 (1> : (5.124)

j=1

e First-order Bayliss—Turkel artificial boundary condition:

Bi(u) = <§+ik+i>uzo, relq. (5.125)

In general, we define the mth-order boundary operator B, as follows:
0 27 —1
B,, = — +ik
]1:1” (3r T T )

o . 2m — 1
= <ar ik = )Bml. (5.126)

e The mth-order Bayliss—Turkel artificial boundary condition

By, (u) =0, relg, (5.127)

and

Bp(u) =0 <R;L+1> . (5.128)

The time-domain version of the Bayliss—Turkel boundary condition can be
obtained by replacing ik by (1/¢)0/0t in the following:

1

o 10 2j-1
B,,LU_H(ar+cat+ . )u(r,t)O, relg. (5.129)

Jj=m

Bayliss—Turkel boundary condition using auxiliary variables

There are two difficulties associated with the boundary condition in (5.129): the
normal derivative and the high-order differential operators. Both difficulties can
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be addressed by the introduction of auxiliary variables wy, defined on the surface
of the sphere I'p (Hagstrom & Hariharan, 1998):

o 10 2%+1 o 10 1
wk+1(++ +>...<++R>u. (5.130)

or cot R or cot
It is clear that we have the following recursion:

0 10 2k+1
~ p— = fi > 1. 131
(8r+06t+ R )wk wg4+1, for k> (5.131)
The boundary condition (5.129) is simply given by
W1 =0, (5.132)

together with the recursion (5.131) starting with
o 10 1
= - 5.133
wWo u, w1, = <a + c ot + ) ( )

In addition, the radial derivative 9/0r in (5.131) can be eliminated by using the
following identity (Huan & Thompson, 1999) on I'g,

0 10 1 1
=z _-Z =—— (A -1 1 134
(b7 ) o= el sk s s
Subtracting (5.134) from (5.131), we have (Hagstrom, 2003)
10 k 1
(Cat + > Wg = 2R2 (AS + k( ))wkfl + iwklea (5135)

which implies that the auxiliary variables have to be defined only over the spher-
ical surface I'g.

Finally, (5.132), (5.133), and (5.135) reformulate the Bayliss—Turkel boundary
condition with the auxiliary variables {wk}}g”:"‘ol on 'k, which can be implemented
with finite element methods (Huan & Thompson, 1999).

Maxwell equations

Even though the scalar Bayliss—Turkel boundary condition can be applied to
each component of the electromagnetic field with auxiliary variables for each
component, there is an analog of the Bayliss—Turkel boundary condition (5.126)
specifically for electromagnetic waves (Peterson, 1988):

2

2(7—1
11 [r x (Vx) — ik — =Y [t % (VX E) —ikEun] =0, relg, (5.136)
j=m :
where E¢,, = —t x (f X E) is the tangential component of E on the spherical

surface. For example, the first-order condition is

X (VX E)—ikE, =0, relg, (5.137)
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which is the tangential component of the Silver—Miiller condition (5.102), while
the second-order condition is

£ % (V x E) = a(r)Bun + B(r)V x [ -V x E)]
+ @vs(f ‘E), r € T'n, (5.138)

where V; is defined below in (5.145) and
ik

alr) =ik, B0) = sz ) =

21k + 2

Again, the above boundary conditions involve higher-order derivatives on the

boundary. To address this problem, a local boundary condition with auxiliary
variables is given in Grote (2006) for the electromagnetic fields as follows:

R 1 0E¢an
By =L 5.139
rx (VxE) -5 + wi, ( )
10 1 1 [— —
—— 4+~ | w; = — |curly x curl{E+ Bax curlseurl, H| + wa,  (5.140)
cot r 2r2 €

10 4 1 /— . .
(C(‘%+r>wj:4r2(AS+j(j_1)>Wj1+Wj+1’2§j§m’ (5141)

and the recursion is terminated at j = m + 1,
Wi+t = 0, (5.142)

where the surface vorticity operators are defined as follows:

curlyu = si%g%é - %q@, (5.143)
curl;u = sir110 <8(u%zin9) - agg’) , (5.144)

Vou = % ) + ﬁ%& (5.145)
divou = si1119 (a(ngina) + a;;) : (5.146)

%
and the surface Laplace—Beltrami operator Ag is defined as
- —
A su =V divyu—curlgcurlsu. (5.147)

The implementation of the boundary condition on the field (5.139) is straightfor-

ward, as the weak form for the vector Helmholtz equation will have a boundary
term which involves ¢ x (V x E), which can be replaced by the right-hand side
of (5.139). The auxiliary variables on the boundary can be discretized on the
induced mesh on the boundary from the internal mesh, and their time evolution
can be calculated using typical time marching schemes.
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Uniaxial perfectly matched layer (UPML)

A perfectly matched layer (PML) boundary condition uses a layer of artificial
absorbing material designed in such a way that the scattering wave will pass
the boundary adjacent to the inner computational domain without reflection,
hence perfectly matched. Meanwhile, the absorbing layer attenuates the scatter-
ing wave entering the layer. The PML was originally proposed in the ingenious
work of Berenger (1994) based on a split formulation of the Maxwell fields.
Later, a uniaxial material (Sacks et al., 1995; Ziolkowski, 1997) was constructed,
on which the following presentation is based. The designed uniaxial medium can
achieve the same effect of absorbing entering waves as Berenger’s PML without
using non-physical splitting of the electromagnetic fields. A polarization field
is involved in the PML region, which makes the medium in the PML region
lossy and dispersive such that fields will decay exponentially through the region
(Abarbanel & Gottlieb, 1998). Usually, a PEC boundary condition is given at
the terminating outer boundary and any reflection from there will not be able to
propagate back significantly into the computational region of physical interest.
It is shown (Ziolkowski, 1997) that the polarization in the PML region can be
viewed as produced from a time-derivative Lorentz dispersive medium, where the
electron displacement x away from the nucleus satisfies the following oscillator
equation:
" / 2 OE

ma” + myz' + mwiz = _6E+6§’ (5.148)
and the x component of the polarization density is defined by P, = nex, where
n is the electron density and e is the electron charge.

Construction of UPML

An important idea of an absorbing layer boundary condition is to design the
absorber material such that there is no reflection when the waves coming from
the inner physical region enter the absorbing layer, i.e., a perfectly matched
layer. The following analysis from Taflove & Hagness (2000) demonstrates how
the PML can be designed using uniaxial materials, where the dielectric constant
and the permeability are diagonal matrices with uniaxial symmetry.

Consider a time-harmonic plane wave with arbitrary polarization H™¢ =
Hoexp(—ifi,x — if1,y) propagating in the isotropic Region 1 (z < 0) and im-
pinging on Region 2 (z > 0); the latter is assumed to have uniaxial (along the
x-axis) electric and magnetic permittivity tensors:

a 0 0 c 0 0
EQ = €2 0 b 0 5 [ZLQ = U2 0 d 0 (5149)
0 0 b 0 0 d

In Region 2, the transmitted fields are plane waves also and satisfy the follow-
ing Maxwell equations:

By x E=wjinH, B, xH=—w&E, (5.150)
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where By = 22, + 932, is the anisotropic wave vector. By eliminating the E
field, we arrive at the following wave equation:

By X & 1 (By x H) +w?ixsH =0, (5.151)
which can be rewritten in the following matrix form:
kgc - (ﬁ?y)zb_l ﬁ2w62yb_1 0 Hw
B2z Bayb? k3d — (Bog)?b? 0 H,| =0,
0 0 k%d — (6235)2[)_1 — (Bgy)2a_1 H,

where k2 = w?pgeo. The dispersion relation can be derived from the determinant
of the above matrix for TE, and TM, modes, respectively:

k3 — (Box)?b™td ™t — (Bay)?a'd" ' =0: TE, (H,, H, =0), (5.152)
k2 — (Box)?brd ™t — (B)?0 et =0: TM. (H. =0). (5.153)
If the incident wave in Region 1 is a TE, wave, then the total field is expressed
as the sum of the incident and a reflected wave:
H, = 73H0(1 4 FeQiﬂlmx)e_iﬁlme—iﬁlyy7
_ Aﬂly 2if1.T Aﬁlw 2if1zx —if1zx—iB1yy
E =(-2—(1+Te )+9—(1—Te )| Hoe v (5.154)
WEeL wey
After transmitting into Region 2, the wave maintains a TE, wave, the propa-

gation characteristics are determined by (5.152), and the fields are given by

—_ 3 —if2,z—ip
H,; = ZHyre 72 2wy,

E, = (-jﬁ% - g—ﬂ“ ) Hyre Pzee=if2yy (5.155)
weaa weab

where I' and 7 are the reflection and transmission coefficients, respectively, which
are given by the continuity of the tangential components of E and H at the
interface x = 0:

_ Blz - BQxb_l 261:1:
611 +52xb_17 611 +52mb_1
Furthermore, at the interface = = 0, the field tangential continuity implies
that

r T=1+T= (5.156)

Bay = Piy- (5.157)
After plugging (5.157) into (5.152), we obtain (a;:

Bor = \/k3bd — BF,a= 1. (5.158)

If we set €; = €9, 17 = g, d = b, and a~' = b, we have k; = ky and

Bar = \JB3Y = (810 = [k = (B1,)” = Vrae (5159)

Now plugging (5.159) into (5.156), we obtain a zero reflection

I'=0 for any pi,,

namely Regions 1 and 2 are perfectly matched.
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The case of the TM, wave can be treated similarly. As a matter of fact, the
reflection coefficient for E is dual to (5.156) if we replace b by d and a by ¢; then
the no-reflection condition is achieved. So if we have b = d and ¢! = a, there
will be no reflection for both TE, and TM, waves. Therefore, the conditions for
no reflection, for all incident angles, polarization, and frequencies, on € and p
tensors, are the following:

s;1 000
€2 =€15, f2=ms, s5=[0 s 0], (5.160)
0 0 s,

which define the uniaxial perfectly matched layer (Sacks et al., 1995).
Similar to Berenger’s PML (Berenger, 1994), the no-reflection property of the
UPML in Region 2 holds for any s,. For example, we can set

sp=1+ 22 =1 72
1wWer wer
Then, from (5.159) we have
. Oz
Boz = (1 —i ) Bia- (5.161)
weq

Noting that the real part of (B2, is the same as that of $y,, with (5.157) we
conclude that the phase velocity of both the incident and transmitted waves are
the same in both regions.

If we put (5.157) into (5.155), then the transmitted wave in Region 2 for an
incident TE, wave is given by

_ 2 —if1ex—iB1yYy ,—0xxn1 CcOSO
Hy; = ZHgre 'Fte tyY e Ta®i ,

Eo = (—&s,m1 sin 6 + yn; cos G)Hoe*iﬁ”””*iﬁlyyef"”’“ cos (5.162)

where 77 = \/m , and 6 is the incident angle with respect to the z-axis, which
propagates in the UPML region with the same velocity as that of H; and E; in
Region 1, although with an attenuation factor (independent of frequency, though
dependent on # and the conductivity function o, in the UPML).

The UPML losses o, (x) are usually taken to have a polynomial profile (Lu,
Zhang, & Cai, 2004):

oz (¥) = (i)moz,max, (5.163)

where [ is the distance into the UPML region measured from the interface be-
tween the UPML and the physical solution domain, and A is the thickness of the
UPML. The definition of o, (y) is similar. The reflection factor for the UPML is

(5.164)

R(0) = exp [—2noz’maXA cos 9} 7

e-(m+1)
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where 6 is the incident angle, €, is the relative electric permittivity of the medium,
and 7 is the UPML’s characteristic wave impedance.

UPML in 3-D

In a rectangular truncation for the solution domain, 2-D coordinate planes and
3-D corner blocks will appear in the absorbing region. The construction of the
UPML will be carried out in a multiplicative manner, as shown in a 3-D corner
block case where the time-harmonic Maxwell equations can be written as

V x H = iwesE, (5.165)
V x E = —iwesH. (5.166)

Here 5 is a diagonal tensor defined as follows:

- sy 0 0| (s 0 O
s=10 s, O 0 s;l 0 0 s, O
0 0 s/ [0 0 s, [0 0 st
[5yS28, " 0 0
= 0 0825, 0 . (5.167)
L O 0 SpSysy !

Allowing for general real parts in s, we have
St = Kt + ,J—t, t=ux,y, 2. (5.168)
iwe

With the general definition, we can give the definition for special cases en-
countered in a typical numerical calculation.

(1) Lossless interior region: s is the identity tensor, and set s, = s, = s, = 1.

2) In the UPML region, 5 is given by (5.167), with s,,s,, and s, given as

( gion, g y ; s Sy g
follows:

N Tmin < < Tyax of the UPML, set s, =5, = 1;

in Ymin < Y < Ymax of the UPML, set s, = s, = 1;

I Zmin < 2 < Zmax of the UPML, set s, = s, = 1;

in the intersection of Zyin < & < Tmax and Ymin < ¥ < Ymax of the UPML, set
s, =1;

in the intersection of Z iy < = < Tmax and zmin < 2 < Zmax of the UPML, set
sy = 1;

in the intersection of ymin < ¥ < Ymax and zmin < 2 < Zmax of the UPML, set
Sy = 1;

and in the corner regions of the UPML, use (5.167).
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Time-domain Maxwell equations in UPML regions

In the following, we will give the time-domain form for the time-harmonic Maxwell
equations (5.165)—(5.168) in the uniaxial perfectly matched layer (UPML).

For simplicity, we just consider the 2-D TM, case, namely s, = 1 (Lu, Zhang,
& Cai, 2004). The time-harmonic Maxwell equations for the Fourier transform
of the TM, wave in the corner blocks will be

oH, oM, .
— =] E 1
o oy iweg s58yE, (5.169)
OE, . Sy ~
8y = _IWMO;ZHM (5170)
OE, . Sy -
e = —1w,uoiHy. (5.171)

Equation (5.169) can be written as

oH, OH, . . .
or oy =iweE, + J,(w), (5.172)

where
J.(w) = iweg (545, — 1)E..

After substituting s, and s, from (5.168) with k; = Kk, = k. = 1, we have

Jw) = iweq [<1+ Tz ) <1+_%> 1] .
iweg iweg

Ox + 0y 00y ~
= lwe€g . z
iwey (iweg)?
= (0s +0y)E, + maxayEZ. (5.173)

Now considering (5.172), we apply the inverse Fourier transform using the iden-
tity iwf(w) — (9/0t)f(t). This yields a time-domain differential equation for
(5.172):

0H, O0H, oL,

or  dy ot

Next we derive dynamic equations for all other quantities. The way to obtain
a dynamic equation for J, from (5.173) is first to multiply both sides of this
equation by iw, which gives

+ (1), (5.174)

iwJ, = iw(o, + 0y)E. + —0,0,E.. (5.175)
€0

Exploiting the differentiation equivalence for the Fourier transform, we perform
an inverse Fourier transform of each term in (5.175):
0J,(t) or, 1

= (0x +0y) 5 ;amayEZ. (5.176)
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We will further simplify the differential equations for the polarization currents
J. so that they will become just ordinary differential equations.
Considering (5.176), we introduce a new parameter

P,=—J,+ (0, +0y)E., (5.177)
or

J,=—P,+ (0, +0y)E.. (5.178)
Then (5.176) can be written as

P, 1
=——o0,0,FE.. 1
5 600 oy (5.179)

After substituting J. from (5.178) into (5.174), we have

0H, OH,  OE.

B Y

S + (0,4 0y)E, — P.. (5.180)

Similar operations can be performed on Faraday’s law (5.170) and (5.171), and
we end up with the following equations:

852 = —fig 8;”” — 1o~ - 7 Ha + Qu, (5.181)
_aaE; = ~Ho 85? — po 6_0 “LH, +Qy, (5.182)
8;2; B 7%% N ng (5.183)
6;%, _ _%Qy N Wﬂy, (5.184)

From (5.180), (5.181), (5.182), (5.179), (5.183), and (5.184), we get a new set
of equations for £, H,, Hy, P., Q., and @, as follows:

0E, OH, OH,

_ 94y _ _ E.+P 1
€0 ot O 6:[/ (Uw+ay) 2+ 2, (5 85)
0H, oL, Oy — Og
- _ _ ! H, - 5.186
Ho—p; oy M o +Q ( )
0H, OE, Op — Oy
< = — H 5.187
=gyt = g Mo Hy  Qy, (5.187)
oP, 1
ol 5.188
ot 600 Oy ( )
0 _ _Gagy | 10%a(0y = 0a) py (5.189)
ot € €
0Qy Oy ooy (0w — 0y)
<= —— —_—="H,. 5.190
ot . Qy + 2 Yy ( )
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Maxwell equations, potentials, boundary conditions

Note that (5.188)—(5.190) contain no spatial derivatives and hence they are
simply ordinary differential equations for P,, @, and Q. The system (5.185)—
(5.187), after dropping the undifferentiated terms, becomes the original 3 x 3
Maxwell system in the form of a hyperbolic system, which can be shown to be
well-posed (Abarbanel & Gottlieb, 1997).

Summary

The key to obtaining accurate and stable solutions for electromagnetic wave
propagation over long time is (and this cannot be over-emphasized) the correct
treatment of boundary conditions for material interfaces and numerical artificial
boundaries. Discussed in this chapter were the impedance boundary conditions
for the conductor boundary, as well as several local absorbing boundary con-
ditions for the computational boundary, due to their ease of implementation
and high accuracy. Analytical boundary conditions, such as the Bayliss—Turkel
and Engquist-Majda boundary conditions, can be implemented directly on the
boundary of the computational domain. Meanwhile, the UPML boundary treat-
ment allows for the more complicated computational regions encountered in engi-
neering applications, and in general provides better accuracy for waves of a wide
range of incident angles on the boundary, though at the expense of additional
mesh points in the UPML regions.
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6.1.1

Dyadic Green's functions in layered
media

The dyadic Green’s functions are the key component in forming an integral
representation of electromagnetic fields in Chapter 7. Here, we will derive the
dyadic Green’s functions for time-harmonic Maxwell equations in layered media,
and spectral forms of Green’s functions and their potentials will be given. Fast
algorithms for calculating the Hankel transform for Green’s functions in the
physical domain will be discussed.

Singular charge and current sources

Charges and currents in concentrated regions are represented by the Dirac delta
distribution function d(r), and they are considered as singular sources for elec-
tromagnetic fields (van Bladel, 1991).

Singular charge sources

A singular charge density p.(r) = d(r) in terms of the Dirac delta function
represents the limiting case of a concentrated electric charge dg(r) in a small
volume £ as the volume size |2 tends to zero while the total amount of charge
in the volume remains one unit, namely

Pe(r) =0(r) = lim do(r), (6.1)
|Q2|—0
where
L if re()
T ? 1 )
dq(r) = || (6.2)
0, if re¢Q.
Therefore, we have
d(r)dr=1 and d(r) =0, forr+#0, (6.3)

R3
and the sifting property of the Dirac delta function J(r) for a continuous function

f(r):
g f(x)o(x' —r)dr’ = f(r). (6.4)
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Consequently, for any volume charge density p(r) in V, we have formally

mm=4gwwW—ww=mg%gpmww—wma (6.5)

i

which heuristically implies that a general charge density can be viewed as a
superposition of singular charge density distributions.

Consider a surface S C R3, parameterized by a vector function r(u,v). Then,
the lines of constant u over S, the lines of constant v over S, and the normal
direction n form a local curvilinear coordinate system (u, v, w), with w being the
coordinate along the normal direction.

If there is a volume charge density p(u, v, w) concentrated around the surface
S with dimension d along the normal direction n being small, then we can de-
fine a surface charge density ps(u,v) by integrating p(u,v,w) along the normal
direction:

d
ps(u,v) = / p(u, v, w)dw. (6.6)
—d

On the other hand, using the 1-D form of (6.3) we have, for all d > 0,

d
ps(u,v) = /_d ps(u, v)d(w)dw. (6.7)

Therefore, as d — 0, the concentrated surface charge density can be represented
as follows:

plu,v,w) = ps(u,v)d(w). (6.8)

Similarly, we can consider the charge density p.(u) along a curve C' which, for
simplicity, is assumed to be the line of constant v = vy = 0 over the surface S.
Suppose that the line charge is distributed within a small interval [vg —d, vo + d].
Then, we can define the line charge density p.(u) as

d

petw) = [ puluo)do, (6.9)
—d

Again using the 1-D form of (6.3) we have, for all d > 0,

d
pelu) = / pelu)i)do. (6.10)

Hence, as d — 0, the line charge density p.(u) can be seen over the surface S as

a1, ) = pelu)(v), (6.11)
or, combining with (6.8), in the volume V as
plu, v, w) = pe(u)d(v)d(w). (6.12)

In particular, in the Cartesian coordinate system (x,y, z), the three types of
singular charge sources are
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(a) pe =0(z,y, 2), a singular volume (point) charge source located at (0,0, 0);

(b)  pe = ps(x,y)d(z), a singular surface charge source over the zy-plane, where
ps(x,y) is the surface density per unit area over the zy-plane, etc.; and

(¢) pe = pe(x)d(y)d(2), a singular line charge source along the z-axis, where
pe(x) is the line density per unit length along the z-axis.

Singular Hertz dipole current sources

An important concentrated current source is the Hertz dipole current, which
models a small linear antenna with a length d composed of two time-variant
charges q1(t) = —qel“! and g¢a(t) = gel*?, located at (—d/2,0,0) and (d/2,0,0),
respectively. The dipole moment of the antenna is then p = dge'“?, with d =
(d,0,0). A Hertz dipole is obtained if we consider the limit of d — 0 while
maintaining the dipole moment as p =qd, resulting in a point dipole density of
the form (1.12), namely

P = pe“ts(r) / dr = pel? (6.13)

The corresponding charge density for the Hertz dipole is

. d
: _ alwt - iwt -
;13(1)[ qe 5<x+2>5() z) + qe 6(30 > z)}
4)
2

§(z+2)—d(x— ]

pe(,y, 2)

. lwt
= e Tim 5()3(2)

) S(z+2,y,2)—6(z—4%,y,2)
_ iwt PREAI PREA]
= e i J ,
ie.,
pela,y,2) = —pud' (2)d(y)d(2)e™". (6.14)

Here the derivative §’(z) of the 1-D Dirac delta function §(z) defines a distribu-
tion such that for f(z) € C§°(—o0, 00)

oo
/ 5 (2)f(z)dz = —F(0). (6.15)
— o0
The polarization current density J,, defined in (5.17) is then
% ‘
J, = a—i’ — jwelt ud(r), (6.16)

which is identified as the Hertz dipole current source.

Similarly, Hertz dipole type surface current sources over the coordinate planes
can be defined by integrating (6.16) along the normal direction of the surfaces
(assuming a unit Hertz dipole current source). For instance, we can define the
following.



148

6.2

Dyadic Green'’s functions in layered media

(a) Surface Hertz dipole current over the zy-plane:
Je(o)(2,y,2) = 8(2)d(y)t, =i ory, (6.17)

where ¢ denotes the unit direction of a coordinate axis.
(b) Surface Hertz dipole current over the zz-plane:

Jes) (2,9, 2) = 5(x)8(2)t, t=2 or 3. (6.18)

The above surface currents flow tangentially to the zy- and zz-planes, respec-
tively. The corresponding surface charge density can be found in a similar way.
For instance, over the xy-plane for an z-directed surface current source,

e (9, 2) =~ (2)0y). (6.19)

Dyadic Green’s functions G (r|r’') and G(r|r')

From the sifting property (6.4) of the Dirac delta function, a general current
source J(r) = (Jy, Jy, J>) in a volume V' can be written as a superposition of -,
9-, or z-directed Hertz dipole singular sources, namely

J(r) = /V [Jo(r)o(x" — 1) + J,(2")o(r" — )y + J.(x")é(r" —r)Z]dr’.  (6.20)

Accordingly, the electromagnetic fields generated by J(r) can be expressed as a
superposition of the fields generated by these Hertz dipoles; the latter defines
the dyadic Green’s functions.

Specifically, let G, (r|r') = (G%,G%,G#)T and Gt (r|r') = (G¥, GY, G397,
t = x,y, z, be the electric and magnetic fields at location r generated by a t-
directed —1/(iwpu)-Hertz dipole of current moment located at 1/, i.e.,

1 .
JE(r) = —mé(r—r’)t, te {xaywz}' (621)
Then, the dyadic Green’s functions for the electric and the magnetic fields are
defined, respectively, as

Gp(rlr') =[G, G, Gyl = ) Gyt (6.22)
s,t€(x,y,z)
and
Gu(rlr) =[G}, Gy, Gyl = > 3Gt (6.23)
s, t€(x,y,z)

It can be seen from (5.30) and (5.31) that the dyadic Green’s functions satisfy
the following matrix equations (viewed in a column-wise manner):

1 _ 1.
V x ;V x Gg(r|r') — w?eGp(rr') = ;Ié(r —r'), (6.24)
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1 — = I =
- G N — W?uG N =— (-1 2
V><€V>< a(rlr’) — w'uGp(rlr’) inww (r—1'), (6.25)

where T is the identity matrix. From the Maxwell equation (5.23), we have

Gp(rlt)) = —ﬁv x Gg(r|t)). (6.26)

The electric field generated by J.(r) (assuming J,,(r) = 0) can then be ob-
tained through the principle of linear superposition:

Eq(r) = —iw/v p(GF Jew + G ey + GE Je, ) dr', s=ux,y,2, (6.27)
ie.,
E(r) = —iw/v,u(r’)aE(ﬂr’) Je(x)dr'. (6.28)
Similarly, the magnetic field can be obtained through
H(r) = —iw/vu(r’)aH(rh") Je(r)dr' = /V V x Gg(r|r)) - J.(r")dr’, (6.29)

where a constant p is assumed to obtain the second equality.

6.2.1 Dyadic Green's functions for homogeneous media

For a homogeneous medium, the electromagnetic fields generated by a Hertz
dipole (6.21) can be written in terms of a vector potential A and a scalar potential
V. as in (5.41), for example

Gh(r|r)) = Gg(r)r)) -t = —iwA — VV,, (6.30)

where the vector potential A, from (5.49), satisfies

1
VA + KA = E5(r —1')t. (6.31)

Here, k = w,/€en is the wave number of the homogeneous medium. Then, from
(3.4), the solution to the above Helmholtz equation is

1 .
A=——g(r-1', (6.32)
1w
where
, e—ik\r—r’| 6.33
g(r—r') = il —v| (6.33)

Meanwhile, the Lorentz gauge condition (5.46) implies that

1 1 R
Vi=—-—V-A=——Vg(r—r)i 6.34
. o 2 Vo =) (6.34)
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Therefore, from (6.30) we have

_ . <1 ; \YAY -
Ge(rlt) - t=g(r—r')t+ pVVg(r —r')t = (1 + k:2> g(r —r')i,
and thus the dyadic Green’s function for the electric field in a homogeneous
medium is given by

— - VV
Gp(r) = (I + k?> g(r —1'). (6.35)
From (6.26), the dyadic Green’s function for the magnetic field is given by
_ 1 - VV
G Y=—-——V I+ — —r'). 6.36
nlol) = v x (T4 33 ) ot =) (6.36)

Dyadic Green'’s functions for layered media

The layered medium to be considered here is shown in Fig. 7.1; it is a stratified
structure consisting of N + 1 dielectric layers separated by N planar interfaces
at z = —d;,l = 0,1,...,N. The [th layer of the medium is characterized by
permeability p; and permittivity ¢;. The permittivity is complex if the medium
is lossy:

6= e (e”—&— i ) (6.37)

io.)eo
where oy is the conductivity of the medium in the Ith layer.

To derive the dyadic Green’s functions for the layered medium, we consider a
Hertz dipole current source at v’ = (2, ', 2’) embedded in the ith layer, whereas
the observation point at r = (x,y,z) is assumed to be in the jth layer. We
will find the electromagnetic fields at r excited by a unit-strength, arbitrarily
oriented current Hertz dipole located at r’, namely Green’s functions G g(r|r’)
and G (r|r').

Hankel transform for radially symmetric functions

As the multi-layered medium is radially symmetric in the zy-plane, we can use
the 2-D Fourier transform F to solve the Maxwell equations for the dyadic
Green’s functions in the Fourier transform (spectral) domain, Gp and Gy.
Once the spectral Green’s functions are obtained, Green’s functions in the phys-
ical domain, Gg(r|r’) and Gy (r|r’), can be found by using the inverse Fourier
transform F~!, where F and F~! are defined by

~ 1 [ oo ‘

Fllosby) = F (@ = 5= [ [ slapeOemtion o ay

— 00 —0o0

™

flay)=F* {f(kx,ky)} = %/_ /_ F (o, ky) € to0) ke dk,.
(6.38)
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The inverse Fourier integral in (6.38) can be expressed in terms of a Hankel trans-
form if f(z,y) is a radially symmetric function. Introducing polar coordinates in
both the space and the transform domains,

T =pcosq, Yy = psina,
ky =k, cos 3, ky = k,sin 3, (6.39)

where
p =12+ 12, a = arctan (y/z),

kp =1/k2 + k2, B = arctan (ky/ky), (6.40)

it can be shown that
£0) = F{Fkp) | = S0 [Fk,)] (o), (6.41)

where the mnth-order Hankel transform S, [f(k‘p)} for an integer n>0 is
defined as

Su [700)] (0) = [ Flk) It (6.42)

Here, J,(z) is the nth-order Bessel function
Tu(z) = % /0 " cos(nf — = sin 6)do. (6.43)

Moreover, we have the following identities:

F {—ikwf(kp)} — _cosa S [f(kp)] , (6.44)
F {—ikyf(kp)} = —sina S [f(kp)] : (6.45)
F {kif(k,,)} - _% {cos 20 Sy [f(kp)] ~ S, [kﬁf(kp)} } , (6.46)
FR )} = % {cos2a 5 [F(ky)] + S [K27(k,)] }. (6.47)
F {kmkyf(kp)} - —% sin 20 S [}*(kp)} . (6.48)

In order to derive the dyadic Green’s functions in the spectral domain, we note
that (5.30) in a source-free region simplifies to

V2E + k’E = 0. (6.49)

Let E be the 2-D Fourier transform of E in the xy-plane, namely ]T](kx, ky,z) =
F{E(z,y, z)}. Then, under a Fourier transform, (6.49) yields the following second-
order ordinary differential equation for F, s = x,y, z:

d2E,
dz2

+ (k* — k) E, = 0. (6.50)
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6.2.4 Transverse versus longitudinal field components

Before we proceed to find all the components of Green’s functions G and Gy,
we will show that in layered media the transverse components of the electric
and the magnetic fields, £, E,, H,, and Hy, can be expressed in terms of the
longitudinal components E, and H,. In fact, applying the 2-D Fourier transform
to the Maxwell equations (5.23)—(5.24) in a source-free region (J. = 0 and
J.n = 0), we have

V x E = —iwuH, (6.51)
V x H = iweE, (6.52)
or
—ik:yE'; + lf?; = iwpﬁ;7
ikwE'; — E; = iwpff;, (6.53)
—isz; + ikyE; = iw/ui
and
ik H, — H, = iweE,,
ik .+, = iweb, (6.54)
ik, H, —ikyH, = iwekE.,

where the dot denotes 0/0z.
After some calculations, the transverse components E,, E,, H,, and H, can
be expressed as follows:

E; = k’lz (1]1715; +Wﬂkyﬁ;) ) E; = klg (lkyg‘z - Wﬂsz'fvz) ) (6.55)
IA{; = klg <1kwlz: — wek’yE;) , f{vy = klg <1kyIA{; —&-wekwﬁ;) ) (6.56)

Correspondingly, in the time domain we have

9 E, o, (H
By=—F ' 2| ciwp—F |22 .
&T]: w2 lwﬂ@y}- ( w2 ) , (6.57)
9 E. 9 .
B = -1 z . 1 z .
Y —ay}" —kg + 1wu—ax}' (k% ) , (6.58)
0 A 9 E.
H, = 1 z . -1 z .
—ax}' —kg + 1we—8y}' (k,% > ; (6.59)
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o (i) . o (E

The above relations will hold for the components of Green’s functions G4 and
Gy for t = x,y, 2.

Longitudinal components of Green's functions

To calculate the longitudinal components of Green’s functions in the spectral
domain, E, = = G% and H, = G3, we will follow the procedures in Mosig (1989)
and Michalski & Zheng (1990), but with details f for the spectral quantities for
the field components (Yu & Cai, 2006). Both E. and H, satisfy (6.50) with
appropriate boundary conditions at z = —d;,l = 0,1,..., N, and z = 2 (source
location). To derive the interface conditions for E: and ﬁ;, we use the Maxwell
equations and (5.62)—(5.65).

Interface conditions for E; and fTZ

Let us first consider I?Z From the interface condition on the normal component
of the magnetic field, we have
Mle,l = ,U/l+1Hz,l+1 + Pm(s)s (661)
where p,,(s) denotes the surface magnetic charge if any. Meanwhile, the tangential
interface condition (5.62) [n x H] = J.(,), n = (0,0, 1), implies that
[Hy] = _Je(s),$7 [H(E] — Je(s)1y7 (662)
where J,5) = (Je(s),am Je(s),y O)T is the surface electric current.

From Gauss’s law away from an interface, V- H = 0, we see that the jumps of
the magnetic field components across the interface satisfy the following condition:

0 0 0

which in the Fourier spectral domain becomes

[Hz] =0, (663)

H.| = —iky |Hy| —iky |Hy| = ikyJe(s) o — ikodo(s) - (6.64)
(1] = it [ ] =y [£,] = iy oo = oo

As a result, the interface conditions at z = 2’ for Iz are given by

Mlﬁz,l = Ml+1ﬁz,l+1 + ﬁm(s)7 (665)
Hz,l = Hz,l+1 + iky:]ve(s),m - ikz:fe(s),y‘ (666)
Similarly, the interface conditions at z = 2’ for E: are given by

6l-E 1= 6H»l-EZ 1+1 + pe(e)a (667)
Ez 1= Ez J+1 — lkme(s),x + ikmjm(s),y- (668)
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As neither electric nor magnetic sources are present at z = —d;, J.(5) = 0,
jm(s) =0, pe(s) = 0, and Py = 0. At z = 2] (source location), where a {-
directed electric Hertz dipole is located, using (6.17)—(6.18) we then have the
following boundary conditions at the source location z = z/:

(a) horizontal electric dipole (HED), i-directed unit Hertz dipole
~ 1 —ik,

Je(s) = %QAS, ﬁe(s) = i Jm(s) =0, ﬁm(s) =0; (669)
b) HED, y-directed unit Hertz dipole
( ]

~ | —ik ~ ~

Je(s) = %ya Pe(s) = It Jm(s) =0, Pm(s) = 0. (670)

Now let ¢;, 1 = 0,1,..., N, represent either (—iwu)E; or (—iwu)ﬁ;, satisfying
(6.50) in each layer, subject to the following boundary conditions at the interface
between layers [ and [ + 1:

Y = 4141, (6.71)
U = ra1, (6.72)

with «; = ¢ for E: or oy = yy for ﬁ; From Fig. 7.1, we define
hy=d;—d;_1. (6.73)
Introducing a local coordinate for each layer as
z=z+d, (6.74)
we can write the fields in a layer without sources as

P = a; coshuyz; + by sinhu; 2

= (cosh u;z;, sinh u;2;) ( Zl > = (¢, 81) VI, (6.75)
j
where
up = \/k2 — k?, kP = wieu, (6.76)
and

¢; = coshuyz;, s =sinhwu;z.

Between any two adjacent layers, say layers [ and [+ 1, there exists the relation

Vi=T141Vig, (6.77)
where
[€ 775 . (€7
o Cl+1, o Si4+1
Tl7l+1 = ul—&l _ ul_,l_l _ (678)

Sl-‘rla
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and
(El, 51) = (COSh urh, sinh ulhl) . (679)

On the other hand, in the ith layer with the source, the fields can be written as

i = U+ (ci,80) Vi = { ggfjf)) “//f i OD 5; 53?’ (6.80)
where D = 2] + d; and
o~ uwi(zi—D i ) )
w={ e ofaZss o
(cZU, s?) = (cosh u; (z; — D) ,sinh w; (2; — D)), (6.82)
(CZ-L, SZL) = (cosh u;z;,sinh w;z2;) . (6.83)

At the location z = 2’ (or z; = D) inside the ith layer with (e;, i;), similar to
(6.65), (6.66) and (6.67), (6.68), we have the following interface conditions for a
horizontally directed unit-Hertz dipole source:

Hf = H-, (6.84)
o= 4T, 6.85
&EF = 6B + Pugs)s 6.86)
P - F (6.87)

where + indicates the value at 2’7, and

Ty = ikyJo(sye — ik do(s) yn (6.88)

and  pe(s) is given in (6.69) or (6.70). For a z-directed Hertz dipole, we can
solve for ézEZ from the z-component of the vector wave equation (6.24) with the
help of (6.55) and (6.56) and the fact that é’fj = 0 as discussed at the end of
Section 6.3.1.

Applying the interface conditions (6.84)—(6.87), we arrive at the following
relation for the coefficients of ¢; in (6.80) at z; = D:

vV =GVt + 8, (6.89)

C, — [ coshu; D, sinhwu;D } 5, = < —L; +U; > (6.90)

sinhwu; D, coshwu; D —L; —U;
Table 6.1 lists the corresponding U; and L; in (6.81) and S; in (6.90) when
(—ﬁ) - 1) can represent éi}”, é;y, é%x, é%y, and éf;
Using the recursive relation (6.77), we arrive at (note that G3f = 0):
¥y = (i) (G, G, GF, G, G} = (¢5,5) Vs (6.91)
where

(¢j,s5) = (coshu,z;j,sinhu;z;) (6.92)
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Table 6.1. Ul', Li, and Sz

Gy ay oy ay Gy
U —iky kg —iky —iky —1
K 4‘7I‘;Ui 4mu; Amiwe; 471:}:161' Amiwp;u;
. _ iky iky ikg iky —1
L1 Admu; Admu; Ariwe; Admiwe; Amiwp;u;
—iky —iky
S 0 O 2miwe; 2miwe; 0
i iky —iky 0 1
27w, 27w, 0 2miwp; ug

and

N
H T‘lfl,l VN, j> ia

. I1=j+1
_ i) _
Vi < b; )

i N
( II Tz—1,z> S + (Oi I1 Tz-u) Vnl, J <4,
1=j+1 l=i+1
(6.93)
By < 77{1 ) , for TE waves,
Vy = ( ZN ) = . (6.94)
N An ( ) , for TM waves,
ne
with Ay, Bn, ng, and ng being defined by the following formulae:
—(e1 +e2) —(e1 + e2)
AN = 5 BN = )
T+ 721 + NE (T2 + T22) Ti2 + T2 + Np (T11 + T21)
TS VA SR PES VA G (6.95)
where
yIM _ YN yIE _ UN
N un ) N W/JzN,

( “ ) =778, T= { e ] =TCiT,

€2 T21 T22

o th 1 o tn otn ] T
T+—[ iy 12]2 Ty T—[ 1 1_2]2 JANESY
t3 13 g o tyr tao E 7
In (6.95), Zs represents the boundary intrinsic impedance at z = —dy. In par-
ticular, if the boundary is a perfect electric conductor (PEC) plane, then Z; = 0.
In addition, some attention should be paid to the definition of T;_; ;, since it

is different from the definition of other 7 ;41 in (6.78):

“— cosh u; (h; — D), z*-sinh u; (h; — D)

Tiq,=| %1 . : '
" l = sinh w; (hy — D), %= cosh u; (h; — D) (699
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The coeficients in the top and bottom layers (if not terminated by a PEC ground
plane at z = 0 or z = —dy) can be determined by the two algebraic equations
resulting from (6.93) for j = 0 and the fact that ag+by = 0, ay —by = 0 from the
boundedness of the fields as z — 00, z — —o0, respectively. For a PEC boundary
termination at the bottom (or top) layer, we should have éjﬁf =0, é%t =0 and
éﬁ =0,t = x,vy, z, which also implies from Gauss’s law for the electric field that
%ég = 0. Then, boundary conditions in (6.94) can be then used at z = —dy.
Finally, we have Green’s functions in the spectral domain,

_ @ ey oae] _ [ay G oy
Gp=| G¥ GW G¥ |, Gu=|G&r Gw G¥ |, (697
Gy G¥ Gy Gy G Gy

where the components of Green’s functions are given as follows.

(a) HED, J, source:

G5 = (—ika)? Geaar — (—iky)® Gegaz, G = (—iky) (—iky) Gz,
GyEz = (—iky) (*iky) éeyma é# = (*iky) Ghyml B (7ik21)2 éhym?’
G# = —ik, Gy,  GH = —ik,Gy. (6.98)

(b) HED, J, source:
@%y = é?v é?{y - (_iky)2 éhy:m + (_iky)2 éhyww
GY = (—iky)® Geay — (—iks)? Geawy,  GY = — (—iky) (—iky) Gaza,
G = +ik, G,  G¥ = —ik,Gs. (6.99)
(c) VED (vertical electric dipole), J, source:
G% = —ikyGepoy  G% = —iwe (—iky) Ghas,
Gy = —ikyGepsy G = —iwe (=iky) Ghas
7 =0 7 =Gs. (6.100)

In the above formulations, Gl, Gg, Gg, Gezzys Gezasr Geyas Ghyzys Ghyzss Gazes
Geu, and Ghm are radially symmetric, and their inverse Fourier transforms can
be calculated by Hankel transforms. Their explicit formulae (Yu & Cai, 2006)
are given in the appendices to this chapter, Section 6.5.1.

Dyadic Green’s functions for vector potentials G 4(r|r’)

In this section, we derive the dyadic Green’s functions for the vector and the
scalar potentials, which will be used for the mixed potential integral equation
(MPIE) of scattering problems in Chapter 7. The approach here is to express
Green’s functions for potentials in terms of the field components, specifically only
the z-components of Green’s functions for the E and H fields. It is noted that
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the vector potentials used to represent the magnetic field H in (5.52) are math-
ematically not unique if no boundary condition on A is specified, as A + V¢,
with ¢ being any scalar function, also satisfies (5.52) if A does. Therefore, there
are many ways of defining the vector potentials. Two popular approaches are
the Sommerfeld potentials (Sommerfeld, 1949), used to study the Hertz dipole
antenna, and transverse potentials (Erteza & Park, 1969). Other potentials in-
clude Hertz—Debye potentials (Debye, 1909). Based on the fact that only two
components of the magnetic field are independent, then only two components
of the magnetic field are independent in the Maxwell equations; thus only two
components of these vector potentials are sufficient. Dyadic Green’s functions
can also be derived using vector wave functions as in Chew, Xiong, & Saville
(2006).

Sommerfeld potentials

In the Sommerfeld potential formulation (Sommerfeld, 1949), it is stipulated
that the electromagnetic fields from a HED can be represented by a horizontal
component of A in the same direction of the HED and a z-component of A,
while the fields from a VED can be represented by just the z-component of A.
So the dyadic Green’s function G 4 for the Sommerfeld vector potential A has
the following form:

Gy = (2G5 + 2G5 3 + (GG% + 2G) § + 2G5 2, (6.101)
or the matrix form
G%* 0 0
Ga=| 0 G¥Y o |. (6.102)

ZT 2y zZz
GA GA GA

To derive the components of G 4, we consider (5.41) in the Fourier spectral
domain, namely

- ~ 9\ ~
E = —iwA — (iky, ik, — | V.. 6.103
iw (1 ik, 82) ( )
(a) HED, J, source
In this case, we have
A= (é?,o, é’;{f) . (6.104)
From the Lorentz gauge condition (5.46), we get
N 1 _ o ~
Ve=— ik, G% + —G7 | . 6.105
iwep (1 At 0z A) ( )
Taking the z-component of (6.103) and using (6.105), we have
~ ~ 0~ ~ ke 0 ~ 1 0% -
G% = —wGY — —V, = —iwGH + — —G4* + ——=G%. 6.106
B Wha T g, e Wha +weu82 4 +iweu8z2 4 ( )
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Meanwhile, (5.49) in the spectral domain for the z-component Ct'ff yields

82 AZT 2 2\ zx
Substituting (6.107) into (6.106), we obtain
~Z$ : NZJZ M a N(El‘
kiGA = iwenGg — 1kw£GA . (6.108)
In the spectral domain (5.52) becomes
-~ 1~ o~
H=_VxA (6.109)

where V = (iky,iky,0/0z). From the z-component of this equation, we have

G = —é@f (6.110)
Substituting (6.110) into (6.108), we obtain
K2GH = iwenGy + :‘Zpaazéff. (6.111)
(b) HED, J, source
In this case, we have
A= (o,égy,é;y) . (6.112)

Similarly, we can express 61949 and ézy in terms of the z-components of the E
and H fields as

G = 1]’: G (6.113)
and
BGY = iwepG2Y — k—yugézy (6.114)
pA R R P

(¢) VED, J, source

As for a z-directed Hertz dipole current source, from the vector wave equation
for the H field (5.31), H, satisfies a homogeneous scalar Helmholtz equation and
continuous interface conditions at layer interfaces; thus we have H, = 0, and, as
a result, éfj = 0. Therefore, we have

A= (o,o,éif) ,

which is consistent with the scalar Helmholtz equation (5.49) for components of
A. The z-component G%? can be similarly derived as in (a) and (b), leading to

K2G% = iwenG. (6.115)
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Transverse potentials

In the transverse potential formulation (Erteza & Park, 1969), HED-generated
electromagnetic fields are represented by two transverse components of A, while
VED-generated fields are still represented by only the z-component of A. So
the dyadic Green’s function G 4 for the transverse vector potential A has the
following form:

Ga = (G +9GY%") 2+ (G + 9GY) § + 2G5 2,

or the matrix form

B Gy G0
Ga=|GWw Gc¥ o |. (6.116)
0 0 G¥

By a discussion similar to that for the Sommerfeld potential, we can obtain
the following identities.

(a) HED, J; source, t =,y

R2GH = w;*;k“” %éfg + ik, G, (6.117)
K2GY = “’Z‘f@/ %ég — ik, G2, (6.118)
where u? = kﬁ — k2.
(b) VED, J, source
K2G% = wenGi. (6.119)

Fast computation of dyadic Green’s functions

In this section, we describe fast algorithms for computing the Hankel transform
needed for the physical form of the dyadic Green’s functions in layered media.
The kernel of the Hankel transform contains a Bessel function which oscillates
quickly (especially for large p) and decays slowly (especially when z ~ z’). More-
over, the spectral Green’s functions are not well-behaved for high-frequency scat-
tering. General fast algorithms for numerical evaluation of the Hankel transform
can be found in Siegman (1977) and in the references in Markham & Conchello
(2003). Other semi-analytical methods have also been proposed, including the
complex image method (CIM) (Chow et al., 1991), an approach based on the
Prony method and the well-known Sommerfeld identity (Sommerfeld, 1949), and
integration along the steepest-descent path (SDP) for a half-space problem (Cui
& Chew, 1999). In this section, we will describe a window-function-based fil-
tering approach (Cai & Yu, 2000) to speed up the slow decay of the Hankel
kernel, thus reducing the length of the contour of the contour integral in the
Hankel transform. With a shortened contour length, the fast Hankel transform
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techniques (Siegman, 1977; Markham & Conchello, 2003) can be used to speed
up the computations further.

Firstly, a radially symmetric bell-shaped window function v, (x, y) with a sup-
port size a is defined as

Ya(2,y) = talp) = [1_ (g) ] » i psa (6.120)

0, otherwise,

where p = /22 + y2, and m > 0 is the order of the window function.

The 2-D Fourier transform of the window function ¢, (z,y) is

Vo (ke ky) = F {ta(z,y)} = o / / Vol y)e 1 Fethut) qg dy, (6.121)

which can also be conveniently expressed in terms of the zeroth-order Hankel
transform:

ully) = So 0] () = [ ulp) iy dp. (6.122)

It should be noted that the window function ), (z,y) defined above has some
unique properties in both the spatial and the spectral domains. In addition to the
compact support in the physical space, the window function v, (x, y) is smooth,
especially when the order m is large, and its spectral form decays quickly at high
frequency and thus gives a low pass filter. Specifically, Ja(kp) has the following
property.

Lemma 6.1 The Hankel transform {bva(kp) fora(p) has the following decaying
property:

Ky

Yalky) =0 <{n> as k, — +oo. (6.123)

Proof As the window function v, (x,y) is radially symmetric, so is its Fourier
transform v, (kz, ky). Therefore, we have

{/;a(kxa ky) = @Za(kmo)v

namely
Ballep) = Dk, 0) = / / Ya(z,y)e o7 dz dy

—/ / Yal(z,y)e —ihoT g,
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Due to the compact support of 1, (z,y), we then have
1

{/Jva(kp) = %/ dy[ 1/)61(x,y)e*ikpz dzx

1 [ e tkom\ |7 R e
a_ d a ) . 7 e d
) ylw o (<5 ) | L e 4

R NI T
27T/oody(ikp/maxe da:).

Continuing to integrate by parts, we get

~ B 1 [oe] 1 m o0 am,l/}a 7ikpa:
wa(’“ﬂ)—zﬂ/_wdmep) /_OO g d:c]

We stop at the mth step since the mth derivative of the window function is
discontinuous. Now, since

oo am o .
/ le_lk"m dr — 0 as k, — oo,

ox™

— 00

we have

O

In addition, by the convolution theorem of the Fourier transform and (6.41),
we immediately have the following lemma.

Lemma 6.2  For any cylindrically symmetric function f(x,y), the convolution
f * 1, can be written as

P, 9)  al. ) = So [ (ko) dalky)] (o) (6.124)

where

fkp) = So[f(p)] (k).

To recover the value of f(xz,y) from its Hankel transform, we also need the
following result.

Lemma 6.3 Let f(z,y) be a C? function. Then it can be shown that

M, [82f o2 f
f(x,y) * wa(xay) = Mof(éﬂ,y) + 72 l:axz(l',y) + aiy2(1',y) + 0(06)7 (6125)
where
1 2
MO = 27T/p<a 1/Ja(9:,y)dx dy = 2(m+ 1)7
M, = % / > Yo(x,y)2? do dy = O(a*).
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The proof is elementary and thus omitted here.
From (6.125), we have

f(z,y) = (z,y) * Va(z,y) + O(a?). (6.126)

1
!

0
So, as a result of (6.124) and (6.126), we can approximate f(x,y) as

f(z,y) = MLOSO [f(kp)%(kp)} (p) +O(a?), asa— 0. (6.127)

Window-function-based acceleration algorithms are described in the following.

Algorithm 6.4 Fast algorithm for G(p, z;2') with p > a.
If p > a, then, as a — 0, we have

Glp,2:') = 3 Wolp) +Ola?), (6.128)
where
Wolp) = So | G (kp,2:2) 0 ()| (0): (6.129)

Proof Algorithm 6.4 is the direct result of (6.127) applied to G(p, z; ). O

Algorithm 6.4 requires that p > a, as otherwise Green’s functions will not
be smooth and the estimate in (6.125) will be invalid. Therefore, to apply
the approximation (6.127) to the function G(p,z;2’) for p < a, we rewrite
G(p,z;2') as

TZG(/D’Z;Z/) GQ(paZ;Z/)

Glp,z;7') = 3 = 3 , (6.130)

where r = /p? + (2 — 2/)?. From the singularity property of Green’s func-
tions of the vector and the scalar potentials, we can assume that Ga(p, 2;2') =

r2G(p,2;2') is a smooth function, and the approximation (6.127) can thus be
used.

Algorithm 6.5  Fast algorithm for G(p, z; z’) with p > 0.
If p > 0, then, as a — 0, we have

Glp,25') = =3 [F*Walp) = 20W1(0) + Wa(p)] + 0@, (6.131)

where r = /p? + (z — 2/)2, Wy(p) is defined in (6.129), and
Wilp) = 81 [Glkp, 2 2')81 (y) /K| (o), (6.132)

Wa(p) = So [é(kp,z;z’)zﬂz(kp)} (p). (6.133)
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where

Balh) = 81 16000 = [ 0(0) k016 i, (6.134)

Ball) =5 [0(0)6°] = [ (ot (6.135)

Proof As Ga(p,2;2') =1r?G(p, z;2') and Az = 2z — 2/, from the definition of the
convolution and using
=2 2(x—2) + (x — )%,
2
v =y =2y —y) + (y—y)?

we have

1
G2 ’ z/)a :% //]R2 {xﬂ * yl2 - AZQ} G(x/7 :U/)l/)a(x - I/a Yy — yl>dﬂ?/ dy/
1
= [372 + y2 + Az2] o //R2 G(x”y/)wa(x _ J,‘/, Y — y/)dx’ dy’
_ 2xi // G, y') (@ — 2 polz — 2,y — ' )da’ dy
27 ) Jre
1
— 25— / G(a"y')y =y )valz -2’y —y)da’ &y’
T ) Jr2

1
T //Ra G,y [(z = 2) + (y = ¢)*] Yalo — 2’y —y)da’ dy’

= 12 [G * o] = 22 [G * (210)] — 2y [G * (ya)] + G [(2® + y*)a] -
(6.136)

On the one hand, from (6.124) we have

G x = S0 |G (hy. z:2) 0 (ky)] () = Wolo). (6.137)

On the other hand, using the integral definition of the Bessel function

Jn(2) = —/ e*5% cosnf de,

™ Jo

we can show that

Vi =G x(11h,) = cosa/ Gk, 2 2")J1 (k)1 (kp)k, dk,,
0

Vo= G (yba) =sina [ Glln, ) (pke) 1 (o),
0

and consequently

1 (ky)
kpp k2 dk,

= P81 [G kg, 25 2') 01 () /| (0) = PP (). (6.138)

2V +yVo = (zcosa + ysina)/ G(kp, z; 2" J1(pk,)
0
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Similarly, we can show that
G [(@% + y*)ba] = So [é(kp,z; a(k,)| = Walp). (6.139)
Substituting (6.137)—(6.139) into (6.136), we have
Go % o = 7°Wo(p) — 20Wi(p) + Wa(p). (6.140)

Finally, combining (6.126) applied to Ga2(p, z; ') and (6.140), we have the proof
of (6.131). O

Lemma 6.6 The functions Jl(kzp) and 1;2 (kp) have the following decaying prop-
erty:

1

m—1
kp

Di(ky) = o ( ) . k) = o (krjl> . as k= +oo.  (6.141)
p

As a result of the fast decay of the functions {/;(/ﬂp),lzl(k‘p), and Jg(k'p), the
contour integration in the definition of Wy(p), W1 (p), and Ws(p) can be carried
out efficiently with a much shorter contour in the k, space.

Finally, higher-order fast algorithms can be developed using the Richardson
extrapolation with two different window sizes in Algorithm 6.4. For instance, we
can arrive at the following fourth-order algorithm.

Algorithm 6.7 Fourth-order accurate fast algorithm for G(p, z; 2’).
If p > ~va,1 <y <2, then, as a — 0, we have
1 ~?

Y
G(pwzvz)_,yg_l M()((Z)

Wo(p,a) — Wo(p,ya)| + O(a*). (6.142)

My(va)

For p < va, a similar O(a*) version of Algorithm 6.5 can also be obtained.

Appendix: Explicit formulae

Formulae for él, ég, and ég, etc.

We introduce the following shorthand:

N
|t tie |
== I T (6.143)
I=j+1
i—1
TV = [ t t ] = HT11+1 T, = { oty ] =TYCT—.  (6.144)
7 ty 13 ’ Y th 1y Y



166 Dyadic Green’s functions in layered media

In fact, among the eleven quantities for Green’s functions in the spectral do-
main as discussed at the end of Section 6.2.5, only three are independent, and
they are G, G, and G3, which are explicitly listed below (Yu & Cai, 2006):

G, = (¢j,55) ( Ak )7k=1,2,3,

bj

where (cj,s;) are given in (6.92), and

sa-tiz + (t11nm +t12) By,

b — { (to1nm + t22) By,
L=
! 271'1ui tye + (t91mm + t5y) By,

_ { (t1177H +t12) By,
a1 =

27Tu

(t11 + nEt12) An,
Ao =
2= ( 27'ruue ) t\l/l + (tll + t{\2,’7E) ANa
(to1 + 77Et22) An,
) tyy + (thy +tyne) AN,

27'ruue

(ti1 +nEti2) AN,
aj53 = _ k2 Ry A A A
2miwe; u; 12 T ( 11t 1277E) N>
(t21 + nEt22) AN,
bj3 =

k2 .
(7 27r1w61u1) t22 (té\l + té\QnE) AN7 J <.

J >
J=<1,
J >
J=1,

J >,
J=1,
J >
J <1,

J>
J=<i,

J >,

(6.145)

(6.146)

(6.147)

(6.148)

(6.149)

(6.150)

Note that Tj, T;%, and TA are given in (6.143) and (6.144), Ay, By, ng, and ny

05
are given in (6 95).

The other eight quantities can be derived from @1, éz, and 63 as follows:

Gewwl - EG2 - ]{37% (8j7cj) ( bj2

~ iw 1W L5
GemzZ = luj Gl ﬂ (Cj7 Sj) (

Geym = Gewwl + Gewwza

~ ai
Ghyz, = k:2 G1 kp (Syv cj) ( bjl

iwe; ~

1w€ :
Gy = 95 (). s)) (
K2 2

Gaze = Ghyzl + Ghymga

Ghywz =

aj1 )
bjl ’

a2 )
bjg ’

(6.151)

(6.152)

(6.153)

(6.154)

(6.155)

(6.156)
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~ 1~ W ai3

Gemz = 7G3 =2 (S‘,C‘) ( J ) s (6157)
20T 2 P

~ 1~ 1 a5

Ghzz = —5G3 = — (¢4, 95) ( J ) (6.158)
20T I b

Closed-form formulae for J(kzp)

The 2-D Fourier transform J(kp) of the window function is listed below. For
Y1 (k,) and 1o(k,), similar closed-form approximation formulae can also be ob-
tained (Yu & Cai, 2001).

Analytical formulae

To derive the analytical formulae for J(k:p), we consider two different cases,
kpa < 1 and k,a > 1, separately.

(a) Case 1: kpa < 1

In this case, we use the following Taylor expansion of the Bessel function:

[e'e] l n
Tu(z2) =Y (_pl) 1 (E)QH . (6.159)
1=0 ’

(n+0)\2

According to the definition of J(kp), by setting z = p/a and y = k,a, we get

D(ky) = /0 ' [1 - (Z)Q]m Jo(kpp)pdp

1 m oo .
P 9 : AN
2 v 2141 i J
- 1 1 —(—) d
/Z() 3 () e
1= J=
=a®» > hijy”, (6.160)
i=0 j=0
where C! = #ll), and
hij = (=1)""

(m —i)liljljl 22+ 4 5+ 1

(b) Case 2: kya >1
In this case, we use the fact that

{/;(kp):kiZ(—l)iCi Ia y (6.161)

Here,
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Table 6.2. First- to seventh-order window function coefficients H,;

Hpo X 102 Hpi x 10° Hppo x 10° Hypg x 107

m
1 25.00 20.83333 65.1041666  108.5069444
2 16.6667 10.41667 26.04166 36.16898

3 12.50 6.25 11.574074 15.50099

4 10.00 4.166666 7.440476 7.750496
5 8.33333 2.9761905 4.650297 4.305831
6 7.1428571 2.2321429 3.100198 2.583498
7 6.250 1.7361111 2.170138 1.644044

Hpa x 1019 Hpps x 102 Hppg x 10%°

m
1 1130.28067 807.343336  4204.9132

2 322.9373 201.8358 934.4251

3 121.1015 67.27861 280.3275

4 53.82288 26.91144 101.9372

5 26.91144 12.23247 42.47387
6 14.67897 6.116237 19.60332
7 8.562732 3.293358 9.801662

can be obtained from the identity

2HF<1/+M+1>

! 2
z*J, (ax)dz =
/O ( ) GhHT (yg+1>
+at[(p+v—=1)Ju(a)Su-1p-1(a) = Jo—1(a)Su. (a)],

(6.162)

where a > 0, Re(p + v) > —1, and S, (%) are the Lommel functions.
Approximation formulae

We can obtain the following approximation formulae for J(kp).

(a) Case 1: kjpa < 1

By truncating the series expansions in (6.160), we get the following approxi-
mation in a nested format:

(k) = a® {Hmo — v [Hm — v (Hmo — y* {Hmz
— vy [Huma —y* (Hms —y*Huo)] }) ]} (6.163)

where m indicates the order of the window function and y = k,a. The coefficients
in (6.163) for window functions of order 1 to 7 are given in Table 6.2.
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(b) Case 2: k,a > 1
By using the definition of the Lommel and the Bessel functions, we have the
following approximation:

b(kp) = gm(y), (6.164)
where y = k,a, m is the order of the window function, and
g1 = % [QJO(Z/) +4Jl(y)] ;
Y Y
92 = ZZ; [_yJo(y) + <;; - 1> Jl(y)] ,
- 25232l
T P T )
e £ (ko ) o 2o )]
e o 05 o)
e gEm ] (]
el O-R)aw)
Summary

Green’s functions and their computation are the main components of integral
equation methods for wave scattering, and they also influence the solution pro-
cedure for the resulting linear systems. For the dyadic Green’s functions of the
Maxwell equations in layered media, using the spectral domain is the usual way
to derive their analytical forms in terms of Hankel transforms involving Som-
merfeld integrals. The slow convergence of these integrals due to the oscillatory
Hankel kernel is improved by a window-function-based filtering technique in the
spectral domain.
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7.1.1

High-order methods for surface
electromagnetic integral equations

In this chapter, we will present surface integral equations for electromagnetic
scattering. Galerkin methods using mixed vector—scalar potentials and Nystrom
collocation methods using hyper-singular formulation will be discussed. Also, we
will discuss the issue of removing resonance from cavity modes with a combined
integral equation approach. Finally, the high-order Rao—Wilton—Glisson (RWG)
current basis for the Galerkin methods will be given. The volume integral equa-
tion method for Maxwell equations will be discussed in Section 10.4.

Electric and magnetic field surface integral equations in layered
media

Integral representations

We consider the N-layered medium discussed in Section 6.2.2 with planar inter-
faces at z = —d;,0 < i < N, as shown in Fig. 7.1. The electric and magnetic
fields will satisfy boundary conditions at the planar interfaces and also on the
bottom terminal layer, or the Sommerfeld radiation conditions at z — 4o if
either the lower or the upper space is not terminated at a finite location. Each
of the layers is assumed to be an isotropic material with permittivity ¢ = €(r)
and permeability p = p(r). Embedded in this multi-layered medium is a 3-D
conducting object with a surface S which has an outward normal n. Let V; be
the multi-layered medium outside the scatterer S and Vs the volume inside the
scatterer S. Denote the ith layer in Vi by Vi = {(x,y,2) € V} : —d; < z <
7d7;_1},0 S ) S N+ 1,d0 = O,d_l = —0Q0, and dN+1 = 00. Thus

w= J v, (7.1)

0<i<N+1

and the interfaces in V; are denoted by X; = {(z,y,2) € V1 : z = —d;} and

>= |J = (7.2)

0<i<N



7.1 Surface integral equations in layered media 171

€o,Mo V,

€N UN

Ground plane -

Figure 7.1. Multi-layered medium with an embedded scatterer.

Let J.(r) be some electric source outside S and in V), and let E;, H; and
E>, H, be the electric field and the magnetic field in V3 and Vb, respectively.
From (5.30) and (5.31), they satisfy the following vector equations:

1 2¢(r r) = —iwd.(r r il
V x mv x Ei(r) — w?e(r)Eq(r) Je(r), e I\, (7.3)

1 1
V x %v x Hy(r) — w?u(r)Hi(r) = V x @Je(r), re\s, (74)
with the boundary conditions (5.62)—(5.65) along the interfaces ¥;, 0 < i < N.
To derive an integrlal representatilon for the fields in V7, we consider the dyadic
Green’s functions G ;(r,r’) and G (r,r’). The former satisfies

1 —1 —1 1
V x —V x Gg(r,v') — w?e(r)Gg(r,v') = —I6(r —1'), reW\%, (7.5)
u(r) " " u(r)
and from Faraday’s law in the Maxwell equations the magnetic dyadic Green’s
function is given by
1 1

Gpy(r,r) = fmv X G{E(r,r'), (7.6)

which satisfies
1 1 / 2 ~1 /
V X @V X Gy(r,r') — w u(r)Ggy(r,r’)

_ 1 ,
=— IV x W(S(r —1'), reV\X. (7.7)
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Along the interfaces between adjacent layers, both tangential components of
each column vector in the dyadic Green’s functions are continuous for r € ¥;
and r' € V1\X:

n x [@2(1‘, r')} =0, (7.8)
b
p(r)
where [ | denotes the difference from both sides of ¥;.

Following Chew (1990), we multiply (7.3) by C}E (r,r’)-e, with e being any of
the three coordinate axis unit vectors, and we have

n x [@}{(r, r’)} =-nx [ V x é};(r,r’) =0, (7.9)

1 _ _ _
V x =V x El(r)] -G}E(r, r')e — wzeEl(r)-G}E(r, r')e= —ine(r)-G}E(r, r')-e.
1
(7.10)
Next, we pre-multiply (7.5) by E;(r) and then post-multiply it by e to arrive at
the following equation:

1 1

Ei(r)-Vx %V X G};(r, r')-e — w B (r)-Gg(r,r')-e = ) Ei(r)-ef(r—r').

(7.11)

Subtracting (7.11) from (7.10) gives
1 — 1 —
{V x =V x El(r)] . G}E(r,r/) ce—Ei(r)-Vx -V x G}E(r,r’) e
1 1

— 1
= —iwJ.(r) Gp(r,r) e — ~E(r) ed(r —r'). (7.12)
1
Integrating (7.12) over the region V; yields

/V dr Kv X iVx) E,(r) 'é};(r,r’) e

1

— E(r) - (V X ;Vx) G{E(r, r')- e}
= —iw /Vf' dr [Je(r) ~§2(r7r’) ~e] — ci%El(r/) ‘e, (7.13)

where ¢; = 1ifr' € Vi, and ¢; = 0 if ¢’ ¢ V.
The integrand on the left-hand side of (7.13) can be simplified using the fol-
lowing vector identity for the vector operator £L =V x /%Vx:

L

(Lf)y-g—f - (Lg)=V M(fo)ngrfx(ng)], (7.14)

and thus (7.13) can be rewritten as

v % (V% Ei(1)) x Gpr,v') - e+ Ba(r) x (¥ x Gp(r,r) )]

— 1
= —iw [ drJ.(r) Gpr.r) e — ci;El(r’) e, (7.15)
vi
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and the volume integral on the left-hand side of (7.15) could be reduced to a
surface integral by Gauss’s theorem. So, we have

- /Si,UZi_luzi ds - () {(V x Eq(r)) x Gg(r,1r') -e

+ Ei(r) x (V X ég(r,r') : e)]

= —iw /Vf_ dr [Je(r) ~§}5(r,r') -e] - ciﬁEl(r') ‘e, (7.16)

where S; = SNV}, and n is the normal pointing to the interior of V7.
Next, by using the vector identity u- (v x w) = (u x v) - w and Faraday’s law
in the Maxwell equations V x E;(r) = —iwpuH;(r), we obtain

GE(r) - e = —iwu(r) /v dr {Je(r) Gp(r,r) -e} - u(r')/g ds

UM 1UX;
1
p(r)

It can be shown that the surface integrals over each ¥; will belcanceled from
adjacent domains V™' and V{. To see this, let us write g = Gg(r,r’) - e and
h= ﬁv X G}E(r, r’) - e. With the identity

iwnxHl(r)-ég(r,r')-e—anl(ry VxGlE(r,r’)-e} . (7.17)

f=nx(fxn)+(f n)n,
the integrands in the surface integral can be written as

nx Hi(r)-g=[nxH;(r)] - [nx(gxn)],
n x Eqi(r) -h=[n x E(r)] - [n x (h x n)], (7.18)

after using the vector identity (n x f)-n = 0. As the tangential components of
Green’s functions (7.8)—(7.9) as well as those of E;(r) and H;(r) are continuous
across the interfaces ¥;, i.e.,

[nx(gxn)y, =0, mx (hxn)ly, =0,

n X [El (I‘)]Zi = 0, n X [Hl (I‘)]Ei = 0, (719)
the surface integrals from both sides of X; will cancel each other when (7.17) is
summed up over all V. As e is any of the three coordinate axis unit vectors,
after all surface integrals over 3J; cancel out, the following integral representation
for the electric field E;(r) is obtained (with r and r’ switched):

Ei(r) = E™(r) — u(r)/s ds’ {iwn x Hy(r") ~§}5(r’, r)

—nxE(r')- V' x G};(r’,r)} , rev, (7.20)

1
p(r’)
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where E¢(r) would be the incident electric field generated by the source J.(r’)
in Vi, i.e.,
E™(r) = fiwu(r)/ dr’ J.(r") ~C}5(r’, r). (7.21)
Vi

From the proceeding derivation, if ' € V5, then ¢; in (7.17) is replaced with
zero, and we have (after switching r and r’)

0 = E™(r) — p(r) /3 ds’ [iwn x Ha(r') ~§}3(r’, r)

— n x Ey(r') - AVAX G{E(r’,r)] , reva. (7.22)

1
p(r’)

Let us define the equivalent surface magnetic current J,, ;) and the electric
current J. (5 over S, i.e., forr € S,

Jes)(r) =n x Hi(r) = n x Hy(r), (7.23)
Jm(s)(r) = —n x Ei(r) = —n x Ey(r). (7.24)

Equations (7.20) and (7.22) imply that those currents, together with the vol-
ume current source J(r) in V¥, will produce the same field as E;(r) outside
S, but zero field inside S. After using the following reciprocal property for the
dyadic Green’s function in a layered medium (Tai, 1994, sect. 4.4):

! V/ él ! T— ! \V4 él /
W[ x Gplr',r) RO e(r,1), (7.25)
1 -1, T—Lfl o
M(r,)GE(ryr) = M(r)GE(, ), (7.26)

we have finally the following electric field integral representation (assuming
p(r) = p(r')):

Bir) = B) = o) [ [wG () 3o 0)
1t

p(r) e(r)
where k%(r) = w?e(r)u(r), and

X élE(I‘, I‘/) . Jm(s)(l‘/):| , re Vl, (727)

0= E"™(r) — u(r)/sds’ {iwé};(r, ') - Je(s) (1)
1

M)

V X G}E(r,r') -Jm(s)(r/)] , rebs. (7.28)

Remark 7.1  Equivalent surface currents J(,) and J,,,(5) produce the total field
E; and H; outside S and zero field inside; the former fact is Huygens’ principle
(Sommerfeld, 1954) and the latter (7.28) is the extinction principle (Harrington,
2001).
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Similarly, we can obtain the following magnetic field integral representation:

H(r) = H™(r) + e(r)/

1 J—
ds’ |: V x GlE(I', I‘/) : Je(s) (I‘/)
S

e(r’)

— WG h(r,r) - Jm(s)(r')] . rew, (7.29)

0=H"(r) + e(r)/

1 P
ds’ |: V x GlE(r, I") . Je(s) (I'/)
S

e(r’)
- iwég(r, r')- Jm(s)(r’)] , rels, (7.30)
where H'"(r) would be the incident magnetic field generated by the source J.(r')

located within V7, i.e.,

1
e(r’)

H"(r) = ¢(r) /V dr’ V x G}E(r,r’) Je (). (7.31)

Singular and hyper-singular surface integral equations

To derive surface integral equations for electric and magnetic fields E; and H;
over S, we would have to let r reside on S. As the dyadic Green’s functions
become singular when r approaches S, (7.27)—(7.30) for r on S would be obtained
by considering the limits of r approaching S. As a result, the Cauchy principal
value or the Hadamard finite part discussed previously in Sections 3.1.1 and 3.1.3
will appear for the electromagnetic fields.

Let rg = (0, Y0, 20) € S not on any of the interfaces X;, which, for simplicity,
is assumed to be (0,0,0), and let S, be a circular patch of radius a over S
centered at rp. As the dyadic Green’s function G}E(r’ ,r) shares the same type
of singularity as the free-space Green’s function, we can assume that, near the
singularity, é}; (r,r') is given by (6.35).

Denote the first and second integrals in (7.27) as the contribution by the
electric and the magnetic currents, respectively, by

E°°°(r) = iwpu(r) /S ds’ G}E(r, r') - Jos(x'), (7.32)
E™*(r) = p(r) /S ds’u (1r,)v X Gp(r,r') - Tpuo (). (7.33)

Therefore, (7.27) can be rewritten as

Ei(r) = E™(r) — E®*(r) — E™(r), 1€ V. (7.34)
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Principal value of E™*8(r)
By using the identity
_ - 1
V x G{E(nr’) =V x (I—I—kQVV) g(r,r’)
=V x [g(r,x)I], (7.35)

the integral over S, can be written as

/ ds' V x Gp(r,r') - I ()

Sa

- /S T )T ) - /S A Vgl ) ()
~ [ /S ds’ Vg(r,r’)} % Tone) (x0). (7.36)

a

If we assume that S, is flat with local coordinates (z',%/, 2" = 0), J,,(5)(r0) =
(Jszs Jsy, 0)T, then the contribution of the tangential component above is

/vsgrr ds—/ /2W<ax,,a ) g(R)p dp do
//% </ /)pdpdfb 0, (7.37)

where R = \/p? 4 (z — 2/)%.
On the other hand, along the normal z-direction, we have

2m 8
/ g(r,r") ds—// R)|,—0 p dp do
5. On
n ikR 4 1)e FE
[ [ wgearao=-; / GRRE ey, (739)

and if @ is small and z — 2/ =0, then R = \/p? + 22 — 0, and we have

/ r,r')ds’ ( z ) — ! (7.39)
S| ———=— ——. .
on? V212 2

Therefore, substituting (7.37) and (7.39) into (7.36), we have

0
1 _
,u(r)/ ds’ { <~V x G};(r,r’) T (s (r’)] ~ 0 X Jm(s)(ro)
S, pu(r’) f 99 '
S, on
T 0 , , 1 1
= (—=Jsy, Js2,0) . 8—ng(r,r) ds’" — fE(sty,Jsz,O) = iJm(s)(ro) X n

(7.40)
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Let r — rg (along the normal direction n) in (7.33), so we have (after replacing
rog by r)

E™&(r) = p(r) p.v./ds’
) p.v. /ds

Hadamard finite part of E®*‘(r) and its CPV representation

1 — 1
/)v X G};(I‘7I‘/) . Jm(s) (I‘/) =+ §Jm(s) (I‘) X n

1
Vg r,r’) x Jm(s)(r') + iJm(s)(r) xn. (7.41)

Here, we have

-1
Eelec(r) _ iw/ﬁ(r)/sdsl (I—I—kQVV) Q(I',I") -Je(s)(r’)

= iw,u(r)/Sds’g(r,r').]e(s)(r') + iw:Q(r) /Sds' V'Vg(r,x') - Jos)(r)
= Si(r) + Sa(r). (7.42)

Firstly, let us examine the limit of S;(r) as r — ro:

= iwp (/S\Sq’ —l—/sa> ds’'g(r,x")J e (r). (7.43)

The term J,)(r') in the second integral in (7.43) can be approximated as
Je(s) (I‘o)' thus

[ gt )3 )~ ndo ) | o2

lwﬂ‘]e(s I‘O / /271' e kR
= dp d
Rr>p¢

Je s 2
iwpd o(s)(ro) / / p dp do
dm o Jo  \pPt2?

i Jes
:&ﬂéﬁﬁm¢;:§—pozm@,%z%/=0 (7.44)

Therefore, as r — rg and a — 0, we have

Q

r—ro

lim S;(r) = iwp p.v./ ds’g(r,x")J o5 (). (7.45)
S

Next, we consider the limiting value of Sy(r) above as r — rg € S. As the
kernel is hyper-singular, the limit will be of a Hadamard finite part for the hyper-
singular integral (Hadamard, 2003) as discussed in Section 3.1.1. Now we have

Sa(r) = MI'ZQ(I.) /Sds’ V'Vig(r,x’) - Jo(s(x')

== / +/ ds" V'V'g(r,x’) - T (x'). (7.46)
€ S\ Sa Sa
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We will show that the Hadamard finite part of Sy(r) can be computed by the
Cauchy principal values of a weaker singular kernel. Let us first examine the
integral over the patch S, and denote the integrand as

f=V'V'g(r,r') Jos ('), (7.47)

which in component form reads
2

fi= mg(r,r/)Jj7 (7.48)

where J; = J(5),;- We can rewrite f; as
o 0 Jg 9g 9J; _ v dg dg ’
fi= o (895’ Jj) ox dxly Vi lor ’Je(s ~ o) (V' JTes))

99 : 9g
=V (a /J s)> +1wpe(s)@»

where the continuity equation iwpe(s) + V% - Jo(s) = 0 has been used for the final

equality.
Using the fact that V' = V/, + na%l and n L J(), we have
dg : Jg
fi=Vy- (8 o7 e(s > +iwpe(s) 5 - (7.49)

Using Gauss’s theorem, we can compute the integral over S, in (7.46) as follows:

/Sa fz ds’ = / |:v; ’ (aag/‘]e( )) lwpe(s aa :| ds’
/ 99 Je( A (") - dll + iw/ pe(s)a—g/ ds’, (7.50)
aS, S, Ou;
where 7 is the outer normal of 9S,:

T = (cos ¢, sin ¢, 0). (7.51)
Using (7.37) and (7.39), we obtain

iw
/ fds' = / v’ g [ e(s) ( ) 'T] i’ + ?pe(s)(rO)n
Sa 9S,

~ /85 g/(R)aR [Je(s)(rO) ]dl + 9 pe( )(rO) ) (752)
where
, r —r
ap=V'R = v _I'| —ncosf + Tsind, (7.53)

and 0 is the angle between vector r' — r and —n at rg.
Assuming that

Je(s) (rO) = |Je(s) (rO) | (COS ®0,8in ¢o, O)a (754)
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then the line integral in (7.52) can be simplified as follows:
/ d (R)ag [Tos) (o) - 7] dl’
0S,
2
= alJ. () (x0)ld'(R) / (—ncosf + 7 sin 6) cos(¢ — do)de
0

27
= alJ.()(ro)|g' (R) sin@/ 7 cos(¢p — ¢o)de
0
= 7TCL|J6(S) (r0)|g/(R) sin@(cos ¢07 sin ¢07 0)

M asz— 2 =0, 60— =

p— / ] —
= maJ ) (ro)g (R)sinf — 1 5

Finally, we have the integral over S,:

JE S i
/ ds' V'V'g(r,r') - Je () (r') =/ fds' =~ W"i‘ %}pe(@(ro)n- (7.55)
Sa Sa a

The term J.,(ro)/4a becomes unbounded as a goes to zero, but we can use
the idea of the Hadamard finite part since a similar unbounded term with an
opposite sign, as for all finite parts of Hadamard integrals, will come from the
following integral:

Je S
/ ds’ V'V'g(r,r') - Jo(5)(r) = iw/ ds" V'g(r,x")pes)(x') + M'
S\Sa S\Sa 4a

(7.56)
Therefore, lim,_,, S2(r) as the finite part (p.f.) of the Hadamard integral

lim Sa(r) = p.f. wp(r)

r—ro k2

/Sds’ V'V'g(r,x’) - Jos)(x)) (7.57)

can be computed using the following Cauchy principal integral after combining
(7.55) and (7.56) and canceling the divergent term J((ro)/4a:

1 1
SZ(r) = _p'v'€/sd5/ v/g(ra r,)pe(s) (I‘/) - 276pe(s) (I‘O)Il. (758)

As a result, we have two equivalent representations for E®*¢(r) with r € S:
one by a Hadamard finite part integral

- 1
EeleC(r) — lwﬂ(r) pf/sdsl <I+]<;2vv> g(r7r’) . Je(e) (I'/)

= iwp p.f./ ds’ ég(r, ') - T (r'), (7.59)
s
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and the other one by a Cauchy principal value integral:
E®°(r) =iwp p.v./ ds" g(r,x")J e (r)
s
1 !/ !/ !/ / 1
—p.v.— ds" Vv g(r, r )pe(s) (I’ ) — 5 Pe(s) (I‘O)l’l. (760)
€Js 2e

Electric field integral equation (EFIE)

Substituting (7.41) and (7.59) or (7.41) and (7.60) into (7.34) and taking the
tangential component (using the fact that nx (J,5)(r) x n) = J,,)(r)), we
arrive at the EFIE:

1

_iJm(s)(r): n x E™(r) — 1wun><pf/ ds’ GE(r ') - Je(s) (r')

—unxpv/ ds’ VXGE(r r') - T (r), resS.

(7.61)
The first singular integral should be understood in terms of the finite part of the
Hadamard integral and, as shown in (7.60), for homogeneous media it can be
converted into a regular Cauchy principal value for the charge density (noting

that the term (pe(s)(ro)/2¢)n in (7.60) is orthogonal to the surface tangents) as
follows:

—%Jm(s)(r) = nx E™(r) —n x [Mppv /ds Je(o)(x)g(r,x’)

1 / I/ / /
—pv.— | ds'V'g(r,r")pe(s) (T
™ Js (r, 1) pe(s) (x')

+ p(r) p.v./sds’u(lrl)Vg(r, r’) x Jm(s)(r’)} ,res. (7.62)

This integral equation is attributed to Maue (1949) and is also known as the
Stratton—Chu representation (without 1/2 if r ¢ S) (Stratton & Chu, 1939).

Magnetic field integral equation (MFIE)
Similarly, a surface MFIE can be obtained:

%Je(s) (r)= nx Hinc(r)

Il X p.v. dS/ |: V x GE(I' I‘) Je(s)(r/)
S

WG (1) - T (x )], res. (7.63)
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From (7.41) and (7.59), we can define integral operators 7 (J) and K(J) (Hsiao
& Kleinman, 1997) as follows:

T() = ~iknx pt. [ ds' Gplrr') -3, (764)
S
K(J)=nx p.v./ ds'V x E}g(r,r/) -J(r)
S

=n x p.v./ ds'Vg(r,r') x J(r'). (7.65)
s

As shown in (7.62), the electric integral operator 7 (J) using the Hadamard
finite part can also be defined using the Cauchy principal value of the integral
with weaker singularity:

T(J)=— ikn x p.v./sds/ J(x")g(r, 1)

- %n X p.v./ ds'V'g(r,v")V. - J(r'). (7.66)
s

The surface integral equations (7.61) and (7.63) become

<;I — IC) Iy +T (ZJC(S)) = —n x E™(r) (EFIE for exterior scattering),
(7.67)

(;I - IC) (ZJE(S)) — T Jm(s) = Zn x H"(r) (MFIE for exterior scattering),
(7.68)

where the impedance of the exterior medium Z = \/pu/e.
According to the impedance boundary condition in (5.97) for conductors, we
have a relation between these two currents:

Jm(s) = —an X Je(s), (769)

which can be used with either (7.67) or (7.68) to form a closed system of equa-
tions.

For a PEC (perfect electric conductor), the intrinsic surface impedance Zs = 0,
so we have J,,(;) = 0; the surface integral equations for the electric current
J = J¢ ) are given by

T (ZJ) = —n x E™(r), (7.70)

(;1 _ /c) J = nx H™(r). (7.71)
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Meanwhile, for the electromagnetic fields inside the ca;/ity, similar surface inte-
gral equations can be obtained with Green’s function G (r’,r) for the definition
of the surface integral operators in (7.64) and (7.65):

1 .
(21 + IC> Iy =T (ZJG(S)) = —n x E™°(r) (EFIE for interior scattering),

(7.72)

1 i
(21 + lC) (ZJE(S)) + TIms) = Zn x H™(r) (MFIE for interior scattering),

(7.73)
where

Je(s)(r) = n x Hy(r), (7.74)
Jn(s)(r) = —n x Ey(r), (7.75)

and the incident waves E™¢(r) and H™°(r) come from sources inside Va:
E"(r) = fiwu(r)/ dr’ é%(r,r’) Je (1)), (7.76)

Va
) 1 .
H"(r) = e(r) / dr'—V' x Gp(r,r') - T (r). (7.77)
v ()

If the cavity has a PEC boundary, then the surface electric current J = J,)
will satisfy the following integral equations:

T (ZJ) = —n x E™(r), (7.78)

<;I + /c) J =nx H™(r). (7.79)

Remark 7.2 (Surface integral equations on dielectric scatterers) As
an electromagnetic field can penetrate into dielectric media, both interior and
exterior field scattering will occur. By using the continuity of the tangential
components of the electromagnetic fields, we can see that J,,) and J.() in
(7.67) and (7.72) are the same. Therefore, combining these two equations will
give the surface EFIE for a dielectric scatterer. Similarly, (7.68) and (7.73) will
form the surface MFIE for a dielectric scatterer.

Resonance and combined integral equations

The surface EFIE and MFIE have unique solutions except at resonant frequencies
k when V3 (as a cavity) has non-zero solutions with the PEC boundary condition
on S, i.e., n X E|g = 0. These solutions are called resonant eigen-modes of the
cavity and k is the eigen-frequency of the cavity. We will discuss these modes for
a spherical cavity V» with radius a.

According to the general solution for the Maxwell equations using the magnetic
and electric vector potentials (5.58) and (5.59), together with the identity
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V(V-A)=V xVxA+V?A
and the fact that
VZA + kA =0

(the same for F in (5.58)) in source-free cases, we have

1 1
E=—-VxF+4+ —VXxVxA, (7.80)
€ iwep
1 1
H=-VxA+ —VxVxF. (7.81)
U iwep

To find the cavity resonant modes inside the sphere, we consider the following
vector potential (Harrington, 2001, p. 267)

A =rA,, F=rF,.

Then, the electric and the magnetic fields are given as

PR 8FT+L82AT
= ¢ \rsinb 06 " arorod )’
1 /10F, 1 0%A4,
Eo = € (r 90 " arsmo 8r8¢> ’ (7.82)

11 /02
H’r‘: — 5\ 599 k2 Frv
B (57"2 ’ )

" 1 1 0A, N 1 O%F,
o p\rsing d¢  Brorod )’
1 10A, 1 0%F.
Ho =" <_r 90 " Breind araqs) ! (7.83)

where a = iwp and § = iwe.

e TE eigen-modes. By setting A, = 0, then E, = 0, so E has only transverse
(0, ¢) components inside the sphere and takes

F zjn(kr)P;:L(cose){ Z?r?:z } (7.84)

~ 27’1’]{}7’ .
jn(kr) = \/ T]n—}-%(kr)v (785)

and j, 1 (2) is the Bessel function of fractional order and Jn(kr) satisfies
the following differential equation (Harrington, 2001):

( ¢ ”(”;H)) Gulkr) = 0. (7.86)

where

a2
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We can see that the PEC boundary condition is satisfied, namely that
the tangential components Fg and E4 of E will vanish if ka are the roots
of the spherical Bessel functions

Jn(ka) = 0. (7.87)

e TM eigen-modes. By setting F,. = 0, then H, = 0, so H has only transverse
(0,$) components inside the sphere, and takes A, in the same form as
(7.84). Again in this case we can see that the PEC boundary condition
is satisfied, namely that the tangential components Ey and Ey4 of E will
vanish if ka are the roots of the derivatives of the spherical Bessel functions

7. (ka) = 0. (7.88)

As jn(ka) and j/(ka) cannot be zero simultaneously, the transverse (6, ¢)
components of the magnetic field T x H are non-zero for both TE and TM
modes above. Because there is no source inside the cavity, the non-zero electric
current on the surface of the sphere,

Jmode(r) =T X Heigen—modea (789)
will satisfy a homogeneous version of (7.78) and (7.79):
T(Jmode) =0, (790)

(;I + IC) Jiode = 0. (7.91)

Thus, from (7.90), we conclude that the surface integral equation for the ex-
terior scattering surface EFIE is not uniquely solvable, as the same operator T
is used in (7.70) and (7.90). Also, (7.91) implies that A = —1/2 is an eigenvalue
for the operator K, and it can be proven (Hsiao & Kleinman, 1997) that 1/2 will
also be an eigenvalue for . Therefore, the surface MFIE (7.71) for the scatter-
ing problem does not have a unique solution either for a perfectly conducting
scatterer when £ is an eigen-frequency.

The mathematical non-uniqueness of the surface integral equations for the
exterior scattering problem for a PEC is found to be related to the fact that
the solution of the EFIE fails to give the zero normal magnetic field on the
boundary: n- H = 0. There are various remedies to resolve the non-unique so-
lution problem for the EFIE and MFIE. One is to supplement the EFIE with
an explicit condition n-H = 0 on S, the so-called augmented EFIE (A-EFIE)
(Yaghjian, 1981). The most popular solution is to use the combined field integral
equation approach by Mautz & Harrington (1978), which combines the operators
T and K such that the spectra of the new operator stays away from zero. The
combined field operator C is defined as

C= (;I - IC) +mm x T. (7.92)
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The eigenvalues and the eigenfunctions for C for a unit PEC sphere (a = 1)
can be explicitly computed as follows (Hsiao & Kleinman, 1997):

C(V.Y™) = (; - nan) vy, (7.93)
C(Vy x Y™) = (; - nﬂn) V. x Y™, (7.94)
where
M= 5 L BBRDEL + B E ]} (7.95)
an = [kjn (K)] kA ()], (7.96)
B = —k2jn (k)LD (k). (7.97)

Therefore, the eigenvalues for the combined field operator C cluster around 1/2
away from zero for appropriate choices of 7.

The eigen-equations (7.93) and (7.94) can be easily verified using the following
identities for the operators 7 and K on the unit spherical surface (Hsiao &
Kleinman, 1997):

T(VY,") = a, Ve x Y, (7.98)
T(Vs xY") =B,V Y., (7.99)
and
K(V Y, = =\, V.Y, ", (7.100)
K(Vs xY") = Ve x Y, (7.101)

as well as the identities Vi x f =V f xn and nx (Vsf xn) = =V, f.
With the combined integral operator C, Mautz & Harrington (1978) proposed
the following CFIE for general scattering surfaces:

C(I)=nxH™ —ynxnxE™, on S (CFIE). (7.102)

Nystrom collocation methods for Maxwell equations

Surface differential operators

Assume that the surface S in R? is smooth and parameterized by r = r (uy, uz).
Firstly, we define the metric tensors and various surface differential operators.
Tangential vectors: O;r,i = 1,2, are defined as

or

- 8’LLZ"
Metric tensors: the distance between two points on S parameterized by (uq, us)
and (uq1 + dug, us + dusg) is given by

(ds)? = gy (u) duydu,, (7.104)

81‘1‘

i=1,2. (7.103)
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where the repeated indices imply a summation and

or Or

Juv = 87

c— 1< <2 7.105
’U,N 81]/”’ —:LI’7V— ) ( )

and {g,, } is defined as the covariant tensor (Kreyszig, 1991). The contra-variant

tensor { P } is defined by
goa/gl/ﬂ = 604,6- (7106)

The determinant of {g,, } is denoted by
g =det{gu} = g11922 — gi» = |01 X dor)?. (7.107)

Normal to the surface:
oir X Oor

Differential operators on S: V.

e Scalar V¢ — the surface gradient of a scalar function ¢(uy,us):

po 99 Or

duy, 0wy’

Vip=g (7.109)

and gi2 = 0 if we have orthogonal parametric coordinates, i.e., the u; and
ug coordinate axes are orthogonal, and

W00 O 500 Or

_ 11 29
90, 90 T g o, — 9 100 +g7 0001 (T.110)

vs¢:g

e Divergence V- f — the surface divergence of a vector field f = f(uy,us) on S:

Ve -£f=9¢""0,f 0pr (7.111)

Locally corrected Nystrom method for hyper-singular EFIE
Consider an integral equation for an unknown function ¥(r),
/ G(r —1')y(r")ds" = ¢(r), (7.112)
s

where ¢(r) is assumed given. The conventional Nystrém method for (7.112) is
based on a quadrature formula to discretize the integral operator, i.e.,

N
/S FE)ds’ ~ > wn fra): (7.113)
n=1

The weights and the abscissas are obtained by first transforming the inte-
gral to a regular reference (square) parameter domain where the usual Gauss
quadratures {w,, u,} are used. Then, we have
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wn =V g(uy,) @y, (7.114)
r, =r(u,), (7.115)

where r(u) is the parameterization mapping between the reference domain and
S, and g(u) is the determinant of the mapping function. The discretized system
for the integral equation is simply

> wnG(rm—rn)e(rn) = ¢(rm), m=1,2,...,N. (7.116)

The accuracy of the solution of (7.116) is determined by that of the quadrature
formula and the smoothness of the surface, namely the mapping function r(u).
However, the accuracy of (7.116) will be lost once the kernel function G becomes
singular or even hyper-singular. To retain the high-order accuracy, new types of
specially designed quadrature formulae will be needed to account for the specific
nature of the kernel function when r,, and r, are close. This is achieved by
the local correction strategy in Strain (1995) where the local corrections are
introduced:

~ { Lo, if v, € D,y,, (7.117)

Gomn =
e G(r,,—r,), otherwise,

where D,, is a neighborhood of r,,.

The correction L,,, is obtained by constructing a quadrature formula for a G-
weighted integral, which is required to be exact for some classes of test functions.
Therefore, L, depends on G(r) for each m. For each r,, and its neighborhood
D,,,, the new quadrature for the G-weighted integral is found by satisfying K
constraints:

/ G(rp—1')f®F (r ds—ZLmnﬂ m—Tn), k=12 .. K (7.118)
Dy,

where the test functions f*)(r) are pre-selected functions, usually polynomials.
As K and J are small, the correction coefficients can be pre-calculated for each
r,, with small cost.

Now, the high-order Nystrom method (Canino et al., 1998) for the singular
kernel G becomes

N
> wnGrnth(rn) = ¢(r), m=1,2,...,N. (7.119)
n=1

The locally corrected quadrature L,,, in (7.117) requires accurate evaluation
of the left-hand side of (7.118), which is singular or even hyper-singular. In
treating the hyper-singular integrals in the EFTE (7.61), there are methods of
direct calculations as discussed in Section 3.1.3 for general curved surfaces or
see Tong & Chew (2007) for flat patches. There is also a reformulation of the
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singular integral in terms of weaker singular integrals as in (7.66). A similar
approach was used in Canino et al. (1998) where the hyper-singular terms are
handled by using Stokes’ theorem (see the review in Gray, Glaeser, & Kaplan
(2004)) to avoid integrating the hyper-singular terms directly, as reviewed below.
Three main types of singularities for the EFIE are listed as follows.

e Type 1:
G(R)t(r) - t'(x); (7.120)
e Type 2:
t(r): (VG(R) x t'(r)); (7.121)
e Type 3:
(t(r) - V) (V'G(R) - t'(x")), (7.122)
where
G(R) = e_]:R _ (R lsin;R
and
G'(R) = G'(r,r') = COS;R, R=1r—r| (7.123)

We will show how to handle Type 3 hyper-singularities for a given field point
r =r( € S, and the other two types can be treated similarly (Canino et al., 1998).
The key is to convert the integral into smooth or less singular integrals as field
point r approaches rg on S so it can be computed accurately for selected test
functions:

(t(r) - V) (V'G(R) - t'(r)))

sinkR _ ER sinkR _ 3 sinkR __ kR ER 2
YR N B e liid (kRjos ooy pein =30 Msz) cos bF) /(b F) (t-r) (t'r)
4 (t-V) (VG (R)-t)). (7.124)

Whereas the first term in the right-hand side of (7.124) is regular, the second
term is hyper-singular to be simplified using Gauss’s theorem on the surface
patch:

/ds V) (VG (r,r) - t/'(r)))

= /Sds’ t'(x') - V., (t(r) - VG*(r,1'))

= / ds’ V., - [t'(r)) (t(r) - VG (r,1") /ds ) VG (r,v)] (V) - t'(1"))
S

:/ Al (v - t/(r')) (t(r)-var(r,r'))+/ds’ VG (r,r') - [t(r) (V- /()]
o8 S
(7.125)
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where 7 still denotes the outer normal of the curve 0S tangential to the
surface S.

The first term will be void of singularities as long as the field point r is not on
the boundary 05, whereas the second term can be regularized at r — r’ by the
following splitting
Ot at Ot , (7.126)

g(u) g(u)

t(r)V, - t(r') = [t(r) (V] - t(r')) — a*

where the coefficient vector a = (o) is selected to make the first term vanish at
r’ = r, namely

k' = ak(r) = /g(u)g" (t(r) - 9),x') (V- t'(x))
=/ g(u)g" (t(r) - 9,r) (9" Ot - Opx') pr=r- (7.127)
Then, the second term in (7.125) can be split as follows:
/ ds' V'G(r,r') - [t(r) V] - t'(x")]
5
= / ds' V'G'(r,r') - [t(r)V, - t(r') —c(r,x') | + / ds' V'G"(r,r') - c(r,1'),
s s
(7.128)

where
/
aur

c(r,r’) = o*(r) oo

~—

Due to the choice in (7.127), the first term has a singularity at most of 1/|r—1'|,
whereas the second term can be converted into a boundary integral as follows:

/ ds' V'G*(r,r') - c(r, 1) = / ds' VLG'(r,1') - c(r,1’)
s s

= / d’ - G"(r,r")c(r, ). (7.129)
s
Finally, the integral in (7.125) can be computed as
/ ds’ (t(r) - V) (V'G*(r,r') - t/(x"))
S
:/ ds’ V'G*(r,r') - [t(r)V - t'(x') — c(r,1")]
S
—|—/ dl’ 7 [t'(r)) (t(r) - VG (r,1")) + G*(r,x)c(r,1')] . (7.130)
s
The test function used in defining L, in (7.118) is taken as

!
Our

Y =R S

P (), (7.131)
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where u is the parameterization of r’ € S, i.e., v = r/(u) while, for a fixed field
point r = r(ug), the basis function is given by

tu(r) =0, r(u)|,y, (7.132)

Thus, (7.125) becomes (Canino et al., 1998)
/ds/ (t(r) V) (VG (r,x') - t/(x)))
s
- / ds' V/G*(r, 1) [@J(u)@; F9 () — a;r'a;ﬂk)(uo)}/ g(u)
s

+ / dl'r - [6,Lr(u)~VGr(r,r') F®@)aLy + G (r,x')d, f<k>(u0)a,;r'].
a8
(7.133)

Here the field point r = r(ug) as r tends to the surface S.

The first term in (7.133) has at most a singularity of 1/|r — r’| due to the
selection of (7.127) at r — r/, which can be handled by a Duffy mapping (see
Section 7.3.3), and the boundary integral will be finite as long as the field point
r is not on the boundary 95 in the limiting process, and thus can be evaluated
by a regular quadrature on 05S.

Remark 7.3 The Nystrom collocation method (Nystrom, 1930) discussed here
requires the surface EFIE to hold at some specific points on the surface S. The
resulting algebraic equation can be conditioned by the Calderon identity (Hsiao &
Kleinman, 1997), which is addressed in various literatures (Contopanagos et al.,
2002; Christiansen & Nédélec, 2002; Borel, Levadoux, & Alouges, 2005; Andriulli
et al., 2008).

Nystrom method for mixed potential EFIE

A high-order Nystrom method by Tong & Chew (2005) is based on the Stratton—
Chu representation (7.62), where only singular integrals are involved, in contrast
to the hyper-singular integrals in (7.61) with the dyadic Green’s functions. Here
we will only consider the free-space Green’s function and the media inside or
outside the scatterer will be homogeneous. We consider the following singular
term in the EFIE (7.62) over a patch S:

X /Sds’ V'g(r,r")ps(r")
= / ds' n x V'g(r,r')ps(x') = / ds' n x V.g(rx')ps(r')
/dsnxvsgrr)[ps(r/)— s(r)] +ps(r /dsnxvsg(rr)

/ ds' n x Vig(r,xr') [ps(r " — ps(r)] +ps(r) s dr’ g(r,r"). (7.134)



7.4

7.4.1

7.4 Galerkin methods and RWG current basis 191

Now the first term has only a 1/|r — 1’| singularity which can be treated
by using the Duffy transform (Duffy, 1982). This transform maps a triangular
domain T = {(u1,u2) : 0 < up < 1,0 < ug < up} in the parametric variables
of the surface S into a square Q = {({,n) : 0 < {,n < 1} through a collapsing
transform:

up = ¢, uz = u1n = ¢, (7.135)

and the Jacobian of the mapping (7.135), J = 9(uy,u2)/9(¢,n) = ¢, will then
be able to cancel the singularity 1/|r — r'| = 1/|r(uy,u2) — r(uf, ub)| once the
integration of the first term in (7.134) is carried out in the ({,n) variables.
Alternatively, a local polar coordinate system on the surface where ((,n) =
(p,0) can also achieve the same effect of singularity cancelation (Cai, Yu, &
Yuan, 2002). Meanwhile, the second term in (7.134) remains finite as r is away
from OS as it approaches S.

Similarly, in the MFIE, we need to compute the following integral accurately:

/Sds’ nx (V'g(r,r’) x J(r'))

(kR — 1)e—ikR’

:/ds’ [(n-J(r)R—(n-R)I(x')] x =7 (7.136)
S

where the integrand is of 1/R singularity because R = r — r’ becomes orthogonal
to n as r tends to the surface S.

Galerkin methods and high-order RWG current basis

Galerkin method using vector—scalar potentials

The Galerkin method for the electric field integral equation is usually based on
a vector and scalar potential representation of the electric field (Mosig, 1989),
which involves a weaker singular kernel in (7.62), and the unknowns will be the
surface current. Such a procedure was first proposed in Harrington (1993).

For a PEC (perfect electric conductor), Zs = 0, so (7.62) becomes

1
iwpn x p.V./ ds’ Je(s)(*)g(r,r') —n x pv.— / ds" V'g(r,x")pes)(r')
s e(r) Js

=n x E"(r). (7.137)

Let Jy(r), 1 =1,2,..., N, be the RWG current basis functions given in Sections
7.4.3 and 7.4.4, and let the current J4 and the charge ps; be expressed in terms
of these basis functions, namely
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N
=> Ld(r), (7.138)
=1

N
=3 nipe), (7.139)
=1

where

i) =~V (). (7.140)

We apply the Galerkin projection procedure to (7.137) by multiplying it with
a test function Ji(r') and then integrating over the whole surface S to obtain
the following algebraic equation:

N
> Zuli=Vi, k=12,... N, (7.141)

where, after using integration by parts to transfer the gradient operator V in
(7.137) to the test function J;(r), and using the continuity equation for the
surface charge (7.140), we have

Z = 1wu// ) - Ji(r ds’ds—&——// (r) ds'ds,

(7.142)
and

Vi = /S n x E™(r) - Jy(r)ds. (7.143)

Functional space for surface current J(r)

In order to transfer the V operator in the second term in (7.137) to the cur-
rent function J(r), the divergence of the current basis functions should be L?
integrable, which implies a continuous normal component of the basis functions
across the common interface of any two patches when S is decomposed into either
triangular or quadrilateral patches. The normal continuity of the current basis
function insures no non-physical accumulation of charges on the patch interfaces.

Let us examine more closely the smoothness property of the surface cur-
rents. From the tangential continuity of the electric and magnetic fields, we
have {E,H} € Hjc(curl, V), where

Hipe(curl, V) = {u : / |curlu)? dr < oo,/ lul? dr < o0, VQ C V} . (7.144)
Q Q
Similarly, we can define the space H(div,V) as

Hyoo(div, V) = {u : / |div u|? dr < oo,/ lul? dr < o0,V C V}. (7.145)
Q Q
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Meanwhile, the Sobolve space Hq(V') is defined as

3
H\ (V) = {u :/ lul? dr—i—Z/ |V, | dr < 00}7 (7.146)
v i JV

which can be shown to have the following property:
Hy (V) C Hioe(curl, V') N Hipe(div, V). (7.147)

The fact that {E,H} € Hjoc(curl, V) implies that their traces (Duvaut & Lions,
1976, lemma 4.2, p. 341) satisfy

n x El,,nx H|, € HY2(8) = (H'2(9))*. (7.148)

The definition of the trace of Hjo.(curl, V) for smooth domains can be found

in Nédélec (2001) while that for non-smooth domains are in Buffa, Costabel, &

Sheen (2002) and Buffa, Costabel, & Schwab (2002). On applying the surface
divergence to n x E, we have

V.- (nxE)=-n-(VxE)=n-(iwuH), (7.149)

and by using Faraday’s law in the second equation in (7.149) and the following
gradient operator identity in the first equation:

0
Vs=V ne- (7.150)

Therefore, assuming that n - H has a trace in H~'/2(S), namely that the field
has no singularity near the surface S, then we have

V.- (nx E)e HY2(9). (7.151)
Together with (7.148), we can see that
Jon(e) = —n x B € H2(div,, §) = {u ‘u,Vyu e H—W(S)} . (7.152)

to which
H(divs, S) = {u : / lul? ds < oo,/ |diveul? ds < oo} (7.153)
S S

is a dense subspace.

In the following, we present the construction of high-order current basis func-
tions in H(divg, S) (Cai et al., 2001), which generalizes the zeroth-order RWG
basis functions (Rao, Wilton, & Glisson, 1982).
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Figure 7.2. Two triangular patches.

7.4.3 Basis functions over triangular—triangular patches

Consider two curved triangular patches T+ and 7'~ with a common interface
AC with length [ in Fig. 7.2. Let 77 and T~ be parameterized, respectively, by

r=r"(up,uz): Tp — T,

r=r_ (Ul,UQ) : TO — 1. (7154)

We assume that the interface AC in both 7T and 7'~ is parameterized by u; -+
uy = 1 and is labeled as side eJ in T+ and side e; in 7. In Cai ef al. (2001), the
following basis functions with continuous normal components are constructed.

High-order basis functions for a triangular—triangular patch in Fig. 7.2 can be
written in terms of the tangential vectors d1r and Oor defined in (7.103) with
variable coefficients in the following form (Wandzura, 1992):

lg+ (Pfr (ul,u2) 811"|'.P2+ (Ul,UQ)aQI‘),
if r=rt(u,ug)eTT,
(Py (u1,u2) Oir + Py (u1,uz) Bor)

if r=r"(u,ux)e 1.

(7.155)

F 5

On the common interface AC : u; + us = 1, we have the tangential direction
t) of ﬁ as

- ohr — Oar _ Oir — Oor (7 156)
o = Gor[ ~ Vgir + 922 — 2012




7.4 Galerkin methods and RWG current basis 195

and the direction t; normal to AC and n is given by
Oir — Oor » (O1r X Oar)
Voitom -2 Vo
_ Oor X (011 x Oor) — 011 X (011 X Dor)
B VIV 911 + goo — 2912
_ O1r(g22 — g12) + O2r(g11 — g12)

VIV + go2 — 2g12 .

Therefore, on the interface AC =TT NT~, the projection of the basis function

tL:ft”xn:f

(7.157)

f(r) along the normal direction t is
l
f'tl = E(P181F+P2821‘)'tl
l
= (Pl(ul,’LLQ)+P2(U1,UQ)), (7158)
V911 + g22 — 2912

where the length element \/g11 + g22 — 2912 is the same for both triangles.
Since ti = —t7, the continuity of the normal component of the vector basis
function f over the surface S implies that

ftT=ft], (7.159)
namely
P+ P =—(P +Py), (7.160)
for u3 +uge =1 on AC.
In order to satisfy the constraint in (7.160) for coefficients P;(u,us2) and
Py (u1, uz) taken in the polynomial spaces, we will employ the hierarchical polyno-
mial basis over the reference triangle T whose vertices are a = (1,0),b = (0,0),

and ¢ = (0,1). We group (u1,us) polynomials into three modes: vertex modes,
edge modes, and internal modes (Szabé & Babuska, 1991).

e Vertex modes:
Ga(u1,uz) = u,
gn(ur,u2) =1 —uy — uo,
go(ur,u) = ua. (7.161)

Each vertex mode will take value 1 at one vertex and zero at the other two
vertices.

e Edge modes: for 2 <[ < M,
g (ur,u2) = gau, uz)gs(ur, u2) P2 (g6 — ga),
90 (u1, uz) = g (ur, u2)ge(u1, uz2) P_2(gc — gv),
g% (w1, u2) = ge(u1, u2)ga(ur, u2) Pi—2(ga — ge), (7.162)
where P;(€),€& € [—1,1], is the Ith-order Legendre polynomial.
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Each of the edge modes is non-zero only along one edge of the triangle Tj.
e Internal modes: 0 < k+1 < M — 3,
9% (u, un) = gaur, u2) g (u1, uz)ge(ur, uz) Pe(2gc 1) Pi(gb—ga). (7.163)

Each of the internal modes will vanish over all edges of Tj.
Now we set the coefficients P and Py in the following form in terms of the
hierarchical polynomials in (7.161)—(7.163):

M p(m) _plm)
P1+ (u17u2) - nga(u17u2 + Z %gwri (u17u2) + Z Clmgllgi’
m=2 (I,m)ELA

M r(m) | F(m)
Iy + 1 s
%gz% (u17 UQ) + Z Clmgllgi’
m=2 (I,m)ELA

P2+ ('LL17’LL2) - ch(u17u2) +

(7.164)

and
. R R
Py (ug,uz) = —I5g,(ur,u9) + %9 (w,u2) + Y dgin,

m=2 (I,m)eLa
M (m) |, 7(m)
_ c _In + I 5 in

Py (o) = g+ 30 e Sl

m=2 (IL,m)ELA
(7.165)

with

La={(lm): 0<l+m<M—3}. (7.166)

Unknowns for each edge are

12,05, 16 T T 9 << M, (7.167)

n - n’

and interior unknowns for each triangular patch are
Cllmvclmvdlmvdlma (l,m) S LA~ (7168)
o RWG basis

If we assume that the normal components of the current basis function remain
constant, I3 = IS = I,,, along the common edge AC, we have

#(ga(ul,ug)alr + ge(u1, ug)dar), ifr=r"(uj,u) e TT,

f(r :In ’ . _ _
(x) A (guln ) Orr + g, u)Oar), r =1 (un,u) € T

(7.169)
and the unknown for each edge AC is just I,,.
In particular, for flat triangular patches, we have in Tt the following:

r=r"(uy,u) = Ga(ur,u2)ra + gy (U1, u2)rp + g.(ur, uz)re. (7.170)
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Then the tangential vectors are

oir =rp — 1B,
Oor = rc — I'p. (7.171)

Similarly, we have in T~
r=r(up,ug) = g,(ui,u2)ra + gq(u1,u2)rp + g, (u1, u2)rc, (7.172)
where g, (u1,u2) = gy, (u1,u2), and the tangential vectors are

Oir =1A —1p,
Oor =TrC — ID. (7.173)

Substituting (7.171) and (7.173) into (7.169), we get the original RWG basis
function (Rao, Wilton, & Glisson, 1982):
L(r—rB), if r=r"(u,ux)e T,
f(r)=1I,q 249 (7.174)
72A7(rfrD), if r=r"(up,u)e T,

where AT and A~ are the areas of the triangles 7T and T, respectively.

From (7.174), it can easily be seen that the normal component of f(r) from
each triangle is exactly the height of the triangle from vertex B (or D) to the
common edge AC, which cancels the area AT (or A7) of each triangle exactly
after being multiplied by the length [ of the common edge AC.

e First-order basis

From (7.155) and (7.164)—(7.165), we get two first-order basis functions for each
edge:

\/Tulalrj, if r=rf(u1,u2)e T,
fi(r) =12 91 (7.175)
- u Orry, if r=r; (u,u2)e T,

Vo~

1
74_’(1,2821‘;_, if r=rf(u1,u2)e T,
fo(r) =I° 91 _ (7.176)
\/71;2821‘;, if r=r; (u,u2)e T,

=

where the unknowns for each edge AC are I? for f1(r) and IS for fo(r).
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€3
D '
€2
U, €4 A
A 31’
e B
E 1
d C
2 Ty
e b 3 > Uq

Figure 7.3. A triangular patch and a quadrilateral patch.

e Second-order basis

From (7.155) and (7.164)—(7.165), we get five second-order basis functions for
each edge. Note that f;(r) and f5(r) are given in (7.175) and (7.176), and

1
~ ——uqus (=i +dorf), if r=rf (u1,ux)e T,
5(r) =17 ¢ Vg
0, if r=r, (ul,UQ)E T,
(7.177)
0, it r=rf (u1,u2)e T,

U U2 (—611‘5_ + 821‘8_) , if r= r; (ul,ug) eTl—,

(7.178)
and

1

upu O, if r=r7 (u,u2)e TT,
N : s
f5(r) =12 9] (7.179)

———=uu201ry, if r=r; (u,u0)e 1.

Vo~

Basis functions over triangular—quadrilateral patches

Consider a curved quadrilateral patch €2 and a curved triangular patch 7" which
are parameterized separately by two mappings r; (u1,us2),i = 1,2, i.e.,

r (Ul,UQ) : Qo —Q (Ul,UQ) S Qo,
ro (U17’LL2) Ty —T (ul,’U,z) e Tp. (7180)

The edges of 2 and T are labeled as in Fig. 7.3. The common interface is BC,
which is parameterized by u; = 0.
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We consider mixed high-order basis functions for a triangular—quadrilateral
patch in the following form:

L (Ql (’U,l7 UQ) oir + QQ (Ul, ’LLQ) 621‘)7 ifr=r; (ul, ’LLQ) € Q,

gﬂ
f(r) = —ﬁ(ﬂ (u1,u2) Orr + Po (u1,us) Osr)

= \/lg—T(—(Pl + Po)ohr + Py (ug, ug) Oor),

where for r = ry (u1,u2) € T we have

if r =ry (uy,uz) €T,

(7.181)

831‘ = 811' — 82['. (7182)

Along the common edge BC, the vector tﬁz tangential to the common edge is
Q 821' - 821'

I 9.rl ~ /0

|Oar| /g,

while the vector t?_ orthogonal to both the edge and the normal n® of the surface
S'is

(7.183)

B Oor o O1rX0ar
V 9522 A% 99

9%22811'_9?2821'

Q _ 1Q Q
tJ-_tH X n

= . (7.184)
V 9522 V 911922 — 9%2
Therefore, from the side of 2, the normal component of f(r) satisfies
l
f(r) t7 = —=Q1 (u1,uz). (7.185)
V 922
Meanwhile, the vector tf tangential to the common edge is
0 7)
a_ @r _ Gl (7.186)

0| /gL
while the vector 1 orthogonal to both the edge and the normal n”' of the surface
S'is
7) O1rx o
€= el om0 Ol
vV 922 VT

9150 — g0

_ . (7.187)
V9321 91193 — (912)
Thus, from the side of T, the normal component of f(r) satisfies
l
f(I‘) -tT — ﬁ(Pl (ul,u2)—|—P2 (Ul,UQ)). (7188)
922

Along the common edge BC, we have the identity of the two parameterizations
of the triangular and the quadrilateral patches. Therefore,

gk = \/Oor - Dor = g5}, (7.189)
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As a result, in order to have continuity of the normal component of the current
f(r), namely

f(r) -t =f(r)-tT, (7.190)
we require that along BC (u; = 0)

Pl (Ul,UZ) + P2 (ul,u2) = 7Q1 (’U,l,UQ) . (7191)

In order to satisfy the constraint in (7.191) for coefficients @1 (uy,us) taken
in the polynomial spaces, we employ the hierarchical polynomial basis over the
reference square g with vertices b, ¢, d, and e, as in Fig. 7.3. We group (u1, us)
hierarchical polynomials of order M over )y into three modes: vertex modes,
edge modes, and internal modes (Szabd & Babuska, 1991).

e Vertex modes:

Np(up,ug) = (14 u1)(1 — ug),

Ne(ug,uz) = (1 + uy)us,

Nq(u1,u2) = —uyug,

Ne(up,ug) = —ug (1 — ug). (7.192)

Each vertex mode will take value 1 at one vertex and zero at the other three
vertices.

e Edge modes: 2 <[ < M

NP (ug, uz) = (1 —u2)¢i(2uy + 1),
NP (ur,uz) = (1 + u1)éy(2uz — 1),
N (g, u) = uady(2us + 1),
N (uy, up) = —ur ¢y (2uz — 1), (7.193)
where
o) = 7 (1-€) Ps(e) (7.194)

Each of the edge modes is non-zero only along one edge of the rectangle €).
e Internal modes: 2 < k, Il < M
NPy, ug) = ¢ (2ug + 1) g (2ug — 1). (7.195)

Each of the internal modes will vanish over all edges of €.
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Now we set the coefficients in (7.181) in the following form (Cai, 1999):

Ql (ul,ug) = IENb(ul,uQ) + I,,CLNC (ul,uQ)

M
+Z 10 N2 (g, ug) + Z Vi N

1=2 2<l,m<M
M
Q2 (u,uz) =3 IV NP2(up,ua) + > A2, N, (7.196)
=2 2<l,m<M
and
Moo .
Py (un,up) = =Ligy(un,u2) = ) ==, (u1,u2) + D chugim

1=2 (Im)ELa
Moo L Fo _
Py (w1, u2) = I gc(ur, uz) — Z %glg(ulu uz) + Z Cinim

1=2 (I,m)ELa

(7.197)

where e = e5 = BC. The unknowns for each edge BC are
2 1e, 1O 7O 70 2 << M, (7.198)

and the interior unknowns for each triangular element are
ctei . (l,m) € La, (7.199)

while the interior unknowns for each quadrilateral element are

ViR, 2<1,m < M. (7.200)

e Mixed RWG basis

If we assume that the normal components of the current basis function remain
constant, then we have

\/17[]\71)(“17 u2) + N, (ug,us)]orr, if r=ry (ug,us) € Q,
f(r) =1,
() - \/197[—(910(“17“2) + g (u1,uz))0ir

+ ge(u1,uz)0or],

ifr=ro (ug,uz) € T.

(7.201)
For flat triangular and quadrilateral patches, \/g7 = 247, where AT denotes
the area of T'. In

Oir = 0iry = (1 —u2)(rp —rg) + uz(re — rp),
Oor = Oor1 = 7'LL1(I‘D — I‘E) + (1 + Ul)(rC — I‘B), (7202)
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and in T

Oir = 0iry =1 — I,
Oor = Oory =1 — I'B,

831‘ = 831‘2 = 811‘2 — 821'2 =Trp —TIC. (7203)

Thus, we have the mixed RWG basis functions

.

if r =1y (u1,u2) € £,
f(r) = I, +uz(rc —rp)], (7.204)
— bz (r —1a), ifr=ry(ug,uz)e T.
The unknown for each edge BC is I,,.
e Mixed first-order basis

From (7.181) and (7.196)—(7.197), we get two first-order basis functions:

ﬁNb(ul,uQ)alr, if r =ry (ug,us) € Q,

fi(r)=1" 7.205
1) =1 ﬁgb(ul,ug)alr, ifr=ro(uy,uz) €T, ( )
g
ﬁNc (ul,u2)6‘1r, ifr= T (Ul, UQ) S Q,
fo(r) = I, g (7.206)

ﬁgc(ul, Ug)agl‘, if r = o (Ul, ’LLQ) eT

The unknowns for each edge BC are IP and I¢.
e Mixed second-order basis

In this case, there are seven basis functions (five associated with the common
edge and two for the quadrilateral patch). Again, f;(r) and f3(r) are given in
(7.205) and (7.206), and

L N$2 (uy, up)01, ifr=ry (ug,us) € Q,

Vao?
fy(r) = I !

24/ g7

+ 9263 (ulv u2)a3ri| 5

(7.207)

[953 (u1,u2)onr
ifr =rsy (u,us) €T,

fi(r) =12 { Vo (7.208)

! N262 (’UJl,Ug)aQI', ifr= T (Ul, UQ) S Q,
O7 ifI‘ZI'Q (’U,l,’U,Q)E T’7
0, if r =1y (u1,us) €

f5(r) = 112 (7.209)

A
o { go* (u1,u2)01r
’

. if r =rsy (ug,uz) € T,
+ 923 (u17u2)83r:| B
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Figure 7.4. Current distribution over a filter calculated by the first-order mixed RWG
basis. Lighter color corresponds to higher current density. From Cai et al. (2001),
copyright (2001) by IEEE, Inc.

L NIt (ug, ug)oir, if r=ry (uy,us) € Q,
£5(r) = 735 { Vo N )1 1, %2) (7.210)

0, if r =ry (ug,uz) €T,

Ve (7.211)

= N3 (u, ug)dor, if = 11 (u1,us) €
0, if r =ry (ui,ug) € T,

where e; = e = BC.

The unknowns for each edge BC are IE,I;,I,(?),E@), and ﬂz), and the un-
knowns for each quadrilateral are vi, and v2,.

Figure 7.4 shows the current distribution over a microwave filter surface cal-

culated with the first-order mixed RWG basis (Cai et al., 2001).

Summary

Surface integral representation of electromagnetic fields using equivalent sur-
face currents (i.e., tangential components of electric and magnetic fields) is a
useful method for both the theoretical and computational study of scattering
off conducting or dielectric scatterers. The Nystrom collocation method and
the Galerkin method can be used to discretize the boundary integral equations
(BIEs) derived from the impedance boundary conditions on conductors or conti-
nuities of field tangential components on the boundary of dielectric scatterers. In
both cases, the treatment of the hyper-singularity of the electric Green’s function
is critical for the success of the BIEs. For the Nystrém collocation method, the
singularity of the integrals is handled by using locally corrected quadratures for
specific singular kernels. For the Galerkin method, however, the singularity of
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the integral kernel can be reduced by using a mixed (vector and scalar) potential
representation of the electric field and an integration by parts, provided that
the current unknowns have normal continuity. Basis functions with such normal
continuity are provided by the traditional RWG basis and its higher-order exten-
sions discussed here. Either the Nystrom collocation or the Galerkin method can
achieve high-order convergence if the surface is given with a parameterization
with sufficient smoothness. For surface triangulations with limited smoothness
such as piecewise flat triangular patches or spline patches, Galerkin methods
with normal continuous current basis functions of appropriate order should be
preferred. As a matter of fact, maintaining good accuracy of either Nystrom or
Galerkin methods near geometric singularities such as corners and edges remains
a challenging issue for integral equation methods and special techniques such as
graded meshes are used near the singularities to improve numerical accuracy
(Chandler, 1984; Atkinson & Graham, 1990; Kress, 1990).

Many important topics for integral equation methods for Maxwell equations
have not been addressed here, including pre-conditioning of the hyper-singular
BIEs or the combined integral equations by Calderon operators (Contopanagos
et al., 2002; Christiansen & Nédélec, 2002; Bruno et al., 2009), and fast solu-
tions of the resulting dense linear system (Brandt & Lubrecht, 1990; Bleszyn-
ski, Bleszynski, & Jaroszewicz, 1996; Chew et al., 2001; Cho & Cai, 2012), and
the breakdown of the EFIE at low frequency (Chew, Tong, & Hu, 2008) (ill-
conditioning of the matrix system in (7.141) as w — 0). Some solutions to address
these problems can be found in the references cited here.



8.1

High-order hierarchical Nédélec
edge elements

The Nédélec edge elements (Nédélec, 1980, 1986) form the natural choices of ba-
sis functions to approximate electromagnetic fields, as the field tangential con-
tinuity is built into the basis functions. The edge elements have been applied
extensively in microwave and optical devices (Jin, 2002). In this chapter, we will
first present the original construction of the Nédélec edge element basis including
some mathematical detail. Then, explicit high-order hierarchical versions of the
Nédélec basis with good conditioning properties will be presented.

Nédélec edge elements in H(curl)

In the two seminal papers Nédélec (1980, 1986) proposed to use quantities (mo-
ments of tangential components of vector fields) on edges and faces to define the
finite dimensional space in H(curl), thus the name edge element. This work lays
the foundation of vector finite elements for solving the Maxwell equations.

It can be shown that the tangential continuities of the electric and magnetic
fields in a domain 2 imply that their appropriate solution spaces should be
H(curl, ©2). This fact can be illustrated with a simple example in a 2-D problem.
For a more precise mathematical argument, refer to Monk (2003).

In a finite element method, the solution domain 2 will be tessellated with a
partition 75 as follows:

Th={Ki: KinK; =0, i#j |JKi=0} (8.1)

where each K; may be a triangle or quadrilateral in 2-D or a tetrahedron or
hexahedron in 3-D. The finite element space consists of a triplet (K, P, A), where
P defines the solution space over each K (polynomials or other specially selected
functions) and A specifies the degree of freedom (d.o.f.), which uniquely defines
the function in the finite element space. For illustration purposes, consider the
2-D problem of a TE wave E = (F;(z,y), Ea2(z,y), 0) and H = (0,0, H,(x,y)),
where (z,y) € R%. The Maxwell equations are simplified to

E—E —curlyH, = —J, (8.2)

(8.3)
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where two types of the 2-D curl operators in the Cartesian coordinates are used:

—
e curly:
— 0H, O0H,
19Hz = y 5 5 8.4
curl, <8y o O) (8.4)
e curlg :
0F>, O0F;
L E=——2 - —. 8.5
curly E B By (8.5)

The finite element solution E is assumed to be a polynomial function on each
element K. Let the interface between two elements K; and K;, S = K;NK;, be on
the xz-axis. Then, F; will be the tangential component of E. If F is discontinuous
across S, then curly E ¢ L?(K; UK;) as OE; /9y = c¢d(y) for some constant c. In
other words, if F is continuous, we will have curly E € L?(K; U K;), namely E
€ H(curly, K; U K;), which shows that the correct function space for E is indeed
H(curly, Q).

Finite element method for E or H wave equations

From (5.30), by replacing iw by 0/0t, we have the following time-dependent
vector wave equation for E(x,t):

e§f+invXEz}er, (8.6)
with the initial conditions

E(x,0) = Eo(x),

E,(x,0) = © (—J(x,0) + V x H(x,0)), (8.7)

€

where (8.7) results from the Ampere-Maxwell equation. Meanwhile, a PEC
boundary condition is set on I' = 9€:

(n x E)|r = 0. (8.8)

The weak formulation of the Maxwell equations can now be defined with the
following Sobolev spaces:

H(curl, Q) = {u € Ly(Q)* : V x u € Ly(Q)*} (8.9)
and

Ho(curl, Q) = {u € Ly(Q2)* : V x u € Ly(Q)?,(n x u)|r = 0}. (8.10)
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The weak formulation of the Maxwell equations in E is given as follows. Find
E € Hy(curl, Q) such that Vv € Hy(curl, §2),

2 1 0J

6%(E,V) + <,Uv x E, V x v) =— (at,v> . (8.11)
The finite element method will be a finite dimensional analog of (8.11) in a

subspace Upg C Hp(curl, ), resulting in a semi-discretization method.

Semi-discretization finite element method

Find Ej € Uy such that Vvy, € Upg,
2

1 oJ
6@(Ehav) + (“V x Ep,V x Vh) = ( Vh> . (8.12)

ot’

Let {vi}Y, be a basis for Upg, where {vi}0 are the internal basis functions
associated with interior edges and faces of the tessellation of the domain, and
{vi}N No+1 are the basis functions associated with the domain boundary I'.

After using the zero boundary condition E; x n = 0, we have

En(x,t) = Y ei(t)vj(x). (8.13)

i=1

Setting e = (e1(t),...,en, ()", the finite clement method produces the fol-
lowing matrix equation:

M(:Tg—FAe:j, (8.14)
where the mass matrix M is defined as
M;; = (evz,vfl) , (8.15)
and the stiffness matrix A is given by
A= (;v x ViV x vg’l> : (8.16)
The right-hand side j is defined by
ji = — (gg,vi) : (8.17)

The system of ordinary differential equations (8.14) for the unknown vector
e”, which approximates e(t") at time step t™ = nAt, can be solved by various
time marching algorithms, for example a second-order central scheme:

en+1 — 2em + enfl
At?
The explicit time discretization requires a CFL type condition,

At=0 (\/;T> , (8.19)

+ Ae™ =j". (8.18)
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where A\pax is the largest eigenvalue of the matrix M ~'A. Implicit time dis-
cretization can also be used for better stability and larger time step but with the
additional cost of solving a linear matrix system at each time step.

Reference elements and Piola transformations

In defining the Nédélec elements, moments of the solution’s tangential compo-
nents along the edges and the faces of the elements are used as degrees of freedom
(d.o.f.). To ensure the H(curl) conformity in the physical space, an appropriate
mapping between the reference element and the physical element is required
such that the moments of the tangential components of solutions in the phys-
ical space will be identified with the correct moments’ d.o.f. on the reference
element, and basis functions thus constructed will have matching tangential mo-
ments along the shared faces/edges in the physical space. Also, the tangential
vectors for the physical elements and the reference element, required in the defini-
tion of the d.o.f., along the faces and the edges, will be mapped correspondingly.
The Piola transformations are designed to meet such a requirement (Girault &
Raviart, 1986).

Consider a trilinear mapping Fx : K — R3, such that K = FK(k ), whose
Jacobian is DF = DFk(x)/Dx with JF= det(DF). For a vector valued function
0: K — R3, we defineu=Ppa: K - R3 by

u(x) =P a= (DF) " (X)ua(x), for x=F(x). (8.20)

The above mapping relates the moments of the tangential components of func-
tions u(x) and (%) in the following manner. Moreover, if t and t are the tangen-
tial vectors on a corresponding edge of the elements K and K , respectively, and
n and i are the normal vectors of a corresponding face of K and K, respectively,
we have

DF (%) " a(x DF)]" t(x
wog = [DFEIT 8 o IDFETEG) o
[[DF()] " a(x)| |[DF ()] t(x)]
For test functions p, q, and w defined on K , we then have

/u “tp dl = sign(det(DF))/ﬁ tpdi, for p=poF1, (8.22)

/u xn-wds= sign(det(DF))/ﬁ xn-wds for w=Ppw, (8.23)
f f

/ u - q dQ = sign(det(DF)) / u-qdQ, for q=Rpq, (8.24)
K K

where
a=R,q=(JF) ' ®)DF(X)q(x), for x =F(%). (8.25)

Relations (8.22), (8.23), and (8.24) map the edge and face moments of tangen-
tial components of a solution and the element moments of the solution between
K and K, respectively.
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Nédélec finite element basis in H (curl)

In this section, we present the original construction of the Nédélec elements
following closely the presentations in Nédélec (1980, 1986). The reference element
is denoted by K.

2-D edge elements in a rectangle

Denote @, as the polynomial space in (x,y) of degree p in = and ¢ in v,
respectively, i.e.,

Qp.q = span{z’y’ :0<i<p, 0<j<q}, (8.26)
and P as the polynomial space of degree k in one variable,
P, =span{z’: 0 <i <k} (8.27)
Consider the finite element triplet (K, P, A), where

K = a unit square in 2-D = {(z,y) : 0 < z,y < 1},
P={u= (u1,u2) : u1 € Qrr+1,%2 € Qrt1,5},
A = {a;(u), degree of freedom (d.o.f.)}, (8.28)

and dim(P) = 2(k + 1)(k + 2). If e denotes an edge of K and t denotes the unit
tangential vector of the edge, the following moments of a vector solution will be
used as degrees of freedom.

e FKEdge d.o.f. with edge moments:
ae(u) = /u ~tqg dl, q € Py(e), (8.29)

with k£ + 1 d.o.f. for each edge and a total of 4(k + 1) d.o.f. for four edges.

e Quadrilateral d.o.f. with element moments:
ak(u) = / u-qd, q€Qkr-1%XQk—1k (8.30)
K
with a total of 2(k + 1)k d.o.f. for the element.

Altogether the total number of all degrees of freedom is

Ak 4+ 1)+ 2(k + Dk = 2(k + 1)(k + 2) = dim (Qg k41 X Qry1.) = dim(P).

Next, we will show the uni-solvent property of the above d.o.f., namely func-
tions in the finite element space over each element K can be uniquely defined by
using those 2(k 4+ 1)(k + 2) d.o.f. Equivalently, we want to show the following.
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Lemma 8.1 (Uni-solvence) If a.(u) =0 and ax(u) =0, thenu=0 in K.
Proof Let
u € Qrkt1 X Qr+1,k
for the edge e; = {(2,0) : 0 < x < 1} whose tangential is t = (1,0). Then
u-t=u € Qpp+1,
and thus
u-tle, € Pyler).

With a,, (u) = 0, we have
/ u-tgdl = / u1qdl =0, Vqe€ Pyler). (8.31)
el €1

Set ¢ = uy in (8.31). Then fel u2dl = 0, which implies u; = 0 on e;. Sim-
ilarly, on e3 = {(z,1) : 0 < 2 < 1}, u3 = 0. Together, we conclude that
ur = y(1 —y)vi(z,y) for some v € Qpk—1.

Similarly, we can show that us = x(1 — x)va(z, y) for some ve € Qr_1 k-

Next, consider the condition that the element d.o.f. ax(u) = 0. As ax(u) =
Jrew-qdQ = [ (u1q1 + u2q2)dQ with (¢1,¢2) € Q-1 X Qr—1,k, we have

0=ag(u) = /K(mm + U2q)dQ = /K [y(1 = y)viqr + z(1 — 2)vage] A

Let ¢; = v; for i = 1,2, and we get

/ [y(1 — y)vi +2(1 — 2)v3] dQ =0,
K
which means v; = vo = 0. Therefore, we have u = 0. ]

Lemma 8.2 Ifa.(u’) = a.(u”), thenut -t =u~ - t (the tangential compo-
nent is continuous), i.e., u € H(curl, K*UK’) withu| =ut andu|,- =u".

Proof Since ae(ut) = [ ut-tgdl and ae(u™) = [ u™ -tgdl, we have

ac(ut) —a.(u”) = /(u+ —u”)-tgdl.

Consider the case of t = (0,1). We have (ut™ —u~) -t € Py(e) on e. So we can
set @ = (ut —u7) -t

/( )-tgdl = /\ )-t[2dl =0,

which means u™ -t = u™ - t, i.e., the tangential component is continuous, which
in turn implies (Monk, 2003) that u € H(curl, K* U K ), as illustrated at the
beginning of this section. O
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2-D edge elements in a triangle

Let K = {(z,y) : 0 < z,y,z +y < 1} be the reference triangle in Fig. 7.2 and
let the finite element be (K, P, A), where

P = (Pu(K))?, (8.32)
where
Pyp(K) =span{z'y’ : 0 <i+j <k} (8.33)
and
dim(P) = (k +2)(k +1). (8.34)

We also define the following spaces to be used in the definition of moments
(Nédélec, 1986):
Dy = (Po_1(K))> & Pp_y -, (8.35)

where lgk is the kth homogeneous polynomial space in r =(x1,z2),

P, = span{z'y’ : i +j =k}, (8.36)
dim(Py) = k4 1 in 2-D, and the dimension of the space Dy, is
dim(Dy) = k(k + 2). (8.37)

Due to the special design of Dy, the image of Dy by the divergence operator is
exactly Pj_1, namely

V(Dg) = Py-1(K). (8.38)

Now the degrees of freedom for the element A = {«a;(u)} are grouped with
respect to the geometric identities of the triangle.

e Edge d.o.f. with edge moments:
/u ~tqdl, ¢ € Pyle), (8.39)

with a total of 3(k + 1) edge d.o.f.
e Element d.o.f. with element moments:

/ u-qdQ, qé€D_q, (8.40)
K
with a total of (k — 1)(k + 1) element d.o.f.
The total number of all degrees of freedom is then
Ne=3k+1)+(k-1(k+1)=(k+2)(k+1)=dim(P). (8.41)

The proof of the uni-solvence for this set of d.o.f., A, is a 2-D version of the 3-D
tetrahedron edge element given later, and thus is omitted here.
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3-D edge elements in a cube

Consider the finite element triplet (K, P, A), where

K =acubein 3-D = {(z,y,2): 0 < x,y,z <1},

P={u=(ui,uz,u3): u1 € Qu-1,rk U2 € Qrr—1,ku3 € Qi kk—1},
A={dot]}, (8.42)

and dim(P) = 3k(k +1)2. The following moments of the solution will be used as
degrees of freedom.

e Edge d.o.f. with edge moments:
a(u) = /u-tqdl, q € Pr1(e), (8.43)

with a total of 12k edge d.o.f. for twelve edges.
e Face d.o.f. with face moments:

a(u) = /u xn-qds, ¢=(q1,¢2) € Qr—2.k-1 X Qr—1k—2, (8.44)
f

with 2k(k — 1) d.o.f. for each face and a total of 12k(k — 1) face d.o.f.

e Cube d.o.f. with element moments:
a(u):/ u - q dQ,
K

for g = (q1,92,93) € Qr—1.k—2,k—2 X Qr—2k—1k—2 X Qr—2 k—2k—1,
(8.45)

with a total of 3k(k — 1)? element d.o.f. as each of the three @ subspaces

has a dimension k(k — 1)2.

In summary, the total degrees of freedom for the cubic element is

12k 4+ 12k(k — 1) + 3k(k — 1)? = 3k(k 4+ 1)* = dim(P). (8.46)

3-D edge elements in a tetrahedron

Let K be the reference tetrahedron shown in Fig. 8.1, and let the finite element
be (K, P, A), where

P = (Py(K))?, (8.47)
where

Py(K) =span{zly™z" : 0 < l+m+n < k} (8.48)
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and
dim(P) = (k+3)(k—;—2)(k+ 1). (8.49)
As in (8.35), we define the following spaces for the definition of moments:
Dy = (Pe_1)®’ ® Py -, (8.50)

where Py is the kth homogeneous polynomial space, dim(Py) = (k + 1)(k + 2)/2
in 3-D, r = (21,22, x3), and the dimension of the space Dy (Nédélec, 1986) is
given by
kE+3)(k+ 1)k
dim(Dy,) = % (8.51)

Again, it is easy to verify that the image of Dy by the divergence operator is
exactly Pr_1, namely

V(D) = Po1(K). (8.52)

Now, the degrees of freedom for the element A = {;(u)};_, are grouped with
respect to the geometric identities of the tetrahedron.

e FEdge d.o.f. with edge moments:

/u ~tqdl, q € Pyle), (8.53)

with a total of 6(k + 1) edge d.o.f.
e Face d.o.f. with face moments:

/uxn~qu, q € Dr_1(f), (8.54)
f

with a total of 4(k — 1)(k + 1) face d.o.f.
e Volume d.o.f. with element moments:

/ u-qdf, q € Dys(K), (8.55)
K

with a total of (k+1)(k —1)(k — 2)/2 volume d.o.f.

The total number of all degrees of freedom in A is then

Nio = 6(k+ 1) + 40k — 1)k + 1) 4 FFDE Dk =2)

2
_ 3k ; D+ _ gim(p). (8.56)

In the following, we will prove the uni-solvence for the finite element and
H(curl) conformity, following the work of Nédélec (1986). To prove the H(curl)
conformity, we only need to show the continuity of the tangential components

u; = n x (uxn) of the finite element solutions on any common interface f =
Kt N K~ with a normal n if
) =

a;(u") =q;(u”) for dof «;.
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Equivalently, due to the linearity of the functional ;(u), we need only show that
u; =0if «a;(u) =0 for all edge and face d.o.f. (8.57)

Theorem 8.3 The finite element (K, P, A) defined in (8.47) and (8.53)—(8.55)
is conforming in the space H(curl).

Proof Given a common face f = KT N K~ between two neighboring elements,
we assume all edge and face d.o.f. associated with f to be zero. As

u-t e Pyle), (8.58)

by setting ¢ = u-t € Pi(e) in the edge moment d.o.f. in (8.53) on each face f,
we have

au) = /(u-t)2 dl = 0. (8.59)

Therefore, u-t = 0 one € df. Applying Stokes’ formula on the tangential
component uy = n X (u x n) = (u1,us) over a face f, we have

/(msmuf—qcurlsuf)ds:/ (uf~t)qdl:/ (u-t)gdl =0, (8.60)
f of af

where in the second to last equality we have used the facts that t 1. n and
u=(u-nn+u;=(u-n)n+n x(uxn),

u-t=uy-t.

—
Next, for ¢ € Py_1(f), curlyg € (Pi_2)? C Dr_1(f), and, along with the fact
that the following face moments vanish:

/msq upds =0, (8.61)
!
and (8.60), we have
/qcurls u;ds=0 for g€ P_1(f). (8.62)
f

As uy € Py, we can set in (8.62)
g=curlyuy € P,_q,
yielding
/f(curlS uf)’ds=0 on f. (8.63)
Thus, we get
curlyuy =0  on f. (8.64)
Therefore, on each face f, we have
uy = V¢ for some ¢ € Pyy1(f), (8.65)
with v = (0/0&1,0/0¢2) being the surface gradient operator on the face f.
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However, from vanishing tangential components of u along each edge of f,

u;-t=0 on 9f, namely (V;¢)-t=0, (8.66)
we have
% =0 ondf. (8.67)

Then ¢|s; = constant. As the constant here can be set to be zero, we obtain the
following form for ¢:

¢ = M A2A3v, e Pyo, ¢€ Py, (8.68)

where A1, Ao, and A3 are the area coordinates on the face f.
Now consider the vanishing face moment d.o.f.

/uf~qu:/vf¢~qu:0, YV q € Di_1(f), (8.69)
! !
which, using integration by parts, can be rewritten as
0= / &(Vy-q)ds — / ¢pq-ndl = / A2 A3 (V- q)ds, (8.70)
! of !

where ¢[ss = 0 is used in the second equality.
As ) € Py_ and V;Dy_1(f) = Py_2, we can always find a q € Dy_1(f) such
that V;-q = 1. Then (8.70) becomes

/ MA2Ag? ds = 0.
f

Since A; > 0 for ¢ = 1,2,3, ¢ = 0. Therefore, ¢ = 0, which implies that uy =0,
or equivalently u € H(curl). O

Theorem 8.4 (K, P, A) defined in (8.47) and (8.53)—(8.55) is uni-solvent, i.e.,
a;(u) =0, Vo, (u) if and only if u=0 on K.

Proof We need only to prove the uni-solvence on a reference tetrahedron K,
due to the invariant transforms (8.22) and (8.23).
Step 1: First we prove v = curl(u) = 0 on K.

Applying Stokes’ theorem on f, we have
—
/ (curlsq -uy — gqeurlguy ) ds = / (uf-t)gdl =0, g € Py(f). (8.71)
f of

Let us orientate f to be on the zy-plane. Then, for u = (u1, uz, us) 7T,

0 0
uy = [ Z; }, curlu:k(;;—;;) +i(x) +j(x),



216

High-order hierarchical Nédélec edge elements

where the last two terms are not relevant for our discussion. Note that curl, uy =
Ous /Ox — Oup /0y, which is exactly the normal component of curlu, i.e., curls
uy =curlu-k =v-n. So (8.71) implies that

/ (msq-uf—qv-n> ds =0, q € Pi(f). (8.72)
!

—
As the first term vanishes for ¢ € P,_1(f) because curlyq € (P,_2)? C Dy_1, we
have

0:/qunds, Vg € Pe_1(f). (8.73)
f

Setting ¢ =v-n € P,_1(f) in (8.73) gives

/f(v~n)2ds(),

ie, v-n=0on f for ve (Py_1)3 implying that

U3 = 23 = X313,
vy =Yg = Ta1ha,
v = Y1 = 2191,

where v; € Py_o for i =1,2,3 as v €(P,_1)3.
Finally, we apply Stokes’ theorem on K:

/(cur1u~q—cur1q-u)dQ: g-nxuds=0, Vq¢€ (Pys)
K oK

where the last equality is due to the fact that q|; € (Py—2(f))* C Dx_1(f) and
the vanishing of the face d.o.f. in (8.54). As curl q € (Py_3)® C Dy_2, the second
integral on the left-hand side vanishes from the vanishing of the element d.o.f.
in (8.55); thus

/ v-qdQ= / (x11q1 + 22t2g2 + 2313¢3)dQ = 0,Yq €(Py—2)° C Dy_1(f).

K K

(8.74)
On setting ¢; = 1; € Pr_2,i=1,2,3,in (8.74), we have

/ (c10? + 2202 + 2302) dQ = 0
K

and
1/%‘:07 7::172537
which proves that v = curl(u) = 0 on K.
Step 2: We now show that u = 0.
As curl(u) = 0 on K, we get

u=Ve, forsome ¢ € Prip1(K).
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Because a;(u) = 0, Vo, (face and edge d.o.f.), from the proof of Theorem 8.3 we
have uy = 0 on all faces. On the zy-plane,

uy = (ug,uz)|y =0;

thus
06 06

ulzavalUQ ay )

on f, which implies that ¢ = constant, possibly set to be zero on all faces from
the continuity of the function ¢ on K. In terms of the barycentric coordinates
ALy Agl

|41} V2| Vs |Val

v 4K v vl

through sub-volume V;, which is formed by the point x € K with three vertices
of K other than the ith vertex. We have

4
¢ = (H /\i> P, )€ Py_3. (8.75)
i1

For q € Dj_», the vanishing of the element d.o.f. in (8.55) with an integration
by parts says that

O:/ u-qu:/ V(b-qu:/ ¢V~qu—/ ¢q - nds,
K K K oK

together with ¢|sx = 0 and (8.75), resulting in

)\1 )\2 )\3 )\4

0= / oV - qdf) = / ()\1)\2)\3)\41/}V ~q)dQ, q € Dy_s. (876)
K K

Finally, from (8.52), we can find a q such that V- q = ¢, and then
/ Moz Ay ()2 dQ = 0, N>0 (i=1,...,4),
K

which implies that ¢» =0, so u =0 in K. O

Hierarchical Nédélec basis functions

In this section, we present the explicit formula for the Nédélec basis for dif-
ferent elements in 2-D and 3-D spaces. For the convenience of the adaptive
p-refinement (Rachowicz & Demkowicz, 2002) (i.e., adaptively adjusting the de-
gree of the polynomials on individual elements on a fixed mesh), the hierarchical
Nédélec basis will be presented in this section. Since the proposal of the Nédélec
curl-conforming basis, many types of hierarchical bases have been developed,
including the work of Graglia, Wilton, & Peterson (1997), Andersen & Volakis
(1999), Webb (1999), Ainsworth & Coyle (2001, 2003), Schoberl & Zaglmayr
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(2005), Ingelstrom (2006), Abdul-Rahman & Kasper (2008), and Graglia, Pe-
terson, & Andriulli (2011). The constructed basis functions can span or contain
either of the polynomial spaces proposed in Nédélec (1980) or Nédélec (1986),
and a detailed classification was given in Graglia, Peterson, & Andriulli (2011)
based on the type of spaces generated by the basis functions. Meanwhile, using
the perspective of differential forms, Hiptmair (1999) laid a general framework for
canonical construction of H(curl)- and H(div)-conforming finite elements. More
details can be found in Hiptmair (2001), Rapetti (2007), Rapetti & Bossavit
(2009), and the monograph by Bossavit & Mayergoyz (1997).

The basis functions described in this section try to achieve the maximal partial
orthogonality among the basis functions to produce a better conditioned mass
matrix and stiffness matrices when applied to the Maxwell systems (Xin & Cai,
2011a; Xin, Guo, & Cai, 2011). Their constructions are based upon the studies
by Ainsworth & Coyle (2001, 2003) and the orthogonal polynomials of several
variables in Dunkl & Xu (2001).

Construction on 2-D quadrilaterals

Using the notation in Ainsworth & Coyle (2001), we consider a reference square
element K,

K:={(&n)eR?: -1<¢n<1}, (8.77)

and the edges are denoted by v;,i = 1,...,4, with 71 as the bottom edge (n =
—1),72 as the top edge (n = 1),~3 as the left edge (£ = —1), and 4 as the right
edge (£ = 1), respectively.

Edge basis

e Lowest-order basis

The lowest-order H (curl)-conforming basis consists of four shape functions with
one on each edge:

1 1
(I)gl 25(1777) t'Yl7 (bgz :§(I+n) t727
1 1
= S(1-€) by B = S(146) by, (8.78)

where t,, is the unit tangential vector along the edge ;.

e (pth)-order basis p > 1:
1 1
@;1 = 5(1 - n)Pp(g)t’YU (I);2 = 5(1 + n)Pp(_f)t’sz
1
)0 =S (L =B (=mty,, Bt = S(L+ B (1)t (8.79)

1
2 2
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Interior basis

For j =0,...,pand k =2,...,p+ 1, the interior basis is given by
15 = Pi()l(n)ée,
3% = Pi(n)l(€)ey, (8.80)

where & and &, are the unit vectors along £ and 7 axes, respectively.

Here P,(n) is the pth-order Legendre polynomial, and the polynomials {5 (z)
are defined as the integrated Legendre polynomials (Szabd & Babuska, 1991) as
follows:

zo(m)zlgx, lo(~1) =1, Io(1) =0,
I(z) 1;“’“, L(=1)=0, L(1)=1,

() = 1/2'“2_ ! /_1 Py (0)do, k>2, (8.81)

where Pj_1(0) is the Legendre polynomial of degree k — 1.

The expression in (8.81), except for a scaling factor, was used by Jgrgensen
et al. (2004) to construct hierarchical Legendre basis functions. It is clear that
the newly defined polynomials have the following properties (Szabd & Babuska,
1991). By using the symmetry and differentiation properties of the Legendre
polynomials, the above integral can be readily shown to take the form

_ Pk(l') — Pk_g(l‘)

(@) 202k — 1)

. k>2, (8.82)

and has the property
lk(=1)=1(1) =0, k> 2,

147 ,
/ dliy1(7) dljia(7) dr =6 > 1, (8.83)

_, dr dr o

where d;; is the Kronecker delta.

Construction on 2-D triangles

In this case, the following reference triangle K is used to construct the basis
functions

K:={(&neR:0<¢n E+n<1}. (8.84)

The coordinates for the vertices are V4 (1,0), V2(0, 1), and V3(0,0). Each edge is
the directed line segment which is labeled in terms of the opposite vertex, i.e.,
e = Vo = V3, e :=V3 — V7, and e3 := V] — V5, and their corresponding unit
direction vectors are denoted as f‘i,i =1,2,3.
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The barycentric coordinates of the reference element are simply
>\1 = 5) )‘2 =1, )‘3 =1- 5 =1 (885)

In terms of the barycentric coordinates, each edge can be parameterized as

T1\e1 = A3 — Az, T2|e2:>\1*)\37 T3|e3 = A2 — A1 (8-86)
The parameter varies in the range 7; = [—1,1],7 = 1,2, 3. The normal vector on
each edge is
1 0 -1
n; = V)\l = 0 y ny, = V)\Q = 1 s ns — V)\g = 1 . (887)

We now construct basis functions for the H(curl)-conforming elements on the
reference element as in Ainsworth & Coyle (2001) and Xin & Cai (2011a).
First-order basis

The lowest-order elements first constructed by Whitney, now called the Whitney
elements (Whitney, 1957), consist of three shape functions with one on each edge,
namely

Py = lej|(Njymy, — Ajymy, ), J=1,2,3, (8.88)

where

. [ mod(j+1,3), ifj+1+#3,
J1= 3, otherwise,

~f mod(j+2,3), ifj+2+#3,
2= { 3, otherwise. (8.89)
The following functions will complete the first-order basis:
i)? = |ej|(>‘j1nj2 + )\j2nj1)7 J=123. (8.90)

It is easy to verify that the above basis functions have the following property:
e, @y =e, - ®Y =01, j k=123 (8.91)

So each basis function has a constant unit tangential component on its associated
edge and a zero tangential component on the other two edges.

Higher-order basis

The functions for a higher-order basis can be grouped into two classes according
to their associated geometric identities on the reference element.
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e Edge-based functions

The higher-order edge-based functions are given in Ainsworth & Coyle (2001) as

%, = %PZ—(TJ)Q? - H%Pi,l(rj)@ﬁ", i=1,2,...,p—1, j=1,2,3,
(8.92)
where again each basis function has a non-zero tangential component on its
associated edge and has a zero tangential component on the other two edges.

e Interior functions

For a complete polynomial approximation of the Nédélec space with degree p >
2, interior functions are needed. The interior functions are separated into two
groups: normal functions and bubble functions (Webb, 1999; Ainsworth & Coyle,
2001; Xin & Cai, 2011a). All interior functions have no tangential contribution
along any edge. However, the normal functions will have normal components
on their associated edges, whereas the bubble functions are free of normal and
tangential on all edges.

Normal functions

Using the Jacobi polynomials, the following interior normal functions are or-
thonormal on the reference element:

T
70 =8VEk+3(1- )" ,§”>< J ))\JIA]2| k=012 p -2,
]

1—X;

(8.93)
where P,ga’ﬁ )() is the orthonormal Jacobi polynomial of degree k£ on interval
[—1,1] with weight (1 — 2)*(1 + x)?. The subscripts j; and js are defined in
(8.89), and the scaling constant |n;| for each edge is given by

ni[ =1, |mg|=1, [|ng|=v2. (8.94)
The interior normal functions (8.93) have two important properties:
Jo®TN =0, i,j=1,23 k=01,2,...,p-2, (8.95)
and
(715, @3 | = 0iks =123 i,k=0,1,2,...,p—2. (8.96)

The property (8.95), i.e., free of tangential component, can be readily seen
as the normal functions (8.93) vanish on two edges and are perpendicular to
the third one. The orthonormal property (8.96) can be proved directly by using
Dunkl & Xu (2001, prop. 2.3.8), which is cited in Theorem 9.1.
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Bubble functions

Using the orthogonal polynomials of several variables of Theorem 9.1, the fol-
lowing bubble functions are orthonormal on the reference triangle:

i Ay — A i
®?; = {ec, ey} @A MdaAs (1 - A1) p? <“> PR (2), — 1),

1-XN J

(8.97)

where

K _ oit+13/2 S
hi =282 0 < ji+j<p-3. (8.98)
The interior bubble functions have the following two properties:
(I)?,ij:O’ 0<4,5,i+j<p-—3, (8.99)
and

(®7 5, ®00) | = Ok 0je, 0 <ok i+ k+E<p—3. (8.100)

The first property, (8.99), which states that the bubble functions have van-
ishing tangential and normal components on the boundary (three edges) of the
reference element, can be seen by noting that the factor AjAaAs is included
with each shape function in (8.97). The orthonormal property (8.100) can be
proved by using the result in Theorem 9.1 by identifying \; = z1, Ao = 2,
and A3 = 1 — x7 — x3. Also, by following the argument by Ainsworth & Coyle
(2001), it can be shown that the basis above is a hierarchical basis for triangular
H (curl)-conforming elements.

Construction on 3-D cubes

The reference cube K is given by (Ili¢ & Notaros, 2003)

K:={(&n¢eR:—1<¢ (<1}, (8.101)

The basis functions in this case can be simply grouped in three coordinate
directions, where each group has components along only one coordinate direction.

o ¢-directed basis:

B¢ 1.0 = PiOLMIQE 0<i<p—1,0<j<p, 0<k<p.
(8.102)
e 7)-directed basis:

®51.(& 1 O) = L P (Mlk(O)A, 0<i<p, 0<j<p-10<k<p.
(8.103)
o (-directed basis:

(8.104)
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V;(0,0,1)

es/ |es 4

V,(0,1,0
VD ez 2( ) : TI
€4

V1(1,0,0)

Figure 8.1. Reference tetrahedron.

8.2.4 Construction on 3-D tetrahedra
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The shape functions are again grouped into several categories based upon their
topological entities on the reference tetrahedron in Fig. 8.1. If possible, the basis
functions in each category are constructed so that they are orthonormal on the
reference element. The vertices are numbered as v(0,0,0),v1(1,0,0), v2(0,1,0),

and v3(0,0,1). The barycentric coordinates are given as
M=1=8-n-C M= l=n M=C

A generic edge can be uniquely identified with

€; = [jh.j?]v jl = 07 172a jl < .j2 < 3a .] :.jl +.72 +Sign(j1)7

where sign(0) = 0. Specifically,

€1 =Vi1 — Vg, € =Vy—Vpy, €e3=YV3—Vy,

€4 =Va—Vy, € =V3—Vi, €g=V3—Va
The directed tangent on a generic edge e; = [j1, j2| is defined as
7% = T[jl’jQ] = Vj, = Vj, g1 < Ja.
The edge is parameterized by

Ve; = Ajy — Njyy J1 < Ja2-

(8.105)

(8.106)

(8.107)

(8.108)

(8.109)

(8.110)
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Edge functions
e First-order basis

The shape functions for the lowest order, also called the Whitney element
(Whitney, 1957; Bossavit & Mayergoyz, 1997), are given as
(I)Sj = |Tej| (>\j2V)\j1 — iy V)‘jz) ) (8.111)

and, together with the following additional function, they will complete the first-
order basis,

B =75 (A\;, Vi, + A, V) - (8.112)

The tangential component of the function @’ and ®}’ on its associated edge is
of unit size and vanishes on other edges, namely it has the property

er () =ep () =0k, Jj k=1,2,...,6, (8.113)

where 0, is the Kronecker delta.
e Higher-order basis

The shape functions for higher-order approximation are given in Ainsworth &
Coyle (2003) for i =1,2,...,p—1,7=1,2,...,6, as
) 2 + 1 o i
B = T Py )P — ——
i+1 'L + 1 (’Ye]) 1 'L + 1

where the property (8.113) also holds for ‘I’fj_l.

Pior(76,) 9, (8.114)

For each edge, there are p + 1 basis functions; therefore, altogether there are
6(p + 1) edge basis functions per element.
Face functions

Each face on the tetrahedron is uniquely defined as
fj1 = [j27j37j4}7 0 S j17j27j37j4 S 37 j2 < j3 < j4~ (8115)

The face functions are further grouped into two categories: edge-based face
functions and face bubble functions (Ainsworth & Coyle, 2003; Xin, Guo, &
Cai, 2011).

e Edge-based face functions

These functions are associated with the three edges of a certain face fj,, and
have non-zero tangential components only on the associated face f;,. By using
the results in Theorem 9.1, the orthonormal shape functions are given by

1=, |V Aks |

(8.116)

£ i i |
‘bef[}cl,kg] = Ci/\kl/\kz(l _ /\kl) Pi(l 2) (
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where C; = (i +3)y/(2i +4)(2i +5)(2i + 7)/(i + 1), 0 < i < p—2, and kg =
{2,793}, ko = {Js. ja}, k1 < ko, ks = {jo, s, ja} \ {k1, 2}

In (8.116), the function P,i(l’z)(-) is the Jacobi polynomial of degree i with a
single variable. Again, by using the results in Theorem 9.1, one can prove the
orthonormal property of the edge-based face functions,

. ,m £, ,n o o
<<1>';;[k1’k2], ¢eJ:[k1,k2]>‘K3 = Sy mMam=0,1,...,p—2. (8.117)

For each face, there are 3(p—1) edge-based face functions; therefore, altogether
there are 12(p — 1) edge-based face functions for the four faces of an element.

e Face bubble functions
The face bubble functions, which belong to each specific set and are associated

with a particular face f;,, vanish on all other three faces. In view of the results
in Theorem 9.1, the explicit formulae are given by

- 2
q)filly;LjS = A(l - Ajz)m(l - )‘jz - )‘js)nP(2n+372) < L — 1)

" L=,
. PO ( s 1> T (8.118)
1= Xj, = Ajy |7liz.7sl |
B = AL AL A - AR (2 )
1—A,
) [2,74]
P2 (1 - /3])2‘]4_ o 1) ‘:[j%m’? (8.119)
where 0 <m,n,m+n <p—3, and
A =CEPOM2AN LN Ny (8.120)
where
Cnt = \/(2n +3)(m +n+ 3)(m + 2n + 4)(m + 2n + 5) (8.121)
and

2 _ V/@m A 20 F 1) @m+ 20+ 8)@2m + 20+ 9) (8.122)
W= CERICES) | |

The face bubble functions again share the orthonormal property on the refer-
ence tetrahedron for 0 < mq, ma,n1,n2,m1 +n1,me +no < p—3:

<¢f?%11,,‘517 ¢2j.112ﬂ7432>’K3 = 5m1m25n1n27 (8123)

£, ,J4 5,74
<<I)m1 311y (bmz ;12

= By Onimg- (8.124)

K3

For each face, there are (p—1)(p—2) face bubble functions; therefore, altogether
there are 4(p — 1)(p — 2) face bubble functions for the four faces of an element.
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Interior functions

The interior functions are also classified into two categories: face-based interior
functions and interior bubble functions (Ainsworth & Coyle, 2003; Xin, Guo, &
Cai, 2011).

e Face-based interior functions

The face-based interior functions that are associated with a particular face
f;, have non-zero normal components on the associated face, and have zero
tangential components on all four faces. The formulae of these functions are

given by
£, m n n 2\ E
Ot = AL = Xp)" (1= Ajy = Ay, )" P (o — 1
1—=Ay
20 VA,
. p{0:2) ( I — 1) L (8.125)
1- )‘jz - >‘j3 ‘v>\71|

where 0 < m,n,m+n <p—3.
The face-based interior functions enjoy the orthonormal property on the ref-
erence 3-simplex for 0 < my,mo,ny,No, m1 +n1, Mg +ng < p— 3:

t.f; t.f;
<q)mlj,1nuq>m2],1n2> K3 = 5m1m25nmz~ (8-126)

For each element, there are 2(p — 1)(p — 2) face-based interior functions.
e Interior bubble functions

The interior bubble functions have both vanishing tangential and normal compo-
nents on all four faces of the reference 3-simplex. Similarly, by using the results
in Theorem 9.1, the formulae of these functions are given by

gied — ppEmTITSR) 9y, 1) p@ris2) (% - 1)

mm 1— )\1
2\
p2 (= 8.127
S v ey A (8.127)
where
L = CommAod daAs(1 — A)™(1— Ay — Ag)", (8.128)

where 0 <l m,n,l+m+n<p—-4, d=1,2,3, Copmn = Cel,m,nczm,na and

ol (L+2m +2n+9)(£ + 2m + 2n + 10)(20 + 2m + 2n + 11)(m + 2n + 6)
b (+1)(m+1)(n+1) ’
(8.129)
o [mA42n+T7)(2m +2n +8)(n + 3)(n + 4)(2n + 5)
Clmn = \/ (0 +2)(m +2)(n+2) - (B130)
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Again, one can show the orthonormal property of the interior bubble functions:

t.eq; t.eq, o
<(I)(1’m1,n17 ¢42’m27n2>‘K3 - 5E1E26m1m25n1n2a (8131)

where
0< €1,£27m1,m2,n1,n2,€1 + my +n1,€2 +mo+ng <p—4,d;,d, =1,2,3.

For each element, there are (p — 1)(p — 2)(p — 3)/2 interior bubble functions.
Finally, by a simple calculation the number of all the basis functions for each
element adds to (p+ 1)(p + 2)(p+ 3)/2 = dim(P,(K))?.

Summary

The Nédélec edge element forms the conforming basis for the electric and mag-
netic fields where tangential continuities of the fields are required on material
interfaces. The explicit form of 2-D and 3-D hierarchical high-order Nédélec
edge elements presented here facilitates their use in arbitrary orders when high-
frequency wave phenomena demand higher resolution of the wave structures.

The fast solution of the linear system by iterative solvers such as multigrid
methods is not addressed in this book, and work in this important area can be
found in Hiptmair & Xu (2007). Also, the mathematical properties such as the
discrete de Rham commutativity and the convergence analysis of the Nédélec
elements for Maxwell equations including cavity problems can be found in Monk
(2003) and in the following: Kikuchi (1989), Boffi et al. (1999), and Caorsi,
Fernandes, & Raffetto (2000, 2001).
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Time-domain methods —
discontinuous Galerkin method and
Yee scheme

Time-domain solutions of the Maxwell equations provide information on wave
interactions involving multiple frequencies, and can describe nonlinear phenom-
ena such as second harmonic generation and parametric amplification in nonlin-
ear optical materials. In this chapter, we will discuss two time-domain numerical
methods for solving transient Maxwell equations. The first one is a high-order dis-
continuous Galerkin (DG) method on unstructured finite element meshes. High-
order hierarchical basis functions for the DG discretization will be presented.
The second is the popular finite difference Yee scheme on staggered Cartesian
grids.

Weak formulation of Maxwell equations

The Maxwell equations for non-dispersive materials can be written in the follow-
ing conservative form:

w+V-F=S8, req, (9.1)

where u = < ]]:3) ) ,F(u) = (f,g,h), and

— 0 0 0
-F=_—f+—g+—h 2
V-F o +ayg+az , (9.2)

_ z X E B yx E B ZxE
f_(fcxH)’ _(QXH)’h_(éxH>’ (9-3)

and Z, ¢, and Z are the unit vectors along the z-, y-, and z-axes, respectively.

o3

The source term S = (—=J_, —J,,)" contains currents in a conducting material.
Vector functions (B, D) are weak solutions to (9.1), without a source (S = 0),

if Ve(r) € (C3())*:

[2?:.¢drAF<u>v.¢dr+/ (F(u)-m)-¢ds=0,  (9.4)

J O
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where F(u)V = f% + ga% + h%. Equation (9.4) can be rewritten for B and D
separately as follows:

6B-¢dr—/ﬂE-(Vx¢)dr+/ nxE-¢ds=0, (9.5)

o Ot o0

oD
95;¢@p54H-Wx¢wh—l;nxﬂu¢®=0, (9.6)

with appropriate boundary conditions for B and D.
Usually, (9.1) and (9.4) are formulated in a computational domain whose co-
ordinates are, say (£,7,(). By introducing a new conservative quantity

u=Ju, (9.7)
the Maxwell equations (9.1) are recast as
W +V-F=S8, (9.8)

where J = 9(x,y,2)/0(&,n,<) is the Jacobian for the transformation between the
Ehysi(}val dgmain and the computational domain r = r(&, n, (), the flux function
F = (f,g,h) is given by

f=J(&f+ &g+ Eh),

g = J(n.f + nyg + n:h),
h = J(Cf + (g + Ch), (9.9)
and the source term S is
S=1Js.

Discontinuous Galerkin (DG) discretization

Let 7, be a discretization of the solution domain €. For each element K €
Th, € and u, are assumed constant. We denote a finite dimensional space of
smooth functions defined on the element K by P(K). This space will be used to
approximate the variable u. Set

Vi:={veL*Q): v|lgcPK) VK cT,} (9.10)

Bh

Letuh:(D
h

element space

) be the approximate solution to u belonging to the finite

V8=V x Vi x - x V. (9.11)
6

For each K € Ty, Vo, € (P(K;))?,

@.%dr_/ Eh-(Vx¢h)dr+/ nxEj, ¢, ds=0, (9.12)

K, Ot K; K,
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a =g, dr+ /Hh qubh)dr—/ nx Hy- ¢y, ds =0. (9.13)

Thus, the weak form for the DG discretization is formed on each individual el-
ement for the element-supported test function ¢, and the numerical solution uy,
will comprise discontinuous functions made of piecewise polynomials, hence the
name discontinuous Galerkin (DG) method (Cockburn & Shu, 1998; Hesthaven
& Warburton, 2008). The solution in a DG approximation will have two different
values on a common interface between two elements, and the DG method will
use a common numerical flux h(u™,u") to couple the solutions from different
elements while guaranteeing the conservative property of the numerical solution.
For consistency, the numerical flux h(u™, u™) should approximate the exact flux

= nxE
F(u)~n—< nxH >, (9.14)
namely if u= = u™ = u, then
h(u,u) = F(u) - n. (9.15)

B
Dh > is then required to satisfy the following
h

weak form. For j = 1,2,...,N,V¢, € (P(K;))3,

0B,
¢y, dr — / E
/Kj ot " P

The finite element solution u;, = (

-(de)h)dr—l—/K hp(u=,u") ¢, ds =0, (9.16)

J 0K
8Dh — +
o On drt Hh (V x ¢,)dr — hp(u=,ut)-¢, ds =0, (9.17)
K 0K

where hp(u™,ut) and hD(u_7 u™) are the components of the numerical flux:

o= () )

Numerical flux h(u—,u™)

Let us assume that £ = 0 is a point on the interface with an external normal n
= Z, and the material constants are

[ e, it 2 <0, [ p, it 2 <0,
6_{e+, if x>0, “_{m, if > 0. (9-18)

The projection of the analytical flux function F(u) - n along the normal of an
interface n can be shown to be

f,(u) =F(u) -n (9.19)

[ ATu, if <0,
| Atu, if >0,
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where
0 0 0 0 0 0
0o 0 0 0 0 —X%
0 0 0o 0 L o
AF = 0 0 0 0 0 0 (9.20)
0 0 # 0 0 0
0 —ﬂ% 0 0 0 0

In order to derive the numerical flux along the normal direction n, the follow-
ing 1-D Riemann problem for the linear system will be considered as, for any
conservation law with discontinuous solutions,

u; + (f,(u)), =0, (z,t) € (—o0,+00) x (0,T), (9.21)

with the initial condition

u-, if <0,
ut, if x>0,

(w0 = {

where f, (u) is defined in (9.19).
For simplicity of derivation, we introduce the following scaling of the fields:

B=/uB, D=cD, (9.22)

and denote 1 = ( ]]?) ) Then (9.21) can be rewritten as

i, + (f"(ﬁ))x =0, (x,t) € (—o0,+00) x (0,T), (9.23)

with the initial condition

u-, if =<0,
at, if x>0,

where f'"(ﬁ) is defined as

- A-q, if <0
f = =7 ’ 24
n() { Ata, if x> 0. (9:24)
Here A~ and At are given by
0O 0 0 0 0 0
0O 0 0 0 0 —c*
- 0 0 0 0 ¢& 0
+
AT = 0 0 0 0 0 0 ’ (9.25)
0 0 ¢ 0 0 0
0 —cF 0 0 0 0

respectively, where ¢t = 1/y/efpu®. At 2 = 0, @ is discontinuous and a clas-
sical solution to (9.21) does not exist. Therefore, a weak solution will have to
be defined in the following weak sense (Lax, 1972; Smoller, 1983): V®(z,t) €
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(CHR x RY))S, where RT = (0,00) and ®(x,t = 0) has a non-empty compact
support in R:

/Ooo /_Z(«I: - ®, - f,(@)de dt = — /Oo & - iz, 0)dz. (9.26)

Noting that
f, (1) = A(z)a = A(z)u = f,(u), (9.27)

we see that (9.21) and (9.23) are equivalent. Therefore, we will only have to
consider (9.23). Now A" and A~ both have six eigenvalues and eigenvectors,
where three of the eigenvalues are distinct. For instance, A™’s eigenvalues are

)\1 = —Ci, )\2 = O, )\3 =c . (928)

Each of the eigenvalues defines one of the three characteristics across which the
solution will, in general, be discontinuous in the (z,t)-space. If we assume the
solutions are constant in the regions bounded by the characteristics (Godlewski &
Raviart, 1996), the weak formulation (9.26) will result in the following Rankine-
Hugoniot condition:

sla] = [£, (1)), (9.29)

where s = +¢ and 0 are the inverse reciprocals of the slopes of the characteristics
in the (z,t)-plane.

In the region of < 0 and « + ¢t < 0, G(z,t) = 0~ assumes the value given
by the initial condition at ¢ = 0. For the region 0 < x + ¢t and =z < 0, we let
u(z,t) = u*, t > 0; then u~ and a* will satisfy the Rankine-Hugoniot condition,
namely

(@ -0 = A (8 — ). (9.30)

Similarly, for the region x > 0 and z—c™t > 0, u(z,t) = u™ assumes the value
given by the initial condition at ¢ = 0, u(z,t) = u™. In the region x > 0 and
x —ctt <0, we let i(x,t) = a**,t > 0; therefore, at and 0** at the interface

x — ¢t = 0 will also satisfy the Rankine-Hugoniot condition:
cr(@t —a*™) = AT (at —a*). (9.31)

Next, we decide the conditions to be satisfied by u* and u** at x = 0 by the
Rankine-Hugoniot condition:

0=A"u"—ATa*™. (9.32)
From (9.24), we can see that the numerical flux should be defined by
h(a—,a")= A 0" = ATa™. (9.33)

To find the intermediate states a* and 0**, we solve (9.30), (9.31), and (9.32),
which can be rewritten as follows:
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A
x =-=ct
x =c*t
— +
» X
Figure 9.1. Characteristics for Rankine-Hugoniot conditions
—-Z-(H —H")=i&x (E- —E),
-Y (ET -E")=zx(H —H"), (9.34)
ZT(HT —H™) =& x (Et — E*),
Y+(E+ —E™) =% x (H+ —H"), (9.35)
0= x (E* — E*),
0=2x (H"—H"), (9.36)

where the local impedance Z and the admittance Y are defined as Z =1/Y =
V/1t/e. By applying the vector cross product & x on both sides of (9.34) and
(9.35), we transform (9.34)—(9.36) involving only quantities & x E*, & x H*, &
x E**, and £ x H**. From these new equations, we can obtain

_ A - ; +
g _ s, YE—@xH)” 4 (YE+dxH)

Y- +Y+ ’
ZH+ 3 xE)” + (ZH — & x E)*
PxH =gy FHETX Z)fi(ﬁ Ex BT (9.37)

Using (9.36) and (9.37), we obtain the two states u* and a** in (9.34) and
(9.35). Moreover, from (9.33), (9.27), and (9.14), we can define the numerical
flux as

h(u™,u*) =h(@ ,a") = < _ZXXEIJ; > (9.38)

which can be shown to be consistent with f(u)-Z. For a general normal direction
n we can show that a consistent numerical flux is defined as

h(u=,ut) = ( n o B ) (9.39)

-n x H*
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9.4.1

9.4.2

Time-domain methods

where n x E* and n x H* are defined as in (9.37) with & replaced by n,
respectively (Mahammadian, Shankar, & Hall, 1991).

Orthonormal hierarchical basis for DG methods

Orthonormal hierarchical basis on quadrilaterals or hexahedra

Let Q™ = [—1,1]™ be the reference cube in R™, n = 2,3. A set of orthogonal
hierarchical basis functions in 2-D will be

Qpp = span{P;({)P;(n) : 0<14,j < p}, (9.40)

where P;(-) is the Legendre polynomial of order 1.

Similarly, the orthogonal hierarchical basis functions in 3-D will be

Qp.p.p = span{P;(§) Pj(n)Pr(¢) : 0<1i,j,k < p}. (9.41)

Orthonormal hierarchical basis on triangles or tetrahedra

We construct orthonormal hierarchical basis functions on the reference simplicial
elements. Let K™ be the simplex in R", i.e.,

K" .= {xeR”:0<xi;in<l}. (9.42)

i=1

The notation |x| means the discrete /! norm for a generic point x € K", i.e.,

n
x| = |zl (9.43)
i=1
Denote by x; the truncation or projection of the point x in the first ¢ dimensions,
ie.,

x0=0, x;=(x1,22,...,2;), 1<i<n. (9.44)

For a point e € N2, Ng = {0,1,2, ..., }, denote by a’ the truncation or projec-
tion of the point a from the ith dimension, i.e.,
o = (g, i1, ., 0), 1<i<n. (9.45)

For a point 7 € R"*!, the notation 7¢ is similarly defined as in o, namely

T = (T3, Tig1s oy Tg1), 1<i<n+1. (9.46)
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Orthogonal basis functions for DG methods will be constructed using orthogonal
polynomials over an n-simplex K" given in the following theorem from Dunkl &
Xu (2001) under the following weight function:

n

" 1 1
WD (x) = (1 - [x) 2 [[2] 7, xe K, 7 > —y =12 ntl

i
i=1

Theorem 9.1 The polynomials
(K™) B N ST L 2z
Pa (W) = e I <1 - |xz-_1|) e (1 “haal 1) /
(9.48)
where are the orthonormal Jacobi polynomials of one variable, p} =
2l + |7 + (n—i—1)/2 and p? = 7, — 1/2, are orthonormal over K", the
normalization constant hS* ) is given by

1 2
Po(/jl Pi )

n
hal 2 =[] 277+, (9.49)
1=1

and the weight function takes the form in (9.47).

Using the result in Theorem 9.1, the orthonormal hierarchical shape functions
on the reference element in two and three dimensions are given as follows (Xin
& Cai, 2011Db).

e Orthonormal hierarchical basis in a 2-D triangle: for 0 <i,7,i+ j < p,

o 2
®; ;= k(1 — 2 PEHD (2, — 1) OO (22 ) 9.50
»J 1 J 1 T
— &1

where r = \/2(i +j + 1)(25 + 1).

e Orthonormal hierarchical basis in a 3-D tetrahedron: for 0 < 4,75k,
i+7+k<p,

q)i,j,k = )\(1 - xl)j(l — X1 — Ig)k
; 2 2
><Pi(2]-|r2k+2,o) (2x1 . 1) Pj(2k+1,0) < L2 1> P,EO’O) ( €3 . 1) 7

1-— Tq 1-— Xr1 — T2
(9.51)

where A = \/(2k + 1)(2j + 2k + 2)(2i + 25 + 2k + 3).
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From Theorem 9.1, we have the following orthonormal conditions of the basis
functions:

M£17€2 = <®€17¢)22> ‘Kd = 5[],@2 (952)

where ¢ = (i,7) in 2-D and ¢ = (i, j, k) in 3-D.

In deriving (9.50) and (9.51), the parameter 7; in Theorem 9.1 takes the value
of 1/2. The function pLs )(x) comprises the Jacobi polynomials of a single
variable.

Remark 9.2 A special case of the orthonormal basis functions above can be
found in Dubiner (1991), where the parameter of the weight function in (9.47)
takes the particular value 7, = 0 (Dunkl & Xu, 2001) for the Dubiner basis
(Dubiner, 1991; Karniadakis & Sherwin, 2005). In the construction presented
here, this parameter has the value 7; = 1/2.

Theorem 9.3 Let k € Ny. The bases for the spaces P.(K™),n = 2,3, of
polynomials of total degree at most k are given in (9.50) and (9.51), respectively,
namely

Pi(K?) =span{®; ; : 0 < 4,5, i+ j <k}, (9.53)
Pu(K3) = span{®; ;. : 0 < l,m,n,l + m+n < k}. (9.54)
Proof Firstly, for each basis function, we have ®;; € Py(K?) and D5k €
Py(K?). Further, it is noticed that with different indexes the shape functions
given in (9.50) and (9.51) are linearly independent. Secondly, the numbers of
independent shape functions are (k+ 1)(k+2)/2 and (k+ 1)(k +2)(k + 3)/6

for two and three dimensions, respectively, which coincide with the respective
dimensions of Py(K?) and Py (K?). O

Explicit formulae of basis functions

Polynomial basis functions up to third order and in terms of the coordinates for
the reference element are given in the following.

Basis functions in 2-D triangles

e Zeroth-order:

Do = V2.

)

e First-order:

(I>1,O = 3(3)1 — 1), ‘1)071 = 2\/§($1 + 229 — 1)
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e Second-order:

Dy = V6(1 — 81 + 1023),
Qg2 = V30(1 — 221 + I% — 6xo + 62179 + 6x§),
D11 = 3V2(xy + 229 — 1) (5 — 1).
e Third-order:

030 = 2V2(15z; — 4527 + 3527 — 1),

Doz = 2V 1431 — 322 + 1229 + 25 — 24x129 — 3022 4 2023
+ 122927 4 3021235 — 1),

Dy = 2V6(x1 + 235 — 1)(1 — 122 + 2122),

Q10 = Qm(ml —1)(1 =2z + IE% — 629 + 62120 + 6x§)

Basis functions in 3-D tetrahedra

e Zeroth-order:

P00 = V6.
e First-order:

D100 = V10(4z; — 1), D10 = 2V5(x1 + 39 — 1),
Do 0,1 = 2V15(z1 + @3 + 223 — 1).

e Second-order:

Dy 00 = V14(1 — 1021 + 1522),
0,00 = VA2(1 — 21 + &} — 8ry + 8172 + 1023),
Do oo = V210(1 — 221 — 229 + 2% + 2x129
+ 22 — 623 + 62123 + 62073 + 633?,,),
D10 =2V7(xy + 32y — 1)(621 — 1),
By 01 = 2V21(21 + a9 + 223 — 1)(62; — 1),
Do 11 = 3V 14(21 + 5ag — 1)(21 + 22 + 223 — 1),
e Third-order:
D300 = 3V2(18z; — 6327 + 5625 — 1),
®g 30 = 6vV2(3z1 + 15m2 + 25 + 3523 — 30z129 — 4525 — 327
+ 152927 4 452123 — 1),

®o,0,3 = 6vV14 (1223(1 — 21 — 22)* + 30g(x)*(1 — 21 — x2) + 20g(x)?
—11(1 — 21 — 22)?),
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g1 = 6(xy + 3wy — 1)(1 — 14z + 2827),
By 01 = 6V3(2w5 + x1 + 9 — 1)(1 — 142, + 282),
D90 = 3\/6(8331 —1)(1 =221 + 27 — 829 + 87129 + 1023),
Dpo1 = 6V6(2x3 + 21 + 29 — 1)
(1 =221 + 23 — 1229 + 122129 + 2123),

D02 = 3\/@(8331 —1)(1 -2z — 220 + x% + 2xq120 + :c% — 6x3
+ 6x123 + 6073 + 63:?,,),

Dy 12 = 6@(1 —2x1 — 2x0 + x? + 2x129 + x% — 6x3 + 61123
+ 6x9x3 + 622) (21 + Txo — 1),

@110 = 9V2(8xy — 1) (2 + 5xg — 1) (23 + 21 + 29 — 1),

where g(x) = 21 + 22 + 23 — 1.

Computation of whispering gallery modes (WGMs) with DG
methods

In this section, we demonstrate the high accuracy of the DG methods by simulat-
ing whispering gallery modes (WGMs) in coupled resonator optical waveguides
(CROWSs) made of 2-D cylinders (Yariv et al., 1999). WGMs are traveling elec-
tromagnetic resonances confined within dielectric media of circular symmetric
structure such as circular rods, micro-disks, and micro-spheres. In the case of a
dielectric rod, the WGMs were first studied by Lord Rayleigh (1914) who tried
to understand the acoustic waves clinging to the dome of St. Paul’s Cathedral;
the waves were shown to be trapped between the cylindrical boundary and a
caustic inside the rod (Wait, 1967).

WGMs in dielectric cylinders

Electromagnetic WGMs exist in a circular dielectric cylinder, which is assumed
to be of radius a and infinite length with dielectric constant ¢; and magnetic
permeability 1, embedded in an infinite homogeneous medium of material pa-
rameters ez and ps. In the cylindrical coordinate system (r, 6, z), the components
of the magnetic field H = (H,., Hp, H,) and the electric field E = (E,, Ey, E.)
of time-harmonic WGMs (with time dependence as exp(—iwt)) are given by the
following equations (Stratton, 1941):
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nk? ih .,
H’r‘ = |:an WGH()\T) + bn AGH(AT)] Fn7
ik? nh
Hy = n ! Ar) — bn Yo Yn A Fn;
0 {a uw)\G"( T) /\2rG ( r)}
H. = b,Gp(\r)F,, (9.55)

Hwn

ih
E’“ = noy , — Un
{a 5y G,(Ar) =b 2,

Gn(Ar)} E,,

S e
Ey = [an )\2an()\7’) + b, 5 Gn()\r)} F,,
E, = a,G,(\r)F,, (9.56)

where F,, = exp(inf + ihz — iwt), with h being the axial propagation constant.
The function G,, = J,, for » < a and H,(LU for r > a, where J,, is the Bessel
function of the first kind and H.Y is the Hankel function of the first kind. Also,
for r < a, k = k1 = w/erpr, A = A\, where A2 = k? — h% and, for r > a,
k = ko = w\/eapz, A = Aa, where A3 = k3 — h?. The coefficients a,, and b,, are
determined by the tangential continuity boundary condition at the cylindrical
boundary r = a. For a non-trivial solution, the axial propagation constant h
satisfies the following characteristic equation (Wait, 1967):

Vlaw_MQMVm][

u Ju(u) v gD ()
1 1\?
212
nh(22>, (9.57)

v u

where u = Aja and v = Aza. For a given mode number n, (9.57) does not have a
unique solution, and the electromagnetic WGMs are represented by solutions of
(9.57) when n is of the order of Aja. Note that the mode number n is also the
number of maxima in the field intensity in the azimuthal direction and is thus
called the azimuthal number of the WGMs. We will confine ourselves to WGMs
with an axial propagation constant h between ki and ko, i.e., ky > h > ko. In
this case, Ao = —i|A2| and A\; = |A1|, which prevents any ohmic losses, and the
WGMs would be un-attenuated along a perfectly straight cylinder (Wait, 1967).

Optical energy transfer in coupled micro-cylinders

We now study the optical energy coupling by WGMs between micro-cylinders
(Deng & Cai, 2005). For a WGM with axial propagation constant h, the magnetic
field H = (H,, H,, H) and the electric field E = (E,, E,, E) in a rectangular
coordinate system (z,y, z) may be expressed as

H(z,y,2,t) = H(z,y,t)exp(ihz),  E(z,y,2,t) = E(z,y,t)exp(ihz). (9.58)
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Substituting (9.58) into the sourceless Maxwell equations (9.1), we obtain the
following system of equations in matrix form:

ou ou ou
— + Ale,p)=— + Blep) = = S 9.59
5 T Alen g + (1) 5y : (9-59)
where
_ | #H
=% ]
[0 0 0 0 0 0 ] 00 0 0 0 17
0o 0 000 -1 00 0 0 00
0o 0 00 % 0 00 0 -Xo00o0
Aem =19 0o o000 o ["BEem=109 09 1 ¢ o 0l
13
00 4 00 0 00 0 0 00
0 -2 0 0 0 0 | . 0 0 0 0 0]
(9.60)

and S = (ihE,, —ihE,,0, —ihH,,ihH,,0)".

Here, for the purpose of non-dimensionalization, the reference length is chosen
as the free space wave length of an electromagnetic field with frequency 100
THz; that is 3 um. Therefore, one unit of length corresponds to 3 pm and one
unit of time corresponds to 10 fs. We consider a model CROW system of two
identical circular dielectric cylinders of infinite length in contact with each other.
The radii of the cylinders are r;1 = ro = 0.5775 and the cylinders have material
refractive index 3.2, i.e., ¢ = 10.24 and p; = 1, and the external medium is a
vacuum.

By setting the angular frequency w = 27 and the azimuthal number n = §,
we find that the characteristic equation (9.57) has a solution h = 6.80842739
between k; = 6.47 and ko = 27; the resulting WGM is denoted by WGMg 1 .

To investigate the optical energy transport by WGMs from one cylinder to the
other, we assume that initially there exists a WGM in the left cylinder and that
no fields exist inside the right cylinder. As initial conditions, the exact values
of WGMg 1 in the left cylinder are taken in the entire computational domain,
except for the inside of the right cylinder, where a zero field is initialized. To
ensure that the initial field satisfies the interface condition on the surface of the
right cylinder, we impose artificial surface magnetic and electric currents over
the surface of the right cylinder for a short duration:

Jm(r,t) = IO (r) exp(—at), Jeo(r,t) = JO(x) exp(—at), (9.61)

where the constant o > 0 is chosen so the surface currents become negligible in
a short time, and J% and J? are calculated from the initial fields E(r,0) and
H(r,0) as follows:

J?n(r) =-nx [E+(I‘, 0) - E- (I‘,O)], Jg(l‘) =nx [H+(I‘, 0) -H” (I‘, 0)]
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E,(xy,2): E,(x..6):

E,(x.y.8): E,(x.y,10):

Figure 9.2. Optical energy transport by WGMs between two identical micro-cylinders
in contact. The four sequential snapshots at ¢t = 2,6, 8, and 10 (fs) illustrate the

generation of a clockwise WGM in the right cylinder due to resonant optical coupling.
From Deng & Cai (2005), copyright (2005) by the Optical Society of America (OSA).

For such boundary currents, the numerical normal flux will have to be modified
on both sides of the surface. Given two states u~ and u*t, the numerical normal
flux can be written as

% (YE-nxH) +(YE+nxH)"-J, + vt g
e R s S Al PR L)
X —nx —JIm ’ '
—n x = + 725 e
for the — side, and
(YE-nxH) +(YE+nxH)"T-J,  y- J
F-n)t=| "% v IvT yoiyrim (9.63)
n % (ZH+nxE) +(ZH-nxE)"-J,  z- J ’ ’
Z—+ZzZ* Z-+ztve

for the + side, respectively.

The computational domain will be decomposed into quadrilateral elements
where the cylindrical boundary will conform to the triangulation. On each quadri-
lateral element the order of the polynomial basis in (9.40) is p = 10, while the
constant « = 10 in (9.61). To demonstrate the dynamics of the optical energy
transport by WGMs from the left cylinder to the right cylinder, the snapshots of
the E, component at four different times are given in Fig. 9.2. The initial state
of the system is represented by a counterclockwise circulating wave, i.e., the
fundamental mode WGMsg ; o in the left cylinder. The four sequential snapshots
Fig. 9.2 (a)—(d) then illustrate the generation of a clockwise WGM in the right
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cylinder due to the optical coupling, which indicates an optical energy transport
from the left cylinder to the right cylinder.
Finite difference Yee scheme

The differential form of the Maxwell equations has an equivalent and general
integral form. For any given surface S, on integrating Faraday’s law (5.1) over

S, we have
d
—/B~ds+/VxE-ds:O, (9.64)
and using Stokes’ theorem we arrive at
d
—/B-ds+/ E-dl=0. (9.65)
dt Js os
Similarly, the integral form of the Ampere-Maxwell law (5.15) is
d
—/D-ds— H-dl:—/J-ds. (9.66)
dt Js 28 s

The Yee scheme is based on a dual grid on a rectangular lattice consisting
of (z5,y;,2k) = (1Az, jAy, kAz),1 <1 < Np,1 < j < Ny, 1 <k < N;; the
unknowns are located on the faces and the edges of the primary cell centered at
(xi,yj, z). Namely, the E-field unknowns are on the boundaries of the faces of
the cell, and the H-field unknowns are at the centers of the faces of the primary
cell (see Fig. 9.3). A dual cell can be obtained by translating the primary cell
one-half a cell unit in each direction, which creates the staggered grid for the
Yee scheme.

e Cell edge unknowns for the electric-field component tangential along the edges:

Boigrinryr Byirinry Eoirpirin (9.67)

e Cell face unknowns for the magnetic-field components in the face normal:

Hyivtgn Hyigese Haijres: (9.68)

It should be noted that the magnetic normal components on the faces of the
primary cell are also tangential components along the edges of the dual cell. To
obtain a finite difference equation for Faraday’s law, we apply equation (9.69)
on S (the right-most face with 4+ as normal):

d
= B-ds+/E-d1:0. (9.69)
dt /g .

Firstly, we approximate the surface integral with a middle point rule,

/ B-ds =B, 1, (1,0,0)AyAz + O((AyA, )Y ~ By iy jxAyAz. (9.70)
s
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Figure 9.3. E- and H-field unknowns in a Yee cell.

Next, we approximate the line integral along the boundary I' = 9.5 of S, using
again the middle point rule for each of the four edges of the surface S:

/E~d1:/ E~(0,1,0)dy+/ E-(0,0,1)dz
r Iy s

+/ E~(O,—1,0)dy+/ E-(0,0,—1)dz
s Ty

NEy ikt DY T B it kB2

- Ey,i+%,j,k+%Ay - Ez,i+%,j—%,kAZ' (9.71)

Combining (9.70) and (9.71), we obtain the semi-discretized second-order ac-
curate Yee scheme:

d 1
G Beirtar =1 55 (Ey,i%,j,k% - Ey,i+§,j,k—%)

1

T Ay (Ez7i+§,j+%,k - Ez,z‘+%,j—%,k) : (9.72)

Repeating the same procedure on the other faces with § and Z as normals, we
obtain similar equations for ¢- and Z-components for the magnetic induction:
d 1
Bt =1 Ay (Ez¢i+é,j+%,k - Ez,ifé,ﬂé,k)
1
A (Ex,z‘,j+%,k+% - Ez,z',j%,kf%) ; (9.73)
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d 1
at Piiktt =7 Ay (Ey»”%d%’“r% - Ey,i—%u’,k-&-%)
1
+ Iy (Ex,i,jJr%,kJr% - E:E’ihjf%’kdr%) . (974)

To obtain the finite difference equations for Ampere’s law, we select the surface
S on the dual cells and repeat the same numerical quadrature of the related
surface and edge integrals, which will give the following:

d 1

G Peigtihts == Iz (Hy ii+h kel T Hy,z',j+é,k)

Hz 6,741, k+2 7, k+2 Jr,i7j+%,k+%a (975)

d
G Pvittinet =

z,itg.5,k+1 T H, it sk Jy’i+%’j7k+%, (9.76)

E\HE\H

d BN

EDz,H%,J#%,k - H,

yz+1]+ kT y1j+ k

a ) -
( zi+1,5.k+5 T z”k+§>
(# )-
A )

1
- A7y (Hz,i+%,j+1,k - Hz,i+%,j,k) - Jz,i+%,j+%,k' (9.77)

To obtain the fully discretized Maxwell equations, we will use a leap-frog type
discretization in time for the B and D variables with a staggered grid in time,

ie.,
OB Bn+1/2 _ Bn—1/2
Bt A (0.78)
t
oD Dt — D"
—_— = 9.79
Ot |yns1)2 At ( )

Finally, we have the fully discretized Yee scheme as follows.
Yee scheme

Given B"~1/2 at t"~1/2 = (n — 1/2)At, and D" at t" = nAt, the following time
marching scheme calculates B"+1/2 and D"+

n+l/2  _ pn-1/2 At n "
BI’”%J”“ N BLH%M N Az (Ey i+3.5,k+% —Ey it3,5,k— )
At
o (EZH;,#;,;C - E§7i+%7j_%7k) ) (9.80)
n+l/2 _ pntl/2 At n .
By,i,jJr%,k = By,i,j+%,k + — As (Ez T —E] PRSI k)
At .
e (Blsinwns = Bluenay) (081
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ntl/2  _ opn-ljz AU n B
2y k4L T zigk+: T Ag IREE NN yyi—%.5,k+3
At
+ Iy (E:r,i,jJr%,kJr% - Ea:,i,jfé,lﬂ»%) ) (9.82)
DL = D At gt
@i+ 5 k+1 widtikts Ay U wddt+s ikl i g+ 5.k
At n+s n+3 n+3
- 2 _ 2 _ 2
* Ay( 24+ 1Lk+5 z,i,j,k+%) At‘]m,z‘,ﬁ%,m%’ (9-83)
w1 _ AL (s gt
yitdgk+s T Twitigkts  Ap U zitlik+d 20,5, k+%
At n+3 n+3 n+3
_ 2 _ 2 _ 2
+ Az (Ha:,i+§,j7k+1 x7i+%,j,k> At‘]y,z‘+%,j7k+%’ (9-84)
Dn+1 _ n + At Hn-ﬁ-% . n+%
z,i+35,j+5,k zits. itk T Ag yitli+sk yig+s.k
A nti n+i
- 2 _ 2 _ 2
Ay (Hz,w%,jﬂ,k Hz,z‘+%,j,k) At‘]z,w%,ﬂ%,k' (9.85)

One of the most important features of the Yee scheme lies in the fact that the
divergence of the magnetic field of the numerical solution will remain zero if it is
zero initially. The proof is given in Section 16.4 when such a condition is critical
for the magneto-hydrodynamic (MHD) equations of plasmas. The proof of the
second-order convergence of the Yee scheme has been obtained in Monk & Stili
(1994).

Remark 9.4 (Treatment of curved boundaries) The Yee scheme suffers a
loss of accuracy near curved boundaries or material interfaces due to the phe-
nomena of “staircases” from the lattice representation of boundaries not aligned
with coordinate lines. Various numerical techniques have been proposed to han-
dle the difficulties associated with the curved boundaries, including, to list a few,
the contour path finite difference method derived as above but with a contour
conforming to the curved boundary (Jurgens et al., 1992), the local conformal fi-
nite difference method (Dey & Mittra, 1997), the embedded boundary upwinding
finite difference method (Cai & Deng, 2003; Xiao & Liu, 2004), and the locally
modified finite difference method (Ditkowski, Dridi, & Hesthaven, 2001).

Summary

The discontinuous Galerkin method for Maxwell equations offers a highly par-
allel algorithm for computing electromagnetic wave propagations in complex
media, including dispersive materials, with the help of auxiliary differential equa-
tions to handle the frequency-dependent dielectric constants. A well-conditioned
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hierarchical basis for the DG method is also introduced. Meanwhile, the simple
Yee scheme offers a second-order approximation which satisfies the divergence-
free constraint for the magnetic field (a condition not addressed explicitly in
the DG approximation), but, however, suffers a degeneracy in accuracy near
boundaries not aligned with mesh coordinate lines.
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10.1

Scattering in periodic structures
and surface plasmons

In this chapter, we will discuss numerical methods for computing wave scatter-
ing in periodic structures in photonics, and surface plasmons of electron density
waves at interfaces between metallic materials and dielectrics. Both types of elec-
tromagnetic phenomena have many applications in nano-photonics and near-field
optics. Firstly, we present the general Bloch theory and Bloch wave expansions
for electromagnetic waves in periodic structures. Several numerical methods are
discussed that can be used for the calculation of the photonic band structure, in-
cluding a plane wave method and a calculation of transmission spectra by Fourier
methods. Then, a modified Nédélec edge element for periodic structure eigen-
value problems in the frequency domain, and a time-domain finite element with
Bloch wave transparent boundary conditions, are presented. Finally, we present
a volume integral equation method for surface plasmons through nano-holes in
thin films, and a time-domain discontinuous Galerkin method, using auxiliary
differential equations (ADEs) to treat dispersive materials, for a resonant cou-
pling of surface plasmons in nano-silver wires.

Bloch theory and band gap for periodic structures

The electric and magnetic properties in a 3-D periodic structure are described
by the following eigenvalue problems for the vector Helmholtz operator Lg(E)
or Ly (H).

e Electric field E(r):
Lp(E)= -V x (iv X E) +w? E=0. (10.1)
e Magnetic field H(r):
Lp(H) = -V x <1v X H) +w?n H=0. (10.2)
Here, w is the frequency of the electromagnetic wave and € is the dielectric
constant of the structure, respectively.

The 3-D periodic structure of the medium is defined by its Bravais vectors
{a;,;i = 1,2,3} and their corresponding elementary reciprocal lattice vectors
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{bj,j = 1,2,3} defined in (4.2). The dielectric constant e is assumed to be a
periodic function over the periodic structure, namely

e(r+a;) =€), i=1,23. (10.3)

The Bloch theory of eigenvalue problems (10.1) and (10.2) states that the
eigenfunctions, for (10.1) for instance, should take the following form:

Ex(r) = ¢ Tuy(r), (10.4)
where the Bloch wave vector (continuous) k is given by
k= mlbl + m2b2 + m3b3a m; € (7007 OO)? ] = ]-7 27 37 (105)

and the function uy is a periodic function over the lattice, which can be repre-
sented in the following form of a Fourier series:

u(r) = > Bk - G)e ¢, (10.6)
G

where the reciprocal vector G is defined in (4.3), and
ug(r+a;) =uk(r), i=1,2,3. (10.7)

The proof of the Bloch theory for the 3-D case follows the same procedure as
for the 1-D case given below by utilizing the Fourier series of periodic functions
over lattices.

Bloch theory for 1-D periodic Helmholtz equations
The Helmholtz equation for a 1-D periodic structure of a lattice period a is

2g 2
L(B) = T+ SGemE =0, we(~00,00) (103)

where ¢ = 1/, /€opo is the speed of light in the vacuum, and the relative dielectric
constant €(x) is an a-periodic function, i.e.,

e(z +a) = e(x). (10.9)

The Bloch theory in this case implies that the solution of (10.8) takes the fol-
lowing form:

Ey(z) = e*uy(x), k € (—00,00), (10.10)
where wuy(2) is an a-periodic function, namely
ug(x + a) = ug(z). (10.11)

The proof of the above statement is based on Fourier expansions of periodic
functions. As the electric field is defined for the whole interval, we consider the
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solution of (10.8) on a finite domain [—L/2,L/2] with L = Na, where N is a
positive integer, satisfying a periodic boundary condition, i.e.,

E (—g) —FE (g) . (10.12)

So, the electric field F(x) can be expressed by the following Fourier series:
2m L L
1kx ’
=) = —Z 2. 10.1
E(k Lk, xe[ 2,2} (10.13)
k'€Z

Meanwhile, the dielectric constant e(x) also admits the following Fourier series
with reciprocal index g:

e(z) =) e, xe€ {—g ﬂ : (10.14)
geG

where G = {g = (2r/a)n : n € Z}. Substituting (10.13) and (10.14) into (10.8),
we have

> | -KEk)* + CQZE ellbtoz | — (10.15)

k'€z geG

which can be rearranged as follows by changing the summation index k + g — k
(and k — k — g):

> |-k Ek) + i—jZE(k —9)é(g)| e =0, ze {—L, L} . (10.16)

22
k'€ez gea

Due to the orthogonality of the trigonometric functions, we have

— K’E Bk — k= 2—7Tk’, kK eZ. 10.17
g;; 9)é - (10.17)
Equation (10.17) imposes coupling conditions on the Fourier coefficients E(k)
n (10.13), implying that an eigenfunction can be completely defined with only
those coefficients related through the reciprocal index g, whereas other coeffi-
cients could be set independently to zero. Namely, for each given k, the following
E(z) makes a solution for (10.8) for € [-L/2, L/2] with “periodic boundary
conditions” (10.12):

x) = E(k— g)elk=9), (10.18)
geG
which in turn can be rewritten as
. - ; . L
r) = elkIZE(kz —g)e 9% = eFTy, (z), a € {—2 ] , (10.19)
geG
where wuy(z) satisfies the a-periodicity condition, i.e.,

ug (v + a) ZE (k — g)eiol@+a) — ZE (k — g)e™'9% = uy(x), (10.20)
geG geqG
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using the fact that e19% = 1. Next, let the interval length L — oco. Then uy(x)
will continue to be an a-periodic function, while {k = (2r/L)k’ : k' € Z} becomes
a dense subset of the continuous wave number k € (—o0, 00). This concludes the
proof of (10.10)—(10.11).

If two wave numbers k and k" are related as k' = k + n(w/a), they apparently
correspond to the same plane wave function el** for z € [0, a] (see (10.26) below).
Therefore we only have to consider k € B = [—7/a, w/a], which is defined as the
first Brillouin zone (Kaxiras, 2003).

Bloch wave expansions

The eigenfunctions 1, (z, k) for the operator £ for almost all k (except for a set
of zero measure) in the first Brillouin zone B = [—7/a, 7 /a] are defined as

L(Vn) = Anthy, (10.21)

where 0 < A\; < Ag < -+ < A, < ---, and, based on (10.10), the Bloch general-
ized eigenfunctions 1, have the form

Un(z, k) = Mo, (), (10.22)

with an a-periodic function ¢, (z).
The eigenfunctions ¢, (z, k) form an orthonormal sequence (Wilcox, 1978),

ie.,

[ vt it bas = [ o @on@ie =6 (1023
0 0

Also, it can be shown that the union of all eigenfunctions {¢,(x, k) }ke B n=1,2....
expands L?(—o00,00). Namely, for any function f(z) € L*(—o0, o), the following
Fourier series with the Bloch generalized eigenfunctions 1, (z, k) holds in the L?
limit:

flz) = Z/Bfn(k)wn(x,k)dk, (10.24)
n=1
where the “Fourier” coefficients are defined as
fut) = [ f(@)i ). (10.25)

This Fourier series can be used to build a spectral method for problems with
periodic potentials (Huang et al., 2009).

Band gaps of photonic structures

For each n, A, (k) defines one of many dispersion curves for the periodic structure,
while the set {\,(k),k € B}S2, defines the band structure for the periodic
potential operator £ (refer to Fig. 10.1). One of the most important properties of
a periodic dielectric medium is the existence of a band gap in the dispersion curve
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Figure 10.1. The band gap structure of a 3-D diamond lattice using 434 plane waves.
The insert shows the unit cell of the diamond lattice. From Guo & Albin (2003),
copyright (2003) by the Optical Society of America (OSA).

for the eigenfunctions of (10.1) and (10.2). If the frequency of the electromagnetic
wave w falls within one of the band gaps, then propagation through the photonic
structure will be forbidden. Therefore, the calculation of the band gap of a given
periodic structure is one of the most important tasks in the study of periodic
systems.

As shown above, the eigenfunctions are enumerated with a k-vector in (10.4)
for the photonic structure of infinite extent. For all practical purposes, consid-
ering a photonic structure of a finite dimension L with L = Na, N > 1, will be
sufficient to determine the band gap. In this case, the eigenfunctions for (10.1)
with a periodic boundary condition E(0) = E(L) are given by (10.4), (10.6), and
(10.7). The selection of k is then given by (10.5); we can show that two k vectors
differing by a reciprocal vector will yield the same eigenfunctions. Let k/ = k
+ Gg for some reciprocal vector Gg. By definition, the eigenfunction for k’ is
given as

E(r) = ¥ Y Bk — G)e 'S = "N Bk + Go — G)e G
G G

_ eik-rZE(k — G)e G = Ey(r). (10.26)
G/

As a result, only those k that belong to the range

11
B = {k = Oélbl +O(2b2 —|—Oé3b3 Loy € |:—2, 2:| ,’L' = 1,2,3} (1027)
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will yield distinctive eigenfunctions, and this k-range B is the first Brillouin zone
for the 3-D periodic structure .

Plane wave method for band gap calculations

The problem of finding the band gap of a photonic crystal can be reduced to
an eigenvalue problem based on (10.1) or (10.2) and the Bloch theory. Let us
consider the Hermitian eigenvalue problem (10.2) and let Hy(r) = e*Tuy(r).
Then, the function uk(r) satisfies the following eigenvalue problem with periodic
boundary conditions:

1 w?
—(V+ik) x <€(V +ik) x uk(r)> + C—2uk(r) =0, (10.28)

with k = kilbl + ]€2b2 + kgbg, —1/2 S kz S 1/2,2 = 1,2,3.

The periodic eigenfunctions uk(r) at r = Zi:l ngay /Ny will be expanded in
terms of plane waves due to the fact that they are eigenfunctions of the differ-
ential operators (Johnson & Joannopoulos, 2001):

uk(r) = Z hy, exp iijbj~nkak/Nk
m={m;} Jrk

= Y hmexp | 2m) mn;/N; | . (10.29)

m={m;} J

Here, the reciprocal indices m; = —N;/2+1,...,N;/2, j = 1,2,3, and n, =
0,1,...,Ny — 1,k = 1,2,3, are the spatial coordinates on an N; X Ny X N3
affine grid defined by the Bravais lattice vectors. Summation in (10.29) can be
implemented by the discrete fast Fourier transform (FFT). Plugging (10.29) into
(10.28) results in a linear algebraic system for the expansion coefficients hy,:

Ah = “_Bh, (10.30)
C

where A and B are N x N matrices, with NV being the number of basis functions.
This system will, in general, be solved by an iterative method such as the GMRES
method (Saad, 2003). The main operation in the iteration is the matrix—vector
product, which in this case can be achieved straightforwardly using the FFT
in O(N logN) operations in the following manner. As the operation of the curl
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operator is equivalent to a cross product in the k-vector space, i.e., (V +ik)x >
(k + b,,) x, we can compute Ah in the following manner:

(k+by) x - FFT"'...e1...FFT--- (k + b,,) x h. (10.31)

Figure 10.1 shows the band gap structure of a 3-D diamond lattice using 434
plane waves, and the insert shows the unit cell of the diamond lattice (Guo &
Albin, 2003). The letters, X, U, L, etc., on the k-vector axis indicate points of
symmetry in the first Brillouin zone resulting from the symmetry of the unit cell
in the photonic crystal structure (Kaxiras, 2003, sect. 3.7).

Rayleigh—Bloch waves and band gaps by transmission spectra

The transmittance spectrum of a photonic crystal of periodic dielectric structure
is closely related to its band gap as the latter contains the range of wave fre-
quencies with no transmission through the structure. In this section, we present
a plane-wave-based calculation of the transmittance spectrum by Sakoda (1995a,
1995b), which is similar in nature to the rigorous coupled wave analysis (RCWA)
method (Moharam & Gaylord, 1981). Consider a photonic crystal slab with an
incident wave E"® impinging from the top. Region 1 is above the top of the pho-
tonic crystal (y > 0), Region 2 is the crystal itself (—L < y < 0), and Region 3 is
below the photonic crystal (y < —L) where the transmitted wave E® is measured
for the transmittance spectrum 7T'(w), which is defined as

2. (10.32)

T(w) = [EY)? / [E™

Each region is described by a periodic relative dielectric function €;(r); how-
ever, €1(r) = €; and e3(r) = €3 are assumed to be constant. Let us consider a
transverse electric (TE) wave where H = (0,0, H.) and E = (E,, E,,0). Note
that H, satisfies the following scalar Helmholtz equation (with no z-dependence,

V = (9/0x,0/0y),x = (z,y)):

L(H) =V - (G(i)VHZ> + %QH ~0. (10.33)

e Region 1: y >0

Here, for a given incident wave with a directional wave number k; = (kz, k1),
there will be multiple reflection directions kﬁ") with individual reflection co-
efficients as shown in Fig. 10.2, a situation different from the single specular
reflection from a half-plane space in the classical Snell’s law. Consequently, the
magnetic field in this region can be expressed as

Hi(2,y) = Hoe™™ + 3" Ry, (10.34)

where R, is called the nth-order Bragg reflection coeflicient.
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Figure 10.2. Rayleigh—Bloch reflections on the top and transmissions at the bottom.

e Region 3: y < —L

Similarly, the transmitted wave in Region 3 has multiple transmitted directions
k§") with individual transmission coefficients, as shown in Fig. 10.2:

H(z,y) = 3 T D L= (0,-L),

(10.35)

where T;, is called the nth-order Bragg transmission coefficient.
In order to satisfy the Helmholtz equation (10.33), the y-component of the
k-vectors will be related to their z-component as follows:

() —
v % o
+i (k:r) k2,
and
k2 _ (k(”))Q
k(n) _ 3 t,x )
ty

if ky > (K|

(10.36)
otherwise,
if ks > (K1

(10.37)
otherwise,
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where k1 = \/eqw/c and k3 = \/e3w/c, respectively, and w is the frequency of the
incident field.

e Region 2: —L <y <0

In this region, the field Hs, satisfies the following scalar Helmholtz equation:

0 1 OH». 0 1 0Hp.\  W°
L(Ho)=— | —— — + —Hy, =0, (10.38
(Hz:) Ox <e(x,y) Ox ) oy (e(a@y) dy ) 2 ( )
where H,, is periodic in z and continuous at y = 0 and y = —L with Hy,
and Hs,, respectively. To find the solution of (10.38) in Region 2, let us handle
the inhomogeneous interface boundary conditions at y = 0 and y = —L by

introducing a function

o0

fz,y) = % S [yTo+ (y+ L) (0no Ho + Ry)] 2. (10.39)

n=—oo

Then, the difference between Hs,(x,y) and f(z,y) is given by

V(z,y) = Haz(z,y) — f(2,y), (10.40)
which vanishes at y = 0 and y = —L and satisfies the following equation:
L) = —L(f). (10.41)

As a result of its vanishing boundary values, ¥ (z, y) has the following sine series
expansion in the interval [—L, 0]:

U@, y) = i iAnme”“g")”sin (%y) (10.42)

n=—oom=1

The continuity of the tangential component of the H field (H,) imposes the
following conditions on the z-component of the k-vectors in all three regions:

kﬁzﬁ) — ké;r;) — kg(cn) =k, + G, (10.43)

where G, = (27/a1)n,n € Z, is the z-component of the reciprocal vectors in
Region 2. Each of the nth k-vectors defines a Rayleigh—Bloch (R-B) wave for
the reflection and transmission waves in the form of (10.19). For instance, the
reflection wave is expressed in terms of the R—B reflection mode for each ky;)

Hy.(z,y) = ei(ke0)x | prooikiy o ZRnei(Gn,kg_y).x _ ei(kmo)xu(%y)7
n
where u(z,y) is an a-periodic function in z.

Meanwhile, the periodic inverse dielectric function 1/¢(x,y) can also be ex-
pressed as

= ) R @Y L <y <0, (10.44)

m,n=—o0

e(z,y)
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where the expansion coefficients k., are defined in Sakoda (1995a). Plugging
(10.42) and (10.44) into (10.41), and using the following Fourier series expansions
of functions (y and 1) over the interval [—L,0] in f(x,y):

2L o= (—1)mt

2L Lsm(my):yy Le<y<lL

T = m L

1—(-1) mm 1 O<y<L
2 b ) 10.4
Z m(Ly) {—1, _L<y<0, (10.45)

we obtain the following algebraic equations for the coefficients A4,,,, (Sakoda,
2001):

00 o0 (mm ™ 1k ”)k. Kn—n/ jm—m’|
m Z Z n (mm . k(")k(” )) . ) ) An/m/ = an7
n’=—ocom’/=1 2 n—n’,m+m
(10.46)
where
B _ 2w ( )m_lTn + Rn + (SnOHO
™ e m
2MT  —
? Z (Tn’ - Rn’ - 6n’OHO)’in—n’,m
k‘(n) >
"{n n’,|m—m/| — K/nfn’,m+m’)
n'=—ocom’=1
1) T + Ry + 80 H
(1) +/ + 0nro 0 (10.47)
m

The infinite summations in (10.46) and (10.47) will be truncated to a finite sum
for n € [-N,N] and m € [1, M], to yield a total of (2N + 1)M equations for the
(2N +1)(M +2) unknowns Ry, Tp, Apm,n=—N,...,N,m=1,..., M. To close
the system of equations, 2(2N + 1) more equations will be needed, which can
be derived from the boundary conditions at y = 0 and y = —L for the electric
field E.

From the Ampere-Maxwell equations

V x H = iweE, (10.48)

we have that the tangential component of the electric field, F,, satisfies
10H,

wk, = - .
iw —

The continuity of E, at the interfaces y = 0 and y = —L implies that

1 0H,, 1 0H,,
il — =0 10.49
e Oy e Oy’ 4 ’ ( )
1 0H,, 1 0Hs,
— = — = —L. 10.50
o oy —a oy Y ( )
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Equation (10.49) implies that, for —N <n < N,
M
1y mAnm, = (ieszﬁj;] - 61) Ry + 1Ty + Hy (iea Lk, — 6poe1) . (10.51)
m=1
while (10.50) gives
M
res S m(=1)™ A = —€3 Ry + (iEQLkEj;} + 63) T, — 6noHoes.  (10.52)
m=1

Thus, (10.51) and (10.52) will provide the needed additional 2(2N +1) equations,
which allow the solution of A,,, in (10.42).

Finite element methods for periodic structures

The Fourier plane wave approximations employed in Section 10.1 suffer accuracy
degeneracy for a large contrast of dielectric discontinuities; an alternative method
is the finite element method for solving Maxwell equations in the frequency- or
time-domain.

Nédélec edge element for eigen-mode problems

The calculation of eigen-modes for the Maxwell systems by finite element meth-
ods has been an active research topic of both engineering and mathematical
interest (Costabel & Dauge, 2003; Boffi, 2010). Initial applications of nodal fi-
nite element methods, where the components of the electromagnetic fields are
approximated by continuous finite element bases whose degrees of freedom are
nodal values of the solutions at vertices or selected points on edges or interior
of elements, have generated non-physical “spurious modes” in the calculation
of resonant modes of cavities with perfectly conducting boundaries (Csendes &
Silvester, 1970; Davies, Fernandez, & Philippou, 1982; Hara et al., 1983). This
phenomenon is mostly related to the treatment of the zero frequency w = 0,
though the spurious modes can also pollute the positive eigen-mode spectrum
(Costabel & Dauge, 2003).

Consider the E-field eigenvalue problem (10.1) in a cavity  with the perfectly
conducting boundary condition

n x E|;,=0. (10.53)
The electric field E belongs to the following Sobolev space:
Ho(cur, Q) = {u €L*(Q)*: V xuel?(Q)? nxuly,=0}, (10.54)

and, in addition, in the absence of a source, as in a typical cavity resonant mode
problem, we have

V. eE =0, (10.55)
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namely E also belongs to the space of H(divo, Qs €),
H(div",Q;¢) = {u eL?(Q)®: V-ueL?(Q), V-eu=0}. (10.56)

Thus the weak form for the eigenvalue problem, on which a standard conform-
ing Galerkin method can be constructed, can be posed as follows:

find w € R, s.t. there exists 0 # u € Hy(curl, Q) N H(div®, Q;e) :
(7 IV xu,V x v) = w?(eu,v) Vv e Ho(curl, Q)N H(div",Q;¢).  (10.57)

It can be shown (Boffi et al, 1999) that the bilinear form on the left-hand
side of (10.57) is symmetric, continuous, and coercive on the space Hp(curl; 2) N
H(div?, Q;¢€), and the operator associated with the problem (10.57) is compact
and self-adjoint. Therefore the eigenvalue problem (10.57) (or (10.1) and (10.55))
has a countable set of real and positive eigenvalues, and each eigenspace is finite
dimensional. It should be emphasized that 0 is in fact not an eigenvalue of the full
Maxwell problem (10.57). If w = 0 happens in (10.57), then, by setting v = u,
we have V x u = 0. Then, using the zero-divergence condition V - E = 0 and the
boundary condition (10.53), the Helmholtz decomposition theorem implies that
u = 0 (Girault & Raviart, 1986).

The problem of spurious modes appears if we ignore the divergence-free condi-
tion on the electric field and consider the weak form of (10.1) in the larger space
Hpy(curl; Q) instead. Namely, the following eigenvalue problem is considered:

find w € R, s.t. there exists 0 # u € Hy(curl, Q):
(b 'V x w0,V x v) = w?(eu,v) Vv € Hy(curl, Q). (10.58)

It is evident that an additional zero eigenvalue w = 0 is created whose eigen-
space is denoted as

K ={uecHy(cur,Q): Vxu=0}= Hy(curl’,Q), (10.59)

which consists of the gradient of all scalar functions for a simply connected
domain, i.e.,

KC{u=Vp: pc H}(Q)} (equality holds for simply connected ). (10.60)

As a matter of fact, K is the kernel space of the differential operator £ =
Vxu~1Vx,ie., K = Null(£). Therefore, finite element spaces V;, C Hg(curl; €2),
to be free of spurious modes based on the weak form in the space Hy(curl, Q),
will be the ones that can in fact reproduce this 0-eigenspace (or kernel) K. The
Nédélec edge element is shown to contain the gradient of the first-order nodal
element basis (Bossavit, 1990), which is dense in Hg (2) as the mesh is refined,
and the lowest order of the Nédélec element on tetrahedra in fact does produce
a spurious-mode-free approximation to the non-zero eigen-spectrum of the full
Maxwell eigen-problem (Boffi et al., 1999). Later, a complete analysis on the
Nédélec edge elements of both types and any orders on tetrahedra shows the
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spurious-mode-free approximations to the non-zero spectrum using the concept
of discrete compactness of finite element spaces (Kikuchi, 1989; Caorsi, Fernan-
des, & Raffetto, 2000, 2001).

An alternative way to enforce the divergence free condition of the eigen-modes
(10.55) is to use a penalty type approximation in a mixed type method proposed
by Kikuchi (Brezzi, 1974; Kikuchi, 1987; Fortin & Brezzi, 1991), thus getting rid
of the issue of the kernel space. Here, we consider the discrete form of the mixed
formulation.

Find (up,pp) € Vi X Pp, such that ¥V (v, qn) € Vi, X Py

/{leuh~vah+Vph~vh]dr:w,zl/uh-vhdr,
o L Q
(10.61)

/uh~th dr = 0.
Q

The mixed formulation (10.61) can be shown to approximate Maxwell’s eigen-
values of (10.57) without spurious modes (Boffi, Brezzi, & Gastaldi, 1997, 2000).

For domains with corners and edges, the electromagnetic fields possess singu-
larities (Costabel, Dauge, & Nicaise, 1999), whose singular behavior is related to
a corresponding Dirichlet or Neumann problem for Laplace operators in irreg-
ular domains (Costabel & Dauge, 1997). The existence of the singularities has
also to be taken care of when eigenvalues of the Maxwell equations are calculated
(Costabel & Dauge, 2003).

Next, for the computation of band gaps of periodic structures, the Nédélec
element can be modified (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi,
2006) based on the Bloch modes of the electromagnetic fields. For instance, the
magnetic field H will be assumed to be in the form of (10.4) and the periodic
part of the Bloch wave will satisfy the following Helmholtz equations:

Vi X %vk x u=w’u (10.62)
and
Vk-u=0, (10.63)
where the shift gradient operator Vy is defined as
Vk =V +ik. (10.64)

To set up the finite element approximation of (10.62) and (10.63), we need the
following spaces for periodic functions for the unit cell 2
Q) = {veL*Q): Vve L*(Q)*},
(curl Q) ={velL*Q)?®:VxvelL*Q)?},
H,(div,Q) = {v e L*(Q)*: V-v € L*(Q)},
H, (divy, Q) = {v € H,(div,Q) : Vi - v =0} . (10.65)
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The weak formulation for (10.62) will be: find w? € R,(0,0) # (u,p) €
H,,(curl, Q) x H}(Q), such that V(v,q) € Hy(curl, Q) x H, (%),

a(u,v) + b(p,v) = w?(u,v),

(10.66)
b(g,u) =0,
where the over-bar denotes the complex conjugate, and
1 -
a(u,v) = | -Vi xu- Vg xvdr, (10.67)
O €
b(p,v) = / Vip -V dr. (10.68)
Q

The unit cell 2 is assumed to be triangulated into tetrahedra, i.e., Q = UK,
and the finite element space used to discretize (10.66) is based on a modified
Nédélec element (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi, 2006) of
mth-order on the tetrahedra of Section 8.1. The space for the electric field will
be Uh:

U = {ueHy(cur, Q) : ul, = e kxq, for some 1 € (P, (K))*}, (10.69)
and the modified space for the scalar Lagrange multiplier ¢ is Qp:
Qn={q¢c H;(Q) : gl = e %*G, for some G € Pri1(K)}. (10.70)

For a periodic vector function v € H;(Q), its projection IT,v € Uy, is defined
by the following degrees of freedom (refer to (8.53)—(8.55)).

e FEdge moments:

/ {eik(x—xe)(v —I,v) - t} qdl =0, Vg€ Py(e), (10.71)

e

where x. is selected as the center of the edge e and t is the tangential
direction of the edge e.

e Face moments:

/ [eik-(xfxf)(v ~I,v)xn|-qds=0, YqeD, .(f), (10.72)
f

where x; is selected as the barycenter of the face f and n is the normal
direction of face f.
e Element moments:

/ {eik.(x_xK)(V —ILv)| - qdQ2 =0, Yq&Dn oK), (10.73)
K

where xj is selected as the barycenter of the element K.
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For edges and faces on the periodic boundaries of €2, the edge and the face
moments will be the same to enforce the periodic condition.
The discrete form for the mixed formulation of the eigenvalue problem is:

find w? € R, (0,0) # (un,pr) € Up x Qp, such that ¥(vy, qn) € Uy X Qp,

a(up,vy) + b(pn, vi) = wi(ap, vy),
(10.74)
b(gn,ur) =0,

which will result in the following matrix system:

(3 5)(0)4(¥(E) wn

where U contains all the degrees of freedom for the numerical solution u;, defined
in (10.71)—(10.73), p contains the nodal values of pj,, and the hermitian stiffness
matrix A, the matrix B, and the mass matrix M are given as follows:

Aij = a(i,by),
Bz_] - b(djzaas_])a
Mij; = (i, ), (10.76)

respectively. Note that Uy, = span{wi}i]i(lh ), where the basis function v; is the
hierarchical basis defined in Section 8.2 and Q) = span{¢;}, where ¢; is the
normal nodal finite element basis.

It is proven (Dobson & Pasciak, 2001; Boffi, Conforti, & Gastaldi, 2006)
that the finite elements used in the mixed formulation (10.74) satisfy the LBB
(Ladyzhenskaya—Babuska-Brezzi) condition (Fortin & Brezzi, 1991) for stability
of the finite element methods, and the linear system will have exact N(h) =
dim(Uy) real and positive eigenvalues, which will approximate the Maxwell
eigenvalues of (10.62)—(10.63).

Time-domain finite element methods for periodic array antennas

A phased array antenna consists of a periodic array of patch antennas, where
the electromagnetic fields will have a given phase shift on opposite sides of a
unit cell, which can be described by the Bloch modes. Due to the large con-
trast of dielectric constants in this system or some photonic crystals, the Fourier
method introduced for periodic structure in Section 10.1.5 may suffer degener-
acy of accuracy as the series expansion for the inverse dielectric constant (10.44)
and the field variables (10.42) may converge too slowly. In this case, the time-
domain finite element can be used for the scattering of an electromagnetic wave
by a unit cell in a periodic structure with periodicity (L, L, ), which will yield
the band structure property of the periodic structure. Here, we will describe
such a time-domain finite element for the unit cell problem (Rickard Petersson
& Jin, 2006a, 2006b), where the computational domain will be the unit cell in



262

Periodic structures and surface plasmons

the horizontal direction with periodic boundary conditions, while the vertical
direction will be truncated and equipped with local transparent boundary con-
ditions for Rayleigh—Bloch waves. Alternatively, Dirichlet-to-Neumann mapping
type transparent boundary conditions, which are global on the boundary, can be
used for the truncation of the computational domain in the vertical direction for
the diffraction of periodic gratings (Bao, Dobson, & Cox, 1995).

The time-Fourier-transformed electric field E(xz,y, z;w) satisfies the vector
Helmbholtz equation (5.30) when the electric current J. is related to the electric
field by Ohm’s law (5.22); in addition, source currents Je imp and J, imp may
exist from the feeds to the antennas. The vector wave equation (5.30) becomes

1 1
V x (V X E> —kgerE—i—ioJuan = —iw,que,imp—Vx (ijmp) s (1077)
e r

where kg = w/c = w,/éflo is the wave number, Zy = \/po/eo is the wave
impedance in free space, o is the conductivity, € is the relative permittivity, and
1 is the relative permeability.

The electric field above the structure is in the Bloch wave form given by (10.4).
For a given scan angle of the antenna array at (65, ¢s) (with 05 as the angle with
the z-axis, which is assumed to be perpendicular to the periodic layer structure),
the transverse wave vector in the z- and the y-directions is given by

K = (K3, k) = ko(sin 0 cos b, sin 6 sin ¢, 0) = koks,

x vy
and the Bloch wave mode for the electric field is then

E(z,y,zw) = e I TRYP (g, 21 0), (10.78)
where P(z,y, z;w) is a periodic function in (z,y) coordinates, i.e.,

P(z+ L.y, z;w) = P(x,y, 5,w), P(x,y+ Ly, z,w) = P(z,y,2,w). (10.79)

Substituting (10.78) into (10.77), and recasting the resulting equation for P
back in the time domain with the replacement of iw — 0/0t, we can show that
P(z,y, z;t) satisfies the following wave equation (Rickard Petersson & Jin, 2006a,
2006b; Jin & Riley, 2008):

2ot 2T, \UP T o2 Hoo5r ~ ¢ iy Ot

1 . P 1
— k& x (v x ;) +V x (v x PS> = G(Jeimp: Imimp),  (10.80)

Clby Hor
1 ks-r
7J7n,imp <t + t )]
Hor ¢

where
ks 10 ke -r
- 77Jm im t £ .
+ ¢ : llur at o ( + ¢ >‘|

0 ki-r
G(Je,impa J’f)’L,iIIlp) = MOEJe,irnp <t + tc ) -V x
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The weak form of (10.80) can be derived by multiplying it by a test vector
function N and performing an integration by parts as follows:

1 1 O’P 1 /- 1 [+, O°P
/Q{(VXN)~H(VXP)+QGTN-({%2—2<kt><N>‘ur-(kt><at2>

a;t) [(k N) - (vX%I;)(va Ml <ks %It)ﬂdr

. 0P
—|—/89N.{n><(MTV><P—k 81?)} ds—/N G(Je imps Jim,imp)dr.
(10.81)

+/J00'N

Equation (10.81) will be solved in a computational domain €2 made of a unit cell
in the (z,y) domain [0, L,] x [0, L,] and a truncated interval z € [21, 22|, namely
Q =[0,L;] x [0,Ly] x [21, 22]. Naturally, the periodic boundary conditions will
be used on the side walls of the domain,

P(0,y,2t) = P(Ly,y,25t), P(x,0,2;t) = P(x, Ly, 2; 1), (10.82)

while transparent boundary conditions at the top and the bottom of the com-
putational domain will be designed for Rayleigh-Bloch waves discussed for the
slab photonics in (10.43).

Rayleigh—Bloch waves and transparent boundary conditions

To derive the transparent boundary conditions, we first express the periodic
function P in a Fourier series:

o0

. 2 2
P(x,y,2 = z21;w) = Z Pon(w,z = z1)exp [i ( zmx + gny)] . (10.83)
@ y

n,m=—oo

The z-dependence in P, (w, z) is assumed to be of the form exp(iks (2 —
z1)), which can be shown to be related to the wave numbers in the z- and y-
directions by

k(Q) - |kt,mn|27 if |kt,mn‘ < kOa

Krpmm = (10.84)

—iy/|kt,mn|? — k2, otherwise,

where Ky . = (km’i’ kyn,0).
The coefficients P, (w) can be related to the values of P at the top and the
bottom boundaries of the computational domain z = z; and z = z5 as follows:

L
2 2
P(z,y,21;w)exp {—i ( me—l— 7myﬂ dx dy.

L., L,
(10.85)

Pmn(wy Zl)

" L.L,
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Combining (10.78) and (10.83), the electric field takes the Rayleigh-Bloch wave
form,

E(x,y, z;w) Z B (w) exp {i kzm + kyny & ko mn(z — 21)]},  (10.86)
where
2tm 2™
Kem = — kS, kypn=— — k. 10.87

Moreover, due to the transverse wave nature of the electric field in free space as
a result of Gauss’s law

V-E =0, (10.88)
we should have
k:nn . Emn = O, k:nn - kt,mn + (07 Oa kz,mn)~ (1089)

Based on the expansion (10.86), it was shown that the following approximate
boundary condition (Jin & Riley, 2008),

x (VxE)=

0059 ik (12;‘ : E) Cikgcosfz x (2 x E), 2= 21, 2, (10.90)

absorbs perfectly the fundamental Bloch mode (m,n) = (0,0) in (10.86). Higher-

order absorbing boundary conditions can also be designed to absorb higher-order

Rayleigh—Bloch modes, however, which will involve expensive time convolutions.
Again, substituting (10.78) into (10.90), we have

1]4;0

x(VxP—ikdEixP) cos 6.

0 s (kt : P) ko cosByix (2 X P), 2= 2, 2,
(10.91)
which can be recast in the time domain with the replacement iw — 9/0t as, for

Z = Z1, 22,

. op 1 COP\ 1 [ 9P
(VXPk at>CCOS9k<k 8t>CCOS95ZX<ZX8t)

(10.92)
Equation (10.81) can be solved by a Galerkin finite element method by ex-
panding P(x,y, z;t) in terms of the Nédélec edge element basis function N;,

(z,y,2;t) Zu] (x,y, 2), (10.93)

and setting N = N; in (10.81); we obtain a second-order ordinary differential
equation (ODE) in time for the unknown coefficients U(t) = (u1(t), ..., un(t))":
d*U dU

M—— ABCY == =f 10.94
dt2+(R+R )dt+SU , (10.94)
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My = iz/Q [erNi ‘N, — (12: x Ni> L (12: x Nj)} dr, (10.95)

T

Ri; = %/Q :(IAQXNZ-)-MlT(VXNj)—(VXNi)-,ulT(lA{ixNj)]dr

+ / /.Loo'Ni . Nj dI‘, (1096)
Q

_ 0.
R :/891 Coi (nxN;)-(nx Nj)

1 s s
T s Os (kt .Ni) (kt . N])} ds, (10.97)
1
Sy = [ (VXN (VX N)) dr (1098)
Q M
fi :/ Ni‘G(Je,impaJm,imp)dra (1099)
Q

with 9€) consisting of the top and bottom surfaces of the computational domain
(ABC boundaries), and the boundary condition (10.92) has been used to derive
(10.97).

Physics of surface plasmon waves

Surface plasmon waves are electron density waves confined to the interface be-
tween a metallic material and a dielectric medium (Ritchie, 1957), which are
transverse electric (TE) wave solutions to the Maxwell equations for a flat
interface. There are two types of plasmon waves, propagating and localized
(Maier, 2007; Pitarke et al., 2007).

Propagating plasmons on planar surfaces

Let = be the normal direction of the interface, let y be along the interface, and let
z point into the zy-plane as in Fig. 10.3. A TE, wave has the following surface
evanescent nature:

E® = (EY, Ey,0)e e lrleihay=wt), (10.100)
H® = (0,0, HY)e deleleitkay—wt) (10.101)
where a = 1 is for the field in the metallic medium (2 < 0) with relative dielectric

constant €7, and a = 2 for the field inside the dielectric material (x > 0) with
relative dielectric constant es.
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|

dielectric: €,

surface plasmon
> >y
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Figure 10.3. A metal and dielectric interface.

The Ampere-Maxwell law (5.15) implies that
—61H} = iwereo B, (10.102)
§2H? = iwezeo B, (10.103)

and the Helmholtz equations for each field component imply that

6o = \/K2 —€ak?, a=1,2, (10.104)

where the wave number in the vacuum is defined as

ki = —. (10.105)
Meanwhile, we have the continuity of the tangential fields Ef’ and HZ, i.e.,
E,=E,, (10.106)
H! = 0?2, (10.107)
Using (10.102) and (10.103) in (10.106) to replace the E fields yields

o H! + 5—2H§ =0. (10.108)

E €2
Therefore, (10.107) and (10.108) imply that

5 b
o 0

=0, (10.109)
€1 €9

and the continuity of H, in (10.107) also means that the wave number & should
be the same for both media:
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Solving (10.109) and (10.110) gives the dispersion relation w = w(k) for the

surface plasmon:

2
2 w €1€9

62 61+62.

(10.111)

For a propagating wave along the metal/dielectric interface, a positive k value is
required. Due to the negative real part of the metallic dielectric constant for the
frequency range considered, we have the following conditions for the existence of
the surface plasmon:

€162 < 0, (10.112)

€1+ €2 < 0. (10.113)

The exact dispersion curve for the surface plasmon depends on the specific
frequency-dependent dielectric constant for the metallic material. For instance,

in a Drude-Sommerfeld model (Kittel, 2004, chap. 10) based on a free electron
gas (no correlation effects among electrons considered), we have

W2
= = 1- —2— 10.114
e =€(w) =€ RS R ( )

where w,, is the plasmon frequency for an electron gas of charge e and density n
with electron mass m., given by:

ne?

(10.115)

Wy = .
p Me

Thus, for a metal of the Drude-Sommerfeld model of (10.114) with damping
parameter I' = 0, the dispersion relation for the surface plasmon is given by

wap(k) = \/w? + K22 — \Jwl + A, (10.116)

as shown in Fig. 10.4 and the surface plasmon frequency wy is defined as

Y
Nt

As seen in Fig. 10.4, the dispersion curve for the surface plasmon is to the right

(10.117)

Wg =

of the light dispersion curve in the dielectric medium (or vacuum), so the surface
plasmon on a smooth flat interface cannot be excited by the light radiation
from the dielectric medium (or vacuum). In order to cause the excitation of the
surface plasmon in the metallic material, two approaches can be used to produce
the intersection of the light dispersion line with that of the surface plasmon.
The first one is to pass the light through a prism such that a total internal
reflection at the base of the prism will generate an evanescent light wave to
the outside of the prism base, for which the dispersion curve of the light will
be effectively rotated downward to intersect with that of the surface plasmon.
The prism settings are achieved by either the Otto (Otto, 1968) or Kretschmann
(Kretschmann & Raether, 1968) methods, as seen in Fig. 10.5. The other way
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Figure 10.4. Dispersion curves: (solid) surface plasmon w = ws, (k) and (dashed) light
in the vacuum w = ck.

incident beam incident beam

dielectric: €, surface plasmon
metal g >

>

dielectric: €, surface plasmon

metal €

Figure 10.5. Excitation of surface plasmon via a prism: (left) Kretschmann
configuration, and (right) Otto configuration.

to excite the surface plasmon is to incorporate a periodic grating structure on
the metallic surface to produce Bloch waves whose dispersion curve will be a
folding over of (10.116). The resulting surface plasmon wave excited by the light
radiation is called the surface plasmon polariton (SPP) (Pitarke et al., 2007).

10.3.2 Localized surface plasmons

Localized plasmon waves can be found in a metallic object of spherical or cylin-
drical shape, and they are easily excited by incident light radiation due to the
curvature of the boundary of the object.

Consider a sphere of radius a with a complex dielectric constant €; and per-
meability p; embedded in a dielectric medium of dielectric constant e; and
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permeability po. The sphere is impacted by an incident plane wave polarized
in the z-direction:

E"¢ = Fyeltreste, (10.118)
or, in terms of spherical coordinate vectors,
e, = sinf cos ge, + cos b cos pey — sin pey. (10.119)

The scattering wave off the sphere can be expressed (Stratton, 1941; Bohren &
Huffman, 1998) as follows:

oo
ES = ZEn(ianNeln — b, Moy, (10.120)
n=1
ko —
H* = = E,(ibnNoin + anMe1n), 10.121
w”%z::l ( 1 eln) ( )

where ky = w,/éspiz, the vector functions M and N are defined through scalar
potentials as

Memn =V x (rwemn)a Momn =V x (rwomn)v (10122)
1 1
Nemn = —V X Men, Nomn = —V X Momn, (10.123)
k‘g k2
and
Yemn = cos mOPT (cos O)h ) (kor), (10.124)
Vomn = sinmpP™(cos 0)h?) (kyr), (10.125)

where hg)(r) is the spherical Hankel function of the second kind.
The scattering coefficients in (10.120) and (10.121) can be obtained by the
interface condition of the electromagnetic fields:

p2m? jn (ma) [zjn (2)]" — pa g (@) [marjn (ma))’

— , 10.126
pam2j, (ma)h (2))! — pa b () [maxjn (ma))’ 0-120)
b, — Pdn(m)[in(@)) — paju(@)lmzja(ma) 10.127)
pagn (ma) [phi) (@) — pahil () [ma g, (ma))
where
x=koa, m= %, (10.128)

and the wave numbers are defined as k2 = w?eq i, = 1,2.
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A specific nth mode in the scattering field will be dominant if the denominator
in either a,, or b,, becomes vanishingly small. Using the asymptotics of the spher-
ical Hankel function for small argument (small sphere z ~ 0), the denominator
of a,, will vanish approximately once

egn+e(n+1)=0, (10.129)

which yields a Mie plasmon frequency

n
n=Wp\/ 51> 10.130

provided that the dielectric constant of the sphere is given by the Drude formula
(10.114).

It can also be easily checked (Bohren & Huffman, 1998, sect. 12.1) that the
radial component of the Mie plasmon mode inside the sphere has the following
profile along the radial direction:

E'(r) ocr™1, (10.131)

which is confined to the spherical surface; therefore, these Mie plasmon modes
are identified as the localized surface plasmons.

Volume integral equation (VIE) for Maxwell equations

In this section, we present a volume integral equation method based on the
dyadic Green’s function from Chapter 6 for plasmon waves in layered metallic
structures. A typical structure is given in Fig. 10.6, where the inclusion € in
the form of holes or impurities of nano-scales is made into background layered
metallic materials. The derivation of the volume integral equation is based on
the vector identity (7.14) in Section 7.1.1.

Firstly, we have

LE(r) — W?e(r)E(r) = —iwl.(r), recR*\(ZUN), (10.132)
where Y consists of all the interfaces of the layered materials,

1
L=V x -Vx,
H

and J.(r) is the far-field source (assumed to be away from the layered structure),
which produces the incident waves impinging on the layered structure from the
top, i.e.,

E™(r) = —iwu(r) | Gg(r,r’) - J.(c')dr, (10.133)

R3

and Gg(r,r’) is the dyadic Green’s function for the layered media. The inclusion
Q) is characterized by a different dielectric constant from the layered background
dielectrics, i.e.,

e(r) = ep(r) + Ae(r), (10.134)
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where Ae(r) =0,r ¢ Q. Then, (10.132) can be rewritten as
LE(r) — w?er(r)E(r) = —iwJ(r), (10.135)
where
J(r) = Jeo(r) + Jeq(r), (10.136)

and the equivalent current source Jeq(r) is defined to reflect the existence of the
inclusion 2

Jeq(r) = iwAe(r)E(r). (10.137)
Let us consider any interior point inside the inclusion r’ €  and a small
volume V5 = Vs(r') C Q centered at r’. The dyadic Green’s function Gg(r,r’)

satisfies
_ _ 1 _
LGg(r,r) — w?er(r)GE(r,r') = @Ié(r —1'), re R (10.138)
1
On multiplying (10.135) by Gg(r,r’) and (10.138) by E(r) and forming the
difference, and then integrating over the domain R3\V;, with the help of the
identity (7.14) and Gauss’s theorem (following the same procedure leading to

(7.28) in Section 7.1.1), we arrive at the following (after switching r and r’):

— iwp(r) /RS\W dr’ Gg(r,r’) - J(r') — u(r) /55 ds’ [iw Gg(r,r’) - (n x H(r))
1
p(r')

where S5 = 90Vs(r), n is the normal of Ss pointing out of Vs(r), and the right-
hand side being zero is due to the fact that the singularity of the delta function

V x Gg(r,r’) - (n x E(r'))} =0, reQ, (10.139)

is outside the integration domain.

As § — 0, the first integral will approach the Cauchy principal value of a sin-
gular integral, while the boundary integrals will in fact depend on the geometric
shape of the volume V5. Without loss of generality, we can assume the dyadic
Green’s function on S5 to be the dyadic Green’s function for a homogeneous
medium:

— — = 1
Gg(r,r') = Gg(r',r) = (I + kQVV) g(r,r'), (10.140)
where k? = w?e;u;, €; = er(r),
)= L p ey (10.141)
I = R’ —Eer '

In order to estimate the surface integrals, we have the following asymptotics
for small kR < 1:

— 1

1

R2

— 1 1
V/ X GE(I',I‘/) = FRQUR x I + O (R) s (10143)
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where ug = (r'—r)/R, which implies that (Collin, 1990; van Bladel, 1991, p. 87):

P% ds' n x E(r') -V x Gg(r',r) = — [ — Ly;] - E(r), (10.144)
— S(;

lim ds’ n x H(r') - Gg(r',r) = f%LV(s -V x H(r), (10.145)
6—0 Ss k

and the L-dyadics for Vy of various geometric shapes are given as follows
(Yaghjian, 1980):

Ly, = -1 (10.146)

for a sphere;
Ly, = diag(a, o, 1 — ) (10.147)

for a cylinder with radius a and height 2h, o = h/(2v/a? + h?); and
1
Ly, = - diag((, 2, 2.) (10.148)
T

for a rectangular box where ), €2, and 2. are twice the solid angle subtended
at point r by the side of the rectangular box perpendicular to the z-,y-, and z-
directions, respectively.

Substituting (10.144) and (10.145) into (10.139), we have

0=— iwu(r)/ dr’ J(v') - Gg(r',r)
R3\ Vs

1

+ iwp(r)

Ly, - VxH(r) - [I-Lvy,]-E(r), req, (10.149)

or
0 = E™(r) — iwpu(r)p.v. /RS dr'J.,(r') - Gg(r',r)
+ Lv,- [iwu(r)leV x H(r') + E(r)] —E(r), reqQ. (10.150)
After using Ampere’s law (5.24), we obtain
0= E™(r) — iwu(r)p.v. /R3 dr’ Je,(r') - Gg(r',r)
+ Ly, ;J> —E(), req. (10.151)

Finally, noting that J(r) = Jeq(r) = iwAe(r)E(r) inside €, we have the volume
integral equation for r € Q:

C-E(r) = E™(r) — iwpu(r) p.v. /Q dr’ iwAe(r)E(r') - Gg(r/,r), (10.152)

where the coefficient matrix is given by

C =1+ Ly, - Ae(r). (10.153)
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Figure 10.6. Two thin silver films of thickness ¢ = 100 nm (with a separation g = 20
nm) with pits to excite surface plasmons: the pits are 40 nm in width and height and
separated by a spacing v = 80 nm. From Gan & Gbur (2009), copyright (2009) by the
Optical Society of America (OSA).

Extraordinary optical transmission (EOT) in thin metallic films

The volume integral equation (10.152) can be applied to simulate the transmis-
sion of optical waves through corrugated thin metallic films and subwavelength-
aperture arrays in metal plates, which have been shown to have extraordi-
nary transmissions due to the surface plasmons (Ebbesen et al., 1998; Liu &
Lalanne, 2008). A typical 2-D structure (assuming a long dimension in the in-
plane y-direction) is shown in Fig. 10.6, in which (plasmon) pits are etched
on both sides or one side of the metal films. Plasmon pits can be described
by the perturbation Ae(r) of their dielectric constants in (10.134) from the
background layered media (composed of air and silver with a refractive index
nag = 0.05 — 2.871).

The transmission of the power of the incident optical signal (taken to be a
Gaussian beam of 500 nm wave length) is measured by means of the optical
transmission coefficient T*:

o0

/ S, dx
— 00

oo

T =
YO/ |Einc(x, 2)|dx

b

where Yy = /€o/uo is the impedance of the air and S, is the z-component of
the time-averaged Poynting vector S measured at the top exit side, where

(S) = %Re[E « HY).
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Figure 10.7. Left: the transmission of three or five thin silver films with the same
spacing as in Fig. 10.6; right: the transmission of one silver plate with the same metal
volume and the thickness. The darker color above the grating indicates a stronger
field strength. From Gan & Gbur (2009), copyright (2009) by the Optical Society of
America (OSA).

Figure 10.7 shows the increased transmission for the three- and five-layer thin
silver films with plasmon pits (left) compared with the single layer of silver plate
with equivalent metal volume and thickness (right) (Gan & Gbur, 2009); the
former shows a much larger transmission of optical power.

Discontinuous Galerkin method for resonant plasmon couplings

In a linear dispersive material, the constitutive relation between the displacement
flux D and the electric field E and that between the magnetic inductance flux
B and the magnetic field H are given as follows:

D = ¢yer. o E+ P, (10.154)
B = oty H + M, (10.155)

where €y and g are the electric permittivity and the magnetic permeability of
free space, €, o and ji, o are the relative electric permittivity and the relative
magnetic permeability of the medium at infinite frequency, and P and M are
the electric polarization and the magnetization densities, respectively.

As discussed in (1.15), in a linear and isotropic medium,

P = ¢x(w)E, (10.156)
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where x(w) is the electric susceptibility of the medium in the frequency domain
and P denotes the time-Fourier transform of P(t). Here we assume that the
magnetization M is zero, i.e., there are no magnetic effects.

The Maxwell equations in dispersive media can be recast for the field variables
UW with auxiliary polarization current variables U as

%J + V. (AU) =S, (10.157)

where U = (UM, UP)T is defined explicitly in Section 10.7. We can divide the
above conservation system into two parts:

(1)
majt + V- (AUW) =8, (10.158)
ou®
—— =s® 10.1
o : (10.159)

and A, A, and S = (SM SCHT are given in (10.207)-(10.211) or (10.213)~
(10.217) of the appendix (Section 10.7). The conservation law (10.157) can be
solved by the DG method described in Section 9.2.

Resonant coupling of local plasmons in nano-silver wires

Firstly, we study the cross section and the time-domain behavior of coupled
plasmon resonant modes for coupled Ag nano-wires (Ji, Cai, & Zhang, 2007).
The integration path for the calculation of the cross section (Bohren & Huffman,
1998) is selected to be a circle of large radius r,, which will encircle all the Ag
cylindrical nano-wires. The circle does not have to be very large as all Ag nano-
wires are placed in the non-absorbing free space.

After choosing the radius ro., we compute the time-averaged Poynting vector
S along this circle using

Seca = %Re{Esca x H: .}, Sext= %Re{Ei x Hi, + Esca x HI'},

[733))
1

where the footnote “sca” represents “scattering”, represents “incident”, and
“ext” represents “extinction”; all the variables are functions of frequency, ob-
tained by the Fourier transform from the time domain. Then we compute the

following values:
Weea = / Ssca - €rds, Wexy = _/ Sext - €rds, Wabs = Wext — Wcas
A A

where “abs” represents “absorption”, the integration is performed along the cir-
cle, and €, is the outward unit normal to the circle. Finally, we get the cross
sections:

Wext Wabs Wsca

Cext = Ti’ Cabs = Tv Csca = Ii 3

where I; is the incident irradiance.
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We use curved triangles to describe the circle exactly; these curved triangles
can be mapped by an isoparametric transformation (Szabd & Babuska, 1991)
onto a reference triangle {(x,y) : 0 < z,y,z +y < 1}. We set the UPML param-
eters m = 3, R(0) = exp(—16) in (5.163)—(5.164), fourth-order basis functions
are used for the space discretization, and a fourth-order Runge-Kutta method
is used for the time integration. A Gaussian pulsed source modulating a carrier
wave is used to excite the plasmon modes inside the nano-wires, and the pulse
can be obtained as follows (Ji et al., 2005).

(1) Assume the time dependence for the pulse is

f(t) = expliwe(t — to)] exp [— (t — tO)T ,

tdecay

where w, is the central frequency.
(2) Take the Fourier transform of f(t):

2,2
7 Ldeca We = W) geca .
flw) = % exp (—(4)dy> exp(—itow).

(3) Set
flx,y,z,t) = \/% /F(m,y,z,w)f(w) exp(iwt)dw,

where F(z,y,z,w) is the distribution of the desired mode in the case of the
sinusoidal excitation mentioned above; f(x,y, z,t) so defined will satisfy the
Maxwell equations and contain a range of frequencies around w,..

Normal illumination of two nano-wires

We consider TE scattering off two Ag nano-wires. The Drude parameters for the
Ag nano-wires are taken from Lynch & Hunter (1985):

€r oo = 8.926, w, =11.585 eV, v =10.203 eV.

Figure 10.8 presents the cross sections for two nano-wires with a radius r = 15
nm. In addition to the one weak maximum close to the resonance of an isolated
nano-wire, an additional stronger resonance due to the interaction of the nano-
wires is present. The results show clearly a distinct secondary resonance.

Appendix: Auxiliary differential equation (ADE) DG methods
for dispersive Maxwell equations

The ADE formulation (Taflove & Hagness, 2000) for the dispersive Maxwell
equations will be derived for the discontinuous Galerkin method.
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Figure 10.8. Two r = 15 nm circular Ag nano-wires: (left) cross sections; (right)
scattering, absorption, and extinction. From Ji et al. (2005), copyright (2005) by John
Wiley and Sons.

Debye material

Consider an inhomogeneous, conductive, and electrically dispersive medium with
relative magnetic permeability u, and conductivity o. For a single-pole Debye
medium, the electric susceptibility in the frequency domain can be expressed as
the relative permittivity with a single pole:

€rs — €roco

10.160
1+ iwTt ( )

)

& (W) = €00 +

where €, , is the static zero-frequency relative electric permittivity and 7 is the
pole relaxation time. Then, a general time-harmonic form (with e“! time de-
pendence) of the Maxwell equations in a Debye medium including the artificial
material in a uniaxial perfectly matched layer (UPML) can be written in a unified
form as follows (Lu, Zhang, & Cai, 2004):

V x H = iweg (e,« i .U) iE, (10.161)
1WeEQ
V x E = —iwpop,ii H, (10.162)
where
w90
E=p=| 0 == 0 (10.163)
0§
and
g
$i=14+—, i=uxy,2 (10.164)
1Wen

Here, €, is the relative permittivity of the dispersive medium, o; = 0 corresponds
to a physical dispersive medium, and o; # 0 is used for the UPML region.
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For simplicity, we will consider the 2-D transverse magnetic (TM) case (s, =
1); the Maxwell equations for the TM wave for the Debye medium can be writ-

ten as
aﬁry OH, €rs — €roo o ~
_ —i o s TCroo wso b, 10.165
ox dy 1o (6 oo ¥ 1+ iwTr + 1we0> Sady ( )
OE, . Sy
- _ L H,, 10.166
S = i, 2 (10.166)
8Ez T 73
T wpope 22 H,,. (10.167)
ox Sy

Equation (10.165) can be written as

0H, 0H, . . I . . R
axyf 3 = iweper o By +0E. +J, 1 (w)+ T, 2(w)+J, 3(w)+J, 4(w), (10.168)
where
Az71(w) = 1We€p€Er 00 (SuSy — 1)Ez, (10.169)
7 67‘8 - 67‘<>o ~
z ——E., 10.170
() = fweg T = (10.170)
- €5 — € .
Jz,B(w) lweo%(swsy — 1)Ez
€r.s 7 €r,00 7
= (8z8y —1)J; = —rJ, , 10.171
(sesy = 1eple) = 251 (w) (10.471)
Joa(w) = 0(sesy — DB, = ———J. 1 (w). (10.172)
IWENEr, 00

After substituting s, and s, from (10.164), we have

Jo1(w) = iweger oo K ) (1 + 2 ) - 1} E.
iweg iwe

. o, + ay Jmay
= lWEEr 0o .

iweg (iweg)?
= €r00(00 + 0, E. —l— 2250y E (10.173)
weq

J.2(w) = iwe frs ~ Cree (10.174)
%2 O fiwr :

7 €r,s €r,00 T

L g(w) =~ —Cnee G 10.175
3(w) e oo (L +iwr) ( )

~ o ~

J. = —J.1. 10.176
a(w) Tveoero 1 ( )

Now considering (10.168), we apply the inverse Fourier transform using the iden-
tity iw f(w) — (8/0t) f(t). This yields an equivalent equation of the time-domain
differential equation for (10.168):

oH, OH, L.
- = r,o0 T, E, z z,2(t 2,3(t z . (101
5 oy~ Oy + 0B, 4 J.1(t) + J. o (t) + J2 3(t) + J2 a(t). (10.177)
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Next we derive dynamic equations for (10.169)—(10.172). The way to obtain a
dynamic equation for J, 1 is first to multiply both sides of (10.169) by iw, which
gives

e o (10.178)
€0

inAZJ = iwe, oo (0, + O'y)Ez +

Exploiting the differentiation equivalence for the Fourier transform, we perform
an inverse Fourier transform of each term in (10.178):
anJ(t) 8Ez + €r,00
ot ot
To obtain the dynamic equation for J, o from (10.170), we again multiply both
sides of this equation by (1 + iw7):

= €r,oo(0z +Uy) UzUyEZ- (10179)

jz)2 + iWszz = iweg(€rs — €r00) Ese (10.180)

Similarly, using the inverse Fourier transform, we get
0J 2 oF,

Jeo+T 5 eol€rs — €T’°°)W’ (10.181)
and, by the same token, from (10.171) and (10.172) we have
0J. €rs — €
Jog b = ’“asem’“’w Joi, (10.182)
8JZ 4 g
2 = Jo1. 10.183
ot €0€r,00 1 ( )

Therefore, (10.179), (10.181), (10.182), and (10.183) are the time-domain differ-
ential equations for all J,.

We further simplify the differential equations for the polarization currents J,
so that they will become simply ordinary differential equations.

Considering (10.179), we introduce a new parameter

P.1=—J.1+ € 00(0s +0y)E.. (10.184)
Then (10.179) can be written as
aPz 1 €r,00
A_ o, o B 10.185
ot €0 TzTy ( )

Similarly for (10.181), on introducing a new parameter

60(67“,5 - 67‘,00)

Poo=—J.o+ - E., (10.186)
we have
oP.», 1
= =—J, 9. 10.187
ot 772 ( )
From (10.184) and (10.186), we can obtain
Joi = —Poi + €roo(0y + 0, E., (10.188)

60(67",8 - 6r,oo)

Joo=—P. o+ E,. (10.189)
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After substituting for J, ; and J, 2 from (10.188) and (10.189) into (10.177), we
have

OH OH. OF
Txy - ayx = 60@“,0087; +oE, — Pz,l + er,oo(a'ac + Uy)Ez - Pz,2

60(67‘,3 - 6r,oo)
T

+ Ez + Jz,S(t) + Jz,4(t)

€0 (er,s - 67“,00)
T

OF
= 6067',0067; + |0+ 6r,oo<aw + ay) + L,

—P,1—P.o+J. 3+ J.4.
(10.190)

Next, considering (10.187), after substituting for J, o from (10.189), we have

8Pz2 1 €O(€rs_e'roo)
5 :_7Pz 5 5
ot T 2 72

E.. (10.191)

Similarly for (10.182), after substituting for J, 1 from (10.188), we have

8‘]23 1 €rs — €r,co
—=—=J; EEE— *Pz r,oo\0zx Ez
el S R TANCAE 1N
]- r,s — Cr r,s — Cr x
=g e Trep (€r,s — €r,00) (0 +0y)Ez. (10.192)
T €T7OOT T

Finally, for (10.183), after substituting for J, ; from (10.188), we have

oJ.
24 _ O Pyt o(oy + oy)
ot €0€r,00 €0

E.. (10.193)

Similar operations can be applied to Faraday’s law (10.166) and (10.167), and
we have the following equations:

oF, OH. Oy — Og

= o, e H, + Q. 10.194
dy Holtr =g~ = Holr—] e ( )
oL, aHy Oz — Oy
e H , 10.195
e = HoHr—gyt = Hopr = ——H, + Qy ( )
0Q, _ _&Qx + HOMrUz(gy — Uw)H:m (10.196)
ot €0 €0
662,, _ _&Qy n NONrJy(Za: - Uy)Hy. (10.197)
ot €0 €0

For consistency of notation, we let P, 3 = J.3 and P, 4 = J.4; then, from
(10.190), (10.194), (10.195), (10.185), (10.191), (10.192), (10.193), (10.196), and
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(10.197), we get a new set of equations for F., H,, Hy, P.1, P, 2, P. 3, P; 4, Qx,
and @, as follows:

0E. 0H, OH,

OrooTh T Tar T ay

60(67“,5 - 67“,00)

- U+er,oo(0x +0y)+ pn Ez
+ P+ Pp—P.g— Py, (10.198)
T T T — Hoftr H, o 10.199
Hokr =, oy Mok +Q ( )
0H, OF, Oy — Oy
T — Hofbr H, , 10.200
Hop ot oz Lot g+ Qy ( )
6PZ 1 670 00
% = T 00y E, 10.201
3t €0 g Uy ( )
aPz2 1 (Ers_eroo)
=Pt ———F, 10.202
ot 2 + 72 ( )
aPz,?) _ _1 4 — €r.s — €r oo Pz L+ (Er,s - Gr,oo)(O';c + Uy)Ez, (10203)
ot T €r,c0T ’ T
OP, .
4 — g PZ 1+ ME;’ (10204)
ot €0€r00 €0
0Q, Oz HolrOg (Uy - Uz)
=——Us H,, 10.205
315 €0 Q + eg ( )
0 . -
T L L (10.206)
ot €0 €

Note that (10.201)—(10.206) contain no spatial derivatives and hence they are
simply ODEs for P, 1, P. 2, P. 3, P. 4, Q, and Q.. Abarbanel & Gottlieb (1998)
pointed out that the system using the split-field PML terminating the computa-
tional domain was only weakly well-posed for the initial value problem. In con-
trast, the system (10.198)—(10.206), after dropping the undifferentiated terms,
becomes the original 3 x 3 Maxwell system, which is symmetric and hyperbolic
and therefore strongly well-posed.

The new auxiliary polarization currents P and Q have decoupled the frequency-
dependent constitutive relations (10.154) and (10.156). Note that P, 1, @4, and
@, are auxiliary variables introduced by the UPML, P, 5 is introduced by the
medium dispersion, P, 3 is introduced by the medium dispersion and the PML,
P, 4 is introduced by the medium loss and the UPML, o is the relative electric
conductivity, and o, and o, are the parameters for the UPML. In the case that
o, = o4 = 0, the above equations reduce to the original Maxwell equations in
the physical dispersive region.

We can put (10.198)—(10.206) in the general form of (10.157)—(10.159) by defin-
ing U = (Eofr,ooEZa fopbr Hy, ,uOﬂrHy)Ta U® = (Pz,ly P,2,P.3,P, 4, Qu, Qy)T7
U= (UM UMNT 8= (SMW SCNHT and A, A are given as
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A= (A, 4,), A=(A,,4,), (10.207)
where
0 0 —1/ur 0 1/p- O
Ay = 0 0 0 . Ay=| /e 0 0 |, (10.208)
_1/Er,oo 0 0 0 0 0
and
= A, O3x6 ) = ( A, O3x6 )
A, = LA, = y . 10.209
( Osx3  Osxe Y Osx3  Osxe ( )

Here 0,,«.,, denotes the zero matrix with n rows and m columns. The source
terms S and S@) represent body forces, e.g., currents:

_NTNO(Uy —0og)Hy/eo + Qu )
—prfio(0z — oy)Hy/€o + Qy

- {a + €roo(0z + 0y) + g] E.4+P,1+P.o—P.3—P.,4
s —

(10.210)

—€r,00020y .,
1 €r,s —€r,
—= Z,2+ TSTQTOOEZ

1 _ €rs—€roco (er.s—€r.00)(0z+0y)
S — ThE3 €ro0T Pea+ ™ E,

_ o P+ 0-(0'$ + Uy)Ez/Eo

_UmQx + NTMOU$(Uy - JI)HZ/G%
—0yQy + tir o0y (07 — Uy)Hy/G%

(10.211)

10.7.2 Drude material

We consider a dispersive material described by a single-pole Drude medium,
whose relative electric permittivity is rewritten here as

w2

€r(W) = €00 — TR —i—piI‘w’ (10.212)
where w,, is the plasmon frequency, I' is the damping constant, and ¢, o is the
relative electric permittivity at infinite frequency.

The augmented Maxwell equations for a transverse electric (TE) wave with
auxiliary polarization currents for the new augmented variables U(") = (oprH,
eoer,ooEma eoer,ooEy)T7 U(Q) = (Qza Px,2> Pm,Ba Px,4a Py,27 Py,Sa Py,4)T7 U= (U(l)a
UP)T and S = (SM, ST can be cast in the form of (10.157)—(10.159), and
A, A are given as

A= (A, A), A= (A4, A, (10.213)
where
0 0 1/eroo 0 ~1/ér0o O
A, = 0 0 0 . Ay = —1/u, 0 0 |, (10.214)
1w, 0 0 0 0 0
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and

A, = ( Az Oaxr ) A, = ( Ay Osxr ) (10.215)

O7x3  O7x7 O7x3  O7x7

Meanwhile, the source terms S(*) and S(?) represent body forces, e.g., polariza-
tion currents (Ji, Cai, & Zhang, 2007):

/’LTdO,ZHZ + ,U/rdl,zQz
SW = — | €r00C10Bs + wW2Prs +wlc1 o Pos+c2uPoa | (10.216)
€r,00C1yEy + Wp%P 4t wgcl,yPy,fi + oy Py

HZ
WIZJPx,?) + er,ooEx - Ua:Px,Z
Pz,4
s = E, — P4 , (10.217)
wgP%g +€r ooy —0yPy o
Py
Ey =Py 4
where
Clg =0y — 0y, Cop=—0z5(0y—0y),
Cly =0g — 0y, Coy=—0y(0, —0y),
do. =04+ 0y, di,=0.04 (10.218)
Summary

Wave scattering and propagation in periodic media offer a wide range of in-
teresting physical and mathematical properties, including the band gap of di-
electric photonics, the excitation of plasmon waves, and the field enhancement
near metallic surfaces. In the frequency domain, plane wave methods and trans-
mission spectra calculations using Fourier series and Nédélec edge elements are
discussed for the study of band-gap properties of periodic structures. While the
first two methods give a diagonal representation of the Laplace operator in the
eigen-mode problem, they may suffer Gibbs phenomenon oscillations when the
material contrast becomes large. The Nédélec edge element and the volume in-
tegral methods offer flexibility in handling complex material interfaces and large
material contrasts. In the time domain, finite element methods with the con-
forming Nédélec basis and discontinuous Galerkin implementations can be used
to study the transient wave interactions, including nonlinear phenomena.

Nonlinear optical properties of materials which could occur under strong in-
cident light sources such as lasers have not been discussed in this book, and
important nonlinear behaviors, such as second harmonic generations and para-
metric amplifications and stimulated Raman scattering, are discussed in Yariv
(1989) and Butcher & Cotter (1991).
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11.1

11.1.1

Schrodinger equations for
waveguides and quantum dots

Schrédinger equations are used for paraxial approximations of Maxwell equations
in optical waveguides or for describing electron density wave functions in quan-
tum dots embedded in layered media. In this chapter, we will discuss numerical
methods for computing their solutions, which may be discontinuous in values or
derivatives due to the existence of discontinuities in material dielectric properties
inside the waveguides or electric potentials experienced by the electrons confined
in quantum dots. In the case of optical waveguides, the Schrodinger equations
are reformulated with generalized functions (distributions) by using Dirac ¢ func-
tions as source terms to represent the discontinuities in the solutions. Then, a
generalized discontinuous Galerkin (DG) beam propagation method is discussed
for the guided waves in optical waveguides. For quantum dots, a volume integral
equation for the density wave functions is presented with Green’s functions for
layered media.

Generalized DG (GDG) methods for Schrédinger equations

In this section, we introduce a generalized discontinuous Galerkin method for
Schrodinger equations with discontinuities in either the solution or the derivative
of the solution.

One-dimensional Schrodinger equations

Let us consider a model 1-D problem:

p(x,t)  Pp(x,t)
T o2 for x € [a,b]\{7}, (11.1)

where ¢ is a complex-valued wave function.
With the shorthand notation

[u(t,t)] = u(rT,t) —u(r™,t), (11.2)
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we denote the jump conditions at the interface 7 by

[30(7—7 t)] = f(t)a (11.3)
{W] =g(t). (11.4)

We can incorporate the jump conditions into (11.1) using § and ¢’ source terms
at 7, namely

Op(z,t)  Po(x,t)

i _

ot oz gt)d(x —7)— f(#)d(x —7), forx € [a,b]. (11.5)

The use of the § and ¢’ source terms compensates for the singularity introduced
by the jump conditions at the interface. Furthermore, to avoid dealing with ¢’
in (11.5), we introduce an auxiliary distributional variable p to rewrite (11.5) as

Op _ 0Op

vl g(t)o(x — 1), (11.6a)
p= g—i — ft)d(x — 7). (11.6b)

Now, both ¢ and p are piecewise continuous functions over [a, b], while dp/0x
and dp/0x are treated as distributions.

To derive a finite element approximation of (11.6a) and (11.6b), we first divide
Q = [a,b] into N elements,

{la=2p< - <ap==7< - <ay = b}, (11.7)
and denote a general element by
K =[xk, k41, fork=0,1,...,N—1. (11.8)

To proceed, we introduce the concept of an evenly split § function:

0

1

/ v(x)d(r)dr = $§v(0), for a >0, v(z) € C(%a,0], (11.9)
+a

and the following integration-by-parts identities for distributional variables O /dx

and dp/0x over a closed interval:

th T+h v
[ Swan = ot + i+~ fohe) - [ Pplalda, (1110

T+h v

T+h
/T %v(w)dx = p(1 + h)v(r + h) — {p}v(7) —/ FpP@de,  (1111)

T

where {u} = (u(7")+u(77))/2 denotes the average of the values of the function
u at the interface 7. The proof of (11.10) and (11.11) is given in Fan, Cai, & Ji
(2008b).

Let P;(K) be the space of polynomials in K of degree at most J, and let v €
L'[a,b] be the test function, where v|x € P;(K). First, we consider the element
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adjacent to the right-hand side of the interface, say K = [Tg+, T+ 11], T = T.
By multiplying (11.6a) by v and then using integration-by-parts formula (11.10)
on K, we get

[ Sevde=pl |~ - [ o5 de—g(t) [ Sa = da
+ dv
= pvl,- {p}Hr) + () vleg) = [ poode, (1112)
K i
where the factor 1/2 in front of g(t) comes from (11.9). Equation (11.12) sug-

gests that we should define the fluxes on the right-hand side of the interface
+ +

T =7T" as
ho(r) = (phaee) + 5o), (11.13)
and those at x. , as
ho (T 1) = P(Tpeiq)- (11.14)
Repeating the above procedure for the element K = [xg«_1, 2], one obtains

the fluxes on the left-hand side of the interface z;. = 77 as

how) = {phane) = 39(0) (1L.15)

and those at xz;_l as
h (xﬁ* )= p(ﬂfZ —1)- (11.16)
As the exact solution is continuous at xg«y1, we can replace (11.14) and

(11.16) by
ho(@f.iy) = {PH(apes1). (11.17)
Similarly, we can define the fluxes for p as

(i) = () £ 550), (1L18)
hp (@ 1) = {9} (@pe£1)- (11.19)

Finally, for all elements K = |2, x;41], we will have the following method for
the 1-D Schrodinger equation (11.6a) and (11.6b).

1-D generalized discontinuous Galerkin (GDG) method

We have

. Op _ _ dv
1/ -0 dr = hy(z)v(ag, ) — ho(z )v(x)) — / p— dz, (11.20)

[ v de = hyla ot ~ Do) - [ oS0 (121
K K xT
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where, if xy # T,

he(xy) = {p} (), (11.22)
hp(zi) = {¢}(r), (11.23)
and at 7
ho(r*) = (o)) & 2o(0), (11.24)
(%) = {}(7) £ 51 (11.25)

Let ¢;(x),7 =0,1,...,J, be the basis functions, and let ¢ and p be expanded as

J J
)= o;j(t);(x), plx,t) = pi(t)d;(x). (11.26)
=0 i=0

In each K, by choosing the test function v = ¢;(z) for [ = 0,1,...,J, and
denoting my; and mj; as

d
mi; :/ P10, da, mfj:/ d%l@ dr, (11.27)
K K

we have

Zmla dt = ho(Tk+1) (T 1) — he(Tr) P z;) Zmljp], (11.28a)

Zmljpj = hp(Ths1) O (1) — hp(@e)du(a)) Zmlja] (11.28b)
J
Equation (11.28b) can be used to eliminate the variables {p;} in terms of {«;}
on each element locally.

Two-dimensional Schrédinger equations

Let the solution domain €2 be decomposed into regions €2; with jumps across
their interfaces, i.e., Q = U;§;. We consider the following time-dependent scalar
2-D Schrédinger equation: for (z,y) ¢ T' = U,;08;,

—_ =+ — 11.2
5 = e+ s + (o) (11.29)
where S is a source term. The jumps at (z*,y*) € I' are given by
f(x’ﬂy*,t) = [Lp(x*ay*vt)] = (p(x*—i_vy*—i_?t) - @(x*_ay*_vt)a (1130)
dp(x*,y* )] _ dp(at,y* " 1)  dp(a™ ,y* 1)
= — 11.31
g(x*,y", 1) = [ o n n , (11.31)

where n is the normal to the interface I' pointing to the + side.
On the interface T', local coordinates (£, 7) will be introduced, where £ is along
the normal direction and 7 is along the tangential direction(s). Following the
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same procedure as for (11.6a) and (11.6b), we can rewrite (11.29) as follows (Fan,
Cai, & Ji, 2008b):

0 dp 0O
af £ + aZ (€ —&M|VEPg + S, (11.32a)
0 0
=22 —sc- )15, (11:32b)
_O¢ %3
B 5(E— &) o (11.32¢)

As in the 1-D case, for each element K in the discretization of Q, let P, (K)
denote the space of polynomials in K of degree at most .J, and let v € L'(2) be
the test function, where v|x € P;(K). Multiplying (11.32a)—(11.32¢) by v and
integrating by parts in K, we obtain the following.

2-D generalized discontinuous Galerkin (GDG) method

We have

dp . v
615 dxdy—/aKh@vnm dsf/ 8 dz dy

+ h¥vn, ds —/ qa— dz dy+/ Sv dz dy, (11.33a)
Kk Oy K

OK

0
/ pv da dy = / hpvngds —/ Lp—v dx dy, (11.33b)

K oK Kk Oz
/ qu dz dy = / hqun, ds —/ 9v dx dy, (11.33¢)

K oK 8
where (n,n,) is the external normal of 0K and (h{, hY}, h, = h,) are numerical

fluxes which relate to (p, q, ) at 0K and are given by, for x = (z,y) € 0K,

B () = {p} % 0%, BL(xE) = {g} £, hy(®) = {0} 5, (1134)

where + indicates the exterior side of 0K, and a”,a¥, and b are from the jump
conditions and are defined as

1 1 1 .
(a®, a¥, b) = (29|V£|n’”’ 39IVElny, 2f)’ it TNK#0, (11.35)

(0, 0, 0), if TNK=0.

As in (11.22)—(11.25) for the 1-D case, simple averages are used in (11.34) for
all element boundaries except the material interface, where averages plus/minus
one half of the jump are used (Fan, Cai, & Ji, 2008Db).

Let ¢j(z,y), j = 0,1,...,ny, be the basis functions, where n; + 1 is the
number of basis functions required for the Jth-order approximation. We expand
,p, and ¢ as follows:

Y= Za] ¢j T,y), Q*Z% ¢J r,y), ij ¢j z,y), (11.36)
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and choose the test function v(z,y) = ¢(z,y) for L =0,1,...,n;, and we get

doy
Zml] i_ /K(hznx + hny)ér ds — Z(mfjpj + m%’jqj) + s, (11.37a)
J

> mszj=/ hpnatr ds — Y mija;, (11.37b)
; oK -

J J

> mijg =/ hgnydr ds — > mia;, (11.37c)
j oK J

where s; = [, S¢; dz dy and

/ d1d; do dy, my; = / ¢J dz dy, mlJ / ¢J dx dy.
(11.38)
Again, the local variables {p;} and {¢;} can be eliminated in terms of {«;}
on each element K locally by using (11.37b) and (11.37c¢).

GDG beam propagation methods (BPMs) for optical
waveguides

Beam propagation methods (BPMs) (Feit & Fleck, 1978, 1980) are based on
paraxial approximations for wave propagations in optical waveguides, where
time-harmonic Maxwell equations are approximated by Schriédinger equations
and the propagation direction is treated as the time axis. By propagating a gen-
eral wave of complex cross section mode profile down the waveguide for some dis-
tance using the BPMs, we can identify the guided modes for a specific waveguide.
Due to the mismatch of refractive indices in the cross section of the waveguides,
the electromagnetic fields are discontinuous solutions to the Schrédinger equa-
tions. Different variants of the BPM, using various types of spatial discretization
in the cross section of waveguides, exist, such as the finite element (FE)-BPM
(Tsuji, Koshiba, & Takimoto, 1999), the fast Fourier transform (FFT)-BPM
(Thylen & Yevick, 1982), and the finite difference (FD)-BPM (Xu et al., 1994).
In this section, we discuss GDG-BPMs to address specifically the discontinuities
in fields across dielectric interfaces (Fan, Cai, & Ji, 2008a).

Guided modes in optical waveguides

Light at optical frequencies can be confined within the core of an optical fiber
or the inner layer of layered dielectrics through the mechanism of total internal
reflection, when the refractive index of the interior dielectric m is larger than
that of the surrounding medium (called cladding in the case of optical fibers) ng
(Okamoto, 2005). The refractive index of a dielectric medium is defined by

n = /e, (11.39)
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n, complex k; V\ evanescent field

Figure 11.1. Total internal reflection.

where €, is the relative dielectric constant. An incident plane wave with a wave
vector k; from the side with larger refractive index (Fig. 11.1) will have its energy
reflected completely if the incident angle

6" > 4., (11.40)

where 6, is the critical angle defined by

0, = sin~! (”0) . (11.41)

In this case, the transmitted plane wave on the side with the smaller refractive
index will have a complex wave vector k¢, which corresponds to an evanescent
wave.

Once condition (11.40) is satisfied, guided wave modes can exist in optical
fibers such as that shown in Fig. 11.2 with cylindrical core €2, and cladding $2s:

Y ={(z.y):2" +y* <a}, L={(zy):a<s®+y’ <oco},  (11.42)

where we have assumed the cladding €25 is of infinite extent for simplicity.
The guided modes are assumed to be in the following forms:

E or H = (¢1(2,y), p2(z,9), p3(2,y))e 77, (11.43)

where e~"## indicates the propagation nature of the modes along the z-direction.
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2,

cladding

(€2, 12)

Figure 11.2. Optical fiber with cylindrical core and cladding of finite thickness. From
Fan et al. (2008a), copyright (2008) by Elsevier.

The Maxwell equations in the cylindrical coordinates (r,0) are

10F

- 392 +ifEy = —iwpoH,,
E, .

i8E, — OB i,
or

la(rEg) B 16‘ET
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la(T’Hg) 18HT . 2
e 7 ag — weon E., (11.44)

2 = ¢pe, is assumed to be a function of

where the dielectric constant e(r) = eyn
r only for optical fibers.

Meanwhile, the vector Helmholtz equations (5.30) and (5.31) for the z-compo-
nents of the fields (with e~¥#* factored out) in the cylindrical coordinates are

given by
0’E, n laEz N iéﬁEz
072 r Or r2 002

0°H, N laHZ n iasz
022 r Or rZ 002

+ [Kn(r,0)® = 8] E. =0, (11.45)

+ [k*n(r,0)* — B°] H. =0, (11.46)
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and the transverse components can be expressed in terms of the z-components by

E, — — ' (ﬂaEz + ““08Hz> , (11.47)

(o2 - \"or T o
B0 =~ Gty a7 (ﬂ s aaH) : (11.48)
=", 9) — ] (/3 o weOZ(T)Q a;;) : (11.49)
Ho =~ ng, ;)2 — 37 (f 85% + wEOZ(T)Q %%) : (11.50)

Solutions to (11.45) and (11.46) can be found in transverse modes such as TE
modes (E, = 0) and TM modes (H, = 0) as well as hybrid modes, or HE modes
(both of the z-components are non-zero). To find the hybrid modes, methods of
separation of variables are used by looking for the z-components in the following
form (with continuity implied at r = a) (Okamoto, 2005):

A, (%r) cos(nd + 0), if 0<r<a,
E.(r,0) = (11.51)
AI?Z((:J)) K, (“r)cos(nf + V), if r>a,
and
BJ, (%r) sin(nf + ¥), if 0<r<a,
H.(r,0) = (11.52)
Bil‘g;(&)) K, (%T‘) sin(nf + ¥), if r > a,

where J,,(r) is the nth-order Bessel function of the first kind, K, (r) is the nth-
order modified Bessel function of the second kind, ¥ is a phase parameter defining
the polarization of the HE mode, and the following shorthand notation is used:

u = ay\/k?n? — B2, w:a\/BQ——k?n%. (11.53)

The coefficients A and B, as well as the propagation constant 3, will be de-
termined by the continuity condition of the tangential components Fy and Hy,
given by (11.48) and (11.50), at the core/cladding interface r = a, yielding the
following relations, respectively:

49 (g m) = Bewo [ a0
and
Aweo {n% {;/szbu)) + 2 wﬁsg)] — _Bg (JQ + 132> n. (11.55)
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Combining (11.54) and (11.55), we obtain the following nonlinear equation
(characteristic equation) for the propagation constant §:

[l St ] [t ()" ot
= n? <u12 + u;) [:2 - (Z?)Q 132] : (11.56)

With S obtained, the coefficients A and B are found from (11.54) to be
related by

B

B=-A"g (11.57)
wo
where
n(1/u?+ 1/w?)
= . 11.58
ST T Ko (11.58)

[T + wk,, (w)

For n = 1, the HE mode is called the fundamental hybrid mode, denoted by
HE;;, whose field components in (z, y)-coordinates can be computed by

E,=FE,.costl — Eysinf,
E, = E,sinf + Egcos0,

along with a similar relation for H, and H,, resulting in

1—s u
. Jo(%7) cos(P) .
_ a 2 a
iAg, [ — L5 Jo(%r) cos(26 + U) in €,
E, = (11.59)
1—s w
. aJi(u) 5 Ko(¢r)cos(V) .
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. Jo(%r) sin(P) .
a 2 a
145, [ FLEE T (%) sin(20 + 0) | in {2,

B o_ (11.60)

=
128 Ko(%r) sin(P)
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b (11.61)
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H, = (11.62)
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1=s; u
5+ Jo(2r) cos(V) } 7 in Q.

—iA 2a
LAweENT 5, { _H%JQ(%T) cos(20 + )
H, = (11.63)

1=s0 /0o (27) cos(W)
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~AZE K () sin(0 + 0), in Q.
where
) 2
. B ) I6] . (11.65)

= S1 =
2,27 2.2
kE?ng k?ng

Here U = 0 and ¥ = 7/2 correspond to the z-polarized (HE7;) mode and the
y-polarized (HEY,) mode, respectively.

Discontinuities in envelopes of guided modes

In a BPM for optical waveguides, we assume that the electric or magnetic field
takes the envelope form (11.43). The envelope functions ¢;,j = 1,2,3, are as-
sumed to vary slowly along the propagation direction z, which will be denoted
as the time variable ¢ (Feit & Fleck, 1978, 1980).

Figure 11.2 shows the cross section §2 of an optical waveguide with a core
Qq, a cladding €5, and an interface at I' = Q; N Qo with an exterior normal
direction n = (ng,n,). Let us denote the jump of a function ¢ at position 7
along n = (ny,n,) on I' as

[@(77 t)] = (p(T+,t) - @(T_at)' (11'66)

Then, for any point (z*,y*) on the interface, for j = 1,2, 3, the jump data

fj(x*vy*vt) = [@j(x*vy*vt)] = @j(x*+7y*+at) - @j(x*iay*iat)a

gj(l. ’y 7t)_ J — J J ,

can be shown to satisfy identities based on the interface conditions for the elec-
tromagnetic fields and the Maxwell equations as follows.
To derive the jump data f; of the electric field, we start from the interface

conditions of the electric field,
aE; =eEf, E; =E}, E;=E}, (11.68)

where € and 7 are the local normal and the tangential coordinates on the interface
I', and B¢ = En, + Eyn, and E, = —Eyn, + Eyn, are the normal and the
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tangential electric field components, respectively. Using the envelope assumption
of (11.43), and denoting

Pe = Pile + pany, Py = —Piny + Pang, (11.69)
= 27 (11.70)
€2
we can obtain
VY =P g =0, ¥3 = (11.71)

From (11.71), f; can be written in terms of (¢, ¢, , ¢35 ) and (cpz, oF, ©T)
in a symmetric form:

( h > _ [ Ny —ny ] < (77 = Dpe + (1 =5 e )
f2 2 ny Ny 0
f3:0a

which recasts the interface conditions (11.68) of the electric field in terms of the

T (11.72)

envelope functions.
To derive the jump data g; for the normal derivative of the electric field, we
consider the interface conditions of the magnetic field,

z

pH; = pHf, Hy =Hf, H =H!. (11.73)

With the envelope assumption (11.43) and Ampere’s law

V x E = —iwpH, (11.74)
defining
H2
= 11.75
g " ( )
we get
d . - ) . +
o (% —i50)] = [~ (% —90)]
e _; 93] doc _; o " 11.76
g [(W _15%) - (Tg} = [(W —lﬁsﬁﬁ) - Tg} ) (11.76)
(8% _ %)7 _ (% _ %y
Vg \ an T an

From the second equation, g3 can be expressed in terms of dpy3 /0¢ and dy5 /O¢
in a symmetric form:

1 N O3
93 = 2[(1+Vg )(mﬁ% + (7 — 1) ¢

Oy, ooF
— (1+1y) (gf - iﬁ%) +(1 —vgl)géf”] : (11.77)
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The right-hand side of (11.77) actually involves time derivatives of @1 and o
on both sides of the interface, which can be replaced with spatial derivatives by
using the time-dependent Schrédinger equations for ¢ and .

Next, using the identity

oot Op;
S ¢
. G2 = i 3 11.78
Nz g1 + Nygo ¢ ¢ ( )
and the third equation in (11.76), and after some manipulation, we find g; and
g2 in terms of (9, /0E, O, /O€) and (8@2/3& D,y /0€) in a symmetric form:

6¢g B@E
2—8g — 2—35

1 _ - +
( 9 ) _ - [ Mo My } (v — 1) %2 + (1— %) Py |, (L79)

Ny Ny
1) oef ooy
(1+3) % — 0+ T
Similarly, the jump data f; for the magnetic field components and g; for their
normal derivatives can be shown to satisfy (11.72), (11.77), and (11.79), with

M1 €2
= — ’}/g —_—

, 11.80
H2 €1 ( )

vr

GDG-BPM for electric fields

In this section, we use the GDG method to obtain a full vectorial GDG-BPM
for optical waveguides where the electromagnetic fields and/or their derivatives
can be discontinuous across material interfaces. To illustrate the GDG-BPM, we
consider the paraxial approximation of a standard cylindrical optical fiber (Fig.
11.2).

Assuming that the field is time-harmonic with frequency w and that there are
no charge or current sources, the vector wave equation for E(x,y,z = t) in (5.30)
simplifies to

V x V x E = w?euE, (11.81)
which leads to
V2E + w?eyE = V(V -E). (11.82)
Since V - (eE) = 0, we have
V-E=V. <16E) :—%(VeE):—Vé'E, (11.83)

where

Ine. (11.84)

€
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Assuming that ¢ = €(x,y) is uniform along the fiber propagation direction, the
vector Helmholtz equation (11.82) becomes

V2E + w?euE = —V (2; . + g;Ey> . (11.85)

Based on the slow envelope assumption for (11.43) (paraxial approximation,
Snyder & Love (1983)), i.e

0? Pj a(P]

ot?

we can ignore the second-order derivative in t to obtain the following coupled

i=1,2,3, (11.86)

<2|%

equations at (x,y) ¢ I':
3801 o1 | Ppu

2055 = Gur T gp T W= e
0%¢ 0% e Op1 | O€ Do
o2 5oy T arar Ty on (11.87)
By gy O?
2 = B+ Gt W= B
0% 0% 0€ Op1 | O€ Doy
* 50077 T 0 e oy T oy (11.88)
Bps gz O
DO = G e W B
0é [ Dp1 . 0¢é [ Dpa
A (e (22 11.
+8<8t 801>+8y< 52> (11.89)

For convenience, we define the jump data for the dielectric constant e as

fé(x*ay*7t): [é(m*yy*at)] :é( ay t)_g(x*ivy*iﬂ‘:)a
N - ) D i ) I Ay ')
g( Y 7t) - |: an :| - an .

on

Following the procedure proposed in Section 11.1 (Fan, Cai, & Ji, 2008b), we
can rewrite the system (11.87)—(11.89) using Dirac ¢ functions as follows.

Formulation A

For j =1,2,3,
0 Op; O
28 = =2 +faqyﬂ —0(§ = €)IVEl'g; + 85, (11.90)
0
pi= 5t~ 0§ - € f (11.91)
0 0
S~ 5 (11.92)
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where the jump data f; and g; are given by (11.72), (11.77), and (11.79) to
enforce the physical jump conditions for the electromagnetic field components.
The lower-order terms above are given by

S1(p1, 2, p1,p2) = (WPer — B) o1 + L1 + a2 + pep1 + ep2,
Sa(1, 02,41, q2) = (wep — B2)ipa + o1 + @22 + peqr + e o,

dp1y 0o
S3(p1, 2, 03) = (Wep — B)ps +pe< o 1,6’@1) +qg( p lb’wz)

where dpq /0t and Jp9 /0t in S3 can be replaced by (11.90), with j = 1,2, and

G s
pe =5 =06~ € fer
0¢ g

Qezafy*ﬂﬁ*f Vem,

= g e “(aﬂ 5c) o
pg:%pye_a(g 5)( . gégi)gj
qg:ég; i - §>( ggi)gj

Here, pe, ge, p¥,pY, ¢F, and ¢ will be zero if € is piecewise constant.

In the above derivations, partial derivatives of f(z,y) on I' are used, while
f(z,y) is only given on the interface I'. Therefore, some types of smooth extension
away from the interface will be needed to yield those partial derivatives. The
simplest one is to use a constant extension locally along the normal direction to
the interface T', i.e., assuming 9f/0¢ = 0. Then we have

of _ofo¢ ofon _0fon

0r ~ 0oxr " onox  onox

of _ofos ofon _0fon

dy 9y oy Indy
The extension is by no means unique. However, the accuracy of the resulting
numerical methods will not be affected by a specific choice of the extension as
long as the extension produces a locally smooth function.

Alternatively, we can use Gauss’s law V - (¢E) = 0 to solve for the E, compo-
nent, which results in the following equation for ¢5(z,y,z = t):

Ops _ 0o Ops .
o ar Sy L ave (@ —iBges. (11.93)

If the evolution equation (11.93) is used for @3, instead of (11.90) with j = 3,
we have the following alternative version of the GDG-BPM for the electric field.
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Formulation B

For j =1,2,
0 0 0
28 = 2 4 U 5(¢ — €)[VEPg; + S, (11.94)
ox Qy
3 .
;3 = —€p1 — €q2 — Ewg01 - 6y§02 - ( - lﬁe)@ga (1195)
0
b= e, (11.96)
0p, 85
q; = 37; —0(E-¢& )fa (11.97)

The time evolution equation for (3 in formulation B is a simple ODE, thus
requiring less computational cost compared to the corresponding equation for
@3 in formulation A.

GDG-BPM for magnetic fields
We obtain a wave equation for H as follows:
V x <1v X H) = w?uH. (11.98)
Assuming that p is a constant (implying V - H = 0), we get
V x <1v X H) = —%V2H + (vi) x (V x H). (11.99)
Therefore, we have
%VQH = v% x (V x H) — w?uH. (11.100)
Again, we assume H has an envelope formulation:
H = (Hy(2,y,2), Hy(,y, 2), H.(2,y,2)) "

= (@1(% Y, Z)v @2('%5 Y, Z)v @3(1“72/7 Z))Teiiﬁz' (11101)

On dropping the term 82<pj /022 based on the paraxial approximation, replacing
z by t, and assuming that ¢ = Ine is independent of z, we get the following
coupled equations at (x,y) ¢ I:

&m _ 01 9P ¢ (Dpy Oy
— | = - = 11.1
25 T 92 * Oy? + (wren = 7)1 + oy \ Oz oy )’ ( 02)
. 3302 D%y 0% 2 2 0¢ [(Dpa Oy

s 82@3 62@3 2 2
ot axg ayg + (OJ Ep — 6 )@3

O€ (6(p1 ﬁ o1 — 8@3) 86 (8@2 . 6<p3

28—
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Similar to Section 11.2.3, for the interface conditions, we use f; and g; to
denote the jumps of ¢; and Op;/0n on the interface, respectively.

Now, we use the § function and the auxiliary variables p and ¢ to rewrite
(11.102)—(11.104) as follows:

Formulation C

For j =1,2,3,
0 dp; O
25 = = +—8q; —0(6 = €7)IVElg; + 8;, (11.105)
A o p O
m=:gg—5@—§)ﬁ5§ (11.106)
dp; o 08
q = 7; —6(£—¢ )fja*yv (11.107)

where the jump data f; and g; are again given by (11.72), (11.77), and (11.79)
with (11.80) to enforce the physical interface conditions for the electromagnetic
field components. The lower-order source terms are given by

S1(e1, 92,02, q1) = (WZW - 52)901 +qe(p2 — q1),
So (1,92, p2,q1) = (WQW - 52)802 —pe(p2 — q1)s

01
S3(1, 02, 03,p3,q3) = (wer — B2)p3 + pe ( g —ifp1 — )

0
+qe (gf 15<P2—Q3)

where 01 /0t and Jypy/0t in S3 can be replaced by (11.105), and

0¢ 0 0¢é
b= g~ 06— Vg =5 —0E- €G-

Note that p; and ¢. will be zero if € is piecewise constant.

Similarly, we can solve the H, component in terms of H, and H, using V -
H = 0 to obtain

Ops _ _Op1 _ Opa
% on By +ifps. (11.108)

As a result, we have the following alternative formulation for the magnetic field.
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Figure 11.3. E- and H-fields of a hybrid mode HE;; inside the core, calculated using
formulation A. From Fan et al. (2008a), copyright (2008) by Elsevier.

Formulation D

For j = 1,2,
205 = 4 S s - VePy + S, (11109
% — 1 — go +iBes, (11.110)
b= 52— d(E - )5 ()
g = 22 5 - )i f (11.112)

Ay
Again, the time evolution equation for ¢3 in formulation D is a simple ODE,

thus requiring less computational cost compared with the corresponding equation
for 3 in formulation C.

11.2.5 Propagation of HE{; modes

In the numerical test, the exact HE;; mode is used as the initial condition
p(z =t = 0) and the exact boundary condition at » = R is used. For both
formulations A and B, the parameters for the HE;; mode are chosen as ¥ = 0,
radius of core 1y = 10 pm, radius of cladding R = 20 nm, wave length A = 1 pm,
wave number ko = 27/, dielectric constant in the core ¢; = 1.552, and dielectric
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constant in the cladding e; = 1.545%, respectively. Using formulation A with
a third-order spatial approximation, Fig. 11.3 shows the intensity contours for
each component and the overall relative error after propagating along the fiber for
1 cm. Formulation B gives similar results. Both formulations give an exponential
convergence for the L? error as the degree of the polynomial increases.

Volume integral equations for quantum dots

One-particle Schrodinger equation for electrons

The motion of a quantum particle such as an electron with charge ¢ and mass m
under the influence of an electric potential V' (x) is described by the probability
wave function W(x,t), which satisfies the following

e one-electron Schrodinger equation:

oV K,

ih
where 27h = 4.135667516 x 10715 eV- s is the Planck constant and the
potential energy U is related to the potential V' by

U=qV. (11.114)

The potential in such a one-electron description consists of the effect from the
periodic lattice potentials V7, (x) due to the ions of the nucleus, the potential due
to the other electrons in the system, which is treated by an average potential
Us(x) such as the Kohn—Sham potential in the density functional theory (Parr &
Yang, 1989), and the external macroscopic potential Ug(x). Namely, we should
in general have

U(x) =Ug(x) + Ur(x) + Us(x). (11.115)

The solution for a periodic potential Uy (x) only is given by the Bloch theory
discussed in Chapter 10 as

U(x,t) = exp (—lE(hk)t) e X (%), (11.116)

where the dispersion relation of the electrons for the nth band under the given
periodic potential is denoted by

E = E(k) = E,(k), (11.117)

the computation of which by numerical methods has been discussed in Chapter
10. The effect of the periodic potential can be modeled by an effective mass
Schrodinger equation.
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e Effective mass Schrédinger equation:

8 .

2 = BV)oe 1) + (Up(x) + Us() bl t). (1L118)

The differential operator E(—iV) is obtained by replacing k in (11.117) by

(—iV). For a parabolic dispersion at the edge of the lowest conduction band
(n=1), we have

R, 2 2

Ek)~ E —(k k k 11.119

() = Bo+ 5 (K2 + K2 + 1) (11.119)

where E¢ is the conduction band-edge, and m* is related to the curvature of

the dispersion curve, considered to be the effective mass of the electron while

moving through the periodic lattice potential:
1 10°E
m*  h2 Ok2’
Therefore, the effective mass equation for the one-electron Schrodinger equa-
tion (11.113) becomes

G0 _ h2
"or = | "am

(11.120)

+Ec+Ug(x)+ Us(x)| ¥(x,t). (11.121)
It can been shown (Datta, 1989) that the original wave function W(z,t) is

related to the Bloch wave solutions as follows:
U(x,t) = P(x, t)uk(x). (11.122)

As a result, the probability of finding the electron in the region [x,x + dx] is
given by the squared modulus of the wave function, i.e.,

[W(x, 1) dx = [1(x, )] |ux () (11.123)
o probability of finding the particle inside the region [x,x + dx],
and the electron density is

p(x)dx = qlub(x, 1) 2|uic () dx (11.124)

o charge density in [x,x + dx].

e Charge continuity equation

The current density J is defined as (Datta, 1989)

. (¢ T w) (11.125)

and the conservation of charge can be obtained from the Schrodinger equation
(11.121):

dp
o5 TV-I=0 (11.126)
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Figure 11.4. Quantum dot in a layered medium: ng denotes a contact; and Qqp
represents a quantum dot. Note that S; and S;4+1 are the boundaries of €;+1, and Q.
is a small circle around r’ with radius € used for deriving the volume integral equation.

VIE for electrons in quantum dots

We consider a quantum dot embedded in a layered medium with different dielec-
tric constant as in Fig. 11.4, which is under the impact of an incident plane wave
Pe(r, t) = exp (—iwt)y™m¢(r). The scattering wave function and the transmitted
wave function will satisfy the following time-harmonic Schrédinger equation:

1 _— _

where F = hw and

k2 = w (11.128)
The electron potential V(r) is determined by the potentials given at the top and
the bottom contacts and the band structure of the layered medium. In principle,
a self-consistent potential via a Poisson equation should be used. Here, we will
assume that V(r) is provided a priori and that constant V; is in the ith layer
outside the quantum dot.
As the quantum dot is embedded in the (IV+ 1)-homogeneous-layered medium
with piecewise V(r), the Schrodinger equation in the ith layer outside the quan-
tum dot can be written as

1 _
(_v2 + k?) Pi(r) =0, TE€QY, (11.129)

(2
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where 1);(r) denotes the wave function in the ith layer, and
o AB-V)
(A hg
Meanwhile, inside the quantum dot region Qqp, the Schrodinger equation can
be written as

. (11.130)

1 _
{mv% (k$+Ak§)} Yi(r) =0, r€Qqp, (11.131)
where
2(E - VQD z) maQp 2(E - Vz)
Ak} = ’ - . 11.132
% K2 m; K2 ( )
Altogether, the Helmholtz equation can be cast into one equation as
1 _
[vg + (k7 + Ak;?)] i(r) =0, (11.133)
m;
where
2(E—Vqgpi)mep 72 .
AR? = 2 m, o i r€8ap, (11.134)
0, if re Q(CQD.
Introducing the differential operator
~ 1 _
Li=—V?*+Ek2 (11.135)
m;
(11.133) becomes
Lii(r) = — Ak (x). (11.136)

To derive a volume integral equation for ¢(r), we use Green’s function G(r,r’)
for the layered medium,

A 1
L;G(r,r') = ——6(r,1), (11.137)
m;
and the computation of G(r,r’) has been detailed in Section 6.2.5.
It can be shown in Section 11.3.3 that the wave function inside the quan-

tum dot satisfies the following volume integral equation with a special surface

contribution:
1 .
(mi(r) —5- V) Y™ (r) = f(r), € Qqp, (11.138)
where
in _ 1 1 / awint(r/) /
S (z/} t) (r) B /GQQD (mi(I‘/) a mQD) G(r’r )m ds ’ (11139)
V (¥™) (r) = p.v. G(r, v )AZ(r) )™ (¢ )dr, (11.140)

QQD

f(r) = /S € (Go(r’,r)&/’mc(r/) - 1/)i“°(r’)aG°(r/’r)> ds’. (11.141)

o Mo 0z 07’
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The transmission of electron waves through three quantum dots calculated by
(11.138) is shown on the cover of this book (courtesy of Dr. Min Hyung Cho).

11.3.3 Derivation of the VIE for quantum dots embedded in layered media
By subtracting (11.137) x #(r) from (11.136) x G(r,r’), we obtain

G(r,v)Lip(r) —b(r)L;G(r,v') = —G(r,v") A2 (r) + %(5(1‘, r')(r). (11.142)

Excluding a small sphere Q.(r') as depicted in Fig. 11.4, we integrate over
R3\Q,(r") to obtain

/ {G(r,v") Lith(r)—(r) £;G(r,r') }dr = — / G(r,r') AkZe(r)dr.
R3\Q (r')

Qb \ Qe (1)
(11.143)
Denote the reflected wave in the contact (z > 0) by 9", the wave exterior to the
quantum dot (z < 0) by ¥*** and the wave interior to the quantum dot (z < 0)
by ', respectively. We will derive a volume integral equation for t"*.
Equation (11.143) can be rewritten as follows:

—/ G(r,r') Ak (r)dr
Qap\Q(r)
- / ) [G(r, ') L (r) — wr(r)ﬁiG(r,r')} dr
z>
+/ [G(r,r')ﬁﬂ/)e"t(r) - we"t(r)ﬁiG(r,r')} dr
z<O,QCQD

+/ {G(r,r’)ﬁﬂ/}im(r) — wi“t(r)ﬁiG(r,r’)} dr.
2<0,2qp \ Qe (r')

Replacing L; by V?2/m;, introducing a contour 'y, made of two semi-spherical
surfaces I's over the interface (Sp) z = 0, and under the interface (Sy) z = 2z,
respectively, and applying Green’s second identity, we have

- / G(r,r") Ak (r)dr
Q20 \ 2 (r')

/SO [—1G0(r7r’)8wr(r) + 1wr(r)8GO(r’r/)} ds

mo 0z mo 0z
1 oY) 1 OGo(r, ')
+/Foo |:7nOGO(I',I') an mig'l/] (P)T dS

+ /So [1G1(r,r’)a¢$xt(r) b ‘th(r)aGl(r’r,)} ds

mi 0z mi 0z
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1 / 6w?Xt (I‘) 1 ext aGl (I‘, I‘/)
+A%J—@mm +mﬂi®}®

m; ongp dnap
1 / 3%’\’# (I‘) 1 ext aGN (I’, I'I)
o[ [ erte PR - e 2 o
N-1
1 . , 8w§xt(r) 1 et aGi(r’ I‘/)
i ; /s [ EGz(r’r) 0. T E% (r) P ds
+N_1/ 1 a. (I‘ r/)a zeitl(r) . 1 oxt (r)M N
1 Js; LMit1 (R Oz Mgy [t o
int ' ,
[ [ B L 200
my; on R o
9QqD i QD m; nao
1 / a'd)i,ﬂt (r) 1 . " 8G2 (I', r/)
——Gy(r, 7 L ;n 9Gi(r,r) | 4 ’
’ /696 { miG (r.) Ong, * miw (r) Ong, ?

where S; is the planar interface between layers, and no_and nqp are the outer
normal of the region Q). and Qqp, respectively. So, we have

7/ G(r, v ) AkZY™ (r)dr = [+ [T+ IIT + IV +V, (11.144)
QQD\Qe(r’)

where
I Nl/ ! G (I‘ r,)ﬁw?"t(r) + 1 ¢CXt(I‘) aGi(ryI‘/) d
= G Iy 0Gi(r,r') )
= Jsi L M Y 0z m; 0z
N-1
1 e (r) 1 9G4 (r, 1)
G; ! il ext ir1(r, d
+ 2 /s [mi+1 +1(1, 1) =~ . ) =5 s,

1= /S {—1G0(r, r’)a%(r) 4 1¢r(r)8G°(m} ds

mo mo 0z
D U1 G )
+/SO {mlGﬁ(r,r) P p—_— (r) e ds,
B S NOtr) 1 0Go(r,r)
III _/Foo [mOGO(r,r) o mow (r) 5 ds
1 NOURH(r) 1 OGN (rT)
*LMﬁW”an Ly 2n T g,
_ L O L 0Gi(TT)
W‘M@[mf“”amD+m%“’%@ as

_|_/ |:1Gi(I‘7I‘/) 8,¢§nt(r) _ idj;nt(r) aGi(ra I"):| dS,
924D

m; dngp m; ongp
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1 int ) ) /
Vv :/ [—Gi(r,r/)aw’b (r) + i%nt(r)m ds.
0. L ™ on m;

. 8an

Using the interface condition at the interface S;, we have

Ut =Y, (11.145)

1 Oyt 1 oYy
[ v 11.146
m; 0z miy1 0z ( )
G; =Gy, (11.147)

1 OGSt 1 0GP
il S sty 11.148
m; 0z miy1 0z ( )

It is clear that I = 0. The Sommerfeld radiation condition implies that I11 = 0.
To simplify integral 17, we use the interface condition at Sy, z = 0, between the
total wave )" 4 "¢ for z > 0 and ¥*** for z < 0:

d}ext — ,L/}r + ,(/}inc’ (11.149)
Go = G, (11.150)

1 8wext B 1 6,¢inc 1 8wr
my 8z  mg 0z  mgy 0z (11.151)

L 0Gy _ 1 9G,
mioﬁ = 02 (11.152)
We obtain
_ 1 NOUT(r) 1 N OY'(r)
II—/SO {m1 Gi(r,r )782' mOGO(r,r) 5% ds

1 ot,  OGi(r, 1) 1 ., 0Gy(r,r)
+/S[ A P A P R

L 0G0 (yp) ()

mo 0z

B /S {GO ooy LU 196, r')wim(r)} N

mog 0z mo 0z
— 1 8winc (I‘) inc aGO (1‘7 I‘/) —
/Somo<Goazw (r)az) ds = f(r).

For integral V', we let € approach zero. Then

V= miizpim(r’). (11.153)
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Finally, along the boundary of the quantum dot, we have
ye = i, (11154

Loy 1 o™
m; Onqp ~ mqp Ongp

(11.155)

so integral IV becomes

X int . . /
IV :/ [—lGi(I‘,I‘/) mg awz (r) + i¢;nt(r) an(r,r ):| dS
9 L M mqp Ongp m; ongp

+ / [1Gi(r,r’)aw;nt(r) - Wint(r)aai(r’r/)} ds

3QQD m; 8nQD m; ¢ 81’1QD
. int .
:/ L <1 - > Gi(r,r')wds =S (™) (r).
3QQD m; mQD 8nQD

Therefore, the volume integral equations (11.138)—(11.141) are obtained for a
quantum dot embedded in a layered medium, illuminated by an incident electron
wave 9'"(r’), where the effective mass of the quantum dot is different from that
of the surrounding layered medium.

Summary

Schrodinger equations occur in both optical waveguides and quantum dots, where
the solution may be not smooth due to the material inhomogeneity in the former
case and potential jumps in the latter. A generalized DG method, based on the
distributional representation of the solution to the Schrodinger equation, designs
the DG approximation accordingly to provide accurate treatment of material
interfaces inside the waveguides. For quantum dots, a volume integral equation
allows the treatment of dissimilar effective mass and potential discontinuities, in
addition to the natural enforcement of the boundary conditions at infinity.
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12.1.1

Quantum electron transport in
semiconductors

The transport of carriers (electrons and holes) in semiconductor devices such
as hetero-junctions, MOSFETSs, and superlattices can be described by classi-
cal hydrodynamics, drift diffusion models, or semi-classical models (Boltzmann
equations) when the devices are of micron or sub-micron scales, and by quantum
models (such as Wigner distributions) for devices at nano-scales. The key factor
in selecting a specific proper transport model is the mean free path of the carriers
inside a device in comparison to the size of the device.

In this chapter, we present an overview of quantum transport models, firstly
by deriving the Fermi-Dirac distribution for electrons in an equilibrium system
using quantum ensemble theories. Secondly, we define the density matrix for
nano-devices, Wigner distributions, and Wigner-Moyal expansions. The Lan-
dauer transmission theory for quantum transport models will be reviewed. Fi-
nally, the non-equilibrium Green’s function (NEGF) method is introduced for
computing the transmission coefficients of quantum devices. The semi-classical
Boltzmann model, the classical hydrodynamic models, and their numerical meth-
ods, will be discussed in Chapter 15. For Part III of this book, the time depen-
dence of a time-harmonic wave function in the Schrodinger equation will be
assumed to be in the form e~ #*/” for reasons of convention.

Ensemble theory for quantum systems

Thermal equilibrium of a quantum system

For a quantum subsystem S with given macroscopic state variables such as the
particle number N, the overall energy E, and the volume V', Q(N,V, E') denotes
the number of quantum states (also called microstates) accessible to S. Each
of the quantum states can be obtained as the stationary eigenstate solution

U(ry,re,...,rN,t) = e PU/M)(ry,re,... ,ry) of a many-particle Schrodinger
equation
Hy = Ev, (12.1)
where
n &

H(ry,ro,...,ry) = ZV?—&—U(rl,rg,...,rN). (12.2)
i=1

T 2m¢
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In general, the system S will be found among the Q(N, V, E) quantum micro-
states, i.e., the eigenstates of the Schrédinger equation (12.1) with some given
energy I.

If we bring two systems S; and Ss into contact, allowing exchange of energy
and particles, the combined system S(©) is assumed to be isolated (i.e., there is
no exchange of energy or particles with the outside environment), and eventually,
it reaches its own equilibrium (Pathria, 1996). The combined system will have
constant total energy and number of particles:

E©) = B, + B, (12.3)

NO = N, + N,. (12.4)

If we ignore the interaction energy between the two subsystems S; and So, the
number of quantum states for the combined system S(© is given by

QO(Ey, Ny By, No) = Q1(Ey, N1)Q2(E2, Na),
or
QO (B, N;; EQO—E , NO_Ny) = Q) (B, N)Q (B —E;, NO—Ny). (12.5)

As Fy and N are variables due to the exchanges between the two systems, the
number of quantum microstates Q) will then take on different values. When the
macroscopic system S(?) settles down to equilibrium, we expect that Q(©) will be
maximized, namely that the entropy log Q(®) will be maximized (i.e., the system
SO arrives at its maximum entropy state). Thus, when S is at equilibrium
we have

(0)
0— o0
0E,

o
E.=F, 8E1

Q2(B2) — N (E1) 7

, (12.6)
E1=FE; O,

after using the fact that 9Fs/0FE; = —1, resulting in the following equality for
the subsystems S; and Ss:

Jln Ql
oL,

- Jln Qg
 OE,

7 (12.7)

E1=F; Es=E,

where E; and E, are the equilibrium values of the variables E; and Es, respec-
tively.

The above equality for the two systems in contact allows us to define a ther-
modynamic temperature T of a macroscopic system in equilibrium with its en-
vironment as follows:

1 OlnQ(N,V.E
L M‘ , (12.8)
kgT ok NV.E=F
A similar calculation can show that the quantity w at equi-

N=N,V.E
librium should also become equal for the two subsystems, and correspondingly

the chemical potential p for the system is defined as



12.1.2

12.1 Ensemble theory for quantum systems 315

Hn = —kBT

Ol QN,V,E) (129)

ON N=N,V,E .

Microcanonical ensembles

An isolated Hamiltonian system, i.e., a system without exchange of energy or par-
ticles with the outside environment, is supposed to occupy any of its microstates
with a prior equal probability (this is the sole assumption of equilibrium classical
statistical mechanics):

1

%ZWMWE’

(12.10)

where the energy F is assumed to be fixed (i.e., we invoke the conservation of
energy).

Moreover the system is assumed to be ergodic, namely, starting from any given
microstate at the initial time ¢ = 0, it will eventually come arbitrarily close to
any other microstates. Its dynamics, given by the time-dependent Schrodinger
equations for the quantum system or the Hamiltonian equations for the classical
system, allows one to define a time average of any dynamical variable operator

A (for example, the momentum operator A = —hV):
_ 1 [T
A= tim 7 [ i), (12.11)

where (| A|Y) denotes the quantum average with respect to a given state :

<7/)|A|1/’> = w*(r17"'7rNat)A¢(rl7"'7rNat) dSNr' (1212)

R3N

The time average of a dynamical variable is an experimentally measurable quan-
tity that can be obtained by solving the dynamic equations with computer solu-
tions of the Schrodinger equations or the Hamiltonian equations, as in molecular
dynamics simulations.

Meanwhile, Gibbs (1902) proposed an ensemble formulation to describe the
isolated system, which samples the high-dimensional phase space with the given
probability (12.10), and the resulting collection of N microstates,

{p®™N_ | (an ensemble of microstates), (12.13)

is termed “an ensemble” of the isolated system. For an N-particle classical sys-
tem, the phase space is simply the 6/ N-dimensional space

F:{((ha'-wQN;le-pr)}, (1214)

for position q and conjugate momentum variables p. For quantum systems, the
phase space can be defined as the expansion coefficients of the wave functions
under some orthonormal basis {¢;}|32; (Bloch & Walecka, 2001), i.e.,

I={(a1...,ax,..)} (12.15)



316

12.1.3

Quantum electron transport in semiconductors

where
V= ard. (12.16)
k=1

The ensemble should sample the phase space with a uniform distribution given
by (12.10) for a finite microstate number €2, and such an ensemble is called a
“microcanonical ensemble”, particularly for an isolated system where the energy
is at a fixed value. In the Gibbs ensemble theory, a microcanonical ensemble
average is defined as

(A e = %Z <¢(k)|A|¢(’“)> : (12.17)

k=1

Within the Gibbs ensemble theory, for an ergodic system we can expect that
the time average and the microcanonical ensemble average should agree, namely

A= (A) (12.18)

me

for any initial microstate in the definition of the time average.

Canonical ensembles

Let A be a subsystem of a bigger system A(®) at thermal equilibrium of tem-
perature T, which does not exchange particles with the rest of A which is
considered isolated. To construct a Gibbs ensemble to represent such a subsys-
tem at the given temperature 7T in its environment, identified by the macrostate
variables (V,V,T), we examine its microstates from the perspective of the big-
ger system A(®. For any N microstates of A, we will have a corresponding
set of N microstates for the subsystem A; the latter will be called a “canonical
ensemble” (C.E.) of the system A. It is also referred to as the NVT ensemble.

Due to the exchange of energy between the system A and its environment
AN\ A, the energy of A will fluctuate while the energy of the bigger system A(®)
remains constant. It can be shown that, in fact, the energy fluctuation is very
small around some average value. Let us denote by n, the number of microstates
in a canonical ensemble of A whose energy is E,.. Then

> =N, (12.19)

Finding the exact energy level E,. for a given N-particle system in a volume V'
is a many-body eigenvalue problem, as in (12.1), which is usually too complicated
to be solved directly. Therefore, approximations such as the density functional
theory (DFT) (Parr & Yang, 1989) will be used. However, our discussion on the
canonical ensemble can proceed, assuming the energy levels are E,.,r = 1,2, ...,
as given.
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We denote the total energy of the ensemble by £. We would like to see how this
amount of energy £ will be shared by the microstates in this ensemble. Firstly,
we should have

> mE,=E. (12.20)

As expected, the average energy within this ensemble E = £ /N will correspond
to the real physical subsystem under study, where E should approach the en-
ergy of the specific system A as the ensemble size N’ — oo. Therefore, we could
consider the total energy of the ensemble £ as a constant for a given N.

The canonical ensemble of A characterized by {n, } with the constraints (12.19)
and (12.20) is not unique, and the possible number of such canonical ensembles
will be given by

Win,} = — A Woeom)t o M gpa
nl.(./\/—nl)!ngl(./\/—nl—ng)! n1!n2!n3!-~

The first term in (12.21), N'1/(n (N —ny)!), gives the probability of n; out
of the N microstates taking the energy F;, and the second term, (N —nq)!/
(na! (N—ny1 —n2)!), gives the probability of ny out of the remaining (N — nq)
microstates taking the energy Fs, etc. The occurrence of a specific {n,.} will be
determined by how the initial A microscopic states of A(®) are selected. As each
selection of the A/ microstates of A®) will have the same probability according
to the equal probability postulate for the isolated system A, the most likely
choice for {n,.}, denoted by {n*}, will be the one for which W{n,.} is maximized.
For the canonical ensemble with an energy distribution given by this {n*}, we

will have the most likely energy for the system A, i.e.,
L
E* = Z B (12.22)

To find {n}}, we consider In W instead, where

InW =In(N1) = > In(n,!). (12.23)

Using the Stirling formula, Inn! &~ nlnn — n, (12.23) can be rewritten as

InW=NhN - Zn,. Inn,. (12.24)

Thus, if the set {n,} is shifted to a slightly different set {n, 4+ dn,}, then the
variation of In W is given by

S(InW) == (Inn, + 1)én,. (12.25)
At an extreme value of In W, we should have

S(nW) == (Inn} + 1)dn, = 0. (12.26)

T
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In addition, from the constraints (12.19) and (12.20), we have

> on, =0, (12.27)
> E.on, =0. (12.28)

Equations (12.26)—(12.28) form a constrained maximization problem, which
can be reformulated in terms of two Lagrange multipliers,

> [=(nn;+1) —a— BE,Jén, =0, (12.29)

T

where dn, is now unrestricted. Therefore, we have
Inn; =—(a+1) - BE,, (12.30)
which implies
ny = Cexp(—PE,), (12.31)

where the constant C' can be determined from (12.19):

N

C==——-——. 12.32
> exp(PE,) 1232
Thus, the most likely energy for the system A will be
n* E:lETeXp(_ﬂgﬂk)
E*=Y ZE. = -~ . (12.33)

> exp(—=pE;)

The Lagrange multiplier 8 can be shown (Pathria, 1996) to be related to the
thermodynamic temperature T as follows:

1
b= (12.34)

On the other hand, we should consider the mean value, the expectation value

(n,), among all possible choices of {n,} subject to the constraints (12.19) and
(12.20) defined as

T

Z /nsW{”T}
Z /W{nr} ’
{nr}

(ns) = (12.35)

where Z’{nr} indicates the summation only over {n,} satisfying the constraints
(12.19) and (12.20).

Considering (n,.) as a fraction of the total ensemble number A/, the probability
P, that a macro-system of (N, V,T) is found in a microstate with energy E,
should be just

p= ) (12.36)
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When N is large, the only dominant term in (12.35) is W{n}}, and all the other
terms in the summations can be ignored. It may be shown with mathematical
rigor (Pathria, 1996) that, as N — oo, we indeed have

(ny) =n. (12.37)
Therefore, we have

p _ T _ OP(PE) _ exp(-fE) (12.38)

N Yexp(-BEr) Zn(T)

where a partition function Zy(T') for the canonical ensemble is defined as

Zn(T) = exp(—BE,). (12.39)

Now, the canonical ensemble (C.E.) average energy (E) for a sufficiently large
C.E. of the system A is given by

ZET exp(—pE,)
<E>:<E>ceEzT:PTET: ZN(T) ’

(12.40)

which is the same as E*; namely, the most likely energy £* of the system A is in
fact the same as the canonical ensemble average (F) of the system — the latter is
what experimental measurement yields for the system A. Finally, the constant
B can be found from (12.40) for a measured energy (E) of the system A.

Grand canonical ensembles

In device transport, the particle number in a device subsystem A is not neces-
sarily a fixed quantity as it is in the canonical ensemble theory. To accommodate
this situation, a grand canonical ensemble theory will be used. In the grand
ensemble, the number of particles N, and the energy Ey in the subsystem A
are both variables, and Q(N,., E) denotes the number of microstates (quantum
states) available to the subsystem A. Meanwhile, N/ and E’ are the number of
particles and the energy in A’ = A\ A, respectively — the rest of an isolated
system A, And we have

N, +N.=N©, (12.41)
E,+E. =EO, (12.42)
We consider an ensemble of A copies of the macroscopic system A with N,

particles and energy F,. For each possible choice of the particle number N,., we
denote the number of copies at energy E, by n, s; then we have
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D nps =N, (12.43)
> npoN.= NN, (12.44)
anEs =N E, (12.45)

T8

where E and N denote the average energy and the average particle number of
the ensemble, respectively, which are supposed to approach those of the system
A during the experimental measurement of the system under study as N — oc.

Following the same Lagrange multiplier technique as in the canonical ensemble,
we can show that the probability P, s that the system is described by (N, Es)
is given by the following Boltzmann factor:

exp(—aN, — BE)

P’I" s — 5 12.46
' ZG(,uv ‘/7 T) ( )
where the grand canonical partition function is defined as
Za(n, V,T) = exp(—aN, — BE.), (12.47)

T8

and
I
=——F. 12.48

Bose—Einstein and Fermi—Dirac distributions

The N identical particles in a quantum system differ from those in a classical
system due to the formers’ indistinguishability, and also because of the Pauli
exclusion principle for fermion particles (such as electrons). As a result, the
ensemble distributions for the canonical and the grand canonical will be modified
to reflect these unique features of many-particle quantum systems.

Due to the indistinguishability of the identical quantum particles, no individ-
uality such as an enumeration and distinct labeling can be associated with each
particle in the quantum system. Therefore, an occupation number representation
n; ={ns,s =1,2,...} will be used to describe the N-particle system, where ng
denotes the number of particles with energy eg:

> ni=N, (12.49)
s=1
and the total energy for the system is then given by
B, = Y n.e.. (12.50)
s=1
The N-particle wave function ¢ (r1,rs, ..., ry) for a quantum system of iden-

tical and indistinguishable particles satisfies an anti-symmetric or symmetric
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property in terms of the permutation of the particle labels in the wave function
(Greiner, Neise, & Stocker, 1995).

e Fermion particles (anti-symmetric): ¢n(r1,ry,...,ry) = —On(ra,rq,...,Ty),
e.g., electrons, protons, neutrons.

e Boson particles (symmetric): ¢n(r1,ry,...,ry) = én(re,rq,...,Ty), €.,
photons, *He.

As an illustration (Greiner, Neise, & Stocker, 1995), let us consider a box of
size L with N free non-interacting particles of momentum p represented by the
wave function

Pp(r) = \/%eip*/f% (12.51)

with periodic boundary conditions and p = (p,, Py, p.)7T:
27h
L

The N-particle total wave function labeled by its momentum vector for the

pi = ng, n;=0,x1,+2 ..., i=uzxy,z. (12.52)

Hamiltonian (12.2) with U = 0 takes the following form in coordinate represen-
tation:

N
¢P1 ----- PN(rla--'er) = H¢ps(rs)7 (1253)
s=1
with a total energy given by

_ s
E=) e (12.54)
s=1

This N-particle wave function does not satisfy the symmetry properties for
identical particles, however, which can be achieved by symmetrizing or anti-
symmetrizing, for example, through a Slater determinant for the fermions:

(bpl (1‘1) (bpl (I’g) T (bpl (rN)
o 1 ¢p2 (1‘1) ¢p2 (1‘2) T ¢P2 (rN)
N TR
¢PN (rl) ¢PN (r2) o ¢pN (rN)

:\/;7, Yo (1)7py (r1)dpy (r2) - dpy (rw), (12.55)

“{p1,pPh, PN}

where {p},p5,...,py} denotes any permutation of the indices {p1,...,py}
and o is the parity of the permutation. The Slater determinant form of the wave
function of (12.55) also conforms to the Pauli exclusion principle, which states
that no two fermions can occupy the same energy level. This is clear as the
determinant will vanish if two momentum indices for any two rows are the same
(namely, the corresponding energy levels hold two fermions).



322

Quantum electron transport in semiconductors

For the bosons, a similar symmetrization procedure can be defined by dropping
the sign factor (—1)7, i.e.,

;1,..»,pN (rh .- -:rN)

1
= W Z ¢p’1 (r1)¢p; (ro)--- ¢p’N (rn), (12.56)
{P1:P%- PN}

where a different normalization factor is used for the bosons due to the fact that
more than one boson can occupy the same energy level, and ng, s = 1,2,..., is
the number of bosons occupying the s-energy level. The factor y/n,! accounts
for the number of possible permutations among those ns bosons within the same
energy level, which gives the same product in the sum of (12.56) and a non-
zero contribution to the computation of the norm of the wave function ¢g,
(Greiner, Neise, & Stocker, 1995, p. 289).

In both cases, the total energy of the non-interacting particles is given by

PN

En, = ;n égm (12.57)
Moreover, we have, for 1 < s < o0,
e bosons:
ne=0,1,2,3,...,N; (12.58)
e fermions:
ns =0,1. (12.59)

We now discuss the partition functions for various ensembles for the quantum
system. As each of the microstates identified by n; is in fact an eigenstate of
the non-interacting system (12.2) with U = 0 with energy (12.57), the partition
functions can be defined similarly as in (12.39) or (12.47).

Canonical ensemble

For an NVT ensemble, the partition function simply sums over all occupation
numbers ng subject to the constraint Y .-, ny, = N indicated by the notation

>n.
ng’

! !
Zn(T) =) e FPne =y e Alizimees, (12.60)

It should be noted that the sum in (12.60) could involve degenerate energy
levels, namely that eigenstates represented by different ngy can have the same
energy level )y, . When degeneracy arises, the probability P, for E, = E,, in
(12.36) will be given a different formula to reflect the degeneracy (Pathria, 1996,
p. 55).
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Due to the constraint on ng, no further simplifications on the partition function
will in general be carried out.

Grand canonical ensemble

In this case, we have

Z(u,T) = Z o i _ 3 e Ze 5Fn,
N,=1 n, N,=1
= Z e N Zn, (T), (12.61)
N,.=1

with the understanding again that degenerate energy levels could be involved in
this sum.
The average particle number for the system can be calculated using

Son. NeemoNeZy (T) dln Zg 1 (0InZg
- - == . (12.62)
Za(p, T) da )y BN\ O gy

Meanwhile, the constrained sum over ng subject to Z:il ns = N, can be
turned into an unconstrained sum by considering the fact that 1 < N, < oo,
namely by using (12.49) and (12.50) we have

N:

[=S]
ng

ZowT)= 3, e fmmmEon
n.=(0,0,...)
_ Z ( —Ber—n)yna (o= Blea—n)) — H Z e Ans(es=m) (12.63)
.=(0,0 s=1ns=0

where n3° = (00, 00, ...) for bosons and n2® = (1,1,...) for fermions.

It should be noted that the single-particle energy level ¢4 for a many-particle
system in general is unknown, especially if electron—electron or electron—phonon
interactions are involved.

Bose statistics (n; =0,1,2,...)

For bosons, we have n2° = (00, 00, ...); thus

S I DR | e—ixss—w (12.64)
1

s=1ns=0 5=

and then

In Ze(8.T) Zln [1 _ e Blem W} . (12.65)
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We have, from (12.62):

— 1 (0lnZg =
N=_ - ., 12.66
5( op >ﬂ,v ;eﬁsg " - Zn 260
where
o 1
n.

S Bl — 1

is the average number of particles at the energy e, also identified as the Bose—
Einstein distribution for bosons at the chemical potential pu:

1
fon(es — 1) = =51 (12.67)
Fermi statistics (ns =0,1)
For fermions, we have instead n>° = (1,1, ...); therefore
o'} 1 oo
T) = H Z efﬂns(esfp,) = H |:1 —‘reiﬂ(ssiu)} .
s=1ns=0 s=1
Now
mZc=Y In {1 + 8_5(55_“)} . (12.68)
s=1
Then
N ah’lZG Z 56 Bles—p)
ﬁ alu 61‘/ ]_+e B(Es 1)
_ Z - eﬂ — Zn (12.69)
where
. 1
L s e}

is the average number of particles at energy e, also identified as the Fermi—Dirac
distribution for fermions at the chemical potential p:

1

Jrp(es — p) = m- (12.70)

Density operator p for quantum systems

From the discussion in Section 12.1, the probability that a quantum fermion sys-
tem at thermal equilibrium with its environment can be found in a microstate



12.2 Density operator j for quantum systems 325

with energy E, is given by the Fermi-Dirac distribution in (12.70), and the aver-
age energy of the system can be calculated using this distribution. A dynamical
variable in a quantum system is represented by a Hamiltonian operator and an
observable of the dynamical variable as quantum average with respect to the
microstate wave function. For systems with an ensemble distribution as given in
Section 12.1, the concept of the density operator p introduced by von Neumann
(von Neumann, 1927; Tolman, 1950) embodies the statistical distributional char-
acteristics of the ensemble. With this density operator, the trace of the product
of the dynamic operator with p will accomplish both the quantum and the statis-
tical averages. Moreover, the coordinate representation of the density operator,
the density matriz, can be used to define the quantum mechanics analog of the
Boltzmann distribution in phase space, the Wigner distribution, and its kinetic
theory for non-equilibrium systems (Liboff, 2003).

For a given N-particle quantum system represented by a wave function [¢) ,
we introduce a coordinate representation as

P(x) = (x[9) (12.71)

where |x)= (z1,...,2n5)T.

If the state of the quantum system is prepared such that it is described by
one microstate [¢), namely the system is in a pure state, we have a complete
knowledge of the system within the context of quantum mechanics. Then, the
average of any physical dynamical variable A can be calculated by considering
the quantum average with respect to the wave function:

<A> - <w ‘/1‘ ¢>. (12.72)

This average can also be calculated via a density operator p defined as the
projection operator onto the 1-D subspace spanned by [¢):

p=Ply = [¥) (W], (12.73)

through a trace operation, i.e.,
tr(pA) = er(|) (] |4) = tx ((v |4 0)) = (4). (12.74)

In general, the trace operation tr(O) on an operator is defined as
o0
tr(0) = > Ou, (12.75)
i=1

where O;; = <¢1|O\¢Z> is the diagonal element of the operator O under any

complete basis {|¢,)} ]2, in the space where O is defined. Equation (12.74)
can also be shown by setting |¢1) = [¢) in an orthogonal augmentation for the
complete basis.

In practice, only partial information about the state of a system is available. As
a result, a statistical description of the state of the system is required due to the
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uncertain effects arising from the variables outside the given (partial) system. In
other words, no single wave function can completely define this system. Instead,
a probability distribution will be used to describe the chance of the system in
one of the many microstates {|¢;)}, with some probability w;; such a quantum
system is said to be in a mized state. The probability w; is exactly the frequency
of the wave function [¢;) that appears in the ensemble collection of A copies
of microstates of the system { |w(k)>}ﬁfz1 of (12.13) for the system under study.
Namely,

o B0 =
' N

wi >0, > wi=L
i

N = o, (12.76)

where

Therefore, the average of the dynamical variable A can be simply defined as
n (12.17):

(4)

A

LN
r (v

= zi:Wi <1/1i

where the density operator has been identified to take the following equivalent
forms (Cohen-Tannoudji, Diu, & Laloe, 2006):

N
= 30 W) (u] = S
k=1 i

In (12.77), two types of averages are involved: the statistical average, with
probability w; due to the statistical description of the system, and the quantum
average with respect to each microstate |i;) .

The density operator can have different matrix representations, giving different

¢(k)>

A’@ Zwlter ) = tr(pA), (12.77)

= Zwi i) (il - (12.78)

forms of a density matrix, under various bases such as the physical coordinates
or energy eigenstates of the Hamiltonian of the system. In the physical coordi-
nates, the density matrix for a canonical ensemble of an N-particle system is
defined as

Pl ) = (i) = Y] (o). (12.79)

where |x) is identified as a complete basis for the physical coordinate space.

To get a representation of the density operator under any other complete basis
{|én)} 521, we express each of the microstates in the ensemble as (Tolman, 1950;
Pathria, 1996)

|¢(k)> ia o), k=1,2,.... (12.80)

n=1
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Therefore
1 i
P= N Z > alP"al) |om) (6l
N =1m=1n=1
= i i N ( a ’“’*aﬂ?) |6m) (6]
m=1n=1 N =1
= Z men |Pm) (Dnl » (12.81)
m=1n=1
where

1 N
— (k) g, (k)
Pmn = 7 (kg_lan am> (12.82)

is the entry in the matrix representation of the density operator under the basis
{16n} 152

Finally, we want to appreciate better the source of statistical uncertainty em-
bodied in the statistical density operator, arising from the lack of complete knowl-
edge of the outside environment for the system under study (whose variables are
denoted by y, while x denotes the coordinates for the subsystem). If ¢ (y,x) is a
microstate wave function for the combined system, we can expand the wave func-
tion under an orthogonal basis {|¢,)} above with y-dependence coefficients, i.e.,

Uy, %) =Y Culy)dn(x), (12.83)

where
Cn(y) = (¢nlt) - (12.84)

Then, the quantum average of the dynamical variable of the subsystem A=

A(x) is given by

<A> - <1/J|A|w> = i i (Cn(Y)|Cw (¥)) <¢n A‘ ¢n’>
- i i prnt A = t1(pA), (12.85)

where the density matrix element p,,,» can be identified with

Prns = (Cn(y)|Crr (¥)) 5 (12.86)

indicating clearly the dependence on the outside y-variable (Feynman, 1972;
Greiner, Neise, & Stocker, 1995).
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One-particle density matrix p(z, 2’)

The density matrix defined for the many-particle system in (12.79) is difficult
to compute in practice as the wave functions [|¢;) are impossible to obtain for a
many-particle Hamiltonian. Fortunately, for electron transport, the one-particle
Schrédinger description of the quantum device in Section 11.3.1 is a very good
approximation, with good selections of the effective mean field potential to model
the many-electron interactions (Hartree and correlations) (Datta, 2005, sect. 3.1
3.2) as in the density functional theory (Parr & Yang, 1989). For the rest of Part
IIT of this book, we will use the one-particle Schrodinger equation, for which the
density matrix is simply

pla,a') = (x|pla’) . (12.87)

If { |¢o) }o are the one-particle energy eigenstates for the Schrodinger equation,
the density operator is given by

p=> walda)(dal, (12.88)

with a given probability w,. Then, the density matrix representation of the
density operator becomes

= (@] Y wa [$a) (Ba] &) =D wada(x)dh (). (12.89)

From (12.70), the occupation for electrons at energy £, obeys the Fermi-Dirac
distribution; thus we have

= frp(ea — 1) (12.90)

The diagonal element of the density matrix gives the density distribution of the
electron:

=3 fev(ea —~lonla)”. (12.91)

As |¢,) are the eigenstates of the Hamiltonian of the quantum system, we
have

fen(H — uI) |¢0) = fep(ca — 1) [da) (12.92)

which implies that

ZfFD |¢o¢ ¢a ZfFD H NI) ‘¢a> <¢a|
= fep(H — ) Z |6a) (dal . (12.93)
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namely
p= feo(H — ), (12.94)

due to the completeness and the orthogonality of the basis |¢,) .

Wigner transport equations and Wigner—Moyal expansions

In order to describe the dynamics of a quantum system in phase space, like the
Boltzmann distribution for classical mechanics system, Wigner introduced the
concept of the Wigner distribution (Wigner, 1932; Tatarskii, 1983). Although
the Wigner distribution is not a real probability distribution function due to
its possible negative values, the Wigner function can serve as a distribution
(Jacoboni et al., 2001; Markowich, Ringhofer, & Schmeiser, 2002; Jacoboni &
Bordone, 2004), for example, in calculating number densities, current densities,
etc. Using the Wigner equation to investigate quantum transport has become
more relevant (Frensley, 1987; Kluksdahl et al., 1989) when the quantum behavior
of semiconductor devices cannot be neglected as the size is down to nano-scale.

The Wigner distribution function f(x,k,t) for a pure state ¢)(z) in the phase
space (z,k) € R? for position x and wave number k is defined through a Fourier
transform (Wigner, 1932; Liboff, 2003)

o0

1 .
Jolx, k,t) = —/ exp(—iky)y (x + y) P* (m - y) dy. (12.95)
21 J_ 2 2

It is easy to show that the Wigner distribution function defined above is a real
quantity; however, it is not necessarily positive. Meanwhile, the density operator
for the pure state defined in (12.73) and (12.87) is given by a projection operator,
ie.,

Py = ) (Y],

whose matrix representation is simply

pu(@,3") = (@lpy|a’) = ¢ (x) Y~ ().

Therefore, the Wigner function for the pure state in terms of the density
matrix is
L= : y y
fo(z, kt) = —/ exp(—iky)py <ac + =, x— at) dy. (12.96)
2 J_ o 2 2
The density matrix entry py (z 4+ y/2, 2 — y/2) reflects the correlation of elec-
trons at locations = £ y/2, with z identified as the center of mass of the two
electrons and y as the distance in between. The former can be considered as
the slow variable and the latter as the fast variable; the Wigner distribution
fu(x, k,t) via the Fourier transform contains the frequency information of the
density matrix in the fast variable.
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For a general quantum system in a mixed state involving microstates |¢,),
the density operator is a linear superposition of the density operators associated
with each microstate (refer to (12.78)), i.e.,

[7 = Zwa |"r/)a> <¢a| = Zwaﬁwaa (12'97)

whose matrix representation is

Zwawa Zwap¢a x, ) (12.98)

Equation (12.98) indicates a linear superposition property of the density ma-
trices. Therefore, the Wigner distribution function can also be defined as a linear
superposition of the corresponding Wigner distributions of the density matrices
as follows:

1 o0
= gwag /m exp(—iky)py, (x + gx - %t) dy
1 [~ . y y
=5 /_OO exp(—iky) Za:wap% (az + 5T §,t) dy, (12.99)

resulting in the following definition of the Wigner distribution for a general
quantum system:

BN L Y, Y
fla, k,t) = o [m exp(—iky)p (:ch 5% 2)dy. (12.100)

The dynamic equations for the Wigner distribution can be directly obtained
from the Schrédinger equations governing the time evolution of a pure state or
the microstate involved in the definition of the density operator (12.98). Due
to the principle of linear superposition in the definition of the Wigner distribu-
tion function for the mixed states (12.99), we only have to derive the dynamic
equation for the case of a pure state, i.e., p(z,z") = ¢ (x)1*(2'), where the wave
function is assumed to satisfy the following Schrodinger equation:

i 2
%%w(x,ﬂ + Ly (ay(a, b). (12.101)

0
57#(33’75) = ih
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From (12.95), we have

— f(z, k,t)

[ [ e )

e I O R O O D G DL

—I+1I. (12.102)

We will simplify both terms I and I7 individually. By using the identities

5 D=5z (o)) 2103
T R P I

the first term can be rewritten as

— 00

s (a2 S (o L)y

— 00

+ * (x— g,t)

’ 9.4 (a+ yt>] dy. (12.105)

Qy 2

Using integration by parts, assuming the vanishing boundary condition of the
wave functions at infinity, and using the identities (12.103) and (12.104) again,
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I can be further simplified as follows:

1= B L [ [ (o ) o (e )
o (o= 30) oo (o4 or) |
e B (- B (e B
w0 (0= 5.0) v (a4 5.0) |
_ ’::;C;/Zeikyw (e+20) 0 (v-Lt) ay
=D ekt (12.106)

Next, to simplify II, we will express the potential difference V(z + y/2) —
V(z — y/2) in terms of its Fourier transform, the Wigner potential V,,(z, k) as

follows:
Vi (2, ) = i/o;eiky [v (:17+ %) —v (1: - %)} dy
:2/000 [V(w—i—%) —V(x—%)}sinkydy
_y /w V(e +y) - V(x —y)]sin2ky dy, (12.107)
namely 0
V(e ) -v(e-2)= % /O; exp(iky)Viy (x, k)dk. (12.108)

Using (12.108), I1 becomes

I = ¢ 1 Ooe_iky {V(w—l—g)—V(m—y)}w*(x—y7t)z/1(x+%,t)dy

Tinor ) 2 2 2

b /Oo e—““y/m VYV, (2, K )k y* (ac Y t) " (:v +¥ t) dy
2rh 2w J_ o oo v 2’ 2’

a1/ nar [ etk (o Y y

= ~gnan | Velek)ak [me b (x Q,t)w(x+2,t)dy

__a > / o /

=3 ] Vi (2, k') f (2, k — K, )k (12.109)

Finally, a dynamic equation for the Wigner distribution can be obtained:

oo

q

1 o ’ r_
ST _OOVw(x,k: K f(z, k', t)dk = 0.

(12.110)

0 hk O
a (.I',]{,‘,t) + Eaizf(x7kvt) +
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An alternative form of the Wigner equation can be obtained by using a Taylor
expansion for the potential function, if it exists,

R D v ORI

and the identity
an 1 > : —iky Yy Yy
—iy)"e™! ) * — Z ) dy. 12.112
s @k =50 [ e (e Do (o $)ay. (2112
Then the second term I becomes

=g [ ) -V - - F) el Foa

2¢ 1 [% V& (@ )( )23“ ( y ) ( y )

_ 4 - ika * —Z ¢ Zt)d

inon | ° ;) 2s+ 1) \2 vlempt)elet oy t)dy
2541 825+1

_ 2 c- e 1 o
— ih§(2s+ 1)!v @) | —; et (@ ks t)

B g o (_1)5 (2541) 825+1
- hgﬁ(% i 1)!v () BB T f(z, k,t), (12.113)

resulting in the following Wigner—-Moyal expansion (Liboff, 2003).

e Wigner—-Moyal expansion of the Wigner equation:

o hk O V(25+1)( ) H2s+1
pRAL e e hz 4s G aprid @R

(12.114)

Furthermore, we can rewrite (12.114) using the pseudo-differential operator
notation as follows by continuing from the third line of (12.113):

B 2(] oo V(2s+1)(m) 1 2s+1 825+1
= Es:()m _721 Wf(xakvt)

2q 1 0 1 0

id io

and the Wigner equation becomes (Markowich & Ringhofer, 1989)

0 hk 0 2q io 0
8t (x k t)-f—*afxf( k t) ih |:V<$—2ak) V( +2ak>:| f(l‘,k‘,t)—
(12.116)
Even though the Wigner distribution function is not positive, and thus cannot

be treated as a joint probability in the phase space as the Boltzmann distribution
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would be, it can be shown (Liboff, 2003) that for a pure state density operator
plx,x") = ¥(x)* (), using the plane wave representation of the Dirac d function

= — T dk 12.11
o) = 5 [ ak (12.117)
the integration over the momentum will give a coordinate probability density,
/ [z, k, t)dk = [¢h(x,)|* = n(x,t), (12.118)
—0o0
while the integration over the spatial coordinate gives a momentum probability
density,
s ~
/ [z, k, t)de = 27| (k, t) %, (12.119)
where v (k, t) is the Fourier transform of the wave function ¢(x,t), i.e.,
n 1 > —ikx
Y(k) = o e Ty (x)dk. (12.120)
™ — 00

Most importantly, like the Boltzmann probability distribution, the Wigner
distribution can be used to compute the average of any quantum variable A
(Liboff, 2003, p. 354)

(4) = u(pd) = /_O; /_O; Az, k) f(z, k) dz dk, (12.121)

provided that the dynamical function A(x, k) is defined through the Weyl corre-
spondence (Liboff, 2003, eq. (2.55))

Az, k) :2/ o2iky <x—|—y‘fi‘x—y> dy. (12.122)

Moreover, the Wigner function can be used to calculate the electron density
n(z,t) as in (12.118) and the current density j(z,t) by

(2, t) = %/m kf (s b, £)dE, (12.123)

—00
and, by integrating the Wigner equation (12.110) over k, the following continuity
equation for the electron is obtained:

0 0 .
where
p(z,t) = 2% dk/ A" Viy (2, k — k) f (2, K, t) = 0, (12.125)
m —o0 —o0

due to the anti-symmetry of V,,(z, k) in k. This continuity equation corresponds
to the conservation of the zeroth moment, i.e., the charge conservation.
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Quantum wave transmission and Landauer current formula

Due to the wave nature of electrons in nano-devices, the transport of the elec-
trons should be described by transmission coefficients as the waves pass through
potential barriers created by either impurities or hetero-junctions. The major
difference between a classical particle and a quantum electron is the tunneling
phenomena through potential barriers shown by the latter. The Landauer the-
ory treats the transmission coefficient as the probability of an electron passing
through a conductor. The Landauer current formula was used for the current—
voltage in the early 1930s to describe tunneling junctions (Duke, 1969) and later
was derived by Tsu and Esaki to calculate the I-V characteristics of the resonant
tunneling diode, which they co-invented (Esaki & Tsu, 1970; Tsu & Esaki, 1973).

Transmission coefficient T'(E')
Transmission over a semi-infinite potential step

Consider the transmission of a free electron ™¢(z) = e*1% x < 0, over a semi-
infinite potential step:

0, if <0,
V= { Vo, if > 0. (12.126)

The solution to the Schrodinger equation,
o
— +V = E, 12.127
5 ¥ ()¢ = EY ( )

is composed of the reflected (z < 0, region 1) and the transmitted waves (x > 0,
region 2):

Aeikre  Be~ikix if <0
= . o ’ 12.12
(@) { Celf2® 4 De~ k22 if g >0, ( 8)
where
2mE 2m(E —
Aot 2= 2E e E—W) (12.129)

h2 h?
The continuity of the wave function and its derivative (due to the uniform effec-
tive electron mass m) at x = 0 relates the coefficients A and B to C and D by

{ 107 } =74 { g } ; (12.130)

a transmission matrix 72':

where

1 |:]€2+k‘1 kg—kl]

T?" =T(ky, ko) = —
1) ko —ki ka2t

- 12.131
T ( )
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For the incident free electron defined by a plane wave transmitting over a
semi-infinite potential step, we have A = 1 and D = 0; meanwhile, we denote
B =r and C = t, where

2k k1 — ko
= , = .
k1 + ko k1 + ko

Define the flux transmission coefficient T and the reflection coefficient R as the
ratio of the incident wave current (as defined in (11.125)) over the transmitted
current and the reflected current, respectively. We have

- hk‘g/m 4k1k2

t (12.132)

ko

T = t?= 2= —=—, 12.133
hkl/m| | kll | (kl + k2)2 ( )

hky/m, o 2 (k1 — k2)2
= =|r? = ——2. 12.134
hkl/mlrl || (o1  F2)? (12.134)

Remark 12.1 If E <V}, then
5 .

t il _ f e (12.135)

= =,
k1 +iko k1 +iks

1) = te~ 2% Thus, the transmission current is zero, J = 0, and the transmission
coefficient will vanish, i.e., T = 0, and as a result the reflection coefficient R = 1.
Thus, there is no transmitted current, and we have a case of total reflection.

Transmission over a single barrier

A single finite barrier with width « is given by the potential function

_ 0, if [2] >a/2,
V(x){ Vo, if |z| < a/2. (12.136)

The transmission matrix over a single finite barrier can be obtained by the
composition of the transmission matrix defined in (12.131) by (Davis, 1997)

r e—ikla/2 0 eikga/? 0
731 — 0 oikia/2 ] T(k1,k2) [ 0 o—ikaa/2 ]
r eikga/Z 0 e—ikla/Q 0
* 0 o ik2a/2 :|T(k2ak1) { 0 oik1a/2 }
_ [T T
_ _ T2311 T2321 , (12.137)

where ky = \/2mE/h?, ko = \/2m(E — Vp)/h?, and
i(k? — k2) sin kqa
2k ko ’
2k1 ko cos koa — i(k? + k3) sin k2aeik1a
2k ko ’

T3l = (12.138)

T3 = (12.139)
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Figure 12.1. Transmission coefficient through one barrier: quantum transmission (solid
line), and classical transmission (dashed line).

04 05 06 07 08 09 1
E(eV)

T =15, Tio=1T5. (12.140)
For the transmitted wave magnitude behind the barrier, we have
T T3, — T T 1 2k, kye~ ke
p= tifz2 T h20o  C e . (12.141)
Tho Too  2kikgcoskea — (k% + k3) sinkea
the transmission flux coefficient is given by
1
T = ‘t|2 = V2 . 92 bl
1 =+ WO_VO) S1n kga
and the reflection flux coefficient is
R=1-T.
Remark 12.2 Again for ' < Vj, we have
) 2m(Vo — FE 1
ko = iko, Ko = (7‘;2 )7 T = . (12.142)

2
1+ % sinh2 k2a

Figure 12.1 shows the quantum transmission coefficient T'(F) for one barrier,
together with the classical transmission coefficient, which shows no transmission
when F < Vj and total transmission otherwise.

Current formula through barriers via T'(E)

Density of states in contacts

To describe the current through potential barriers, we first need to know the
density of states of the electrons for the contacts in various physical dimensions
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in terms of the momentum vector k. This can be achieved simply by counting
the states in k space for one to three dimensions.

e 1-D device contact

For electrons in a 1-D system [0, L] with the periodic boundary condition ¢(0) =
(L) and ¢’(0) = 4’(L), the quantum states are given by

U (2, 1) = Ape 1 F teln®, (12.143)
with discrete energy levels
2)2 2
5n:h2 n kn:n%, n=1,2,3,.... (12.144)
m

Denote by n(k) the number of quantum states per unit & and per unit length.
Then N (k) = n(k) % L is the number of quantum states per unit k for the whole
device, and

. ok L L
Thus
1
n(k) = = (12.146)
e

We could also consider the number of states n(E) per unit energy by relating
the momentum k& to the energy E using the dispersion relation for the electrons:

h2k?
E=FEk) = . 12.14
(k=" (12.147)
Next, using the fact that E(—k) = E(k) and
2
n(E)SE = 2n(k)sk = =5k, (12.148)
™
we have
2 (dE\ ! 2
E)y=—(— = — 12.149
n(E) T <dk:> hug(E)’ ( )
where, using the relation w = E//h, the group velocity is given by
dw 1dE hk
=—=-—=— 12.1
YT Ak T hdk  m (12.150)

and
2m 1 2m
E)= —— = —/ —. .
mn(E) nh?k  wh\ E (12.151)

Similarly, it can be shown (Davis, 1997) that the density state per unit energy
per unit volume of 2-D and 3-D devices are as given in the following:
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e 2-D device contact

m
E)=—; 12.152
nQD( ) 7TFL2’ ( )
e 3-D device contact
mk m

nsp(E) = — \2mE. (12.153)

TR 2R

Current through 1-D devices and Tsu—Esaki formula

In the Landauer theory, the electron current is defined with charge ¢, velocity v,
and electron density n by

J = nqu, (12.154)

which is applied in the calculation of the right-going current through a 1-D device
by integrating the electron distribution from the contact over the whole range of
the positive momentum k > 0 vector:

Iquéwﬁdewmmeme%ﬂk

—q [ foolehn)o T (12.155)
0

™

where frp(e(k), ) is the Fermi-Dirac distribution probability, v(k) is the ve-
locity of the electron, T'(k) is the transmission coefficient, nip(k)dk = dk/m is
the density of states in the range of dk as shown in (12.146), and the transmission
coefficient T'(k) is the probability of a given electron with momentum % going
through the device barrier.

Now, using the dispersion relation again in (12.152) to convert the integration
over the momentum k to that of the energy E via the group velocity (the velocity
of the electron v(k) = v(E) = v,(E)), we have

i dE
I, = E E)T(E
L Q/EcL fep (B, pr)v(E)T( )whvg
2 o0
=3[ (B T(ENE. (12.156)
Bk
where h = 27h.
Similarly, we can calculate the left-going current from the other contact using
2 oo
In==21 [ fo (B, pr)T(B)AE. (12.157)
E

c

By combining (12.156) and (12.157), we obtain the total current through the
device as

I'=1I,+1r= 273 /Eo;[fFD(Ea pr) = feo(E, pr)lT(E)AE, (12.158)

c
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after assuming that no electrons exist in [EX, EX]. Equation (12.158) is the Tsu—
Esaki formula (Esaki & Tsu, 1970; Tsu & Esaki, 1973).

At low temperature T' — 0, the Fermi—Dirac distribution tends to be a step
function, i.e., for T'= 0,

2(] ML
I= 7/ T(E)dE. (12.159)
hJus
For T > 0,
W
KL = p 5 HR =K 9
we have the following approximation:
dfep(E, 1) 9 frp
E - E ~qV—m———F = —qV ;
fen(E, pr) — fro(E, pr) =~ q o V5
then, the current formula (12.158) simplifies to
2q2V o 6fFD
1= — T(E)dE. 12.160
v ()T (12:160)

Therefore, the conductance is given by

12 [~ Of |
G_V_hECL< 8E>T(E)dE’

as T — 0, the Fermi—Dirac distribution function fpp becomes a step function;
thus

_Ofrp
or

= 6(E - :u)z

and we obtain the well-known Landauer formula (Datta, 2005):

2
G= Z%T(u). (12.161)

Current through quasi-2-D devices

Consider a potential as a function of only the longitudinal variable z, i.e., V(z, vy, 2)
= V(z), such as quantum wells with infinite size in transverse dimensions, and
denote r = (z,y),k = (ky, k.), where k; = (k;, k) is the transverse momentum
vector. Then the free electrons in the contact are given by the following plane
wave form:

Ui k. = T, (2), (12.162)

R2k,?  h2k2
- + - <

k)= ELF
e(k) ¢ 2m 2m’

(12.163)
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and, using the density of states for the 2-D electrons, the right-going current
from the left contact will be

1= [ 5% / T (k) p)us ()T ()

(2m)?2 21
> dk, hk. dk; P )
= 2Pk |2 | E z,
q/o 2T m ( ){ /(QW)QfFD( ¢t 2m * om " HE
> dk, hk h2k,?
= 22T (k, B O p— 12.164
o[ et (- B - 1) (12.164)
where
mkgT 7 * m 1
- In(l+efs”)= [ ———_ dE. 12.165
o) = " (1 etr) = [ (12.165)
Thus,
JL:%/ fon(ur, — E)T(E)dE. (12.166)
EE

Similarly, we have, for the right contact,
Jp = f%/ fon(pin — B)T(E)dE. (12.167)
B
The total current is then given by

T=du+dn =2 [l ~ B) - fanlpn ~ ENT(ENE.  (12.168)

BE

Non-equilibrium Green’s function (NEGF) and transport
current

In this section, we will define the NEGF and show how to use it to compute the
transmission coefficient T'(E) in the Tsu-Esaki formula (12.158) or the Landauer
current formula (12.161) for general nano-devices. First, we rewrite the density
operator using the identity from the Sokhatsky—Weierstrass theorem (Blanchard
& Briining, 2002):

. 1 1
27?5(E—€a)—1(E_6a+iO+—E_ga_im_). (12.169)

Under a complete orthogonal basis {|¢4)}, we have
Pap = <¢B|fFD(€a - M)|¢a>
— [ @alfen(E - waE el dB. (2.170)

— 00
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On defining non-equilibrium Green’s functions of the device as

G(E) = [(B+10")I - Hy ",
GH(E)=[(E—-i0NHI-H, ! (12.171)
in the {|pn)} basis, which is formed with the eigen-functions of the Hamiltonian

H, of the device (to be specified in Section 12.5.1 and Chapter 13), we have the
following diagonal matrix representation, with the a-diagonal entry given by

1
G(E) «— Ero) e
G (B) m (12.172)
Then
por= | feo(B- )5 1G(E) - GHBE. (217
Denoting the spectral operator
A(E)=i(G - G™) (12.174)

in the energy FE-space, which indicates the available states for the quantum
system, we have
1 o0
p=5-[ [fro(E—mA(E)E. (12.175)
T J_co
Most of the time, a quantum device is considered as an open system consisting
of a local device region ) and contacts which extend to the outside environment.
If we are only interested in the local device region, we can define the device
density operator p similarly. We follow the presentation of Datta (2005, sect.
9.2) closely in the following.

Quantum devices with one contact

Let us denote

[0, L] — device, (—o0,0) — contact, (12.176)

and decompose the wave function for the contact—device system according to the

physical partition
Y= < Z/ljd ), (12.177)
where 1€ is for the contact and 1? is for the device, and ¢°(0) = 1%(0) .
The electrons in a contact at chemical potential y are distributed according

to the equilibrium Fermi-Dirac distribution. Once the contact is attached to

the nano-device, each incident electron wave function

inc

will induce a wave
function ¥ inside the device, while the latter will produce a reflecting wave y
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into the contact. Therefore, the wave function for the combined contact—device
system can be decomposed into the following so-called scattering states (Jacoboni
et al., 2001; Jacoboni & Bordone, 2004; Datta, 2005):

Y = Yinec + X- (12.178)
The Hamiltonian for the contact is given by

n2 d?

H=U.— ———,
U 2m da?

(12.179)

and the electrons are assumed to occupy the eigenstates |¢,) over the contact
[—R,0] with |R| > 1:

ba(x) = O, () = % exp (ikar) , (12.180)

with discrete energy levels given by

K2 k2 20w
a — Uc (x7 ka =4 5
c + 2m R

a=0,1,2,3,.... (12.181)

The contact system can be described by its density matrix p.(x,2’) given in
(12.89):

pe(@,a’) = 3 bal@) frn(ca — m)65 (). (12.182)

Let us consider a finite difference discretized version of the Hamiltonian on a
mesh z; = ia, where zo = 0 is considered to be the left-most point of the device
and x_1; = —a is the right-most point of the contact, and

H~U, —7(AL +A_ —2), (12.183)

where U,, = U(z,,), A+ and A_ are the +1 and —1 shift operator on the index,
respectively, and
h2
= —. 12.184
T 2m.a? ( )
We define the Hamiltonian for the contact with M mesh points {—oco < z_j; <
- <x_1 <0} as

U_n + 27 —T 0 0
-7 U_pry1+27 —71 0
H. = : .. - : ,
0 0 —7 U_o+ 271 —T
0 0 0 —T U_1+ 27

MxM
(12.185)



344 Quantum electron transport in semiconductors

and the Hamiltonian for the device with N mesh points as

Uop + 27 -7 0 e 0
—T Ui +2r —71 e 0
Hq = : KPS . : (12.186)
0 0 —7 Un_2+ 27 —T
0 0 0 -7 Un-1+27

NXN
The reflective wave in (12.178) can be considered as having been caused by a
source term resulting from the incident wave i, (Datta, 2005):

Sinc = (EI - Hc)winca (12187)

where
qzbinc = (winc(me)a R a’l/}inc(xfl))T~ (12188)
It was then proposed (Datta, 2005, eq. (9.2.1)) that the wave function for the

contact—device system satisfies the following inhomogeneous Schrodinger equa-
tion:

LT - Hc + i77 _C+ '(pinc + X _ Sinc
- FI_H, ] [ e =1 07 | (12.189)

where 77 > 0 is a small perturbation and C' is the coupling matrix in the Hamil-
tonian for the combined contact—device system, and

P = (¥ (@o), -, 4 @n1)) T (12.190)

The first equation in (12.189), together with the definition of s, in (12.187),
gives

[E1-H. +in)x - CTy? =0, (12.191)

implying that the reflection wave is given by
X = G.CHy?, (12.192)
where the device Green’s function is defined as

G.= (EI-H.+in) " (12.193)

If g(x,2’) is the analytical form for the device Green’s function, then
Gi;=9g(xir; E), —M<ij<-1 (12.194)
Meanwhile, the second equation in (12.189) reads

(EI —Hy)y? — Cy = Cy (12.195)

inc*

Substituting (12.192) into (12.195), we have
(EI—Hy)y! — CG,CHy = Cyy, (12.196)
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namely
[ET - H;—X]? =s, (12.197)
where
¥ =CG.C™, (12.198)
s = Cy,- (12.199)
So we have
P! = Gs = GCily,, (12.200)
where the device Green’s function is defined as
G=(EI-H;—%) " (12.201)

Now, from (12.199) and (12.200), for each of the eigenstates ¢,, as the incident
excitation electron wave, we have s, = Ci{,. = C¢,, and the corresponding

inc
device wave function is

Vo = GCo,.

Assuming a non-correlation among the states of { |1/)g>}, the density operator
pa for the device can be written as

Pd = ZfFD(ea —p) &) (vl
ka

= /dEfFD(E — ) Z(S(E —€a) [Ya) (Yal

ko

_ /dEfFD(E —WGC Y OB —2,) [6a) (6a] CHGT
k

o4

= /dEfFD(E — 1)GCA.(E)CtGT, (12.202)
where a spectral function A.(E) for the contact is defined as

AE) =21 3 6(E - 2) |6a) (bal - (12.203)
ko

It should be noted that for devices with one contact only, the summation over k,,

in (12.202) is limited over k, > 0 as only right-going electron waves are involved.

However, in a real device, at least two contacts are involved as input and output;

therefore, in general all values of k, will be used as in the derivation above.
Now define the dissipation I' for the contact as

I'=CA.(E)C", (12.204)
a spectral function for the device

A(E) = GI'G™, (12.205)
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and an electron correlation in the device

G™(E) = fen(E — 1) A(E). (12.206)

Then, similar to (12.175), the density matrix for the device can be written as
dE

=5z /fFD (E—p)A(E)E = TG”(E). (12.207)
m

Next, we will show that the device spectral function A(E) can in fact be
obtained directly from the device Green’s function, instead of using the contact
spectral function A (E).

The device Green’s function g(x,z’) can be represented through the eigen-
function expansion following the completeness of the eigenfunctions as follows:

z') :
m x E ZE—E&+IO+, _RSZL‘7$ SO, (12208)

which, by using the identity (12.169), implies that the contact spectral function
Ac(z,2', E) in the matrix notation is given by

Ac(z,2' E) =i[g(x,2', E) — g*(z,2, E)] (12.209)
or
Ac(E)i; =1[GF; - GiT].
Then, using (12.198), we have
I' = CA.(E)CT=iC(G,~G])C"
=i -2N = 2Im(D). (12.210)

Moreover, from the definition of the device Green’s function in (12.201), we can
see that

r=i=-3" =i [G*L(Gﬂ‘l . (12.211)

Finally, substituting (12.211) into (12.205), we have the spectral function for
the device only in terms of the device Green’s function:

A(E)=GIGT =i(G - G") = —2Im(G). (12.212)

Quantum devices with two contacts

A nano-device [0, L] usually has at least two contacts, such as the source and
the drain in a metal-oxide-semiconductor field-effect transistor (MOSFET), so
we will need the density matrix for a device with two contacts. In general, the
chemical potentials for different contacts are not the same, so the contact—device
system cannot be treated as a thermal equilibrium system in the strictest sense.
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However, we will follow the same procedure as before to obtain the results (Datta,
2005) for the density operator:

Py = / %G”(E), (12.213)
where
G"(E) = AY(E) frp(E — 1) + AP (E) fen (B — po), (12.214)

and the device partial spectral functions A (E) and A®)(E) associated with
the contacts are defined as

AW(E) =G GY, A®(E)=GrI,G". (12.215)

Here, the device Green’s function G is given in (12.201); however, the self-energy
3’ will now consist of the self-energies from the two contacts, i.e.,

=304 x® (12.216)

where

> = C;G..Cf (12.217)

and C; and C; are the coupling matrices for the two contacts, and G.; is the
contact Green’s function,

G.i=|[EI-H, +ing™ ", i=1,2. (12.218)
Similar to (12.204), for the two contacts we define their dissipations as
r=CANECH, Ty=CAP(E)CS, (12.219)

and the spectral functions for the two contacts are defined through their respec-
tive Green’s functions as follows:

C

A(E) =i(Ge,; — G/;) = —2Im(G,;). (12.220)

From (12.219), (12.220), and (12.217), we can see that the dissipation TI'; is
again related to the imaginary part of the self-energy () as

T; = —QIm(E(i)), i=1,2. (12.221)

In Chapter 13, details of how to obtain the self-energies X() for the two
contacts will be given in terms of the boundary treatment for the device region
in the framework of both finite difference and finite element discretization of the
Hamiltonians.
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Green's function and transport current formula

The device NEGF introduced in this section can be shown (Datta, 1997) to be
related to the transmission coefficients for the quantum device. Specifically, the
transmission coefficient 712 from a source input (1) to a drain output (2) can
be expressed in terms of the device Green’s function (12.201) and the imaginary
part of the self-energy (dissipation) (12.221) as follows:

T (E) = tr ([1GI2GT) = tr ([,GI'1GT) . (12.222)

The electron current between contacts 1 and 2 is given for a ballistic transport
by the Tsu-Esaki formula (12.158):

q +

~Th ) ) T2(E)(frp(E — 1) = frp(E — p2))dE. (12.223)

o0

Summary

The averaged physical quantities in a quantum system, such as the electron
density, can be calculated using the density operator or its matrix representa-
tion (i.e., the density matrix). The electron transport can be described by the
quantum analog of the Boltzmann kinetic theory, namely the kinetic equation
of the Wigner distribution in the phase space, which is the Fourier transform
of the density operator. Alternatively, the transport current can be described
by the Landauer formula using the transmission coefficient T'(F) of an electron
at energy level F as the probability of the electron propagating from an input
to an output. Finally, the non-equilibrium Green’s function (NEGF) method,
which originates from the quantum field theory of many-particle quantum sys-
tems (Fetter & Walecka, 1971; Abrikosov, Gorkov, & Dzyaloshinski, 1975), allows
the numerical calculation of the transmission coefficient T'(E) for a device of gen-
eral shape (Datta, 1997; Haug & Jauho, 2007). Chapters 13 and 14 describe the
numerical methods used for solving the NEGF and the Wigner distributions,
respectively.
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13.1

13.1.1

Non-equilibrium Green's function
(NEGF) methods for transport

In this chapter, we will present the quantum transport method based on non-
equilibrium Green’s functions (NEGFs) for computing electron currents in an
open quantum system. The system is usually connected to surrounding envi-
ronments at different chemical potentials, such as nano-electronics connected to
input contacts at different electric potentials. The NEGF allows the calculation
of electron transmission coefficients through general devices; the latter are then
used for current calculations with the Landauer transport theory discussed in
Section 12.4.

NEGFs for 1-D devices

1-D device boundary conditions for Green's functions

For a 1-D ultra-small device with two large contacts as shown in Fig. 13.1, the
electric potential is of the form

oM i —oco <z <,
V(z) =9 v(z), if 21 <z <ay, (13.1)
v(g), if oy <z < +o0,

where v(®) is the constant potential in the contact o (o = 1,2). A Green’s
function is defined by
o190
(E - V(z)+ Z%mam) G(x,2')=6(x —2'), w,2" € (—00,+0). (13.2)
Contact 1 X Device X Contact 2
0 Q Q Q Q Q [6)
)g _)| a k_ XN+1
—»X

Figure 13.1. A 1-D uniform mesh with grid size a for the computational domain
Qp = [z1,zn] (the device region). From Jiang et al. (2008), copyright (2010) by
Elsevier.
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To compute the electron current through the device region, taken to be the
interval [x1,2n], we only need Green’s function within the device. Therefore,
boundary conditions at x = 7 and z = xy are needed to determine Green’s
function G inside the device. To illustrate, let us consider the left boundary point
x = z1; = xy can be handled similarly. First, an auxiliary Green’s function
g(x,2) is defined in the contact-1 domain Q; = (—o0, 1) by

1) 0?
(E TV S 82

) g(z,2l) =6(x —2), =z,2, € (—o0,z1), (13.3)

which can be viewed as the restriction of (13.2) onto the semi-infinite region €y
plus a yet to be determined boundary condition on x = 1. Here, the subscript e
denotes the exterior of the device domain Qp. Subtracting the product of (13.2)
and g(z,z.) from the product of (13.3) and G(z,2’) with 2’ € Qp, integrating
with respect to  on 1, and then using Green’s formula, we have

G, 2')= [ G(z,2)0(x —2.)dz — / g(z,2.)6(x — 2")dw
(951 (o5

2 2 2
= [ o (et a)Gloat) — 2o aglo.al) ) d
Q

) 2m1)
B K2 Og(x,xl) , OG(z,2") ,
- 2m(1) ( o G(x,x ) - ox g(xaxe)

R (g(x, @, 8G(x1, 2’
= D ( (alx )G(thx’)_(8;)‘9@1’1,/6))7 (13.4)

x1

T=—00

where m() is the effective mass in contact 1. Here we have used the facts that
m®) is independent of position inside the contact region 4, and that both
G(z,2') and g(z,x)) satisfy the Sommerfeld radiation condition as © — —occ.

According to (13.4), by assuming different boundary conditions for the aux-
iliary Green’s function g(z,z.), we can arrive at different boundary conditions
for Green’s function G(z,2’).

(1) Homogeneous Dirichlet condition, i.e., g(z,2.)|z—,, = 0. It can be
shown using the method of images that g(x, z.) is just

g(xvxia) = gO(va;) - 90(2.%1 - ZL’,ZL’;), (135)

where go(x,2.) is a retarded Green’s function in the infinite 1-D wire which
satisfies

n* 02
(E —oM 4 2m(1)8x2) go(z,zl) =6(x — L), € (—o0,00),  (13.6)

namely

/ mt) -7.(1) /
90(1'71' ) = k(M 72 exp(lk |:L' - xe')’ (137)

where k(®) = \/2m(@)(E — v(@)/h2 for a = 1, 2.
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Using this homogeneous auxiliary Green’s function in (13.4), we obtain
the following boundary condition for the device Green’s function:

h?  Og(xq,7))
G / / — ) e
(we, 2") 2m)  Jz
This boundary condition relates the value of Green’s function G(z/,, z’) at

a location z, outside the device region to the value at the left boundary of
the device x = x1. Such a condition will be useful for the finite difference

G(zy,2"), z € (—00,21),2" € [x1,2N]. (13.8)

discretization of (13.2) at the boundaries of the device, as solution unknowns
at “ghost” points outside the device region will be needed.

(2) Homogeneous Neumann condition, i.e., %jé)h:m = 0. Then
g(z,zl) = go(z, 2l) + go (221 — z, ), (13.9)

and, after plugging (13.9) into (13.4), we obtain the following boundary
condition for the device Green’s function:

R* 0G(w1,2")

Gz, 2") = — 5 o g(z1,2)), =, € (—o0,x1],2" € [x1,2n],
(13.10)
and, in particular, for z/, = 21,
h? 0G(z1,2") 1 0G(xy,2)
AN 9 -\ Y /
G(xy,2") = ST ) R g(xy,27) = T oy 0 ¥ € [x1,zN].

(13.11)

The boundary condition (13.11) relates the derivative of Green’s function
0G(x1,2")/0z at the boundary to the boundary value of Green’s function
G(z1,2"), which in fact defines the so-called Dirichlet-to-Neumann (DtN) map-
ping. This boundary condition will be useful when a finite element method is
used to discretize (13.2).

Finite difference methods for 1-D device NEGFs

Equation (13.2) over the device region [z1,zy] can be discretized by a second-
order central difference scheme over the mesh 1 < 2o < -+ < an,2; = 1 +
(i — 1)a, using the following difference formula:

0 (1L 0u N L (T W) (13.12)
Oox \'m Ox r=x; a? mi+1/2 mi,1/2

where u; = u(x;) and M1/ = m((@; + xix1)/2), i =1,2,...,N. For i = 1, the
finite difference scheme becomes

0 (10u O (Rl Sl el (13.13)
dr \moz ), . a*>\ mzp mip )’ .

which implies that we need to specify the nodal value uy = Go; = G(zo,x;)
in terms of the nodal values v, = G;;, i = 1,2,..., N, for any given j €
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{1,2,...,N}. This can be achieved by using the boundary condition (13.8).
Setting 2, = z¢ in (13.8), we have
h? dg(x1,z0)

wo = Gy, a') = 5y = Gl ') = wWuy (13.14)

where

h2
wl) = szo)ém = exp(ikMa)s, 1, 1< g < N. (13.15)

Similarly, at the right end boundary = = x5, we have the following boundary
condition:

UN+1 = G(.Z‘N+1,l‘/) = wg\?)uz\/, (1316)

where

w'? = exp(ik@a)d, N, 1<g<N. (13.17)

Applying the discretization (13.12) in (13.2) at x;, ¢ = 1,2,..., N, together
with the boundary conditions (13.14) and (13.16), we arrive at the linear system

(E-Hy;—%)G =1, (13.18)
where € = ET, the jth column of the matrix G contains u; = G, ; = G(4, ),
i=1,2,...,N, the matrix H, is the device (discrete) Hamiltonian

h2

where V = diag(V(x1), V(22),...,V(zn)), and the difference derivative matrix

Dy =
1 1 1 . . 0 T
my/2 msz/2 ms/2
1 1 1
ms3/2 msz/2 ms/2
1
0 ms/2
0
o 1 _ 1 1
MN—-3/2 mMmN—1/2 mN—-1/2
0 . 0 1 __1 —
L MN—-1/2 MN—-1/2 MN+1/2-

(13.20)

Moreover, the matrix 3 = (X, ;) contains the coefficients in the boundary con-
ditions (13.14) and (13.16). Specifically,

Ypq = 21(731)1 + 21(3217

(13.21)
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where
E (1) — ’ (1) - ——_— 1 (1)
P _2m1/2a2 Wq 01 = 2mM g2 p(ik7a)dg10p.1, (13.22)
N2 — iz IRICIP S— v k@ a)s. vo
P4 dmin g 002 Nt1/2a% 1 PN T oM@ g2 exp(ik™a)dq. n0p.N- (13.23)

Here, the complex quantities () and () are called the self-energies (Datta,
1997) of contacts 1 and 2, respectively, which represent the influence of the
contacts on the current transport through the device.

13.1.3 Finite element methods for 1-D device NEGFs

Denote by ¢;(x) the nodal shape function of a finite element space, namely

pi(T;) = 0;j, (13.24)
and assume that Green’s function over the device region Qp = [z1,2y] is ap-
proximated by

(x,x;) ZG”@Z , x,xj € [T1,TN]. (13.25)

The weak form of (13.2) for the device region implies that, for any test function
(x), we have

K2 1
E/ Gprp do — — —aﬂa—@d — VGre dx
Qp 2 Qp m O0x Ox Qp
h 110G, h 1 0G),
T2 moor ‘ T mooe |, ) (13.26)

where we have set the source 2’ = z; in (13.2).
The derivative of Green’s function 0G),/0z at the boundaries will be replaced
by the DtN boundary condition in (13.11), which can be rewritten as

N
9Gn(21,25) _ S wlay, 0Gn( ”JN’% Zw(Q)G”, (13.27)

Ox ‘
=1

where
w2(1) _ —ik(l)éi,l, wl@) = —ik®6; v. (13.28)

Therefore, plugging (13.27) into (13.26), we obtain the following linear system:

(E-Hy;—-2)G =1, (13.29)
where £ = E'S, in which S = (S, ), with

Sp.q = / Pqpp dz, (13.30)
Qp
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and

h? 1 0pq Opp
_ s p 13.31
(Hd)p’q 2 Jo,m Or Ox drs /QD Varp 4 (13:31)

and again the self-energies X1 and X3 contain the coefficients resulting from
the boundary conditions:

w_ " @
E%q:%wq 617717 E K

w6, N (13.32)

q

Finally, by inverting the matrix system (13.18) or (13.29), we obtain the device
Green’s function, as defined in (12.201), which will play a key role in the NEGF
method for electron transport:

G(E) = (£(E) - Hy(E) — S(E)) ™", (13.33)
where the self-energy is given by

S(E)=3W(E) + =@(E). (13.34)

NEGFs for 2-D devices

In this section, we will extend the preceding results on 1-D devices to 2-D devices
(Jiang et al., 2008); as a matter of fact, all derivations are directly applicable
to 3-D devices. Green’s function in two dimensions is defined on the domain
Q=QpU(>, %), which consists of the device and the contacts, I' = 99, as
depicted in Fig. 13.2. Here, Qp is the device region, €, is the area of the contact
« which extends to infinity, and I'y, = I'p N 9, with I'p = 0Qp. For a given
energy E, Green’s function G(r,r’) is defined by

(E—-H)G(r,r')=6(r—1'), rr' e (13.35)
where
h? 1

is the Hamiltonian of the infinite system with an effective mass m(r), Planck
constant is given by 27h, and V(r) is the potential energy. Here we assume
that Green’s function G(r,r’) vanishes on the boundary I' and satisfies the Som-
merfeld radiation condition at infinity. Again, we only need to compute Green’s
function on the device region Qp, without the need for details of Green’s function
in the remaining infinite exterior domain.

2-D device boundary conditions for Green's functions

We assume that, in the contact region, the potential V(r) is invariant by trans-
lation along the transport direction, and also that the effective mass m(r) is
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Q= QD U(Za Qa)
Fa,O = 89(1 - Fa
I'o=Ip—%als

Figure 13.2. A device Qp and its contacts: Qp is indicated by the bold curve, and €,
is the contact o with @ = 1,2,.... The boundary between Qp and 2, is denoted by
T's, while the rest of 9Qq is Ta,0; I'p = 0Qp. From Jiang et al. (2008), copyright
(2008) by Elsevier.

independent of position. As before, an auxiliary Green’s function g(r,r) is de-
fined (Havu et al., 2004) by

(E—H)g(r,rl) =6(r—r.), r,r. € Qq, (13.37)

which can be viewed as the restriction of (13.36) onto the semi-infinite region
Q. plus a yet to be determined boundary condition on I',,. Here, the subscript
e denotes the exterior of the device Qp. Subtracting the product of (13.35) and
g(r,r)) from the product of (13.37) and G(r,r’) with r’ € Qp, integrating with
respect to r on {2, and using Green’s formula, we have

G(rl, 1) :/Q G(r,v")é(r —rl)dr — /Q g(r,r))6(r — r')dr

:/Q h (V2g(r,r,)G(r,x') — V?G(r,r')g(r,1})) dr

N 2m (@)
_ h? (dg(r,r)) aGrr)
h? dg(r,r)) , OG(r,1’) .
_/F(y 2m(@) ( on G(r,r'") — ang(I‘,I‘e)) ds, (13.38)

where m(®) is the effective mass in the contact a and n is the normal vector exte-
rior to the boundary 9. Here we have used the facts that m(® is independent
of position and that both G(r,r") and g(r,r.) satisfy the Sommerfeld radiation
condition at infinity and the homogeneous Dirichlet conditions on Iy, o.
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(1) Homogeneous Dirichlet condition, g(r,r.) =0 for r € I',; then

2 /
G(r;,r’)z/ QTZ(Q)%G(I‘,I‘/)&S, v € Qo €Qp. (13.39)
Lo

(2) Homogeneous Neumann condition, %fé) =0 for r € I',; then

r? OG(r,r’
Ta

The auxiliary Green’s function ¢(r,r.) for both boundary conditions above
are given in Section 13.4 for a strip-shaped contact.

We note that Green’s function satisfies the following continuity conditions for
rcl, and r' € Qp:

{ Glr_,r') = G(rs,1),

e G ) = S e Glre, ),

(13.41)

m(ry) on
where — (+) denotes the limit from the exterior (interior) of Qp.

Remark 13.1 The continuity equation (13.41) needs some delicate interpre-
tation when both the source point r’ and the field point r are on the device
boundary I', in deriving the device Green’s function. For this case, we will con-
sider the source point r’ by a limiting process from inside the device toward
the device boundary, and in this way the continuity conditions (13.41) for the
device Green’s function can be used on the device boundary. This continuity is
necessary to connect the values of the device Green’s function from both sides
of the device boundary and obtain the self-energies (®) for the contacts.

Equations (13.39) and (13.40) yield boundary conditions for G(r,r’) provided
that g(r,r’) is known. As shown in the case of 1-D devices, these boundary con-
ditions will define the self-energy 3(® corresponding to the contact . Equation
(13.39) can be used in a finite difference method to eliminate the unknowns at

“ghost” points r/ in €2, outside the computational domain Qp in terms of the

€
solutions at the boundary points r. Equation (13.40) is the so-called Neumann-
to-Dirichlet (NtD) mapping on I'y, by letting r/, — r, with r, € T',, and can be
used in the finite element method to connect the solution and its normal deriva-
tive. In practice, it is more convenient to use a Dirichlet-to-Neumann (DtN)
mapping, which is the inverse of (13.40). We could get the DtN mapping from
(13.39). Differentiating (13.39) with respect to r., letting r, — r,, and taking
the normal derivative at r,, we obtain

OG(ro—,r') K / 9?g(r,ro—)
r

on, ~ 2m(@) on,on

G(r,r')ds, (13.42)

where n,, denotes the outward normal of Qp at r,. Equation (13.42) is to be
treated as the Hadamard finite part when r’ is on the boundary.

We will use (13.38), (13.39), and (13.42) to derive the self-energies X(®) for
all contacts and then calculate Green’s function.
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z=1L 4«
z
¢ >C T
0 0
G 5 X
rt1 Device rt1
a p € a3
e ij c
j ¢ ¢ >t %
1 2
N, ¢ ¢ 5 x
z=0
0 1 i N, N,+1

Figure 13.3. A 2-D uniform mesh (gray lines) with grid space a in the z-direction and
b in the z-direction. The computational domain 2p is indicated by the bold black
lines. The width in the z-direction is L. The homogeneous Dirichlet conditions on the
top and bottom boundaries are used. From Jiang et al. (2008), copyright (2008) by
Elsevier.

Finite difference methods for 2-D device NEGFs

If a 2-D quantum device is wide in the y-direction, we can assume that G(r,r’)
is independent of y, i.e., it is a function of (x, z) only. We consider an ultra-small
MOSFET simulation in the strip region  (see Fig. 13.3), which consists of
three sub-domains: the contact-1 area 21, the device area Q2p, and the contact-2
area {o.

As in the 1-D case, the computational domain is denoted as Qp. Let L be the
thickness of the silicon layer, or the combined thickness of the silicon layer and
the oxide layers if tunneling effects are to be included. When electron tunneling
into the oxide regions is neglected, the homogeneous Dirichlet conditions can be
used on the top and bottom boundaries. We also assume that the band structure
of the contact is independent of z; thus, we have

v (2), if reQ,
Vir)=1< v(z,2), if reQp, (13.43)
v (2), if reQy,

where r = (z, z) € Q. The relevant Green’s function is defined by

2

E—-V(r)+ %V~ (;V)] G(r,t')=6(r—71'), rr'eqQ, (13.44)
where V = (9/0x,0/0z). In order to obtain a finite discrete system, we need to
set suitable boundary conditions on I, to obtain the self-energies 2(®) (o = 1,2)
as in the 1-D case. Let us deal only with I'; as an example, i.e., the computation
of £ The calculation of () is similar. Again, we define an auxiliary Green’s
function g(r,r’), which satisfies in ©; the following:

hQ

2m)

(E — oW (z) + VQ) g(r,r))=6(r—rl), r,r. €. (13.45)
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We will consider the finite difference method first for Green’s function G.
The unknowns are at the nodes ry = r; ; (see Fig. 13.3). For a given source
r' =ry =ry j, denoting Gy ¢ = G(rg,ry) and G =[G4 ¢/]Nxn, the unknown
vector is the ¢’th column of G, with N = N, N, being the number of unknowns.
The relation between the indices ¢ and (7, j) is based on the dictionary order of
the mesh points inside the device (Fig. 13.3), i.e.,

q=j+ (@ —1)N.. (13.46)

The notations G; j /., Gi g, and Gg o will be used interchangeably. While
using the second-order central difference scheme, we need boundary conditions
when computing the unknowns at I';. To compute G j 4 (¢ is fixed), j =
1,...,N., we need to know the “ghost values” G using Ggq4,q9=1,...,N.
For this purpose, we insert the analytical expression of g(r,r.) from Section 13.4
into (13.39) to obtain

L
G(xl, 2,2 2" = / G(zq,2,2',2") Z Xl(l)(z)xl(l)(zé) exp (—ik:l(l)(av’e - xl)) dz,
0 !

(13.47)
with Xl(a)(z) and kl(a) defined in Section 13.4. From (13.47) with a N,-point
trapezoidal rule for the integration along I'y, we have

L
G(zo, zj, 2", 2") :Z/ G(xl,z,:c’,z')xl(l)(z)xl(l)(zj)exp (ik:l(l)a) dz
7~ Jo

N.
~ Z Z bG (21, zjl,x',z’)xl(l)(zjl)xl(l)(zj) exp (ikzl(l)a)

I j1=1
N,
=3 S b6 20 2 )X () e (k)
Ji=1 1
(13.48)
which implies that
N .
Gojq = nglﬂ)quqH (13.49)
q=1
and
(1) (1) ) .o (1) .
W = 2 b (b () exp (l’“l “)» it ge{1,...,N.}, (13.50)

0, otherwise.

As a result, Green’s function satisfies a similar equation as in (13.18) with the
following Hamiltonian form:

h2 ﬁ2

H,G =VG + 72(}*1)]\7m + —

o o D% G, (13.51)
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where the 2-D finite difference operator G x Dy, is applied to each ¢'-column of
G, denoted as a vector u = G(+, ¢') € RY, as follows. If the vector u is arranged
into an N, x N, matrix Uy, xn,, then we have

G* Dy, = Uy, xn, ® (Dna)" (13.52)

where ® indicates the multiplication of each row of the matrix Uy, xn, by the
matrix (Dyz)"; Dy, x G can be defined similarly.
Meanwhile, the self-energy for the contacts is given by

h2

_Wﬁdél’p), lfp€{1,7Nz}7
P

1) —
=) = (13.53)

0, otherwise,

where my /5, = m((wo +21)/2,2p)-
Truncating the infinite series for w((ll’] ) to a finite order M , we obtain the
self-energy as

=M = QAQT, (13.54)
where
(V) X () Xi7 (1) ]
NRICHIPERIE Xir (22)
Q= i"Cn) ) e Y G) (13.55)
0 0 0
L0 0 0 Jyewm
and
A= —ﬂdiag (exp <ik‘(1)a) exp (ik(l)a) exp (ik(l)a))
2m) g2 ! ’ 2 B M MxM
(13.56)
Finite element methods for 2-D device NEGFs
The nodal shape function ¢4(r), corresponding to the node r, satisfies
Pg(ry) = dq.q- (13.57)

The approximate Green’s function, for a given source point ry, can be
written as

N
Gh(r,rg) =Y Gagpg(r). (13.58)
qg=1
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The weak form of (13.44) in the computational domain Qp for any test function
©(r) is then given by

K2 1
FE Gpp dr — / VGrp dr — — —VGy - Ve dr
I Op 2 Ja,m

h? 100G
+= | =t ds = p(ry), (13.59)

where n is the outward unit normal of Qp, and the source is located at r, . By
noting that p is the rectangular region shown in Fig. 13.3, the surface integral
in (13.59) can be rewritten as

# [t (106,
2 Jo m oz ©

The second integral in (13.60) is zero due to the homogeneous Dirichlet condi-

z=L
dz.  (13.60)
z=0

TN B [N (1 OG),
dz o+ — Yk
i 2 (m 0z )

T=x1 ZT1

tions, while the first one is as follows:

n? [t 1 0Gh(x1,2,1y)
—5/0 oy o(x1,2)dz

x1,2) Ox
h? L 1 6Gh(xN z I‘q/)
— LR dz. 13.61
+ 2 Jo m(zn,,2) ox p(en,, 2)dz (13.61)

Again, the derivatives of Green’s function at the boundary will be replaced
by the boundary condition (13.42), which becomes after using the analytical
expression of g(r,r,) from (13.73)

— o L
e e 2 / Glar, 2, 2) DX Ex ()(=ik)dz, - (13.62)
0 l

which can be rewritten as

aGh(l'hZ, rq/)

ot =80 Gy, 5 ), (13.63)

where

(1) o m(z1,2)
¢ @q(T1,2) = )

L
/0 palm1,5) S XM N () (—ikV)dz. (13.64)
[
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Using (13.63), the first integral in (13.61) can be written as

ot 1 9Gh (a2 ry)
2 Jo m(z1,2) Ox

A2 L 1 .
9 0 m (E -Gp(ry, 2,1y )) o(x1,2)dz

h2 L 1 (1)
T2 0 m(T ZG“% 1,2 p(r1,2)dz

(1
fZqu e AT

(p(mla Z)dZ

from which we see that the self-energy (1) can be defined as

h2 L 1 .

! 2/, W(E(l)‘Sﬁq(xlag))sﬁp(xlvz)d%

-

namely

h? L 1 m(xl z) L
w(1) 7/ 7 / )
Pe2 Jo m(z,z) \ om®M g pq(T1,2)

X Zx(l) 2)(— 1k(1))dz> op(T1,2)dz
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(13.65)

(13.66)

h? fikl(l) Lo L oy o
P iy / (| | [ Epaten 02|

(13.67)

In computation, the summation in (13.67) is truncated to a finite order and the

device Green’s function is defined by the 2-D version of (13.29).

13.3 NEGF simulation of a 29 nm double gate MOSFET

The transport current for the NEGF is computed by the Tsu-Esaki/Landauer
formula (12.158), where the self-energies for contacts for finite difference and
finite element have been detailed in Sections 13.1 and 13.2. The electron density
n(r) is given by the diagonal elements of the density matrix pg in (12.213),
which depends on the potential V(r) in the device by the definition of the device
Green'’s function (12.201). To account for the space charge effect, a self-consistent
procedure with a Poisson equation for the potential will be needed, where the

potential distribution is then determined by

=V (e(r)VV(r)) = g(—n(r) + Na(r)),

(13.68)

where Ny(r) is the doping density, e(r) is the dielectric constant, and ¢ is the

electron charge.
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Top Gate y

Bottom Gate

Figure 13.4. An ultra-thin double gate MOSFET structure. The rectangle ABCD is
the computational domain. From Jiang et al. (2008), copyright (2008) by Elsevier.

The geometry of a double gate MOSFET is shown in Fig. 13.4 (Ren et al.,
2003). The width of the device is assumed to be large, and the potential is
invariant along the y-direction. The silicon layer is sandwiched by two symmetric
oxide layers. The source and the drain are heavily doped.

Both finite difference and finite element methods are used to solve the 2-D
coupled Poisson equation and NEGF. The meshes are shown in Fig. 13.3. The
second-order central difference scheme and the linear finite element will be used
in finite difference and finite element methods, respectively.

The self-consistent iteration solution is obtained as follows.

(1) Start with an initial potential distribution V' (r) = Vp; let V; be the resulting
potential of the jth iteration, and we will compute V.

(2) For a given energy E, solve Green’s function G(F) and self-energies 2(*) (E)
as discussed in Sections 13.1 and 13.2 based on Vj, and then the spectral
function A(®)(E) as defined in (12.215).

(3) Calculate the electron density n(r) by integrating the density matrix pq
defined in (12.213) with respect to energy E. It is noted that we need to
repeat Step 2 for different sampling values of E for such an integration.

(4) Insert the electron density n(r) into the Poisson equation (13.68) to obtain
a new potential, namely V4.

(5) Check |Vj41 — V;| < e (a given stop accuracy): if yes, stop; otherwise go to
Step 2.

Remark 15.2 Direct use of (13.68) leads to slow convergence. Instead, we will
solve a nonlinear Poisson equation using a Newton method (Ren et al., 2003).

The Poisson equation is solved in the rectangular region ABCD including the
silicon layer and the oxide layers with the boundary condition
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Potential (V)

Figure 13.5. Double gate MOSFET: the potential distribution and the density in the
silicon layer; V; = 0.4 eV, Vg5 = 0.4 eV. From Jiang et al. (2008), copyright (2008) by
Elsevier.

V(r)=V,, if reEF,GH,

13.69
8‘gr(lr) —0, if re AB, BG, HC, CD, DF, EA, (13.69)

where n is the outward normal of the rectangular region and V, is the gate

voltage. Here, electron penetration into the oxide regions is neglected, so the
transport equation is considered only in the silicon layer, and the gate voltage
Vy is imposed on gates EF and GH. The floating boundary condition, i.e., a ho-
mogeneous Neumann condition, maintains macroscopic space charge neutrality
at the source (drain) end despite the biasing condition. The rectangular region
is taken to be the computational domain for Green’s function.

Figure 13.5 shows the potential distribution and the density under the gate
bias V; = 0.4 eV and the drain bias Vg, = 0.4 eV in the silicon layer.

Derivation of Green’s function in 2-D strip-shaped contacts

The retarded Green’s function in an infinite strip wire satisfies

<E — 0@ (2) + V2> go(r,r’) =6(r —1'), (13.70)

2m()
the solution of which reads, for r = (z, z) and v’ = (a/, 2/),
/ m® Gy @y (@) /
go(r.r') = ; S N e (ke — ")), (13.71)

where Xl(a) (z) satisfies

o9 . o
(_2771(‘1)3,22+U( )(Z)) X (@) =AY (2) (13.72)
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and k' = \/2m(a)(E - )\l(a))/hQ. Then, Green’s function in a semi-infinite strip
wire with a straight line boundary x = d is as follows:

(1) if g(d, z,x') = 0, then

g(r,r") = go(z,2,v") — go(2d — z, 2, 1'); (13.73)
(2) if Og(d, z,x")/0x = 0, then
g(r, ') = go(x, 2,v") + go(2d — x, 2, 1"). (13.74)

Summary

The transmission coefficient T'(EF) of a nano-device, the key quantity in the Lan-
dauer transport theory for nano-devices, is related to the non-equilibrium Green’s
function, which can be computed by either finite element methods or finite dif-
ference methods. Treatment of the boundary condition at the input and output
contacts of the device for both methods can be formulated in terms of a bound-
ary Dirichlet-to-Neumann mapping, which reflects the effect of the contacts on
the transport of the electron through the nano-devices. Simulation tools based
on the NEGF for nano-electronics have been developed in Ren et al. (2003).
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14.1.1

Numerical methods for Wigner
quantum transport

As a kinetic approach, Wigner equations for quantum transport in nano-devices
and their numerical solutions will be discussed in this chapter. First, we ad-
dress the issues of the phase space truncations for the Wigner distributions in
computational simulations and the Frensley inflow boundary conditions at the
physical boundaries of the devices. Then, a conservative adaptive spectral el-
ement method based on cell averages will be given, followed by an upwinding
finite difference method. Numerical results on a resonant tunneling diode (RTD)
will be presented using both methods.

Wigner equations for quantum transport

Let us consider the Wigner equation for the Wigner distribution f(z,k,t) of a
1-D quantum device in the phase space (z, k) € R?:

0 )
2 f @k, t) + == f ok t) = Ov[](@, k1), (14.1)

where
Ovlfl(z, k,t) = _ﬁ/ Vip(z, b — k') f(a, &', )k, (14.2)

and the non-local Wigner potential V,, (z, k) is defined in (12.107).

Truncation of phase spaces and charge conservation

The definition of the Wigner potential V;,(x, k) in (12.107) has no meaning when
the Fourier transform of [V (2 4 r/2) — V(2 — r/2)] does not exist. However, as
(12.100) implies that p(x + r/2,xz — r/2) is the inverse Fourier transform of the
Wigner function f(x,k), i.e.,

p (x + g, z — g) = /Z f(x, k") exp(ik'r)dk'; (14.3)

the right-hand side of (14.1) can be shown to be equivalent to

/_oo {V (m + g) -V (x - g)} p (33 + g,x - g) exp(—ikr)dr. (14.4)

oo
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As in many cases it is reasonable to assume finite coherence length in the density
operator, i.e.,
r r
p(x—ki,xfi)%(), as 1 — 00,
so the Fourier transform in (14.4) is then well defined. For numerical calculations,

it is necessary to truncate the infinite integration domain in (14.4) to a finite
coherence interval [—Lcon, Leon], 1-€.,

[ e 5) v (o=t hoamomtimar o

—Lcon

which defines an effective Wigner potential for (14.1):

en =2 [ [ e+ d) v (- D]a 40

Moreover, we only need to compute the Wigner distribution for |k| < Lj/2
for some large value Lj; therefore, we will zero out the distribution function
f(z,k) = 0 if |k| > Li/2, and thus (14.1) is only solved for |k| < Lj/2 in the
following modified form. For (z,k) € X x K,

LT LT "/Lk/2 Vel(n b — k) f (2, K) AR = 0, (14.7)
ot” m oz’ 2nh J_p 2 Y ' o ’
where X is the computational domain in z-space and K = [ — Ly /2, Ly /2].

Next, the Wigner potential Vjﬁ(x, k) will be replaced by a discretized version,
say a Ncon point trapezoidal rule with a spacing heon as follows:

Neon
Ve, k) = Vil (2, k) = 2heon 2 sin(ky,) [V (2 +yu/2) =V (z = yu/2)],
"~ (14.8)
where
Neonhcon = Leons Y = pheon, 0 =1,2,..., Neon- (14.9)
In order to keep the charge conservation, we require
/]Cdk/lcdk’ Ve, k—K)f(z, kK, t) =0, (14.10)

for V''(x, k) with k € K. Frensley (1987, 1990) suggested a sufficient condition

K heon = 2, (14.11)
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which guarantees that V"(z,k) is not only odd, but also periodic in k with a
period |K|. Equation (14.10) can then be easily verified by noting that, with the
condition (14.11),
> kmin
[ sinlte = i ylae = <t
K

1
lffhcoh

— k")) — cos[y, (kmax — ')
Yu

k'/)] — COS [thoh(kmin - k/) + /’LhCOhVC”) =0.

(14.12)

(COS [/’Lhcoh(kjmin -

Frensley inflow boundary conditions

The Wigner equation only contains a first-order spatial xz-derivative, and there-
fore we need to specify only one boundary condition in xz-space. For instance, we
can use the following inflow boundary conditions (Frensley, 1987):

f(xmin; k7t) = fL(k), if k> O,
f(xmaxa kvt) = fR(k), if k<O.

For open systems, as free electrons are supposed to be injected from infinity,
their dispersion relation in the left contact E = E(k) is given by

h2 k2
E(k) = 2m1

(14.13)

+ w1, (14.14)

and a similar dispersion relation holds for the electrons in the right contact.
The left boundary condition for the Wigner function will be

_ . :
_ mkgT ps — B —
fo(k) = s log |1+ exp < T , k>0, (14.15)
and the right boundary condition is given by
Falk) = ML -1+e pa =t vz )| k<0 (14.16)
R - Th2 g Xp kBT ) ) .

where ps and pg are the Fermi energies of the left contact and the right contact,
and v; and vy are the external bias potentials of the left contact and the right
contact, respectively.

Adaptive spectral element method (SEM)

We will present an adaptive conservative SEM (Shao, Lu, & Cai, 2011), which
uses cell averages centered at Gauss—Chebyshev points in k-space and Gauss—
Lobatto collocation points in z-space. The computational domain X x I is di-
vided into @ x R non-overlapping elements (sub-domains) as follows:

Q R
XxK=JJX xKr, Xy=lg4-1,94, Kr=ldr1,d,], (14.17)

g=1r=1
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dr_y <« Ij —> d,
kj+1/2 kj kj—1/2

Figure 14.1. The k-mesh in the sub-domain K, = [dr—1,d,]. The black points are the
Gauss—Chebyshev collocation points, denoted by k;. The ends of cells are kjz1/2
displayed in small circles. From Shao et al. (2011), copyright (2011) by the Global
Science Press.

with go = Tmin, 90 = Tmax, @0 = Kmin, and dr = kmax. In an element X, xKC,. (¢ =
1,2,...,Q and r = 1,2,..., R), the collocation points are {(xi.qr, kj,q,r)}, With
i=0,1,...,My, and j =1,..., Ny, so we have (M, , + 1) x Ny, collocation
points. Here, we set 2,4, to be the Gauss-Lobatto points and k;.4, to be the
Gauss—Chebyshev points to take advantage of the fast Fourier transforms (Boyd,
2001):

a, ‘
(Gauss-Lobatto) x4, = gq—1 + — <1 + cos A;r ) ,
e

D, 1
(Gauss—Chebyshev) kjqr=dr—1+ — [1+cos|j— = T . (14.18)
i 2 2) Ny,

where Gg = g¢ — gq—1 and D, = d, — d,_1. Denote by f,.(x,k,t) the restric-
tion of the Wigner function f(x,k,t) on the element X, x KC;., and f; ;.q.r(t) :=
far@isgr, Kjsqrs 1)

A non-adaptive SEM means choosing the same (M, ,, N, ) for all (g,r)-
elements, i.e., My, and N, are two constants, while an adaptive SEM allows
different (Mq 7y Ng,») in different elements. The total number of unknowns is
denoted by N:

N =

q

R
> (Mgy+1) x Ny (14.19)

Q
=1r=1

We will take the element & x K, as an example to illustrate the adaptive
conservative cell average SEM, and the subscripts ¢ and r for the (g, r)-element
under consideration will be dropped from g, kjiq.r, Mgr, Ngr, for(x, k,t),

and fj,i;q,r(t)-

Cell averages in k-space
A cell I; in k-space is given as (see Fig. 14.1)

I = [kjt1/2, k1], (14.20)
with

D, 1 1\«
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Obviously, we have K, = U =1 1. We define local quantities corresponding to
n(z,t), j(x,t), and p(z,t) in each computational cell as follows:

0, () = / (o, t)dk, (14.22)
t) k k,t 14.23
i) = ) ik (14.23)
h 1 /
27rh/ /V (v, k — K f(x, k' t) dK’ dE. (14.24)
Then, a local continuity equation for the cell I; is defined as
0 0 .
ﬁnj(:c,t) + %Jj(m’ t)+pj(z,t) =0. (14.25)

From (14.22)—(14.24), we can see that both cell averages and point values of
the Wigner function f(z,k,t), expressed in terms of the Chebyshev polynomials
of the k-variable over each cell, are involved in (14.25). Fortunately, in the Cheby-
shev polynomial space, there is an analytical relation between the expansions for
n;(z,t), jj(z,t), and p;(x,t) as shown below.

For k € K., n € [-1,1], and 0 € [0, 7], we use the following transform:

k=d.—1+ % (I14+mn), n=-cosb, (14.26)
to define
Ci(k) =Ti(n) = cosll, Si(k)=sin(l+1)0, 1=0,1,...,N—1, (14.27)

where Tj(n) is the Chebyshev polynomial of the first kind. Then, we have a
spectral approximation

N-—1
fla k)~ flok,t) = > a(, )Ci(k), k€K, (14.28)
=0

Consequently, plugging the approximation for the Wigner function into (14.22)—
(14.24), we have spectral approximations for nj, j;, and p;, which are denoted
by 1, jj, and p;, respectively.

We proceed by substituting the above expansion (14.28) into (14.22) and
(14.23), and using the following two identities for 6,0 + A#/2 € [0, 7], which
relate the cell averages of the first kind of the Chebyshev polynomials to the
second kind (Cai, Gottlieb, & Harten, 1992):

cos(0+A0/2) Sin2A9 sin 20, =1,
/ d77 Tl(ﬁ) = n 0= 1)A9 (I+1)A6
¢

0s(0—A0/2) ——sin(l — 1)0 — T sin(l+1)0, 1#1,

cos(0+A6/2) _singAf) sin 497 =2,
/ d’[7 nT‘l(n) - sin (= )Ae sin 7( +2)A6

COS(G—A@/Q) W Sln(l 2)9 — W Sln(l =+ 2)0 l ?é 27
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and with (14.22), (14.23), and (14.27) we obtain

N—-1
/cl dk] Zbl(sc,t)Sl(kj), (14.29)

Nl hoN
J] x,t) = Z a(z,t) l/ kECi (k) 1 ?ch x,t)Si(k;). (14.30)
1=0 1=0

Here, the expansion coeflicients b; and ¢; can be expressed in terms of a; recur-
sively as follows:

nj(z,t) = a(z,t)
1=0

—bl/O'l, l=N—1,N—2,
ap = § ajy2 — by/oy, l=N-3,...,1, (14.31)
%(ag—bo/()'o), lZO,

0‘0(@2 — 2a0)7 = 0,

b=< oi(ays—a), =12 N-3, (14.32)
—oay, l=N-2,N—-1,
dybo + 2229 (a3 — a1), =0,
deb + P2 (ag — 2a9),  1=1,
=< db+ T‘” (ar43 —aj—1), 1=2,3,...,N—4, (14.33)
dbl—%al_l, I=N-3,N—-2,N—1
— L. AN 1, =N,

where d, denotes the center of K,., and
D, sin[(l + 1) 7]
21+ 1) ’

1=0,1,...,N. (14.34)

g] =

It is easily seen that we can transform b;(x,t) to i;(z, ¢) in (14.29) via a fast sine
transform (FST), and ¢;(z,t) to j;(z,t) in (14.30) via another FST.

Meanwhile, substituting (14.28) into (14.24) and carrying out some careful
algebraic calculations, we can show that p;(z,t) = p;(z,t), with

) A . ,

5,(w, 1) = ‘;Z;’Z (& +1,) (x—yu)]z/ i
qT/ 1

{/ sin[2y, (k — k")]d } Z g, (@, 1) Crig o (K)

J

7r271 Zsm YuAk;)x (2, y,) Z D,
p=1 r’'=1

dr ) Re[A(@, Y, t, 7))
dp)JIm[X(z, g, t,7")] } (14.35)

x {sin[2y, (k; —
 cost2up (s -
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where

Viez+y,) —Vie—y,)
2y,

9

X(xa%ﬁ =

N /—1

q,m

Nz, y, t,r') = Z g (2,0)01(Dyry), (14.36)
1=0

Ej is the middle point of the cell I;, and we have used the spectral expansion in
the element X, x I/, i.e.,

far (@, k1) Z g (2,1)Chgrr (k). (14.37)

Here 7' comes from the integral with respect to & in the sub-domain KC,/, Ak; =
kj_1/2 — kjt1/2, and Oy(z) is an oscillatory integral given in (14.66) of Section
14.4.

In order to determine the expansion coefficients a; in (14.28), we solve the
approximated local continuity equation

0 . 0 - -

anj(x,t) + %Jj(x,t) +pj(z,t) =0, (14.38)
with the spectral approximations (14.29), (14.30), and (14.35). It is noted that
there are only spectral errors associated with the Chebyshev polynomial expan-
sion of f(x,k,t) in (14.28), since all the integrals in (14.22), (14.23), and (14.24)
are calculated analytically.

Remark 14.1 (Exact charge conservation) The cell equation (14.38) involves
the cell averages of the Wigner function, the cell fluxes, involving the point values
of f(x,k,t) over the whole cell, and the local Wigner potential term p;, involving
f(x, k,t) and the Wigner potential, where all integrals are carried out exactly. If
our primary unknowns are selected to be the cell averages 11 (x, t), such an exact
calculation is only possible if the distribution function f(x,k,t) is represented
by a global (Chebyshev) polynomial in the domain K, due to the analytical
relation between the cell averages of f(x,k,t) (f;(x,t)) and the point values
without numerical errors. As a result, we can sum all cell equations for f (z,k,t),
and the summation of p;(x,t) for all elements will be zero, i.e., for all z, we have

RNqT

Oz, t) = > > Pjgrla,t) = /dk/dk’ Vi@, k—K)f(z, K, t) =0, (14.39)

r=1 j=1

thanks to (14.12). Therefore, we can see that the cell average SEM is capable of
maintaining the charge conservation exactly for the spectral solution f(z,k,t) in
a non-uniform mesh.
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Chebyshev collocation methods in z-space

After forming the above conservative cell average SEM in k-space, we will solve
the local continuity equation (14.38) to obtain the expansion coefficients in
(14.28) by using a traditional collocation SEM with the Gauss—Lobatto points
in z-space for easy implementation of boundary conditions and fast cosine trans-
forms.

For z € X, n € [-1,1], and 6 € [0, 7], the transform

G
x:gq_1+7q(1+n), n = cosb,

is used to define
¢u(x) =T,(n) =cosvh, v=0,1,...,M. (14.40)

Then, we have the spectral expansion for the coefficients in (14.28) as

M
ai(x,t) ~ Zﬁlﬂ,(t)qb,,(x), r € Xy, (14.41)
v=0

where 3, are the expansion coefficients. Based on such an expansion, we can
obtain the first derivative by a recurrence (Press et al., 1992; Boyd, 2001) with
O(M) operations. Namely, if a function is expressed in terms of the Chebyshev
polynomials, then its first derivative can be obtained directly as (Gottlieb &
Orszag, 1987; Shen, Tang, & Wang, 2011)

day(z,t) A -
S~ ;Bz,u(tm(x), T € Xy, (14.42)
where
07 V= M,
3 2M =M1
Bt = 2 x { 2MPra (D), v : 113
Gy " | Brusa(®) + 2w+ 1D)Brusa(t), v=M—2,...,1,
$612(t) + Bra(t), v =0.

Hence, we could obtain the z-spatial derivative term via a fast cosine transform
(FCT) and a recurrence, and the total cost is O(M log M).

Time discretization

For the time discretization, we employ explicit multi-step Runge-Kutta methods.
If a system of ordinary differential equations is given in a compact operator form,

d
ZU® =L, (14.44)
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then the fourth-order Runge-Kutta scheme is given by (Gottlieb & Shu, 1998)

v =y 4 %AtL(U"),
U® =y + AtL(U<1>)
U® =yr+ AtL(U(2>),
urtt = % UW 4+2U0® +U® —yn + %AtL(UC‘)) : (14.45)
Let t" = nAt, n = 0,1,2,..., and f7'; = f;;(t"). The time step size At is
restricted by the Courant-Friedrichs-Lewy (CFL) condition as follows:

At - m
miln{Axi} hrglea’%({w}

(14.46)

where Ax; = |z;41 — x;|. After discretization in both k-space and z-space, we
have the spectral element approximation at the time step t™:

R N-1 N-1 M
ri S =) aliCilky) = Y0 Y Bl ou(xi)Cilky). (14.47)
1=0 1=0 v=0

Once the coefficients 3], are obtained, we are able to compute the Wigner func-
tion at any position (x, k) in the element &} X /C,. at t™ through the global spectral
approximation

N—-1 M

flaktn) ~ 303 B0 (0)CHh). (1448)

=0 v=0

When evolving from " to "1, we need boundary conditions in X, x K,.. These
boundary conditions are given according to the inflow rule, from the solution in
the adjacent elements at t", i.e.,

(a) if k < 0, then

n+1y fq+1,7’(QQ7katn)7 1 S q< Q7 4.49
Jarlo k17 = {fR(k,t”% q=0Q; (1:49)

(b) if & > 0, then

fo1r(gg-1,k,t"), 1<q<Q,

P i=1 (14.50)

fq,r(gq—la k>tn+1) = {

Here, we set k = 0 to be the end point of an element, so k£ = 0 is not a collocation
point.
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14.2.4
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Figure 14.2. Calculated Wigner functions with corresponding meshes in (z,t) phase
space at t = 7.5 (top figures) and ¢ = 20 (bottom figures). The GWP of energy level
Fo ~ 1.12, interacting with a Gauss barrier with a barrier height H = 1.3, is separated
into two wave packets: one traveling across the barrier while the other being reflected
by the barrier. From Shao et al. (2011), copyright (2011) by the Global Science Press.

Adaptive meshes for Wigner distributions

Following Kluksdahl et al. (1989) and Biegel (1997), we simulate the motion of
a Gauss wave packet (GWP) to investigate the performance of the SEM (Shao,
Lu, & Cai, 2011). The GWP in free space is given by

(z — w0 — ’Uot)Q]

2
D I =]

f($7kat) - 2€Xp |:_

(14.51)

where g is the center of the GWP at t = 0, a is the minimum position spread,
vo = hko/m is the average velocity, and 3 = h/(2ma?). The kinetic energy of
such a GWP is Ey = h%kZ/(2m). Actually, the GWP given in (14.51) is the
analytical solution to the Wigner equation without a Wigner potential (Biegel,
1996, 1997). In the numerical simulations, we take a = 2.825 and m = 0.0665m,.

The distributions and the corresponding meshes at different instants for the
case H = 1.3 are shown in Fig. 14.2, from which we conclude that the p-adaptive
methods capture the movement of the GWP accurately.
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Upwinding finite difference scheme

Next, let us consider a finite difference method for the time-independent Wigner
equation in (z,k) € [-L/2,L/2] x [—Ly/2, Ly /2]. We set h, as the mesh size of
x-space, and let N be the number of mesh points

—%, zi:—ngihz, 1=0,1,2,...,N. (14.52)
From (14.1), only the boundary condition in z-space is required. An upwinding
difference method can be used to approximate the first-order derivative in x. Let
Neon denote the mesh points in [0, Leon /2] with a spacing heoh = Leon/Neon-
Similarly, Ly is the integration length in (14.7), N is the number of mesh points
in k-space, and hy = Ly /Ny is the corresponding mesh spacing. In order to avoid
k = 0, which would lead to a zero diagonal element in the discretization matrix,
we choose the mesh points as k; = Ly /2 — (j +1/2) hg, j=0,1,..., N, — L.

Using a middle point formula for the integration with respect to k" in (14.7)
and a first-order upwinding finite difference scheme for the spatial derivative, we
arrive at the finite difference equation at (z;, k;):

Np—1

hk; f(zi k) — f(@ic1, ki) qhg >

oy Lonoky) — Ty Mm S Valaisky — K f(iky) =0, ky >0,
Jj'=
Np—1

hkj f(2iy1, k; i h

mijf(x-‘rl ZL f(x gﬂ'l;i Z V 'rla J )f('ruk/):(h kj<0’

(14.53)

fori=1,2,....,N —1,5=0,1,..., N — 1. Here, Vy(z;, k;j — K/) is calculated
in (14.8) by a Neon-point trapezoidal rule with a spacing heon, which in practice
can be taken as heon = 2h,.

Meanwhile, the current density can be simply computed as

k; <0 k;>0

The above definition ensures that the current density calculated for the steady-
state solution is independent of z. In Section 14.3.1, we will address the issue
of how to choose Lj and L., to ensure the conservation of the electrons and
applicability of discrete fast Fourier transforms.

Selections of Leoh, Neoh, L, and Ny
Firstly, for the conservation of electrons in k-space, we have from (14.11) that
Lkhcoh = 27. (1455)

Secondly, as Lo, is the coherence length in the density operator which defines
the effective Wigner potential (14.6), the latter is discretized into a sum (14.8).
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As the continuous Fourier transform is changed to a discrete one, in order to
take advantage of the fast discrete Fourier transform (DFT) to evaluate the sum
(14.8), we like to have the following equality:

hkLcoh .27

kiy, =7 ;
]yu I Ncoh jMNcoh
namely, we require that
Lcohhk, = 2. (1456)

In summary, the values of Ly and L¢on and the corresponding discretization mesh
points Nj and N, are related by
_ ﬂ _ Lcoh

hk hcoh

It is important to satisfy (14.55), (14.56), and (14.57) in solving the Wigner
equation numerically with a finite difference scheme.

N = Neon. (14.57)

Self-consistent algorithm through the Poisson equation

So far, we have introduced two quantum transport models: the NEGF and the
Wigner equation. For a 1-D device imposed with a bias potential V', the self-
consistent potential energy vs(z) is related to the static potential v(z) by vs(z) =
qv(x), which should be determined by a Poisson equation,

0 0
_ —_ =qg(— 14.
o (e ) vio) = (nla) + Note)), (1458)
with a Dirichlet boundary condition at X; and Xs:
v(X1) =0, v(Xz)=-V,

where €(z) is the dielectric constant and Ny () is the doping density. The intrinsic
Fermi energy level is always set to zero as the reference energy.

e The Wigner equation method with the Poisson equation
Given an error tolerance € > 0:

(1) guess an initial potential function v(x);

(2) solve the transport equation with the Wigner equation method (14.7) to
calculate the electron density n(x) with the formula (12.118);

(3) solve the Poisson equation (14.58) with a Newton iteration method — with the
updated potential v(x); repeat Steps 2 and 3 until the potential distribution
v(x) is convergent within the given error tolerance ¢;

(4) solve the Wigner equation (14.1) with the convergent potential v(z), and
calculate the current by (14.54).
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Figure 14.3. Resonant tunneling diode structure with contacts doped. From Jiang et
al. (2011), copyright (2011) by Elsevier.

Currents in RTD by NEGF and Wigner equations

The RTD structure (Esaki & Tsu, 1970; Tsu & Esaki, 1973) as shown in Fig. 14.3
is the classical 1-D hetero-structure device with a negative resistance.

Two thin AlGaAs layers are sandwiched by GaAs layers to form two energy
barriers and one quantum well. For a space-dependent effective mass in the RTD,
the 1-D Schrédinger equation should be

0 1 0
A (m = &E) (@) + v(@)h(@) = Bb(a), (14.59)

where the effective mass of GaAs is mgaas = 0.067mg, Mmaigaas = 0.0919my
for AlGaAs, and myq is the electron mass in the vacuum. However, here a con-
stant effective mass m, = mgaas = 0.067myq is used. The prototype RTD is a
symmetric structure, and we state that L;; = L; — L;, where L; is the position
of the material interface in the hetero-structure. Then, the length of the device
is L = Xs — X7 = L7o. The black barrier region is set to L3s = Lsq = 2.825
nm, the length of the quantum well is L43 = 4.52 nm, the length of the contact
regions is denoted by L. = Lig = Lzg, depicted as the gray area, and the buffer
region Ly, = L15 = Lsg is introduced to decrease the scattering of electrons. We
set the intrinsic Fermi energy in GaAs as the benchmark of the energy. So the
conduction band energy v.(z) = 0 eV in GaAs and v.(z) = 0.27 eV in AlGaAs,
where 0.27 eV is the conduction band gap between GaAS and AlGaAs. A coarse
mesh size a = 0.565 nm is equal to the lattice constant of GaAs. The length of
the contacts L. and the length of the buffer L; are important parameters which
will affect the density and the current. Also we will adjust L. and L to analyze
the accuracy of the inflow boundary condition. For self-consistent simulations,
the doping profile in the contacts is depicted as Fig. 14.3, where the gray areas
are doped with a concentration 0.2 x 10! cm™ and the white and the black
areas are doped intrinsically.

The I-V curves (Jiang, Cai, & Tsu, 2011) obtained by the NEGF method and
by the Wigner function method are plotted in Fig. 14.4, in which the length of
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Figure 14.4. The I-V curves by the Wigner function and the NEGF with different L.
and L. From Jiang et al. (2011), copyright (2011) by Elsevier.

the contacts is the same as the size of the buffer layer. The I-V curves obtained by
the Wigner function method approach those obtained by the NEGF method for
low bias potentials as the lengths of the contacts and the buffer layers increase,
which verifies that the boundary condition of the Wigner function method is
valid for large enough contact length.

Calculation of oscillatory integrals O, (z)

The oscillatory integrals are defined as

1
On(2) = / =5, (2)da. (14.60)
-1
Firstly, we exploit the expansion of €'** in terms of the spherical Bessel func-
tions of the first kind ji(z) and the Legendre polynomials Py (x); see Abramowitz

& Stegun (1972, eq. (10.1.47)):

= > (2 + 1)i*ji(2) P(x), (14.61)
k=0
and then we have
1
/ e P, (x)dx = 2i"j,(2), (14.62)
-1
where we have used the orthogonality relation,
! 2
P,(z)P = —nk. 14.
| Pi@)Po) = 50 (14.63)

Secondly, we can express the Chebyshev polynomials T;, (z) using the Legendre
polynomials Py (x) as

2) =Y crnPi(z), (14.64)
k=0
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where the coefficient ¢, is defined by

2k +1 [1
Clyn = k; /Tn(a?)Pk(sc)d:c, (14.65)
-1

and has a recurrence relation

0, n=1,
S FURETE

2 1-n2 >

{O, n =2,
Cin = n
) 3 —1+(-1)
2 n2—g o 1 # 27

0, k=n-3,
Ck+2n = 2_ 12
’ 2k+5 —k _

m'm'C]“n, k—0,1,2,...,n—4,n—2.

Therefore, we get the final formula (Kythe & Schéiferkotter, 2005):

1 n n
On(2) :/ el lz ChnPr(z) | dv = Z Ck,n/ e Py (z)dx
-1 k=0 k=0

1
-1
= 2) iFepnin(2). (14.66)
k=0

14.5 Summary

The Wigner transport equation for nano-devices provides a direct link to the
classical Boltzmann transport model for micro-devices and allows easy inclu-
sion of scattering effects between electrons and phonons or impurities by using
appropriate quantum or even classical collision operators. The Frensley inflow
boundary condition for the Wigner distribution assumes that the electrons from
the input contact enter into the device active region, without reflection while
passing the inflow boundary. Due to the high dimensionality of the phase space,
appropriate truncation of the computational domain in the phase space and
adaptive meshing are detailed here, as both are important to reduce the overall
cost of numerical methods (e.g., an adaptive spectral element and an upwind-
ing finite difference method) so the Wigner transport model can be applied to
realistic low-dimensional nano-devices.
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Hydrodynamic electron transport
and finite difference methods

Having discussed quantum transport models in the preceding two chapters, we
now turn to the semi-classical Boltzmann descriptions and their moment equa-
tions in the hydrodynamic model in electron transport in complex media in-
cluding semiconductors and plasmas. Then, finite difference methods for solving
the hydrodynamic equations for semiconductor devices will be discussed. Be-
cause of the high field effect in sub-micron devices, the electron velocity may
develop a sharp transition profile resembling shock waves (Gardner, 1991), as
in high-speed gas dynamics. Therefore, shock capturing schemes developed for
gas dynamics (LeVeque, 2002; Hirsch, 2011) can be applied for device simula-
tions. Here, we will present three methods: the traditional Godunov methods,
the weighted essentially non-oscillatory (ENO) finite difference methods, and
the central differencing methods. It should be mentioned that the discontinuous
Galerkin method can also be used to compute the semiconductor hydrodynamic
equations (Liu & Shu, 2007).

Semi-classical and hydrodynamic models

Semi-classical Boltzmann equations

A classical Boltzmann equation can be derived from a semi-classical limit of the
Wigner—-Moyal expansion of the 3-D Wigner equation (12.114) by keeping only
the first few terms of the expansion and adding a collision term to account for
the scattering of particles such as electrons with other particles or impurities.
For r,k € R3, the Wigner-Moyal expansion including collision effects becomes

B ik :
(r,k, ) + — - Vo f(r,k, ) hz43 25+1 VDY () v £k, 1)

ot
of
’ (8t>coll (o0

where the collision (9f / Ol)con is defined by the following integral operator:

(g{)coll( ’ - 3 Z/ r k/ k/ k) o f(I‘, k’ t)SJ(k’k/)] dk/
(15.2)
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Here the j summation is over all types of scattering events (electron—electron,
electron-ion, and electron-impurity, etc.), and the scattering rate S;(k’, k) is
calculated from the Fermi golden rule (Datta, 1989).

Meanwhile, a Poisson equation for the potential is coupled to (15.1) as follows:

V2V (r) [/f (r,k,t)dk — p(r,t) + Na(r) — Np(r)|, (15.3)

where p(r, t) is the hole concentration and N4(r) and Np(r) are the acceptor and
donor concentrations, respectively. The hole concentration satisfies the following
drift-diffusion equation (Lundstrom, 2000) (together with (15.3) forming the
Poisson-Nernst—Planck (PNP) semiconductor model):

Ip(r, )
ot
where i, is the hole mobility, V; = kgT/q denotes the thermal voltage, and

R(V,n,p) and G;;(n,p) are the recombination rate and the hole generation rate
from impact ionization, respectively.

+ Ve [ppp(r, )V V(x) + ppViVep(r)] = RV, 0, p) = Gii(n,p), (15.4)

From (15.1), we can obtain the classical Boltzmann equation for f by keeping
only the first term in the expansion (15.1):

of .

S Vif (k) - erV(r) Vif(r,k,t) = <8f>con (15.5)

ot

which is also called the semi-classical Boltzmann equation as the scattering
rates in the collision term can be calculated using quantum mechanical ap-
proaches. The Boltzmann kinetic equation for the one-particle distribution func-
tion f(r,k,t) can also be derived directly by considering the rates of particles
entering and exiting a phase space element due to the collisions between particles
(Huang, 1987; Liboff, 2003; Li & Qin, 2012).

The higher terms in the summation in (15.1) will be identified as quantum cor-
rections to the classical description of the electrons. The first quantum correction
model Will be

af

ooV cfrk,t) — —V,V( ) Vief(r,k,t) + —L V3V (r) - V3 f(r, k. )

24h
of
( ot )coll (156)

Hydrodynamic equations

The phase space description of the electrons or ions by the Wigner or Boltzmann
distributions still poses great challenges for two- and three-dimensional systems
as it demands a (2d + 1)-dimensional (2d dimensions in space and one in time)
computational effort for a d-dimensional system. Thus, in many situations, es-
pecially for micro-scale devices where the quantum phenomena are not strong,
moment equations for (15.5) are used instead. Two popular models can be de-
rived based on the first one or the first three moments of (15.5): drift-diffusion
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and hydrodynamic models, respectively. The hydrodynamic model resembles the
conservation laws for the Newtonian fluid flows and takes into consideration the
temperature and the energy gradient of the electrons in the model, while a con-
stant temperature is assumed for the drift-diffusion model.

Using the definition of the momentum p = ik in quantum mechanics, we will
denote by f,(r,v,t) the classical Boltzmann distribution of (15.6) for the a-
type particles (which could be electrons, ions, or neutral particles) in terms of
the position r and the velocity variable v:

hk
v="2 2= (15.7)
m m
and we have
m
Vy = Evk. (15.8)
Introducing the notation
F
= 15.9
a= . (15.9)

where F represents the force on a charged particle of charge ¢, which is the electric
force F = —¢VV (r), then the Boltzmann equation (15.5) takes the following form
for a classical particle system:

Ofa + v - Vifalr,v,t) +a-Vyfo(r,v,t) = ((9]”@) . (15.10)
ot ot ) .on

In the original Boltzmann kinetic theory of dilute gas, the collisions between par-
ticles are assumed to be instantaneous and binary, namely many-body collisions
are not considered and the process is Markovian, such that two particles after a
collision will have no memory of their past, and their dynamics will only depend
on their states after the collision. In this case, the collision in (15.10) can be ex-
pressed in terms of the following Boltzmann collision operator (Liboff, 2003) for
two particles (r,v) and (rq,v,), while (r/,v') and (r},v}) denote their position
and velocities after a collision, respectively:

(%) @w- 52 [ later V0150540 = Bl ot vl )i,

(15.11)
where g = |[v — vy| and o(2) is the scattering cross section which depends on
the specific potential governing the interaction of the two particles. The physical
meaning of o(2) is given as follows (Liboff, 2003):

Io(Q)dQ) = number of particles deflected into the element
of solid angle d2 about 2 per second
for an incident beam of particle of intensity I (number/s - cm?).
Next, we will derive a general macroscopic equation using moment equations

for the Boltzmann equation for various conservative quantities following Bit-
tencourt (2004). Given any conservative quantity x(r,v), we have the following
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moment equation by integrating over the velocity variable the product of x(r,v)
and (15.10):

/X(r,v) [aajia + v -Vifalr,vit) +aVyfo(r,v,t)| dv

- /X(r,v) (%)wu dv. (15.12)

To proceed, the number density per unit volume is defined as

ng(r,t) = /fa(nv,t) dv, (15.13)

and the average (x), of the quantity x(r,v) in the phase space is defined as

/ () fo dv / () fo dv

(X)o = = (15.14)
/fa(r,v,t) dv na(r?)
Then, the first term on the left-hand side of (15.12) becomes
Ofa 0 .
[t av= 2 [xtfa dv= 2 (0 (00, (15.15)

and the second term, after using the fact that V, - v = 0, becomes

St v Vetaleovit) dv = Ve [x(v) vhalrv) dv = Vi (0 ().

(15.16)
Meanwhile, the third term can be obtained by using integration by parts to
become

/X(I‘,V)a Vi falr,v,t)dv = /X(I‘,V) Vy - (afa(r,v,t)) dv
= —/a - Vux(r,v) fa(r,v, t)dv = —n, (a - Vyx), , (15.17)

provided that
Vy-a=0, (15.18)

which is used in the second equality of (15.17). Condition (15.18) is true for
many types of forces F in (15.9) when they do not depend on the velocity v,
for instance the electric force F(r) = —¢VV(r), which depends only on the
position r.
Substituting (15.15), (15.16), and (15.17) into (15.12), we obtain the general
transport equation:
0fa

57 (10 00,) 4 T (s (v)) a0 Tonde = (502) . (59
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where nq (xv), in the second term is identified as the conserved quantity
flux J,:

Jy =na (xv),, - (15.20)

By setting x = m,, the mass of the a-type particle, we have the continuity
equation

%pa + Vi (paua) = Sa, (15.21)
where the density of the a-type particle p, is defined as

Pa = MaNg, (15.22)
the average velocity of the a-type particle at the location r is given by

u(r,t) = (v),, (15.23)

and the source term S, results from the collision experienced by the a-type

particle:
S, = ma/ {afa ] dv; (15.24)
ot coll

> S.=0. (15.25)

for mass conservation,

Next, setting x = mqv, (15.19) becomes

5 0 (mayv)
a (’na <mo¢v>a) + vI‘ ' (Tla <m04vv>a) — Na (a-vaaV>a - ()coll .

ot
(15.26)
The first term in (15.26) is
0 0 0
ot (na (Mav),) = otPe (V)= ot Patte (15.27)
and the second term in (15.26) is
Vi (na (Mmavv),) = Vi (pa (vV),), (15.28)

which involves the second moment vv. Consider the velocity fluctuation with
respect to the average velocity u, of the a-type particle:

v=u,+V, (15.29)
and
v, =0. (15.30)
It follows from (15.30) that the term following V, in (15.28) becomes

Pa (VV) o = pa (o + V') (us + V'),
= PalaUy + po (V'V'), = patauy + Pa, (15.31)
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where the pressure dyadic P, is defined as

P, =po (vV'V'),, (15.32)
ie.,
(Pa)ij = pa (Viv}), - (15.33)

So the second term in (15.26) becomes
Vi - (na (MaVV),) = Vi - (palatug + Py), (15.34)

where the divergence operator V, applies to each column of the dyadics u,u,
and P,.
Next, the third term in (15.26) is
Na (@ - Vymav), =nq (F - Vi) v), =nq (F)

Putting (15.27), (15.34), and (15.35) into (15.26), we have the momentum
equation for the a-type particle:

(15.35)

o

apgtua — V- (palialy) = naFy — VP, + A, (15.36)
where
Fo=(F),
and
A, = ma/v {6@ Lou dv; (15.37)

> A.=0. (15.38)

For later use, we can also define a scalar pressure via the trace of the dyadic
P, as

Pa = EZ (Pa)y; - (15.39)

For an isotropic gas, we have a diagonal dyadic with P, = diag(pe, Pa, Pa) and

p
Do = ga CEN (15.40)

where v"? = |[v/|?.

Meanwhile, the temperature T, for the a-type particle is defined as

kpT, = % (), = ;—Z/U’Qfa(r,v)dv

Ma

= 7/ (U — uoc)g fa(r,v)dv, (15'41>

3ng
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and, comparing (15.40) and (15.41), we have the equation of state for an
ideal gas:

Pa = NakpThy. (1542)

To derive the energy equation for the a-type particle, we take y = mq,v?/2.
The general transport equation (15.19) now becomes

flpa (v*)  + Vi %O‘ (v*v) —no (F-v), =0. (15.43)

The first term on the left-hand side of (15.43) is

1 1 1 1 3
5P (V") = §Paui +5Pa (V%) + patla - (V) = §Paui +5Pa- (15.44)
Next, we examine the term inside the second term in (15.43):
(v*v), = (g +2ua - v/ +0?)(us + V),
= [uiua +2u, - (V) ua + <vl2>a u@}
+ [ (V1) +2u0 (VIV)), + (VPV) ]
= wiua+ (%) us + 2u, (V'V), + <v’2v/> . (15.45)
Therefore, the second term in (15.43) (inside the divergence operator V) be-
comes
%( vy, = %uiua + %1 v"?) ug
+ patta (V) + 22 (o),
= Poy2 k P 15.46
= ?uaua + ipoéuoé + FaUg + qa, ( : )
where a heat flux q, is defined as
1
o = 3P0 (V') . (15.47)
The third term in (15.43) is
ne (F-v), = /faF -vdv = F'/fa'vdv =F - u,. (15.48)

Substituting (15.44), (15.46), and (15.48) into (15.43), we obtain the energy
equation for the a-type particle as follows:

a?:a + V- |:(p2aui + gpa + Pa) u, + qa:| =F - u, +M0¢7 (1549)

where the energy density for the a-type particle W, is defined as

1 3 1 3
Wao = §paui =+ ipoz = 5/)@“2 + §nakBTom (15.50)
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and the energy source term from the collision is given by

_Ma [ |0/
M, = 5 /’U {at Loudv7 (15.51)

and the energy conservation

> M, =0 (15.52)

Finally, the heat flux in semiconductor devices can usually be approximated
by the gradient of the temperature as follows (Blotekjaer, 1970):

q=—xsVT, (15.53)

with k being the thermal conductivity of the semiconductor material of the
device, approximated by (Baccarani & Wordeman, 1985)

5kZn, T
KR = B

=——. 15.54
2mavp(w) ( )
Then, we can obtain the energy flux as
_(Pa,2 3 _
Jw— 7ua+§pa+Pa ua+qa_ua(Wa+Pa)+qa
—u W, + (nua - ”v) lep T (15.55)
kp
Using (15.50) to eliminate the temperature kgT,, we finally obtain the energy
equation:
oWy, 2 K Wo  meu?
= — V- aWa 5 alag — 7 — - £ Fa' o Moc'
B \Y [u +3(nu ka)<na 5 )]—I—n u, +

(15.56)
In summary, (15.21), (15.36), and (15.56) form the hydrodynamic model for a
multiple-species particle system.
In the following, we will consider a system of electrons only without the heat
flux term (dropping the index «) whose hydrodynamic equations are written in
a conservative divergence form:

U, + VE(U) = s(U), (15.57)
and
U = (p,pu,W)", (15.58)
f(a) = (pv, pu’ + Pu(W + P))", (15.59)
W = %pu2 + ;nkBT, (15.60)

1
P =nkpT = (y—1) (W — szﬁ) , (15.61)
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where v = 5/3 , and the source term contains the collision relaxation:
s(U) = (0,gnF + A,qnF -u+ M)*. (15.62)

In many cases, the collision term can be modeled with the relaxation times 7,
Tp, and T, for the mass density, the momentum, and the energy, respectively,
ie.,

- W — 3nkpTy\
s(U) = <pr°,an + i—u,an-u+ 2”’”) : (15.63)

p P Tw
where m, p, u, P, and W are the mass, mass density, velocity, pressure, and total
energy, respectively. Note that py and Ty are the mass density and temperature,
respectively, in an equilibrium state of the system (Tomizawa, 1993). Moreover,
the electric field F = —V¢ and the potential energy V' = —q¢; the latter is
governed by a Poisson equation,
V-eVV = ¢@(N —n), (15.64)

where N is a given doping density for the semiconductors.

High-resolution finite difference methods of Godunov type

Consider the 1-D version of the nonlinear conservation law (15.57) with s = 0:
U, +f£,(U)=0. (15.65)

The Godunov method is based on a finite volume formulation of (15.65) by
integrating between any two points a < b to arrive at

b
%ﬁ - %b ! - / U, )z = — ! ~[F(U() ~ FU@)],  (15.66)

where the overbar indicates the cell-averaged values of the related quantity.
The cell-averaged value U; over the interval [z;_, /25 Tj41/2) is defined as

— 1 Ti+d
T, (1) = 7/ Uz, t)dz, (15.67)
Tiry = imy Je,
for which the time evolution is
0 — 1
50U+ 1 [fU,y) - £(U,_y)| =o. (15.68)

It should be noted that both the point values U/, and the cell-averaged value
Uj; of the physical quantity are involved in (15.68), while the time evolution is
given for the cell-averaged values. Once we know the cell averages at a given
time instant, the point values at the cell boundaries must be established in order
to evaluate the flux terms (which allows the cell averages to be predicted at a
new time); this is called the “reconstruction step” in the Godunov-type scheme
(Harten et al., 1997).
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A semi-discretization scheme for the conservation law can be constructed based
on (15.68) for the cell averages on a given mesh:

%Uj + Aix (F4y —1-4) =0, (15.69)
where the numerical flux fj+1 /2 is expected to approximate the analytical flux
f(Uj41/2) if the numerically computed cell averages U; approximate those of
the exact solution. Therefore, the key step in the semi-discretization scheme
(15.69) is how to define the numerical fluxes once the cell averages {U; }§V=1 at
the current time ¢ are given. In the original Godunov scheme (Godunov, 1959),
this numerical flux is obtained by solving an initial value problem for (15.65)
around the cell interface x;, 1/, with the initial data at time ¢ made of two
constants U; and Uj;;1 to the left and right sides of x5, respectively. This
solution is called a Riemann problem, whose solution is self-similar in time for
the hydrodynamic equations, and is denoted as

U (x — et T;Uj,ﬁjﬂ) = UM (5T;,T,11), (15.70)
where §= (2 —x;41/2)/7. Then, the Godunov numerical fluz is defined
simply as

fj+% = f (U(R) (E = O;Uj7ﬁj+1)) . (1571)

High-resolution schemes of Godunov type can be similarly defined if the initial
data for the above Riemann problem are replaced with piecewise polynomials of
first, or second, or even higher orders. This step thus requires a reconstruction of
the point values of the solution from its cell averages using higher-order piecewise
polynomials such as the MUSCL (monotone upstream scheme for conservation
laws) introduced by van Leer (van Leer, 1977, 1979; Colella & Woodward, 1984).
In the case of piecewise linear polynomials, the reconstruction can be defined for
each component as follows:

I 1 _ .
Uiy =05+ 523 ) (U5 —Ujm ), (15.72)
h =1 T
Uiy = Ui — 5@ it (TUjr2 = Ujsn ), (15.73)
2

where 7;,;/o is the ratio of the kth component of the differences of the cell
averages,

T, - T,

Fies = M k=1,2,3,

(U; —Uj-),
and a “limiter” ®(r) is introduced to limit the slope of the linear interpolation
such that the overall piecewise polynomial maintains a monotonic profile if the
given data {U; };\le are monotone componentwise. Many limiter functions have
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been studied (for a review refer to Sweby (1984)); for example, the so-called
“superbee” limiter proposed by Roe (1985) is given by

®(r) = max[0, min(2r, 1), min(r, 2)]. (15.74)

The numerical flux for the higher-order spatial resolution approximation is
given by

£y =/ (0P (¢=0U%, UR L)), (15.75)

where U%Z_ , and U%_, are the point values at the left and right side of x, L1,
J+3 J+3 I

respectively

The remaining issue is to get the Riemann solution UM (- UJL+1/2>U§?’+1/2)
for general piecewise polynomial reconstructed initial data (point values). We
should note that the Godunov numerical flux, using the Riemann solutions, is in
essence a generalization of an upwinding finite difference method, which can be

seen for a linear wave equation
f(u) = au, (15.76)

so, the solution to the Riemann problem in this case is a simple convection of
the initial data to the left or right according to the sign of the wave speed a, and
we have

uj, if a > 0,

15.
Ujt1, if a <0, (577)

w0571, Wj41) = {
resulting in a numerical flux for the positive speed a,

fivr =15, (15.78)

and a downwind finite difference approximation to the scalar version of (15.65)
with (15.76),

0 _ a _

We now consider a system of linear equations (15.65) with the flux defined by
a constant matrix A:

f(U) = AU, (15.80)

where A could have both positive and negative eigenvalues, and we could split the
matrix A into AT and A~ with positive and negative eigenvalues, respectively,
ie.,

At =PATPTY AT =PA P, (15.81)

where P contains the right eigenvectors of the matrix A as its columns and

A= PAP', A =diag(\i,...,\n),

1
AT = idiag()q F A1) A+ AR,
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1.
AT = idlag()\l — Ay A = [Anl)s

A|=AT —A~, |A|=AT - A", (15.82)
Then, the upwinding scheme applied to (15.80) will be

0— AT A~
ot A U TV g

which can be rewritten in the conservative form of (15.69) with the following
numerical flux:

(Uje1 —T;) =0, (15.83)

A 1 1 — _
firy = 5 + 1) = 51A(Uj = Uy). (15.84)

The Riemann problem and the definition of the numerical flux for the hydrody-
namic system, a nonlinear system of conservation laws, are much more difficult.
However, approximate Riemann solvers can be found; one of the most popular
is the Roe—Riemann solver, which in principle linearizes the flux function at a
reference state, called the Roe-averaged state U.

Consider the eigenvalues of the Jacobian matrix of the flux function f£(U):

_ 08(V)

AU) = — 15.
=2 (15.85)
which are, for a 1-D problem (Harten et al., 1997),

MU)=u—c, MU)=u, AU)=u+c, (15.86)

where the speed of sound is ¢ = (yP/p)'/?

corresponding right eigenvectors are

and p = mn is the mass density. The

1 1 1
ri(U) = u—c , 1o(U) = u , r3(U) = u+c , (15.87)
H — uc %u2 H + uc

where H = (W + P)/p = c¢*/(y — 1) + u?/2 is the enthalpy.
The corresponding left eigenvectors {1;(U)}, which are bi-orthonormal to
{rx(U)}, are given by

1
1, (U) = §(b2 +ufe,—byu—1/c,by),

1
12(U) = 5(1 — b27b1u7 —bl)7

1
13(U) = §(b2 —ufc,—bju+1/c,by), (15.88)
where
-1 1
bl = 762 s b2 = iugbl.

Then, the Roe averages are defined as follows (Roe, 1981):

= {ypu) / (V7).
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= (VpH) [ (Vp),
¢=/v H— 7u2 (15.89)

where the angled brackets denote the arithmetic average of two states:
1 L R
) =5 [0 (Uk ) +o(UE )] (15.90)

The Jacobian matrix A(U) evaluated at the Roe-averaged state will be
denoted as

Ay =a(05,0), (15.91)
and we have
Aj 1 =PAPTY (15.92)
where
P= (rl(ﬂ),rz(ﬂ)mg(fj)) . (15.93)

Finally, the Godunov-Roe flux is given in a form similar to (15.84) by

G = 5 [ (V) 0 (U)] - gl (U -~ U5y). 0500

The Godunov-Roe flux needs an entropy fix to avoid the generation of non-
physical expansion shock waves. It was given in Harten & Hyman (1983) by
modifying the eigenvalue |A; +%| of |A; +%\ as follows:

[Ajs1/2l, it [Nl >e,
)\2

~ 15.95
7+1/2 + E) if |>\j+1/2| <eg, ( )

‘/):j+1/2‘mod -

N[

where £ = max [0, (XjJrl =) (Ajy1 — XjJr%)] .

Weighted essentially non-oscillatory (WENO) finite difference
methods

We illustrate the idea of the WENO finite difference method for a 1-D scalar
conservation law:

us + fo(u) = 0. (15.96)

Extensions to the system of conservation laws will be discussed later. The time
derivative and the spatial derivative will be discretized separately. For illustration
purposes, we use the Euler forward difference method for the time derivative,
and the numerical scheme will be written in the following conservative form:

Wt = =X (fy — fimy) (15.97)

1
2
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where uf ~ w(zj,t"), x; = jAz, t" = nAt, Az and At are the spatial mesh size
and the time step size, respectively,

At
A= — 15.98
Ax’ ( )
and fjil /2 are the numerical fluxes which should approximate the analytical
fluxes f(u(zx;4+1/2)). In order to construct an accurate numerical flux, we consider
a function h(x) which is related to f(u) in the following cell-averaging operation
(Shu & Osher, 1989):

1 [os

= — h(&)dE. 15.

) = 5, e (15.99)

Equation (15.99) implies that the derivative f;(u) can be expressed as

bz + %) —hiz - 5)
Az '

fa(u(z;)) = (15.100)

which suggests that the numerical fluxes fj_H /2 should approximate h(z; +
Ax/2) as Az — 0.

Therefore, our goal is to find the function h(x) from knowledge of the solution
u(z), which will be achieved as follows. Define the primitive function H(x) of
h(z) as

H(z) = /_Ai h(€)de. (15.101)

Assuming that (15.99) holds, then, for 0 < j < N, we have

H(ijr%):/ Ey £)de = Z/ £)de = Afo (15.102)

1
E3 k=g

Now let ¢,(x) be an rth-order polynomial over the interval [z;,x;11], which
interpolates H(z;j41/2) over r 4+ 1 mesh points including z; and x;;. There
are, however, r choices of the stencil for this purpose, as we can use each of the
following stencils Si,k=0,1,...,r —1:

Sk = {xj+kfr+1axj+k7r+27 e 7xj+k}a (15.103)

and we have

ar(z;) = H(zj, 1), for j+E-—r+1<i<j+k (15.104)
Then, the numerical flux can be defined as

2 d
firr = @CIT(:E]-JF%). (15.105)

N

It should be noted that the numerical scheme thus obtained is based on a
direct finite difference type approximation to the differential equation (15.96),
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Table 15.1. Coefficients aj, ,

2 0 —1/2 32
112 12

3.0 1/3 -7/6 11/6
-1/6  5/6  1/3
/3 5/6 —1/6

N =

different from the finite volume type approximation in the Godunov scheme in
Section 15.2. However, the approach in this section can be extended to multi-
dimensional problems without much more cost, while the reconstruction step in
the Godunov-type method involves finding the point values of a function from
its multi-dimensional cell averages, which is not an easy task.

As the primitive function of h(z) is related to g,(7;41/2) through a derivative
operation in (15.102), equation (15.105) implies that the numerical flux will be
a linear combination of the values f(u(x;)), j+k—r+1<i<j+k, ie,

fivr = Logp(fish—rt1; fiah—rs - fitn); (15.106)

where L, ; is a linear operator of the following form:

r—1
Loi(gos- - 90-1) = Y _ah191. (15.107)
=0

Here the coeflicients aj ; can be obtained from the interpolating polynomial qr(x)
in (15.105). Table 15.1 contains the coefficients aj ; for 7 = 2 and 3 (Jiang &
Shu, 1996).

The original essentially non-oscillatory (ENO) idea selected a stencil Sy that
had the smoothest numerical data based on comparing the relative magnitude of
undivided differences for the numerical solution in a recursive manner (namely,
starting from the first undivided difference (15.113) up to the rth undivided
difference (15.114)) (Shu & Osher, 1989; Harten et al., 1997). In contrast, the
weighted ENO will use the result of (15.106) on all stencils Sy in a weighted
convex combination as follows (Liu, Osher, & Chan, 1994):

fH% = Lor—1p—1(fj—r41s- s figr—1)
r—1
+ ) (wk = CF) Li(Fishortts Fiahors - Fitk)s (15.108)
k=0

where coefficients C}, are defined by the following conversion formula:

r—1
Lop 1 1(fjmrg1s s figro1) = ZC]ZLT,k(fj+k7r+1v Fith—rs-os [itr)-
k=0
(15.109)



15.3 WENO finite difference methods 395

Some optimal choices for Cf are C3 = 1/3,C} = 2/3; C§ = 1/10, C} = 6/10,
and C3 = 3/10 (Jiang & Shu, 1996). The weights wj, are defined as

2

wp = ———— k= 0,1,...,7—1, (15.110)
(73T i p e o |
where
ot
="k 15.111
Q. (E—FISk)p ( )

Here IS} is a smoothness indicator of the solution, i.e.,

r—1r—I . . 2
18, = Zz(fb Rl o 0" (15.112)
I=1i=1 "
where f[-, -] is the Ith undivided difference:
f13,0] = f5, (15.113)
FU = fli+10-1]—flj.l—1], 1=1,2,...,r— 1. (15.114)

e WENO finite difference for hydrodynamic equations of electron
transport

In order to apply the WENO scheme for the hydrodynamic equations (15.57), we

apply the WENO formula (15.108) to each of the s-characteristic fields, where the

characteristic directions are defined by the left eigenvectors 15 (W, 1/2), 5 = 1,2, 3,

where the overbar indicates the Roe-averaged state between u; and u;4, (15.89).
We define the flux for the system as

r—1
Fivrs =Y we skl Fipnrin,o o Lo £i15), (15.115)
k=0

where wy, s are the weights to be used for the sth characteristic field:
W, s :wk(ls -fj_r+1,...,ls ~fj+r), (15.116)

defined in (15.110)—(15.112).
Finally, the numerical flux is computed by combining the fluxes for all s-
components:

3
= Fiath (15.117)

k=1

T

(SIS

where 1y = 15 (W41 /2).-
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Central differencing schemes with staggered grids

The NT central differencing scheme of Nessyahu & Tadmor (1990) is based on
the cell-average form of the conservation law of (15.96). Consider a cell average
centered at x:

1oty
u(t) = —/ u(&, t)dE. (15.118)
Az [, ae
In particular, we could define the cell average ;,/2(t) centered at x;; /o as
(t) 1 /IH%A; (z,t)d (15.119)
Uiy (t) =— u(x,t)dz, .
J+3 Am IH_%*%

or the cell average 7;(t) centered at x; as

1 wi+ 58
ui(t) = — ,t)ydx. 15.120
=35 [, s (15.120)
v} 2
These two sets of cell averages are defined on a staggered grid, and the NT
central differencing scheme will provide the procedure for obtaining one set of
the two cell averages at t,,11 from the other set at ¢,,, for instance

_ —n+1
{“;1} - {u;+1/2} :
To illustrate this procedure, let us assume that the cell averages uj over the
interval [z;_1 /2,2 ;41/2] are given at t,,. To find the cell averages ﬂ?jr'll /o OVer the
staggered interval [z;,x,11] at t,41, we integrate the conservation law in the

space—time volume [z}, zj41] X [tn, L, + At] as indicated by the shaded region in
Fig. 15.1, and we obtain the evolution equation for the cell averages ;1 /o(t):

ﬂj_,,_%(tn-f—At) = ﬂj.}.%(tn)

(15.121)

The evolution equation for w;q/2(t, + At) is exact provided that the flux
function f(u(z;,t)) is known for all ¢t € [t,,t, + At] at all mesh points x;.
The second-order NT scheme is based on a middle-point approximation of the
integrals on the right-hand side of (15.121), whose second-order accuracy will
be ensured if the function f(u(z;,t)) is smooth along the time interval. The
latter smoothness condition is made possible if we assume the solution at ¢,, is
represented by a piecewise polynomial with breaking points at /2 and is due
to the finite speed of propagation of the discontinuity, for sufficiently small At,
such that

At

o p(Aw) < (15.122)

)

DN | =
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tnt1 - —

-
-~

t, —

Xj Xj4+1

Xj—1/2 Xjy1/2

Figure 15.1. Staggered grids for the NT central differencing scheme.

where A(u) = 9f(u)/0u is the Jacobian matrix of the flux function and p(A)
denotes the spectral radius of the matrix A.
The time integral of the flux function is calculated using the middle-point rule

/tht flulzj, 7))dr = At f (u <:cj,tn + %)) +0(AP). (15.123)

n

Next, the quantity u(x;,t, + At/2) will be approximated by a Taylor expansion
in time and a Lax—Wendroff technique, which replaces the time derivative by the
spatial derivative with the help of the partial differential equations:

—u(xj, ty) + O(At?)

=u(z;,tn) — %f’(u(xj,tn)) +O(A). (15.124)

Then, (15.121), (15.123), and (15.124) give the following approximate scheme
for ﬂ;’j_‘ll s

At

. n At
Tl = Ty - Al [f <U($j+17tn) - 7f/(u($j+17tn))>

—f <u(xj,tn) - %f’(u(xj,tn))ﬂ ) (15.125)

Next, we will try to approximate cell average H;L 112 from the given cell aver-
age uj. The numerical solution at each time ¢, can be assumed to be a piece-
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wise polynomial over the interval [z;_; /2> Tjq1 /2]. For instance, for second-order
accuracy,

1
u(z,t) = Lj(x,t) =u;(t) + (x — xj)Eu;7 T € lr;_1,7;,1], (15.126)

and the cell average of the solution coincides with the point value at the center
of the cell:
a;(t) = u;(t). (15.127)
To ensure the second-order accuracy of the approximation in (15.126), we
require the approximate derivative u; to satisfy

1 0

A—xu; = gu(xj,t) + O(Ax). (15.128)
The ENO idea could be used for this purpose (Liu & Tadmor, 1998; Bianco,
Puppo, & Russo, 1999; Romano & Russo, 2000):

1 1
uy = MM (dj_éu + §MM(Dj,1u, Dju),dj; 1u— 2MM(DJ»u,DjHu)) ,
(15.129)
where
der%u = Ujp1 — Uy, (15.130)
Dju = Uj41 — 2Uj + Uj—1, (15131)
and the min-mod function
sign(z) - min(|z|, ), if sign(x) = sign(y),
MM = 15.132
(@) { 0, otherwise. (15.132)

The staggered cell average ;1/2(t,) can be computed from the piecewise
polynomial representation (15.126) of the solution at ¢ = t,, i.e.,

o | [ #)d L
J+§( ) Ax /zj ]*1(‘%'7 ) x""_/ijr% J(m7 ) €T
1. _ 1
= §[U](t) + Uj+1(t)] —+ g (’LL; — ’U,;Jrl) . (15133)

Finally, substituting (15.133) into the approximate evolution formula (15.125),
we obtain the following relation:

_ L - 1
Uy (b + A1) =5 [0;(1) + W1 (O] + 3 (uf =)

- [r (stosenstn) = G st

2
- 1 (alastn) = 51 e |
+ O(At?), (15.134)
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Figure 15.2. A nt—n-nT diode.

which gives the following evolution of the cell averages between two staggered
grids from ¢, to t,,41.

Second-order NT central differencing scheme over the staggered mesh:
— —nt1
(@} — (@,

(1) Predictor step
Given the cell averages over the cell [x;_y /5 2;11/5] at t,, namely uj, calculate

1 At

ui " = 5 1), (15.135)

where the derivative f’(u;’) can be computed through the Jacobian matrix:
fH(u}) = A(uf)uf, (15.136)

with u/" computed using (15.129)—(15.131) and(15.127):

1 1
U';n =MM (d]._;ﬂn + iMM(Dj—1ﬂn, Djﬂn), dj_i_%ﬂn —iMM(Djﬂn, Dj+1ﬁn)> .
(15.137)
(2) Corrector step

—n+1 1 —n | =—n

Ui =5 (@} +afs1) = Agje1 — 95) (15.138)
where

= () 15.139
gi=1Fw *)+gyw (15.139)

e Numerical results of a 1-D nT—n—-nT diode

In the following, we present some numerical results for a 1-D GaAs diode, as
shown in Fig. 15.2, which consists of 0.25 pm source and drain sections, highly
doped with electron donors n*, and a 0.25 pm channel section of n-type lightly
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Figure 15.3. Results for a n™—n-n™ diode. Top left: electron velocity; top right:
electron density; bottom left: electron temperature; bottom right: electric field. The
solid line depicts a Godunov method and, the dotted line depicts the central
differencing scheme. The z-unit is 0.1 pm. From Gardner, Gelb, & Hernandez (2002),
copyright (2002) by Hindawi.com.

doped material. In the nT doped region, the doping density N =5 x 10'7 cm ™3,
while the channel region dope density N = 2 x 10'® em™3. The effective mass
of the electron for GaAs is m = 0.063m. at temperature 7" = 300 K, where m,
is the free electron mass, and the relative dielectric constant for GaAs ¢ = 12.9.
The relaxation times are 7, = 7, = 0.2 ps. At the left and right boundaries of
the diode, the constant number density n = N is used, and T' = Tj is given at
the left boundary; finally, the potential ¢ = 0 at the left and ¢ = 1 V at the right
boundary. Figure 15.3 (Gardner, Gelb, & Hernandez, 2002) shows the velocity,
density, temperature, and electric field across the diode. It shows the formation
of a shock wave at = 0.2 pm into the channel section and a high temperature
increase as the electron leaves the channel to go into the drain section to the
right, and also the space charge profile in the device. The solid lines are results
obtained by the Godunov-type scheme implemented in the software CLAWPACK
(LeVeque, 2002), and the dotted lines are those by the central differencing scheme
presented in this section.

Summary

While devices at micron scales can be simulated by drift-diffusion models, for de-
vices of sub-micron sizes but still above the scales of quantum transport regimes,
temperature variance and large electric field will occur (as shown in Fig. 15.3).
Therefore, hydrodynamic equations should be used to describe the transport
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of the so-called hot electrons, i.e., electrons that have gained energy from the
large electric field and obtained a velocity distribution far away from that of an
equilibrium Maxwellian. The shock profile of the electron velocity and density
requires the non-oscillatory approximation of the numerical solutions, which is
achieved by limiters in the reconstruction steps in Godunov-type methods or
schemes using the weighted essentially non-oscillatory (WENO) interpolation
techniques.
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16.1

16.1.1

Transport models in plasma media
and numerical methods

In this, the final chapter of the book, we study the transport phenomena in
plasma due to electrons and ions. These phenomena have wide applications in
astrophysics, confined nuclear thermal reactions, and in high-density laser plasma
interactions, etc. Plasma, considered as the fourth state of matter in the universe,
differs from solids, liquids, and gases, in that there is a much weakened bond
strength between its constituent particles. The plasma state of a medium is cre-
ated via high-temperature external heating, which results in an increase in both
the thermal energy and the number of atomic ionizations (i.e., an electron in an
outer shell of an atom escapes from its nuclear force confinement once it obtains
enough external energy from photon excitation or collision), which produces free-
moving electrons and ions. The primary force in a plasma medium is described
by the long-range Coulomb forces of electrostatics. The motions of the electrons
and the ions can be described by a kinetic theory with special treatment of the
collision under the long-range electric potential, which includes the Boltzmann—
Fokker—Planck equations or the Balescu-Lenard equations. A macroscopic de-
scription of the electron/ion density can also be obtained through the moments
of the kinetic equation as the magneto-hydrodynamic (MHD) equations. Three
types of numerical methods based on kinetic and hydrodynamic models will be
discussed in this chapter. The first type is the Boltzmann—Fokker—Planck solver
in phase space, and the second is the particle-in-cell method, which tracks the
dynamics of individual particles under the Lorentz force of the electromagnetic
fields; the latter is also coupled to the charge distributions of the moving parti-
cles. Finally, the third type is a constrained transport method of finite difference
type for the MHD equations, which observes the divergence-free constraint on
the magnetic field.

Kinetic and macroscopic magneto-hydrodynamic (MHD)
theories

Vlasov—Fokker—Planck equations

The kinetic Boltzmann-Vlasov equation given in (15.10) will be used to describe
electron and ion transport in a plasma medium. However, due to the long-range
interaction of the Coulomb force, the binary collision mechanism (15.2) in the
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Boltzmann collision (Section 15.1.1) will not apply here as each electron will
interact with many electrons or ions over a large distance, i.e., they will expe-
rience multiple Coulombic collisions, as well as interact with neutral particles
in the system though through a different interaction potential. However, if the
multiple Coulombic collisions can be considered as a sequence of binary collisions
at grazing angles, the binary Boltzmann collision operator can be used to arrive
at the Fokker—Planck equation (Landau, 1936).

Let fo(r,v,t) denote the distribution function for the a-type particles (such
as electrons, ions, and neutral particles). The Boltzmann collision operator for a
conserved quantity x (15.11) can be rewritten as

{M} =3 [ [ [ fats ¢ = 0gr@a0 av avi. (16
ot coll B JViJVv Q
by using the identity

> / | | [ rtixao(@anavan, -3 / | [ [ esstoot@aavin,

(16.2)
where fa = fa(rvvat)7 f61 = f/;ﬁ (I',Vl,t), f(/y = foz(rvv/vt)7 and fél = fﬁ1(r?vllat)~
Assuming that only the grazing angle collision is involved in (16.1), namely

v =v+ Ay, (16.3)

where |Av| <« 1, we can apply the Taylor expansion to x’ = x(v'):

Av; + Z ax AUzA’UJ . (16.4)

X =x(v+Av) = —l—Z au,

ov;

Then, the time rate of change of the quantity y due to the collision between the
a- and f[-type particles is given by

dfa
/X(V){ f;t ]
9 02
= [ et | S 5 e so(@aa v v,

(16.5)
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Applying integration by parts for terms with dx/dv; and 8%x/dv;0v;, and
using the fact that f, and 0f,/0v; vanish as |v| — oo, we obtain

[o%] o
Sl

72 o faAlevJ go(Q)dQ| dv dv,

)
—;a—viAvifago(Q)dQ

1 9?
(A =Y ——— fo (Av; Av; 16.
/ Z fD‘ Ul Q;aviavjfa< Vi U.7> dV, ( 66)
where the averaging operators (Av;) and (Av;Av;) are defined as
(Av;) = Z/ / fa(r,vi, t)(vi — v;)go(Q)dQ dvy, (16.7)
ﬁ Vi Q

and

(Av;Avj) = / /f@ r, v, t)(v; —v;)(vj —v;)go(Q)dQ dvy, (16.8)

respectively.
It follows from (16.6) that the collision term for the plasma takes the following
form:

Ofa B g,
|: ot :|coll a _zz:aivz (sza Zavz 'u”fo‘) pr(fa)v (169)

which resembles a Fokker—Planck differential operator with friction and diffusion
coefficients defined as
C; = <A’Ui>, Hij = <A’UiA’Uj>. (1610)

The Boltzmann—Vlasov equation in (15.10), together with (16.9), makes the
Vlasov—Fokker—Planck kinetic equation for the plasma:

Ofa

o +v -Vfa+aVyfa =L(fa) (16.11)

MHD equations for plasma as a conducting fluid

As the kinetic equation is difficult to solve due to its six-dimensional phase space
variables, macroscopic equations can be derived from its moment equation. For
plasma, the force on the electrons or ions will be the Lorentz force:

F = ¢(E +v x B). (16.12)
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It is easy to verify that
vV, -F=0, (16.13)

as the ith component of F will not involve the ith component of the velocity
vector v from the definition of the vector cross product. Therefore, the condition
in (15.18) is satisfied, and we can obtain the macroscopic equations for the plasma
using the general moment equation (15.19) in Section 15.1.2.

MHD for plasma as a single conducting fluid

For many situations, we can use a single-fluid model where we can define an
average mass density p,

P = Zpou Pa = MaNa, (1614)

and an average charge density pe,

pe =Y Nafa- (16.15)

An average velocity u is defined by

pu = Zpaua, (16.16)

namely through a mass density weighted average of the velocity of each type of
particle.

The velocity fluctuation v/ with respect to the average velocity u, defined in
(15.23) for the a-type particle has been defined previously and is repeated here:

v=u,+V, (16.17)
and
vh,=0. (16.18)

In reference to the average velocity u of the single-fluid model, a new velocity
fluctuation v* can be defined as

v=u+v", (16.19)

with which we define a different pressure dyadic P}, for each a-type particle:

(P;)ij = Pa <Uf’U;>a . (16.20)
For the single plasma fluid, an overall pressure dyadic P is defined by
P=> po (v'v),, (16.21)

and the global scalar pressure p is then

3
1 1 \
p= 5;21:]3” = 5% pa (V). (16.22)
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The mass density averaged pressure dyadic in (16.21) is in general different
from the linear sum of the pressure p, of (15.39) for each individual type of
particle. In fact, by subtracting (16.17) from (16.19), we can see that the fluc-
tuation with respect to the average velocity u, of the a-type particle and the
global mean velocity of the one-fluid plasma u are related by

vi=v + (uy—u) =v' —w, (16.23)

and
Wq = U — Ug, (16.24)
where w,, is considered as the diffusive velocity of the a-type particle with respect

to the overall plasma velocity, and we also have the following identity using
(16.18):

V), = —Wa. (16.25)
Now, substituting (16.23) into (16.21), we have

P=>Po+) po WaWa. (16.26)

Thus, the total scalar pressure p (trace of the dyadic) can be shown to be
related to the individual scalar pressure p, of (15.39) as follows:

pP= pa+t %Zpa w?. (16.27)
«@ «

Next, the hydrodynamic equations for the single-fluid plasma can be obtained
from (15.21), (15.36), and (15.49). Firstly, by summing the continuity equation
(15.21) over « and using the definition (16.16) and the conservation identity
(15.25), we have the continuity equation for the plasma fluid:

% +V - (pu) =0. (16.28)

Secondly, summing the momentum equation (15.36) over «, after using (16.16)
and (15.38), we have

% = %Zpaua = —VZpauaua - Z%Fa - VZPa' (16.29)

Using the decomposition (16.24), the sum in the first term on the right-hand
side of (16.29) becomes

Zpauaua == Zpau(x(u - Wo/) == Zpauaufzpauawa
@ @ «a «
= puu + <—QZPaUWa + Zpawawa)
« «

= puu —|—Zpawawa. (16.30)

[e3
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The last equation in (16.30) holds due to the fact that

Zpawa = _Zpa ua_u Zpaua + Zpa
= —pu + pu=0. (16.31)

The second term on the right-hand side of (16.29) is

ZnaFa :Znaqa (E4+uy xB)=p.E+ (Znaqaua> x B
(03 « «
— p.E+J xB, (16.32)

where the current J is defined as

J=> nagalta. (16.33)
[0

Substituting (16.30) and (16.32) into (16.29), and using the definition of the
global pressure dyadic in (16.26), we have the momentum equation for the plasma
fluid:

dpu
ot

Finally, to arrive at an energy equation for the single plasma fluid, we use the

= —V(puu) — (p.E+J x B) — VP. (16.34)

energy equation for the a-type particle with the general macroscopic equation
(15.19):

O e )+ V(10 (0¥),) ~ 1 (e Vo) = i (W)l (16.35)

with x = mv?/2, and the facts that

1 1
a,=—F, Fo=0¢(E4+vxB), and Vyx=-m

V. 16.
- SMaV (16.36)

After a summation over « (the energy loss terms cancel due to conservation), we
have

(%QZpa (v?), +V- Z”“ (V). Zna F-v), =0. (16.37)

Now we use the velocity decomposition with respect to the global velocity u
n (16.19) to evaluate each of the terms in (16.37). To simplify the first term on
the left-hand side of (16.37), we consider

S pale?), = %Zpazﬂ +53re (),

1
+Zpa uv” 7pu + 2p (16.38)
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The last equality is due to the fact that
Zpa uv®) = uZpa Yo = —uZpawa =0, (16.39)

where the identity (16.25) is used for the second equality and the final equality
is due to (16.31).
Here, the energy density W of the plasma is defined as

3 1
W=cp+ ipug. (16.40)

Next, we examine the term inside the second summation in (16.37):
<v2v>a =((u®+2u v* +0v*%)(u+ v*)>a
=[v*u +2u- (v¥) u+ <v*2>a u]
+ [u? (v¥), +2u(vivT), + <’U*2V*>a]
= [u2u —2u-wy,u + <v*2>a u]
+ [~uPwa + 20 (Vv + <v*2v*>a] . (16.41)

Therefore, using (16.31), the second term in (16.37) becomes
za:% <v v) Zp—atfu + Zpa <v*2> u
+ Zpa Jo t+ Z%" v*zv*>a

3
= gu2u + Zpu + Pu + q, (16.42)

where the heat flux q is defined as

Zpa 2y (16.43)

The third term in (16.37) is

ZnaF V) Zna/faan—vaB) v dv
= Zna/ faqaE-v dv = (Znaqaua> -E

=J-E. (16.44)

Substituting (16.38), (16.42), and (16.44) into (16.37), we obtain the energy
equation for the plasma fluid:

%V+v (W+ P)u+V-q=JE. (16.45)
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Also, a single global temperature for the plasma fluid can be defined through
the relation

p=nkgT, (16.46)

where n = E Ny
[0

In many situations concerning plasmas, the time dependence of the electric
field (displacement current) in the Maxwell equations is ignored. The magnetic
flux is then related to the current by the simplified static Ampere’s law,

V x B = 7, (16.47)

where the current J is given by a generalized Ohm’s law (Bittencourt, 2004) for
the plasma conducting fluid:

J=0(E+uxB). (16.48)
Using Faraday’s law, and (16.48) to replace E, we have

aBV><EV><(1Ju><B>
ot o

1

=-V x (VxBuxB),
0o

where (16.47) is used to obtain the final equation. Next, using the zero divergence

of the magnetic induction B, we finally have the dynamic equation

0B

1 2
= —V*B. 16.4
5 Vx(uxB)—i—UuOV (16.49)

The complete ideal MHD equations (o = o0), consisting of (16.28), (16.34),
(16.45), and (16.49), can be written in the following system of conservation laws:

ou of Jg Oh

E + % + 672/ + % =S8,
where the unknown U consists of the conserved density, momentum, total energy
E=W+B?/2= pu?/2 + p/(y—1)+|B|?/2, and the magnetic induction in
(16.49)

(16.50)

U = (p,pu, £,B)". (16.51)
The fluxes are defined as

Py

puz +p+3/B* — B2

PUgzly — By By

PUz U, — B:L’Bz
Uy (€+p+%|B\2)—BI(u~B) ’

0
Ug By — uy By

— (uyBy —uzB)

(16.52)
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Py
Pugzty — By By
puz +p+ 5|B[* - B}
puyu, — By B,
uy (€ +p+ 5B[°) — By(u-B)
— (ue By — uy By)
0

uy B, —u, B,

, (16.53)

and

Pz

puzu, — BB,

puyu, — By B,

pu? +p+ 5|B]* - B2
u, (E+p+ 3B]*) — B.(u-B)
Uy By —u, B,
— (uyB: —uzBy)

0

, (16.54)

where the equation for the energy &£ is obtained by combining (16.45) and the
conservation of the magnetic second moment |B|? based on (16.49), and the
source term s contains the remaining undifferentiated terms.

Vlasov—Fokker—Planck (VFP) schemes

A fundamental microscopic approach to model electron transport and plasma-
laser interaction is to solve the Boltzmann equation in (15.10) directly within
the Landau approximation of the collision operator in the form of nonlinear
Fokker—Planck operator (Alouani-Bibi, Shoucri, & Matte, 2004; Bell et al., 2006;
Tzoufras et al., 2011). This kinetic approach is particularly required when there
is a large temperature gradient in the plasma medium so that the heat flux
approximation in the hydrodynamic model fails and the heat flux will have a
non-local dependence on temperature and density (Spitzer & Héarm, 1953). When
there is a strong non-local effect due to the comparable scale of the electron
mean free path (mfp) and the plasma (Alouani-Bibi & Matte, 2002), or a strong
collision heating by the laser field (Langdon, 1980), the electron distribution
function will be non-Maxwellian, which was used for moment closure for the
hydrodynamic model.

In the VFP scheme (Tzoufras et al., 2011), the electron distribution function
f(r,p,t) is approximated by the spherical harmonics as follows:
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J(®pi1) ZZfl (r, Ipl, )P (cos 0)c™?,  f7™ = (f")". (16.55)

I=0m=-—1

The Boltzmann equation (15.10) can be rewritten in terms of the expansion
coefficients as

a m

%— T — Al — AL =& =&, =& =B =CL +CL+ S, (16.56)
where various terms in (16.56) are projections under the spherical harmonics
basis for the spatial advection, electric and magnetic forces, and collisions, and .S
is the source term from possible laser fields. Note that C}”; and (", are the angular
scattering contributions of electrons off ions and between electrons, respectively
(Bell et al., 2006). The spatial advection terms are given by

m l l+m+1
AZ:O — 00, [(21 )fl 1+ Mfl+1:|7

0y — '8Z _ 2
Am>0 +Am>0 U y — 1 ln_zll _ ay + 10 (l _ m)(l _ _ 1) m+1
2l — 20 —
8 Oy +1i0; el
— 21+3 flJrl ST ———=(+m +1)(l+m+2)fl+1},
: I(1—1) (I+1)(1+2)
A} oy T A?,z = Re {_U(ay +10.) {— 2 —1 fla+ Wfll—i-l .
(16.57)
The electric field terms are given by
m>0 _ I—m I+m+1
— E m m
b {zz T e
1[E,—iFE B, +iE
m>0 m>0 - Zrm—1 Y z o o . m—+1
&+ E 5 {QZ G™ =1 (l=m)(l —m—1)G"™}
E,—iE. . . FE,+iE, o
_ Bty 5 -y 1 2)H"
213 Hin + 213 “(l+m+ D) +m+2)H T,
. (1-1) (+1D){1+2)
&y +E. = Re {(Ey +iE;) [— 9 —1 Gl + WH;-&—I ;
(16.58)

where
Gl =p'o,(p~' fi"), H"=p 'O, ),
and the magnetic field terms are
B2 = —iBymf"
+ % [l —m)(+m+1) (B, —iBy) /" — (B. +1iB,) f* '], (16.59)
B) = I(l+ 1)Re{(B. —iB,)f'} . (16.60)
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The periodic or reflection boundary condition can be used for the distribution;
for the latter case, we have

) l
fre(zy £ 2,p2) = fzo F2,—p2) = Z Z (fl)HmflmPl‘ml(cos 6)e™?,
1=0m=—1
o) l '
Try(yp £ y:0y) = fyp Fy, —py) = Z Z (—1)l+mfl_mPl‘m|(cos 0)e?.
1=0m=—1

(16.61)

Next, we investigate the collision in the Boltzmann equation (15.10) between a
particle of mass m and charge ¢ = ze (e is the electron charge here) corresponding
to the distribution f and a scattering center (electron or ion) of mass M = um
and charge @ = Ze, described by a distribution F. The Fokker-Planck collision
operator (Shkarofsky, Johnston, & Bachynski, 1966), which is given by

1 [/of 4dr VVG(F)-VVf
- —F ——VH . _— 16.62
(%) = rs+ iqwar) v+ R o)
where V is the gradient operator in the velocity space,
Ty = dr(zZ2)P A /m?, A= oo\ 16.63
2z =4m(zZe”)*In A/m”, = Za2 AD- (16.63)

Note that Ap is the Debye length in the plasma medium (Ap = x~!, where & is
defined in (2.17)), and H(F') and G(F') are the Rosenbluth potentials (Rosenbluth,
MacDonald, & Judd, 1957) in the form of integral operators for F:

H(F) = 1:”%
l

l
(F™) + J-1-u(B™)] P (cos f)e™?,

=0 m=-1
(16.64)
Z Z I o (F™) 4 J 1 (F(™)
L 21+1)(2l+3)
Il( )+ ()] piml i
- j2) ime .
=@ +1) )" (cos 0)e'™?, (16.65)
where
dr ! m +2
Ii= — | F™(wv™ du, (16.66)
vl 0
4 [ ;
Ji= | F (w)u?*? du. (16.67)

v

Appropriate finite difference discretization for the spatial derivatives can be
used in (16.57), and numerical quadratures will be used for the integrations in
(16.66) and (16.67) (Tzoufras et al., 2011).
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Particle-in-cell (PIC) schemes

The motion of charges follows Newton’s law according to the Lorentz force of
the electromagnetic fields E and B, which are coupled self-consistently to the
charge distribution and current in the Maxwell equations. The particle-in-cell
(PIC) schemes are designed to simulate the motion of particles in space, while
a fixed mesh is used to define the electromagnetic fields (Hockney & Eastwood,
1981; Birdsall & Langdon, 2004). Consider N,, charged particles located at x;(¢)
with velocity v;(t) and mass m, 1 < i < N,,, which are moved by the Lorentz
force according to the following set of equations:

dXi — v,
dt - 19
dmv;
T = g [B(x;) + vi x B(x,)]. (16.68)

The electromagnetic fields E and B are defined on a fixed mesh in the space,
which could be the Yee mesh in the finite difference method or given as piecewise
polynomials in a discontinuous Galerkin (DG) method. In the Maxwell equa-
tions, the current J(x) in the Ampére-Maxwell equation can be computed by
interpolating the individual point-charge currents

Np
J(x) = aviS(x; — x|), (16.69)
=1

where the weight function S(|x; — x|) interpolates the point-charge current ¢;v;
to the location x, and the space charge density p(x) can be similarly defined:

NP
p(x) = Zqisuxi — x|). (16.70)

Various weight functions S can be used; the simplest one can be of a polynomial
type:

n+1 2",
— (= <
S(r) = Ta? [1 (a) } o dfrsa

0, if r>a,

(16.71)

where n is an integer.

With the current so defined in (16.69), the electromagnetic fields E and B can
be found at a new time step by using either the finite difference method (Birdsall
& Langdon, 2004) or the DG method (Jacobs & Hesthaven, 2006). Then, the
particle position and velocity can be advanced by (16.68). However, as the field
quantities at the particle locations x; are required, which are not at the lattice
points of a finite difference mesh, an interpolation of the field quantities to the
particle location will also be needed. In the case of finite element approximations
(including DG) for the field quantities, such an interpolation is not required as
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the finite element solutions are provided at all spatial locations by the basis
function representation of the solutions.

The self-consistent procedure above, however, does not take the Gauss equa-
tion for the electric field into consideration, so in general the electric field E thus
computed does not satisfy Gauss’s law for the given charge density defined in
(16.70), which implies that the continuity equation is violated. Various meth-
ods have been proposed to enforce Gauss’s law in the PIC schemes (Villasenor
& Buneman, 1992; Esirkepov, 2001; Umeda et al., 2003). A global projection
method (Birdsall & Langdon, 2004) (similar to the projection methods for en-
forcing the divergence-free condition of the velocity field in incompressible fluids
(Chorin, 1968; Temam, 1968)) will make corrections to the electric field based
on a Helmholtz decomposition for the provisional value of the electric field at a
current time step, denoted by E*, i.e.,

E*=E + Vo, (16.72)
where E will assume the given divergence, namely it satisfies the Gauss equation
eV -E = p(x), (16.73)

and the correction potential will satisfy the following Poisson equation with a
zero boundary condition on the computational domain :

{ V3¢ =€V - E*—p(x),

Blon = 0. (16.74)

V - B = 0 constrained transport methods for MHD equations

The MHD equations describe the dynamics of a charged system under an in-
teraction with a magnetic field and the conservation of the mass, momentum,
and energy for the plasma system. The dynamics is considered constrained, as
the magnetic field of the system develops with the constraint of zero divergence,
namely V - B = 0. Numerical modeling of plasmas has shown that the obser-
vance of the zero divergence of the magnetic field plays an important role in
reproducing the correct physics in the plasma fluid (Brackbill & Barnes, 1980).
Various numerical techniques have been devised to ensure that the computed
magnetic field remains divergence free (T6th, 2000). In the original work of
Brackbill & Barnes (1980) a projection approach as discussed in Section 16.3
was used to correct the magnetic field to ensure zero divergence.

A more natural way of satisfying this constraint is through a class of so-
called constrained transport (CT) numerical methods based on the ideas in Evans
& Hawley (1988). As noted in Monk (2003), a piecewise H(div) vector field
on a finite element triangulation of a spatial domain can be a global H(div)
field if and only if the normal components on the interface of adjacent elements
are continuous. Thus, in most of the CT algorithms for the MHD equations,
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the surface-averaged magnetic flux over the surfaces of a 3-D element will be
used to represent the magnetic field, while the volume-averaged quantities are
used for mass, momentum, and energy. In this section, we briefly illustrate the
key ideas of the CT numerical methods using a second-order Godunov scheme
(Balsara, 2001). Various higher-order methods have been developed to increase
the accuracy under the same framework of the CT methods.

Consider a cubic cell C;;, whose center is indexed with (i, 7, k). The unknowns
in a Godunov scheme will be the cell-averaged values for the solution of the
conserved hydrodynamic variables in ( 16.50):

U; / U(x,t)d 16.75
4., E = |C7,jk| mk ( )

and also the cell-surface-averaged magnetic flux variables defined over the sur-
faces of each cell Cjji, (refer to Fig. 9.3):

Byivigke  Byijrins  Beijred, (16.76)
which correspond to the cell-surface-averaged magnetic flux on the front, the
right, and the top surfaces of the cube (refer to Fig. 9.3). These surface-averaged
magnetic fluxes will be the primary variables for the magnetic field, whose evo-
lution will be based on the integral form of the induction equation (9.65), as in
the case of the Yee scheme.

As shown in the Yee scheme, it can be directly verified by using (9.80)—(9.82)
that a discrete version of divergence satisfies

(ViB™) = (VaB"). (16.77)
where
L 1
n+1 —__ n+1 _ pn+l L n+l _ pntl
(VB P A (B“’*”%J’k BN*%M) " Ay (By,i,jJr%,k By,i,jf%,k)
1

n+1 n+1 .

T A: Az (Bz,i’j,lwé N Bz,i,j,}c7%> ' (16.78)

thus if initially V;,BY = 0, then V,B™ = 0 for all later times.

In (9.80)-(9.82), the electric field E along the edge of the cell is needed at
t"+1/2 Using the fact that in an ideal plasma fluid the electric field is related to
the magnetic field by

E=-uxB, (16.79)

and also noting (Balsara, 2001) that the components of the right-hand side of
(16.79) appear in the last three components of the fluxes in (16.52), (16.53), and
(16.54), we can use the fluxes to compute the required electric field quantities
once the former are defined from the Riemann solver of the underlying Godunov
scheme at the same time level. Thus, as in Balsara (2001), the following formulae
can be used:

n+2 1 n+2 n+2 An+2 An+2
lzlmzy—‘,-2,lc+2 4 (h7zyk+; +h71j+1,k+2 g8’L]+ k gSl,]+2,k+1

(16.80)
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n+} _ L m+d pntd jn+d pn+d
Ey=i+%7jak+% 4 f87i+%7j,k+f8,i+%,j,k+1 hﬁ,i,j,k-&-% 6,i+1,5.k+1 ) (16.81)
n+% - 1 An+% + An—i-% _ An+% _ f.n-‘r%
zitd+dk = 2 \eig+ike T Jeit1 43k~ Jrirl gk T Tkl k)
(16.82)

where f, h, and g are the numerical fluxes of a Godunov scheme for (16.50).

The enforcement of the zero divergence for the magnetic field in higher-order
schemes can be ensured for the Godunov type (Balsara, 2004; Gardiner & Stone,
2008), central differencing (Li, 2010), and WENO schemes (Balsara, 2009). A
key step towards generating the higher-order divergence-free discretizations of
the MHD equations is to obtain a divergence-free magnetic field B (required
to compute with high accuracy the energy density and the pressure in the mo-
mentum equation) composed of piecewise polynomials and consistent with the
primary-face-averaged magnetic flux unknowns on the element faces. Such a
high-order reconstruction can be found in Balsara (2004, 2009).

Finally, we present the eigensystems for the MHD fluxes which are needed in
the characteristic projection during the WENO interpolation in Section 15.3 or
the Roe-Riemann solver for the definition of numerical fluxes in the Godunov
scheme of Section 15.2. Let us consider the 1-D version of the MHD system
(16.50), i.e., all physical quantities are functions of one variable only, say x.
Define the primitive variables

V= (paumauyauz,By,Bzap)Ta (1683)

where the magnetic field B, is a constant due to the zero divergence of the
magnetic induction flux B. The MHD system can be rewritten as the following
hyperbolic system in a non-conservative form:

oV A
ot TAV) 5 =

where the coefficient matrix A(V) is related to the Jacobian matrix of the nu-
merical flux £f(U) by

0, (16.84)

of ou
A V = UvayT o v T A~ ]. .
(V) =U. ol U =5y (16.85)
and

Uy P 0 0 0 0 0
By B 1
0ty 0 0 o P P
0 0w 0 -2 0 o0

AV)=1 o 0o 0 w 0 =B 0|, (16.86)
0 B, —-B, 0 Uy 0 0
0 B, 0 —B, 0 Uy 0
0 pc2 0 0 0 ug
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where ¢ is the speed of sound in the plasma

& =p/p. (16.87)

The matrix A(V) has seven eigenvalues which define seven plane wave struc-
tures of the hyperbolic system with corresponding left eigenvectors 1, and right
eigenvectors ry, listed as follows (Powell, 1994; Roe & Balsara, 1996).

e One entropy wave:

)\e = Ug,
1
le = (1707070a0705_2> )
c
r. =(1,0,0,0,0,0,0). (16.88)
e Two Alfvén waves:
B,
)\e :U_K:tﬁ,
B B
la = 030»_3273 7:|:Z7q:y70> 5
( VRN
r, = (0,0,—B., By, £/pB., ¥/pB,,0)". (16.89)

e Four magneto—acoustic waves:

)\f,s = Uy + Cf,s,

lys = { 0. £pcy JFB”By'OCf’S ByB.pcss  Bypch.  Bapci, 1
o\ e —BY e - BY pej  — B pey, —BE )

T
r = :l:C :FB:cBypcf,s BZI?BZpCf,S Bpr%,S szC}7S .
(16.90)

where c; and c; are the fast and slow magneto-acoustic wave speeds,

B|? B|? 22
(9+||:t¢(@+-|>—4cﬂ. (16.91)
p p

p

respectively, i.e.,

1
2
€fs =5

We can also label all the eigenvalues in the increasing order as Ay, i.e.,
A< Ao <o < A

Then, we have

lkA = >\k1k:7 AI‘k = )\kr;w (16.92)

and
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Next, a numerical upwinding flux based on the Roe—Riemann solver can be
defined for any two states on both sides of x = 0 as

f(UL,Upg) =

DN =

7
F(UL) 4 F(U)] — 5D R, (16.94)
k=1

where Ry, = U, (U)r;,(U), U is the Roe-averaged state, and «y, is the projection
of the difference vector Uy, — Uy along the Ry direction.

Summary

The foundation of the transport theory in plasma is based on the Boltzmann—
Vlasov-Landau kinetic equation for the statistical distribution function f(r,v,t)
in the 6-D (r,v) phase space, self-consistently coupled with the Maxwell equa-
tions. The kinetic theory is based on the critical assumption that two-particle
(electron or ion) correlation in the system will go to zero as the intra-particle
distance grows, similar to Boltzmann’s molecular chaos assumption. Consider-
ing the Debye screening effect and small-angle collision assumptions, the Landau
or Fokker—Planck collision operator is obtained, based on which the VFP algo-
rithm is developed here. In order to avoid the cost from the 6-D phase space, the
particle-in-cell (PIC) method can be used, where the distribution function in the
phase space can be used for sampling the initial “super” particle; then, the self-
consistent evolution of the particles under the Lorentz force can be materialized,
just as in a typical molecular dynamics simulation. Even so, the charge conserva-
tion in a PIC scheme needs careful attention when observing the ever-important
Gauss’s law in a charged system. Finally, for a faster and more macroscopic
simulation of the electron transport in the plasma, the MHD equations for the
plasma treated as a conducting fluid can be derived from the moment equa-
tions of the Boltzmann—Vlasov equation and a generalized Ohm’s law relating
the current and the electric field in the plasma; finite difference methods can
then be used, with special attention paid to the divergence-free constraint of the
magnetic field, i.e., V-B = 0.
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Higdon boundary condition, 134
uniaxial PML (UPML), 138
auxiliary differential equation
Debye materials, 277
Drude materials, 282

band gap calculations
finite element, frequency domain, 257
finite element, time domain, 261
plane wave methods, 252
transmission spectra, 253
band gap, photonic structures, 250
beam propagation, discontinuous Galerkin
method, 296
Bloch theory for periodic structure, 248
Bloch wave expansions, 250
Boltzmann equations, 381
moment equations, 383
bosons, 322
boundary conditions
dielectric interfaces, 125
Leontovich impedance, 127
boundary element method (BEM)
Nystrém hyper-singular method for
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Nystrom weak singular integral method
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Poisson—-Boltzmann equation, 71
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Bragg transmission coefficients, 254
Bravais lattice vectors, 89

Cauchy principal integrals, 61
direct computation, 75

cavity field, 14

cavity resonance, 182

central difference scheme, 396

charges, bound, 6

charging, 35

charging energy, 35
charging process, 35
Clausius—Mossotti formula, 9
collision operators
Boltzmann, 382
Fokker—Planck, 404
combined integral equations and resonance,
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constrained transport methods for MHD
equations, 414

Debye—Hiickel inverse length, 30
Debye—Hiickel theory, 29
density matrix, 328
device with contacts, 341
density of states, electron in contacts, 338
density operator, 326
dielectric fluctuation formula, 21
total dipole moment, 16
dielectric formula
Clausius—Mossotti, 9
Onsager formula for dipolar liquid, 11
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dipole, 3
directing field, 11
discontinuous Galerkin methods for Maxwell
equations, 230
displacement flux D, 7
drift-diffusion model, 381
Duffy mapping, 191
dyadic Green’s functions
homogeneous media, 149
layered media, 148
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transverse components, 152
vector potential, 158

electric field integral equation (EFIE), 180
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generalized Born approximations, 36
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Godunov scheme, 389
plasma MHD models, 416
semiconductor hydrodynamic models, 389
guided modes of optical waveguides, 289

Hadamard finite part integrals, 61
direct computation, 75
Hankel transform, 151
fast calculation with window-based
filtering, 160
Helmholtz double layer, 31
Helmholtz vector decomposition, 123
Hertz dipoles, 147
horizontally directed, 154
vertically directed, 154
hierarchical basis for DG methods, 234
2-D and 3-D quadrilateral elements, 234
2-D triangular elements, 235
3-D tetrahedral elements, 235
Huygens’ principle, 174
hybrid model for electrostatics, 111
dielectric constant calculated, 115
molecular dynamics, 115
reaction field, 111
hydrodynamic equations, 387
central difference scheme, 396
WENO (weighted essentially
non-oscillatory) method, 392
hyper-singular integrals, 62
direct computation, 75
regularization method, 72

image charges, 45
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conducting half-space, 45

conducting sphere, 45
dielectric cylinder, 46
dielectric half-space, 46
dielectric sphere in ionic solvent, 53
dielectric sphere, Friedman, 49
dielectric sphere, multiple discrete images,
53
dielectric sphere, Neumann’s line images,
50
layered ionic solvent, 58
layered non-ionic solvent, 57
impedance boundary condition, Leontovich,
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integral equations
combined integral equations and
resonance, 182
electric field integral equation, 180
Galerkin method, 191
magnetic field integral equation, 180
Nystrom collocation method, 186
singular and hyper-singular integral
equations, 175
Stratton—Chu formula, 180
surface IE for conductors, 181
surface IE for dielectrics, 182
surface IE for PEC, 181
volume integral equations for Maxwell
equations, 270
volume integral equations for quantum
dots, 304
ionic strength, 30

Kirkwood expansion, 47

Landauer formula, 340
Laplace—Beltrami operator, 137
longitudinal field components, 153
Lorentz local field, 10

magnetic field integral equation (MFIE), 180
magnetization, 120
magneto-hydrodynamics (MHD), 404
eigen-systems, 416
Maxwell equations, 121
Ampere-Maxwell law, 121
discontinuous Galerkin methods, 230
Faraday’s law, 119
finite difference Yee scheme, 242
Galerkin integral equation methods, 191
Gauss’s law, 121
integral form, 242
magnetization, 120
Nystrom method for hyper-singular
integral equations, 186
Nystrom method for weak singular
integral equations, 190
potentials, electric and magnetic, 123
Rankine-Hugoniot conditions, 232
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equations, 175 Nédélec edge elements for Maxwell

time-harmonic, 122 equations, 209
uniaxial PML, 142 non-equilibrium Green’s function (NEGF),
vector wave equations, 122 349
volume integral equations, 270 Nystrom hyper-singular integral method
weak form, 228 for Maxwell equations, 186

MOSFET, double gate, 362 Nystrom weak singular integral method

for Maxwell equations, 190
particle-in-cell (PIC) schemes for plasmas,
413
particle-mesh Ewald (PME) method, 96
plane wave methods for band gaps, 252
Poisson—Boltzmann equation
collocation boundary element methods,
71
finite element methods, 82
immersed interface methods (IIM), 85
upwinding finite difference method, 375
Vlasov—Fokker—Planck (VFP) schemes,
410
volume integral equations for Maxwell

Nédélec edge elements, 209
2-D hierarchical basis in a quadrilateral,
218
2-D hierarchical basis in a triangle, 219
2-D reference square, 209
2-D reference triangle, 211
3-D hierarchical basis in a 3-D cube, 222
3-D hierarchical basis in a 3-D
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3-D reference cube, 212
3-D reference tetrahedron, 212
Piola transform, 208
non-equilibrium Green’s function (NEGF),

349 . equations, 270
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. . volume integral equations for quantum
1-D device, boundary conditions, 351 dots. 304

1-D device, finite difference method, 351
1-D device, finite element method, 353
1-D device, self-energy, 353

2-D device, 354

2-D device, boundary conditions, 356

WENO (weighted essentially
non-oscillatory) method, 392
Yee scheme for Maxwell equations, 242

Onsager formula for dipolar liquids, 11

2-D device, finite difference method, 357 particle-in-cell (PIC) schemes, 413

2-D device, finite element method, 359 particle-mesh Ewald (PME) method, 96

2-D device, self-energy, 361 perfectly matched layer (PML), uniaxial

transmission coefficients, 348 absorbing media, 138

numerical DG fluxes for Maxwell equations, Planck constant h, 302
233 plasma transport models
numerical methods MHD single-fluid, 404

adaptive spectral element method, 367 particle-in-cell, 413

central difference scheme, 396 Vlasov—Fokker—Planck kinetic, 403

collocation boundary element methods, 71 Poisson equation, 27

constrained transport methods for MHD Poisson—Boltzmann equation, 29
equations, 414 energy variational, 36

discontinuous Galerkin methods for hyper-singular surface integral equations,
dispersive media, 274 70

discontinuous Galerkin methods for linearized, 30
Maxwell equations, 230 modified with steric size effect, 30

discontinuous Galerkin methods for surface integral representations, 65
Schrédinger equations, 284 Poisson—Nernst—Planck (PNP) model, 381

Ewald summation, 89 polarization density, 5

fast multipole method (FMM), 98 polarization field, 7

potentials of electromagnetic fields, 123
Sommerfeld, 158
transverse, 160

finite element methods for vector
Helmholtz eigenvalues, 257
Galerkin integral equation methods for

Maxwell equations, 191 quantum dots, volume integral equation
generalized DG beam propagation method, 304
method, 296 quantum many particles

Godunov scheme, 389 bosons, 323



Index

fermions, 324

partition functions, 322
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radiation conditions
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Rayleigh—Bloch waves, 263
RCWA (rigorous coupled wave analysis)
transmission spectra, 253
reciprocal lattice vectors G, 90
resonant tunneling diode
I-V curves by Wigner equation and
NEGF, 378
resonant tunneling diode (RTD), 377
RWG current basis, 193
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Schrédinger equations
for electrons with an effective mass, 302
paraxial approximation in
waveguides, 297
singular integral potentials
double-layer, 61
single-layer, 61
singular sources
charges, 145
currents, 147
Hertz dipoles, 147
solvation, 26
solvation energy
Born, 34
charging process, 35
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Still’s generalized Born approximations, 36
Sommerfeld radiation condition and
uniqueness, 130
spectral function, 345
statistical distribution
bosons, 324
fermions, 324
Stratton—Chu formula, 180
surface differential operators, 185

surface plasmons
dispersion relation, 267
localized modes, 268
propagating modes, 265
resonant coupling, 274

thermal equilibrium, 313

time-harmonic Maxwell equations, 122

transmission coefficient, 335
single-barrier, 336

transport models (classical)
hydrodynamic equations, 387
semi-classical Boltzmann equations, 381

transport models (quantum)
non-equilibrium Green’s function, 348
Wigner equations, 332

transverse electric (TE) wave, 205

transverse field components, 152

transverse magnetic (TM) wave, 278

Tsu—Esaki current formula, 339

uniformly polarized sphere, 24

Vlasov—Fokker—Planck (VFP) equations, 404
Vlasov-Fokker-Planck (VFP) schemes, 410

weak form of Maxwell equations, 228
WENO (weighted essentially non-oscillatory)
method, 392
Weyl correspondence of quantum operators,
334
WGM (whispering gallery mode), 238
Wigner distribution, 329
Wigner equation
adaptive spectral element method, 367
continuity equation, 334
current density, 334
derivation, 330
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Frensley inflow boundary condition, 367
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truncation in phase space, 365
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