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Introduction to Soil Mechanics covers the basic principles of soil mechanics, illustrating why the 

properties of soil are important, the techniques used to understand and characterise soil behaviour 

and how that knowledge is then applied in construction. The authors have endeavoured to define 

and discuss the principles and concepts concisely, providing clear, detailed explanations, and a well-

illustrated text with diagrams, charts, graphs and tables. With many practical, worked examples and 

end-of-chapter problems (with fully worked solutions available at www.wiley.com/go/bodo/soilmechanics) 

and coverage of Eurocode 7, Introduction to Soil Mechanics will be an ideal starting point for the study 

of soil mechanics and geotechnical engineering.
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Preface

This book is intended to introduce the subject to students studying for BTEC Higher 
National Certificate/Diploma in Civil Engineering and Building Studies or for a Degree in 
Civil Engineering. It should also be practical reference to Architects, Geologists, Structural 
and Geotechnical Technicians.

The primary aim is to provide a clear understanding of the basic concepts of Soil 
Mechanics. We endeavoured to avoid the temptation of over-elaboration by providing 
excessively detailed text, unnecessary at this early stage of technical studies.

The purpose of this publication is threefold:

1.  To introduce the student to the basics of soil mechanics.
2.  To facilitate further advanced study.
3.  To provide reference Information.

In order to satisfy the above requirements, the concepts of the subject are defined con-
cisely, aided by diagrams, charts, graphs, tables and worked examples as necessary.

The text may appear to be excessively analytical at first sight, but all formulas are 
derived in terms of basic mathematics, except for a few requiring complicated theory, for 
those interested in working from first principles. They can be applied however, without 
reference to the derivation. The expressions are numbered and referred to throughout 
the text.

There are numerous worked examples on each topic as well as supplementary prob-
lems. All examples and problems are solved, many of them interrelated so that solutions 
can be compared and verified by means of several methods.

Some soil testing procedures are outlined only, as there are a number of excellent, 
detailed, specialized books and laboratory manuals available to cover this part of the 
subject.

There is some emphasis on the units employed and on the difference between mass 
and weight. This subject is discussed in Appendix A.

Béla Bodó and Colin Jones
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Maximum bending moment

M
0

Overturning moment
M

R
Resisting moment

P
a

Active force
P

p
Passive force

P
W

Force of water in tension crack
R Force on wedge
T Tension force in tie rod
z

c
Pile penetration

z
0

Depth of tension crack
d Angle of wall friction
f′

m
Mobilised friction

m Coefficient of friction
s

a
Active earth pressure

s
c

Cell pressure in triaxial test
s

d
Deviator stress in triaxial test

s
p

Passive earth pressure
s ′

a
Effective active earth pressure

s ′
p

Effective passive earth pressure
σ Average pressure
t

f
Shear stress at failure
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uc Average undrained shear strength
A

e
End bearing area

A
s

Surface area of pile
B Width of footing
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F

0
Overall factor of safety

F
s

Factor of safety
K

s
Average coefficient of earth pressure

l Length of pile
N Number of SPT blows
n Number of piles
N ′ Corrected value of N
N

c

N
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Bearing capacity factors
Ng
P Failure load on pile
Q Design working load
Q

a
Allowable carrying capacity of pile

Q
ag

Allowable carrying capacity of pile group
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End bearing resistance
Q

f
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Q
S

Shaft resistance
Q
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Ultimate carrying capacity of pile

Q
ug

Ultimate carrying capacity of pile group
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n
Net ultimate bearing capacity

q
s

Safe bearing capacity
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sn
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SPT Standard penetration test
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P
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o
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c
u

Shear strength
F Friction force
F

C
Factor of safety with respect to cohesion

F
S

Factor of safety
Ff Factor of safety with respect to friction
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M

D
Disturbing moment

M
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The comprehensive list of symbols for EC7 is given in Eurocode 7. Geotechnical design 
Part 1: General rule. Only some of the symbols, applied in this book, are reproduced here:

E
d

Design value of the effect of actions
E

dst;d
Design value of the effect of destabilizing action

E
stb;d

Design value of the effect of stabilizing action
F

d
Design value of an action

F
rep

Representative value of an action
F

s
Factor of safety
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Design value of destabilising seepage force
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X
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g
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g
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g

m
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g
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Partial factor for a variable action
g

R;h
Partial factor for sliding resistance
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1

Chapter 1

Soil Structure

Soils consist of solid particles, enclosing voids or pores. The voids may be filled with air 
or water or both. These three soil states (or phases) can be visualized by the enlargement 
of three small samples of soil.

Sample A: The soil is oven-dry, that is there is only air in the voids.
Sample B: The soil is saturated, that is the voids are full of water.
Sample C: The soil is partially saturated, that is the voids are partially filled with water.

The above three soil states can be described mathematically by considering:

1.  Volume occupied by each constituent.
2.  Mass (or weight) of the constituents.

1.1  Volume relationships

The expressions derived in this section will answer two questions:

1.  How much voids and solids are contained in the soil sample?
2.  How much water is contained in the voids?

In order to obtain these answers, the partially saturated sample (C) is examined. It is 
assumed, for the purpose of analysis, that the soil particles are lumped together into a 
homogeneous mass. Similarly, the voids are combined into a single volume, which is 

Figure 1.1

Air
(A)

Solid

(B)
Water

Solid

(C)

Water

Air

Solid
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partly occupied by a volume of water. The idealisation of the sample, indicating the 
volumes occupied by the constituents, is shown diagrammatically in Figure 1.2b.

Idealized representation of sample C.
Where:	 V = Total volume of the sample

	 V
v
 = Volume of voids in the sample

	 V
s
 = Volume of soil in the sample

	 V
w
 = Volume of water in the sample

	 V
a
 = Volume of air in the sample

The basic relationships between the volumes can be seen in the diagram.

Total volume:	 s vV V V= + � (1.1)

Volume of voids:	 v w aV V V= + � (1.2)

Hence:	 s w aV V V V= + + � (1.3)

Three important relationships are derived from the basic ones. These are:

e = voids ratio (or void ratio)
n = porosity
S

r
 = degree of saturation

1.1.1  Voids ratio (e)

This shows the percentage of voids present in the sample, compared to the volume of 
solids. Thus, if V

s
 is considered to be 100%, then V

v
 is e%.

Hence:	
v

s

100 %
V

e
V

= � (1.4)

For example:	 if	 V
s
 = 60 cm3

	 and	 V
v
 = 15 cm3

	 then	
15

100 25%
60

e = =

That is, the volume of voids is 25% of the volume of solids, in this particular sample. 
Alternatively, the voids ratio maybe expressed as a decimal e.g. e = 0.25.

Formula (1.4) now becomes:	
v

s

V
e

V
= � (1.5)

Figure 1.2

Solids

Water

Air

(a)

Air

Water

Solids
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The ratio of voids to solids in a sample is represented by Figure 1.3.

1.1.2  Porosity (n)

This shows how many percent of voids are present in the sample, compared to the total 
volume V. Thus, if V is considered to be 100%, then V

v
 is n%.

	
V100 %

V
n

V
=

�
(1.6)

For example:	 if	 V = 75 cm3

	 and	 V
v
 = 15 cm3

	 then	
15

100 20%
75

n = =

That is, the volume of voids is 20% of the total volume of the sample of soil. 
Again, n maybe expressed as a decimal number n = 0.2.

Formula (1.6) now becomes:	 vV
n

V
= � (1.7)

The diagrammatic representation of porosity is:

1.1.3  Degree of saturation (Sr)

This shows the percentage of voids filled with water. Thus, if V
v
 is considered to be 100%, 

then V
w
 is S

r
%.

	 = w
r

v

100 %
V

S
V

� (1.8)

Vv

Vs

V

Solids

Voids

Figure 1.3

Solids

VvVoids

V

Figure 1.4
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For example,	 if	 V
w
 = 6 cm3

	 and	 V
v
 = 15 cm3

	 then	 r

6
100 40%

15
S = =

That is, water fills 40% of the volume of voids. In decimal form S
r
 = 0.4 and formula 

(1.8) becomes:

	 w
r

v

V
S

V
= � (1.9)

Diagrammatically,

Note:	 For oven-dry soil (Sample A, Figure 1.1):

	 w r0, hence 0V S= =

	 For fully saturated soil (Sample B, Figure 1.1):

	 w v r, hence 1V V S= =

	 For partially saturated soil therefore: 0 < S
r
 < 1

Combined formulae
The quantities defined by formulae (1.1) to (1.9) can be interrelated:

	 ( )s s s
s v

vv s
v

eith
( )

( )

er 1
From 1.1 :

From 1.5 : or

V V eV V e V
V V V

VV eV V V
e

= + ∴ = += +
= = +

� (1.10)

	
v v v

1 1
1

e
V V V

e e
+   = + ∴ =       � (1.11)

	
( )

v
s

s
s

From 1.7 :

1 1
From 1

( )

.10 :( )) (1

V
n eV e

n nV
e V e

V e V

=
= ∴ =

+ += +
� (1.12)

	

From 1.12 :
1

(
(1 )

)

1

n ne e
e

n n
e n e n e

n

+ =
=

+ = − =
−

� (1.13)

Air

Water

Solids

Vw

Vv

Figure 1.5
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=
+ = ∴ =   

= ++

w
r

w wv
r r

v

From 1.9 :
1

From 1.11 :
1

(

) 1

)

(

V
S

V VV e
S S

eV e VeV
V ee

� (1.14)

	 = =
+

w
rFrom 1.12 :

1
( ) or

Ve
n S

e nV � (1.15)

Example 1.1

Given:	 V = 946 cm3	 Calculate: V
v
, V

a
, e, n and S

r

	
3

s 533cmV =

	
3

w 303cmV =

3
v sFrom 1.1 : 946 533 413c( m) V V V= − = − =

3
a v wFrom 1.2 : 413 303 110cm( ) V V V= − = − =

v

s

413
From 1.5 : 0.775( )

533

V
e

V
= = = , �that is the volume of voids is 77.5% that of 

solids.

v 413
From 1.7 : 0.437

That is, the volume of voids is 43.7%946
of the sample.0.775

or From 1.12 : 0.437
1 1

( )

)
.7 5

(
7

V
n

V
e

n
e

= = =

= = =
+

w
r

v

w
r

( )

( )
( )

303
From 1.9 : 0.73

413 That is, water fills 73% of voids.

The sample is partially saturated.303
or From 1.15 : 0.73

0.437 946

V
S

V

V
S

nV

= = =

= = =
×

Example 1.2

A sample of sand was taken from below the ground water table. The volumes 
measured were:

V = 1000 cm3	 Calculate:	 V
v
, V

a
, V

s
, e and n

V
w
 = 400 cm3

Note: Assume sand samples taken from above the water table as partially satu-
rated (s

r
 < 1) and saturated (S

r
 = 1) if taken from below.

In this example, therefore, S
r
 = 1  ∴  V

a
 = 0.

From (1.8)	 w
r w v

V

3
v

1

400cm

V
S V V

V

V

= = ∴ =

=

� (1.16)
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From (1.2) : 	 V
a
 = V

v
-V

w
 = 400 - 400 = 0  The voids are full of water

From (1.1):	 3
s v 1000 400 600cmV V V= − = − =

From (1.5):	 v
v s

s

400
0.67 is 67% of

600

V
e V V

V
= = =

From (1.7):	 v
v

400
0.4 is 40% of

1000

V
n V V

V
= = =

1.2  Weight–volume relations

As the title implies, the formulae derived in this section take into account the weights of 
V

s
 and V

w
. It is assumed that air is weightless. The weight volume relations are shown 

diagrammatically:

	
s

w s w

Where : Weight of solids

Weight of water From Figure 1.6

Totalweight

W

W W W W

W

=
= = +

=

� (1.17)

Note: The concepts of mass and weight are defined in Appendix A. Suffice to say here, 
that if mass (M) is given in kilograms, then weight (W) is calculated from:

	
39.81 mass ( ) 9.81 10 kNW M N W M−= × ∴ = × × � (1.18)

Several important relationships are derived below in terms of mass, weight and volume. 
These are:

r = bulk mass density
g  = bulk weight density (unit weight)

r
d
 = dry mass density

g
d
 = dry weight density

r
sat

 = saturated mass density
g

sat
 = saturated weight density

Air

Vv

Va

Ww

Ws

Vw

Vs

Water

Solids

V
W

Figure 1.6
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r′ = submerged mass density
g ′ = submerged weight density
r

s
 = mass density of solids

g
s
 = weight density of solids.

Note: Normally, the mass density of materials is expressed in kg/m3. For instance, the 
average mass of reinforced concrete is quoted in tables as r = 2400 kg/m3. Sometimes, 
especially in laboratory work, it is more convenient to use gram as the unit of mass. 
Possibly for this reason ρ is often expressed in g/cm3 or Mg/m3 (Mg/m3 = g/cm3).

For a reason, justified in the Appendix, the unit adopted in this book is kg/m3, unless 
otherwise stated.

1.2.1  Bulk densities

These are the densities of a partially saturated soil sample, taken from above ground 
water level.

3kg/m
M
V

ρ =   (1.20)	
3kN/m

W
V

γ = � (1.19)

	 γ γ ρ
−

− −×  = = × ∴ = ×  

3
3 3 39.81 10

9.81 10 9.81 10 kN/m
M M

V V
� (1.21)

For water: 
3w

w
w

1000 kg/m
M
V

ρ = =   (1.22)	
3w

w
w

9.81kN/m
W
V

γ = = � (1.23)

All practical problems in soil mechanics are concerned with forces acting in one way or 
another. As the weight density (or unit weight) itself is a force, its application is a matter 
of necessity. For this reason the formulae derived in the rest of this section are mostly in 
terms of weight. Remember, however, that 1 kg = 1000 g and 1 g/cm3 = 103 kg/m3. Therefore, 
if the mass density is given in gram and centimeter units as:

	 ρ γ ρ= =3 3g/cm then 9.81 kN/m
M
V �

(1.24)

Mass

Mass density Weight density

M (kg)

V(m3) V(m3)

Weight

W (kN)

Figure 1.7



8       Introduction to Soil Mechanics

1.2.2  Dry densities

These are the densities of oven-dry soil, after the excavated sample has completely dried 
out.

3s
d kg/m

M
V

ρ =   (1.25)	
3s

d kg/m
M
V

γ = � (1.26)

Therefore,	 γ ρ−= × 3 3
d d9.81 10 kN/m � (1.27)

1.2.3  Saturated densities

These are the bulk densities of a sample, taken from below the ground water level (GWL), 
hence the sample is fully saturated and the degree of saturation is unity.

w
r w v

v

From formula (1.9) : 1
V

S V V
V

= = ∴ =

s v s wand from 1 :).1( V V V V V= + = +

Example 1.3

Partially saturated sand was tested in a laboratory. Its volume was measured to be 
75.4 cm3 and weighed 136.2 g. Calculate the unit weight in kN/m3.

Mass:	 M = 136.2 g = 136.2 × 10− 3 kg

Volume:	 V = 75. 4 cm3 = 75.4 × 10− 6  m3

Weight:	 W = 9.81 × 10− 3 × 136.2 × 10− 3 = 1336 × 10− 6 kN

Mass density:	
3

3
6

136.2 10
1806kg/m

75.4 10

M
V

ρ
−

−

×
= = =

×

Weight density:	
6

3
6

1336 10
17.72kg/m

75.4 10

M
V

γ
−

−

×
= = =

×

or by (1.21):	 g  = 9.81 × 10− 3 r = 9.81 × 10− 3 × 1806 = 17.72 kg/m3

Ws

W(m3)

Air

Solids

Ms

V(m3)

Air

Solids

Mass density Weight density

Figure 1.8
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ρ
ρ γ

=
= =

3
w

3 3
w w

For water 1g/cm

Or 1000kg/m and 9.81 kN/m

sat s w v sat s w vTotal mass : andM M V W W Vρ γ= + × = + ×

sat
sat

3

s v
sat

Either
kN/m

Or w

M
V

M V
V

ρ

ρρ

=

+
=

  (1.28)	

sat
sat

3

s W v
sat

Either
kN/m

Or

W
V

W V
V

γ

γγ

=

+
=

� (1.29)

Therefore,	 g
sat

 = 9.81 × 10− 3r
sat

  kN/m3� (1.30)

1.2.4  Submerged density (g ′)

It is the saturated density of soil, taking its buoyancy into account. In other words, as long 
as the saturated sample remains under water, an uplift force is exerted on it in accord-
ance with Archimedes’ Principle.

Ww

Ws

Vs

Vw

V

Water

Solids

Ms

Mw
Vw

Vs

V

Mass density Weight density

Figure 1.9

Example 1.4

The partially saturated sand in Example 1.3 was saturated by the addition of water 
and then dried out completely. The quantities measured were:

Dry mass:	 3
s 122.9g 122.9 10 gkM −= = ×

Mass of water lost:	  3
w 29.0g 29 10 kgM −= = ×

Total volume:	  3 6 375.4cm 75.4 10 mV −= = ×

Calculate the saturated unit weight of the sample:

3 3 3
sat 122.9 10 29 10 151.9 10 gkM − − −= × + × = ×

3
3sat

sat 6

151.9 10
2015 kg/m

75.4 10

M
V

ρ
−

−

×
= = =

×
3 3

sat 9.81 10 2015 19.76 kN/mγ −∴ = × × =
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sat

w

Weight of sample :

Buoyant force :

Resultant force on sample

W V

B V

V

γ
γ

γ

= ↓
= ↑

= ′

sat w

Now : V W B

V V

γ
γ γ

′ = −
= × − ×

	 sat wCancelling volume :V γ γ γ′ = − � (1.31)

Note: The submerged density is to be used, when assessing the stresses induced in the 
soil below GWL by surface loading. This type of problem includes the determination of:

a)  Effective pressure
b)  Load bearing capacity of a soil.

1.2.5  Density of solids (gs)

It is the unit weight of the soil particles, occupying the volume V
s
. Particle mass density 

is denoted by r
s
.

	
3s

s
s

kg/cm
M
V

ρ = � (1.32)

	
3 3s

s s
s

9.81 10 kN/m
W
V

γ ρ−∴ = × = � (1.33)

1.2.6  Specific gravity (Gs)

It is also called “Particle specific gravity”, as it shows how heavy the solids are compared 
to water. In other words, the weight of V

s
 volume of solids is compared with the same 

volume of water.

s s s s s s
s

w w s w w s

Weight of solids :
and

Weight of water :

W V W V
G

W V W V

γ γ
γ γ

= ×
= =

= ×

Cancelling V
s
 to obtain	

s s
s

w w

G
γ ρ
γ ρ

= = � (1.34)

GL

GWL

W

g ′V

B

Figure 1.10

Voids

Solids

Ms Vs

Vw

V

Figure 1.11
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1.2.7  Moisture content (m)

This expresses the mass or weight of water as a percentage of the mass or weight of 
solids.

	
w w

s s

100 100 %
M W

m
M W

= = � (1.35)

Or in decimal form:	 w w

s s

M W
m

M W
= = � (1.35a)

Note: The quantities given in formulae (1.1) to (1.35) can be calculated from these four 
laboratory results:

1.  Total mass of the sample M (g).
2.  Mass of solids M

s
 (g).

3.  Total volume of the sample V (cm3).
4.  Specific gravity of the soil particles G

s
.

Table 1.1  Average values of G
s

Soil G
s

Clay 2.75
Silt 2.68
Sand 2.65
Gravel 2.65

Example 1.5

Using the laboratory results of Examples 1.3 and 1.4, tabulate the calculations for 
all soil characteristics introduced this far, in Table 1.2. Assume G

s
 = 2.65.

Table 1.2

F
o
rm

u
la

 
N

u
m

b
er

Soil characteristic Calculations and Results Unit

Total mass
Mass of solids
Total volume
Specific gravity

M = 136.2 × 10-6

M
s
 = 122.9 × 10-6

V = 75.4 × 10-6

G
s
 = 2.65

mg
mg
m3

-

1.18
1.18

Total weight
Weight of solids

W = 9.81 × 10-3 × 136.2 × 10-3 = 1336 × 10-6

W
s
 = 9.81 × 10-3 × 122.9 × 10-3 = 1206 × 10-6

kN
kN

1.17 Weight of water W
w
 = W - W

s
 = (1336 - 1206) × 10-6 = 130 × 10-6 kN

1.35 Water content
−

−

×
= × = =

×

6
w

6
s

130 10
100 100 10.8

1206 10

W
m

W
%

1.20 Bulk mass density
3

6

136.2 10
1806

75.4 10

M
V

ρ
−

−

×
= = =

×
kg/m3
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Further useful relationships can be derived by the combination of the above 
formulae.

1.21 Bulk unit weight g  = 9.81 × 10-3r = 9.81 × 10-3 × 1806 = 17.7 kN/m3

1.25 Dry mass density
3

s
d 6

M 122.9 10
1630

V 75.4 10
ρ

−

−

×
= = =

×
kg/m3

1.27 Dry unit weight g 
d
 = 9.81 × 10-3r

d
 = 9.81 × 10-3 × 1630 = 16 kN/m3

1.34 Unit weight of solids g 
s
 = G

s
 × γ

w
 = 2.65 × 9.81 = 26 kN/m3

1.33 Volume of solids γ
−

−×
= = = ×

6
6s

s
s

1206 10
46.4 10

26

W
V m3

1.32
Mass density of 
solids

3
s

s 6
s

122.9 10
2649

46.4 10

M

V
ρ

−

−

×
= = =

× kg/m3

1.1 Volume of voids V
v
 = V - V

s
 = (75.4 - 46.4) × 10-6 = 29 × 10-6 m3

1.5 Voids ratio
6

v
6

s

29 10
100 100 62.5

46.4 10

V
e

V

−

−

×
= × = × =

× %

1.6 Porosity
−

−

×
= × = × =

×

6
v

6

29 10
100 100 38.5

75.4 10

V
n

V %

1.29
Saturated unit 
weight

s w v
sat

6

6

(1206 9.81 29) 10
19.8

75.4 10

W V

V

γ
γ

−

−

+ ×
=

+ × ×
= =

×

kN/m3

1.28
Saturated mass 
density

3
sat

sat 3

19.8 10
2018

9.819.81 10

γ
ρ

−

−

×
= = =

×
kg/m3

1.23 Volume of water
6

6w
w

w

130 10
13.3 10

9.81

W
V

γ

−
−×

= = = × m3

1.2 Volume of air V
a
 = V

v
 - V

w
 = (29 - 13.3) × 10-6 = 15.7 × 10-6 m3

1.8
Degree of 
saturation

6
w

r 6

13.3 10
100 100 45.9

29 10v

V
S

V

−

−

×
= × = × =

× %

1.31 Submerged unit 
weight

g ’ = g
sat

 - g
w
 = 19.8 - 9.81 = 10 kN/m3

Soil characteristic Calculations and Results Unit

Table 1.2  (continued)

1.2.8  Partially saturated soil

It has already been mentioned, that soil is normally partially saturated above ground 
water level that is the degree of saturation is less than unity. In fine-grained soil capillary 
action may saturate the soil somewhat above GWL. In any case, always assume partial 
saturation, unless proven otherwise.
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From (1.9):	 w
v

r

V
V

S
= 	

From (1.23):	 w
w

w

W
V

γ
=

From (1.33):	 s
s

s

W
V

γ
=

From (1.34):	 s
s

w

G
γ
γ

=

From (1.35)	 w

s

W
m

W
= � (1.36)

	 w sW m W= × 	 From (1.17) 

( )
s w s s

s1

W W W W mW

W m W

= + = +

= +

�

(1.37)

	 From (1.19): 
( )
( )

s

s

1

1

m WW
V e V

γ
+

= =
+

From (1.10):	 V = (1 + e) × V
s

From (1.36):	 r

s

S
m

e
G

=

From (1.33):	
s

s
s

W
V

γ =

From (1.34):	
s

w
sG

γγ =

From (1.37):	 s 1

W
W

m
=

+
	 From (1.26):	

From (1.19)	 W
V

γ = � (1.40)

From (1.38):	 s r
w1

G S e
e

γ γ+ 
=   + 	 r d0 andS γ γ= =For dry soil

	 γ γ 
=   +

s
d w1

G
e

� (1.41)

Note: Dry density is an important factor in the compaction of soils.

For fully saturated soil	 S
r
 = 1  and  g = g

sat

From (1.38):	 γ γ γ γ+ +   
= =      + +

s r s
w sat whence

1 1

G S e G e
e e � (1.42)

From (1.5): 

w

v r

ss

s

w

sr w w
s

s r s w r

s

s

r

1 1

V
V S

e
WV

W
S W

m G
W S W S

mG
e

S

γ

γγ
γ

γ

= =

= = × × = × ×

∴ =

r

s s r s
s

s

s r
w

1

1 1

1

S e
G G S e
e e G

G S e
e

γγ γ

γ γ

+
+

= × = ×
+ +

+ 
=   +

s s
w

s w

1

1

1

G m G
e

m
G

e

γ γ

γ γ

+ × 
=   +

+ =   +

(1.38)

(1.39)

s
d

d

1
1

1

W W
W m V
V V m

m

γ

γγ

+= = =
+

=
+
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From (1.31):	 γ γ γ γ γ

γ

+ 
′ = − = −  +

+ − − 
=   +

s
sat w w w

s
w

1

1

1

G e
e

G e e
e

Hence the submerged density:	 γ γ− 
′ =   +

s
w

1

1

G
e

� (1.43)

Example 1.6

Clay of G
s
 = 2.8 was compacted into six standard ASTM moulds at different water 

contents. The internal volume of each mould was 944 cm3. The total and dry 
masses of samples were found to be:

1.  Calculate the quantities contained in Table 1.2 (Example 1.5) for sample No.1, 
in both mass and weight units. Show calculations in Table 1.5.

2.  Complete Table 1.6 by evaluating for each sample the:
a.  Water content (m %)
b.  Bulk unit weight (g kN/m3)
c.  Dry unit weight (g

d
 kN/m3)

d.  Voids ratio (e %)
e.  Volume of air (V

a
 cm3)

3.  Plot g, g
d
, e and V

a
 against m on Graph  1.1, indicating their variation with 

increasing water content.

Table 1.4 

Quantity

Sample

1 2 3 4 5 6

M (g) 1743 1827 1880 1890 1880 1834
M

s
 (g) 1449 1502 1533 1542 1510 1467

Table 1.3  (Comparison of formulae)

Partially saturated soil Saturated soil Dry soil

S
r
 < 1 S

r
 = 1 S

r
 = 0

V
w
 < V

v
V

w
 = V

v
V

w
 = 0

r

s

S e
m

G
=

s

e
m

G
=

m = 0

W = (1 + m) W
s

W = (1 + m) W
s

W = W
s

s r
w1

G S e

e
γ γ

+ 
=   +

s
sat w1

G e
e

γ γ+ 
=   +

d 1 m
γγ =
+

sat
d 1 m

γ
γ =

+
γ γ 

=   +d w1
sG

e
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Table 1.5  For sample No. 1

In mass units In weight units

M = 1743 g = 1.743 kg W = 9.81 × 10-3 × 1.743 = 0.0171 kN

M
s
 = 1449 g = 1.449 kg W

s
 = 9.81 × 10-3 × 1.449 = 0.0142 kN

V = 944 cm3 V = 944 × 10-6 m3

G
s
 = 2.8 - G

s
 = 2.8 -

M
w
 = M - M

s
 = 1.743 - 1.449 = 0.294 Kg W

w
 = W - W

s
 

= 0.0171 - 0.0142 = 0.0029
kN

w

s

100 0.294
100 20.3

1.449

M
m

M
×

= × = = % w

s

100 0.29
100 20.4

14.2

W
m

W
×

= × = = %

6

1.743
1846

944 10

M
V

ρ −= = =
×

kg/m3

g  = 9.81 × 10-3 × 1846 = 18.1

γ −= = =
× 6

0.0171
18.1

944 10

W
V

kN/m3

kN/m3

s
d 6

1.449
1535

944 10

M

V
ρ −= = =

×
kg/m3 g

d
 = 9.81 × 10-3 × 1535 = 15.1 kN/m3

ρρ = = =d

1846
1535

1.2031+
100

m kg/m3 γ −= = =
×

s
d 6

0.0142
15.1

944 10

W

V
kN/m3

r
s
 = G

s
r

w
 = 2.8 × 1000 = 2800 kg/m3 g

s
 = 9.81 × 10-3 × 2800 = 27.5 kN/m3

g
s
 = G

s
g

w
 = 2.8 × 9.81 = 27.5 kN/m3

ρ
= = × =6s

s
s

1.449
10 518

2800

M
V cm3 6s

s
s

0.0142
516 10

27.5

W
V

γ
−= = = × m3

V
v
 = V - V

s
 = 944 - 518 = 426 cm3 V

v
 �= V - V

s
 = (944 - 516) × 10-6  

= 428 × 10-6

m3

v

s

100 426
100 82

518

V
e

V
×

= × = = % e = 82 %

100 0.82
100 45

1 1.82

e
n

e
×

= × = =
+

% n = 45 %

s w v
sat

3 6

6

1.449 10 428 10
1981

944 10

M V

V

ρ
ρ

−

−

+
=

+ × ×
= =

×
kg/m3

3
sat

s w v
sat

6

6

9.81 10 1981 19.4

0.0142 9.81 428 10
19.5

944 10

W V

γ
γ

γ

−

−

−

= × × =
+

= =

+ × ×
=

×

V kN/m3

kN/m3

6w
w

w

0.294
10 294

1000

M
V

ρ
−= = × = cm3 6w

w
w

0.0029
296 10

9.81

W
V

γ
−= = = × m3

V
a
 = V

v
 - V

w
 = 426 - 294 = 132 cm3 V

a
 �= V

v
 - V

w
  

= (428 - 296) × 10-6 = 132 × 10-6

m3

×
= × = =w

r
v

100 294
100 69

426

V
S

V
%

6

r 6

100 296 10
69

428 10
S

−

−

× ×
= =

×
%

r′ = r
sat

 - r
w
 = 1981 - 1000 = 981 kg/m3 g ′ = g

sat
- g

w
 = 19.5 - 9.81 = 9.69 kN/m3
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Revision

In mass units In weight units

ρ = = =3 3
w 3

kg
1000 1 g/cm 1Mg/m

m
g

w
 = 9.81 kN/m3

γρ =
3

310
kg/m

9.81
(1.21) g = 9.81 × 10− 3r kN/m3

310
kg

9.81

W
M = (1.18) W = 9.81 × 10− 3M  kN

Table 1.6  could be completed by calculating all of the quantities in succession as in 
Table 1.5. Instead, formulae are derived, where necessary, for the determination of 
the five unknowns.

From (1.35)	
 −

= = = −  
sw

s s s

100
100 100 1 (%)

M MM M
m

M M M

From (1.21):	 ( )3 3 39.81 10 9.81 10 kN/m
M
V

γ ρ− −= × = × ×

From (1.40):	 3
d (kN/m )

1 m
γγ =
+

From (1.34):	 s s wGγ γ= ×   3
3s s

s s
s w s w

9.81 10
or (m )

W M
V V

G Gγ γ

−×
= =

�
(1.44)

From (1.33):	 s
s

s

W
V

γ
=

From (1.5):	
sv

s
s s s

1 and
1

V VV V V
e V

V V V e
−

= = = − =
+ � (1.45)

From (1.2):	
γ

γ γ

−

= − = − − = − −
+

 ×
= − = −  + +  

w

w
a v w s w

w

3
3w

a a
w w

1

9.81 10
or m

1 1

WV
V V V V V V V

e

WeV e MV
V V

e e

�

(1.46)

3 3 3
w a s

3

3 3
a ws

9.81 (kg/m ) ( ) 10 cm
1But 944 (cm )

or 10 cmand kg(
1

)

eV
V M M

eV
eV

V MM M
e

γ −= ∴ = − − ×
+=

= − ×
+

�

(1.46a)
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Va

m = Water content (%)

e 
=

 V
oi

ds
 r

at
io

 

m0 = 22.45%

max gd = 15.75 kN/m3

D
en

si
tie

s 
g   a

nd
 g

d 
(k

N
/m

3 )

emin = 0.75

V
a 

=
 V

ol
um

e 
of

 a
ir 

(c
m

3 )

Va = 64 cm3 

e

g

max gd = 19.3 kN/m3

gd

160

140

120

100

80

60

40

20

0

14
252423222120

0.66

0.68

0.70 15

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

16

17
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19

Graph 1.1
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Notes:

1.  As m increases, the air voids hence e decrease due to compaction, resulting 
in higher densities.

2.  At the “optimum moisture content” m
o
, the densities reach their maximum 

values, whilst e attains its minimum. The volume of air is also reduced 
considerably. In this example, the changes are:

3.  If the water content is increased beyond the optimum value, the soil becomes 
less compact. This is indicated by the decreasing values of g and g

d.
 The 

increase in the volume of water in the voids is reflected in the changed value 
of e.

4.  It is not possible to compact partially saturated soil so, that all air is expelled 
(V

a
 = 0). In this example, the minimum amount of air voids remaining beyond 

m = 25% is about V
a
 = 50 cm3.

Table 1.6  (See Graph 1.1)

Quantity

Sample

1 2 3 4 5 6

M kg 1.743 1.827 1.855 1.846 1.838 1.834
M

s
kg 1.449 1.502 1.514 1.496 1.479 1.467

m % 20.3 21.6 22.5 23.4 24.3 25.0
g kN/m3 18.1 19.0 19.3 19.2 19.1 19.1
g

d
kN/m3 15.1 15.6 15.73 15.55 15.4 15.25

e – 0.82 0.76 0.75 0.77 0.79 0.80
V

a
cm3 132.5 82.6 62.3 59.7 56.8 53.1

1.2.9  Relative density (Dr)

Granular soil, sand in particular, is often described as either loose or dense. The relative 
density, alternatively called “density index” compares the voids ratio of sand, in its natu-
ral state, with those in its most loose and most dense states. It is formulated as:

	
max

r
max min

100 %
e e

D
e e

 −
=  −  � (1.47)

Table 1.7

Change

m = 20% m
o
 = 22.45% + 2.45 %

g 18.1 19.3 + 1.2 %
g

d
15.1 15.75 + 0.65 %

e 0.82 0.75 - 0.07 -
V

a
132.5 64 - 68.5 cm3
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Where 	 e = in-situ voids ratio
	 e

min
 = voids ratio in loosest state

	 e
max

 = voids ratio in densest state

The values of D
r
 tabulated below should be taken as indicative only, because of the 

uncertainties in obtaining minimum and maximum voids ratios or densities.

D
r
 can be expressed in terms of dry unit weight by means of formula (1.41) from which:

	

( )
( )
( )

γ
γ

γ
γ γ γγ

γ γ γ
γ

γ

= −

= − −
= ×

−
= −

s w

d

s w
max d d d

d r
d d d

s w
min

d

1
Substituting these into formula 1.47 we get :

and 1 min max
min 100 %

max min

Also, 1
max

G
e

G
e

D

G
e

�
(1.48)

Determination of e
max

 and min g
d

Dry sand is poured slowly into a cylinder through a funnel, keeping its end near the sur-
face of the material to prevent compaction. When the cylinder is full, measure the weight 
of the contained sand.

3volume of the cylind )er (mV =

s weight of soi N)l (kW =

s
dFrom formula 1.26 : min( )

W
V

γ =

s w
maxHence from 1.41 :( 1)

s

VG
e

W
γ

= −

Table 1.8 

Description of soil D
r
 (%)

Very loose   0-15
Loose 15-35
Medium 35-65
Dense 65-85
Very dense 85-100

Figure 1.12
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Determination of e
min

 and max g
d

The sand is compacted into cylinders at different water contents. Plot the voids ratio and 
dry density against moisture content as in Example 1.6.

m
o
 = optimum moisture content, 

where:
Voids ratio = e

min

Dry density = max g
d

e e

emin

mo

max gd

gd

gd

Figure 1.13

Example 1.7

The results of density test conducted on sand were:

e = 58.2%, e
max

 = 62.4% and e
min

 = 41.5%

Calculate the relative density of the sand.

max
r

max min

62.4 58.2
100 100 20%

62.4 41.5

e e
D

e e

 − − = × = × =    − − 

The sand can be considered as loose, hence not load–bearing. It is not suitable for 
foundation construction.

1.3  Alteration of soil structure by compaction

It often occurs that soil has to be excavated at one place and deposited elsewhere for 
various reasons. Some of the reasons are:

1.  Construction of embankments.
2.  Construction of large horizontal areas for housing, roads, runways, etc.
3.  Exchanging soil of unsuitable bearing strength with strong, compacted soil, prior to 

erection of structures.

The excavated soil is in loose condition; hence it has to be compacted during deposition. 
The purpose of compaction is to:

1.  increase density by decreasing the air voids, hence the voids ratio;
2.  decrease permeability by the reduction of voids;
3.  increase shear strength by packing the soil particles closer.
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The soil is partially saturated during compaction. The process, therefore, must not be con-
fused with consolidation, where water is expelled from fully saturated soil, whereas in com-
paction, air is expelled from partially saturated one. In effect, the voids ratio in well compacted 
soil is low and the grains are packed so, that future consolidation settlement is minimized.

The efficiency or rather the degree of compaction is measured in terms of either dry 
mass density (r

d
) or dry unit weight (g

d
) and moisture content (m%). Some amount of 

water added helps compaction by reducing surface tension. However, if m% is in excess of 
the so called “Optimum moisture content (m

o
)”, then the void ratio begins to increase and 

the soil becomes looser. The variation of g
d
, g, e and V

a
 with m% is illustrated in Graph 1.1.

Soil stabilization is carried out in five stages:

1.  Retrieval of soil samples from the area to be quarried.
2.  The samples are compacted in a laboratory and the maximum value of γ

d
 at the 

m
o
% is obtained.

3.  The engineer or architect specifies these values in the earthworks contract.
4.  The contractor should compact the imported soil as specified.
5.  The engineer or architect initiates spot checks on site, in order to determine the 

in-situ dry density, hence the efficiency of the compaction.

1.3.1  Laboratory compaction tests (BS 1377-4: 1990)

There are three British standard and two American tests in use:

1.  B.S. ‘light’ –2.5 kg rammer test
2.  B.S. ‘heavy’ - 4.5 kg rammer test
3.  B.S. vibrating hammer test
4.  American (ASTM) light and heavy tests.

The British standard tests are outlined below. Figure 1.14 shows the equipment used.

B.S. ‘light’ test
It is carried out, using either a 1000 cm3 or a 2305 cm3 (CBR) mould and a 2.5 kg rammer. 
(See Figure 1.14). The procedure is as follows:

Step 1: Compact the soil in three layers, by dropping the rammer from a height of 
300 mm. The number of drops (or blows) depends on the mould used.
1000 cm3 mould requires 27 blows/layer
2305 cm3 mould requires 62 blows/layer

Step 2: Obtain the mass of the soil.
Step 3: Measure its moisture content.
Step 4: Mix a little water to the soil.
Step 5: Repeat the procedure from step 1 at least five times.
Step 6: Calculate the dry unit weight and the volume of air voids for each moisture 

content and plot the compaction curve.

B.S. ‘heavy’ test
In this test a 4.5 kg rammer is applied.

Step 1: Compact the soil in five layers. The number of blows again depends on 
the mould used.
1000 cm3 mould requires 27 blows/layer
2305 cm3 mould requires 62 blows/layer
The rammer is dropped from a height of 450 mm.

Steps 2-6: As for the ‘light’test.
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B.S. vibrating hammer test
The 2305 cm3 CBR (California Bearing Ratio) mould is used in this test, which is applicable 
to granular soil only. The soil is compacted in three layers. Each layer is vibrated for one 
minute by a 32 - 41 kg vibrating hammer.

Notes:

a)  The ASTM tests are similar in principle to the B.S. ones. The difference is in the size of 
the moulds, number of layers, mass of the rammer and number of blows per layer.

b)  The CBR mould is normally used in the CBR test, which helps in the determination of 
the strength of soil layers under roads and pavements.

Presentation of results
The usual way to present the outcome of a compaction test is by plotting the dry unit 
weight against moisture content. Also, curves indicating 0, 5 and 10% air voids are drawn 
to determine the efficiency of the compaction.

Where:
�m

o
 = Optimum moisture content, 

corresponding to the maximum 
value of dry unit weight (max g

d
).

Figure 1.14  BS Compaction mould and rammers EL24-9002.  
Reproduced by permission of ELE International.

m0 m%

g d =
 d

ry
 d

en
si

ty
 (

kN
/m

3 )

max gd

gd

0%
5%

10%

saturation line V
a =0

Figure 1.15
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The dry unit weight/moisture graph is drawn by means of formula (1.40):

d 1 m
γγ =
+

The dry unit weight has to be expressed in terms of m and percentage of air voids so, 
that the saturation lines may be drawn. The first step is to define the volume of air as a 
percentage of the total volume:

	
a

a 100 %
V

P
V

= ×
�

(1.49)

Of course, P
a
 is expressed in decimals in formulae just like m, e, n, or s, that is a

a

V
P

V
=

s w
as w a

s w w

s
s s s as

s s
s w ws w

s s w
s d a

w
s w ww

w

d a
w s

w s

From 1.3 :

From 1.33 :

From 1.34 :

From 1.23 :

1
From 1.35a :

( )

( )

( )

( )

( )

W W
V VV V V V

G
W

V W mW VW IV
V G V VG

G
m V

IW G VV

V
I mW m W

G V

γ γ

γ
γ γγ

γ γ
γ γ
γ γ

γ
γ
γ

= + += + +

=
= + +=

= ×
= + +

=
 

= × + += ×   

Expressing	

a
w

d

1

1

s

V
V

m
G

γ
γ

 −  
=

+

Or	
( ) γ

γ
−

=
+

a s w 3
d

s

1
kN/m

1

P G

mG �
(1.50)

For P
a 
= 0%	

γγ =
+

3s w
d

s

kN/m
1

G
mG

� (1.51)

Example 1.8

Table 1.9  contains the results of a compaction test carried out on soil to be placed 
in a 3 m thick layer under a heavy industrial building.

The dry unit weight (g
d
) is plotted against m% on Graph 1.2 and the results noted. 

In this example:
3

dmax 16.85kN/ mγ =

o 19.15%m =
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The volume of air in the soil at maximum dry density can be determined by 
interpolating between the 0% and 5% lines. From Graph 1.2:

if 2.4 mm represents	 5%
Then 1.6 mm represents	 P

a
%

or = ∴ =a
a

2.4 1.6
3.3%

5
P

P

= × = × = 3
a 0.033 0.033 2305 76.8 cmV V

Alternatively, by formula (1.50):

( ) ( )γ
γ

− − × ×
= =

+ × + ×
a s w a

d
o s

1 1 2.7 9.81
max or 16.85

1 1 0.1915 2.7

P G P

m G

( )
a

16.85 1 0.1915 2.7
1 0.965

2.7 9.81
P

× + ×
− = =

×

a
a 1 0.965 0.0359 (3.5%)

V
P

V
= = − =

3
a 0.035 0.035 2305 80.7cmV V∴ = × = × =

Table 1.9 

Compaction

Sample number 1 2 3 4 5 6

Mass of wet soil + mould g 6141 6498 6602 6556 6441 7271
Mass of mould g 1900 1900 1900 1900 1900 1900
M

c
 = mass of wet soil g 4241 4598 4702 4656 4541 5371

V = volume of mould cm3 2305 2305 2305 2305 2305 2305
Mass density: r = M

c
/V g/cm3 1.84 1.99 2.04 2.02 19.70 2.33

Unit weight: g  = 9.81 r kN/m3 18.1 19.5 20.0 19.8 19.3 22.9

Moisture content (G
s
 = 2.7)

Mass of wet 
soil + container

g 173.1 140.7 121.2 129.3 142.7 153.6

Mass of container g 8.71 10.28 7.95 8.92 9.51 8.53
M = mass of wet soil g 164.39 130.42 113.25 120.38 133.19 145.07
M

s
 = mass of dry soil g 143.01 106.30 95.14 98.02 106.20 113.16

Mass of water:  
M

w
 = M - M

s

g 21.38 24.12 18.11 22.36 26.99 31.91

Water content:  
m = 100 M

w
/M

s

% 14.95 17.40 19.03 22.81 25.41 28.20

Dry unit weight:  
g

d
 = g /(1 + m)

kN/m3 15.7 16.7 16.9 16.2 15.4 17.8

Air voids lines

( ) γ
γ

−
=

+
a s w

d
s

1

1

P G

mG

P
a
 = 0% kN/m3 19.3 17.9 17.2 16.4 15.7 15.0

P
a
 = 5% 17.9 17.0 16.6 15.6 14.9 14.8

P
a
 = 10% 17.0 16.2 15.8 14.8 14.1 13.5

5%

0%

1.6 m
m

2.4 m
m

x

Figure 1.16
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3.3%

x
0%

 air voids (saturation line)

5%
 air voids10%

 air voidsg
=

 D
ry

 u
ni

t w
ei

gh
t (

kN
/m

³)
d

m = 19.15%0

m = Water content (%)

Optimum moisture content: m0 = 19.15%
Maximum dry unit weight: max gd = 16.85 kN/m3

18

17

16

15

14

13
14 16 18 20 22 24 26 28

max gd= 16.85 kN/m³

Graph 1.2
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Alternatively, V
a
 can be determined from the basic formulae.

Known: 	 m
o
 = 19.15%	 and	 g

d
 = 16.85 kN/m3

From (1.40):	  g = (1 + m
o
) g

d
 = 1.1915 × 16.85 = 20.08 kN/m3

From (1.19): 	 3
6

2305
20.08 46.3 10 kN

10
W Vγ − = = × = ×  

From (1.37):	
−

−×
= = = ×

+

6
3

s
o

46.3 10
38.9 10 kN

1 1.1915

W
W

m

From (1.17): 	 W
w
 = W - W

s
 = (46.3 - 38.9) × 10− 3 = 7.4 × 10− 3kN

From (1.3):	 V
a
 = V - V

w
 − V

s

But, 	
3

3 3w
w

w

3 6 3

3

7.4 10
0.754 10 m

9.81

(0.754 10 ) 10 cm

754cm

W
V

γ

−
−

−

×
= = = ×

= × ×
=

And	
γ γ

−
−

−

×
= = = = ×

×
= × ×
=

3
3 3s s

s
s s w

3 6 3

3

38.9 10
1.4686 10 m

2.7 9.81

(1.4686 10 ) 10 cm

1469cm

W W
V

G

Therefore,	 V
a
 = 2305 - 754 - 1469 = 82 cm3

In percentage terms: 	 a

82
100 3.6%

2305
P = × =

The three results, therefore, are comparable.

1.3.2  Practical considerations

It is very much unlikely, or rather impossible to achieve the same compaction in the field 
as predicted by the laboratory results. It is somewhat difficult to maintain the soil at opti-
mum water content because of rain or very dry weather. It is therefore unreasonable to 
expect a contractor to produce the exact dry density shown on a compaction curve. For 

Figure 1.17

g
d

m1

(a)

m2 m%

Range

(b)
g
d

m1 m2 m%

Range
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this reason, the specification should state an acceptable range of moisture content. This 
range is chosen by observing the variation of g

d
 with m on the compaction curve. For 

example, the dry bulk density for m = 16.7% and m = 21.6% is g
d
 = 16.5 kN/m3 on Graph 1.2. 

For this range of moisture content, the deviation from the maximum value is 16.85- 
16.5 = 0.35 kN/m3. Should this small variation be acceptable, this range would be specified.

In general, the flatter is the compaction curve the less sensitive is the dry density to 
the variation in m%.

Soils with flatter curves (Figure  1.17a) need less compactive effort than those with 
steeper ones (Figure 1.17b). On the other hand, however higher values of dry density can 
be achieved by soils sensitive to moisture content variations.

1.3.3  Relative compaction (Cr)

The allowed deviation described above may be specified by the relative compaction (C
r
).

	
γ

γ
= × d

r
d

100 %
max

C � (1.52)

where γ d  = dry unit weight to be achieved in the field.
In example 1.7, for the range discussed above:

r

100 16.5
98%

16.85
C

×
= =

Therefore, for the latitude of moisture content variation only 2% of the density was 
lost. It is not desirable to depart too far from m

o
% because:

1.  If m < m
o
 then more air voids can remain in the soil, after compaction, than intended.

2.  If m > m
o
, then the additional moisture could make the soil weaker than intended.

1.3.4  Compactive effort

There are various types of compactors used in the field, depending on the soil treated. 
The efficiency of their compacting effort is a function of the:

1.  thickness of the compacted layer
2.  number of passes over the layer
3.  mass of the compactor
4.  moisture content of the soil.

Types of compaction plant:

vibratory roller
smooth-wheeled roller
sheepfoot roller
pneumatic-tyred roller
grid roller
power rammer.

The thickness of each layer and the number of passes depend on the mass of the plant 
used. On the average, 4-5 passes are sufficient, as long as the roller is of large enough 
mass. Detailed information on the types and capability of compaction plants is available 
in the relevant literature. In general, vibrating rollers are applicable to cohesive as well as 
well graded granular soil, as long as their mass is over 1800 kg. The thickness of layers is 
within the 150-300 mm range.
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1.3.5  Under- and overcompaction

Dry density increases, whilst the optimum moisture content decreases, and vice versa, 
with compactive effort.

Undercompaction means that the compactive effort is less than necessary, when the 
soil is at the specified moisture content. It is now too dry (at point B) and not at its maxi-
mum dry density (point D) for the particular effort.

Conversely, overcompaction means unnecessary extra effort, when the soil is worked at 
the specified m

o
%. Although the dry density is increased (point C), the soil becomes wet-

ter than it would be at the new optimum (point E), hence it becomes weaker than intended.

1.3.6  Site tests of compaction

It is imperative to carry out daily checks on the dry density achieved by the compactor. 
There are five well known in-situ methods to do this:

1.  core cutter method
2.  sand replacement method
3.  water displacement method
4.  penetration needle measurement
5.  nuclear radiation

Of these, only the first two will be outlined.

1.3.6.1  Core cutter method

It is applicable to cohesive soils. A cylindrical steel cutter of volume V is driven into the 
layer. The soil mass is measured and the dry density determined on site. The moisture 
content is obtained normally by the drying-out process. The cutter shown is pressed into 
the soil by a rammer-dolly assembly.

Core cutter

W
V

γ =

d 1 m
γγ =
+

mo (specified) m%

max gd

Zero air voids

over

gd

under
Line of optimum
water content

A – Specified compaction at mo
B – Undercompaction at mo
C – Overcompaction at mo

Figure 1.18

13
0

m
m

Soil

V

W

m

100 mm

Figure 1.19
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1.3.6.2  Sand replacement method

It is used mainly for granular soil, as the dimensions of the hole dug for a sample are 
irregular and cannot be measured normally.

Calibration of the apparatus (Figure 1.20):

a)  Fill the pourer with sand.
b)  Place the pourer on a flat surface and release sand, filling the cone. Weigh the sand 

released (M
1
).

The bulk mass density of the sand (r
s
) has to be determined.

c)  Fill the pourer with sand and weigh it (M
2
).

d)  Place the pourer on the calibrating cylinder and release sand to fill it as well as the 
cone.

e)  Weigh the pourer (M
3
).

f)  Calculate ρ − −
= 2 3 1

s
c

M M M
V

 where V
c
 = volume of cylinder

Measurement of soil mass density on site:

g)  Excavate a round hole, approximately 100 mm in diameter.
h)  Weigh the excavated soil (M

4
)

i)  Completely fill the pourer with sand and place it over the hole.
j)  Release sand until it fills the hole.
k)  Weigh the pourer (M

5
).

l)  Calculate the mass of sand filling the hole: M
s
 = M

2
 - M

1
 - M

5

m)  Calculate the volume of the hole:

s

s

M
V

ρ
=

Figure 1.20  Photograph of ELE29-4000.100 calibrating container, metal 
tray. Reproduced by permission of ELE International.
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n)  Calculate the mass density of the soil sample:

4M
V

ρ =

o)  Determine the moisture content (m) and hence the dry density r
d
 by (1.40)

1.4  California bearing ratio (CBR) test

The test is entirely empirical and the CBR value depends on the degree of compacted 
that is on the dry density and the moisture content of the soil to be tested. The result is 
used in the design of pavements, roads and air-field runways.

Definition
The CBR value of a material is the ratio of the force required to penetrate the compacted  
soil to a standard force, causing the same penetration. In other words, if the standard 
force is 100%, then the measured force is CBR% i.e.

	
Measured force

CBR 100 %
Standard force

 
= ×   

� (1.53)

It can also be considered as an index of shear strength of a soil in known state of 
compaction.

Outline of the laboratory test
The sketch of the CBR apparatus is shown below:

Step 1:	� Compact the soil in five layers into the mould by either of the 2.2 kg or 4.5 kg 
rammer.

Step 2:	� Place surcharge rings on the top of the soil, if necessary, to simulate possible 
overburden pressure.

Compacted soil

Load ring
Load
gauge

Penetration gauge

Collar

Surcharge mass (“weight”)

CBR mould (2305 cm3)

Plunger

12
7

m
m

158 mm diameter

Figure 1.21
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Step 3:	� Seat the 49.6 mm diameter plunger on the surface of the soil and apply seating 
load according to the expected CBR value:

Step 4:	� Start motor and read the load gauge (Q) at every 0.25 mm indicated on the 
penetration gauge up to 7.5 mm maximum penetration.

Step 5:	 Remove the soil from the mould. Obtain its moisture content and dry density.
Step 6:	 Calculate the applied force (P) from:

	

kN
1000

Qk
P =

�

(1.54)

	 where k = load ring factor (N / division).
Step 7:	� Plot the value of (P) against penetration (d ). The curve can have either of the 

two shapes shown:

Step 8:	� Calculate the CBR values by comparing the loads at d = 2.5 mm and d = 5 mm to 
the loads on the standard 100% CBR curve at the same penetrations. The 
standard curve is given by:

The results for a curve type Figure 1.22(a) can be calculated directly from formula (1.53).

	

2.5

5

Measured force at 2.5mm
CBR1 100 100 %

Standard force at 2.5mm 13.24

Measured force at 5mm
CBR2 100 100 %

Standard force at 5mm 19.96

P

P

 
= × = ×  

 
= × = ×  

� (1.55)

Table 1.10

CBR % Seating load (N)

≤ 30
> 30

50
250

Figure 1.22

P(kN)

P5

P2.5

2.5 5
d (mm)

7.5

(a)

Convex

P(kN)
(b)

2.5 5
d (mm)

7.5

Convex Convex

Table 1.11 

d (mm) 2 2.5 4 5 6 8 10 12

Standard P
100

11.5 13.24 17.6 19.96 22.2 26.3 30.3 33.5
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Alternative graphical procedure: Plot the experimental curve on standard charts as 
shown in the following example.

Construction of the charts
In order to draw the curve for a particular CBR% (say CBR = 60%), the standard force in 
Table 1.11 has to be multiplied by 0.6 at each penetration. Table 1.12 contains the figures 
for CBR = 12% and 60%

The table can be completed this way for any CBR value and either one or several charts 
drawn. In this case, Chart 1.1a has been drawn for easier interpretation under CBR = 12%.

Table 1.12 

d (mm) 2 2.5 4 5 6 8 10 12

Standard P
100

11.5 13.24 17.6 19.96 22.2 26.3 30.3 33.5
12% CBR = 0.12 P

100
1.38 1.59 2.11 2.40 2.66 3.16 3.64 4.02

60% CBR = 0.6 P
100

6.90 7.94 10.56 11.98 13.32 15.78 18.18 20.10

Example 1.9

Two soils A and B were tested in the CBR mould and the results tabulated. 
Determine the CBR value for each, analytically and graphically.

Note: It is prudent to draw the load-penetration curves in order to ascertain their 
shapes. A correction has to be made if the shape is as indicated in Figure 1.22(b). 
In this example, P

A
 is plotted on Chart 1.1a. Its curve is convex downwards near the 

origin, hence it has to be corrected as shown.

Table 1.13 

d (mm) P
A
(kN) P

B
(kN) d (mm) P

A
(kN) P

B
(kN)

0.00 0.00 0.00 4.00 0.98 7.14
0.25 0.01 1.10 4.25 1.07 7.28
0.5 0.03 2.00 4.50 1.16 7.42
0.75 0.05 2.82 4.75 1.26 7.58
1.00 0.07 3.51 5.00 1.34 7.65
1.25 0.09 3.95 5.25 1.39 7.74
1.50 0.13 4.22 5.50 1.47 7.80
1.75 0.17 4.80 5.75 1.54 7.81
2.00 0.23 5.21 6.00 1.10 7.85
2.25 0.26 5.53 6.25 1.64 7.88
2.50 0.34 5.84 6.50 1.72 7.92
2.75 0.43 6.17 6.75 1.76 7.95
3.00 0.54 6.35 7.00 1.79 7.98
3.25 0.66 6.57 7.25 1.83 7.99
3.50 0.77 6.76 7.50 1.87 8.00
3.75 0.87 6.98 – – –



Chart 1.1
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Draw line y−z. Point z is the 
new origin for d. Interpolate for 
the two CBR values in Chart 1.1a.

From Chart 1.1a: x = 1.95	 ∴	 2.5 + x = 4.45 mm

	 And	 5 + x = 6.95 mm

Interpolating between curves 8% and 10%.

CBR 1 8.8%=
CBR 2 9%=

Accept the larger figure as the CBR value for material A, that is 9%.
Curve B for P

B
 is convex upwards along its entire length, hence no correction is 

necessary. In this case, it is easier to calculate the CBR values by formula (1.55), 
then by interpolation on Chart 1.1b.

From Table 1.13:	

B

For 2.5 mm 5.84
CBR1 100 44.1%

5.84 kN 13.24P

δ =
∴ = × =

=

	 B

For 5 mm 7.65
CBR2 100 38.3%

7.65 kN 19.96P

δ =
∴ = × =

=

The larger answer is taken as the CBR value rounded to 44%. The graphical solu-
tion is given on Chart 1.1b.
Note: The shape of curve A near the origin is assumed to be due to inadequate 
compaction of the surface layer compared to the rest of the material.

Comparative CBR values of various soils are tabulated below.

P A

y

CBR2

CBR1

z 2.5 5

New origin

d
x x x

Figure 1.23
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Guidance is given in Road Note 29 of the Road Research Laboratory as to the 
design of flexible and concrete roads and pavements in terms of CBR values and 
estimated traffic intensities.

Table 1.14 

Soil type Plasticity index (PI, %) CBR (%) Strength

Heavy clay 70
60
50
40

1-2
1.5-2.0
2.0-2.5
2-3

Weak

Silty clay 30 3-5 Normal
Sandy clay 20

10
4-6
5-7

Sand Non-plastic Stable
Poorly graded Non-plastic 10-20
Well graded Non-plastic 15-40
Sandy gravel Non-plastic 20-60

Orifice

Top

Pycnometer
jar

Figure 1.24

1.5  The pycnometer

It is a glass jar, fitted with a conical screw-top with a 6 m circular orifice at the apex, as 
shown schematically below. The pycnometer is used to determine:

1.  Specific gravity (G
s
)

2.  Moisture content (m)

The test is based on formula (1.34).

s

s s s
s

ww w

s

Mass of soil

Mass of equal volume of water

M
V M

G
M M

ρ
ρ

γ

= = = =

It is necessary to find that mass of water, which is displaced by the 
soil.
Notes: The units used are:

a)  volume in cm3

b)  mass in grams.

ρ
ρ ρ

ρ

=

= =

= × =

3
w

s
s s

3
w w w w

1g/cm
Therefore :

1
cm

G

M V V
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Outline of the test
Step 1:	� Weigh the empty jar + top (M

p
). Fill the pycnometer to the orifice with water.

Weigh the pycnometer + water (M
1
)

ρ= + = + × = +1 p o p o w p oM M M M V M V

where
M

p
 = mass of the pycnometer

M
o
 = mass of water filling the pycnometer

V
o
 = volume of the pycnometer

Step 2:	� Place about 200 g oven-dried fine-grained or 400 g coarse-grained soil (M
s
) into 

the dry, empty pycnometer. Add water at room temperature. Stir the mixture to 
remove air bubbles.

Step 3:	� Screw on the conical top and fill the pycnometer completely. Cover the orifice 
with a finger and shake the jar to remove any air from the soil and water.

Step 4:	 Weigh the pycnometer + soil + water (M
2
).

Step 5:	 Apply the formulae derived below.

1.  Derivation of G
s
 (in terms of dry mass M

s
)

In order to determine the mass (M
A
) of the displaced water, imagine that wet soil of 

mass M is dropped into the full pycnometer and the discharge is collected.

Volume of partially saturated soil:

= + +s w aV V V V

Mass of partially saturated soil:

s w

s s w w s s w

M M M

V V V G Vρ ρ
= +
= × + × = × +

Volume of water displaced from the jar by the volume 
of solids and water in the soil:

( )A x a o s wV V V V V V= + = − +

The mass of the displaced water is given by:

ρ= × = = − − = − −s
A A w A o s w o w

s

M
M V V V V V M M

G

M1

Water
Mo

Figure 1.25

M2

Vs Vw Va

MA

Outflow

Vx
Water

Figure 1.26
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The formula in terms of the dry mass (M
s
) and the measurements made (M

1
 and M

2
) 

during the test:

From step 1:	 M
1
 = M

p
 + M

o

From step 2:	 ( )2 p x a w

p A

M M M V V

M M M

ρ= + + + ×

= + +

Change in the mass of pycnometer in steps 1 and 2.

( )

∆ = − = + + − −

 
= + + + − − − −  

= + + − − −

2 1 p A p o

s
p s w o w p o

s

s
s w o w o

s

M M M M M M M M

M
M M M M M M M

G

M
M M M M M

G

s s
2 1 s s s

s s

11
1

s

M G
M M M M M

G G G

   −
− = − = − × = ×      

Expressing dry mass:	 ( ) s
s 2 1

s 1

G
M M M

G

 
= −  − 

� (1.56)

Therefore, should G
s
 of a partially or fully saturated soil be known from another source, 

then its dry mass can be determined by a pycnometer.

Expressing G
s
 from:	

2 1 s
s

1
1M M M

G

 
− = − ×  

	

+ −−
= − = 1 22 1

s

1
1 s

s s

M M MM M
G M M

Hence,	 s
1 2

s

s

M
G

M M M
=

+ −
� (1.57)

2.  Derivation of m (in terms of total mass M)

From (1.35a):	

( )

−
= = = −

= −
 

− ×  − 

sw

s s s

s
2 1

s

1

1

1

M MM M
m

M M M

M

G
M M

G

Hence,	 s

2 1 s

1
1

GM
m

M M G

   −
= × −  −   

� (1.58)

Therefore, the moisture content can be found by a pycnometer if G
s
 is known.
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Example 1.10

A partially saturated soil specimen, weighing 1743 g was tested by placing its 
oven-dried mass of 1449 g in a pycnometer. The following results were obtained:

Step 1: 	M
p
 = 610 g

	 M
1
 = 1923 g

Step 4:	 M
2
 = 2854 g

Calculate:
a)  volume of the pycnometer
b)  specific gravity
c)  moisture content of the soil
d)  volume of water
e)  volume of solids

Check:	 Total and dry mass of the specimen
a)  Volume of pyconmeter = volume of water to fill it

o 1 p 1923 610 1313gM M M= − = − =

b)  From (1.57): s
s

s 1 2

1449
2.8

1449 1923 2854

M
G

M M M
= = =

+ − + −

c)  From (1.58): 

s

2 1 s

1 1743 2.8 1
1 1 0.203

2854 1923 2.8

GM
m

M M G

   − −   = × − = × − =         − −   

d)  =
∴ = × = × =

=

w
3

s w s

w w

0.203 1449 294 cm
Fro

But,

m (1.35):
M

m
M V m M

M V

e) 
ρ

ρ

=
∴ = = =

=

s
s 3s

s s
s

s s

(From 1.32 : 1449
518cm

2

)

.8
But,

M
V M

V
G

G

Check: (1.56): ( ) ( )   = − × = − × =    − 
s

s 2 1
s

2.8
2854 1923 1448 g

1 1.8

G
M M M

G

And M = M
s
 + M

w
 = V

s
 × G

s
 + V

w
 = 518 × 2.8 + 294 = 1744 g

Note: see also Supplementary problem 1.11.
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Problem 1.1

A site test was carried out in order to check the compacting efficiency of a con-
tractor. 1500 cm3 soil was removed and tested. The available results are:

	 Volume of sample:	 V = 1500 cm3

	 Dry Density:	 g
d
 = 17 kN/m3

	 Degree of saturation:  S
r
 = 53%

	 Specific gravity:	 G
s
 = 2.7

Calculate: 	 V
a
 = Volume of air in the sample

	 W
w
 = weight of water in the sample

	 M
w
 = mass of water in the sample

Problem 1.2

A compacted, partially saturated sand sample has to be fully saturated by the 
addition of water. Calculate, in the light of the following information, the weight of 
water to be added.

Volume of sample:	 V = 5260 cm3

Water content:	 m
1
 = 15%

Porosity:	 n = 35%
Specific gravity:	 G

s
 = 2.67

Problem 1.3

The following information is known about a sample of soil:

Volume:	 V = 3000 cm3

Water content:	 m = 15%
Specific gravity:	 G

s
 = 2.65

Submerged density:  g ′ = 8.69 kN/m3

Calculate:	 a) How many percent of voids are filled with water?
	 b) Weight of the pore water.
	 c) Mass of the pore water.
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Problem 1.5

Test of site compaction was carried out by means of sand pourer equipment. The 
apparatus was calibrated prior to its application.

The results were:

Calibration stage
Mass of pourer and sand 	 = 4.991 kg
Mass of sand released into the cone 	= 0.58 kg

Final mass of pourer after filling cylinder and cone	 = 1.19 kg
Volume of cylinder = 2000 cm3

Testing stage
Mass of excavated soil	  = 2.574 kg
Water content of excavated soil	  = 19%
Mass of pourer after filling the hole 	 = 2.321 kg

Estimate the dry density of the compacted soil.

Problem 1.4

Starting from formula (1.38), expressing the bulk unit weight of partially saturated 
soil, derive the formulae:

1.  g = 
+   

      +
1

1

m e
m e

 S
r
 g

w
	

Partially saturated soil

2.  g  = (1 + m) (1 - n) G
s
 g

w

3.  g
sat

 = [(1 - n) G
s
 - n] g

w
	

Saturated soil
4.  g

sat
 = +   

      +
1

1

m e
m e

g
w

5.  g
d
 = (1 - n) G

s
 g

w
	

Dry soil
6.  g

d
 = g

sat
 - ng

w

7.  g ′ = 
( )γ−

+
w

(1 )

e m

e m
	

Submerged soil

8.  g ′ = g
d
 - (1 - n) g

w
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Problem 1.6

Dry sand weighing 100 kg, is compacted to a voids ratio of 52%. The available 
information on the sand is:

Specific gravity	 = 2.66
Minimum voids ratio	= 31%
Density Index	 = 40%

Estimate:	� a)  �the Volume of sand in its most loose, most dense as 
well as compacted state.

	� b) � the moisture content in the above three states, given 
that the degree of saturation is 80% in each case.

	 c)  The saturated density in all three states in kN/m3.

Problem 1.8

An embankment of 12 m2 cross-sectional area is to be constructed. Site survey 
indicates that 40,000 m3 suitable soil of G

s
 = 2.66 can be excavated near the site. 

Tests carried out on 1 m3 of the material yielded the following average values:

W = 18.1 kN
W

s
 = 16 kN

If the soil is compacted at in-situ moisture content to dry density = 18.2 kN/m3, 
then:

a)  compare the voids ratios as well as the percentages of air in the excavated and 
compacted soil.

b)  determine the length embankment, that can be built with the available mate-
rial, in kilometres.

Problem 1.7

The weight of 2.5 m3 saturated soil is 48.5 kN. Given that the specific gravity of the 
material is 2.7, calculate the volume of water in the voids.
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Problem 1.10

Suppose the available results in Problem 1.9 are:

m = 12%
e = 66%
g = 17.9 kN/m3

V = 0.15 m3

Calculate:	  1.   Total weight
	 2. Weights of solids and water
	 3. Volumes of solids, water and voids.

Problem 1.9

Partially saturated clay was tested and its characteristics calculated. Most of the 
results were lost however, except the following four:

Volume:	 V = 0.15 m3

Moisture content:	 m = 12%
Degree of saturation:	 S

r
 = 49%

Dry unit weight:	 g
d
 = 16 kN/m3

Find:  	 a) Bulk unit weight
	 b) Voids ratio
	 c) Specific gravity
	 d) Saturated density

Problem 1.11

The results of pycnometer test, carried out on a saturated specimen are:

	 M = 519 g
	 M

s
 = 412 g

	 M
1
 = 1923 g

	 M
2
 = 2185 g

Show that, for a saturated soil, the entire list of soil characteristics (see Table 1.2 
and 1.5) can be determined by the pycnometer test.
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Chapter 2

Classification of Cohesive Soils

The engineering properties of fine-grained soils depend largely on their moisture 
content. For the same m%, the consistency of two soils could be markedly different. For 
example, at m = 29% a sample of silt could be very soft, whilst clay would be somewhat 
stiff and unpliable. This fact can, therefore, be conveniently used to differentiate between 
different types of soil.

2.1  Atterberg Limits

The accepted empirical method for the determination of consistency was devised by A. 
Atterberg (1911), based on the fact that, if sufficient water is added to a soil, its state 
changes from solid to liquid. Considering it the other way round, if the soil in liquid state 
is dried, it solidifies. The transformation during the drying process occurs in three stages 
as defined by the three Atterberg Limits:

1.  Liquid Limit (LL)
2.  Plastic Limit (PL)
3.  Shrinkage Limit (SL)

2.1.1  Liquid Limit (LL)

When soil paste, wet enough to flow under its own weight, is dried, it changes into a 
plastic mass. The moisture content at which the change occurs is the Liquid Limit (LL). 
The volume of soil has decreased and it is fully saturated (S

r
 = 1) at this stage.

In general, the value of LL increases as the size of soil particles gets smaller. Average 
values for:

sandy loam: 15% < LL < 20%
silty soil: 20% < LL < 50%
clay: 40% < LL < 80%

If the natural moisture content of a soil is near to its LL, then it is susceptible to large 
deformation and shear failure when loaded.

Usually, the Liquid Limit of a soil is defined as that moisture content at which the soil 
passes from a plastic to a liquid state.



44       Introduction to Soil Mechanics

2.1.1.1  Tests to find LL

The standard test was introduced by Professor Casagrande (1932). The apparatus employed 
is illustrated in Figure 2.1. This test is now less favoured than the Cone Penetration test.

The test is described fully in BS1377-4:1990 as well as in laboratory manuals, hence only 
its outline is given below:

Step 1: Break up about 200 g dry soil and remove particles not passing the 0.425 mm 
sieve.

Step 2: Place about 100–130 g of the material on the glass plate, mixing it thoroughly 
with a small amount of distilled water, until the mass becomes a thick paste.

Step 3: Making sure that the cup of the apparatus rests on the rubber block, place 
some of the paste into the cup and level it off parallel with the base to a 
maximum depth of 10 mm.

Step 4: Cut a groove in the sample, at right angles to the crank, by drawing the 
grooving tool across it.

Step 5: Turn the crank of the apparatus at a rate of two rotations per second, until the two 
parts of the soil come into contact, along the bottom of the groove, for a distance 
of 13 mm. Record the number of rotations, that is, the number of blows N.

Step 6: Transfer a small quantity of the tested soil into a container for the 
determination of its moisture content.

Step 7: Repeat operations 2–6 at least four times, using the same sample. Each time 
add a small amount of water, thus making the soil progressively wetter. The 
moisture contents have to be so chosen, that the number of blows should 
progressively increase, within the range 10–50.

Step 8: Obtain the moisture content, corresponding to each test.
Step 9: Plot m% against log N and draw a straight line (the flow curve) though the points.
Step 10: Draw a vertical line from N = 25 to intersect the flow curve and read off the 

corresponding moisture content. This value of m is the Liquid Limit.

Figure 2.1  ELE Liquid Limit device with assessories EL24-0410. 
Reproduced by permission of ELE international.
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2.1.1.2  Liquid Limit from a single test

According to the results of investigations by the US Waterways Experiment Station, 
Vicksburg in 1949, the Liquid Limit may be found from:

	
 =   

0.121

LL
25

N
m � (2.1)

where N is the number of blows corresponding to water content m in a single test.

Example 2.1

The results of five Liquid Limit tests on a clay sample are tabulated below (Table 1). 
Specific gravity was found to be 2.75.

Estimate:

1.  the Liquid Limit by plotting the figures on Graph 2.1
2.  the voids ratio at LL.

1.  From the graph: m = LL = 65.4%
2.  As the sample is saturated at LL, its voids ratio is given by e = M G

s
 = 

0.654 × 2.75 = 1.8. Note that e can be larger than unity. This means, that the 
volume of voids is larger than the volume of solids.

Table 2.1

Test number 1 2 3 4 5

Moisture content (m%)
Number of blows (N)

72
70

68
16

62
44

59
60

57
80

Log N 1 1.2 1.64 1.78 1.9

Example 2.2

Calculate the LL in Example 2.1 from three individual tests.

From  ( ) = = = × =  

0.121
10

72%, 10 LL 0.72 0.644 64.4%
25

m N

From  ( ) = = = = 
×



0.121
44

62%, 44 LL 0.62 0.664 66.4%
25

m N

From  ( ) = = = = 
×



0.121
80

57%, 80 LL 0.57 0.656 65.6%
25

m N

These figures compare well with m = 65.4%. Theoretically, therefore LL can be 
found from a single test. It is, however, prudent to prevent major blunders, by 
repeating operations 2–6 at least three times and taking the average value.

Explanation: It was found that the flow curves of different soils were parallel lines, 
when the graph was drawn on log-log paper (log m% against log N), instead of semi-log 
one (m% against log N) as on Graph 2.1. Formula (2.1) was derived on this basis.



Graph 2.1
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2.1.1.3  Cone penetrometer test

This is an alternative method for the measurement of Liquid Limit. It has some advan-
tages over the standard Casagrande procedures. For one, the result is largely independent 
of human and instrumental errors.

The main parts of the penetrometer are outlined below:

Test procedure

Step 1: As for the Casagrande test.
Step 2: As for the Casagrande test.
Step 3: Fill the cup with the paste and level its surface.
Step 4: Lower the cone so that its point just touches the surface of the specimen. 

Note the reading on the gauge.
Step 5: Release the cone for 5 seconds and read the gauge at the end of  

this period. The cone penetration is the difference between the two 
readings.

Step 6: Make the surface of the sample good, by adding soil at the same water 
content and repeat steps 4–5. Take the average value of the two results, if 
the difference between them is less than 0.5 mm. If the difference is more, 
then carry out a third test at the same value of m%.

Step 7: Repeat steps 3–6 at slightly different water content at least four times.
Step 8: Plot the values of penetrations (in mm) against m%. In this test the Liquid 

Limit is the water content corresponding to 20 mm penetration.

Shaft, holding the 
dial gauge and locking
mechanism

Dial gauge

Locking mechanism

Cone

Cup

Base

Soil

Release button

Clamp

Figure 2.2
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2.1.2  Plastic Limit

As the soil gets drier, it reaches a water content below which the material becomes friable. 
This particular value of m% is the Plastic Limit (PL) of the soil.

Usually, the Plastic Limit is defined as the lowest moisture content at which the soil is 
plastic. At PL the soil crumbles and falls apart easily, under pressure. Average values for:

Sandy loam: 17% < PL < 20%
Silt: 20% < PL < 25%
Clay: 25% < PL < 35%

If the natural moisture content of a soil is near its PL then, from an engineering point of 
view, it is easy to:

1.  excavate;
2.  compact to its smallest volume.

2.1.2.1  Test to find PL (outline)

Step 1: Take the soil set aside during the LL test and add just enough water to make 
it plastic, after mixing it thoroughly.

Step 2: Roll the plastic soil on a glass plate, under the palm of your hand with just 
enough pressure to form a 3 mm diameter thread.

Step 3: If the thread crumbles, then measure its moisture content. This value of m% 
is the PL of the soil. If however, the thread does not crumble, then knead the 
soil into a ball and repeat step 2. Repeat step 3 as many times as required to 
reduce the amount of water in the specimen to PL.

Note: During the drying-out process, the soil remains saturated. At PL, therefore S
r
 = 1, 

although the accuracy is subject to the skill of the technician.

Example 2.3

The results of cone penetrometer tests on clay are tabulated below (Table 2.2). The 
natural moisture content was m = 38%.

Estimate:

1.  the Liquid Limit
2.  the penetration when m = 38%

1.  From Graph 2.2:  LL = 61%
2.  Also Graph 2.2:	 Penetration = 17.3 mm

Table 2.2

Sample number 1 2 3 4 5

Moisture content (%) 19 31 40 57 71
Penetration (mm) 15.5 16 17.5 19 21.5



Graph 2.2
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2.1.3  Shrinkage Limit

As fine-grained soil loses water it shrinks, and its volume decreases. This applies particu-
larly to clayey soils. The determination of Shrinkage Limit is very important, therefore, 
when this type of soil can lose moisture for various reasons, for example:

1.  Roots of trees can extract large amounts of water from clays supporting the 
foundations of buildings, and may induce large enough settlement to damage the 
structures.

2.  Foundations of boilers, brick kilns and furnaces can transmit heat to the soil, caus-
ing considerable distortion, unless insulated.

3.  Climatic conditions, such as droughts, could dry the clay below footings. The effect 
of shrinkage usually extends to a depth of 1 metre. This is one reason for placing 
footings at this depth below the surface.

4.  Road and pavement surfaces become undulating, because of differential volume 
changes in the underlying clay.

5.  Pipelines, laid in the shrinkage zone could deform and split apart.

Definition
Shrinkage Limit (SL) is that moisture content below which the volume of the drying soil 
does not decrease, even after further loss of water. The volume at the Shrinkage Limit is 
denoted by V

0
. This means that the volume remains the same during subsequent heating, 

in an oven, to oven-dry state.
Notes:

1.  Shrinkage is caused by the capillary forces developing in the voids as the cohesive 
soil loses its moisture.

2.  The soil is still fully saturated (S
r
 = 1) at its Shrinkage Limit.

3.  The drying-out process causing shrinkage is slow, e.g. drying by the ambient 
temperature.

2.1.3.1  Test to find SL (outline)

Step 1: Measure the mass and volume of a sample of soil to be tested.
Step 2: Air-dry the sample at constant temperature.
Step 3: Measure its mass (M) and volume (V) at intervals.

Cracks Typical damage
due to shrinkage

Figure 2.3
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Step 4: Repeat steps 2 and 3, until there is no perceptible change in volume.
Step 5: Dry specimen completely in an oven and measure its mass (M

s
) and volume 

(V
0
) at this oven-dry state.

Step 6: Plot the results as shown in Figure 2.4.

The Shrinkage Limit is given by the intersection of the extended straight line BX and the 
horizontal axis at point A.

SL

A

X

B

Moisture content

S
pe

ci
fic

 v
ol

um
e 

ch
an

ge
fo

rm
ul

a 
(2

.8
)

m %
a

0

f=
10

0
%

V
−V

o

V
o

Figure 2.4

Example 2.4

The results of a shrinkage test, carried out on a clay sample, are tabulated below. 
The initial volume of the specimen was V = 50.27 cm3, weighing M = 94.11 g. Its 
natural moisture content was found to be 29.7%.

Preliminary tests on the clay yielded:

Specific gravity: G
s
 = 2.75

Liquid Limit: LL = 65%
Plastic Limit: PL = 21%

The air-dried soil was dried out completely in an oven and its dry mass and 
oven-dry volume were measured as:

M
s
 = 72.55 g

V
o
 = 36.19 cm3

Plot Graph 2.3 and determine the Shrinkage Limit.



52       Introduction to Soil Mechanics

After plotting the above results on Graph 2.3 (see Table 2.3), the Shrinkage Limit 
was found to be 13%. The derivation of the formula for the voids ratio is as follows.

From (1.5):    sv

s s s

1
V VV V

e e
V V V

−
= = = −

From (1.1):    s
v s

s

1
V

V V V
M

ρ
= − = −

From (1.34):  s w
s s w

s

1
VG

G
M

ρρ ρ= × = −

From (1.32): 
ρ

= s
s

s

M
V         ρ

∴ = −s w

s

1
VG

e
M

� (2.2)

Calculate the voids ratio, volume of voids, volume of solids and the total volume 
at each limit.

Solution:

As the specimen is saturated at each limit, the voids ratio can be obtained from 
formula (1.36), taking S

r
 = 1. Therefore, e = m × G

s

From (1.32) & (1.34):  	
ρ

= s
s

s w

M
V

G
� (2.3)

From (1.5)	 V
v
 = e × V

s

Table 2.3 

Time 
(hours)

V 
(cm3) M (g)

=
−

M
M M

w

s(g)

 = M
m

M
w

s

100

(%)

o

o

100

(%)

V V
f V

−
= −s w 1

VG
e = −ρ

Ms

mG
S

e
s

r =

0 50.27 94.11 21.56 29.72 38.91 0.905 0.903
3 45.69 90.16 17.61 24.27 26.25 0.732 0.912
8 41.98 86.92 14.37 19.81 16.00 0.591 0.922

20 39.15 84.09 11.54 15.65 8.13 0.484 0.889
25 37.60 80.76 8.21 11.14 3.90 0.425 0.721
28 37.00 78.35 5.80 7.87 2.24 0.402 0.538
44 36.52 74.41 1.86 2.52 0.91 0.384 0.180
48 36.46 73.94 1.39 1.89 0.75 0.382 0.136
51 36.30 73.12 0.57 0.77 0.30 0.376 0.056

60 36.28 73.09 0.54 0.73 0.25 0.375 0.054
63 36.27 73.08 0.53 0.72 0.22 0.375 0.053
68 36.27 73.08 0.53 0.72 0.22 0.375 0.053
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2.1.3.2  Approximate determination of Shrinkage Limit

Theoretically, the Shrinkage Limit (SL) may be estimated without carrying out the entire 
test. The formula derived for this is based on the, by now well known, facts:

1.  The soil is saturated at SL, hence V
v
 = V

w
.

2.  The volume (V) of the specimen at SL equals to its volume (V
0
) at oven-dry state.

3.  M
s
 is the mass of oven-dry specimen.

4.  The specific gravity of solids in V
0
 is G

s
.

5.  V
0
 > V

s

Tabulating the calculations (see Table 2.4): the values for SL are approximate 
ones, owing to its graphical determination (Graph 2.3).

Note that:

1.  The voids ratio can be larger than unity. This is the case at LL, where the 
volume of water is nearly twice the volume of solids.

2.  The calculated V = 35.82 cm3 at the Shrinkage Limit is practically equal to 
V

0
 = 36.19 cm3.

Table 2.4

LL = 65% PL = 21% SL = 13%

( )= = ×

=
sLL 0.65 2.75

1.788

e G = = ×
=

s(PL) 0.21 2.75

0.578

e G = = ×
=

s(SL) 0.13 2.75

0.358 (approx)

e G

= =
×

3
s

72.55
26.38 cm

2.75 1
V V

s
 = 26. 38 cm3 V

s
 = 26. 38 cm3

v
3

1.788 26.38

47.17 cm

V = ×
=

= ×
=

v
3

0.578 26.38

15.24cm

V v
3

0.358 26.38

9.44 cm

V = ×
=

= +
= 3

26.38 47.17

73.55 cm

V
3

26.38 15.24

41.62 cm

V = +
= 3

26.38 9.44

35.82 cm

V = +
=

Vw= Vv

Vs

V

47.17
cm3

26.38
cm3

Vs

V

15.24
cm3

26.38
cm3

Vw= Vv
V

9.44 cm3

26.38
cm3

Vs

Vw= Vv
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In the knowledge of the above quantities, the saturated moisture content, that is the 
Shrinkage Limit, can be estimated.

From (1.35a):	
( )o s ww v w

s s s

V VM V
m

M M M

ρρ −
= = =m

But (1.22):	

s s
o w o w

s w s
w v W

s s

M MV V
G G

M V
M M

ρ ρρ
ρ

 
− −  

= × = =

From (1.1):	

s
o w

s
v o s

s

M
V

G
V V V m SL

M

ρ −
= − ∴ = = � (2.4)

From (2.3):	 s
s

s w

Expressed as a percentage
M

V
G ρ

=

From (1.34):
	

s
o w

sS s w

s

SL 100 %

M
V

GG
M

ρ
ρ ρ

 − = × = ×  
 

If  V
0
 is given in cm3

M
s
 is given in grams	

then	

s
o

s

s

SL 100 %

M
V

G
M

 − = ×  
 

� (2.5)

and r
w
 = 1 g/cm3

Applying this method to Example 2.4, given that

	

3
0

s

s

36.19 cm
72.55

36.19
2.75

72.55 g SL 100 13.52%
72.55

2.75

V

M

G

=
 − 

= = × =  

= which is a good approximation to 13%

It is, therefore, only necessary to dry out the sample completely in order to estimate the 
Shrinkage Limit.

Example 2.5

A clod of clay was dried out slowly and its dry mass measured as M
s
 = 59.10 g. The 

oven-dry specimen was inserted in mercury safely in laboratory conditions and 
the displaced amount of Hg was noted. This gave the volume of the clod as 
V

0
 = 27.67 cm3.



56       Introduction to Soil Mechanics

2.1.4  Swelling of cohesive soils

In contrast to shrinkage, clays swell when they absorb water. The resulting increase in 
the volume of soil supporting buildings can cause substantial damage to the structures. 
The most frequently occurring problems are caused by:

1.  Leaking water pipes or mains.
2.  Heavy rainfall after a prolonged dry period.
3.  The removal of old trees and shrubs. In this case, the clay is no longer dried by the 

roots, hence it absorbs water and swells. This process can take several years. It is 
imperative, therefore, to determine the history of tree or hedge clearance, before 
building on shrinkable clays.

As the foundations of structures are heavier than internal floor slabs, the swelling pres-
sures could cause differential movement between the two structural elements, resulting 
in floor heave and general cracking of the walls. Also, horizontal swelling pressures could 
push shallow footings sideways.

Preventative foundation construction may include either short bored piles or shallow 
footings with adequate compressible backfill, to accommodate the swelling clay. Also, 
there should be movement joints between the foundations or the walls of the building 
and the ground floor.

2.1.5  Saturation Limit (Z %)

As the soil absorbs water, its volume increases. The absorption ceases at a certain mois-
ture content. This value of m% is the Saturation Limit.

Calculate the:

1.  Shrinkage Limit of the clay
2.  Volume of solids
3.  Voids ratio at SL
4.  Volume of voids at SL

Assume that G
s
 = 2.75

From (2.5): 

59.10
27.67

2.75
SL 100 10.46%

59.10

 − 
= × =  

From (2.3):  3s
s

s w

59.10
21.49 cm

2.75

M
V

G ρ
= = =

From (1.36):  e = (SL) G
s
 = 0.1046 × 2. 75 = 0.288

From (1.5):    V
v
 = eV

s
 = 0.288 × 21. 49 = 6. 19 cm3.
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Determination of Z%
This consistency limit, additional to the Atterberg ones, may be obtained in two ways:

1.  Laboratory test (outline)

Step 1: Remove particles larger than 2 mm from the sample.
Step 2: Mix the soil with water to a paste so that its moisture content is well 

below its Liquid Limit.
Step 3: Place the paste into a bowl, forming its surface flat and smooth.
Step 4: Apply water to the surface in drops. When the drops are not absorbed 

any more, measure the moisture content, which is the Saturation Limit 
of the soil.

2.  Casagrande’s formula

Professor Casagrande (1932) found that the relationship between Liquid Limit and 
Saturation Limit may be expressed by:

	 ( )15.2 LL% 16.3 9%Z = − + � (2.6)

Theoretically therefore, it is not necessary to carry out the laboratory test, because 
this formula yields a satisfactory average value for Z%, provided LL > 16.3%.

Note: The absorption of water by fine-grained soils is due to capillary suction (see sec-
tion 5.8.2).

2.1.6  Relationship between the limits

The Saturation Limit is the maximum moisture content of a clay specimen, whose volume 
cannot increase any further by swelling. The Shrinkage Limit is that moisture content at 
which the volume of the same clay sample cannot decrease any further.

It can be seen in Figure 2.4 that the variation of volume change relative to the moisture 
content is linear. In the knowledge of Z% and SL% therefore, the equation of the line 
(Figure 2.5) extending between these two limits can be derived in terms of f, m, SL and a.

General equation of a straight line:

f am b= +

For:  f = 0,  m = SL

0 SLa b= × +

SLb a∴ = − ×

For any value of f:

 

am a SL

a(m SL)

f = − ×
= −

m%

f =
a 

(m
%

–
S

L%
)

Zm

a

0

fmin

fmax

SL

f=
10

0
%

V
−V

o

V
o

Figure 2.5
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The gradient of the line a = tan a

Hence, the equation is:	 f = tana (m% — SL%)  %� (2.7)

Where f is the specimen volume change, indicating that the volume change V — V
0
 is f% 

of the minimum volume V
0
. It can, therefore, be expressed as:

	 0

0

100 %
V V

f
V

−
= � (2.8)

Equating (2.7) and (2.8):

	
( )0

0

100 tan % SL%
V V

f m
V

α
 −

= = −  

The volume (V) of the specimen can be expressed in terms of moisture content m% 
within the range SL% ≤  m% ≤ Z%; between point c and x on the extended experimental 
line (Graph 2.4).

	
( )α

− = × −0
0

tan
% SL%

100

V
V V m

	 ( ) 0

tan
1 % SL%

100
V m V

α = + −  
� (2.9)

Example 2.6

Calculate the maximum and minimum volume of the clay in Example 2.4 caused 
by shrinkage and swelling respectively, using:

LL = 65% V
0
 = 36.19 cm3

SL = 13% a = 66.75o (From Graph 2.3)
m = 29.7%

Calculating the Saturation Limit from (2.6):

( )= − + =15.2 65 16.3 9 36.2%Z

Substituting a and V
0
 into (2.9):

( )tan 66.75
1 % SL% 36.19

100

2.327 36.19
36.19 ( % SL%)

100

V m

m

 = + − ×  
×

= + −
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2.1.7  Linear shrinkage and swelling

So far, volumetric change has been discussed. However, the engineer is more interested 
in the magnitude of horizontal and vertical shrinkage and swelling. To estimate these, 
one has to take into account the change in length of a cube of sides ‘h’, assuming that 
each side is shortened by a distance x during shrinkage.

Initial volume:	 V
1
 = h3

Final volume:	 V
2
 = (h—x)3

Change in volume:	 V
1
—V

2
 = h3—(h—x)3

	 ( )36.19 0.842 % SL%V m∴ = + − � (2.10)

Formula (2.10) can be applied to estimate the maximum volume to which the 
experimental clay specimen could swell.

At m = Z% = 36.2%  V
max

 = 36.19 + 0.842 × (36.2 - 13)

= 36.19 + 19.53 = 55.72 cm3

Alternatively, V
max

 may be estimated by means of Graph 2.4, which is a reproduc-
tion of Graph 2.3 with line AB extended to point C, corresponding to Z = 36.2%.

Read off f
max

 = 54%, corresponding to Z% from Graph 2.4:

max 0
max

0

100 54
V V

f
V

−
∴ = × =

From which,  0
max 0

3

54 54 36.19
36.19

100 100
19.54 36.19 55.73 cm

V
V V

×
= + = +

= + =

Similarly, the volume of the sample at natural moisture content m = 29.7% is 
estimated as:

( )= + × − = 3
1 36.19 0.842 29.7 13 50.25 cmV

The minimum volume to which the specimen could shrink is V
min

 = V
0
 = 36.19 cm3, 

hence the volume decrease relative to the natural state is approximately:

3
1 0 50.25 36.19 14.1 cmV V− = − =

The total estimated volume change between full swelling and shrinkage is:

3
max min 55.73 36.19 19.54 cm .V V− = − =
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fmax= 54%

Vmax = 55.73 cm3

Vmin = 36.19 cm3 (V0)

Range = 19.54 cm3

Which is the maximum
volume change for the
clay

fmin= 0
0 10 20

a = 66.75°

A

S L = 13%

Moisture content (m %)

X

B

C

E
xt

en
de

d 
ex

pe
rim

en
ta

l l
in

e 
f=

2.
32

7 
(m

%
–

S
L%

)

30 40

Z = 36.2%

Natural
m = 29.7%

50
SHRINKAGE AND SWELLING
RANGE OF VOLUME CHANGE

40
38.9

30

20

10

f=
10

0
%

V
–

V
0

V
0

(Example 2.6)

Graph 2.4
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Specific volume change:

	

( )
( ) ( )

33 3
1 2

3 3
2

% 100 100 100 100
h h xV V h

f
V h x h x

− −−
∆ = = = −

− −

So  ( )
3

3 100

% 100

h
h x

f
− =

∆ +

	

1
3

3
100 100

1
% 100 % 100

h x h x h
f f

  
− = ∴ = −   ∆ + ∆ + 

� (2.11)

Note, that in (2.11)  1 2
1 2

0

100
V V

f f f
V
−

∆ = − =

Where f
1
 and f

2
 are the values of specific volume change at the initial and final moisture 

contents respectively. For swelling, the increase in length h is given by:

	 3
100

 1
100

f
x h

 ∆ +
= − 

 
� (2.11a)

It must be appreciated that the calculation values of shrinkage or swelling are not exact 
but only indicative of possible magnitudes.

h

h

h

x

x

x (swelling)

(shrinkage)

x

h
–

x

h – x h–x

Figure 2.6
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Example 2.7

A bungalow was built so that its shallow footings and ground floor slab were 
placed directly on the top of shrinkable clay. The natural moisture content of 
the clay at the time of construction was 29.7%. Subsequently, two oak trees 
were planted at a distance of 6 m from the building. Estimate the maximum 
possible magnitude of shrinkage under the footings and the slab over the 
following years, due to the roots of the maturing trees. The shrink/swell char-
acteristics of the clay are given in Graph 2.4. A schematic cross-section of the 
structure is shown below.

From Graph 2.4:  For

For maximum value, take 
1

2

29.7% 38.91%

SL 13% 0%

38.91%

m f

f

f

= =
= =

∴ ∆ =

From (2.11):  3
100

1 0.1037
38.91 100

x h h
 

= − = + 

For  3
100

1 m 100 1 100 0.1037
138.91

10.37cm

h x
 

= = − = × 
 

=

For  h = 2 m  x = 200 × 0.1037       =  20.75 cm

For  h = 5 m  x = 500 × 0.1037       =  51. 85 cm

It appears from these figures that the centre of the slab would settle twice as 
much as the footings. Depending on the extent of the root system, the magnitude 
of shrinkage under each footing could be entirely different. This would be 
reflected by the mode of failure (cracking, bending and tilting) observed at vari-
ous parts of the structure as seen below.

Floor slab

2 m

5 m

1 m

ClayM = 29.7%
SL = 13%
Z = 36.2%

GL

Figure 2.7
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Shrinkage occurs along the length of the footings. This could pull a brick construc-
tion apart.

Note: In most calculations, the results may be rounded to the nearest whole 
number.

Suppose the bungalow is built on land recently cleared of trees, shrubs and 
hedges for this purpose. Calculate the magnitude of swelling under the structure, 
taking the natural moisture content as 29.7%.

From Graph 2.4:  Z = 36. 2 %   ∴   f
1
 = 54 %

	 229.7% 38.91%m f= =

	 15.09%f∴ ∆ =

From (2.11a):  3
15.09 100

1 0.048
100

x h h
 +

= − = 
 

For  h = 1 m   x = 0.048 × 100 = 4. 8 cm ≈ 5 cm

For  h = 2 m  x = 0.048 × 200 = 9. 6 cm ≈ 10 cm

For  h = 5 m  x = 0.048 × 500 = 24.0 cm

Roots affects only one
of the footings

10
.3

7 
cm GL

Figure 2.8

Roots affect the entire
structure

20.75 cm ≈ 21 cm

25.92 cm ≈ 26 cm10
.3

7
cm

≈
10

cm

10
.3

7
cm

25.92 cm

Figure 2.9
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2.2  Consistency indices

Having found the consistency limits of a particular soil, they can be used to describe it in 
its natural state, by means of the three consistency indices:

1.  Plasticity index (PI)
2.  Relative consistency index (RI)
3.  Liquidity index (LI)

2.2.1  Plasticity index (PI)

This indicates the range of moisture content over which the soil can be considered plastic. 
It is given by the difference between LL and PL.

	 PI LL PL %= − � (2.12)

The larger the value of PI is, the more cohesive is the soil, assuming no organic 
contamination.

2.2.2  Relative consistency index (RI)

This shows the position of the natural moisture content (m), relative to the Liquid Limit 
within the plastic range. Thus, if (LL — PL) is considered to be 100% then (LL - m) is RI%.

Hence,	
LL LL

RI 100 100 %
LL PL PI

m m−  −  = =      −
� (2.13)

2.2.3  Liquidity index (LI)

This shows the position of the natural moisture content, relative to the Plastic Limit 
within the plastic range. Thus, if (LL-PL) is 100%, then (m - PL) is LI%.

Hence,	
PL PL

LI 100 100 %
LL PL PI

m m−  −  = =      −
� (2.14)

Notes:

a)  The upwards pressure caused by swelling is opposed by the downward 
pressure of the structural elements. As the weight of the ground slab is 
probably small compared to the upward pressure, its uplift is likely.

b)  The horizontal pressure on the two footings could push them apart to 
some extent, depending on the passive resistance of soil.

c)  The magnitude of pressure due to swelling of undisturbed clay may be 
obtained in an oedometer test.
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Graphical representation
The consistency limits and indices may be represented as in Figure 2.10.

From Figure 2.10:    LI% + RI% = PI%

But,    PI = LL − PL = 100%    ∴  LI = 100 - RI %� (2.15)

Application
The purpose of assessing the consistency parameters is to get an idea of the suitability of 
a cohesive soil for engineering purposes. It must be remembered that apart from the natural 
moisture content and the Shrinkage Limit, tests are carried out on reconstructed materials. 
Because of the empirical nature of the experiments, the achievement of standardized 
results depends largely on the skill of the person carrying them out. Despite the inherent 
errors a reasonable, notional, estimate can be made of the consistency and the type of soil 
at hand. The relationship between the Relative consistency index and water content of a 
particular soil may be drawn as in Figure 2.11.

Solid
Semi-
solid

Fluid

m %
LLmPLSL

Ll Rl

Pl

Natural moisture
content

V
0

f=
10

0
V

–
V

0
%

PLASTIC

Figure 2.10
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75

50
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l%
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Very stiff

Stiff
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P
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st
ic

Soft

Very soft

Viscous
liquid

Figure 2.11
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Note that the straight line is drawn by connecting points A and B. Point A is located at 
RI = 0% and LL, whilst B at RI = 100% and PL.

The position of the natural moisture content locates the consistency definition. The 
soil is normally classified by Chart 2.1 and Table 2.5, devised by Casagrande after tests  
on many types of soil.

Example 2.8

Taking, yet again, the results of Example 2.4 in order to classify the clay as 
discussed:

=
=
=

= ≈

LL 65%

PL 21%

SL 13%

M 29.7% 30%

From (2.12) PI = LL - PL = 65 - 21 = 44%

LL 65 29.7
From (2.13) RI 100 100 80%

100%LL PL 44

From (2.15) LI 100 RI 100 80 20%

m −  −
= =





× =  
= − 



−
− = =

After examining Figure 2.11 at RI = 80%, it may be concluded that the sample is of 
stiff consistency. Check, by drawing Figure 2.12 to scale.

Also, by plotting LL = 65% and PI = 44% on Chart 2.1, the soil is depicted to be 
inorganic clay of high plasticity (CH).

100

75
Rl = 80%

R
l %

50

25

0
0

S
oi

l i
s 

no
t

su
ita

bl
e 

fo
r

lo
ad

in
g

10 20 30 40 50 60 7065

PL = 21% m=29.7%

m%

Very
soft

Soft

Firm

Stiff

Figure 2.12
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2.3  Classification of soils by particle size

As soils are made up of particles of various sizes, it is convenient to classify them in 
terms of these characteristics. This is done by the observation of the particle-size distri-
bution of a given weight of soil. This would show what percentage (by mass) of each size 
is present in the material. The resulting distribution is plotted on Chart 2.2. This chart 
shows that there are four main soil types, corresponding to four ranges of size. These are 
shown in Table 2.6:

The method of testing for particle size depends on whether the soil is coarse-grained or 
fine-grained. These are:

For coarse-grained: 	 Sieve analysis
For fine-grained: 	 Sedimentation tests

2.3.1  Sieve analysis

There are two methods of sieve analysis, namely wet and dry, of which the wet process is 
favoured by BS1377, unless dry sieving has been shown to be satisfactory for the type of 
material under test. The procedures are well described in laboratory manuals, hence the 
subject is restricted to the presentation of results and their application. There are nine-
teen B.S. sieves used normally, having the following apertures in millimetres: 75, 63, 50, 
37.5, 28, 20, 14, 10, 6.3, 5, 3.35, 2, 1.18, 0.6, 0.425, 0.3, 0.212, 0.15 and 0.063. The apparatus 
is shown in Figure 2.13. The results of the sieve test may be evaluated by either of these 
two procedures:

1.  Standard
2.  Recursive

Example 2.9

A soil sample, weighing 300 grams, was passed through a set of ten sieves and the 
mass retained on each tabulated.

Table 2.6

Soil type Size-range (mm)

Clay (Fine grained) 0.0001 - 0.002
Silt (Fine grained) 0.002 - 0.06
Sand (Coarse grained) 0.06 - 2
Gravel (Coarse grained) 2 - 60
Cobbles > 60
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2.  Recursive procedure
This method is somewhat shorter than the standard one as there is no need to calculate 
the intermediate (M

p
) values.

1.  Standard procedure

The calculation of P
n
% is self-explanatory in Table 2.7. If M

T
 is 100%, then M

p
 at 

each sieve is P
n
%, hence:

p p
n

n

300
, that is %

100% % 3

M M
P

P
= =

The particle-size distribution, that is P
n
% against sieve size, can now be drawn on 

Chart 2.2.

Table 2.7  Standard procedure to calculate the percentage (of mass) passing through 
each sieve

n
Sieve  
(mm)

Mass retained 
M

n
 (g)

Mass passing sieve 
M

p
 (g)

Percent passing 
P

n
 (%)

1 20 0 300 100
2 10 6 300 - 6 = 294 294/3 = 98
3 5 15 294 - 15 = 279 279/3 = 93
4 3.35 24 279 - 24 = 255 255/3 = 85
5 2 30 255 - 30 = 225 225/3 = 75
6 1.18 51 225 - 51 = 174 174/3 = 58
7 0.6 51 174 - 51 = 123 123/3 = 41
8 0.3 48 123 - 48 = 75 75/3 = 25
9 0.15 42 75 - 42 = 33 33/3 = 11
10 0.063 27 33 - 27 = 6 6/3 = 2

  ∑ 294

n = number indicating the position of a sieve in the set
M

n
 = Mass retained on the nth sieve

M
p
 = Mass passed the nth sieve

M
T
 = total mass of the sample = 300 g

P
n
 = percentage of M

T
 passing through the nth sieve

Table 2.8

n Sieve M
n

n
n n 1%

3

M
P P −= −

1 20 0 100
2 10 6 100 - 6/3 = 98
3 5 15 98 - 15/3 = 93
4 3.35 24 93 - 24/3 = 85
5 2 30 85 - 30/3 = 75
6 1.18 51 75 - 51/3 = 58
7 0.6 51 58 - 51/3 = 41
8 0.3 48 41 - 48/3 = 25
9 0.15 42 25 - 42/3 = 11

10 0.063 27 11 - 27/3 = 2
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Figure 2.13  ELE Sieve Shaker EL80-0200/01.  
Reproduced by permission of ELE international.



Chart 2.2
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The recursion formula used is:	 n
n n 1

T

100
 %

M
P P

M−= − � (2.16)

In this example M
T
 = 300 g, therefore (2.16) becomes:

	

n
n n 1

%
3

M
P P −= −

1 1 1 0

1

If n 1 0 100%

is always taken as 100%

M P P

P
−= = = =

∴

−




==
∴ = − =

= = 
2

2
2 1 1

6If n 2 6
100 98%

100 3

M
P

P P

3
3

3 1 2

15If n 3 15
98 93%

98 3

M
P

P P−

==
∴ = − =

= =




and so on….

Note that 2% of the soil passes through the 0.063 mm sieve, being either silt  
or clay.

Curve – characteristics
The particle–size distribution curve on Chart 2.2 enables the engineer to describe the soil 
according to its shape. The description is normally in terms of effective size and uniformity 
coefficient.

Effective size (D10)
It is the size of the particle at P

n
 = 10% indicating that 90% of the sample of soil is larger 

than D
10

 thus gives some comparative idea of the soil type. The effective size in this 
example is D

10
 = 0.14 mm, which shows that 25% of the soil is gravel and 65% is sand so, 

it may be described as gravelly sand.

2.3.2  Uniformity coefficient (U)

Soils made up of a great range of particle sizes are more compact, hence stronger than 
uniformly graded ones. The degree of uniformity is expressed by:

	 = 60

10

D
U

D
� (2.17)

where D
60

 is the size (loosely called ‘diameter’) of the particles at P
n
 = 60%.
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Typical values:   U < 5	 - The soil is uniform
5 ≤ U ≤ 15	 - It is non-uniform
U > 15	 - It is well graded
U = 1	 - All particles are of the same size.

If the value of U is very low, the soil is usually loose and ‘floats’, when water flows through 
it or subjected to vibration. Large values of U mean that the soil is well-graded and the 
smaller particles fill the voids between the large ones. In gap-graded soils, the horizontal 
line shows, that a range of particle size is missing.

The uniformity coefficient in this example is calculated from:

=
∴ = =

=




60

10

1.3mm 1.3
9.3

0.14mm 0.14

D
U

D

The soil falls within group GC in Table 2.9.

2.3.3  Filter design

This is an important application of the particle–size analysis. There are two cases to consider:

1.  The movement of particles from one soil to another, caused by flowing water, has 
to be prevented. This is accomplished by placing a filter layer between the two soils 
in accordance with the following rule: The D

15
 of the filter material must be less 

than four times the D
85

 of the protected soil, that is:

	 <15 (filter)

85 (soil)

4
D

D
� (2.18)

2.  The voids in the filters have to be large enough to allow unrestricted seepage 
through them, thus preventing the build up of hydrostatic pressures and seepage 
forces. This criterion is satisfied, if D

15
 of the filter material is at least four times the 

D
15

 of the protected soil, that is:

	
( )

( )
>15 filter

15 soil

4
D

D
� (2.19)

For more detailed discussion of this subject consult reference 3.

P
n%

U =3
U =50

Gap

Gap graded

U =2000

D (mm)

Figure 2.14
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2.3.4  Typical problems

Possible failures of structures, constructed in water-bearing erodible strata can be 
avoided by the use if filter layers designed so, that they do not clog up, thus permit water 
flow at all times. Figure 2.15 shows some practical problems.

Example 2.10

Design a suitable protective filter layer for the soil in Example 2.9 and draw the 
result on Chart 2.3.

From the chart:  15 (soil)

85 (soil)

0.18

3.00

D
D

=
=

From (2.18):	 D
15 (filter)

 < 4 × 3.00 = 12.00 mm (Point y)

From (2.19):	 D
15 (filter)

 > 4 × 0.18 = 0.72 mm (Point x)

After plotting points x and y on Chart 2.3, the boundaries of the filter region are 
drawn, approximately parallel with the grading curve of the soil to be protected. 
The particle size distribution (z) of the filter material has to fall within the region 
and its shape should be roughly similar to that of the soil.

It must be remembered that (2.18) and (2.19) provide empirical solution to 
problems for well-graded materials and not for gap-graded or stratified soils. 
In  some cases the construction of two or more filter layers may be necessary. 
In many problems, synthetic filter fabrics may be used efficiently, instead of filter 
layers.

Rain

Drainage pipe

(a)

Retaining walls: Filter

Water flow in 
erodible soil

French drains:
Filter

FlowFlow

Pipe

(b)
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2.3.5  Combination of materials

See Barabás in Reference 10. Suppose there is no suitable soil available, having particle–
size distribution situated within the boundaries of the filter zone. In that case, it is possible 
to mix two soils to satisfy this condition, provided their distribution curves encompass at 
least part of the filter region. The procedure is best explained by means of an example.

Roads

Out flow

Pipe

Drainage layer

Surfacing

Base

Flow from subgrade

(c)

Filter to prevent
contamination of the
drainage layer from
the erodible subgrade

Filter prevents erosion
of the toe

Flow

GWL

Erodible soil

Slopes

Pipe

(d)

Figure 2.15

Example 2.11

Given the particle–size distribution of soils A and B to be mixed such, that 
the distribution curve of the resulting soil can be plotted within the boundaries 
x and y. The four distributions are tabulated in Table 2.10:

Table 2.10

Sieve (mm)

Percentage passing (P%)

A (P
A
) B (P

B
) X (P

x
) Y (P

y
)

63 100 100 100 100
50 100 88 100 91
37.5 100 59 100 77
28 100 17 100 57
20 100 10 100 30
10 97.5 0 84 9
5 85 0 68 0
3.35 79 0 57 0
2 68 0 43 0
1.18 42 0 24 0

0.6 20 0 11 0
0.3 10 0 0 0
0.15 0 0 0 0
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First, check whether soils A and B encompass the filter region, bounded by 
distributions x and y (See Chart 2.5). As they are outside the boundaries, proceed 
step-by-step.

Step 1
Draw two vertical lines A and B on Chart 2.4, at an arbitrary distance (d) from 
each other and scale each from 0% to 100%. In this case d = 70 divisions.

Step 2
Connect P

A
 and P

B
, relating to a particular sieve by a diagonal line, e.g. for 

sieve = 10 mm
P

A
 = 97.5% and P

B
 = 0%.

Step 3
Taking the P

x
 and P

y
 figures for the particular sieve-size, draw horizontal lines 

from P
x
 and P

y
 to this sieve-diagonal e.g.:

A X

B Y

For sieve 10 mm

97.5% 84%

0% 9%

P P

P P

=
= =
= =

A
100 100

d = 70 div.

P
B
 &

 P
y 

(%
)

P
A
 &

 P
x 

(%
)

0 0

B

Figure 2.16

A
100 100

Sieve
diagonal

97.5

0 0

10

B

Figure 2.17
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Step 4
Repeat steps 2 and 3 for each sieve and connect the resulting set of points on 
each side to represent the x and y boundaries.

Step 5
Draw a tangential vertical line to each curve.

Note that the distance of a vertical line is denoted ‘a’ and ‘b’ from A and B 
respectively.

Also, if no vertical line can be drawn without intersecting the curves, than 
there is no solution to the problem. The given soils then cannot be mixed so, that 
the filter rules are satisfied.

A
100
97.5

84
x

0 0

9

y

10

100
B

Figure 2.18

A

x

y

R1

a1

a2 b2

b1

R2
100 100

0 0

B

Figure 2.19
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The significance of a vertical line is, that its position indicates a mixing ratio (R), 
which is, in general, given by:

	
b

R
a

= � (2.20)

This may be written as 
1

R b
a

=  implying, that the mass (M) of the mix is R-times the

mass of A (M
A
) plus the mass of B (M

B
).

Therefore,	 M = RM
A
 + M

B
  g� (2.21)

Similarly,	 P
n
 = RP

n
 + P

B
 %� (2.22)

There are two tangential verticals on Chart 2.4, hence there are two mixing ratios 
R

1
 and R

2
.

For 
1

11

1

a  32:
        

38
   (maximum)

 
1.19

32b  38

R
R∴

= 



=
=

=

For 
2

22

2

a  36:
        

34
   (minimum)

 
0.94

36b  34

R
R∴

= 



=
=

=

From practical point of view, it would be inconvenient to weigh 1.19 M
A
 or 0.94 M

A
.

Fortunately, the range of ratios include in this case R = 1, with corresponding 
vertical between that of R

1
 and R

2
. The distance ‘a’ of this or of any vertical may 

be calculated from:

	
1

d
a

R
=

+ � (2.23)

Derivation:

−
= =

b d a
R

a a

aR d a= −

+ =a a R d

(1 )a R d+ =

∴ =
+1

d
a

R

It is easy to mix one unit mass of soil A with one unit of soil B. Therefore the 
task is now to obtain the expected particle-size distribution for the mix at R = 1.

From Chart 2.4: 
70

70 div. 35 div
1 1

d a= ∴ = =
+

A

a b

d

R B

Figure 2.20
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A R B

b
a

P
A

–
P

P
–

P
B

PA

PB

P
Sieve
diagonal

Figure 2.22

A B

97.5

49

35 div

R = 1

10
0

Figure 2.21

Step 6
Having drawn the vertical for R = 1 on Chart 2.4, its intersection with diagonals 
indicates the percentage passing at each sieve.

This applies to any ratio within the range 0.67 ≤ R ≤ 1.19. The particle-size distributions 
P

2
, P and P

1
, corresponding to 0.94, 1.0 and 1.19 may now be tabulated (Table 2.11):

Step 7
Plot the points in the above table on Chart 2.5. The shaded area between the 
boundaries, corresponding to R

1
 and R

2
 includes all possible mixtures of soils 

A and B such that they can be drawn within the filter zone. These mixtures are 
expected to be suitable as protective filters to the soil in Example 2.9.

Table 2.11

Sieve 
(mm) 63 50 37.5 28 20 10 5 3.35 2 1.18 0.6 0.3 0.15

P
2
 % 100 94 79 57 54 47 41 38 33 20 10 5 0

P % 100 94 80 58 55 49 43 39 34 21 10 5 0
P

1
 % 100 94.5 81 62 59 53 46 43 37 23 11 5 0

Analytic alternative
The value of P% at each sieve can also be calculated, once R is known. The formula to do 
this is derived from similar triangles.
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(Example 2.11)
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Chart 2.5
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From (2.20): 
b

R
a

=

But, from similar triangles:

B

A B A

P Pa b b
R

P P P P a P P
= ∴ = =

�

� � �

From which:  RP
A
-RP = P − P

B

	 RP
A
 + R

B
 = P (1 + R)  	 A B %

1

R P P
P

R
∴ =

+
�

� (2.24)

2.3.6  Sedimentation tests

The smallest B.S. sieve that can be used in coarse sieve analysis has a mesh size of 
0.063 mm. In order to complete the particle size distribution curve of soil containing finer 
grains, one of the two sedimentation tests are carried out. These are:

1.  Pipette analysis
2.  Hydrometer analysis

The hydrometer test can be executed more easily in a site laboratory than the pipette 
test, with sufficient accuracy for engineering purposes; hence this analysis is outlined 
here. In this, the soil is mixed with distilled water and a suitable dispersing agent to form 
a uniform suspension.

The purpose of the hydrometer is to measure the variation in density of the suspen-
sion with time, at a particular height, within the measuring cylinder. The density of each 
elevation depends on the size of particles present. Knowing the density, the percentage 
of grains smaller than the largest size present at the level tested can be calculated.

The largest particle size at a particular height is computed from Stoke’s Law, which 
deals with the fall of a single spherical object in large amount of water. As the soil parti-
cles are not normally of spherical shape, the calculated diameters are referred to as 
‘equivalent diameters’. Also, the testing cylinder should have large diameter compared to 
that of the hydrometer’s bulb, in order to keep the soil grains some distance apart. 
Figure 2.23 depicts a suspension of three particle sizes d

1
, d

2
 and d

3
 in separate compart-

ments. By Stoke’s Law each sinks at different velocity, say u
1
, u

2
 and u

3
.

After time t, therefore, all particles above level x will be finer than d.

Figure 2.23

d1 d2 d3

At time t = 0

(a)

 
u2

u1

u3

d1

H1

H2

H3

d2 d3

At time t

Level x

(b)
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Stem

R ′h< Rh

Rh

Meniseus

Cm

Figure 2.25

Reading a hydrometer
The hydrometer is read at the top of meniscus. The figure read is multiplied by 1000. For 
instance; if the reading is 1.015, then it is recorded as: 15hR ′ = .

The usual range of hydrometer scale is 0.995 - 1.030.

Meniscus correction
It is difficult or impossible to read the hydrometer at the level surface because of the 
non-transparent meniscus at the stem. That is why the reading is taken at the top of the 
meniscus and then a correction (C

m
) is added to get the true reading (R

h
). The meniscus 

correction is constant for a given hydrometer. It is determined by lowering the hydrom-
eter into a cylinder containing distilled water and taking readings at the top and bottom 
of the meniscus.

Note: The hydrometer readings are increasing downwards ∴ R
h 
= R′

h 
+ C

m

Stem

0.995

menisci

1.030

Bulb

1.015

Cylinder

Figure 2.24
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Correction for dispersing agent (Cd)
The agent is added to prevent flocculation of the grains. As a result, the specific gravity of 
the suspension is increased. The correction is the difference between the two readings:

1.  In distilled water
2.  In the same water after the addition of dispersing agent

Temperature correction (mT)
The hydrometer is normally calibrated for use in suspension at 20 °C. If the suspension is 
at different temperature, then its specific gravity is altered. If therefore, the temperature 
during the test differs from the calibrated value, then the ± m

T
 correction from Chart 2.6 

has to be added to the reading.
The corrected, true reading is given by:

	 h h m d TR R C C m+ −′= ± � (2.25)

Effective depth (HR)
The hydrometer measures the density of the suspension at the centre of the bulb. The 
effective depth is the true height from the surface to this centre. Figure 2.26 indicates 
the quantities required to calculate H

R
.

V
b
 = volume of the hydrometer bulb

h
b
 = length of the bulb

A = cross-sectional area of the 1000 ml cylinder
H = height from surface to the top of the bulb
V = volume of suspension = 1000 cm3

HR

P

a

(a) Before insertion

Measuring cylinder

Vb
A

Volume

V = 1000 cm3

(b) After insertion

H

bVb
A

VbV+
A

hbCG

Figure 2.26
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When the bulb is inserted, its volume displaces equal volume of the suspension, thus 
increasing the surface level above point P at which the density is measured. The true 

height is found by equating = + b
R

V
a H

A
 and 

 
= + +   

b b1

2 2 A

h V
b H

b b b b
R R b

1

2 2 2

V h V V
H H H H h

A A A
 

∴ + = + + ∴ = + −   � (2.26)

Calibration of the hydrometer
The purpose of calibration is to determine its effective depth in terms of hydrometer 
readings. Formula (2.26) indicates that H

R
 is dependent on the cross-sectional area of the 

cylinder used. For this reason the hydrometer has to be calibrated and used in the same 
cylinder. It is normally calibrated in distilled water at 20°C.

Step 1: Insert the hydrometer and note the change in the water level 
 
  

b

A

V
.

Note: V
b
 in cm3 is approximately equal to the weight of the hydrometer in grams.

Step 2: Measure:

1.  The cross-sectional area of cylinder (A)
2.  �The distance between each calibration mark and the lowest 

one (h
x
)

3.  Length of the stem
4.  Length of the bulb (h

b
)

5.  �Apply (2.26) in the form b
R x b

1

2

V
H h h

A
 

= + −  
 to get a series of  

    values for H
R
.

6.  Plot h
x
 against H

R
 as in Figure 2.28.

h1

h2

h3

Figure 2.27

hx

HR

Figure 2.28
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Equivalent particle diameter (D)
The formula is derived from Stoke’s Law:

	 ( )
R

S

0.005531 mm
1

H
D

G t
η

=
−

� (2.27)

where h = dynamic viscosity (Ns/m2 = P
as

) at temperature T°C

G
s
 = specific gravity of particles

t = elapsed time (min)

Percentage finer than D (P %)
These results are plotted on the particle–size distribution chart. P

n
% is given by:

	 ( )
s h

n
s s

100
%

1

G R
P

M G
=

− � (2.28)

where M
S
 = total dry mass of soil particles/1000 ml of suspension.

Example 2.12

Test temperature: T = 23°C m
T
 = +0.56

Total dry mass of soil: M
S
 = 54 g h = 0.936 m Pas

Reading: h
x
 = R ′ 

h
 = 24 at time h

b
 = 160 mm

t = 130 min
Specific gravity of particles: G

S
 = 2.7 V

b
 = 61 cm3

Meniscus correction: C
m
 = 0.45 A = 78.5 cm2

Correction for dispersing agent: C
d
 = 0.8 H = 60 mm

From (2.25):  R
h
 = 24 + 0.45 − 0.8 + 0.56 = 24. 21 mm

From (2.26):  R

1 10.61
60 160 136.1mm

2 78.5
H

 = + − =  

From (2.27):  ( )
0.936 136.1

0.005531 0.0042 mm
2.7 1 130

D
×

= =
− ×

From (2.28):  ( )n

100 2.7 24.21
71%

54 2.7 1
P

× ×
= =

× −
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(Example 2.12)
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Problem 2.2 

Given three particle-size distributions A, B and C. Distributions A and B represent 
two granular materials available on site, whilst C indicates the material required 
for the construction of a filter layer.

a)  Determine the mixing ratio (R) graphically and check its value analytically.
b)  Tabulate the resulting particle – size distribution (P%) and compare it with 

the given distribution (P
C
%).

Problem 2.1

A saturated sample of clay has the following properties:

Natural moisture content:	 m = 21%
Plastic Limit:	 PL = 16%
Volume in natural state:	 V

1
 = 2000 cm3

Volume at Plastic Limit:	 V
2
 = 1832 cm3

Volume at Shrinkage Limit:	 V
0
 = 1600 cm3

Specific gravity:	 G
s
 = 2.65

Estimate the approximate values of:

a)  The Shrinkage Limit.
b)  The voids ratios, saturated and dry unit weight in natural state, as well as at 

the Plastic and Shrinkage Limits.

Table 2.13

Sieve (mm) 0.1 0.15 0.3 0.6 1.18 2.36 5 10 20 40

P
A
 % 0 2 20 45 75 90 98 100 100 100

P
B
 % 0 0 0 0 0 0 5 40 97 100

P
C
 % 0 1 10 21 34 44 48 70 98 100
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Chapter 3

Permeability and Seepage

It is evident, from the concepts introduced in Chapter 1, that soil characteristics are 
influenced to a great extent by its static water content. In many practical engineering 
problems, however, the pore water is not in a state of rest, but flows through the soil. 
The extent of this seepage depends largely on the porosity of the material as well 
as  on the hydrostatic head inducing the flow. Figure  3.1 shows a typical example of 
this type.

The characteristic of the soil which enables water to permeate it is called ‘permeability’. 
Its measure is the coefficient of permeability, represented by the letter k, which varies 
significantly with:

1. 
Voids ratio

Density
Porosity





High density means low porosity, hence low permeability and vice versa
2.  Particle-size distribution:

Large grain diameter means large voids ratio, hence high permeability and vice 
versa

3.  Soil structure:
Most soil layers were deposited by water. They are more permeable horizontally 
then vertically.

4.  Discontinuities:
Fissures, cracks in clay or joints in rock or intrusions of different soil types can 
increase their permeability.

Earth dam

H = hydrostatic
head

Reservoir

Reservoir

Seepage

Figure 3.1
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3.1  Coefficient of permeability (k)

The general expression for the coefficient is derived by means of Darcy’s Law, introduced 
in 1856 after carrying out experiments in connection with laminar, that is steady stream-
line flow, in sand filters. Figure 3.2 depicts the experimental apparatus.

= =
= =
=
=

3

2

flow rate (m /sec cumecs)
Lengthof specimen Lengthof flow path(m)
head loss (m)
cross sectional area of th specimene  (m )-

Q
L
h
A

Darcy’s Law

It expresses the discharge velocity u:

	 m/skiυ = � (3.1)

where i = hydraulic gradient, given by:

	
h

i
L

=   (Dimensionless)� (3.2)

Note: The dimensions of k are those of velocity since from 3.1:

	  m/sk
i
υ

= � (3.3)

The flow rate is given by:	 3m /sQ A Akiυ= = � (3.4)

From which	  m/s
Q

k
Ai

= � (3.5)

S
ee

pa
ge

h

Sand

Inflow

A

V

Q

Q

L

Figure 3.2
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3.2  Seepage velocity (uS)

The actual cross-sectional area, through which water permeates, depends on the voids 
ratio or porosity of the soil. It is therefore smaller than area A of the specimen. For the 
same quantity of discharge flow rate (Q) therefore, the seepage velocity is larger than 
the discharge one. The relationship between the velocities can be derived in terms of 
voids ratio. From formula (3.4):

	 V SQ A Aυ υ= =

where 	  A
V
 = total area of voids at a cross-section of the sample.

But, 	  A = A
S
 + A

V

where 	  A
S
 = total area of solids at a cross-section of the sample.

Substituting:  Q = (A
S
 + A

V
)u = A

V
u

S

From which,  u
s
	 s v

v

A A
A

υ
 +

=   

Now, the volume of solids in the specimen is given by:

	

S
s s s

V
V A L A

L
= ∴ =

And the volume of voids is:	 V
V V V

V
V A L A

L
= ∴ =

Substituting: 	  u
s  

S V

S V

V V

S

V

1

V V
V VL L

V V
L

V
V

υ υ

υ

 +  + 
= =      

 
= +  

But, the voids ratio is given by:  = V

s

V
e

V

Hence, 
	

u
s

1 1
1

e
e e

υ υ+   = + =      

But, porosity is:	 =
+1

e
n

e

Therefore, the seepage velocity is given by:

Either	 s

1
m/s

e
e n

υυ υ+ = =  
� (3.6)

or 	 s
m/s

ki
n

υ = � (3.7)
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Example 3.1

Figure 3.3 shows a filter arrangement between two tanks. Calculate the coeffi-
cient of permeability and the seepage velocity.

=
=
=
=

= =

20.5m

3m

0.6 (for sand)

4m

3
From(3.2) : 0.75

4

A

h

e

L

i

The amount of water collected at the discharge end in t = 60 seconds was 
q = 0.0608 m3. The flowrate Q in these terms is given by:

	
3m /s

q
Q

t
= � (3.8)

Therefore,  Q 30.0608
0.00101 m /s

60
= =

From (3.5):  k
0.00101

0.0027m/s
0.5 0.75

Q
Ai

= = =
×

Either from (3.1):  u = ki = 0.0027 × 0.75 = 0.00202 m/s

Or from (3.4):  u
0.00101

0.00202 m/s
0.5

Q
A

= = =

From (3.6):  u
s

1 1.6 0.00202
0.0054 m/s

0.6

e
e

υ+ × = = =  

Therefore, the seepage velocity is approximately two and a half times faster than 
the discharge velocity, in this example.

Sand filter

L = 4 m

us

h = 3 m

Water

q

Water

Q

Figure 3.3
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3.3  Determination of the value of k

The coefficient of permeability may be obtained by either laboratory or field tests of 
which the latter is more representative of the actual in-situ conditions. The standard 
tests are:

Laboratory: ( 1 )  Constant head
(2)  Falling head
(3)  Pumping

In-situ: (4)  Borehole
Laboratory: (5)  Consolidation

Average values of k: 

3.3.1  Constant head test

The test is suitable for coarse-grained soil, such as gravel or sand. The apparatus is drawn 
schematically in Figure 3.4. Because of the large voids ratio, the flowrate through the soil is 
fairly high. The water level in the tank is kept constant by maintaining a uniform rate of inflow 
at the same head h. Measurements are made only after steady seepage had been achieved.

Table 3.1

Soil k (m/s)

Gravel 10–2 to 1
Sand 10–2 to 10–5

Silt 10–5 to 10–8

Clay 10–8 to 10–12

S
am

pl
e

L q

A

Measuring
cylinder

Tank

h

Standpipes
or

piezometers
Overflow

Figure 3.4
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Procedure
Step 1:	 Eliminate all air bubbles from the system.
Step 2:	 Increase flow and note h.
Step 3:	 Collect q cm3 of water in the cylinder over t seconds.

Step 4:	� Measure h and L in centimeters and obtain hydraulic gradient from (3.2): 
h

i
L

=

Step 5:	 Measure the cross-sectional area A (cm2).
Step 6:	 Calculate the coefficient of permeability from:

(3.5): 
Q

k
Ai

=

(3.8):

 

=
q

Q
t

	

=

q
tk
h

A
L

(3.2):
 

h
i

L
=

	
∴

 
=  cm/s

qL
k

Aht �
(3.9)

Step 7:	 Calculate the velocity of flow from:

(3.4): 
Q
A

υ = 	

 cm/s
q
At

υ = � (3.10)

(3.8):  =
q

Q
t

Step 8:	 Repeat steps 2–7 at least four times.
Step 9:	 Plot i against u, as shown in Figure 3.5.

The slope of the line through the plotted points yields the average value of k.

k=slope

u=ki

i

u

Figure 3.5

Example 3.2

Tests were carried out on loose and compact sand and the results tabulated. 
Calculate the value of k for each flow rate as well as its average value for both 
materials. The apparatus was as shown in Figure 3.4, where L = 20 cm and A = 45 cm2.
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3.3.2  Falling head test

The test is suitable for fine-grained, cohesive soils, such as clay. Because the perme-
ability is very low, the piezometric water level falls very slowly. A sketch of the 
apparatus is shown in Figure 3.6.

A = cross-sectional area of the specimen.
a = cross-sectional area of the standpipe.
L = length of the sample.
h

1
 and h

2
 are the water levels in the standpipe at time 

t
1
 and t

2
 respectively.

h = drop in water level.

1 2h h h= −

h

h1

h2

a

Soil

Water
Overflow

q
A

Water level
at time t2

Water level
at time t1

Standpipe

L

Figure 3.6

From Graph 3.1, the coefficients of permeability for:

a)  Loose sand: 	 k = 0.141 cm/s = 1. 41 × 10-3 m/s
b)  Compact sand: 	 k = 0.079 cm/s = 7. 9 × 10-4 m/s

Therefore, the values of k obtained by means of Graph 3.1 verify the calculated 
average figures in Table 3.2.

Table 3.2

 
h 

(cm)
i =

h
L

q  
(cm3/10 sec)

Q  
(cm3/s)

u =
Q
A

(cm/s)

k =
υ
i

(cm/s)
Average 

k

Loose
Sand

3.32 0.166 11.2 1.12 0.025 0.1500 0.1417
cm/s7.12 0.356 21.6 2.16 0.048 0.1348

9.28 0.464 29.2 2.92 0.065 0.1400
11.68 0.584 36.7 3.67 0.082 0.1396

15.26 0.763 49.5 4.95 0.110 0.1442
Compact 
Sand 2.32 0.116 4.3 0.43 0.0096 0.0824 0.0784

cm/s6.56 0.328 11.7 1.17 0.026 0.0793
9.76 0.488 16.2 1.62 0.036 0.0738

13.30 0.665 22.9 2.29 0.051 0.0765
17.00 0.85 30.6 3.06 0.068 0.080



Graph 3.1
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Step 1:	 Saturate the sample and eliminate any air bubbles from the system.
Step 2:	 Raise the water level in the piezometer standpipe and note the height (h

1
).

Step 3:	 Allow the water level to drop to height h
2
 and note the elapsed time t = t

2
 − t

1
.

Step 4:	 Calculate the coefficient of permeability from:

	

1

2

ln
haL

k
At h

 
=   

�

(3.11)

Example 3.3

A sandy silt sample was tested at 20°C. The calculated results are tabulated below.

A  = 81 cm2

L  = 25.4 cm
h

1
  = 65.6 cm

a  = 0.79 cm 2

1

2

1

2

0.79 25.4
ln

81

0.248
In

h
k

t h

h
t h

 ×
= ×  ×  

 
= ×   

Alternatively, using the average values:

Average      t = 6752.5	 ∴	 51

2

1 0.13
average ln 1.93 10

6752.5

h
t h

− 
= = ×  

Average    
 

=  
1

2

ln 0.13
h
h

	 and	 50.79 25.4 1.93
10

81
k −× ×

= ×

= 0.478 × 10-4 mm/s

= 4.78 × 10-8 m/s

Alternatively, k may be found from Graph 3.2 by the modified form of (3.11):

	 θ =   
cot cm/s

aL
k

A
� (3.11a)

In this formula  1

2

1
ln cot

h
t h

θ
 

× =  

51 0.13
cot 1.93 10

tan 6752.5
θ

θ
−= = = ×

∴  5 4

8

0.79 25.4
1.93 10 0.478 10 m/s

81
4.78 s

m

10 m/

k − −

−

×
= × × = ×

= ×

Table 3.3

Time  
t (sec)

h
2

cm
1

2

h

h

 
  

1

2

In
h
h

k
cm/sec

0 65.6 – – –
2880 62.2 1.055 0.054 4.7 × 10–6

5190 59.4 1.104 0.099 4.7 × 10–6

8100 55.8 1.176 0.162 5.0 × 10–6

10800 53.1 1.235 0.211 4.8 × 10–6

13545 50.7 1.294 0.258 4.7 × 10–6

6752.5 ←Averages→ 0.13 4.78 × 10–6
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3.4  Field pumping tests

These tests are more expensive than the laboratory ones, but the results are more 
realistic. They are applicable to non-cohesive, homogeneous soils. The applications of the 
coefficient of permeability, determined by the pumping test, are normally threefold:

1.  Lowering the ground water table to create dry working environment.
2.  To solve seepage problems in connection with structural stability.
3.  For possible water supply.

There are two usual types of problems, depending on the position of the water-bearing layer:

a)  Uniform coarse-grained soil extending from ground level to an impervious layer. 
Piping (boiling) failure could occur.

b)  Uniform coarse-grained soil, between two impervious layers, containing water 
under artesian pressure. Shear failure (heaving) could occur.

Assumptions:

i.  The ground water level is static in all directions.
ii.  The permeable layer is homogeneous and horizontal.
iii.  The pumping well penetrates the bottom impervious layer.
iv.  The lining of the well is perforated up to the ground water table.
v.  The coefficient of permeability of the layer to be pumped is larger than 10–4 m/s.

vi.  The coefficient k of the soil is uniform and constant at every point.

3.4.1  Unconfined layer

Figure 3.7 shows the arrangement of the pumping scheme for a thick layer of permeable 
soil, underlain by impervious material. As a result of pumping from the central well, water 
seeps towards it, that is in a radial direction and the water surface falls, forming the so 
called ‘drawdown curve’. The shape of this curve is found from observation wells placed 
as shown on the half-plan view below:

r3 r1
r2

r

y

y2

Q

w1 w2w4 w3

Original GWL

To pump

Drawdown
curve

(a)

GL

y1
r4

R

Radius to W4
h

H

(Radius of influence)

Perforated
lining

Impervious layer

Flow

Flow



Permeability and Seepage       103

The formulae presented here are derived relative to the coordinate systems shown.

z = depression of draw-
down curve below the 
original ground water 
table.
r

0
 = radius of the central 

well.

Equation of the drawdown curve:	 2 ln
Q R

y H
k rπ

 = −   
� (3.12)

Equation of depression:	 z H y= − � (3.13)

When, 
 r = r

0

 y = h
  then the maximum height of water in the central well is given by:

	
π

 
= −   

2

0

ln
Q R

h H
k r

� (3.14)

z m
ax

H

h y
y

R
Central well

z

ro

r Impervious
layer

z

R – r

GL

GWL

Drawdown
curve

Figure 3.8

O
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O
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O
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O
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O w5
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2ro

(b)

F
lo

w

Flow
Flow

Flow Flow

Circle of influence

O w6 (observation well)

R

Figure 3.7
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Hence, the maximum depression is:  maxz H h= − � (3.15)

The flowrate pumped out of the central well is given by:

	
( )2 2

0

ln

k H h
Q

R
r

π −
=

 
  

� (3.16)

Its maximum theoretical value occurs when h is practically zero.

Eliminating h from (3.16) gives:	
2

max

0

ln

k H
Q

R
r

π
=

 
  

� (3.17)

The coefficient of permeability may be expressed from (3.16) as:

	 ( )2 2
0

ln
Q R

k
rH hπ

 
= ×   −

� (3.18)

3.4.2  Radius of influence (R )

It is normally determined by placing observation wells at various distances from the 
central one. All the observations are made only after steady flow conditions had been 
attained. Its value can be high, depending on the particle size. Average figures given by 
Jumikis:

In view of these large figures and because the assumptions are least valid at the central 
well, formula (3.18) is modified for the calculation of k, using the data taken at two obser-
vation wells, say at r

1
 and r

2
 in Figure 3.7:

	 ( )
2

2 2
12 1

ln
rQ

k
ry yπ

 
= ×   −

� (3.19)

Table 3.4

Soil type
Particle size  

a (mm)
Radius (R)  

(m)

Coarse gravel > 10 > 1500
Medium gravel 2−10 500−1500
Fine gravel 1−2 400−500
Coarse sand 0.5−1 200−400
Medium sand 0.25−0.5 100−200
Fine sand 0.1−0.25 50−100
Very fine sand 0.05−0.10 10−50
Silly sand 0.025−0.5 5−10
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Example 3.4

A pumping test was carried in a 4.7 m thick clean sand layer underlain by impervious 
soil. The original ground water table was 1.5 m below the surface. The steady-state 
discharge from the central well was 43 m3/hour. The water level observation at each 
well, at uniform flow is tabulated below. Calculate the coefficient of permeability of 
the sand.

Central well diameter = 0.3 m    ∴ r
0
 = 0.15 m

H = impervious layer below GWL = 4.7 - 1.5 = 3.2 m

h = H - 0.46 = 3.2 - z
0
 = 2.74 m

From Table 3.5:    R = 76 m  (At z = 0)

Discharge	 3 3 2 343
43m /hour m /s 1.194 10 m /s

3600
Q −= = = ×

From (3.18):	 ( ) ( )
2

2 2 2 2
0

1.194 10 76
ln ln

0.153.2 2.74

8.66 10 /smm

Q R
k

rH hπ π

−  ×  = × = ×      − −

= ×

Alternatively from (3.19), using the results from wells 3 and 4:

3 3

4 4

3

4

3.2 0.11 3.09m

3.2 0.03 3.17m

20m

50m

y H z

y H z

r

r

= − = − =
= − = − =
=
=

∴

 

( ) ( )
2

4
2 2 2 2

34 3

1

1.194 10 50
ln ln

203.17 3.09

6.95 10 mm/s

rQ
k

ry yπ π

−

−

  ×  = × = ×      − −

= ×

This value of k is accepted as a reasonable approximation to the in-situ 
permeability.

Table 3.5

Well number
Central 

0 1 2 3 4 5

Radius = r (m) 0.15 3 12 20 50 76
Depth to water (m) 1.96 1.77 1.65 1.61 1.53 1.5
Drawdown = z (m) 0.46 0.27 0.15 0.11 0.03 0
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3.4.3  Confined layer under artesian pressure (sA)

In this case, the permeable layer is confined and compressed by two impermeable 
ones. The drawdown curve should not be lowered below the bottom of the upper confining 
layer. The observation wells are arranged around the central one, as in the previous case.

Note: �In this case, the artesian pressure head is lowered by pumping so that excavation 
may be carried out, without base failure (heaving). (See Chapter 5.)

Equation of the drawdown curve:	
0 0

ln
2

Q r
y h

k h rπ
 

= + ×   
� (3.20)

where h
0
 = thickness of the layer under pressure.

Equation of depression:	 Az h y= − � (3.21)

Coefficient of permeability of the permeable layer:

	 ( )0 A 0

ln
2

Q R
k

h h h rπ
 

= ×  −  
� (3.22)

Or, using data from two observation wells:

	 ( )
2

0 2 1 1

ln
2

rQ
k

h y y rπ
 

= ×  −  
� (3.23)
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Figure 3.9
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3.5  Permeability of stratified soil

A soil profile is normally made up of several layers, each having its own coefficient of 
vertical (k

v
) and horizontal (k

H
) permeability. Theoretically:  k

H
 > k

v

Where k
1
, k

2
 and k

3
 indicate either horizontal or vertical coefficient of permeability, 

obtained in laboratory tests for each layer.

Equivalent horizontal coefficient

The average value of the horizontal coefficient of permeability for several layers is 
given by:

	 ( ) ( )H 1 1 2 2 3 3

1 1
 .k k z k z k z k z

H H
= = + + + …∑ � (3.24)

Equivalent vertical coefficient

The average value of vertical coefficient is given by:

	 v
31 2

1 2 3

H H
k

zz zz
k k kk

= =
  + +  ∑

� (3.25)

k1
GWL

GL

z1

z2

z3

k2 H

k3

Impervious

Figure 3.10
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3.6  Flow nets

Flow nets are a graphical representation of the passage of water through a permeable 
material. They are made up of:

1.  Flow lines
2.  Equipotential lines

Example 3.5

Permeability tests were carried out on the three layers shown in Figure 3.11. The 
relevant horizontal and vertical coefficients of permeability is indicated for each 
layer. Calculate the average permeability in both directions.

From (3.24): 1 2 2
H

1
(3 3.7 10 2 4.42 10 4 6.11 10 )

9
1

(1.11 0.0884 0.244) 16 mm/s
9

k − − −= × × + × × + × ×

= + + =

From (3.25): v

1 2 2

1
H

H v2
v

9
6.48 mm/s

3 2 4

2.25 10 3.91 10 5.37 10

1.6 10
2.47 2.47

6.48 10

k

k
k k

k

− − −

−

−

= =
+ +

× × ×
×

= = ∴ =
×

Ratio:

Note: The average vertical permeability is normally in the same order of magnitude 
as the smallest vertical coefficient.

k1
3 m

9 m
2 m

4 m
5.37 × 10–2m/s

6.11 × 10–2m/s

3.91 × 10–2m/s

2.25 × 10–1m/s

4.42 × 10–2m/s

3.7 × 10–1m/s

k2

k3

Figure 3.11
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3.6.1  Flow lines (FL)

These represent the path of water through the soil. Two flow lines may be considered 
to form a sloping channel, carrying a quantity (q) of water in steady (laminar) flow per 
second. To be a channel, conducting laminar flow, the two flow lines should never 
cross, although they need not be exactly parallel curves. A typical seepage channel is 
drawn below.

Rules for drawing flow lines

1.  An impermeable surface is a flow line, as water has to flow along it.
2.  Two flow lines do not cross.
3.  A flow line always starts at the inlet end, at right angle to the soil boundary.

4.  There are three cases at the outlet end:
a)  If the flow line emerges in water, then it is drawn at 90° to the soil boundary.

Inlet

q

Flow line

Impervious

Outlet

Earth dam

Flow channel

Flow line

Flow line
Reservoir

Reservoir

Figure 3.12

Reservoir

Outlet

FL

FL

q

90°
90°

Figure 3.14

Inlet

FL

FL

qReservoir 90°
90°

Figure 3.13
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b)  If the flow line ends in a filter drain, then it is drawn at 90° to the boundary of 
the filter.

c)  If the flow emerges from a slope, then the flow line is drawn tangentially to the 
surface.

Note: Seepage from a slope is undesirable as it could cause washout or erosion of the 
toe. For this reason, new embankments should be provided with toe drains as shown in 
Figure 3.15.

In the case of natural slopes, counterfort drains or a surface toe filter should be con-
structed to prevent damage.

FL

90°

Filter drain

Outflow

Embankment slope

Pond

Phreatic surface

Figure 3.15

Toe

Seepage

Embankment slope
FL

Phreatic surface

Pond

FL

Figure 3.16

(a)

Pipe

Counterfort

Impervious

GWL

GL

FL

(b)

Pipe

Filter

Impervious

GWL

GL

FL

Figure 3.17
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3.6.2  Head loss in a flow channel

Just like in pipe flow, some pressure head is lost as water flows between two flow lines. 
Piezometers placed at two points P

1
 and P

2
 along a flow line would indicate different 

water levels, that is a pressure head drop of Δh.

3.6.3  Equipotential lines (EPL)

These represent points of equal pressure heads within the soil mass, caused by steady 
seepage forces. Water surface in piezometers placed along an equipotential line would be 
at the same level.

Rules for drawing EPL

1.  It is drawn at 90° to a flow line. A piezometer placed at their junction indicates the 
pressure head common to both lines.

P4

P3

Equipotential line

Figure 3.19

FLP1

h1

∆h = h1− h2 

P2

h2

Figure 3.18

h = common pressure head

90°

E
P

L

FL

Figure 3.20
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2.  An EPL is drawn at 90° to impervious surfaces.

3.  Ground surfaces at the inlet and outlet are equipotential lines. This is why the flow 
lines are drawn at 90° to them, as in Figure 3.13.

4.  EPLs are drawn at such intervals that they form approximate, curved ‘squares’ with 
the flow lines.

5.  Permeable boundary, submerged under water is EPL.

The ground is permeable, hence it is an EPL. The sheet pile wall is impermeable; 
therefore it is a flow line.

6.  The top flow line in Figures 3.12 to 3.16 and 3.21 is at atmospheric pressure. It is 
often called ‘phreatic’ or ‘free water’ surface. The equipotential lines do not cross 
the phreatic surface.

EPL
Reservoir

INLET

FL

OUTLET

Reservoir

Impervious

EPL
EPL90°

– 90° 90°

– 90°

FL

Figure 3.21
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E
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3.6.4  Flow net construction

The trial and error procedure, attributed to Forcheimer, is best carried out on transparent 
paper. The structure is drawn to scale on one side and the flow net on the other. It is sufficient 
to draw at least four flow channels correctly. The final net may then be subdivided for more 
detail. Note that the lines must converge or diverge gradually. Sudden changes of direction 
may only occur at the boundaries. The method is best demonstrated by a simple example.

Example 3.6

Figure 3.24 shows a concrete dam constructed in permeable soil. The vertical and 
horizontal permeabilities are assumed to be equal. The dam itself is taken to be 
impervious. Sketch the flow net for the structure.

Step 1:  Consideration of the boundary conditions:

a)  Surface A-C-D-E-F-G and JK are impermeable, therefore flow lines, 
hence each EPL is drawn at 90° to them.

b)  Surface BC and FI are submerged permeable ones, therefore 
equipotential lines, hence each FL is drawn at 90° to them.

Step 2: � Locate the first flow channel by sketching the flow line 1 and draw the 
equipotential lines for this flow path.

Note: As the base is symmetrical about its centre line, only half of the net need 
be drawn.

Permeable soil

G
H = 18 m

E

K

F

J

I

A

C

D

B EPLEPL 4 m

30 m

22 m

2 m

kv= kH= k = 6.95 × 10−3m/s

FL

Impervious

FL

50 m

F
L

Figure 3.24
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EPL
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FL 3

FL 1
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3.6.5  �Application of flow nets

Once the flow net for a soil or soil-structure configuration has been constructed, it can 
be applied to the solution of three types of seepage problems:

1.  To establish the seepage flowrate.
2.  To calculate the seepage pressure acting on a structure.
3.  To determine, whether piping, that is internal erosion of a particular soil, could be 

caused by seepage or not.

3.6.6  Seepage flowrate (Q )

It can be seen on Graph 3.3 that, in general, the level difference between the two 
reservoirs is H. This head is lost as water seeps through the flow channels. Figure 3.26 
shows that there is a constant head loss across each square along a flow line, that is, 
between any pair of equipotential lines.

If N
e
 denotes the number of ‘squares’ drawn/channel in the flow net, then the total head 

loss is given by:

eH N h= × ∆

By Darcy’s Law the flowrate in a flow channel of unit width is:  q = kbi

Step 3: � Sketch flow line 2, forming approximate ‘squares’ with the equipotential 
ones.

Step 4: � Repeat the process until a reasonably satisfactory flow net is the result. 
If not, then adjust the sketch.

Note that some elements of the mesh are not even ‘squares’. Despite this and 
other assumptions, the flow net is useful tool in the assessment of seepage 
parameters, as long as at least four flow channels are drawn.

The completed flow net is given on Graph 3.3.
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But hydrautic gradient in a square is: 
∆

=
h

i
a

For an approximate ‘square’  a≈ b

Therefore, the flowrate is:  q = kΔh per channel

If N
f
 = number of flow channels in the flow net, then the total flowrate per unit width is: 

	

f

f
f

e

f
e

Q qN
N

kN h Q kH
N

H
kN

N

=
 

= ∆ =   
=

� (3.26)

For example 3.6 (Graph3.3):  H = 18 m
k = 6.95 × 10–3 m/s
N

f
 = 4

N
e
 = 12	

3

3

6.95 10 18 4

12
0.042 m /sperm

Q
−× × ×

=

=

3.6.7  Seepage pressure

Flow net is a very useful aid for the determination of seepage pore pressure at any point 
in the soil mass or under a structure. The relevant general formulae are:

Head loss up to point x: 	
x x

x
x

x e
e

H N h
N

H HH
N N

N

= ∆
 

=  =  
� (3.27)

Where, N
x
 = the number of squares between point x and the tailwater end. This is why it is 

convenient to number N
e
 from that end (see Graph 3.3).

Pressure head at point x is obtained by subtracting that the head loss from the total 
head (H

T
) at x

1
 as shown.

In this case N
X
 = 5.5 as x is in the middle of square 6.

 

1

2
3
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E

HT

H0
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head
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6  x

Figure 3.27
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The pressure head therefore is:  h
x
 = H

T 
 - H

x

or		  x
x T

e

N
h H H

N

 
= −   

� (3.28)

The seepage pore pressure at point x is given by:

	
x

x w x w T
e

N
u h H H

N
γ γ

  
= = −     

� (3.29)

Continuing with Example 3.6, estimate the pressure head and seepage pressure at points 
P and E indicated in Graph 3.3.

At point P:  H
T
 = 22 + 12 = 34 m	 Head loss up to P:

N
x
 = 8.4

	 p

8.4
18 12.6m

12
H

 = × =    N
e
 = 12

H = 18 m

Pressure head:      h
P
 = 34 − 12.6 = 21.4 m

Seepage pressure:  u
P
 = 9.81 × 21.4 = 210 kN/m2

At point E:  H
T
 = 22 + 2 = 24 m	 Head loss up to E: 

N
x
 = 10.7

N
e
 = 12

H = 18 m

Pressure head:	 h
E
 = 24 − 16.05 = 7.95 m

Seepage pressure: u
E
 = 9.81 × 7.95 = 78 kN/m2

The ‘uplift pressure’, acting on the base of the dam at 10 m intervals, is tabulated below.

Hydraulic gradient (i)

Formula (3.2) indicates that the hydraulic gradient may be defined by:

	

Head loss in seepage

Seepage distance
i =

 

 

p

10.7
18 16.05 m

12
H

 = × =  

Table 3.6

Point x at D 0 10 20 30 40 E 50

N
x
 (from Graph 3.3) 1 3.5 5.2 6.8 8.5 10.7

( ) 
=   

x
x 18 m

12

N
H 1.5 5.25 7.8 10.2 12.75 16.05

( )T at mH x 24 24 24 24 24 24

( )x T x mh H H= − 22.5 18.75 16.2 13.8 11.25 7.95

u
x
 = 9.81 h

x
 (kN/m2) 221 184 159 135 110 78
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If can be obtained for each ‘square’ of a flow net as shown:

Note :
The average dimensions ( and ) of a square
maybe measured directly from the flow net.

seepage distance between two EPLs.

a b

a =

The hydraulic gradient is expressed in these terms:

	
1 2h hh

i
a a

−∆
= = � (3.30)

ab

h1
∆h

h2

Figure 3.28

Example 3.7

Calculate the average hydraulic gradient between the base of the dam and the 
impervious layer, for squares 8 to 10 on Graph 3.3.

e

Head loss per square :
18

1.5m
12

The average value of the hydraulic
gradient is calculated from the tabulated
ones for the 12 squares measured.

H
h

N
∆ = = =

Therefore, the average value is:  = =
2.64

0.22
12

i

S

K

28
m

Impervious

10.59

8.5 8.5

6.875.5

6.5

6.5

6 6

6

Y

E

Y

X

X

1098

Dam

Figure 3.29

Table 3.7

a (m) 6 5.5 6 6.5 6 7 8.5 9 5.5 6.2 8.5 10.5 SUM

1.5
i

a
= 0.25 0.27 0.25 0.23 0.25 0.21 0.18 0.17 0.27 0.24 0.18 0.14 2.64



Graph 3.3
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3.6.8  Seepage force (S)

The general expressions for the force, exerted on the soil by seeping water, is derived by 
considering the hydrostatic forces acting on a square of the flow net. It is then given by:

	 wS i Vγ= � (3.31)

where V = volume of soil through which the average hydraulic gradient is known.

Derivation of formula (3.31)

1 1 w

2 2 w

cross-section

Hydrostatic forces :

P

al area
of 1m wide flow channel

P

bh

bh
b

γ
γ

=
=
=

Example 3.8

Continuing Example 3.7, estimate for the volume between sections x-x and y-y the 
following:

1.  Seepage force
2.  Flowrate
3.  Flow velocity
4.  Seepage velocity

Assume:  Voids ratio for the sand:       e = 0.6
Coefficient of permeability:  k = 6.95 × 10-3 m/s
i = 0.22

Average length:  
1

(17.5 18.7 23 26) 21.3 m
4

= + + + =

Volume:	 V = 28 × 21.3 × 1 = 596.4 m3 /m thickness of dam
Seepage force:	 S = ig

w
 V = 0.22 × 9.81 × 596.4 = 1287 kN/m

From (3.4):	 Flowrate:	 Q = Aki
	 A = 28.1 = 28 m2/m thickness of dam
	 ∴	 Q = 28 × 6.95 × 10-3 × 0.22 = 0.043 m3/s
From (3.3):	 Flow velocity:	 u = ki = 6. 95 × 10-3 × 0.22 = 1. 53 × 10-3 m/s

From (3.6):	 Seepage velocity:    s

3 3

1

1.6
1.53 10 4.1 10 m/s

0.6

e
e

υ υ

− −

+ =   

= × × = ×

P1

h1

P2

h2

S

b
a

∆h

Figure 3.30
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The resultant force acting on soil particles is equal to the hydraulic pressure-force on the 
opposite faces of a square.

	

1 2 1 w 2 w

w 1 2

P P

( )

S bh bh

S b h h

γ γ
γ

= − = −

= − � (3.32)

Note: This formula may also be used to estimate the seepage force due to upward flow. 
See section 3.7 Erosion due to seepage.

The volume of the square V = a b (m3/unit width) 

Hence,  =
V

b
a

	 ∴	 w

h
S V

a
γ∆=

Also,	 Δh = h
1
 - h

2

and	
∆

=
h

i
a

	 ∴	
wS i Vγ= � (3.31)

 

Example 3.9

Calculate the magnitude of the seepage force, acting on the square indicated by 
the letter K, in Figure 3.29, using formulae (3.31) and (3.32).

×
= − =

×
= − =

∆ = − =

∆ = = =

1

2

1 2

From Graph 3.3 :

18 7
24 13.5 m

12
18 8

24 12.0 m
12

1.5 m
18

This is the same as: 1.5 m
12e

h

h

h h h
H

h
N

From (3.32):  
w 1 2( )

6 9.81 1.5 88.29kN/m width of dam

S b h hγ= −
= × × =

From (3.30): 

3

1.5
0.25

6
1 6 6 36 m

h
i

a
V ab

∆
= = =

= × = × =

	
w

0.25 9.81 36

88.29 kN (asbefore)

S i Vγ∴ =
= × ×
=

 

S = 88.29 kN

X

b
=

6
m

a = 6 m

987

h1

h2

1.5 m

Figure 3.31
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3.7  Erosion due to seepage

The usual names given to the phenomenon are ‘piping’, ‘boiling’ or ‘quicksand’. It is 
caused by upward flow of water at critical velocity in fine sand. Soil in this state has no 
bearing capacity, hence cannot support structures. The classic example on piping is a 
sheet pile wall, separating water at different surface levels.

According to Terzaghi’s experiments, the width of the piping zone is approximately 
half the length of the sheet pile below the surface. In order to prevent this type of 
failure, the weight (W) of the soil prism in the zone must be greater than upward 
seepage force (S).

The factor of safety against piping failure is given by:

	
= >s 3

W
F

S �
(3.33)

The problem is solved by means of flow net based on the fact that the head loss over 
one square is:

	
∆ =

e

H
h

N
�

(3.34)

Step 1
Estimate the average seepage pressure-head (h

1
) at point P along the base (a–b) of the 

soil prism of unit thickness. The variation of pressure over the base is considered to be 
parabolic, as shown. See its derivation in Supplementary problem 3.8.

ba

c
d Piping Pond B

Piping zone

Impermeable

Sand

HB

h2

H = Total head loss

Sheet pile

2
–

z = length of pile
       driven into the

 sand layer

HA

Pond A

z

Figure 3.32



122       Introduction to Soil Mechanics

N
a
 = �number of squares between pond A and the base 

of pile at point a
N

b
 = Ditto at point b

It can be shown that for a parabolic variation, the average value of N
x
 is given by:

	
+

= a b
1

2

3

N N
N � (3.35)

Also, the average pressure head is:

	
+

= a b
1

2

3

h h
h � (3.36)

The magnitude of this head may be estimated in two ways:

1.  By using N
a
 and N

b
 in formula (3.28) to calculate h

a
 and h

b
:

a T ah H h N= − ∆

  b T bh H h N= −∆
	

and then applying (3.26)

2.  By using N
1
 to get h

1
 = H

T
 - ΔhN

1

Step 2
Determine the actual seepage pressure-head (h

s
) to be dissipated through the soil prism. 

This may be done in two ways:

1.  By subtracting the existing static hydraulic head (h
2
) above the base from h

1
.

	 s 1 2h h h= −
�

(3.37)

Pond B

g ′

W

P ba

HT
h2

Na
h1

N1

Sha

hb

Nb

cd

Pond
A

z

Figure 3.33



Permeability and Seepage       123

2.  By equating h
s
 to the total head loss through the prism.

N
s
 = N

e
 - N

1
 = number of squares between base and ground surface within the prism.

Total head loss between the base and the surface:

	
( )s e 1h N N h= − ∆

�
(3.38)

Step 3
Estimate the upward seepage force (S) by (3.32):

	
( )w 1 2S A h hγ= −

where =
2

z
A  is the surface area of the base of unit thickness.

	 w s2

z
S hγ= � (3.39)

Alternatively, u
s
 = g

w
 h

s
 : The seepage pressure acting on the base.

= s
av

h
i

Z
 : The average hydraulic gradient across the prism.

Therefore, either	 s2

z
S u= � (3.40)

or	 ( )w av av w2

z
S zi i Vγ γ= = � (3.40a)

where 
2

2

z
V =  is the volume of the prism.

Step 4
Calculate the submerged weight (W ′) of the prism and hence the factor of safety.

2

2

z
W Vγ γ′ = ′ = ′

Therefore,	 s
av w av w s w

F
W V z
S i V i h

γ γ γ
γ γ γ

′ ′ ′ ′
= = = = � (3.41)

Note, that the hydraulic gradient at failure is called the ‘critical hydraulic gradient’ (see 
Chapter 5, problem 4), given by:

Either	 c
w

i
γ
γ

′
= � (3.42)

Or in terms of specific gravity and voids ratio:

	

−
=

+
s

c

1

1

G
i

e
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Hence,	 = = c
s c

s av

iz
F i

h i
� (3.43)

Alternatively, divide the pressure of the submerged weight (see also Chapter 5, 
Effective Pressure), acting downwards on the base, by the seepage pressure.

Pressure of W′	

2

2

2

z
W

z
zA

γ
σ γ

′′′ = = = ′

Therefore,	 s
s

F
u
σ ′

= � (3.44)

Harza’s method
In this, the exit gradient (i

e
) is estimated by measuring the length (x) of the exit square, 

adjacent to the pile at location d.

Exit gradient:

	 e av

h
i i

x
∆

= ≈  � (3.45)

and	 c
s

e

F
i
i

= � (3.46)

Pond BPond
A

z

x

FL

EPL

d

a b

c

Figure 3.34
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Example 3.10

The sheet pile arrangement depicted in Figure  3.35 is to be examined for 
adequacy.

Determine from the flow net drawn on Graph 3.4a:

1.  The water pressure distribution on both sides of the sheet pile wall, tabulat-
ing the calculations.

2.  The factor of safety against piping failure.

(1)  Pressure distribution

Table 3.8

Elevation (m) 8.5 5 4 3 2.5 3 4 5 6

H
T
 (m) 0 3.5 4.5 5.5 6 5.5 4.5 3.5 2.5

N
x

0 0 1 2.4 4 5.5 7 8 0
H

x
 (m) 0 0 0.313 0.75 1.25 1.72 2.19 2.50 2.50

h
x
 (m) 0 3.5 4.19 4.75 4.75 3.78 2.31 1 0

u
x
 (kN/m2) 0 34.3 41.1 46.6 46.6 37 22.7 9.81 0

5 m

0.00
Dortum

Imperimeable

3.5 m

1 m

2.5 m
Piping
zone

Sheet pile

1.25

Pond A

Pond B

Sand

e = 0.61

Gs= 2.67

k = 2.6 × 10–5m/s

gsat= 20 kN/m3

H = 2.5 m (Total head loss)

Figure 3.35



Graph 3.4
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2.  Factor of safety

Head loss in each square:	
e

2.5
0.313 m

8

H
h

N
∆ = = =

Submerged density:	 g ′ = 20 - 9. 81 = 10.19 kN/m3

Critical hydraulic gradient:	
γ
γ

′
= = =c

w

10.19
1.04

9.81
i

or	
− −

= = =
+ +
s

c

1 2.67 1
1.04

1 1 0.61

G
i

e

Weight of the prism:	
2 22.5

10.19 31.8kN
2 2

z
W γ′ = ′ = × =

Step 1

From Graph 3.4:	
a

b

4

5.8

N

N

=
= 	

+ + ×
∴ = = =a b

1

2 4 2 5.8
5.2

3 3

N N
N

( )a T a 3.5 2.5 0.313 4 4.75 mh H h N= − ∆ × = + − × =

b T b 6 0.313 5.8 4.18 mh H h N= − ∆ × = − × =

From (3.36):	 a b
1

2 4.75 2 4.18
4.37 m

3 3

h h
h

+ + ×
= = =

Alternatively,	 h
1
 = H

T
 - ΔhN

1
 = 6 - 0.313 × 5. 2  =  4. 37 m

Step 2
	 h

2
 = 2.5 + 1 = 3.5 m

From (3.37):	 h
s
 = h

1
 - h

2
 = 4. 37 - 3. 5 = 0.87 m

Or from (3.38):	 h
s
 = (N

e
 - N

1
)Δh = (8 - 5. 2) × 0.313 = 0.87 m

Step 3
Seepage pressure:	 u

s
 = g

w
 h

s
 = 9. 81 × 0.87 = 8. 53 kN/m2

Average gradient:	 s
v c

0.87
0.348 safe

2.5

h
i i

zα = = = < ∴

From (3.39):	
w s

2.5
9.81 0.87 10.7kN

2 2

z
S hγ= = × × =

From (3.40):	 s

2.5
8.53 10.7kN

2 2

z
S u= = × =

From (3.31):	
2

v w

2.5
0.348 9.81 10.7kN

2
S i Vγα= = × × =
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3.8  Prevention of piping

In order to increase the factor of safety against failure, four methods are normally 
adopted:

1.  Placing filter material over the danger zone.

2.  Lengthening the flow lines, by driving the sheet pile deeper as in Figure 3.37, or by 
installing sheet piles at one or both ends of a concrete dam.

Step 4

From (3.33):	
s

31.8
F 2.97

10.7

W
S

′
= = =

From (3.41):	 s
s w

2.5 10.19
F 2.98

8.53

z
h

γ
γ

′ ×
= = =

From (3.43):	 = = =c
s

av

1.04
F 2.99

0.348

i
i

From (3.44):	 s
s

2.5 10.19
F 2.99

8.53 8.53

z
u
σ γ′ ′ ×

= = = =

By Harza’s method: From the flow net x = 1 m

From (3.45):	
∆

= = =e

0.313
0.313

1

h
i

x

From (3.46):	 = = = >c
s

e

1.04
F 3.32 2.99

0.313

i
i

Note: The differences in the results are negligible considering the approximate 
nature of the flow net construction. Despite the inherent inaccuracies, flow nets 
provide valuable insight into the problem of seepage and its consequence as to the 
stability of structure.

Sheet pile

Filter

Piping zone

Figure 3.36
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3.  Shortening the flow lines by installing toe drainage for earth or concrete dams.

4.  Lengthening the flow lines at concrete dams by constructing upstream or down-
stream concrete aprons.

The advantage of lengthening the flow lines is to increase the number of equipotential 
lines. This means larger number of pressure drops, hence quicker dissipation of pressure 
head (H) and smaller hydraulic gradient (i

e
) at the exit.

3.9  Flow net for earth dams

In most problems, such as for sheet piles and concrete dams, the boundary conditions, 
that is the positions of flow lines, along the impermeable surface are known. In the case 
of a lagoon embankment or dam, constructed from porous material, the phreatic surface, 
that is the position of the uppermost flow line, is unknown. There are several methods 
for  the location of the phreatic line. Only the parabolic solution, evolved by Kozeny/
Casagrande, shall be introduced here.

Apron
ApronDam

FL

Figure 3.39

Figure 3.38

Dam

(a)

FL Filter
drain

(b)

FL

Filter drain

Figure 3.37

FilterDamDam

Sheet pile

FLFL

(a) (b)
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Step 1
Experiments indicate that the parabola intersects the water surface at P. The distance PQ 
is given by f = 0.3e. Therefore, d = B - e + f = B - 0.7e.

2
02 2

0 2
,

x H d d
But m H

Also x m d

d
∴ =

=
+

−
−

= +

x
0
 = the distance between the focus F and the directrix.

The parabola intersects the x-axis at 0

2

x
.

Step 2
The equation of the parabola has to be formed in order to plot it, making use of the fact 
that any point on the parabola is at equal distance from its focus (F) and the directrix.

This is shown on the enlargement below.

Equating the two distances and expressing 
the equation for the x-coordinate which is the 
formula for the parabola.

+ = +2 2
0x x x y

( )+ = +2 2 2
0x x x y

+ + = +2 2 2 2
0 02x xx x x y

+ =2 2
0 02xx x y

2
xo

e

f

P

h
H

d
P1 Q1 X

Adjusted phreatic line

G

Parabola

N

M

m

R

F

R

Impermeable
base

y D
irective

a

T

m

B

xo

Q

Figure 3.40

M

a

x

T

y

F

x

D
irectrix

x+xo

2

xo

x
2

+
y

2

Figure 3.41
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Therefore, the equation of the parabola:	
−

=
2 2

0

02

y x
x

x
� (3.47)

Knowing x
0
, values of x can be plotted against y on the section of the dam.

Step 3
Next, the location of point N has to be found, that is the intersection of the parabola and 
slope FG.

Equation of the slope: y = x tana

This is substituted into (3.47):	
( )2 2

0

0

tan

2

x x
x

x

α −
=

The result is a quadratic equation, whose solution is the x coordinate of point N.

2 2 2
0 02 tanx x x xα= −

	 ( ) ( )2 2 2
0 0tan 2 0x x x xα − − =

Therefore,	
2 2 2

0 0 0
N 2

2 4 4 tan

2 tan

x x x
x

α
α

++
=

Cancelling,	
2

0 0
N 2

1 tan

tan

x x
x

α
α

+ +
=

	

2

N 0 2

1 1 tan

tan
x x

α
α

 + +
=  

 
� (3.48)

Step 4
It is now possible to locate point M, the intersection to the phreatic line and slope FG, 
using Graph 3.5:

From Figure 3.42(b): + ∆ = +2 2
N Na a x y

But y
N
 = x

N
 tana (along the slope)

Substituting: 2 2 2
N N tana a x x α+ ∆ = +

Figure 3.42

n

(a)

a°

n
=

∆a
a

+
∆a

aM

N

(b)

∆a

yN

xN

a°
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Hence,	
21 tana a α+ ∆ = +

From the graph: 
∆

=
+
a

n
a a

Expressing, ( ) 2
N 1 tana n a a nx α∆ = + ∆ = +

Expressing distance FM: a = (a + Δa) − Δa

2 2
N N1 tan 1 tanx nxα α= + − +

Therefore, point M is located by:

	 ( ) 2 301 1 tanNa n x αα > °= − + � (3.49)

For a < 30°	
2 2

2 2cos cos sin

d H
a

α
α α α

= − − � (3.50)

Step 5
Sketch the phreatic line and continue to construct the flow net.

Example 3.11

The small earth dam, shown on Graph 3.6, retains 3 m deep water of a lagoon. It is 
underlain by impervious soil. The horizontal and vertical permeabilities within the 
structure are equal.

Draw:	   1.  The phreatic line
	 2.  The flow net

Calculate the quantity of seepage at the toe per metre length of the dam.

Step 1
f = 0.3e = 0.3 × 3.4 = 1.02 m
d = B  - 0.7e = 11.5 - 0.7 × 3.4 = 9.12 m

2 2 2 2
0 3 9.12 9.12 0.48 mx H d d= + − = + − =

Step 2
The equation of the parabola is:

−
= = −

×

2 2
20.48

1.04 0.24
2 0.48

y
x y

Tabulate x for several values of y and plot the results.

Table 3.9

y 0 0.25 0.5 1 1.5 2 2.5 2.75 3
x - 0.24 - 0.18 0.02 0.8 2.1 3.92 6.26 7.63 9.12



Permeability and Seepage       133

Step 3

From (3.48):	
2

N 2

1 1 tan 35 1.07
0.48 2.18 m

tan 35 0.49
x

 + +
= × = = 

 

Step 4
From Graph 3.5 for a = 35° n = 0.368

And from (3.49):	 = − × × +
= =

2(1 0.368) 2.18 1 tan 35

1.378 x 1.22 1.68m

a

Also,	
∆

= ∆ = + ∆
+ ∆

a
n a an n a

a a

	
( )− ∆ =1 n a an

	

1.68 0.368
0.98m

1 1 0.368

an
a

n
×

∆ = = =
− −

Step 5
Measure lengths a and Δa along the slope to get points M & N. Draw the flow net.

Step 6
The flowrate at the toe of the dam is given by (3.26):

From the net: 

	

−

−

−

= × × ×=

= ×=
= = × × ×

=

4f

e
4 3

f
4 2 3

e

3

5
7.9 10 3

27
4.4 10 m /s5

27 4.4 10 60 24 m /day

38 m /day/metre length

N
QQ kH

N
N
N

 

a°
30

n
=

∆a
a

+
∆a

0.2

0.3

0.4

40 50 60 70 80 90

Graph 3.5



Graph 3.6
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Problem 3.1 

A permeability test was carried out on a specimen of sand and the results 
recorded as:

Cross-sectional area of the specimen : A = 150 cm2

Length of the specimen : L = 30 cm
Porosity : n = 39%
Water collected in t = 22 seconds : q = 83 cm3

Pressure head : h = 19.2 cm
Specific gravity of sand : G

s
 = 2.66

Determine  a)  Coefficient of permeability of sand.
b)  Discharge velocity.
c)  Seepage velocity.
d)  Critical hydraulic gradient.
e)  Critical pressure head, at which the soil would fail.
f)  Submerged unit weight of sand.

Problem 3.2 

In order to extract water from the aquifer, shown in Figure 3.43, the water com-
pany intend to sink a 0.5 m diameter well as near to a protected building as pos-
sible. Because the structure is founded on shrinkable clay, it is imperative, that its 
water content should not be altered by the pumping operation. For this reason, 
the cone of depression is not allowed to encroach on a 200 m exclusion zone 
around the building. Calculate the yield from the well, in m3/s, if it is sunk 1200 m 
away from the protected structure. The water level in the central well must remain 
within the shrinkable clay layer. Assume that the shrinkable clay is saturated to 
the piezometric water level.

Ground water level is 1.5 m below the surface.
Depression of water in observation well No. 1 = 4 m.
Depression in observation well No. 2 = 0.

Observation wells 
r2= 1000 m

6 L

Gravelly sand

Stiff clay

k = 4.1×10–8m/s

k = 2.5 × 10–2m/s

k = 1.3 ×10–9m/s

yh0= 3 m

r

6 m

r1
5 m

1 Building

Exclusion
zone
200 m2

Saturated
shrinkable clay

Aquifer

1.5 m

Piezometric water level

Piezometric drawdown curve

Figure 3.43
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Problem 3.4 

Steady seepage of water occurs through a sandy clay layer, underlain by coarse 
gravel under artesian pressure. The surface of sand slopes slightly, hence the 
emerging water flows downhill in a very thin layer. Piezometers placed into the 
gravel indicate a water level rise of 3 m above the ground surface.

The available information on the layer is shown in Figure 3.45.
Estimate the critical thickness (z) of the sandy clay layer, at which it would fail 

in shear.

Problem 3.3 

Referring to Example 3.6 of the main text, it is intended to reduce the uplift pres-
sure on the dam, outlined in Figure 3.44, by placing an 11 m long sheet pile wall at 
the tail end. Determine the uplift pressures at corners D and E.

2 m

22 m

30 m

Reservoir A

11 m 50 m

Dam

Permeable soil

E 4 m

D

Sheet pile

Impervious stratum

H = 18 m
Reservoir B

k = 6.95 × 10–3m/s

Figure 3.44

z

hA= 3 m

GL

Flow
GWL

Sandy clay

Gs= 2.67

gsat= 18.9 kN/m3

Gravel
sA

Figure 3.45
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Problem 3.6 

The in-situ hydraulic gradient of sand (G
s
 = 2.65) below GWL was found to be 1.02.  

Determine its water content.

Problem 3.5 

Starting from formula (1.43), derive the expressions for:

a)  submerged density:	 γ ′ = (G
s
- 1) (1- n)g

w

b)  critical hydraulic gradient:	 i
c
 = (G

s
- 1) (1- n)

c)  voids ratio:			 
γ

γ γ
= −

− ′
1w

d

e

Problem 3.7 

A 50 m wide concrete dam is shown on Graph 3.3 of Chapter 3. The diagram of 
uplift pressures is reproduced below.

Calculate the uplift force (S) per metre length of the dam.

18
4

22
1

15
9

13
5

7811
0

DAM
50 m

10 m 10 m 10 m 10 m 10 m

S

u = uplift pressures (kN/m2)

Figure 3.46
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Figure Missing

Problem 3.8 

It is assumed that the pressure variation under the soil prizm, investigated for 
‘boiling’ failure during seepage, adjacent to a sheet pile wall is parabolic, as shown 
in Figures 3.33 and 3.47. Prove formula (3.36), yielding the average pressure head 
h, as well as its distance from corner b. Draw the parabola as shown for ease of 
derivation.

x
ab

x

ha

Sheet pile

h1
hb

ha

h

Parabola

h=ex2 + fx+g

Figure 3.47
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Chapter 4

Pressure at Depth Due to 
Surface Loading

When the ground surface is loaded, stresses are induced within the soil mass below. The 
theories evolved for the determination of these stresses assume that the soil is homoge-
neous and elastic. In addition, it is taken to be isotropic, that is, the stress at a point below 
ground level has the same value in all directions. There are two main types of loading:

1.  Uniform overburden, such as compacted fill covering a large area around the point 
considered. The vertical stress induced equals to the weight of the deposited mate-
rial, as shown in Figure 4.1:

The pressure distributed within a layer increases linearly with depth. The pressure 
of the ash fill surcharge remains constant (z

1
g

1
) in the underlying layer. The total 

vertical pressure at point P is: s
v
 = z

1
g

1
 + z

2
g

2

2.  Surface load of limited size e.g. a foundation. In this case, stresses are induced not 
only below, but also outside the base area as shown in Figure 4.2.

This second type of loading is of interest in this chapter. Practical problems, utilizing the 
formulae introduced, are:

1.  Analysis of consolidation and settlement, when a change in vertical loading results 
in the compression of a soil layer.

2.  Comparison of induced vertical stress with the bearing strength of a soil.

Ash fill (g1)

z1g1

z1g1

z2g2

Clay (g2)

z1

z2

P

Figure 4.1
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A number of formulae have been developed, depending on the configuration of the load-
ing which were derived under assumptions not strictly true for soils. Their application 
should, therefore be taken as supplementary to engineering judgment.

It is not proposed to derive the formulae, in view of their complexity. Instead, they are 
quoted and their use illustrated by examples with the aid of nomograms, whenever pos-
sible. The following eight configurations are introduced as two-dimensional problems:

1.  Concentrated point load
2.  Concentrated line load
3.  Uniform strip loading
4.  Triangular strip loading
5.  Superposition of strip loadings
6.  Circular footing
7.  Rectangular footing
8.  Footing of irregular shape

4.1  Concentrated point load

Boussinesq (1885) solved this problem in three dimensions, which became the basis for 
all the other theories on this subject. Its two-dimensional aspects are of interest here, 
giving the vertical and horizontal pressures as well as the shear stress at a point (P) 
below a concentrated load (Q).

Q

z

r P

P

Enlargement of element P

sv

σH

sv

sH

sv

sH

t

t
t

t

Figure 4.3

B
q

0.75 q

0.8 q

0.1 q

GL

kN/m2

Figure 4.2
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Example 4.1

A concentrated load of 1000 kN is placed on the surface. Estimate the vertical and 
horizontal pressures as well as the shear stress, at 6 m depth and 5 m away from 
the load, at point P.

2

0 5
2

2
v

2

H
2

3
Influence factor : 0.128

25
2 1

36

1000
(4.1) : 0.128 3.556 kN/ m

36

5
(4.2) : 3.556 2.96 kN/ m

6

5
(4.3) : 3.5 kN/56

6
m2.470

I
π

σ

τ

σ

= =
 +  

 = × =  

 = × = 

 = × =  

 

Note: Formula (4.3) is assumed to be valid if the soil is incompressible, that is, its 
volume does not change under the action of s

H
.

Q = 1000 kN

6 m

5 m
P

Figure 4.4

Influence factor:	  0 2 5
2

2

3

2 1

I
r
z

π

 
 =

  +     

� (4.1)

Vertical pressure at point P:	 σ  =   v 0 2

Q
I

z

The variation of I
0
 with 

r
z

 is given on Chart 4.1

Shear stress at P:	 τ σ= v

r
z

� (4.2)

Horizontal pressure at P:	

2

H v

r
z

σ σ  =    � (4.3)
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x
q

z

r P
sH

sv

y

Figure 4.5

2p
I0= 3

1+ r2

z2

5/2

Boussinesq point load

r

z

Q

sv

sH

0

0.1

0.2

0.3

In
flu

en
ce

 fa
ct

or
 (

I 0
)

0.4

0 0.5 1.0 1.5
r / z

2.0 2.5 3.0 3.5

Q

2
z2sv =I0(

(

r
zsH=sv(

(

r
zt=sv(

(

Chart 4.1 

4.2  Concentrated line load

1 22

2

v 1

uniformly distributed load / metre

2

1

q

I
r
z

q
I

z

π

σ

=

=
 

+  

 =   

� (4.4)

Where I
1
 is the influence factor for this case, it is given on Chart 4.2.

Shear stress at point P:	 τ σ  =   v

r
z

� (4.5)

Horizontal pressure at P:	 σ σ  =   

2

H v

r
z � (4.6)
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Example 4.2

Calculate s
v
, s

H
 and t at point P (shown in Figure 4.4) if instead of the point load, 

a line load of q = 1000 kN/m acts on the surface.

π

=
= =

=  + 


 


 1 2

6m 2
0.222

5m 25
1

36

z
I

r

Vertical pressure at P:	 σ  = × =  
2

v

1000
0.222 37kN/ m

6

Horizontal pressure:	

2

2
H

5
37 25.7kN/ m

6
σ  = × =  

Shear stress:	 τ  = × =  
25

37 30.8kN/ m
6

0
0

0.1

0.2

0.3

In
flu

en
ce

 fa
ct

or
 (

I 1
)

0.4

0.5

Boussinesq line load

q

y

Pr

z sv

sH

0.6

0.7

1 2 3
r / z

4 5 6 7

I1=
2

p 1+ r 2

z 2

2

q( z

(

=I1sv

rsH=sv(

(

z
r
zt =sv(

2(

Chart 4.2
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4.3  Uniform strip loading (Michell’s solution)

The formulae were derived on the assumption, that the bearing pressure (q) is distrib-
uted evenly under an infinitely long footing.

	

( )

( )

2

v

v 2

H v

sin cos 2

sin cos 2

2

I

q

I q

q

β β α β
π

β β α β
σ

π
σ

βσ σ
π

 
 
  

+ +
=

+ +
=

=

= −
�

(4.7)

(4.8)

(4.9)

And the shear stress at P:	
βτ σ
π

= −v

q
� (4.10)

Where:	 1tan
r b

z
α −  ° =   

�
		

r − b

z a
� (4.11)

and	
1tan

r b
z

β α− + ° = − °   	

r + b

z a + b
� (4.12)

Under the centre line:	 and 0
2

r
βα = − =

b b
Lc

q

z

r
P

+a
b

sH

sv

Figure 4.6

Note: Point and line loading do not occur in reality, as pressure can only be imparted 
to the ground by footings having width as well as length. The concept, however, 
may be applied to foundations by dividing the base area into small sections, plac-
ing a point or line load at the centroid of each. The pressures at a point below the 
footing are then calculated by the principle of superposition, that is, the summa-
tion of the pressures induced at that point by the individual sections.
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β

β −

=

 ∴ ° =   
1

tan
2

ta2 n

b
z

b
z

	�  (4.13)

Therefore, under the centre line:	
β β

π
+

=3

sin
I � (4.14)

	 ∴  s
v
 = I

3
q� (4.15)

Example 4.3

Figure  4.8 shows a 1 m wide strip footing transmitting a bearing pressure of  
300 kN/m2 to the soil. Calculate s

V
 , s

H
 and t at a depth of 1 m at 0.25 m intervals.

( )

1

1 1

( )
0 0.5 m

2
tan tan 1 45

45
Radian

180

Below the edges Point P
r b

b
z

α

β

π

− −

= = =
 = = = °  

×
=

P1

z = 1 m

b=0.5 m

q=300 kN/m2

P2 P3 P2 P1

b

Lc

Figure 4.8

b b

z

P

–a

b/2 b/2

Lc

Figure 4.7

b

zb/2
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From (4.8):	 s
v
 = 0.409 × 300 = 122. 7 kN/m2

From (4.9):	
2

H

2 45
300 122.7 27.3 kN/ m

180

πσ
π

× = × × − =  

From (4.10):	
245 300

122.7 47.7kN/ m
180

πτ
π

× = − × =  

( ) ( )

2

1

1

2

0.25

0.25
tan 14

1

0.25 0.5
tan 50.9

1

1 50.9
sin 50.9 cos 2.14 50.9

180

1
(0.888 0.776 0.921) 0.51

At point P

b
r

z

I

α

β α

π
π

π

−

−

= =

 = − = − °  

+ = + = °  

× ∴ = × + × − +  

= × + × =

Vertical pressure at P
2
:	 s

V
 = 0.51 × 300 = 153 kN/m2

Horizontal pressure at point P
2
:	

2
H

2 50.9
300 153 16.7 kN/ m

180

πσ
π

× = × − =  

Shear stress at P
2
:	

2300 50.9
153 68.2 kN/ m

180

πτ
π

× = − × =  

2

1
( sin cos )

1 45
sin45 cos45

180
0.409

I β β β
π

π
π

∴ = +

× = × + ×  
=

r=0.25

z = 1 m
–14°   

50.9°

P2

0.5

–a

b

Lc

Figure 4.9
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3

1

3

2
v

( )

0.5
2 x tan 53.12

1

0

1 53.12
sin53.12 0.55

180

0.55 300 165 kN/ m

Under the centre Point P

r

I

β

π
π

σ

−  = = °  
=

× = × + =  
= × =

Horizontal pressure:	
πσ

π
× = × × − =  

2
H

2 53.12
300 165 12.1 kN/ m

180

Shear stress:	 2300 53.12
165 76.47 kN/ m

180

πτ
π

× = − × =  

Figure 4.11 shows the variation of s
V
 at 1 m below the footing.

b = 0.5 m

z
=

1
m

P3

–a

b

Lc

Figure 4.10

P1

Maximum value

12
2.

7

12
2.

7

15
3

15
3

16
5

P2 P3 P2 P1

Lc

Figure 4.11

4.4  Bulb of pressure diagrams

See Charts 3.3 and 3.4. These are nomograms to estimate s
V
 and t under uniform strip 

loading. Although both can be found easily by calculation, nevertheless the charts are 
useful visual aid as to their spread.



Chart 4.3



Chart 4.4 
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Example 4.4

This is to investigate the effect of a new footing placed adjacent to that in Example 
4.3. The new base is 2 m wide, transmitting 250 kN/m2 bearing pressure to the 
ground. Calculate the vertical pressure under footing A at 0.5 m intervals at 1 m 
depth.

122.7 165 122.7 ← s
V
 from Example 4.3

21.0 53.4 120 kN/m2 ← s
V
 contributed by B

143.7 218.4 242.7 ← Total s
V
 below footing A

Calculations for footing B

Pressure at P
1
:	 r = 2 m	 1 2 1

tan 45
1

α − −  °∴ = =  

	 b = 1 m	 1 2 1
tan 45 26.6 0.464radian

1
β − +  °°= − = =  

	

( )π

π

 = × + × × + 

= × =

2

1
0.464 sin26.6 cos 2 45 26.6

1
(0.264) 0.0839

I

2
V 122.7 0.0839 250 122.7 143.21 k /m7 Nσ∴ = + × = + =

Pressure at P
3
:	 r = 1. 5m	 1 1.5 1

tan 26.6
1

α − −  °∴ = =  

1 1.5 1
tan 26.6 41.6 0.726 radian

1
β − +  ° °= − = =  

P1

z
=

1
m

P3 P4

1 m 2 m

Footing A

q = 300 kN/m2 q = 250 kN/m2

Footing B
LcLc

Figure 4.12

}
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Influence factor:	 ( )2

1
0.726 sin41.6 cos 2 26.6 41.6

1
(0.726 0.0556) 0.213

I
π

π

 = × + × × + 

= × − =

2
V 165 0.213 250 165 53.4 218.4 kN/mσ∴ = + × = + =

Pressure at P
4
:	 r = 1 m	 1 1 1

tan 0
1

α − −  °∴ = =  

	

1 1 1
tan 63.43 1.107radian

1
β − +  °= = =  

Influence factor:	
π

= × + × =  2

1
1.107 sin63.43 cos63.43 0.48I

2
V 122.7 0.48 250 122.7 120 242.7 kN/mσ∴ = + × = + =

Note: The results show that in the construction of new footings next or near to 
existing ones can affect adversely the latter. Footing A had obviously been con-
structed with consideration of the bearing strength as well as the consolidation 
characteristics of the soil. A large pressure increase due to footing B could, there-
fore, cause either bearing capacity failure or excessive settlement of the existing 
foundation. The sketch in Figure  4.13 depicts how differential settlement could 
affect a statically indeterminate structure, such as a rigid portal frame.

C

1 2

A B

Differential settlement relative
to footing C (see also shrinkage)

Figure 4.13

4.5  Vertical pressure under triangular strip load

Figure 4.14

a

b
−r + r

b q (max value)

BA

r

b
a

sv

P

z
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1tan
r a

z
α − − ° =    � (4.16)

	
β α−  ° °= −  

1tan
r
z

� (4.17)

Vertical pressure:

	
σ =V sI q � (4.18)

	
β α

π
 = −  

1 2
sin2

2s

r
I

a
� (4.19)

Variation of a and b to be substituted into (4.19):

1.  Outside edge A at point P:

r

z

P

a

A B

q

b

2.  Under edge A (r = 0):

A B

P

q
r = 0

b

	

1

s

tan

sin2

2

a
z

I

α

β α
α

π

− − ° =   

° = −

∴ = −
�

(4.20)

(4.21)

3.  Under edge B (for maximum s
V
):

A B

r = a

P

q

b
	

1

s

0

tan
a
z

I

α

β

β
π

−

=

°=

∴ = −
�

(4.22)

(4.23)

The triangular and uniform strip loadings may be combined into various shapes 
(Figure 4.15) and their contributions to the pressure at a point P are superimposed. The 
formulae to be used are indicated on the following diagrams:

1tan
r a

z
α − − ° =   

1tan
r
z

β α−  ° °= −  
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Figure 4.15

q
(a)

(4.19) (4.8)

(b)

(4.19)(4.19)
q

(c)

q

Embarkment

(4.8)(4.19) (4.19)

(d)

q
(4.19)(4.19)

(e)

q q

Cutting

(4.8) (4.8)(4.19) (4.19)

Example 4.5

A 4 m wide strip of ground is loaded by a triangle-shaped heap of material. 
The maximum applied pressure is q = 80 kN/m2. Calculate the vertical pressure, 
1.5  metres below the surface, at points P

1
, P

2
 and P

3
, located as shown in 

Figure 4.16.

a

2 m
A B A

0.5 m2 m

z = 1.5 m

P1 P2 P3

T2

T1

q = 80 kN/m2

Figure 4.16
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Pressures due to triangle T1

1

1 1

s

2
V

0

2
From (4.22) : tan tan

1.5

53.13 0.9273radian

0.9273
From (4.23) : 0.295

From (4.18) : 0.295 80 23.6 kN/ m

At point P

a
z

I

α

β

β
π π

σ

− −

=
   = =      

°= =

= = =

= × =

At point P
2
 (r

2
 = 4 m)

From (4.16):	 1 12 4 2
tan tan 53.13

1.5

r a
z

α − −− −    °= = =     

From (4.17):	 1 12 4
tan tan 53.13 16.31 0.2847radian

1.5

r
z

β α− −    °= − = − = =     

From (4.19):	 ( )2
s

21 1 4
sin2 0.2847 sin 106.23 0.0285

2 2 1

r
I

a
β α

π π
×   = − = × − =      

From (4.18):	 s
V
 = 0.0285 × 80 = 2. 3 kN/m2

At point P
3
 (r

3
 = 4.5 m)

From (4.16):	 1 4.5 2
tan 59.04

1.5
α − −  °= =  

From (4.17):	 1 4.5
tan 59.04 12.52 0.2186 radian

1.5
β −   °= − = =  

From (4.19):	 ( )s

1 4.5
0.2186 sin 118.08 0.016

2 1
I

π
 = × × − =  

a = 2 m

z = 1.5 m

80 kN/m2

–r +r

r1= 2 m

r2= 4 m

r3= 4.5 m

P1 P2 P3

Figure 4.17
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From (4.18):	 s
V
 = 0.016 × 80 = 1. 3 kN/m2

Pressures due to triangle T2

1

2

3

2m
0

0.5m

r
r
r

=
=
= − 	

σ
=

=
∴

s
2

V

1

AtpointP1

0.295

23.6 kN/ m

the same as for triangle T

I

At point P
2
 (r

2
 = 0)

From (4.20):	 1 1 2
tan tan 53.13

1.5

a
z

α − −− −    °= = = −      

From (4.21):	
( )

s

sin 106.26sin2
0.153

2 2
I

α
π π

−
= − = − =

From (4.18):	 s
V
 = 0.153 × 80 = 12. 24 kN/m2

At point P
3
 (r

3
 = - 0.5 m)

From (4.20):	 1 13 0.5 2
tan tan 59.04

1.5

r
z

αα − −−  − −  °= = = −     

From (4.21):	 1 13 0.5
tan tan 59.04 40.6 0.709radian

1.5

r
z

β α− −  −  °= − = + = =     

From (4.19):	 ( )s

1 0.5
0.709 sin 118.16 0.084

2 1
I

π
− = × × − − × =  

From (4.18):	 2
V 0.084 80 6.7kN/mσ = × =

+r −r

80 kN/m2

B A

P1 P2 P3

r1= 2 m

r3= – 1
2

Figure 4.18
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These results may be obtained from Chart 4.5.

4.6  Vertical pressure under circular area

Chart 4.6 contains the bulb of pressures, when the circular area (A) is loaded uniformly by 
either a distributed or a point load. The weight of the footing is assumed to be negligible.

The influence coefficient for the vertical pressure under the centre of the area is given by:

Either	

3
2

6 2

1
1

1

I
R
z

 = −  
  +     

� (4.24)

or	 I
6
 = 1 - cos3a� (4.25)

and	 s
V
 = I

6
q� (4.26)

The coefficient I
6
 for various values of r, as given on Chart 4.6, has been found by 

numerical methods.

Table 4.1  Summing

Point I
5

s
V
 kN/m2

P
1

2 x 0.295 = 0.59 2 x 23.6 = 47.20
P

2
0.0285 + 0.153 = 0.18 2.3 + 12.24 = 14.54

P
3

0.016 + 0.084 = 0.1 1.3 + 6.7 = 8.00

A B A

P1 P2 P3

47.2 kN/m2 8 kN/m214.54

Figure 4.19

P P

A = pr 2

R

(a) (b)

R

q

rz

sv

q kN/m2

Footing

a
s

a

Q kN q =
Q
A

Figure 4.20



Chart 4.5



Chart 4.6
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4.7  Rectangular footing

Steinbrenner proposed a method in 1934, for the determination of vertical pressure 
under the corners of the rectangular, uniformly loaded area. The method is based on 
Boussinesq’s theory. Steinbrenner’s influence factors (I

7
) are given on Chart 4.7. The pro-

cedure can also be applied to any point on the rectangle, as shown in following example.

Example 4.6

A 2x6 m rectangular base is subjected to a uniformly distributed load of 400 kN/m2, 
as shown in Figure  4.21. Calculate the vertical pressure (s

V
) 6 m below ground 

level, under points A, B, C and D.

Under corner A:	
6

3
2

a
b

= = 	 = =
6

3
2

z
b

From Chart 4.7:	 I
7
 = 0.086  ∴	   s

A
 = 0.086 × 400 = 34. 4 kN/m2

Under point B: Before the method can be used, point B has to be made a corner 
point.

	
= =

6
6

1

a
b 	

= =
6

6
1

z
b

	 =7 0.045I

Point B is at the corner of two equal rectangles, each contributing the same pres-
sure to B.

B

A
D

C

q = 400 kN/m2

a = 6 m

b = 2 m

GL

Figure 4.21

a = 6 m

b = 1 mArea 1
B

Area 2

}

Figure 4.22
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Hence,	 s
B
 = 2 (I

7
q) = 2 × 0.045 × 400 = 36 kN/m2

Under point D:	 After making it a corner point

= =
3

1.5
2

a
b 	

= =
6

3
2

z
b

∴ =7 0.061I

Again, there are two areas, therefore:

( ) 2
D 2 0.061 40 48.80 kN/mσ = × × =

Under the middle point C

= =
3

3
1

a
b 	

= = =
6

6 6
1

z
b

∴ =7 0.032I

There are four equal areas contributing, hence

( )σ = × = × × = 2
C 74 4 0.032 400 51.2kN/ mI q

Fadum published a nomogram in 1948 for the influence factors, to be used with 
Steinbrenner’s method, based on the formula:

	
( )

( )π
−

   +
 = +  −+    

1
8 2 22 2

2 11 2
tan

4

mn F F mn F
I

F m nF m n F
� (4.27)

Where, =
a

n
z

, =
b

m
z

  and  F = m2 + n2 + 1

The factors can only be evaluated by means of a programmable calculator. The 
figures are plotted on Chart 4.8 however.

D

a = 3 m

b = 2 mArea 2Area 1

Figure 4.23

a = 3 m

b = 1 mArea 2Area 1

C Area 4Area 3

}

Figure 4.24



Chart 4.7
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Example 4.7

Calculate the vertical pressure under point C in Example 4.6, using Forum’s factors.

= = =
3

0.5
6

a
m

z 	
= = =

1
0.167

6

b
n

z

From Chart 4.8:	 I
8
 = 0.031

2
C 4 0.031 4 49.00 kN/ m6σ∴ = × × =

4.8  Footings of irregular shape

Newmark introduced a graphical method for the evaluation of vertical pressure, anywhere 
under a flexible footing of arbitrary shape. It is based on formula (4.26), for vertical pres-
sure induced underneath the centre of uniformly loaded circular area, that is:

	

v 3
2 2

2

1
1

1

q
r
z

σ  = − 
  +    

Newmark constructed Chart 4.9 of concentric circles, after expressing the radius as:

	

2
3

v
0 1 1r z

q
σ

−
 

= − −  

Choosing an arbitrary value of z
0
 = 20 m, the formula becomes:

	

2
3

v20 1 1 mr
q
σ

−
 

= − −  
�

(4.28)

The concentric circles may be drawn to any desired scale, in this case to 1:470. Therefore 
the actual, drawn radii, demoted by r, are calculated from:

	

3 3

0

10 10
mm

470 0.47

r r rρ
η
× ×

= = =
�

(4.29)

where h
0
 = 470 in the scale ratio 1:h

0

21

4

b = 1 m

a = 3 m

C3

Figure 4.25
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Any number of concentric circles may be drawn by assigning values to v

q
σ

 in formula 

(4.28), between zero and unity. Each circle represents a partial magnitude of pressure. 
The calculation for the radii of C = 10 circles drawn on Chart 4.9 are tabulated.

Note: The 10th circle cannot be drawn, as its radius is infinitely large.
Next, the circles are subdivided into a desired number of uniformly spaced sectors.  

In this case the number of sectors is S = 20.

The influence value (I)
There are C = 10 circles, or more precisely, 1 circle and 8 rings on the chart. Each ring 

contributes 
σv

10
 to the pressure at the centre. Each sector contributes 

σv

20
 to the pressure. 

There are 10 elements in each sector, contributing equally to the central pressure. There 

are 20 x 10 = 200 elements or fields, hence each contributes 
σ σ=v

V0.005
200

.

The influence value of each field is I = 0.005. For a chart of E elements, it is given by

	

1
whereI E CS

E
= =

�
(4.30)

Depth length MN
This line is the scaled distance of the arbitrary depth (z

o
 = 20 m), chosen in the design of 

the chart.

On this chart therefore,	
3 3

0

0

10 20 x 10
42.5 mm

470

z
MN

η
×

= = =

Application of the chart
Step 1:	� Equate the depth (z) at which the vertical pressure is required, to the depth 

length MN . This determines the scale of the drawing.
Step 2:	� Draw the plan of the loaded area to this scale.
Step 3:	� Place the plan on the Newmark chart so that the point below which the pres-

sure is to be determined is over the centre of the circles.
Step 4:	� Count the number (n) of elements covered by the loaded area, including 

portions of the partly-covered fields.
Step 5:	 Calculate the total pressure at z from:

	
σ = =V In 0.005q nq

� (4.31)

Note: Whilst the procedure is simple, there can be inaccuracies introduced in the esti-
mation of the areas on the partially covered elements.

Table 4.2 

Circle number 0 1 2 3 4 5 6 7 8 9 10

Chosen 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r from (4.28) (m) 0 5.4 8 10.4 12.7 15.3 18.4 22.2 27.7 38.2 ∞
r from (4.29) (m) 0 11.5 17 22.0 27.1 32.6 39.0 47.2 59.0 81.2 ∞

σv

q
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Example 4.8

Figure  4.26 shows the plan of an area loaded uniformly by q = 350 kN/m2. 
Estimate the pressure at 10 m below point A and check the result by Steinbrenner’s 
method.

=
=

= × =

∴ =
= × =
= × =
= × =

Step 1 :

10 m 42.5 mm

Step 2 :

42.5
20 m 20 85 mm

10
10 m 42.5mm

6 m 4.25 16 68mm

5m 4.25 5 21.25mm

6 m 4.25 6

1

25.5mm

z MN

The loaded area can now be drawn on tracing paper.
Step 3:	� Position the plan on Chart 4.9 so that corner A is over the centre of the 

circles.
Step 4:	 The number of elements covered is approximately n = 79.1.
Step 5:	 The vertical pressure at z = 10 m is:

2
V 0.005 79.1 3 138.450 kN/mσ = × × =

Checking: Using Fadum’s influence factors (Chart 4.8):

= = =
∴ =

= = =
8

14
1.4

10 0.13
5

0.5
10

a
n

z I
b

m
z

8

6
0.6

10 0.094
5

0.5
10

a
n

z I
b

m
z

= = =
∴ =

= = =

LEF= 20 m
E

10
m

16
m

6 m

6 m

8 m

5
m

CD

B A

H G

F

Figure 4.26

a = 6 m
A

F

b = 5 m

B

E

A

b = 5 m

a = 14 m

Figure 4.27a

Figure 4.27b
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8

11
1.1

10 0.139
6

0.6
10

a
n

z I
b

m
z

= = =
∴ =

= = =
a

=
11

m

b = 6 m
GH

A

Figure 4.27c

H

A

D

MN = 42.5 mm

z = 10 m
NM

E

Newmark’s chart

XEF

C

B

F

8 97654321

G

Influence value per field = 0.005

The chart was drawn to scale:-      1:470

The dimensions X of a structure are drawn to scale:-

e.g. for LEF= 20 m ∴ XEF=

or    XEF=

1:h  or  1:

= 85 mm

× 20 = 85 mmLEF=

or or    1:235
10 × 103

42.5
z × 103

MN
LEF× 103

h
20 × 103

235
MN
z

42.5
10

=

Chart 4.9 
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Total I
8
 = 2 × 0.13 + 0.094 + 0.139 - 0.11 = 0.383

The vertical pressure: 2
A 0.383 x 350 134.1kN/mσ = =

The two results are therefore comparable. See also Supplementary problem 4.3.

4.9  Pressure distribution under footings

It has been assumed in the foregoing that a footing transmits loading uniformly over the 
foundation area. In reality however, the distribution of contact pressure is influenced by 
several factors, associated with the characteristics of the following factors:

1.  Footing
2.  Soil
3.  Loading

4.9.1  Influence of footing

It has been found from experiments and observation of actual structures that the con-
tact pressure is influenced by:

a)  The rigidity of the footing;
b)  Its shape;
c)  Its size;
d)  Its depth below the surface;
e)  The rigidity of the structure it supports.

a)  Rigidity of footing
Footings can be either rigid or flexible. The contact pressure between these and the soil 
is different for each type. Further, the shape of the pressure distribution depends on 
whether the soil is cohesive or granular.

Figure 4.28

D

(a)

C

A
B

b = 5 m

a = 14 m

Area
added

8

14
1.4

10 0.13
5

0.5
10

a
n

z I
b

m
z

= = =
∴ =

= = =

(b)
AB

C

b = 5 m

a = 8 m

–ve area
subtracted 8

8
0.8

10 0.11
5

0.5
10

n
I

m

= =
∴ = −

= =
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The significance of contact pressure distribution is in its effect on the immediate set-
tlement just after the application of loading (t = 0), as well as on the design of the footing 
itself.

Rigid footing (Figure 4.29)
The settlement of a uniformly loaded rigid footing is uniform, whilst the distribution of 
contact pressure is not. The general reasoning is as follows:

a)  Should the footing be flexible, than the settlement under its middle would be larger 
than at the edges.

b)  This cannot occur as the footing is rigid.
c)  Because of this, the settlement is uniform.
d)  To achieve this, the pressure at the edges has to increase with a corresponding 

decrease at the middle.

Footing on cohesive soil:
In order that the pressure at the edges may increase, the soil has to have shear strength. 
This is necessary to prevent its outflow due to shear failure.

Footing on cohesionless soil:
As granular soils can ‘flow’ sideways at the edges, the contact pressure is zero there.

Flexible footing (Figure 4.30)
Under a rigid footing, the soil particles move downwards except possibly at the edges.
Under a uniformly loaded flexible footing however, particles near the centre move down-
wards, whilst the rest move outwards. It follows, therefore, that there is maximum con-
tact pressure under the centre and zero at the edges.

Figure 4.29

q

Cohesive soil

(a)

qu

Lc

Cohesionless soil

qu

q

(b)
Lc
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The contact pressure under very flexible footing is the mirror image of the external 
loading.

Note: In reality, there is no completely rigid or flexible footing. It is therefore, acceptable 
to assume uniform pressure distribution.

b)  Shape of footing
The more closed is the plan area of the footing, the less uniform is the contact pressure. 
The pressure tends to increase, under the centre. For this reason, circular footings are 
more efficient in carrying load than strip ones.

c)  Size of footing
The redistribution of contact pressure reduces with increasing width, as the disturbing 
effect at the edges are minimized.

d)  Depth of footing
The large overburden above deep foundations prevents the outward movement of soil at 
the edges, hence the contact pressure becomes more uniform.

e)  Rigidity of superstructure
Whilst flexible structure deflects with the consolidation of the soil, a rigid one does resist 
deformation. This increases the loading at the edges and releases it at the middle.

Figure 4.30

q

Cohesive soil

(a)

qu

Lc

q

(b)

qu

Cohesionless soil

Lc

P1 P2
Lc

Figure 4.31
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4.9.2  Influence of loading

Eccentric loading increases contact pressures at one edge of the rigid footing and 
decreases it under the other one (see section 8.13.1: Gravity Walls). In general, the 
positioning of loads affects the distribution of pressure mainly under flexible 
footings.

4.10  Linear dispersion of pressure

The methods described below are sometimes used to determine the pressure induces at 
a depth, by projecting the loaded areas onto the layer below. This has the effect of 
enlarging the base, thus decreasing the pressure. Three types of dispersion are 
introduced.

30° dispersion

σ
σ
σ γ
σ

σ σ

σ σ

=
=

=
=
=
= =
=

= + = +
= =

 
∴ =   

z

z

0

v

z

z

length of base of surface

length of enlarged base at

force acting on the bases

surface pressure

induced pressure at

overburden pressure

total pressure at

B 2 tan30 1.15

z
z

B

B z

P

z

z

z

B z B z

P B Bz

B
B

Total pressure:	 v 0 vor
1.15z

B
z

B z
σ σ σ σ γ σ = + = +   + � (4.32)

z
30° 30°

B

P

Bz

g

s

sv

Figure 4.32
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45° dispersion

	

z

z

v 0

2 tan45 2

2

2

B B z B z

B
B z

B
B z

σ σ

σ σ σ

= + = +
 =   +

 = +   +
�

(4.33)

30°/45° dispersion
This is a combination of the above two transformations.

30° dispersion

σ σ

σ σ

 = + =  

 
=   

= =

x

x
x

1.15 1.575
2

0.635
1.575

B
B B B

B
B

B
B

45° dispersion

= +
 ∴ = + × − = +  = −

z x

z

2
1.575B 2 0.575 2

2But
2

B B a
B

B z B zB
a z

z
a

B/2 B

Bz

Bx
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Figure 4.34
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Example 4.9

A 2 m wide strip footing transmits 250 kN/m2 to the soil of g  = 18 kN/m. Calculate 
the total vertical pressure at 3.4 m depth, by the three methods.

Solution

2
0

2
v

2
v

2
v

Overburdenpressure : 3.4 x 18 61.2kN/ m

2 250
30 : 61.2 61.2 84.6 146 kN/m

2 1.15 3.4

2 250
45 : 61.2 61.2 56.8 118kN/m

2 2 3.4

2 250
30 / 45 : 61.2 61.2 62.8 124kN/m

0.575 2 2 3.4

σ

σ

σ

σ

= =

×° = + = + =
+ ×

×° = + = + =
+ ×

×° ° = + = + =
× + ×

Note: These methods have no theoretical basis, hence the results should be con-
sidered indicative only. For footings founded below the surface: use net pressure 
(s

n
) instead of s.

s= 250 kN/m2

g = 18 kN/m3z = 3.4

A

2 m

Figure 4.35

x x
z x

x x x x2 2 2

1.575 2
1.575 2

2

B B B B
B a B a B B a

B B
BB a

B z

σ σ σ σ

σ σ

 
= = = + + + 

= =
+ + −× 

  

Therefore, total pressure:	
σσ σ  

= +   +v 0 0.575 2

B
B z

� (4.34)
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Problem 4.2 

A long, reinforced concrete slab, 5 m wide, carrying 500 kN/m2 uniformly distrib-
uted load, is placed 2 m away from an existing pile foundation, as shown in 
Figure 4.38. Estimate the average vertical and horizontal pressures acting on the 
surface of the pile embedded in the firm clay.

1 m

7 m

2 m

r = 4.5 m

GL

Firm clay

Very stiff clay

q = 500 kN/m2Pile
cap

5 m

Lc

Figure 4.38

Problem 4.1 

Figure 4.36 shows a section of ground and a shallow strip footing, seated at 1 m 
depth below ground level. Calculate the width of footing, which has to transmit a 
net pressure of 200 kN/m2 (including self-weight) to the ground, without exceed-
ing the bearing capacity of the clay.

z = 2 m

D = 1m

H = 3 m

b

Firm clay

Safe bearing capacity = 120 kN/m2

GL

Compacted fill
g = 19 kN/m3

sn= 200 kN/m2

Lc

Figure 4.36
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Problem 4.3 

Construct a Newmark chart to the following specifications:

Number of circles 8
Number of sectors 12
Arbitrary depth 15m

=
=

=

Using this chart, estimate the vertical pressure 10 m below corner A of the plan 
shown.

The plan area carries a uniformly distributed load of 350 kN/m2. Compare the 
answer with that of Example 4.8 of the main text.

20 m

8 m10 m

6 m

B

CD

E F

A

H G
6 m

5 m
16 m

Figure 4.40

Problem 4.4 

Applying formulae (4.7) to (4.10), prove that the horizontal and shear stresses a 
depth z below a uniform strip load can be expressed alternatively by:

( )H

1
a) sin cos 2 qσ β β α β

π
 = − + 

( )τ β α β
π

 = + 
1

b) sin cos 2 q
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Chapter 5

Effective Pressure (s ′)

An important problem in soil mechanics is the determination of pressures induced within 
fully saturated soil by either of two causes:

1.  Change in the superimposed load
2.  Variation of ground water conditions, e.g. when seepage occurs.

As a consequence of superimposed loading, the soil mass deforms, that is, consolidates 
by expelling some of the pore water, thus allowing the solid particles to pack together 
into a denser mass. There are three types of pressure acting on the soil at depth.

a)  Total pressure (s) of the superimposed load, such as foundation pressure, plus 
the weight of the overburden

b)  Pore water pressure (u) in the voids, induced either by the weight of water or 
external load or both

c)  Effective pressure (s ¢) between the soil grains. This is the actual cause of defor-
mation, hence its name.

The relationship between the three pressures was introduced by Terzaghi as:

	 uσ σ′ = − � (5.1)

The concept of effective pressure, also known as ‘intergranular pressure’ is best demon-
strated by comparing the pressures within a small volume of soil, considered to be in one 
of the following three states:

1.  Unloaded state
2.  Loaded state
3.  Flooded state.

5.1  Unloaded state

In Figure 5.1(a), the ground water level (GWL), hence the piezometric level, are assumed 
to coincide with the ground surface (GL) in the unloaded state. Therefore the water pres-
sure (u) in the voids equals to the static water pressure, given by:

	 wu zγ= �
�

(5.2)
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As the only load on the sample at depth z is the overburden of saturated density (g
sat

), the 
total pressure at sample level is given by:

	 satzσ γ= ⊕ � (5.3)

The effective pressure from (5.1):

( )sat w sat wu z z zσ σ γ γ γ γ′ = − = − = −

But, submerged density is: g ′ = g
sat

 - g
w

So, with GWL at GL:	 zσ γ′ = ′ ⊕ � (5.4)

Notes:

1.  The pressures can also be represented graphically by diagram as shown.
2.  Both GWL and the piezometric level for the sample are under atmospheric pres-

sure and coincide. This means that the water in the voids is in static equilibrium, 
hence there is no flow out of the sample.

3.  Flow can only occur when the total pressure is increased by an external load, which 
in turn increases the pore pressure. This “excess” pore pressure induces seepage.

4.  The GWL is normally below the surface, at some depth.

Piezometer

Pressure
distribution
diagrams

Water

h = height of
sample

u

z

Sample

(a) (b)

u

GWL
GL

gsat
g w

g ′
+ −

s

Figure 5.1

Example 5.1

Obtain the effective pressure at 3 m below the surface of saturated soil  
(g

sat
 = 19.69 kN/m3). The ground water level is at the surface, in this example.

Total pressure at depth z = 3 m:	 s = zg
sat

 = 3 × 19. 69	= 59.07 kN/m2

Pore pressure at 3 m:	 u = zg
w
 = 3 × 9. 81	 = 29. 43 kN/m2

Effective pressure therefore:	 s ′ = s  - u	 = 29. 64 kN/m2

Alternatively,	 s ′ = zg ′ = z(g
sat

-g
w
) = 3 × (19. 69-9. 81) = 29. 64 kN/m2

Graphical representation of linear variation of pressure with depth:
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5.2  Loaded state

(See Figure 5.3). If the soil in its natural state is loaded by the construction of a rock 
embankment or a structure, for example, then initially the applied pressure (q) is carried 
by the pore water only and not the soil particles. The additional water pressure induced 
is called “Excess pore pressure”, denoted by Δu = q. The change in u occurs immediately 
after the application of q at time t = 0.

Figure 5.3(a) depicts the change in s, u and s ’ due to q, at the time of its application 
(t = 0).

satTotal pressure : change in :z q qσ γ σ σ= + ∴ ∆ =

wPore pressure : change in :u z q u u qγ= + ∴ ∆ =

The resulting change in the effective pressure is given by formula (5.1):

0u q qσ σ∆ ′ = ∆ − ∆ = − =

Therefore at time t = 0	
σ

σ
∆ = ∆ =
∆

 ′ =


0

u q

The excess pore pressure induces flow of water from the voids, the rate of which 
depends on the permeability of soil. As a consequence of the outflow, the magnitude 
of Δu reduces progressively (Figure 5.3(b)), until it becomes zero. At that moment the 
flow stops. The considerable time taken to reach static equilibrium is usually indicated 
by t= ∞.

As Δu dissipates, load q is progressively transferred to the soil particles, that is the 
excess effective pressure becomes Δs ′ = q [Figure 5.3(c)].

Therefore at time t = ∞ 
0

0

u

u q qσ σ
∆ =
∆ ′ = ∆ − ∆ = − =





The excess effective pressure (Δs ′) reorientates the soil particles, pressing them into the 
voids left by the dissipated water, thus compressing the soil. The piezometric level coin-
cides again with the initial water level. This process is called consolidation, caused by the 
excess effective intergranular pressure.

3 m
=+

s = 59.07

+

u = 29.43

−

s = 29.64

+

Figure 5.2
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By now, most of the excess pore pressure has dissipated (Δu < q) with corresponding 
increase in Δs ′. The result is a deformation d, which is a change in layer thickness due to 
consolidation.

The pore water is now in static equilibrium, hence there is no outflow from the soil. The 

total deformation of the specimen is signified by dh.

gsat

gw

u
gw

gw

Slowing
outflow

rate

(b)
At 0 < t < ∞

(Dissipation and
consolidation period)

∆s ′ > 0

∆u < q

∆u

∆s = q ∆s = q

d > 0

∆u < q
z

q
d

gsat

gw

∆u
g w

g w

u

Loading

(a)

z

Sample
Commencement

of flow

At t = 0

q

∆s = q

∆u = q

∆s = q 

∆s ′ = 0

∆u = q

gsat

gw

gw

u

Loading

z
h

Sample

At t = ∞

(c)

q

∆s = q 

∆s ′= q 

∆s = q 

∆s ′ = q

∆u =0

d = dh
  = total
    deformation
    due to q

d = dh

∆u = 0

Figure 5.3
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Example 5.2

Calculate the pressures as well as any change in their magnitude, if the saturated 
soil in Example 5.1 is covered by hydraulic fill, weighing 20 kN/m2. Obtain the values 
at point P, 3 metres below the original ground surface, at t = 0 and t = ∞.

Increase in total pressure: 
2

sat
2

20kN/ m

3 19.69 20

79.07kN/ m

q

z q

σ
σ γ

∆ = =
∴ = + = × +

=

Excess pore pressure: 2

w
2

20kN/ m

3 9.81 20

49.43kN/ m

u

u z u

σ
γ

∆ = ∆ =
∴ = + ∆ = × +

=

Equivalent piezometric pressure heads therefore are:

w

49.43
Totalhead 5.04m

9.81

u
γ

= = =

w

20
Excesshead 2.04m

9.81

u
γ
∆

= = =

w

79.07 49.43
Effectivehead 3m

9.81

uσ
γ
− −

= = =

Excess effective pressure: Δs ′ = Δs  - Δu = 20 - 20 = 0

Intergranular pressure at t = 0: σ σ′ = − = −
= 2

79.07 49.43

29.64 kN/m

u

This is, of course, the same value as in Example 5.1, assuming that the fill is placed 
‘instantaneously’.

New GL

P

GL
1 m

3 m
(Effective
head)

(Excess
head)

2.04 m

z = 3 m

q = 20 kN/m2 (Fill)

gsat= 19.69 kN/m2

gw= 9.81 kN/m2

t = 0

Figure 5.4
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σ
σ

γ

∆ =
∴ =

∆ =
= =

2

2

2

2
w

20kN/m

79.07kN/m

0kN/m

29.43kN/m

u

u z
220kN/mσ σ∆ ′ = ∆ =

The final intergranular pressure: s ′ = 79.07 - 29. 43 = 49. 64 kN/m2 which is equiva-
lent to an effective head of 5.04 m.

t = ∞

1 m

z = 3 m

New GL

P

GLq = 20 kN/m2

= 5.04 m
s ′
gw

gsat

Figure 5.5

5.3  Flooded state

If instead of the applied pressure q, the surface is flooded to such a depth that the hydro-
static pressure at ground level equals to q.

Total pressure at P:	 s = yg
w
 + zg

sat

Pore pressure:	 u = (y + z)g
w
 = yg

w
 + zg

w

Effective pressure:	 s ′ = s  - u = yg
w
 + zg

sat
 - yg

w
 - zg

w

Cancelling yg
w
:	 s ′ = z(g

sat
 - g

w
) = zg ′

But, s ′ = zg ′ is the intergranular pressure in the unloaded state (Figure 5.1). This implies, 
in this case, that water level above GL does not increase the intergranular pressure, 
hence has no consolidating effect.

The pore water pressure is increased, however, by the additional hydrostatic pressure 
yg

w
. Because u has no effect on consolidation, it is often called ‘neutral pressure’.

gsat

gw
GL

u
gw

P

z

y

(a)

u

q = y gw

(b)

Figure 5.6
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Example 5.3

Calculate the pressures at 3 m below ground surface level, if the saturated soil in 
Example 5.1 is flooded to a depth of 2.04 m, as shown in Figure 5.7.

σ

σ

= × + ×
=
= × =

∴ ′ = − =

2

2

2

AtP : 2.04 9.81 3 19.69
79.08kN/ m

5.04 9.81 49.44kN/ m

79.08 49.44 29.64kN/ m

u

Comparing this result with the value of the effective pressure in Example 5.1, it is 
obvious that the increase in water level has not changed its magnitude. There is no 
excess effective pressure.

y = 2.04 m

z = 3 m

P

GL

gsat= 19.69 kN/m3

gw= 9.81 kN/m3

= 5.04 m
u
gw

Figure 5.7

Graphical representation
In graphical solutions to this type of problems, one must remember, that:

1.  Pressure of overburden and water increases linearly between the top and bottom 
of the layer considered.

2.  Pressure in a stratum due to the weight of the layer above it is constant throughout.

The above problem can therefore be drawn as shown in Figure 5.8 and the diagrams summed.

+ −

−

+
gsat

z(gsat− gw)

gw

ygw

zgsatygw

Water

p
(y + z)gw

ygw
=

uy

Soil

s ′s

z

Figure 5.8
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5.4  Types of problem

Having clarified the meaning and significance of the effective pressure, the idea can now 
be extended to five practical problems in connection with:

1.  Stratification of the soil (Problem 1)
2.  Excavation (Problem 2)
3.  Artesian pressure (Problem 3)
4.  Seepage pressure/piping (Problem 4)
5.  Pumping of ground water (Problem 5)

Problem 1
Figure 5.9 shows a cross-section through the strata underlying the site, which is loaded 
by deposited soil, imposing a uniform pressure of q = 50 kN/m2 at surface level. The 
ground water level is at a depth of 4 m. The bulk densities of the three layers are also 
indicated.

Assuming, that the surface load is applied ‘instantaneously’ (at time t = 0), calculate at 
the top of each stratum:

1.  The pressures s, Δs, u, Δu, s ′ and Δs ′ at time t = 0.
2.  The pressures s, u and s ′ after the excess pore pressure had dissipated from the 

two clay layers (i.e. when Δu = 0), after a considerable period of time, normally indi-
cated as t= ∞.

Notes: The assumption of instantaneous loading means that during the period of con-
struction, there is imperceptible dissipation of excess pore pressure from the clay 
strata.

q = 50 kN/m2

Sand

G L

GWL

Clay

Silty clay

Boulder clay

z1= 4 m

z2= 2 m

z3= 3 m

g1= 19 kN/m3

g2(sat) = 21 kN/m3

g3(sat) = 20 kN/m3

Figure 5.9
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At t = 0

σ
σ

σ σ
σ σ

= =
∆ = =

=
∆ =

′ = − =
∆ ′ = ∆ − =

=

∆

2

2

2

2

Total pressure : 50kN/m

Excess total pressure : 50kN/m

Pore pressure : 0

Excess pore pressure : 0

Effective pressure : 50kN/m

Excess effective pre

0

ssure : 50kN/m

m q

q

u

u

u

u

z

σ γ
σ

σ σ
σ σ

= = + = + =
∆ = =
∆ = =

= ∆ =
′ = − = =

∆ ′ = ∆ − ∆ = −
−

=

2
1 1

2

2

2

2

2

4 m 50 4.19 126 kN/m

50 kN/m

50 kN/m

50 kN/m

126 50 76 kN/m

50 50 0 kN/m

z q z

q

u q

u u

u

u

( )σ γ γ

σ

γ
σ σ

σ σ

= = + + = + × =

∆ = =
∆ = =

= + ∆ = × + =
′ = − = − =

∆ ′ = ∆ − ∆ = − =

2
1 1 2 2 sat

2

2

2
2 w

2

6m 126 2 21 168kN/m

50 kN/m

50 kN/m

2 9.81 50 kN/m

168 69.6 98.4 kN/m

50 50 kN/

69.4

m

z q z z

q

u q

u z u

u

u

( ) ( )σ γ γ γ

σ

γ
σ σ

σ

= = + + + = + × =

∆ = =
∆ = =

= + + ∆ = × + =
′ = − + ∆ = − =

∆ ′ = − =

2
1 1 2 32 sat 3 sat

2

2

2
2 3 w

2

2

9m 168 3 20 228kN/m

50 kN/m

50 kN/m

( ) 5 9.81 50 kN/m

( ) 228 99 129 kN/m

50 50 0 k

9

/

9

N m

z q z z z

q

u q

u z z u

u u

At t = ∞

By this time, the excess pore pressure had been dissipated and the excess total pressure 
q = 50 kN/m2 is carried entirely by the consolidated soil skeleton. The values of the pore 
pressure are now the same as existed prior to the application of q. The final effective 
pressures (when Δu = 0), to be verified by the reader, are given in Table 5.1.

Table 5.1

Depth below GL (m) 0 4 6 9

Total pressure: s  kN/m2 50 126 168 228
Pore pressure: u kN/m2 0 0 19.6 49
Effective pressure: s ′ kN/m2 50 126 148.4 179
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Graphical representation (t= ∞)

Notes:

i.  Parts of the diagrams are highlighted by thicker lines. These are the stress diagrams 
for the soil in its unloaded state, that is when q = 50 kN/m2 is not applied.

ii.  Downward pressure is + ve
Upward pressure is - ve (buoyancy)

Problem 2
If instead of placing the uniform load onto the ground surface, some of the overburden is 
removed  -  e.g. for the foundation of a large building  -  then there are two cases to be 
considered:

1.  The base of excavation is above GWL.
2.  The base is below GWL.

Base above GWL
In this case, the pressure of the excavated material may be considered as negative sur-
face load (- q), hence its value is simply subtracted from the pressures in the unloaded 
state. The relevant pressure diagrams for a 1.5 m deep excavation on the site of Problem 1 
are drawn in Figure  5.11. The decrease in total and effective stress is therefore  
- q = - 1.5 × 19 = - 28.5 kN/m2.

GL

P

50

=

49

76

42

s

−

s ′

q = 50 kN/m2

GWL

60

102126

178
228

(b)

(c)

(a)

19.6 98.4

179

129

76

Triangles for

50

(d)

unloaded state

z1= 4 m

z2= 2 m

z3= 3 m

g1= 19 kN/m2

g2(sat)= 21 kN/m2

g3(sat)= 20 kN/m3

+

u

−

Unloaded

state

148.4

126

+

Figure 5.10
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If now a 3 m-wide strip footing is placed into the excavation, transmitting 128.5 kN/m2  
to the soil, then the actual ‘net’ bearing pressure applied at the depth of 1.5 m is 
s

n
 = 128.5 - 28.5 = 100 kN/m2. The maximum vertical pressure induced by s

n
 is given by the 

Boussinesq-Michell formula (4.14) at any point below the centre of the foundation. The 
results are added to the total pressure triangle of Figure 5.11. Therefore, the value of s

v
 at 

the top of each layer is calculated from:

( ) n
v

1

4.14 sin

Chapter 4

4.13 2 t

( )

( ) an
b
z

σσ β β
π

β −


= + 




  =     

β

σ
π

−   °= = × = =  

∴ = + × =

1

2
v

1.5
At 2.5m 2 tan 61.93 1.081 radian

2.5

100
(1.081 sin61.9 62.53) kN/m

z

β

σ
π

−   °= = × = =  

∴ = + × =

1

2
v

1.5
At 4.5m 2 tan 36.87 0.644 radian

4.5

100
(0.644 sin 36.8 39.67) kN/m

z

β

σ
π

−   °= = × = =  

∴ = + × =

1

2
v

1.5
At z 7.5m 2 tan 22.62 0.395 radian

7.5

100
(0.395 sin22.62) k4.8 N/m2

The final values of s ′ in Figure 5.12 can now be used to calculate the consolidation of 
the clay layers. It is again assumed that the rate of excavation as well as the construction 

3 m

4 m

GL

GWL
Sand

2.5 m

1.5 m
Excavated

=

Clay

Silty clay

Boulder clay

2 m

3 m

28.5 149.5

178

49

28.5
100.5

129

69.9
19.6

u
47.547.5

At t = 0

89.5
g2(sat)= 21 kN/m3

g1= 19 kN/m3

g2(sat)= 20 kN/m3

s

−

s ′

+ +

−

Figure 5.11
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of the base are ‘instantaneous’, hence no pore water has dissipated from the clay layers 
during the construction period.

Base below GWL
The extent of problems encountered during excavation of open cuts, below the ground 
water level, depends on whether the soil is sand, gravel or clay. In sand and gravel, the GWL 
would be re-established quickly because of high permeability. Also any change in pore pres-
sure will be dissipated almost ‘instantaneously’ at t = 0, hence no long-term consolidation 
has to be considered. The effective pressure variation in granular soils will be discussed later.

The excavation of open cuts in clays is completely different matter. In this case, the 
removal of soil is rapid enough to prevent the dissipation of excess pore pressure from 
the underlying clay strata, because of their low permeability, hence assume the unload-
ing to be ‘instantaneous’.

Suppose the depth of excavation for a large structure is 6 m, instead of 1.5 m, then the 
variation of pressures at z = 9 m, or at any other depth, may still be evaluated at t = 0.

Pressure at points P and Q.
Soil is in natural, undisturbed state. 
From Figure 5.10:

2
1

2
1

2
1

178kN/m

49kN/m

129kN/m

u

σ

σ

=
= −
′ =

b = 1.5 m
GL

(a) (b)

(c)

(d)
100

62.5GWL

7.
5

m

39.6

47.5

At t = ∞
89.5

49149.5

19.6
=

174.3
125.3

110

100

100 kN/m2

g1= 19 kN/m3

g2(sat)= 21 kN/m3

g3(sat)= 20 kN/m3

2.
5

m
u

s s ′

+ +

−

−
24.8

109.5

4.
5

m

Figure 5.12

Open cut

Silty clay

QP

u = 29.4 kN/m2 u = 49 kN/m2

z2= 2 m

z1= 4 m

z3= 3 m g2(sat)= 20 kN/m2

g2(sat)= 21 kN/m3

g1= 19 kN/m3

Figure 5.13
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Pressures at the end of excavation period are different at points P and Q, the latter being, 
some way away from the open cut whilst the pore pressure at Q remains 49 kN/m2, its value 
is diminished at P, because of the reduction in the water level. As the excavation is assumed 
to be rapid, Δu

2
 has no time to dissipate and equalize the pore pressure at P and Q.

At P:

	D s
2
 = z

1
g

1
 + z

2
g

2(sat)
 	  = 4 × 19 + 2 × 21	  = 118 N/m2

Either	 s
2
 = z

3
g

3(sat)
 	  = 3 × 20	  = 60 kN/m2

or	 s
2
 = s

1
 - Ds

2
	  = 178 - 118	  = 60 kN/m2

Also,	 Ds
2
 = s

1
 - s

2
	  = 178 - 60	  = 118 kN/m2

	 Du
2
 = z

2
g 

w
	  = 2 × 9.81	  = 19.6 kN/m2

Either	 u
2
 = z

3
 g

w
	  = 3 × 9.81	  = 29.4 kN/m2

Or 	 u
2
 = u

1
 - Du

2
	  = 49 × 19.6	  = 29.4 kN/m2

Finally,	 s ′
2
 = s

2
 - u

2
	  = 60 - 29.4	  = 30.6 kN/m2  < 129 kN/m2

Decrease:

Either	 D s ′
2
 = s ′

1
 - s ′

2
	  = 129 - 30.6	  = 98.4 kN/m2

Or	 D s ′
2
 = Ds

2
 - Du

2
	  = 118 - 19.6	  = 98.4 kN/m2

Note: The decrease in s ′ indicates that the soil becomes weaker because of the dimin-
ished interparticle pressure. If however, the structure is now placed ‘instantaneously’  
into the cut, then its weight would increase the total, hence the effective pressure.  
For instance, calculate the pressure at P, taking the net weight of the structure as 
s

n
 = 200 kN/m2 using formulae (4.13) and (4.14).

( )

1

2
v

2
3

2
3 v

2
3 2 3

2
3

2
4 3

2
4 1

2
4

0
1

2 tan 36.87 0.64radian
3

200
0.64 sin 36.87 79.00kN/m

79 60 139kN/m

79kN/m

29.4 79 108.4kN/m

139 108.4 30.6 kN/m

139kN/m

49kN/m

139 49 90kN/m

t

u

u u u

t

u u

β

σ
π

σ
σ

σ

σ σ

σ

−

=
 = × = ° =  

= + × =

= + =
∆ = =

= + ∆ = + =
′ = − =

= ∞
= =
= =

′ = − =

2 m

z1= 4 m

z2= 2 m

z3= 3 m

Structure

u3= 108.4 kN/m2

u1= 49 kN/m2

sH= 200 kN/m2

Silty clay

P Q

Figure 5.14
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Notes:
a)  The purpose of these calculations is to assess how much the effective pressure has 

changed at various depths, due to the excavation and the construction of the 
structure. Table 5.2 summarizes the deviations, at depth 6 and 9 metres, from the 
value of σ ′1  prior to the start of excavation.

b)  The increased average effective pressure within the silty clay layer indicates its 
slow consolidation and the consequent settlement of the structure depending on 
the characteristics of the soil. This subject will be dealt with in a later chapter on 
consolidation and settlement. For settlement analysis, the average positive value 
of the effective pressure within a layer has to be estimated. Negative value would 
suggest possible swelling of the clay at that depth.

Problem 3
Artesian pressure s

A
 is encountered in permeable layers, such as gravel, underlying non-

permeable stratum e.g. clay. The water in the gravel layer is under pressure, caused by a 
hydrostatic head as shown, or by the overburden.

If a borehole is sunk through the clay layer, the artesian pressure released would indi-
cate significant problems during construction or excavation of the soil.

Table 5.2

s ¢ Depth (m) 6 9

Before excavation : s ′
1

98.4 129.0
kN/m2 After excavation    : s ′

2
0 30.6

At t = 0           : s ′
3

0 30.6
At t = ∞          : s ′

4
180.4 90.0

Gravel

Rain

H = pressure head

Sand

Clay

sA

Figure 5.15

Water outflow

Gravel
sA

Clay

Sand

Figure 5.16
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The influence of artesian pressure on the effective one is shown below.

(Artesian pressure head)
Pressures at the bottom of clay layer (at P).

( ) ( ) ( )1 0 1 0 21 sat 2 sat
z z z zσ γ γ γ= − + +

( )w A 0 2 w Au h z zγ σ γ σ= + = − +

σ σ′ = −u

( ) ( )σ γ γ γ γ γ γ γ∴ ′ = − + + − − −1 1 0 1 0 2 0 w 2 w A w1 sat 2 sat
z z z z z z h

( ) ( ) ( )1 0 1 0 w 2 w A w1 sat 2 sat
z z z z hγ γ γ γ γ γ   = − + − + − −   

( )1 0 1 0 1 2 2 A wz z z z hσ γ γ γ γ∴ ′ = − + ′ + ′ −

The effect of artesian pressure is to:

1.  increase the pore pressure
2.  decrease the effective pressure

Notes:
a)  The artesian pressure is zero at the top of the clay layer, where it can dissipate 

quickly within the sand.
b)  The distribution of s

A
 is linear within the clay layer.

c)  If the total pressure (s) of the layers of soil, at the bottom of the clay is smaller 
than the total upward pressure, then the ground could fail in uplift. In this case 
s  ≤ u + s

A
 when the clay could fail in shear (heaving). (See Chapter 3). 

Sand

GL

Clay

P

Gravel

GWL

h

z0

g1

g1(sat )

g2(sat )

z1

z2

= gw

sAhA

sA

Figure 5.17
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Problem 4
The effective pressure was estimated in the previous three problems under static ground-
water conditions. If for some reason water movement occurs through the soil, the result-
ing seepage pressure will alter the value of the effective pressure. Two types of seepage 
have to be considered:

1.  Downward seepage
2.  Upward seepage.

Downward seepage
The downward pressure reduces the pore pressure (u), hence increases s ’ at a depth z. 
Consider the sheet pile wall of a cofferdam, driven into the sandy-gravel layer of a river. 
Because of seepage, the water level rises inside the dam as shown.

where  - h
s
 = seepage pressure head

u
s
 = seepage pore pressure

u = pore pressure due to g
w
 and u

s

u
h
 = pore pressure at depth h due to g

w
 only.

From Figure 5.18, the pressures at depth H are:

h w
w w s w

s s w

( )u a z
u a z h

u h

γ
γ γ γ

γ
= + 

∴ = + −= − 

s = ag
w
 + zg

sat

Piezometer

Sheet pile wall

u = uh− us

GL
A

− +

a

z

uh

(c)

(d)

(b)

(a)

us

P

GL

Seepage

S
ee

pa
ge

S
ur

ch
ar

ge

(a + z)gw

H

h

=

+hs

hsgw

−hs

h = 0

gw

gsat

agw

zgsatagw

s

s ′

Figure 5.18



Effective Pressure (s ¢)       191

Hence,	 s ′ = s - u = ag
w
 + zg

sat
 − ag

w
 - zg

w
 + h

s
g

w

Cancelling ag
w
:	 s ′ = z(g

sat
 - g

w
) + h

s
g

w

σ γ γ∴ ′ = ′ + s wz h

It is customary to express h
s
 in terms of the hydraulic gradient, given by:

sHeadloss
or

Lengthof flow path

h
i i

z
= = � (3.2) & (5.5)

2
s wHence the seepage pressure is kN/ mu izγ= � (5.6)

( ) 2
wTherefore, effective pressure : kN/mz iσ γ γ′ = ′ + � (5.7)

Suppose the quantities in Figure 5.18 are given as

3
sat

3
w

2m 19kN/ m

4m 10kN/ m

a

z

γ
γ

= =
= =

Piezometric level below water surface:	 h
s
 = - 0.3 m

Calculate the pressures at point P (h = 6 m):

Pore pressure:	 ( ) 2
h w 6 10 60 kN/mu a z γ= + = × = ↑

See page pressure:	 2
s s w 0.3 10 3kN/mu h γ= − = − × = − ↓

Final pore pressure:	 2
h s 60 3 57kN/mu u u= + = − = ↑

Total pressure:	 2
w sat 2 10 4 19 96 kN/ma zσ γ γ= + = × + × = ↓

Effective pressure:	 296 57 39kN/muσ σ′ = − = − = ↓

Hydraulic gradient:	 s 0.3
0.075

4

h
i

z
= = =

Alternatively,

From (5.6):	 2
s w 0.075 4 10 3kN/mu izγ= = × × =

But	 2
sat w 19 10 9kN/mγ γ γ′ = − = − =

From (5.7):	 2
w( (9 0.0075 10) 4 39kN/m)z iσ γ γ′ = ′ + = + × × =

The calculations show that downward seepage increases the intergranular pressure. At 
the surface of the soil u

s
 = 0 as it is completely dissipated there.

Upward seepage
(See also section 3.7). In this case, the upward pressure increases u and decreases s ′. 
Because of the decreased intergranular pressure, the soil could become weak to such an 
extent, that it would fail in piping. The type of failure when granular material, mainly 
sand, ‘boils up’ is also called ‘quick condition’. For this reason, the upward seepage is of 
more engineering interest than the downward seepage. Figure 5.19 shows the pressures 
inside the coffer dam. In this case the seepage pressure head is positive (+h

s
).
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h w

s s w

( )u a z

u h

γ
γ

= + 
=  	

w s w

w sat

( )u a z h
u

a z

γ γ
σ σ

σ γ γ
= + + 

′ = −= + 

w sat w w s wa z a z hσ γ γ γ γ γ∴ ′ = + − − −

Simplifying	 2
s w kN/ mz hσ γ γ′ = ′ − � (5.8)

or	 ( )σ γ γ′ = ′ − 2
w kN/mz i

Quick condition occurs when the effective pressure becomes zero, i.e.

s w 0z hσ γ γ′ = ′ − =

From which,	 zg ′ = h
s
g

w

Note: +h
s
 is equivalent to the artesian pressure head h

A
, except that, whilst h

s
 could cause 

boiling failure in sand, h
A
 induces shear failure (heaving) in clays.

The formula shows that if the seepage pressure represented by h
s
 is large enough, it 

could equal or exceed the overburden pressure zg ′ thus forcing the soil upwards. This 
phenomenon is also called ‘piping’ or ‘boiling’.

Piping depends largely on the length of the path (z) through which water flows upwards. 
Failure occurs when z has a certain critical value (z

c
), expressed from:

	 w
c s w c s mz h z h

γγ γ
γ

 
′ = ∴ =  ′ 

� (5.9)

This indicates that the sheet pile must be driven deeper into the sand than length z
c
. The 

critical hydraulic gradient (i
c
) corresponding to z

C
 is given by:

Sheet pile

(a)

(b) (c) (d)

a

z

p

+ hs

hsgw

H
h

(a + z)gw

=

aγw

+ hs

− hs

hs= 0

S
ee

pa
ge

gsat

gw

s ′

s

− −

Seepage

zgsat

u = uh+ us

uh us

Figure 5.19
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γ
γ

′
= =s

c
c w

h
i

z
� (3.2) & (5.10)

But, for saturated soil:	 w

1

1

G
e

γ γ− ′ =   +

So,	
−

=
+
s

c

1

1

G
i

e
� (3.42)

The critical hydraulic gradient, therefore, is a function of the soil’s structure.
Suppose the quantities in Figure 5.19 are given as:

3
sat s

3
w

1m 19kN/ m 0.25m

1.5m 10kN/ m

a h

z

γ
γ

= = =
= =

Also,	 G
s
 = 2.65

	 e = 0.86

Calculate the pressures at point P: h = 2.5 m:

Pore pressure:	 ( ) 2
h w 2.5 10 25kN/mu a z γ= + = × =

See page pressure:	 2
s s w 0.25 10 2.5kN/mu h γ= = × =

Final pore pressure:	 2
h s 25 2.5 27.5 kN/mu u u= + = + =

Total pressure:	 2
w sat 10 1.5 19 38.5kN/ma zσ γ γ= + = + × =

Effective pressure:	 238.5 27.5 11kN/muσ σ′ = − = − =

Hydraulic gradient:	 s 0.25
0.167

1.5

h
i

z
= = =

From (5.8):	 ( ) ( ) ( )2
w 9 0.167 10 1.5 11kN/m asbeforei zσ γ γ′ = ′ − = − × × =

Critical path length:	 w
c s

10
0.25 0.28 m

9
z h

γ
γ

   = = × =    ′ 

Therefore, the actual path length of z = 1.5 m is satisfactory against piping. See Chapter 8 
for the estimation of sheet pile stability, however;

Critical hydraulic gradient: s
c

c

0.25
0.893

0.28

h
i

z
= = =

− −
= = = ≈

+ +
s

c

1 2.65 1
Alternatively : 0.887 0.893

1 1 0.86

G
i

e

Check effective pressure at critical stage:

( ) ( )c c w c 9 0.893 10 0.28 0.02 0i zσ γ γ′ = ′ − = − × × = ≈

The deviation of s
c
′ from zero is due to cumulative arithmetic errors.
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Note: In this section, only the pressures caused by seepage have been discussed. Consult 
Chapter 3 on Permeability, for the evaluation of forces due to movement of water in soils.

The development of seepage pressures was demonstrated by Peck (1953), as shown 
diagrammatically in Figure 5.19. In this, a cylinder containing saturated soil is connected 
to a water-tank. Initially, the water in both containers is at the same level [Figure 5.20(a)], 
hence there is no seepage (h

s
 = 0).

If the water-tank is raised [Figure 5.20(b)], then upward flow is induced through the 
soil in order to equalize the water levels. The seepage pressure head (+h

s
) is above the 

water level in the cylinder, increasing the pore-water pressure within the soil.
If, however, the water-tank is lowered (Figure 5.20(c)), then downward flow is induced 

in order to equalize the water levels. The seepage pressure-head ( - h
s
) is below the water 

level in the cylinder, decreasing the pore-pressure within the soil. The relevant pressures 
at point P are summarized:

w sat w sat w sat

w w w

s s s w s s w

w w

( ) ( ) ( )

0

( ) ( )

a z a z a z

u a z u a z u a z

u u h u h

z i z i z

σ γ γ σ γ γ σ γ γ
γ γ γ

γ γ
σ γ σ γ γ σ γ γ

= + = + = +
= + = + = +
= = = −

′ = ′ ′ = ′ − ′ = ′ −

5.5  Effect of seepage on shallow footings

Footings constructed on granular soil may experience upward seepage force should the 
soil be flooded, or the water table otherwise raised rapidly below them. In sand, this could 
cause washouts, that is, the removal of foundation material. To obviate this type of base 
failure it is advisable to use piles to support the structure [see Chapter 9. Figure 5.33(d)].

The effect of upward seepage, of hydraulic gradient i, is to decrease the submerged 
density of the soil.

There is no seepage, therefore the 
submerged density is given by (1.31), i.e. 
g ′ = g

sat
 - g

w

Figure 5.20

Cylinder

(a)

Tank

PiplineP

z

a
hs= 0

gw

g ′
Soil

Flow

(b)

P

+ hs

Flow

(c)

P

− hs

Footing
GL = GWL

Piezometer

Gravel
gsat

Figure 5.21
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i = hydraulic gradient
Submerged density for upward seepage:

( ) ( )sat w wFrom 5.8 iγ γ γ γ′′ = − − � (5.11)

wOr iγ γ γ′′ = ′ −

Submerged density for downward seepage:

( ) ( )sat w wFrom 5.7 iγ γ γ γ′′ = − + � (5.12)

wOr iγ γ γ′′ = ′ +

Problem 5
Pumping is carried out for various reasons. The variation of pore pressure during the 
following two situations are introduced in this section:

1.  Ground water lowering
2.  Reduction of artesian pressure

5.6  Ground water lowering (at atmospheric pressure)

Figure 5.23 shows a section of the ground. The ground water level has to be lowered to 
the top of the clay layer in order to allow excavation for a foundation.

When the water is suddenly removed from above the clay, the pore pressure is not 
altered immediately in its voids. Eventually, sometime after pumping, equilibrium is 
attained due to positive capillary tension, resulting in increased effective pressure.

Footing
GL = GWL

Upward
seepage

− hs

+ hs

Downward
seepage

Gravel
gsat

Figure 5.22

Pump
(a)

(b) (c) (d)
Just before pumping

Just after pumping

Final pore pressure
due to capillary
tension

Pore pressures

GL

Gravel

z1

z2

GWL

Clay

Rock

H

h

g1

g1(sat)

g2(sat)

hgw

Hgw Hgw

hgw z2gw

− −

+

Figure 5.23
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5.7  Reduction of artesian pressure

The result of decreased pressures (s
A
) is an increased effective one.

( ) ( ) ( )1 1 21 sat 2 sat
z h h zσ γ γ γ= − + +

γ
σ γ

=
=

w

A A w

u H

h

�Pore pressure is zero at B and 
D because of dissipation.

A section of ground is shown in Figure 5.25. The water level in the piezometer, installed 
in the gravel, is 3 m above, whilst the ground-water table is 1.5 m below the ground 
surface.

Figure 5.24
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−

−
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Calculate the effective pressures at points 
x, y and z:

1.  before pumping
2.  after the GWL is lowered by 5 m
3.  �after the piezometric level is lowered by 

9.5 m.

2
A A4.5m 4.5 9.81 44.1kN/mBefore pumping h σ= ∴ = × =

2
x

2
x A

2
x x x

At : 1.5 17 5.5 19.5 132.8kN/m

5.5 9.81 54 44.1 98.1 kN/m

132.8 98.1 34.7kN/m

x

u

u

σ
σ

σ σ

= × + × =
= × + = + =

′ = − = − =

2
y

2
y

2
y

At : 132.8 3 21 195.8kN/m

8.5 x 9.81 44.1 127.5kN/m

195.8 127.5 68.3kN/m

y

u

σ

σ

= + × =

= + =

′ = − =

2
z

2
z

2
z

At : 195.8 3 21 258.8 kN/m

11.5 9.81 44.1 157.0 kN/m

258.8 157 101.8 kN/m

z

u

σ

σ

= + × =
= × + =

′ = − =

Lowering the GWL only, by 5 m
As the water level in the piezometer is unaltered the artesian pressure head difference 
becomes: h

A
 = 4.5 + 5 = 9.5 m        ∴    s

A
 = 9.5 x 9.81 = 93.2 kN/m2

Piezometer

Sand

sA

5.5 m

1.5 m

3 m

GL

GWL

Clay

Gravel
z

x

y

hA

g1(sat )= 19.5 kN/m3

g2(sat )= 21 kN/m3

g1= 17 kN/m3

6 m

Figure 5.25
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u
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hA=9.5 m

3 m

6.5 m

6 m

0.5 m

3 m
y

x
GWL 120.3

=

98.1

127.5

157

55.8

22.2

89.3

183.3

246.3z

g1(sat)= 19.5 kN/m3 

g2(sat)= 21 kN/m3

g1= 17 kN/m3

−

sA= 93.2 kN/m2

s s ′

Figure 5.26
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2
x

2
x

2
x

At : 6.5 17 0.5 19.5 120.3 kN/m

0.5 9.81 93.2 98.1kN/m (unaltered)

120.3 98.1 22.2 kN/m

x

u

σ

σ

= × + × =
= × + =

′ = − =

2
y

2
y

2
y

At : 120.3 3 21 183.3kN/m

3.5 9.81 93.2 127.5kN/m (unaltered)

183.3 127.5 55.8kN/m

y

u

σ

σ

= + × =

= × + =

′ = − =

2
z

2
z

2
z

At : 183.3 3 21 246.3kN/m

6.5 9.81 93.2 157.0kN/m (unaltered)

246.3 157 89.3kN/m

z

u

σ

σ

= + × =
= × + =

′ = − =

The resulting pressure diagrams are shown on Figure 5.26. Note that the resultant pore 
pressure has not changed, due to the increased value of h

A
.

Lowering the piezometric level by 9.5 m
As the two levels coincide h

A
 = 0    ∴    s

A
 = 0

2
x

2
x

2
x

At x : 120.3 kN/m

0.5 9.81 49 kN/m

120.3 49 71.3 kN/m

u

σ

σ

=
= × =
= − =′

2
y

2
y

2
y

At : 183.3 kN/m

3.5 9.81 34.3 kN/m

183.3 34.3 149kN/m

y

u

σ

σ

=

= × =

= − =′

2
z

2
z

2
z

At : 246.3 kN/m

6.5 9.81 63.8 kN/m

246.3 63.8 182.5 kN/m

z

u

σ

σ

=
= × =
= =′ −

Sand

Clay

6 m

6.5 m

0.5 m

3 m

x

y

z

−

GWL
120.3

u

=

49 71.3

14934.3

63.8 182.5

183.3

246.3Piezometer

Gravel

g1= 17 kN/m3

g1(sat)= 19.5 kN/m3

g2(sat)= 21 kN/m3

sA= 0

s s ′

Figure 5.27

Note: 

The artesian piezometric level 
could be theoretically below the 
gravel. In that case the artesian 
pressure has a negative value.
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5.8  Capillary movement of water

Water surface exposed to the atmosphere is under tension. For example, this so called 
‘capillary tension’ formed the meniscus at the stem of the hydrometer in Chapter 2. The 
phenomenon is more pronounced at the water surface in a very small diameter tube. 
Figure 5.28 demonstrates that if one end of a small-bore tube is inserted into water, then 
the fluid rises to some height (h

c
).

T = surface tension
h

c
 = capillary rise

The average value is given by:	 α=c

0.15
cosh

r
� (5.13)

Water also rises above the ground water table because of surface tension, although the 
voids do not form straight capillaries. The speed of rise depends on the soil types:

a)  In clay the capillary rise is slow due to the very small pore size as well as to the 
presence of water bonded to the clay particles.

b)  In sand and silty sand, the rise depends on the:
•• pore size
•• particle shape and distribution density
•• original water content
•• viscosity of water

The upper boundary of the zone affected by surface tension is called the ‘capillary fringe’. 
The zone may be divided into two regions:

1.  Closed capillary fringe, where the soil may be considered full saturated (S
r
 = 1)

2.  Open capillary fringe, where the soil is only partially saturated (S
r
 < 1).

hc

Meniscus

Capillary tube

2r

T

a

Figure 5.28

Sr< 1

Sr< 1

hc

hcs

GWL

GL

Open capillary fringe

Open capillaries

Closed capillary fringe

Closed capillariesSr= 1

Figure 5.29
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The determination of the capillary heads is somewhat unreliable. The Figures con-
tained in Table 5.3, obtained by Lane and Washburn (1946), provide comparative Figures 
for guidance.

where	 h
c
 = height of open capillary fringe above the water table.

	 h
cs

 = height of closed, saturated fringe.

The effect of capillary water is to increase the unit weight of soil. The increase depends 
on its porosity as well as whether:

1.  the soil is originally dry or partially saturated;
2.  the capillary region is closed or open.

Dry soil

1.  g
d
 = dry unit weight

2.  g
sat

 = saturated unit weight
3.  Δg  = change in unit weight

After saturation	 sat dγ γ γ∆ = − � (5.14)

( ) γ γ γ

γ γ

+   
= = +      + + +

   = +      + +

s s
sat w w

s
w w

But, from 1.42 :
1 1 1

1 1

e

G e G e
e e e

G
e e

( )

( )

s
d w

sat d w

From 1.41 :
1

From 1.12 : n
1

G
e

n
e

e

γ γ
γ γ γ

 
=   +

= +
 =   +

� (1.64)

Hence,	 Δg = g
sat

 - g
d
 = ng

w
� (5.15)

Partially saturated soil
Unit weight (g )
Degree of saturation (s

r
)

Table 5.3

Soil
Particle size 

D
10

 (mm)
Voids ratio 

e

Capillary head (cm)

h
c

h
cs

Coarse gravel 0.82 0.27 5.4 6
Sandy gravel 0.20 0.45 28.4 20
Fine gravel 0.30 0.29 19.5 20
Silty gravel 0.06 0.45 106.0 68
Coarse sand 0.11 0.27 82.0 60
Medium sand 0.02 0.48 - 0.66 239.6 120
Fine sand 0.03 0.36 165.5 112
Silt 0.006 0.95 - 0.93 359.2 180
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After partial saturation:	 Δg = g
sat

 - g

From (1.38): 
s r

sat w

s s r
w w

1

1 1

G S e
e

G e G S e

e e

γ γ

γ γ γ

+ 
=   +

+ +   
∆ = −      + +

Therefore, w
s s r r w( ) (1 )

1 1

e
G e G S e S

e e
γ γ = + − − = −  + +

But	 ( )sat r w1
1

e
n S n

e
γ γ γ γ= ∴ ∆ = − = −

+
� (5.16)

Example 5.4

A 5 m thick fine sand layer was deposited over an area underlain by coarse gravel. 
The ground-water table was at the surface of the gravel. Subsequent observations 
indicated that the sand became saturated by capillary action to a height of 1.2 m 
above the gravel surface. Calculate the densities of sand in the closed capillary 
region if:

a)  it is dry initially (S
r
 = 0)

b)  it is partially saturated initially at S
r
 = 0.28

The known characteristics of the compacted sand are:

= 0.52e

γ = 2
d 17kN/ m

=s 2.64G

a)  Dry sand

w
2

sat
2

0.52
From(1.12) : 0.342

1 1.52
From(5.15) : 0.342 9.81

kN/m

From(5.14) :

3

1

.36

20.

7 3

3

.36

kN m6 /

e
n

e
nγ γ

γ

= = =
+

∆ = = ×
=

= +
=

New GL

5 m

Closed capillary fringe

Gravel Original GL

hcs= 1.2 m

gd= 17 kN/m3

Figure 5.30
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(b)  Partially saturated sand (S
r
 = 0.28)

From (5.16): Δg = (1 - S
r
)ng

w
 = (1 - 0.28) × 0.342 × 9. 81 = 2. 42 kN/m2

Also, Δg = g
sat

 - g   = 2. 42

Hence, g = g
sat

- 2. 42 = 20.36 - 2. 42 = 17. 94 kN/m2

Summary of densities:
2

dr
2

2
r sat

17.00 kN/mFor 0 Dry
Increase 3.36 kN/m
Saturated( 1) 20.36 kN/m

S

S

γ
γ

γ

==
∆ =

= =
2

r
2

For 0.28 2.42kN/mIncrease
Partially saturated 17.94kN/m

S γ
γ

= ∆ =
=

Effective pressure and capillary action
The effect the closed capillary region on the pore pressure, hence on the effective stress 
is twofold:

1.  An increase in the density of the soil within the region, as discussed above. This 
increases the total stress (s)

2.  The pore pressure is negative (Below atmospheric) throughout the region. The 
value at the closed capillary fringe is given by:

	 cs w csu hγ= − � (5.17)

This pressure varies linearly with depth, becoming zero at the ground water table, where 
the pressure is atmospheric. The capillary action has no effect on the pore water pressure 
below the GWL.

Example 5.5

The gravel layer in Example 5.4 is 3 m thick and has a saturated density of 22 kN/
m3. Draw the effective pressure diagram, taking 1.2 m capillary region into account.

Sand

Capillary fringe
3.8 m

8 m

5 m

0

Gravel
89

64.6

155 29.4

gα= 17 kN/m3

gsat= 20.36 kN/m3

gsat= 22 kN/m3

s

+

125.60

s ′

76.37

89

11.77

u

ucs

=

−

+

Figure 5.31
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2

2
cs

2
cs

At 3.8m 17 3.8 64.6 kN/m

9.81 1.2 11.77 kN/m

64.6 ( 11.77) 76.37 kN/m

u

u

σ

σ σ

= × =
= − × = −

′ = − = − − =

2

cs
2

At5m 17 3.8 1.2 20.36 89.03 kN/m

0

89.03 kN/m

u u

σ

σ

= × + × =
= =

′ =

2

2

2

At8m 89.03 22 3 155.03 kN/m

9.81x 3 29.4 kN/m

125.6 kN/m

u

u

σ

σ σ

= + × =
= =

′ = − =

Note: If capillary action is ignored, than the effective pressure is underestimated 
below and overestimated within the region as shown in Figure 5.32.

2

2

At 5m 17 5 85 kN/m

0

85 kN/m

u

σ

σ σ

= × =
=

′ = =

2

2

2

At 8m 85 22 3 151.0 kN/m

9.81 3 29.4 kN/m

121.6 kN/m

u

u

σ

σ σ

= + × =
= × = −

′ = − =

Thus in the capillary region, the water is in tension, whilst the soil skeleton is 
under increased effective compression. In cohesive soil, therefore, the additional 
effective pressure contributes to its consolidation.

In clay, the capillary action is slower and the capillary head is much larger than 
for coarser soils listed in Table 5.3. The maximum value of h

cs
 for clay is assumed 

to be 10 m however. When a saturated sample of fine-grained soil is first taken 
from the ground, it does not fall apart as some or all of its shear strength (called 
apparent cohesion) is due to existing capillary tension.

Sand

0

u

Gravel

5 m 85

151 29.4 121.6

85
=−

8 m

gα= 17 kN/m3

gsat= 22 kN/m3

s s ′

Figure 5.32
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Determination of capillary effect on site
In order to obtain reasonable estimates of h

c
 and h

cs
, the soil above the groundwater 

table should be sampled and tested for water content and degree of saturation, at fre-
quent intervals. The depth of each sample is plotted against its water content and the 
resulting curve should give an indication of the position of each fringe.

5.8.1  Equilibrium moisture content (mE)

When saturated fine-grained soil is subjected to constant pressure, at constant drainage 
condition, the resulting excess pore pressure causes;

1.  The outflow of some of the pore water. This flow continues, until all of the excess 
pressure is dissipated and the remaining water in the voids is in hydrostatic equilib-
rium. This water, at any depth, is called the ‘equilibrium moisture content’ associ-
ated with the particular applied pressure and drainage condition.

2.  A decrease in the voids ratio, hence in the volume of the soil (see also 
consolidation).

Conversely, removal of loading would allow the ingress of water and an increase in the 
volume (swelling) of soil, until new equilibrium water content profile is attained 
eventually.

The variation of moisture content in the subgrade of roads or industrial pavements is 
of some importance, because of possible damage due to:

1.  Swelling and shrinkage
2.  Freezing and thawing.

Determination of mE

As fine-grained soil may be considered saturated above the water table, the equilibrium 
moisture content may be estimated at any depth from the effective pressure - voids ratio 
curve of the oedometer test (see Consolidation  -  Chapter 7).

Step 1:  Carry out the consolidation test on the soil and draw the s ′ - ecurve.

Surface
Sample 1

Open

Z

etc

Water table

Fringe

Closed capillary fringe

Water content profile

m %

hcs

hc

Water content

Sr= 0

Sample 2

Sample 3

Sample 4

Sample 5 Sr< 1

Sr= 1

D
ep

th

Figure 5.33
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Step 2: � Determine the effective pressure ( )zσ ′  at the depth (z) considered and 
obtained e

z
 as shown.

Step 3:  Calculate the moisture content (m
z
) for soil from formula (1.36), taking S

r
 = 1.

( )z
z E

s

at depth
e

m m z
G

∴ = =

e

ez

V
oi

ds
 r

at
io

Effective pressures ′z
e ′

Figure 5.34

Example 5.6

It is proposed that a concrete road should be constructed on homogeneous clay. 
The groundwater table is 2 m below subgrade level. The total weight of pavement 
and sub-base is 10.8 kN/m2.

An oedometer consolidation test carried out on a clay specimen, taken from 1 m 
depth, yielded the following results, plotted on Graph 5.1(a):

Calculate: the average value of saturated density, using G
s
 = 2.75, from formula (1.42):

γ γ+ 
=   +

s
sat w1

G e
e

Average density: 
3

sat

162.65
20.33 kN/m

8
γ = =

This value is used in the calculation of effective pressures. The clay above the 
water table is assumed to be saturated, because of capillary action.

Determine: The equilibrium moisture content profile for two cases:

1.  Prior to the construction of the road
2.  A long period after the end of road construction, when all excess pore 

pressure had dissipated.

Table 5.4a 

s’ (kN/m2) 0 10 20 30 40 50 60 65
e 0.720 0.676 0.657 0.631 0.616 0.598 0.588 0.576

Table 5.4b 

g
sat

 (kN/m3) 19.79 20.05 20.17 20.34 20.43 20.55 20.62 20.7
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The results of calculations are summarized in Table 5.4b for both cases. The effec-
tive pressure at depth z, for case 1, is given by:

2
sat 20.33 kN/mzσ γ′ = =

For case 2, the surcharge weight (q = 10.8 kN/m2) of the pavement has to be added. 
The effective pressure at depth z is now given by:

220.33 10.8 kN/mzσ ′ = +

Calculations for z = 1.25 m Case 2:

220.33 1.25 10.8 36.213 kN/mσ ′ = × + =

From Graph 5.1(a): e = 0.603

From (1.36):	 E
s

0.603
0.2193

2.75

e
m

G
= = =

The equilibrium moisture content profiles are drawn on Graph 5.1(b). These verify 
that increased load decreases the water content, until the excess pore pressure 
dissipates and the moisture content profile reaches equilibrium.

Table 5.5

CASE 1
s ¢= 20.33 z

z

Ground level

Clay

gsat= 20.33 kN/m3

Water table

2 m

CASE 2
s ¢= 20.33 z + 10.8

2 m

z

0.5 m
GL

GWL

Formation level

Clay

gsat= 20.33 kN/m3

q = 10.8 kN/m2

z (m) s ¢ (kN/m2) e m
E

z (m) s ¢(kN/m2) e m
E

0 0 0.720 0.2618 0 10.800 0.654 0.2378
0.25 5.083 0.672 0.2444 0.25 15.883 0.640 0.2327
0.50 10.165 0.656 0.2385 0.50 20.965 0.628 0.2284
0.75 15.248 0.642 0.2335 0.75 26.048 0.618 0.2247
1.00 20.330 0.630 0.2291 1.00 31.130 0.610 0.2218
1.25 25.413 0.620 0.2255 1.25 36.213 0.603 0.2193
1.50 30.495 0.612 0.2225 1.50 41.295 0.596 0.2167
1.75 35.578 0.604 0.2196 1.75 46.378 0.591 0.2149
2.00 40.660 0.597 0.2171 2.00 51.460 0.586 0.2130
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Compaction and mE

It was pointed out in Chapter 1, that the deposited soil is normally compacted near to its 
optimum moisture content (m

0
). However, if a pavement is to be placed on the compacted 

surface, then the thickness of the road should be determined by the eventual equilibrium 
moisture content profile, as well as by the traffic to be carried and the CBR results. In 
general if:

1.  m
0
 > m

E
, the soil will loose water;

2.  m
0
 < m

E
, the soil will gain water.

Notes:

1.  Concrete surfacing prevents evaporation of soil water as well as the entry of rain 
water. This allows the gradual attainment of the equilibrium profile.

2.  If the ground surface is open to the elements, as it is at the edges of a pavement, 
then m

E
 varies with climatic and seasonal changes to an approximate depth  

of 1 m.
3.  The variation of moisture content can cause damage to a structure built on 

cohesive soils, because of subsequent:
(a)  freezing and thawing;
(a)  shrinkage and swelling, due to desiccation and absorption respectively.

5.8.2  Soil suction (Ss)

Capillary action is caused by surface tension acting on the water at the menisci formed 
between the soil particles. The negative pore pressure, below the open capillary fringe of 
height h

C
, is an indication of suction.

The strength of suction is a function of the degree of saturation, that is, dryer soil 
sucks up water faster than wet soil. It is analogous to blotting paper, which draws up ink 
faster when dry and slower when partially saturated. This implies that suction is high 
when the soil is dry and zero when saturated.

Pore pressure was expressed in terms of total stress and suction by Croney and 
Coleman in 1953 as:

	 su Sασ= − � (5.18)

Where, a = 0 for incompressible soil, where no volume change occurs 
upon the application of load

a = 0.5 for silty clay
a = 0.15 for sandy clay
a = 1 for compressible, saturated soil e.g. clay

The compressibility factor (a) may be obtained in terms of the plasticity index, by the 
empirical, therefore approximate formula:

	  
PI

for PI 40%
40

α = ≤ � (5.19)
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Effective stress
It can be expressed at any depth in terms of soil suction.

From (5.1):   s

s s

( )u S

u S S

σ σ σ σ ασ
ασ σ ασ

′ = − ∴ ′ = − −
= − = − −From (6.18): 

Therefore for 0 ≤ a ≤ 1	 s ′ = (1 - a)s + S
s
� (5.20)

Two particular cases can be derived from this general formula.

�Capillary region. The pore pressure 
is  - ve above
and + ve below the water table.
Total pressure: s = zg

sat
 + q

s

s

s s w c

Case 1 :

Bu

0 ( 0)

t

1 S

S

u u S S u h

α σ σ
σ

σ σ σ σ γ

= ′ = − +
= +

′ = − ∴ − = − ∴ = − ≈
 

This shows that if the soil sample is removed from the ground, there are no external 
pressures exerted on it and the pore water pressure in the specimen is balanced by the 
capillary action.

Vertical pressure s
v
 = 0

Horizontal pressure s
H
 = 0

Note that the surface tension at the surface of the sample gives material its ‘apparent 
cohesion’, which would disappear if the soil is immersed in water.

Surcharge load

Clay
sample

q

GL

z

hc
− u

+ u

gsat

GWL

Figure 5.35

− u sHsH = 0  

sv = 0 

sv = 0 

Figure 5.36
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Also, if the total stress is not increased by a surcharge load (q = 0), hence there is no 
excess pore pressure, then the suction equals to the pore pressure. 

S
s
 = - u ≈ g

w
h

c

This also applies to incompressible materials such as dense, compact sand and rock, 
where the application of surcharge load does not increase the pore pressure. The load is 
balanced by the intergranular pressure, hence no dissipation or consolidation can occur.

Case 2:	 a = 1	 s ′ = (1 — 1)s + S
s
 	 ∴  s ′ = S

s

So	 s ′ = s  - u = S
s
 		  ∴  u = s  - S

s

This means that at the end of the consolidation process, after the dissipation of the 
excess pore pressure, the soil suction equals to the effective pressure.

Soil suction index (pF)
The magnitude of suction is indicated by this index. It is defined as the logarithm (base 
10) of suction expressed in terms of the height of water in centimeters.

That is,	 pF = log
10

(S
s
)	 0 ≤ pF ≤ 6� (5.21)

Therefore, if pF of a soil is known from tests, then the suction is given by:

	
( )pF

s
cm10S = � (5.22)

Expressing S
s
 in metres:	

( )
=

pF

s 2

10

10
S

Therefore,	 S
s
 = 10(pF - 2) m� (5.23)

In pressure units:	 S
s
 = g

w
 × 10(pF - 2) kN/m2� (5.24)

Variation of suction pressure over the range of pF is listed below.

Table 5.6

Index

Suction

S
s
 = 10(pF) S

s
 = 10(pF-2) S

s
 = 9.81 ¥ 10(pF-2)

pF cm m kN/m2

0 1 0.01 9.81 × 10 - 2

1 10 0.10 9.81 × 10 - 1

2 102 1.00 9.81
3 103 10 9.81 × 10
4 104 102 9.81 × 102

5 105 103 9.81 × 103

6 106 104 9.81 × 104
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The value of pF for a particular soil can be determined over the range 0 ≤ pF≤ 6, by the 
‘High pressure membrane method’, as described in laboratory manuals. The results are 
plotted on the m - pF graph.

Suction and mE

It has been pointed out that at the completion of consolidation the pore water is in hydro-
static equilibrium and that
		  α = 1

	 sS σ= ′

This provides an alternative method for the determination of the equilibrium moisture 
content. The procedure to calculate m

E
 at a depth z is as follows:

Step  1: � Calculate the total stress (s) at z.
Step 2: � Determine the pore pressure (u) at z, remembering that u is negative above 

and positive below the ground water table.
Step 3:  Calculate the effective pressure at z by:

( ) ( )2
s kN/ mu Sσ σ′ = − ± =

Step 4:  Index pF is evaluated after expressing it from formula (5.24):

 

( ) ( )pF 2 pF 2s
s w

w

10 or 10
S

S γ
γ

− −= × =

	
s s

w w

log pF 2 and pF 2 log
S S
γ γ

 
∴ = − = +    � (5.25)

  Note that the unit if S
s
 is kN/m2.

Step 5: � Using the given m-pF diagram (see Graph 5.2a), the moisture content m%, for 
the evaluated pF index, is read off. This is the equilibrium moisture content at 
depth z.

m%

PF

Figure 5.37
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Example 5.7

Referring to Example 5.6, determine the equilibrium moisture content variation to 
3 m depth below formation level, using the m - pF curve of Graph 5.2a.

2

2

2

2
s

For 1.25 m

10.8 20.33 1.25 36.21kN/m

(2 1.25) 9.81 7.36 kN/m

36.21 ( 7.36) 43.57kN/m

43.57 kN/m

z

u

u

S

σ

σ σ

σ

=
= + × =
= − × =

′ = −
= − − =

∴ = ′ =

From (5.25): 
 = + = + =  

43.57
pF 2 log 2 0.6475 2.65

9.81

Marking pF = 2.65 on Graph 5.2(a), the equilibrium moisture content is read off as 
m

E
 = 21.9% at depth z = 1.25 m. Similar calculations are to be made for each depth 

and the results tabulated.

Table 5.7

 z s = 10.8 + 20.33z u = 9.81 (2 - z) s ’= s - u

.

=
 
  

s

pF 2 log

9 81

+
S

m
E

 m kN/m2 %

0 10.80 — 19.62 30.42 2.49 23.8
0.25 15.88 — 17.17 33.05 2.53 23.3
0.50 20.97 — 14.72 35.68 2.56 22.8
0.75 26.05 — 12.26 38.31 2.59 22.5
1.00 31.13 — 9.81 40.94 2.62 22.2
1.25 36.21 — 7.36 43.57 2.65 21.9
1.50 41.30 — 4.91 46.20 2.67 21.7
1.75 46.38 — 2.45 48.83 2.70 21.5
2.00 51.46 0 51.46 2.72 21.3
2.50 61.63 4.91 56.72 2.76 21.1
3.00 71.79 9.81 61.98 2.80 21.0

— u

+ u

2 m

GWL

0.5 m

3 m

Road surface

Formation

Clay

− u

+ u

q = 10.8 kN/m2

gsat= 20.33 kN/m2

Figure 5.38
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2.9

Graph 5.2

The equilibrium moisture content profile is plotted on Graph 5.2(b).
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Problem 5.1 

Excavation is carried out for the purpose of road construction. The formation is 
designed to be 6 m below existing ground level. There had been no site investiga-
tion to ascertain the soil profile, shown in Figure 5.39. The contractor is unaware 
that the groundwater table is at the top of the stiff clay and there is an artesian 
pressure of 45 kN/m2 in the gravel layer.

Artesian pressure:	 s
n
 = 45 kN/m2

Estimate that depth of excavation at which the stiff clay fails under the artesian 
pressure, flooding the trench, thus causing disruption to the earthworks.

h = depth of
excaration

G L

G W L
Sandy, gravelly clay

Stiff clay
x

5 m

2 m

g = 19 kN/m3

gsat= 21 kN/m3

Gravel layer

Figure 5.39

Problem 5.2 

A stream is to be diverted through a new culvert, before a 20 m-thick compacted 
fill is placed over it in a land reclamation scheme. The maximum depth of water 
flow in the conduit is not expected to exceed 1.5 metres. The final ground profile is 
to be as shown:

Compacted fill

Final GL

Clayey sand

Firm clay

Rock

3

2
2 m

0.5 m

1

Original GL

GWL

5 m

3 m
1.5 m

4 m

20 m (not to scale) g = 18 kN/m3

gsat= 20 kN/m3

g = 19.1 kN/m3

Figure 5.40
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The external dimensions of the reinforced concrete culvert section is 3 m × 5 m, 
having 500 m thick walls. The mass density of reinforced concrete may be assumed 
as 2446 kg/m3.

Calculate the total pore water and effective pressures at points 1, 2 and 3, before 
the commencement and after the completion of the scheme.

Problem 5.3 

Figure 5.43 shows the cross-section of the ground and the available information 
on the two soil layers overlying the stiff clay. Calculate the total and effective pres-
sures at the top and bottom of the silty clay layer.

Sr= 0
Dry sand

Silty clay

Stiff clay

GL

3 m

GWL

4 m

Gs= 2.65

Gs= 2.7

m = 18%

Sr= 1

gsat= 19.8 kN/m3

Figure 5.43

Problem 5.4 

A jetty is to be constructed at a lake. The available information on the ground con-
ditions is shown in Figure 5.45. Only the dry unit weight and the specific gravity of 
each layer are known.

Determine for each layer:

1.  porosity
2.  voids ratio
3.  saturated unit weight
4.  submerged unit weight.

Calculate the effective pressure at the boundaries of each layer in terms of:

a)  saturated unit weight
b)  submerged unit weight.

Draw the total pore and effective pressure diagrams.
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3 m Water
GL

u

z = 0 m

z = 6 m

z = 10 m

z = 13.5 m

3.5 m

4 m

6 m

Clay

Solid rock

Gravel

29.3 29.3

88.29156

238.6 127.53

161.9
Result

111.07

67.74

144.57306

Dense
Sand Gs= 2.66

Gs= 2.63

Gs= 2.76

gw= 9.81 kN/m3

gα= 18.1 kN/m3

gα= 17.3 kN/m3

gα= 15 kN/m3
−+ +

s s ′ = s − u

Figure 5.45

Problem 5.5 

A 3 m thick clay layer forms the bed of a 4 m deep lake. The clay is underlain by 
coarse gravel subjected to 18 kN/m2 artesian pressure (see also Chapter 3).

1.  �Derive an expression for the effective pres-
sure (s ′) at the top of the gravel in terms of:
a)  z, g ′ and s

A

b)  z and the modified submerged density g ′′.
2.  �Derive a formula for the critical thickness (z

c
) 

of the clay layer, at which it fails under s
A
 = 18 

kN/m2.
3.  Calculate z

c
, g ′′, s ′ and h

A
.

Gravel

Water

z = 3 m

xx

h = 4 m

gw= 9.81 kN/m3

gsat= 19.1k N/m3

sA= 18 kN/m2

hA

Clay

Figure 5.46
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Problem 5.6 

Artesian pressure s
A
 exists in the gravel layer below several layers of soil, shown 

in Figure 5.49. Show that the effective pressure at the top of the gravel (point x) 
can be expressed by:

1.  Either	 s ′
x
 = z

1
g

1
 + z

2
g ′

2
 + z

3
g ′

3
 − s

A

2.  Or	 s ′
x
 = z

1
g

1
 + z

2
g ″

2
 + z

3
g ″

3
 + s

A

where from (5.11):	 g ″ = g ′
1
 − ig

w
	 For a layer therefore,	

but,	 A

A

A
A

w

z

h
i

z
i

h

σ
σ
γ

=
∴ =

= 	

A

z
σγ γ′′ = ′ −

The submerged and modified submerged 
densities are:

( )
A

2 w 2 22 sat
2

and
z
σγ γ γ γ γ′ = − ′′ = ′ −

( )
A

3 w 3 33 sat
3

and
z
σγ γ γ γ γ′ = − ′′ = ′ −

GL

GWL

Sand
z1

z2

z3

Clay

Silty

x

Clay

Gravel

g1

g2(sat)

g3(sat)

hA

sA

Figure 5.47

Problem 5.7

Figure 5.48 shows a section of the ground, indicating artesian pressure of 11.8 kN/m2 
within the gravel layer as well as the unit weights of the layers above it. Estimate 
the effective pressure at points x, y and z, in terms of:

a)  Natural bulk densities
b)  Submerged densities
c)  Modified submerged densities
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Submerged densities:

γ γ

γ γ

= − =′ ′′

= = − = −′ ′

=3 3
3 3

3 3
4 4

11.8
9.89kN/m 9.89 0.06 kN/m

1.2
11.8

10.39kN/m 10.39 4.36 kN/m
0.8

Sand

x

y

z

Medium gravelly

Clay

Clay

Gravel

z1= 1.5 m

z2= 2.11 m

z3= 1.2 m

z4= 0.8 m

g1= 17.1 kN/m3

g2= 18.2 kN/m3

g3(sat)= 19.7 kN/m3

g4(sat)= 20.2 kN/m3

sA= 11.8 kN/m

hA= 1.2 m

Figure 5.48

Problem 5.8

A 944 cm3 dry soil sample is gradually flooded. It has 45% porosity and 15.1 kN/m3 
dry density. Estimate the mass of added water and unit weight when the soil is:

a)  Partially saturated to S
r
 = 0.69

b)  Fully saturated 
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Chapter 6

Shear Strength of Soils

Definition
The shear strength of a soil is its maximum resistance to shearing stresses.

When soil is subjected to vertical loading, it fails in shear, that is it deforms plastically 
by sliding over a slip surface as shown in Figure 6.1(a).

Plastic deformation means, that it cannot be reversed by the removal of loading.
The soil enters plastic state, when the shearing stress acting on the slip surface, 

reaches its shear strength. Figure 6.1(b) depicts the two ways, in which the soil can fail:

1.  Suddenly, in hard cohesive soils. In this case, local failure at one point precipitates 
general rupture of the entire slip surface, followed by large deformation.

2.  Gradually, in soft clayey and loose, granular soils. In this case the deformation pro-
gresses slowly over the slip surface.

Normally the mode of failure would fall between these two limiting cases.

Figure 6.1
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sv
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sH

Slip surface
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D
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(b)

S
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hard,dense soil

Loose or soft soil

gradual failure
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6.1  Coulomb-Mohr Theory

There are several theories concerning the failure of loaded soil. Of these, the combina-
tion of Coulomb’s and Mohr’s are sufficiently accurate for engineering purposes. More so, 
since they were modified to take into account of the effect of pore pressure on the shear 
strength.

Coulomb (1776) suggested, that soil fails because the strength provided by inter-
particle friction and cohesion is exceeded by the applied shearing stress on the slip 
surface. The stresses acting on the surface, inclined at an angle a to the horizontal, 
are shown on Figure  6.2(a). Coulomb related the quantities present by the linear 
equation:

	 n tancτ σ φ= + � (6.1)

This is represented graphically in Figure 6.2(b).

Where:  t	 =	shear stress on any plane
s

n
	=	normal pressure on the plane

s
v
	=	vertical (major) principal stress

s
H
	=	horizontal (minor) principal stress

f	 =	angle of friction
c	 =	cohesion
a	 =	inclination of the plane considered

Mohr (1910) developed the graphical representation of the possible stresses at a point 
on a plane, within a material. The derivation of his graphical construction can be found in 
books on statics or strength at materials. Basically, if a soil specimen is subjected to an 
all-round horizontal pressure (s

H
) – as it would be in-situ – and a vertical pressure (s

v
), 

then the shear and normal stresses on any plane within the soil can be represented by 
points on the circumference of a circle, as shown.

c

0

(a) (b)

sn

a

t

t = c + snta
nf

s n
ta

nf
f

sv

sH

t

Figure 6.2
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Where:  R	=	radius of the circle
t

p
	=	shear stress on plane inclined at angle a

s
n
	=	normal pressure on the same plane

t
m
	=	maximum possible value of shear stress

Note that s
v
 and s

H
 are also called “principal stresses”.

These quantities can be calculated from the following expressions:

	 σ στ α α−
= = v H

p sin 2 sin 2
2

R � (6.2)

	 σ σ σ σσ α+ −
= +v H v H

n cos 2
2 2

� (6.3)

6.1.1  Stresses on the plane of failure

Mohr’s method can now be applied to find the straight line, which satisfies Coulomb’s 
equation, yielding numerical values for the cohesion and the angle of friction.

According to the theory, if a number of specimens from the same material are tested 
to failure, under different principal stresses, then point P of each circle has to lie on a 
common tangent (Figure 6.4). The equation of this line, often called ‘failure envelope’ is 
that given by Coulomb.

Q
0

P
M

Plane considered

R = tm=

R

2a
a

sn

sv

sv
s

sv

sn

sHsH

tp

tp

tm

tm

tt

a

sH

R = 2
sv– sH

2
sv– sH

sn

Figure 6.3



222       Introduction to Soil Mechanics

Where  t
f
	 =	shear strength or maximum resistance to shear 


 at failure

s
n
	=	normal pressure on the same surface

The shear strength parameters c and f as well as the failure shear stress t
f
 can be derived 

from Figure 6.5.

s

0
f

L
Q1

P1

P2

P3

Q2 Q3

Slip surface of
specimen 1

Failure envelope
etc

c
sH1

sH1

sV1

a1

a2a1 a3

tf1

sn1

sH2 sH3 sV2sV1

R1

R2

R3

t f= c + sn ta
nf

t

Figure 6.4
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R
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f

a
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a

t

t f=
c + sntanf

R
sinf

f
180° − 2a

tf
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Figure 6.5
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φ α φ α° = + ° + ° − ∴ = − °180 90 180 2 2 90 � (6.4)

φ σ φ
σ

= ∴ = i
i

tan tan
c

c � (6.5)

Where s
i
 may be considered as an internal tensile stress.

τ σ σ σ σφ τ φ− −
= = ∴ =f v H v H

fcos but cos
2 2

R
R

� (6.6)

Also, from (6.2):	
σ στ α−

= v H
f sin2

2

From (6.1):	 t
f
 = c + s

n 
tanf

Note: Figure 6.6 shows that the soil does not fail on the plane of the maximum shear 
stress (t

max
) through point M, but on a steeper one:

6.1.2  Friction and cohesion

Coulomb’s equation defines the shear stress in terms of friction angle f and the cohesion 
intercept c. These are empirical constants only, depending on the natural state of the soil 
as well as on the method of testing. They indicate, however, that the shear strength of 
soils largely depends on friction between the particles and on their cohesion.

Friction
In coarse-grained soils, the shear strength depends largely on:

1.  Surface roughness of the grains.
2.  Interlocking of grains and state of compaction.
3.  Magnitude of contact pressures.
4.  Adhesion in finer-grained wet soils due to thin water layer between the contact points.

Cohesion
In fine-grained soil the shear strength is assumed to be dependent largely on:

1.  Water content of the soil
2.  Shape, size and packing of the particles
3.  Adhesion due to the thin film of water between the contact surfaces.

M
P

aP
aM

>aP aM

Sl
ip

 s
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fa
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f
tf

tm

<tf tm

Figure 6.6
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6.1.3  Apparent cohesion

This is caused by surface tension, acting at the ends of the thin film of water between the 
contact surfaces of fine-grained, moist soils. The apparent cohesion disappears if the soil 
is flooded or completely dried. This is why sand particles stick together, whilst partially 
saturated.

Notes:	 Soils are often referred to as:
a)  f	-	soil when c = 0
b)  c	 -	soil when f = 0
c)  c	 -	f - soil when neither f nor c is zero.

6.2  Stress path (Lambe, 1964)

This is another graphical method to represent the failure envelope. In addition, the vari-
ation of stress within a specimen during test can be visualized by drawing the path of 
change (see also Chapter 8).

The p –q diagram
Figure 6.7 shows this diagram as well as Mohr’s.

In this method of presentation, it is not the tangent point of the Mohr-circle, but its peak 
point (M) is drawn, having p and q as coordinates.

From (6.3):	 v H v H
n cos 2

2 2

σ σ σ σσ α+ −
= +

v H v H
nBut 2 90

2 2
p p

σ σ σ σα σ + +
= ° ∴ = = ∴ = � (6.7)

v H
m

v H
m

From(6.2) : sin2
2

2
and sin90 1

q q

σ στ α
σ στ

−
=

−
= ∴ =

=
� (6.8)

p

0

(a) (b)

M

Mohr’s diagram p –q diagram

M Stress point

q

Q p

q
45°

t

tm
Stress path

45°
0sH sv sH

s
Q

sn

2a

p

Figure 6.7
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Notes:  a)  The stress path extends as the vertical pressure is increased.
b)  Both s - t and p - q coordinates may be drawn on the same diagram as shown.

Where	� s
1
, s

2
, and s

3
 are the increasing values of vertical pressure, defining the inter

mediate Mohr-circles before failure is reached at s
v
.

and 	� TSP = total stress path. The soil is assumed to be either partially saturated or 
loaded rapidly.

Note: The influence of water content and saturation on Mohr’s circle and stress paths will 
be considered shortly.

6.2.1  Stress path failure envelope

Figure 6.9 shows the stress path in three triaxial tests carried out on a material and the 
resulting failure envelope.

The equation of the failure envelope is defined as:

	 f f tanq a p θ= + � (6.9)

The total stress paths are parallel for the same material. Also, they are inclined at 45°, 
when tested triaxially (see also Figure 6.13).

sH s1 s2
ss3 sV

M
q
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M3

45°

s
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M1

Figure 6.8
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q f= a + p fta
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q

L 0

a 45°

Failure envelope

TSP TSP TSP

p1 p3

q

q

}

q3

q3
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Figure 6.9
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The shear strength parameters, c and f, can now be derived in terms of a and q.

( )1

From triangle PLQ : sin sin tan

sin tanFrom triangle LMQ : tan

R
e
R
e

φ φ θ

φ θθ −

= =

∴ ==

�

(6.10)

From triangle LOS : tan
tan tan

sin tan
From triangle LOT : tan tan

cos cos

c ac b
b
a
b

φ φ θ
φ θφ φ
φ φ

= ==

= = =

tan
Substituting

tan cos cos

a a
c c

θ
θ φ φ

= × ∴ = � (6.11)

Note: Angle q can be calculated directly from two test results as shown in Figures 6.9 
and 6.11.

q

s

P
M

R

P
Q

f
f q

R

caTL

b

e

0

t t f=
c + snta
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q f=
a + p f ta

nf

s

Figure 6.10
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θ θ −− −
= =

− −
13 1 3 1

3 1 3 1

tan tan
q q q q
p p p p

� (6.12)

θ φ φ
+ = = ∴ = − p

tan sin sin

q q q
b p b

φ φ φ
φ φ

   
= = − ∴ = −      

tan tan tan
sin sin

q q
c b p c p � (6.13)

Summary
The shear strength parameters c and f may be evaluated from test results in three ways:

1.  Graphically, by Mohr’s circles
2.  Semi-graphically, by stress paths
3.  Analytically, by means of stress path coordinates.

All three methods are illustrated in Example 6.1.

Example 6.1

Three specimens of the same soil were subjected to the pressures given below:

Obtain c and f as well as the stresses on the three slip surfaces from the relevant 
diagram.

Method 1
The two shear strength parameters, measured from the Mohr-circle diagram, 
drawn on Graph 6.1 are:

	

270 kN/m

19.5 tan 0.354

55

c

φ φ
α

=
= ° ∴ =
= °

Equation of the failure envelope: t
f
 = 70 + 0.354 s

n

Table 6.1

Specimen 1 2 3

s
H
 (kN/m2) 100 200 300

s
v
 (kN/m2) 400 600 800

Table 6.2

t
f
 (kN/m2) 140 190 235

s
n
 (kN/m2) 200 335 465

R = τ
m
 (kN/m2) 150 200 250
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Method 2
The stress path envelope is drawn on Graph 6.2, by calculating the relevant values 
of p and q. The TSP arrows may be omitted.

From Graph 6.2:	

θ θ
=
= ° ∴ =

266 kN/m

18 tan 0.325

a

The equation of the envelope is:	 q
f
 = 66 + 0.325p

f

From (6.10):	 f = sin− 1(tanq) = sin− 1(0.325) = 18.96 (≈19.5)

From (6.11):	 ( )266
69.7 kN/m 70

cos cos18.66

a
c

φ
= = = ≈

Method 3
Substituting two of the stress path coordinates, already calculated in Method 2, 
into (6.12) for angle q :

2
1 3 1

2
3

2
11 3 1

2
3

100
tan 0.333150kN/m 100

300
250kN/m

250kN/m 300 100
tan 18.4

300550kN/m

q q q

q

p p p

p

θ

θ −

= == − =
=
= − =

= = °
=

For angle f, apply (6.10):	 ( )
( )

φ θ−

−

=

= = °

1

1

sin tan

sin 0.333 19.4

For cohesion c, apply (6.13):	 φ
φ

 
= −  

tan
sin

q
c p

2

2

sin sin 19.4 0.332

tan tan 19.4 0.352

Taking 550kN/m
and     250kN/m

p
q

φ
φ

=

=

=
=

=
=

	

2

250
550 0.352

0.332

71.5kN/ m

c
 = − ×  

=

Therefore, c and f can be determined accurately by calculation only.

Table 6.3

p (kN/m2) 250 400 550
q (kN/m2) 150 200 250



Graph 6.1



Graph 6.2
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6.2.2  Variation of stress path

An advantage of the stress path method is that stress increases can be visualized. 
Because of this, the direction of the path may be altered at will by varying the external 
pressures s

v
 and s

H
. Eight possibilities are shown below, in terms of total stress path 

(TSP), by means of formulae:

( ) v H6.7 :
2

p
σ σ+

=

( ) v H6.8 :
2

q
σ σ−

=

Case 1  s
v
 = s

H
 = 40 kN/m2

40

40 40

40

	

+
= = 240 40

40kN/m
2

p

		

−
= = 240 40

0kN/m
2

q

Case 2	 σ σ
σ
σ

+
= =>

=
−

= ==

2

v H
2

v
22

H

40 20
30kN/m

2
40kN/m

40 20
q 10kN/m20kN/m

2

p

40

20 20

40

Case 3	 increasing s
v
 only

100

100 100

100

500

100

500

100

900

100 100

900

Note: This case is similar to that illustrated in Figure 6.8, which is the usual procedure in 
the triaxial test.

Figure 6.12

Stress point

40
p

q
(a)

Stress point

q

(b)

10

30 p

TSP

45°

300 500 p

200

400

q

100

Figure 6.13

p 100 300 500

q 0 200 400
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Case 4	 Decreasing s
H
 only whilst s

v
 is 

kept constant.

400

400 400

400

400

200

400

200

400

400

These calculations are facilitated by formulae (6.14) and (6.15), derived below.

σ σ
σ σ σ

σ

= −
− = − ± ∴ = −

= − −

v H

v H H

H

From(6.7): 2

From(6.8): 2

Subtracting: 0 2 2 2

p

q p q

p q

� (6.14)

σ σ= ∴ = +v vSubstitute (6.14): 2 ( )p p q p q– – � (6.15)

Case 5  Increasing s
v
 and decreasing s

H
 by equal amounts.

300

300 300

300

400

200

400

200

500

100 100

500

Case 6  Increasing both s
v
 and s

H
 by 

equal amounts.

100

100 100

100

200

200

200

200

300

300 300

300

p 400 300 200

q 0 100 200

p 300 300 300

q 0 100 200

200

At sH= 0

q

200 300 400
p

100

1000

45°

TSP

Figure 6.14

q

200

100

100 200 300 400 p

T
S

P

Figure 6.15

p 100 200 300

q 0 0 0

q

100 200

TSP

300

Figure 6.16
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Case 7 � Decreasing both s
v
 and s

H
 by equal amounts.

300

300 300

300

200

200

200

200

100

100 100

100

Case 8  Increasing both s
v
 and s

H
. Also, s

H
 = 0.5 s

v

100

50 50

100

220

110

220

110

440

220 220

440

Note: The inclination of TSP is not 45° in this case.

From (6.7):  σ σ σ+
= =v v

v

0.5
0.75

2
p 	

0.25
tan 0.333

0.75

q
p

β = = =

From (6.8): 
σ σ σ+

= =v v
v

0.5
0.25

2
q 	 b = 18.4°

Also, 0.333 3
q

p q
p

= ∴ =

Theoretically therefore, any stress path can be chosen, provided there is a test 
equipment; capable of changing s

v
 and s

H
 during a test. A hydraulically loaded triaxial 

cell  (Bishop-Wesley, 1975) has been designed for this purpose at Imperial College, 
London.

p 300 200 100

q 0 0 0

q

100 200

TSP
p

300

Figure 6.17

110

55

q

p
75 165 330

b = 18.4°25

TSP

Figure 6.18

p 75 165 330

q 25 55 110
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6.3  Effect of saturation

The Mohr’s circle representation discussed so far is applicable to homogeneous, isotropic 
material in general. Soil, however, contains water. If the voids are fully saturated then 
external loading induces the already much discussed pore water pressure (u). This means, 
that the soil is subjected to an effective pressure (s ′), rather than a total pressure (s), as 
expressed by:

	 uσ σ′ = − � (5.1)

As the shear strength of a soil now depends on s ′, Mohr’s circles have to be modified 
to reflect this fact. The equation of the failure envelope, therefore, has the form:

	 f n tancτ σ φ= + ′′ ′ � (6.16)

	 or	 t
f
 = c′ + (s - u) tanf′

Where, c′ = cohesion intercept in terms of effective stress s ′
	 f ′ = angle of shearing resistance in terms of s ′.

6.3.1  Effective Mohr’s circle

The graphical effect of u is to shift the total pressure circle towards the origin. Figure 6.19 
shows the effective pressure circle relative to the total one.

It is assumed, in this case, that the pore pressure cannot dissipate, that is water cannot 
flow out of the soil specimen, during the application of the loading.

6.3.2  Effective stress path (ESP)

It has to be appreciated that the pore pressure increases gradually from zero to its 
maximum value (u), upon the application of the total pressure. The ESP is obtained by 
subtracting the increments of pore pressure (Δu) at each point along the total stress path 
(TSP). The ESP is a path, curved towards the origin.

t

Effective pressure

0

Total pressure

u MM ′

45°

u

s ′v

s ′H

s ′H sH s ′v sv

s

s ′n

tf

Figure 6.19
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Note: Formulae (6.2) to (6.15) are still valid, but with effective values. The total pressure 
in increased gradually during a test.

t

Effective pressure

45°

q

0 s
p

M
u

TSP

E
S

P

∆u

Figure 6.20

Example 6.2

Suppose the final pore pressure for the three specimens, in Example 6.1, are also 
given as tabulated. Calculate c ′ and f ′.

The effective pressures s ′ 
H
 and s ′ 

V
 as well as p′ and q′ are:

From (6.7)  
From (6.8)

Method 1
Draw Graph 6.3 and measure the shear strength parameters as:

2

f n

20kN/m

36

20 0.727

c

φ
τ σ

′ =
′ = °

∴ = + ′

Table 6.4

Specimen 1 2 3

s
H
 (kN/m2) 100 200 300

s
v
 (kN/m2) 400 600 800

u (kN/m2) 20 90 150

Table 6.5

Specimen 1 2 3

s ′
H
 = s

H
 - u 80 110 150

s ′
v
  = s

v
 - u 380 510 650

p ′ 230 310 400
q ′ 150 200 250



Graph 6.3



Graph 6.4
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6.4  Measurement of shear strength

It was explained in the last section how to determine, theoretically, the shear strength 
parameters of a particular type of soil, subjected to known horizontal and vertical pressures. 
In this section various tests are introduced, whose main purpose is to obtain the magnitude 
of applied pressures at failure. There are four types of tests normally used for this purpose:

1.  Standard triaxial
2.  Unconfined compression
3.  Shear box
4.  Vane

The standard triaxial tests are used most extensively; hence, these are to be dealt with in 
some detail.

6.4.1  Triaxial tests

The purpose of these tests is to establish shear strength by simulating as accurately as 
possible, the ground condition encountered in a particular engineering problem. In prac-
tice, one of the following four triaxial tests is chosen to achieve comparability:

a)  Unconsolidated 	undrained: (UU)
b)  Quick 	 undrained: (QU)
c)  Consolidated 	 undrained: (CU)
d)  Consolidated 	 drained:    (CD)

Method 2
Draw Graph 6.4 and measure the effective stress parameters as:

θ
′ =
= °

∴ = +′ ′

2

f f

15kN/m

30

15 0.577

a

q p

From (6.10):	 1 1sin (tan ) sin (0.577) 35.3φ θ− −′ = ′ = = °

From (6.11):	 215
18.4 kN/m

cos cos35.3

a
c

φ
′= = =′

′

Method 3

3 1

3 1

250 150 100

400 230 170

q q

p p

− = − =′ ′
− = − =′ ′

 

100
tan 0.588

170
θ∴ = =′

  
from (6.12)

From (6.10):	 φ − = °′ = 1sin (0.588) 36.03

From (6.13):	

′   ′ = − × = − × =′      
23

3

250
tan 36.03 400 0.727 18.3kN/m

sin 36.03 0.588

q
c p
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Tritest 50 complete with triaxial cell and transducers. Reproduced by permission of ELE 
International.

The triaxial apparatus
Figure 6.21(a) shows the outline of Bishop’s (1957) triaxial cell and loading arrangement.

Figure 6.21

Proving ring

Deflection gauge
Strain gauge

Air release valve B

Porous disc

Porous disc

Manometer
Inlet

Water

Rubber
membrane

Soil

α

Loading ram

(a)

Valve C

Valve A
To drainage

To pore pressure gauge

Cell

Soil

(b)

sH= sc sH= sc

sv= sc + sd

sv= sc + sd
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The specimen is tested by first applying an all-round cell pressure s
c
 and then increas-

ing the so called deviator stress s
d
 by means of the loading ram, until the sample fails.

Notes:
1.  �The horizontal pressure equals to the cell pressure during the test.
2.  �The vertical pressure changes with the deviator stress.

From Figure 6.21(b), the principal stresses are given by:  H c

v c d

σ σ
σ σ σ

=
= +

3.  Alternative designation, in the literature for the horizontal and vertical principal 
stresses is s

3
 and s

1
 respectively.

6.4.2  Variation of pore pressure

The gradual increase in the total pressures s
c
 and s

v
, during a triaxial test, induces 

corresponding increases (Δu) in the pore pressure within the soil. The correspondence 
between these quantities was derived by Skempton (1954), in terms of two coefficients 
A and B. The effect of s

c 
and s

d
 on the variation of u is considered separately.

Application of s
c

Figure 6.22 depicts the application of hydrostatic pressure only.

Δs
c
 = �small increment in the cell-water pressure s

c
. 

It induces a small increase (Δu
c
) in the pore 

water pressure. The magnitude of Δu
c
 depends 

also on the degree of saturation. The increase 
is given by:

	 c cu B σ∆ = ∆ � (6.17)

where B is called the pore pressure parameter. It is found by increasing the cell pressure 
to any desired value Δs

c
 and measuring the corresponding pore pressure Δu

c
. Its magni-

tude is an indication of the degree of saturation:  =
< <
=

1 - Saturatedsoil

0 1 - Partially saturated

0 - Dry

B

B

B

Therefore, this first stage of a triaxial test may be used to determine the state of saturation.

Application of s
d

If now, the vertical pressure is increased without allowing water outflow from the speci-
men, then it induces further pressure increase. Figure 6.23 shows the addition of the 
deviator stress to the cell pressure.

∆uc∆sc

∆sc

∆sc

∆sc

∆sc

Figure 6.22
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Δs
d
 = �small increment in the deviator stress, applied 

by the loading ram in the triaxial test. The 
induced pore pressure is given by:

	 σ∆ = ∆d du A � (6.18)

Where A ̅ is another pore pressure parameter. It is 
calculated from the pore pressure measured for the 
range of Δs

d
.

6.4.3  Total excess pore pressure

Combining the above two increments, the overall change in the pore pressure, during a 
triaxial test, can be determined from:

σ σ

σ σ

∆ = ∆ + ∆
∆ = ∆ + ∆

 
∆ = ∆ + ∆  

c d

c d

c d

u u u

u B A

A
u B

B

Let	
A

A
B

= � (6.19)

Then finally	 ( )c du B Aσ σ∆ = ∆ + ∆ � (6.20)

Where A is also a pore pressure parameter. The value of parameter A depends largely on 
the stress history of the soil. Some typical values are:

-0.5 < A < 0 	 for heavily over-consolidated clay
   0 < A < 0.5	 for lightly over-consolidated clay
  0.5 < A < 1.5	 for normally consolidated clay

See definitions in Sections 7.3.1 and 7.3.2.

∆sc

∆sc

∆sc

∆sv= ∆sc+ ∆sd

∆sc

∆sc

∆sd

∆sd

Figure 6.23

Example 6.3

A clay sample was tested in an undrained triaxial test. The applied cell pressure was 
100 kN/m2 and the corresponding induced pore pressure observed as 55 kN/m2. 
The deviator stress was applied in two 200 kN/m2 increments and the pore pres-
sures noted. The data are summarized below. Calculate the pore pressure 
parameters.
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From (6.17):	 c

c

55
0.55 1

100

u
B

σ
∆

= = = <
∆

  ∴  partially saturated clay

From (6.18):	
σ

∆
=

∆
d

d

u
A

From (6.19):	
A

A
B

=

From (6.20):	 check: Δu = B(Δs
c
 + AΔs

d
)

Increment 1.	 ( )∆ = × + × = 20.55 100 0.863 200 150kN/mu

Increment 2.	 ( )∆ = × + × = 20.55 100 0.545 400 175kN/mu

Note: The pore pressure parameters are used to determine the variation of u in 
the field.

σ∆ =
∆ =
∆ = ∆ + ∆

2
c

2
c

c d

100kN/m
55 kN/mu

u u u

Table 6.6

 1 2

Δs
d

200 400
Δu

d
95 120

Δu 150 175

1 2

A̅ 0.475 0.3

A 0.863 0.545

6.4.4  Unconsolidated-undrained tests

During this test, the soil specimen is sheared without allowing the outflow of pore water. 
This is to simulate ground conditions in actual engineering problems, where there is no 
time for pore pressure dissipation, during the construction of structures in cohesive soils 
of low permeability. There are two standard tests of this type:

1.  Undrained test on partially saturated soil, denoted as UU-test.
2.  Undrained test on saturated cohesive soils, usually referred to as ‘Quick’ or QU-test, 

applicable to both normally and overconsolidated clays.

UU-test
In the UU-test both the total as well as the pore pressures are measured. The presenta-
tion of the results are in terms of effective stresses, hence the Mohr’s circle are drawn as 
in Example 6.2, resulting in:

Notes:

1.  The failure envelope is normally curved when expressed in terms of total stresses, 
and approximates a straight line, when drawn in terms of effective ones. For this 
reason the use of the effective stress parameters are preferred.

2.  c′
u
 and f′

u
 are effective undrained cohesion and angle of friction respectively.
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t

tf= c ′u+ s ′utanf′u

c ′u

s

f′u

Figure 6.24

Example 6.4

Table 6.7 contains the results of a UU-test carried out on three 38/76 mm, partially 
saturated clay samples. The proving ring constant was n = 4.5 N/division.

Determine the equation for the failure envelope in terms of effective stresses.

Table 6.7

s
c
 (kN/m2) 100 175 250

u
f
 (kN/m2) 40 45 85

s ¢
c
 = s

c
 - u

f
60 130 165

x  
(mm)

r
x
  

(div)
e % x  

(mm)
r

x
 

(div)
e % x  

(mm)
r

x
  

(div)
e %

0.7 4 0.9 1.0 11.0 1.3 0.6 9.0 0.8
2.0 11 2.6 1.9 20.5 2.5 1.2 16.0 1.6
3.4 16.5 4.5 3.0 29.0 3.9 2.0 26.1 2.6
5.3 23.5 7.0 4.3 37.4 5.7 2.9 34.4 3.8
7.8 28.0 10.3 6.0 46.6 7.9 4.1 44.4 5.4
9.6 28.9 12.6 7.6 52.8 10.0 5.3 52.6 7.0
11.2 26.9 14.7 9.4 57.2 12.4 7.0 61.9 9.2
12.0 26.0 15.8 10.4 58.4 13.7 8.4 67.8 11.0

12.2 56.6 16.0 9.5 71.9 12.5
12.6 54.1 16.6 11.4 74.1 15.0

12.2 73.9 16.1
13.8 70.7 18.2

Mode of 
Failure 

Failure at x = 9.6

r
x
 = 28.9 e = 12.6%

Failure at x = 10.4

r
x
 = 58.4 e = 13.7%

Failure at x = 11.4

r
x
 = 74.1 e = 15%h

0
 = 76 mm

At failure

At failure



244       Introduction to Soil Mechanics

where � x =	�strain dial gauge reading (mm), indicating the shortening of the sample.
r

x
 =	�reading of the proving ring dial gauge, indicating the force (P

x
), applied 

by the loading ram to the sample. The deviator stress is determined 
from x and r

x
.

	
ε ε= = = =

o

shorteningof sample 100
strain 100 % %

initial length 76

x x
h

Area correction in undrained test
Applied force:	 P

x
 = nr

x
 = 4.5 r

x
 Newton

Initial cross-sectional area of the specimen:

	

π
= =

2
2

o

38
1134mm

4
A

Initial volume:	 V
o
 = h

o
A

o
 = 76 × 1134 = 86184 mm3

Initial height:	 h
o
 = 76 mm

As the sample is compressed, its volume remains practically the same, but its 
height, and hence the cross-sectional area, changes with x.

Changed height at x:	 ( )x o o o
o

1 1
x

h h x h h
h

ε
 

= − = − = −  
Volume at x:	 V

o
 = A

x
h

x

Where A
x
 = cross-sectional area at x.

Equating	 o o o
o o o x

x

o

x
x x 1

V A
V A h A h A

h
A h
h ε

== = = =
−

� (6.21)

Deviator stress at x:	 x x
x

x x

P nr
A A

σ = = � (6.22)

Where r
x
 = proving ring dial reading at x:

( ) ( )x o 2x x x
x x

o o o

x

and N/mm
nr h xnr nr h

V V V
h

σ σ
−

∴ = = =

or	
( ) ( )σ

−
= x o 2

x
o

1000
kN/m

nr h x

V � (6.23)

This is the deviator stress, corrected for changing area. The quantities h
o
, x, V

o
 are 

in millimeters and n in newtons. In this example,

( ) ( )σ
× × −

= = × −x 2
x

1000 4.5 76
0.0522 76 kN/m

86184 x

r x
r x

Ao

Vo

h0= 76 mm

38 mm Diameter



Shear Strength of Soils       245

Deviator stresses at failure:

Test 1:	 ( )σ
=

= × × − =
=

2
1

x

9.6 mm
0.0522 28.9 76 9.6 100kN/m

28.9

x

r

Test 2:	 ( )σ
=

= × × − =
=

2
2

x

10.4mm
0.0522 58.4 76 10.4 200kN/m

58.4

x

r

Test 3:	 ( )σ
=

= × × − =
=

2
3

x

11.4mm
0.0522 74.1 76 11.4 250kN/m

74

x

r

The results are drawn on Graph 6.5 and the shear stress parameter measured as:

	
2

f n n
u

10kN/m
10 tan 25 10 0.466

25
uc

τ σ σ
φ

=′
∴ = + × = + ×′

°
′

=′

	   u
f
 = pore pressure at failure.

Alternative determination of the deviator stresses may be made by plotting the x 
and r

x
 dial reading on Chart 6.1. The advantage of this is not only that s

d
, at failure, 

can be read off directly from the chart, but that the point of failure becomes 
obvious.

If a sample does not exhibit clear shear failure but slumps, then it is assumed to 
occur at e = 20%, which is at x = 15.2 mm on this chart.

Construction of Chart 6.1
It is designed for n = 4.5 N/div and sample size of 38 × 76 mm, using formula (6.23), 
therefore any of the diagonal lines represented by r

x
 can be drawn by: s

x
 = 0.0522 × 

r
x
 (76 - x).
Line r

x
 = 100 is drawn between x = 0, x = 16 for example:

( )
( )

σ
σ

= = × × − =

= = × × − =

2
x

2
x

If 0 : 0.0522 100 76 0 396.7kN/m

If 16 : 0.0522 100 76 16 313.2kN/m

x

x

These figures indicate the two ends of line r
x
 = 100 as shown:

Chart 6.1

0 16

396.7

313.2

100

r x
 (d

iv
is

io
ns

)

x (mm)

s d
 (k

N
/m

2 )

Figure 6.25

All the other lines can be drawn in 
this manner with fewer lines for 
clarity.



Graph 6.5
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Some applications of the UU-test
It can be used to simulate the soil conditions in practical problems, where there is imper-
ceptible pore water pressure dissipation during the imposition of external loading. In 
other words, the loads are placed over such a short period that there is only negligible 
outflow of water from soils of low permeability, hence there is not time for consolidation 
and strength increase. The soil is therefore weakest at this juncture, but gets stronger 
with the passage of time. Some of the practical problems are:

1.  Excavation and end of construction of foundations in partially saturated soil.
2.  Stability of compacted fill of low permeability.
3.  During the construction of earth dam, where large pore pressures can develop, 

owing to the speed of construction.

6.4.5  Quick-undrained test

The QU-test is so called because the specimen is sheared, usually over a period of 15 to 
20 minutes. Pore pressure is not measured and no drainage is allowed from the sample. 
The test is carried out usually on saturated, cohesive soils and the results are presented 
in terms of total stresses and shear strength parameters c

u
 and f

u
. The failure envelope 

depends not only on the degree of saturation, but on the stress history of the soil. Typical 
Coulomb envelopes are as follows.

1.  Saturated, normally consolidated clay (NCC)
Where the voids ratio (e) has not changed after deposition.

Where s
0
 = existing overburden pressure.

In this case, each Mohr-circle is of the same diameter, because any increase in the 
cell pressure induces pore pressure of equal magnitude. As a consequence, the effec-
tive pressure remains constant, as shown below. This applies equally to saturated, 
overconsolidated clay (OCC).

In Test 1, the cell pressure s
c
 induces a pore pressure (u

1
) in the sample.

Deposition

e

(a) (b)

QU- test

e0 
cu

s0

s s

t

tf =cu fu= 0

Figure 6.26

scsc  

sc

sc

u1

Figure 6.27

The effective stress is:

σ σ= −′c c 1u
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In Test 2, the cell pressure is increased to (s
c 
+ Δs

c
) and Δs

c
 induces additional pore 

pressure (Δu) in the specimen.

Effective cell pressure:

( ) ( )c c c c 1

c c 1

c c 1 c

c 1 (As in Test 1)

u u

u u

u

u

σ σ σ σ
σ σ
σ σ σ
σ

′− ∆ = + ∆ − + ∆

= + ∆ − − ∆
= + ∆ − − ∆
= −

Therefore, the effective cell pressure is the same for both samples of the same mate-
rial, hence they fail at the same deviator stress and the failure envelope becomes hori-
zontal, for both NCC and OCC.

2.  Partially saturated NCC
The failure envelope is curved, until the stresses become large enough to compress 
the air voids and cause saturation.

Either UU-test is carried out up to pressure s
B
, to get c′

u
 and s ′

u
 or apply QU-test for a 

limited range on the curved part, to get c
u
 and f

u
. QU-test is applicable beyond point B.

3.  Partially saturated overconsolidated clay (OCC)
The voids ratio has changed after deposition, because of subsequent removal of 
overburden.

sc+ ∆sc

sc+ ∆sc

sc+ ∆scsc+ ∆sc u1+ ∆u

Figure 6.28

Partially saturated
B

Saturated

max.cuUUA QU

0

cu

Range sB
s

t

fu

Figure 6.29

e
(a) (b)

Deposition
Partially saturated  Saturated

Unloading

eo

so soc

τ

A UU QU

B

soc

sv≥ soc

sv= soc

s

Figure 6.30
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Where  s
oc

 = �original pressure, prior to the removal of overburden (overconsolidation 
pressure).

s
o
	 = existing overburden pressure.

e
o
	 = existing voids ratio.

If the test pressure is smaller than s
oc

, then negative pore pressure develops, due to the 
swelling of the clay. When the vertical load equals or exceeds s

oc
, the failure envelope 

becomes horizontal. Beyond point B, the procedure is the same as for NCC.

Some applications of the QU test
Similarly to the UU-test, the QU-test applied to the determination of short-term stability 
of structures, constructed in soils of low permeability. The test is not applicable, when 
either the period of construction is exceedingly long or the drainage path from the soil is 
too short as these allow faster outflow of water than assumed and simulated.

Retaining walls: Total stress analysis applies when:

a)  The soil is saturated and little or no drainage occurs during construction.
b)  Temporary excavation is supported by a structure and insignificant pore water out-

flow is expected during its short life-time.

Excavation for foundation: The clay is weakest at the end of excavation, when the removal of 
the overburden could result in ground heave, due to the decrease in the effective pressure. 
After the construction of the footing, the applied load, which is usually larger than the 
removed overburden reduces the uplift and then strengthens the soil by consolidating it. 
Short-term stability of natural ground under embankment, yet to be constructed, may be 
analysed in terms of total stresses, proving the period of construction is too short for drain-
age to occur.

6.4.6  Consolidated-undrained (CU) test

The difference between this and the UU-test is that in the CU-test, the water is allowed 
to flow out of the consolidating specimen as the pore pressure due to s

c
 dissipates 

completely. After this, the outflow valve C (Figure  6.21) is closed and the deviator 
stress is applied slowly in order to equalize the pore water pressure, which is then 
measured.

As in the UU-test, the shear strength parameters may be expressed in terms of both 
total and effective stresses.

	 cu

cu

Interms of total stress

for saturated soil

in terms of effective stresses

for saturated and partially saturated soil

c

c

φ

φ
′
′

Some applications of CU-test

a)  Foundations for structures, where the weight of the structure consolidates the 
supporting soil and then, there is a sudden increase in the loading. This occurs 
repeatedly in water tanks and grain silos.

b)  Foundation of earth dams and embankments, where some consolidation could 
occur over extended construction period.



Shear Strength of Soils       251

c)  To determine the effective stress parameters c ′ and f′ of saturated soil. This is not 
possible in the QU-test (see Figure 6.28). In the CU-test however, the pore pressure 
induced by s

c
 is zero at the beginning of the undrained compression stage as in 

Figure 6.31.

Figure 6.31(b) shows, that if several specimens of the same soil are sheared at different 
cell pressures, then the failure envelope can be drawn in terms of effective stresses as 
well as total ones. Typical envelopes are:

1.  Sand and NCC

2.  Overconsolidated clay (OCC)

Figure 6.31

s′csc

sc

sc

u = 0 

(a)

Dissipation completed

s ′c= sc

s ′v= sc

(b)

Saturation 

At failure

sH= scsH= sc

sv= sc+ sd 

s ′H= sc– uf

s ′v= (sc+ sd ) – uf

sv= sc+ sd 

uf  

A = A
B = 1

t

s
fcuf′

t f=
s ′tanf′

t f=
s tanf cu

Figure 6.32

c ′

t

tf= c ′ + sn tanf′

tf= ccu+ sn tanfcu

s
ccu

Figure 6.33
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6.4.7  Consolidated-drained (CD) test

In this test, the sample is consolidated, as in the CU-test under cell pressure and allowed 
to drain until u = 0. Deviator stress is then applied at a slow rate so, that any pore pressure 
induced can dissipate. As the pore pressure is zero at failure, the total applied pressures 
are effective in precipitating failure i.e.  v c d

H H c

σ σ σ
σ σ σ

= +′
= =′

Typical failure envelopes

Area correction in drained tests
During an undrained test, the cross-sectional area changes, whilst the volume remains 
constant. In drained test, however, the volume also changes as a consequence of water 
loss. In order to determine the deviator stress at failure, formula (6.23) has to be modi-
fied to take this into account. The cross-sectional area A

x
 is derived in terms of volume.

H
o
 = initial height after consolidation.

V
o
 = initial volume after consolidation.

D
o
 = initial diameter after consolidation.

A
o
 = initial cross-sectional area at the end of consolidation.

During the compression stage, at strain gauge dial reading x:

	 ( )
∆ =

= −
x

x x o

changeinvolumeV

V A h x 	 ( )− = − ∆x o o xA h x V V

Also, V
x
 = V

0
 - ΔV

x

c ′d

O.C.C

(b)(a)

(c)

N.C.C
f′α

f′d

f′d

t t

t

s ′

s ′ s ′

Loose
 sa

nd

Dense sand

Figure 6.34

Ao

(a)

Vo

do

Initially

ho

(b)

Ax

x

Vx

Finally

Figure 6.35
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 ∆
−  − ∆

= =
−  

−  

x
o

oo x
x

o
o

o

1

1

V
V

VV V
A

h x x
h

h
	

But, 

 

= 0
0

0

V
A

h

∆ − 
∴ =  

 −  

x

o
x o

o

1

1

V
V

A A
x
h

Deviator stress at x:

From (6.22):	 ox x
x x

xx o

o

1

1

x
hnr nr
VA A

V

σ σ

 − 
= ∴ =  ′

∆ −  

� (6.24)

Note: For saturated soil, both V
o
 and ΔV

x
 are determined from the volume of water 

dissipated and collected in a burette. For partially saturated soils, a twin-burette arrange-
ment is used in laboratories.

Some applications of the (CD) test
In general, the test is used in problems, where water can drain under loading e.g:

a)  Foundations and piles in sand or gravel.
b)  Retaining walls in sand or gravel.
c)  Sudden variation of water level in sand or gravel slopes of rivers or reservoirs e.g. 

sudden drawdown.
d)  Earth retaining structures and fills.
e)  Foundation of earth or other structures, where some consolidation could occur due 

to slow progress of construction.
f)  Stability during construction in fissured clay.

Note: The test may be carried out on soil samples of all types such as: disturbed, 
remoulded, compacted or re-deposited. In granular soil, either drained or undrained test 
may be used to the same effect.

6.4.8  Unconfined compression strength of clays

The consistency of clays may be related to the results of unconfined compression tests 
(t

f
 = c

u
).
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The unconfined compression test
If the laboratory triaxial test is carried out without surrounding the soil specimen with 
rubber membrane and cell pressure, then it is said to be tested under unconfined condi-
tions. The usual application of this undrained test is in the field, using the apparatus 
shown in Figure 6.36 on cohesive soil only.

The compressive strength is obtained by applying an axial load to an undisturbed spec-
imen and measuring the resulting deformation. 

During the test, the volume (V) of the sample remains the same, but its cross-sectional 
area changes.

Unconfined compression apparatus

Figure 6.36  EL25–3700 series MultiPlex50 for quick undrained triaxial test.  
Reproduced by Permission of ELE International.

Table 6.8

Consistency s
u
 = 2c

u
 (kN/m2)

Very soft    < 25
Soft 25-50
Medium 50-100
Stiff 100-200
Very stiff 200-400
Hard       > 400
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Mohr-circle representation:

u
u 2

c
σ

=

If the angle (a) of the failure plane can be measured then, theoretically, f
u
 and c

u
 can be 

determined.

Where c
u
 = undrained shear strength

Failure plane

h0

P

a

P

Figure 6.37
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Figure 6.38
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Figure 6.39
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6.4.9  Standard shear box test

The shear box test is used for the determination of shear strength of soils, such as sand, 
by direct shear. The test can be drained or undrained and may be used for clay and 
remoulded soil, although the triaxial apparatus is more versatile in the testing of these 
materials. Figure 6.40 shows the schematic cross-section of the apparatus:

Outline of the undrained test-procedure:

Step 1:	� Place the soil into the box, levelling off the surface, which should be about 5 mm 
below the top of the box.

Step 2:	� Place the upper toothed grid, face downwards on the soil as well as the loading 
pad on top of the assembly.

Step 3:	� Apply the loading (W).

Loading ring
and dial gauge
to measure S.

Gauge to measure
vertical movement

Gauge to measure
displacement

Applied
shearing
force

D1
D2

S
Soil

Shearing surface

W (vertical load on soil)

Figure 6.40

Figure 6.41  EL26–2114 series Digital Direct/Residual Shear Apparatus.  
Reproduced by permission of ELE International.
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Step 4:	� Switch on the motor and read the dial gauges at regular intervals, say every 
15 seconds, until failure occurs.

Step 5:	� Calculate the applied shear force (s) from the proving ring constant and the load 
gauge reading.

Step 6:	 Repeat steps 1–5 at least four times.
Step 7:	� Calculate the compressive (s) and shear stresses (t) and plot t against f to 

obtain the coulomb envelope, hence c and f.

Example 6.5

The result of the shear box test on clayey sand is tabulated below.
Proving ring constant:	 n = 0.0102 kN/div
Area of sample:	 A = 3600 mm2 = 3.6 × 20-3 m2

Table 6.9

S = nD
1
 and τ S

A
=

Time
(Sec)

Dial
(D

2
)

read- 
ings
(mm)

Sample A Sample B Sample C

s
n
 = 42 kN/m2 s

n
 = 78 kN/m2 s

n
 = 130 kN/m2

Dial
(D

1
)

(div)

Shear
force

S
(kN)

Shear
stress

t
(kN/
m2)

D
1

(div)
S

(kN)

t
(kN/
m2)

D
1

(div)
S

(kN)

t
(kN/ 
m2)

0 0 0 0 0 0 0 0 0 0 0
15 0.3 31.8 0.02 9 63.5 0.065 18.0 91.8 0.094 26.0

30 0.6 54.7 0.056 15.5 102.4 0.104 29.0 141.2 0.144 40.0
45 0.9 74.1 0.076 21.0 129.9 0.132 36.8 183.5 0.187 52.0
60 1.2 90.0 0.092 25.5 148.2 0.151 42.0 215.3 0.220 61.0
75 1.5 104.0 0.106 29.5 170.8 0.174 48.4 240.0 0.245 68.0
90 1.8 114.7 0.117 32.5 186.4 0.19 52.8 259.0 0.264 73.5

105 2.1 123.5 0.126 35.0 198.7 0.203 56.3 277.4 0.283 78.6
120 2.4 130.4 0.133 37.0 209.6 0.214 59.4 292.2 0.298 82.8
135 2.7 137.6 0.140 39.0 217.4 0.222 61.6 302.4 0.308 85.7
150 3.0 139.4 0.142 39.5 218.8 0.223 62.0 315.9 0.322 89.5
165 3.3 135.9 0.139 38.5 217.0 0.221 61.5 324.7 0.331 92.0
180 3.6 123.5 0.126 35.0 197.6 0.202 56.0 332.4 0.339 94.2
195 3.9 338.8 0.346 96.0
210 4.2 343.8 0.351 97.4
225 4.5 348.0 0.355 98.6
240 4.8 351.0 0.358 99.4
255 5.1 347.0 0.354 98.3
270 5.4 338.8 0.346 96.0
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By plotting the tabulated figures on Graph 6.6(a) the maximum values of the shear 
stress are determined.

By plotting these figures in turn, against their respective normal stress on 
Graph 6.6(b), the failure envelope can be drawn and the shear strength parameters 
determined as:

φ
=
= °

29.8kN/m

35

C

Table 6.10

Sample t
max

 (kN/m2)

A 39.5
B 62.0
C 99.0

6.4.10  The Vane shear test

It happens sometimes, that the clay to be tested is so plastic, that it cannot be extruded 
from the ground, without causing extensive disturbance to its structure. Because of its 
softness, the soil cannot be tested in the triaxial apparatus. This applies especially to 
sensitive clays. In these circumstances, the in-situ Vane test is used to obtain fairly reli-
able values for the undrained shear strength (c

u
) of the clay. In general, the test is used 

for intact soft to firm clays, having shear strength less than 100 kN/m2.

Sensitivity of clays (St)
The shear strengths of clays are adversely affected by disturbance to a varying degree. 
The sensitivity of a particular soil to the destruction of its structure is given by:

	 u
t

R

S
τ
τ

= � (6.26)

where
t

u
 = undisturbed, undrained strength

t
R
 = remoulded, undrained strength

Strain

tR

tu

Remoulded clay

Undisturbed clay

S
he

ar
 s

tr
es

s

Figure 6.42
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In order to determine the sensitivity of a type of clay therefore, the shear strength of an 
undisturbed sample is first obtained from an undrained test. After this, the specimen is 
remoulded at the same moisture content and its unit weight as well as shear strength 
found. The clay is then classified, using Table 6.11.

Outline of the field test
The test is most frequently carried out in a borehole. The apparatus consist of a four-bladed 
vane attached to a torque-measuring apparatus, by means of extension rods, as shown.

Normally, there are two vane sizes to choose from, depending on the strength of the soil.

Table 6.11

Sensitivity (S
t
) Classification

  1 Insensitive
  1-2 Low sensitivity
 2-4 Medium sensitivity
4-8 Sensitive
8-16 Extra sensitive
> 16 Quick

Figure 6.43

Apparatus to apply
and measure torque

Borehole liners

Spacer
Torsion rod

Clay

Vane

y ≥ 3D

D = Borehole diameter

(a)

Vane

T

d

h

Torque T (kNm)

(b)

Table 6.12

Consistency
Shear strength
c

u
 (kN/m2)

Vane size (mm)

d h

Soft to firm < 50 75 150

Firm to stiff 50-100 50 100
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Step 1:	� Push the vane into the clay to a depth of y ≥ 3D, below the bottom of the 
borehole.

Step 2:	� Apply a steadily increasing torque to the rod, until failure occurs, that is when 
sudden loss of resistance is noted.

Step 3:	 Record the applied torque (T) at failure.
Step 4:	 Calculate the undrained shear strength from:

	

π
=

 +  

u
2

2 6

T
c

h d
d

� (6.27)

6.4.11  Residual shear strength (Skempton 1964)

Clay in its undisturbed state is made up of flat, flaky particles, orientated in a random 
manner. This contributes to its shear strength.

If the clay is tested and strained in a drained shear box test, the particles re-orientate 
somewhat under the effective pressure such that the shearing resistance increases.

At failure strain, the shear strength reaches its maximum value. Beyond this point, the 
orientation of the particles gradually becomes parallel, accompanied by a decrease in 
strength. At large strain, the particles are found to be parallel along the failure plane.

The shear strength of the clay along the plane of failure remains constant, if the sample 
is subject to even larger strains. At this stage, the soil is said to have reached its residual 
strength.

It must be emphasized, that the re-orientation of particles occurs in a thin layer along 
the shear zone only. The variation of shear stress with displacement under constant 
effective pressure is shown below.

x Plane off applied
shear stress (t )

xt

Figure 6.44

xxt

Figure 6.45

x Narrow shear zonext

Figure 6.46
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The Coulomb envelopes for peak and residual strength, obtained from several tests on 
the same material, show marked difference between their shear strength parameters.

For practical purposes, the residual cohesion intercept is taken to be zero, hence the 
equation for:

1.  Peak strength:	 t
f
 = c ′ + s ′ tanf ′

2.  Residual strength:	 t
r
 = s ′ tanf′

r

Notes:
a)  As the specimen is in fact remoulded within the shear zone, the residual strength 

of any remoulded sample can be determined directly by a suitable shear test.
b)  The residual strength does not depend on the consolidation history of a clay. 

Subjected to the same effective pressure, the clay exhibits the same residual 
strength in both normally and overconsolidated state.

c)  The shear test must be carried out slowly to allow time for the dissipation of excess 
pore pressure.

d)  Displacement (x
r
) could be quite large. This can be achieved in the standard shear 

box by repeating the test, on the same specimen, as many times as necessary to 
reach a steady value of shear strength. After the split box reaches the end of its 
travel, it is returned to the original position and the sample is sheared again.

Peak strength

S
he

ar
 s

tr
en

gt
h

Residual strength

xr
(large)xp

(small)

tr

tf

Displacement

xr >> xp

Figure 6.47

Peak strength

Residual strength

Effective normal pressure on the plane of shear

f′r

f′r < f′f′

t

c ′

s ′

Figure 6.48
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Alternatively, a reversible shear box can be used. In this apparatus, the box can travel 
back and forth, thus allowing the displacement to be as long as required to reach residual 
strength, without repeatedly starting from the beginning.

Alternatively, a ring shear apparatus is used for the above purpose, but it is not yet 
standard laboratory equipment.

6.5  Thixotropy of clay

Clay loses strength when remoulded. The magnitude of loss depends on its sensitivity [see 
formula (6.26)]. If, however, its water content remains unchanged, it regains some or most of 
its strength with time. The phenomenon is called thixotropy. Bentonite, mainly composed of 
the clay mineral montmorillonite, is such a thixotropic material, which expands with increas-
ing water content. A suspension of it will eventually become a gel, which can be re-converted 
into suspension by mixing. It is often used to support the sides of temporary trenches for 
diaphragm walls. Subsequent placing of concrete displaces the reconstituted slurry.

6.6  Undrained cohesion and overburden pressure

The value of c
u
 varies with depth. Skempton (1957) introduced the following approximate 

relationship for normally consolidated clays.

	 ( )u

0 NCC

0.11 0.0037 PI%
c
σ

 
= + × ′ 

� (6.28)

Where	 PI  = Plasticity Index
	 s ′

0
 = effective overburden pressure

For overconsolidated clays, Ladd and Foott (1974) purposed the empirical formula:

	 ( )0.8u u

0 0OCC NCC

OCR
c c
σ σ

   
=   ′ ′   

� (6.29)

where, OCR = overconsolidation ratio by formula (7.9).

Over-consolidated clay

xr

tr

t

Normally consolidated clay

Displacement

Figure 6.49
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Example 6.6

The clay in Figure  6.50 has the following Atterberg Limits: LL 66.4% and=
PL = 29% From (2.12), the Plasticity Index is: = −

= − =
PI LL PL

66.4 29 37.4%

The clay is overconsolidated, having OCR = 1.8. Estimate the undrained cohesion 
14 m below ground level at point P.

Effective pressure at 14 m

( )0

2

2 18 4 19.5 9.81 8 (20 9.81)

36 38.76 81.52 156.3kN/m

σ = × + × − + × −′

= + + =

For normally consolidated clay:

u

o NCC

0.11 0.0037 37.4 0.2484
c
σ

 
= + × = ′ 

For the overconsolidated clay therefore, from (6.29):

( )σ
 

= × = ′ 

= × =

0.8u

o OCC

2
u

1.8 0.2484 0.3975

0.3975 156.3 62.1kN/m

c

c

For direct application to overconsolidated clays, the two formulae are combined:

	 ( ) ( )0.8

u 0OCR 0.11 0.0037 PI%c σ = + ′  � (6.30)

And c
u
 = 1. 80.8 × (0.11 + 0.0037 × 37.4) × 156.3 = 62.1 kN/m2

GL

GWL
2 m

4 m

8 m

Fill

g = 18 kN/m3

gsat= 19.5 kN/m3

gsat= 20 kN/m3

Clay

P

Figure 6.50
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Problem 6.1

A clay specimen was tested in a triaxial apparatus at zero cell pressure, until brittle 
failure occurred at 150 kN/mm2 deviator stress. The following details were recorded:

Initial height of the specimen	 = 76 mm
Initial diameter	 = 38 mm
Loading gauge reading at failure	= 41 divisions
Strain gauge reading at failure	 = 5.2 mm
Angle of the failure plane	 = 57°

Estimate the:	 a)	proving ring constant
	 b)	Cross-section of the specimen at failure
	 c)	 Theoretical values of undrained cohesion and angle of friction.

Problem 6.2

The results of triaxial tests, carried out on three clay samples, are tabulated below. 
Each test was performed by varying the pressures during the process.

Test 1: � Decreasing the cell pressure (s
c
), whilst increasing the deviator stress (s

d
) 

so, that the total vertical pressure (s
v
) remains constant.

Test 2: � Decreasing the cell pressure and increasing the total vertical pressure by 
the same amount.

Test 3: � The cell pressure is kept constant, whilst increasing the deviator stress, as 
in the standard triaxial test.

a) � Draw the stress path diagram and obtain the equation of its failure envelope.
b)  Draw the Mohr circle diagram and obtain the equation of its failure envelope.

Table 6.15

s
H
 = s

c
 (kN/m2) 500 500 500 500

s
d
 (kN/m2) 0 200 400 600

Table 6.13

s
H
 = s

c
 (kN/m2) 500 400 300 200

s
d
 (kN/m2) 0 100 200 300

Table 6.14

s
H
 = s

c
 (kN/m2) 500 450 400 350 300

s
v
 (kN/m2) 500 550 600 650 700
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Problem 6.3

A 4 m thick layer of sandy gravel alluvial deposit is underlain by saturated, 
normally consolidated clay, as shown in Figure 6.52. A clay sample was extracted 
from a depth of 9 m below ground surface, where laboratory tests indicate the fol-
lowing soil characteristics: 

Coefficient of earth pressure at rest = 0.7
Pore pressure parameters:	A = 0.65
	 B = 1

Estimate the pore pressure in the sample just after its removal from the ground.

Sample in undisturbed state

σ
σ

σ
σ
σ

= × + × =
= × =
= × =
= − =

=′
=

2
v

2
H

2
c

2
d

2
v

2
H

4 20 5 19.5 177.5 kN/m

0.7 177.5 124.3 kN/m

5 9.81 49.1 kN/m

177.5 124.3 53.2kN/m

128.4 kN/m

75.2 kN/m

u

u0

sv

sv

sH sH = K0sv = 0.7 sv

49.1

177.5

177.5

124.3 124.3

GL

4 m

5 m

g = 20 kN/m3

Sandy gravel

Clay

Sample

Rock

A = 0.65
B = 1
K0 = 0.7

gsat= 19.5 kN/m3

Figure 6.52
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Problem 6.4

The residual pore pressure in each of the three samples taken from 9 m below 
ground surface, as in problem 8.3, is -110 kN/m2. Each sample is tested triaxially 
under different conditions, that is in a:

i.  Quick test
ii.  Consolidated, undrained (cu) test.
iii.  Consolidated, drained (CD) test.

Estimate the effective stresses in the samples after the application of: 

a)  cell pressure   = 100 kN/m2

b)  deviator stress = 120 kN/m2

Assume  B = 1    and    A = 0.65
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Chapter 7

Consolidation and Settlement

When fine-grained, cohesive, saturated soil is in its natural state, the water in the voids 
(pores) is under hydrostatic pressure. If a surcharge load (q) is placed upon the soil layer, 
it induces a pressure (Δu = q) in the pore water in excess of the hydrostatic one. It is 
explained in Chapter 5 that as the excess pore pressure dissipates, the soil particles 
reorientate, thus decreasing the volume of voids. The long-term effect of external load, 
is the compression (consolidation) of the layer. As a consequence of consolidation, there 
is a decrease in total volume of a layer and the load is subjected to downward movement 
(settlement). Its strength increases however.

There are two problems to solve in this chapter:

1.  The magnitude of consolidation of soil and consequent settlement of a structure.
2.  The length of time taken to reach maximum settlement of a structure.

7.1  Consolidation

Any change in total volume (V) means corresponding change in voids ratio (e) as well 
as in the moisture content. It is, therefore, convenient to predict the magnitude of 
consolidation in terms of voids ratio. This is done by means of the oedometer test, in 
terms of effective pressure and voids ratio. A brief outline of the test procedure is as 
follows:

Step 1:	� Determine the initial moisture content (m
0
), of the soil, as well as its specific 

gravity G
s
.

Step 2:	� Cut a sample, using a cutter of the required size. Trim off the top and bottom 
surfaces, until they are flush with the edges of the cutter (Figure 7.1).

Step 3:	� Weigh the cutter and sample in order to determine the density.
Step 4:	� Saturate the porous discs and place them into the ring with the cutter plus 

sample sandwiched between the two.
Step 5:	� Place the pressure pad onto the specimen and load it with the lowest pressure 

required (Figure 7.2).
Step 6:	� Flood the cell with water up to the top of the sample.
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Step 7:	� Read the micrometer dial (D
x
) frequently at first, gradually increasing the time 

interval until there is no perceptible change from the previous reading.
Step 8:	� Add the next load-increment and repeat steps 7 and 8 as required.
Step 9:	� After the last reading was taken for the heaviest load, remove all weights from 

the hanger. The resulting swelling is observed on the dial gauge.
Step 10:	� Release the water from the cell and the sample from the cutter. Determine 

its moisture content at the time of removal and calculate the voids ratio after 
swelling from: e

s
= m

s
G

s
.

Figure 7.2  Consolidation Cell Components. Reproduced by permission of ELE International. 

Figure 7.1  EL25-0402 Consolidation Frames. Reproduced by permission of ELE International.
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7.2  The pressure-voids ratio curve

The results of an oedometer test are normally presented by this curve. Two procedures 
are introduced in this section for the determination of the voids ratio corresponding to 
each load increment. These are:

1.  Analytical evaluation
2.  Graphical construction on Chart 7.1

7.2.1  Analytical solution

Figures  7.3, 7.4 and 7.5 illustrate diagrammatically the variation of volume and voids 
ratio, due to increments in the effective pressure during the oedometer test.

0

0

0

0

Initial moisture content
Initial height
Initial voidsratio
Initialvolume

m
h
e
V

=
=
=
=

The sample is loaded

↓
s ′

1
   = �initial applied effective 

pressure
Δh

1
 = �decrease in height due 

to s ′
1

h
1
    = �height of sample at 

the end of stage 1

2 1 2σ σ σ= + ∆′ ′ ′

Δs ′
2
 = �pressure increment

Δh = �decrease in height due 
to Δs ′

2

Δh
2
 = �decrease in height due 

to s ′
2

h
2
 = �height of sample at the 

end of stage 2

The formula for the voids ratio is derived from the volumetric changes observed between 
stages 1 and 2, caused by the load increment Δs ′

2
.

Volume of specimen at stage 1: V
1
 = Ah

1

where A is its cross-sectional area in plan.

h0

V0

e0

m0

Figure 7.3
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∆h1
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e1

m1

s ′1

Figure 7.4

h2

V2

e2

m2

∆h2 ∆h
s ′2

Figure 7.5



Consolidation and Settlement       271

Volume of specimen at stage 2: V
2
 = Ah

2

From Chapter 1, formula (1.10): V = (1 + e) V
s

Therefore: ( )
( )

1 1 s

2 2 s

1

1

V e V

V e V

= +

= +

	 from which 1
s

11

V
V

e
=

+

Change in volume: ( )
( )

1 2 1 s 2 s

1 2 s

1 (1 )V V V e V e V

e e V

∆ = − = + − +
= −

Eliminating the volume of solids,

( ) 1 1 2
1 2 1

1 11 1

V e e
V e e V V

e e

 −
∆ = − ∆ =  + 

∴
+

Change in height:	 Δh = h
1
 − h

2

Change in voids ratio:	 Δe = e
1
 − e

2

Change in volume:	 ΔV = AΔh

Eliminating area from	 V
1
 = Ah

1

But,	 ΔV = AΔh	

1

1

V V
A

h h
∆

= =
∆

	 1

1

V
V h

h
∴ ∆ = ∆

Equating	 1 1 2
1

1 11

V e e
V h V

h e
−

∆ = ∆ =
+

Eliminating V
1
	 1 2

1 1 1 11 1

e eh h e
h e h e

−∆ ∆
= =

+ +
� (7.1)

Substituting for Δh:	
1 2 1 2

1 11

h h e e
h e

 − −
=  +  � (7.2)

In general terms, the voids ratio at any stage can be calculated from the:

a)  Height and voids ratio at the previous stage
b)  Height at the stage considered.

7.2.2  Equation of the s ′–e curve

The shape of the curve in both compression and swelling stage is drawn in Figure 7.6. its 
equation is derived from (7.2).
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Where	 e
0
 = initial voids ratio, before loading

e
x
 = voids ratio at an intermediate stage

e
f
 = final voids ratio just before unloading

e
s
 = voids ratio after swelling

Also,	 h
0
 = initial height of specimen

h
x
 = height at an intermediate stage

h
f
 = final, minimum height

h
s
 = height after swelling is completed, usually 24 hours later

s ′
x
 = effective pressure at an intermediate stage

s ′
f
 = final effective pressure

m
0
 = initial moisture content

m
s
 = moisture content after swelling

D
x
 = dial reading at any stage

The voids ratio for saturated soil is given by e = mG
s
. The specific gravity is either deter-

mined or assumed to be in the region of G
s
 = 2.7.

In step 1 of the test, m
0
 is measured, hence the initial voids ratio can be calculated as:

	 0 0 s r 1( )e m G S= =

In formula (7.2), choose:	 1 0

2 x

1 0

2 x

(known)

(known)

(known)

e e

e e

h h

h h

=
=
=
=

Substituting,	 0 x 0 x

0 01

h h e e
h e
− −

=
+

Expressing e
x
:	 ( )

( )
0 0 0 x 0 0 0 0 x

0 x 0 0 x

1

1

h h e h e h e h e

h h e h e

+ − + = −
− + = −

From which,	 0
x x

0

1
1

e
e h

h

 +
= −  

� (7.3)

e

Swelling

Compression

e0

ex
es

ef

s ′
s x′ s f′

Figure 7.6
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This is the desired equation of the curve, which can be simplified further by expressing h
x
 

in terms of oedometer dial readings D
x
.

	 x 0 xh h D= −

Substituting,	 ( )0
x 0 x

0

1
1

e
e h D

h

 +
= − −  

	      

0
O x

0

1
1 1

e
e D

h

 +
= + − −  

From which,	 0
x 0 x

0

1 e
e e D

h

 +
= −   

� (7.4)

The application of (7.4) means that there is no need to calculate heights, as the void 
ratios can be found directly from the oedometer dial readings as the test progresses, 
provided e

0
 is known at the start. If, however, e

s
 and h

s
 are determined after swelling, 

then (7.3) and (7.4) are transformed into:

	 x x

1
1s

s

e
e h

h

 +
= −  

� (7.5)

	 ( )x 0 x

1
1s

s

e
e h D

h

 +
= − −  

� (7.6)

Example 7.1

The results of an oedometer test carried out on a sample of clay are given below. 
The initial moisture content was 27.8%. The initial height and diameter of the 
specimen were 19 mm and 76 mm respectively. Assume G

s
 = 2.7.

Calculate the void ratios by both formulae (7.3) and (7.4). Draw the pressure–
voids ratio curve.

Table 7.1

x

′x
2kN / m

σ
( )

x

mm

D

( )
x

mm

h
x x

1.751
1

19
e h

 
  

= − x x

1.751
0.751

19
e D

 
  

= −

0 0 0.00 19.00 0.751 0.751
1 25 0.22 18.78 0.731 0.731
2 50 0.40 18.60 0.714 0.714
3 100 0.72 18.28 0.685 0.685
4 200 1.12 17.88 0.648 0.648
5 400 1.57 17.43 0.606 0.606
6 600 1.82 17.18 0.583 0.583
7 750 1.90 17.10 0.576 0.576
8 0 0.49 18.51 0.705 0.706
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7.2.3  Alternative conventional procedure

The voids ratio is normally calculated in the literature by means of differences as given 

by the generalized form of (7.1) that is: 
0 01

h e
h e
∆

=
+

The procedure is detailed in Table 7.2.

Note: It must be remembered that e
0
 is the voids ratio of saturated soil. Therefore, unless 

the specimen is fully saturated (S
r
 = 1) initially, then the moisture content and voids ratio 

after step 10, that is after saturation and swelling, should be applied to calculate e
x
.

0Where 0.278 2.7 0.751e = × =

( ) ( )x
x x

1.751
Hence 7.3 : 1 0.751 1 1

19 19

h
e h

 = × + − = × −  

( ) x x

1.751
And 7.4 : 0.751

19
e D

 = −   

Note: Whilst h
x
 has to be calculated step-by-step by formula (7.3), the application 

of (7.4) yields the answer directly from D
x
.

e.g. for stage    x = 5

x 1.57D =
 

5

1.751
0.751 1.57

19
0.606

e
 ∴ = − ×  

=

The result in Table 7.1 is plotted on Graph 7.1.

Table 7.2

x

′x
2kN / m

σ
( )

x

mm

D

( )
x

mm

h

( )
x

mm

h∆
0

x x
0

1 e
e h

h

 
  

+
∆ = ∆

e
x

x = 0 0 0 0.00 19.00 - - 0.751
1 25 0.22 18.78 -0.22 -0.020 0.731
2 50 0.40 18.60 -0.18 -0.017 0.714
3 100 0.72 18.28 -0.32 -0.029 0.685
4 200 1.12 17.88 -0.40 -0.037 0.648
5 400 1.57 17.43 -0.45 -0.041 0.607
6 600 1.82 17.18 -0.25 -0.023 0.584

x
f

7 750 1.90 17.10 -0.08 -0.007 0.577
x

s
8 0 0.49 18.51 +1.41 +0.130 0.707



Graph 7.1
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7.2.4  Graphical solution

The range of voids ratio may be obtained without calculations, by means of Chart 7.1.

Step 1:	 If e
s
 and D

s
 are known, then plot point C.

Step 2:	� Draw the voids ratio line so that every point on it is at the same proportional 
distance from the two adjacent construction lines as point C. Note, that these 
lines are not parallel. In this example, C is at equal distance from both lines. For 
this reason, draw the lines through C so that points A and B are also at equal 
distance from each line. Reading D

f
 defines point B.

Points A and B represent the initial and final void ratios respectively. Any other value, 
corresponding to a dial reading can now be read-off directly, e.g.

For D
4
 = 1.12 mm  e

4
 = 0.648

If the initial voids ratio (e
0
) is determined in the beginning, then the voids ratio line may 

be drawn prior to the commencement of the test, without knowing the actual positions 
of points B and C. Therefore,

Step 1:	 Plot point A at D
x
 = 0 on Chart 7.2

Step 2:	 Draw the voids ratio line.
Step 3:	� Choose a suitable scale for s ′

x
 along the top of the nomogram. In this example: 

20 mm = 100 kN/m2.
Step 4:	 Plot the test results (s ′

x
 and D

x
) after each reading during the test.

Step 5:	 Plot points B and C at the end of the test.

This nomogram can now be used to find the voids ratio, corresponding to any effective 
pressure, directly, as shown on Chart 7.2.

2
1 1For 200 kN/m 0.650eσ = =′

2
2 2For 400 kN/m 0.605eσ = =′

2Change 200 kN/m 0.045eσ∴ ∆ = ∆ =′

It will be obvious from the Direct Method in Example 7.2, that Chart 7.2 could be applied 
to the estimation of foundation settlement, well before the completion of the test.

Construction of Chart 7.1
This nomogram is constructed for a 19/76 mm cutter ring. Should these dimensions be 
different, a new chart can easily be drawn by means of formula (7.4).

For example, in this case: h
0
 = 19 mm, hence (7.4) becomes: 0

x 0 x

1

19

e
e e D

+ 
= −   

Choose a suitable value for D
x
, preferably near the top of the chart, say D

x
 = 2 mm and 

substitute: x 0 0 0

2 2 17 2

19 19 19 19
e e e e=× ×= − − −

From which,	   e
x
 = 0.895 × e

0
 - 0.1053
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This equation gives the values of e
x
 along the horizontal line at D

x
= 2 mm for each 

value of e
o
, situated on the horizontal line at D

x
= 0. The construction is shown in 

Figure 7.7.

The lines, of course, may be extended for larger values of D
x
.

7.3  Forms of the s ′–e curve

The shape of the curve depends largely on the geological history of the soil. From this 
point of view, there are two main types of clay:

1.  Normally consolidated
2.  Overconsolidated.

The former is more compressible than the latter. Cohesive soils, such as clay, are formed 
by sedimentation, that is, the particles are gradually deposited and compressed by the 
weight of increasingly thick overburden. The s ′ - e curve for this material – approximately 
straight line when drawn on a semi-logarithmic scale – is called the Virgin Consolidation 
Curve.

Table 7.3

e
0

e
x

0.9 0.700
0.8 0.611
0.7 0.521
0.6 0.432
0.5 0.342
↓etc. ↓etc.

etc

0.611

0.6110.70.80.9

0.7Dx
Dx= 2 mm

Dx= 0 ex

Figure 7.7

Figure 7.8

Virgin curve

e0

e

(a)

ef

s ′

e0

e1

ex

(b)

e

ef

log s ′1

e
x =e

0 –C
c log s ′x

log s ′x log s ′f
log s ′
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7.3.1  Normally consolidated clay

This clay is formed as described above. However, as the sample is taken from a depth, 
it  swells because of the removed overburden pressure. Upon recompression, in the 
oedometer, the log s ′- e curve deviates from the straight line until the original overburden 
pressure is reached. It follows the virgin curve beyond this point.

Equation of the straight line from Figure 7.8b:
The slope is called Compression index C

c
.

x A x A
c

x 1 x

A

log log
log

e e e e
C

σ σ σ
σ

− −
= − = −

−′ ′  ′
 ′ 

X
x x A c

A

Expressing : loge e e C
σ
σ

′
= −

′ � (7.7)

In Figure 7.8(b): e
A
 = e

0

s ′
A
 = 0 	 x 0 c xloge e C σ∴ = − ′ � (7.8)

7.3.2  Overconsolidated clays

In this case, some of the overburden had been removed by erosion or otherwise. The 
most obvious example is the retreating ice after the Ice Age, leaving the well consolidated 
clay under reduced geostatic pressure. Consequently, the clay is denser than expected 
from its overburden and less compressible than normally consolidated clay. Removal 
from the ground does not produce appreciable swelling of a sample.

Figure 7.9

e
(a)

Virgin curve
e0

s ′

(b)

e0

B

A

Virgin portion

eA

ex

eB

log s ′A log s ′x log s ′B

e
x =e

A –C
c log

s ′A

s ′x
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0

oc

voids ratio before deposition

voids ratio after erosion

OCR overconsolidation ratio

overconsolidated voids ratio

e

e

e

=
=

=
=

	
σ′
σ′

= = oc

0

max. effective pressure
OCR

existing effective pressure
� (7.9)

=
>

For normally consolided clays : OCR 1

For overconsolidated clays : OCR 1

Casagrande proposed a graphical construction for the estimation of the overconsolida-
tion pressure (s ′

oc
). There are four steps to follow:

Step 1:	 Extend the virgin curve (A-B)
Step 2:	� Locate point P, the locus of of 

minimum curvature (r
min

)
Step 3:	� Draw horizontal and tangent lines 

P-H and P-T respectively
Step 4:	 Draw line P-Q as shown.

s ′
oc

 is given by the intersection of lines A-B 
and P-Q.

7.4  Coefficient of compressibility (av)

It is the slope of the s ′− e curve at a point, that is for small increments of pressure:

	
1 2

v
2 1

e ee
a

σ σ σ
−∆

= =
∆ −′ ′ ′ � (7.10)

e

P

log s ′oc log s ′

rmin

B

A

H

Q

T
V

irgin curve
a
a

Figure 7.11
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e
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e

e1
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∆e
∆s ′

s ′1
s ′

s ′2

Figure 7.12
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7.5  Coefficient of volume change (mv)

It is the change in unit volume, caused by unit change in the effective stress. The 
coefficient is applied to the estimation of consolidation and settlement.

The coefficient m
v
 may be formulated in two ways:

1.  Voids ratio method
2.  Direct method, using the oedometer reading D

x

7.5.1  Voids ratio method

	
v

v
11

a
m

e
=

+ � (7.11)

( )( )
1 2 1 2

v v
2 1 1 2 1

But from (7.10)
1

e e e e
a m

eσ σ σ σ
− −

= ∴ =
− + −′ ′ ′ ′ � (7.12)

7.5.2  Direct method

It is possible to derive a formula for m
v
 which does not include voids ratio. This means 

that it not necessary to use void ratios at all for the estimation of settlement.

From (7.10): 1 2
v

2 1

e e
a

σ σ
−

=
−′ ′

From (7.4): 

( )
0

1 0 1
0 0

1 2 2 1
00

2 0 2
0

1

1

1

e
e e D

h e
e e D D

he
e e D

h

 +
= −      +

∴ − = −    +
= −   And: 

Also, ( ) ( )01
1 0 0 1 o 1

0 0

1
1 1 1 1

eD
e e e e h D

h h

 +
+ = + − + ∴ + = −  

Therefore,	
0 02 1

v
0 2 1 0

1 1e eD D D
a

h hσ σ σ
   + +− ∆ = =       − ∆′ ′ ′   � (7.13)

From (7.11): 

( )

0 2 1

0 2 1
v

0
0 1

0

1

1

e D D
h

m
e

h D
h

σ σ
 + −
 −′ ′ 

+
−

=

Therefore,	 ( )( ) ( )σ σ σ
∆

= =
− − − ∆′

−
′ ′

2 1
v

0 1 2 1 0 1

D D D
m

h D h D
� (7.14)

where ΔD = the difference between two dial readings.
Note: It is not required therefore to know the values of e

0
 or e

s
 in order to calculate m

v
. 

Chart 7.3 is constructed from (7.14), thus m
v
 can be read off directly from the experimen-

tal curve.
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The nomogram on Chart 7.3 can be used for the evaluation of m
v
 directly from the oedom-

eter readings. The procedure is indicated for the solution if this example in Figure 7.13.

v

Sequence of construction

1. a b e

2. c d

3. e f, d f

4. f g

5. g h m

− −
−
− −
−
− =

Example 7.2

Using the oedometer test results of Example 7.1, calculate a
v
 and m

v
 for the pres-

sure range between s ′
1
 = 90 kN/m2 and s ′

2
 = 200 kN/m2, by the two methods:

1.  Voids method ratio

From Graph 7.1:    σ′
σ′

σ′

= =

∆ = =

=

∆

=1
2

2 2

2

2
1 for

0.648 for 200 kN/m

0.042

0.69  90

1

kN/

m

m

10 kN/

e

e

e

From (7.10): 
σ′

∆
= = = =

∆
2 2

v

0.042
0.000382 m /kN 0.382 m /MN

110

e
a

From (7.11): 2v
v

1

0.382
0.226 m /MN

1 1.69

a
m

e
= = =

+

2.  Direct method

0 00.751 and 19 mme h= =

From Chart 7.2:    2
1 1

2
2 2

2

for

1.12 mm for 200 kN/

0 .66 90 kN/m

m

0.46 mm 110 kN/m

D

D

D

σ
σ

σ

′
= =′

∆ = ∆ =′

= =

From (7.13): 
σ′

+ ∆   = = =      ∆
=

20
v

0
2

1 1.751 0.46
0.000385 m /MN

19 110

0.385 m /MN

e D
a

h

From (7.14): ( ) ( )σ′
∆

= = =
− ∆ − ×

2
v

0 1

0.46
0.000228 m /MN

19 0.66 110

D
m

h D
	 20.228m / MN=

d

e
b

Experimental curve

D=0.6
f

∆s ′ = 110

g
ca

h
mv= 0.23

D1

D2

s 1′ = 90 s 2′ = 200

D=0.8

Figure 7.13
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Note that line e-f is drawn between the two not-quite parallel D-lines.

Construction of Chart 7.3
The nomogram is constructed for a h

0
 = 19 mm ring from formula (7.14):

2 1 2 1
v v

0 1 0 1

1
or where

D D D Dx
m m x

h D h Dσ σ
 − −

= = = ∆ − ∆ −′ ′ 

The D-lines are plotted by assuming a convenient value of D
2
 and substituting it into the 

expression for the auxiliary variable x.

1
2

1

2.2
Taking, 2.2 getting :

19

D
D x

D
−

= =
−



1

2.2 1.8
Taking, 1.8 then 0.0233

19 1.8
D x

−
= = =

−

1

2.2 1
Or 1 then 0.0667

19 1
D x

−
= = =

−
These results are drawn in Figure 7.14 as diagonal D-lines.

All the other lines can be drawn this 
way, provided the graph paper is large 
enough in the x-direction. If not, then 
choose, say D

2
 = 1.2, so that the D

x
= 0 line 

falls within the nomogram.
The Δs ′-lines are constructed from 

x = m
v
Δs ′ by assuming a suitable value 

for  x, e.g. x = 0.06 and expressing the 
coefficient of volume compressibility as 

m
v
 

0.06

σ′
=

∆

Choosing σ′∆ = = =

=

2
v

2

0.06
110 getting : 0.000546 m / kN

110
0.546 m / MN

m

The line, connecting this point and the origin, corresponds to Δs ′ = 110 kN/m2. When all 
the other Δs ′-lines are drawn, then the auxiliary variable should be ignored. Its use was 
only to aid the construction. Instead, the scale for s ′

x
 may be chosen along the x-axis. In 

this chart 20 mm represents 100 kN/m2.

7.6  Estimation of settlement

Once the oedometer results are available, the probable settlement of a structure placed 
on the soil tested can be assessed. The vertical movements of its footings are evaluated 
by assuming one-dimensional consolidation that is any horizontal volume change is not 
considered. Three methods of settlement evaluation are to be introduced:

1.  Voids ratio method
2.  The method using m

v

3.  Direct method.

D

0.0

0.
060.0233 0.0667

0.546

mv

x

D1= 1.0

D1= 1.8

D2= 2.2

∆s¢=110

Figure 7.14
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Figure  7.15 shows the outline of the problem in general. The quantities indicated are 
common to all three methods.

where  s
n
 = Net bearing pressure (kN/m2)

H = Thickness of the layer (m)
ΔH = Long-term settlement or consolidation (mm)

B = Width of footing
Δs ′ = Effective consolidating pressure at the “point” considered.

General procedure
In order to estimate the magnitude of consolidation of a clay layer, calculate:

1.  The effective pressure (Δs ′
1
) of the undisturbed soil, at the centre-line of the layer.

2.  The effective pressure at the same depth after excavation to foundation level.
3.  The pressure induced by the net foundation loading at the middle of the layer, 

using the appropriate Boussinesq-type formula or bulb of pressure diagram.
4.  The sum of the above two pressures to get Δs ′

2
.

5.  The excess effective pressure: Δs ′ = Δs ′
2
 − Δs ′

1
. It is then substituted into the method 

applied.

Note: If the clay layer is very thick, it may be subdivided into thinner layers. The above 
procedure is then applied to the centre of each layer and the calculated amounts of con-
solidation summed, to get the total change in thickness (ΔH).

See Section 7.6 for the definition of net foundation pressure.

7.6.1  Voids ratio method

∆ ∆
=

+1 1

For the oedometer specimen :
1

h e
h e

� (7.1)

−∆
=

+
2 1

1

For the clay layer :
1

e eH
H e

Hence the change in thickness off the layer is given by:

	 2 1

11

e e
H H

e
−

∆ =
+

� (7.15)

B

Clay

H

Sand

∆s¢

∆H = settlement

∆H = consolidation

sn kN/m2

of the yearLc

Figure 7.15
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where H = initial thickness of the clay layer
e

1
 = initial voids ratio of the clay layer in its unloaded state.

e
2
 = �voids ratio at the end of the consolidation period (t = ∞), after the dissipation 

of the excess pore pressure (Δu).

Example 7.3

Figure 7.16 shows a 4 m wide strip footing, transmitting a uniformly distributed net 
load of 200 kN/m2. The ground water level is at 2.5 m below ground surface. 
Calculate the settlement of the base, using the test results of Example 7.1.

Step 1:	� Effective pressure in natural, undisturbed state at point P: s ′
1
= 2.5 × 19 + 1 

× (21 - 9.81) = 58.69 kN/m2

Step 2:	� Effective pressure at P after excavation. s ′ = s ′
1
 - 1 × 19 = 58.69 - 19  

= 39.69 kN/m2

Step 3:	� Net pressure at P due to s ′
n
 = 200 kN/m2 is obtained by means of the bulb 

of pressure diagram (Chapter 4) for strip foating at its centre line, for 
maximum value. The influence factor at 2.5 m below footing level is 
read-off as 0.75 (Chart 4.3).

σ σ= = × = 2
v nHence, 0.75 0.75 200 150kN/m

Step 4:	� Effective pressure immediately after construction (t = 0) is s ′
2
 = s ′ + s 

v
 = 

39.69 + 150 = 189.69 kN/m2

Step 5:	 Excess effective pressure at P is:
2

2 1 189.69 58.69 131kN/mσ σ σ∆ = − = − =′ ′ ′

1 m

2 m

1.5 m

Sand

Clay

Gravel

P
of layer

GWL

GLb = 2 m
 of the footing

sn= 200 kN/m2

g = 19 kN/m3

gsat= 21 kN/m3
∆s¢

Lc

Lc

Figure 7.16
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7.6.2  Method using mv

The settlement formula is derived in terms of m
v
 and Δs ′ from:

(7.15) 
11

e
H H

e

 ∆
∆ =  + 

  
11

e H
e H

 ∆ ∆
∴ = + 

(7.10) Δe = a
v
Δs ′           ( )σ σ∆

∴ ∆ ′ = ∴ ∆ = ∆ ′
+

v
v

11

a H
H m H

e H
� (7.16)

(7.11) σ ∆
= ∴ ∆ ′ =

+
v

v v
11

a H
m m

e H

Step 6:	� The voids ratios corresponding to the clay in Example 7.1 is found on 
Graph 7.1:

σ ′ = =2
1 1For 58.69kN/m 0.705e

σ ′ = =2
2 2For 189.69kN/m 0.652e

σ∆ ′ = ∆ =2131.00 kN/m 0.053e

Step 7: The magnitude of settlement is given by formula (7.15) for H = 2 m

1

0.053
H 2000 62 mm

1 1.705

e
H

e

 ∆  ∆ = = × =    + 

Example 7.4

Calculate ΔH for the footing in Example 7.3,

σ∆ ′ =
=
=

∴ =∆

2

1

2

( )Where 131kN/m Step 6

0.70

0.053

5

0.652

e

e

e

From (7.10):   
σ

∆
= =

∆ ′v

0.053

131

e
a

From (7.11):   = = =
+ ×

2v
v

1

0.053
0.000237 m / kN

1 131 1.705

a
m

e

Or from (7.14): ( ) ( )
2 1

v
0 1 0 1

D D D
m

h D h Dσ σ
− ∆

= =
− ∆ ′ − ∆ ′

Where, for s ′
1
 = 58.69 kN/m2    D

1
 = 0.48 mm

σ ′ = =2
2 2189.69 kN/m 1.08 mmD

σ∆ ′ = ∆ =2131kN/m 0.6 mmD
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7.6.3  Direct method

It has already been stated that it is not necessary to calculate the void ratios for the 
estimation of consolidation settlement.

Note, that ΔH = 62 mm has been calculated from m
v
 expressed in terms of dial reading 

(D
x
) and applied pressure in the oedometer test. The formula can be simplified further to 

eliminate Δs ′.

From (7.16):   ΔH = m
v
Δs ′H	 ( ) σ

σ
−

∴ ∆ = ∆ ′
− ∆ ′
2 1

0 1

D D
H H

h D

From (7.14):  ( )
2 1

v
0 1

D D
m

h D σ
−

=
− ∆ ′

	 Eliminating σ∆ ′

	 ( )
2 1

0 1

D D
H H

h D
−

∴ ∆ =
− � (7.17)

Therefore, settlement calculations do not require the knowledge of voids ratio.
Chart 7.4 has been constructed by means of (7.17), from which ΔH can be obtained 

directly, even during the oedometer test.

( )∴ = =
− ×

2
v

0.6
0.000247 m /kN

19 0.48 131
m

The third option is to read off the value of m
v
, directly from Chart 7.3.

The magnitude of settlement is given by (7.16):

( )σ′∆ = = × × =

=
v 0.000237 131 2 0.062 m

62 mm

H m H

This is the same figure as in Example 7.3.

Example 7.5

Calculate ΔH for the footing in Example 7.3 from (7.17). Check the results by means 
of the nomogram on Chart 7.4.

From the pressure-dial reading (experimental) curve:

σ
σ

= ′ =
= ′ =

− =

2
1 1

2
2 2

2 1

0.48 mm for 58.69 kN/m

1.08 mm for 189.69 kN/m

0.6 mm

D

D

D D

( )
−  ∴ ∆ = = × =  − −

2 1

0 1

0.6
2000 65 mm

19 0.48

D D
H H

h D

The procedure for reading Chart 7.4 is similar to that of Chart 7.3. The result is: 
mm.66H∆ =  Any deviation from the calculated results is due to graphical 

inaccuracy.
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Construction of Chart 7.4
The nomogram is constructed in similar manner to Chart 7.3 for a h

0
 = 19 mm ring, but 

from formula (7.17).

( )
− −

∆ = ∆ = =
− −

2 1 2 1

0 1 0 1

or where
D D D D

H H H xH x
h D h D

The D-lines are again plotted as on Chart 7.3, relative to the auxiliary x-axis. The H-lines 
are then constructed from ΔH = xH, by assuming a suitable value for x as before, say  
x = 0.06 and expressing the change in height as: ΔH = 0.06 H.

By choosing suitable values for H, the nomogram can be completed. For example:

If 2 m 2000 mm, then 0.06 2000 120 mmH H= = ∆ = × =

The construction is shown below:

Again, upon the completion of the nomogram, the auxiliary variable is ignored and the 
scale of σ ′x  chosen along the x-axis as before.

7.7  Rate of consolidation

It has been explained in some detail that consolidation occurs during the dissipation of 
excess pore pressure, induced by external loading. The process is very slow in fine-grained 
soil and could last for several years, or decades, after the completion of the structure. It 
is possible, therefore, that unacceptably large settlement will occur years later. Also, a 
certain amount of settlement has to be taken into account during the construction 
period, should it be prolonged. An outstanding example of this is the leaning tower of 
Pisa. Its construction started in the late 12th century and, because of settlement problems, 
it was completed in the 14th century. The movement has continued for 700 years, but 
recent successful remedial measures prevented eventual collapse.
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7.7.1  Variation of excess pore pressure with time

Terzaghi’s theory of one-dimensional consolidation is simulated in the oedometer test, 
where the soil can drain in two directions, similarly to an ‘open’ clay layer confined 
between two permeable ones as shown:

The speed of water, hence pore pressure, dissipation depends largely on:

1.  H
0
 = length of the flow path

2.  k = permeability of the soil
3.  m

v
 = compressibility of the soil

4.  The type and magnitude of loading
5.  The shape of the initial excess pore pressure (u

0
) distribution through the layer

Although, there is two-way drainage in the oedometer, nevertheless the theory applies 
equally to soil, which can drain one way only, through a half-open layer as shown:

In these cases, the flowpath (H
0
) equals to the thickness (H) of the clay layer.

Permeable layer

ClayH F
lo

w
F

lo
w

Permeable layer

H0=H
2

H0= flow path
H0

of the ‘open’ layerLc

Figure 7.18

Figure 7.19

Permeable layer

Clay

F
lo

wH0= H

Impermeable layer

(a)
Impermeable layer

Clay

F
lo

w

Permeable layer

(b)

H0= H
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7.7.2  Typical pore pressure distributions

The initial excess pore pressure (Δu = u
0
) distribution with depth in a layer depends on the 

type of loading placed on it ‘instantaneously’ at the time t = 0. The shape of the distribution 
influences the time taken in the dissipation of the excess pressure. The most typical cases 
of pressure distribution are:

Case 1:	� Rectangular, that is uniform distribution with depth. It occurs under very wide 
surcharge (q), slabs or when the layer is so thin, that the pressure difference 
between top and bottom is negligible.

Case 2:	� Triangular with apex at the top of the layer. It occurs within earthworks of 
compacted cohesive soil constructed on impervious layer, or in hydraulic fills 
placed on impervious base. Pressure is due to self-weight.

Case 3:	� Triangular with apex at the bottom of the layer. This occurs, when the layer is so 
thick that the pressure induced by a surface load – estimated by a Boussinesq-
based formula – at the bottom is negligible. It is assumed, that the loading is 
transmitted to the ground by impermeable concrete foundation.

Figure 7.20

∆sn

uο = ∆sn
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a d
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u0= q
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b c
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Note:
The variation of pressure under the 
centreline of a strip footing, for example, 
varies nearly linearly with depth.

Case 4:	� Trapezoidal, when a clay layer is contained by two permeable ones at a depth 
below a footing. The (Boussinesq) pressure difference at the top and bottom of 
the layer is large enough to form a trapezoidal pressure diagram.

7.7.3  Estimation of time

It is not proposed to detail the mathematical justification of the method to estimate time. 
Instead, the procedure will be demonstrated for the rectangular (Case 1) distribution, 
which can be extended to the other cases. In order to do this, some basic quantities to be 
used have to be defined. Their application will be made clear shortly.

Coefficient of consolidation:	 v
w v

k
c

mγ
= � (7.18)

Time factor:	 = v
v 2

0

C t
T

H
� (7.19)

where t = time
Degree of consolidation at any depth z is defined as:

=z

Excess pore pressure dissipated after time

Initial excess pore pressure

t
U

b

b

O

Assumed
to be linear

Pervious

GL

Clay

u0 = ∆sn
F

lo
or

∆sn

H

Lc

Figure 7.22
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−

= = −0 t t
z z

0 0

or 1
u u u

U U
u u � (7.20)

0

t

where, initial excess pore pressure at 0

pore pressure at time

u t

u t

= =
=

U
z
 can also be expressed alternatively as the percentage consolidation achieved at a 

depth z at time t.

Therefore,	
t

Z
0

100 1 %
u

U
u

 
= × −   � (7.21)

Normally, the estimation of the average percentage consolidation (U) of an entire layer 
is required. Chart 7.5 should be used for this purpose.

7.7.4  Coefficient of consolidation (cv)

It is apparent from formula (7.18) and from the presence of the coefficient of compressibility 
m

v
, that c

v
 can be obtained from the oedometer test. As each value of m

v
 is applied to a 

range of pressure, so is c
v
. The graphical determination of c

v
 was introduced by Taylor, as 

described below:

Step 1:	� Place the load increment, for which the value of c
v
 is required, on the specimen 

in the oedometer and record both the dial readings and time at intervals, until 
negligible consolidation is observed.

Step 2:	� Plot the square root of time against the dial readings (D
t
) and draw the 

experimental curve as shown in Figure 7.24.
Step 3:	� Extend the straight portion of the experimental curve, until it cuts the vertical 

axis at point D
0
.

Step 4:	� Draw a straight line from point D
0
 such that the abscissa at each dial reading is 

1.15 times that of the experimental curve, along its straight portion. This line cuts 
the curve at point x, which represents 90% consolidation in the pressure range.

D0

Initial
compression

t90√

Experim
ental curve

Dt

D90

1.15 a

x
U = 90%

a

t√

P
rim

ar
y 

co
ns

ol
id

at
io

n

Secondary
consolidation

Figure 7.24
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Step 5:	� Estimate c
v
 from (7.18):	

2

v
90

0.212 h
C

t
= � (7.22)

where h = average height of the specimen in the oedometer for the load increment. Also 
taking T

v
 = 0.848 for U

90
 on Chart 7.5 (Curve B for open layer).

Example 7.6

A settlement of 62 mm was estimated for the clay in Example 7.3, induced by the 
load increment:

σ
σ

σ

′ =
′ =

∆ ′ =

2
1

2
2

2

58.69 kN/m

189.69 kN/m

131.00 kN/m

The coefficient of consolidation for this loading is found by averaging the c
v
, 

determined for load increments 100 and 200 kN/m2.

Test results for load increment Δs ′
2
 = 100 kN/m2

( )1
Averageheight : 18.28 18.60 18.44 mm

2
h = × + =

90 90From Graph 7.2A : 13.6 185 minutest t= ∴ =

From (7.22) ×
= =

2
2

v

0.212 18.44
0.39 mm /min

185
c

Table 7.5

t (min) 0 0.2 0.5 1 5 10 30 60 120 240 360 480 1440

t 0 0.45 0.71 1 2.2 3.2 5.5 7.7 11 15.5 19 21.9 37.9

D
x
 

(mm)
0.4 0.43 0.44 0.455 0.48 0.515 0.545 0.585 0.635 0.673 0.69 0.7 0.72

Table 7.4

(Extracts from Table 7.2)

x ( )
x

2kN/m

∆ ′σ D
x

(mm)
h

x

(mm) e
x

1 50 0.40 18.60 0.714
2 100 0.72 18.28 0.685
3 200 1.12 17.88 0.648
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Graph 7.2 
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Test results for load increment Δs ′
3
 = 200 kN/m2

( )1
Averageheight : 17.88 18.28 18.08 mm

2
h = × + =

90 90From Graph 7.2B : 15.5 240 minutest t= ∴ =
2

2
v

0.212 18.08
and 0.289 mm /min

240
c

×
= =

( )= × × = 2
v

1
The average values is: 0.39 0.289 0.34 mm /min, for these increments.

2
c

Table 7.6

t (min) 0 0.2 0.5 1 5 10 30 60 120 240 360 480 1440

t 0 0.45 0.71 1 2.2 3.2 5.5 7.7 11 15.5 19 21.9 37.9

D
x
 (mm) 0.72 0.73 0.75 0.76 0.795 0.84 0.887 0.94 1.0 1.05 1.072 1.087 1.12

Sand u0= 131 kN/m2

t = ∞ t = 0

cv = 0.277 mm2/min

Clay

Gravel

F
lo

w
F

lo
w

H = 2 m

H0= 1 m

H0= 1 m

Lc

Figure 7.25

Example 7.7

Using c
v
 = 0.277 mm2/min, estimate the time taken to reach 50%, 70% and 90% 

of the total theoretical consolidation of a 2 m thick clay layer, subjected to an 
initial uniform, excess pore pressure distribution of 131 kN/m2. Assume:

1.  Two-way drainage
2.  One-way drainage

0:
2

-
H

Two way drainage H =
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Curve B in Chart 7.5 is applicable to uniform pressure distribution for both one-
way and two-way drainage.

From (7.19): 
2 2

60
v v v

v

1000
3.61 10 minutes

0.277

H
t T T T

C
= = = ×

= ∴ = × × = ×
= =

∴ = × × = ×=
= =

∴ = × × = ×=
= = =

6 6
50

v

6 6
70

v

6 6
90

v

For 50% 3.61 0.195 10 0.704 10 minutes

0.195 489 days

3.61 0.403 10 1455 10 minutesFor 70%
0.403 1010 days

3.61 0.848 10 3.06 10 minutesFor 90%
0.848 2126 days 5 years 10 months

U t
T

tU
T

tU
T

0-One waydrainage H H=

2 2
0

v v
v

2000

0.277

H
t T T

C
= =

6
v14.44 10 minutest T∴ = ×

∴ = × × = ×=
= =

∴ = × × = ×=
= =

∴ = × × = ×=
= = =

6 6
50

v

6 6
70

v

6 6
90

1
v 2

14.44 0.195 10 2.82 10 minutesFor 50%
T 0.195 1958 days

14.44 0.403 10 5.82 10 minutesFor 70%
0.403 4041 days

14.44 0848.10 10 12.24 10 minutesFor 90%
0.848 8504 days 23 years

tU

tU
T

tU
T

Note: Because of the assumptions made in the theoretical derivation of the 
formulae, as well as due to the uncertainties of the in-situ drainage conditions, 
the results are not exact, and should be considered as indicative information only.

Gavel

Dense rock

Clay F
lo

wH0= H = 2 m

Figure 7.26
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The curves were plotted from :

UA = 100 × [1 − 1.032 × (e−2.467Tv + 0.037 × e−22.21Tv)] %

UB = 100 × [1 − 0.811 × (e−2.467Tv + 0.111 × e−22.21Tv)] %

UC = 100 × [1 − 0.516 × (1.14e−2.467Tv + 0.275 × e−22.21Tv)] %

Chart 7.5 
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7.8  Pore pressure isochrones

It is theoretically possible to visualize the progress of pore pressure dissipation with time, 
by means of isochrones. These are sinusoidal curves, indicating the variation of pressure 
with depth, at any time t

x
 between t = 0 and t = ∞.

Remember:	 t = 0 assumes instantaneous application of loading.
	 t = ∞ indicates that all excess pore pressure had dissipated.

The actual shape of an isochrones depends on:

a)  the initial distribution of excess pore pressure
b)  the drainage conditions (one or two-way).

The various relationships during the consolidation process are shown below for uniform 
initial excess pore pressure distribution and two-way drainage.

The tth isochrone is constructed by 
means of Chart 7.6. From this figure:

σ= − ∆ ′t 0 tu u

Where	 A
t
 = �area under an isochrone. It equals to the amount of consolidation yet to 

occur.
	 A

c
 = area indicating the amount of consolidation completed so far.

	 A = area of pressure diagram.

	 t cA A A= + � (7.23)

	 Δs ′
t
 = �increasing effective pressure at time t, as the excess pore pressure 

dissipates.
	 u

t
 = pore pressure at time t.

Application of Chart 7.6
Only one half of the curves are drawn as the rest of the isochrones are symmetric. 
The procedure is best introduced by an example.

Isochrome
at time t

t = ∞ t = 0

∆s t′ut

u0

Ac

z

H0

H0

A t

Figure 7.27
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Also the pore pressure u
t
 can be expressed from (7.20) in terms of u

0
 and u

z
.

	 ( )= − ∴ = −t
z t 0 z

0

1 1
u

U u u U
u

� (7.24)

Step 1:	� Read-off the value of U
z
 for various depth factors along the curve of T

v
, from 

Chart 7.6.
Step 2:	 Calculate u

t
 = 131 × (1 − U

z
) for each depth factor.

Step 3:	� Draw u
t
 for various depths. In this example z happens to be the same as d, 

because H
0
 = 1.

The results are tabulated and the three isochrones drawn on Graph 7.3.
The plotted isochrones can be used for three purposes:

1.  To visualize the progress of excess pore pressure dissipation with time.
2.  To calculate the average percentage consolidation to time t.
3.  To calculate and plot curve B on Chart 7.5.

7.8.1  Average percentage consolidation

The area (A
t
) under an isochrone can be calculated by means of Simpson’s Rule. As the 

total area (A) is known, the amount of consolidation to time t is given by (7.23).

c tA A A= −

Example 7.8

Figure 7.25 shows an open, that is two-way-draining, clay layer under 131 kN/m2 
uniform excess pore pressure. The coefficient of consolidation of the clay is 
0.277 mm2/min. Draw the isochrones for the excess pore pressure existing at 
376, 752 and 1500 days after the loading of the clay.

From (7.19): 
( )

−= = = × 6v
v 2 2

0

0.277
0.277 10

1000

C t
T t t

H

For t 	 = 376 × 24 × 60 = 541440 minutes
For T

v
 	= 0.277 × 541440 × 10-6 = 0.14997 (say T

v
 = 0.15)

For t 	 = 752 × 1440 = 1082880 minutes
For T

v
 	= 0.277 × 1082880 × 10-6 = 0.29995 (say T

v
 = 0.3)

For t 	 = 1500 × 1440 = 2160000 minutes
For T

v
 	= 0.277 × 2.16 = 0.598 (say T

v
 = 0.6)

The flow path is H
0
 = 1 m, therefore the depth factor: 

0

m
1

z
z

H
zδ = = =
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If A represents 100% consolidation at time t = ∞, then A
c
 is equivalent to U% average 

consolidation, that is:

	 = c100 %
A

U
A

� (7.25)

Application of Chart 7.5
Figures 7.20-7.23 show various types of initial pore pressure distributions. Of these, only 
uniform distribution in an open layer and the application of curve B were discussed in the 
foregoing examples. In this section the most typical cases in relation to curves A, B and 
C will be summarized for open as well as half-open drainage.

Open layer
In this case, curve B is to be used for linear pore pressure distributions of whatever 

shape, taking 0 2

H
H = , that is half of the layer thickness.

F
lo

w

H

H0

u0

Curve

B B B BClay

ua uau0

u0

Pervious layer

Pervious layer
ub ub

B
H0

Figure 7.28

Example 7.9

The areas A
t
 for the three isochrones are given in Graph 7.3. Determine U% for 

each and compare the results with the coordinates of curve B on Chart 7.5. The 
calculations are tabulated below:

Check for curve B, Chart 7.5:

v

v

v

For 0.15 44%

For 0.3 61.4% Correct

For 0.6 81.2%

T U

T U

T U

= =
= =
= =

Table 7.8

From Graph 7.3

T
v

A 
t

(cm2)
A

c
 = A - A

t

= 262 - A 
t
 (cm2) U = c100

A
%

262

0.15 147.8 114.2 43.6
0.3 100 162 61.8
0.6 47.8 214.2 81.8
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Half-open layer (Either at its top or at its bottom)
In this case, the flow path equals to the layer thickness, that is H

0
 = H.

Note that for trapezoidal distribution, the U% for each value of T
v
 has to be calculated 

from:

	 ( )T B B A

1
%

1

r
U U U U

r
−

= − −
+ � (7.26)

and	 = >a

b

1
u

r
u

� (7.27)

where	 U
T
 = U% for the trapezoidal distribution

	 U
B
 = U% obtained from curve B

	 U
A
 = U% obtained from curve A

	 u
a
  = initial pore pressure at the top

	 u
b
 = initial pore pressure at the bottom

F
lo

w

Clay

H0= H
Curve

B

H0

B A

uau0
Impervious layer

Pervious layer
u0 ub

Figure 7.29

Example 7.10

Calculate the percentage consolidation for the given trapezoidal distribution  
at T

v
 = 0.5.

150
1.875

80
r = =

From Chart 7.5:	 For T
v
 = 0.5

	 U
B
 = 76.4%

	 U
A
 = 70%

( )T

0.875
76.4 76.4 70 74.45%

2.875
U∴ = − × − =

ua= 150 kN/m2

ub= 80 kN/m2

F
lo

w

Figure 7.30
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Variation of isochrones – typical cases
The way in which the pore pressure dissipates depends on the shape of the excess 
pore pressure diagram and, whether the layer is open or half-closed. The variation of 
isochrones for the distribution shapes shown in Figure 7.29 are depicted below.

For rectangular initial distribution curve B (Chart 7.5) may be used for both open and 
half-closed layer.

ua

ub

Figure 7.31

In this way, a curve can be constructed for each particular ratio r.
Should u

a
 be smaller than u

b
, then the following formula would yield U

T
 %:

	 ( )−
= − −

+T B B A

1
%

1

r
U U U U

r � (7.28)

1r∴ <
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H0

Figure 7.32
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Curve B can be used, when the open layer is hydraulic fill or very thick so, that the 
pressure induced at the base may be assumed zero.

In half-closed layer curve A may be used.

0u Hγ=

Half-closed, thick layer subjected to foundation 
pressure. Use curve A.

Half-closed layer. Excess pressure is due to self- 
weight. Use curve C.

Very thick half-closed layer. Initially, water flows in 
both directions and the lower part of the layer 
swells. Eventually, only upward flow occurs. Use 
curve C.

Pervious

Impervious

t = 0t = ∞

Fill

F
lo

w

H0

u0

Figure 7.36
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Pervious
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Figure 7.34
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F
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Figure 7.35
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Thick open layer. Excess pressure is due to a combina-
tion of self weight and superficial loading. Use curve B.

7.9  Coefficient of permeability (k)

Once the coefficients of consolidation (c
v
) and volume compressibility have been 

determined, then k can be calculated from (7.18).

7.10  Time from similarity

Suppose a clay layer of thickness H is proposed to be loaded by effective pressure s ′.
If a sample from this clay is subjected to the same pressure in the oedometer, then its 

c
v
 and h can be calculated. This value of c

v
 applies to the clay of thickness H equally. Now 

for the degree of consolidation, T
v
 is the same for both layers, therefore formula (7.19) 

may be written as:

	
2

v
x2 2 2

v

T t t tH
t

c h h h
== = � (7.29)

Pervious
t = 0ua

ub
Pervious

F
lo

w
F

lo
w

t = ∞

Figure 7.38

Example 7.11
2

v
2

v
9 2

For agivenclay 0.000546 m / kN

0.34 mm /min

5.7 10 m /s

m

c
−

=
=
= ×

Calculate the coefficient of permeability in metre/second units.

v v w
9 4

13

10

From :

5.7 10 5.46 10 9.81

305

(7

10

0.305 1

.18

0 m/

)

s

k c m γ
− −

−

−

=
= × × × ×
= ×
= ×
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where	 t  = time taken in the oedometer to reach U% consolidation.
	 t

x
 = time required for U% consolidation of the clay layer of thickness H.

7.11  Total settlement

Figure 7.24 indicates that the total settlement has three components:

1.  Initial compression
2.  Primary consolidation
3.  Secondary consolidation

7.11.1  Initial compression

Initial compression or immediate settlement is a rapid elastic deformation of saturated 
cohesive soil, under suddenly applied load. The magnitude of settlement may be 
estimated from the general formula for rigid footing placed on the surface.

	 ( ) pd 1i

qB
H I

E
µ= − � (7.30)

p

where width of footing
bearing pressure
modulus of elasticity
Poisson’s Ratio 0.5
influence factor

length of footing

B
q
E

I

L

µ

=
=
=
= =
=
=

Skempton’s influence factors

The modulus of elasticity is found from the triaxial compression test for each soil.
Average ranges:  �  Soft clays: 1400 <E< 3500 kN/m2  

Hard clays: 5500 <E< 14000 kN/m2

7.11.2  Primary consolidation

This is assumed to occur when practically all of the excess pore water had been dissipated. 
In theory, 100% primary consolidation is completed at this stage. Figure 7.24 shows how 
90% consolidation is estimated. Once U = 90% is known, U = 100% is determined by 
proportion. Thus, by Taylor’s ‘square root of time’ method in Graph 7.2.

Table 7.9

Rectangle
L/B

1 1.5 2 3 4 5 10 100 Circle

I
p

0.82 1.06 1.20 1.42 1.58 1.70 2.10 3.47 0.79
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90 0 100 0

90% 100%

D D D D− −
=

100 0.731.05 0.73

0.9 1

D −−
=

100

0.32
0.73 1.086 mm

0.9
D∴ = + =

Alternatively, the percentage consolidation (U%), hence the coefficient of consolidation 
can be determined graphically by Casagrande’s log of time method as shown in 
Figure 7.40.

Step 1:	 Plot the dial readings against the logarithm of time (t).
Step 2:	� Locate D

0
 (for U

0
 = 0%), by selecting two points (A and B) on the first, parabolic 

part of the curve at times t
1
 and t

2
 = 4t

1
.

Step 3:	 Measure the vertical distance between points A and B.
Step 4:	 Draw length AB vertically from A to locate D

0
 (for U

0
).

Step 5:	� Extend the two straight portions of the experimental curve until they intersect 
at point X. This locates D

100
 for U

100
 = 100%.

Step 6:	 Scale D
0
 to D

100

7.11.3  Secondary consolidation

This is indicated by the continuation of the oedometer test curve beyond the primary 
stage, that is, after the near-complete dissipation of excess pore pressure. The reason 
for it is assumed to be the viscosity of water flowing very slowly through the, by now, 

0.7

D0 = 0.73

U90

U100

U0

t (min)

D (mm)

D90 = 1.05

D100 = 1.086

Figure 7.39
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denser soil. Secondary compression is smaller in overconsolidated clays than in normally 
consolidated ones. The extent of the consolidation may be estimated from:

	 α

− ∆ =   
2 1Log logt t

H c
H

� (7.31)

where cα = coefficient of secondary consolidation given by

	 α
∆ ∆

= =
−  

  
2 1 2

1

log log
log

e e
c

t t t
t

� (7.32)

where ∆e is as shown below.

Organic soils and plastic clays have low values of cα, hence their secondary consolidation 
is high. Conversely, overconsolidated clays have high values of cα. Soils were classified 
by G. Mesri, according to their secondary compressibility:

e

e100

∆e

S
ec

on
da

ry
P

rim
ar

y
t1 t2

log t

Figure 7.41

Table 7.10

ca

Secondary 
compressibility

< 0.002 Very low }
}

}

Over consolidated clays
0.004 Low
0.008 Medium Normally consolidated 

clays0.016 High
0.032 Very high

Organic soils0.064 Extremely high
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Problem 7.1

A consolidation test has been carried out on a standard 19 mm thick clay sample. 
The oedometer’s deflection gauge indicated 1.66 mm, just before the removal of 
the last load, that is, no swelling was allowed. The voids ratio was found to be 0.55 
at this stage.

Determine:

a)  The initial voids ratio of the saturated specimen
b)  The height of the specimen for the voids ratio of 0.62

Problem 7.2

Superficial deposits were removed some years ago from a site, to be used for 
housing development. The section of the ground in Figure 7.42 shows the known 
properties of two soil layers overlying solid rock. The overconsolidation ratio of 
the stiff clay layer was found to be 5.

Estimate:

a) � The pressure exerted originally by the removed overburden on the top of the 
gravelly sand layer.

b) � The thickness of the superficial deposit, assuming its mass density as 
1988 kg/m3.

Stiff clay e = 0.62
Centre line
of the layer

1 m

Gs = 2.75OCR = 5 A

Rock

Existing surface

Gravelly sand

GWL

e = 0.8
Gs = 2.67

2.5 m

3 m

Figure 7.42
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Problem 7.3

An oedometer test has been carried out on a clay specimen, taken from a 2.5 m 
thick layer. The results recorded were:

The voids ratio, 24 hours after the removal of the last, 600 kN/m2 load, was found 
to be 54.2%.

The original effective pressure at the centre of the 2.5 m thick clay layer is 
100 kN/m2.

The final effective pressure, after the construction of the structure, will be 
200 kN/m2, at the same depth.

Estimate:

a)  The voids ratio for each load increment
b)  The coefficient of volume compressibility for Δs ′ = 200 - 100 = 100 kN/m2

c)  The settlement of the structure due to Δs ′ = 100 kN/m2, in millimetres

Table 7.12

Swelling stage
↓

s ′
x
 = pressure (kN/m2) 0 50 100 200 300 400 500 600 0

D
x
 = dial reading (mm) 0 0.24 0.46 0.80 1.11 1.31 1.44 1.50 0.66

Problem 7.4

Site and laboratory investigations indicate that a 2 m thick sandy gravel surface 
layer of 19.8 kN/m3 density is underlain by 4.4 m thick medium clay of 20.4 kN/m3 
unit weight. The clay itself is underlain by very stiff clay. The ground water table 
is 2 m below the surface. It is proposed that:

a)  Either the entire area is covered by compacted fill, surcharging the ground 
by 360 kN/m2

b)  Or constructing a 6 m wide, long, rigid, concrete slab on the surface, 
imparting 360 kN/m2 foundation pressure to the ground.

Estimate the effective and hence the excess effective pressures, induced by the 
two types of loading of the centre (x - x) of the layer at time:

  1.  t = 0, that is at the start of consolidation
2.  t = ∞, that is at the completion of consolidation.

Compare the two results.
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Problem 7.5

The oedometer consolidation test results, carried out on a normally consolidated 
clay, are given in Table 7.14. Plot log s ′

x
 against e

x
 on Graph 7.4 and determine the 

Compression Index, hence express the voids ratio in terms of formula (7.8). 
Indicate the extent of validity of this expression.

Graph 7.4
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Problem 7.6

A 4 m wide strip footing is to support part of a settlement-sensitive structure. It is 
proposed to be based 0.5 m below the surface in a 3.3 m thick, dense, coarse sand 
layer. The sand is underlain by normally consolidated clay, 4.6 m thick, below 
which compact gravel is found. The ground water table is 3.3 m below the surface. 
The footing transmits a net pressure of 250 kN/m2, including self weight to the 
soil. Soil characteristics:

Sand:	 Unit weight	 = 18.2 kN/m3

Clay:	 Saturated density	 = 20.1 kN/m3

	 Equation of void ratio:	 e
x
 = 0.707-0.083 log (s 

x
)

	 Valid for: 	 50 ≤s ′
x
 ≤ 500 kN/m2

	 Coefficient of consolidation	 = 4.14 mm2/min
	 Coefficient of volume change	= 0.1812 × 10-3 m2/kN

Calculate the voids ratio in the unexcavated state and just after the construction 
of footing at:

Point A:  Top of the clay layer
Point C:  Centre line of the clay layer
Point B:  Bottom of the clay layer

Estimate the primary consolidation of the clay layer.

Problem 7.7

Calculate the time taken for the structure in Problem 7.6 to settle 78 mm.

The pore pressure distribu-
tion is nearly triangular, thus 
curve B (Chart 7.5) may be 
applied.

Clay
A

C

F
lo

w
F

lo
w

B

Sand

Gravel

H0

H0 = 2.3 m

ua = 0

uc= 136.1 kN/m2

ub= 127.2 kN/m2

Figure 7.50
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Problem 7.8

The structure in Problems 7.6 and 7.7 was indicated to be sensitive to settlement. 
However, it was estimated that the 4.6 m thick clay layer would consolidate about 
78 mm in 2.1 years. In order to prevent, or at least minimize settlement, the ground is 
proposed to be pre-loaded by metal kentledge of 43 kN/m3 unit weight, for one year.

Calculate the height of kentledge layer required to consolidate the clay by 
78 mm, using the time-consolidation curve on Graph 7.5 for the pressure range 
100-200 kN/m2 at m

v
 = 0.1812 × 10-3 m2/kN

Problem 7.9

The magnitude of consolidation of the clay layer in Problem 7.6 was estimated to 
be 87 mm, by using the maximum pressure below the centre of the footing 
(See Figure 7.49). Show that the result would not be much more different, should 
the settlement be determined by means of the average induced pressure.

Problem 7.10

Starting from formula (7.11), show that v
1

h
m

h σ
∆

=
∆ ′

Problem 7.11

A long 4 m wide concrete slab is constructed in an 11 m thick, homogeneous clay 
layer, one metre below the ground surface to minimize seasonal effects. There is 
no evidence of ground water table. Oedometer test results indicate that the 
coefficient of volume change may be taken as 2.47 × 10− 4 m2/kN for the pressure 
range 50 − 300 kN/m2. It is specified that the slab should not settle more than 
250 mm.

Determine: � the required net and total bearing pressures to produce consolidation 
of this magnitude.

Check, whether the bearing capacity of the clay is exceeded by the estimated 
bearing pressure. Adopt 2.5 as thefactor of safety.
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Chapter 8

Lateral Earth Pressure

Vertical pressure (s
v
) at a point below ground surface is normally induced in four 

ways:

a)  By an imposed structural load, as given by one of the Boussinesq-based formulae. 
It decreases with depth in a non-linear manner.

b)  By a surcharge of infinite extent on the ground surface. This pressure does not vary 
with depth, but remains constant.

c)  By the overburden. This geostatic pressure increases linearly with depth.
d)  By the ground water. This hydrostatic pressure also increases linearly with depth.

Each of these induces horizontal pressure (s
H
) at the point considered. The magnitude of 

s
H
 is governed by a constant of proportionality (K) normally called the ‘coefficient of 

lateral earth pressure. This relationship is expressed in general as:

	 H v H vthat is Kσ σ σ σ=∝ � (8.1)

Figure 8.1 shows these four types of pressure.

q
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sv

sv

sH sH

sH sH
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sH sH

u

u
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u
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Figure 8.1



320       Introduction to Soil Mechanics

V V V V W HIq q h u hσ σ σ γ σ γ σ= = = = = =

Active:	 s
H
 = K

a
s

V
	 s

H
 = K

a
q	 s

H
 = K

0
s

V
	 K = 1

Passive:  s
H
 = K

p
s

V
	 s

H
 = K

p
q

Where,  K
0
 = �coefficient of earth pressure at rest, as the soil is in its natural undisturbed 

state when only vertical strain can occur during deposition.
K

a
 = �coefficient of active earth pressure, when the soil can expand horizontally 

due to load s ′
v
 and yielding lateral support.

Note, that the pressures are expressed as effective ones, when ground water is present. 
In these terms, the ‘active’ pressure is given by:

	 a a vKσ σ=′ ′ � (8.2)

8.1  Resistance to active expansion

If the expanding soil is supported by some sort of structure, which in turn is supported by 
soil on its other side, resistance to this expansion develops as the soil in front of the 
structure is compressed. The available resisting horizontal pressure depends also on the 
vertical soil pressure on the other side.

	 p p vKσ σ=′ ′ � (8.3)

p

p

a 0
p a

p 0

where coefficient of passive earth pressure.

passive pressure

K

K K
K K

K K

σ
=

=′

<
∴ >

>

sv′

sv′

sp′ = Kp sv′sp′

Figure 8.3

sv′

sv′

K0 sv′ K0 sv′

sv′

sv′

Expansion
Ka< K0

sa′ sa′ = Kasv′

Figure 8.2
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Figure 8.4 shows a typical occurrence of active and passive pressures.

pσ ′ resists the action of σ ′a  on the retaining 
wall. See also Figure 8.7.

Note: Values of K
0
, K

a
, K

p
 and their application were evolved in the following theories:

1.  Rankine’s for cohesionless soil (f–soil)
2.  Rankine-Bell theory for c–f soil
3.  Coulomb’s wedge theory
4.  Culmann’s construction

When there is no evidence of groundwater table, then σ ′a  = s
a
 = K

a
s

v
 and pσ ′ = s

p
 = K

p
s

v
.

8.2  The value of K0

It is determined in triaxial tests, during which the lateral strain is kept zero by the 
synchronized increase of cell pressure and deviator stress. The coefficient is applied in 
the design of structures constructed so, that the soil cannot deform, hence may be 
considered at rest. This type of structures are:

a)  Braced excavations
b)  Basement walls
c)  Culverts and underpaths
d)  Cantilever retaining walls
e)  Abutments of rigid portal frame bridges.

The magnitude of K
0
 depends largely on the:

1.  Density of the soil
2.  Stress history of the soil.

There are several empirical formulae for the determination of K
0
, but typical ranges 

are listed in Table 8.1.

GL

GL

sp′
sv′

sa′

sv′

Figure 8.4

Table 8.1

Soil K
0

Compact sand 0.4 − 0.6
Loose sand 0.45 − 0.5
Normally consolidated clay 0.5 − 0.75
Overconsolidated clay 1 − 4
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Empirical formulae

a)  Jáky (1944):  For normally consolidated sand and clay:

	 φ= −0 1 sinK � (8.4)

b)  Alpan (1967):  For normally consolidated clay:

	 = +0 0.19 0.233log( )PIK � (8.5)

Where, PI = Plasticity index
c)  Mayne-Kulhawy (1982) for overconsolidated soil:

	 φφ ′= − sin
0 (1 sin ) )OCR(K � (8.6)

Where, OCR = overconsolidation ratio

8.3  Stress path representation (Lambe 1967)

During the sedimentation process, normal consolidation occurs and there is no percepti-
ble horizontal compression, hence s ′

H
 < s ′

v
 and K

0
< 1. If the value of K

0
 is known, then the 

stress path for points at increasing depth below ground level can be plotted. The soil is 
said to be in its K

o
-state and the line connecting the plotted points is called the K

0
–line. 

The slope angle q
o
 can be determined directly from K

0
, using the formulae derived below 

(see also chapter 6):

From (6.14):  ( )H H 01 1 tan
q

p q p p
p

σ σ θ 
= − = − = −′ ′  

∴

From (6.15):  ( )v v 01 1 tan
q

p q p p
p

σ σ θ 
= + = + = +′ ′  

From Graph 8.1:  θ =0tan
q
p

From (8.1):	 0H
0 0

0v

1 tan

1 tan
K K

θ

σ θ
σ −′= ∴ =

+′
� (8.7)

From (8.7):	

( )
θ θ
θ

+ = −
+ = −

0 0 0 0

0 0 0

tan 1 tan

1 tan 1

K K

K K

	 10 0
0 o

0 0

1 1
tan tan

1 1

K K
K K

θ θ −  − −
= ∴ =  + + 

� (8.8)

The significance of the K
0
 line

The following sections will show that the K
0
 line provides a visual dividing line between 

active expansion and passive compression. The positions of the K
a
 and K

p
 lines, relative 

to K
0
 are shown in Figure 8.5.
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The departure of K
a
 and K

p
 from the K

0
 line depends on the relative magnitudes of s ′

H
 and 

s ′
v
 as indicated. See also Example 8.2.

+q

−q

O

qa

q0

K0-l
ine

P
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Kp = 1

K a-
line Expansion

qp

Kp-line

Ka< 1

Kp< 1

Kp > 1

s HH′ < s v′

s HH′ > s v′

s H′ = s v′∴

Figure 8.5

Example 8.1

Figure 8.6 shows the profile of uniform, normally consolidated clay with ground 
water level at a depth of 2 m. The coefficient of lateral earth pressure at rest is 
K

0
 = 0.6.
Calculate s ′

v 
, s ′

H
 as well as the stress path co-ordinates p ′ and q ′ at 1, 2, 3 and 

4 m below ground level. Draw the K
0
 line on Graph 8.1.

v( )Effective pressures σ ′

Table 8.2 contains the rest of the calculations, using the stress path formulae 
introduced in Chapter 6.

Clay
g = 19 kN/m2

GWL

gsat= 21 kN/m2

g ′ = 21−9.81
         = 11.2 kN/m2

1 m

GL

2 m

3 m

60.4
4 m

49.2

38

19 sv′ = 19×1 = 19 kN/m2

sv′ = 2×19 =  38 kN/m2

sv′ = 38 + 11.2 = 49.2 kN/m2

sv′ =  49.2 + 11.2 = 60.4 kN/m2

Figure 8.6
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8.4  Rankine’s theory of cohesionless soil

The theory was proposed by Rankine (1857) for homogeneous f–soil having horizontal 
surface. Its development can be illustrated by Mohr’s diagram. The basis of the proposal 
was, that the soil changes from a state of elastic equilibrium into a plastic one, when the 
entire mass is on the point of imminent shear failure. Any further change in the applied 
pressure would cause continuous deformation (plastic flow). This state is reached on the 
Mohr-diagram, when the circle of principal stresses (s

V
 & s

H
) reaches the Coulomb failure 

envelope. As the shear stress is zero on the plane of principal stresses, they are plotted 
along the horizontal (s) axis at t = 0.

Figure 8.7 depicts the movement of soil mass after plastic failure. The surface of the 
retaining wall is assumed to be smooth.

From Graph  8.1, the slope angle of K
0
 line is q

o
 = 14°. Graph  8.2 shows the 

Mohr-circle representation of the pressures in the soil at rest, the envelope lies 
practically along the K

0
 line, at angle f′

0
 = 14.4°.

Table 8.2

Point s ¢
v
 (kN/m2)

s ¢
H
 = 0.6 s ¢

v

(kN/m2)

( )v H

1

2
q −= ′ ′σ σ

(kN/m2)

( )v HH

1

2
p q −= + = ′ ′′ σ σσ

 
(kN/m2)

1 19 11.4 3.8 15.2
2 38 22.8 7.6 30.4
3 49.2 29.5 9.8 39.4
4 60.4 36.2 12.1 48.3

Rankine active state
(expansion)

GL

Movements of wall

GL

Passive state (compression)

S
lip

Slip

Figure 8.7
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Active rankine state
The development of this state is shown in Figure 8.8.

a)  The K
0
 circle is drawn from s

V
 and s

H
 = K

0
s

V
 to signify the pressures in natural state. The 

circle is far from touching the failure envelope, hence no shear deformation can occur.
b)  As the wall in Figure  8.7 moves forward slowly, the soil expands towards it. s

H
 

decreases whilst s
V
 remains the same. This can only mean that the value of K gets 

smaller as the diameters of the circles increase (indicated by circles 1 and 2).
c)  When circle 3 touches the failure surface, then K reaches its smallest value and the 

full shear strength of the soil is mobilized so, that:

	 H a VKσ σ= � (8.9)

d)  The rupture or slip surfaces AB and AD are inclined at 45
2

φ ° +  
 to s

V
 as shown below.
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e)  The shear stress t
f
 acts upwards, against the direction of slipping.

f)  Derivation of the active pressure formula:

H a

V a

V a

2

2

R

p

σ σ
σ σ

σ σ

=
−

=

+
=

( )

( )

σ σ σ σφ
σ σσ σ

σ φ σ φ σ σ

− −
= = =

++

+ = −

V a
V a

V a
V a

V a V a

1

2sin
1

2

sin sin

R
p

a v

1 sin
Expressing the active pressure :

1 sin

φσ σ
φ

 −
=  + 

� (8.10)

a

1 sin
Hence the coefficient :

1 sin
K

φ
φ

−
=

+
� (8.11)

Alternatively,	 2
a tan 45

2
K

φ = ° −  
� (8.12)

Proof: 21 sin
tan 45

1 sin 2

φ φ
φ

−  = ° −  +
 can be derived by basic trigonometry, using a circle of 

unit radius:

From triangle BAD:

cos
tan 45

2 1 sin

φ φ
φ

 ° − =   +

From triangle BCD:

cos
tan 45

2 1 sin

φ φ
φ

 ° + =   +

But 
1

tan 45
2

tan 45
2

φ
φ

 ° − =    ° +  
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2

tan 45 tan 45
1 sin cos 2 2

1 sin cos
tan 45 tan 45

2 2

tan 45
2

tan 45
1 2

tan 45
2

φ φ
φ φ

φ φφ φ

φ
φ

φ
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 ° −  
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2
a

2
V

a

11 sin
eg. tan 45
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1 1 sin
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φ φ
φ
φ φ σσφ
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+   == = ° +  −

−  = = ° −  =

∴

+

Passive Rankine state
(See Figure 8.12.)

a)  Starting again from K
0
 state, circles of progressively smaller radii are drawn, this 

time, to simulate compression. This is, because s
H
 increases.

b)  It is indicated in Figure 8.12, that s
H
 < s

V
 at first, although it is increasing as the radii 

are decreasing and s
H
 approaches the value of s

V
.

c)  At some stage s
H
 = s

V
. The radius becomes zero, f = 0 hence K = 1.

d)  After this s
H
 > s

V
 and increasing,

(8.13)

(8.14)
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e)  Circle 7 touches the failure envelope, giving the maximum value of s
H
:

	 σ σ=p p VK � (8.15)

f)  The rupture surfaces AB and AD are inclined 
φ ° −  

45
2

 to the line of action of 
s

p
 = K

p
s

V
 as shown.

φα

φα

= ° −

= ° − = ° +

45
2

90 45
2

B

g)  The shear stress acts downwards
h)  Derivation of the passive pressure formula:

φ = =sin
R q
p p

	 σ σ σ−
= = −c V d

2 2
q� (8.16)

	 σ σ+
= c V

2
p� (8.17)

	

( )
( )
σ σ σ σ φφ σ σ

σ σ φσ σ

− −  +
= = =  + − +

p v
p v

p v
p v

p v

1
1 sin2sin

1 1 sin
2 �

(8.18)

φσ φ σ φ σ σ σ σ + = − = ° +  
2

p v p v p vsin sin tan 45
2

	
φσ φ σ φ
φ φ

+
+ = − = =

−v p p

1 sin
1 sin 1 sin

1 sin
( ) ( ) K N � (8.19)
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1 1
K K

N K
� (8.20)
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8.4.1  Stress path representation (Lambe)

The information found on Figures 8.8 and 8.12 is summarized in Figure 8.15. See Chapter 6 
for explanation.

=
>=
<=

f

af a

pf p

At failure :

At the unloading stage :

At the loading stage :

K K

K KK K

K KK K

+q

−q

O

Loading (Passive)

TSP

Neutral state

Ka= 1
Kp

K0

p

Unloading (Active)

Kp= 1
Ka

Figure 8.15

Example 8.2

Triaxial tests carried out on three compact sand specimens yielded f = 25°, from 
which the value of K

0
 and the inclination of the corresponding failure K

f
-line were 

calculated theoretically as:

	 0 1 sin 1 sin25 0.58K φ= − = − = � (8.4)

and

	 θ φ− −= = = °1 1
f tan sin tan sin2( 5) ) 23( � (6.10)

Two more specimens were tested in order to draw the stress path for the active 
and passive Rankine states, starting from the K

0
 state. The test was carried out in 

two stages, keeping the vertical pressure s
V
 constant at 660 kN/m2. The results 

are tabulated below.

Step 1:   � Choose an arbitrary value for the cell pressure in the K
0
 state and 

calculate the relevant values of s
d
, p, q, K

0
 and q

0
 as shown in Table 8.3. 

The results are plotted on Graph 8.3 as point “A”.
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Step 2: � The procedure during the first test was to decrease s
c
 by (say) 55 kN/m2 

and increase s
d
 by the same amount so, that s

v
 remained 660 kN/m2. 

The  workings in this unloaded (active) stage were again tabulated, 
starting from the K

0
 state.

Step 3: � During the second test (Passive stage) s
c
 was increased arbitrarily by 

140 kN/m2 and s
d
 changed, bearing in mind (from Figure 8.12), that

a)  If s
H
 = s

c
 < s

v
, then for each circle:

+ q

svsc

	

σ σ σσ σ σ
σ σ
σ

−= + = =

= +=

v c d
v c d

c
c

v

2 2
q

p qK

Therefore 140 kN/m2 is subtracted from s
d
 until it becomes zero at s

v
 = 

s
H
 = s

c
.

Table 8.3  (K
0
 state)

σ
σ

c
o

v

K 0.576 —

s
v

660 kN/m2

s
c
 = K

0
s

v
380 kN/m2

s
d
 = s

v
 − s

c
280 kN/m2

d

2
q

σ
= 140 kN/m2

p = q + s
c

520 kN/m2

θ −=
 °   

1tan
q
p 15 Degree

Table 8.4  (Active state)

 Point A  Point B
    
s

v
 kN/m2 660 660 660

s
c
  N/m2 380 325 270

s
d
 kN/m2 280 335 390

q  kN/m2 140 167.5 195
p  kN/m2 520 492.5 465
K 0.576 0.49 0.41
q° 15 18.8 22.8



332       Introduction to Soil Mechanics

b)  When s
c
 > s

v
, then for each circle:

− q

scsv

	

σ σ σ
σ σ σ

σ
σσ

− 
= − = −= −   

= = −

v c d
v c d

c
v

v

2 2
q

K p q

Therefore, as soon as s
c
 ≥ s

v
, the deviator stress increases instead of 

decreases. In this example: s
d
 is increased by 140 kN/m2.

The calculations commenced from K
0
 state and the results tabulated.

Step 4: � The content of Tables 8.4 and 8.5 are plotted on Graph 8.3 along line 
BD, with arrows to indicate expansion or compression.

Notes:

a)  It is not necessary to calculate many points in order to draw line BE. Because 
point C is given by p = s

c
 = s

v
 at K = 1 and A can be calculated, as in Table 8.3, the 

two points define the line.
b)  Once the TSP has been drawn, p and q can be found for any value of s

c
 chosen, 

as the stress path from it to the TSP is inclined to the horizontal at 45°. Also, 
the centre of the passive failure circle can be read-off at point F. In this case 
from Graph 8.3:

	 =
= − 
= 

2

2

p

1135kN/m

475kN/m Point E

2.44

p

q

K

From 
σ σ σ
σ

= = ∴ = 2c c
c

v

2.44 1610 kN/m cell press( )ure
660

K

From σ σ σ σ= − = − = 2
d c v d 1610 660 950 kN/m Deviator str( ess)

Alternatively s
d
 = 2q = 2 × 475 = 950 kN/m2

c)  Much smaller strain is required to fail in active expansion than in passive 
compression.

Table 8.5  (Passive state)

 s
v
 = s

c
 + s

d
s

v
 = s

c
 - s

d

s
v
 kN/m2 660 660 660 660 660 660 660

s
c
 kN/m2 380 520 660 800 940 1080 1220

s
d
 kN/m2 280 140 0 −140 −280 −420 −560

q  kN/m2 140 70 0 −70 −140 −210 −280
p  kN/m2 520 590 660 730 800 870 940
K 0.576 0.79 1 1.21 1.42 1.64 1.85
q° 15 6.8 0 −5.5 −9.9 −13.6 −16.6

   
Point A Point C Point D



Graph 8.3
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8.5  Rankine–Bell theory for c – f soil

Bell extended Rankine’s theory to c−f soils, applicable to retaining structures having 
smooth, vertical surfaces. The active and passive pressures are derived by means of 
Mohr’s diagram.

( )

( )

σ σ σ σφ
φ σ σφ σ σ σ

− −
= =

× + +× + + −

v a
v a

a v
a v a

1

2sin
1 2 cotcot
2

cc

φ φ σ φ σ φ σ σ+ +× = −a v v a2 sin cot sin sinc

φφ σ φ σ φ
φ

× × + + = −a v(
cos

2 sin 1 sin 1 sin
sin

) ( )c

Expressing:	
φ φσ σ
φ φ

 − −
= − + + a v

1 sin 2 cos

1 sin 1 sin

c

From sin2f + cos2f = 1

φ φφ
φ φφ

φφ φ
φ

φ
− +

=
+ += −

−= − + =
+

2

(1 sin )(1 sin )cos

1 sin 1 sincos 1 sin

1 sin(1 sin )(1 sin )
1 sin

But from (8.11):	
φ φ
φ φ

−
= ∴ =

+ +a a

1 sin cos

1 sin 1 sin
K K

a v

1 sin 1 sin
2

1 sin 1 sin
c

φ φσ σ
φ φ

 − −
∴ = − + + 

Therefore the active pressure is:  σ σ= −a a v a2K c K � (8.21)

Similarly, the formula for the passive pressure is:  σ σ= +p p v p2K c K � (8.22)

t

f

c cotf sH= sa

f

sv

s

q =
sv− sa

2

c

Figure 8.16
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8.5.1  Tension cracks

The active pressure formula is made up by a positive term (K
a
s

v
), which increases with 

depth and a negative constant number ( )a2c K . At a certain depth, usually denoted by z
o
, 

the two terms become equal in magnitude, resulting in zero active pressure. The soil is in 
tension from the surface down to depth z

o
. The formula for z

0
 is derived with reference 

to Figure 8.17.

When  σ σ

σ γ γ

γ
γ

γ

= − =

= =

=
=

=

a a v a

v 0 a 0 a

a
0

a
0

a
a
2
a

0 then 2 0

2

2
2

2

K c K

z K z c K

Kc
z

cK z
KKc

K

�

(8.23)

But

For pure clay:  φ
γ

= = ∴ =a 0

2
0 and 1

c
K z � (8.24)

Note: If f is small or zero, in a fully saturated soil, the shear strength parameters are 
obtained by undrained test, hence c

u
 and f

u
 are used in the formulae. If, however, f is 

large and the soil is very permeable, then drained test results f ′
d
 and c′

d
.

The formula for z
0
 can also be derived from Mohr’s circle taking s

a
 = 0.

The derivation starts from:

σ

φ σφ
=

+

v

v

2sin
cot

2
c

H

z0

sH= Kasv

+g
c
f

− =

−

2c √Ka sa

+

z0

Figure 8.17

t

c cosf

sv= z0g
f c

sa

sv
2

c cosf + sv
2

Figure 8.18
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8.5.2  Effect of surcharge (q kN/m) on z0

This decreases the value of z
0
. In any case, the actual value could be a third lower then 

the theoretical one.

At this level s
v
 = z

0
g  + q

	

( )σ γ

γ

= + − =

 
∴ = − 

 

a a 0 a

0

a

2 0

1 2

K z q c K

c
z q

K
� (8.25)

8.5.3  Water in the cracks only

When water drains into the cracks of impermeable soil, it does not alter the pore pressure 
at depth in the short term. However, it increases the hydrostatic pressure on the wall.

Hydrostatic pressure on the 
wall, due to water in the cracks.

8.6  Rankine–Bell theory for c-soil

Formulae (8.21) to (8.25) are simplified by using the undrained cohesion c
u
, taking 

f
u
 = 0.

From (8.11):  K
a
 = 1  hence  p

1
1

a

K
K

= =

From (8.21):	 a v u2cσ σ= − � (8.26)

From (8.22):	 p v u2cσ σ= + � (8.27)

From (8.23) and (8.24):	
γ

= u
0

2c
z � (8.28)

From (8.25):	 ( )0 u

1
2z c q

γ
= − � (8.29)

8.7  Pressure–force and its line of action

The usual shape of a pressure diagram is either triangular or rectangular. The pressure-
force P can easily found from these, bearing in mind that:

gw

z0

z0gwCrack

Figure 8.20

Tension
crack

z0

q

Figure 8.19
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1.      σ= HP A   where  P = force over 1 m length of wall
  A = H	 A = surface area over 1 m length

 H = height of the wall over which the diagram is drawn

Hσ  = average active or passive pressure of the diagram
2.  Force P acts through the centroid (C.G) of a pressure-diagram at distance g from its 

base.

8.7.1  Triangular diagram for uniform soil

Average pressure:

σ σ γσ

γσ

= = =

= =∴

H v
H

2

H

2 2 2

2

K K H

K H
P H � (8.30)

The centroid of a triangle is located at one-third of its sides, measured from the right angle.

	 ∴ =
3

H
y � (8.31)

For the active case:	
γ

=
2

a
a 2

K H
P

For the passive case:	
γ γ

= =
2 2

p
p

a2 2

K H
P

K

Force P can be determined either from the diagrams or directly by the formula as 
shown in Example 8.3.

8.7.2  Triangular diagram for water

Maximum hydrostatic pressure

σ σ γ= =H v w H

Average 
γσ σ= ∴ =w

w H2

H
P A

And	
γ

=
2

w
w 2

H
P � (8.32)

Note:   K = 1

GL

GL

g

H

2H
3

H
P

y = 3

CG

sv= g H sH= Ksv

sH

Figure 8.21

WL

gw= 9.81 kN/m3

H

Pw
GL CG

sH= sv

H
3

Figure 8.22
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8.7.3  Rectangular diagram for surcharge only

v qσ =

Average  H Kqσ =

	 P KqH∴ = � (8.33)

And        =
2

H
y � (8.34)

For the active case:	 P
a
 = K

a
qH

For the passive case:  = =p p
a

qH
P K qH

K

The diagrams are combined in most problems in various ways and the line of action of 
resultant force is found by taking moments about the base, as shown in the next example.

P

q kN/m GL

Hy =
2

sv= q

sH= Kq

H
GL

CG

Figure 8.23

Example 8.3

For the smooth retaining wall, shown in Figure 8.24, find the active force and its 
line of action in two cases:

1.  There is sufficient drainage layer behind the wall to ensure, that water level 
remains below the base.

2.  The drainage layer and weepholes are blocked and the ground water level 
is at 4 m below the surface.

Case 1
At base level

σ = × = 2
v 17 9 153 kN/m

σ = × = 2
a 0.307 153 47 kN/m

σ = = 2
a

47
23.5 kN/m

2

σ= = × =a a 9 23.5 211.5 kNP H

Alternatively, from (8.30)
× ×

=

=

2

a

0.307 17 9

2
211.4 kN/m of wall

P

= = =a

9
3m

3 3

H
y

9 m

Q

ya= 3 m

153 47

CG

Sand

GL
sv

∴ Ka=

= 0.307

1−sin 32

Pa= 211.4 kN

1+sin 32

g = 17 kN/m3

f = 32°

sa

Figure 8.24
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Case 2

Diagram (b):  At 4 m,  s
v
 = 17 × 4 = 68 kN/m2

At 9 m,  s
v
 = 68 kN/m2 as the dry sand acts as a surcharge at 4 m.

Diagram (c):  At 9 m,  s
v
 = 5 × 9.19 = 46 kN/m2

Diagram (d):  At 9 m,  s
v
 = 68 + 46 = 114 kN/m2

Diagram (e):  At 4 m,  s
a
 = 0.307 × 68 = 21 kN/m2 (rounded up)

σ = = ∴ = × =2
a 1

21
10.5kN/m 4 10.5 42kN

2
P

= + =1

4
5 6.33m

3
y   from base

At 9 m,  Rectangular and triangular diagrams

σ

σ

= × =

= =

2
a

2
a

0.307 46 14.1kN/m
14.1

7.05kN/m
2

	 P
3
 = 5 × 7.05 = 35 kN/m2

	
= =3

5
1.67m

3
y

Diagram (f):  At 9 m,  Hydrostatic pressure:  s
w
 = 5 × 9.81 = 49 kN/m2

Hydrostatic Force:	 = × =w

49
5 122.5 kN

2
P

= =w

5
1.67m

3
y

5 m

4 m

Q
x x

Sand

GL
(a) (b) (d) (e) (f)

g = 17 kN/m3

gsat= 19 kN/m3

GWL

+ =

(c)

g ′ = 19 − 9.81

= 9.19 kN/m3

68 68 21

P2

P3 Pw

14.1114 kN/m246

sv

sv
sa

P1

sa= KasH sw

sw

68 49

Figure 8.25

21 kN/m2

sa= 21

P2= 5×21 = 105 kN/m2

y2= = 2.5 m5
2

110 kN

2.
5

m

14.1

35.3
5 m

–

Figure 8.26
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The resultant of these four forces is their sum:

Pa = 42 + 105 + 35.3 + 122.5 = 305 kN

Sum of moments of the four forces about toe Q:

MQ = ∑MQ = 42 × 6.33 + 105 × 2.5 + (35.3 + 122.5) × 1.67

+

= 265.9 + 262.5 + 263.5 = 792 kNm

MQ = Paya =  305ya 

This equals to the moment of the resultant about the
toe Q:

Equating to get the line of action of the resultant:

= ∴ = =a a

792
305 792 2.6 m

305
y y

Comparing cases:
Case 1:  P

a
 = 211.4 kN  y

a
 = 3 m	 M

Q
 = 211.4 × 3 = 634 kNm

Case 2:  P
a
 = 305 kN  y

a
 = 2.6 m  M

Q
 = 793 kNm

These moments try to overturn the wall about its tow (Q).
As the overturning moment is larger in Case 2, it is prudent to design the wall 

on the assumption, that the drainage is blocked.

42

105

35.3

1.
67

2.
5

6.
33

m

122.5

Q

Pa

ya

Figure 8.27

Example 8.4

If a surcharge of q = 100 kN/m2 is placed on the surface behind the wall in Example 8.3, 
Case 1, then determine the value of the active force and the line of action.

From Example 8.3:

γ
φ

=
= °
=

3

a

17kN/m

32

0.307K

Active pressures at base 
level:

1.  Due to surcharge:

σ = = ×
=

1 a
2

0.307 100

30.7kN/m

K q

2.  Due to overburden:
σ γ= = × ×

=
2 a

2

0.307 17 9

47kN/m

K H

q = 100 kN/m

P1

P2

Kaq = 30.7 KagH = 47

+

= 45

h

Q

H
2

= 3H
3

H = 9 m

Figure 8.28
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Active force due to surcharge:	 P
1
 = s

1
H = 30.7 × 9 = 276.3 kN

Acting at:	 = =1 4.5 m
2

H
y

Active force due to overburden: 
σ

= = × =2
2

47
9 211.5 kN

2 2
P H

Acting at:	 = =2 3 m
3

H
y

Total active force:	 = + = + =a 1 2 276.3 211.5 487.8 kNP P P

Taking moments about Q to determine its line of action.

∑MQ = P1y1 + P2y2 = Paya  ya =     (P1y1 + P2y2)1
Pa

= × + × = =a

1 1877.9
(276.3 4.5 211.5 3) 3.85 m

487.8 487.8
y

Alternatively:
The values of P

a
 and y

a
 can be calculated directly from the general formulae 

derived from:

	
1 a 1 a 1 a 1 2

H
K q K q P K qH yσ σ= = = =

	

γ γσ γ σ= = = =
2

a a
2 a 2 2 22 2 3

K H K H H
K H P y

	

γ
= + = +

2
a

a 2 1 a2

K H
P P P K q H

From which,	 γ= +

×
= × × + × =

≈

a
a ( 2 )

2
0.307 9

(17 9 2 100) 487.7
2

488kN

K H
P H q � (8.35)

Also,	 ( )

( )

( )
( )

γ

γ γ

γ γ
γγ

= +

 
= × + ×  

 = + = +  

+  +
= ∴ =  + × +

× + ×   ∴ = × = × =      × + ×

a 1 1 2 2

2
a

a

2 2
a

2
a

a

a

1

1

2 2 3

3
2 3 6

3 3

3 2
6 2

2

9 3 100 17 9 453
3 3.85m

3 2 100 17 9 353

a

a

a

a a

a

y Py P y
P

K HH H
K qH

P

K H K HH
q q H

P P

K H q H H q H
y

K H q Hq H

y

�

(8.36)

9 m 488 kN

3.85 m

Figure 8.29
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8.8  Wall supporting sloping surface

The extension of Rankine’s theory to sloping surfaces applies only to cohesionless soils. 
The orientation of the principal stresses are as shown in Figure 8.30.

	

σ γ α

σ σ α

=

=

v

a a v

cos

Active case

cos

z

K � (8.39)

2 2

a 2 2

cos cos cos
Where,

cos cos cos
K

φ
α

α
φα

α
− −

=
+ −

�
(8.40)

Notes:

1.  If a = 0, the surface is horizontal and 
2

a 2

1 1 cos 1 sin

1 sin1 1 cos
K

φφ
φ φ

− − −
= =

++ −
 which is (8.11)

2.  The surface at the front of the wall is normally horizontal, hence passive resistance 
is calculated by (8.20). If there is a slope however, then apply:

α α
σ σ α

α α
φ
φ

+ −
= = =

− −

2 2

p p p v2 2
a

cos cos cos1
and cos

cos cos cos
K K

K

3.  If then a = f then K
a
 = K

p
 = 1 thus the slope cannot be steeper than the soils angle of 

friction.
4.  Active force:  σ γ α

σ ασ

σ γ

=
=

=
==

2
a a a

a
a v

a

v

cos
cos 2
2

3

P H K H
PK

H
yH

� (8.41)

8.9  General formulae for c – f soil

The derivation of the expressions for active and passive forces P
a
 and P

p
 is in terms of the 

Rankine-Bell Theory.

Similarly for passive force:  ( )p
p 2

2

K h
P h qγ= + � (8.37)

	
p

3

3 2

h q h
y

q h
γ
γ

 +
=  +  � (8.38)

H

g

a
Pa

H
3

z
sv

sv

sx
sx

a

y =

Figure 8.30
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8.9.1  Active case

The active force (P
a
) is determined by ignoring the length of possible tension crack 

given by:

	
γ

=0

a

2c
z

K
� (8.23)

Active pressure:	 σ γ= −a a a2K H c K

Average value:	
γσ = a

a a2

K H
c K

Active force:	 ( )σ σ
γ

γ
γ

γ
γ

γ
γ

 = − = −  
  

= − −     

= − − +

= − − +

a a 0 a

a

a
a

a

2 2
a a

a

a

2 2
a

a a

2c

K

2

2

2

2

2

2

P H z H

K H c
c K H

K

K H K cH c
cH K

K

K H c
cH K cH K

Therefore,	
γ

γ
= − +

2 2
a

a a

2
2

2

K H c
P cH K � (8.42)

The active force is located at 
−

=a
0

3

H z
y

GL

z0

z H

2c√Ka

+

+

=
sa

Ig
no

re
d

Pa

H − z0
3

(H
−

z 0
)

KagH KagH − 2c√Ka

2c√Ka
+−

Figure 8.31
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Notes:

a) � Water pressure in the cracks should also be taken into account, as it exerts an 
overturning effect on a retaining wall.

b)  Surcharge q alters the depth of crack given by: 
γ

 
= − 

 
0

a

1 2c
z q

K
� (8.25)

The active force also includes q.

	

γ
γ

γ
γ

γ
γ

= − +

=

∴ = + − +

 = + − +  

2 2
a

1 a

2 a

2 2
a

a a a

2

a a a

2
2

2

2
2

2

2
2 K

2

K H c
P cH K

P K qH

K H c
P K qH cH K

H c
P K H q cH � (8.43)

	

− 
+ =  

 − 
= +    

o
1 2 a a

o 2
a 1

Its p

(8

oint of application is obtained from :

3 2

1
or

3
.44)

2a

H z H
P P P y

H z P H
y P

P
�

Pw=

H − z0

3

Pa

gwz 2
0

2

H
−

z 0 3

z0

Figure 8.32

H
−

z 0
3

z0

q

P2

P1

H
2

Q
Kaq KagH−2c√Ka

Figure 8.33
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8.9.2  Passive case (with surcharge)

σ γ

σ

= +

=

p p p

s p

Passivepressure :

2

Surchargepressure :

K h c K

K q

	
γ

σ

γ

γ

γ

= + +

= =

= +

= + = + +

 ∴ = + +  

p
p p p

2
p

1 1

2 p p

2
p

p 1 2 p p

p p p

Average passive pressure: 2
2

Passive force: actingat
2 3

Passive force: 2

Total passive force: 2
2

2
2

K h
c K K q

K h h
P y

P ch K K qh

K h
P P P ch K K qh

h
P K h q ch K � (8.45)

For line of action take moments about the toe:

∑MQ = P1y1 + P2y2 = Ppyp

+

	

( )γ

γ

γ

γ

= × + +

= + +

  = + +    
  ∴ = + +    

2
p

p p p p

3 2
p p2

p

2
p p

2

p p p
p

2
2 3 2

6 2

6 2

q

6 2

K h h h
P y ch K K qh

K h K qh
ch K

h q
h K c K

h h
y K c K

P
� (8.46)

P1

P2

q

h

Q

Toe

h
2h

3

Kp gH Kpq2c√Kp

Figure 8.34
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Example 8.5

The retaining wall, shown in Figure 8.35, having smooth surface is built on clayey 
soil. The surface carries a surcharge of q = 35 kN/m2. Calculate:

1.  P
a
, assuming that no tension cracks develop.

2.  P
a
 after the development of cracks.

3.  Passive force P
p
.

−
= =

+
=

= =

=

a

a

p
a

p

1 sin25
0.406

1 sin25

0.637

1
2.464

1.57

K

K

K
K

K

1.  Assuming no tension cracks

σ
σ γ
σ

= =
= =

= − = −

2
1 a

2
2 a

2
3 a

14.2 kN/m

69.4 kN/m

2 8.9 kN/m

Pressures at base level

K q

K H

c K

Average pressure due to q:  σ = = × = 2
1 a 0.406 35 14.2kN/mK q

Average force due to q:	 P
1
 = 14.2 × 9 = 128 kN

Its line of action:	 y
1
 = 4.5 m

g = 19 kN/m3

f′ = 25°
c′ = 7 kN/m2

q = 35 kN/m

h = 1.5 m

H
=

9
m

Figure 8.35

9 m

+ +

=

q

P1
P2

Pa

P3

5.3 kN/m2

O

+

Kaq KagH

4.
5

m

2c√Ka

+ −3 m 3.2 m

74.7 kN/m2

Figure 8.36
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Average pressure due to g : 
γσ × ×

= = = 2a
2

0.406 19 19
34.7kN/m

2 2

K H

Active force due to g :	 P
2
 = 34.7 × 9 = 312 kN

Its line of action:	 y
2
 = 3 m

Average pressure due to c:  σ = = × × = 2
3 a2 2 7 0.637 8.9 kN/mc K

Active force due to c:	 P
3
 = 8.9 × 9 = 80

Its line of action:	 y
3
 = 4.5 m

Total active force:	 Pa = P1 + P2 − P3 = + − =128 312 80 360 kN

Alternatively, using the resultant pressure diagram.

=
=

+
= =

= × =

2

2

2

a

Pressure of top 5.3kN/m

Pressure of base 74.7kN/m

5.3 74.7
Average pressure 40 kN/m

2
Active force 40 9 360 kNP

For its line of action:   ∑M0 = 4.5P1 + 3P2 − 4.5P3 = Paya

+

Hence,  = × + × − × = =a

1 1152
(4.5 128 3 312 4.5 80) 3.2m

360 360
y

Alternatively, determine P
a
 from formula derived from Figure 8.36.

Average pressures:  σ = ∴ =1 a 1 aK q P K qH

γ γσ = ∴ =
2

2 22 2
a aK H K H

P

σ = − ∴ = −3 a 3 a2 2c K P cH K

Total active force: 
γ

γ

= + −

 ∴ = + −  

2

a a

a a a

2
2

2
2

aK H
K qH cH K

H
P K H q cH K

�

(8.47)

Hence, 
 = × × + − × × × =  a

19.9
0.406 9 35 2 7 9 0.637 360kN (asbefore)

2
P

2.  Assuming tension cracks

From (8.25): 
γ

  × = − = × − =     
0

a

1 2 1 2 15
35 0.64m

19 0.637

c
z q

K

Water pressure in the crack:  s
w
 = g z

0
 = 19 × 0.64 = 12 kN/m2

Pa = P1 + P2 + P3

9 m

5.3

74.7

Figure 8.37
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Hydrostatic force in the crack:  = × =w

12
0.64 3.8 kN

2
P

From (8.43): 
γ

γ
 = + − +  

× = × × + − × × × +  
= − + =

2

a a a

2

2
q 2

2

19.9 2 7
0.406 9 35 2 7 9 0.637

2 19

440 80 5 365 kN

H c
P K H cH K

From (8.44): 
o 2

a 1

1

3 3a

H z P H
y P

P

 − 
= +    

	

γ
γ

= − +

× ×
= − + =

= = × × =

2 2
a

1 a

2

2 a

2
2

2

0.406 19 9
80 5 237.4kN

2
0.406 35 9 127.9kN

K H c
P cH K

P K qH

	
∴ = + = ≈a 1 2 365.3 kN 365kNP P P

	 and 
× − × = +  

∴ = =

a

a

1 237.4 (9 0.64) 127.9 9

365 3 2

1237
3.39 m

365

y

y

γ

2

a

0

0

Notes:

2
a) The term: increases due to the

neglected tensile stresses over length .

b) decreases as increases.

c
P

z

z q

5.19 m

0.42 m
Pw= 3.8 kN

3.39 m

Pa= 365 kN

q = 35 kN/m

O

Figure 8.38
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8.10  Formulae for pure clay (f = 0)

As the short-term stability is the most critical for saturated soils, apply undrained cohesion c
u
.

	
φ = ∴ = =a p0 1K K

Wall without surcharge

From (8.28):	 Crack:	 u
0

2c
z

γ
=

From (8.42):	 Active:	
γ

γ
= − +

22
u

a u

2
2

2

cH
P c H

From (8.45):	 Passive: 
γ

= +
2

p u2
2

h
P c h

From (8.46):	
2

p u
p 6

h h
y c

P
γ = +  

Wall with surcharge

From (8.29):	 Crack:	 ( )0 u

1
2z c q

γ
= −

From (8.43):	 Active:	
γ

γ
 = + + − +  

2
u

a u

2
2

2

cH
P H q c

From (8.45):	 Passive: 
γ = + +  p u2
2

h
P h q c

3.  Passive resistance

γ

γ

= +

× ×
= + × × ×

= + =

 
= +  

× × = + ×  
×

= =

2
p

p p

2

2
p

p p
p

2

Disregardingsurcharge
informula 8.45 :

2
2

2.464 19 1.5
2 7 1.5 1.57

2
52.7 33 86 kN

c
6

1.5 2.464 19 15
7 1.57

86 6

2.25 22.7
0.59 m

86

( )
q

K h
P ch K

K hh
Y K

P
Its line of action from (8.46):

GL

h = 1.5 m

0.59 m
86 kN

Q

Figure 8.39
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8.11  Height of unsupported clay

Vertical cuts may be excavated in stiff clays, without supporting them by walls, sheet 
piles or bracing, in the short term. The height (H

0
) that may be left exposed is obtained 

from formula (8.47) ignoring surcharge q.

	

γ
= − =

2
a

a a2 0
2

K H
P cH K

For the soil to stand, P
a
 has to be zero, hence,

	

γ
−

2
a 0

0 a2
2

K H
cH K

	
γ =a 0 a4K H c K

Expressing,	 a
0

a

4c K
H

Kγ
=

But	 a a
02

a a a a

1 4

K

K K c
H

K K Kγ
= = ∴ = � (8.48)

	 0 02H z= � (8.49)

This critical height reduces with time due to change in the pore pressure, hence in the 
effective stress. The clay becomes weaker as its cohesion decreases due to softening.

For pure clay	 φ
γ

= ∴ = ∴ =a 0

4
0 1

c
K H � (8.50)

8.12  Wedge theories

The analytical theory, proposed by Coulomb in 1776, was applicable to walls:

a)  Supporting cohesionless or cohesive soil.
b)  Constructed with either vertical or inclined surfaces.
c)  Supporting soil, having either horizontal or uniformly sloping ground surface.
d)  Having either smooth or rough surfaces.

It is assumed in the theory, that the soil fails along a plane surface and the wedge thus 
formed is pressing against the wall.

weight of the wedge.W =

W

Sl
ip

 s
ur

fa
ce

Figure 8.40
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The problem was to find that slip surface, or wedge, which exerted the maximum force 
on the wall. Each wedge had to be analysed separately, until the critical one was found. 
As  the calculations were somewhat tedious, Culmann devised a simpler, graphical 
method in 1875, which was applicable also to irregular ground surfaces as well as all 
types of surcharge loading. The Culmann-procedure is described in supplementary 
Problem 8.9.

Because of its simplicity and versatility, the graphical method will be discussed fairly 
extensively in this section mainly for the active case.

The passive case can be treated in the same way (see Supplementary Problem 8.7).

8.12.1  Procedure for cohesionless soil

It often occurs that cohesionless soil is used as backfill to a wall after its construction. It 
is assumed, that there is friction between the soil and the wall surface. The angle of wall 
friction (d ) is either determined by laboratory experiment or its value arbitrarily assumed 

to be within the range 
2

0.5
3

φ δ φ< < .

Figure 8.41 shows the forces acting on the wall and on a trial wedge. Also, the force 
polygon is drawn for the determination of active force (P

a
), acting on the wall, due to this 

particular wedge. It is not known, at this stage, whether P
a
 is maximum value, corres

ponding to the actual slip surface, or not.

Forces acting on the wall 
and the slip surface due to 
the wedge.

Equal and opposite forces 
acting on the wedge. The 
position of R is arbitrary on 
the diagram.

Figure 8.41

y

90
°−

q

H

q

Pa

d

a

O

f

R

Tr
ia

l s
lip

 s
ur

fa
ce

b

(a)

b

f
l

1

d

Pa

b
W

R

O

f

1(b)
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where  W = �weight of the wedge. This is the only force to be determined prior to the 
drawing of the polygon. Its direction is of course vertical

R = Reaction of soil on the wedge. It value is measured from the polygon.
f = �angle of friction for the soil. Force R is drawn at this angle to the normal on 

the slip surface.
d = �the arbitrarily chosen wall friction angle. Active force P

a
 is drawn at this 

angle to the normal on the walls surface.

The polygon of forces acting on the wedge can now be drawn to scale (See example 8.6).

A polygon like this is drawn for several slip surfaces 
and point x on each is connected by a curve, called 
Culmann line. The maximum value of P

a
 can be located 

from the curve. Its reverse is then acting on the wall.

Pa

(c)

R

x

90° − (q + d )

90° + q + d + f − a
W

a − f

Figure 8.41  (continued)

Example 8.6

The retaining wall shown in Figure 8.42 supports cohesionless soil as well as a light 
foundation, transmitting uniform pressure of 50 kN/m2. The soil characteristics are:

γ = 3Unit weight 19kN/m

φ = °Angle of friction 32

The wall friction is assumed to be  δ φ=
= °

0.55

17.6

Determine the active 
force on the wall and 
the inclination of the 
corresponding failure 
surface.

1 m

1.5 m

3 m 2 m

H0H = 5 m

82°

0.5 m

2 m

g = 19 kN/m3

f = 32°
d = 17.6°

0.3 m

50 kN/m2

Figure 8.42
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Resulting active force acting on the wall is: Pa = 110 kN

The horizontal component F
a
 tries to overturn the wall. The vertical component W

a
 

increases the bearing pressure of the base and counters the overturning moment.

Construction of Graph 8.4
Step 1: �   The configuration of Figure 8.42 is drawn to a scale of 1 cm = 0.5 m.
Step 2: � Five trial slip surfaces are drawn at arbitrary angles. Calculate the 

weight of each wedge (Table 8.6).
Step 3: � Draw the R-forces at f = 32° to the normal to each plane, anywhere on 

each surface. Only their directions are important.
Step 4: � Draw the direction of P

a
 at d = 17. 6° to the normal to the surface of the 

wall at height g =  0

3

H
 from its base. However, see the discussion as to the 

point of application (Section 8.12.3).
Step 5: � Draw the polygon for each wedge on diagram (b), thus locating points x

1
 

to x
s
.

Step 6: � Draw the Culmann line through these points.
Step 7: � Find the maximum value of P

a
. In this case, it coincides with the force 

induced by the total weight of wedge 3.
Step 8: � The angle of inclination of the slip surface is calculated as shown on 

diagram (b).

Table 8.6  Weight of 1 m wide wedges and, from Graph 8.4, the active forces acting 
on each.

Wedge 1 2 3 4 5

Volume: V (m3) 4.5 8.23 10.61 12.63 16.6
Weight:

W (kN)
19 × 4.5
= 85.5

19 × 8.23
= 156.4

19 × 10.61 + 50
= 251.5

19 × 12.63 + 100
= 340.0

19 × 16.6 + 100
= 415.4

P
a
 (kN) 67.5 92.5 110.0 105.0 85.0

= 1.73 M

Fa= 110 cos25.6 = 99.2 kN

17.6°

Wa= 110 sin25.6° = 47.5 kN
Pa

= 110kN

5.2
3

s + q = 25.6°

Figure 8.43
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8.12.2  Procedure for cohesive soil

If the backfill is cohesive (c−f) soil, then in addition to the wall friction, the adhesion 
between the wall and the soil must be taken into account. Also, it is on the safe side to 
assume the presence of tension cracks, calculated from formula (8.23):

0

a

2c
z

Kγ
=

And from (8.11):	 a

1 sin

1 sin
K

φ
φ

−
=

+

Figure 8.44 depicts the forces acting on the wall and on a trial wedge, in this case.

w

Forces acting on the 
wall and on the slip 
surface.

 force of water in 
the tension crack
P =

γ
=

2
w 0

w 2

z
P � (8.51)

Equal and opposite forces acting 
on the wedge. These forces are 
drawn on the polygon

where:  c = cohesion of the soil
c

w
 = adhesion between soil and wall, chosen arbitrarily. Recommended values are:

= ≤ 2
w if 50kN/mc c c

= >2 2
w 50kN/m if 50kN/mc c

L = Length of the slip surface
l = Length of the back face (o-b)

c
w
l = Adhesive force, resisting shear

cL = Cohesive force, resisting shear.

H

cwl

b z0
Pw

Crack filled with water

R

B

a

cL
Pa

q

fH0

d

(a)

Figure 8.44

cwl
cL

Pw

Pa

W

R

f
d

(b)
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The polygon of forces, acting on the wedge can now be drawn. Its shape depends on the 
included forces.

Figure 8.45(a):  If all forces are included.
Figure 8.45(b):  P

w
 is not included. The cracks are assumed to be dry.

Figure 8.45(c): � P
w
 and c

w
l are not included. No adhesion between the wall and soil is 

assumed.

Figure 8.45

Pa

Pw

W

R

(a)

cL

cwl

R

(b) Pa

W

cL

cwl

R

(c)
Pa

W

cL

Example 8.7

The retaining wall of Example 6.6 supports cohesive soil, having strength 
parameters as shown.

A point load is placed on the surface at 2.7m from the crest of the wall. Determine 
the magnitude of the active force acting on the wall, assuming the tension cracks 
full of water.

Coefficient of active pressure:  a

1 sin21
0.47

1 sin21
K

−
= =

+

2.7 m
50 kN

Clay
g = 19 kN/m3

cw= c = 16 kN/m2

c = 16 kN/m3

f = 21°
d = 0.55 f = 11.6°

0.5 m
1 m

3 m 2 m
O

H0= 5.2 mH = 5 m

Figure 8.46
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Depth of tension cracks:	 0

2 16
2.5m

19 0.47
z

×
= =

×

Hydrostatic force in cracks:	
2

w

9.81 2.5
31kN

2
P

×
= =

Length l = 5.2 m  ∴ Adhesive force = c
w
l = 16 × 5.2 = 83 kN

The resultant maximum active force acting on the wall is Pa = 75 kN

Notes:

1.  � The procedure applies equally to walls having vertical, smooth or rough 
surfaces.

2.  �Code of Practice CP2 (1951) recommended, that the depth of tension cracks 
should be calculated from:

	
γ

+
=

w

0
a

12
c

c cz
K

� (8.52)

As c
w
 = c for range 0 ≤ c ≤ 50 kN/m2, this formula becomes:

	 0

2.82

a

c
z

Kγ
= � (8.53)

Table 8.7  Weights of 1 m wide wedges and, from Graph 8.5, the active force acting 
on each.

Wedge number 1 2 3 4

Length L (m) 3.5 4.25 5 5.8
cL = 16 L (kN) 56 68 80 93
Volume V (m3) 9.42 14.22 18.22 22.17
Weight W (kN) 179 + 50 = 229 270 + 50 = 320 346 + 50 = 396 421 + 50 = 471
P

a
 (kN) 75 67 50 40

= 1.735.2

11.6 + 8 = 19.6°
Wa= 75 sin19.6 = 25.2 kN

Fa= 75 cos19.6 = 71 kN

3

Figure 8.47
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50 kN

1g = 19 kN/m2

c = 16 kN/m2

cw= 116 kN/m4

d = 11.6°
f = 21°

2 3 4

471

396

320

229

R4

Pw

cw

cL

R3

R2

100

0

R1

R2
R3 R4

Culmann line

Scale: 1 cm = 0.5 m

From diagram (b)

Max Pa acting on wedge = 75 kN

Angle of inctination of the

Scale: 1 cm = 25 kN

Coulomb/Culmann method

o

w

a = 57.6°
82°

11.6°

H0= 5.2

75 kN

R1

73°

Tension crack

GL

Pw= 31 kN

failure plane: w = 180 – 82 – d = 98 – d
w + f + d = 73°
a = 98 – 73 + f + d

= 25 + 21 + 11.6
= 57.6°

Max Pa

Graph 8.5
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8.12.3  Point of application of Pa(x)

Whenever several forces act on a wall, their resultant many be obtained by taking 
moments as shown in Example 8.3.However, for the irregular ground surface behind the 
wall, the point of application (x) may be found by the following procedure:

Step 1:   � Find the centroid (CG) of the 
critical wedge.

Step 2: � Draw a line from CG parallel 
with the failure surface to 
intersect this wall at point x.

In most cases, however, the line of action is at g = 
3

H
 as for hydrostatic pressure e.g.

See also Section 8.7 on ‘Pressure force and its line of action’ in this chapter.

Using the expression, the depth of cracks in Example 8.7 is found to be:

×
= =0

2.82 16
3.46 m

19 0.47
z

This means:

i.  Shorter slip surfaces, hence smaller value of cohesive force cL.
ii.  Smaller weight of each ‘wedge’.
iii.  Hydrostatic force in the crack.

The effect of (i) and (iii) is an increased overturning moment on the wall.

Wall
Pa

Fa
ilu

re
 s

ur
fa

ce

+d

CG
⊕

x

Figure 8.48

Figure 8.49

O

Pa
H

H0
3

H0

(a)

H

Pa

3

(b)
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8.12.4  Effect of static water table

If there is no drainage, or the filter layer is blocked behind the wall, than the force polygon 
for a wedge has to take the hydrostatic force into account.

where
V

A
 and V

B
 are the volume of wedge and water respectively

Weight of water:	 W
w
 = V

B
g

w

Weight of soil:	 W
s
 = V

A
g + V

B
g ′

Hydrostatic force: 
γ

=
2

w
w 2

h
P

8.13  Stability of retaining walls

The purpose of a retaining wall is to support solid materials, earth or otherwise. There 
are four main types:

1.   Gravity
2.  Cantilever
3.  Counterfort
4.  Buttress.

8.13.1  Gravity walls

Figure 8.50

VA

VB
g ′

x

Ws
f

GWL

(a)

R

Ww

RwPw

O

Pa

d

g

h

(b)

Pa

R

Pw

Rw

Ww

Ws

W

Figure 8.51

W

Pa

Pp Toe Heel

(a)
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Concrete

(b)

H
H1

Pp

Pa1
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Brick

Concrete
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3 H
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Notes:

1.  Tension in brick wall must be avoided as it could open up the joints at the heel.
2.  Unless the brick wall is firmly keyed into the concrete base, separate check should 

be made as to its stability.

8.13.2  Cantilever walls

These are constructed from reinforced concrete.

8.13.3  Buttress and counterfort walls

These are also constructed from reinforced conrete.

Figure 8.52

Pa

(a)

Pp

(b)

Pa
Pp

Figure 8.53

Pa

Buttressed

(a)

Pa

Pp

Counterfort

(b)
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8.13.4  Stability check

After the determination of all forces acting on the wall, there are four checks to be made 
against its failure by:

1.  Overturning
2.  Sliding
3.  Overstressing the foundation soil
4.  Tension in brickwork.

8.13.4.1  Overturning

The moment of the active force P
a
, about the toe, tries to rotate the wall anticlockwise, in 

Figure 8.54 and overturn it, hence this moment is called ‘Overturning moment (M
0
)’.

The moments of the wall’s weight (W) and the passive force (P
p
) try to rotate the wall 

clockwise about the toe, thus resisting the action of M
0
. For this reason, it is called 

‘Resisting moment (M
R
)’.

For equilibrium: M
R
 = M

0
.

It is necessary to achieve not only equilibrium, but additional safety, hence the resisting 
moment is required to be at least twice as large as the overturning one i.e.

	 R 02M M≥

This means, that the factor of safety give by:

	 R
S

0

2
M

F
M

= ≥ � (8.54)

8.13.4.2  Sliding

The horizontal component of the active force tries to push the wall forward. This is 
restricted by the passive force, if any, as well as the friction force (F) between the base of 
the wall and the soil. Factor of safety against sliding is also required to be at least 2.

W

Pp

(a) (b)

Q
MR M0

QToe

yp

x

ya

Pa

is equivalent to
where,

M0= Pa ya
−

+
MR= Wx + Payp

Figure 8.54
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By the theory of friction :

tan
Where, tan

coefficient of friction.
Its usual values are : 0.4 0.7

F W
F W

µ φ
µ φ

µ
µ

= =
=

=
≤ ≤

� (8.55)

The factor of safety is given by:	 S
p

a

F P
F

P

+
=

Therefore,	 p
S

a

tan
2

W P
F

P

φ +
= ≥ � (8.56)

8.13.4.3  Overstressing of soil

This problem occurs, when the compressive stress under the base of the wall exceeds the 
bearing strength of the soil. Depending on the position of the resultant of all forces 
acting on the wall, the pressure at the toe could be much larger than at the heel. It is 
possible to attain zero or negative stress (i.e. tension) at the heel.

However, the Middle Third Rule states that: ‘If the resultant of forces (R) acts within the 
middle third of the base area, then the stress everywhere over it is compressive’.

Note: Even if the factors of safety for sliding and overturning are satisfactory, the wall 
could fail, if the soil is too weak below the base (see bearing capacity, Chapter 9).

Figure 8.56 depicts the occurrence of compression and tension.

W

Pp

Pa

f

F

ya

Figure 8.55

d
e

R

(a) (b)

Wall

of base

Plan
view

6

d
3

d
3

R
b

d

Compression

R is inside middle third R is outside middle third

fd+fmax
fmin

fmax

Compression Tension

fmin
fb+

−

R

Wall

Lc

Lc
R

Figure 8.56
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f
max

 = �maximum compressive stress. It should be smaller than the bearing capacity of 
the soil.

e = �eccentricity of R, measured from the centre line of the base, which is the neutral 
axis of its area.

Stress f is made up of two components:

1.  Direct pressure due to R.

d
d

where (basearea)

R
f R

fA
bd

A bd

=
∴ =

=

2.  Bending stress (the reader is recommended to consult works on the theory of 
bending in Strength of Materials).

b

compression : ve

tension : ve

M
f

z

+ 
= ±   −

Where,	 M = Re

And,	
2

6

bd
z =  (Section Modulus of the base area)

The formula for the combined pressures can now be derived from:

	

max d b

2

max
min

6

6
1

f f f

R Re
bd bd

R e
f

bd d

= ±

= ±

 ∴ = ±   � (8.57)

8.13.4.4  Tension in Brickwork

This only occurs when >
6

d
e , as indicated in Figure 8.56(b). Brickwork has little tensile 

strength, hence the wall should be re-designed in order to make <
6

d
e .

Example 8.8

The active thrust on a 9 m high wall was determined for cases 1 and 2 in 
Example 8.3. Design the wall to support the active force in case 1, with adequate 
factors of safety.

Available information:
Soil:	 sand     f = 32°

317kN/mγ =

= 2Bearingcapacity 200kN/m

= =a a211.4kN 3 mP y
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γ = 3
c

Specified shape for the wall.

Unit weight of concrete 24kN/m

Step 1: � Choose trial dimensions for the wall, say:

= + +1 2 3

Weight of the wall
per metre length :

W W W W

Step 2: � Determine all forces acting on the wall, by dividing it into standard 
shapes as shown:  1

2

3

1 9 24 216 kN

3.7
24 252kN

2
2 3 24 144kN

612kN

W

W

W

W

= × × =

= × =

= × × =

∴ =

For passive force:	
+

= = =
−p

1 sin32 1.53
3.25

1 sin32 0.47
K

2
v 2 17 34kN/mσ = × =

σ = × = 2
p 3.25 34 110.5kN/m

Sand

Sand

211.4 kN

Mass concrete 3 m

H = 9 m

Figure 8.57

GL

2 m
Pp

Q
4 m

3 m

9 m

1 m GL

211.4 kN

W3

W2 W1

Figure 8.58
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Average pressure:	  σ = = 2
p

110.5
55.3kN/m

2

= × =p 2 55.3 110.5kNP

Alternatively from (8.30): 
2 2

p
p

3.25 17 2
110.5kN

2 2

K H
P

γ × ×
= = =

Its line of action:	 = =p

2
0.67 m

3
y

Step 3: � Check the safety factor against overturning, by taking moments about 
the toe.

Moments about Q:

Overturning moment: M0 = 3 × Pa= 3 × 211.4 = 634 kNm

Resisting moment: MR = 3.5W1 + 2.67W2 + 2W3 + 0.67 Pp

= 756 + 673 + 288 + 74 = 1791 kNm
= 3.5 × 216 + 2.67 × 252 + 2 × 144 + 0.67 × 110.5

Therefore,  R
s

o

1791
2.82 is satisfactory

634

M
F

M
= = =

Step 4: � Forces to be taken into account for F
s
 against sliding are shown below:

µ φ
φ

= = =
= = × =

+ +
∴ = = =p

s
a

p

tan tan 32 0.625
tan 612 0.625 383kN

383 110.5
2.33

211.4
It is just satisfactory, assuming that is not

diminished later by erosion or excavation.

F W
F P

F
P

P

W2

W3

W1

2 m

3 m

Q

0.67 m

Pp

Pa

3.5 m

0.52.67 m 4
3

Figure 8.59

W

Pp

Pa

F

Figure 8.60
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Step 5: � Determine the resultant and its line of action relative to the toe by 
summing the moments of all forces acting on the wall about Q.

The resultant of vertical forces is the total weight i.e. R = W = 612 kN.

Taking moments about Q, using the lever arms shown.

∑MQ = 3.5W1 + 2.67W2 + 2 × W3+ 110.5 × 0.67 − 211.4 × 3

= 3.5 × 216 + 2.67 × 252 + 2 × 144 + 74 − 634 = 1791 − 634 = 1157 kNm

+

Note that  ∑ M
Q
 = M

R
 − M

0

But the moment of the resultant has to equal ∑M
Q
 for equilibrium. It is assumed 

to act at some distance (x
R
) from the toe.

Moment of R about Q = Rx
R
 = 612x

R

    
For equilibrium therefore, ∑M

Q
 = 1157 = 612x

R

From which, = =R

1157
1.89 m

612
x

Now, that its point of application on the base is known, R can replace the entire 
force system. Force F may be ignored as it has no moment about Q.

1.33

211.4 kN

Q

2.67 m

2 m

3 m

W1= 216 kN

W3= 144 kN

W2= 252 kN

0.67 m

110. 5 kN

3.5 m
F = 383 kN

0.5

Figure 8.61
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8.14  Sheet piles

These are ‘weightless’ retaining walls, usually made of interlocking steel sections to make 
them watertight. They have smoother surfaces than gravity or concrete retaining 
structures, hence wall friction is negligible. Their flexibility is ignored in the stability 
calculations for simplicity. There are two main types of sheet pile walls:

1.  Cantilever (Maximum H = 4m)
2.  Anchored

= −

= − =

∴ < = =

= = =

R

2
d

Eccentricity :

2
2 1.89 0.11m

4
0.67m

6 6

Plan area of base

Directpressure :

612
153kN/m

1.4

d
e x

d
e

R
f

bd

2 2

b

2

2
max
min

2
max

2
min

Bendingstress :

1 4
2.67

6 6
612 0.11

2.67
25.2kN/m

Combinedstress :

153 25.2kN/m

178.2kN/m

127.8kN/m

bd
z

Re
f

z

f

f

f

×
= = =

×
= ± = ±

= ±

= ±

∴ =
=

As f
max

< 200 kN/m2, the bearing capacity of the foundation is not exceeded. Also, 
there is no tension at the base. The wall is satisfactory.

0.67 0.67

Middle third

fd

± fb

+15
3

kN
/m

2
25

.2
kN

/m
2

25
.2

kN
/m

2
12

7.
8

kN
/m

2

17
8.

2
kN

/m
2

d = 4 m

Q

(a)

(b)

(c)

(d)

(e)

xR= 1.89 m
e

R = 612 kN

b
=

1
m

−

+

Lc

Lc

R

Figure 8.62
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8.14.1  Cantilever sheet pile walls

These may be used as either temporary or permanent supports to granular soil and 
perhaps short-term ones to clays and silts. The supported height is comparatively small, 
due to the flexibility of the wall. The piles are driven into the soil to a depth necessary for 
stability, which depends completely on the passive resistance of the soil.

The pile is assumed to rotate about point C, a little distance above its lower end, under 
the action of the active force P

a
. The rotation is resisted by two passive forces P

p
 and R

p
. 

As the determination of R
p
 is complicated, the stability calculations are simplified by:

a)  assuming that R
p
 acts at the centre of rotation (C) as shown in Figure 8.63(b)

b)  lengthening the theoretical penetration depth (z
c
) by 20% so, that

	
=

∴ =
= +

c
c

c c

0.2
1.2cy z

z z
z z y

� (8.58)

Also, the passive resistance is decreased by a factor of safety F
s
 as described later.

Determination of z for f –soils

( )γ + +
= =

2

a c c
a aActive force : acting at

2 3

K H z H z
P y

γ

γ

=
=

=

2
a c

p
c

p2
a c

p
s

Passive force :
2

acting at
3

Factored
2

K z
P

z
y

K z
P

F

Figure 8.63

H
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z
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Pa
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Pressure diagram

Passive

Active

g
f
cu

Passive

(b)

Pp

Deflected
shape

Rotation about C

Pa

Rp
C

Centre
of rotation

yp=
zc

3

ya =
H + zc

3

Force diagram
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Note: If moment of forces are taken about the centre of rotation, then R
p
 can be elimi-

nated, thus it need not be taken into consideration any more.

For equilibrium, the sum of moments about c = 0

	

∑MC = Ppyp − Paya = 0
+

	 	 	

Or 
( )

( )

( )

22
p c a cc c

c

33
p c p c

33
p c a c

3 3

Cancelling a

0
2

nd the divisor 6.6 6

0

2

0

K z

K z K H zz H z
M

K z

K

H z

z

K

H

γ

γ
γ

γ

γ

+
+ +

Σ = × − × =

=

+ =

+
=

= −

−

( )3 3
a c p cK H z K z+ =

3

pc

c a

KH z
z K

 +
=  

3
p

c az
1

KH
K

+ =

3
p

c a

1
KH

z K
= −

From which,	
3

c

p

a

 1

H

K

K

z

−

= � (8.59)

Total depth:	
3

p

a

1.2

1

H

K

K

z

−

= � (8.60)

8.14.2  Factor of safety

Before the above formulae can be applied, the value of K
p
 has to be calculated so, that it 

includes a factor of safety. Two methods are introduced below.

Method 1
Both K

p
 and K

a
 are modified by the factor Fφ = F

s
 where Fφ is the factor of safety with 

respect to friction. The passive Rankine coefficient is calculated first from the friction 
mobilized (f’

m
), instead of the friction available (f’). The active coefficient is then 

determined from K
p
.

For cohesionless soil, the factor of safety may be defined as:	 s
m

tan

tan
F F

φ
φφ

′= =
′

� (8.61)
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From which,	 m
s

tan
tan

F
φφ ′=′

Passive coefficient	 m
p

m

1 tan

1 tan
K

φ
φ

+ ′
=

− ′ � (8.62)

Active Coefficient	 a
p

1
K

K
= � (8.20)

Substituting K
a
 into formula (8.60) for z:

	
23
p

1.2

1

H
z

K
=

−
� (8.63)

Method 2
Only K

p
 is divided by the factor of safety and K

a
 remains unaltered. The value of F

s
 is 

usually 2 or more.
Formula (8.60) is expressed as:

	
3

p

s a

1.2

1

H
z

K

F K

=

−
� (8.64)

Example 8.9

A 3.5 m deep excavation in cohesionless soil is to be supported by cantilever 
sheet piles. The soil characteristics are:

319kN/mγ =
34φ′ = °

0c ′ =

Estimate:  a) � The total length of pile to be driven into the ground by the two 
methods taking F

s 
= 2

b)  The factor of safety if z = 4 m

a)  Method 1:	 m m

tan34
tan 0.3373 18.63

2
φ φ′= = ∴ = °′

p

1 sin18.63 1.3195
1.94

1 sin18.63 0.6805
K

+
= = =

−

a
p

1 1
0.52

1.94
K

K
= = =

From (8.63): 
×

=
−

= =

3 2

1.2 3.5

1.94 1

4.2
7.6 m

0.554

z

GL

GL
H = 3.5 m

z = 7.6 m

f′ = 34°
g = 19 kN/m3

Figure 8.64
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Method 2:	 a

1 sin34

1 sin34
0.441

0.283
1.559

K
−

=
+

= =

p
a

1 1
3.54

0.283
K

K
= = =

From (8.64): 
×

= = =
−

×
3

1.2 3.5 4.2
5 m

0.8413.54
1

2 0.233

z

Note: There is a large discrepancy between the two results:

Method 1:    z = 7.6 m
Method 2:  z = 5 m

Check: In order to decide which value to accept, comparison is made between 
the theoretical passive resistance required and available one, for both meth-
ods. Referring to Figure 8.63(b).

	

∑MC = Ppyp − Paya = 0
+

	

a
p a

p

y
P P

y

 
∴ =  

 

Method 1:  a a

7.6 3.5
0.52 3.7m

3
K y

+
= = =

= = =p p

7.6
1.94 2.53 m

3
K y

Active:	
γ + × × +

= = =
2 2

a
a

( ) 0.52 19 (3.5 7.6)
609 kN

2 2

K H z
P

Required: 
 

= = × = 
 

a
p a

p

3.7
609 891kN

2.53

y
P P

y

Available: 
γ × ×

= = =
2 2

a
p

1.94 19 7.6
1065 kN

2 2

K z
P

Ratio:	 p
1

p

Available 1065
1.2

Required 891

P
r

P
= = =

Method 2: 
+

= = =a a

3.5 5
0.283 2.83 m

3
K y

p p

5
3.54 1.67m

3
K y= = =

Active:	
2 2

a
a

( ) 0.283 19 (3.5 5)
194kN

2 2

K H z
P

γ + × × +
= = =

GL

GL
H = 3.5 m

z = 5 m

Figure 8.65
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Required: 
 

= = × = 
 

a
p a

p

2.83
194 329kN

1637

y
P P

y

Available: 

γ γ × ×
= = = =

×

p 2
2 2

ps
p

s

3.54 19 5
420kN

2 2 2 2

K
z

K zF
P

F

Ratio:	 p
2

p

Available 420
1.28

Required 329

P
r

P
= = =

Conclusions:
The ratios r

1
 and r

2
 are practically equal, but Method 2 yielded a more economical 

driving length (z = 5 m) than Method 1. For this reason, Method 2 will be applied in 
the rest of this chapter.

b)  If z = 4 m then F
s
 is expressed from (8.64):

	

3
3

p p

s a s a

1.2 1.2
1 1

K KH H
F K z F K z

 − = = +  

	

p
s 3

a

3

1.2
1

3.54
1.45 2

1.2 3.5
0.283 1

K
F

H
K

z

z

=
 +  

= = <
× × +  

Check:

Active:	
× × +

= =
2

a

0.283 19 (3.5 4)
151kN

2
P

+
= = = = =a p

3.5 4 7.5 4
2.5m 1.33 m

3 3 3
y y

Required:  p

7.5
151 283kN

4
P = × =

Available: 
2

p

3.54 19 4
269kN

2 2
P

× ×
= =

×

Ratio:	
269

0.95 1
283

r = = <

Therefore longer depth of penetration is required.
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8.14.3  Bending of sheet piles

Sheet pile wall could fail in bending, because of its flexibility. It is necessary, therefore, to 
determine the position and magnitude of the maximum bending moment (M

max
) so, that 

a suitability stiff pile can be chosen from the manufacturer’s catalogue.

Position of Mmax

It occurs at a depth h at which the active and passive forces are equal in magnitude, that 
is, where the shear force in the cantilever is zero. Applying Method 2, consider point X:

γ

γ

γγ

+
=

=

=

+
=

+ =

+  =  

2
a

a

2
a

p
s

a p

22
pa

s
2

p2
a

s
2

p

a s

( )
Active force :

2

Passive force :
2

Equatingforces :

( )
or

2

(

2

)
F

K H h
P

K h
P

F

P P

K hK H h
F

K h
K H h

KH h
h K F

Rearranging,	 p

a s

1
KH

h K F
 + =  

From which, p

a s

1
KH

h K F
= − , hence the position of M

max
 is given by: 

p

a s

1

H
h

K

K F

=
−

� (8.65)

For M
max

, take moments about point X.

+ +=
= Σ
= −=

a a

max x

p p a a
p p

is acting at :
3

is acting at :
3

H h
P y

M M
h P y P yP y

3 3
p a

max
s

( )

6 6

K h K H h
M

F

γ γ +
∴ = −

	
3

p 3
max a

s

( )
6

K h
M K H h

F
γ  

= − + 
  

� (8.66)

For Example 8.9, Method 2:    K
p
 = 3.537 and F

s
 = 2

a 0.283K =

p

s

3.5 3.5
2.33m

3.537 1.511
2

H
h

K

F

∴ = = = =
−−

H

(H
+

h
)

h

GL

zc Pp

c

Pa

GL

x

Figure 8.66
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And 
 ×

= × − × + 
 

= × − = −

=

3
3

max

19 3.537 2.33
0.283 (3.5 2.33)

6 2

19
(22.37 56.08) 106.6 kNm

6
107 kNm

M

The cross-section has to be chosen from the section 
table, supplied by manufacturers, to carry 107 kNm 
as well as to withstand the driving force without 
buckling.

8.14.4  Sheet pile in cohesive soils

It has been shown that the height of free-standing cuts in cohesive soil is given by:

Either for c–f soil as:	 0

a

4c
H

Kγ
= � (8.48)

or for c–soil as:	 0

4c
H

γ
= � (8.50)

As a small vertical cut can stand unsupported at height H
0
 for a reasonable length of time, it 

is generally considered uneconomical to retain it by cantilever sheet piles in the short term.

8.15  Anchored sheet pile walls

These are suitable for permanent supports to both cohesionless and cohesive soils.
Advantages:

1.  Reduction in the depth of penetration
2.  Increase in the height to be supported
3.  Allowing the use of lighter sections, due to the reduction of bending moments and 

deflections

Unknowns:

a)  Depth of penetration (z)
b)  Tension (T) in the tie rods
c)  Maximum bending moments (M

max
)

Driving
force

GL

GL

f′ = 34°
c ′ = O
g = 19 kN/m3

5.83 m

107 kNm

5 m

2.33 m

3.5 m

Figure 8.67
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Methods of analysis:

i.  Free-earth support method
ii.  Fixed-earth support method

8.15.1  Free-earth support method

It is assumed, in this analysis, that:

1.  The wall is hinged at its base, hence it can rotate about this point.
2.  the passive resistance (R

p
) against the rotation of the base is negligible.

Sheet pile in cohesionless soil

γ

γ

+
=

=

=

∴ = −

2
a

a

2
p

p
s

a p

( )
Active :

2

Passive :
2

Tension force

For equilibrium, the sum of horizontal

forces 0

K H z
P

K z
P

F

T P P

∴ Tension force:	

2 2
a a

s

2
p2

a
s

( )

2 2

2
( )

K H z K z
T

F

K z
T K H z

F

γ γ

γ

+
= −

 
= + − 

  
� (8.67)

For z, take moments about the tie rod.

∑M0 = Pa ( H + z) − h   − + H − h  = 02
3

Pp

Fs

2z
3

+

Equating,	 p
a

s

2 2
( )

3 F 3

P z
P H z h H h

   + − = + −     
� (8.68)

As P
a
 and P

p
 are also expressed in terms of z, there is no advantage in deriving a compli-

cated cubic formula in order to evaluate it. Rather, an easier application of 8.68 is now 
illustrated by an example.

H

h

GL

O

z
Pp

Kp gz

Hinge

Kag (H + z)

Fs

Pa

T

GL

2z
3

2(H + z)
3

Figure 8.68

∑Fx      = T + Pp − Pa = 0

+
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Example 8.10

With reference to the vertical cut in Example 8.9, determine the depth of penetra-
tion (z) required if the pile is anchored at 1.2 m below ground level, as well as the 
tension (T) in the tie rod per metre run of wall. Adopt F

s
 = 2.

γ

−
= =

+

= =

+ × × +
= =

= × +

a

p
a

2 2
a

a

2

1 sin34
0.283

1 sin34
1

3.537

Active force :

( ) 0.283 19 (3.5 )

2 2
2.69 (3.5 )

K

K
K

K H z z
P

z

Passive force:	
2 2

p 2
p

3.537 19
33.6

2 2

K z z
P z

γ × ×
= = =

Applying formula (8.68):

	

2
2

3 2 2

2 33.6 2
2.69 (3.5 ) (3.5 ) 1.2 3.5 1.2

3 2 3

2 2
(3.5 ) 1.2 (3.5 ) 6.25 2.3

3 3

z z
z z

z
z z z

   × + + − = + −     
 + − + = +  

Expanding the cubic and quadratic terms:

( )2 3 2 2

2 3 2 3 2

2 2
42.88 36.75 10.5 1.2 (12.25 7 ) 6.25 2.3

3 3

28.6 24.5 7 0.67 14.7 8.4 1.2 4.17 14.4

z
z z z z z z

z z z z z z z

 × + + + − × + + = +  
+ + + − − − = +

Collecting similar terms,

	

3 2

3 2

3 2

(4.17 0.67) (14.4 1.2 7) (8.4 24.5) (14.7 28.9) 0

3.5 8.6 16.1 14.2 0

2.46 4.6 4.1 0

z z z

z z z

z z z

− + + − + − + − =
+ − − =

+ − − =

This cubic equation is solved here graphically.

Rearranging,	 z3 + 2.46z2 = 4.6z + 4.1
Let  L = z3 + 2.46z2	 L = R
And R = 4.6z + 4.1	 Tabulating L and R for several vales of z.

H = 3.5 m

h = 1.2 m

GL

z

Pp

Pa

T f = 34°
g = 19 kN/m3

c = 0

GL

Figure 8.69
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It appears from the table that L and R are equal somewhere between z = 1.6 and 
z = 1.7. To be more precise, the tabulated values are plotted on Graph 8.6 and the 
intersection of the two curves yields z = 1.69 m. The tension in the anchoring rod 
can now be calculated.

	

γ    ×
= + − = × × + −   

    
= × − =

2 2
p2 2

a
s

19 3.537 1.69
) 0.283 (3.5 1.69)

2 2 2

9.5 (7.62 5.05) 24.4kN/m length of wall.

(
K z

T K H z
F

This value is usually increased by at least 15% to take account of anchorage 
stresses.

Therefore, T = 1.15 × 24.4 = 28 kN/m
Comparison:  In Example 8.9: z = 5 m

	 In Example 8.10: z = 1.7 m

Sheet piles in cohesive soils
Figure  8.70 shows the pressure diagram, assuming full tension crack develop-
ment. The coefficient of passive pressure is divided by the factor of safety as 
before in Method 2.

0

a

2c
z

Kγ
=

Table 8.8

z m 1 1.5 1.6 1.7 1.8 2
L = z3 + 2.46z2 3.46 8.91 10.40 12.02 13.80 17.84
R = 4.6z + 4.1 8.70 11.00 11.46 11.92 12.38 13.30
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BGL
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Figure 8.70
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The pressure diagram is simplified by indicating net pressures, as in Figure 8.71.
Just above point B:  s

a
 = K

a
g (H−z

0
)

Just below point B:  ( )p
B a 0

s

2
K

c K H z
F

σ γ= − � (8.69)

At hinge c:	
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σ γ γ γ
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= + − + +
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p p
c a a 0

s s
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a 0 a

s s
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2
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F F

K K
K H z z K

F F
cRearranging,

Therefore,	 p
B a

s
C

K
K z

F
σ σ γ

 
= + −  

The net pressure diagram is drawn in Figure 8.71.

Forces:

( )2

a 0
a 2

K H z
P

γ −
=

0
a 3

H z
X H h

−
= − −

1 BP zσ=

1 2

z
X H h= − +

p 2
a

s
2

2

2
2

3

K
K z

F
P

z
X H h

γ
 

−  
=

= − +

In order to derive a cubic equation for z, take moments about the tie.

∑M0 = Paxa + P1x1 − P2x2 = 0
+

p 2
a

s0
a B

2

3 2 2 3

K
K z

FH z z z
P H h z H h H h

γ
σ

 
−  −     − − − − + − − +         

( )
p p

a a
s s2 2 3B

0 B

( )

2 3 )
2

( 0
3 2 3
a

K K
H h K K

F FP
H h z H h z z z z

γ γ
σσ

   
− − −      

− + − − − − − =

H − z0

Kag (H − z0)

Pa

T
z0

H

GL

A

h

B

O

z

g z

P2

P1

C
Kp − KaFs

sB

Xa

GL

X1 X2

Figure 8.71
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Therefore, the cubic equation is expressed as:

( )γ γ σσ
      

− − −      + + − − − + =      +     

p p
3 2 aa a

B 0s sB

( )
2 3 0

3
3 2

( )

2

K K
PK H h Kz z H h z H h zF F

�
(8.70)

Inspite of its complicated look, the cubic can be solved easily, as shown in Example 8.11.
For the equilibrium of horizontal forces, their sum must be zero.

∑Fx      = T + P1 + P2 − Pa = 0

+

Expressing the force in the tie:

	 a 1 2T P P P= − −

Or substituting the expressions of these forces + 15%:

	 ( )2 p 2
a 0 B a

s

1.15
2 z

2

K
T K H z z K

F
γ σ γ

  
= − − − −     

� (8.71)

Example 8.11

A sheet pile wall is supporting a 3.5 m cut in clayey, soil, as shown in Figure 8.72. 
Calculate the depth of penetration required and the tension in the tie rod. Factor 
of safety = 2.

a

a

p
a

p

s

p

s

1 sin25
0.406

1 sin25

0.637

1
2.464

2.464
1.232

2

1.232 1.11

K

K

K
K

K

F

K

F

−
= =

+
=

= =

= =

= =

T

GL

h= 1.2 m

H = 3.5 m

z

GL B

C

f′ = 25°
c ′ = 7 kN/m2

g = 19 kN/m3

Fs= 2

Figure 8.72
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γ
′

= = = − = − =
×

p
0 a

sa

2 2.7
1.16 m 1.232 0.406 0.826

19 0.637

Kc
Z K

FK

− = − = − = − =0 3.5 1.16 2.34m 3.5 1.2 2.3mH z H h

Active force: 
( )γ − × ×

= = =
2 2

a 0
a

0.406 19 2.34
21.1kN

2 2

K H z
P

Pressure:	 ( )σ γ= − − = × − × × = −p 2
B a 0

s

2 2.7 1.11 0.406 19 2.34 2.51kN/m
K

c K H z
F

Coefficients:  p
a

s

19
0.826 5.23

3 3

K
K

F
γ  

− = × =  

p
B a

s

1 1
( ) ( 2.51 19 2.3 0.826) 16.8

2 2

K
H h K

F
σ γ

  
+ − − = × − + × × =     

B 2.51 2.3 5.) 77(H hσ − = − × = −

( )a
0

21.1
2 3 (2 3.5 3 1.2 1.16) 32

3 3

P
H h z− + = × × − × + =

Substituting into (8.70)

	
3 25.23 16.8 5.77 32 0z z z+ − − =

or	 z3 + 3.21z2−1.1z−6.12 = 0

Graphical solution:	 z3 + 3.21z2 = 1.1z + 6.12

Let 3 23.21

Tabulating the calculations:1.1 6.12

L RL z z

R z

== +
= +

As L becomes larger than R at z = 1.3, the intersection point of the two curves is 
some-where between z = 1.2 and z = 1.3. It is seen on Graph 8.7, that z = 1.29 m.

Tension in the tie:

( )

( )

γ σ γ
  

= − − − −     

= × × × + × × − × ×

= × + − =

2 p 2
a o B a

s

2 2

1.15
2

1

1.15
0.406 19 2.34 2 2.51 1.29 19 0.826 1.29

2
1.15

(42.24 6.48 26.12) 13kN/m of wall
2

K
T K H z z K z

F

Table 8.9

z (m) 1 1.1 1.2 1.3 1.4 1.5
L = z3 + 3.21z2 4.21 5.22 6.35 7.62 9.03 10.6
R = 1.1z + 6.12 7.22 7.33 7.44 7.55 7.66 7.77
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Therefore, the tie is subjected to small tension in this example. Alternatively, z 
and T can be determined from the net pressure diagram (Figure 8.73).

Pressures: γ
 

− = × =  
p 2

a
s

19 0.826 15.69 kN/m
K

K z z z
F

σ = − = 2
B 2.51 2.51kN/m

( )γ − = × × = 2
a 0 0.406 19 2.34 18 kN/mK H z

The pressure diagram may now be drawn.

Note that s
B
 is negative, 

hence it is drawn in the oppo-
site sense to P, as shown.

Forces and their distances from the tie.

−
= = − −

= − =

0
a a21.1kN

3
2.34

2.3 1.52 m
3

H z
P x H h

1 1

z z
2.51 2.3

2 2
P z x H h= = − + = +

2

2 2

15.69 2 2
2.3

2 3 3

z z z
P x H h= = − + = +

Sum the moment of forces about T to get z.

∑M0 = Paxa + P1x1 − P2x2 = 0
+

2

2 2 3

15.69 2
21.1 1.52 2.51z 2.3 2.3 0

2 2 3

32.1 5.77 1.25 18 5.23 0

z z z

z z z z

   = × + + − × + =      
+ + − − =

18

O

P1
P2

z

15.69z 2.51

GL

GL

H
=

3.
5

m

H
−

h
=

2.
3

m

h = 1.2 m

H
−

z 0
=

2.
34

m

z0= 1.16 m

Pa

X1
X2

Xa

T

2z
3

Figure 8.73



384       Introduction to Soil Mechanics

Rearranging,

3 25.23 16.8 5.77 32.1 0z z z+ − − =

This is the same cubic equation as before, yielding z = 1.29 m.
Tension T is determined by equating the sum of horizontal forces to zero.

∑Fx = T − Pa − P1 + P2 = 0

+

or	 T = P
a
 + P

1
 − P

2

But	 P
1
 = 2.51 z = 2.51 × 1.29 = 3.24 kN

	

2
2

2

15.69
7.85 1.29 13.1kN

2

z
P = = × =

∴	 21.1 3.24 13.1 11.2kNT = + − =

Increasing T by 15%: T = 1.15 × 11.2 = 13 kN/m length of wall.
Note: The theoretical penetration depth is not increased by 20% in this method as 
R

p
 ≈ 0, unless erosion of the lower ground is expected.

8.15.2  Fixed-earth support method

In this analysis the lower end of the pile is assumed to be fixed and cannot rotate. The 
fixity is provided by the passive resistance of the soil. Because the achievement of per-
fect fixity is doubtful in most soils, the method is applied only to dense sands and gravels. 
The solution is again derived by means of the net pressure diagram. Assumed pressure 
diagram:

( )

( )

( )

( )

( )

( )

σ γ γ

σ γ

γ

γ
γ

σ γ

γ γ

σ γ σ

= + −

= −

+

− +
− −

 
= − −  

− − +

 
∴ = − − −  

p s

p
B a

s

p
C c

s

p

s

a

a c

p
C a c

s

a c p

p
C a c B

s

Net pressures

is reduced by

At B : ( )

At C :

K

F

( )

K F

K
K H x x

F

K
z x

F

x

K H x

K z x

K
K z x

F

K z x K x

K
K z x

F

T

GLA

O
h

H
(H − h)

x
Kp

Fs
zc

g X B

Kag (zc− x)Kag (H + x)

Kag (H + zc)

Kag (H + x)

C

z

GL

g (zc− x)
Kp

Fs

g zc
Kp

Fs

g x
Kp

Fs

Figure 8.74
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Net pressure diagram

In order to solve this statically indeterminate problem, the sheet pile is divided into two 
equivalent ‘beams’ AB and BC. It is assumed, that the point of contraflexure is x m below 
the lower ground level. The length x depends on the friction angle (f′), according to 
experiments by Blum/Terzaghi, as long as there is no additional pressures on the wall due 
to surcharge and high water table. Approximate values are:

Forces acting

where S = shear force in the pile at point B.

GL

GL

T

P1

y1
y2

y3 y4

P3

P2x

P4
Rp

C

sB

B

A

O

Kag (H + x)

(H
+

x
−

h)

h

H
(H − h)

g (zc− x)

z c
−

xg x
Kp

Fs

zc

Kp

Fs
– Ka

Figure 8.75

Table 8.10

f ′ 15° 20° 25° 30° 35° 40°

x 0.37H 0.25H 0.15H 0.08H 0.035H − 0.007H

h

H

GL

GL
A

S S

Fixity

B B

C

zc

P2

P4

P3

P2

P1

T

A

Beam AB

P4

P3

RP
RP

P1

S B
X

B

C

A

O
T

D
ef

le
ct

ed
 s
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pe

Figure 8.76
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Considering beam AB to determine S and T.

2
a

1 1

( ) 2
( )

2 3 3

K H x H x
P Y H x h H x h

γ + +
= = + − − = + −

p 2
2 2

s

1 2

2 3

K x
P x Y H h

F
γ

 
= = − +  

Moments about T:

∑M0 = P1y1 − P2y2 − S(H + x − h) = 0
+

	
−

∴ =
+ −

1 1 2 2Py P y
S

H x h
� (8.72)

Sum of forces equated to zero for equilibrium:

+  ∑F = T − P1 + P2 + S = 0

From which	 T = P
1
−P

2
−S  or  T = 1.15 (P

1
−P

2
−S)� (8.73)

Considering beam BC to determine z
c

( ) c
3 B c 3 2

z x
P z x yσ −

= − =

( )2p c
4 a c 4

s2 3

K z x
P K z x y

F
γ   −

= − − =  

S

B

P2
y2

y1

T

A O

(H + x − h)

P1

Figure 8.77

S

B

P3

zc− x

Rp

C

P4

y4

y3

Figure 8.78
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Taking moments about R
p
 to determine z

c
.

∑Mc = P4y4 − P3y3 − S(zc − x) = 0
+

( ) ( ) ( ) ( )2p
a c B c c

s

0
2 3 2

cc
K z xz x

K z x z x S z x
F

γ σ
−  −

− − − − × − − =  
×

( ) ( )2p
a c B c

s

2 0 [a quadratic]
3

K
K z x z x S

F
γ σ

 
− − − − − =  

From which,	

γσ σ

γ

 
± + −  

− =
 

−  

p2
B B a

s

c
p

a
s

8

3

2

3

KS
K

F
z x

K
K

F

Or	

γσ σ

γ

 
+ + −  

= +
 

−  

p2
B B a

s

c
p

a
s

8

3

2

3

KS
K

F
z x

K
K

F

� (8.74)

Increasing z
c
 by 20%:  z = 1.2z

c

Maximum bending occurs at distance y from T.

2
a

Force onlength :

2

y

K y
Q

γ
=

For equilibrium of forces at y:	
2

a

2

K y
T Q

γ
= =

Expressing:	 γ
=

a

2T
y

K

Therefore,	 max ( ) ( )
3 3 3

Qy Ty y
M T y h T y h T y h

 = − − = − − = − −  

Hence,	 max

2

3
M T y h

 = −  
� (8.75)

A
y −h Mmax

P2

Kag y

y S

T
Q

y
3

Figure 8.79
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Example 8.12

Design the sheet pile wall in Example 8.10 by the fixed-earth method and 
determine the maximum bending moment.

p
a

s

p
p a

s

3.537
0.283 1.77

2

3.537 1.49

K
K

F

K
K K

F

= = =

= − =

From Table 8.10 by interpolation for f ′ = 34°

30° 34° 35°
0.08 0.044 0.035

0.044 0.044 3.5 0.15 mx H∴ = = × =

Pressures:

γ
σ

γ

+ = × × + =
∴ = − =

= × × =

a
2

p B

s

( ) 0.283 19 (3.5 0.15) 19.63

19.63 5 14.63kN/m
1.77 19 0.15 5

K H x

K
x

F

( ) ( ) ( )p
a c c c

s

1.49 19 28 0.15
K

K z x z x z
F

γ
 

− − = × − = −  

The net factored pressure distribution is used to solve the problem.

×
= =

= + − = × − =

×
= =

×
= − + = + =

−
=

+ −
× − ×

= =
−

1

1

2

2

1 1 2 2

19.63 3.65
35.8 kN

2
2 2

( ) 3.65 1.2 1.23 m
3 3
5 0.15

0.38 kN
2

2 2 0.15
2.3 2.4 m

3 3
Shear force :

(8.72)

35.8 1.23 0.38 2.4
17.6 kN

3.65 1.2

BeamAB

P

y H x h

P

x
y H h

Py P y
S

H x h

A
GL

GL

1.2 m

H = 3.5 m

z
c

c = 0

f = 34°

g = 19 kN/m3

zc

T

Figure 8.80
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Figure 8.81
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From (8.73) T = 1.15 (P
1
−P

2
−S) = 1.15 × (35.8 − 0.38−17.6) = 20.5 kN/m

Beam BC

( ) −
= − = c

3 c 3

0.15
14.63 0.15

2

z
P z y

( ) ( ) −
= − = − =2 2 c

4 c c 4

0.1528.3
0.15 14.15 0.15

2 3

z
P z z y

∑Mc = P4y4 − P3y3 − S(zc − 0.15) = 0
+

( ) ( ) ( )

( ) ( )
( ) ( )

3 2

c c c

2

c c

2

c c

28.3 14.63
0.15 0.15 17.6 0.15 0

6 2

4.72 0.15 7.32 0.15 17.6 0

0.15 1.55 0.15 3.73 0

z z z

z z

z z

− − − − − =

− − − − =

− − − − =

Let t = z
c
 - 0.15 and solve the quadratic

− − =2 1.55 3.73 0t t

1.55 2.4 4 3.73 1.55 4

2 2
1.55 4

2.78
2

t
± + × ±

= =

+
= =

Therefore, z
c
 = t + 0.15 = 2.9 m

Alternatively by (8.74): 

× × ×+ +
= +

× ×
+= + = ≈

c

8 19 17.6 1.49
14.63 214

3
2 19 1.49/3

14.63 39.28
0.15 3m 2.9m

18.87

Z x

And z = z
c
 + 0.2z

c
 = 3 + 0.2 × 3 = 3.6 m (Taking z

c
=3 m)

Max. BM: 
γ

×
= = =

×a

2 2 20.5
2.76m

0.283 19

T
y

K

   ∴ = − = × × − =      max

2 2
20.5 2.76 1.2 13kNm /m

3 3
M T y h

It appears from these results that a longer pile is required to fix the end, thus 
increasing the resistance against rotation. Corresponding tension (T) is smaller, 
which means smaller maximum bending moment in the pile, hence smaller 
required cross section.

Table 8.11

Comparison:  Example 8.10 Example 8.12

T (kN) 28 20.5
z (m) 1.7 3.6
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8.15.3  Anchorage

There are two points to consider in the design of support to the tie rods.

1.  The distance of the anchor from the sheet piles, that is the length of tie rod.
2.  The prevention of bearing failure of soil supporting the anchor.

8.15.4  Length of tie rod (L)

It is important to place the anchor well away from the sheet pile wall that is outside the 
zone of possible failure. Figure 8.82 shows the safe zone suggested by Lohmeyer (1934).

8.15.5  Stability of anchors

Anchors may be constructed in various ways:

1.  Sheet pile anchor wall (Figure 8.83a)
2.  Raking pile anchor (Figure 8.83b)
3.  Ground anchor (Figure 8.83c)

4.  Anchor wall lying parallel to the sheet pile wall, extending from the ground surface. 
Its height (b) is determined from the equilibrium of forces acting on it.
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γγ

γ γ

= =

+ =

= −

22
pa

a p
s

a p

2 2
p a

s

2 2

2 2

K bK b
P P

F

T P P

K b K b
T

F

Horizontal equilibrium of forces:

	
γ

γ

 
= − =    

−  

p 2
a

ps
a

s

2
from which :

2

K T
T K b b

KF
K

F

� (8.76)

The depth of tie rod is: 	
2

3

b
h = � (8.77)

5.  Sunken, parallel anchor wall. Again, its size is determined by the equilibrium of 
forces acting on it.
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a a a

a

p p
p

s s

p

s

1
( )

2

(2 )
2

1
)

2
(

(2 )
2

P K a K a b b

K
a b b

K K
P a a b b

F F

K
a b b

F

γ γ

γ

γ γ

γ

= + +  

= +

 
= + + 

 

= +

Equilibrium of forces: T + Pa = Pp

or	 T = P
p
−P

a

Substituting:   

( )

γ γ

γ

= + − +

 
= − +  

p a

s

p 2
a

s

(2 ) (2 )
2 2

2
2

K K
T a b b a b b

F

K
K ab b

F

From Figure 8.86:	
2 2

b b
h a a h= + ∴ = − � (8.78)

Substituting, 

( )

p 2
a

s

p 2 2
a

s

p
a

s

2
2 2

2
2

2
2

K b
T K h b b

F

K
K hb b b

F

T
hb

K
K

F

γ

γ

γ

    = − − +        
 

= − − +  

=
 

−  

	 p
a

s

T
b

K
K h

F
γ

∴ =
 

−  
� (8.79)

All variables on the right-hand side are known as h has to be pre-determined in order to 
calculate T.

Example 8.13

Determine the height of the sunken anchor wall and the length of tie rod for the 
sheet pile wall in Example 8.12.
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From Example 8.12: 

=
− =

= =

=
=

a
p

p a
s

s

0.283

1.493.537
1.77

2

20.5kN/m of wall length
1.2m

K
K

K K
F

F

T
h

From (8.79):	 = =
× ×

20.5
0.62m

19 1.44 1.2
b

From (8.78):	 = − = − =
0.62

1.2 0.89m
2 2

b
a h

After drawing the anchor on the scaled section, within the safe zone, the length of 
the tie rod is measured as: L = 6.8 m (say).

1.2 m

3.5 m

3.6 m

GL 34°

62°

28°

L = 6.8 m

f = 34°
c = 0
g = 19 kN/m3

b = 0.62 m

a = 0.89 m
Anchor

GL

Figure 8.86

8.16  Effect of ground water

The effect of water level difference on sheet pile walls, driven into cohesionless material, 
was discussed in Chapter 3, with regard to seepage only. However, the driving length and 
the tension in the anchor rod are also affected by the presence of ground water. The pres-
sure distribution below the water level is in terms of the submerged density of the soil. 
The water pressure diagram depends on the relative positions of the upper and lower 
water levels. There are three cases to consider:
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1.  If water level on one side of the piles, due to flooding

2.  Water levels at the same height.

The pressure balance each other. There is no seepage 
flow.

1 2P P=

3.  Water is at different levels, ignoring seepage initially.

The net pressure diagram (e) is to be used in a design and the result is modified for 
seepage, as necessary.

GL

Pw

GL

Seepage

Figure 8.87(a)

Pw

GL

GL

Seepage

Figure 8.87(b)

GL

P2 P1

GL

GWL

Figure 8.87(c)

Figure 8.87(d)

g

GL

P4

g ′

g ′

g

P2

P1

P3= P4

GWL

GL

g

GL

g ′ g ′

g

P1

GWL
GL

P2

Figure 8.87(e)
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Example 8.14

A 3.5 m deep excavation is cohesionless soil is to be supported by sheet pile walls 
so, that works may be carried out at the lower level. Any ground water inside the 
excavation is pumped out from a sump. The water level at the other side of the 
sheet piles coincides with the proposed position of the tie rod at 1.2 m depth. 
Determine:

1.  The depth of penetration (z) of the pile.
2.  The force in the tie rod.

The problem is to be solved by the free-earth support method.

Pressure and force diagrams

a

p p

ss

0.283

3.537
1.769

2

K

K K

FF

=
=

=
=

	

( )γγ
−

′ =
+

− ×
=

+
=

s w

3

G 1
From 1.43 :

1
(2.67 1) 9.81

1 0.7
9.64

( )

kN/m

e

Pressures:

γ ′ = × =p

s

1.769 9.64 17
K

z z z
F

γ = × × = 2
a 0.283 19 1.2 6.45kN/mK h

a

w

( ) 0.283 9.64 (3.5 1.2 ) 2.73 (2.3 )

) 2.3 9.81 22.56 N( k

K H h z z z

H h

γ
γ

′ − + = ×× × − + = +
− = × =

H = 3.5 m

To pump

GL, GWL

Sump

Pp

g ′z

H
−

h
=

2.
3

m

h = 1.2 m

O

P2

P3

P4

P5

P1

T

GL

g = 19 kN/m2

f = 34°
e = 0.7
G3= 2.67

g ′

Kagh

(H − h) gw

Kag h Kag ′(H − h + z)
Kp g ′z
Fs

(H − h)gw

Figure 8.88
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Forces and their distances from the tie rod:

a
1

6.45
1.2 3.87kN

2 2

K h
P h

γ
= × = × =

= = =1

1.2
0.4m

3 3

h
y

2 a ( ) 6.45 (2.3 )P K h H h z zγ= − + = × +

= − + = × +2

1
( ) 0.5 (2.3 )

2
y H h z z

γ ′ − +
= − + = × + = × +2 2a

3

) 2.73
(2.3 ) 1.37 (2.3

(
( ) )

2 2

K H h z
P H h z z z

= − + = × +3

2
( ) 0.67 (2.3 )

3
y H h z z

γ

γ

−
= − = × =

×
= − = =

= − =

= − + = +

w
4

4

5 w

5

( ) 22.56
2.3 25.9kN

2 2
2 2 2.3

1.53m
Water3 3

( ) 22.56

2.

( )

(

3

)

2 2

H h
P H h

y H h

P H h z z

z z
y H h

γ ′
= × = × =

= − + = +

p 2
p

s

p

17
8.5

2 2
Passive

2
2.3 0.67

3

K z z
P z z z

F

y H h z z

To evaluate tension T, equate the moments of forces about the tie to zero.

∑M0 = Ppyp + P1y1 − P2y2 − P3y3 − P4y4 − P5y5 = 0

+

× + + × − × × +
− × + − × − × + =

+ + − × + − × + − − − =

2 2

3

2 3 2 3 2

8.5 (2.3 0.67 ) 3.87 0.4 6.45 0.5 (2.3 )

1.37 0.67 2.3 ) 25.9 1.53 22.56 (2.3 0.5 ) 0

19.55 5.7 1.5 3.22 (2.3 ) 0.92 (2.3 ) 39.6 51.9 11.3 0

(

z z z

z z z

z z z z z z

Quadratic terms: (2.3 + z)2 = 5.29 + 4.6z + z2

Cubic terms: (2.3 + z)3 = 12.2 + 15.9z + 6.9z2 + z3

Collecting similar terms and expanding the exponential ones:

( ) ( )3 2 2 2 35.7 8.25 51.9 38.1 17 14.8 3.22 11.2 14.6 6.3 0.92 0z z z z z z z z+ − − − + + − + + + =
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Collecting similar terms:

( )− + − − − + + − + + =

− − − =

3 2

3 2

5.7 0.92 (8.25 3.22 6.3) (51.9 14.8 14.6) (38.1 17 11.2) 0

4.78 1.27 81.3 66.3 0

z z z

z z z

The solution of this cubic equation by graphics or otherwise is z = 4.61 m

Tension T:	 =
= × + = × =
= × =
=
= × =
= × =

1

2
2

3

4

5
2

p

3.87kN

6.45 (2.3 4.61) 6.45 6.91 44.6kN

1.37 (6.91) 65.4kN

25.9kN

22.56 4.61 104kN

8.5 (4.61) 180.6

P

P

P

P

P

P

For horizontal equilibrium ∑ F
x
 = 0

∑Fx      = Pp + T − P1 − P2 − P3 − P4 − P5 = 0

+

1 2 3 4 5 p

3.87 44.6 65.4 25.9 104 180.6

243.77 180.6 63kN/m of wall length

T P P P P P P∴ = + + + + −

= + + + + −
= − =

Increasing this by 15% T = 1.15 × 63 = 72.5 kN
If the ties are placed at 3 meters apart, then each tie has to be designed to carry 

3 × 72.5 ≈ 218 kN.
Note: z = 4.61 m should be checked for adequacy against ‘boiling’ failure. See 
Example 8.15.

Example 8.15

The driving depth in example 8.14 was calculated to be z = 4.61 m, assuming no 
seepage. This would only occur when the pile penetrates an underlying impervious 
layer. Assuming that the impervious layer is at 15m depth, determine:

a)  �The factor of safety against boiling failure, using the partial flow net on 
Graph 8.8.

b)  The driving length required, due to the modification of submerged densities for 
seepage, at F

s
 = 2.

Solution

a)  The factor of safety against piping is found by the methods of Chapter 3.

From Graph 8.8: = −
∆ = = =

=
=
= + = + =
= =

e

ea

b

T

2

19 2.3
0.121

1911

15.7

4.61 2.3 6.91 m

4.61m

N H h
h

NN

N

H z H

H z
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Average pressure head (h
1
) acting on the base (a–b) of prism:

= − ∆ = − × =
= − ∆ = − × =

a T a

b T B

6.91 0.121 11 5.58m

6.91 0.121 15.7 5m

h H hN

h H hN

From (3.36):	
+ += = =a b

1

2 5.58 2.5
5.2m

3 3

h h
h

From (3.37):	 = − = − =s 1 2 5.2 4.61 0.59mh h h

Average hydraulic gradient:	 s
av

0.59
0.128

4.61

h
i

z
= = =

h = 1.2 m

H = 3.5 m

19

18

17

16

15

14

13
b

g2″ = g ′ − gw
hs
z

S
ee

pa
ge

11
10

9

8

7

6

5

4

3

2

1

Ne = 19

Na = 11

Nb = 15.7

g ′ = 9.64 kN/m3

g = 1.9 kN/m3

H − h = 2.3 m

z = 4.6 m

g1″ = g ′ + gw
hs
z

S
ee

pa
ge

Example 8.14 : Driving length assuming no seepage
Example 8.15 : (a) Factory of safely against piping
          (b) Driving length, taking seepage into account

Design of sheet pile wall

12

Graph 8.8
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Critical hydraulic gradient:	
γ
γ

′
= = =c

w

9.64
0.983

9.81
i

Factor of safety against piping failure from (3.42).

c
s

av

0.983
7.7

0.128

i
F

i
= = =

b)  �In order to determine the driving depth and retain 2 as the factor of safety, the 
submerged density has to be modified for upward and downward seepage (see 
also chapter 5)

Downward seepage: γ γ γ ×
″ = ′ + = +

= + =

s
w

2

0.59 9.81
9.64

4.61
9.64 1.26 10.9kN/m

h
z

Upward seepage:	 γ γ γ″ = ′ − = − = 2s
2 w 9.64 1.26 8.4kN/m

h
z

This means that on the upstream side of the pile, the submerged density becomes 
heavier, thus exerting increased active pressure on the structure. On the other 
side, however, the submerged weight is decreased, resulting in smaller passive 
pressure. As a consequence, the driving depth has to be increased, in order to keep 
2 as the factor of safety. The procedure is exactly the same as in Example 8.14, 
using the pressure diagram in Figure 8.88.

Pressures

γ ″ = × =p
2

s

3.537
8.4 14.86

2

K
z z z

F

γ = 2
a 6.45kN/m Unchan d( )geK h

γ ″ + = × + =× × +a 1 2.3 0.283 10.9 2.3 3.( ) ( ) (1 2.3 )K z z z

γ− = 2
w( ) 22.56kN/m unchan d)( geH h

Forces

γ
= = =

2
a

1 13.87kN 0.4m (unchanged)
2

K h
P y

= × =1 1 3.87 0.4 1.5kNmP y

γ ×= + = × + = +2 a 2(2.3 ) 6.45 (2.3 ) 0. (5 2.3 )P K h z z y z

( )= × × + = × + +
= + +

2 2
2 2

2

6.45 0.5 (2.3 ) 3.23 5.29 4.6

17.1 14.9 3.23

P y z z z

z z

γ ″
= × + = × + = × + = × +2 2 2a 2

3 3

3.1
(2.3 ) (2.3 ) 1.55 (2.3 ) 0.67 (2.3 )

2 2

K
P z z z y z
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( )= × × + = × + + +
= + + +

3 2 3
3 3

2 3

1.55 0.67 (2.3 ) 1.04 12.2 15.9 6.9

12.7 16.5 7.2 1.04

P y z z z z

z z z

= =4 425.9kN unchanged) 1.53m(P y

= × =4 4 25.9 1.53 39.6kNmP y

5 522.56 2.3 Un( changed)
2

z
P z y= = +

 = × + = +  
2

5 5 22.56 2.3 52 11.3
2

z
P y z z z

γ ″
= × = = = +

2
p 2 2

p p
s

14.86
7.43 2.3 0.67

2 2

K z z z
P z y z

F

= + = +×2 2 2
p p 7.43 (2.3 0.67 ) 17.1 5P y z z z z

∑M0 = 17.1z2 + 5z3 + 1.5 − 17.1 − 14.9z − 3.23z2 − 12.7 − 16.5z

− 7.2z2 − 1.04z3 − 39.6 − 52z − 11.3z2 = 0

+

Summing like terms to get the cubic equation

− − − =3 23.96 4.63 83.3 67.9 0z z z

From which z = 5.5 m
Therefore, the effect of seepage is to increase the length of sheet piles by 0.9 m, 

at F
s
 = 2.

8.17  Stability of deep trenches

Narrow, deep trenches – excavated to accommodate pipelines, diaphragm walls etc. 
– have to be supported temporarily to prevent collapse prior or during construction. Two 
methods of support are introduced below:

1.  Horizontal bracing
2.  Bentonite slurry support

8.17.1  Horizontal bracing

This method of support is applied to vertical cuts, deeper than 1.2 m. The material used is 
either timber or steel.
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Timber support
For cohesive soils, one or several poling board may be omitted (open timbering), whilst 
closed timbering is appropriate in loose and wet soils. At least 1m high handrail should be 
constructed on both sides for safety.

The vertical and horizontal distances between the struts (or braces) depend on their 
strength to carry the estimated pressures acting on the poling boards and the waling. 
Also, the cross-section of the strut depends on its material, length (l) and the axial force 
transmitted by the waling.

The supporting arrangement depicted in Figure  8.89 may be altered in various 
ways by:

a)  Using adjustable steel struts as long as l < 1.67 m
b)  Using steel column or suitable beam section as strut
c)  Using sheet piles instead of poling board driven into the ground for deeper cuts.
d)  Using standard steel I-beam or column sections driven into the ground and placing 

timber sheeting horizontally behind the flanges. The sheeting should be continu-
ous for cuts of H > 7 m.

8.17.1.1  Pressure distribution against the sheeting

In contrast to retaining wall problems, there is no theoretical solution for the soil-pressure 
distribution over the depth of cut. The reason for this is twofold:

1.  Whilst a retaining wall is homogeneous, stiff structure, the sheeting is flexible. The 
flexibility depends on the positioning of the struts during excavation. Moreover, 
any non-uniformity in the supported soil can greatly influence the magnitude of 
force in each strut, but has no effect on a rigid wall.

2.  The development and magnitude of force in the struts depend largely on the 
sequence of their installation, hence on the method of excavation.

Notes: Should one strut fail, then the adjacent members would carry its load. This cannot 
occur, when the support is a solid wall.

Because of uncertainties involved, the pressure distribution, in this case, can only be 
approximated on the bases of actual measurement of strut loads during and after 

Figure 8.89

Vertical
poling
boards

(a) Hand rail
Guard rail

Strut

Waling

B

l

H h

(b)
Waling

Poling boards

Plan view

d
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construction. Terzaghi and Peck suggested the distributions, for dense and, loose sand 
as shown in Figure  8.90. These are drawn, empirically to envelope the experimental 
measurements of pressures developed in actual structures.

where	
a

1 sin

1 sin
K

φ
φ

−
=

+
� (8.11)

The suggested maximum pressure, acting on the sheeting, is 0.8 times the active value 
determined from Rankine’s theory.

Note: The diagrams show idealized, empirical pressure distributions. In reality, the 
actual, measured shapes can be somewhat different, depending on the method of strut 
installation. However, as the envelopes indicate larger than the in-situ test results, these  
may be used to estimate the forces acting on the member of the structure.

The pressure diagrams suggested by Terzaghi and Peck for cohesive soils are shown in 
Figure 8.91.

where c
u
 = unconfined compressive strength.

Figure 8.90
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Figure 8.91
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The choice of envelope depends on the stability number of the clay:

If 

( )

( )

γ

γ γ γ

γ γ γ

γ

≤

> − >

> − <

> ≤ < =

u

u
u

u
u

u

4 then envelope b is to be used

4 and 4m 0.4 , then use c)

4 and 4m 0.4 , then use b)

4 then 0.4 1 f

( )

(

(

consolior normally clays. Otherwisdated e 1

H
c

H
H c H

c

H
H c H

c

H
m m

c

Evaluation of forces in the struts
The pressure envelopes indicate the approximate loading on the sheeting, hence on the 
struts or braces. Any additional surface loads must be taken into account. However, it is 
best to keep all superimposed loads, such as construction materials at least 2 m away 
from the trench.

In order to determine the compression in each strut, the poling is divided into “simply 
supported beams” by assuming hinges at the strut supports, as shown in the following 
example.

Example 8.16

A trench 2.5 m wide and 5.5 m deep is to be excavated in compact dry sand, in 
order to place a 500 mm dia. pipeline with centre at 5 m below ground level. The 
characteristics of the sand are:

γ
φ

=
= °

319.4kN/m

32

Determine the forces in three horizontal timber struts placed at 1.1 m, 2.75 m 
and 4.4 m from the surface at 1.8 m intervals.

5.
5

m

1.65 m

1.65 m

1.1 m
A

B
g = 19.4 kN/m3

f = 32°

HingeC

D

E

PB

PC

PD Hinge

Hinge

smax= 26.23 kN/m2

0.2 × 5.5 = 1.1 m

0.2 × 5.5 = 1.1 m

0.6 × 5.5 = 3.3 m

Figure 8.92
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The maximum pressure of compact, dense sand is given by

σ γ=
− = × × ×  +

 = × × =  

max

2

0.8

1 sin32
0.8 19.4 5.5

1 sin32

0.47008
0.8 106.7 26.23kN/m

1.5299

aK H

This completes the pressure envelope for this problem and the simply supported 
beams can now be analysed.

Beam ABC is a simple supported cantilever.

Force acting on cantilever AB is given by the area of the triangle, multiplied by the 
spacing (d = 1.8 m)

	

× = × = =  1

1.1 26.23 1.1
1.8 26kN acting at 0.37m from B

2 3
F

Similarly, the force acting on span BC is given by:

	
=×= ×2 1.8 1.65 26.23) 77.9kN acting at cent( re spanF

The equivalent force diagram can now be drawn and forces in the struts 
determined.

Sum of moments about B = 0

∑MB = 77.9 × 0.825 − 26 × 0.37 − 1.65PCB = 0
+

CB54.65 1.65 0P− =

From which the force in strut C, contributed by the load on length AC is:

	
= =CB

54.65
33.1kN

1.65
P

PB PCB

1.65 m
B C

26.23 kN/metre width of valing

A
1.1 m

Figure 8.93

0.825

77.9 kN26 kN

0.37

1.65 m
PB PCB

A B C

Figure 8.94
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Summing the vertical forces to get P
B

+  ∑V = PB + PCB − 26 − 77.9 = 0

B CB103.9 103.9 33.1 70.8kNP P= − = − =

Beam CD is again simply supported

Sum of moments about D:   ∑MD = 1.65PCD − 0.825 × 77.9 = 0
+

CD1.65 64.27P =

Therefore the force in strut C contributed by the loading on span CD is:

	
= =CD

64.27
39kN

1.65
P

Summing the vertical forces to get P
DC

:

∴ = − =
+ − =

DC

DC

77.9 39 38.9kN

39 77.9 0

P
P

Beam DE is simply supported

+    ∑V = PCD + PDC − 77.9 = 0

26.23 kN/m

1.65 m

(a) (b)

PCD PDC

D

is equivalent to

C 1.65 m

PCD PDC

DC

0.825 0.825

77.9 kN

Figure 8.95

1.1 m

PDE PE PDE PE

0.37

D EE

is equivalent to

(a) (b)

D

26
.2

3
kN

/m

26 kN/m

1.1 m

Figure 8.96
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8.18  Bentonite slurry support

This method is used as temporary support to the very narrow trenches. Thixotropic 
(see  Chapter 6) bentonite slurry is poured into the trench as it is excavated. Being 
thixotropic, the slurry gels when undisturbed, but reverts to fluid if excavation is 
continued. The trench is then supported by the hydrostatic pressure of the slurry.

∑MD = 26 × 0.37 − 1.1PE = 0
+

	

∴ = =

∴ = − =

E

DE

9.62
8.7kN

1.1

26 8.7 17.3kN

P

P+  ∑V = PDE + PE − 26 = 0

Summary of results:  =
= + = + =
= + = + =
=

B

C CB CD

D DC DE

E

70.8kN

33.1 39 72.1kN

38.9 17.3 5

(

6.2kN

8.7kN carried by the soil)

P

P P P

P P P

P

Notes:

1.  A pressure diagram is not indicative of actual earth pressures, but is an aid 
for the determination of loads on the struts, as found by the site measure-
ments. For this reason, only one side of the trench need to be drawn to 
solve problems.

2.  The load on struts decreases with depth.
3.  Failure of one strut transfers load to adjacent ones and could precipitate 

general collapse.
4.  The timber or steel members of the bracing system must be designed as 

structural sections, subject to bending or compression.
5.  It is advisable to check the estimated compressive force in a strut by in-situ 

measurements.
6.  Check should be made as to the stability of base against heaving in clay or 

piping in water bearing sand.

70.8 kN

72.1 kN

56.2 kN

17.3

38.9
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33.1
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B
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Waling

Vertical
poling
boards

d = 1.8 m

of pipe

1.65 m

1.65 m

1.1 m

D

E
1.8 m

5.5 m

Lc

Figure 8.97
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8.18.1  Trench in clay

The bentonite seals the vertical surfaces and prevents loss of pore water from the clay. 
The stability of the filled trench is analysed in terms of total stresses, as the clay is 
undrained and the trench is open in the short term only. As f

u
 = 0 for saturated clay, the 

factor of safety is derived in terms of c
u
, assuming the inclination of the critical wedge at 

45° to the wall.

b

2 2

b

2
b

b

unit weight of clay

unit weight of slurry

length of slip surface

2

hydrostatic force exerted by the bentonite

2

L

L H H H

P

H
P

γ
γ

γ

=
=
=

= + =
=

=

	

2

m

u

weight of the wedge
2

shearing force along the slip surface

available shear force along slip 

surface 2 c

H
W

S

S

H

γ
=

=
=

=

Resolving all forces acting on the wedge along the slip surface and summing them: ignore 
reaction R

+ − =
= −

= =

∴ = −

b m

m b

m b

cos 45 sin45 0

sin45 cos 45

1
But, sin45 cos 45

2

1
)

2
(

P S W

S W P

S W P

or	 ( )γγ γ γ
 

= − = −  

22 2
b

m b

1

2 22 2 2

HHH
S

The factor of safety may be defined as:

	

( )
( )γ γ

γ γ

= =

∴ =
−=

−

s
m

u
su

b2

b

Available shear force

Induced shear force
4

2 c

2 2

S
F

S
c

FH H
H

� (8.80)

Actual shearing stress on the slip surface is given by:

	 ( ) ( )τ γ γ γ γ
 

= = − = − 
 

2
m

b b

1

42 2 2

S H H
L H

H
Pb

g
b

W

Slip
 su

rfa
ceSlurry

R
45°

Sm

g

∇

Figure 8.98

Pb

W Sm45
°

45°
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s4

5

W
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n4
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Pb

Figure 8.99
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Therefore, the alternative definition for F
s
 is:

( ) ( )

τ

γ γγ γ

= =

= =
−−

u
s

u u

b
b

Available shear stress

Actual shear stress

4

4

c
F

c c
H H

8.18.2  Trench in sand

In this case, the existing ground water table as well as the height of the slurry column 
have some effect on the minimum unit weight of mud required. This is determined by 
means of the pressure distribution diagrams.

Example 8.17

A diaphragm wall 7 m deep has to be constructed in homogeneous clay, using 
bentonite mud of unit weight 11 kN/m3 to support the excavation. The clay has a 
shear strength of 85 kN/m2 and a bulk unit weight of 19.6 kN/m3.

Evaluate the factor of safety against failure of the trench.

		  From the data: 

γ
γ

=
×= =

× −
=

=
=

3
s

3
b

2
u

7m
4 85

19.6 kN/m
7 (19.6 11)

11.0kN/m
5.6

85kN/m

H

F

c

Figure 8.100
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∇
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m
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g
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g ′ = g
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w

g

f′

Slurry Dry Saturated Water
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(b)

Pressure diagram

ng
b
H (l − m)gH mHg ′ mHg

w
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This is the general case, when the trench is only partially filled and the ground water level 
is mH distance above the base of the cut.

The forces acting are determined from the diagram

g b g bH21 (nH × ng bH) = (nH)2 = n2
2 2 2

Slurry: Pb =

[(1 − m)H × (1 − m)Hg ] = (1 − m)2
22

KaDry sand: P1 =

Kag H2

Kag H2

= (1 − 2m + m2)×
2

where m
a

m

1 sin

1 sin
K

φ
φ

−
=

+
 (mobilized)

( )γ γ= − × = − 2 2
2 a a(1 m) m m mP H HK K H

Saturated Sand:  ( ) γγ ′
= × =′

2
2a a

3 m m m
2 2

K K H
P H H

Ground Water:  ( ) γγ= × =
2

2 w
4 w

1
m m m

2 2

H
P H H

Summing the forces for equilibrium:

∑H = Pb − P1 − P2 − P3 − P4 = 0

+

( )γ γ γ γγ

∴ = + + +

′
= − + + − + +

b 1 2 3 4

2 2 2 2
2 2 2 2 2 2b a a w

a1 2m m (m m ) m m
2 2 2 2

P P P P P

H K H K H H
n K H

Dividing both sides by 
2

2

H
:

( ) ( )2 2 2 2 2
b a a a w1 2 2n m m K m m K m K mγ γ γ γ γ= − + + − + ′ +

Collecting: terms of K
a
g :

( )2 2 2 2 2
b a a w1 2 2 2n m m m m K m K mγ γ γ γ= − + + − + ′ +

Substituting g ′ = g
sat

−g
w
:

( )

( )

γ γ γ γ γ
γ γ γ γ γ
γ γ γ γ γ
γ γ γ γ

= − + − +
= − + − +
= − − + −  
= + − + −

2 2 2 2
b a a sat w w

2 2 2 2
a a a sat a w w

2
a a a sat a w w

2
a a w a sat

1 ( )

1 ( )

n m K m K m

K m K m K m K m

K m K K K

K m K K

Therefore, the minimum unit weight of the bentonite slurry is given by:

	 ( ) ( )γ γ γ γ γ = + − + − 
2

b a a w a sat2

1
1K m K K

n
� (8.81)
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If g
sat

 = g then	 ( )γ γ γ = + − 
2

b a a w2

1
1K m K

n
� (8.82)

The factor of safety may be defined as:

	
φ
φ

′
=s

m

tan

tan
F � (8.83)

where f ′ = effective angle of friction of sand
φ =m amobilized friction angle obtained from (8.11), that is the mobilized value of K

	 ( )

m
a

m

a a m m 1 a
m

a m a

a
m

a

1 sin

1 sin

sin 1 sin 1
sin

1 sin 1 1

1
sin

1

a

K

K K K
K K K

K
K

φ
φ

φ φ
φ

φ

φ

−

−
=

+
+ = −′  −

∴ =  + = −′ + 
−

=
+

� (8.84)

Expressing the mobilized value of the active coefficient from 8.81:

	

( ) ( )

( )

2 2
b a a w a sat

2 2
a w a w a sat a

2 2
a w sat w

1n K m K K

K m m K K K

K m m

γ γ γ γ γ
γ γ γ γ γ
γ γ γ γ γ

= + − + −

= + − + −

= − + − −

Therefore the mobilized	
γ γ

γ γ
−

=
−

2 2
b w

a 2
sat w

n m
K

m
� (8.85)

Assuming that g
b
 and g are known and that the slurry is up to ground level, that is n = 1 

then the coefficient becomes:

	
γ γ
γ γ

−
=

−

2
b w

a 2
sat w

m
K

m
� (8.86)

There are two more cases to consider:

Case 1: Water table is at the surface

	
γ γ
γ γ

−
= ∴ =

−
b w

a
sat w

1m K � (8.87)

Case 2: Water table at or below the base of the cut:

	
γ
γ

= ∴ = b
a0m K � (8.88)
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Example 8.18

Referring to the 7 m deep trench of example 8.17 assume that the soil is dense 
sand of f′ = 30° and g = 18.6 kN/m3. The density of slurry is still 11 kN/m3. The voids 
ratio and the specific gravity of the sand is 63% and 2.66 respective. Estimate the 
factor of safety for the following three cases, when the trench is completely filled 
with bentonite and the ground water table is at:

i.  The surface
ii.  3 m below the surface
iii.  8 m below the surface

i.  m = 1 γ γ+  +
= = × =  +

3s
sat w

2.7 0.63
9.81 20kN/m

1 1.63

G e
e

From (8.87):  a

11 9.81
0.117

20 9.81
K

−
= =

−

From (8.84):  φ − −−   = = = °      
1 1

m

1 0.117 0.883
sin sin 52.2

1.117 1.117

From (8.83):  s

tan30 0.57735
0.448 (failure)

tan52.2 1.2892
F = = =

ii. 
3

3 0.4286
7

mH m= ∴ = =

From (8.86): 
γ γ
γ γ

− − ×= = =
− − ×

2
b w

a 2
sat w

11 0.184 9.81
0.505

20 0.184 9.81

m
K

m

1 1
m

1 0.505 0.495
sin sin 19.2

1.505 1.505
φ − −−   = = = °      

s

tan30 0.57735
1.66

tan19.2 0.3482
F = = =

iii.  b
a

11
0 0.591

18.6
m K

γ
γ

= = = =

φ − −−   = = °      
= 1 1

m

1 0.591 0.409
sin sin 14.9

1.591 1.591

s

tan30 0.57735
2.17

tan14.9 0.266
F = = =

Notes:

a)  Safety decreases with increasing water level.
b)  The factor of safety in clay is higher than in sand, under similar conditions.
c)  If the required F

s
 is specified, then g

b
 can be found. For instance, to increase 

the factor of safety to 2.1 in case (ii). Then the required f
m
 is given by 

(8.83):
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m
s

1
m

tan tan30
tan 0.2749

2.1

tan 0.2749) 15.3( 7

F
φφ

φ −

′= = =

∴ = = °

a

1 sin15.37 0.7349
0.581

1 sin15.37 1.26505
K

−
= = =

+
The required unit weight for the slurry is expressed from (8.86):

( )
( )

( )

γ γ γ γ

γ γ γ γ

− = −

∴ = − +

= × − × + ×

= × − + =

2 2
a sat w b w

2 2
b a sat w w

2 2

3

0.581 20 0.4286 9.81 0.4286 9.81

0.581 (20 1.8) 1.8 12.37 kN/m

K m m

K m m

Note: A diaphragm wall is constructed within the slurry at the end of the excava-
tion, the steel reinforcement is lowered through the mud and a trench is used to 
place concrete. During this process, the heavier materials displace the bentonite 
as the concrete fills the trench. After the concrete hardened and gained sufficient 
strength, the adjacent soil may be excavated to form the wall of a basement, for 
example.
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Problem 8.1 

The active thrust acting on a 9 m high wall, supporting sand and water, was 
determined in Example 8.3 (case 2) as 305 kN.

Also, the other forces acting on the wall were calculated in Example 8.8. 
These are:

=PPassive force : 110.5kNP
=pItsline of action : 0.67m from toe Qy
=Frictionforce : 383kNF

Weight of wall
=

=
=

=
=

=
=

1
1

2
2

3
3

216 kN
3.50m

252kN
acting at 2.67m from the toe

144kN
2.00m

W 612kN

W
x

W
x

W
x

Check the stability of the wall, shown in Figure 8.108, assuming F
s
 = 2 throughout.

Soil characteristics for both active 
and passive cases

γ = 317kN/m
γ = 3

sat 19kN/m
32φ = °
0c =

= 2

Bearingcapacity of soil
under thebase 200kN/m

Figure 8.101
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∇

4 m
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GL
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W1

W2

305 kN

W3
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Problem 8.2 

A 9 m deep excavation, in dry sand, is to be supported by an anchored sheet pile 
wall. Calculate, by the Free-earth support method, the depth of penetration (z), if 
the working tension in the tie must not exceed 120 kN. Also, estimate the depth (h) 
and the approximate length (L) of the tie rod, when the height of the sunken 
anchor block is 2 m. Adopt 2 as the factor of safety.

Figure 8.106

c= 0

Sheet pile
sand

L

2 m

GL

T = 120 kN

H = 9 m

h

z
Sand f = 32°

g = 17 kN/m3

Problem 8.3 

Derive the formula for the depth of tension crack, starting from the diagram in 
Figure 6.18, reproduced here.

Figure 8.108

c cotf +

c cotf

t

sa= 0 sv
s

sv

sv

f
c

2

2

Problem 8.4 

A 4 m high wall retains moist, coarse sand of f = 32° and g = 17 kN/m3, as shown in 
Fig 8.109. Determine the active force acting on the wall by:

1.  The Rankine theory
2.  Graphical method
3.  Trigonometry

Neglect wall friction. 
Ground water table 
is below the base.
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Problem 8.5 

Derive expressions for the passive force and the critical angle of the correspond-
ing slip surface. These will be similar to those obtained in Problem 8.4. The main 
difference is due to the inclination of the reaction (R) to the slip surface, as the 
passive wedge tends to slide upwards. Neglect wall friction.

The reactions are inclined to resist movement.
The diagram below shows wedge abc and the forces acting on it, drawn at 

point a for convenience.

Figure 8.112
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Problem 8.6 

The smooth wall, shown in Fig 8.115, is supporting the moist sand of Problem 8.4.
Determine:

a)  The inclination of the active and passive slip surfaces.
b)  �The active and passive forces acting and compare the figures with those 

calculated in Examples 8.3 and 8.8.

Figure 8.115

Dry sand

GL

GL

1 m

9 m

Pa

Pp 2 m a

g = 17 KN/m3

f = 32°

tanf = 0.6249

KQ= 0.307

b

Kp=    = 3.2571
Ka

Problem 8.7 

Derive formulae for the active and passive forces acting on the wall, shown in 
Graph 8.10, taking wall friction into account this time.



Graph 8.10
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Problem 8.8 

Suppose the retaining wall in Problem 8.6 has rough surface, with friction angle 
d = 17. 6°.

Determine:

1.  The maximum value of the active force and the angle of the relevant slip 
surface.

2.  The minimum value of passive resistance and the relevant angle.

Problem 8.9 

Determine the active force, acting on the 4 m high wall in Problem 8.4, by 
Culmann’s method. The general procedure is described with reference to 
Figure 8.121 and Graph 8.13.

Step 1:   � Draw a trial surface
Step 2: � Draw the baseline and the direction of P

a
 at f = 32° as shown.

Step 3: � Calculate the weight (W) of the wedge and mark it along the baseline to 
any desired scale.

Step 4: � Draw a line from the baseline at W, parallel to the direction of P
a
 (a − b), 

to meet the trial slip surface at point X. The distance between X and the 
baseline is the active force induced by the trial wedge.

Step 5: � Repeat the process for a number of wedges and draw the Culmann line 
through each X point.

Step 6: � Draw a tangent to the Cullmann line, parallel to the baseline to locate the 
maximum value of P

a
 and its slip surface.

Figure 8.121
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Problem 8.10 

A reinforced concrete box section underpath is to be constructed below a main 
road. The surcharge on the section is expected to be 70 kN/m2. The backfill is 
compact fine sand, having the following known characteristics:

Minimum voids ratio = 62%
Maximum voids ratio = 53%
Specific gravity        = 2.65
Angle of friction      = 30°

Determine the horizontal forces acting on the section shown, so that they can be 
taken into account during the design of its reinforcement. It is specified, that the:

a)  Concrete surfaces should be smooth
b)  Sand has to be compacted to a ‘relative’ density of 69%.

Figure 8.122

q = 70 kN/m2

gsat

g ′

1.8 m

GWL

GL

1.2 m

3 m

Underpath

Problem 8.11 

A retaining wall is to be designed with 3 m × 2 m base area. It is specified, that the 
maximum and minimum pressure, below the base along the longitudinal axis, 
must not exceed 200 kN/m2 and zero respectively.

Calculate the magnitude of the vertical force (R) acting on the base and its 
eccentricity (e) from the centre line, parallel to the shorter side.
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Chapter 9

Bearing Capacity of Soils

When a building is constructed on top of soil layers, its structure could suffer extensive 
damage in two ways:

1.  In clay soils, the excess pore pressure (Δu), induced by the excess total pressure 
(Δs) could be so high, that the resulting consolidation of the soil would cause 
excessive settlement of the structure. Should various parts of building settle 
unevenly, the differential settlement could damage its structure.

This type of problem is considered in Chapter 7 under ‘Consolidation and 
Settlement’.

2.  In all types of soil, foundation pressure induces shearing stresses.If the shearing 
resistance, often called shear strength of the soil is insufficient to resist the induced 
stresses, then the soil fails by yielding under the footing.

The purpose of this chapter is to introduce methods for the determination of the 
load-bearing capacity of soils.

9.1  Terminology

Footing:	 The substructure of a building which transfers load to the ground
Foundation:	� This may mean ‘footing’ as well as the soil, upon which the base of the 

footing rests.

9.1.1  Foundation pressure (s)

It is the total pressure of the structure, including the superimposed load on it, transmit-
ted to the soil by the footing.

W = load
A = base area

W
A

σ = � (9.1)

B

z sg

W

GL

1m

Figure 9.1
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9.1.2  Net foundation pressure (sn)

It is the excess total pressure at base level, that is the safe foundation pressure, less the 
total overburden pressure (s

0
), that is the weight of the excavated soil.

	 n 0σ σ σ= − � (9.2)

9.1.3  Effective overburden pressure (s ¢0)

It is the effective pressure at the proposed base level prior to excavation. It equals to the 
total overburden pressure (s

o
) minus any pore water pressure (u). (See also chapter 5).

At point P:

( )σ γ γ
γ

σ σ

= − +

=
′ = −

0 sat

0 w

0 0 0

z h h

U h

u � (5.1)

Note: The actual value of (s ′
0
) depends, of course on the stratification and on the position 

of the GWL relative to the proposed foundation level. It is, therefore, included in the bear-
ing capacity formulae.

9.1.4  Ultimate bearing capacity (qu)

It is that bearing pressure, which causes the soil to yield in general shear failure. Its value 
is calculated from one of the formulae based on the general equation, derived by Terzaghi 
et al, for the shear failure of shallow and deep foundations.

Shear failure occurs if:

u nq σ σ< < � (9.3)

9.1.5  Net ultimate bearing capacity (qn)

It equals to the ultimate bearing capacity less the effective pressure of the excavated 
soil. Shear failure occurs if s

n
 > q

n
.

z
Soil to be
excavated

sn s0= zg

s

g

Figure 9.2

z

P

GL

GWL
so′ g∇

gsat

Figure 9.3

z

s

gsn

qu

Figure 9.4
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σ= − ′n u 0q q � (9.4)

9.1.6  Safe net bearing capacity (qsn)

It is the net ultimate bearing capacity, reduced by a factor of safety of F
s

	
σ σ− ′

= = =n 0n
sn n

s s

qq
q

F F
� (9.5)

9.1.7  Safe bearing capacity (qs)

It is the safe net bearing capacity increased by the effective overburden pressure, thus 
providing added strength and stability against shear failure. The factor of safety is not 
applied to the overburden, as it is a constant quantity. The safe foundation pressure (s) 
is equated to q

s
.

	

s

sn n 0 s 0

s sn 0

But,

q

q q

q q

σ
σ σ σ σ

σ σ

=
= = − = −

∴ = + = � (9.6)

The foundation pressure (s) on the soil has to be less or equal to its safe bearing 
capacity.

	 u 0n
s 0 o

s s

or
qq

q
F F

σσ σ σ σ− ′
∴ ≤ = + ≤ + � (9.7)

This formula is used normally in bearing capacity problems.

9.1.8  Allowable foundation pressure (sa)

It is the maximum foundation pressure that may be transmitted to the ground by the 
footing, taking into account the:

1.  Safe bearing capacity of the soil and the adequacy of the chosen factor of  
safety (F

s
).

2.  Magnitude and rate of estimated settlement of various parts of the structure.
3.  Ability of the structure to accommodate differential settlement.
4.  Effect of the foundation pressure on adjacent structures and services.

qn

qu– so′
∇

Figure 9.5

s

qs

GL

Figure 9.6
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Note: The consideration of differential settlement is especially important, when the 
structure is statically indeterminate. If one part of the structure settles more than the 
other, then the joints between its elements could be excessively overstressed. Take a 
rigid portal frame shown in Figure 9.7.

Suppose, the maximum settlement, predicted from a consolidation test result, was  
30 mm for each footing.

In Figure  9.7(a), both footings settle equally, thus the stresses within the structure 
remain at their designed values.

In Figure 9.7(b), however, there is a differential, excess settlement of 20 mm at founda-
tion B, which induces additional bending moment (M

x
) in each rigid joint. Unless the frame 

is designed to carry the excess bending moment, it could exhibit structural distress or 
complete failure.

On the other hand, statically determinate structures, such as simply supported beams 
and slabs, can accommodate some differential settlement as shown in Figure 9.8.

The rotation of the slab does not induce stresses at the supports as it is free to rotate 
there. As long as the differential settlement is not excessive, any damage would amount 
to an acceptable degree of cracking at the wall slab interface.

The edge of
slab is free
to rotate

Roof slab Building paper
to allow
sliding

Differential
movement (d )

B

d

d

B

Figure 9.8

Figure 9.7
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9.1.9  Presumed bearing values

In the absence of laboratory test results, the following bearing values may be assumed 
(BS 8004: 1986) in kN/m2.

Theory
Formulae (9.1-9.7) relate the bearing capacity of soil to the loading of the structure it sup-
ports, in general terms. In this chapter, the formulae to calculate the bearing capacity of 
the supporting soil will be introduced for shallow and deep foundations of various shapes.

A foundation is taken to be shallow if B ≥ z.

widthof thefootingB =

Formulae for the following four types of footing shapes, founded in cohesive or non-
cohesive soils are considered:

a)  Strip
b)  Square
c)  Circular
d)  Rectangular

9.2  Shallow strip footing

The most general bearing capacity formula was given by Terzaghi, modified by Skempton, 
based upon the fact, that when soil in natural elastic state is loaded, it deforms. If the load 
is large enough to induce larger shearing stresses than the shear strength of the soil, then 
plastic deformation occurs. This load is the ultimate bearing capacity (q

u
) of the particular 

soil. Plastic state is reached gradually in loose granular soils and soft clays, and suddenly 
in very compact, cohesive ones. At this juncture, the soil undergoes general shear failure, 
flowing from under the footing, sideways and upwards, as shown in Figure 9.10(b). The 
development of plastic state is shown by the load-settlement curves in Figure 9.10(a).

z

GL

s

sn

B

Figure 9.9

Table 9A

Dense gravel > 600 B > 1 m
Water table at least B m below 
base.

Susceptible to long-term 
consolidation settlement.

Medium dense gravel/sand and gravel 200—600
Loose gravel < 200
Compact sand > 300
Medium dense sand 100—300
Loose sand < 100
Very stiff boulder clays/hard clays 300—600
Stiff clays 150—300
Firm clays 75—150
Soft clays and silts < 75
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Net bearing pressure

9.2.1  Terzaghi’s equation for qu

This equation was introduced by Terzaghi (1943), modifying the original solution of 
Prandtl (1920), assuming the curve of the failure surface as logarithmic spiral.

Depth (D) of the rupture zones is approximately equal to the width (B) of the footing. The 
ultimate bearing capacity of the soil is equal to the total shearing resistance available 
along the slip surfaces. It is assumed, that the surcharge is not contributing to the shear-
ing resistance, being backfill normally. However, it resists the rotation of the soil mass, 
hence contributes to safety. The bearing capacity for this case is given by:

	 u c 0 q 0.5q cN N BNσ γ γ= + +′ � (9.8)

where
c = cohesion, often called ‘apparent cohesion’ of the soil
s ′

0
 = effective overburden pressure

N
c
, N

q
 and Ng are bearing capacity factors.

The term cN
c
 is contributed by the cohesion.

The term s ′
0
N

q
 is contributed by the surcharge.

The term 0.5g BNg is contributed by the effect of width B.

Figure 9.10
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The bearing capacity factors are given in Table 9.1, in terms of the angle of friction f
1
 

assuming rough base.

These figures are plotted on Chart 9.1.
The net bearing capacity can be expressed from (9.4) and (9.8):

n u 0

c 0 q 00.5

q q

cN N B N

σ
σ γ σγ

= − ′
= + ′ + − ′

Hence,	 ( )σ γ γ= + ′ − +n c 0 q 1 0.5q cN N B N � (9.9)

Similarly, the safe bearing capacity can now be expressed from (9.6) and (9.9):

	 ( )

n
s 0

s

s c 0 q 0
s

1
1 0.5

q
q

F

q cN N BN
F

σ

σ γ σγ

= +

 = + ′ − + +  � (9.10)

The value of F
s
 is normally chosen between 2 and 3, for structures not sensitive to 

differential settlement.
The total safe foundation pressure (s) is therefore given by:

	 ( )s c 0 q 0
s

1
1 0.5q cN N BN

F
σ σ γ σγ

 ′≤ = + − + +  � (9.11)

If there is restriction on the magnitude of settlement, then oedometer consolidation 
test has to be carried out, in order to ascertain the allowable foundation pressure and the 
corresponding consolidation.

Formula 9.11 is applicable to c–f soils, that is where both friction and cohesion are pre-
sent. It can easily be simplified for pure clay (c-soil) and pure sand (f -soil).

For pure clay:

	

φ

σ

γ

= °
=

∴ = +=

=

c

s 0
q s

0

5.7 5.7
1

0

N c
q

N F

N

� (9.12)

Table 9.1

 
B.C.  
factor

f°

0 5 10 15 20 25 30 35 40 45

N
c

5.7 7.2 9.9 13 17 25 37 58 95 172
N

q
1 1.5 2.7 4.5 7.5 13 22 42 81 173

Ng 0 0 1 2.1 4.5 10 20 45 120 175
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+
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For pure sand:

	 ( )
φ

σ γ σγ

γ

> °
=

 ∴ = − + +′ >

>

c

s 0 q 0
q s

0

0 1
1 0.5

0

0

N
q N BN

N F

N

� (9.13)

9.2.2  Effect of static water table

The values of the effective pressure (s ′
0
) and the bulk density of the soil, hence the bear-

ing capacity of the soil, depend on the ground water level (GWL). Three cases are depicted 
for uniform c–f soil.

1.  GWL is below the rupture zones
2.  GWL is within the rupture zones
3.  GWL is above base level.

1.  GWL is below the rupture zone (D > B):

In this case, GWL has no effect 
on  the bearing capacity. See 
section 5.8 on capillary move-
ment however.

2.  GWL is within the rupture zones (D < B):

It may be assumed in this case that the soil below the footing is saturated because of 
capillary rise. For this reason, the submerged density (g ′) is used in the third term of the 
bearing capacity formulae.

( )s c 0 q 0
s

1
1 0.5q cN N BN

F
σ γ σγ

 ′∴ = + − + ′ + 

where s ′
0
 = s

0
 = zg

GL

B

c

GWL

g

f

∇

D > B

z ≤ B

Figure 9.12

GL

B

Assured
GWL

c
g

g ′

f

∇
D < B

z ≤ B

∇

hc= Capillary head

Figure 9.13
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3.  GWL above base level (a < z):

( )
( )

0 sat

w 0

0

( )

a z a

u z a a z a

z u

σ γ γ
γ σ γ γ

σ

= + −

= − ∴ = + − ′′

= −′

Hence,	 ( )s c 0 q 0
s

1
1 0.5q cN N BN

F
σ γ σγ

 = + − + +′ 

c a

f
g

gsat

z

B
ag

ag + (z – a)gsat (z – a)gw

so

GL

GWL

u

∇

Figure 9.14

Example 9.1

A 1.5 m wide strip footing is placed at a depth of 1.2 m, in uniform clay. The soil 
characteristics are:

2

3

3
sat

50kN/m

15

17.7kN/m

19.8kN/m

c

φ
γ

γ

=
= °
=
=

Calculate the safe bearing capacity, when the water level is at:

1.  10 m below the foundation level
2.  0.9 m below the foundation level
3.  0.5 m below the ground level
4.  0.8 m above the ground level due to flooding

Apply a factor of safety of 3.
Obtain the bearing capacity factors from Chart 9.1

c

q

13Fo

4.

r 5

5

1

1 :

2.

N

N

N

φ

γ

=
=

=

= °
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Case 1

D > 2B, therefore the bearing capacity is not 
affected by the position of the ground water 
table.

0 0
2

1.2 17.7

21.2kN/ m

σ σ= = ×′
=

( )

( )

s

2

1
50 13 21.2 4.5 1 0.5 17.7 1.5 2.1 21.2

3
1

650 74.2 27.88 21.2 271.9 kN/m
3

q  = × × + × − + × × × + 

= × + + + =

Case 2

D < B, therefore g ′ is assumed below the footing.

2
0 0

3
sat w

21.2kN/ m

19.8 9.81 9.99 kN/m

σ σ
γ γ γ

= =′
′ = − = − =

( )

( )

s

2

1
650 74.2 0.5 9.99 1.5 2.1 21.2

3
1 739. 93

724.2 15.73 21.6 21.2 267.8 kN/m
3 3

q = × + + × × × +

= × + + = + =

Case 3
(Neglecting capillary action arbitrarily)

0
2

0.5 17.7 0.7 9.99

15.84kN/m

σ ′ = × + ×
=

0
2

0.5 17.7 0.7 19.8

22.7kN/m

σ = × + ×
=

GL

z = 1.2 m

D = 10 m

B = 1.5 m

GWL
z

c

g

∇

f

Figure 9.15

B = 1.5 m

c
f
g

∇

g ′D = 0.9 m

1.2 m

Figure 9.16

B = 1.5 m

gsat

g
∇

g ′
0.7 m

a = 0.5 m

Figure 9.17
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( )

( )

s

22

1
650 15.84 4.5 1 0.5 9.99 1.5 2.1 22.7

3
1

650 55.44 15.73 22.7 kN/m
3

63

q  = × + × − + × × × + 

= × + + + =

Case 4

( )
2

0
2

2
0

0.8 9.81 1.2 19.8 31.6 kN/m

0.8 1.2 9.81 19.62kN/m

31.6 19.62 11.98kN/m

u

σ

σ

= × + × =
= + × =

′ = − =

Alternatively,

0
21.2 9.99 11.98 kN/m

zσ γ′ = ′
= × =

( )

( )

s

2

1
650 11.98 4.5 1 15.73 11.98

3
1

650 41.97 15.73 11.98 kN/m
3

247.9

q  = × + × − + + 

= × + + + =

Because of the reduction in the bearing capacity, due to the increase in water level, the 
safe bearing pressure is decreased from 271.9 kN/m2 to 247.9 kN/m2.

B = 1.5 m

c
f

gw

gsat

∇∇

g ′

z = 1.2 m

a = 0.8 m

Figure 9.18

Example 9.2

Calculate the safe bearing pressure for the four cases in Example 9.1 for:

1.  Pure clay
2.  Pure sand

1.  Pure clay	 ( )2
s 0

s 0

5.7 50
From 9.12 :50kN/ m 3

0 95

qc

q

σ

φ σ

×
= +=

= = +

Cases 1 and 2:	 s
0
 = 21.2 kN/m2 	 ∴  q

s
 = 116.2 kN/m2

Case 3:	 s
0
 = 22.7 kN/m2 	 ∴  q

s
 = 117.7 kN/m2

Case 4:	 s
0
 = 31.6 kN/m2 	 ∴  q

s
 = 126.6 kN/m2

2.  Pure sand	 ( )
( )q s 0 0

s 00

15
From 9.13 :

0
1

4.5 4.5 1 0.5 1.5 2.1
3

2.1
1.17 0.53

c

N q

N
q

φ

σ γ σ

σ γ σγ

= °
=

=  = × × − + × × +′ 
=

∴ = + +′

0001967831.INDD   431 6/1/2013   4:11:49 AM
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Case 1:	
2

0 s 0 0
2

0
3 2

21.2kN/m 1.17 0.53

21.2kN/m 1.17 21.2 0.53 17.7 21.2

17.7 k 55.4N/m kN/m

qσ σ γ σ
σ

γ

= = + +′ ′
= = × + × +
= =

Case 2:	
2

0 s 0 0
2

0
3 2

21.2kN/m 1.17 0.53

21.2kN/m 1.17 21.2 0.53 9.99 21.2

9.99 kN/m kN/1 m5 .3

qσ σ γ σ
σ
γ

= = + ′ +′ ′
= = × + × +
= =′

Case 3:	
2

0 s 0 0
2

0
3 2

15.84kN/m 1.17 0.53

22.7kN/m 1.17 15.84 0.53 9.99 22.7

9 46.5.99 kN/m kN/m

qσ σ γ σ
σ
γ

= = + ′ +′ ′
= = × + × +
= =′

Case 4:	
2

0 s 0 0
2

0
3 2

11.98kN/m 1.17 0.53

31.6 kN/m 1.17 11.98 0.53 9.99 31.6

9 50.9.99 kN/m kN/m

qσ σ γ σ
σ
γ

= = + ′ +′ ′
= = × + × +
= =′

The effect of the water table on different types of soil can be seen by tabulating the 
bearing pressures calculated in Examples 9.1 and 9.2.

Note: Terzaghi’s bearing capacity factors have been used extensively. They were deter-
mined after certain simplifying assumptions; hence their values may be regarded as 
reasonable estimates only. Further, the factors become unreasonable large beyond f = 
30° and therefore, should not really be applied above this value. Because of the uncer-
tainties involved in the determination of the bearing capacity of soils, several theories 
have been advanced for the evaluation of factors N

c
, N

q
 and Ng One of these theories 

was evolved by Prandlt, Caquot and Reissner, deriving the following formulae for N
q
 

and N
c
:

	

tan
q

1 sin
e

1 sin
N π φφ

φ
 +

=  −  � (9.14)

	 ( )c q 1 cotN N φ= − � (9.15)

Table 9.2

 c — f soil Clay (f = 0) Sand (c = 0)

Case 1
q

s

kN/m2

271.9 116.2 55.4
Case 2 267.8 116.2 51.3
Case 3 263.0 117.7 46.5
Case 4 247.9 126.6 50.9
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The third factor Ng may be calculated from Meyerhof’s approximation:

	 ( ) ( )q 1 tan 1.4N N φγ = − � (9.16)

The factors calculated from these formulae are given in Table 9.2a and are plotted on 
Chart 9.2.

Note: N
c
 and Ng cannot be calculated at f = 0 as tan (0°) = cot (0°) = 0 there. They can, 

however, be approximated by choosing the value of f near zero.
Let f = 0.0001°

Then 
( )
( )

( )tan 0.0001
q

1 sin 0.0001
e

1 sin 0.0001
N π+

= ×
−

61.74532925199 10
1.00000548313

0.999998254671

1.00000349067 1.00000548313 1.00000897382

−×
= ×

= × =

qat 0 1Nφ∴ = ° ≈

So, ( ) 6
c q 1 cot (0.0001) 8.97382 10 572957.79513

5.14162012109 5.14

N N −= − = × ×

= ≈

and ( )q

6 6 6

1 cot (1.4 0.0001)

8.97382 10 2.4434609528 10 21.927178 10

N Nγ

− − −

= − ×

= × × × = ×

cat 0 5.14 and 0N Nφ γ∴ = ° = =

For pure clay, therefore, formula (9.12) is modified to:

	 0
s

5.14c
F

σ σ= + � (9.17)

Note: The factors in Table 9.2a are smaller than Terzaghi’s, giving correspondingly dimin-
ished values of safe bearing capacity.

Table   9.2a

B.C. 
factors

f∞

0 5 10 15 20 25 30 35 40 45

N
c

5.14 6.5 8.3 11 14.8 20.7 30.1 46.1 75.3 134
N

q
1.0 1.6 2.5 3.9 6.4 10.7 18.4 33.3 64.2 135

Ng 0 0.07 0.37 1.11 2.9 6.8 16.6 37.2 93.7 263
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9.3  Influence of footing shape

The magnitude of the safe foundation pressure depends on the bearing capacity and 
consolidation characteristics of the soil, as well as on the shape and size of the base area. 
Four shapes of the same area (A) are depicted in Figure 9.19, showing the plan view of the 
rupture zones around each.

(a)  Strip footing
This is a two-dimensional 
failure, as the soil at the 
two ends do not contribute 
to the shearing resistance. 
Failure occurs on one verti-
cal plane, when the shear 
strength available under 
the two sliding masses is 
overcome.

(b)  Rectangular footing
This is a three-dimensional 
failure, as the available 
shear strength has to be 
overcome on two vertical 
planes. The circumference 
for the same area is smaller 
than for strip footing.

(c)  Square footing
This shape is slightly more 
efficient than a rectangle 
of the same area.

(d)  Circular footing
The best shape for maxi-
mum bearing pressure, 
compared to strip footing 
of the same area.

Terzaghi modified his general equation for shallow square and circular footings and 
formula 9.8 becomes:

Square footing:	 u c 0 q1.3 0.4q cN N BNσ γ γ= + ′ + � (9.18)

Circular footing:	 u c 0 q1.3 0.3q cN N DNσ γ γ= + ′ + � (9.19)

where D = diameter of the circle
Note that in the modification there is no apparent distinction made between the load-

bearing efficiency of the two shapes as predicted in Figure  9.19. See Example 9.3 
however.

Figure 9.19
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9.4  Shallow rectangular footing

The bearing capacity of a rectangular shape (Figure 9.19b) should, obviously, be between 
that of a strip and square base.

Skempton (1951), recommended the multiplication of N
c
 for strip footing by the 

factor 1 0.2
B
L

 +  
. Formula 9.8 now becomes:

	 u c 0 q1 0.2 0.5
B

q c N N BN
L

σ γ γ
  ′= + + +   � (9.20)

Hence, the total safe foundation pressure, given by 9.11 is changed to:

	 ( )s c 0 q 00
s

1
1 0.2 1 0.5

B
q c N N BN

F L
σ γ σγ

  = + + ′ − + +    
� (9.21)

Example 9.3

Using the soil characteristics of Example 9.1, taking the safe bearing pressure for 
strip footing only from Case 1, calculate the dimensions of strip, rectangular, 
square and circular footings to support a vertical load of 1631 kN.

Ground water level is 10 m below GL.
2

0

s

21.2kN/ m

3F

σ =
=

a)  Strip footing
From Case 1: q

s
 = 271.9 kN/m

Vertical Load: W = 1631 kN (including the weight of the base)

Base area required:  ( )2

s

1631
6m 1.5 4

271.9

W
A

q
= = = = ×

Therefore, each 4 m length of strip footing can carry 16.31 kN safely.

b)  Rectangular footing

Calculate length (L) required to carry the same 
1631 kN load.

Bearing pressure: s

1631 1087

1.5
q

L L
σ = = =

L

B = 1.5 m

Figure 9.21

W
GL

B = 1.5 m

1.2 m
Nc= 13
Nq= 4.5
Nγ = 2.1

c = 50 kN/m2

f = 15°
g = 17.7 kN/m2

Figure 9.20
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But from (9.21):

s

1087 1 1.5
50 1 0.2 13 21.2 3.5 0.5 17.7 1.5 2.1 21.2

3

1087 65
216.7 33.43 21.2

65
271.3

q
L L

L L

L

  = = × × + × + × + × × × +    

∴ = + + +

= +

and 
1022 1022

271.3 3.77 m
271.3

L
L

= ∴ = =

Base area required: 21.5 3.7 5.7 66mA = × =
This bearing area is smaller than required for strip footing.

(c)  Square footing

Calculate the dimension (B) to carry 1631 kN.
2

0 21.2 kN/mσ =

Foundation pressure: 2

1631

B
σ =

From (9.18):	 u 1.3 50 13 21.2 4.5 0.4 17.7 2.1

845 95.4 14.86

q B

B

= × × + × + × × ×
= + +

From (9.4):	 n u 0 940.4 14.86 21.2

919.2 14.86

q q B

B

σ= − = + −
= +

From (9.5):	
n

sn
s

919.2 14.86
306.4 4.96

3

q B
q B

F
+

= = = +

From (9.6):	 s sn o 306.4 4.96 21.2

327.6 4.96

q q B

B

σ= + = + +
= +

From (9.7):	 ( )s2

2 3

1631
327.6 4.96

1631 327.6 4.96

B q
B

B B

σ σ= = + =

= +

This is a cubic equation: B3 + 66.04B2 − 328.8 = 0

Solving 2 22.2m Area 2. 4 m.2 84B A= ∴ = =
Which is a smaller area than required for the rectangular shape.

(d)  Circular footing

From (9.7) and (9.19), the diameter of the circle is found to be 
D = 2.48 m, giving a bearing area:

2 2
22.48

m
4 4

4.83
D

A
π π

= = =

A

B

B

Figure 9.22

D

A

Figure 9.23
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The four results are tabulated for comparison.

These results show the variation of load-bearing efficiency of different shapes, as 
predicted in Figure 9.19.

Table   9.3

Shape of
footing

Width
B (m)

Length
L (m)

Diameter
D (m)

Area
A (m2)

Pressure
21631

kN / mσ
A

=

Strip 1.5 4 - 6 271.9
Rectangle 1.5 3.77 - 5.66 288.2
Square 2.2 2.2 - 4.84 337.0
Circle - - 2.48 4.83 337.6

9.4.1  Method of Fellenius

It applies to strip footing in purely cohesive soil. The footing fails by rotating about one 
edge.

Let F
s
s = q

u

Disturbing force = Bq
u

Resisting cohesive force: 1 2F F F= +
Where,    F

1
 = cz

	     F
2
 = cpB

Resisting gravity force: W zBγ=

Overturning moment above corner ‘a’:

0 u

2
u

2 2

B
M

B
Bq

q
==

Resisting moment about corner ‘a’

( )
R 1 2

2

2 2

(

0.

)

5

.5

2

0

cz c B B zB

B

czB c

M F F B

B

z

z

B

B

π γ

γ

π γ
= + +

= + +

= + +

For equilibrium: M
0
 = M

R
2

2 2u 0.5
2

B q
czB c B zBπ γ= + +

z W F1

cd

ba

Clay

c kN/m2

g kN/m3

f = 0 F2

Fss = qu

qu

B

R = B

Figure 9.24
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Expressing,	 ( )2 2
u 2

2
0.5

2
2

q czB c B zB
B

z
c z

B

π γ

π γ

= + +

 = + +  

Finally,	 u 2
z

q c z
B

π γ = + +   � (9.22)

Example 9.4

Figure 9.25 shows strip footing constructed in pure clay. Compare the values of q
u
, 

calculated by formulae (9.22) and (9.8) when f = 0

From (9.22):	 π = × × + + × =  
2

u

1.2
2 50 1.2 18 396 kN/m

2
q

From (9.8):	

c u
2

q

5.7 5.7 c

1 5.7 50 1.2 18 307kN/m

0

N q z

N

N

γ

γ

= = +
= = × + × =

=

Terzaghi’s formula yields more conservative results than Fellenius’.

B = 2 m

c = 50 kN/m2

g = 18 kN/m3
z = 1.2 m

Figure 9.25

9.5  Deep foundations

Foundations may be categorized by their depth below ground level. There are three arbi-
trary general categories:

1.  Shallow:	 1
z
B

≤

2.  Moderately deep:	 1 5
z
B

< ≤

3.  Deep:	 5
z
B

>

Deep foundations are to be discussed from Section 9.7 onwards.

9.5.1  Moderately deep foundations

Meyerhof modified Terzaghi’s bearing capacity factors, taking into account the depth and 
shape of a footing (Chart 9.3).
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Skempton introduced values for N
c
 for strip, square and circular footings in pure satu-

rated clay (Chart 9.4). The bearing capacity formulae may be used in conjunction with 
these factors.

Example 9.5

A strip footing, shown in Figure 9.26 is placed 4 m below ground level. Determine 
the ultimate bearing capacity of the soil.

4
2 1

2

z
B

= = >

Therefore, the foundation is moderately 
deep.

From Chart 9.3 for f
u
 = 20°: N

c
 = 56

	 q 20N =

	
9Nγ =

Using (9.8): u c q

2

0.5

60 56 4 19 20 0.5 19 2 509 kN/m51

q cN N BNγ γ= + +

= × + × × + × × × =

Footingz = 4 m

B = 2 m

g = 19 kN/m3

cu= 60 kN/m2

fu= 20°

Figure 9.26

Example 9.6

Assume, that the soil in Example 9.5 is pure clay of c
u
 = 60 kN/m2.

Calculate the ultimate and safe bearing capacities of the foundation. Apply a 
factor of safety of 3.

From Chart 9.3:

qu 1

0

0 N

N

φ 

γ

= 

=

=

From Chart 9.4:

c

2
7.1

Shipfolling

z
NB

=
=

4 m

2 m

g = 19 kN/m3

cu= 60 kN/m2

fu= 0

Figure 9.27
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Using (9.8): q
u
 = c

u
N

c
 = 60 × 7.1 = 426 kN/m2

Using (9.10): ( )s u c 0
s

1
q c N

F
σ= +

( ) 21
426 4 19 218 kN/m

3
= + × =

0
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9.6  Standard penetration test (SPT)

This empirical in-situ test is carried out by means of a rotary drill. The borehole is drilled 
to the required depth and a split spoon sampler, attached to the drilling rods, is lowered 
to the bottom. It is then driven into the soil by hammer blows. The hammer, weighing 
64 kg is dropped onto the top of the rods from a height of 760 mm. The sampler is driven 
into the soil through 450 mm, but the number of blows (N) is counted only over the last 
300 mm.

Notes:

1.  The test must start at the bottom of the casing, that is, in undisturbed ground.
2.  If the test is carried out in sand or gravel, below ground water table, this water level 

must be maintained inside the casing, by pouring in sufficient amount, in order to 
prevent upward seepage and ‘boiling’.

3.  Correction has to be made to the value of N, when measured in fine sand under 
water. The corrected value is given by:

	 ( )15 0.5 15N N′ = + − � (9.23)

For 15 onlyN >

This takes into account, the excess pore water pressure induced during the test, which 
increases the resistance, hence the value of N.

Applications
The standard penetration results may be applied to both cohesive and cohesionless soils, 
correlating the number of blows with the:

a)  Angle of shearing resistance f (Chart 9.5)
b)  Bearing capacity factors Ng and N

q
 (Chart 9.5)

c)  Allowable bearing pressure of foundations in sand (Chart 9.6)
d)  Relative density of sand (Table 9.4)
e)  Consistency/unconfined compressive strength of clay (Table 9.5).

Table 9.4  

Number of blows/300 mm
Relative density 
of sandN N ¢ = 15 + 0.5 (N — 15)

0 − 4 0 − 4 Very loose
4 − 10 4 − 10 Loose

10 − 30 10 − 22.5 Medium dense

30 − 50 22.5 − 32.5 Dense
> 50 > 32.50 Very dense
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Note: Owing to the empirical nature of the SPT, its results are only approximations.

Table 9.5 

Number of 
blows (N)

Unconfined compressive 
strength 2c

u
 (kN/m2) Consistency

< 2 < 25 Very soft
2 - 4 25 - 50 Soft
4 - 8 50 - 100 Medium stiff
8 - 15 100 - 200 Stiff
15 - 30 200 - 400 Very stiff
> 30 > 400 Hard
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9.7  Pile foundations
 
  

5
z
B

>

Piles are structural elements, transmitting load from footings to the soil. The transmis-
sion occurs in three ways:

1.  By friction or adhesion between the soil and the surface of the pile (Figure 9.28 (a))
2.  By end bearing, where the pile acts as a column (Figure 9.28 (b))
3.  By the combination of friction and end bearing (Figure 9.28 (c)).
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Piles are also used for purposes, other than the transference of vertical load to the 
ground. There are three special applications:

1.  To increase the density of the surrounding soil be compaction, in order to stabilize 
it (Figure 9.29 (a))

2.  To resist upward pull. The pile is in tension (Figure 9.29 (b))
3.  To carry horizontal force, to support an anchorage for example (Figure 9.29 (c)).

9.7.1  Types of pile

The method of installation of piles depends on the ground conditions as well as onother 
circumstances, such as the distance to nearby structures. The most frequently employed 
pile types are:

•• Driven
•• Jacked
•• Screwed
•• Bored
•• Vibrated
•• Jetted.

9.7.1.1  Driven piles

These are driven into the soil by a dropping hammer. The piles may be made of timber, 
precast, reinforced or prestressed concrete, or steel. Timber piles must remain under 
water to prevent decay.

Cast-in-place piles are formed by driving a steel or concrete tube into the ground and 
filling it with concrete. The tube can either be left permanently or removed gradually 
during the concrete pour.

It is advantageous to leave the tube, when the ground water contains sulphates or 
other chemicals detrimental to the concrete or steel reinforcement. The concrete must 
be well compacted for strength and impermeability.

Alternatively, precast concrete piles may be used in soil containing deleterious 
substances. Their maximum length, however, is limited to 20 m, because of increasing 
difficulty in driving them to larger depths.

Figure 9.29
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One of the widely used driven, cast-in-place piling method is the Franki system. The 
process is illustrated in Figure 9.30 (a) to (e).

Step 1:	� A steel tube is positioned vertically and damp concrete or gravel rammed into 
its lower end to form a plug of about 1 m high (a).

Step 2:	� The plug is forced into the ground by the rammer. The tube follows the plug, due 
to the friction between the steel and concrete or gravel (b).

Step 3:	� As soon as the tube reaches the required bearing depth, it is fixed to the sup-
porting frame and most of the plug is rammed out of the tube into the soil (c).

Step 4:	� Concrete is added and hammered out to form a bulb-shaped end, in order to 
increase the base area, hence the load carrying capacity of the pile (d).

Step 5:	� In most cases, a steel reinforcement cage is placed into the tube, which is gradu-
ally withdrawn as the concrete is poured and compacted by the drop hammer (e).

Notes:

1.  The pile may be constructed below ground water level, as the rammed concrete 
plug is practically impervious.

2.  The soil is compacted horizontally as well as around the enlarged bulb-shaped 
base, thereby increasing the shaft friction and the end resistance respectively.

3.  When compared to other driven piles, the induced surface vibration is smaller, as 
the plug and the surrounding soil largely absorb the shocks.

Rammer

Fixity

Rope suspension

Steel
stage

Enlarged
base

Tube

1 m plug
GL

GWL

(a) (b) (c) (d) (e)

Figure 9.30
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9.7.1.2  Jacked piles

The piles are built up from short (750 mm) precast concrete sections, fitted together dur-
ing the jacking process. The system is normally employed to underpin existing structures 
and transmit the structural load to some depth below the existing footing.

9.7.1.3  Screwed piles

These piles are normally used for structures built over soft alluvial soil, underlain by hard 
stratum. The lower end of the pile-tube is fitted with one or more helical blades. These 
are rotated, which forces the tube into the ground. When the base is at the desired level, 
the tube is filled with concrete.

9.7.1.4  Bored piles

Basically, the piles are constructed by filling drilled holes with concrete. They are, there-
fore, cast-in-place piles. The hole can be drilled with or without liners (tubes), depending 
on the soil. Also, the tubes can either be left or withdrawn, depending on the chemically 
aggressive nature of the ground water. The piles are assumed to be end-bearing only. For 
this reason, the base area is increased by under-reaming (Figure 9.32).

Advantages:

a)  �The surroundings are not subject to vibration and ground 
heave as with driven piles.

b)  �Soil profile can be verified and the length of the pile chosen 
during the boring process.

c)  �Pile diameter, hence load carrying capacity can be large, sub-
ject to the size of drill used.

d)  �Drilling can be carried out under low headroom, e.g. inside 
buildings.

e)  �The energy expended in drilling is much less than in 
pile-driving.

To pump

Packing

Pile unit Short lengths of steel grouted into the
central hole to connect units

Existing footing to be underpinned

Wall of structure

Hydraulic jack

Shoe

Figure 9.31

Enlarged base

GL

Figure 9.32
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Boring without liner tube may be carried out in stiff cohesive soils above ground water 
level. The subsequently placed concrete should not be excessively wet as it would soften 
the soil, thus reducing its bearing strength.

Short friction piles, placed comparatively near to each other in cohesionless soil, should 
really be driven. It is easier, however, to drill long piles, when placed some distance apart 
and driving would be difficult. Plastic concrete is vibrated into the liner tube so, that its 
surface is always above any external ground water level. The disadvantage of tube with-
drawal is, that the adjacent soil could become loose, decreasing the load bearing capacity.

Note:  A bored pile requires more concrete than a driven one, because of the volume of 
the tube as well as the loosened surrounding soil.

There has to be a good reason to leave the tube in place after concreting. Some of 
these are:

a)  To insulate the concrete from chemically aggressive ground water.
b)  To minimise negative skin friction.
c)  �To prevent damage to the concrete caused by its arching (necking) in the tube, thus 

restricting extrusion.

9.7.1.5  Vibrated piles

These are applicable mainly to loose, cohesionless soils. The vibrator is positioned at the 
top of the tube, which can easily be pushed into as well as extracted from the ground whilst 
vibrated. This is due to the destruction of skin friction by the amplitude of vibration.

9.7.1.6  Jetted piles

The process is used to facilitate the installation of driven or screwed piles. The water is 
forced through a pipe located either inside or outside the pile, emerging at its tip. Jetting 
has to be stopped 1 m above the final depth and the pile is driven normally to this level. 
Existing, adjacent jetted piles could be disturbed. It is advisable, therefore, to drive them 
a little deeper after the completion of piling.

The most suitable soil for this method is fine sand and silt. It is not used in clay as it can 
block the nozzles at the tip of the pile.

9.8  Some reasons for choosing piles

a)  �Because of the high water table in the loose sand, dif-
ficulties in dewatering and piping failure can be 
expected during excavation. The friction pile should 
penetrate the compact sand deep enough.

GL

GWL
Loose
sand

Compact
sand

Pile
cap

Figure 9.33a
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b)  �Homogeneous, loose sand does not get stronger 
with depth. Moderately deep footing, approaching 
the GWL could prove expensive. Friction pile of suf-
ficient length could suffice.

c)  �The bearing capacity of recent fill layer is insuffi-
cient. Friction pile must penetrate the load-bearing 
compact sand. However, negative skin friction in the 
fill has to be taken into account.

d)  �Normally, shallow footing would be satisfactory in 
compact sand. However, seepage could cause wash-
outs below it, hence friction piling is justified.

e)  �The soft clay overlying hard material, such as rock, 
has insufficient bearing capacity end-bearing pile, 
seated on the rock, is required. Soft, sensitive clays 
can induce negative skin friction on the pile 
however.

GL

GWL
Loose
sand

Figure 9.33b

GL

Compact
sand

Recent
fill −ve

+ve

Figure 9.33c
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GW

Seepage
Compact

sand

Figure 9.33d
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−ve

Rock

Soft
clay

Figure 9.33e
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f.  �The stiff clay has sufficient bearing capacity to support 
shallow footing, but the very soft clay cannot carry the 
transmitted (Boussinesq) load. Fiction/end-bearing pile 
may be chosen, taking the negative skin friction into 
account.

Also, piles are chosen in the following circumstances:

1.  When the intensity of loading under parts of a large, heavy structure is different.
2.  An existing building would be damaged by the construction of an adjacent 

shallow or moderately deep foundation. Bored piles are suitable in these 
circumstances.

3.  A building to be constructed is not rigid enough and differential settlements could 
occur.

9.9  Some reasons for not choosing piles

1.  �It is absolutely unnecessary to use piles, as the compact 
sand is strong enough to carry heavy shallow founda-
tion load. Unless there is seepage of water, as shown in 
Figure 9.33d.

2.  �Driving piles into sensitive clay reduces its shear 
strength due to remoulding. The magnitude of strength 
loss depends on the degree of sensitivity.

9.10  Effects necessitating caution

(See Figures 9.36a - e).

Figure 9.33f
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a)  �When a pile is driven into granular soil, it caused 
ground surface lowering. More so with a group of 
piles. Horizontal compacting forces could affect 
adjacent structures.

b)  �In cohesive soils both horizontal and vertical move-
ment (heave) would occur. This could induce nega-
tive skin friction. A group of piles could raise the 
entire surface in its vicinity.

c)  �The horizontal movement could exert undesirable 
forces on adjacent structures. Bored piles are more 
suitable in these situations.

Note: When a pile is forced into a cohesive soil, excess pore pressure is induced. As this 
pressure dissipates, the soil consolidates and the ground heave eventually disappears.

d)  �Pile or pile group must not be extended down to the 
soft clay layer as it could become overstressed. The 
end of a pile should be at least 1.5 m above the clay.

Figure 9.36d
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e)  �The end of a pile must not be seated on the top of the stiff 
clay but penetrate it to a minimum depth of three times its 
diameter.

9.11  Negative skin friction

(See Figures 9.37a to e).
When a pile is loaded, it exerts downward drag on the soil. The skin friction, however, 

induces an upward force, which resists the load thus preventing relative movement 
between the pile and the soil. This is positive skin friction.

In certain circumstances, discussed below, the soil is displaced downwards, relative to 
the pile. The skin friction induces this time a downward force, thus increases the load on 
the pile. This is negative skin friction.

Piles must be designed to carry any additional load due to negative skin friction. Some 
possible causes are:

a)  �The new building consolidates  
the clay, inducing negative skin fric-
tion on the pile surface.

b)  �The recently placed fill gradually 
consolidates under its own weight 
causing negative skin friction on 
the pile surface see also 
Figure 9.33 (c).
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454       Introduction to Soil Mechanics

c)  �The fill consolidates the soft clay. As 
both fill and soft clay move together, 
negative skin friction is induced 
along the pile in these layers.

Note: Negative skin friction can be high in granular fill. In extreme cases, piles could be 
forced away from the structure and driven further into the end-bearing layer. See also 
Figure 9.33 (f).

d)  �Piles A and B are subjected to nega-
tive skin friction, whilst C and D are 
not. This could cause differential 
movement and cracks in the exist-
ing structure.

e)  �When piles are grouped closely to 
each other in clay, excess pore pres-
sure is induced and the ground 
heaves up. Reconsolidation occurs 
as the excess pressure dissipates, 
causing negative skin friction on 
the upper part of the piles.

Notes:

1.  The effect of negative skin friction is greater on an end-bearing pile than on a fric-
tion one, as the former is ‘fixed’ and does not move with the consolidating soil, 
hence taking most of its weight.

In contrast, a friction pile takes only some of the weight of the moving soil, 
because it moves with it to some extent. In this case, negative skin friction develops 
only, when the downward movement of the soil is greater than that of the pile.

2.  Do not use raking piles subjected to this effect.
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9.12  Stress distribution around piles

The distribution of stresses below shallow footings was discussed in Chapter 4. The for-
mulae were derived on the basis of the Theory of Elasticity.

Stress distribution around piles has not been determined theoretically. Instead, the 
extent of compaction achieved by actual piles has been used as an indicator of the 
distribution.

In general, the region of pressure, significant enough to cause compaction, depends on 
the:

1.  Type of soil
2.  State of the soil
3.  Width or diameter (d) of the pile
4.  Length (l) of the pile
5.  Method of placing.

It can be assumed, on the basis of site tests, that there is little compaction beyond the 
distance of four times the pile diameter (4d). The influence of a single pile, therefore, is 
limited to a small volume around its surface, as shown in Figure 9.38(a).

On the other hand, the pressure distribution of a closely placed pile group can extend 
to large depths. In effect, the group acts like a shallow raft foundation (Figure 9.38(b)).

Note: The group of piles could overstress the very soft clay.

9.13  Load-carrying capacity of piles

The determination of the loading capacity of piles is complicated by the variability of soil 
characteristics as well as by the method of their construction. It may be estimated by:

1.  Static, theoretical formulae
2.  Dynamic, pile-driving formulae
3.  In-situ, full-scale loading test.

Figure 9.38
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In view of the empirical nature of the first two procedures, it is advisable to verify their 
results by in-situ loading test. As the last two procedures are normally carried out by 
specialist piling contractors on site, only the first method is to be discussed in this book.

9.13.1  Static formulae

The load on a pile, causing failure can be expressed in two ways:

u p

e s

u

p

e

s

u

u

Either,

or

where failure load on pile

Ultimate carrying capacity

weight of the pile

end bearing resistance
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9.13.2  End-bearing resistance (Qe)

It may be calculated from a modified form of the bearing capacity formula for shallow 
footings in uniform, homogeneous layer. Therefore,

	 ( )n c 0 q 1 0.5q cN N BNσ γ γ= + − +′ � (9.9)

But the width (B) or diameter (d) of a pile is very small, compared to its length (l), hence 
the third term is small enough to be neglected.

( )σ∴ = + ′ −n u c 0 q 1q c N N

0

u

where effective overburden pressure at the base

undrained cohesion of soil at the base.c

σ =′
=

If A
e
= end bearing area, then the base resistance is given by:

( )e e n e c 0 q

e u c e 0 q e 0

1uQ A q A c N N

A c N A N A

σ

σ σ

 = = + −′

= + −′ ′


Weight of soil displaced by the pile = W′ = A
e
s ′

0

Therefore,	 Q
e
 = A

e
(c

u
N

c
 + s ′

0
N

q
 - W′)  

Hence,	 Q
u
 = A

e
(c

u
N

c
 + s ′

0
N

q
) + Q

s
 + (W

p
 − W′)

P

l

Qs

cu

cu
Qe

f

g

B

Wp

Figure 9.39

:
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But, the term (W
p
 - W′) is usually small and negligible.

Therefore,	 ( )e e u c 0 qQ A c N Nσ= + ′ � (9.24a)

And,	 ( )u e u c 0 q sQ A c N N Qσ= + ′ + � (9.24b)

9.13.3  Shaft resistance (Qs)

The nature of shaft resistance depends on whether the soil is cohesionless or cohesive. 
In cohesionless soil, the resistance is called ‘skin friction’ evaluated in terms of friction 
angle (f). In cohesive soil, the resistance is called ‘adhesion’, evaluated in terms of aver-
age cohesion uc .

For a cohesionless soil, the shaft resistance is given by:

	 0s s tanq K σ δ= ′ � (9.25)

and	 0s s s s s tanQ A q A K σ δ= = ′ � (9.26)

where	 A
s
 = surface area of pile

	 K
s
 = average coefficient of earth pressure.

Its value depends on the relative density of the soil, which is normally 
found from Standard Penetration Test (see Table 9.6).

	 d = angle of friction between the soil and the material of the pile.
	 σ ′0= Average effective overburden pressure, over the embedded length of pile.

Typical values, recommended by Broms (1966) are:

For a cohesive soil, the shaft resistance is given by:

	
α=s uq c

� (9.27)

	
α= =s s s u sQ A q c A

� (9.28)

where:	 a   = adhesion factor depending on the type of cohesive soil
	 uc  = �Average undrained shear strength of undisturbed soil, in a layer, around the 

pile.

For bored piles and for design purposes, take a = 0.45.

For driven piles	 α≤ ≤ > 2
u0.25 1 if 50kN/mc

	
α = < 2

u1 if 50kN/mc

For negative friction a = 0.2.

Table 9.6 

Material of  
the pile d °

K
s

Relative density

Loose Dense

Concrete 0.75f 1.0 2.0
Steel 20 0.5 1.0
Wood 0.67f 1.5 4.0
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9.13.4  Ultimate carrying capacity of pile

In cohesionless soil: 	 0u e 0 q s s tanQ A N A Kσ σ δ= ′ + ′ � (9.29)

Where, N
q
 is obtained from Chart 9.7 for various values of slenderness ratio l/B

In cohesive soil:	 α= +u e u c u sQ A c N c A � (9.30)

	 u e sQ Q Q= +

where N
c
 = 9 as long as the pile penetrates the bearing layer to a depth not less than 5B. 

(See Chart 9.4).

9.13.5  Allowable carrying capacity of piles (Qa)

In order to limit the settlement of a pile to acceptable magnitude, separate factor of 
safety is applied to each component of Q

u
.

e

s

For endbearing : 13
Usualvalues

For shaftresistance : 1.5

F

F

= 
= 

Therefore,	 = + = +e s e s
a

e s 3 1.5

Q Q Q Q
Q

F F
� (9.31)

Also, an overall factor of safety F
O
 = 2.5 is applied to Q

u
 against shear failure.

	 u e s
a

0 2.5

Q Q Q
Q

F
+

= = � (9.32)

The lesser of (9.31) or (9.32) is accepted as the allowable working load.

9.13.6  Negative skin friction (Qf)

When a pile is penetrating layers, which consolidate for one reason or another, it is sub-
jected to a downward drag (Q

f
) or negative shaft friction resistance, as shown in 

Figure 9.40. This force has to be added to the design-load.

Design working loadQ =

a fQ Q Q∴ = +

This alters the overall factor of safety. Its value is now 
given by:

			  u e s
0

a f

Q Q Q
F

Q Q Q
+

= =
+

� (9.33)

Q

Qf

GL

x

Qa

Stiff clay

New
fill

consolidates

Figure 9.40



Bearing Capacity of Soils       459

Notes:

1.  When the soil profile consists of several layers of different strength, negative skin 
friction could occur in the soft, weak ones. It is important, therefore, to conduct 
detailed investigation into the nature of each stratum.

2.  Negative skin friction can occur in cohesive soils after ground water lowering, and 
consequent shrinkage.

3.  It is not advisable to place raking piles into soil, where negative skin friction could 
develop, as this would cause bending stresses in the pile and possible separation 
from the pile cap.

The value of Q
f
 may be estimated from the following empirical formulae for:

Cohesionless soil:	 0f s tanq K σ φ= ′ � (9.34)

0f s f f s tanQ A q Q A Kσ φ= ∴ = ′ � (9.35)

Cohesive soil:	 0f 0.1q σ= ′ � (9.36)

0f s f f s0.1Q A q Q Aσ= ∴ = ′ � (9.37)

Example 9.7

A 12 m long, 350 mm diameter, precast concrete pile was driven into the stiff clay 
layer, shown in Figure 9.41, through 5 m of recently deposited clayey ash fill. No 
ground water level was found in the borehole. Use the SPT results to verify, that 
the pile can carry at least 110 kN working load, adopting 2.5 as overall factor of 
safety.

Effective overburden pres-
sures: s ′

0
 = s

0

2
0

2
0

18 5 90kN/m

90 7 19.8 228.6 kN/m

σ
σ

= × =′
= + × =′

Recently deposited fill (0 - 5 m)
The layer will consolidate under its own weight, inducing negative skin friction, 
given approximately by formulae 9.37.

Surface area of pile in this layer:

	
2

s 0.35 5 5.5 mA dzπ π= = × × =

Q = 110 kN

Fill
g = 18 kN/m3

N = 7

Stiff clay
N = 9
g = 19.8 kN/m3

228.6

90

45

O

s0′

Qe

Qs

Qf

0

5

12

z = 5 m

x = 7 m

Figure 9.41
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Effective overburden pressure of 5 m depth

2
0 90kN/mσ ′ =

Therefore	 0f s0.1 0.1 45 5 25.5 kNQ Aσ= ′ = × × = � (9.37)

Stiff clay layer (f 


0)
From Table 9.5 for SPT    N = 9    c

u
 = 100 kN/m2

In the absence of other information, the undrained shear strength is assumed to 

be uniform in the layer, hence = = 2
u u 100kN/mc c

End-bearing area:	  
π π

==
2 2

e

0.35

4 4

d
A

Surface area of pile: A
s
 = pdx = p × 0.35 × 7 = 7. 7m2

Adhesion factor:	 a  = 0.45

From (9.30):	
2

e e u c

0.35
100 9 65.6 kN

4
Q A c N

π
= = × × = ↑

	
α= = × × = ↑s s u 7.7 0.45 100 346.5 kNQ A c

Ultimate carrying capacity: u e s 41 kN2Q Q Q= + = ↑

Allowable safe load carrying capacity:

From (9.31):  e s
a

65.6 346.5
313 kN

3 1.5 3 1.5

Q Q
Q = + = + =

From (9.32): = = = <u
a

412
165kN 313kN

2.5 2.5

Q
Q

Therefore, the safe load is:	 Q
a
 = 165 kN ↑

But Q
a
 is reduced by:	 Q

f
 = 25 kN ↓

Hence max safe working load is:	 kN 140 0 k1 1 NQ = ↓ >

As the maximum safe working load is larger than the proposed 110 kN, the pile is 
satisfactory. The overall safety factor is checked by formula (9.33):

u
0

f

412
3 2.5 satisfactory

110 25

Q
F

Q Q
= = = >

+ +

Note: It has already been pointed out, that theoretically estimated values of safe 
loading must be considered as predictions only. As the actual carrying capacity 
and settlement depends on both the soil characteristics and the installation of a 
pile, the predictions can best be checked by loading tests. For detailed text on this 
subject, see Tomlinson (Ref: 21).
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Example 9.8

Estimate the permissible working load on a 12 m long concrete pile, driven 5 m into 
stiff clay through recently deposited, well compacted sand and gravel layer and 
4 m thick soft clay as shown in Figure 9.42. Ground water level is 4 m below the 
new surface. Pile diameter = 350 mm.

Note: The well compacted, dense fill 
layer does not consolidate, hence it 
contributes to the shaft resistance. 
However, its weight consolidates 
the soft clay stratum, which induces 
negative skin friction.

Recently deposited fill (0 - 3 m)

From Chart 9.5 for SPT	 N = 42 :  f = 39°∘

From Table 9.4 for concrete pile:	 K
s
 = 1

	 0.75 0.75 39 29.3δ φ= = × = °

Surface area of pile in this layer:	 A
s
 = p × 0.35 × 3 = 3.3 m2

Average effective pressure:	 σ ×
′ = = 2
0

3 20
30 kN/m

2

From (9.26): 0s s s tan 3.3 1 30 tan29.3 56 KNQ A K σ δ= ′ = × × × =

Soft clay layer (3 - 7m)

Effective overburden pressures:

2
21

12
0

0KN/m
30KN/m

3 20 60KN/m

σ
σ

σ
′ =

′ =
′ = × =

21
02

60 4 19 3 9.81 60 106.6
83 kN/m

2106.6 kN/ m

σ
σ

′ = + × − × +
′ = =

=

Figure 9.42

Q

GL

GWL

g = 20 kN/m3

N = 42

cu= 40 kN/m2

g = 19 kN/m3

cu= 100 kN/m2

cu= 200 kN/m2

Qe

Qs

Qs

Qf

x = 5 m

Stiff clay

Soft clay

1 m

Fill

4 m

3 m

3

0

7

12

4

0

3

4

7

GL

Fill

Clay

g = 20 kN/m3

g = 19 kN/m3
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Surface area of pile in this layer:	 A
s
 = p × 0.35 × 4 = 4. 4 m2

Average effective pressure:	 σ ′ = 2
0 83 kN/m

Negative friction from (9.37):	
f 0.1 83 4.4 37KNQ = × × = ↓

Stiff clay layer (7m+)

1.  End bearing:  Area:	
π

= =
2

2
e

0.35
0.096m

4
A

	 Shear strength:	 c
u
 = 200 kN/m2

	 From (9.30)	 =
= × × = ↑

e e u c

0.096 200 9 173 kN

Q A c N

2.  Shaft Resistance:  Area:	 A
s
 = p × 0.35x = p × 0.35 × 5 = 5.5 m2

		  0.45α =

		
= 2

u 100kN/mc

From (9.30):		  α= = × × = ↑s s u 5.5 100 0.45 248 KNQ A c

Total shaft resistance:	 Q
s
 = 56 + 248 = 304 kN ↑

Ultimate capacity:	 Q
u
 = 304 + 173 = 477 kN ↑

Allowable capacity:	 = + + = + =e s
a

173 304
259 kN

3 1.5 3 1.5

Q Q
Q

or	 = = = ↑u
a

477
191kN

2.5 2.5

Q
Q

The actual permissible working load is calculated from the lower figure:

	
a f

191 37 154 kN

Q Q Q= −
= − = ↑

Example 9.9

A bored concrete pile of 500 mm diameter is to carry a working load of 650 kN. 
Preliminary site investigation and laboratory tests revealed homogeneous clay to 
a depth 20 m underlain by sandstone. The undrained shear strength parameters 
and the ground water level are shown on Figure  9.43. Determine the required 
depth of penetration.

Try penetration length x = 16 m

End bearing:
The value of undrained cohesion at 16 m depth is: 2

u 374kN/ mc =
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End bearing area: 
2

e

0.5

4
A

π=

From (9.30): 
π

= = × × = ↑
2

e e u

0.5
9 9 374 661 kN

4
Q A c

Shaft resistance:
The average shear strength uc  is evaluated in Table 9.8 and Q

s
 is obtained from 

(9.28) taking a = 0.45.

Surface area of piles:

π π= = × × = 2
s 0. m5 16 25A Bx

Shaft resistance:
α=

= × × =
s u u s

0.45 117 25 1316kN

Q c A

Ultimate capacity:

u 661 1316 1977kNQ = + =

Allowable loading:

= + =a

661 1316
1098 kN

3 1.5
Q

or

= =a

1977
791kN

2.5
Q

= ↑> =aAccept 791kN 650 kNQ Q

Therefore a 16 m long pile is 
satisfactory.

Table   9.8

Interval (m) ( )2
u kN/mc

0 - 2 30 45
37.5

2

+ =

2 - 4 45 15
30.0

2

+ =

4 - 6 15 42
28.5

2

+ =

6 - 8 42 74
58.0

2

+ =

8 - 10 74 102
88.0

2

+ =

10 - 12 102 194
148.0

2

+ =

12 - 14 194 260
227.0

2

+ =

14 - 16 260 374
317.0

2

+ =

∴ = =u

934
117.0

8
c

Table 9.7 

Depth (m) c
u
 (kN/m2) uφ° g kN/m3

0 30 4 19
2 45 6 19.3
4 15 3 19.7
6 42 4 18.8
8 74 2 18.8

10 102 9 19.7
12 194 5 20.0
14 260 2 20.0
16 374 7 19.8
18 402 7 20.5
20 — — —

Q

Q = 650 kN

GL0 m

4 m
GWL

X Soft clay

Stiff clay

Very stiff clay

Hard clay

Sandstone
20 m

Figure 9.43
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l

x = 5B min

B = Width of a rectangular pile
d = Diameter of a circular pile

x = Depth of penetration

f° = Angle of shearing resistance

Bearing capacity coefficient Nq for piles
driven into the bearing layer to a depth
greater than 5B. (After Berezantsev)

Pile

GL

B
or
d

5

20
l
B

S
le

nd
er

ne
ss

 r
at

io

70

0.5
20 30 40

0.6

0.7

0.8

0.9

1.0

1.1

1.2

lo
g 1

0N
q

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Chart 9.7

9.14  End bearing resistance and SPT

Meyerhof correlated q
e
 and q

s
 with the number of blows (N) obtained in standard pene-

tration tests for sand, gravel and silt.
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e
e

e

where average value of over the embedded length

embedded length

end bearing resistance

N N

D

Q
q

A

=
=

= =

9.15  Influence of pile section on Qu

It is implied in Figure 9.19 that circular footing could carry larger load than a rectangular 
one of the same base area. Therefore, for maximum end bearing resistance a circular pile 
section is marginally more economical.

Triangular pile section, however, has larger perimeter than circular or rectangular one 
of the same area, hence is supplies the largest shaft resistance. For the same reason, a 
square section is slightly more efficient than a circular one of the same cross-sectional 
area.

9.16  Group of piles

In most cases, not a single, but several piles are placed to support a structure. The settle-
ment and load-transmitting characteristics of a pile group is different from those of an 
individual pile. In general, the allowable working load imposed on the group depends on the 
magnitude of its possible settlement. It is assumed, for the estimation of maximum settle-
ment, that the pile group and the soil between the piles move together as a block, whose 
base may be regarded as a raft foundation. In general, the settlement depends on the:

1.  Type of soil penetrated
2.  Type of piles (friction or end-bearing)
3.  Spacing of the piles.

Cohesionless soils
Driven piles compact the soil around them. The region of influence extends approxi-
mately to three times their diameter (Figure 9.44 (a)). The looser is the soil, the smaller 
is this distance.

Table 9.9 

Type of pile Type of soil
q

e

(kN/m2)
q

s

(kN/m2)

Driven Sand and gravel or  
sand

40
400N

DN
B

≤
2 N

Sandy silt
or silt

30
300N

DN
B

≤

Bored Gravel
or sand

14DN
B

0.67 N

Sandy silt
or silt

10DN
B
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Spacing of end-bearing piles: r ≥ 2d (Figure 9.44 (b))
Spacing of friction piles: 5d ≤ r ≤ 6d (Figure 9.44 (c))
Spacing of end bearing/friction piles: 3d ≤ r ≤ 4d (Figure 9.44 (d))

Cohesive soils
The consequences of driving piles into soft clay are considerable remoulding and heaving 
of the ground surface. In stiff clays, this upward movement could lift adjacent, previously 
placed piles, which should then be re-driven.

Block failure of a pile group
If the spacing of the piles is less than the diameter and the bearing capacity of the under-
lying cohesive soil is exceeded then the entire group could fail as a single block.

The soil enclosed by the piles moves with them as one mass. 
The ultimate bearing capacity of the group is given by:

ug u c b p uQ c N A A c= +

( )
( )

b b

p p

c c

where base area i.e.

perimeter area 2

Bearing capacity factor usually 9

A A BL

A A B L l

N N

= =
= = +

= =

Therefore,	 ( )ug u c u2Q c N BL B L l c= + + × � (9.38)

Applying a factor of safety (F
S
), the allowable carrying capacity of the group is:

	
ug

ag
s

Q
Q

F
= � (9.39)

6d 2d

d

GL

Sand

(a) (b) (c) (d)

Dense
sand

Sand

Dense
sand

Sand

Min.

Compacted
region

3d ≤ a ≤ 4d
Pile Cap

5d ≤ a ≤ 6d

Figure 9.44

Pile cap

d c

c
B

La

l

Figure 9.45
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The efficiency (h) of the group shows, that the ultimate carrying capacity of the group 
differs from the total capacity of n individual piles. It is expressed as:

	
ug

u

Q

nQ
η = � (9.40)

Where,	 n = number of piles in the group
	 Q

u
 = ultimate carrying capacity of one pile.

Note: Block failure is unlikely to occur if the piles are placed not less than 3d apart.

Example 9.10

A structure weighing 2000 tonne is to be carried by a piled foundation. The soil 
profile is given in Figure 9.42 (Example 9.9). Check whether nine 16 m long piles, 
designed in that example, can carry this load safety. The piles are to be placed 3d 
apart, forming a 3.5 m square group. Assume a factor of safety of 3. Working load 
to be carried: g

6 6

2000 tonne 2000000 kg

2 10 9.81 19.62 10 N

19620 kN

Q = =
= × × = ×
=

For a single pile, from example 9.9:	 Q
u
 = 1977 kN

Average shear strength (Table 9.6):	 2
u 117 kN/mc =

Shear strength at the base:	 c
u
 = 374 kN/m2

For the group
n = 9

2
ugFrom : 374 9 3.5 2 (3.5 3.5) 16 117(9

41234 26208 67442 kN

.38) Q = × × + × + × ×

= + =

From (9.39):	 ag

67442
22481kN

3
Q = =

d = 500 mm

4 m

1.5 1.5

1.5

4 m × 4 m pile cap

3.5 m

1.5 m

3.5 m

Figure 9.46
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9.16.1  Eccentrically loaded pile group

In this case, the load carried by a pile depends on its distance from the centroid of the 
group. The load is calculated from formula (9.41), which is derived by the application of 
the following principle of statics.

“A force acting at point A can be transformed into the same force as well as a couple, 
acting at another point B”. See also Appendix D.

Derivation
Suppose, there are n piles in a group, made up of r rows. Each row contains n

r
 piles. The 

working load is acting eccentrically at distance e from the centreline of the group.

Step 1:  � Transfer force Q
g
 to the centreline and obtain the direct load F, carried by each 

pile. From Figure 9.48 (b) and (c):  gQ
F

n
=

Step 2: � Apply the moment Q
g
e to the pile group, which tends to rotate about point c at 

the centreline of the pile cap. This induces additional load on each row of the 
group. The extra load R

r 
carried by the rth row is proportional to its distance 

from the centre of rotation. From Figure 9.48 (d), the proportions can be writ-
ten as:

Assuming that the reinforced concrete (g = 24 kN/m2) pile cap is 1 metre deep, the 
actual loading on the pile group is:

g 19620 1 4 4 24 20004kNQ = + × × × =

From (9.40): 
ug

u

67442
3.8

9 1977

Q

nQ
η = = =

×

Conclusions:

1.  The piles are spaced at 3d = 1.5 m apart, hence no block failure should occur
2.  The allowable carrying capacity of the group is larger than Q

g
 = 20004 kN

3.  The ultimate capacity of the group is 3.8 times larger than that of nine piles 
summed.

The pile group is satisfactory.
Note: The unit weight of reinforced concrete is assumed to be 24 kN/m3.

P

A B
≡ ≡ ≡

e

Force at A
to be transformed

Equilibrium
at B

Couple
M = Pe

Resultants
at B

e

P P P P

Pe

A AA B BB
e eP P P

Figure 9.47
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31 2 4 r

1 2 3 4 r

........
RR R R R

x x x x x
= = = = =

From which:

	

1 2
1 r 2 r

r r

x x
R R R R

x x
= =

	

3 4
3 r 4 r

r r

x x
R R R R

x x
= =

In general the nth pile:	 n
n r

r

x
R R

x
=

Also, for equilibrium of moments:

g 1 1 2 2 3 3 4 4 n n......Q e R x R x R x R x R x= + + + + +

Substituting,	
22 2 2 2
31 2 4 n

g r r r r
r r r r r

........
xx x x x

Q e R R R R R
x x x x x

= + + + + +

Rearranging,	 ( )2 2 2 2 2
g r r 1 2 3 4 n.......Q ex R x x x x x= + + + + +

F

r th row

(a)

(b)

(c)

(d)

F

1 2 3 4 5 6

F F F F

F F

F
Direct
forces

Bending
forces

F F F F F

F

-x +x

F F F

e Qg

Qg

Qg

n

M = Qge
Tension

Compressionc
R1 R2 R3

R4 R5 R6

L

+

−

+

B

−x1

−x2

−x3 x6

x5

x4

Lc

Figure 9.48
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Therefore, the load carried by any pile in the rth row is given by:

g r
r 2 2 2 2 2

1 2 3 4 n.......

Q e x
R

x x x x x
=

+ + + + +

As there are n
r
 piles in a row, each carries an additional load of:

g rr
r 2

r r r

Q e xR
P

n n x
= =

Σ

Combining the direct and bending loading, the working load on any pile in a row is  
given by:

	

g g r
r r 2

r r

Q Q e x
Q F P

n n x
= + = +

Σ

Or	 r
r g 2

r r

1 e x
Q Q

n n x

 
= + Σ 

� (9.41)

Where x
r
 is +ve on the compression side and - ve on the tension side.

Should Q
g
 be placed eccentrically, both in the x- and y-directions, then the expression 

is modified to:

y cx r
r g 2 2

r r c c

1 e ye x
Q Q

n n x n y

 
= + + Σ Σ 

� (9.42)

c

where means row

column

number of pile in column c.

r

c

n

=
=
=

+y

-y

+x-x

ex

Columns

ey

R
ow

s

Figure 9.49

Example 9.11

A 15000 kN concrete structure is supported by a 25–pile group, arranged in 
square pattern. The 500 mm diameter piles are placed at 1.5 m, centre to centre. 
The structure is seated eccentrically to the centroid of the pile group. The eccen-
tricity is 0.7 m. Calculate the load carried by each pile. Ignore the size of the pile 
cap.
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r

g

Given : 25

5

0.7m

15000kN

n

n

e

Q

=
=
=
=

2 2 2 2 2
1 1 2 4 5

9 2.25 2.25 9 22.5m

x x x x xΣ = + + +
= + + + =

From (9.41):

r
r

0.71
15000

25 5 22.5

x
Q

 = +  ×

r r600 93.3Q x∴ = +

Tabulating the calculations:

Check: Total load on group = n
r
 ∑ Q

r
 = 5 × 3000 = 15000 kN

When it is not possible to eliminate the eccentricity, then its effect may be minimized by:

1.  Altering the spacing of the piles or rows
2.  Designing piles of varying length
3.  Altering the size of the pile cap.

−3 m +3 m

−1.5 +1.5

1g 2

Pile cap

e 0.7 m

Qg= 15000 kN

3

e 0.7 m +x−x

4 5

6.
5

m

Lc

Figure 9.50

Table   9.10

Row r x
r
 (m) Load per pile (Q

r
) in row r (kN)

1 — 3 600 — 93.3 × 3 = 320
2 — 1.5 600 — 93.3 × 1.5 = 460
3 0 600 — 0 = 600
4 1.5 600 + 93.3 × 1.5 = 740
5 3 600 + 93.3 × 3 = 880

Load carried by one row = ∑ Q
r
 = 3000

9.16.2  Settlement of pile groups

Whilst the settlement of single piles can best be determined by in-situ loading test, for 
pile groups the consolidation theory is applicable. Because the group behaves as a raft, 
its bearing pressure extends to some depth below it (see Figure 9.38). For this reason, the 
consolidation settlement of a group is usually much larger than the downward movement 
of a single pile. For the purpose of estimating the movement, it is normal practice to 
assume an equivalent raft, determined by a load spread of 1 in 4.
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x = depth of penetration
In the knowledge of the consolidation characteristics of the soil, the approximate 

settlement of the group can be estimated as for shallow footings in Chapter 7.

9.16.3  Raking piles

When a structure imposes horizontal forces on a pile cap, only a small portion of this load 
can be carried by vertical piles, depending on the passive resistance mobilised along 
their lengths that is, on the shear strength of the adjacent soil.

Raking or batter piles are used, as part of a group to carry the horizontal component 
of an imposed load. The force carried by each pile may be determined graphically, as long 
as there are only three non-parallel rows in the group. The problem becomes statically 
indeterminate for larger number of rows, hence beyond the scope of this book.

Typical problem:

F = �resultant of forces Q and Q
3
 

as well as Q
1
 and Q

2

Figure 9.51

X

x
1.5

Assumed
raft

Uniform soil

Pile cap
(a)

1 
in

 4

(b)

x

Firm layer

Raft

Pile cap

Weak
layer

1 
in

 4 x
1.5

Q

(a) (b)
Q

Pile caps

Figure 9.52
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Note: If the tension force Q
1
 is larger than the available shaft friction, then the pile-con-

figuration has to be rearranged, so that point x is lowered and the resultant F is then 
located between Q

1
 and Q

2
 as in Figure 9.53(a). This can be done by either moving the 

load Q to the left or pile No. 3 to the right.

Example 9.12

Determine the forces in the piles, shown in Figure 9.54, subjected to an inclined 
load of 5000 kN.

Step 1:	 Draw force Q (a-b) to scale
Step 2:	 Draw auxiliary force F (c-b)
Step 3:	 Draw force Q

3
(a-c). This yields the magnitude of Q

3
.

Step 4:	� Draw Q
1
 from b and Q

2
 from c, to intersect at point d, thus obtaining their 

magnitude
Step 5:	 Draw the arrows round the polygon for equilibrium.

Results: Q
1
 = 1275 kN tension

Q
2
 = 3950 kN compression

Q
3
 = 2000 kN compression

Figure 9.54

Q = 5000 kN

a

(a)

b

c

F
Q3Q2Q1
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Q
3

=
20

00
kN
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Q 1
=1

27
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c

d

b

a
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Problem 9.1

Strip footing, 1.5 m wide and 1 m deep, is to be constructed in a 3 m thick soft clay 
layer, underlain by stiff boulder clay. There is no evidence of ground water table. 
The base transmits 200 kN/m2 pressure to the soil.

a)  Check, whether the bearing capacity of the soft clay is sufficient enough to 
carry the footing.

b)  It is proposed that, should the soft clay be unsatisfactory, then it is to be 
replaced by suitable, compacted material. The results of laboratory compaction 
and shear box tests on the imported material are:

3

2

Dry density 16.1kN/m
Optimum water content 18%
Specific gravity 2.75
Cohesion 5kN/ m
Angle of friction 35

=
=
=
=
= °

Check the bearing capacity of the compacted layer:

1.  In partially saturated state.
2.  In fully saturated state after the area is flooded permanently to a depth of 

0.5 m.

Apply Terzaghi’s bearing capacity factors and a factor of safety F
s
 = 3 

throughout.

B = 1.5 m
3 m

D = 1 m

Stiff boulder clay

Soft clay

GL

sn= 200 kN/m2

c = 11 kN/m2

g= 17 kN/m3

f= 8°

Figure 9.55
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Problem 9.2

A 2 m × 4 m rectangular foundation, based 0.9 m below the surface, supports a col-
umn load of 1000 kN (including self-weight) and a moment of 500 kNm, as shown.

Estimate the bearing capacity of the clay, at factor of safety of 3, and state 
whether it is overstressed or not. Apply Terzaghi’s bearing capacity factors.

Rock

0.9 m

Sandy clay
5.1 m

4 m

GL
1000 kN

c = 50 kN/m2

g= 18 kN/m3
f= 10°

50
0kNm

Figure 9.59

Problem 9.3

Bored piles, 1 m diameter, are to be constructed in soft to stiff clay. Their total length 
must be 13.3 m. Figure 9.61 shows an average undrained strength of 174 kN/m2 along 
the shaft and an undrained shear strength of 260 kN/m2 at the base of the piles. 
Estimate the allowable carrying capacity, taking the adhesion factor as 0.45, of the:

a)  straight pile
b)  under-reamed pile, ignoring the adhesion above the tapered part, over a 

length twice the base diameter.

Ignore
adhesion

1.3 m

5 m

7 m

2.5 m
Diameter

–Under-reaming

1 m diameter

Soft to stiff
clay

(a) (b)

cu=174 kN/m2

cu= 260 kN/m2

1 m diameterd

d

GL

13.3 m

Figure 9.61
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Problem 9.4

A 2 m wide strip footing is placed at 0.5 m below ground level in a sand layer, under-
lain by coarse gravel. The known characteristics of the sand are given in Figure 9.62. 
Determine the safe bearing pressure, taking the factor of safety as 3, if:

1.  There is no evidence of water in either layer
2.  The water in a piezometer, placed in the gravel, rises to 1.5 m above the 

water table, which now coincides with the ground surface.

Sand

N = 0.39

Gravel

B = 2 mGL

z1= 0.5 m

Gs= 2.65

f = 29°

z2= 2.5 m

Figure 9.62

Problem 9.5

With reference to Figure 9.64, express bearing capacities q
u
, q

n
, q

sn
, q

s
 and the net 

bearing pressure s
n
 in terms of depth z, taking 3 as the factor of safety.

Given that s
n
 = 155 kN/m2, determine the depth z and the value of the safe bear-

ing pressure s.

From Chart 9.2:
N

c
 = 11

N
q
 = 3

Nγ = 1.5
2 m

Clay

z

Strip
footing

c = 35 kN

Fs= 3

g = 13 kN/m3

f = 15°

s

sn

Figure 9.64
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Problem 9.6

A 4 m square footing, based at 2 m depth, transmits 388 kN/m2 safe bearing 
pressure (self weight incl.) to the sand underlain by soft clay, as shown. The 
ground water table is 3 m below the surface.

1.  Determine the bearing strength of each layer, adopting 3 as factor of safety 
for the clay.

2.  Compare the strength of each layer with the applied loading.

e = 0.54
g = 19 kN/m3

sn
Gs= 2.66

Vane test result: cu= 47 kN/m2

g ′

s = 388 kN/m2

5 m

2 m

GL

Sand:

GWL
SPT blows: N = 50

2 m

1 m 4 m

Soft clay

Figure 9.65

Problem 9.7

It is proposed, that a footing should be constructed within the clay, underlain by 
gravel, as shown in Figure 9.68. The gravel is under an artesian pressure of 26 kN/m2. 
Because of the frost-susceptibility of the clay, the depth of the base has to be 1 m 
below the ground surface.

Check the feasibility of the scheme 
and recommend a suitable solution, 
if it is not acceptable.

Gravel

Clay

x

yg2= 17.5 kN/m3

zc

GL

GNL

Top soil g1= 13 kN/m30.2 m

0.8 m

1 m

1 m g2′ = 9.39 kN/m3

sA= 26 kN/m2

Excavation

Figure 9.68
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Problem 9.8

A strip footing, 2 m wide, is based at a depth of 1 m in the stiff clay shown in 
Figure 9.70, transmits a net bearing pressure of 245 kN/m2 to the soil. Determine 
whether the underlying medium clay is overstressed or not at F

s
 = 3.

Compact sand

Sr= 1

Sr= 0.76

Sr= 1

Sr= 1

Stiff clay saturated
by capillary action

not at Fs= 3

Medium clay

1.4 m

0.6 m

1 m

2 m

Stiff clay

e = 0.82

Gs= 0.82

e = 0.32

c ′u= 79 kN/m2

Gs= 2.67

Gs= 2.8e = 0.76

cu= 68 kN/m2

GL

GWL

z = 3 m
f′u= 15°

fu= 0

sn= 245 kN/m2

Figure 9.70
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Chapter 10

Stability of Slopes

A frequently occurring engineering problem is the prevention of slope failure during and 
after the construction of earthworks, such as embankments, earth dams or road and 
railway cuttings, etc. Also, it is often necessary to stabilize natural, undisturbed slopes, 
before or after the onset of instability. In general, the aim is to provide sufficient margin 
of safety against shear failure, in any part of the soil mass.

10.1  Short-term and long-term stability

The method of analysis depends on whether the factor of safety required is for the short-
term or the long-term stability of an earth structure.

1.  Short-term stability calculations are relevant to safety at the end of construction 
(time t = 0), when no appreciable dissipation of excess pore pressure is assumed. 
This condition is simulated in the undrained (QU) triaxial test, yielding the shear 
strength parameters c

u
 and f

u
. For saturated clays however, f

u
 = 0, hence shear 

strength t = c
u
.

It was pointed out in Chapter 6, that the Mohr-envelope is expressible only in 
terms of total stress, in a QU-test on saturated clays, For this reason a short-term 
analysis is carried out in terms of total stresses, often referred to as f

u
 = 0 

analysis.
2.  Long-term stability calculations are relevant to safety after the dissipation of 

excess pore pressure (time t = ∞), that is after the completion of consolidation. 
Failure is assumed to occur after this period. This condition is simulated in the 
consolidated, undrained (CU) triaxial test with pore pressure measurement, yield-
ing the effective shear strength parameters c ′ and f ′. The long-term analysis is 
then carried out in terms of effective stresses.

Note: When analysing the stability along a surface which has already slipped, then 

the residual strength r( )φ′  has to be used as the slip surface is in a remoulded 
state.
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10.2  Total stress analysis (cohesive soils)

10.2.1  Homogeneous, pure clay (fu = 0)

In general, a slope becomes unstable, when the effect of gravity forces, acting on a vol-
ume of soil, exceeds its shear strength along a slip surface. The usual gravity forces 
encountered in the total stress analysis are:

a)  Weight of the sliding mass.
b)  Surcharge or other surface loads.

Figure 10.1 depicts the simplest case of a rotational slip in homogeneous, saturated clay.

where	 g  = bulk unit weight of clay
W

1
 = weight of soil inducing slide

W
2
 = weight of soil resisting slide

L = Length of the slip surface a-Q-d
c

u
 = shear strength of clay

c
u
L = force resisting shear along the slip surface

x
1
 and x

2
 are the moment-arms of W

1
 and W

2
 respectively from the centre of the circle.

Taking moment about the centre of rotation:

Disturbing moment:

Resisting moment:

MD =W1x1 −W2x2 = ∑Wx

+

MR= cuLR
−

Factor of safety:	 s

Resisting moment

Disturbing moment
F =

or	 uR
s

D x

c LRM
F

M W
= =

Σ
� (10.1)

Centroid of
area fQdf

Clay
g

cu > 0
f = 0S

lip
 s

ur
fa

ce

x1

O

x2

W2

W1

Lc u = Rqc u
f

α

Q

a

Centroid of
area aQfa

Centre of rotation

R
 =

 ra
di

us

d
q

H

Figure 10.1
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When F
s
 = 1, then M

D
 = M

R
 and the slope is said to be in a state of impending or incipient 

failure. The normally acceptable range for the factor of safety is: 1.25 ≤ F
s
 ≤ 1.5

10.2.2  Increasing the value of Fs

Moments M
R
 and M

D
 can be varied in (10.1) by altering the values of W

1
 and W

2
. The factor 

of safety can be increased in several obvious ways by:

1.  Decreasing M
D
 by benching (Figure 10.2 (a)).

2.  Increasing M
R
 by loading the toe (Figure 10.2 (b)).

3.  Decreasing M
D
 by flatter slope (Figure 10.2 (c)).

4.  The combination of the above three methods.

Figure 10.2

R
O

qa

x3

d
Removed volume

x3 < x1 (in Figure 10.1)

W3 < W1 (in Figure 10.1)

qa < θ (in Figure 10.1)

MD is decreased

(a)

f

a
W2

Q
a

W3

Rq a
c u

x2

(b) RO

qb

x1

d

x4 < x2 (in Figure 10.1)

W4 > W2 (in Figure 10.1)

MR is increased

Qb = q (in Figure 10.1)
f

W2

Q
a

Added
volume

W1

a

Rq b
c u

x4

(c) O

qc

x5

d
Flatter slope

b < a (in Figure 10.1)

W6 < W2 x6 > x2  (Figure 10.1)

W5 < W1 x5 > x1  (Figure 10.1)

qc < q              (Figure 10.1)

MD is decreased

MR is alternate margine

f
W6

Q
a

W5

β

Rq cc u

x6
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10.2.3  Minimum value of Fs

The aim at the design and analysis of slopes is to find that potential slip surface, for a 
given slope, which yields the smallest factor of safety. If this value is more than 1.25, no 
failure is expected. If less, then M

R
 has to be increased one way or another. The procedure 

is to analyse several trial circles and compare their factors of safety, until its smallest 
value is found.

10.2.4  Potential slip surface

The centres of the trial circles are normally located arbitrarily. This means lengthy search 
for the critical radius and its position. The procedure can easily be done by a computer 
nowadays, however, for homogeneous clay, the potential slip surface may be drawn 
approximately, considering that:

1.  The failure surface should pass through the toe, if f
u
 > 3° or a > 53°, unless the base 

of the slope is of stronger material than the homogeneous clay. In that case the 
circle touches the base without intersecting it.

2.  If f
u
 > 3° or a ≤ 53°, then the critical slip surface intercepts the ground in front 

of  the toe (Figure  10.4a) if the base of a slope is stronger material, then the 

Figure 10.3

Toe

a

W

Either fu > 3°
or        a > 53°

R
O(a)

f°u
g
cu

Hard material (say rock)

a

W

Clay

RO(b)

Either fu > 3°
or        a > 53°
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intersection could be in front, at the toe or on the slope, depending on the depth 
of the base (Figure 10.4b).

Notes:

a)  These points should be considered as guidance only, applicable to uniform slopes 
in homogeneous clay, as the predicted circles are not always the most critical ones.

b)  The possible centre of a critical circle can be located by means of Chart 10.1 (after 
Fellenius, for uniform, homogeneous clay (f

u
 = 0).

10.2.5  Determination of the factor of safety

There are several ways in which the disturbing and resting moments may be evaluated. 
Some of these are detailed in the following five examples in terms of total stress.

Example 10.1 Planimetric method Saturated c-soil
Example 10.2 Method of slices
Example 10.3 Radial procedure
Example 10.4 Allowance for tension cracks
Example 10.5 Analysis of partially saturated (c − f) soil

Graph 10.1 shows a 6 m deep cutting slope, inclined at 1 in 2, and the slip circle of 13.5 m 
radius in homogeneous, fully saturated clay. Its properties are indicated on the graph.

This slope and slip surface will be analysed for various conditions in this chapter.

Figure 10.4

a

W

Either fu < 3°
or        a ≤ 53°

R
O(a)

R3

Either fu < 3°
or       a ≤ 53°

R1

(b)

R2

a 1

2

3

O
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Example 10.1

(See Graph 10.1)

Step 1:	� Determine the cross-sectional area (abdeQa) of the potential slip by 
means of planimeter, Simpson’s Rule or otherwise (see Appendix C).

In this example: A ≈ 82.7 m2

Step 2:  Calculate the weight of 1 m long slope.

γ= = × =19 82.7 1571.3kNW A

Rounded to  W = 1571 kN
Step 3: � Locate the position of the centroid ( )x  of the cross section, relative to the 

centre of rotation (See also Appendix C). This can be done also by cutting 
a template of the section, out of cardboard or from other suitable material 
and bore at least three holes through it, at opposite extremities (x, y and z).

Step 4: � Suspend the template at each point in succession and draw a vertical 
line from the pin-hole with the help of a spirit level or plumbob. The 
three lines intersect at the centroid.

Note: This construction can be applied to any shape.

Step 5: � Calculate the resisting shear force, due to the shear strength of the clay, 
along the potential slip surface.

cu = 40 kN/m2

g = 19 kN/m3

y

x

Q

O
z

Figure 10.5

x

Q

O
z

Result : x = 3.54 my

Centroid

W

x

Figure 10.6
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Length of surface: 
101

13.5 23.8 m
180

L R
πθ ×

= = × =

Shear force:	 S = c
u
L = 40 × 23.8 = 952 kN

Step 6: � Calculate the moments about the centre of rotation and the factor of safety.

Disturbing : MD ×Wx= 1571 × 3.54 = 5561 kNm

Resisting :   MR = SR = 952 × 13.5 = 12852 kNm

R
S

D

Factor of Safety :

SR

12852
2.31

5561

M
F

M W x
= =

= =

Alternatively, find areas (abcQa) and (QcdeQ) with their centroids on separate 
templates, from which the forces (W

1
 and W

2
) and their position can be located as 

shown in Graph 10.1. The results are:

Areas  2
1 1 1

2
2 2 2

2

62.8m 19 62.7 1191.3 5.4m

19.9m 19 19.9 378.1 2.6m

82.7 1569.4 Km N

A W x

A W

A W

x

= = × = =
= =

=

× = =

=

Resisting moment:   MR =SR= 12852 kNm

Disturbing moment: MD =Wx1 −W2x2
= 1191.3 × 5.4 − 378.1 × 2.6

= 6433 − 983 = 5450 kNm

Factor of Safety:

R
S

D

12852

5450
2.35 2.31

M
F

M
=

=

= ≈

O

a b

c

d e

12852 kNm

3.54
1561 kN

Q

Figure 10.7

O

A1

A2

Q

983 6433

12852

Figure 10.8
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The determination of centroids of more complicated, irregular, shapes is somewhat 
tedious. It is much more easy to estimate the factor of safety by the Swedish Method of 
Slices. It is assumed in the theory, that the pressures (E

a
 and E

p
) of soil acting on both 

sides of the slice cancel each other out, hence may be neglected.
Two procedures of the method are to be introduced by the next two examples.

Example 10.2

(See Graph 10.2)

Step 1:	� Divide the segmental slip area into a desired number of slices of equal width. 
The larger is the number, the more accurate is the answer. In this example, 20 
slices of 1 m width are chosen for convenience. This way; Area of slice  = height 
of slice.

Step 2: � Measure the middle height (z) of each slice and calculate their weight 
per metre length of slope e.g.

11

11
2

11 11 11
3

11 11

11 11

p a

For strip No. 11

Height    6.09 m
Width     1m

Area       6.09 1 6.09 m

Volume 1 6.09m /m length
Weight    19 6.09
                                115.71kN

0 (To be neg

z
b

a z b

v a
w v

E E

γ

=
=
= = × =
= × =
= = ×

=
− = lected)

Step 3: � Measure the moment arm (x) of each weight from the centre of the 
circle, taking ± signs into account.

Step 4: � Calculate the disturbing moment M
D
, by summing the positive and 

negative moments in Table 10.1.

= ∑DM Wx

Step 5:  Calculate the resisting moment, due to the shear strength of the clay.

Radius of the slip circle:	 R = 13.5 m

Included angle:	
πθ ×

= ° =

=

101
101 radian

180
1.763radian

EP Ea

zn

b11 = 1m

n

W11

Figure 10.9
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Length of the slip surface: 

13.5 1.763 23.8m

L Rθ=

= × =

� (10.2)

Shear strength of clay:	 t = c
u
 = 40 kN/m2

Resting force provided by the shear strength:

	 u

40 23.8 952kN

S c L=

= × =

� (10.3)

Therefore, the resisting (−ve) moment due to the shear strength is:

= 12852 kNm

MD =SR
= 952 × 13.5

�
(10.4)

Table 10.1

Slice Moment = ± Wx

No.

Height Width Weight Arm + Wx − Wx

z (m) b (m) W (kN) x (m) kNm kNm

1 0.14 1.0 2.66 − 7.1 − 18.89
2 0.70 1.0 13.30 − 6.1 − 81.13
3 1.41 1.0 26.79 − 5.1 − 136.63
4 2.27 1.0 43.13 − 4.1 − 176.83
5 3.05 1.0 57.95 − 3.1 − 179.65
6 3.75 1.0 64.03 − 2.1 − 134.46
7 4.37 1.0 83.03 − 1.1 − 91.33
8 4.91 1.0 93.29 − 0.1 − 9.33
9 5.38 1.0 102.22 0.9 92.00

10 5.78 1.0 109.82 1.9 208.66
11 6.09 1.0 115.71 2.9 335.56
12 6.33 1.0 120.27 3.9 469.05
13 6.49 1.0 123.31 4.9 604.22
14 6.55 1.0 124.45 5.9 743.26
15 6.26 1.0 118.94 6.9 820.69
16 5.61 1.0 106.59 7.9 842.06
17 4.81 1.0 91.39 8.9 813.37
18 3.84 1.0 72.96 9.9 722.30
19 2.62 1.0 49.78 10.9 542.60
20 1.03 1.0 19.57 11.9 232.88

∑z = 81.39 ∑W = 1539.19 + 6426.65 − 828.25

M
D
 = ∑Wx = 5598.4 kNm



Graph 10.2
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Step 6: � Calculate the factor of safety, by considering the moments acting on the 
soil mass as shown:

Hence the factor of safety:  R
s

D

12852
2.3

5598

M
F

M
= = =

This value is satisfactory from the safety point of view. However, assuming that 
this circle is the most critical one, F

s
 = 2.3 may be reduced by steepening the 

slope, thus saving on expensive excavation in earthworks schemes for cuttings.

12852 kNm
5598 kNm

O

R

Q

Disturbing moment

from Table 10.1.

MD = ΣWx = 5598 kNm

Resisting moment

MR = 12852 kNm

Figure 10.10

Example 10.3  Radial procedure

(See Graph 10.3).
In the previous example, M

D
 and M

R
 were determined by taking moments of weights 

about a vertical line through the centre of the circle. In this alternative method, the 
component of weight, tangential to the slip surface, is taken into account.

N = Radial component of W

T = Tangential component of W

	 δ= sinT W � (10.5)

For slice 19, on Graph 10.3:

	

19

19

49.78kN

54

W

δ
=
= °

	

δ=
=
=

19 19 19sin

49.78 sin54

40.27

T W

Slice

T N

W

N
T

Tangent to
 sl

ip

su
rfa

ce

d

d

Ep

Ray to centre

of circle

Ea

Figure 10.11



492       Introduction to Soil Mechanics

For the slope given in Example 10.1, calculate the factor of safety by the radial 
method.

Step 1:	� Divide the segment into 20 slices and mark only the middle of each, on 
the slip surface.

Step 2:	� Draw a radial line through each mid-point and the centre of the 
circle.

Step 3: � Calculate the weight (W) of each slice as in step 2 of Example 10.2.
Step 4: � Measure the angle (d) between the ray and the vertical line OQ
Step 5: � Calculate the tangential component of W for each slice by formula 

(10.5):  δ= sinT W
Step 6: � Tabulate the results so far:

Table 10.2

Slice Angle Tangential force

No. Weight d sind T = Wsind (kN)

W (kN) Degree
+ 
¨

- 
Æ

1 2.66 - 31.8 - 0.527 - 1.40
2 13.30 - 27 - 0.454 - 6.04
3 26.79 - 22.7 - 0.386 - 10.37
4 43.13 - 17.5 - 0.301 - 12.98
5 57.95 - 13 - 0.225 - 13.04
6 64.03 - 9 - 0.156 - 9.99
7 83.03 - 4.5 - 0.078 - 6.48
8 93.29 - 1 - 0.017 - 1.59
9 102.22 4 0.07 7.16

10 109.82 8 0.139 15.26
11 115.71 12.5 0.216 24.99
12 120.27 17 0.292 35.12
13 123.31 21.5 0.367 45.25
14 124.45 26 0.438 54.51
15 118.94 31 0.515 61.25
16 106.59 35.8 0.585 62.36
17 91.39 41.3 0.660 60.32
18 72.96 47 0.731 53.33
19 49.78 54 0.809 40.27
20 19.57 62 0.883 17.28

∑ 1539.19 + 477.10 - 61.89

Rounded to: ∑T = 415 kN



Graph 10.3
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Step 7: � Determine M
R
 and M

D
 by considering the forces acting along the slip 

surface as shown and taking moments about the centre of the 
circle.

                          = 13.5 × 415.21 = 5605 kNm

Restoring moment: MR = RS
           

Disturbing moment: MD = RΣT

= 13.5 × 952 = 12852 kNm

Factor of Safety:	
s

952
2.3

415

RS S
F

R T T
= =

Σ Σ

= =

� (10.6)

O
R = 13.5 m

R

S ΣT
Q

Figure 10.12

Example 10.4  Tension crack

(See Graph 10.4).
It was shown in Chapter 8 that the depth of a tension crack in pure clay is 

given by:

	
γ

= u
0

2c
z � (8.24)

If the crack is full of water, then the moment of the hydrostatic force P
w
 about the 

centre of rotation increases the overturning moment.

Net disturbing
tangential force
from Table 10.2:
ΣT = 415 kN

Resisting force
from Example 10.1:
S = cuL= 952 kN
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0
w

2

Hydrostatic force

2

:

P
zγ

=

This is to investigate the effect of tension crack on the factor of safety, determined 
in Example 10.2.

Step 1:	� Calculate z
0
 and P

w

For

 

γ =
=

3

2
u

19kN/m

40kN/mc 	 γ
×

= = =u
0

2 2 40
4.21 m

19

c
z

Say z
0
 = 4.4 m

Then 
2 2
0

w

19 4.5
192.4kN

2 2

z
P

γ
==

×
=

Line of action of = = =0
w

4.4
1.47m

3 3

z
P  from the bottom of the crack.

Step 2: � It is seen from Graph 10.4, by comparing it with Graph 10.2, that the 
crack has separated slices 18, 19 and 20 from the circular segment, 
hence they do not contribute to the disturbing moment as calculated in 
Example 10.2. Determine the new value of M

D
.

From Table 10.1, the sum of moments due to slices 18, 19 and 20 
= + +
=

722.3 542.8 232.88

1497.78kNm

Remaining moment rounded to:  5598.4 1497.78
4101kNm

Wx∑ = −
=

From Graph 10.4, the disturbing moment due to the hydrostatic force
= 192.4 × 7.16 = 1378 kNm

And the final value of the total disturbing moment is:

MD = 4101 + 1378 = 5479 kNm

Therefore, the removal of three slices and the addition of hydrostatic 
force resulted in decreased disturbing moment, in this case.

Water

Pw

z0

Q

R

O

3

z0

Figure 10.13



Graph 10.4
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10.2.6  Homogeneous c - f soil (total stress analysis)

The radial procedure can easily be applied to partially saturated soils, that is where no pore 
pressure has to be considered. Because of the existence of friction angle f, the normal 
component (N) of W has now to be taken into account, as well as the tangential one (T).

According to the mechanical theory of friction, the force (F) required to slide two 
bodies over each other is given by:

	 φ= tanF W � (10.7)

where  W = normal force acting on the contact surfaces.
f = angle of friction or angle of repose.
tanf = coefficient of friction

Conversely, when a body of weight W is placed on an incline, F is that friction force which 
prevents it from sliding. It is given by:

	 φ= tanF N � (10.8)

where  N = component of W, normal to the contact 
surfaces.

	 α∴ = cosN W
�

(10.9)

Therefore, the friction force is:  	 α φ= cos tanF W � (10.10)

This formula is applied to each slice separately, as shown in Figure  10.16, using the 
appropriate tangential angle d at each midpoint, that is:

(10.10) becomes:	 δ φ= cos tanF W � (10.11)

Step 3: � Calculate the resistance contributed by the shorter slip surface and 
obtain the new value of M

R
.

From Graph 10.4	 q = 79° = 1.379 rad
Length of slip surface:  L = Rq = 13.5 × 1.379 = 18.62 m
Resisting shear force:	 = = ×

=
u 40 18.62

744.8kN

S c L

Resisting moment due to shear strength:

MR =SR= 744.8 × 13.5 = 10055 kNm

Step 4:	� Calculate the factor of safety

R
s

D

10055
1.84

5479

M
F

M
= = =

Therefore, the effect of tension crack is to reduce the factor of safety by 
20% in this example.

F W

Figure 10.14

a
a

T

N
F

W

Figure 10.15
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where 

a p

sin
cos

tan
0 (Ignored)

T W
N W
F N
E E

δ
δ

φ

=
=
=
− =

Slice

T

W

N

T

F
N

d

d
d

Tangent

EpRay to centre

of circle

Ea

Figure 10.16

Example 10.5

Suppose the shear strength characteristics of the clay, in Example 10.1, are given as:

3
u

u u

40kN/ m

15 tan 0.2679

c

φ φ
=
= ° ∴ =

Calculate the factor of safety for the same slope. Some results, extracted from 
Table 10.2, are tabulated:

Table 10.3

Slice Angle T = Wsind Friction force (kN)

No. W (kN) d
+
¨

-
Æ F = 0.2679 Wcosd

1 2.66 -31.8 -1.40 0.61
2 13.30 -27 -6.04 3.17
3 26.79 -22.7 -10.37 6.62
4 43.13 -17.5 -12.98 11.02
5 57.95 -13 -13.04 15.13
6 64.03 -9 -9.99 16.94
7 83.03 -4.5 -6.48 22.18
8 93.29 -1 -1.59 24.99
9 102.22 4 7.16 27.32

10 109.82 8 15.26 29.13
11 115.71 12.5 24.99 30.26
12 120.27 17 35.12 30.81
13 123.31 21.5 45.25 30.74
14 124.45 26 54.51 29.97
15 118.94 31 61.25 27.31
16 106.59 35.8 62.36 23.16
17 91.39 41.3 60.32 18.39
18 72.96 47 53.33 13.33
19 49.78 54 40.27 7.84
20 19.57 62 17.28 2.46
∑ 1539.19 +477.10 -61.89 371.38

Rounded to: ∑T = 415 kN ∑F = 371 kN
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The length of the slip surface has not changed, hence the resisting force contrib-
uted by the cohesion is still:	 S= cuL= 952 kN

Resisting force contributed by f : ∑F = 371 kN

Disturbing force:                             ∑T= 415 kN

Forces acting along slip surface are as shown.

Therefore, the effect of f
u
 = 15° is to increase the factor of safety by 29%, in this 

example.

Notes:  a) � It is not really necessary to calculate the disturbing and resisting 
moments as the radius is cancelled from:

R
s

D

( ) 952 371
3.19

415

M R S F
F

M R π
+ Σ +

= = = =
Σ

The formula, therefore, is transformed into a ratio of forces only.

	
φ δ

δ
+ Σ + Σ

= =
Σs

tan cos

sin

S F c L W
F

T W
� (10.12)

b)  The depth of tension cracks for the c − f soil is now estimated by:

γ
= u

0
a

2c
z

K

where 
φ
φ

−
=

+
u

a
u

1 sin

1 sin
K

y

Q

O

R
=1

3.
5m

415371 952

Disturbing moment about O

MD = 415 × 13.5 = 5603 kNm

Restoring moment about O
MR = 13.5 (371 + 952)
      

∴ Fs = = = 3.19
17866
5603

371 + 952
415

= 17866 kNm

Figure 10.17
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10.2.7  Stratified slopes

The methods introduced in this chapter can easily be adapted to the analysis of multi-
layered slopes. The general procedure is outlined below.

1.  Planimeter method

Determine the weights and moment-arms about the centre of rotation as described in 
Example 10.1.

Disturbing moment: 

( )
D

1 1 2 2 3 3 4 4 5 5

M R Wx

R Wx W x W x W x W x

= Σ
 = + + − + 

Calculate the length of arc in each layer:

	

1 1

2 2

3 3

AB

BD

DE

L R

L R

L R

θ
θ
θ

= =

= =

= =

Resisting shear force is the sum of resisting shear forces contributed by the layers.

	 u 1 1 2 2 3 3S c L c L c L c L= Σ = + +

And resisting moment:	 M
R
 = SR = R Σ c

u
L

Factor of safety:	
Σ

= =
Σ

uR
s

D X

R c LM
F

M R W

Cancelling R	
Σ

∴ =
Σ

u
s

X

c L
F

W
� (10.13)

R

q3
q2

q1

O− +

W3

Q c3 L3

B

D

c 1
 L

1

c 2
 L 2

W5
A

W4

x5

x4
x2

x1

W2

W1

E Layer 1

Layer 2

c1
f1= 0
g1
c2
f2= 0
g2
c3
f3= 0
g3

Layer 3
x3

Figure 10.18
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2.  Method of slices

Determine the total weight of each slice, by summing the weight contributed by each 
layer e.g.

	
= + +7 1 2 3W W W W

The moments are then calculated as in Example 10.2.

Disturbing moment:	 M
D
 = R ∑ (Wx)

Resting force due to cohesion:  S = Â c
u
L (as above)

Resisting moment:	 M
R
 = R Â c

u
L

Factor of Safety:	 u
s

c L
F

Wx
Σ

=
Σ

which has the same form as (10.13), but in this case ∑Wx indicates the sum of moments 
of all slices about the centre rotation.

10.2.8  Slopes under water

There are many situations, when the slope is kept permanently under water, as in canals 
or reservoirs, without significant change in water level. In these circumstances there is 
no change in the pore pressure either, hence the stability of the slope may be evaluated 
in terms of total stresses. In general, higher water level means larger factor of safety. 
There are three cases to consider:

Example 10.4:  Dry slope with tension cracks, as already analysed in Example 10.4.
Example 10.6:  Totally submerged slope, disregarding tension cracks.
Example 10.7:	 Partially submerged slope. Water level below tension cracks.

x7

R E W1

D

10

W2

W3

Q

1

2
3 4 5 6

7

8

9

B
A

O− +

Layer 2

Layer 1

c1
f1= 0
g1
c2
f2= 0
g2
c3
f3= 0
g3

Layer 3

Figure 10.19
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1.  Totally submergedslope

Notes:  i. � The horizontal pressure due to water in the tension crack is balanced by the 
pressure of water in the pond and has no effect on the factor of safety.

ii.  It was established in Chapter 5, that the effective pressure at a depth z below 
water surface level is given by s ′ = zg ′. It follows, therefore, that the weight of soil 
below this level is determined from W = Vg ′, where V is the volume considered.

WL

H

Pond

O

Q

GL

f
c
gsat
g ′ = gsat− gw

W2

W1

c uL

x2 x1

Figure 10.20

Example 10.6  (Total submergence)

With reference to Example 10.1 and Graph 10.1, estimate the factor of safety, if the 
slope is completely flooded.

Saturated unit weight:     γ γ+ 
=   +

+ = × =  +

s
sat w

3

1

2.65 0.62
9.81 19.8kN/m

1 0.62

G e
e

Submerged unit weight:  γ γ γ′ = − = −
=

sat w
3

19.8 9.81

9.99 (say 10)kN/m

2
1 1

2
2 2

1

2

From Example 10.1 :
62.8m   5.4m

19.9m   2.6m

62.8 10 628kN
19.9 10 199kN

A x

A x

W
W

= =
= =

= × =
= × =

12852 kNm

199 kN

A2

Q

628 kN

A1

R

O

g ′

2.6 5.4

Figure 10.21
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Disturbing moment: MD = 628 × 5.4 − 199 × 2.6 = 2874 kN/m

Resisting moment:  MR = 13.5 × 952             = 12852 kNm

Factor of safety:	 s

12852
4.47

2874
F = =

The problem may, of course, be solved by the other two methods.
Note, that the weight of water itself, within the soil as well as above the slope, is 
not taken into account, when g ′ is used.

Example 10.7  (Partial submergence)

With reference to Example 10.4 and Graph 10.4, estimate the factor of safety if the 
water level in the pond is 4.5 m below crest level.

The solution differs from that in Example 10.6 in two respects:

1.  The force P
w
 induced by water in the crack has to be applied

2.  The weight of soil above the water level is estimated in terms of  
g = 19 kN/m3.

w

1 2 1 2

 192.4kN (From Graph 10.4)

19 10

P

W z z z zγ γ

=

= + ′ = +

4 m

R

O

z2

Water

g

z2

z1

z2

7.
16

m

g ′ = 10 kN/m3

Figure 10.22
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The relevant calculations are tabulated below:

Disturbing moment:

where        ∑Wx= 3747 kNm     is due to the moving soil mass

7.16 Pw = 7.16 × 192.4 = 1378 kNm     is due to the water pressure
                                                            in the tension crack.

Therefore, MD = 3747 + 1378 = 5125 kNm

Resisting moment:

Resisting shear force has been determined in Example 10.4 as S = 744.8 kN;

And MR =SR= 744.8 × 13.5 = 10055 kNm

Factor of Safety:	 s

10055
1.96

5125
F = =

Table 10.4

Slice Moment = ±Wx

No.

Height (m) Weight Arm +Wx -Wx

z
1

z
2

W (kN) x (m) kNm kNm

1 0.14 1.40 −7.1 — −9.94
2 0.70 7.00 −6.1 — −42.70
3 1.41 14.10 −5.1 — −71.91
4 2.27 22.70 −4.1 — −93.07
5 3.05 30.50 −3.1 — −94.55
6 0.25 3.50 39.75 −2.1 — −83.48
7 0.75 3.62 50.45 −1.1 — −55.50
8 1.25 3.66 60.35 −0.1 — −6.04
9 1.75 3.63 69.55 0.9 62.60 −

10 2.25 3.53 78.05 1.9 148.30 −
11 2.75 3.34 85.65 2.9 248.39 −
12 3.25 3.00 91.75 3.9 357.83 −
13 3.75 2.74 98.65 4.9 483.39 −
14 4.25 2.30 108.50 5.9 640.15 −
15 4.5 1.76 103.10 6.9 711.39 −
16 4.5 1.11 96.60 7.9 763.14 −
17 4.5 0.31 88.60 8.9 788.54 −

Rounded to ∑ 1047 +4204 kNm −457 kNm

∑Wx = 3747 kNm
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10.2.9  Taylor’s stability numbers

Chart 10.2 facilitates the determination of minimum F
s
 for homogeneous slopes, in terms 

of total stresses. The method is based on the following assumptions:

a)  For two slopes of the same shape, but of different size, the failure surfaces are in 
the same proportions.

By geometric similarity:  =1 1

2 2

R H
R H

and 

θ
θ

=
=

1 1

2 2

L R

L R
	

θ = =1 2

1 2

R R
L L

Similarly, the cross-sectional area:	 2

2

A H

A nH

∝
=

where m and n are constants of proportionality.

b)  Both slopes have the same angle of friction.

1 2φ φ=

c)  Tension cracks may be ignored.

The factor of safety in respect of cohesion is given by: 
c

2

Resisting force

Disturbing force
F

cL c m H m c
A nH n Hγ γ γ

=

 
= = =   

The dimensionless stability number is expressed from this as:	
c

c

n c
N

m HFγ
= = � (10.14)

In general

∝L H
or

L mH=

O

q
R1

A1
A2

R2

1 in
 2

O

g1
f1
c1

L1

g2
f2
c2

a a

q

1 in 2H1

L2

H2

Figure 10.23
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Therefore, the factor of safety applies to cohesion only, as the stability number is the 
ratio of the cohesion developed to the total pressure of the base of the embankment.

Factor of safety in respect to c and f
The shear strength in c − f soils is made up of cohesion as well as friction. It is expressed by:

	 τ σ φ= + tanc

The shear strength mobilized along the slip surface is given by:

	
τ σ φ= +m m mtanc

where c
m
 and f

m
 are the available cohesion and angle of friction. The factor of safety may 

now be defined as:

	
s

m m m

tan

tan

c
F

c
τ σ φ

τ σ φ
+

= =
+

Expressing the shear strength mobilized:

	
m

s c

tanc
F F Fφ

τ σ φτ = = +

where F
c
 = Factor of safety in respect to cohesion defined as:

	
γ

= =c
m c

c c
F

c HN
� (10.15)

where c
m
 = amount of cohesion fully mobilized

	 m cc HN � (10.16)

F
c
 = 1 means that cohesion is fully mobilized.
Also, Ff = Factor of safety in respect to friction,

	
m

tan

tan
F

φ
φφ = � (8.61)

Fφ = 1 means that friction is fully mobilized.
The factor of safety in respect to strength (F

s
) can be expressed in terms of F

c
 and Ff. 

There are three cases:

1.  s c
s c

c
If 0, then and F F

F F
τ

φ = = = � (10.17)

2.  c
s c

s c

c c

c tan
If , then

c tan

F F
F F F

F F F

F F

τ σ φ

σ φ φ

φ
φ

= = +

∴ = =
= +

�

(10.18)
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It follows that	 s
m m

tan

tan

c
F

c
φ

φ
= = � (10.19)

and	
c

s 2

F F
F φ+

= � (10.20)

3.  If f > 0, then F
s
 is determined by successive approximation. In this, an arbitrary 

value of Ff is adjusted successively, until F
s
 = F

c
 = Ff. Two procedures are introduced 

in the next example.

10.2.9.1  Semi-graphical method

Step 1:	� Assume the frictional resistance fully utilized, that is the mobilized friction 
angle f

m
 equals to the total, available friction.

m
m

tan tan15
15 1

tan tan15
F

φφ φ
φφ= = ° ∴ = = =

Step 2:	 Using Chart 10.2, determine the stability number.

For  φ
α

= °
=

= °
m

c

15
0.038

26.57
N

and

Step 3: � Calculate the factor of safety, in respect to cohesion from (10.14):

γ
= = =

× ×c
c

40
9.24

0.038 19 6

c
F

N H

Note: Ff = 1 and F
c
 = 9.24, therefore F

s
 ≠ F

c
 ≠ Ff, hence repeat steps 1 to 3, for 

different values of f
m
.

Step 4:  Tabulate the calculations for f
m
 = 0, 5, 10, 15, 20 and 25 degrees.

Example 10.8

A 6 m high cutting is to be made in normally consolidated clay. Figure 10.24 shows 
the dimensions of the slope and the shear strength parameters of the soil. 
Determine F

s
 for the slope. See also Example 10.5.

1 in 2

a = 26.57°

H = 6 m
cu= 40 kN/m2

fu= 15°
g = 19 kN/m2

Figure 10.24
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Step 5: � Plot F
c
 against Ff on Graph 10.5 and draw line OA  at 45° to intersect the curve. 

The point of intersection at A locates the required F
c
 = Ff = F

s
 = 3.25. This value 

compares well with F
s
 = 3.19 in Example 10.5.

10.2.9.2  Method of successive approximation

Step 1:	 Assume f
m
 = f = 15°, that is at Ff = 1

Obtain N
c
 = 0.038

Step 2:	 Calculate the amount of cohesion mobilized.

γ= = × × = 2
m c 19 6 0.038 4.33kN/mc HN

Determine:	 = = =c
m

40
9.24

4.33

c
F

c

Note:  Ff < F
c
, therefore, F

s
 ≠ Ff ≠ F

c
 and another, larger, value of Ff has to be tried.

Step 3:  The nth approximation is obtained by the following formulae:

From (6.61):	
m m

tan

tan
F

φ φ
φ φφ = =

For f < 30°	 m F

φφ
φ

= � (10.21)

From (10.14) for the same slope 
γ

= =c c constant
c

F N
H

So,	 F
n
N

n
 = F

c
N

c

The nth approximation:	 c c
n

n

F N
F

N
= � (10.22)

1st approximation (n = 1)

Try Ff = 1.5	 m

15
10

1.5
φ = = ° 	

×
= =1 c

9.24 0.038

0.064
F F

From Chart 10.2	 = =c 1 0.064N N 	 = 5.48

F
c
 > Ff , therefore try larger value for Ff.

Table 10.5

m

( 26 ).57

φ
α = ° tanf

m
N

c m

tan 15

tan
F

φφ = c
c

40

114
F

N
=

0 0.0000 0.154 ∞ 2.28
5 0.0875 0.102 3.06 3.44

10 0.1763 0.064 1.52 5.48
15 0.2679 0.038 1.00 9.24

20 0.3640 0.016 0.74 21.93
25 0.4663 0.002 0.57 175.44



Graph 10.5
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2nd Approximation (n = 2)

Try m

15
2 7.5

2
F φφ = = = °

The stability factor is found by interpolation on Chart 10.2.

	
5 2.5

0.019
0.038

x
x

° °
= =

	

= −
= −
=

c 0.102

0.102 0.019

0.083

N x

	
2 c

0.3511
4.23 2

0.083
F F= = = >

F
c
 is still larger than Ff, therefore try Ff = 3 and tabulate all subsequent tries and calculations.

The 5th approximation yields s c 3.28F F Fφ≈ ≈ = .
Again, the result compares well with 3.19 and 3.25.

0.1025°

6°

7°

8°
7.5°

9°

10°

x = 0.019

0.038

0.064

Ncf

Figure 10.25

Table 10.6

Tries

Ff

φ m

15o

f

=
F N

c

F
Nc

c

0.3511=
n

0 1 15 0.038 9.24 > Fφ
1 1.5 10 0.064 5.48 > Fφ
2 2 7.5 0.083 4.23 > Fφ
3 3 5 0.102 3.44 > Fφ
4 3.2 4.69 0.105 3.34 > Fφ
5 3.3 4.54 0.107 3.28 ≈ Fφ

Example 10.9

Referring to Example 10.1 (Graph 10.1), calculate the factor of safety.

	 8.4
8.4

 1.4
6

26.57

DH

D

α

=

= =

= °

O

g = 19 kN/m3

cu= 40 kN/m2

fu= 0

H = 6 m 1 in 2

DH = 8.4 m
a

Figure 10.26
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N
c
 is obtained by interpolation on Chart 10.2.

	

c

s c

0.122 0.0203 0.142

4 1.4
0.0203

0.058

40
2.47

19 6 0.1 23

3

4

N

F F

x
x

= =

=
× ×

= + =

= =

This value compares well with F
s
 = 2.35 of Example 10.1.

Note: This method cannot take tension cracks into account.

0.18 D = 4

0.122 D = 1

Nc f = 0

x = 0.0203
0.142 D = 1.4

0.058

Figure 10.27

Example 10.10

Suppose the slope in Example 10.9 is part of a reservoir. Estimate the factor of safety if:

1.  The slope is flooded to its crest and compare it with the result of Example 10.6.
2. There is complete, sudden drawdown.

1.  Flooded state: In this case the submerged density is applied because of 
buoyancy.

3

s

c

s c

From Example 10.6 :
10kN/m
4.47

From Example 1

40

10 

0.9

 

:
0.1423 

4.
6

68 4.4
  0 1

7
. 423

F

N

F F

γ ′ =
=

=

=
×

>
×

∴ = =

2.  Sudden drawdown: in this case, buoyancy is absent, but the soil is still fully 
saturated. Therefore, the saturated density (g

sat
) is applicable.

3
sat

s c

From Example 10.6 :
19.8kN/

40

19.8  6  0.14
.35

m

23
2

F F

γ =

∴
× ×

=

= =

1 in 2

g ′ = 10 kN/m3

cu= 40 kN/m3

fu= 0

Figure 10.28

1 in 2

gsat= 19.8 kN/m3

cu= 40 kN/m2

fu= 0

Figure 10.29
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10.3  Effective stress analysis (cohesive soils)

The total stress analysis is usually used to the estimation of short-term stability of slopes, 
in recently constructed embankments or new cuttings, in fully or partially saturated 
normally consolidated clays, where the only force inducing instability is weight and there 
is no change in pore water pressure.

The effective stress analysis is applicable to the long-term stability of slopes in normally 
as well as over consolidated clays, where ground water is present.

10.3.1  Method of slices (radial procedure)

In addition to the procedures applied in the total stress analysis, the pore pressure at the 
base of each slice has to be taken into account.

Example 10.11

The height (H) of the slope in Example 10.9 has to be increased. Estimate its 
maximum value, if the factor of safety specified for the slope is 1.5.

	

u
c

c
c

From Chart 10.2 :
0

0.154
26.67

1.5

N

F
c

HN

α

γ

φ = =
=

= =

c

40
Expressing 9.11m

1.5 1.5 19 0.154

c
H

Nγ
= = =

× ×

1 in 2 fu= 0
g =19 kN/m3

cu= 40 kN/m2

H = 9.11 m

a

Figure 10.30

O

GL

GWL

B

A

R

gsat

Phreatic surface

l

h

b

Figure 10.31
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where  b = width of slice

l = approximate length of arc �AB = straight line between points A and B.

h = height of water above the middle of the arc �AB.

Forces on a strip

Lateral, opposing forces E
a
 and E

p
 are nearly 

equal, hence their effect is negligible.

Normal component of W:

δ= cosN W

Total pressure at P:

cosN W
l l

δσ = =

Pore pressure at P:

wu hγ=

Effective pressure at P:	
l

u
l

N Nσ ′
′ = = −

Effective normal force on slip surface �AB: 

cos

N N ul

W ulδ
′ = −
= −

Effective friction force:	 F ′ = N′ tanf ′
Tangential force on �AB:	 T = Wsind
Resisting force due to cohesion:	 S = ∑ c ′ l

Forces acting on the slip surface

Disturbing moment:

DM R T= Σ

Resisting moment:

R ( )M R S F= + Σ ′

Factor of safety:	 s

( )R S F S F
F

R T T
+ Σ + Σ′ ′= =
Σ Σ

� (10.23)

b

GWL

Ep EaT

ul
W

B

P
c ′l +

 F
′N

A

d

Ray to centre

of circle

h
z

l =
b

co
sd

Figure 10.32

O

Q

GL

GWL
R

Figure 10.33
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	 s

( ) tan

( )tan

S N
F

T
c l N ul

T

φ

φ

+ Σ ′ ′=
Σ

Σ ′ + Σ − ′  =
Σ

� (10.24)

Therefore,	 s

( cos )tanc l W ul
F

T

δ φ′ + − ′Σ   =
Σ

� (10.25)

For homogeneous clay:  ∑ c ′ l = c ′ L and

	 s

( cos )tanc L W ul
F

T
δ φ′ + Σ − ′=

Σ
� (10.26)

Example 10.12

With reference to Example 10.5, assume that the shear strength parameters, in 
terms of effective stress, are:

	 2

3
sat

40kN/ m

15

19.8kN/ m

c

φ
γ

′ =
′ = °
=

The slope is assumed to be saturated above the phreatic surface, due to capillary 
action. Calculate the factor of safety.

Step 1:   � Measure the height (h) of water level above the slip surface in each slice 
on Graph 10.6.

Step 2: � Calculate the weight of each slice and the pore pressure of the base 
from:

γ
γ

= =
= =

sat

w

19.8

9.81

W zb z

u h h

Note that 
δ δ

= =
1

cos cos

b
l  in this example! Since b = 1 m.

Step 3:  For each slice, measure angle d and calculate:

sin

cos

cos cos
tan 0.2679

T W

N W

u b u
N N ul N N

F N N

δ
δ

δ δ
φ

± =
=

′ = − = − = −

′ = ′ ′ = ′
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Step 4:  Tabulate the results so far:

Step 5:  Calculate the resisting force contributed by the cohesion: 240kN/mc ′ = :

S = c′R= 40 × 23.8 = 952 kN

Step 6: � Determine the factor of safety from the forces, assumed to be concen-
trated at point Q.

	 s

952 209

433
2.68

S F
F

T
+ Σ ′=
Σ

+
=

=

� (10.23)

Any of the other formulae may be applied, if preferred.

Table 10.7

Slice Components of W Friction

No.

z h W u d + T - T N N ¢ F ¢

m m kN kN/m2 deg. kN kN kN kN kN

1 0.14 0.14 2.77 1.37 -31.8 -1.46 2.35 0.74 0.20
2 0.70 0.70 13.86 6.87 -27.0 -6.29 12.34 4.63 1.24
3 1.41 1.41 27.92 13.83 -22.7 -10.77 25.76 10.77 2.88
4 2.27 2.27 44.95 22.27 -17.5 -13.52 42.87 19.52 5.23
5 3.05 3.05 60.39 29.92 -13.0 -13.58 58.84 28.13 7.54
6 3.75 3.72 74.25 36.49 -9.0 -11.62 73.34 36.40 9.75
7 4.37 4.30 86.53 42.18 -4.5 -6.79 86.26 43.95 11.77
8 4.91 4.70 97.22 46.11 -1.0 -1.70 97.21 51.09 13.69
9 5.38 4.90 106.52 48.07 4.0 7.43 106.26 58.07 15.56

10 5.78 5.05 114.44 49.54 8.0 15.93 113.33 61.81 16.56
11 6.09 5.05 120.58 49.54 12.5 26.10 117.72 66.98 17.94
12 6.33 4.95 125.33 48.56 17.0 36.64 119.85 69.07 18.50
13 6.49 4.80 128.50 47.01 21.5 47.10 119.56 69.03 18.49
14 6.55 4.50 129.69 44.15 26.0 56.85 116.56 67.44 18.07
15 6.26 4.10 123.95 40.22 31.0 63.84 106.25 59.33 15.89
16 5.61 3.55 111.08 34.83 35.8 65.40 90.09 47.15 12.63
17 4.81 2.85 95.24 27.96 41.3 62.86 71.55 34.33 9.20
18 3.84 1.93 76.03 18.93 47.0 55.60 51.85 24.09 6.45
19 2.62 0.81 53.06 7.95 54.0 42.93 31.19 17.66 4.73
20 1.03 0 20.39 0 62.0 18.0 9.57 9.57 2.56

Rounded ∑W = 1613 499 -66 ∑F = 209

∑T = 433

O

Q

952 209 433

13
.5

m

Figure 10.34
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518       Introduction to Soil Mechanics

10.3.2  Bishop’s conventional method

In this method the pore water pressure (u) is expressed as a ratio of the total stress 

Pore pressure ratio:	
u

Z

u

u
r

u zr

γ
γ

=

=

� (10.27)

But, the total stress at the base of a slice is:

	
γ= =

W
s z

b   
hence,

  
u

W
u r

l
=

But,  l = bcosd  therefore,  ucos

w
u r

l δ
= ×

and,	 ul = Wr
u
secd

Substituting this into formula (10.26):

	
s u

1
c ( cos sec ) tanF l W W r

T
δ δ φ= Σ ′ + − ′  Σ

Substituting ∑T = Wsind, the factor of safety can be expressed as:

	 u
s

1
cos tan

sin cos

r
F c l W

W
δ φ

δ δ
  

= + Σ −′ ′   Σ  
Σ � (10.28)

Example 10.13

Calculate F
s
 in Example 10.12 in terms of r

u
.

Table 10.8

Slice (from Table 10.7) ± T F ¢

No.

z h W u d u =
u

r
W Wsind

 
  

ucos tan
cos

δ φ
δ

− ′
r

W

m m kN kN/m2 deg. - kN kN

1 0.14 0.14 2.77 1.37 −31.8 0.494 −1.46 0.20
2 0.70 0.70 13.86 6.87 −27.0 0.496 −6.29 1.24
3 1.41 1.41 27.92 13.83 −22.7 0.495 −10.77 2.88
4 2.27 2.27 44.95 22.27 −17.5 0.495 −13.52 5.23
5 3.05 3.05 60.39 29.92 −13.0 0.495 −13.58 7.54
6 3.75 3.72 74.25 36.49 −9.0 0.491 −11.62 9.75
7 4.37 4.30 86.53 42.18 −4.5 0.487 −6.79 11.77
8 4.91 4.70 97.22 46.11 −1.0 0.474 −1.70 13.69
9 5.38 4.90 106.52 48.07 4.0 0.451 7.43 15.56

10 5.78 5.05 114.44 49.54 8.0 0.433 15.93 16.96
11 6.09 5.05 120.58 49.54 12.5 0.411 26.10 17.94
12 6.33 4.95 125.33 48.56 17.0 0.387 36.64 18.51
13 6.49 4.80 128.50 47.01 21.5 0.365 47.10 18.47
14 6.55 4.50 129.69 44.15 26.0 0.340 56.85 18.07
15 6.26 4.10 123.95 40.22 31.0 0.324 63.84 15.89
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10.3.3  Bishop’s rigorous iterative method

This procedure is somewhat tedious for hand computation, because it requires several itera-
tions before the final value of F

s
 is found by trial and error. For this reason, problems are best 

solved by means of a computer. The derivation of the relevant formula is based on (10.23):

	

s

ta )n(

S F
F

T
c l N

T
φ

+ ′=

+ ′′ ′

Σ
Σ

=
Σ Σ

Σ

Considering the forces acting on a slice, N′ is expressed and substituted into this formula.

Projections of
and on :

sin cos

T
N W

W T Nδ δ∴ = +

Figure 10.35

b

ul

(a)

N

Ray to centre

of circle

W

d

l =
b
cosd

(b)

N

W

T
 s

in
d

N
 c

os
d

T

d

Again, 

s

433kN
952 209

209kN 2.68 asbefore
433952

)
kN

(
T
F F
S

=
Σ = +

Σ = =′
=

Slice (from Table 10.7) ± T F ¢

No.

z h W u d u =
u

r
W Wsind

 
  

ucos tan
cos

δ φ
δ

− ′
r

W

m m kN kN/m2 deg. - kN kN

16 5.61 3.55 111.08 34.83 35.8 0.314 65.40 12.63
17 4.81 2.85 95.24 27.96 41.3 0.294 62.86 9.20
18 3.84 1.93 76.03 18.93 47.0 0.249 55.60 6.46
19 2.62 0.81 53.06 7.95 54.0 0.153 42.93 4.65
20 1.03 0 20.39 0 62.0 0 18.0 2.56

1613 ∑ 433 ∑F′ = 209.00

Table 10.8  (continued)
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From (10.24) for one slice: 
s

tanc l N
T

F
φ+′ ′ ′=

Force due to pore pressure     = ul

Effective normal force:	 N ′ = N − ul    ∴ N = N ′ + ul

Substituting into	

( )
s

s s

sin cos

tan sin
( ) cos

tan sin sin
cos cos

W T N

c l N
N ul

F

c l
N ul

F F

δ δ
φ δ

δ

φ δ δδ δ

= +
+′ ′ ′

= + ′ +

 ′ ′= ′ + + +  

Expressing:	 s

s

sin
cos

tan sin
cos

c l
W ul

F
N

F

δ δ

φ δ δ

′− −
′ =

′ +

But, u uand
cos

b u
l r u r z

z
γ

δ γ
= = ∴ =

also, u ur cos

W W
W zb u r ul

b
γ

δ
= ∴ = ∴ =

Substituting u and l into the expression for N ′:

u

s

s

sin
cos

F cos cos
tan sin

cos

r Wc b
W

N

F

δ δ
δ δ

φ δ δ

′  − −   
′ =

′ +

Cancelling cosd and arranging:

( )u
s

s

1 tan

tan tan
1 cos

F

c b
W r

F
N

δ

φ δ δ

′− −
′ =

 ′ +  

Substituting N′ and l into formula (10.25), thus summing the effective normal force of 
all elements.

( ) φ δ φ

δ φ δ δ

 ′− −′ ′ 
′ = + Σ  ′ +    

u
s

s

s

1 tan tan tan
1

cos tan tan
1 cos

c b
W r

Fc b
F

T

F
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This expression can be simplified further.

( )u
s s

s

s

tan tan
1 1 tan tan tan

1

tan tan
1 cos

c b
c b W r

F F
F

F

T

φ δ φ φ δ

φ δ δ

   ′′′ + + − − ′    = Σ   ′ +    

Σ

( )u
s s

s

s

tan tan 1 tan tan tan
1

tan tan
1 cos

c b c b
c b W r

F F
F

T

F

φ δ φ φ δ

φ δ δ

 ′ ′+ ′ + − −′ ′ ′ 
 =  Σ  ′ +    

Cancelling 
s

tan tan
c b
F

φ δ′
′ , the final expression is obtained.

	

( )u
s

s

1 tan1

tan tan
1 cos

c b W r
F

T

F

φ
φ δ δ

′ + − ′
= Σ

Σ 
 
 
 
 

′ +
 
 

� (10.29)

Problems are solved by choosing a value for F
s
 on the left hand side and substituting it 

into the right hand one. If the two sides are unequal, then substitute the calculated F
s
 into 

the right side. Repeat the process, until the two figures are practically the same. Normally, 
the process converges rapidly to the solution, as seen in the next example.

Example 10.14

Re-evaluate the factor of safety in Example 10.13, by means of the rigorous method. 
Reproduce in Table 10.9, W, r

u
 and d from Table 10.8 and define two auxiliary vari-

ables as:

( ) ( ) ( )φ= ′ + − = + − = + −′u u u1 tan 40 1 tan15 40 0.2679 1K c b W r W r W r

φ δ δδ δ
   ′= + = +      s s

tan tan 0.2679 tan
1 cos 1 cosQ

F F

Also, ΣT = 433 kN remains the same.

Formula (10.29) now becomes: 
s

1 1

433

K K
F

T Q Q
   = Σ = Σ      Σ
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10.4  Stability of infinite slopes

Often, the failure surface is not curved, but parallel with the sloping ground surface at 
shallow depth. The general formula for the factor of safety is derived by assuming that:

1.  The ground water level is parallel to the slope
2.  Steady seepage occurs parallel to the slope
3.  The forces (E

a
 and E

p
) acting on the vertical sides of a slice are equal and opposite.

4.  The failure surface is at depth z.

Free-body diagram of the slice ABCD shows the forces acting on the slip surface, neglect-
ing E

a
 and E

p
:

Weight of slice:

γ γ= − + sat( )W z h h

Normal components:

cosN W α=

Tangential components:

α= sinT W

Frictional resistance:

φ= tanF N

Pore pressure:	 u = g
w
hcos2a

Normal pressure:	 σ α α= = = 2cos cos
1

cos

N
N W

Ep

Slip surface D
C

c′
f′
gsat

g
Ea

W
GWL

GL

B
A

z
h

1 m

FL (Flow lines)

See page

EPL (Equipotential lines)

l =
1

cosδ

a

Figure 10.36

Figure 10.37
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Shear stress:  τ α α α= = =
T

cos sin cos
1

cos

T W

The factor of safety is given by:

	 s
m m

tan

tan

c
F

c
σ φ τ
σ φ τ

+′ ′ ′= =
+ ′ ′

� (10.30)

where c
m
 and f

m
 are the mobilized shear stress parameters.

Effective stress: 
2 2

w
2

sat w
2

cos cos

[ ( ) ]cos

[ ( ) ]cos

u

W h

z h h h

z h h

σ σ
α γ α

γ γ γ α
γ γ α

′ = −
= −
= − + −
= − + ′

Shear stress mobilized:
2

m m m( ) cos tanc z h hτ γ γ α φ= + − + ′  

From formula (8.61):  s m
m s

tan tan
tan

tan
F F

F
φ φφ
φφ

′ ′= = ∴ =

Also, from (10.15):	 s m
m s

c c
F c

c F
′ ′= ∴ =

Remember! F
s
 = Ff = F

c

Substituting these into the expression for t
m
:

2
m

s s

tan
( ) cos

c
z h h

F F
φτ γ γ α′ ′= + − + ′  

Equating, 

( )
τ τ α α

γ γ α α
= =

 = − + 
m

sat

sin cos

sin cos

W

z h h

2

sat
s s

cos tan
( ) ( ) sin cos

c
z h h z h h

F F
α φγ γ γ γ α α′ ′+ − + ′ = − +     

{ }2
sat

s

1
( ) cos tan ( ) sin cosc z h h z h h

F
γ γ α φ γ γ α α′ + − + ′ = − +′      

Hence, the factor of safety is given by:

	
2

s
sat

( ) cos tan

( ) sin cos

c z h h
F

z h h

γ γ α φ
γ γ α α

+ − +′ ′ ′  =
− +  

� (10.31)

This general formula is applicable to drained, infinite slopes, made of c − f soil, 
where h < z.
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There are five special cases to consider:

1.  Water table at GL.h z=

soilc φ′ − ′

	

2

s
sat

cos tan

sin cos

c z
F

z
γ α φ

γ α α
+′ ′ ′= � (10.32)

2.  Water table at GL.h z=

0 cohesionless soilc ′ =

	
γ φ

γ α
 ′ ′= × 
 

s
sat

tan

tan
F � (10.33)

3.  0 There is no water table.h =

soilc φ′ − ′

	
2

s

cos tan

sin cos

c z
F

z
γ α φ

γ α α
+′ ′= � (10.34)

4.  0 There is no water table.h =

0 cohesionless soil.c ′ =
2

s

cos tan cos tan

sin cos sin

z
F

z
γ α φ α φ
γ α α α

= =

Therefore,	
φ
α

′=s

tan

tan
F � (10.35)

Note that F
s
 is independent of depth when c ′ = 0.

5.  0 There is no water table.h =

0 Pure clayφ =

uc c′ =

	
γ α α

= u
s sin cos

c
F

z
� (10.36)

Example 10.15

Figure 10.30 shows an infinite slope, inclined at an angle of 25° to the horizontal. 
The slope is underlain by solid rock. Calculate the factor of safety, when the water 
table is:

1.  at the ground surface (S
r
= 1)

2.  at 2 m below the ground surface
3.  non-existent (S

r
= 0.46)



526       Introduction to Soil Mechanics

From (1.42):

γ γ+ 
=   +

+
= ×

=

s
sat w

3

1

2.7 0.7
9.81

1.7
19.62kN/ m

G e
e

From (1.38):

γ γ+ 
=   +

+ ×
= ×

=

s r
w

3

1

2.7 0.46 0.7
9.81

1.7
17.4kN/ m

G s e
e

1.  Water at ground surface (S
r
 = 1 and h = z = 6 m)

3
sat

sat w
3

19.62kN/m

19.62 9.81

9.81kN/m

γ
γ γ γ

=
′ = − = −

=

From (10.32): 
2

s
sat

cos tan 20 9.81 6 0.821 0.404

sin cos 19.62 6 0.423 0.906

0.88 1 unsafe

c z
F

z
γ α φ

γ α α
+ + × × ×′ ′ ′= =

× × ×
= < ∴

2.  Water is at 2 m below the ground surface (h = 4 m)

The soil is assumed to be partially 
saturated above the surface, ignoring 
capillary action.

Ground surface

Rock

25°

z = 6 m

e = 0.7
Gs= 2.7

c′ = 20 kN/m2

f′ = 22°

Figure 10.38

25°

c′ = 20 kN/m2

f′ = 22°

Seepage

Rock6 m

Figure 10.39

25°
Rock

S r= 0.46
g =17.4 kN/m

3

S r=1
gsat= 19.62 kN/m

3

6 m 4 m

Figure 10.40
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From (10.31): 
γ γ α φ

γ γ α α
+ − +′ ′ ′  =

− +  
+ × − + × × ×  = =

× − + × × ×  

2

s
sat

cos tan

( ) sin cos

20 17.4 (6 4) 9.81 4 0.821 0.404
1.02

17.4 (6 4) 19.62 4 0.423 0.90

( )

6

c z h h
F

z h h

3.  Wet soil (S
r
 = 0.46 and h = 0)

From (10.34):

2

s

cos tan

sin cos

20 17.4 6 0.821 0.404

17.4 6 0.423 0.906
1.37

c z
F

z
γ α φ

γ α α
+′ ′=

+ × × ×
=

× × ×
=

a = 25°

Rock

S r= 0.46

g = 17.4 kN/m
3

6 m

Figure 10.41
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Problem 10.1 

A 4 m deep cutting is to be made in a 15 m thick pure clay layer, for a new road 
scheme. The inclination of the side slopes is to 1 in 2. The shear strength and unit 
weight of the clay is 35 kN/m2 and 18 kN/m3 respectively.

Estimate, for the slip circle indicated in Figure 10.45, the factor of safety against 
rotational failure.

O

Clay

cu= 35 kN/m2

fu= 0

g = 18 kN/m3

1 in 2

2 m 9 m

3 m

4 m

R
=1

0.
3

m

Figure 10.42

Problem 10.2 

Figure 10.45 shows the section of a new canal to be built in a 20 m thick clay layer.

Estimate the factor of safety, just after:

a)  Construction
b)  It is flooded to the crest
c)  Sudden drawdown

Apply Taylor’s stability numbers.

21.8°

Clay

4.5 m
1 in 2.5

cu= 54 kN/m2

fu= 0

g = 18.4 kN/m3

e = 0.6
Gs= 2.72

Figure 10.45
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Problem 10.3 

A footpath is proposed to be constructed along a clay slope. In order to do this, 
the cut is to be supported by a gravity retaining wall. Its position and dimensions 
are shown below. There is no ground water table. Assume the stability of the wall 
as satisfactory. Estimate the factor of safety for the slip circle of 10.2 m radius, 
passing through points A and B on the slope:

a)  In its original, undisturbed state
b)  After the construction of the wall

Clay

Foot path

Concrete
wall

3.
2

m

6 m

12 m

1.5 m
8.

05
m

4.
05

m

2.5 m

B

A

1 in
 1.5

cu= 32 kN/m2

fu= 0
g = 19.2 kN/m3

gc= 24
kN/m3

Figure 10.46
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Chapter 11

Eurocode 7

11.1  Introduction

The basic purpose of Eurocode is to introduce common standards within the European 
community for consistent structural design. However, some of the standards of each 
member state will remain in use and are not covered by the Eurocodes.

The code concerned with structures is in nine parts, of which the seventh (EC7) deals 
with Geotechnical Design.

Eurocode 7 itself is in two parts:

Part 1 (EC7-1): Geotechnical design
Part 2 (EC7-2): Ground investigation and testing.

The following eight British Standards, relating to geotechnical aspects are not covered by 
EC7 and remain UK standards:

BS 1377-1: 1990:	 Soil sample preparation
BS 1377-2: 1990:	 Classification tests
BS 1377-3: 1990:	 Chemical tests
BS 1377-4: 1990:	 Compaction tests
BS 1377-5: 1990:	 Compressibility, permeability and durability tests
BS 1377-6: 1990:	� Consolidation and permeability tests in hydraulic cells and 

with pore pressure measurements
BS 1377-7: 1990:	 Shear strength tests (total stress)
BS 1377-8: 1990:	 Shear strength tests (effective stress)

11.2  Recommended units

For geotechnical calculations a slightly modified version of SI units are recommended.

Force kN
Moment kN m
Mass and weight density kN/m3

Stress pressure, strength and stiffness kP
a

Coefficient of permeability m/s
Coefficient of consolidation m2/s
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Note: 1 kN/m2 = 1 kP
a

The unit of pressure and stress is N/m2 and its decimal multiple is kN/m2 in the SI 
coherent system of units. In certain countries the name “Pascal” (Pa) was given to this 
unit in honour of Blaise Pascal, French mathematician and physicist.

Although the Eurocode recommends kP
a
, this does not exclude the use of kN/m2. 

However, it is prudent to choose the former, when a project has an international 
dimension.

11.3  Limit states

Eurocode sets out parameters used in a design so that the limit state considered is not 
exceeded.

There are five limit states, specified by EU7. These are:

1.  EQU: �Considering the equilibrium of a structure (e.g. overturning of a retaining 
wall).

2.  GEO: �Considering the failure of excessive deformation of the ground (e.g. slope 
stability or bearing strength of foundation soil).

3.  STR: �Considering the failure of a structure or its elements, due to soil pressure.
4.  UPL: �Considering the failure of a structure or ground, due to upward water pressure 

(e.g. dams or other water-retaining structures).
5.  HYD: �Considering hydraulic gradients in the ground causing piping and internal soil 

erosion (e.g. coffer dams, Earth dams etc): see Example 11.6.

Most geotechnical problems involve one or two of the first three limit states i.e. EQU, GEO 
and STR.

11.4  Design procedures

In general, a design applies partial factors for the determination of soil properties and 
‘actions’ of forces and moments.

The recommended partial factors are given in Annex A, EC7.

Design approaches
These are defined in section 2 and Annex B of EC7. The general procedure is represented 
symbolically by:

	 A “ + ” M “ + ” R� (11.1)

  A    �represents the partial factors applied for actions (e.g. earth pressure, weight of soil) 
or effects of actions (e.g. ground excavation).

 M    �represents partial factors for soil or other material parameters (e.g. weight density, 
cohesion).

  R     represents partial factors for resistance to an action (e.g. passive force, friction etc).
 “+”    implies ‘to be combined with’.

There are three Design Approaches presented in section 2 and Annex B of EC7 for GEO 
and STR limit states:
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Design approach 1: This itself has two methods or combinations of partial factors to 
ascertain that a structure is safe and that failure or large deformation is not going to 
occur. The combinations are given symbolically as:

	 + +Combination 1 : A1 “ ” M1 “ ” R1 � (11.2)

	
+ +Combination 2 : A2 “ ” M2 “ ” R1

	 � (11.3)

In these combinations, the partial factors are applied to actions (favourable or unfavour-
able) and to the soil parameters.

Design approach 2: (One combination)

Combination:	 + + 2A1 “ ” M1 “ ” R � (11.4)

In this approach, the partial factors are applied to actions or effects of actions and ground 
resistances.

Design approach 3: (One combination)

Combination	 ( ) + +A1or A2 “ ” M2 “ ” R3� (11.5)

In this approach, the partial factors are applied to actionsfrom the structure and to the 
soil parameters.

A1 is applied on structural actions
A2 is applied on geotechnical actions.

Design approach1 (for piles and anchorages)
There are two combinations:

	 ( )
+ +
+ +

Combination 1 : A1 “ ” M1 “ ” R1

Combination 2: A2 “ ” M1orM2 “ ” R4
� (11.6)

In Combination 1, the partial factors are applied to actions, and soil parameters. In 
Combination 2, the factors are applied to action, soil and ground strength parameters. 
Also, the factors of M1 are to determine the pile or anchor resistances and those of M2 
to calculate the actions on piles due to unfavourable effects (transverse loads or nega-
tive skin friction).

Section 7.6.2.3(2) states that when the compressive resistance of a pile is determined 
from ground test results, a ‘model factor’ may be introduced as described in 2.4.1(9). The 
value of the model factor is given in The UK National Annex as 1.4.

11.5  Verification procedures

The results of a combination are verified by a formula or inequality given for each limit 
state by EC7.

1.  Section 2.4.7.2(1)P requires that the following inequality should be satisfied for 
EQU limit state:

	 dst;d stb;d dE E T≤ + � (11.7)
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where	 E
dist;d

 = �design value of the effect of a destabilising action, e.g. overturning moment 
on a retaining wall.

	 E
stb;d

 = �design value of the effect of a stabilising action, e.g. resisting moment.
	 T

d
 = �design value of shearing resistance on the part of the structure in contact 

with the ground, e.g. rigid foundation on rock (usually very small).

2.  Section 2.4.7.3.1 for STR and GEO limit states define the inequality

	 d dE R≤ � (11.8)

E
d
 = design value of the effect of actions, e.g. disturbing moment acting on a slope.

R
d
 = design value of the resistance to an action, e.g. resisting moment to sliding.

3.  Section 2.4.7.4(1) P for uplift (UPL) gives the inequality:

	 dst;d stb;d dV G R≤ + � (11.9)

where	 dst;d dst;d dst;dV G Q= +

and	 V
dst;d

 = �Vertical destabilising action, e.g. upward force by water causing uplift of 
the ground.

	 G
stb;d

 = Vertical stabilising action e.g. weight of soil resisting uplift.
	 R

d
 = Any additional resistance uplift, e.g. weight on top of the ground.

	 G
dst;d

 = Destabilising, permanent actions.
	 Q

dst;d
 = Destabilising, variable, permanent actions.

4.  Section 2.4.7.5(1) P, for seepage (HYD) limit state defines two verifying inequalities:

	
σ≤

≤ ′
dst;d stb;d

dst;d stb;d

U

S G � (11.10)

Where,	 U
dst;d

 = Destabilising pore pressure at the base.
	 σ

stb;d
 = Stabilising pressure at the base.

	 S
dst;d

 = Seepage force on the base.
	 G ′ 

stb;d
 = Submerged weight of soil column through which seepage occurs.

Note: The results of calculations are presented in terms of the inequalities, which are 
synonymous with F

s
 (Factor of safety).

For example, in Ex. 11.4
M

O
 = 727 kNm (Overturning moment)

M
R
 = 1599 kNm (Resisting moment)	

∴ F
S
=  2. 19

In terms of EC7:
E

d
 = 727 kNm (Disturbing moment)

R
d
 = 1599 kNm (Stabilising moment)	

∴  E
d
 < R

d

Conclusion: The stabilising moment is greater than the disturbing moment, therefore the 
overall stability, hence the GEO limit state requirement is satisfied.



534       Introduction to Soil Mechanics

Example 11.1  Design of shallow footings (Eurocode 7, section B)

The ultimate limit state GEO is appropriate for a design as the failure or the exces-
sive deformation of ground i.e. soil or rock is significant in providing resistance. 
Any accepted method of analysis may be applied.

Taking the soil characteristics of Example 9.3 for a short strip footing, covering an 
area of 6 m2 at a global safety factor of F

s
 = 3. Check the value of F

s
, by GEO limit state.

Ground water is 10 m below GL.
+ +Combination 1 : A1 “ ” M1 “ ” R1

11.6  Application of partial factors

In traditional British practice a ‘Global factor of safety’ has been applied (as divisor) to 
the final result, that is to the effect of an action, e.g. to the moment caused by the action 
of forces. EC7-1, however applies partial factors of safety to all soil parameters as well as 
to the actions during the design process.

Section 2.4.6.1 gives Formula 2.1a for the calculations of the design value of an action:

d F repF Fγ=

where	 F
rep

 = representative value of an action
	 γ

F
 = partial factor for an action (multiplier)

Section 2.4.6.2 gives Formula 2.2 for the calculations of design values of soil parameters.

	

k
d

m

X
X

γ
=

where	 X
K
 = characteristics value of a soil property.

	 g
m
 = partial factor for soil property (divisor)

Special case: For angle of shearing resistance:

1
d

m

tan
tan

φφ
γ

−  ′
′ =   

The partial factors for various limit states are given various tables of Appendix A of EC7.

For EQU: Tables A.1 and A.2
For STR and GEO: Tables A.3 to A.14
For UPL: Tables A.15 and A.16
For HYD: Tables A.17

1.5

Clay

g = 17.7 kN/m2

cu= 50 kPa (kN/m2)
f′ = 15°
Base area = A = 6 m2

Nc= 13
Nq= 4.5
Nγ= 2.1

Bearing
capacity factor

1.
2 

m1691 kN

Figure 11.1
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A1 – Design actions
The partial factors for the effects of actions influencing stability either favourably or 
unfavourably e.g. disturbing force and resisting forces respectively. These factors are 
given in Table A3, Annex A of Eurocode 7.

Factor for unfavourable action of 1631 kN

Gdist 1.35γ =

M2 – Material factors (Table A4)

	 γ =u cuFor : 1.25c

	 φ γ =u QFor : 1.25

	 γγ γ γ= =ForFor : 1

R1 – Partial resistance factor (Table A5)
For bearing:	 γ

R;v
 = 1

Design values

	
( )γ

= = = 2u
u u:d a

cu

50
For : 40kP kN/m

1.25

C
c c

	
φ φ − ° = = °  

1
u ud

tan15
For : tan 12.1

1.25

Design resistance
Bearing capacity factors taken from Chart 9.1.

φ = °udFor 12.1 	 c 11N =

	 q 3.8N =

	 γ = 1.4N

Ultimate bearing capacity from Formula 9.8

( )

σ γ γφ γ= + ′ +

= × + × × + × × × ×

= + + =

u ud c 0

2
a

q 0.5

40 11 1.2 17.7 3.8 0.5 1 17.7 1.5 1.4

440 80.7 18.6 539.3kP kN/m

q C N N BN

Bearing resistance γ
×

= = =b
R:v

539.3 6
3236 kN

1

qu
R

Vertical force on foundation W = 1.35 × 1631 = 2202 kN

Factor of safety: = = = >b
s

3236
1.45 1

2202

R
F

W

+ +Combination2 : A2 “ ” M2 “ ” R1

A2:	 For Action :	 g
G
 = 1

M2:	 For c
u
 :	 g

cu
 = 1.25

	 For f
u
 :	 gf = 1.25

	 For g :	 gg = 1

R1:	 For bearing:	 g
R : b

 = 1



536       Introduction to Soil Mechanics

As only g
G
 has changed W = g

G
 = 1631 kN

And = = >s

3235.7
1

16 1
1.98

3
F

Thus the GEO requirement is satisfied and the global factor of safety F
s
 = 3 is an 

overestimate.

Slope stability
The ultimate limit states GEO and STR are appropriate. Any of the accepted methods may 
be applied to estimate stability, using the partial factors of Eurocode 7.

Example 11.2

Figure 11.2 shows the details of the slope of Example 10.8.

Check the global factor of F
s
 = 3.28, calculated in Example 10.8, adopting the radial 

procedure and results in Example 10.5 and Table 10.3.

+ +Combination 1 : A1 “ ” M1 “ ” R1

6 m cu= 40 kPc (kN/m2)

1 in 2

g = 26.57°

f u= 15°

g = 19 kN/m3

Figure 11.2

A1 – Design actions (Table A.3, Annex A, Eurocode 7)

Unfavourable (disturbing) action	 g
Gdist

 = 1.35
Favourable (resisting) action	 g

Gstb
 = 1

M1 – Material factors (Table A.4)

φ γ φ =uFor 1

γ =u cFor 1c

γ γ =ãFor 1

R1 – Resistance factor (Table A14)	 g
R;e

 = 1

Design parameters
As all partial factors for the soil are unity the design parameters are:

	 φ φφ = = °d u 15

	 = =dc u 40KPac c

	
γ γ= = 3

dr 19 kN/m
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Design calculations
In combination 1, all material factors are unity, hence the calculations in Example 10.5 are 
unaltered and listed below:

Resisting force contributed by cohesion: S = 952 kN

Resisting force contributed by friction: ∑F = 371 kN

Disturbing force contributed by weight (g ): ∑T = 415 kN

DDisturbingmoment : 415 13.5 5603kNmM = × =

( )RResistingmoment : 371 952 13.5 17866 kNmM = + × =

Applying g
Q : unf

 = 1.35 to the unfavourable moment the factor of safety is:

	
= = =

×s

17866 17866
2.36

1.35 5603 7564
F

The restoring (stabilising) moment is larger than the disturbing moment, therefore the 
stability of the slope is satisfactory.

+ +Combination 2 : A2 “ ” M2 “ ” R1

A2 – Design action (Table A.3)

Unfavourable action g
Gdist

 = 1
Favourable action g

Gstb
 = 1

M2 – Material factors (Table A.4)

φ γ
γ

γ γ

φ

γ

=
=
=

u

u c

For 1.25

For 1.25
For 1

c

O

Q

371 + 952 415

R
=

13
.5

m

Figure 11.3
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R2 – Resistance factor (Table A14)

R;e 1γ =

Design parameters

For friction	 1
d

tan 15
tan 12.1

1.25
φ −

φ
 = = °  

For cohesion	 = =dc a40/1.25 32kPC

For weight	 3
d 19/1 19kN/mγ φ = =

Design calculations

From Example 10.5, friction force	 utan
cos

F N
N W

φ
δ

=
=

�

0cos tan

cos tan 18.75 0.339 cos

F W

W F W

δ φ
δ δ

∴ = ×
= × ∴ = � (11.11)

Table 10.3 is reproduced below as Table 11.1, changing values of F according to formula 11.2.

From the table:	 Disturbing force: ∑T = 415 kN

Friction force: ∑F = 469.75 kN

Table 11.1

Slice Angle T = Wsind Friction force (kN)

No W (kN) d
+
¨

-
Æ F = 0.339 Wcosd

1 2.66 - 31.8 - 1.40 0.77
2 13.30 - 27 - 6.04 4.02
3 26.79 - 22.7 - 10.37 8.38
4 43.13 - 17.5 - 12.98 13.94
5 57.95 - 13 - 13.04 19.14
6 64.03 - 9 - 9.99 21.43
7 83.03 - 4.5 - 6.48 28.06
8 93.29 - 1 - 1.59 31.62
9 102.22 4 7.16 34.56
10 109.82 8 15.26 36.87
11 115.71 12.5 24.99 38.29
12 120.27 17 35.12 39.00
13 123.31 21.5 45.25 38.89
14 124.45 26 54.51 37.92
15 118.94 31 61.25 34.38
16 106.59 35.8 62.36 29.30
17 91.39 41.3 60.32 23.27
18 72.96 47 53.33 16.87
19 49.78 54 40.27 9.91
20 19.57 62 17.28 3.11

1539.19 + 477.10 - 61.89 469.73

∑ T = 415 kN ∑F = 469.73 kN
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From Example 10.2 the length of the arc: L = 23.8 m.

Therefore, the resisting force contributed by the cohesion is = = × =d 32 23.8 761.6 kN.S C L

Restoring moment:	 M
R
 = (469.73 + 761.6) × 13.5 = 16623 kNm

Disturbing moment:	 M
D
 = 415 × 13.5 = 5603 kNm

Hence factor of safety: G:dist R
s

G:stb D

16623
2.96

5603

M
F

M
γ
γ

 
= × = =  

Thus the overall stability of the slope is satisfactory.

Conclusion:  
+

= =s

2.36 2.96
The average value of is 2.66

2
F

The minimum factor of safety is 2.36.
The stability moments in both combinations are larger than the disturbing moments, 

hence the limit state requirement is satisfied.

Example 11.3  Sheet pile in cohesionless soil

Figure 11.4 shows the anchored sheet pile was analysed in Example 8.10.

Soil paramaters:

3

34
0
19kN/m

C
φ

γ

= °
=
=

Check the value of Z by EC7, 
GEO Limit state.

Design approach 1

Combination 1: A1 “+” M1 “+” R1

 A1  �Design actions P
a
 and P

p
 are both permanent unfavourable ones, hence 

g
G
 = 1.35 from Table A3

 M1  gf = gf = 1 from Table A4

h = 1.2 m

H = 3.5 m

O

GL

B

z

Pp

T

Pa

Figure 11.4
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Design parameters: φ

γ

− ° ′ = = °  

= =

1
d

3

tan34
tan 34

1

19kN/m
1

Coefficients of earth pressure: a

p
a

1 sin34
0.283

1 sin34
1

3.537

K

K
K

−
= =

+

= =

Active force: 
( ) ( )2 2

a G
a

2

0.283 1.35 19

2 2
3.63( )

K H z H z
P

H z

γ γ + × × × +
= =

= +

Passive force: 
× ×

= =

=

2 2
a G

p

2

3.537 1.35 19

2 2
45.4

K g gz z
P

z

Moments of forces about tie rod T:

Active force: ( )

( ) ( )

 Σ = + −  
 = × + × + −  

= × + + × +
= + + × +
= + + + + +
= + + +

a a

2

2

2

2 2 3

3 2

2

3

2
3.63

3

3.63 (12.25 7 (1.53 0.666 )

(44.5 25.41 3.63 (1.53 0.666 )

68.1 29.64 38.88 16.9 5.6 2.42

2.42 22.5 68.52 68.1

)

)

M P H z h

H z H z h

z z z

z z z

z z z z z

z z z

Passive force: ( ) Σ = + − = × + = +  
2 3 2

p p

2
45.4 0.666 2.3 30.24 104.42

3

z
M P H h z z z z

Resultant moment: ΣM
o
 = ΣM

a
 − ΣM

p
 = 0

Σ = + + + − − =3 2 3 2
O 2.42 22.5 68.52 68.8 30.24 104.42 0M z z z z z

Collecting similar terms and changing signs

3 227.82 81.92 68.52 68.8 0z z z+ + + =

Simplifying: =+ +����� �������
3 23 2.46 2

R

.

L

47z z z
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Solving graphically:

The intersection point X on Graph 11.1 indicates that z = 1.13 m for Approach 1.

+ +Combination2 A2 “ ” M2 “ ” R1

 A2    �For both P
a
 and P

p
	 g

G
 = 1 from Table A3

 M2    �From Table A4	 gf = 1.25  and  g γ = 1

Design parameters:	 φ − ° ′ = = °  
1

d

tan34
tan 28.35

1.25
 

	 γ γ= = 3
d 19kN/m

Coefficients of earth pressure: 
− °

= =
+ °

= =

a

p
a

1 sin28.35
0.356

1 sin28.35
1

2.81

K

K
k

Active force: ( ) ( )γ γ × ×
= + = + +

= × + + = + +

2 2 2a G
a

2 2

0.356 19 1
2

2 2
3.38 (12.25 7 41.4 23.66 3) .38

K
P H z H Hz z

z z z z

Passive force: 
γ γ × × ×

= = =
2 2

p G
p

2.81 19 1
26.7

2 2

K z z
P

Moments of P
a
 and P

p
 about tie rod:

( ) Σ = + − = + + × +  
= + + + + +
= + + +

2
a a

2 2 3

3 2

2
(41.1 23.66 3.38 (1.53 0.666 )

3

63.34 27.57 36.2 15.76 5.17 2.25

2.25 20.93 63.77 63.34

)M P H z h z z z

z z z z z

z z z

( )2 3
p p

2
26.7 0.666 2.3 17.8 61.41

3
M P z H h z z z

 Σ = + − = × + = +  

= − = + + + − − =

= − − − + =
= − − + +

Σ Σ Σ

=

3 2 3 3
O a p

3 2

3 2

2.25 20.93 63.77 63.34 17.8 61.4 0

15.55 40.47 63.77 63.34 0

2.60 4.1 4 0

M M M z z z z z

z z z

z z z

Solving the cubic equation yields: z = 1.58 m

Table 11.2

Z 0.6 0.8 1.0 1.2 1.4
L 1.3 2.4 4 6.1 8.6
R 3.95 4.43 4.93 5.42 5.91



Graph 11.1
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Example 11.4  Gravity retaining wall

Figure 11.5 shows the gravity wall analysed in Examples 8.3, 8.4, 8.8 and Problem 8.1.

( )

φ
γ
′ =

=
=

=

3

u

2
a

Sand : 32

17kN/m

Ultimate bearing capacity

200kP kN/ m

q

Check the design, using Eurocode 7 for

1.  Overturning (EQU limit state)
2.  Overturning when the passive resistance is removed
3.  Sliding (GEO limit state)
4.  Bearing failure (GEO limit state)

1.  Overturning

Design approach 1:
  A1 “+” M1 “+” R1

Combination 1

A1:  Partial factors on actions (forces and moments from Table A.1, Annex A)
Permanent unfavourable	 g

Gdist
 = 1.1

Permanent favourable	 g
Gstb

 = 0.9

M1:  Partial factors for soil parameters from Table A.2
Angle of shearing resistance:	 g ′

f
 = 1.25

Weight density:	 gg  = 1

Design values: φ − ° ′ = = °  
1

d

tan32
tan 26.6

1.25

It is stated in Section 9.5.1 (7) of Eurocode 7 that the design angle of friction (d ) 
between the soil and concrete is assumed to be equal to the critical state angle of 
shearing resistance f ′

d
. The coefficient of active earth pressure is found in Figure 

C.1.1 (Annex C) for d = f ′
d
 or d/f ′

d
 and f ′ = 26. 6° as K

a
 = 0.32.

In Example 8.3 (case 1) the active force P
a
 was found to be 211.4 kN taking  

K
a
 = 0.307. Using Eurocode 7 value of K

a
 = 0.32.

1 m

4 m

Q

H
=

9
m

h = 2 m

Toe

Sand

Concrete

g c= 24 kN/m3

Figure 11.5
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( )×
= = =

2 2
a

a

0.32 17.9
220.3kN unfavourable

2 2

K H
P

Acting at y
a
 = 3 m from the base

The favourable passive force above the toe is calculated from:

+ °
= = = ↓

− °p

1 sin26.6 1.4478
2.62

1 sin26.6 0.5522
K

× ×
= =

2

p

2.62 17 2
89.1kN

2
P

Acting at	 =
2

0.67m from the toe
3

h

In Example 8.8 the wall was divided into three areas and their weight as well as 
distances from the toe was calculated as shown in Figure 11.6.

Overturning moment	 γ= ×
= × × =

O G.unf3 220.3

3 1.1 220.3 727kNm

M

W
1
  = 216 kN

W
2
 = 252 kN

W
3
 = 144 kN

W    = 612 kN

Resisting (favourable moment)

= × × + × + × + × =R 0.9 (3.5 216 2.67 252 2 144 0.67 89.1) 1599kNmM

Factor of safety:	 s

1599
2.19

727
F = =

As M
R
 > M

O
 the EQU requirement is satisfactory.

2.  �Removal or passive resistance by mistake or carelessness. The favourable 
moment is decreased to M

R
 = 0.9 × (756 + 673 + 288) = 1545 kN.

s

1545
2.13

727
F = =

Thus in this case the wall is stable.

W2

W3

2 m

3
m

2.67 m

0.67 m

89.1 kN

220.3 kN

3.5 m

F

Q

W1

Figure 11.6
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3.  Sliding  In the GEO limit states both combinations have to be applied.

Combination 1:  A1 (Table A3) γ
γ

=
=

G.unf

G.fav

1.35

1

M1 (Table A4):  φ γ
γ γ γ

′ =
=

′fFor : 1

For : 1

Design value for φ φ ° ′ ′ = − = °  d

tan32
: tan 1 32

1

Coefficient of friction between concrete and sand

µ = ° =1 tan 32 0.625

Friction force F = Wtanf ′
d
 = 612 × 0.625 = 382.5 kN

Figure 11.7 shows the forces acting on the wall:

Force to cause sliding = P
a

Force resisting sliding = F + P
p

Factor of safety against sliding

( )p

s
a

1 382.5 89.1
1.59

13.5 1.35 220.3

F P
F

P

× + +
= = =

×

Combination 2:  A2 “ + ” M2 “ + ” R1
Partial factors:	A2 (Table A3)	 g

Gdist
 = g

Gstb
 = 1

		  M2 (Table A4)	 g ′f = 1.25  ∴   f ′
d
 = 26. 6°

		
γ γ = 1

µ = = = × =2 tan26.6 0.5 and 612 0.5 306 kNF

Factor of safety s2

306 89.1
1.79

220.3
F

+
= =

Both combinations satisfy the GEO limit state requirements.

4.  Bearing (Figure 8.62)
The calculations in Example 8.8 yield the following result:

Force R = 612 kN act at eccentricity: e = 0.11 m. R is a permanent, unfavourable 
action hence, g

Gdist
 = 1.35 from Table A3.

  Check whether the maximum pressure on the foundation soil is larger than 
the bearing capacity of 200 kP

a
 (kN/m2).

Direct pressure:	
γ ×

= = =
×

2Gdist
d a

1.35 612
206.6KP kN/m

1 4
( )f

bd

Section modulus:	 = = =
2 21.4

2.67
6 6

bd
z

W

Pp

Pa

F

Figure 11.7



546       Introduction to Soil Mechanics

Bending pressure:	
× ×

= ± = = 2
b a

1.35Re 1.35 612 0.11
34k (P kN/m

2.67
)f

z

Combined pressure:	 f
max

 = 206.6 + 34 = 240.6 kP
a
 (kN/m2)

As the maximum pressure is larger than the bearing capacity of the soil (206.6  
> 200), the GEO limit state requirement is not satisfied and the wall has to be 
redesigned and lower the value of f

max
.

Example 11.5  Bored concrete pile

The bored concrete pileof Example 9.9 in soft to stiff clay was designed to be 16 m 
long as shown in Figure 11.8. The undrained cohesion of the clay varies with depth 
(see Table 9.5). Its average value if given in Table 9.6 as = 2

u 117kN/m 117( kPa)c  
and its value at 16 m depth as = 2

u 317 kN/m 317( kPa)c . Check the calculated length 
of the pile using EC7 procedure.

Design approach 1
(Combination 1)

+ +A1 “ ” M1 “ ” R1

  A1 � Action Q = 650 kN is permanent unfavourable one, 
hence g

Gdist
 = 1.35 (Table A.3)

∴ = × =dDesign load 1.35 650 878kNQ

  M1 � g ′
c
 = 1.0  gg = 1.0 (Table A.4)

Design values of cohesion: =u:d a117kPc c
u
 = 374 kP

a

 R1�  Base resistance:	 g
b
 = 1.25  (Table A.7)

Shaft resistance:	 g
s
 = 1.0

Model factor:	 g
m
 = 1.4    (National Annex)

Corrected design partial factors
Base resistance:	 g

b : d
 = 1.4 × 1.25 = 1.75

Shaft resistance:	 g
s : d

 = 1.4 × 1.0 = 1.4

End bearing area:	 = =
2

2
e

0.5
0.196 m

4
A

4 m

12 m

8

Soft clay

Stiff clay

cu= 117 kN

cu= 317 kPa

Figure 11.8
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End bearing resistance:	 e

9 0.196 374
377kN

1.75
Q

× ×
= =

Shaft resistance:	
α π× × × ×

= = =u s
s

0.45 117 0.5 16
945kN

1.4 1.4

c A
Q

	

+ +
∴ = = =e s

1
d

377 945
1.5

878

Q Q
F

Q

( )+ +Combination2 A2 “ ” M1 OR M2 “ ” R4

 A2�  For Q = 650 kN:	 g
G
 = 1	 (Table A.3)

 M1�  For cohesion:	 g ′
c
 = 1	 (Table A.4)

 R4�  For base:	 g
b
 = 1.6	 (Table A.7)

For shaft:	 g
s
 = 1.3

Model factor:	 g
m
 = 1.4

Corrected design partial factors:

	

b:d

s:d

1.4 1.6 2.24

1.4 1.3 1.82

γ
γ

= × =
= × =

Using M1	 u:d a1 117 117kPc = × =

	 c
u : d

 = 1 × 374 = 374 kP
a

End bearing:	 e a

9 0.196 374
295kP

2.24
Q

× ×
= =

Shaft resistance:	 s

0.45 117 0.5 16
727kP

1.82
Q

π× × × ×
= =

	

e s
2

d

1023
1.17

878

Q Q
F

Q

+
∴ = = =

Conclusion: The 16 m long, 0.5 m diameter pile can carry the 650 kN load. 
Combination 2 is critical as F

2
 < F

1
.

Example 11.6  Heave and seepage

Figure 11.9 shows the outline of one side of a sheet pile cofferdam. The depth of 
pile penetration was determined to be z = 4.61 m in Example 8.14. As this did not 
take into account possible seepage under the piles, the problem was recalculated 
in Example 8.15 and the new depth was found to be z = 5.5 m. The known details 
are shown below.
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γ

γ

′′=

= × × =
=

= = × =
∴ = × =

3

s

2
s w s

Unit weight due to seepage : 8.4kN/m

Submerged weight of column

8.4 5.5 2.75 127kN

Seepage pressure head : 0.59m

Seepage pressure on base :

9.81 0.59 5.8kN/m

Seepage force : 2.75 5.8 16 kN

W

h

u h

S

Check the stability of the cohesionless soil against uplift and internal erosion by 
EC7 methods.

Uplift (buoyancy) 
Verification of (UPL) uplift limit state by inequality:

	 dst;d stb;d d

dst;s dst;d dst;d

V G R

V G Q

≤ +
= +

� (11.9)

In this example R
d
 = Q

dst;d
= 0, thus the design inequality written in terms of Example 

8.15 as:

V
dst;d

 = S
d
 and G

stb;d
 = W

d
 or S

d
 ≤ W

d

The recommended values of partial factors for UPL are obtained from Tables A.15 
and A.16:

For permanent unfavourable action S: g
G : dst

 = 1
For permanent favourable action W: g

G;stb
 = 0.9

Design values: = × = 
= == = × = 

d
s

d

1 16 kN 114
7.1

0.9 0.9 127 114kN 16

S S
F

W W

In terms of EC7: V
sdt;d

 < G
stb;d

 hence the requirement of UPL limit state is satisfied.

Seepage 
Partial factors found in Table A.17

For permanent, unfavourable actions	 g
G : dst

 = 1.35
For permanent favourable actions	 g

G;stb
  = 0.9

∴ = × = × = 2
dst;d s a1.35 1.35 5.8 7.83kN/m ( )KPU u

2
stb;d

0.9 127
0.9 45.7kN/ m

2.75 2.5

Wσ ×
= = =

1.2 m T = 63 kN

W

s

u

g ″

2.3 m

z = 5.5 m

2.75 m

Figure 11.9
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= = × =dst;d 1.35 1.35 16 21.6 kN see page f e)( orcS S

= = × =stb;d 0.9 0.9 127 114.3kN submerged weight of col( umn)G W

σ< <dst;d stb;d or 7.83 45.7U

< ′ <dst;d stb;d or 21.6 114.5S G

Hence the requirements of HYD limit state are satisfied.

Sudden drawdown in a reservoir

Example 11.7

With reference to Example 10.1 and 10.6, Figure 11.10 shows the soil parameters and 
some of the calculated values of the problem.

Crossectional areas
A

1
 = 62.8 m2

A
2
 = 19.9 m2

Soil: Clay of undrained shear strength:	 c
u
 = 40 KP

a

and weight density:	 g = 19 kN/m3

Saturated unit weight:	 g
sat

 = 19.8 kN/m3

Submerged unit weight:	 g ′ = 10 kN/m3

Length of slip surface:	 L = 23.8 m

Check the stability of the slope by EC7 when:

1.  The reservoir is full
2.  The reservoir is suddenly emptied

6 m

A2

W2

W1

A1

R = 13.5 m

2.6 m

5.4 m

f= 0

S

Figure 11.10
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1.  �When the reservoir is full, the buoyant (submerged) unit weight of the clay is 
applied γ ′ = 310kN/m

Weight of section A
1
: W

1
 = 62 × 8.10 = 628 KN

Weight of section A
2
: W

2
 = 19 × 9.10 = 199 KN

Combination 1:  A1 “ + ” M1 “ + ” R1

  A1�  Perm, unfavourable action:	 g
G : unf

 = 1.35
Perm, favourable action:	 g

G : fav
 = 1.0

 M1�	 γ
γ γ γ ′

= = 
′ = = 

u cuFor 1.0
Table A4

For 1.0

c

  R1� � For the shear resistance against votation along the slip surface: g
R:h

 = 1.0 
(Table A.5)

Disturbing moment: = × − ×
=

D 1.35 628 5.4 1( 99 2.6)

3880kNm

M

Shear force: S = c
u
L = 40 × 23.8 = 952 kN

Resisting moment: M
R
 = RS = 13.5 × 952 = 12852 kNm

∴  Factor of safety = =s

12852
3.3

3880
F

Or in terms of EC7 (section 2.4.7.3.1 (1)P):

Design effects: E
d
 = 3880 kNm

Design resistance: R
d
 = 12852 kNm

E
d
 < R

d
 hence the GEO limit state requirement is satisfied for combination 1.

Combination 2: A2 “ + ” M2 “ + ” R1

 A2� � g
G : dst

 = g
G : fav

 = 1.0 (Table A.3)

 M2� � g
cu

 = 1.4 = gg = 1.0 (Table A.5): u:d

40
28.6KPa

1.4
c = =

 R1� � g
R : h

 = 1.0

Disturbing	 M
D
 = 1 × (628 × 5.4 - 199 × 2.6) = 2874 KNm

Shear force:	 S = 28.6 × 23.8 = 681 KN

Resisting	 M
R
 = R

S
 = 1 × (13.5 × 681) = 9189 kNm

Therefore 
 

= =   
d

s
d

9189
3.2

2874

R
F

E

Or E
d
 < R

d
 hence the limit state requirement is satisfied for combination 2.

2.  Sudden drawdown
When the reservoir is suddenly emptied, the clay remains saturated as buoy-
ancy has no effect, hence the saturated weight density g

sat
 = 19.8 kN/m3 has to be 

applied.
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As the partial factor for weight density is gγ in both combinations:

W
1
 = 62.8 × 19.8 = 1243 kN

W
2
 = 19.9 × 19.8 = 394 kN

Combination 1

A1 g
G : dst

 = 1.35 g
G : stb

 = 1.0

M1 g
cu

 = 1.0 gγ = 1.0     (As before)

R1 g
R : h

 = 1.0

Disturbing:	 M
D
 = 1.35 × (1243 × 54 - 394 × 2.6) = 7679 kNm

Resisting	 M
R
 = 12852 kNm  (no change)

Factor of safety:	 s

12852
1.7

7679
F = =

or	 E
d
 = 7679 < R

d
 = 12852

Combination 2 A2 “ + ” M2 “ + ” R1
As all factors are the same as before c

u : d
 = 28.6 KP

a

Also, M
D
 = 1 × (1243 × 5.4 - 394 × 2.6) = 5688 kNm

R 1 9189 9189kNmM = × =

= =s

9189
1.6

5688
F

Or	 E
d
 = 5688 < R

d
 = 9189 hence the limit state requirement is satisfied.
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Appendix A

Mass and Weight

The terminology of the SI system of units does not specifically include the word ‘weight’. 
However, the weight of materials are usually found to be tabulated either in terms of 
mass density (kg/m3) or in terms of gravitational force (weight) density (kg/m3). The 
clarification of these terms is the purpose of this appendix.

Mass (M )

It may be described as a quantity of matter, which occupies space. The location in space 
does not alter the quantity, be it on the earth’s surface or in an orbiting satellite. The mass 
of a body, therefore is the same anywhere in the universe.

Weight (W )

It is the gravitational force in accordance with Newton’s Second Law of motion; that is:

	 Force mass acceleration= ×
or	 W = Mg

Where g = gravitational acceleration (not to be confused with the unit ‘gram’). Its value 
varies depending on the distance from the centre of the earth.

Table A1  Approximate values

Height above the poles (km) g (m/s2)

0 (sea level) 9.840
10 9.809
100 7.350
400,000 0.00242

Average value on earth 9.81
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When a body of mass M falls freely towards the earth at acceleration g (m/s2), then 
there must be a force acting on it to produce this acceleration. Diagrammatically:

This gravitational force is called ‘Weight’ (W).

Units of M and W

The S.I. (System International d’Unites = International system of units) unit of mass is the 
gram or kilogram. In order to avoid confusing g (the acceleration) with gram, the kg unit 
is to be adopted in this appendix.

The S.I. unit of force is the Newton (N). It may be defined as the force which accelerates 
a mass of 1 kg at 1 m/s2. Diagrammatically:

	
2 2

kgm m N
N 1

s s kg

 ∴ = ∴ =  

One Newton is called absolute unit of force, because its value does not depend on its 
location in space. Therefore, it can be used as the unit of force absolutely anywhere in the 
universe.

In order to know the weight of 1 kg at a particular place, it has to be multiplied by the 
value of the gravitational acceleration of that locality. Diagrammatically:

	
( )2N/kg or m/sW g=

For a mass M kg:

	 NewtonW Mg=

W

g
M

Earth

Figure A1

N

1 m/s2
1 kg

Figure A2

W

g m/s2
1 kg

Figure A3

W

gM kg

Figure A4
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Table A.2 contains the weight of 1 m3 of concrete at the altitudes listed in Table A.1, 
assuming its average mass as M = 2400 kg/m3

There is insignificant variation in g over the Earth’s surface, hence the use of the 
average value g = 9.81 m/s2 is satisfactory. From design and construction point of view, the 
gravitational force is of interest, being the load (weight) acting on structures.

The use of g = 10 m/s2 is acceptable in order to simplify engineering calculations. This 
approximation yields larger design-loads, hence is on the safe side.

The mass of materials is normally ‘weighed’ by balancing it against another mass. 
As both masses are accelerated equally, at the same locality, they balance each other 
irrespectively of gravity as long as M

1
 = M

2
.

Example A1

A 5 m long universal column section of mass 634 kg/m is supporting a load of 200 kN. 
Calculate the total load (P) in the column’s base.

Weight if the column:  5.634 9.81 31098 N

31 kN

W = × =
≈

Total load on base:	 200 31 231KNP = + =

Question:  Why is it necessary to tabulate the mass density (kg/m3) of materials?
Reason:	� Apart from the variation of g from place to place, the main reason is 

the method of measurement.

9.81 m/s2 9.81 m/s2
M2

W W

3 kg
M1
3 kg

Standard mass

Mass to be weighed

Figure A5

Table A.2

Altitude (km) Mass (kg) g (N/kg) W (N) W (kN)

0 2400 9.840 23616 23.62
10 2400 9.809 23542 23.54
100 2400 7.350 17640 17.64
400000 2400 0.00242 5.808 0.00581

Average value on Earth 2400 9.81 23544 23.54
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It is obvious from the figure, that the gravitational acceleration acts on both masses 
equally, hence the weight force is:

	

1 2

1 2

9.81 9.81W M M
M M
= =

∴ =

So, by weighing a body this way, we measure only its mass and not its weight.

Measurement of weight (W )

As the extension of a spring is independent of gravity, W can be measured directly by 
suspending the mass at the end of a spring, having stiffness q (N/mm).

Fig. (a): Unloaded spring
Fig. (b): Loaded spring stretches y mm
Fig. (c): Force in spring: S = qy
Fig. (d): Weight equals to spring force	 S = W = Mg

or  qy = W = Mg

Therefore,  W = qy  and 
qy

M
g

=

It is physically inconvenient to arrange the measurement of either weight or mass 
by  this method, compared to the balancing of masses. This is why mass density is 
tabulated.

x
q

(a) (b) (c) (d)

y

g g
W = Mg

S
Sx

MM kg

Figure A6

Example A2

A large stone is attached to a spring of q = 25 N/mm and the extension measured 
as y = 20 mm.

Determine its weight and mass:

Weight:  W = qy = 25 × 20 = 500 N = 0.5 kN

Mass:	
500

51 kg
9.81

w
M

g
= = =
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Appendix B

Units, Conversion Factors  
and Unity Brackets

The S.I. system of units has been in use for some years now. Inspite of this, it is often 
necessary to refer back to the imperial unit system when dealing with old drawings, 
books or for some other purpose. For this reason, units relevant to soil mechanics, and 
their conversion from one system to the other are listed in this Appendix. Also, the unity 
bracket method of conversion, initiated by A.C. Walshaw, is introduced.

Basic units

The S.I. and the imperial systems are based on the following three units:

Note: The unit of force (F), in general, is F Newton.
The unit of gravitational force is W = Mg Newton. The imperial equivalent is the pound 

force (lbf) at g = 32.2 ft/s2.

Table B1  (a)

 S.I. Imperial

Length (L) Metre (m) Foot (ft)
Mass (M) kilogramme

or kilogram (kg)
Pound (lb)

Time (T) Seconds (s) Seconds (s)

Table B1  (b)

Force (F) Newton (N) Pound force (Ibf)

Weight (W)

N

kg 9.81 m/s2

Ibf

Ib 32.2 ft/s2
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Multiplier prefixes

The basic units may be made larger or smaller by multiplying them by ± powers of ten. 
The standard multipliers, their symbols and names are:

Note: M in this table, must not be confused with mass!

Unity bracket

Conversion factors may be transformed into unity by transferring the quantity from one 
side of the equality sign to the other and enclose it in a square bracket, as illustrated by 
the following simple example:

From Table B.1: Conversion factor: 1 cm = 0.01 m. The unity bracket may be written in two 
ways, as the reciprocal of unity is still unity.

Either	
0.01 m cm

1 or 1
cm 0.01 m

  = =      

The expressions in brackets are therefore equal to one. The significance of this will be 
explained later.

Application of the unity brackets

The procedure is based on the two simple facts:

1.  Unity multiplied by unity remains unity.
2.  Unity raised to any power remains unity.

Because each bracket equals unity, they may be multiplied together or exponentiated 
and the final result is equated to unity. New conversion factors can be formulated in this 
way.

Table B.1  (c)

Name Symbol Multiplier Conversion factors

tera T 1012 }  Not normally used in soil mechanics
giga G 109

mega M 106 Mega gram: 1 Mg = 106 g
kilo k 103 Kilometre: 1 km = 103 m
hecto h 102 Hectometre: 1 hm = 102 m
deca da 10 Decametre: 1 dam = 10 m
deci d 10-1 Decimetre: 1 dm = 10-1 m
centi c 10-2 Centimetre: 1 cm = 10-2 m
milli m 10-3 Millimetre: 1 mm = 10-3 m
micro μ 10-6 Micrometre: 1 µm = 10-6 m
nano n 10-9 }  Not normally used in soil mechanicspico p 10-12

femto f 10-15

atto a 10-18
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Example B1

Prove that: 	 a)  =1 tonf 9.968kN

	 b)  =2 21N/ mm 145.14Ibf / in

	 c)  γ = =3 3
w 9.81kN/ m 62.44Ibf / ft

a)  Step 1
Start from another known conversion factor containing tonf. Choose say:
1 tonf = 2240 Ibf to get the bracket:

 =   
2240lbf

1
tonf

Another factor had to be found, which contains ‘lbf’ in order to eliminate it from 
the first bracket. Choose, say:

1 Ibf = 4.45 N

Hence,	  =   
4.45N

1
lbf

Step 2
Multiply the brackets together and cancel lbf:

×   = =      
2240lbf 4.45N 2240 4.45N

1
tonf lbf tonf

But, the result should be in terms of kN, so N has to be eliminated by:

1kN 1000N

kN
or 1

1000N

=
 

=  
 

Step 3
Multiply the brackets together and cancel N.

×    ×   =         
 =   

=
2240 4.45 N kN 2240 4.45 kN

tonf 1000N 1000 tonf

9.968 kN

tonf

1   

Converting it to factor:  tonf = 9.968 kN  ∴ true
Alternatively, any other initial choice may be made, say,

=

 ×
=  × 

2 2

2

2

1 tonf / ft 107.25kN/ m

or

107.25kN ft
1

tonf in

Now, m2 and ft2 have to be eliminated.
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Choose,	 1 m = 3.281 ft

And	
m

1
3.281ft

 =   

Squaring the bracket	
2 2

2

m m
1

3.281ft 10.765ft

  = =      
Multiply the brackets and cancel m2 and ft2,

     = × =     ×     

2 2

2 2

107.25kNft m 9.963kN
1

tonf m 10.765 ft tonf

b)  Choose: 
 = ∴ =   
4.45N

1Ibf 4.45N 1
lbf

Also, 
25.4mm

1in 25.4mm 1
in

 = ∴ =   

Square the second bracket to get in2 and mm2

2
25.4mm

1
in

 =   

Multiply the brackets:	
  = ×      

   
= =   × ×   

2

2 2

2 2

4.45N in
1

lbf 25.4mm

4.45Nin Nin
1

645.16 mm lbf 145. mm lbf

From which,	 =
2 2

N lbf
1 145
mm in

NB: Any discrepancies is due to cumulative arithmetic errors.

c)
 

w 3 3

kN kN
9.81 9.81

m m
γ  = =   

Choose: 
 = =   
4.45N

1Ibf 4.45N 1
lbf

And:	
1000N

1kN 1000N 1
kN

 = =   

And: 
3.281ft

1m 3.281ft 1
m

 = =   
Multiply the brackets and eliminate kN, m3 and N

γ       × × × =

=

=

           
  × 

×   
   
 =   

w

3

3

3

3

f
3

3

3

lbkN 1000 N m

m kN 4.45N 3.281 ft

1000 lbf m

4.45 m 35.32 ft

6.3624  lbf

9.81

9.81

 62.41Ibf/ft9.81
ft

True

Note: Any other conversion factor not present in Tables B.1 and B.2 may be derived 
in this manner.
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Appendix C

Simpson’s Rule

This rule is referred to in connection with

a)  Slope stability, where the area between the ground surface and the trial slip circle 
has to be determined.

b)  Consolidation, where the area of the pore pressure isochrones has to be found.

The rule is applicable to any area (A), which is divided into EVEN numbers of strips of 
equal width.

h = width of each strip
F = first ordinate
L = last ordinate
E = even ordinate
O = odd ordinate

The rule:	 ( )2 O 4 E
3

h
A F L= + + Σ + Σ � (C1)

2 ∑O = twice the sum of the odd ordinates
4 ∑E = four times the sum of the even ordinates

Accuracy can be increased by choosing a large number of strips.

h

1

F E E E E E LO O O O

2 3 4 5 6 7 8 9 10 11

Figure C1
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1 0 1F L+ = + =

O 0.92 0.84 0.75 0.66 0.56 0.45 0.32 4.5= + + + + + + =∑
E 0.98 0.88 0.80 0.71 0.62 0.51 0.38 0.20 5.08= + + + + + + + =∑

2 O 9=∑
4 E 20.32=∑

	
( )A 5
1 9 20.32 51

2 3
= + + =

Therefore, area of the isochrone:  A = 2.51 = 102 cm2

The same area measured by planimeter = 100 cm2

Mean ordinate rule

This rule provides a convenient procedure, applicable to the method of slices, for the 
evaluation of the:

1.  Cross-section area (A) of the slope examined for stability
2.  Position of its centroid ( )x
3.  Disturbing moment (M

D
).

As in the method of slices, the mid-ordinate of each slice and its distance from the vertical 
line, drawn through centre of rotation (see Graph 10.2), is to be used in order to deter-
mine the three unknowns.

Example C1

Evaluate the area under the T
v
 = 0.3 isochrone on Graph 7.3

Only the upper portion is reproduced here, as the figure is symmetrical.

0

1.0

5

F E O O O O O O OE E E E

h = 5

E E E L

1.
00

0.
98

0.
92

0.
88

0.
84

0.
80

0.
75

t = 752 day (Tv = 0.3)

0.
71

0.
66

0.
62

0.
56

0.
51

0.
45

0.
38

0.
32

0.
20

0.
00

Figure C2
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Procedure:

Step 1: � Divide the area into strips of equal width (b) and measure the length (z) of each 
mid-ordinate. This gives:

The area of a slice: A
n
 = bz

n

and the total area:	 nA b z= ∑ � (C2)

Step 2: � Sum the moment of each area about the centre of rotation. Clockwise moments 
are considered positive and anticlockwise ones negative.

1 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14

( ) .

.( )

M Ax A x A x A x A x

M A x A x A x A x A x A x A x A x A x

− = + + + + + …

+ = + + + + + + + + + …
∑
∑

Step 3: � The moment of the total area about the centre of rotation: M Ax= . This equals 
to the sum of the ± moments. Therefore,

( ) ( )M M M= + + −∑ ∑
or ( ) ( )Ax M M= + + −∑ ∑

Hence,	
( ) ( )M M

x
A

+ + −
= ∑ ∑

� (C3)

Centre of rotation
O

q

g

f

R

b

–x +x

+x9

–x3

Aq

A3

1
2

3 4 5 6 7 8
9

10
Mid-ordianate of a slice

z

11

12

13

14

c

Q

Figure C3
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Note:  that the procedure is greatly simplified if the width of each slice is chosen to be 
unity. Then the total area equals to the sum of the mean ordinates, that is:

	 nA z= ∑ � (C4)

Taking the unit weight (g ) into account, the total weight of 1 m long slope is given by:

	 W = g A  (or)  W b zγ= ∑ � (C5)

Alternatively, the disturbing moment due to the weight of soil right of the centre of 
rotation is:

	 d n ( )M Wx Mγ= + = +∑

Similarly, the resisting moment due to the weight of soil left of the centre of 
rotation is:

	 r n ( )M Wx Mγ= − = −∑

Resultant disturbing moment:	 D d rM M M= − � (C6)

Centroid:	 D ( ) ( )M M M
x

W A
γ γ

γ
+ + −

= =

Hence,	 D
M( ) (

A

)MM
x

W

+ + −
= = ∑ ∑

� As before

Example C2

Using the results of Example 10.1 calculate x .

From Table 10.1:  281.39m

6426.65kNm
828.25kNm

A z

Wx
Wx

= =
+ =
− =

∑

But 
γ

+
+ = = =∑ 26426.65

338.2m m
19

( )
Wx

M

And 
γ

−
− = = = −∑ 2828.25

( ) 43.6 m m
19

Wx
M

Therefore, from (C3): 
338.2 43.6

3.6 m 3.54m
81.39

x
−

= = ≈
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Evaluation of Angle q

c = chord
R = radius

From triangle ABC:
c2 = a2 + b2

By the consine rule:  2 2 2

2 2 2

2 2

2

2

2 cos

2 2 co

(

s

2 1 cos

cos

)

1
2

c R R R R

c R R

c R

c
R

θ
θ

θ

θ

= + − × ×
= −
= −

= −

Therefore,	
2 2 2

1 1
2 2

cos 1 cos 1
2 2

c a b
R R

θ − −   +
= − = −      

� (C7)

O

q
R

B

a

C

c

b
A

R

Figure C4
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Appendix D

Resultant Force and Its 
Eccentricity

When a retaining wall is acted upon by a system of forces and moments, the system can 
be replaced by a single force (Resultant R) acting some distance away from the centroid 
of the base area. The resultant, therefore, acts eccentrically on the base of eccentricity 
e. The determination of R and e depends on the configuration of the loading system. 
Three typical problems are discussed below:

1.  A given force W acting at distance x from the centroid (CG) of a rectangular base.

W
(a)

(b)

(c)

x

e

CGR

d

b

fmin

fmax

Lc

In this case:	R = W
	 e x=

Note that the maximum and minimum 
pressures due to eccentric loading are 
given by formula (8.57).

max

min

6
1

R e
f

bd d
 = ±  

2.  A given force W acts at the centroid, as well as a moment (M).

W

M

CG
d

(a)

In this case, W and M are replaced by a 
resultant R acts at e. The position of the 
eccentricity is indicated by the direction of 
the moment.

Figure D1
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Step 1: � Replace M by two forces, each equals to W, at distance e apart and place this pair 
of forces on diagram D2(b) as shown:

M We

M
W

e

=

=
   

W
W

x

W

(b)

cc
e

Lc

Step 2: � The two forces at the centroid are equal and opposite, hence cancel each other. 
This leaves the resultant acting eccentrically at x.

R W=
    R

x

(c)

e

Lc

Formula (8.57) can now be applied.

Figure D2  (continued)

Example D1

Figure D3 shows a 1.2 m × 3 m raft foundation transmitting 600 kN central load 
(self-weight inclusive) and a moment of 400 kNm to the soil. Calculate the maxi-
mum and minimum pressures under the base.

M = 400 kNm

W = 600 kN

d = 3 m
1.5

R = 600 kN

0.67

+
– 57

391

(a)

(b)

(c)

Lc

600

400
400 600 0.67m

600
600kN

M e

e e

R W

=

= ∴ = =

= =

	

( )
( )

max

min

2
max

2
min

600 6 0.67
1 167 224

1.2 3 3

167 224 391 kN/m compression

167 224 57 kN/m tension

f

f

f

× = ± = ± ×  
= + =

= − = −

Figure D3
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When a footing or a retaining wall is subjected to several forces, then the resultant 
and its line action that is the eccentricity can be calculated as in Example 8.8 
General case:

x3

P3

P1

y1

P2

y2

Q
d

Wd
2

Lc

R = sum of vertical forces in this diagram:

R = W + P
3

For eccentricity, sum the moments of the forces shown about a point, say Q:

+
∑MQ = W

2
d +P2y2 + P3x3 − P1y1

This has to be equal to the moment of R about the same point Q, for equilibrium.

+
∑MQ = Rx

Equating,	 2 2 3 3 1 1–
2

Wd
Rx P y P x Py= + +

	

2 2 3 3 1 1

3

2

Wd
P y P x P y

x
W P

+ + −
=

+

From which,	
2

d
e x= −

The simplified diagram can now be drawn and formula (8.57) applied.

R

Q

d

ex

Lc

Note: The procedures are applicable to 
any combination of forces and moments. 
(see texts on statics).

Figure D4

Figure D5
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Index

active expansion  320–321, 322–323
active pressure  320–321, 326–338, 340–344, 

347–348, 356–357, 369–370, 413–418
adhesion  355–359, 457, 460
allowable carrying capacity  458, 460–464, 

468
allowable foundation pressure  422–423, 

443, 445
Alpan formula  322
anchored sheet pile walls

effects of ground water  393–400
Eurocode 7  532
fixed-earth support method  384–389
free-earth support method  376–384
lateral earth pressure  375–400, 414
tie rod length and anchor stability  390–

393, 395–397
angle of friction see friction
apparent cohesion  203, 209, 224, 425–426
aprons  129
artesian pressure

effective pressure  188–189, 196–198, 
216–218

permeability and seepage  106
Atterberg limits  43–64

approximate determination of shrinkage 
limit  54–56

Casagrande test  44–46
cone penetrometer test  47–49
graphical method for shrinkage 

limit  50–54
linear shrinkage and swelling  59–64
liquid limit  43–48
plastic limit  48–49
relationship between the limits  57–64
saturation limit  56–58
shear strength  264
shrinkage limit  50–56, 57–64
single test for liquid limit  45
swelling of cohesive soils  56, 58–64

average percentage consolidation   
302–306

batter piles  472–473
bearing capacity  420–478

allowable foundation pressure  422–423, 
443, 445

block failure of pile groups  466–468
consolidation  318
deep foundations  439–442
eccentric loading of pile groups  468–471
effective overburden pressure  421, 425
effective pressure  185
effects of static water table  428–434
end-bearing resistance  456–457, 

464–465
Eurocode 7  531, 533, 535, 543, 545
Fellenius’ method  438–439
foundation pressure  420–423
grouped piles  452, 454, 455, 465–473
influence of footing shape  435–442,  

477
influence of pile section  465
lateral earth pressure  363–364, 368
load-carrying capacity of piles  455–464
negative skin friction  449–454, 457–459
pile foundations  445–473
presumed bearing values  424
problems  474–478
raking piles  472–473
safe bearing capacity  422, 426, 429–433, 

436, 440–441
settlement  420, 423–426, 460, 471–472
shaft resistance  457, 461–463, 465
standard penetration test  443–445, 

459–460, 464–465
stress distribution around piles  455
strip footings  424–438, 440–442, 

474–478
surface loading  139, 150–151
terminology  420–424
Terzaghi’s equation  425–428, 432, 435, 

439, 474–475
ultimate bearing capacity  421–422, 424, 

425–428, 440–441, 466
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bending stress/moments
Eurocode 7  546
lateral earth pressure  364, 368, 374–375, 

387–389
bentonite slurry support  406–412
Bishop’s conventional method  518–519
Bishop’s rigorous iterative method  519–522
block failure of pile groups  466–468
boiling see piping
bored piles  448–449, 451–452, 457, 475, 

546–547
boreholes

artesian pressure  188–189
bearing capacity  443–445
effective pressure  188–189
shear strength  260

boundary conditions  113, 129
Boussinesq-based formulae

lateral earth pressure  319–320
surface loading  140–143, 159, 293–294

Boussinesq-Michell formula  185
box section underpaths  419
bracing, horizontal  400–406
British Standards

geotechnical design  530
heavy test  21
light test  21
vibrating hammer test  22

bulb of pressure diagrams  147–151, 157–158, 
455

bulk density
compaction  29–30
effective pressure  182
weight–volume relationships  6, 7–8, 11–12

buttressed walls  361

California Bearing Ratio (CBR) test  22, 
30–35

cantilever sheet pile walls  369–375
cantilever walls  361
capillary tension

capillary fringe  199–204
definition  199
determination of capillary head  200
effective pressure  195, 199–213
equilibrium moisture content  204–208
saturation  200–201
on site determination  204
soil characteristics  199
soil suction  208–213
weight–volume relationships  12

carrying capacity see load-carrying capacity
Casagrande test  44–46

cast-in-place piles  446–447, 448
CBR see California Bearing Ratio
chemical tests  530
circular area loading  156–158
circular footings  435, 437–438, 440–442
classification tests  530
closed capillary fringe  199, 201–202, 204
coefficient of active pressure  356, 410
coefficient of compressibility  281
coefficient of consolidation  295–300, 302, 

312–313, 530
coefficient of lateral earth pressure  319–324, 

327
coefficient of passive pressure  378
coefficient of permeability  92–93, 95–102, 

104–106, 310, 530
coefficient of volume change  282–286, 

288–289
cofferdams  190
cohesion

apparent cohesion  203, 209, 224, 
425–426

Eurocode 7  537–539, 546
overburden pressure  263–264
shear strength  220, 223–224, 228, 242, 

263–264
slopes  499, 501, 505–507, 509, 514

cohesionless soils
bearing capacity  426–428, 431–432, 443, 

457, 465–466
Eurocode 7  539–542
lateral earth pressure  324–336, 342, 

351–354, 370–371, 376–378, 395–397, 
402

slopes  525
surface loading  168

cohesive soils
Atterberg limits  43–64
bearing capacity  426–428, 431–432, 443, 

452, 457, 466
classification by consistency  43–68
classification by particle size  69–91
combination of materials  78–85
consistency indices  64–68
effective pressure  203
filter design for particle size 

analysis  74–77
lateral earth pressure  355–359, 375, 

378–384, 402
linear shrinkage and swelling  59–64
liquid limit  43–48
liquidity index  64–66
permeability and seepage  98–101
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cohesive soils (continued)
plastic limit  48–49
plasticity index  64–68
relationship between Atterberg 

limits  57–64
relative consistency index  64–66
saturation limit  56–58
sedimentation tests  85–91
shear strength  219, 223, 254
shrinkage limit  50–56, 57–64
sieve analysis  69–73
slopes  480–522
surface loading  168
swelling of cohesive soils  56, 58–64
typical particle size-related 

problems  77–78
uniformity coefficient  73–74

combination of materials  78–85
compaction  20–30

bearing capacity  446, 449–450, 455
British Standards  530
California Bearing Ratio test  22, 30–35
capillary tension  201–202, 208
compactive effort  27
laboratory compaction tests  21–26
lateral earth pressure  403–406
permeability and seepage  97–98
practical considerations  26–27
presentation of results  22–26, 32–33
relative compaction  27
shear strength  248
site tests  28–30
surface loading  139
under- and over-compaction  28

compactive effort  27
compressibility factor  208, 210
concentrated line loads  142–144
concentrated point loads  140–142
concrete aprons  129
concrete dams  113–118, 128–129
cone penetrometer test  47–49
confined layer  106
consistency

Atterberg limits  43–64
bearing capacity  443–444
classification of cohesive soils  43–68
consistency indices  64–68
liquidity index  64–66
plasticity index  64–68
relative consistency index  64–66

consolidated-drained test  252–253,  
267

consolidated-undrained test  250–251, 267, 
479

consolidation  268–318
analytical solution  270–271
average percentage 

consolidation  302–306
bearing capacity  420, 423–426, 453–454, 

460–461
British Standards  530
capillary tension  203–208, 210
coefficient of compressibility  281
coefficient of consolidation  295–300, 302, 

312–313
coefficient of permeability  310
coefficient of volume change  282–286, 

288–289
equipment and test procedure  268–269
estimation of time  294–295
excavation  185–186, 188
flooded state  180
initial compression  311
lateral earth pressure  322
loaded state  175, 177–178
pore pressure isochrones  301–310
pressure-voids ratio curves  270–283, 

286–288, 314–316
primary consolidation  311–312
problems  314–318
rate of consolidation  291–300
secondary consolidation  312–313
settlement  268, 276, 284–291, 311–313, 318, 

420, 423–426, 460–461
shear strength  238, 242–253
Simpson’s rule  562
slopes  513
soil stratification  183
surface loading  139, 169
time from similarity  310–311
total settlement  311–313
typical pore pressure distributions  293–

294, 306–310
variation of pore pressure with time   

292
constant head test  96–98
conversion factors  557–561
core cutter method  28
Coulomb-Mohr theory  220–224
Coulomb’s wedge theories  350–360, 418

effect of static water table  360
point of application  359
procedure for cohesionless soil  351–354
procedure for cohesive soil  354–359

counterfort drains  110
counterfort walls  361
cracks

bearing capacity  423, 454
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effect of surcharge on crack depth  336, 
344–349, 357–359

lateral earth pressure  335–336, 343–349, 
355–359, 378, 414

negative skin friction  454
permeability and seepage  92
slopes  483, 494–497, 499, 501–502
water drainage in  336, 344, 355–356

critical height  350
critical hydraulic gradient  123, 193
critical path length  193
Culmann procedure  351, 353–354, 358, 418
culverts  214–215
cuttings  186–188, 483–488, 508, 513, 528

dams
concrete  113–118, 128–129
earth dams  92, 109–112, 129–134, 248,  

250
Darcy’s Law  93
deep cutting slopes  483–488, 528
deep foundations  439–442
deep trenches

bentonite slurry support  406–412
horizontal bracing  400–406
lateral earth pressure  400–412
pressure distribution against 

sheeting  401–406
trench in clay  407–408
trench in sand  408–412

degree of saturation
compaction  20–21
volume relationships  2, 3–5, 12
weight–volume relationships  12–14

density
bulk density  6, 7–8, 11–12, 29–30, 182
dry density  6, 8, 12, 14, 29–30, 218
mass density  555
permeability and seepage  92, 94
relative density  18–20, 443–445
saturated density  6, 8–9, 12, 201–202, 

205–208, 218
weight density  530
see also submerged density

density index see relative density
density of solids  7, 10, 12
depth of penetration  369–373, 375, 377–384, 

395–397, 542
deviator stress

lateral earth pressure  332
shear strength  240–242, 244–247, 

252–253, 265–267
diaphragm walls  400–412
differential movement  423, 454

differential settlement
bearing capacity  420, 423, 426
surface loading  151

discharge velocity  93–95, 98–99
discontinuities  92
dispersion of pressure  170–172
dissipation of pressure  177–178, 182–183, 189
disturbing moment

Eurocode 7  536–539, 550–551
Simpson’s rule  565
slopes  480, 486–491, 494–501, 504–505, 

514
downward seepage  190–191, 195
drainage

Atterberg limits  68
consolidation  298–302
effective pressure  204
lateral earth pressure  338–340
particle size  77–78

drawdown curve  102–103, 106, 135
see also sudden drawdown

driven piles  446–447, 449, 452, 454, 457
dry density

compaction  29–30
effective pressure  218
weight–volume relationships  6, 8, 12, 14

earth dams
permeability and seepage  92, 109–112, 

129–134
shear strength  248, 250

eccentric loading  169, 468–471
eccentricity  364, 368, 419, 471, 567–569
effective Mohr’s circle  234, 236
effective overburden pressure  421, 425
effective pressure  175–218

artesian pressure  188–189, 196–198, 
216–218

capillary tension  195, 199–213
consolidation  268, 275, 276, 281, 287–288
dissipation and consolidation  175, 177–178, 

180, 182–183, 185–189, 203–210
equilibrium moisture content  204–208, 

211–213
excavation  184–188, 214
flooded state  180–181
graphical representation  181, 184, 202–203
ground water lowering  195, 197–198
lateral earth pressure  325
loaded state  177–180
permeability and seepage  175, 190–195
problems  214–216
pumping of groundwater  195–198
soil suction  208–213
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effective pressure (continued)
stratification of the soil  182–184
typical problems encountered  182–194
unloaded state  175–177

effective size  73
effective stress

analysis of slopes  513–522, 524
British Standards  530
effective pressure  209–210

effective stress path (ESP) 234–238
embankments  110, 129, 293
end-bearing piles  445, 450–451, 454, 

456–457, 460–462, 464–466, 546–547
end-bearing resistance  456–457, 464–465, 

546–547
EQU limit state  531, 532–533, 543–544
equilibrium moisture content  204–208, 

211–213
equipotential lines  111–114
equivalent horizontal coefficient  107–108
equivalent particle diameter  89
equivalent vertical coefficient  107–108
erosion

effective pressure  191–193
Eurocode 7  531
lateral earth pressure  397–400
permeability and seepage  110, 121–129, 138, 

191–193, 397–400, 450
ESP see effective stress path
Eurocode 7  530–551

application of partial factors  531–532, 
534–551

bored concrete piles  546–547
design actions  535–537, 539–541, 543, 

546–547, 550–551
design procedures  531–532
geotechnical design  530, 531–532
gravity retaining walls  543–546
heave and seepage  547–549
limit states  531–536, 539, 543, 545–546, 

548–549
material factors  535–537, 539–541, 543, 

546–547, 550–551
recommended units  530–531
resistance factors  536–539, 543, 546–

547, 550–551
shallow footings  534–536
sheet piles in cohesionless soil  539–542
sudden drawdown in reservoir  549–551
verification procedures  532–533

excavation
compaction of excavated soil  20
effective pressure  184–188, 214
lateral earth pressure  371–373, 400–412

settlement  287–288
shear strength  248, 250
stability of deep trenches  400–412

excess pore pressure
bearing capacity  420, 452
consolidation  291–295, 312–313
effective pressure  177–179, 182–183, 

204–206, 210
shear strength  241–242
typical distributions  293–294, 306–310
variation with time  292, 294–295

expanding soil  320–321
extended Casagrande soil classification  75

factors of safety
bearing capacity  466–467
Eurocode 7  533, 534, 536, 539, 545, 

550–551
lateral earth pressure  362–366, 369–373, 

378–384, 397–400, 410–412
slopes  480–482, 483–501, 505–514, 

524–529
Fadum’s method for surface loading  160, 

162, 165–166
failure envelope

lateral earth pressure  324–329
shear strength  221–222, 225–230, 

242–250, 252–253
failure surfaces

bearing capacity  425–428
lateral earth pressure  326–327, 352–353, 

359
shear strength  221–223, 261
slopes  482–483, 505, 523
see also slip surfaces

falling head test  98–101
Fellenius’ method  438–439, 483–484
field measurement

bearing capacity  443–445
lateral earth pressure  402, 406
permeability and seepage  102–106
shear strength  259–261
site tests of compaction  28–30

field pumping tests  102–106
filter drains  110, 129
filter material  128–129
fissures  92
fixed-earth support method  384–389
flexible footings  168–169
flooded state

effective pressure  180–181
lateral earth pressure  394
shear strength  224
slopes  512, 528
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flow lines  109–114, 128–134
flow nets  108–121, 125–134

application of  114, 121
construction of  113–114, 125–129
earth dams  129–134
equipotential lines  111–114
erosion due to seepage  121, 125–129
flow lines  109–114, 128–134
head loss in flow channels  111
hydraulic gradient  98–99, 116–118, 127
parabolic solution for phreatic 

surface  129–134
seepage flowrate  114–115
seepage force  119–120
seepage pressure  115–118, 127

footings
Atterberg limits  50, 56, 62–64
bearing capacity  420–439, 440–442, 

474–478
circular area loading  156–158
circular footings  435, 437–438, 440–442
effective pressure  194–195
Eurocode 7  534–536
influence of shape on bearing 

capacity  435, 440–442
irregular shape loadings  163–167
permeability and seepage  194–195
pile foundations  445, 450
pressure distribution under 

footings  167–170
rectangular footings  159–163, 435, 

436–439, 440–442
rigidity  167–169
settlement  287–288, 293–294, 317–318
shallow footings  194–195, 534–536
shear strength  250
size, shape and depth of  169, 194–195
square footings  435, 437–438, 440–442, 

477
strip footings  424–439, 440–442, 

474–478, 534–536
surface loading  144–151, 156–170
uniform strip loading  144–151, 172–174

footpaths  529
force units  530
foundation pressure  420–423
foundations

Atterberg limits  50, 56, 68
bearing capacity  420–424, 439–442, 475
depth characteristics  439–442
effective pressure  184–188, 194–195
Eurocode 7  531, 533
particle size  75
settlement  276

shear strength  248, 250, 253
surface loading  139–140
see also pile foundations

Franki system  447
free-body diagrams  523
free-earth support method  376–384
freeze-thaw action  204, 208
French drains  77
friction

bearing capacity  426–428, 434, 444–445, 
449–454, 457–459, 466

Eurocode 7  537–539, 543, 545
lateral earth pressure  352, 363, 368, 410, 

416–419
negative skin friction  449–454, 457–459, 

532
shear strength  220–221, 223, 242, 265
slopes  497–498, 505–508, 514, 523

friction piles  445, 449–454, 457–459, 466

GEO limit state  531, 533, 534–536, 539, 543, 
545–546

geotechnical design  530, 531–532
global factor of safety  534, 536
gravity walls  360–361, 543–546
ground anchors  390
ground surface lowering/raising  452
ground water level (GWL)

bearing capacity  428–434, 443, 446–447, 
449–450, 455, 459–460

capillary tension  199–202
effective pressure  175–176, 182, 184–188, 

195–202, 204–207
lateral earth pressure  319–320, 338, 360, 

393–400, 408–412
slopes  513–517, 523–527

ground water lowering  195, 197–198
grouped piles  465–473

block failure  466–468
eccentric loading  468–471
effects necessitating caution  452
negative skin friction  454
raking piles  472–473
settlement  471–472
stress distribution around piles  455

GWL see ground water level

Harza’s method  124–128
head loss

effective pressure  191
flow channels  111, 115–118, 121, 127
permeability and seepage  111, 115–118, 121, 

127, 191
heave  189, 452, 547–549
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high pressure membrane method  211
horizontal bracing  400–406
horizontal movement  452
horizontal pressure

bearing capacity  446
effective pressure  209
shear strength  220
surface loading  140–142, 146–147, 173–174
see also lateral earth pressure

HYD limit state  531, 533, 549
hydraulic gradient

effective pressure  191–193, 195
Eurocode 7  531
permeability and seepage  98–99, 116–118, 

123, 127
hydrometer analysis  85–91

calibration of the hydrometer  88
dispersing agent correction  87
effective depth  87–88
equivalent particle diameter  89
meniscus correction  86
percentage finer than D  89
reading a hydrometer  86
temperature correction  87

hydrostatic head
consolidation  268
effective pressure  180, 188, 204, 211
lateral earth pressure  319–320, 336–337, 

339, 348, 359–360
permeability and seepage  92, 111, 115–119, 

121–123, 127
slopes  494–495

imperial system of units  556, 558–559
in situ measurements see field 

measurements
infinite slopes  523–527
influence factors  141–142, 151, 159–162, 

164–166
intergranular pressure see effective pressure
irregular shape loadings  163–167
isochrones  301–310, 562
iterative methods  509–513, 519–522

jacked piles  448
Jaky formula  322
jetted piles  449
jettys  215–216
joints  92

laboratory compaction tests  21–26
land reclamation  214–215
lateral earth pressure  319–419

active pressure  320–321, 326–338, 
340–344, 347–348, 356–357, 413–418

anchored sheet pile walls  375–400, 414
bentonite slurry support  406–412
cantilever sheet pile walls  369–375
coefficient of lateral earth pressure   

319–324, 327
Coulomb’s wedge theories  350–360, 418
Culmann procedure  351, 353–354, 358, 

418
effect of surcharge on crack depth  336, 

344–349, 357–359
effects of ground water  393–400
empirical formulae and typical 

values  321–322
fixed-earth support method  384–389
formulae for pure clay  349
free-earth support method  376–384
general formulae  342–349
height of unsupported clay  350
horizontal bracing  400–406
induction by vertical pressures  319–320
passive pressure  320–321, 328–338, 342, 

345–349, 365, 369–370, 378, 416–418
permeability and seepage  393–394, 

397–400
pressure–force diagrams  336–349, 359, 

365–367, 369–370, 379, 383–410, 413
problems  413–419
Rankine’s theory of cohesionless soil  324–

333, 342
Rankine–Bell theory  334–336, 342–349
resistance to active expansion  320–321
sheet piles  368–400, 414
stability of deep trenches  400–412
stability of retaining walls  360–368, 413
stress path representation  322–325, 

330–333
tension cracks  335–336, 343–349, 

355–359, 378, 414
wall supporting sloping surface  342, 

350–360, 418
water drainage in cracks  336, 344, 

355–356
limit states  531–536, 539, 543, 545–546, 

548–549
linear dispersion of pressure  170–172
liquid limit  43–48
liquidity index  64–66
load-carrying capacity  455–465

allowable carrying capacity  458, 460
end-bearing resistance  456–457, 

464–465
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estimation techniques  455–456
negative skin friction  457–459
shaft resistance  457, 461–463, 465
static formulae  456
ultimate carrying capacity  458, 462, 467

load-settlement curves  424–425
long-term stability  479

mass  530, 552–555
mass density  555
maximum bending moment  374–375, 

387–389
Mayne-Kulhawy formula  322
method of slices  483, 488–491, 501, 513–517
method of successive approximation  509–

513, 519–522
Meyerhof’s bearing capacity factors  433, 

439–441
Middle Third Rule  363
Mitchell’s solution for surface 

loading  144–147
moderately deep foundations  439–442
modulus of elasticity  311
Mohr’s circle diagrams

lateral earth pressure  324–325, 334–335
shear strength  220–225, 227–232, 

234–236, 242, 246, 255
moisture content

compaction  21–22, 25
consistency indices  64–68
consolidation  270–275
effective pressure  204–208, 211–213
linear shrinkage and swelling  59–64
liquid limit  43–48
optimum moisture content  17–18, 21–22, 25
plastic limit  48–49
pycnometers  35–38
relationship between Atterberg 

limits  57–64
saturation limit  56–58
shear strength  223–224
shrinkage limit  50–56, 57–64
swelling of cohesive soils  56
weight–volume relationships  11–12, 17–20, 

35–38
moment units  530
multiplier prefixes  557

NCC see normally consolidated clay
negative skin friction  449–454, 457–459, 

532
net foundation pressure  421
net pressure diagrams  379, 384–389, 394

net ultimate bearing capacity  421–422
neutral pressure  180
Newmark’s method for surface loading   

163–167, 174
normally consolidated clay (NCC)

lateral earth pressure  322, 323–324, 403
pressure-voids ratio curves  279–280, 313
shear strength  248–249, 251, 263
slopes  513

OCC see overconsolidated clay
oedometer tests

coefficient of compressibility  281
coefficient of volume change  282–286, 

288–289
direct methods  282–285, 289–291
effective pressure  204–207
equipment and test procedure  268–269
pressure-voids ratio curves  270–283, 

286–288
problems  314–316, 318
rate of consolidation  291–300
settlement  284–291

one-way drainage  298–300
open capillary fringe  199–200
open cuts  186–188
optimum moisture content  17–18, 21–22, 25
overburden pressure

bearing capacity  421, 425, 456–457, 
460–461

consolidation  279–280
effective pressure  175–176, 181, 184, 188, 

192
lateral earth pressure  319–320
shear strength  250, 263–264
surface loading  170, 172

overcompaction  28
overconsolidated clay (OCC)

lateral earth pressure  322
pressure-voids ratio curves  279–282,  

313
shear strength  248–251, 263–264

overstressing of soil  363–364
overturning moment  340, 344, 353, 362, 

366, 543–544

parabolic solution for phreatic 
surface  129–134

parallel anchor walls  390–393
partial factors  531–532, 534–551
partially saturated soils see degree of 

saturation; saturation
partially submerged slopes  503–504
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particle size
classification of cohesive soils  69–91
combination of materials  78–85
curve characteristics  72–73
effective pressure  200
effective size  73, 89
filter design for particle size 

analysis  74–77
permeability and seepage  92
problems  91
recursive procedure  70–73
sedimentation tests  85–91
sieve analysis  69–73
standard procedure  69–70
typical practical problems  77–78
uniformity coefficient  73–74

particle specific gravity see specific gravity
passive compression  322–323
passive pressure  320–321, 328–338, 342, 

345–349, 365, 369–370, 378, 416–418
pavement  204–208
peak strength  262
penetration depth  369–373, 375, 377–384, 

395–397, 542
permeability and seepage  92–138

bearing capacity  450
British Standards  530–531, 533
coefficient of permeability  92–93, 95–102, 

104–106, 310
confined layer under artesian 

pressure  106
consolidation  310
constant head test  96–98
Darcy’s Law  93
definition and soil characteristics  92
determination of coefficient of 

permeability  96–101
discharge velocity  93–95, 98–99
effective pressure  175, 190–195
equipotential lines  111–114
erosion and washout  110, 121–129, 138, 

191–192, 397–400, 450
Eurocode 7  531, 533, 547–549
falling head test  98–101
field pumping tests  102–106
flow lines  109–114, 128–134
flow nets  108–121, 125–134
Harza’s method  124–128
head loss in flow channels  111, 115–118, 121, 

127
hydraulic gradient  98–99, 116–118, 123, 127
lateral earth pressure  393–394, 397–400
parabolic solution for phreatic 

surface  129–134

prevention of piping  128–129
problems  135–138
radius of influence  104–105
seepage flowrate  114–115
seepage force  119–120
seepage pressure  115–118, 121–123, 127
seepage velocity  94–95, 119
slopes  523
stratified soil  107–108
unconfined layer  101–104

phreatic surface
flow lines  110, 112, 129–134
slopes  513, 515–517

piezometric level
effective pressure  175–176, 190–191, 

194–198
permeability and seepage  96, 98–101, 106, 

111, 135–136
pile foundations  445–473

block failure of pile groups  466–468
bored piles  448–449, 451–452, 457, 475
driven piles  446–447, 449, 452, 454, 457
eccentric loading of pile groups  468–471
effects necessitating caution  451–453
end-bearing resistance  456–457, 

464–465
Eurocode 7  532, 546–547
group of piles  452, 454, 455, 465–473
influence of pile section  465
jacked piles  448
jetted piles  449
load-carrying capacity  455–465
negative skin friction  449–454, 457–459
raking piles  472–473
reasons for choosing  449–451
reasons for not choosing  451
screwed piles  448
settlement of pile groups  471–472
shaft resistance  457, 461–463, 465
special applications  446, 451
static formulae  456
stress distribution around piles  455
transmission of load  445
vibrated piles  449

pipelines  400–412
pipette analysis  85
piping

effective pressure  191–193
Eurocode 7  531
Harza’s method  124–128
lateral earth pressure  397–400
permeability and seepage  121–129, 138, 

191–193, 397–400
prevention of piping  128–129
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Pisa, leaning tower of  291
plane of failure see failure plane
planimetric method  483–488, 500
plastic deformation  219, 424–425
plastic failure  324
plastic limit  48–49
plastic state  424–425
plasticity index

cohesive soils  64–68
effective pressure  208
lateral earth pressure  322
shear strength  264

poling boards  401
pore pressure

artesian pressure  189
bearing capacity  420, 452
British Standards  530
capillary tension  202, 204–206, 208–211
consolidation  291–295, 306–310, 312–313
definition  175
excavation  186–187
flooded state  180–181
isochrones  301–310, 562
lateral earth pressure  336, 350
loaded state  177–179, 214–215
permeability and seepage  190–191, 

193–195
pumping of ground water  195–198
shear strength  234, 240–242, 249, 

266–267
Simpson’s rule  562
slopes  513–520
soil stratification  182–183
typical distributions  293–294, 306–310, 

317
unloaded state  176–177
variation with time  292, 294–295
see also excess pore pressure

porosity
effective pressure  218
permeability and seepage  92, 94
volume relationships  2, 3, 12

pressure at depth
bulb of pressure diagrams  147–151, 157–158
circular area loading  156–158
concentrated line loads  142–144
concentrated point loads  140–142
effective pressure  175–218
flooded state  180–181
irregular shape loadings  163–167
linear dispersion of pressure  170–172
loaded state  177–180
pressure distribution under 

footings  167–170

problems  173–174
rectangular footings  159–163
surface load of limited size  139
surface loading  139–174
triangular strip loads  151–156
uniform overburden  139
uniform strip loading  144–151, 172–174
unloaded state  175–177

pressure units  530–531
pressure-voids ratio curves

alternative conventional 
procedure  274–275

analytical solution  270–271
coefficient of compressibility  281
coefficient of volume change  282–283
consolidation  270–283, 284–288
effective pressure  204
equation of the curve  271–274
forms of the curve  279–281
graphical solution  276–279
problems  314–316
settlement  284–288

pressure–force diagrams
deep trenches  401–410
general formulae  342–349
lateral earth pressure  336–349, 359, 

365–367, 369–370, 379, 383–410
point of application  359
rectangular diagram for surcharge 

only  338–339
sheet piles  369–370, 379, 383–392
stability of retaining walls  365–367, 413
triangular diagram for uniform soil  337, 

339
triangular diagram for water  337

presumed bearing values  424
principal stresses  221, 240
pumping of groundwater  195–198
pycnometers  35–38
p–q diagram  224–225

quick condition see piping
quick-undrained test  248–250, 267, 479

radial procedure  483, 491–494, 513–517
radius of influence  104–105
raking piles  390, 472–473
Rankine’s theory of cohesionless soil  324–

333, 342, 402
Rankine–Bell theory  334–336, 342–349
reconsolidation  454
rectangular footings  159–163
relative compaction  27
relative consistency index  64–66
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relative density  18–20, 443–445
remoulded soils  256–261
reservoirs

permeability and seepage  92, 109–115, 
128–134

sudden drawdown  549–551
residual shear strength  261–263
resistance to active expansion  320–321
resisting moment

Eurocode 7  536–539, 550–551
lateral earth pressure  362, 366
Simpson’s rule  565
slopes  480, 486–491, 497–501, 504–505, 

514
resultant force  567–569
retaining walls

anchored sheet pile walls  375–400, 414
buttress and counterfort walls  361
cantilever sheet pile walls  369–375
cantilever walls  361
checks against failure  362–368
Coulomb’s wedge theories  350–360, 418
Culmann procedure  351, 353–354, 358, 

418
effects of ground water  393–400
Eurocode 7  543–546
fixed-earth support method  384–389
formulae for pure clay  349
free-earth support method  376–384
general formulae  342–349
gravity walls  360–361, 543–546
height of unsupported clay  350
lateral earth pressure  324–329, 334–375, 

413–419
overstressing of soil  363–364
overturning moment  340, 344, 353, 362, 

366
particle size  77
pressure–force diagrams  336–349, 359, 

365–367, 369–370, 379, 383–400, 413
Rankine’s theory of cohesionless soil   

324–329, 402
Rankine–Bell theory  334–336, 342–349
resultant force and eccentricity  567–569
shear strength  250, 253
sheet piles  368–400, 414
sliding  362–363, 366
slopes  529
stability of  360–368, 413
supporting sloping surface  342, 350–360, 

418
tension in brickwork  364–368

rigid footings  168–169
ring shear apparatus  263

roads
effective pressure  204–208
lateral earth pressure  419
particle size  78

roof slabs  423
roots  50, 56, 62–64
rupture surfaces  326–327
rupture zones  425–428

safe bearing capacity  422, 426, 429–433, 
436, 440–441

safe net bearing capacity  422
sample preparation  530
sand replacement method  29–30
saturated density

capillary tension  201–202, 205–208
effective pressure  201–202, 205–208, 218
weight–volume relationships  6, 8–9, 12

saturation
capillary tension  200–201, 204
cohesive soils  56–58
compaction  20–21
effective pressure  175–181, 193–194, 

200–201, 204, 218
lateral earth pressure  408–410
shear strength  224, 234–238, 240–251
slopes  483–488, 497–499, 512–513, 

526–527
volume relationships  2, 3–5, 12
weight–volume relationships  12–14

saturation limit  56–58
screwed piles  448
sedimentation processes  322
sedimentation tests  85–91

calibration of the hydrometer  88
dispersing agent correction  87
effective depth  87–88
equivalent particle diameter  89
hydrometer analysis  85–91
meniscus correction  86
percentage finer than D  89
pipette analysis  85
reading a hydrometer  86
temperature correction  87

seepage
bearing capacity  450
downward seepage  190–191, 195
effective pressure  175, 190–195
erosion due to  110, 121–129, 138, 191–193, 

397–400, 450
Eurocode 7  531, 533, 547–549
lateral earth pressure  393–394, 397–400
seepage flowrate  114–115
seepage force  119–120
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seepage pressure  115–118, 121–123, 127, 191, 
193–194

seepage velocity  94–95, 119
shallow footings  194–195
slopes  523
upward seepage  191–195
see also permeability and seepage

semi-graphical method  508–509
sensitivity  259–260, 263, 451
settlement

bearing capacity  420, 423–426, 460, 
471–472

coefficient of volume change  284–286, 
288–289

consolidation  268, 276, 284–291
differential  151
effective pressure  188
estimation of  284–291
grouped piles  471–472
initial compression  311
pressure-voids ratio curves  284–288
primary consolidation  311–312
problems  318
secondary consolidation  312–313
surface loading  139, 151
total settlement  311–313

shaft resistance  457, 461–463, 465, 
546–547

shallow footings
bearing capacity  424–439, 442, 450
Eurocode 7  534–536
permeability and seepage  194–195

shallow foundations  439–442, 475
shear failure  424–425
shear strength  219–267

apparent cohesion  224
bearing capacity  420, 462
Coulomb-Mohr theory  220–224
definition  219
effective Mohr’s circle  234, 236
effective pressure  203, 209
effective stress path  234–238
failure envelope  221–222, 225–230, 

242–250, 252–253
friction and cohesion  220, 223–224, 228, 

242
lateral earth pressure  335
measurement of  231, 233, 238–263
Mohr’s circle diagrams  220–225, 227–232, 

234–236, 242, 246, 255
plastic deformation  219
problems  265–267
p–q diagram  224–225
residual shear strength  261–263

saturation  224, 234–238, 240
slip surfaces  222
slopes  479, 480, 497, 507–508
standard shear box test  256–259
stress path method  224–233
stresses on the plane of failure  221–223
thrixotropy  263
triaxial tests  231, 233, 238–255, 265–267
unconfined compression tests  253–255
undrained cohesion and overburden 

pressure  263–264
Vane shear test  259–261

shear stress
bearing capacity  420, 424
effective pressure  189, 192
lateral earth pressure  327, 329, 407–408
slopes  524
surface loading  141–147, 174

sheet pile walls  190
sheet piles  368–400, 414

anchored sheet pile walls  375–400, 414
bending of sheet piles  374–375, 387–389
cantilever sheet pile walls  369–375
cohesionless soils  370–371, 376–378, 

395–397, 539–542
cohesive soils  375, 378–384
effects of ground water  393–400
Eurocode 7  539–542
factors of safety  370–373, 378–384, 

397–400
fixed-earth support method  384–389
free-earth support method  376–384
penetration depth  369–373, 375, 377–384, 

395–397
permeability and seepage  125–129
tie rod length and anchor stability  390–

393, 395–397
short-term stability  479
shrinkage

cohesive soils  50–56, 57–64, 68
effective pressure  204, 208

SI see Système Internationale
sieve analysis  69–73
Simpson’s rule  302, 562–566
site tests of compaction  28–30
Skempton’s bearing capacity factors  311, 

440, 442
sliding

Eurocode 7  543, 545
lateral earth pressure  362–363, 366

slip surfaces
bearing capacity  425–428
lateral earth pressure  326–327, 351–359, 

407–408, 415–418
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slip surfaces (continued)
shear strength  222
slopes  480, 482–483, 485–501, 514, 523, 

528–529
slopes  479–529

Bishop’s conventional method  518–519
Bishop’s rigorous iterative 

method  519–522
cohesionless soils  525
cohesive soils  480–522
effective stress analysis  513–522, 524
Eurocode 7  531, 533, 536–539
factors of safety  480–482, 483–501, 

505–514, 524–529
homogeneous pure clay  480–497, 515, 

528–529
infinite slopes  523–527
lateral earth pressure  342, 350–360, 418
method of slices  483, 488–491, 501, 

513–517
method of successive 

approximation  509–513
partially saturated cohesive soil  483, 

497–499
particle size  78
permeability and seepage  110, 523
planimetric method  483–488, 500
problems  528–529
radial procedure  483, 491–494, 513–517
retaining walls  529
short-term and long-term stability  479
Simpson’s rule  562
slip surfaces  460, 482–483, 485–501, 514, 

523
stability of  479–529, 536–539, 562
stratified slopes  500–501
submerged slopes  501–504, 512, 528
Taylor’s stability numbers  505–513, 528
tension cracks  483, 494–497, 499, 

501–502
total stress analysis  480–511

soil sample preparation  530
soil stabilization  21
soil structure  1–42

bulk density  6, 7–8, 11–12
California Bearing Ratio test  22, 30–35
compaction  20–35
compactive effort  27
degree of saturation  2, 3–5, 12–14
density of solids  7, 10, 12
dry density  6, 8, 12, 14
laboratory compaction tests  21–26
moisture content  11–12, 17–18, 21–22, 25
permeability and seepage  92

porosity  2, 3, 12
practical considerations  26–27
problems  39–42
pycnometers  35–38
relative compaction  27
relative density  18–20
saturated density  6, 8–9, 12
site tests of compaction  28–30
specific gravity  10–11, 35–38
submerged density  7, 9–10, 12, 14
under- and over-compaction  28
voids ratio  2–3, 12, 18–20
volume relationships  1–6, 12
weight–volume relationships  6–20,  

35–38
soil suction  208–213

effective stress  209–210
equilibrium moisture content  211–213
soil suction index  210–211

specific gravity
Atterberg limits  51
pycnometers  35–38
weight–volume relationships  10–11, 35–38

SPT see standard penetration test
square footings  435, 437–438, 440–442, 

477
standard penetration test (SPT) 443–445, 

459–460, 464–465
standard shear box test  256–259
standpipes  96, 98–101, 106, 111, 135–136
steel bracing  401, 406
Steinbrenner’s method for surface 

loading  159–163
stiffness units  530
STR limit state  531, 533, 534–536
stratified soil

effective pressure  182–184
permeability and seepage  107–108
slopes  500–501

strength units  530
stress path method  224–233

effective stress path  234–238
failure envelope  225–230
lateral earth pressure  322–325, 330–333
p–q diagram  224–225
total stress path  225, 228–237
variation of stress path  231–233

stress units  530
strip footings

bearing capacity  424–439, 440–442, 
474–478

Eurocode 7  534–536
surface loading  144–151
see also uniform strip loading
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structural equilibrium  531, 532–533
structural failure  531, 533
submerged density

bearing capacity  428
effective pressure  194–195, 217–218
lateral earth pressure  393, 397–400
weight–volume relationships  7, 9–10, 12, 14

submerged slopes  501–504, 512, 528
successive approximation methods  509–513, 

519–522
sudden drawdown  512, 528, 549–551
sunken parallel anchor walls  391–393
superstructures  169, 531, 533
supported beams  423
surcharge load

effective pressure  190, 206, 209
lateral earth pressure  336, 344–349, 

357–359
surface loading  139–174

bulb of pressure diagrams  147–151, 157–158
circular area loading  156–158
concentrated line loads  142–144
concentrated point loads  140–142
effective pressure  177–180, 182–184, 

204–209
irregular shape loadings  163–167
linear dispersion of pressure  170–172
pressure at depth  139–174
pressure distribution under 

footings  167–170
problems  173–174
rectangular footings  159–163
surface load of limited size  139–140
triangular strip loads  151–156
uniform overburden  139
uniform strip loading  144–151, 172–174

surface tension  224
see also capillary tension

surface toe drains/filters  110
swelling

cohesive soils  56, 58–64, 68
effective pressure  188, 204, 208
pressure-voids ratio curves  271–274

Système Internationale (SI) units  530–531, 
553, 556, 558–559

Taylor’s stability numbers  505–513, 528
tension cracks

effect of surcharge on crack depth  336, 
344–349, 357–359

lateral earth pressure  335–336, 343–349, 
355–359, 378, 414

slopes  483, 494–497, 499, 501–502
water drainage in  336, 344, 355–356

Terzaghi’s equation  425–428, 432, 435, 439, 
474–475

thixotropy  263, 406
tie rods  390–393, 395–397
timber bracing  401, 403–406
toe drains/filters  110
torque  261
total excess pore pressure  241–242
total pressure

artesian pressure  189
bearing capacity  420, 436
capillary tension  209
definition  175
excavation  185
flooded state  180
loaded state  179
permeability and seepage  191, 193
shear strength  235
soil stratification  183

total settlement  311–313
total stress path (TSP) 225, 228–237
total stress testing

analysis of slopes  480–511
British Standards  530

totally submerged slopes  501–503
tree roots  50, 56, 62–64
trenches see deep trenches
triangular strip loads  151–156
triaxial tests

applications  248, 250–251, 253
consolidated-drained test  252–253, 267
consolidated-undrained test  250–251, 267
quick-undrained test  248–250, 267
settlement  311
shear strength  231, 233, 238–253, 

265–267
slopes  479
total excess pore pressure  241–242
unconfined compression tests  253–255
unconsolidated-undrained tests  242–248
variation of pore pressure  240–241

TSP see total stress path
two-way drainage  298–302

ultimate bearing capacity  421–422, 424, 
425–428, 440–441, 466

ultimate carrying capacity  458, 462, 
467–468

unconfined compression tests  253–255
unconfined compressive strength  443–444
unconfined layer  102–104
unconsolidated-undrained tests  242–248
undercompaction  28
underpaths  419
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uniform overburden  139
uniform strip loading

pressure at depth  144–151, 172–174
settlement  293–294, 317

uniformity coefficient  73–74
unity brackets  557, 560–561
unsupported clay  350
UPL limit state  531, 533, 548
uplift pressure

effective pressure  189, 192
Eurocode 7  531, 533, 548
permeability and seepage  116, 123,  

136–137
upward pull  446
upward seepage  191–195

Vane shear test  259–261
verification procedures  532–533
vertical movement  452
vertical pressure

bearing capacity  445–446
effective pressure  185, 209
induction of horizontal pressures   

319–320
shear strength  220, 240
surface loading  139, 140–142, 146–147, 

151–167, 173–174
vibrated piles  449
vibrating hammer test  22
Virgin consolidation curves  279–280
voids

degree of saturation  2, 3–5, 12
effective pressure  175–176
relative density  18–20

volume relationships  1–6, 12
see also porosity

voids ratio
Atterberg limits  52–56
consolidation  268, 270–283
effective pressure  204–205
permeability and seepage  92, 94
pressure-voids ratio curves  204, 270–283
shear strength  249–250
soil structure  2–3, 12, 18–20

volume relationships
degree of saturation  2, 3–5, 12
porosity  2, 3, 12
soil structure  1–6, 12
voids ratio  2–3, 12

washout  110, 194, 450
water table see ground water level
wedge theories see Coulomb’s wedge 

theories
weepholes  338
weight  552–555
weight density  530
weight–volume relationships

bulk density  6, 7–8, 11–12
degree of saturation  12–14
density of solids  7, 10, 12, 14
dry density  6, 8, 12
moisture content  11–12, 17–18, 35–38
relative density  18–20
saturated density  6, 8–9, 12
soil structure  6–20
specific gravity  10–11, 35–38
submerged density  7, 9–10, 12, 14
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