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Chapter |

Numerical recipes for
reliability analysis — a primer

Kok-Kwang Phoon

I.I Introduction

Currently, the geotechnical community is mainly preoccupied with the tran-
sition from working or allowable stress design (WSD/ASD) to Load and
Resistance Factor Design (LRFD). The term LRFD is used in a loose way
to encompass methods that require all limit states to be checked using a
specific multiple-factor format involving load and resistance factors. This
term is used most widely in the United States and is equivalent to Limit
State Design (LSD) in Canada. Both LRFD and LSD are philosophically
akin to the partial factors approach commonly used in Europe, although a
different multiple-factor format involving factored soil parameters is used.
Over the past few years, Eurocode 7 has been revised to accommodate three
design approaches (DAs) that allow partial factors to be introduced at the
beginning of the calculations (strength partial factors) or at the end of the
calculations (resistance partial factors), or some intermediate combinations
thereof. The emphasis is primarily on the re-distribution of the original global
factor safety in WSD into separate load and resistance factors (or partial
factors).

It is well accepted that uncertainties in geotechnical engineering design are
unavoidable and numerous practical advantages are realizable if uncertain-
ties and associated risks can be quantified. This is recognized in a recent
National Research Council (2006) report on Geological and Geotechni-
cal Engineering in the New Millennium: Opportunities for Research and
Technological Innovation. The report remarked that “paradigms for dealing
with ... uncertainty are poorly understood and even more poorly practiced”
and advocated a need for “improved methods for assessing the potential
impacts of these uncertainties on engineering decisions ...”. Within the arena
of design code development, increasing regulatory pressure is compelling
geotechnical LRFD to advance beyond empirical re-distribution of the orig-
inal global factor of safety to a simplified reliability-based design (RBD)
framework that is compatible with structural design. RBD calls for a willing-
ness to accept the fundamental philosophy that: (a) absolute reliability is an
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unattainable goal in the presence of uncertainty, and (b) probability theory
can provide a formal framework for developing design criteria that would
ensure that the probability of “failure” (used herein to refer to exceeding
any prescribed limit state) is acceptably small. Ideally, geotechnical LRFD
should be derived as the logical end-product of a philosophical shift in mind-
set to probabilistic design in the first instance and a simplification of rigorous
RBD into a familiar “look and feel” design format in the second. The need
to draw a clear distinction between accepting reliability analysis as a nec-
essary theoretical basis for geotechnical design and downstream calibration
of simplified multiple-factor design formats, with emphasis on the former,
was highlighted by Phoon ef al. (2003b). The former provides a consis-
tent method for propagation of uncertainties and a unifying framework
for risk assessment across disciplines (structural and geotechnical design)
and national boundaries. Other competing frameworks have been suggested
(e.g. A-method by Simpson et al., 1981; worst attainable value method by
Bolton, 1989; Taylor series method by Duncan, 2000), but none has the
theoretical breadth and power to handle complex real-world problems that
may require nonlinear 3D finite element or other numerical approaches for
solution.

Simpson and Yazdchi (2003) proposed that “limit state design requires
analysis of un-reality, not of reality. Its purpose is to demonstrate that
limit states are, in effect, unreal, or alternatively that they are ‘sufficiently
unlikely,” being separated by adequate margins from expected states.” It is
clear that limit states are “unlikely” states and the purpose of design is to
ensure that expected states are sufficiently “far” from these limit states. The
pivotal point of contention is how to achieve this separation in numerical
terms (Phoon et al., 1993). It is accurate to say that there is no consensus on
the preferred method and this issue is still the subject of much heated debate
in the geotechnical engineering community. Simpson and Yazdchi (2003)
opined that strength partial factors are physically meaningful, because “it is
the gradual mobilisation of strength that causes deformation.” This is con-
sistent with our prevailing practice of applying a global factor of safety to
the capacity to limit deformations. Another physical justification is that vari-
ations in soil parameters can create disproportionate nonlinear variations in
the response (or resistance) (Simpson, 2000). In this situation, the author felt
that “it is difficult to choose values of partial factors which are applicable
over the whole range of the variables.” The implicit assumption here is that
the resistance factor is not desirable because it is not practical to prescribe
a large number of resistance factors in a design code. However, if main-
taining uniform reliability is a desired goal, a single partial factor for, say,
friction angle would not produce the same reliability in different problems
because the relevant design equations are not equally sensitive to changes in
the friction angle. For complex soil-structure interaction problems, apply-
ing a fixed partial factor can result in unrealistic failure mechanisms. In fact,
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given the complexity of the limit state surface, it is quite unlikely for the
same partial factor to locate the most probable failure point in all design
problems. These problems would not occur if resistance factors are cali-
brated from reliability analysis. In addition, it is more convenient to account
for the bias in different calculation models using resistance factors. How-
ever, for complex problems, it is possible that a large number of resistance
factors are needed and the design code becomes too unwieldy or confusing to
use. Another undesirable feature is that the engineer does not develop a feel
for the failure mechanism if he/she is only required to analyze the expected
behavior, followed by application of some resistance factors at the end of
the calculation.

Overall, the conclusion is that there are no simple methods (factored
parameters or resistances) of replacing reliability analysis for sufficiently
complex problems. It may be worthwhile to discuss if one should insist
on simplicity despite all the known associated problems. The more recent
performance-based design philosophy may provide a solution for this
dilemma, because engineers can apply their own calculations methods for
ensuring performance compliance, without being restricted to following rigid
design codes containing a few partial factors. In the opinion of the author,
the need to derive simplified RBD equations perhaps is of practical impor-
tance to maintain continuity with past practice, but it is not necessary and
it is increasingly fraught with difficulties when sufficiently complex prob-
lems are posed. The limitations faced by simplified RBD have no bearing on
the generality of reliability theory. This is analogous to arguing that limita-
tions in closed-form elastic solutions are related to elasto-plastic theory. The
application of finite element softwares on relatively inexpensive and power-
ful PCs (with gigahertz processors, a gigabyte of memory, and hundreds of
gigabytes — verging on terabyte — of disk) permit real-world problems to be
simulated on an unprecedented realistic setting almost routinely. It suffices
to note here that RBD can be applied to complex real-world problems using
powerful but practical stochastic collocation techniques (Phoon and Huang,
2007).

One common criticism of RBD is that good geotechnical sense and judg-
ment would be displaced by the emphasis on probabilistic analysis (Boden,
1981; Semple, 1981; Bolton, 1983; Fleming, 1989). This is similar to the on-
going criticism of numerical analysis, although this criticism seems to have
grown more muted in recent years with the emergence of powerful and user-
friendly finite element softwares. The fact of the matter is that experience,
sound judgment, and soil mechanics still are needed for all aspects of geotech-
nical RBD (Kulhawy and Phoon, 1996). Human intuition is not suited for
reasoning with uncertainties and only this aspect has been removed from the
purview of the engineer. One example in which intuition can be misleading
is the common misconception that a larger partial factor should be assigned
to a more uncertain soil parameter. This is not necessarily correct, because
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the parameter may have little influence on the overall response (e.g. capacity,
deformation). Therefore, the magnitude of the partial factor should depend
on the uncertainty of the parameter and the sensitivity of the response to
that parameter. Clearly, judgment is not undermined; instead, it is focused
on those aspects for which it is most suited.

Another criticism is that soil statistics are not readily available because
of the site-specific nature of soil variability. This concern only is true for
total variability analyses, but does not apply to the general approach where
inherent soil variability, measurement error, and correlation uncertainty are
quantified separately. Extensive statistics for each component uncertain-
ties have been published (Phoon and Kulhawy, 1999a; Uzielli et al., 2007).
For each combination of soil type, measurement technique, and correlation
model, the uncertainty in the design soil property can be evaluated systemat-
ically by combining the appropriate component uncertainties using a simple
second-moment probabilistic approach (Phoon and Kulhawy, 1999b).

In summary, we are now at the point where RBD really can be used as
a rational and practical design mode. The main impediment is not theoret-
ical (lack of power to deal with complex problems) or practical (speed of
computations, availability of soil statistics, etc.), but the absence of simple
computational approaches that can be easily implemented by practitioners.
Much of the controversies reported in the literature are based on qualitative
arguments. If practitioners were able to implement RBD easily on their PCs
and calculate actual numbers using actual examples, they would gain a con-
crete appreciation of the merits and limitations of RBD. Misconceptions will
be dismissed definitively, rather than propagated in the literature, generating
further confusion. The author believes that the introduction of powerful but
simple-to-implement approaches will bring about a greater acceptance of
RBD amongst practitioners in the broader geotechnical engineering commu-
nity. The Probabilistic Model Code was developed by the Joint Committee
on Structural Safety (JCSS) to achieve a similar objective (Vrouwenvelder
and Faber, 2007).

The main impetus for this book is to explain RBD to students and
practitioners with emphasis on “how to calculate” and “how to apply.”
Practical computational methods are presented in Chapters 1, 3, 4 and 7.
Geotechnical examples illustrating reliability analyses and design are pro-
vided in Chapters 5, 6, 8-13. The spatial variability of geomaterials is
one of the distinctive aspects of geotechnical RBD. This important aspect
is covered in Chapter 2. The rest of this chapter provides a primer on
reliability calculations with references to appropriate chapters for follow-
up reading. Simple MATLAB codes are provided in Appendix A and
at http://www.eng.nus.edu.sg/civil/people/cvepkk/prob_lib.html. By focus-
ing on demonstration of RBD through calculations and examples, this
book is expected to serve as a valuable teaching and learning resource for
practitioners, educators, and students.



Numerical recipes for reliability analysis 5

1.2 General reliability problem

The general stochastic problem involves the propagation of input uncer-
tainties and model uncertainties through a computation model to arrive
at a random output vector (Figure 1.1). Ideally, the full finite-dimensional
distribution function of the random output vector is desired, although par-
tial solutions such as second-moment characterizations and probabilities of
failure may be sufficient in some applications. In principle, Monte Carlo
simulation can be used to solve this problem, regardless of the complexi-
ties underlying the computation model, input uncertainties, and/or model
uncertainties. One may assume with minimal loss of generality that a com-
plex geotechnical problem (possibly 3D, nonlinear, time and construction
dependent, etc.) would only admit numerical solutions and the spatial
domain can be modeled by a scalar/vector random field. Monte Carlo
simulation requires a procedure to generate realizations of the input and
model uncertainties and a numerical scheme for calculating a vector of
outputs from each realization. The first step is not necessarily trivial and
not completely solved even in the theoretical sense. Some “user-friendly”
methods for simulating random variables/vectors/processes are outlined in
Section 1.3, with emphasis on key calculation steps and limitations. Details
are outside the scope of this chapter and given elsewhere (Phoon, 2004a,
2006a). In this chapter, “user-friendly” methods refer to those that can
be implemented on a desktop PC by a non-specialist with limited pro-
gramming skills; in other words, methods within reach of the general
practitioner.

Model errors

|————|
Uncertain Computation Uncertain
input vector model output vector

o

Uncertain model
parameters

Figure 1.] General stochastic problem.
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The second step is identical to the repeated application of a determin-
istic solution process. The only potential complication is that a particular
set of input parameters may be too extreme, say producing a near-collapse
condition, and the numerical scheme may become unstable. The statistics
of the random output vector are contained in the resulting ensemble of
numerical output values produced by repeated deterministic runs. Fenton
and Griffiths have been applying Monte Carlo simulation to solve soil-
interaction problems within the context of a random field since the early
1990s (e.g. Griffiths and Fenton, 1993, 1997, 2001; Fenton and Griffiths,
1997, 2002, 2003). Popescu and co-workers developed simulation-based
solutions for a variety of soil-structure interaction problems, particularly
problems involving soil dynamics, in parallel. Their work is presented in
Chapter 6 of this book.

For a sufficiently large and complex soil-structure interaction problem,
it is computationally intensive to complete even a single run. The rule-of-
thumb for Monte Carlo simulation is that 10/p; runs are needed to estimate
a probability of failure, p;, within a coefficient of variation of 30%. The
typical p; for a geotechnical design is smaller than one in a thousand and
it is expensive to run a numerical code more than ten thousand times, even
for a modest size problem. This significant practical disadvantage is well
known. At present, it is accurate to say that a computationally efficient and
“user-friendly” solution to the general stochastic problem remains elusive.
Nevertheless, reasonably practical solutions do exist if the general stochastic
problem is restricted in some ways, for example, accept a first-order esti-
mate of the probability of failure or accept an approximate but less costly
output. Some of these probabilistic solution procedures are presented in
Section 1.4.

1.3 Modeling and simulation of stochastic data
1.3.1 Random variables

Geotechnical uncertainties

Two main sources of geotechnical uncertainties can be distinguished. The
first arises from the evaluation of design soil properties, such as undrained
shear strength and effective stress friction angle. This source of geotechni-
cal uncertainty is complex and depends on inherent soil variability, degree
of equipment and procedural control maintained during site investigation,
and precision of the correlation model used to relate field measurement
with design soil property. Realistic statistical estimates of the variability of
design soil properties have been established by Phoon and Kulhawy (1999a,
1999b). Based on extensive calibration studies (Phoon et al., 19935), three
ranges of soil property variability (low, medium, high) were found to be
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sufficient to achieve reasonably uniform reliability levels for simplified RBD
checks:

Geotechnical parameter Property variability ~ COV (%)
Undrained shear strength Low 10-30
Medium 30-50
High 50-70
Effective stress friction angle Low 5-10
Medium 10-15
High 15-20
Horizontal stress coefficient Low 30-50
Medium 50-70
High 70-90

In contrast, Réthdti (1988), citing the 19635 specification of the American
Concrete Institute, observed that the quality of concrete can be evaluated in
the following way:

Quality COV (%)
Excellent <10
Good 10-15
Satisfactory 15-20
Bad > 20

It is clear that the coefficients of variations or COVs of natural geomaterials
can be much larger and do not fall within a narrow range. The ranges of
quality for concrete only apply to the effective stress friction angle.

The second source arises from geotechnical calculation models. Although
many geotechnical calculation models are “simple,” reasonable predictions
of fairly complex soil-structure interaction behavior still can be achieved
through empirical calibrations. Model factors, defined as the ratio of the
measured response to the calculated response, usually are used to correct
for simplifications in the calculation models. Figure 1.2 illustrates model
factors for capacity of drilled shafts subjected to lateral-moment loading.
Note that “S.D.” is the standard deviation, “n” is the sample size, and “p ,,”
is the p-value from the Anderson-Darling goodness-of-fit test (> 0.05 implies
acceptable lognormal fit). The COVs of model factors appear to fall between
30 and 50%.

It is evident that a geotechnical parameter (soil property or model factor)
exhibiting a range of values, possibly occurring at unequal frequencies, is
best modeled as a random variable. The existing practice of selecting one
characteristic value (e.g. mean, “cautious” estimate, 5% exclusion limit, etc.)
is attractive to practitioners, because design calculations can be carried out
easily using only one set of input values once they are selected. However, this
simplicity is deceptive. The choice of the characteristic values clearly affects
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Figure 1.2 Capacity model factors for drilled shafts subjected to lateral-moment loading
(modified from Phoon, 2005).
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the overall safety of the design, but there are no simple means of ensur-
ing that the selected values will achieve a consistent level of safety. In fact,
these values are given by the design point of a first-order reliability anal-
ysis and they are problem-dependent. Simpson and Driscoll (1998) noted
in their commentary to Eurocode 7 that the definition of the characteristic
value “has been the most controversial topic in the whole process of drafting
Eurocode 7.” If random variables can be included in the design process with
minimal inconvenience, the definition of the characteristic value is a moot
issue.

Simulation

The most intuitive and possibly the most straightforward method for per-
forming reliability analysis is the Monte Carlo simulation method. It only
requires repeated execution of an existing deterministic solution process. The
key calculation step is to simulate realizations of random variables. This step
can be carried in a general way using:

Y =F (V) (1.1)

in which Y is a random variable following a prescribed cumulative distribu-
tion F(-) and U is a random variable uniformly distributed between 0 and 1
(also called a standard uniform variable). Realizations of U can be obtained
from EXCEL™ under “Tools > Data Analysis > Random Number Gener-
ation > Uniform Between 0 and 1.” MATLAB™ implements U using the
“rand” function. For example, U =rand(10,1) is a vector containing 10 real-
izations of U. Some inverse cumulative distribution functions are available
in EXCEL (e.g. norminv for normal, loginv for lognormal, betainv for beta,
gammainv for gamma) and MATLAB (e.g. norminv for normal, logninv for
lognormal, betainv for beta, gaminv for gamma). More efficient methods are
available for some probability distributions, but they are lacking in generality
(Hastings and Peacock, 1975; Johnson et al., 1994). A cursory examination
of standard probability texts will reveal that the variety of classical proba-
bility distributions is large enough to cater to almost all practical needs. The
main difficulty lies with the selection of an appropriate probability distribu-
tion function to fit the limited data on hand. A complete treatment of this
important statistical problem is outside the scope of this chapter. However,
it is worthwhile explaining the method of moments because of its simplicity
and ease of implementation.

The first four moments of a random variable (Y) can be calculated quite
reliably from the typical sample sizes encountered in practice. Theoretically,
they are given by:

/yf dy = E(Y) (1.2)
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o? =E[(Y — n)?] (1.2b)
E[(Y — u)3

ylz% (1.2¢)
E[(Y — )4

n=%—3 (1.2d)

in which 4 = mean, 02 = variance (or o = standard deviation), y; =
skewness, y, = kurtosis, f(-) = probability density function = dF(y)/dy, and
E[-] = mathematical expectation. The practical feature here is that moments
can be estimated directly from empirical data without knowledge of the
underlying probability distribution [i.e. f(y) is unknown]:

Z%‘
y=1=! (1.3a)
n
1 < _
s2=n_1;<y,»—y>2 (1.3b)
Ny g
gl_(n—l)(n—2)53;(y’ ) (1.3¢)
_ n(n+1) 3(n—1)2
827 L T m—2)( 42 (n—2)(n—3) (1.3d)

in which # = sample size, (y;,y,,...,y,) = data points, y = sample mean,
s? = sample variance, g; = sample skewness, and g, = sample kurtosis. Note
that the MATLAB “kurtosis” function is equal to g, + 3. If the sample size
is large enough, the above sample moments will converge to their respective
theoretical values as defined by Equation (1.2) under some fairly general con-
ditions. The majority of classical probability distributions can be determined
uniquely by four or less moments. In fact, the Pearson system (Figure 1.3)
reduces the selection of an appropriate probability distribution function to
the determination of g; = g% and B, = g, + 3. Calculation steps with illus-
trations are given by Elderton and Johnson (1969). Johnson et al. (1994)
provided useful formulas for calculating the Pearson parameters based on
the first four moments. Réthati (1988) provided some B; and B, values of
Szeged soils for distribution fitting using the Pearson system (Table 1.1).

Johnson system

A broader discussion of distribution systems (in which the Pearson sys-
tem is one example) and distribution fitting is given by Elderton and
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Figure 1.3 Pearson system of probability distribution functions based on g = g|2 and
,32 =g,+ 3; N = normal distribution.

Table 1.1 B, and B, values for some soil properties from Szeged, Hungary (modified
from Réthati, 1988).

Soil  Water  Liquid  Plastic Plasticity =~ Consistency Void Bulk Unconfined

layer content  limit limit index index ratio density compressive
strength
B
Sl 2.76 4.12 6.81 1.93 0.13 6.50 1.28  0.02
S2 0.0l 0.74 0.34 049 0.02 0.0l 0.09 0.94
S3  0.03 0.96 0.14 085 0.00 1.30 289 5.06
S4 0.05 0.34 0.13 0.64 0.03 0.13 1.06  4.80
S5 1.10 0.02 292 0.00 0.98 036 0.10 272
By
SI 7.39 8.10 12.30 492 3.34 .19 3.98 1.86
S2 345 343 3.27  2.69 3.17 267 387 393
S3 762 5.13 432 446 3.31 552 11.59 10.72
sS4 7.7 3.19 3.47 3.57 4.61 4.03 8.14 10.95
S5 670 231 9.15 217 5.13 4.14 494 6.74
Note

Plasticity index (I ) = w_ — wp, in which w; = liquid limit and w;, = plastic limit; consistency index
1 )=(w, —w)/l =1—1,inwhich w = water contentand |, = liquidity index; unconfined compressive
c L p L L = llquidity p

strength (q,) = 2s, in which s = undrained shear strength.
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Johnson (1969). It is rarely emphasized that almost all distribution functions
cannot be generalized to handle correlated random variables (Phoon, 2006a).
In other words, univariate distributions such as those discussed above cannot
be generalized to multivariate distributions. Elderton and Johnson (1969)
discussed some interesting exceptions, most of which are restricted to bivari-
ate cases. It suffices to note here that the only convenient solution available
to date is to rewrite Equation (1.1) as:

Y =F l[o(Z)] (1.4)

in which Z = standard normal random variable with mean = 0 and
variance = 1 and &(-) = standard normal cumulative distribution function
(normedf in MATLAB or normsdist in EXCEL). Equation (1.4) is called
the translation model. It requires all random variables to be related to the
standard normal random variable. The significance of Equation (1.4) is
elaborated in Section 1.3.2.

An important practical detail here is that standard normal random vari-
ables can be simulated directly and efficiently using the Box-Muller method
(Box and Muller, 1958):

Z,=,/-2In(U;)cos(2n U,) (1.5)
Z, =,/=2In(U;y)sin(27 U,)

in which Z;,Z, = independent standard normal random variables and
U,, U, = independent standard uniform random variables. Equation (1.5)
is computationally more efficient than Equation (1.1) because the inverse
cumulative distribution function is not required. Note that the cumulative
distribution function and its inverse are not available in closed-form for most
random variables. While Equation (1.1) “looks” simple, there is a hidden
cost associated with the numerical evaluation of F~1(-). Marsaglia and Bray
(1964) proposed one further improvement:

1. Pick V; and V, randomly within the unit square extending between —1
and 1 in both directions, i.e.:

2. Calculate R? =V} + V2. If R2 > 1.0 or R? = 0.0, repeat step (1).
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3. Simulate two independent standard normal random variables using;:

—21In(R2)

S
(1.7)

—21n(R2)

L=V TR

Equation (1.7) is computationally more efficient than Equation (1.5) because
trigonometric functions are not required!

A translation model can be constructed systematically from (8, B,) using
the Johnson system:

1. Assume that the random variable is lognormal, i.e.
In(Y—A)=A+EZ Y>A (1.8)

in which In(-) is the natural logarithm, £2 = In[1 +02/(u — A)?], A =

In(u — A) — 0.562, u = mean of Y, and o2 = variance of Y. The “log-

normal” distribution in the geotechnical engineering literature typically

refers to the case of A = 0. When A # 0, it is called the “shifted

lognormal” or “3-parameter lognormal” distribution.

Calculate w = exp(£2).

3. Calculate B; = (0 — 1)(w +2)? and B, = w* + 2w3 + 3w? — 3. For the
lognormal distribution, 8, and B, are related as shown by the solid line
in Figure 1.4.

4. Calculate B, = g% and B, = g, + 3 from data. If the values fall close to
the lognormal (LN) line, the lognormal distribution is acceptable.

5. [If the values fall below the LN line, Y follows the SB distribution:

>

Y-A
ln(B_Y)zk—l-SZ B>Y>A (1.9)

in which 1, &, A, B = distribution fitting parameters.
6. If the values fall above the LN line, Y follows the SU distribution:

Y-A Y-—A\? L 1(Y-A
ln|:(m>+ 1+<m>:|=smh (m>=)n+§z

(1.10)
Examples of LN, SB, and SU distributions are given in Figure 1.5. Simulation
of Johnson random variables using MATLAB is given in Appendix A.1.
Carsel and Parrish (1988) developed joint probability distributions for
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parameters of soil-water characteristic curves using the Johnson system. The
main practical obstacle is that the SB Johnson parameters (,&, A, B) are
related to the first four moments (y,s%,g;,g,) in a very complicated way
(Johnson, 1949). The SU Johnson parameters are comparatively easier to
estimate from the first four moments (see Johnson et al., 1994 for closed-
form formulas). In addition, both Pearson and Johnson systems require the
proper identification of the relevant region (e.g. SB or SU in Figure 1.4),
which in turn determines the distribution function [Equation (1.9) or (1.10)],
before one can attempt to calculate the distribution parameters.

Hermite polynomials

One-dimensional Hermite polynomials are given by:

Hy(Z)=1
H|(Z)=2Z
H,(Z2)=27%>-1 (1.11)

Hy(Z2)=2°-3Z
H,.,(Z)=ZH,(Z) - kH,_,(Z)

in which Z is a standard normal random variable (mean = 0 and
variance = 1). Hermite polynomials can be evaluated efficiently using the
recurrence relation given in the last row of Equation (1.11). It can be proven
rigorously (Phoon, 2003) that any random variable Y (with finite variance)
can be expanded as a series:

Y=Y a,H2) (1.12)
k=0

The numerical values of the coefficients, a;, depend on the distribution of Y.
The key practical advantage of Equation (1.12) is that the randomness of
Y is completely accounted for by the randomness of Z, which is a known
random variable. It is useful to observe in passing that Equation (1.12) may
not be a monotonic function of Z when it is truncated to a finite number of
terms. The extrema are located at points with zero first derivatives but non-
zero second derivatives. Fortunately, derivatives of Hermite polynomials can
be evaluated efficiently as well:

dH,(Z)
dz

=kH,_,(Z) (1.13)
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The Hermite polynomial expansion can be modified to fit the first four
moments as well:

Y =545 RIZ+hy(Z* = 1)+ by (Z° —32)] (1.14)

in which ¥ and s = sample mean and sample standard deviation of Y, respec-
tively and k = normalizing constant = 1/(1 4 2h% + 6h%)%-5. It is important
to note that the coefficients b5 and b, can be calculated from the sample
skewness (g;) and sample kurtosis (g,) in a relatively straightforward way
(Winterstein et al., 1994):

1-0.015 0.3g%
hy=51 &1]+0-3¢1 (1.15a)
6 1+0.2¢g,
1-0.1(gy+3)%8
14+1.25¢,)1/3 -1 1.43g2
py = L1 1.258) 1- 2108 (1.15b)
4 10 )

The theoretical skewness (y;) and kurtosis (y,) produced by Equation (1.14)
are (Phoon, 2004a):

y1 = k3 (6h5 +36h3h, + 8h3 +108h3h3) (1.16a)

v, = k*(3+48h% +3348h% 4 24h, +1296h3 + 60h3 +252h%
+2232h%h% + 576h3h,) — 3 (1.16b)

Equation (1.15) is determined empirically by minimizing the error [(y; —
g1)? + (v, — £,)?] subjected to the constraint that Equation (1.14) is a
monotonic function of Z. It is intended for cases with 0 < g, < 12 and
0< g% <2g,/3 (Winterstein et al., 1994). It is possible to minimize the error
in skewness and kurtosis numerically using the SOLVER function in EXCEL,
rather than applying Equation (1.15).

In general, the entire cumulative distribution function of Y, F(y), can
be fully described by the Hermite expansion using the following simple
stochastic collocation method:

1. Let (y1.¥,,...,¥,) be n realizations of Y. The standard normal data is
calculated from:

z; =P F(y,) (1.17)
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2. Substitute y; and z; into Equation (1.12). For a third-order expansion,
we obtain:

Vi =a0 +alzl' +ﬂ2(zl'2 — 1) +ﬂ3(zl3 — 3Zi) Zﬂo +alhil
+ayhjy +azh;s (1.18)

in which (1, b;;, b;,, b;3) are Hermite polynomials evaluated at z;.
3. The four unknown coefficients (a,,a;,a,,a;) can be determined using
four realizations of Y, (y1,,,¥3,¥4). In matrix notation, we write:

Ha=y (1.19)

in which H is a 4 x 4 matrix with ith row given by (1, b;;, b5, h;3), y is
a 4 x 1 vector with ith component given by y; and ais a 4 x 1 vector
containing the unknown numbers (a,,a;,4,,a3)'. This is known as the
stochastic collocation method. Equation (1.19) is a linear system and
efficient solutions are widely available.

4. Ttis preferable to solve for the unknown coefficients using regression by
using more than four realizations of Y:

(H'H)a=H'y (1.20)

in which H is an # x 4 matrix and # is the number of realizations. Note
that Equation (1.20) is a linear system amenable to fast solution as well.

Calculation of Hermite coefficients using MATLAB is given in Appendix A.2.
Hermite coefficients can be calculated with ease using EXCEL as well
(Chapter 9). Figure 1.6 demonstrates that Equation (1.12) is quite efficient —
it is possible to match very small probabilities (say 10~4) using a third-order
Hermite expansion (four terms).

Phoon (2004a) pointed out that Equations (1.4) and (1.12) are theoreti-
cally identical. Equation (1.12) appears to present a rather circuitous route
of achieving the same result as Equation (1.4). The key computational differ-
ence is that Equation (1.4) requires the costly evaluation of F~1(-) thousands
of times in a low-probability simulation exercise (typical of civil engineering
problems), while Equation (1.17) requires less than 100 costly evaluations
of ®~1F(.) followed by less-costly evaluation of Equation (1.12) thousands
of times. Two pivotal factors govern the computational efficiency of Equa-
tion (1.12): (a) cheap generation of standard normal random variables using
the Box—~Muller method [Equation (1.5) or (1.7)] and (b) relatively small
number of Hermite terms.

The one-dimensional Hermite expansion can be easily extended to ran-
dom vectors and processes. The former is briefly discussed in the next
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section while the latter is given elsewhere (Puig et al., 2002; Sakamoto and
Ghanem, 2002; Puig and Akian, 2004). Chapters 5, 7, 9 and elsewhere
(Sudret and Der Kiureghian, 2000; Sudret, 2007) present applications of
Hermite polynomials in more comprehensive detail.

1.3.2 Random vectors

The multivariate normal probability density function is available analytically
and can be defined uniquely by a mean vector and a covariance matrix:

F(X)=1€172 27) " Fexp[~0.5(X — )€~ (X~ p)] (1.21)

in which X = (X, X,, ..., X,,)  isanormal random vector with #» components,
i is the mean vector, and C is the covariance matrix. For the bivariate
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(simplest) case, the mean vector and covariance matrix are given by:
u
Ha

c— |: 012 ,00102:|
poy0, O3
in which p; and o; = mean and standard deviation of X, respectively, and
p = product-moment (Pearson) correlation between X; and X,.

The practical usefulness of Equation (1.21) is not well appreciated. First,
the full multivariate dependency structure of a normal random vector only
depends on a covariance matrix (C) containing bivariate information (cor-
relations) between all possible pairs of components. The practical advantage
of capturing multivariate dependencies in any dimension (i.e. any number of
random variables) using only bivariate dependency information is obvious.
Note that coupling two random variables is the most basic form of depen-
dency and also the simplest to evaluate from empirical data. In fact, there are
usually insufficient data to calculate reliable dependency information beyond
correlations in actual engineering practice. Second, fast simulation of cor-
related normal random variables is possible because of the elliptical form
(X — )€ 1(X — ) appearing in the exponent of Equation (1.21). When
the random dimension is small, the following Cholesky method is the most
efficient and robust:

(1.22)

X=LZ+p (1.23)

in which Z=(Z,,Z,,...,Z,) contains uncorrelated normal random com-
ponents with zero means and unit variances. These components can be
simulated efficiently using the Box—Muller method [Equations (1.5) or (1.7)].
The lower triangular matrix L is the Cholesky factor of C, i.e.:

c=LL (1.24)

Cholesky factorization can be roughly appreciated as taking the “square
root” of a matrix. The Cholesky factor can be calculated in EXCEL using
the array formula MAT_CHOLESKY, which is provided by a free add-in
at http://digilander.libero.it/foxes/index.htm. MATLAB produces L’ using
chol (C) [note: L’ (transpose of L) is an upper triangular matrix]|. Cholesky
factorization fails if C is not “positive definite.” The important practical ram-
ifications here are: (a) the correlation coefficients in the covariance matrix
C cannot be selected independently and (b) an erroneous C is automatically
flagged when Cholesky factorization fails. When the random dimension is
high, it is preferable to use the fast fourier transform (FFT) as described in
Section 1.3.3.
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As mentioned in Section 1.3.1, the multivariate normal distribution plays
a central role in the modeling and simulation of correlated non-normal
random variables. The translation model [Equation (1.4)] for one random
variable (Y) can be generalized in a straightforward to a random vector
(Y)Y, ... Y,):

Y, =F (X)) (1.25)

in which (X, X5, ..., X,,) follows a multivariate normal probability density
function [Equation (1.21)] with:

0 T p1a o Prg
e e
0 Pu1 Pua *° 1

Note that pjj = pji» 1.e. € Is a symmetric matrix containing only n(n—1)/2
distinct entries. Each non-normal component, Y;, can follow any arbitrary
cumulative distribution function F,(-). The cumulative distribution func-
tion prescribed to each component can be different, i.e. F;(-) # E;(-). The
simulation of correlated non-normal random variables using MATLAB is
given in Appendix A.3. It is evident that “translation.m” can be modified
to simulate any number of random components as long as a compatible
size covariance matrix is specified. For example, if there are three random
components (7 = 3), C should be a 3 x 3 matrix such as [1 0.8 0.4; 0.8
1 0.2; 0.4 0.2 1]. This computational simplicity explains the popularity
of the translation model. As mentioned previously, not all 3 x 3 matri-
ces are valid covariance matrices. An example of an invalid covariance
matrix is € =[10.8 —0.8;0.81 — 0.2; —0.8 — 0.21]. An attempt to execute
“translation.m” produces the following error messages:

2?? Error using ==> chol
Matrix must be positive definite.

Hence, simulation from an invalid covariance matrix will not take place.
The left panel of Figure 1.7 shows the scatter plot of two correlated nor-
mal random variables with p = 0.8. An increasing linear trend is apparent.
A pair of uncorrelated normal random variables will not exhibit any trend
in the scatter plot. The right panel of Figure 1.7 shows the scatter plot of two
correlated non-normal random variables. There is an increasing nonlinear
trend. The nonlinearity is fully controlled by the non-normal distribution
functions (SB and SU in this example). In practice, there is no reason for
the scatter plot (produced by two columns of numbers) to be related to the



Numerical recipes for reliability analysis 21
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SU distribution

X, = normal distribution

Y,

2l

X4 = normal distribution Y, = SB distribution

Figure 1.7 Scatter plots for: correlated normal random variables with zero means and unit
variances (left) and correlated non-normal random variables with Ist compo-
nent = Johnson SB distribution (A =1.00,& =0.36, A = —3.00, B = 5.00) and
2nd component = Johnson SU distribution (A = 1.00,& = 0.09, A= —1.88,
B =12.08) (right).

distribution functions (produced by treating each column of numbers sepa-
rately). Hence, it is possible for the scatter plot produced by the translation
model to be unrealistic.

The simulation procedure described in “translation.m” cannot be applied
directly to practice, because it requires the covariance matrix of X as an
input. The empirical data can only produce an estimate of the covariance
matrix of Y. It can be proven theoretically that these covariance matrices
are not equal, although they can be approximately equal in some cases. The
simplest solution available so far is to express Equation (1.25) as Hermite
polynomials:

Y, =ay0Hy(Xy) + a1 Hy (Xy) + a1, Hy (Xq) +a,3Hs(Xq) +

(1.26)

The relationship between the observed correlation coefficient (py, y,) and the
underlying normal correlation coefficient (p) is:

o0
Y klayay,
k=1 (1.27)

Py y, =
o0 o0
2 2
> k!dlk > k!“zk
k=1 k=1

This complication is discussed in Chapter 9 and elsewhere (Phoon, 2004a,
2006a).
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From a practical viewpoint [only bivariate information needed, cor-
relations are easy to estimate, voluminous n-dimensional data compiled
into mere n(n — 1)/2 coefficients, etc.] and a computational viewpoint
(fast, robust, simple to implement), it is accurate to say that the multivariate
normal model and multivariate non-normal models generated using the
translation model are already very good and sufficiently general for many
practical scenarios. The translation model is not perfect — there are impor-
tant and fundamental limitations (Phoon, 2004a, 2006a). For stochastic
data that cannot be modeled using the translation model, the hunt for
probability models with comparable practicality, theoretical power, and
simulation speed is still on-going. Copula theory (Schweizer, 1991) pro-
duces a more general class of multivariate non-normal models, but it is
debatable at this point if these models can be estimated empirically and
simulated numerically with equal ease for high random dimensions. The
only exception is a closely related but non-translation approach based on
the multivariate normal copula (Phoon, 2004b). This approach is outlined
in Chapter 9.

1.3.3 Random processes

A natural probabilistic model for correlated spatial data is the random
field. A one-dimensional random field is typically called a random process.
A random process can be loosely defined as a random vector with an infi-
nite number of components that are indexed by a real number (e.g. depth
coordinate, z). We restrict our discussion to a normal random process, X(z).
Non-normal random processes can be simulated from a normal random
process using the same translation approach described in Section 1.3.2.

The only computational aspect that requires some elaboration is that
simulation of a process is usually more efficient in the frequency domain.
Realizations belonging to a zero-mean stationary normal process X(z) can
be generated using the following spectral approach:

o
X(2) = 04(Zysin2nfiz+Z,, cos2mf2) (1.28)
k=1

in which o}, = \/2S8(f,)Af, Af is the interval over which the spectral density
function S(f) is discretized, f, = (2k —1)Af/2, and Z,; and Z,,, are uncor-
related normal random variables with zero means and unit variances. The
single exponential autocorrelation function is commonly used in geostatis-
tics: R(t) = exp(—2|t|/8), in which 7 is the distance between data points and
8 the scale of fluctuation. R(t) can be estimated from a series of numbers, say
cone tip resistances sampled at a vertical spacing of Az, using the method of
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moments:
1Y
R(TZJAZ)’\V/m_j—_l)sz;(xi—x)(xiJr/—x) (1.29)

in which x; = x(z,),z; = i(Az),x = sample mean [Equation (1.3a], s* =
sample variance [Equation (1.3b)], and 7z = number of data points. The scale
of fluctuation is estimated by fitting an exponential function to Equation
(1.29). The spectral density function corresponding to the single exponential
correlation function is:

45

M= G4

(1.30)

Other common autocorrelation functions and their corresponding spectral
density functions are given in Table 1.2. It is of practical interest to note that
S(f) can be calculated numerically from a given target autocorrelation func-
tion or estimated directly from x(z;) using the FFT. Analytical solutions such
as those shown in Table 1.2 are convenient but unnecessary. The simulation
of a standard normal random process with zero mean and unit variance using
MATLAB is given in Appendix A.4. Note that the main input to “ranpro-
cess.m” is R(t), which can be estimated empirically from Equation (1.29).
No knowledge of S(f) is needed. Some realizations based on the five com-
mon autocorrelation functions shown in Table 1.2 with § =1 are given in
Figure 1.8.

Table 1.2 Common autocorrelation and two-sided power spectral density functions.

Model Autocorrelation, R(t)  Two-sided power spectral Scale of
density, S(f)* fluctuation, &
2 2
Single exp(—alzr]) 5 d 5 -
exponential w°+a a
. . Il —alt| |zl<1/a sin?(w/2a) |
Binary noise herwi — -
otherwise a(a)/20) a
| I |
Cosine exp(—alr|)cos(at) a + ) =
exponential a+(@+a? d+(@-a?/) a
443 4
Second-order (| +a|t|)exp(—alz]) 553 -
Markov (w” +a%) a
2
Squared exp[—(ar)?] Nl exp (—0)2) Nl
exponential a 4a a

*w = 2rf.
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Figure 1.8 Simulated realizations of normal process with mean = 0, variance = |, scale

of fluctuation = | based on autocorrelation function = (a) single exponential,
(b) binary noise, (c) cosine exponential, (d) second-order Markov, and (e) square
exponential.
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Figure 1.8 Cont'd.

In geotechnical engineering, spatial variability is frequently modeled using
random processes/fields. This practical application was first studied in geol-
ogy and mining under the broad area of geostatistics. The physical premise
that makes estimation of spatial patterns possible is that points close in space
tend to assume similar values. The autocorrelation function (or variogram)
is a fundamental tool describing similarities in a statistical sense as a func-
tion of distance [Equation (1.29)]. The works of G. Matheron, D.G. Krige,
and F.P. Agterberg are notable. Parallel developments also took place in
meteorology (L.S. Gandin) and forestry (B. Matérn). Geostatistics is math-
ematically founded on the theory of random processes/fields developed by
A.Y. Khinchin, A.N. Kolmogorov, P. Lévy, N. Wiener, and A.M. Yaglom,
among others. The interested reader can refer to books by Cressie (1993)
and Chilés and Delfiner (1999) for details. VanMarcke (1983) remarked that
all measurements involve some degree of local averaging and that random
field models do not need to consider variations below a finite scale because
they are smeared by averaging. VanMarcke’s work is incomplete in one
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crucial aspect. This crucial aspect is that actual failure surfaces in 2D or 3D
problems will automatically seek to connect “weakest” points in the random
domain. It is the spatial average of this failure surface that counts in practice;
not simple spatial averages along pre-defined surfaces (or pre-specified mea-
surement directions). This is an exceptionally difficult problem to solve — at
present simulation is the only viable solution. Chapter 6 presents extensive
results on emergent behaviors resulting from spatially heterogeneous soils
that illustrate this aspect quite thoroughly.

Although the random process/field provides a concise mathematical model
for spatial variability, it poses considerable practical difficulties for statisti-
cal inference in view of its complicated data structure. All classical statistical
tests are invariably based on the important assumption that the data are
independent (Cressie, 1993). When they are applied to correlated data, large
bias will appear in the evaluation of the test statistics (Phoon et al., 2003a).
The application of standard statistical tests to correlated soil data is therefore
potentially misleading. Independence is a very convenient assumption that
makes a large part of mathematical statistics tractable. Statisticians can go
to great lengths to remove this dependency (Fisher, 1935) or be content
with less-powerful tests that are robust to departures from the indepen-
dence assumption. In recent years, an alternate approach involving the direct
modeling of dependency relationships into very complicated test statistics
through Monte Carlo simulation has become feasible because desktop com-
puting machines have become very powerful (Phoon, et al., 2003a; Phoon
and Fenton, 2004; Phoon 2006b; Uzielli and Phoon, 2006).

Chapter 2 and elsewhere (Baecher and Christian, 2003; Uzielli et al.,
2007) provide extensive reviews of geostatistical applications in geotechnical
engineering.

1.4 Probabilistic solution procedures

The practical end point of characterizing uncertainties in the design input
parameters (geotechnical, geo-hydrological, geometrical, and possibly ther-
mal) is to evaluate their impact on the performance of a design. Reliability
analysis focuses on the most important aspect of performance, namely the
probability of failure (“failure” is a generic term for non-performance).
This probability of failure clearly depends on both parametric and model
uncertainties. The probability of failure is a more consistent and complete
measure of safety because it is invariant to all mechanically equivalent def-
initions of safety and it incorporates additional uncertainty information.
There is a prevalent misconception that reliability-based design is “new.” All
experienced engineers would conduct parametric studies when confidence
in the choice of deterministic input values is lacking. Reliability analysis
merely allows the engineer to carry out a much broader range of para-
metric studies without actually performing thousands of design checks with
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different inputs one at a time. This sounds suspiciously like a “free lunch,”
but exceedingly clever probabilistic techniques do exist to calculate the
probability of failure efficiently. The chief drawback is that these tech-
niques are difficult to understand for the non-specialist, but they are not
necessarily difficult to implement computationally. There is no consensus
within the geotechnical community whether a more consistent and com-
plete measure of safety is worth the additional efforts, or if the significantly
simpler but inconsistent global factor of safety should be dropped. Reg-
ulatory pressure appears to be pushing towards RBD for non-technical
reasons. The literature on reliability analysis and RBD is voluminous. Some
of the main developments in geotechnical engineering are presented in

this book.

1.4.1 Closed-form solutions

There is a general agreement in principle that limit states (undesirable states
in which the system fails to perform satisfactorily) should be evaluated
explicitly and separately, but there is no consensus on how to verify that
exceedance of a limit state is “sufficiently unlikely” in numerical terms. Dif-
ferent opinions and design recommendations have been made, but there is a
lack of discussion on basic issues relating to this central idea of “exceeding a
limit state.” A simple framework for discussing such basic issues is to imag-
ine the limit state as a boundary surface dividing sets of design parameters
(soil, load, and/or geometrical parameters) into those that result in satisfac-
tory and unsatisfactory designs. It is immediately clear that this surface can
be very complex for complex soil-structure interaction problems. It is also
clear without any knowledge of probability theory that likely failure sets of
design parameters (producing likely failure mechanisms) cannot be discussed
without characterizing the uncertainties in the design parameters explicitly
or implicitly. Assumptions that “values are physically bounded,” “all values
are likely in the absence of information,” etc., are probabilistic assump-
tions, regardless of whether or not this probabilistic nature is acknowledged
explicitly. If the engineer is 100% sure of the design parameters, then only
one design check using these fully deterministic parameters is necessary to
ensure that the relevant limit state is not exceeded. Otherwise, the situation
is very complex and the only rigorous method available to date is reliability
analysis. The only consistent method to control exceedance of a limit state
is to control the reliability index. It would be very useful to discuss at this
stage if this framework is logical and if there are alternatives to it. In fact, it
has not been acknowledged explicitly if problems associated with strength
partial factors or resistance factors are merely problems related to simpli-
fication of reliability analysis. If there is no common underlying purpose
(e.g. to achieve uniform reliability) for applying partial factors and resis-
tance factors, then the current lack of consensus on which method is better
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cannot be resolved in any meaningful way. Chapter 8 provides some useful
insights on the reliability levels implied by the empirical soil partial factors
in Eurocode 7.

Notwithstanding the above on-going debate, it is valid to question if reli-
ability analysis is too difficult for practitioners. The simplest example is to
consider a foundation design problem involving a random capacity (Q) and
a random load (F). The ultimate limit state is defined as that in which the
capacity is equal to the applied load. Clearly, the foundation will fail if the
capacity is less than this applied load. Conversely, the foundation should per-
form satisfactorily if the applied load is less than the capacity. These three
situations can be described concisely by a single performance function P, as
follows:

P=Q-F (1.31)

Mathematically, the above three situations simply correspond to the condi-
tions of P=0,P < 0, and P > 0, respectively.

The basic objective of RBD is to ensure that the probability of failure does
not exceed an acceptable threshold level. This objective can be stated using
the performance function as follows:

pg=Prob(P < 0) < pr (1.32)

in which Prob(-) = probability of an event, p; =probability of failure, and
p = acceptable target probability of failure. A more convenient alternative
to the probability of failure is the reliability index (8), which is defined as:

B=—o"1(p) (1.33)

in which @~1(.) = inverse standard normal cumulative function. The func-
tion @~1(:) can be obtained easily from EXCEL using normsinv (p;) or
MATLAB using norminv (p¢). For sufficiently large B, simple approximate
closed-form solutions for @(-) and @~1(.) are available (Appendix B).

The basic reliability problem is to evaluate p; from some pertinent statistics
of F and Q, which typically include the mean (uf or pg) and the standard
deviation (o or o), and possibly the probability density function. A simple
closed-form solution for p; is available if O and F follow a bivariate normal
distribution. For this condition, the solution to Equation (1.32) is:

pi= fo— — o (-B) (1.34)

\/O’é + 01% — ZpQFGQGF

in which pyp = product-moment correlation coefficient between O and F.

Numerical values for @(-) can be obtained easily using the EXCEL func-
tion normsdist(—B) or the MATLAB function normedf(—p8). The reliability
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indices for most geotechnical components and systems lie between 1 and
5, corresponding to probabilities of failure ranging from about 0.16 to
3 x 10~7, as shown in Figure 1.9.

Equation (1.34) can be generalized to a linear performance function con-
taining any number of normal components (X;, X,, ..., X,,) as long as they
follow a multivariate normal distribution function [Equation (1.21)]:

n
P=ay+)Y aX, (1.35)
i=1

(1.36)

in which a; = deterministic constant, x; = mean of X;, 0; = standard devia-
tion of X;, p;; = correlation between X; and X; (note: p; = 1). Chapters 8,
11, and 12 present some applications of these closed-form solutions.
Equation (1.34) can be modified for the case of translation lognormals, i.e.
In(Q) and In(F) follow a bivariate normal distribution with mean of In(Q) =
Ao, mean of In(F) = A, standard deviation of In(Q) = £o standard deviation

1E+00 Hazardou§
Unsatisfactory
% -
1E_01 +16 o; |  |Poor
=7" '“o/ Belovlv average
Q 1E_02 ~2 | Above average|
2 ~5x1073| ---
i 41078
w5 1E-03
_E‘ \Good
5 1E-04
2 21075---
° N
& 1E-05 \
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41077
1E-07
0 1 2 3 4 5

Reliability index

Figure 1.9 Relationship between reliability index and probability of failure (classifications
proposed by US Army Corps of Engineers, 1997).
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of In(F) = &, and correlation between In(Q) and In(F) = ,o/QF:

2 2_2 l
EQ +€F PQFEQEF

pp= (1.37)

The relationships between the mean (u) and standard deviation (o) of a
lognormal and the mean (A) and standard deviation (&) of the equivalent
normal are given in Equation (1.8). The correlation between QO and F (PoF)
is related to the correlation between In(Q) and In(F) (,o’QF) as follows:

(1.38)

expléérrpr) = 1
pQF - 2 2
Jlexp(ed) — 1lexp(s3) - 11

If Pégp =por=0(i.e. Q and F are independent lognormals), Equation (1.37)
reduces to the following well-known expression:

2
In( e [1+covi
UE 1+Cové

p= (1.39)
\/ln[(l +COV3) (1+COVE)]

in which COV =0 /ug and COVp =op/up. If there are physical grounds
to disallow negative values, the translation lognormal model is more sensible.
Equation (1.39) has been used as the basis for RBD (e.g. Rosenblueth and
Esteva, 1972; Ravindra and Galambos, 1978; Becker, 1996; Paikowsky,
2002). The calculation steps outlined below are typically carried out:

1. Consider a typical Load and Resistance Factor Design (LRFD) equation:
$Q,=vpD,+nL, (1.40)

in which ¢ = resistance factor, yp, and y; = dead and live load fac-
tors, and Q,,, D, and L, = nominal values of capacity, dead load,
and live load. The AASHTO LRFD bridge design specifications rec-
ommended y, = 1.25 and y; = 1.75 (Paikowsky, 2002). The resistance
factor typically lies between 0.2 and 0.8.

2. The nominal values are related to the mean values as:

4 = bpD, (1.41)

pL=0b.L,
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in which bQ, bp, and by are bias factors and s Kps and u; are mean
values. The bias factors for dead and live load are typically 1.05 and 1.15,
respectively. Figure 1.2 shows that b, (mean value of the histogram) can
be smaller or larger than one.

3. Assume typical values for the mean capacity (11;) and D,,/L,,. A reason-
able range for D, /L, is 1 to 4. Calculate the mean live load and mean
dead load as follows:

b )b
" (¢ gﬂg L (1.42)
(ro2:+n)
_ EQ. mLbp
MD_(L,) by (1.43)

4. Assume typical coefficients of variation for the capacity, dead load, and
live load, say COVQ =0.3, COVp =0.1,and COV| =0.2.

5. Calculate the reliability index using Equation (1.39) with up = up +
up and:

JpCOVE)2 + (11, COV, )2

COV, =
F Up + 1y

(1.44)

Details of the above procedure are given in Appendix A.4. For ¢ =0.5, yp =
125, =1.75,bg =1,bp =1.05,b; =1.15, COV, =0.3, COVD_Ol
COV; =0.2, and D ./L, =2, the reliability 1ndex from Equation (1.39) is
2.99. Monte Carlo snnulatlon in “LRFD.m” validates the approximation
given in Equation (1.44). It is easy to show that an alternate approximation
COV% = COV2D+ COV% is erroneous. Equation (1.39) is popular because
the resistance factor in LRFD can be back-calculated from a target reliability

index (By) easily:
14COV%
bolrpD,+1.L,) ﬁ
6= 0 (1.45)

(bpD, + b, L, )exp {ﬂT\/ln [(1+covy) (1+ COV%)]}

In practice, the statistics of O are determined by comparing load test results
with calculated values. Phoon and Kulhawy (2005) compared the statistics
of Q calculated from laboratory load tests with those calculated from full-
scale load tests. They concluded that these statistics are primarily influenced
by model errors, rather than uncertainties in the soil parameters. Hence, it is
likely that the above lumped capacity approach can only accommodate the
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“low” COV range of parametric uncertainties mentioned in Section 1.3.1.
To accommodate larger uncertainties in the soil parameters (“medium” and
“high” COV ranges), it is necessary to expand Q as a function of the gov-
erning soil parameters. By doing so, the above closed-form solutions are no
longer applicable.

1.4.2 First-order reliability method (FORM)

Structural reliability theory has a significant impact on the development of
modern design codes. Much of its success could be attributed to the advent of
the first-order reliability method (FORM), which provides a practical scheme
of computing small probabilities of failure at high dimensional space spanned
by the random variables in the problem. The basic theoretical result was
given by Hasofer and Lind (1974). With reference to time-invariant reliabil-
ity calculation, Rackwitz (2001) observed that: “For 90% of all applications
this simple first-order theory fulfills all practical needs. Its numerical accuracy
is usually more than sufficient.” Ang and Tang (1984) presented numer-
ous practical applications of FORM in their well known book, Probability
Concepts in Engineering Planning and Design.

The general reliability problem consists of a performance func-
tion P(y;,y,,....y,) and a multivariate probability density function
f(¥1.¥,....¥,). The former is defined to be zero at the limit state, less than
zero when the limit state is exceeded (“fail”), and larger than zero otherwise
(“safe”). The performance function is nonlinear for most practical prob-
lems. The latter specifies the likelihood of realizing any one particular set
of input parameters (y,Y,,...,Y,), which could include material, load, and
geometrical parameters. The objective of reliability analysis is to calculate
the probability of failure, which can be expressed formally as follows:

Pf=fp Of(yl,yz,~~~,yn)dy1dyz~~dyn (1.46)

The domain of integration is illustrated by a shaded region in the left panel
of Figure 1.10a. Exact solutions are not available even if the multivariate
probability density function is normal, unless the performance function is
linear or quadratic. Solutions for the former case are given in Section 1.4.1.
Other exact solutions are provided in Appendix C. Exact solutions are very
useful for validation of new reliability codes or calculation methods. The
only general solution to Equation (1.46) is Monte Carlo simulation. A simple
example is provided in Appendix A.5. The calculation steps outlined below
are typically carried out:

1. Determine (yy,Y,,...,¥,) using Monte Carlo simulation. Section 1.3.2
has presented fairly general and “user friendly” methods of simulating
correlated non-normal random vectors.
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Figure 1.10 (a) General reliability problem, and (b) solution using FORM.
2. Substitute (y;,y,,...,¥,) into the performance function and count the
number of cases where P < 0 (“failure”).
3. Estimate the probability of failure using:
A nf
pp=— (1.47)
n

in which 7; = number of failure cases and 7 =number of simulations.
4. Estimate the coefficient of variation of p; using:

(1.48)
For civil engineering problems, p;~ 10~3 and hence, (1 - p) ~ 1. The sample
size (n) required to ensure COV,, is reasonably small, say 0.3, is:

1—p; 1 10
n= 5 =~ 5 S —
psCOV,  pe(0.3)* Py

(1.49)

It is clear from Equation (1.49) that Monte Carlo simulation is not prac-
tical for small probabilities of failure. It is more often used to validate
approximate but more efficient solution methods such as FORM.

The approximate solution obtained from FORM is easier to visualize in
a standard space spanned by uncorrelated Gaussian random variables with
zero mean and unit standard deviation (Figure 1.10b). If one replaces the
actual limit state function (P = 0) by an approximate linear limit state func-
tion (P = 0) that passes through the most likely failure point (also called
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design point or B-point), it follows immediately from rotational symmetry
of the circular contours that:

ps~ @(—p) (1.50)

The practical result of interest here is that Equation (1.46) simply reduces to
a constrained nonlinear optimization problem:

B=minvz'z for{z:G(z) <0} (1.51)
inwhichz=(z;,2,,...,2,)". The solution of a constrained optimization prob-

lem is significantly cheaper than the solution of a multi-dimensional integral
[Equation (1.46)]. It is often cited that the 8-point is the “best” linearization
point because the probability density is highest at that point. In actuality, the
choice of the B-point requires asymptotic analysis (Breitung, 1984). In short,
FORM works well only for sufficiently large B — the usual rule-of-thumb is
B > 1 (Rackwitz, 2001).

Low and co-workers (e.g. Low and Tang, 2004) demonstrated that the
SOLVER function in EXCEL can be easily implemented to calculate the
first-order reliability index for a range of practical problems. Their studies
are summarized in Chapter 3. The key advantages to applying SOLVER for
the solution of Equation (1.51) are: (a) EXCEL is available on almost all
PCs, (b) most practitioners are familiar with the EXCEL user interface, and
(c) no programming skills are needed if the performance function can be
calculated using EXCEL built-in mathematical functions.

FORM can be implemented easily within MATLAB as well. Appendix A.6
demonstrates the solution process for an infinite slope problem (Figure 1.11).
The performance function for this problem is:

[v (H=h)+h (Ve — Vo) ] cOsO tang .

P=
[y (H — h) —i—h)/sat] sin@

(1.52)

in which H = depth of soil above bedrock, » = height of groundwater table
above bedrock, y and y,,, = moist unit weight and saturated unit weight of
the surficial soil, respectively, y,, = unit weight of water (9.81 kN/m3), ¢ =
effective stress friction angle, and 6 = slope inclination. Note that the height
of the groundwater table (/) cannot exceed the depth of surficial soil (H)
and cannot be negative. Hence, it is modeled by » = H x U, in which U =
standard uniform variable. The moist and saturated soil unit weights are not
independent, because they are related to the specific gravity of the soil solids
(G,) and the void ratio (e). The uncertainties in y and y,,, are characterized
by modeling G and e as two independent uniform random variables. There
are six independent random variables in this problem (H, U, ¢, B, e, and G)
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Figure 1.1 Infinite slope problem.

Table 1.3 Summary of probability distributions for input random variables.

Variable Description Distribution Statistics

H Depth of soil above bedrock Uniform [2,8] m

h=HxU Height of water table U is uniform [0, 17

¢ Effective stress friction angle Lognormal mean = 35° cov = 8%
0 Slope inclination Lognormal mean = 20° cov = 5%
y Moist unit weight of soil * *

Yeat Saturated unit weight of soil o wk

Yw Unit weight of water Deterministic 9.81 kN/m3

*y =y, (G,+0.2e)/(I +e) (assume degree of saturation = 20% for “moist”).
* Yoar = Vo (G, +€)/(1 +€) (degree of saturation = 100%).

Assume specific gravity of solids = G_ = uniformly distributed [2.5, 2.7] and void ratio = e = uniformly

distributed [0.3, 0.6].

and their probability distributions are summarized in Table 1.3. The first-
order reliability index is 1.43. The reliability index calculated from Monte
Carlo simulation is 1.57.

Guidelines for modifying the code to solve other problems can be
summarized as follows:

1. Specify the number of random variables in the problem using the
parameter “m” in “FORM.m”.

2. The objective function, “objfun.m,” is independent of the problem.

3. The performance function, “Pfun.m,” can be modified in a straight-
forward way. The only slight complication is that the physical vari-
ables (e.g. H,U,¢,B,e, and G,) must be expressed in terms of the
standard normal variables (e.g. z;,2,...,2¢). Practical methods for
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converting uncorrelated standard normal random variables to correlated
non-normal random variables have been presented in Section 1.3.2.

Low and Tang (2004) opined that practitioners will find it easier to appre-
ciate and implement FORM without the above conversion procedure.
Nevertheless, it is well-known that optimization in the standard space is more
stable than optimization in the original physical space. The SOLVER option
“Use Automatic Scaling” only scales the elliptical contours in Figure 1.10a,
but cannot make them circular as in Figure 1.10b. Under some circum-
stances, SOLVER will produce different results from different initial trial
values. Unfortunately, there are no automatic and dependable means of flag-
ging this instability. Hence, it is extremely vital for the user to try different
initial trial values and partially verify that the result remains stable. The
assumption that it is sufficient to use the mean values as the initial trial
values is untrue.

In any case, it is crucial to understand that a multivariate probabil-
ity model is necessary for any probabilistic analysis involving more than
one random variable, FORM or otherwise. It is useful to recall that
most multivariate non-normal probability models are related to the mul-
tivariate normal probability model in a fundamental way as discussed in
Section 1.3.2. Optimization in the original physical space does not elim-
inate the need for the underlying multivariate normal probability model
if the non-normal physical random vector is produced by the translation
method. It is clear from Section 1.3.2 that non-translation methods exist and
non-normal probability models cannot be constructed uniquely from corre-
lation information alone. Chapters 9 and 13 report applications of FORM
for RBD.

1.4.3 System reliability based on FORM

The first-order reliability method (FORM) is capable of handling any non-
linear performance function and any combination of correlated non-normal
random variables. Its accuracy depends on two main factors: (a) the cur-
vature of the performance function at the design point and (b) the number
of design points. If the curvature is significant, the second-order reliability
method (SORM) (Breitung, 1984) or importance sampling (Rackwitz, 2001)
can be applied to improve the FORM solution. Both methods are relatively
easy to implement, although they are more costly than FORM. The calcu-
lation steps for SORM are given in Appendix D. Importance sampling is
discussed in Chapter 4. If there are numerous design points, FORM can
underestimate the probability of failure significantly. At present, no solution
method exists that is of comparable simplicity to FORM. Note that problems
containing multiple failure modes are likely to produce more than one design
point.
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Figure 1.12 illustrates a simple system reliability problem involving two
linear performance functions, P; and P,. A common geotechnical engineer-
ing example is a shallow foundation subjected to inclined loading. It is
governed by bearing capacity (P;) and sliding (P,) modes of failure. The
system reliability is formally defined by:

py = Prob[(P; < 0)U(P, <0)] (1.53)

There are no closed-form solutions, even if P; and P, are linear and if the
underlying random variables are normal and uncorrelated. A simple estimate
based on FORM and second-order probability bounds is available and is of
practical interest. The key calculation steps can be summarized as follows:

1. Calculate the correlation between failure modes using:
Pp, py =0 "0y =001 + a0, =cosd (1.54)

in which &t; = (¢4, &;,) = unit normal at design point for ith performance
function. Referring to Figure 1.10b, it can be seen that this unit normal
can be readily obta.ined frpm FORM as: oy = 2} /B; gnd oy =25 /B;s
with (2}, 2}5) = design point for ith performance function.

Figure 1.12 Simple system reliability problem.
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2. Estimate p,; = Prob[(P, < 0) N (P; < 0)] using first-order probability
bounds:

- +
Py1 =P21 =Py

max[P(By), P(B,)] = py; < P(By)+P(B,)

(1.55)

in which P(By) = ®(—p,)®[(B;cos0 — B,)/sinf] and P(B,) =
D(—B,)P[(Bycosd — By)/sinf]. Equation (1.55) only applies for
pp, p, > 0. Failure modes are typically positively correlated because

they depend on a common set of loadings.
3. Estimate p; using second-order probability bounds:

p1+max{(py —p3;), 01 < pg < min[p; + (p, —p3), 1] (1.56)
in which p; = ®(-8;).

The advantages of the above approach are that it does not require infor-
mation beyond what is already available in FORM, and generalization to n
failure modes is quite straightforward:

p¢ = py +max[(p, — p3;). 01+ max[(p; —p3; —p35. 01+
+max[(pn—p;l"1—p:2—~~-—p:£n71),0] (1.57a)
b <Py +min{py +1[p, —p5 1+ [p3 —max(p3y. p3)1+ -
+ P, —max(p, 1. 0,5, Py 1)) 1} (1.57b)
The clear disadvantages are that no point probability estimate is available
and calculation becomes somewhat tedious when the number of failure

modes is large. The former disadvantage can be mitigated using the following
point estimate of p,; (Mendell and Elston, 1974):

b 1 x B (1.58)
oV P2 ‘
a;— B
Py~ ® rin1 71 ?(—py) (1.59)

\/1 - Pplpzzal(“l —B1)

The accuracy of Equation (1.59) is illustrated in Table 1.4. Bold numbers
shaded in gray are grossly inaccurate — they occur when the reliability indices
are significantly different and the correlation is high.
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Table 1.4 Estimation of p,, using probability bounds, point estimate, and simulation.

Performance Correlation Probability bounds Point estimate Simulation*®
rfc y
functions
B =1 0.1 (2.9, 5.8) x 102 3.1 x1072 3.1 x1072
By =1 0.5 (4.5,8.9) x 102 6.3 x 1072 6.3 x 1072
0.9 (0.6, 1.3) x 10~} 1.2 x10~! 1.2 x10~!
B =1 0.1 (4.8,9.3) x 1073 50 x 1073 50 x1073
By =2 0.5 (1.1, 1.8) x 102 1.3 x1072 1.3 x1072
0.9 (2.2,2.3) x 1072 2.3 x1072 2.3 x1072
B =1 0.1 (3.3,6.1) x10~4 34 x1074 35 x10~4
By =3 0.5 (1.0, 1.3) x 1073 1.0 x 1073 1.0 x1073
0.9 (1.3, 1.3) x 1073 0.5 x10~3 1.3 x1073
B =1 0.1 (8.6, 15.7) x10~¢ 89 x107¢ 85 x107¢
By =4 0.5 (2.8,3.2) x 1075 2.3 x107> 2.8 x1073
0.9 (3.2,3.2) x10~> 0.07 x 105 3.2 x10s—
B =2 0.1 (8.0, 16.0) x 10~* 87 x10~4 8.8 x10~*
By =2 0.5 (2.8,5.6) x 1073 4.1 x1073 4.1 x1073
0.9 (0.7, 1.5) x 102 1.4 x1072 1.3 x1072
B =2 0.1 (5.9, 11.5) x10™> 6.3 x107> 6.0 x10~3
By =3 0.5 (38,6.2) x10~4 45 x10~4 45 %1074
0.9 (1.3, 1.3) x 1073 1.2 x1073 1.3 x1073
By =2 0.1 (1.7,32) x1076 1.8 x10~6 2.5 1076
B, =4 0.5 (1.6,2.2) x10~° 1.6 x1073 1.5 x1073
0.9 (32,3.2) x107° 0.5 x1073 32 %107
By =3 0.1 (4.5,9.0) x 106 49 x107¢ 45 %1076
By =3 0.5 (5.6, 11.2) x10™> 82 x1073 8.0 x10~3
0.9 (3.3,6.6) x 104 6.3 x 1074 6.0 x10~4

*Sample size = 5,000,000.

1.4.4 Collocation-based stochastic response surface
method

The system reliability solution outlined in Section 1.4.3 is reasonably prac-
tical for problems containing a few failure modes that can be individually
analyzed by FORM. A more general approach that is gaining wider atten-
tion is the spectral stochastic finite element method originally proposed by
Ghanem and Spanos (1991). The key element of this approach is the expan-
sion of the unknown random output vector using multi-dimensional Hermite
polynomials as basis functions (also called a polynomial chaos expansion).
The unknown deterministic coefficients in the expansion can be solved using
the Galerkin or collocation method. The former method requires significant
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modification of the existing deterministic numerical code and is impossible
to apply for most engineers with no access to the source code of their com-
mercial softwares. The collocation method can be implemented using a small
number of fairly simple computational steps and does not require the mod-
ification of existing deterministic numerical code. Chapter 7 and elsewhere
(Sudret and Der Kiureghian, 2000) discussed this important class of methods
in detail. Verhoosel and Gutiérrez (2007) highlighted challenging difficulties
in applying these methods to nonlinear finite element problems involving
discontinuous fields. It is interesting to observe in passing that the output
vector can be expanded using the more well-known Taylor series expansion
as well. The coefficients of the expansion (partial derivatives) can be calcu-
lated using the perturbation method. This method can be applied relatively
easily to finite element outputs (Phoon et al., 1990; Quek et al., 1991, 1992),
but is not covered in this chapter.

This section briefly explains the key computational steps for the more
practical collocation approach. We recall in Section 1.3.2 that a vector of cor-
related non-normal random variables Y =(Y;,Y,,...,Y,) can be related to a
vector of correlated standard normal random variables X = (X, X,, ..., X,,)/
using one-dimensional Hermite polynomial expansions [Equation (1.26)].
The correlation coefficients for the normal random vector are evaluated
from the correlation coefficients of the non-normal random vector using
Equation (1.27). This method can be used to construct any non-normal ran-
dom vector as long as the correlation coefficients are available. This is indeed
the case if Y represents the input random vector. However, if Y represents
the output random vector from a numerical code, the correlation coefficients
are unknown and Equation (1.26) is not applicable. Fortunately, this practi-
cal problem can be solved by using multi-dimensional Hermite polynomials,
which are supported by a known normal random vector with zero mean,
unit variance, and uncorrelated or independent components.

The multi-dimensional Hermite polynomials are significantly more com-
plex than the one-dimensional version. For example, the second-order and
third-order forms can be expressed, respectively, as follows (Isukapalli,
1999):

n—1 n

n n
Y~ag+ Y aZi+ Yy ay(Z2-1)+ Y 4,22, (1.60a)
i=1 i=1

=1 j>i

n n n n—1 n
Y~ag+ Y aZi+ Yy ap(Z2-1)+ Y ay (2} -32,)+ Y. Y 4,27,
=1 =1 =1 =1 j>i

n—2n—1 n

T2 (227 =2) + 3D Y anZiZ 2y (1.60b)

i=1 j=1 i=1 j>i k>j
i
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For n = 3, Equation (1.60) produces the following expansions (indices for
coefficients are re-labeled consecutively for clarity):

Y~a,4+a,Z4+a,Z, +a3Z5+a,(Z5 —1)+ag(Z3 —1)+ag(Z5-1)
‘a2 Zy+agZ Zy+agZyZy (1.61a)
Yra,4+a,Z4+a,Z, +a3Z5+a,(Z5 —1)+ag(Z3 —1)+ag(Z5-1)
+ 4,2, 2y +agZ 23+ agZ, 25 +a,0(Z3 —3Z,) +ay,(Z3 —3Z,)
+ayy(Z3 =3Z3) +ay3(Z, 75 = Z)) +a14(2, 235 — Z;)
+a,5(Zy 7% — Z,y) +a15( 2,23 — Z,) +a,,(2523 — Z5)
tag(Z323 —Z3) +a9Z,2,7, (1.61b)

In general, N, and Nj; terms are respectively required for the second-order
and third-order expansions (Isukapalli, 1999):

nn—1)

N,=1+2n+ (1.62a)

3nn—1) nn—1)(n-2)

N;=1+3
s=143n+———+ c

(1.62b)

For a fairly modest random dimension of #» = 5, N, and Nj terms are
respectively equal to 21 and 56. Hence, fairly tedious algebraic expressions
are incurred even at a third-order truncation. One-dimensional Hermite
polynomials can be generated easily and efficiently using a three-term recur-
rence relation [Equation (1.11)]. No such simple relation is available for
multi-dimensional Hermite polynomials. They are usually generated using
symbolic algebra, which is possibly out of reach of the general practi-
tioner. This major practical obstacle is currently being addressed by Liang
et al. (2007). They have developed a user-friendly EXCEL add-in to gener-
ate tedious multi-dimensional Hermite expansions automatically. Once the
multi-dimensional Hermite expansions are established, their coefficients can
be calculated following the steps described in Equations (1.18)—(1.20). Two
practical aspects are noteworthy:

1. The random dimension of the problem should be minimized to reduce
the number of terms in the polynomial chaos expansion. The spectral
decomposition method can be used:

X =PD'?Z+p (1.63)

in which D = diagonal matrix containing eigenvalues in the leading diag-
onal and P = matrix whose columns are the corresponding eigenvectors.
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If C is the covariance matrix of X, the matrices D and P can be calcu-
lated easily using [P, D] = eig(C) in MATLAB. The key advantage of
replacing Equation (1.23) by Equation (1.63) is that an n-dimensional
correlated normal vector X can be simulated using an uncorrelated stan-
dard normal vector Z with a dimension less than 7. This is achieved by
discarding eigenvectors in P that correspond to small eigenvalues. A sim-
ple example is provided in Appendix A.7. The objective is to simulate a
3D correlated normal vector following a prescribed covariance matrix:

1 09 02
C=(09 1 05
02 05 1

Spectral decomposition of the covariance matrix produces:

0.045 0 0 0.636 0.467 0.614
D= 0 0.832 0 P=|-0.730 0.108 0.675
0 0 2.123 0.249 -0.878 0.410

Realizations of X can be obtained using Equation (1.63). Results are
shown as open circles in Figure 1.13. The random dimension can be
reduced from three to two by ignoring the first eigenvector correspond-
ing to a small eigenvalue of 0.045. Realizations of X are now simulated
using:

X 0.467 0.614 |: 03832 0 ]{Z
. 1}

X, t=| 0.108 0.675
X5 —0.878 0.410 0 Vv2.123] | Z,

Results are shown as crosses in Figure 1.13. Note that three correlated

random variables can be represented reasonably well using only two
uncorrelated random variables by neglecting the smallest eigenvalue and
the corresponding eigenvector. The exact error can be calculated theo-
retically by observing that the covariance of X produced by Equation
(1.63) is:

C, = (PD'/?)(D'/?P’) = PDP’ (1.64)

If the matrices P and D are exact, it can be proven that PDP’ =C, i.e.
the target covariance is reproduced. For the truncated P and D matrices
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Figure 1.13 Scatter plot between X, and X, (top) and X, and X3 (bottom).

discussed above, the covariance of X is:

0.467 0.614
Cx=| 0.108 0.675 [0'%32 2323}
—-0.878 0.410 '
0.982 0921 0.193

=10.921 0.976 0.508

><|:0'467 0.108 —O.878:|
0.193 0.508 0.997

0.614 0.675 0.410
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The exact error in each element of Cy can be clearly seen by comparing
with the corresponding element in €. In particular, the variances of
X (elements in the leading diagonal) are slightly reduced. For random
processes/fields, reduction in the random dimension can be achieved
using the Karhunen-Loeve expansion (Phoon et al., 2002, 2004). It can
be shown that the spectral representation given by Equation (1.28) is
a special case of the Karhunen-Loeve expansion (Huang et al., 2001).
The random dimension can be further reduced by performing sensitiv-
ity analysis and discarding input parameters that are “unimportant.”
For example, the square of the components of the unit normal vec-
tor, a, shown in Figure 1.12, are known as FORM importance factors
(Ditlevsen and Madsen, 1996). If the input parameters are independent,
these factors indicate the degree of influence exerted by the corre-
sponding input parameters on the failure event. Sudret (2007) discussed
the application of Sobol’ indices for sensitivity analysis of the spectral
stochastic finite element method.

2. The number of output values (y,y,,...) in Equation (1.20) should be
minimized, because they are usually produced by costly finite element
calculations. Consider a problem containing two random dimensions
and approximating the output as a third-order expansion:

y;=4a, +ﬂlzi1 +ﬂzzl‘2 +a3(zl‘21 — 1) +a4(zl'22 — 1) +452ilzi2
+aglz)) —32,) + a5 (2 — 32) +ag(2:12 — 21

+ag (2] — 2p) (1.65)

Phoon and Huang (2007) demonstrated that the collocation points
(2;1,2;,) are best sited at the roots of the Hermite polynomial that is one
order higher than that of the Hermite expansion. In this example, the
roots of the fourth-order Hermite polynomial are +./(3+./6). Although
zero is not one of the roots, it should be included because the standard
normal probability density function is highest at the origin. Twenty-
five collocation points (z;;,2;,) can be generated by combining the roots
and zero in two dimensions, as illustrated in Figure 1.14. The roots of
Hermite polynomials (up to order 15) can be calculated numerically as
shown in Appendix A.8.

1.4.5 Subset simulation method

The collocation-based stochastic response surface method is very efficient
for problems containing a small number of random dimensions and perfor-
mance functions that can be approximated quite accurately using low-order
Hermite expansions. However, the method suffers from a rapid proliferation
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Figure .14 Collocation points for a third-order expansion with two random dimensions.

of Hermite expansion terms when the random dimension and/or order of
expansion increase. A critical review of reliability estimation procedures for
high dimensions is given by Schuéller et al. (2004). One potentially practical
method that is worthy of further study is the subset simulation method (Au
and Beck, 2001). It appears to be more robust than the importance sampling
method. Chapter 4 and elsewhere (Au, 2001) present a more extensive study
of this method.

This section briefly explains the key computational steps involved in
the implementation. Consider the failure domain F,, defined by the con-
dition P(yy,y5,...,y,) < 0, in which P is the performance function and
(Y1, Y25 ..., ¥,) are realizations of the uncertain input parameters. The “fail-
ure” domain F; defined by the condition P(y;,y,,...,y,) <¢;, in which ¢; is
a positive number, is larger by definition of the performance function. We
assume that it is possible to construct a nested sequence of failure domains
of increasing size by using an increasing sequence of positive numbers, i.e.
there exists ¢; > ¢, > ... > ¢,, = 0 such that F; D F, > ...F,,. As shown in
Figure 1.15 for the one-dimensional case, it is clear that this is always possible
as long as one value of y produces only one value of P(y). The performance
function will satisfy this requirement. If one value of y produces two values
of P(y), say a positive value and a negative value, then the physical system
is simultaneously “safe” and “unsafe,” which is absurd.

The probability of failure (p;) can be calculated based on the above nested
sequence of failure domains (or subsets) as follows:

ps=Prob(F,,) =Prob(F, |F,,_;)Prob(F,,_|E,,_,)
x ...Prob(F,|F;)Prob(F;) (1.66)
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Figure 1.15 Nested failure domains.

At first glance, Equation (1.66) appears to be an indirect and more tedious
method of calculating p;. In actuality, it can be more efficient because the
probability of each subset conditional on the previous (larger) subset can
be selected to be sufficiently large, say 0.1, such that a significantly smaller
number of realizations is needed to arrive at an acceptably accurate result.
We recall from Equation (1.49) that the rule of thumb is 10/py, i.e. only
100 realizations are needed to estimate a probability of 0.1. If the actual
probability of failure is 0.001 and the probability of each subset is 0.1, it is
apparent from Equation (1.66) that only three subsets are needed, implying a
total sample size = 3 x 100 = 300. In contrast, direct simulation will require
10/0.001 = 10,000 realizations!

The typical calculation steps are illustrated below using a problem
containing two random dimensions:

1. Select a subset sample size () and prescribe p = Prob(F;|F,_;). We
assume p = 0.1 and #» = 500 from hereon.

2. Simulate 7z =500 realizations of the uncorrelated standard normal vector
(Z,,Z,). The physical random vector (Y;,Y,)’ can be determined from
these realizations using the methods described in Section 1.3.2.

3. Calculate the value of the performance function g; = P(y;;,y;,) associ-
ated with each realization of the physical random vector (y;1,v;,).i =
1,2,...,500.

4. Rankthe values of (g1, g5, ...,8500) in ascending order. The value located
at the (np 4+ 1) = S1st position is ¢;.
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5. Define the criterion for the first subset (F;) as P < ¢;. By construction at
step (4), P(F,) =np/n = p. The realizations contained in F; are denoted
by Zi = (Zil,ziz)/,j = 1,2, ceey 50.

6. Simulate 1/p = 10 new realizations from z; using the following
Metropolis-Hastings algorithm:

a. Simulate 1 realization using a uniform proposal distribution with
mean located at p=z; and range = 1, i.e. bounded by p£0.5. Let
this realization be denoted by u = (uy,u,)’.

b. Calculate the acceptance probability:

I(u)¢>(u))
é(p)

in which I(u) = 1 if P(uy,u,) < ¢y, I(u) = 0 if P(uy,u,y) > ¢4,
¢(u) =exp(—0.5u'u), and ¢(p) = exp(—0.5p'p).

c. Simulate 1 realization from a standard uniform distribution
bounded between 0 and 1, denoted by v.

d. The first new realization is given by:

o = min <1.0, (1.67)

w=u ifv<a
(1.68)

w=p ifv>a

Update the mean of the uniform proposal distribution in step (a) as
p=w (i.e. centred about the new realization) and repeat the algo-
rithm to obtain a “chain” containing 10 new realizations. Fifty
chains are obtained in the same way with initial seeds atz;,j=1, ...,

50. It can be proven that these new realizations would follow
Prob(-|F;) (Au, 2001).

7. Convert these realizations to their physical values and repeat Step (3)
until ¢; becomes negative (note: the smallest subset should correspond
toc,, =0).

It is quite clear that the above procedure can be extended to any random
dimension in a trivial way. In general, the accuracy of this subset simula-
tion method depends on “tuning” factors such as the choice of 7, p, and the
proposal distribution in step 6(a) (assumed to be uniform with range = 1).
A study of some of these factors is given in Chapter 4. The optimal choice of
these factors to achieve minimum runtime appears to be problem-dependent.
Appendix A.9 provides the MATLAB code for subset simulation. The perfor-
mance function is specified in “Pfun.m” and the number of random variables
is specified in parameter “m.” Figure 1.16 illustrates the behavior of the
subset simulation method for the following performance function:

P=2+3/2-Y, Y, =243/2+In[®(~Z;)]+In[®(-Z,)] (1.69)
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Figure 1.16 Subset simulation method for P=2+43,/2—Y| —Y,, in which Y| and Y, are
exponential random variables with mean = |: first subset (top) and second
subset (bottom).
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in which Y;, Y, = exponential random variables withmean=1and Z,, Z, =
uncorrelated standard normal random variables. The exact solution for the
probability of failure is 0.0141 (Appendix C). The solution based on subset
simulation method solution is achieved as follows:

1. Figure 1.16a: Simulate 500 realizations (small open circles) and identify
the first 50 realizations in order of increasing P value (big open circles).
The 51st smallest P value is ¢; =2.192.

2. These realizations satisfy the criterion, P < ¢; (solid line), by construc-
tion. The domain above the solid line is F;.

3. Figure 1.16b: Simulate 10 new realizations from each big open circle in
Fig 1.16a. The total number is 10 x 50 = 500 realizations (small open
circles).

4. There are 66 realizations (big open squares) satisfying P < 0 (dashed
line). The domain above the dashed line is F,. F, is the actual failure
domain. Hence, Prob(F,|F;) = 66/500 = 0.132.

5. The estimated probability of failure is: p = Prob(F, |F;)P(F;) = 0.132 x
0.1=0.0132.

Note that only 7 realizations in Figure 1.16a lie in F,. In contrast, 66 real-
izations in Figure 1.16b lie in F,, providing a more accurate p, estimate.

1.5 Conclusions

This chapter presents general and user-friendly computational methods for
reliability analysis. “User-friendly” methods refer to those that can be imple-
mented on a desktop PC by a non-specialist with limited programming
skills; in other words, methods within reach of the general practitioner.
This chapter is organized under two main headings describing: (a) how to
simulate uncertain inputs numerically, and (b) how to propagate uncertain
inputs through a physical model to arrive at the uncertain outputs. Although
some of the contents are elaborated in greater detail in subsequent chapters,
the emphasis on numerical implementations in this chapter should shorten
the learning curve for the novice. The overview will also provide a useful
roadmap to the rest of this book.

For the simulation of uncertain inputs following arbitrary non-normal
probability distribution functions and correlation structure, the translation
model involving memoryless transform of the multivariate normal probabil-
ity distribution function can cater for most practical scenarios. Implemen-
tation of the translation model using one-dimensional Hermite polynomials
is relatively simple and efficient. For stochastic data that cannot be modeled
using the translation model, the hunt for probability models with comparable
practicality, theoretical power, and simulation speed is still on-going. Copula
theory produces a more general class of multivariate non-normal models, but
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it is debatable at this point if these models can be estimated empirically and
simulated numerically with equal ease for high random dimensions. The
only exception is a closely related but non-translation approach based on
the multivariate normal copula.

The literature is replete with methodologies on the determination of uncer-
tain outputs from a given physical model and uncertain inputs. The most
general method is Monte Carlo simulation, but it is notoriously tedious.
One may assume with minimal loss of generality that a complex geotechni-
cal problem (possibly 3D, nonlinear, time-and construction-dependent, etc.)
would only admit numerical solutions and the spatial domain can be modeled
by a scalar/vector random field. For a sufficiently large and complex problem,
it is computationally intensive to complete even a single run. At present, it is
accurate to say that a computationally efficient and “user-friendly” solution
to the general stochastic problem remains elusive. Nevertheless, reasonably
practical solutions do exist if the general stochastic problem is restricted
in some ways, for example, accept a first-order estimate of the probability
of failure or accept an approximate but less costly output. The FORM is
by far the most efficient general method for estimating the probability of
failure of problems involving one design point (one dominant mode of fail-
ure). There are no clear winners for problems beyond the reach of FORM.
The collocation-based stochastic response surface method is very efficient
for problems containing a small number of random dimensions and perfor-
mance functions that can be approximated quite accurately using low-order
Hermite expansions. However, the method suffers from a rapid prolifera-
tion of Hermite expansion terms when the random dimension and/or order of
expansion increase. The subset simulation method shares many of the advan-
tages of the Monte Carlo simulation method, such as generality and tractabil-
ity at high dimensions, without requiring too many runs. At low random
dimensions, it does require more runs than the collocation-based stochas-
tic response surface method but the number of runs is probably acceptable
up to medium-scale problems. The subset simulation method has numerous
“tuning” factors that are not fully studied for geotechnical problems.

Simple MATLAB codes are provided in the Appendix A to encourage
practitioners to experiment with reliability analysis numerically so as to gain
a concrete appreciation of the merits and limitations. Theory is discussed
where necessary to furnish sufficient explanations so that users can modify
codes correctly to suit their purpose and to highlight important practical
limitations.

Appendix A — MATLAB codes

MATLAB codes are stored in text files with extension “.m” — they are called

M-files. M-files can be executed easily by typing the filename (e.g. hermite)
within the command window in MATLAB. The location of the M-file should
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be specified using “File > Set Path ....” M-files can be opened and edited
using “File > Open ....” Programming details are given under “Help >
Contents > MATLAB > Programming.” The M-files provided below are
available at http://www.eng.nus.edu.sg/civil/people/cvepkk/prob_lib.html.

>

.1 Simulation of Johnson distributions

% Simulation of Johnson distributions
% Filename: Johnson.m

% Simulation sample size, n
n = 100000;

% Lognormal with lambda, xi

lambda = 1;
xi = 0.2;
7z = normrnd(0, 1, n, 1);

X = lambda + Z*xi;
LNY = exp (X);

% SB with lambda, xi, A, B

lambda = 1;

xi = 0.36;

A = -3;

B =5;

X = lambda + Z*xi;

SBY = (exp(X)*B+A) ./ (exp(X)+1);

o

% SU with lambda, xi, A, B

lambda = 1;

xi = 0.09;

A = -1.88;

B = 2.08;

X = lambda + Z*xi;

SUY = sinh(X)* (B-A)+A;

oe

% Plot probability density functions

[£f, x] = ksdensity (LNY) ;
plot(x, f);

hold;

[f, x] = ksdensity (SBY) ;
plot(x,f, 'red’);

[£f, x] = ksdensity (SUY) ;

plot(x, £, "green’) ;
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A.2 Calculation of Hermite coefficients using stochastic
collocation method

% Calculation of Hermite coefficients using stochastic
collocation method
Filename: herm coeffs.m

o o0 o°

Number of realizations, n
n = 20;

Example: Lognormal with lambda, xi

lambda = 0;
xi = 1;
7z = normrnd(0, 1, n, 1);

X = lambda + Z*xi;
LNY = exp (X);

o0 o

Order of Hermite expansion, m

m = 6;

% Construction of Hermite matrix, H

H = zeros(n,m+1l);

H(:,1) = ones(n,1);

H(:,2) = Z;

for k = 3:m+1;

H(:,k) = Z2.*H(:,k-1) - (k-2)*H(:,k-2);
end;

o0 o°

Hermite coefficients stored in vector a

K = H'*H;
f = H'*LNY;
a = inv(K) *f;

A.3 Simulation of correlated non-normal random
variables using translation method

% Simulation of correlated non-normal random variables
using translation method
Filename: translation.m

o° o o°

Number of random dimension, n

B

o0 o

Normal covariance matrix
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Q

= [1 0.8; 0.8 1];

oe

oe

Number of realizations, m
= 100000;

o0 o0 B

Simulation of 2 uncorrelated normal random variables
with

mean = 0 and variance = 1

= normrnd (0, 1, m, n);

o° N o°

o

Cholesky factorization
F = chol(C);

Q

oe

% Simulation of 2 correlated normal random variables
with

% with mean = 0 and covariance = C

X = Z*CF;

% Example: simulation of correlated non-normal with
% Component 1 = Johnson SB

lambda = 1;

xi = 0.36;

A = -3;

B =5;

W(:,1) = lambda + X(:,