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Chapter 1

Numerical recipes for
reliability analysis – a primer

Kok-Kwang Phoon

1.1 Introduction

Currently, the geotechnical community is mainly preoccupied with the tran-
sition from working or allowable stress design (WSD/ASD) to Load and
Resistance Factor Design (LRFD). The term LRFD is used in a loose way
to encompass methods that require all limit states to be checked using a
specific multiple-factor format involving load and resistance factors. This
term is used most widely in the United States and is equivalent to Limit
State Design (LSD) in Canada. Both LRFD and LSD are philosophically
akin to the partial factors approach commonly used in Europe, although a
different multiple-factor format involving factored soil parameters is used.
Over the past few years, Eurocode 7 has been revised to accommodate three
design approaches (DAs) that allow partial factors to be introduced at the
beginning of the calculations (strength partial factors) or at the end of the
calculations (resistance partial factors), or some intermediate combinations
thereof. The emphasis is primarily on the re-distribution of the original global
factor safety in WSD into separate load and resistance factors (or partial
factors).

It is well accepted that uncertainties in geotechnical engineering design are
unavoidable and numerous practical advantages are realizable if uncertain-
ties and associated risks can be quantified. This is recognized in a recent
National Research Council (2006) report on Geological and Geotechni-
cal Engineering in the New Millennium: Opportunities for Research and
Technological Innovation. The report remarked that “paradigms for dealing
with … uncertainty are poorly understood and even more poorly practiced”
and advocated a need for “improved methods for assessing the potential
impacts of these uncertainties on engineering decisions …”. Within the arena
of design code development, increasing regulatory pressure is compelling
geotechnical LRFD to advance beyond empirical re-distribution of the orig-
inal global factor of safety to a simplified reliability-based design (RBD)
framework that is compatible with structural design. RBD calls for a willing-
ness to accept the fundamental philosophy that: (a) absolute reliability is an
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unattainable goal in the presence of uncertainty, and (b) probability theory
can provide a formal framework for developing design criteria that would
ensure that the probability of “failure” (used herein to refer to exceeding
any prescribed limit state) is acceptably small. Ideally, geotechnical LRFD
should be derived as the logical end-product of a philosophical shift in mind-
set to probabilistic design in the first instance and a simplification of rigorous
RBD into a familiar “look and feel” design format in the second. The need
to draw a clear distinction between accepting reliability analysis as a nec-
essary theoretical basis for geotechnical design and downstream calibration
of simplified multiple-factor design formats, with emphasis on the former,
was highlighted by Phoon et al. (2003b). The former provides a consis-
tent method for propagation of uncertainties and a unifying framework
for risk assessment across disciplines (structural and geotechnical design)
and national boundaries. Other competing frameworks have been suggested
(e.g. λ-method by Simpson et al., 1981; worst attainable value method by
Bolton, 1989; Taylor series method by Duncan, 2000), but none has the
theoretical breadth and power to handle complex real-world problems that
may require nonlinear 3D finite element or other numerical approaches for
solution.

Simpson and Yazdchi (2003) proposed that “limit state design requires
analysis of un-reality, not of reality. Its purpose is to demonstrate that
limit states are, in effect, unreal, or alternatively that they are ‘sufficiently
unlikely,’ being separated by adequate margins from expected states.” It is
clear that limit states are “unlikely” states and the purpose of design is to
ensure that expected states are sufficiently “far” from these limit states. The
pivotal point of contention is how to achieve this separation in numerical
terms (Phoon et al., 1993). It is accurate to say that there is no consensus on
the preferred method and this issue is still the subject of much heated debate
in the geotechnical engineering community. Simpson and Yazdchi (2003)
opined that strength partial factors are physically meaningful, because “it is
the gradual mobilisation of strength that causes deformation.” This is con-
sistent with our prevailing practice of applying a global factor of safety to
the capacity to limit deformations. Another physical justification is that vari-
ations in soil parameters can create disproportionate nonlinear variations in
the response (or resistance) (Simpson, 2000). In this situation, the author felt
that “it is difficult to choose values of partial factors which are applicable
over the whole range of the variables.” The implicit assumption here is that
the resistance factor is not desirable because it is not practical to prescribe
a large number of resistance factors in a design code. However, if main-
taining uniform reliability is a desired goal, a single partial factor for, say,
friction angle would not produce the same reliability in different problems
because the relevant design equations are not equally sensitive to changes in
the friction angle. For complex soil–structure interaction problems, apply-
ing a fixed partial factor can result in unrealistic failure mechanisms. In fact,
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given the complexity of the limit state surface, it is quite unlikely for the
same partial factor to locate the most probable failure point in all design
problems. These problems would not occur if resistance factors are cali-
brated from reliability analysis. In addition, it is more convenient to account
for the bias in different calculation models using resistance factors. How-
ever, for complex problems, it is possible that a large number of resistance
factors are needed and the design code becomes too unwieldy or confusing to
use. Another undesirable feature is that the engineer does not develop a feel
for the failure mechanism if he/she is only required to analyze the expected
behavior, followed by application of some resistance factors at the end of
the calculation.

Overall, the conclusion is that there are no simple methods (factored
parameters or resistances) of replacing reliability analysis for sufficiently
complex problems. It may be worthwhile to discuss if one should insist
on simplicity despite all the known associated problems. The more recent
performance-based design philosophy may provide a solution for this
dilemma, because engineers can apply their own calculations methods for
ensuring performance compliance, without being restricted to following rigid
design codes containing a few partial factors. In the opinion of the author,
the need to derive simplified RBD equations perhaps is of practical impor-
tance to maintain continuity with past practice, but it is not necessary and
it is increasingly fraught with difficulties when sufficiently complex prob-
lems are posed. The limitations faced by simplified RBD have no bearing on
the generality of reliability theory. This is analogous to arguing that limita-
tions in closed-form elastic solutions are related to elasto-plastic theory. The
application of finite element softwares on relatively inexpensive and power-
ful PCs (with gigahertz processors, a gigabyte of memory, and hundreds of
gigabytes – verging on terabyte – of disk) permit real-world problems to be
simulated on an unprecedented realistic setting almost routinely. It suffices
to note here that RBD can be applied to complex real-world problems using
powerful but practical stochastic collocation techniques (Phoon and Huang,
2007).

One common criticism of RBD is that good geotechnical sense and judg-
ment would be displaced by the emphasis on probabilistic analysis (Boden,
1981; Semple, 1981; Bolton, 1983; Fleming, 1989). This is similar to the on-
going criticism of numerical analysis, although this criticism seems to have
grown more muted in recent years with the emergence of powerful and user-
friendly finite element softwares. The fact of the matter is that experience,
sound judgment, and soil mechanics still are needed for all aspects of geotech-
nical RBD (Kulhawy and Phoon, 1996). Human intuition is not suited for
reasoning with uncertainties and only this aspect has been removed from the
purview of the engineer. One example in which intuition can be misleading
is the common misconception that a larger partial factor should be assigned
to a more uncertain soil parameter. This is not necessarily correct, because
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the parameter may have little influence on the overall response (e.g. capacity,
deformation). Therefore, the magnitude of the partial factor should depend
on the uncertainty of the parameter and the sensitivity of the response to
that parameter. Clearly, judgment is not undermined; instead, it is focused
on those aspects for which it is most suited.

Another criticism is that soil statistics are not readily available because
of the site-specific nature of soil variability. This concern only is true for
total variability analyses, but does not apply to the general approach where
inherent soil variability, measurement error, and correlation uncertainty are
quantified separately. Extensive statistics for each component uncertain-
ties have been published (Phoon and Kulhawy, 1999a; Uzielli et al., 2007).
For each combination of soil type, measurement technique, and correlation
model, the uncertainty in the design soil property can be evaluated systemat-
ically by combining the appropriate component uncertainties using a simple
second-moment probabilistic approach (Phoon and Kulhawy, 1999b).

In summary, we are now at the point where RBD really can be used as
a rational and practical design mode. The main impediment is not theoret-
ical (lack of power to deal with complex problems) or practical (speed of
computations, availability of soil statistics, etc.), but the absence of simple
computational approaches that can be easily implemented by practitioners.
Much of the controversies reported in the literature are based on qualitative
arguments. If practitioners were able to implement RBD easily on their PCs
and calculate actual numbers using actual examples, they would gain a con-
crete appreciation of the merits and limitations of RBD. Misconceptions will
be dismissed definitively, rather than propagated in the literature, generating
further confusion. The author believes that the introduction of powerful but
simple-to-implement approaches will bring about a greater acceptance of
RBD amongst practitioners in the broader geotechnical engineering commu-
nity. The Probabilistic Model Code was developed by the Joint Committee
on Structural Safety (JCSS) to achieve a similar objective (Vrouwenvelder
and Faber, 2007).

The main impetus for this book is to explain RBD to students and
practitioners with emphasis on “how to calculate” and “how to apply.”
Practical computational methods are presented in Chapters 1, 3, 4 and 7.
Geotechnical examples illustrating reliability analyses and design are pro-
vided in Chapters 5, 6, 8–13. The spatial variability of geomaterials is
one of the distinctive aspects of geotechnical RBD. This important aspect
is covered in Chapter 2. The rest of this chapter provides a primer on
reliability calculations with references to appropriate chapters for follow-
up reading. Simple MATLAB codes are provided in Appendix A and
at http://www.eng.nus.edu.sg/civil/people/cvepkk/prob_lib.html. By focus-
ing on demonstration of RBD through calculations and examples, this
book is expected to serve as a valuable teaching and learning resource for
practitioners, educators, and students.
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1.2 General reliability problem

The general stochastic problem involves the propagation of input uncer-
tainties and model uncertainties through a computation model to arrive
at a random output vector (Figure 1.1). Ideally, the full finite-dimensional
distribution function of the random output vector is desired, although par-
tial solutions such as second-moment characterizations and probabilities of
failure may be sufficient in some applications. In principle, Monte Carlo
simulation can be used to solve this problem, regardless of the complexi-
ties underlying the computation model, input uncertainties, and/or model
uncertainties. One may assume with minimal loss of generality that a com-
plex geotechnical problem (possibly 3D, nonlinear, time and construction
dependent, etc.) would only admit numerical solutions and the spatial
domain can be modeled by a scalar/vector random field. Monte Carlo
simulation requires a procedure to generate realizations of the input and
model uncertainties and a numerical scheme for calculating a vector of
outputs from each realization. The first step is not necessarily trivial and
not completely solved even in the theoretical sense. Some “user-friendly”
methods for simulating random variables/vectors/processes are outlined in
Section 1.3, with emphasis on key calculation steps and limitations. Details
are outside the scope of this chapter and given elsewhere (Phoon, 2004a,
2006a). In this chapter, “user-friendly” methods refer to those that can
be implemented on a desktop PC by a non-specialist with limited pro-
gramming skills; in other words, methods within reach of the general
practitioner.

Model errors

Computation
model

Uncertain model
parameters

Uncertain
output vector

Uncertain
input vector

Figure 1.1 General stochastic problem.



6 Kok-Kwang Phoon

The second step is identical to the repeated application of a determin-
istic solution process. The only potential complication is that a particular
set of input parameters may be too extreme, say producing a near-collapse
condition, and the numerical scheme may become unstable. The statistics
of the random output vector are contained in the resulting ensemble of
numerical output values produced by repeated deterministic runs. Fenton
and Griffiths have been applying Monte Carlo simulation to solve soil-
interaction problems within the context of a random field since the early
1990s (e.g. Griffiths and Fenton, 1993, 1997, 2001; Fenton and Griffiths,
1997, 2002, 2003). Popescu and co-workers developed simulation-based
solutions for a variety of soil-structure interaction problems, particularly
problems involving soil dynamics, in parallel. Their work is presented in
Chapter 6 of this book.

For a sufficiently large and complex soil-structure interaction problem,
it is computationally intensive to complete even a single run. The rule-of-
thumb for Monte Carlo simulation is that 10/pf runs are needed to estimate
a probability of failure, pf, within a coefficient of variation of 30%. The
typical pf for a geotechnical design is smaller than one in a thousand and
it is expensive to run a numerical code more than ten thousand times, even
for a modest size problem. This significant practical disadvantage is well
known. At present, it is accurate to say that a computationally efficient and
“user-friendly” solution to the general stochastic problem remains elusive.
Nevertheless, reasonably practical solutions do exist if the general stochastic
problem is restricted in some ways, for example, accept a first-order esti-
mate of the probability of failure or accept an approximate but less costly
output. Some of these probabilistic solution procedures are presented in
Section 1.4.

1.3 Modeling and simulation of stochastic data

1.3.1 Random variables

Geotechnical uncertainties

Two main sources of geotechnical uncertainties can be distinguished. The
first arises from the evaluation of design soil properties, such as undrained
shear strength and effective stress friction angle. This source of geotechni-
cal uncertainty is complex and depends on inherent soil variability, degree
of equipment and procedural control maintained during site investigation,
and precision of the correlation model used to relate field measurement
with design soil property. Realistic statistical estimates of the variability of
design soil properties have been established by Phoon and Kulhawy (1999a,
1999b). Based on extensive calibration studies (Phoon et al., 1995), three
ranges of soil property variability (low, medium, high) were found to be
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sufficient to achieve reasonably uniform reliability levels for simplified RBD
checks:

Geotechnical parameter Property variability COV (%)

Undrained shear strength Low 10–30
Medium 30–50
High 50–70

Effective stress friction angle Low 5–10
Medium 10–15
High 15–20

Horizontal stress coefficient Low 30–50
Medium 50–70
High 70–90

In contrast, Rétháti (1988), citing the 1965 specification of the American
Concrete Institute, observed that the quality of concrete can be evaluated in
the following way:

Quality COV (%)

Excellent < 10
Good 10–15
Satisfactory 15–20
Bad > 20

It is clear that the coefficients of variations or COVs of natural geomaterials
can be much larger and do not fall within a narrow range. The ranges of
quality for concrete only apply to the effective stress friction angle.

The second source arises from geotechnical calculation models. Although
many geotechnical calculation models are “simple,” reasonable predictions
of fairly complex soil–structure interaction behavior still can be achieved
through empirical calibrations. Model factors, defined as the ratio of the
measured response to the calculated response, usually are used to correct
for simplifications in the calculation models. Figure 1.2 illustrates model
factors for capacity of drilled shafts subjected to lateral-moment loading.
Note that “S.D.” is the standard deviation, “n” is the sample size, and “pAD”
is the p-value from the Anderson–Darling goodness-of-fit test (> 0.05 implies
acceptable lognormal fit). The COVs of model factors appear to fall between
30 and 50%.

It is evident that a geotechnical parameter (soil property or model factor)
exhibiting a range of values, possibly occurring at unequal frequencies, is
best modeled as a random variable. The existing practice of selecting one
characteristic value (e.g. mean, “cautious” estimate, 5% exclusion limit, etc.)
is attractive to practitioners, because design calculations can be carried out
easily using only one set of input values once they are selected. However, this
simplicity is deceptive. The choice of the characteristic values clearly affects



0.4 1.2 2.0 2.8 3.6

Hh/Hu(Reese)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 1.42
  S.D. = 0.14
 COV = 0.29

    n = 74
     pAD = 0.186

Hyperbolic capacity (Hh)

0.4 1.2 2.0 2.8 3.6
Hh/Hu(Broms)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 2.28
  S.D. = 0.85
 COV = 0.37

    n = 74
     pAD = 0.149

0.4 1.2 2.0 2.8 3.6
Hh/Hu(Hansen)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 0.98
  S.D. = 0.32
 COV = 0.33

    n = 77
     pAD = 0.229

0.4 1.2 2.0 2.8 3.6
Hh/Hu(Randolph & Houlsby)Hh/Hu(Randolph & Houlsby)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 1.32
  S.D. = 0.38
 COV = 0.29

    n = 74
     pAD = 0.270

0.4 1.2 2.0 2.8 3.6

Hh/Hu(Simplified Broms)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 1.30
  S.D. = 0.49
 COV = 0.38

    n = 77
     pAD = 0.141

0.0 0.8 1.6 2.4 3.2

Hh/Hu(Reese)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 0.92
  S.D. = 0.27
 COV = 0.29

    n = 72
     pAD = 0.633

Lateral on moment limit (HL)Capacity model

Reese (1958)
(undrained)

Broms (1964a)
(undrained)

Randolph & Houlsby
(1984) (undrained)

Hansen (1961)
(drained)

Broms (1964b)
(drained)

0.0 0.8 1.6 2.4 3.2
Hh/Hu(Broms)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 1.49
  S.D. = 0.57
 COV = 0.38

    n = 72
     pAD = 0.122

0.0 0.8 1.6 2.4 3.2
Hh/Hu(Hansen)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 0.67
  S.D. = 0.26
 COV = 0.38

    n = 75
     pAD = 0.468

0.0 0.8 1.6 2.4 3.2

Hh/Hu(Simplified Broms)

0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 0.88
  S.D. = 0.36
 COV = 0.41

    n = 75
     pAD = 0.736

0.0 0.8 1.6 2.4 3.2
0

0.1

0.2

0.3

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Mean = 0.85
  S.D. = 0.24
 COV = 0.28

    n = 72
     pAD = 0.555

Figure 1.2 Capacity model factors for drilled shafts subjected to lateral-moment loading
(modified from Phoon, 2005).
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the overall safety of the design, but there are no simple means of ensur-
ing that the selected values will achieve a consistent level of safety. In fact,
these values are given by the design point of a first-order reliability anal-
ysis and they are problem-dependent. Simpson and Driscoll (1998) noted
in their commentary to Eurocode 7 that the definition of the characteristic
value “has been the most controversial topic in the whole process of drafting
Eurocode 7.” If random variables can be included in the design process with
minimal inconvenience, the definition of the characteristic value is a moot
issue.

Simulation

The most intuitive and possibly the most straightforward method for per-
forming reliability analysis is the Monte Carlo simulation method. It only
requires repeated execution of an existing deterministic solution process. The
key calculation step is to simulate realizations of random variables. This step
can be carried in a general way using:

Y = F−1(U) (1.1)

in which Y is a random variable following a prescribed cumulative distribu-
tion F(·) and U is a random variable uniformly distributed between 0 and 1
(also called a standard uniform variable). Realizations of U can be obtained
from EXCEL™ under “Tools > Data Analysis > Random Number Gener-
ation > Uniform Between 0 and 1.” MATLAB™ implements U using the
“rand” function. For example, U = rand(10,1) is a vector containing 10 real-
izations of U. Some inverse cumulative distribution functions are available
in EXCEL (e.g. norminv for normal, loginv for lognormal, betainv for beta,
gammainv for gamma) and MATLAB (e.g. norminv for normal, logninv for
lognormal, betainv for beta, gaminv for gamma). More efficient methods are
available for some probability distributions, but they are lacking in generality
(Hastings and Peacock, 1975; Johnson et al., 1994). A cursory examination
of standard probability texts will reveal that the variety of classical proba-
bility distributions is large enough to cater to almost all practical needs. The
main difficulty lies with the selection of an appropriate probability distribu-
tion function to fit the limited data on hand. A complete treatment of this
important statistical problem is outside the scope of this chapter. However,
it is worthwhile explaining the method of moments because of its simplicity
and ease of implementation.

The first four moments of a random variable (Y) can be calculated quite
reliably from the typical sample sizes encountered in practice. Theoretically,
they are given by:

µ =
∫

yf (y)dy = E(Y) (1.2a)
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σ 2 = E[(Y −µ)2] (1.2b)

γ1 = E[(Y −µ)3]
σ 3 (1.2c)

γ2 = E[(Y −µ)4]
σ 4 − 3 (1.2d)

in which µ = mean, σ 2 = variance (or σ = standard deviation), γ1 =
skewness, γ2 = kurtosis, f (·) = probability density function = dF(y)/dy, and
E[·] = mathematical expectation. The practical feature here is that moments
can be estimated directly from empirical data without knowledge of the
underlying probability distribution [i.e. f (y) is unknown]:

y =

n∑
i=1

yi

n
(1.3a)

s2 = 1
n − 1

n∑
i=1

(yi − y)2 (1.3b)

g1 = n
(n − 1)(n − 2)s3

n∑
i=1

(yi − y)3 (1.3c)

g2 = n(n + 1)
(n − 1)(n − 2)(n − 3)s4

n∑
i=1

(yi − y)4 − 3(n − 1)2

(n − 2)(n − 3)
(1.3d)

in which n = sample size, (y1,y2, . . .,yn) = data points, ȳ = sample mean,
s2 = sample variance, g1 = sample skewness, and g2 = sample kurtosis. Note
that the MATLAB “kurtosis” function is equal to g2 + 3. If the sample size
is large enough, the above sample moments will converge to their respective
theoretical values as defined by Equation (1.2) under some fairly general con-
ditions. The majority of classical probability distributions can be determined
uniquely by four or less moments. In fact, the Pearson system (Figure 1.3)
reduces the selection of an appropriate probability distribution function to
the determination of β1 = g2

1 and β2 = g2 + 3. Calculation steps with illus-
trations are given by Elderton and Johnson (1969). Johnson et al. (1994)
provided useful formulas for calculating the Pearson parameters based on
the first four moments. Rétháti (1988) provided some β1 and β2 values of
Szeged soils for distribution fitting using the Pearson system (Table 1.1).

Johnson system

A broader discussion of distribution systems (in which the Pearson sys-
tem is one example) and distribution fitting is given by Elderton and
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Table 1.1 β1 and β2 values for some soil properties from Szeged, Hungary (modified
from Rétháti, 1988).

Soil
layer

Water
content

Liquid
limit

Plastic
limit

Plasticity
index

Consistency
index

Void
ratio

Bulk
density

Unconfined
compressive
strength

β1
S1 2.76 4.12 6.81 1.93 0.13 6.50 1.28 0.02
S2 0.01 0.74 0.34 0.49 0.02 0.01 0.09 0.94
S3 0.03 0.96 0.14 0.85 0.00 1.30 2.89 5.06
S4 0.05 0.34 0.13 0.64 0.03 0.13 1.06 4.80
S5 1.10 0.02 2.92 0.00 0.98 0.36 0.10 2.72

β2
S1 7.39 8.10 12.30 4.92 3.34 11.19 3.98 1.86
S2 3.45 3.43 3.27 2.69 3.17 2.67 3.87 3.93
S3 7.62 5.13 4.32 4.46 3.31 5.52 11.59 10.72
S4 7.17 3.19 3.47 3.57 4.61 4.03 8.14 10.95
S5 6.70 2.31 9.15 2.17 5.13 4.14 4.94 6.74

Note
Plasticity index (Ip) = wL − wP, in which wL = liquid limit and wP = plastic limit; consistency index
(Ic)= (wL −w)/Ip = 1− IL, in which w = water content and IL = liquidity index; unconfined compressive
strength (qu) = 2su, in which su = undrained shear strength.
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Johnson (1969). It is rarely emphasized that almost all distribution functions
cannot be generalized to handle correlated random variables (Phoon, 2006a).
In other words, univariate distributions such as those discussed above cannot
be generalized to multivariate distributions. Elderton and Johnson (1969)
discussed some interesting exceptions, most of which are restricted to bivari-
ate cases. It suffices to note here that the only convenient solution available
to date is to rewrite Equation (1.1) as:

Y = F−1[Φ(Z)] (1.4)

in which Z = standard normal random variable with mean = 0 and
variance = 1 and Φ(·) = standard normal cumulative distribution function
(normcdf in MATLAB or normsdist in EXCEL). Equation (1.4) is called
the translation model. It requires all random variables to be related to the
standard normal random variable. The significance of Equation (1.4) is
elaborated in Section 1.3.2.

An important practical detail here is that standard normal random vari-
ables can be simulated directly and efficiently using the Box–Muller method
(Box and Muller, 1958):

Z1 =
√

−2ln(U1)cos(2πU2) (1.5)

Z2 =
√

−2ln(U1)sin(2πU2)

in which Z1,Z2 = independent standard normal random variables and
U1,U2 = independent standard uniform random variables. Equation (1.5)
is computationally more efficient than Equation (1.1) because the inverse
cumulative distribution function is not required. Note that the cumulative
distribution function and its inverse are not available in closed-form for most
random variables. While Equation (1.1) “looks” simple, there is a hidden
cost associated with the numerical evaluation of F−1(·). Marsaglia and Bray
(1964) proposed one further improvement:

1. Pick V1 and V2 randomly within the unit square extending between −1
and 1 in both directions, i.e.:

V1 = 2U1 − 1

V2 = 2U2 − 1
(1.6)

2. Calculate R2 = V2
1 + V2

2 . If R2 ≥ 1.0 or R2 = 0.0, repeat step (1).
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3. Simulate two independent standard normal random variables using:

Z1 = V1

√
−2ln(R2)

R2

Z2 = V2

√
−2ln(R2)

R2

(1.7)

Equation (1.7) is computationally more efficient than Equation (1.5) because
trigonometric functions are not required!

A translation model can be constructed systematically from (β1, β2) using
the Johnson system:

1. Assume that the random variable is lognormal, i.e.

ln(Y − A) = λ+ ξZ Y > A (1.8)

in which ln(·) is the natural logarithm, ξ2 = ln[1 + σ 2/(µ− A)2], λ =
ln(µ− A) − 0.5ξ2, µ = mean of Y, and σ 2 = variance of Y. The “log-
normal” distribution in the geotechnical engineering literature typically
refers to the case of A = 0. When A �= 0, it is called the “shifted
lognormal” or “3-parameter lognormal” distribution.

2. Calculate ω = exp(ξ2).
3. Calculate β1 = (ω − 1)(ω + 2)2 and β2 = ω4 + 2ω3 + 3ω2 − 3. For the

lognormal distribution, β1 and β2 are related as shown by the solid line
in Figure 1.4.

4. Calculate β1 = g2
1 and β2 = g2 + 3 from data. If the values fall close to

the lognormal (LN) line, the lognormal distribution is acceptable.
5. If the values fall below the LN line, Y follows the SB distribution:

ln
(

Y − A
B − Y

)
= λ+ ξZ B > Y > A (1.9)

in which λ,ξ,A,B = distribution fitting parameters.
6. If the values fall above the LN line, Y follows the SU distribution:

ln

⎡
⎣(Y − A

B − A

)
+
√

1 +
(

Y − A
B − A

)2
⎤
⎦= sinh−1

(
Y − A
B − A

)
= λ+ ξZ

(1.10)

Examples of LN, SB, and SU distributions are given in Figure 1.5. Simulation
of Johnson random variables using MATLAB is given in Appendix A.1.
Carsel and Parrish (1988) developed joint probability distributions for
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parameters of soil–water characteristic curves using the Johnson system. The
main practical obstacle is that the SB Johnson parameters (λ,ξ,A,B) are
related to the first four moments (y,s2,g1,g2) in a very complicated way
(Johnson, 1949). The SU Johnson parameters are comparatively easier to
estimate from the first four moments (see Johnson et al., 1994 for closed-
form formulas). In addition, both Pearson and Johnson systems require the
proper identification of the relevant region (e.g. SB or SU in Figure 1.4),
which in turn determines the distribution function [Equation (1.9) or (1.10)],
before one can attempt to calculate the distribution parameters.

Hermite polynomials

One-dimensional Hermite polynomials are given by:

H0(Z) = 1

H1(Z) = Z

H2(Z) = Z2 − 1

H3(Z) = Z3 − 3Z

Hk+1(Z) = ZHk(Z) − kHk−1(Z)

(1.11)

in which Z is a standard normal random variable (mean = 0 and
variance = 1). Hermite polynomials can be evaluated efficiently using the
recurrence relation given in the last row of Equation (1.11). It can be proven
rigorously (Phoon, 2003) that any random variable Y (with finite variance)
can be expanded as a series:

Y =
∞∑

k=0

akHk(Z) (1.12)

The numerical values of the coefficients, ak, depend on the distribution of Y.
The key practical advantage of Equation (1.12) is that the randomness of
Y is completely accounted for by the randomness of Z, which is a known
random variable. It is useful to observe in passing that Equation (1.12) may
not be a monotonic function of Z when it is truncated to a finite number of
terms. The extrema are located at points with zero first derivatives but non-
zero second derivatives. Fortunately, derivatives of Hermite polynomials can
be evaluated efficiently as well:

dHk(Z)
dZ

= kHk−1(Z) (1.13)
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The Hermite polynomial expansion can be modified to fit the first four
moments as well:

Y = y + s k[Z + h3(Z2 − 1) + h4(Z3 − 3Z)] (1.14)

in which y and s = sample mean and sample standard deviation of Y, respec-
tively and k = normalizing constant = 1/(1 + 2h2

3 + 6h2
4)0.5. It is important

to note that the coefficients h3 and h4 can be calculated from the sample
skewness (g1) and sample kurtosis (g2) in a relatively straightforward way
(Winterstein et al., 1994):

h3 = g1

6

(
1 − 0.015

∣∣g1

∣∣+ 0.3g2
1

1 + 0.2g2

)
(1.15a)

h4 = (1 + 1.25g2)1/3 − 1
10

(
1 − 1.43g2

1

g2

)1−0.1(g2+3)0.8

(1.15b)

The theoretical skewness (γ1) and kurtosis (γ2) produced by Equation (1.14)
are (Phoon, 2004a):

γ1 = k3(6h3 + 36h3h4 + 8h3
3 + 108h3h2

4) (1.16a)

γ2 = k4(3 + 48h4
3 + 3348h4

4 + 24h4 + 1296h3
4 + 60h2

3 + 252h2
4

+ 2232h2
3h2

4 + 576h2
3h4) − 3 (1.16b)

Equation (1.15) is determined empirically by minimizing the error [(γ1 −
g1)2 + (γ2 − g2)2] subjected to the constraint that Equation (1.14) is a
monotonic function of Z. It is intended for cases with 0 < g2 < 12 and
0 ≤ g2

1 < 2g2/3 (Winterstein et al., 1994). It is possible to minimize the error
in skewness and kurtosis numerically using the SOLVER function in EXCEL,
rather than applying Equation (1.15).

In general, the entire cumulative distribution function of Y, F(y), can
be fully described by the Hermite expansion using the following simple
stochastic collocation method:

1. Let (y1,y2, . . .,yn) be n realizations of Y. The standard normal data is
calculated from:

zi = Φ−1F(yi) (1.17)
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2. Substitute yi and zi into Equation (1.12). For a third-order expansion,
we obtain:

yi = a0 + a1zi + a2(z2
i − 1) + a3(z3

i − 3zi) = a0 + a1hi1

+ a2hi2 + a3hi3 (1.18)

in which (1, hi1,hi2,hi3) are Hermite polynomials evaluated at zi.
3. The four unknown coefficients (a0,a1,a2,a3) can be determined using

four realizations of Y, (y1,y2,y3,y4). In matrix notation, we write:

Ha = y (1.19)

in which H is a 4 × 4 matrix with ith row given by (1, hi1,hi2,hi3), y is
a 4 × 1 vector with ith component given by yi and a is a 4 × 1 vector
containing the unknown numbers (a0,a1,a2,a3)′. This is known as the
stochastic collocation method. Equation (1.19) is a linear system and
efficient solutions are widely available.

4. It is preferable to solve for the unknown coefficients using regression by
using more than four realizations of Y:

(H′H)a = H′y (1.20)

in which H is an n×4 matrix and n is the number of realizations. Note
that Equation (1.20) is a linear system amenable to fast solution as well.

Calculation of Hermite coefficients using MATLAB is given in Appendix A.2.
Hermite coefficients can be calculated with ease using EXCEL as well
(Chapter 9). Figure 1.6 demonstrates that Equation (1.12) is quite efficient –
it is possible to match very small probabilities (say 10−4) using a third-order
Hermite expansion (four terms).

Phoon (2004a) pointed out that Equations (1.4) and (1.12) are theoreti-
cally identical. Equation (1.12) appears to present a rather circuitous route
of achieving the same result as Equation (1.4). The key computational differ-
ence is that Equation (1.4) requires the costly evaluation of F−1(·) thousands
of times in a low-probability simulation exercise (typical of civil engineering
problems), while Equation (1.17) requires less than 100 costly evaluations
of 	−1F(·) followed by less-costly evaluation of Equation (1.12) thousands
of times. Two pivotal factors govern the computational efficiency of Equa-
tion (1.12): (a) cheap generation of standard normal random variables using
the Box–Muller method [Equation (1.5) or (1.7)] and (b) relatively small
number of Hermite terms.

The one-dimensional Hermite expansion can be easily extended to ran-
dom vectors and processes. The former is briefly discussed in the next
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Figure 1.6 Four-term Hermite expansions for: Johnson SB distribution with λ = 1.00,
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section while the latter is given elsewhere (Puig et al., 2002; Sakamoto and
Ghanem, 2002; Puig and Akian, 2004). Chapters 5, 7, 9 and elsewhere
(Sudret and Der Kiureghian, 2000; Sudret, 2007) present applications of
Hermite polynomials in more comprehensive detail.

1.3.2 Random vectors

The multivariate normal probability density function is available analytically
and can be defined uniquely by a mean vector and a covariance matrix:

f (X) = |C|− 1
2 (2π )−

n
2 exp

[
−0.5(X − µ)′C−1(X − µ)

]
(1.21)

in which X= (X1,X2, . . .,Xn)′ is a normal random vector with n components,
µ is the mean vector, and C is the covariance matrix. For the bivariate
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(simplest) case, the mean vector and covariance matrix are given by:

µ =
{
µ1
µ2

}

C =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

] (1.22)

in which µi and σi = mean and standard deviation of Xi, respectively, and
ρ = product-moment (Pearson) correlation between X1 and X2.

The practical usefulness of Equation (1.21) is not well appreciated. First,
the full multivariate dependency structure of a normal random vector only
depends on a covariance matrix (C) containing bivariate information (cor-
relations) between all possible pairs of components. The practical advantage
of capturing multivariate dependencies in any dimension (i.e. any number of
random variables) using only bivariate dependency information is obvious.
Note that coupling two random variables is the most basic form of depen-
dency and also the simplest to evaluate from empirical data. In fact, there are
usually insufficient data to calculate reliable dependency information beyond
correlations in actual engineering practice. Second, fast simulation of cor-
related normal random variables is possible because of the elliptical form
(X − µ)′C−1(X − µ) appearing in the exponent of Equation (1.21). When
the random dimension is small, the following Cholesky method is the most
efficient and robust:

X = LZ + µ (1.23)

in which Z = (Z1,Z2, . . .,Zn)′ contains uncorrelated normal random com-
ponents with zero means and unit variances. These components can be
simulated efficiently using the Box–Muller method [Equations (1.5) or (1.7)].
The lower triangular matrix L is the Cholesky factor of C, i.e.:

C = LL′ (1.24)

Cholesky factorization can be roughly appreciated as taking the “square
root” of a matrix. The Cholesky factor can be calculated in EXCEL using
the array formula MAT_CHOLESKY, which is provided by a free add-in
at http://digilander.libero.it/foxes/index.htm. MATLAB produces L′ using
chol (C) [note: L′ (transpose of L) is an upper triangular matrix]. Cholesky
factorization fails if C is not “positive definite.” The important practical ram-
ifications here are: (a) the correlation coefficients in the covariance matrix
C cannot be selected independently and (b) an erroneous C is automatically
flagged when Cholesky factorization fails. When the random dimension is
high, it is preferable to use the fast fourier transform (FFT) as described in
Section 1.3.3.



20 Kok-Kwang Phoon

As mentioned in Section 1.3.1, the multivariate normal distribution plays
a central role in the modeling and simulation of correlated non-normal
random variables. The translation model [Equation (1.4)] for one random
variable (Y) can be generalized in a straightforward to a random vector
(Y1,Y2, . . .,Yn):

Yi = F−1
i [Φ(Xi)] (1.25)

in which (X1,X2, . . .,Xn) follows a multivariate normal probability density
function [Equation (1.21)] with:

µ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
0
...

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

C =

⎡
⎢⎢⎢⎣

1 ρ12 · · · ρ1n
ρ21 1 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · 1

⎤
⎥⎥⎥⎦

Note that ρij = ρji, i.e. C is a symmetric matrix containing only n(n − 1)/2
distinct entries. Each non-normal component, Yi, can follow any arbitrary
cumulative distribution function Fi(·). The cumulative distribution func-
tion prescribed to each component can be different, i.e. Fi(·) �= Fj(·). The
simulation of correlated non-normal random variables using MATLAB is
given in Appendix A.3. It is evident that “translation.m” can be modified
to simulate any number of random components as long as a compatible
size covariance matrix is specified. For example, if there are three random
components (n = 3), C should be a 3 × 3 matrix such as [1 0.8 0.4; 0.8
1 0.2; 0.4 0.2 1]. This computational simplicity explains the popularity
of the translation model. As mentioned previously, not all 3 × 3 matri-
ces are valid covariance matrices. An example of an invalid covariance
matrix is C = [10.8 − 0.8;0.81 − 0.2;−0.8 − 0.21]. An attempt to execute
“translation.m” produces the following error messages:

??? Error using ==> chol
Matrix must be positive definite.

Hence, simulation from an invalid covariance matrix will not take place.
The left panel of Figure 1.7 shows the scatter plot of two correlated nor-
mal random variables with ρ = 0.8. An increasing linear trend is apparent.
A pair of uncorrelated normal random variables will not exhibit any trend
in the scatter plot. The right panel of Figure 1.7 shows the scatter plot of two
correlated non-normal random variables. There is an increasing nonlinear
trend. The nonlinearity is fully controlled by the non-normal distribution
functions (SB and SU in this example). In practice, there is no reason for
the scatter plot (produced by two columns of numbers) to be related to the
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Figure 1.7 Scatter plots for: correlated normal random variables with zero means and unit
variances (left) and correlated non-normal random variables with 1st compo-
nent = Johnson SB distribution (λ = 1.00,ξ = 0.36,A = −3.00,B = 5.00) and
2nd component = Johnson SU distribution (λ = 1.00,ξ = 0.09, A = −1.88,
B = 2.08) (right).

distribution functions (produced by treating each column of numbers sepa-
rately). Hence, it is possible for the scatter plot produced by the translation
model to be unrealistic.

The simulation procedure described in “translation.m” cannot be applied
directly to practice, because it requires the covariance matrix of X as an
input. The empirical data can only produce an estimate of the covariance
matrix of Y. It can be proven theoretically that these covariance matrices
are not equal, although they can be approximately equal in some cases. The
simplest solution available so far is to express Equation (1.25) as Hermite
polynomials:

Y1 = a10H0(X1) + a11H1(X1) + a12H2(X1) + a13H3(X1) +·· ·
Y2 = a20H0(X2) + a21H1(X2) + a22H2(X2) + a23H3(X2) +·· · (1.26)

The relationship between the observed correlation coefficient (ρY1Y2
) and the

underlying normal correlation coefficient (ρ) is:

ρY1Y2
=

∞∑
k=1

k!a1ka2kρ
k

√√√√( ∞∑
k=1

k!a2
1k

)(
∞∑

k=1
k!a2

2k

) (1.27)

This complication is discussed in Chapter 9 and elsewhere (Phoon, 2004a,
2006a).
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From a practical viewpoint [only bivariate information needed, cor-
relations are easy to estimate, voluminous n-dimensional data compiled
into mere n(n − 1)/2 coefficients, etc.] and a computational viewpoint
(fast, robust, simple to implement), it is accurate to say that the multivariate
normal model and multivariate non-normal models generated using the
translation model are already very good and sufficiently general for many
practical scenarios. The translation model is not perfect – there are impor-
tant and fundamental limitations (Phoon, 2004a, 2006a). For stochastic
data that cannot be modeled using the translation model, the hunt for
probability models with comparable practicality, theoretical power, and
simulation speed is still on-going. Copula theory (Schweizer, 1991) pro-
duces a more general class of multivariate non-normal models, but it is
debatable at this point if these models can be estimated empirically and
simulated numerically with equal ease for high random dimensions. The
only exception is a closely related but non-translation approach based on
the multivariate normal copula (Phoon, 2004b). This approach is outlined
in Chapter 9.

1.3.3 Random processes

A natural probabilistic model for correlated spatial data is the random
field. A one-dimensional random field is typically called a random process.
A random process can be loosely defined as a random vector with an infi-
nite number of components that are indexed by a real number (e.g. depth
coordinate, z). We restrict our discussion to a normal random process, X(z).
Non-normal random processes can be simulated from a normal random
process using the same translation approach described in Section 1.3.2.

The only computational aspect that requires some elaboration is that
simulation of a process is usually more efficient in the frequency domain.
Realizations belonging to a zero-mean stationary normal process X(z) can
be generated using the following spectral approach:

X(z) =
∞∑

k=1

σk(Z1k sin2π fkz+Z2k cos2π fkz) (1.28)

in which σk =√2S(fk)�f , �f is the interval over which the spectral density
function S(f ) is discretized, fk = (2k − 1)�f /2, and Z1k and Z2k are uncor-
related normal random variables with zero means and unit variances. The
single exponential autocorrelation function is commonly used in geostatis-
tics: R(τ ) = exp(−2|τ |/δ), in which τ is the distance between data points and
δ the scale of fluctuation. R(τ ) can be estimated from a series of numbers, say
cone tip resistances sampled at a vertical spacing of �z, using the method of
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moments:

R(τ = j�z) ≈ 1
(n − j − 1)s2

n−j∑
i=1

(xi − x)(xi+j − x) (1.29)

in which xi = x(zi),zi = i(�z), x̄ = sample mean [Equation (1.3a], s2 =
sample variance [Equation (1.3b)], and n = number of data points. The scale
of fluctuation is estimated by fitting an exponential function to Equation
(1.29). The spectral density function corresponding to the single exponential
correlation function is:

S(f ) = 4δ
(2π f δ)2 + 4

(1.30)

Other common autocorrelation functions and their corresponding spectral
density functions are given in Table 1.2. It is of practical interest to note that
S(f ) can be calculated numerically from a given target autocorrelation func-
tion or estimated directly from x(zi) using the FFT. Analytical solutions such
as those shown in Table 1.2 are convenient but unnecessary. The simulation
of a standard normal random process with zero mean and unit variance using
MATLAB is given in Appendix A.4. Note that the main input to “ranpro-
cess.m” is R(τ ), which can be estimated empirically from Equation (1.29).
No knowledge of S(f ) is needed. Some realizations based on the five com-
mon autocorrelation functions shown in Table 1.2 with δ = 1 are given in
Figure 1.8.

Table 1.2 Common autocorrelation and two-sided power spectral density functions.

Model Autocorrelation, R(τ ) Two-sided power spectral
density, S(f )*

Scale of
fluctuation, δ

Single
exponential

exp(−a |τ |) 2a

ω2 + a2
2
a

Binary noise
1 − a |τ | |τ | ≤ 1/a
0 otherwise

sin2 (ω/2a)

a (ω/2a)2
1
a

Cosine
exponential

exp(−a |τ |)cos(aτ ) a
(

1

a2 + (ω+ a)2
+ 1

a2 + (ω− a)2

)
1
a

Second-order
Markov

(1 + a |τ |)exp(−a |τ |) 4a3

(ω2 + a2)2
4
a

Squared
exponential

exp
[−(aτ )2

] √
π

a
exp

(
− ω2

4a2

) √
π

a

* ω = 2π f .
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Figure 1.8 Simulated realizations of normal process with mean = 0, variance = 1, scale
of fluctuation = 1 based on autocorrelation function = (a) single exponential,
(b) binary noise, (c) cosine exponential, (d) second-order Markov, and (e) square
exponential.
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Figure 1.8 Cont’d.

In geotechnical engineering, spatial variability is frequently modeled using
random processes/fields. This practical application was first studied in geol-
ogy and mining under the broad area of geostatistics. The physical premise
that makes estimation of spatial patterns possible is that points close in space
tend to assume similar values. The autocorrelation function (or variogram)
is a fundamental tool describing similarities in a statistical sense as a func-
tion of distance [Equation (1.29)]. The works of G. Matheron, D.G. Krige,
and F.P. Agterberg are notable. Parallel developments also took place in
meteorology (L.S. Gandin) and forestry (B. Matérn). Geostatistics is math-
ematically founded on the theory of random processes/fields developed by
A.Y. Khinchin, A.N. Kolmogorov, P. Lévy, N. Wiener, and A.M. Yaglom,
among others. The interested reader can refer to books by Cressie (1993)
and Chilès and Delfiner (1999) for details. VanMarcke (1983) remarked that
all measurements involve some degree of local averaging and that random
field models do not need to consider variations below a finite scale because
they are smeared by averaging. VanMarcke’s work is incomplete in one
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crucial aspect. This crucial aspect is that actual failure surfaces in 2D or 3D
problems will automatically seek to connect “weakest” points in the random
domain. It is the spatial average of this failure surface that counts in practice;
not simple spatial averages along pre-defined surfaces (or pre-specified mea-
surement directions). This is an exceptionally difficult problem to solve – at
present simulation is the only viable solution. Chapter 6 presents extensive
results on emergent behaviors resulting from spatially heterogeneous soils
that illustrate this aspect quite thoroughly.

Although the random process/field provides a concise mathematical model
for spatial variability, it poses considerable practical difficulties for statisti-
cal inference in view of its complicated data structure. All classical statistical
tests are invariably based on the important assumption that the data are
independent (Cressie, 1993). When they are applied to correlated data, large
bias will appear in the evaluation of the test statistics (Phoon et al., 2003a).
The application of standard statistical tests to correlated soil data is therefore
potentially misleading. Independence is a very convenient assumption that
makes a large part of mathematical statistics tractable. Statisticians can go
to great lengths to remove this dependency (Fisher, 1935) or be content
with less-powerful tests that are robust to departures from the indepen-
dence assumption. In recent years, an alternate approach involving the direct
modeling of dependency relationships into very complicated test statistics
through Monte Carlo simulation has become feasible because desktop com-
puting machines have become very powerful (Phoon, et al., 2003a; Phoon
and Fenton, 2004; Phoon 2006b; Uzielli and Phoon, 2006).

Chapter 2 and elsewhere (Baecher and Christian, 2003; Uzielli et al.,
2007) provide extensive reviews of geostatistical applications in geotechnical
engineering.

1.4 Probabilistic solution procedures

The practical end point of characterizing uncertainties in the design input
parameters (geotechnical, geo-hydrological, geometrical, and possibly ther-
mal) is to evaluate their impact on the performance of a design. Reliability
analysis focuses on the most important aspect of performance, namely the
probability of failure (“failure” is a generic term for non-performance).
This probability of failure clearly depends on both parametric and model
uncertainties. The probability of failure is a more consistent and complete
measure of safety because it is invariant to all mechanically equivalent def-
initions of safety and it incorporates additional uncertainty information.
There is a prevalent misconception that reliability-based design is “new.” All
experienced engineers would conduct parametric studies when confidence
in the choice of deterministic input values is lacking. Reliability analysis
merely allows the engineer to carry out a much broader range of para-
metric studies without actually performing thousands of design checks with
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different inputs one at a time. This sounds suspiciously like a “free lunch,”
but exceedingly clever probabilistic techniques do exist to calculate the
probability of failure efficiently. The chief drawback is that these tech-
niques are difficult to understand for the non-specialist, but they are not
necessarily difficult to implement computationally. There is no consensus
within the geotechnical community whether a more consistent and com-
plete measure of safety is worth the additional efforts, or if the significantly
simpler but inconsistent global factor of safety should be dropped. Reg-
ulatory pressure appears to be pushing towards RBD for non-technical
reasons. The literature on reliability analysis and RBD is voluminous. Some
of the main developments in geotechnical engineering are presented in
this book.

1.4.1 Closed-form solutions

There is a general agreement in principle that limit states (undesirable states
in which the system fails to perform satisfactorily) should be evaluated
explicitly and separately, but there is no consensus on how to verify that
exceedance of a limit state is “sufficiently unlikely” in numerical terms. Dif-
ferent opinions and design recommendations have been made, but there is a
lack of discussion on basic issues relating to this central idea of “exceeding a
limit state.” A simple framework for discussing such basic issues is to imag-
ine the limit state as a boundary surface dividing sets of design parameters
(soil, load, and/or geometrical parameters) into those that result in satisfac-
tory and unsatisfactory designs. It is immediately clear that this surface can
be very complex for complex soil-structure interaction problems. It is also
clear without any knowledge of probability theory that likely failure sets of
design parameters (producing likely failure mechanisms) cannot be discussed
without characterizing the uncertainties in the design parameters explicitly
or implicitly. Assumptions that “values are physically bounded,” “all values
are likely in the absence of information,” etc., are probabilistic assump-
tions, regardless of whether or not this probabilistic nature is acknowledged
explicitly. If the engineer is 100% sure of the design parameters, then only
one design check using these fully deterministic parameters is necessary to
ensure that the relevant limit state is not exceeded. Otherwise, the situation
is very complex and the only rigorous method available to date is reliability
analysis. The only consistent method to control exceedance of a limit state
is to control the reliability index. It would be very useful to discuss at this
stage if this framework is logical and if there are alternatives to it. In fact, it
has not been acknowledged explicitly if problems associated with strength
partial factors or resistance factors are merely problems related to simpli-
fication of reliability analysis. If there is no common underlying purpose
(e.g. to achieve uniform reliability) for applying partial factors and resis-
tance factors, then the current lack of consensus on which method is better
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cannot be resolved in any meaningful way. Chapter 8 provides some useful
insights on the reliability levels implied by the empirical soil partial factors
in Eurocode 7.

Notwithstanding the above on-going debate, it is valid to question if reli-
ability analysis is too difficult for practitioners. The simplest example is to
consider a foundation design problem involving a random capacity (Q) and
a random load (F). The ultimate limit state is defined as that in which the
capacity is equal to the applied load. Clearly, the foundation will fail if the
capacity is less than this applied load. Conversely, the foundation should per-
form satisfactorily if the applied load is less than the capacity. These three
situations can be described concisely by a single performance function P, as
follows:

P = Q − F (1.31)

Mathematically, the above three situations simply correspond to the condi-
tions of P = 0,P < 0, and P > 0, respectively.

The basic objective of RBD is to ensure that the probability of failure does
not exceed an acceptable threshold level. This objective can be stated using
the performance function as follows:

pf = Prob(P < 0) ≤ pT (1.32)

in which Prob(·) = probability of an event, pf =probability of failure, and
pT = acceptable target probability of failure. A more convenient alternative
to the probability of failure is the reliability index (β), which is defined as:

β = −Φ−1(pf) (1.33)

in which Φ−1(·) = inverse standard normal cumulative function. The func-
tion Φ−1(·) can be obtained easily from EXCEL using normsinv (pf) or
MATLAB using norminv (pf). For sufficiently large β, simple approximate
closed-form solutions for Φ(·) and Φ−1(·) are available (Appendix B).

The basic reliability problem is to evaluate pf from some pertinent statistics
of F and Q, which typically include the mean (µF or µQ) and the standard
deviation (σF or σQ), and possibly the probability density function. A simple
closed-form solution for pf is available if Q and F follow a bivariate normal
distribution. For this condition, the solution to Equation (1.32) is:

pf = Φ

⎛
⎜⎝− µQ −µF√

σ 2
Q +σ 2

F − 2ρQFσQσF

⎞
⎟⎠= Φ (−β) (1.34)

in which ρQF = product-moment correlation coefficient between Q and F.
Numerical values for Φ(·) can be obtained easily using the EXCEL func-
tion normsdist(−β) or the MATLAB function normcdf(−β). The reliability
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indices for most geotechnical components and systems lie between 1 and
5, corresponding to probabilities of failure ranging from about 0.16 to
3 × 10−7, as shown in Figure 1.9.

Equation (1.34) can be generalized to a linear performance function con-
taining any number of normal components (X1,X2, . . .,Xn) as long as they
follow a multivariate normal distribution function [Equation (1.21)]:

P = a0 +
n∑

i=1

aiXi (1.35)

pf = Φ

⎛
⎜⎜⎜⎜⎝−

a0 +
n∑

i=1
aiµi√

n∑
i=1

n∑
j=1

aiajρijσiσj

⎞
⎟⎟⎟⎟⎠ (1.36)

in which ai = deterministic constant, µi = mean of Xi,σi = standard devia-
tion of Xi,ρij = correlation between Xi and Xj (note: ρii = 1). Chapters 8,
11, and 12 present some applications of these closed-form solutions.

Equation (1.34) can be modified for the case of translation lognormals, i.e.
ln(Q) and ln(F) follow a bivariate normal distribution with mean of ln(Q) =
λQ, mean of ln(F) =λF, standard deviation of ln(Q) = ξQ, standard deviation
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Figure 1.9 Relationship between reliability index and probability of failure (classifications
proposed by US Army Corps of Engineers, 1997).
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of ln(F) = ξF, and correlation between ln(Q) and ln(F) = ρ′
QF:

pf = Φ

⎛
⎜⎝− λQ −λF√

ξ2
Q + ξ2

F − 2ρ′
QFξQξF

⎞
⎟⎠ (1.37)

The relationships between the mean (µ) and standard deviation (σ ) of a
lognormal and the mean (λ) and standard deviation (ξ ) of the equivalent
normal are given in Equation (1.8). The correlation between Q and F (ρQF)
is related to the correlation between ln(Q) and ln(F) (ρ′

QF) as follows:

ρQF =
exp(ξQξFρ

′
QF) − 1√

[exp(ξ2
Q) − 1][exp(ξ2

F ) − 1]
(1.38)

If ρ′
QF = ρQF = 0 (i.e. Q and F are independent lognormals), Equation (1.37)

reduces to the following well-known expression:

β =
ln
(

µQ
µF

√
1+COV2

F
1+COV2

Q

)
√

ln
[(

1 + COV2
Q

)(
1 + COV2

F

)] (1.39)

in which COVQ = σQ/µQ and COVF = σF/µF. If there are physical grounds
to disallow negative values, the translation lognormal model is more sensible.
Equation (1.39) has been used as the basis for RBD (e.g. Rosenblueth and
Esteva, 1972; Ravindra and Galambos, 1978; Becker, 1996; Paikowsky,
2002). The calculation steps outlined below are typically carried out:

1. Consider a typical Load and Resistance Factor Design (LRFD) equation:

φQn = γDDn + γLLn (1.40)

in which φ = resistance factor, γD and γL = dead and live load fac-
tors, and Qn, Dn and Ln = nominal values of capacity, dead load,
and live load. The AASHTO LRFD bridge design specifications rec-
ommended γD = 1.25 and γL = 1.75 (Paikowsky, 2002). The resistance
factor typically lies between 0.2 and 0.8.

2. The nominal values are related to the mean values as:

µQ = bQQn

µD = bDDn

µL = bLLn

(1.41)
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in which bQ, bD, and bL are bias factors and µQ, µD, and µL are mean
values. The bias factors for dead and live load are typically 1.05 and 1.15,
respectively. Figure 1.2 shows that bQ (mean value of the histogram) can
be smaller or larger than one.

3. Assume typical values for the mean capacity (µQ) and Dn/Ln. A reason-
able range for Dn/Ln is 1 to 4. Calculate the mean live load and mean
dead load as follows:

µL = (φbQµQ)bL(
γD

Dn
Ln

+ γL

) (1.42)

µD =
(

Dn

Ln

)
µLbD

bL
(1.43)

4. Assume typical coefficients of variation for the capacity, dead load, and
live load, say COVQ = 0.3, COVD = 0.1, and COVL = 0.2.

5. Calculate the reliability index using Equation (1.39) with µF = µD +
µL and:

COVF =
√

(µDCOVD)2 + (µLCOVL)2

µD +µL
(1.44)

Details of the above procedure are given in Appendix A.4. For φ = 0.5, γD =
1.25, γL = 1.75, bQ = 1,bD = 1.05,bL = 1.15, COVQ = 0.3, COVD = 0.1,
COVL = 0.2, and Dn/Ln = 2, the reliability index from Equation (1.39) is
2.99. Monte Carlo simulation in “LRFD.m” validates the approximation
given in Equation (1.44). It is easy to show that an alternate approximation
COV2

F = COV2
D+ COV2

L is erroneous. Equation (1.39) is popular because
the resistance factor in LRFD can be back-calculated from a target reliability
index (βT) easily:

φ =
bQ(γDDn + γLLn)

√
1+COV2

F
1+COV2

Q

(bDDn + bLLn)exp
{
βT

√
ln
[(

1 + COV2
Q

)(
1 + COV2

F

)]} (1.45)

In practice, the statistics of Q are determined by comparing load test results
with calculated values. Phoon and Kulhawy (2005) compared the statistics
of Q calculated from laboratory load tests with those calculated from full-
scale load tests. They concluded that these statistics are primarily influenced
by model errors, rather than uncertainties in the soil parameters. Hence, it is
likely that the above lumped capacity approach can only accommodate the
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“low” COV range of parametric uncertainties mentioned in Section 1.3.1.
To accommodate larger uncertainties in the soil parameters (“medium” and
“high” COV ranges), it is necessary to expand Q as a function of the gov-
erning soil parameters. By doing so, the above closed-form solutions are no
longer applicable.

1.4.2 First-order reliability method (FORM)

Structural reliability theory has a significant impact on the development of
modern design codes. Much of its success could be attributed to the advent of
the first-order reliability method (FORM), which provides a practical scheme
of computing small probabilities of failure at high dimensional space spanned
by the random variables in the problem. The basic theoretical result was
given by Hasofer and Lind (1974). With reference to time-invariant reliabil-
ity calculation, Rackwitz (2001) observed that: “For 90% of all applications
this simple first-order theory fulfills all practical needs. Its numerical accuracy
is usually more than sufficient.” Ang and Tang (1984) presented numer-
ous practical applications of FORM in their well known book, Probability
Concepts in Engineering Planning and Design.

The general reliability problem consists of a performance func-
tion P(y1,y2, . . .,yn) and a multivariate probability density function
f (y1,y2, . . .,yn). The former is defined to be zero at the limit state, less than
zero when the limit state is exceeded (“fail”), and larger than zero otherwise
(“safe”). The performance function is nonlinear for most practical prob-
lems. The latter specifies the likelihood of realizing any one particular set
of input parameters (y1,y2, . . .,yn), which could include material, load, and
geometrical parameters. The objective of reliability analysis is to calculate
the probability of failure, which can be expressed formally as follows:

pf =
∫

P<0
f
(
y1,y2, . . . ,yn

)
dy1dy2 . . .dyn (1.46)

The domain of integration is illustrated by a shaded region in the left panel
of Figure 1.10a. Exact solutions are not available even if the multivariate
probability density function is normal, unless the performance function is
linear or quadratic. Solutions for the former case are given in Section 1.4.1.
Other exact solutions are provided in Appendix C. Exact solutions are very
useful for validation of new reliability codes or calculation methods. The
only general solution to Equation (1.46) is Monte Carlo simulation. A simple
example is provided in Appendix A.5. The calculation steps outlined below
are typically carried out:

1. Determine (y1,y2, . . .,yn) using Monte Carlo simulation. Section 1.3.2
has presented fairly general and “user friendly” methods of simulating
correlated non-normal random vectors.
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Figure 1.10 (a) General reliability problem, and (b) solution using FORM.

2. Substitute (y1,y2, . . .,yn) into the performance function and count the
number of cases where P < 0 (“failure”).

3. Estimate the probability of failure using:

p̂f = nf

n
(1.47)

in which nf = number of failure cases and n =number of simulations.
4. Estimate the coefficient of variation of p̂f using:

COVpf
=
√

1 − pf

pfn
(1.48)

For civil engineering problems, pf ≈ 10−3 and hence, (1 – pf) ≈ 1. The sample
size (n) required to ensure COVpf

is reasonably small, say 0.3, is:

n = 1 − pf

pfCOV2
pf

≈ 1
pf(0.3)2

≈ 10
pf

(1.49)

It is clear from Equation (1.49) that Monte Carlo simulation is not prac-
tical for small probabilities of failure. It is more often used to validate
approximate but more efficient solution methods such as FORM.

The approximate solution obtained from FORM is easier to visualize in
a standard space spanned by uncorrelated Gaussian random variables with
zero mean and unit standard deviation (Figure 1.10b). If one replaces the
actual limit state function (P = 0) by an approximate linear limit state func-
tion (PL = 0) that passes through the most likely failure point (also called
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design point or β-point), it follows immediately from rotational symmetry
of the circular contours that:

pf ≈ Φ(−β) (1.50)

The practical result of interest here is that Equation (1.46) simply reduces to
a constrained nonlinear optimization problem:

β = min
√

z′z for{z : G(z) ≤ 0} (1.51)

in which z = (z1,z2, . . .,zn)′. The solution of a constrained optimization prob-
lem is significantly cheaper than the solution of a multi-dimensional integral
[Equation (1.46)]. It is often cited that the β-point is the “best” linearization
point because the probability density is highest at that point. In actuality, the
choice of the β-point requires asymptotic analysis (Breitung, 1984). In short,
FORM works well only for sufficiently large β – the usual rule-of-thumb is
β > 1 (Rackwitz, 2001).

Low and co-workers (e.g. Low and Tang, 2004) demonstrated that the
SOLVER function in EXCEL can be easily implemented to calculate the
first-order reliability index for a range of practical problems. Their studies
are summarized in Chapter 3. The key advantages to applying SOLVER for
the solution of Equation (1.51) are: (a) EXCEL is available on almost all
PCs, (b) most practitioners are familiar with the EXCEL user interface, and
(c) no programming skills are needed if the performance function can be
calculated using EXCEL built-in mathematical functions.

FORM can be implemented easily within MATLAB as well. Appendix A.6
demonstrates the solution process for an infinite slope problem (Figure 1.11).
The performance function for this problem is:

P =
[
γ
(
H − h

)+ h
(
γsat − γw

)]
cosθ tanφ[

γ
(
H − h

)+ hγsat
]
sinθ

− 1 (1.52)

in which H = depth of soil above bedrock, h = height of groundwater table
above bedrock, γ and γsat = moist unit weight and saturated unit weight of
the surficial soil, respectively, γw = unit weight of water (9.81 kN/m3), φ =
effective stress friction angle, and θ = slope inclination. Note that the height
of the groundwater table (h) cannot exceed the depth of surficial soil (H)
and cannot be negative. Hence, it is modeled by h = H × U, in which U =
standard uniform variable. The moist and saturated soil unit weights are not
independent, because they are related to the specific gravity of the soil solids
(Gs) and the void ratio (e). The uncertainties in γ and γsat are characterized
by modeling Gs and e as two independent uniform random variables. There
are six independent random variables in this problem (H,U,φ,β,e, and Gs)
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Figure 1.11 Infinite slope problem.

Table 1.3 Summary of probability distributions for input random variables.

Variable Description Distribution Statistics

H Depth of soil above bedrock Uniform [2,8] m
h = H × U Height of water table U is uniform [0, 1]
φ Effective stress friction angle Lognormal mean = 35◦ cov = 8%
θ Slope inclination Lognormal mean = 20◦ cov = 5%
γ Moist unit weight of soil * *
γsat Saturated unit weight of soil ** **
γw Unit weight of water Deterministic 9.81 kN/m3

* γ = γw (Gs + 0.2e)/(1 + e) (assume degree of saturation = 20% for “moist”).
** γsat = γw (Gs + e)/(1 + e) (degree of saturation = 100%).
Assume specific gravity of solids = Gs = uniformly distributed [2.5, 2.7] and void ratio = e = uniformly
distributed [0.3, 0.6].

and their probability distributions are summarized in Table 1.3. The first-
order reliability index is 1.43. The reliability index calculated from Monte
Carlo simulation is 1.57.

Guidelines for modifying the code to solve other problems can be
summarized as follows:

1. Specify the number of random variables in the problem using the
parameter “m” in “FORM.m”.

2. The objective function, “objfun.m,” is independent of the problem.
3. The performance function, “Pfun.m,” can be modified in a straight-

forward way. The only slight complication is that the physical vari-
ables (e.g. H,U,φ,β,e, and Gs) must be expressed in terms of the
standard normal variables (e.g. z1,z2. . .,z6). Practical methods for
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converting uncorrelated standard normal random variables to correlated
non-normal random variables have been presented in Section 1.3.2.

Low and Tang (2004) opined that practitioners will find it easier to appre-
ciate and implement FORM without the above conversion procedure.
Nevertheless, it is well-known that optimization in the standard space is more
stable than optimization in the original physical space. The SOLVER option
“Use Automatic Scaling” only scales the elliptical contours in Figure 1.10a,
but cannot make them circular as in Figure 1.10b. Under some circum-
stances, SOLVER will produce different results from different initial trial
values. Unfortunately, there are no automatic and dependable means of flag-
ging this instability. Hence, it is extremely vital for the user to try different
initial trial values and partially verify that the result remains stable. The
assumption that it is sufficient to use the mean values as the initial trial
values is untrue.

In any case, it is crucial to understand that a multivariate probabil-
ity model is necessary for any probabilistic analysis involving more than
one random variable, FORM or otherwise. It is useful to recall that
most multivariate non-normal probability models are related to the mul-
tivariate normal probability model in a fundamental way as discussed in
Section 1.3.2. Optimization in the original physical space does not elim-
inate the need for the underlying multivariate normal probability model
if the non-normal physical random vector is produced by the translation
method. It is clear from Section 1.3.2 that non-translation methods exist and
non-normal probability models cannot be constructed uniquely from corre-
lation information alone. Chapters 9 and 13 report applications of FORM
for RBD.

1.4.3 System reliability based on FORM

The first-order reliability method (FORM) is capable of handling any non-
linear performance function and any combination of correlated non-normal
random variables. Its accuracy depends on two main factors: (a) the cur-
vature of the performance function at the design point and (b) the number
of design points. If the curvature is significant, the second-order reliability
method (SORM) (Breitung, 1984) or importance sampling (Rackwitz, 2001)
can be applied to improve the FORM solution. Both methods are relatively
easy to implement, although they are more costly than FORM. The calcu-
lation steps for SORM are given in Appendix D. Importance sampling is
discussed in Chapter 4. If there are numerous design points, FORM can
underestimate the probability of failure significantly. At present, no solution
method exists that is of comparable simplicity to FORM. Note that problems
containing multiple failure modes are likely to produce more than one design
point.
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Figure 1.12 illustrates a simple system reliability problem involving two
linear performance functions, P1 and P2. A common geotechnical engineer-
ing example is a shallow foundation subjected to inclined loading. It is
governed by bearing capacity (P1) and sliding (P2) modes of failure. The
system reliability is formally defined by:

pf = Prob[(P1 < 0) ∪ (P2 < 0)] (1.53)

There are no closed-form solutions, even if P1 and P2 are linear and if the
underlying random variables are normal and uncorrelated. A simple estimate
based on FORM and second-order probability bounds is available and is of
practical interest. The key calculation steps can be summarized as follows:

1. Calculate the correlation between failure modes using:

ρP2,P1
= α1 ·α2 = α11α21 +α12α22 = cosθ (1.54)

in which αi = (αi1,αi2) = unit normal at design point for ith performance
function. Referring to Figure 1.10b, it can be seen that this unit normal
can be readily obtained from FORM as: αi1 = z∗

i1/βi and αi2 = z∗
i2/βi,

with (z∗
i1,z

∗
i2) = design point for ith performance function.

P2
(P1 < 0) ∩ (P2 < 0)

fz1,z2
(z1,z2)

z2

z1

θ

P1

β1

β2

α1

α2

Figure 1.12 Simple system reliability problem.
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2. Estimate p21 = Prob[(P2 < 0) ∩ (P1 < 0)] using first-order probability
bounds:

p−
21 ≤ p21 ≤ p+

21

max[P(B1),P(B2)] ≤ p21 ≤ P(B1) + P(B2)
(1.55)

in which P(B1) = Φ(−β1)Φ[(β1 cosθ − β2)/sinθ ] and P(B2) =
Φ(−β2)Φ[(β2 cosθ − β1)/sinθ ]. Equation (1.55) only applies for
ρP2,P1

> 0. Failure modes are typically positively correlated because
they depend on a common set of loadings.

3. Estimate pf using second-order probability bounds:

p1 + max[(p2 − p+
21),0] ≤ pf ≤ min[p1 + (p2 − p−

21),1] (1.56)

in which pi = Φ(−βi).

The advantages of the above approach are that it does not require infor-
mation beyond what is already available in FORM, and generalization to n
failure modes is quite straightforward:

pf ≥ p1 + max[(p2 − p+
21),0]+ max[(p3 − p+

31 − p+
32,0]+ · · ·

+ max[(pn − p+
n1 − p+

n2 −·· ·− p+
n,n−1),0] (1.57a)

pf ≤ p1 + min{p1 +[p2 − p−
21]+ [p3 − max(p−

31,p
−
32)]+ · · ·

+ [pn − max(p−
n1,p

−
n2, · · ·,p−

n,n−1)],1} (1.57b)

The clear disadvantages are that no point probability estimate is available
and calculation becomes somewhat tedious when the number of failure
modes is large. The former disadvantage can be mitigated using the following
point estimate of p21 (Mendell and Elston, 1974):

a1 = 1

Φ(−β1)
√

2π
exp

(
−β2

1

2

)
(1.58)

p21 ≈ Φ

⎡
⎢⎣ ρP1P2

a1 −β2√
1 −ρP1P2

2a1(a1 −β1)

⎤
⎥⎦Φ(−β1) (1.59)

The accuracy of Equation (1.59) is illustrated in Table 1.4. Bold numbers
shaded in gray are grossly inaccurate – they occur when the reliability indices
are significantly different and the correlation is high.
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Table 1.4 Estimation of p21 using probability bounds, point estimate, and simulation.

Performance
functions

Correlation Probability bounds Point estimate Simulation*

β1 = 1 0.1 (2.9, 5.8) ×10−2 3.1 ×10−2 3.1 ×10−2

β2 = 1 0.5 (4.5, 8.9) ×10−2 6.3 ×10−2 6.3 ×10−2

0.9 (0.6, 1.3) ×10−1 1.2 ×10−1 1.2 ×10−1

β1 = 1 0.1 (4.8, 9.3) ×10−3 5.0 ×10−3 5.0 ×10−3

β2 = 2 0.5 (1.1, 1.8) ×10−2 1.3 ×10−2 1.3 ×10−2

0.9 (2.2, 2.3) ×10−2 2.3 ×10−2 2.3 ×10−2

β1 = 1 0.1 (3.3, 6.1) ×10−4 3.4 ×10−4 3.5 ×10−4

β2 = 3 0.5 (1.0, 1.3) ×10−3 1.0 ×10−3 1.0 ×10−3

0.9 (1.3, 1.3) ×10−3 0.5 ×10−3 1.3 ×10−3

β1 = 1 0.1 (8.6, 15.7) ×10−6 8.9 ×10−6 8.5 ×10−6

β2 = 4 0.5 (2.8, 3.2) ×10−5 2.3 ×10−5 2.8 ×10−5

0.9 (3.2, 3.2) ×10−5 0.07 ×10−5 3.2 ×10s−5

β1 = 2 0.1 (8.0, 16.0) ×10−4 8.7 ×10−4 8.8 ×10−4

β2 = 2 0.5 (2.8, 5.6) ×10−3 4.1 ×10−3 4.1 ×10−3

0.9 (0.7, 1.5) ×10−2 1.4 ×10−2 1.3 ×10−2

β1 = 2 0.1 (5.9, 11.5) ×10−5 6.3 ×10−5 6.0 ×10−5

β2 = 3 0.5 (3.8, 6.2) ×10−4 4.5 ×10−4 4.5 ×10−4

0.9 (1.3, 1.3) ×10−3 1.2 ×10−3 1.3 ×10−3

β1 = 2 0.1 (1.7, 3.2) ×10−6 1.8 ×10−6 2.5 ×10−6

β2 = 4 0.5 (1.6, 2.2) ×10−5 1.6 ×10−5 1.5 ×10−5

0.9 (3.2, 3.2) ×10−5 0.5 ×10−5 3.2 ×10−5

β1 = 3 0.1 (4.5, 9.0) ×10−6 4.9 ×10−6 4.5 ×10−6

β2 = 3 0.5 (5.6, 11.2) ×10−5 8.2 ×10−5 8.0 ×10−5

0.9 (3.3, 6.6) × 10−4 6.3 × 10−4 6.0 ×10−4

*Sample size = 5,000,000.

1.4.4 Collocation-based stochastic response surface
method

The system reliability solution outlined in Section 1.4.3 is reasonably prac-
tical for problems containing a few failure modes that can be individually
analyzed by FORM. A more general approach that is gaining wider atten-
tion is the spectral stochastic finite element method originally proposed by
Ghanem and Spanos (1991). The key element of this approach is the expan-
sion of the unknown random output vector using multi-dimensional Hermite
polynomials as basis functions (also called a polynomial chaos expansion).
The unknown deterministic coefficients in the expansion can be solved using
the Galerkin or collocation method. The former method requires significant
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modification of the existing deterministic numerical code and is impossible
to apply for most engineers with no access to the source code of their com-
mercial softwares. The collocation method can be implemented using a small
number of fairly simple computational steps and does not require the mod-
ification of existing deterministic numerical code. Chapter 7 and elsewhere
(Sudret and Der Kiureghian, 2000) discussed this important class of methods
in detail. Verhoosel and Gutiérrez (2007) highlighted challenging difficulties
in applying these methods to nonlinear finite element problems involving
discontinuous fields. It is interesting to observe in passing that the output
vector can be expanded using the more well-known Taylor series expansion
as well. The coefficients of the expansion (partial derivatives) can be calcu-
lated using the perturbation method. This method can be applied relatively
easily to finite element outputs (Phoon et al., 1990; Quek et al., 1991, 1992),
but is not covered in this chapter.

This section briefly explains the key computational steps for the more
practical collocation approach. We recall in Section 1.3.2 that a vector of cor-
related non-normal random variables Y = (Y1,Y2, . . .,Yn)′ can be related to a
vector of correlated standard normal random variables X = (X1,X2, . . .,Xn)′
using one-dimensional Hermite polynomial expansions [Equation (1.26)].
The correlation coefficients for the normal random vector are evaluated
from the correlation coefficients of the non-normal random vector using
Equation (1.27). This method can be used to construct any non-normal ran-
dom vector as long as the correlation coefficients are available. This is indeed
the case if Y represents the input random vector. However, if Y represents
the output random vector from a numerical code, the correlation coefficients
are unknown and Equation (1.26) is not applicable. Fortunately, this practi-
cal problem can be solved by using multi-dimensional Hermite polynomials,
which are supported by a known normal random vector with zero mean,
unit variance, and uncorrelated or independent components.

The multi-dimensional Hermite polynomials are significantly more com-
plex than the one-dimensional version. For example, the second-order and
third-order forms can be expressed, respectively, as follows (Isukapalli,
1999):

Y ≈ao+
n∑

i=1

aiZi +
n∑

i=1

aii

(
Z2

i −1
)
+

n−1∑
i=1

n∑
j>i

aijZiZj (1.60a)

Y ≈ao+
n∑

i=1

aiZi +
n∑

i=1

aii

(
Z2

i −1
)
+

n∑
i=1

aiii

(
Z3

i −3Zi

)
+

n−1∑
i=1

n∑
j>i

aijZiZj

+
n∑

i=1

n∑
j=1
j �=i

aijj

(
ZiZ

2
j −Zi

)
+

n−2∑
i=1

n−1∑
j>i

n∑
k>j

aijkZiZjZk (1.60b)
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For n = 3, Equation (1.60) produces the following expansions (indices for
coefficients are re-labeled consecutively for clarity):

Y ≈ ao + a1Z1 + a2Z2 + a3Z3 + a4(Z2
1 − 1) + a5(Z2

2 − 1) + a6(Z2
3 − 1)

+ a7Z1Z2 + a8Z1Z3 + a9Z2Z3 (1.61a)

Y ≈ ao + a1Z1 + a2Z2 + a3Z3 + a4(Z2
1 − 1) + a5(Z2

2 − 1) + a6(Z2
3 − 1)

+ a7Z1Z2 + a8Z1Z3 + a9Z2Z3 + a10(Z3
1 − 3Z1) + a11(Z3

2 − 3Z2)

+ a12(Z3
3 − 3Z3) + a13(Z1Z2

2 − Z1) + a14(Z1Z2
3 − Z1)

+ a15(Z2Z2
1 − Z2) + a16(Z2Z2

3 − Z2) + a17(Z3Z2
1 − Z3)

+ a18(Z3Z2
2 − Z3) + a19Z1Z2Z3 (1.61b)

In general, N2 and N3 terms are respectively required for the second-order
and third-order expansions (Isukapalli, 1999):

N2 = 1 + 2n + n(n − 1)
2

(1.62a)

N3 = 1 + 3n + 3n(n − 1)
2

+ n(n − 1)(n − 2)
6

(1.62b)

For a fairly modest random dimension of n = 5, N2 and N3 terms are
respectively equal to 21 and 56. Hence, fairly tedious algebraic expressions
are incurred even at a third-order truncation. One-dimensional Hermite
polynomials can be generated easily and efficiently using a three-term recur-
rence relation [Equation (1.11)]. No such simple relation is available for
multi-dimensional Hermite polynomials. They are usually generated using
symbolic algebra, which is possibly out of reach of the general practi-
tioner. This major practical obstacle is currently being addressed by Liang
et al. (2007). They have developed a user-friendly EXCEL add-in to gener-
ate tedious multi-dimensional Hermite expansions automatically. Once the
multi-dimensional Hermite expansions are established, their coefficients can
be calculated following the steps described in Equations (1.18)–(1.20). Two
practical aspects are noteworthy:

1. The random dimension of the problem should be minimized to reduce
the number of terms in the polynomial chaos expansion. The spectral
decomposition method can be used:

X = PD1/2Z + µ (1.63)

in which D = diagonal matrix containing eigenvalues in the leading diag-
onal and P = matrix whose columns are the corresponding eigenvectors.
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If C is the covariance matrix of X, the matrices D and P can be calcu-
lated easily using [P,D] = eig(C) in MATLAB. The key advantage of
replacing Equation (1.23) by Equation (1.63) is that an n-dimensional
correlated normal vector X can be simulated using an uncorrelated stan-
dard normal vector Z with a dimension less than n. This is achieved by
discarding eigenvectors in P that correspond to small eigenvalues. A sim-
ple example is provided in Appendix A.7. The objective is to simulate a
3D correlated normal vector following a prescribed covariance matrix:

C =
⎡
⎣ 1 0.9 0.2

0.9 1 0.5
0.2 0.5 1

⎤
⎦

Spectral decomposition of the covariance matrix produces:

D =
⎡
⎣0.045 0 0

0 0.832 0
0 0 2.123

⎤
⎦ P =

⎡
⎣ 0.636 0.467 0.614

−0.730 0.108 0.675
0.249 −0.878 0.410

⎤
⎦

Realizations of X can be obtained using Equation (1.63). Results are
shown as open circles in Figure 1.13. The random dimension can be
reduced from three to two by ignoring the first eigenvector correspond-
ing to a small eigenvalue of 0.045. Realizations of X are now simulated
using:

⎧⎨
⎩

X1
X2
X3

⎫⎬
⎭=
⎡
⎣ 0.467 0.614

0.108 0.675
−0.878 0.410

⎤
⎦[√0.832 0

0
√

2.123

]{
Z1
Z2

}

Results are shown as crosses in Figure 1.13. Note that three correlated
random variables can be represented reasonably well using only two
uncorrelated random variables by neglecting the smallest eigenvalue and
the corresponding eigenvector. The exact error can be calculated theo-
retically by observing that the covariance of X produced by Equation
(1.63) is:

CX = (PD1/2)(D1/2P′) = PDP′ (1.64)

If the matrices P and D are exact, it can be proven that PDP′ = C, i.e.
the target covariance is reproduced. For the truncated P and D matrices
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Figure 1.13 Scatter plot between X1 and X2 (top) and X2 and X3 (bottom).

discussed above, the covariance of X is:

CX =
⎡
⎣ 0.467 0.614

0.108 0.675
−0.878 0.410

⎤
⎦[0.832 0

0 2.123

]

×
[
0.467 0.108 −0.878
0.614 0.675 0.410

]
=
⎡
⎣0.982 0.921 0.193

0.921 0.976 0.508
0.193 0.508 0.997

⎤
⎦
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The exact error in each element of CX can be clearly seen by comparing
with the corresponding element in C. In particular, the variances of
X (elements in the leading diagonal) are slightly reduced. For random
processes/fields, reduction in the random dimension can be achieved
using the Karhunen–Loeve expansion (Phoon et al., 2002, 2004). It can
be shown that the spectral representation given by Equation (1.28) is
a special case of the Karhunen–Loeve expansion (Huang et al., 2001).
The random dimension can be further reduced by performing sensitiv-
ity analysis and discarding input parameters that are “unimportant.”
For example, the square of the components of the unit normal vec-
tor, α, shown in Figure 1.12, are known as FORM importance factors
(Ditlevsen and Madsen, 1996). If the input parameters are independent,
these factors indicate the degree of influence exerted by the corre-
sponding input parameters on the failure event. Sudret (2007) discussed
the application of Sobol’ indices for sensitivity analysis of the spectral
stochastic finite element method.

2. The number of output values (y1,y2, . . .) in Equation (1.20) should be
minimized, because they are usually produced by costly finite element
calculations. Consider a problem containing two random dimensions
and approximating the output as a third-order expansion:

yi = ao + a1zi1 + a2zi2 + a3(z2
i1 − 1) + a4(z2

i2 − 1) + a5zi1zi2

+ a6(z3
i1 − 3zi1) + a7(z3

i2 − 3zi2) + a8(zi1z2
i2 − zi1)

+ a9(zi2z2
i1 − zi2) (1.65)

Phoon and Huang (2007) demonstrated that the collocation points
(zi1,zi2) are best sited at the roots of the Hermite polynomial that is one
order higher than that of the Hermite expansion. In this example, the
roots of the fourth-order Hermite polynomial are ±√

(3±√
6). Although

zero is not one of the roots, it should be included because the standard
normal probability density function is highest at the origin. Twenty-
five collocation points (zi1,zi2) can be generated by combining the roots
and zero in two dimensions, as illustrated in Figure 1.14. The roots of
Hermite polynomials (up to order 15) can be calculated numerically as
shown in Appendix A.8.

1.4.5 Subset simulation method

The collocation-based stochastic response surface method is very efficient
for problems containing a small number of random dimensions and perfor-
mance functions that can be approximated quite accurately using low-order
Hermite expansions. However, the method suffers from a rapid proliferation
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Figure 1.14 Collocation points for a third-order expansion with two random dimensions.

of Hermite expansion terms when the random dimension and/or order of
expansion increase. A critical review of reliability estimation procedures for
high dimensions is given by Schuëller et al. (2004). One potentially practical
method that is worthy of further study is the subset simulation method (Au
and Beck, 2001). It appears to be more robust than the importance sampling
method. Chapter 4 and elsewhere (Au, 2001) present a more extensive study
of this method.

This section briefly explains the key computational steps involved in
the implementation. Consider the failure domain Fm defined by the con-
dition P(y1,y2, . . .,yn) < 0, in which P is the performance function and
(y1,y2, . . .,yn) are realizations of the uncertain input parameters. The “fail-
ure” domain Fi defined by the condition P(y1,y2, . . .,yn) < ci, in which ci is
a positive number, is larger by definition of the performance function. We
assume that it is possible to construct a nested sequence of failure domains
of increasing size by using an increasing sequence of positive numbers, i.e.
there exists c1 > c2 > .. . > cm = 0 such that F1 ⊃ F2 ⊃ . . .Fm. As shown in
Figure 1.15 for the one-dimensional case, it is clear that this is always possible
as long as one value of y produces only one value of P(y). The performance
function will satisfy this requirement. If one value of y produces two values
of P(y), say a positive value and a negative value, then the physical system
is simultaneously “safe” and “unsafe,” which is absurd.

The probability of failure (pf ) can be calculated based on the above nested
sequence of failure domains (or subsets) as follows:

pf = Prob(Fm) = Prob(Fm|Fm−1)Prob(Fm−1|Fm−2)

× . . .Prob(F2|F1)Prob(F1) (1.66)
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Figure 1.15 Nested failure domains.

At first glance, Equation (1.66) appears to be an indirect and more tedious
method of calculating pf. In actuality, it can be more efficient because the
probability of each subset conditional on the previous (larger) subset can
be selected to be sufficiently large, say 0.1, such that a significantly smaller
number of realizations is needed to arrive at an acceptably accurate result.
We recall from Equation (1.49) that the rule of thumb is 10/pf, i.e. only
100 realizations are needed to estimate a probability of 0.1. If the actual
probability of failure is 0.001 and the probability of each subset is 0.1, it is
apparent from Equation (1.66) that only three subsets are needed, implying a
total sample size = 3×100 = 300. In contrast, direct simulation will require
10/0.001 = 10,000 realizations!

The typical calculation steps are illustrated below using a problem
containing two random dimensions:

1. Select a subset sample size (n) and prescribe p = Prob(Fi|Fi−1). We
assume p = 0.1 and n = 500 from hereon.

2. Simulate n = 500 realizations of the uncorrelated standard normal vector
(Z1,Z2)′. The physical random vector (Y1,Y2)′ can be determined from
these realizations using the methods described in Section 1.3.2.

3. Calculate the value of the performance function gi = P(yi1,yi2) associ-
ated with each realization of the physical random vector (yi1,yi2)′, i =
1,2, . . .,500.

4. Rank the values of (g1,g2, . . .,g500) in ascending order. The value located
at the (np + 1) = 51st position is c1.
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5. Define the criterion for the first subset (F1) as P < c1. By construction at
step (4), P(F1) = np/n = p. The realizations contained in F1 are denoted
by zj = (zj1,zj2)′, j = 1,2, . . .,50.

6. Simulate 1/p = 10 new realizations from zj using the following
Metropolis-Hastings algorithm:

a. Simulate 1 realization using a uniform proposal distribution with
mean located at µ = zj and range = 1, i.e. bounded by µ ± 0.5. Let
this realization be denoted by u = (u1,u2)′.

b. Calculate the acceptance probability:

α = min
(

1.0,
I(u)φ(u)
φ(µ)

)
(1.67)

in which I(u) = 1 if P(u1,u2) < c1, I(u) = 0 if P(u1,u2) ≥ c1,
φ(u) = exp(−0.5u′u), and φ(µ) = exp(−0.5µ′µ).

c. Simulate 1 realization from a standard uniform distribution
bounded between 0 and 1, denoted by v.

d. The first new realization is given by:

w = u if v < α

w = µ if v ≥ α
(1.68)

Update the mean of the uniform proposal distribution in step (a) as
µ = w (i.e. centred about the new realization) and repeat the algo-
rithm to obtain a “chain” containing 10 new realizations. Fifty
chains are obtained in the same way with initial seeds at zj, j = 1, . . .,
50. It can be proven that these new realizations would follow
Prob(·|F1) (Au, 2001).

7. Convert these realizations to their physical values and repeat Step (3)
until ci becomes negative (note: the smallest subset should correspond
to cm = 0).

It is quite clear that the above procedure can be extended to any random
dimension in a trivial way. In general, the accuracy of this subset simula-
tion method depends on “tuning” factors such as the choice of n,p, and the
proposal distribution in step 6(a) (assumed to be uniform with range = 1).
A study of some of these factors is given in Chapter 4. The optimal choice of
these factors to achieve minimum runtime appears to be problem-dependent.
Appendix A.9 provides the MATLAB code for subset simulation. The perfor-
mance function is specified in “Pfun.m” and the number of random variables
is specified in parameter “m.” Figure 1.16 illustrates the behavior of the
subset simulation method for the following performance function:

P = 2 + 3
√

2 − Y1 − Y2 = 2 + 3
√

2 + ln[Φ(−Z1)]+ ln[Φ(−Z2)] (1.69)
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Figure 1.16 Subset simulation method for P = 2 + 3
√

2 − Y1 − Y2, in which Y1 and Y2 are
exponential random variables with mean = 1: first subset (top) and second
subset (bottom).
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in which Y1,Y2 = exponential random variables with mean = 1 and Z1,Z2 =
uncorrelated standard normal random variables. The exact solution for the
probability of failure is 0.0141 (Appendix C). The solution based on subset
simulation method solution is achieved as follows:

1. Figure 1.16a: Simulate 500 realizations (small open circles) and identify
the first 50 realizations in order of increasing P value (big open circles).
The 51st smallest P value is c1 = 2.192.

2. These realizations satisfy the criterion, P < c1 (solid line), by construc-
tion. The domain above the solid line is F1.

3. Figure 1.16b: Simulate 10 new realizations from each big open circle in
Fig 1.16a. The total number is 10 × 50 = 500 realizations (small open
circles).

4. There are 66 realizations (big open squares) satisfying P < 0 (dashed
line). The domain above the dashed line is F2. F2 is the actual failure
domain. Hence, Prob(F2|F1) = 66/500 = 0.132.

5. The estimated probability of failure is: pf = Prob(F2|F1)P(F1) = 0.132×
0.1 = 0.0132.

Note that only 7 realizations in Figure 1.16a lie in F2. In contrast, 66 real-
izations in Figure 1.16b lie in F2, providing a more accurate pf estimate.

1.5 Conclusions

This chapter presents general and user-friendly computational methods for
reliability analysis. “User-friendly” methods refer to those that can be imple-
mented on a desktop PC by a non-specialist with limited programming
skills; in other words, methods within reach of the general practitioner.
This chapter is organized under two main headings describing: (a) how to
simulate uncertain inputs numerically, and (b) how to propagate uncertain
inputs through a physical model to arrive at the uncertain outputs. Although
some of the contents are elaborated in greater detail in subsequent chapters,
the emphasis on numerical implementations in this chapter should shorten
the learning curve for the novice. The overview will also provide a useful
roadmap to the rest of this book.

For the simulation of uncertain inputs following arbitrary non-normal
probability distribution functions and correlation structure, the translation
model involving memoryless transform of the multivariate normal probabil-
ity distribution function can cater for most practical scenarios. Implemen-
tation of the translation model using one-dimensional Hermite polynomials
is relatively simple and efficient. For stochastic data that cannot be modeled
using the translation model, the hunt for probability models with comparable
practicality, theoretical power, and simulation speed is still on-going. Copula
theory produces a more general class of multivariate non-normal models, but
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it is debatable at this point if these models can be estimated empirically and
simulated numerically with equal ease for high random dimensions. The
only exception is a closely related but non-translation approach based on
the multivariate normal copula.

The literature is replete with methodologies on the determination of uncer-
tain outputs from a given physical model and uncertain inputs. The most
general method is Monte Carlo simulation, but it is notoriously tedious.
One may assume with minimal loss of generality that a complex geotechni-
cal problem (possibly 3D, nonlinear, time-and construction-dependent, etc.)
would only admit numerical solutions and the spatial domain can be modeled
by a scalar/vector random field. For a sufficiently large and complex problem,
it is computationally intensive to complete even a single run. At present, it is
accurate to say that a computationally efficient and “user-friendly” solution
to the general stochastic problem remains elusive. Nevertheless, reasonably
practical solutions do exist if the general stochastic problem is restricted
in some ways, for example, accept a first-order estimate of the probability
of failure or accept an approximate but less costly output. The FORM is
by far the most efficient general method for estimating the probability of
failure of problems involving one design point (one dominant mode of fail-
ure). There are no clear winners for problems beyond the reach of FORM.
The collocation-based stochastic response surface method is very efficient
for problems containing a small number of random dimensions and perfor-
mance functions that can be approximated quite accurately using low-order
Hermite expansions. However, the method suffers from a rapid prolifera-
tion of Hermite expansion terms when the random dimension and/or order of
expansion increase. The subset simulation method shares many of the advan-
tages of the Monte Carlo simulation method, such as generality and tractabil-
ity at high dimensions, without requiring too many runs. At low random
dimensions, it does require more runs than the collocation-based stochas-
tic response surface method but the number of runs is probably acceptable
up to medium-scale problems. The subset simulation method has numerous
“tuning” factors that are not fully studied for geotechnical problems.

Simple MATLAB codes are provided in the Appendix A to encourage
practitioners to experiment with reliability analysis numerically so as to gain
a concrete appreciation of the merits and limitations. Theory is discussed
where necessary to furnish sufficient explanations so that users can modify
codes correctly to suit their purpose and to highlight important practical
limitations.

Appendix A – MATLAB codes

MATLAB codes are stored in text files with extension “.m” – they are called
M-files. M-files can be executed easily by typing the filename (e.g. hermite)
within the command window in MATLAB. The location of the M-file should
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be specified using “File > Set Path ….” M-files can be opened and edited
using “File > Open ….” Programming details are given under “Help >

Contents > MATLAB > Programming.” The M-files provided below are
available at http://www.eng.nus.edu.sg/civil/people/cvepkk/prob_lib.html.

A.1 Simulation of Johnson distributions

% Simulation of Johnson distributions
% Filename: Johnson.m
%
% Simulation sample size, n
n = 100000;
%
% Lognormal with lambda, xi
lambda = 1;
xi = 0.2;
Z = normrnd(0, 1, n, 1);
X = lambda + Z*xi;
LNY = exp(X);
%
% SB with lambda, xi, A, B
lambda = 1;
xi = 0.36;
A = -3;
B = 5;
X = lambda + Z*xi;
SBY = (exp(X)*B+A)./(exp(X)+1);
%
% SU with lambda, xi, A, B
lambda = 1;
xi = 0.09;
A = -1.88;
B = 2.08;
X = lambda + Z*xi;
SUY = sinh(X)*(B-A)+A;
%
% Plot probability density functions
[f, x] = ksdensity(LNY);
plot(x,f);
hold;
[f, x] = ksdensity(SBY);
plot(x,f,’red’);
[f, x] = ksdensity(SUY);
plot(x,f,’green’);
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A.2 Calculation of Hermite coefficients using stochastic
collocation method

% Calculation of Hermite coefficients using stochastic
collocation method
% Filename: herm_coeffs.m
%
% Number of realizations, n
n = 20;
%
% Example: Lognormal with lambda, xi
lambda = 0;
xi = 1;
Z = normrnd(0, 1, n, 1);
X = lambda + Z*xi;
LNY = exp(X);
%
% Order of Hermite expansion, m
m = 6;
%
% Construction of Hermite matrix, H
H = zeros(n,m+1);
H(:,1) = ones(n,1);
H(:,2) = Z;
for k = 3:m+1;
H(:,k) = Z.*H(:,k-1) - (k-2)*H(:,k-2);
end;
%
% Hermite coefficients stored in vector a
K = H’*H;
f = H’*LNY;
a = inv(K)*f;

A.3 Simulation of correlated non-normal random
variables using translation method

% Simulation of correlated non-normal random variables
using translation method
% Filename: translation.m
%
% Number of random dimension, n
n = 2;
%
% Normal covariance matrix
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C = [1 0.8; 0.8 1];
%
% Number of realizations, m
m = 100000;
%
% Simulation of 2 uncorrelated normal random variables
with
% mean = 0 and variance = 1
Z = normrnd(0, 1, m, n);
%
% Cholesky factorization
CF = chol(C);
%
% Simulation of 2 correlated normal random variables
with
% with mean = 0 and covariance = C
X = Z*CF;
%
% Example: simulation of correlated non-normal with
% Component 1 = Johnson SB
lambda = 1;
xi = 0.36;
A = -3;
B = 5;
W(:,1) = lambda + X(:,1)*xi;
Y(:,1) = (exp(W(:,1))*B+A)./(exp(W(:,1))+1);
% Component 2 = Johnson SU
lambda = 1;
xi = 0.09;
A = -1.88;
B = 2.08;
W(:,2) = lambda + X(:,2)*xi;
Y(:,2) = sinh(W(:,2))*(B-A)+A;

A.4 Simulation of normal random process using the
two-sided power spectral density function, S(f)

% Simulation of normal random process using the
two-sided power spectral
% density function, S(f)
% Filename: ranprocess.m
%
% Number of data points based on power of 2, N
N = 512;
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%
% Depth sampling interval, delz
delz = 0.2;
%
% Frequency interval, delf
delf = 1/N/delz;
%
% Discretization of autocorrelation function, R(tau)
% Example: single exponential function
%
tau = zeros(1,N);
tau = -(N/2-1)*delz:delz:(N/2)*delz;
d = 2; % scale of fluctuation
a = 2/d;
R = zeros(1,N);
R = exp(-a*abs(tau));
%
% Numerical calculation of S(f) using FFT
H = zeros(1,N);
H = fft(R);
% Notes:
% 1. f=0, delf, 2*delf, ... (N/2-1)*delf corresponds
to H(1), H(2), ... H(N/2)
% 2. Maximum frequency is Nyquist frequency
= N/2*delf= 1/2/delz
% 3. Multiply H (discrete transform) by delz to get
continuous transform
% 4. Shift R back by tau0, i.e. multiply H by
exp(2*pi*i*f*tau0)
f = zeros(1,N);
S = zeros(1,N);
%
% Shuffle f to correspond with frequencies ordering
implied in H
f(1) = 0;
for k = 2:N/2+1;
f(k)= f(k-1)+delf;
end;
f(N/2+2) = -f(N/2+1)+delf;
for k = N/2+3:N;
f(k) = f(k-1)+delf;
end;
%
tau0 = (N/2-1)*delz;
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%
for k = 1:N;
S(k) = delz*H(k)*exp(2*pi*i*f(k)*tau0); % i is
imaginary number
end;
S = real(S); % remove possible imaginary parts due to
roundoff errors
%
% Shuffle S to correspond with f in increasing order
f = -(N/2-1)*delf:delf:(N/2)*delf;
temp = zeros(1,N);
for k = 1:N/2-1;
temp(k) = S(k+N/2+1);
end;
for k = N/2:N;
temp(k)=S(k-N/2+1);
end;
S = temp;
clear temp;
%
% Simulation of normal process using spectral
representation
% mean of process = 0 and variance of process = 1
%
% Maximum possible non-periodic process length,
Lmax = 1/2/fmin = 1/delf
% Minimum frequency, fmin = delf/2
Lmax = 1/delf;
%
% Simulation length, L = b*Lmax with b < 1
L = 0.5*Lmax;
%
% Number of simulated data points, nz
% Depth sampling interval, dz
% Depth coordinates, z(1), z(2) ... z(nz)
nz = round(L/delz);
dz = L/nz;
z = dz:dz:L;
%
% Number of realisations, m
m = 10000;
%
% Number of positive frequencies in the spectral
expansion, nf = N/2
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nf = N/2;
%
% Simulate uncorrelated standard normal random
variables
randn(’state’, 1);
Z = randn(m,2*nf);
sigma = zeros(1,nf);
wa = zeros(1,nf);
%
% Calculate energy at each frequency using trapezoidal
rule, 2*S(f) for k = 1:nf;
sigma(k) = 2*0.5*(S(k+nf-1)+S(k+nf))*delf;
wa(k) = 0.5*2*pi*(f(k+nf-1)+f(k+nf));
end;
sigma = sigma.ˆ0.5;
%
% Calculate realizations with mean = 0 and
variance = 1
X = zeros(m,nz);
X = Z(:,1:nf)*diag(sigma)*cos(wa’*z)+Z(:,nf+1:2*nf)
*diag(sigma)*sin(wa’*z);

A.5 Reliability analysis of Load and Resistance Factor
Design (LRFD)

% Reliability analysis of Load and Resistance Factor
Design (LRFD)
% Filename: LRFD.m
%
% Resistance factor, phi
phi = 0.5;
% Dead load factor, gD; Live load factor, gL
gD = 1.25;
gL = 1.75;
% Bias factors for Q, D, L
bR = 1;
bD = 1.05;
bL = 1.15;
%
% Ratio of nominal dead to live load, loadratio
loadratio = 2;
%
% Assume mR = bR*Rn; mD = bD*Dn; mL = bL*Ln
% Design equation: phi(Rn) = gD(Dn) + gL(Ln)
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mR = 1000;
mL = phi*bR*mR*bL/(gD*loadratio+gL);
mD = loadratio*mL*bD/bL;
%
% Coefficients of variation for R, D, L
cR = 0.3;
cD = 0.1;
cL = 0.2;
%
% Lognormal X with mean = mX and coefficent of
variation = cX
xR = sqrt(log(1+cRˆ2));
lamR = log(mR)-0.5*xRˆ2;
xD = sqrt(log(1+cDˆ2));
lamD = log(mD)-0.5*xDˆ2;
xL = sqrt(log(1+cLˆ2));
lamL = log(mL)-0.5*xLˆ2;
%
% Simulation sample size, n
n = 500000;
%
Z = normrnd(0, 1, n, 3);
LR = lamR + Z(:,1)*xR;
R = exp(LR);
LD = lamD + Z(:,2)*xD;
D = exp(LD);
LL = lamL + Z(:,3)*xL;
L = exp(LL);
%
% Total load = Dead load + Live Load
F = D + L;
%
% Mean of F
mF = mD + mL;
%
% Coefficient of variation of F based on second-moment
approximation
cF = sqrt((cD*mD)ˆ2+(cL*mL)ˆ2)/mF;
%
% Failure occurs when R < F
failure = 0;
for i = 1:n;
if (R(i) < F(i)) failure = failure+1; end;
end;
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%
% Probability of failure = no. of failures/n
pfs = failure/n;
%
% Reliability index
betas = -norminv(pfs);
%
% Closed-form lognormal solution
a1 = sqrt(log((1+cRˆ2)*(1+cFˆ2)));
a2 = sqrt((1+cFˆ2)/(1+cRˆ2));
beta = log(mR/mF*a2)/a1;
pf = normcdf(-beta);

A.6 First-order reliability method

% First-order reliability method
% Filename: FORM.m
%
% Number of random variables, m
m = 6;
%
% Starting guess is z0 = 0
z0 = zeros(1, m);
%
% Minimize objective function
% exitflag = 1 for normal termination
options = optimset(’LargeScale’,’off’);
[z,fval,exitflag,output] =
fmincon(@objfun,z0,[],[],[],[],[],[],@Pfun,options);
%
% First-order reliability index
beta1 = fval;
pf1 = normcdf(-beta1);

% Objective function for FORM
% Filename: objfun.m
%
function f = objfun(z)
%
% Objective function = distance from the origin
% z = vector of uncorrelated standard normal random
variables f = norm(z);
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% Definition of performance function, P
% Filename: Pfun.m
%
function [c, ceq] = Pfun(z)
%
% Convert standard normal random variables to physical
variables
%
% Depth of rock, H
y(1) = 2+6*normcdf(z(1));
%
% Height of water table
y(2) = y(1)*normcdf(z(2));
%
% Effective stress friction angle (radians)
xphi = sqrt(log(1+0.08ˆ2));
lamphi = log(35)-0.5*xphiˆ2;
y(3) = exp(lamphi+xphi*z(3))*pi/180;
%
% Slope inclination (radians)
xbeta = sqrt(log(1+0.05ˆ2));
lambeta = log(20)-0.5*xbetaˆ2;
y(4) = exp(lambeta+xbeta*z(4))*pi/180;
%
% Specific gravity of solids
Gs = 2.5+0.2*normcdf(z(5));
%
% Void ratio
e = 0.3+0.3*normcdf(z(6));
%
% Moist unit weight
y(5) = 9.81*(Gs+0.2*e)/(1+e);
%
% Saturated unit weight
y(6) = 9.81*(Gs+e)/(1+e);
%
% Nonlinear inequality constraints, c < 0
c = (y(5)*(y(1)-y(2))+y(2)*(y(6)-9.81))*
cos(y(4))*tan(y(3))/((y(5)*(y(1)-y(2))+y(2)*y(6))*
sin(y(4)))-1;
%
% Nonlinear equality constraints
ceq = [];
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A.7 Random dimension reduction using spectral
decomposition

% Random dimension reduction using spectral
decomposition
% Filename: eigendecomp.m
%
% Example: Target covariance
C = [1 0.9 0.2; 0.9 1 0.5; 0.2 0.5 1];
%
% Spectral decomposition
[P,D] = eig(C);
%
% Simulation sample size, n
n = 10000;
%
% Simulate standard normal random variables
Z = normrnd(0,1,n,3);
%
% Simulate correlated normal variables following C
X = P*sqrt(D)*Z’;
X = X’;
%
% Simulate correlated normal variables without 1st
eigen-component
XT = P(1:3,2:3)*sqrt(D(2:3,2:3))*Z(:,2:3)’;
XT=XT’;
%
% Covariance produced by ignoring 1st eigen-component
CX = P(1:3,2:3)*D(2:3,2:3)*P(1:3,2:3)’;

A.8 Calculation of Hermite roots using polynomial fit

% Calculation of Hermite roots using polynomial fit
% Filename: herm_roots.m
%
% Order of Hermite polynomial, m < 15
m = 5;
%
% Specification of z values for fitting
z = (-4:1/2/m:4)’;
%
% Number of fitted points, n
n = length(z);
%
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% Construction of Hermite matrix, H
H = zeros(n,m+1);
H(:,1) = ones(n,1);
H(:,2) = z;
for k = 3:m+1;
H(:,k) =z.*H(:,k-1)-(k-2)*H(:,k-2);
end;
%
% Calculation of Hermite expansion
y = H(:,m+1);
%
% Polynomial fit
p = polyfit(z,y,m);
%
% Roots of hermite polynomial
r = roots(p);
%
% Validation of roots
nn = length(r);
H = zeros(nn,m+1);
H(:,1) = ones(nn,1);
H(:,2) = r;
for k = 3:m+1;
H(:,k) =r.*H(:,k-1)-(k-2)*H(:,k-2);
end;
%
norm(H(:,m+1))

A.9 Subset Markov Chain Monte Carlo method

% Subset Markov Chain Monte Carlo method
% Filename: subset.m
% © (2007) Kok-Kwang Phoon
%
% Number of random variables, m
m = 2;
%
% Sample size, n
n = 500;
%
% Probability of each subset
psub = 0.1;
%
% Number of new samples from each seed sample
ns = 1/psub;
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%
% Simulate standard normal variable, z
z = normrnd(0,1,n,m);
%
stopflag = 0;
pfss = 1;
while (stopflag == 0)
%
% Values of performance function
for i=1:n; g(i) = Pfun(z(i,:)); end;
%
% Sort vector g to locate n*psub smallest values
[gsort,index]=sort(g);
%
% Subset threshold, gt = n*psub+1 smallest value of g
% if gt < 0, exit program
gt = gsort(n*psub+1);
if (gt < 0)

i=1;
while gsort(i)<0

i=i+1;
end;
pfss=pfss*(i-1)/n;
stopflag = 1;
break;

else
pfss = pfss*psub;

end;
%
% n*psub seeds satisfying Pfun < gt stored in
z(index(1:n*psub),:)
% Simulate 1/psub samples from each seed to get n
samples for next subset
w = zeros(n,m);
for i=1:n*psub

seed = z(index(i),:);
for j=1:ns

% Proposal density: standard uniform with mean =
seed
u = rand(1,m);
u = (seed-0.5)+ u;
% Calculate acceptance probability
pdf2 = exp(-0.5*sum(seed.ˆ2));
pdf1 = exp(-0.5*sum(u.ˆ2));
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I = 0;
if Pfun(u)<gt; I=1; end;
alpha = min(1,I*pdf1/pdf2);
% Accept u with probability = alpha
V = rand;
if V < alpha;

w(ns*(i-1)+j,:)= u;
else

w(ns*(i-1)+j,:)= seed;
end;

seed = w(ns*(i-1)+j,:);
end;

end;
%
z=w;
end;
% Reliability index
betass = -norminv(pfss);

Appendix B – Approximate closed-form solutions
for Φ(·) and Φ−1(·)
The standard normal cumulative distribution function,Φ(·) can be calculated
using normcdf in MATLAB. For sufficiently large β, it is also possible to esti-
mate Φ(−β) quite accurately using the following asymptotic approximation
(Breitung, 1984):

Φ(−β) ∼ (2π )−1/2exp(−β2/2)β−1 (B.1)

An extensive review of estimation methods for the standard normal cumu-
lative distribution function is given by Johnson et al. (1994). Comparison
between Equation (B.1) and normcdf(·) is given in Figure B.1. It appears
that β > 2 is sufficiently “large.” Press et al. (1992) reported an extremely
accurate empirical fit with an error less than 1.2 × 10−7 everywhere:

t = 1

1 + 0.25
√

2β
0.5t × exp(−0.5β2−1.26551223 + t

× (1.00002368 + t × (0.37409196 +Φ(−β) ≈ t × (0.09678418 + t

× (−0.18628806 + t × (0.27886807 + t × (−1.13520398 + t

× (1.48851587 + t × (−0.82215223 + t × 0.17087277))))))))) (B.2)
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Figure B.1 Comparison between normcdf(·) and asymptotic approximation of the standard
normal cumulative distribution function.

However, it seems difficult to obtain β = −Φ−1(pf), which is of signifi-
cant practical interest as well. Equation (B.1) is potentially more useful in
this regard. To obtain the inverse standard normal cumulative distribution
function, we rewrite Equation (B.1) as follows:

β2 + 2ln(
√

2πpf) + 2ln(β) = 0 (B.3)

To solve Equation (B.3), it is natural to linearize ln(β) using Taylor series
expansion: ln(β) = −ln[1 + (1/β − 1)] ≈ 1 − 1/β with β > 0.5. Using this
linearization, Equation (B.3) simplifies to a cubic equation:

β3 + 2[In(
√

2πpf) + 1]β − 2 = 0 (B.4)

The solution is given by:

Q = 2[ln(
√

2πpf) + 1]
3

R = 1

β =
(

R +
√

Q3 + R2
)1/3

+
(

R −
√

Q3 + R2
)1/3

, pf < exp(−1)/
√

2π

(B.5)
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Figure B.2 Approximate closed-form solutions for inverse standard normal cumulative
distribution function.

Equation (B.5) is reasonably accurate, as shown in Figure B.2. An extremely
accurate and simpler linearization can be obtained by fitting ln(β) = b0 +b1β

over the range of interest using linear regression. Using this linearization,
Equation (B.3) simplifies to a quadratic equation:

β2 + 2b1β + 2[ln(
√

2πpf) + b0] = 0 (B.6)

The solution is given by:

β = −b1 +
√

b2
1 − 2[ln(

√
2πpf) + b0], pf < exp(b2

1/2 − b0)/
√

2π (B.7)

The parameters b0 = 0.274 and b1 = 0.266 determined from linear regression
over the range 2 ≤ β ≤ 6 were found to produce extremely good results, as
shown in Figure B.2. To the author’s knowledge, Equations (B.5) and (B.7)
appear to be original.

Appendix C – Exact reliability solutions

It is well known that exact reliability solutions are available for problems
involving the sum of normal random variables or the product of lognormal
random variables. This appendix provides other exact solutions that are
useful for validation of new reliability codes/calculation methods.
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C.1 Sum of n exponential random variables

Let Y be exponentially distributed with the following cumulative distribution
function:

F(y) = 1 − exp(−y/b) (C.1)

The mean of Y is b. The sum of n independent identically distributed expo-
nential random variables follows an Erlang distribution with mean = nb
and variance = nb2 (Hastings and Peacock, 1975). Consider the following
performance function:

P = nb +αb
√

n −
n∑

i=1

Yi = c −
n∑

i=1

Yi (C.2)

in which c and α are positive numbers. The equivalent performance function
in standard normal space is:

P = c +
n∑

i=1

bln
[
Φ(−Zi)

]
(C.3)

The probability of failure can be calculated exactly based on the Erlang
distribution (Hastings and Peacock, 1975):

pf = Prob(P < 0)

= Prob

(
n∑

i=1

Y > c

)
(C.4)

= exp
(
− c

b

)n−1∑
i=0

(c/b)i

i!

Equation (C.2) with b = 1 is widely used in the structural reliability
community to validate FORM/SORM (Breitung, 1984; Rackwitz, 2001).

C.2 Probability content of an ellipse in n-dimensional
standard normal space

Consider the “safe” elliptical domain in 2D standard normal space shown
in Figure C.1. The performance function is:

P = α2 −
(

Z1

b1

)2

−
(

Z2

b2

)2

(C.5)
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R - r = αb1

R + r

R - r

Figure C.1 Elliptical safe domain in 2D standard normal space.

in which b2 >b1 >0. Let R =α(b1+b2)/2 and r =α(b2−b1)/2. Johnson and
Kotz (1970), citing Ruben (1960), provided the following the exact solution
for the safe domain:

Prob(P > 0) = Prob(χ ′2
2 (r2) ≤ R2) − Prob(χ ′2

2 (R2) ≤ r2) (C.6)

in which χ ′2
2 (r2) = non-central chi-square random variable with two degrees

of freedom and non-centrality parameter r2. The cumulative distribution
function, Prob(χ ′2

2 (r2) ≤ R2), can be calculated using ncx2cdf(R2,2,r2) in
MATLAB.

There is no simple generalization of Equation (C.6) to higher dimen-
sions. Consider the following performance function involving n uncorrelated
standard normal random variables (Z1,Z2, . . .,Zn):

P = α2 −
(

Z1

b1

)2

−
(

Z2

b2

)2

−·· ·
(

Zn

bn

)2

(C.7)

in which bn > bn−1 > · · · > b1 > 0. Johnson and Kotz (1970), citing Ruben
(1963), provided a series solution based on the sum of central chi-square
cumulative distribution functions:

Prob(P > 0) =
∞∑

r=0

er Prob
[
χ2

n+2r ≤ (bnα
)2] (C.8)

in which χ2
ν (·) = central chi-square random variable with ν degrees of free-

dom. The cumulative distribution function, Prob(χ2
ν ≤ y), can be calculated
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using chi2cdf(y,ν) in MATLAB. The coefficients, er, are calculated as:

e0 =
n∏

j=1

(
bj

bn

)

er = (2r)−1
r−1∑
j=0

ejhr−j r ≥ 1

(C.9)

hr =
n∑

j=1

(
1 −

b2
j

b2
n

)r

(C.10)

It is possible to calculate the probabilities associated with n-dimensional non-
central ellipsoidal domains as well. The performance function is given by:

P = α2 −
(

Z1 − a1

b1

)2

−
(

Z2 − a2

b2

)2

−·· ·
(

Zn − an

bn

)2

(C.11)

in which bn > bn−1 > .. . > b1 > 0. Johnson and Kotz (1970), citing Ruben
(1962), provided a series solution based on the sum of non-central chi-square
cumulative distribution functions:

Prob(P > 0) =
∞∑

r=0

erProb

⎡
⎣χ ′2

n+2r

⎛
⎝ n∑

j=1

a2
j

⎞
⎠≤ (bnα

)2⎤⎦ (C.12)

The coefficients, er, are calculated as:

e0 =
n∏

j=1

(
bj

bn

)

er = (2r)−1
r−1∑
j=0

ejhr−j r ≥ 1

(C.13)

h1 =
n∑

j=1
(1 − a2

j )

(
1 −

b2
j

b2
n

)

hr =
n∑

j=1

⎡
⎣(1 −

b2
j

b2
n

)r

+ r
b2

n
a2

j b2
j

(
1 −

b2
j

b2
n

)r−1
⎤
⎦ r ≥ 2

(C.14)

Remark: It is possible to create a very complex performance function by
scattering a large number of ellipsoids in nD space. The parameters in
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Equation (C.11) can be visualized geometrically even in nD space. Hence,
they can be chosen in a relatively simple way to ensure that the ellipsoids
are disjoint. One simple approach is based on nesting: (a) encase the first
ellipsoid in a hyper-box, (b) select a second ellipsoid that is outside the box,
(c) encase the first and second ellipsoids in a larger box, and (d) select a
third ellipsoid that is outside the larger box. Repeated application will yield
disjoint ellipsoids. The exact solution for such a performance function is
merely the sum of Equation (C.12), but numerical solution can be very chal-
lenging. An example constructed by this “cookie-cutter” approach may be
contrived, but it has the advantage of being as complex as needed to test
the limits of numerical methods while retaining a relatively simple exact
solution.

Appendix D – Second-order reliability method
(SORM)

The second-order reliability method was developed by Breitung and
others in a series of papers dealing with asymptotic analysis (Breitung,
1984; Breitung and Hohenbichler, 1989; Breitung, 1994). The calcula-
tion steps are illustrated below using a problem containing three random
dimensions:

1. Let the performance function be defined in the standard normal space,
i.e. P(z1,z2,z3) and let the first-order reliability index calculated from
Equation (1.50) be β = (z∗′z∗)1/2, in which z∗ = (z∗

1,z
∗
2,z

∗
3)′ is the design

point.
2. The gradient vector at z∗ is calculated as:

∇P(z∗) =
⎧⎨
⎩

∂P(z∗)/∂z1
∂P(z∗)/∂z2
∂P(z∗)/∂z3

⎫⎬
⎭ (D.1)

The magnitude of the gradient vector is:

||∇P(z∗)|| = [∇P(z∗)′∇P(z∗)]1/2 (D.2)

3. The probability of failure is estimated as:

pf = Φ(−β)|J|−1/2 (D.3)

in which J is the following 2 × 2 matrix:

J =
[

1 0
0 1

]
+ β

‖∇P(z∗)‖
[

∂2P(z∗)/∂z2
1 ∂2P(z∗)/∂z1∂z2

∂2P(z∗)/∂z2∂z1 ∂2P(z∗)/∂z2
2

]
(D.4)
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Figure D.1 Central finite difference scheme.

Equations (D.1) and (D.4) can be estimated using the central finite difference
scheme shown in Figure D.1. Let Pi be the value of the performance function
evaluated at node i. Then, the first derivative is estimated as:

∂P
∂z1

≈ P2 − P1

2�
(D.5)

The second derivative is estimated as:

∂2P

∂z2
1

≈ P2 − 2P0 + P1

∆2 (D.6)

The mixed derivative is estimated as:

∂2P
∂z1∂z2

≈ P4 − P3 − P6 + P5

4∆2 (D.7)
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Chapter 2

Spatial variability and
geotechnical reliability

Gregory B. Baecher and John T. Christian

Quantitative measurement of soil properties differentiated the new discipline
of soil mechanics in the early 1900s from the engineering of earth works
practiced since antiquity. These measurements, however, uncovered a great
deal of variability in soil properties, not only from site to site and stratum
to stratum, but even within what seemed to be homogeneous deposits. We
continue to grapple with this variability in current practice, although new
tools of both measurement and analysis are available for doing so. This
chapter summarizes some of the things we know about the variability of
natural soils and how that variability can be described and incorporated in
reliability analysis.

2.1 Variability of soil properties

Table 2.1 illustrates the extent to which soil property data vary, according
to Phoon and Kulhawy (1996), who have compiled coefficients of variation
for a variety of soil properties. The coefficient of variation is the standard
deviation divided by the mean. Similar data have been reported by Lumb
(1966, 1974), Lee et al. (1983), and Lacasse and Nadim (1996), among
others. The ranges of these reported values are wide and are only suggestive
of conditions at a specific site.

It is convenient to think about the impact of variability on safety by
formulating the reliability index:

β = E[MS]
SD[MS]or

E[FS]− 1
SD[FS] (2.1)

in which β = reliability index, MS = margin of safety (resistance minus
load), FS = factor of safety (resistance divided by load), E[·] = expectation,
and SD[·] = standard deviation. It should be noted that the two definitions
of β are not identical unless MS = 0 or FS = 1. Equation 2.1 expresses
the number of standard deviations separating expected performance from a
failure state.
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Table 2.1 Coefficient of variation for some common field measurements (Phoon and
Kulhawy, 1996).

Test type Property Soil type Mean Units Cov(%)

qT Clay 0.5–2.5 MN/m2 < 20
CPT qc Clay 0.5–2 MN/m2 20–40

qc Sand 0.5–30 MN/m2 20–60
VST su Clay 5–400 kN/m2 10–40
SPT N Clay and sand 10–70 blows/ft 25–50

A reading Clay 100–450 kN/m2 10–35
A reading Sand 60–1300 kN/m2 20–50
B reading Clay 500–880 kN/m2 10–35

DMT B Reading Sand 350–2400 kN/m2 20–50
ID Sand 1–8 20–60
KD Sand 2–30 20–60
ED Sand 10–50 MN/m2 15–65
pL Clay 400–2800 kN/m2 10–35

PMT pL Sand 1600–3500 kN/m2 20–50
EPMT Sand 5–15 MN/m2 15–65
wn Clay and silt 13–100 % 8–30
WL Clay and silt 30–90 % 6–30
WP Clay and silt 15–15 % 6–30

Lab Index PI Clay and silt 10–40 % _a

LI Clay and silt 10 % _a

γ ,γd Clay and silt 13–20 KN/m3 < 10
Dr Sand 30–70 % 10–40;

50–70b

Notes
aCOV = (3–12%)/mean.
bThe first range of variables gives the total variability for the direct method of determination, and the
second range of values gives the total variability for the indirect determination using SPT values.

The important thing to note in Table 2.1 is how large are the reported
coefficients of variations of soil property measurements. Most are tens of
percent, implying reliability indices between one and two even for conser-
vative designs. Probabilities of failure corresponding to reliability indices
within this range – shown in Figure 2.1 for a variety of common distribu-
tional assumptions – are not reflected in observed rates of failure of earth
structures and foundations. We seldom observe failure rates this high.

The inconsistency between the high variability of soil property data and
the relatively low rate of failure of prototype structures is usually attributed
to two things: spatial averaging and measurement noise. Spatial averaging
means that, if one is concerned about average properties within some volume
of soil (e.g. average shear strength or total compression), then high spots
balance low spots so that the variance of the average goes down as that
volume of mobilized soil becomes larger. Averaging reduces uncertainty.1
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Figure 2.1 Probability of failure as a function of reliability index for a variety of common
probability distribution forms.

Measurement noise means that the variability in soil property data reflects
two things: real variability and random errors introduced by the process
of measurement. Random errors reduce the precision with which estimates
of average soil properties can be made, but they do not affect the in-field
variation of actual properties, so the variability apparent in measurements
is larger – possibly substantially so – than actual in situ variability.2

2.1.1 Spatial variation

Spatial variation in a soil deposit can be characterized in detail, but only with
a great number of observations, which normally are not available. Thus, it
is common to model spatial variation by a smooth deterministic trend com-
bined with residuals about that trend, which are described probabilistically.
This model is:

z(x) = t(x) + u(x) (2.2)

in which z(x) is the actual soil property at location x (in one or more dimen-
sions), t(x) is a smooth trend at x, and u(x) is residual deviation from the
trend. The residuals are characterized as a random variable of zero-mean
and some variance:

Var(u) = E[{z(x) − t(x)}2] (2.3)
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in which Var(x) is the variance. The residuals are characterized as random
because there are too few data to do otherwise. This does not presume that
soil properties actually are random. The variance of the residuals reflects
uncertainty about the difference between the fitted trend and the actual value
of soil properties at particular locations. Spatial variation is modeled stochas-
tically not because soil properties are random but because information is
limited.

2.1.2 Trend analysis

Trends are estimated by fitting lines, curves, or surfaces to spatially refer-
enced data. The easiest way to do this is by regression analysis. For example,
Figure 2.2 shows maximum past pressure measurements as a function of
depth in a deposit of Gulf of Mexico clay. The deposit appears homogeneous
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Figure 2.2 Maximum past pressure measurements as a function of depth in Gulf of Mexico
clays, Mobile, Alabama.
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and mostly normally consolidated. The increase of maximum past pressure
with depth might be expected to be linear. Data from an over-consolidated
desiccated crust are not shown. The trend for the maximum past pressure
data, σ ′

vm, with depth x is:

σ ′
vm = t(x) + u(x) = α0 +α1x = u (2.4)

in which t(x) is the trend of maximum past pressure with depth, x; α0
and α1 are regression coefficients; and u is residual variation about the
trend taken to be constant with depth (i.e. it is not a function of x).
Applying standard least squares analysis, the regression coefficients mini-
mizing Var[u], are α0 = 3 ksf (0.14 KPa) and α1 = 0.06 ksf/ft (1.4 × 10−3

KPa/m), yielding Var(u) = 1.0 ksf (0.05 KPa), for which the corresponding
trend line is shown. The trend t(x) = 3 + 0.06x is the best estimate or mean
of the maximum past pressure as a function of depth. (NB: ksf = kip per
square foot.)

The analysis can be made of data in higher dimensions, which in matrix
notation becomes:

z = Xα + u (2.5)

in which z is the vector of the n observations z={z1, …, zn}, X={x1, x2} is
the 2 x n matrix of location coordinates corresponding to the observations,
α = α{α1, … , αn } is the vector of trend parameters, and u is the vector
of residuals corresponding to the observations. Minimizing the variance of
the residuals u(x) over α gives the best-fitting trend surface in a frequentist
sense, which is the common regression surface.

The trend surface can be made more flexible; for example, in the quadratic
case, the linear expression is replaced by:

z = α0 +α1x +α2x2 + u (2.6)

and the calculation for α performed the same way. Because the quadratic
surface is more flexible than the planar surface, it fits the observed data
more closely, and the residual variations about it are smaller. On the other
hand, the more flexible the trend surface, the more regression parameters that
need to be estimated from a fixed number of data, so the fewer the degrees of
freedom, and the greater the statistical error in the surface. Examples of the
use of trend surfaces in the geotechnical literature are given by Wu (1974),
Ang and Tang (1975), and many others.

Historically, it has been common for trend analysis in geotechnical
engineering to be performed using frequentist methods. Although this is
theoretically improper, because frequentist methods yield confidence inter-
vals rather than probability distributions on parameters, the numerical
error is negligible. The Bayesian approach begins with the same model.
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However, rather than defining an estimator such as the least squares
coefficients, the Bayesian approach specifies an a priori probability distri-
bution on the coefficients of the model, and uses Bayes’s Theorem to update
that distribution in light of the observed data.

The following summarizes Bayesian results from Zellner (1971) for the
one-dimensional linear case of Equation (2.4). Let Var(u)= σ 2, so that
Var(u) = Iσ 2, in which I is the identity matrix. The prior probability density
function (pdf) of the parameters {α,σ } is represented as f (α,σ ). Given a set of
observations z = {z1 , …, zn}, the updated or posterior pdf of {α,σ } is found
from Bayes’s Theorem as f (α,σ |z) ∝ f (α,σ )L(α,σ |z), in which L(α,σ |z) is
the Likelihood of the data (i.e. the conditional probability of the observed
data for various values of the parameters). If variations about the trend line
or surface are jointly Normal, the likelihood function is:

L(α,σ |z) = MN(z|α,σ )∝, exp{−(z − Xα)′�−1(z − Xα)} (2.7)

in which MN(.) is the Multivariate-Normal distribution having mean Xα

and covariance matrix � = Iσ .
Using a non-informative prior, f (α, σ ) ∝ σ−1, and measurements y made

at depths x, the posterior pdf of the regression parameters is:

f (α0,α1,σ |x,y) ∝ 1
σ n+1 exp

[
− 1

2σ 2

∑n

i=1
(y1 − (α0 +α1x1))2

]
(2.8)

The marginal distributions are:

f (α0,α1|x,y) ∝ [νs2 + n(α0 −α0) + 2(α0 −α0)(α1 −α1)�xi

+ (α1 −α1)2�x2
1]−n/2

f (α0|x,y) ∝ [ν + �(xi − x)2

s2�x2
i /n

(α0 −α0)2]−(ν−1)/2 (2.9)

f (α1|x,y) ∝ [ν + �(xi − x)2

s2 (α1 −α1)2]−(ν−1)/2

f (σ |x,y) ∝ 1
σν−1 exp

(
− νs2

2σ 2

)

in which,

ν = n − 2

α0 = y −α1x, α1 =
[∑(

xi − x
)(

yi − y
)]/[∑(

xi − x
)]

s2 = ν−1
∑(

yi −α0 −α1xi

)2
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y = n−1
∑

yi

x = n−1
∑

xi

The joint and marginal pdf’s of the regression coefficients are Student-t
distributed.

2.1.3 Autocorrelation

In fitting trends to data, as noted above, the decision is made to divide
the total variability of the data into two parts: one part explained by the
trend and the other as variation about the trend. Residual variations not
accounted for by the trend are characterized by a residual variance. For
example, the overall variance of the blow count data of Figure 2.3 is 45 bpf2

(475 bpm2). Removing a linear trend reduces this total to a residual variance
of about 11 bpf2(116 bpm2). The trend explains 33 bpf2 (349 bpm2),
or about 75% of the spatial variation, and 25% is unexplained by the
trend.

The spatial structure remaining after a trend is removed usually displays
correlations among the residuals. That is, the residuals off the trend are not
statistically independent of one another. Positive residuals tend to clump
together, as do negative residuals. Thus, the probability of encountering a
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Figure 2.3 Spatial variation of SPT blow count data in a silty sand (data from Hilldale, 1971).
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Figure 2.4 Residual variations of SPT blow counts.

continuous zone of weakness or high compressibility is greater than would
be predicted if the residuals were independent.

Figure 2.4 shows residual variations of SPT blow counts measured at the
same elevation every 20 m beneath a horizontal transect at a site. The data
are normalized to zero mean and unit standard deviation. The dark line is a
smooth curve drawn through the observed data. The light line is a smooth
curve drawn through artificially simulated data having the same mean
and same standard deviation, but probabilistically independent. Inspection
shows the natural data to be smoothly varying, whereas the artificial data
are much more erratic.

The remaining spatial structure of variation not accounted for by the trend
can be described by its spatial correlation, called autocorrelation. Formally,
autocorrelation is the property that residuals off the mean trend are not
probabilistically independent but display a degree of association among
themselves that is a function of their separation in space. This degree of
association can be measured by a correlation coefficient, taken as a function
of separation distance.

Correlation is the property that, on average, two variables are linearly
associated with one another. Knowing the value of one provides informa-
tion on the probable value of the other. The strength of this association is
measured by a correlation coefficient ρ that ranges between –1 and +1. For
two scalar variables z1 and z2, the correlation coefficient is defined as:

ρ = Cov(z1,z2)√
Var(z1)Var(z2)

= 1
σz1

σz2

E[(z1 −µz1
)(z2 −µz2

)] (2.10)
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in which Cov(z1,z2) is the covariance, Var(zi) is the variance, σ is the
standard deviation, and µ is the mean.

The two variables might be of different but related types; for example,
z1 might be water content and z2 might be undrained strength, or the two
variables might be the same property at different locations; for example,
z1 might be the water content at one place on the site and z2 the water
content at another place. A correlation coefficient ρ = +1 means that two
residuals vary together exactly. When one is a standard deviation above its
trend, the other is a standard deviation above its trend, too. A correlation
coefficient ρ = −1 means that two residuals vary inversely. When one is a
standard deviation above its trend, the other is a standard deviation below
its trend. A correlation coefficient ρ = 0 means that the two residuals are
unrelated. In the case where the covariance and correlation are calculated as
functions of the separation distance, the results are called the autocovariance
and autocorrelation, respectively.

The locations at which the blow count data of Figure 2.3 were measured
are shown in Figure 2.5. In Figure 2.6 these data are used to estimate autoco-
variance functions for blow count. The data pairs at close separation exhibit
a high degree of correlation; for example, those separated by 20 m have a
correlation coefficient of 0.67. As separation distance increases, correlation
drops, although at large separations, where the numbers of data pairs are
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Figure 2.5 Boring locations of blow count data used to describe the site (T.W. Lambe and
Associates, 1982. Earthquake Risk at Patio 4 and Site 400, Longboat Key, FL,
reproduced by permission of T.W. Lambe).



Spatial variability and geotechnical reliability 85

40

30

20

10

0

−10

−20

−30

−40

A
ut

oc
ov

ar
ia

nc
e

0 100 200 300 400 500 600

Separation (m)

8–10m

10–12m

6–8m
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(T.W. Lambe and Associates, 1982. Earthquake Risk at Patio 4 and Site 400,
Longboat Key, FL, reproduced by permission of T.W. Lambe).

smaller, there is much statistical fluctuation. For zero separation distance,
the correlation coefficient must equal 1.0. For large separation distances,
the correlation coefficient approaches zero. In between, the autocorrelation
usually falls monotonically from 1.0 to zero.

An important point to note is that the division of spatial variation into
a trend and residuals about the trend is an assumption of the analysis; it is
not a property of reality. By changing the trend model – for example, by
replacing a linear trend with a polynomial trend – both the variance of the
residuals and their autocorrelation function are changed. As the flexibility of
the trend increases, the variance of the residuals goes down, and in general
the extent of correlation is reduced. From a practical point of view, the
selection of a trend line or curve is in effect a decision on how much of the
data scatter to model as a deterministic function of space and how much to
treat probabilistically.

As a rule of thumb, trend surfaces should be kept as simple as possible
without doing injustice to a set of data or ignoring the geologic setting.
The problem with using trend surfaces that are very flexible (e.g. high-
order polynomials) is that the number of data from which the parameters of
those equations are estimated is limited. The sampling variance of the trend
coefficients is inversely proportional to the degrees of freedom involved,
ν = (n − k − 1), in which n is the number of observations and k is the num-
ber of parameters in the trend. The more parameter estimates that a trend
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surface requires, the more uncertainty there is in the numerical values of those
estimates. Uncertainty in regression coefficient estimates increases rapidly as
the flexibility of the trend equation increases.

If z(xi) = t(xi)+u(xi) is a continuous variable and the soil deposit is zonally
homogeneous, then at locations i and j, which are close together, the residuals
ui and uj should be expected to be similar. That is, the variations reflected
in u(xi) and u(xj) are associated with one another. When the locations are
close together, the association is usually strong. As the locations become
more widely separated, the association usually decreases. As the separation
between two locations i and j approaches zero, u(xi) and u(xj) become the
same, the association becomes perfect. Conversely, as the separation becomes
large, u(xi) and u(xj) become independent, the association becomes zero.
This is the behavior observed in Figure 2.6 for the Standard Peretrationtest
(SPT) data.

This spatial association of residuals off the trend t(xi) is summarized by
a mathematical function describing the correlation of u(xi) and u(xj) as
separation distance increases. This description is called the autocorrelation
function. Mathematically, the autocorrelation function is:

Rz(δ) = 1
Var{u(x)}E[u(xi)u(xi+δ)] (2.11)

in which Rz(δ) is the autocorrelation function, Var[u(x)] is the variance of
the residuals across the site, and E[u(xi)u(xi+δ)]=Cov[u(xi)u(xi+δ)] is the
covariance of the residuals spaced at separation distance, δ. By definition,
the autocorrelation at zero separation is Rz(0) = 1.0; and empirically, for
most geotechnical data, autocorrelation decreases to zero as δ increases.

If Rz(δ) is multiplied by the variance of the residuals, Var[u(x)], the
autocovariance function, Cz(δ), is obtained:

Cz(δ) = E[u(xi)u(xi+δ)] (2.12)

The relationship between the autocorrelation function and the autocovari-
ance function is the same as that between the correlation coefficient and the
covariance, except that autocorrelation and autocovariance are functions of
separation distance, δ.

2.1.4 Example: TONEN refinery, Kawasaki, Japan

The SPT data shown earlier come from a site overlying hydraulic bay fill
in Kawasaki (Japan). The SPT data were taken in a silty fine sand between
elevations +3 and −7 m, and show little if any trend horizontally, so a
constant horizontal trend at the mean of the data was assumed. Figure 2.7
shows the means and variability of the SPT data with depth. Figure 2.6 shows
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Figure 2.7 Soil model and the scatter of blow count data (T.W. Lambe and Associates,
1982. Earthquake Risk at Patio 4 and Site 400, Longboat Key, FL, reproduced
by permission of T.W. Lambe).

autocovariance functions in the horizontal direction estimated for three
intervals of elevation. At short separation distances the data show distinct
association, i.e. correlation. At large separation distances the data exhibit
essentially no correlation.

In natural deposits, correlations in the vertical direction tend to have much
shorter distances than in the horizontal direction. A ratio of about 1 to 10 for
these correlation distances is common. Horizontally, autocorrelation may be
isotropic (i.e. Rz(δ) in the northing direction is the same as Rz(δ) in the easting
direction) or anisotropic, depending on geologic history. However, in prac-
tice, isotropy is often assumed. Also, autocorrelation is typically assumed to
be the same everywhere within a deposit. This assumption, called station-
arity, to which we will return, is equivalent to assuming that the deposit is
statistically homogeneous.

It is important to emphasize, again, that the autocorrelation function is an
artifact of the way soil variability is separated between trend and residuals.
Since there is nothing innate about the chosen trend, and since changing
the trend changes Rz(δ), the autocorrelation function reflects a modeling
decision. The influence of changing trends on Rz(δ) is illustrated in data
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Figure 2.8 Study area for San Francisco Bay Mud consolidation measurements (Javete,
1983) (reproduced with the author’s permission).

analyzed by Javete (1983) (Figure 2.8). Figure 2.9 shows autocorrelations
of water content in San Francisco Bay Mud within an interval of 3 ft (1 m).
Figure 2.10 shows the autocorrelation function when the entire site is con-
sidered. The difference comes from the fact that in the first figure the mean
trend is taken locally within the 3 ft (1 m) interval, and in the latter the mean
trend is taken globally across the site.

Autocorrelation can be found in almost all spatial data that are analyzed
using a model of the form of Equation (2.5). For example, Figure 2.11
shows the autocorrelation of rock fracture density in a copper porphyry
deposit, Figure 2.12 shows autocorrelation of cone penetration resistance
in North Sea Clay, and Figure 2.13 shows autocorrelation of water con-
tent in the compacted clay core of a rock-fill dam. An interesting aspect
of the last data is that the autocorrelations they reflect are more a func-
tion of the construction process through which the core of the dam
was placed than simply of space, per se. The time stream of borrow
materials, weather, and working conditions at the time the core was
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Figure 2.10 Autocorrelations of water content in San Francisco Bay Mud within entire site
expressed in lag intervals of 25 ft ( Javete, 1983) (reproduced with the author’s
permission).

placed led to trends in the resulting physical properties of the compacted
material.

For purposes of modeling and analysis, it is usually convenient to approx-
imate the autocorrelation structure of the residuals by a smooth function.
For example, a commonly used function is the exponential:

Rz(δ) = exp(−δ/δ0) (2.13)

in which δ0 is a constant having units of length. Other functions commonly
used to represent autocorrelation are shown in Table 2.2. The distance at
which Rz(δ) decays to 1/e (here δ0) is sometimes called the autocorrelation
(or autocovariance) distance.
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Figure 2.11 Autocorrelation of rock fracture density in a copper porphyry deposit
(Baecher, 1980).
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Figure 2.12 Autocorrelation of cone penetration resistance in North Sea Clay (Tang,
1979).

2.1.5 Measurement noise

Random measurement error is that part of data scatter attributable to
instrument- or operator-induced variations from one test to another. This
variability may sometimes increase or decrease a measurement, but its
effect on any one specific measurement is unknown. As a first approxima-
tion, instrument and operator effects on measured properties of soils can
be represented by a frequency diagram. In repeated testing – presuming
that repeated testing is possible on the same specimen – measured val-
ues differ. Sometimes the measurement is higher than the real value of
the property, sometimes it is lower, and on average it may systematically
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Figure 2.13 Autocorrelation of water content in the compacted clay core of a rock-fill
dam (Beacher, 1987).

Table 2.2 One-dimensional autocorrelation models.

Model Equation Limits of validity
(dimension of relevant space)

White noise Rx(δ) =
{

1 if δ = 0
0 otherwise Rn

Linear Rx(δ) =
{

1 −|δ|/δ0 if δ ≤ δ0
0 otherwise R1

Exponential Rx(δ) = exp(−δ/δ0) R1

Squared exponential
(Gaussian)

Rx(δ) = exp2(−δ/δ0) Rd

Power Cz(δ) = σ 2{1(|δ|2/δ2
0)−β Rd , β > 0

differ from the real value. This is usually represented by a simple model of
the form:

z = bx + e (2.14)

in which z is a measured value, b is a bias term, x is the actual property,
and e is a zero-mean independent and identically distributed (IID) error.
The systematic difference between the real value and the average of the
measurements is said to be measurement bias, while the variability of the
measurements about their mean is said to be random measurement error.
Thus, the error terms are b and e. The bias is often assumed to be uncertain,
with mean µb and standard deviation σb. The IID random perturbation is
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usually assumed to be Normally distributed with zero mean and standard
deviation σe.

Random errors enter measurements of soil properties through a variety
of sources related to the personnel and instruments used in soil investiga-
tions or laboratory testing. Operator or personnel errors arise in many types
of measurements where it is necessary to read scales, personal judgment is
needed, or operators affect the mechanical operation of a piece of testing
equipment (e.g. SPT hammers). In each of these cases, operator differences
have systematic and random components. One person, for example, may
consistently read a gage too high, another too low. If required to make a
series of replicate measurements, a single individual may report numbers
that vary one from the other over the series.

Instrumental error arises from variations in the way tests are set up,
loads are delivered, or soil response is sensed. The separation of mea-
surement errors between operator and instrumental causes is not only
indistinct, but also unimportant for most purposes. In triaxial tests, soil
samples may be positioned differently with respect to loading platens in
succeeding tests. Handling and trimming may cause differing amounts of
disturbance from one specimen to the next. Piston friction may vary slightly
from one movement to another, or temperature changes may affect fluids
and solids. The aggregate result of all these variables is a number of dif-
ferences between measurements that are unrelated to the soil properties of
interest.

Assignable causes of minor variation are always present because a very
large number of variables affect any measurement. One attempts to control
those that have important effects, but this leaves uncontrolled a large number
that individually have only small effects on a measurement. If not identified,
these assignable causes of variation may influence the precision and possibly
the accuracy of measurements by biasing the results. For example, hammer
efficiency in the SPT test strongly affects measured blow counts. Efficiency
with the same hammer can vary by 50% or more from one blow to the next.
Hammer efficiency can be controlled, but only at some cost. If uncontrolled,
it becomes a source of random measurement error and increases the scatter
in SPT data.

Bias error in measurement arises from a number of reasonably well-
understood mechanisms. Sample disturbance is among the more important
of these mechanisms, usually causing a systematic degradation of average soil
properties along with a broadening of dispersion. The second major contrib-
utor to measurement bias is the phenomenological model used to interpret
the measurements made in testing, and especially the simplifying assump-
tions made in that model. For example, the physical response of the tested
soil element might be assumed linear when in fact this is only an approxima-
tion, the reversal of principal stress direction might be ignored, intermediate
principal stresses might be assumed other than they really are, and so forth.
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The list of possible discrepancies between model assumptions and the real
test conditions is long.

Model bias is usually estimated empirically by comparing predictions
made from measured values of soil engineering parameters against observed
performance. Obviously, such calibrations encompass a good deal more than
just the measurement technique; they incorporate the models used to make
predictions of field performance, inaccuracies in site characterization, and a
host of other things.

Bjerrum’s (1972, 1973) calibration of field vein test results for the
undrained strength, su, of clay is a good example of how measurement
bias can be estimated in practice. This calibration compares values of su
measured with a field vane against back-calculated values of su from large-
scale failures in the field. In principle, this calibration is a regression analysis
of back-calculated su against field vane su, which yields a mean trend plus
residual variance about the trend. The mean trend provides an estimate of
µb while the residual variance provides an estimate of σb. The residual vari-
ance is usually taken to be the same regardless of the value of x, a common
assumption in regression analysis.

Random measurement error can be estimated in a variety of ways,
some direct and some indirect. As a general rule, the direct techniques are
difficult to apply to the soil measurements of interest to geotechnical engi-
neers, because soil tests are destructive. Indirect methods for estimating Ve
usually involve correlations of the property in question, either with other
properties such as index values, or with itself through the autocorrelation
function.

The easiest and most powerful methods involve the autocorrelation
function. The autocovariance of z after the trend has been removed becomes:

Cz(δ) = Cx(δ) + Ce(δ) (2.15)

in which Cx(δ) is from Equation (2.12) and Cx(δ) is the autocovariance
function of e. However, since ei and ej are independent except when i = j,
the autocovariance function of e is a spike at δ = 0 and zero elsewhere.
Thus, Cx(δ) is composed of two functions. By extrapolating the observed
autocovariance function to the origin, an estimate is obtained of the fraction
of data scatter that comes from random error. In the “geostatistics” literature
this is called the nugget effect.

2.1.6 Example: Settlement of shallow footings on sand,
Indiana (USA)

The importance of random measurement errors is illustrated by a case involv-
ing a large number of shallow footings placed on approximately 10 m
of uniform sand (Hilldale, 1971). The site was characterized by Standard
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Penetration blow count measurements, predictions were made of settlement,
and settlements were subsequently measured.

Inspection of the SPT data and subsequent settlements reveals an interest-
ing discrepancy. Since footing settlements on sand tend to be proportional to
the inverse of average blow count beneath the footing, it would be expected
that the coefficient of variation of the settlements equaled approximately
that of the vertically averaged blow counts. Mathematically, settlement is
predicted by a formula of the form, ρ ∝ �q/Nc , in which ρ = settlement,
�q = net applied stress at the base of the footing, and Nc = average cor-
rected blow count (Lambe and Whitman, 1979). Being multiplicative, the
coefficient of variation of ρ should be the same as that of Nc.

In fact, the coefficient of variation of the vertically averaged blow counts
is about �Nc

= 0.45, while the observed values of total settlements for
268 footings have mean 0.35 inches and standard deviation 0.12 inches;
so, �ρ = (0.12/0.35) = 0.34. Why the difference? The explanation may
be found in estimates of the measurement noise in the blow count data.
Figure 2.14 shows the horizontal autocorrelation function for the blow
count data. Extrapolating this function to the origin indicates that the noise
(or small scale) content of the variability is about 50% of the data scatter
variance. Thus, the actual variability of the vertically averaged blow counts is

about
√

1
2�

2
N =
√

1
2 (0.45)2 = 0.32, which is close to the observed variability
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Figure 2.14 Autocorrelation function for SPT blow count in sand (Adapted from Hilldale,
1971).
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of the footing settlements. Measurement noise of 50% or even more of the
observed scatter of in situ test data, particularly the SPT, has been noted on
several projects.

While random measurement error exhibits itself in the autocorrelation or
autocovariance function as a spike at δ = 0, real variability of the soil at a
scale smaller than the minimum boring spacing cannot be distinguished from
measurement error when using the extrapolation technique. For this reason,
the “noise” component estimated in the horizontal direction may not be the
same as that estimated in the vertical direction.

For many, but not all, applications the distinction between measure-
ment error and small-scale variability is unimportant. For any engineering
application in which average properties within some volume of soil are
important, the small-scale variability averages quickly and therefore has lit-
tle effect on predicted performance. Thus, for practical purposes it can be
treated as if it were a measurement error. On the other hand, if perfor-
mance depends on extreme properties – no matter their geometric scale –
the distinction between measurement error and small scale is important.
Some engineers think that piping (internal erosion) in dams is such a phe-
nomenon. However, few physical mechanisms of performance easily come
to mind that are strongly affected by small-scale spatial variability, unless
those anomalous features are continuous over a large extent in at least one
dimension.

2.2 Second-moment soil profiles

Natural variability is one source of uncertainty in soil properties, the other
important source is limited knowledge. Increasingly, these are referred to as
aleatory and epistemic uncertainty, respectively (Hartford, 1995).3 Limited
knowledge usually causes systematic errors. For example, limited numbers
of tests lead to statistical errors in estimating a mean trend, and if there is
an error in average soil strength it does not average out. In geotechnical reli-
ability, the most common sources of knowledge uncertainty are model and
parameter selection (Figure 2.15). Aleatory and epistemic uncertainties can
be combined and represented in a second-moment soil profile. The second-
moment profile shows means and standard deviations of soil properties with
depth in a formation. The standard deviation at depth has two components,
natural variation and systematic error.

2.2.1 Example: SHANSEP analysis of soft clays,
Alabama (USA)

In the early 1980s, Ideal Basic Industries, Inc. (IDEAL) constructed a cement
manufacturing facility 11 miles south of Mobile, Alabama, abutting a ship
channel running into Mobile Bay (Baecher et al., 1997). A gantry crane at the
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Figure 2.15 Aleatory, epistemic, and decision model uncertainty in geotechnical reliability
analysis.

facility unloaded limestone ore from barges moored at a relieving platform
and place the ore in a reserve storage area adjacent to the channel. As the site
was underlain by thick deposits of medium to soft plastic deltaic clay, con-
crete pile foundations were used to support all facilities of the plant except
for the reserve limestone storage area. This 220 ft (68 m) wide by 750 ft
(230 m) long area provides limestone capacity over periods of interrupted
delivery. Although the clay underlying the site was too weak to support
the planned 50 ft (15 m) high stockpile, the cost of a pile supported mat
foundation for the storage area was prohibitive.

To solve the problem, a foundation stabilization scheme was conceived
in which limestone ore would be placed in stages, leading to consolidation
and strengthening of the clay, and this consolidation would be hastened by
vertical drains. However, given large scatter in engineering property data for
the clay, combined with low factors of safety against embankment stability,
field monitoring was essential.

The uncertainty in soil property estimates was divided between that caused
by data scatter and that caused by systematic errors (Figure 2.16). These were
separated into four components:

• spatial variability of the soil deposit,
• random measurement noise,
• statistical estimation error, and
• measurement or model bias.

The contributions were mathematically combined by noting that the vari-
ances of these nearly independent contributions are approximately additive:

V[x] ≈ {Vspatial[x]+ Vnoise[x]}+ {Vstatistical[x]+ Vbias[x]} (2.16)
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Figure 2.16 Sources of uncertainty in geotechnical reliability analysis.
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Figure 2.17 West-east cross-section prior to loading.

in which V[x] = variance of total uncertainty in the property x, Vspatial[x] =
variance of the spatial variation of x, Vnoise[x]= variance of the measurement
noise in x, Vstatistical[x] = variance of the statistical error in the expected
value of x, and Vbias[x] = variance of the measurement or model bias in x.
It is easiest to think of spatial variation as scatter around the mean trend
of the soil property and systematic error as uncertainty in the mean trend
itself. The first reflects soil variability after random measurement error has
been removed; the second reflects statistical error plus measurement bias
associated with the mean value.

Initial vertical effective stresses, σ vo, were computed using total unit
weights and initial pore pressures. Figure 2.2 shows a simplified profile prior
to loading (Figure 2.17). The expected value σ vm profile versus elevation
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was obtained by linear regression. The straight, short-dashed lines show
the standard deviation of the σ vm profile reflecting data scatter about the
expected value. The curved, long-dashed lines show the standard deviation of
the expected value trend itself. The observed data scatter about the expected
value σ vm profile reflects inherent spatial variability of the clay plus ran-
dom measurement error in the determination of σ vm from any one test.
The standard deviation about the expected value σ vm profile is about 1 ksf
(0.05 MPa), corresponding to a standard deviation in over-consolidation
ratio (OCR) from 0.8 to 0.2. The standard deviation of the expected value
ranges from 0.2 to 0.5 ksf (0.01 to 0.024 MPa).

Ten CKoUDSS tests were performed on undisturbed clay samples to deter-
mine undrained stress–strain–strength parameters to be used in the stress
history and normalized soil engineering properties (SHANSEP) procedure of
Ladd and Foott (1974). Reconsolidation beyond the in situ σ vm was used to
minimize the influence of sample disturbance. Eight specimens were sheared
in a normally consolidated state to assess variation in the parameter s with
horizontal and vertical locations. The last two specimens were subjected to a
second shear to evaluate the effect of OCR. The direct simple shear (DSS) test
program also provided undrained stress–strain parameters for use in finite
element undrained deformation analyses.

Since there was no apparent trend with elevation, expected value
and standard deviation values were computed by averaging all data to
yield:

su = σ vos
(
σ vm

σ vo

)m

(2.17)

in which s =(0.213 ± 0.028) and m =(0.85 ± 0.05). As a first approximation,
it was assumed that 50% of the variation in s was spatial and 50% was
noise. The uncertainty in m estimated from data on other clays is primarily
due to variability from one clay type to another and hence was assumed
purely systematic. It was assumed that the uncertainty in m estimated from
only two tests on the storage area clay resulted from random measurement
error.

The SHANSEP su profile was computed using Equation (2.17). If σ vo, σ vm,
s and m are independent, and σ vo is deterministic (i.e. there is no uncertainty
in σ vo), first-order, second-moment error analysis leads to the expressions:

E[su] = σ voE[s]
(

E[σ vo]
σ vo

)E[m]
(2.18)

�2[su] = �2[s]+ E2[m]�2[σ vm]+ 1n2
(

E[σ vm]
σ vo

)
V[m] (2.19)
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in which E[X] = expected value of X, V[X] = variance of X, and � [X] =√
V[X]/E[X]= coefficient of variation of X. The total coefficient of variation

of su is divided between spatial and systematic uncertainty such that:

�2[su] = �2
sp[su]+�2

sy[su] (2.20)

Figure 2.18 shows the expected value su profile and the standard deviation
of su divided into spatial and systematic components.

Stability during initial undrained loading was evaluated using two-
dimensional (2D) circular arc analyses with SHANSEP DSS undrained
shear strength profiles. Since these analyses were restricted to the east and
west slopes of the stockpile, 2D analyses assuming plane strain conditions
appeared justified. Azzouz et al. (1983) have shown that this simplified
approach yields factors of safety that are conservative by 10–15% for similar
loading geometries.

Because of differences in shear strain at failure for different modes of
failure along a failure arc, “peak” shear strengths are not mobilized simul-
taneously all along the entire failure surface. Ladd (1975) has proposed a
procedure accounting for strain compatibility that determines an average
shear strength to be used in undrained stability analyses. Fuleihan and Ladd
(1976) showed that, in the case of the normally consolidated Atchafalaya
Clay, the CKoUDSS SHANSEP strength was in agreement with the average
shear strength computed using the above procedure. All the 2D analyses used
the Modified Bishop method.

To assess the importance of variability in su to undrained stability, it is
essential to consider the volume of soil of importance to the performance
prediction. At one extreme, if the volume of soil involved in a failure were
infinite, spatial uncertainty would completely average out, and the system-
atic component uncertainty would become the total uncertainty. At the other
extreme, if the volume of soil involved were infinitesimal, spatial and sys-
tematic uncertainties would both contribute fully to total uncertainty. The
uncertainty for intermediate volumes of soil depends on the character of
spatial variability in the deposit, specifically, on the rapidity with which soil
properties fluctuate from one point to another across the site. A convenient
index expressing this scale of variation is the autocorrelation distance, δ0,
which measures the distance to which fluctuations of soil properties about
their expected value are strongly associated.

Too few data were available to estimate autocorrelation distance for the
storage area, thus bounding calculations were made for two extreme cases
in the 2D analyses, L/δ0 → 0 (i.e. “small” failure surface) and L/δ0 → ∞
(i.e. “large” failure surface), in which L is the length of the potential fail-
ure surface. Undrained shear strength values corresponding to significant
averaging were used to evaluate uncertainty in the factor of safety for
large failure surfaces and values corresponding to little averaging for small
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failure surface. The results of the 2D stability analysis were plotted as a
function of embankment height.

Uncertainty in the FS was estimated by performing stability analyses using
the procedure of Christian et al. (1994) with expected value and expected
value minus standard deviation values of soil properties. For a given expected
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value of FS, the larger the standard deviation of FS, the higher the chance
that the realized FS is less than unity and thus the lower the actual safety of
the facility. The second-moment reliability index [Equation (2.1)] was used
to combine E[FS] and SD[FS] in a single measure of safety and related to a
“nominal” probability of failure by assuming FS Normally distributed.

2.3 Estimating autocovariance

Estimating autocovariance from sample data is the same as making any
other statistical estimate. Sample data differ from one set of observa-
tions to another, and thus the estimates of autocovariance differ. The
important questions are, how much do these estimates differ, and how
much might one be in error in drawing inferences? There are two broad
approaches: Frequentist and Bayesian. The Frequentist approach is more
common in geotechnical practice. For discussion of Bayesian approaches to
estimating autocorrelation see Zellner (1971), Cressie (1991), or Berger et al.
(2001).

In either case, a mathematical function of the sample observations is used
as an estimate of the true population parameters, θ . One wishes to determine
θ̂ = g(z1, . . . ,zn), in which {z 1, …, zn} is the set of sample observations and θ̂ ,
which can be a scalar, vector, or matrix. For example, the sample mean might
be used as an estimator of the true population mean. The realized value of θ̂
for a particular sample {z1 …, zn} is an estimate. As the probabilistic proper-
ties of the {z1,…, zn} are assumed, the corresponding probabilistic properties
of θ̂ can be calculated as functions of the true population parameters. This is
called the sampling distribution of θ̂ . The standard deviation of the sampling
distribution is called the standard error.

The quality of the estimate obtained in this way depends on how variable
the estimator θ̂ is about the true value θ . The sampling distribution, and
hence the goodness of an estimate, has to do with how the estimate might
have come out if another sample and therefore another set of observations
had been made. Inferences made in this way do not admit of a probability
distribution directly on the true population parameter. Put another way, the
Frequentist approach presumes the state of nature θ to be a constant, and
yields a probability that one would observe those data that actually were
observed. The probability distribution is on the data, not on θ . Of course,
the engineer or analyst wants the reverse: the probability of θ , given the data.
For further discussion, see Hartford and Baecher (2004).

Bayesian estimation works in a different way. Bayesian theory allows
probabilities to be assigned directly to states of nature such as θ . Thus,
Bayesian methods start with an a priori probability distribution, f (θ ), which
is updated by the likelihood of observing the sample, using Bayes’s Theorem:

f (θ |z1, . . . , zn)∞ f (θ )L(θ |z1, . . . , zn) (2.21)
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in which f (θ |z1,…, zn) is the a posteriori pdf of θ conditioned on the obser-
vations, and L(θ |z1 , … , zn) is the likelihood of θ , which is the conditional
probability of {z1, …, zn} as a function of θ . Note, the Fisherian concept
of a maximum likelihood estimator is mathematically related to Bayesian
estimation in that both adopt the likelihood principle that all information
in the sample relevant to making an estimate is contained in the Likelihood
function; however, the maximum likelihood approach still ends up with a
probability statement on the variability of the estimator and not on the state
of nature, which is an important distinction.

2.3.1 Moment estimation

The most common (Frequentist) method of estimating autocovariance func-
tions for soil and rock properties is the method of moments. This uses the
statistical moments of the observations (e.g. sample means, variances, and
covariances) as estimators of the corresponding moments of the population
being sampled.

Given the measurements {z1,…, zn} made at equally spaced locations
{x1,…, xn} along a line, as for example in a boring, the sample autocovariance
of the measurements for separation is:

Ĉz(δ) = 1
(n − δ)

n−δ∑
i=1

[{z(xi) − t(xi)}{z(xi+δ) − t(xi+δ)}] (2.22)

in which Ĉz(δ) is the estimator of the autocovariance function at δ, (n− δ) is
the number of data pairs having separation distance δ, and t(xi) is the trend
removed from the data at location xi.

Often, t(xi) is simply replaced by the spatial mean, estimated by the mean
of the sample. The corresponding moment estimator of the autocorrelation,
R̂(δ), is obtained by dividing both sides by the sample variance:

R̂z(δ) = 1
s2
z (n − δ)

n−δ∑
i=1

[{z(xi) − t(xi)}{z(xi+δ) − t(xi+δ)}] (2.23)

in which sz is the sample standard deviation. Computationally, this simply
reduces to taking all data pairs of common separation distance d, calcu-
lating the correlation coefficient of that set, then plotting the result against
separation distance.

In the general case, measurements are seldom uniformly spaced, at least in
the horizontal plane and seldom lie on a line. For such situations the sample
autocovariance can still be used as an estimator, but with some modification.
The most common way to accommodate non-uniformly placed measure-
ments is by dividing separation distances into bands, and then taking the
averages within those bands.
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The moment estimator of the autocovariance function requires no assump-
tions about the shape of the autocovariance function, except that second
moments exist. The moment estimator is consistent, in that as the sample
size becomes large, E[(θ̂ − θ )2]→ 0. On the other hand, the moment estima-
tor is only asymptotically unbiased. Unbiasedness means that the expected
value of the estimator over all ways the sample might have been taken equals
the actual value of the function being estimated. For finite sample sizes, the
expected values of the sample autocovariance can differ significantly from the
actual values, yielding negative values beyond the autocovariance distance
(Weinstock, 1963).

It is well known that the sampling properties of the moment estima-
tor of autocorrelation are complicated, and that large sampling variances
(and thus poor confidence) are associated with estimates at large sep-
aration distances. Phoon and Fenton (2004) and Phoon (2006a) have
experimented with bootstrapping approaches to estimate autocorrelation
functions with promising success. These and similar approaches from
statistical signal processing should be exploited more thoroughly in the
future.

2.3.2 Example: James Bay

The results of Figure 2.19 were obtained from the James Bay data of
Christian et al. (1994) using this moment estimator. The data are from
an investigation into the stability of dykes on a soft marine clay at the
James Bay Project, Québec (Ladd et al., 1983). The marine clay at the site is
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Figure 2.19 Autocovariance of field vane clay strength data, James Bay Project (Christian
et al., 1994, reproduced with the permission of the American Society of Civil
Engineers).
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approximately 8 m thick and overlies a lacustrine clay. The depth-averaged
results of field vane tests conducted in 35 borings were used for the cor-
relation analysis. Nine of the borings were concentrated in one location
(Figures 2.20 and 2.21).

First, a constant mean was removed from the data. Then, the product of
each pair of residuals was calculated and plotted against separation distance.
A moving average of these products was used to obtain the estimated points.
Note the drop in covariance in the neighborhood of the origin, and also
the negative sample moments in the vicinity of 50–100 m separation. Note,
also, the large scatter in the sample moments at large separation distance.
From these estimates a simple exponential curve was fitted by inspection,
intersecting the ordinate at about 60% of the sample variance. This yields
an autocovariance function of the form:

Cz(δ) =
{

22 kPa2
, for δ = 0

13exp{−δ/23 m }, for δ>0
(2.24)

in which variance is in kPa2 and distance in m. Figure 2.22 shows variance
components for the factor of safety for various size failures.
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2.3.3 Maximum likelihood estimation

Maximum likelihood estimation takes as the estimator that value of the
parameter(s) θ leading to the greatest probability of observing the data,
{z1, … , zn}, actually observed. This is found by maximizing the likelihood
function, L(θ |z1, … , zn). Maximum likelihood estimation is parametric
because the distributional form of the pdf f (z1, … , zn|θ ) must be specified.
In practice, the estimate is usually found by maximizing the log-likelihood,
which, because it deals with a sum rather than a product and because
many common probability distributions involve exponential terms, is more
convenient.

The appeal of the maximum likelihood estimator is that it possesses
many desirable sampling properties. Among others, it has minimum vari-
ance (although not necessarily unbiased), is consistent, and asymptotically
Normal. The asymptotic variance of θ̂ML is:

lim
n→∞ Var[θ̂ML]=Iz(θ ) = nE[−δ2LL/∂θ2] (2.25)

in which Iz(θ ) is Fisher’s Information (Barnett, 1982) and LL is the log-
likelihood.

Figure 2.23 shows the results of simulated sampling experiments in which
spatial fields were generated from a multivariate Gaussian pdf with speci-
fied mean trend and autocovariance function. Samples of sizes n = 36, 64,
and 100 were taken from these simulated fields, and maximum likelihood
estimators used to obtain estimates of the parameters of the mean trend and
autocovariance function. The smooth curves show the respective asymp-
totic sampling distributions, which in this case conform well with the actual
estimates (DeGroot and Baecher, 1993).

An advantage of the maximum likelihood estimator over moment esti-
mates in dealing with spatial data is that it allows simultaneous estimation of
the spatial trend and autocovariance function of the residuals. Mardia and
Marshall (1984) provide an algorithmic procedure finding the maximum.
DeGroot and Baecher used the Mardia and Marshall approach in analyzing
the James Bay data. First, they removed a constant mean from the data, and
estimated the autocovariance function of the residuals as:

Cz(δ) =
{

23forδ = 0
13.3 exp { − δ/21.4}, for δ > 0

(2.26)

in which variance is in kPa2 and distance is in m. Then, using estimating the
trend implicitly:

β̂0 = 40.7 kPa

β̂1 = −2.0 × 10−3 kPa/m
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Figure 2.23 Simulated sampling experiments in which spatial fields were generated from
a multivariate Gaussian pdf with specified mean trend and autocovariance
function (DeGroot and Baecher, 1993, reproduced with the permission of the
American Society of Civil Engineers).

β̂2 = −5.9 × 10−3 kPa/m (2.27)

Cz(δ) =
{

23 kPa2 forδ = 0
13.3 kPa2 exp{−(δ/21.4 m)}, forδ > 0

The small values of β̂1 and β̂2 suggest that the assumption of constant
mean is reasonable. Substituting a squared-exponential model for the
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autocovariance results in:

β̂0 = 40.8 kPa

β̂1 = −2.1 × 10−3 kPa/m

β̂2 = −6.1 × 10−3 kPa/m (2.28)

Cz(δ) =
{

22.9 kPa2 forδ = 0
12.7 kPa2 exp{−(δ/37.3 m)2}, forδ > 0

The exponential model is superimposed on the moment estimates of
Figure 2.19.

The data presented in this case suggest that a sound approach to estimating
autocovariance should involve both the method of moments and maximum
likelihood. The method of moments gives a plot of autocovariance versus
separation, providing an important graphical summary of the data, which
can be used as a means of determining if the data suggest correlation and for
selecting an autocovariance model. This provides valuable information for
the maximum likelihood method, which then can be used to obtain estimates
of both autocovariance parameters and trend coefficients.

2.3.4 Bayesian estimation

Bayesian inference for autocorrelation has not been widely used in geotechni-
cal and geostatistical applications, and it is less well developed than moment
estimates. This is true despite the fact that Bayesian inference yields the
probability associated with the parameters, given the data, rather than the
confidence in the data, given the probabilistic model. An intriguing aspect of
Bayesian inference of spatial trends and autocovariance functions is that for
many of the non-informative prior distributions one might choose to reflect
little or no prior information about process parameters (e.g. the Jeffreys
prior, the Laplace prior, truncated parameter spaces), the posterior pdf’s
calculated through Bayesian theorem are themselves improper, usually in
the sense that they do not converge toward zero at infinity, and thus the
total probability or area under the posterior pdf is infinite.

Following Berger (1993), Boger et al. (2001) and Kitanidis (1985, 1997),
the spatial model is typically written as a Multinomial random process:

z(x) =
k∑

i=1

fi(x)β + ε(x) (2.29)

in which fi(x) are unknown deterministic functions of the spatial loca-
tions x, and ε(x) is a zero-mean spatial random function. The random
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term is spatially correlated, with an isotropic autocovariance function. The
autocovariance function is assumed to be non-negative and to decrease
monotonically with distance to zero at infinite separation. These assumptions
fit most common autocovariance functions in geotechnical applications. The
Likelihood of a set of observations, z = {z1, …, zn}, is then:

L(β,σ |z) = (2πσ 2)−n/2|Rθ |−1/2 exp
{
− 1

2σ 2 (z − Xβ)tR−1
θ (z − Xβ)

}
(2.30)

in which X is the (n × k) matrix defined by Xij=fj(Xi), Rθ is the matrix of
correlations among the observations dependent on the parameters, and |Rθ |
is the determinant of the correlation matrix of the observations.

In the usual fashion, a prior non-informative distribution on the param-
eters (β, σ , θ ) might be represented as f (β, σ , θ )∞(σ 2)−af (θ ) for various
choices of the parameter a and of the marginal pdf f (θ ). The obvious choices
might be {a = 1, f (θ ) = 1}, {a = 1, f (θ ) = 1/θ }, or {a = 1, f (θ ) = 1}; but each
of these leads to an improper posterior pdf, as does the well-known Jeffreys
prior. A proper, informative prior does not share this difficulty, but it is
correspondingly hard to assess from usually subjective opinion. Given this
problem, Berger et al. (2001) suggest the reference non-informative prior:

f (β,σ,θ ) ∝ 1
σ 2

(
|W2

θ |− |W2
θ |

(n − k)

)1/2

(2.31)

in which,

W2
θ = ∂Rθ

∂θ
R−1

θ {I − X(X′R−1
θ X)−1X

′
R−1

θ } (2.32)

This does lead to a proper posterior. The posterior pdf is usually evaluated
numerically, although, depending on the choice of autocovariance function
model and the extent to which certain of the parameters of that model are
known, closed-form solutions can be obtained. Berger et al. (2001) present
a numerically calculated example using terrain data from Davis (1986).

2.3.5 Variograms

In mining, the importance of autocorrelation for estimating ore reserves
has been recognized for many years. In mining geostatistics, a function
related to the autocovariance, called the variogram (Matheron, 1971), is
commonly used to express the spatial structure of data. The variogram
requires a less-restrictive statistical assumption on stationarity than does
the autocovariance function and it is therefore sometimes preferred for



110 Gregory B. Baecher and John T. Christian

inference problems. On the other hand, the variogram is more difficult to
use in spatial interpolation and engineering analysis, and thus for geotech-
nical purposes the autocovariance is used more commonly. In practice, the
two ways of characterizing spatial structure are closely related.

Whereas the autocovariance is the expected value of the product of
two observations, the variogram 2γ is the expected value of the squared
difference:

2γ = E[{z(xi) − z(xj)}2] = Var[z(xi) − z(xj)] (2.33)

which is a function of only the increments of the spatial properties, not
their absolute values. Cressie (1991) points out that, in fact, the common
definition of the variogram as the mean squared difference – rather than
as the variance of the difference – limits applicability to a more restric-
tive class of processes than necessary, and thus the latter definition is to
be preferred. None the less, one finds the former definition more commonly
referred to in the literature. The term γ is referred to as the semivariogram,
although caution must be exercised because different authors interchange
the terms. The concept of average mean-square difference has been used
in many applications, including turbulence (Kolmogorov, 1941) and time
series analysis (Jowett, 1952), and is alluded to in the work of Matérn
(1960).

The principal advantage of the variogram over the autocovariance is that
it makes less restrictive assumptions on the stationarity of the spatial prop-
erties being sampled; specifically, only that their increment and not their
mean is stationary. Furthermore, the use of geostatistical techniques has
expanded broadly, so that a great deal of experience has been accumulated
with variogram analysis, not only in mining applications, but also in environ-
mental monitoring, hydrology, and even geotechnical engineering (Chiasson
et al., 1995; Soulie and Favre, 1983; Soulie et al., 1990).

For spatial variables with stationary means and autocovariances (i.e.
second-order stationary processes), the variogram and autocovariance func-
tion are directly related by:

γ (δ) = Cz(0) − Cz(δ) (2.34)

Common analytical forms for one-dimensional variograms are given in
Table 2.3.

For a stationary process, as |δ → ∞,Cz(δ) → 0; thus, γ (δ) → Cz(0) =
Var(z(x)). This value at which the variogram levels off, 2Cz(δ), is called the
sill value. The distance at which the variogram approaches the sill is called
the range. The sampling properties of the variogram are summarized by
Cressie (1991).
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Table 2.3 One-dimensional variogram models.

Model Equation Limits of validity

Nugget g(δ) =
{

0 if δ = 0
1 otherwise Rn

Linear g(δ) =
{

0 if δ = 0
c0 + b||δ|| otherwise R1

Spherical g(δ) =
{

(1.5)(δ/a) − (1/2)(δ/a)3 if δ = 0
1 otherwise

Rn

Exponential g(δ) = 1 − exp(−3δ/a) R1

Gaussian g(δ) = 1 − exp(−3δ2/a2) Rn

Power g(δ) = hω Rn, 0< δ <2

2.4 Random fields

The application of random field theory to spatial variation is based on the
assumption that the property of concern, z(x), is the realization of a random
process. When this process is defined over the space x ∈ S, the variable z(x)
is said to be a stochastic process. In this chapter, when S has dimension
greater than one, z(x) is said to be a random field. This usage is more or less
consistent across civil engineering, although the geostatistics literature uses
a vocabulary all of its own, to which the geotechnical literature occasionally
refers.

A random field is defined as the joint probability distribution:

Fx1,··· ,xn

(
z1, . . . ,zn

) = P
{
z
(
x1
)≤ z1, . . . ,z

(
xn

)≤ zn

}
(2.35)

This joint probability distribution describes the simultaneous variation of the
variables z within a space Sx. Let, E[z(x)] = µ(x) be the mean or trend of z(x),
and let Var[z(x)] = σ 2(x) be the variance. The covariances of z(x1), …, z(xn)
are defined as:

Cov[z(xi),z(xj)] = E[(z(xi) −µ(xi)) · (z(xj) −µ(xj))] (2.36)

A random field is said to be second-order stantionary (weak or wide-sense
stationary) if E[z(x)]= µ for all x, and Cov[z(xi),z(xj)] depends only on
vector separation of xi, and xj, and not on location, Cov[z(xi),z(xj)] =
Cz(xi − xj), in which Cz(xi–xj) is the autocovariance function. The random
field is said to be stationary (strong or strict stationarity) if the complete prob-
ability distribution, Fx1,...,xn

(z1, ...,zn), is independent of absolute location,
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depending only on vector separations among the xi…xn. Strong stationarity
implies second-order stationarity. In the geotechnical literature, stationar-
ity is sometimes referred to as statistical homogeneity. If the autocovariance
function depends only on the absolute separation distance and not direction,
the random field is said to be isotropic.

Ergodicity is a concept originating in the study of time series, in which
one observes individual time series of data, and wishes to infer proper-
ties of an ensemble of all possible time series. The meaning and practical
importance of ergodicity to the inference of unique realizations of spatial
random fields is less well-defined and is debated in the literature. Simply,
ergodicity means that the probabilistic properties of a random process
(field) can be completely estimated from observing one realization of that
process. For example, the stochastic time series z(t) = ν + ε(t), in which ν

is discrete random variable and ε(t) is an autocorrelated random process
of time, is non-ergotic. In one realization of the process there is but one
value of ν, and thus the probability distribution of ν cannot be estimated.
One would need to observe many realizations of zt, in order to have suf-
ficiently many observations of ν, to estimate Fν(ν). Another non-ergotic
process of more relevance to the spatial processes in geotechnical engi-
neering is z(x) = ν + ε(x), in which the mean of z(x) varies linearly with
location x. In this case, z(x) is non-stationary; Var[z(x)] increases with-
out limit as the window within which z(x) is observed increases, and
the mean mz of the sample of z(x) is a function of the location of the
window.

The meaning of ergodicity for spatial fields of the sort encountered in
geotechnical engineering is less clear, and has not been widely discussed in
the literature. An assumption weaker than full erogodicity, which none the
less should apply for spatial fields, is that the observed sample mean mz and
sample autocovariance function Ĉz(δ) converge in mean-squared error to the
respective random field mean and autocovariance function as the volume
of space within which they are sampled increases. This means that, as the
volume of space increases, E[(mz −µ)2]→0, and E[{(Ĉz(δ) − Ĉz(δ)}2] → 0.
Soong and Grigoriu (1993) provide conditions for checking ergodicity in
mean and autocorrelation.

When the joint probability distribution Fx1,...,xn
(z1, . . .,zn) is multivari-

ate Normal (Gaussian), the process z(x) is said to be a Gaussian random
field. A sufficient condition for ergodicity of a Gaussian random field is
that lim|δ|→∞Cz(δ) = 0. This can be checked empirically by inspecting the
sample moments of the autocovariance function to ensure they converge
to 0. Cressie (1991) notes limitations of this procedure. Essentially all the
analytical autocovariance functions common in the geotechnical literature
obey this condition, and few practitioners appear concerned about verifying
ergodicity. Christakos (1992) suggests that, in practical situations, it is
difficult or impossible to verify ergodicity for spatial fields.
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A random field that does not meet the conditions of stationarity is said
to be non-stationary. Loosely speaking, a non-stationary field is statistically
heterogeneous. It can be heterogeneous in a number of ways. In the sim-
plest case, the mean may be a function of location, for example, if there is a
spatial trend that has not been removed. In a more complex case, the vari-
ance or autocovariance function may vary in space. Depending on the way
in which the random field is non-stationary, sometimes a transformation of
variables can convert a non-stationary field to a stationary or nearly station-
ary field. For example, if the mean varies with location, perhaps a trend can
be removed.

In the field of geostatistics, a weaker assumption is made on stationarity
than that described above. Geostatisticians usually assume only that incre-
ments of a spatial process are stationary (i.e. differences |z1 − z2|) and then
operate on the probabilistic properties of those increments. This leads to the
use of the variogram rather than the autocovariance function. Stationarity
of the autocovariance function implies stationarity of the variogram, but the
reverse is not true.

Like most things in the natural sciences, stationarity is an assumption of
the model and may only be approximately true in the world. Also, station-
arity usually depends on scale. Within a small region soil properties may
behave as if drawn from a stationary process, whereas the same properties
over a larger region may not be so well behaved.

2.4.1 Permissible autocovariance functions

By definition, the autocovariance function is symmetric, meaning:

Cz(δ) = Cz(−δ) (2.37)

and bounded, meaning:

Cz(δ) ≤ Cz(0) = σ 2
z (2.38)

In the limit, as distance becomes large:

lim |δ|→∞
Cz(δ)

|δ|−(n−1)/2 = 0 (2.39)

In general, in order for Cz(δ) to be a permissible autocovariance function,
it is necessary and sufficient that a continuous mathematical expression of
the form:

m∑
i=1

m∑
j=1

kikjCz(δ) ≥ 0 (2.40)
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be non-negative-definite for all integers m, scalar coefficients k1,…km,
and δ. This condition follows from the requirement that variances of linear
combinations of the z(xi), of the form:

var

[
m∑

i=1

kiz(xi)

]
=

m∑
i=1

m∑
j=1

kikjCz(δ) ≥ 0 (2.41)

be non-negative, i.e. the matrix is positive definite (Cressie, 1991). Christakos
(1992) discusses the mathematical implications of this condition on selecting
permissible forms for the autocovariance. Suffice it to say that analytical
models of autocovariance common in the geotechnical literature usually
satisfy the condition.

Autocovariance functions valid in a space of dimension d are valid
in spaces of lower dimension, but the reverse is not necessarily true.
That is, a valid autocovariance function in 1D is not necessarily valid
in 2D or 3D. Christakos (1992) gives the example of the linearly declining
autcovariance:

Cz(δ) =
{
σ 2(1 − δ/δ0), for 0 ≤ δ ≤ δ0

0, for δ > δ0
(2.42)

which is valid in 1D, but not in higher dimensions.
Linear sums of valid autocovariance functions are also valid. This means

that if Cz1(δ) and Cz2(δ) are valid, then the sum Cz1(δ)+Cz2(δ) is also a valid
autocovariance function. Similarly, if Cz(δ) is valid, then the product with a
scalar, αCz(δ), is also valid.

An autocovariance function in d-dimensional space is separable if

Cz(δ) =
d∏

i=1

Czi(δi) (2.43)

in which δ is the d-dimensioned vector of orthogonal separation distances
{δ1,…,δd}, and Ci(δi) is the one-dimensional autocovariance function in
direction i. For example, the autocovariance function:

Cz(δ) = σ 2 exp{−a2|δ|2}
= σ 2 exp{−a2(δ1

2 +·· ·+ δ2
d)} (2.44)

= σ 2
d∏

i=1

exp{−a2δ2
i }

is separable into its one-dimensional components.
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The function is partially separable if

Cz(δ) = Cz(δi)Cz(δj �=i) (2.45)

in which Cz(δj �=i) is a (d − 1) dimension autocovariance function, implying
that the function can be expressed as a product of autocovariance func-
tions of lower dimension fields. The importance of partial separability to
geotechnical applications, as noted by VanMarcke (1983), is the 3D case of
separating autocorrelation in the horizontal plane from that with depth:

Cz(δ1,δ2,δ3) = Cz(δ1,δ2)Cz(δ3) (2.46)

in which δ1, δ2, are horizontal distances, and δ3 is depth.

2.4.2 Gaussian random fields

The Gaussian random field is an important special case because it is widely
applicable due to the Central Limit Theorem, has mathematically conve-
nient properties, and is widely used in practice. The probability density
distribution of the Gaussian or Normal variable is:

fz(z) = − 1√
2πσ

exp

{
−1

2

(
x −µ

σ

)2
}

(2.47)

for −∞ ≤ z ≤ ∞. The mean is E[z] = µ , and variance Var[z] = σ 2. For the
multivariate case of vector z, of dimension n, the correponding pdf is:

fz(z) = (2π )−n/2|�|−1/2 exp
{
−1

2
(z −µ)′�−1(z −µ)

}
(2.48)

in which µ is the mean vector, and � the covariance matrix:

�ij =
{
Cov
[
zi(x),zj(x)

]}
(2.49)

Gaussian random fields have the following convenient properties (Adler,
1981): (1) they are completely characterized by the first- and second-order
moments: the mean and autocovarinace function for the univariate case,
and mean vector and autocovariance matrix (function) for the multivari-
ate case; (2) any subset of variables of the vector is also jointly Gaussian;
(3) the conditional probability distributions of any two variables or vectors
are also Gaussian distributed; (4) if two variables, z1 and z2, are bivariate
Gaussian, and if their covariance Cov[z1, z2] is zero, then the variables are
independent.



116 Gregory B. Baecher and John T. Christian

2.4.3 Interpolating random fields

A problem common in site characterization is interpolating among spa-
tial observations to estimate soil or rock properties at specific locations
where they have not been observed. The sample observations themselves
may have been taken under any number of sampling plans: random, sys-
tematic, cluster, and so forth. What differentiates this spatial estimation
question from the sampling theory estimates in preceding sections of this
chapter is that the observations display spatial correlation. Thus, the assump-
tion of IID observations underlying the estimator results is violated in an
important way. This question of spatial interpolation is also a problem
common to the natural resources industries such as forestry (Matérn, 1986)
and mining (Matheron, 1971), but also geohydrology (Kitanidis, 1997), and
environmental monitoring (Switzer, 1995).

Consider the case for which the observations are sampled from a
spatial population with constant mean, µ, and autocovariance function
Cz(δ) = E[z(xi)z(xi+δ)]. The set of observations z={zi,… , zn} therefore
has mean vector m in which all the terms are equal, and covariance
matrix:

� =
⎡
⎢⎣

Var(z1) · · · Cov(z1,zn)
...

. . .
...

Cov(zn,z1) · · · Var(zn)

⎤
⎥⎦ (2.50)

in which the terms z(xi) are replaced by zi for convenience. These terms
are found from the autocovariance function as Cov(z(xi)z(xj)) = Cz (δij), in
which δij is the (vector) separation between locations xi and xj.

In principle, we would like to estimate the full distribution of z(x0) at
an unobserved location x0, but in general this is computationally intensive
if a large grid of points is to be interpolated. Instead, the most common
approach is to construct a simple linear unbiased estimator based on the
observations:

ẑ(x0) =
n∑

i=1

wiz(xi) (2.51)

in which the weights w={w1,…, wn} are scalar values chosen to make
the estimate in some way optimal. Usually, the criteria of optimality are
unbiasedness and minimum variance, and the result is sometimes called the
best linear unbiased estimator (BLUE).

The BLUE estimator weights are found by expressing the variance of the
estimate ẑ(x0) using a first-order second-moment formulation, and minimiz-
ing the variance over w using a Lagrange multiplier approach subject to the
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condition that the sum of the weights equals one. The solution in matrix
form is:

w = G−1h (2.52)

in which w is the vector of optimal weights, and the matrices G and h relate
the covariance matrix of the observations and the vector of covariances of the
observations to the value of the spatial variable at the interpolated location,
x0, respectively:

G =

⎡
⎢⎢⎢⎣

Var(z1) · · · Cov(z1,zn) 1
...

. . .
... 1

Cov(zn,z1) · · · Var(zn) 1
1 1 1 0

⎤
⎥⎥⎥⎦

h =

⎡
⎢⎢⎢⎣

Cov(z1,z0)
...

Cov(zn,z0)
1

⎤
⎥⎥⎥⎦

(2.53)

The resulting estimator variance is:

Var(ẑ0) = E[(z0 − ẑ0)2]

= Var(z0) −
n∑

i=1

wiCov(z0,zi) −λ (2.54)

in which λ is the Lagrange multiplier resulting from the optimization. This
is a surprisingly simple and convenient result, and forms the basis of the
increasingly vast literature on the subject of so-called kriging in the field of
geostatistics. For regular grids of observations, such as a grid of borings, an
algorithm can be established for the points within an individual grid cell,
and then replicated for all cells to form an interpolated map of the larger
site or region (Journel and Huijbregts, 1978). In the mining industry, and
increasingly in other applications, it has become common to replace the auto-
covariance function as a measure of spatial association with the variogram.

2.4.4 Functions of random fields

Thus far, we have considered the properties of random fields themselves.
In this section, we consider the extension to properties of functions of ran-
dom fields. Spatial averaging of random fields is among the most important
considerations for geotechnical engineering. Limiting equilibrium stabil-
ity of slopes depends on the average strength across the failure surface.
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Settlements beneath foundations depend on the average compressibility of
the subsurface soils. Indeed, many modes of geotechnical performance of
interest to the engineer involve spatial averages – or differences among
spatial averages – of soil and rock properties. Spatial averages also play
a significant role in mining geostatistics, where average ore grades within
blocks of rock have important implications for planning. As a result, there
is a rich literature on the subject of averages of random fields, only a small
part of which can be reviewed here.

Consider the one-dimensional case of a continuous, scalar stochastic pro-
cess (1D random field), z(x), in which x is location, and z(x) is a stochastic
variable with mean µz, assumed to be constant, and autocovariance function
Cz(r), in which r is separation distance, r = (x1 −x2). The spatial average or
mean of the process within the interval [0,X] is:

MX{z(x)} = 1
X

∫ X

0
z(x)dx (2.55)

The integral is defined in the common way, as a limiting sum of z(x) values
within infinitesimal intervals of x, as the number of intervals increases.
We assume that z(x) converges in a mean square sense, implying the existence
of the first two moments of z(x). The weaker assumption of convergence in
probability, which does not imply existence of the moments, could be made,
if necessary (see Parzen 1964, 1992) for more detailed discussion).

If we think of MX{z(x)} as a sample observation within one interval of the
process z(x), then, over the set of possible intervals that we might observe,
MX{z(x)} becomes a random variable with mean, variance, and possibly
other moments. Consider first the integral of z(x) within intervals of length X.
Parzen (1964) shows that the first two moments of

∫ X
0 z(x)dx are:

E

[∫ X

0
z(x)dx

]
=
∫ X

0
µ(x)dx = µX (2.56)

Var

[∫ X

0
z(x)dx

]
=
∫ X

0

∫ X

0
Cz(xi − xj)dxidxj = 2

∫ X

0
(X − r)Cz(r)dr

(2.57)

and that the autocovariance function of the integral
∫ X

0 z(x)dx as the interval
[0, X] is allowed to translate along dimension x is (VanMarcke, 1983):

C∫ X
0 z(x)dx(r) = Cov

[∫ X

0
z(x)dx,

∫ r+X

r
z(x)dx

]

=
∫ X

0

∫ X

0
Cz(r + xi − xj)dxidxj (2.58)
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The corresponding moments of the spatial mean MX{z(x)} are:

E
[
MX{z(x)}]= E

[
1
X

∫ X

0
z(x)dx

]
=
∫ X

0

1
X
µ(x)dx = µ (2.59)

Var
[
MX{z(x)}]= Var

[
1
X

∫ X

0
z(x)dx

]
= 2

X2

∫ X

0
(X − r)Cz(r)dr (2.60)

CMX{z(x)}(r) = Cov

[
1
X

∫ X

0
z(x)dx,

1
X

∫ r+X

r
z(x)dx

]

= 1
X2

∫ X

0

∫ X

0
Cz(r + xi − xj)dxidxj (2.61)

The effect of spatial averaging is to smooth the process. The variance
of the averaged process is smaller than that of the original process z(x),
and the autocorrelation of the averaged process is wider. Indeed, averaging is
sometimes referred to as smoothing (Gelb and Analytic Sciences Corporation
Technical Staff, 1974).

The reduction in variance from z(x) to the averaged process MX{z(x)} can
be represented in a variance reduction function, γ (X):

γ (X) = Var
[
MX{z(x)}]

var[z(x)] (2.62)

The variance reduction function is 1.0 for X = 0, and decays to zero as X
becomes large. γ (X) can be calculated from the autocovariance function of
z(x) as:

γ (X) = 2
x

x∫
0

(
1 − r

X

)
R2(r)dr (2.63)

in which Rz(r) is the autocorrelation function of z(x). Note that the square
root of γ (X) gives the corresponding reduction of the standard deviation
of z(x). Table 2.4 gives one-dimensional variance reduction functions for
common autocovariance functions. It is interesting to note that each of these
functions is asymptotically proportional to 1/X. Based on this observation,
VanMarcke (1983) proposed a scale of fluctuation, θ , such that:

θ = lim
X→∞

X γ (X) (2.64)

or γ (X) = θ /X, as X → ∞; that is, θ /X is the asymptote of the variance
reduction function as the averaging window expands. The function γ (X)



Ta
bl

e
2.

4
V

ar
ia

nc
e

re
du

ct
io

n
fu

nc
tio

ns
fo

r
co

m
m

on
1D

au
to

co
va

ri
an

ce
s

(a
ft

er
V

an
M

ar
ck

e,
19

83
).

M
od

el
Au

to
co

rr
el

at
io

n
Va

ria
nc

e
re

du
ct

io
n

fu
nc

tio
n

Sc
al

e
of

flu
ct

ua
tio

n

W
hi

te
no

is
e

R x
(δ

)=
{ 1

if
δ
=

0
0

ot
he

rw
ise

γ
(X

)=
{ 1

if
X

=
0

0
ot

he
rw

ise
0

Li
ne

ar
R x

(δ
)=
{ 1

−
|δ|

/
δ n

if
δ

≤
δ 0

0
ot

he
rw

ise
γ

(X
)=
{ 1

−
X
/
3δ

0
if

X
≤

δ 0
(δ

0/
X

)[ 1
−
δ 0
/
3X
] ot

he
rw

ise
δ 0

Ex
po

ne
nt

ia
l

R x
(δ

)=
ex

p(
−δ

/
δ 0

)
γ

(X
)=

2(
δ 0
/
X

)2
( X δ 0

−
1
+

ex
p2

(−
X
/
δ 0

))
4δ

0

Sq
ua

re
d

ex
po

ne
nt

ia
l

(G
au

ss
ia

n)
R x

(δ
)=

ex
p2

(−
|δ|

/
δ 0

)
γ

(X
)=

(δ
0/

X
)2
[ √ π

X δ 0
	

(−
X
/
δ 0

)+
ex

p2
(−

X
/
δ 0

)−
1]

in
w

hi
ch

	
is

th
e

er
ro

r
fu

nc
tio

n

√ π
δ 0



Spatial variability and geotechnical reliability 121

converges rapidly to this asymptote as X increases. For θ to exist, it is
necessary that Rz(r) →0 as r → ∞, that is, that the autocorrelation func-
tion decreases faster than 1/r. In this case, θ can be found from the integral
of the autocorrelation function (the moment of Rz(r) about the origin):

θ = 2
∫ ∞

0
Rz(r)dr =

∫ ∞

−∞
Rz(r)dr (2.65)

This concept of summarizing the spatial or temporal scale of autocorrelation
in a single number, typically the first moment of Rz(r), is used by a variety of
other workers, and in many fields. Taylor (1921) in hydrodynamics called
it the diffusion constant (Papoulis and Pillai, 2002); Christakos (1992) in
geoscience calls θ /2 the correlation radius; Gelhar (1993) in groundwater
hydrology calls θ the integral scale.

In two dimensions, the equivalent expressions for the mean and variance
of the planar integral,

∫ X
0

∫ X
0 z(x)dx, are:

E

[∫ X

0
z(x)dx

]
=
∫ X

0
µ(x)dx = µX (2.66)

Var

[∫ X

0
z(x)dx

]
=
∫ X

0

∫ X

0
Cz(xi − xj)dxidxj = 2

∫ X

0
(X − r)Cz(r)dr

(2.67)

Papoulis and Pillai (2002) discuss averaging in higher dimensions, as do
Elishakoff (1999) and VanMarcke (1983).

2.4.5 Stochastic differentiation

The continuity and differentiability of a random field depend on the con-
vergence of sequences of random variables {z(xa),z(xb)}, in which xa, xb are
two locations, with (vector) separation r = |xa −xb|. The random field is said
to be continuous in mean square at xa, if for every sequence {z(xa),z(xb)},
E2[z(xa)−z(xb)] →0, as r→0. The random field is said to be continuous
in mean square throughout, if it is continuous in mean square at every xa.
Given this condition, the random field z(x) is mean square differentiable,
with partial derivative,

∂z(x)
∂xi

= lim
|r|→0

z(x + rδi) − z(x)
r

(2.68)

in which the delta function is a vector of all zeros, except the ith term,
which is unity. While stronger, or at least different, convergence properties
could be invoked, mean square convergence is often the most natural form in
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practice, because we usually wish to use a second-moment representation of
the autocovariance function as the vehicle for determining differentiability.

A random field is mean square continuous if and only if its autocovariance
function, Cz(r), is continuous at |r| = 0. For this to be true, the first derivatives
of the autocovariance function at |r|=0 must vanish:

∂Cz(r)
∂xi

= 0, for all i (2.69)

If the second derivative of the autocovariance function exists and is finite at
|r| = 0, then the field is mean square differentiable, and the autocovariance
function of the derivative field is:

C∂z/∂xi
(r) = ∂2Cz(r)/∂x2

i (2.70)

The variance of the derivative field can then be found by evaluating the auto-
covariance C∂z/∂xi

(r) at |r| = 0. Similarly, the autocovariance of the second
derivative field is:

C∂2z/∂xi∂xj
(r) = ∂4Cz(r)/∂x2

i ∂x2
j (2.71)

The cross covariance function of the derivatives with respect to xi and xj in
separate directions is:

C∂z/∂xi,∂z/∂xj
(r) = −∂2Cz(r)/∂xi∂xj (2.72)

Importantly, for the case of homogeneous random fields, the field itself, z(x),
and its derivative field are uncorrelated (VanMarcke, 1983).

So, the behavior of the autocovariance function in the neighborhood of
the origin is the determining factor for mean-square local properties of the
field, such as continuity and differentiability (Cramér and Leadbetter, 1967).
Unfortunately, the properties of the derivative fields are sensitive to this
behavior of Cz(r) near the origin, which in turn is sensitive to the choice of
autocovariance model. Empirical verification of the behavior of Cz(r) near
the origin is exceptionally difficult. Soong and Grigoriu (1993) discuss the
mean square calculus of stochastic processes.

2.4.6 Linear functions of random fields

Assume that the random field, z(x), is transformed by a deterministic
function g(.), such that:

y(x) = g[z(x)] (2.73)

In this equation, g[z(x0)] is a function of z alone, that is, not of x0, and not of
the value of z(x) at any x other than x0. Also, we assume that the transforma-
tion does not depend on the value of x; that is, the transformation is space- or



Spatial variability and geotechnical reliability 123

time-invariant, y(z + δ) = g[z(x + δ)]. Thus, the random variable y(x) is a
deterministic transformation of the random variable z(x), and its probability
distribution can be obtained from derived distribution methods. Similarly,
the joint distribution of the sequence of random variables {y(x1), …, y(xn)}
can be determined from the joint distribution of the sequence of random
variables {x(x1) …, x(xn)}. The mean of y(x) is then:

E[y(x)] =
∞∫

−∞
g(z)fz(z(x))dz (2.74)

and the autocorrelation function is:

Ry(y1,y2) = E[y(x1)y(x2)] =
∞∫

−∞

∞∫
−∞

g(z1)g(z2)fz(z(x1)z(x2))dz1dz2

(2.75)

Papoulis and Pillai(2002) show that the process y(x) is (strictly) stationary if
z(x) is (strictly) stationary. Phoon (2006b) discusses limitations and practical
methods of solving this equation. Among the limitations is that such non-
Gaussian fields may not have positive definite covariance matrices.

The solutions for nonlinear transformations are difficult, but for linear
functions general results are available. The mean of y(x) for linear g(z) is
found by transforming the expected value of z(x) through the function:

E[y(x)] = g(E[z(x)]) (2.76)

The autocorrelation of y(x) is found in a two-step process:

Ryy(x1,x2) = Lx1
[Lx2

[Rzz(x1,x2)]] (2.77)

in which Lx1
is the transformation applied with respect to the first variable

z(x1) with the second variable treated as a parameter, and Lx2
is the trans-

formation applied with respect to the second variable z(x2) with the first
variable treated as a parameter.

2.4.7 Excursions (level crossings)

A number of applications arise in geotechnical practice for which one is
interested not in the integrals (averages) or differentials of a stochastic pro-
cess, but in the probability that the process exceeds some threshold, either
positive or negative. For example, we might be interested in the probability
that a stochastically varying water inflow into a reservoir exceeds some rate
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or in the properties of the weakest interval or seam in a spatially varying
soil mass. Such problems are said to involve excursions or level crossings of
a stochastic process. The following discussion follows the work of Cramér
(1967), Parzen (1964), and Papoulis and Pillai (2002).

To begin, consider the zero-crossings of a random process: the points xi at
which z(xi) = 0. For the general case, this turns out to be a surprisingly diffi-
cult problem. Yet, for the continuous Normal case, a number of statements
or approximations are possible. Consider a process z(x) with zero mean and
variance σ 2. For the interval [x,x+ δ], if the product:

z(x)z(x + δ) < 0, (2.78)

then there must be an odd number of zero-crossings within the interval, for
if this product is negative, one of the values must lie above zero and the other
beneath. Papoulis and Pillai(2002) demonstrate that, if the two (zero-mean)
variables z(x) and z(x + δ) are jointly normal with correlation coefficient:

r = E [z(x)z(x + δ)]
σxσx+δ

, (2.79)

then

p(z(x)z(x + δ) < 0) = 1
2

− arcsin(r)
π

= arccos(r)
π

p(z(x)z(x + δ) > 0) = 1
2

+ arcsin(r)
π

= π − arccos(r)
π

(2.80)

The correlation coefficient, of course, can be taken from the autocorrelation
function, Rz(δ). Thus:

cos[πp(z(x)z(x + δ) < 0)] = Rz(δ)

Rz(0)
(2.81)

and the probability that the number of zero-crossings is positive is just the
complement of this result.

The probability of exactly one zero-crossing, p1(δ), is approximately
p1(δ) ≈ p0(δ), and expanding the cosine in a Fourier series and truncating to
two terms:

1 − π2p2
1(δ)

2
= Rz(δ)

Rz(0)
(2.82)

or,

p1(δ) ≈ 1
π

√
2[Rz(0) − Rz(δ)]

Rz(0)
(2.83)
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In the case of a regular autocorrelation function, for which the derivative
dRz(0)/dδ exists and is zero at the origin, the probability of a zero-crossing
is approximately:

p1(δ) ≈ δ

π

√
−d2Rz(0)/dδ2

Rz(0)
(2.84)

The non-regular case, for which the derivative at the origin is not zero (e.g.
dRz(δ) = exp(δ/δ0)), is discussed by Parzen (1964). Elishakoff (1999) and
VanMarcke (1983) treat higher dimensional results. The related probability
of the process crossing an arbitrary level, z∗, can be approximated by noting
that, for small δ and thus r →1,

P
[{z(x) − z∗}{z(x + δ) − z∗} < 0

]≈ P [{z(x)}{z(x + δ)} < 0]e
−arcsin2(r)

2σ2

(2.85)

For small δ, the correlation coefficient Rz(δ) is approximately 1, and the
variances of z(x) and z(x + δ) are approximately Rz(0), thus:

p1,z∗ (δ) ≈ p1,z∗ (δ) < 0]e −arcsin2(r)
2Rz (0) (2.86)

and for the regular case:

p1(δ) ≈ δ

π

√
−d2Rz(0)dδ2

Rz(0)
e

−arcsin2(r)
2Rz (0) (2.87)

Many other results can be found for continuous Normal processes, e.g. the
average density of the number of crossings within an interval, the probability
of no crossings (i.e. drought) within an interval, and so on. A rich literature is
available of these and related results (Yaglom, 1962; Parzen, 1964; Cramér
and Leadbetter, 1967; Gelb and Analytic Sciences Corporation Technical
Staff, 1974; Adler, 1981; Cliff and Ord, 1981; Cressie, 1991; Christakos,
1992, 2000; Christakos and Hristopulos, 1998).

2.4.8 Example: New Orleans hurricane protection system,
Louisiana (USA)

In the aftermath of Hurricane Katrina, reliability analyses were con-
ducted on the reconstructed New Orleans hurricane protection system
(HPS) to understand the risks faced in future storms. A first-excursion
or level crossing methodology was used to calculate the probability of
failure in long embankment sections, following the approach proposed
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by VanMarcke (1977). This resulted in fragility curves for a reach of
levee. The fragility curve gives the conditional probability of failure for
known hurricane loads (i.e. surge and wave heights). Uncertainties in the
hurricane loads were convolved with these fragility curves in a systems risk
model to generate unconditional probabilities and subsequently risk when
consequences were included.

As a first approximation, engineering performance models and calcu-
lations were adapted from the US Army Corps of Engineers’ Design
Memoranda describing the original design of individual levee reaches
(USACE, 1972). Engineering parameter and model uncertainties were prop-
agated through those calculations to obtain approximate fragility curves
as a function of surge and wave loads. These results were later calibrated
against analyses which applied more sophisticated stability models, and the
risk assessments were updated.

A typical design profile of the levee system is shown in Figure 2.24.
Four categories of uncertainty were included in the reliability analysis:
geological and geotechnical uncertainties, involving the spatial distribu-
tion of soils and soil properties within and beneath the HPS; geotechnical
stability modeling of levee performance; erosion uncertainties, involving
the performance of levees and fills during overtopping; and mechanical
equipment uncertainties, including gates, pumps, and other operating sys-
tems, and human operator factors affecting the performance of mechanical
equipment.

The principal uncertainty contributing to probability of failure of the levee
sections in the reliability analysis was soil engineering properties, specifically
undrained strength, Su, measured in Q-tests (UU tests). Uncertainties in soil
engineering properties was presumed to be structured as in Figure 2.16,

Figure 2.24 Typical design section from the USACE Design Memoranda for the
New Orleans Hurricane Protection System (USACE, 1972).
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and the variance of the uncertainty in soil properties was divided into four
terms:

Var(Su) = Var(x) + Var(e) + Var(m) + Var(b) (2.88)

in which Var(.) is variance, Su is measured undrained strength, x is the soil
property in situ, e is measurement error (noise), m is the spatial mean (which
has some error due to the statistical fluctuations of small sample sizes), and
b is a model bias or calibration term caused by systematic errors in mea-
suring the soil properties. Measured undrained strength for one reach, the
New Orleans East lakefront levees, are shown as histograms in Figure 2.25.
Test values larger than 750 PCF (36 kPa) were assumed to be local effects
and removed from the statistics. The spatial pattern of soil variability was
characterized by autocovariance functions in each region of the system and
for each soil stratum (Figure 2.26). From the autocovariance analyses two
conclusions were drawn: The measurement noise (or fine-scale variation)
in the undrained strength data was estimated to be roughly 3/4 the total
variance of the data (which was judged not unreasonable given the Q-test
methods), and the autocovariance distance in the horizontal direction for
both the clay and marsh was estimated to be on the order of 500 feet
or more.

The reliability analysis was based on limiting equilibrium calculations.
For levees, the analysis was based on General Design Memorandum (GDM)
calculations of factor of safety against wedge instability (USACE, 1972)
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Figure 2.25 Histogram of Q-test (UU) undrained soil strengths, New Orleans East
lakefront.
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Figure 2.26 Representative autocovariance function for inter-distributary clay undrained
strength (Q test), Orleans Parish, Louisiana.
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Figure 2.27 Representative fragility curves for unit reach and long reach of levee.

using the so-called method of planes. The calculations are based on
undrained failure conditions. Uncertainties in undrained shear strength were
propagated through the calculations to estimate a coefficient of variation
in the calculated factor of safety. The factor of safety was assumed to be
Normally distributed, and a fragility curve approximated through three
calculation points (Figure 2.27).

The larger the failure surface relative to the autocorrelation of the soil
properties, the more the variance of the local averages is reduced. VanMarcke
(1977) has shown that the variance of the spatial average for a unit-width
plain strain cross-section decreases approximately in proportion to (L/rL),
for L> rL, in which L is the cross-sectional length of the failure surface, and
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rL is an equivalent autocovariance distance of the soil properties across the
failure surface weighted for the relative proportion of horizontal and vertical
segments of the surface. For the wedge failure modes this is approximately
the vertical autocovariance distance. The variance across the full failure sur-
face of width b along the axis of the levee is further reduced by averaging
in the horizontal direction by an additional factor (b/rH), for b > rH , in
which rH is the horizontal autocovariance distance. At the same time that
the variance of the average strength on the failure surface is reduced by
the averaging process, so, too, the autocovariance function of this averaged
process stretches out from that of the point-to-point variation.

For a failure length of approximately 500 feet along the levee axis and
30 feet deep, typical of those actually observed, with horizontal and ver-
tical autocovariance distances of 500 feet and 10 feet, respectively, the
corresponding variance reduction factors are approximately 0.75 for aver-
aging over the cross-sectional length L, and between 0.73 and 0.85 for
averaging over the failure length b, assuming either an exponential or
squared-exponential (Gaussian) autocovariance. The corresponding reduc-
tion to the COV of soil strength based on averaging over the failure plane is
the root of the product of these two factors, or between 0.74 and 0.8.

For a long levee, the chance of at least one failure is equivalent to the chance
that the variations of the mean soil strength across the failure surface drop
below that required for stability at least once along the length. VanMarcke
demonstrated that this can be determined by considering the first crossings
of a random process. The approximation to the probability of at least one
failure as provided by VanMarcke was used in the present calculations to
obtain probability of failure as a function of levee length.

2.5 Concluding comments

In this chapter we have described the importance of spatial variation in
geotechnical properties and how such variation can be dealt with in a
probabilistic analysis. Spatial variation consists essentially of two parts: an
underlying trend and a random variation superimposed on it. The distri-
bution of the variability between the trend and the random variation is a
decision made by the analyst and is not an invariant function of nature.

The second-moment method is widely used to describe the spatial varia-
tion of random variation. Although not as commonly used in geotechnical
practice, Bayesian estimation has many advantages over moment-based
estimation. One of them is that it yields an estimate of the probabilities
associated with the distribution parameters rather than a confidence interval
that the data would be observed if the process were repeated.

Spatially varying properties are generally described by random fields.
Although these can become extremely complicated, relatively simple models
such as Gaussian random field have wide application. The last portion of
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the chapter demonstrates how they can be manipulated by differentiation,
by transformation through linear processes, and by evaluation of excursions
beyond specified levels.

Notes

1 It is true that not all soil or rock mass behaviors of engineering importance are
governed by averages, for example, block failures in rock slopes are governed by the
least favorably positioned and oriented joint. They are extreme values processes.
Nevertheless, averaging soil or rock properties does reduce variance.

2 In early applications of geotechnical reliability, a great deal of work was focused
on appropriate distributional forms for soil property variability, but this no longer
seems a major topic. First, the number of measurements typical of site characteri-
zation programs is usually too few to decide confidently whether one distributional
form provides a better fit than another, and, second, much of practical geotechnical
reliability work uses second-moment characterizations rather than full distribu-
tional analysis, so distributional assumptions only come into play at the end
of the work. Second-moment characterizations use only means, variances, and
covariances to characterize variability, not full distributions.

3 In addition to aleatory and epistemic uncertainties, there are also uncertainties that
have little to do with engineering properties and performance, yet which affect
decisions. Among these is the set of objectives and attributes considered important
in reaching a decision, the value or utility function defined over these attributes,
and discounting for outcomes distributed in time. These are outside the present
scope.
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Chapter 3

Practical reliability approach
using spreadsheet

Bak Kong Low

3.1 Introduction

In a review on first-order second-moment reliability methods, USACE (1999)
rightly noted that a potential problem with both the Taylor’s series method
and the point estimate method is their lack of invariance for nonlinear perfor-
mance functions. The document suggested the more general Hasofer–Lind
reliability index (Hasofer and Lind, 1974) as a better alternative, but con-
ceded that “many published analyses of geotechnical problems have not
used the Hasofer–Lind method, probably due to its complexity, especially
for implicit functions such as those in slope stability analysis,” and that “the
most common method used in Corps practice is the Taylor’s series method,
based on a Taylor’s series expansion of the performance function about the
expected values.”

A survey of recent papers on geotechnical reliability analysis reinforces the
above USACE observation that although the Hasofer–Lind index is perceived
to be more consistent than the Taylor’s series mean value method, the latter
is more often used.

This chapter aims to overcome the computational and conceptual barriers
of the Hasofer–Lind index, for correlated normal random variables, and the
first-order reliability method (FORM), for correlated nonnormals, in the
context of three conventional geotechnical design problems. Specifically,
the conventional bearing capacity model involving two random variables
is first illustrated, to elucidate the procedures and concepts. This is fol-
lowed by a reliability-based design of an anchored sheet pile wall involving
six random variables, which are first treated as correlated normals, then
as correlated nonnormals. Finally, reliability analysis with search for crit-
ical noncircular slip surface based on a reformulated Spencer method is
presented. This probabilistic slope stability example includes testing the
robustness of search for noncircular critical slip surface, modeling lognor-
mal random variables, deriving probability density functions from reliability
indices, and comparing results inferred from reliability indices with Monte
Carlo simulations.
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The expanding ellipsoidal perspective of the Hasofer–Lind reliability index
and the practical reliability approach using object-oriented constrained opti-
mization in the ubiquitous spreadsheet platform were described in Low and
Tang (1997a, 1997b), and extended substantially in Low and Tang (2004)
by testing robustness for various nonnormal distributions and complicated
performance functions, and by providing enhanced operational convenience
and versatility.

Reasonable statistical properties are assumed for the illustrative cases pre-
sented in this chapter; actual determination of the statistical properties is not
covered. Only parametric uncertainty is considered and model uncertainty
is not dealt with. Hence this chapter is concerned with reliability method
and perspectives, and not reliability in its widest sense. The focus is on
introducing an efficient and rational design approach using the ubiquitous
spreadsheet platform.

The spreadsheet reliability procedures described herein can be applied
to stand-alone numerical (e.g. finite element) packages via the established
response surface method (which itself is straightforward to implement in
the ubiquitous spreadsheet platform). Hence the applicability of the relia-
bility approach is not confined to models which can be formulated in the
spreadsheet environment.

3.2 Reliability procedure in spreadsheet and
expanding ellipsoidal perspective

3.2.1 A simple hands-on reliability analysis

The proposed spreadsheet reliability evaluation approach will be illustrated
first for a case with two random variables. Readers who want a better
understanding of the procedure and deeper appreciation of the ellipsoidal
perspective are encouraged to go through the procedure from scratch on a
blank Excel worksheet. After that, some Excel files for hands-on and deeper
appreciation can be downloaded from http://alum.mit.edu/www/bklow.

The example concerns the bearing capacity of a strip footing sustain-
ing non-eccentric vertical load. Extensions to higher dimensions and more
complicated scenarios are straightforward.

With respect to bearing capacity failure, the performance function (PerFn)
for a strip footing, in its simplest form, is:

PerFn = qu − q (3.1a)

where qu = cNc + poNq + B
2
γNγ (3.1b)

in which qu is the ultimate bearing capacity, q the applied bearing pressure,
c the cohesion of soil, po the effective overburden pressure at foundation
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level, B the foundation width, γ the unit weight of soil below the base of
foundation, and Nc, Nq, and Nγ are bearing capacity factors, which are
established functions of the friction angle (φ) of soil:

Nq = eπ tanφ tan2
(

45 + φ

2

)
(3.2a)

Nc =
(
Nq − 1

)
cot (φ) (3.2b)

Nγ = 2
(
Nq + 1

)
tanφ (3.2c)

Several expressions for Nγ exist. The above Nγ is attributed to Vesic in
Bowles (1996).

The statistical parameters and correlation matrix of c and φ are shown in
Figure 3.1. The other parameters in Equations (3.1a) and (3.1b) are assumed
known with values q = Qv/B = (200 kN/m)/B, po = 18 kPa, B = 1.2 m, and
γ = 20 kN/m3. The parameters c and φ in Equations (3.1) and (3.2) read
their values from the column labeled x∗, which were initially set equal to
the mean values. These x∗ values, and the functions dependent on them,

qu = cNc + PoNq + B gNγ2

Units: m, kN/m2,kN/m3, degrees, as appropriate.

X* Qv q

Corr. Matrix

PerFn

Solution procedure:

nx
nx =

xi – mi

C

Nq

NC

Ng

B Pogsm

f

b

6.339
14.63

3.804

10.74 1

0.0

= qu(x*) - q

3.268

1−0.5

−2.732

−0.187

−0.5

2.507

20
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5 200 166.7 1.2 20

Qv /B

18
2

si

=
si

xi – mi

si

xi – mi
T

[R ]−1

1. Initially, x* values = mean values m.

2. Invoke Solver, to minimize b, by changing x* values,
     subject to PerFn = 0 & x* values ≥ 0

Figure 3.1 A simple illustration of reliability analysis involving two correlated random
variables which are normally distributed.
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change during the optimization search for the most probable failure point.
Subsequent steps are:

1 The formula of the cell labeled β in Figure 3.1 is Equation (3.5b)
in Section 3.2.3: “=sqrt(mmult(transpose(nx), mmult(minverse(crmat),
nx))).” The arguments nx and crmat are entered by selecting the
corresponding numerical cells of the column vector

(
xi −µi

)
/σi and

the correlation matrix, respectively. This array formula is then entered
by pressing “Enter” while holding down the “Ctrl”and “Shift” keys.
Microsoft Excel’s built-in matrix functions mmult, transpose, and
minverse have been used in this step. Each of these functions contains
program codes for matrix operations.

2 The formula of the performance function is g (x) = qu − q, where
the equation for qu is Equation (3.1b) and depends on the x∗
values.

3 Microsoft Excel’s built-in constrained optimization program Solver
is invoked (via Tools\Solver), to Minimize β, By Changing the x*
values, Subject To PerFn ≤ 0, and x* values ≥ 0. (If used for the
first time, Solver needs to be activated once via Tools\Add-ins\Solver
Add-in.)

The β value obtained is 3.268. The spreadsheet approach is simple and
intuitive because it works in the original space of the variables. It does not
involve the orthogonal transformation of the correlation matrix, and iter-
ative numerical partial derivatives are done automatically on spreadsheet
objects which may be implicit or contain codes.

The following paragraphs briefly compares lumped factor of safety
approach, partial factors approach, and FORM approach, and provide
insights on the meaning of reliability index in the original space of the
random variables. More details can be found in Low (1996, 2005a), Low
and Tang (1997a, 2004), and other documents at http://alum.mit.edu/
www/bklow.

3.2.2 Comparing lumped safety factor and partial factors
approaches with reliability approach

For the bearing capacity problem of Figure 3.1, a long-established determin-
istic approach evaluates the lumped factor of safety (Fs) as:

Fs = qu − po

q − po
= f (c,φ, . . .) (3.3)

where the symbols are as defined earlier. If c = 20 kPa and φ = 15◦, and
with the values of Qv, B, γ and po as shown in Figure 3.1, then the factor of
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45 Limit state surface: boundary between safe
and unsafe domains
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Figure 3.2 The design point, the mean-value point, and expanding ellipsoidal perspective
of the reliability index in the original space of the random variables.

safety is Fs ≈ 2.0, by Equation (3.3). In the two-dimensional space of c and
φ (Figure 3.2) one can plot the Fs contours for different combinations of
c andφ, including the Fs =1.0 curve which separates the unsafe combinations
from the safe combinations of c and φ. The average point (c = 20 kPa and
φ = 15◦) is situated on the contour (not plotted) of Fs = 2.0. Design, by the
lumped factor of safety approach, is considered satisfactory with respect to
bearing capacity failure if the factor of safety by Equation (3.3) is not smaller
than a certain value (e.g. when Fs ≥ 2.0).

A more recent and logical approach (e.g. Eurocode 7) applies partial fac-
tors to the parameters in the evaluation of resistance and loadings. Design
is acceptable if:

Bearing capacity (based on reduced c and φ) ≥ Applied pressure

(amplified) (3.4)

A third approach is reliability-based design, where the uncertainties and
correlation structure of the parameters are represented by a one-standard-
deviation dispersion ellipsoid (Figure 3.2) centered at the mean-value point,
and safety is gaged by a reliability index which is the shortest distance
(measured in units of directional standard deviations, R/r) from the safe
mean-value point to the most probable failure combination of parame-
ters (“the design point”) on the limit state surface (defined by Fs = 1.0,
for the problem in hand). Furthermore, the probability of failure (Pf )
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can be estimated from the reliability index β using the established equa-
tion Pf = 1 −	(β) = 	(−β), where 	 is the cumulative distribution (CDF)
of the standard normal variate. The relationship is exact when the limit
state surface is planar and the parameters follow normal distributions, and
approximate otherwise.

The merits of a reliability-based design over the lumped factor-of-safety
design is illustrated in Figure 3.3a, in which case A and case B (with dif-
ferent average values of effective shear strength parameters c′ and φ′) show
the same values of lumped factor of safety, yet case A is clearly safer than
case B. The higher reliability of case A over case B will correctly be revealed
when the reliability indices are computed. On the other hand, a slope may
have a computed lumped factor of safety of 1.5, and a particular foun-
dation (with certain geometry and loadings) in the same soil may have a
computed lumped factor of safety of 2.5, as in case C of Figure 3.3(b).
Yet a reliability analysis may show that they both have similar levels of
reliability.

The design point (Figure 3.2) is the most probable failure combination of
parametric values. The ratios of the respective parametric values at the cen-
ter of the dispersion ellipsoid (corresponding to the mean values) to those at
the design point are similar to the partial factors in limit state design, except
that these factored values at the design point are arrived at automatically
(and as by-products) via spreadsheet-based constrained optimization. The
reliability-based approach is thus able to reflect varying parametric sensitiv-
ities from case to case in the same design problem (Figure 3.3a) and across
different design realms (Figure 3.3b).

one-standard-deviation
dispersion ellipsoidFs = 1.4

Fs = 1.0

Unsafe, Fs < 1.0

Fs = 1.2

Fs = 3.0

Fs = 1.0

Fs = 1.0

Slope

(Slope)
Unsafe

(Foundation)

Foundation

Safe

A

B

2.0 1.5

1.2
C

c′
c′

φ′ φ′(a) (b)

Figure 3.3 Schematic scenarios showing possible limitations of lumped factor of safety:
(a) Cases A and B have the same lumped Fs = 1.4, but Case A is clearly more
reliable than Case B; (b) Case C may have Fs = 1.5 for a slope and Fs = 2.5 for
a foundation, and yet have similar levels of reliability.
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3.2.3 Hasofer–Lind index reinterpreted via expanding
ellipsoid perspective

The matrix formulation (Veneziano, 1974; Ditlevsen, 1981) of the Hasofer–
Lind index β is:

β = min
x∈F

√
(x −µ)T C−1 (x −µ) (3.5a)

or, equivalently:

β = min
x∈F

√[
xi −µi

σi

]T

[R]−1
[

xi −µi

σi

]
(3.5b)

where x is a vector representing the set of random variables xi, µ the vec-
tor of mean values µi, C the covariance matrix, R the correlation matrix,
σi the standard deviation, and F the failure domain. Low and Tang (1997b;
2004) used Equation (3.5b) in preference to Equation (3.5a) because the cor-
relation matrix R is easier to set up, and conveys the correlation structure
more explicitly than the covariance matrix C. Equation (3.5b) was entered
in step (1) above.

The “x∗” values obtained in Figure 3.1 represent the most probable failure
point on the limit state surface. It is the point of tangency (Figure 3.2) of the
expanding dispersion ellipsoid with the bearing capacity limit state surface.
The following may be noted:

(a) The x∗ values shown in Figure 3.1 render Equation (3.1a) (PerFn) equal
to zero. Hence the point represented by these x∗ values lies on the bearing
capacity limit state surface, which separates the safe domain from the
unsafe domain. The one-standard-deviation ellipse and the β-ellipse in
Figure 3.2 are tilted because the correlation coefficient between c and φ is
−0.5 in Figure 3.1. The design point in Figure 3.2 is where the expanding
dispersion ellipse touches the limit state surface, at the point represented
by the x∗ values of Figure 3.1.

(b) As a multivariate normal dispersion ellipsoid expands, its expanding
surfaces are contours of decreasing probability values, according to
the established probability density function of the multivariate normal
distribution:

f (x) = 1

(2π )
n
2 |C|0.5

exp
[
−1

2
(x −µ)T C−1 (x −µ)

]
(3.6a)

= 1

(2π )
n
2 |C|0.5

exp
[
−1

2
β2
]

(3.6b)
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where β is defined by Equation (3.5a) or (3.5b), without the “min.”
Hence, to minimize β (or β2 in the above multivariate normal distribu-
tion) is to maximize the value of the multivariate normal probability
density function, and to find the smallest ellipsoid tangent to the
limit state surface is equivalent to finding the most probable failure
point (the design point). This intuitive and visual understanding of
the design point is consistent with the more mathematical approach
in Shinozuka (1983, equations 4, 41, and associated figure), in which
all variables were transformed into their standardized forms and the
limit state equation had also to be written in terms of the standard-
ized variables. The differences between the present original space versus
Shinozuka’s standardized space of variables will be further discussed in
(h) below.

(c) Therefore the design point, being the first point of contact between
the expanding ellipsoid and the limit state surface in Figure 3.2,
is the most probable failure point with respect to the safe mean-
value point at the centre of the expanding ellipsoid, where Fs ≈ 2.0
against bearing capacity failure. The reliability index β is the axis
ratio (R/r) of the ellipse that touches the limit state surface and the
one-standard-deviation dispersion ellipse. By geometrical properties of
ellipses, this co-directional axis ratio is the same along any “radial”
direction.

(d) For each parameter, the ratio of the mean value to the x∗ value is similar
in nature to the partial factors in limit state design (e.g. Eurocode 7).
However, in a reliability-based design one does not specify the par-
tial factors. The design point values (x∗) are determined automatically
and reflect sensitivities, standard deviations, correlation structure, and
probability distributions in a way that prescribed partial factors cannot
reflect.

(e) In Figure 3.1, the mean value point, at 20 kPa and 15◦, is safe against
bearing capacity failure; but bearing capacity failure occurs when the
c and φ values are decreased to the values shown: (6.339, 14.63). The
distance from the safe mean-value point to this most probable failure
combination of parameters, in units of directional standard deviations,
is the reliability index β, equal to 3.268 in this case.

(f) The probability of failure (Pf ) can be estimated from the reliability
index β. Microsoft Excel’s built-in function NormSDist(.) can be used
to compute 	(.) and hence Pf . Thus for the bearing capacity problem
of Figure 3.1, Pf = NormSDist(−3.268) = 0.054%. This value com-
pares remarkably well with the range of values 0.051−0.060% obtained
from several Monte Carlo simulations each with 800,000 trials using
the commercial simulation software @RISK (http://www.palisade.com).
The correlation matrix was accounted for in the simulation. The excel-
lent agreement between 0.054% from reliability index and the range
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0.051−0.060% from Monte Carlo simulation is hardly surprising
given the almost linear limit state surface and normal variates shown
in Figure 3.2. However, for the anchored wall shown in the next
section, where six random variables are involved and nonnormal dis-
tributions are used, the six-dimensional equivalent hyperellispoid and
the limit state hypersurface can only be perceived in the mind’s eye.
Nevertheless, the probabilities of failure inferred from reliability indices
are again in close agreement with Monte Carlo simulations. Com-
puting the reliability index and Pf = 	(−β) by the present approach
takes only a few seconds. In contrast, the time needed to obtain the
probability of failure by Monte Carlo simulation is several orders
of magnitude longer, particularly when the probability of failure is
small and many trials are needed. It is also a simple matter to inves-
tigate sensitivities by re-computing the reliability index β (and Pf ) for
different mean values and standard deviations in numerous what-if
scenarios.

(g) The probability of failure as used here means the probability that, in
the presence of parametric uncertainties in c and φ, the factor of safety,
Equation (3.3), will be ≤ 1.0, or, equivalently, the probability that the
performance function, Equation (3.1a), will be ≤ 0.

(h) Figure 3.2 defines the reliability index β as the dimensionless ratio R/r,
in the direction from the mean-value point to the design point. This is
the axis ratio of the β-ellipsoid (tangential to the limit state surface) to
the one-standard-deviation dispersion ellipsoid. This axis ratio is dimen-
sionless and independent of orientation, when R and r are co-directional.
This axis-ratio interpretation in the original space of the variables over-
comes a drawback in Shinozuka’s (1983) standardized variable space
that “the interpretation of β as the shortest distance between the ori-
gin (of the standardized space) and the (transformed) limit state surface
is no longer valid” if the random variables are correlated. A further
advantage of the original space, apart from its intuitive transparency, is
that it renders feasible and efficient the two computational approaches
involving nonnormals as presented in Low & Tang (2004) and (2007),
respectively.

3.3 Reliability-based design of an anchored wall

This section illustrates reliability-based design of anchored sheet pile wall,
drawing material from Low (2005a, 2005b). The analytical formulations
in a deterministic anchored wall design are the basis of the performance
function in a probabilistic-based design. Hence it is appropriate to briefly
describe the deterministic approach, prior to extending it to a probabilistic-
based design. An alternative design approach is described in BS8002
(1994).
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3.3.1 Deterministic anchored wall design based on lumped
factor and partial factors

The deterministic geotechnical design of anchored walls based on the free
earth support analytical model was lucidly presented in Craig (1997). An
example is the case in Figure 3.4, where the relevant soil properties are the
effective angle of shearing resistance φ′, and the interface friction angle δ

between the retained soil and the wall. The characteristic values are c′ = 0,
φ′ = 36◦ and δ = ½φ′ . The water table is the same on both sides of the
wall. The bulk unit weight of the soil is 17 kN/m3 above the water table and
20 kN/m3 below the water table. A surcharge pressure qs = 10 kN/m2 acts
at the top of the retained soil. The tie rods act horizontally at a depth 1.5 m
below the top of the wall.

In Figure 3.4, the active earth pressure coefficient Ka is based on the
Coulomb-wedge closed-form equation, which is practically the same as
the Kerisel–Absi active earth pressure coefficient (Kerisel and Absi, 1990).
The passive earth pressure coefficient Kp is based on polynomial equations
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(Figure 3.5) fitted to the values of Kerisel–Absi (1990), for a wall with a
vertical back and a horizontal retained soil surface.

The required embedment depth d of 3.29 m in Figure 3.4 – for a
lumped factor of safety of 2.0 against rotational failure around anchor point
A – agrees with Example 6.9 of Craig (1997).

If one were to use the limit state design approach, with a partial factor of
1.2 for the characteristic shear strength, one enters tan−1(tanφ′/1.2) = 31◦
in the cell of φ′, and changes the embedment depth d until the summation
of moments is zero. A required embedment depth d of 2.83 m is obtained,
in agreement with Craig (1997).

Function KpKeriseIAbsi(phi, del)
‘Passive pressure coefficient Kp, for vertical wall back and horizontal retained fill
‘Based on Tables in Kerisel & Absi (1990), for beta = 0, lamda = 0, and
‘ del/phi = 0,0.33, 0.5, 0.66, 1.00
x = del / phi
Kp100=0.00007776 * phi ^ 4 - 0.006608 * phi ^ 3 + 0.2107 * phi ^ 2 - 2.714 * phi + 13.63
Kp66=0.00002611 * phi ^ 4 - 0.002113 * phi ^ 3 + 0.06843 * phi ^ 2 - 0.8512 * phi + 5.142
Kp50 = 0.00001559 * phi ^ 4 - 0.001215 * phi ^ 3 + 0.03886 * phi ^ 2 - 0.4473 * phi + 3.208
Kp33 = 0.000007318 * phi ^ 4 - 0.0005195 * phi ^ 3 + 0.0164 * phi ^ 2 - 0.1483 * phi + 1.798
Kp0 = 0.000002636 * phi ^ 4 - 0.0002201 * phi ^ 3 + 0.008267 * phi ^ 2 - 0.0714 * phi + 1.507
Select Case x
Case 0.66 To 1: Kp = Kp66 + (x - 0.66) / 1 - 0.66) * (Kp100 - Kp66)
Case 0.5 To 0.66: Kp = Kp50 + (x - 0.5) / (0.66 - 0.5) * (Kp66 - Kp50)
Case 0.33 To 0.5: Kp = Kp33 + (x - 0.33) / (0.5 - 0.33) * (Kp50 - Kp33)
Case 0 To 0.33: Kp = Kp0 + x / 0.33 * (Kp33 - Kp0)
End Select
KpKeriselAbsi = Kp
End Function

Value from Kerisel-Absi tables

Polynomial curves, equations as given
in the above Excel VBA code
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The partial factors in limit state design are applied to the characteristic
values, which are themselves conservative estimates and not the most proba-
ble or average values. Hence there is a two-tier nested safety: first during the
conservative estimate of the characteristic values, and then when the partial
factors are applied to the characteristic values. This is evident in Eurocode 7,
where Section 2.4.3 clause (5) states that the characteristic value of a soil or
rock parameter shall be selected as a cautious estimate of the value affecting
the occurrence of the limit state. Clause (7) further states that character-
istic values may be lower values, which are less than the most probable
values, or upper values, which are greater, and that for each calculation, the
most unfavorable combination of lower and upper values for independent
parameters shall be used.

The above Eurocode 7 recommendations imply that the characteristic
value of φ′ (36◦) in Figure 3.4 is lower than the mean value of φ′. Hence in
the reliability-based design of the next section, the mean value of φ′ adopted
is higher than the characteristic value of Figure 3.4.

While characteristic values and partial factors are used in limit state design,
mean values (not characteristic values) are used with standard deviations and
correlation matrix in a reliability-based design.

3.3.2 From deterministic to reliability-based anchored
wall design

The anchored sheet pile wall will be designed based on reliability analy-
sis (Figure 3.6). As mentioned earlier, the mean value of φ′ in Figure 3.6
is larger – 38◦ is assumed – than the characteristic value of Figure 3.4.
In total there are six normally distributed random variables, with mean
and standard deviations as shown. Some correlations among parameters
are assumed, as shown in the correlation matrix. For example, it is judged
logical that the unit weights γ and γsat should be positively correlated,
and that each is also positively correlated to the angle of friction φ′, since
γ ′ = γsat − γw.

The analytical formulations based on force and moment equilibrium in the
deterministic analysis of Figure 3.4 are also required in a reliability analysis,
but are expressed as limit state functions or performance functions: “= Sum
(Moments1→5).”

The array formula in cell β of Figure 3.6 is as described in step 1 of the
bearing capacity example earlier in this chapter.

Given the uncertainties and correlation structure in Figure 3.6, we
wish to find the required total wall height H so as to achieve a relia-
bility index of 3.0 against rotational failure about point “A.” Initially
the column x∗ was given the mean values. Microsoft Excel’s built-in
constrained optimization tool Solver was then used to minimize β, by
changing (automatically) the x∗ column, subject to the constraint that
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Figure 3.6 Design total wall height for a reliability index of 3.0 against rotational failure.
Dredge level and hence z and d are random variables.

the cell PerFn be equal to zero. The solution (Figure 3.6) indicates that
a total height of 12.15 m would give a reliability index of 3.0 against
rotational failure. With this wall height, the mean-value point is safe
against rotational failure, but rotational failure occurs when the mean val-
ues descend/ascend to the values indicated under the x∗ column. These
x∗ values denote the design point on the limit state surface, and rep-
resent the most likely combination of parametric values that will cause
failure. The distance between the mean-value point and the design point,
in units of directional standard deviations, is the Hasofer–Lind reliability
index.
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As noted in Simpson and Driscoll (1998: 81, 158), clause 8.3.2.1 of
Eurocode 7 requires that an “overdig” allowance shall be made for walls
which rely on passive resistance. This is an allowance “for the unforeseen
activities of nature or humans who have no technical appreciation of the
stability requirements of the wall.” For the case in hand, the reliability anal-
ysis in Figure 3.6 accounts for uncertainty in z, requiring only the mean value
and the standard deviation of z (and its distribution type, if not normal) to be
specified. The expected embedment depth is d = 12.15−6.4−µz = 3.35 m.
At the failure combination of parametric values the design value of z is
z∗ = 2.9632, and d∗ = 12.15 − 6.4 − z∗ = 2.79 m. This corresponds to an
“overdig” allowance of 0.56 m. Unlike Eurocode 7, this “overdig” is deter-
mined automatically, and reflects uncertainties and sensitivities from case to
case in a way that specified “overdig” cannot. Low (2005a) illustrates and
discusses this automatic probabilistic overdig allowance in a reliability-based
design.

The nx column indicates that, for the given mean values and uncer-
tainties, rotational stability is, not surprisingly, most sensitive to φ′ and
the dredge level (which affects z and d and hence the passive resistance).
It is least sensitive to uncertainties in the surcharge qs, because the aver-
age value of surcharge (10 kN/m2) is relatively small when compared with
the over 10 m thick retained fill. Under a different scenario where the
surcharge is a significant player, its sensitivity scale could conceivably be
different. It is also interesting to note that at the design point where the
six-dimensional dispersion ellipsoid touches the limit state surface, both
unit weights γ and γsat (16.20 and 18.44, respectively) are lower than
their corresponding mean values, contrary to the expectation that higher
unit weights will increase active pressure and hence greater instability. This
apparent paradox is resolved if one notes that smaller γsat will (via smaller γ ′)
reduce passive resistance, smaller φ′ will cause greater active pressure and
smaller passive pressure, and that γ , γsat, and φ′ are logically positively
correlated.

In a reliability-based design (such as the case in Figure 3.6) one does
not prescribe the ratios mean/x∗ – such ratios, or ratios of (characteristic
values)/x∗, are prescribed in limit state design – but leave it to the expand-
ing dispersion ellipsoid to seek the most probable failure point on the limit
state surface, a process which automatically reflects the sensitivities of the
parameters. The ability to seek the most-probable design point without pre-
suming any partial factors and to automatically reflect sensitivities from case
to case is a desirable feature of the reliability-based design approach. The
sensitivity measures of parameters may not always be obvious from a pri-
ori reasoning. A case in point is the strut with complex supports analyzed
in Low and Tang (2004: 85), where the mid-span spring stiffness k3 and
the rotational stiffness λ1 at the other end both turn out to have surpris-
ingly negligible sensitivity weights; this sensitivity conclusion was confirmed
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by previous elaborate deterministic parametric plots. In contrast, reliability
analysis achieved the same conclusion relatively effortlessly.

The spreadsheet-based reliability-based design approach illustrated in
Figure 3.6 is a more practical and relatively transparent intuitive approach
that obtains the same solution as the classical Hasofer–Lind method for
correlated normals and FORM for correlated nonnormals (shown below).
Unlike the classical computational approaches, the present approach does
not need to rotate the frame of reference or to transform the coordinate
space.

3.3.3 Positive reliability index only if mean-value point is
in safe domain

In Figure 3.6, if a trial H value of 10 m is used, and the entire “x∗” column
given the values equal to the “mean” column values, the performance func-
tion PerFn exhibits a value of −448.5, meaning that the mean value point is
already inside the unsafe domain. Upon Solver optimization with constraint
PerFn = 0, a β index of 1.34 is obtained, which should be regarded as a
negative index, i.e. −1.34, meaning that the unsafe mean value point is at
some distance from the nearest safe point on the limit state surface that sep-
arates the safe and unsafe domains. In other words, the computed β index
can be regarded as positive only if the PerFn value is positive at the mean
value point. For the case in Figure 3.6, the mean value point (prior to Solver
optimization) yields a positive PerFn for H > 10.6 m. The computed β index
increases from 0 (equivalent to a lumped factor of safety equal to 1.0, i.e. on
the verge of failure) when H is 10.6 m to 3.0 when H is 12.15 m, as shown
in Figure 3.7.
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Figure 3.7 Reliability index is 3.00 when H = 12.15 m. For H smaller than 10.6 m, the
mean-value point is in the unsafe domain, for which the reliability indices are
negative.
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3.3.4 Reliability-based design involving correlated
nonnormals

The two-parameter normal distribution is symmetrical and, theoretically, has
a range from −∞ to +∞. For a parameter that admits only positive values,
the probability of encroaching into the negative realm is extremely remote
if the coefficient of variation (Standard deviation/Mean) of the parameter is
0.20 or smaller, as for the case in hand. Alternatively, the lognormal dis-
tribution has often been suggested in lieu of the normal distribution, since
it excludes negative values and affords some convenience in mathematical
derivations. Figure 3.8 shows an efficient reliability-based design when the
random variables are correlated and follow lognormal distributions. The
two columns labeled µN and σN contain the formulae “=EqvN(…, 1)”
and “EqvN(…, 2),” respectively, which invoke the user-created functions
shown in Figure 3.8 to perform the equivalent normal transformation
(when variates are lognormals) based on the following Rackwitz–Fiessler
two-parameter equivalent normal transformation (Rackwitz and Fiessler,
1978):

Equivalent normal standard deviation: σN = φ
{
	−1 [F (x)]

}
f (x)

(3.7a)

Equivalent normal mean: µN = x −σN ×	−1 [F (x)] (3.7b)

where x is the original nonnormal variate,	−1[.] is the inverse of the cumula-
tive probability (CDF) of a standard normal distribution, F(x) is the original
nonnormal CDF evaluated at x, φ{.} is the probability density function (PDF)
of the standard normal distribution, and f (x) is the original nonnormal
probability density ordinates at x.

For lognormals, closed form equivalent normal transformation is avail-
able and has been used in the VBA code of Figure 3.8. Efficient Excel VBA
codes for equivalent normal transformations of other nonnormal distribu-
tions (including Gumbel, uniform, exponential, gamma, Weibull, triangular,
and beta) are given in Low and Tang (2004, 2007), where it is shown that
reliability analysis can be performed with various distributions merely by
entering “Normal,” “Lognormal,” “Exponential,” “Gamma,” …, in the
first column of Figure 3.8, and distribution parameters in the columns to the
left of the x∗ column. In this way the required Rackwitz–Fiessler equivalent
normal evaluations (for µN and σN) are conveniently relegated to functions
created in the VBA programming environment of Microsoft Excel.

Therefore, the single spreadsheet cell object β in Figure 3.8 contains several
Excel function objects and substantial program codes.

For correlated nonnormals, the ellipsoid perspective (Figure 3.2) and the
constrained optimization approach still apply in the original coordinate
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The µN and σN column invoke the
user-defined function EqvN_LN
below to obtain the equivalent
normal mean µN and equivalent
normal standard deviation σN of the
lognormal variates.

More nonnormal options available
in Low & Tang (2004, 2007).

Function EqvN_LN(mean, StDev, x, code)
‘Returns the equivalent mean of the lognormal variateif if code is 1
‘Returns the equivalent standard deviation of the lognormal variates if code is 2
del = 0.0001     ‘variable lower limit
If x < del Then x = del
lamda = Log(mean) - 0.5 * Log(1 + (StDev / mean) ^ 2)
If code = 1 Then EqvN_LN = x * (1 - Log(x) + lamda)
If code = 2 Then EqvN_LN = x * Sqr(Log(1 + (StDev / mean) ^ 2))
End Function

Figure 3.8 Reliability-based design of anchored wall; correlated lognormals.

system, except that the nonnormal distributions are replaced by an equiv-
alent normal ellipsoid, centered not at the original mean of the nonnormal
distributions, but at an equivalent normal mean µN :

β = min
x∈F

√√√√[xi −µN
i

σN
i

]T

[R]−1

[
xi −µN

i

σN
i

]
(3.8)
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as explained in Low and Tang (2004, 2007). One Excel file associated with
Low (2005a) for reliability analysis of anchored sheet pile wall involving cor-
related nonnormal variates is available for download at http://alum.mit.edu/
www/bklow.

For the case in hand, the required total wall height H is practically the
same whether the random variables are normally distributed (Figure 3.6)
or lognormally distributed (Figure 3.8). Such insensitivity of the design to
the underlying probability distributions may not always be expected, par-
ticularly when the coefficient of variation (standard deviation/mean) or the
skewness of the probability distribution is large.

If desired, the original correlation matrix (ρij) of the nonnormals
can be modified to ρ′

ij in line with the equivalent normal transforma-
tion, as suggested in Der Kiureghian and Liu (1986). Some tables of
the ratio ρ′

ij/ρij are given in Appendix B2 of Melchers (1999), includ-
ing a closed-form solution for the special case of lognormals. For the
cases illustrated herein, the correlation matrix thus modified differs only
slightly from the original correlation matrix. Hence, for simplicity, the
examples of this chapter retain their original unmodified correlation
matrices.

This section has illustrated an efficient reliability-based design approach
for an anchored wall. The correlation structure of the six variables was
defined in a correlation matrix. Normal distributions and lognormal dis-
tributions were considered in turn (Figures 3.6 and 3.8), to investigate
the implication of different probability distributions. The procedure is able
to incorporate and reflect the uncertainty of the passive soil surface ele-
vation. Reliability index is the shortest distance between the mean-value
point and the limit state surface – the boundary separating safe and unsafe
combinations of parameters – measured in units of directional standard
deviations. It is important to check whether the mean-value point is in
the safe domain or unsafe domain before performing reliability analysis.
This is done by noting the sign of the performance function (PerFn) in
Figures 3.6 and 3.8 when the x∗ columns were initially assigned the mean
values. If the mean value point is safe, the computed reliability index is
positive; if the mean-value point is already in the unsafe domain, the com-
puted reliability index should be considered a negative entity, as illustrated
in Figure 3.7.

The differences between reliability-based design and design based on spec-
ified partial factors were briefly discussed. The merits of reliability-based
design are thought to lie in its ability to explicitly reflect correlation struc-
ture, standard deviations, probability distributions and sensitivities, and to
automatically seek the most probable failure combination of parametric val-
ues case by case without relying on fixed partial factors. Corresponding to
each desired value of reliability index, there is also a reasonably accurate
simple estimate of the probability of failure.
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3.4 Practical probabilistic slope stability analysis
based on reformulated Spencer equations

This section presents a practical procedure for implementing Spencer method
reformulated for a computer age, first deterministically, then probabilisti-
cally, in the ubiquitous spreadsheet platform. The material is drawn from
Low (2001, 2003, both available at the author’s website) and includes test-
ing the robustness of search for noncircular critical slip surface, modeling
lognormal random variables, deriving probability density functions from
reliability indices, and comparing results inferred from reliability indices with
Monte Carlo simulations. The deterministic modeling is described first, as it
underlies the limit state function (i.e. performance function) of the reliability
analysis.

3.4.1 Deterministic Spencer method, reformulated

Using the notations in Nash (1987), the sketch at the top of Figure 3.9
(below columns I and J) shows the forces acting on a slice (slice i) that
forms part of the potential sliding soil mass. The notations are: weight Wi,
base length li, base inclination angle αi, total normal force Pi at the base
of slice i, mobilized shearing resistance Ti at the base of slice i, horizontal
and vertical components (Ei, Ei−1, λiEi, λi−1Ei−1) of side force resultants
at the left and right vertical interfaces of slice i, where λi−1 and λi are the
tangents of the side force inclination angles (with respect to horizontal) at
the vertical interfaces. Adopting the same assumptions as Spencer (1973),
but reformulated for spreadsheet-based constrained optimization approach,
one can derive the following from Mohr–Coulomb criterion and equilibrium
considerations:

Ti = [c′
ili +
(
Pi − uili

)
tanφ′

i

]
/F (Mohr–Coulomb criteria) (3.9)

Pi cosαi = Wi −λiEi +λi−1Ei−1 − Ti sinαi (vertical equilibrium)
(3.10)

Ei = Ei−1 + Pi sinαi − Ti cosαi (horizontal equilibrium) (3.11)

Pi =

[
Wi −

(
λi −λi−1

)
Ei−1

−1
F

(
c′

ili − uili tanφ′
i

)(
sinαi −λi cosαi

)
]

[
λi sinαi + cosαi

+1
F

tanφ′
i

(
sinαi −λi cosαi

)
]

(from above three equations) (3.12)
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3 14.72 −1.18 5.00 19.58 35.26 0 107.4 0.879 21.89 1.54 112.01 42.14 155.7 0.038 50.94 10.30 8.54
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7 10.79 −4.10 5.00 18.27 20.00 0 158.3 0.496 32.25 1.12 160.90 17.34 438.4 0.082 111.92 6.38 11.78

8 9.81 −4.53 5.00 18.15 20.00 0 165.8 0.415 33.80 1.07 165.06 16.66 489.6 0.090 120.14 5.40 12.26

9 8.83 −4.87 4.50 18.01 20.00 0 167.0 0.336 34.04 1.04 164.03 16.15 528.5 0.096 123.77 4.42 12.64 

10 7.85 −5.13 4.00 17.84 20.00 0 161.9 0.259 33.00 1.02 158.16 15.78 553.8 0.101 122.79 3.43 12.95

11 6.87 −5.31 3.50 17.67 20.66 0 155.6 0.184 31.71 1.00 152.37 16.03 565.9 0.103 120.93 2.45 13.17

12 5.89 −5.42 3.00 17.51 21.10 0 148.1 0.110 30.18 0.99 146.54 16.19 565.9 0.105 118.26 1.47 13.31

13 4.91 −5.46 2.50 17.34 21.32 0 139.4 0.037 28.41 0.98 140.44 16.27 554.8 0.104 114.61 0.49 13.39

14 3.93 −5.42 2.00 17.17 21.32 0 129.6 −0.037 26.41 0.98 133.80 16.27 533.7 0.101 109.85 −0.49 13.39

15 2.94 −5.31 1.50 16.98 21.10 0 118.6 −0.110 24.18 0.99 126.36 16.19 503.7 0.097 103.81 −1.47 13.31

16 1.96 −5.13 1.00 16.77 20.66 0 106.5 −0.184 21.71 1.00 117.86 16.03 466.3 0.091 96.36 −2.45 13.17

17 0.98 −4.87 0.50 16.52 20.00 0 93.2 −0.259 19.00 1.02 107.99 15.78 423.4 0.083 87.37 −3.43 12.95

18 0.00 −4.53 0.00 16.20 20.00 0 78.7 −0.336 16.04 1.04 96.74 16.15 376.3 0.074 77.03 −4.42 12.64

19 −0.98 −4.10 0.00 16.00 20.00 0 67.7 −0.415 13.80 1.07 89.12 16.66 325.1 0.064 69.32 −5.40 12.26

20 −1.96 −3.56 0.00 16.00 20.00 0 60.1 −0.496 12.25 1.12 85.34 17.34 269.2 0.053 64.22 −6.38 11.78

21 −2.94 −2.92 0.00 16.00 20.00 0 50.9 −0.582 10.37 1.17 79.74 18.25 210.1 0.040 57.52 −7.36 11.19

22 −3.93 −2.14 0.00 16.00 22.52 0 39.7 −0.673 8.09 1.25 73.92 21.95 146.9 0.027 50.84 −8.34 10.47

23 −4.91 −1.18 0.00 16.00 27.15 0 26.1 −0.770 5.31 1.37 68.39 28.84 78.6 0.014 44.70 −9.32 9.61

24 −5.89 0.00 0.00 16.00 35.26 0 9.3 −0.879 1.89 1.54 67.12 42.14 0.0 0.000 41.75 −10.30 8.54

Figure 3.9 Deterministic analysis of a 5 m high embankment on soft ground with depth-
dependent undrained shear strength. The limit equilibrium method of slices is
based on reformulated Spencer method, with half-sine variation of side force
inclination.
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∑[
Ti cosαi − Pi sinαi

]− Pw = 0 (overall horizontal equilibrium)

(3.13)

∑[(
Ti sinαi + Pi cosαi − Wi

)∗ Lxi+(Ti cosαi − Pi sinαi

)∗ Lyi

]
− Mw = 0

(overall moment equilibrium) (3.14)

Lxi = 0.5
(
xi + xi−1

)− xc (horizontal lever arm of slice i) (3.15)

Lyi = yc − 0.5
(
yi + yi−1

)
(vertical lever arm of slice i) (3.16)

where ci, φi and ui are cohesion, friction angle and pore water pressure,
respectively, at the base of slice i, Pw is the water thrust in a water-filled
vertical tension crack (at x0) of depth hc, and Mw the overturning moment
due to Pw. Equations (3.15) and (3.16), required for noncircular slip surface,
give the lever arms with respect to an arbitrary center. The use of both λi
and λi−1 in Equation (3.12) allows for the fact that the right-most slice
(slice #1) has a side that is adjacent to a water-filled tension crack, hence
λ0 = 0 (i.e. the direction of water thrust is horizontal), and for different
λ values (either constant or varying) on the other vertical interfaces.

The algebraic manipulation that results in Equation (3.12) involves open-
ing the term (Pi − uili)tanφ′ of Equation (3.9), an action legitimate only if
(Pi − uili) ≥ 0, or, equivalently, if the effective normal stress σ ′

i (= Pi/li − ui)
at the base of a slice is nonnegative. Hence, after obtaining the critical slip
surface in the section to follow, one needs to check that σ ′

i ≥ 0 at the base
of all slices and Ei ≥ 0 at all the slice interfaces. Otherwise, one should con-
sider modeling tension cracks for slices near the upper exit end of the slip
surface.

Figure 3.9 shows the spreadsheet set-up for deterministic stability analysis
of a 5 m high embankment on soft ground. The undrained shear strength pro-
file of the soft ground is defined in rows 44 and 45. The subscript m in cells
P44:R44 denotes embankment. Formulas need be entered only in the first
or second cell (row 16 or 17) of each column, followed by autofilling down
to row 40. The columns labeled ytop, γave and c invoke the functions shown
in Figure 3.10, created via Tools/Macro/VisualBasicEditor/Insert/Module
on the Excel worksheet menu. The dummy equation in cell P2 is equal
to F∗1. This cell, unlike cell O2, can be minimized because it contains a
formula.

Initially xc = 6, yc = 8, R = 12 in cells I11:K11, and λ′ = 0, F = 1
in cells N2:O2. Microsoft Excel’s built-in Solver was then invoked to set
target and constraints as shown in Figure 3.11. The Solver option “Use
Automatic Scaling” was also activated. The critical slip circle and factor of
safety F = 1.287 shown in Figure 3.9 were obtained automatically within
seconds by Solver via cell-object oriented constrained optimization.
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Function Slice_c(ybmid, dmax, dv, cuv, cm)
‘comment: dv = depth vector,
‘cuv = cu vector
If ybmid > 0 Then
 Slice_c = cm
 Exit Function
End If
ybmid = Abs(ybmid)
If ybmid > dmax Then      ‘undefined domain,
 Slice_c = 300    ‘hence assume hard stratum.
 Exit Function
End If
For j = 2 T o dv.Count     ‘array size=dv.Count
 If dv(j) >= ybmid Then
 interp = (ybmid - dv(j - 1)) / (dv(j) - dv(j - 1))
 Slice_c = cuv(j - 1) + (cuv(j) - cuv(j - 1)) * interp
 Exit For
 End If
Next j
End Function

Function ytop(x, omega, H)
grad = Tan(omega * 3.14159 / 180)
If x < 0 Then ytop = 0
If x >=0 And x < H / grad Then ytop = x * grad
If x >=H / grad Then ytop = H
End Function

Function AveGamma(ytmid, ybmid, gm, gclay)
If ybmid < 0 Then
    Sum = (ytmid * gm + Abs(ybmid) * gclay)
    AveGamma = Sum / (ytmid - ybmid)
    Else: AveGamma = gm
End If
End Function

Figure 3.10 User-defined VBA functions, called by columns ytop, γave, and c of Figure 3.9.

Noncircular critical slip surface can also be searched using Solver as
in Figure 3.11, except that “By Changing Cells” are N2:O2, B16, B18,
B40, C17, and C19:C39, and with the following additional cell constraints:
B16 ≥ B11/tan(radians(A11)), B16 ≥ B18, B40 ≤ 0, C19:C39 ≤ D19:D39,
O2 ≥ 0.1, and P17:P40 ≥ 0.

Figure 3.12 tests the robustness of the search for noncircular critical sur-
face. Starting from four arbitrary initial circles, the final noncircular critical
surfaces (solid curves, each with 25 degrees of freedom) are close enough
to each other, though not identical. Perhaps more pertinent, their factors of
safety vary narrowly within 1.253 – 1.257. This compares with the minimum
factor of safety 1.287 of the critical circular surface of Figure 3.9.



Figure 3.11 Excel Solver settings to obtain the solution of Figure 3.9.
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Figure 3.12 Testing the robustness of search for the deterministic critical noncircular slip
surface.
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3.4.2 Reformulated Spencer method extended
probabilistically

Reliability analyses were performed for the embankment of Figure 3.9,
as shown in Figure 3.13. The coupling between Figures 3.9 and 3.13 is
brought about simply by entering formulas in cells C45:H45 and P45:R45
of Figure 3.9 to read values from column vi of Figure 3.13. The matrix
form of the Hasofer–Lind index, Equation (3.5b), will be used, except that
the symbol vi is used to denote random variables, to distinguish it from the
symbol xi (for x-coordinate values) used in Figure 3.9.

Spatial correlation in the soft ground is modeled by assuming an autocor-
relation distance (δ) of 3 m in the following established negative exponential
model:

ρij = e
−
∣∣Depth(i) − Depth(j)

∣∣
δ (3.17)

mean StDev Correlation matrix,“crmat”

Dist Name  vi µi σi µi
N σi

N (vi-µi
N)/σi

N

lognormal Cm 10.4815 10 1.50 9.872 1.563 0.390

lognormal φm 30.97643 30 3.00 29.830 3.090 0.371

lognormal γm 20.77315 20 1.00 19.959 1.038 0.784

lognormal Cu1 34.26899 40 6.00 39.187 5.112 -0.962

lognormal Cu2 22.87912 28 4.20 27.246 3.413 -1.279

lognormal Cu3 15.98835 20 3.00 19.390 2.385 -1.426

lognormal Cu4 15.83775 20 3.00 19.357 2.362 -1.490

lognormal Cu5 22.07656 26 3.90 25.442 3.293 -1.022

lognormal Cu6 34.59457 37 5.55 36.535 5.160 -0.376

nv

EqvN(...,1)

Array formula: Ctrl+Shift, then enter 1.961
PrFailβ

0.0249 =normsdist(-β)

Probability of failure

EqvN(...,2)

Function EqvN(Distributions Name, v, mean, StDev, code)
Select Case UCase(Trim(Distribution Name)) ‘trim leading/trailing spaces & convert to uppercase
Case “NORMAL”: If code = 1 Then EqvN = mean
  If code = 2 Then EqvN = StDev
Case “LOGNORMAL”: If v<0.000001 Then v=0.000001
  lamda = Log(mean) - 0.5* Log(1+(StDev/mean)∧2)
  If code=1 Then EqvN=v*(1-Log(v) +lamda)
  If code=2 Then EqvN=v*Sqr(Log(1+(StDev/mean)∧2))
End select
End Function
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Figure 3.13 Reliability analysis of the case in Figure 3.9, accounting for spatial variation of
undrained shear strength. The two templates are easily coupled by replacing
the values cm, φm, γm and the cu values of Figure 3.9 with formulas that point
to the values of the vi column of this figure.
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(Reliability analysis involving horizontal spatial variations of undrained
shear strengths and unit weights is illustrated in Low et al. 2007, for a clay
slope in Norway.)

Only normals and lognormals are illustrated. Unlike a widely documented
classical approach, there is no need to diagonalize the correlation matrix
(which is equivalent to rotating the frame of reference). Also, the iterative
computations of the equivalent normal mean (µN) and equivalent normal
standard deviation (σN) for each trial design point are automatic during the
constrained optimization search.

Starting with a deterministic critical noncircular slip surface of Figure 3.12,
the λ′ and F values of Figure 3.9 were reset to 0 and 1, respectively. The vi
values in Figure 3.13 were initially assigned their respective mean values.
The Solver routine in Microsoft Excel was then invoked to:

• Minimize the quadratic form (a 9-dimensional hyperellipsoid in original
space), i.e. cell “β.”

• By changing the nine random variables vi, the λ′ in Figure 3.9, and the 25
coordinate values x0, x2, x24, yb1, yb3 :yb23 of the slip surface. (F remains
at 1, i.e. at failure, or at limit state.)

• Subject to the constraints −1 ≤ λ′ ≤ 1, x0 ≥ H/tan(radians(�)), x0 ≥ x2,
x24 ≤ 0, yb3 :yb23 ≤ yt3 :yt23,

∑
Forces = 0,

∑
M = 0, and σ ′

1 :σ ′
24 ≥ 0.

The Solver option “Use automatic scaling” was also activated.

The β index is 1.961 for the case with lognormal variates (Figure 3.13).
The corresponding probability of failure based on the hyperplane assump-
tion is 2.49%. The reliability-based noncircular slip surface is shown in
Figure 3.14. The nine vi values in Figure 3.13 define the most probable
failure point, where the equivalent dispersion hyperellipsoid is tangent to
the limit state surface (F = 1) of the reliability-based critical slip surface.
At this tangent point the values of cu are, as expected, smaller than
their mean values, but the cm and φm values are slightly higher than
their respective mean values. This peculiarity is attributable to cm and φm
being positively correlated to the unit weight of the embankment γm, and
also reflects the dependency of tension crack depth hc (an adverse effect)
on cm, since the equation hc = 2cm/ (γm

√
Ka) is part of the model in

Figure 3.9.
By replacing “lognormal” with “normal” in the first column of

Figure 3.13, re-initializing column vi to mean values, and invoking Solver,
one obtains a β index of 1.857, with a corresponding probability of fail-
ure equal to 3.16%, compared with 2.49% for the case with lognormal
variates. The reliability-based noncircular critical slip surface of the case
with normal variates is practically indistinguishable from the case with log-
normal variates. Both are, however, somewhat different (Figure 3.14) from
the deterministic critical noncircular surface from which they evolved via
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Figure 3.14 Comparison of reliability-based critical noncircular slip surfaces (the two upper
curves, for normal variates and lognormal variates) with the deterministic
critical noncircular slip surface (the lower dotted curve).

Table 3.1 Reliability indices for the example case.

[Lognormal variates] [Normal variates]

Reliability index 1.961 1.857
(1.971)∗ (1.872)∗

Prob. of failure 2.49% 3.16%
(2.44%)∗ (3.06%)∗

∗ at deterministic critical noncircular surface

Table 3.2 Solver’s computing time on a computer.

F , for specified slip surface ≈ 0.3 s
F , search for noncircular surface 15 s
β , for specified slip surface 2 s
β , search for noncircular surface 20 s

25 degrees of freedom during Solver’s constrained optimization search. This
difference in slip surface geometry matters little, however, for the following
reason. If the deterministic critical noncircular slip surface is used for relia-
bility analysis, the β index obtained is 1.971 for the case with lognormals,
and 1.872 for the case with normals. These β values are only slightly
higher (<1%) than the β values of 1.961 and 1.857 obtained earlier with a
“floating” surface. Hence, for the case in hand, performing reliability anal-
ysis based on the fixed deterministic critical noncircular slip surface will
yield practically the same reliability index as the reliability-based critical slip
surface. Table 3.1 summarizes the reliability indices for the case in hand.
Table 3.2 compares the computing time.
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3.4.3 Deriving probability density functions from
reliability indices, and comparison with
Monte Carlo simulations

The reliability index β in Figure 3.13 has been obtained with respect to
the limit state surface defined by F = 1.0. The mean value point, repre-
sented by column µi, is located on the 1.253 factor-of-safety contour, as
calculated in the deterministic noncircular slip surface search earlier. A dis-
persion hyperellipsoid expanding from the mean-value point will touch
the limit state surface F = 1.0 at the design point represented by the
values in the column labeled vi. The probability of failure 2.49% approx-
imates the integration of probability density in the failure domain F ≤ 1.0.
If one defines another limit state surface F = 0.8, a higher value of β is
obtained, with a correspondingly smaller probability that F ≤ 0.8, reflect-
ing the fact that the limit state surface defined by F = 0.8 is further away
from the mean-value point (which is on the factor-of-safety contour 1.253).
In this way, 42 values of reliability indices (from positive to negative) cor-
responding to different specified limit states (from F = 0.8 to F = 1.8)
were obtained promptly using a short VBA code that automatically invokes
Solver for each specified limit state F. The series of β indices yields the
cumulative distribution function (CDF) of the factor of safety, based on
Pr[F ≤ FLimitState] ≈ 	(−β), where 	(.) is the standard normal cumula-
tive distribution function. The probability density function (PDF) plots in
Figure 3.15 (solid curves) were then obtained readily by applying cubic
spline interpolation (e.g. Kreyszig, 1988) to the CDF, during which pro-
cess the derivatives (namely the PDF) emerged from the tridiagonal spline
matrix. The whole process is achieved easily using standard spreadsheet
matrix functions. Another alternative was given in Lacasse and Nadim
(1996), which examined pile axial capacity, and approximated the CDF
by appropriate probability functions.

For comparison, direct Monte Carlo simulations with 20,000 realiza-
tions were performed using the commercial software @RISK with Latin
Hypercube sampling. The random variables were first assumed to be nor-
mally distributed, then lognormally distributed. The mean values, standard
deviations and correlation structure were as in Figure 3.13.

The solid PDF curves derived from the β indices agree remarkably well
with the Monte Carlo PDF curves (the dashed curves in Figure 3.15).

Using existing state-of-the-art personal computer, the time taken by Solver
to determine either the factor of safety F or the reliability index β of the
embankment in hand is as shown in Table 3.2.

The computation time for 20,000 realizations in Monte Carlo simula-
tions would be prohibitive (20,000×15 s, or 83 h) if a search for the
critical noncircular slip surface is carried out for each random set (cm, φm,
γm, and the cu values) generated. Hence the PDF plots of Monte Carlo
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Figure 3.15 Comparing the probability density functions (PDF) obtained from reliability
indices with those obtained from Monte Carlo simulations. “Normals” means
the nine input variables are correlated normal variates, and “Lognormals”
means they are correlated lognormal variates.

simulations shown in Figure 3.15 have been obtained by staying put at
the reliability-based critical noncircular slip surface found in the previous
section. In contrast, computing 42 values of β indices (with fresh non-
circular surface search for each limit state) will take only about 14 min.
Nevertheless, for consistency of comparison with the Monte Carlo PDF
plots, the 42 β values underlying each solid PDF curve of Figure 3.15
have also been computed based on the same reliability-based critical non-
circular slip surface shown in Figure 3.14. Thus it took about 1.4 min
(42×2 s) to produce each reliability indices-based PDF curve, but about
70 times as long (≈ 20,000 × 0.3 s) to generate each simulation-based
PDF curve. What-if scenarios can be investigated more efficiently using the
present approach of first-order reliability method than using Monte Carlo
simulations.

The probabilities of failure (F ≤ 1) from Monte Carlo simulations with
20,000 realizations are 2.41%± for lognormal variates, and 3.28%± for
normal variates. These compare well with the 2.49% and 3.16% shown in
Table 3.1. Note that only one β index value is needed to compute each prob-
ability of failure in Table 3.1. Only for PDF does one need about 30 or 40
β values of different limit states, in order to define the CDF, from which the
PDF are obtained.
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3.5 On the need for a positive definite
correlation matrix

Although the correlation coefficient between two random variables has a
range −1 ≤ ρij ≤ 1, one is not totally free in assigning any values within this
range for the correlation matrix. This was explained in Ditlevsen (1981: 85)
where a 3×3 correlation matrix with ρ12 = ρ13 = ρ23 = −1 implies a contra-
diction and is hence inconsistent. A full-rank (i.e. no redundant variables)
correlation matrix has to be positive definite. One may note that Hasofer–
Lind index is defined as the square-root of a quadratic form (Equation (3.5a)
or (3.5b)), and unless the quadratic form and its covariance matrix and cor-
relation matrix are positive-definite, one is likely to encounter the square root
of a negative entity, which is meaningless whether in the dispersion ellipsoid
perspective or in the perspective of minimum distance in the reduced variate
space.

Mathematically, a symmetric matrix R is positive definite if and only if
all the eigenvalues of R are positive. For present purposes, one can create
the equation QForm = uTR−1u side by side with β = √

(QForm). During
Solver’s searches, if the cell Qform shows negative value, it means that the
quadratic form is not positive definite and hence the correlation matrix is
inconsistent.

The Monte Carlo simulation program @RISK (http://www.palisade.com)
will also display a warning of “Invalid correlation matrix” and offer to
correct the matrix if simulation is run involving an inconsistent correlation
matrix.

That a full-rank correlation or covariance matrix should be positive def-
inite is an established theoretical requirement, although not widely known.
This positive-definiteness requirement is therefore not a limitation of the
paper’s proposed procedure.

The joint PDF of an n-dimensional multivariate normal distribution
is given by Equation (3.6a). The PDF has a peak at mean-value point
and decreasing ellipsoidal probability contours surrounding µ only if the
quadratic form and hence the covariance matrix and its inverse are positive
definite. (By lemmas of matrix theory: C positive definite implies C−1 is pos-
itive definite, and also means the correlation matrix R and its inverse are
positive definite.)

Without assuming any particular probability distributions, it is docu-
mented in books on multivariate statistical analysis that a covariance matrix
(and hence a correlation matrix) cannot be allowed to be indefinite, because
this would imply that a certain weighted sum of its variables has a negative
variance, which is inadmissible, since all real-valued variables must have
nonnegative variances. (The classical proof can be viewed as reduction ad
absurdum, i.e. a method of proving the falsity of a premise by showing that
the logical consequence is absurd.)
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An internet search using the Google search engine with “positive defi-
nite correlation matrix” as search terms also revealed thousands of relevant
web pages, showing that many statistical computer programs (in addi-
tion to the @RISK simulation software) will check for positive definiteness
of correlation matrix and offer to generate the closest valid matrix to
replace the entered invalid one. For example, one such web site titled
“Not Positive Definite Matrices – Causes and Cures” at http://www.gsu.
edu/∼mkteer/npdmatri.html refers to the work of Wothke (1993).

3.6 Finite element reliability analysis via response
surface methodology

Programs can be written in spreadsheet to handle implicit limit state func-
tions (e.g. Low et al., 1998; Low, 2003; and Low and Tang, 2004: 87).
However, there are situations where serviceability limit states can only be
evaluated using stand-alone finite element or finite difference programs. In
these circumstances, reliability analysis and reliability-based design by the
present approach can still be performed, provided one first obtains a response
surface function (via the established response surface methodology) which
closely approximates the outcome of the stand-alone finite element or finite
difference programs. Once the closed-form response functions have been
obtained, performing reliability-based design for a target reliability index is
straightforward and fast. Performing Monte-Carlo simulation on the closed
form approximate response surface function also takes little time. Xu and
Low (2006) illustrate the finite element reliability analysis of embankments
on soft ground via the response surface methodology.

3.7 Limitations and flexibilities of object-oriented
constrained optimization in spreadsheet

If equivalent normal transformation is used for first-order reliability method
involving nonnormal distributions other than the lognormal, it is neces-
sary to compute the inverse of the standard normal cumulative distributions
(Equations (3.7a) and (3.7b)). There is no closed form equation for this pur-
pose. Numerical procedures such as that incorporated in Excel’s NormSInv
is necessary. In Excel 2000 and earlier versions, NormSInv(CDF) returns
correct values only for CDF between about 0.00000035 and 0.99999965,
i.e. within about ±5 standard deviations from the mean. There are unde-
sirable and idiosyncratic sharp kinks at both ends of the validity range.
In EXCEL XP (2002) and later versions, the NormSInv (CDF) function
has been refined, and returns correct values for a much broader band of
CDF: 10−16 < CDF < (1 − 10−16), or about ±8 standard deviations from
the mean. In general, robustness and computation efficiency will be bet-
ter with the broader validity band of NormSInv(CDF) in Excel XP. This is
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because, during Solver’s trial solutions using the generalized reduced gradient
method, the trial x∗ values may occasionally stray beyond 5 standard devia-
tions from the mean, as dictated by the directional search, before returning
to the real design point, which could be fewer than 5 standard deviations
from the mean.

Despite its simple appearance, the single spreadsheet cell that contains the
formula for reliability index β is in fact a conglomerate of program routines.
It contains Excel’s built-in matrix operating routines “mmult,” “transpose,”
and “minverse,” which can operate on up to 50×50 matrices. The members
of the “nx” vector in the formula for β are each functions of their respec-
tive VBA codes in the user-created function EqvN (Figure 3.13). Similarly,
the single spreadsheet cell for the performance function g(x) can also con-
tain many nested functions (built-in, or user-created). In addition, up to 100
constraints can be specified in the standard Excel Solver. Regardless of their
complexities and interconnections, they (β index, g(x), constraints) appear as
individual cell objects on which Excel’s built-in Solver optimization program
performs numerical derivatives and iterative directional search using the gen-
eralized reduced gradient method as implemented in Lasdon and Waren’s
GRG2 code (http://www.solver.com/technology4.htm).

The examples of Low et al. (1998, 2001) with implicit performance func-
tions and numerical methods coded in Excel’s programming environment
involved correlated normals only, and have no need for the Excel NormSInv
function, and hence are not affected by the limitations of NormSInv in Excel
2000 and earlier versions.

3.8 Summary

This chapter has elaborated on a practical object-oriented constrained opti-
mization approach in the ubiquitous spreadsheet platform, based on the
work of Low and Tang (1997a, 1997b, 2004). Three common geotechni-
cal problems have been used as illustrations; namely, a bearing capacity
problem, an anchored sheet pile wall embedment depth design, and a
reformulated Spencer method. Slope reliability analyses involving spatially
correlated normal and lognormal variates were demonstrated, with search
for the critical noncircular slip surface. The Hasofer–Lind reliability index
was re-interpreted using the perspective of an expanding equivalent dis-
persion ellipsoid centered at the mean in the original space of the random
variables. When nonnormals are involved, the perspective is one of equiva-
lent ellipsoids. The probabilities of failure inferred from reliability indices are
in good agreement with those from Monte Carlo simulations for the exam-
ples in hand. The probability density functions (of the factor of safety) were
also derived from reliability indices using simple spreadsheet-based cubic
spline interpolation, and found to agree well with those generated by the far
more time-consuming Monte Carlo simulation method.
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The coupling of spreadsheet-automated cell-object oriented constrained
optimization and minimal macro programming in the ubiquitous spreadsheet
platform, together with the intuitive expanding ellipsoid perspective, ren-
ders a hitherto complicated reliability analysis problem conceptually more
transparent and operationally more accessible to practicing engineers. The
computational procedure presented herein achieves the same reliability index
as the classical first order reliability method (FORM) – well-documented in
Ang and Tang (1984), Madsen et al. (1986), Haldar and Mahadevan (1999),
Baecher and Christian (2003), for example – but without involving the con-
cepts of eigenvalues, eigenvectors, and transformed space, which are required
in a classical approach. It also affords possibilities yet unexplored or difficult
hitherto. Although bearing capacity, anchored wall and slope stability are
dealt with in this chapter, the perspectives and techniques presented could
be useful in many other engineering problems.

Although only correlated normals and lognormals are illustrated, the VBA
code shown in Figure 3.13 can be extended (Low and Tang, 2004 and 2007)
to deal with the triangular, the exponential, the gamma, the Gumbel, and
the beta distributions, for example.

In reliability-based design, it is important to note whether the mean-value
point is in the safe domain or in the unsafe domain. When the mean-value
point is in the safe domain, the distance from the safe mean-value point
to the most probable failure combination of parametric values (the design
point) on the limit state surface, in units of directional standard deviations,
is a positive reliability index. When the mean-value point is in the unsafe
domain (due to insufficient embedment depth of sheet pile wall, for example),
the distance from the unsafe mean-value point to the most probable safe
combination of parametric values on the limit state surface, in units of direc-
tional standard deviations, is a negative reliability index. This was shown
in Figure 3.7 for the anchored sheet pile wall example. It is also important
to appreciate that the correlation matrix, to be consistent, must be positive
definite.

The meaning of the computed reliability index and the inferred probability
of failure is only as good as the analytical model underlying the performance
function. Nevertheless, even this restrictive sense of reliability or failure is
much more useful than the lumped factor of safety approach or the partial
factors approach, both of which are also only as good as their analytical
models.

In a reliability-based design, the design point reflects sensitivities, standard
deviations, correlation structure, and probability distributions in a way that
prescribed partial factors cannot.

The spreadsheet-based reliability approach presented in this chapter
can operate on stand-alone numerical packages (e.g. finite element) via
the response surface method, which is itself readily implementable in
spreadsheet.
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The present chapter does not constitute a comprehensive risk assessment
approach, but it may contribute component blocks necessary for such a
final edifice. It may also help to overcome a language barrier that hampers
wider adoption of the more consistent Hasofer–Lind reliability index and
reliability-based design. Among the issues not covered in this chapter are
model uncertainty, human uncertainty, and estimation of statistical parame-
ters. These and other important issues were discussed in VanMarcke (1977),
Christian et al. (1994), Whitman (1984, 1996), Morgenstern (1995), Baecher
and Christian (2003), among others.
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Chapter 4

Monte Carlo simulation
in reliability analysis

Yusuke Honjo

4.1 Introduction

In this chapter, Monte Carlo Simulation (MCS) techniques are described in
the context of reliability analysis of structures. Special emphasis is placed
on the recent development of MCS for reliability analysis. In this context,
generation of random numbers by low-discrepancy sequences (LDS) and
subset Markov Chain Monte Carlo (MCMC) techniques are explained in
some detail. The background to the introduction of such new techniques is
also described in order for the readers to make understanding of the contents
easier.

4.2 Random number generation

In Monte Carlo Simulation (MCS), it is necessary to generate random num-
bers that follow arbitrary probability density functions (PDF). It is, however,
relatively easy to generate such random numbers once a sequence of uniform
random numbers in (0.0, 1.0) is given (this will be described in section 2.3).

Because of this, the generation of a sequence of random numbers in (0.0,
1.0) is discussed first in this section. Based on the historical developments,
the methods can be classified to pseudo random number generation and
low-discrepancy sequences (or quasi random number) generation.

4.2.1 Pseudo random numbers

Pseudo random numbers are a sequence of numbers that look like random
numbers by deterministic calculations. This is a suitable method for a
computer to generate a large number of reproducible random numbers and
is used commonly today (Rubinstein, 1981; Tsuda, 1995).
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Pseudo random numbers are usually assumed to satisfy the following
conditions:

1 A great number of random numbers can be generated instantaneously.
2 If there is a cycle in the generation (which usually exists), it should be

long enough to be able to generate a large number of random numbers.
3 The random numbers should be reproducible.
4 The random numbers should have appropriate statistical properties,

which can usually be examined by statistical testings, for example Chi
square goodness of fit test.

The typical methods of pseudo random number generation include the
middle-square method and linear recurrence relations (sometimes called the
congruential method).

The origin of the middle-square method goes back to Von Neumann, who
proposed generating a random number of 2a digits from xn of 2a digits
by squaring xn to obtain 4a digits number, and then cut the first and last
a digits of this number to obtain xn+1. This method, however, was found
to have relatively short cycle and also does not satisfy satisfactory statistical
condition. This method is rarely used today.

On the other hand, the general form of linear recurrence relations can be
given by the following equation:

xn+1 = a0xn + a1xn−1 + . . .+ ajxn−j + b (mod P) (4.1)

where mod P implies that xn+1 = a0xn + a1xn−1 + . . . + ajxn−j + b − Pkn,
and kn = [(xn+1 = a0xn + a1xn−1 + . . .+ ajxn−j + b)/P] denotes the largest
positive integer in (xn+1 = a0xn + a1xn−1 + . . .+ ajxn−j + b)/P.

The simplest form of Equation (4.1) may be given as

xn+1 = xn + xn−1 (mod P) (4.2)

This is called the Fibonacci method. If the generated random numbers are
2 digits integer and suppose the initial two numbers are x1 = 11 and x2 = 36,
and P = 100, the generated numbers are 47,83,30,14,43, . . ..

The modified versions of Equation (4.1) are multiplicative congruential
method and mixed congruential method, which are still popularly used, and
programs are easily available (see for example Koyanagi, 1989).

4.2.2 Low-discrepancy sequences (quasi random numbers)

One of the most important applications of MCS is to solve multi-dimensional
integration problems, which includes reliability analysis. The problem can be
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generally described as a multi-dimensional integration in a unit hyper cube:

I =
∫ 1

0
. . .

∫ 1

0
f (x)dx [x = (x1,x2, . . .xk)] (4.3)

The problem solved by MCS can be described as the following equation:

S(N) = 1
N

N∑
i=1

f (xi) (4.4)

where, xi’s are N randomly generated points in the unit hyper cube.

The error of |S(N) − I| is proportional to O(N− 1
2 ), which is related to

the sample number N. Therefore, if one wants to improve the accuracy of
the integration by one digit, one needs to increase the sample point number
100 times.

Around 1960, some mathematicians showed that, if one can generate the
points sequences with some special conditions, the accuracy can be improved
by O(N−1), or even O(N−2). Such points sequences were termed quasi
random numbers (Tsuda, 1995).

However, it was found later that quasi random numbers are not so effec-
tive, as the dimensions of the integration increase to more than 50. On the
other hand, there was much demand, especially in financial engineering,
to solve integrations of more than 1000 dimensions, which expedited
research in this area in 1990s.

One of the triggers that accelerated the research in this area was the
Koksma–Hlawka theorem, which related the convergence of the integration
and discrepancy of numbers generated in the unit hyper cube. According to
this theorem, the convergence of integration is faster as the discrepancy of
the points sequences is smaller. Based on this theorem, the main objective
of the research in the 1990s was to generate point sequences in the very
high dimensional hyper cube with as low discrepancy as possible. In other
words, how to generate point sequences with maximum possible uniformity
became the main target of the research. Such point sequences were termed
low-discrepancy sequences (LDS). In fact, LDS are point sequences that allow
the accuracy of the integration in k dimensions to improve in proportion to

O
(

(logN)k

N

)
or less (Tezuka, 1995, 2003).

Based on this development, the term LDS is more often used than quasi
random numbers in order to avoid confusion between pseudo and quasi
random numbers.

The discrepancy is defined as follows (Tezuka, 1995, 2003):

DN
(k) = supy∈[0,1]k

∣∣∣∣∣∣
#([0,y);N)

N
−

k∏
i=1

yi

∣∣∣∣∣∣ (4.5)
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Figure 4.1 Concept of discrepancy in 2-dimensional space.

where #([0,y];N) denotes number of points in [0,y). Therefore, DN
(k)

indicates discrepancy between the distribution of N points xn in the
k dimensional hyper cube [0,1]k from ideally uniform points distributions.

In Figure 4.1, discrepancy in 2-dimensional space is illustrated conceptu-
ally where N = 10. If the number of the points in a certain area is always in
proportion to the area rate, DN

(k) is 0, otherwise DN
(k) becomes larger as

points distribution is biased.
A points sequences xi is said to be LDS when it satisfies the conditions

below:

|S(N) − I| ≤ VfDN
(k) (4.6)

DN
(k) = c(k)

(logN)k

N

where Vf indicates the fluctuation of function f (x) within the domain of the
integration, and c(k) is a constant which only depends on dimension k.

Halton, Faure and Sobol’ sequences are known to be LSD. Various
algorithms are developed to generate LSD (Tezuka, 1995, 2003).

In Figure 4.2, 1000 samples generated by the mixed congruential method
and LSD are compared. It is understood intuitively from the figure that points
generated by LSD are more uniformly distributed.

4.2.3 Random number generation following arbitrary PDF

In this section, generation of random numbers following arbitrary PDF is
discussed. The most popular method to carry out this is to employ inverse
transformation method.
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Figure 4.2 (a) Pseudo random numbers by mixed congruential method and (b) point
sequences by LDS. 1000 generated sample points in 2-dimensional unit space.
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Figure 4.3 Concept of generation of random number xi by uniform random number ui
based on the inverse transformation.

Suppose X is a random variable whose CDF is FX(x) = p.
FX(x) is a non-decreasing function, and 0 ≤ p ≤ 1.0. Thus, the following

inverse transformation always exists for any p as (Rubinstein, 1981):

F−1
X (p) = min

[
x : FX(x) ≥ p

]
0 ≤ p ≤ 1.0 (4.7)

By using this inverse transformation, any random variable X that follows
CDF FX(x) can be generated based on uniform random numbers in (0,1)
(Figure 4.3).

X = F−1
X (U) (4.8)
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Some of the frequently used inverse transformations are summarized
below (Rubinstein, 1981; Ang and Tang, 1985; Reiss and Thomas, 1997).
Note that U is a uniform random variable in (0,1).

Exponential distribution:

FX(x) = 1 − exp[−λx] (x ≥ 0)

X = F−1
X (U) = −1

λ
ln(1 − U)

The above equation can be practically rewritten as follows:

X = F−1
X (U) = −1

λ
ln(U)

Cauchy distribution:

fX(x) = α

π{α2 + (x −λ)2} α > 0,λ > 0,−∞ < x < ∞

FX(x) = 1
2

+π−1tan−1
(

x −λ

α

)

X = F−1
X (U) = λ+α tan

[
π

(
U − 1

2

)]

Gumbel distribution:

FX(x) = exp
[−exp{−a(x − b)}] (−∞ < x < ∞)

X = F−1
X (U) = −1

a
ln
(−ln(U)

)+ b

Frechet distribution:

FX(x) = exp

[
−
(

ν

x − ε

)k
]

(ε < x < ∞)

X = F−1
X (U) = ν

(−ln(U)
)−1/k + ε
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Weibull distribution:

FX(x) = exp

[
−
(
ω− x
ω− ν

)k
]

(−∞ < x <ω)

X = F−1
X (U) = (ω− ν)

(
ln(U)

)1/k +ω

Generalized Pareto distribution:

FX(x) = 1 −
(

1 + γ
x −µ

σ

)−1/γ

(µ ≤ x)

X = F−1
X (U) = σ

γ

[
(1 − U)−γ − 1

]+µ

The normal random numbers, which are considered to be used most
frequently next to the uniform random numbers, do not have inverse trans-
formation in an explicit form. One of the most common ways to generate the
normal random numbers is to employ the Box and Muller method, which is
described below (see Rubinstein, 1981: 86–7 for more details).

U1 and U2 are two independent uniform random variables. Based on these
variables, two independent standard normal random numbers, Z1 and Z2
can be generated by using following equations:

Z1 = (−2 ln(U1))1/2 cos(2πU2) (4.9)

Z2 = (−2 ln(U1))1/2 sin(2πU2)

A program based on this method can be obtained easily from standard
subroutine libraries (e.g. Koyanagi, 1989).

4.2.4 Applications of LDS

In Yoshida and Sato (2005a), reliability analyses by MCS are presented,
where results by LDS and by OMCS (ordinary Monte Carlo simulation) are
compared. The performance function they employed is:

g(x,S) =
5∑

i=1

xi −
(
1 + x1

2500

)
S (4.10)

where xi are independent random variables which follow identically a log
normal distribution with mean 250 and COV 1.0.

The convergence of the failure probability with the number of simulation
runs are presented in Figure 4.4 for LSD and 5 OMCS runs (which are



176 Yusuke Honjo

10−2

10−3

Fa
ilu

re
 P

ro
ba

bi
lit

y

10−4

100 101 102

Number
103

LDS
Crude

Figure 4.4 Relationship between calculated Pf and number of simulation runs (Yoshida and
Sato, 2005a).

indicated by “Crude” in the figure). It is observed that LDS has faster
convergence than OMCS.

4.3 Some methods to improve the efficiency
of MCS

4.3.1 Accuracy of ordinary Monte Carlo Simulation
(OMCS)

We consider the integration of the following type in this section:

Pf =
∫

. . .

∫
I [g (x) ≤ 0] fX (x)dx (4.11)

where fX is the PDF of basic variables X, and I is an indicator function
defined below:

I (x) = 1 : g(x) ≤ 0

0 : g(x) > 0

The indicator function identifies the domain of integration. Function g(x)
is a performance function in reliability analysis, thus the integration provides
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the failure probability, Pf . Note that the integration is carried out on all the
domains where basic variables are defined.

When this integration is evaluated by MCS, Pf can be evaluated as follows:

Pf ≈ 1
N

N∑
j=1

I
[
g
(
xj

)
≤ 0
]

(4.12)

where xj is j-th sample point generated based on PDF fx().
One of the important aspects of OMCS is to find the necessary number of

simulation runs to evaluate Pf of required accuracy. This can be generally
done in the following way (Rubinstein, 1981: 115–18).

Let N be the total number of runs, and Nf be the ones which indicated
the failure. Then the failure probability Pf is estimated as:

P̂f = Nf

N
(4.13)

The mean and variance of Pf can be evaluated as:

E
[
P̂f

]
= 1

N
E
[
NF

]= NPf

N
= Pf (4.14)

Var
[
P̂f

]
= Var

[
Nf

N

]
= 1

N2 Var
[
Nf
]

= 1
N2 NPf

(
1 − Pf

)= 1
N

Pf
(
1 − Pf

)
(4.15)

Note that, here, these values are obtained by recognizing the fact that Nf
follows binominal distribution of N trials, where the mean and the variance
are given as NPf and NPf (1 − Pf ), respectively.

Suppose one wants to obtain a necessary number of simulation runs for

probability
∣∣∣Pf − P̂f

∣∣∣≤ ε to be more than 100α%:

Prob
[∣∣∣Pf − P̂f

∣∣∣ ≤ ε
]

≥ α (4.16)

On the other hand, the following relationship is given based on
Chebyshev’s inequality formula.

Prob
[∣∣∣Pf − P̂f

∣∣∣< ε
]

≥ 1 −
Var
[
P̂f

]
ε2 (4.17)
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From Equations (4.16) and (4.17), and using Equation (4.15), the
following relationship is obtained:

α ≤ 1 −
Var
[
P̂f

]
ε2 = 1 − 1

Nε2 Pf
(
1 − Pf

)
1 −α ≥ 1

Nε2 Pf
(
1 − Pf

)

N ≥ Pf
(
1 − Pf

)
(1 −α)ε2 (4.18)

Based on Equation (4.18), the necessary number of simulation runs, N, can
be obtained for any given ε and α. Let ε = δPf , and one obtains for N,

N ≥ Pf
(
1 − Pf

)
(1 −α)δ2P2

f

= (1/Pf ) − 1
(1 −α)δ2 ≈ 1

(1 −α)δ2Pf
(4.19)

The necessary numbers of simulation runs, N, are calculated in Table 4.1
for ε = 0.1Pf , i.e. δ = 0.1 and α = 0.95. In other words, N obtained in
this table ensures the error of Pf to be within ±10% for 95% confidence
probability.

The evaluation shown in Table 4.1 is considered to be very conservative,
because it is based on the very general Chebyshev’s inequality relationship.
Broding (Broding et al., 1964) gives necessary simulation runs as below
(Melchers, 1999):

N >
− ln(1 −α)

Pf
(4.20)

Table 4.1 Necessary number of simulation runs to evaluate Pf of required accuracy.

δ α Pf N by Chebyshev N by Bording

0.1 0.95 1.00E-02 200,000 300
1.00E-04 20,000,000 29,957
1.00E-06 2,000,000,000 2,995,732

0.5 0.95 1.00E-02 8,000 300
1.00E-04 800,000 29,957
1.00E-06 80,000,000 2,995,732

1.0 0.95 1.00E-02 2,000 300
1.00E-04 200,000 29,957
1.00E-06 20,000,000 2,995,732

5.0 0.95 1.00E-02 80 300
1.00E-04 8,000 29,957
1.00E-06 800,000 2,995,732
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where N is necessary number of simulation runs for one variable, α is given
confidence level and Pf is the failure probability. For example, if α = 0.95
and Pf = 10−3, the necessary N is, by Equation (4.20), about 3000. In the
case of more than one independent random variable, one should multiply
this number by the number of variables. N evaluated by Equation (4.20) is
also presented in Table 4.1.

4.3.2 Importance sampling (IMS)

As can be understood from Table 4.1, the required number of simulation runs
in OMCS to obtain Pf of reasonable confidence level is not small, especially
for cases of smaller failure probability. In most practical reliability analyses,
the order of Pf is of 10−4 or less, thus this problem becomes quite serious.
One of the MCS methods to overcome this difficulty is the Importance
Sampling (IMS) technique, which is discussed in this section.

Theory

Equation (4.11) to calculate Pf can be rewritten as follows:

Pf =
∫

. . .

∫
I[g(x) ≤ 0] fX(x)

hV (x)
hV (x)dx (4.21)

where v is a random variable following PDF hV .

Pf ≈ 1
N

⎧⎨
⎩

N∑
j=1

I[g(vj) ≤ 0] fX(vj)

hV (vj)

⎫⎬
⎭ (4.22)

where hV is termed the Importance Sampling function, and acts as a con-
trolling function for sampling. Furthermore, the optimum hV is known to
be the function below (Rubinstein, 1981: 122–4):

hV (v) = I [g(v) ≤ 0] fX(v)
Pf

(4.23)

This function hV (v), in the case of a single random variable, is illustrated
in Figure 4.5.

It can be shown that the estimation variance of Pf is null for the sampling
function hV (v) given in Equation (4.23). In other words, Pf can be obtained
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G(x ) = x − a

a
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Figure 4.5 An illustration of the optimum Importance Function in the case of a single
variable.

exactly by using this sample function as demonstrated below:

Pf =
∫ ∫

. . .

∫
I [g(x) ≤ 0]

fX(x)
hV (x)

hV (x)dx

=
∫ ∫

. . .

∫
I [g(x) ≤ 0] fX(x)

[
I [g(x) ≤ 0] fX(x)

Pf

]−1

hV (x)dx

= Pf

∫ ∫
...

∫
hV (x)dx = Pf

Therefore, Pf can be obtained without carrying out MCS if the importance
function of Equation (4.23) is employed.

However, Pf is unknown in practical situations, and the result obtained
here does not have an actual practical implication. Nevertheless, Equation
(4.23) provides a guideline on how to select effective important sampling
functions; a sampling function that has a closer form to Equation (4.23) may
be more effective. It is also known that if an inappropriate sampling func-
tion is chosen, the evaluation becomes ineffective and estimation variance
increases.

Selection of importance sampling functions in practice

The important region in reliability analyses is the domain where g(x) ≤ 0.
The point which has the maximum fX(x) in this domain is known as the
design point, which is denoted by x∗. One of the most popular ways to set
hV is to set the mean value of this function at this design point (Melcher,
1999). Figure 4.6 conceptually illustrates this situation.
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Figure 4.6 A conceptual illustration of importance sampling function set at the design point.

If g(x) is a linear function and the space is standardized normal space, the
sample points generated by this hV fall in the failure region by about 50%,
which is considered to give much higher convergence compared to OMCS
with a smaller number of sample points.

However, if the characteristic of a performance function becomes more
complex and also if the number of basic variables increases, it is not a sim-
ple task to select an appropriate sample function. Various so-called adaptive
methods have been proposed, but most of them are problem-dependent.
It is true to say that there is no comprehensive way to select an appro-
priate sample function at present that can guarantee better results in all
cases.

4.3.3 Subset MCMC (Markov Chain Monte Carlo) method

Introduction to the subset MCMC method

The subset MCMC method is a reliability analysis method by MCS proposed
by Au and Beck (2003). They combined the subset concept with the MCMC
method, which had been known as a very flexible MCS technique to generate
random numbers following any arbitrary PDF (see, for example, Gilks et al.,
1996). They combined these two concepts to develop a very effective MCS
technique for structural reliability analysis.

The basic concept of this technique is explained in this subsection, whereas
a more detailed calculation procedure is presented in the next subsection.
Some complementary mathematical proofs are presented in the appendix of
this chapter, and some simple numerical examples in subsection 4.3.3.
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Let F be a set indicating the failure region. Also, let F0 be the total set, and
Fi(I = 1, · · ·m) be subsets that satisfy the relationship below:

F0 ⊃ F1 ⊃ F2 ⊃ . . . ⊃ Fm ⊃ F (4.24)

where Fm is the last subset assumed in the Pf calculation. Note that the
condition Fm ⊃ F is always satisfied.

The failure probability can be calculated by using these subsets as follows:

Pf = P(F) = P(F | Fm)P(Fm | Fm−1) . . .P(F1 | F0) (4.25)

Procedure to calculate Pf by subset MCMC method

(1) Renewal of subsets

The actual procedure to set a subset is as follows, where zi = g(xi) is the
calculated value of a given performance function at sample point xi, Nt is
the total number of generated points in each subset, Ns are number of points
selected among Nt points from the smaller zi values, and Nf is number of
failure points (i.e. zi is negative.) in Nt. Also note that x used in this section
can be a random variable or a random vector that follows a specified PDF.

Step 1 In the first cycle, Nt points are generated by MCS that follow the
given PDF.

Step 2 Order the generated samples in ascending order by the value of zi
and select smaller Ns(< Nt) points. A new subset Fk+1 is defined by
the equation below:

Fk+1 =
{

x | z(x) ≤ zs + zs+1

2

}
(4.26)

Note that zi’s in this equation is assembled in ascending order. The
probability that a point generated in subset Fk+1 for points in subset
Fk is calculated to be P(Fk+1 | Fk) = Ns/Nt.

Step 3 By repeating Step 2 for a range of subsets, Equation (4.25) can be
evaluated.
Note that xi (i = 1, . . .Ns) are used as seed points in MCMC to
generate the next Nt samples, which implies that Nt/Ns samples
are generated from each of these seed points. In other words, Nt/Ns
points are generated from each seed point by MCMC.
Furthermore, the calculation is ceased when Nf reaches certain
number with respect to Nt.
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(2) Samples generation by MCMC

By MCMC method, Nt samples are generated in subset Fk+1. This method-
ology is described in this subsection.

Let π (x) be a PDF of x, that follows PDF fX(x) and yet conditioned to be
within the subset Fk. PDF π (x) is defined as follows:

π (x) = c · fX(x) · ID(x) (4.27)

where

ID(x) =
{

1 if (x ⊂ Fk)
0 otherwise

where c is a constant for PDF π to satisfy the condition of a PDF.
Points following this PDF π (x) can be generated by MCMC by the

following procedure (Gilks et al., 1996; Yoshida and Sato, 2005):

Step 1 Determine any arbitrary PDF q(x′ | xi), which is termed proposal
density. In this research, a uniform distribution having mean xi
and appropriate variance is employed. (The author tends to use
the variance of the original PDF to this uniform distribution. The
smaller variance tends to give higher acceptance rate (i.e. Equation
(4.29)), but requires more runs due to slow movement of the subset
boundary.)

Step 2 The acceptance probability α(x′,xi) is calculated. Then set xi+1 = x′
with probability α, or xi+1 = xi with probability 1 − α. The
acceptance probability α is defined as the following equation:

α(x′,xi) = min
{

1.0,
q(xi | x′) ·π (x′)
q(x′ | xi)π (xi)

}

= min
{

1.0,
q(xi | x′) · fX(x′) · ID(x′)

q(x′ | xi)fX(xi)

}
(4.28)

Equation (4.28) can be rewritten as below considering the fact that
q(x′ | xi) is a uniform distribution and point xi is certainly in the
subset under consideration:

α = min
{

1.0,
fX(x′) · ID(x′)

fX(xi)

}
(4.29)

Step 3 Repeat Step 2 for necessary cycles.
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Figure 4.7 A conceptual illustration of the subset MCMC method.

(3) Evaluation of the failure probability Pf

In this study, the calculation is stopped when Nf reaches certain number with
respect to Nt, otherwise the calculation in Step 2 is repeated for a renewed
subset which is smaller than the previous one.

Some of more application examples of the subset MCMC to geotechnical
reliability problems can be seen in Yoshida and Sato (2005b).

The failure probability can be calculated as below:

Pf = P (z < 0) =
{

Ns

Nt

}m−1 Nf

Nt
(4.30)

The mathematical proof of this algorithm is presented in the next
section.

The conceptual illustration of this procedure is presented in Figure 4.7.
It is understood that by setting the subsets, more samples are generated to
the closer region to the performance function, which is supposed to improve
the efficiency of MCS considerably compared to OMCS.

Examples of subset MCMC

Two simple reliability analyses are presented here to demonstrate the nature
of subset MCMC method.
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Figure 4.8 A calculation example of subset MCMC method when Z = R − S.

(1) An example on a linear performance function

The first example employs the simplest performance function Z = R – S.
The resistance R follows a normal distribution, N(7.0,1.0), whereas the
external force S, a normal distribution, N(3.0,1.0). The true value of the
failure probability of this problem is Pf = 2.34E − 03.

Figure 4.8 exhibits a calculation example of this reliability analysis. In this
calculation, Nt = 100, and two subsets are formed before the calculation is
ceased. It is observed that more samples are generated closer to the limit
state line as the calculation proceeds.

In order to examine the performance of subset MCMC method, the num-
ber of selected sample points to proceed to the next subset, Ns, and stopping
criteria of the calculation are altered. Actually, Ns is set to 2,5,10,20 or 50.
The stopping criteria are set based on the rate of Nf to Nt as Nf ≥
0.50,0.20,0.10 or 0.05Nt. Also a criterion Nf ≥ Ns is added. Nt is set
to 100 in all cases.

Table 4.2 lists the results of the calculation. 1000 calculations are made
for each case, where mean and COV of log10(calculated Pf )/ log10(truePf )
are presented.

In almost all cases, the means are close to 1.0, which exhibit very little
bias in the present calculation for evaluating Pf . COV seems to be somewhat
smaller, for case Ns is larger.
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Table 4.2 Accuracy of Pf estimation for Z = R − S.

Cutoff criterion Ns = 2 Ns = 5 Ns = 10 Ns = 20 Ns = 50

➀Nf � 0.02N Mean 0.992 0.995 0.997 0.976 0.943
Cov 0.426 0.448 0.443 0.390 0.351

➁Nf �0.05N Mean 0.995 0.993 0.989 0.989 0.971
Cov 0.428 0.378 0.349 0.371 0.292

➂Nf �0.10N Mean 1.033 0.994 0.991 0.985 0.985
Cov 0.508 0.384 0.367 0.312 0.242

➃Nf �0.20N Mean 1.056 1.074 1.006 0.993 0.990
Cov 0.587 0.489 0.348 0.305 0.165

➄Nf �0.50N Mean 1.268 1.111 1.056 1.020 0.996
Cov 0.948 0.243 0.462 0.319 0.162

Table 4.3 Number of performance function calls for Z = R − S example.

Cutoff criterion Ns = 2 Ns = 5 Ns = 10 Ns = 20 Ns = 50

➀Nf �0.02N Mean 171.9 188.1 207.7 232.9 343.2
s.d. 25.1 37.1 43.8 56.1 109.2

➁Nf �0.05N Mean 185.8 209.0 229.1 271.6 440.0
s.d. 31.3 56.2 44.5 54.0 88.2

➂Nf �0.10N Mean 202.9 221.8 251.8 299.0 506.6
s.d. 32.4 61.6 39.6 53.2 75.4

➃Nf �0.20N Mean 212.9 240.6 270.6 326.5 569.4
s.d. 31.2 48.6 38.9 48.0 68.1

➄Nf �0.50N Mean 226.0 258.0 293.0 361.1 654.7
s.d. 25.7 37.1 42.6 48.4 62.7

Table 4.3 presents a number of performance function calls in each case.
The mean and s.d. (standard deviation) of these numbers are shown. It is
obvious from this table that the numbers of the function calls increase as Ns
increases. It is understandable because as Ns increases, the speed of subsets
converging to the limit state line decreases, which makes the number of calls
larger.

As far as the present calculation is concerned, the better combination
of Ns and the stopping criterion seems to be around Ns = 20∼50 and
Nf ≥ 0.20∼0.50 Nt. However, the number of performance function calls
also increases considerably for these cases.

(2) An example on a parabolic performance function

The second example employs a parabolic performance function Z =
(R − 11.0)2 − (S − 6). The resistance R follows a normal distribution,
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Figure 4.9 A calculation example of subset MCMC method when Z = (R−11.0)2 − (S−6).

N(8.5,0.7072), whereas the external force S follows a normal distribution,
N(5.0,0.7072). The true value of the failure probability of this problem,
which is obtained by one million runs of OMCS, is Pf = 3.20E − 04.

Figure 4.9 exhibits a calculation example of this reliability analysis. In this
calculation, Nt = 100, and four subsets were formed before the calculation
was ceased. It is observed that more samples are generated closer to the
limit state line as the calculation proceeds, which is the same as for the first
example.

All the cases that have been calculated in the previous example are repeated
in this example as well, where Nt = 100.

Table 4.4 exhibits the same information as in the previous example. The
mean value is practically 1.0 in most of the cases, which suggests there is
little bias in the evaluation. On the other hand, COV tends to be smaller for
larger Ns.

Table 4.5 also provides the same information as the previous examples.
The number of function calls increases as Ns is set larger. It is difficult to
identify the optimum Ns and the stopping criterion.

4.4 Final remarks

Some of the recent developments in Monte Carlo simulation (MCS) tech-
niques, namely low-discrepancy sequences (LDS) and the subset MCMC
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Table 4.4 Accuracy of Pf estimation for Z = (R − 11.0)2 − (S − 6).

Cutoff criterion Ns = 2 Ns = 5 Ns = 10 Ns = 20 Ns = 50

➀Nf �0.02N Mean 1.097 1.101 1.078 1.069 0.997
Cov 1.027 0.984 0.839 0.847 0.755

➁Nf �0.05N Mean 1.090 1.092 1.071 1.056 1.002
Cov 0.975 0.924 0.865 0.844 0.622

➂Nf �0.10N Mean 1.135 1.083 1.055 1.051 1.024
Cov 1.056 0.888 0.857 0.737 0.520

➃Nf �0.20N Mean 1.172 1.077 1.089 1.054 1.013
Cov 1.129 0.706 0.930 0.777 0.387

➄Nf �0.50N Mean 1.309 1.149 1.160 1.100 0.997
Cov 1.217 0.862 1.015 0.786 0.366

Table 4.5 Number of performance function calls for Z = (R − 11.0)2 − (S − 6) example.

Cutoff criterion Ns = 2 Ns = 5 Ns = 10 Ns = 20 Ns = 50

➀Nf �0.02N Mean 217.3 250.1 282.5 341.6 551.5
s.d. 70.9 73.5 78.9 83.0 125.4

➁Nf �0.05N Mean 234.3 270.3 309.1 370.7 638.8
s.d. 51.9 62.8 79.4 67.8 111.3

➂Nf �0.10N Mean 245.7 286.6 323.5 399.9 712.4
s.d. 36.1 77.5 69.6 65.6 92.6

➃Nf �0.20N Mean 262.7 299.7 347.5 430.8 772.7
s.d. 62.1 84.8 73.2 90.8 88.0

➄Nf �0.50N Mean 267.9 318.7 370.3 467.3 842.7
s.d. 39.2 81.6 71.6 85.1 92.3

method, that are considered to be useful in structural reliability problems,
are highlighted in this chapter.

There are many other topics that need to be introduced for MCS in struc-
tural reliability analysis. These include generation of a three-dimensional
random field, MCS technique for code calibration and partial factors
determination.

It is the author’s observation that classic reliability analysis tools, such as
FORM, are now facing difficulties when applied to recent design methods
where the calculations become more and more complex and sophisticated.
On the other hand, our computational capabilities have progressed tremen-
dously compared to the time when these classic methods were developed.
We need to develop more flexible and more user-friendly reliability analysis
tools, and MCMS is one of the strong candidate methods to be used for
this purpose. More development, however, is still necessary to fulfill these
requirements.
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Appendix: Mathematical proof of MCMC by
Metropolis–Hastings algorithm

(1) Generation of random numbers by MCMC based
on Metropolis–Hastings algorithm

Let us generate x that follows PDF π (x). Note that x used in this section
can be a random variable or a random vector that follows the specified
PDF π (x).

Let us consider a Markov chain process x(t) → x(t+1). The procedure to
generate this chain is described as follows (Gilks et al., 1996):

Step 1 Fix an appropriate proposal density, which can generally be
described as:

q
(

x′∣∣x(t)
)

(4.31)

Step 2 Calculate the acceptance probability which is defined by the equa-
tion below:

α
(
x′;x(t)

)
= min

{
1,

q
(
x(t)
∣∣x′)π (x′)

q
(
x′|x(t)

)
π
(
x(t)
)
}

(4.32)

α is the acceptance probability in (0.0,1.0).
Step 3 x(t) is advanced to x(t+1) by the condition below based on the

acceptance probability calculated in the previous step:

x(t+1) =
{

x′ with probability α

x(t) with probability 1 −α

x(t+1) generated by this procedure surely depends on the previous step
value x(t).

(2) Proof of the Metropolis–Hastings algorithm

It is proved in this subsection that x generated following the procedure
described above actually follows PDF π (x). The proof is given in the three
steps:

1 First, the transition density, which is to show the probability to move
form x to x′ in this Markov chain, is defined:

p
(
x′∣∣x)= q

(
x′∣∣x)α (x′;x

)
(4.33)
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2 It is shown next that the transition density used in the Metropolis–
Hastings algorithm satisfies so-called detailed balance. This implies that
p(x′ | x) is reversible with respect to time:

p
(
x′∣∣x)π (x) = p

(
x|x′)π (x′) (4.34)

3 Finally, it is proved that generated sequences of numbers by this Markov
chain follow a stationary distribution π (x), which is expressed by the
following relationship:∫

p
(
x′∣∣x)π (x)dx = π

(
x′) (4.35)

It is proved here that the transition density used in Metropolis–Hastings
algorism satisfies the detailed balance:

It is obvious that Equation (4.34) is satisfied when x = x′.
When x �= x′,

p
(
x′∣∣x)π (x) = q

(
x′∣∣x)α (x′;x

)
π (x)

= q
(
x′∣∣x)min

{
1,

q (x|x′)π (x′)
q (x′|x)π (x)

}
π (x)

= min
{
q
(
x′∣∣x)π (x) ,q

(
x|x′)π (x′)} (4.36)

Therefore, p (x′|x)π (x) is symmetric with respect to x and x′. Thus,

p
(
x′∣∣x)π (x) = q

(
x′∣∣x)π (x′) (4.37)

From this relationship, the detailed balance of Equation (4.34) is proved.
Finally, the stationarity of generated x and x′ are proved based on the

detailed balance of Equation (4.34). This can be proved if the results below
are obtained.

x ∼ π (x)

x′ ∼ π
(
x′) (4.38)

This is equivalent to prove the stationarity of the Markov chain:∫
p
(
x′ | x

)
π (x)dx = π

(
x′) (4.39)

which is obtained as follows:∫
p
(
x′∣∣x)π (x)dx =

∫
p
(
x|x′)π (x′)dx

= π
(
x′)∫ p

(
x|x′)dx

= π
(
x′)
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Thus, a sequence of numbers generated by the Metropolis–Hastings algo-
rithm follow PDF π (x).
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Chapter 5

Practical application of
reliability-based design
in decision-making

Robert B. Gilbert, Shadi S. Najjar, Young-Jae Choi and
Samuel J. Gambino

5.1 Introduction

A significant advantage of reliability-based design (RBD) approaches is to
facilitate and improve decision-making. While the attention in RBD has
generally been focused on the format and calibration of design-checking
equations, the basic premise of a reliability-based design is that the tar-
get of the design should achieve an acceptable level of reliability. With this
premise in mind, designers and stakeholders can utilize a range of possible
alternatives in order to achieve the desired reliability. The objective of this
chapter is to present practical methods and information that can be used to
this end.

This chapter begins with a discussion of decision trees and decision
criteria. Next, the methods for conducting reliability analyses and the results
from reliability analyses are considered in the context of decision-making.
Finally, the calibration of mathematical models with data is addressed for
the purposes of reliability analyses and, ultimately, decision-making.

The emphasis in presenting the material in this chapter is on illustrat-
ing basic concepts with practical examples. These examples are all based
on actual applications where the concepts were used in solving real-world
problems to achieve more reliable and/or more cost-effective designs.

In order to provide consistency throughout the chapter, the examples are
intentionally narrowed in scope to the design of foundations for offshore
structures. For context, two types of structures are considered herein: fixed
jacket platforms and floating production systems. Fixed jackets consist of
a steel frame with legs supported at the sea floor with driven pipe piles
(Figure 5.1). Fixed jackets are used in water depths up to several hundred
meters with driven piles that are approximately 1 m in diameter and 100 m
long. Floating production systems consist of a steel hull moored to the sea
floor with 8–16 mooring lines anchored by steel caissons that are jacked
into the soil using under-pressure and are called suction caissons. Floating
systems are used in water depths of 1000 m or more with suction caissons
that are approximately 5 m in diameter and 30 m long. Both structures
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Figure 5.1 Schematic of typical offshore structures.

provide a platform for the production and processing of oil and gas offshore.
The structures typically cost between $100 million for jackets up to more
than $1 billion for floating systems, and the foundation can cost anywhere
from 5 to 50% of the cost of the structure.

5.2 Decision trees

Decision trees are a useful tool for structuring and making decisions
(Benjamin and Cornell, 1970; Ang and Tang, 1984). They organize the
information that is needed in making a decision, provide for a repeatable
and consistent process, allow for an explicit consideration of uncertainty and
risk, and facilitate communication both in eliciting input from stakeholders
to the decision and in presenting and explaining the basis for a decision.

There are two basic components in a decision tree: alternatives and
outcomes. A basic decision tree in reliability-based design is shown in
Figure 5.2 to illustrate these components. There are two alternatives, e.g. two
different pile lengths. For each alternative, there are two possible outcomes:
the design functions adequately, e.g. the settlements in the foundation do
not distress the structure; or it functions inadequately, e.g. the settlements
are excessive. In a decision tree, the alternatives are represented by limbs
that are joined by a decision node, while the outcomes are represented by
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limbs that are joined by an outcome node (Figure 5.2). The sequence of the
limbs from left to right indicates the order of events in the decision process.
In the example in Figure 5.2, the decision about the design alternative will
be made before knowing whether or not the foundation will function ade-
quately. Finally, the outcomes are associated with consequences, which are
expressed as costs in Figure 5.2.

The following examples, taken from actual projects, illustrate a variety of
applications for decision trees in RBD.

Design B

Design A

Functions
Inadequately

Outcome Node

Decision Node 

Inadequately

Adequately

Adequately

Functions

Functions

Functions

Consequences

Cost for
Construction

and Corrective 
Action

Cost for
Construction

and Corrective
Action

Cost for
Construction

Cost for
Construction

Figure 5.2 Basic decision tree.

Box 5.1 Example I – Decision tree for design of new facility

The combination of load and resistance factors to be used for the design of
a caisson foundation for a floating offshore structure was called into ques-
tion due to the unique nature of the facility: the loads on the foundation were
dominated by the sustained buoyant load of the structure versus transient
environmental loads, and the capacity of the foundation was dominated by
its weight versus the shear resistance of the soil. The design-build contractor
proposed to use a relatively small safety margin, defined as the ratio of the
load factor divided by the resistance factor, due to the relatively small uncer-
tainty in both the load and the capacity. The owner wanted to consider this
proposed safety margin together with a typical value for more conventional
offshore structures, which would be higher, and an intermediate value. The
two considerations in this decision were the cost of the foundation, which
was primarily affected by needing to use larger vessels for installation as the
weight and size of the caisson increased, and the cost associated with a pull-
out failure of the caisson if its capacity was not adequate. The decision tree
in Figure 5.3 shows the structure of decision alternatives and outcomes that
were considered.
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Box 5.1 cont’d

Relative Costs

Use Contractor’s Proposed
Safety Margin (Small)

No Caisson Failure

Caisson Failure

Use Intermediate Safety
Margin (Medium)

No Caisson Failure

Caisson Failure

No Caisson FailureUse Conventional Safety
Margin (High)

None(Base Case)

Facility Damage

Larger Foundation

Larger Foundation +
 Facility Damage

Largest Foundation

Largest Foundation +
Facility Damage Caisson Failure

Figure 5.3 Decision tree for Example I – Design of new facility.

5.3 Decision criteria

Once the potential alternatives have been established, through use of deci-
sion trees or by some other means, the criterion for making a decision among
potential alternatives should logically depend on the consequences for possi-
ble outcomes and their associated probabilities of happening. A rational and
defensible criterion to compare alternatives when the outcomes are uncer-
tain is the value of the consequence that is expected if that alternative is
selected (Benjamin and Cornell, 1970; Ang and Tang, 1984). The expected
consequence, E(C), is obtained mathematically as follows:

E (C) =
∑
allci

ciPC

(
ci

)
or

∫
allc

cfC (c)dc (5.1)

where C is a random variable representing the consequence and PC

(
ci

)
or

fC (c) is the probability distribution for c in discrete or continuous form,
respectively.

The consequences of a decision outcome generally include a variety of
attributes such as monetary value, human health and safety, environmental
impact, social and cultural impact, and public perception. Within the
context of expected consequence (Equation (5.1)), a simple approach to
accommodate multiple attributes is to assign a single value, such as a



Box 5.2 Example II – Decision tree for site investigation in mature field

The need for drilling geotechnical borings in order to design new structures in
a mature offshore field, where considerable geologic and geotechnical infor-
mation was already available, was questioned. The trade-off for not drilling
a site-specific boring was that an increased level of conservatism would be
needed in design to account for the additional uncertainty. The decision tree in
Figure 5.4 shows the structure of decision alternatives and outcomes that were
considered. In this case, the outcome of drilling the boring, i.e. the geotech-
nical design properties derived from the boring data, is not known before
drilling the boring. In addition, there is a range of possible design properties
that could be obtained from the boring, and therefore a range of possible pile
designs that would be needed for a given set of geotechnical properties. The
semi-circles in Figure 5.4 indicate that there is a continuous versus a discrete
set of possibilities at the outcome and decision nodes.

Relative Costs

No Pile Failure New Boring
Drill New Site-
Specific
Boring 

Geotechnical
Properties

Develop
Conventional

Design

Pile Failure 
New Boring + Facility Damage

No Pile Failure Added Conservatism in Design

Add
Conservatism

to Design 

Pile Failure

Use Available
Geotechnical
Information Added Conservatism in Design

+ Facility Damage 

Figure 5.4 Decision tree for Example II – Site investigation in mature field.

Box 5.3 Example III – Decision tree for pile monitoring in frontier field

The pile foundation for an offshore structure in a frontier area was designed
based on a preliminary analysis of the site investigation data. The geotechnical
properties of the site were treated in design as if the soil conditions were similar
to other offshore areas where the experience base was large. The steel was
then ordered. Subsequently, a more detailed analysis of the geotechnical prop-
erties showed that the soil conditions were rather unusual, calling into question



Box 5.3 cont’d

how the properties should be used in design and leading to relatively large
uncertainty in the estimated pile capacity. The owner was faced with a series
of decisions. First, should they stay with the original pile design or change it
given the uncertainty in the pile capacity, considering that changing the pile
design after the steel had been ordered would substantially impact the cost
and schedule of the project? Second, if they decided to stay with the original
pile design, should they monitor the installation to confirm the capacity was
acceptable, considering that this approach required a flexible contract where
the pile design may need to be updated after the pile is installed? The decision
tree in Figure 5.5 shows the structure of decision alternatives and outcomes
that were considered; all of the possibilities are shown for completeness even
though some, such as keeping the design in spite of evidence that the capacity
is unacceptable, could intuitively be ruled out.

Relative Costs
None (Base Case)No Pile Failure

Make Design More Conservative

Keep Original
Design

Acceptable
Capacity

Do Not Monitor Pile Driving

Monitor
Pile Driving

Unacceptable
Capacity

Facility Damage Pile Failure 
Keep

Design
No Pile Failure Monitoring + Contract Flexibility

Monitoring + Contract 
Flexibility + Facility Damage

Pile Failure 

Monitoring + Contract Flexibility
+  Design Change

No Pile Failure

Change
Design Monitoring + Contract Flexibility + 

Design Change + Facility DamagePile Failure 
No Pile Failure Monitoring + Contract FlexibilityKeep

Design Monitoring + Contract
Flexibility + Facility Damage

Pile Failure 

Monitoring + Contract Flexibility
+ Design Change 

No Pile FailureChange
Design Monitoring + Contract Flexibility +

Design Change + Facility Damage
Design Change 

Pile Failure 
No Pile Failure

Pile Failure Design Change + Facility Damage

Figure 5.5 Decision tree for Example III – Pile monitoring in frontier field.

Box 5.4 Decision criterion for Example I – Design of new facility

The decision tree for the design example described in Box 5.1 (Figure 5.3)
is completed in Figure 5.6 with information for the values and probabilities
of the consequences. The probabilities and costs for caisson failure corre-
spond to the event that the caisson will pull out of the mudline at some time
during the 20-year design life for the facility. The costs are reported as negative

Continued
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Box 5.4 cont’d

values in order to denote monetary loss. It is assumed that a caisson failure
will result in a loss of $500 million. The cost of redesigning and installing
the caisson to achieve an intermediate safety margin is $1 million, while the
cost of redesigning and installing the caisson to achieve a high safety margin is
$5 million. The cost of the caisson increases significantly if the highest safety
margin is used because a more costly installation vessel will be required. In
this example, the maximum expected consequence (or the minimum expected
cost) is obtained for the intermediate safety margin. Note that the contribution
of the expected cost of failure to the total expected cost becomes relatively
insignificant for small probabilities of failure.

Relative Costs (Millions $)

Use Contractor’s Proposed
Safety Margin (Small) 

No Caisson Failure 0
(0.99)

(0.01)E(C) = 0(0.99) – 500(0.01) = −$5 Million
−500Caisson Failure

−1No Caisson Failure
(0.999)

Use Intermediate Safety
Margin (Medium)

(0.001)E(C) = −1 – 500(0.001) = −$1.5 Million 
Caisson Failure −(1 + 500) 

No Caisson Failure
(0.9999)

−5Use Conventional Safety
Margin (High) 

(0.0001)E(C) = −5 – 500(0.0001) = −$5.05 Million
Caisson Failure −(5 + 500) 

Figure 5.6 Completed decision tree for Example I – Design of new facility.

monetary value, that implicitly considers all of the possible attributes for an
outcome.

A second approach to consider factors that cannot necessarily be directly
related to monetary value, such as human fatalities, is to establish tolerable
probabilities of occurrence for an event as a function of the consequences.
These tolerable probabilities implicitly account for all of the attributes
associated with the consequences. A common method of expressing this
information is on a risk tolerance chart, which depicts the annual probabil-
ity of occurrence for an event versus the consequences expressed as human
fatalities. These charts are sometimes referred to as F–N charts, where F
stands for probability or frequency of exceedance, typically expressed on an
annual basis, and N stands for number of fatalities (Figure 5.7). These charts
establish a level of risk, expressed by an envelope or line, which will be
tolerated by society in exchange for benefits, such as economical energy.



Practical application of RBD 199

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 10 100 1,000

Number of Fatalities (N)

Lower Bound
(Nuclear Power

Plants)

Target for Offshore
Structures

A
nn

ua
l P

ro
ba

bi
lit

y 
of

 In
ci

de
nt

s 
w

ith
 N

 o
r 

M
or

e 
F

at
al

iti
es

Upper Bound
(Industrial
Facilities)

Figure 5.7 Risk tolerance chart for an engineered facility.

The risk is considered acceptable if the combination of probability and conse-
quences falls below the envelope. Excellent discussions concerning the basis
for, applications of, and limitations with these types of charts are provided in
Fischhoff et al. (1981), Whitman (1984), Whipple (1985), ANCOLD (1998),
Bowles (2001), USBR (2003) and Christian (2004).

The chart on Figure 5.7 includes an upper and lower bound for risk
tolerance based on a range of F–N curves that have been published. The
lower bound (most stringent criterion) on Figure 5.7 corresponds to a pub-
lished curve estimating the risk tolerated by society for nuclear power plants
(USNRC, 1975). For comparison purposes, government agencies in both the
United States and Australia have established risk tolerance curves for dams
that are one to two orders of magnitude above the lower bound on Figure 5.7
(ANCOLD, 1998 and USBR, 2003). The upper bound (least stringent crite-
rion) on Figure 5.7 envelopes the risks that are being tolerated for a variety
of industrial applications, such as refineries and chemical plants, based on
published data (e.g. Whitman, 1984). As an example, the target levels of risk
that are used by the oil industry for offshore structures are shown as a shaded
rectangular box on Figure 5.7 (Bea, 1991; Stahl et al., 1998; Goodwin et al.,
2000).

The level of risk that is deemed acceptable for the same consequences on
Figure 5.7 is not a constant and depends on the type of facility. If expected
consequences are calculated for an event which results in a given number
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of fatalities, the points along the upper bound on Figure 5.7 correspond
to 0.1 fatalities per year and those along the lower bound correspond to
1 × 10−5 fatalities per year. Facilities where the consequences affect the
surrounding population versus on-site workers, i.e., the risks are imposed
involuntarily versus voluntarily, and where there is a potential for catas-
trophic consequences, such as nuclear power plants and dams, are generally
held to higher standards than other engineered facilities.

The risk tolerance curve for an individual facility may have a steeper slope
than one to one, which is the slope of the bounding curves on Figure 5.7.
A steeper slope indicates that the tolerable expected consequence in fatalities
per year decreases as the consequence increases. Steeper curves reflect an
aversion to more catastrophic events.

Expressing tolerable risk in terms of costs is helpful for facilities where
fatalities are not necessarily possible due to a failure. The Economist (2004)
puts the relationship between costs and fatalities at approximately, in order
of magnitude terms, $10,000,000 U.S. per fatality. For example, a typical
tolerable risk for an offshore structure is 0.001 to 0.1 fatalities per year
(shaded box Figure 5.7), which corresponds approximately to a tolerable
expected consequence of failure between $10,000 and $1,000,000 per year.
A reasonable starting point for a target value in a preliminary evaluation of
a facility is $100,000 per year.

The effect of time is not shown explicitly in a typical risk tolerance curve
since the probability of failure is expressed on an annual basis. However,
time can be included if the annual probabilities on Figure 5.7 are assumed to
apply for failure events that occur randomly with time, such as explosions,
hurricanes and earthquakes. Based on the applications for which these curves
were developed, this assumption is reasonable. In this way, the tolerability
curve can be expressed in terms of probability of failure in the lifetime of
the facility, meaning that failure events that may or may not occur randomly
with time can be considered on a consistent basis.

Box 5.5 Tolerable risk for Example I – Design of new facility

Revisiting the example for the design of a floating system in Boxes 5.1
and 5.4 (Figures 5.3 and 5.6), the event of “caisson failure” does not lead
to fatalities. The primary consequences for the failure of this very large and
expensive facility are the economic damage to the operator and the associated
negative perception from the public. In addition, the event of “caisson
failure” is not an event that occurs randomly with time over the 20-year
lifetime of the facility. The maximum load on the foundation occurs when
a maintenance operation is performed, which happens once every five years
of operation. The probability of “caisson failure” in Figure 5.6 corresponds
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Box 5.5 cont’d

to the probability that the caisson will be overloaded in at least one of these
operations over its 20-year life. The information on Figure 5.7 has been
re-plotted on Figure 5.8 for this example by assuming that incidents occur
randomly according to a Poisson process, e.g. an incident with an annual
probability of 0.001 per year on Figure 5.7 corresponds to probability of
occurrence of 1 − e−(0.001/year)(20 years) = 0.02 in 20 years. Figure 5.8 shows
that an acceptable probability of failure in the 20-year lifetime for this facility
is between 0.002 and 0.02. Therefore, the first design alternative on Figure 5.6
(use contractor’s proposed factor of safety (small) with a probability of caisson
failure equal to 0.01), would provide a level of risk that is marginal concerning
what would generally be tolerated.
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Figure 5.8 Risk tolerance chart for Example I – Design of floating system.

A third approach to consider factors in decision making that cannot nec-
essarily be directly related to monetary value is to use multi-attribute utility
theory (Kenney and Raiffa, 1976). This approach provides a rational and
systematic means of combining consequences expressed in different mea-
sures to be combined together into a single scale of measure, a utility value.
While flexible and general, implementation of multi-attribute utility theory
is cumbersome and not commonly used in engineering practice.
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5.4 Reliability analysis

Reliability analyses are an integral part of the decision-making process
because they establish the probabilities for outcomes in the decision trees
(e.g. the probability of caisson failure in Figure 5.6). The following sections
illustrate practical applications for relating reliability analyses to decision
making.

5.4.1 Simplified first-order analyses

The probability of failure for a design can generally be expressed as the prob-
ability that a load exceeds a capacity. A useful starting point for a reliability
analysis is to assume that the load on the foundation and the capacity of
the foundation are independent random variables with lognormal distribu-
tions. In this way, the probability of failure can be analytically related to
the first two moments of the probability distributions for the load and the
capacity. This simplified first-order analysis can be expressed in a convenient
mathematical form, as follows (e.g. Wu et al., 1989):

P
(
Load > Capacity

)∼= Φ

⎛
⎜⎝− ln

(
FSmedian

)
√
δ2

load + δ2
capacity

⎞
⎟⎠ (5.2)

where P(Load > Capacity) is the probability that the load exceeds the capac-
ity in the design life, which is also referred to as the lifetime probability of
failure; FSmedian is the median factor of safety, which is defined as the ratio
of the median capacity to the median load; δ is the coefficient of variation
(c.o.v.), which is defined as the standard deviation divided by the mean value
for that variable, and Φ () is the cumulative distribution function for a stan-
dard normal variable. The median factor of safety in Equation (5.2) can be
related to the factor of safety used in design as follows:

FSmedian = FSdesign ×

(
capacitymedian

capacitydesign

)
(

loadmedian

loaddesign

) (5.3)

where the subscript “design” indicates the value used to design the
foundation. The ratios of the median to design values represent biases
between the median value (or the most likely value since the mode equals the
median for a lognormal distribution) in the design life and the value that is
used in the design check with the factor of safety or with load and resistance
factors. The coefficients of variation in Equation (5.2) represent uncertainty
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in the load and the capacity. The denominator in Equation (5.2) is referred
to as the total coefficient of variation:

δtotal =
√
δ2

load + δ2
capacity (5.4)

An exact solution for Equation (5.2) is obtained if the denominator, i.e.,
the total c.o.v. in Equation (5.4), is replaced by the following expression:√

ln
(
1 + δ2

load

)+ ln
(
1 + δ2

capacity

)
; the approximation in Equation (5.2) is

reasonable for values of the individual coefficients of variation that are less
than about 0.3.

The relationship between the probability of failure and the median factor
of safety and total c.o.v. is shown in Figure 5.9. An increase in the median
factor of safety and a decrease in the total c.o.v. both reduce the probability
of failure.

5.4.2 Physical bounds

In many practical applications of reliability analyses, there are physical
bounds on the maximum load that can be applied to the foundation or
the minimum capacity that will be available in response to the load. It is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

T
ot

al
 c

.o
.v

.

Median FS

0.001

0.00001

0.0001

0.01Failure Probability = 0.1

0.000001

Fixed
Jackets

Floating Systems

Fixed
Jackets

Floating Systems

Figure 5.9 Graphical solutions for simplified first-order reliability analysis.
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Box 5.6 Reliability benchmarks for Example I – Design of new facility

In evaluating the appropriate level of conservatism for the design of a new
floating system, as described in Box 5.1 (Figure 5.3), it is important to con-
sider the reliability levels achieved for similar types of structures. Fixed steel
jacket structures have been used for more than 50 years to produce oil and gas
offshore in relatively shallow water depths up to about 200 m. In recent years,
floating systems have been used in water depths ranging from 1000 to 3000 m.
To a large extent, the foundation design methods developed for driven piles
in fixed structures have been applied directly to the suction caissons that are
used for floating systems.

For a pile in a fixed jacket with a design life of 20 years, the median factor
of safety is typically between three and five and the total c.o.v. is typically
between 0.5 and 0.7 (Tang and Gilbert, 1993). Hence, the resulting probabil-
ity of failure in the lifetime is on the order of 0.01 based on Figure 5.9. Note
that the event of foundation failure, i.e., axial overload of a single pile in the
foundation, does not necessarily lead to collapse of a jacket; failure probabil-
ities for the foundation system are ten to 100 times smaller than those for a
single pile (Tang and Gilbert, 1993).

For comparison, typical values were determined for the median factor of
safety and the total c.o.v. for a suction caisson foundation in a floating pro-
duction system with a 20-year design life (Gilbert et al., 2005a). The median
factor of safety ranges from three to eight. The median factor of safety tends
to be higher for the floating versus fixed systems for two reasons. First, a new
source of conservatism was introduced for floating systems in that the foun-
dations are checked for a design case where the structure is damaged (i.e.,
one line is removed from the mooring system). Second, the factors of safety
for suction caissons were generally increased above those for driven piles due
to the relatively small experience base with suction caissons. In addition to a
higher median factor of safety, the total c.o.v. value for foundations in floating
systems tends to be smaller, with values between 0.3 and 0.5. This decrease
compared to fixed jackets reflects that there is generally less uncertainty in
the load applied to a mooring system foundation compared to that applied to
a jacket foundation. The resulting probabilities of foundation failure tend to
be smaller for floating systems compared to fixed jackets by several orders of
magnitude (Figure 5.9). From the perspective of decision making, this simpli-
fied reliability analysis highlights a potential lack of consistency in how the
design code is applied to offshore foundations and provides insight into why
such an inconsistency exists and how it might be addressed in practice.

important to consider these physical bounds in decision making application
because they can have a significant effect on the reliability.

One implication of the significant role that a lower-bound capacity can
have on reliability is that information about the estimated lower-bound
capacity should possibly be included in design-checking equations for



Box 5.7 Lower-bound capacity for Example I – Design of new facility

In evaluating the appropriate level of conservatism for the design of a new
floating system, as described in Box 5.1 (Figure 5.3), it is important to con-
sider the range of possible values for the capacity of the caisson foundations.
A reasonable estimate of a lower-bound on the capacity for a suction caisson
in normally consolidated clay can be obtained using the remolded strength
of the clay to calculate side friction and end bearing. Based on an analysis
of load-test data for suction caissons, Najjar (2005) found strong statistical
evidence for the existence of this physical lower bound and that the ratio of
lower-bound capacities to measured capacities ranged from 0.25 to 1.0 with
an average value of 0.6.

The effect of a lower-bound capacity on the reliability of a foundation
for a floating production system is shown in Figure 5.10. The structure is
anchored with suction caisson foundations in a water depth of 2000 m; details
of the analysis are provided in Gilbert et al. (2005a). Design information
for the caissons is as follows: loadmedian/loaddesign = 0.7; δload = 0.14;
capacitymedian/capacitydesign = 1.3; and δcapacity = 0.3. The lognormal
distribution for capacity is assumed to be truncated at the lower-bound value
using a mixed lognormal distribution, where the probability that the capac-
ity is equal to the lower bound is set equal to the probability that the capacity is
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Figure 5.10 Effect of lower-bound capacity on foundation reliability for Example I –
Design of floating system.

Continued
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Box 5.7 cont’d

less than or equal to the lower bound for the non-truncated distribution. The
probability of failure is calculated through numerical integration.

The results on Figure 5.10 show the significant role that a lower-bound
capacity can have on the reliability. For a lower-bound capacity that is 0.6
times the median capacity, the probability of failure is more than 1000 times
smaller with the lower-bound than without it (when the ratio of the lower-
bound to median capacity is zero) for a design factor of safety of 1.5.

RBD codes. For example, an alternative code format would be to have two
design-checking equations:

φcapacitycapacitydesign ≥ γloadloaddesign

or

φcapacitylower bound
capacitylower bound ≥ γloadloaddesign

(5.5)

where φcapacity and γload are the conventional resistance and load factors,
respectively, and φcapacitylower bound

is an added resistance factor that is applied
to the lower-bound capacity. Provided that one of the two equations is satis-
fied, the design would provide an acceptable level of reliability. Gilbert et al.
(2005b) show that a conservative value of 0.75 for φcapacitylower bound

would
cover a variety of typical conditions in foundation design.

Box 5.8 Lower-bound capacity for Example III – Pile monitoring in frontier field

The example described in Box 5.3 (Figure 5.5) illustrates a practical applica-
tion where a lower-bound value for the foundation capacity provides valuable
information for decision-making. Due to the relatively large uncertainty in
the pile capacity at this frontier location, the reliability for this foundation
was marginal using the conventional design check even though a relatively
large value had been used for the design factor of safety, FSdesign = 2.25. The
probability of foundation failure in the design life of 20 years was slightly
greater than the target value of 1 × 10−3; therefore, the alternative of using
the existing design without additional information (the top design alternative
on Figure 5.5) was not acceptable. However, the alternative of supplementing
the existing design with information from pile installation monitoring would
only be economical if the probability that the design would need to be changed
after installation was small. Otherwise, the preferred alternative for the owner
would be to modify the design before installation.
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In general, pile monitoring information for piles driven into normal to
slightly overconsolidated marine clays cannot easily be related to the ultimate
pile capacity due to the effects of set-up following installation. The capacity
measured at the time of installation may only be 20–30% of the capacity after
set-up. However, the pile capacity during installation does, arguably, provide
a lower-bound on the ultimate pile capacity. In order to establish the proba-
bility of needing to change the design after installation, the reliability of the
foundation was related to the estimated value for the lower-bound capacity
based on pile driving, as shown on Figure 5.11. In this analysis, the pile capac-
ity estimated at the time of driving was considered to be uncertain; it was
modeled as a normally distributed random variable with a mean equal to the
estimated value and a coefficient of variation of 0.2 to account for errors in
the estimated value. The probability of foundation failure in the design life
was then calculated by integrating the lower-bound value over the range of
possible values for a given estimate. The result is shown in Figure 5.11. Note
that even though there is uncertainty in the lower-bound value, it still can have
a large effect on the reliability.

The expected value of driving resistance to be encountered and mea-
sured during installation is indicated by the arrow labeled “installation” in
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Figure 5.11 Reliability versus lower-bound capacity for Example III – Pile monitoring
in frontier field.
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Box 5.8 cont’d

Figure 5.11. While it was expected that the installation information would just
barely provide for an acceptable level of reliability (Figure 5.11), the conse-
quence of having to change the design at that point was very costly. In order
to provide greater assurance, the owner decided to conduct a re-tap analysis 5
days after driving. The arrow labeled “re-tap” in Figure 5.11 shows that this
information was expected to provide the owner with significant confidence
that the pile design would be acceptable. The benefits of conducting the re-tap
analysis were considered to justify the added cost.

5.4.3 Systems versus components

Nearly all design codes, whether reliability-based or not, treat foundation
design on the basis of individual components. However, from a decision-
making perspective, it is insightful to consider how the reliability of an
individual foundation component is related to the reliability of the overall
foundation and structural system.

Box 5.9 System reliability analysis for Example I – Design of new facility

The mooring system for a floating offshore facility, such as that described
in Box 5.1 (Figure 5.3), includes multiple lines and foundation anchors. The
results from a component reliability analysis are shown in Figure 5.12 for
a facility moored in three different water depths (Choi et al., 2006). These
results correspond to the most heavily loaded line in the system, where the
primary source of loading is from hurricanes. Each mooring line consists of
segments of steel chain and wire rope or polyester. The points labeled “rope &
chain” in Figure 5.12 correspond to a failure anywhere within the segments
of the mooring line, the points labeled “anchor” correspond to a failure at the
foundation, and the points labeled “total” correspond to a failure anywhere
within the line and foundation. The probability that the foundation fails is
about three orders of magnitude smaller than that for the line.

The reliability of the system of lines was also related to that for the most
heavily loaded line (Choi et al., 2006). In this analysis, the event that the
system fails is related to that for an individual line in two ways. First, the loads
will be re-distributed to the remaining lines when a single line fails. Second,
the occurrence of a single line failure indicates information about the loads on
the system; if a line has failed, it is more likely that the system is being exposed
to a severe hurricane (although it is still possible that the loads are relatively
small and the line capacity for that particular line was small). The results for
this analysis are shown in Figure 5.13, where the probability that the mooring
system fails is expressed as a conditional probability for the event that a
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single line in the system fails during a hurricane. For the mooring systems in
2000 and 3000 m water depths, the redundancy is significant in that there is
less than a 10% chance the system will fail even if the most heavily loaded line
fails during a hurricane. Also, the mooring system in the 1000 m water depth
has substantially less redundancy than those in deeper water.
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Figure 5.12 Comparison of component reliabilities for most heavily loaded line in
offshore mooring system.
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Box 5.9 cont’d

The results in Figures 5.12 and 5.13 raise a series of questions for
consideration by the writers of design codes.

(1) Is it preferable to have a system fail in the line or at the foundation? The
benefit of a failure in the foundation is that the weight of the foundation
attached to the line still provides a restoring force to the entire mooring
system even after it has pulled out from the seafloor. The cost of failure
in the foundation is that the foundation may cause collateral damage to
other facilities if it is dragged across the seafloor.

(2) Would the design be more effective if the reliability of the foundation
were brought closer to that of the line components? It is costly to design
foundations that are significantly more conservative than the line. In
addition to the cost, a foundation design that is excessively conserva-
tive may pose problems in constructability and installation due to its
large size.

(3) Should the reliability for individual lines and foundations be consistent
for different water depths?

(4) Should the system reliability be consistent for the different water
depths?

(5) How much redundancy should be achieved in the mooring system?

5.5 Model calibration

The results from a reliability analysis need to be realistic to be of practical
value in decision-making. Therefore, the calibration of mathematical models
with real-world data is very important.

A general framework for calibrating a model with a set of data is obtained
from the following assumptions.

• The variation for an individual measurement about its mean value is
described by a Hermite Polynomial transformation of a standard normal
distribution, which can theoretically take on any possible shape as the
order of the transformation approaches infinity (Journel and Huijbregts,
1978; Wang, 2002).

• The relationship between an individual data point with other data points
is described by a linear correlation.

• The shape of the Hermite Polynomial transformation is consistent
between data points, i.e., affine correlation as described in Journel and
Huijbregts (1978).
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In mathematical terms, the probability distribution to describe variations
between a single measurement yi and a model of that measurement, Yi, is
described by a mean value, a standard deviation, correlation coefficients,
and a conditional probability distribution:

µYi
= gµ

(
xYi

,θ1, . . .,θnµ

)
(5.6)

σYi
= gσ

(
xYi

,µYi
,θnµ+1, . . .,θnµ+nσ

)
(5.7)

ρYi,Yj
= gρ

(
xYi

,xYj
,θnµ+nσ+1

, . . .,θnµ+nσ+nρ

)
(5.8)

FYi|y1,...,yi−1

(
yi

∣∣y1, . . .,yi−1
)= gF

(
xYi

,µYi|y1,...,yi−1
,σYi|y1,...,yi−1

,

θnµ+nσ+nρ+1, . . .,θnµ+nσ+nρ+nF

)
(5.9)

where µYi
is the mean value and gµ () is a model with nµ model param-

eters, θ1, . . .,θnµ, that relate the mean to attributes of the measurement,
xYi

; σYi
is the standard deviation and gσ () is a model with nσ model

parameters, θnµ+1, . . .,θnµ+nσ
, that relate the standard deviation to attributes

and the mean value of the measurement; ρYi,Yj
is the correlation coeffi-

cient between measurements i and j and gρ () is a model with nρ model
parameters, θnµ+nσ+1, . . .,θnµ+nσ+nρ

, that relate the correlation coefficient to

the attributes for measurements i and j; and FYi|y1,...,yi−1

(
yi

∣∣y1, . . .,yi−1
)

is
the cumulative distribution function for measurement i conditioned on the
measurements y1 to yi−1 and gF () is a model with nF model parameters,
θnµ+nσ+nρ+1, . . .,θnµ+nσ+nρ+nF

, that relate the cumulative distribution func-
tion to the data attributes and the conditional mean value, µYi|y1,...,yi−1

, and
standard deviation, σYi|y1,...,yi−1

, which are obtained from the mean values,
standard deviations and correlations coefficients for measurements 1 to i
and the measurements y1 to yi−1. The nF model parameters in gF () are the
coefficients in the Hermite Polynomial transformation function, where the
order of the transformation is nF + 1:

gF

(
xYi

,µYi|y1,...,yi−1
,σYi|y1,...,yi−1

,θnµ+nσ+nρ+1, . . .,θnµ+nσ+nρ+nF

)

=
∫

ϕ(u)≤
yi −µYi|y1,...,yi−1

σYi|y1,...,yi−1

1√
2π

e− 1
2 u2

du (5.10)
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where

ϕ (u) =

[
H1 (u) +

nF+1∑
m=2

ψm
m! Hm (u)

]

−
√

1 +
nF+1∑
m=2

ψ2
m

m!

=
y −µYi|y1,...,yi−1

σYi|y1,...,yi−1

(5.11)

in which ψm are polynomial coefficients that are expressed as model
parameters, ψm = θnµ+nσ+nρ+m−1, and Hm (u) are Hermite polynomials:
Hm+1 (u) = −uHm (u)−mHm−1 (u) with H0 (u) = 1 and H1 (u) = −u. The
practical implementation of Equation (5.10) involves first finding all of

the intervals of u in Equation (5.11) where ϕ (u) ≤ yi−µYi|y1,...,yi−1
σYi|y1,...,yi−1

and then

integrating the standard normal distribution over those intervals. If the
data points are assumed to follow a normal distribution, then the order

of the polynomial transformation is one, nF = 0, ϕ (u) = u = y−µYi|y1,...,yi−1
σYi|y1,...,yi−1

,

and FYi|y1,...,yi−1

(
yi

∣∣y1, . . .,yi−1
)=	 (u) where 	 (u) is the standard normal

function.
The framework described above contains nθ = nµ + nσ + nρ + nF model

parameters, θ1, . . .,θnµ+nσ+nρ+nF
, that need to be estimated or calibrated

based on available information. It is important to bear in mind that these
model parameters have probability distributions of their own since they are
not known with certainty. For a given set of measurements, the calibration
of the various model parameters follows a Bayesian approach

f�1,...,�nθ |y1,...,yn

(
θ1, ...,θnθ

∣∣y1, . . .,yn

)
(5.12)

=
P
(
y1, . . .,yn

∣∣∣θ1, . . .,θnθ

)
f�1,...,�nθ

(
θ1, . . .,θnθ

)
P
(
y1, . . .,yn

)
where f�1,...,�nθ |y1,...,yn

(
θ1, . . .,θnθ

∣∣y1, . . .,yn

)
is the calibrated or updated

probability distribution for the model parameters, P
(
y1, . . .,yn

∣∣∣θ1, . . .,θnθ

)
is

the probability of obtaining this specific set of measurements for a given set

of model parameters, and f�1,...,�nθ

(
θ1, . . .,θnθ

)
is the probability distribu-

tion for the model parameters based on any additional information that is
independent of the measurements. The probability of obtaining the mea-

surements, P
(
y1, . . .,yn

∣∣∣θ1, . . .,θnθ

)
, can include both point measurements

as well as interval measurements such as proof loads or censored values



Practical application of RBD 213

(Finley, 2004). While approximations exist for solving Equation (5.12) (e.g.
Gilbert, 1999), some form of numerical integration is generally required.

The information from model calibration can be used in decision making
in two ways. First, the calibrated distribution from Equation (5.12) provides
models that are based on all available information at the time of making a
decision; uncertainty in the calibrated parameters can be included directly
in the decision since the model parameters are represented by a probability
distribution and not deterministic point estimates. Second, the effect and
therefore value of obtaining additional information before making a decision
(e.g. Figure 5.4) can be assessed.

Box 5.10 Probability distribution of capacity for Example I – Design of new facility

The probability distribution for axial pile capacity plays an important role in
reliability-based design, such as described in Box 5.1, because it dictates the
probability of foundation failure due to overloading. A database of pile load
tests with 45 driven piles in clay was analyzed by Najjar (2005) to investi-
gate the shape of the probability distribution. First, a conventional analysis
was conducted on the ratio of measured to predicted capacity, where the dis-
tribution for this ratio was assumed to be lognormal. Individual data points
were assumed to be statistically independent. In terms of the framework pre-
sented in Equations (5.6) through (5.11), the attribute for each data point, xi,
is the predicted capacity; the function gµ () is µInYi

= ln
(
θ1xi
)
; the function

gσ () is σlnYi
=
√

ln
(
1 + θ2

2

)
; the data points are statistically independent, i.e.,

the correlation coefficients between data points are zero; and the cumulative
distribution function for lnYi, gF (), is a normal distribution with mean µlnYi
and standard deviation σlnYi

. Therefore, there are two model parameters to
be calibrated with the data, θ1 and θ2.

In calibrating the model parameters with Equation (5.12), the only infor-
mation used was the measured data points in the load test database; i.e.,
f�1,�2

(
θ1,θ2

)
is taken as a non-informative diffuse prior distribution. The cal-

ibrated expected values for θ1 and θ2 from the updated probability distribution
obtained with Equation (5.12) are 0.96 and 0.24, respectively. The resulting
probability distribution is shown on Figure 5.14 and labeled “conventional
lognormal.”

In Boxes 5.7 and 5.8, the effect of a lower bound on the pile capacity was
shown to be significant. In order to investigate the existence of a lower-bound
value, an estimate for a lower-bound capacity was established for each data
point based on the site-specific soil properties and pile geometry. Specifically,
remolded undrained shear strengths were used to calculate a lower-bound
capacity for driven piles in normally consolidated to slightly overconsolidated

Continued
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Figure 5.14 Calibrated probability distributions for axial pile capacity.

clays and residual drained shear strengths and at-rest conditions were used to
calculate a lower-bound capacity for driven piles in highly overconsolidated
clays (Najjar, 2005). For all 45 data points, the measured capacity was above
the calculated value for the lower-bound capacity. To put this result in per-
spective, the probability of obtaining this result if the distribution of capacity
really is a lognormal distribution (with a lower bound of zero) is essentially
zero, meaning that a conventional lognormal distribution is not plausible.

The model for the probability distribution of the ratio of measured to pre-
dicted capacity was therefore refined to account for a more complicated shape
than a simple lognormal distribution. The modifications are the following: an
additional attribute, the predicted lower-bound capacity, is included for each
data point; and a 7th-order Hermite Polynomial transformation is used as a
general model for the shape of the probability distribution. In terms of Equa-
tions (5.6) through (5.11), the attributes for each data point are the predicted
capacity, x1,i, and the calculated lower-bound capacity, x2,i; the function gµ ()
is µYi

= θ1x1,i; the function gσ () is σYi
= θ2µYi

; the correlation coefficients
between data points were zero; and the cumulative distribution function for
lnYi, gF (), is obtained by combining Equations (5.11) and (5.12) as follows

FY
(
yi
)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 yi < x2,i

Φ
(
ui
)
where

H1
(
ui
)+ 7∑

m=2

θm+1
m! Hm

(
ui
)

−
√√√√1 +

7∑
m=2

θ2
m+1
m!

= yi −µYi

σYi

yi ≥ x2,i

(5.13)
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Therefore, there are now eight model parameters to be calibrated with the
data, θ1 to θ8.

The calibrated expected values for the model parameters from the updated
probability distribution obtained with Equation (5.12) are θ1 = 0.96,
θ2 = 0.26, θ3 = −0.289, θ4 = 0.049, θ5 = −0.049, θ6 = 0.005, θ7 = 0.05, and
θ8 = 0.169. The resulting probability distribution is shown on Figure 5.14 and
labeled “Hermite polynomial transformation.”

There are two practical conclusions from this calibrated model. First, the
left-hand tail of the calibrated distribution with the 7th-order Hermite Poly-
nomial transformation is substantially different than that for the conventional
lognormal distribution (Figure 5.14). This difference is significant because it
is the lower percentiles of the distribution for capacity, say less than 10%,
which govern the probability of failure. Second, truncating the conventional
lognormal distribution at the calculated value for the lower-bound capacity
provides a reasonable and practical fit to the more complicated 7th-order
Hermite Polynomial transformation.

Box 5.11 Value of new soil boring for Example II – Site investigation in mature field

A necessary input to the decision about whether or not to drill an additional soil
boring in a mature field, as described in Box 5.2 and illustrated in Figure 5.4,
is a model describing spatial variability in pile capacity across the field. The
geology for the field in this example is relatively uniform marine clays that
are normally to slightly overconsolidated. The available data are soil borings
where the geotechnical properties were measured and a design capacity was
determined. Two types of soil borings are available, modern borings where
high-quality soil samples were obtained and older borings where soil samples
were of lower quality. Pile capacity for these types of piles is governed by side
shear capacity.

The model for the spatial variability in design pile capacity, expressed in
terms of the average unit side shear over a length of pile penetration, is given
by Equations (5.14) through (5.17):

µYi
=
(
θ1 + θ2x1,i + θ3x2

1,i

)
ex2,i θ4 (5.14)

where Yi is the average unit side shear, which is the total capacity due to side
shear divided by the circumference of the pile multiplied by its length, x1,i, is
the penetration of the pile, and x2,i is 0 for modern borings and 1 for older

Continued
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borings (the term ex2,i θ4 accounts for biases due to the quality of soil samples);

σYi
= eθ4ex2,i θ5 (5.15)

where the term eθ4 accounts for a standard deviation that does not depend
on pile penetration and that is non-negative, and the term ex2,i θ5 accounts for
any effects on the spatial variability caused by the quality of the soil samples,
including greater or smaller variability;

ρYi,Yj
=
⎛
⎝e

−
√(

x3,i−x3,j
)2+(x4,i−x4,j

)2/(eθ6+x1,ieθ7
)⎞⎠e

−∣∣x2,i−x2,j
∣∣/eθ8

(5.16)

where x3,i and x4,i are the coordinates describing the horizontal position

of boring i, the term e
−
√(

x3,i−x3,j
)2+(x4,i−x4,j

)2/(eθ6+x1,ieθ7
)

accounts for a
positive correlation between nearby borings that is described by a positive cor-

relation distance of eθ6 +x1,ie
θ7 , and the term e−∣∣x2,i−x2,j

∣∣/eθ8 accounts for a
smaller positive correlation between borings with different qualities of samples
than those with the same qualities of samples; and the probability distribution
for the average side friction is modeled by a normal distribution

FYi|y1,...yi−1

(
yi
∣∣y1, . . .yi−1

)= Φ

(
yi −µYi|y1,...yi−1

σYi|y1,...yi−1

)
(5.17)

Therefore, there are eight parameters to be calibrated with the data, θ1 to θ8.
The detailed results for this calibration are provided in Gambino and Gilbert
(1999).

Before considering the decision at hand, there are several practical
conclusions that can be obtained from the calibrated model in its own right.
The expected values for the mean and standard deviation of average unit
side shear from modern borings are 98 kPa and 7.2 kPa, respectively. The
coefficient of variation for pile capacity is then 7.2/98 or 0.07, meaning that
the magnitude of spatial variability in pile capacity across this field is relatively
small. The expected horizontal correlation distance is shown with respect to
pile penetration in Figure 5.15; it is on the order of thousands of meters and
it increases with pile penetration. The expected bias due to older soil borings
is equal to 0.91 (ex2,iθ4 in Equation (5.14)), meaning that designs based on
older borings tend to underestimate the pile capacity that would be obtained
from a modern boring. Also, the expected effect on the spatial variability due
to older soil borings is to reduce the standard deviation by 0.86 (ex2,iθ5 ) in
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Figure 5.15 Calibrated horizontal correlation distance for pile capacities between
borings.

Equation (5.15), meaning that the data from the older soil borings tends to
mask some of the naturally occurring spatial variations that are picked up
with modern borings, thereby reducing the apparent standard deviation. Fur-
thermore, the expected correlation coefficient between an older boring and a

modern boring at the exact same location is 0.58 (e−∣∣x2,i−x2,j
∣∣/eθ8 in Equa-

tion (5.16) and notably less than the ideal value of 1.0, meaning that it is not
possible to deterministically predict the pile capacity obtained from a modern
boring by using information from an older boring.

The results for this calibrated model are illustrated in Figures 5.16a and
5.16b for an example 4000 m × 4000 m block in this field. Within this block,
there are two soil borings available: a modern one and an older one at the
respective locations shown in Figures 5.16a and 5.16b. The three-dimensional
surface shown in Figure 15.16a denotes the expected value for the calculated
design capacity at different locations throughout the block. The actual design
pile capacities at the two boring locations are both above the average for the
field (Figure 5.16a). Therefore, the expected values for the design pile capac-
ity at other locations of an offshore platform within this block are above
average; however, as the location moves further away from the existing bor-
ings, the expected value tends toward the unconditional mean for the field,
approximately 30 MN.

The uncertainty in the pile capacity due to not having a site-specific,
modern soil boring is expressed as a coefficient of variation on Figure 5.16b.

Continued
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Figure 5.16a Expected value for estimated pile capacity versus location for a 100 m
long, 1 m diameter steel pipe pile.

At the location of the modern boring, this c.o.v. is zero since a modern boring
is available at that location and the design capacity is known. However, at the
location of the older boring, the c.o.v. is greater than zero since the correlation
between older and modern borings is not perfect (Figure 5.16b); therefore, even
though the design capacity is known at this location, the design capacity that
would have been obtained based on a modern soil boring is not known. As
the platform location moves away from both borings, the c.o.v. approaches
the unconditional value for the field, approximately 0.075.

The final step is to put this information from the calibrated model for spatial
variability into the decision tree in Figure 5.4. The added uncertainty in not
having a site-specific, modern boring is included in the reliability analysis by
adding uncertainty to the capacity; the greater the uncertainty, the lower the
reliability for the same set of load and resistance factors in a reliability-based
design code. In order to achieve the same reliability as if a modern soil boring
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Figure 5.16b Coefficient of variation for estimated pile capacity versus location for
a 100 m long, 1 m diameter steel pipe pile.

were available, the resistance factor needs to be smaller, as expressed in the
following design check format:

φspatial

(
φcapacitycapacitydesign

)
≥ γloadloaddesign (5.17)

where φspatial is a partial resistance factor that depends on the magnitude
of spatial variability obtained from Figure 5.16b and the design capacity
is obtained from Figure 5.16a. Figure 5.17 shows the relationship between
φspatial and the coefficient of variation due to spatial variability for the
following assumptions: design capacity is normally distributed with a c.o.v. of
0.3 when a site-specific boring is available; load is normally distributed with
a c.o.v. of 0.5; and the target probability of failure for the pile foundation
is 6 × 10−3 (Gilbert et al., 1999). To use this chart, a designer would first

Continued
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Figure 5.17 Partial resistance factor versus coefficient of variation for spatial
variability.

quantify the spatial variability as a c.o.v. value using the approach described
above, as shown in Figure 5.16b. The designer would then read the corre-
sponding partial resistance factor directly from Figure 5.17 as a function
of this c.o.v. due to spatial variability. When there is not additional uncer-
tainty because a modern soil boring is available at the platform location
(i.e., the c.o.v. due to spatial variability is 0), the partial resistance factor
is 1.0 and does not affect the design. As the c.o.v. due to spatial variability
increases, the partial resistance factor decreases and has a larger effect on the
design.

The information in Figures 5.16a, 5.16b, and 5.17 can be combined together
to support the decision-making process. For example, consider a location in the
block where the c.o.v. due to spatial variability is 0.06 from Figure 5.16b. The
required partial resistance factor to account for this spatial variability is 0.95,
or 95% of the design capacity could be relied upon in this case compared
to what is expected if a site-specific boring is drilled. Since pile capacity is
approximately proportional to pile length over a small change in length, this
reduction in design capacity is roughly equivalent to a required increase in pile
length of about 5%. Therefore, the cost of drilling a site-specific boring could
be compared to the cost associated with increasing the pile lengths by 5% in
the decision tree in Figure 5.4 to decide whether or not to drill an additional
soil boring.



Practical application of RBD 221

5.6 Summary

There can be considerable value in using the reliability-based design
approach to facilitate and improve decision-making. This chapter has
demonstrated the practical potential of this concept. Several different levels
of decisions were addressed:

• project-specific decisions, such as how long to make a pile foundation
or how many soil borings to drill;

• design code decisions, such as what resistance factors should be used;
and

• policy decisions, such as what level of reliability should be achieved for
components and systems in different types of facilities.

An emphasis has been placed on first establishing what is important in the
context of the decisions that need to be made before developing and applying
mathematical tools. An emphasis has also been placed on practical meth-
ods to capture the realistic features that will influence decision-making. It is
hoped that the real-world examples described in this chapter motivate the
reader to consider how the role of decision making can be utilized in the
context of reliability-based design for a variety of different applications.

Acknowledgments

We wish to acknowledge gratefully the following organizations for support-
ing the research and consulting upon which this paper is based: American
Petroleum Institute, American Society of Civil Engineers, BP, ExxonMobil,
National Science Foundation, Offshore Technology Research Center, Shell,
State of Texas Advanced Research and Technology Programs, Unocal, and
United States Minerals Management Service. In many cases, these organiza-
tions provided real-world problems and data, as well as financial support.
We would also like to acknowledge the support of our colleagues and
students at The University of Texas at Austin. The views and opinions
expressed herein are our own and do not reflect any of the organizations,
parties or individuals with whom we have worked.

References

ANCOLD (1998). Guidelines on Risk Assessment. Working Group on Risk Assess-
ment, Australian National Committee on Large Dams, Sydney, New South Wales,
Australia.

Ang, A. A-S. and Tang, W. H. (1984). Probability Concepts in Engineering Plan-
ning and Design, Volume II – Decision, Risk and Reliability. John Wiley & Sons,
New York.



222 R. B. Gilbert et al.

Bea, R. G. (1991). Offshore platform reliability acceptance criteria. Drilling
Engineering, Society of Petroleum Engineers, June, 131–6.

Benjamin, J. R. and Cornell, C. A. (1970). Probability, Statistics, and Decision for
Civil Engineers. McGraw-Hill, New York.

Bowles, D. S. (2001). Evaluation and use of risk estimates in dam safety
decisionmaking. In Proceedings, Risk-Based Decision-Making in Water Resources,
ASCE, Santa Barbara, California, 17 pp.

Choi, Y. J., Gilbert, R. B., Ding, Y. and Zhang, J. (2006). Reliability of
mooring systems for floating production systems. Final Report for Minerals
Management Service, Offshore Technology Research Center, College Station,
Texas, 90 pp.

Christian, J. T. (2004). Geotechnical engineering reliability: how well do we know
what we are doing? Journal of Geotechnical and Geoenvironmental Engineering,
ASCE, 130 (10), 985–1003.

Finley, C. A. (2004). Designing and analyzing test programs with censored data
for civil engineering applications. Ph.D. dissertation, The University of Texas at
Austin.

Fischhoff, B., Lichtenstein, S., Slovic, P., Derby, S. L. and Keeney, R. L. (1981).
Acceptable Risk. Cambridge University Press, Cambridge.

Gambino, S. J. and Gilbert, R.B. (1999). Modeling spatial variability in pile capacity
for reliability-based design. Analysis, Design, Construction and Testing of Deep
Foundations, ASCE Geotechnical Special Publication No. 88, 135–49.

Gilbert, R. B. (1999). First-order, second-moment bayesian method for data analysis
in decision making. Geotechnical Engineering Center Report, Department of Civil
Engineering, The University of Texas at Austin, Austin, Texas, 50 pp.

Gilbert, R. B., Gambino, S. J. and Dupin, R. M. (1999). Reliability-based approach
for foundation design without with-specific soil borings. In Proceedings, Off-
shore Technology Conference, Houston, Texas, OTC 10927 Society of Petroleum
Engineers, Richardson, pp. 631–40.

Gilbert, R. B., Choi, Y. J., Dangyach, S. and Najjar, S. S. (2005a). Reliability-based
design considerations for deepwater mooring system foundations. In Proceed-
ings, ISFOG 2005, Frontiers in Offshore Geotechnics, Perth, Western Australia.
Taylor & Francis, London, pp. 317–24.

Gilbert, R. B., Najjar, S. S. and Choi, Y. J. (2005b). Incorporating lower-bound
capacities into LRFD codes for pile foundations. In Proceedings, Geo-Frontiers,
Austin, TX, ASCE, Virginia, pp. 361–77.

Goodwin, P., Ahilan, R. V., Kavanagh, K. and Connaire, A. (2000). Integrated
mooring and riser design: target reliabilities and safety factors. In Proceedings,
Conference on Offshore Mechanics and Arctic Engineering, New Orleans, The
American Society of Mechanical Engineers (ASME), New York, 785–92.

Journel, A. G. and Huijbregts, Ch. J. (1978). Mining Geostatistics. Academic Press,
San Diego.

Kenney, R. L. and Raiffa, H. (1976). Decision with Multiple Objectives: Preferences
and Value Tradeoffs. John Wiley and Sons, New York.

Najjar, S. S. (2005). The importance of lower-bound capacities in geotech-
nical reliability assessments. PhD. dissertation, The University of Texas at
Austin.



Practical application of RBD 223

Stahl, B., Aune, S., Gebara, J. M. and Cornell, C. A. (1998). Acceptance criteria for
offshore platforms. In Proceedings, Conference on Offshore Mechanics and Arctic
Engineering, OMAE98-1463.

Tang, W. H. and Gilbert, R. B. (1993). Case study of offshore pile system reliability.
In Proceedings, Offshore Technology Conference, OTC 7196, Houston, Society
of Petroleum Engineers, pp. 677–83.

The Economist (2004). The price of prudence. A Survey of Risk, 24 January, 6–8.
USBR (2003). Guidelines for Achieving Public Protection in Dam Safety Decision

Making. Dam Safety Office, United States Bureau of Reclamation, Denver, CO.
USNRC (1975). Reactor safety study: an assessment of accident risks in U.S. com-

mercial nuclear power plants. United States Nuclear Regulatory Commission,
NUREG-75/014, Washington, D. C.

Wang, D. (2002). Development of a method for model calibration with non-normal
data. PhD dissertation, The University of Texas at Austin.

Whipple, C. (1985). Approaches to acceptable risk. In Proceedings, Risk-Based Deci-
sion Making in Water Resources, Ed. Y. Y. Haimes, and E.Z. Stakhiv, ASCE,
New York, CA, pp. 31–45.

Whitman, R. V. (1984). Evaluating calculated risk in geotechnical engineering.
Journal of Geotechnical Engineering, ASCE, 110(2), 145–88.

Wu, T. H., Tang, W. H., Sangrey, D. A. and Baecher, G. (1989). Reliability of offshore
foundations. Journal of Geotechnical Engineering, ASCE, 115(2), 157–78.



Chapter 6

Randomly heterogeneous soils
under static and dynamic
loads

Radu Popescu, George Deodatis and Jean-Hervé Prévost

6.1 Introduction

The values of soil properties used in geotechnical engineering and geome-
chanics involve a significant level of uncertainty arising from several sources
such as: inherent random heterogeneity (also referred to as spatial variabil-
ity), measurement errors, statistical errors (due to small sample sizes), and
uncertainty in transforming the index soil properties obtained from soil tests
into desired geomechanical properties (e.g. Phoon and Kulhawy, 1999). In
this chapter, only the first source of uncertainty will be examined (inher-
ent random heterogeneity), as it can have a dramatic effect on soil response
under loading (in particular soil failure), as will be demonstrated in the fol-
lowing. As opposed to lithological heterogeneity (which can be described
deterministically), the aforementioned random soil heterogeneity refers to
the natural spatial variability of soil properties within geologically distinct
layers. Spatially varying soil properties are treated probabilistically and are
usually modeled as random fields (also referred to as stochastic fields). In the
last decade or so, the probabilistic characteristics of the spatial variability
of soil properties have been quantified using results of various sets of in-situ
tests.

The first effort in accounting for uncertainties in the soil mass in geotech-
nical engineering and geomechanics problems involved the random variable
approach. According to this approach, each soil property is modeled by
a random variable following a prescribed probability distribution function
(PDF). Consequently, the soil property is constant over the analysis domain.
This approach allowed the use of established deterministic analysis meth-
ods developed for uniform soils, but neglected any effects of their spatial
variability. It therefore reduced the natural spatial variation of soil prop-
erties to an uncertainty in their mean values only. This rather simplistic
approach was quickly followed by a more sophisticated one modeling the
spatial heterogeneity of various soil properties as random fields. This became
possible from an abundance of data from in-situ tests that allowed the
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establishment of various probabilistic characteristics of the spatial variability
of soil properties.

In the last decade or so, a series of papers have appeared in the litera-
ture dealing with the effect of inherent random soil heterogeneity on the
mechanical behavior of various problems in geomechanics and geotechnical
engineering using random field theory. A few representative papers are men-
tioned here grouped by the problem examined: (1) foundation settlements:
Brzakala and Pula (1996), Paice et al. (1996), Houy et al. (2005); (2) soil
liquefaction: Popescu et al. (1997, 2005a,b), Fenton and Vanmarke (1998),
Koutsourelakis et al. (2002), Elkateb et al. (2003), Hicks and Onisiphorou
(2005); (3) slope stability: El Ramly et al. (2002, 2005), Griffiths and Fenton
(2004); and (4) bearing capacity of shallow foundations: Cherubini (2000),
Nobahar and Popescu (2000), Griffiths et al. (2002), Fenton and Griffiths
(2003), Popescu et al. (2005c). The methodology used in essentially all of
these studies was Monte Carlo Simulation (MCS).

First-order reliability analysis approaches (see e.g. Christian (2004) for
a review), as well as perturbation/expansion techniques, postulate the exis-
tence of an “average response” that depends on the average values of the
soil properties. This “average response” is similar to that obtained from
a corresponding uniform soil having properties equal to the average prop-
erties of the randomly variable soil. The inherent soil variability (random
heterogeneity) is considered to induce uncertainty in the computed response
only as a random fluctuation around the “average response.” For exam-
ple, in problems involving a failure surface, it is quite common to assume
that the failure mechanism is deterministic, depending only on the average
values of the soil properties. More specifically, in most reliability analyses
of slopes involving spatially variable soil, deterministic analysis methods
are first used to estimate the critical slip surface (corresponding to a mini-
mum factor of safety and calculated assuming uniform soil properties). After
that, the random variability of soil properties along this pre-determined
slip surface is used in the stochastic analysis (e.g. El Ramly et al., 2002,
2005).

In contrast to the type of work mentioned in the previous paragraph,
a number of recent MCS-based studies that did not impose any restric-
tions on the type and geometry of the failure mechanism (e.g. Paice et al.,
1996, for foundation settlements; Popescu et al., 1997, 2005a,b, for soil
liquefaction; Griffiths and Fenton, 2004, for slope stability; and Popescu
et al., 2005c, for bearing capacity of shallow foundations) observed that
the inherent spatial variability of soil properties can significantly modify
the failure mechanism of spatially variable soils, compared to the corre-
sponding mechanism of uniform (deterministic) soils. For example, Focht
and Focht (2001) state that “the actual failure surface can deviate from
its theoretical position to pass through weaker material so that the average
mobilized strength is less than the apparent average strength.” The deviation
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of the failure surface from its deterministic configuration can be dramatic,
as there can be a complete change in the topology of the surface. Further-
more, the average response of spatially variable soils (obtained from MCS)
was observed to be significantly different from the response of the corre-
sponding uniform soil. For example, Paice et al. (1996) predicted an up to
12% increase in average settlements for an elastic heterogeneous soil with
coefficient of variation CV = 42%, compared to corresponding settlements
of a uniform soil deposit with the same mean soil properties. Nobahar and
Popescu (2000) and Griffiths et al. (2002) found a 20–30% reduction in the
mean bearing capacity of heterogeneous soils with CV = 50%, compared
to the corresponding bearing capacity of a uniform soil with the same aver-
age properties. Popescu et al. (1997) predicted an increase of about 20% in
the amount of pore-water pressure build-up for a heterogeneous soil deposit
with CV = 40%, compared to the corresponding results of uniform soil
with the same mean properties. It should be noted that the effects of spatial
variability were generally stronger for phenomena governed by highly non-
linear constitutive laws (such as bearing capacity and soil liquefaction) than
for phenomena governed by linear laws (e.g. settlements of foundations on
elastic soil).

This chapter discusses the effects of inherent spatial variability (random
heterogeneity) of soil properties on two very different phenomena: bearing
capacity failure of shallow foundations under static loads and seismically
induced soil liquefaction. The first implies a limit equilibrium type of failure
involving a large volume of soil, while the second is based on a micro-scale
(soil grain level) mechanism. Based on results of numerical work previously
published by the authors, it is shown that the end effects of spatial variability
on limit loads are qualitatively similar for both phenomena.

The probabilistic characteristics of the spatial variability of soils are briefly
discussed in the first part of this chapter. A general MCS approach for
geotechnical systems exhibiting random variation of their properties is also
presented. The second part focuses on the effects of inherent soil spatial
variability. Based on examples dealing with the bearing capacity of shallow
foundations and seismically induced soil liquefaction, it is shown that the
spatial variability of soil properties can change the soil behavior from the
well known theoretical results obtained for uniform (deterministic) soils dra-
matically. The mechanisms of this intriguing behavior are analyzed in some
detail and interpreted using experimental and numerical evidence. It is also
shown that, in some situations, the resulting factors of safety and failure
loads for randomly heterogeneous soils can be considerably lower than the
corresponding ones determined from some current reliability approaches
used in geotechnical engineering, with potentially significant implications
for design. The concept of characteristic values or “equivalent uniform” soil
properties is discussed in the last part of the chapter as a means of accounting
for the effects of soil variability in practical applications.
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6.2 Representing the random spatial variability of
soil properties

The natural heterogeneity in a supposedly homogeneous soil layer may be
due to small-scale variations in mineral composition, environmental condi-
tions during deposition, past stress history, variations in moisture content,
etc. (e.g. Tang, 1984; Lacasse and Nadim, 1996). From a geotechnical design
viewpoint, this small-scale heterogeneity is manifested as spatial variation of
relevant soil properties (such as relative density, shear strength, hydraulic
conductivity, etc.).

An example of soil spatial variability is presented in Figure 6.1 in terms of
recorded cone tip resistance values in a number of piezocone (CPTu) profiles,
performed for core verification at one of the artificial islands (namely: Tarsiut
P-45) constructed in the Canadian Beaufort Shelf and used as drilling plat-
forms for oil exploration in shallow waters (Gulf Canada Resources, 1984).
The cone tip resistance qc is directly related to shear strength and to liq-
uefaction potential of sandy soils. The profiles shown in Figure 6.1 were
located on a straight line at 9 m center-to-center distances. Those records
are part of a more extended soil investigation program consisting of 32
piezocone tests, providing an almost uniform coverage of the area of inter-
est (72 m×72 m). The soil deposit at Tarsuit P-45 consists of two distinct
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Figure 6.2 Standard Penetration Test results from a 2D measurement array in the Tokyo
Bay area, Japan (after Popescu et al., 1998a).

layers: an upper layer termed the “core” and a base layer termed the “berm”
(see e.g. Popescu et al., 1998a, for more details). Selected qc records from
the core are shown in Figure 6.1. Records from both layers are shown in
Figure 6.3a.

A second example is presented in Figure 6.2 in terms of Standard
Penetration Test (SPT) results recorded at a site in the Tokyo Bay area,
Japan, where an extended in situ soil test program had been performed for
liquefaction risk assessment. A two-dimensional measurement array consist-
ing of 24 standard penetration test profiles was performed in a soil deposit
formed of three distinct soil layers (Figure 6.2b): a fine sand with silt inclu-
sions, a silty clay layer, and a dense to very dense sand layer. The results
shown in Figure 6.2a represent stress normalized SPT blowcounts (N1)60,
recorded in the dense sand layer in 12 of the profiles. Results from all soil
layers are shown in Figure 6.3b.
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c. Probability density functions fitted to normalized fluctuations of recorded data
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Figure 6.3 In-situ penetration test results at two sites (after Popescu et al., 1998a) and cor-
responding fitted probability distribution functions for the normalized data (zero
mean, unit standard deviation): (a) cone penetration resistance from 8 CPT
profiles taken at an artificial island in the Beaufort Sea (Gulf Canada Resources,
1984); (b) normalized standard penetration data from 24 borings at a site in the
Tokyo Bay area involving a natural soil deposit; (c) fitted PDFs to normalized
fluctuations of field data. Thick straight lines in (a) and (b) represent average
values (spatial trends).

It can be easily observed from Figures 6.1 and 6.2 that soil shear strength –
which is proportional to qc and (N1)60 – is not uniform over the test area but
varies from one location to another (both in the horizontal and vertical direc-
tions). As deterministic descriptions of this spatial variability are practically
impossible – owing to the prohibitive cost of sampling and to uncertainties
induced by measurement errors (e.g. VanMarcke, 1989) – it has become
standard practice today in the academic community to model this small
scale random heterogeneity using stochastic field theory. The probabilistic
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characteristics of a stochastic field describing spatial variability of soil
properties are briefly discussed in the following.

6.2.1 Mean value

For analysis purposes, the inherent spatial variability of soil properties
is usually separated into an average value and fluctuations about it (e.g.
VanMarcke, 1977; DeGroot and Baecher, 1993). The average values of cer-
tain index soil properties (e.g. qc) are usually assumed to vary linearly with
depth (e.g. Rackwitz, 2000), reflecting the dependence of shear strength on
the effective confining stress. They are usually called “spatial trends” and
can be estimated from a reasonable amount of in-situ soil data (using, for
example, a least square fit). In a 2D representation, denoting the horizontal
and vertical coordinates by x and z, respectively, the recorded qc values are
expressed as:

qc(x,z) = qav
c (z) + uf (x,z) (6.1)

where uf(x,z) are the random fluctuations around the spatial trend qav
c (z).

Assuming isotropy in the horizontal plane, extension to 3D is straightfor-
ward. The spatial trends qav

c (z) are shown in Figures 6.1 and 6.3a,b by
thick straight lines, representing a linear increase with depth of the aver-
age recorded index values qc and (N1)60. It is mentioned that the thick lines
in all plots in Figure 6.1 correspond to the same trend for all profiles (one
average calculated from all records). Several authors (e.g. Fenton, 1999b;
El-Ramly et al., 2002) note the importance of correct identification of the
spatial trends. Phoon and Kulhawy (2001) state that “detrending is as much
an art as a science” and recommend using engineering judgment.

6.2.2 Degree of variability

The degree of variability – or equivalently the magnitude of the random
fluctuations around the mean values – is quantified by the variance or the
standard deviation. As the systematic trends can be identified and expressed
deterministically, they are usually removed from the subsequent analysis and
it’s only the local fluctuations that are modeled using random field theory.
For mathematical convenience, the fluctuations uf(x,z) in Equation (6.1) are
normalized by the standard deviation σ (z):

u(x,z) = [qc(x,z) − qav
c (z)]/σ (z) (6.2)

so that the resulting normalized fluctuations u(x,z) can be described by a
zero-mean, unit standard deviation random field.

As implied by Equation (6.2), the standard deviation σ (z) may be a func-
tion of the depth z. A depth-dependent standard deviation can be inferred
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by evaluating it in smaller intervals, over which it is assumed to be constant,
rather than using the entire soil profile at one time. For example, the standard
deviation of the field data shown in Figure 6.1 was calculated over 1 m long
moving intervals and was found to vary between 1 and 4 MPa (Popescu,
1995).

The most commonly used parameter for quantifying the magnitude of
fluctuations in soil properties around their mean values is the coefficient of
variation (CV). For the data in Figure 6.1 CV(z) = σ (z)/qav

c (z) was found to
vary between 20% and 60%. The average CV of SPT data from the dense
sand layer in Figure 6.2 was about 40%.

It should be mentioned at this point that the CPT and SPT records shown in
Figures 6.1 and 6.2 include measurement errors, and therefore the degrees
of variability discussed here may be larger than the actual variability of
soil properties. The measurement errors are relatively small for the case
of CPT records (e.g. for the electrical cone, the average standard devia-
tion of measurement errors is about 5%; American Society for Testing and
Materials, 1989), but they can be significant for SPT records, which are
affected by many sources of errors (discussed by Schmertmann, 1978, among
others).

6.2.3 Correlation structure

The fluctuations of soil properties around their spatial trends exhibit in gen-
eral some degree of coherence/correlation as a function of depth, as can be
observed in Figures 6.1 and 6.2. For example, areas with qc values consis-
tently larger than average indicate the presence of dense (stronger) pockets
in the soil mass, while areas with qc values consistently smaller than aver-
age indicate the presence of loose (less-resistant) soil. Examples of dense
and loose soil zones inferred from the fluctuations of qc are identified in
Figure 6.1. Similarly, the presence of a stronger soil zone at a depth of about
35 m and spanning profiles P5 and P8–P12 can be easily observed from the
SPT results presented in Figure 6.2.

The similarity between fluctuations recorded at two points as a function of
the distance between those two points is quantified by the correlation struc-
ture. The correlation between values of the same material property measured
at different locations is described by the auto-correlation function. A signif-
icant parameter associated with the auto-correlation function is called the
scale of fluctuation (or correlation distance) and represents a length over
which significant coherence is still manifested. Owing to the geological soil
formation processes for most natural soil deposits, the correlation distance
in the horizontal direction is significantly larger than the one in the vertical
direction. This can be observed in Figure 6.1 by the shape of the dense and
loose soil pockets. In this respect, separable correlation structure models (e.g.
VanMarcke, 1983) seem appropriate to model different spatial variability
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characteristics in the vertical direction (normal to soil strata) and in the
horizontal one.

There are several one-dimensional theoretical auto-correlation function
models that can be combined into separable correlation structures and used
to describe natural soil variability (e.g. VanMarcke, 1983; Shinozuka and
Deodatis, 1988; Popescu, 1995; Rackwitz, 2000). Inferring the parame-
ters of a theoretical correlation model from field records is straightfor-
ward for the vertical (depth) direction where a large number of closely
spaced data are usually available (e.g. from CPT records). However, it is
much more challenging for the horizontal direction, where sampling dis-
tances are much larger. DeGroot and Baecher (1993) and Fenton (1999a)
review the most common methods for estimating the auto-correlation
function of soil variability in the vertical direction. Przewlocki (2000)
and Jaksa (2007) present methods for estimating the two-dimensional
correlation of soil spatial variability based on close-spaced field measure-
ments in both vertical and horizontal directions. As close-spaced records
in horizontal direction are seldom available in practice, Popescu (1995)
and Popescu et al. (1998a) introduce a method for estimating the hor-
izontal auto-correlation function based on a limited number of vertical
profiles.

As a note of caution, it is mentioned here that various different definitions
for the correlation distance exist in the literature, yielding different values for
this parameter (see e.g. Popescu et al., 2005c, for a brief discussion). Another
problem stems from the fact that when estimating correlation distances from
discrete data, the resulting values are dependent on the sampling distance
(e.g. Der Kiureghian and Ke, 1988) and the length scale, or the distance over
which the measurements are taken (e.g. Fenton, 1999b).

When two or more different soil properties can be recorded simultane-
ously, it is interesting to assess the spatial interdependence between them
and how it affects soil behavior. For example, from piezocone test results
one can infer another index property – besides qc – called soil classifica-
tion index, which is related to grain size and soil type (see e.g. Jefferies and
Davies, 1993; Robertson and Wride, 1998). The spatial dependence between
two different properties measured at different locations is described by the
cross-correlation function. In this case, the variability of multiple soil prop-
erties is modeled by a multivariate random field (also known as a vector
field), and the ensemble of auto-correlation and cross-correlation functions
form the cross-correlation matrix.

As the field data u(x,z) employed to estimate the correlation structure
have been detrended and normalized (refer to Equation (6.2)), the result-
ing field is stationary. It is always possible to model directly non-stationary
characteristics in spatial correlation, but this is very challenging because of
limited data and modeling difficulties (e.g. Rackwitz, 2000). Consequently,
stationarity is almost always assumed (at least in a piecewise manner).
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6.2.4 Probability distribution

Based on several studies reported in the literature, soil properties can follow
different probability distribution functions (PDFs) for different types of soils
and sites, but due to physical reasons, they always have to follow distribu-
tions defined only for nonnegative values of the soil properties (excluding
thus the Gaussian distribution). Unlike Gaussian stochastic fields where
the first two moments provide complete probabilistic information, non-
Gaussian fields require knowledge of moments of all orders. As it is extremely
difficult to estimate moments higher than order two from actual data (e.g.
Lumb, 1966; Phoon, 2006), the modeling and subsequent simulation of soil
properties that are represented as homogeneous non-Gaussian stochastic
fields are usually done using their cross-correlation matrix (or equiva-
lently cross-spectral density matrix) and non-Gaussian marginal probability
distribution functions.

While there is no clear evidence pointing to any specific non-Gaussian
model for the PDF of soil properties, one condition that has to be satisfied
is for the PDF to have a lower (nonnegative) bound. The beta, gamma and
lognormal PDFs are commonly used for this purpose as they all satisfy this
condition. For prescribed values of the mean and standard deviation, the
gamma and lognormal PDFs are one-parameter distributions (e.g. the value
of the lower bound can be considered as this parameter). They are both
skewed to the left. Similarly, for prescribed values of the mean and standard
deviation, the beta PDF is a two-parameter distribution, and consequently
more flexible in fitting in-situ data. Moreover, it can model data that are
symmetrically distributed or skewed to the right. Based on penetration data
from an artificial and a natural deposit, Popescu et al. (1998a) observed that
PDFs of soil strength in shallow layers are skewed to the left, while for deeper
soils the corresponding PDF’s tend to follow more symmetric distributions
(refer to Figure 6.3).

As will be discussed later, the degree of spatial variability (expressed by
the coefficient of variation) is a key factor influencing the behavior of het-
erogeneous soils as compared to uniform ones. It has also been determined
that both the correlation structure and the marginal probability distribution
functions of soil properties affect the response behavior of heterogeneous
soils to significant degrees (e.g. Popescu et al., 1996, 2005a; Fenton and
Griffiths, 2003).

6.3 Analysis method

6.3.1 Monte Carlo Simulation approach

Though expensive computationally, Monte Carlo Simulation (MCS) is
the only currently available universal methodology for accurately solving
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problems in stochastic mechanics involving strong nonlinearities and large
variations of non-Gaussian uncertain system parameters, as is the case of
spatially variable soils. As it will be shown later in this chapter, failure
mechanisms of heterogeneous soils may be different from the theoretical
ones (derived for assumed deterministic uniform soil) and can change signif-
icantly from one realization (sample function) of the random soil properties
to another. This type of behavior prevents the use of stochastic analysis
methods such as the perturbation/expansion ones that are based on the
assumption of an average failure mechanism and variations (fluctuations)
around it.

MCS is a means of solving numerically problems in mathematics, physics
and other sciences through sampling experiments, and basically consists of
three steps (e.g. Elishakoff, 1983): (1) simulation of the random quanti-
ties (variables, fields), (2) solution of the resulting deterministic problem
for a large number of realizations in step 1, and (3) statistical analysis of
results. For the case of spatially variable soils, the realizations of the ran-
dom quantities in step 1 consist of simulated sample functions of stochastic
fields with probabilistic characteristics estimated from field data, as discussed
in Section 6.2. Each such sample function represents a possible realization
of the relevant soil index properties over the analysis domain. The deter-
ministic problem in step 2 is usually solved by finite element analysis. One
such analysis is performed for each realization of the (spatially variable) soil
properties.

6.3.2 Simulation of homogeneous non-Gaussian stochastic
fields

Stochastic fields modeling spatially variable soil properties are non-Gaussian,
multi-dimensional (2D or 3D), and can be univariate (describing the variabil-
ity of a single soil property) or multivariate (referring to the variability of sev-
eral soil properties and their interdependence). Among the various methods
that have been developed to simulate homogeneous non-Gaussian stochas-
tic fields, the following representative ones are mentioned here: Yamazaki
and Shinozuka (1988), Grigoriu (1995, 1998), Gurley and Kareem (1998),
Deodatis and Micaletti (2001), Puig et al. (2002), Sakamoto and Ghanem
(2002), Masters and Gurley (2003), Phoon et al. (2005).

As discussed in Section 6.2.4, it is practically impossible to estimate non-
Gaussian joint PDFs from actual soil data. Therefore, a full description
of the random field representing the spatial variability of soil properties
at a given site is not achievable. Under these circumstances, the simu-
lation methods considered generate sample functions matching a target
cross-correlation structure (CCS) – or equivalently cross-spectral density
matrix (CSDM) in the wave number domain – and target marginal PDFs
that can be inferred from the available field information. It is mentioned
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here that certain simulation methods match only lower order moments
(such as mean, variance, skewness and kurtosis) instead of marginal PDFs
(the reader is referred to Deodatis and Micaletti, 2001, for a review and
discussion).

In most methods for non-Gaussian random field simulation, a Gaussian
sample function is first generated starting from the target CCS (or target
CSDM), and then mapped into the desired non-Gaussian sample function
using a transformation procedure that involves nonlinear mapping (e.g.
Grigoriu, 1995; Phoon, 2006). While the target marginal PDFs are matched
after such a mapping, the nonlinearity of this transformation modifies the
CCS and the resulting non-Gaussian sample function is no longer compati-
ble with the target CCS. Cases involving small CVs and non-Gaussian PDFs
that are not too far from Gaussianity result in general in changes in the CCS
that are small compared to the uncertainties involved in estimating the tar-
get CCS from field data. However, for highly skewed marginal PDFs, the
differences between target and resulting CCSs may become significant. For
example, Popescu (2004) discussed such an example where mapping from a
Gaussian to a lognormal random field for very large CVs of soil variability
produced differences of up to 150% between target and resulting correlation
distances.

There are several procedures for correcting this problem and generat-
ing sample functions that are compatible with both the target CCS and
marginal PDFs. These methods range from iterative correction of the tar-
get CCS (or target CSDM) used to generate the Gaussian sample function
(e.g. Yamazaki and Shinozuka, 1988), to analytical transformation methods
that are applicable to certain combinations of target CCS – target PDF (e.g.
Grigoriu, 1995, 1998). A review of these methods is presented by Deodatis
and Micaletti (2001) together with an improved algorithm for simulating
highly skewed non-Gaussian fields.

The methodology used for the numerical examples presented in this study
combines work done on the spectral representation method by Yamazaki and
Shinozuka (1988), Shinozuka and Deodatis (1996) and Deodatis (1996), and
extends it to simulation of multi-variate, multi-dimensional (mV–nD), homo-
geneous, non-Gaussian stochastic fields. According to this methodology, a
sample function of an mV–nD Gaussian vector field is first generated using
the classic spectral representation method. Then, this Gaussian vector field
is transformed into a non-Gaussian one that is compatible with a prescribed
cross-spectral density matrix and with prescribed (non-Gaussian) marginal
PDFs assumed for the soil properties. This is achieved through the clas-
sic memoryless nonlinear transformation of “translation fields” (Grigoriu,
1995) and the iterative scheme proposed by Yamazaki and Shinozuka
(1988). For a detailed presentation of this simulation algorithm and a dis-
cussion on the convergence of the iterative scheme, the reader is referred
to Popescu et al. (1998b). The reason that a more advanced methodology,
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such as that of Deodatis and Micaletti (2001), is not used in this chapter
is the fact that the random fields describing various soil properties are
usually only slightly skewed and, consequently, the iterative correction
proposed by Yamazaki and Shinozuka (1988) gives sufficiently accurate
results.

6.3.3 Deterministic finite element analyses with generated
soil properties as input

Solutions of boundary value problems can be readily obtained through finite
element analysis (FEA). Along the lines of the MCS approach, a deterministic
FEA is performed for every generated sample function representing a pos-
sible realization of soil index properties over the analysis domain. In each
such analysis, the relevant material (soil) properties are obtained at each
spatial location (finite element centroid) as a function of the simulated soil
index properties. Two important issues related to such analyses are worth
mentioning:

1 The size of finite elements should be selected to accurately reproduce
the simulated boundary value problem, and at the same time, to ade-
quately capture the essential features of the stochastic spatial variability
of soil properties. Regarding modeling the spatial variability, the opti-
mum mesh refinement depends on both correlation distance and type of
correlation structure. For example, Der Kireghian and Ke (1988) rec-
ommend the following upper bounds for the size of finite elements to
be used with an exponential correlation structure: �xk ≤ (0.25−0.5)θk,
where �xk is the finite element size in the spatial direction “k” and θk
is the correlation distance in the same spatial direction.

2 Quite often, the mesh used for generating sample functions of the ran-
dom field representing the soil properties is different from the finite
element mesh. Therefore, the generated random soil properties have to
be transferred from one mesh to another. There are several methods for
accomplishing this data transfer (see e.g. Brenner, 1991, for a review).
Two of them are mentioned here (see Popescu, 1995, for a compari-
son study): (1) the spatial averaging method proposed by VanMarcke
(1977), which assigns to each element a value obtained as an average
of stochastic field values over the element domain; and (2) the midpoint
method (e.g. Shinozuka and Dasgupta, 1986; Der Kiureghian and Ke,
1988; Deodatis, 1989), in which the random field is represented by its
values at the centroid of each finite element. The midpoint method is
used in all numerical examples presented here, as it better preserves the
non-Gaussian characteristics describing the variability of different soil
properties.
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6.4 Understanding mechanisms and effects

6.4.1 A simple example

To provide a first insight on how spatial variability of material properties
can modify the mechanical response and which are the main factors affecting
structural behavior, a simple example is presented in Figure 6.4. The response
of an axially loaded linear elastic bar with initial length L0, unit area A0 = 1
and uniform Young’s modulus E = 1, is compared to that of another linear
elastic bar with the same L0 and A0, but made of two different materials
with Young’s moduli equal to E1 = 1.2 and E2 = 0.8. The uniform bar
and the non-uniform one are shown in Figures 6.4a and 6.4b, respectively.
Note that the non-uniform bar in Figure 6.4b has an “average” modulus
(E1 + E2)/2 = 1, equal to the Young’s modulus of the uniform bar. The
linear stress–strain relationships of the three materials E, E1 and E2 are
shown in Figure 6.4c. The two bars are now subjected to an increasing
tensile axial stress σ . The ratio of the resulting axial strains ε-variable/ε-
uniform (variable denoting the non-uniform bar) is plotted versus a range
of values for σ in Figure 6.4e. In this case involving linear elastic materials,
only a 4% difference is observed between ε-variable and ε-uniform for all
values of σ (continuous line in Figure 6.4e). This small difference is mainly
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Figure 6.4 Simple example illustrating the effects of material heterogeneity on mechanical
response: (a) uniform bar, (b) non-uniform bar, (c) linear stress–strain relation-
ships, (d) bi-linear stress–strain relationships, (e) resulting strain ratios for a
range of axial stresses.
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induced by the type of averaging considered for Young’s modulus and it
would vanish if geometric mean were used for the elastic moduli instead of
arithmetic mean.

The situation is significantly different for the same bars when the mate-
rial behavior becomes nonlinear. Assuming bilinear material behavior for all
three materials as shown in Figure 6.4d, the resulting differences between
the responses in terms of axial strains are now significant. As indicated by
the dotted line in Figure 6.4e, the ratio ε-variable/ε-uniform now exceeds
200% for some values of σ . The reason for this different behavior is that
for a certain range of axial stresses, the response of the non-uniform bar is
controlled by the softer material that reaches the plastic state (with resulting
very large strains) before the material of the uniform bar. From this simple
example it can be concluded that: (1) mechanical effects induced by mate-
rial heterogeneity are more pronounced for phenomena governed by highly
nonlinear laws, (2) loose zones control the deformation mechanisms, and
(3) the effects of material heterogeneity are stronger for certain values of the
load intensity. All these observations will be confirmed later based on more
realistic examples of heterogeneous soil behavior.

6.4.2 Problems involving a failure surface

In a small number of recent MCS-based studies that did not impose any
restrictions on the geometry of the failure mechanism, it has been observed
that the inherent spatial variability of soil properties could significantly
modify the failure mechanism of spatially variable soils, as compared to
the corresponding mechanism of uniform (deterministic) soils.

Along these lines, Figure 6.5 presents results of finite element analyses
(FEA) of bearing capacity (BC) for a purely cohesive soil with elastic-plastic
behavior (the analysis details are presented in Popescu et al., 2005c). The
results of a so-called “deterministic analysis,” assuming uniform soil strength
over the analysis domain, are shown in Figure 6.5a in terms of maximum
shear strain contours. Under increasing uniform vertical pressure, the foun-
dation settles with no rotations and induces bearing capacity failure in a
symmetrical pattern, essentially identical to that predicted by Prandtl’s the-
ory. The symmetric pattern for the maximum shear strain can be clearly seen
in Figure 6.5a. The corresponding pressure–settlement curve is shown with
a dotted line in Figure 6.5d.

Figure 6.5b displays one sample function of the spatially variable soil shear
strength, having the same mean value as the value used in the deterministic
(uniform soil) analysis (cav

u =100 kPa) and a coefficient of variation of 40%.
The undrained shear strength is modeled here as a homogeneous random
field with a symmetric beta probability distribution function and a separable
correlation structure with correlation distances θH =5 m in the horizontal
direction and θV =1 m in the vertical direction. Lighter areas in Figure 6.5b
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Figure 6.5 Comparison between finite element computations of bearing capacity for a uni-
form vs. a heterogeneous soil deposit: (a) contours of maximum shear strain for
a uniform soil deposit with undrained shear strength, cu =100 kPa; (b) contours
of undrained shear strength (cu) obtained from a generated sample function of
a random field modeling the spatial variability of soil; (c) contours of maximum
shear strain for the variable soil shown in Figure 5(b); (d) computed normalized
pressure vs. settlement curves. Note that the settlement δ is measured at the
midpoint of the width B of the foundation (after Popescu et al., 2005c).

indicate weaker zones of soil, while darker areas indicate stronger zones.
Figure 6.5c displays results for the maximum shear strain corresponding to
the spatially variable soil deposit shown in Figure 6.5b. An unsymmetric fail-
ure surface develops, passing mainly through weaker soil zones, as illustrated
by the dotted line in Figure 6.5b. The resulting pressure–settlement curve
(continuous line in Figure 6.5d) indicates a lower ultimate BC for the spa-
tially variable soil than that for the uniform one (dotted line in Figure 6.5d).
It is important to emphasize here that the failure surface for the spatially vari-
able soil passes mainly through weak soil zones indicated by lighter patches
in Figure 6.5b. It should be noted that other sample functions of the spatially
variable soil shear strength, different from the one shown in Figure 6.5b, will
produce different failure surfaces from the one shown in Figure 6.5c (and
different from the deterministic failure pattern shown in Figure 6.5a).

Figure 6.6, also taken from Popescu et al. (2005c), presents results involv-
ing 100 sample functions in a Monte Carlo simulation type of analysis. The
problem configuration here is essentially identical to that in Figure 6.5, the
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Figure 6.6 Monte Carlo simulation results involving 100 sample functions for a strip founda-
tion on an overconsolidated clay deposit with variable undrained shear strength.
Problem configuration identical to that in Figure 6.5 except marginal PDF of soil
properties: (a) normalized bearing pressures vs. settlements, (b) normalized
bearing pressures vs. footing rotations (after Popescu et al., 2005c).

only difference being that the marginal PDF of soil properties is now modeled
by a Gamma distribution (compared to a beta distribution in Figure 6.5).
The significant variation between different sample functions becomes imme-
diately obvious, as well as the fact that, on the average, the ultimate BC of
spatially variable soils is considerably lower than the corresponding value
of uniform (deterministic) soils. Figure 6.6b indicates also that the spatial
variability of soils induces footing rotations (differential settlements) for
centrally loaded symmetric foundations.

The aforementioned results suggest the following behavior for problems
involving the presence of a failure surface: (1) the consideration of the spatial
variability of soil properties leads to different failure mechanisms (surfaces)
for different realizations of the soil properties. These failure surfaces can
become dramatically different from the classic ones predicted by existing
theories for uniform (deterministic) soils (e.g. Prandtl–Reisner solution for
BC, critical slip surface resulting from limit equilibrium analysis for slope
stability); (2) an immediate consequence is that the failure loads/factors of
safety for the case of spatially variable soils can become significantly lower
(on the average) than the corresponding values for uniform (deterministic)
soils.

6.4.3 Problems involving seismically induced soil
liquefaction

Marcuson (1978) defines liquefaction as the transformation of a granular
material from a solid to a liquefied state as a consequence of increased pore
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water pressure and reduced effective stress. This phenomenon occurs most
readily in loose to medium dense granular soils that have a tendency to
compact when sheared. In saturated soils, pore water pressure drainage
may be prevented due to the presence of silty or clayey seam inclusions,
or may not have time to occur due to rapid loading – such as in the case
of seismic events. In this situation, the tendency to compact is translated
into an increase in pore water pressure. This leads to a reduction in effec-
tive stress, and a corresponding decrease of the frictional shear strength.
If the excess pore water pressure (EPWP) generated at a certain location
in a purely frictional soil (e.g. sand) reaches the initial value of the effec-
tive vertical stress, then, theoretically, all shear strength is lost at that
location and the soil liquefies and behaves like a viscous fluid. Liquefaction-
induced large ground deformations are a leading cause of disasters during
earthquakes.

Regarding the effects of soil spatial variability on seismically induced lique-
faction, both experimental (e.g. Budiman et al., 1995; Konrad and Dubeau,
2002) and numerical results indicate that more EPWP is generated in a het-
erogeneous soil than in the corresponding uniform soil having geomechanical
properties equal to the average properties of the variable soil.

To illustrate the effects of soil heterogeneity on seismically induced EPWP
build-up, some of the results obtained by Popescu et al. (1997) for a loose to
medium dense saturated soil deposit subjected to seismic loading are repro-
duced in Figure 6.7. The geomechanical properties and spatial variability
characteristics were estimated based on the piezocone test results shown in
Figure 6.1. The results in Figure 6.7b show the computed contours of the
EPWP ratio with respect to the initial effective vertical stress for six sample
functions of a stochastic field representing six possible realizations of soil
properties over the analysis domain (see Popescu et al., 1997, for more details
on the soil properties). Soil liquefaction (EPWP ratio larger than approxi-
mately 0.9) was predicted for most sample functions shown in Figure 6.7b.
Analysis of an assumed uniform (deterministic) soil deposit, with strength
characteristics corresponding to the average strength of the soil samples used
in MCS, resulted in no soil liquefaction (the maximum predicted EPWP ratio
was 0.44 as shown in the upper-left plot of Figure 6.7c). It can be concluded
from these results that both the pattern and the amount of dynamically
induced EPWP build-up are strongly affected by the spatial variability of
soil properties. For the same average values of the soil parameters, more
EPWP build-up was predicted in the stochastic analysis (MCS) accounting
for spatial variability than in the deterministic analysis considering uniform
soil properties.

It was postulated by Popescu et al. (1997) that the presence of loose
soil pockets leads to earlier initiation of EPWP and to local liquefaction,
compared to the corresponding uniform soil. After that, the pressure gra-
dient between loose and dense zones would induce water migration into
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Figure 6.7 Monte Carlo simulations of seismically induced liquefaction in a saturated soil
deposit, accounting for natural variability of the soil properties (after Popescu
et al., 1997): (a) finite element analysis setup; (b) contours of EPWP ratio for six
sample functions used in the Monte Carlo simulations; (c) contours of EPWP
ratio using deterministic (i.e. uniform) soil parameters and various percentiles
of soil strength.

neighboring denser soil zones, followed by softening and liquefaction of
the dense sand. This assumption – mainly that the presence of loose soil
pockets is responsible for lower liquefaction resistance – was further ver-
ified by two sets of numerical results. First, for a given average value of
the soil strength and a given earthquake intensity, the resulting amount of
EPWP build-up in a variable soil increased with the degree of variability of
soil properties (expressed by the coefficient of variation). This degree of soil
variability directly controls the amount of loose pockets in the soil mass (e.g.
Popescu et al., 1998c). Second, for the same coefficient of variation of spatial
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variability, more EPWP was predicted when the soil strength fluctuations
followed a probability distribution function (PDF) with a fatter left tail that
yields directly a larger amount of loose soil pockets (e.g. Popescu et al.,
1996).

There are very few experimental studies dealing with liquefaction of spa-
tially variable soil. Particularly interesting are the results obtained by Konrad
and Dubeau (2002). They performed a series of undrained cyclic triaxial
tests with various cyclic stress ratios on uniform dense sand, uniform silt,
and layered soil (a silt layer sandwiched between two sand layers). The soils
in layered samples were prepared at the same void ratios as the correspond-
ing soils in the uniform samples. It was concluded from the results that the
cyclic strength (expressed as number of cycles to liquefaction) of the layered
(non-homogeneous) samples was considerably lower than the one of the
uniform silt and the uniform sand samples. For example, at a cyclic stress
ratio (CSR) = 0.166, the numbers of cycles to liquefaction were: NL = 150
for uniform dense sand at relative density 77%, NL = 90 for silt prepared
at void ratio 0.78, and NL = 42 for the layered soil. Chakrabortty et al.
(2004) reproduced the cyclic undrained triaxial tests on uniform and lay-
ered samples made of dense sand and silt layers described by Konrad and
Dubeau (2002), and studied the mechanism by which a sample made of two
different soils liquefies faster than each of the soils tested separately in uni-
form samples. Their explanation – resulting from a detailed analysis of the
numerical results – was that water was squeezed from the more deformable
silt layer and injected into the neighboring sand, leading to liquefaction of
the dense sand.

Regarding liquefaction mechanisms of soil deposits involving the same
material, but with spatially variable strength, Ghosh and Madabhushi (2003)
performed a series of centrifuge experiments to analyze the effects of local-
ized loose patches in a dense sand deposit subjected to seismic loads. They
observed that EPWP is first generated in the loose sand patches, and then
water migrates into the neighboring dense sand, reducing the effective stress
and loosening the dense soil that can subsequently liquefy. As discussed
before, it is believed that a similar phenomenon is responsible for the lower
liquefaction resistance of continuously heterogeneous soils compared to that
of corresponding uniform soils. To further verify this assumed mechanism,
Popescu et al. (2006) calibrated a numerical finite element model for liquefac-
tion analysis (Prévost, 1985, 2002) to reproduce the centrifuge experimental
results of Ghosh and Madabhushi (2003), and then used it for a detailed
analysis of a structure founded on a hypothetical chess board-like heteroge-
neous soil deposit subjected to earthquake loading. From careful analysis of
the EPWP calculated at the border between loose and dense zones, it was
clearly observed how pore water pressures built up first in the loose areas,
and then transferred into the dense sand zones that eventually experienced
the same increase in EPWP. Water “injection” into dense sand loosened the
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strong pockets and the overall liquefaction resistance of the heterogeneous
soil deposit became much lower than that of a corresponding uniform soil,
almost as low as the liquefaction resistance of a deposit made entirely of
loose sand.

6.5 Quantifying the effects of random soil
heterogeneity

6.5.1 General considerations

Analyzing the effects of inherent soil variability by MCS involves the solu-
tion of a large number of nonlinear boundary value problems (BVPs) as
was described earlier in this chapter. Such an approach is too expensive
computationally and too complex conceptually to be used in current design
applications. The role of academic research is to eventually provide the
geotechnical practice with easy to understand/easy to use guidelines in the
form of charts and characteristic values that account for the effects of soil
variability. In this respect, MCS results contain a wealth of information that
can be processed in various ways to provide insight into the practical aspects
of the problem at hand. Two such design guidelines estimated from MCS
results are presented here:

1 “Equivalent uniform” soil properties representing values of certain soil
properties which – when used in a deterministic analysis assuming uni-
form soil properties over the analysis domain – would provide a response
“equivalent” to the average response resulting from computationally
expensive MCS accounting for soil spatial variability. The response
resulting from deterministic analysis is termed “equivalent” to the MCS
response since only certain components of it can be similar. For exam-
ple, when studying BC failure of symmetrically loaded foundations, one
can obtain in a deterministic analysis an ultimate BC equal to the aver-
age one from MCS, but cannot simulate footing rotations. Similarly,
for the case of soil liquefaction, a deterministic analysis can reproduce
the average amount of EPWP resulting from MCS, but cannot predict
any kind of spatially variable liquefaction pattern (see e.g. Figures 6.7b
and c). In conclusion, an equivalent uniform analysis would only match
the average response provided by a set of MCS accounting for spatial
variability of soil properties, and nothing more. The equivalent uniform
properties are usually expressed as percentiles of field test recorded soil
index properties and are termed “characteristic percentiles.”

2 Fragility curves, which are an illustrative and practical way of express-
ing the probability of exceeding a prescribed threshold in the response
(or damage level) as a function of load intensity. They can be used
directly by practicing engineers without having to perform any complex
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computations and form the basis for all risk analysis/loss estimation/risk
reduction calculations of civil infrastructure systems performed by emer-
gency management agencies and insurance companies. Fragility curves
can include effects of multiple sources of uncertainty related to material
resistance or load characteristics. The fragility curves are usually rep-
resented as shifted lognormal cumulative distribution functions. For a
specific threshold in the response, each MCS case analyzed is treated
as a realization of a Bernoulli experiment. The Bernoulli random vari-
able resulting from each MCS case is assigned to the unity probability
level if the selected threshold is exceeded, or to zero if the computed
response is less than the threshold. Next, the two parameters of the
shifted lognormal distribution are estimated using the maximum like-
lihood method and the results of all the MCS cases. For a detailed
description of this methodology, the reader is referred to Shinozuka
et al. (2000) and Deodatis et al. (2000).

Such guidelines have obvious qualitative value, indicating the most impor-
tant effects of soil heterogeneity for a particular BVP and type of response,
which probabilistic characteristics of spatial variability have major effects,
and which are the directions where more investigations would provide maxi-
mum benefit. However, several other aspects have to be carefully considered
as will be demonstrated in the following, when such guidelines are used in
quantitative analyses.

6.5.2 Liquefaction of level ground random
heterogeneous soil

Regarding liquefaction analysis of natural soil deposits exhibiting a certain
degree of spatial variability in their properties, Popescu et al. (1997) sug-
gested that in order to predict more accurate values of EPWP build-up in
a deterministic analysis assuming uniform soil properties, one has to use a
modified (or equivalent uniform) soil strength. The results of deterministic
analyses presented in Figure 6.7c illustrate this idea of an equivalent uniform
soil strength for liquefaction analysis of randomly heterogeneous soils. For
every such analysis in Figure 6.7c, the uniform (deterministic) soil properties
are determined based on a certain percentile of the in-situ recorded qc (as
liquefaction strength is proportional to qc). From visual examination and
comparison of Figures 6.7b and 6.7c, one can select a percentile value some-
where between 70% and 80% that would lead to an equivalent amount
of EPWP in a deterministic analysis to the one predicted by multiple MCS.
This value is termed “characteristic percentile.” A comparison between the
results presented in Figures 6.7b and 6.7c also shows clearly the differences
in the predicted liquefaction pattern of natural heterogeneous soil versus
that of assumed uniform soil. This fact somehow invalidates the use of an
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equivalent uniform soil strength estimated solely on the basis of average
EPWP build-up, as liquefaction effects may be controlled also by the pres-
ence of a so called “maximal plane,” defined by Fenton and VanMarcke
(1988) as the horizontal plane having the highest value of average EPWP
ratio. This aspect is discussed in detail by Popescu et al. (2005a).

It should be mentioned that establishing the characteristic percentile by
“visual examination and comparison” of results is exemplified here only
for illustrative purposes. Popescu et al. (1997) compared the range of MCS
predictions with deterministic analysis results in terms of several indices
characterizing the severity of liquefaction and in terms of horizontal dis-
placements. Furthermore, these comparisons were made for seismic inputs
with various ranges of maximum spectral amplitudes. For the type of soil
deposit analyzed and for the probabilistic characteristics of spatial variabil-
ity considered in that study, it was determined that the 80-percentile of soil
strength was a good equivalent uniform value to be used in deterministic
analyses.

The computed characteristic percentile of soil strength is valid only for the
specific situation analyzed and can be affected by a series of factors, such as:
soil type, probabilistic characteristics of spatial variability, seismic motion
intensity and frequency content, etc.

Popescu et al. (1998c) studied the effect of the “intensity” of spatial vari-
ability on the characteristic percentile of soil strength. A fine sand deposit
with probabilistic characteristics of its spatial variability derived from the
field data from Tokyo Bay area (upper soil layer in Figures 6.2b and 6.3b)
has been analyzed in a parametric study involving a range of values for the
CV of soil strength. Some of these results are shown in Figure 6.8 in the
form of range of average EPWP ratios predicted by MCS as a function of
CV (shaded area). The EPWP ratio was averaged over the entire analysis
domain (12 m deep × 60 m long). As only 10 sample functions of spatial
variability have been used for each value of CV, these results have only
qualitative value. It can be observed that for the situation analyzed in this
example, the effects of spatial variability are insignificant for CV<0.2 and
are strongly dependent on the degree of soil variability for CV between 0.2
and 0.8. It can be therefore concluded that, for the soil type and seismic
intensity considered in this example, CV=0.2 is a threshold beyond which
spatial variability has an important effect on liquefaction. The range of aver-
age EPWP ratios predicted by MCS is compared in Figure 6.8 with average
EPWP ratios computed from deterministic analyses assuming uniform soil
properties and using various percentiles of in-situ recorded soil strength. This
comparison offers some insight about the relation between the characteristic
percentile of soil strength and the CV.

Intensity of seismic ground motion is another important factor. Popescu
et al. (2005a) studied the effect of soil heterogeneity on liquefaction for
a soil deposit subjected to a series of earthquake ground accelerations
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Figure 6.8 Range of average excess pore water pressure (EPWP) ratio from Monte Carlo
simulations as a function of the coefficient of variation of soil strength (after
Popescu et al., 1998c). Horizontal lines represent average EPWP ratios com-
puted from deterministic analyses assuming uniform soil strength equal to the
average and four percentiles of the values used in MCS.

corresponding to a wide range of seismic intensities. A saturated soil deposit
with randomly varying soil strength was considered in a range of full 3D anal-
yses (accounting for soil variability in all three spatial directions), as well as
in a set of corresponding 2D analyses under a plane strain assumption (and
therefore assuming infinite correlation distance in the third direction). The
soil variability was modeled by a three-dimensional, two-variate random
field, having as components the cone tip resistance qc and the soil classifica-
tion index. A value of CV=0.5 was assumed for qc. For all other probabilistic
characteristics considered in that study, the reader is referred to Popescu et al.
(2005a). Deterministic analyses, assuming average uniform soil properties,
were also performed for comparison.

The resulting EPWP ratios were compared in terms of their averages over
the entire analysis domain (Figure 6.9a) and averages over the “maximal
plane” (Figure 6.9b). A point on each line in Figure 6.9 represents the com-
puted average EPWP ratio for a specific input earthquake intensity, expressed
by the Arias Intensity (e.g. Arias, 1970) which is a measure of the total
energy delivered per unit mass of soil during an earthquake. The corre-
sponding approximate peak ground accelerations (PGA) are also indicated
on Figure 6.9. Similar to results of previous studies, it can be observed that
generally higher EPWP ratios were predicted (on average) by MCS than by
deterministic analysis. It is important to remark, however, that for the type of
soil and input accelerations used in that study, significant differences between
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MCS and deterministic analyses occurred only for seismic inputs with Arias
Intensity less than 1 m/s (or PGA less than 0.25 g), while for stronger
earthquakes the results were very similar. It is obvious, therefore, that the
“equivalent uniform” soil strengths or characteristic percentiles developed
for liquefaction of heterogeneous soils are dependent on the seismic load
intensity.

As discussed in Section 6.2, another important probabilistic characteris-
tic of the spatial variability is the correlation distance. Figure 6.9 indicates
that MCS using full 3D analysis yielded practically the same results in
terms of average EPWP ratios as MCS using 2D analysis in conjunction
with the plane strain assumption. While the 3D analyses account for soil
spatial variability in both horizontal directions, in 2D plane strain calcula-
tions the soil is assumed uniform in one horizontal direction (normal to the
plane of analysis), and the correlation distance in that direction is, there-
fore, considered to be infinite. Therefore, it can be concluded from these
results that the value of horizontal correlation distance does not affect the
average amount of EPWP build-up in this problem. In contrast, the hori-
zontal correlation distance affects other factors of the response in this same
problem, as shown in Figure 6.9c displaying settlements. Maximum set-
tlements predicted by MCS using 3D analyses are about 40% larger than
those resulting from MCS using 2D analyses. A similar conclusion was also
reached by Popescu (1995) based on a limited study on the effects of hori-
zontal correlation distance on liquefaction of heterogeneous soils: a fivefold
increase in horizontal correlation distance did not change the predicted aver-
age EPWP build-up, but resulted in significant changes in the pattern of
liquefaction.

6.5.3 Seismic response of structures on liquefiable random
heterogeneous soil

Some of the effects of inherently spatially variable soil properties on the
seismic response of structures founded on potentially liquefiable soils have
been studied by Popescu et al. (2005b), who considered a tall structure on
a saturated sand deposit. The structure was modeled as a single degree-of-
freedom oscillator with a characteristic frequency of 1.4 Hz corresponding to
a seven-storey building. The surrounding soil (and consequently the structure
too) was subjected to a series of 100 earthquake acceleration time histories,
scaled according to their Arias Intensities, with the objective of establishing
fragility curves for two response thresholds: exceeding average settlements
of 20 cm and differential settlements of 5 cm. These fragility curves are
plotted in Figures 6.10a and 6.10b for two different assumptions related to
soil properties: (1) variable soils with properties modeled by a random field
with coefficient of variation CV = 0.5, correlation distances θH = 8 m in the
horizontal direction and θV = 2 m in the vertical direction, and gamma PDF
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Figure 6.10 Fragility curves for a tall structure on a saturated sand deposit. Comparison
between results for variable soil and equivalent uniform soil in terms of: (a)
average settlements; (b) differential settlements.

(see Popescu et al., 2005b, for more details), and (2) corresponding uniform
soils.

As can be easily observed in Figure 6.10, the fragility curves calculated
for variable soil are shifted to the left compared to the ones for uniform
soil, indicating that – for a given seismic intensity – there is a significantly
higher probability of exceeding the response threshold when soil variability
is accounted for than for an assumed corresponding uniform soil. For exam-
ple, for a seismic ground motion with Arias Intensity of 1 m/s (or PGA of
about 0.25 g), a 62% exceedance probability of a 5 cm differential settle-
ment is estimated for spatially variable soils, versus only a 22% exceedance
probability for corresponding uniform soils (Figure 6.10b).

The behavior at very large seismic intensities is very interesting. As far
as average settlements are concerned (Figure 6.10a), both fragility curves
converge to the same probability (approximately unity), indicating that the
degree of liquefaction of the soil below structure is about the same for both
uniform and variable soils. This is in agreement with the results presented
in Figures 6.9a and 6.9b for ground level soil. In contrast, the two fragility
curves for differential settlements in Figure 6.10b are still far apart at very
large Arias Intensities. This suggets that – even if the computed degree of
liquefaction is about the same at the end of the seismic event for both uniform
and variable soils – the initiation of liquefaction in variable soils takes place
in isolated patches that strongly affect subsequent local soil deformations
and therefore differential settlements of foundations. This is believed to be
due to lateral migration of pore water from loose soil zones that liquefy first
towards denser soil pockets (as discussed in Section 6.4.4), leading eventually
to local settlements that cannot be captured in an analysis assuming uniform
soil properties.
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6.5.4 Static bearing capacity of shallow foundations on
random heterogeneous soil

The effects of various probabilistic characteristics of soil variability on the
BC of shallow foundations were studied by Popescu et al. (2005c) in a
parametric study involving the CV, the PDF and the horizontal correla-
tion distance of the random field modeling the spatial variability of soil
strength. The layout of the foundation under consideration is the one shown
in Figure 6.5 and the main assumptions made are mentioned in Section
6.4.2. The finite element analyses involved in the MCS scheme were per-
formed using ABAQUS/Standard (Hibbitt et al., 1998). Some of the results
are presented in Figure 6.11 in terms of fragility curves expressing the
probability of BC failure of the strip foundation on randomly heteroge-
neous soil as a function of the bearing pressure. For comparison with
results of corresponding deterministic analyses, the bearing pressures q in
Figure 6.11 are normalized with respect to the ultimate BC obtained for
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Figure 6.11 Fragility curves illustrating the probability of bearing capacity failure of a
strip foundation of width B on randomly heterogeneous soil, as a function
of the bearing pressure q normalized with respect to the ultimate bearing
capacity qdet

u , corresponding to uniform soil with undrained shear strength
cu = 100 kPa.
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the corresponding uniform soil: qdet
u . Each fragility curve represents the

results of MCS involving 100 realizations of the spatial variability of soil
strength, generated using a set of probabilistic characteristics describing soil
variability. One of the sets – corresponding to CV = 40%, θH/B = 1 and
gamma-distributed soil strength – is labeled “reference case.” The other three
cases shown in the figure are obtained by varying one parameter of the refer-
ence case at a time. It is mentioned that the method for building the fragility
curves shown in Figure 6.11 is different from the traditional procedure using
Bernoulli trials (e.g. Shinozuka et al., 2000; Deodatis et al., 2000) and is
described in detail in Popescu et al. (2005c).

Figure 6.11 indicates that the two most important probabilistic character-
istics of inherent soil heterogeneity – with respect to their effects on BC
failure – are the coefficient of variation (CV) and marginal PDF of soil
strength. Both the CV and the PDF control the amount of loose pockets
in the soil mass. Figure 6.12 demonstrates that the symmetrical beta distri-
bution used in this study has a thicker left tail than the gamma distribution
that is positively skewed. Therefore, for the same CV, the soil with beta-
distributed shear strength exhibits a larger amount of soft pockets resulting
in lower BC than the soil with gamma-distributed shear strength. For the
range considered in this study, it was found that the horizontal correlation
distance θH does not affect significantly the average ultimate BC. However,
it appears that θH has a significant effect on the slope of the fragility curves.
The explanation of this behavior is believed to be related to averaging of the
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Shear strength cu(kPa)

Mean value:

cu
av=100kPa
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Gamma

Figure 6.12 The two models selected for the marginal PDF of the undrained shear strength
of soil. Both PDFs have the same mean value (cav

u = 100 kPa). The coefficient
of variation used for this plot is CV = 40% for both PDFs (after Popescu et al.,
2005c).
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shear strength over the length of the failure surface: larger horizontal corre-
lation distances tend to diminish the averaging effect on the bearing capacity
failure mechanism, and therefore yield larger variability of the results in
terms of ultimate BC.

An equivalent undrained shear strength cu for uniform soils can be inferred
from the fragility curves presented in Figure 6.11 in the following way. Based
on the linear relation between ultimate BC and cu, it is possible to define an
approximate equivalent uniform cu from the normalized pressures q/qdet

u
corresponding to a probability of BC failure PF = 50%. For example, for
the type of soils and BVP analyzed in this example, the equivalent uniform
cu for the reference case is cEQ

u = 0.82cav
u = 82 kPa (refer to Figure 6.11 and

remember that cav
u = 100 kPa). Similar cEQ

u values can be inferred for the
other cases illustrated in Figure 6.11, as listed in Table 6.1.

Instead of an equivalent uniform cu corresponding to a failure probabil-
ity of 50%, most modern codes use nominal values of material strength
corresponding to much lower failure probabilities (usually 5 or 10%). The
determination of such nominal values for the BC of soil – denoted by quN –
is demonstrated graphically in Figure 6.11 for a probability of BC fail-
ure PF = 5%. The resulting normalized nominal values are displayed in
Table 6.1. Regarding the earlier discussion about the effect of the horizontal
correlation distance θH, Table 6.1 indicates that even if θH has little effect on
the average behavior of spatially variable soils (less than 4% change in cEQ

u
when θH/B varies from 1 to 4), it affects significantly the resulting nominal
values (21% change in quN when θH/B varies from 1 to 4).

More results such as those presented in Figure 6.11 and Table 6.1, includ-
ing the effects of soil deformability on the BC, and also the effects of
various probabilistic characteristics on differential settlements, are presented
in Popescu et al. (2005c).

6.6 Conclusions

Some distinctive features of spatially variable random heterogeneous soil and
the main geomechanical aspects governing its behavior under load have been

Table 6.1 Normalized equivalent uniform undrained shear strength and normalized
nominal values for the cases illustrated in Figure 6.11.

CV = 40%, θH/B = 1,
gamma PDF
(reference case)

CV = 10%,
θH/B = 1,
gamma PDF

CV = 40%,
θH/B = 1,
beta PDF

CV = 40%,
θH/B = 4,
gamma PDF

cEQ
u /cav

u 0.82 0.98 0.71 0.79

quN/qdet
u 0.68 0.94 0.51 0.54
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analyzed and discussed for two types of soil mechanics problems: seismically
induced soil liquefaction, and bearing capacity of shallow foundations. For
the case of liquefaction, it was shown that pore water pressures build up first
in the loose soil areas, and then, due to pressure gradients, water is “injected”
into neighboring dense sand. In this way the strong pockets are softened and
the overall liquefaction resistance is reduced, becoming considerably lower
than that of the corresponding uniform soil. For the case of geotechnical
problems involving presence of a failure surface, the spatial variability of
soil properties can change dramatically the failure mechanism from the well
known theoretical result obtained for uniform soils (e.g. the Prandtl – Reisner
solution for bearing capacity) to a failure surface that seeks the weakest path
following predominantly the weak zones (pockets) in the soil mass. Such a
surface will have a more or less irregular shape and could differ significantly
from one possible realization of the spatial distribution of soil strength to
another.

It was demonstrated that random soil heterogeneity has similar overall
effects (specifically inducing lower mechanical resistance) on phenomena
that are fundamentally different: limit equilibrium type of failures involving
a large volume of soil – for BC, and micro-scale pore pressure build-up
mechanisms – for liquefaction. Moreover, for both phenomena addressed
here, the loose zones (pockets) in the soil mass have a crucial and critical
effect on the failure mechanisms (e.g. for soil liquefaction they are the initial
sources of EPWP build-up, while for BC the failure surface seeks the weakest
path). It also appears that random soil heterogeneity has a more pronounced
effect for phenomena governed by highly nonlinear laws.

An outcome of major importance of both experimental investigations and
numerical simulations discussed in this chapter is that the inherent spatial
variability of soil properties affects the fundamental nature of soil behav-
ior, leading to lower failure loads as compared to those for corresponding
uniform soils. Therefore, besides variability in the computed response, spa-
tial variability of soil properties will also produce a response (e.g. failure
mechanism or liquefaction pattern) that is, in general, different from the
theoretical response of the corresponding uniform soil. On the other hand,
other uncertainties considered in reliability analyses, such as random mea-
surement errors and transformation errors, only induce variability in the
computed response. Consequently, it is imperative that the effects of inherent
soil heterogeneity be estimated separately from those of other uncertainties,
and only after that combined for reliability assessments.

For both problems discussed here, it was found that the CV and marginal
PDF of soil strength are the two most important parameters of spatial vari-
ability in reducing liquefaction resistance or bearing capacity and producing
substantial differential settlements. This is due to the fact that both CV and
PDF (more specifically the shape of its left tail) control the amount of loose
pockets in the soil mass. For the range of correlation distances considered
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in this study, the horizontal correlation distance was found to have only a
minor influence on overall liquefaction resistance or bearing capacity. It was
found, however, to significantly affect the variability of the response, and
therefore the low fractiles and the nominal values.
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Chapter 7

Stochastic finite element
methods in geotechnical
engineering

Bruno Sudret and Marc Berveiller

7.1 Introduction

Soil and rock masses naturally present heterogeneity at various scales of
description. This heterogeneity may be of two kinds:

• the soil properties can be considered piecewise homogeneous once
regions (e.g. layers) have been identified;

• no specific regions can be identified, meaning that the spatial variability
of the properties is smooth.

In both cases, the use of deterministic values for representing the soil char-
acteristics is poor, since it ignores the natural randomness of the medium.
Alternatively, this randomness may be modeled properly using probability
theory.

In the first of the two cases identified above, the material properties may be
modeled in each region as random variables whose distribution (and possibly
mutual correlation) have to be specified. In the second case, the introduction
of random fields is necessary. Probabilistic soil modeling is a long-term story,
see for example VanMarcke (1977); DeGroot and Baecher (1993); Fenton
(1999a,b); Rackwitz (2000); Popescu et al. (2005).

Usually soil characteristics are investigated in order to feed models of
geotechnical structures that are in project. Examples of such structures are
dams, embankments, pile or raft foundations, tunnels, etc. The design then
consists in choosing characterictics of the structure (dimensions, material
properties) so that it fulfills some requirements (e.g. retain water, support a
building, etc.) under a given set of environmental actions that we will call
“loading.” The design is carried out practically by satisfying some design cri-
teria which usually apply onto model response quantities (e.g. displacements,
settlements, strains, stresses, etc.). The conservatism of the design according
to codes of practice is ensured first by introducing safety coefficients, and
second by using penalized values of the model parameters. In this approach,
the natural spatial variability of the soil is completely hidden.
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From another point of view, when the uncertainties and variability of
the soil properties have been identified, methods that allow propagation
of these uncertainties throughout the model have to be used. Classically,
the methods can be classified according to the type of information on the
(random) response quantities they provide.

• The perturbation method allows computation of the mean value and
variance of the mechanical response of the system (Baecher and Ingra,
1981; Phoon et al., 1990). This gives a feeling on the central part of the
response probability density function (PDF).

• Structural reliability methods allow investigation of the tails of the
response PDF by computing the probability of exceedance of a pre-
scribed threshold (Ditlevsen and Madsen, 1996). Among these methods,
FOSM (first-order second-moment methods) have been used in geotech-
nical engineering (Phoon et al., 1990; Mellah et al., 2000; Eloseily et al.,
2002). FORM/SORM and importance sampling are applied less in this
context, and have proven successful in engineering mechanics, both in
academia and more recently in industry.

• Stochastic finite element (SFE) methods, named after the pioneering
work by Ghanem and Spanos (1991), aim at representing the complete
response PDF in an intrinsic way. This is done by expanding the response
(which, after proper discretization of the problem, is a random vector
of unknown joint PDF) onto a particular basis of the space of random
vectors of finite variance called the polynomial chaos (PC). Applica-
tions to geotechnical problems can be found in Ghanem and Brzkala
(1996); Sudret and Der Kiureghian (2000); Ghiocel and Ghanem (2002);
Clouteau and Lafargue (2003); Sudret et al. (2004, 2006); Berveiller et al.
(2006).

In the following, we will concentrate on this last class of methods. Indeed,
once the coefficients of the expansion have been computed, a straightfor-
ward post-processing of these quantities gives the statistical moments of the
response under consideration, the probability of exceeding a threshold or
the full PDF.

The chapter is organized as follows. Section 7.2 presents methods for
representing random fields that are applicable for describing the spatial vari-
ability of soils. Section 7.3 presents the principles of polynomial chaos expan-
sions for representing both the (random) model response and possibly the
non-Gaussian input. Section 7.4 and (respectively, 7.5) reviews the so-called
intrusive (respectively, non-intrusive) solving scheme in stochastic finite ele-
ment problems. Section 7.6 is devoted to the practical post-processing of
polynomial chaos expansions. Finally, Section 7.7 presents some application
examples.
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7.2 Representation of spatial variability

7.2.1 Basics of probability theory and notation

Probability theory gives a sound mathematical framework to the repre-
sention of uncertainty and randomness. When a random phenomenon is
observed, the set of all possible outcomes defines the sample space denoted
by �. An event E is defined as a subset of � containing outcomes θ ∈ �.
The set of events defines the σ -algebra F associated with �. A probabil-
ity measure allows one to associate numbers to events, i.e. their probability
of occurrence. Finally the probability space constructed by means of these
notions is denoted by (�, F, P).

A real random variable X is a mapping X: (�, F, P)−→R. For continuous
random variables, the PDF and cumulative distribution function (CDF) are
denoted by fX(x) and FX(x), respectively:

FX(x) = P(X ≤ x) fX(x) = dFX(x)
dx

(7.1)

The mathematical expectation will be denoted by E[·]. The mean, variance
and nth moment of X are:

µ ≡ E[X] =
∫ ∞

−∞
xfX(x)dx (7.2)

σ 2 = E
[
(X −µ)2

]
=
∫ ∞

−∞
(x −µ)2 fX(x)dx (7.3)

µ′
n = E

[
Xn]= ∫ ∞

−∞
xn fX(x)dx (7.4)

A random vector X is a collection of random variables whose probabilistic
description is contained in its joint PDF denoted by fX(x). The covari-
ance of two random variables X and Y (e.g. two components of a random
vector) is:

Cov[X , Y] = E
[
(X −µX)(Y −µY )

]
(7.5)

Introducing the joint distribution fX,Y (x , y) of these variables, Equation (7.5)
can be rewritten as:

Cov[X , Y] =
∫ ∞

−∞

∫ ∞

−∞
(x −µX)(y −µY ) fX,Y (x , y)dxdy (7.6)

The vectorial space of real random variables with finite second moment
(E
[
X2
]
< ∞) is denoted by L2 (�, F, P). The expectation operator defines
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an inner product on this space:

〈X , Y〉 = E[XY] (7.7)

This allows in particuler definition of orthogonal random variables (when
their inner product is zero).

7.2.2 Random fields

A unidimensional random field H(x , θ ) is a collection of random variables
associated with a continuous index x ∈ Ω ⊂ Rn, where θ ∈ � is the coordi-
nate in the outcome space. Using this notation, H(x , θo) denotes a particular
realization of the field (i.e. a usual function mapping Ω into R) whereas
H(xo , θ ) is the random variable associated with point xo. Gaussian ran-
dom fields are of practical interest because they are completely described
by a mean function µ(x), a variance function σ 2(x) and an autocovariance
function CHH(x , x′):

CHH(x , x′) = Cov
[
H(x) , H(x′)

]
(7.8)

Alternatively, the correlation structure of the field may be prescribed through
the autocorrelation coefficient function ρ(x , x′) defined as:

ρ(x , x′) = CHH(x , x′)
σ (x)σ (x′)

(7.9)

Random fields are non-numerable infinite sets of correlated random vari-
ables, which is computationally intractable. Discretizing the random field
H(x) consists in approximating it by Ĥ(x), which is defined by means of a
finite set of random variables {χi , i = 1, ...n}, gathered in a random vector
denoted by χ :

H(x , θ )
Discretization−→ Ĥ(x , θ ) = G[x , χ (θ )] (7.10)

Several methods have been developed since the 1980s to carry out this task,
such as the spatial average method (VanMarcke and Grigoriu, 1983), the
midpoint method (Der Kiureghian and Ke, 1988) and the shape function
method (W. Liu et al., 1986a,b). A comprehensive review and compari-
son of these methods is presented in Li and Der Kiureghian (1993). These
early methods are relatively inefficient, in the sense that a large number
of random variables is required to achieve a good approximation of the
field.

More efficient approaches for discretization of random fields using series
expansion methods have been introduced in the past 15 years, includ-
ing the Karhunen–Loève Expansion (KL) (Ghanem and Spanos, 1991),
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the Expansion Optimal Linear Estimation (EOLE) method (Li and Der
Kiureghian, 1993) and the Orthogonal Series Expansion (OSE) (Zhang and
Ellingwood, 1994). Reviews of these methods have been presented in Sudret
and Der Kiureghian (2000), see also Grigoriu (2006). The KL and EOLE
methods are now briefly presented.

7.2.3 Karhunen–Loève expansion

Let us consider a Gaussian random field H(x) defined by its mean value
µ(x) and autocovariance function CHH(x , x′) = σ (x)σ (x′)ρ(x , x′). The
Karhunen–Loève expansion of H(x) reads:

H(x , θ ) = µ(x) +
∞∑

i=1

√
λi ξi(θ )ϕi(x) (7.11)

where {ξi(θ ), i = 1, ... } are zero-mean orthogonal variables and
{
λi , ϕi(x)

}
are solutions of the eigenvalue problem:∫

Ω

CHH(x , x′)ϕi(x
′)dΩx′ = λi ϕi(x) (7.12)

Equation (7.12) is a Fredholm integral equation. Since kernel CHH(· , ·) is
an autocovariance function, it is bounded, symmetric and positive definite.
Thus the set of {ϕi} forms a complete orthogonal basis. The set of eigenvalues
(spectrum) is moreover real, positive and numerable. In a sense, Equation
(7.11) corresponds to a separation of the space and randomness variables in
H(x , θ ).

The Karhunen–Loève expansion possesses other interesting properties
(Ghanem and Spanos, 1991).

• It is possible to order the eigenvalues λi in a descending series converging
to zero. Truncating the ordered series (7.11) after the Mth term gives
the KL approximated field:

Ĥ(x , θ ) = µ(x) +
M∑

i=1

√
λi ξi(θ )ϕi(x) (7.13)

• The covariance eigenfunction basis {ϕi(x)} is optimal in the sense that
the mean square error (integrated over Ω) resulting from a truncation
after the Mth term is minimized (with respect to the value it would take
when any other complete basis {hi(x)} is chosen).

• The set of random variables appearing in (7.11) is orthonormal if and
only if the basis functions {hi(x)} and the constants λi are solutions of
the eigenvalue problem (7.12).
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• As the random field is Gaussian, the set of {ξi} are independent standard
normal variables. Furthermore, it can be shown (Loève, 1977) that the
Karhunen–Loève expansion of Gaussian fields is almost surely conver-
gent. For non-Gaussian fields, the KL expansion also exists; however,
the random variables appearing in the series are of unknown law and
may be correlated (Phoon et al., 2002b, 2005; Li et al., 2007).

• From Equation (7.13), the error variance obtained when truncating the
expansion after M terms turns out to be, after basic algebra:

Var
[
H(x) − Ĥ(x)

]
= σ 2(x) −

M∑
i=1

λi ϕ
2
i (x)

= Var[H(x)] − Var
[
Ĥ(x)

]
≥ 0 (7.14)

The right-hand side of the above equation is always positive because it
is the variance of some quantity. This means that the Karhunen–Loève
expansion always underrepresents the true variance of the field. The
accuracy of the truncated expansion has been investigated in details in
Huang et al. (2001).

Equation (7.12) can be solved analytically only for few autocovari-
ance functions and geometries of Ω. Detailed closed form solutions for
triangular and exponential covariance functions for one-dimensional
homogeneous fields can be found in Ghanem and Spanos (1991).
Otherwise, a numerical solution to the eigenvalue problem (7.12) can
be obtained (same reference, chapter 2). Wavelet techniques have been
recently applied for this purpose in Phoon et al. (2002a), leading to a
fairly efficient approximation scheme.

7.2.4 The EOLE method

The expansion optimal linear estimation method (EOLE) was proposed by
Li and Der Kiureghian (1993). It is based on the pointwise regression of
the original random field with respect to selected values of the field, and a
compaction of the data by spectral analysis.

Let us consider a Gaussian random field as defined above and a grid of
points {x1, ...xN} in the domain Ω. Let us denote by χ the random vector
{H(x1), ...H(xN)}. By construction, χ is a Gaussian vector whose mean value
µχ and covariance matrix �χ χ read:

µi
χ = µ(xi) (7.15)(

�χ χ

)
i,j

= Cov
[
H(xi) , H(xj)

]
= σ (xi)σ (xj)ρ(xi , xj) (7.16)
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The optimal linear estimation (OLE) of random variable H(x) onto the
random vector χ reads:

H(x) ≈ µ(x) +�′
Hχ (x) · �−1

χ χ ·
(
χ −µχ

)
(7.17)

where (.)′ denotes the transposed matrix and �Hχ (x) is a vector whose
components are given by:

�
j
Hχ

(x) = Cov
[
H(x),χj

]
= Cov

[
H(x) , H(xj)

]
(7.18)

Let us now consider the spectral decomposition of the covariance
matrix �χχ :

�χχ φi = λi φi i = 1, . . . ,N (7.19)

This allows one to linearly transform the original vector χ :

χ (θ ) = µχ +
N∑

i=1

√
λi ξi(θ )φi (7.20)

where {ξi , i = 1, ...N} are independent standard normal variables. Substitut-
ing for (7.20) in (7.17) and using (7.19) yields the EOLE representation of
the field :

Ĥ(x , θ ) = µ(x) +
N∑

i=1

ξi(θ )√
λi

φi
T�H(x)χ (7.21)

As in the Karhunen–Loève expansion, the series can be truncated after r ≤ N
terms, the eigenvalues λi being sorted first in descending order. The variance
of the error for EOLE is:

Var
[
H(x) − Ĥ(x)

]
= σ 2(x) −

r∑
i=1

1
λi

(
φT

i �H(x)χ

)2
(7.22)

As in KL, the second term in the above equation is identical to the variance
of Ĥ(x). Thus EOLE also always underrepresents the true variance. Due to
the form of (7.22), the error decreases monotonically with r, the minimal
error being obtained when no truncation is made (r = N). This allows one to
define automatically the cut-off value r for a given tolerance in the variance
error.



Stochastic finite element methods 267

7.3 Polynomial chaos expansions

7.3.1 Expansion of the model response

Having recognized that the input parameters such as the soil properties
can be modeled as random fields (which are discretized using standard
normal random variables), it is clear that the response of the system is
a nonlinear function of these variables. After a discretization procedure
(e.g. finite element or finite difference scheme), the response may be con-
sidered as a random vector S, whose probabilistic properties are yet to be
determined.

Due to the above representation of the input, it is possible to expand the
response S onto the so-called polynomial chaos basis, which is a basis of the
space of random variables with finite variance (Malliavin, 1997):

S =
∞∑

j=0

Sj Ψj

({
ξn

}∞
n=1

)
(7.23)

In this expression, the Ψj’s are the multivariate Hermite polynomials defined
by means of the ξn’s. This basis is orthogonal with respect to the Gaussian
measure, i.e. the expectation of products of two different such polynomials
is zero (see details in Appendix A).

Computationnally speaking, the input parameters are represented using
M independent standard normal variables, see Equations (7.13) and (7.21).
Considering all M-dimensional Hermite polynomials of degree not exceeding
p, the response may be approximated as follows:

S ≈
P−1∑
j=0

Sj Ψj (ξ ) , ξ = {ξ1, . . . , ξM} (7.24)

The number of unknown (vector) coefficients in this summation is:

P =
(

M + p
p

)
= (M + p)!

M! p! (7.25)

The practical construction of a polynomial chaos of order M and degree p
is described in Appendix A. The problem is now recast as computing the
expansion coefficients {Sj , j = 0, . . . ,P − 1}. Two classes of methods are
presented below in Sections 7.4 and 7.5.

7.3.2 Representation of non-Gaussian input

In Section 7.2, the representation of the spatial variability through Gaussian
random fields has been shown. It is important to note that many soil
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properties should not be modeled as Gaussian random variables or fields.
For instance, the Poisson ratio is a bounded quantity, whereas Gaussian
variables are defined on R. Parameters such as the Young’s modulus or
the cohesion are positive in nature: modeling them as Gaussian intro-
duces an approximation that should be monitored carefully. Indeed, when
a large dispersion of the parameter is considered, choosing a Gaussian
representation can easily lead to negative realizations of the parameter,
which have no physical meaning (lognormal variables or fields are often
appropriate).

As a consequence, if the parameter under consideration is modeled by
a non-Gaussian random field, it is not possible to expand it as a linear
expression in standard normal variables as in Equations (7.13) and (7.21).
Easy-to-define non-Gaussian random fields H(x) are obtained by translation
of a Gaussian field N(x) using a nonlinear transform h(.):

H(x) = h(N(x)) (7.26)

The discretization of this kind of field is straightforward: the nonlinear trans-
form h(.) is directly applied to the discretized underlying Gaussian field N̂(x)
(see e.g. Ghanem, 1999, for lognormal fields).

Ĥ(x) = h(N̂(x)) (7.27)

From another point of view, the description of the spatial variability of
parameters is in some cases beyond the scope of the analysis. For instance,
soil properties may be considered homogeneous in some domains. These
parameters are not well known though, and it may be relevant to model
them as (usually non-Gaussian) random variables.

It is possible to transform any continuous random variable with finite vari-
ance into a standard normal variable using the iso-probabilistic transform:
denoting by FX(x) (respectively, 	(x)) the CDF of X (respectively, a standard
normal variable ξ ), the direct and inverse transform read:

ξ = 	−1 ◦ FX(x) X = F−1
X ◦	(ξ ) (7.28)

If the input parameters are modeled by a random vector with independent
components, it is possible to represent it using a standard normal random
vector of the same size by applying the above transform componentwise.
If the input random vector has a prescribed joint PDF, it is generally not pos-
sible to transform it exactly into a standard normal random vector. However,
when only marginal PDF and correlations are known, an approximate repre-
sentation may be obtained by the Nataf transform (Liu and Der Kiureghian,
1986).

As a conclusion, the input parameters of the model, which do or
do not exhibit spatial variability, may always be represented after some
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discretization process, mapping, or combination thereof, as functionals of
standard normal random variables:

• for non-Gaussian independent random variables, see Equation (7.28);
• for Gaussian random fields, see Equations(7.13) and (7.21);
• for non-Gaussian random fields obtained by translation, see

Equation (7.27).

Note that Equation (7.28) is an exact representation, whereas the field
discretization techniques provide only approximations (which converge to
the original field if the number of standard normal variables tends to
infinity).

In the sequel, we consider that the discretized input fields and non Gaussian
random variables are represented through a set of independent standard
normal variables ξ of size M and we denote by X(ξ ) the functional that
yields the original variables and fields.

7.4 Intrusive SFE method for static problems

The historical SFE approach consists in computing the polynomial chaos
coefficients of the vector of nodal displacements U(θ ) (Equation (7.24)). It
is based on the minimization of the residual in the balance equation in the
Galerkin sense (Ghanem and Spanos, 1991). To illustrate this method, let
us consider a linear mechanical problem, whose finite element discretization
leads to the following linear system (in the deterministic case):

K · U = F (7.29)

Let us denote by Nddl the number of degrees of freedom of the structure, i.e.
the size of the above linear system. If the material parameters are described
by random variables and fields, the stiffness matrix K in the above equa-
tion becomes random. Similarly, the load vector F may be random. These
quantities can be expanded onto the polynomial chaos basis:

K =
∞∑

j=0

KjΨj (7.30)

F =
∞∑

j=0

FjΨj (7.31)

In these equations, Kj are deterministic matrices whose complete description
can be found elsewhere (e.g. Ghanem and Spanos (1991) in the case when the
input Young’s modulus is a random field, and Sudret et al. (2004) when the
Young’s modulus and the Poisson ratio are non-Gaussian random variables).
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In the same manner, Fj are deterministic load vectors obtained from the data
(Sudret et al., 2004; Sudret et al., 2006).

As a consequence, the vector of nodal displacements U is random and may
be represented on the same basis:

U =
∞∑

j=0

UjΨj (7.32)

When the three expansions (7.30)–(7.32) are truncated after P terms and
substituted for in Equation (7.29), the residual εP in the stochastic balance
equation reads:

εP =
(

P−1∑
i=0

KiΨi

)
·
⎛
⎝P−1∑

j=0

UjΨj

⎞
⎠−

P−1∑
j=0

FjΨj (7.33)

Coefficients {U0, . . . ,UP−1} are obtained by minimizing the residual using a
Galerkin technique. This minimization is equivalent to requiring the residual
be orthogonal to the subspace of L2(�,F,P) spanned by {Ψj}P−1

j=0 :

E
[
εPΨk

]= 0 , k = {0, . . . ,P − 1} (7.34)

After some algebra, this leads to the following linear system, whose size is
equal to Nddl × P:

⎛
⎜⎜⎜⎝

K0,0 · · · K0,P−1
K1,0 · · · K1,P−1
...

...

KP−1,0 · · · KP−1,P−1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

U0
U1
...

UP−1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

F0
F1
...

FP−1

⎞
⎟⎟⎟⎠ (7.35)

where Kj,k =
P−1∑
i=0

dijk Ki and dijk = E[ΨiΨjΨk].
Once the system has been solved, the coefficients Uj may be post-processed

in order to represent the response PDF (e.g. by Monte Carlo simulation),
to compute the mean value, standard deviation and higher moments or to
evaluate the probability of exceeding a given threshold. The post-processing
techniques are detailed in Section 7.6. It is important to note already that
the set of Uj’s contains all the probabilistic information on the response,
meaning that post-processing is carried out without additional computation
on the mechanical model.
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The above approach is easy to apply when the mechanical model is linear.
Although nonlinear problems have been recently addressed (Matthies and
Keese, 2005; Nouy, 2007), their treatment is still not completely mature.
Moreover, this approach naturally yields the expansion of the basic response
quantities (such as the nodal displacements in mechanics). When derived
quantities such as strains or stresses are of interest, additional work (and
approximations) is needed. Note that in the case of non-Gaussian input
random variables, expansion of these variables onto the PC basis is needed
in order to apply the method, which introduces an approximation of the
input. Finally, the implementation of the historical method as described in
this section has to be carried out for each class of problem: this is why it has
been qualified as intrusive in the literature. All these reasons have led to the
development of so-called non-intrusive methods that in some sense provide
an answer to the above drawbacks.

7.5 Non-intrusive SFE methods

7.5.1 Introduction

Let us consider a scalar response quantity S of the model under consideration,
e.g. a nodal displacement, strain or stress component in a finite element
model:

S = h(X) (7.36)

Contrary to Section 7.4, each response quantity of interest is directly
expanded onto the polynomial chaos as follows:

S =
∞∑

j=0

Sj Ψj (7.37)

The P-term approximation reads:

S̃ =
P−1∑
j=0

Sj Ψj (7.38)

Two methods are now proposed to compute the coefficients in this expansion
from a series of deterministic finite element analysis.

7.5.2 Projection method

The projection method is based on the orthogonality of the polynomial chaos
(Le Maître et al., 2002; Ghiocel and Ghanem, 2002). By pre-multiplying
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Equation (7.38) by Ψi and taking the expectation of both members, it comes:

E
[
SΨj

]
= E

[ ∞∑
i=0

Sj Ψi Ψj

]
(7.39)

Due to the orthogonality of the basis, E
[
Ψi Ψj

]
= 0 for any i �= j. Thus:

Sj =
E
[
SΨj

]
E
[
Ψ 2

j

] (7.40)

In this expression, the denominator is known analytically (see Appendix A)
and the numerator may be cast as a multidimensional integral:

E
[
SΨj

]
=
∫

RM
h(X(ξ ))Ψj(ξ )ϕM(ξ )dξ (7.41)

where ϕM is the M-dimensional multinormal PDF, and where the dependency
of S in ξ through the iso-probabilistic transform of the input parameters X(ξ )
has been given for the sake of clarity.

This integral may be computed by crude Monte Carlo simulation (Field,
2002) or Latin Hypercube Sampling (Le Maître et al., 2002). However
the number of samples required in this case should be large enough, say
10,000–100,000, to obtain a sufficient accuracy. In cases when the response
S is obtained by a computationally demanding finite element model, this
approach is practically not applicable. Alternatively, the use of quasi-random
numbers instead of Monte Carlo (Niederreiter, 1992) simulation has been
recently investigated in Sudret et al. (2007), and appears promising.

An alternative approach presented in Berveiller et al. (2004) and Matthies
and Keese (2005) is the use of a Gaussian quadrature scheme to evaluate
the integral. Equation (7.41) is computed as a weighted summation of the
integrands evaluated at selected points (the so-called integration points):

E
[
SΨj

]
≈

K∑
i1=1

· · ·
K∑

iM=1

ωi1
. . .ωiM

h
(
X
(
ξi1

, . . . , ξiM

))
Ψj

(
ξi1

, . . . , ξiM

)
(7.42)

In this expression, the integration points {ξij
, 1 ≤ i1 ≤ ·· · ≤ iM ≤ K} and

weights {ωij
, 1 ≤ i1 ≤ ·· · ≤ iM ≤ K} in each dimension are computed using

the theory of orthogonal polynomials with respect to the Gaussian measure.
For a Kth order scheme, the integration points are the roots of the Kth order
Hermite polynomial (Abramowitz and Stegun, 1970).
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The proper order of the integration scheme K is selected as follows: if
the response S in Equation (7.37) was polynomial of order p (i.e. Sj = 0 for
j ≥ P), the terms in the integral (7.41) would be of degree less than or equal
to 2p. Thus an integration scheme of order K = p + 1 would give the exact
value of the expansion coefficients. We take this as a rule in the general case,
where the result now is only an approximation of the true value of Sj.

As seen from Equations (7.40),(7.42), the projection method allows one to
compute the expansion coefficients from selected evaluations of the model.
Thus the method is qualified as non-intrusive since the deterministic com-
putation scheme (i.e. a finite element code) is used without any additional
implementation or modification.

Note that in finite element analysis, the response is usually a vector (e.g. of
nodal displacements, nodal stresses, etc.). The above derivations are strictly
valid for a vector response S, the expectation in Equation (7.42) being
computed component by component.

7.5.3 Regression method

The regression method is another approach for computing the response
expansion coefficients. It is nothing but the regression of the exact solu-
tion S with respect to the polynomial chaos basis {Ψj(ξ ), j = 1, . . . , P − 1}.
Let us assume the following expression for a scalar response quantity S:

S = h(X) = S̃(ξ ) + ε S̃(ξ ) =
P−1∑
j=0

Sj Ψj(ξ ) (7.43)

where the residual ε is supposed to be a zero-mean random variable, and
S = {Sj , j = 0, . . . , P − 1} are the unknown coefficients. The minimization
of the variance of the residual with respect to the unknown coefficients
leads to:

S = ArgminE
[
(h(X (ξ )) − S̃(ξ ))2

]
(7.44)

In order to solve Equation (7.44), we choose a set of Q regression points in
the standard normal space, say {ξ1 , . . .ξQ}. From these points, the isoprob-
abilistic transform (7.28) gives a set of Q realizations of the input vector X,
say {x1, . . .xQ}. The mean-square minimization (7.44) leads to solve the
following problem:

S = Argmin
1
Q

Q∑
i=1

⎧⎨
⎩h(xi) −

P−1∑
j=0

Sj Ψj(ξ
i)

⎫⎬
⎭

2

(7.45)
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Denoting by Ψ the matrix whose coefficients are given by Ψ ij = Ψj(ξ
i), i =

1, . . . ,Q; j = 0, . . . , P−1, and by Sex the vector containing the exact response
values computed by the model Sex = {h(xi), i = 1, . . . ,Q}, the solution to
Equation (7.45) reads:

S = (Ψ T ·Ψ )−1 ·Ψ T ·Sex (7.46)

The regression approach detailed above is comparable with the so-called
response surface method used in many domains of science and engineering.
In this context, the set of {x1 , . . .xQ} is the so-called experimental design. In
Equation (7.46), Ψ T ·Ψ is the information matrix. Computationally speak-
ing, it may be ill-conditioned. Thus a particular solver such as the Singular
Value Decomposition method should be employed (Press et al., 2001).

It is now necessary to specify the choice of the experimental design. Start-
ing from the early work by Isukapalli (1999), it has been shown in Berveiller
(2005) and Sudret (2005) that an efficient design can be built from the roots
of the Hermite polynomials as follows.

• If p denotes the maximal degree of the polynomials in the truncated PC
expansion, then the p + 1 roots of the Hermite polynomial of degree
p + 1 (denoted by Hep+1) are computed, say {r1, . . . , rp+1}.

• From this set, M-uplets are built using all possible combinations of the
roots: rk = (ri1

, . . . , riM
), 1 ≤ i1 ≤ ·· · ≤ iM ≤ p+1, k = 1, . . . , (p+1)M.

• The Q points in the experimental design {ξ1 , . . . ,ξQ} are selected among
the r j’s by retaining those which are closest to the origin of the space,
i.e. those with the smallest norm, or equivalently those leading to the
largest values of the PDF ϕM(ξ j).

To choose the size Q of the experimental design, the following empirical
rule was proposed by Berveiller (2005) based on a large number of numerical
experiments:

Q = (M − 1)P (7.47)

A slightly more efficient rule leading to a smaller value of Q has been
recently proposed by Sudret (2006, 2008), based on the invertibility of the
information matrix.

7.6 Post-processing of the SFE results

7.6.1 Representation of response PDF

Once the coefficients Sj of the expansion of a response quantity are
known, the polynomial approximation can be simulated using Monte
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Carlo simulation. A sample of standard normal random vector is generated,
say {ξ (1), . . . , ξ (n)}. Then the PDF can be plotted using a histogram rep-
resentation, or better, kernel smoothing techniques (Wand and Jones,
1995).

7.6.2 Computation of the statistical moments

From Equation (7.38), due to the orthogonality of the polynomial chaos
basis, it is easy to see that the mean and variance of S is given by:

E[S] = S0 (7.48)

Var[S] = σ 2
S =

P−1∑
j=1

S2
j E
[
Ψ 2

j

]
(7.49)

where the expectation of Ψ 2
j is given in Appendix A. Moments of higher

order are obtained in a similar manner. Namely the skewness and kurtosis
coefficients of response variable S (denoted by δS and κS, respectively) are
obtained as follows:

δS ≡ 1

σ 3
S

E
[
(S − E[S])3

]
= 1

σ 3
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

E[ΨiΨjΨk]Si Sj Sk (7.50)

κS ≡ 1

σ 4
S

E
[
(S − E[S])4

]
= 1

σ 4
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

P−1∑
l=1

E[ΨiΨjΨkΨl]Si Sj Sk Sl (7.51)

Here again, expectation of products of three (respectively four) Ψj’s are
known analytically; see for example Sudret et al. (2006).

7.6.3 Sensitivity analysis: selection of important variables

The problem of selecting the most “important” input variables of a model
is usually known as sensitivity analysis. In a probabilistic context, meth-
ods of global sensitivity analysis aim at quantifying which input variable
(or combination of input variables) influences most the response variabil-
ity. A state-of-the-art of such techniques is available in Saltelli et al. (2000).
They include regression-based methods such as the computation of standard-
ized regression coefficients (SRC) or partial correlation coefficients (PCC)
and variance-based methods, also called ANOVA techniques for “ANalysis
Of VAriance.” In this respect, the Sobol’ indices (Sobol’, 1993; Sobol’ and
Kucherenko, 2005) are known as the most efficient tool to find out the
important variables of a model.

The computation of Sobol’ indices is traditionnally carried out by Monte
Carlo simulation (Saltelli et al., 2000), which may be computationally
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unaffordable in case of time-consuming models. In the context of stochastic
finite element methods, it has been recently shown in Sudret (2006, 2008)
that the Sobol’ indices can be derived analytically from the coefficients of the
polynomial chaos expansion of the response, once the latter have been com-
puted by one of the techniques detailed in Sections 7.4 and 7.5. For instance,
the first order Sobol’ indices {δi, i = 1, ... ,M}, which quantify what fraction
of the response variance is due to each input variable i = 1, ... ,M:

δi = VarXi

[
E
[
S|Xi

]]
Var[S]

(7.52)

can be evaluated from the coefficients of the PC expansion (Equation (7.38))
as follows:

δPC
i =

∑
α∈Ii

S2
α E
[
Ψ 2

α

]
/σ 2

S (7.53)

In this equation, σ 2
S is the variance of the model response computed from

the PC coefficients (Equation (7.49)) and the summation set (defined using
the multi-index notation detailed in Appendix) reads:

Ii =
{
α : αi > 0,αj �=i = 0

}
(7.54)

Higher-order Sobol’ indices, which correspond to interactions of the
input parameters, can also be computed using this approach; see Sudret
(2006) for a detailed presentation and an application to geotechnical
engineering.

7.6.4 Reliability analysis

Structural reliability analysis aims at computing the probability of failure of a
mechanical system with respect to a prescribed failure criterion by account-
ing for uncertainties arising in the model description (geometry, material
properties) or the environment (loading). It is a general theory whose devel-
opment began in the mid 1970s. The research on this field is still active – see
Rackwitz (2001) for a review.

Surprisingly, the link between structural reliability and the stochastic finite
element methods based on polynomial chaos expansions is relatively new
(Sudret and Der Kiureghian, 2000, 2002; Berveiller, 2005). For the sake of
completeness, three essential techniques for solving reliability problems are
reviewed in this section. Then their application, together with (a) a deter-
minitic finite element model and (b) a PC expansion of the model response,
is detailed.
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Problem statement

Let us denote by X = {X1,X2, . . .,XM

}
the set of random variables describing

the randomness in the geometry, material properties and loading. This set
also includes the variables used in the discretization of random fields, if any.
The failure criterion under consideration is mathematically represented by a
limit state function g(X) defined in the space of parameters as follows:

• g(X) > 0 defines the safe state of the structure.
• g(X) ≤ 0 defines the failure state.
• g(X) = 0 defines the limit state surface.

Denoting by fX(x) the joint PDF of random vector X, the probability of
failure of the structure is:

Pf =
∫

g(x)≤0

fX(x) dx (7.55)

In all but academic cases, this integral cannot be computed analytically.
Indeed, the failure domain is often defined by means of response quantities
(e.g. displacements, strains, stresses, etc.), which are computed by means of
computer codes (e.g. finite element code) in industrial applications, mean-
ing that the failure domain is implicitly defined as a function of X. Thus
numerical methods have to be employed.

Monte Carlo simulation

Monte Carlo simulation (MCS) is a universal method for evaluating integrals
such as Equation (7.55). Denoting by 1[g(x)≤0](x) the indicator function of
the failure domain (i.e. the function that takes the value 0 in the safe domain
and 1 in the failure domain), Equation (7.55) rewrites:

Pf =
∫

RM

1[g(x)≤0](x) fX(x) dx = E
[
1[g(x)≤0](x)

]
(7.56)

where E[.] denotes the mathematical expectation. Practically, Equation
(7.56) can be evaluated by simulating Nsim realizations of the random

vector X, say
{
X (1), . . . ,X(Nsim)

}
. For each sample, g

(
X(i)
)

is evaluated.

An estimation of Pf is given by the empirical mean:

P̂f = 1
Nsim

Nsim∑
i=1

1[g(x)≤0](X
(i)) = Nfail

Nsim
(7.57)
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where Nfail denotes the number of samples that are in the failure domain.
As mentioned above, MCS is applicable whatever the complexity of the
deterministic model. However, the number of samples Nsim required to get an
accurate estimation of Pf may be dissuasive, especially when the value of Pf is
small. Indeed, if the order of magnitude of Pf is about 10−k, a total number
Nsim ≈ 4.10k+2 is necessary to get accurate results when using Equation
(7.57). This number corresponds approximately to a coefficient of variation
CV equal to 5% for the estimator P̂f . Thus crude MCS is not applicable
when small values of Pf are sought and/or when the CPU cost of each run
of the model is non-negligible.

FORM method

The first-order reliability method (FORM) has been introduced to get an
approximation of the probability of failure at a low cost (in terms of number
of evaluations of the limit state function).

The first step consists in recasting the problem in the standard nor-
mal space by using a iso-probabilistic transformation X → ξ = T (X). The
Rosenblatt or Nataf transformations may be used for this purpose. Thus
Equation (7.56) rewrites:

Pf =
∫

g(x)≤0

fX(x) dx =
∫

g(T−1(ξ ))≤0

ϕM(ξ ) dξ (7.58)

where ϕM (ξ ) stands for the standard multinormal PDF:

ϕM(ξ ) = 1(√
2π
)n exp

(
−1

2

(
ξ2

1 +·· ·+ ξ2
M

))
(7.59)

This PDF is maximal at the origin and decreases exponentially with ‖ξ‖2.
Thus the points that contribute at most to the integral in Equation (7.58)
are those of the failure domain that are closest to the origin of the space.

The second step in FORM thus consists in determining the so-called design
point, i.e. the point of the failure domain closest to the origin in the stan-
dard normal space. This point P∗ is obtained by solving an optimization
problem:

P∗ = ξ∗ = Argmin
{
‖ξ‖2 /g

(
T−1(ξ )

)
≤ 0
}

(7.60)

Several algorithms are available to solve the above optimisation problem,
e.g. the Abdo–Rackwitz (Abdo and Rackwitz, 1990) or the SQP (sequential
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quadratic programming) algorithm. The corresponding reliability index is
defined as:

β = sign
[
g(T−1(0))

]
·∥∥ξ∗∥∥ (7.61)

It corresponds to the algebraic distance of the design point to the origin,
counted as positive if the origin is in the safe domain, or negative in the
other case.

The third step of FORM consists in replacing the failure domain by the
half space HS(P∗) defined by means of the hyperplane which is tangent to
the limit state surface at the design point (see Figure 7.1). This leads to:

Pf =
∫

g(T−1(ξ ))≤0

ϕM(ξ ) dξ ≈
∫

HS(P∗)

ϕM(ξ ) dξ (7.62)

The latter integral can be evaluated in a closed form and gives the first
order approximation of the probability of failure:

Pf ≈ Pf ,FORM = 	 (−β) (7.63)

where 	(x) denotes the standard normal CDF. The unit normal vector
α = ξ∗/β allows definition of the sensitivity of the reliability index with
respect to each variable. Precisely the squared components α2

i of α (which
sum to one) are a measure of the importance of each variable in the computed
reliability index.

g(ξ)=0

Failure Domain

x2

x2
* P*

x1
* x1

HS(P*)

β

α

Figure 7.1 Principle of the first-order reliability method (FORM).
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Importance sampling

FORM as described above gives an approximation of the probability of
failure without any measure of its accuracy, contrary to Monte Carlo sim-
ulation, which provides an estimator of Pf together with the coefficient of
variation thereof. Importance sampling (IS) is a technique that allows to
combine both approaches. First the expression of the probability of failure
is modified as follows:

Pf =
∫

RM
IDf

(X(ξ ))ϕM (ξ )dξ (7.64)

where IDf
(X(ξ )) is the indicator function of the failure domain. Let us intro-

duce the sampling density �(ξ ) in the above equation, which may be any
valid M-dimensional PDF:

Pf =
∫

RM
IDf

(X(ξ ))
ϕM (ξ )
� (ξ )

� (ξ )dξ = E�

[
IDf

(X(ξ ))
ϕM (ξ )
� (ξ )

]
(7.65)

where E� [.] denotes the expectation with respect to the sampling density �(ξ ).
To smartly apply IS after a FORM analysis, the following sampling density
is chosen:

� (ξ ) = (2π )−M/2 exp
(

−1
2

∥∥ξ − ξ∗∥∥2
)

(7.66)

This allows one to concentrate the sampling around the design point ξ∗.
Then the following estimator of the probability of failure is computed:

P̂f ,IS = 1
Nsim

Nsim∑
i=1

1Df

(
X(ξ (i))

)ϕM

(
ξ (i)
)

�
(
ξ (i)
) (7.67)

which may be rewritten as:

P̂f ,IS = exp[−β2/2]
Nsim

Nsim∑
i=1

1Df

(
ξ (i)
)

exp
[
−ξ (i) · ξ∗] (7.68)

As in any simulation method, the coefficient of variation CV of this estimator
can be monitored all along the simulation. Thus the process can be stopped
as soon as a small value of CV , say less than 5%, is obtained. As the samples
are concentrated around the design point, a limited number of samples, say
100–1000, is necessary to obtain this accuracy, whatever the value of the
probability of failure.
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7.6.5 Reliability methods coupled with FE/SFE models

The reliability methods (MCS, FORM and IS) described in the section above
are general, i.e. not limited to stochastic finite element methods. They can
actually be applied whatever the nature of the model, may it be analytical
or algorithmic.

• When the model is a finite element model, a coupling between the reli-
ability algorithm and the finite element code is necessary. Each time the
algorithm requires the evaluation of the limit state function, the finite
element code is called with the current set of input parameters. Then the
limit state function is evaluated. This technique is called direct coupling
in the next section dealing with application examples.

• When an SFE model has been computed first, the response is approxi-
mately represented as a polynomial series in standard normal random
variables (Equation (7.37)). This is an analytical function that can now
be used together with any of the reliability methods mentioned above.

In the next section, several examples are presented. In each case when a
reliability problem is addressed, the direct coupling and the post-processing
of a PC expansion are compared.

7.7 Application examples

The application examples presented in the sequel have been originally pub-
lished elsewhere, namely in Sudret and Der Kiureghian (2000, 2002) for the
first example, Berveiller et al. (2006) for the second example and Berveiller
et al. (2004) for the third example.

7.7.1 Example #1: Foundation problem – spatial
variability

Description of the deterministic problem

Consider an elastic soil layer of thickness t lying on a rigid substratum.
A superstructure to be founded on this soil mass is idealized as a uniform
pressure P applied over a length 2B of the free surface (see Figure 7.2). The
soil is modeled as an elastic linear isotropic material. A plane strain analysis
is carried out.

Due to the symmetry, half of the structure is modeled by finite elements.
Strictly speaking, there is no symmetry in the system when random fields of
material properties are introduced. However, it is believed that this simpli-
fication does not significantly influence the results. The parameters selected
for the deterministic model are listed in Table 7.1.
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Table 7.1 Example #1 – Parameters of the deterministic model.

Parameter Symbol Value

Soil layer thickness t 30 m
Foundation width 2B 10 m
Applied pressure P 0.2 MPa
Soil Young’s modulus E 50 MPa
Soil Poisson’s ratio ν 0.3
Mesh width L 60 m

A

2B

t
E, n

Figure 7.2 Settlement of a foundation – problem definition.

(a) Mesh (b) Deformed Shape

Figure 7.3 Finite element mesh and deformed shape for mean values of the parameters by
a deterministic analysis.

A refined mesh was first used to obtain the “exact” maximum displacement
under the foundation (point A in Figure 7.2). Less-refined meshes were then
tried in order to design a mesh with as few elements as possible that yielded
no more than 1% error in the computed maximum settlement. The mesh
displayed in Figure 7.3(a) was eventually chosen. It contains 99 nodes and
80 elements. The maximum settlement computed with this mesh is equal
to 5.42 cm.
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Description of the probabilistic data

The assessment of the serviceability of the foundation described in the
above paragraph is now investigated under the assumption that the Young’s
modulus of the soil mass is spatially varying.

The Young’s modulus of the soil is considered to vary only in the vertical
direction, so that it is modeled as a one-dimensional random field along the
depth. This is a reasonable model for a layered soil medium. The field is
assumed to be lognormal and homogeneous. Its second-moment properties
are considered to be the mean µE = 50 MPa, the coefficient of variation
δE = σE/µE = 0.2. The autocorrelation coefficient function of the underlying
Gaussian field (see Equation (7.26)) is ρEE(z , z′) = exp(−|z − z′|/ ), where z
is the depth coordinate and  = 30 m is the correlation length.

The accuracy of the discretization of the underlying Gaussian field N(x)
depends on the number of terms M retained in the expansion. For each
value of M, a global indicator of the accuracy of the discretization, ε̄, is
computed from

ε̄ = 1
|Ω|
∫
Ω

Var
[
N(x) − N̂(x)

]
Var[N(x)]

dΩ (7.69)

A relative accuracy in the variance of 12% (respectively, 8%, 6%) is obtained
when using M = 2 (respectively, 3, 4) terms in the KL expansion of N(x).
Of course, these values are closely related to the parameters defining the ran-
dom field, particularly the correlation length  . As  is comparable here to the
size of the domain Ω, an accurate discretization is obtained using few terms.

Reliability analysis

The limit state function is defined in terms of the maximum settlement uA at
the center of the foundation:

g(ξ ) = u0 − uA(ξ ) (7.70)

where u0 is an admissible threshold initially set equal to 10 cm and ξ is the
vector used for the random field discretization.

Table 7.2 reports the results of the reliability analysis carried out either by
direct coupling between the finite element model and the FORM algorithm
(column #2), or by the application of FORM after solving the SFE problem
(column #6, for various values of p). Both results have been validated using
importance sampling (columns #3 and #7, respectively). In the direct cou-
pling approach, 1000 samples (corresponding to 1000 deterministic FE runs)
were used, leading to a coefficient of variation of the simulation less than 6%.
In the SFE approach, the polynomial chaos expansion of the response is used



284 Bruno Sudret and Marc Berveiller

Table 7.2 Example #1 – Reliability index β – Influence of the orders of expansion M and p
(u0 = 10cm).

M βFORM
direct β IS

direct p P βFORM
SFE β IS

SFE

2 3.452 3.433 2 6 3.617 3.613
3 10 3.474 3.467

3 3.447 3.421 2 10 3.606 3.597
3 20 3.461 3.461

4 3.447 3.449 2 15 3.603 3.592
3 35 3.458 3.459

for importance sampling around the design point obtained by FORM (i.e. no
additional finite element run is required), and thus 50,000 samples can be
used, leading to a coefficient of variation of the simulation less than 1%.

It appears that the solution is not much sensitive to the order of expansion
of the input field (when comparing the results for M = 2 with respect to those
obtained for M = 4). This can be understood easily by the fact that the maxi-
mum settlement of the foundation is related to the global (i.e. homogenized)
behavior of the soil mass. Modeling in a refined manner the spatial variabil-
ity of the stiffness of the soil mass by adding terms in the KL expansion does
not significantly influence the results.

In contrary, it appears that a PC expansion of third degree (p = 3) is
required in order to get a satisfactory accuracy on the reliability index.

Parametric study

A comprehensive comparison of the two approaches is presented in Sudret
and Der Kiureghian (2000), where the influences of various parameters are
investigated. Selected results are reported in this section. More precisely, the
accuracy of the SFE method combined with FORM is investigated when
varying the value of the admissible settlement from 6 to 20 cm, which
leads to an increasing reliability index. A two-term (M = 2) KL expan-
sion of the underlying Gaussian field is used. The results are reported in
Table 7.3. Column #2 shows the values obtained by direct coupling between
FORM and the deterministic finite element model. Column #4 shows the val-
ues obtained using FORM after the SFE solution of the problem using an
intrusive approach.

The results in Table 7.3 show that the “SFE+FORM” procedure obviously
converges to the direct coupling results when p is increased. It appears that a
third-order expansion is accurate enough to predict reliability indices up to 5.
For larger values of β, a fourth-order expansion should be used.

Note that a single SFE analysis is carried out to get the reliability indices
associated with the various values of the threshold u0 (once p is chosen).
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Table 7.3 Example #1 – Influence of the threshold
in the limit state function.

u0 (cm) βdirect p βSFE

2 0.477
6 0.473 3 0.488

4 0.488
2 2.195

8 2.152 3 2.165
4 2.166
2 3.617

10 3.452 3 3.474
4 3.467
2 4.858

12 4.514 3 4.559
4 4.534
2 6.494

15 5.810 3 5.918
4 5.846
2 8.830

20 7.480 3 7.737
4 7.561

In contrary, a FORM analysis has to be restarted for each value of u0
when direct coupling is used. As a conclusion, if a single value of β (and
related Pf ≈ 	(−β)) is of interest, direct coupling using FORM is proba-
bly the most efficient method. When the evolution of β with respect to a
threshold is investigated, the “SFE+FORM” approach may become more
efficient.

7.7.2 Example #2: Foundation problem – non Gaussian
variables

Deterministic problem statement

Let us consider now an elastic soil mass made of two layers of different
isotropic linear elastic materials lying on a rigid substratum. A foundation
on this soil mass is modeled by a uniform pressure P1 applied over a length
2B1 = 10 m of the free surface. An additional load P2 is applied over a length
2B2 = 5 m (Figure 7.4).

Due to the symmetry, half of the structure is modeled by finite element
(Figure 7.4). The mesh comprises 80 QUAD4 elements as in the previous
section. The finite element code used in this analysis is the open source code
Code_Aster.1 The geometry is considered as deterministic. The elastic mate-
rial properties of both layers and the applied loads are modeled by random
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A

2B1 = 10m

t1 =  7,75m

t2 =  22,25m E2, n2

E1, n1

P1

P2

2B2 =  5m

Figure 7.4 Example #2: Foundation on a two-layer soil mass.

Table 7.4 Example #2: Two-layer soil layer mass – Parameters of the model.

Parameter Notation Type of PDF Mean value Coef. of
variation

Upper layer soil thickness t1 Deterministic 7.75 m –
Lower layer soil thickness t2 Deterministic 22.25 m –
Upper layer Young’s modulus E1 Lognormal 50 MPa 20%
Lower layer Young’s modulus E2 Lognormal 100 MPa 20%
Upper layer Poisson ratio ν1 Uniform 0.3 15%
Lower layer Poisson ratio ν2 Uniform 0.3 15%
Load #1 P1 Gamma 0.2 MPa 20 %
Load #2 P2 Weibull 0.4 MPa 20 %

variables, whose PDF are specified in Table 7.4. All six random variables are
supposed to be independent.

Again the model response under consideration is the maximum verti-
cal displacement at point A (Figure 7.4). The finite element model is thus
considered as an algorithmic function h(.) that computes the vertical nodal
displacement uA as a function of the six input parameters:

uA = h(E1,E2,ν1,ν2,P1,P2) (7.71)

Reliability analysis

The serviceability of this foundation on a layered soil mass vis-à-vis an
admissible settlement is studied. Again, two stategies are compared.

• A direct coupling between the finite element model and the probabilistic
code PROBAN (Det Norske Veritas, 2000). The limit state function
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given in Equation (7.70) is rewritten in this case as:

g(X ) = u0 −h(E1, E2, ν1, ν2, P1, P2) (7.72)

where u0 is the admissible settlement. The failure probability is com-
puted using FORM analysis followed by importance sampling. One
thousand samples are used in IS, allowing a coefficient of variation of
the simulation less than 5%.

• A SFE analysis using the regression method is carried out, leading to an
approximation of the maximal vertical settlement:

ũA =
P∑

j=0

ujΨj({ξk}6
k=1) (7.73)

For this purpose, the six input variables {E1, E2, ν1, ν2, P1, P2} are first
transformed into a six-dimensional standard normal gaussian vector
ξ ≡ {ξk}6

k=1 . Then a third-order (p = 3) PC expansion of the response

is performed which requires the computation of P =
(

6 + 3
3

)
= 84

coefficients. An approximate limit state function is then considered:

g̃(X) = u0 −
P∑

j=0

ujΨj({ξk}6
k=1) (7.74)

Then FORM analysis followed by importance sampling is applied (one
thousand samples, coefficient of variation less than 1% for the simula-
tion). Note that in this case FORM as well as IS are performed using
the analytical limit state function Equation (7.74). This computation
is almost costless compared to the computation of the PC expansion
coefficients {uj}P−1

j=0 in Equation (7.73).

Table 7.5 shows the probability of failure obtained by direct coupling
and by SFE/regression using various numbers of points in the experimental
design (see Section 7.5.3). Figure 7.5 shows the evolution of the ratio between
the logarithm of the probability of failure (divided by the logarithm of the
converged probability of failure) versus the number of regression points for
several values of the maximum admissible settlement u0. Accurate results are
obtained when using 420 regression points or more for different values of the
failure probability (from 10−1 to 10−4). When taking less than 420 points,
results are inaccurate. When taking more than 420 points, the accuracy is
not improved. Thus this number seems to be the best compromise between
accuracy and efficiency. Note that it corresponds to 5×84 points, as pointed
out in Equation (7.47).
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Table 7.5 Example #2: Foundation on a two-layered soil – probability of failure Pf .

Threshold
u0 (cm)

Direct
coupling

Non-intrusive SFE/regression approach

84 pts 168 pts 336 pts 420 pts 4096 pts

12 3.09.10−1 1.62.10−1 2.71.10−1 3.31.10−1 3.23.10−1 3.32.10−1

15 6.83.10−2 6.77.10−2 6.90.10−2 8.43.10−2 6.73.10−2 6.93.10−2

20 2.13.10−3 – 9.95.10−5 8.22.10−4 2.01.10−3 1.98.10−3

22 4.61.10−4 – 7.47.10−7 1.31.10−4 3.80.10−4 4.24.10−4

Number of FE runs
required

84 168 336 420 4096

0.9

1
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Figure 7.5 Example #2: Evolution of the logarithm of the failure probability divided by the
converged value vs. the number of regression points.

7.7.3 Example #3: Deep tunnel problem

Deterministic problem statement and probabilistic model

Let us consider a deep tunnel in an elastic, isotropic homogeneous soil mass.
Let us consider a homogeneous initial stress field. The coefficient of earth

pressure at rest is defined as K0 = σ0
xx

σ0
yy

. Parameters describing geometry,
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material properties and loads are given in Table 7.6. The analysis is carried
out under plane strain conditions. Due to the symmetry of the problem,
only a quarter of the problem is modeled by finite element using appropri-
ate boundary conditions (Figure 7.6). The mesh contains 462 nodes and
420 4-node linear elements, which allow a 1.4%-accuracy evaluation of the
radial displacement of the tunnel wall compared to a reference solution.

Moment analysis

One is interested in the radial displacement (convergence) of the tunnel
wall, i.e. the vertical displacement of point E denoted by uE. The value
um

E obtained for the mean values of the random parameters (see Table 7.6)
is 6.24 mm. A third-order (p = 3) PC expansion of this nodal displace-

ment is computed. This requires P =
(

4 + 3
3

)
= 35 coefficients. Various SFE

Table 7.6 Example #3 – Parameters of the model.

Parameter Notation Type Mean Coef. of Var.

Tunnel depth L Deterministic 20 m –
Tunnel radius R Deterministic 1 m –
Vertical initial stress −σ 0

yy Lognormal 0.2 MPa 30%
Coefficient of earth

pressure at rest
K0 Lognormal 0.5 10%

Young’s modulus E Lognormal 50 MPa 20%
Poisson ratio ν Uniform [0.1–0.3] 0.2 29%

E, n

o

L

L

BA

CD

E

x

y
R

dy = 0

dx = 0

dx = 0
dy = 0

dx = 0
dy= 0

sYY
0

sXX
0

Figure 7.6 Scheme of the tunnel. Mesh of the tunnel.
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methods are applied to solve the SFE problem, namely the intrusive method
(Section 7.4) and the non intrusive regression method (Section 7.5) using
various experimental designs. The statistical moments of uE (reduced mean
value E[uE]/um

E , coefficient of variation, skewness and kurtosis coefficients)
are reported in Table 7.7.

The reference solution is obtained by Monte Carlo simulation of the
deterministic finite element model using 30,000 samples (column #2). The
coefficient of variation of this simulation is 0.25%. The regression method
gives good results when there are at least 105 regression points (note that
this corresponds again to Equation (7.47)). These results are slightly better
than those obtained by the intrusive approach (column #3), especially for the
skewness and kurtosis coefficients. This is due to the fact that input variables
are expanded (i.e. approximated) onto the PC basis when applying the intru-
sive approach while they are exactly represented through the isoprobabilistic
transform in the non intrusive approaches.

Reliability analysis

Let us now consider the reliability of the tunnel with respect to an admissible
radial displacement u0. The deterministic finite element model is considered
as an algorithmic function h(.) that computes the radial nodal displacement
uE as a function of the four input parameters:

uE = h
(
E,ν,σ 0

yy,K0

)
(7.75)

Two solving stategies are compared.

• A direct coupling between the finite element model PROBAN. The limit
state function reads in this case:

g(X) = u0 −h
(
E,ν,σ 0

yy,K0

)
(7.76)

Table 7.7 Example #3 – Moments of the radial displacement at point E.

Reference
Monte Carlo

Intrusive
SFE (p = 3)

Non-intrusive SFE/Regression

35 pts 70 pts 105 pts 256 pts

uE/um
E 1.017 1.031 1.311 1.021 1.019 1.018

Coeff. of var. 0.426 0.427 1.157 0.431 0.431 0.433
Skewness −1.182 −0.807 −0.919 −1.133 −1.134 −1.179
Kurtosis 5.670 4.209 13.410 5.312 5.334 5.460
Number of FE runs required − 35 70 105 256



Stochastic finite element methods 291

where u0 is the admissible radial displacement. The failure probability
is computed using FORM analysis followed by importance sampling.
One thousand samples are used in IS, allowing a coefficient of variation
of the simulation less than 5%.

• A SFE analysis using the regression method is carried out, leading to an
approximation of the radial displacement:

ũE =
P∑

j=0

ujΨj({ξk}4
k=1) (7.77)

and the associated limit state function reads:

g() = u0 −
P∑

j=0

ujΨj({ξk}4
k=1) (7.78)

The generalized reliability indices β = −	−1(Pf ,IS) associated to limit
state functions (7.76) and (7.78) for various values of u0 are reported in
Table 7.8.

The above results show that at least 105 points of regression should be used
when a third-order PC expansion is used. Additional points do not improve
the accuracy of the results. The intrusive and non-intrusive approaches give
very similar results. They are close to the direct coupling results when the
obtained reliability index is not too large. For larger values, the third-order
PC expansion may not be accurate enough to solve the reliability problem.
Anyway, the non-intrusive approach (which does not introduce any approxi-
mation of the input variables) is slightly more accurate than the non intrusive
method, as explained in Example #2.

Table 7.8 Example #3: Generalized reliability indices β = −	−1(Pf ,IS) vs. admissible
radial displacement.

Threshold
u0 (cm)

Direct coupling Intrusive SFE
(p = 3,P = 35)

Non-intrusive SFE/regression

35 pts 70 pts 105 pts 256 pts

7 0.427 0.251 −0.072 0.227 0.413 0.405
8 0.759 0.571 0.038 0.631 0.734 0.752
9 1.046 1.006 0.215 1.034 0.994 1.034

10 1.309 1.309 0.215 1.350 1.327 1.286
12 1.766 1.920 0.538 1.977 1.769 1.747
15 2.328 2.907 0.857 2.766 2.346 2.322
17 2.627 3.425 1.004 3.222 2.663 2.653
20 3.342 4.213 1.244 3.823 3.114 3.192
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7.8 Conclusion

Modeling soil material properties properly is of crucial importance in
geotechnical engineering. The natural heterogeneity of soil can be fruitfully
modeled using probability theory.

• If an accurate description of the spatial variability is required, random
fields may be employed. Their use in engineering problems requires their
discretization. Two efficient methods have been presented for this pur-
pose, namely the Karhunen–Loève expansion and the EOLE method.
These methods should be better known both by researchers and engi-
neers, since they provide a much better accuracy than older methods
such as point discretization or local averaging techniques.

• If an homogenized behavior of the soil is sufficient with respect to the
geotechnical problem under consideration, the soil characteristics may
be modeled as random variables that are usually non Gaussian.

In both cases, identification of the parameters of the probabilistic model is
necessary. This is beyond the scope of this chapter.

Various methods have been reviewed that predict the impact of input ran-
dom parameters onto the response of the geotechnical model. Attention has
been focused on a class of stochastic finite element methods based on poly-
nomial chaos expansions. It has been shown how the input variables/fields
should be first represented using functions of standard normal variables.

Two classes of methods for computing the expansion coefficients have
been presented, namely the intrusive and non-intrusive methods. The histor-
ical intrusive approach is well-suited to solve linear problems. It has been
extended to some particular non linear problems, but proves delicate to apply
in these cases. In contrast, the projection and regression methods are easy
to apply whatever the physics since they make use only of the deterministic
model as available in the finite element code. Several runs of the model for
selected values of the input parameters are required. The computed responses
are processed in order to get the PC expansion coefficients of the response.
Note that the implementation of these non-intrusive methods is done once
and for all, and can be applied thereafter with any finite element software at
hand, and more generally with any model (possibly analytical). However, the
non-intrusive methods may become computationnally expensive when the
number of input variables is large, which may be the case when discretized
random fields are considered.

Based on a large number of application examples, the authors suggest the
use of second-order (p = 2) PC expansions for estimating mean and standard
deviation of response quantities. When reliability problems are considered,
at least a third-order expansion is necessary to catch the true shape of the
response PDF tail.
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Appendix A

A.1 Hermite polynomials

The Hermite polynomials Hen(x) are solutions of the following differential
equation:

y′′ − xy′ + ny = 0 n ∈ N (7.79)

They may be generated in practice by the following recurrence relationship:

He0(x) = 1 (7.80)

Hen+1(x) = xHen(x) − nHen−1(x) (7.81)

They are orthogonal with respect to the Gaussian probability measure:

∫ ∞

−∞
Hem(x)Hen(x)ϕ(x)dx = n!δmn (7.82)

where ϕ(x) = 1/
√

2π e−x2/2 is the standard normal PDF. If ξ is a standard
normal random variable, the following relationship holds:

E
[
Hem(ξ )Hen(ξ )

]= n!δmn (7.83)

The first three Hermite polynomials are:

He1(x) = x He2(x) = x2 − 1 He3(x) = x3 − 3x (7.84)

A.2 Construction of the polynomial chaos

The Hermite polynomial chaos of order M and degree p is the set of multi-
variate polynomials obtained by products of univariate polynomials so that



294 Bruno Sudret and Marc Berveiller

the maximal degree is less than or equal to p. Let us define the following
integer sequence α:

α = {αi, i = 1, . . . , M}, αi ≥ 0,
M∑

i=1

αi ≤ p (7.85)

The multivariate polynomial Ψα is defined by:

Ψα(x1, . . . , xM) =
M∏

i=1

Heαi
(xi) (7.86)

The number of such polynomials of degree not exceeding p is:

P = (M + p)!
M!p! (7.87)

An original algorithm to determine the set of α’s is detailed in Sudret and Der
Kiureghian (2000). Let Z be a standard normal random vector of size M. It
is clear that:

E
[
Ψα(Z)Ψβ (Z)

]
=

M∏
i=1

E
[
Heαi

(Zi)Heβi
(Zi)
]

= δαβ

M∏
i=1

E
[
He2

αi
(Zi)
]
(7.88)

The latter equation shows that the polynomial chaos basis is orthogonal.

Note

1 This is an open source finite element code developed by Electricité de France, R&D
Division, see http://www.code-aster.org.
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Chapter 8

Eurocode 7 and
reliability-based design

Trevor L. L. Orr and Denys Breysse

8.1 Introduction

This chapter outlines how reliability-based geotechnical design is being intro-
duced in Europe through the adoption of Eurocode 7, the new European
standard for geotechnical design. Eurocode 7 is based on the limit state
design concept with partial factors and characteristic values. This chapter
traces the development of Eurocode 7; it explains how the overall relia-
bility of geotechnical structures is ensured in Eurocode 7; it shows how
the limit state concept and partial factor method are implemented in
Eurocode 7 for geotechnical designs; it explains how characteristic val-
ues are selected and design values obtained; it presents the partial factors
given in Eurocode 7 to obtain the appropriate levels of reliability; and it
examines the use of probability-based reliability methods, such as first-
order reliability method (FORM) analyses and Monte Carlo simulations, for
geotechnical designs and the use of these methods for calibrating the par-
tial factor values. An example is presented of a spread foundation designed
to Eurocode 7 using the partial factor method, and this is followed by
some examples of the use of probabilistic methods to investigate how
uncertainty in the parameter values affects the reliability of geotechnical
designs.

8.2 Eurocode program

In the 1975 the Commission of the European Community (CEC) decided
to initiate work on the preparation of a program of harmonized codes
of practice, known as the Eurocodes, for the design of structures. The
purpose and intended benefits of this program were that, by providing
common design criteria, it would remove the barriers to trade due to the
existence of different codes of practice in the member states of what was
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then the European Economic Community (EEC) and is now the European
Union (EU). The Eurocodes would also serve as reference documents for
fulfilling the requirements for mechanical resistance, stability and resis-
tance to fire, including aspects of durability and economy specified in the
Construction Products Directive, which have been adopted in each EU
member state’s building regulations. A further objective of the Eurocodes
is to improve the competitiveness of the European construction industry
internationally.

The set of Eurocodes consists of 10 codes, which are European stan-
dards, i.e. Europäische Norms (ENs). The first Eurocode, EN 1990, sets out
the basis of design adopted in the set of Eurocodes; the second, EN 1991,
provides the loads on structures, referred to as actions; the codes EN 1992 –
EN 1997 and EN 1999 provide the rules for designs involving the different
materials; and the code EN 1998 provides the rules for seismic design of
structures. Part 1 of EN 1997, called Eurocode 7 and referred to as this
throughout this chapter, provides the general rules for geotechnical design.
As explained in the next section, EN 1997 is published by CEN (Comité
Éuropéen de Normalisation or European Commitee for Standardization), as
are the other Eurocodes.

8.3 Development of Eurocode 7

The development of Eurocode 7 started in 1980, when Professor Kevin
Nash, Secretary General of the International Society for Soil Mechanics and
Foundation Engineering, invited Niels Krebs Ovesen to form a committee,
consisting of representatives from eight of the nine EEC member states at
that time, which were Belgium, Denmark, France, Germany, Ireland, Italy,
Netherlands and the UK (there was no representative from Luxembourg, and
Greece joined the committee from the first meeting in 1981 when it joined
the EEC), to prepare for the CEC a draft model limit state design code for
Eurocode 7, which was published in 1987. Subsequently, the work on all
the Eurocodes was transferred from the CEC to CEN, and the pre-standard
version of Eurocode 7, which was based on partial material factors, was
published in 1994 as ENV 1997–1, Eurocode 7 Geotechnical design: Part 1
General rules. Then, taking account of comments received on the ENV ver-
sion and including partial resistance factors as well as partial material factors,
the full standard version of Eurocode 7 – Part 1, EN 1997–1, was published
by CEN in November 2004. Since each member state is responsible for the
safety levels of structures within its jurisdiction, there was, as specified in
Guidance Document Paper L (EC, 2002), a two-year period following pub-
lication of the EN, i.e. until November 2006, for each country to prepare
a National Annex giving the values of the partial factors and other safety
elements so that Eurocode 7 could be used for geotechnical designs in that
country.
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8.4 Eurocode design requirements and the limit
state design concept

The basic Eurocode design requirements, given in EN 1990, are that
a structure shall be designed and executed in such a way that it will,
during its intended life, with appropriate degrees of reliability and in an
economical way:

• sustain all actions and influences likely to occur during execution and
use, and

• remain fit for the use for which it is required.

To achieve these basic design requirements, the limit state design concept is
adopted in all the Eurocodes, and hence in Eurocode 7. The limit state design
concept involves ensuring that, for each design situation, the occurrence of
all limit states is sufficiently unlikely, where a limit state is a state beyond
which the structure no longer fulfills the design criteria. The limit states that
are considered are ultimate limit states (ULSs) and serviceability limit states
(SLSs), which are defined as follows.

1. Ultimate limit states are those situations involving safety, such as the
collapse of a structure or other forms of failure, including excessive
deformation in the ground prior to failure causing failure in the sup-
ported structure, or where there is a risk of danger to people or severe
economic loss. Ultimate limit states have a low probability of occurrence
for well-designed structures, as noted in Section 8.12.

2. Serviceability limit states correspond to those conditions beyond which
the specified requirements of the structure or structural element are no
longer met. Examples include excessive deformations, settlements, vibra-
tions and local damage of the structure in normal use under working
loads such that it ceases to function as intended. Serviceability limit
states have a higher probability of occurrence than ultimate limit states,
as noted in Section 8.12.

The calculation models used in geotechnical designs to check that the
occurrence of a limit state is sufficiently unlikely should describe the behav-
ior of the ground at the limit state under consideration. Thus separate
and different calculations should be carried out to check the ultimate and
serviceability limit states. In practice, however, it is often known from expe-
rience which limit state will govern the design and hence, having designed
for this limit state, the avoidance of the other limit states may be veri-
fied by a control check. ULS calculations will normally involve analyzing
a failure mechanism and using ground strength properties, while SLS calcu-
lations will normally involve a deformation analysis and ground stiffness or
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compressibility properties. The particular limit states to be considered in the
case of common geotechnical design situations are listed in the appropriate
sections of Eurocode 7.

Geotechnical design differs from structural design since it involves a
natural material (soil) which is variable and whose properties need to
be determined from geotechnical investigations, rather than a manufac-
tured material (such as concrete or steel) which is made to meet certain
specifications. Hence, in geotechnical design, the geotechnical investiga-
tions to identify and characterize the relevant ground mass and determine
the characteristic values of the ground properties are an important part
of the design process. This is reflected in the fact that Eurocode 7 has
two parts: Part 1 – General rules and Part 2 – Ground investigation and
testing.

8.5 Reliability-based designs and Eurocode design
methods

As noted in the previous section, the aim of designs to the Eurocodes is
to provide structures with appropriate degrees of reliability, thus designs
to the Eurocodes are reliability-based designs (RBDs). Reliability is defined
in EN 1990 as the ability of a structure or a structural member to fulfill
the specified requirements, including the design working life, for which it
has been designed, and it is noted that reliability is usually expressed in
probabilistic terms. EN 1990 states that the required reliability for a struc-
ture shall be achieved by designing in accordance with the appropriate
Eurocodes and by the use of appropriate execution and quality management
measures.

EN 1990 allows for different levels of reliability which take account of:

• the cause and/or mode of obtaining a limit state (i.e. failure),
• the possible consequences of failure in terms of risk to life, injury or

potential economic loss,
• public aversion to failure, and
• the expense and procedures necessary to reduce the risk of failure.

Examples of the use of different levels of reliability are the adoption of a
high level of reliability in a situation where a structure poses a high risk to
human life, or where the economic, social or environmental consequences
of failure are great, as in the case of a nuclear power station, and a low level
of reliability where the risk to human life is low and where the economic,
social and environmental consequences of failure are small or negligible, as
in the case of a farm building.

In geotechnical designs, the required level of reliability is obtained in
part through ensuring that the appropriate design measures and control
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checks are applied to all aspects and at all stages of the design process from
conception, through the ground investigation, design calculations and con-
struction, to maintenance. For this purpose, Eurocode 7 provides lists of
relevant items and aspects to be considered at each stage. Also, a risk assess-
ment system, known as the Geotechnical Categories, is provided to take
account of the different levels of complexity and risk in geotechnical designs.
This system is discussed in Section 8.6.

According to EN 1990, designs to ensure that the occurrence of limit state
is sufficiently unlikely may be carried out using either of the following design
methods:

• the partial factor method, or
• an alternative method based directly on probabilistic methods.

The partial factor method is the normal Eurocode design method and is the
method presented in Eurocode 7. This method involves applying appropri-
ate partial factor values, specified in the National Annexes to Eurocode 7, to
statistically based characteristic parameter values to obtain the design val-
ues for use in relevant calculation models to check that a structure has the
required probability that neither an ultimate nor a serviceability limit state
will be exceeded during a specified reference period. This design method
is referred to as a semi-probabilistic reliability method in EN 1990, as
explained in Section 8.12. The selection of characteristic values and the
appropriate partial factor values to achieve the required reliability level are
discussed in Sections 8.8–8.11. As explained in Section 8.12, there is no pro-
cedure in Eurocode 7 to allow for reliability differentiation by modifying
the specified partial factor values, and hence the calculated reliability level,
in order to take account of the consequences of failure. Instead reliability
differentiation may be achieved through using the system of Geotechnical
Categories.

Eurocode 7 does not provide any guidance on the direct use of fully proba-
bilistic reliability methods for geotechnical design. However, EN 1990 states
that the information provided in Annex C of EN 1990, which includes guid-
ance on the reliability index, β value, may be used as a basis for probabilistic
design methods.

8.6 Geotechnical risk and Geotechnical
Categories

In Eurocode 7, three Geotechnical Categories, referred to as Geotechni-
cal Categories 1, 2 and 3, have been introduced to take account of the
different levels of complexity of a geotechnical design and to establish
the minimum requirements for the extent and content of the geotechnical
investigations, calculations and construction control checks to achieve the
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required reliability. The factors affecting the complexity of a geotechnical
design include:

1. the nature and size of the structure;
2. the conditions with regard to the surroundings, for example neighboring

structures, utilities, traffic, etc.;
3. the ground conditions;
4. the groundwater situation;
5. regional seismicity; and
6. the influence of the environment, e.g. hydrology, surface water, subsi-

dence, seasonal changes of moisture.

The use of the Geotechnical Categories is not a code requirement, as
they are presented as an application rule, rather than a principle, and
so are optional rather than mandatory. The advantage of the Geotech-
nical Categories is that they provide a framework for categorizing the
different levels of risk in a geotechnical design and for selecting appro-
priate levels of reliability to account for the different levels of risk.
Geotechnical risk is a function of two factors: the geotechnical haz-
ards (i.e. dangers) and the vulnerability of people and the structure
to specific hazards. With regard to the design complexity factors listed
above, factors 1 and 2 (the structure and its surroundings) relate to
vulnerability, and factors 3–6 (ground conditions, groundwater, seismic-
ity and environment) are geotechnical hazards. The various levels of
complexity of these factors, in relation to the different Geotechnical
Categories and the associated geotechnical risks, are shown in Table 8.1,
taken from Orr and Farrell (1999). It is the geotechnical designer’s
responsibility to ensure, through applying the Eurocode 7 requirements
appropriately and by the use of appropriate execution and quality
management measures, that structures have the required reliability, i.e.
have sufficient safety against failure as a result of any of the potential
hazards.

In geotechnical designs to Eurocode 7, the distinction between the
Geotechnical Categories lies in the degree of expertise required and in
the nature and extent of the geotechnical investigations and calculations
to be carried out, as shown in Table 8.2, taken from Orr and Farrell
(1999). Some examples of structures in each Geotechnical Category are
also shown in this table. As noted in the previous section, Eurocode 7
does not provide for any differentiation in the calculated reliability for
the different Geotechnical Categories by allowing variation in the par-
tial factors values. Instead, while satisfying the basic design requirements
and using the specified partial factor values, the required reliability is
achieved in the higher Geotechnical Categories by greater attention to
the quality of the geotechnical investigations, the design calculations, the



Table 8.1 Geotechnical Categories related to geotechnical hazards and vulnerability levels.

Factors to be
considered

Geotechnical Categories

GC1 GC2 GC3

Geotechnical
hazards

Low Moderate High

Ground
conditions

Known from
comparable
experience to be
straightforward.
Not involving soft,
loose or
compressible soil,
loose fill or
sloping ground

Ground conditions
and properties
can be determined
from routine
investigations and
tests

Unusual or
exceptionally difficult
ground conditions
requiring non-routine
investigations and
tests

Groundwater
situation

No excavations
below water table,
except where
experience
indicates this will
not cause
problems

No risk of damage
without prior
warning to
structures due to
groundwater
lowering or drainage.
No exceptional
water tightness
requirements

High groundwater
pressures and
exceptional
groundwater
conditions, e.g.
multi-layered strata
with variable
permeability

Regional
seismicity

Areas with no or
very low
earthquake hazard

Moderate earthquake
hazard where
seismic design code
(EC8) may be used

Areas of high
earthquake hazard

Influence of the
environment

Negligible risk of
problems due to
surface water,
subsidence,
hazardous
chemicals, etc.

Environmental
factors covered by
routine design
methods

Complex or difficult
environmental factors
requiring special
design methods

Vulnerability Low Moderate High
Nature and

size of the
structure and
its elements

Small and relatively
simple structures
or construction.
Insensitive
structures in
seismic areas

Conventional types
of structures with
no abnormal risks

Very large or unusual
structures and
structures involving
abnormal risks. Very
sensitive structures in
seismic areas

Surroundings Negligible risk of
damage to or
from neighboring
structures or
services and
negligible risk
for life

Possible risk of
damage to
neighboring
structures or
services due, for
example,
to excavations
or piling

High risk of damage to
neighboring
structures or services

Geotechnical risk Low Moderate High
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monitoring during construction and the maintenance of the completed
structure.

The reliability of a geotechnical design is influenced by the expertise of
the designer. No specific guidelines are given in Eurocode 7 with regard to
the level of expertise required by designers for particular Geotechnical Cate-
gories except that, as stated in both EN 1990 and EN 1997–1, it is assumed
that structures are designed by appropriately qualified and experienced per-
sonnel. Table 8.2 provides an indication of the levels of expertise required by
those involved in the different Geotechnical Categories. The main features
of the different Geotechnical Categories are summarized in the following
paragraphs.

8.6.1 Geotechnical Category 1

Geotechnical Category 1 includes only small and relatively simple struc-
tures for which the basic design requirements may be satisfied on the basis
of experience and qualitative geotechnical investigations and where there is
negligible risk for property and life due to the ground or loading conditions.
Geotechnical Category 1 designs involve empirical procedures to ensure the
required reliability, without the use of any probability-based analyses or
design methods. Apart from the examples listed in Table 8.2, Eurocode 7
does not, and, without local knowledge, cannot provide detailed guidance
or specific requirements for Geotechnical Category 1; these must be found
elsewhere: for example, in local building regulations, national guidance
documents and textbooks. According to Eurocode 7, the design of Geotech-
nical Category 1 structures requires someone with appropriate comparable
experience.

8.6.2 Geotechnical Category 2

Geotechnical Category 2 includes conventional types of structures and foun-
dations with no abnormal risk or unusual or exceptionally difficult ground
or loading conditions. Structures in Geotechnical Category 2 require quan-
titative geotechnical data and analyses to ensure that the basic requirements
will be satisfied and require a suitably qualified person, normally a civil
engineer with appropriate geotechnical knowledge and experience. Routine
procedures may be used for field and laboratory testing and for design
and construction. The partial factor method presented in Eurocode 7 is the
method normally used for Geotechnical Category 2 designs.

8.6.3 Geotechnical Category 3

Geotechnical Category 3 includes structures or parts of structures that
do not fall within the limits of Geotechnical Categories 1 or 2.



Table 8.2 Investigations, designs and structural types related to Geotechnical Categories.

Geotechnical Categories

GC1 GC2 GC3

Expertise
required

Person with
appropriate
comparable
experience

Experienced qualified
person

Experienced
geotechnical
specialist

Geotechnical
investigations

Qualitative
investigations
including trial pits

Routine
investigations
involving borings,
field and
laboratory tests

Additional more
sophisticated
investigations and
laboratory tests

Design
procedures

Prescriptive
measures and
simplified design
procedures, e.g.
design bearing
pressures based
on experience or
published
presumed bearing
pressures. Stability
or deformation
calculations may
not be necessary

Routine calculations
for stability and
deformations
based on design
procedures
in EC7

More sophisticated
analyses

Examples of
structures • Simple 1 and 2

storey structures
and agricultural
buildings having
maximum design
column load of
250 kN and
maximum design
wall load of
100 kN/m

• Retaining walls and
excavation
supports where
ground level
difference does
not exceed 2 m

• Small excavations
for drainage and
pipes.

Conventional:
• Spread and pile

foundations
• Walls and other

retaining
structures

• Bridge piers and
abutments

• Embankments and
earthworks

• Ground anchors
and other support
systems

• Tunnels in hard,
non-fractured rock

• Very large
buildings

• Large bridges
• Deep excavations
• Embankments on

soft ground
• Tunnels in soft or

highly permeable
ground
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Geotechnical Category 3 includes very large or unusual structures, struc-
tures involving abnormal risks, or unusual or exceptionally difficult ground
or loading conditions, and structures in highly seismic areas. Geotechni-
cal Category 3 structures will require the involvement of a specialist, such
as a geotechnical engineer. While the requirements in Eurocode 7 are the
minimum requirements for Geotechnical Category 3, Eurocode 7 does not
provide any special requirements for Geotechnical Category 3. Eurocode 7
states that Geotechnical Category 3 normally includes alternative provisions
and rules to those given in Eurocode 7. Hence, in order to take account of the
abnormal risk associated with Geotechnical Category 3 structures, it would
be appropriate to use probability-based reliability analyses when designing
these to Eurocode 7.

8.6.4 Classification into a particular Geotechnical
Category

If the Geotechnical Categories are used, the preliminary classification of
a structure into a particular category is normally performed prior to any
investigation or calculation being carried out. However, this classification
may need to be changed during or following the investigation or design
as additional information becomes available. Also, when using this sys-
tem, all parts of a structure do not have to be treated according to the
highest Geotechnical Category. Only some parts of a structure may need
to be classified in a higher category, and only those parts will need to be
treated differently; for example, with regard to the level of investigation or
the degree of sophistication of the design. A higher Geotechnical Category
may be used to achieve a higher level of reliability or a more economical
design.

8.7 The partial factor method and geotechnical
design calculations

Geotechnical design calculations involve the following components:

• imposed loads or displacements, referred to as actions, F in the
Eurocodes;

• properties of soil, rock and other materials, X or ground resistances, R;
• geometrical data, a;
• partial factors, γ or some other safety elements;
• action effects, E, for example resulting forces or calculated settlements;
• limiting or acceptable values, C of deformations, crack widths, vibra-

tions, etc; and
• a calculation model describing the limit state under consideration.
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ULS design calculations, in accordance with Eurocode 7, involve ensuring
that the design effect of the actions or action effect, Ed, does not exceed the
design resistance, Rd, where the subscript d indicates a design value:

Ed ≤ Rd (8.1)

while SLS calculations involve ensuring that the design action effect, Ed (e.g.
settlement), is less than the limiting value of the deformation of the structure,
Cd at the SLS:

Ed ≤ Cd (8.2)

In geotechnical design, the action effects and resistances may be functions
of loads and material strengths, as well as being functions of geometrical
parameters. For example, in the design of a cantilever retaining wall against
sliding, due to the frictional nature of soil, both the action effect, E, which
is the earth pressure force on the retaining wall, and the sliding resistance,
R, are functions of the applied loads as well as being functions of the soil
strength and the height of the wall, i.e. in symbolic form they are E{F,X,a}
and R{F,X,a}.

When using the partial factor method in a ULS calculation and assum-
ing the geometrical parameters are not factored, the Ed and Rd may be
obtained either by applying partial action and partial material factors, γF
and γM, to representative loads, Frep and characteristic soil strengths, Xk or
else partial action effect and partial resistance factors, γE and γR, may be
applied to the action effects and the resistances calculated using unfactored
representative loads and characteristic soil strengths. This is indicated in the
following equations, where the subscripts rep and k indicate representative
and characteristic values, respectively:

Ed = E[γFFrep,Xk/γM,ad] (8.3)

and Rd = R[γFFrep,Xk/γM,ad] (8.4)

or Ed = γEE[Frep,Xk,ad] (8.5)

and Rd = R[Frep,Xk,ad]/γR (8.6)

The difference between the Design Approaches presented in Section 8.11 is
whether Equations (8.3) and (8.4) or Equations (8.5) and (8.6) are used.
The definition of representative and characteristic values and how they are
selected, and the choice of partial factor values to obtain Ed and Rd, are
discussed in the following sections.
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8.8 Characteristic and representative values
of actions

EN 1990 defines the characteristic value of an action, Fk, as its main repre-
sentative value and its value is specified as a mean value, an upper or lower
value, or a nominal value. EN 1990 states that the variability of perma-
nent loads, G may be neglected if G does not vary significantly during the
design working life of the structure and its coefficient of variation, V is small.
Gk should then be taken equal to the mean value. EN 1990 notes that the
value of V for Gk can be in the range 0.05 to 0.10, depending on the type
of structure. For variable loads, Q the characteristic value, Qk may either
be an upper value with an intended probability of not being exceeded, or
a nominal value when a statistical distribution is not known. In the case
of climatic loads, a probability of 0.02 is quoted in EN 1990 for reference
period of 1 year, corresponding to a return period of 50 years for the char-
acteristic value. No V value for variable loads is given in EN 1990, but a
typical value would be 0.15, which is the value used in the example in Section
8.14. If a load, F, is a normally distributed random variable with a mean
value µ(F), standard deviation σ (F) and coefficient of variation V(F), the
characteristic value corresponding to the 95% fractile is given by:

Fk = µ(F) + 1.645σ (F) = µF(1 + 1.645V(F)) (8.7)

The representative values of actions, Frep, are obtained from the equation:

Frep = ψFk (8.8)

where ψ = either 1.0 or ψ0, ψ1 or ψ2.
The factors ψ0, ψ1 or ψ2 are factors that are applied to the characteristic

values of the actions to obtain the representative values for different design
situations. The factor ψ0 is the combination factor used to obtain the funda-
mental combination ψ0Qk of a variable action for persistent and transient
design situations and is applied only to the non-leading variable actions. The
factor ψ0 is chosen so that the probability that the effects caused by the com-
bination will be exceeded is approximately the same as the probability of the
effects caused by the characteristic value of an individual action. The factor
ψ1 is used to obtain the frequent value, ψ1Qk, of a variable action and the
factor ψ2 is used to obtain the quasi-permanent value ψ2Qk of a variable
action for accidental or seismic design situations. The factor ψ1 is chosen
so that either the total time, within the reference period, during which it is
exceeded is only a small given part of the reference period or so that the
probability of it being exceeded is limited to a given value, while the factor
ψ2 is the value determined so that the total period of time for which it will
be exceeded is a large fraction of the reference period. Both ψ1 and ψ2 are
applied to all the variable actions.
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The equations for combining the actions for different design situations
using the factors ψ0, ψ1 and ψ2 and the values of these factors in the
case of imposed, snow and wind loads on buildings are given in EN 1990.
An example of a ψ value is ψ0 = 0.7 for an imposed load on a building
that is not a load in a storage area. Because the different variable loads are
often much less significant than the permanent loads in geotechnical designs
compared with the significance of the variable loads to the permanent loads
in many structural designs (for example, comparing the permanent and vari-
able loads in the designs of a slope and a roof truss), the combination factors,
ψ0, are used much less in geotechnical design than in structural design.
Consequently, in geotechnical design the representative actions are often
equal to the characteristic actions and hence Fk is normally used for Frep in
design calculations.

8.9 Characteristic values of material properties

EN 1990 defines the characteristic value of a material or product property,
Xk, as “the value having a prescribed probability of not being attained in a
hypothetical unlimited test series”. In structural design, this value generally
corresponds to a specified fractile of the assumed statistical distribution of
the particular property of the material or product. Where a low value of
a material property is unfavorable, EN 1990 states that the characteristic
value should be defined as the 5% fractile. For this situation and assuming
a normal distribution, the characteristic value is given by the equation:

Xk = µ(X) − 1.645σ (X) = µ(X)(1 − 1.645V(X)) (8.9)

where µ(X) is the mean value, σ (X) is the standard deviation and V(X) is
the coefficient of variation of the unlimited test series, X, and the coefficient
1.645 provides the 5% fractile of the test results.

The above definition of the characteristic value and Equation (8.9) are
applicable in the case of test results that are normally distributed and when
the volume of material in the actual structural element being designed is
similar to the volume in the test element. This is normally the situation in
structural design, when, for example, the failure of a beam is being analyzed
and the strength is based on the results of tests on concrete cubes. However,
in geotechnical design, the volume of soil involved in a geotechnical failure
is usually much greater than the volume of soil involved in a single test; the
consequence of this is examined in the following paragraphs.

In geotechnical design, Equation (8.9) may not be applicable because the
distribution of soil properties may not be normal and if V(X) is large, the
calculated Xk value may violate a physical lower bound, for example a crit-
ical state value of φ′, while if V(X) is greater than 0.6(= 1/1.645), then the
calculated Xk value is negative. This problem with Equation (8.9) does not
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occur in the case of structural materials, such as steel, for which the V(X) val-
ues are normally about 0.1, normally distributed, and do not have physical
lower bounds.

As noted above, Equation (8.9) is not normally applicable in geotechni-
cal design because the volume of soil involved in a failure is usually much
larger than the volume of soil involved in a single field test or in a test
on a laboratory specimen. Since soil, even homogeneous soil, is inherently
variable, the value affecting the occurrence of a limit state is the mean,
i.e. average, value over the relevant slip surface or volume of ground, not
a locally measured low value. Hence, in geotechnical designs the charac-
teristic strength is the 5% fractile of the mean strengths measured along
the slip surface or in the volume of soil affecting the occurrence of that
limit state, which is not normally the 5% fractile of the test results. How-
ever, a particular situation when Equation (8.9) is applicable in geotechnical
design is when centrifuge tests are used to obtain the mean soil strength
of the soil on the entire failure surface because then the characteristic
value is the 5% fractile of the soil strengths obtained from the centrifuge
tests.

How the volume of soil involved in a failure affects the characteristic
value is demonstrated by considering the failures of a slope and a foun-
dation. The strength value governing the stability of the slope is the mean
value of a large volume of soil involving the entire slip surface, while the
failure mechanism of a spread foundation involves a much smaller volume
of ground, and, if the spread foundation is in a weak zone of the same
ground as in the slope, the mean value governing the stability of the foun-
dation will be lower than the mean value governing the stability of the
slope. Hence the characteristic value chosen to design the spread founda-
tion should be a more cautious (i.e. a lower) estimate of the mean value,
corresponding to a local mean value, than the less cautious estimate of the
mean value, corresponding to a global mean value, chosen to design the
slope in the same soil. Refined slope stability analyses have shown that
the existence of weaker zones can change the shape of slip surface cross-
ing these zones. Thus, careful attention needs to be paid to the influence of
weaker zones, even if some simplified practical methods have been proposed
to account for their influence when deriving characteristic values (Breysse
et al., 1999).

A further difference between geotechnical and structural design is that nor-
mally only a very limited number of test results are available in geotechnical
design. Arising from this, the mean and standard deviation values obtained
from the test results may not be the same as the mean and standard deviation
values of the soil volume affecting the occurrence of the limit state.

Because of the nature of soil and soil tests, leading to the problems outlined
above when using the EN 1990 definition of the characteristic value for soil
properties, the definition of the characteristic value of a soil property is given
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in Eurocode 7 as “a cautious estimate of the value affecting the occurrence
of the limit state.” There is no mention in the Eurocode 7 definition of the
prescribed probability or the unlimited test series that are in the EN 1990
definition. Each of the terms: “cautious,” “estimate” and “value affecting the
occurrence of the limit state” in the Eurocode 7 definition of the characteristic
value is important and how they should be interpreted is explained in the
following paragraphs.

The characteristic value is an estimated value and the selection of this
value from the very limited number of test results available in geotechni-
cal designs involves taking account of spatial variability and experience of
the soil and hence using judgment and caution. The problem in selecting
the characteristic value of a ground property is deciding how cautious the
estimate of the mean value should be. In an application rule to explain the
characteristic value in geotechnical design, Eurocode 7 states that, “if sta-
tistical methods are used, the characteristic value should be derived such
that the calculated probability of a worst value governing the occurrence of
the limit state under consideration is not greater than 5%.” It also states
that such methods should differentiate between local and regional sampling
and should allow the use of a priori knowledge regarding the variability
of ground properties. However, Eurocode 7 provides no guidance for the
designer on how this “cautious estimate” should be chosen, instead it relies
mainly on the designer’s professional expertise and relevant experience of
the ground conditions.

The following equation for the characteristic value, corresponding to a
95% confidence level that the actual mean value is greater than this value,
is given by:

Xk = m(X) − (t
/√

N)s(X) (8.10)

where m(X) and s(X) are the mean and the standard deviation of the sample
of test values and t is known as the Student t value (Student, 1908), the value
of which depends on the actual number, N, of test values considered and on
the required confidence level.

The following simpler equation for the characteristic value, which has
been found to be useful in practice, has been proposed by Schneider (1997):

Xk = m(X) − 0.5s(X) (8.11)

The selection of the characteristic value is illustrated by the following
example. Ten undrained triaxial tests were carried out on samples obtained
at various depths from different boreholes through soil in which 10 m long
piles are to be founded and the measured undrained shear strength cu values
are plotted in Figure 8.1. It is assumed that the measured cu values are the
correct values at the locations where the samples were taken so that there is
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Figure 8.1 Test results and characteristic values obtained using different equations.

no bias or variation in the measured values due to the testing method. The
means of the 7 measured values along the shaft and the 4 measured values in
the zone 1 m above and 2 m below the toe were calculated as m(cu,s) = 61 kPa
and m(cu,t) = 50 kPa, respectively, and these values are plotted in Figure 8.1.
The standard deviations of the measured cu values along the shaft and around
the toe were calculated as s(cu,s) = 14.3 kPa and s(cu,t) = 6.6 kPa, giving
coefficients of variation V(cu,s) = 0.23 and V(cu,t) = 0.13.

If Equation (8.9) is used and the means and standard deviations of the
two sets of test results are assumed to be the same as the means and
standard deviations of all the soil along the shaft and around the toe,
the characteristic cu along the shaft is cu,s;k = m(cu,s) − 1.645 s(cu,s) =
61.0−1.645×14.3 = 37.5 kPa, while the characteristic cu around the toe is
cu,t;k = m(cu,t) − 1.64 s(cu,t) = 50.0 − 1.64 × 6.6 = 39.2 kPa. These results
are clearly incorrect, as they are both less than the lowest measured values
and the calculated characteristic value around the toe is greater than the
characteristic value along the shaft. They provide the 5% fractiles of the cu
values measured on the relatively small volume of soil in the samples tested
and not the 5% estimates of the mean cu values of all the soil over the each
failure zone.

Using Equation (8.10), and choosing t =1.943 for N =7, the characteristic
cu value along the shaft is:

cu,sk =m(cu,s)−(1.943/
√

N)s(cu,s)=61.0−(1.943/
√

7)14.3=50.5 kPa
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and choosing t = 2.353 for N = 4, the characteristic cu value around the
toe is:

cu,t k = m(cu,t) − (2.353/
√

N)s(cu,t) = 50.0 − (2.353/
√

4)6.6 = 42.3 kPa

Using Schneider’s Equation (8.11), the characteristic cu value along the
shaft is:

cu,sk = m(cu,s) − 0.5s(cu,s) = 61.0 − 0.5 × 14.3 = 53.9 kPa

and the characteristic cu value around the toe is:

cu,tk = m(cu,t) − 0.5s(cu,t) = 50.0 − 0.5 × 6.6 = 46.7 kPa

These characteristic values are all plotted in Figure 8.1 and show that, for
the test results in this example, the values obtained using Equations (8.10)
and (8.11) are similar, with the values obtained using Equation (8.10) being
slightly more conservative than those obtained using Equation (8.11). From
the results obtained in this example, it can be seen that the characteristic
value of a ground property is similar to the value that has conven-
tionally been selected for use in geotechnical designs, as noted by Orr
(1994).

When only very few test results are available, interpretation of the char-
acteristic value using the classical statistical approach outlined above is not
possible. However, using prior knowledge in the form of local or regional
experience of the particular soil conditions, the characteristic value may be
estimated using a Bayesian statistical procedure as shown, for example, by
Ovesen and Denver (1994) and Cherubini and Orr (1999). An example of
prior knowledge is an estimate of coefficient of variation of the strength for
a particular soil deposit. Typical ranges of V for soil parameters are given
in Table 8.3. The value V = 0.10 for the coefficient of variation of tanφ′ is
used in the example in Section 8.15.

Table 8.3 Typical range of V for soil parameters.

Soil parameter Typical range of V values Recommended
V value if limited
test results
available

tanφ′ 0.05–0.15 0.10
c′ 0.20–0.40 0.40
cu 0.20–0.40 0.30
mv 0.20–0.40 0.40
γ (weight density) 0.01–0.10 0
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Duncan (2000) has proposed a practical rule to help the engineer in assess-
ing V . This rule is based on the “3-sigma assumption,” which is equivalent
to stating that nearly all the values of a random property lie within the
[Xmin, Xmax] interval, where Xmin and Xmax are equal to Xmean − 3σ and
Xmean +3σ , respectively. Thus, if the engineer is able to estimate the “worst”
value Xmin and the “best” value Xmax that X can take, then σ can be cal-
culated as σ = [Xmax − Xmin]/6 and Equation (8.9) used to determine the
Xk value. However, Duncan added that “a conscious effort should be made
to make the range between Xmin and Xmax as wide as seemingly possible,
or even wider, to overcome the natural tendency to make the range too
small.”

8.10 Characteristic values of pile resistances and
ξ values

When the compressive resistance of a pile is measured in a series of static
pile load tests, these tests provide the values of the measured mean com-
pressive resistance, Rc;m, controlling the settlement and ultimate resistance
of the pile at the locations of the test piles. In this situation and when
the structure does not have the capacity to transfer load from “weak” to
“strong” piles, Eurocode 7 states that the characteristic compressive pile
resistance, Rc;k, should be obtained by applying the correlation factors, ξ , in
Table 8.4 to the mean and lowest Rc;m values so as to satisfy the following
equation:

Rc,k = Min
{ (Rc,m)mean

ξ1
,

(Rc,m)min

ξ2

}
(8.12)

Using Equation (8.12) and the ξ values in Table 8.4, it is found that, when
only one static pile load test is carried out, the characteristic pile resistance
is the measured resistance divided by 1.4, whereas if five or more tests are
carried out, the characteristic resistance is equal to lowest measured value.
When pile load tests are carried out, the tests measure the mean strength
of the soil over the relevant volume of ground affecting the failure of the
pile. Hence, when assessing the characteristic value from pile load tests, the

Table 8.4 Correlation factors to derive characteristic values from static pile load
tests.

ξ for n∗ = 1 2 3 4 ≥ 5

ξ1 1.4 1.3 1.2 1.1 1.0
ξ2 1.4 1.2 1.05 1.0 1.0

∗n = number of tested piles.
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ξ factors take account of the variability of the soil and the uncertainty in the
soil strength across the test site.

8.11 Design Approaches and partial factors

For ULSs involving failure in the ground, referred to as GEO ultimate
limit states, Eurocode 7 provides three Design Approaches, termed Design
Approaches 1, 2 and 3 (DA1, DA2 and DA3), and recommended values
of the partial factors, γF = γE, γM and γR for each Design Approach
that are applied to the representative or characteristic values of the
actions, soil parameters and resistances, as appropriate, in accordance with
Equations (8.3)–(8.6) to obtain the design values of these parameters. The
sets of recommended partial factor values are summarized in Table 8.5. This
table shows that there are two sets of partial factors for Design Approach 1:
Combination 1 (DA1.C1), when the γF values are greater than unity and

Table 8.5 Eurocode 7 partial factors on actions, soil parameters and resistances for
GEO/STR ultimate limit states in persistent and transient design situations.

Parameter Factor Design Approaches

DA1 DA2 DA3

DA1.C1 DA1.C2

Partial factors on
actions (γF) or
the effects of
actions (γE)

Set A1 A2 A1 A1
Structural

actions

A2
Geotechnical

actions

Permanent
unfavorable
action

γG 1.35 1.0 1.35 1.35 1.0

Permanent
favorable action

γG 1.0 1.0 1.0 1.0 1.0

Variable
unfavorable
action

γQ 1.5 1.3 1.5 1.5 1.3

Variable favorable
action

γQ 0 0 0 0 0

Accidental action γA 1.0 1.0 1.0 1.0 1.0

Partial factors for
soil parameters
(γM)

Set M1 M2 M1 M2

Angle of shearing
resistance (this
factor is applied
to tanφ′)

γtanφ′ 1.0 1.25 1.0 1.25

Continued



Table 8.5 Cont’d

Parameter Factor Design Approaches

DA1 DA2 DA3

DA1.C1 DA1.C2

Effective
cohesion c′

γc′ 1.0 1.25 1.0 1.25

Undrained shear
strength cu

γcu 1.0 1.4 1.0 1.4

Unconfined
strength qu

γqu 1.0 1.4 1.0 1.4

Weight density of
ground γ

γ
γ

1.0 1.0 1.0 1.0

Partial resistance
factors (γR)

Spread
foundations,
retaining
structures and
slopes

Set R1 R1 R2 R3

Bearing resistance γR;v 1.0 1.0 1.4 1.0
Sliding resistance,

incl. slopes
γR;h 1.0 1.0 1.1 1.0

Earth resistanc γR;h 1.0 1.0 1.4 1.0

Pile foundations –
driven piles

Set R1 R4 R2 R3

Base resistance γb 1.0 1.3 1.1 1.0
Shaft resistance

(compression)
γs 1.0 1.3 1.1 1.0

Total combined
(compression)

γs;t 1.0 1.3 1.1 1.0

Shaft in tension γt 1.25 1.6 1.15 1.1

Pile foundations –
bored piles

Set R1 R4 R2 R3

Base resistance γRe 1.25 1.6 1.15 1.0
Shaft resistance

(compression)
γb 1.0 1.3 1.1 1.0

Total combined
(compression)

γs 1.15 1.5 1.1 1.0

Shaft in tension γt 1.25 1.6 1.15 1.1

Continued
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Table 8.5 Cont’d

Parameter Factor Design Approaches

DA1 DA2 DA3

DA1.C1 DA1.C2

Pile foundations –
CFA piles

Set R1 R4 R2 R3

Base resistance γRe 1.1 1.45 1.1 1.0
Shaft resistance

(compression)
γb 1.0 1.3 1.1 1.0

Total combined
(compression)

γs 1.1 1.4 1.1 1.0

Shaft in tension γt 1.25 1.6 1.15 1.1

Prestressed
anchorages

Set R1 R4 R2 R3

Temporary
resistance

γa;t 1.1 1.1 1.1 1.0

Permanent
resistance

γa:p 1.1 1.1 1.1 1.0

∗In the design of piles, set M1 is used for calculating the resistance of piles or anchors.

the γM and γR values are equal to unity, except for the design of piles and
anchors, and Combination 2 (DA1.C2), when the γF value on permanent
actions and the γR values are equal to unity and the γM values are greater
than unity, again except for the design of piles and anchorages when the
γM values are equal to unity and the γR values are greater than unity. In
DA2, the γF and γR values are greater than unity, while the γM values are
equal to unity. DA3 is similar to DA1.C2, except that a separate set of γF
factors is provided for structural loads and the γR values for the design of a
compression pile are all equal to unity so that this Design Approach should
not be used to design a compression pile using the compressive resistances
obtained from pile load tests.

When, on the resistance side, partial material factors γM greater than unity
are applied to soil parameter values, the design is referred to as a materi-
als factor approach (MFA), whereas if partial resistance factors γR greater
than unity are applied to resistances, the design is referred to as a resistance
factor approach (RFA). Thus DA1.C2 and DA3 are both materials factor
approaches while DA2 is a resistance factor approach.

The recommended values of the partial factors given in Eurocode 7 for
the three Design Approaches are based on experience from a number of
countries in Europe and have been chosen to give designs similar to those
obtained using existing design standards. The fact that Eurocode 7 has three
Design Approaches with different sets of partial factors means that use of
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the different Design Approaches produces designs with different overall
factors of safety, as shown by the results of the spread foundation exam-
ple in Section 8.13 presented in Table 8.7, and hence different reliability
levels.

In the case of SLS calculations, the design values of Ed and Cd in
Equation (8.2) are equal to the characteristic values, since Eurocode 7 states
that the partial factors for SLS design are normally taken as being equal to 1.0.

8.11.1 Model uncertainty

It should be noted that, as well as accounting for uncertainty in the loads,
material properties and the resistances, the partial factors γF = γE, γM and γR
also account for uncertainty in the calculation models for the actions and the
resistances. The influence of model uncertainty on the reliability of designs
is examined in Section 8.18.

8.12 Calibration of partial factors and
levels of reliability

Figure 8.2, which is an adaptation of a figure in EN 1990, presents an
overview of the various methods available for calibrating the numerical
values of the γ factors for use with the limit state design equations in the
Eurocodes. According to this figure, the factors may be calibrated using either
of two procedures.

Deterministic methods
Procedure 1

Historical methods
Empirical methods

Probabilistic methods
Procedure 2

Full probabilistic
(Level III)

FORM
(Level II)

Calibration Calibration Calibration

Semi-probabilistic
methods
(Level I)

Partial factor
design

Method c

Method bMethod a

Figure 8.2 Overview of the use of reliability methods in the Eurocodes (from EN, 1990).
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• Procedure 1: On the basis of calibration with long experience of
traditional design. This is the deterministic method, referred to as
Method a in Figure 8.2, which includes historical and empirical
methods.

• Procedure 2: On the basis of a statistical evaluation of experimental data
and field observations, which should be carried out within the frame-
work of a probabilistic reliability theory. Two probabilistic methods are
shown in Figure 8.2: Method b, which is a full probabilistic or Level III
method, involving for example Monte Carlo simulations, and Method c,
the first-order reliability method (FORM) or Level II method. In the
Level II method, rather than considering failure as a continuous func-
tion, as in the Level III method, the reliability is checked by determining
the safety index β or probability of failure Pf at only a certain point on
the failure surface.

As pointed out by Gulvanessian et al. (2002), the term “semi-probabilistic
methods (Level I)” used in Figure 8.2, which is taken from EN 1990, is not
now generally accepted and may be confusing as it is not defined in EN 1990.
It relates to the partial factor design method used in the Eurocodes, where
the required target reliability is achieved by applying specified partial factor
values to the characteristic values of the basic variables.

Commenting on the different calibration design methods, EN 1990 states
that calibration of the Eurocodes and selection of the γ values has been
based primarily on Method a, i.e. on calibration to a long experience of
building tradition. The reason for this is to ensure that the safety levels of
structures designed to the Eurocodes are acceptable and similar to existing
designs and because Method c, which involves full probabilistic analyses,
is seldom used to calibrate design codes due to the lack of statistical data.
However, EN 1990 states that Method c is used for further development
of the Eurocodes. Examples of this in the case of Eurocode 7 include the
recent publication of some reliability analyses to calibrate the γ values and
to assess the reliability of serviceability limit state designs, e.g. Honjo et al.
(2005).

The partial factor values chosen in the ENV version of Eurocode 7 were
originally based on the partial factor values in the Danish Code of Practice
for Foundation Engineering (DGI, 1978), because when work started on
Eurocode 7 in 1981, Denmark was the only western European country that
had a limit state geotechnical design code with partial factors. It is inter-
esting to note that Brinch Hansen (1956) of Denmark was the first to the
use the words “limit design” in a geotechnical context. He was also the
first to link the limit design concept closely to the concept of partial fac-
tors and to introduce these two concepts in Danish foundation engineering
practice (Ovesen, 1995) before they were adopted in structural design in
Europe.
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Table 8.6 Target reliability index, β , and target probability of failure, pf , values.

Limit state Target Reliability Index, β Target Probability of Failure, Pf

1 year 50 years 1 year 50 years

ULS 4.7 3.8 1 × 10−6 7.2 × 10−5

SLS 2.9 1.5 2 × 10−3 6.7 × 10−2

EN 1990 states that if Procedure 2, or a combination of Procedures 1
and 2, is used to calibrate the partial factors, then, for ULS designs, the
γ values should be chosen such that the reliability levels for representative
structures are as close as possible to the target reliability index, β, value
given in Table 8.6, which is 3.8 for 50 years, corresponding to the low
failure rate or low probability of failure, Pf = 7.2 × 10−5. For SLS designs
the target β value is 1.5, corresponding to a higher probability of failure,
Pf = 6.7 × 10−2, than for ULS designs. The ULS and SLS β values are 4.7
and 2.9 for 1 year, corresponding to Pf values of 1 × 10−6 and 2 × 10−3,
respectively. It should be noted that the β values of 3.8 and 4.7 provide the
same reliability, the only difference being the different lengths of the refer-
ence periods. Structures with higher reliability levels may be uneconomical
while those with lower reliability levels may be unsafe. Examples of the use
of reliability analyses in geotechnical designs are provided in Sections 8.14
and 8.16.

As mentioned by Gulvanessian et al. (2002), the estimated reliability
indices depend on many factors, including the type of geotechnical structure,
the loading and the ground conditions and their variability, and conse-
quently they have a wide scatter, as shown in Section 8.17. Also, the results
of reliability analyses depend on the assumed theoretical models used to
describe the variables and the limit state, as shown by the example in
Section 8.18. Furthermore, as noted in EN 1990, the actual frequency of
failure is significantly dependent on human error, which is not consid-
ered in partial factor design, nor are many unforeseen conditions, such
as an unexpected nearby excavation, and hence the estimated β value
does not necessarily provide an indication of the actual frequency of
failure.

EN 1990 provides for reliability differentiation through the introduc-
tion of three consequences classes, high, medium and low, with different
β values to take account of the consequences of failure or malfunction of the
structure. The partial factors in Eurocode 7 correspond to the medium conse-
quences class. In Eurocode 7, rather than modifying the partial factor values,
reliability differentiation is achieved through the use of the Geotechnical
Categories described in Section 8.6.
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8.13 Design of a spread foundation using the
partial factor method

The square pad foundation shown in Figure 8.3, based on Orr (2005), is
chosen as an example of a spread foundation designed to Eurocode 7 using
the partial factor method. For the ULS design, the consequence of using
the different Design Approaches is investigated. The foundation supports a
characteristic permanent vertical central load, Gk of 900 kN, which includes
the self weight of the foundation, plus a characteristic variable vertical cen-
tral load, Qk of 600 kN, and is founded at a depth of 0.8 m in soil with
cu;k = 200 kPa, c′

k = 0, φ′
k = 35◦ and mv;k = 0.015m2/MN. The width of

the foundation is required to support the given loads without the settlement
of the foundation exceeding 25 mm, assuming the groundwater cannot rise
above the foundation level.

The ULS design is carried out by checking that the requirement Ed ≤ Rd
is satisfied. The design action effect, Ed, is equal to the design load,
Fd = γGGk + γQQk and obtained using the partial factors given in Table 8.5
for Design Approaches 1, 2 and 3, as appropriate. For drained conditions,
the design resistance, Rd is calculated using the following equations for the
bearing resistance and bearing factors for drained conditions obtained from
Annex D of Eurocode 7:

r = R/A = (1/2)Bγ ′Nγ sγ + q′Nqsq (8.13)

where:

Nq = eπ tanφ′
tan(45 +φ′/2)

Nγ = 2(Nq − 1)tanφ′

sq = 1 + (B/L)sinφ′

sγ = 1 − 0.3(B/L)

Gk = 900kN, Qk = 600kN

GWL
B = ?

d = 0.8 m

Soil: Stiff till:
cu,k = 200 kPa
c'k = 0 kPa,
φ'k = 35°
γ= 22 kN/m3

mv,k = 0.015 m2/MN

Maximum allowable settlement = 25mm

Figure 8.3 Square pad foundation design example.
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Table 8.7 Design foundation widths, actions, bearing resistances and overall factors of
safety for pad foundation design example for drained conditions.

B (m) Fk (kN) Rk (kN) Fd = Rd OFS = Rk/Fk

DA1.C1 (1.34)∗ 1500 2115.0 2115.0 (1.41)∗
DA1.C2 1.71 1500 3474.9 1680.0 2.32
DA2 1.56 1500 2961.0 2115.0 1.97
DA3 1.90 1500 4372.6 2115.0 2.92

∗ Since B for DA1.C1 is less than B for DA1.C2, the B for DA1.C1 is not the DA1 design width.

and applying the partial factors for Design Approaches 1, 2 and 3 given in
Table 8.5, either to tanφ′

k or to the characteristic resistance, Rk, calculated
using the φ′

k value, as appropriate. The calculated ULS design widths, B, for
the different Design Approaches for drained conditions, are presented in
Table 8.7, together with the design resistances, Rd, which are equal to the
design loads, Fd. For Design Approach 1, DA1.C2 is the relevant combina-
tion as the design width of 1.71 m is greater than the DA1.C1 design width
of 1.34 m. For undrained conditions, the DA1.C2 design width is 1.37 m
compared to 1.71 m for drained conditions, hence the design is controlled
by the drained conditions.

The overall factors of safety, OFS, using each Design Approach, obtained
by dividing Rk by Fk, are also given in Table 8.7. The OFS values in Table 8.7
show that, for the φ′ value and design conditions in this example, Design
Approach 3 is the most conservative, giving the highest OFS value of 2.92;
Design Approach 2 is the least conservative, giving the lowest OFS value of
1.97, and Design Approach 1 gives an OFS value of 2.32, which is between
these values. The relationships between the characteristic and the design
values of the resistances and the total loads for each Design Approach are
plotted in Figure 8.4. The lines joining the characteristic and design values
show how, for each Design Approach starting from the same total charac-
teristic load, Fk = Gk +Qk = 900+600 = 1500 kN, the partial factors cause
the design resistances to decrease and/or the design loads to increase to reach
the design values where Rd = Fd. Since this problem is linear with respect
to the total load, when the ratio between the permanent and variable loads
is constant and when φ′ is constant, lines of constant OFS, correspond-
ing to lines through the characteristic values for each Design Approach,
plot as straight lines on Figure 8.4. These lines show the different safety
levels, and hence the different reliability levels, obtained using the differ-
ent Design Approaches for this square pad foundation design example.
It should be noted that the design values given in Table 8.7 and plotted
in Figure 8.4 are for ULS design and do not take account of the settlement
of the foundation.
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The settlement needs be checked by carrying out an SLS design calcula-
tion to ensure that the settlement of the foundation due to the characteristic
loading, Ed, does not exceed the allowable settlement, Cd, of 25 mm, i.e.
Ed ≤ Cd. The SLS loads are calculated using the characteristic loads since
the SLS partial factors are equal to unity. Two settlement components are
considered: the immediate settlement, si, and the consolidation settlement, sc.
The immediate settlement is evaluated using elasticity theory and the follow-
ing equation which has the form of that given in Annex F.2 of Eurocode 7:

si = p(1 − ν2
u)Bf /Eu (8.14)

where p is the SLS net bearing pressure induced at the base level of the
foundation, B is the foundation width, Eu is the undrained Young’s modulus,
νu is undrained Poisson’s ratio (equal to 0.5), and f is a settlement coefficient
whose value depends on the nature of the foundation and its stiffness (for
the settlement at the center of a flexible square foundation in this example,
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f = 1.12 is used). For the stiff till, it is assumed that Eu = 750cu = 750×200 =
150 MPa. The consolidation settlement is calculated by dividing the ground
below the foundation into layers and summing the settlement of each layer
using the following equation:

sc = µ�mvh�σ ′
i = µmvh�αip (8.15)

where mv is the coefficient of volume compressibility = 0.015m2/MN
(assumed constant in each layer for the relevant stress level), h is the
thickness of the layer, �σi

′ is the increment in vertical effective stress
in the ith layer due to p and is given by αip where αi is the coeffi-
cient for the increase in vertical effective stress in the ith layer obtained
from the Fadum chart, and µ is the settlement reduction coefficient to
account for the fact that the consolidation settlement is not one-dimensional
(Craig, 2004) and its value is chosen as 0.55 for the square foundation on
stiff soil.

The SLS is checked for the DA1.C2 design foundation width B = 1.71 m.
The SLS bearing pressure is:

p = (Gk + Qk)/A = (900 + 600)/1.712 = 513.0 kPa

The immediate settlement:

si = p(1 − ν2
u)Bf /Eu = 513.0 × (1 − 0.52)1.71 × 1.12/150 = 4.9 mm

To calculate the consolidation settlement, the soil below foundation is
divided into four layers, 1.0 m thick. The increases in vertical stress,
�σ1

′ = αip, at the centers of the layers due to the foundation are estimated
from the αi factors which are 0.90, 0.40, 0.18, and 0.1 giving stress increases
of 463, 206, 93, and 51 kPa. Hence the consolidation settlement:

sc =µmvh�αip=0.55×0.015×1.0×�(0.90+0.40+0.18+0.10)514.6

=0.55×0.015×1.0×1.58×514.6=6.1 mm

Total settlement: s = si + sc = 4.9 + 6.1 = 11.0 mm < 25 mm.
Therefore the SLS requirement is satisfied for the DA1.C2 foundation

width of 1.71 m.

8.14 First-order reliability method (FORM)
analyses

In EN 1990, a performance function, g, which is referred to as the safety
margin, SM in this section, is defined as:

g = SM = R − E (8.16)

where R is the resistance and E is the action effect. SM is used in Level
II FORM analyses (see Figure 8.2) to investigate the reliability of a design.
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Assuming E, R and SM are all random variables with Gaussian distributions,
the reliability index is given by:

β = µ(SM)/σ (SM) (8.17)

where µ(SM) is the mean value and σ (SM) is the standard deviation of SM
given by:

µ(SM) = µ(R) −µ(E) (8.18)

σ (SM) =
√
σ (R)2 +σ (E)2 (8.19)

The probability of failure is the probability that SM < 0 and is obtained
from:

Pf = P[SM < 0] = P[R < E] = 	(−β) = 1 −	(β) (8.20)

where 	 denotes the standardized normal cumulative distribution function.
The example chosen to illustrate the use of the FORM analysis is

the design, for undrained conditions, of the square foundation shown in
Figure 8.3. Performing a FORM analysis for drained conditions is more
complex due to the nonlinear expression for the drained bearing resistance
factors, Nq and Nγ (see Section 8.13). The action effect and the bearing
resistance for undrained conditions are:

E = Fu = G + Q (8.21)

R = Ru = B2(Nccusc + γD) = B2((π + 2)1.2cu + γD) (8.22)

If these variables are assumed to be independent, then the means and
standard deviations of Fu and Ru are:

µ
(
Fu
)= µ (G) +µ (Q) (8.23)

σ
(
Fu
)=√σ (G)2 +σ (Q)2 (8.24)

µ(Ru) = B2((π + 2)1.2µ(cu) + γD) (8.25)

σ (Ru) = B2((π + 2)1.2)σ (cu) (8.26)

In order to ensure the relevance of the comparisons between the partial factor
design method and the FORM analysis, the means of all the three random
variables are selected so that the characteristic values are equal to the given
characteristic values of Gk = 900 kN, Qk = 600 kN, and cu;k = 200 kPa. The
mean values of these parameters, needed in the FORM analysis to determine
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Table 8.8 Parameter values for reliability analyses of the spread foundation example.

Coefficient of variation, V Mean µ Standard deviation σ

Actions
G 0 900 kN 0 kN
Q 0.15 458.7 kN 68.8 kN
Soil parameters
tanφ′ 0.10 0.737 (≡ 36.4˚) 0.074 (≡ +/− 3˚)
cu 0.30 235.3 kPa 70.6 kPa
mv 0.40 0.01875 m2/MN 0.0075 m2/MN

the reliability, are calculated from these characteristic values as follows using
the appropriate V values given in Table 8.8:

• for the permanent load in this example, it is assumed that V(G) = 0,
in accordance with EN 1990 as noted in Section 8.8, so that the mean
permanent load is equal to the characteristic value since reorganizing
Equation (8.7) gives:

µ(G) = Gk/(1 + 1.645V(G)) = Gk = 900 kN (8.27)

• for the variable load, it is assumed to be normally distributed, as noted
in Section 8.8, so that, for an occurrence probability of 0.02 or 2%, the
multiplication factor in Equation (8.9) is 2.054 rather than 1.654 for
5%, and hence, for V(Q) = 0.15, the mean value of the variable load is
given by:

µ(Qm) = Qk/(1 + 2.054V(Q)) (8.28)

µ(Q) = 600/(1 + 2.054 × 0.15) = 458.7 kN

• for material parameters, using Equation (8.9) by Schneider (1997):

µ(X) = Xk/(1 − 0.5V(X)) (8.29)

µ(cu) = cu,k/(1 − 0.5 × V(X)) = 200/(1 − 0.5 × 0.30) = 235.3 kPa

Although not required for the undrained FORM analysis of the square
foundation, the mean values of tanφ′ and mv, which are used in the Monte
Carlo simulations in Section 8.16, are also calculated using Equation (8.29)
and are given in Table 8.8, together with the standard deviation values,
calculated by multiplying the mean and V values. Hence, assuming
Gaussian distributions and substituting the mean G, Q and cu values in
Equations (8.23), (8.25) and (8.18) for µ(Fu) and µ(Ru) and µ(SM) and
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using the DA1.C1 foundation width of B = 1.37 m reported in Section 8.13
for undrained conditions, gives:

µ(Fu) = µ(G) +µ(Q) = 900.0 + 458.7 = 1358.7 kN

µ(Ru) = B2((π + 2)1.2µ(cu) + γD)

= 1.372((π + 2)1.2 × 235.3 + 22 × 0.8) = 2757.8 kN

µ(SM) = µ(Ru) −µ(Fu) = 2757.8 − 1358.7 = 1399.1 kN

Substituting the standard deviation values for G, Q and cu in Equations
(8.24), (8.26) and (8.19) for σ (Fu), σ (Ru) and σ (SM) gives:

σ
(
Fu
)=√σ (G)2 +σ (Q)2 =

√
02 + 68.82 = 68.8 kN

σ (Ru) = B2(π + 2)1.2σ (cu) = 1.372(π + 2)1.2 × 70.6 = 762.9 kN

σ (SM) =
√
σ
(
Ru
)2 +σ

(
Fu
)2 =

√
762.92 + 68.82 = 766.0 kN

Hence, substituting the values for µ(SM) and σ (SM) in Equation (8.17), the
reliability index is:

β = µ(SM)/σ (SM) = 1399.1/766.0 = 1.83

and, from Equation (8.20), the probability of failure is:

Pf;ULS = 	(−β) = 	(−1.83) = 0.034 = 3.4 × 10−2.

The calculated β value of 1.83 for undrained conditions for a foundation
width of 1.37 m is much less than the target ULS β value of 3.8, and hence
the calculated probability of failure of 3.4 × 10−2 is much greater than the
target value of 7.2 × 10−5.

It has been seen in Table 8.7 that the design width for drained conditions
is B = 1.71 m for DA1.C2, and hence this width controls the design. It is
therefore appropriate to check the reliability of this design foundation width
for drained conditions. Substituting B = 1.71 m in Equations (8.25) and
(8.26) gives β = 2.30 and Pf;ULS = 1.06 × 10−2. Although this foundation
width has a greater reliability, both values are still far from and do not
satisfy the target values. The reliability indices calculated in this example
may indirectly demonstrate that, in general, geotechnical design equations
are usually conservative; i.e. because of model errors they underpredict the
reliability index and overpredict the probability of failure. The low calculated
reliability indices shown above can arise because the conservative model
errors are not included. The reliability index is also affected by uncertainties
in the calculation model, as discussed in Section 8.18. However, Phoon and
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Kulhawy (2005) found that the mean model factor for undrained bearing
capacity at the pile tip is close to unity. If this model factor is applicable to
spread foundations, it will not account for the low β values reported above.

The overall factor of safety, OFS, as defined in Section 8.13, is obtained
by dividing the characteristic resistance by the characteristic load. For
B = 1.71 m, Rk = 1.712((π + 2) × 1.2 × 200 + 22 × 0.8) = 3659.8 kN and
Fk = 900 + 600 = 1500 kN so that OFS = Rk/Fk = 2418.2/1500 = 2.44.
Thus, using the combination of the recommended partial factors of 1.4 on
cu and 1.3 on Q for undrained conditions with B = 1.71 m gives the OFS
value of 2.44, which is similar in magnitude to the safety factor often used in
traditional foundation design, whereas the calculated probability of failure
of 1.06 × 10−2 for this design is far from negligible.

8.15 Effect of variability in cu on design safety and
reliability of a foundation in undrained
conditions

To investigate how the variability of the ground properties affects the design
safety and reliability of a foundation in undrained conditions, the influence
of the variability of cu on MR, where MR is ratio of the mean resistance to
the mean load, µ(Ru)/µ(Fu), is first examined. It should be noted that the
MR value is not the traditional factor of safety used in deterministic designs,
which is normally a cautious estimate of the resistance divided by the load,
nor is it the overall factor of safety for Eurocode 7 designs defined in Section
8.13 as OFS = Rk/Fk. The influence of the variability of cu on MR is investi-
gated by varying V(cu) in the range 0 to 0.40. As in the previous calculations,
the characteristic values of the variables G, Q and cu are kept equal to the
given characteristic values so that the following analyses are consistent with
the previous partial factor design and the FORM analysis. An increase in
V(cu) causes µ(Ru) and hence MR to increase, as shown by the graphs of
MR against V(cu) in Figure 8.5 for the two foundation sizes, B = 1.37 m
and 1.71 m. The increase in MR with increase in V(cu) is due to the greater
difference between the characteristic and mean cu values as the V(cu) value
increases. For undrained conditions with B = 1.37 m and V(cu) = 0.3, the
ratio MR = µ(Ru)/µ(Fu) = 2757.8/1358.7 = 2.03, whereas for V(cu) = 0,
when µ(Ru) = Rk, then MR = Rk/µ(Fu) = 2349.1/1358.7 = 1.73.

The fact that MR increases as V(cu) increases demonstrates the problem
with using MR, which is based on the mean R value, as the safety factor
and not taking account of the variability of cu, because it is not logical that
the safety factor should increase as V(cu) increases. This is confirmed by
the graphs of β and Pf;ULS plotted against V(cu) in Figures 8.6 and 8.7,
which show, as expected, that for a given foundation size, the reliability
index, β, decreases and the ULS probability of failure of the foundation,
Pf;ULS, increases as V(cu) increases. This problem with MR is overcome if
the safety factor is calculated using a cautious estimate of the mean R value
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that takes account of the variability of cu, for example, using the OFS and
the Eurocode 7 characteristic value as defined in Eurocode 7, rather than the
mean R value. For undrained conditions with B = 1.71 m, OFS = 2.44, as
calculated above, while for B=1.39 m, OFS = 1.61. However, these OFS val-
ues are constant as V(cu) increases, as shown in Figure 8.5, and thus the OFS
value provides no information on how the reliability of a design changes as
V(cu) changes. The fact that the OFS value does not provide any information
on how the reliability of a design changes as V(cu) changes demonstrates the
importance of, and hence the interest in, reliability modeling.
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The graphs in Figures 8.6 and 8.7 show that, for a given foundation size,
the reliability index, β decreases and the ULS probability of failure of the
foundation for undrained conditions, Pf;UL, increases as V(cu) increases. The
target reliability index β = 3.8 and the corresponding target probability of
failure, Pf;ULS = 7.2×10−5, are only achieved if V(cu) does not exceed 0.17
for B = 1.71 m, the design width required for drained conditions, which
exceeds that for undrained conditions. Since this V(cu) value is less than the
lowest V(cu) value of 0.20 typically encountered in practice, as shown by
the range of V(cu) in Table 8.3, this demonstrates that undrained designs to
Eurocode 7, such as this spread foundation, have a calculated ULS probabil-
ity of failure greater than the target value. Choosing the mean V(cu) value of
0.30 from Table 8.3 for this example with B = 1.71 m gives β = 2.30 with
Pf;ULS = 1.06 × 10−2.

8.16 Monte Carlo analysis of the spread
foundation example

Since a FORM analysis is an approximate analytical method for calculat-
ing the reliability of a structure, an alternative and better method is to use
a Monte Carlo analysis, which involves carrying out a large number of
simulations using the full range of combinations of the variable param-
eters to assess the reliability of a structure. In this section, the spread
foundation example in Section 8.13 is analyzed using Monte Carlo simu-
lations to estimate the reliability level of the design solution obtained by
the Eurocode 7 partial factor design method. As noted in Section 8.12 and
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shown in Table 8.6, the target reliability levels in EN 1990 correspond to β

values equal to 3.8 at the ULS and 1.5 at the SLS, respectively. The design
foundation width, B, to satisfy the ULS using DA1.C2, was found to be
1.71 m (see Table 8.7), and this B value also satisfies the SLS requirement
of the foundation settlement not exceeding a limiting value, Cd, of 25 mm.

8.16.1 Simulations treating both loads and the three soil
parameters as random variables

Considering the example in Section 8.13, five parameters can be considered
as being random variables, two on the “loading side”: G and Q, and three on
the “resistance side”: tanφ′, cu and mv. The foundation breadth, B, depth,
d, and the soil weight density, γ , are considered to be constants. For the
sake of simplicity, all of the random variables are assumed to have normal
distributions, with coefficients of variation, V , within the normal ranges
for these parameters (see the V values for loads in Section 8.8 and for soil
parameters in Table 8.3). Since the parameter values given in the example
are the characteristic values, the mean values for the reference case need to
be calculated, as in the case of the FORM analyses in Section 8.14, using
the appropriate V values and Equations (8.27)–(8.29). The mean values and
standard deviations were calculated in Section 8.14, using these equations
for the five random parameters, and are given in Table 8.8.

When using Monte Carlo simulations, a fixed number of simulations is
chosen (typically N = 104 or 105, and then, for each simulation, a set of
random variables is generated and the ULS and SLS conditions are checked.
It can happen that, during the generation process with normally distributed
variables, when V is high, some negative parameter values can be generated.
However, these values have no physical meaning. When this occurs, they are
taken to be zero and the process is continued. It has been checked that these
values have no significant influence on the estimated failure probability. An
example of a distribution generated by this process is the cumulative distribu-
tion of φ′ values in Figure 8.8 for the random variable tanφ′ plotted around
the mean value of φ′ = 36.4◦. Since in Eurocode 7, the ULS criterion to be
satisfied is Fd ≤ Rd, it is checked in the ULS simulations that the calculated
action F[G, Q] does not exceed the calculated resistance R[B, tan φ′]. The
number of occurrences for which F >R is counted (NFULS) and the estimated
ULS failure probability, PfULS is the ratio of NFULS to N:

PfULS = NFULS/N (8.30)

Similarly, since the SLS criterion to be satisfied in Eurocode 7 is Ed ≤ Cd,
in the SLS simulations it is checked that the action effect, E[B, G, Q, cu, mv]
is less than the limiting value of the deformation of the structure at the SLS,
Cd. The number of occurrences for which E>Cd is counted (NFSLS) and the
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Table 8.9 Estimated and target Pf and β values for spread foundation example.

Probability of failure, Pf Reliability Index, β

Estimated Target Estimated Target

ULS 1.6 × 10−3 7.2 × 10−5 2.96 3.8
SLS 4.9 × 10−3 6.7 × 10−2 2.58 1.5

estimated SLS failure probability, PfSLS is the ratio of NFSLS to N:

Pf;SLS = Nf;SLS/N (8.31)

The estimated Pf values from the ULS and SLS simulations are 1.6 × 10−3

and 4.9 × 10−3, respectively, corresponding to estimated β values of
2.96 and 2.58. These values are presented in Table 8.9 together with the
target values. These values show that the target reliability is not satisfied
at the ultimate limit state, but is satisfied at the serviceability limit state,
since βULS = 2.96 is less than the ULS target value of 3.8 and βSLS = 2.58
is greater than the SLS target value of 1.5. This is similar to the result
obtained in Section 8.14 when using the FORM analyses to calculate the
Pf value for undrained conditions where for B = 1.71 m and V(cu) = 0.3,
Pf;ULS = 9.69×10−3 corresponding to β = 2.34. The influence of variations
in the V values for the soil parameter on the Pf value obtained from the
Monte Carlo analyses is examined in Section 8.16.

A limitation of the Monte Carlo simulations is that the calculated fail-
ure probabilities obtained at the end of the simulations depend not only on
the variability of the soil properties, which are focused on here, but also
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on the random distribution of the loading. This prevents too general con-
clusions being drawn about the exact safety level or β value corresponding
to a Eurocode design, since these values change if different assumptions are
made regarding the loading. It is more efficient, and more realistic, to ana-
lyze the possible ranges of these values, and to investigate the sensitivity of
the design to changes in the assumptions about the loading. For example,
a value of V = 0.05 has been chosen for the permanent load when, according
to EN 1990, a constant value equal to the mean value could be chosen as an
alternative (see Section 8.8).

Another limitation concerning the Monte Carlo simulations arises from
the assumption of the statistical independence of the three soil properties.
This assumption is not normally valid in practice, since soil with a high
compressibility is more likely to have a low modulus. It is of course possible
to perform simulations assuming some dependency, but such simulations
need additional assumptions concerning the degree of correlation between
the variables, hence more data, and the generality of the conclusions will
be lost. It should, however, be pointed out that assuming the variables are
independent usually underestimates the probabilities of unfavorable events
and hence is not a conservative assumption.

8.17 Effect of soil parameter variability on the
reliability of a foundation in drained
conditions

To investigate how the variability of the soil parameters affects the relia-
bility of a drained foundation design and a settlement analysis, simulations
are carried out based on reference coefficients of variation, Vref , for the five
random variables equal to the V values given in Table 8.8 that were used for
the FORM analyses. The sensitivity of the calculated probability of failure
is investigated for variations in the V values of the three soil parameters
around Vref in the range Vmin to Vmax shown in Table 8.10. All the prob-
ability estimates are obtained with at least N = 40,000 simulations, this
number being doubled in the case of small probabilities. All computations
are carried out for the square foundation with B = 1.71 m, resulting from the
partial factor design using DA1.C2. For each random variable, the mean and
standard deviations of the Gaussian distribution are chosen so that, using
Equation 8.29, they are consistent with the given characteristic value, as

Table 8.10 Range of variation of V values for the three soil parameters.

Vmin Vref Vmax

tanφ′ 0.05 0.10 0.21
cu (kPa) 0.15 0.30 0.45
mv (m2/kN) 0.20 0.40 0.60
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explained in Section 8.14. The consequence of this is that, as V increases, the
mean and standard deviation have both to increase to keep the characteristic
value constant and equal to the given value.

The influence of the V value for each soil parameter on the reliability of the
spread foundation is investigated by varying the V value for one parameter
while keeping the V values for the other parameters constant. The results
presented are:

• the influence of V(tanφ′) on the estimated Pf;ULS and the estimated βULS
in Figures 8.9 and 8.10;

• the influence of V(mv) on the estimated Pf;SLS and the estimated βSLS in
Figures 8.11 and 8.12.
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When the estimated βULS values in Figure 8.10 are examined, it is found
that the target level is not satisfied, since for Vref(tanφ′) = 0.1, βULS is 2.95,
which gives a probability of failure of about 10−3 instead of the target
value of 7.2 × 10−5. The graph of Pf in Figure 8.9 shows that the target
probability level can only be achieved if the coefficient of variability of tanφ′
is less than 0.08.

The influence of V(cu) on the estimated βSLS has not been investigated
directly, only in combination with the influence of V(mv) on βSLS. The reason
is because the variation in cu has less effect on the calculated settlements
than the variation in mv. In fact, the immediate settlement, estimated from
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Eu = 750cu, is only 4.9/11.0 = 45% of the total deterministic settlement
calculated in Section 8.13, and cu is less variable than mv. Hence the
variability of mv would normally be the main source of SLS uncertainty.
However, the situation is complicated by the fact that the immediate
settlement is proportional to 1/cu, which is very large if cu is near zero (or even
negative if a negative value is generated for cu) for simulations when V(cu) is
very large. This results from the assumption of a normal distribution for cu
and a practical solution has been obtained by rejecting any simulated value
lower than 10 kPa. Another way to calculate the settlement would have been
to consider a log-normal distribution of the parameters. In all simulations,
the coefficients of variation of both cu and mv were varied simultaneously,
with V(cu) = 0.75V(mv). This should be borne in mind when interpreting
the graphs of the estimated Pf;SLS and βSLS values plotted against V(mv) in
Figures 8.11 and 8.12. These show that the target Pf;SLS and βSLS values are
achieved in all cases, even with V(mv) = 0.6, and that when the variabili-
ties are at their maximum, i.e. when V(mv) = 0.6 and V(cu) = 0.45, then
Pf;SLS = 5.15 × 10−2 and βSLS = 1.63.

8.18 Influence of model errors on the reliability
levels

In this section, other components of safety and the homogeneity of safety and
code calibration are considered. The simulations considered in this section
correspond to those using the reference set of coefficients of variation in
Table 8.10, which give βSLS = 2.58 and βULS = 2.96 presented in Table 8.9,
and discussed in Section 8.16.

As noted in Section 8.11, the partial factors in Eurocode 7 account for
uncertainties in the models for the loads and resistances as well as for
uncertainties in the loads, material properties and resistances themselves.
Consider, for example, the model (Equation (8.15)) used to calculate the
consolidation settlement of the foundation example in Section 8.13. Until
now, the way the settlement was calculated has not been examined, and the
calculation model has been assumed to be correct. In fact, the consolidation
settlement has been calculated as the sum of the settlements of a limited num-
ber of layers below the foundation, the stress in each layer being deduced
from the Fadum chart. If there are i layers, summing the coefficients of influ-
ence, αi for each layer gives a global coefficient α = 1.58 for the foundation
settlement. Also the reduction coefficient, µ, has been taken equal to 0.55,
thus the product αµ is equal to 1.58 × 0.55 = 0.87.

Thus the consolidation settlement calculation model has some uncertain-
ties, for instance because of the influence of the layers at greater depths and
because µ is an empirical coefficient whose value is chosen more on the basis
of “experience” than by relying on a reliable theoretical model. For instance,
if the chosen µ value is changed from 0.55 to 0.75 in a first step and then to
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1.0 in a second step, the βSLS value obtained from the simulations reduces
from 2.58 to 2.16 in the first step and to 1.27 in the second step, this last
value being well below the target βSLS value.

On the other hand, if the maximum allowable settlement is only 20 mm,
instead of 25 mm, and if α and µ are unchanged, then βSLS decreases from
2.58 to 2.06. These two examples illustrate the very high sensitivity of the
reliability index to the values of the coefficients used in the model to calculate
the settlement and to the value given or chosen for the limiting settlement.
For the foundation example considered above, this sensitivity is larger than
that due to a reasonable change in the coefficients of variation of the soil
properties.

8.19 Uniformity and consistency of reliability

As noted in Section 8.4, the aim of Eurocode 7 is to provide geotechnical
designs with the appropriate degrees of reliability. This means that the cho-
sen target probability of failure should take account of the mode of failure,
the consequences of failure and the public aversion to failure. It thus can
vary from one type of structure to another, but it should also be as uniform
as possible for all similar components within a given geotechnical category;
for example, for all spread foundations, for all piles and for all slopes. It
should also be uniform (consistent) for different sizes of a given type of
structure. As pointed out in Section 8.12, this is achieved for ULS designs
by choosing γ values such that the reliability levels for representative struc-
tures are as close as possible to the specified target reliability index βULS
value of 3.8.

To achieve the required reliability level, the partial factors need to be
calibrated. As part of this process, the influence of the size of the founda-
tion on the probability of failure is investigated. The simplest way to carry
out this is to change the magnitude of the loading while keeping all the
other parameters constant. Thus, a scalar multiplying factor, λ, is intro-
duced and the safety level of foundations designed to support the loading
λ(Gk + Qk) is analyzed for drained conditions as the load factor λ varies.
For nine λ values in the range 0.4–2.0, the design foundation width, B, is
determined for DA1.C2, and constant (Gk +Qk) and soil parameter values.
The resulting graphs of foundation size, B, and characteristic bearing pres-
sure, pk, increase monotonically as functions of λ, as shown by the curves
on Figure 8.13.

The characteristic bearing pressure, pk, increases with load factor, λ, since
the characteristic load λ(Gk + Qk) increases at a rate greater than B2. This
occurs because B increases at a smaller rate than the load factor, as can be
seen from the graph of B against λ in Figure 8.13. Examination of the graphs
in Figure 8.13 shows that variation of λ in the range 0.4–2.0 results in B
varying in the range 1.13–2.33 m and pk varying in the range 472–553 kPa.
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The variation in pk corresponds to a variation between −8% and +8%
around the 514 kPa value obtained when λ = 1.

Monte Carlo simulations, performed for the same nine λ values as above
and using the V values in Table 8.8 for the five load and soil parameters
treated as random variables, result in estimates of the reliability indices
for the ULS and SLS for each λ value. Graphs of the estimated βULS and
βSLS values obtained from the simulations are plotted in Figure 8.14. These
graphs show that βULS remains constant as λ varies and remains slightly
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below 3.0 for all λ values. Thus, for this example and this loading sit-
uation, the Eurocode 7 semi-probabilistic approach provides designs that
are consistent with regard to the reliability level at the ULS (any small
variations in the graph are only due to statistical noise). However, exam-
ining the graph of βSLS against λ in Figure 8.14, it can be seen that, as B
increases, βSLS decreases, and hence Pf;SLS increases, which demonstrates
that the Eurocode 7 semi-probabilistic approach does not provide SLS
designs with a consistent reliability level. In this example, the reliability level
decreases as λ increases, although for λ less than 2.5, the βSLS values obtained
remain above the target level of 1.5.

The reliability level of geotechnical designs depends on the characteristic
soil property value chosen, which, as noted in Section 8.9, is a cautious esti-
mate of the mean value governing the occurrence of the limit state. It was also
noted that the failure of a large foundation involving a large slip surface or a
large volume of ground will be governed by a higher characteristic strength
value than the value governing the failure of a small foundation involving
a small volume of ground. Consequently, depending on the uniformity of
the ground with depth, the ULS reliability level may actually increase as the
foundation size increases, rather than remaining constant, as indicated by the
βULS graph in Figure 8.14. The correct modeling of the change in both βULS
and βSLS as the load factor, and hence foundation size is increased, needs a
more refined model of ground properties than that used in the present model.

If the ground property is considered as a random variable, it has also to
be described as having a spatial correlation, i.e. the property at a given point
is only slightly different from that at the neighboring points. The spatial
correlation can be measured in the field (Bolle, 1994; Jaksa, 1995; Alén,
1998; Moussouteguy et al., 2002) and modeled via geostatistics and ran-
dom field theory. Using this theory, the ground property is considered as a
spatially distributed random variable, the modeling of which in the simpler
cases requires the long-range variance, which is identical to the V parameter
discussed above, and a correlation length (or fluctuation scale), lc, which
describes how the spatial correlation decreases with distance.

Thus the effects of ground variability on the response of structures and
buildings resting on the ground can be predicted. However, it is not possi-
ble to summarize how ground variability or uncertainty in the geotechnical
data affects the response, such as the settlement, of structures and build-
ings, since the spatial variation can induce soil–structure interaction patterns
that are specific to particular ground conditions and structures. A theoretical
investigation by Breysse et al., (2005) has shown that the response of a struc-
ture is governed by a dimensional ratio obtained by dividing a characteristic
dimension of the structure, for instance the distance between the founda-
tion supports or a pipe length, by the soil correlation length. Eurocode 7
requires the designer to consider the effects of soil variability. However, soil–
structure interaction analyses to take account of the effects of soil variability
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are not a part of routine geotechnical designs, i.e. Geotechnical Category 2.
Situations where the soil variability needs to be included in the analyses
are Geotechnical Category 3 and hence no specific guidance is provided in
Eurocode 7 for such situations, since they often involve nonlinear constitu-
tive laws for the materials. An example of such a situation is where the effects
of soil variability on the reliability of a piled raft have been analyzed and
confirmed by Bauduin (2003) and Niandou and Breysse (2005). However,
providing details of these analyses is beyond the scope of this chapter.

8.20 Conclusions

This chapter explains the reliability basis for Eurocode 7, the new European
standard for geotechnical design. Geotechnical designs to Eurocode 7 aim
to achieve the required reliability for a particular geotechnical structure by
taking into account all the relevant factors at all stages of the design, by
considering all the relevant limit states and by the use of appropriate design
calculations. For ultimate limit state design situations, the required level
of reliability is achieved by applying appropriate partial factors to char-
acteristic values of the loads and the soil parameters or resistances. For
serviceability limit state design situations, the required level of reliability
is achieved by using characteristic loads and soil parameter values, with all
the partial factor values equal to unity. The ultimate limit state partial fac-
tors used in design calculations to Eurocode 7 are selected on the basis of
long experience and may be calibrated using reliability analyses. Whether
partial factors are applied to the soil parameters or the resistances has given
rise to three Design Approaches with different sets of partial factors, which
result in different designs and hence different reliabilities, depending on the
Design Approach adopted. The reliability of geotechnical designs has been
shown to be significantly dependent on the variability of the soil parame-
ters and on the assumptions in the calculation model. Traditional factors
of safety do not take account of the variability of the soil and hence can-
not provide a reliable assessment of the probability of failure or actual
safety.

The advantage of reliability analyses is that they take account of the
variability of the parameters involved in a geotechnical design and so
present a consistent analytical framework linking the variability to the tar-
get probability of failure and hence providing a unifying framework between
geotechnical and structural designs (Phoon et al., 2003). It has been shown
that, due to uncertainty in the calculation models and model errors, relia-
bility analyses tend to overpredict the probability of geotechnical designs.
Reliability analyses are particularly appropriate for investigating and eval-
uating the probability of failure in the case of complex design situations or
highly variable ground conditions and hence offer a more rational basis for
geotechnical design decisions in such situations.
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Chapter 9

Serviceability limit state
reliability-based design

Kok-Kwang Phoon and Fred H. Kulhawy

9.1 Introduction

In foundation design, the serviceability limit state often is the governing
criterion, particularly for large-diameter piles and shallow foundations.
In addition, it is widely accepted that foundation movements are difficult
to predict accurately. Most analytical attempts have met with only limited
success, because they did not incorporate all of the important factors, such
as the in-situ stress state, soil behavior, soil–foundation interface charac-
teristics, and construction effects (Kulhawy, 1994). A survey of some of
these analytical models showed that the uncertainties involved in applying
each model and evaluating the input parameters were substantial (Callanan
and Kulhawy, 1985). Ideally, the ultimate limit state (ULS) and the service-
ability limit state (SLS) should be checked using the same reliability-based
design (RBD) principle. The magnitude of uncertainties and the target reli-
ability level for SLS are different from those of ULS, but these differences
will be addressed, consistently and rigorously, using reliability-calibrated
deformation factors (analog of resistance factors).

One of the first systematic studies reporting the development of RBD
charts for settlement of single piles and pile groups was conducted by
Phoon and co-workers (Phoon et al., 1990; Quek et al., 1991, 1992).
A more comprehensive implementation that considered both ULS and
SLS within the same RBD framework was presented in EPRI Report
TR-105000 (Phoon et al., 1995). SLS deformation factors (analog of resis-
tance factors) were derived by considering the uncertainties underlying
nonlinear load–displacement relationships explicitly in reliability calibra-
tions. Nevertheless, the ULS still received most of the attention in later
developments, although interest in applying RBD for the SLS appears to
be growing in the recent literature (e.g. Fenton et al., 2005; Misra and
Roberts, 2005; Zhang and Ng, 2005; Zhang and Xu, 2005; Paikowsky and
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Lu, 2006). A wider survey is given elsewhere (Zhang and Phoon, 2006).
A special session on “Serviceability Issues in Reliability-Based Geotechni-
cal Design” was organized under the Risk Assessment and Management
Track at Geo-Denver 2007, the ASCE Geo-Institute annual conference
held in February 2007, in Denver, Colorado. Four papers were presented
on excavation-induced ground movements (Boone, 2007; Finno, 2007;
Hsiao et al., 2007; Schuster et al., 2007), and two papers were pre-
sented on foundation settlements (Roberts et al., 2007; Zhang and Ng,
2007).

The reliability of a foundation at the ULS is given by the probability of
the capacity being less than the applied load. If a consistent load test inter-
pretation procedure is used, then each measured load–displacement curve
will produce a single “capacity.” The ratio of this measured capacity to a
predicted capacity is called a bias factor or a model factor. A lognormal
distribution usually provides an adequate fit to the range of model factors
found in a load test database (Phoon and Kulhawy, 2005a, b). It is natu-
ral to follow the same approach for the SLS. The capacity is replaced by
an allowable capacity that depends on the allowable displacement (Phoon
et al., 1995; Paikowsky and Lu, 2006). The distribution of the SLS bias or
model factor can be established from a load test database in the same way.
The chief drawback is that the distribution of this SLS model factor has to
be re-evaluated when a different allowable displacement is prescribed. It is
tempting to argue that the load–displacement behavior is linear at the SLS,
and subsequently the distribution of the model factor for a given allow-
able displacement can be extrapolated to other allowable displacements by
simple scaling. However, for reliability analysis, the applied load follows a
probability distribution, and it is possible for the load–displacement behav-
ior to be nonlinear at the upper tail of the distribution (corresponding to
high loads). Finally, it may be more realistic to model the allowable dis-
placement as a probability distribution, given that it is affected by many
interacting factors, such as the type and size of the structure, the properties
of the structural materials and the underlying soils, and the rate and uni-
formity of the movement. The establishment of allowable displacements is
given elsewhere (Skempton and MacDonald, 1956; Bjerrum, 1963; Grant
et al., 1974; Burland and Wroth, 1975; Burland et al., 1977; Wahls, 1981;
Moulton, 1985; Boone, 2001).

This chapter employs a probabilistic hyperbolic model to perform
reliability-based design checks at the SLS. The nonlinear features of the
load–displacement curve are captured by a two-parameter, hyperbolic curve-
fitting Equation. The uncertainty in the entire load–displacement curve is
represented by a relatively simple bivariate random vector containing the
hyperbolic parameters as its components. It is not necessary to evaluate
a new model factor and its accompanying distribution for each allowable
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displacement. It is straightforward to introduce the allowable displacement
as a random variable for reliability analysis. To accommodate this additional
source of uncertainty using the standard model factor approach, it is neces-
sary to determine a conditional probability distribution of the model factor as
a continuous function of the allowable displacement. However, the approach
proposed in this chapter is significantly simpler. Detailed calculation steps for
simulation and first-order reliability analysis are illustrated using EXCEL™
to demonstrate this simplicity. It is shown that a random vector contain-
ing two curve-fitting parameters is the simplest probabilistic model for
characterizing the uncertainty in a nonlinear load–displacement curve and
should be the recommended first-order approach for SLS reliability-based
design.

9.2 Probabilistic hyperbolic model

The basic idea behind the probabilistic hyperbolic model is to: (a) reduce the
measured load–displacement curves into two parameters using a hyperbolic
fit, (b) normalize the resulting hyperbolic curves using an interpreted failure
load to reduce the data scatter, and (c) model the remaining scatter using
an appropriate random vector (possibly correlated and/or non-normal) for
the curve-fitting hyperbolic parameters. There are three advantages in this
empirical approach. First, this approach can be applied easily in practice,
because it is simple and does not require input parameters that are diffi-
cult to obtain. However, the uncertainties in the stiffness parameters are
known to be much larger than the uncertainties in the strength parameters
(Phoon and Kulhawy, 1999). Second, the predictions are realistic, because
the approach is based directly on load test results. Third, the statistics of
the model can be obtained easily, as described below. The first criterion is
desirable but not necessary for RBD. The next two criteria, however, are
crucial for RBD. If the average model bias is not addressed, different mod-
els will produce different reliability for the same design scenario as a result
of varying built-in conservatism, which makes reliability calculations fairly
meaningless. The need for robust model statistics should be evident, because
no proper reliability analysis can be performed without these data.

9.2.1 Example: Augered Cast-in-Place (ACIP) pile under
axial compression

Phoon et al. (2006) reported an application of this empirical approach to
an ACIP pile load test database. The ACIP pile is formed by drilling a
continuous flight auger into the ground and, upon reaching the required
depth, pumping sand–cement grout or concrete down the hollow stem
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as the auger is withdrawn steadily. The side of the augered hole is sup-
ported by the soil-filled auger, and therefore no temporary casing or slurry
is needed. After reaching the ground surface, a reinforcing steel cage, if
required, is inserted by vibrating it into the fresh grout. The database
compiled by Chen (1998) and Kulhawy and Chen (2005) included case
histories from 31 sites with 56 field load tests conducted mostly in sandy
cohesionless soils. The diameter (B), depth (D), and D/B of the piles
ranged from 0.30 to 0.61 m, 1.8 to 26.1 m, and 5.1 to 68.2, respec-
tively. The associated geotechnical data typically are restricted to the
soil profile, depth of ground water table, and standard penetration test
(SPT) results. The range of effective stress friction angle is 32–47 degrees
and the range of horizontal soil stress coefficient is 0.6–2.4 (estab-
lished by correlations). The load–displacement curves are summarized in
Figure 9.1a.

The normalized hyperbolic curve considered in their study is expressed as:

Q
QSTC

= y
a + by

(9.1)

in which Q = applied load, QSTC = failure load or capacity interpreted
using the slope tangent method, a and b = curve-fitting parameters, and
y = pile butt displacement. Note that the curve-fitting parameters are phys-
ically meaningful, with the reciprocals of a and b equal to the initial slope
and asymptotic value, respectively (Figure 9.2). The slope tangent method
defines the failure load at the intersection of the load–displacement curve
with the initial slope (not elastic slope) line offset by (0.15 + B/120) inches,
in which B = shaft diameter in inches. Phoon et al. (2006) observed that
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Figure 9.1 (a) Load–displacement curves for ACIP piles in compression and (b) fitted hyper-
bolic curves normalized by slope tangent failure load (QSTC) for D/B > 20. From
Phoon et al., 2006. Reproduced with the permission of the American Society of
Civil Engineers.
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Figure 9.2 Definition of hyperbolic curve-fitting parameters.

the normalized load–displacement curves for long piles (D/B > 20) cluster
together quite nicely (Figure 9.1b). Case 30-1 is a clear outlier within this
group and is deleted from subsequent analyses. There are 40 load tests in this
group of “long” piles, with diameter (B), depth (D), and D/B ranging from
0.30 to 0.61 m, 7.5 to 26.1 m, and 21.0 to 68.2, respectively. The range of
effective stress friction angle is 32–43 degrees and the range of horizontal
soil stress coefficient is 0.6–2.1.

The curve-fitting Equation is empirical and other functional forms can
be considered, as shown in Table 9.1. However, the important criterion
is to apply a curve-fitting Equation that produces the least scatter in the
normalized load–displacement curves.

9.2.2 Model statistics

Each continuous load–displacement curve can be reduced to two curve-
fitting parameters, as illustrated in Table 9.2 for ACIP piles. Using the data
given in the last two columns of this table, one can construct an appropriate
bivariate random vector that can reproduce the scatter in the normalized load
over the full range of displacements. The following steps are recommended.

1. Validate that the variations in the hyperbolic parameters are indeed
“random.”

2. Fit the marginal distributions of a and b using a parametric form
(e.g. lognormal distribution) or a non-parametric form (e.g. Hermite
polynomial).
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Table 9.1 Curve-fitting Equations for load–displacement curves from various foundations.

Foundation type Loading mode Curve-fitting Equation* Reference source

Spread
foundation

Uplift Q/Qm = y/(a+by) Phoon et al., 1995,
2003, 2007;
Phoon and
Kulhawy, 2002b

Drilled shaft Uplift Q/Qm = y/(a + by) Phoon et al., 1995;
Phoon and
Kulhawy, 2002a

Compression
(undrained)

Q/Qm = (y/B)/[a + b(y/B)] Phoon et al., 1995

Compression
(drained)

Q/Qm = a(y/B)b Phoon et al., 1995

Lateral-
moment

Q/Qm = (y/D)/[a + (y/D)] Phoon et al., 1995,
Kulhawy and
Phoon, 2004

Augered
cast-in-place
(ACIP) pile

Compression
(drained)

Q/Qm = y/(a + by) Phoon et al., 2006

Pressure-injected
footing

Uplift
(drained)

Q/Qm = y/(a + by) Phoon et al., 2007

*Interpreted failure capacity (Qm): tangent intersection method for spread foundations, L1–L2 method
for drilled shafts under uplift and compression; hyperbolic capacity for drilled shafts under lateral-
moment loading; slope tangent method for ACIP piles and pressure-injected footings.

3. Calculate the product–moment correlation between a and b using:

ρa,b =

n∑
i=1

(
ai − ā

)(
bi − b̄

)
√

n∑
i=1

(
ai − ā

)2 n∑
i=1

(
bi − b̄

)2
(9.2)

in which (ai, bi) denotes a pair of a and b values along one row in
Table 9.2, n = sample size (e.g. n = 40 in Table 9.2), and ā and b̄ = the
following sample means:

ā =

n∑
i=1

ai

n

b̄ =

n∑
i=1

bi

n
(9.3)



Table 9.2 Hyperbolic curve-fitting parameters for ACIP piles under axial compression
[modified from load test data reported by Chen (1998)].

Case no. B (m) D (m) D/B SPT-N* QSTC (kN) a (mm) b

c1 0.41 19.2 47.3 18.4 1957.1 8.382 0.499
c2 0.41 14.9 36.8 23.4 1757.0 10.033 0.382
c3 0.41 10.1 24.8 39.1 1761.4 3.571 0.679
c4 0.30 10.7 35.0 16.6 367.0 4.296 0.615
c5-1 0.41 17.7 43.5 21.4 2081.7 7.311 0.445
c5-2 0.41 19.8 48.8 14.6 1903.7 5.707 0.591
c6 0.41 13.7 33.8 14.6 729.5 3.687 0.679
c7 0.30 11.8 38.7 11.6 685.0 2.738 0.701
c8-1 0.36 12.0 33.9 23.7 1072.0 3.428 0.723
c9 0.36 10.4 29.2 18.4 1654.7 7.559 0.461
c10 0.41 9.1 22.5 29.0 1467.8 5.029 0.582
c11 0.36 11.9 33.4 31.6 1654.7 2.528 0.744
c12 0.41 13.1 32.3 15.3 1103.1 5.260 0.533
c13 0.36 11.6 32.6 35.8 1605.7 4.585 0.632
c14 0.41 11.8 29.0 4.3 889.6 2.413 0.770
c15 0.36 12.2 34.3 21.6 2490.9 15.646 0.328
c16-1 0.41 13.4 33.0 27.0 1067.5 4.572 0.607
c16-2 0.41 13.4 33.0 26.7 1076.4 7.376 0.613
c17 0.41 9.0 22.1 14.2 551.6 2.047 0.682
c18-1 0.36 13.9 39.0 34.4 3380.5 12.548 0.380
c19-1 0.36 19.2 54.0 27.1 1334.4 5.829 0.570
c19-2 0.36 24.2 68.2 21.0 1183.2 6.419 0.559
c19-3 0.41 26.1 64.1 20.0 1227.6 4.907 0.690
c19-4 0.41 18.6 45.8 22.4 2152.8 4.426 0.692
c20 0.52 16.6 31.9 30.4 3736.3 1.312 0.840
c21 0.36 7.8 21.9 16.5 889.6 8.128 0.510
c22-1 0.61 20.0 32.8 11.4 1779.2 10.297 0.640
c22-2 0.41 14.9 36.8 7.7 951.9 4.865 0.487
c22-3 0.41 19.9 49.0 10.0 1174.3 5.599 0.517
c23-1 0.36 7.5 21.0 22.7 1316.6 4.511 0.622
c24-1 0.41 9.5 23.4 11.7 1183.2 3.142 0.501
c24-2 0.41 9.5 23.4 11.7 1174.3 3.353 0.513
c24-3 0.41 9.5 23.4 21.5 1005.2 4.104 0.367
c24-4 0.41 9.0 22.1 8.0 862.9 4.928 0.430
c25-1 0.61 17.5 28.7 18.8 1067.5 1.006 0.780
c25-2 0.61 17.5 28.7 18.8 1263.2 1.237 0.923
c25-3 0.61 16.0 26.3 18.2 1076.4 1.352 0.932
c25-4 0.61 20.0 32.8 18.4 1112.0 4.128 1.050
c25-5 0.61 17.5 28.7 18.8 1547.9 4.862 0.748
c27-3 0.46 12.1 26.4 14.4 640.5 3.054 0.792

*Depth-averaged SPT-N value along shaft.
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For the hyperbolic parameters in Table 9.2, the product–moment
correlation is −0.673.

4. Construct a bivariate probability distribution for a and b using the
translation model.

Note that the construction of a bivariate probability distribution for a
and b is not an academic exercise in probability theory. Each pair of
a and b values within one row of Table 9.2 is associated with a single
load–displacement curve [see Equation (9.1)]. Therefore, one should expect
a and b to be correlated as a result of this curve-fitting exercise. This
is similar to the well-known negative correlation between cohesion and
friction angle. A linear fit to a nonlinear Mohr–Coulomb failure enve-
lope will create a small intercept (cohesion) when the slope (friction
angle) is large, or vice versa. If one adopts the expedient assumption
that a and b are statistically independent random variables, then the
column of a values can be shuffled independently of the column of b
values. In physical terms, this implies that the initial slopes of the load–
displacement curves can be varied independently of their asymptotic values.
This observation is not supported by measured load test data, as shown
in Section 9.3.3. In addition, there is no necessity to make this simplify-
ing assumption from a calculation viewpoint. Correlated a and b values
can be calculated with relative ease, as illustrated below using the data
from Table 9.2.

9.3 Statistical analyses

9.3.1 Randomness of the hyperbolic parameters

In the literature, it is common to conclude that a parameter is a random
variable by presenting a histogram. However, it is rarely emphasized that
parameters exhibiting variations are not necessarily “random.” A random
variable is an appropriate probabilistic model only if the variations are
not explainable by deterministic variations in the database, for example,
foundation geometry or soil property. Figure 9.3 shows that the hyperbolic
parameters do not exhibit obvious trends with D/B or the average SPT-N
value.

9.3.2 Marginal distributions of a and b

The lognormal distribution provides an adequate fit to both hyperbolic
parameters, as shown in Figure 9.4 (p-values from the Anderson–Darling
goodness-of-fit test, pAD, are larger than 0.05). Note that S.D. is the stan-
dard deviation, COV is the coefficient of variation, and n is the sample
size. Because of lognormality, a and b can be expressed in terms of standard
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Figure 9.3 Hyperbolic parameters versus D/B and SPT-N for ACIP piles.
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Figure 9.4 Marginal distributions of hyperbolic parameters for ACIP piles. From Phoon
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normal variables X1 and X2 as follows:

a = exp(ξ1X1 +λ1)

b = exp(ξ2X2 +λ2) (9.4)

The parameters λ1 and ξ1 are the equivalent normal mean and equivalent
normal standard deviation of a, respectively, as given by:

ξ1 =
√

ln
(
1 + s2

a/m2
a

)= 0.551

λ1 = ln(ma) − 0.5ξ2
1 = 1.488 (9.5)

in which the mean and standard deviation of a are ma = 5.15 mm and
sa = 3.07 mm, respectively. The parameters λ2 and ξ2 can be calculated from
the mean and standard deviation of b in the same way and are given by
λ2 = −0.511 and ξ2 = 0.257.

There is no reason to assume that a lognormal probability distribution will
always provide a good fit for the hyperbolic parameters. A general but simple
approach based on Hermite polynomials can be used to fit any empirical
distributions of a and b:

a = a10H0(X1) + a11H1(X1) + a12H2(X1) + a13H3(X1)

+ a14H4(X1) + a15H5(X1) +·· · (9.6)

b = a20H0(X2) + a21H1(X2) + a22H2(X2) + a23H3(X2)

+ a24H4(X2) + a25H5(X2) +·· ·

in which the Hermite polynomials Hj(.) are given by:

H0(X) = 1

H1(X) = X (9.7)

Hk+1(X) = X Hk(X) − k Hk−1(X)

The advantages of using a Hermite expansion are: (a) Equation (9.6) is
directly applicable for reliability analysis (Phoon and Honjo, 2005; Phoon
et al., 2005); (b) a short expansion, typically six terms, is sufficient; and
(c) Hermite polynomials can be calculated efficiently using the recursion for-
mula shown in the last row of Equation (9.7). The main effort is to calculate
the Hermite coefficients in Equation (9.6). Figure 9.5 shows that the entire
calculation can be done with relative ease using EXCEL. Figure 9.6 compares
a and b values simulated using the lognormal distribution and the Hermite
expansion with the measured values in Table 9.2.
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Column

 A Sort values of “a” using “Data > Sort > Ascending”.  Let f be a 40×1 vector
 containing values in column A.
 B Rank the values in column A in ascending order, e.g., B4 =
 RANK(A4,$A$4:$A$43,1)
 C Calculate empirical cumulative distribution F(a) using (rank)/(sample size +1), e.g.,
 C4 = B4/41
 D Calculate standard normal variate using Φ−1[F(a)], e.g., D4 = NORMSINV(C4)
F..K Calculate Hermite polynomials using recursion, e.g., F4 = 1, G4 = D4,
 H4 = G4∗$D4-(H$3-1)∗F4
 M Let H be a 40×6 matrix containing values in column F to K.
 Calculate the Hermite coefficients in column M (denoted by a 6×1 vector a1) by:
 HTH a1 = HTf
 The EXCEL array formula is:
 {=MMULT(MINVERSE(MMULT(TRANSPOSE(F4:K43),F4:K43)),
 MMULT(TRANSPOSE(F4:K43),A4:A43))} 

EXCEL functions

Figure 9.5 Calculation of Hermite coefficients for a using EXCEL.

Hyperbolic parameters for uplift load–displacement curves associated
with spread foundations, drilled shafts, and pressure-injected footings are
shown in Figure 9.7. Although lognormal distributions can be fitted to
the histograms (dashed line), they are not quite appropriate for the b
parameters describing the asymptotic uplift load–displacement behavior of
spread foundations and drilled shafts (p-values from the Anderson–Darling
goodness-of-fit test, pAD, are smaller than 0.05).

9.3.3 Correlation between a and b

The random vector (a , b) is described completely by a bivariate probabil-
ity distribution. The assumption of statistical independence commonly is
adopted in the geotechnical engineering literature for expediency. The prac-
tical advantage is that the random components can be described completely
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Figure 9.6 Simulation of hyperbolic parameters using lognormal distribution and Hermite
expansion.

by marginal or univariate probability distributions such as those shown in
Figures 9.4 and 9.7. Another advantage is that numerous distributions are
given in standard texts, and the data on hand usually can be fitted to one
of these classical distributions. The disadvantage is that this assumption can
produce unrealistic scatter plots between a and b if the data are strongly
correlated. For hyperbolic parameters, it appears that strong correlations
are the norm, rather than the exception (Figure 9.8).

It is rarely emphasized that the multivariate probability distributions (even
bivariate ones) underlying random vectors are very difficult to construct
theoretically, to estimate empirically, and to simulate numerically. A cur-
sory review of basic probability texts reveals that non-normal distributions
usually are presented in the univariate form. It is not possible to generalize
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Figure 9.7 Marginal distributions of hyperbolic parameters for uplift load–displacement
curves associated with spread foundations, drilled shafts, and pressure-injected
footings. From Phoon et al., 2007. Reproduced with the permission of the
American Society of Civil Engineers.

these univariate formulae to higher dimensions unless the random variables
are independent. This assumption is overly restrictive in reliability analysis
where input parameters can be correlated by physics (e.g. sliding resistance
increases with normal load, undrained shear strength increases with loading
rate, etc.) or by curve-fit (e.g. cohesion and friction angle in a linear Mohr–
Coulomb failure envelope, hyperbolic parameters from load–displacement
curves). A full discussion of these points is given elsewhere (Phoon, 2004a,
2006).
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Figure 9.8 Correlation between hyperbolic parameters. From Phoon et al., 2006, 2007.
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9.4 Bivariate probability distribution functions

9.4.1 Translation model

For bivariate or higher-dimensional probability distributions, there are few
practical choices available other than the multivariate normal distribution.
In the bivariate normal case, the entire dependency relationship between both
random components can be described completely by a product–moment cor-
relation coefficient [Equation (9.2)]. The practical importance of the normal
distribution is reinforced further because usually there are insufficient data to
compute reliable dependency information beyond the correlation coefficient.

It is expected that a bivariate probability model for the hyperbolic
parameters will be constructed using a suitably correlated normal model.
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The procedure for this is illustrated using an example of hyperbolic
parameters following lognormal distributions.

1. Simulate uncorrelated standard normal random variables Z1 and Z2
(available in EXCEL under “Tools > Data Analysis > Random Number
Generation”).

2. Transform Z1 and Z2 into X1 (mean = 0, standard deviation = 1) and
X2 (mean = 0, standard deviation = 1) with correlation ρX1X2

by:

X1 = Z1

X2 = Z1ρX1X2
+ Z2

√
1 −ρ2

X1X2
(9.8)

3. Transform X1 and X2 to lognormal a and b using Equation (9.4).

Note that the correlation between a and b (ρa,b), as given below, is not the
same as the correlation between X1 and X2 (ρX1X2

).

ρa,b = exp(ξ1ξ2ρX1X2
) − 1√

[exp(ξ2
1 ) − 1][exp(ξ2

2 ) − 1]
(9.9)

Therefore, one needs to back-calculate ρX1X2
from ρa,b ( = −0.67) using

Equation (9.9) before computing Equation (9.8). The main effort in the con-
struction of a translation-based probability model is calculating the equiv-
alent normal correlation. For the lognormal case, a closed-form solution
exists [Equation (9.9)]. Unfortunately, there are no convenient closed-form
solutions for the general case. One advantage of using Hermite polynomials
to fit the empirical marginal distributions of a and b [Equation (9.6)] is that
a simple power series solution can be used to address this problem:

ρa,b =

∞∑
k=1

k!a1ka2kρ
k
X1X2√√√√( ∞∑

k=1
k!a2

1k

)(
∞∑

k=1
k!a2

2k

) (9.10)

The bivariate lognormal model based on ρX1X2
= −0.8 [calculated from

Equation (9.9) with ρa,b = −0.7] produces a scatter of simulated a and
b values that is in reasonable agreement with that exhibited by the mea-
sured values (Figure 9.9a). In contrast, adopting the assumption of statistical
independence between a and b, corresponding to ρX1X2

= 0, produces the
unrealistic scatter plot shown in Figure 9.9b, in which there are too many
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Figure 9.9 Simulated hyperbolic parameters for ACIP piles: (a) ρX1X2
= −0.8, and

(b) ρX1X2
= 0.

simulated points above the observed scatter, as highlighted by the dashed
oval. Note that the marginal distributions for a and b in Figures 9.9a and
b are almost identical (not shown). The physical difference produced by
correlated and uncorrelated hyperbolic parameters can be seen in the simu-
lated load–displacement curves as well (Figures 9.10b–d). These simulated
curves are produced easily by substituting simulated pairs of a and b into
Equation (9.1).

9.4.2 Rank model

By definition, the product–moment correlation ρa,b is bounded between –1
and 1. One of the key limitations of a translation model is that it is not
possible to simulate the full range of possible product–moment correlations
between a and b (Phoon, 2004a; 2006). Based on the equivalent normal
standard deviations of a and b for ACIP piles (ξ1 = 0.551 and ξ2 = 0.257), it
is easy to verify that Equation (9.9) with ρX1X2

=−1 will result in a minimum
value of ρa,b = −0.85. The full relationship between translation non-normal
correlation and equivalent normal correlation is shown in Figure 9.11. More
examples are given in Phoon (2006), as reproduced in Figure 9.12 (note:
ρa,b = ρY1Y2

).
If a translation-based probability model is inadequate, a simple alternate

approach is to match the rank correlation as follows:

1 Convert a and b to their respective ranks. Note that these ranks are
calculated based on ascending values of a and b, i.e. the smallest value
is assigned a rank value equal to 1.

2 Calculate the rank correlation using the same Equation as the product–
moment correlation [Equation (9.2)], except the rank values are used in
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Figure 9.10 Normalized hyperbolic curves for ACIP piles: (a) measured, (b) ρX1X2
= −0.8,

(c) ρX1X2
= −0.4, and (d) ρX1X2

= 0.

place of the actual a and b values. The rank correlation for Table 9.2
is –0.71.

3 Simulate correlated standard normal random variables using
Equation (9.8) with ρX1X2

equal to the rank correlation computed above.
4 Simulate independent non-normal random variables following any

desired marginal probability distributions.
5 Re-order the realizations of the non-normal random variables such that

they follow the rank structure underlying the correlated standard normal
random variables.

The simulation procedure for hyperbolic parameters of ACIP piles is illus-
trated in Figure 9.13. Note that the simulated a and b values in columns
M and N will follow the rank structure (columns J and K) of the corre-
lated standard normal random variables (columns H and I) because the
exponential transform (converting normal to lognormal) is a monotonic
increasing function. The theoretical basis underlying the rank model is dif-
ferent from the translation model and is explained by Phoon et al. (2004)
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and Phoon (2004b). It suffices to note that there is no unique method of con-
structing correlated non-normal random variables, because the correlation
coefficient (product–moment or rank) does not provide a full description of
the association between two non-normal variables.

9.5 Serviceability limit state reliability-based
design

This section presents the practical application of the probabilistic hyper-
bolic model for serviceability limit state (SLS) reliability-based design. The
SLS occurs when the foundation displacement (y) is equal to the allowable
displacement (ya). The foundation has exceeded serviceability if y> ya. Con-
versely, the foundation is satisfactory if y < ya. These three situations can be
described concisely by the following performance function:

P = y − ya = y(Q) − ya (9.11)

An alternate performance function is:

P = Qa − Q = Qa(ya) − Q (9.12)

Figure 9.14 illustrates the uncertainties associated with these performance
functions. In Figure 9.14a, the applied load Q is assumed to be deterministic
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Figure 9.12 Some relationships between observed correlation (ρY1Y2
) and correlation of

underlying equivalent Gaussian random variables (ρX1X2
). From Phoon, 2006.

Reproduced with the permission of the American Society of Civil Engineers.

to simplify the visualization. It is clear that the displacement follows a distri-
bution even if Q is deterministic, because the load–displacement curve y(Q)
is uncertain. The allowable displacement may follow a distribution as well.
In Figure 9.14b, the allowable displacement is assumed to be determinis-
tic. In this alternate version of the performance function, the allowable load
Qa follows a distribution even if ya is deterministic because of the uncer-
tainty in the load–displacement curve. The effect of a random load Q and
the possibility of upper tail values falling on the nonlinear portion of the
load–displacement curve are illustrated in this figure.
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Column

  A Measured “a” values from Table 9.2
  B Measured “b” values from Table 9.2
  C Rank the values in column A in ascending order, e.g., C3 = RANK(A3,$A$3:$A$42,1)
  D Rank the values in column B in ascending order, e.g., D3 = RANK(B3,$B$3:$B$42,1)
F, G Simulate two columns of independent standard normal random variables using Tools >
 Data Analysis > Random Number Generation > Number of Variables = 2; Number of
 Random Numbers = 40; Distribution = Normal; Mean = 0; Standard deviation = 1;
 Output Range = $F$3
  H Set X1 = Z1, e.g., H3 = F3

   I Set X2 = Z1rX1X2
 + Z2(1 – rX1X2

2)0.5 with rX1X2
 = rank correlation between columns C

 and D, e.g., I3 = F3*(–0.71)+G3*SQRT(1–0.71^2)
  M Simulated “a” values, e.g., M3 = EXP(H3*0.551+1.488)
  N Simulated “b” values, e.g., N3 = EXP(I3*0.257–0.511) 

EXCEL functions

Figure 9.13 Simulation of rank correlated a and b values for ACIP piles using EXCEL.

The basic objective of RBD is to ensure that the probability of failure of a
component does not exceed an acceptable threshold level. For ULS or SLS,
this objective can be stated using the performance function as follows:

pf = Prob(P < 0) ≤ pT (9.13)

in which Prob(·) = probability of an event, pf = probability of failure, and
pT = acceptable target probability of failure. A more convenient alternative
to the probability of failure is the reliability index (β), which is defined as:

β = −Φ−1(pf ) (9.14)

in which Φ−1(·) = inverse standard normal cumulative function.
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Figure 9.14 Serviceability limit state reliability-based design: (a) deterministic applied load,
and (b) deterministic allowable displacement.

9.5.1 First-order reliability method (FORM)

The probability of failure given by Equation (9.13) can be calculated eas-
ily using the first-order reliability method (FORM) once the probabilistic
hyperbolic model is established:

pf = Prob
(
Qa < Q

)= Prob
(

ya

a + bya
Qm < Q

)
(9.15)

The interpreted capacity Qm, allowable displacement ya, and applied load Q
are assumed to be lognormally distributed with, for example, coefficients of
variation (COV) = 0.5, 0.6, and 0.2, respectively. The COV of Qm is related
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to the capacity prediction method and the quality of the geotechnical data.
Phoon et al. (2006) reported a COV of 0.5 associated with the prediction
of compression capacity of ACIP piles using the Meyerhof method. The
COV of ya is based on a value of 0.583 reported by Zhang and Ng (2005)
for buildings on deep foundations. The COV of Q = 0.2 is appropriate
for live load (Paikowsky, 2002). The hyperbolic parameters are negatively
correlated with an equivalent normal correlation of –0.8 and are lognormally
distributed with statistics given in Figure 9.4. The mean of ya is assumed to
be 25 mm. Equation (9.15) can be re-written to highlight the mean factor of
safety (FS) as follows:

pf = Prob

(
ya

a + bya
<

mQQ∗

mQm
Q∗

m

)
= Prob

(
ya

a + bya
<

1
FS

Q∗
Q∗

m

)
(9.16)

in which mQm
and mQ = mean of Qm and Q, FS = mQm

/mQ, and Q∗
m and

Q∗ = unit-mean lognormal random variables with COV = 0.5 and 0.2. Note
that FS refers to the ultimate limit state. It is equivalent to the global factor
of safety adopted in current practice.

Figure 9.15 illustrates that the entire FORM calculation can be performed
with relative ease using EXCEL. The most tedious step in FORM is the search
for the most probable failure point, which requires a nonlinear optimizer.
Low and Tang (1997, 2004) recommended using the SOLVER function in
EXCEL to perform this tedious step. However, their proposal to perform
optimization in the physical random variable space is not recommended,
because the means of these random variables can differ by orders of magni-
tudes. For example, the mean b = 0.62 for the ACIP pile database, while the
mean of Qm can be on the order of 1000 kN. In Figure 9.15, the SOLVER
is invoked by changing cells $B$14:$B$18, which are random variables in
standard normal space (i.e. uncorrelated, zero-mean, unit variance compo-
nents). An extensive discussion of reliability analysis using EXCEL is given
elsewhere (Phoon, 2004a).

For a typical FS = 3, the SLS reliability index for this problem is 2.21,
corresponding to a probability of failure of 0.0134.

9.5.2 Serviceability limit state model factor approach

The allowable load can be evaluated from the interpreted capacity using a
SLS model factor (MS) as follows:

Qa = ya

a + bya
Qm = MSQm (9.17)
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Cell

E14:E18 E14=B14; E15=B14*$K$6+B15*SQRT(1-$K$6^2); E16=B16; E17=B17;
 E18=B18
B22:B26 B22=EXP(E14*H6+G6); B23=EXP(E15*H7+G7); etc.
D22 B24/(B24*B23+B22)-B26/B25/D3
D25 {= SQRT(MMULT(TRANSPOSE(B14:B18),B14:B18))}
D28 = NORMSDIST(-D25)
 Solver
 Set Target Cell: $D$25 Equal To: Min
 By Changing Cells: $B$14:$B$18
 Subject to the Constraints: $D$22 <= 0 

EXCEL functions

Figure 9.15 EXCEL implementation of first-order reliability method for serviceability limit
state.

If MS follows a lognormal distribution, then a closed-form solution exists
for Equation (9.15):

β =

ln

⎡
⎢⎣
(

mMs
mQm

mQ

)√√√√√ 1 + COV2
Q(

1 + COV2
Ms

)(
1 + COV2

Qm

)
⎤
⎥⎦

√
ln
[(

1 + COV2
Ms

)(
1 + COV2

Qm

)(
1 + COV2

Q

)] (9.18)

This procedure is similar to the bias or model factor approach used in ULS
RBD. However, the distribution of MS has to be evaluated for each allowable
displacement. Figure 9.16 shows two distributions of MS determined by
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Figure 9.16 Simulated distributions of SLS model factors (Q/QSTC ) for ACIP piles (allow-
able displacement ya assumed to be deterministic).

substituting simulated values of a and b into ya/(a + bya), with ya = 15 mm
and 25 mm. In contrast, the foundation capacity is a single number (not a
curve), and only one model factor distribution is needed.

Based on first-order, second-moment analysis, the mean (mMs
) and COV

(COVMs
) of MS can be estimated as:

mMs
≈ ya

ma + mbya
(9.19)

COVMs
≈
√

s2
a + y2

as2
b + 2yaρa,bsasb

ma + mbya
(9.20)

For ya = 25 mm, the mean and COV of MS are estimated to be 1.21
and 0.145, which compare favorably with the simulated statistics shown
in Figure 9.16 (mean = 1.23 and COV = 0.13).

For the example discussed in Section 9.5.1, the reliability index calculated
using Equation (9.18) is 2.29, and the corresponding probability of failure
is 0.0112. The correct FORM solution is β = 2.38 (pf = 0.0086). For a
deterministic ya = 15 mm, Equation (9.18) gives β = 2.00 (pf = 0.0227),
while FORM gives β = 2.13 (pf = 0.0166). These small differences are
to be expected, given that the histograms shown in Figure 9.16 are not
lognormally distributed despite visual agreement. The null hypothesis of
lognormality is rejected because the p-values from the Anderson-Darling
goodness-of-fit test (pAD) are significantly smaller than 0.05. In our opin-
ion, one practical disadvantage of the SLS model factor approach is that
MS can not be evaluated easily from a load test database if ya follows
a distribution. Given the simplicity of the FORM calculation shown in
Figure 9.15, it is preferable to use the probabilistic hyperbolic model
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for SLS reliability analysis. The distributions of the hyperbolic param-
eters do not depend on the allowable displacement, and there are no
practical difficulties in incorporating a random ya for SLS reliability
analysis.

9.5.3 Effect of nonlinearity

It is tempting to argue that the load–displacement behavior is linear at the
SLS. However, for reliability analysis, the applied load follows a probability
distribution, and it is possible for the load–displacement behavior to be non-
linear at the upper tail of the distribution. This behavior is illustrated clearly
in Figure 9.14b. The probabilistic hyperbolic model can be simplified to a lin-
ear model by setting b = 0 (physically, this is equivalent to an infinitely large
asymptotic limit). For the example discussed in Section 9.5.1, the FORM
solution under this linear assumption is β = 2.76 (pf = 0.00288). Note that
the solution is very unconservative, because the probability of failure is about
4.7 times smaller than that calculated for the correct nonlinear hyperbolic
model. If the mean allowable displacement is reduced to 15 mm, and the
mean factor of safety is increased to 10, then the effect of nonlinearity is less
pronounced. For the linear versus nonlinear case, β = 3.50 (pf = 0.000231)
versus β = 3.36 (pf = 0.000385), respectively.

9.5.4 Effect of correlation

The effect of correlated hyperbolic parameters on the load–displacement
curves is shown in Figure 9.10. For the example discussed in Section 9.5.1,
the FORM solution for uncorrelated hyperbolic parameters is β = 2.05
(pf = 0.0201). The probability of failure is 1.5 times larger than that calcu-
lated for the correlated case. For a more extreme case of FS = 10 and mean
ya = 50 mm, the FORM solution for uncorrelated hyperbolic parameters
is β = 4.42 (pf = 4.99 × 10−6). Now the probability of failure is signifi-
cantly more conservative. It is 3.3 times larger than that calculated for the
correlated case given by β = 4.67 (pf = 1.49 × 10−6). Note that assuming
zero correlation between the hyperbolic parameters does not always produce
the most conservative (or largest) probability of failure. If the hyperbolic
parameters were found to be positively correlated, perhaps with a weak
equivalent normal correlation of 0.5, the FORM solution would be β = 4.25
(pf = 1.06×10−5). The probability of failure for the uncorrelated case is now
2.1 times smaller than that calculated for the correlated case.

The effect of a negative correlation is to reduce the COV of the SLS model
factor as shown by Equation (9.20). A smaller COVMs leads to a higher reli-
ability index as shown by Equation (9.18). The reverse is true for positively
correlated hyperbolic parameters.
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9.5.5 Uncertainty in allowable displacement

The allowable displacement is assumed to be deterministic in the major-
ity of the previous studies. For the example discussed in Section 9.5.1,
the FORM solution for a deterministic allowable displacement is β = 2.38
(pf = 0.00864). The probability of failure is 1.6 times smaller than that cal-
culated for a random ya with COV = 0.6. For a more extreme case of FS = 10
and mean ya = 50 mm, the FORM solutions for deterministic and random
ya are β = 4.69(pf = 1.36 × 10−6) and β = 4.67(pf = 1.49 × 10−6), respec-
tively. It appears that the effect of uncertainty in the allowable displacement
is comparable to, or smaller than, the effect of correlation in the hyperbolic
parameters.

9.5.6 Target reliability index for serviceability limit state

The Eurocode design basis, BS EN1990:2002 (British Standards Institute,
2002), specifies the safety, serviceability and durability requirements for
design and describes the basis for design verification. It is intended to be
used in conjunction with nine other Eurocodes that govern both struc-
tural and geotechnical design, and it specifies a one-year target reliability
index of 2.9 for SLS. Phoon et al. (1995) recommended a target reliabil-
ity index of 2.6 for transmission line (and similar) structure foundations
based on extensive reliability calibrations with existing designs for different
foundation types, loading modes, and drainage conditions. Zhang and Xu
(2005) analyzed the settlement of 149 driven steel H-piles in Hong Kong
and calculated a reliability index of 2.46 based on a distribution of mea-
sured settlements at the service load (mean = 19.9 mm and COV = 0.23)
and a distribution of allowable settlement for buildings (mean = 96 mm and
COV = 0.583).

Reliability indices corresponding to different mean factors of safety and
different allowable displacements can be calculated based on the EXCEL
method described in Figure 9.15. The results for ACIP piles are calculated
using the statistics given in Figure 9.4 and are presented in Figure 9.17.
It can be seen that a target reliability index = 2.6 is not achievable at a
mean FS = 3 for a mean allowable displacement of 25 mm. However, it is
achievable for a mean FS larger than about 4. Note that the 50-year return
period load Q50 ≈ 1.5 mQ for a lognormal distribution with COV = 0.2.
Therefore, a mean FS = 4 is equivalent to a nominal FS = mQm

/Q50 = 2.7.
A nominal FS of 3 is probably closer to prevailing practice than a mean
FS = 3.

It is also unclear if the allowable displacement prescribed in practice really
is a mean value or some lower bound value. For a lognormal distribution
with a COV = 0.6, a mean allowable displacement of 50 mm produces a
mean less one standard deviation value of 25 mm. Using this interpretation, a
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target reliability index of 2.6 is achievable at a mean FS about 3 or a nominal
FS about 2.

Overall, the EPRI target reliability index for SLS is consistent with
foundation designs resulting from a traditional global FS between 2 and 3.

9.6 Simplified reliability-based design

Existing implementations of RBD are based on a simplified approach that
involves the use of multi-factor formats for checking designs. Explicit reli-
ability calculations such as those presented in Section 9.5 are not done
commonly in current routine design. Simplified RBD checks can be calibrated
using the following general procedure (Phoon et al., 1995).

1 Select realistic performance functions for the ULS and/or the SLS.
2 Assign probability models for each basic design parameter that are

commensurate with available statistical support.
3 Conduct a parametric study on the variation of the reliability level with

respect to each parameter in the design problem using the FORM to
identify appropriate calibration domains.

4 Determine the range of reliability levels implicit in existing designs.
5 Adjust the resistance factors (for ULS) or deformation factors (for SLS)

in the RBD Equations until a consistent target reliability level is achieved
within each calibration domain.
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The calibration of simplified RBD checks was discussed by Phoon and
Kulhawy (2002a) for drilled shafts subjected to drained uplift, by Phoon
et al. (2003) for spread foundations subjected to uplift, and by Kulhawy and
Phoon (2004) for drilled shafts subjected to undrained lateral-moment load-
ing. This section presents an example of SLS design of drilled shafts subjected
to undrained uplift (Phoon et al. 1995). The corresponding ULS design was
given by Phoon et al. (1995, 2000).

9.6.1 Performance function for serviceability limit state

The uplift capacity of drilled shafts is governed by the following vertical
equilibrium Equation:

Qu = Qsu + Qtu + W (9.21)

in which Qu = uplift capacity, Qsu = side resistance, Qtu = tip resistance,
and W = weight of foundation. For undrained loading, the side resistance
can be calculated as follows:

Qsu = πBα

∫ D

0
su(z)dz (9.22)

in which B = shaft diameter, D = shaft depth, α = adhesion factor,
su = undrained shear strength, and z = depth. The α factor is calibrated
for a specific su test type. For su determined from CIUC (consolidated-
isotropically undrained compression) tests, the corresponding adhesion
factor was determined by the following regression Equation:

α = 0.31 + 0.17(
su
/

pa
) + ε (9.23)

in which pa = atmospheric stress ≈ 100 kN/m2 and ε = normal random
variable with mean = 0 and standard deviation = 0.1 resulting from linear
regression analysis. The undrained shear strength (su) was modeled as a
lognormal random variable, with mean (msu) = 25 − 200 kN/m2 and COV
(COVsu

) = 10−70%. It has been well-established for a long time (e.g. Lumb,
1966) that there is no such thing as a “typical” COV for soil parameters
because the degree of uncertainty depends on the site conditions, degree
of equipment and procedural control, quality of the correlation model, and
other factors. If geotechnical RBD codes do not consider this issue explicitly,
then practicing engineers can not adapt the code design to their specific
set of local circumstances, such as site conditions, measurement techniques,
correlation models, standards of practice, etc. If code provisions do not allow
these adaptations, then local “ad-hoc” procedures are likely to develop that
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basically defeat the purpose of the code in the first place. This situation is
not desirable. A good code with proper guidelines is preferable.

The tip resistance under undrained loading conditions develops from
suction forces and was estimated by:

Qtu = (−�u − ui)Atip (9.24)

in which ui = initial pore water stress at the foundation tip or base, �u =
change in pore water stress caused by undrained loading, and Atip = tip
or base area. Note that no suction force develops unless –�u exceeds ui.
Tip suction is difficult to predict accurately because it is sensitive to the
drainage conditions in the vicinity of the tip. In the absence of an accurate
predictive model and statistical data, it was assumed that the tip suction stress
is uniformly distributed between zero and one atmosphere. [Note that many
designers conservatively choose to disregard the undrained tip resistance in
routine design.]

For the load–displacement curve, it was found that the simple hyperbolic
model resulted in the least scatter in the normalized curves (Table 9.1). The
values of a and b corresponding to each load–displacement curve were deter-
mined by using the displacement at 50% of the failure load (y50) and the
displacement at failure (yf ) as follows:

a = y50yf

yf − y50
(9.25a)

b = yf − 2y50

yf − y50
(9.25b)

Forty-two load–displacement curves were analyzed using Equations 9.25
(a and b). The database is given in Table 9.3, and the statistics of a and b
are summarized in Table 9.4. It can be seen that the effect of soil type is
small, and therefore the statistics calculated using all of the data were used.
In this earlier study, a and b were assumed to be independent lognormal
random variables for convenience. This assumption is conservative as noted
in Section 9.5.4. The mean and one standard deviation load–displacement
curves are plotted in Figure 9.18, along with the data envelopes.

Following Equation (9.12), the performance function at SLS is:

P = Qua − F = ya

a + bya
Qu − F (9.26)

in which F = weather-related load effect for transmission line structure foun-
dations = kV2 (Task Committee on Structural Loadings of ASCE, 1991),
V = Gumbel random variable with COV = 30%, and k = deterministic
constant. The probability distributions assigned to each design parameter
are summarized in Table 9.5.



Table 9.3 Hyperbolic curve-fitting parameters for drilled shafts under uplift (Phoon et al.,
1995).

Casea Soil typeb Qc
u (kN) Dd (m) Be (m) yf

50 (mm) yg
f (mm) ah (mm) bh

5/1 C 320 3.17 0.63 0.48 12.70 0.50 0.96
8/1 C 311 4.57 0.61 0.90 12.70 0.96 0.92
12/5 C 311 4.57 0.61 1.02 12.70 1.10 0.91
15/1 C 285 2.44 0.61 1.34 6.71 1.68 0.75
16/1 C 338 2.44 0.91 0.61 7.32 0.66 0.91
25/NE C 80 1.98 0.52 0.91 12.70 0.98 0.92
38/A2 C 222 3.05 0.61 0.81 12.70 0.87 0.93
38/A3 C 498 6.10 0.61 0.91 12.70 0.98 0.92
40/1 C 285 3.66 0.61 0.84 12.70 0.90 0.93
40/2 C 338 3.66 0.61 0.74 12.70 0.79 0.94
56/1 C 934 10.06 0.35 2.50 25.00 2.78 0.89
56/2 C 552 6.80 0.35 1.25 12.70 1.39 0.89
56/17 C 667 7.50 0.30 0.62 12.70 0.66 0.95
56/23 C 667 6.49 0.45 0.62 12.70 0.66 0.95
63/1 C 2225 11.58 1.52 1.40 12.70 1.58 0.87
64/4 C 1050 3.66 1.52 0.80 12.70 0.85 0.93
69/1 C 1388 20.33 0.91 1.73 6.35 2.38 0.62
73/1 C 338 2.80 0.61 0.81 11.58 0.87 0.92
73/6 C 507 3.69 0.76 1.22 10.16 1.38 0.86
14/1 S 231 2.44 0.91 0.37 12.70 0.38 0.97
18/1 S 445 3.05 0.91 1.35 16.15 1.48 0.91
20/1 S 409 3.05 0.91 1.34 24.38 1.42 0.94
41/1 S 365 3.05 0.91 0.33 5.08 0.35 0.93
44/1 S 534 8.53 0.46 1.22 12.70 1.35 0.89
46/10 S 25 1.37 0.34 1.15 12.70 1.27 0.90
47/11 S 71 2.44 0.37 0.77 12.70 0.82 0.93
48/12 S 163 3.66 0.37 1.54 12.70 1.75 0.86
49/E S 296 4.27 0.41 1.15 12.70 1.27 0.90
51/1 S 525 3.66 0.91 0.61 12.70 0.64 0.95
62/1 S 890 6.40 1.07 0.49 6.35 0.53 0.92
62/2 S 890 6.40 1.07 0.98 14.00 1.05 0.92
70/3 S 1557 6.10 0.61 1.02 12.70 1.10 0.91
95/1 S 338 12.19 0.53 2.00 26.24 2.16 0.92
95/2 S 347 12.19 0.38 3.12 19.99 3.70 0.81
99/2 S 1086 3.05 1.22 0.66 4.19 0.78 0.81
99/3 S 1255 3.66 1.22 0.56 7.62 0.61 0.92
21/1 S + C 454 15.24 0.41 0.91 12.70 0.98 0.92
36/1 S + C 712 10.36 0.41 1.91 12.70 2.24 0.82
42/1 S + C 1629 21.34 0.46 1.34 12.70 1.49 0.88
50/1 S + C 100 2.90 0.30 1.47 8.20 1.78 0.78
50/2 S + C 400 3.81 0.30 2.54 23.11 2.85 0.88
96/1 S + C 667 12.19 0.53 1.33 12.70 1.49 0.88

aCase number in Kulhawy et al. (1983).
bS = sand; C = clay; S + C = sand and clay.
cFailure load determined by L1–L2 method (Hirany and Kulhawy, 1988).
dFoundation depth.
eFoundation diameter.
f Displacement at 50% of failure load.
gDisplacement at failure load.
hCurve-fitted parameters for normalized hyperbolic model based on Equation (9.25).
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Table 9.4 Statistics of a and b for uplift load–displacement curve. From Phoon and
Kulhawy, 2002a. Reproduced with the permission of the American Society of Civil
Engineers.

Soil type No. of tests a b

Mean (mm) COV Mean COV

Clay 19 1.16 0.52 0.89 0.09
Sand 17 1.22 0.67 0.91 0.05
Mixed 6 1.80 0.36 0.86 0.06
All 42 1.27 0.56 0.89 0.07
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Figure 9.18 Normalized uplift load–displacement curve for drilled shafts. From Phoon and
Kulhawy, 2002a. Reproduced with the permission of the American Society of
Civil Engineers.

9.6.2 Parametric study

To conduct a realistic parametric study, typical values of the design param-
eters should be used. Herein, the emphasis was on those used in the electric
utility industry, which sponsored the basic research study. The drilled shaft
diameter (B) was taken as 1–3 m and the depth to diameter ratio (D/B) was
taken as 3–10. The typical range of the mean wind speed (mV ) was back-
calculated from the 50-year return period wind speed (v50) given in Table 9.5
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Table 9.5 Summary of probability distributions for design parameters.

Parameter Description Distribution Mean COV

V Wind speed Gumbel 30–50a m/s 0.30
a Curve-fitting parameter

[Equation (9.24a)]
Lognormal 1.27 mm 0.56

b Curve-fitting parameter
[Equation (9.24b)]

Lognormal 0.89 0.07

ε Regression error associated
with adhesion factor
model [(Equation (9.23)]

Normal 0 0.1

su Undrained shear strength Lognormal 25–200 kN/m2 0.1–0.7
Qtu Undrained tip suction stress Uniform 0–1 atmos.b –

a50-year return period wind speed; data from Task Committee on Structural Loadings (1991).
bRange of uniform distribution.

and the COV of V (COVV = 0.3), as follows:

v50 = mV (1 + 2.59 COVV) (9.27)

The constant of proportionality, k that was used in calculating the founda-
tion load, was determined by the following serviceability limit state design
check:

F50 = kv2
50 = Quan (9.28)

in which Quan = nominal allowable uplift capacity calculated using:

Quan = ya

ma + mbya
Qun (9.29)

in which ma = mean of a = 1.27 mm, mb = mean of b = 0.89, and ya =
allowable displacement = 25 mm. The nominal uplift capacity (Qun) is
given by:

Qun = Qsun + Qtun + W (9.30)

in which Qsun = nominal uplift side resistance and Qtun = nominal uplift tip
resistance. The nominal uplift side resistance was calculated as follows:

Qsun = πBDαnmsu (9.31)

αn = 0.31 + 0.17(
msu

/
pa

) (9.32)
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in which αn = nominal adhesion factor. The nominal tip resistance (Qtun)
was evaluated using:

Qtun = ( W
Atip

− ui
)
Atip (9.33)

The variations of the probability of failure (pf ) with respect to the 50-year
return period wind speed, allowable displacement limit, foundation geome-
try, and the statistics of the undrained shear strength, were given by Phoon
et al. (1995). It was found that pf is affected significantly by the mean and
COV of the undrained shear strength (msu and COVsu). Therefore, the fol-
lowing domains were judged to be appropriate for the calibration of the
simplified RBD checks:

1 msu = 25–50 kN/m2 (medium clay), 50–100 kN/m2 (stiff clay), and
100–200 kN/m2 (very stiff clay);

2 COVsu = 10–30%, 30–50%, and 50–70%.

For the other, less-influential design parameters, calibration can be per-
formed over the entire range of typical values. Note that the COVs of most
manufactured structural materials fall between 10 and 30%. For exam-
ple, Rétháti (1988), citing the 1965 specification of the American Concrete
Institute, noted that the quality of concrete can be evaluated as follows:

COV < 10% excellent

COV = 10−15% good

COV = 15−20% satisfactory

COV > 20% bad

The COVs of natural geomaterials usually are much larger and do not fall
within a narrow range (Phoon and Kulhawy, 1999).

9.6.3 Load and Resistance Factor Design (LRFD)

The following LRFD format was chosen for reliability calibration:

F50 = ΨuQuan (9.34)

in which Ψu = deformation factor. The SLS deformation factors were
calibrated using the following general procedure (Phoon et al., 1995).

1 Partition the parameter space into several smaller domains following the
approach discussed in Section 9.6.2. For example, the combination of
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msu = 25–50 kN/m2 and COVsu = 30–50% is one possible calibration
domain. The reason for partitioning is to achieve greater uniformity in
reliability over the full range of design parameters.

2 Select a set of representative points from each domain. For example,
msu = 30 kN/m2 and COVsu = 40% constitutes one calibration point.
Ideally, the set of representative points should capture the full range of
variation in the reliability level over the whole domain.

3 Determine an acceptable foundation design for each calibration point
and evaluate the reliability index for each design. Foundation design is
performed using a simplified RBD check [e.g. Equation (9.34)] and a set
of trial resistance or deformation factors.

4 Adjust the resistance or deformation factors until the reliability indices
for the representative designs are as close to the target level (e.g. 3.2 for
ULS and 2.6 for SLS) as possible in a statistical sense.

The results of this reliability calibration exercise are shown in Table 9.6.
A comparison between Figure 9.19a [existing design check based on
Equation (9.28)] and Figure 9.19b [LRFD design check based on
Equation (9.34)] illustrates the improvement in the uniformity of the reliabil-
ity levels. It is interesting to note that deformation factors can be calibrated
for broad ranges of soil property variability (e.g. COV of su = 10–30%,
30–50%, 50–70%) without compromising on the uniformity of reliability
achieved. Experienced engineers should be able to choose the appropriate
data category, even with limited statistical data supplemented with first-
order guidelines (Phoon and Kulhawy, 1999) and reasoned engineering
judgment.

Table 9.6 Undrained uplift deformation factors for drilled shafts
designed using F50 = ΨuQuan (Phoon et al., 1995).

Clay Undrained shear strength !u

Mean (kN/m2) COV (%)

Medium 25–50 10–30 0.65
30–50 0.63
50–70 0.62

Stiff 50–100 10–30 0.64
30–50 0.61
50–70 0.58

Very stiff 100–200 10–30 0.61
30–50 0.57
50–70 0.52

Note: Target reliability index = 2.6.
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Figure 9.19 Performance of SLS design checks for drilled shafts subjected to undrained
uplift: (a) existing and (b) reliability-calibrated LRFD (Phoon et al., 1995).

Two key conclusions based on wider calibration studies (Phoon et al.,
1995) are noteworthy.

1 One resistance or deformation factor is insufficient to achieve a uniform
target reliability across the full range of geotechnical COVs.
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Table 9.7 Ranges of soil property variability for reliability
calibration in geotechnical engineering.

Geotechnical parameter Property variability COV (%)

Undrained shear strength Lowa 10–30
Mediumb 30–50
Highc 50–70

Effective stress friction angle Lowa 5–10
Mediumb 10–15
Highc 15–20

Horizontal stress coefficient Lowa 30–50
Mediumb 50–70
Highc 70–90

atypical of good quality direct lab or field measurements.
btypical of indirect correlations with good field data, except for the standard

penetration test (SPT).
ctypical of indirect correlations with SPT field data and with strictly empirical

correlations.

2 In terms of COV, three ranges of soil property variability (low, medium,
and high) are sufficient to achieve reasonably uniform reliability levels
for simplified RBD checks. The appropriate ranges depend on the
geotechnical parameter, as shown in Table 9.7. Note that the cate-
gories for effective stress friction angle are similar to those specified
for concrete.

9.7 Conclusions

This chapter discussed the application of a probabilistic hyperbolic model
for performing reliability-based design checks at the serviceability limit state.
The uncertainty in the entire load–displacement curve is represented by a rel-
atively simple bivariate random vector containing the hyperbolic parameters
as its components. The steps required to construct a realistic random vector
are illustrated using forty measured pairs of hyperbolic parameters for ACIP
piles. It is important to highlight that these hyperbolic parameters typically
exhibit a strong negative correlation. A translation-based lognormal model
or a more general translation-based Hermite model is needed to capture this
correlation aspect correctly. The common assumption of statistical indepen-
dence can circumvent the additional complexity associated with a translation
model, because the bivariate probability distribution reduces to two signif-
icantly simpler univariate distributions in this special case. However, the
scatter in the measured load–displacement curves can not be reproduced
properly by simulation under this assumption.
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The nonlinear feature of the load–displacement curve is captured by the
hyperbolic curve-fitting Equation. This nonlinear feature is crucial in reli-
ability analysis because the applied load follows a probability distribution,
and it is possible for the load–displacement behavior to be nonlinear at the
upper tail of the distribution. Reliability analysis for the more general case
of a random allowable displacement can be evaluated easily using an imple-
mentation of the first-order reliability method in EXCEL. The proposed
approach is more general and convenient to use than the bias or model
factor approach because the distributions of the hyperbolic parameters do
not depend on the allowable displacement. The random vector contain-
ing two curve-fitting parameters is the simplest probabilistic model for
characterizing the uncertainty in a nonlinear load–displacement curve and
should be the recommended first-order approach for SLS reliability-based
design.

Simplified RBD checks for SLS and ULS can be calibrated within a sin-
gle consistent framework using the probabilistic hyperbolic model. Because
of the broad range of geotechnical COVs, one resistance or deformation
factor is insufficient to achieve a uniform target reliability level (the key
objective of RBD). In terms of COV, three ranges of soil property variabil-
ity (low, medium, and high) are more realistic for reliability calibration in
geotechnical engineering. Numerical values of these ranges vary as a func-
tion of the influential geotechnical parameter(s). Use of these ranges allows
for achieving a more uniform target reliability level.
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Chapter 10

Reliability verification using
pile load tests

Limin Zhang

10.1 Introduction

Proof pile load tests are an important means to cope with uncertainties in the
design and construction of pile foundations. In this chapter, the term load
test refers to a static load test following specifications such as ASTM D1143,
BS8004 (BSI, 1986), ISSMFE (1985), and PNAP 66 (Buildings Department,
2002). Load tests serve several purposes. Some of their functions include ver-
ification of design parameters (this is especially important if the geotechnical
data are uncertain), establishment of the effects of construction methods on
foundation capacities, and provision of data for the improvement of design
methodologies in use and for research purposes (Passe et al., 1997; Zhang
and Tang, 2002). In addition to these functions, savings may be derived from
load tests (Hannigan et al., 1997; Passe et al., 1997). With load tests, lower
factors of safety (FOS) or higher-strength parameters may be used. Hence,
there are cost savings even when no changes in the design are made after the
load tests. For example, the US Army Corps of Engineers (USACE) (1993),
the American Association of State Highway and Transportation Officials
(AASHTO) (1997), and Geotechnical Engineering Office (2006) recommend
the use of different FOSs, depending on whether load tests are carried out or
not to verify the design. The FOSs recommended by the USACE are shown
in Table 10.1. The FOS under the usual load combination may be reduced
from 3.0 for designs based on theoretical or empirical predictions to 2.0
for designs based on the same predictions that are verified by proof load
tests.

Engineers have used proof pile tests in the allowable stress design (ASD) as
follows. The piles are sized using a design method suitable for the soil condi-
tions and the construction procedure for the project considered. In designing
the piles, a FOS of 2.0 is used when proof load tests are utilized. Preliminary
piles or early test piles are then constructed, necessary design modifications
made based on construction control, and proof tests on the test piles or
some working piles conducted. If the test piles do not reach a prescribed fail-
ure criterion at the maximum test load (i.e. twice the design load), then the
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Table 10.1 Factor of safety for pile capacity (after USACE, 1993).

Method of determining capacity Loading condition Minimum factor of safety

Compression Tension

Theoretical or empirical Usual 2.0 2.0
prediction to be verified Unusual 1.5 1.5
by pile load test Extreme 1.15 1.15

Theoretical or empirical Usual 2.5 3.0
prediction to be verified Unusual 1.9 2.25
by pile driving analyzer Extreme 1.4 1.7

Theoretical or empirical Usual 3.0 3.0
prediction not verified Unusual 2.25 2.25
by load test Extreme 1.7 1.7

design is validated; otherwise, the design load for the piles must be reduced
or additional piles or pile lengths must be installed.

In a reliability-based design (RBD), the value of proof load tests can be fur-
ther maximized. In a RBD incorporating the Bayesian approach (e.g. Ang and
Tang, 2007), the same load test results reveal more information. Predicted
pile capacity using theoretical or empirical methods can be very uncertain.
Results from load tests not only suggest a more realistic pile capacity value,
but also greatly reduce the uncertainty of the pile capacity, since the error
associated with load-test measurements is much smaller than that associated
with predictions. In other words, the reliability of a design for a test site can
be updated by synthesizing existing knowledge of pile design and site-specific
information from load tests.

For verification of the reliability of designs and calibration of new theories,
it is preferable that load tests be conducted to failure. Load tests are often
used as proof tests; however, the maximum test load is usually specified as
twice the anticipated design load (ASTM D 1143; Buildings Department,
2002) unless failure occurs first. In many cases, the pile is not brought to
failure at the maximum test load. Ng et al. (2001a) analyzed more than 30
cases of static load tests on large-diameter bored piles in Hong Kong. They
found that the Davisson failure criterion was reached in less than one half of
the cases and in no case was the 10%-diameter settlement criterion suggested
by ISSMFE (1985) and BSI (1986) reached. In the Hong Kong Driven Pile
Database developed recently (Zhang et al., 2006b), only a small portion of
the 312 static load tests on steel H-piles were conducted to failure as specified
by the Davisson criterion.

Kay (1976), Baecher and Rackwitz (1982), Lacasse and Goulois (1989),
and Zhang and Tang (2002) investigated updating the reliability of piles
using load tests conducted to failure. Zhang (2004) studied how the majority



Reliability verification 387

of proof tests not conducted to failure increases the reliability of piles,
and how the conventional proof test method can be modified to allow for a
greater value in the RBD framework.

This chapter consists of three parts. A systematic method to incorpo-
rate the results of proof load tests into foundation design is first described.
Second, illustrative acceptance criteria for piles based on proof load tests
are proposed for use in the RBD. Finally, modifications to the conventional
proof test procedures are suggested so that the value derived from the proof
tests can be maximized. Reliability and factor of safety are used together in
this chapter, since they provide complementary measures of an acceptable
design (Duncan, 2000), as well as better understanding of the effect of proof
tests on the costs and reliability of pile foundations. This chapter will focus
on ultimate limits design. Discussion on serviceability limit states is beyond
the scope of the chapter.

10.2 Within-site variability of pile capacity

In addition to uncertainties with site investigation, laboratory testing, and
prediction models, the values of capacity of supposedly identical piles within
one site also vary. Suppose several “identical” test piles are constructed
at a seemingly uniform site and are load-tested following an “identical”
procedure. The measured values of the ultimate capacity of the piles would
usually be different due to the so-called “within-site” variability follow-
ing Baecher and Rackwitz (1982). For example, Evangelista et al. (1977)
tested 22 “identical” bored piles in a sand–gravel site. The piles were “all”
0.8 m in diameter and 20 m in length, and construction of the piles was
assisted with bentonite slurry. The load tests revealed that the coefficient of
variation (COV) of the settlement of these “identical” piles at the intended
working load was 0.21, and the COV of the applied loads at the mean
settlement corresponding to the intended load was 0.13.

Evangelista et al. (1977) and Zhang and Tang (2002) described several
sources of the within-site variability of the pile capacity: inherent variabil-
ity of properties of the soil in the influence zone of each pile, construction
effects, variability of pile geometry (length and diameter), variability of prop-
erties of the pile concrete, and soil disturbance caused by pile driving and
afterward set-up. The effects of both construction and set-up are worth a
particular mention, because they can introduce many mechanisms that cause
large scatter of data. One example of construction effects is the influence of
drilling fluids on the capacity of drilled shafts. According to O’Neill and
Reese (1999), improper handling of bentonite slurry alone could reduce the
beta factor for pile shaft resistance from a common range of 0.4–1.2 to below
0.1. Set-up effects refer to the phenomenon that the pile capacity increases
with time following pile installation. Chow et al. (1998), Shek et al. (2006)
and many others revealed that the capacity of driven piles in sand can increase
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from a few percent to over 200% after the end of initial driving. Such effects
make the pile capacity from a load test a “nominal” value.

The variability of properties of the soil and the pile concrete is affected by
the space over which the properties are estimated (Fenton, 1999). The issue
of spatial variability of soils is the subject of interest in several chapters of this
book. Note that, after including various effects, the variability of the soils at a
site may not be the same as the variability of the pile capacity at the same site.
Dasaka and Zhang (2006) investigated the spatial variability of a weathered
ground using random field theory and geostatistics. The scale of fluctuation
of the depth of competent rock (moderately decomposed rock) beneath a
building block is approximately 30 m, whereas the scale of fluctuation of
the as-build depth of the piles that provide the same nominal capacity is
only approximately 10 m.

Table 10.2 lists the values of the coefficient of variation (COV) of the
capacity of driven piles from load tests in eight sites. These values range
from 0.12 to 0.28. Note that the variability reported in the table is among test
piles in one site; the variability among production piles and among different
sites may be larger (Baecher and Rackwitz, 1982). In this chapter, a mean
value of COV = 0.20 is adopted for analysis. This assumes that the standard
deviation value is proportional to the mean pile capacity.

Kay (1976) noted that the possible values of the pile capacity within a
site favor a log-normal distribution. This may be tested with the data from
16 load tests in a site in southern Italy reported by Evangelista et al. (1977).

Table 10.2 Within-site viability of the capacity of driven piles in eight sites.

Site Number
of piles

Diameter
(m)

Length
(m)

Soil COV References

Ashdod,
Israel

12 – – Sand 0.22 Kay 1976

Bremerhaven,
Germany

9 – – Sand 0.28 Kay 1976

San Francisco,
USA

5 – – Sand and
clay

0.27 Kay 1976

Southern Italy 12 0.40 8.0 Sand and
gravel

0.25 Evangelista
et al., 1977

Southern Italy 4 0.40 12.0 Sand and
gravel

0.12 Evangelista
et al., 1977

Southern Italy 17 0.52 18.0 Sand and
gravel

0.19 Evangelista
et al., 1977

Southern Italy 3 0.36 7.3 Sand and
gravel

0.12 Evangelista
et al., 1977

Southern Italy 4 0.46 7.0 Sand and
gravel

0.14 Evangelista
et al., 1977

Southern Italy 16 0.50 15.0 Clay, sand
and gravel

0.20 Evangelista
et al., 1977
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Figure 10.1 Observed and theoretical distributions of within-site pile capacity.

Figure 10.1 shows the measured and assumed normal and log-normal distri-
butions of the pile capacity in the site. Using the Kolmogorov–Smirnov test,
neither the normal nor the log-normal theoretical curves appear to fit the
observed cumulative curve very well. However, it is acceptable to adopt a
log-normal distribution for mathematical convenience, since the maximum
deviation in Figure 10.1 is still smaller than the 5% critical value. The tail
part of the cumulative distribution of the pile capacity is of more interest
to designers, since the pile capacity in that region is smaller. In Figure 10.1,
it can be seen that the assumed log-normal distribution underestimates the
pile capacity at a particular cumulative percentage near the tail. Therefore,
the assumed distribution will lead to results on the conservative side.

From the definition, the within-site variability is inherent in a particular
geological setting and a geotechnical construction procedure at a specific
site. The within-site variability represents the minimum variability for a
construction procedure at a site, which cannot be reduced using load tests.

10.3 Updating pile capacity with proof load tests

10.3.1 Proof load tests that pass

For proof load tests that are not carried out to failure, the pile capacity
values are not known, although they are greater than the maximum test
loads. Define the variate, x, as the ratio of the measured pile capacity to
the predicted pile capacity (called the “bearing capacity ratio” hereafter).
At a particular site, x can be assumed to follow a log-normal distribution
(Whitman, 1984; Barker et al., 1991) with the mean and standard deviation
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of x being µ and σ and those of ln(x) being η and ξ where σ or ξ describes the
within-site variability of the pile capacity. Suppose the specified maximum
test load corresponds to a value of x = xT. For example, if the maximum
test load is twice the design load and a FOS of 2.0 is used, then the value of
xT is 1.0. From the log-normal probability density function, the probability
that the test pile does not fail at the maximum test load (i.e., x > xT) is

p(x ≥ xT) =
∞∫

xT

1√
2πξx

exp

{
−1

2

(
ln(x) −η

ξ

)2
}

dx (10.1)

Noting that y = (ln(x) −η)/ξ , Equation (10.1) becomes:

p(x ≥ xT) =
∞∫

ln(xT)−η

ξ

1√
2π

exp
(

−1
2

y2
)

dy = 1 −	

(
ln(xT) −η

ξ

)

= 	

(
− ln(xT) −η

ξ

)
(10.2)

where 	 is the cumulative distribution function of the standard normal
distribution. Suppose that n proof tests are conducted and none of the test
piles fails at xT. If the standard deviation, ξ of ln(x), is known but its mean,
µ or η, is a variable, then the probability that all of the n test piles do not
fail at xT is

L(µ) =
n∏

i=1

pX(x ≥ xT)
∣∣∣µ = 	n

(
− ln(xT) −η

ξ

)
(10.3)

L(µ) is also called the “likelihood function” of µ. Given L(µ), the updated
distribution of the mean of the bearing capacity ratio is (e.g. Ang and
Tang, 2007)

f ′′(µ) = k	n
(

− ln(xT) −η

ξ

)
f ′(µ) (10.4)

where f ′(µ) is the prior distribution of µ, which can be constructed based
on the empirical log-normal distribution of x and the within-site variability
information (Zhang and Tang, 2002), and k is a normalizing constant:

k =
⎡
⎣ ∞∫
−∞

	n
(

− ln(xT) −η

ξ

)
f ′(µ)dµ

⎤
⎦

−1

(10.5)
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Given an empirical distribution N(µX,σX), the prior distribution can also
be assumed as a normal distribution with the following parameters:

µ′ = µX (10.6)

σ ′ =
√
σ 2

X −σ 2 (10.7)

The updated distribution of the bearing capacity ratio, x, is thus (e.g. Ang
and Tang, 2007)

fX(x) =
∞∫

−∞
fX(x |µ )f ′′(µ)dµ (10.8)

where fX(x |µ ) is the distribution of x given the distribution of its mean. This
distribution is assumed to be log-normal, as mentioned earlier.

10.3.2 Proof load tests that do not pass

More generally, suppose only r out of n test piles do not fail at x = xT. The
probability that this event occurs now becomes

L(µ) =
(

n
r

)[
p(x ≥ xT)

∣∣∣µ ]r [1 − p(x ≥ xT)
∣∣∣µ ](n−r)

(10.9)

and the normalizing constant, k, is

k=
⎡
⎣ ∞∫
−∞

(
n
r

)[
p(x≥xT)

∣∣∣µ ]r[1−p(x≥xT)
∣∣∣µ ](n−r)

f ′(µ)dµ

⎤
⎦

−1

(10.10)

Accordingly, the updated distribution of the mean of the bearing capacity
ratio is

f ′′(µ) = k
(

n
r

)[
p(x ≥ xT)

∣∣∣µ ]r [1 − p(x ≥ xT)
∣∣∣µ ](n−r)

f ′(µ) (10.11)

Equation (10.11) has two special cases. When all tests pass (i.e. r = n),
Equation (10.11) reduces to Equation (10.4). If none of the tests passes
(i.e. r = 0), a dispersive posterior distribution will result. The updated distri-
bution of the bearing capacity ratio can be obtained using Equation (10.8).

10.3.3 Proof load tests conducted to failure

Let us now consider the proof load tests carried out to failure, i.e. cases
where the pile capacity values are known. To start with, the log-normally
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distributed pile capacity assumed previously is now transformed into a
normal variate. If the test outcome is a set of n observed values representing
a random sample following a normal distribution with a known standard
deviation σ and a mean of x, then the distribution of the pile capacity can
be updated directly using Bayesian sampling theory. Given a known prior
normal distribution, Nµ(µ′,σ ′), the posterior density function of the bearing
capacity ratio, f ′′

X(x), is also normal (Kay, 1976; Zhang and Tang, 2002; Ang
and Tang, 2007),

fX′′ (x) = NX(µX′′ ,σX′′ ) (10.12)

where

µX
′′ =

x(σ ′)2 +µ′
(
σ2

n

)
(σ ′)2 +

(
σ2

n

) (10.13)

σX
′′ = σ

√√√√√1 +
(
σ ′2
n

)
(σ ′)2 +

(
σ2

n

) (10.14)

10.3.4 Multiple types of tests

In many cases, multiple test methods are used for construction quality assur-
ance at a single site. The construction control of driven H-piles in Hong Kong
(Chu et al., 2001) and the seven-step construction control process of Bell et al.
(2002) are two examples. In the Hong Kong practice, both dynamic formula
and static analysis are adopted for determining the pile length. Early test
piles or preliminary test piles are required at the early stage of construction
to verify the construction workmanship and design parameters. In addition,
up to 10% of working piles may be tested using high-strain dynamic tests,
e.g. using a Pile Driving Analyzer (PDA), and one-half of these PDA tests
should be analyzed by a wave equation analysis such as the CAse Pile Wave
Analysis Program (CAPWAP). Finally, at the end of construction, 1% of
working piles should be proof-tested using static loading tests. With these
construction control measures in mind, a low factor of safety is commonly
used. Zhang et al. (2006a) described the piling practice in the language of
Bayesian updating. A preliminary pile length is first set based primarily on a
dynamic formula. The pile performance is then verified by PDA tests during
the final setting tests. The combination of the dynamic formula (prior) and
the PDA tests will result in a posterior distribution. Taking the posterior
distribution after the PDA tests as a prior, the pile performance is further
updated based on the outcome of the CAPWAP analyses, and finally updated
based on the outcome of the proof load tests. This exercise can be repeated
if more indirect or direct verification tests are involved.
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10.4 Reliability of piles verified by proof tests

10.4.1 Calculation of reliability index

In a reliability-based design (RBD), the “safety” of a pile can be described
by a reliability index, β. To be consistent with current efforts in code devel-
opment, such as AASHTO’s LRFD Bridge Design Specifications (Barker
et al., 1991; AASHTO, 1997; Withiam et al., 2001; Paikowsky, 2002) or the
National Building Code of Canada (NRC, 1995; Becker, 1996a, b), the first-
order reliability method (FORM) is used for calculating the reliability index.
If both resistance and load effects are log-normal variates, then the reliability
index for a linear performance function can be written as (Whitman, 1984)

β =
ln

⎛
⎝R

Q

√√√√1 + COV2
Q

1 + COV2
R

⎞
⎠

√
ln[(1 + COV2

R)(1 + COV2
Q)]

(10.15)

where Q and R = the mean values of load effect and resistance, respectively;
COVQ and COVR = the coefficients of variation (COV) for the load effect
and resistance, respectively. If the only load effects to be considered are dead
and live loads, Barker et al. (1991), Becker (1996b), and Withiam et al.
(2001) have shown that

R

Q
=

λRFOS
(

QD

QL
+ 1
)

λQD
QD

QL
+λQL

(10.16)

and

COV2
Q = COV2

QD + COV2
QL (10.17)

where QD and QL = the nominal values of dead and live loads, respectively;
λR,λQD, and λQL = the bias factors for the resistance, dead load, and live
load, respectively, with the bias factor referring to the ratio of the mean value
to the nominal value; COVQD, and COVQL = the coefficients of variation
for the dead load and live load, respectively; and FOS = the factor of safety
in the traditional allowable stress design.

If the load statistics are prescribed, Equations (10.15) and (10.16) indicate
that the reliability of a pile foundation designed with a FOS is a function of
λR and COVR. As will be shown later, if a few load tests are conducted at
a site, the values of λR and COVR associated with the design analysis can
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be updated using the load test results. If the results are favorable, then the
updated COVR will decrease but the updated λR will increase. The reliability
level or the β value will therefore increase. Conversely, if a target reliability,
βT is specified, the FOS required to achieve the βT can be calculated using
Equations (10.15)–(10.17) and the costs of construction can be reduced if
the load test results are favorable.

10.4.2 Example: design based on an SPT method and
verified by proof tests

For illustration purposes, a standard penetration test (SPT) method proposed
by Meyerhof (1976) for pile design is considered. This method uses the aver-
age corrected SPT blow count near the pile toe to estimate the toe resistance
and the average uncorrected blow count along the pile shaft to estimate the
shaft resistance. According to statistical studies conducted by Orchant et al.
(1988), the bias factor and COV of the pile capacity from the SPT method
are λR = 1.30 and COVR = 0.50, respectively. The within-site variability of
the pile capacity is assumed to be COV = 0.20 (Zhang and Tang, 2002),
which is smaller than the COVR of the design analysis. This is because the
COVR of the prediction includes more sources of errors such as model errors
and differences in construction effects between the site where the model is
applied and the sites from which the information was extracted to formulate
the model (Zhang et al., 2004).

Calculations for updating the probability distribution can be conducted
using an Excel spreadsheet. Figure 10.2 shows the empirical distribution of
the bearing capacity ratio, x, based on the given λR and COVR values and
the updated distributions after verification by proof tests. The translated
mean η and standard deviation ξ of ln(x), calculated based on the given
λR and COVR, are used to define the empirical log-normal distribution.
In Figure 10.2(a), all proof tests are positive (i.e. the test piles do not fail
at twice the design load); the mean value of the updated pile capacity after
verification by the proof tests increases with the number of tests while the
COV value decreases. Specifically, the updated mean increases from 1.30
for the empirical distribution to 1.74 after the design has been verified by
three positive tests. In Figure 10.2(b), the cases in which no test, one test, two
tests, and all three tests are positive are considered. As expected, the updated
mean decreases significantly when the number of positive tests decreases. The
updated mean and COV values with different outcomes from the proof tests
are summarized in Table 10.3. The updated distributions in Figure 10.2
may be approximated by the log-normal distribution for the convenience of
reliability calculations using Equation (10.15). The log-normal distribution
fits the cases with some non-positive tests very well. For the cases in which
all tests are either positive or negative, the log-normal distribution slightly
exaggerates the scatter of the distributions, as shown in Figure 10.2(b).
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Figure 10.2 Distributions of the pile capacity ratio after verification by (a) proof tests that
pass at twice the design load, and (b) proof tests in which some piles fail.

The use of the log-normal distribution is therefore slightly on the con-
servative side. Because of the differences in the distributions updated by
proof tests of different outcomes, the COV values in Table 10.3 do not
change in a descending or ascending manner as the number of positive tests
decreases.

The following typical load statistics in the LRFD Bridge Design Specifi-
cations (AASHTO, 1997) are adopted for illustrative reliability analyses:
λQD = 1.08, λQL = 1.15, COVQD = 0.13, and COVQL = 0.18. The
dead-to-live load ratio, QD/QL, is structure-specific. Investigations by
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Table 10.3 Updated mean and COV of the bearing capacity ratio based on SPT
(Meyerhof, 1976) and verified by proof tests.

Total number
of tests

Number of
positive tests

Mean COV � at FOS = 2.0

4 4 1.77 0.38 2.67
3 1.19 0.24 2.38
2 1.04 0.24 2.00
1 0.91 0.24 1.57
0 0.69 0.30 0.60

3 3 1.74 0.38 2.58
2 1.14 0.25 2.21
1 0.96 0.25 1.70
0 0.72 0.31 0.67

2 2 1.68 0.39 2.45
1 1.06 0.26 1.91
0 0.75 0.32 0.77

1 1 1.59 0.41 2.23
0 0.82 0.34 0.95

Barker et al. (1991) and McVay et al. (2000) show that β is relatively insen-
sitive to this ratio. For the SPT method considered, the calculated β values
are 1.92 and 1.90 for distinct QD/QL values of 3.69 (75 m span length) and
1.58 (27 m span length), respectively, if a FOS of 2.5 is used. The differ-
ence between the two β values is indeed small. In the following analyses, the
larger value of QD/QL = 3.69, which corresponds to a structure on which
the dead loads dominate, is adopted. This QD/QL value was used by Barker
et al. (1991) and Zhang and Tang (2002), and would lead to factors of safety
on the conservative side.

Figure 10.3 shows the reliability index β values for single piles designed
with a FOS of 2.0 and verified by several proof tests. Each of the curves in
this figure represents the reliability of the piles when they have been verified
by n proof tests out of which r tests are positive [see the likelihood function,
Equation, (10.9)]. The β value corresponding to the empirical distribution
(see Figure 10.2) and a FOS of 2.0 is 1.49. If one conventional proof test is
conducted to verify the design and the test is positive, then the β value will
be updated to 2.23. The updated β value will continue to increase if more
proof tests are conducted and if all the tests are positive. In the cases when
not all tests are positive, the reliability of the piles will decrease with the
number of tests that are not positive. For instance, the β value of the piles
verified by three positive tests is 2.58. If one, two, or all of the three test piles
fail, the β values decrease to 2.21, 1.70, and 0.67, respectively. If multiple
proof tests are conducted, the target reliability marked by the shaded zone
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Figure 10.3 Reliability of single driven piles designed with a FOS of 2.0 and verified by
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can still be satisfied, even if some of the tests are not positive. Issues on target
reliability will be discussed later in this chapter.

The FOS that will result in a sufficient level of reliability is of interest to
engineers. Figure 10.4 shows the calculated FOS values required to achieve
a β value of 2.0 for the pile foundation verified by proof tests with different
outcomes. It can be seen that a FOS of 2.0 is sufficient for piles that are
verified by one or more consecutive positive tests, or by three or four tests
in which no more than one test is not positive. However, larger FOS values
should be used if the only proof test or one out of two tests is not positive.

The updating effects of the majority of the proof tests conducted to twice
the design load and the tests in which the piles have a mean measured capac-
ity of twice the design load are different. Table 10.4 compares the updated
statistics of the two types of tests. For the proof tests that are not con-
ducted to failure, the updated mean bearing capacity ratio and β values
significantly increase with the number of tests. For the tests that are con-
ducted to failure at x = 1.0, the updated mean value will approach 1.0 and
the updated COV value will approach the assumed within-site COV value
of 0.20, as expected when the number of tests is sufficiently large. This is
because test outcomes carry a larger weight than that of the prior information
as described in Equations (10.13) and (10.14).
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Table 10.4 Comparison of the updating effects of proof tests that pass at xT = 1.0 and
tests in which the test piles fail at a mean bearing capacity ratio of xT = 1.0.

Number
of tests

Tests that pass at xT = 1.0 Tests that fail at xT = 1.0

Mean COV � Mean COV �

0 1.30 0.50 1.49 1.30 0.50 1.49
1 1.59 0.41 2.23 1.06 0.27 1.89
2 1.68 0.39 2.45 1.04 0.24 1.98
3 1.74 0.38 2.58 1.04 0.23 2.02
4 1.77 0.38 2.67 1.03 0.22 2.04
5 1.80 0.37 2.74 1.03 0.22 2.05

10 1.89 0.36 2.94 1.02 0.21 2.09

Note
Mean and COV of the bearing capacity ratio x.

10.4.3 Effect of accuracy of design methods

The example in the previous section focuses on a single design method.
One may ask if the observations from the example would apply to other
design methods. Table 10.5 presents statistics of a number of commonly
used methods for design and construction of driven piles (Zhang et al., 2001).
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In this table, failure of piles is defined by the Davisson criterion. For each
design method in the table, the driven pile cases are put together regard-
less of ground conditions or types of pile response (i.e. end-bearing or
floating). Ideally, the cases should be organized into several subsets accord-
ing to their ground conditions and types of pile response. The statistics
in the table are therefore only intended to be used to illustrate the pro-
posed methodology. The bias factors of the methods in the table vary
from 0.79 to 2.34 and the COV values vary from 0.21 to 0.57. Indeed,
the ASD approach results in designs with levels of safety that are rather
uneven from one method to another (i.e. β = 1.74–3.11). If a FOS of 2.0
is used for all these methods and each design analysis is verified by two
positive proof tests conducted to twice the design load (i.e. xT > 1.0),
the statistics of these methods can be updated as shown in Table 10.6.
The updated bias factors are greater but the updated COVR values are
smaller than those in Table 10.5. The updated β values of all these
methods fall into a narrow range (i.e. β = 2.22–2.89) with a mean of
approximately 2.5.

Now consider the case when a FOS of 2.0 is applied to all these methods in
Table 10.5 and the design is verified by two proof tests conducted to failure
at an average load of twice the design load (i.e. xT = 1.0). The corresponding
updated statistics using the Bayesian sampling theory [Equations (10.12)–
(10.14)] are also shown in Table 10.6. Both the updated bias factors (λR =
0.97–1.12) and the updated COVR values (COVR = 0.21–0.24) fall into
narrow bands. Accordingly, the updated β values also fall into a narrow
band (i.e. β = 1.78–2.31) with a mean of approximately 2.0.

The results in Table 10.6 indicate that the safety level of a design veri-
fied by proof tests is less influenced by the accuracy of the design method.
This is logical in the context of Bayesian statistical theory, in which the
information of the empirical distribution will play a smaller role when more
measured data at the site become available. This is consistent with foun-
dation engineering practice. In the past, reliable designs had been achieved
by subjecting design analyses of varying accuracies to proof tests and other
quality control measures (Hannigan et al., 1997; O’Neill and Reese, 1999).
This also shows the effectiveness of the observational method (Peck, 1969),
with which uncertainties can be managed and acceptable safety levels can
be maintained by acquiring additional information during construction.
However, the importance of the accuracy of a design method in sizing the pile
should be emphasized. A more accurate design method has a smaller COVR
and utilizes a larger percentage of the actual pile capacity (McVay et al.,
2000). Hence, the required safety level can be achieved more economically.
It should also be noted that the within-site COV is an important parameter.
If the within-site COV at the site is larger than 0.2, as assumed in this
chapter, the updated reliability will be lower than the results presented in
Table 10.6.
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10.5 Acceptance criterion based on proof load
tests

10.5.1 General principle

In the conventional allowable stress design approach, acceptance of a design
using proof tests is based on whether the test piles fail before they are loaded
to twice the design load. Presumably, the level of safety of the designs that
are verified by “satisfactory” proof tests is not uniform. In a reliability-based
design, a general criterion for accepting piles should be that the pile foun-
dation as a whole, after verification by the proof tests, meets the prescribed
target reliability levels for both ultimate limit states and serviceability limit
states. Discussion on serviceability limit states is beyond the scope of this
chapter.

In order to define acceptance conditions, “failure” of piles has to be defined
first. Many failure criteria exist in the literature. Hirany and Kulhawy (1989),
Ng et al. (2001b), and Zhang and Tang (2001) conducted extensive review
of failure criteria for piles and drilled shafts and discussed the bias in the
axial capacity arising from failure criteria. A particular failure criterion may
be applicable only to certain deep foundation types and ground conditions.
In discussing a particular design method, a failure criterion should always
be specified explicitly. In the examples presented in this chapter, only driven
piles are involved and only the Davisson failure criterion is used. These exam-
ples are for illustrative purposes. Suitable failure criteria should be selected
in establishing acceptance conditions for a particular job.

The next step in defining acceptance conditions is to select the target reli-
ability of the pile foundation. The target reliability of the pile foundation
should match that of the superstructure and of other types of foundations.
Meyerhof (1970), Barker et al. (1991), Becker (1996a), O’Neill and Reese
(1999), Phoon et al. (2000), Zhang et al. (2001), Paikowsky (2002) and oth-
ers have studied the target reliability of foundations based on calibration of
the ASD practice. A target reliability index, βT, between 3.0 and 3.5 appears
to be suitable for pile foundations.

The reliability of a pile group can be significantly higher than that of single
piles (Tang and Gilbert, 1993; Bea et al., 1999; Zhang et al., 2001). Since
proof tests are mostly conducted on single piles, it is necessary to find a target
reliability for single piles that matches the target reliability of the founda-
tion system. Based on calibration of the ASD practice, Wu et al. (1989),
Tang (1989), and Barker et al. (1991) found a range of reliability index
values between 1.4 and 3.1 and Barker et al. (1991), ASSHTO (1997) and
Withiam et al. (2001) recommended target reliability index values of βTS =
2.0–2.5 for single driven piles and βTS = 2.5–3.0 for single drilled shafts.
Zhang et al. (2001) attributed the increased reliability of pile foundation
systems to group effects and system effects. They calculated βTS values for
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single driven piles to achieve a βT value of 3.0. For pile groups larger than
four piles, the calibrated βTS values are mostly in the range of 2.0–2.8 if
no system effects are considered. The βTS values decrease to 1.7–2.5 when
a system factor of 1.25 is considered, and further to 1.5–2.0 when a larger
system factor of 1.5 is considered. For a structure supported by four or fewer
far-apart piles, the pile group effect and system effect may not be depend-
able (Zhang et al., 2001; Paikowsky, 2002). The target reliability of single
piles should therefore be the same as that of the foundation system, say
βTS = 3.0.

10.5.2 Reliability-based acceptance criteria

In the ASD approach, it is logical to use a maximum test load of twice
the design load since a FOS of 2.0 is commonly used for designs verified
by proof load tests. Table 10.6 shows that the ASD approach using two
proof tests conducted to twice the design load can indeed lead to a uniform
target reliability level around β = 2.5 regardless of the accuracy of the design
method. Even if the test piles fail at an average load of twice the design load,
a uniform reliability level around β = 2.0 can still be obtained. Compared
with recommended target reliability indices, the reliability of the current
ASD practice for large pile groups may be considered sufficient. In the RBD
approach, the target reliability is a more direct acceptance indicator. From
Equations (10.15) and (10.16), a target reliability can be achieved by many
combinations of the proof test parameters such as the number of tests, the
test load, the FOS, and the test outcomes. Thus, the use of other FOS values
and test loads is equally feasible.

Analyses with the SPT method (Meyerhof, 1976) are again conducted
to illustrate the effects of the load test parameters. Figure 10.5 shows the
updated reliability index of piles designed using a FOS of 2.0 and verified by
various numbers of tests conducted to 1.0–3.0 times the design load. If the
proof tests were carried out to the design load (k = 1.0), the tests would have
a negligible effect on the reliability of the piles; hence, the effectiveness of
the tests is minimal. This is because the probability that the piles do not fail
at the design load is 96% based on the empirical distribution, and the proof
tests only prove an event of little uncertainty. If the test load were set at
1.5 times (k = 1.5) the design load, the effectiveness of the proof tests is still
limited since a βT value of 2.5 cannot be verified with a reasonable number
of proof tests. The test load of twice (k = 2.0) the design load provides a
better solution: when the design is verified by one or two positive proof
tests, the updated β values will be in the range of 1.7–2.5, which may be
considered acceptable for large pile systems. If the test load is set at three
times (k = 3.0) the design load, then a high target reliability of βT = 3.0
can be verified by one or two successful proof tests. Figure 10.6 further
defines suitable maximum test loads that are needed to achieve specific target
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reliability values using a limited number of proof tests. A maximum test load
of 2.5 times or three times the design load is necessary for non-redundant
pile groups where group effects and system effects are not present,
otherwise the required target reliability of βT = 3.0 cannot be verified by a
reasonable number of conventional proof tests conducted only to twice the
design load.

Figure 10.7 shows the FOS values needed to achieve a β value of 2.5. As
the verification test load increases, the required FOS decreases. In particular,
if two proof tests are conducted to 1.5 times (xT = 1.5) the predicted pile
capacity, a βT of 2.5 can be achieved with a FOS of approximately 1.5,
compared with a FOS of 2.0 if a test load equal to the predicted pile capacity
(xT = 1.0) is adopted.

For codification purposes, the effects of proof test loads on the reliability of
various design methods should be studied and carefully collected databases
are needed to characterize the variability of the design methods. The analysis
of the design methods in Table 10.5 is for illustrating the methodology only.
Limitations with the reliability statistics in the table have been pointed out
earlier. Table 10.7 presents the FOS values required to achieve βT values of
2.0, 2.5, and 3.0 when the design is verified by two proof tests conducted
to different test loads. Given a proof test load, the FOS values required for
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Table 10.8 Illustrative values of recommended factor of safety and maximum test load.

�T = 2.0 �T = 2.5 �T = 3.0

xT FOS k xT FOS k xT FOS k

1.00 1.70 1.7 1.00 2.00 2.0 1.00 2.45 2.5
1.25 1.50 1.9 1.25 1.75 2.2 1.25 2.10 2.7
1.50 1.30 2.0 1.50 1.55 2.4 1.50 1.85 2.8

Note
(1)Based on the reliability statistics in Table 10.5 for driven piles.
(2) Pile failure is defined by the Davisson criterion.
(3) Two proof tests are assumed and the outcomes are assumed to be positive.
(4) xT = ratio of the maximum test load to the predicted pile capacity.
(5) FOS = rounded factor of safety.
(6) k = recommended ratio of the maximum test load to the design load (rounded values).

the design methods to achieve a prescribed target reliability level are rather
uniform. Thus, the mean of the FOS values for all the methods offers a
suitable FOS for design. Table 10.8 summarizes the rounded average FOS
values that could be used with proof tests, based on the limited reliability
statistics in Table 10.5. Rounded values of the ratio of the maximum test
load to the design load, k, which is the multiplication of FOS by xT, are also
shown in Table 10.8.

Table 10.8 provides illustrative criteria for the design and acceptance of
driven pile foundations using proof tests. The criteria may be implemented
in the following steps:

1 calculate the design load and choose a target reliability, say βT = 2.5;
2 size the piles using a FOS (e.g. 1.75), bearing in mind that proof load

tests will be conducted to verify the design;
3 construct a few trial piles;
4 proof test the trial piles to the required test load (e.g. 2.2 times the design

load);
5 accept the design if the proof tests are positive.

It can be argued that proof load tests should be conducted to a large load
(e.g. xT = 1.50 or 2.8 times the design load in the case of FOS = 1.85
and βT = 3.0). First, this is required for verifying the reliability of non-
redundant pile foundations in which the group effects and system effects
are not present. Second, the large test load warrants the use of a lower
FOS (e.g. smaller than 2.0) and considerable savings since the extra costs
for testing a pile to a larger load are relatively small. Third, more test piles
will fail at a larger test load (i.e. 71% of test piles may fail at xT = 1.5
based on the empirical distribution in Figure 10.2), and hence the tests will
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have greater research value for improvement of practice. Malone (1992) has
made a similar suggestion in studying the performance of piles in weathered
granite.

Because of the differences in the acceptance criteria adopted in the ASD
and RBD approaches, some “acceptable proof tests” in the ASD may become
unacceptable in the RBD. For example, the reliability of a column sup-
ported by a single large diameter bored pile may not be sufficient because
the β value of the pile can still be smaller than βT = 3.0, even if the pile
has been proof-tested to twice the design load. On the other hand, some
“unsatisfactory” piles in the ASD may turn out to be satisfactory in the
RBD provided that the design analysis and the outcome of the proof tests
together result in sufficient system reliability. For example, the requirement
of βT = 2.0 can be satisfied when the test load is somewhat smaller than
twice the design load (see Table 10.8) or when one out of four tests fails (see
Figure 10.3).

10.6 Summary

It has been shown that pile load tests are an integral part of the design and
construction process of pile foundations. Pile load tests can be used as a
means for verifying reliability and reducing costs. Whether a load test is
carried out to failure or not, the test outcome can be used to ensure that
the acceptance reliability is met using the methods described in this chapter.
Thus, contributions of load tests can be included in a design in a systematic
manner. Although various analysis methods could arrive at considerably
different designs, the reliability of the designs associated with these analysis
methods is rather uniform if the designs adopt the same FOS of 2.0 and are
verified by consecutive positive proof tests.

In the reliability-based design, the acceptance criterion is proposed to be
that the pile foundation as a whole, after verification by the proof tests,
meets the specified target reliability levels for both ultimate limit states and
serviceability limit states. This is different from the conventional allowable
stress design in which a test pile will not be accepted if it fails before it has
been loaded to twice the design load. Since the reliability of a single pile is not
the same as the reliability of a pile foundation system, the target reliability
for acceptance purposes should be structure-specific.

If the maximum test load were only around the design load, little infor-
mation from the test could be derived. The use of a maximum test load of
one times the predicted pile capacity is generally acceptable for large pile
group foundations. However, a larger test load of 1.5 times the predicted
pile capacity is recommended. First, it is needed for verifying the reliability of
the pile foundation in which group effects and system effects are not present.
Second, it warrants the use of a smaller FOS and hence savings in pile foun-
dation costs. Third, the percentage of test piles that may fail at 1.5 times
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the predicted pile capacity is larger. The tests will thus have greater research
value for further improvement of practice.
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Chapter 11

Reliability analysis of slopes

Tien H. Wu

11.1 Introduction

Slope stability is an old and familiar problem in geotechnical engineering.
Since the early beginnings, impressive advances have been made and a wealth
of experience has been collected by the profession. The overall performance
of the general methodology has been unquestionably successful. Neverthe-
less, the design of slopes remains a challenge, particularly with new and
emerging problems. As with all geotechnical projects, a design is based on
inputs, primarily loads and site characteristics. The latter includes the subsoil
profile, soil moisture conditions and soil properties. Since all of the above are
estimated from incomplete data and cannot be determined precisely for the
lifetime of the structure, an uncertainty is associated with each component.
To account for this, the traditional approach is to apply a safety factor,
derived largely from experience. This approach has worked well, but diffi-
culty is encountered where experience is inadequate or nonexistent. Then
reliability-based design (RBD) offers the option of evaluating the uncertain-
ties and estimating their effects on safety. The origin of RBD can be traced
to partial safety factors. Taylor (1948) explained the need to account for
different uncertainties about the cohesional and frictional components of
soil strength, and Lumb (1970) used the standard deviation to represent the
uncertainty and expressed the partial safety factors in terms of the standard
deviations. Partial safety factors were incorporated into design practice by
Danish engineers in the 1960s (Hansen, 1965).

This chapter reviews reliability methods as applied to slope stability and
uncertainties in loads, pore pressure, strength and analysis. Emphasis is
directed toward the simple methods, the relevant input data, and their appli-
cations. The use of the first-order, second-moment method is illustrated
by several detailed examples since the relations between the variables are
explicit and readily understood. Advance methods are reviewed and the
reader is referred to the relevant articles for details.
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11.2 Methods of stability and reliability analysis

Three types of analysis may be used for deterministic prediction of failure:
limit equilibrium analysis, displacement analysis for seismic loads, and finite
element analysis. Reliability analysis can be applied to all three types.

11.2.1 Probability of failure

Reliability is commonly expressed as a probability of failure, Pf, or a
reliability index, β, defined as

Pf = 1 −Φ[β] (11.1a)

If Fs has normal distribution,

Pf = 1 −Φ

[
Fs − 1
σ (Fs)

]
, β = Fs − 1

σ (Fs)
(11.1b)

and if Fs has log-normal distribution,

Pf = 1 −Φ

[
lnFs − 0.5∆(Fs)

2

∆(Fs)

]
, β = lnFs − 0.5∆(Fs)

2

∆(Fs)
(11.1c)

Φ(β) = 1√
2π

∫ β

−∞
e(− 1

2 z2)dz (11.1d)

Fs = safety factor and the overbar denotes the mean value, σ () = standard
deviation, ∆ = () coefficient of variation (COV), and ∆(Fs) = σ (Fs)/Fs.
Equation (11.1c) is approximate and should be limited to ∆< 0.5.

The term Fs −1, Equation (11.1b), or ln Fs −0.5∆(Fs)
2, Equation (11.1c),

denotes the distance between the mean safety factor and Fs = 1, or failure.
The term σ (Fs), or ∆(Fs), which represents the uncertainty about Fs, is
reflected by the spread of the probability density function (pdf) f (Fs).
Figure 11.1 shows the pdf for normal distribution. Curves 1 and 2 repre-
sent two designs, with the same mean safety factor Fs, but with σ (Fs) = 0.4
and 1.2, respectively. The shaded area under each curve is Pf. It can be seen
that Pf for design 2 is several times greater than for design 1, because of the
greater uncertainty. The reliability index β in Equations (11.1b) and (11.1c)
is a convenient expression that normalizes the safety factor with respect to
its uncertainty. Two designs with the same β will have the same Pf. Both
normal and ln-normal distributions have been used to represent soil proper-
ties and safety factors. The ln-normal has the advantage that it does not have
negative values. However, except for very large values of β, the difference
between the two distributions is not large.
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Figure 11.1 Probability distribution of Fs.

While the mathematical rules for computation of probability are well
established, the meaning of probability is not well defined. It can be inter-
preted as the relative frequency of occurrence of an event or a degree of
belief. The general notion is that it denotes the “chance” that an event will
occur. The reader should refer to Baecher and Christian (2003) for a thor-
ough treatment of this issue. What constitutes an acceptable Pf depends
on the consequence or damage that would result from a failure. This is
a decision-making problem and is described by Gilbert in Chapter 5. The
current approach in Load Resistance Factor Design (LRFD) is to choose a
“target” β by calibration against current practice (Rojiani et al., 1991).

11.2.2 Limit equilibrium method

The method of slices (Fellenius, 1936), with various modifications, is widely
used for stability analysis. Figure 11.2 shows the forces on a slice, for a very
long slope failure or plane strain. The general equations for the safety factor
are (Fredlund and Krahn, 1977)

Fs,m = Mr

Mo
=
∑ {c′lr + (P − ul)r tanφ′}∑

Wx −∑Pf +∑kWe
, (11.2a)

Fs,f = Fr

Fo
=
∑

c′l cosα+∑ (P − ul) tanφ′ cosα∑
P sinα+∑kW

(11.2b)
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where subscripts m and f denote equilibrium with respect to moment and
force; Mo, Mr = driving and resisting moments; Fo, Fr = horizontal driv-
ing force and resistance; W = weight of slice; P = normal force on base
of slice, whose length is l; r, f = moment arms of the shear and normal
forces on base of slice; k = seismic coefficient; e = moment arm of inertia
force; α = angle of inclination of base. The expression for P depends on the
assumption used to render the problem statically determinate. The summa-
tion in Equations (11.2) is taken over all the slices. For unsaturated soils,
the pore pressure consists of the poreair pressure ua and the porewater pres-
sure uw. The equations for Fs,m and Fs,f are given in Fredlund and Rahardjo
(1993).

The first-order, second moment method (FOSM) is the simplest method
to calculate the mean and variance of Fs. For a function Y = g(X1, . . .,Xn),
in which X1, . . .,Xn = random variables, the mean and variance are

Y = g[X1, . . .,Xn)] (11.3a)

V(Y) =
∑

i

(
∂g
∂Xi

)2

V(Xi) + . . .
∑

i

∑
j

(
∂g
∂Xi

)(
∂g
∂Xj

)
Cov(XiXj)

= ρijσ (Xi)σ (Xj) (11.3b)

where ∂g/∂Xi = sensitivity of g to Xi, Cov (Xi Xj) = covariance of Xi Xj, ρij =
correlation coefficient. Given the mean and variance of the input variables Xi
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to Equations (11.2), Equations (11.3) are used to calculate Fs and V(Fs).
The distribution of Y is usually unknown except for very simple forms of
the function g. If the normal or ln-normal distribution is assumed, β and Pf
can be calculated via Equations (11.1).

In many geotechnical engineering problems, the driving moment is well
defined so that its uncertainty is small and may be ignored. Then only V(Mr)
and V(Fr) need to be evaluated. Let the random variables be c′, tanφ′ and u.
Application of Equation (11.3b) to the numerator in Equation (11.2a) yields

V(Mr) = �r2l2V(c′) +[�r2(P − ul)2]V(tanϕ′)

+�r2l(P − ul)ρc,φ σ (c′)σ (tanϕ′) +[−rl tanϕ′]2V(u) (11.4a)

If a total stress analysis is performed for undrained loading, or φ = 0,

V[Mr] = �r2l2V(c) (11.4b)

Tang et al. (1976) and Yucemen and Tang (1975) provide examples of
application of FOSM to total stress analysis and effective stress analysis of
slopes. Some of the simplifications that have been used include the assump-
tion of independence between Xi and Xj and use of the Fs for the critical
circle determined by limit equilibrium analysis to calculate Pf.

Example 1

The slope failure in Chicago, described by Tang et al. (1976) and Ireland
(1954), Figure 11.3, is used to illustrate the relationship between the mean
safety factor, Fs, the uncertainty about Fs and the failure probability Pf.
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Figure 11.3 Slope failure in Chicago (adapted from Ireland (1954) and Tang et al. (1976)).
su = undrained shear strength.
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Table 11.1 Reliability index and failure probabilities, Chicago slope.

Slope Slip surface Fs ∆(Mr) Ln-normal Normal

β Pf β Pf

Existing Observed 1.18 0.18 0.82 0.20 0.84 0.21
Critical 0.86 0.18 −0.92 0.82 −0.10 0.82

Redesigned Critical 1.29 0.16 1.62 0.05 1.49 0.07

The mean safety factor, calculated with the means of the undrained shear
strengths, is 1.18 for the observed slip surface. The uncertainty about Fs
comes from the uncertainty about the resisting moment, expressed as∆(MR),
which, in turn, comes from the uncertainty about the shear strength of
the soil and inaccuracies in the stability analysis. The total uncertainty is
∆(MR) = ∆(Fs) = 0.18. Equation (11.2c), which assumes the ln-normal dis-
tribution for Fs, gives β = 0.82, Pf = 0.2 (Table 11.1). For the critical slip
surface determined by limit equilibrium analysis, similar calculations yield
β = −0.92 and Pf = 0.82. A redesigned slope with Fs = 1.29 has β = 1.62
and Pf = 0.05. For comparison, the values of β and Pf calculated with the
normal distribution are also shown in Table 11.1. The evaluation of the
uncertainties and ∆(MR) is described in Example 3.

With respect to the difference between the critical failure surface (2) and
the observed failure surface (1), it should be noted that all of the soil samples
were taken outside the slide area (Ireland, 1954). Hence, the strengths along
the failure surfaces remain questionable. In probabilistic terms, the perti-
nent question now becomes: given that failure has, or has not, occurred,
what is the shear strength? This issue is addressed in Section 11.3.7 (see also
Christian, 2004).

Example 2

During wet seasons, slope failures on hillsides with a shallow soil cover
and landfill covers may occur with seepage parallel to the ground surface
(Soong and Koerner, 1996; Wu and Abdel-Latif, 2000). The failure surface
approaches a plane, Figure 11.4, and Equations (11.2) reduce to

Fs,f = Fr

Fo
= Fs,m = (P − ul) tanϕ′ cosα

P sinα
= (γh − γwhw)tanϕ′ cosα

γhsinα

(11.5)

with P = γhcosα, ul = γwhw cosα, γ = unit weight of soil, γw = unit weight
of water, and h and hw are as shown in Figure 11.4. It is assumed that γ is
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Figure 11.4 Infinite slope.

the same above and below the water table, and k = 0. The major hazard
comes from the rise in the water level, hw. Procedures for estimating hw are
described in Section 11.2.4.

For the present example, consider a slope with h = 0.6 m, α = 22◦, c′ = 0,
ϕ′ = 30◦. Assume that the annual maximum of hw has a mean and standard
deviation equal to hw = 0.12 m and σ (hw) = 0.075 m. Substituting the mean
values into Equation (11.5) gives FR = 0.5 kN and Fs = 1.28. Following
Equation (11.3b), the variance of FR is

V(FR) = [−γw cosα tanϕ̄′]2V(hw) +[(γh − γwh̄w)cosα]2V(tanϕ′)
(11.6a)

If V(tanϕ) = 0,

V(FR) = [γw cos22◦ tan30◦]2[0.075]2 = 0.0014kN2 (11.6b)

∆(FR) = √
0.0014/0.5 = 0.075 (11.6c)

Then β = 3.25, Pf = 0.001, according to Equations (11.1c) and (11.1d). This
is the annual failure probability.

For a design life of 20 years, the failure probability may be found with
the binomial distribution. The probability of x occurrences in n independent
trials, with a probability of occurrence p per trial, is

P(X = x) = n!
x!(n − x)!p

x(1 − p)n−x (11.7)

With p = 0.001 and n = 20, x = 0, P(X = 0) = 0.99, which is the probability
of no failure. The probability of failure is 1 − 0.99 = 0.01. To illustrate the
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importance of hw, let σ (hw) = 0.03 m. Similar calculations lead to β = 8.5
and Pf ≈ 0.

Consider next the additional uncertainty due to uncertainty about tan ϕ′.
Using σ (tanϕ′) = 0.02 in Equation (11.6a) with σ (hw) = 0.075 m gives

V(FR) = [(0.6γ − 0.12γw)cos22◦]2(0.02)2

+[γw cos22◦ tan30◦]2[0.075]2

= 0.0017kN2 (11.8)

The annual failure probability becomes 0.0013. Note that this cannot be used
in Equation (11.7) to compute the failure probability in 20 years because
tanϕ′ in successive years are not independent trials.

While FOSM is simple to use, it has shortcomings, which include the
assumption of linearity in Equations (11.3). It is also not invariant with
respect to the format used for safety. Baecher and Christian (2003) give
some examples. The Hasofer–Lind method, also called the first-order relia-
bility method (FORM), is an improvement over FOSM. It uses dimensionless
variables

X∗
i = {Xi − Xi}/σ [Xi] (11.9a)

and reliability is measured by the distance of the design point from the failure
state,

g(X∗
1, . . .,X

∗
i ) = 0 (11.9b)

which gives the combination of X1, . . .,Xn that will result in failure. For limit
equilibrium analysis, g = Fs − 1 = 0. Figure 11.5 shows g as a function of
X∗

1 and X∗
2. The design point is shown as a, and ab is the minimum distance

to g = 0. Except for very simple problems, the search for the minimum ab is
done via numerical solution. Low et al. (1997) show the use of spread sheet

X2*

g(X2*, X2*)=0

X1*

a

b

Figure 11.5 First-order reliability method.
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to search for the critical circle. A detailed treatment on the use of spread
sheet and an example are given by Low in Chapter 3.

The distribution of Fs and Pf can be obtained by simulation. Values of the
input parameters (e.g. c′, ϕ′, etc.) that represent the mean values along the
potential slip surface are random variables generated from the distribution
functions and are used to calculate the distribution of Fs. From this, the fail-
ure probability P(Fs ≤ 1) can be determined. Examples include Chong et al.
(2000) and El-Ramly et al. (2003). Several commercial software packages
also have an option to calculate β and Pf by simulation. Most do simulations
on the critical slip surface determined from limit equilibrium analysis.

11.2.3 Displacement analysis

The Newmark (1965) method for computing displacement of a slope during
an earthquake considers a block sliding on a plane slip surface (Figure 11.6a).
Figure 11.6b shows the acceleration calculated for a given ground accelera-
tion record. Slip starts when ai exceeds the yield acceleration ay, at Fs ≤ 1.
The displacement during each slip is

yi = (ai − ay)t2
i /2 (11.10a)

where ai = acceleration during time interval ti. For n cycles with Fs ≤ 1, the
displacement is

Y =
n∑
i

yi (11.10b)

a

ai

ti

ay

t

(a)

(b)

Figure 11.6 Displacement by Newmark’s method.
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The displacement analysis assumes that the soil strength is constant.
Liquefaction is not considered. Displacement analysis has been used to eval-
uate the stability of dams and landfills. Statistics of ground motion records
were used to compute distribution of displacements by Lin and Whitman
(1986) and Kim and Sitar (2003). Kramer (1996) gives a comprehensive
review of slopes subjected to seismic hazards.

11.2.4 Finite element method

The finite element method (FEM) is widely used to calculate stress, strain,
and displacement in geotechnical structures. In probabilistic FEM, material
properties are represented as random variables or random fields.

A simplified case is where only the uncertainties about the average material
properties need be considered. Auvinet et al. (1996) show a procedure which
treats the properties xi as random variables. Consider the finite element
equations for an elastic material

{P} = [K]{Y} (11.11a)

where {P} = applied nodal forces, [K] = stiffness matrix, {Y} = nodal
displacements. Differentiating and transposing terms yields

[K]∂{Y}
∂xi

= ∂{P}
∂xi

− ∂{K}
∂xi

{Y} (11.11b)

where xi = material properties. This is analogous to Equation (11.11a) if
we let

∂{Y}
∂xi

= {Y∗} (11.11c)

{P∗} = ∂{P}
∂xi

− ∂{K}
∂xi

{Y} (11.11d)

Then the same FEM program can be used to solve for Y∗, which is equal to
the sensitivity of displacement to the properties. The means and variances
of material properties are used to calculate the first two moments of the
displacement via FOSM, Equations (11.3). Moments of strain or stress can
be calculated in the same manner.

The perturbation method considers the material as a random field. Equa-
tions (11.11) are extended to second-order and used to compute the first two
moments of displacement, stress and strain (e.g. Liu et al., 1986). Sudret
and Berveiller describe an efficient spectral-based stochastic finite element
method in Chapter 7.

Another approach is simulation. A FEM analysis is done with material
properties generated from the probability distribution of the properties.
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Griffith and Fenton (2004) studied the influence of spatial variation in
soil strength on failure probability for a saturated soil slope subjected to
undrained loading. The strength is represented as a random field and the
generated element properties account for spatial variation and correlation.

For dynamic loads, deterministic analyses with FEM and various material
models have been made (e.g. Seed et al., 1975; Lacy and Prevost, 1987; Zerfa
and Loret, 2003) to yield pore pressure generation and embankment defor-
mation for given earthquake motion records. See Popescu et al. (Chapter 6)
for stochastic FEM analysis of liquefaction.

11.2.5 Pore pressure, seepage and infiltration

For deep-seated failures, where the pore pressure is controlled primarily by
groundwater, it can be estimated from measurements or from seepage calcu-
lations. It is often assumed that the pore pressure in the zone above the water
table, the vadose zone, is zero. This may be satisfactory where the vadose
zone is thin. Estimation of pore pressure or suction (ψ) in the vadose zone
is complex. Infiltration from the surface due to rainfall and evaporation is
needed to calculate the suction. Where the soil layer is thin, one-dimensional
solution may be used to calculate infiltration. A commonly used solution is
Richards (1931) equation, which in one-dimension is,

∂θ

∂ψ

∂ψ

∂t
= ∂

∂z

[
K
∂ψ

∂z

]
+ Q (11.12)

where θ = volumetric moisture content, ψ = soil suction, K = permeability,
Q = source or sink term, ∂θ/∂ψ = soil moisture versus suction relationship.
Numerical solutions are usually used. This equation has been used for
moisture flow in landfill covers (Khire et al., 1999) and slopes (Anderson
et al., 1988). Two-dimensional flow may be solved via FEM. Fredlund and
Rahardjo (1993) provide the details on the numerical solutions.

The soil moisture versus suction relation in Equation (11.12), also called
the soil water characteristic curve, is a material property. A widely used
relationship is the van Genuchten (1980) equation,

θ = θr + θs − θr

[1 + (aψ)n]m (11.13)

where θr, θs = residual and saturated volumetric water contents, a, m and
n = shape parameters. The Fredlund and Xing (1994) Equation, which has
a rational basis, is

θ = θs

[
1

ln[e + (ψ/a)n

]m

(11.14)

where a and m = shape parameters.
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The calculated pore pressures are used in a limit equilibrium or finite
element analysis. Examples of application to landslides on unsaturated slopes
subjected to rainfall infiltration include Fourie et al. (1999) and Wilkinson
et al. (2000).

Perturbation methods have been applied to continuity equations, such as
Equation (11.12), to study flow through soils with spatial variations in per-
meability (e.g. Gelhar, 1993). Simulation was used by Griffith and Fenton
(1997) for saturated flow and by Chong et al. (2000) and Zhang et al.
(2005) to study the effect of uncertainties about the hydraulic properties of
unsaturated soils on soil moisture and slope stability. A more complicated
issue is the presence of macro-pores and fractures (e.g. Beven and Germann,
1982). This is difficult to incorporate into seepage analysis, largely because
their geometry is not well known. Field measurements (e.g. Pierson, 1980;
Johnson and Sitar, 1990) have shown seepage patterns that differ substan-
tially from those predicted by simple models. Although the causes were not
determined, flow through macropores is one likely cause.

11.3 Uncertainties in stability analysis

Uncertainties encountered in predictions of stability are considered under
three general categories: material properties, boundary conditions, and
analytical methods. The uncertainties involved in estimating the relevant
soil properties are familiar to geotechnical engineers. Boundary conditions
include geometry, loads, and groundwater levels, infiltration and evapora-
tion at the boundaries, and ground motions during earthquakes. Errors and
associated uncertainties may be random or systematic. Uncertainties due to
data scatter are random, while model errors are systematic. Random errors
decrease when averaged over a number of samples, but systematic errors
apply to the average value.

11.3.1 Soil properties

The uncertainties about a soil property s, can be expressed as

Nssm = s + ζ (11.15)

where sm = value measured in a test, Ns = bias or inaccuracy of the test
method, ζ = testing error, which is the precision of the test procedure. The
random variable, sm, has mean = sm, variance = V(sm), and COV =∆(sm) =
σ (sm) / sm. It includes the natural variability of the material, with COV ∆(s)
and variance V(s), and testing error with zero mean and variance V(ζ ). The
model error, Ns, is the combination of Ni’s (i = 1,2, . . .) that represent bias
from the ith source with mean Ni and COV ∆i. The true bias is, of course,
unknown, since the perfect test is not available.
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For n independent samples tested, the uncertainty about sm, due to
insufficient samples, has a COV

∆0 = ∆(sm)
/√

n (11.16)

For high-quality laboratory and in-situ tests, the COV of ζ is around 0.1
(Phoon and Kulhawy, 1999). Hence, unless n is very small, the testing error
is not likely to an important source of uncertainty.

Input into analytical models requires the average s over a given distance
(e.g. limiting equilibrium analysis) or a given area or volume (e.g. FEM).
Consider the one-dimensional case. The average of sm over a distance L,
sm(L), has a mean and variance sm and V [sm(L)]. To evaluate V [sm(L)],
the common procedure is to fit a trend to the data to obtain the mean as
a function of distance. The departures from the trend are considered to be
random with variance V(sm). To evaluate the uncertainty about sm(L) due
to the random component, it is necessary to consider its spatial nature. The
departures from the mean at points i and j, separated by distance r, are
likely to be correlated. To account for this correlation, VanMarcke (1977)
introduced the variance reduction factor

Γ 2 = V[ sm(L)]/V[sm], (11.17a)

A simple expression is

Γ 2 = 1, if L ≤ δ (11.17b)

Γ 2 = δ/L, if L > δ (11.17c)

where δ = correlation distance, which measures the decay in the correlation
coefficient

ρ = e−2r/δ (11.18)

L/δ can also be considered as the equivalent number of independent samples,
ne, contained within L. Then the variance and COV are,

V[ sm(L)] = Γ 2V[sm] = V[sm]/ne (11.19a)

∆e = Γ∆(sm) = ∆(sm)/
√

ne (11.19b)

Extensions to two and three dimensions are given in VanMarcke (1977).
It should be noted that ∆0 applies to the average strength and is system-
atic, while ∆e changes with L and ne. A more detailed treatment of this
subject is given by Baecher and Christian in Chapter 2. Data on V(sm),
∆(sm), and δ for various soils have been summarized by Lumb (1974),
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DeGroot and Baecher (1993), Phoon and Kulhawy (1999) and Baecher and
Christian (2003). Data on some unsaturated soils have been reviewed by
Chong et al. (2000) and Zhang et al. (2005).

In limit equilibrium analysis, the average in-situ shear strength to be used
in Equations (11.2) contains all of the uncertainties described above. It can
be expressed as (Tang et al., 1976)

s = NsŜ (11.20a)

where ŝ = estimated shear strength and is usually taken as the average of the
measured values , sm. The combined uncertainty is represented by N

N = N0NeNs = N0Ne%
i

Ni (11.20b)

where N0 = uncertainty about the population mean, Ne = uncertainty about
the mean value along the slip surface, and Ni = uncertainty due to ith source
of model error. Equations (11.3) are used to obtain the mean and COV

s = %
i

Nism = Nssm (11.21a)

∆(s) = [∆2
0 +∆2

e +�∆2
i ]1/2 (11.21b)

Note that N0 = Ne = 1. It is assumed that the model errors are independent.
Two examples of uncertainties about soil properties due to data scatter

∆(sm) are shown in Table 11.2. All of the data scatter is attributed to spatial
variation. The values of ∆0 and ∆e, representing the systematic and ran-
dom components, are also given. For the Chicago clay, the value of δ was
obtained from borehole samples and represents δy. For the James Bay site,
both δx and δy were obtained. Because a large segment of the slip surface
is nearly horizontal, δ is large. Consequently Γ is small. This illustrates the
significance of δ.

Table 11.2 Uncertainties due to data scatter.

Site Soil sm (kPa) ∆(sm) ∆0 δ(m) ∆e Ref.

Chicago upper clay 51.0 0.51 0.083 0.2 0.096 Tang et al.
middle clay 30.0 0.26 0.035 0.2 0.035 (1976)
lower clay 37.0 0.32 0.056 0.2 0.029

James Bay lacustrine
clay

31.2 0.27 0.045 40+ deGroot and
Baecher (1993)

slip
surface∗ 0.14 24 0.063 Christian et al.

(1994)

+δx ; ∗for circular arc slip surface and H = 12 m.
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Examples of estimated bias in the strength model, made between 1970
and 1993, are shown in Table 11.3. Since the true model error is unknown,
the estimates are based on data from laboratory or field studies and are
subjective in nature because judgment is involved in the interpretation of
published data. Note that different individuals considered different possible
sources of error. For the James Bay site, the model error of the field vane shear
tests consists of the data scatter in Bjerrum’s (1972) correction factor. The
correction factors Ni for the various sources of errors are mostly between
0.9 and 1.1, with an average close to 1.0. The ∆i’s for the uncertainties from
the different sources range between 0.03 and 0.14 and the total uncertainties
(�∆2

i )1/2 are about the same order of magnitude as those from data scatter
(Table 11.2).

When two or more parameters, describing a soil property, are derived by
fitting a curve to test data, the correlation between the parameters may be
important. Data on correlations are limited. Examples are the correlation
between c′ and φ′ (Lumb, 1970) and between parameters a, n and ks in the
Fredlund and Xing (1994) equation (Zhang et al., 2003).

To illustrate the influence of correlation between properties, consider the
slope in a c′, ϕ′ material (Figure 11.7), analyzed by Fredlund and Krahn
(1977) by limit equilibrium and by Low et al. (1997) by FORM. The random
variables X1, X2 in Equation (11.9) are c′, ϕ′. The correlation coefficient
ρc,ϕ is –0.5. The critical circles from the limit equilibrium analysis (LEA)
and that from FORM are also shown. Note that FORM searches for the
most unfavorable combination of c′ and ϕ′, or point b in Figure 11.5, which
are c′ = 0.13 kPa and ϕ′ = 23.5◦. The shallow circle is the result of the
low c′ and high ϕ′ (Taylor, 1948). The difference reflects the uncertainty
about the material model and may be expected to decrease with decreasing
values of ρc,ϕ and the COVs of c′ and ϕ′. Lumb’s (1970) study on three
residual soils show that ρc,ϕ ≤ −0.2, ∆(c) ≈ 0.15, and ∆(ϕ′) ≈ 0.05, which
are considerably less than the values used by Low et al. It should be added
that software packages that use simulation on the critical slip surface from
limit equilibrium analysis cannot locate point b in Figure 11.5, and will not
properly account for correlation.

11.3.2 Loads and geometry

The geometry and live and dead loads for most geotechnical structures are
usually well defined except for special cases. When there is more than one
load on the slope, a simple procedure is to use the sum of the loads. However,
this may be overly conservative if the live loads have limited durations. Then
failure can be modeled as a zero-crossing process (Wen, 1990) with the loads
represented as Poisson processes. An application to landslide hazard is given
by Wu (2003).



Table 11.3 Uncertainties due to errors in strength model.

Material Test Ni, ∆i Ns, (�∆2
i )1/2 Ref.

Sample
disturbance

Stress state Anisotropy Sample
size

Strain rate Progress
failure

Total

Detroit clay unconf.
comp.

1.15,0.08 1.00,0.03 0.86,0.09 X X X 0.99, 0.12 Wu and Kraft
(1970)

Chicago
Upper clay unconf.

comp.
(a)1.38,0.024
(b)1.05,0.02

1.05,0.03 1.0, 0.03 0.75, 0.09 0.80,0.14 0.93,0.03 Tang et al.
(1976)

Middle clay (a)1.38,0.024
(b)1.05,0.02

1.05,0.03 1.0, 0.03 0.93, 0.05 0.80,0.14 0.97,0.03

Lower clay (a)1.38,0.024
(b)1.05,0.02

1.05,0.03 1.0, 0.03 0.93, 0.05 0.80,0.14 0.97,0.03 1.05, 0.17

Labrador clay field
vane

X X X X X X 1.0, 0.15 Christian et al.
(1994)
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Figure 11.7 FORM analysis of a slope (adapted from Low et al. (1997)).

11.3.3 Soil boundaries

Subsoil profiles are usually constructed from borehole logs. It is common to
find the thickness of individual soil layers to vary spatially over a site. Where
there is no sharp distinction between different soil types, judgment is required
to choose the boundaries. Uncertainties about boundary and thickness result
in uncertainty about the mean soil property. Both systematic and random
errors may be present. Their representation depends on the problem at hand.
An example is given in Christian et al. (1994). Errors in the subsoil model,
which result from failure to detect important geologic details could have
important consequences (e.g. Terzaghi, 1929), but are not included here
because available methods cannot adequately account for errors in judgment.

11.3.4 Flow at boundaries

Calculation of seepage requires water levels or flow rates at the bound-
aries. For levees and dams, flood levels and durations at the upstream slope
are derived from hydrological studies (e.g. Maidman, 1992). Impermeable
boundaries, often used to represent bedrock or clay layers, may be pervious
because of fractures or artesian pressures. Modeling these uncertainties is
difficult.

For calculation of infiltration, rainfall depth and duration for return
period, Tr, are available (Hershfield, 1961). However, rainfall and dura-
tion are correlated and simulation using rainfall statistics is necessary
(Richardson, 1981). Under some conditions, the precipitation per storm con-
trols (Wu and Abdel-Latif, 2000). Then this can be used in a seepage model
to derive the mean and variance of pore pressure. In unsaturated soils, failure
frequently occurs due to reduction in suction from infiltration (e.g. Krahn
et al., 1989; Fourie et al., 1999; Aubeny and Lytton, 2004, and others).
Usually both rainfall and duration are needed to estimate the suction or crit-
ical depth (e.g. Fourie et al., 1999). Then a probabilistic analysis requires
simulation.
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Evapotranspiration is a term widely used for water evaporation from a
vegetated surface. It may be unimportant during rainfall events in humid
and temperate regions but is often significant in arid areas (Blight, 2003).
The Penman equation, with subsequent modifications (Penman, 1948;
Monteith, 1973), is commonly used to calculate the potential evapotran-
spiration. The primary input data are atmospheric conditions: saturation
vapor pressure, vapor pressure of the air, wind speed and net solar radiation.
Methods to estimate actual evapotranspiration from potential evapotranspi-
ration are described by Shuttleworth (1993) and Dingman (2002). Genera-
tion of evapotranspiration from climate data (Ritchie, 1972) has been used
to estimate moisture in landfill covers (Schroeder et al., 1994). Model error
and uncertainty about input parameters are not well known.

11.3.5 Earthquake motion

For pseudostatic analysis, empirical rules for seismic coefficients are available
but the accuracy is poor. Seismic hazard curves that give the probability
that an earthquake of a given magnitude or given maximum acceleration
will be exceeded during given time exposures (T) are available for the US
(Frankel et al., 2002). Frankel and Safak (1998) reviewed the uncertainties
in the hazard estimates. The generation of ground motion parameters and
records for design is a complicated process and subject of active current
research. It is beyond the scope of this chapter. A comprehensive review
of this topic is given in Sommerville (1998). The errors associated with the
various procedures are largely unknown.

It should be noted that, in some problems, the magnitude and acceleration
of future earthquakes may be the predominant uncertainty and estimates of
this uncertainty with current methods are often sufficient for making design
decisions. An example is the investigation of the seismic stability of the
Mormon Island Auxiliary Dam in California (Sykora et al., 1991). Limit
equilibrium analysis indicated that failure is likely if liquefaction occurs in a
gravel layer. Dynamic FEM analysis indicated that an acceleration k = 0.37
from a magnitude 5.25 earthquake, or k = 0.25 from a magnitude 6.5 earth-
quake, would cause liquefaction. However, using the method of Algermissan
et al. (1976), the annual probability of occurrence of an earthquake with a
magnitude of 5.25 or larger is less than 0.0009, which corresponds to a return
period of 1100 years. Therefore, the decision was made not to strengthen
the dam.

11.3.6 Analytical models

In limit equilibrium analysis, different methods usually give different safety
factors. For plane strain, the safety factors obtained by different methods,
with the exception of the Fellenius (1936) method, are generally within ±7%
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Table 11.4 Errors in analytical model.

Analysis Ni,∆i Na,∆a Ref.

3D Slip surf. Numerical Total

Cut ϕ = 0 1.05,0.03 0.95,0.06 X 1.0, 0.067 Wu and Kraft
(1970)

Cut ϕ = 0 X X X 0.98, 0.087 Tang et al.
(1976)

Embankment ϕ = 0 1.1,0.05 1.0,0.05 1.0,0.02 1.0,0.07 Christian
et al. (1994)

Landfill c′, ϕ′ 1.1,0.16 X X 1.1,0.16 Gilbert et al.
(1998)

(Whitman and Bailey, 1967; Fredlund and Krahn, 1977). A more important
error is the use of the plane-strain analysis for failure surfaces which are
actually three-dimensional. Azzouz et al. (1983), Leshchinsky et al. (1985),
and Michalowski (1989) show that the error introduced by using a two-
dimensional analysis has a bias factor of Na = 1.1 − 1.3 for ϕ = 0 − 25◦.
Table 11.4 shows estimates of various errors in the limit equilibrium model.
The largest model error, ∆a = 0.16, is for three-dimensional (3D) effect in a
landfill (Gilbert et al., 1998).

Ideally, a 3D FEM analysis using the correct material model should give
the correct result. However, even fairly advanced material models are not
perfect. The model error is unknown and has been estimated by comparison
with observed performance. The review by Duncan (1996) shows various
degrees of success of FEM predictions of deformations under static loading.
In general, Type A predictions (Lambe, 1973) for static loading cannot be
expected to come within ±10% of observed performances. This is where
the profession has plenty of experience. The model error and the associated
uncertainty may be expected to be much larger in problems where expe-
rience is limited. One example is the prediction of seepage and suction in
unsaturated soils.

11.3.7 Bayesian updating

Bayesian updating allows one to combine different sources of information
to obtain an “updated” estimate. Examples include combining direct and
indirect measurements of soil strength (Tang, 1971), and properties of land-
fill materials measured in different tests (Gilbert et al., 1998). It can also
be used to calibrate predictions with observation. In geotechnical engineer-
ing, back-analysis or solving the inverse problem is widely used to verify
design assumptions when measured performance is available. An example is
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a slope failure. This observation (Fs = 1) may be used to provide an updated
estimate of the soil properties or other input parameters.

In Bayes theorem, the posterior probability is

P = P[Ai|B] = P[B|Ai]P[Ai]
P[B] (11.22a)

where

P[B] =
n∑

i=1

P[B|Ai]P[Ai] (11.22b)

P[Ai|B] = probability of Ai (shear strength is si), given B (failure) has been
observed, P[B|Ai] = probability that event B occurs (slope fails) given event
Ai occurs (the correct strength is used), P[Ai] = prior probability that Ai
occurs. In a simple case, P[Ai] represents the uncertainty about strength due
to data scatter, etc., P[B|Ai] represents the uncertainty about the safety factor
due to uncertainties about the strength model, stability analysis, boundary
conditions, etc. Example 5 illustrates a simple application. Gilbert et al.
(1998) describe an application of this method to the Kettleman Hills landfill,
where there are several sources of uncertainty.

Regional records of slope performance, when related to some significant
parameter, such as rainfall intensity, are valuable as an initial estimate of
failure probability. Cheung and Tang (2005) collected data on failure prob-
ability of slopes in Hong Kong as a function of age. This was used as prior
probability in Bayesian updating to estimate the failure probability for a
specific slope. The failure probability based on age is P[Ai] and P[B|Ai]
is the pdf of β as determined from investigations for failed slopes, and β

is the reliability index for the specific slope under investigation. To apply
Equation (11.22a),

P[B] = P[B|Ai]P[Ai]+ P[B|A′
i]P[A’

i] (11.22c)

P[A’
i] = 1 − P[Ai]

where P[B|A′
i] = pdf of β for stable slopes. (11.22d)

Example 3

The analysis of the slope failure in Chicago by Tang et al. (1976) is reviewed
here to illustrate the combination of uncertainties using Equations (11.20)
and (11.21). The undrained shear strength, s, was measured by unconfined
compression tests on 5.08 cm Shelby tube samples. The subsoil consists
mainly of “gritty blue clay,” whose average strength varies with depth,
Figure 11.3. The clay was divided into three layers with values of sm and
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∆(sm) as given in Table 11.2. The value of δ is the same for the three clay
layers. The values of ∆0 calculated according to Equation (11.16) are given
in Table 11.2. The correlation coefficients ρij between the strength of the
upper and middle, middle and lower, and upper and lower layers are: 0.66,
0.59, and 0.40, respectively.

The sources of uncertainties about the shear strength model are listed in
Table 11.3. The errors were evaluated by review of published data, mostly
laboratory studies, on the influence of the various factors on strength. These
were used to establish a range of upper and lower limits for Ni. To calculate
Ni and ∆i, a distribution of Ni is necessary. The rectangular and triangular
distributions between the upper and lower limits were used, and the mean
and variance of Ni were calculated with the relations given in Ang and Tang
(1975). Clearly, judgment was exercised in choosing the sources of error
and the ranges and distributions of Ni. The estimated values of Ni and ∆i
are shown in Table 11.3. Two sets of values are given for sample distur-
bance; (a) denotes the strength change due to mechanical disturbance and
(b) denotes that due to stress changes from sampling.

The resisting moment in Equations (11.2) can be written as

MR = r�
i

sili (11.23a)

where i denotes the soil layer. According to Equation (11.3a), the mean is

MR = Nr�
i

sili (11.23b)

According to Equation (11.21a),

N = 1.38 × 1.05 × 1.05 × 1.0 × 0.75 × 0.80 × 0.93 = 0.85 (11.23c)

for the upper clay and the values of Ni are as given in Table 11.3.
The calculated MR for the different segments are given in Table 11.5 and
the sum is MR = 27.17MN − m/m.

To evaluate the variance or COV of Mr, the first step is to evaluate ∆(s̄) for
the segments of the slip surface passing through the different soil layers. For
the upper clay layer, substituting ∆0 in Table 11.2 and the ∆i’s in Table 11.3
into Equation (11.21b) gives

∆(s̄1) = [(0.083)2 + (0.024)2 + (0.02)2 + (0.03)2 + (0.03)2 + (0.09)2

+ (0.14)2 + (0.03)2]1/2 = 0.20 (11.24a)

for failure surface 1. Since ne is large, the contribution of ∆e is ignored.
The values of ∆(s) = ∆(MR) and σ (MR) for the clay layers are given in
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Table 11.5 Mean and standard deviation of resisting moment, Chicago slope.

Layer MR,MN − m/m N ∆(MR) σ (MR),MN − m/m

Upper clay 4.01 0.85 0.20 0.80
Middle clay 5.70 1.10 0.16 0.91
Lower clay 16.90 1.0 0.17 2.88
Sand 0.56
� 27.17 0.15 4.12

0.18∗

∗With model error ∆a .

Table 11.5. Substitution into Equation (11.3b) gives,

V(MR) = (0.80)2 + (0.91)2 + (2.88)2 + 2[(0.80 × 0.91 × 0.66)

+ (0.80 × 2.88 × 0.59) + (0.91 × 2.88 × 0.4)]
= 17.06(MN − m/m)2 (11.24b)

∆(MR) = [17.06]1/2/27.17 = 0.152 (11.24c)

To include the error, Na, in the stability analysis model, Na and ∆a given
in Table 11.3. are applied to MR. The combined uncertainty is

∆(MR) = [∆2
a +∆2

s ]1/2 = [(0.087)2 + (0.152)2]1/2 = 0.18 (11.24d)

The calculation of β and Pf are described in Example 1.

Example 4

The failure of a slope in Cleveland (Wu et al., 1975), Figure 11.8, is used to
illustrate the choice of soil properties and its influence on predicted failure
probability. The subsoil consists of layers of silty clay and varved clay. Failure
occurred shortly after construction and the shape of the failure surface (1),
shown in Figure 11.8, suggested the presence of a weak layer near elev.
184 m. An extensive investigation following failure revealed the presence
of one or more thin layers of gray clay. Most of these were encountered
near elev. 184 m. Many samples of this material contained slickensides and
had very low strengths. It was assumed that the horizontal portion of the
slip surface passed through this weak material. Because no samples of the
weak material were recovered during the initial site exploration, its presence
was not recognized. A simplified analysis of the problem is used for this
example. The layers of silty clay and varved clay are considered as one unit
and the weak gray clay is treated as thin layer at elev. 184 m (Figure 11.8).
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Figure 11.8 Slope failure in Cleveland (adapted from Wu et al., 1975). su = undrained shear
strength.

Table 11.6 Strength properties, Cleveland slope.

Analysis One material Two materials

Combined
data

Varved clay
and silty clay

Weak gray clay
layer

sm, kPa 67.1 83.1 39.5
σm (sm), kPa 38.3 38.4 16.8
∆(sm) 0.57 0.46 0.42
n 19 12 7
δy , m 3.3 3.3 –
δx , m – – 33
∆0 0.13 0.13 0.16
ne 56 41 2.4
∆e 0.076 0.072 0.27
[(∆0)2 + (∆e)2]1/2 0.15 0.15 0.31

The undrained shear strengths, sm, of the two materials, as measured by the
unconfined compression test, are summarized in Table 11.6. The correlation
distance of the silty clay and varved clay, δy, is determined by VanMarcke’s
(1977) method. The number of samples of the weak gray clay is too small
to allow calculation of δx. Hence, it is arbitrarily taken as 10δy.
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Consider first the case where the silty clay and varved clay and the weak
material are treated as one material. All the measured strengths are treated
as samples from one population (“combined data” in Table 11.6). For sim-
plification, the model errors, Ni and ∆i, are ignored. Then only ∆0 and ∆e
contribute to ∆(s) in Equation (11.21b). The values of ∆0 and ∆e are eval-
uated as described in Example 2 and given in Table 11.6. Limit equilibrium
analysis gives Fs = 1.36 for the circular arc shown as (2) in Figure 11.8.
The values of β and Pf, calculated by FOSM, are given in Table 11.7.
Values of β and Pf calculated by simulation with SLOPE/W (GEO-SLOPE
International), where s is modeled as a normal variate, are also given in
Table 11.7.

Next, consider the subsoil to be composed of two materials, with s̄m and
∆(sm) as given in Table 11.6. The values of ∆0 and ∆e are evaluated as before
and given in Table 11.6. The larger values of∆e and [(∆0)2+(∆e)

2]1/2 are the
result of the large δx of the weak material. Values of, Fs, β, and Pf for the com-
posite failure surface (1), calculated by FOSM and by simulation are given
in Table 11.7. The Pf is much larger than that for the circular arc (2). This
illustrates the importance of choosing the correct subsoil model. Figure 11.9
shows the distribution of Fs from simulation. Note that SLOPE/W uses the
normal distribution to represent the simulated Fs. Hence the mean of the
normal distribution may differ from the Fs obtained by limit equilibrium
analysis for the critical slip surface.

In the preceding analysis of the two-material model, it is assumed that the
strengths of the two materials are uncorrelated. The available data are insuf-
ficient to evaluate the correlation coefficient and geologic deductions could
be made in favor of either correlation or no correlation. To illustrate the
influence of weak correlation, it is assumed that ρij = 0.2. The β calculated
by FOSM is reduced from 1.64 to 1.49.

Table 11.7 Calculated reliabilities, Cleveland slope.

Analysis One material Two materials

Limit equil. Fs 1.36 1.26
FOSM, ∆(Fs) 0.15 0.14
no model β 1.97 1.64
error Pf 0.025 0.08
Simulation, Fs 1.36 1.31
no model β 2.48 1.64
error Pf 0.006 0.05
FOSM, [�∆2

j ]1/2 0.14 0.14
with model ∆a 0.035 0.035
error ∆(Fs) 0.21 0.20

β 1.37 1.05
Pf 0.09 0.15
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Figure 11.9 Distribution of Fs, Cleveland slope.

Finally, consider model errors. The total uncertainty about strength model
based on the unconfined compression test is estimated to be Ns = 1.0 and
(�∆2

i )1/2 = 0.14. Assume that the analytical model error has Na = 1.0,
∆a = 0.035. Calculation with FOSM gives β = 1.37 and 1.05 for the one-
and two-material models, respectively, (Table 11.7).

Example 5

If the slope in Example 4 is to be redesigned, it is helpful to revise the shear
strength with the observation that failure has occurred. Bayes’ Theorem,
Equations ( 11.22), is used to update the shear strength of the weak layer
in Example 4. Let P[B|Ai] = probability of failure given the shear strength
si, P[Ai] = prior probability that the shear strength is si. In this simplified
example, the distribution of si is discretized as shown in Figure 11.10a, where
P[Ai]= probabilities that the shear strength falls within the respective ranges.
Then, P[B|Ai] is found from the distribution of Pf calculated with SLOPE/W.
Because of errors in the stability analysis, it is assumed that failure will occur
when the calculated Fs falls between 1.00±0.05. Figure 11.9 shows that for
si = 39.5 kPa, P[B|Ai] = P[0.95< Fs < 1.05] ≈ 0.05. Other values of P[B|Ai]
are found in the same way and plotted in Figure 11.10b. Substitution of
the values in Figures 11.10a and 11.10b into Equations (11.22) gives the
posterior distribution P′′, which is shown in Figure 11.10c. The mean of the
updated s is 30.3 kPa, with a standard deviation of 8.3 kPa and COV = 0.27.
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Figure 11.10 Updating of shear strength, Cleveland slope.

Note that ∆(s) after updating is still large. This reflects the large COV of
P[B|Ai] in Figure 11.10b, due to the large ∆(sm) of the gray silty clay and
varved clay, and expresses the dependence of the back-calculated strength
on the accuracy of the stability analysis and other input parameters (Leroueil
and Tavanas, 1981; Leonards, 1982). Inclusion of model errors would
further increase the uncertainty. Gilbert et al. (1998) provide a detailed
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example of the evaluation of P[B|Ai] for the strength of a geomembrane–clay
interface.

11.4 Case histories

Results from earlier studies are used to illustrate the relative importance of
uncertainties from different sources and their influence on the failure proba-
bility. Consider the uncertainties in a limit equilibrium analysis for undrained
loading of slopes in intact clays. This is a common problem for which the
profession has plenty of experience. Where the uncertainties about live and
dead loads are negligible, then there remain only the uncertainties about
soil properties due to data scatter and the strength model, and the analyti-
cal model. Tables 11.2–11.4 show estimated uncertainties for several sites.
All three sources, data scatter, model errors for shear strength and stability
analysis contribute to Pf.

Comparison of estimated failure probability with actual performance pro-
vides a calibration of the reliability method. Table 11.8 shows some relatively
simple cases with estimated uncertainties about input parameters. The fail-
ure probabilities, calculated for mean safety factors larger than 1.3, with
values of N ≈ 1 and ∆(Fs) ≈ 0.1, are well below 10−2. The FEM analysis
of Griffith and Fenton (2004), in which the undrained shear strength is a
random field with ∆(s) = 0.25 and ne = 15, shows that for Fs = 1.47, the
failure probability is less than 10−2. This serves to confirm the results of the
simple analyses cited above. In addition, their analysis searches for the fail-
ure surface in a spatially variable field, which is not necessarily a circle. The
departure from the critical circle in a limit equilibrium analysis depends on
the correlation distance (0 < δ < L). An important implication is that when
δx � δy and δx is a very large, the problem approaches that of a weak zone
(Leonards, 1982), as illustrated in Example 4.

Table 11.8 Estimated failure probability and slope performance.

Site Material Analysis Failure
surface

Fs ∆(Fs) Pf Stability Ref.

Cleveland Clay Total
stress

Composite 1.18 0.26 0.3 Failure Wu et al.,
1975

Chicago Clay Total
stress

Circular 1.18 0.18 0.2∗ Failure Tang et al.,
1976

James Bay Clay Total
stress

Circular 1.53 0.13 0.003 Stable Christian
et al., 1994

Alberta Clay
shale

Effective
stress

Composite 1.31 0.12 0.0016 Stable El-Ramly
et al., 2003

∗Observed failure surface.
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The success of current practice, using a safety factor of 1.5 or larger, is
enough to confirm that for simple cuts and embankments on intact clay, the
uncertainties (Tables 11.2–11.4) are not a serious problem. Hence, reliability
analysis and evaluation of uncertainties should be reserved for analysis of
more complex site conditions or special design problems. An example of
the latter is the design of the dams at James Bay (Christian et al., 1994).
A reliability analysis was made to provide the basis for a rational decision
on the safety factors for the low dams (6 or 12 m), built in one stage, and
the high dam (23 m), built by staged construction.

The analysis using FOSM showed that, for Fs ≈ 1.5, β for the high dam
is much larger than that for the low dams. However, the uncertainty about
Fs for the low dams comes largely from spatial variation, which is random,
while that for the high dam comes largely from systematic errors. Failures due
to spatial variation (e.g. low strength) are likely to be limited to a small zone,
but failures due to systematic error would involve the entire structure and
may extend over a long segment. Clearly, the consequences of failure of a
large section in a high dam are much more serious than those of failure
of small sections in a low dam. Consideration of this difference led to the
choice of target β’s of 0.01, 0.001, and 0.0001 for the 6 m, 12 m, and 23 m
dams, respectively. The corresponding Fs’s are 1.63, 1.53, and 1.43 when
model error is not included. These numbers are close enough to 1.50 that
Fs = 1.50 was recommended for all three heights in the feasibility study and
preliminary cost estimates.

Where experience is limited, the estimation of uncertainties becomes
difficult because model errors are not well known. The significance of
uncertainties about properties of unsaturated soils has only recently been
investigated. Chong et al. (2000) studied the influence of uncertainties about
parameters in the van Genuchten equation, Equation (11.13). The parame-
ters α and n have the largest influence on Fs and ∆(Fs); α alone can lead to a
∆(Fs) ≈ 0.1 and a reduction of Fs from 1.4 to 1.2. Zhang et al. (2005) used
data on decomposed granite to evaluate the uncertainties about parameters
a and n in the Fredlund–Xing equation, Equation (11.14), Ks = saturated
permeability, θs = saturated moisture content, and four parameters of the
critical-state model. The correlations between a, n, Ks, and θs were deter-
mined from test data. The values of ∆(ln a), ∆(ln n) and ∆(ln Ks) are larger
than 1.0. Under constant precipitation, the calculated ∆(Fs) is 0.22 for
Fs = 1.42. These are model errors and are systematic. It can be appreciated
that ∆(Fs) and the corresponding failure probability are significantly larger
than those for the slopes in saturated soils given in Table 11.8. Uncertainties
about precipitation and evapotranspiration and spatial variation would fur-
ther increase the overall uncertainty about pore pressure and stability. These
two examples should serve notice that for slopes on unsaturated soils, the
practice of Fs = 1.5 should be viewed with caution and reliability analysis
deserves serious attention.



Reliability analysis of slopes 441

11.5 Summary and conclusions

The limitations of reliability analysis are:

1 Published values on ∆(sm) and δ of soils (e.g. Barker et al., 1991; Phoon
and Kulhawy, 1999) are based on data from a limited number of sites
(e.g. Appendix A, Barker et al. 1991) and show a wide range, even for
soils with similar classification. Therefore, the choice of design parame-
ters involves unknown errors. Even estimation of these values from site
exploration data involves considerable errors, unless careful sampling
schemes are used (DeGroot and Baecher, 1993; Baecher and Christian,
2003). The calculated failure probabilities may be expected to depend
strongly on these properties.

2 Errors in strength and analysis models, which result from simplifications,
are often unknown. Estimates are usually made from case histories,
which are limited in number, particularly where there is little experi-
ence. Errors in climate and earthquake models are difficult to evaluate.
Hence, estimation of uncertainties about input variables contain a large
subjective element.

3 The reliability analyses reviewed in this chapter consider only a lim-
ited number of failure modes. For a complex system, where there are
many sources of uncertainties, the system reliability can be evaluated
by expanding the scope via event trees. This is beyond the scope of this
chapter. See Baecher and Christian (2003) for a detailed treatment.

4 Available methods of reliability analysis cannot account for omissions
or errors of judgment. A particularly serious problem in geotechnical
engineering is misjudgment of the site conditions.

The limitations cited above should not discourage the use of reliability
analysis. Difficulties due to inadequate information about site conditions
and model errors are familiar to geotechnical engineers and apply to both
deterministic and probabilistic design. Some examples of use of reliability
analysis in design are given below.

1 Reliability can be used to compare different design options and help
decision-making (e.g. Christian et al., 1994).

2 Even when a comprehensive reliability analysis cannot be made, sensitiv-
ity analysis can be used to identify the random variables that contribute
most to failure probability. The design process can then concentrate on
these issues (e.g. Sykora et al., 1991).

3 Bayes’s theorem provides a logical basis for combining different sources
of information (e.g. Cheung and Tang, 2005).

4 The methodology of reliability is well established, and it should be
very useful in evaluating the safety of new and emerging geotechnical
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problems, as has been illustrated in the case of unsaturated soils (Chong
et al., 2000; Zhang et al., 2005).
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Notations

c = cohesion
F = force
Fs = safety factor
h = depth of soil layer
k = seismic coefficient
K = permeability coefficient
l = length
M = moment
N = model bias
P = normal force
Pf = failure probability
Q = source or sink term
r = distance
s = soil property
sm = measured soil property
u = pore pressure
T = return period
V() = variance
W = weight
X,Y = random variable
α = angle of inclination of failure surface
β = reliability index
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γ = unit weight
δ = correlation distance
ζ = testing error
θ = volumetric water content
ρ = corelation coefficient
σ () = standard deviation
ϕ = angle of internal friction
ψ = suction
∆() = coefficient of variation
& = variance reduction function



Chapter 12

Reliability of levee systems

Thomas F. Wolff

12.1 About levees

12.1.1 Dams, levees, dikes and floodwalls

Dams and levees are two types of flood protection structures. Both consist
primarily of earth or concrete masses intended to retain water. However,
there are a number of important differences between the two, and these dif-
ferences drive considerations about their reliability. As shown in Figure 12.1,
dams are constructed perpendicular to a river, and are seldom more than 1 or
2 km long. They reduce flooding of downstream floodplains by retaining
runoff from storms or snowmelt behind the dam and releasing it in a con-
trolled manner over a period of time. The peak stage of the flood is reduced,
but downstream stages will be higher than natural for some time afterward.
Because dam sites are fairly localized, they can be chosen very deliberately,
and a high level of geotechnical exploration, testing and analysis is usually
done during design. Many dams are multiple-use structures, with one or
more of the following beneficial uses: flood control, water supply, power
supply, and recreation. These often provide substantial economic benefits,
permitting substantial costs to be expended in design and construction.
Finally, they are generally used on a daily basis, and have some operating
staff that can provide some level of regular observation.

In contrast, levees are constructed parallel to rivers and systems of levees
are typically tens to thousands of kilometers long (see Figure 12.1). They
prevent flooding of the adjacent landward floodplain by keeping the river
confined to one side of the levee, or where levees are present on both sides of a
river, between the levees. As levees restrict the overbank flow area, they may
actually increase river stages, making a flood peak even higher than it would
naturally be. However, they can be designed high enough to account for this
effect, and to protect landside areas against some design flood event, even
though that event will occur at a higher stage with the levee in place. Because
levees are long and parallel to riverbanks, designers often have a much
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Dam 

Levee

Figure 12.1 Dams and levees.

more limited choice of locations than for dams. Furthermore, riverbank soil
deposits may be complex and highly variable, alternating between weak and
strong, and pervious and impervious. Levees tend to be single-use (flood
control) projects that may go unneeded and unused for long periods of time.
Compared to dam design, an engineer designing a levee may face greater lev-
els of uncertainties, yet proportionately smaller budgets for exploration and
testing. Given all of these uncertainties, it would seem that levees are inher-
ently more fraught with uncertainty than dams. If there are any “balancing
factors” to this dilemma, it may be that most dams tend to be much higher
than most levees, and that levees designed for very rare events have a very
low probability of loading.

There are some structures that lie in a “gray area” between dams and
levees. Like levees, they tend to be very long and parallel to watercourses
or water bodies. But like dams, they may permanently retain water to some
part of their height, and provide further protection against temporary high
waters. Notable examples are the levees around New Orleans, Louisiana,
the dikes protecting much of the Netherlands, and the Herbert Hoover Dike
around Lake Okeechobee, Florida. If more precise terminology is desired,
the author suggests using dike to refer to long structures that run parallel
to a water body, provide permanent retention of water to some level, and
periodic protection against higher water levels.

Finally, another related structure is a floodwall (see Figure 12.2).
A floodwall performs the same function as a levee, but is constructed of
concrete, steel sheetpile, or a combination. As these materials provide much
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River
Landside

Figure 12.2 Inverted-T floodwall with sheetpile.

greater structural strength, floodwalls are much more slender and require
much less width than levees. They are used primarily in urban areas, where
the cost of the floodwall would be less than the cost of real estate required
for a levee.

12.1.2 Levee terminology

Figure 12.3 illustrates the terminology commonly used to describe the
various parts of the levee. Directions perpendicular to the levee are stated
as landside and riverside. The crown refers to the flat area at the top of
the levee, or sometimes to the edges of that area. The toe of a levee refers
to the point where the slope meets the natural ground surface. The fore-
shore is the area between the levee and the river. Construction material for
the levee may be dredged from the river, but often is taken from borrow
pits, which are broad, shallow excavations. These are commonly located

River

Berm

Crown 

Toe

Levee

Foreshore 

Borrow pit 

Riverside Landside

Figure 12.3 Levee terminology.
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riverside of the levee, within the foreshore, but occasionally may be found
on the landside.

As one proceeds along the length of a levee, the embankment geometry of
the levee may vary, as may the subsurface materials and their configuration.
A levee reach is a length of levee (often several hundred meters) for which
the geometry and subsurface conditions are sufficiently similar that they
can be represented for analysis and design by a single two-dimensional
cross-section and foundation profile. Using the cross-section representing the
reach, analyses are performed to develop a design template for use through-
out that reach. A design template specifies slope inclination, crown and berm
widths and crown and berm elevations.

The line of protection refers to the continuous locus of levees or other
features (floodwalls, gates, or temporary works such as sandbags) that
separate the flooded area from the protected area. The line of protection
must either tie to high ground or connect back to itself. The protected area
behind a single, continuous line of protection is referred to as a polder,
especially in the Netherlands.

An unintended opening in the line of protection is referred to as a
breach. When destructive flow passes through a breach, creating significant
erosive damage to the levee and significant landward flooding, the breach is
sometimes called a crevasse.

The following appurtenances may be used to provide increased protection
against failure:

• Stability berms are extensions of the primary embankment section.
Moving downslope from the crown, the slope is interrupted by a nearly
flat area of some width (the berm), and then the slope continues.
The function of a stability berm is to provide additional weight and
shear resistance to prevent sliding failures.

• Seepage berms may be similar in shape to stability berms, but their
function is to provide weight over the landside toe area to counteract
upward seepage forces due to underseepage.

• Cutoffs are impervious, vertical features provided beneath a levee.
They may consist of driven sheet piles, slurry walls, or compacted clay
trenches. They reduce underseepage problems by physically reducing
seepage under the levee, and lengthening the seepage path.

• Relief wells are vertical, cylindrical drains placed into the ground
near the landside toe. If piezometric levels in the landside foundation
materials exceed the ground surface, water will flow from the relief wells,
keeping uplift pressure buildup to a safe level as flood levels continue
to rise.

• Riverside slope protection such as stone riprap or paving may be
provided to prevent wave erosion of the levee where there is potential
for wave attack.
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12.2 Failure Modes

Levees are subject to failure by a variety of modes. The following paragraphs
summarize the five failure modes most commonly considered, and which will
be addressed further.

12.2.1 Overtopping

The simplest and most obvious failure mode is overtopping. The levee is built
to some height, and the flood water level exceeds that height, flooding the
protected area. While the probability of flooding for water above the top of
a levee will obviously be near unity, it may be somewhat lower as the levee
might be raised with sandbags during a floodfight operation.

12.2.2 Slope instability

Embankments or berms may slide due to the soil strength being insuffi-
cient to resist the driving forces from the embankment weight and water
loading. Of most concern is an earth slide during flood loading that would
lower the levee crown below the water elevation, resulting in breaching and
subsequent failure. Usually such a slide would occur on the landside of the
levee. Figure 12.4 shows the slide at the 17th St. Canal levee in New Orleans
following the storm surge from Hurricane Katrina in 2005. At that site,
a portion of the levee slid landward about 15–20 m landward as a rela-
tively intact block. “Drawdown” slope failures may occur on the riverside
slope of a levee when flood waters recede more quickly than pore pressures
in the foundation soils dissipate. Slope failures may occur on either slope

Figure 12.4 Slide at 17th St. Canal levee, New Orleans, 2005 (photo by T. Wolff).
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during non-flood conditions; one scenario involves levees built of highly
plastic clays cracking during dry periods, and the cracks becoming filled
with water during rainy periods, leading to slides. Slope slides during non-
flood periods can leave a deficient levee height if not repaired before the next
flood event.

12.2.3 Underseepage

During floods, the higher water on the riverside creates a gradient and subse-
quent seepage water under the levee, as shown in Figure 12.5. Seepage may
emerge near-vertically from the ground on the landside of the levee. Where
foundation conditions are uniform, the greatest pressure, upward gradient
and flow will be concentrated at the landside levee toe. In some instances,
the water may seep out gently, leaving the landside ground surface soft and
spongy, but not endangering the levee. Where critical combinations of water
levels, soil types, and foundation stratigraphy (layering) are present, water
pressures below the surface or the velocity of the water at the surface may
be sufficient to move the soil near the levee toe. Sand boils (Figure 12.6)
may appear; these are small volcano-like cones of sand, built from founda-
tion sands carried to the surface by the upward-flowing water. Continued
erosion of the subsoil may lead to settlement of the levee, permitting overtop-
ping, or to catastrophic uncontrolled subsurface erosion, sometimes termed
a blowout.

12.2.4 Throughseepage

Throughseepage refers to detrimental seepage coming through the levee
above the ground surface. When seepage velocity is sufficient to move materi-
als, the resulting internal erosion is called piping. Piping can occur if there are
cracks or voids in the levee due to hydraulic fracturing, tensile stresses, decay
of vegetation, animal activity, low density adjacent to conduits, or any simi-
lar location where there may be a preferential path of seepage. For piping to
occur, the tractive shear stress exerted by the flowing water must exceed the
critical tractive shear stress of the soil. In addition to internal discontinuities

Figure 12.5 Underseepage.
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Figure 12.6 Sand boil (photo by T. Wolff).

leading to piping, high exit gradients on the downstream face of the levee
may cause piping and progressive backward erosion.

12.2.5 Surface erosion

Erosion of the levee section during flood events can lead to failure by
reduction of the levee section, especially near the crown. As flood stages
increase, the potential increases for surface erosion from two sources:
(1) excessive current velocities parallel to the levee slope, and (2) erosion
due to wave attack directly against the levee slope. Protection is typically
provided by a thick grass cover, occasionally with stone or concrete revet-
ment at locations expected to be susceptible to wave attack. During floods,
additional protection may be provided where necessary using dumped rock,
snow fence, or plastic sheeting.

12.3 Research on geotechnical reliability of levees

The research literature is replete with publications discussing the hydrologic
and economic aspects of levees in a probabilistic framework. These focus
primarily on setting levee heights in a manner that optimizes the level of
protection against parameters such as costs, benefits, damage, and possible
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loss of life. In many of these studies, the geotechnical reliability is either
neglected, suggesting that the relative probability of geotechnical failure is
negligible, or left for others to provide suitable probabilities of failure for
geotechnical failure modes.

Duncan and Houston (1983) estimated failure probabilities for California
levees constructed from a heterogeneous mixture of sand, silt, and peat, and
founded on peat of uncertain strength. Stability failure due to riverside water
load was analyzed using a horizontal sliding block model. The factor of
safety was expressed as a function of the shear strength, which is a random
variable due to its uncertainty, and the water level, for which there is a
defined annual exceedance probability. Values for the annual probability
of failure for 18 islands in the levee system were calculated by integrating
numerically over the joint events of high-water levels and insufficient shear
strength. The obtained probability of failure values were adjusted based on
several practical considerations; first, they were normalized with respect to
length of levee reach modeled (longer reaches should be more likely to fail
than shorter one) and second, they were adjusted from relative probability
values to more absolute values by adjusting them with respect to the observed
number of failures.

Peter (1982), in Canal and River Levees, provides the most complete
reference-book treatise on levee design, based on work in Slovakia. Notable
among Peter’s work is a more up-to-date and extended treatment of
mathematical and numerical modeling than in most other references. Under-
seepage safety is cast as a function of particle size and size distribution, and
not just gradient alone. While Peter’s work does not address probabilistic
methods, it is of note because it provides a very comprehensive collection of
analytical models for a large number of potential failure modes which could
be incorporated into probabilistic analyses.

Vrouwenvelder (1987) provides a very thorough treatise on a proposed
probabilistic approach to the design of dikes and levees in the Netherlands.
Notable aspects of this work include the following.

• It is recognized that exceedance frequency of the crest elevation is not
taken as the frequency of failure; there is some probability of failure
for lower elevations, and there is some probability of no failure or
inundation above this level as an effort might be made to raise the
protection.

• Considered failure modes are overflowing and overtopping, macro-
instability (deep sliding), micro-instability (shallow sliding or erosion
of the landside slope due to seepage), and piping (as used, equivalent to
underseepage as used herein). In an example, 11 parameters are taken as
random variables which are used in conjunction with relatively simple
mathematical physical models. Aside from overtopping, piping (under-
seepage) is found to be the governing mode for the section studied; slope
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stability is of little significance to probability of failure. Surface erosion
due to wave attack or parallel currents is not considered.

• The probabilistic procedure is aimed at optimizing the height and slope
angle of new dikes with respect to total costs including construction
and expected losses, including property and life. In the example,
macro-instability (slope failure) of the inner slope was found to have
a low risk, much less than 8 × 10−8 per year. Piping was found to be
sensitive to seepage path length; probabilities of failure for piping var-
ied, but were several orders of magnitude higher (10−2 to 10−3per year).
Micro-instability (landside sloughing due to seepage) was found to have
very low probabilities of failure. Based on these results, it was consid-
ered that only overtopping and piping need be considered in a combined
reliability evaluation.

• The “length problem” (longer dikes are less reliable than equivalent
short ones) is discussed.

The U.S. Army Corps of Engineers first introduced probabilistic concepts to
levee evaluation in the United States in their Policy Guidance Letter No. 26
(USACE, 1991). Prior to that time, planning studies for federally funded levee
improvements to existing, non-federal levees were based on the assumption
that the existing levee was essentially absent and provided no protection.
Following 1991, it was assumed that the levee was present with some prob-
ability, which was a function of water elevation. The function was defined
as a straight line between two points. The probable failure point (PFP) was
taken as the water elevation for which the probability of levee failure was
estimated to be 0.85, and the probable non-failure point (PNP) was defined
as the water elevation for which the probability of failure was estimated at
0.15. The only guidance for setting the coordinates of these points was a
“template method,” based only on the geometry of the levee section with-
out regard for geotechnical conditions, or the engineer’s judgment based on
other studies.

To better define the shape of the function relating probability of failure
to water level, research by Wolff (1994) led to a report for the U.S. Army
Corps of Engineers entitled Evaluating the Reliability of Existing Levees.
It reviewed past and current practice for deterministic analysis and design
of levees and illustrated how they could be incorporated into a probabilistic
model. Similar to Vrouwenvelder (1987), the report considers slope stability,
underseepage, and through seepage: it also considers surface erosion and a
provision for incorporating other information through judgmental proba-
bilities. The overall probability of failure considering multiple failure modes
is treated by assuming the failure modes form a series system. The report
was later incorporated as Appendix B in the Corps’ Engineer Technical
Letter ETL 1110-2-556 “Risk-Based Analysis in Geotechnical Engineering
for Support of Planning Studies” (USACE, 1999). It should be noted that the
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guidance was intended to apply only to the problem of characterizing exist-
ing levees in probabilistic-based economic and planning studies to evaluate
the feasibility of levee improvements; as of this writing, the Corps has not
issued any guidance recommending that probabilistic procedures be used
for the geotechnical aspects of levee design. Some of the report was also
briefly summarized by Wolff et al. (1996). This chapter draws heavily on
Wolff (1994) and USACE (1999), with some additional consideration of
other failure mode models and subsequent work by others.

In 1999, the Corps’ Policy Guidance Letter No. 26 (USACE, 1999) was
updated and that version is posted on the Internet at the time of this writing.
The current version recommends consideration of multiple failure modes and
permits the PFP to be assigned probability values between 0.85 and 0.99,
and the PNP values between 0.01 and 0.85.

In 2000, the National Research Council published Risk and Uncertainty
in Flood Damage Reduction Studies (National Research Council, 2000),
a critical review of the Corps of Engineers’ approach to the application of
probabilistic methods in flood control planning. The recommendations of
the report included the following:

the Corps’ risk analysis method (should) evaluate the performance of
a levee as a spatially distributed system. Geotechnical evaluation of a
levee, which may be many miles long, should account for the potential
of failure at any point along the levee during a flood. Such an analy-
sis should consider multiple modes of levee failure (e.g. overtopping,
embankment instability), correlation of embankment and foundation
properties, hazards associated with flood stage (e.g. debris, waves, flood
duration) and the potential for multiple levee section failures during a
flood. The current procedure treats a levee within each damage reach as
independent and distinct from one reach to the next. Further, within a
reach, the analysis focuses on the portion of each levee that is most likely
to fail. This does not provide a sufficient analysis of the performance of
the entire levee.

Further, it notes

The Corps’ new geotechnical reliability model would benefit greatly
from field validation. … The committee recommends that the Corps
undertake statistical ex post studies to compare predictions of geotech-
nical levee failure probabilities made by the reliability model against
frequencies of actual levee failures during floods.

The report noted that the simplified concepts of the Corps’ Policy Guidance
Letter No. 26 had been updated via the procedures in the 1999 guidance.
It noted that “the numerical difference in risk analysis results compared
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to the initial model (PFP and PNP) may not be large. The updated model,
however, supports a more complete geotechnical analysis and should replace
the initial model.” It further notes that the Corps’ geotechnical model does
not separate natural variability and model uncertainty (the former could be
uncorrelated from reach to reach, with the latter perfectly correlated), does
not include duration of flooding, and remains to be calibrated against the
frequency of actual levee failures. Nevertheless, no further changes have been
made to the Corps’ methodology as of this writing in 2006.

Apel et al. (2004) describe a comprehensive probabilistic approach to flood
risk assessment, across the entire spectrum from rainfall way to economic
damage. They incorporate the probability of failure vs. water elevation func-
tions introduced by Wolff (1994) in USACE (1999), but extend them from
2D curves to 3D surfaces to include duration of flooding.

Buijs et al. (2003) describe the application of the reliability-based design
tools (PC-Ring) developed in the Netherlands to levees in the UK, and
provides some comparison of the issues around flood defenses in the two
countries. In this study, overtopping was found to be the dominating
failure mode.

A doctoral thesis by Voortman (2003) summarizes the history of dike
design in the Netherlands. Voortman notes that a complete probabilistic
analysis considering all variables was explored for dike design in the 1980s,
but that “the legislative safety requirements are still prescribed as probabil-
ities of exceedance of the design water level and thus the full probabilistic
approach has not been officially adopted to date. Probabilistic methods are
sometimes applied, but a required failure probability for flood defenses is not
defined in Dutch law.” The required level of safety is still couched in terms
of a dike or levee being “safe” against a flood elevation of some statistical
frequency.

In summary, the literature to date largely consists of probabilistic models
for evaluation of the most tractable levee failure modes, such as slope stability
and underseepage. Rudimentary methods of systems probability have been
used to consider multiple failure modes and long systems of levee reaches.
Work remains to better model throughseepage, spatial variability, systems
reliability and duration of flooding, and to calibrate predicted probabilities
of failure to the frequency of actual failures.

12.4 A framework for levee reliability analysis

12.4.1 Accuracy of probabilistic measures

Before proceeding, a note of caution is in order. The application of proba-
bilistic analysis in civil engineering is still an emerging technology, more so
in geotechnical engineering and even more so in application to levees. Much
experience remains to be gained, and the appropriate form and shape of
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probability distributions for most of the relevant parameters are not known
with certainty. The methods described herein should not be expected to
provide “true” or “absolute” probability-of-failure values, but can provide
consistent measures of relative reliability when reasonable assumptions are
employed. Such comparative measures can be used to indicate for example
which reach (or length) of levee, which typical section, or which alternative
design may be more reliable than another. They also can be used to judge
which of several performance modes (seepage, slope stability, etc.) governs
the reliability of a particular levee.

12.4.2 Calibration of models

Any reliability-based evaluation must be calibrated; i.e. tested against a suf-
ficient number of well-understood engineering problems to ensure that it
produces reasonable results. Performance modes known to be problematical
(such as seepage) should be found to have a lower reliability than those for
which problems are seldom observed; larger and more stable sections should
be found to be more reliable than smaller, less stable sections, etc. As rec-
ommended by the National Research Council (2000), as additional analyses
are performed by researchers and practitioners, on a wide range of real levee
cross sections using real data, refinements in the procedures may be needed
to produce reasonable results.

12.4.3 The conditional probability-of-failure function

For the purposes at hand, failure will be defined as the unintended flooding
of the protected area, and thus includes both overtopping and breaching of
the levee at water elevations below the crown. For an existing levee subjected
to a flood, the probability of failure pf can be expressed as a function of the
flood water elevation and other factors, including soil strength, permeability,
embankment geometry, foundation stratigraphy, etc. The analysis of levee
reliability will start with the development of a conditional probability of
failure function given the flood water elevation, which will be constructed
using engineering estimates of the probability functions or moments of the
other relevant variables.

The conditional probability of failure can be written as:

pf = Pr(failure |FWE) = f (FWE,X1,X2. . .Xn) (12.1)

In the above equation, the first expression (denoting probability of failure)
will be used as a shorthand version of the second term. The symbol “|”
is read given and the variable FWE is the flood water elevation. In the
second expression, the random variables X1 through Xn denote relevant
parameters such as soil strength, conductivity, top stratum thickness, etc.
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Equation (12.1) can be restated as follows: “The probability of failure, given
the flood water elevation, is a function of the flood water elevation and other
random variables.”

Two extreme values of the function can be readily estimated by engineering
judgment:

• For flood water at the same level as the landside toe (base elevation) of
the levee, the levee is not loaded; hence, pf = 0.

• For flood water at or near the levee crown (top elevation), pf → 1.00.

In principle, the probability of failure value may be something less than 1.0
with water at the crown elevation, as additional protection can be provided
by emergency measures.

The question of primary interest, however, is the shape of the function
between these extremes. Quantifying this shape is the focus of the procedures
to follow.

Reliability (R) is defined as:

R = 1 − pf (12.2)

hence, for any flood water elevation, the probability of failure and reliability
must sum to unity.

For the case of flood water partway up a levee, pf could be very near zero
or very near unity, depending on engineering factors such as levee geometry,
soil strength, hydraulic conductivity, foundation stratigraphy, etc. In turn,
these differences in the conditional probability of failure function could result
in very different scenarios. Four possible shapes of the pf and R functions
are illustrated in Figure 12.7. For a well-designed and constructed “good”

0.00 1.00
Probability of Failure

0.001.00 Reliability

“poor” levee

“good” levee

Flood water
ElevationLevee

Figure 12.7 Possibble probability of failure vs. flood water elevation functions.



Reliability of levee systems 461

levee, the probability of failure may remain low and the reliability remain
high until the flood water elevation is rather high. In contrast, a “poor”
levee may experience greatly reduced reliability when subjected to even a
small flood head. It is hypothesized that some real levees may follow the
intermediate curve, which is similar in shape to the “good” case for small
floods, but reverses to approach the “poor” case for floods of significant
height.

12.4.4 Steps in levee system evaluation

To evaluate the annual probability of failure for an entire levee system, four
steps are required.

Step 1

A set of conditional probability of failure versus flood water elevation func-
tions is developed. For each levee reach, this requires a separate function for
each of the following failure modes: slope stability, underseepage, through-
seepage, and surface erosion. Overtopping and other failure modes (e.g.
human error, failure to close a gate) may be added as desired. This leads
to N functions, where N = rm, r is the number of reaches, and m is the
number of failure modes considered.

Step 2

For each reach, the functions for the various failure modes developed in step 1
are systematically combined into one composite conditional probability of
failure function for each reach. This leads to r composite functions.

Step 3

Given the composite reach function and a probability of exceedance function
for the flood water elevation, the annual probability of levee failure for the
reach can be determined by integrating the product of flood probability and
conditional probability of failure over the range of water elevations from the
levee toe to the crown.

Step 4

Using the results of step 3, an overall annual probability of levee system
failure can be developed by combining the annual probabilities for the entire
set of reaches. If only a few reaches dominate (by having comparatively high
probabilities of failure), this step might be simplified by considering only
those selected reaches. In any case, length effects must first be considered
before the number of reaches is finalized.
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12.5 Division into reaches

The first step in any levee analysis or design, deterministic or probabilistic, is
division of the levee into reaches for geotechnical analysis. Note that those
analyzing the economic benefits of a levee may divide the levee into “damage
reaches” based on interior topography and value of property at risk, and
those studying interior drainage may use another system of dividing a levee
into reaches for their purposes. In a comprehensive risk analysis, reach iden-
tification may require careful coordination among an analysis team to ensure
proper combination of probabilities of failure and associated consequences.

Analysis of slope stability and seepage conditions is usually performed
using a two-dimensional perpendicular cross-section of the levee and foun-
dation topography and stratigraphy. These are in fact an idealization of
the actual conditions, which have some uncertainty at any cross-section
considered, and furthermore are variable in the direction of the levee.
A geotechnical reach is a length of levee for which the topography and
soil conditions are sufficiently similar that the engineer considers they can
be represented by a single cross-section for analysis. This is illustrated in
Figure 12.8, where the solid lines represent the best understanding (also
uncertain) of the foundation soil profile under the levee (often along the
landside toe), and the dashed lines represent the idealization into reaches
for analysis. For each reach, a cross-section is developed, and assumed to be
representative of the conditions along the reach (See Figure 12.9). Calculated
performance measures (factor of safety, exit gradients) for the section are
assumed to be valid for the length of the reach. In design practice, reaches
are typically several hundred meters long, but the lengths and endpoints
should be carefully selected based on topographic and geotechnical infor-
mation, not on a specified length. Within a reach, the design cross-section
is often selected at a point considered to be the most critical, such as the
greatest height.

In a probabilistic analysis, it may be required to further subdivide levee
reaches into statistically independent shorter reaches for analysis of overall
system reliability. This will be further discussed later under length effects.

Figure 12.8 Division into reaches.
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Figure 12.9 Two-dimensional cross-section representing a reach (from Wolff, 1994).

12.6 Step 1: failure mode models

12.6.1 Slope instability

It is desired to define the conditional probability of slope failure as a function
of the flood water elevation, FWE. To do so, the relevant parameters are
characterized as random variables, a performance function is defined that
expresses the slope safety as a function of those variables, and a probabilistic
model is selected to determine the probability of failure.

12.6.1.1 Random variables

Probabilistic slope stability analysis typically involves modeling most or
all of the following parameters as random variables: unit weight, drained
strength of sand and other pervious materials, and drained and undrained
strength of cohesive materials such as clays. In addition, some researchers
have included geometric uncertainty of the soil boundaries, and model uncer-
tainty. Table 12.1 summarizes some typical coefficients of variation for these
parameters. The coefficients of variation shown are for the point strength,
characterizing the strength at a random point. However, the uncertainty
in the average strength over some spatial distance may govern the stability
more than the point strength. To consider the effects of spatial correlation
in a slope stability analysis, it may be necessary to reduce these variances, or
provide some other modification in the analysis model.

In slope stability problems, uncertainty in unit weight usually pro-
vides little contribution to the overall uncertainty, which is dominated
by soil strength. For stability problems, it can usually be taken as a
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Table 12.1 Typical coefficients of variation for soil properties used in slope stability
analysis.

Parameter Coefficient of
variation (%)

Reference

Unit weight, γ 3 Hammitt (1966), cited by Harr (1987)
4–8 Assumed by Shannon and Wilson (1994)

Drained strength of
sand, φ′

3.7–9.3 Direct shear tests, Mississippi River Lock and
Dam No. 2, Shannon and Wilson (1994)

12 Schultze (1972), cited by Harr (1987)
Drained strength of

clay, φ′
7.5–10.1 S tests on compacted clay at Cannon Dam

(Wolff, 1985)
Undrained strength

of clays, su
40 Fredlund and Dahlman (1972), cited by

Harr (1987)
30–40 Assumed by Shannon and Wilson (1994)
11–45 UU tests on compacted clay at Cannon Dam,

Wolff (1985)
Strength-to-effective

stress ratio, su/σ ′
vo

31 Clay at Mississippi River Lock and Dam No. 2,
Shannon and Wilson (1994)

deterministic variable to reduce the number of random variables and simplify
calculations.

Reported coefficients of variation for the drained friction angle (φ) of
sands are in the range of 3–12%. Lower values can be used where there
is some confidence that the materials considered are of consistent quality
and relative density, and the higher values should be used where there is
considerable uncertainty regarding material type or density. For the direct
shear tests on sands from Lock and Dam No. 2, cited in Table 12.1 (Shannon
and Wilson and Wolff, 1994), the lower coefficients of variation correspond
to higher confining stresses, and vice versa.

Ladd et al. (1977) and others have shown that the undrained strength su
(or c) of clays of common geologic origin can be normalized with respect to
effective overburden stress σ ′

vo and overconsolidation ratio OCR and defined
in terms of the ratio su/σ ′

vo. Analysis of test data on clay at Mississippi River
Lock and Dam No. 2 (Shannon and Wilson and Wolff, 1994) showed that
it was reasonable to characterize uncertainty in clay strength in terms of the
probabilistic moments of the su/σ ′

v parameter. The ratio of su/σ ′
vo for 24 tested

samples was found to have a mean value of 0.35, a standard deviation of
0.11, and a coefficient of variation of 31%.

12.6.1.2 Deterministic model and performance function

For slope stability, the choice of a deterministic analysis model is straight-
forward. A conventional limit-equilibrium slope stability model is used that
yields a factor of safety defined in terms of the shear strength of the soil.
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Many well documented programs are available to run the most popular
slope stability analysis methods (e.g. Bishop’s method, Spencer’s method,
and the Morgenstern–Price method). For a specific failure surface, many
studies have shown that resulting factors of safety differ little for any of the
methods that satisfy moment equilibrium or complete equilibrium. How-
ever, finding the geometry of the critical failure surface is another matter. As
levees are typically located over stratified alluvial foundations, the selected
deterministic model and computer program should be capable of analyzing
failure surfaces with planar bases (e.g. “wedge” surfaces) and other general
shapes, not only circular arcs. Furthermore, there remains a philosophical
question as to what exactly is the “critical surface.” In many probabilistic
slope stability studies, the critical deterministic surface (lowest FS) has been
found first, and the probability of failure for that surface has been calcu-
lated. However, it can be argued that one should locate the surface with the
highest probability of failure, which can be greatly different when soils with
different levels of uncertainty are present. Hassan and Wolff (1999) have
investigated this problem and presented an approximate empirical method
to locate the critical probabilistic surface when the available programs can
search only for the surface of minimum FS.

Depending on the probabilistic model being used, it may be sufficient to
be able to simply determine the factor of safety for various realizations of the
random variables, and use these to determine the probability that the factor
of safety is less than one. However, some methods, such as the advanced
first-order second-moment method (AFOSM), may require a performance
function that assumes a value of zero at the limit state. For the latter, the
performance function for slope stability can be taken as

FS − 1 = 0 (12.3)

or

In FS = 0 (12.4)

The second expression is preferred as it works consistently with the assump-
tion that the factor of safety is lognormally distributed, which is appealing
as FS cannot assume negative values.

12.6.1.3 Probabilistic modeling

Having defined a set of random variables, a deterministic model and per-
formance function, a probabilistic model is then needed to determine the
probability of failure (or probability that the performance function assumes
a negative value). Given the probability distributions, or at least the proba-
bilistic moments of the random variables, the probabilistic model determines
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the distribution or at least the probabilistic moments of the factor of safety or
performance function. Details are described elsewhere in this book, but com-
mon models include the first-order reliability method (FORM), the advanced
first-order, second-moment method (AFOSM), both based on Taylor’s series
expansion, and simulation (or Monte Carlo) methods.

In the examples in this chapter, a variation called the Taylor’s series –
finite difference method, used by the Corps of Engineers (USACE, 1995), is
used to calculate the mean and standard deviation of the factor of safety,
knowing the mean and standard deviations of the random variables. The
Taylor’s series is expanded around the mean value of the FS function, not the
“design point” found by iteration in the AFOSM. Hence, the nonlinearity of
the performance function is not directly considered. This deficiency is partly
mitigated by determining the required partial derivatives numerically over a
range of plus to minus one standard deviation, rather than a tangent at the
mean. Using this large increment captures some of the information about
the functional shape.

12.6.1.4 Example problem

The example to follow is taken from Wolff (1994). The assumed levee cross-
section is shown in Figure 12.10 and consists of a sand levee on a thin clay top
stratum overlaying thick foundation sands. Units are in English system feet,
consistent with the original reference (1 ft = 0.3048 m). Despite their high
conductivity, sand levees have been used in a number of locations where clay
materials are scarce; a notable example is along the middle Mississippi River
in western Illinois. Three random variables were defined and their assumed
probabilistic moments were assigned as shown in Table 12.2.

440

420

400

380

360

0−100 100

10' crown at el. 420

1V on 2.5 side slopes
8 ft clay top blanket

80 ft thick pervious sand substratum
Extends to el. 312.0

Sand levee with clay face

Figure 12.10 Cross-section for slope stability and underseepage example (elevations and
distances in feet).
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Table 12.2 Random variables for slope stability example problem.

Parameter Expected
value

Standard
deviation

Coefficient of
variation (%)

Friction angle of sand levee embankment, φemb 32 deg 2 deg 6.7
Undrained strength of clay foundation, c or su 800 lb/ft2 320 lb/ft2 40
Friction angle of sand foundation, φfound 34 deg 2 deg 5.9

For slope stability analysis, the piezometric surface in the embankment
sand was approximated as a straight line from the point where the flood
water intersects the riverside slope to the landside levee toe. The piezometric
surface in the foundation sands was taken as that obtained for the expected
value condition in the underseepage analysis reported later in this chapter.
If desired, the piezometric surface could be modeled as an additional random
variable using the results of a probabilistic seepage analysis.

Using the Taylor’s series–finite difference method, seven runs of a slope
stability program are required for each flood water level considered; one for
the expected value case, and two runs to determine the variance component
of each random variable.

The seven resulting solutions and partial variance terms are summarized
for FWE = 400 ft (base of the levee) in Table 12.3. The seven failure surfaces
are nearly coincident as seen in Figure 12.11. The expected value of the
factor of safety is the factor of safety calculated using the expected values of
all variables:

E[FS] = 1.568 (12.5)

The variance of the factor of safety is calculated per USACE (1995), using
a finite-difference increment of 2σ :

VarFS=
(
∂FS
∂φe

)2

σ 2
φe

+
(
∂FS
∂c

)2

σ 2
c +
(
∂FS
∂φf

)2

σ 2
φf

=
(

FS+−FS−
2σφe

)2

σ 2
φe

+
(

FS+−FS−
2σc

)2

σ 2
c +
(

FS+−FS−
2σφf

)2

σ 2
φf

=
(

FS+−FS−
2
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+
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2

)2

+
(

FS+−FS−
2

)2

=
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2
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+
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2

)2
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1.568−1.567
2

)2

=0.025309 (12.6)
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Figure 12.11 Failure surfaces for slope stability example.

Table 12.3 Example slope stability problem, undrained conditions, water at elevation 400
(H = 0 ft).

Run � (levee) c (clay) �(found) FS Variance Percent of total variance

1 32 800 34 1.568
2 30 800 34 1.448
3 34 800 34 1.693 0.015006 59.29
4 32 480 34 1.365
5 32 1120 34 1.568 0.0.010302 40.71
6 32 800 32 1.568
7 32 800 36 1.567 2.5 × 10−7 0.0

Total .025309 100.0

In the above expression, φe is the friction angle of the embankment sand, c
is the undrained strength (or cohesion) of the top blanket clay, and φf is the
friction angle of the foundation sand.

The factor of safety is assumed to be a lognormally distributed random
variable with E[FS] = 1.568 and σFS = 0.0253091/2 = 0.159. From the prop-
erties of the lognormal distribution, the coefficient of variation of the factor
of safety is

VFS = σFS

E[FS] = 0.159
1.568

= 0.1015 (12.7)
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The standard deviation of ln FS is

σlnFS =
√

ln(1 + V2
FS) =

√
ln(1 + 0.10152) = 0.1012 (12.8)

The expected value of ln FS is

E[lnFS] = lnE[FS]− σ 2
lnFS

2
= ln1.568 − 0.0102

2
= 0.447 (12.9)

The reliability index is then:

β = E[lnFS]
σlnFS

= 0.447
0.1012

= 4.394 (12.10)

As FS is assumed lognormally distributed, ln FS is normally distributed. From
the cumulative distribution function of the standard normal distribution
evaluated at −β, the conditional probability of failure for water at elevation
400 is:

Prf = 6 × 10−6

This is illustrated in Figure 12.12. The results for all water elevations are
summarized in Table 12.4.

12.6.1.5 Interpretation

Note that the calculated probability of failure infers that the existing
levee is taken to have approximately a six in one million probability of

E[ln FS] = 0.445

ln FS

βσln FS = (4.394)(0.1012)

Pr(f) = 0.000006

limit state
ln 1 = 0.0

Figure 12.12 Probability of failure for slope stability example; water at elevation 400.
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Table 12.4 Example slope stability problem, undrained conditions, conditional probability
of failure function.

Water elevation E[FS] σFS � Prf

400.0 1.568 0.159 4.394 6 ×10−6

405.0 1.568 0.161 4.351 7 ×10−6

410.0 1.568 0.170 4.114 1.9 ×10−5

415.0 1.502 0.107 5.699 6 ×10−9

420.0 1.044 0.084 0.499 0.3087

instability with flood water to its base elevation of 400, even though it
may in fact be existing and observed stable under such conditions. The
reliability index model was developed for the analysis of yet-unconstructed
structures. When applied to existing structures, it will provide probabili-
ties of failure greater than zero. This can be interpreted as follows: given
a large number of different levee reaches, each with the same geometry
and with the variability in the strength of their soils distributed accord-
ing to the same density functions, about six in one million of those levees
might be expected to have slope stability problems. Expressing the reliability
of existing structures in this manner provides a consistent probabilis-
tic framework for use in economic evaluation of improvements to those
structures.

12.6.1.6 Conditional probability of failure function

The probabilities of failure for all water elevations are summarized in
Table 12.4, and plotted in Figure 12.13. Contrary to what might be
expected, the reliability index reaches a maximum and the probability
of failure reaches a minimum at a flood water elevation of 415.0, or
three-quarters the levee height. For water above 410, the critical failure
surface moves from the clay foundation materials up into the embank-
ment sands. As this occurs, the factor of safety becomes more dependent
on the shear strength of the embankment sands and less dependent on
the shear strength of the foundation clays. Although the factor of safety
drops as water rises from 410 to 415, the reliability index increases. As
there is more certainty regarding the strength of the sand (the coeffi-
cient of variations are about 6%versus 40% for the clay), this indicates
that a sand embankment with a low factor of safety can be more reli-
able than a clay embankment with a higher factor of safety. Finally, as
the water surface reaches the top of the levee at 420, the increasing seep-
age forces and reduction in effective stress leads to the lowest values for
FS and β.
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Figure 12.13 Conditional probability of failure function for slope stability.

12.6.2 Underseepage

12.6.2.1 Deterministic model

Underseepage is a common failure mode for levees and floodwalls that has
been widely researched and for which analysis methods have been widely
published (Peter, 1982; USACE, 2000). The example presented here uses an
equation-based deterministic method developed by the Corps of Engineers
(USACE, 2000) for a specific but common set of idealized foundation con-
ditions: a relatively thin top semi-pervious top stratum of uniform thickness
overlying a thick pervious substratum of uniform thickness. A typical cross-
section is shown in Figure 12.14. For this case, the exit gradient io at the
landside toe can be calculated as

io = ho

z
(12.12)

where

ho is the residual head at the levee toe, and
z is the effective thickness of the landside top blanket

The residual head can be calculated as

ho = H x3

x1 + x2 + x3
(12.13)
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Figure 12.14 Terms used in Crops of Engineers’ underseepage model.

where

H is the net height of water on levee
x1 is the effective seepage entrance distance
x2 is the base width of levee, and
x3 is the effective seepage exit distance

For uniform blanket conditions of infinite landside length, x3 can be
calculated as

x3 =
√

kf

kb
zd (12.14)

where kf is the horizontal permeability of the pervious substratum, kb is
the vertical permeability of the semi-pervious top blanket, z is the thickness
of the top blanket and d is the thickness of the substratum. The coefficient
of permeability k is a combined property of the soil and the permeant and
is now more commonly referred to as hydraulic conductivity. The earlier
nomenclature is retained for consistency with the original references.

Procedures for determining these values for a variety of conditions can be
found in USACE (2000).

The exit gradient io is compared to the critical gradient ic which can be
calculated as follows:

ic = γ ′
γw

(12.15)
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where

γ ′ is the effective of submerged unit weight of the top stratum and
γw is unit weight of water.

An exit gradient in excess of the critical gradient implies failure. Exit gra-
dients can also be calculated for much more complex foundation conditions
using methods such as finite element analysis.

The formulation above considers the initiation of sand boils or piping to
be related only to gradient conditions. Other researchers (e.g. Peter, 1982)
have proposed analysis models that include other parameters, notably grain
size and grain size distribution.

12.6.2.2 Random variables

Table 12.5 provides some typical coefficients of variation for the parameters
used in underseepage analysis.

12.6.2.3 Example problem

The levee cross section for this example is the same as that previously
shown in Figure 12.10. Four random variables are considered, kf, kb, z
and d. The assigned probabilistic moments for these variables are given in
Table 12.6.

As borings are not available at every possible cross-section, there is some
uncertainty regarding the thicknesses of the soil strata at the critical location.
Hence, z and d are modeled as random variables. Their standard deviations
are set by engineering judgment regarding the probable range of actual values
at the site. For the blanket thickness z, assigning the standard deviation at
2.0 ft models a high probability that the actual blanket thickness will be
between 4.0 and 12.0 ft ( ±2 standard deviations) and a very high probability
that the blanket thickness will be between 2.0 and 14.0 ft ( ±3 standard

Table 12.5 Typical coefficients of variation for soil parameters used in underseepage
analysis.

Parameter Coefficient of
variation (%)

Reference

Coefficient of
permeability, k

90 For saturated soils, Nielson et al. (1973), cited
by Harr (1987)

Permeability of top
blanket clay, kb

20 Derived from assumed distribution, Shannon
and Wilson (1994)

Permeability of
foundation sands, kf

20–27.5 For average permeability over thickness of
aquifer, Shannon and Wilson (1994)

Permeability ratio,
kf /kb

40 Derived using 30% for kf and kb; see
Appendix A
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Table 12.6 Random variables for underseepage example problem.

Parameter Expected value Standard deviation Coefficient of
variation(%)

Substratum permeability, kf 1000 × 10−4 cm/s 300 × 10−4cm/s 30
Top blanket permeability, kb 1 × 10−4 cm/s 0.3 × 10−4cm /s 30
Blanket thickness, z 8.0 ft 2.0 ft 25
Substratum thickness, d 80 ft 5 ft 6.25

deviations). For the substratum thickness d, the two standard deviation range
is 70–90 ft and the three standard deviation range is 65–95 ft. For analysis of
real levee systems, it is suggested that the engineer review the geologic history
and stratigraphy of the area and assign a range of likely strata thicknesses
that are considered the thickest and thinnest probable values. These can then
be taken to correspond to plus and minus 2.5 or 3.0 standard deviations from
the expected value.

As the exit gradient is a function of the permeability ratio, kf /kb, and not
the absolute magnitude of the values, the number of analyses can be reduced
by treating the permeability ratio as a single random variable. To do so, it is
necessary to determine the coefficient of variation of the permeability ratio
given the coefficient of variation of the two permeability values. Using several
methods to determine the probabilistic moments of the ratio of two random
variables, it appears reasonable to take the expected value of the permeability
ratio as 1000 and its coefficient of variation as 40%. This corresponds to a
standard deviation of 400 for kf /kb.

The performance function is taken as the exit gradient landside of the
levee, and the value of the critical gradient, assumed to be 0.85, is taken as
the limit state.

For each water elevation, the exit gradient is calculated using the Taylor’s
series–finite difference method. This requires considering seven combinations
of the input parameters. Results for a 20 ft head on the levee are summarized
in Table 12.7.

For Run 1, the three random variables are all taken at their expected
values. First the effective exit distance x3 is calculated as:

x3 =
√

kf

kb
· z · d = √

1000 · 8 · 80 = 800ft (12.16)

As the problem is symmetrical, the distance from the riverside toe to the
effective source of seepage entrance, x1, is also 800 ft.

From the geometry of the given problem, the base width of the levee, x2,
is 110 ft.
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Table 12.7 Underseepage example, Taylor’s series method, water at elevation 420 (H =
20 ft).

Run kf /kb z d ho i Variance Percent of total variance

1 1000 8.0 80.0 9.357 1.170
2 600 8.0 80.0 9.185 1.148
3 1400 8.0 80.0 9.451 1.181 0.000276 0.30
4 1000 6.0 80.0 9.265 1.544
5 1000 10.0 80.0 9.421 0.942 0.090606 99.69
6 1000 8.0 75.0 9.337 1.167
7 1000 8.0 85.0 9.375 1.172 0.000006 0.01

Total 0.090888 100.0

The net residual head at the levee toe is:

ho = Hx3

x1 + x2 + x3
= 20 · 800

800 + 110 + 800
= 9.357ft (12.17)

and the landside toe exit gradient is:

i = ho

z
= 9.357

8.0
= 1.170 (12.18)

For the second and third analyses, the permeability ratio is adjusted to the
expected value plus and minus one standard deviation, while the other two
variables are held at their expected values. These are used to determine the
component of the total variance related to the permeability ratio:

(
∂i

∂(kf/kb)

)2

σ 2
kf/kb

≈
(

i+ − i−
2σkf/kb

)2

σ 2
kf/kb

=
(

i+ − i−
2

)2

=
(

1.181 − 1.148
2

)2

= 0.000276

(12.19)

A similar calculation is performed to determine the variance components
contributed by the other random variables.

When the variance components are summed, the total variance of the exit
gradient is obtained as 0.090888. Taking the square root of the variance
gives the standard deviation of 0.301.

The exit gradient is assumed to be a lognormally distributed random vari-
able with probabilistic moments E[i] = 1.170 and σi = 0.301. Using the
properties of the lognormal distribution, the equivalent normally distributed
random variable has moments E[ln i] = 0.124 and σln i = 0.254.
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The critical exit gradient is assumed to be 0.85. The probability of failure
is then:

Prf = Pr (ln i > ln 0.85) (12.20)

This probability can be found by first calculating the standard normalized
variate z:

z = ln icrit − E[ln i]
σln i

= −0.16252 − 0.12449
0.253629

= −1.132 (12.21)

For this value, the cumulative distribution function F(z) is 0.129, and repre-
sents the probability that the gradient is below critical. The probability that
the gradient is above critical is

Prf = 1 − F(z) = 1 − 0.129 = 0.871 (12.22)

Note that the z value is analogous to the reliability index β, and it could
be stated that β = −1.13. The probability calculation is illustrated in
Figure 12.15.

Repeating this procedure for a range of flood water elevations, the condi-
tional probability of failure function can be plotted as shown in Figure 12.16.
The probability of failure is very low until the head on the levee exceeds about
8 ft, after which it curves up sharply. It reverses curvature when the head
reaches about 15 ft and the probability of failure is near 50%. When the
flood water elevation is near the top of the levee, the conditional probability
of failure approaches 87%.

The results of one intermediate calculation should be noted. As indicated
by the relative size of the variance components shown in Table 12.7, virtu-
ally all of the uncertainty is in the top blanket thickness. A similar effect was
found in other underseepage analyses by the writer reported in the Upper
Mississippi River report (Shannon and Wilson and Wolff, 1994); where

E[ln i] = 0.124

ln i crit = −0.163

ln i

−1.132 sigma ln i

Figure 12.15 Probability of failure for underseepage example, water at el. 420.



Reliability of levee systems 477

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
H, ft

P
r(

fa
ilu

re
)

Figure 12.16 Conditional probability of failure function for underseepage example.

the top blanket thickness was treated as a random variable, its uncertainty
dominated the problem. This has two implications:

• Probability of failure functions for preliminary economic analysis might
be developed using a single random variable, the top blanket thickness z.

• In expending resources to design levees against underseepage failure,
obtaining more data to determine the blanket thickness profile may be
better justified than obtaining more data on material properties.

12.6.3 Throughseepage

Three types of internal erosion or piping can occur as a result of seepage
through a levee:

• Cracks in a levee due to hydraulic fracturing, tensile stresses, decay of
vegetation, animal activity, along the contours of hydraulic structures,
etc., can all provide a preferential seepage path, along which piping may
occur. For piping (movement of soil material) to occur, the tractive shear
stress exerted by the flowing water must exceed the critical tractive shear
stress of the soil.

• High exit gradients on the downstream face of the levee may cause piping
and possible progressive backward erosion.

• Internal erosion or removal of fine grains by excessive seepage forces may
occur. This type of piping occurs when the seepage gradient exceeds a
critical value.
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Well-constructed clay levees are generally considered resistant against
internal erosion, but such erosion can occur where there are defects such
as above. For sand levees, throughseepage is a common occurrence during
flood. Water flowing through the embankment will cut small channels on
the landside slope. If the slope is sufficiently flat, the levee will hold and the
slope can be re-dressed after the flood. Construction of sand levees is rela-
tively common on the middle Mississippi River for levees constructed by the
Rock Island District of the U.S. Army Corps of Engineers.

12.6.3.1 Deterministic models

There is no single widely accepted analytical technique or performance func-
tion in common use for predicting internal erosion. Review of various models
indicates that erosion susceptibility may be taken to be a function of some
combination of the following parameters:

• permeability or hydraulic conductivity, k;
• hydraulic gradient, i;
• porosity, n;
• critical tractive stress, τc (the shear stress required for flowing water to

dislodge a soil particle);
• particle size, expressed as some representative size such as D50 or

D85; and
• friction angle, φ, or angle of repose.

Essentially, the models use the gradient, critical tractive stress and particle
size to determine whether the shear stresses induced by seepage head loss
are sufficient to dislodge soil particles, and use the gradient, permeability,
and porosity to determine whether the seepage flow rate is sufficient to carry
away or transport the particles once they have been dislodged.

Very fine sands and silt-sized materials are among the most erosion-
susceptible soils. This arises from their having a critical balance of relatively
high permeability, low particle weight and low critical tractive stress. Parti-
cles larger than fine sand sizes are generally too heavy to be moved easily,
as particle weight increases with the cube of the diameter. Particles smaller
than silts (i.e. clay sizes), although of light weight, may have relatively large
electro-chemical forces acting on them, which can substantially increase the
critical tractive stress, τc, and also have sufficiently small permeability as to
inhibit particle transport in significant quantity.

12.6.3.2 Schwartz’s method

As analytical models for throughseepage are complex and not well proven,
an illustrative example, based on a design procedure for the landside slope of
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sand levees developed by Schwartz (1976) will be used herein. Where there
is experience with other erosion models, they could be substituted for the
illustrated method, using the same approach of defining the probability of
failure as the probability that the performance function crosses the limit state.
Schwartz’s method includes some elements of erosion analysis. However, the
result of the method is a parameter to determine the need for providing toe
berms according to semi-empirical criteria rather than to directly determine
the threshold of erosion conditions or predict whether erosion will occur.
Presumably, some conservatism is present in the berm criteria and thus the
criteria do not represent a true limit state. Accordingly, the actual probability
of failure should be somewhat lower than calculated.

The procedure involves the calculation of two parameters, the maximum
erosion susceptibility, M, and the relative erosion susceptibility, R. The cal-
culated values are compared to critical combinations for which toe berms
are considered necessary. The parameters are functions of the embankment
geometry and soil properties. First, the vertical distance of the seepage exit
point on the downstream slope, yc, is determined using the well-known solu-
tion for the “basic parabola” by L. Casagrande. Two parameters, λ1 and λ2,
are then calculated as:

λ1 =cosβ − γw

γb
sinβ tan(β − δ) − γsat

λb

sinβ

tanφ
(12.23)

λ2 =γw sin0.7 β
( n

1.49

)0.6 [
k tan(β − δ)

]0.6 (12.24)

where β is the downstream slope angle

δ is taken as zero for a horizontal exit gradient
n is Manning’s coefficient for sand, typically 0.02
γsat is the saturated density of the sand in lb/ft3

γb is the submerged effective density of the sand in lb/ft3

k is the sand permeability in ft/s
φ is the friction angle

It is important to note that the parameter λ2 is not dimensionless, and the
units stated above must be used.

The erosion susceptibility parameters are then calculated as:

M =λ2y0.6
e

λ1τco
(12.25)

R =
ye −
(
λ1τco

λ2

)1.67

H
(12.26)
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In the above equations, τco is the critical tractive stress, which can be taken
as about 0.03 lb/ft2 (14.36 dynes/cm2) for medium sand, and H is the
full embankment height, measured in feet. According to Schwartz’s crite-
ria, toe berms are recommended when M and R values fall above the shaded
region shown in Figure 12.17. To simplify probabilistic analysis, Shannon
and Wilson and Wolff (1994) suggested replacing this region with a linear
approximation (also shown in Figure 12.17), and taken to be the limit state.
The approximation is:

M + 14.4R − 13.0 = 0 (12.27)

Positive values of the expression to the left of the equals sign indicate the
need for toe berms.

12.6.3.3 Example problem

The same embankment section previously analyzed will be used as an exam-
ple of a throughseepage analysis. Random variables were characterized as
shown in Table 12.8. The method, which assesses erosion at the landside
seepage face, was numerically unstable (λ1 becomes negative) for the slopes
previously assumed. To make the problem stable for purposes of illustra-
tion, the slopes had to be flattened to 1V on 3H riverside and 1V on 5H
landside.

The results for a 20 ft water height are summarized in Table 12.9. The most
significant random variables, based on descending order of their variance
components, are the unit weight, the friction angle, and the permeability.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Erosion Susceptibility, R
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20

0

Maximum Erosion Susceptibility, M
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Figure 12.17 Schwartz’s method berm criteria, and assumed linear limit state.
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Table 12.8 Random variables for throughseepage example.

Variable Expected value Coefficient of variation(%)

Manning’s coefficient, n 0.02 10
Unit weight, γsat 125 lb/ft3 8
Friction angle, φ 30 deg 6.7
Coefficient of permeability, k 2000 × 10−4cm/s 30
Critical tractive stress, τ 18 dynes/cm2 10

Table 12.9 Results of internal erosion analysis, example problem (modified to flatter
slopes) H = 20 ft.

n γsat φ k τ Performance
function

Variance
component

Percent of total
variance

0.02 125 30 2000 18 17.524
0.022 125 30 2000 18 18.491
0.018 125 30 2000 18 16.515 0.9761 2.1
0.02 135 30 2000 18 14.798
0.02 115 30 2000 18 23.667 19.6648 42.9
0.02 125 32 2000 18 14.817
0.02 125 28 2000 18 22.179 13.5498 29.5
0.02 125 30 2600 18 20.321
0.02 125 30 1400 18 14.339 8.961 19.5
0.02 125 30 2000 19.8 16.046
0.02 125 30 2000 16.2 19.369 2.7606 6.0

Total 45.8974 100.0

The effects of Manning’s coefficient and the critical tractive stress, at least
for the coefficients of variation assumed, are relatively insignificant.

The reliability index was calculated as the expected value of the per-
formance function divided by the standard deviation of the performance
function. The probability of failure was calculated using the reliability index
and assuming the performance function was normally distributed. (Note that
the assumption of a lognormally distributed performance function was not
used for this failure mode as negative values of the performance function are
permitted.)

When the probabilities of failure for various flood water elevations are
plotted, the conditional probability of failure function shown in Figure 12.18
is obtained. Again, it takes the expected reverse-curve shape. Below heads
10 ft, or about half the levee height, the probability of failure against through
seepage failure is virtually nil. The probability of failure becomes greater than
0.5 for a head of about 16.5 feet, and approaches unity at the full head of
20 ft.
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Figure 12.18 Conditional probability of failure function for throughseepage example.

12.6.3.4 Surface erosion

As flood stages increase, the potential increases for surface erosion from two
sources:

• erosion due to excessive current velocities parallel to the levee slope; and
• erosion due to wave attack directly against the levee slope.

Preventing surface erosion requires providing adequate slope protection, typ-
ically a thick grass cover, and stone revetment at locations expected to be
susceptible to wave attack. During flood emergencies, additional protection
may be provided where necessary using dumped rock, snow fence, or plastic
sheeting.

12.6.3.5 Analytical model

Although there are established criteria for determining the need for slope
protection and for designing slope protection, they are not in the form of a
limit state or performance function (i.e. one does not typically calculate a
factor of safety against scour). To perform a reliability analysis, one needs to
define the problem as a comparison between the probable velocity or wave
height and the velocity or wave height that will result in damaging scour.
As a first approximation for the purpose of illustration, this section will use
a simple adaptation of Manning’s formula for average flow velocity and
assume that the critical velocity for a grassed slope can be expressed by an
expected value and coefficient of variation.
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For channels that are very wide relative to their depth (width > 10×
depth), the flow velocity can be expressed as:

V = 1.486y2/3S1/2

n
(12.28)

where y is the depth of flow,
S is the slope of the energy line, and
n is Manning’s roughness coefficient.

It will be assumed that the velocity of flow parallel to a levee slope for
water heights from 0 to 20 ft can be approximated using the above formula
with y taken from 0 to 20 ft. For real levees in the field, it is likely that
better estimates of flow velocities at the location of the riverside slope can
be obtained by more detailed hydraulic models.

The following probabilistic moments are assumed. More detailed and site-
specific studies would be necessary to determine appropriate values.

E[S] =0.0001 VS = 10%

E[n] =0.03 Vn = 10%

It is assumed that the critical velocity that will result in damaging scour can
be expressed as:

E[Vcrit] = 5.0ft/s Vvcrit = 20%

Further research is necessary to develop guidance on appropriate values for
prototype structures.

The Manning equation is of the form

G(x1,x2,x3, . . .) = axg1
1 xg2

2 xg3
3 . . . (12.29)

For equations of this form, Harr (1987) shows that the probabilistic
moments can be determined using a special form of Taylor’s series approx-
imation he refers to as the vector equation. In such cases, the expected
value of the function is evaluated as the function of the expected values.
The coefficient of variation of the function can be calculated as:

V2
G = g2

1V2(x1) + g2
2V2(x2) + g2

3V2(x3) +·· · (12.30)

For the case considered, the coefficient of variation of the flow velocity
is then:

VV =
√

V2
n + ( 1

4 )V2
S (12.31)

Note that, although the velocity increases with flood water height y, the
coefficient of variation of the velocity is constant for all heights.
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Knowing the expected value and standard deviation of the velocity and
the critical velocity, a performance function can be defined as the ratio of
critical velocity to the actual velocity (i.e. the factor of safety) and the limit
state can be taken as this ratio equaling the value 1.0. If the ratio is assumed
to be lognormally distributed, the reliability index is:

β =
ln
(

E [C]
E [D]

)
√

V2
C + V2

D

=
ln

(
E
[
Vcrit
]

E [V]

)
√

V2
Vcrit + V2

V

(12.32)

and the probability of failure can be determined from the cumulative
distribution function for the normal distribution.

The assumed model and probabilistic moments were used to construct
the conditional probability of failure function in Figure 12.19. It is again
observed that a typical levee may be highly reliable for water levels up to
about one-half the height, and then the probability of failure may increase
rapidly.

12.7 Step 2: Reliability of a reach – combining
the failure modes

Having developed a conditional probability of failure function for each con-
sidered failure mode, the next step is to combine them to obtain a total
or composite conditional probability of failure function for the reach that
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Figure 12.19 Conditional probability of failure function for surface erosion example.
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combines all modes. As a first approximation, it may be assumed that the
failure modes are independent and hence uncorrelated. This is not necessar-
ily true, as some of the conditions increasing the probability of failure for
one mode may likely increase the probability of failure by another. Notably,
increasing pressures due to underseepage will adversely affect slope stability.
However, there is insufficient research to better quantify such possible cor-
relation between modes. Assuming independence considerably simplifies the
mathematics involved and may be as good a model as can be expected at
present.

12.7.1 Judgmental evaluation of other modes

Before combining failure mode probabilities, consider the probability of fail-
ure due to other circumstances not readily treated by analytical models.
During a field inspection, one might observe other items and features that
might compromise the levee during a flood event. These might include animal
burrows, cracks, roots, and poor maintenance that might impede detection
of defects or execution of flood-fighting activities. To factor in such infor-
mation, a judgment-based conditional probability function could be added
by answering the following question:

Discounting the likelihood of failure accounted for in the quantitative
analyses, but considering observed conditions, what would an experi-
enced levee engineer consider the probability of failure of this levee for
a range of water elevations?

For the example problem considered herein, the function in Table 12.10
was assumed. While this may appear to be guessing, leaving out such infor-
mation has the greater danger of not considering the obvious. Formalized
techniques for quantifying expert opinion exist and merit further research
for application to levees.

Table 12.10 Assumed conditional probability
of failure function for judgmental evaluation
of observed conditions.

Flood water elevation Probability of failure

400.0 0
405.0 0.01
410.0 0.02
415.0 0.20
417.5 0.40
420.0 0.80
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12.7.2 Composite conditional probability of failure
function for a reach

For N independent failure modes, the reliability or probability of no failure
involving any mode is the probability of no failure due to mode 1 and no
failure due to mode 2, and no failure due to mode 3, etc. As and implies
multiplication, the overall reliability at a given flood water elevation is the
product of the modal reliability values for that flood elevation, or:

R = RSSRUSRTSRSERJ (12.33)

where the subscripts refer to the identified failure modes. Hence the
probability of failure at any flood water elevation is:

Pr(f) =1 − R

=1 − (1 − pSS)(1 − pUS)(1 − pTS)(1 − pSE)(1 − pJ)
(12.34)

The total conditional probability of failure function is shown in Figure 12.20.
It is observed that probabilities of failure are generally quite low for water
elevations less than one-half the levee height, then rise sharply as water levels
approach the levee crest. While there is insufficient data to judge whether
this shape is a general trend for all levees, it has some basis in experience
and intuition.
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Figure 12.20 Combined conditional probability of failure function for a reach.
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12.8 Step 3: Annualizing the probability of failure

Returning to Equation (12.1), the probability of levee failure is conditioned
on the flood water elevation FWE, which is a random variable that varies
with time. Flood water elevation is usually characterized by an annual
exceedance probability function, which gives the probability that the highest
water level in a given year will exceed a given elevation.

It is desired to find the annual probability of the joint event of flooding
to any and all levels and a levee failure given that level. An example of
the methodology is provided in Table 12.11. The first column shows the
return period and the second shows the annual probability of exceedance
for the water level shown in the third column. The return period is simply
the inverse of the annual exceedance probability. These values are obtained
from hydrologic studies. In the fourth column, titled lumped increment, all
water elevations between those in the row above and the row below are
assumed to be lumped as a single elevation at the increment midpoint. The
annual probability of the maximum water level in a given year being within
that increment can be taken as the difference of the annual exceedance prob-
abilities for the top and bottom of the increment. For example, the annual
probability of the maximum flood water elevation being between 408 and
410 is

Pr(408 < FWE < 410) =Pr(FWE > 408) − Pr(FWE > 410)

=0.500 − 0.200

=0.300

(12.35)

Table 12.11 Annual probability of flooding for a reach.

Return
period (yr)

Annual
Pr(Exceed)

Water elev. Lumped
increment

Annual
Pr(FWE)

Pr(F |FWE) Pr (F)

<= 408 0.505 0.02 0.01010
2 0.500 408

409 +/− 1 0.300 0.03 0.00900
5 0.200 410

411 +/− 1 0.100 0.08 0.00800
10 0.100 412

413 +/− 1 0.050 0.45 0.02250
20 0.050 414

415 +/− 1 0.030 0.72 0.02160
50 0.020 416

417 +/− 1 0.010 0.86 0.00860
100 0.010 418

419 +/− 1 0.005 0.97 0.00485
200 0.005 420

Sum 1.000 0.08465
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The flood water elevations for this increment are lumped at elevation 409.0,
and hence the annual probability of the maximum flood water being eleva-
tion 409.0 is 0.300. The annual probability of each flood water elevation
is multiplied by the conditional probability of failure given that flood water
elevation (sixth column) to obtain the annual probability of levee failure for
that FWE (seventh column). For this example, the values in the sixth column
are taken from Figure 12.16. The annual probability of the joint event of
maximum flood being between 408 and 410 and the levee failing under this
load is

Pr(408 < FWE < 410) × Pr(failure|FWE) = 0.300 × 0.03 = 0.0090
(12.36)

Finally, the values in column seven are summed to obtain the annual prob-
ability of the joint event of flooding and failure for all possible water
elevations. This can be expressed as

AnnualPr(f) =
∑

all FWE

AnnualPr(FWE) × Pr(failure|FWE)�FWE

(12.37)

As the water level increment becomes small, the equation above approaches

AnnualPr(f) =
∫

all FWE

AnnualPr(FWE) × Pf (failure|FWE)dFWE

(12.38)

From Table 12.11, the annual probability of failure for this reach is 0.08465,
which considers all flood levels (for which annual probabilities decrease with
height) and the probability of failure associated with each flood level (which
increase with height). Note that this is a rather high probability; the example
problem was deliberately selected to be of marginal safety to provide relative
large numbers to easily view the mathematics.

Baecher and Christian (2003: 488–500) use an event-tree approach to
illustrate an approach similar to that of Equations (12.37) and (12.38). The
process is started with probabilities of different river discharges Q. For each
discharge, river stage may be uncertain. For each river stage, the levee may
or may not fail by various modes. Following all branches of the event tree
leads to one of two events, failure or non-failure. Summing up all the branch
probabilities leading to failure is equivalent to the equations above.
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12.9 Step 4: The Levee as a system – combining
the reaches

Having an annual probability of failure for each reach, the final step is to
determine the overall annual probability of failure for the entire levee system,
which is a set of reaches.

If a levee were “perfectly uniform” in cross-section and soil profile along
its length, intuition would dictate that the probability of a failure for a very
long levee should be greater than that for a short identical levee, as more
length of levee is at risk.

First it will be assumed that each reach is statistically independent of all
others, and then that assumption will be examined further. For each reach, an
annual probability of failure has been determined. Subtracting these values
from unity, the annual reach reliability Ri is obtained. If the levee system
is considered to be a series system of discrete independent reaches, such as
links in a chain, the system reliability is the product of the reliabilities for
each link, and the same methods can be used for combining probabilities for
reaches as was used for combining modes, hence:

R = R1R2R3 . . .RN (12.39)

where the subscripts refer to the separate reaches. Hence, for a given water
level, the probability of failure for the system is:

Pr(f) =1 − R

=1 − (1 − p1)(1 − p2)(1 − p3) . . . (1 − pN)
(12.40)

Where the p values are “very small,” the above equation approaches the sum
of the pi values.

The problem remaining is to determine what is the distance along the
levee beyond which soil properties are statistically independent. At short
distances, soil properties are highly correlated, and if failure conditions are
realized, they might occur over the entire length. At long distances in a very
long, statistically homogeneous reach, soil properties may be very different
from each other due to inherent randomness. There could be a failure due to
weak strength values in one area, but values could be very strong in another.
The long reach may need to be subdivided into an equivalent number of
statistically independent reaches to model the appropriate total number of
statistically independent reaches in Equations (12.39) and (12.40).

Much research has been done in the areas of spatial correlation, autocor-
relation functions, variance reduction functions, etc., which have a direct
bearing on this problem. However, there are seldom sufficient data to
accurately quantify such functions. Spatial variability can be most simply
expressed by using a “correlation distance,” δ, discussed by a number of
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researchers, notably VanMarcke (1977a). For distances less than δ, soil
properties can be considered highly correlated, i.e. values are uncertain,
but nearly the same from point to point. For points separated by distances
considerably greater than δ, soil property values are independent and uncor-
related. The degree of correlation between soil properties at separated points
is assumed to follow some function which is scaled by the δ distance. For a
levee, the longer a “statistically homogeneous” levee is, as a multiple of the
correlation distance, the greater the probability of failure.

For a levee with non-homogeneous foundation conditions already divided
into a set discrete reaches, based on the local geology, the concept of
correlation distance can be included as follows.

• Where the reach length is less than the correlation distance δ, the
probability of failure for the two-dimensional section could simply be
taken as the probability of failure for the reach. Alternatively, if the
reach length is quite small relative to the correlation distance (not com-
mon), reaches could be combined and represented by the conditional
probability function for the most critical reach.

• Where the reach length is greater than δ, the probability of failure of
that reach must be increased to account for length effects. This can be
approximated by subdividing the reach into an additional integral num-
ber of equivalent reaches, with each reach of length δ and one additional
reach for the fractional remainder.

The required correlation distance δ is a difficult parameter to estimate,
as it requires a detailed statistical analysis of a relatively large set of
equally spaced data, which is generally not available. The reported val-
ues for soil strength in the horizontal direction are typically a few hundred
feet (e.g. VanMarcke, 1977b, uses 150 ft). On the other hand, for levees,
Vrouwenvelder (1987) uses 500 m for Dutch levees. While this is a con-
siderable difference, maximum reach lengths of 100–300 m would seem
to be reasonable in levee systems analysis; there should always be a new
reach assumed when the levee geometry or foundation conditions change
significantly.

12.10 Remaining shortcomings

One significant shortcoming remaining is the effect of flood duration. As the
duration of a flood increases, the probability of failure inevitably increases,
as extended flooding increases pore pressures, and increases the likelihood
and intensity of damaging erosion. The analyses herein essentially assume
that the flood has been of sufficient duration that steady-state seepage
conditions have developed in pervious substratum materials and pervious
embankment materials, but no pore pressure adjustment has occurred in
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impervious clayey foundation and embankment materials. These are rea-
sonable assumptions for economic analysis of most levees. Further research
will be required to provide a rational basis for modifying these functions for
flood duration.

Other shortcomings are enumerated by the National Research Council
(2000) and have been discussed earlier.

12.11 Epilogue: New Orleans 2005

During the preparation of this chapter, Hurricane Katrina struck the Gulf
Coast of the United States, creating storm surges that led to numerous levee
breaks, flooding much of New Orleans, Louisiana, causing over 100 billion
dollars of damage, and the loss of over 1000 lives. Much of New Orleans
is situated below sea level, protected by a system of levees (more properly
called dikes) and pumping stations.

A preliminary joint report on the performance of the levees and floodwalls
was prepared by two field investigation teams, one from the American Soci-
ety of Civil Engineers and one sponsored by the National Science Foundation
and led by civil engineering faculty at the University of California at Berkeley
(Seed et al., 2005). The report noted that three levee/floodwall failures (one
at the 17th St. Canal and two along the London Avenue Canal) occurred
at water levels lower than the top of the protection. These were attributed
to some combination of sliding instability and inadequate seepage control.
Three additional major breaks along the Inner Harbor Navigation Canal
were attributed to overtopping, and a large number of additional failures
more remote from the urban part of the city occurred due to overtopping
and/or wave erosion.

Subsequently, an extensive analysis of the New Orleans levee failures was
conducted by the Interagency Project Evaluation Team (IPET, 2006), which
involved a number of government agencies, academics and consultants, led
by the U.S. Army Corps of Engineers. The IPET report was in turn reviewed
by a second team from the American Society Society of Civil Engineers
(ASCE), the External Review Panel (ERP). The IPET report found that one
of the breaches on the Inner Harbor Navigation Canal also likely failed prior
to overtopping.

This event, the most catastrophic levee failure in recent history, raises
questions as to how the New Orleans levee system would have been viewed
from a reliability perspective, and how application of reliability-based prin-
ciples might have possibly reduced the level of the damage. The writer
was in the area shortly after the failures, as a member of the first ASCE
levee assessment team. However, the observations below should be con-
strued only as the opinions of the writer, and not to reflect any position
of the ASCE, which has published its own recommendations at its web site
(www.asce.org).
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12.11.1 Level of protection and probability of system
failure

The system of levees and floodwalls forming the New Orleans hurricane
protection system were reported to be constructed to heights that would
correspond to return periods of 200–300 years, or an equivalent annual
probability of 0.005–0.0033. While this is several times the expected lifetime
of a person, the probability of such an event occurring in one’s lifetime is
not negligible. From the Poisson distribution, the probability of at least one
event in an interval of t years is given as

Pr(x > 0) = 1 − e−λt (12.41)

where x is the number of events in the interval t, and λ is a parameter denoting
the expected number of events per unit time. For an annual probability of 1
in 200, λ = p = 0.005.

Hence, the probability of getting at least one 200-year event in a 50-year
time period (a reasonable estimate of the length of time one might reside
behind the levee) is

Pr(x > 0) = 1 − e(−0.005)(50) = 0.221

which is between 1 in 4 and 1 in 5. It is fair to say the that the public
perception of the following statement

There is between a 1 in 4 and 1 in 5 chance that your home will be
flooded sometime in your life

is much different than

Your home is protected by a levee designed higher than the 200 year
flood.

A 200-year level of protection for an urban area leaves a significant chance
of flood exceedance in any 50-year period. In comparison, the primary dikes
protecting the Netherlands are set to height corresponding to 10,000 year
return period (Voortman, 2003) and the interior levees protecting against
the Rhine are set to a return period of about 1250 years (Vrouwenvelder,
1987).

In addition to the annual probability of the flood water exceeding the
levee, there is some additional probability that the levee will fail at water
levels below the top of the levee. Hence, flood return periods only provide an
upper bound on reliability, and perhaps a poor one. Estimating conditional
failure probabilities to determine an overall probability of levee failure (as
opposed to probability of height exceedance) is the purpose of the methods
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discussed in this chapter, as well as by Wolff (1994), Vrouwenvelder (1987),
the National Research Council (2000), and others. The three or four failures
in New Orleans that occurred without overtopping illustrate the importance
of considering material variability, model uncertainty, and other sources of
uncertainty.

Finally, the levee system in New Orleans is extremely long. Local press
reports indicated that system was nearly 170 miles long. The probability of
at least one failure in the system can be calculated from Equation (12.40).
Using a large amount of conservatism, assume that there are 340 statistically
independent reaches of one half mile each, and that conditional probability
of failure for each reach with water at the top of the levee for each reach is
10−3. The probability of system failure with water at the top of all levees
is then

Pr(f) =1 − (1 − 0.001)340

=1 − 0.7116

=0.2884

or about 29%. But if the conditional probability of failure for each reach
drops to 10−2, the probability of system failure rises to almost 97%. It is
evident from the above that very long levees protecting developed areas need
to be designed to very high levels of reliability, with conditional probabilities
of failure on the order of 10−3 or smaller, to ensure a reasonably small
probability of system failure.

12.11.2 Reliability considerations in project design

In hindsight, applying several principles of reliability engineering may have
prevented some damage and enhanced response in the Katrina disaster.

• Parallel (redundant) systems are inherently much more reliable than
series systems. Long levee systems are primarily series systems; a fail-
ure at any one point is a failure of the system, leading to widespread
flooding. Had the interior of New Orleans been subdivided into a set
of compartments by interior levees, only a fraction of the area may
have been flooded. Levees forming containment compartments are com-
mon around tanks in petroleum tank farms. Such interior levees would
undoubtedly run against public perception, which would favor building
a larger, stronger levee that “could not fail” over interior levees on dry
land, far from the water, that would limit interior flooding.

• However small the probability of the design event, one should consider
the consequences of even lower probability events. The levee systems in
New Orleans included no provisions for passing water in a controlled,
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non-destructive manner for water heights exceeding the design event
(Seed et al. 2005). Had spillways or some other means of landside hard-
ening been provided, the landside area would have still been flooded, but
some of the areas would not have breached. This would have reduced
the number of buildings flattened by the walls of water coming through
the breaches, and facilitated the ability to begin pumping out the inte-
rior areas after the storm surge had passed. It can be perceived that the
200–300-year level of protection may have been perceived as such a low
probability event that it would never occur.

• Overall consequences can be reduced by designing critical facilities to
a higher level of reliability. With the exception of tall buildings, essen-
tially all facilities in those parts of New Orleans below sea level were
lower than the tops of the levees. Had critical facilities such as police
and fire stations, military bases, medical care facilities, communications
facilities, and pumping station operating floors been constructed on high
fills or platforms, the emergency response may have been significantly
improved.
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Chapter 13

Reliability analysis of
liquefaction potential of soils
using standard
penetration test

Charng Hsein Juang, Sunny Ye Fang, and David Kun Li

13.1 Introduction

Earthquake-induced liquefaction of soils may cause ground failure such as
surface settlement, lateral spreading, sand boils, and flow failures, which,
in turn, may cause damage to buildings, bridges, and lifelines. Examples
of such structural damage due to soil liquefaction have been extensively
reported in the last four decades. As stated in Kramer (1996), “some of the
most spectacular examples of earthquake damage have occurred when soil
deposits have lost their strength and appeared to flow as fluids.” During
liquefaction, “the strength of the soil is reduced, often drastically, to the
point where it is unable to support structures or remain stable.”

Liquefaction is “the act of process of transforming any substance into
a liquid. In cohesionless soils, the transformation is from a solid state to
a liquefied state as a consequence of increased pore pressure and reduced
effective stress” (Marcuson, 1978). The basic mechanism of the initiation of
liquefaction may be elucidated from the observation of behavior of a sand
sample undergoing cyclic loading in a cyclic triaxial test. In such laboratory
tests, the pore water pressure builds up steadily as the cyclic deviatoric stress
is applied and eventually approaches the initially applied confining pressure,
producing an axial strain of about 5% in double amplitude (DA). Such a
state has been referred to as “initial liquefaction” or simply “liquefaction.”
Thus, the onset condition of liquefaction or cyclic softening is specified in
terms of the magnitude of cyclic stress ratio required to produce 5% DA
axial strain in 20 cycles of uniform load application (Seed and Lee, 1966;
Ishihara, 1993; Carraro et al., 2003).

From an engineer’s perspective, three aspects of liquefaction are of
particular interest; they include (1) the likelihood of liquefaction occurrence
or triggering of a soil deposit in a given earthquake, referred to herein as
liquefaction potential; (2) the effect of liquefaction (i.e. the extent of ground
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failure caused by liquefaction); and (3) the response of foundations in a
liquefied soil. In this chapter, the focus is on the evaluation of liquefaction
potential.

The primary factors controlling the liquefaction of a saturated cohe-
sionless soil in level ground are the intensity and duration of earthquake
shaking and the density and effective confining pressure of the soil. Sev-
eral approaches are available for evaluating liquefaction potential, including
the cyclic stress-based approach, the cyclic strain-based approach, and the
energy-based approach. In the cyclic strain-based approach (e.g. Dobry et al.,
1982), both “loading” and “resistance” are described in terms of cyclic
shear strain. Although the cyclic strain-based approach has an advantage
over the cyclic stress-based approach in that pore water pressure gener-
ation is more closely related to cyclic strains than cyclic stresses, cyclic
strain amplitudes cannot be predicted as accurately as cyclic stress ampli-
tudes, and equipment for cyclic strain-controlled testing is less readily
available than equipment for cyclic stress-controlled testing (Kramer and
Elgamal, 2001). Thus, the cyclic strain-based approach is less commonly
used than the cyclic stress-based approach. The energy-based approach is
conceptually attractive, as the dissipated energy reflects both cyclic stress
and strain amplitudes. Several investigators have established relationships
between the pore pressure development and the dissipated energy dur-
ing ground shaking (Davis and Berrill, 1982; Berrill and Davis, 1985;
Figueroa et al., 1994; Ostadan et al., 1996). The initiation of liquefac-
tion can be formulated by comparing the calculated unit energy from the
time series record of a design earthquake with the resistance to liquefac-
tion in terms of energy based on in-situ soil properties (Liang et al., 1995;
Dief, 2000). The energy-based methods, however, are also less commonly
used than the cyclic stress-based approach. Thus, the focus in this chapter
is on the evaluation of liquefaction potential using the cyclic stress-based
methods.

Two general types of cyclic stress based-approach are available for assess-
ing liquefaction potential. One is by means of laboratory testing (e.g., cyclic
triaxial test and cyclic simple shear test) of undisturbed samples, and the
other involves use of empirical relationships that relate observed field behav-
ior with in situ tests such as standard penetration test (SPT), cone penetration
test (CPT), shear wave velocity measurement (Vs) and the Becker penetration
test (BPT). Because of the difficulties and costs associated with high-quality
undisturbed sampling and subsequent high-quality testing of granular soils,
use of in-situ tests along with the case histories-calibrated empirical relation-
ships (i.e. liquefaction boundary curves) has been, and is still, the dominant
approach in engineering practise.

The most widely used cyclic stress-based method for liquefaction
potential evaluation in North America and throughout much of the
world is the simplified procedure pioneered by Seed and Idriss (1971).



Analysis of liquefaction potential 499

The simplified procedure was developed based on field observations and
field and laboratory tests with a strong theoretical basis. Case histo-
ries of liquefaction/no-liquefaction were collected from sites on level to
gently sloping ground, underlain by Holocene alluvial or fluvial sedi-
ments at shallow depths (< 15 m). In a case history, the occurrence of
liquefaction was primarily identified with surface manifestations such as
lateral spread, ground settlement, and sand boils. Because the simplified
procedure was eventually “calibrated” based on such case histories, the
“occurrence of liquefaction” should be interpreted accordingly, that is,
the emphasis is on the surface manifestations. This definition of liquefac-
tion does not always correspond to the initiation of liquefaction defined
based on the 5% DA axial strain in 20 cycles of uniform load typi-
cally adopted in the laboratory testing. The stress-based approach that
follows the simplified procedure by Seed and Idriss (1971) is considered
herein.

The state of the art for evaluating liquefaction potential was reviewed
in 1985 by a committee of the National Research Council. The report of
this committee became the standard reference for practicing engineers in
North America (NRC, 1985). About 10 years later, another review was
sponsored by the National Center for Earthquake Engineering Research
(NCEER) at the State University of New York at Buffalo. This workshop
focused on the stress-based simplified methods for liquefaction potential
evaluation. The NCEER Committee issued a report in 1997 (Youd and
Idriss, 1997), but continued to re-assess the state of the art and in 2001
published a summary paper (Youd et al., 2001), which represents the cur-
rent state of the art on the subject of liquefaction evaluation. It focuses
on the fundamental problem of evaluating the potential for liquefaction in
level or nearly level ground, using in-situ tests to characterize the resistance
to liquefaction and the Seed and Idriss (1971, 1982) simplified method to
characterize the duration and intensity of the earthquake shaking. Among
the methods recommended for determination of liquefaction resistance,
only the SPT-based method is examined herein, as the primary purpose
of this chapter is on the reliability analysis of soil liquefaction. The SPT-
based method is used only as an example to illustrate the probabilistic
approach.

In summary, the SPT-based method as described in Youd et al . (2001) is
adopted here as the deterministic model for liquefaction potential evaluation.
This method is originated by Seed and Idriss (1971) but has gone through
several stages of modification (Seed and Idriss, 1982; Seed et al., 1985; Youd
et al., 2001). In this chapter, a limit state of liquefaction triggering is defined
based on this SPT-based method, and the issues of parameter and model
uncertainties are examined in detail, followed by probabilistic analyses using
reliability theory. Examples are presented to illustrate both the deterministic
and the probabilistic approaches.
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13.2 Deterministic approach

13.2.1 Formulation of the SPT-based method

In the current state of knowledge, the seismic loading that could cause a
soil to liquefy is generally expressed in terms of cyclic stress ratio (CSR).
Because the simplified stress-based methods were all developed based on
calibration with field data with different earthquake magnitudes and over-
burden stresses, CSR is often “normalized” to a reference state with moment
magnitude Mw = 7.5 and effective overburden stress σ ′

v = 100 kPa. At the
reference state, the CSR is denoted as CSR7.5,σ , which may be expressed as
(after Seed and Idriss, 1971):

CSR7.5,σ = 0.65
(
σv

σ ′
v

)(
amax

g

)
(rd)/MSF/Kσ (13.1)

where σv = the total overburden stress at the depth of interest (kPa), σ ′
v = the

effective stress at the depth of interest (kPa), g = the unit of the acceleration
of gravity, amax = the peak horizontal ground surface acceleration (amax/g
is dimensionless), rd = the depth-dependent stress reduction factor (dimen-
sionless), MSF = the magnitude scaling factor (dimensionless), and Kσ = the
overburden stress adjustment factor for the calculated CSR (dimensionless).
For the peak horizontal ground surface acceleration, the geometric mean
is preferred for use in engineering practice, although use of the larger of
the two orthogonal peak accelerations is conservative and allowable (Youd
et al., 2001).

For routine practice and no critical projects, the following equations may
be used to estimate the values of rd (Liao and Whitman, 1986):

rd = 1.0 − 0.00765d for d < 9.15m, (13.2a)

rd = 1.174 − 0.0267d for 9.15m < d ≤ 20m (13.2b)

where d = the depth of interest (m). The variable MSF may be calculated
with the following equation (Youd et al., 2001):

MSF = (Mw/7.5
)−2.56 (13.3)

It should be noted that different formulas for rd and MSF have been pro-
posed by many investigators (e.g. Youd et al., 2001; Idriss and Boulanger,
2006; Cetin et al., 2004). To be consistent with the SPT-based deter-
ministic method presented herein, use of Equations (13.2) and (13.3) is
recommended.

As noted previously, the variable Kσ is a stress adjustment factor used
to adjust CSR to the effective overburden stress of σ ′

v = 100 kPa. This is
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different from the overburden stress correction factor (CN) that is applied to
the SPT blow count (N60), which is described later. The adjustment factor
Kσ is defined as follows (Hynes and Olsen, 1999):

Kσ = (σ ′
v/Pa)(f −1) (13.4)

where f ≈ 0.6 − 0.8 and Pa is the atmosphere pressure (≈100 kPa). Data
from the existing database are insufficient for precise determination of the
coefficient f . For routine practice and no critical projects, f = 0.7 may be
assumed, and thus the exponent in Equation (13.4) would be −0.3.

For the convenience of presentation hereinafter, the normalized cyclic
stress ratio CSR7.5,σ is simply labeled as CSR whenever no confusion would
be caused by such use. For liquefaction potential evaluation, CSR (as the
seismic loading) is compared with liquefaction resistance, expressed as cyclic
resistance ratio (CRR). As noted previously, the simplified stress-based meth-
ods were all developed based on calibration with field observations. Such
calibration process is generally based on the concept that cyclic resistance
ratio (CRR) is the limiting CSR beyond which the soil will liquefy. Based
primarily on this concept and with engineering judgment, the following
equation is recommended by Youd et al. (2001) for the determination of
CRR using SPT data:

CRR = 1
34 − N1,60cs

+ N1,60cs

135
+ 50

[10 · N1,60cs + 45]2 − 1
200

(13.5)

where N1,60cs (dimensionless) is the clean-sand equivalence of the overbur-
den stress-corrected SPT blow count, defined as follows:

N1,60cs = α+βN1,60 (13.6)

where α and β are coefficients to account for the effect of fines content,
defined later, and N1,60 is the SPT blow count normalized to the reference
hammer energy efficiency of 60 % and effective overburden stress of 100 kPa,
defined as:

N1,60 = CNN60 (13.7)

where N60 = the SPT blow count at 60% hammer energy efficiency and
corrected for rod length, sampler configuration, and borehole diameter
(Skempton, 1986; Youd et al., 2001):

CN = (Pa/σ
′
v)0.5 ≤ 1.7 (13.8)
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The coefficients α and β in Equation (13.6) are related to fines content (FC)
as follows:

α = 0 for FC ≤ 5% (13.9a)

α = exp [1.76 − (190/FC2)] for 5% < FC < 35% (13.9b)

α = 5.0 for FC ≥ 35% (13.9c)

β = 1.0 for FC ≤ 5% (13.10a)

β = [0.99 + (FC1.5/1000)] for 5% < FC < 35% (13.10b)

β = 1.2 for FC ≥ 35% (13.10c)

Equations (13.1) through (13.10) collectively represent the SPT-base deter-
ministic model for liquefaction potential evaluation recommended by Youd
et al. (2001). This model is recognized as the current state of the art for
liquefaction evaluation using SPT. The reader is referred to Youd et al.
(2001) for additional details on this model and its parameters. In a deter-
ministic evaluation, factor of safety (FS), defined as FS = CRR/CSR, is used
to “measure” liquefaction potential. In theory, liquefaction is said to occur
if FS ≤ 1, and no liquefaction if FS > 1. However, caution must be exer-
cised when interpreting the calculated FS. In the back analysis of a case
history or in a post-earthquake investigation analysis, use of FS ≤ 1 to judge
whether liquefaction had occurred could be misleading as the existing sim-
plified methods tend to be conservative (in other words, there could be model
bias toward the conservative side). Because of model and parameter uncer-
tainties, FS > 1 does not always correspond to no-liquefaction, and FS ≤ 1
does not always correspond to liquefaction.

The selection of a minimum required FS value for a particular project in
a design situation depends on factors such as the perceived level of model
and parameter uncertainties, the consequence of liquefaction in terms of
ground deformation and structures damage potential, the importance of the
structures, and the economic consideration. Thus, the process of selecting
an appropriate FS is not a trivial exercise. In a design situation, a factor of
safety of 1.2–1.5 is recommended by the Building Seismic Safety Council
(1997) in conjunction with the use of the Seed et al. (1985) method for liq-
uefaction evaluation. Since the Youd et al. (2001) method is essentially an
updated version of, and is perceived as conservative as, the Seed et al. (1985)
method, the recommended range of FS by the Building Seismic Safety Coun-
cil (1997) should be applicable. In recent years, however, there is growing
trend to assess liquefaction potential in terms of probability of liquefaction
(Liao et al., 1988; Juang et al., 2000, 2002; Cetin et al., 2004). To facilitate
the use of probabilistic methods, calibration of the calculated probability
to the previous engineering experience is needed. In a previous study by
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Juang et al. (2002), a factor of safety of 1.2 in the Youd et al. (2001) method
was found to correspond approximately to a mean probability of 0.30. In
this chapter, further calibration of the calculated probability of liquefaction
is presented later.

13.2.2 Example No. 1: deterministic evaluation of a
non-liquefied case

This example concerns a non-liquefied case. Field observation of the site,
which is designated as San Juan B-5 (Idriss et al., as cited in Cetin, 2000), indi-
cated no occurrence of liquefaction during the 1977 Argentina earthquake.
The mean values of seismic and soil parameters at the critical depth (2.9 m)
are given as follows: N60 = 8.0, FC = 3%, σ ′

v = 38.1 kPa, σv = 45.6
kPa, amax = 0.2 g, and Mw = 7.4 (Cetin, 2000). First, CRR is calculated
as follows:

Using Equation (13.8),

CN = (Pa/σ
′
v)0.5 = (100/38.1)0.5 = 1.62 < 1.7

Using Equation (13.7),

N1,60 = CNN60 = (1.62)(8.0) = 13.0

Since FC = 3% < 5%, thus α = 0 and β = 1 according to Equations (13.9)
and (13.10). Thus, according to Equation (13.6),

N1,60cs = α+βN1,60 = 13.0.

Finally, using Equation (13.5), we have

CRR = 1
34 − N1,60cs

+ N1,60cs

135
+ 50

[10 · N1,60cs + 45]2 − 1
200

= 0.141

Next, the intermediate parameters of CSR are calculated as follows:

MSF = (Mw/7.5
)−2.56 = (7.4/7.5)−2.56 = 1.035

Kσ = (σ ′
v/Pa)(f −1) = (38.1/100)−0.3 = 1.335

rd = 1.0 − 0.00765d = 1.0 − 0.00765(2.9) = 0.978
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Finally, using Equation (13.1), we have:

CSR7.5,σ = 0.65
(
σv

σ ′
v

)(
amax

g

)
(rd)/MSF/Kσ

= 0.65
(

45.6
38.1

)
(0.2)(0.978)/[(1.035)(1.335)]

= 0.110

The factor of safety is calculated as follows:

FS = CRR/CSR = 0.141/0.110 = 1.28

As a back analysis of a case history, this FS value would suggest no liq-
uefaction, which agrees with the filed observation. However, a probabilistic
analysis might be necessary or desirable to complement the judgment based
on the calculated FS value.

13.2.3 Example No. 2: deterministic evaluation of a
liquefied case

This example concerns a liquefied case. Field observation of the site, des-
ignated as Ishinomaki-2 (Ishihara et al., as cited in Cetin, 2000), indicated
occurrence of liquefaction during the 1978 Miyagiken-Oki earthquake. The
mean values of seismic and soil parameters at the critical depth (3.7 m) are
given as follows: N1,60 = 5, FC = 10%, σ ′

v = 36.28 kPa, σv = 58.83 kPa,
amax = 0.2 g, and Mw = 7.4 (Cetin, 2000).

Similar to the analysis performed in Example 1, the calculations of the
CRR, CSR, and FS are carried out as follows:

α = exp [1.76 − (190/FC2)] = exp[1.76 − (190/102)] = 0.869

β = [0.99 + (FC1.5/1000)] = [0.99 + (101.5/1000)] = 1.022

N1,60cs = α+βN1,60 = 5.98

CRR = 1
34 − N1,60cs

+ N1,60cs

135
+ 50

[10 · N1,60cs + 45]2 − 1
200

= 1
34 − 5.98

+ 5.98
135

+ 50
[10 × 5.98 + 45]2 − 1

200

= 0.080

MSF = (Mw/7.5
)−2.56 = (7.4/7.5)−2.56 = 1.035

Kσ = (σ ′
v/Pa)(f −1) = (36.28/100)−0.3 = 1.356
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rd = 1.0 − 0.00765d = 1.0 − 0.00765(3.7) = 0.972

CSR = 0.65
(
σv

σ ′
v

)(
amax

g

)
(rd)/MSF/Kσ = 0.146

FS = CRR/CSR = 0.545

The calculated FS value is much below 1. As a back analysis of a case his-
tory, the calculated FS value would confirm the field observation with a
great certainty. However, a probabilistic analysis might still be desirable to
complement the judgment based on the calculated FS value.

13.3 Probabilistic approach

Various models for estimating the probability of liquefaction have been pro-
posed (Liao et al., 1988; Juang et al., 2000, 2002; Cetin et al., 2004). These
models are all data-driven, meaning that they are established based on statis-
tical analyses of the databases of case histories. To calculate the probability
using these empirical models, only the best estimates (i.e. the mean values) of
the input variables are required; the uncertainty in the model, termed model
uncertainty, and the uncertainty in the input variables, termed parameter
uncertainty, are excluded from the analysis. Thus, the calculated proba-
bilities might be subject to error if the effect of model and/or parameter
uncertainty is significant. A more fundamental approach to this problem
would be to adopt a reliability analysis that considers both model and param-
eter uncertainties. The formulation and procedure for conducting a rigorous
reliability analysis is described in the sections that follow.

13.3.1 Limit state of liquefaction triggering

In the context of reliability analysis presented herein, the limit state of lique-
faction triggering is essentially the boundary curve that separates “region”
of liquefaction from the region of no-liquefaction. An example of a limit
state is shown in Figure 13.1, where the SPT-based boundary curve recom-
mended by Youd et al. (2001) is shown with 148 case histories. As reflected
in the scattered data shown in Figure 13.1, uncertainty exists as to where
the boundary curve should be “positioned.” This uncertainty is the model
uncertainty mentioned previously. The issue of model uncertainty is dis-
cussed later. At this point, the limit state may be expressed symbolically as
follows:

h(x) = CRR − CSR = 0 (13.11)

where x is a vector of input variables that consist of soil and seismic param-
eters that are required in the calculation of CRR and CSR, and h(x) < 0
indicates liquefaction.
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Figure 13.1 An example limit state of liquefaction triggering.

As noted previously, Equations (13.1) through (13.10) collectively repre-
sent the SPT-base deterministic model for liquefaction potential evaluation
recommended by Youd et al. (2001). Two parameters N1,60 and FC are
required in the calculation of CRR and both are assumed to be random
variables. Since MSF is a function of Mw, and Kσ is a function of σ ′

v, five
parameters, including amax,Mw, σ ′

v,σv, and rd, are required for calculat-
ing CSR. The first four parameters, amax,Mw, σ ′

v, and σv are assumed to
be random variables. The parameter rd is a function of depth (d) and is not
considered as a random variable (since CSR is evaluated for soil at a given d).
Based on the above discussions, a total of six random variables are identi-
fied in the deterministic model by Youd et al. (2001) described previously.
Thus, the limit state of liquefaction based on this deterministic model may
be expressed as follows:

h(x) = CRR − CSR = h(N1,60,FC,Mw,amax,σ
′
v, and σv) = 0 (13.12)

It should be noted that while the parameter rd is not considered as a random
variable, the uncertainty does exist in the model for rd (Equation (13.2)),
just as the uncertainty exists in the model for MSF (Equation (13.3)) and in
the model for Kσ (Equation (13.4)). The uncertainty in these “component”
models contributes to the uncertainty of the calculated CSR, which, in
turn, contributes to the uncertainty of the CRR model, since CRR is con-
sidered as the limiting CSR beyond which the soil will liquefy. Rather
than dealing with the uncertainty of each component model, where there
is a lack of data for calibration, the uncertainty of the entire limit state
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model is characterized as a whole, since the only data available for model
calibration are field observations of liquefaction (indicated by h(x) ≤ 0) or
no liquefaction (indicated by h(x) > 0). Thus, the limit state model that
considers model uncertainty may be rewritten as:

h(x) = c1CRR − CSR = h(c1,N1,60,FC,Mw,amax,σ
′
v, and σv) = 0

(13.13)

where random variable c1 represents the uncertainty of the limit state model
that is yet to be characterized. Use of a single random variable to characterize
the uncertainty of the entire limit state model is adequate, since CRR is
defined as the limiting CSR beyond which the soil will liquefy, as noted
previously. Thus, only one random variable c1 applied to CRR is required.
In fact, Equation (13.13) may be interpreted as: h(x) = c1 CRR – CSR =
c1 FS –1 = 0. Thus, the uncertainty of the entire limit state model is seen
here as the uncertainty in the calculated FS, where data (field observations)
are available for calibration. For convenience of presentation hereinafter,
the random variable c1 is referred to as the model bias factor or simply,
model factor.

13.3.2 Parameter uncertainty

For a realistic estimate of liquefaction probability, the reliability analy-
sis must consider both parameter and model uncertainties. The issue of
model uncertainty is discussed later. Thus, for reliability analysis of a future
case, the uncertainties of input random variables must first be assessed.
For each input variable, this process involves the estimation of the mean
and standard deviation if the variable is assumed to follow normal or
lognormal distribution. The engineer usually can make a pretty good esti-
mate of the mean of a variable even with limited data. This probably has
to do with the well-established statistics theory that the “sample mean”
is a best estimate of the “population mean.” Thus, the following discus-
sion focuses on the estimation of standard deviation of each input random
variable.

Duncan (2000) suggested that the standard deviation of a random variable
may be obtained by one of the following three methods: (1) direct calculation
from data, (2) estimate based on published coefficient of variation (COV);
and (3) estimate based on the “three-sigma rule” (Dai and Wang, 1992). In
the last method, the knowledge of the highest conceivable value (HCV) and
the lowest conceivable value (LCV) of the variable is used to calculate the
standard deviation σ as follows (Duncan, 2000):

σ = HCV − LCV
6

(13.14)
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It should be noted that the engineer tends to under-estimate the range of a
given variable (and thus, the standard deviation), particularly if the estimate
was based on very limited data and judgment was required. Thus, for a
small sample size, a value of less than 6 should be used for the denominator
in Equation (13.14). Whenever in doubt, a sensitivity analysis should be
conducted to investigate the effect of different levels of COV of a particular
variable on the results of reliability analysis.

Typical ranges of COVs of the input variables according to the published
data are listed in Table 13.1. It should be noted that the COVs of the earth-
quake parameters, amax and Mw, listed in Table 13.1, are based on values
reported in the published databases of case histories where recorded strong
ground motions and/or locally calibrated data were available. The COV
of amax based on general attenuation relationships could easily be as high
as 0.50 (Haldar and Tang, 1979). According to Youd et al. (2001), for a
future case, the variable amax may be estimated using one of the following
methods:

1 Using empirical correlations of amax with earthquake magnitude, dis-
tance from the seismic energy source, and local site conditions.

2 Performing local site response analysis (e.g. using SHAKE or other
software) to account for local site effects.

3 Using the USGS National Seismic Hazard web pages and the NEHRP
amplification factors.

Table 13.1 Typical coefficients of variation of input random variables.

Random variable Typical range of COVa References

N1,60 0.10–0.40 Harr (1987);
Gutierrez et al. (2003);
Phoon and Kulhawy (1999)

FC 0.05–0.35 Gutierrez et al. (2003)
σ ′

v 0.05–0.20 Juang et al. (1999)
σv 0.05–0.20 Juang et al. (1999)
amax 0.10–0.20b Juang et al. (1999)
Mw 0.05–0.10 Juang et al. (1999)

Note
aThe word “typical” here implies the range approximately bounded by the 15th percentile and
the 85th percentile, estimated from case histories in the existing databases such as Cetin (2000).
Published COVs are also considered in the estimate given here. The actual COV values could be
higher or lower, depending on the variability of the site and the quality and quantity of data that are
available.
bThe range is based on values reported in the published databases of case histories where recorded
strong ground motions and locally calibrated data were available. However, the COV of amax
based on general attenuation relationships or amplification factors could easily be as high as or
over 0.50.
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Use of the amplification factors approach is briefly summarized in
the following. The USGS National Hazard Maps (Frankel et al., 1997)
provide rock peak ground acceleration (PGA) and spectral acceleration
(SA) for a specified locality based on latitude/longitude or zip code.
The USGS web page (http://earthquake.usgs.gov/research/hazmaps) pro-
vides PGA value and SA values at selected spectral periods (For exam-
ple, T = 0.2, 0.3, and 1.0 s) each with six levels of probability of
exceedance, including 1% probability of exceedance in 50 years (annual
rate of 0.0002), 2% probability of exceedance in 50 years (annual
rate of 0.0004), 5% probability of exceedance in 50 years (annual rate
of 0.001), 10% probability of exceedance in 50 years (annual rate of
0.002), and 20% probability of exceedance in 50 years (annual rate
of 0.004), and 50% probability of exceedance in 75 years (annual rate
of 0.009). The six levels of probability of exceedance are often referred
to as the six seismic hazard levels, with corresponding earthquake return
periods of 4975, 2475, 975, 475, 224, and 108 years, respectively. For
a given locality, a PGA can be obtained for a specified probability of
exceedance in an exposure time from the USGS National Seismic Hazard
Maps.

For liquefaction analysis, the rock PGA needs to be converted to peak
ground surface acceleration at the site, amax. Ideally, the conversion should
be carried out based on site response analysis. Various simplified proce-
dures are also available for an estimate of amax (e.g. Green, 2001; Gutierrez
et al., 2003; Stewart et al., 2003; Choi and Stewart, 2005). As an example,
a simplified procedure for estimating amax, perhaps in the simplest form, is
expressed as follows:

amax = Fa (PGA) (13.15)

where Fa is the amplification factor, which, in a simplest form, may be
expressed as a function of rock PGA and the NEHRP site class (NEHRP
1998). Figure 13.2 shows an example of a simplified chart for the ampli-
fication factor. The NEHRP site classes used in Figure 13.2 are based
on the mean shear wave velocity of soils in the top 30 m, as listed in
Table 13.2.

Choi and Stewart (2005) developed a more sophisticated model for ground
motion amplification that is a function of the average shear wave velocity
over the top 30 m of soils VS30 and “rock” reference PGA. The amplifica-
tion factors are defined relative to “rock” reference motions from several
attenuation relationships for active tectonic regions, including those of
Abrahamson and Silva (1997), Sadigh et al. (1997), and Campbell and
Bozorgnia (2003). The databases used in model development cover the
parameter spaces VS30 = 130 ∼ 1300 m/s and PGA = 0.02 ∼ 0.8 g, and
the model is considered valid only in these ranges of parameters. The Choi
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Figure 13.2 Amplification factor as a function of rock PGA and the NEHRP site class (re-
produced from Gutierrez et al., 2003).

Table 13.2 Site classes (categories) in NEHRP provisions.

NEHRP category
(soil profile type)

Description

A Hard rock with measured mean shear wave velocity in the top
30 m, vs > 1500 m/s

B Rock with 760 m/s < vs ≤ 1500 m/s
C Dense soil and soft rock with 360 m/s < vs ≤ 760 m/s
D Stiff soil with 180 m/s < vs ≤ 360 m/s
E Soil with vs ≤ 180 m/s or any profile with more than 3 m of soft

clay (plasticity index PI > 20, water content w > 40% and
undrained shear strength su < 25 kPa)

F Soils requiring a site-specific study, e.g. liquefiable soils, highly
sensitive clays, collapsible soils, organic soils, etc.

and Stewart (2005) model for amplification factor (Fij) is expressed as
follows:

ln(Fij) = c ln

(
VS30ij

Vref

)
+ b ln

(
PGArij

0.1

)
+ηi + εij (13.16)

where PGAr is the rock PGA expressed in units of g; b is a function of
regression parameters; c and Vref are regression parameters; ηi is a random
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effect term for earthquake event i; and εij represents the intra-event model
residual for motion j in event i.

Choi and Stewart (2005) provided many sets of empirical constants for
use of Equation (13.16). As an example, for a site where the attenuation
relationship by Abrahamson and Silva (1997) is applicable and a spectral
period T= 0.2 sec is specified, Equation (13.16) becomes:

ln(Fa) = −0.31 ln
(

VS30

453

)
+ b ln

(
PGAr

0.1

)
(13.17)

In Equation (13.17), Fa is the amplification factor; VS30 is obtained from
site characterization; PGAr is obtained for reference rock conditions using
the attenuation relationship by Abrahamson and Silva (1997); and b is
defined as follows (Choi and Stewart, 2005):

b = −0.52, for Site Category E (13.18a)

b = −0.19 − 0.000023 (VS30 − 300)2, for 180 < VS30 < 300(m/s)
(13.18b)

b = −0.19, for 300 < VS30 < 520(m/s) (13.18c)

b = −0.19 + 0.00079(VS30 − 520), for 520 < VS30 < 760(m/s)
(13.18d)

b = 0, for VS30 > 760(m/s) (13.18e)

The total standard deviation for the amplification factor Fa obtained
from Equation (13.17) came from two sources: the inter-event standard
deviation of 0.27, and the intra-event standard deviation of 0.53. Thus,
for the given scenario (the specified spectral period and the chosen atten-
uation model), the total standard deviation is

√
(0.27)2 + (0.53)2 = 0.59.

The peak ground surface acceleration amax can be obtained from Equation
(13.15).

For subsequent reliability analysis, amax obtained from Equation (13.15)
may be considered as the mean value. For a specified probability of
exceedance (and thus a given PGA), the variation of this mean amax is
primarily caused by the uncertainty in the amplification factor model. Use
of simplified amplification factors for estimating amax tends to result in a
large variation and thus, for important projects, concerted effort to reduce
this uncertainty using more accurate methods and/or better quality data
should be made whenever possible. The reader is referred to Bazzurro and
Cornell (2004 a,b) and Juang et al. (2008) for detailed discussions of this
subject.

The magnitude of Mw can also be derived from the USGS National Seismic
Hazard web pages through a de-aggregation procedure. Detailed information
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may be obtained from http://eqint.cr.usgs.gov/deaggint/2002.index.php.
A summary of the procedure is provided in the following.

The task of seismic hazard de-aggregation involves the determination of
earthquake parameters, principally magnitude and distance, for use in a
seismic-resistant design. In particular, calculations are made to determine
the statistical mean and modal sources for any given US site for the six
hazard levels (or the corresponding probabilities of exceedance).

The seismic hazard presented in the USGS Seismic Hazard web page is de-
aggregated to examine the “contribution to hazard” (in terms of frequency)
as a function of magnitude and distance. These plots of “contribution to
hazard” as a function of magnitude and distance are useful for specify-
ing design earthquakes. On the available de-aggregation plots from the
USGS website, the height of each bar represents the percent contribution
of that magnitude and distance pair (or bin) to the specified probabilities of
exceedance. The distribution of the heights of these bars (i.e. frequencies)
is essentially a joint probability mass function of magnitude and distance.
When this joint mass function is “integrated” along the axis of distance,
the “marginal” or conditional probability mass function of the magnitude is
obtained. This distribution of Mw is obtained for the same specified probabil-
ity of exceedance as the one from which the PGA is derived. The distribution
(or the uncertainty) of Mw here is due primarily to the uncertainty in seismic
sources.

It should also be noted that for selection of a design earthquake in a deter-
ministic approach, the de-aggregation results are often described in terms
of the mean magnitude. However, use of the modal magnitude is preferred
by many engineers because the mode represents the most likely source in
the seismic-hazard model, whereas the mean might represent an unlikely
or even unconsidered source, especially in the case of a strongly bimodal
distribution.

In summary, a pair of PGA and Mw may be selected at a specified hazard
level or probability of exceedance. The selected PGA is converted to amax,
and the pair of amax and Mw is then used in the liquefaction evaluation.
For reliability analysis, the values of amax and Mw determined as described
previously are taken as the mean values, and the variations of these variables
are estimated and expressed in terms of the COVs. The reader is referred to
Juang et al. (2008) for additional discussions on this subject.

13.3.3 Correlations among input random variables

The correlations among the input random variables should be considered in a
reliability analysis. The correlation coefficients may be estimated empirically
using statistical methods. Except for the pair of amax and Mw, the correla-
tion coefficient between each pair of input variables used in the limit state
model is estimated based on an analysis of the actual data in the existing
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Table 13.3 Coefficients of correlation among the six input random variables.

Variable Variable N1,60 FC �′
v �v amax Mw

N1,60 1 0 0.3 0.3 0 0
FC 0 1 0 0 0 0
σ ′

v 0.3 0 1 0.9 0
σv 0.3 0 0.9 1 0 0
amax 0 0 0 0 1 0.9a

Mw 0 0 0 0 0.9a 1

Note
aThis is estimated based on local attenuation relationships calibrated to given historic earthquakes.
This correlation may be used for back-analysis of a case history. The correlation of the two parameters
at a locality subject to uncertain sources, as in the analysis of a future case, could be much lower or
even negligible.

databases of case histories. The correlation coefficient between amax and
Mw is taken to be 0.9, which is based on statistical analysis of the data
generated from the attenuation relationships (Juang et al., 1999). The coef-
ficients of correlation among the six input random variables are shown in
Table 13.3. The correlation between the model uncertainty factor (c1 in
Equation 13.13) and each of the six input random variables is assumed
to be 0.

It should be noted that the correlation matrix as shown in Table 13.3 must
be symmetric and “positive definite” (Phoon, 2004). If this condition is not
satisfied, a negative variance might be obtained, which would contradict the
definition of the variance. In ExcelTM, the condition can be easily checked
using “MAT_CHOLESKY.” It should be noted that MAT_CHOLESKY
can be executed with a free ExcelTM add-in, “matrix.xla,” which must
be installed once by the user. The file “matrix.xla” may be downloaded
from http://digilander.libero.it/foxes/index.htm. For the correlation matrix
shown in Table 13.3, the diagonal entries of the matrix of Cholesky
factors are all positive; thus, the condition of “positive definiteness” is
satisfied.

13.3.4 Model uncertainty

The issue of model uncertainty is important but rarely emphasized in the
geotechnical engineering literature, perhaps because it is difficult to address.
Instead of addressing this issue directly, Zhang et al. (2004) suggested a
procedure for reducing the uncertainty of model prediction using Bayesian
updating techniques. However, since a large quantity of liquefaction case
histories (Cetin, 2000) is available for calibration of the calculated relia-
bility indexes, an estimate of the model factor (c1 in Equation (13.13)) is
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possible, as documented previously by Juang et al. (2004). The procedure
for estimating model factor involves two steps: (1) deriving a Bayesian map-
ping function based on the database of case histories, and (2) using the
calibrated Bayesian mapping function as a reference to back-figure the model
factor c1. The detail of this procedure is not repeated herein; only a brief
summary of the results obtained from the calibration of the limit state model
(Equation (13.13)) is provided, and the reader is referred to Juang et al.
(2004, 2006) for details of the procedure.

The model factor c1 is assumed to follow lognormal distribution. With the
assumption of lognormal distribution, the model factor c1 can be character-
ized with a mean µc1 and a standard deviation (or coefficient of variation,
COV). In a previous study (Juang et al., 2004), the effect of the COV of
the model factor (c1) on the final probability obtained through reliability
analysis was found to be insignificant, relative to the effect of µc1. Thus,
for the calibration (or estimation) of mean model factor µc1, an assump-
tion of COV = 0 is made. It should be noted, however, that because of the
assumption of COV = 0 and the effect of other factors such as data scatter,
there will be variation on the calibrated µc1, which would be reflected in its
standard deviation, σµc1.

The first step in the model calibration process is to develop Bayesian map-
ping functions based on the distributions of the values of reliability index β

for the group of liquefied cases and the group of non-liquefied cases (Juang
et al., 1999):

PL = P(L|β) = P(β|L)P(L)
P(β|L)P(L) + P(β|NL)P(NL)

(13.19)

where P(L|β) = probability of liquefaction for a given β; P(β|L) = probability
of β given that liquefaction did occur; P(β|NL) = probability of β given that
liquefaction did not occur; P(L) = prior probability of liquefaction; P(NL) =
prior probability of no-liquefaction.

The second step in the model calibration process is to back-figure the
model factor µc1 using the developed Bayesian mapping functions. By
means of a trial-and-error process with varying µc1 values, the uncer-
tainty of the limit state model (Equation (13.13)) can be calibrated using
the probabilities interpreted from Equation (13.19) for a large number of
case histories. The essence of the calibration here is to find an “optimum”
model factor µc1 so that the calibrated nominal probabilities match the
best with the reference Bayesian mapping probabilities for all cases in the
database. Using the database compiled by Cetin (2000), the mean model
factor is calibrated to be µc1 = 0.96 and the variation of the calibrated
mean model factor is reflected in the estimated standard deviation of
σµc1 = 0.04.
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With the given limit state model (Equation (13.13) and associated
equations) and the calibrated model factor, reliability analysis of a future
case can be performed once the mean and standard deviation of each input
random variable are obtained.

13.3.5 First-order reliability method

Because of the complexity of the limit state model (Equation (13.13)) and
the fact that the basic variables of the model are non-normal and cor-
related, no closed-form solution for reliability index of a given case is
possible. For reliability analysis of such problems, numerical methods such
as the first-order reliability method (FORM) are often used. The general
approach undertaken by the FORM is to transform the original random
variables into independent, standard normal random variables, and the
original limit state function into its counterpart in the transformed or
“standard” variable space. The reliability index β is defined as the short-
est distance between the limit state surface and the origin in the standard
variable space. The point on the limit state surface that has the shortest
distance from the origin is referred to as the design point. FORM requires
an optimization algorithm to locate the design point and to determine the
reliability index. Several algorithms are available and the reader is referred
to the literature (e.g. Ang and Tang, 1984; Melchers, 1999; Baecher and
Christian, 2003) for details of these algorithms. Once the reliability index β

is obtained using FORM, the nominal probability of liquefaction, PL, can
be determined as:

PL = 1 −	(β) (13.20)

where 	 is the standard normal cumulative distribution function.
In Microsoft ExcelTM, numerical value of 	(β) can be obtained using the
function NORMSDIST(β).

The FORM procedure can easily be programmed (e.g. Yang, 2003).
Efficient implementation of the FORM procedure in ExcelTM was first
introduced by Low (1996), and many geotechnical applications are found
in the literature (e.g. Low and Tang, 1997; Low, 2005; Juang et al.,
2006). The spreadsheet solution introduced by Low (1996) is a clever solu-
tion of reliability index based on the formulation by Hasofer and Lind
(1974) on the original variable space. It utilized a feature of ExcelTM,
called “Solver,” for performing the optimization process. Phoon (2004)
developed a similar spreadsheet solution using “Solver;” however, the
solution of reliability index was obtained in the standard variable space,
which tends to produce more stable numerical results. Both spreadsheet
approaches yield a solution (reliability index) that is practically identical
to each other and to the solution obtained by a dedicated computer program
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(Yang, 2003) that implement the well-accepted algorithms for reliability
index using FORM.

The mean probability of liquefaction, PL, may be obtained by the FORM
analysis considering the mean model factor µc1. To determine the variation
of the estimated mean probability as a result of the variation in µc1, in terms
of standard deviation σPL

, a large number of µc1 values may be “sampled”
within the range of µc1± 3σµc1. The FORM analysis with each of these
µc1 values will yield a large number of corresponding PL values, and then
the standard deviation σPL

can be determined. Alternatively, a simplified
method may be used to estimate σPL

. Two additional FORM analyses may
be performed, one with µc1+ 1σµc1 as the model factor, and the other with
µc1− 1σµc1 as the model factor. Assuming that the FORM analysis using
µc1+ 1σµc1 as the model factor yields a probability of P+

L , and the FORM
analysis using µc1− 1σµc1 as the model factor yields a probability of P−

L ,
then the standard deviation σPL

may be estimated approximately with the
following equation (after Gutierrez et al., 2003):

σPL
= (P+

L − P−
L )/2 (13.21)

13.3.6 Example No. 3: probabilistic evaluation of a
non-liquefied case

This example concerns a non-liquefied case that was analyzed previously
using the deterministic approach (See Example No. 1 in Section 13.2.2).
As described previously, field observation of the site indicated no occurrence
of liquefaction during the 1977 Argentina earthquake. The mean values of
seismic and soil parameters at the critical depth (2.9 m) are given as follows:
N1,60 = 13, FC= 3%, σv′ = 38.1 kPa, σv = 45.6 kPa, amax = 0.2 g, and
Mw =7.4, and the corresponding coefficients of variation of these parameters
are assumed to be 0.23, 0.333, 0.085, 0.107, 0.075, and 0.10, respectively
(Cetin, 2000).

In the reliability analysis based on the limit state model expressed in
Equation (13.13), the parameter uncertainty and the model uncertainty
are considered along with the correlation between each pair of input ran-
dom variables. However, no correlation is assumed between the model
factor c1 and each of the six input random variables of the limit state
model. This assumption is supported by the finding of a recent study by
Phoon and Kulhawy (2005) that the model factor is weakly correlated
to the input variables. To facilitate the use of this reliability analysis, a
spreadsheet that implements the procedure of the FORM is developed.
This spreadsheet, shown in Figure 13.3, is designed specifically for lique-
faction evaluation using the SPT-based method by Youd et al. (2001), and
thus, all the formulas of the limit state model (Equation (13.13) along with
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Equations (13.1)–(13.10)) are implemented. For users of this spreadsheet,
the input data consists of four categories:

1 the depth of interest (d = 2.9 m in this example),
2 the mean and standard deviation of each of the six random variables,

N1,60, FC, σ ′
v, σ v, amax, and Mw,

3 the matrix of the correlation coefficients (use of default values as listed in
Table 13.3 is recommended; however, a user-specified matrix could be
used if it is deemed more accurate and it satisfies the positive definiteness
requirement, as described previously), and

4 the model factor statistics, µc1 and COV (note: COV is set to 0 here as
explained previously).

Figure 13.3 shows a spreadsheet solution that is adapted from the
spreadsheet originally designed by Low and Tang (1997). The input data
for this example, along with the intermediate calculations and the final
outcome (reliability index and the corresponding nominal probability), are
shown in this spreadsheet. It should be noted that the solution shown in

Mean COV h l x* mN sN

N1,60 13.00

3.00

38.14

45.61

0.20

7.40

0.96

0.231

0.333

0.085

0.107

0.075

0.100

0.000

0.228

0.325

0.085

0.107

0.075

0.100

0.000

2.539

1.046

3.638

3.814

−1.612

1.997

−0.041

11.96

2.86

37.90

45.32

0.21

7.71

0.96

12.647

2.846

37.999

45.345

0.199

7.355

0.960

2.723

0.927

3.221

4.853

0.015

0.769

0.000

Depth 2.90 a 0

FC MSF 0.932 b 1

sv’

sv

rd 0.978 N1,60cs 11.96

f 0.7 Kσ 1.338

amax CSR7.5,σ 0.126 CRR 0.131

Mw FS 1.042

c1

Correlation  Matrix r  Results

1

0

0.3

0.3

0

0

0

0

1

0

0

0

0

0

0.3

0

1

0.9

0

0

0

0.3

0

0.9

1

0

0

0

0

0

0

0

1

0.9

0

0

0

0

0

0.9

1

0

0

0

0

0

0

0

1

−0.2536

0.0119

−0.0296

−0.0059

0.4338

0.4595

0.0000

FSoriginal 1.278 0.533

h() -1E-09 PL 0.297

Notes:

For this case, in solver’s option, use automatic scaling

Quadratic for Estimates, Central for Derivatives and Newton for Search

others as default options.

Initially, enter original mean values for x* column, followed by invoking Excel Solver, to automatically
minimize reliability index b, by changing x* column, subject to h(x) = 0.

Original input
Equivalent normal
parameters Calculate CSR and CRREquivalent normal

parameters at design point

To enter ARRAY FORMULA, hold down
 “Ctrl” and “Shift” keys, then press Enter.

h () = c1⋅ CRR – CSR

xi − mi

T

x∈F

−1

|b|

b = min
si

xi − mi

si

r

(x* − mN)/sN

Figure 13.3 A spreadsheet that implements the FORM analysis of liquefaction potential
(after Low and Tang, 1997).
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Figure 13.3 was obtained using the mean model factor µc1 = 0.96. Because
the spreadsheet uses the “Solver” feature in ExcelTM to perform the optimiza-
tion procedure as part of the FORM analysis, the user needs to make sure this
feature is selected in “Tools.” Within the “Solver” screen, various options
may be selected for numerical solutions, and the user may want to experiment
with different choices. In particular, the option of “Use Automatic Scaling”
in Solver should be activated if the optimization is carried out in the original
variable space (Figure 13.3). After selecting the solution options, the user
returns to the Solver screen, and chooses “Solve” to perform the optimiza-
tion and, when the convergence is achieved, the reliability index and the
probability of liquefaction are obtained. Because the results depend on the
initial guess of the “design point,” which is generally assumed to be equal
to the vector of the mean values of the input random variables, the user may
want to repeat the solution process a few times using different initial trial
values to make certain “stable” results have indeed been obtained. Using
µc1 = 0.96, the spreadsheet solution (Figure 13.3) yields a probability of
liquefaction of PL = 0.297 ≈ 0.30.

As a comparison, the spreadsheet solution that is adapted from the spread-
sheet originally designed by Phoon (2004) is shown in Figure 13.4. Practically
identical solution (PL = 0.30) is obtained. However, experience with both
spreadsheet solutions, one with optimization carried out in the original vari-
able space and the other in the standard variable space, indicates that the
solution with the latter approach is significantly more robust and is generally
recommended.

Following the procedure described previously, the FORM analyses using
µc1 ± 1σµc1 as the model factors, respectively, are performed with the
spreadsheet shown in Figure 13.3 (or Figure 13.4). The standard deviation of
the computed mean probability is then estimated to be σPL

= 0.039 accord-
ing to Equation (13.21). If the three sigma rule is applied, the probability PL
will approximately be in the range of 0.18–0.42, with a mean of 0.30.

As noted previously (Section 13.3), a preliminary estimate of the mean
probability may be obtained from empirical models. Using the procedure
developed by Juang et al. (2002), the following equation is developed for
interpreting FS determined by the adopted SPT-based method:

PL = 1

1 +
(

FS
1.05

)3.8 (13.22)

This equation is intended to be used only for a preliminary estimate of the
probability of liquefaction in the absence of the knowledge of parameter
uncertainties. For this non-liquefied case, FS = 1.28, and thus PL = 0.32
according to Equation (13.22). This PL value falls in the range of 0.18–0.42
determined by the probabilistic approach using FORM. As noted previously
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Mean COV h l Y=H(x) x=LU trial values U
x1: N1,60 Depth 2.90 a 0.00
x2: FC MSF 0.932 b 1.00
x3: sv’ rd 0.978 N1,60cs 11.96

x4: sv f 0.7

0.126

Kσ 1.338

x5: amax CSR7.5,σ CRR 0.131

x6: Mw FS 1.042
x7: c1

Correlation Matrix r

Results FSorginal 1.278 h() 5E-09 0.5333 PL 0.297

H: 0a: 1 2 3 4 5 6 7

Y1:

Y2:

Y3:

Y4:

Y5:

Y6:

Y7:

Cholesky L

Initially, enter original mean values for x* column, followed by invoking Excel Solver, to automatically minimize
reliability index b, by changing x* column, subject to h(x) = 0.

Original input
Equivalent normal
parameters

Equivalent normal 
parameters Calculate CSR and CRR

−0.254

0.000

0.049

0.066

0.434

0.158

0.000

−0.254

0.000

−0.030
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2.846
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0.206
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1.997
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0.228

0.325

0.085

0.107

0.075

0.100

0.000
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0.333
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0.100

0.000
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38.14
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0.96

0

1

1

1

1

1

1

1

1
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0
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2
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−1
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0
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Figure 13.4 A spreadsheet that implements the FORM analysis of liquefaction potential
(after Phoon, 2004).

in Section 13.3, the models such as Equation (13.22) require only the best
estimates (i.e. the mean values) of the input variables, and thus, the calculated
probabilities might be subject to error if the effect of parameter uncertainties
is significant.

Table 13.4 summarizes the solutions obtained by using the deterministic
and the probabilistic approaches for Example No. 3, and for Example No. 4
which is presented later. The results obtained for Example No. 3 from both
approaches confirm field observation of no liquefaction. However, the cal-
culated probability of liquefaction could still be as high as 0.42, even with
a factor of safety of FS = 1.28, which reflects significant uncertainties in the
parameters as well as in the limit state model.

13.3.7 Example No. 4: probabilistic evaluation of a
liquefied case

This example concerns a liquefied case that was analyzed previously
using the deterministic approach (See Example No. 2 in Section 13.2.3).
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Table 13.4 Summary of the deterministic and probabilistic solutions.

Case FS Mean Standard Range of PL
probability PL deviation of PL , �PL

San Juan B-5
(Example Nos. 1 and 3)

1.28 0.30 0.039 0.18–0.42

Ishinomaki-2
(Example Nos. 2 and 4)

0.55 0.91 0.015 0.86–0.95

Field observation of the site indicated occurrence of liquefaction during
the 1978 Miyagiken-Oki earthquake. The mean values of seismic and soil
parameters at the critical depth (3.7 m) are given as follows: N1,60 = 5,
FC = 10%, σ ′

v = 36.28 kPa,σv = 58.83 kPa, amax = 0.2 g, and Mw = 7.4,
and the corresponding coefficients of variation of these parameters are 0.180,
0.200, 0.164, 0.217, 0.2, and 0.1, respectively (Cetin, 2000).

Using the spreadsheet and the same procedure as described in Example
No. 3, the following results are obtained: PL = 0.91 and σPL

= 0.015.
Estimating with the three sigma rule, PL falls approximately in the range
of 0.86–0.95, with a mean of 0.91. Similarly, a preliminary estimate of the
probability of liquefaction may be obtained by Equation (13.22) using only
the mean values of the input variables. For this liquefied case, FS = 0.55, and
thus PL = 0.92 according to Equation (13.22). This PL value falls within the
range of 0.86–0.95 determined by the probabilistic approach using FORM.
Although the general trend of the results obtained from Equation (13.22)
appears to be correct based on the two examples presented, use of simplified
models such as Equation (13.22) for estimating the probability of liquefac-
tion should be limited to preliminary analysis of cases where there is a lack
of the knowledge of parameter uncertainties.

Table 13.4 summaries the solutions obtained by using the deterministic
and the probabilistic approaches for this liquefied case (Example No. 4).
The results obtained from both approaches confirm field observation of
liquefaction.

Finally, one observation of the standard deviation of the estimated prob-
ability obtained in Example Nos. 3 and 4 is perhaps worth mentioning.
In general, the standard deviation of the estimated mean probability is much
smaller in the cases with extremely high or low probability (PL > 0.9 or
PL < 0.1) than those with medium probability (0.3 < PL < 0.7). In the cases
with extremely high or low probability, the potential for liquefaction or no-
liquefaction is almost certain; it will either liquefy or not liquefy. This lower
degree of uncertainty is reflected in the smaller standard deviation. In the
cases with medium probability, there is a higher degree of uncertainty as to
whether liquefaction will occur, and thus it tends to have a larger standard
deviation in the estimated mean probability.
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13.4 Probability of liquefaction in a given
exposure time

For performance-based earthquake engineering (PBEE) design, it is often
necessary to determine the probability of liquefaction of a soil at a site in a
given exposure time. The probability of liquefaction obtained by reliability
analysis, as presented in Section 13.3 (in particular, in Example Nos. 3 and
4), is a conditional probability for a given set of seismic parameters amax
and Mw at a specified hazard level. For a future case with uncertain seismic
sources, the probability of liquefaction in a given exposure time (PL,T) may be
obtained by integrating the conditional probability over all possible ground
motions at all hazard levels:

PLT =
∑

All pairs of (amax, Mw)

{
p[L|(amax,Mw)] · p(amax,Mw)

}
(13.23)

where the term, p[L|(amax,Mw)], is the conditional probability of lique-
faction given a pair of seismic parameters amax and Mw; and the term,
p(amax,Mw), is the joint probability of amax and Mw. It is noted that the
joint probability p(amax,Mw) may be thought of as the likelihood of an event
(amax, Mw), and the conditional probability of liquefaction p[L|(amax,Mw)]
as the consequence of the event. Thus, the product of p[L|(amax,Mw)] and
p(amax,Mw) can be thought of as the weighted consequence of a single event.
Since all mutually exclusive and collectively exhaustive events [i.e., all pos-
sible pairs of (amax, Mw)] are considered in Equation 13.23, the sum of
all weighted consequences yields the total probability of liquefaction at the
given site.

While Equation (13.23) is conceptually straightforward, the implemen-
tation of this equation is a significant undertaking. Care must be exercised
to evaluate the joint probability of the pair (amax and Mw) for a local site
from different earthquake sources using appropriate attenuation and ampli-
fication models. This matter, however, is beyond the scope of this chapter,
and the reader is referred to Kramer et al. (2007) and Juang et al. (2008) for
detailed treatment of this subject.

13.5 Summary

Evaluation of liquefaction potential of soils is an important task in geotechni-
cal earthquake engineering. In this chapter, the simplified procedure based on
the standard penetration test (SPT), as recommended by Youd et al. (2001), is
adopted as the deterministic model for liquefaction potential evaluation. This
model was established originally by Seed and Idriss (1971) based on in-situ
and laboratory tests and field observations of liquefaction/no-liquefaction
in the seismic events. Field evidence of liquefaction generally consisted
of surficial observations of sand boils, ground fissures, or lateral spreads.
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Case histories of liquefaction/no-liquefaction were collected mostly from
sites on level to gently sloping ground, underlain by Holocene alluvial or
fluvial sediments at shallow depths (< 15 m). Thus, the models presented in
this chapter are applicable only to sites with similar conditions.

The focus of this chapter is on the probabilistic evaluation of liquefaction
potential using the SPT-based boundary curve recommended by Youd et al.
(2001) as the limit state model. The probability of liquefaction is obtained
through reliability analysis using the first-order reliability method (FORM).
The FORM analysis is carried out considering both parameter and model
uncertainties, as well as the correlations among the input variables. Proce-
dures for estimating the parameter uncertainties, in terms of coefficient of
variation, are outlined. In particular, the estimation of the seismic parame-
ters amax and Mw is discussed in detail. The limit state model based on Youd
et al. (2001) is characterized with a mean model factor of µc1 = 0.96 and a
standard deviation of the mean, σµc1 = 0.04. Use of these mean model fac-
tor statistics for the estimation of the mean probability PL and its standard
deviation σPL

is illustrated in two examples. Spreadsheet solutions specifi-
cally developed for this probabilistic liquefaction evaluation using FORM
are presented. The spreadsheets can facilitate the use of FORM for predicting
the probability of liquefaction considering the mean and standard deviation
of the input variables. It may also be used to investigate the effect of the
degree of uncertainty of individual parameters on the calculated probability
to aid in design considerations in cases where there is insufficient knowledge
of parameter uncertainties.

The probability of liquefaction obtained in this chapter is a conditional
probability at a given set of seismic parameters amax and Mw correspond-
ing to a specified hazard level. For a future case with uncertain seismic
sources, the probability of liquefaction in a given exposure time (PL,T) may be
obtained by integrating the conditional probability over all possible ground
motions at all hazard levels.
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