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Preface

Many problems arising in engineering, and notably in computer science
and mechanical engineering, require geometric tools and concepts. This is
especially true of problems arising in computer graphics, geometric mod-
eling, computer vision, and motion planning, just to mention some key
areas. This book is an introduction to fundamental geometric concepts and
tools needed for solving problems of a geometric nature with a computer.
In a previous text, Gallier [70], we focused mostly on affine geometry and
on its applications to the design and representation of polynomial curves
and surfaces (and B-splines). The main goal of this book is to provide an
introduction to more sophisticated geometric concepts needed in tackling
engineering problems of a geometric nature. Many problems in the above
areas require some nontrivial geometric knowledge, but in our opinion,
books dealing with the relevant geometric material are either too theoreti-
cal, or else rather specialized. For example, there are beautiful texts entirely
devoted to projective geometry, Euclidean geometry, and differential geom-
etry, but reading each one represents a considerable effort (certainly from
a nonmathematician!). Furthermore, these topics are usually treated for
their own sake (and glory), with little attention paid to applications.

This book is an attempt to fill this gap. We present a coherent view of geo-
metric methods applicable to many engineering problems at a level that can
be understood by a senior undergraduate with a good math background.
Thus, this book should be of interest to a wide audience including computer
scientists (both students and professionals), mathematicians, and engineers
interested in geometric methods (for example, mechanical engineers). In
particular, we provide an introduction to affine geometry, projective geom-
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etry, Euclidean geometry, basics of differential geometry and Lie groups,
and a glimpse of computational geometry (convex sets, Voronoi diagrams,
and Delaunay triangulations). This material provides the foundations for
the algorithmic treatment of curves and surfaces, some basic tools of ge-
ometric modeling. The right dose of projective geometry also leads to a
rigorous and yet smooth presentation of rational curves and surfaces. How-
ever, to keep the size of this book reasonable, a number of topics could
not be included. Nevertheless, they can be found in the additional material
on the web site: see http://www.cis.upenn.edu/ jean/gbooks/geom2.html,
abbreviated as web page. This is the case of the material on rational curves
and surfaces.

This book consists of sixteen chapters and an appendix. The additional
material on the web site consists of eight chapters and an appendix: see
web page.

The book starts with a brief introduction (Chapter 1).

Chapter 2 provides an introduction to affine geometry. This ensures
that readers are on firm ground to proceed with the rest of the book,
in particular, projective geometry. This is also useful to establish
the notation and terminology. Readers proficient in geometry may
omit this section, or use it as needed. On the other hand, readers
totally unfamiliar with this material will probably have a hard time
with the rest of the book. These readers are advised do some extra
reading in order to assimilate some basic knowledge of geometry. For
example, we highly recommend Pedoe [136], Coxeter [35], Snapper
and Troyer [160], Berger [12, 13|, Fresnel [66], Samuel [146], Hilbert
and Cohn—Vossen [84], Boehm and Prautzsch [17], and Tisseron [169].

Basic properties of convex sets and convex hulls are discussed in
Chapter 3. Three major theorems are proved: Carthéodory’s theorem,
Radon’s theorem, and Helly’s theorem.

Chapter 4 presents a construction (the “hat construction”) for embed-
ding an affine space into a vector space. An important application of
this construction is the projective completion of an affine space, pre-
sented in the next chapter. Other applications are treated in Chapter
20, which is on the web site, see web page.

Chapter 5 provides an introduction to projective geometry. Since
we are not writing a treatise on projective geometry, we cover only
the most fundamental concepts, including projective spaces and sub-
spaces, frames, projective maps, multiprojectve maps, the projective
completion of an affine space, cross-ratios, duality, and the complex-
ification of a real projective space. This material also provides the
foundations for our algorithmic treatment of rational curves and sur-
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faces, to be found on the web site (Chapters 18, 19,21, 22, 23, 24);
see web page.

Chapters 6, 7, and 8, provide an introduction to Euclidean geometry,
to the groups of isometries O(n)and SO(n), the groups of affine rigid
motions Is(n) and SE(n), and to the quaternions. Several versions of
the Cartan—Dieudonné theorem are proved in Chapter 7. The QR-
decomposition of matrices is explained geometrically, both in terms
of the Gram—Schmidt procedure and in terms of Householder trans-
formations. These chapters are crucial to a firm understanding of
the differential geometry of curves and surfaces, and computational
geometry.

Chapter 9 gives a short introduction to some fundamental top-
ics in computational geometry: Voronoi diagrams and Delaunay
triangulations.

Chapter 10 provides an introduction to Hermitian geometry, to the
groups of isometries U(n) and SU(n), and the groups of affine rigid
motions Is(n,C) and SE(n,C). The generalization of the Cartan—
Dieudonné theorem to Hermitian spaces can be found on the web
site: see web page (Chapter 25). An introduction to Hilbert spaces, in-
cluding the projection theorem, and the isomorphism of every Hilbert
space with some space [2(K), can also be found on the web site: see
web page.

Chapter 11 provides a presentation of the spectral theorems in Eu-
clidean and Hermitian spaces, including normal, self-adjoint, skew
self-adjoint, and orthogonal linear maps. Normal form (in terms
of block diagonal matrices) for various types of linear maps are
presented.

The singular value decomposition (SVD) and the polar form of
linear maps are discussed quite extensively in Chapter 12. The
pseudo-inverse of a matrix and its characterization using the Penrose
properties are presented.

Chapter 13 presents some applications of Euclidean geometry to vari-
ous optimization problems. The method of least squares is presented,
as well as the applications of the SVD and @Q R-decomposition to solve
least squares problems. We also describe a method for minimizing
positive definite quadratic forms, using Lagrange multipliers.

Chapter 14 provides an introduction to the linear Lie groups, via a
presentation of some of the classical groups and their Lie algebras,

using the exponential map. The surjectivity of the exponential map
is proved for SO(n) and SE(n).
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An introduction to the local differential geometry of curves is given
in Chapter 15 (curvature, torsion, the Frenet frame, etc).

An introduction to the local differential geometry of surfaces based
on some lectures by Eugenio Calabi is given in Chapter 16. This
chapter is rather unique, as it reflects decades of experience from a
very distinguished geometer.

Chapter 17 is an appendix consisting of short sections consisting of
basics of linear algebra and analysis. This chapter has been included
to make the material self-contained. Our advice is to use it as needed!

A very elegant presentation of rational curves and surfaces can be given
using some notions of affine and projective geometry. We push this approach
quite far in the material on the web site: see web page. However, we provide
only a cursory coverage of CAGD methods. Luckily, there are excellent
texts on CAGD, including Bartels, Beatty, and Barsky [10], Farin [58, 57],
Fiorot and Jeannin [60, 61], Riesler [142], Hoschek and Lasser [90], and
Piegl and Tiller [139]. Although we cover affine, projective, and Euclidean
geometry in some detail, we are far from giving a comprehensive treatment
of these topics. For such a treatment, we highly recommend Berger [12, 13],
Samuel [146], Pedoe [136], Coxeter [37, 36, 34, 35|, Snapper and Troyer
[160], Fresnel [66], Tisseron [169], Sidler [159], Dieudonné [46], and Veblen
and Young [172, 173], a great classic.

Similarly, although we present some basics of differential geometry and
Lie groups, we only scratch the surface. For instance, we refrain from dis-
cussing manifolds in full generality. We hope that our presentation is a
good preparation for more advanced texts, such as Gray (78], do Carmo
[61], Berger and Gostiaux [14], and Lafontaine [106]. The above are still
fairly elementary. More advanced texts on differential geometry include
do Carmo [52, 53], Guillemin and Pollack [80], Warner [176], Lang [108],
Boothby [19], Lehmann and Sacré [113], Stoker [163], Gallot, Hulin, and
Lafontaine [71], Milnor [127], Sharpe [156], Malliavin [117], and Godbillon
[74].

It is often possible to reduce interpolation problems involving polynomial
curves or surfaces to solving systems of linear equations. Thus, it is very
helpful to be aware of efficient methods for numerical matrix analysis. For
instance, we present the QR-decomposition of matrices, both in terms of
the (modified) Gram—Schmidt method and in terms of Householder trans-
formations, in a novel geometric fashion. For further information on these
topics, readers are referred to the excellent texts by Strang [166], Golub
and Van Loan [75], Trefethen and Bau [170], Ciarlet [33], and Kincaid
and Cheney [100]. Strang’s beautiful book on applied mathematics is also
highly recommended as a general reference [165]. There are other interest-
ing applications of geometry to computer vision, computer graphics, and
solid modeling. Some good references are Trucco and Verri [171], Koen-



Preface xi

derink [103], and Faugeras [59] for computer vision; Hoffman [87] for solid
modeling; and Metaxas [125] for physics-based deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrat-
ing the basic concepts of affine geometry, projective geometry, Euclidean
geometry, Hermitian geometry, basics of Hilbert spaces with a touch of
Fourier series, basics of Lie groups and Lie algebras, as well as a presen-
tation of curves and surfaces both from the standard differential point of
view and from the algorithmic point of view in terms of control points (in
the polynomial and rational case).

New Treatment, New Results

This books provides an introduction to affine geometry, projective geome-
try, Euclidean geometry, Hermitian geometry, Hilbert spaces, a glimpse at
Lie groups and Lie algebras, and the basics of local differential geometry
of curves and surfaces. We also cover some classics of convex geometry,
such as Carathéodory’s theorem, Radon’s theorem, and Helly’s theorem.
However, in order to help the reader assimilate all these concepts with the
least amount of pain, we begin with some basic notions of affine geome-
try in Chapter 2. Basic notions of Euclidean geometry come later only in
Chapters 6, 7, 8. Generally, noncore material is relegated to appendices or
to the web site: see web page.

We cover the standard local differential properties of curves and surfaces
at an elementary level, but also provide an in-depth presentation of poly-
nomial and rational curves and surfaces from an algorithmic point of view.
The approach (sometimes called blossoming) consists in multilinearizing
everything in sight (getting polar forms), which leads very naturally to a
presentation of polynomial and rational curves and surfaces in terms of
control points (Bézier curves and surfaces). We present many algorithms
for subdividing and drawing curves and surfaces, all implemented in Math-
ematica. A clean and elegant presentation of control points with weights
(and control vectors) is obtained by using a construction for embedding an
affine space into a vector space (the so-called “hat construction,” originat-
ing in Berger [12]). We also give several new methods for drawing efficiently
closed rational curves and surfaces, and a method for resolving base points
of triangular rational surfaces. We give a quick introduction to the concepts
of Voronoi diagrams and Delaunay triangulations, two of the most funda-
mental concepts in computational geometry. A a general rule, we try to be
rigorous, but we always keep the algorithmic nature of the mathematical
objects under consideration in the forefront.

Many problems and programming projects are proposed (over 230). Some
are routine, some are (very) difficult.
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Applications

Although it is core mathematics, geometry has many practical applica-
tions. Whenever possible, we point out some of these applications, For
example, we mention some (perhaps unexpected) applications of projective
geometry to computer vision (camera calibration), efficient communication,
error correcting codes, and cryptography (see Section 5.13). As applica-
tions of Euclidean geometry, we mention motion interpolation, various
normal forms of matrices including @ R-decomposition in terms of House-
holder transformations and SVD, least squares problems (see Section 13.1),
and the minimization of quadratic functions using Lagrange multipliers
(see Section 13.2). Lie groups and Lie algebras have applications in robot
kinematics, motion interpolation, and optimal control. They also have ap-
plications in physics. As applications of the differential geometry of curves
and surfaces, we mention geometric continuity for splines, and variational
curve and surface design (see Section 15.11 and Section 16.12). Finally, as
applications of Voronoi diagrams and Delaunay triangulations, we mention
the nearest neighbors problem, the largest empty circle problem, the min-
imum spanning tree problem, and motion planning (see Section 9.5). Of
course, rational curves and surfaces have many applications to computer-
aided geometric design (CAGD), manufacturing, computer graphics, and
robotics.

Many Algorithms and Their Implementation

Although one of our main concerns is to be mathematically rigorous, which
implies that we give precise definitions and prove almost all of the results in
this book, we are primarily interested in the representation and the imple-
mentation of concepts and tools used to solve geometric problems. Thus,
we devote a great deal of efforts to the development and implemention of
algorithms to manipulate curves, surfaces, triangulations, etc. As a matter
of fact, we provide Mathematica code for most of the geometric algorithms
presented in this book. We also urge the reader to write his own algorithms,
and we propose many challenging programming projects.

Open Problems

Not only do we present standard material (although sometimes from a fresh
point of view), but whenever possible, we state some open problems, thus
taking the reader to the cutting edge of the field. For example, we describe
very clearly the problem of resolving base points of rectangular rational
surfaces (this material is on the web site, see web page).

What’s Not Covered in This Book

Since this book is already quite long, we have omitted solid modeling
techniques, methods for rendering implicit curves and surfaces, the finite
elements method, and wavelets. The first two topics are nicely covered in
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Hoffman [87], and the finite element method is the subject of so many books
that we will not attempt to mention any references besides Strang and Fix
[167]. As to wavelets, we highly recommend the classics by Daubechies
[44], and Strang and Truong [168], among the many texts on this subject.
It would also have been nice to include chapters on the algebraic geometry
of curves and surfaces. However, this is a very difficult subject that requires
a lot of algebraic machinery. Interested readers may consult Fulton [67] or
Harris [83].

How to Use This Book for a Course
This books covers three complementary but fairly disjoint topics:

(1) Projective geometry and its applications to rational curves and
surfaces (Chapters 5, 18, 19, 21, 22, 23, 24);

(2) Euclidean geometry, Voronoi diagrams, and Delaunay triangulations,
Hermitian geometry, basics of Hilbert spaces, spectral theorems for
special kinds of linear maps, SVD, polar form, and basics of Lie groups
and Lie algebras (Chapters 6, 7, 8, 9, 10, 11, 12, 13, 14);

(3) Basics of the differential geometry of curves and surfaces (Chapters
15 and 16).

Chapter 17 is an appendix consisting of background material and should
be used only as needed.

Our experience is that there is too much material to cover in a one-
semester course. The ideal situation is to teach the material in the
entire book in two semesters. Otherwise, a more algebraically inclined
teacher should teach the first or second topic, whereas a more differential-
geometrically inclined teacher should teach the third topic. In either case,
Chapter 2 on affine geometry should be covered. Chapter 4 is required for
the first topic, but not for the second. A graph showing the dependencies
of chapters is shown in Figure 1.

Problems are found at the end of each chapter. They range from routine
to very difficult. Some programming assignments have been included. They
are often quite open-ended, and may require a considerable amount of work.
The end of a proof is indicated by a square box ((J). The word #f is an
abbreviation for if and only if.

References to the web page:
http://www.cis.upenn.edu/jean/gbooks/geom2.html will be abbreviated
as web page.

Hermann Weyl made the following comment in the preface (1938) of his
beautiful book [180]:

The gods have imposed upon my writing the yoke of a for-
eign tongue that was not sung at my cradle .... Nobody is
more aware than myself of the attendant loss in vigor, ease and
lucidity of expression.’
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Figure 1. Dependency of chapters

Being in a similar position, I hope that I was at least successful in con-
veying my enthusiasm and passion for geometry, and that I have inspired
my readers to study some of the books that I respect and admire.
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Introduction

Je ne crois donc pas avoir fait une ceuvre inutile en écrivant le présent
Mémoire; je regrette seulement qu'il soit trop long; mais quand j’ai
voulu me restreindre, je suis tombé dans 'obscurité; j'ai préféré
passer pour un peu bavard.

—Henri Poincaré, Analysis Situ, 1895

1.1 Geometries: Their Origin, Their Uses

What is geometry? According to Veblen and Young [172], geometry deals
with the properties of figures in space. Etymologically, geometry means the
practical science of measurement. No wonder geometry plays a fundamen-
tal role in mathematics, physics, astronomy, and engineering. Historically,
as explained in more detail by Coxeter [34], geometry was studied in Egypt
about 2000 B.C. Then, it was brought to Greece by Thales (640-456 B.C.).
Thales also began the process of abstracting positions and straight edges
as points and lines, and studying incidence properties. This line of work
was greatly developed by Pythagoras and his disciples, among which we
should distinguish Hippocrates. Indeed, Hippocrates attempted a presen-
tation of geometry in terms of logical deductions from a few definitions and
assumptions. But it was Euclid (about 300 B.C.) who made fundamental
contributions to geometry, recorded in his immortal Elements, one of the
most widely read books in the world.

J. Gallier, Geometric Methods and Applications
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Euclid’s basic assumptions consist of basic notions concerning magni-
tudes, and five postulates. Euclid’s fifth postulate, sometimes called the
“parallel postulate,” is historically very significant. It prompted mathe-
maticians to question the traditional foundations of geometry, and led them
to realize that there are different kinds of geometries. The fifth postulate
can be stated in the following way:

V. If a straight line meets two other straight lines, so as to make the two
interior angles on one side of it together less than two right angles,
the other straight lines will meet if produced on that side on which the
angles are less than two right angles.

Euclid’s fifth postulate is definitely not self-evident. It is also not sim-
ple or natural, and after Euclid, many people tried to deduce it from the
other postulates. However, they succeeded only in replacing it by various
equivalent assumptions, of which we only mention two:

V'. Two parallel lines are equidistant. (Posidonius, first century B.C.).

V. The sum of the angles of a triangle is equal to two right angles.
(Legendre, 1752-1833).

According to Euclid, two lines are parallel if they are coplanar without
intersecting.

It is remarkable that until the eighteenth century, no serious attempts at
proving or disproving Euclid’s fifth postulate were made. Saccheri (1667—
1733) and Lambert (1728-1777) attempted to prove Euclid’s fifth postulate,
but of course, this was impossible. This was shown by Lobachevski (1793
1856) and Bolyai (1802-1860), who proposed some models of non-Euclidean
geometries. Actually, Gauss (1777-1855) was the first to consider seriously
the possibility that a geometry denying Euclid’s fifth postulate was of some
interest. However, this was such a preposterous idea in those days that he
kept these ideas to himself until others had published them independently.

Thus, circa the 1830s, it was finally realized that there is not just one
geometry, but different kinds of geometries (spherical, hyperbolic, elliptic).
The next big step was taken by Riemann, (1826-1866) who introduced the
“infinitesimal approach” to geometry, wherein the differential of distance
is expressed as the square root of the sum of the squares of the differentials
of the coordinates. Riemann studied spherical spaces of higher dimension,
and showed that their geometry is non-Euclidean. Finally, Cayley (1821-
1895) and especially Klein (1849-1925) reached a clear understanding of
the various geometries and their relationships. Basically, all geometries can
be viewed as embedded in a universal geometry, projective geometry. Pro-
Jective geometry itself is non-Euclidean, since two coplanar lines always
intersect in a single point.

Projective geometry was developed in the nineteenth century, mostly by
Monge, Poncelet, Chasles, Steiner, and Von Staudt (but anticipated by
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Kepler (1571-1630) and Desargues (1593-1662)). Klein also realized that
“3 geometry” can be defined by the set of properties invariant under a
certain group of transformations. For example, projective properties are
invariant under the group of projectivities, affine properties are invariant
under the group of affine bijections, and Euclidean properties are invariant
under rigid motions. Although it is possible to define these various groups of
transformations as certain subgroups of the group of projectivities, such an
approach is quite bewildering to a novice. In order to appreciate such acro-
batics, one has to already know about projective geometry, affine geometry,
and Euclidean geometry.

Since the fifties, geometry has been built on top of linear algebra, as
opposed to axiomatically (as in Veblen and Young [172, 173] or Samuel
[146]). Even though geometry loses some of its charm presented that way,
it has the advantage of receiving a more unified and simpler treatment.

Affine geometry is basically the geometry of linear algebra. Well, not
quite, since affine maps are not linear maps. The additional ingredient is
that affine geometry is invariant under translations, which are not linear
maps! Instead of linear combinations of vectors, we need to consider affine
combinations of points, or barycenters (where the scalars add up to 1).
Affine maps preserve barycenters. In some sense, affine geometry is the
geometry of systems of particles and forces acting on them. Angles and
distances are undefined, but parallelism is well defined. The crucial notion
is the notion of ratio. Given any two points a, b and any scalar A, the point
¢ = (1 — Na + Ab is the point on the line (a,b) (assuming a # b) such
that ac = Aab, i.e., the point ¢ is “\ of the way between a and b”. Even
though such a geometry may seem quite restrictive, it allows the handling
of polynomial curves and surfaces.

Euclidean geometry is obtained by adding an inner product to affine
geometry. This way, angles and distances can be defined. The maps that
preserve the inner product are the rigid motions. In Euclidean geometry,
orthogonality can be defined. This is a very rich geometry. The structure of
rigid motions (rotations and rotations followed by a flip) is well understood,
and plays an important role in rigid body mechanics.

Projective geometry is, roughly speaking, linear algebra “up to a scalar.”
There is no notion of angle or distance, and projective maps are more gen-
eral than affine maps. What is remarkable is that every affine space can
be embedded into a projective space, its projective completion. In such a
projective completion, there is a special hyperplane of “points at infinity.”
Affine maps are the projectivities that preserve (globally) this hyperplane
at infinity. Thus, affine geometry can be viewed as a specialization of pro-
jective geometry. What is remarkable is that if we consider projective spaces
over the complex field, it is possible to introduce the notion of angle in a
projective manner (via the cross-ratio). This discovery, due to Poncelet,
Laguerre, and Cayley, can be exploited to show that Euclidean geometry
is a specialization of projective geometry.
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Besides projective geometry and its specializations, there are other im-
portant and beautiful facets of geometry, notably differential geometry and
algebraic geometry. Nowdays, each one is a major area of mathematics, and
it is out of the question to discuss both in any depth. We will present some
basics of the differential geometry of curves and surfaces. This topic was
studied by many, including Euler and Gauss, who made fundamental con-
tributions. However, we will limit ourselves to the study of local properties
and not even attempt to touch manifolds.

These days, projective geometry is rarely tought at any depth in mathe-
matics departments, and similarly for basic differential geometry. Typically,
projective spaces are defined at the begining of an algebraic geometry
course, but modern algebraic geometry courses deal with much more
advanced topics, such as varieties and schemes. Similarly, differential ge-
ometry courses proceed quickly to manifolds and Riemannian metrics, but
the more elementary “geometry in the small” is cursorily covered, if at all.

Paradoxically, with the advent of faster computers, it was realized by
manufacturers (for instance of cars and planes) that it was possible and
desirable to use computer-aided methods for their design. Computer vision
problems (and some computer graphics problems) can often be formulated
in the framework of projective geometry. Thus, there seems to be an in-
teresting turn of events. After being neglected for decades, stimulated by
computer science, old-fashioned geometry seems to be making a comeback
as a fundamental tool used in manufacturing, computer graphics, computer
vision, and motion planning, just to mention some key areas.

We are convinced that geometry will play an important role in computer
science and engineering in the years to come. The demand for technology
using 3D graphics, virtual reality, animation techniques, etc., is increasing
fast, and it is clear that storing and processing complex images and complex
geometric models of shapes (face, limbs, organs, etc.) will be required. This
book represents an attempt at presenting a coherent view of geometric
methods used to tackle problems of a geometric nature with a computer.
We believe that this can be a great way of learning some old-fashioned (and
some new!) geometry while having fun. Furthermore, there are plenty of
opportunities for applying these methods to real-world problems.

While we are interested in the standard (local) differential properties of
curves and surfaces (torsion, curvature), we concentrate on methods for
discretizing curves and surfaces in order to store them and display them
efficiently. However, in order to gain a deeper understanding of this theory
of curves and surfaces, we present the underlying geometric concepts in
some detail, in particular, affine, projective, and Euclidean geometry.
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1.2 Prerequisites and Notation

It is assumed that the reader is familiar with the basics of linear algebra,
at the level of Strang [166]. The reader may also consult appropriate chap-
ters on linear algebra in Lang [107]. For the material on the differential
geometry of curves and surfaces and Lie groups, familiarity with some ba-
sics of analysis are assumed. Lang’s text [110] is more than sufficient as
background. A general background in classical geometry is helpful, but not
mandatory. Two excellent sources are Coxeter [35] and Pedoe [136].

We denote the set {0,1,2,...} of natural numbers by N, the ring {..., -2,
—1,0,1,2,...} of integers by Z, the field of rationals by Q, the field of real
numbers by R, and the field of complex numbers by C. The multiplicative
group R — {0} of reals is denoted by R*, and similarly, the multiplicative
field of complex numbers is denoted by C*. We let Ry = {x € R | z > 0}
denote the set of nonnegative reals.

The n-dimensional vector space of real n-tuples is denoted by R™, and
the complex n-dimensional vector space of complex n-tuples is denoted by
cn.

Given a vector space E, vectors are usually denoted by lowercase letters
from the end of the alphabet, in italic or boldface; for example, u,v,w,
X,¥,2.

The null vector (0,...,0) is abbreviated as 0 or 0. A vector space con-
sisting only of the null vector is called a trivial vector space. A trivial vector
space {0} is sometimes denoted by 0. A vector space E # {0} is called a
nontrivial vector space.

When dealing with affine spaces, we will use an arrow in order to distin-
guish between spaces of points (E,U, etc.) and the corresponding spaces

of vectors (_E_>, l_f, etc.).

The dimension of the vector space E is denoted by dim(FE). The direct
sum of two vector spaces U,V is denoted by U & V. The dual of a vector
space E is denoted by E*. The kernel of a linear map f: E — F'is denoted
by Ker f, and the image by Im f. The transpose of a matrix A is denoted by
AT. The identity function is denoted by id, and the n x n-identity matrix
is denoted by I,, or I. The determinant of a matrix A is denoted by det(A)
or D(A).

The cardinality of a set S is denoted by |S|. Set difference is denoted by

A-B={z|zcAand z ¢ B}.

A list of symbols in their order of appearance in this book is given after
the bibliography.



2
Basics of Affine Geometry

L’algébre n’est qu’une géométrie écrite; la géométrie n’est qu’une
algebre figurée.
—Sophie Germain

2.1 Affine Spaces

Geometrically, curves and surfaces are usually considered to be sets of
points with some special properties, living in a space consisting of “points.”
Typically, one is also interested in geometric properties invariant under cer-
tain transformations, for example, translations, rotations, projections, etc.
One could model the space of points as a vector space, but this is not very
satisfactory for a number of reasons. One reason is that the point corre-
sponding to the zero vector (0), called the origin, plays a special role, when
there is really no reason to have a privileged origin. Another reason is that
certain notions, such as parallelism, are handled in an awkward manner.
But the deeper reason is that vector spaces and affine spaces really have dif-
ferent geometries. The geometric properties of a vector space are invariant
under the group of bijective linear maps, whereas the geometric properties
of an affine space are invariant under the group of bijective affine maps,
and these two groups are not isomorphic. Roughly speaking, there are more
affine maps than linear maps.

Affine spaces provide a better framework for doing geometry. In particu-
lar, it is possible to deal with points, curves, surfaces, etc., in an intrinsic

J. Gallier, Geomerric Methods and Applications
© Springer Science+Business Media New York 2001
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manner, that is, independently of any specific choice of a coordinate sys-
tem. As in physics, this is highly desirable to really understand what is
going on. Of course, coordinate systems have to be chosen to finally carry
out computations, but one should learn to resist the temptation to resort
to coordinate systems until it is really necessary.

Affine spaces are the right framework for dealing with motions, trajec-
tories, and physical forces, among other things. Thus, affine geometry is
crucial to a clean presentation of kinematics, dynamics, and other parts of
physics (for example, elasticity). After all, a rigid motion is an affine map,
but not a linear map in general. Also, given an m X n matrix A and a vector
b e R™, the set U = {& € R" | Az = b} of solutions of the system Az =b
is an affine space, but not a vector space (linear space) in general.

Use coordinate systems only when needed!

This chapter proceeds as follows. We take advantage of the fact that
almost every affine concept is the counterpart of some concept in linear
algebra. We begin by defining affine spaces, stressing the physical interpre-
tation of the definition in terms of points (particles) and vectors (forces).
Corresponding to linear combinations of vectors, we define affine combina-
tions of points (barycenters), realizing that we are forced to restrict our
attention to families of scalars adding up to 1. Corresponding to linear
subspaces, we introduce affine subspaces as subsets closed under affine
combinations. Then, we characterize affine subspaces in terms of certain
vector spaces called their directions. This allows us to define a clean no-
tion of parallelism. Next, corresponding to linear independence and bases,
we define affine independence and affine frames. We also define convexity.
Corresponding to linear maps, we define affine maps as maps preserving
affine combinations. We show that every affine map is completely defined
by the image of one point and a linear map. Then, we investigate briefly
some simple affine maps, the translations and the central dilatations. At
this point, we give a glimpse of affine geometry. We prove the theorems of
Thales, Pappus, and Desargues. After this, the definition of affine hyper-
planes in terms of affine forms is reviewed. The section ends with a closer
look at the intersection of affine subspaces.

Our presentation of affine geometry is far from being comprehensive,
and it is biased toward the algorithmic geometry of curves and surfaces.
For more details, the reader is referred to Pedoe [136], Snapper and Troyer
[160], Berger [12, 13], Coxeter [35], Samuel [146], Tisseron [169], and Hilbert
and Cohn-Vossen (84].

Suppose we have a particle moving in 3D space and that we want to
describe the trajectory of this particle. If one looks up a good textbook
on dynamics, such as Greenwood [79], one finds out that the particle is
modeled as a point, and that the position of this point z is determined
with respect to a “frame” in R® by a vector. Curiously, the notion of a
frame is rarely defined precisely, but it is easy to infer that a frame is a



8 2. Basics of Affine Geometry

ab

\ ]

Figure 2.1. Points and free vectors

pair (O, (e1, e2,e3)) consisting of an origin O (which is a point) together
with a basis of three vectors (ey, ez, eg). For example, the standard frame
in R3 has origin O = (0,0,0) and the basis of three vectors e; = (1,0,0),
e2 = (0,1,0), and e3 = (0,0,1). The position of a point x is then defined
by the “unique vector” from O to z.

But wait a minute, this definition seems to be defining frames and the
position of a point without defining what a point is! Well, let us identify
points with elements of R3. If so, given any two points a = (a1,az,a3) and
b = (b1, ba, b3), there is a unique free vector, denoted by ab, from a to b,
the vector ab = (by — a1, b2 — a2,b3 — a3). Note that

b=a+ ab,

addition being understood as addition in R3. Then, in the standard frame,
given a point £ = (x1,Z2,z3), the position of z is the vector Ox =
(z1, T2, 73), which coincides with the point itself. In the standard frame,
points and vectors are identified. Points and free vectors are illustrated in
Figure 2.1.

What if we pick a frame with a different origin, say Q = (w1, ws,ws), but
the same basis vectors (e1, ez, e3)? This time, the point = (1, T2, z3) is
defined by two position vectors:

Ox = (z1, 2, x3)
in the frame (O, (e1, e2,€3)) and
Qx = (1 — w1, T2 — W2, T3 — w3)

in the frame (9, (e1, €2, €3)).
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This is because
Ox=0Q+0Ox and OfN = (wy,wsy,ws3).

We note that in the second frame (2, (ey, e2, e3)), points and position vec-
tors are no longer identified. This gives us evidence that points are not
vectors. It may be computationally convenient to deal with points using
position vectors, but such a treatment is not frame invariant, which has
undesirable effets.

Inspired by physics, we deem it important to define points and properties
of points that are frame invariant. An undesirable side effect of the present
approach shows up if we attempt to define linear combinations of points.
First, let us review the notion of linear combination of vectors. Given two
vectors u and v of coordinates (up,us,u3) and (vy,ve,vs) with respect
to the basis (e1, ez, e3), for any two scalars A, u, we can define the linear
combination Au + pv as the vector of coordinates

(Auy + pvr, Aug + pve, Aus + pvs).

If we choose a different basis (€], €5, €5) and if the matrix P expressing the
vectors (e}, e5, €4) over the basis (e, ez,€e3) is

a1 b o
P=1az by ca],
as bg C3

which means that the columns of P are the coordinates of the e; over the
basis (ey, ez, es), since

u1e1 + ugen + uges = ujel + uses + ujes
and
[N ’ ! ’ 7
vie] + vaes + v3zez = v €] + Uyeqy + Uz€s,

it is easy to see that the coordinates (ui,ug2,u3) and (v1,vz,v3) of uw and v
with respect to the basis (e, e2,€3) are given in terms of the coordinates
(ul,ub,us) and (vf,v5,v3) of u and v with respect to the basis (e, €5, €%)
by the matrix equations

Uy ul vy V]
upy | =P | ub and vy | =P | v}
U3 A U3 A

From the above, we get

u) U v v

uh | = Pl s and vy | = P 1w,
/ '

Usg Us V3 V3

and by linearity, the coordinates

(Auy + poy, Auy + pvg, Auj + pvg)
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of Au 4 pv with respect to the basis (€], €}, €5) are given by

Aul + vl U1 1 Aug + pvy
b +pvh | =AP7 | ug | +uP7 vy | = P Aup + poy
/\ug + /LU:’; us v3 Aug + pvs

Everything worked out because the change of basis does not involve a
change of origin. On the other hand, if we consider the change of frame
from the frame (O, (e1, e2,€3)) to the frame (£, (e1, €2, €3)), where OQ =
(w1, w2,ws), given two points a, b of coordinates (aj,az,as) and (by, bo, b3)
with respect to the frame (O, (ey, e2, e3)) and of coordinates (af, a3, a) and
(b1, by, by) with respect to the frame (€2, (e1, ez, €3)), since

(a},ay,a%) = (a1 — wi, a2 — wo, a3 — ws)
and
(b}, b3, b5) = (b — wy, by — wa, b3 — w3),
the coordinates of Aa + b with respect to the frame (O, (ey, ez, e3)) are
(Aa1 + pby, Aag + pbe, Aag + ubs),
but the coordinates
(M@ + pbi, Aaj + ubh, Aaj + ubj)
of Aa + pb with respect to the frame (9, (e, e2,€3)) are
(Aa1 + pby — (A + p)wi, Aaz + pba — (A + p)ws, Aaz + pubs — (A + p)ws),
which are different from
(Aa1 + by — w1, Aag + pbs — wa, Aaz + pbs — ws),

unless A + p = 1.

Thus, we have discovered a major difference between vectors and points:
The notion of linear combination of vectors is basis independent, but the
notion of linear combination of points is frame dependent. In order to sal-
vage the notion of linear combination of points, some restriction is needed:
The scalar coefficients must add up to 1.

A clean way to handle the problem of frame invariance and to deal
with points in a more intrinsic manner is to make a clearer distinction
between points and vectors. We duplicate R® into two copies, the first
copy corresponding to points, where we forget the vector space structure,
and the second copy corresponding to free vectors, where the vector space
structure is important. Furthermore, we make explicit the important fact
that the vector space R® acts on the set of points R3: Given any point
z = (z1,%2,z3) and any vector v = (v1,v2,v3), we obtain the point

a+v = (a1 + v1, a2 + vz, a3 + v3),
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which can be thought of as the result of translating a to b using the vector
v. We can imagine that v is placed such that its origin coincides with a and
that its tip coincides with b. This action +:R3 x R3 — R3 satisfies some
crucial properties. For example,

a+0=a,
(a+u)+v=a+(u+v),

and for any two points a, b, there is a unique free vector ab such that
b=a+ ab.

It turns out that the above properties, although trivial in the case of R3,

are all that is needed to define the abstract notion of affine space (or affine

structure). The basic idea is to consider two (distinct) sets E and E), where

E is a set of points (with no structure) and E s a vector space (of free

vectors) acting on the set E.

Did you say “A fine space”?

Intuitively, we can think of the elements of E as forces moving the points
in E, considered as physical particles. The effect of applying a force (free

—
vector) u € E to a point a € E is a translation. By this, we mean that

=
for every force u € E', the action of the force u is to “move” every point
a € E to the point a + v € E obtained by the translation corresponding
to u viewed as a vector. Since translations can be composed, it is natural

that E') is a vector space.

For simplicity, it is assumed that all vector spaces under consideration
are defined over the field R of real numbers. Most of the definitions and
results also hold for an arbitrary field K, although some care is needed when
dealing with fields of characteristic different from zero (see the problems).
It is also assumed that all families (););c; of scalars have finite support.
Recall that a family (\;);er of scalars has finite support if \; = 0 for all
1t € I —J, where J is a finite subset of I. Obviously, finite families of
scalars have finite support, and for simplicity, the reader may assume that
all families of scalars are finite. The formal definition of an affine space is
as follows.

Definition 2.1.1 An affine space is either the degenerate space reduced
to the empty set, or a triple (E, E, +) consisting of a nonempty set E (of
points), a vector space E (of translations, or free vectors), and an action
+:ExE > E , satisfying the following conditions.

(Al) a+0=a, for everya € E.

(A2) (a+u)+v=a+ (u+v), for every a € E, and every u,v € E.
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Figure 2.2. Intuitive picture of an affine space

(A3) For any two points a,b € FE, there is a unique u € E such that
a+u=hb

—
The unique vector v € E such that a + u = b is denoted by ab, or
sometimes by @, or even by b — a. Thus, we also write

b=a+ab
(or b=a + ab, or even b = a + (b — a)).
The dimension of the affine space (E, E, +) is the dimension dim(ﬁ)
of the vector space E. For simplicity, it is denoted by dim(E).

Conditions (A1) and (A2) say that the (abelian) group E acts on E,

and condition (A3) says that E acts transitively and faithfully on E. Note
that

a(a+v)=v

for all a € E and all v € ﬁ, since a(a + v) is the unique vector such that
a+v =a+a(a+v). Thus, b = a + v is equivalent to ab = v. Figure
2.2 gives an intuitive picture of an affine space. It is natural to think of all
vectors as having the same origin, the null vector.

The axioms defining an affine space (E, ﬁ, +> can be interpreted intu-
itively as saying that E and E are two different ways of looking at the
same object, but wearing different sets of glasses, the second set of glasses

depending on the choice of an “origin” in E. Indeed, we can choose to
look at the points in E, forgetting that every pair (a,b) of points defines

—
a unique vector ab in F, or we can choose to look at the vectors u in

E‘), forgetting the points in E. Furthermore, if we also pick any point a in
E, a point that can be viewed as an origin in F, then we can recover all



2.1. Affine Spaces 13

the points in E as the translated points a + u for all u € E. This can be
formalized by defining two maps between E and E.

For every a € E, consider the mapping from EtE given by

u—a-+u,

where u € E), and consider the mapping from E to E given by
b ab,
where b € E. The composition of the first mapping with the second is
ur—a+u— aa+u),

which, in view of (A3), yields u. The composition of the second with the
first mapping is

b ab— a+ ab,

which, in view of (A3), yields b. Thus, these compositions are the identity

from E to E and the identity from F to E, and the mappings are both
bijections.

When we identify E with E via the mapping b — ab, we say that we
consider E as the vector space obtained by taking a as the origin in E, and

we denote it by E,. Thus, an affine space <E, E’), +> is a way of defining a
vector space structure on a set of points E, without making a commitment
to a fixed origin in E. Nevertheless, as soon as we commit to an origin a in
E, we can view E as the vector space F,. However, we urge the reader to

think of E as a physical set of points and of E as a set of forces acting on
E, rather than reducing E to some isomorphic copy of R™. After all, points
are points, and not vectors! For notational simplicity, we will often denote

an affine space (E, ﬁ, +) by (E, E)), or even by E. The vector space Eis
called the vector space associated with E.

@ One should be careful about the overloading of the addition sym-

bol +. Addition is well-defined on vectors, as in u+v; the translate
a+u of a point a € E by a vector u € E is also well-defined, but addition
of points a + b does not make sense. In this respect, the notation b — a
for the unique vector u such that b = a + u is somewhat confusing, since it
suggests that points can be subtracted (but not added!). Yet, we will see
in Section 4.1 that it is possible to make sense of linear combinations of
points, and even mixed linear combinations of points and vectors.

Any vector space F has an affine space structure specified by choosing
FE = E), and letting + be addition in the vector space E. We will refer

- = — i
to the affine structure <E, E,+> on a vector space E as the canonical
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(or natural) affine structure on E.In particular, the vector space R™ can
be viewed as the affine space (R™,R™, +), denoted by A". In general, if
K is any field, the affine space <K n K", +> is denoted by A%. In order
to distinguish between the double role played by members of R™, points
and vectors, we will denote points by row vectors, and vectors by column
vectors. Thus, the action of the vector space R™ over the set R™ simply
viewed as a set of points is given by

U
(a17'~-7an)+ :(a1+u1,...,an+un).
Un
We will also use the convention that if x = (z1,...,z,) € R", then the

column vector associated with x is denoted by x (in boldface notation).
Abusing the notation slightly, if a € R™ is a point, we also write a € A™.
The affine space A™ is called the real affine space of dimension n. In most
cases, we will consider n = 1,2, 3.

2.2 Examples of Affine Spaces

Let us now give an example of an affine space that is not given as a vector
space (at least, not in an obvious fashion). Consider the subset L of A2
consisting of all points (z,y) satisfying the equation

z+y—1=0.

The set L is the line of slope —1 passing through the points (1,0) and (0,1)
shown in Figure 2.3.

The line L can be made into an official affine space by defining the action
+:L xR — L of R on L defined such that for every point (z,1 —z) on L
and any u € R,

(z,1-z)+u=(z+u,l—z—u).

It is immediately verified that this action makes L into an affine space. For
example, for any two points a = (a;,1 —a;) and b = (b1,1 — b1) on L,
the unique (vector) u € R such that b = a + u is u = by — a,. Note that
the vector space R is isomorphic to the line of equation x 4+ y = 0 passing
through the origin.

Similarly, consider the subset H of A3 consisting of all points (z,y, z)
satisfying the equation

r+y+z2—1=0.

The set H is the plane passing through the points (1,0,0), (0,1,0), and
(0,0,1). The plane H can be made into an official affine space by defining



2.2. Examples of Affine Spaces 15

<

Figure 2.3. An affine space: the line of equationz +y—-1=0

the action +: H x R? — H of R? on H defined such that for every point
(z,y,1 —x —y) on H and any <:j> € R?,

(a:,y,l—a:—y)+<:j) =(r+uw,y+v,l—z—u—y-—v).

For a slightly wilder example, consider the subset P of A3 consisting of all
points (x,y, z) satisfying the equation

2 +y?—z=0.

The set P is paraboloid of revolution, with axis Oz. The surface P can be
made into an official affine space by defining the action +: P x R? — P
of R? on P defined such that for every point (z,y,z? + y2) on P and any

(u) € R2,
v

@4+ () =@ uy o’ + @+,

This should dispell any idea that affine spaces are dull. Affine spaces not
already equipped with an obvious vector space structure arise in projective
geometry. Indeed, we will see in Section 5.1 that the complement of a
hyperplane in a projective space has an affine structure.
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Figure 2.4. Points and corresponding vectors in affine geometry

2.3 Chasles’s Identity

Given any three points a,b,c € F, since ¢ = a + ac, b = a + ab, and
¢ =b+ bc, we get

¢=b+bc=(a+ab)+bc=a+ (ab+ bc)
by (A2), and thus, by (A3),
ab + bc = ac,

which is known as Chasles’s identity, and illustrated in Figure 2.4.
Since a = a + aa and by (Al) a = a + 0, by (A3) we get

aa=0.
Thus, letting a = ¢ in Chasles’s identity, we get
ba = —ab.
Given any four points a,b,¢,d € E, since by Chasles’s identity
ab + bc = ad + dc = ac,
we have the parallelogram law

ab=dc iff bc = ad.

2.4 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination.
The corresponding concept in affine geometry is that of an affine com-
bination, also called a barycenter. However, there is a problem with the
naive approach involving a coordinate system, as we saw in Section 2.1.
Since this problem is the reason for introducing affine combinations, at the
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risk of boring certain readers, we give another example showing what goes
wrong if we are not careful in defining linear combinations of points.
Consider R? as an affine space, under its natural coordinate system with
. . 1 . .
origin O = (0,0) and basis vectors ( 0) and (1) . Given any two points
a = (a3, az2) and b = (by, bs), it is natural to define the affine combination
Aa + pb as the point of coordinates

(Aay + uby, Aas + pby).

Thus, when ¢ = (-1,-1) and b = (2,2), the point a + b is the point
c=(1,1).

Let us now consider the new coordinate system with respect to the origin
¢ = (1,1) (and the same basis vectors). This time, the coordinates of a are
(—2,—2), the coordinates of b are (1, 1), and the point a + b is the point d
of coordinates (—1, —1). However, it is clear that the point d is identical to
the origin O = (0,0) of the first coordinate system.

Thus, a + b corresponds to two different points depending on which
coordinate system is used for its computation!

This shows that some extra condition is needed in order for affine com-
binations to make sense. It turns out that if the scalars sum up to 1, the
definition is intrinsic, as the following lemma shows.

Lemma 2.4.1 Given an affine space E, let (a;)sc1 be a family of points in
E, and let (A;)ier be a family of scalars. For any two points a,b € E, the
following properties hold:

(1) If 31 A = 1, then

a+ Z Aiaa; = b+ Z A;ba;.
i€l i€l
(2) If 3 ;c1 A =0, then
D Xiaa; =Y Aba.
€l i€l

Proof. (1) By Chasles’s identity (see Section 2.3), we have

a+ Zz\iaa; =a+ Z Ai(ab + ba;)

iel i€l
=a+ (Z /\i)ab + Z A;ba;
i€l il
= a+ab+2)\ibai since ) ;. A =1
i€l
=b+ Z A;ba; since b = a + ab.

el
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(2) We also have

Z ;aa; = Z A;(ab + ba;)

el i€l
= (Z ,\i>ab + ) Aibay
i€l i€l
= Z )\ibaia
i€l

since ) ,c; A =0.0

Thus, by Lemma 2.4.1, for any family of points (a;);cs in E, for any
family (A;);er of scalars such that ), ; A\; =1, the point

r=a+ Z A;aa;
icl
is independent of the choice of the origin a € E. This property motivates
the following definition.

Definition 2.4.2 For any family of points (a;);c; in E, for any family
(Ai)ier of scalars such that EiEI A; = 1, and for any a € F, the point

a+ Z A;aa;

i€l
(which is independent of a € E, by Lemma 2.4.1) is called the barycenter (or

barycentric combination, or affine combination) of the points a; assigned
the weights A;, and it is denoted by

Z /\laz
icl
In dealing with barycenters, it is convenient to introduce the notion of
a weighted point, which is just a pair (a,A), where a € E is a point, and
A € R is a scalar. Then, given a family of weighted points ((a;, A;)):er,
where )., A; = 1, we also say that the point Y ic1 Aia; is the barycenter
of the family of weighted points ((a;, \;)):cr-
Note that the barycenter = of the family of weighted points ((a;, Ai))ier
is the unique point such that

ax = Z)\iaai for every a € E,
il
and setting a = z, the point z is the unique point such that

Z )\,-xai =0.

i€l
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In physical terms, the barycenter is the center of mass of the family of
weighted points ((a;, A;)):cr (where the masses have been normalized, so
that Zz‘e ;A =1, and negative masses are allowed).

Remarks:

(1) Since the barycenter of a family ((a;, A;))ier of weighted points is
defined for families (););c; of scalars with finite support (and such
that .., A; = 1), we might as well assume that I is finite. Then,
for all m > 2, it is easy to prove that the barycenter of m weighted
points can be obtained by repeated computations of barycenters of
two weighted points.

(2) This result still holds, provided that the field K has at least three
distinct elements, but the proof is trickier!

(3) When ), .; A\; = 0, the vector ), ; A\;aa; does not depend on the
point a, and we may denote it by ), ; A;a;. This observation will be
used in Section 4.1 to define a vector space in which linear combina-
tions of both points and vectors make sense, regardless of the value

of 3 ier A
Figure 2.5 illustrates the geometric construction of the barycenters g;
and g, of the weighted points (a, 1), (b,1), and (¢, 1), and (a,—1), (b,1),
and (e, 1).
The point g; can be constructed geometrically as the middle of the
segment joining ¢ to the middle %a + %b of the segment (a, b), since

1/1 + 1 b) + 1
= — —-a — —C.
Nn=5\2% ) ot
The point g2 can be constructed geometrically as the point such that the

middle 2b+ 1c of the segment (b,c) is the middle of the segment (a, g2),
since

1 1
go = —a+2<§b+§c>.

Later on, we will see that a polynomial curve can be defined as the set
of barycenters of a fixed number of points. For example, let (a, b, c,d) be a
sequence of points in A2. Observe that

(1—)3+3t(1 — )2 +3t2(1 —t) + 3 = 1,

since the sum on the left-hand side is obtained by expanding (t+(1—t))% = 1
using the binomial formula. Thus,

1-t)3a+3t(1 —t)2b+ 3201 —t)c+t3d
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Figure 2.5. Barycenters, g1 = ia + ib + %c, g2=—-a+b+c

is a well-defined affine combination. Then, we can define the curve F: A —
A? such that

Fit)=(1-t)%a+3t(1 —t)2b+3t2(1 —t)c+ t3d.

Such a curve is called a Bézier curve, and (a,b,c,d) are called its control
points. Note that the curve passes through a and d, but generally not
through b and c. We will see in Chapter 18 how any point F(t) on the curve
can be constructed using an algorithm performing affine interpolation steps
(the de Casteljau algorithm).

2.5 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized as a nonempty
subset of a vector space closed under linear combinations. In affine spaces,
the notion corresponding to the notion of (linear) subspace is the notion of
affine subspace. It is natural to define an affine subspace as a subset of an
affine space closed under affine combinations.

Definition 2.5.1 Given an affine space <E, ﬁ, +>, a subset V of E is

an affine subspace (of (E, ﬁ, +)) if for every family of weighted points
((ais Ai))ier in V such that }7..; A; = 1, the barycenter Y ier Mia; belongs
to V.
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An affine subspace is also called a flat by some authors. According to
Definition 2.5.1, the empty set is trivially an affine subspace, and every
intersection of affine subspaces is an affine subspace.

As an example, consider the subset U of R? defined by

U={(z,y) eR?|az + by =c},
i.e., the set of solutions of the equation
ar + by = ¢,

where it is assumed that a # 0 or b # 0. Given any m points (z;,y;) € U
and any m scalars A; such that A\; +--- + A, = 1, we claim that

Z )\i(xh yz) eU.
=1

Indeed, (z;,y;) € U means that
ax; +by; = ¢,

and if we multiply both sides of this equation by A; and add up the resulting
m equations, we get

m m

D (hazi + ibys) = Y Aic,

=1 i=1

and since Ay +--- 4+ A, = 1, we get

which shows that

(Z Ais, ZM%) = i)‘i(mivyi) evl.
i=1 =1 i=1

Thus, U is an affine subspace of A2, In fact, it is just a usual line in AZ.
It turns out that U is closely related to the subset of R? defined by

U= {(z,y) € R? | az + by =0},
i.e., the set of solutions of the homogeneous equation
az +by =0

obtained by setting the right-hand side of az + by = ¢ to zero. Indeed, for
any m scalars A;, the same calculation as above yields that

i/\i(l'ivyi) el,

=1
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Figure 2.6. An affine line U and its direction

this time without any restriction on the \;, since the right-hand side

of the equation is null. Thus, Uisa subspace of R2. In fact, U is one-
dimensional, and it is just a usual line in R2. This line can be identified
with a line passing through the origin of A2, a line that is parallel to the
line U of equation ax + by = ¢, as illustrated in Figure 2.6.

Now, if (xo,yo) is any point in U, we claim that

N
U= (:EO?yO) + Ua
where

— —
(To,%0) + U = {(-’Co + u1, Yo + u2) | (u1,u2) € U}-

First, (xo,y0) + U C U, since azxg + byy = ¢ and au; + bus = 0 for all

(u1,u2) € U. Second, if (z,y) € U, then az + by = ¢, and since we also
have axo + byo = ¢, by subtraction, we get

a(x —xo) + by — bo) =0,

— —
which shows that (z — z9,y — yo) € U, and thus (x,y) € (zo,y0) + U.

Hence, we also have U C (x,yo) + 7, and U = (zo,y0) + U.
The above example shows that the affine line U defined by the equation

arx+by=c
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is obtained by “translating” the parallel line U of equation
ax+by=0

passing through the origin. In fact, given any point (o, yo) € U,

U = (z0,%0) + U .

More generally, it is easy to prove the following fact. Given any m x n
matrix A and any vector ¢ € R™, the subset U of R™ defined by

U={zeR"| Az =¢}

is an affine subspace of A™.

Actually, observe that Az = b should really be written as AzT = b, to be
consistent with our convention that points are represented by row vectors.
We can also use the boldface notation for column vectors, in which case
the equation is written as Ax = c. For the sake of minimizing the amount
of notation, we stick to the simpler (yet incorrect) notation Az = b. If we
consider the corresponding homogeneous equation Az = 0, the set

ﬁ):{xeR’ﬂAx:O}

is a subspace of R™, and for any o9 € U, we have
—
U=zy+ U.

This is a general situation. Affine subspaces can be characterized in terms

of subspaces of E.Let V be a nonempty subset of E. For every family
(a1,...,an) in V| for any family (A1,...,A,) of scalars, and for every point
a € V, observe that for every x € E,

n
r=a+ Z A;aa;
=1

is the barycenter of the family of weighted points

<(a1,)\1), o (@ ), (a, 1- 2:; )\))

since

n n

S+ (1-3n) =1

i=1 i=1

Given any point a € E and any subset V of f, let a + V denote the
following subset of E:

a+7:{a+v|ve‘—/}.
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ta]

E

—
Figure 2.7. An affine subspace V and its direction V

Lemma 2.5.2 Let (E, E),+> be an affine space.

(1) A nonempty subset V of E is an affine subspace iff for every point
a€V, the set

V. = {ax |z € V}
. — —
15 a subspace of E . Consequently, V = a + V,. Furthermore,
V ={xy|zyeV}

— — —
is a subspace of E and V, =V foralla € E. Thus, V =a

N
+V
(2) For any subspace vV of E and foranya € E, the set V =a + V s
an affine subspace.

Proof. The proof is straightforward, and is omitted. It is also given in
Gallier [70].

In particular, when E is the natural affine space associated with a vector
space E, Lemma 2.5.2 shows that every affine subspace of F is of the form
u + U, for a subspace U of E. The subspaces of E are the affine subspaces
that contain 0.

The subspace V associated with an affine subspace V is called the

direction of V. It is also clear that the map +:V x V = V induced

by +:E x E — E confers to (V, ‘_/),-}-) an affine structure. Figure 2.7
illustrates the notion of affine subspace.

By the dimension of the subspace V', we mean the dimension of V.

An affine subspace of dimension 1 is called a line, and an affine subspace
of dimension 2 is called a plane.
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An affine subspace of codimension 1 is called a hyperplane (recall that a
subspace F of a vector space E has codimension 1 iff there is some subspace
G of dimension 1 such that E = F @& G, the direct sum of F and G, see
Strang [166] or Lang [107]).

We say that two affine subspaces U and V are parallel if their directions

— — —
are identical. Equivaléntly, since U = V, we have U = a+ U and V =

b+ U for any a € U and any b € V, and thus V is obtained from U by the
translation ab.
in general, when we talk about n points a, . .., a,, we mean the sequence
(a1,-.-,a,), and not the set {aj,...,an} (the a;’s need not be distinct).
By Lemma 2.5.2, a line is specified by a point @ € E and a nonzero vector

v E E), i.e., a line is the set of all points of the form a + Au, for A € R.

We say that three points a,b,c are collinear if the vectors ab and ac
are linearly dependent. If two of the points a,b, ¢ are distinct, say a # b,
then there is a unique A € R such that ac = Aab, and we define the ratio
=

A plane is specified by a point a € E and two linearly independent vectors
u,v € E, i.e., a plane is the set of all points of the form a + Au + uv, for
A eR

We say that four points a, b, c,d are coplanar if the vectors ab, ac, and
ad are linearly dependent. Hyperplanes will be characterized a little later.

Lemma 2.5.3 Given an affine space (E, f, +Y, for any family (a;)ic1 of
points in E, the set V of barycenters Y, ; Mia; (where ) ;. Ai = 1) is the
smallest affine subspace containing (a;)icy-

Proof. If (a;)ier is empty, then V' = @, because of the condition ), .; A\; =
1. If (a;)ses is nonempty, then the smallest affine subspace containing
(ai)ier must contain the set V of barycenters ). .; Aja;, and thus, it
is enough to show that V is closed under affine combinations, which is
immediately verified. []

Given a nonempty subset S of E, the smallest affine subspace of E gen-
erated by S is often denoted by (S). For example, a line specified by two
distinct points a and b is denoted by (a, b}, or even (a, b), and similarly for
planes, etc.

Remarks:

(1) Since it can be shown that the barycenter of n weighted points can
be obtained by repeated computations of barycenters of two weighted
points, a nonempty subset V' of E is an affine subspace iff for every
two points a, b € V, the set V contains all barycentric combinations of
a and b. If V contains at least two points, then V is an affine subspace
iff for any two distinct points a,b € V, the set V contains the line
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determined by a and b, that is, the set of all points (1 — A)a + b,
AeR.

(2) This result still holds if the field K has at least three distinct elements,
but the proof is trickier!

2.6 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we
have the notion of affine independence. Given a family (a;);c; of points
in an affine space E, we will reduce the notion of (affine) independence of
these points to the (linear) independence of the families (a;a;) ¢ 1-{i}) of
vectors obtained by choosing any a; as an origin. First, the following lemma
shows that it is sufficient to consider only one of these families.

Lemma 2.6.1 Given an affine space <E, ﬁ, +>, let (a;)icr be a family of
points in E. If the family (a;iaj) e (1—(i)) s linearly independent for some
i € I, then (a;iaj) e (1—{i}) is linearly independent for every i € I.

Proof. Assume that the family (a;a;);e( I-{s}) is linearly independent for
some specific ¢ € I. Let k € I with k # 4, and assume that there are some
scalars (A;)je(r—(k}) such that

Z )\jakaj =0.

JE(I—-{k})
Since
axaj = axa; + a;a;j,
we have
Z )\jakaj = Z )\jaka; + Z )\jaiaj,
JEI—{k}) JEUI-{k}) J€I—{k})
= Z /\jakai + Z )\jaiaj,
JE(I—-{k}) JEI—{i,k})
SD SRRV () DY P
JE€(I-{i,k}) je(I—{k})
and thus

Z )\jaiaj - ( Z /\j)aiak =0.
)

JjEI—{4,k}) jE€(I—{k}
Since the family (a;a;j);e(r-{s}) is linearly independent, we must have \; =
0 for all j € (I — {i,k}) and Zje(l—{k}) Aj = 0, which implies that A\; =0
for all j € (I —{k}). 0
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We define affine independence as follows.

Definition 2.6.2 Given an affine space <E,ﬁ,+>, a family (a;)ier of
points in E is affinely independent if the family (aia;);e(r—(s}) is linearly
independent for some ¢ € I.

Definition 2.6.2 is reasonable, since by Lemma 2.6.1, the independence
of the family (ajaj);e(r—{}) does not depend on the choice of a;. A crucial
property of linearly independent vectors (u1,...,u) is that if a vector v
is a linear combination

m
v = E At
i=1

of the u;, then the \; are unique. A similar result holds for affinely
independent points.

Lemma 2.6.3 Given an affine space (E, T‘f, +>, let (ag,...,am) be a fam-
ily of m+1 points in E. Let x € E, and assume thatx = .-, \a;, where
Yo i = L. Then, the family (Xo,..., Am) such that = Y. Na; is
unique iff the family (apay,...,a0am) is linearly independent.

Proof. The proof is straightforward and is omitted. It is also given in
Gallier [70]. O

Lemma 2.6.3 suggests the notion of affine frame. Affine frames are the

affine analogues of bases in vector spaces. Let <E, E), +> be a nonempty
affine space, and let (ao,...,an) be a family of m + 1 points in E. The
family (ag, ..., a.,) determines the family of m vectors (apay, ..., a0am) in

E. Conversely, given a point a¢ in E and a family of m vectors (uj, ..., Umn)

in ﬁ, we obtain the family of m + 1 points (ag, - .., an,) in E, where a; =
aptu,l1 << m.

Thus, for any m > 1, it is equivalent to consider a family of m + 1 points
(ag,---,an) in E, and a pair (ag, (41, .., Un)), where the u; are vectors

in E. Figure 2.8 illustrates the notion of affine independence.

Remark: The above observation also applies to infinite families (a;);er of

points in E and families (%;);c 1—{o} of vectors in E), provided that the
index set I contains 0.

-
When (apai,...,20am) is a basis of E then, for every z € E, since
Z = ag + agX, there is a unique family (z1,...,zm,) of scalars such that

T =ag+ 18041 + - + Tmagam-
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apaz

ap a apay

Figure 2.8. Affine independence and linear independence

The scalars (z1,...,Zm) may be considered as coordinates with respect to
(a0, (apay,...,a0am)). Since

m m m
x=a0+2xiagai if z= (I—in) a0+inai,
i=1 i=1 i=1

T € E can also be expressed uniquely as

m
T = E A a;
i=0

with 377" 0 A; =1, and where Ag =1~ 37" z;, and \; = z; for 1 <7 < m.
The scalars (X, ..., Ap) are also certain kinds of coordinates with respect
to (ao, ..., am). All this is summarized in the following definition.

Definition 2.6.4 Given an affine space (E, f‘f, +>, an affine frame with
origin ao is a family (ao,...,a,) of m+ 1 points in E such that the list of
vectors (apay,...,a08m) is a basis of E. The pair (ao, (agai,-..,a0am))
is also called an affine frame with origin ay. Then, every x € E can be
expressed as

T = ao+ r1a0a1 + -+ rna0am

for a unique family (z1,...,zm,) of scalars, called the coordinates of z w.r.t.
the affine frame (ao, (agau, ..., apam)). Furthermore, every x € E can be
written as

T = Ag@o + -+ Amam

for some unique family (Ao, ..., An) of scalars such that \g + -+ + A\, =
1 called the barycentric coordinates of x with respect to the affine frame
(ags---ram)-
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The coordinates (z1,...,Z,) and the barycentric coordinates (X, ...,
Am) are related by the equations Ag = 1 — Z:"zl z; and \; = z;, for 1 <
i < m. An affine frame is called an affine basis by some authors. A family
(as)ser of points in E is affinely dependent if it is not affinely independent.
We can also characterize affinely dependent families as follows.

Lemma 2.6.5 Given an affine space <E, E), +>, let (a;)ier be a family of
points in E. The family (a;)ic1 is affinely dependent iff there is a family
(Mi)ier such that X\j #0 for some j €I, ;1A =0, and Y, dixa; =0
for every x € E.

Proof. By Lemma 2.6.3, the family (a;):cr is affinely dependent iff the
family of vectors (aja;)je(r—{i}) is linearly dependent for some ¢ € I. For
any ¢ € I, the family (ajaj);je(r-{}) is linearly dependent iff there is a
family (\;);je(1—{i)) such that A; # 0 for some j, and such that

Z )\ja;aj =0.
je-{:})

Then, for any z € E, we have

Z Ajajay = Z Aj(xa; — xa;)

Je(I—{i}) Je(I—{i})
= Z )\jxaj—< Z )\j>xa;,
Je(I—{i}) JeI—{i})
and letting A\; = —(Zje(l_{i}))\]), we get ) ;o Aixa; = 0, with

YicrXi = 0 and \; # 0 for some j € I. The converse is obvious by
setting = a; for some ¢ such that X; # 0, since ), .; A; = 0 implies that
A; # 0, for some j # 4. [

Even though Lemma 2.6.5 is rather dull, it is one of the key ingredi-
ents in the proof of beautiful and deep theorems about convex sets, such
as Carathéodory’s theorem, Radon’s theorem, and Helly’s theorem (see
Section 3.1).

A family of two points (a,b) in E is affinely independent iff ab # 0, iff
a # b. If a # b, the affine subspace generated by a and b is the set of all
points (1 — A)a + Ab, which is the unique line passing through a and b. A
family of three points (a,b,c) in E is affinely independent iff ab and ac
are linearly independent, which means that a, b, and ¢ are not on the same
line (they are not collinear). In this case, the affine subspace generated by
(a, b, c) is the set of all points (1 — A — u)a 4+ Ab 4 pc, which is the unique
plane containing a, b, and ¢. A family of four points (a, b, ¢, d) in E is affinely
independent iff ab, ac, and ad are linearly independent, which means that
a, b, ¢, and d are not in the same plane (they are not coplanar). In this
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Figure 2.9. Examples of affine frames

case, a, b, c, and d are the vertices of a tetrahedron. Figure 2.9 shows affine
frames for |I| = 0,1, 2, 3.

Given n+1 affinely independent points (ay, . ..,a,) in E, we can consider
the set of points Agag+- - -+ Apan, where \g+---+ X, =land A; > 0 (\; €
R). Such affine combinations are called convexr combinations. This set is
called the convez hull of (ay, . .. ,a,) (or n-simplez spanned by (ag, . . . ,a,)).
When n = 1, we get the segment between ag and a;, including ag and a;.
When n = 2, we get the interior of the triangle whose vertices are ag, ay, a,
including boundary points (the edges). When n = 3, we get the interior of
the tetrahedron whose vertices are ag, a1, a2, a3, including boundary points
(faces and edges). The set

{ao + Maga; + - - - + Aqapa, | where 0 < )\, <1 (\; € R)}

is called the parallelotope spanned by (ao,...,a,). When E has dimension
2, a parallelotope is also called a parallelogram, and when E has dimension
3, a parallelepiped.

More generally, we say that a subset V of E is conver if for any two
points a,b € V, we have ¢ € V for every point ¢ = (1 — A)a + b, with
0<A<1(AeR).

@ Points are not vectors! The following example illustrates why
treating points as vectors may cause problems. Let a, b, ¢ be three
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affinely independent points in A®. Any point z in the plane (a, b, c) can be
expressed as

T = Aoa + Aib + Aac,

where Ag + A1 + A2 = 1. How can we compute Ag, A1, A2? Letting a =
(a1,az,a3), b = (b1,b2,b3), ¢ = (c1,¢2,¢3), and T = (Z1,T2,T3) be the
coordinates of a,b, ¢, z in the standard frame of A3, it is tempting to solve
the system of equations

ar b c Ao zy
ax bz c2 M=z
az bz cs3 A2 x3

However, there is a problem when the origin of the coordinate system be-
longs to the plane (a,b,c), since in this case, the matrix is not invertible!
What we should really be doing is to solve the system

X00a + A0Ob + A;0c¢ = Ox,

where O is any point not in the plane (a,b,¢). An alternative is to use
certain well-chosen cross products.

It can be shown that barycentric coordinates correspond to various ratios
of areas and volumes; see the problems.

2.7 Affine Maps

Corresponding to linear maps we have the notion of an affine map. An
affine map is defined as a map preserving affine combinations.

N
Definition 2.7.1 Given two affine spaces (E,l?,-i—) and (E',E',+'), a
function f: E — E’ is an affine map iff for every family ((a;, \;))ier of
weighted points in E such that ), ; A\; = 1, we have

f(Z Ai%) =Y Nif(ai)-

i€l el
In other words, f preserves barycenters.

Affine maps can be obtained from linear maps as follows. For simplicity
of notation, the same symbol + is used for both affine spaces (instead of
using both + and +').

—

Given any point @ € F, any point b € E’, and any linear map h: E - E',
we claim that the map f: E — E’ defined such that

fla+v)=b+ h{v)
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is an affine map. Indeed, for any family ();):cr of scalars with ), ., Ay =1
and any family (7;);er, since

Zz\i(a+v,-)=a+2/\,-a(a+vi) =a+2)\ivi

el i€l el
and
S Xi(b+h(v)) =b+Y_ Ab(b+h(vi)) =b+ > \h(v),
€l i€l i€l
we have
f(Z Ai(a + Ui)) = f(a +> /\ivi)
i€l i€l
=b+h (Z /\m)
el
=b+ Z Aih(vs)
el
= Z Ai(b+ h(vi))
i€l
= Z Aif(a+w;).
1
O

Note that the condition ), ; A; = 1 was implicitly used (in a hidden
call to Lemma. 2.4.1) in deriving that

Zz\i(a +v)=a+ Z/\ivi
el el
and
D Nib+ h(vi)) =b+ Y Nih(vi).
i€l i€l

As a more concrete example, the map

&)~ 6 ) E)+(0)

defines an affine map in A2. It is a “shear” followed by a translation. The
effect of this shear on the square (a,b,c,d) is shown in Figure 2.10. The
image of the square (a, b, c,d) is the parallelogram (a’,b',¢’,d’).

Let us consider one more example. The map

(2)-(5)E) ()



2.7. Affine Maps 33

d ¢
d c
a’ b
a b
Figure 2.10. The effect of a shear
C/
d/
d c
bl
a b a

Figure 2.11. The effect of an affine map

is an affine map. Since we can write

11 Vv2/2 —v2/2\ (1 2

1 3 2/2  V2/2 J\O 1
this affine map is the composition of a shear, followed by a rotation of angle
/4, followed by a magnification of ratio /2, followed by a translation. The
effect of this map on the square (a, b, ¢, d) is shown in Figure 2.11. The image
of the square (a, b, c,d) is the parallelogram (a’,b’,¢’,d’).

The following lemma shows the converse of what we just showed. Every

affine map is determined by the image of any point and a linear map.
Lemma 2.7.2 Given an affine map f: E — E', there is a unique linear

— — i
map f: E — E' such that
-
fla+v) = f(a)+ f(v),
for every a € E and every v € E.

Proof. Let a € E be any point in E. We claim that the map defined such
that

F(v) =f(a)f(a+v)
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for every v € E is a linear map ?: E - E’—; . Indeed, we can write
a+ v =Aa+v)+ (1-Na,
since a + Av = a + Aa(a + v) + (1 — A)aa, and also
atu+v=(a+u)+(a+v)—a,

since a+u+v = a+a(a + u)+a(a+ v)—aa. Since f preserves barycenters,
we get

fla+ ) =Af(a+v) + (1 —X)f(a).
If we recall that z = Zz’e 1 Aia; is the barycenter of a family ((a;, A;)):er of
weighted points (with )~,; A; = 1) iff
bx = Z A;ba; for every b € E,
i€l
we get
f(a)f(a+ Av) = M(a)f(a+ v) + (1 — N\)f(a)f(a) = M(a)f(a + V),
showing that ?(Av) = )\?(v). We also have
fla+u+v) = fla+u)+ fla+v)— f(a),
from which we get
f(a)f(a+u+v) =f(a)f(a+u)+ f(a)f(a+v),
showing that ?(u +v) = ?(u) + 7(1}) Consequently, ? is a linear map.
For any other point b € E, since
b+v=a+ab+v=a+a(a+v)—aa+ab,
b+v=(a+v)—a+b, and since f preserves barycenters, we get
f(b+v) =fla+v) - f(a) + f(b),
which implies that
f(b)f(b +v) = f(b)f(a + v) — f(b)f(a) + f(b)f(b),
= f(a)f(b) + f(b)f(a + v),
= f(a)f(a + v).
Thus, f(b)f(b + v) = f(a)f(a + v), which shows that the definition of ?
does not depend on the choice of a € E. The fact that ? is unique is
obvious: We must have 7)(1)) =f(a)f(a+v). O

N
The unique linear map 7: E - FE given by Lemma 2.7.2 is called the
linear map associated with the affine map f.
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Note that the condition
—
fla+v) = fla) + f(v),
for every a € F and every v € E), can be stated equivalently as

— —
f(@)=f(a) + f(ax), or f(a)f(x)= f(ax),
for all a,z € E. Lemma 2.7.2 shows that for any affine map f: E — E',
—
there are points a € F, b € E’, and a unique linear map T: E-FE , such
that
_
fla+v)=b+ f(v),

forallve E (just let b = f(a), for any a € E). Affine maps for which 7

is the identity map are called translations. Indeed, if 7 =id,

f(x) = f(a) + T(ax) = f(a) + ax = ¢ + xa + af(a) + ax
=z + xa + af(a) — xa = z + af(a),
and so
xf(x) = af(a),

which shows that f is the translation induced by the vector af(a) (which
does not depend on a).

Since an affine map preserves barycenters, and since an affine subspace V'
is closed under barycentric combinations, the image f(V) of V is an affine
subspace in F’. So, for example, the image of a line is a point or a line, and
the image of a plane is either a point, a line, or a plane.

It is easily verified that the composition of two affine maps is an affine
map. Also, given affine maps f: E — E’ and g: E’ — E”, we have

g(fla+v) = g(f(@) + F ) = 9(f(@) + 7 (T ),

. - — — .
which shows that go f = ¢" o f. It is easy to show that an affine map
— =

_,
f:E — E'is injective iff f: E — E’ is injective, and that f: E — E' is
—
surjective iff ?: E — E'is surjective. An affine map f: F — E’ is constant
—

iff ?: E — E' is the null (constant) linear map equal to 0 for all v € E.

If E is an affine space of dimension m and (agp,as,-..,a,) is an affine
frame for F, then for any other affine space F and for any sequence
(bo, b1,...,bm) of m+1 points in F, there is a unique affine map f: £ — F
such that f(a;) = b;, for 0 < ¢ < m. Indeed, f must be such that

Foao + -+ + Amam) = Aobo + - -+ + Ambm,

where Ao + --- + A, = 1, and this defines a unique affine map on all of E,
since (ag,a1,...,amn) is an affine frame for E.
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Using affine frames, affine maps can be represented in terms of matrices.
We explain how an affine map f: E — F is represented with respect to a

frame (ao, - .., a,) in E, the more general case where an affine map f: F —
F is represented with respect to two affine frames (ay,...,a,) in E and
(bo, - ..,bm) in F being analogous. Since

flao + ) = f(ao) + f (z)
for all x € E, we have
—
apf(ap +x) = aof(ao) + f (z).
Since z, apf(ap), and apf(ag + x), can be expressed as

T = T1apa1 + -+ + T,204an,
aof(ag) = bjapay + - - - + bpapan,
aof(ap + x) = y120a1 + - - - + Ynaoan,

if A = (a;;) is the n x n matrix of the linear map -]_‘) over the ba-
sis (apa1,...,apan), letting z, y, and b denote the column vectors of
components (£1,...,Zy), (Y1,---,Yn), and (by,...,by),

apf(ap + x) = apf(ag) + ?(m)
is equivalent to
y=Az +b.

Note that b # 0 unless f(ag) = ag. Thus, f is generally not a linear
transformation, unless it has a fized point, i.e., there is a point ag such that
f(ao) = ap. The vector b is the “translation part” of the affine map. Affine
maps do not always have a fixed point. Obviously, nonnull translations have
no fixed point. A less trivial example is given by the affine map

()= (0 5) () ()

This map is a reflection about the z-axis followed by a translation along
the z-axis. The affine map

()~ (e 7))+ ()
can also be written as
()= (5 %) (e ¥82) (2)+ (1)

which shows that it is the composition of a rotation of angle /3, followed
by a stretch (by a factor of 2 along the z-axis, and by a factor of % along
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the y-axis), followed by a translation. It is easy to show that this affine
map has a unique fixed point. On the other hand, the affine map

()= (o 25) () ()

has no fixed point, even though

8/5 —6/5\ (2 0 4/5 -3/5
3/10 2/5 ] \0 1/2 3/5 4/5 )°
and the second matrix is a rotation of angle € such that cosf =

sinf = g For more on fixed points of affine maps, see the problems.

There is a useful trick to convert the equation y = Az +b into what looks
like a linear equation. The trick is to consider an (n + 1) x (n+ 1) matrix.
We add 1 as the (n + 1)th component to the vectors x, y, and b, and form

the (n + 1) X (n + 1) matrix
A b
0 1

so that y = Az + b is equivalent to

()= ) 0)

This trick is very useful in kinematics and dynamics, where A is a rotation
matrix. Such affine maps are called rigid motions.

If f: E — E’ is a bijective affine map, given any three collinear points
a,b,c in E, with a # b, where, say, ¢ = (1 — A)a + Ab, since f pre-
serves barycenters, we have f(c) = (1 — A)f(a) + Af(b), which shows that
f(a), f(b), f(c) are collinear in E’. There is a converse to this property,
which is simpler to state when the ground field is K = R. The converse
states that given any bijective function f: E — E’ between two real affine
spaces of the same dimension n > 2, if f maps any three collinear points to
collinear points, then f is affine. The proof is rather long (see Berger [12]
or Samuel [146]).

Given three collinear points a, b, ¢, where a # ¢, we have b = (1—8)a+ ¢
for some unique 3, and we define the ratio of the sequence a,b, ¢, as

8 _ab
(1-B) bc’

4

= and

ratio(a, b,c) =

provided that 3 # 1, i.e., b # ¢. When b = ¢, we agree that ratio(a,b,c) =
oo. We warn our readers that other authors define the ratio of a,b,c as
—ratio(a, b,c) = %. Since affine maps preserve barycenters, it is clear that
affine maps preserve the ratio of three points.
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2.8 Affine Groups

We now take a quick look at the bijective affine maps. Given an affine space
E, the set of affine bijections f: E — FE is clearly a group, called the affine
group of E, and denoted by GA(E). Recall that the group of bijective

linear maps of the vector space E is denoted by GL(—E). Then, the map

fr 7 defines a group homomorphism L: GA(F) — GL(I_Z')). The kernel
of this map is the set of translations on E.
The subset of all linear maps of the form Aid, where A € R — {0}, is

a subgroup of GL(?), and is denoted by R*id (where Aid— (u) = Au,
and R* = R — {0}). The subgroup DIL(E) = L~ }(R*id) of GA(E)
is particularly interesting. It turns out that it is the disjoint union of the
translations and of the dilatations of ratio A # 1. The elements of DIL(E)
are called affine dilatations.

Given any point a € E, and any scalar A € R, a dilatation or central
dilatation (or homothety) of center a and ratio X is a map H, » defined
such that

H,\(z) = a+ Nax,

for every x € E.

Remark: The terminology does not seem to be universally agreed upon.
The terms affine dilatation and central dilatation are used by Pedoe [136].
Snapper and Troyer use the term dilation for an affine dilatation and mag-
nification for a central dilatation [160]. Samuel uses homothety for a central
dilatation, a direct translation of the French “homothétie” [146]. Since dila-~
tion is shorter than dilatation and somewhat easier to pronounce, perhaps
we should use that!

Observe that H, x(a) = a, and when X # 0 and z # a, Hg x(z) is on the
line defined by a and z, and is obtained by “scaling” ax by A.

Figure 2.12 shows the effect of a central dilatation of center d. The tri-
angle (a, b, c) is magnified to the triangle (a’,¥’,¢’). Note how every line is
mapped to a parallel line.

When A = 1, H,,; is the identity. Note that H» = Aid. When A # 0,
it is clear that Hg » is an affine bijection. It is immediately verified that

Ha,/\ o Ha,u = Ilg \p-
We have the following useful result.

Lemma 2.8.1 Given any affine space E, for any affine bijection f €

GA(E), f 7) = Aidp, for some A € R* with A # 1, then there is a
unique point ¢ € E such that f = H, ).
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a/

Figure 2.12. The effect of a central dilatation

Proof. The proof is straightforward, and is omitted. It is also given in
Gallier [70].

Clearly, if ? = idp, the affine map f is a translation. Thus, the group
of affine dilatations DIL(E) is the disjoint union of the translations and
of the dilatations of ratio A # 0,1. Affine dilatations can be given a purely
geometric characterization.

Another point worth mentioning is that affine bijections preserve the ra-
tio of volumes of parallelotopes. Indeed, given any basis B = (uy, ..., %m)

of the vector space E associated with the affine space E, given any m + 1
affinely independent points (ag,-..,am), We can compute the determi-

nant detg(apas,. .., a0am) w.r.t. the basis B. For any bijective affine map
f:E — E, since

detp (T(aoal), ey T(aoam)> = det(?)detB(aoal, ...,808m)

—
and the determinant of a linear map is intrinsic (i.e., depends only on f,
and not on the particular basis B), we conclude that the ratio

detp (7(3031), ceey ?(aoam))

detg(apai,...,20am)

=det(f)

is independent of the basis B. Since detg(agai,...,apam) is the volume of
the parallelotope spanned by (ay, . .., am), where the parallelotope spanned
by any point a and the vectors (ui,...,un,) has unit volume (see Berger
[12], Section 9.12), we see that affine bijections preserve the ratio of volumes
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of parallelotopes. In fact, this ratio is independent of the choice of the par-
allelotopes of unit volume. In particular, the affine bijections f € GA(FE)

such that det(?) = 1 preserve volumes. These affine maps form a sub-
group SA(FE) of GA(E) called the special affine group of E. We now take
a glimpse at affine geometry.

2.9 Affine Geometry: A Glimpse

In this section we state and prove three fundamental results of affine geom-
etry. Roughly speaking, affine geometry is the study of properties invariant
under affine bijections. We now prove one of the oldest and most basic
results of affine geometry, the theorem of Thales.

Lemma 2.9.1 Given any affine space E, if H1, Hy, H3 are any three dis-
tinct parallel hyperplanes, and A and B are any two lines not parallel to
H;, letting a; = H;NA and b; = H; N\ B, then the following ratios are equal:
ajag  bibs
aiaz  biby

Conversely, for any point d on the line A, if f;aﬂz = p, then d = agz.
Proof. Figure 2.13 illustrates the theorem of Thales. We sketch a proof,
leaving the details as an exercise. Since H;, Hy, H3 are parallel, they have

the same direction H, a hyperplane in E. Let u € E — H be any nonnull
vector such that A = a; + Ru. Since A is not parallel to H, we have

— — —
E = H & Ru, and thus we can define the linear map p: E — Ru, the
projection on Ru parallel to H. This linear map induces an affine map
f:E — A, by defining f such that

f(b1 +w) = a1 + p(w),

forall w € E. Clearly, f(b1) = a1, and since Hy, H,, H3 all have direction
ﬁ, we also have f(by) = az and f(b3) = ags. Since f is affine, it preserves
ratios, and thus

ajasg _ b1b3

ajaz  bibs’

The converse is immediate. []
We also have the following simple lemma, whose proof is left as an easy
exercise.

Lemma 2.9.2 Given any affine space E, given any two distinct points
a,b € E, and for any affine dilatation f different from the identity, if
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Figure 2.13. The theorem of Thales

a’ = f(a), D = (a,b) is the line passing through a and b, and D' is the line
parallel to D and passing through o, the following are equivalent:

(1) b = f(b);

(ii) If f is a translation, then b’ is the intersection of D’ with the line
parallel to (a,a’) passing through b;
If f is a dilatation of center ¢, then b’ = D' N {c, b).

The first case is the parallelogram law, and the second case follows easily
from Thales’ theorem.

We are now ready to prove two classical results of affine geometry,
Pappus’s theorem and Desargues’s theorem. Actually, these results are the-
orems of projective geometry, and we are stating affine versions of these
important results. There are stronger versions that are best proved using
projective geometry.

Lemma 2.9.3 Given any affine plane E, any two distinct lines D and D',
then for any distinct points a,b,c on D and a’,b',c’ on D', if a,b,c,a’, V',
¢’ are distinct from the intersection of D and D' (if D and D' intersect)
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Figure 2.14. Pappus’s theorem (affine version)

and if the lines (a,b’) and (a’,b) are parallel, and the lines (b,c’) and (b, c)
are parallel, then the lines (a,c’) and {(a’,c) are parallel.

Proof. Pappus’s theorem is illustrated in Figure 2.14. If D and D’ are
not parallel, let d be their intersection. Let f be the dilatation of center
d such that f(a) = b, and let g be the dilatation of center d such that
g(b) = c. Since the lines (a,b’) and (a’,b) are parallel, and the lines (b, ¢’)
and (b, c) are parallel, by Lemma 2.9.2 we have o’ = f(b') and ¥ = g(¢').
However, we observed that dilatations with the same center commute, and
thus fog = gof, and thus, letting h = go f, we get ¢ = h(a) and a’ = h(c').
Again, by Lemma 2.9.2; the lines (a,c’) and (a’,c) are parallel. If D and
D’ are parallel, we use translations instead of dilatations. []

There is a converse to Pappus’s theorem, which yields a fancier version
of Pappus’s theorem, but it is easier to prove it using projective geometry.
It should be noted that in axiomatic presentations of projective geometry,
Pappus’s theorem is equivalent to the commutativity of the ground field K
(in the present case, K = R). We now prove an affine version of Desargues’s
theorem.

Lemma 2.9.4 Given any affine space E, and given any two triangles
(a,b,¢) and (a',b',c'), where a,b,c,a’,b',c are all distinct, if (a,b) and
(a’,¥') are parallel and (b,c) and (V',¢’) are parallel, then {(a,c) and {(a’,c)
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Figure 2.15. Desargues’s theorem (affine version)

are parallel iff the lines (a,a’), (b,b'), and (c,c) are either parallel or
concurrent (i.e., intersect in a common point).

Proof. We prove half of the lemma, the direction in which it is assumed
that (a,c) and (a’, ¢’} are parallel, leaving the converse as an exercise. Since
the lines (a,b) and (a’,b’) are parallel, the points a,b,a’,b’ are coplanar.
Thus, either (a,a’) and (b,b’) are parallel, or they have some intersection d.
We consider the second case where they intersect, leaving the other case as
an easy exercise. Let f be the dilatation of center d such that f(a) = a’. By
Lemma 2.9.2, we get f(b) = b'. If f(c) = ¢”, again by Lemma 2.9.2 twice,
the lines (b,c) and (b',c”) are parallel, and the lines (a,c) and (a’,c") are
parallel. From this it follows that ¢’ = ¢. Indeed, recall that (b,c) and
(', ') are parallel, and similarly (a,c) and (a’,¢’) are parallel. Thus, the
lines (b’,¢”) and (b/,c') are identical, and similarly the lines (a’,c”) and
{a’,c') are identical. Since a’c’ and b’c’ are linearly independent, these
lines have a unique intersection, which must be ¢’ = ¢’.

The direction where it is assumed that the lines (a,a’), (b,%’) and (c, ),
are either parallel or concurrent is left as an exercise (in fact, the proof is
quite similar). ]

Desargues’s theorem is illustrated in Figure 2.15.

There is a fancier version of Desargues’s theorem, but it is easier to
prove it using projective geometry. It should be noted that in axiomatic
presentations of projective geometry, Desargues’s theorem is related to the
associativity of the ground field K (in the present case, K = R). Also,
Desargues’s theorem yields a geometric characterization of the affine di-
latations. An affine dilatation f on an affine space E is a bijection that
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maps every line D to a line f(D) parallel to D. We leave the proof as an
exercise.

2.10 Affine Hyperplanes
We now consider affine forms and affine hyperplanes. In Section 2.5 we
observed that the set L of solutions of an equation

ar +by=c

is an affine subspace of A2 of dimension 1, in fact, a line (provided that a
and b are not both null). It would be equally easy to show that the set P
of solutions of an equation

ar +by+cz=d

is an affine subspace of A% of dimension 2, in fact, a plane (provided that
a, b, c are not all null). More generally, the set H of solutions of an equation

/\I-Tl+"'+/\m-rm:li

is an affine subspace of A™, and if Ay,..., A, are not all null, it turns out
that it is a subspace of dimension m — 1 called a hyperplane.
We can interpret the equation

AT+ AT =
in terms of the map f:R™ — R defined such that
f(-rla---,mm):/\1I1+"'+/\ml'm_.u'

for all (z1,...,Zm) € R™. It is immediately verified that this map is affine,
and the set H of solutions of the equation

MITL+ -+ AnTm =4
is the null set, or kernel, of the affine map f: A™ — R, in the sense that
H=f"0)={zcA™| f(z) =0},

where z = (z1,...,Tm).

Thus, it is interesting to consider affine forms, which are just affine
maps f: E — R from an affine space to R. Unlike linear forms f*, for which
Ker f* is never empty (since it always contains the vector 0), it is possible
that f71(0) = @ for an affine form f. Given an affine map f: E — R, we
also denote f~1(0) by Ker f, and we call it the kernel of f. Recall that an
(affine) hyperplane is an affine subspace of codimension 1. The relationship
between affine hyperplanes and affine forms is given by the following lemma.

Lemma 2.10.1 Let E be an affine space. The following properties hold:
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(a) Given any nonconstant affine form f: E — R, its kernel H = Ker f
s a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant affine form f: E —
R such that H = Ker f. For any other affine form g: E — R such that
H = Kerg, there is some A € R such that g = Af (with A #0).

(c) Given any hyperplane H in E and any (nonconstant) affine form
f:E — R such that H = Ker f, every hyperplane H' parallel to H is
defined by a nonconstant affine form g such that g(a) = f(a) — A, for
alla € E and some A € R.

Proof. The proof is straightforward, and is omitted. It is also given in
Gallier [70]. O

When FE is of dimension n, given an affine frame (ag, (u1,...,u,)) of E
with origin ag, recall from Definition 2.6.4 that every point of E can be
expressed uniquely as T = ag + T1u; + - - - + TpUy, where (z1,...,2,) are
the coordinates of x with respect to the affine frame (ag, (¥1,-..,un))-

Also recall that every linear form f* is such that f*(z) = \iz1 +--- +
ATy, for every £ = zju; + -+ + Tou, and some A1,..., A\, € R. Since

an affine form f: E — R satisfies the property f(ap + z) = f(ao) + T(I),
denoting f(ap + ) by f{z1,...,z,), we see that we have

flzy,...,xzn) =Mz + -+ ApZn + 1,

where u = f(ag) € R and Aq,..., A, € R. Thus, a hyperplane is the set of
points whose coordinates (z1,...,z,) satisfy the (affine) equation

Azi+ -+ Az +p=0.

2.11 Intersection of Affine Spaces

In this section we take a closer look at the intersection of affine subspaces.
This subsection can be omitted at first reading.

First, we need a result of linear algebra. Given a vector space E and any
two subspaces M and N, there are several interesting linear maps. We have
the canonical injections i: M — M + N and j: N — M + N, the canonical
injections iny;: M — M & N and ing: N — M @& N, and thus, injections
fFMNN—->M®Nand g: MNN — M &N, where f is the composition
of the inclusion map from M NN to M with in;, and g is the composition
of the inclusion map from M N N to N with iny. Then, we have the maps
f+r¢ogMNN->M&N,andi—jM&N—-> M+ N.

Lemma 2.11.1 Given a vector space E and any two subspaces M and N,
with the definitions above,

0— MNN MeN 2 M+N —0
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s a short exact sequence, which means that f + g is injective, i — j is
surjective, and that Im (f + g) = Ker (i — j). As a consequence, we have
the Grassmann relation

dim(M) + dim(N) = dim(M + N) + dim (M N N).

Proof. It is obvious that ¢ — j is surjective and that f + g is injective.
Assume that (i—j)(u+v) = 0, where u € M, and v € N. Then, i(u) = j(v),
and thus, by definition of ¢ and j, there is some w € M N N, such that
i(u) = j(v) = w € MNN. By definition of f and g, u = f(w) and v = g(w),
and thus Im (f + g) = Ker (i — j), as desired. The second part of the lemma
follows from standard results of linear algebra (see Artin [5], Strang [166],
or Lang [107]). (]

We now prove a simple lemma about the intersection of affine subspaces.

Lemma 2.11.2 Given any affine space E, for any two nonempty affine
subspaces M and N, the following facts hold:

(1)MﬂN#@iﬁabeM+ﬁforsomeaeMandsomebeN.

(2) M NN consists of a single point iff ab € M+N for some a € M
and some b€ N, and MnN = {0}.

(8) If S is the least affine subspace containing M and N, then S =
M+ N+ Kab (the vector space E s defined over the field K ).

Proof. (1) Pick any a € M and any b € N, which is possible, since M and
N are nonempty. Since M= {ax | £ € M} and N = {by | y € N}, if
MNN #0, for any c € M N N we have ab = ac — be, with ac € M and

— —_  — - =
bc € N, and thus, ab € M + N. Conversely, assume that ab e M + N

for some a € M and some b € N. Then ab = ax + by, for some z € M
and some y € N. But we also have

ab = ax + xy + yb,

and thus we get 0 = xy +yb — by, that is, xy = 2by. Thus, b is the middle
of the segment [z,y|, and since yx = 2yb, x = 2b — y is the barycenter of
the weighted points (b,2) and (y, —1). Thus z also belongs to N, since N
being an affine subspace, it is closed under barycenters. Thus, z € M N N,
and M NN # 0.

(2) Note that in general, if M N N # 0, then

MNN=MnN,
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because
MON = {ab|a,be MAN} = {ab|a,b € M}n{ab|a,be N} = MON.
Since MNN =c+ MnNN for any c € M NN, we have

MAN=c+MnN foranyce MNN.

From this it follows that if M NN # @, then M N N consists of a single
point iff MnN = {0}. This fact together with what we proved in (1)
proves (2).

(3) This is left as an easy exercise. []

Remarks:

(1) The proof of Lemma 2.11.2 shows that if M N N # 0, then ab €
M+ Nforallac Mandallbe N.

(2) Lemma 2.11.2 implies that for any two nonempty affine subspaces M
and N, if E = M@ﬁ, then M NN consists of a single point. Indeed,
it E = ]\769]7, then ab € E forallac M and allbe N, and since
MAN = {0}, the result follows from part (2) of the lemma.

We can now state the following lemma.

Lemma 2.11.3 Given an affine space E and any two nonempty affine
subspaces M and N, if S is the least affine subspace containing M and N,
then the following properties hold:

(1) If MNN =0, then
dim(M) + dim(N) < dim(E) + dim(M + N)
and
dim(S) = dim(M) + dim(N) + 1 — dim(M 0 N).
(2) If MNN # 0, then
dim(S) = dim(M) + dim(N) — dim(M N N).

Proof. The proof is not difficult, using Lemma 2.11.2 and Lemma 2.11.1,
but we leave it as an exercise. []

2.12 Problems

Problem 2.1 Given a triangle (a,b,c), give a geometric construction of
the barycenter of the weighted points (a, 1), (b, 1), and (c, ). Give a geo-
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metric construction of the barycenter of the weighted points (a, 2), (b, 2),
and (¢, —2).

Problem 2.2 Given a tetrahedron (a,b,c,d) and any two distinct points
z,y € {a,b,c,d}, let let m; , be the middle of the edge (z,y). Prove that
the barycenter g of the weighted points (a, ), (b, 1), (c, 1), and (d, 1) is
the common intersection of the line segments (mg 4, mc,d), (Ma e, Mp.a),
and (mq,q, Mp,c). Show that if g4 is the barycenter of the weighted points
(a,3), (b 3), (c, 3), then g is the barycenter of (d, 1) and (g4, 2).

Problem 2.3 Let E be a nonempty set, and E a vector space and assume
that there is a function ®: F x F — f, such that if we denote ®(a,b) by
ab, the following properties hold:

(1) ab+ bc = ac, for all a,b,c € E;

(2) For every a € E, the map ®,: E — E defined such that for every
be E, ®,(b) = ab, is a bijection.

Let ¥,: E - E be the inverse of ®,: F — E.
Prove that the function +: E x E) — FE defined such that

a+u=VY,(u)

— —
for all a € E and all u € E makes (E, E, +) into an affine space.

Note. We showed in the text that an affine space (E, E), +) satisfies the
properties stated above. Thus, we obtain an equivalent characterization of
affine spaces.

Problem 2.4 Given any three points a, b, ¢ in the affine plane A2, letting
(a1,a2), (b1,b2), and (c1,c2) be the coordinates of a,b,c, with respect to
the standard affine frame for A2, prove that a,b, ¢ are collinear iff

ay b1 1
as bg Cy| = 0,
1 1 1

i.e., the determinant is null.

Letting (ao, a1, a2), (bo, b1, b2), and (co, c1,c2) be the barycentric coordi-
nates of a, b, ¢c with respect to the standard affine frame for A2, prove that
a, b, c are collinear iff

ap by co
ay by c1|=0.
a2 bg C2

Given any four points a,b,c,d in the affine space A3, letting (a1, a2, a3),
(b1, b2,b3), (c1,¢2,¢3), and (dy, ds,d3) be the coordinates of a,b, ¢, d, with
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respect to the standard affine frame for A3, prove that a, b, ¢, d are coplanar
iff
ay by ¢ di
ag by c2 do
a3 bz c3 d3
1 1 1 1

:0’

i.e., the determinant is null.

Letting ((10, ap,as, (13), (bo, b1, ba, b3), (C(), ¢y, Ca, 63), and (dg, d1, d2,ds) be
the barycentric coordinates of a, b, ¢, d, with respect to the standard affine
frame for A3, prove that a, b, ¢, d are coplanar iff

ap by co do
a1 by ¢ di
ay by c2 do
a3 bz c3 d3

Problem 2.5 The function f: A — A3 given by
t— (t,1%,%)

defines what is called a twisted cubic curve. Given any four pairwise distinct
values t1, t2, t3, t4, prove that the points f(t1), f(t2), f(¢3), and f(t4) are not
coplanar.

Hint. Have you heard of the Vandermonde determinant?

Problem 2.6 For any two distinct points a,b € A? of barycentric coor-
dinates (ao,a1,a2) and (b, b1,b2) with respect to any given affine frame
(0,1,5), show that the equation of the line {a,b) determined by a and b is

aop b() T
ay by y|=0,
ary by =z

or, equivalently,
(@1 — agbi)zx + (az2bo — agb2)y + (aghy — aibg)z =0,

where (z,y, z) are the barycentric coordinates of the generic point on the
line {a,b).
Prove that the equation of a line in barycentric coordinates is of the form

uxr + vy +wz =0,
where u # v or v # w or u # w. Show that two equations
ur+vy+wz=0 and uwz+vy+wz=0

represent the same line in barycentric coordinates iff (uv/, v',w’) = A(u, v, w)
for some A € R (with A # 0).
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A triple (u,v,w) where u # v or v # w or u # w is called a system of
tangential coordinates of the line defined by the equation

ur + vy +wz = 0.

Problem 2.7 Given two lines D and D’ in A? defined by tangential
coordinates (u,v,w) and (u',v’,w’) (as defined in Problem 2.6), let

u v w
d=|v v w|=vw —w +wu —uw +u —ovu.
1 1 1

(a) Prove that D and D’ have a unique intersection point iff d # 0, and
that when it exists, the barycentric coordinates of this intersection point
are

1
E(vw’ —wv', wu' — uw', w' — o).

(b) Letting (O, i, j) be any affine frame for A2, recall that when z+y+2 =
0, for any point a, the vector

za0 + yai + zaj
is independent of a and equal to
yO0i+ z0j = (y, 2).

The triple (z,y,2) such that £ + y + 2 = 0 is called the barycentric
coordinates of the vector yOi + 20j w.r.t. the affine frame (O, 1, j).

Given any affine frame (O, 1, j), prove that for u # v or v # w or u # w,
the line of equation

ur+vy+wz=0

in barycentric coordinates (z,v, z) (where x + y + z = 1) has for direction
the set of vectors of barycentric coordinates (z, y, z) such that

ur +vy+wz =0

(where z 4+ y + 2 = 0).

Prove that D and D’ are parallel iff d = 0. In this case, if D # D',
show that the common direction of D and D’ is defined by the vector of
barycentric coordinates

(vw' —wv', wu' — uw', wv’ — vu').

(c) Given three lines D, D', and D", at least two of which are distinct
and defined by tangential coordinates (u, v, w), (v, v, w’), and (u”,v", w"),
prove that D, D’, and D" are parallel or have a unique intersection point
iff

u v w
u v w|=0.
n ,U// wll
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Problem 2.8 Let (A, B,C) be a triangle in A%. Let M,N, P be three
points respectively on the lines BC, CA, and AB, of barycentric co-
ordinates (0,m/,m"), (n,0,n"), and (p,p’,0), w.r.t. the affine frame
(A4,B,0C).
(a) Assuming that M # C, N # A, and P # B, i.e., m'n"p # 0, show
that
MB NC PA _m”np’
MC NA PB~ m/n'p’
(b) Prove Menelaus’s theorem: The points M, N, P are collinear iff
m''np’ +m/n"p=0.
When M # C, N # A, and P # B, this is equivalent to
MB NC PA
MC NA PB
(¢) Prove Ceva’s theorem: The lines AM,BN,CP have a unique
intersection point or are parallel iff

m/lnp/ _ m/n//p =0.
When M # C, N # A, and P # B, this is equivalent to

MB NC PA

MC NA PB
Problem 2.9 This problem uses notions and results from Problems 2.6,
2.7, and 2.8. In view of (a) and (b) of Problem 2.7, it is natural to extend
the notion of barycentric coordinates of a point in A? as follows. Given
any affine frame (a, b, ¢) in A2, we will say that the barycentric coordinates
(z,y,2) of a point M, where  + y + z = 1, are the normalized barycentric
coordinates of M. Then, any triple (z,y, z) such that x + y + z # 0 is
also called a system of barycentric coordinates for the point of normalized
barycentric coordinates

1
Tt+y+z

With this convention, the intersection of the two lines D and D’ is either
a point or a vector, in both cases of barycentric coordinates

(z,9,2).

(v’ —wv', wu' —ww', w' —vu').

When the above is a vector, we can think of it as a point at infinity (in the
direction of the line defined by that vector).

Let (Do, Dj), (D1, DY), and (D2, D)) be three pairs of six distinct lines,
such that the four lines belonging to any union of two of the above pairs
are neither parallel not concurrent (have a common intersection point). If
Dy and Dj have a unique intersection point, let M be this point, and if Dg
and D{ are parallel, let M denote a nonnull vector defining the common
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direction of Dy and Dj. In either case, let (m, m’,m"”) be the barycentric
coordinates of M, as explained at the beginning of the problem. We call
M the intersection of Dy and Dj. Similarly, define N = (n,n/,n"”) as the
intersection of Dy and D7, and P = (p,p/, p”’) as the intersection of D, and

Dj.

Prove that
m n p
m' n p'|=0
m// n// pN

iff either

i) (Do, D}), (D1, D), and (D2, D}) are pairs of parallel lines; or
0 1 2

(ii) the lines of some pair (D;, D;) are parallel, each pair (Dj, D}) (with
j # i) has a unique intersection point, and these two intersection
points are distinct and determine a line parallel to the lines of the
pair (D;, D}); or

(iii) each pair (D;, D}) (¢ = 0,1,2) has a unique intersection point, and
these points M, N, P are distinct and collinear.

Problem 2.10 Prove the following version of Desargues’s theorem. Let
A,B,C, A',B’,C’ be six distinct points of A2. If no three of these points
are collinear, then the lines AA’, BB’, and C'C’ are parallel or collinear iff
the intersection points M, N, P (in the sense of Problem 2.7) of the pairs
of lines (BC, B'C"), (CA,C'A"), and (AB, A’B’) are collinear in the sense
of Problem 2.9.

Problem 2.11 Prove the following version of Pappus’s theorem. Let D
and D)’ be distinct lines, and let A, B,C and A’, B’,C’ be distinct points
respectively on D and D’. If these points are all distinct from the intersec-
tion of D and D’ (if it exists), then the intersection points (in the sense of
Problem 2.7) of the pairs of lines (BC’,CB’), (CA’, AC’), and (AB’, BA')
are collinear in the sense of Problem 2.9.

Problem 2.12 The purpose of this problem is to prove Pascal’s theorem
for the nondegenerate conics. In the affine plane A2, a conic is the set of
points of coordinates (z,y) such that

az? + By? + 2yzy + 262 + 20y + p = 0,
where a # 0 or 3 # 0 or v # 0. We can write the equation of the conic as
6

T
(xvya 1) A y | =0
I 1

>»2 R
> =2
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If we now use barycentric coordinates (z,y,z) (where z + y + 2z = 1), we
can write

z 1 0 0\ [z
y|=101 0} |y
1 1 1 1/ \z
Let
a v 6 1 00 x
B=|~y g X2}, =101 0}, X=|y
6 A pu 1 11 z

(a) Letting A = CT BC, prove that the equation of the conic becomes
XTAX =0.

Prove that A is symmetric, that det(A) = det(B), and that X T AX is ho-
mogeneous of degree 2. The equation X ' AX = 0 is called the homogeneous
equation of the conic.

We say that a conic of homogeneous equation X T AX = 0 is nondegen-
erate if det(A) # 0, and degenerate if det(A) = 0. Show that this condition
does not depend on the choice of the affine frame.

(b) Given an affine frame (A4, B, C), prove that any conic passing through
A, B,C has an equation of the form

ayz + bxz +cxy =0.

Prove that a conic containing more than one point is degenerate iff it con-
tains three distinct collinear points. In this case, the conic is the union of
two lines. :

(c) Prove Pascal’s theorem. Given any six distinct points A, B,C, A’, B,
C’, if no three of the above points are collinear, then a nondegenerate conic
passes through these six points iff the intersection points M, N, P (in the
sense of Problem 2.7) of the pairs of lines (BC',CB’), (CA’, AC") and
(AB’, BA") are collinear in the sense of Problem 2.9.

Hint. Use the affine frame (A, B,C), and let (a,a’,a”), (b,¥,b"), and
(¢,c’,c") be the barycentric coordinates of A’, B’, C’ respectively, and show
that M, N, P have barycentric coordinates

(be,cb', c’b), (c'a,c'a’,c"a’), (ab”,d"b,ad"d").

Problem 2.13 The centroid of a triangle (a,b,c) is the barycenter of
(a, %), (b, %), (e, %) If an affine map takes the vertices of triangle A, =
{(0,0), (6,0),(0,9)} to the vertices of triangle A; = {(1,1),(5,4),(3,1)},
does it also take the centroid of A; to the centroid of A,? Justify your
answer.

Problem 2.14 Let E be an affine space over R, and let (a1,...,a,) be
any n > 3 points in E. Let (A1,...,A,) be any n scalars in R, with A\, +
-+-+ A, = 1. Show that there must be some i, 1 < i < n, such that \; # 1.
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To simplify the notation, assume that A; # 1. Show that the barycenter
A1a1 + -+ + Apay can be obtained by first determining the barycenter b of
the n—1 points ay, ..., a, assigned some appropriate weights, and then the
barycenter of a; and b assigned the weights A; and A +- - -4+ \,,. From this,
show that the barycenter of any n > 3 points can be determined by repeated
computations of barycenters of two points. Deduce from the above that a
nonempty subset V of E is an affine subspace iff whenever V' contains any
two points z,y € V, then V contains the entire line (1 — A)z + Ay, A € R.

Problem 2.15 Assume that K is a field such that 2 =141 # 0, and let
E be an affine space over K. In the case where A\ +---+ A, =1 and \; = 1,
for 1 <4 < n and n > 3, show that the barycenter a; + as + - - - + a,, can
still be computed by repeated computations of barycenters of two points.

Finally, assume that the field K contains at least three elements (thus,
there is some 4 € K such that u #O0and p A1, but 2 =141 =0
is possible). Prove that the barycenter of any n > 3 points can be deter-
mined by repeated computations of barycenters of two points. Prove that a
nonempty subset V of E is an affine subspace iff whenever V' contains any
two points x,y € V, then V contains the entire line (1 — A)z + Ay, A € K.
Hint. When2=0, A\ +---+ A, =1and \; =1, for 1 <i < n, show that
n must be odd, and that the problem reduces to computing the barycenter
of three points in two steps involving two barycenters. Since there is some
p € K such that pu # 0 and p # 1, note that u~! and (1 — u)~! both exist,
and use the fact that

—n 1

1l—p 1-pu
Problem 2.16 (i) Let (a,b,c) be three points in A%, and assume that
(a, b, c) are not collinear. For any point z € A2, if £ = Aga+A1b+ Aac, where
(X0, A1, A2) are the barycentric coordinates of z with respect to (a,b,c),
show that
_ det(xb, bc) N = det(ax, ac) __ det(ab, ax)
~ det(ab,ac)’ '™ det(ab, ac)’ >~ det(ab,ac)’

Conclude that Ag, A;, A2 are certain signed ratios of the areas of the
triangles (a, b, ¢), (z,a,b), (z,a,¢), and (z,b,c).

(i) Let (a,b,c) be three points in A3, and assume that (a,b,c) are
not collinear. For any point z in the plane determined by (a,b,c), if
T = Xoa + A1b + Aac, where (Ao, A1, A2) are the barycentric coordinates
of x with respect to (a, b, ¢), show that

Ao

xb x be ax x ac ab x ax
ab x ac’

1= 77— 2 =

Ao = =
ab x ac’

~ abxac’
Given any point O not in the plane of the triangle (a,b,c), prove that

_ det(Oa, Ox, Oc) _det(Oa, Ob, Ox)

A= det(Oa, Ob,0c)’ "2~ det(Oa, Ob, Oc)’
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and

_ det(Ox, Ob, Oc)

~ det(Oa,Ob,Oc)’

(iii) Let (a,b,c,d) be four points in A3, and assume that (a,b,c,d) are
not coplanar. For any point z € A3, if £ = Xga + A\b + dac + Aad,
where (Ao, A1, A2, A3) are the barycentric coordinates of & with respect to
(a,b,c,d), show that

_ det(ax, ac,ad) _ det(ab, ax,ad) _ det(ab, ac, ax)

~ det(ab,ac,ad)’ *? "~ det(ab,ac,ad)’ > det(ab,ac,ad)’

Ao

A1

and
_ det(xb, bc,bd)
~ det(ab,ac,ad)

Conclude that Ag, A1, A2, A3 are certain signed ratios of the volumes of the
five tetrahedra (a, b, ¢,d), (z,a,b,¢), (z,a,b,d), (z,a,c,d), and (x,b,c,d).

Ao

(iv) Let (ao,...,am) be m + 1 points in A™, and assume that they are
affinely independent. For any point x € A™, if £ = Agag + --- + An@y,,
where (Ag,...,Am) are the barycentric coordinates of z with respect to
(ag,...,am), show that

L det(aoal, ce 5, 20Q5-1,0X, 205419 - - - aoam)
' det(a0a17 --+.,8204j-1,3403a;,20Qj+1,- - -, aOam)

forevery i, 1 <i<m, and
_ det(xaj,aaz,...,a1am)
det(apai,...,a0ai,...,208m)

Conclude that A, is the signed ratio of the volumes of the simplexes (ay, .. .,
Z,...am) and (ag,...,a;...ay), where 0 < i< m.

Problem 2.17 With respect to the standard affine frame for the plane
AZ consider the three geometric transformations fi, fa, f3 defined by

g L V3 .3
T YTy
y’_ﬁm_ly+£
4 4 4
1 V3 3
I_.___ PR ¥ ——
‘ St
g V3, 1 V3
4 4 4’
:c’~1m
=5,
V3
L——— —_—
y'=g5y+ 5
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(a) Prove that these maps are affine. Can you describe geometrically
what their action is (rotation, translation, scaling)?

(b) Given any polygonal line L, define the following sequence of polygonal
lines:

So=1L,
Sn+1 = f1(Sn) U f2(Sn) U f3(Sn).

Construct S; starting from the line segment L = ((—1,0),(1,0)).
Can you figure out what S, looks like in general? (You may want to
write a computer program.) Do you think that S, has a limit?

Problem 2.18 In the plane A?, with respect to the standard affine frame,
a point of coordinates (x,y) can be represented as the complex number
z =z + 1y. Consider the set of geometric transformations of the form

z—az+b,

where a,b are complex numbers such that a # 0.

(a) Prove that these maps are affine. Describe what these maps do
geometrically.

(b) Prove that the above set of maps is a group under composition.

(c) Consider the set of geometric transformations of the form

z—az+b or z—az+b,

where a, b are complex numbers such that a # 0, and where z = z — iy if
z = x + iy. Describe what these maps do geometrically. Prove that these
maps are affine and that this set of maps is a group under composition.

Problem 2.19 Given a group G, a subgroup H of G is called a normal
subgroup of G iff tHz~! = H for all z € G (where tHz~! = {zhz~! | h
(i) Given any two subgroups H and K of a group G, let

HK ={hk|he H, ke K}.

Prove that every x € HK can be written in a unique way as x = hk for
he€ H and k € K iff HN K = {1}, where 1 is the identity element of G.

(it) If H and K are subgroups of G, and H is a normal subgroup of
G, prove that HK is a subgroup of G. Furthermore, if G = HK and
HNK = {1}, prove that G is isomorphic to H x K under the multiplication
operation

(ha,k1) - (ho,k2) = (hikihoki?, kikz).

When G = HK, where H, K are subgroups of G, H is a normal subgroup
of G, and HN K = {1}, we say that G is the semidirect product of H and
K.

(iii) Let (E, ﬁ) be an affine space. Recall that the affine group of E,
denoted by GA(E), is the set of affine bijections of F, and that the linear
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— —> . . . —
group of E, denoted by GL( E'), is the group of bijective linear maps of E'.

The map f ? defines a group homomorphism L: GA(E) — GL(E)),
and the kernel of this map is the set of translations on E, denoted as T'(E).
Prove that T(E) is a normal subgroup of GA(E).

(iv) For any a € E, let

GA(E) = {f € GA(E) | f(a) = a},

the set of affine bijections leaving a fixed. Prove that that GA,(FE) is a

subgroup of GA(FE), and that GA,(FE) is isomorphic to GL(?). Prove
that GA(FE) is isomorphic to the direct product of T(E) and GA,(E).
Hint. Note that if u = f(a)a and t,, is the translation associated with the
vector u, then t, o f € GA,(FE) (where the translation ¢, is defined such
that t,(a) = a + u for every a € E).

(v) Given a group G, let Aut(G) denote the set of homomorphisms
f:G — G. Prove that the set Aut(G) is a group under composition (called
the group of automorphisms of G). Given any two groups H and K and
a homomorphism 8: K — Aut(H), we define H x4 K as the set H x K
under the multiplication operation

(ha, k1) - (he, k2) = (h16(k1)(h2), kiks2).
Prove that H x¢ K is a group.
Hint. The inverse of (h, k) is (8(k~ 1) (A1), k71).

Prove that the group H Xx¢ K is the semidirect product of the subgroups
{(h,1) | h e H} and {(1,k) | k € K}. The group H Xy K is also called the
semidirect product of H and K relative to 8.

Note. It is natural to identify {(h,1) | h € H} with H and {(1,k) | k € K}
with K.

If G is the semidirect product of two subgroups H and K as defined in

(ii), prove that the map v: K — Aut(H) defined by conjugation such that

y(k)(h) = khk™!

is a homomorphism, and that G is isomorphic to H %, K.
(vi) Define the map 6: GL(f) — Aut(ﬁ) as follows:

0(f) = 1,

where f € GL(ﬁ) (note that 6 can be viewed as an inclusion map). Prove
that GA(F) is isomorphic to the semidirect product E X9 GL(E)).
(vii) Let SL(ﬁ) be the subgroup of GL(ﬁ) consisting of the linear

maps such that det(f) = 1 (the special linear group of E)), and let SA(E)
be the subgroup of GA(E) (the special affine group of E) consisting of

the affine maps f such that ? € SL(E’). Prove that SA(FE) is isomorphic
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— — — —
to the semidirect product E xg SL(E'), where §:SL(E) — Aut(E) is
defined as in (vi).

(viii) Assume that (E, f) is a Euclidean affine space, as defined in Chap-

ter 6. Let SO(E) be the special orthogonal group of ?, as defined in
Definition 6.4.3 (the isometries with determinant +1), and let SE(E) be
the subgroup of SA(E) (the special Euclidean group of E) consisting of the

affine isometries f such that 7 € SO(ﬁ). Prove that SE(FE) is isomorphic

to the semidirect product E Xg SO(?), where 6: SO(E)) — Aut(ﬁ) is
defined as in (vi).

Problem 2.20 The purpose of this problem is to study certain affine maps
of AZ.
(1) Consider affine maps of the form

T cosf —sinf T b
(3:2) i (sinO cos 6 ) <x2) + <b2 )
Prove that such maps have a unique fixed point c if § # 2k, for all integers
k. Show that these are rotations of center ¢, which means that with respect
to a frame with origin ¢ (the unique fixed point), these affine maps are

represented by rotation matrices.
(2) Consider affine maps of the form

T Acosf —Asiné 1 b
— N + .
2 psin®  pcosd o by

Prove that such maps have a unique fixed point iff (A + p)cos8 # 1 + Ap.
Prove that if Au =1 and A > 0, there is some angle 6 for which either there
is no fixed point, or there are infinitely many fixed points.

(3) Prove that the affine map

(2)= (o o5) (3)+ ()

has no fixed point.
(4) Prove that an arbitrary affine map

(2)= (o =) ()« ()

has a unique fixed point iff the matrix
a; — 1 as
asg a4 — 1

Problem 2.21 Let (F, ﬁ) be any affine space of finite dimension. For
every affine map f: E — F, let Fix(f) = {a € F | f(a) = a} be the set of
fixed points of f. '

is invertible.
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(i) Prove that if Fix(f) # 0, then Fix(f) is an affine subspace of E such
that for every b € Fix(f),

Fix(f) = b+ Ker (f — id).

(ii) Prove that Fix(f) contains a unique fixed point iff
Ker (f — id) = {0},

ie., f(u)=uiffu=0.
Hint. Show that

Qf(a) - Qa = QH(Q) + f (Qa) - Na,

for any two points ,a € E.

Problem 2.22 Given two affine spaces (E, E)) and (F, ?), let A(E,F)
be the set of all affine maps f: £ — F.

(i) Prove that the set A(E, ?) (viewing F as an affine space) is a vector
space under the operations f + g and Af defined such that

(f +9)(a) = f(a) + g(a),
(Af)(a) = Af(a),

foralla € E.
(ii) Define an action

+: A(E, F) x A(E, F) = A(E, F)
of A(E, ?) on A(E, F) as follows: For every a € E, every f € A(E, F),
and every h € A(E, ?),
(f +h)(a) = f(a) + h(a).

Prove that (A(E, F), A(E, ?), +) is an affine space.
Hint. Show that for any two affine maps f, g € A(E, F), the map fg defined
such that

(for every @ € E) is affine, and thus fg € A(E, ?) Furthermore, fg is the
unigue map in A(FE, ?) such that

f+fg=g.

(iii) If E has dimension m and F has dimension n, prove that A(FE, ?)
has dimension n + mn = n(m + 1).
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Problem 2.23 Let (cy,...,c,) be n > 3 points in A™ (where m > 2).
Investigate whether there is a closed polygon with n vertices (aq,...,a,)
such that c; is the middle of the edge (a;, a;41) forevery i with 1 <i < n-1,
and ¢, is the middle of the edge (an, ao).

Hint. The parity (odd or even) of n plays an important role. When n is
odd, there is a unique solution, and when n is even, there are no solutions or
infinitely many solutions. Clarify under which conditions there are infinitely
many solutions.

Problem 2.24 Given an affine space E of dimension n and an affine
frame (ao,...,a,) for E, let f: E — E and g: E — E be two affine maps
represented by the two (n + 1) x (n 4+ 1) matrices

A b and B ¢
o 1) ™ 0 1
w.r.t. the frame (ao,...,a,). We also say that f and g are represented by

(A,b) and (B,¢).
(1) Prove that the composition f o g is represented by the matrix

AB Ac+b
0 1 ’

We also say that f o g is represented by (A,b)(B,c) = (AB, Ac+b).
(2) Prove that f is invertible iff A is invertible and that the matrix

representing f~! is
Al A
0 1 ’

We also say that f~! is represented by (A,b)~! = (47!, —~A~1b). Prove
that if A is an orthogonal matrix, the matrix associated with f~! is

AT —ATb
0 1)

Furthermore, denoting the columns of A by Aj,...,A,, prove that the
vector ATb is the column vector of components

(Ay-b,..., Ap-b)

(where - denotes the standard inner product of vectors).

(3) Given two affine frames (ao, - ..,a,) and (ag, . .., al,) for E, any affine
map f:E — FE has a matrix representation (A,b) w.r.t. (ag,...,a,) and
ap,---,al) defined such that b = ajf(ag) is expressed over the basis

0 n Qg
(agal,...,apal), and a;; is the ith coeflicient of f(apa;) over the basis
(apal,...,apal). Given any three frames (ao,...,as), (ap,-..,a,), and
(ag,--.,al), for any two affine maps f: E — E and ¢g: F — E, if f has the
matrix representation (A4,b) w.r.t. (ao,...,an,) and (ag,...,a,) and g has

the matrix representation (B,c) w.r.t. (ag,...,a;) and (ag,-..,an), prove



2.12. Problems 61

that g o f has the matrix representation (B, c)(A,b) w.r.t. (ao,...,a,) and

(ag,...,an).
(4) Given two affine frames (ag, ...,a,) and (ag,...,a,) for E, there is
a unique affine map h: E — E such that h(a;) = a; for i = 0,...,n, and

we let (P,w) be its associated matrix representation with respect to the
frame (ag, - - .,a,). Note that w = apag, and that p;; is the ith coefficient
of a(,aJ’. over the basis (agay, - .., apan). Observe that (P,w) is also the ma-
trix representation of idg w.r.t. the frames (ay,...,a}) and (ao,...,as),
in that order. For any affine map f: £ — E, if f has the matrix repre-
sentation (A,b) over the frame (ag,...,a,) and the matrix representation
(A’,¥') over the frame (ay, . ..,a;,), prove that

(A',b) = (P,w) (A, b)(P,w).
Given any two affine maps f: E — E and g: E — E, where f is invertible,

for any affine frame (aq,...,a,) for E, if (ap,...,a;) is the affine frame
image of (ay, . .., a,) under f (ie., f(a;) = a fori = 0,...,n), letting (4, b)
be the matrix representation of f w.r.t. the frame (aq, ..., a,) and (B, c) be

the matrix representation of g w.r.t. the frame (af, ..., a,) (not the frame
(ao,- - .,an)), prove that go f is represented by the matrix (4,b)(B,c) w.r.t.
the frame (ao, - .., an).

Remark: Note that this is the opposite of what happens if f and g are
both represented by matrices w.r.t. the “fixed” frame (ay,...,an), where
g o f is represented by the matrix (B, c)(A,b). The frame (ag,...,a;) can
be viewed as a “moving” frame. The above has applications in robotics, for
example to rotation matrices expressed in terms of Euler angles, or “roll,
pitch, and yaw.”



3
Properties of Convex Sets: A Glimpse

3.1 Convex Sets

Convex sets play a very important role in geometry. In this section we state
and prove some of the “classics” of convex affine geometry: Carathéodory’s
theorem, Radon’s theorem, and Helly’s theorem. These theorems share the
property that they are easy to state, but they are deep, and their proof,
although rather short, requires a lot of creativity. We will return to convex
sets when we study Euclidean geometry.

Given an affine space E, recall that a subset V of E is conver if for any
two points a,b € V', we have ¢ € V for every point ¢ = (1 — A)a + b, with
0 <X <1 (X €R). Given any two points a, b, the notation [a, b] is often
used to denote the line segment between a and b, that is,

[a,b)={ceE|c=(1-Na+ b, 0< <1},

and thus a set V is convex if [a,b] C V for any two points a,b €V (a =b
is allowed). The empty set is trivially convex, every one-point set {a} is
convex, and the entire affine space E is of course convex.

It is obvious that the intersection of any family (finite or infinite) of
convex sets is convex. Then, given any (nonempty) subset S of E, there is
a smallest convex set containing S denoted by C(S) and called the convez
hull of S (namely, the intersection of all convex sets containing S).

A good understanding of what C(.9) is, and good methods for computing
it, are essential. First, we have the following simple but crucial lemma
analogous to Lemma 2.5.3.

J. Gallier, Geomerric Methods and Applications
© Springer Science+Business Media New York 2001
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Lemma 3.1.1 Given an affine space (E, E, +), for any family (a:)ier of
points in E, the set V of conver combinations Zie] Aia; (where Y ;A =
1 and A\; > 0) is the conver hull of (a;)icr-

Proof . If (a;)scr is empty, then V' = 0, because of the condition ) ,c; A =
1. As in the case of affine combinations, it is easily shown by induction
that any convex combination can be obtained by computing convex com-
binations of two points at a time. As a consequence, if (a;);cs is nonempty,
then the smallest convex subspace containing (a;);e; must contain the set
V of all convex combinations ) ,.; A;a;. Thus, it is enough to show that V
is closed under convex combinations, which is immediately verified. []

In view of Lemma 3.1.1, it is obvious that any affine subspace of E is
convex. Convex sets also arise in terms of hyperplanes. Given a hyperplane
H,if f: E — R is any nonconstant affine form defining H (i.e., H = Ker f),
we can define the two subsets

Hi(f)={acE| f(a)20} and H_(f)={acE]|f(a) <0},

called (closed) half-spaces associated with f.
Observe that if A > 0, then H (Af) = Hy(f), but if A < 0, then
H(Af)=H_(f), and similarly for H_(Af). However, the set

{H+(f), H-()}

depends only on the hyperplane H, and the choice of a specific f defining
H amounts to the choice of one of the two half-spaces. For this reason, we
will also say that H, (f) and H_(f) are the closed half-spaces associated
with H. Clearly, Hy (fYUH_(f) = E and H (f)yN H_(f) = H. It is
immediately verified that H.(f) and H_(f) are convex. Bounded convex
sets arising as the intersection of a finite family of half-spaces associated
with hyperplanes play a major role in convex geometry and topology (they
are called convez polytopes).

It is natural to wonder whether Lemma 3.1.1 can be sharpened in two
directions: (1) Is it possible have a fixed bound on the number of points
involved in the convex combinations? (2) Is it necessary to consider convex
combinations of all points, or is it possible to consider only a subset with
special properties?

The answer is yes in both cases. In case 1, assuming that the affine space
E has dimension m, Carathéodory’s theorem asserts that it is enough to
consider convex combinations of m + 1 points. For example, in the plane
A? the convex hull of a set S of points is the union of all triangles (interior
points included) with vertices in S. In case 2, the theorem of Krein and
Millman asserts that a convex set that is also compact is the convex hull
of its extremal points (given a convex set S, a point a € S is extremal
if S — {a} is also convex, see Berger [13] or Lang [109]). Next, we prove
Carathéodory’s theorem.
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3.2 Carathéodory’s Theorem

The proof of Carathéodory’s theorem is really beautiful. It proceeds by
contradiction and uses a minimality argument.

Theorem 3.2.1 Given any affine space E of dimension m, for any (non-
void) family S = (a;)ier in E, the conver hull C(S) of S is equal to the set
of convex combinations of families of m + 1 points of S.

Proof. By Lemma 3.1.1,

c(8) = {Z Xai|a; €8, Y \i=1,X>0ICL, I ﬁnite}.
i€l el

We would like to prove that

C(S) = {Z/\lal | a; € S, Z)‘Z =1, N>0,1ICL, |I* :m+1}
i€l icl

We proceed by contradiction. If the theorem is false, there is some point b €
C(S) such that b can be expressed as a convex combination b = ), Aa;,
where I C L is a finite set of cardinality |I| = ¢ with ¢ > m + 2, and b
cannot be expressed as any convex combination b = Zje J Mja; of strictly
fewer than ¢ points in .S, that is, where |J| < g. Such a point b € C(S) is a
convex combination

b= A1a; + - + Aag,

where A\ + -4+ Xy =1 and A\; > 0 (1 <4 < q). We shall prove that b can
be written as a convex combination of ¢ — 1 of the a;. Pick any origin O
in E. Since there are ¢ > m + 1 points ay, ..., aq, these points are affinely
dependent, and by Lemma 2.6.5, there is a family (u1,...,1q) all scalars
not all null, such that pq +--- 4+ pg =0 and

q
> piOa; =0.
i=1

Consider the set T C R defined by
T={tcR|A+tu; >0, u; #0, 1 <3 < q}.

The set T is nonempty, since it contains 0. Since > 7_, 4; = 0 and the p;
are not all null, there are some pp, ux such that up < 0 and py > 0, which
implies that T = [a, (], where

a= lfg%xq{—/\i/ﬂi | ps >0} and B= lfgz.lélq{_)\i/ﬁ‘i | pi <0}

(T is the intersection of the closed half-spaces {t € R | A; +tu; > 0, p; #
0}). Observe that a < 0 < 3, since \; >0 foralli=1,...,q.
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We claim that there is some j (1 < j < ¢) such that
/\j -+ Ql; = 0.

Otherwise, we would have A; + au; > 0 for i = 1,...,q. If so, we can pick
€ > 0 small enough so that A; + (o —€)p; > 0 for 1 = 1,...¢q. Indeed, since
M +ap; >0fori=1,...,q (and there is some y; > 0), we can pick any
€ > 0s.t. € <minj<i<q{(Ni + aps)/pi | ps > 0}. But then, o — e € T with
a—¢€ < a, a contradiction. Letting j be some index such that A; +au; =0,
since Y +_, u;0a; = 0, we have

q q
b= Z)\iai = O+Z)\i0ai+0,
i=1

i=1

q
=04+ Z X:0a; + a(i Nioai)a

=1 =1

L~

=0+ ) (A +ap;)Oa;,
i=1

1

|
'M"

(N + apg)a;,
1
q

= > (i +ap)a,

i=1,i%j

1

since Aj +au; = 0. Since Y 7_; p; =0, >0 1 X =1, and Aj + ap; = 0, we
have

g
> XNitap=1,
i=1, %

and since A; + au; > 0 for ¢ = 1,...,q, the above shows that b can be
expressed as a convex combination of ¢ — 1 points from S. However, this
contradicts the assumption that b cannot be expressed as a convex combi-
nation of strictly fewer than ¢ points from S, and the theorem is proved.

a

If S is a finite (of infinite) set of points in the affine plane A%, Theorem
3.2.1 confirms our intuition that C(S) is the union of triangles (including
interior points) whose vertices belong to S. Similarly, the convex hull of a
set S of points in A3 is the union of tetrahedra (including interior points)
whose vertices belong to S. We get the feeling that triangulations play a
crucial role, which is of course true!

We conclude this short chapter with two other classics of convex
geometry.
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3.3 Radon’s and Helly’s Theorems

We begin with Radon’s theorem.

Theorem 3.3.1 Given any affine space E of dimension m, for every sub-
set X of E, if X has at least m + 2 points, then there is a partition of X
into two nonempty disjoint subsets Xy and X such that the convexr hulls
of X1 and X2 have a nonempty intersection.

Proof. Pick some origin O in E. Write X = (z;);c for some index set L
(we can let L = X). Since by assumption |X| > m + 2 where m = dim(E),
X is affinely dependent, and by Lemma 2.6.5, there is a family (ug)ker (of
finite support) of scalars, not all null, such that

Zuk =0 and ZukOxk =0.
kel keL

Since ) ,c, pk = 0, the py are not all null, and (ux)ker has finite support,
the sets

I={ieL|p;>0} and J={jeL|p; <0}
are nonempty, finite, and obviously disjoint. Let
Xi={z; € X |p; >0} and Xo={z;€ X |pu; <0}.

Again, since the pu are not all null and ZkeL ur = 0, the sets X; and Xs
are nonempty, and obviously

XiNXy=0 and X;UX;=X.

Furthermore, the definition of I and J implies that (z;)ie; € X; and
(zj)jes € Xo. It remains to prove that C(X;) N C(X2) 7é (. The definition
of I and J implies that

Z peOx, =0

keL

can be written as

Z 1 0x; + Z 1;Ox; =0,

il jed
that is, as
> wiOx; =Y —u;0x;,
el jeJ
where

Zui ZZ—M =H,

i€l jeJ
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with g > 0. Thus, we have

Z%Oxi = Z—-Hl Ox;,

iel jer M
with

I

el M oes M

proving that > .. /(ui/p)zi € C(X1) and 37, ; —(u;/m)z; € C(X2) are
identical, and thus that C(X;) NC(X2) # 0.

Finally, we prove a version of Helly’s theorem.

Theorem 3.3.2 Given any affine space E of dimension m, for every fam-
ily {K1,...,Kn} of n convez subsets of E, if n > m+2 and the intersection
Mic; Ki of any m + 1 of the K; is nonempty (where I C {1,...,n},
lI| =m+ 1), then (Y, K; is nonempty.

Proof. The proof is by induction on n > m + 1 and uses Radon’s theorem
in the induction step. For n = m+ 1, the assumption of the theorem is that
the intersection of any family of m + 1 of the K;’s is nonempty, and the
theorem holds trivially. For the induction step, let L = {1,2,...,n + 1},
where n +1 > m + 2, and assume that C; = ﬂjE(L_{i}) K; is nonempty
for every ¢ € L. We want to prove that

KinKon---NKppq #0.
If
KinKyn---NKpyp =0,
since
C,ﬂK,-:( N KJ-)ﬂKi:KlﬂKzﬂuﬂKnH:(b,
JE(L—{i})

we can pick a set X = {a1,...,an41} such that a; € C; and a; ¢ K; for
alli € L. Since n+ 1 > m + 2, we can apply Radon’s theorem, and there
are two nonempty disjoint sets X;, X2 C X such that X = X; U X; and
C(X1)NC{X2) # 0. Let I, J be the subsets of L defined such that

I:{ieL|X1§K,-} and J={]€L|X2§K]}

Since a; € C; = ;i) Kj and a; ¢ K; for all i € L, we have INJ =0
and I U J = L. We claim that C(X;) NC(X2) # § implies that

KiNnKyNn---NKpiq #0.
By definition of I and J, we have

X1 C[)K: and X, C[) K,
el j€J
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However, since the K}, are convex, the sets [);.; K; and ﬂje ; K are also
convex, and thus

C(X1) C()K: and C(X2)C [ K,
i€l jeJ
and since C(X;) NC(X2) # 0, IUJ =L, and INJ = @, we also have
KinKyN- - NKppy = (ﬂK) N (ﬂ Kj) # 0.
iel j€J

a

A more general version of Helly’s theorem is proved in Berger [13]. An
amusing corollary of Helly’s theorem is the following result. Consider n > 4
parallel line segments in the affine plane A2. If every three of these line
segments meet a line, then all of these line segments meet a common line.

3.4 Problems

Problem 3.1 Let a,b,c, be any distinct points in A%, and assume that
they are not collinear. Let H be the plane of the equation

or+Py+vz+6=0.

(i) What is the intersection of the plane H and of the solid triangle
determined by a, b, c (the convex hull of a,b,c)?

(ii) Give an algorithm to find the intersection of the plane H and the
triangle determined by a, b, c.

(iii) (extra credit) Implement the above algorithm so that the intersec-
tion can be visualized (you may use Maple, Mathematica, Matlab,
etc.).

Problem 3.2 Given any two affine spaces E and F, for any affine map
f:E — F, any convex set U in E, and any convex set V in F, prove that
f(U) is convex and that f~!(V) is convex. Recall that

fU)={beF|3acU b= f(a)}
is the direct image of U under f, and that
FF\Vy={acE|3eV,b= f(a)}
is the inverse image of V under f.

Problem 3.3 Consider the subset S of A2 consisting the points belonging
to the right branch of the hyperbola of the equation 2 -y?=1,1ie,

S ={(zx,y) eR? |z —y*> > 1,z >0}
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Prove that S is convex. What is the convex hull of S U {(0,0)}? Is the
convex hull of a closed subset of A™ necessarily a closed set?

Problem 3.4 Use the theorem of Carathéodory to prove that if S is a
compact subset of A™, then its convex hull C(S) is also compact.

Problem 3.5 Let S be any nonempty subset of an affine space FE. Given
some point a € S, we say that S is star-shaped with respect to a iff the line
segment [a, z] is contained in S for every £ € S, i.e., (1 — A)a+ Az € S for
all A such that 0 < A < 1. We say that S is star-shaped iff it is star-shaped
w.r.t. to some point a € S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show
that there are nonempty subsets that are not star-shaped (give an
example in A", n =1,2,3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points
a € S such that S is star-shaped with respect to a. Prove that N(S)
is convex.

Problem 3.6 Consider n > 4 parallel line segments in the affine plane
AZ. If every three of these line segments meet a line, then all of these line
segments meet a common line.

Hint. Choose a coordinate system such that the y axis is parallel to the
common direction of the line segments. For any line segment S, let

CS = {(a,p) R2, the line y = ax + 3 meets S}.
Show that CS is convex and apply Helly’s theorem.

Problem 3.7 Given any two convex sets S and T in the affine space A™,
and given A, € R such that A + g = 1, the Minkowski sum AS + uT is
the set

AS+uT ={Ap+pq|pe S, qeT}

(i) Prove that AS + pT is convex. Draw some Minkowski sums, in
particular when S and T are tetrahedra (with T upside down).

(ii) Show that the Minkowski sum does not preserve the center of gravity.
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Embedding an Affine Space in a
Vector Space

4.1 The “Hat Construction,” or Homogenizing

For all practical purposes, curves and surfaces live in affine spaces. A dis-
advantage of the affine world is that points and vectors live in disjoint
universes. It is often more convenient, at least mathematically, to deal with
linear objects (vector spaces, linear combinations, linear maps), rather than
affine objects (affine spaces, affine combinations, affine maps). Actually, it
would also be advantageous if we could manipulate points and vectors as if
they lived in a common universe, using perhaps an extra bit of information
to distinguish between them if necessary.

Such a “homogenization” (or “hat construction”) can be achieved. As a
matter of fact, such a homogenization of an affine space and its associated
vector space will be very useful to define and manipulate rational curves
and surfaces. Indeed, the hat construction yields a canonical construction
of the projective completion of an affine space. It also leads to a very
elegant method for obtaining the various formulae giving the derivatives of
a polynomial curve, or the directional derivatives of polynomial surfaces.
However, these formulae are not needed in the main text. Thus we omit
this topic, referring the readers to Gallier [70].

This chapter proceeds as follows. First, the construction of a vector space

E in which both E and E are embedded as (affine) hyperplanes is de-

scribed. It is shown how affine frames in E become bases in E. It turns
out that F is characterized by a universality property: Affine maps to vec-

J. Gallier, Geomerric Methods and Applications
© Springer Science+Business Media New York 2001
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tor spaces extend uniquely to linear maps. As a consequence, affine maps
between affine spaces E and F extend to linear maps between E and F.

Let us first explain how to distinguish between points and vectors prac-
tically, using what amounts to a “hacking trick”. Then, we will show that
such a procedure can be put on firm mathematical grounds.

Assume that we consider the real affine space F of dimension 3, and
that we have some affine frame (ag, (v1, v2,v2)). With respect to this affine
frame, every point x € E is represented by its coordinates (z,z2,z3),

where a = ag + x1v1 + T2v2 + x3v3. A vector u € ITj is also represented by
its coordinates (u1, uz, ug) over the basis (v, va, v2). One way to distinguish
between points and vectors is to add a fourth coordinate, and to agree that
points are represented by (row) vectors (z1, 2,3, 1) whose fourth coordi-
nate is 1, and that vectors are represented by (row) vectors (v, vz, vs,0)
whose fourth coordinate is 0. This “programming trick” actually works
very well. Of course, we are opening the door for strange elements such as
(21,22, 23,5), where the fourth coordinate is neither 1 nor 0.

The question is, can we make sense of such elements, and of such a
construction? The answer is yes. We will present a construction in which

an affine space (E, f) is embedded in a vector space E, in which E
is embedded as a hyperplane passing through the origin, and E itself is
embedded as an affine hyperplane, defined as w=!(1), for some linear form
w:E — R. In the case of an affine space F of dimension 2, we can think

of E as the vector space R? of dimension 3 in which E corresponds to the
zy-plane, and E corresponds to the plane of equation z = 1, parallel to
the xy-plane and passing through the point on the z-axis of coordinates
(0,0,1). The construction of the vector space E is presented in some detail
in Berger [12]. Berger explains the construction in terms of vector fields.
Ramshaw explains the construction using the symmetric tensor power of an
affine space. We prefer a more geometric and simpler description in terms
of simple geometric transformations, translations, and dilatations.

Remark: Readers with a good knowledge of geometry will recognize the
first step in embedding an affine space into a projective space. We will

also show that the homogenization E of an affine space (E, E)), satisfies
a universal property with respect to the extension of affine maps to linear
maps. As a consequence, the vector space E is unique up to isomorphism,
and its actual construction is not so important. However, it is quite useful
to visualize the space E, in order to understand well rational curves and
rational surfaces.

As usual, for simplicity, it is assumed that all vector spaces are defined
over the field R of real numbers, and that all families of scalars (points
and vectors) are finite. The extension to arbitrary fields and to families of
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finite support is immediate. We begin by defining two very simple kinds

=
of geometric (affine) transformations. Given an affine space (E , B ) , every

u € E induces a mapping t,: E — FE, called a translation, and defined
such that t,(a) = a + u for every a € E. Clearly, the set of translations is

a vector space isomorphic to E. Thus, we will use the same notation u for
both the vector v and the translation ¢,. Given any point a and any scalar
A € R, we define the mapping H, »: E — E, called dilatation (or central
dilatation, or homothety) of center a and ratio A, and defined such that

H, \(z) = a + Aax,

for every x € E. We have H, x(a) = a, and when A # 0 and x # a, Hy ()
is on the line defined by a and z, and is obtained by “scaling” ax by A.
The effect is a uniform dilatation (or contraction, if A < 1). When A = 0,
H,o(z) = a for all x € E, and H, o is the constant affine map sending
every point to a. If we assume A # 1, note that H, » is never the identity,
and since a is a fixed point, H, ) is never a translation.

We now consider the set E of geometric transformations from F to E,
consisting of the union of the (disjoint) sets of translations and dilatations
of ratio A # 1. We would like to give this set the structure of a vector space,

in such a way that both E and E can be naturally embedded into E.In
fact, it will turn out that barycenters show up quite naturally too!

In order to “add” two dilatations H,, », and H,, ),, it turns out that it
is more convenient to consider dilatations of the form H, -, where A # 0.
To see this, let us see the effect of such a dilatation on a point x € E: We
have

Hyi-x(z) =a+ (1 — N)ax = a + ax — dax = z + Axa.
For simplicity of notation, let us denote H, 1 by (a, A). Then, we have

(a, A\)(z) = = + Axa.

Remarks:

(1) Note that Ha1-a(z) = Hg,a(a).

(2) Berger defines a map h: F — F as a vector field. Thus, each (a, A)
can be viewed as the vector field £ — Axa. Similarly, a translation
u can be viewed as the constant vector field z — u. Thus, we could
define F as the (disjoint) union of these two vector fields. We prefer
our view in terms of geometric transformations.

Then, since

(a1, M)(x) =z + Aixa; and (ag, A2)(z) = T+ Agxag,
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if we want to define {aj, A1) F (a2, A7), we see that we have to distinguish
between two cases:
(1) A1 + A2 = 0. In this case, since

)\1)(3.1 + /\gxaz = /\1)(31 — )\1)(8.2 = )\13231,
we let
<a17 /\1> :i: <a27 AQ) = /\1a2a17

where \jaza; denotes the translation associated with the vector Ajaza;.
(2) A1 + A2 # 0. In this case, the points a; and a, assigned the weights
A1/(A1 4+ A2) and Az/(A1 + A2) have a barycenter

)\1 /\2

b=
VR LR v Pl
such that
xb = ! xa + Az xa
MAA A A
Since
A1xa; + Asxag = (A1 + A2)xb,
we let

A1 a4+ A2
AL+ Ao ! AL+ A
the dilatation associated with the point & and the scalar A; + As.

Given a translation defined by u and a dilatation {a, \), since A # 0, we
have

(a1, 21) T (a2, Aa) =< a2 A1 +A2>,

Axa +u = A\(xa + A" 1u),
and so, letting b = a + A" lu, since ab = A~ 'u, we have
Axa +u = A(xa + A7) = A\(xa + ab) = Axb,
and we let
(@, \) Fu=(a+ 2"ty N),

the dilatation of center a + A~'u and ratio .
The sum of two translations u and v is of course defined as the translation
u + v. It is also natural to define multiplication by a scalar as follows:

M- <a7 )‘> = <a7 A“’)?
and

A-u = Au,

where Au is the product by a scalar in E.
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We can now use the definition of the above operations to state the fol-
lowing lemma, showing that the “hat construction” described above has

allowed us to achieve our goal of embedding both E and E in the vector
space E.

Lemma 4.1.1 The set E consisting of the disjoint union of the transla-
tions and the dilatations Hy1-x = (a,\), A € R, A # 0, is a vector space
under the following operations of addition and multiplication by a scalar:
If A1+ A2 =0, then

(a1, M) F (a2, A2) = Mazay;
if A1+ A2 7& 0, then
A1 Az

<a1,/\1> + <a2,/\2> = </\1 +/\2a1 + N T
(a,\) Fu=(a+ 2"ty N,

u+v=u+v;

az, A\ + /\2> ,

if u # 0, then
p-{a,A) = (e, ),
0-(a,\) =0;
and
Ay = A
Furthermore, the map w: ESR defined such that
w({a,A)) = A,
w(u) =0,

is a linear form, w='(0) is a hyperplane isomorphic to E under the injective
linear map 1: E — E such that i(u) = t,, (the translation associated with
u), and w=(1) is an affine hyperplane isomorphic to E with direction z(E’)),
under the injective affine map j: E — E, where j(a) = (a,1) for every
a € E. Finally, for every a € E, we have
E=i(E) ®Rj(a).

Proof. The verification that E is a vector space is straightforward. The
linear map mapping a vector u to the translation defined by u is clearly an

injection %: E S E embedding FE as an hyperplane in E. It is also clear
that w is a linear form. Note that

jla+u)=(a+u,1)=(a,1) Fu,

where u stands for the translation associated with the vector u, and thus j
is an affine injection with associated linear map i. Thus, w~!(1) is indeed
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|

! (a,\)
|

: , (a,1) =
]

|

7 i(E) = wi(1)

\J

i(E) = w™1(0)

—_— o~
Figure 4.1. Embedding an affine space (E , B ) into a vector space E

an affine hyperplane isomorphic to E with direction z(f), under the map
pE = E. Finally, from the definition of F , for every a € E and every
u € ﬁ, since

i(w) FA-jla) =uF (a,\) = {a+ 2", \),

when A # 0, we get any arbitrary v € E by picking A = 0 and v = v, and
we get any arbitrary element (b, 1), u # 0, by picking A = p and u = pab.
Thus,

E=4(E) +Rj(a),
and since Z(E’) NRj(a) = {0}, we have

E =i(E) & Rj(a),
for every a € E.[]

Figure 4.1 illustrates the embedding of the affine space E into the vector
space E, when F is an affine plane

Note that E is isomorphic to Eu (F x R*). Other authors, such as
Ramshaw, use the notation E, for E. Ramshaw calls the linear form w: E—
R a weight (or flavor), and he says that an element z ¢ E such that
w(z) = A is A-heavy (or has flavor A) ([141]). The elements of j(E) are 1-

heavy and are called points, and the elements of z(f) are 0-heavy and are
called vectors. In general, the A-heavy elements all belong to the hyperplane
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w™(X) parallel to z(ﬁ) Thus, intuitively, we can think of E as a stack
of parallel hyperplanes, one for each )\, a little bit like an infinite stack of
very thin pancakes! There are two privileged pancakes: one corresponding

to E, for A =1, and one corresponding to E, for A =0.

From now on, we will identify j(E) and E, and z(E’) and E. We will
also write Aa instead of (a, A), which we will call a weighted point, and write
la just as a. When we want to be more precise, we may also write (a, 1) as
@ (as Ramshaw does). In particular, when we consider the homogenized
version A of the affine > space A associated with the field R considered as an
affine space, we write X for (), 1), when viewing A as a point in both A and
A and simply A, when viewing A as a vector in R and in A. The elements
of A are called Bézier sites by Ramshaw. As an example, the expression
2 + 3 denotes the real number 5, in A, (2 + 3)/2 denotes the midpoint of
the segment [2, 3], which can be denoted by 2.5, and 2 + 3 does not make
sense in A, since it is not a barycentric combination. However, in &, the
expression 2 + 3 makes sense: It is the weighted point (2.5, 2).

Then, in view of the fact that

(a+u,1)=(a,1) Fu

and since we are identifying a + u with (a + u, 1) (under the injection j),
in the simplified notation the above reads as @ + u = a + u. Thus, we go
one step further, and denote a + u by a + u. However, since

(@, \) Fu=(a+A"1u, ),

we will refrain from writing Aa+u as Aa+u, because we find it too confusing.
From Lemma 4 1.1, for every a € E, every element of E can be written
uniquely as u F Aa. We also denote

Aa F (—p)b
by
a = pub.

We can now justify rigorously the programming trick of the introduction
of an extra coordinate to distinguish between points and vectors. First, we
make a few observations. Given any family (a;);er of points in E, and any
family (A;)ier of scalars in R, it is easily shown by induction on the size of
I that the following holds:

(1) If 3", c; A =0, then

Z(ai, Ai) = Z Aia,

i€l el
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where

_—

Z )\iai = Z )\,«bai

i€l iel
for any b € E, which, by Lemma 2.4.1, is a vector independent of b,
or

2) If 3 ",c; A #0, then

> ai A <Z Zzel RDIR >

i€l iel i€l
Thus, we see how barycenters reenter the scene quite naturally, and that
in E, we can make sense of ) .. ;(a;, \;), regardless of the value of 3, ; A
When Y icrAi = 1, the element 3. ;{a;, \;) belongs to the hyperplane
~1(1), and thus it is a point. When »,.; A; = 0, the linear combination
of points ), ; Aia; is a vector, and when I ={1,...,n}, we allow ourselves
to write
Aar F oo F Anan,
where some of the occurrences of F can be replaced by =, as
A1a1 + <+ Anap,

where the occurrences of = (if any) are replaced by —.

In fact, we have the following slightly more general property, which is
left as an exercise.

Lemma 4.1.2 Given any affine space (E, ﬁ) for any family (a;)icr of
points in E, any family (\;)icr of scalars in R, and any family (v;)jcs of

vectors in E, with I N J =0, the following properties hold:
(1) If Y ,c; Xi =0, then

D e ) F D vi= hai+ Y v,

el Ji€J i€l jeJ
where
_
Z )\,-ai = Z /\,-bai
i€l i€l
for any b € E, which, by Lemma 2.4.1, is a vector independent of b,
or

(2) If 32ser Xi # 0, then

> (@i ) Z%—<ZZZ€ aﬁZZzez Z)\>

i€l JEJ i€l JjeJ i€l
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Proof. By induction on the size of I and the size of J. []

The above formulae show that we have some kind of extended barycentric
calculus. Operations on weighted points and vectors were introduced by H.
Grassmann, in his book published in 1844! This calculus will be helpful in
dealing with rational curves.

4.2 Affine Frames of E and Bases of E

There is also a nice relationship between affine frames in (E , E)) and bases
of E, stated in the following lemma.

Lemma 4.2.1 Given any affine space (E, E)), for any affine frame (ao,

(agai,...,apam)) for E, the family (agay, . ..,a0am,ao) is a basis for E,
and for any affine frame (ao,...,ay) for E, the family (ao,...,am) is a
basis for E. Furthermore, given any element {(x,\) € E, if

T =ag+ r180a1 + -+ Tpmagam

over the affine frame (ag, (apai,...,a0am)) in E, then the coordinates of
(x,\) over the basis (apay, - ..,a0am,a0) in E are

(/\:L‘l,. .. ,)\l‘m,/\).

- -
For any vectorv e E, if

v =1v180a1 + -+ Vpnpagam

over the basis (agai,...,a0am) in ﬁ, then over the basis (agai, . .., a0am,
ao) in E, the coordinates of v are
('Ul7 ceey ’Um,O).

For any element (a, ), where A # 0, if the barycentric coordinates of a
w.r.t. the affine basis (ag,...,an) in E are (Ao, ..., Am) With Ao+ - -+ A, =
1, then the coordinates of {a,\) w.r.t. the basis (ao,...,am) in E are

(AAos - - - s AMm).

.
If a vector v € E is expressed as

v =v1a0a1 + '+ + Und0am = —(v1 + -+ -+ Up)ao + V101 + - -+ + U,
with respect to the affine basis (ao, - . .,am) in E, then its coordinates w.r.t.
the basis (ag,--.,am) in E are

(_(Ul +--- +Um),'ul,~','um)-
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Figure 4.2. The basis (apa1, agaz,ap) in E

Proof. We sketch parts of the proof, leaving the details as an exercise. Fig-
ure 4.2 shows the basis (agay,apas, ag) corresponding to the affine frame
(ag,a1,az2) in E.

If we assume that we have a nontrivial linear combination

A1apa; :i: e F Amaoam T pnao =0,
if u # 0, then we have
A1aoas + -+ F Ap@0am + pao = (a0 + p Ajapas +- -+ u  Amagam, 1),

which is never null, and thus, g = 0, but since (aga,...,a0am) is a basis

of E?, we must also have \; =0 for all 4,1 <7 <m.
Given any element (z,\) € E, if

T = qao + Z1apa1 + - + Tmaoam

over the affine frame (ag, (apay,...,a0am)) in E, in view of the definition
of +, we have

(z,\) = (a0 + T130a1 + - - - + TmAgaAm, A)
= {ag, A) FAria0a; F -+ F ATymaoam,

which shows that over the basis (apay, .. .,a0am,ap) in E , the coordinates
of (x, \) are

(AZ1, ..., AZm, A).
[
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Figure 4.3. The basis (ao,a1,a2) in E

If (z1,...,zm,) are the coordinates of z w.r.t. the affine frame (ao, (apay,
aoam)) in E, then (z1,. .., Ty, 1) are the coordinates of z in E, i.e., the
last coordinate is 1, and if u has coordinates (ui,...,uy,) with respect to
the basis (apai,...,apam) in f, then u has coordinates (us, ..., uny,0) in
E, Le., the last coordinate is 0. Figure 4.3 shows the affine frame (a, a1, a)
in E viewed as a basis in E.

Now that we have defined E and investigated the relationship between
affine frames in £ and bases in E, we can give another construction of a
vector space F from F and E that will allow us to “visualize” in a much
more intuitive fashion the structure of E and of its operations + and -.

4.3 Another Construction of E

One would probably wish that we could start with this construction of F
first, and then define E using the isomorphism OQE S F _defined below.
Unfortunately, we first need the vector space structure on E to show that
Q is linear!

Definition 4.3.1 Given any affine space (E,f), we define the vector

space F as the direct sum E @® R, where R denotes the field R con-
sidered as a vector space (over itself). Denoting the unit vector in R by 1,

since F = E @ R, every vector v € F can be written as v = u + A1, for

N
some unique u € E and some unique A € R. Then, for any choice of an
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origin §; in E, we define the map Q:F - F, as follows:
~ A1+ ;a) if @ = (a,\), where a € E and A # 0;
a(6) = | =
u if @ = u, where u € E.
The idea is that, once again, viewing F as an affine space under its
canonical structure, E is embedded in F as the hyperplane H =1 + f,

with direction E, the hyperplane E in F. Then, every point a € F is in
bijection with the point A = 1+ Q3a, in the hyperplane H. If we denote
the origin 0 of the canonical affine space F by 2, the map €2 maps a point
(a,\) € E to a point in F, as follows: ©({(a, A)) is the point on the line
passing through both the origin © of F and the point A =1+ Q,a in the

hyperplane H =1 + _ﬁ, such that
Q((a, A)) = AQA = A(1 + Qa).
The following lemma shows that Q is an isomorphism of vector spaces.

Lemma 4.3.2 Given any affine space (E, _5), for any choice Q1 of an
origin in E, the map Q: E — F is a linear isomorphism between E and the
vector space F of Definition 4.8.1. The inverse of {2 is given by

o (@A) A A
£ 1(“+’\1)_{u 1 ifA=0.

Proof. 1t is a straightforward verification. We check that Q is invertible,
leaving the verification that it is linear as an exercise. We have

(@, \) = Al + AQa— (0 + Q1a,A) = (a, N)
and

u+ AL = Q) + A7 u, \) = u+ AL

and since Q is the identity on :ﬁ, we have shown that Qo Q=1 = id, and
Q! 0 Q = id. This shows that € is a bijection. []

Figure 4.4 illustrates the embedding of the affine space E into the vector
space F, when F is an affine plane.

Lemma 4.3.2 gives a nice interpretation of the sum operation T of E.
Given two weighted points (aj, A1) and (a2, A2), we have

(a1, A1) T (a2, A2) = Q7H(Q((ar, A1) + Q{az, A2))).

The operation ﬁ((al, A1)+ ﬁ((ag, A2)) has a simple geometric interpreta-
tion. If Ay + Az # 0, then find the points M; and M> on the lines passing
through the origin Q of F and the points 4; = Q(a;1) and A2 = Qfa2) in
the hyperplane H, such that Q@M; = A1 QA and @My = A2Q2A, add the
vectors 2M; and 2Ms, getting a point NV such that QN = QM; + QM,,
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—
Figure 4.4. Embedding an affine space (E , E) into a vector space F

and consider the intersection G of the line passing through Q and N
with the hyperplane H. Then, G is the barycenter of A; and A3 assigned
the weights A;/(A; + A2) and Az/(A; + Ag), and if g = Q~1(QG), then
O-1HOQN) = (g, A1 + A).

Instead of adding the vectors £2M; and Mo, we can take the middle
N’ of the segment My M,, and G is the intersection of the line passing
through Q and N’ with the hyperplane H.

If Ay + A2 =0, then (a1, ;) + n (a2, A2) is a vector determined as follows.
Again, find the points M; and M3 on the lines passing through the origin
Q of F and the points A; = ((a;) and Ay = Q(ag) in the hyperplane H,
such that QM; = A\{2A; and QM3 = A\2QA-, and add the vectors £2M,
and 2M,, getting a point N such that QN = QM; + 2Ms. The desired
vector is 2N, which is parallel to the line A; A;. Equivalently, let N’ be
the middle of the segment M;M>, and the desired vector is 2QN".

We can also give a geometric interpretation of (a, A\) +u. Let A = Q(a) in
the hyperplane H, let D be the line determined by A and u, let M; be the
point such that M, = AQA, and let M5 be the point such that @M, = u,
that is, My = Q+u. By construction, the line D is in the hyperplane H, and
it is parallel to M3, so that D, My, and M, are coplanar. Then, add the
vectors 2M; and M, getting a point N such that QN = QM,; + Q2Mag,
and let G be the intersection of the line determined by 2 and N with the
line D. If g = Q7 1(2G), then, Q~1(2N) = (g, \). Equivalently, if N’ is
the middle of the segment M; M, then G is the intersection of the line
determined by Q and N’, with the line D.
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We now consider the universal property of E mentioned at the beginning
of this section.

4.4 Extending Affine Maps to Linear Maps

Roughly, the vector space E has the property that for any vector space F
and any affine map f: E — ?, there is a unique linear map fE - F

extending f: E — F.Asa consequence, given two affine spaces E and F,
every affine map f: E — F extends uniquely to a linear map f: E — F.
Other authors, such as Ramshaw, use the notation f. for f. First, we define
rigorously the notion of homogenization of an affine space.

Definition 4.4.1 Given any affine space (E, ﬁ), a homogenization (or

linearization) of (E, f) is a triple (£,j,w), where £ is a vector space,
j:E — £ is an injective affine map with associated injective linear map

— —
it E — &, w:€ > Ris a linear form such that w™1(0) = ¢(E), w™'(1) =
j(E), and for every vector space F and every affine map f: E — F there

is a unique linear map f:é' - F extending f, ie., f = foj, as in the
following diagram:

E
N

)

£
=
F

Thus, j(E) = w™!(1) is an affine hyperplane with direction z(f) = w™H0).
Note that we could have defined a homogenization of an affine space
(E, _ﬁ), as a triple (£, j, H), where £ is a vector space, H is an affine hy-
perplane in £, and j: E — £ is an injective affine map such that j(E) = H,
and such that the universal property stated above holds. However, Defini-
tion 4.4.1 is more convenient for our purposes, since it makes the notion of
weight more evident. N

The obvious candidate for £ is the vector space E that we just con-
structed. The next lemma will show that F indeed has the required

extension property. As usual, objects defined by a universal property are
unique up to isomorphism. This property is left as an exercise.

Lemma 4.4.2 Given any affine space (E, ﬁ) and any vector space ?,

for any affine map f: E — ?, there is a unique linear map f@ ~F
extending f such that

FwF ra) = Af(a) + T (u)
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for alla € E, all u € —E—), and all A € R, where 7 is the linear map
associated with f. In particular, when A # 0, we have

FluF Aa) = Af(a+ A" ).

Proof. Assuming that f exists, recall that from Lemma 4.1.1, for every
a € F, every element of E can be written uniquely as u F Aa. By linearity
of f and since f extends f, we have

FluTF Aa) = f(u) + Af(a) = Flu) + Af(a) = Af(a) + Flu).

If A =1, since a ¥ u and a + u are identified, and since fextends f, we
must have

f(@) + flu) = Fla) + Flu) = flaFu) = fla+u) = fla) + [ (u),
and thus f(u) = 7(11,) for all u € E. Then we have

fluFra) =2f(a) + [ (u),
which proves the uniqueness of f On the other hand, the map f defined
as above is clearly a linear map extending f.
When X # 0, we have
FluF ra) = f(Aa+ A7) = Af(a+ A" 1u) = Af(a + A" lu).

O

Lemma 4.4.2 shows that (E,j,w), is a homogenization of (E, ﬁ) As a
corollary, we obtain the following lemma.

Lemma 4.4.3 Given two affine spaces E and F' and an affine map f: E —
F, there is a unique linear map f: E — F extending f, as in the diagram
below,

f
—

by —— by
51)‘? ey

-
such that !
fluF ra) = F (w) FAf(a),

— —
foralla € E, allu € E, and all A € R, where f is the linear map
associated with f. In particular, when A # 0, we have
FluF Aa) = Af(a+ A" Tw).

Proof. Consider the vector space F and the affine map jo f: E — F. By
Lemma 4.4.2, there is a unique linear map f: £ — F extending j o f, and
thus extending f. []
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Note that f: E — F has the property that f( ) C F. More generally,
since

-~ —~ — o~

flu+Aa) = f(u) + Af(a),
the linear map fis weight-preserving. Also observe that we recover f from
f, by letting A =1 in

FwF ra) = Af(a+ 21w,
that is, we have

fla+u) = f(u Fa).
From a practical point of view, Lemma 4.4.3 shows us how to homogenize

an affine map to turn it into a linear map between the two homogenized
spaces. Assume that E and F are of finite dimension, that (ag, (u1, - - -, un))

is an affine frame of £ with origin a9, and (bo, (v1, . . ., V) is an affine frame
of F with origin by. Then, Wlth respect to the two bases (U1, -+, Up,a0)
in £ and (V1y-++sVUm,bo) in F a linear map h: E > Fis given by an
(m+1) x (n+ 1) matrix A. Assume that this linear map h is equal to the
homogenized version fof an affine map f. Since

FwFra) = F () F M(a),

and since over the basis (u1,...,un,ap) in E, points are represented by
vectors whose last coordinate is 1 and vectors are represented by vectors
whose last coordinate is 0, the following properties hold.

1. The last row of the matrix A = M (f) with respect to the given bases
is

with m occurrences of 0.
2. The last column of A contains the coordinates
(15 -+ s fm,y 1)
of f(ap) with respect to the basis (v1,...,Um,bp)-
3. The submatrix of A obtained by deleting the last row and the last

=
column is the matrix of the linear map f with respect to the bases
(u1,...,up) and (v1,...,Vm),

Finally, since
flao+u) = f(uF ao),

given any x € E and y € F with coordinates (z1,...,Zn, 1) and (y1,.- ., Ym,
1), for X = (z1,...,2Zn,1)T and Y = (y1,...,Ym,1)7, we have y = f(x) iff

Y = AX.
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For example, consider the following affine map f:A? — A? defined as
follows:

y1 = azy + bz + u1,
Yo = cx1 + dxg + po.

The matrix of fis

a b m
c d H2 )
0 0 1
and we have
U a b T
yl=lc d u T
1 0 0 1 1
InE , we have
Y1 b m T
y2 | =|c d p z2 |,
Y3 0 0 1 T3

which means that the homogeneous map fis is obtained from f by “adding
the variable of homogeneity z3”:

Y1 = axy + by + pix3,
Y2 = Ty + dxa + ppx3,

Ys = I3-

4.5 Problems

Problem 4.1 Prove that E as defined in Lemma 4.1.1 is indeed a vector
space.

Problem 4.2 Prove Lemma 4.1.2.
Problem 4.3 Fill in the missing details in the proof of Lemma 4.2.1.
Problem 4.4 Fill in the missing details in the proof of Lemma 4.3.2.
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Basics of Projective Geometry

Think geometrically, prove algebraically.
—John Tate

5.1 Why Projective Spaces?

For a novice, projective geometry usually appears to be a bit odd, and it
is not obvious to motivate why its introduction is inevitable and in fact
fruitful. One of the main motivations arises from algebraic geometry.

The main goal of algebraic geometry is to study the properties of geo-
metric objects, such as curves and surfaces, defined implicitly in terms of
algebraic equations. For instance, the equation

2+y*-1=0

defines a circle in R2. More generally, we can consider the curves defined
by general equations

ar? + by’ +cxy+dztey+f=0

of degree 2, known as conics. It is then natural to ask whether it is pos-
sible to classify these curves according to their generic geometric shape.
This is indeed possible. Except for so-called singular cases, we get ellipses,
parabolas, and hyperbolas. The same question can be asked for surfaces de-
fined by quadratic equations, known as quadrics, and again, a classification
is possible. However, these classifications are a bit artificial. For example,

J. Gallier, Geometric Methods and Applications
© Springer Science+Business Media New York 2001
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an ellipse and a hyperbola differ by the fact that a hyperbola has points
at infinity, and yet, their geometric properties are identical, provided that
points at infinity are handled properly.

Another important problem is the study of intersection of geometric ob-
jects (defined algebraically). For example, given two curves C; and Cy of
degree m and n, respectively, what is the number of intersection points of
C) and C5? (by degree of the curve we mean the total degree of the defining
polynomial).

Well, it depends! Even in the case of lines (when m = n = 1), there are
three possibilities: either the lines coincide, or they are parallel, or there is a
single intersection point. In general, we expect mn intersection points, but
some of these points may be missing because they are at infinity, because
they coincide, or because they are imaginary.

What begins to transpire is that “points at infinity” cause trouble. They
cause exceptions that invalidate geometric theorems (for example, consider
the more general versions of the theorems of Pappus and Desargues from
Section 2.12), and make it difficult to classify geometric objects. Projective
geometry is designed to deal with “points at infinity” and regular points
in a uniform way, without making a distinction. Points at infinity are now
just ordinary points, and many things become simpler. For example, the
classification of conics and quadrics becomes simpler, and intersection the-
ory becomes cleaner (although, to be honest, we need to consider complex
projective spaces).

Technically, projective geometry can be defined axiomatically, or by
buidling upon linear algebra. Historically, the axiomatic approach came
first (see Veblen and Young [172, 173], Emil Artin [4], and Coxeter
[36, 37, 34, 35]). Although very beautiful and elegant, we believe that it is a
harder approach than the linear algebraic approach. In the linear algebraic
approach, all notions are considered up to a scalar. For example, a projec-
tive point is really a line through the origin. In terms of coordinates, this
corresponds to “homogenizing.” For example, the homogeneous equation
of a conic is

az?® + by? + cxy + dzz + eyz + f2° = 0.

Now, regular points are points of coordinates (z, y, z) with z # 0, and points
at infinity are points of coordinates (z,y,0) (with z, y, z not all null, and
up to a scalar). There is a useful model (interpretation) of plane projective
geometry in terms of the central projection in R® from the origin onto the
plane z = 1. Another useful model is the spherical (or the half-spherical)
model. In the spherical model, a projective point corresponds to a pair of
antipodal points on the sphere.

As affine geometry is the study of properties invariant under affine bi-
jections, projective geometry is the study of properties invariant under
bijective projective maps. Roughly speaking, projective maps are linear
maps up to a scalar. In analogy with our presentation of affine geometry, we
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will define projective spaces, projective subspaces, projective frames, and
projective maps. The analogy will fade away when we define the projective
completion of an affine space, and when we define duality.

One of the virtues of projective geometry is that it yields a very clean
presentation of rational curves and rational surfaces. The general idea is
that a plane rational curve is the projection of a simpler curve in a larger
space, a polynomial curve in R3, onto the plane z = 1, as we now explain.

Polynomial curves are curves defined parametrically in terms of polyno-
mials. More specifically, if £ is an afline space of finite dimension n > 2
and (ag, (e1,...,e,)) is an affine frame for £, a polynomial curve of degree
m is a map F: A — & such that

F(t) =ap + Fi(t)ey + - -+ + Fp(t)en,

for all t € A, where Fiy(t),..., F,(t) are polynomials of degree at most m.

Although many curves can be defined, it is somewhat embarassing that
a circle cannot be defined in such a way. In fact, many interesting curves
cannot be defined this way, for example, ellipses and hyperbolas. A rather
simple way to extend the class of curves defined parametrically is to allow
rational functions instead of polynomials. A parametric rational curve of
degree m is a function F: A — £ such that

Bt L Fa0)
Fpp(t) Frnt) ™

for all t € A, where Fi(¢),..., F,(t), Fry1(t) are polynomials of degree at
most m. For example, a circle in A% can be defined by the rational map

1-¢2 N 2t
[ €9.
1462 ' 1422

EF(t) =ap+

F(t):a0+

In the above example, the denominator F3(t) = 1 + t2 never takes the
value 0 when t ranges over A, but consider the following curve in AZ:

t? 1
G(t) = ap + e + Tex

Observe that G(0) is undefined. The curve defined above is a hyperbola,
and for ¢ close to 0, the point on the curve goes toward infinity in one of
the two asymptotic directions.

A clean way to handle the situation in which the denominator vanishes
is to work in a projective space. Intuitively, this means viewing a rational
curve in A™ as some appropriate projection of a polynomial curve in A®+!,
back onto A™.

Given an affine space &, for any hyperplane H in £ and any point ag not
in H, the central projection (or conic projection, or perspective projection)
of center ag onto H, is the partial map p defined as follows: For every point
z not in the hyperplane passing through ay and parallel to H, we define
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p(x) as the intersection of the line defined by ag and x with the hyperplane
H.
For example, we can view G as a rational curve in A3 given by

Gi1(t) = ag + t%e; + eg + tes.

If we project this curve G; (in fact, a parabola in A®) using the central
projection (perspective projection) of center ag onto the plane of equation
z3 = 1, we get the previous hyperbola. For ¢ = 0, the point G1(0) = a¢ + €2
in A% is in the plane of equation z3 = 0, and its projection is undefined.
We can consider that G1(0) = ag + €2 in A3 is projected to infinity in the
direction of e5 in the plane z3 = 0. In the setting of projective spaces, this
direction corresponds rigorously to a point at infinity.

Let us verify that the central projection used in the previous example
has the desired effect. Let us assume that £ has dimension n + 1 and
that (ao, (€1,...,€n+1)) is an affine frame for £&. We want to determine
the coordinates of the central projection p(z) of a point z € &£ onto the
hyperplane H of equation x,+1 = 1 (the center of projection being ag). If

r=ag+zx1€1 + -+ Tpep + Tnyi1€ny1,

assuming that z,1 # 0; a point on the line passing through ao and z has
coordinates of the form (Az1,...,AZp+1); and p(x), the central projection
of x onto the hyperplane H of equation z,+; = 1, is the intersection of the
line from ag to x and this hyperplane H. Thus we must have Az 1 =1,
and the coordinates of p(z) are

T1 Tn
Tn+1 Tn+1

Note that p(z) is undefined when z,,1 = 0. In projective spaces, we can
make sense of such points.

The above calculation confirms that G(t) is a central projection of G ().
Similarly, if we define the curve F; in A3 by

Fi(t) = ap + (1 — t?)ey + 2tes + (1 + t?)es,

the central projection of the polynomial curve Fy (again, a parabola in A3)
onto the plane of equation x3 = 1 is the circle F.

What we just sketched is a general method to deal with rational curves.
We can use our “hat construction” to embed an affine space £ into a vector
space £ having one more dimension, then construct the projective space
P(é‘) This turns out to be the “projective completion” of the affine space
&. Then we can define a rational curve in P(é’), basically as the central
projection of a polynomial curve in & back onto P(a The same approach
can be used to deal with rational surfaces. Due to the lack of space, such
a presentation is omitted from the main text. However, it can be found in
the additional material on the web site; see web page. More generally, the
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projective completion of an affine space is a very convenient tool to handle
“points at infinity” in a clean fashion.

This chapter contains a brief presentation of concepts of projective ge-
ometry. The following concepts are presented: projective spaces, projective
frames, homogeneous coordinates, projective maps, projective hyperplanes,
multiprojective maps, affine patches. The projective completion of an affine
space is presented using the “hat construction.” The theorems of Pappus
and Desargues are proved, using the method in which points are “sent
to infinity.” We also discuss the cross-ratio and duality. The chapter ends
with a very brief explanation of the use of the complexification of a pro-
jective space in order to define the notion of angle and orthogonality in a
projective setting. We also include a short section on applications of pro-
jective geometry, notably to computer vision (camera calibration), efficient
communication, and error-correcting codes.

5.2 Projective Spaces

As in the case of affine geometry, our presentation of projective geometry
is rather sketchy and biased toward the algorithmic geometry of curves and
surfaces. For a systematic treatment of projective geometry, we recommend
Berger [12, 13|, Samuel [146], Pedoe [136], Coxeter [36, 37, 34, 35], Beu-
telspacher and Rosenbaum [16], Fresnel [66], Sidler [159], Tisseron [169],
Lehmann and Bkouche [112], Vienne [174], and the classical treatise by
Veblen and Young [172, 173], which, although slightly old-fashioned, is def-
initely worth reading. Emil Artin’s famous book [4] contains, among other
things, an axiomatic presentation of projective geometry, and a wealth of
geometric material presented from an algebraic point of view. Other “oldies
but goodies” include the beautiful books by Darboux [43] and Klein {101].
For a development of projective geometry addressing the delicate prob-
lem of orientation, see Stolfi [164], and for an approach geared towards
computer graphics, see Penna and Patterson [137].

First, we define projective spaces, allowing the field K to be arbitrary
{(which does no harm, and is needed to allow finite and complex projective
spaces). Roughly speaking, every projective concept is a linea—algebraic
concept “up to a scalar.” For spaces, this is made precise as follows

Definition 5.2.1 Given a vector space F over a field K, the projective
space P(E) induced by E is the set (E — {0})/ ~ of equivalence classes of
nonzero vectors in E under the equivalence relation ~ defined such that
for all u,v € E — {0},

u~wv iff v=2Au, for some A € K —{0}.

The canonical projection p: (E — {0}) — P(E) is the function associating
the equivalence class [u]. modulo ~ to u # 0. The dimension dim(P(E)) of
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P(FE) is defined as follows: If E is of infinite dimension, then dim(P(F)) =
dim(F), and if F has finite dimension, dim(F) = n > 1 then dim(P(E)) =
n—1.

Mathematically, a projective space P(F) is a set of equivalence classes
of vectors in E. The spirit of projective geometry is to view an equivalence
class p(u) = [u]. as an “atomic” object, forgetting the internal structure of
the equivalence class. For this reason, it is customary to call an equivalence
class a = [u].. a point (the entire equivalence class [u]. is collapsed into a
single object viewed as a point).

Remarks:

(1) If we view E as an affine space, then for any nonnull vector u € F,
since

[ul. ={ | X € K, A#0},
letting
Ku={l\u| e K}
denote the subspace of dimension 1 spanned by u, the map
[u]~ — Ku

from P(F) to the set of one-dimensional subspaces of E is clearly
a bijection, and since subspaces of dimension 1 correspond to lines
through the origin in E, we can view P(FE) as the set of lines in
E passing through the origin. So, the projective space P(F) can be
viewed as the set obtained from F when lines through the origin are
treated as points.

However, this is a somewhat deceptive view. Indeed, depending on
the structure of the vector space E, a line (through the origin) in E
may be a fairly complex object, and treating a line just as a point
is really a mental game. For example, F may be the vector space of
real homogeneous polynomials P(z, y, z) of degree 2 in three variables
z,y, z (plus the null polynomial), and a “line” (through the origin) in
FE corresponds to an algebraic curve of degree 2. Lots of details need
to be filled in, but roughly speaking, the curve defined by P is the
“zero locus of P,” i.e., the set of points (z,y, z) € P(R®) (or perhaps
in P(C?)) for which P(z,y,2) = 0. We will come back to this point
in Section 5.4 after having introduced homogeneous coordinates.
More generally, F may be a vector space of homogeneous polynomi-
als of degree m in 3 or more variables (plus the null polynomial),
and the lines in E correspond to such objects as algebraic curves,
algebraic surfaces, and algebraic varieties. The point of view where a
complex object such as a curve or a surface is treated as a point in
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Figure 5.1. A representation of the projective space RP?

a (projective) space is actually very fruitful and is one of the themes
of algebraic geometry (see Fulton [67] or Harris [83]).

(2) When dim(E) = 1, we have dim(P(E)) = 0. When E = {0}, we have
P(FE) = 0. By convention, we give it the dimension —1.

We denote the projective space P(K™+!) by P%. When K = R, we
also denote P§ by RP™, and when K = C, we denote PE by CP". The
projective space ]P’(,)( is a (projective) point. The projective space IP’}{ is
called a projective line. The projective space P% is called a projective plane.

The projective space P(E) can be visualized in the following way. For
simplicity, assume that E = R™!, and thus P(E) = RP" (the same
reasoning applies to E = K"+, where K is any field).

Let H be the affine hyperplane consisting of all points (z1,...,Zn+1)
such that z,,; = 1. Every nonzero vector u in E determines a line D
passing through the origin, and this line intersects the hyperplane H in a
unique point a, unless D is parallel to H. When D is parallel to H, the line
corresponding to the equivalence class of u can be thought of as a point
at infinity, often denoted by u.,. Thus, the projective space P(E) can be
viewed as the set of points in the hyperplane H, together with points at
infinity associated with lines in the hyperplane H, of equation z,,; = 0.
We will come back to this point of view when we consider the projective
completion of an affine space. Figure 5.1 illustrates the above representation
of the projective space when E = R3.
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We refer to the above model of P(E) as the hyperplane model. In this
model some hyperplane H,, (through the origin) in R**! is singled out,
and the points of P(E) arising from the hyperplane H,, are declared to
be “points at infinity.” The purpose of the affine hyperplane H parallel to
H,, and distinct from H,, is to get images for the other points in P(FE)
(i.e., those that arise from lines not contained in H,). It should be noted
that the choice of which points should be considered as infinite is relative
to the choice of H,. Viewing certain points of P(FE) as points at infinity
is convenient for getting a mental picture of P(E), but there is nothing in-
trinsic about that. Points of P(E) are all equal, and unless some additional
structure in introduced in P(E) (such as a hyperplane), a point in P(F)
doesn’t know whether it is infinite! The notion of point at infinity is really
an affine notion. This point will be made precise in Section 5.6.

Again, for RP"™ = P(R™*!), instead of considering the hyperplane H,
we can consider the n-sphere S™ of center 0 and radius 1, i.e., the set of
points (z1,...,Zn+1) such that

T+ Thrahy =1

In this case, every line D through the center of the sphere intersects the
sphere S™ in two antipodal points a; and a_. The projective space RP"
is the quotient space obtained from the sphere S™ by identifying antipodal
points a4 and a—. It is hard to visualize such an object! Nevertheless, some
nice projections in A3 of an embedding of RP? into A? are given in the
surface gallery on the web cite (see web page, Section 24.7). We call this
model of P(F) the spherical model.

A more subtle construction consists in considering the (upper) half-
sphere instead of the sphere, where the upper half-sphere S? is set of points
on the sphere S™ such that x,4; > 0. This time, every line through the
center intersects the (upper) half-sphere in a single point, except on the
boundary of the half-sphere, where it intersects in two antipodal points
a, and a_. Thus, the projective space RP™ is the quotient space obtained
from the (upper) half-sphere S} by identifying antipodal points a, and
a_ on the boundary of the half-sphere. We call this model of P(E) the
half-spherical model.

When n = 2, we get a circlee. When n = 3, the upper half-sphere is
homeomorphic to a closed disk (say, by orthogonal projection onto the
zy-plane), and RP? is in bijection with a closed disk in which antipodal
points on its boundary (a unit circle) have been identified. This is hard
to visualize! In this model of the real projective space, projective lines are
great semicircles on the upper half-sphere, with antipodal points on the
boundary identified. Boundary points correspond to points at infinity. By
orthogonal projection, these great semicircles correspond to semiellipses,
with antipodal points on the boundary identified. Traveling along such a
projective “line,” when we reach a boundary point, we “wrap around”!
In general, the upper half-sphere S7 is homeomorphic to the closed unit
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ball in R®, whose boundary is the (n — 1)-sphere S™~!. For example, the
projective space RP? is in bijection with the closed unit ball in R3, with
antipodal points on its boundary (the sphere 5?) identified!

Remarks:

(1) A projective space P(E) has been defined as a set without any topo-
logical structure. When the field K is either the field R of reals or
the field C of complex numbers, the vector space E is a topologi-
cal space. Thus, the projection map p: (E — {0}) — P(FE) induces a
topology on the projective space P(E), namely the quotient topol-
ogy. This means that a subset V of P(E) is open iff p~*(V) is an
open set in E. Then, for example, it turns out that the real projec-
tive space RP"™ is homeomorphic to the space obtained by taking
the quotient of the (upper) half-sphere S%, by the equivalence rela-
tion identifying antipodal points a4 and a_ on the boundary of the
half-sphere. Another interesting fact is that the complex projective
line CP' = P(C?) is homeomorphic to the (real) 2-sphere S2, and
that the real projective space RP? is homeomorphic to the group of
rotations SO(3) of R3.

(2) If H is a hyperplane in E, recall from Lemma 17.1.1 that there is
some nonnull linear form f € E* such that H = Ker f. Also, given
any nonnull linear form f € E*, its kernel H = Ker f = f~1(0) is a
hyperplane, and if Ker f = Kerg = H, then g = Af for some A # 0.
These facts can be concisely stated by saying that the map

[f]~ — Ker f

mapping the equivalence class [f]. = {A\f | A # 0} of a nonnull linear
form f € E* to the hyperplane H = Ker f in E is a bijection between
the projective space P(E*) and the set of hyperplanes in E. When
E is of finite dimension, this bijection yields a useful duality, which
will be investigated in Section 5.9.

We now define projective subspaces.

5.3 Projective Subspaces

Projective subspaces of a projective space P(E) are induced by subspaces
of the vector space E.

Definition 5.3.1 Given a nontrivial vector space E, a projective subspace
(or linear projective variety) of P(E) is any subset W of P(E) such that
there is some subspace V # {0} of E with W = p(V —{0}). The dimension
dim(W) of W is defined as follows: If V is of infinite dimension, then
dim(W) = dim(V), and if dim(V) = p > 1, then dim(W) = p — 1. We say
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that a family (a;);cr of points of P(E) is projectively independent if there

is a linearly independent family (%; );cs in E such that a; = p(u;) for every
iel

Remark: If we allow the empty subset to be a projective subspace, then we
have a bijection between the subspaces of E and the projective subspaces
of P(E). In fact, P(V) is the projective space induced by the vector space
V, and we also denote p(V — {0}) by P(V), or even by p(V'), even though
p(0) is undefined.

A projective subspace of dimension 0 is a called a (projective) point.
A projective subspace of dimension 1 is called a (projective) line, and a
projective subspace of dimension 2 is called a (projective) plane. If H is a
hyperplane in E, then P(H) is called a projective hyperplane. It is easily
verified that any arbitrary intersection of projective subspaces is a projec-
tive subspace. A single point is projectively independent. Two points a,b
are projectively independent if a # b. Two distinct points define a (unique)
projective line. Three points a, b, ¢ are projectively independent if they are
distinct, and neither belongs to the projective line defined by the other two.
Three projectively independent points define a (unique) projective plane.

A closer look at projective subspaces will show some of the advantages
of projective geometry: In considering intersection properties, there are no
exceptions due to parallelism, as in affine spaces.

Let E be a nontrivial vector space. Given any nontrivial subset S of F,
the subset S defines a subset U = p(S — {0}) of the projective space P(E),
and if (S) denotes the subspace of E spanned by S, it is immediately verified
that P({S)) is the intersection of all projective subspaces containing U, and
this projective subspace is denoted by (U). Given any subspaces M and
N of E, recall from Lemma 2.11.1 that we have the Grassmann relation

dim(M) + dim(N) = dim(M + N) + dim (M N N).
Then the following lemma is easily shown.

Lemma 5.3.2 Given a projective space P(E), for any two projective
subspaces U,V of P(E), we have

dim(U) 4+ dim(V) = dim({U U V)) + dim (U N V).

Furthermore, if dim(U) + dim(V) > dim(P(E)), then U NV is nonempty.
If dim(P(E)) = n, then:

(i) The intersection of any n hyperplanes is nonempty.

(i) For every hyperplane H and every point a ¢ H, every line D
containing a intersects H in a unique point.

(iit) In a projective plane, every two distinct lines intersect in a unique
point.
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As a corollary, in the projective space (dim(P(E)) = 3), for every plane
H, every line not contained in H intersects H in a unique point.

It is often useful to deal with projective hyperplanes in terms of nonnull
linear forms and equations. Recall that the map

[fl~ — Ker f

is a bijection between P(E*) and the set of hyperplanes in E, mapping the
equivalence class [f]l~ = {Af | A # 0} of a nonnull linear form f € E*
to the hyperplane H = Ker f. Furthermore, if u ~ v, which means that
u = Av for some A\ # 0, we have

fw)=0 iff f(v) =0,
since f(v) = Af(u) and A # 0. Thus, there is a bijection
{Af A # 0} = P(Ker f)

mapping points in P(E*) to hyperplanes in P(E). Any nonnull linear form
f associated with some hyperplane P(H) in the above bijection (i.e., H =
Ker f) is called an equation of the projective hyperplane P(H). We also say
that f =0 is the equation of the hyperplane P(H).

Before ending this section, we give an example of a projective space
where lines have a nontrivial geometric interpretation, namely as “pencils
of lines.” If E = R3, recall that the dual space E* is the set of all linear
maps f:R3 — R. As we have just explained, there is a bijection

p(f) = P(Ker f)

between P(E*) and the set of lines in P(E), mapping every point a = p(f)
to the line D, = P(Ker f).

Is there a way to give a geometric interpretation in P(E) of a line A in
P(E*)? Well, a line A in P(E*) is defined by two distinct points a = p(f)
and b = p(g), where f,g € E* are two linearly independent linear forms.
But f and g define two distinct planes H; = Ker f and Hy = Ker g through
the origin (in E = R®), and H; and H» define two distinct lines Dy = p(H;)
and Dy = p(H>) in P(E). The line A in P(E*) is of the form A = p(V),
where

V={+prgl\ueR}

is the plane in E* spanned by f, g. Every nonnull linear form A\f +uge V
defines a plane H = Ker (Af + pg) in E, and since H; and Hs (in E) are
distinct, they intersect in a line L that is also contained in every plane H as
above. Thus, the set of planes in E associated with nonnull linear forms in
V is just the set of all planes containing the line L. Passing to P(FE) using
the projection p, the line L in E corresponds to the point ¢ = p(L) in P(E),
which is just the intersection of the lines D; and D». Thus, every point of
the line A in P(E*) corresponds to a line in P(E) passing through ¢ (the
intersection of the lines D; and D5), and this correspondence is bijective.
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In summary, a line A in P(E™*) corresponds to the set of all lines in P(E)
through some given point. Such sets of lines are called pencils of lines.

The above discussion can be generalized to higher dimensions and is
discussed quite extensively in Section 5.9. In brief, letting £ = R™*!  there
is a bijection mapping points in P(E*) to hyperplanes in P(E). A line
in P(E*) corresponds to a pencil of hyperplanes in P(E), i.e., the set of
all hyperplanes containing some given projective subspace W = p(V) of
dimension n — 2. For n = 3, a pencil of planes in RP? = P(R?) is the set
of all planes (in ]RP3) containing some given line W. Other examples of
unusual projective spaces and pencils will be given in Section 5.4.

Next, we define the projective analogues of bases (or frames) and linear
maps.

5.4 Projective Frames

As all good notions in projective geometry, the concept of a projective
frame turns out to be uniquely defined up to a scalar.

Definition 5.4.1 Given a nontrivial vector space F of dimension n+1, a
family (a;)1<i<nt2 of n+2 points of the projective space P(E) is a projective
frame (or basis) of P(E) if there exists some basis (e, . ..,e,41) of E such
that a; = p(e;) for 1 <i <n+1, and apy2 =p(e; + - +epy1). Any basis
with the above property is said to be associated with the projective frame
(@)1<i<nt2-

The justification of Definition 5.4.1 is given by the following lemma.

Lemma 5.4.2 If (a;)1<i<nt+2 15 a projective frame of P(E), for any two
bases (uy,...,uUns1), (v1,-..,Vn41) of E such that a; = p(u;) = p(v;) for
1<i<n+1, and anyo = p(ur + -+ + Ung1) = p(v1 + - -+ + vnpy1), there
s a nonzero scalar A € K such that v; = \u;, foralli, 1 <i<n+1.

Proof. Since p(u;) = p(v;) for 1 < 4 < n + 1, there exist some nonzero
scalars A; € K such that v; = \ju; for all i, 1 < ¢ < n + 1. Since we must
have

p(ur + -+ + unt1) = p(vr + -+ + vny1),
there is some A # 0 such that
Aur +- o+ Upp1) =01+ F Vpp1 = MU + - + Ay 1Unga,
and thus we have
A=ADur+--+ (A= Apt1)Uny1 =0,

and since (u1,...,un+1) is a basis, we have \; = A forall 4,1 <i<n+1,
which implies A\ =--- = A,11 = A. [0
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Lemma 5.4.2 shows that a projective frame determines a unique basis of
E, up to a (nonzero) scalar. This would not necessarily be the case if we
did not have a point a, 42 such that a2 = p(u; + -+ + uny1).

When n = 0, the projective space consists of a single point a, and there
is only one projective frame, the pair (a,a). When n = 1, the projective
space is a line, and a projective frame consists of any three pairwise distinct
points a, b, ¢ on this line. When n = 2, the projective space is a plane, and
a projective frame consists of any four distinct points a, b, c,d such that
a,b,c are the vertices of a nondegenerate triangle and d is not on any of
the lines determined by the sides of this triangle. The reader can easily
generalize to higher dimensions.

Given a projective frame (a;)1<i<n+2 of P(E), let (uy,...,unq1) be a
basis of F associated with (a;)1<i<n+2. For every a € P(E), there is some
u € E — {0} such that

a=u.={ u|Xe K-{0}},
the equivalence class of u, and the set
{{z1,...,Tnt1) € K"l v=2iu1 + - + Tni1Uny1, vE [u)o = a}

of coordinates of all the vectors in the equivalence class [u].. is called the
set of homogeneous coordinates of a over the basis (u1,...,Un+1)-

Note that for each homogeneous coordinate (z1,. .., Zp+1) we must have
z; # 0 for some i, 1 <7 < n+ 1, and any two homogeneous coordinates
(x1,...,Zns1) and (Y1, .., Ynt1) for a differ by a nonzero scalar, i.e., there
is some A # 0 such that y; = Ax;, 1 <i < n+1. Homogeneous coordinates
(z1,...,Zns1) are sometimes denoted by (z1:-:-:%p41), for instance in
algebraic geometry.

By Lemma 5.4.2, any other basis (v1,...,vn4+1) associated with the pro-
jective frame (a;)1<i<n42 differs from (u1,...,%n41) by a nonzero scalar,
which implies that the set of homogeneous coordinates of a € P(E) over
the basis (v1,...,vn41) is identical to the set of homogeneous coordinates
of a € P(E) over the basis (u1,...,uny+1). Consequently, we can associate
a unique set of homogeneous coordinates to every point a € P(E) with re-
spect to the projective frame (a;)1<i<n+2. With respect to this projective
frame, note that a,,» has homogeneous coordinates (1,...,1), and that
a; has homogeneous coordinates (0,...,1,...,0), where the 1 is in the ith
position, where 1 < i < n + 1. We summarize the above discussion in the
following definition.

Definition 5.4.3 Given a nontrivial vector space E of dimension n + 1,
for any projective frame (a;)1<i<n+2 of P(E) and for any point a € P(E),
the set of homogeneous coordinates of a with respect to (a;)1<i<n+2 is the
set of (n 4 1)-tuples

{(A\z1,..., Tps1) € K™ | 2; #0 for some i, A # 0,

a=p(xu + -+ Tnt1tns1)},
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where (u1,...,un41) is any basis of E associated with (@i)1<i<nt2-
Given a projective frame (a;)1<i<n+2 for P(E), if (x1,...,Tn41) are ho-
mogeneous coordinates of a point a € P(E), we write a = (z1,...,Tnt1),

and with a slight abuse of language, we may even talk about a point
(%1, -+, Tny1) in P(E) and write (21,...,%n41) € P(E).

The special case of the projective line P is worth examining. The pro-
jective line P} consists of all equivalence classes [x,y] of pairs (z,y) € K2
such that (z,y) # (0,0), under the equivalence relation ~ defined such that

(T1,31) ~ (x2,92) iff 22 =Az; and y2 = Ay,

for some A € K — {0}. When y # 0, the equivalence class of (z,y) contains
the representative (zy~—!, 1), and when y = 0, the equivalence class of (z,0)
contains the representative (1,0). Thus, there is a bijection between K and
the set of equivalence classes containing some representative of the form
(z,1), and we denote the class [z,1] by z. The equivalence class [1,0] is
denoted by oo and it is called the point at infinity. Thus, the projective line
P} is in bijection with K'U{oo}. The three points co = [1,0], 0 = [0, 1], and
1 = [1,1], form a projective frame for P}. The projective frame (o0, 0,1)
is often called the canonical frame of P}.

Homogeneous coordinates are also very useful to handle hyperplanes in
terms of equations. If (a;)1<i<n+2 is a projective frame for P(E) associated
with a basis (u1,...,un41) for E, a nonnull linear form f is determined by
n + 1 scalars ay,...,0n41 (not all null), and a point z € P(E) of homo-
geneous coordinates (x1,...,Zp+1) belongs to the projective hyperplane
P(H) of equation f iff

1Ty + -+ Q1T = 0.

In particular, if P(E) is a projective plane, a line is defined by an equation
of the form ax + By + vz = 0. If P(E) is a projective space, a plane is
defined by an equation of the form azx + By + vz + 6w = 0.

We also have the following lemma giving another characterization of
projective frames.

Lemma 5.4.4 A family (a;)i1<i<n+2 of 1+ 2 points is a projective frame
of P(E) iff for every i, 1 <i < n+ 2, the subfamily (a;);2: is projectively
independent.

Proof. We leave as an (easy) exercise the fact that if (a;)i<i<nt2 is a
projective frame, then each subfamily (a;);-; is projectively independent.
Conversely, pick some u; € E — {0} such that a; = p(u;), 1 <i < n +2.
Since (a;)j#n+2 is projectively independent, (ui,...,uny1) is a basis of E.
Thus, we must have

Unt+2 = A1UL + -+ + App1Uni1,

for some )\; € K. However, since for every i, 1 < i < n + 1, the fam-
ily (a;);2i is projectively independent, we must have \; # 0, and thus
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b (1,0,1)

®

g(-1,1,0) b  (1,1,0)
Figure 5.2. A projective frame (a,b,c, d)
(A1u1, .-y Ang1Unr1) is also a basis of E, and since

Uns2 = ALUL + - + Ang1Uny1,

it induces the projective frame (a;)1<i<n+2. [

Figure 5.2 shows a projective frame (a, b, ¢, d) in a projective plane. With
respect to this projective frame, the points a, b, ¢, d have homogeneous co-
ordinates (1,0,0), (0,1,0), (0,0,1), and (1,1,1). Let a’ be the intersection
of (d,a) and (b,c), b’ be the intersection of (d,b) and {(a,c), and ¢’ be the
intersection of (d, c) and (a, b). Then the points a’, ¥, ¢’ have homogeneous
coordinates (0,1,1), (1,0,1), and (1, 1,0). The diagram formed by the line
segments (a,c’), (a,b'), (b,b'), {c,c'), (a,d), and (b, c) is sometimes called a
Mébius net. It is easily verified that the equations of the lines (a, b}, (a, c),
(b,c), are z = 0, y = 0, and =z = 0, and the equations of the lines (a,d),
(b,d), and {c,d), are y = z, ¢ = z, and = = y. If we let e be the intersection
of (b,c) and (¥, c’), f be the intersection of (a,c) and (a’,c’), and g be the
intersection of {a,b) and (a’, '), then it easily seen that e, f, g have homo-
geneous coordinates (0, —1,1), (1,0, 1), and (—1,1,0). These coordinates
satisfy the equation z + y + z = 0, which shows that the points e, f,g
are collinear. This is a special case of the projective version of Desargues’s
theorem. This line is called the polar line (or fundamental line) of d with
respect to the triangle (a,b,c). The diagram also shows the intersection g
of (a,b) and {(a’, V).

The projective space of circles provides a nice illustration of homoge-
neous coordinates. Let E be the vector space (over R) consisting of all
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homogeneous polynomials of degree 2 in z,y, z of the form
az? 4 ay® + bzz + cyz + dz*

(plus the null polynomial). The projective space P(E) consists of all
equivalence classes

[Pl = {AP | A # 0},

where P(z,y, ) is a nonnull homogeneous polynomial in E. We want to give
a geometric interpretation of the points of the projective space P(FE). In
order to do so, pick some projective frame (a1, a2, as, aq) for the projective
plane RP?, and associate to every [P] € P(E) the subset of RP? known as
its its zero locus (or zero set, or variety) V([P]), and defined such that

V([P]) = {a € RP? | P(z,y,z) = 0},

where (z,y, z) are homogeneous coordinates for a.
As explained earlier, we also use the simpler notation

V([P])) = {(z,y,2) € RP? | P(z,y,2) = 0}.

Actually, in order for V([P]) to make sense, we have to check that V([P])
does not depend on the representative chosen in the equivalence class [P] =
{AP | A # 0}. This is because

P(z,y,z) =0 iff AP(z,y,z) =0 when A # 0.

For simplicity of notation, we also denote V([P]) by V(P). We also have to
check that if (Az, Ay, Az) are other homogeneous coordinates for a € RP?,
where A # 0, then

P(z,y,2) =0 iff P(A\z,Ay,Az) =0.
However, since P(z,y, z) is homogeneous of degree 2, we have
P(Az, Ay, Az) = )\2P(a:, Y, 2),
and since A # 0,
P(z,y,2) =0 iff A?P(z,y,2) =0.

The above argument applies to any homogeneous polynomial P(x1,...,Z,)
in n variables of any degree m, since

P(Azy,..., xp) = A" P(21, ..., Zn).

Thus, we can associate to every [P] € P(E) the curve V(P) in RP?.
One might wonder why we are considering only homogeneous polynomials
of degree 2, and not arbitrary polynomials of degree 27 The first reason is
that the polynomials in x,y, 2z of degree 2 do not form a vector space. For
example, if P = z2 +  and Q = —z% + vy, the polynomial P4+ Q =z + y
is not of degree 2. We could consider the set of polynomials of degree < 2,
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which is a vector space, but now the problem is that V' {P) is not necessarily
well defined!. For example, if P(z,y,z) = —z% + 1, we have

P(1,0,0)=0 and P(2,0,0)= -3,

and yet (2,0,0) = 2(1,0,0), so that P(z, y, z) takes different values depend-
ing on the representative chosen in the equivalence class [1,0,0]. Thus, we
are led to restrict ourselves to homogeneous polynomials. Actually, this
is usually an advantage more than a disadvantage, because homogeneous
polynomials tend to be well behaved. For example, by polarization, they
yield multilinear maps.

What are the curves V(P)? One way to “see” such curves is to go back
to the hyperplane model of RP? in terms of the plane H of equation z = 1
in R3. Then the trace of V(P) on H is the circle of equation

ar’ +ay’ +br+cy+d=0.

Thus, we may think of P(E) as a projective space of circles. However,
there are some problems. For example, V(P) may be empty! This happens,
for instance, for P(z,y, z) = 22 + y? + 22, since the equation

224yt 22=0
has only the trivial solution (0,0,0), which does not correspond to any
point in RP2. Indeed, only nonnull vectors in R? yield points in RP?. It

is also possible that V(P) is reduced to a single point, for instance when
P(z,y,z) = 2% + y?, since the only homogeneous solution of

22 4+42=0
is (0,0,1). Also, note that the map
[Pl = V(P)

is not injective. For instance, P = 22 +y2 and Q = 22+ 2y? define the same
degenerate circle reduced to the point (0,0, 1). We also accept as circles the
union of two lines, as in the case

(bx + cy + dz)z =0,
where a = 0, and even a double line, as in the case
22 = 0,

wherea =b=c¢=0.

A clean way to resolve most of these problems is to switch to homoge-
neous polynomials over the complex field C and to consider curves in CP2.
This is what is done in algebraic geometry (see Fulton [67] or Harris [83]).
If P(z,y, z) is a homogeneous polynomial over C of degree 2 (plus the null
polynomial), it is easy to show that V(P) is always nonempty, and in fact
infinite. It can also be shown that V(P) = V(Q) implies that @ = AP for
some A € C, with A # 0 (see Samuel [146]). Another advantage of switching
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to the complex field C is that the theory of intersection is cleaner. Thus,
any two circles that do not contain a common line always intersect in four
points, some of which might be multiple points (as in the case of tangent
circles). This may seem surprising, since in the real plane, two circles in-
tersect in at most two points. Where are the other two points? They turn
out to be the points (1,,0) and (1, —i,0), as one can immediately verify.
We can think of them as complex points at infinity! Not only are they at
infinity, but they are not real. No wonder we cannot see them! We will
come back to these points, called the circular points, in Section 5.11.

Going back to the vector space E over R, it is worth saying that it can
be shown that if V(P) = V(Q) contains at least two points (in which case,
V(P) is actually infinite), then @ = AP for some A € R with X 3 0. Thus,
even over R, the mapping

[P]—V(P)

is injective whenever V(P) is neither empty nor reduced to a single point.
Note that the projective space P(E) of circles has dimension 3. In fact, it
is easy to show that three distinct points that are not collinear determine
a unique circle (see Samuel [146]).

In a similar vein, we can define the projective space of conics P(E) where
E is the vector space (over R) consisting of all homogeneous polynomials
of degree 2 in z,y, 2,

az? 4+ by? + cxy + dxz + eyz + f22

(plus the null polynomial). The curves V(P) are indeed conics, perhaps
degenerate. To see this, we can use the hyperplane model of RP2. The
trace of V(P) on the plane of equation z = 1 is the conic of equation

ar? + by’ +cxy+dz+ey+ f =0.
Another way to see that V(P) is a conic is to observe that in R3,
ar? + by’ + caxy + dxz+eyz+ f22 =0

defines a cone with vertex (0,0,0), and since its section by the plane z =1
is a conic, all of its sections by planes are conics. The mapping

[P] — V(P)

is still injective when E is defined over the ground field C, or if V(P) has
at least two points when E is defined over R. Note that the projective
space P(E) of conics has dimension 5. In fact, it is easy to show that five
distinct points no four of which are not collinear determine a unique conic
(see Samuel [146]).

It is also interesting to see what are lines in the space of circles or in
the space of conics. In both cases we get pencils (of circles and conics,
respectively). For more details, see Samuel [146], Sidler [159], Tisseron [169],
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Lehmann and Bkouche [112], Pedoe [136], Coxeter (36, 37], and Veblen and
Young [172, 173].

We could also investigate algebraic plane curves of any degree m, by
letting E be the vector space of homogeneous polynomials of degree m in
z,y, z (plus the null polynomial). The zero locus V(P) of P is defined just
as before as

V(P) = {(z,y,2) € RP?| P(z,y,2) = 0}.

Observe that when m = 1, since homogeneous polynomials of degree 1 are
linear forms, we are back to the case where E = (R3)*, the dual space of R3,
and P(E) can be identified with the set of lines in RP?. But when m > 3,
things are even worse regarding the injectivity of the map [P] — V(P). For
instance, both P = zy? and Q = 2%y define the same union of two lines. It
is necessary to consider irreducible curves, i.e., curves that are defined by
irreducible polynomials, and to work over the field C of complex numbers
(recall that a polynomial P is irreducible if it cannot be written as the
product P = @Q1Q2 of two polynomials @1, Q2 of degree > 1).

We can also investigate algebraic surfaces in RP® (or CP?), by letting
E be the vector space of homogeneous polynomials of degree m in four
variables x,y, z,¢ (plus the null polynomial). We can also consider the zero
locus of a set of equations

£={P, =0 P,=0,..., P, =0},

where Pi,..., P, are homogeneous polynomials of degree m in z,y, z, ¢,
defined as

V() = {(x,y,2,t) € RP? | P(z,y,2,t) =0,1<i<n}

This way, we can also deal with space curves.

Finally, we can consider homogeneous polynomials P(z1,...,Zn+1) in
N + 1 variables and of degree m (plus the null polynomial), and study the
subsets of RPY (or CP") defined as the zero locus of a set of equations

E={P,=0,P,=0,..., P, =0},

where Py, ..., P, are homogeneous polynomials of degree m in the variables
Z1, ..., TN+1. For example, it turns out that the set of lines in RP? forms
a surface of degree 2 in RP® (the Klein quadric). However, all this would
really take us too far into algebraic geometry, and we simply refer the
interested reader to Fulton [67] or Harris (83].

We now consider projective maps.

5.5 Projective Maps

Given two nontrivial vector spaces E and F' and a linear map f: E — F,
observe that for every u,v € (E — Ker f), if v = Au for some A € K — {0},
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then f(v) = Af(u), and thus f restricted to (E — Ker f) induces a function
P(f): (P(E) — P(Ker f)) — P(F) defined such that

P(f)([ul~) = [f(w)]~,

as in the following commutative diagram:

E—Kerf A )

0| |

P(E)-P(Kerf) ;= P(F)

When f is injective, i.e., when Ker f = {0}, then P(f): P(E) — P(F) is
indeed a well-defined function. The above discussion motivates the following
definition.

Definition 5.5.1 Given two nontrivial vector spaces E and F', any linear
map f: E — F induces a partial map P(f): P(E) — P(F) called a projec-
tive map, such that if Ker f = {u € E | f(u) = 0} is the kernel of f, then
P(f): (P(F) — P(Ker f)) — P(F) is a total map defined such that

P(f)([u]~) = [f(w)]~,

as in the following commutative diagram:

E—Kerf L F-{0

| |7
— —
P(E) — P(Ker f) s P(F)

If f is injective, i.e., when Ker f = {0}, then P(f): P(E) — P(F) is a total
function called a projective transformation, and when f is bijective, we call
P(f) a projectivity, or projective isomorphism, or homography. The set of
projectivities P(f): P(E) — P(FE) is a group called the projective (linear)
group, and is denoted by PGL(E).

@ One should realize that if a linear map f: E — F is not injective,

then the projective map P(f):P(F) — P(F) is only a partial
map, i.e., it is undefined on P(Ker f). In particular, if f: E — F is the null
map (i.e., Ker f = E), the domain of P(f) is empty and P(f) is the partial
function undefined everywhere. We might want to require in Definition 5.5.1
that f not be the null map to avoid this degenerate case. Projective maps
are often defined only when they are induced by bijective linear maps.

We take a closer look at the projectivities of the projective line P},
since they play a role in the “change of parameters” for projective curves.
A projectivity f: P} — PL isinduced by some bijective linear map g: K2 —
K? given by some invertible matrix

Mo = (¢ 7))



5.5. Projective Maps 107

with ad — be # 0. Since the projective line P}, is isomorphic to K U {oc},
it is easily verified that f is defined as follows:

( az+b d
z if z £ ——,
ch+d 7 c
d az+b
c#0{ —— — 00, c=0< *— d
c
00 > 00.
a
00 > —;
\ (&

If K = R or K = C, note that a/c is the limit of (az + b)/(cz + d), as z
approaches infinity, and the limit of (az +b)/(cz + d) as z approaches —d/c
is co (when ¢ # 0).

Projections between hyperplanes form an important example of projec-
tivities.

Definition 5.5.2 Given a projective space P(F), for any two distinct hy-
perplanes P(H) and P(H’), for any point ¢ € P(FE) neither in P(H) nor
in P(H'), the projection (or perspectivity) of center ¢ between P(H) and
P(H') is the map f: P(H) — P(H’) defined such that for every a € P(H),
the point f(a) is the intersection of the line {c,a) through ¢ and a with
P(H').

Let us verify that f is well-defined and a bijective projective transforma-
tion. Since the hyperplanes P(H) and P(H’) are distinct, the hyperplanes
H and H’ in E are distinct, and since ¢ is neither in P(H) nor in P(H'),
letting ¢ = p(u) for some nonnull vector u € E, thenu ¢ H and u ¢ H’, and
thus £ = H® Ku = H' & Ku. If m E — H' is the linear map (projection
onto H' parallel to u) defined such that

m(w + Au) = w,

forallw € H and all A € K, since £ = H® Ku = H' & Ku, the restriction
g:H — H' of m: E — H’ to H is a linear bijection between H and H’, and
clearly f = P(g), which shows that f is a projectivity.

Remark: Going back to the linear map m: E — H’ (projection onto H’
parallel to u), note that P(7):P(E) — P(H’) is also a projective map,
but it is not injective, and thus only a partial map. More generally, given
a direct sum F =V @ W, the projection m: E — V onto V parallel to W
induces a projective map P(r): P(E) — P(V), and given another direct
sum E = U @ W, the restriction of 7 to U induces a perspectivity f
between P(U) and P(V). Geometrically, f is defined as follows: Given any
point a € P(U), if (P(W), a) is the smallest projective subspace containing
P(W) and a, the point f(a) is the intersection of (P{(W),a) with P(V).
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Vo, \»,

Figure 5.3. A projection of center c between two lines A and A’

A

1 2

Figure 5.3 illustrates a projection f of center ¢ between two projective
lines A and A’ (in the real projective plane).
If we consider three distinct points dy,d2,d3 on A and their images
1,d5, ds on A’ under the projection f, then ratios are not preserved, that
is,
dzd; £ dsdj
dsdz * djd)’

However, if we consider four distinct points di,ds,ds,ds on A and their
images d}, d5, d5,d) on A’ under the projection f, we will show later that

we have the following preservation of the so-called “cross-ratio”
dsd; /dady _ dad; /djdy
dsdz / dadz djdy/ djdy’
Cross-ratios and projections play an important role in geometry (for some
very elegant illustrations of this fact, see Sidler [159]).
We now turn to the issue of determining when two linear maps f,g

determine the same projective map, i.e., when P(f) = P(g). The following
lemma gives us a complete answer.

Lemma 5.5.3 Given two nontrivial vector spaces E and F, for any two
linear maps f:E — F and g: E — F, we have P(f) = P(g) iff there is
some scalar A € K — {0} such that g = \f.

Proof. If g = \f, it is clear that P(f) = P(g). Conversely, in order to have
P(f) = P(g), we must have Ker f = Kerg. If Ker f = Kerg = F, then f
and g are both the null map, and this case is trivial. If £ — Ker f # 0, by
taking a basis of Im f and some inverse image of this basis, we obtain a
basis B of a subspace G of E such that £ = Ker f & G. If dim(G) = 1, the
restriction of any linear map f: E — F' to G is determined by some nonzero
vector v € FE and some scalar A € K, and the lemma is obvious. Thus,
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assume that dim(G) > 2. For any two distinct basis vectors u,v € B, since
P(f) = P(g), there must be some nonzero scalars A(u), A(v), and A(u +v)
such that

g(u) = Muw)f(u), g(v) =AV)f(v), g(u+v)=A(u+v)f(u+v)

Since f and g are linear, we get
9(u) + g(v) = Mu)f(u) + Mv)f(v) = Mu +v)(f(u) + f(v)),
that is, -
(A(w +v) = A(u))f(u) + (A(u +v) = A(v))f(v) = 0.

Since f is injective on G and u,v € B C G are linearly independent, f(u)
and f(v) are also linearly independent, and thus we have

Alu 4+ v) = Au) = A(v).

Now we have shown that A(u) = A(v), for any two distinct basis vectors
in B, which proves that A(u) is independent of u € G, and proves that
g=Af.0O

Lemma 5.5.3 shows that the projective linear group PGL(E) is isomor-
phic to the quotient group of the linear group GL(E) modulo the subgroup
K*idg (where K* = K — {0}). Using projective frames, we prove the
following useful result.

Lemma 5.5.4 Given two nontrivial vector spaces E and F of the same
dimension n + 1, for any two projective frames (a;)1<i<n+2 for P(E) and
(bi)1<i<n+2 for P(F'), there is a unique projectivity h: P(E) — P(F) such
that h(a;) =b; for 1 <i<n+2.

Proof. Let (uy,...,unt1) be a basis of E associated with the projective
frame (a;)i1<i<n+2, and let (vy,...,vn41) be a basis of F' associated with
the projective frame (b;)1<i<n+2- Since (u1,...,un41) is a basis, there is a

unique linear bijection g: E — F such that g(u;) = v;, for 1 < ¢ <n+ 1.
Clearly, h = P(g) is a projectivity such that h(a;) = b;, for 1 <i<mn+2.
Let h':P(F) — P(F) be any projectivity such that h'(a;) = b;, for 1 <
1 < n + 2. By definition, there is a linear isomorphism f: E — F such that
h' =P(f). Since h'(a;) = b;, for 1 < i < n+ 2, we must have f(u;) = M\,
for some A, € K — {0}, where 1 <7 <n+1, and
Flur + -+ + Ung1) = Av1 + -+ + Uny1),
for some A € K — {0}. By linearity of f, we have
AU+ -+ Apg1Ungr = AU + -+ + AUpyg,

and since (v1,...,vn+1) is a basis of F, we must have

A== Apgr = Al
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This shows that f = Ag, and thus that
h'=P(f) =P(g) = h,
and h is uniquely determined. []

@ The above lemma and Lemma 5.5.3 are false if K is a skew field.
Also, Lemma 5.5.4 fails if (b;)1<;<n+2 is not a projective frame,
or if an 42 is dropped.

As a corollary of Lemma 5.5.4, given a projective space P(E), two distinct
projective lines D and D’ in P(E), three distinct points a, b,con D, and any
three distinct points a’, b’, ¢’ on D’, there is a unique projectivity from D to
D', mapping a to a’, b to b, and ¢ to ¢/. This is because, as we mentioned
earlier, any three distinct points on a line form a projective frame.

Remark: As in the affine case, there is “fundamental theorem of pro-
jective geometry.” For simplicity, we state this theorem assuming that
vector spaces are over the field K = R. Given any two projective spaces
P(E) and P(F) of the same dimension n > 2, for any bijective function
fP(E) — P(F), if f maps any three distinct collinear points a,b,c to
collinear points f(a), f(b), f(c), then f is a projectivity. For more general
fields, f = P(g) for some “semilinear” bijection g: E — F. A map such
as f (preserving collinearity of any three distinct points) is often called a
collineation. For K = R, collineations and projectivities coincide. For more
details, see Samuel [146].

Before closing this section, we illustrate the power of Lemma 5.5.4 by
proving two interesting results. We begin by characterizing perspectivities
between lines.

Lemma 5.5.5 Given any two distinct lines D and D’ in the real projective
plane RP?, a projectivity f: D — D' is a perspectivity iff f(O) = O, where
O is the intersection of D and D’.

Proof. If f: D — D' is a perspectivity, then by the very definition of f,
we have f(O) = O. Conversely, let f: D — D’ be a projectivity such that
f(O) = O. Let a,b be any two distinct points on D also distinct from O,
and let @’ = f(a) and ¥ = f(b) on D’. Since f is a bijection and since
a, b, O are pairwise distinct, a’ # b’. Let ¢ be the intersection of the lines
(a,a’) and (b,b'), which by the assumptions on a,b, O, cannot be on D or
D'. Then we can define the perspectivity g: D — D’ of center ¢, and by the
definition of ¢, we have

gla) =d', g(b) =0, ¢(0)=0.
)

However, f agrees with g on O, a, b, and since (O, a, b) is a projective frame
for D, by Lemma 5.5.4, we must have f = g. []
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Using Lemma 5.5.5, we can give an elegant proof of a version of
Desargues’s theorem (in the plane).

Lemma 5.5.6 Given two triangles (a,b,c) and (a’,b',c') in RP?, where
the points a,b,c,a’,b',c’ are pairwise distinct and the lines A = (b,¢), B =
{(a,c), C = (a,b), A’ = (V',c), B" = (d,c), C' = (a,¥) are pairwise
distinct, if the lines (a,a’), (b,b'), and {c,c') intersect in a common point d
distinct from a,b,c, a’,b',c', then the intersection points p = (b,c)N{¥’, '),
g = {a,e)N{a’,cy, and r = {a,b) N {a’, V) belong to a common line distinct
from A,B,C, A", B’,C".

Proof. Inview of the assumptions on a, b, ¢, a’,¥’, ¢, and d, the point r is on
neither {a,a’) nor (b, b}, the point p is on neither (b, ') nor {c,c’), and the
point g is on neither {a,a’) nor {c,c’). It is also immediately shown that the
line {p, q) is distinct from the lines A, B,C, A’, B’,C’. Let f: (a,a’) — (b, )
be the perspectivity of center r and g: (b,b’) — (c,c’) be the perspectivity
of center p. Let h = g o f. Since both f(d) = d and g(d) = d, we also have
h(d) = d. Thus by Lemma 5.5.5, the projectivity h:{a,a’) — {(c,c') is a
perspectivity. Since

h(a) = g(f(a)) = g(b) =,
h(a') = g(f(a')) = g(b') = ¢,

the intersection g of {a,c¢) and (a’,¢’) is the center of the perspectivity h.
Also note that the point m = (a,a’) N (p,r) and its image h(m) are both
on the line (p, ), since r is the center of f and p is the center of g. Since h
is a perspectivity of center g, the line (m, h(m)) = (p,r) passes through g,
which proves the lemma. []

Desargues’s theorem is illustrated in Figure 5.4. It can also be shown
that every projectivity between two distinct lines is the composition of two
perspectivities (not in a unique way). An elegant proof of Pappus’s theorem
can also be given using perspectivities. For all this and more, the reader is
referred to the problems.

We now consider the projective completion of an affine space.

5.6 Projective Completion of an Affine Space,
Affine Patches

Given an affine space E with associated vector space f we can form the
vector space E the homogenized version of E, and then the projective
space P(E) induced by E. This projective space, also denoted by E, has
some very interesting properties. In fact, it satisfies a universal property,
but before we can say what it is, we have to take a closer look at E.
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Figure 5.4. Desargues’s theorem (projective version in the plane)

Since the vector space E is the disjoint union of elements of the form
{a,\), where a € F and A € K — {0}, and elements of the form u €

f, observe that if ~ is the equivalence relation on E used to define the
projective space P(E), then the equivalence class [(a,A)]. of a weighted
point contains the special representative a = (a,1), and the equivalence

N
class [u]~. of a nonzero vector u € E is just a point of the projective space
P(f) Thus, there is a bijection

P(E) — EUP(E)

between P(E) and the disjoint union EF U P(_E), which allows us to view
E as being embedded in P(E’) The points of P(E) in P(f) will be
called points at infinity, and the projective hyperplane P(f) is called the

hyperplane at infinity. We will also denote the point [u].. of P(ﬁ) (where
u # 0) by Ueo-

Thus, we can think of E = P(E) as the projective completion of the
affine space E obtained by adding points at infinity forming the hyperplane

P(—E?) As we commented in Section 5.2 when we presented the hyperplane
model of P(E), the notion of point at infinity is really an affine notion. But
even if a vector space F doesn’t arise from the completion of an affine space,
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there is an affine structure on the complement of any hyperplane P(H) in
the projective space P(E). In the case of E, the complement E of the

projective hyperplane P(f) is indeed an affine space. This is a general
property that is needed in order to figure out the universal property of E.

Lemma 5.6.1 Given a vector space E and a hyperplane H in E, the com-
plement Ey = P(E) — P(H) of the projective hyperplane P(H) in the
projective space P(E) can be given an affine structure such that the as-
soctated vector space of Ey is H. The affine structure on Ey depends
only on H, and under this affine structure, Ey is isomorphic to an affine
hyperplane in E.

Proof. Since H is a hyperplane in E, there is some w € E — H such that
E = Kw & H. Thus, every vector u in E — H can be written in a unique
way as Aw + h, where A # 0 and h € H. As a consequence, for every point
[u] in Epy, the equivalence class [u] contains a representative of the form
w+A"1h, with A # 0. Then we see that the map ¢: (w+H) — Ep, defined
such that

o(w + h) = [w+ b,

is a bijection. In order to define an affine structure on Eg, we define +: Eg x
H — Ejy as follows: For every point [w + h1] € Ey and every hs € H, we
let

[w+h1]+h2:[w+h1+h2].

The axioms of an affine space are immediately verified. Now, w + H is an
affine hyperplane is E, and under the affine structure just given to Ejy,
the map ¢:(w + H) — Ejy is an affine map that is bijective. Thus, Ej is
isomorphic to the affine hyperplane w + H. If we had chosen a different
vector w’ € E — H such that £ = Kw' & H, then Ey would be isomorphic
to the affine hyperplane w’+ H parallel to w+ H. But these two hyperplanes
are clearly isomorphic by translation, and thus the affine structure on Eg
depends only on H. []

An affine space of the form Ey is called an affine patch on P(E). Lemma
5.6.1 allows us to view a projective space P(E) as the result of gluing
some affine spaces together, at least when FE is of finite dimension. For
example, when E is of dimension 2, a hyperplane in E is just a line, and
the complement of a point in the projective line P(E) can be viewed as an
affine line. Thus, we can view P(E) as being covered by two affine lines -
glued together. When K = R, this shows that topologically, the projective
line RP! is equivalent to a circle. When E is of dimension 3, a hyperplane in
E is just a plane, and the complement of a projective line in the projective
plane P(E) can be viewed as an affine plane. Thus, we can view P(E) as
being covered by three affine planes glued together. However, even when
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K =R, it is much more difficult to come up with a geometric embedding of
the projective plane RP? in A3, and in fact, this is impossible! Nevertheless,
there are some fascinating immersions of the projective space RP? as 3D
surfaces with self-intersection, one of which is known as the Boy surface.
We urge our readers to consult the remarkable book by Hilbert and Cohn-
Vossen [84] for drawings of the Boy surface, and more. Some nice projections
in A3 of an embedding of RP? into A? are given in the surface gallery on
the web page (see web page, Section 24.7). In fact, we give a control net
in A?* specifying an explicit rational surface homeomorphic to RP%. One
should also consult Fischer’s books [63, 62], where many beautiful models of
surfaces are displayed, and the commentaries in Chapter 6 of [62] regarding
models of RP?. More generally, when F is of dimension n+1, the projective
space P(E) is covered by n+ 1 affine patches (hyperplanes) glued together.
This idea is very fruitful, since it allows the treatment of projective spaces
as manifolds, and it is essential in algebraic geometry. _

We can now go back to the projective completion E of an affine space
E.

Definition 5.6.2 Given any affine space E with associated vector space
—E—), a projective completion of the affine space E with hyperplane at infinity
P(H) is a triple (P(£),P(H),1), where &£ is a vector space, H is a hyper-
plane in &, i: E — P(€) is an injective map such that i(E) = £ and ¢ is
affine (where £y = P(€) — P(H) is an affine patch), and for every projec-
tive space P(F), every hyperplane H in F, and every map f: E — P(F)
such that f(E) C Fy and f is affine (where Fy = P(F)—P(H) is an affine
patch), there is a unique projective map f P(€) — P(F) such that

f=Ffoi and P(F)=FoP(i)

(where i: E - ‘H and _f—): E — H are the linear maps associated with the
affine maps i: E — P(€) and f: E — P(F)), as in the following diagram:

E 4 e cP@E2PH) <2 p(E)

AN |7 /°(7)
Fy CP(F) 2 P(H)
The points of P(€) in P(H) are called points at infinity, and the projective
hyperplane P(H) is called the hyperplane at infinity. We will also denote
the point [u]. of P(H) (where u # 0) by ue. As usual, objects defined by
a universal property are unique up to isomorphism. We leave the proof as

an exercise. The importance of the notion of projective completion stems
from the fact that every affine map f: £ — F extends in a unique way to

a projective map f~ E—-F (provided that the restriction of f to P(E)
agrees with P(?))
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We will now show that <E, P(E)), z> is the projective completion of E,
where i: E — E is the injection of F into E=EuU P(f) For example, if
E = Al is an affine line, its projective completion Al is isomorphic to the
projective line P(K?2), and they both can be 1dent1ﬁed with AL U{oc}, the
result of adding a point at infinity (co) to A}. In general, the projective
completion K}? of the affine space AR is isomorphic to P(K™*!). Thus,
A™ is isomorphic to RP™, and &c_ﬁ is isomorphic to CP™.

First, let us observe that if E is a vector space and H is a hyperplane in
E, then the homogenization En g of the affine patch Ey (the complement
of the projective hyperplane P(H) in P(FE)) is isomorphic to E. The proof
is rather simple and uses the fact that there is an affine bijection between
Ey and the affine hyperplane w + H in E, where w € E ~ H is any fixed
vector. Choosing w as an origin in Ef, we know that EH = H ¥ Kw, and
since E = H & Kw, it is obvious how to define a linear bijection between
EH =HYKwand E=H®Kuw. Asa consequence the projective spaces
Ey and P(FE) are isomorphic, i.e., there is a projectivity between them.

Lemma 5.6.3 Given any affine space (E, E)), for every projective space
P(F), every hyperplane H in F, and every map f: E — P(F) such that
f(E) C Fy and f is affine (Fy being viewed as an affine patch), there is
a unique projective map f E— P(F) such that

f=foi and P(?) = foP(i),

(where i: E-E and T: E — H are the linear maps assoctated with the
affine maps i: E — E and f: E — P(F)), as in the following diagram:

E - EcEo>p(E) &Y p(E)

£\ lf /P(7)
Fy CP(F) 2 P(H)
Proof . The existence of f is a consequence of Lemma 4.4.2, where we ob-

serve that FH is 1somorphlc to F. Just take the projective map P(f) E—

P(F), where f :E — F is the unique linear map extending f. It remains
to prove its uniqueness. Since f: E — Fp is affine, for any a € F and any

-
u € E, we have

fla+u) = fla) + f (u),

where f E — His a linear map. If we fix some a € E, then f(a) = [v],
for some w € F — H and F = Kw @ H. Assume that f: E — P(F) exists

with the desired property. Then there is some linear map g¢: E — F such
that f = P(g). Since f = f o, we must have f(a) = [w] = [¢(a)], and thus
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g(a) = pw, for some p # 0. Also, for every u € f,

fla+u)=[w+ F(u) = [w+ F(u)] = [g(a+u)]
= [g(a) + g(u)] = [pw + g(u)],

and thus we must have

—

Aw)w + A(u) f (u) = pw + g(u),

—

for some A(u) # 0. If Ker 7 = F, the linear map 7) is the null map, and
since we are requiring that the restriction of fto P(ﬁ) be equal to P( ?),
the linear map ¢ must also be the null map on E. Thus, f is unique, and

the restriction of fvto P(E)) is the partial map undefined everywhere.

If E — Ker 7 # 0, by taking a basis of Im 7) and some inverse image
of this basis, we obtain a basis B of a subspace G of E such that E =
Ker ?@6 Since E = Ker ?EBE’) where dim(a)) > 1, for any = € Ker 7)
and any nonnull vector y € 6, we have

Az = pw + g(a),
A@)w + ) f (y) = pw +g(y),
and
Mz +y)w+Az+y) f (@+y) =pw+g(z+y),
which by linearity yields
Az +y) = Ax) = A(y) + ww + (M +y) = Ay)) f(y) = 0.

— =

Since F = Kw® H and f: E — H, we must have A(z + y) = A(y) and
A(z) = p. Thus, g agrees with T on Ker 7
If dim(a‘)) =1 then for any y € G we have

AW)w + M) T (y) = pw + g(y),

and for any v # 0 we have

Awy)w + Awy) T (vy) = pw + g(vy),
which by linearity yields
(A(vy) — vA(Y) — p + vp)w + (PA(vy) — vA®)) T (y) = 0.

Since F = Kw @ H, ?: E - H, and v # 0, we must have A\(vy) = A(y).
Then we must also have (A(y) — u)(1 —v) =0.
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If K = {0,1}, since the only nonzero scalar is 1, it is immediate that
g9(y) = ?(y), and we are done. Otherwise, for v # 0,1, we get A(y) = u for
all y € G . Then g= p.? on E, and the restriction of f = P(g) to P(ﬁ)
is equal to P(T) But now g is completely determined by

o~ —
g(u + Aa) = Ag(a) + g(u) = Apw + p f (v).
Thus, we have g = /\f.

Otherwise, if dim(ﬁ) > 2, then for any two distinct basis vectors v and
v in B,

Muyw + Mw) F (u) = pw + g(u),
Aw)w +A(v) f (v) = pw + g(v),
and
A+ v)w + Aw +v) f (u+v) = pw + glu + v),
and by linearity, we get
(Al + ) — M) — A®) + pw + (A(u +v) = Aw)) T (u)

+ (Mu +v) — A(®)) f (v) = 0.
Since F = Kw & H, Tﬁ — H, and T(u) and ?(v) are linearly

— —
independent (because f in injective on G ), we must have

Alu +v) = Au) = A(v) = p,

— — ~ —
which implies that g = u f on FE', and the restriction of f = P(g) to P( E)
is equal to P(?) As in the previous case, g is completely determined by

g(uF Aa) = Ag(a) + g(u) = Mpw + u f (u).

Again, we have g = /\f, and thus f~is unique. []

@ The requirement that the restriction of f~ = P(g) to P(E)) be

equal to P(?) is necessary for the uniqueness of f~ The problem
comes up when f is a constant map. Indeed, if f is the constant map defined
such that f(a) = [w] for some fixed vector w € F, it can be shown that
any linear map g: E — F defined such that g(a) = pw and g(u) = p(u)w
for all u € E‘), for some p # 0, and some linear form : E — F satisfies

f=P(g)oi.
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Lemma 5.6.3 shows that (E, P(E—)), i) is the projective completion of the
affine space E. _

The projective completion F of an affine space F is a very handy place in
which to do geometry in, mainly because the following facts can be easily
established.

There is a bijection between affine subspaces of F and projective sub-

spaces of E not contained in P(ﬁ) Two affine subspaces of E are parallel
iff the corresponding projective subspaces of E have the same intersection
with the hyperplane at infinity P(E)) There is also a bijection between
affine maps from E to F' and projective maps from Eto F mapping the

hyperplane at infinity P(—E) into the hyperplane at infinity P(?) In the
projective plane, two distinct lines intersect in a single point (possibly at
infinity, when the lines are parallel). In the projective space, two distinct
planes intersect in a single line (possibly at infinity, when the planes are
parallel). In the projective space, a plane and a line not contained in that
plane intersect in a single point (possibly at infinity, when the plane and
the line are parallel).

5.7 Making Good Use of Hyperplanes at Infinity

Given a vector space E and a hyperplane H in E, we have already observed
that the projective spaces Ey and P(FE) are isomorphic. Thus, P(H) can
be viewed as the hyperplane at infinity in P(E), and the considerations
applying to the projective completion of an affine space apply to the affine
patch Ey on P(E). This fact yields a powerful and elegant method for
proving theorems in projective geometry. The general schema is to choose
some projective hyperplane P(H) in P(E), view it as the “hyperplane at
infinity,” then prove an affine version of the desired result in the affine patch
Epy (the complement of P(H) in P(E), which has an affine structure), and
then transfer this result back to the projective space P(E). This technique
is often called “sending objects to infinity.” We refer the reader to geometry
textbooks for a comprehensive development of these ideas (for example,
Berger [12, 13], Samuel [146], Sidler [159], Tisseron [169], or Pedoe [136]),
but we cannot resist presenting the projective versions of the theorems of
Pappus and Desargues. Indeed, the method of sending points to infinity
provides some strikingly elegant proofs. We begin with Pappus’s theorem,
illustrated in Figure 5.5.

Lemma 5.7.1 Given any projective plane P(E) and any two distinct lines
D and D', for any distinct points a,b,c,a’,b’,c', with a,b,c on D and
a',b',c on D, ifa,b,c,a’,b',c are distinct from the intersection of D and
D', then the intersection points p = (b,c'Y N (b, ¢c), ¢ = {(a,c') N {a’,¢), and
r = {a,b') N {a’,b) are collinear.
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Figure 5.5. Pappus’s theorem (projective version)

Proof. First, since any two lines in a projective plane intersect in a single
point, the points p, g, are well defined. Choose A = (p,r) as the line at
infinity, and consider the affine plane X = P(F) — A. Since (a,d’) and
(a’,b) intersect at a point at infinity 7 on A, (a,’) and (a’,b) are parallel,
and similarly (b, ¢’) and (¥, c) are parallel. Thus, by the affine version of
Pappus’s theorem (Lemma 2.9.3), the lines (a,c’) and (a/,c) are parallel,
which means that their intersection ¢ is on the line at infinity A = {p,r),
which means that p, g, are collinear. []

By working in the projective completion of an affine plane, we can obtain
an improved version of Pappus’s theorem for affine planes. The reader will
have to figure out how to deal with the special cases where some of p, q,r
go to infinity.

Now, we prove a projective version of Desargues’s theorem slightly more
general than that given in Lemma 5.5.6. It is interesting that the proof
is radically different, depending on the dimension of the projective space
P(E). This is not surprising. In axiomatic presentations of projective
plane geometry, Desargues’s theorem is independent of the other axioms.
Desargues’s theorem is illustrated in Figure 5.6.

Lemma 5.7.2 Let P(E) be a projective space. Given two triangles (a,b,c)
and (a’,b', '), where the points a,b,c,a’,b', ¢’ are pairwise distinct and the
lines A = (b,c), B = {(a,c¢), C = (a,b), A’ = {¥/,c'), B' = {a',c), C' =
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Figure 5.6. Desargues’s theorem (projective version)

(@', V') are pairwise distinct, if the lines (a,a’), (b,b'), and {(c,c’) intersect
in a common point d distinct from a,b,c, a’,V’, ¢, then the intersection
points p = (b,e) NV, ), ¢ = {a,c) N {a’, ), and r = (a,b) N {a’, V') belong
to a common line distinct from A,B,C, A',B’,C".

Proof. First, it is immediately shown that the line (p,¢q) is distinct from
the lines A, B,C, A’, B’,C’. Let us assume that P(E) has dimension n >
3. If the seven points d,a,b,c,a’,b’,c’ generate a projective subspace of
dimension 3, then by Lemma 5.3.2, the intersection of the two planes (a, b, c)
and {(a’,b,c’) is a line, and thus p, ¢, r are collinear.

If P(FE) has dimension n = 2 or the seven points d, a, b, ¢,a’, b, ¢ generate
a projective subspace of dimension 2, we use the following argument. In the
projective plane X generated by the seven points d, a,b,c,a’,b’, ¢, choose
the projective line A = (p,r) as the line at infinity. Then in the affine plane
Y = X — A, the lines (b,c) and (V’,c’) are parallel, and the lines (a, b) and
(a’,b') are parallel, and the lines (a,a’), (b,b'), and (c, ¢} are either parallel
or concurrent. Then by the converse of the affine version of Desargues’s
theorem (Lemma 2.9.4), the lines (a, ¢) and (@', ¢) are parallel, which means
that their intersection ¢ belongs to the line at infinity A = {p,r), and thus
that p, q,r are collinear. []

The converse of Desargues’s theorem also holds (see the problems). Using
the projective completion of an affine space, it is easy to state an improved
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affine version of Desargues’s theorem. The reader will have to figure out
how to deal with the case where some of the points p,q,r go to infinity.
It can also be shown that Pappus’s theorem implies Desargues’s theorem.
Many results of projective or affine geometry can be obtained using the
method of “sending points to infinity.”

We now discuss briefly the notion of cross-ratio, since it is a major
concept of projective geometry.

5.8 The Cross-Ratio

Recall that affine maps preserve the ratio of three collinear points. In gen-
eral, projective maps do not preserve the ratio of three collinear points.
However, bijective projective maps preserve the “ratio of ratios” of any
four collinear points (three of which are distinct). Such ratios are called
cross-ratios (in French, “birapport”). There are several ways of introduc-
ing cross-ratios, but since we already have Lemma 5.5.4 at our disposal, we
can circumvent some of the tedious calculations needed if other approaches
are chosen.

Given a field K, say K = R, recall that the projective line P}, consists
of all equivalence classes [z, y] of pairs (z,y) € K? such that (x,y) # (0,0),
under the equivalence relation ~ defined such that

(T1,91) ~ (x2,92) iff zo=Az; and yo = Ay,

for some A € K — {0}. Letting oo = [1,0], the projective line P}, is in
bijection with K U {oco}. Furthermore, letting 0 = [0,1] and 1 = [1,1],
the triple (00,0, 1) forms a projective frame for PL.. Using this projective
frame and Lemma 5.5.4, we define the cross-ratio of four collinear points
as follows.

Definition 5.8.1 Given a projective line A = P(D) over a field K, for any
sequence (a, b, ¢, d) of four points in A, where a, b, ¢ are distinct (i.e., (a, b, c)
is a projective frame), the cross-ratio [a,b,c,d] is defined as the element
h(d) € Pj, where h: A — P} is the unique projectivity such that h(a) = oo,
h(b) = 0, and h(c) = 1 (which exists by Lemma 5.5.4, since (a,b,c) is a
projective frame for A and (00,0,1) is a projective frame for PL.). For any
projective space P(FE) (of dimension > 2) over a field K and any sequence
(a,b,¢,d) of four collinear points in P(E), where a,b,c are distinct, the
cross-ratio [a, b, ¢, d] is defined using the projective line A that the points
a,b, c,d define. For any affine space E and any sequence (a, b, c,d) of four
collinear points in E, where a, b, ¢ are distinct, the cross-ratio [a,b, ¢, d] is
defined by considering E as embedded in E.

It should be noted that the definition of the cross-ratio [a, b, ¢, d] depends
on the order of the points. Thus, there could be 24 = 4! different possible
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values depending on the permutation of {a, b, ¢, d}. In fact, there are at most
6 distinct values. Also, note that [a,b,c,d] = oo iff d = a, [a,b,¢,d] = 0
iff d = b, and [a,b,c,d] = 1 iff d = ¢. Thus, [a,b,¢,d] € K — {0,1} iff
d ¢ {a,b,c}.

The following lemma is almost obvious, but very important. It shows that
projectivities between projective lines are characterized by the preservation
of the cross-ratio of any four points (three of which are distinct).

Lemma 5.8.2 Given any two projective lines A and A’, for any sequence
(a,b,c,d) of points in A and any sequence (a’,b',c,d') of points in A’, if
a,b,c are distinct and a',b',c’ are distinct, there is a unique projectivity
fiA — A" such that f(a) = o, f(b) =V, f(c) =, and f(d) = d' iff
[a,b,¢,d] = [@/, b, ¢, d].

Proof. First, assume that f: A — A’ is a projectivity such that f(a) =
a, f(b) =¥, f(c) = ¢, and f(d) = d’. Let : A — PL be the unique
projectivity such that h(a) = oo, h(b) =0, and h(c) =1, and let h': A’ —
PP}, be the unique projectivity such that h’(a’) = oo, h/(b') = 0, and h'(¢) =
1. By definition, [a,b,c,d] = h(d) and [a',¥,¢',d'] = h'(d’). However, b’ o
f: A — P} is a projectivity such that (k' o f)(a) = oo, (k' o f)(b) = 0, and
(k' o f)(c) = 1, and by the uniqueness of h, we get h = b’ o f. But then,
la,b,¢,d] = h(d) = A'(f(d)) = ' (d') = [a', ¥, c, d].

Conversely, assume that [a,b,¢,d] = [a’,V, ¢, d']. Since (a,b,c) and (d/,
b, ¢’) are projective frames, by Lemma 5.5.4, there is a unique projectivity
g: A — A’ such that g(a) = a’, g(b) = b/, and g(c) = ¢’. Now, h'og: A — P}
is a projectivity such that (h’og)(a) = oo, (W' og)(b) = 0, and (' og)(c) =1,
and thus, h = h’ o g. However, h'(d') = [d/,b,c,d'] = [a,b,¢,d] = h(d) =
h'(g(d)), and since k' is injective, we get d' = g(d).

As a corollary of Lemma 5.8.2, given any three distinct points a,b,c on
a projective line A, for every A € Pk there is a unique point d € A such
that [a,b,¢,d] = A.

In order to compute explicitly the cross-ratio, we show the following easy
lemma.

Lemma 5.8.3 Given any projective line A = P(D), for any three distinct
points a,b,c in A, if a = p(u), b = p(v), and ¢ = p(u + v), where (u,v) s
a basis of D, and for any [\, ul~ € Pk and any point d € A, we have
d=pAu+pv) iff [a,b,c,d] =\ p]..

Proof. If (e1,e2) is the basis of K2 such that e; = (1,0) and ez = (0,1), it
is obvious that p(e;) = 0o, p(e2) = 0, and p(e; +e2) = 1. Let f: D — K? be
the bijective linear map such that f(u) = e; and f(v) = ez. Then f(u+v) =
€1 +ea, and thus f induces the unique projectivity P(f): P(D) — P} such
that P(f)(a) = oo, P(f)(b) =0, and P(f)(c) = 1. Then

P(f)(p(Au + p)) = [f (M + po)~ = [Aey + peg]~ = (A, ),
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that is,
d=pAu+ ) iff [a,bec,d =\ yl~.
O

We can now compute the cross-ratio explicitly for any given basis (u, v)
of D. Assume that a,b, ¢, d have homogeneous coordinates [A1, p1], (A2, p2],
[As, us], and [A4, pa] over the projective frame induced by (u,v). Letting
w; = \u + pv, we have a = p(wy), b = p(ws), ¢ = p(ws), and d = p(w,).
Since a and b are distinct, w; and wy are linearly independent, and we can
write w3 = aw; + fwe and wy = yw; + dwsz, which can also be written as

wy = lawl + ﬁng,
a B
and by Lemma 5.8.3, [a,b,¢,d] = ['y/a,é/ﬂ]. However, since w; and wq
are linearly independent, it is possible to solve for «, 3,7, é in terms of the
homogeneous coordinates, obtaining expressions involving determinants:

o= det(ws, ws) _det(wy, ws)
det(wy, wsy)’ det(wy, wy)’
_ det(wyg,ws) 5= det(wl,w4)
~ det(wq,ws)’ det(wl,wg)

and thus, assuming that d # a, we get

A3 A\ ‘/\4 A
la,b,c,d] = M3 1 Ba_ ]
’,\3 Ao ’/\4 Ao
H3  H2 Ha M2

When d = a, we have [a,b,c,d] = co. In particular, if A is the projective
completion of an affine line D, then u; = 1, and we get

[abcd]*)\?’_)\l M- _ca /da
T -)\3—)\2 /\4—/\2_Cb db’

When d = o0, we get

_ca
I= cb’
which is just the usual ratio (although we defined it as —ratio(a, ¢, b)).
We briefly mention some of the properties of the cross-ratio. For example,
the cross-ratio [a,b,¢,d] is invariant if any two elements and the comple-
mentary two elements are transposed, and letting 07! = 0o and co™! =0,
we have

[a,b,c,00

[a,b,¢c,d] = [b,a,c,d]"! = [a,b,d, ]!
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a ¢ ! d

Figure 5.7. Four points forming a harmonic division

and
[a,b,¢,d] =1 — [a,c,b,d].

Since the permutations of {a,b,c,d} are generated by the above transpo-
sitions, the cross-ratio takes at most six values. Letting A = [a,b,¢,d], if
A € {00,0,1}, then any permutation of {a,b,c,d} yields a cross-ratio in
{00,0,1}, and if A ¢ {00,0,1}, then there are at most the six values

1 1 1 A

/\7 N 1- /\7 1-— R PR} I 1

A AT 1=-XA A-1
We also define when four points form a harmonic division. For this, we need
to assume that K is not of characteristic 2.

Definition 5.8.4 Given a projective line A, we say that a sequence of four
collinear points (a, b, ¢,d) in A (where a, b, ¢ are distinct) forms a harmonic
division if [a,b,¢,d] = —1. When [a,b, ¢,d] = —1, we also say that ¢ and d
are harmonic conjugates of a and b.

If a, b, ¢ are distinct collinear points in some affine space, from

ca
7b7 ) = 31
[a, b, e, o0 b

we note that ¢ is the midpoint of (a,b) iff [a,b,c,00] = —1, that is, if

(a,b,c,00) forms a harmonic division. Figure 5.7 shows a harmonic di-
vision (a,b,c,d) on the real line, where the coordinates of (a,b,c,d) are
(-2,2,1,4).

There is a nice geometric interpretation of harmonic divisions in terms
of quadrangles (or complete quadrilaterals). Consider the quadrangle (pro-
jective frame) (a,b, ¢, d) in a projective plane, and let a’ be the intersection
of (d,a) and (b,c), b’ be the intersection of (d,b) and (a,c), and ¢’ be
the intersection of (d,c) and (a,b). If we let g be the intersection of (a,b)
and {a’,b’), then it is an interesting exercise to show that (a,b,g,c’) is a
harmonic division.

In fact, it can be shown that the following quadruples of lines form har-
monic divisions: ({c,a), (¥’,a’), (d,b), (¥',c")), ({b,a),{c,a’), {d,c}), (', ])),
and ({b,c), (a’, '), {a,d), {a’,b)); see Figure 5.8. For more on harmonic divi-
sions, the interested reader should consult any text on projective geometry
(for example, Berger [12, 13], Samuel [146], Sidler [159], Tisseron [169], or
Pedoe [136]).

Having the notion of cross-ratio at our disposal, we can interpret linear
interpolation in the homogenization E of an affine space E as determining
a cross-ratio in the projective completion E of E! This simple fact pro-
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Figure 5.8. A quadrangle, and harmonic divisions

vides a geometric interpretation of the rational version of the de Casteljau
algorithm; see the additional material on the web site (see web page).

Given any affine space E, let 8, and 6, be two linearly independent
vectors in E, and let t € K be any scalar. Consider

65 =60, F 6,
and
Ba=(1—1t)-0,Ft-0,.

Observe that the conditions for applying Lemma 5.8.3 are satisfied, and
that the cross-ratio of the points p(61), p(62), p(83), and p(f4) in the
projective space E is given by

[p(61),p(62), p(83), p(64)] = [1 — ¢, 8]~
Assuming ¢t # 0 (the case where 64 # 6,), this yields

[p(01), p(83), p(63), p(Ba)] = lt‘—t

Thus, determining 84 using the affine interpolation
Ba=(1—1t)-0, Ft-0,

in E is equivalent to finding the point p(6,) in the projective space E such
that the cross-ratio of the four points (p(61),p(62),p(63),p(84)) is equal to
(1 —t)/t. In the particular case where 6; = (a,a) and 6, = (b, 3), where a
and b are distinct points of E, if a4+ 3 # 0 and (1 —t)a +t8 # 0, we know
that

_[_ @ B
93_<a+ﬁa+a+ﬁb’a+ﬂ>
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and
_/_(A-ta t3
o= <(1~t)a+tﬁa+ (1_t)a+wb, (1—t)a+tﬁ>,
and letting
__ @ 8
€= a+ﬂa+ a+ﬁb
and
(1—t)a tﬂ

d= b,

A-ta+t8" T 0-ta+tf
we also have

[a,b,c,d]=¥.

Readers may have fun in verifying that when ¢ = %, the points (a,d, b, ¢)
form a harmonic division!

When a + 8 = 0 or (1 - t)a + t3 = 0, we have to consider points at
infinity, which is better handled in E.In any case, the computation of d can
be viewed as determining the unique point d such that [a, b, ¢,d] = (1—t)/t,
using

5.9 Duality in Projective Geometry

We now consider duality in projective geometry. Given a vector space E of
finite dimension n + 1, recall that its dual space E* is the vector space of
all linear forms f: E — K and that E* is isomorphic to E. We also have a
canonical isomorphism between E and its bidual E**, which allows us to
identify F and E**.

Let H(E) denote the set of hyperplanes in P(E). In Section 5.3 we
observed that the map

p(f) — P(Ker f)

is a bijection between P(E*) and H(E), in which the equivalence class
p(f) = {Af | A # 0} of a nonnull linear form f € E* is mapped to the
hyperplane P(Ker f). Using the above bijection between P(E*) and H(E),
a projective subspace P(U) of P(E*) (where U is a subspace of E*) can
be identified with a subset of H(E), namely the family

{P(H) | H=XKerf, f €U —{0}}
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consisting of the projective hyperplanes in H(E) corresponding to non-
null linear forms in U. Such subsets of H(FE) are called linear systems (of
hyperplanes).

The bijection between P(E*) and H(E) allows us to view H(E) as a
projective space, and linear systems as projective subspaces of H(E). In
the projective space H(E), a point is a hyperplane in P(FE)! The duality
between subspaces of E and subspaces of E* (reviewed below) and-the
fact that there is a bijection between P(E*) and H(FE) yields a powerful
duality between the set of projective subspaces of P(F) and the set of
linear systems in H(E) (or equivalently, the set of projective subspaces of
P(E™)).

The idea of duality in projective geometry goes back to Gergonne and
Poncelet, in the early nineteenth century. However, Poncelet had a more
restricted type of duality in mind (polarity with respect to a conic or a
quadric), whereas Gergonne had the more general idea of the duality be-
tween points and lines (or points and planes). This more general duality
arises from a specific pairing between E and E* (a nonsingular bilinear
form). Here we consider the pairing (—, —): E* x E — K, defined such that

(fiv) = fv),

for all f € E* and all v € E. Recall that given a subset V of F (respectively
a subset U of E*), the orthogonal V° of V is the subspace of E* defined
such that -

VO={fe E*|{(fv)=0, for every v € V},
and that the orthogonal U° of U is the subspace of E defined such that
U={veE|(fv)=0, for every f € U}.

Then, by a standard theorem (since E and E* have the same finite
dimension n + 1), U = U%, V = V% and the maps

V—V® and U+ U°

are inverse bijections, where V' is a subspace of F, and U is a subspace of
E*

These maps set up a duality between subspaces of E and subspaces of
E*. Furthermore, we know that U has dimension k iff U® has dimension
n+ 1 —k, and similarly for V and V°.

Since a linear system P = P(U) of hyperplanes in H(FE) corresponds to
a subspace U of E*, and since U is the intersection of all the hyperplanes
defined by nonnull linear forms in U, we can view a linear system P = P(U)
in H(E) as the family of hyperplanes containing P(U?).

In view of the identification of P(E*) with the set H(E) of hyperplanes in
P(FE), by passing to projective spaces, the above bijection between the set
of subspaces of E and the set of subspaces of E* yields a bijection between
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the set of projective subspaces of P(E) and the set of linear systems in
H(E) (or equivalently, the set of projective subspaces of P(E*)).

More specifically, assuming that E has dimension n + 1, so that P(FE)
has dimension n, if @ = P(V) is any projective subspace of P(E) (where
V is any subspace of F) and if P = P(U) is any linear system in H(F)
(where U is any subspace of E*), we get a subspace Q° of H(E) defined by

Q= {P(H) | @ C P(H), P(H) a hyperplane in H(E)},
and a subspace P° of P(FE) defined by
P° = ﬂ{P(H) | P(H) € P, P(H) a hyperplane in H(E)}.

We have P = P% and Q = Q. Since Q° is determined by P(V?), if
Q@ = P(V) has dimension k (i.e., if V has dimension k + 1), then Q° has
dimension n — k — 1 (since V has dimension k + 1 and dim(E) = n + 1,
then V0 has dimension n + 1 — (k + 1) = n — k). Thus,

dim(Q) + dim(Q°) = n — 1,

and similarly, dim(P) + dim(P%) =n — 1.

A linear system P = P(U) of hyperplanes in H(FE) is called a pencil of
hyperplanes if it corresponds to a projective line in P(E*), which means
that U is a subspace of dimension 2 of E*. From dim(P) + dim(P?%) =
n — 1, a pencil of hyperplanes P is the family of hyperplanes in H(E)
containing some projective subspace P(V') of dimension n —2 (where P(V)
is a projective subspace of P(E), and P(E) has dimension n). When n = 2,
a pencil of hyperplanes in H(E), also called a pencil of lines, is the family of
lines passing through a given point. When n = 3, a pencil of hyperplanes in
H(E), also called a pencil of planes, is the family of planes passing through
a given line.

When n = 2, the above duality takes a rather simple form. In this case
(of a projective plane P(FE)), the duality is a bijection between points and
lines with the following properties:

A point a maps to a line D, (the pencil of lines in H(E) containing
a, also denoted by a*)

A line D maps to a point pp (the line D in H(E)!)

Two points a, b map to lines D,, Dy, such that the intersection of D,
and Dy is the point p(, 5 corresponding to the line {(a,b) via duality

A line D containing two points a,b maps to the intersection pp of
the lines D, and Dsy.

If a € D, where a is a point and D is a line, then pp € D,.

The reader will discover that the dual of Desargues’s theorem is its con-
verse. This is a nice way of getting the converse for free! We will not spoil
the reader’s fun and let him discover the dual of Pappus’s theorem.
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Figure 5.9. A pencil of lines and its cross-ratio with intersecting lines
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To conclude our quick tour of projective geometry, we estabish a connec-
tion between the cross-ratio of hyperplanes in a pencil of hyperplanes with
the cross-ratio of the intersection points of any line not contained in any
hyperplane in this pencil with four hyperplanes in this pencil.

5.10 Cross-Ratios of Hyperplanes

Given a pencil P = P(U) of hyperplanes in H(FE), for any sequence (Hj,
H,, H3, H,) of hyperplanes in this pencil, if Hq, Ho, H3 are distinct, we
define the cross-ratio [H,, H2, Hs3, H4] as the cross-ratio of the hyperplanes
H; considered as points on the projective line P in P(E*). In particular,
in a projective plane P(F), given any four concurrent lines Dy, Do, Ds,
Dy, where D;, Dy, D3 are distinct, for any two distinct lines A and A’
not passing through the common intersection ¢ of the lines D;, letting
d; = AN D;, and d; = A’ N D;, note that the projection of center ¢ from
A to A’ maps each d; to d;.

Since such a projection is a projectivity, and since projectivities between
lines preserve cross-ratios, we have

(d1,d2,ds, ds) = [d}, dy, d3, dy],

which means that the cross-ratio of the d; is independent of the line A (see
Figure 5.9).

In fact, this cross-ratio is equal to [D1, D2, D3, Dy4), as shown in the next
lemma.

Lemma 5.10.1 Let P = P(U) be a pencil of hyperplanes in H(E), and
let A = P(D) be any projective line such that A ¢ H for all H € P.
The map h: P — A defined such that h(H) = HN A for every hyperplane
H € P is a projectivity. Furthermore, for any sequence (Hy, Ho, H3, Hy) of
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hyperplanes in the pencil P, if Hi, Hy, H3 are distinct and d; = AN H;,
then [d1,ds, d3,ds] = [H1, Hy, H3, Hy).

Proof. First, the map h: P — A is well-defined, since in a projective space,
every line A = P(D) not contained in a hyperplane intersects this hyper-
plane in exactly one point. Since P = P(U) is a pencil of hyperplanes in
‘H(E), U has dimension 2, and let ¢ and ¢ be two nonnull linear forms in
E* that constitute a basis of U, and let F = ¢~1(0) and G = ¢~1(0). Let
a =P(F)NnA and b = P(G) N A. There are some vectors u,v € D such
that a = p(u) and b = p(v), and since ¢ and ¥ are linearly independent, we
have a # b, and we can choose ¢ and % such that o(v) = —1 and ¥(u) = 1.
Also, (u,v) is a basis of D. Then a point p(au + Bv) on A belongs to the
hyperplane H = p(yp + §1) of the pencil P iff

(v + 8v)(au + Bv) =0,

which, since ¢(u) = 0, ¥(v) = 0, p(v) = —1, and ¥(u) = 1, yields v8 = éq,
which is equivalent to [a, 8] = [7,6] in P(K?). But then the map h: P — A
is a projectivity. Letting d; = A N H;, since by Lemma 5.8.2 a projectivity
of lines preserves the cross-ratio, we get [d1,d2,ds, d4] = [H1, He, Hs, Hy].

a

5.11 Complexification of a Real Projective Space

Notions such as orthogonality, angles, and distance between points are not
projective concepts. In order to define such notions, one needs an inner
product on the underlying vector space. We say that such notions belong to
Euclidean geometry. At first glance, the fact that some important Euclidean
concepts are not covered by projective geometry seems a major drawback
of projective geometry. Fortunately, geometers of the nineteenth century
(including Laguerre, Monge, Poncelet, Chasles, von Staudt, Cayley, and
Klein) found an astute way of recovering certain Euclidean notions such as
angles and orthogonality (also circles) by embedding real projective spaces
into complex projective spaces. In the next two sections we will give a brief
account of this method. More details can be found in Berger [12, 13], Pedoe
[136], Samuel [146], Coxeter [34, 35], Sidler [159], Tisseron [169], Lehmann
and Bkouche [112], and, of course, Volume II of Veblen and Young [173].
Readers may want to consult Chapter 6, which gives a review of Euclidean
geometry, especially Section 7.8, on angles.

The first step is to embed a real vector space E into a complex vector
space Ec. A quick but somewhat bewildering way to do so is to define the
complexification of E as the tensor product C® E. A more tangible way is
to define the following structure.
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Definition 5.11.1 Given a real vector space E, let E¢ be the structure
E x FE under the addition operation
(u1, uz) + (v1, v2) = (U1 + vy, ug + va),
and let multiplication by a complex scalar z = x + ¢y be defined such that
(z +1iy) - (u, v) = (zu - yv, yu + zv).

It is easily shown that the structure E¢ is a complex vector space. It is
also immediate that

(0, v) = i(v, 0),

and thus, identifying FE with the subspace of E¢ consisting of all vectors of
the form (u, 0), we can write

(u, v) = u + iv.

Given a vector w = u + v, its conjugate W is the vector W = u — iv. Then
conjugation is a map from Eg to itself that is an involution. If (ey, ..., e,)
is any basis of E, then ((ey,0),...,(e,,0)) is a basis of E¢. We call such a
basis a real basis.

Given a linear map f: E — E, the map f can be extended to a linear
map fc: Ec — E¢ defined such that

fe(u+w) = f(u) +if(v).
We define the complezification of P(E) as P(Ec). If (E, f) is a real

affine space, we define the complemﬁed projective completion of (E E )
(Ec) and denote it by Ec. Then E is naturally embedded in Eg, and it
is called the set of real points of Ec.
If E has dimension n + 1 and (ey,...,e,41) is a basis of F, given any
homogeneous polynomial P(x1,...,Z,41) over C of total degree m, because
P is homogeneous, it is immediately verified that

P(:L'l,...,.’ETH.l) =0
iff
P(Azi,...,AZp41) =0,

for any A # 0. Thus, we can define the hypersurface V(P) of equation

P(z1,...,Zn+1) = 0 as the subset of Ec consisting of all points of ho-
mogeneous coordinates (Z1,...,Zn4+1) such that P(z;,...,z,41) = 0. We
say that the hypersurface V(P) of equation P(zi,...,Zp41) = 0 is real
whenever P(zy,...,Zp41) = 0 implies that P(Z1,...,Tp41) = 0.

@ Note that a real hypersurface may have points other than real
points, or no real points at all. For example,

24942 -22=0
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contains real and complex points such as (1,,0) and (1, —%,0), and
?+y’+22=0

contains only complex points. When m = 2 (where m is the total degree
of P), a hypersurface is called a quadric, and when m = 2 and n = 2, a
contc. When m = 1, a hypersurface is just a hyperplane.

Given any homogeneous polynomial P(x1,...,Z,+1) over R of total de-
gree m, since R C C, P viewed as a homogeneous polynomial over C defines
a hypersurface V(P)¢ in E¢, and also a hypersurface V(P) in P(E). It is
clear that V(P) is naturally embedded in V(P)¢, and V(P)c is called the
complezification of V(P).

We now show how certain real quadrics without real points can be used
to define orthogonality and angles.

5.12 Similarity Structures on a Projective Space

We begin with a real Euclidean plane (E, ﬁ) We will show that the angle
of two lines D; and D5 can be expressed as a certain cross-ratio involving
the lines Dy, Dy and also two lines Dy and D joining the intersection point
DN Dy of Dy and D5 to two complex points at infinity I and J called the
circular points. However, there is a slight problem, which is that we haven’t
yet defined the angle of two lines! Recall from Section 7.8 that we define
the (oriented) angle & us of two unit vectors u;, us as the equivalence class
of pairs of unit vectors under the equivalence relation defined such that

(u1,u2) = (ug, uq)

iff there is some rotation r such that r(u;) = uz and r(u2) = us. The set
of (oriented) angles of vectors is a group isomorphic to the group SO(2)
of plane rotations. If the Euclidean plane is oriented, the measure of the
angle of two vectors is defined up to 2kw (k € Z). The angle of two vectors
has a measure that is either 6 or 2w — 8, where 8 € [0,27[, depending on
the orientation of the plane. The problem with lines is that they are not
oriented: A line is defined by a point a and a vector u, but also by a and
—u. Given any two lines D; and D, if r is a rotation of angle € such that
r(D1) = D5, note that the rotation —r of angle  + 7 also maps D; onto
D,. Thus, in order to define the (oriented) angle D/I\Dg of two lines Dy,
Dy, we define an equivalence relation on pairs of lines as follows:

(DI, DQ) = <D3, D4>

if there is some rotation r such that r(D;) = D3 and 7(D3) = Djy.
It can be verified that the set of (oriented) angles of lines is a group iso-
morphic to the quotient group SO(2)/{id, —id}, also denoted by PSO(2).
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In order to define the measure of the angle of two lines, the Euclidean plane
E must be oriented. The measure of the angle 171\D2 of two lines is defined
up to kn (k € Z). The angle of two lines has a measure that is either 8 or
7 — 0, where 6 € [0, 7[, depending on the orientation of the plane. We now
go back to the circular points. _

Let (ap, a1, a2, as) be any projective frame for E¢ such that (ag, a;) arises

from an orthonormal basis (uy,usz) of E and the line at infinity H corre-
sponds to z = 0 (where (z,y, z) are the homogeneous coordinates of a point
w.r.t. (ag, a1, az,as)). Consider the points belonging to the intersection of
the real conic ¥ of equation

2+t -22=0

with the line at infinity 2 = 0. For such points, z? + y?> = 0 and z = 0, and
since

2® +y? = (y — iz)(y +1x),

we get exactly two points I and J of homogeneous coordinates (1, —i,0) and
(1,4,0). The points I and J are called the circular points, or the absolute
points, of E’C. They are complex points at infinity. Any line containing
either I or J is called an isotropic line.

What is remarkable about I and J is that they allow the definition
of the angle of two lines in terms of a certain cross-ratio. Indeed, con-
sider two distinct real lines Dy and D5 in E, and let Dy and Dj be the

“isotropic lines joining D1 N Dy to I and J. We will compute the cross-ratio
[D1, Do, Dy, Dy]. For this, we simply have to compute the cross-ratio of the
four points obtained by intersecting D1, Do, Dy, Dj with any line not pass-
ing through DN Ds. By changing frame if necessary, so that D1 Dy = ag,
we can assume that the equations of the lines Dy, D3, D, D are of the form

y=mz,
Yy = max,
Yy = —iI7
y =iz,

leaving the cases m; = oo and my = 0o as a simple exercise. If we choose
z = 1 as the intersecting line, we need to compute the cross-ratio of the
points (D1)es = (1,m1,0), (D2)eo = (1,m3,0), I = (1,—4%,0), and J =
(1,%,0), and we get

90020101 = (P (P 1= G L

that is,

mimy + 1+ i(ma —mq)
mima + 1 —i(ma —mq)’

[D1,D2,Dy,Dy] =
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However, since m; and mo are the slopes of the lines D; and Ds, it is well
known that if 6 is the (oriented) angle between D; and Dy, then

tan0 P M_
mimo +1

Thus, we have

mima +1+i(mg~my) 1+itand
mimg+ 1 —i(mg—m;) 1—itand’

[D1,D2,D1,Dy) =

that is,
[D1, D2, D1, Dy] = cos 20 + isin 26 = &%,

One can check that the formula still holds when m; = 0o or my = oo, and
also when D; = Ds. The formula

[D1, Do, Dy, D] = €%

is known as Laguerre’s formula.
If U denotes the group {eio | —m < 60 < 7} of complex numbers of
modulus 1, recall that the map A:R — U defined such that

A(t) = €'

is a group homomorphism such that A=1(1) = 2k, where k € Z. The
restriction

Ar]—m 7w (U-{-1})
of A to | —m, w[ is a bijection, and its inverse will be denoted by
logy: (U —{-1}) =] —m, «[.

For stating Lemma 5.12.1 more conveniently, we will extend log;; to U by
letting logy; (—1) = , even though the resulting function is not continuous
at —1!. Then we can write

6= %logU([Dl,Dg,DI, D).
If the orientation of the plane E is reversed, § becomes m — 8, and since
i2(m=0) _ 2im—i20 _ ,—i26
logy (e22(™=9) = — log;, (e**), and
0= —% logy ([D1, D2, D1, Dj)).
In all cases, we have

1
0= E'logU([D17D27DI7DJ])'7

a formula due to Cayley. We summarize the above in the following lemma.
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Lemma 5.12.1 Given any two lines Dy, Dy in a real Fuclidean plane

(E, f), letting D; and D be the isotropic lines in E¢ joining the in-
tersection point D1 N Dy of Dy and Ds to the circular points I and J, if 6
is the angle of the two lines D1, Do, we have

(D1, D2, D1, Dy) = €%,

known as Laguerre’s formula, and independently of the orientation of the
plane, we have

1
0= §IIOgU([D1,D2,DI,DJ])I,

known as Cayley’s formula.

In particular, note that § = «/2 iff [Dy, Dy, Dy, Dj] = —1, that is, if
(D1,D2, Dy, Dy) forms a harmonic division. Thus, two lines D; and Do
are orthogonal iff they form a harmonic division with Dy and Dj.

The above considerations show that it is not necessary to assume that

(E, f) is a real Euclidean plane to define the angle of two lines and or-
thogonality. Instead, it is enough to assume that two complex conjugate
points I, J on the line H at infinity are given. We say that (I, J) provides
a similarity structure on Ec. Note in passing that a circle can be defined
as a conic in E¢ that contains the circular points I, J. Indeed, the equation
of a conic is of the form

ax® + by? + cay + dzz +eyz+ f22 = 0.
If this conic contains the circular points I = (1, —1%,0) and J = (1,1,0), we
get the two equations
a—b—ic=0,
a—b+ic=0,

from which we get 2ic = 0 and a = b, that is, ¢ = 0 and a@ = b. The resulting
equation

ar’ +ay’ +dzz +eyz + f2° =0

is indeed that of a circle.

Instead of using the function logy: (U — {—1}) —] — 7, 7| as logarithm,
one may use the complex logarithm function log: C* — B, where C* =
C — {0} and

B={z+iy|z,yeR, —7 <y <7}

Indeed, the restriction of the complex exponential function z — e* to B is
bijective, and thus, log is well-defined on C* (note that log is a homeomor-
phism from C - {z |z € R,z <0} onto {z+iy |z, y € R, —w <y < 7},
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the interior of B). Then Cayley’s formula reads as
1
0= % log([D1, D2, Dy, D)),

with a + in front when the plane is nonoriented. Observe that this formula
allows the definition of the angle of two complex lines (possibly a complex
number) and the notion of orthogonality of complex lines. In this case, note
that the isotropic lines are orthogonal to themselves!

The definition of orthogonality of two lines D;, D in terms of (Dy, Dy,
Dy, Dy) forming a harmonic division can be used to give elegant proofs
of various results. Cayley’s formula can even be used in computer vision
to explain modeling and calibrating cameras! (see Faugeras [59]). As an
illustration, consider a triangle (a, b, ¢), and recall that the line a’ passing
through a and orthogonal to (b, c¢) is called the altitude of a, and similarly
for b and c. It is well known that the altitudes a’, &', ¢’ intersect in a common
point called the orthocenter of the triangle (a,b,c). This can be shown
in a number of ways using the circular points. Indeed, letting bcyo, aboo,
aCoo, Gy, UL, and ¢/ denote the points at infinity of the lines (b, c), (a,b),
{a,c), a’,b’, and ¢/, we have

[bCoo, ate, I, J] = =1, |aboo, o, I, J] = =1, [aceo,bly, I, J] = —1,

and it is easy to show that there is an involution ¢ of the line at infinity
such that
o(I) =J,
o(J)=1,
(b)) = al,
o(abo) = s
o(ace) = bl
Then, using the result stated in Problem 5.28, the lines a’, ¥, ¢’ are concur-

rent. For more details and other results, notably on the conics, see Sidler
[159], Berger [13], and Samuel [146].

The generalization of what we just did to real Euclidean spaces (E, E))
of dimension n is simple. Let (ao,...,an+1) be any projective frame for
E¢ such that (ao,...,an—1) arises from an orthonormal basis (ui,...,u,)
of E and the hyperplane at infinity H corresponds to zn,+1 = 0 (where
(x1,---,ZTnt+1) are the homogeneous coordinates of a point with respect to
(ags---,ant1))- Consider the points belonging to the intersection of the
real quadric ¥ of equation

x%+-~-+xi—xi+1 =0
with the hyperplane at infinity z,1 = 0. For such points,

2+ +22=0 and z,41=0.
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Such points belong to a quadric called the absolute quadric of E¢, and
denoted by Q. Any line containing any point on the absolute quadric is
called an sotropic line. Then, given any two coplanar lines D; and Ds in
E, these lines intersect the hyperplane at infinity H in two points (D)e
and (Ds)0, and the line A joining (D) and (D2) intersects the absolute
quadric  in two conjugate points Ia and Ja (also called circular points). It
can be shown that the angle 6 between D; and D; is defined by Laguerre’s
formula:

[(Dl)oov(DQ)OO7IA7JA] = [D17D2aDIAaDJA] = ei207

where D, and Dy, are the lines joining the intersection D; N Dy of D,
and D, to the circular points Ia and Ja.
As in the case of a plane, the above considerations show that it is not

necessary to assume that (E, _E) is a real Euclidean space to define the
angle of two lines and orthogonality. Instead, it is enough to assume that a
nondegenerate real quadric € in the hyperplane at infinity H and without
real points is given. In particular, when n = 3, the absolute quadric Q is
a nondegenerate real conic consisting of complex points at infinity. We say
that Q provides a similarity structure on Ec. _

It is also possible to show that the projectivities of E¢ that leave both the
hyperplane H at infinity and the absolute quadric © (globally) invariant
form a group which is none other than the group of similarities. A similar-
ity is a map that is the composition of an isometry (a member of O(n)), a
central dilatation, and a translation. For more details on the use of absolute
quadrics to obtain some very sophisticated results, the reader should con-
sult Berger [12, 13], Pedoe [136], Samuel [146], Coxeter [34], Sidler {159],
Tisseron [169], Lehmann and Bkouche {112], and, of course, Volume II of
Veblen and Young [173], which also explains how some non-Euclidean ge-
ometries are obtained by chosing the absolute quadric in an appropriate
fashion (after Cayley and Klein).

5.13 Some Applications of Projective Geometry

Projective geometry is definitely a jewel of pure mathematics and one of
the major mathematical achievements of the nineteenth century. It turns
out to be a prerequisite for algebraic geometry, but to our surprise (and
pleasure), it also turns out to have applications in engineering. In this short
section we summarize some of these applications.

We first discuss applications of projective geometry to camera calibra-
tion, a crucial problem in computer vision. Our brief presentation follows
quite closely Trucco and Verri [171] (Chapter 2 and Chapter 6). One should
also consult Faugeras [59], or Jain, Katsuri, and Schunck [93].
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The pinhole (or perspective) model of a camera is a typical example from
computer vision that can be explained very simply in terms of projective
transformations. A pinhole camera consists of a point O called the center
or focus of projection, and a plane 7 (not containing O) called the image
plane. The distance f from the image plane 7 to the center O is called the
focal length. The line through O and perpendicular to 7 is called the optical
aris, and the point o, intersection of the optical axis with the image plane
is called the principal point or image center. The way the camera works is
that a point P in 3D space is projected onto the image plane (the film) to
a point p via the central projection of center O.

It is assumed that an orthonormal frame F. is attached to the camera,
with its origin at O and its z-axis parallel to the optical axis. Such a frame
is called the camera reference frame. With respect to the camera reference
frame, it is very easy to write the equations relating the coordinates (z, y)
(omitting z = f) of the image p (in the image plane 7) of a point P of
coordinates (X,Y, Z):

X Y
z=f AN f 7
Typically, points in 3D space are defined by their coordinates not with re-
spect to the camera reference frame, but with respect to another frame F,,,
called the world reference frame. However, for most computer vision algo-
rithms, it is necessary to know the coordinates of a point in 3D space with
respect to the camera reference frame. Thus, it is necessary to know the
position and orientation of the camera with respect to the frame F,,. The
position and orientation of the camera are given by some affine transforma-
tion (R, T) mapping the frame F,, to the frame F., where R is a rotation
matrix and T is a translation vector. Furthermore, the coordinates of an
image point are typically known in terms of pizel coordinates, and it is also
necessary to transform the coordinates of an image point with respect to
the camera reference frame to pixel coordinates. In summary, it is neces-
sary to know the transformation that maps a point P in world coordinates
(w.r.t. Fy) to pixel coordinates.

This transformation of world coordinates to pixel coordinates turns out
to be a projective transformation that depends on the extrinsic and the
intrinsic parameters of the camera. The extrinsic parameters of a cam-
era are the location and orientation of the camera with respect to the
world reference frame F,,. It is given by an affine map (in fact, a rigid
motion, see Chapter 7, Section 7.4). The intrinsic parameters of a cam-
era are the parameters needed to link the pixel coordinates of an image
point to the corresponding coordinates in the camera reference frame. If
Py = (X, Yy, Zy) and P, = (X, Y., Z.) are the coordinates of the 3D
point P with respect to the frames F,, and F., respectively, we can write

P, = R(Py, — T).
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Neglecting distorsions possibly introduced by the optics, the correspon-
dence between the coordinates (x,y) of the image point with respect to F
and the pixel coordinates (Zim, ¥im) is given by

= _(-Tim - Oz)sza
Y= —(Yim — Oy)sya
where (0z,0,) are the pixel coordinates the principal point o and s;, s, are
scaling parameters.
After some simple calculations, the upshot of all this is that the trans-

formation between the homogeneous coordinates (X, Yy, Zw,1) of a 3D
point and its homogeneous pixel coordinates (x1, z2,z3) is given by

Iy -;(/w
I2 =M Zw )
X3 ].w

where the matrix M, known as the projection matriz, is a 3 x 4 matrix
depending on R, T, 05,0y, f (the focal length), and s, s (for the derivation
of this equation, see Trucco and Verri {171], Chapter 2).

The problem of estimating the extrinsic and the instrinsic parameters of
a camera is known as the camera calibration problem. It is an important
problem in computer vision. Now, using the equations

T = —(-Tim - Om)sza

Y= —(Yim — Oy)sya

we get
fX
Tim = —57: + Og,
__ Y
Yim = Sy Zc +0y7

relating the coordinates w.r.t. the camera reference frame to the pixel co-
ordinates. This suggests using the parameters f; = f/s; and fy, = f/sy
instead of the parameters f, sz, sy. In fact, all we need are the parameters
fe = f/s; and a = sy/s,, called the aspect ratio. Without loss of general-
ity, it can also be assumed that (0;,04) are known. Then we have a total
of eight parameters.

One way of solving the calibration problem is to try estimating f;, a,
the rotation matrix R, and the translation vector T from N image points
(zi,¥:), projections of N suitably chosen world points (X;,Y;, Z;), using
the system of equations obtained from the projection matrix. It turns out
that if N > 7 and the points are not coplanar, the rank of the system
is 7, and the system has a nontrivial solution (up to a scalar) that can be
found using SVD methods (see Chapter 12, Trucco and Verri [171], or Jain,
Katsuri, and Schunck {93]).
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Another method consists in estimating the whole projection matrix M,
which depends on 11 parameters, and then extracting extrinsic and intrinsic
parameters. Again, SVD methods are used (see Trucco and Verri [171], and
Faugeras [59]).

Cayley’s formula can also be used to solve the calibration cameras, as ex-
plained in Faugeras [59]. Other problems in computer vision can be reduced
to problems in projective geometry (see Faugeras [59]).

In computer graphics, it is also necessary to convert the 3D world coordi-
nates of a point to a two-dimensional representation on a view plane. This
is achieved by a so-called viewing system using a projective transformation.
For details on viewing systems see Watt [178] or Foley, van Dam, Feiner,
and Hughes [64].

Projective spaces are also the right framework to deal with rational
curves and rational surfaces. Indeed, in the projective framework it is easy
to deal with vanishing denominators and with “infinite” values of the pa-
rameter(s). Such an approach is presented in Chapter 22 for rational curves,
and in Chapter 23 and 24 for rational surfaces. In fact, working in a pro-
jective framework yields a very simple proof of the method for drawing a
rational curve as two Bézier segments (and similarly for surfaces).

It is much less obvious that projective geometry has applications to ef-
ficient communication, error-correcting codes, and cryptography, as very
nicely explained by Beutelspacher and Rosenbaum [16]. We sketch these
applications very briefly, referring our readers to [16] for details. We be-
gin with efficient communication. Suppose that eight students would like
to exchange information to do their homework economically. The idea is
that each student solves part of the exercises and copies the rest from the
others (which we do not recommend, of course!). It is assumed that each
student solves his part of the homework at home, and that the solutions
are communicated by phone. The problem is to minimize the number of
phone calls. An obvious but expensive method is for each student to call
each of the other seven students. A much better method is to imagine that
the eight students are the vertices of a cube, say with coordinates from
{0,1}3. There are three types of edges:

1. Those parallel to the z-axis, called type 1;
2. Those parallel to the y-axis, called type 2;
3. Those parallel to the z-axis, called type 3.

The communication can proceed in three rounds as follows: All nodes con-
nected by type 1 edges exchange solutions; all nodes connected by type 2
edges exchange solutions; and finally all nodes connected by type 3 edges
exchange solutions.

It is easy to see that everybody has all the answers at the end of the three
rounds. Furthermore, each student is involved only in three calls (making
a call or receiving it), and the total number of calls is twelve.
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In the general case, N nodes would like to exchange information in such
a way that eventually every node has all the information. A good way
to to this is to construct certain finite projective spaces, as explained in
Beutelspacher and Rosenbaum [16]. We pick ¢ to be an integer (for instance,
a prime number) such that there is a finite projective space of any dimension
over the finite field of order q. Then, we pick d such that

qd—l < N S qd.

Since ¢ is prime, there is a projective space P(K?*!) of dimension d over
the finite field K of order g, and letting H be the hyperplane at infinity
in P(K9*!), we pick a frame Pi,..., Py in H. It turns out that the affine
space A = P(K%*t!) — H has ¢ points. Then the communication nodes
can be identified with points in the affine space .A. Assuming for simplicity
that N = ¢¢, the algorithm proceeds in d rounds. During round %, each
node Q € A sends the information it has received to all nodes in A on the
line QF;.

It can be shown that at the end of the d rounds, each node has the total
information, and that the total number of transactions is at most

(g~ 1)log, (N)N.

Other applications of projective spaces to communication systems with
switches are described in Chapter 2, Section 8, of Beutelspacher and Rosen-
baum [16]. Applications to error-correcting codes are described in Chapter
5 of the same book. Introducing even the most elementary notions of cod-
ing theory would take too much space. Let us simply say that the existence
of certain types of good codes called linear [n,n — r]-codes with minimum
distance d is equivalent to the existence of certain sets of points called
(n,d —1)-sets in the finite projective space P({0,1}"). For the sake of com-
pleteness, a set of n points in a projective space is an (n, s)-set if s is the
largest integer such that every subset of s points is projectively indepen-
dent. For example, an (n, 3)-set is a set of n points no three of which are
collinear, but at least four of them are coplanar.

Other applications of projective geometry to cryptography are given in
Chapter 6 of Beutelspacher and Rosenbaum [16].

5.14 Problems

Problem 5.1 (a) Prove that for any field K and any n > 0, there is a
bijection between P(K™*!) and K™ UP(K™) (which allows us to identify
them). ‘

(b) For K = R or C, prove that RP™ and CP" are connected and
compact.
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Hint. Recall that RP™ = p(R"*!) and CP™ = p(C"*). If
S ={(z1,-- -, Tnp1) € K™ 2} 442k = 1),

prove that p(S™) = p(K™t!) = P(K™*1), and recall that S™ is compact
for all n > 0 and connected for n > 1. For n = 0, P(K) consists of a single
point.

Problem 5.2 Recall that R? and C can be identified using the bijection
(z,y) — z + ty. Also recall that the subset U(1) C C consisting of all
complex numbers of the form cos 8 + isin 8 is homeomorphic to the circle
St ={(z,y) € R? | 22 +y% = 1}. If c: U(1) — U(1) is the map defined such
that

c(z) = 2%,
prove that ¢(z1) = c¢(z2) iff either 23 = 23 or 22 = —z1, and thus that ¢

induces a bijective map & RP' — S1. Prove that € is a homeomorphism
(remember that RP' is compact).

Problem 5.3 (i) In R3, the sphere S2 is the set of points of coordinates
(z,y,2) such that 2 + y2 + 22 = 1. The point N = (0,0,1) is called
the north pole, and the point S = (0,0, —1) is called the south pole. The
stereographic projection map on:(S? — {N}) — R? is defined as follows:
For every point M # N on S2, the point oy (M) is the intersection of the
line through N and M and the plane of equation z = 0. Show that if M
has coordinates (z,y, z) (with 22 + y% + 22 = 1), then

on(M) = (& 1_fz->

Prove that o is bijective and that its inverse is given by the map 7n:R2? —

(8? — {N}), with
(z.7) 2z 2y 22 +y? -1
’ w24+y2+10 22 +y2 41 22+ 42+ 1)

Similarly, os: (S?—{S}) — R? is defined as follows: For every point M # S
on S2, the point og(M) is the intersection of the line through S and M
and the plane of equation z = 0. Show that

_(*_ _Y¥_
os(M) = (1+z’ 1+z)'

Prove that o is bijective and that its inverse is given by the map 75: RZ —

(S2 — {S}), with
27 2y 1—2x2 —y?
(2,9) = <z2+y2+1’ 24+y?+17 22 +y241)

Using the complex number u =  + iy to represent the point (z,y), the
maps 75:R2 — (S? — {N}) and on: (5% — {N}) — R? can be viewed as
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maps from C to (S? — {N}) and from (S? — {N}) to C, defined such that

() = 2u lul?2 — 1
A lu|2 +17 Jul2 +1

and
U
1-2'
and similarly for 75 and os. Prove that if we pick two suitable orientations
for the zy-plane, we have

on(u,z) =

on(M)os(M) =1,

for every M € §? — {N, S}.
(ii) Identifying C? and R*, for 2 = z + iy and 2’ = =’ + iy’, we define

&) = Va4 7 + 5 i

The sphere S3 is the subset of C? (or R?*) consisting of those points (z,z’)
such that ||(z,2')]|? = 1.

Prove that P(C?) = p(S%), where p: (C? — {(0,0)}) — P(C?) is the
projection map. If we let u = z/2’ (where 2,2’ € C) in the map

" 2u  |ul2-1
—
w2417 |ul? +1
and require that ||(z,2')||2 = 1, show that we get the map HF:S® — $2
defined such that

HF((2,2") = (222, |2|* — |']%).

Prove that HF:S® — S? induces a bijection ﬁ:P(Cz) — S2, and thus
that CP* = P(C?) is homeomorphic to S2.

(iii) Prove that the inverse image HF~!(s) of every point s € S? is a
circle. Thus S? can ve viewed as a union of disjoint circles. The map HF
is called the Hopf fibration.

Problem 5.4 (i) Prove that the Veronese map V2:R® — R® defined such
that

Vg(l',y,Z) = (Izv y2, 22, Yz, 2T, a:y)

induces a homeomorphism of RP? onto V3(S?). Show that V5(S?) is a
subset of the hyperplane z; + 2 + 23 = 1 in R, and thus that RP?
is homeomorphic to a subset of R®. Prove that this homeomorphism is
smooth.

(ii) Prove that the Veronese map V3:R* — R0 defined such that

Va(z,y, 2,t) = (22, ¥, 22, 2, 2y, yz, 22, at, yt, 2t)

induces a homeomorphism of RP? onto V3(S%). Show that V3(S%) is a
subset of the hyperplane z, + z2 + 23 + £4 = 1 in R!°, and thus that
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RP? is homeomorphic to a subset of R®. Prove that this homeomorphism
is smooth.

Problem 5.5 (i) Given a projective plane P(E) (over any field K) and
any projective frame (a, b, c,d) in P(E), recall that a line is defined by an
equation of the form ux + vy + wz = 0, where u, v, w are not all zero, and
that two lines ux + vy + wz = 0 and v’z + v'y + w’'z = 0 are identical iff
u’ = Au, v = A, and w’ = Aw, for some A # 0. Show that any two distinct
lines ux + vy + wz = 0 and u'z 4+ v'y + w’2 = 0 intersect in a unique point
of homogeneous coordinates

(v’ — wv', wu' —uw’, w’ —vu').

(ii) Given a projective frame (a, b, ¢, d), let a’ be the intersection of (d, a)
and (b, c), b’ be the intersection of (d,b) and (a,c), and ¢’ be the intersec-
tion of (d,c) and (a,b). Show that the points a’,d’,c’ have homogeneous
coordinates (0,1,1), (1,0,1), and (1,1,0). Let e be the intersection of (b, c)
and (V',¢’), f be the intersection of (a,c) and (a’,c’), and g be the intersec-
tion of (a,b) and (a’,b’). Show that e, f, g have homogeneous coordinates
(0,-1,1), (1,0,—1), and (—1,1,0), and thus that the points e, f,g are on
the line of equation x + y + z = 0.

Problem 5.6 Prove that if (a;)i1<i<n+2 is a projective frame, then each
subfamily (a;);; is projectively independent.

Problem 5.7 (i) Given a projective space P(E) of dimension 3 (over any
field K) and any projective frame (A4, B,C, D, E) in P(E), recall that a
plane is defined by an equation of the form uxg + vz; + wzy +tz3 = 0
where u, v, w,t are not all zero.

Letting (a(), ai, as, a3), (bo, b], bg, bg), (Co, c,Co, 63), and (d(), dl, dg, d3) be
the homogeneous coordinates of some points a, b, ¢, d with respect to the
projective frame (A, B,C, D, E), prove that a,b,c,d are coplanar iff

agp b() Co d()
ay b 1 C1 d 1
ag b2 C2 d2
as b3 C3 d3

(ii) Two tetrahedra (A,B,C,D) and (A',B’,C’,D’) are called Mébius
tetrahedra if A, B, C,D belong respectively to the planes (B’,C’,D’),
(C', D', A"y, (D', A’, B’), and (A’, B’, C"), and also if A’, B’,C’, D' belong
respectively to the planes (B,C, D), (C,D, A), (D, A, B), and (A, B,C).
Prove that if A, B,C, D belong respectively to the planes (B’,C’, D'},
(¢',D',A"), (D', A’, B'), and (A’, B’, C'), and if A’, B’,C’ belong respec-
tively to the planes (B, C, D), (C, D, A), and (D, A, B), then D’ belongs to
(A, B, C). Prove that Mébius tetrahedra exist (M6bius, 1828).
Hint. Let (A, B,C, D, E) be a projective frame based on A, B, C, D. Find
the conditions expressing that A’, B’,C’, D’ belong respectively to the

=0.
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planes (B,C,D), (C,D,A), (D,A,B), and (A,B,C), that A", B',C",D’
are not coplanar, and that A, B,C, D belong respectively to the planes
(B',C",D"), (C',D' A", (D',A',B'), and (A’,B’,C"). Show that these
conditions are compatible.

Problem 5.8 Show that if we relax the hypotheses of Lemma 5.5.4 to
(a;)1<i<nt2 being a projective frame in P(E) and (b;)1<i<n+2 being any
n+2 points in P(F), then there may be no projective map h: P(E) — P(F)
such that h(a;) = b; for 1 <i <n + 2, or h may not be necessarily unique
or bijective.

Problem 5.9 For every i, 1 <i < n+ 1, let U; be the subset of RP" =
P(R"*1) consisting of all points of homogeneous coordinates (z1,. .., Ti,
... Tny1) such that x; # 0. Show that U; is an open subset of RP™. Show
that U; NU; # @ for all 4, j. Show that there is a bijection between U; and
A™ defined such that

T Ti—1 Ti+l Tn+1
(1:17--~aIi—lvxi7mi+17--'axn+l)H Ty ey ’ ety ’
Z; T; xX; X;

whose inverse is the map
(Z1,-+,Zn) = (X1, .., Ti—1, L, T4y ., Tn).

Does the above result extend to P% where K is any field?

Problem 5.10 (i) Given an affine space (E, ﬁ) (over any field K), prove
that there is a bijection between affine subspaces of E and projective

subspaces of E not contained in P(ﬁ)
(ii) Prove that two affine subspaces of E are parallel iff the corresponding
projective subspaces of E have the same intersection with the hyperplane

at infinity P(E))

(iii) Prove that there is a bijection between affine maps from E to F' and
projective maps from Eto F mapping the hyperplane at infinity P(ﬁ)
into the hyperplane at infinity P(?)

Problem 5.11 (i) Consider the map :RP! x RP' — RP? defined such
that
w((zo, 1), (Y0,y1)) = (ZoYo, Toy1, T1Yo, T1Y1),

where (zg,z1) and (yo,y1) are homogeneous coordinates on RP'. Prove
that ¢ is well-defined and that p(RP! x RP') is equal the algebraic subset
of RP? defined by the homogeneous equation

Wo,0 W1,1 = Wo,1 W1,0,

where (wg 0, Wo,1,W1,0,w1,1) are homogeneous coordinates on RP3.
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Hint. Show that if wgowq,1 = wo,1 w1,0 and for instance wg,p # 0, then

@((wo,0, w1,0), (wo,0, wo,1)) = wo,0(Wo,0, Wo,1, W1,0, W1,1),

and since 'LU()’O(U)O,(), wo,1, W1,0, wl,l) and (wo,o, Wo,1, W1,0, ’le) are equiv—
alent homogeneous coordinates, the result follows.

Prove that ¢ is injective.

For z = (z9,2;) € RP!, show that o({z} x RP!) is a line Llin RP3,
that LL N LL, = @ whenever L} # L1,, and that the union of all these lines
is equal to p(RP! x RP). Similarly, for y = (¥0,y1) € RP!, show that
©(RP* x {y}) is a line L2 in RP3, that LZn L2, = 0 whenever L2+ Lz,,
and that the union of all these lines is equal to p(RP' x RP!). Also prove
that L; N L2 consists of a single point.

The embedding ¢ is called the Segre embedding. It shows that RP! x RP?
can be embedded as a quadric surface in RP%. Do the above results extend
to Pk x P} and P% where K is any field? Draw as well as possible the
affine part of 9(RP' x RP') in R3 corresponding to w;; = 1.

(i) Consider the map ¢:RP™ x RP™ — RPY where N = (m + 1)(n +
1) — 1, defined such that

W((:va R 7xm)7 (y07 R yyn))
= (x0y07 co ey ZOYn, T1Y0s - -y T1Yny - - - s TmYo, - - - ’xmy’n)v

where (zo,...,Zm) and (yo,...,yn) are homogeneous coordinates on RP™
and RP". Prove that ¢ is well-defined and that p(RP™ x RP") is equal
the algebraic subset of RPN defined by the set of homogeneous equations

Wij Wil | _
Wk Wk ’
where 0 < ¢,k <m and 0 < j,I < n, and where (woy,...,Wo,m,---, Wm0,

..., Wm,n) are homogeneous coordinates on RPY.
Hint. Show that if

Wi,; Wil
Wk,; Wk,

)

where 0 < i,k <m and 0 < 5,/ <n and for instance wog o # 0, then

QO(I, y) = w0,0(wo,O’ e Womy -y Wm0y - - -y wm,n)a

where x = (wo,0, - .., Wm,0) and y = (wo,0,- - ., Wo,n)-

Prove that ¢ is injective. The embedding ¢ is also called the Segre em-
bedding. It shows that RP™ x RP™ can be embedded as an algebraic variety
in RPY. Do the above results extend to P2 x P% and PY¥ where K is any
field?

Problem 5.12 (i) In the projective space RP3, a line D is determined by
two distinct hyperplanes of equations

axr + By +yz + 6t =0,
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dr+By+vz+8t=0,
where (o, 8,7,6) and (&', 8',7/,8') are linearly independent.
Prove that the equations of the two hyperplanes defining D can always
be written either as
T1 = axz + a'zy,
To9 = bxs + bz,
where {z1,z2, 73,24} = {z,¥, 2,t}, {1,272} C {z,y, 2}, and either a # 0
or b# 0, or as
t=0,
lx +my+nz=0,
where [ # 0, m # 0, or n # 0.
In the first case, prove that D is also determined by the intersection of
three hyperplanes whose equations are of the form
cy — bz =lt,
az —cr =mt,
br — ay = nt,
where the equation

al+bm+cn=0

holds, and where a # 0, b # 0, or ¢ # 0. We can view (a,b,c,[,m,n) as
homogeneous coordinates in RP?® associated with D. In the case where the
equations of D are

t =0,
lx+my+nz=0,

we let (0,0,0,I,m,n) be the homogeneous coordinates associated with
D. Of course, al + bm + ¢cn = 0 holds. The homogeneous coordinates
(a,b,c,l,m,n) such that al +bm +cn = 0 are called the Pliicker coordinates
of D.

(ii) Conversely, given some homogeneous coordinates (a, b, ¢,{,m,n) in
RP°® satisfying the equation

al+bm+cn =0,

show that there is a unique line D with Pliicker coordinates (a, b, ¢,l,m,n).
Hint. If a = b = ¢ = 0, the corresponding line has equations

t=0,
lx+ my+nz=0.
Otherwise, the equations

cy — bz =1t,
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az —cx = mt,

bz — ay = nt,

are compatible, and they determine a unique line D with Pliicker

coordinates (a,b,c,l,m,n).

Conclude that the lines in RP? can be viewed as the algebraic subset of
RP® defined by the homogeneous equation

123 + T2Z5 + 2326 = 0.

This quadric surface in RP® is an example of a Grassmannian variety. It
is often called the Klein quadric. Do the above results extend to lines in

P3, and P} where K is any field?

Problem 5.13 Given any two distinct point a,b € RP? of homogeneous
coordinates (a1,az,as3,a4) and (by,b2,b3,b4), let p12,p13,P14, P34, P42, P23

be the numbers defined as follows:

_ |61 a2 _|a
P12 = ‘ bl b2 y D13 bl
_ (a3 a4
D34 = b3 b4 y D42 = ‘ b

(i) Prove that

DP12P34 + P13P4a2 + Pp14p23 = 0.

Hint. Expand the determinant

a1 b
az by
az b3
ag by

as _ a1 a4
b3’7 p14_’b1 b4’
a2 _|a2 a3
b2 y D23 = b2 b3

Conversely, given any six numbers satisfying the equation

P12P34 + P13Pa2 + p14p23 = 0,

prove that two points a

(a1,a2,a3,0) and b = (by,0,b3,b4) can be

determined such that the p;; are associated with a and b.

Hint. Show that the equations

~a2b1 = p12,

azby = pa4,

a1b3 — azb; = p13,
—azby = pya,

a1by = pug,

a2b3 = pa3,

are solvable iff

D12P34 + P13P42 + P14P23 = 0.
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The tuple (p12, P13, P14, P34, P42, P23) can be viewed as homogeneous co-
ordinates in RP® of the line (a,b). They are the Plicker coordinates of
{a, b).

(ii) Prove that two lines of Pliicker coordinates (pi2, P13, P14, P34, P42, P23)
and (p1127pll3’pll4a p{34’p£127p/23) intersect iff

D12Ps4 -+ P13P)o + P1aPhs + P3aply + Pa2pis + p23ple = 0.

Thus, the set of lines that meet a given line in RP? correspond to a set
of points in RP® belonging to a hyperplane, as well as to the Klein quadric.
Do the above results extend to lines in P} and P} where K is any field?

(iii) Three lines L, La, L3 in RP3 are mutually skew lines iff no pairs of
any two of these lines are coplanar. Given any three mutually skew lines
Lq,Lo, L3 and any four lines My, Ma, M3, My in RP? such that each line
M; meets every line L;, show that if any line L meets three of the four
lines M1, My, M3, My, then it also meets the fourth. Does the above result
extend to P}, where K is any field? Show that the set of lines meeting three
given mutually skew lines L1, Lo, L3 in ]P’i}{ is a ruled quadric surface. What
do the affine pieces of this quadric look like in R3?

(iv) Four lines L, Lo, L3, L4 in RP? are mutually skew lines iff no pairs
of any two of these lines are coplanar. Given any four mutually skew lines
Ly, Lo, L3, Ly, show that there are at most two lines meeting all four of
them. In CP3, show that there are either two distinct lines or a double line
meeting all four of them.

Problem 5.14 (i) Prove that the cross-ratio [a,b,¢,d] is invariant if any
two elements and the complementary two elements are transposed. Prove
that
[a,b,c,d] = [b,a,c,d]”" = [a,b,d,c]™}
and that
[a,b,¢,d) =1 —[a,c,b,d].

(ii) Letting A = [a, b, ¢, d], prove that if A € {00,0,1}, then any permu-
tation of {a,b,c,d} yields a cross-ratio in {00,0,1}, and if A ¢ {00,0,1},
then there are at most the six values

1 1 1 A

A7 N 1- Aa 1- N T 40 N 1
A A 1T=-X A-1
(iii) Prove that the function
(A2 =A+1)3
A Ty

takes a constant value on the six values listed in part (ii).

Problem 5.15 Viewing a point (r,y) in A? as the complex number z =
x + iy, prove that four points (a,b,c,d) are cocyclic or collinear iff the
cross-ratio [a, b, ¢, d] is a real number.
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Problem 5.16 Given any distinct points (z,Z2,Z3,24) in RP!, prove
that they form a harmonic division, i.e., [z1, 2, z3, 4] = ~1 iff

2(z1z2 + 2324) = (21 + T2)(T3 + T4).
Prove that [0, z2, 23, z4] = —1 iff
2 1 1

T2 T3 T4
Prove that [z),z2,z3,00] = —1 iff
2r3 = 1 + To.
Do the above results extend to P}, where K is any field?

Problem 5.17 Consider the quadrangle (projective frame) (a,b,c,d) in
a projective plane, and let a’ be the intersection of (d,a) and (b,c), b’
be the intersection of (d,b) and (a,c), and ¢’ be the intersection of (d,c)
and (a, b). Show that the following quadruples of lines form harmonic divi-
sions: ({c,a), (b',a’),(d,b), (t/,c")), ({b,a),(c,a’},{d,c),{c, b)), and ((b,c),
(@, b), (a,d), (a',)).

Hint. Send some suitable lines to infinity.

Problem 5.18 Let P(E) be a projective space over any field. For any
projective map P(f):P(E) — P(E), a point a = p(u) is a fixed point of
P(f) iff P(f)(a) = a. Prove that a = p(u) is a fixed point of P(f) iff u is
an eigenvector of the linear map f: E — E. Prove that if E = R?"*! then
every projective map P(f): RP?™ — RP?" has a fixed point. Prove that if
E = C"*!, then every projective map P(f): CP™ — CP" has a fixed point.

Problem 5.19 A projectivity P(f): RP"™ — RP" is an involution if P(f)
is not the identity and if P(f) o P(f) = id. Prove that a projectivity
P(f):RP! — RP?' is an involution iff the trace of the matrix of f is null.
Does the above result extend to P4 where K is any field?

Problem 5.20 Recall Desargues’s theorem in the plane: Given any two
triangles (a,b,¢) and (a’,,¢') in RP?, where the points a, b, c,a’, b, ¢’ are
distinct and the lines A = (b,¢), B = {(a,c), C = (a,b), A’ = (¥',c'),
B’ = {(a’,c), C' = (a', V') are distinct, if the lines (a,d’}, (b,b’), and (¢, ')
intersect in a common point d distinct from a,b, ¢,a’,b’,c’, then the inter-
section points p = (b,c) N (¥, '), ¢ = (a,c)N{a’, '), and r = (a,b) N (a’, V')
belong to a common line distinct from A4, B,C, A’, B’,C".

Prove that the dual of the above result is its converse. Deduce Desargues’s
theorem: Given any two triangles (a,b,c) and (a/,¥,¢') in RP?, where the
points a, b, c,a’,b’, ¢’ are distinct and the lines A = (b,¢), B = (a,c), C =
{a,b), A" = (V/,c), B’ = (a’,c), C' = (a’, V') are distinct, the lines (a,a’),
(b,b'), and {c, ¢') intersect in a common point d distinct from a,b,¢,a’,¥’, ¢’
iff the intersection points p = (b,c) N {V', '), ¢ = {(a,¢) N (d/,¢'), and r =
{a,b) N {a’, ') belong to a common line distinct from A, B,C, A’,B’,C".
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Do the above results extend to P% where K is any field?

Problem 5.21 Let D and D’ be any two distinct lines in the real projec-
tive plane RP?, and let f: D — D’ be a projectivity. Prove the following
facts.

(1) If f is a perspectivity, then for any two distinct points m,n on D, the
lines {m, f(n)) and (n, f(m)) intersect on some fixed line passing through
DnD. )

Hint. Consider any three distinct points a,b,c on D and use Desargues’s
theorem.

(2) If f is not a perspectivity, then for any two distinct points m,n on
D, the lines (m, f(n)) and (n, f(m)) intersect on the line passing through
f(DN D' and f~Y(DN D).

Hint. Use some suitable composition of perspectivities. The line passing
through f(D N D') and f~}(D N D’) is called the azis of the projectivity.

(iii) Prove that any projectivity f: D — D’ between distinct lines is the
composition of two perspectivities.

(iv) Use the above facts to give a quick proof of Pappus’s theorem: Given
any two distinct lines D and D’ in a projective plane, for any distinct
points a,b,c,a’,b’,c’ with a,b,c on D and a’,b,c’ on D', if a,b,c,a’, ¥, ¢
are distinct from the intersection of D and D’, then the intersection points
p=(bcyN ¥, ¢), g=(a,c)N{a,c), and r = (a,b’) N (a’, b) are collinear.

Do the above results extend to P% where K is any field?

Problem 5.22 Recall that in the real projective plane RP?, by duality, a
point a corresponds to the pencil of lines a* passing through a.

(i) Given any two distinct points a and b in the real projective plane
RP? and any line L containing neither a nor b, the perspectivity of axis L
between a* and b* is the map f:a* — b* defined such that for every line
D € a*, the line f(D) is the line through b and the intersection of D and
L.

Prove that a projectivity f:a* — b* is a perspectivity iff f({a, b)) = (b, a).

(ii) Prove that a bijection f:a* — b* is a projectivity iff it preserves the
cross-ratios of any four distinct lines in the pencil a*.

(iii) State and prove the dual of Pappus’s theorem.

Do the above results extend to P% where K is any field?

Problem 5.23 (i) Prove that every projectivity f:RP' — RP! has at
most 2 fixed points. A projectivity f: RP' — RP! is called elliptic if it has
no fixed points, parabolic if it has a single fixed point, hyperbolic if it has
two distinct fixed points. Prove that every projectivity f: CP' — CP? has
2 distinct fixed points or a double fixed point.

(ii) Recall that a projectivity f:RP! — RP! is an involution if f is not
the identity and if f o f = id. Prove that f is an involution iff there is some
point a € RP" such that f(a) # a and f(f(a)) = a.
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(iii) Given any two distinct points a,b € RP?, prove that there is a unique
involution f:RP! — RP! having a and b as fixed points. Furthermore, for
all m # a, b, we have

[avbv mvf(m)] =-1

Conversely, the above formula defines an involution with fixed points a and
b.

(iv) Prove that every projectivity f: RP! — RP! is the composition of
at most two involutions.

Do the above results extend to P}, where K is any field?

Problem 5.24 Prove that an involution f:RP! — RP! has zero or two
distinct fixed points. Prove that an involution f:CP! — CP! has two
distinct fixed points.

Problem 5.25 Prove that a bijection f: RP' — RP! having two distinct
fixed points a and b is a projectivity iff there is some k # 0 in R such that
for all m # a, b, we have

[av b7 m, f(m)] = k
Does the above result extend to PL where K is any field?

Problem 5.26 Prove that every projectivity f:RP' — RP! is the
composition of at most three perspectivities.
Hint. Consider some appropriate perspectivities.

Does the above result extend to PL where K is any field?

Problem 5.27 Let (a,b,c,d) be a projective frame in RP?, and let D be
a line not passing through any of a, b, c,d. The line D intersects {a, b) and
{¢,d) in p and p’, (b,c) and {(a,d) in ¢ and ¢’, and (b,d) and (a,c) in r and
r’. Prove that there is a unique involution mapping p to p’, g to ¢/, and r
to r'.
Hint. Consider some appropriate perspectivities.

Does the above result extend to P% where K is any field?

Problem 5.28 Let (a,b,c) be a triangle in RP?, and let D be a line not
passing through any of a,b,c, so that D intersects {b,c) in p, (¢, a) in g,
and {a,b) in r. Let L,, Ly, L. be three lines passing through a, b, ¢, respec-
tively, and intersecting D in p’, ¢’, 7’. Prove that there is a unique involution
mapping p to p’, g to ¢/, and r to r’ iff the lines L,, Ly, L, are concurrent.
Hint. Use Problem 5.27.

Does the above result extend to P% where K is any field?

Problem 5.29 In a projective plane P(E) where E is a vector space of
dimension 3 over any field K, a conic is the set of points of homogeneous
coordinates (z,y, z) such that

ax? + By? + 2yzy + 26x2 + 20yz + 2 =0,
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where (a, 8,7,6,A, 1) # (0,0,0,0,0,0). We can write the equation of the
conic as

a v 6 T
(37»%2) Y ﬁ A Yy :Ov
6 A z

and letting

A:

> -2 Q
> -2

6 x
A s X = Yy 3
I z

the equation of the conic becomes
XTAX =0.

We say that a conic of equation X T AX = 0 is nondegenerate if det(A) #
0 and degenerate if det(A) = 0.

(i) For K = R, show that there is only one type of nondegenerate conic,
and that there are three kinds of degenerate conics: two distinct lines, a
double line, a point, and the empty set. For K = C, show that there is only
one type of nondegenerate conic, and that there are two kinds of degenerate
conics: two distinct lines or a double line.

(ii) Given any two distinct points @ and b in RP? and any projectivity
f:a* — b* that is not a perspectivity, prove that the set of points of the
form L N f(L) is a nondegenerate conic, where L is any line in the pencil
a*.

What happens when f is a perspectivity? Does the above result hold for
any field K?

(iil) Given a nondegenerate conic C, for any point a € C we can define
a bijection j,:a* — C as follows: For every line L through a, we define
Ja(L) as the other intersection of L and C when L is not the tangent to
C at a, and j,(L) = a otherwise. Given any two distinct points a,b € C,
show that the map f = jb_1 o jq is a projectivity f:a* — b* that is not
a perspectivity. In fact, if O is the intersection of the tangents to C at a
and b, show that f({O,a)) = (b,a), f({a,b)) = (b,0), and for any point
m # a,b on C, f({a,m)) = (b,m). Conclude that C is the set of points of
the form L N f(L), where L is any line in the pencil a*.

Hint. In a projective frame where a = (1,0,0) and b = (0,1,0), the
equation of a conic is of the form

pz? + qzy + ryz + szz = 0.

Remark: The above characterization of the conics is due to Steiner (and
Chasles).
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(iv) Prove that six points (a, b, c,d, e, f) such that no three of them are
collinear belong to a conic iff

[(a,¢), (a,d), (a,e€), (a, f)] = [(b, ), (b,d), (b, €), (b, f)].

Problem 5.30 Given a nondegenerate conic C and any six points a, b, c,
d, e, f on C such that no three of them are collinear, prove Pascal’s theorem:
The points z = (a,b) N (d,e), w = (b,c) N (e, f), and ¢t = (c,d) N (f,a) are
collinear.
Recall that the line (a, a) is interpreted as the tangent to C at a.

Hint. By Problem 5.29, for any point m on the conic C, the bijection
Jm:m* — C allows the definition of the cross-ratio of four points a,b, ¢, d
on C as the cross ratio of the lines (m,a), (m,b), (m,c), and (m,d) (which
does not depend on m). Also recall that the cross-ratio of four lines in the
pencil m* is equal to the cross-ratio of the four intersection points with any
line not passing through m. Prove that

[Z, T, d, e] - [ta c, d7 y]7
and use the perspectivity of center w between (¢, y) and (e, ).

Problem 5.31 In a projective plane P(E) where F is a vector space of
dimension 3 over any field K of characteristic different from 2 (say, K = R
or K = C), given a conic C of equation F(z,y, z) = 0 where

F(z,y,2) = az® + By? + 2yzy + 26z2 + 22yz + pz? = 0
(with (o, 8,7, 6, A, 1) # (0,0,0,0,0,0)), using the notation of Problem 5.29
with X7 = (z,9,2) and YT = (u,v,w), verify that
1

YTAX = 3 (uF, +vF, + wF}),

where Fy, F, F, denote the partial derivatives of F'(z,y, z).

If the conic C of equation X " AX = 0 is nondegenerate, it is well known
(and easy to prove) that the tangent line to C at (o, yo, 2z0) is given by the
equation

zF,, +yF, +2F, =0,
and thus by the equation X" AX, = 0, with X7 = (z,y,2) and X =

(z0, Yo, 20). Therefore, the equation of the tangent to C at (zo, ¥, 20) is of
the form

‘ur + vy + wz =0,
where

u To Zo
v ]| =A1 y and (xo,y0,20)A | yo | =0.
w 20 20
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(i) If C is a nondegenerate conic of equation X " AX = 0 in the projective
plane P(E), prove that the set C* of tangent lines to C is a conic of equation
YTAlY = 0 in the projective plane P(E*), where E* is the dual of the
vector space E. Prove that C** = C.

Remark: The conic C is sometimes called a point conic and the conic
C* a line conic. The set of lines defined by the conic C* is said to be the
envelope of the conic C.

Conclude that duality transforms the points of a nondegenerate conic
into the tangents of the conic, and the tangents of the conic into the points
of the conic.

(ii) Given any two distinct lines L and M in RP? and any projectivity
f:L — M that is not a perspectivity, prove that the lines of the form
(a, f(a)) are the tangents enveloping a nondegenerate conic, where a is any
point on the line L (use duality).

What happens when f is a perspectivity? Does the above result hold for
any field K7

(ili) Given a nondegenerate conic C, for any two distinct tangents L and
M to C at a and b, if O = L N M, show that the map f: L — M defined
such that f(a) = O, f(O) = b, and f(LNT) = M NT for any tangent
T # L, M is a projectivity. Conclude that C is the envelope of the set of
lines of the form (m, f(m)), where m is any point on L (use duality).

Problem 5.32 Given a nondegenerate conic C, prove Brianchon’s theo-
rem: For any hexagon (a,b, ¢, d, e, f) circumscribed about C (which means
that (a,b), (b,c), (c,d), (d,e), {e, f), and (f,a) are tangent to C), the
diagonals (a,d), (b, e}, and {(c, f) are concurrent.

Hint. Use duality.

Problem 5.33 (a) Consider the map H:R3 — R* defined such that

(xayaz) = ($y7y2,$2a332 - y2)

Prove that when it is restricted to the sphere S? (in R?%), we have
H(z,y,2) = H',y,2) iff (¢,y,2") = (z,9,2) or (z,y,2') =
(=2, —y, ~2). In other words, the inverse image of every point in H(S?)
consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane
onto H(S?), and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R*
by choosing any parametrization of the sphere S? and applying the map
H to it. Actually, it turns out to be more convenient to use the map A
defined such that

(z,y,2) — (2zy, 2yz, 222, 2% ~ 3?),
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because it yields nicer parametrizations. For example, using the stereo-
graphic representation where

_ 2u
2(wv) = E gy
R ik

’ u?+0v?+ 1

show that the following parametrization of the projective plane in R? is
obtained:

uv
z(u,v) = m7
) = T,
Hu,v) = 4(u? —v?)

(w2 +v2+1)%

Investigate the surfaces in R® obtained by dropping one of the four
coordinates. Show that there are only two of them (up to a rigid motion).

Problem 5.34 Give the details of the proof that the altitudes of a triangle
are concurrent.

Problem 5.35 Let K be the finite field K = {0,1}. Prove that the pro-
jective plane P(K?) contains 7 points and 7 lines. Draw the configuration
formed by these seven points and lines.

Problem 5.36 Prove that if P and @ are two homogeneous polynomials
of degree 2 over R and if V(P) = V(Q) contains at least three elements,
then there is some A € R such that @ = AP, with A # 0.

Hint. Choose some convenient frame.

Problem 5.37 In the Euclidean space E™ (where E" is the affine space
A" equipped with its usual inner product on R™), given any k € R with
k # 0 and any point a, an inversion of pole a and power k is a map
h: (E® — {a}) — E" defined such that for every z € E* — {a},

ax
llax||”
For example, when n = 2, choosing any orthonormal frame with origin a,
h is defined by the map

(x,y)»—>< kx ky )

h(z)=a+k

x2+y2’ .’L‘2+y2
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(a) Assuming for simplicity that n = 2, viewing RP? as the projective
completion of E2, we can extend h to a partial map h: RP? — RP? as
follows. Pick any projective frame (ag,a1,a2,a3) where ag = a + €1, a; =
a+ ez, az = a, az = a+ e; + €2, and where (e;, e2) is an orthonormal basis
for R?, and define h such that in homogeneous coordinates

(z,y, 2) — (kzz, kyz, z* + y?).

Show that h is defined on RP? — {a}. Show that h o h = id, except
for points on the line at infinity (that are all mapped onto a = (0,0,1)).
Deduce that h is a bijection except for a and the points on the line at
infinity. Show that the fixed points of h are on the circle of equation

2 +y? = k2%

(b) We can also extend h to a partial map h: CP> — CP? as in the real
case, and define h such that in homogeneous (complex) coordinates

Show that h is defined on CP? — {a,I,J}, where I = (1,—4,0) and
J = (1,4,0) are the circular points. Show that every point of the line (I, J)
other than I and J is mapped to A, every point of the line (A, I) other
than A and I is mapped to I, and every point of the line (A4, J) other than
A and J is mapped to J. Show that Ao h = id on the complement of the
three lines (I, J), (A, I), and (A, J). Show that the fixed points of h are on
the circle of equation

z? +y? = k22
Say that a circle of equation
az’ + ay? + bxz +ceyz +dz* =0

is a true circle if a # 0. We define the center of a circle as above (true or
not) as the point of homogeneous coordinates (b, ¢, —2a) and the radius R
of a true circle is defined as follows: If

b? + c? — 4ad > 0,
then R = v/b? 4 ¢2 — 4ad/(2a); otherwise R = iv4ad — b2 — c2/(2a). Note

that R can be a complex number. Also, when a = 0, we let R = oo.
Verify that in the affine Euclidean plane E? (the complement of the line
at infinity 2z = 0) the notions of center and radius have the usual meaning
(when R is real).
(c) Show that the image of a circle of equation

ar® +ay’ +brz+cyz+dz2 =0
is the circle of equation

dz® + dy® + kbzz + keyz + k%az® = 0.
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When does a true circle map to a true circle?

(d) Recall the definition of the stereographic projection map o:(S* —
{N}) — R? from Problem 5.3. Prove that the stereographic projection
map is the restriction to S2 of an inversion of pole N and power 2R? in E3
(where S? a sphere of radius R, N is the north pole of 52 and the plane
of projection is a plane through the center of the sphere).

Problem 5.38 As in Problem 5.37, we consider inversions in RP? and
CP?, and we assume that some projective frame (ao, a1, az,as) is chosen.
(a) Given two distinct real circles C; and C; of equations

z? +y? - R%2* =0,
z? +y? - 2bzz +d2? =0,
prove that C; and C, intersect in two real points iff the line
2bx — (d+ R?)z =0
intersects C in two real points iff
(R% +d —2bR)(R® +d + 2bR) < 0.

The line 2bx — (d + R?)z = 0 is called the radical axis D of the circles Cy
and Cs. If b = 0, then C; and C3 have the same center, and the radical
axis is the line at infinity. Otherwise, if b # 0, by chosing a new frame
(bo, b1, b2, b3) such that

R?+d R?+d R?+d
bO“ ( 2 +17070)7 bl - (T: 170)7 b2— ( 2% 7071)7

and

R*+d
b3_ <—2b—-7 171>7

show that the equations of the circles C;, C; become
40%(z? + y?) + 4b(R% + d)zz + AZ* = 0,
4b% (2% + y%) + 4b(R? + d — 2b*)z2 + A2 =0,
where A = (R? +d — 2bR)(R? + d + 2bR).
Letting C = A/(4b?), the above equations are of the form
22 +y? —uzz+ Cz2 =0,
22 +y? — zz+ C2? =0,

where u # v.
(b) Consider the pencil of circles defined by C; and Cs, i.e., the set of
all circles having an equation of the form

O+ p)(@? 4+ 9°) — 202w + pv)zz + (A + p)C2° =0,
where (A, u) # (0,0).
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If C < 0, letting K? = —C where K > 0, prove that the circles in the
pencil are exactly the circles passing through the points A = (0, K, 1) and
B =(0,-K,1), called base points of the pencil. In this case, prove that the
image of all the circles in the pencil by an inversion h of center A is the
union of the line at infinity together with the set of all lines through the
image h(B) of B under the inversion (pick a convenient frame).

(¢) If C = 0, in which case A = B = (0,0, 1), prove that the circles
in the pencil are exactly the circles tangent to the radical axis D (at the
origin). In this case, prove that the image of all the circles in the pencil by
an inversion h of center A is the union of the line at infinity together with
the set of all lines parallel to the radical axis D.

(d) If C > 0, letting K2 = C where K > 0, prove that there exist
two circles in the pencil of radius 0 and of centers P, = (K,0,1) and
P, = (—K,0,1), called the Poncelet points of the pencil. In this case, prove
that the image of all the circles in the pencil by an inversion of center P;
is the set of all circles of center A(P;) (pick a convenient frame).

Conclude that given any two distinct nonconcentric real circles C; and
C,, there is an inversion such that if C; and C; intersect in two real points,
then C; and C; are mapped to two lines (plus the line at infinity), and if
Cy and Cj are disjoint (as real circles), then C; and Cs are mapped to two
concentric circles.

(e) Given two C'-curves I', A in E2, if " and A intersect in p, prove that
for any inversion h of pole ¢ # p, h preserves the absolute value of the
angle of the tangents to I' and A at p. Conclude that inversions preserve
tangency and orthogonality.

Hint. Express I', A, and h in polar coordinates.

(f) Using (e}, prove the following beautiful theorem of Steiner. Let C
and C3 be two disjoint real circles such that Cy is inside C;. Construct
any sequence (I';),>¢ of circles such that ', is any circle interior to Cj,
exterior to Cy, tangent to C; and C3, and furthermore that T4y # [y
and I'y4; is tangent to T'y,.

Given a starting circle I'g, two cases may arise: Either T',, = 'y for some
n>1,orT, #g forall n > 1.

Prove that the outcome is independent of the starting circle I'y. In other
words, either for every I'g we have T',, = T’y for some n > 1, or for every 'y
we have '), # g for all n > 1.

Problem 5.39 (a) Let h:RP?> — RP? be the projectivity (w.r.t. any
projective frame (ag, a1, az,a3)) defined such that

(z,y, 2) = (z, y, az + by + c2),
where ¢ # 0 and h is not the identity.

Prove that the fixed points of h (i.e., those points M such that h(M) =
M) are the origin O = a2 = (0,0,1) and every point on the line A of
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equation
ar+by+(c—1)z=0.

Prove that every line through the origin is globally invariant under h. Give
a geometric construction of A(M) for every point M distinct from O and
not on A, given any point A distinct from O and not on A and its image
A’ = h(A4).
Hint. Consider the intersection P of the line (A, M) with the line A.

Such a projectivity is called a homology of center O and of axis A
(Poncelet).

Show that in the situation of Desargues’s theorem, the triangles (a, b, c)
and (a’,b’,c’) are homologous. What is the axis of homology?

(b) Let h:RP? — RP? be the projectivity (w.r.t. any projective frame
(ag, a1, a2, ag,aq)) defined such that

(z, 9, 2, t) — (z, ¥, 2, ax + by + cz + dt),

where d # 0 and h is not the identity.

Prove that the fixed points of h (i.e., those points M such that h(M) =
M) are the origin O = a3z = (0,0,0,1) and every point on the plane II of
equation

ar+by+ecz+(d-1t=0.

Prove that every line through the origin is globally invariant under h. Give
a geometric construction of h(M) for every point M distinct from O and
not on II, given any point A distinct from O and not on II and its image
A’ = h(A).

Hint. Consider the intersection P of the line (A, M) with the plane II.

Such a projectivity is called a homology of center O and of plane of
homology 11 (Poncelet).

(c) Let h: RP? — RP? be a projectivity, and assume that h does not
preserve (globally) the line at infinity z = 0. Prove that there is a rotation
R and a point at infinity a; such that h o R maps all lines through a; to
lines through a;.

Chosing a projective frame (ao,@1,a2,a3) (where a; is the point
mentioned above), show that h o R is defined by a matrix of the form

a b ¢
0o v ¢
0 bll 4

where a # 0 and b” # 0. Prove that there exist two translations ¢1,t2 such
that to o h o Rot; is a homology.
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If h preserves globally the line at infinity, show that there is a translation
t such that t o h is defined by a matrix of the form

a b ¢
ad v
0 0 1

where ab’ — a’b # 0. Prove that there exist two rotations Ry, Ry such that
Ry otoho Ry has a matrix of the form

A 0 0
0 B O
0 0 1

where AB = al/ — a’b. Conclude that Ry ot o ho R; is a homology only
when A = B.

Remark: The above problem is adapted from Darboux.

Problem 5.40 Prove that every projectivity h: RP? — RP? where h #£id
and h is not a homology is the composition of two homologies.

Problem 5.41 Given any two tetrahedra (a,b,¢,d) and (a/,b,c/,d’) in
RP® where a,b,c,d, a’,b',c',d’ are pairwise distinct and the lines con-
taining the edges of the two tetrahedra are pairwise distinct, if the lines
(a,a’), (b,b'), (¢,c’), and (d,d’) intersect in a common point O distinct
from a,b,c,d, a',b',c',d’, prove that the intersection points (of lines)
p={(b,c)N(V',c'), ¢ = (a,c)N{a’,c'), r = (a,b)N{a’,¥'), s = {c,d)N{(c',d"),
t=(b,d)N(V,d'), u=(a,d) N {a’,d’), are coplanar.

Prove that the lines of intersection (of planes) P = (b,c,d) N (¥, ¢/, d'),
Q =(a,c,d)n{a’,c,d'), R = (a,b,d) N (a’", V', d"), S = {a,b,c) N {a',¥,C),
are coplanar.

Hint. Show that there is a homology whose center is O and whose plane
of homology is determined by p,q,r, s, t, u.

Problem 5.42 Prove that Pappus’s theorem implies Desargues’s theorem
(in the plane).

Problem 5.43 If K is a finite field of ¢ elements (g > 2), prove that the
finite projective space P(K™*!) has ¢" +¢"~! +--- + ¢+ 1 points and
(@' - 1)(¢" - 1)
(¢—1)*(g+1)

lines.
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Basics of Euclidean Geometry

Rien n’est beau que le vrai.
—Hermann Minkowski

6.1 Inner Products, Euclidean Spaces

In affine geometry it is possible to deal with ratios of vectors and barycen-
ters of points, but there is no way to express the notion of length of a line
segment or to talk about orthogonality of vectors. A Euclidean structure
allows us to deal with metric notions such as orthogonality and length (or
distance).

This chapter and the next two cover the bare bones of Euclidean ge-
ometry. One of our main goals is to give the basic properties of the
transformations that preserve the Euclidean structure, rotations and re-
flections, since they play an important role in practice. As affine geometry
is the study of properties invariant under bijective affine maps and projec-
tive geometry is the study of properties invariant under bijective projective
maps, Euclidean geometry is the study of properties invariant under certain
affine maps called rigid motions. Rigid motions are the maps that preserve
the distance between points. Such maps are, in fact, affine and bijective (at
least in the finite-dimensional case; see Lemma 7.4.3). They form a group
Is(n) of affine maps whose corresponding linear maps form the group O(n)
of orthogonal transformations. The subgroup SE(n) of Is(n) corresponds
to the orientation—preserving rigid motions, and there is a corresponding

J. Gallier, Geomerric Methods and Applications
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subgroup SO(n) of O(n), the group of rotations. These groups play a very
important role in geometry, and we will study their structure in some detail.
Before going any further, a potential confusion should be cleared up.

Euclidean geometry deals with affine spaces (E, f) where the associated

vector space E is equipped with an inner product. Such spaces are called
Euclidean affine spaces. However, inner products are defined on vector
spaces. Thus, we must first study the properties of vector spaces equipped
with an inner product, and the linear maps preserving an inner product
(the orthogonal group SO(n)). Such spaces are called Euclidean spaces
(omitting the word affine). It should be clear from the context whether we
are dealing with a Euclidean vector space or a Euclidean affine space, but
we will try to be clear about that. For instance, in this chapter, except
for Definition 6.2.9, we are dealing with Euclidean vector spaces and linear
maps.

We begin by defining inner products and Euclidean spaces. The Cauchy—
Schwarz inequality and the Minkowski inequality are shown. We define
orthogonality of vectors and of subspaces, orthogonal bases, and orthonor-
mal bases. We offer a glimpse of Fourier series in terms of the orthogonal
families (sin pz),>1U(cos gz )e>0 and (e%5%)cz. We prove that every finite—
dimensional Euclidean space has orthonormal bases. Orthonormal bases
are the Euclidean analogue for affine frames. The first proof uses dual-
ity, and the second one the Gram-Schmidt orthogonalization procedure.
The QR-decomposition for invertible matrices is shown as an application
of the Gram-Schmidt procedure. Linear isometries (also called orthogonal
transformations) are defined and studied briefly. We conclude with a short
section in which some applications of Euclidean geometry are sketched.
One of the most important applications, the method of least squares, is
discussed in Chapter 13.

For a more detailed treatment of Euclidean geometry, see Berger [12, 13,
Snapper and Troyer [160], or any other book on geometry, such as Pedoe
[136], Coxeter [35], Fresnel [66], Tisseron [169], or Cagnac, Ramis, and
Commeau [25]. Serious readers should consult Emil Artin’s famous book
(4], which contains an in-depth study of the orthogonal group, as well as
other groups arising in geometry. It is still worth consulting some of the
older classics, such as Hadamard [81, 82] and Rouché and de Comberousse
(144]. The first edition of [81] was published in 1898, and finally reached
its thirteenth edition in 1947! In this chapter it is assumed that all vector
spaces are defined over the field R of real numbers unless specified otherwise
(in a few cases, over the complex numbers C).

First, we define a Euclidean structure on a vector space. Technically,
a Euclidean structure over a vector space E is provided by a symmetric
bilinear form on the vector space satisfying some extra properties. Recall
that a bilinear form ¢: E x E — R is definite if for every u € E, u # 0
implies that o(u,u) # 0, and positive if for every u € E, p(u,u) > 0.
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Definition 6.1.1 A Fuclidean space is a real vector space E equipped
with a symmetric bilinear form ¢: E x E — R that is positive definite.
More explicitly, ¢: E x E — R satisfies the following axioms:
P(u1 + uz,v) = p(u1,v) + p(uz,v),
o(u, vy +v2) = @(u, v1) + (u, va),
w(Au,v) = Ap(u, v),
p(u, Av) = Ap(u,v),
QO(’U,, U) = (p(u, u)’
u # 0 implies that o(u,u) > 0.

The real number ¢(u,v) is also called the inner product (or scalar product)
of u and v. We also define the quadratic form associated with ¢ as the
function ®: £ — R, such that

q}(u) = (p(u, u)’
forallu € F.

Since ¢ is bilinear, we have ¢(0,0) = 0, and since it is positive definite,
we have the stronger fact that

p(u,u) =0 iff u=0,

that is, ®(u) =0 iff u = 0.
Given an inner product ¢: E x E — R on a vector space FE, we also
denote ¢(u,v) by

u-v or (u,v) or (ulv),

and /®(u) by Ju].

Example 6.1 The standard example of a Euclidean space is R™, under
the inner product - defined such that

(T1-,Tn) - Y15+, Yn) = T1Y1 + TaY2 + - + TnYn.
There are other examples.

Example 6.2 For instance, let E be a vector space of dimension 2, and
let (e1,e2) be a basis of E. If @ > 0 and b — ac < 0, the bilinear form
defined such that

p(z1e1 + yre2, T2€1 + Y2€2) = ar1z2 + b(T1y2 + T211) + CY1Y2
yields a Euclidean structure on E. In this case,
O(ze; + yea) = ax? + 2bzy + cy?.

Example 6.3 Let Cla, b] denote the set of continuous functions f: [a, b] —
R. It is easily checked that Cla, b] is a vector space of infinite dimension.
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Given any two functions f, g € Cla, b], let

b
(f,9) =/ f(t)g(t)dt.

We leave as an easy exercise that (—,—) is indeed an inner product on
Cla,b]. In the case where a = —7 and b = 7 (or @ = 0 and b = 2w, this
makes basically no difference), one should compute

(sinpz,singz), (sinpzx,cosqz), and (cospz,cosqz),
for all natural numbers p, g > 1. The outcome of these calculations is what
makes Fourier analysis possible!

Let us observe that ¢ can be recovered from ®. Indeed, by bilinearity
and symmetry, we have
S(u+v)=p(utuv, ut+v)
=p(u, u+v)+ (v, u+v)
= (u, u) + 2p(u, v) + (v, v)
= ®(u) + 2¢(u, v) + ®(v).

Thus, we have
ol ) = 5[B(u +v) — B(u) - B(v)].

We also say that ¢ is the polar form of . We will generalize polar forms
to polynomials, and we will see that they play a very important role.

One of the very important properties of an inner product ¢ is that the
map u — /®(u) is a norm.

Lemma 6.1.2 Let E be a FEuclidean space with inner product ¢, and let
be the corresponding quadratic form. For all u,v € F, we have the Cauchy-
Schwarz inequality

(u,v)? < 2(w)@(v),

the equality holding iff v and v are linearly dependent.
We also have the Minkowski inequality

V&(u +v) < \/<I>(u) + \/<I>(v),

the equality holding iff u and v are linearly dependent, where in addition if
u#0 and v #£0, then u = v for some A > 0.

Proof. For any vectors u,v € E, we define the function T: R — R such
that

T(A) = &(u + M),
for all A € R. Using bilinearity and symmetry, we have

O(u+ Av) = ¢(u + Av, u + Av)
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= p(u, u+ Av) + Ap(v, u + Av)

= ¢(u, u) + 2Xp(u, v) + Xp(v, v)

= ®(u) + 22p(u, v) + A2®(v).
Since ¢ is positive definite, ® is nonnegative, and thus T'(A) > 0 for all
A €R.If @(v) = 0, then v = 0, and we also have ¢(u, v) = 0. In this case,
the Cauchy-Schwarz inequality is trivial, and v = 0 and u are linearly

dependent.
Now, assume ®(v) > 0. Since T'(A\) > 0, the quadratic equation

N2®(v) + 2 p(u, v) + ®(u) =0
cannot have distinct real roots, which means that its discriminant
A = 4(p(u, v)* — 2(u)@(v))
is null or negative, which is precisely the Cauchy—Schwarz inequality
P(u,v)? < B(u)D(v).
If
o(u,v)? = @(u)®(v),

then the above quadratic equation has a double root A9, and we have
D(u+ Av) = 0. If A\g = 0, then p(u, v) = 0, and since &(v) > 0, we must
have ®(u) = 0, and thus u = 0. In this case, of course, v = 0 and v are
linearly dependent. Finally, if A\g # 0, since ®(u + Agv) = O implies that
u + Agv = 0, then u and v are linearly dependent. Conversely, it is easy to
check that we have equality when u and v are linearly dependent.

The Minkowski inequality

Ve(u+v) < O(u) + V&(v)

is equivalent to
®(u+v) < ®(u) + B(v) + 2/®(u)d(v).
However, we have shown that
2p(u, v) = B(u+v) — B(u) — B(v)
and so the above inequality is equivalent to
P(u, v) < V/@(u)®(v),

which is trivial when (u, v) < 0, and follows from the Cauchy-Schwarz
inequality when ¢(u, v) > 0. Thus, the Minkowski inequality holds. Finally,
assume that u # 0 and v # 0, and that

Vo(u+v) = Vo (u) + /e ().

When this is the case, we have

o(u, v) = vV O(u)®(v),
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U+ v
Figure 6.1. The triangle inequality

and we know from the discussion of the Cauchy—Schwarz inequality that the
equality holds iff © and v are linearly dependent. The Minkowski inequality
is an equality when u or v is null. Otherwise, if u # 0 and v # 0, then u = Av
for some A # 0, and since

e(u, v) = Ap(v, v) =  2(uv)2(v),

by positivity, we must have A > 0. []

Note that the Cauchy-Schwarz inequality can also be written as

lp(u, )| < VO(u) vV O(v).

Remark: It is easy to prove that the Cauchy—-Schwarz and the Minkowski
inequalities still hold for a symmetric bilinear form that is positive, but not
necessarily definite (i.e., ¢(u,v) > 0 for all u,v € E). However, u and v
need not be linearly dependent when the equality holds.

The Minkowski inequality

VO(u+v) < V/O(u) + /&(v)

shows that the map u — +/®(u) satisfies the convexity inequality (also
known as triangle inequality), condition (N3) of Definition 17.2.2, and since
 is bilinear and positive definite, it also satisfies conditions (N1) and (N2)
of Definition 17.2.2, and thus it is a norm on E. The norm induced by ¢
is called the Fuclidean norm induced by .

Note that the Cauchy-Schwarz inequality can be written as

- o] < lullflv],
and the Minkowski inequality as
w4+ ol < flull + |lv]-

Figure 6.1 illustrates the triangle inequality.
We now define orthogonality.
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6.2 Orthogonality, Duality, Adjoint of a Linear
Map

An inner product on a vector space gives the ability to define the notion
of orthogonality. Families of nonnull pairwise orthogonal vectors must be
linearly independent. They are called orthogonal families. In a vector space
of finite dimension it is always possible to find orthogonal bases. This is
very useful theoretically and practically. Indeed, in an orthogonal basis,
finding the coordinates of a vector is very cheap: It takes an inner product.
Fourier series make crucial use of this fact. When F has finite dimension, we
prove that the inner product on E induces a natural isomorphism between
E and its dual space E*. This allows us to define the adjoint of a linear
map in an intrinsic fashion (i.e., independently of bases). It is also possible
to orthonormalize any basis (certainly when the dimension is finite). We
give two proofs, one using duality, the other more constructive using the
Gram—Schmidt orthonormalization procedure.

Definition 6.2.1 Given a Euclidean space E, any two vectors u,v € F are
orthogonal, or perpendicular, if u-v = 0. Given a family (u;);es of vectors
in E, we say that (u;);cr is orthogonal if u; - u; = 0 for all 4,5 € I, where
i # j. We say that the family (u;)icr is orthonormal if u; - u; = 0 for all
1,7 € I, where i # j, and ||u;|| = u; - u; = 1, for all ¢ € I. For any subset F
of E, the set

Fl={veE|u-v=0, forall uc F},

of all vectors orthogonal to all vectors in F, is called the orthogonal
complement of F.

Since inner products are positive definite, observe that for any vector
u € E, we have

u-v=0 forallveF if u=0.

It is immediately verified that the orthogonal complement F1 of F is a
subspace of E.

Example 6.4 Going back to Example 6.3 and to the inner product
9 = [ s

on the vector space C[—m, 7], it is easily checked that

. . _Jm ifp=¢,pg>1,
(s1np:z,squ')—{0 fp#¢,pg=1,

m ifp=gq,pg=1,
cospxr,cosqr) = .
{cosp 92) {0 ifp#gq,p,q>0,
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and
{sin pzx, cosgz) = 0,

for all p > 1 and q > 0, and of course, {1,1) = ffw dr = 27.
As a consequence, the family (sin pz)p>1U (€os gx)g>0 is orthogonal. It is
not orthonormal, but becomes so if we divide every trigonometric function

by /7, and 1 by v2=.

Remark: Observe that if we allow complex—valued functions, we obtain
simpler proofs. For example, it is immediately checked that

T e fom ifk=0,
/_We dz‘{o ik £0,

because the derivative of ei** is iket®=.

@ However, beware that something strange is going on. Indeed,
unless k = 0, we have

(ez’kz’ eik$> — 0’
since

<eikz eikz) — " (eikz)2dx — /ﬂ- ei2kzdx =0.
—T -7
The inner product (e?*? e**) should be strictly positive. What went
wrong?

The problem is that we are using the wrong inner product. When we use
complex-valued functions, we must use the Hermitian inner product

o= [ " f@)g@dz,

where g(z) is the conjugate of g(z). The Hermitian inner product is not
symmetric. Instead,

(9, f) = (f.9)

(Recall that if z = a + ib, where a,b € R, then Z = a — ib. Also, ¥ =
cos @ + isin #). With the Hermitian inner product, everything works out
beautifully! In particular, the family (e**)cz is orthogonal. Hermitian
spaces and some basics of Fourier series will be discussed more rigorously
in Chapter 10.

We leave the following simple two results as exercises.

Lemma 6.2.2 Given a Fuclidean space E, for any family (u;)icr of
nonnull vectors in E, if (u;);er is orthogonal, then it is linearly independent.
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Lemma 6.2.3 Given a FEuclidean space E, any two vectors u,v € E are
orthogonal iff

llw+ol? = flul® + [lv]*.

One of the most useful features of orthonormal bases is that they afford
a very simple method for computing the coordinates of a vector over any
basis vector. Indeed, assume that (ey,..., en) is an orthonormal basis. For
any vector

T=1Ii1€1+ "+ Tmem,
if we compute the inner product z - e;, we get
T-€ =x1€1-€ + -+ T €+ +Tmey - € = Ty,

since

0 ifi#j

is the property characterizing an orthonormal family. Thus,

ei-ej:{l ifi =7,

Ty =T - €,

which means that z;e; = (z - e;)e; is the orthogonal projection of z onto
the subspace generated by the basis vector e;. If the basis is orthogonal but
not necessarily orthonormal, then

€ T-e
T=—— = .
ee le?

All this is true even for an infinite orthonormal (or orthogonal) basis (e;)icr-

@ However, remember that every vector z is expressed as a linear

combination
r = Z T;e;
el
where the family of scalars (x;)ier has finite support, which means that
x; = 0 for all i € I — J, where J is a finite set. Thus, even though the
family (sinpz)p>1 U (cosqz)q>0 is orthogonal (it is not orthonormal, but
becomes so if we divide every trigonometric function by /7, and 1 by v/2;
we won’t because it looks messy!), the fact that a function f € C%[—, 7]
can be written as a Fourier series as

flx)=ap+ Z(ak cos kz + by sin kx)
k=1

does not mean that (sinpx)p>1 U (cosgx)g>0 is a basis of this vector space
of functions, because in general, the families (ax) and (bx) do not have
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finite support! In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

n
ag + Z(ak cos kx + by sin kx)
k=1

of the series converge to a limit when n goes to infinity. This requires a
topology on the space.

Still, a small miracle happens. If f € C[—7, 7] can indeed be expressed
as a Fourier series

o0
fl@)=a0+ Z(ak cos kz + by sin kx),
k=1
the coefficients ag and ax, bx, £ > 1, can be computed by projecting f over
the basis functions, i.e., by taking inner products with the basis functions
in (sinpx)p>1 U (cosgr)g>p- Indeed, for all & > 1, we have

(£,1)
RS
and
(f, coskx) (f,sinkx)
kT || cos kx||2’ k= || sin k|2’
that is,
1 /"
0= | fa
and
1 [7 1 (7 .
a =~ . f(z) coskx dzx, b, = - ﬂf(:z)smkm dz.

If we allow f to be complex-valued and use the family (e**%)icz, which
is is indeed orthogonal w.r.t. the Hermitian inner product

™

(frg) = [ flz)g(z)dz,

-7

we consider functions f € C[—m,n] that can be expressed as the sum of a

series
flz) = Z cpet*®.
kE€Z
Note that the index k is allowed to be a negative integer. Then, the formula
giving the ¢y is very nice:

(f, eikx>

Gk = [etk=]2”
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that is,
1 7|'

:—2—7r .

Ck fz)e = de.

Note the presence of the negative sign in e~%%, which is due to the fact that
the inner product is Hermitian. Of course, the real case can be recovered
from the complex case. If f is a real-valued function, then we must have

ar =cg+c_r and by =i(ck —c_g)-

Also note that
1 T —ikx
o /_ i f(x)e ***dx

is defined not only for all discrete values k € Z, but for all k¥ € R, and that
if f is continuous over R, the integral makes sense. This suggests defining

fk) = /_ " f)e e,

called the Fourier transform of f. The Fourier transform analyzes the
function f in the “frequency domain” in terms of its spectrum of har-
monics. Amazingly, there is an inverse Fourier transform (change e~%2 to
et and divide by the scale factor 27) that reconstructs f (under certain
assumptions on f).

Some basics of Fourier series will be discussed more rigorously in Chapter
10. For more on Fourier analysis, we highly recommend Strang [165] for a
lucid introduction with lots of practical examples, and then move on to a
good real analysis text, for instance Lang [109, 110], or [145].

A very important property of Euclidean spaces of finite dimension is
that the inner product induces a canonical bijection (i.e., independent of
the choice of bases) between the vector space E and its dual E*.

Given a Euclidean space E, for any vector u € E, let ¢,: E — R be the
map defined such that

P (V) =u-v,

forallv e E.
Since the inner product is bilinear, the map ¢, is a linear form in E*.
Thus, we have a map b: E — E*, defined such that

b(u) = pu.

Lemma 6.2.4 Given a Fuclidean space E, the map b: E — E* defined
such that

b(u) = ¢u

is linear and injective. When E is also of finite dimension, the map b: E —
E* is a canonical isomorphism.
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Proof. That b: E — E* is a linear map follows immediately from the fact
that the inner product is bilinear. If ¢, = @, then ¢, (w) = @, (w) for all
w € E, which by definition of ¢, means that

U-wW=v-w
for all w € E, which by bilinearity is equivalent to
(v—u) - w=0

for all w € E, which implies that u = v, since the inner product is positive
definite. Thus, b: E — E* is injective. Finally, when FE is of finite dimension
n, we know that E* is also of dimension n, and then b: E — E* is bijective.

a

The inverse of the isomorphism b: E — E* is denoted by f: E* — E.

As a consequence of Lemma 6.2.4, if F is a Euclidean space of finite
dimension, every linear form f € E* corresponds to a unique u € E such
that

flwy=u-v,

for every v € E. In particular, if f is not the null form, the kernel of f,
which is a hyperplane H, is precisely the set of vectors that are orthogonal
to u.

Remarks:

{1) The “musical map” b: E — E* is not surjective when E has infinite
dimension. The result can be salvaged by restricting our attention to
continuous linear maps, and by assuming that the vector space E is
a Hilbert space (i.e., E is a complete normed vector space w.r.t. the
Euclidean norm). This is the famous “little” Riesz theorem (or Riesz
representation theorem).

(2) Lemma 6.2.4 still holds if the inner product on E is replaced by a
nondegenerate symmetric bilinear form ¢. We say that a symmetric
bilinear form ¢: E x E — R is nondegenerate if for every u € E,

if o(u,v)=0 forallve E, then u=0.
For example, the symmetric bilinear form on R* defined such that

o((z1, %2, T3,T4), (Y1,Y2,Y3,¥Y4)) = T1y1 + Toy2 + T3Ys — T4Ys

is nondegenerate. However, there are nonnull vectors u € R* such
that ¢(u, u) = 0, which is impossible in a Euclidean space. Such
vectors are called isotropic.

The existence of the isomorphism b: E — E* is crucial to the existence
of adjoint maps. The importance of adjoint maps stems from the fact that
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the linear maps arising in physical problems are often self-adjoint, which
means that f = f*. Moreover, self-adjoint maps can be diagonalized over
orthonormal bases of eigenvectors. This is the key to the solution of many
problems in mechanics, and engineering in general (see Strang [165]).

Let E be a Euclidean space of finite dimension n, and let f: E — E be
a linear map. For every u € E, the map

v u- f(v)

is clearly a linear form in £*, and by Lemma 6.2.4, there is a unique vector
in E denoted by f*(u) such that

fw)-v=mu-f(v),

for every v € E. The following simple lemma shows that the map f* is
linear.

Lemma 6.2.5 Given a Euclidean space E of finite dimension, for every
linear map f: E — E, there is a unique linear map f*: E — E such that

Fr)v=u-f(),

for allu,v € E. The map f* is called the adjoint of f (w.r.t. to the inner
product).

Proof. Given uj,us € FE, since the inner product is bilinear, we have
(u1 +u2) - f(v) =ur- f(v) +uz- f(v),
for all v € E, and
(F*(u1) + f(u2)) - v = ¥ (u1) - v + f*(u2) - v,
for all v € E, and since by assumption,

fr(ur) - v=mu - f(v)

and
[ (u2) - v=1uz- f(v),
for all v € F, we get
(" () + f*(u2)) - v = (u1 + u2) - f(v),

for all v € E. Since b is bijective, this implies that
f*(ur +u2) = f*(u1) + f* (u2).
Similarly,
(Au) - f(v) = Mu- f(v)),
for all v € E, and
Af*(w) - v = A(F"(u) - v),
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for all v € E, and since by assumption,

frw)-v=u-f(v),
for all v € E, we get

Af (W) -v = (M) - f(v),

for all v € E. Since b is bijective, this implies that

) = Af* (u).

Thus, f* is indeed a linear map, and it is unique, since b is a bijection. []
q

Linear maps f: £ — FE such that f = f* are called self-adjoint maps.
They play a very important role because they have real eigenvalues, and be-
cause orthonormal bases arise from their eigenvectors. Furthermore, many
physical problems lead to self-adjoint linear maps (in the form of symmetric
matrices).

Remark: Lemma 6.2.5 still holds if the inner product on F is replaced by
a nondegenerate symmetric bilinear form .

Linear maps such that f~! = f*, or equivalently
frof=fof =id,

also play an important role. They are linear isometries, or isometries. Ro-
tations are special kinds of isometries. Another important class of linear
maps are the linear maps satisfying the property

frof=folf
called normal linear maps. We will see later on that normal maps can
always be diagonalized over orthonormal bases of eigenvectors, but this
will require using a Hermitian inner product (over C).
Given two Euclidean spaces E and F, where the inner product on E
is denoted by (—, =) and the inner product on F is denoted by {—, —)a,
given any linear map f: £ — F', it is immediately verified that the proof

of Lemma 6.2.5 can be adapted to show that there is a unique linear map
f*: F — E such that

(f(u),v)2 = (u, F* (V)

for all w € E and all v € F. The linear map f* is also called the adjoint of

7.

Remark: Given any basis for £ and any basis for F, it is possible to
characterize the matrix of the adjoint f* of f in terms of the matrix of f,
and the symmetric matrices defining the inner products. We will do so with
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respect to orthonormal bases. Also, since inner products are symmetric, the
adjoint f* of f is also characterized by

fu)-v=u-f*(v),

for all u,v € E.

We can also use Lemma 6.2.4 to show that any Euclidean space of finite
dimension has an orthonormal basis.

Lemma 6.2.6 Given any nontrivial Euclidean space E of finite dimension
n > 1, there is an orthonormal basis (u1,...,u,) for E.

Proof. We proceed by induction on n. When n = 1, take any nonnull vector
v € E, which exists, since we assumed E nontrivial, and let

v
U= —

l[oll

If n > 2, again take any nonnull vector v € F, and let

ur = Y
F el

Consider the linear form ¢, associated with u;. Since u; # 0, by Lemma
6.2.4, the linear form ¢,,, is nonnull, and its kernel is a hyperplane H. Since
Yy, (w) = 0iff u;-w = 0, the hyperplane H is the orthogonal complement of
{u1}. Furthermore, since u; # 0 and the inner product is positive definite,
uy - uy # 0, and thus, uy ¢ H, which implies that E = H & Ru,. However,
since E is of finite dimension n, the hyperplane H has dimension n—1, and
by the induction hypothesis, we can find an orthonormal basis (us, . .., u,)
for H. Now, because H and the one dimensional space Ru; are orthogonal
and E = H ® Ruy, it is clear that (u1,...,u,) is an orthonormal basis for

E.O

There is a more constructive way of proving Lemma 6.2.6, using a pro-
cedure known as the Gram—-Schmidt orthonormalization procedure. Among
other things, the Gram—Schmidt orthonormalization procedure yields the
so-called QR-decomposition for matrices, an important tool in numerical
methods.

Lemma 6.2.7 Given any nontrivial Fuclidean space E of finite dimension

n > 1, from any basis (e1,...,e,) for E we can construct an orthonormal
basis (U1, - ..,un) for E, with the property that for every k, 1 < k < n, the
families (eq, .. .,ex) and (u1,...,ux) generate the same subspace.

Proof. We proceed by induction on n. For n =1, let

Uy = i
P el
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For n > 2, we also let

€1
Uy = 77
llexl]
and assuming that (up,...,ux) is an orthonormal system that generates
the same subspace as (ey, ..., ex), for every k with 1 < k < n, we note that
the vector
k
Upy1 = kg1 — D (Che1 - Ui) Us
i=1
is nonnull, since otherwise, because (u1,...,ux) and (ey,...,ex) generate
the same subspace, (e1,...,ex+1) would be linearly dependent, which is
absurd, since (e1,...,e,) is a basis. Thus, the norm of the vector Up

being nonzero, we use the following construction of the vectors uy and uj:

/

u
M My
1
and for the inductive step
’ u U;c+1
Ugy1 = €kl — Z(ek+l Usg) Ui, Ug+1 = Ak

g=1 k+1

where 1 <k <n — 1. It is clear that |ugy1]| =1, and since (u1,...,ux) is

an orthonormal system, we have
! = = =0
Upg Ui = €1 Ui — (€kt1 - W)U - U = €yl Uj — €1 - Uy = 0,

for all 4 with 1 < ¢ < k. This shows that the family (ui,...,uxs1) is
orthonormal, and since (ui,...,ux) and (ey,...,ex) generates the same
subspace, it is clear from the definition of ug4; that (ug,...,uxs1) and
(e1,...,ex+1) generate the same subspace. This completes the induction
step and the proof of the lemma. [}

Note that uj,, is obtained by subtracting from egii the projec-
tion of ex41 itself onto the orthonormal vectors wi,...,ux that have
already been computed. Then, ), is normalized. The Gram-Schmidt
orthonormalization procedure is illustrated in Figure 6.2.

Remarks:

1) The QR-decomposition can now be obtained very easily, but we
postpone this until Section 6.4.

(2) We could compute u}_ , using the formula

k '
€k4+1 - Uy
et = = 2 ( )
K2

i=1
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Figure 6.2. The Gram—Schmidt orthonormalization procedure

and normalize the vectors uj, at the end. This time, we are sub-
tracting from eg,; the projection of ex4; itself onto the orthogonal
vectors uj, ..., u}. This might be preferable when writing a computer
program.

(3) The proof of Lemma 6.2.7 also works for a countably infinite basis
for E, producing a countably infinite orthonormal basis.

Example 6.5 If we consider polynomials and the inner product

(f.9) = / g,

applying the Gram—Schmidt orthonormalization procedure to the polyno-
mials

1,z,22,...,z",...,
which form a basis of the polynomials in one variable with real coefficients,
we get a family of orthonormal polynomials Q,(z) related to the Legendre
polynomials.
The Legendre polynomials P,(z) have many nice properties. They are
orthogonal, but their norm is not always 1. The Legendre polynomials
P, () can be defined as follows. Letting f, be the function

falz) = (=* - 1)",

we define P, (x) as follows:

Py(z)=1, and Pp(z)= o]
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where f,(ln) is the nth derivative of f,.
They can also be defined inductively as follows:

P()(.’I,‘) = 1,
Pl(fl') =,
2n+1 n
Pn+1(.’L') = nt 1 IPn(.’E) — —’n,—|-—1 n_l(l').

It turns out that the polynomials @, are related to the Legendre
polynomials P, as follows:
_27(n!)?

As a consequence of Lemma 6.2.6 (or Lemma 6.2.7), given any Euclidean
space of finite dimension n, if (ey,...,e) is an orthonormal basis for E,
then for any two vectors u = uje; + -+ + unen and v = viey + - - - + Unén,
the inner product u - v is expressed as

n
uw-v=(ure; + -+ uUnen) - (Vi€ + -+ + Vnen) :Zuivi,
i=1

and the norm |u|| as

lull = llurer + - + unen|| =

We can also prove the following lemma regarding orthogonal spaces.

Lemma 6.2.8 Given any nontrivial Fuclidean space E of finite dimension
n > 1, for any subspace F of dimension k, the orthogonal complement
FL of F has dimension n — k, and E = F @ F+. Furthermore, we have
Fitt =P

Proof. From Lemma 6.2.6, the subspace F has some orthonormal basis
(w1, . ..,ut). This linearly independent family (ui, ..., ux) can be extended
to a basis (ui,-..,UksVk+1,---,Un), and by Lemma 6.2.7, it can be con-
verted to an orthonormal basis (u1, ..., un), which contains (u1,...,ux) as
an orthonormal basis of F. Now, any vector w = w11 + -+ + Wptp € E is
orthogonal to F iff w - u; = 0, for every i, where 1 < i < k, iff w; = 0 for
every i, where 1 < i < k. Clearly, this shows that (ug+1,-..,un) is a basis
of FL, and thus E = F @ F', and F has dimension n — k. Similarly, any
vector w = wiuy + - - - + wau, € E is orthogonal to FLiffw. u; =0, for
every i, where k + 1 < i < n, iff w; = 0 for every ¢, where k +1 < ¢ < n.
Thus, (u1,...,ux) is a basis of F+1, and F1+ = F.
We now define Euclidean affine spaces.

Definition 6.2.9 An affine space (E, Tf) is a Fuclidean affine space if

its underlying vector space E is a Euclidean vector space. Given any two
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points a,b € E, we define the distance between a and b, or length of the
segment (a, b), as ||ab||, the Euclidean norm of ab. Given any two pairs of
points (a,b) and (c, d), we define their inner product as ab-cd. We say that
(a,b) and (c,d) are orthogonal, or perpendicular, if ab - cd = 0. We say
that two afline subspaces F; and F; of E are orthogonal if their directions
Fy and F5 are orthogonal.

The verification that the distance defined in Definition 6.2.9 satisfies the
axioms of Definition 17.2.1 is immediate. Note that a Euclidean affine space
is a normed affine space, in the sense of Definition 17.2.3. We denote by E™
the Euclidean affine space obtained from the affine space A™ by defining
on the vector space R™ the standard inner product

1y Zm) - Y1y Um) = T1Y1 + - + TrnYm.

The corresponding Euclidean norm is

I(z1,...,zm)| = /23 4+ - + 22,.

6.3 Linear Isometries (Orthogonal
Transformations)

In this section we consider linear maps between Euclidean spaces that pre-
serve the Euclidean norm. These transformations, sometimes called rigid
motions, play an important role in geometry.

Definition 6.3.1 Given any two nontrivial Euclidean spaces E and F
of the same finite dimension n, a function f:E — F is an orthogonal
transformation, or a linear isometry, if it is linear and

IF ()l = I,

for all u € E.

Remarks:

(1) A linear isometry is often defined as a linear map such that

£ () = f()ll = llv— ull,

for all u,v € FE. Since the map f is linear, the two definitions
are equivalent. The second definition just focuses on preserving the
distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 6.3.1
is called a metric map, and a linear isometry is defined as a bijective
metric map.
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An isometry (without the word linear) is sometimes defined as a function
f: E — F (not necessarily linear) such that

1f(w) = F)]l = llv = ull;

for all u,v € E, i.e., as a function that preserves the distance. This require-
ment turns out to be very strong. Indeed, the next lemma shows that all
these definitions are equivalent when E and F are of finite dimension, and
for functions such that f(0) = 0.

Lemma 6.3.2 Given any two nontrivial Euclidean space E and F of the
same finite dimension n, for every function f:E — F, the following
properties are equivalent:

(1) f is a linear map and || f(w)|| = ||u||, for allu € E;
(2) 1£(v) - f@)| = lv — ull, for all u,v € E, and £(0) = 0;
(8) f(u)- f(v) =u-v, for allu,v € E.

Furthermore, such a map is bijective.

Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.
Assume that (2) holds. In fact, we shall prove a slightly stronger result.
We prove that if

() = F)ll = llv — ull

for all u,v € E, then for any vector 7 € E, the function g: E — F defined
such that

g(u) = f(r +u) — f(7)
for all u € E is a linear map such that g(0) = 0 and (3) holds. Clearly,
9(0) = f(r) — f(r) =0.
Note that from the hypothesis
£ () = f)l| = llv—ull
for all u,v € E, we conclude that
lg(v) — g()ll = If(r +v) = f(r) = (f(T +u) = F()l,
=f(r +v) = f(r+ v,
=lr+v—(r+u)l,

= [lv —ul|,
for all u,v € E. Since g(0) = 0, by setting u =0 in
llg(v) — g(u)ll = llv =,
we get

()l = llv]l
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for all v € E. In other words, g preserves both the distance and the norm.
To prove that g preserves the inner product, we use the simple fact that

2u-v = [luf? + |Joff* — |lu - v|?
for all u,v € E. Then, since g preserves distance and norm, we have

29(u) - g(v) = llg(w)|I* + llg()II* = lg(u) — g(v)II?
= [lvl” + llull ~ llu — ]®

=2u-v,

and thus g(u) - g(v) = u - v, for all u,v € E, which is (3).

In particular, if f(0) = 0, by letting 7 = 0, we have ¢ = f, and f
preserves the scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick
an orthonormal basis (ey,...,e,) for E. Since f preserves inner products,
(f(e1),..., f(en)) is also orthonormal, and since F' also has dimension 7,
it is a basis of F. Then note that for any u = uje; + - - - + upe,, we have

U; = U - €,

for all 4, 1 <1i < n. Thus, we have
Flu) = (fu)- f(e:)) fles),
=1

and since f preserves inner products, this shows that

n n
Flu)=> (u-e)fles) = > uif(es),
i=1 i=1
which shows that f is linear. Obviously, f preserves the Euclidean norm,
and (3) implies (1).

Finally, if f(u) = f(v), then by linearity f(v—u) = 0, so that ||f(v —u)]|
= 0, and since f preserves norms, we must have ||[v—u|| = 0, and thus u = v.
Thus, f is injective, and since E and F have the same finite dimension, f
is bijective. []

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies
(1) when f is not known to be linear, and to prove that f is surjective,
but the proof shows that (1) implies that f is injective.

(ii) In (2), when f does not satisfy the condition f(0) = 0, the proof
shows that f is an affine map. Indeed, taking any vector 7 as an
origin, the map g is linear, and

fr+u) = f(7) +g(u)

for all uw € E, proving that f is affine with associated linear map g.
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(iii) Paul Hughett showed me a nice proof of the following interesting fact:
The implication that (3) implies (1) holds if we also assume that f is
surjective, even if E has infinite dimension. Indeed, observe that

(f (A + pv) = Af(u) — pf(v)) - f(w)
= f(Au+ pv) - f(w) = Af(u) - f(w) — pf(v) - f(w)
=(du+pv) - w—-Au-w—pv-w=_0,

since f preserves the inner product. However, if f is surjective, every
z € E is of the form z = f(w) for some w € FE, and the above
equation implies that

(fQu+ pv) = Af(u) —pf(v)) - 2=0
for all z € F, which implies that
fOu+ pv) = Af(u) — pf(v) =0,
proving that f is linear.

In view of Lemma 6.3.2, we will drop the word “linear” in “linear isome-
try,” unless we wish to emphasize that we are dealing with a map between
vector spaces.

We are now going to take a closer look at the isometries f: E — E of a
Euclidean space of finite dimension.

6.4 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal
group and of orthogonal matrices.

Lemma 6.4.1 Let E be any Fuclidean space of finite dimension n, and let
f: E — E be any linear map. The following properties hold:

(1) The linear map f: E — E is an isometry iff
fof*=f*of=id

(2) For every orthonormal basis (e1,...,en) of E, if the matriz of f is A,
then the matriz of f* is the transpose AT of A, and f is an isometry
iff A satisfies the identities

AAT=ATA=1,,

where I, denotes the identity matrix of order n, iff the columns
of A form an orthonormal basis of E, iff the rows of A form an
orthonormal basis of E.
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Proof. (1) The linear map f: E — E is an isometry iff
fw) - flv) =u-v,
for all u,v € E, iff
@) v=Ff(u) flv)=u-v
for all u,v € E, which implies
(F(fw) —u)-v=0
for all u,v € E. Since the inner product is positive definite, we must have
frfw) —u=0
for all u € F, that is,
frof=fof =id
(2) If (e1,.-.,€,) is an orthonormal basis for E, let A = (a; ;) be the
matrix of f, and let B = (b; ;) be the matrix of f*. Since f* is characterized
by
fr(u)-v=u-f(v)

for all u,v € E, using the fact that if w = wie; + -+ + wpe, we have
wi =w - e for all k, 1 <k < n, letting u = e; and v = e;, we get

bji = f*(e:) - ej = ei - f(ej) = as j,
for all 4,5, 1 < 4,5 < n. Thus, B = AT. Now, if X and Y are arbitrary

matrices over the basis (e, ..., e,), denoting as usual the jth column of X
by X;, and similarly for Y, a simple calculation shows that

XTY = (X Yj)i<ij<n-
Then it is immediately verified that if X =Y = A, then
ATA=AAT =1,

iff the column vectors (A4;,...,A,) form an orthonormal basis. Thus, from
(1), we see that (2) is clear (also because the rows of A are the columns of

AN).O

Lemma 6.4.1 shows that the inverse of an isometry f is its adjoint f*.
Lemma 6.4.1 also motivates the following definition. The set of all real nxn
matrices is denoted by M, (R).

Definition 6.4.2 A real n X n matrix is an orthogonal matriz if
AAT =ATA=1,.

Remark: It is easy to show that the conditions A AT = I,, AT A = I,,, and
A"l = AT, are equivalent. Given any two orthonormal bases (uy,...,uy)
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and (vy,...,v,), if P is the change of basis matrix from (ui,...,un) to
(v1,...,v,) (i-e., the columns of P are the coordinates of the v; w.r.t.
(u1,...,upn)), since the columns of P are the coordinates of the vectors v;
with respect to the basis (uy, ..., uy), and since (vy, . ..,vy) is orthonormal,
the columns of P are orthonormal, and by Lemma 6.4.1 (2), the matrix P
is orthogonal.

The proof of Lemma 6.3.2 (3) also shows that if f is an isometry, then
the image of an orthonormal basis (u1,...,u,) is an orthonormal basis.
Students often ask why orthogonal matrices are not called orthonormal
matrices, since their columns (and rows) are orthonormal bases! I have
no good answer, but isometries do preserve orthogonality, and orthogonal
matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f: E — FE is indepen-
dent of the choice of a basis in E. Also, for every matrix A € M,(R), we
have det(A) = det(AT), and for any two n X n matrices A and B, we have
det(AB) = det(A) det(B) (for all these basic results, see Lang [107]). Then,
if f is an isometry, and A is its matrix with respect to any orthonormal ba-
sis, AAT = AT A = I, implies that det(A)? = 1, that is, either det(A) = 1,
or det{A) = —1. It is also clear that the isometries of a Euclidean space of
dimension n form a group, and that the isometries of determinant +1 form
a subgroup. This leads to the following definition.

Definition 6.4.3 Given a Euclidean space E of dimension n, the set of
isometries f: E — E forms a subgroup of GL(E) denoted by O(E), or
O(n) when E = R™, called the orthogonal group (of E). For every isometry
f, we have det(f) = £1, where det(f) denotes the determinant of f. The
isometries such that det(f) = 1 are called rotations, or proper isometries, or
proper orthogonal transformations, and they form a subgroup of the special
linear group SL(E) (and of O(E)), denoted by SO(E), or SO(n) when
E = R", called the special orthogonal group (of E). The isometries such
that det(f) = —1 are called improper isometries, or improper orthogonal
transformations, or flip transformations.

As an immediate corollary of the Gram-Schmidt orthonormalization
procedure, we obtain the QR-decomposition for invertible matrices.

6.5 @QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain
how the Gram—Schmidt orthonormalization procedure immediately yields
the QR-decomposition for matrices.
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Lemma 6.5.1 Given any real n xn matriz A, if A is invertible, then there
is an orthogonal matriz Q and an upper triangular matriz R with positive
diagonal entries such that A = QR.

Proof. We can view the columns of A as vectors Aq,...,A, in E* If
A is invertible, then they are linearly independent, and we can apply
Lemma 6.2.7 to produce an orthonormal basis using the Gram-Schmidt
orthonormalization procedure. Recall that we construct vectors Qx and @y,
as follows:
, @
R

and for the inductive step
k
Qi1

Qks1 = Akg1 — Z(Ak+1 Qi) Qi Qk+1 = 7,
Q41

where 1 < k < n — 1. If we express the vectors Ay in terms of the Q); and
Q}, we get the triangular system

Ay = [|@1]1Qn,

i=1

A= (45 Q) Qu+ -+ (45 Q) Qi+ -+ [Q51Qs,

An = (An - Ql)Q1 + -+ (An : Qn—l)Qn—l + ”Q;“Qn

Letting rex = ||Q%ll, and 7;; = A; - Q; (the reversal of ¢ and j on
the right-hand side is intentionall), where 1 < k < n, 2 < j < n, and
1 <4 < j—1, and letting ¢; ; be the ith component of Q;, we note that
a; j, the ith component of A;, is given by
@iy = TGt FTigQiet F7550,5 = Tt H 0Tt + T
If we let @ = (g;;), the matrix whose columns are the components of
the @Q;, and R = (r;;), the above equations show that A = QR, where
R is upper triangular (the reader should work this out on some concrete

examples for 2 x 2 and 3 x 3 matrices!). The diagonal entries r; x = ||Q}|| =
Ag - Qf are indeed positive. []

Remarks:

1) Because the diagonal entries of R are positive, it can be shown that
g
Q and R are unique.

(2) The QR-decomposition holds even when A is not invertible. In this
case, R has some zero on the diagonal. However, a different proof is
needed. We will give a nice proof using Householder matrices (see
Lemma 7.3.2, and also Strang [165, 166], Golub and Van Loan [75],
Trefethen and Bau [170], Kincaid and Cheney [100], or Ciarlet [33]).
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Example 6.6 Consider the matrix

0
A=10
1

— R O

5
1
1
We leave as an exercise to show that A = QR, with

Q:

—-o O
o= O
OO =

1 11
and R=}|0 4 1
0 0 5

Example 6.7 Another example of Q) R-decomposition is

11 2 1/vV2 1/vV2 0 V2 1/V2 V2
A=[0 0 1] = 0 0 1 0 1/vV2 V2
1 00 1/vV2 -1/V2 0 0 0 1

The QR-decomposition yields a rather efficient and numerically stable
method for solving systems of linear equations. Indeed, given a system
Az = b, where A is an n x n invertible matrix, writing A = QR, since Q is
orthogonal, we get

Rr=QTb,

and since R is upper triangular, we can solve it by Gaussian elimination, by
solving for the last variable z,, first, substituting its value into the system,
then solving for z,_1, etc. The QR-decomposition is also very useful in
solving least squares problems (we will come back to this later on), and
for finding eigenvalues. It can be easily adapted to the case where A is a
rectangular m X n matrix with independent columns (thus, n < m). In
this case, @ is not quite orthogonal. It is an m x n matrix whose columns
are orthogonal, and R is an invertible n x n upper diagonal matrix with
positive diagonal entries. For more on QR, see Strang [165, 166], Golub
and Van Loan [75], or Trefethen and Bau [170].

It should also be said that the Gram-Schmidt orthonormalization proce-
dure that we have presented is not very stable numerically, and instead, one
should use the modified Gram-Schmidt method. To compute Q5 , instead
of projecting Ax41 onto Q1, ..., Q% in a single step, it is better to perform
k projections. We compute Qi 1, Q%,1,--.,Qf4, as follows:

Qi1 = Ars1 — (Akt1- Q1) Qu,
QY = Qg1 — (Qigr - Qiv1) Qitas

where 1 < ¢ < k — 1. It is easily shown that Q},, = Q’,§+1. The reader is
urged to code this method.
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6.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in partic-
ular Voronoi diagrams and Delaunay triangulations, discussed in Chapter
9. In turn, Voronoi diagrams have applications in motion planning (see
O’Rourke [132]).

Euclidean geometry also has applications to matrix analysis. Recall that
a real n x n matrix A is symmetric if it is equal to its transpose AT. One
of the most important properties of symmetric matrices is that they have
real eigenvalues and that they can be diagonalized by an orthogonal matrix
(see Chapter 11). This means that for every symmetric matrix A, there is
a diagonal matrix D and an orthogonal matrix P such that

A=PDP'.

Even though it is not always possible to diagonalize an arbitrary matrix,
there are various decompositions involving orthogonal matrices that are of
great practical interest. For example, for every real matrix A, there is the
QR-decomposition, which says that a real matrix A can be expressed as

A=QR,

where @ is orthogonal and R is an upper triangular matrix. This can be
obtained from the Gram—Schmidt orthonormalization procedure, as we saw
in Section 6.5, or better, using Householder matrices, as shown in Section
7.3. There is also the polar decomposition, which says that a real matrix A
can be expressed as

A=Q5,

where @ is orthogonal and S is symmetric positive semidefinite (which
means that the eigenvalues of S are nonnegative; see Chapter 11). Such a
decomposition is important in continuum mechanics and in robotics, since
it separates stretching from rotation. Finally, there is the wonderful singular
value decomposition, abbreviated as SVD, which says that a real matrix A
can be expressed as

A=VDUT,

where U and V are orthogonal and D is a diagonal matrix with nonneg-
ative entries (see Chapter 12). This decomposition leads to the notion of
pseudo-inverse, which has many applications in engineering (least squares
solutions, etc). For an excellent presentation of all these notions, we highly
recommend Strang [166, 165], Golub and Van Loan [75], and Trefethen and
Bau [170].

The method of least squares, invented by Gauss and Legendre around
1800, is another great application of Euclidean geometry. Roughly speaking,
the method is used to solve inconsistent linear systems Az = b, where the
number of equations is greater than the number of variables. Since this
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is generally impossible, the method of least squares consists in finding a
solution z minimizing the Euclidean norm | Az — b||?, that is, the sum
of the squares of the “errors.” It turns out that there is always a unique
solution z+ of smallest norm minimizing || Az —b||%, and that it is a solution
of the square system

ATAz = ATp,

called the system of normal equations. The solution z* can be found either
by using the QR-decomposition in terms of Householder transformations,
or by using the notion of pseudo-inverse of a matrix. The pseudo-inverse
can be computed using the SVD decomposition. Least squares methods are
used extensively in computer vision; see Trucco and Verri [171], or Jain,
Katsuri, and Schunck [93]. More details on the method of least squares and
pseudo-inverses can be found in Section 13.1.

6.7 Problems

Problem 6.1 Prove Lemma 6.2.2.
Problem 6.2 Prove Lemma 6.2.3.

Problem 6.3 Let (ey,...,e,) be an orthonormal basis for £. If X and Y
are arbitrary n x n matrices, denoting as usual the jth column of X by Xj,
and similarly for Y, show that

Use this to prove that
ATA=AAT =1,

iff the column vectors (A;,...,A,) form an orthonormal basis. Show that
the conditions AAT =1I,, ATA=1,,and A~1 = AT are equivalent.

Problem 6.4 Given any two linear maps f: £ — F and g: F — E, where
dim(F) = n and dim(F) = m, prove that

(=AM det(go f —AL) = (—A)"det(fog— Aln),

and thus that go f and f o g have the same nonnull eigenvalues.
Hint. If A is an m X n matrix and B isan n X m matrix, observe that

AB-X1I,, Oy A XI —XI
B —-X1I,
and
A XI, B -XI,| |BA-XI, XB
I, Opm||—Im A - O -X I,

where X is a variable.
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Problem 6.5 (a) Let C; = (C1, R;) and C2 = (C2, R2) be two distinct
circles in the plane E? (where C; is the center and R; is the radius). What
is the locus of the centers of all circles tangent to both C; and Cy7

Hint. When is it one conic, when is it two conics?

(b) Repeat question (a) in the case where C; is a line.

(c) Given three pairwise distinct circles C; = (C1, R1), C2 = (Ca, Ry), and
C3 = (Cs3, R3) in the plane E2, prove that there are at most eight circles
simultaneously tangent to C;, Ca, and C3 (this is known as the problem
of Apollonius). What happens if the centers Cy,Cy, C3 of the circles are
collinear? In the latter case, show that there are at most two circles exterior
and tangent to Cy, Ca, and Cs.

Hint. You may want to use a carefully chosen inversion (see the problems
in Section 5.14, especially Problem 5.37).

(d) Prove that the problem of question (c) reduces to the problem of find-
ing the circles passing through a fixed point and tangent to two given circles.
In turn, by inversion, this problem reduces to finding all lines tangent to
two circles.

(e) Given four pairwise distinct spheres C; = (C1, Ry), C2 = (C2, Ra),
C3 = (Cs3,R3), and C4 = (C4, R4), prove that there are at most sixteen
spheres simultaneously tangent to Cy, Ca, C3, and C4. Prove that this prob-
lem reduces to the problem of finding the spheres passing through a fixed
point and tangent to three given spheres. In turn, by inversion, this problem
reduces to finding all planes tangent to three spheres.

Problem 6.6 (a) Given any two circles C; and C in E? of equations
2 +y>—2az—2by+ec=0 and z?+4y?—2d'z—-2by+c =0,

we say that C; and Cs are orthogonal if they intersect and if the tangents at
the intersection points are orthogonal. Prove that C; and Cy are orthogonal
iff

2(aa’ +bb') =c+ .
(b) For any given ¢ € R (c # 0), there is a pencil F of circles of equations
22492 —2ux —c=0,

where u € R is arbitrary. Show that the set of circles orthogonal to all
circles in the pencil F is the pencil F* of circles of equations

22 +y? —2uy+c=0,
where v € R is arbitrary.

Problem 6.7 Let P = {p1,...,pn} be a finite set of points in E3. Show
that there is a unique point ¢ such that the sum of the squares of the
distances from c to each p; is minimal. Find this point in terms of the p;.
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Problem 6.8 (1) Compute the real Fourier coefficients of the function
id(x) = z over [—m, n] and prove that

(sinx sin2z sin3z )
=2 — + — )

1 2 3

What is the value of the Fourier series at £7? What is the value of the
Fourier near =77 Do you find this surprising?

(2) Plot the functions obtained by keeping 1,2, 4,5, and 10 terms. What
do you observe around 77

Problem 6.9 The Dirac delta function (which is not a function!) is the
spike function s.t. §(k27) = +oo for all k € Z, and §(x) = 0 everywhere
else. It has the property that for “well-behaved” functions f (including
constant functions and trigonometric functions),

+7
| F®)s(t)dt = £(0).

(1) Compute the real Fourier coefficients of § over [—, 7], and prove that

1
6(x) = 2—(1 +2cosT + 2cos2r +2cos3x + - +2cosnx +---).
T

Also compute the complex Fourier coefficients of § over [—=, 7], and prove
that

1 : : , : ‘ A
6(x) — 2_ (1 + el.’t +e—1IE _'_ 6121: + 6—121 _'_ . + etn:c + e‘“’liE _'_ .. ) .
7r
(2) Prove that the partial sum of the first 2n 4 1 complex terms is
sin ((2n + 1)(z/2))
6 =
n(®@) 27 sin (x/2)

What is 6,,(0)?
(3) Plot 6,(x) for n = 10,20 (over [—m,]). Prove that the area under
the curve &, is independent of n. What is it?

Problem 6.10 (1) If an upper triangular n x n matrix R is invertible,
prove that its inverse is also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a
diagonal matrix.

If A is an invertible n x n matrix and if A = Q1 R; = Q2R2, where R,
and R, are upper triangular with positive diagonal entries and Q1,(J2 are
orthogonal, prove that 1 = Q2 and R; = R».

Problem 6.11 (1) Review the modified Gram-Schmidt method. Recall
that to compute Qj , ;, instead of projecting Ax+1 onto Q1,...,Qx in a sin-
gle step, it is better to perform k projections. We compute Q} , 1, Q% 1, .-
Q¥ as follows:

bl

Qi1 = Ary1 — (Ag+1- Q1) Q1
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Qi = Qi1 — (Qhp1 - Qir1) Qi1
where 1 <i<k-—1.

Prove that Q;,, = QF, .

(2) Write two computer programs to compute the Q R-decomposition of
an invertible matrix. The first one should use the standard Gram—Schmidt
method, and the second one the modified Gram—Schmidt method. Run
both on a number of matrices, up to dimension at least 10. Do you observe
any difference in their performance in terms of numerical stability?

Run your programs on the Hilbert matrix H, = (1/(¢ + j — 1))1<i j<n-
What happens?

Extra Credit. Write a program to solve linear systems of equations
Azx = b, using your version of the Q R-decomposition program, where A is
an n X n matrix.

Problem 6.12 Let E be a Euclidean space of finite dimension n, and let
(e1,--.,en) be an orthonormal basis for E. For any two vectors u,v € E,
the linear map u ® v is defined such that

u®u(z) = (v-x)u,

forall z € E. If U and V are the column vectors of coordinates of u and v
w.r.t. the basis (ey,...,e,), prove that u ® v is represented by the matrix

UTv.
What sort of linear map is © ® u when u is a unit vector?

Problem 6.13 Let ¢: E x E — R be a bilinear form on a real vector space
E of finite dimension n. Given any basis (e1,...,e,) of E, let A = (04 ;)
be the matrix defined such that

o = p(ei, €5),
1 <14,7 <n. We call A the matriz of ¢ w.T.t. the basis (e1,...,en)-

(a) For any two vectors = and y, if X and Y denote the column vectors
of coordinates of  and y w.r.t. the basis (ey,...,e,), prove that

p(z,y) = XTAY.

(b) Recall that A is a symmetric matrix if A = AT. Prove that ¢ is
symmetric if A is a symmetric matrix.

(c) If (f1,...,fn) is another basis of E and P is the change of basis
matrix from (e1,...,e,) to (fi1,--., fn), Prove that the matrix of ¢ w.r.t.
the basis (f1,-..,fn) is

PTAP.
The common rank of all matrices representing ¢ is called the rank of .

Problem 6.14 Let ¢: F x E — R be a symmetric bilinear form on a real
vector space E of finite dimension n. Two vectors x and y are said to be
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conjugate w.r.t. @ if ¢(z,y) = 0. The main purpose of this problem is to
prove that there is a basis of vectors that are pairwise conjugate w.r.t. .

(a) Prove that if ¢(z,z) = 0 for all z € E, then ¢ is identically null on
E.

Otherwise, we can assume that there is some vector x € E such that
(z,z) # 0. Use induction to prove that there is a basis of vectors that are
pairwise conjugate w.r.t. ¢.

For the induction step, proceed as follows. Let (e, e2,...,€e,) be a basis
of E, with ¢(e1,e1) # 0. Prove that there are scalars Az, ..., A, such that
each of the vectors

v; = €; + )\iel

is conjugate to e; w.r.t. ¢, where 2 < ¢ < n, and that (e1,v2,...,v) is a
basis.
(b) Let (e, . .., en) be a basis of vectors that are pairwise conjugate w.r.t.

¢, and assume that they are ordered such that

_ 027é0 iflSiST‘,
S0(‘3""3")‘{0 ifr+1<i<n,

where r is the rank of . Show that the matrix of ¢ w.r.t. (e1,...,e,) is a
diagonal matrix, and that

ez, y) = Z b;z:ys,
i=1

where z =7 zie; and y = > . ; vies.
Prove that for every symmetric matrix A, there is an invertible matrix
P such that

PTAP=D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 < p < r (where r is the rank of ¢},
such that ¢(u;,u;) > 0 for exactly p vectors of every basis (u1,...,un) of
vectors that are pairwise conjugate w.r.t. ¢ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (ui,...,uy), for any z € E,
we have

o(x,z) = a1x2 + -+ ap:c?, - a,,+1m12,+1 — e — o2,
where x = Z?zl z;u;, and that in the basis (vq,...,vn), for any xz € E, we
have

(p(.’L’,.’l:) = 51?4% +--+ ﬁqyg - :Gq+1yg+1 — = ﬁryzv

where z = Y7, yivi, with @; >0, 3, >0,1<i<r.
Assume that p > ¢ and derive a contradiction. First, consider z in the
subspace F' spanned by

(ula"'vupauT+l7'--aun)7
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and observe that ¢(z,z) > 0 if  # 0. Next, consider z in the subspace G
spanned by

(’Uq+1, e ,’UT),

and observe that ¢(x,z) < 0 if £ # 0. Prove that F N G is nontrivial (i.e.,
contains some nonnull vector), and derive a contradiction. This implies that
p < q. Finish the proof.

The pair (p,r — p) is called the signature of .

(d) A symmetric bilinear form ¢ is definite if for every x € E, if o(z,z) =
0, then z = 0.

Prove that a symmetric bilinear form is definite if its signature is either
(n,0) or (0,n). In other words, a symmetric definite bilinear form has rank
n and is either positive or negative.

(e) The kernel of a symmetric bilinear form ¢ is the subspace consisting of
the vectors that are conjugate to all vectors in E. We say that a symmetric
bilinear form ¢ is nondegenerate if its kernel is trivial (i.e., equal to {0}).

Prove that a symmetric bilinear form ¢ is nondegenerate iff its rank is n,
the dimension of E. Is a definite symmetric bilinear form ¢ nondegenerate?
What about the converse?

Prove that if ¢ is nondegenerate, then there is a basis of vectors that are
pairwise conjugate w.r.t. ¢ and such that ¢ is represented by the matrix

I, 0
0 -1,

where (p, q) is the signature of ¢.

(f) Given a nondegenerate symmetric bilinear form ¢ on E, prove that
for every linear map f: E — E, there is a unique linear map f*: E — F
such that

o(f(u), v) = p(u, f*(v)),

for all u,v € E. The map f* is called the adjoint of f (w.r.t. to v). Given
any basis (u1, - .., Un), if  is the matrix representing ¢ and A is the matrix
representing f, prove that f* is represented by Q1ATQ.

Prove that Lemma 6.2.4 also holds, i.e., the map b: E — E* is a canonical
isomorphism.

A linear map f: E — E is an isometry w.r.t. @ if

e(f(z), f(y)) = »(z, y)
for all z,y € E. Prove that a linear map f is an isometry w.r.t. ¢ iff
frof=fof =id

Prove that the set of isometries w.r.t. ¢ is a group. This group is denoted
by O(y), and its subgroup consisting of isometries having determinant +1
by SO(y). Given any basis of E, if Q is the matrix representing ¢ and A
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is the matrix representing f, prove that f € O(y) iff
ATQA=q.

Given another nondegenerate symmetric bilinear form % on E, we say
that ¢ and % are equivalent if there is a bijective linear map h: E — E
such that

¢($7 y) = (,O(h(l'), h(y))v

for all z,y € E. Prove that the groups of isometries O(yp) and O(1)) are
isomomorphic (use the map f — ho foh~! from O(y) to O(y)).

If ¢ is a nondegenerate symmetric bilinear form of signature (p, g}, prove
that the group O(y) is isomorphic to the group of n x n matrices A such

that
T Ip 0 . Ip 0
4 (0 “IQ>A_<0 ”Iq )

Remark: In view of question (f), the groups O(y) and SO(yp) are also
denoted by O(p,q) and SO(p,q) when ¢ has signature (p,q). They are
Lie groups. In particular, the group SO(3, 1), known as the Lorentz group,
plays an important role in the theory of special relativity.

Problem 6.15 (a) Let C be a circle of radius R and center O, and let P
be any point in the Euclidean plane E2. Consider the lines A through P
that intersect the circle C, generally in two points A and B. Prove that for
all such lines,

PA -PB = |PO|? - R%

Hint. If P is not on C, let B’ be the antipodal of B (i.e., OB’ = —OB).
Then AB - AB’ =0 and

PA - PB = PB'- PB = (PO — OB) - (PO + OB) = |[POJ|* - R2.

The quantity ||PO||? — R? is called the power of P w.r.t. C, and it is
denoted by P(P,C).
Show that if A is tangent to C, then A = B and

IPA|* = |POJ|* - R*.

Show that P is inside C iff P(P,C) < 0, on C iff P(P,C) = 0, outside
Cif P(P,C)>0.
If the equation of C is

2+ 4% —2az —2by+c¢ =0,
prove that the power of P = (z,y) w.r.t. C is given by
P(P,C) = z? + y% — 2az — 2by + c.
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(b) Given two nonconcentric circles C and C’, show that the set of points
having equal power w.r.t. C and C’ is a line orthogonal to the line through
the centers of C and C’. If the equations of C and C’ are

2+ y -2z —2by+c=0 and 2°+4y?—2a'z—2y+c =0,
show that the equation of this line is
2(a—a )z +2(b-b)y+c —-c=0.

This line is called the radical azis of C and C’.

(c) Given three distinct nonconcentric circles C, C’, and C”, prove that
either the three pairwise radical axes of these circles are parallel or that
they intersect in a single point w that has equal power w.r.t. C, C’, and C”.
In the first case, the centers of C, C’, and C” are collinear. In the second
case, if the power of w is positive, prove that w is the center of a circle I'
orthogonal to C, C’, and C”, and if the power of w is negative, w is inside
C, C', and C”.

(d) Given any k € R with k£ # 0 and any point a, recall that an inversion
of pole a and power k is a map h: (E® — {a}) — E” defined such that for
every z € E® — {a},

ax
h(z)=a+k——r7y.

llax]|?

For example, when n = 2, chosing any orthonormal frame with origin a, h
is defined by the map

@ (

When the centers of C, C’ and C” are not collinear and the power of w is
positive, prove that by a suitable inversion, C, ¢’ and C" are mapped to
three circles whose centers are collinear.

Prove that if three distinct nonconcentric circles C, C’, and C” have
collinear centers, then there are at most eight circles simultaneously tangent
to C, C’, and C”, and at most two for those exterior to C, C’, and C".

(e) Prove that an inversion in E3 maps a sphere to a sphere or to a plane.
Prove that inversions preserve tangency and orthogonality of planes and
spheres.

kx ky
$2+y2’ x2+y2 :
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The Cartan—Dieudonné Theorem

7.1 Orthogonal Reflections

In this chapter the structure of the orthogonal group is studied in more
depth. In particular, we prove that every isometry in O(n) is the compo-
sition of at most n reflections about hyperplanes (for n > 2, see Theorem
7.2.1). This important result is a special case of the “Cartan-Dieudonné
theorem” (Cartan [29], Dieudonné [47]). We also prove that every rotation
in SO(n) is the composition of at most n flips (for n > 3).

Hyperplane reflections are represented by matrices called Householder
matrices. These matrices play an important role in numerical methods,
for instance for solving systems of linear equations, solving least squares
problems, for computing eigenvalues, and for transforming a symmetric
matrix into a tridiagonal matrix. We prove a simple geometric lemma that
immediately yields the Q) R-decomposition of arbitrary matrices in terms of
Householder matrices.

Affine isometries are defined, and their fixed points are investigated.
First, we characterize the set of fixed points of an affine map. Using this
characterization, we prove that every affine isometry f can be written
uniquely as

f=tog, with tog=got,

where g is an isometry having a fixed point, and t is a translation by a

vector 7 such that ?(T) = 7, and with some additional nice properties
(see Lemma 7.6.2). This is a generalization of a classical result of Chasles

J. Gallier, Geometric Methods and Applications

© Springer Science+Business Media New York 2001
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about (proper) rigid motions in R?® (screw motions). We also show that the
Cartan-Dieudonné theorem can be generalized to affine isometries: Every
rigid motion in Is(n) is the composition of at most n affine reflections if
it has a fixed point, or else of at most n + 2 affine reflections. We prove
that every rigid motion in SE(n) is the composition of at most n flips (for
n > 3). Finally, the orientation of a Euclidean space is defined, and we
discuss volume forms and cross products.

Orthogonal symmetries are a very important example of isometries. First
let us review the definition of projections. Given a vector space E, let F
and G be subspaces of E that form a direct sum FE = F @ G. Since every
u € E can be written uniquely as u = v + w, where v € F and w € G,
we can define the two projections pp: E — F and pg: E — G such that
pr(u) = v and pg(u) = w. It is immediately verified that pc and pF are
linear maps, and that p% = pr, p% = pg, pr ope = pc o pr = 0, and
pr + pc = id.

Definition 7.1.1 Given a vector space E, for any two subspaces F' and
G that form a direct sum E = F & G, the symmetry (or reflection) with
respect to F' and parallel to G is the linear map s: E — E defined such that
s(u) = 2pr(u) — u,
for every u € E.
Because pr + pe = id, note that we also have
s(u) = pr(u) — pa(u)
and
s(u) = u — 2pe(u),

s2 =1id, s is the identity on F, and s = —id on G. We now assume that F
is a Euclidean space of finite dimension.

Definition 7.1.2 Let E be a Euclidean space of finite dimension n. For
any two subspaces F' and G, if F and G form a direct sum £ = F & G
and F and G are orthogonal, i.e., F = G, the orthogonal symmetry (or
reflection) with respect to F' and parallel to G is the linear map s: E' — E
defined such that

s(u) = 2pp(u) — u,

for every u € E. When F is a hyperplane, we call s a hyperplane symmetry
with respect to F (or reflection about F'), and when G is a plane (and thus
dim(F) = n — 2), we call s a flip about F.

A reflection about a hyperplane F is shown in Figure 7.1.
For any two vectors u,v € E, it is easily verified using the bilinearity of
the inner product that

llu+ )1 = flu = vl|* = 4(u - v).
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pa(u)

pr(u)

—pe(u) ‘I s(u)
|

Figure 7.1. A reflection about a hyperplane F

Then, since

u = pr(u) + pa(u)

and

s(u) = pr(u) — pe(u),

since F' and G are orthogonal, it follows that

pr(u) - pe(v) =0,
and thus,

s()ll = llull,

so that s is an isometry.

Using Lemma 6.2.7, it is possible to find an orthonormal basis (ey, . .., e,)
of E consisting of an orthonormal basis of F and an orthonormal basis of
G. Assume that F' has dimension p, so that G has dimension n — p. With
respect to the orthonormal basis (ey,...,e,), the symmetry s has a matrix

of the form
I, 0
0 ~I,, )

Thus, det(s) = (—1)""?, and s is a rotation iff n — p is even. In particular,
when F' is a hyperplane H, we have p =n — 1 and n — p = 1, so that s is
an improper orthogonal transformation. When F = {0}, we have s = —id,
which is called the symmetry with respect to the origin. The symmetry
with respect to the origin is a rotation iff n is even, and an improper
orthogonal transformation iff n is odd. When n is odd, we observe that
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every improper orthogonal transformation is the composition of a rotation
with the symmetry with respect to the origin. When G is a plane, p = n—2,
and det(s) = (=1)% = 1, so that a flip about F is a rotation. In particular,
when n = 3, F is a line, and a flip about the line F is indeed a rotation of
measure 7.

Remark: Given any two orthogonal subspaces F, G forming a direct sum
E = F @G, let f be the symmetry with respect to F' and parallel to G,
and let g be the symmetry with respect to G and parallel to F'. We leave
as an exercise to show that

fog=gof=—id.

When F = H is a hyperplane, we can give an explicit formula for s(u)
in terms of any nonnull vector w orthogonal to H. Indeed, from

u = pu(u) +pc(u),
since pg(u) € G and G is spanned by w, which is orthogonal to H, we have
pc(u) = Aw
for some A € R, and we get

u-w = A,

and thus
pc(u) = (rru;”? w
Since
s(u) = u — 2pc(u),
we get
s(u) =u—2 (IIILTIT}"’_) w

Such reflections are represented by matrices called Householder matrices,
and they play an important role in numerical matrix analysis (see Kincaid
and Cheney [100] or Ciarlet [33]). Householder matrices are symmetric and
orthogonal. It is easily checked that over an orthonormal basis (e1, .-, €n),
a hyperplane reflection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

wwT wwT

= -2 =1 -2 —
H=In =2y = = 2
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where W is the column vector of the coordinates of w over the basis

{e1,...,en), and I, is the identity n x n matrix. Since
(u- w)
pa(u) = 5w,
[[wlf?

the matrix representing pg is

wwT
WTWw’
and since py + pe = id, the matrix representing py is
wwT
CWTWS
These formulae will be used in Section 8.1 to derive a formula for a rotation
of R3, given the direction w of its axis of rotation and given the angle 8 of
rotation.

The following fact is the key to the proof that every isometry can be
decomposed as a product of reflections.

I,

Lemma 7.1.3 Let E be any nontrivial Euclidean space. For any two vec-
tors u,v € E, if |u|| = |lv|l, then there is a hyperplane H such that the
reflection s about H maps u to v, and if u # v, then this reflection is
unique.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise,
we must have H = {v — u}*, and by the above formula,

(u-(v—u)) 2f|ul|? = 2u - v
stuy=u—-2-———L (v-u)=u+ " (v—u),
) R [CEEIER
and since
(v = w)|I? = JJull® + ||v]|® — 2u - v
and ||u| = ||v||, we have

Iw = wl? = 2)ju)l? - 2u - v,

and thus, s(u) =v. J

@ If E is a complex vector space and the inner product is Hermitian,

Lemma 7.1.3 is false. The problem is that the vector v—u does not
work unless the inner product u - v is real! We will see in the next chapter
that the lemma can be salvaged enough to yield the QR-decomposition in
terms of Householder transformations.

Using the above property, we can prove a fundamental property of
isometries: They are generated by reflections about hyperplanes.
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7.2 The Cartan—Dieudonné Theorem for Linear
Isometries

The fact that the group SO(n) of linear isometries is generated by the
reflections is a special case of a theorem known as the Cartan-Dieudonné
theorem. Elie Cartan proved a version of this theorem early in the twentieth
century. A proof can be found in his book on spinors [29], which appeared
in 1937 (Chapter I, Section 10, pages 10-12). Cartan’s version applies to
nondegenerate quadratic forms over R or C. The theorem was generalized
to quadratic forms over arbitrary fields by Dieudonné [47]. One should also
consult Emil Artin’s book [4], which contains an in-depth study of the
orthogonal group and another proof of the Cartan-Dieudonné theorem.

First, let us review the notions of eigenvalues and eigenvectors. Recall
that given any linear map f: E — FE, a vector u € E is called an eigenvector,
or proper vector, or characteristic vector, of f if there is some A € K such
that

fw) = Au.

In this case, we say that u € E is an eigenvector associated with A. A scalar
) € K is called an eigenvalue, or proper value, or characteristic value, of
f if there is some nonnull vector u # 0 in E such that

f(u) = Au,

or equivalently if Ker (f — Aid) # {0}. Given any scalar A € K, the set
of all eigenvectors associated with A is the subspace Ker (f — Mid), also
denoted by Ex(f) or E(}, f), called the eigenspace associated with A, or
proper subspace associated with A.

Theorem 7.2.1 Let E be a Euclidean space of dimension n > 1. Every
isometry f € O(E) that is not the identity is the composition of at most n
reflections. When n > 2, the identity is the composition of any reflection
with itself.

Proof. We proceed by induction on n. When n = 1, every isometry f €
O(E) is either the identity or —id, but —id is a reflection about H = {0}.
When n > 2, we have id = s o s for every reflection s. Let us now consider
the case where n > 2 and f is not the identity. There are two subcases.

Case 1. f admits 1 as an eigenvalue, i.e., there is some nonnull vector w
such that f(w) = w. In this case, let H be the hyperplane orthogonal to
w, so that E = H @ Rw. We claim that f(H) € H. Indeed, if

v-w=0
for any v € H, since f is an isometry, we get

f) - f(w) =v-w=0,
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and since f(w) = w, we get

f)-w=Ff)- flw) =0,

and thus f(v) € H. Furthermore, since f is not the identity, f is not the
identity of H. Since H has dimension n — 1, by the induction hypothesis
applied to H, there are at most k < n — 1 reflections s, ..., s; about some
hyperplanes Hy,...,H; in H, such that the restriction of f to H is the
composition s o -+ o s7. Each s; can be extended to a reflection in E as
follows: If H = H; & L; (where L; = Hz—l, the orthogonal complement of
H; in H), L = Rw, and F; = H; & L, since H and L are orthogonal,
F; is indeed a hyperplane, £ = F; & L; = H; ® L & L;, and for every
u=h+Awe H® L =F, since

si(h) = pu.(h) — pr.(h),
we can define s; on E such that
s;(h 4+ dw) = py, (k) + Aw — pr, (h),
andsincehe Hywe L, F;=H,®L,and H=H,; ® L,;, we have
si(h + dw) = pp,(h 4+ dw) — pr, (b + Aw),
which defines a reflection about F; = H; @ L. Now, since f is the identity
on L = Rw, it is immediately verified that f = sy o0---0s8;, with k <n-—1.

Case 2. f does not admit 1 as an eigenvalue, i.e., f(u) # u for all u # 0.
Pick any w # 0 in E, and let H be the hyperplane orthogonal to f(w)—w.
Since f is an isometry, we have ||f(w)| = ||w||, and by Lemma 7.1.3, we
know that s(w) = f(w), where s is the reflection about H, and we claim
that s o f leaves w invariant. Indeed, since s? = id, we have

s(F(w)) = s(s(w)) = w.
2

Since s* = id, we cannot have s o f = id, since this would imply that
f = s, where s is the identity on H, contradicting the fact that f is not
the identity on any vector. Thus, we are back to Case 1. Thus, there are
k < n — 1 hyperplane reflections such that so f = s o--- 0 s, from which
we get

f:sosko...osl,

with at most k + 1 < n reflections. []

Remarks:

(1) A slightly different proof can be given. Either f is the identity, or
there is some nonnull vector u such that f(u) # u. In the second
case, proceed as in the second part of the proof, to get back to the
case where f admits 1 as an eigenvalue.
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L

Figure 7.2. An isometry f as a composition of reflections, when 1 is an eigenvalue

of f
()

3)

(4)

Theorem 7.2.1 still holds if the inner product on E is replaced by
a nondegenerate symmetric bilinear form ¢, but the proof is a lot
harder.

The proof of Theorem 7.2.1 shows more than stated. If 1 is an eigen-
value of f, for any eigenvector w associated with 1 (i.e., f(w) = w,
w # 0), then f is the composition of k¥ < n — 1 reflections about
hyperplanes F; such that F; = H; & L, where L is the line Rw and
the H; are subspaces of dimension n — 2 all orthogonal to L (the H;
are hyperplanes in H). This situation is illustrated in Figure 7.2.

If 1 is not an eigenvalue of f, then f is the composition of k¥ < n
reflections about hyperplanes H, F},..., Fx_1, such that F; = H; &
L, where L is a line intersecting H, and the H; are subspaces of
dimension n — 2 all orthogonal to L (the H; are hyperplanes in L+).
This situation is illustrated in Figure 7.3.

It is natural to ask what is the minimal number of hyperplane re-
flections needed to obtain an isometry f. This has to do with the
dimension of the eigenspace Ker (f — id) associated with the eigen-
value 1. We will prove later that every isometry is the composition of
k hyperplane reflections, where

k = n — dim(Ker (f — id)),

and that this number is minimal (where n = dim(E)).
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L_L

Figure 7.3. An isometry f as a composition of reflections when 1 is not an
eigenvalue of f

When n = 2, a reflection is a reflection about a line, and Theorem 7.2.1
shows that every isometry in O(2) is either a reflection about a line or a
rotation, and that every rotation is the product of two reflections about
some lines. In general, since det(s) = —1 for a reflection s, when n > 3 is
odd, every rotation is the product of an even number less than or equal
to n — 1 of reflections, and when n is even, every improper orthogonal
transformation is the product of an odd number less than or equal to n — 1
of reflections.

In particular, for n = 3, every rotation is the product of two reflections
about planes. When n is odd, we can say more about improper isometries.
Indeed, when n is odd, every improper isometry admits the eigenvalue —1.
This is because if E is a Euclidean space of finite dimension and f: E — E
is an isometry, because || f(u)|| = ||lu|| for every u € E, if X is any eigenvalue
of f and u is an eigenvector associated with A, then

IF @I = IAull = [Alfjull = |lul,

which implies |A| = 1, since u # 0. Thus, the real eigenvalues of an isometry
are either +1 or —1. However, it is well known that polynomials of odd
degree always have some real root. As a consequence, the characteristic
polynomial det(f — Aid) of f has some real root, which is either +1 or
—1. Since f is an improper isometry, det(f) = —1, and since det(f) is the
product of the eigenvalues, the real roots cannot all be +1, and thus —1 is
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an eigenvalue of f. Going back to the proof of Theorem 7.2.1, since —1 is an
eigenvalue of f, there is some nonnull eigenvector w such that f(w) = —w.
Using the second part of the proof, we see that the hyperplane H orthogonal
to f(w) —w = —2w is in fact orthogonal to w, and thus f is the product of
k < n reflections about hyperplanes H, F, ..., Fy_1 such that F; = H; ® L,
where L is a line orthogonal to H, and the H; are hyperplanes in H = L+
orthogonal to L. However, k must be odd, and so k—1 is even, and thus the
composition of the reflections about Fi,..., Fx_; is a rotation. Thus, when
n is odd, an improper isometry is the composition of a reflection about a
hyperplane H with a rotation consisting of reflections about hyperplanes
Fy, ..., Fy_; orthogonal to H. In particular, when n = 3, every improper
orthogonal transformation is the product of a rotation with a reflection
about a plane orthogonal to the axis of rotation.

Using Theorem 7.2.1, we can also give a rather simple proof of the clas-
sical fact that in a Euclidean space of odd dimension, every rotation leaves
some nonnull vector invariant, and thus a line invariant.

If X\ is an eigenvalue of f, then the following lemma shows that the or-
thogonal complement E\(f)* of the eigenspace associated with X is closed
under f.

Lemma 7.2.2 Let E be a Fuclidean space of finite dimension n, and let
f:E — E be an isometry. For any subspace F of E, if f(F) = F, then
f(FYYCFt and E=F o F*.

Proof. We just have to prove that if w € F is orthogonal to every u € I,
then f(w) is also orthogonal to every u € F. However, since f(F) = F, for
every v € F, there is some u € F such that f(u) = v, and we have

flw)-v=fw) flu)=w-u,

since f is an isometry. Since we assumed that w € E is orthogonal to every
u € F, we have

w-u =0,
and thus

f(w).'U:O’

and this for every v € F. Thus, f(F*) C F*. The fact that E = F @ F*
follows from Lemma 6.2.8. []

Lemma 7.2.2 is the starting point of the proof that every orthogonal
matrix can be diagonalized over the field of complex numbers. Indeed, if A is
any eigenvalue of f, then f(Ex(f)) = Ex(f), where E»(f) is the eigenspace
associated with A, and thus the orthogonal Ej(f)* is closed under f, and
E = E\(f) ® Ex(f)*. The problem over R is that there may not be any
real eigenvalues. However, when n is odd, the following lemma shows that
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every rotation admits 1 as an eigenvalue (and similarly, when n is even,
every improper orthogonal transformation admits 1 as an eigenvalue).

Lemma 7.2.3 Let E be a Euclidean space.

(1) If E has odd dimension n = 2m + 1, then every rotation f admits 1
as an eigenvalue and the eigenspace F' of all eigenvectors left invari-
ant under f has an odd dimension 2p + 1. Furthermore, there is an
orthonormal basis of E, in which f is represented by a matrix of the

form
Rom-p) 0
0 I 2p+1 ’

where Ry(m_p) is a rotation matriz that does mot have 1 as an
etgenvalue.

(2) If E has even dimension n = 2m, then every improper orthogonal
transformation f admits 1 as an eigenvalue and the eigenspace F of
all eigenvectors left invariant under f has an odd dimension 2p +
1. Furthermore, there is an orthonormal basis of E, in which f is
represented by a matriz of the form

Sam-p)-1 0
0 I2p+1 ’

where Sa(m_p)—1 s an improper orthogonal matriz that does not have
1 as an eigenvalue.

Proof. We prove only (1), the proof of (2) being similar. Since f is a rota-
tion and n = 2m + 1 is odd, by Theorem 7.2.1, f is the composition of an
even number less than or equal to 2m of reflections. From Lemma 2.11.1,
recall the Grassmann relation

dim(M) + dim(N) = dim(M + N) + dim (M N N),

where M and N are subspaces of E. Now, if M and N are hyperplanes,
their dimension is n—1, and thus dim (M N N) > n—2. Thus, if we intersect
k < n hyperplanes, we see that the dimension of their intersection is at least
n—k. Since each of the reflections is the identity on the hyperplane defining
it, and since there are at most 2m = n — 1 reflections, their composition
is the identity on a subspace of dimension at least 1. This proves that 1 is
an eigenvalue of f. Let F' be the eigenspace associated with 1, and assume
that its dimension is g. Let G = F1 be the orthogonal of F. By Lemma
7.2.2, G is stable under f, and F = F @ G. Using Lemma 6.2.7, we can
find an orthonormal basis of E consisting of an orthonormal basis for G
and orthonormal basis for F'. In this basis, the matrix of f is of the form

R2m+1—q 0
0 I,)
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Thus, det(f) = det(R), and R must be a rotation, since f is a rotation and
det(f) = 1. Now, if f left some vector v # 0 in G invariant, this vector
would be an eigenvector for 1, and we would have u € F, the eigenspace
associated with 1, which contradicts £ = F @ G. Thus, by the first part of
the proof, the dimension of G must be even, since otherwise, the restriction
of f to G would admit 1 as an eigenvalue. Consequently, ¢ must be odd,
and R does not admit 1 as an eigenvalue. Letting ¢ = 2p + 1, the lemma is
established. []

An example showing that Lemma 7.2.3 fails for n even is the following
rotation matrix (when n = 2):

cosf —sind
R_(sin0 cosH)'
The above matrix does not have real eigenvalues for 8 # k.

It is easily shown that for n = 2, with respect to any chosen orthonormal
basis (e;, e2), every rotation is represented by a matrix of form

[ cosf —sinf

" \sind cosd
where 6 € [0,27[, and that every improper orthogonal transformation is
represented by a matrix of the form

g= cosf  siné
" \sinf -—cosf /"
In the first case, we call 8 € [0,27] the measure of the angle of rotation
of R w.r.t. the orthonormal basis (e, e2). In the second case, we have a
reflection about a line, and it is easy to determine what this line is. It is

also easy to see that S is the composition of a reflection about the z-axis
with a rotation (of matrix R).

@ We refrained from calling # “the angle of rotation,” because there

are some subtleties involved in defining rigorously the notion of
angle of two vectors (or two lines). For example, note that with respect to
the “opposite basis” (e, €1), the measure § must changed to 27 — 6 (or —6
if we consider the quotient set R/27 of the real numbers modulo 27). We
will come back to this point after having defined the notion of orientation
(see Section 7.8).

It is easily shown that the group SO(2) of rotations in the plane is
abelian. First, recall that every plane rotation is the product of two reflec-
tions (about lines), and that every isometry in O(2) is either a reflection or
a rotation. To alleviate the notation, we will omit the composition operator
o, and write rs instead of 7 o s. Now, if r is a rotation and s is a reflection,
rs being in O(2) must be a reflection (since det(rs) = det(r) det(s) = —1),
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and thus (rs)? = id, since a reflection is an involution, which implies that

srs =771,
Then, given two rotations r; and 7o, writing r; as 7y = s28; for two
reflections s1, s3, we have

-1 -1 -1 -1 —1
TATaTy = 828172(8281)7 " = 82817287 S5 = $281T281S2 = STy 'S = Ta,

since srs = r~1! for all reflections s and rotations r, and thus ri7e = ror;.
We could also perform the following calculation, using some elementary
trigonometry:

cosf  sind cosyy  siny )\  fcos(p+¢)  sin(p+ )
sinf —cosé sinyy —cosy ) \sin(p+vy) —cos(p+7) /"

The above also shows that the inverse of a rotation matrix

_ f(cosf —sind

- ( sin@  coséd )
is obtained by changing 6 to —@ (or 27 — 8)). Incidentally, note that in
writing a rotation 7 as the product of two reflections r = s8¢, the first
reflection s; can be chosen arbitrarily, since s? = id, r = (rs1)s;, and rs;
is a reflection.

For n = 3, the only two choices for p are p = 3, which corresponds to
the identity, or p = 1, in which case f is a rotation leaving a line invariant.
This line D is called the azis of rotation. The rotation R behaves like a
two-dimensional rotation around the axis of rotation. Thus, the rotation
R is the composition of two reflections about planes containing the axis of
rotation D and forming an angle /2. This is illustrated in Figure 7.4.

The measure of the angle of rotation 6 can be determined through its
cosine via the formula

cosf = u- R(u),

where u is any unit vector orthogonal to the direction of the axis of rotation.
However, this does not determine 6§ € [0, 27| uniquely, since both 8 and
2w — 6 are possible candidates. What is missing is an orientation of the
plane (through the origin) orthogonal to the axis of rotation. We will come
back to this point in Section 7.8.

In the orthonormal basis of the lemma, a rotation is represented by a
matrix of the form

cosf —sinf 0
R=| siné cosf8 O
0 0 1

Remark: For an arbitrary rotation matrix A, since a;1 + ag2 + ass (the
trace of A) is the sum of the eigenvalues of A, and since these eigenvalues
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9/2

/

Figure 7.4. 3D rotation as the composition of two reflections

are cos @ +isin 6, cos§ —isin @, and 1, for some 8 € [0, 27|, we can compute
cos f from

1+2cosf =ay; +ass+ass.

It is also possible to determine the axis of rotation (see the problems).

An improper transformation is either a reflection about a plane or the
product of three reflections, or equivalently the product of a reflection about
a plane with a rotation, and we noted in the discussion following Theorem
7.2.1 that the axis of rotation is orthogonal to the plane of the reflection.
Thus, an improper transformation is represented by a matrix of the form

cos@ —sinf O
S = sinf cosf O
0 0 -1

When n > 3, the group of rotations SO(n) is not only generated by hy-
perplane reflections, but also by flips (about subspaces of dimension 1 — 2).
We will also see, in Section 7.4, that every affine rigid motion of determinant
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+1 can be expressed as the composition of n flips, which is perhaps even
more surprising! The proof of these results uses the following key lemma.

Lemma 7.2.4 Given any Euclidean space E of dimension n > 3, for any
two reflections hy and ho about some hyperplanes H, and Hs, there exist
two flips fi1 and fa such that hgohy = fao f).

Proof. If hy = ho, it is obvious that
h10h2=h10h1 :id=f10f1
for any flip f1. If Ay # ha, then Hy N Hy = F, where dim(F) = n — 2 (by
the Grassmann relation). We can pick an orthonormal basis (ey,...,e,)
of E such that (ej,...,ep—2) is an orthonormal basis of F. We can also
extend (ey,...,e,_2) to an orthonormal basis (ey,...,en_2,u1,v;) of E,
where (e1,...,e,—2,u1) is an orthonormal basis of Hy, in which case
en—1 = cos By uy + sin by vy,
en = sinfy u; — cos By vy,
for some #; € [0,27]. Since h, is the identity on H; and v; is orthogonal
to Hy, it follows that hq{u;) = u1, h1(v1) = —v1, and we get
hi(en—1) = cos 61 u; — sinfy v,
hi(en) = sinf; u; + cos; vy.
After some simple calculations, we get
hi(en—-1) = cos201 e,_1 +sin 26, ey,
hi(en) =sin26; e,_; — cos 26 e,,.

As a consequence, the matrix A; of h; over the basis (ej,...,e,) is of the
form
I,_» 0 0
A= 0 cos26; sin26,
0 sin26; —cos?26;
Similarly, the matrix A; of hy over the basis (ey,...,e,) is of the form
I,_» 0 0
Ay = 0 cos 260,  sin 20,

0 sin260, — cos 26,

Observe that both A; and A; have the eigenvalues —1 and +1 with mul-
tiplicity n — 1. The trick is to observe that if we change the last entry in
I from +1 to —1 (which is possible since n > 3), we have the following
product AxAq:

I,._3 0 0 0 I,z 0 0 0
0 -1 0 0 0 -1 0 0
0 0 cos20, sin26, 0 0 cos26; sin26;
0 0 sin20; —cos26, 0 0 sin26; —cos26;
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Now, the two matrices above are clearly orthogonal, and they have the
eigenvalues —1, —1, and +1 with multiplicity n — 2, which implies that the
corresponding isometries leave invariant a subspace of dimension n — 2 and
act as —id on its orthogonal complement (which has dimension 2). This
means that the above two matrices represent two flips f; and f> such that

hpohi = fao0 f1.0

Using Lemma 7.2.4 and the Cartan—-Dieudonné theorem, we obtain the
following characterization of rotations when n > 3.

Theorem 7.2.5 Let E be a Fuclidean space of dimension n > 3. Every
rotation f € SO(E) is the composition of an even number of flips f =
fok © -+~ o f1, where 2k < n. Furthermore, if u # 0 is invariant under f
(i.e., u € Ker (f —id)), we can pick the last flip for such that u € Fi,
where Fyi is the subspace of dimension n — 2 determining for .

Proof. By Theorem 7.2.1, the rotation f can be expressed as an even num-
ber of hyperplane reflections f = sgi 0 Sgk_1 0 -+ 0 89 0 81, with 2k < n.
By Lemma 7.2.4, every composition of two reflections sg; 0 s2;—; can be
replaced by the composition of two flips fa; 0 fo;—1 (1 < ¢ < k), which
yields f = for 0+« - o fi, where 2k < n.

Assume that f(u) = u, with u # 0. We have already made the remark
that in the case where 1 is an eigenvalue of f, the proof of Theorem 7.2.1
shows that the reflections s; can be chosen so that s;(u) = u. In particu-
lar, if each reflection s; is a reflection about the hyperplane H;, we have
u € Hog1 N Hok. Letting F = Hok_1 N Hok, pick an orthonormal basis
(e1,.-.,€n—3,€n_2) Of F, where

. U
n—-2 = 77"
flul
The proof of Lemma 7.2.4 yields two flips for—1 and faor such that

fok(en—2) = —en—2 and sk © Sok—~1 = for © fok—1,

since the (n—2)th diagonal entry in both matrices is —1, which means that
€n_9 € FZL,C, where F5; is the subspace of dimension n — 2 determining for.-
Since u = ||u||en—2, we also have u € Fit. []

Remarks:

(1) It is easy to prove that if f is a rotation in SO(3) and if D is its axis
and 0 is its angle of rotation, then f is the composition of two flips
about lines D; and D orthogonal to D and making an angle 6/2.

(2) It is natural to ask what is the minimal number of flips needed to
obtain a rotation f (when n > 3). As for arbitrary isometries, we will
prove later that every rotation is the composition of k flips, where

k =n —dim(Ker (f — id)),
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and that this number is minimal (where n = dim(FE)).

We now show that hyperplane reflections can be used to obtain another
proof of the Q@ R-decomposition.

7.3 QR-Decomposition Using Householder
Matrices

First, we state the result geometrically. When translated in terms of House-
holder matrices, we obtain the fact advertised earlier that every matrix (not
necessarily invertible) has a QR-decomposition.

Lemma 7.3.1 Let E be a nontrivial Euclidean space of dimension n. For

any orthonormal basis (e1, ..., e,) and for any n-tuple of vectors (vy, ...,
vn), there is a sequence of n isometries hy,..., h, such that h; is a hy-
perplane reflection or the identity, and if (r1,...,7,) are the vectors given
by

rj = hpo---0hyohi(v;),

then every r; is a linear combination of the vectors (e1,...,e;), 1 <j < n.
FEquivalently, the matriz R whose columns are the components of the T;
over the basis (e1,...,e,) is an upper triangular matriz. Furthermore, the
hi can be chosen so that the diagonal entries of R are nonnegative.

Proof. We proceed by induction on n. For n = 1, we have v; = Je; for
some A € R. If A > 0, we let h; = id, else if A < 0, we let h; = —id, the
reflection about the origin.

For n > 2, we first have to find h;. Let

ri,1 = [jui]].

If vy = r1e1, we let hy = id. Otherwise, there is a unique hyperplane
reflection h; such that

hi(n) =ry1 €1,
defined such that

(u-wy)
hl(u) :u—Z—wl
llwi]1
for all u € E, where
w = 7‘1,1 ey — V1.

The map h; is the reflection about the hyperplane H; orthogonal to the
vector wy = ry,; €1 — v1. Letting

ry=hi(n) =ri1 e,
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it is obvious that r; belongs to the subspace spanned by e;, and r1 1 = |jv1]|
is nonnegative.

Next, assume that we have found k linear maps hq, ..., hg, hyperplane
reflections or the identity, where 1 < k < n—1, such that if (rq,...,rg) are

the vectors given by

1"j=hk0---0h20h1(’l}j),

then every r; is a linear combination of the vectors (e1,...,€e;),1 < j < k.
The vectors (e, ..., ex) form a basis for the subspace denoted by Uy, the
vectors (€x+1,--.,€n) form a basis for the subspace denoted by U}/, the

subspaces U}, and U}/ are orthogonal, and E = U, @ Uf. Let
Ukt1 = hg ©--- 0 hg 0 hy(V41)-

We can write

Ukl = Upy1 + Ukpr
where uy, , € Uy and uy,, € U}/. Let

Tk+1,k+1 = ||U;c'+1||-
If uy, | = Tkt1,k+1€k+1, We let hgpg = id. Otherwise, there is a unique
hyperplane reflection hg,q such that

hk+1(u;cl+1) = Tk41,k+1 €k+1,

defined such that

(u- wg41)

h u)=u—2
b (w) T

Wk+1

for all u € E, where
"
Wk+1 = Tk+1,k+1 €k+1 — Ug41-

The map hgy1 is the reflection about the hyperplane Hy,; orthogonal to
the vector wi41 = Tky1,k+1€k+1 — Uj,,- However, since uf,,,ex+1 € UY
and U, is orthogonal to U}/, the subspace U, is contained in Hy4;, and
thus, the vectors (ry,...,7%) and u;,, which belong to Uy, are invariant
under hg41. This proves that
li n !
Pyt (k1) = hesa(Upy1) + Per1(Upi1) = Ukgr + That k41 k41
is a linear combination of (ey,...,ex+1). Letting
Tht1 = kg1 (Uk41) = Ugyq + Tht1,k+1 €41,
since ug41 = hg 0+ -- 0 hy o hy(vg41), the vector
Tk+1 = hgp10-- 0 hg o hi(vky1)

is a linear combination of (es,...,ext+1). The coefficient of 7441 over exy1
is 7k+1,k+1 = |luj,,ll, which is nonnegative. This concludes the induction
step, and thus the proof. []
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Remarks:
(1) Since every h; is a hyperplane reflection or the identity,
p=hpo---0hyoh
is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry h, may
be omitted.

(3) Instead of picking 7k x = ||u} ||, which means that
Wk = Tk,k €k =~ Up,

where 1 < k < n, it might be preferable to pick rg , = —|luj|| if this
makes ||wg||? larger, in which case

Wy = Tk €k + u%

Indeed, since the definition of Ay involves division by |lwg||?, it is
desirable to avoid division by very small numbers.

(4) The method also applies to any m-tuple of vectors (vy, ..., vy ), where
m is not necessarily equal to n (the dimension of E). In this case, R
is an upper triangular n x m matrix we leave the minor adjustments
to the method as an exercise to the reader (if m > n, the last m —n
vectors are unchanged).

Lemma 7.3.1 directly yields the QR-decomposition in terms of House-
holder transformations (see Strang [165, 166], Golub and Van Loan [75],
Trefethen and Bau [170], Kincaid and Cheney [100], or Ciarlet [33]).

Lemma 7.3.2 For every real n x n matriz A, there is a sequence Hy,.. .,
H,, of matrices, where each H; is either a Householder matriz or the
identity, and an upper triangular matriz R such that

R=H, - HyHA.

As a corollary, there is a pair of matrices Q, R, where Q is orthogonal
and R is upper triangular, such that A = QR (a QR-decomposition of A).
Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector v; over the canonical
basis (e1,...,e,) of E® (where (e;); = 1 if ¢ = j, and 0 otherwise, 1 <
i,7 < n). Applying Lemma 7.3.1 to (v1,...,v,), there is a sequence of n
isometries hy, ..., h, such that h; is a hyperplane reflection or the identity,
and if (r1,...,7,) are the vectors given by

r; = hpo---0hy o hy(v;),

then every r; is a linear combination of the vectors (eq,...,¢e;), 1 <j <n.
Letting R be the matrix whose columns are the vectors r;, and H; the
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matrix associated with h;, it is clear that
R=H, ---HyH A,

where R is upper triangular and every H; is either a Householder matrix
or the identity. However, h; o h; = id for all 4, 1 < ¢ <, and so

vj =hiohgo---0hyp(r;)

forall j,1 < j <mn.But p=hjohgo---0hy, is an isometry, and by Lemma
6.4.1, p is represented by an orthogonal matrix Q. It is clear that A = QR,
where R is upper triangular. As we noted in Lemma 7.3.1, the diagonal
entries of R can be chosen to be nonnegative. []

Remarks:
(1) Letting
Agy1=Hy---HaH A,

with A; = A4, 1 < k < n, the proof of Lemma 7.3.1 can be in-
terpreted in terms of the computation of the sequence of matrices
A1,...,Apy1 = R. The matrix Ag4 has the shape

k+1

X X X wut X X X X

0 x :

0 0 uftl x x x x

0 0 u’,zi} X
Aks1 = 0 0 uty x ox o x x|’

k+1
0 0 0 w7 x x x X

\OOOqu‘Hxxxx

where the (k + 1)th column of the matrix is the vector

Uk41 = hg 0+ 0 hg 0 hy(vk41),

and thus

Uy = (u’f+1, e, u’,§+1)

and

" _ k+1 | k+1 k+1
U1 = (uk+1’uk+2""’un )

If the last n—k —1 entries in column k+1 are all zero, there is nothing
to do, and we let Hi1 = I. Otherwise, we kill these n — k — 1 entries
by multiplying Ag4; on the left by the Householder matrix Hyi,
sending

k+1 k+1
0,...,0,uftl,...,ust?) to (0,...,0,7k41,k+1,0,...,0),
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where Tp41 k41 = “(uﬁiv s upthL

(2) If A is invertible and the diagonal entries of R are positive, it can be
shown that Q and R are unique.

(3) If we allow negative diagonal entries in R, the matrix H, may be
omitted (H, = I).

(4) The method allows the computation of the determinant of A. We
have

det(A) = (1)1 Tom,

where m is the number of Householder matrices (not the identity)
among the H;.

(5) The “condition number” of the matrix A is preserved (see Strang
[166], Golub and Van Loan [75], Trefethen and Bau [170], Kincaid
and Cheney [100], or Ciarlet [33]). This is very good for numerical
stability.

(6) The method also applies to a rectangular m x n matrix. In this case,
R is also an m x n matrix (and it is upper triangular).

We now turn to affine isometries.

7.4 Affine Isometries (Rigid Motions)

In the remaining sections we study affine isometries. First, we characterize
the set of fixed points of an affine map. Using this characterization, we
prove that every affine isometry f can be written uniquely as

f=tog, with tog=got,
where ¢ is an isometry having a fixed point, and ¢t is a translation by a

vector 7 such that 7(7‘) = 7, and with some additional nice properties (see
Theorem 7.6.2). This is a generalization of a classical result of Chasles about
(proper) rigid motions in R® (screw motions). We prove a generalization of
the Cartan-Dieudonné theorem for the affine isometries: Every isometry in
Is(n) can be written as the composition of at most n reflections if it has
a fixed point, or else as the composition of at most n + 2 reflections. We
also prove that every rigid motion in SE(n) is the composition of at most
n flips (for n > 3). This is somewhat surprising, in view of the previous
theorem.

Definition 7.4.1 Given any two nontrivial Euclidean affine spaces F and
F of the same finite dimension n, a function f: E — F is an affine isometry
(or rigid map) if it is an affine map and

I£(a)f(b)[| = [lab]],
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for all a,b € E. When E = F, an affine isometry f: E — F is also called a
rigid motion.

Thus, an affine isometry is an affine map that preserves the distance.
This is a rather strong requirement. In fact, we will show that for any
function f: E — F, the assumption that

I£(2)f()[| = [labll,

for all a,b € E, forces f to be an affine map.

Remark: Sometimes, an affine isometry is defined as a bijective affine
isometry. When E and F are of finite dimension, the definitions are
equivalent.

The following simple lemma is left as an exercise.

Lemma 7.4.2 Given any two nontrivial Euclidean affine spaces E and
F of the same finite dimension n, an affine map f:E — F is an affine

- = —
isometry iff its associated linear map f: E — F is an isometry. An
affine isometry is a bijection.

—
Let us now consider affine isometries f: E — E. If f is a rotation, we

call f a proper (or direct) affine isometry, and if ? is an improper linear
isometry, we call f an improper (or skew) affine isometry. It is easily shown
that the set of affine isometries f: E — E forms a group, and those for

which ? is a rotation is a subgroup. The group of affine isometries, or rigid
motions, is a subgroup of the affine group GA(FE), denoted by Is(E) (or
Is(n) when E = E™). In Snapper and Troyer [160] the group of rigid motions
is denoted by Mo(E). Since we denote the group of affine bijections as
GA(E), perhaps we should denote the group of affine isometries by IA(E)
(or EA(E)!). The subgroup of Is(E) consisting of the direct rigid motions
is also a subgroup of SA(FE), and it is denoted by SE(E) (or SE(n), when

E = E™). The translations are the affine isometries f for which 7 = id,

the identity map on E. The following lemma is the counterpart of Lemma
6.3.2 for isometries between Euclidean vector spaces.

Lemma 7.4.3 Given any two nontrivial Euclidean affine spaces E and F
of the same finite dimension n, for every function f: E — F, the following
properties are equivalent:

(1) f is an affine map and ||f(a)f(b)| = ||ab||, for all a,b € E.
(2) ||f(a)f(b)| = ||lab||, for all a,b € E.

Proof. Obviously, (1) implies (2). In order to prove that (2) implies (1), we
proceed as follows. First, we pick some arbitrary point @ € E. We define.
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— —
the map g: E — F such that

g(u) = F(QF(Q + u)
for all v € E. Since

F@) + g(u) = F(Q) + FQHR +u) = £+ )

for all u € f, f will be affine if we can show that g is linear, and f will be
an affine isometry if we can show that g is a linear isometry.
Observe that

9(0) — g(u) = (DVER +v) ~ F(@)F(R + )
=f(Q+ u)f(Q+v).
Then, the hypothesis
[£(@)£(b)]| = [labl]

for all a,b € E, implies that

lg(v) — g(w)|| = [I£(2 + W)E(Q + v)|| = (2 +u)( Q@+ V)| = lv — ul|.
Thus, g preserves the distance. Also, by definition, we have

9(0) = 0.

Thus, we can apply Lemma 6.3.2, which shows that ¢ is indeed a linear

isometry, and thus f is an affine isometry. []

In order to understand the structure of affine isometries, it is important
to investigate the fixed points of an affine map.

7.5 Fixed Points of Affine Maps

Recall that E(1, ?) denotes the eigenspace of the linear map f associated

with the scalar 1, that is, the subspace consisting of all vectors u ¢ E

— — —
such that f (u) = u. Clearly, Ker ( f —id) = E(1, f ). Given some origin
Q € E, since

f(a) = f(Q+Qa) = £(©) + T (Qa),
we have f(2)f(a) = ?(Qa), and thus

Qf (a) = QF(Q) + 7 ().

From the above, we get

Qf(a) — Qa = QF(N) + f (Ra) — Na.



220 7. The Cartan—Dieudonné Theorem
Using this, we show the following lemma, which holds for arbitrary affine
spaces of finite dimension and for arbitrary affine maps.

Lemma 7.5.1 Let E be any affine space of finite dimension. For every
affine map f:E — E, let Fiz(f) = {a € E | f(a) = a} be the set of fired
points of f. The following properties hold:

(1) If f has some fized point a, so that Fiz(f) # 0, then Fix(f) is an
affine subspace of E such that

Fir(f) = a+E(1,7) =a + Ker (? —id),

— —
where E(l, f ) is the eigenspace of the linear map f for the
eigenvalue 1.

(2) The affine map f has a unique fized point iff E(1, 7) = Ker (7 —id)
- {0}.
Proof. (1) Since the identity
Qf(b) — Qb = Qf(Q) + f (b) — b

holds for all Q,b € E, if f(a) = a, then af(a) = 0, and thus, letting 2 = a,
for any b € E,

flo) ="t
iff
af(b) —ab =0
iff
7(ab) —ab=0
iff

ab € E(1, ?) = Ker (? —id),
which proves that
Fix(f) =a+E(1, f) = a +Ker (F —id).
(2) Again, fix some origin Q. Some a satisfies f(a) = a iff
Qf(a) —Qa=0
iff
Qf(Q) + f (Qa) — Qa =0,
which can be rewritten as

(F —id)(Qa) = —Qf(£).
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— — —
We have E(1, f) =Ker ( f —id) = {0} iff f —id is injective, and since
E has finite dimension, ? —1d is also surjective, and thus, there is indeed
some a € E such that
(7 —id)(2a) = -Qf(0),

—
and it is unique, since f — id is injective. Conversely, if f has a unique

fixed point, say a, from
(F —id)(Ra) = —Qf(Q),

we have (? —id)(Ra) = 0 iff f() = Q, and since a is the unique fixed

point of f, we must have a = €2, which shows that ? ~— id is injective. []

Remark: The fact that E has finite dimension is used only to prove (2),
and (1) holds in general.

If an isometry f leaves some point fixed, we can take such a point Q as the
origin, and then f(Q2) = Q and we can view f as a rotation or an improper

orthogonal transformation, depending on the nature of ? Note that it is
quite possible that Fix(f) = 0. For example, nontrivial translations have
no fixed points. A more interesting example is provided by the composition
of a plane reflection about a line composed with a a nontrivial translation
parallel to this line.

Otherwise, we will see in Theorem 7.6.2 that every affine isometry is the
(commutative) composition of a translation with an isometry that always
has a fixed point.

7.6 Affine Isometries and Fixed Points

Let E be an affine space. Given any two affine subspaces F, G, if F and
G are orthogonal complements in E, which means that F and G are
orthogonal subspaces of E such that E = F & —5, for any point Q2 € F|
we define ¢: £ — G such that
q(a) = pc(Qa).
Note that ¢(a) is independent of the choice of §2 € F, since we have
Qa = pr(Na) + pe(Na),
and for any Q; € F, we have
a =Q,Q + pp(a) + pe(Qa),
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and since 2182 € F, this shows that

pc(fha) = pc(Qa).

Then the map g: E — E such that g(a) = a — 2¢(a), or equivalently

ag(a) = —2¢(a) = —2pc(Qa),
does not depend on the choice of Q € F. If we identify E to E by choosing
any origin  in F', we note that g is identified with the symmetry with
respect to F and parallel to G. Thus, the map g is an affine isometry, and
it is called the orthogonal symmetry about F'. Since

g(a) = © + Qa — 2p6(Qa)

for all Q € F and for all a € E, we note that the linear map g associated
with ¢ is the (linear) symmetry about the subspace F (the direction of
F), and parallel to lel (the direction of G).

Remark: The map p: E — F such that p(a) = a — g(a), or equivalently
ap(a) = —q(a) = —pc(Qa),

is also independent of € F, and it is called the orthogonal projection onto
F.

The following amusing lemma shows the extra power afforded by affine
orthogonal symmetries: Translations are subsumed! Given two parallel

affine subspaces Fy; and F5 in E, letting F be the common direction of
1

F) and F5 and G =TF beits orthogonal complement, for any a € Fi,

the affine subspace a + G intersects F, in a single point b (see Lemma
2.11.2). We define the distance between Fy and F» as ||ab||. It is easily seen
that the distance between F; and F, is independent of the choice of a in
Fy, and that it is the minimum of ||xy|| for all x € F; and all y € F>.

Lemma 7.6.1 Given any affine space E, if f:E — E and g:E — E are
orthogonal symmetries about parallel affine subspaces Fy and F3, then go f
is a translation defined by the vector 2ab, where ab is any vector perpen-

dicular to the common direction F of Fy and F» such that ||ab]|| is the
distance between F\ and F», with a € Fy and b € F,. Conversely, every
translation by a vector T is obtained as the composition of two orthogonal
symmetries about parallel affine subspaces Fy and F> whose common direc-
tion is .orthogonal to T = ab, for some a € F1 and some b € Fy such that
the distance between Fy and Fy is ||ab||/2.

—
Proof. We observed earlier that the linear maps f and g associated
with f and g are the linear reflections about the directions of F) and F5.
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N
However, F; and F; have the same direction, and so f = 7. Since go f =
— — . — —_ —> — . . .

g o f and since f o g = f o f = id, because every reflection is an

involution, we have m = id, proving that g o f is a translation. If we
pick a € Fy, then g o f(a) = f(a), the reflection of a € Fy about F3, and
it is easily checked that g o f is the translation by the vector 7 = af(a)
whose norm is twice the distance between F} and F5. The second part of
the lemma is left as an easy exercise. []

We conclude our quick study of affine isometries by proving a result that
plays a major role in characterizing the affine isometries. This result may
be viewed as a generalization of Chasles’s theorem about the direct rigid
motions in E3.

Theorem 7.6.2 Let E be a Euclidean affine space of finite dimension n.
For every affine isometry f: E — E, there is a unique isometry g: E — E

and a unique translation t = t,, with ?(T) =7 (i.e, 7 € Ker (? —id)),
such that the set Fiz(g) = {a € E, | g(a) = a} of fized points of g is a
nonempty affine subspace of E of direction

G =Ker (F —id) = B(1, F),
and such that
f=tog and tog=got.
Furthermore, we have the following additional properties:
(a) f=g and T =0 iff f has some fized point, i.e., iff Fiz(f) # 0.

(b) If f has no fized points, i.e., Fiz(f) = @, then dim(Ker (7 —id)) >
1.

Proof. The proof rests on the following two key facts:
(1) If we can find some z € FE such that xf(x) = 7 belongs to
Ker (7 — id), we get the existence of g and 7.
(2) E = Ker (7 — id) ¢ Im (7 — id), and the spaces Ker (7 - id) and

Im (7 - id) are orthogonal. This implies the uniqueness of g and 7.

First, we prove that for every isometry nE — f, Ker (h —id) and
Im (h — id) are orthogonal and that

E = Ker (h —id) & Im (h — id).
Recall that

dim(f) = dim(Ker ) + dim(Im ¢),
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for any linear map cp:E" ~ F (for instance, see Lang [107], or Strang
[166]). To show that we have a direct sum, we prove orthogonality. Let

u € Ker (h — id), so that h(u) =u, let v € E, and compute
u-(h(v) —v)=u-h(v) —u-v=h(u) h(v)-—u-v=0,

since h(u) = u and h is an isometry.
Next, assume that there is some z € F such that xf(x) = 7 belongs to

Ker (_f — id). If we define g: E — E such that
g=tnol,
we have
g9(z) = f(z) -7 =1,
since xf(x) = 7 is equivalent to = f(z) — 7. As a composition of isome-

_
tries, g is an isometry, T is a fixed point of g, and since 7 € Ker ( f - id),
we have

f(r)=r,
and since

g(b) = f(b) -7

for all b € E, we have g’ = 7 Since g has some fixed point z, by Lemma
7.5.1, Fix(g) is an affine subspace of E with direction Ker (g —id) =

Ker (7 —id). We also have f(b) = g(b) + 7 for all b € E, and thus
(got)(B) = g(b+7) = g(b) + F(r) = g(b) + F (r) = g(b) + 7 = f(0),
and

(t- 0 g)(b) = g(b) + 7 = f(b),

which proves that tog=got.
To prove the existence of x as above, pick any arbitrary point a € E.
Since

E =Ker (F —id) ©Im (7 —1id),
— —
there is a unique vector 7 € Ker ( f —id) and some v € E such that
—
af(a) =7+ f (v) —v.
For any z € F, since we also have

xf(x) = xa + af(a) + f(a)f(x) = xa + af(a) + T(ax),
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we get

xf(x) =xa+7+ f(v) —v+ f (ax),
which can be rewritten as
xf(x) =7+ (7 —id)(v + ax).
If we let ax = —wv, that is, z = a — v, we get
xf(x) =T,
-
with 7 € Ker ( f —id).
Finally, we show that 7 is unique. Assume two decompositions (g, 71)

and (g2,72). Since ? = g1, we have Ker(g; —id) = Ker (7 —id). Since
g1 has some fixed point b, we get

f0) =g1() + 71 =b+m,

that is, bf(b) = 71, and bf(b) € Ker (7 —id), since 7, € Ker (7 - id).
Similarly, for some fixed point ¢ of g2, we get cf(c) = 7 and cf(c) €

—
Ker ( f - id). Then we have

72 — 71 = cf(c) — bf(b) = cb — f(c)f(b) = cb — f (cb),
which shows that
T2 — 71 € Ker (7 — id) N Im (7 - id),
and thus that 7 = 71, since we have shown that
E =Ker (f —id) #Im (F —id).

The fact that (a) holds is a consequence of the uniqueness of g and T,
since f and O clearly satisfy the required conditions. That (b) holds follows
from Lemma 7.5.1 (2}, since the affine map f has a unique fixed point iff

— —
E(1, f)=Ker( f —id) ={0}.O
The determination of z is illustrated in Figure 7.5.

Remarks:

(1) Note that Ker (? —id) = {0} iff 7 = 0, iff Fix(g) consists of a single
element, which is the unique fixed point of f. However, even if f is
not a translation, f may not have any fixed points. For example, this
happens when E is the affine Euclidean plane and f is the composition
of a reflection about a line composed with a nontrivial translation
parallel to this line.

(2) The fact that E has finite dimension is used only to prove (b).
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? f(a) + Ker (? —id)

Figure 7.5. Rigid motion as f =t o g, where g has some fixed point z

(3) It is easily checked that Fix(g) consists of the set of points z such
that ||xf(x)| is minimal.

In the affine Euclidean plane it is easy to see that the affine isometries
(besides the identity) are classified as follows. An isometry f that has a
fixed point is a rotation if it is a direct isometry; otherwise, it is a reflection
about a line. If f has no fixed point, then it is either a nontrivial translation
or the composition of a reflection about a line with a nontrivial translation
parallel to this line.

In an affine space of dimension 3 it is easy to see that the affine isometries
(besides the identity) are classified as follows. There are three kinds of
isometries that have a fixed point. A proper isometry with a fixed point is
a rotation around a line D (its set of fixed points), as illustrated in Figure
7.6.

An improper isometry with a fixed point is either a reflection about a
plane H (the set of fixed points) or the composition of a rotation followed
by a reflection about a plane H orthogonal to the axis of rotation D, as
illustrated in Figures 7.7 and 7.8. In the second case, there is a single fixed
point O = DN H.

There are three types of isometries with no fixed point. The first kind is
a nontrivial translation. The second kind is the composition of a rotation
followed by a nontrivial translation parallel to the axis of rotation D. Such
a rigid motion is proper, and is called a screw motion. A screw motion is
illustrated in Figure 7.9.

The third kind is the composition of a reflection about a plane followed
by a nontrivial translation by a vector parallel to the direction of the plane
of the reflection, as illustrated in Figure 7.10.
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D

fla)

Figure 7.6. 3D proper rigid motion with line D of fixed points (rotation)

~

—~
2

~

T

Figure 7.7. 3D improper rigid motion with a plane H of fixed points (reflection)

This last transformation is an improper isometry.

7.7 The Cartan—Dieudonné Theorem for Affine
Isometries

The Cartan—Dieudonné theorem also holds for affine isometries, with a
small twist due to translations. The reader is referred to Berger [12], Snap-
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D

g(a)

o] a r

/ f(a)

/

N/

a+T

s
-

Figure 7.8. 3D improper rigid motion with a unique fixed point

D
f(a)
a+T
‘ g(a)

Figure 7.9. 3D proper rigid motion with no fixed point (screw motion)

per and Troyer [160], or Tisseron [169] for a detailed treatment of the
Cartan-Dieudonné theorem and its variants.

Theorem 7.7.1 Let E be an affine Euclidean space of dimension n > 1.
Every isometry f € Is(E) that has a fized point and is not the identity is
the composition of at most n reflections. Every isometry f € Is(E) that has
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a a—+T7

Figure 7.10. 3D improper rigid motion with no fixed points

no fized point is the composition of at most n+ 2 reflections. When n > 2,
the identity is the composition of any reflection with itself.

Proof . First, we use Theorem 7.6.2. If f has a fixed point {2, we choose €2
as an origin and work in the vector space Eq. Since f behaves as a linear
isometry, the result follows from Theorem 7.2.1. More specifically, we can

4 — — . —
write f = 5z o---03; for k < n hyperplane reflections s;. We define the
affine reflections s; such that

si(a) = Q + 5/ (Na)
for all a € E, and we note that f = sg o --- 0 81, since
fla) =Q+350---0357(a)

for all @ € E. If f has no fixed point, then f = t o g for some isometry

g that has a fixed point Q and some translation ¢ = ¢,, with 7(7-) =T.
By the argument just given, we can write g = sx o --- o s1 for some affine
reflections (at most n). However, by Lemma 7.6.1, the translation ¢t = ¢,
can be achieved by two reflections about parallel hyperplanes, and thus
f = Sg420--- 08y, for some affine reflections (at most n + 2). (J

When n > 3, we can also characterize the affine isometries in SE(n) in
terms of flips. Remarkably, not only we can do without translations, but
we can even bound the number of flips by n.

Theorem 7.7.2 Let E be a Euclidean affine space of dimension n > 3.
Every rigid motion f € SE(E) is the composition of an even number of
flips f = fopo---0 f1, where 2k < n.
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Proof. As in the proof of Theorem 7.7.1, we distinguish between the two
cases where f has some fixed point or not. If f has a fixed point 2, we

— — —
apply Theorem 7.2.5. More specifically, we can write f = faro0---0 f; for
some flips —f—: We define the affine flips f; such that

fila) = Q + f; (Qa)

for all @ € F, and we note that f = fa; 0--- 0 fi, since

f(@)=Q+ faro---o f1(Ra)

for alla € E.
If f does not have a fixed point, as in the proof of Theorem 7.7.1, we get

f=trofao0--0fl,

for some affine flips f;. We need to get rid of the translation. However,

7(7) = 7, and by the second part of Theorem 7.2.5, we can assume that
1
T E F;: , where F—; is the direction of the affine subspace defining the
n

affine flip for. Finally, appealing to Lemma 7.6.1, since 7 € FE: , the
translation ¢, can be expressed as the composition fj, o f5,_; of two flips

for_q and f3, about the two parallel subspaces £ —{—F—; and Q+7/2+4 F;: ,
whose distance is ||7]| /2. However, since f3,_; and fax are both the identity

on  + FE:, we must have f}, | = fo, and thus

f=trofukofoxr10---0f1
= for © fag—1© fok © fak—10---0 fi
= for © fak—10---0 fi,

since f},_, = for and fi_, © far = for o for = id, since fox is a symmetry.

a

Remark: It is easy to prove that if f is a screw motion in SE(3), D its
axis, @ is its angle of rotation, and 7 the translation along the direction of
D, then f is the composition of two flips about lines D; and D5 orthogonal
to D, at a distance ||7]|/2 and making an angle 6/2.

There is one more topic that we would like to cover, since it is often
useful in practice: The concept of cross product of vectors, also called vector
product. But first, we need to discuss the question of orientation of bases.
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7.8 Orientations of a Euclidean Space, Angles

In this section we return to vector spaces. In order to deal with the no-
tion of orientation correctly, it is important to assume that every family
(41, ... ,un) of vectors is ordered (by the natural ordering on {1,2,...,n}).
Thus, we will assume that all families (u1, ..., un) of vectors, in particular
bases and orthonormal bases, are ordered.

Let E be a vector space of finite dimension n over R, and let (u1,...,ux)
and (v1,...,v,) be any two bases for E. Recall that the change of basis
matrix from (ug,...,us) to (v1,...,v,) is the matrix P whose columns are
the coordinates of the vectors v; over the basis (u1,...,uy). It is imme-
diately verified that the set of alternating n-linear forms on E is a vector
space, which we denote by A(E) (see Lang [107]). We now show that A(E)
has dimension 1. For any alternating n-linear form ¢: Ex-.-x E — K and

any two sequences of vectors (u1,...,us) and (vi,...,vs), if
U1 U1
U2 u2
= P . N
Un Un
then

P(v1,- .., vn) = det(P)p(u1,. .., Un).

In particular, if we consider nonnull alternating n-linear forms ¢: E' x - - - X
E — K, we must have @(uy,...,u,) # 0 for every basis (u,...,uy). Since
for any two alternating n-linear forms ¢ and ¢ we have

o(v1,...,vn) = det(P)p(ut, ..., un)

and

P(v1, ..., vn) = det(P)Y(ul,. .., un),

we get

QO(’LL], .. .,un)w(vl, e ,’Un) - ’l/J(’LLl, - ,un)cp('ul, e ,'Un) = O

Fixing (u1,...,u,) and letting (vq,...,v,) vary, this shows that ¢ and v
are linearly dependent, and since A(FE) is nontrivial, it has dimension 1.

We now define an equivalence relation on A(E) — {0} (where we let 0
denote the null alternating n-linear form): ¢ and v are equivalent if 1 = Ap
for some A > 0.

It is immediately verified that the above relation is an equivalence
relation. Furthermore, it has exactly two equivalence classes O; and Oa.

The first way of defining an orientation of E is to pick one of these
two equivalence classes, say O (O € {01,02}). Given such a choice of
a class O, we say that a basis (wi,...,wy) has positive orientation iff
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@(wi, ..., wy) > 0 for any alternating n-linear form ¢ € O. Note that this
makes sense, since for any other ¥y € O, ¢ = A for some A > 0.

According to the previous definition, two bases (uy,...,u,) and (vq,. ..,
vp,) have the same orientation iff p(uq,...,u,) and ¢(vy,...,v,) have the
same sign for all ¢ € A(E) — {0}. From

p(v1,...,vn) = det(P)p(uy, ..., uy)

we must have det(P) > 0. Conversely, if det(P) > 0, the same argument
shows that (u1,...,un) and (vy,...,v,) have the same orientation. This
leads us to an equivalent and slightly less contorted definition of the notion
of orientation. We define a relation between bases of E as follows: Two
bases (u1,...,u,) and (v1,...,v,) are related if det(P) > 0, where P is
the change of basis matrix from (u1,...,un) to (v1,...,vn).

Since det(PQ) = det(P)det(Q), and since change of basis matrices are
invertible, the relation just defined is indeed an equivalence relation, and it
has two equivalence classes. Furthermore, from the discussion above, any
nonnull alternating n-linear form ¢ will have the same sign on any two
equivalent bases.

The above discussion motivates the following definition.

Definition 7.8.1 Given any vector space E of finite dimension over R,
we define an orientation of E as the choice of one of the two equivalence
classes of the equivalence relation on the set of bases defined such that
(u1,---,un) and (vy,...,v,) have the same orientation iff det(P) > 0,
where P is the change of basis matrix from (u1,...,us) to (v1,...,0n).
A basis in the chosen class is said to have positive orientation, or to be
positive. An orientation of a Euclidean affine space E is an orientation of

its underlying vector space E.

In practice, to give an orientation, one simply picks a fixed basis consid-
ered as having positive orientation. The orientation of every other basis is
determined by the sign of the determinant of the change of basis matrix.

Having the notation of orientation at hand, we wish to go back briefly to
the concept of (oriented) angle. Let E be a Euclidean space of dimension
n = 2, and assume a given orientation. In any given positive orthonormal
basis for E, every rotation r is represented by a matrix

R= (s 0 —sinf
" \sinf®  cosf )’
Actually, we claim that the matrix R representing the rotation r is the same
in all orthonormal positive bases. This is because the change of basis matrix

from one positive orthonormal basis to another positive orthonormal basis
is a rotation represented by some matrix of the form

P (cosz/z —sim,b)

sin ¢ cos
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Us Uug

Uq Uy

Figure 7.11. Defining angles

and that we have

1 _ [ cos(—¢) —sin(—)
Pt () )

and after calculations, we find that PRP~! is the rotation matrix associ-
ated with ¥ + 8 — ¢ = 6. We can choose 8 € [0,2x[, and we call § the
measure of the angle of rotation of r (and R). If the orientation is changed,
the measure changes to 27 — 6.

We now let E be a Euclidean space of dimension n = 2, but we do not
assume any orientation. It is easy to see that given any two unit vectors
u1,u2 € E (unit means that ||u;]| = |Juz|| = 1), there is a unique rotation
7 such that

r(u1) = up.

It is also possible to define an equivalence relation of pairs of unit vectors
such that

(u1,u2) = (us, uq)

iff there is some rotation r such that r(u1) = uz and r(ug) = u4.

Then the equivalence class of (uy,uz2) can be taken as the definition of
the (oriented) angle of (u1,us), which is denoted by ujus.

Furthermore, it can be shown that there is a rotation mapping the pair
(u1,u2) to the pair (us,us) iff there is a rotation mapping the pair (ui, u3)
to the pair (u2,u4) (all vectors being unit vectors), as illustrated in Figure
7.11.

As a consequence of all this, since for any pair (u;,us) of unit vectors
there is a unique rotation 7 mapping u; to ua, the angle wuz of (u1,uz)
corresponds bijectively to the rotation r, and there is a bijection between
the set of angles of pairs of unit vectors and the set of rotations in the plane.
As a matter of fact, the set of angles forms an abelian group isomorphic to
the (abelian) group of rotations in the plane.
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Thus, even though we can consider angles as oriented, note that the
notion of orientation is not necessary to define angles. However, to define
the measure of an angle, the notion of orientation is needed.

If we now assume that an orientation of E (still a Euclidean plane) is
given, the unique rotation r associated with an angle %;u3 corresponds to

a unique matrix
R= C?S f —sind '
sin 6 cos

The number 6 is defined up to 2k (with k € Z) and is called a measure of
the angle ujuy. There is a unique 8 € [0, 27| that is a measure of the angle
Tiup. It is also immediately seen that

cosf = uy - us.

In fact, since cosf = cos(2m — 8) = cos(—0), the quantity cosé does not
depend on the orientation.

Now, still considering a Euclidean plane, given any pair (uj,us) of non-
null vectors, we define their angle as the angle of the unit vectors u1/||u1]|
and ua/||uz||, and if E is oriented, we define the measure 0 of this angle as
the measure of the angle of these unit vectors. Note that

U - Uz

080 = Tzl

and this independently of the orientation.

Finally, if F is a Euclidean space of dimension n > 2, we define the
angle of a pair (uj,us) of nonnull vectors as the angle of this pair in the
Euclidean plane spanned by (uj,us) if they are linearly independent, or
any Euclidean plane containing u,; if they are collinear.

If E is a Euclidean affine space of dimension n > 2, for any two pairs
{(a1,b1) and (a9, b2) of points in E, where a; # b1 and as # by, we define the
angle of the pair ({(a1,b1), {(a2,b2)) as the angle of the pair (a;b1,azbz).

As for the issue of measure of an angle when n > 3, all we can do is to
define the measure of the angle #;us as either 8 or 27 — 6, where 6 € [0, 27|
For a detailed treatment, see Berger [12] or Cagnac, Ramis, and Commeau
[25]. In particular, when n = 3, one should note that it is not enough to give
a line D through the origin (the axis of rotation) and an angle 6 to specify a
rotation! The problem is that depending on the orientation of the plane H
(through the origin) orthogonal to D, we get two different rotations: one of
angle 8, the other of angle 27 — 8. Thus, to specify a rotation, we also need
to give an orientation of the plane orthogonal to the axis of rotation. This
can be done by specifying an orientation of the axis of rotation by some
unit vector w, and chosing the basis (e1, e2,w) (where (e1, e2) is a basis of
H) such that it has positive orientation w.r.t. the chosen orientation of E.

We now return to alternating multilinear forms on a Euclidean space.
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When E is a Euclidean space, we have an interesting situation regarding
the value of determinants over orthornormal bases described by the fol-
lowing lemma. Given any basis B = (uy,...,un) for E, for any sequence
(w1,...,wy) of n vectors, we denote by detg(wi, ..., wy) the determinant
of the matrix whose columns are the coordinates of the w; over the basis
B = (ul,.. .,un).

Lemma 7.8.2 Let E be a Euclidean space of dimension n, and assume

that an orientation of E has been chosen. For any sequence (w1, .., wy)
of n vectors and any two orthonormal bases By = (u1,...,un) and By =
(v1,-..,vn) of positive orientation, we have

detp, (w1, ..., wn) = detp, (w1, .., wn).

Proof. Let P be the change of basis matrix from B; = (u1,...,u,) to
By = (v1,...,v,). Since By = (u1,...,u,) and By = (v1,...,v,) are or-
thonormal, P is orthogonal, and we must have det(P) = +1, since the
bases have positive orientation. Let U; be the matrix whose columns are
the coordinates of the w; over the basis By = (uy,... ,Un), and let Uz be
the matrix whose columns are the coordinates of the w; over the basis
Bs = (v1,...,v,). Then, by definition of P, we have

w, U
V2 U2

= U2P . ’
Wn, Un

that is, Uy = Us P. Then, we have
detp, (w1,...,wn) = det(U;) = det(U2P) = det(Us) det(P)
= detp, (w1, ..., wn)det(P) = detg, (w1, ..., wn),
since det(P) = +1. ]
By Lemma 7.8.2, the determinant detg(ws,...,wy) is independent of

the base B, provided that B is orthonormal and of positive orientation.
Thus, Lemma 7.8.2 suggests the following definition.

7.9 Volume Forms, Cross Products

In this section we generalize the familiar notion of cross product of vectors
in R2 to Euclidean spaces of any finite dimension. First, we define the mixed
product, or volume form.

Definition 7.9.1 Given any Euclidean space E of finite dimension n over
R and any orientation of E, for any sequence (wi,...,w,) of n vectors in
E, the common value Ag (w1, ..., w,) of the determinant detg(wy, ..., w,)
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over all positive orthonormal bases B of F is called the mized product (or
volume form) of (w1,...,wn).

The mixed product Ag(wy, . .., w,) will also be denoted by (w1, ..., wn),
even though the notation is overloaded. The following properties hold.

The mixed product Ag(ws, . . ., w,) changes sign when the orientation
changes.
The mixed product Ag(wi,...,wy) is a scalar, and Definition 7.9.1

really defines an alternating multilinear form from E™ to R.
Ae(wi, ..., wy,) =0 iff (w1,...,w,) is linearly dependent.

A basis (ug,...,u,) is positive or negative iff Ag(ui,...,un) is
positive or negative.

Ag(w1, ..., wy,) is invariant under every isometry f such that det(f)
=1.

The terminology “volume form” is justified because Ag(wy,...,wy) is
indeed the volume of some geometric object. Indeed, viewing E as an affine
space, the parallelotope defined by (wi, ..., wy,) is the set of points

{Mwy + -+ Aw, [0€ X €1,1 <5< n}.

Then, it can be shown (see Berger [12], Section 9.12) that the volume
of the parallelotope defined by (wi,...,wy) is indeed Ag(wy,...,wy). If
(E, ﬁ) is a Euclidean affine space of dimension n, given any n + 1 affinely
independent points (ag, .- .,an), the set

{ao + Magas + -+ A\pa0an | where 0 < A; <1,1<4i<n)}

is called the parallelotope spanned by (ag, - - -,an). Then the volume of the
parallelotope spanned by (ao, . ..,as) is Ag(apai,...,apan). It can also be

shown that the volume vol(ayg, . . .,a,) of the n-simplex (ag, ..., a,) is
1
vol(ag,...,an) = m/\E(aoal, ...,80an).
Now, given a sequence (wy,...,Wn~1) of n — 1 vectors in E, the map
T — /\E(wl, . ,wn_l,m)

is a linear form. Thus, by Lemma. 6.2.4, there is a unique vector u € E such
that

/\E(wl,...,wn_l,x) =Uu-

for all z € E. The vector u has some interesting properties that motivate
the next definition.
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Definition 7.9.2 Given any Euclidean space E of finite dimension n over
R, for any orientation of E and any sequence (wy, - .., wn—1) of n—1 vectors
in FE, the unique vector w; X - -+ X w,_1 such that

AE(W1,. o, Wp_1,Z) =W1 X -+ X Wp_1+T
for all z € E is the cross product, or vector product, of (w1, ..., Wp—1).
The following properties hold.

The cross product wy X - -+ X wp—1 changes sign when the orientation
changes.

The cross product wy X --- X w,_1 is a vector, and Definition 7.9.2
really defines an alternating multilinear map from E"~! to E.

wy X -+ X Wp—1 = 0iff (wy,...,w,_1) is linearly dependent. This is
because

wy X s X Wy =0

iff

Ae(wy, ..., wp—1,2) =0
for all z € E, and thus if (wy,...,w,—1) were linearly independent,
we could find a vector z € E to complete (w1,...,ws-1) into a basis

of F, and we would have
Ap(Wi, ..., Wy—1,) #0.
The cross product wy X -+ X wy_1 is orthogonal to each of the w;.
If (w1,...,wn~1) is linearly independent, then the sequence
(Wiyee s Wpo1, Wy X -+ X Wp_1)

is a positive basis of E.

We now show how to compute the coordinates of u; X .-+ X u,_; over
an orthonormal basis.
Given an orthonormal basis (ey,...,e,), for any sequence (ug,...,Unp—1)

of n — 1 vectors in E, if

n
uj =) uijei,
i=1

where 1 < j < n-1, forany x = x,e;+- - -+Inen, consider the determinant

U1 --- Ulp-1 1

U221 ... Uzp-1 T2
)‘E(uly"'yu’n—lam)z . .

Unl ..- Unn-1 Tn
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Calling the underlying matrix above A4, we can expand det(A) according to
the last column, using the Laplace formula (see Strang [166]), where A, ; is
the (n — 1) X (n — 1) matrix obtained from A by deleting row i and column
7, and we get

U1 ... Uipn-1 I1
U1 ... U2p-1 I2 ntl

S C = (=1)""zy det(A1n) + - - + Tpdet(Any).
Unl --- Upnn-1 In

Each (—1)**" det(A;y) is called the cofactor of x;. We note that det(A)
is in fact the inner product

det(A) = (1) det(Arn)er + -+ (=1)"T" det(Anp)en) - T.
Since the cross product uj X --- X u,—1 is the unique vector u such that
u-z=Ag(u1,...,Un-1,),
for all z € E, the coordinates of the cross product uj X --- X up_1 must be
((=1)"*det(Arn), ..., (=1)"*" det(Ann)),

the sequence of cofactors of the z; in the determinant det(A).
For example, when n = 3, the coordinates of the cross product u x v are
given by the cofactors of z1, 2, z3, in the determinant

U v1 Ip

uz V2 T2,

uz U3 I3
or, more explicitly, by

u N
uz2 V2

uz V2
u3z U3

uyp V1
uz U3

I

(___1)3+3

(-1 G

b

that is,
(U2U3 — U3V2, U3V — U1V3, U1V2 — U2U1)-

It is also useful to observe that if we let U be the matrix

0 —us u
U= us 0 —U1 s
—Uu2 Ul 0

then the coordinates of the cross product u x v are given by

0 —Uus (%) v1 U2V3 — U3V2
us 0 —UuUy (%] = uzv] — U1V3
— Uz Uy 0 U3 U1V2 — UV

We finish our discussion of cross products by mentioning without proof
a few more of their properties, in the case n = 3. Firstly, the following
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so-called Lagrange identity holds:
(w-0)* + fJu x o)l = [lul?[lv)®.

If u and v are linearly independent, and if 6 (or 27 — 6) is a measure of
the angle 4o, then

llu x o]
[lulliv]l

It can also be shown that u x v is the only vector w such that the following
properties hold:

|siné] =

(1) w-u=0,and w-v=0.
(2) Ag(u,v,w) > 0.
(3) (u-v)®+ [lwl? = llul®|lv]|*.

Recall that the mixed product Ag(w1, w1, ws) is also denoted by (w1, we,
ws), and that

wy - (w2 X w3) = (wy, w2, w3).

7.10 Problems

Problem 7.1 Prove Lemma 7.4.2.

Problem 7.2 This problem is a warm-up for the next problem. Consider
the set of matrices of the form

0 —a
a 0 )’
where a € R.

(a) Show that these matrices are invertible when a # 0 (give the inverse
explicitly). Given any two such matrices A, B, show that AB = BA. De-
scribe geometrically the action of such a matrix on points in the affine plane
A? with its usual Euclidean inner product. Verify that this set of matrices
is a vector space isomorphic to (R,+). This vector space is denoted by
s0(2).

(b) Given an n x n matrix A, we define the ezponential e? as

eAZIn+Z%T,

E>1

where I,, denotes the n x n identity matrix. It can be shown rigorously that

this power series is indeed convergent for every A (over R or C), so that

e* makes sense (and you do not have to prove it!).
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Given any matrix

prove that

A _ 10 . 0 -1\ _ [cosf —sind
€ _COSH(O 1)+sm0<1 0)_(sin0 cosf )’

Hint. Check that

2
0 -6\ _,(0 -1 0 —6\* (10
(6 0)=e( ) = (6 7) (%)

and use the power series for cos and sin 6. Conclude that the exponential
map provides a surjective map exp:so(2) — SO(2) from s0(2) onto the
group SO(2) of plane rotations. Is this map injective? How do you need to
restrict § to get an injective map?

Remark: By the way, s0(2) is the Lie algebra of the (Lie) group SO(2).

(c) Consider the set U(1) of complex numbers of the form cos 8 + i sin 6.
Check that this is a group under multiplication. Assuming that we use the
standard affine frame for the affine plane A2, every point (z, ) corresponds
to the complex number z = z + iy, and this correspondence is a bijection.
Then, every a = cosf + isinf € U(1) induces the map R,:A%2 — AZ?
defined such that

R, (2) = az.
Prove that R,, is the rotation of matrix
cosd —sind
sinf cosf /-
Prove that the map R:U(1) — SO(2) defined such that R(a) = R, is
an isomorphism. Deduce that topologically, SO(2) is a circle. Using the
exponential map from R to U(1) defined such that § — e* = cos+4sin¥,

prove that there is a surjective homomorphism from (R, +) to SO(2). What
is the connection with the exponential map from so(2) to SO(2)?

Problem 7.3 (a) Recall that the coordinates of the cross product u x v
of two vectors u = (u1,us2,u3) and v = (v1,v2,v3) in R3 are

(ugvs — uzvy, U3Vl — U1V3, ULV — U2V]).
Letting U be the matrix

0 —Uus Uug
U= us 0 —U1 ,
—Uz U 0
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check that the coordinates of the cross product v x v are given by

0 —u3 U U1 UV3 — UV
(753 0 —U1 (%] = U3v1 — U1V3
—u2 Ul 0 U3 U1V — UV1

(b) Show that the set of matrices of the form

0 —Uus (%]
U= us 0 —Uul
—U2 U1 0

is a vector space isomorphic to (R3+). This vector space is denoted by
50(3). Show that such matrices are never invertible. Find the kernel of the
linear map associated with a matrix U. Describe geometrically the action
of the linear map defined by a matrix U. Show that when restricted to the
plane orthogonal to u = (uj, uz, uz) through the origin, it is a rotation by
w/2.

(¢) Consider the map v: (R3, x) — so(3) defined by the formula

0 —Uus Uo
P(ur,ug,uz) = | u3 0 —u
—Uuz U 0

For any two matrices A, B € so(3), defining [A, B] as
[A, B] = AB — BA,
verify that
Y(u x v) = [P(u), Y(v)]-

Show that [—, —] is not associative. Show that [A, A] = 0, and that the
so-called Jacobi identity holds:

[4, (B, C} +[C, [A, B]] +[B, [C, A]] =0.
Show that [A B] is bilinear (linear in both A and B).

Remark: [A, B] is called a Lie bracket, and under this operation, the

vector space s0(3) is called a Lie algebra. In fact, it is the Lie algebra of
the (Lie) group SO(3).

(d) For any matrix
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letting 8 = va? + b2 + ¢2 and

a® ab ac

B=\|ab b bc|,

ac bc c?

prove that

A?= -6’ + B,

AB=BA=0.
From the above, deduce that

A% = —6%4,
and for any k£ > 0,
AL — gtk 4

A4k+2 — 94kA2,
A4k+3 — _94k+2147
A4k+4 — —94k+2A2.

Then prove that the exponential map exp:so(3) — SO(3) is given by

i 1—cosf
expA=e? =cosbI;+ SI1910A+ ( 9(:20s )

B,

or, equivalently, by

sin @ (1 —-cosb)
2 A+ 2 A*,

if 0 # k27 (k € Z), with exp(03) = I3.

eA=I3+

Remark: This formula is known as Rodrigues’s formula (1840).

(e) Prove that exp A is a rotation of axis (a,b,c¢) and of angle § =
Va2 + b% + ¢
Hint. Check that e is an orthogonal matrix of determinant +1, etc., or
look up any textbook on kinematics or classical dynamics!

(f) Prove that the exponential map exp:so(3) — SO(3) is surjective.
Prove that if R is a rotation matrix different from I3, letting w = (a,b,¢)
be a unit vector defining the axis of rotation, if tr(R) = -1, then

0 - b
(exp(R))_1 = {:tﬂ' ( c Oc —a) } ,
-b a 0

and if tr(R) # —1, then

(exp(R) ™ = { 5 (R - R)

1+ 2cosf =tr(R)}.
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(Recall that tr(R) = 711 + 722 + 33, the trace of the matrix R). Note that
both 6 and 27 — 0 yield the same matrix exp(R).

Problem 7.4 Prove that for any plane isometry f such that ? is a re-
flection, f is the composition of a reflection about a line with a translation
(possibly null) parallel to this line.

Problem 7.5 (1) Given a unit vector (—sin#,cos#), prove that the
Householder matrix determined by the vector (- sin 8, cos8) is

cos28  sin26
sin28 —cos20 /°
Give a geometric interpretation (i.e., why the choice (—sin#8, cos §)7).

(2) Given any matrix
a b
A= (e )

prove that there is a Householder matrix H such that AH is lower

triangular, i.e.,
a 0
AH = (C, d,)

Problem 7.6 Given a Euclidean space E of dimension n, if & is a reflection
about some hyperplane orthogonal to a nonnull vector v and f is any
isometry, prove that f o h o f~1 is the reflection about the hyperplane
orthogonal to f(u).

for some a’,c’,d’ € R.

Problem 7.7 Let F be a Euclidean space of dimension n = 2. Prove that
given any two unit vectors u;,us € E (unit means that |ju,| = ||us|| = 1),
there is a unique rotation r such that

r(u1) = us.

Prove that there is a rotation mapping the pair (u;,u2) to the pair
(us, uq) iff there is a rotation mapping the pair (u;, u3) to the pair (us,uy)
(all vectors being unit vectors).

Problem 7.8 (1) Recall that

Y11 V12 ce. Uin
V21 V292 N X )
det(vi,...,vn) = : : . E
Un1 Un2 Cee Unn
where v; has coordinates (v;1,...,vi,) With respect to a basis (e1,...,ey).
Prove that the volume of the parallelotope spanned by (ao, ..., a,) is given

by
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apr ao2 ... Qon 1
ay; a2 ... Qin 1
n
/\E(a0a e ,an) = (_1) . . . . S
n1 Qp2 ... Gpnp 1

and letting Ag(ao, . ..,an) = Ag(aoai,...,apa,), that

11 —@p1 @12 — Qg2 ... Qin —Qon
G21 —0Gg1 QA22 — Qo2 ... Q@2n —QAon
AE(GO,---,(I”): . . .. : )

Gn1 —0G01 Qn2—Q402 ... Gpn — Qon
where a; has coordinates (a;1,...,a;,) with respect to the affine frame
(O, (e1y-..,en))-

(2) Prove that the volume vol(ao, ..., a,) of the n-simplex (ao,.-.,a,)
is
1
vol(ag,...,an) = ﬁ/\E(agal,.. .,apay).

Problem 7.9 Prove that the so-called Lagrange identity holds:
(u-v)? + [lu x v)|* = fJuf?[lo]|>.

Problem 7.10 Given p vectors (u1,...,up) in a Euclidean space E of
dimension n > p, the Gram determinant (or Gramian) of the vectors
(u1,...,up) is the determinant

I|U1||2 (ulaug> e (ulaup>

U2, U1 U2 ‘e U2, U
Gram(u ... = | @20 sl (2,
: : . .

(up,u1) (up,u2) ... [lupll

(1) Prove that
Gram(up, ..., un) = Ap(u1,. .., up)%
Hint. By a previous problem, if (ey,...,e,) is an orthonormal basis of E

and A is the matrix of the vectors (uy,...,u,) over this basis,

det(A4)? = det(AT A) = det(A; - 4;),

where A; denotes the ith column of the matrix A, and (A; - A;) denotes
the n x n matrix with entries A; - A;.
(2) Prove that

lug % -+ X up_1]|* = Gram(uy, ..., Un_1).
Hint. Letting w = uy X -+ X un_1, observe that

AE(ulv' .. ,un_l,’l.U) = <w7w> = ”w”z’
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and show that

||w||4 = Ag(uq,.. S Un_1,w)? = Gram(ug, . . ., Un—1, W)
= Gram(uy,...,un_1)|w|?.
Problem 7.11 Given a Euclidean space E, let U be a nonempty affine
subspace of E, and let a be any point in E. We define the distance d(a,U)
ofatoU as
d(a,U) = inf{||ab|| | b€ U}.

(a) Prove that the affine subspace U defined such that

Nt

Ul=a+U

intersects U in a single point b such that d(a,U) = ||abl||.
Hint. Recall the discussion after Lemma 2.11.2.

(b) Let (ag, - - - , ap) be a frame for U (not necessarily orthonormal). Prove
that
da, U)2 _ Gram(aga, agay,. .. ,aoap).
Gram(apay, - ..,a0ap)

Hint. Gram is unchanged when a linear combination of other vectors is
added to one of the vectors, and thus

Gram(apa, apai, - - . ,a0ap) = Gram(ba, apay, ..., a0ap),

where b is the unique point defined in question (a).

(c) If D and D’ are two lines in E, a,b € D are distinct points on D, and
a’,b € D’ are distinct points on D’, prove that if d(D, D’) is the shortest
distance between D and D’ (why does it exist?), then

Gram(aa’, ab, a’b’)
d N2 _ i 3
(D, DY) Gram(ab, a’b’)

Problem 7.12 Given a hyperplane H in E™ of equation

ULy + -+ UpTy, — v =0,

for any point @ = (a1,...,ays), prove that the distance d(a, H) of a to H
(see problem 7.11) is given by

U1a o UGy —
d(a,H)=| : 1+2 = ol
uf + -+ usi

Problem 7.13 Given a Euclidean space FE, let U and V be two nonempty
affine subspaces such that U NV = (. We define the distance d(U,V) of U
and V as

d(U,V) = inf{||abl| | a € U, be V}.
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L L
(a) Prove that dim(ﬁ+ 7) < dim(ﬁ) ~1l,and that U NV =

- —.1
(T + V)" # {0},
Hint. Recall the discussion after Lemma 2.11.2 in Chapter 2.
1 1
(b) Let W=0U nV = (ﬁ+ ‘_/’)L Prove that U’ = U + W is an
affine subspace with direction U @ W, Vi=V+ W is an affine subspace
with direction VEBW, and that W' = U'NV” is a nonempty affine subspace

with direction (U) n 7) @ W such that UNW’ # 0 and VNW' £ @. Prove
that U N W’ and V N W’ are parallel affine subspaces such that

; =
Unw =vnw =UnV.

Prove that if a,c € U, b,d € V, and ab,cd € (ﬁ + 1_/))J', then ab = ¢d

and ac = bd. Prove that if c € W/, then ¢+ (U) + ‘_/))L intersects U N W’
and V N W’ in unique points a € UN W’ and b € V N W' such that

— =
abe (U +V)".
Prove that for alla e UNW’ and allbe VN W/,
d(U,V) = |ab|| iff abe (T + V)™

Prove that a € U and b € V' as above are unique iff UvnV = {0}.
—_ = — =
(¢)Ifm=dim(U 4+ V), (e1,...,€n) isany basisof U + V', and ap € U
and bg € V are any two points, prove that

Gram(agbg, €1,...,€mn)
2 _
du.v)”" = Gram(ey, ..., emn)

Problem 7.14 Let E be a real vector space of dimension n, and let ¢: E x
E — R be a symmetric bilinear form. Recall that ¢ is nondegenerate if for
every u € E,

if p(u,v)=0 forallve E, then u=0.

A linear map f: E — E is an isometry w.r.t. @ if

o(f(z), f(v) = ¢(z, y)

for all z,y € E. The purpose of this problem is to prove that the Cartan—
Dieudonné theorem still holds when ¢ is nondegenerate. The difficulty
is that there may be isotropic vectors, i.e., nonnull vectors u such that
p(u, u) = 0. A vector u is called nonisotropic if ¢(u, u) # 0. Of course, a
nonisotropic vector is nonnull.

(a) Assume that ¢ is nonnull and that f is an isometry w.r.t. ¢. Prove
that f(u) —u and f(u) + u are conjugate w.r.t. p, i.e.,

@(f(u) —u, f(u)+u)=0.
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Prove that there is some nonisotropic vector u € F such that either f(u)—u
or f(u) -+ u is nonisotropic.

(b) Let ¢ be nondegenerate. Prove the following version of the Cartan—
Dieudonné theorem:

Every isometry f € O(y) that is not the identity is the composition of
at most 2n — 1 reflections w.r.t. hyperplanes. When n > 2, the identity is
the composition of any reflection with itself.

Proceed by induction. In the induction step, consider the following three
cases:

(1) f admits 1 as an eigenvalue.
(2) f admits —1 as an eigenvalue.
(3) f(u) # u and f(u) # —u for every nonnull vector u € E.

Argue that there is some nonisotropic vector u such that either f(u)—wu or
f(u)+u is nonisotropic, and use a suitable reflection s about the hyperplane
orthogonal to f(u) — u or f(u) + u, such that so f admits 1 or —1 as an
eigenvalue.

(c) What goes wrong with the argument in (b) if ¢ is nonnull but possibly
degenerate? Is O(yp) still a group?

Remark: A stronger version of the Cartan-Dieudonné theorem holds: in
fact, at most n reflections are needed, but the proof is much harder (for
instance, see Dieudonné [47]).
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