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The software industry has evolved to tackle new approaches aligned with the Internet, object-orientation, 
distributed components and new platforms. However, the majority of the large information systems 
running today in many organizations were developed many years ago with technologies that are now 
obsolete. These old systems, known as legacy systems, include software, hardware, business processes 
and organizational strategies and policies. Many are still business-critical and their complete replacement 
is dangerous and their maintenance is increasingly expensive. The amount of code in legacy systems is 
immense; there are billions upon billions of lines of code in existence that must be maintained. 

The demand for modernization of legacy systems created the need for new architectural frameworks 
for information integration and tool interoperation that allow managing new platform technologies, 
design techniques and processes. The Object Management Group (OMG) adopted the Model Driven 
Architecture (MDA) that is an evolving conceptual architecture aligned with this demand. 

Beyond interoperability reasons, there are other benefits to using MDA such as improving productiv-
ity, process quality and maintenance costs. MDA itself is not a technology specification, but it represents 
an evolving plan to achieve cohesive model-driven technology specifications.

All artifacts, such as requirement specifications, architecture descriptions, design descriptions and 
code are regarded as models. MDA distinguishes at least the following ones:

• Computation Independent Model (CIM): a model that describes a system from the computation 
independent viewpoint that focuses on the environment of and the requirements for the system. In 
general, it is called domain model.

• Platform Independent Model (PIM): a model with a high level of abstraction that is independent 
of any implementation technology. 

• Platform Specific Model (PSM): a tailored model to specify the system in terms of the imple-
mentation constructs available in one specific platform. 

• Implementation Specific Model (ISM): a description (specification) of the system in source 
code. 

The idea behind MDA is to manage the evolution from CIMs to PIMs and PSMs that can be used to 
generate executable components and applications. In MDA, it is crucial to define, manage, and maintain 
traces and relationships between different models and automatically transform them and produce code 
that is complete and executable. 

We can distinguish three main transformations in MDA processes: refinements, anti-refinements 
and refactorings. A refinement is the process of building a more detailed specification that conforms to 
another that is more abstract. On the other hand, an anti-refinement is the process of extracting from 
a more detailed specification (or code) another, more abstract specification that is conformed by the 
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more detailed specification. Refactoring means changing a model, leaving its behavior unchanged, but 
enhancing some non-functionality quality factors such as simplicity, flexibility, understandability and 
performance.

The initial diffusion of MDA was focused on its relation with the Unified Modeling Language (UML) 
as modeling language. However, there are UML users who do not use MDA, and MDA users who use 
other modeling languages such as Domain Specific Languages (DSLs).

MDA requires the ability to understand different languages such as general purpose languages, domain 
specific languages, modeling languages or programming languages. An underlying concept of MDA for 
integrating such languages semantically in a unified and interoperable way is metamodeling. 

The essence of MDA is the Meta-Object-Facility (MOF) metamodel that allows different kinds of 
artifacts from multiple vendors to be used together in the same project.

MOF (latest revision 2.0) defines a common way to capture all the diversity of modeling standards 
and interchange constructs. It provides a metadata management framework where models can be, for 
instance, exported from one application, imported into another, stored in a repository and then retrieved, 
transformed, and used to generate code. The MOF 2.0 Query, View, Transformation (QVT) metamodel 
addresses queries on models, views on metamodels and transformations of models. 

With the emergence of MDA, new approaches should be developed in order to reverse engineering, 
both platform independent and platform specific models, from object oriented code. 

This book is a contribution for the demand of system modernization. In particular, the objective of 
this book is to analyze the integration of MDA with reverse engineering techniques to control the evolu-
tion of systems towards object oriented technologies. 

A central problem is how to correctly define metamodels and align them with MOF. Inconsisten-
cies in a metamodel specification will affect models and their implementations. MOF-metamodels are 
expressed as a combination of UML, the Object Constraint Language (OCL) and natural language. 
MOF has no built-in semantics apart from the well-formedness rules in OCL and what can deduced 
from them. This form of specification does not make it possible to validate that specific metamodels 
like UML metamodel conform to MOF (in the sense of each metaclass of the metamodel conforms a 
MOF meta-metaclass). A combination of MOF metamodeling and formal specification can help us to 
address MDA. A formal specification allows us to produce a precise and analyzable software specifica-
tion and clarifies the intended meaning of metamodels. It also helps to validate model transformations, 
and provides reference for implementations.

In light of this, the book proposes an integration of classical compiler techniques, metamodeling 
techniques and algebraic specification techniques to make a significant impact on the automation of 
MDA-based reverse engineering processes. 

The proposed approach has two main advantages linked to automation and interoperability. On the one 
hand, our approach shows how to automatically generate formal specifications from MOF metamodels. 
Due to scalability problems, this is an essential requisite. On the other hand, it focuses on interoper-
ability of formal languages.

Reverse engineering and software evolution are crucial and complex research domains in software 
engineering. This book intends to increase the consciousness of the advantages of defining MDA-based 
reverse engineering and software evolution processes. It emphasizes techniques that are the foundations 
of innovative MDA processes and inspires research to open new frontiers with the power of MDA Case 
tools.

To date, most model-driven development research emphasizes on “Software Language Engineering.” 
Perhaps in the coming years, the focus will be on “Software Engineering Processes.” This book intends 
to shorten the path to this goal by providing an overview of several techniques that can be adopted in 
MDA-based processes.
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This book was written for a broad audience of researchers, advanced students, professionals and those 
people that have adopted reverse engineering practices or are about to invest in system modernization. It 
encourages software professionals to explore the use of MDA for innovative projects that involve reverse 
engineering efforts combined with software evolution. It can also be used in advanced undergraduate 
courses to teach reverse engineering as an integral part of software design processes.

We assume that readers have a general knowledge of object oriented modeling, in particular UML 
models. A self-contained discussion of the principles of reverse engineering in a novel context including 
topics such as MDA, OCL, MOF, UML metamodel and QVT is presented.

OrganizatiOn and Structure

The book is divided into six sections: 

• Section 1: Basics
• Section 2 : Formalization of MDA Processes 
• Section 3: Techniques Underlying MDA-Based Reverse Engineering 
• Section 4: Conclusions
• Section 5: Selected Readings
• Section 6: Appendices

Section 1 includes a discussion of the fundamentals of reverse engineering and MDA. It also includes 
a description of the main OMG standards involved in MDA processes. It introduces the main concepts 
of MOF-based metamodeling techniques for specifying platforms, models and metamodel-based trans-
formations. It includes three chapters:

• Chapter 1: Reverse Engineering and MDA: An Introduction
• Chapter 2: Model Driven Architecture (MDA) 
• Chapter 3: MDA, Metamodeling and Transformation

Section 2 describes foundations for metamodeling. It shows how to specify a metamodel by using 
formal specifications and how to generate formal specifications in an automatic way. Also, this section 
show how different formalization styles can be integrated. It includes four chapters:

• Chapter 4: Formalization of MOF-Based Metamodels
• Chapter 5: MOF-Metamodels and Formal Languages
• Chapter 6: Mappings of MOF Metamodels and Algebraic Languages
• Chapter 7: Mappings of MOF Metamodels and Object-Oriented Languages

Section 3 is a central part of this book. It describes underlying techniques in MDA processes, in par-
ticular in reverse engineering and software evolution. It describes how to adapt crucial techniques such 
as design patterns, model refactoring and pattern recovery in a way that fits with MDA. It includes the 
description of a framework for reverse engineering object oriented code. It includes three chapters:

• Chapter 8: Software Evolution, MDA and Design Pattern Components
• Chapter 9: Evolution of Models and MDA-Based Refactoring
• Chapter 10: MDA-Based Object-Oriented Reverse Engineering 
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Section 4 summarizes the main contributions and includes strategic directions and challenges in MDA 
reverse engineering and software evolution. It includes two chapters:

• Chapter 11: Summing Up the Parts
• Chapter 12: Towards MDA Software Evolution

Finally, the book also includes appendixes and selected readings that provide complementary infor-
mation about metamodels, platforms, languages and formalisms.

Next, we describe contents of the different sections.

Section 1: Basics

Chapter 1: Reverse Engineering and MDA: An Introduction 

This chapter gives an overview of state-of-the-practices in reverse engineering techniques and motivates 
the interest that Model Driven Reverse Engineering has gained in different application areas related to 
the evolution of existing software.

Chapter 2: Model Driven Architecture (MDA)

Chapter 2 explains MDA and its main concepts such as model, metamodel and transformations. It in-
troduces the main OMG standards related to MDA such as UML Infrastructure, UML Superstructure, 
MOF, QVT and XMI (XML Metadata Interchange). Besides, it includes a comparison of UML Profiles, 
metamodels and DSL (Domain Specific Languages).

Chapter 3: MDA, Metamodeling and Transformation

Chapter 3 explains the main MOF modeling concepts and MOF-based transformations. It also provides 
UML/OCL notation for specifying metamodels and transformations. It includes MOF-based metamodels 
for object oriented languages such as Java, C++ and Eiffel and examples of transformations. 

Section 2: Formalization of MOF-Based Processes 

Chapter 4: Formalization of MOF-Based Metamodels

This chapter proposes a combination of metamodeling and formal specification techniques to address 
MDA-based processes involved in software evolution. It introduces an MDA Infrastructure, a minimal 
subset of packages of OMG standards to formalize MDA process. It describes an algebraic language 
called NEREUS which is suited for specifying metamodels, and particularly the MDA Infrastructure. 
The chapter also includes several examples of specifications such as OCL Collection and the QVT Core 
package.

Chapter 5: MOF-Metamodels and Formal Languages

The chapter explains how to integrate MOF metamodels with formal specification. It describes a bridge 
between MOF and NEREUS that is supported by reusable schemes and a system of transformation 
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rules for translating OCL specifications into NEREUS. The chapter exemplifies the different steps of 
the transformation process. 

Chapter 6: Mappings of MOF Metamodels and Algebraic Languages

The chapter analyzes mapping between MOF metamodels and traditional formal languages. In particular, 
it examines the relation between NEREUS and CASL (Common Algebraic Specification Language) as 
a common algebraic language. It proposes a transformation process that could be automated.

Chapter 7: Mappings of MOF Metamodels and Object-Oriented Languages

The chapter analyzes mapping between MOF metamodels and traditional object oriented languages. In 
particular, it examines the relation between NEREUS and the Eiffel language. It proposes a transforma-
tion process and a set of heuristics for integrating OCL specification and Eiffel contracts.

Section 3: techniques underlying Mda-Based reverse engineering 

Chapter 8: Software Evolution, MDA and Design Pattern Components

This chapter describes how to define MDA-based reusable components. It defines a megamodel for de-
fining MDA components at different abstraction levels (PIM, PSM and ISM). Considering the relevant 
role that design patterns have in software evolution, this chapter exemplifies MDA components for clas-
sical design patterns. Besides, it shows how to integrate design patterns components with MDA-based 
processes and also introduces formalization of metamodels and metamodel-based transformation. This 
chapter is used to exemplify the specification of refinements. 

Chapter 9: Evolution of Models and MDA-Based Refactoring

The chapter analyzes MDA-based refactoring techniques. It explains an MDA framework for refactor-
ing that is structured at three different levels of abstraction linked to models, metamodels and formal 
specification. The main contributions of this chapter are the definition of refactorings as metamodel-based 
transformations that are expressed as OCL contracts, a technique for identifying refactoring patterns 
and an algebraic formalization of refactorings. The chapter proposes a uniform treatment of refactoring 
at level of PIM, PSM and code. 

Chapter 10: MDA-Based Object-Oriented Reverse Engineering 

This chapter describes a reverse engineering approach that fits with MDA. It explains a framework to 
integrate different techniques that come from compiler theory, metamodeling and formal specification. It 
emphasizes the use of static and dynamic analysis for generating MDA models. The chapter also shows 
how MOF and QVT metamodels can be used to drive model recovery processes. It also describes how 
metamodels and transformations can be integrated with formal specifications in an interoperable way. 
The reverse engineering of class diagram and state diagram at PSM level from Java code is exemplified. 
This chapter is used to exemplify the specification of anti-refinements.



  xiii

Section 4: conclusions

Chapter 11: Summing Up the Parts 

This chapter summarizes the main results described in the book and challenges in MDA reverse engi-
neering.

Chapter 12: Towards MDA Software Evolution

This chapter discusses software evolution, challenges and strategic directions in the context of MDA.

Section 5: Selected Readings contains two previously published chapters. For Section 6: Appendices, 
contains four appendices. Appendix A: Platform Specific Metamodels and Language Metamodels; Ap-
pendix B: OCL and NEREUS: Type System; Appendix C: Transformation Rule System; and Appendix 
D: Design Pattern Metamodels.
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Chapter 1

Reverse Engineering and MDA:
An Introduction

intrOductiOn

Reverse Engineering is the process of analyzing available software artifacts such as requirements, design, 
architectures, code or byte code, with the objective of extracting information and providing high-level 
views on the underlying system.

A common idea in reverse engineering is to exploit the source code as the most reliable description 
both of the behavior of a software system and of the organization and its business rules. However, reverse 
engineering is immersed in a variety of tasks related to comprehending and modifying software such 
as re-documentation of programs and relational databases, recovering of architectures, recovering of 
alternative design views, recovering of design patterns, building traceability between code and designs, 
modernization of interfaces or extracting the source code or high level abstractions from byte code when 
the source code is not available.

Reverse engineering is hardly associated with modernization of legacy systems that were developed 
many years ago with technology that is now obsolete. These systems include software, hardware, busi-
ness processes and organizational strategies and politics. Many of them remain in use after more than 20 
years; they may be written for technology which is expensive to maintain and which may not be aligned 
with current organizational politics. Legacy systems resume key knowledge acquired over the life of an 
organization. Changes are motivated for multiple reasons, for instance the way in which we do business 
and create value. Important business rules are embedded in the software and may not be documented 
elsewhere. The way in which the legacy system operates is not explicit (Brodie and Stonebraker, 1995) 
(Sommerville, 2004).

On the one hand, there are billions upon billions of lines of legacy code in existence, which must 
be maintained with a high cost and, on the other hand, there is a high risk in replacing legacy systems 

DOI: 10.4018/978-1-61520-649-0.ch001
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that are still business-critical. The cost of reengineering should be significantly less than the cost of a 
new developing.

Reverse engineering does not involve changing the source legacy systems, but understanding them 
to help reengineering processes that are concerned with their re-implementing. Software reengineering 
starts from an existing implementation and requires an evaluation of every part of the system that could 
be transformed or implemented anew from scratch. This definition distinguishes the following main 
phases:

the examination and the alteration of a subject system to reconstitute it in a new form

and

the subsequent implementation in a new form. (Demeyer, Ducasse and Nierstrasz, 2002)

In other words, reengineering includes some form of reverse engineering followed by some form 
of forward engineering. Reverse engineering is the process of examination, not the process of change. 
Chikofsky and Cross (1990) define reverse engineering and forward engineering:

• Reverse engineering: “the process of analyzing a subject system to (i) identify the system’s com-
ponents and their interrelationships and (ii) create representations of the system in another form 
or at a higher level of abstraction”

• Forward engineering: “the traditional process of moving from high-level abstractions and logi-
cal, implementation-independent designs to the physical implementation of a system”

Reverse engineering and related processes are using only three life-cycle phases: requirements speci-
fications (including objectives, constraints and business rules), design of the solution and implementation 
(coding, testing, and delivery of the operational system) (Chikofsky & Cross, 1990).

Figure 1 depicts the relationship between tasks related to reverse engineering expressing transforma-
tions between or within abstraction levels linked to lifecycle phases. It also shows three processes related 
to reverse engineering: re-documentation, design recovery and restructuring.

Re-documentation is the creation of a representation of software artifacts that existed or should have 
existed within the same relative abstraction level. The resulting forms of representation are usually 
considered alternate views (for example dataflow, Abstract Syntax Tree, Patterns).

Design recovery rebuilds design abstractions from an integration of code, existing design documentation 
(if available), personal experience, and general knowledge about problem and application domains.

Restructuring is the transformation of a software artifact from one representation form to another at 
the same relative abstraction level, while preserving the artifact external behavior.

Reverse engineering has been used with two essential goals: design recovering and abstraction; 
however, it can be used to obtain more abstract representations with other purposes, for example testing, 
quality assurance, reuse and security.

Reverse engineering has been related with software evolution and maintenance. Software evolution 
is the process of initial development of a software artifact, followed by its maintenance. The ANSI/
IEEE standard 729-1983 (Ansi/IEEE, 1884) defines software maintenance “as the modification of a 
software product after delivery to correct faults, to improve performance or other attributes, or to adapt 
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the product to a changed environment”. This definition focuses on modification after delivery however 
maintenance lasts a long time than the initial development. This definition does not cover implementa-
tion of new functionality and it is not aligned with modern developments that require characterizing the 
implementation of changes in response to change request with reference to the whole life cycle.

Reverse engineering techniques can be used as a mean to design software systems by evolving existing 
ones based on new requirements or technologies. It involves extracting higher-level design abstractions 
from an existing operational system, but this is not a requirement. On the one hand, it can start from any 
level of abstraction or at any stage of the life cycle. On the other hand a system must be continuously 
reverse engineered during its life cycle and integrated with the evolution of software artifacts. Changes 
can be related to correcting software (corrective maintenance), adapting a system to a new environment 
(adaptive maintenance) or implementing new functional or non-functional requirements (perfective 
maintenance) (IEEE, 1984).

Baxter and Mehlich (1997) argue that “reverse engineering needs the same knowledge and infra-
structure as forward engineering”. When the reverse engineering and forward engineering are placed 
within the contexts of building new systems in a more incremental and evolutionary style of develop-
ment the resulting process is round-trip engineering. The goal of round-trip engineering is to provide 
the generation of models from source code and generation of source code from models, while it keep 
the two views consistent.

In particular, reengineering includes a reverse engineering phase in which an abstraction of the soft-
ware artifacts to be reengineered is built, and a forward engineering phase. A reengineering process can 
be view as a conceptual “horseshoe” model that distinguishes different levels of analysis and provides 
foundations for logical transformations at different abstraction levels, especially for transformations to 

Figure 1. Reverse engineering and related process
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the architectural level and the development of a new system (SEI, 2009). These three processes form 
the basis of the “horseshoe” as illustrated in Figure 2.

reverSe engineering in the LaSt 20 YearS

20 years ago, reverse engineering focused mainly on recovering high-level architectures or diagrams 
from procedural code to face up with problems such as comprehending data structures or databases or the 
Y2K problem. At that time, many different kinds of slicing techniques had been developed and several 
studies had been carried out to compare them. Several slicing-based tools that had to do with extractors 
of intermediate representations from the source code were developed.

Basically, the initial reverse engineering techniques were based on program analysis and the concept 
of abstract interpretation, which amounts the program computations using value descriptions or abstract 
values in place of actual computed values. Abstract interpretation allows obtaining information about 
run time behavior without actually having to run programs on all input data. Reverse engineering was 
affected by practical concerns, such as the target programming language and the available libraries of 
reusable components.

A general framework for reverse engineering based on compiler theory and abstract interpretation 
included at least the steps shown in Figure 3.

The source code is parsed to obtain an abstract syntax tree (AST) associated with the source pro-
gramming language grammar. Information about software at the source code level is represented by 
metamodels. The information represented according to the metamodel allows building the data-flow 
graph for a given source code, as well as conducting all other analyses that do not depend on the graph. 
The basic idea is that information is derived statically by performing a propagation of data. Different 
kinds of analysis propagate different kinds of information in the data-flow graph. During this phase, the 
analysis, that is called static analysis, is assisted by automated tools.

Figure 2. The Horseshoe Model for architectural reengineering
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When the object oriented languages emerged, a growing demand for reengineering object oriented 
systems appeared on the stage. New approaches were developed to identify objects into legacy code 
(e.g. legacy code in COBOL) and translate this code into an object oriented language. Many object-
oriented languages allow for high dynamicity loading classes at run-time and supporting the concept of 
reflection. The first results showed shortcomings about comprehensibility and maintainability of object 
oriented target code, for instance, design of classes and interrelations do not adhere to the object-oriented 
philosophy.

The compiler techniques were adapted to perform a propagation of proper data in a graph represen-
tation of the object flows occurring in an execution (Aho, Sethi and Ullman, 1985). In this context, the 
data flow is called the Object Flow Graph (Tonella & Potrich, 2005). It allows tracking the lifetime of 
the objects from their creation along their life-cycle.

Object-oriented programs are essentially dynamic and present particular problems linked to poly-
morphism and late binding, abstract classes and dynamically typed languages. For example, some object 
oriented languages introduce concepts such as the reflection and the possibility of loading dynamically 
classes, although these are powerful mechanisms, they affect reverse engineering techniques. The object 
oriented features such as method redefinition, dynamic method resolution and dynamic associations 
between classes require capturing system states through dynamic analysis.

Then, during the time of object-oriented programming the focus of software analysis moved from 
static analysis to dynamic one, more precisely static analysis was complemented with dynamic one. 
Correspondingly, reverse engineering techniques had to be customized to address these aspects.

At time of object orientation, a new generation of tracer tools assisting in dynamic analysis appeared 
on the marketplace. The term refactoring was introduced by Martin Fowler for defining a special kind 
of restructuring in object-oriented code (Fowler, 1999):

Figure 3. Reverse engineering: Static analysis based on compiler techniques
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“Refactoring is the process of changing a software system in such a way that it does not alter the external 
behavior of the code yet improves its internal structure” (Fowler, 1999).

Object-oriented development was accompanied by the use of design patterns (Gamma et al., 1990) 
and anti-patterns (Laplante and Neill, 2005) that can be identified by static and dynamic analysis pro-
moting reuse and software quality.

When the Unified Modeling Language (UML) (OMG, 2009-a) (Booch, Rumbaugh and Jacobson, 
2005) comes into the world, a new problem was how to extract higher level views of the system expressed 
by different kind of UML diagrams.

The diagrams that could be reverse-engineered in this way were partial. A new challenge was how to 
identify different relationships (e.g. dependency, association, aggregation and composition). While there 
exists relevant work for extracting UML diagrams (e.g. class diagram, state diagram, sequence diagram, 
object diagram, activity diagram and package diagram) from source code, a lot of challenges still needs 
to be done, for instance it is an open problem the extraction of dynamic diagrams and the integration of 
specification in the Object Constraint Language (OCL) (OCL, 2006). Software environments provide 
a wide variety of tools to handle the reverse engineering at different dimensions. Although, there are 
tools for slicing, refactoring, design patterns and test cases, in general they are not integrated with one 
other in order that software evolves consistently.

reverSe engineering and Mda

Nowadays, software and system engineering industry evolves to manage new platform technologies, 
design techniques and processes. A new technical framework for information integration and tool inter-
operation such as the Model Driven Development (MDD) had created the need to develop new analysis 
tools and specific techniques. MDD refers to a range of development approaches that are based on the 
use of software models as first class entities. The most well-known is the OMG standard Model Driven 
Architecture (MDA), i.e., MDA is a realization of MDD (MDA, 2003) (MDA, 2005).

MDA is an evolution of OMG (Object Management Group) (OMG, 2009-a) standards to support model 
centric development increasing the degree of automation of processes such as source code translation, 
reverse engineering, forward engineering and data reengineering. The scope of MDA is not restricted 
to software systems and many kinds of domains, from system engineering, business and manufacturing 
can be benefited from the concepts underlying MDA.

The outstanding ideas behind MDA are separating the specification of the system functionality 
from its implementation on specific platforms, managing the software evolution from abstract models 
to implementations increasing the degree of automation and achieving interoperability with multiple 
platforms, programming languages and formal languages.

Models play a major role in MDA, which distinguishes at least the following ones:

• Computation Independent Model (CIM): a model that describes a system from the computa-
tion independent viewpoint that focuses on the environment of and the requirements for the sys-
tem. In general it is called domain model.

• Platform Independent Model (PIM): a model with a high level of abstraction that is indepen-
dent of any implementation technology.
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• Platform Specific Model (PSM): a tailored model to specify the system in terms of the imple-
mentation constructs available in one specific platform.

• Implementation Specific Model (ISM): a description (specification) of the system in source 
code.

MDA is carried out as a sequence of model transformations. We can distinguish three main trans-
formations: refinements, anti-refinements and refactorings. A refinement is the process of building a 
more detailed specification that conforms to another that is more abstract. On the other hand, an anti-
refinement is the process of extracting from a more detailed specification (or code) another one, more 
abstract, that is conformed by the more detailed one. Refactoring means changing a model leaving its 
behavior unchanged, but enhancing some non-functionality quality factors such as simplicity, flexibility, 
understandability and performance.

One of the main issues behind MDA is that all artifacts generated during software development are 
represented using common metamodeling languages. Metamodels integrate semantically different lan-
guages, platforms and technologies in a unified way. Figure 4 shows interrelationships between models, 
metamodels and transformations.

Figure 4. MDA-based reverse and forward engineering: Models and metamodels
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MDA is associated with popular OMG standards: the modeling language UML, the metamodel MOF 
(Meta Object Facility), the standard for defining metamodels and, the Query, View, Transformation 
Metamodel (QVT), the standard to express transformations (MOF, 2006) (QVT, 2008).

UML is a language for specifying, visualizing, constructing and documenting software intensive 
systems. It is a unifier of proven software modeling languages that incorporates the object-oriented 
community’s consensus on core modeling concepts and includes additional expressiveness to handle 
problems that previous languages did not fully address. UML has evolved as a result of insights gained 
through their use to the current version UML 2.2. It consists of two parts: Infrastructure and Superstructure 
that are associated with the Object Constraint Language (OCL) and Diagram Interchange specifications 
(UML, 2009-a) (UML, 2009-b) (OCL, 2006).

The initial diffusion of MDA was focused on its relation with UML as modeling language. However, 
there are UML users who do not use MDA, and MDA users who use other modeling languages such 
as Domain Specific Languages (DSL) (Mernik, Heering & Sloane, 2005) (Krahn, Rumpe, & Volkel, 
2008).

The essence of MDA is MOF that allows different kinds of software artifacts to be used together in 
a single project. MOF defines a common way for capturing all the diversity of modeling standards and 
interchange constructs.

MOF uses an object modeling framework that is essentially a subset of the UML core. The 4 main 
modeling concepts are classes, associations, which model binary relationships, Data Types, which model 
other data, and Packages which modularize the models.

QVT standard depends on MOF and OCL for specifying queries, views, and transformations. A query 
selects specific elements of a model, a view is a model derived from other model and, a transformation 
is a specification of a mechanism to convert the elements of a model, into elements of another model.

A PIM-metamodel is related to more than one PSM-metamodels, each one suited for different plat-
forms, e.g. .NET, J2EE or relational. The PSM-metamodel corresponds to ISM-metamodels. A metamodel 
is a description of all the concepts that can be used in the respective level. For instance, a metamodel 
linked to a relational platform refers to concepts of table, foreign key and column. An ISM-metamodel 
includes concepts of programming languages such as constructor and method.

Metamodel transformations are a specific type of model transformations that impose relations between 
pairs of metamodels. A metamodel-based transformation is a specification of a mechanism to convert 
the elements of a model that conform to a particular metamodel, into elements of another model which 
can be confirmed by the same or different metamodels. Model transformations are specified as OCL 
contracts between metamodel.

The following types of transformations can be distinguished:

• PIM to PSM Refinement: It describes how a PIM that conforms to a MOF-metamodel is trans-
formed into a PSM that conforms to a specialized MOF-metamodel for a specific platform.

• PSM to ISM Refinement: It describes how a PSM (which conforms to a MOF-metamodel for 
specific platform) is transformed into code (which conforms to a MOF-metamodel for a specific 
object-oriented language).

• ISM to PSM Anti-refinement: It describes how a code that conforms to an ISM metamodel is 
transformed into a PSM that conforms to a specialized MOF metamodel for a specific platform.

• PSM to PIM Anti-refinement: It describes how a PSM that conforms to a PSM metamodel is 
transformed into a PIM.
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• Refactoring: It specifies how a model in a given level is transformed into a new restructured 
model in the same level (for instance, PIM to PIM, PSM to PSM, ISM to ISM). The source and 
target models conform to the same MOF-metamodel.

Figure 5 shows the different correspondences that may be held between several metamodel, instances 
of metamodels and their interrelations via refinements, anti-refinements and refactorings in a reengineer-
ing process. It can be viewed as an MDA “horseshoe” model that describes the phases of architecture 
recovery and architecture based development, MDA is the underlying architectural framework. It shows 
how reengineering proceeds at different levels of abstraction: code representation, platform dependent 
models, platform independent models and computation independent models. In particular, reengineering 
includes a reverse engineering phase in which an abstraction of the software models to be reengineered 
is expressed in terms of MDA models, and a forward engineering phase.

Figure 5. MDA transformations: Refinements, anti-refinements and refactoring
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OMG is involved in a series of standards to successfully modernize existing information systems. 
Modernization supports, but are not limited to, source to source conversion, platform migration, service 
oriented architecture migration and model driven architecture migration (ADM, 2007).

The success of MDA depends on the existence of CASE (Computer Aided Software Engineering) 
tools that make a significant impact on the automation of round-trip engineering processes that provide 
generation of source code from models (forward engineering) and generation of models from source 
code (reverse engineering). For instance, one or more PSMs would be generated from a PIM using tools 
for automatic generation of platform details or, different PSMs would be generated from object-oriented 
code.

Commercial MDA tools have recently begun to emerge. In general, UML preexisting tools are been 
extended to support MDA (CASE, 2009). The current techniques available in these tools provide forward 
engineering and limited facilities for reverse engineering.

In legacy system modernization, reverse engineering is an integral part of the software development 
cycle. The existing CASE tools only use more basic notational features with a direct code representa-
tion and produce very large diagrams. Refactoring is an important step for evolving models in reverse 
engineering processes; however CASE tools provide limited facilities for refactoring only on source code 
through an explicit selection made for the designer. In general, MDA CASE tools extract class diagrams 
from object oriented code, while lacking support for recovering different kinds of UML diagrams. Reverse 
engineering is complex enough that human intervention is still essential for the time being.

With respect to reverse engineering processes, two types of consistency can be distinguished, vertical 
consistency between different levels of refinements/anti-refinements and horizontal consistency between 
models at the same abstraction level. Validation, verification and consistency are crucial activities in the 
modernization of legacy systems that are critical to safety, security and economic profits. Reasoning 
about models of systems is well supported by automated theorem provers and model checkers, however 
these tools are not integrated into CASE tools environments.

MOF-metamodels are expressed as a combination of UML class diagrams and OCL. UML and OCL 
are too imprecise and ambiguous when it comes to simulation, verification, validation and forecasting of 
system properties. Although OCL is a textual language, OCL expressions rely on UML class diagrams, 
i.e., the syntax context is determined graphically. A formal specification technique must provide at least 
syntax, some semantics and an inference system. The inference system can help to automate testing, 
prototyping or verification. However, OCL does not support logic deductions in the style of solid formal 
languages.

One of the most important features for a rigorous development is the combination of tests and proofs. 
When artifacts at different levels of abstraction are available, a continuous consistency check between 
them could be help to reduce development mistakes, for example checking whether the code is consistent 
with the design or complies with the pre- and post-conditions.

With the emergence of MDA, the static analysis and dynamic analysis must be integrated with 
metamodeling techniques. We propose an approach for MDA-based reverse engineering that integrates 
classical compiler techniques, metamodeling techniques and formal specification.

Reverse engineering involves processes with different degrees of automation, which can go from 
totally automatic static analysis to human intervention requiring processes to dynamically analyze the 
resultant models. We propose to combine static and dynamic analysis to generate models (PSMs, and 
PIMs) from code and, to analyze the consistency of these transformations by integrating metamodeling 
and formal specification.
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This book proposes a framework for reverse engineering that distinguishes three different abstraction 
levels linked to models, metamodels and formal specifications.

The model level includes code, PSMs and PIMs. Transformations at this level are based on classical 
static and dynamic analysis techniques.

The metamodel level includes MOF-metamodels that describe families of ISMs, PSMs and PIMs. 
Every ISM, PSM and PIM conforms to a MOF-metamodel. Metamodel transformations are based on a 
minimal subset of OMG standard metamodels that we called MDA Infrastructure.

The level of formal specification includes specifications of MOF-metamodels and metamodel 
transformations by using the metamodeling language NEREUS that can be viewed as an intermediate 
formal-language independent notation. It focuses on interoperability of formal languages in MDD and 
would eliminate the need to define formalizations and specific transformations for each different formal 
language.

We define a bridge between MOF-metamodels and NEREUS consisting of a system of transforma-
tion rules to convert automatically MOF into NEREUS. Figure 6 shows the relation between metamodel 
specifications and NEREUS. Relevant techniques of software evolution, such as reuse and refactoring 
ones have been integrated in a way that fits with MDA.

It is worth considering that although, we use as an intermediate notation NEREUS and specific 
transformation rule systems, the ideas underlying this approach are independent of particular notations. 
The bases of our approach are:

The integration of compiler techniques, metamodeling and formal specification.• 
The formalization of an • MDA Infrastructure.
The definition of a formal Domain Specific Language (• DSL) for defining metamodels and 
transformations.
The automation of bridges between • MOF metamodels and the DSL.
The definition of • MDA-based reuse and refactoring techniques.

Figure 6. MDA and interoperability at level of formal languages
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MDA-based reverse engineering environments are structured in the way depicted in Figure 7. There 
is a common repository to store data of the system; in MDA is a MOF- metadata repository. This re-
pository attempts to address the problem of sharing models between different software tools. There are 
parsers, to extract information from source code, metamodel tools to extract metamodel representations 
and model interchange tools. These tools focus on static analysis. Other tracer tools focus on dynamic 
analysis. Traditional tools such as visualizers, analyzers, browsers and debuggers, use the repository as 
their base information. Other tools that focus on formal specification and formal transformation also 
need the MOF- repository and basic facilities for import/export. Libraries of pattern and components 
must fit with MDA.

The following chapters include background, foundations of innovative MDA processes and chal-
lenges and strategic directions that can be adopted in the field of MDA-based reverse engineering and 
software evolution. We analyze principles of reverse engineering within system evolution and, show 
how to recover MDA-based designs and architectures. Different principles of reverse engineering are 
covered, with special emphasis on consistency, traceability, testing and verification of systems that are 
critical to safety, security and economic profits.

The main strength of our approach is to detect a common conceptual foundation for what we do in 
MDA processes. From making these foundations explicit, better tools should emerge.

Figure 7. MDA reverse engineering environments
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Chapter 2

Model Driven 
Architecture (MDA)

intrOductiOn

The architecture of a system is a specification of software components, interrelationships, and rules for 
component interactions and evolution over time.

In 2001 OMG, adopted an architecture standard, the Model Driven Architecture (MDA). MDA is an 
architectural framework for improving portability, interoperability and reusability through separation 
of concerns (MDA, 2003) (MDA, 2005). It is not itself a technology specification but it represents an 
evolving plan to achieve cohesive model-driven technology specifications. MDA is built on OMG stan-
dards including the Unified Modeling Language (UML), the XML Metadata Interchange (XMI) (XMI, 
2007) and CORBA (CORBA, 1992) (CORBA, 2002) a major middleware standard.

MDA is model-driven because it uses models to direct the complete lifecycle of a system. All ar-
tifacts such as requirement specifications, architecture descriptions, design descriptions and code, are 
regarded as models. MDA provides an approach for specifying a system independently of the platforms 
that it supports, specifying platforms, selecting a particular platform for the system, and transforming 
the system specification into one implementation for the selected particular platform.

Why MDA? OMG has focused on the creation of open specifications to encourage application in-
teroperability. It was defined to solve enterprise application integration. A middleware describes a piece 
of software that connects two or more software applications, allowing them to exchange data. To achieve 
this, it must be implemented for all different languages and platforms that need linking.

DOI: 10.4018/978-1-61520-649-0.ch002
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With the emergence of internet applications, the interoperability problem moved from the integration 
of platforms and programming languages on a company intranet to the integration of different middle-
ware on Internet. In this situation, the middleware is part of the problem itself. The original inspiration 
around the definition of MDA had to do with this internet middleware integration problem. Apart from 
interoperability reasons, there are other good benefits to use MDA such as to improve the productivity, 
code and processes quality and, software maintenance costs.

MDA defines a framework that separates the specification of the system functionality from its imple-
mentation on a specific platform. It distinguishes different kinds of models:

• Computation Independent Model (CIM), a model that describes a system from the computation 
independent viewpoint.

• Platform Independent Model (PIM), a model with a high level of abstraction that is indepen-
dent of any implementation technology.

• Platform Specific Model (PSM), a tailored model to specify the system in terms of the imple-
mentation constructs available in one specific platform.

• Implementation Specific Model (ISM), a description (specification) of the system in source 
code.

The Unified Modeling Language (UML) (UML, 2009a) (UML, 2009b) combined with the Object Con-
straint Language (OCL) (OCL, 2006) is the most widely used way for writing either PIMs or PSMs.

Model Driven Development (MDD) refers to a range of development approaches that are based on the 
use of software models as first class entities. (Sztipanovits and Karsai, 1997) and (Kulkarni and Reddy, 
2005) describe approaches for MDD. Selic (2006) positions UML 2 as a model driven development tool. 
Hailpern & Tarr (2006) illustrate “the good, the bad and the ugly” of MDD and improvements to meet 
major challenges at all stages of the software life cycle. France and Rumpe (2007) describe a research 
roadmap of MDD of complex software.

MDA is the specific realization of MDD proposed by OMG. It is carried out as a sequence of model 
transformations: the process of converting one model into another one of the same system preserving 
some kind of equivalence relation between them.

The idea behind MDA is to manage the evolution from CIMs to PIMs and PSMs that can be used to 
generated executable components and applications. The high level models that are developed indepen-
dently of a particular platform are gradually transformed into models and code for specific platforms.

The transformation for one PIM to several PSMs is at the core of MDA. A model-driven forward 
engineering process is carried out as a sequence of model transformations that includes, at least, the 
following steps: construct a CIM; transform the CIM into a PIM that provides a computing architecture 
independent of specific platforms; transform the PIM into one or more PSMs, and derive code directly 
from the PSMs.

The concept of formal metamodel has contributed significantly to some of the core principles of the 
emerging MDA. The Meta Object Facility (MOF), an adopted OMG standard, (latest revision MOF 2.0) 
provides a metadata management framework, and a set of metadata services to enable the development 
and interoperability of model and metadata driven systems (MOF, 2006).

A metamodel is an abstract language for describing different types of models and data. The framework 
for metamodeling is based on architectures with four meta-layers: meta-metamodel, metamodel, model 
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and object model layers. The primary responsibility of these layers is to define languages that describe 
metamodels, models, semantic domains and run-time instances of model elements respectively.

Related OMG standard metamodels and meta-metamodels such as Meta Object Facility (MOF) 
(MOF, 2006), Software Process Engineering Metamodel (SPEM) (SPEM, 2008) and Common Ware-
house Metamodel (CWM) (CWM, 2003) share a common design philosophy. All of them, including 
MOF, are expressed using MOF. It defines a common way for capturing all the diversity of modeling 
standards and interchange constructs that are used in MDA. Its goal is to define languages in a same 
way and hence integrate them semantically.

MOF and the core of the UML metamodel are closely aligned with their modeling concepts. The 
UML metamodel can be viewed as an “instance-of” the MOF metamodel in the sense of each UML 
metaclasses conforms to an instance of a MOF metaclass.

OMG adopted the MOF 2.0 Query, View and Transformation (QVT) metamodel (QVT) for expressing 
transformations (QVT, 2008). A “query” selects specific elements of a model, a “view” is a model derived 
from other model, and a “transformation” is a specification of a mechanism to convert the elements of 
a model, into elements of another model, which conform the same or different metamodel.

MDA reverse engineering can be used to recover architectural models of legacy systems that will be 
later used in forward engineering processes to produce new versions of the systems. OMG is involved 
in a series of standards to successfully modernize existing information systems. Modernization supports, 
but are not limited to, source to source conversion, platform migration, service oriented architecture 
migration and model driven architecture migration. Architecture-Driven Modernization (ADM) is an 
OMG initiative related to extending the modeling approach to the existing software systems and to the 
concept of reverse engineering (ADM, 2007).

A lot of work has been conducted within the diffusion of MDA. (Kleppe & Warner, 2003) and (Mellor, 
Scott, Uhl & Weise, 2003) are the first books that introduced the MDA approach. Other books provide 
a set of readings on the state-of-the-art and the state-of-the-practice of MDA (Byededa, Book & Gruhn, 
2005). (Raistrick, Francis & Wright, 2004) analyzes the automatic executable code generation directly 
from model specifications using Executable UML (XUML).

Arlow and Neustad (2003) propose a practical guide to applying MDA and patterns in order to create 
business applications more easily. It provides a proven catalog of archetype patterns to understand and 
model a specific part of an enterprise system. (Hruby, 2006) shows how to apply the pattern ideas in 
business applications and presents more than 20 structural and behavioral business patterns.

Guttman and Parodi (2006) describe six case studies of real companies illustrating the variety of 
MDA approaches.

(Pastor & Molina, 2007) includes a software process based on model transformation technology 
introducing information required to put MDA into the industrial practice.

the BaSic cOncePtS

MDA initiative is an evolving conceptual architecture for a set of industry-wide technology specifications 
that will support a model-driven approach to software development. This section presents the concepts 
that are at the core of MDA.
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Models, Metamodels and transformations

Models

A model is a simplified view of a (part of) system and its environments. Models are expressed in a 
well-defined modeling language. They are centered in a set of diagrams and textual notations that allow 
specifying, visualizing and documenting systems.

For instance, a model could be a set of UML diagrams, OCL specifications and text. MDA distin-
guishes different kinds of models which go from abstract ones that specify the system functionality to 
platform-dependent and concrete ones linked to specific platforms, technologies and implementations. 
Figure 1 shows models at different abstraction levels. MDA distinguishes at least the following ones:

• Computation Independent Model (CIM)
Platform Independent Model (• PIM)
Platform Specific Model (• PSM)
Implementation Specific Model (• ISM)

A CIM describes a system from the computation independent viewpoint that focuses on the envi-
ronment of and the requirements for the system. It is independent of how the system is implemented. 
In general, it is called domain model and may be expressed using business models. The CIM helps to 
bridge the gap between the experts about the domain and the software engineer. A CIM could consist of 
UML models and other models of requirements.

In the context of MDA, a platform “is a set of subsystems and technologies that provides a coherent 
set of functionality through interfaces and specified usage patterns, which any application supported by 
that platform can use without concern for the details of how the functionality provided by the platform is 
implemented” (MDA, 2003, pp. 2-3). An application refers to a functionality being developed. A system 
can be described in terms of one or more applications supported by one or more platforms. MDA is based 
on platform models expressed in UML, OCL, and stored in a repository aligned with MOF.

A PIM is a view of the system that focuses on the operation of a system from the platform indepen-
dent viewpoint. Analysis and logical models are typically independent of implementation and specific 
platforms and can be considered PIMs.

A PIM is defined as a set of components and functionalities, which are defined independently of 
any specific platforms, and which can be realized in platform specific models. A PIM can be viewed as 
a system model for a technology-neutral virtual machine that includes parts and services defined inde-
pendently of any specific platform. It can be viewed as an abstraction of a system that can be realized 
by different platform-specific ways on which the virtual machine can be implemented.

A PSM describes a system in the terms of the final implementation platform e.g., .NET or J2EE. A 
PSM is a view of the system from the platform specific viewpoint that combines a PIM with the details 
specifying how that system uses a particular type of platform. It includes a set of technical concepts 
representing the different parts and services provided by the platform.

An ISM is a specification, which provides all the information needed to construct an executable 
system.
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Although there is a structural gap between CIM and PIM, a CIM should be traceable to PIM. In the 
same way, a PIM should be traceable to PSMs which in turn should be traceable to ISMs.

Metamodels

Metamodeling is a powerful technique to specify families of models. A metamodel is a model that de-
fines the language for expressing a model, i.e. “a model of models”. A metamodel is an explicit model 
of the constructs and rules needed to build specific models. It is a description of all the concepts that 
can be used in a model.

A meta-metamodel defines a language to write metamodels. Since a metamodel itself is a model, it 
can be usually defined using a reflexive definition in a modeling language. A metamodel can be viewed 
as a model of a modeling language.

Metamodeling has become an essential technique in MDA. In particular, MDA is based on the use 
of a language to write metamodels called the Meta Object Facility (MOF). MOF uses an object model-
ing framework that is essentially a subset of the UML 2.2 core. The four main modeling concepts are 
classes, which model MOF metaobjects; associations, which model binary relations between metaob-
jects; Data Types, which model other data; and Packages, which modularize the models (MOF, 2006) 
(MOF, 2002).

The UML itself is defined using a metamodeling approach. The metamodeling framework for the 
UML is based on a modeling architecture with four layers: meta-metamodel, metamodel, model and user 
objects. A model is expressed in the language of one specific metamodel. A metamodel is an explicit 
model of the constructs and rules needed to construct specific models. Meta-metamodel are usually 
self-defined using a reflexive definition that is based at least on three concepts (entity, association and 
package) and a set of primitive types. Languages for expressing MOF-based metamodels are based on 
UML class diagrams and OCL constraints to rule out illegal models.

Figure 1. MDA models: From abstract levels to implementations
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Transformations

Model transformation is the process of converting one model into another model of the same system 
preserving some kind of equivalence relation between both of these models. Figure 2 shows how a 
platform independent model (PIM) and a platform component description (PDM) are combined by the 
transformation to produce a platform specific model (PSM).

We can distinguish three types of transformations to support model evolution in forward and reverse 
engineering processes: refinements, anti-refinements and refactorings.

A refinement is the process of building a more detailed specification that conforms to another that is 
more abstract. On the other hand, an anti-refinement is the process of extracting from a more detailed 
specification (or code) another one, more abstract, that is conformed by the more detailed specification. 
Refactoring means changing a model leaving its behavior unchanged, but enhancing some non-functionality 
quality factors such as simplicity, flexibility, understandability and performance.

Metamodel transformations are contracts between a source metamodel and a target metamodel and 
describe families of transformations.

Figure 3 partially depicts the different kind of transformations and the relationships between models 
and metamodels.

uML MetaMOdeL

UML have emerged as a de-facto standard for expressing object-oriented models. It is a graphical 
language for visualizing, specifying, constructing and, documenting the artifacts of software intensive 
systems that can be used with all major object and component methods, and can be applied to a large 
and diverse set of domains (e.g. healthcare, finance, telecom, aerospace) and implementation platforms 

Figure 2. Metamodel-based transformations
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(e.g. .NET, relational or different Java platforms) (Rumbaugh, Jacobson, & Booch, 1998) (Booch, 
Rumbaugh & Jacobson, 2005).

Although UML does not prescribe any particular development process, various companies are work-
ing on processes to provide advice on the use of UML in the software development life cycle.

The OMG presents the “Software Process Engineering Metamodel” (SPEM) (SPEM, 2008). This 
metamodel is used to describe a concrete software development process or a family of related software 
development process. Several processes enact SPEM. The most popular is Rational Unified Process 
(RUP), developed and marketed by Rational Software. It is a software development process based on 
UML that is a use-driven, architecture –centered, iterative and risk driven. It provides a disciplined 
approach to assigning tasks and responsibilities within a development organization. RUP is organized 
around four phases (inception, elaboration, construction and transition) and core workflows (require-

Figure 3. MDA transformations: Metamodel-based transformations
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ments, capture, analysis, design, implementation and test). Various industry sectors around the world use 
RUP in different applications: telecommunications, transportation, aerospace, defense, manufacturing 
and financial services (Jacobson, Booch, & Rumbaugh, 1999) (Kruchten, 2000).

UML supports different diagrams that can be used for modeling different views of the system under 
development. Table 1 summarizes the different kinds of UML static and behavioral diagrams. A detailed 
analysis of them may be found at (Booch, Rumbaugh & Jacobson, 2005).

The latest version 2.2 of UML is defined in terms of the UML 2. 2. Infrastructure and UML 2. 2 
Superstructure (UML, 2009a) (UML, 2009b).

the uML infrastructure

The UML Infrastructure specification defines the foundational language constructs required for UML 2. 
2. (UML, 2009a). The UML Infrastructure defines the foundational language constructs that are required 
to be used in other metamodel and aligns architecturally UML and MOF.

Figure 4 shows the package InfrastructureLibrary containing core concepts used when metamodeling. 
It includes the packages Core and Profiles that define mechanisms for customizing metamodels.

The Core package can be viewed as an architectural kernel of MDA. It is a complete metamodel that 
is reused by other metamodels that import or specialize its metaclasses.

The Profile package depends on the Core package, and defines the mechanisms used to adapt existing 
metamodels to specific platforms or domains.

Core can be considered the kernel of MDA since the metamodels that are at the heart of MDA such 
as UML, CWM (CWM, 2003) and MOF depend on it (Figure 5).

The UML infrastructure is reused at several metalevels in various specifications, e.g. the UML Su-
perstructure uses it to model the UML models and MOF, to model metamodels.

Table 1. Different UML diagrams: Static diagrams and behavioral diagrams

Static Diagrams Behavioral Diagrams

Class Diagram Use case Diagram

Object Diagram State Diagram

Component Diagram Communication Diagram

Composite Structure Diagram Sequence Diagram

Package Diagram Activity Diagram

Deployment Diagram Timing Diagram

Interaction Diagrams

Figure 4. The InfrastructureLibrary package
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Core package is composed by four main packages: PrimitiveTypes, Abstractions, Basic, and Con-
structs as shown in Figure 6.

The package PrimitiveTypes contains the primitive types that are used when metamodeling in 
the context of UML and MOF. In order to facilitate reuse, the package Abstractions contains abstract 
metaclasses commonly reused or specialized by many metamodel. The package Constructs contains 
concrete metaclasses linked to object-oriented modeling and reflects a central part of the alignment 
of UML and MOF. The package Basic defines constructs that are used as the basis for the produced 
XMI for metamodels based on the InfrastructureLibrary. While instantiation of metaclasses is carried 
out through MOF, the InfrastructureLibrary defines the actual metaclasses that are used to instantiate 
the elements of metamodels such as UML, and indeed the elements of the InfrastructureLibrary itself. 
Then, it is reflective. All of the UML metamodel is instantiated from meta-metaclasses that are defined 
in the InfrastructureLibrary.

The Profiles Package depends on the Core package and define the mechanisms that allow metaclasses 
from existing metamodel to be extended to adapt for different purpose languages/platforms such as C++, 

Figure 5. Core and related metamodels

Figure 6. The Core packages
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CORBA (CORBA, 2002), or EJB (EJB, 2004); or domains such as real-time, business objects, or soft-
ware process modeling. In general, profiles are associated to UML, but it is possible to define profiles 
in terms of a metamodel that is based on the common core (see Figure 5).

The Infrastructure has aligned architecturally UML and MOF. Figure 7 shows UML and MOF at dif-
ferent metalevels. UML is defined as a model based on MOF in which each UML metaclass is an instance 
of a MOF metaclass. Also, MOF is the metamodel of other OMG standards e.g. CWM and SPEM.

the uML Superstructure

The UML Infrastructure is complemented by UML Superstructure (UMLb, 2009), which defines the 
user level constructs required for UML 2.2. The two complementary specifications constitute a complete 
specification for the UML 2 modeling language.

The UML Superstructure metamodel includes a number of packages that deal with structural and 
behavioral modeling. The UML Superstructure metamodel is specified by the UML package, which 
includes packages that deal with structural and behavioral modeling as shown in Figure 8. Due to it 
shows a summary of all relationships between their subpackages, there are some packages that are de-
pendent on each other in circular dependencies. A refinement of Figure 8 could show that there are no 
circular dependencies between subpackages of those packages. A detailed description may be found at 
(UML, 2009b).

The InfrastructureLibrary is primarily reused in the Kernel package of Classes in UML 2.2. Super-
structure and the UML metaclasses of every other package are directly or indirectly dependent on it. The 
Kernel package is very similar to the Constructs package of the InfrastructureLibrary, but adds more 
constructs for purposes of reuse or alignment with MOF.

Figure 7. Metalevels of UML and MOF



25

Model Driven Architecture

uML Semantics

UML semantic specification is defined using a metamodeling approach that combines MOF-based meta-
models, OCL specification and text. The metamodel is described in a semi-formal way using abstract 
syntax, well-formed rules and semantics. The abstract syntax is provided as a model expressed by UML 
class diagram and a natural language description. The class diagram shows the metaclasses defining the 
constructs and their relationships. The well-formed rules are expressed in OCL and natural language.

the Meta OBject FaciLitY (MOF)

The Meta Object Facility (MOF) defines a framework for specifying, constructing and managing meta-
models (MOF, 2002) (MOF, 2006). A meta-metamodel and a metamodel are abstract languages for some 
kind of metadata. The term metadata is used to refer to data whose purpose is to describe other data.

MOF provides “a metadata management framework and a set of metadata services to enable the 
development and interoperability of models and metadata driven systems” (MOF, 2006, pp. 5). MOF 
facilitates interoperability among modeling and development tools, data warehouse systems and meta-
data repositories. A number of OMG standards, including UML, MOF, various UML profiles and XMI 
are aligned with MOF.

In the UML version 2.0 the concepts of MOF and the UML superstructure are based on the concepts of 
the UML Infrastructure. MOF provides two metamodels: EMOF (Essential MOF) and CMOF (Complete 
MOF). The former favors simplicity of implementation over expressiveness, while the latter is more 
expressive, but more complex. Figure 9 shows the dependencies between them. EMOF merges the Re-
flection, Identifiers, and Extension capability packages to provide services for discovering, manipulating, 
identifying, and extending metadata. CMOF is the metamodel used to specify other metamodels such 
as UML 2. It is built from EMOF and the Core::Constructs of UML Infrastructure. The Model package 

Figure 8. The top level package structure of the UML Superstructure 2.1.2
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does not define any classes of its own. Rather, it merges packages with its extensions that together define 
basic metamodeling capabilities.

The four modeling concepts in MOF are:

Classes, which • model MOF metaobjects
Associations, which • model binary relationships between metaobjects
Data types, which • model other data such primitive types or external types
Packages, which modularize the • models.

The traditional metamodel architecture is four-layer metadata architecture however this hierarchy 
could be based on more levels. Strength of metamodels is the possibility to define more abstraction levels. 
Besides, a model (a collection of metadata) is not necessarily limited to one meta-level. For instance a 
reverse engineering process that requires code transformations could describe an ISM by four layers. 
The topmost layer M3 is an EBNF (the meta-metamodel), the M2 layer is a specific grammar (the meta-
model), the M1 layer a Java program and M0 an execution model, the entity in the real world.

The MOF model is self-describing, that is to say it is formally defined using its own metamodeling 
constructs. This provides a uniform semantic treatment between artifacts that represent models and 
metamodels.

Figure 9. MOF and UML Core
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FOur-LaYer architecture

The MDA is based on four meta-layer architectures. The layers are conventionally identified as M3, M2, 
M1 and M0 layers. Figure 10 exemplifies the MOF metadata architecture based on four layers.

The M3 layer is the meta-metamodel and MOF is an example of meta-metamodel. MOF is a framework 
for specifying, constructing, and managing independent metamodels. It is the basis to define modeling 
languages such as UML or MOF itself. A meta-metamodel describes a family of metamodels. In general, 
metamodels and meta-metamodels share a common design philosophies and constructs. However, each 
layer can be viewed independently of others layers

All metamodels that conform to a meta-metamodel are placed in the M2 layer. UML and SPEM 
metamodel (SPEM, 2008) are examples of metamodel that conforms to MOF. The metamodels of this 
layer describe families of models of the real world, which are represented in the M1 level. A model is 
an instance of a metamodel. M1 is a model layer that defines languages. UML models, that conform 
to UML metamodel, and the IBM Rational Unified Process (RUP) that conforms to SPEM are in M1 
(Krutchen, 2000) (SPEM, 2008). A user model is an instance of the UML metamodel. M1 contains both 
model elements and snapshots of instances of these model elements.

The bottom most layer is the instance layer M0 that contains run-time instances of the concepts 
defined in M1 layer.

The information layer includes the data that we wish to describe; the data in the information layer 
are described in the model layer; the metamodel layer is comprised of the descriptions that define the 
structure and semantics of metadata and, the meta-metamodel layer is comprised of the description of 
the structure and semantics of meta-metadata.

Figure 10. MOF four layer architecture
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MOF 2.0 Query, view, transformation

The MOF 2.0 Query, View, Transformation (QVT) specification is the OMG standard for model transfor-
mations (QVT, 2008). This specification describes three related transformational languages: Relations, 
Core and Operational Matching.

The acronym QVT refers to:

• Query: ad-hoc “query” for selecting and filtering of model element. In general, a query selects 
elements of the source model of the transformation

• View: “views” of MOF metamodels (that are involved in the transformation)
• Transformation: a relation between a source metamodel S and a target metamodel T that is used 

to generate a target model (that conforms to T) from a source model (that conforms to S).

QVT defines a standard for transforming a source model into a target model. One of the underlying 
ideas in QVT is that the source and target model must conform to arbitrary MOF metamodels. Another 
one is that the transformation is considered itself as a model that conforms to a MOF metamodel.

The QVT specification includes three main packages: QVTCore, QVTRelation and QVTOpera-
tions. These packages depends on another intermediate QVT packages (QVTBase, QVTTemplate and 
ImperativeOCL), EMOF and EssentialOCL. Figure 11 shows dependencies of packages in the QVT 
specification (QVT, 2008, pp. 12). EMOF is a subset of MOF that allows simple metamodels to be 
defined using simple concepts while supporting extensions for more sophisticated metamodeling using 
CMOF (see Figure 9). Essential-OCL (OCL, 2006, pp. 171) is a package exposing the minimal OCL 
required to work with EMOF (MOF, 2006, pp. 31).

A transformation defines how one set of models can be transformed into another. It is composed by 
a set of rules that specify its execution behavior. Also, it includes a set of typed model parameters as-
sociated with the transformation. Syntactically, a transformation is a subclass of both a Package and a 
Class. A transformation can extend another transformation. A rule domain is the set of model elements 

Figure 11. Packages and dependencies in QVT
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of a typed model that are of interest to it. A domain may be marked as checkable or enforceable. “A 
checkable domain declares that the owning rule is only required to check whether the model elements 
specified by the domain exist in the target model and report errors when they do not. An enforceable 
domain declares the owning rule must ensure that the model elements specified by the domain exist in 
the target model” (QVT, 2008, pp. 27).

The QVT specification has a hybrid declarative/imperative nature. Figure 11 shows the relationships 
between the QVT metamodel.

The declarative part of this specification is structured in two layers:

A user-friendly Relations • metamodel and language which supports the creation of object template, 
complex object pattern matching and the creation of traces between model elements involved in 
a transformation.
A Core • metamodel and language defined using minimal extensions to EMOF and OCL. All trace 
classes are explicitly defined as MOF models, and trace instance creation and deletion in the same 
way as the creation and deletion of any other object.

Relations metamodel includes a declarative specification of the relationships between MOF models. 
The Relations language supports complex object pattern matching, and implicitly creates trace classes 
and their instances to record what occurred during a transformation execution. Relations can assert that 
other relations also hold between particular model elements matched by their patterns.

Core is a small model/language which only supports pattern matching over a flat set of variables by 
evaluating conditions over those variables against a set of models. It treats all of the model elements of 
source, target and trace models symmetrically. It is equally powerful to the Relations language, and because 
of its relative simplicity, its semantics can be defined more simply, although transformation descriptions 
described using the Core and therefore more verbose. In addition, the trace models must be explicitly 
defined, and are not deduced from the transformation description, as is the case with Relations.

The core model may be implemented directly, or simply used as a reference for the semantics of 
Relations, which are mapped to the Core, using the transformation language itself.

The Relational language has a textual and graphical concrete syntax. Figure 12 shows the relationships 
between the QVT metamodel. A transformation between source models is specified as a set of relations 
that must be hold for the transformation to be successful. Source models are named, and the types of ele-
ments they can contain are restricted to those within a set of referenced packages. A transformation can 
be invoked either to check two models for consistency or to modify one model to enforce consistency.

In addition to the declarative Relations and Core languages which embody the same semantics at 
two different levels of abstraction, there are two mechanisms for invoking imperative implementations 
of transformations: one standard language, Operational mappings, as well as non-standard Black-box 
MOF Operation implementations.

The first is an imperative language whose syntax provides constructs commonly found in impera-
tive languages. The latter allows invoking transformation facilities expressed in other languages. It is a 
crucial mechanism for integrating non-QVT libraries with QVT transformations.

At this time QVT standard only addresses model to model transformations. In this context a model 
means some entity conforming to any MOF 2.0 metamodel.
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the XML Metadata interchange (XMi)

The XML Metadata Interchange (XMI) is an OMG standard for defining, interchanging, manipulating 
and integrating XML data and objects. A detailed description may be found at (XMI, 2007). XML is 
an open standard of the World Wide Web Consortium (W3C) designed as a data format for document 
interchange on the web. It is intended to give developers working with MDA and object technology the 
ability to exchange programming data over the Internet in a standardized way.

XMI defines mappings of meta-metamodels, metamodels and models onto XML documents and XML 
schemes. It can be viewed as a “stream” format that can either be stored in a file system or streamed 
across the Internet from a repository.

XMI combines XML, MOF and UML for integrating tools, repositories, applications and data ware-
houses in distributed heterogeneous environments.

XMI can be used as an interchange format for both UML models and serialization of MOF meta-
models.

XMI is an international standard ISO/IEC 19503:2005 (XMI) that provides a set of rules by which 
a schema can be generated for any valid XMI-transmissible MOF-based metamodel, a mapping from 
MOF to XML and design principles for XMI-based schemas and XML documents.

PrOFiLeS vS. MetaMOdeLS

A profile in the UML provides a generic extension mechanism for customizing models. Profiles are 
defined using mechanisms that allow metaclasses from existing metamodels to be extend to adapt them 
for particular domains (e.g., aerospace, healthcare, financial, telecommunications), platforms (e.g., 
J2EE, .NET) or methods (e.g. Unified Process, Agile methods). A Profile is an extension mechanism 
that preserves the semantics of UML being consistent with MOF.

A profile definition extends a language at the metamodel level in such a way that the specialized 
semantics does not contradict the semantics of the reference metamodel. It is defined as a UML Package 
using stereotypes, tag, and constraints. The UML 2.2 infrastructure and superstructure specifications 
defining stereotypes are specific metaclasses, tagged values are standard meta-attributes, and profiles 

Figure 12. QVT metamodel



31

Model Driven Architecture

are specific kinds of packages. A stereotype can be viewed as a metatype, because it allows creating 
new elements of UML metamodel. A tag definition can be attached to model elements. They can be 
viewed as metadata definitions, because they extend the properties of a UML element, creating new 
information in the element metaclass. The actual values of the properties of particular elements are 
called tagged values. A constraint extends the semantics of a UML element, adding new constraints or 
modifying existing ones.

More detail of the extension mechanisms may be found at (Booch, Rumbaugh & Jacobson, 2005) 
and (UML, 2009b).

(EJB, 2004) describes the Enterprise JavaBeans metamodel and the Java metamodel and shows how 
each metamodel element can be mapped to profile representations. Many profiles have been adopted by 
OMG, such as the UML Profile for CORBA (CORBA, 2002) and EJB. Other profiles have been accepted 
by the software community such as the UML profile for Web applications (Conallen, 2002).

MOF supports first-class extensibility that allows adding and removing metaclasses and relationships. 
The mechanisms for first-class extensibility and profiles start fusing when methodology restrictions that 
prevent to modify existing metamodel are applied.

There are multiple factors that determine when we should create a new metamodel and when we 
instead should create a profile. Tools that implement MOF 2.0 will allow users to define entirely new 
languages via metamodel or profiles. For instance Domain Specific Language (DSL) may be defined 
by using a standard MOF foundation (Mernik, Heering & Sloane, 2005).

A domain-specific language (DSL) allows us to solve problems in a particular domain and is not 
intended to be able to solve problems outside it. DSLs can be based on the profiles mechanisms or new 
metamodel. In both cases, MOF foundation brings the benefits of metamodeling tool standards. As ex-
amples of these situations, we can mention OMG standards System Modeling Language (SysML) (SysML, 
2008) and the Semantics of Business Vocabulary and Business Rules (SBVR) (SBVR, 2008).

On the one hand, SysML is a DSL for systems engineering. It supports the specification, analysis, 
design, verification and validation of complex systems that include hardware, software, information and 
processes. SysML is defined as an extension of a subset of UML diagrams by using the UML profile 
mechanism.

On the other hand, SBVR is an adopted standard of OMG for representing business rules. It has its 
own notation to formalize complex compliance rules, such as operational rules for an enterprise, security 
policy, standard compliance, or regulatory compliance rules. It was defined as a MOF metamodel.
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Chapter 3

MDA, Metamodeling 
and Transformation

intrOductiOn

MDA requires the ability to understand different languages such as general purpose languages, domain 
specific languages, modeling languages or programming languages. An underlying principle of MDA 
for integrating semantically in a unified and interoperable way such languages is using metamodeling 
techniques.

A metamodel describes a family of models whose elements are instances of the metaclasses of the 
respective metamodel. The kind of entities and relations defines the kind of metamodel, for instance:

An • ISM-Java metamodel includes entities (metaclasses) for classes, fields, operations, methods, 
constructors, parameters and interfaces. Methods and constructors are subtypes of operations. 
Interfaces are associated with classes.
A • PSM-Java metamodel distinguishes entities such as Java-metamodel entities and another enti-
ties such as associations.
A RDBMS • metamodel includes entities for schema, table, column, key and foreign key.

The OMG standard for defining models is the Meta-Object-Facility (MOF) metamodel (MOF, 2006). 
MOF is essential to define different modeling languages and metamodeling languages such as UML or 
MOF itself. It allows capturing all the diversity of modeling standards and interchange constructs that 
are used in MDA. A MOF-aware modeling tool can capture UML diagram elements in machine readable 
form allowing tools from multiple vendors to be used together on a single project.

DOI: 10.4018/978-1-61520-649-0.ch003
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The initial diffusion of MDA was focused on its relation with UML as modeling language. However, 
there are UML users who do not use MDA, and MDA users who use other modeling languages such as 
Domain Specific Languages (DSL).

The essence of MDA is MOF that allows different kinds of software artifacts to be used together in a 
single project. It allows capturing all the diversity of modeling standards and interchange constructs that 
are used in MDA. MOF provides a metadata management framework, and a set of metadata services to 
enable the development and interoperability of models and metadata driven systems.

MOF cOnStructS

The MOF modeling concepts are “classes, which model MOF meta-objects; associations, which model 
binary relations between meta-objects; Data Types, which model other data; and Packages, which modu-
larize the models” (MOF, 2006, pp. 2-6). OCL can be used to attach consistency rules to metamodel 
components.

Next, we describe these constructs in detail.

classes

Classes are type descriptions of “first class instance” MOF meta-objects. Instances of classes have object 
identity, state, and behavior. Classes can have three kinds of features which are attribute, operation and 
reference. They can also contain exceptions, constants, data types, constraints and other elements.

An attribute has properties such as type, name and multiplicity. Besides, it can contain flags such as 
“isChangeable” and “isDerived”. The first determines whether the client is provided with an explicit 
operation to set the attribute values and the latter, determines whether the contents of the notational value 
holder is derived from other state.

Operations are “hooks” for describing the class behavior. They simply specify the name, the type 
signatures by which the behavior is invoked. Operations have the following properties: name, a sequence 
of parameters including name, type and multiplicity, an optional return type and, a list of Exceptions that 
can be raised by an invocation. An attribute may be an optional-valued, single-valued, or multi-valued 
depending on its multiplicity specification. The multiplicity can also include the flags “is-Ordered” for 
indicating ordered attributes and “is-unique” for indicating whether instances with equal value are al-
lowed in the given attribute or parameter.

Like UML, MOF provides class generalization. However, MOF imposes restrictions on generaliza-
tion to ensure that it can be transformed into a range of implementation technologies:

A class cannot generalize itself, either directly or indirectly• 
A class cannot generalize another class if the subclass contains a • model element with the same 
name as a model element contained or inherited by the superclass (i.e. no over-riding is allowed)
When a class has multiple superclasses, no • model elements contained or inherited by superclasses 
can have the same name.

MOF uses “abstract class” in the same sense as UML and other object-oriented programming lan-
guages.
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A class may be defined as “leaf” or “root”. Declaring a class as a leaf prevents the existence of sub-
classes. Declaring a class as a root prevents the declaration of any superclasses.

Binary associations

Like UML, MOF provides associations, although there are no association classes and only binary associa-
tions are allowed. Each MOF association contains precisely two association-ends that include properties 
such as name, type, multiplicity, navigability, changeability and, aggregation specification.

MOF supports two kinds of aggregation for relationships between instances: “composite” and “non-
aggregate”. The semantic of shared-aggregation is not supported in MOF.

A non-aggregate relationship has the following properties:

There are no special restrictions on the multiplicity.• 
There are no special restrictions on the origin of the instances in the relationship.• 
The association does not impact on the lifecycle of related instances.• 

On the contrary, a composite aggregation is a stronger link between instances with the following 
properties (MOF, 2006):

A composite relationship is asymmetrical, with one end denoting the role of whole in the relation-• 
ship (“composite”) and the other one denoting the parts (“components”)
An instance cannot be a component of more than one composite at a time, under any composite • 
relationship.
The relationships impacts on the lifecycle of the whole and its parts. When a composite instance • 
is deleted, all of its components under any composite relationship (directly or transitively) are also 
deleted.
The Composition Closure rule: The composite and component instances in a composition along • 
with any links that form the composition must all belong to the same outermost Package extent.

The effective semantics for an attribute depends on the type of attribute. A “non-aggregate” semantics 
correspond to an attribute whose type is expressed as a data Type. On the other hand, an attribute whose 
type is expressed as a Class has a composite semantics.

data types

Metamodels often requires using attribute and operation parameter values that have types whose values 
do not have object identity. Considering this, MOF provides the metamodeling concept of Data Type. 
Data Types can represent two kinds of data type:

Primitive data types such as Boolean, Integer, and String.• 
DataType constructors that allow meta-designers to define more complex data types.• 

They are enumeration types, structure types, collection types, and alias types.



37

MDA, Metamodeling and Transformation

Packages

The package is the MOF mechanism for grouping elements into a metamodel. A package can contain 
different model elements such as packages, classes, associations and data types. It provides four struc-
turing mechanisms: generalization, nesting, importing and clustering.

Generalization is similar to class generalization in MOF. However, packages may be defined as “root” 
or “leaf” packages, but “abstract” packages are not supported.

A nested package is a component of its enclosing package. There are some restrictions on nesting 
relationships, nested packages do not admit generalization, importing or clustering relations with other 
packages. Conceptually, a nested package instance is a component of an instance of the containing pack-
age and, they can not be directly instantiated.

When one package imports another, the importing package is allowed to make use of elements defined 
in the imported one package. Package clustering can be viewed as a stronger form of package import 
that links imported packages into a “cluster”.

eXaMPLeS

In order to illustrate the use of MOF language, this section includes MOF-based metamodels for three 
popular object oriented languages JAVA, C++ and Eiffel. Although, these examples only specify a part 
of MOF metamodel, we introduce now the notation used in the following chapters of this book for 
describing metamodels.

Metamodel notation

Metamodels are specified by using the UML notation including an abstract syntax and metaclass de-
scriptions.

The abstract syntax consists of one or more UML class diagrams that show the package including 
metaclasses, their constructs and interrelationships. A number of metaclasses from the UML Infrastructure 
are imported. These metaclasses are shown in the models with a transparent fill color.

The description of a metaclass starts with an informal definition of the metaclass that sets the context 
for the definition. This description is followed by a description of generalizations, attributes and associa-
tions. Each of them is enumerated together with a short explanation. The multiplicity of attributes and 
associations is enclosed in square brackets.

The description includes well-formedness rules expressed in OCL. These rules are defined as a 
(possibly empty) set of invariants for the metaclass, which must be satisfied by all instances of that 
metaclass for the model to be meaningful The OCL expressions thus specify constraints over attributes 
and associations defined in the metamodel. The statement ‘No additional constraints’ means that all well-
formedness rules are expressed in the superclasses together with the multiplicity and type information 
expressed in the diagrams. Constraints are specified in EssentialOCL (OCL, 2006).

In many cases, additional operations on the classes are needed for the OCL expressions. These are 
then defined in a separate subsection after the constraint section using comments followed by the OCL 
expression defining the operation.
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Metamodels are specified in the style proposed in the OMG documentation for the different standards. 
The structure of the text describing a metaclass is as follows:

<className> 
Description 
< text> 
Generalizations 
< generalizationList> 
Attributes 
< attributeList> 
Associations 
<associationList> 
Constraints 
<constraintList> 
Additional Operations 
<additionalOperationList> 

Appendix C includes an overview of OCL, in particular EssentialOCL (OCL, 2006, pp. 171-176). A 
detailed description may be found at (OCL, 2006)

Example 3-1: Eiffel Metamodel

The Package Eiffel-Class specifies the basic entities for specifying classes such as metaclasses for classes, 
attributes, features, routines, parameters and assertions (Meyer, 1997). Figure 1 shows the static diagram 
of the package. Next follows a specification of the metaclass EiffelClass (Meyer, 1992). The complete 
specification of the Eiffel metamodel may be found at Appendix-A.

EiffelClass Specification

Description
An Eiffel class describes a set of objects sharing the same feature specifications, restrictions and se-
mantics.

Generalizations

Class (from Kernel), Classifier (from Templates)• 

Attributes

isDeferred: Boolean [1] It specifies whether a class is deferred, i.e., it includes one or more fea-• 
tures that are specified but no implemented. It redefines Classifier::isAbstract.
isExpanded: Boolean [1] It specifies whether the class is flattened, i.e. its instances are objects but • 
no references to objects.
isObsolete: Boolean [1] It specifies whether the class is obsolete.• 
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Associations

attribute: Attribute [*] It refers to the own attributes of the Eiffel class. It redefines • 
Class::ownedAttribute.
eiffelFeatures: EiffelFeature [*] It refers to the features of which this class is client.• 
generalization: Generalization [*] It specifies the generalization for this class.• 
invariant: Assertion [*] It refers to invariants of the class. It redefines NameSpace::ownedRule.• 
ownedRoutine: Routine [*] It refers to the own routines of the class. It redefines • 
Class::ownedOperation.
/parameters: EiffelParameter [*] It refers to the set of parameters of the class. It is derived.• 
/parent: EiffelClass [*] It refers to the parent class of an Eiffel class. It redefines • Class::superClass. 
It is derived.

Constraints

[1]  A class having a deferred routine must be declared deferred.  self.ownedRoutine -> exists (r | 
r.isDeferred) implies self. isDeferred

Figure 1. ISM Eiffel metamodel. Diagram of classes
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[2]  Secret routines can not be declared deferred.  self.ownedRoutine -> forAll (r | r.availability = #secret 
implies not r.isDeferred)

[3]  Frozen routines can not be declared deferred.  self.ownedRoutine -> forAll (r | r.isFrozen implies 
not r.isDeferred)

[4]  An Eiffel class does not have nested classes.  self.nestedClassifier -> isEmpty()
[5]  ancestors is derived of the generalization.  ancestors = self.generalization.parent
[6]  parameters is derived from the parameters of the template signature that is redefinable.  parameters 

= ownedSignature.parameter
[7]  Parameters of a class are of the type Eiffel class.  self.parameters.parameteredElement -> forAll 

(p | p.oclIsTypeOf (EiffelClass))
[8]  A deferred class does not have a creation procedure.  self.class.isDeferred implies  self.ownedRou-

tine -> select(p | p.oclIsTypOf (Procedure) and p.isCreator) -> isEmpty()
[9]  A flattened class has only a creation procedure without arguments.  self.class.isExpanded implies 

self.ownedRoutine -> select(p| p.oclIsTypeOf (Procedure) and p.isCreator) -> size() = 1 and  self.
ownedRoutine -> select(p | p.isCreator and p.argument -> isEmpty()) -> size() = 1

[10]  A flattened class does not have parameters.  self.class.isExpanded implies self.parameter -> 
isEmpty()

Example 3-2: C++ Metamodel

The Package C++-Class specifies the basic entities for specifying classes in C++ such as metaclasses for 
classes, member functions, functions, variables and parameters. Figure 2 shows the static diagram of the 
Package C++-Class. Next follows a specification of a metaclass C++Class. The complete specification 
of the C++ metamodel may be found at Appendix-A.

C++ Class Specification

Description
A C++ class describes a set of objects that share the same specifications of features, restrictions and 
semantics.

Generalizations

Class (from Kernel), Classifier (from Templates)• 

Attributes

class-key: Class-Key [1] It specifies the type of the class, i.e., if it is a class, structure or union.• 
isFinal: Boolean [1] It specifies whether the class has subclasses. It redefines • 
RedefinableElement::isLeaf.
/isGeneric: Boolean It specifies whether the class is generic. It is a derived attribute.• 
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Associations

variable: Variable [*] It refers to the own variables of the C++ class. It redefines • 
Class::ownedAttribute.
nestedClass: C++Class [*] It refers to the C++ • classes that are declared within the body of a C++ 
class (nested classes). It is a subset of Class::nestedClassifier.
/superClass: C++Class [*] It refers to the superclasses of a C++ class. It redefines • Class::superClass. 
It is derived.
function: C++MemberFunction [*] It refers to the own functions of the class. It redefines • 
Class::ownedOperation.
generalization: C++Generalization [*] It refers to the generalizations of the class. It redefines • 
Class::Generalization.
friendClass: C++Class [*] It refers to the friend • classes of the class.
friendFunction: C++Function [*] It refers to the friend functions of the class.• 
/parameters: C++Parameter [*] It refers to the set of parameters of the class. It is derived.• 

Figure 2. ISM C++ metamodel. Diagram of classes
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Constraints

[1]  A class that has pure virtual functions must be declared abstract.  self.function -> select 
(oclIsTypeOf(Method)) ->  exists (m | m.oclAsType (Method).isPureVirtual) implies self.
isAbstract

[2]  A class declared final does not have subclasses, i.e, it is not superclass of any class belonging to 
the package.  self.isFinal implies self.package.ownedMember -> select (oclIsTypeOf(C++Class)) 
->  forAll (c | c.oclAsType(C++Class).superClass <> self)

[3]  Private functions of a class can not be declared abstract.  self.function -> select (oclIsTypeOf(Method)) 
->  forAll (m | m.visibility = #private implies not m.oclAsType(Method).isPureVirtual)

[4]  Final methods of a class can not be declared abstracts.  self.function -> select (oclIsTypeOf(Method)) 
->  forAll (m | m.oclAsType(Method).isFinal implies not m.oclAsType(Method).isVirtual)

[5]  A class is generic if it has a signature template. isGeneric = (self.ownedTemplateSignature -> size 
() =1)

[6]  parameters is derived from the parameters of the signature template that are redefinable. /param-
eters= self.ownedTemplateSignature.parameter

[7]  Friend functions are C++ functions but no member functions of a class. self.friendFunction -> 
forAll (f | f.isTypeOf (C++Function))

[8]  A class only has a destructor. self.function -> select (oclIsTypeOf (Destructor)) -> size () <= 1

Example 3-3: Java Metamodel

The Package Java-Class specifies the basic entities for specifying classes such as metaclasses for classes, 
fields, operations, parameters. Figure 3 shows the static diagram of the Package Java-Class. Next follows 
the specification of the metaclass JavaClass.

JavaClass Specification

Description
A Java class as is defined in the Java language.

Generalizations

Class (from Kernel), Classifier (from Templates), BehavioredClassifier (from Interfaces)• 

Attributes

isFinal: Boolean It specifies whether the class can have subclasses. It redefines • 
RedefinableElement::isLeaf.
/isGeneric: Boolean It specifies whether the class is generic. It is a derived attribute.• 
isStatic: Boolean It specifies whether the class is static.• 
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Associations

field: Field [*] It refers to the own variables of the Java class. It redefines • Class::ownedAttribute.
/implement: It refers to the Java interfaces that are implemented by this class. It is derived.• 
javaOperation: JavaOperation [*] It refers the own operations of the class. It redefines • 
Class::ownedOperation.
javaPackage: JavaPackage [0..1] It refers to the package in which is declared. It redefines • 
Type::package.
nestedClass: JavaClass [*] It refers to the Java • classes that are declared within the body of a Java 
class (nested classes). It is a subset of Class::nestedClassifier.
nestedInterface: JavaInterface [*] It refers to the Java interfaces that are declared within the body • 
of a JavaClass (nested interfaces). It is a subset of Class::nestedClassifier.
/parameters: JavaParameters [*] It refers to the set of parameters of a class. It is derived.• 
/superClass: JavaClass [1] It refers to a superclass of a Java class. It redefines • Class::superClass. 
It is derived.

Constraints

[1]  Nested classifiers belonging to a class or interface can only be of type JavaClass or JavaInterface.  self.
nestedClassifier -> forAll (c | c.oclIsTypeOf (JavaClass) or c.oclIsTypeOf (JavaInterface))

[2]  The implemented interfaces are those referred through the interface realization.  implement = self.
interfaceRealization.contract

Figure 3. ISM Java metamodel. Diagram of classes
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[3]  A class that has some abstract method must be declared abstract.  self.javaOperation -> select 
(op| op.oclIsTypeOf(Method)) ->  exists (m | m.oclAsType(Method).isAbstract) implies self.
isAbstract

[4]  An abstract class does not have a constructor defined explicitly.  self.isAbstract implies self.java-
Operation ->  select(op| op.oclIsTypeOf (Constructor)) -> isEmpty()

[5]  A class that is declared final can not have subclasses, i.e., it is not superclass of any class in the pack-
age.  self.isFinal implies  self.javaPackage.ownedMember -> select(m|  m.oclIsTypeOf(JavaClass)) 
-> forAll (c| c.oclAsType(JavaClass).superClass <> self)

[6]  The access level protected, private or static can only be applied to nested classes, i.e., that are declared 
within the declaration of another class.  (self.visibility = #protected or self.visibility = #private or 
self.isStatic) implies  self.javaPackage.ownedMember -> select(m| m.oclIsTypeOf(JavaClass)) 
->  exists (c | c.oclAsType(JavaClass).nestedClass -> includes(self))

[7]  Private methods of a class cannot be declared abstract.  self.javaOperation -> select(op| 
op.oclIsTypeOf(Method)) ->  forAll (m | m.visibility = #private implies not m.oclAsType(Method).
isAbstract)

[8]  Static methods of a class cannot be declared abstract.  self.javaOperation -> select(op| 
op.oclIsTypeOf(Method)) ->  forAll (m | m.isStatic implies not m.oclAsType(Method).
isAbstract)

[9]  Final methods of a class cannot be declared abstract.  self.javaOperation -> select(op| 
op.oclIsTypeOf(Method)) ->  forAll (m | m.oclAsType(Method).isFinal implies not 
m.oclAsType(Method).isAbstract)

[10]  A class is generic if it has a signature template.  isGeneric = (self.ownedTemplateSignature -> size 
() =1)

[11]  Parameters is derived from the parameters of the signature template.  /parameters= self.ownedTem-
plateSignature.parameter

[12]  A class is concrete, if its methods have associated an implementation.  not self.isAbstract implies 
self.allMethod () ->  forAll (m | self.allBody() -> exist (b| b.signature = m))

[13]  Elements, that can be actual parameters of a formal parameter, are of type Java. self.parameters.
parameteredElement -> forAll (p| p.oclIsTypeOf (JavaType))

Additional Operations

[1]  allMethod is the set of all methods, i.e., the methods that are own, inherited and, the methods of 
the interfaces implemented. allMethod (): Set(Method)  allMethod () = self.allClassMethod() -> 
union(self.implement.allInterfaceMethod ())  allClassMethod (): Set (Method)  allClassMethod 
() = self.javaOperation -> select(o |o.oclIsType(Method)) ->  union(self.superClass.allClass-
Method())  allInterfaceMethod (): Set(Method)  allInterfaceMethod () = self.method -> union(self.
superInterface.allInterfaceMethod ())

[2]  allBody is the set of all method implementations of a class, i.e., both own and inherited.  allBody(): 
Set (Implementation)  allBody = self.allMethod ().body
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cOMMOn cOncePtS On tranSFOrMatiOnS

In the following chapters we will refer to different kind of transformations: refinements, refactoring and 
anti-refinements. This section shows common concepts and notation for all of them.

We propose to define transformations as OCL contracts between MOF-based metamodels. OCL 
contracts are based on the EssentialOCL (OCL, 2006, pp. 171-176) that is an adaptation of OCL for de-
fining simple MOF metamodels. Our approach is aligned with QVT or, more precisely, with the CORE 
of QVT (QVT, 2008) due to we express transformations as basic contract in EssentialOCL without using 
the Relational language.

EssentialOCL is the package exposing the minimal OCL required to work with EMOF (MOF, 
2006). Particularly, it depends on the EMOF Package referring explicitly the following EMOF classes: 
Property, Operation, Parameter, TypedElement, Type, Class, DataType, Enumeration, PrimitiveType, 
and EnumerationLiteral. The following metaclasses defined in complete OCL are not part of BasicOCL 
(and EssentialOCL): MessageType, ElementType, AssociationClassCallExp, MessageExp, StateExp, 
UnspecifiedValueExp. Moreover, any well-formedness rules defined for these classes are consequently 
not part of the definition of the EssentialOCL. Figure4 shows a metamodel for transformations

Transformation AtoB could be a refinement, an anti-refinement or a refactoring. A transformation 
is associated to a source metamodel and a target metamodel and is composed by preconditions and 
postconditions.

The classes Metamodel_A and Metamodel_B describe families of MOF metamodels. The class Trans-
formation_AtoB describes families of transformations between Metamodel_A and Metamodel_B.

There is an association between the class Metamodel_A and the class Transformation_AtoB specifying 
that for every instance of Metamodel_A are zero or more instances of Transformation_AtoB. Besides, 
there is an association between the class Metamodel_B and the class Transformation_AtoB specifying 
that for every instance of Metamodel_B are zero or more instances of Transformation_AtoB.

The syntax for expressing metamodel-based transformation is the following:

TransformationtransformationName 
{parametersource: metamodelNametarget: metamodelNameprecondit
ions<preconditionList>postconditions<postconditionList>local 

Figure 4. Formalization of metamodel transformations
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operations<localOperationsList> 
} 

The parameters are a source and a target metamodel that are instances of Metamodel_A and 
Metamodel_B. The section local operations includes a set of operations that are used many times in 
this transformation. Preconditions state relations between the metaclasses of the source metamodel. 
Postconditions deal with the state of models after transformation.

Below, we show a part a transformation of a PIM to a PSM based in the Eiffel platform. It refers to 
concrete instances of metamodels and transformations and links between them. Links connect an instance 
of a transformation with an instance of a metamodel.

Postconditions specify how classes and interfaces of the source model are related with classes in the 
target model, guaranteeing, for instance, that for each class in the source exists a class in the target so 
that: the source class and the target class have the same name, visibility, abstraction degree, restrictions 
and parameters (if any), attributes and operations both in, the source and target, must match and so on

Transformation PIM-UML to PSM-EIFFEL {parameters 
sourceModel: PIM-Metamodel:: Package 
targetModel: PSM-EIFFEL-Metamodel:: Package 
preconditions--postconditions-- sourceModel and targetModel have the 
same number of classifiers. 
targetModel.ownedMember -> select(oclIsTypeOf (EiffelClass)) -> 
size() = 
sourceModel.ownedMember -> select(oclIsTypeOf(Class) -> size () + 
sourceModel.ownedMember -> select(oclIsTypeOf(Interface)) -> size () 
-- for each ´sourceInterface’ in sourceModel exists a ´targetClass´ 
in targetModel so that: 
sourceModel.ownedMember -> select(oclIsTypeOf(Interface))-> 
forAll (sourceInterface| targetModelownedMember -> select (oclIsTy-
peOf (EiffelClass)) -> 
exists (targetClass| 
-- ‘targetClass’ matches ‘sourceInterface’. 
targetClass.oclAsType (EiffelClass). 
classInterfaceMatch (sourceInterface.oclAsType (interface)))) 
-- for each class ‘sourceClass’ in sourceModel exists a 
´targetClass´in ´targetModel´ so that: 
sourceModel.ownedMember -> select (oclIsTypeOf (Class)) -> 
forAll (sourceClass targetModel.ownedMember -> select(oclIsTypeOf 
(EiffelClass)) -> 
exists (targetClass | 
-- ‘targetClass’ matches ‘sourceClass’. 
targetClass.oclAsType (EiffelClass).classClassMatch (sourceClass.
oclAsType(Class)))) 
   
local operationsPSM-EIFFEL-Metamodel::EiffelClass:: 
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classClassMatch(aClass: PIM-Metamodel::Class): Boolean 
classClassMatch (aClass) = 
--The class to which operation is applied (self) matches the param-
eter ´aClass´ if both have 
-- the same name 
self.name = aClass.name and 
-- the same abstraction degree 
self.isDeferred = aClass.isAbstract and 
-- the same visibility, 
self.visibility = aClass.visibility and 
-- the same restrictions 
self.invariant = aClass.ownedRule and 
-- the same parameters 
self.parameters = aClass.ownedTemplateSignature.parameter 
and…
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Chapter 4

Formalization of  
MOF-Based Metamodels

intrOductiOn

Formal and semiformal techniques can play complementary roles in MDA-based software development 
processes. We consider it beneficial for both semiformal and formal specification techniques. On the one 
hand, semiformal techniques lack a precise semantics; however, they have the ability to visualize language 
constructions, allowing a great difference in the productivity of the specification process, especially 
when the graphical view is supported by means of good tools. On the other hand, formal specification 
allows us to produce a precise and analyzable software specification and clarifies the intended meaning 
of metamodels, helps to validate model transformations, and provides reference for implementations; 
however, they require familiarity with formal notations that most designers and implementers do not cur-
rently have and the learning curve for the application of these techniques requires considerable time.

A combination of metamodeling and formal specification techniques can help us to address MDA-
based processes such as reverse engineering, forward engineering and round-trip engineering. In light of 
this, we propose to use the algebraic metamodeling language, called NEREUS which can be viewed as 
an intermediate notation. NEREUS can be integrated with different formal languages and object-oriented 
languages. It is particularly suited for specifying metamodels based on the concepts of entity, relation 
and system. Most of the MOF metamodel concepts can be mapped directly to NEREUS.

In terms of NEREUS we will explain a reusable infrastructure for more efficient development of 
evolution system techniques and high quality of the results. In the following sections we summarize 
the main specification languages linked to object-orientation approaches such as UML and MDA and, 
motivate the use of NEREUS as a metamodeling language.

DOI: 10.4018/978-1-61520-649-0.ch004
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OBject-OrientatiOn, MetaMOdeLing and FOrMaL LanguageS

In the early 1980s, new specification languages or extensions of formal languages to support object-
oriented concepts began to develop. Among them the different extensions of the Z language, for example 
Z++ (Lano, 1991), OBJECT-Z (Smith, 2000) (Kim, & Carrington, 1999) or OOZE (Alencar & Goguen, 
1991) can be mentioned. Another language with object-oriented characteristics is FOOPS (Rappanotti 
& Socorro, 1992).

Larch/Smalltalk was the first language with subtype and inheritance specification. Larch/C++ is 
another language with similar characteristics. JML is a behavioral interface specification language for 
formally specifying the behavior and interfaces of Java classes and functions (Leavens, 1996) (Leavens 
et al., 2002).

CASL-LTL, an extension of CASL (Bidoit & Mosses, 2004), has been provided to deal with reactiv-
ity (Reggio, Cerioli & Astesiano, 2001).

BON is an object-oriented method possessing graphical and textual languages for specifying classes, 
their relations and assertions, written in first-order predicate logic (Paige, Kaminskaya & Ostroff, 
2002).

Various works analyzed the integration of semiformal techniques and object-oriented designs with 
formal techniques. (Bordeau, 1995) introduces a method to derive Larch specifications from class dia-
grams. France, Bruel and Larrondo-Prieti (1997) describe the formalization of FUSION models in Z.

A lot of work has been carried out dealing with the semantics for UML/OCL models. ThePreciseUML 
Group, pUML, was created in 1997 with the goal of giving precision to UML (France, Evans, Lano & 
Rumpe, 1998).

Considering that OCL has merely a denotational semantics that can be implemented by dynamic 
validation of snapshots, several works propose UML formalization by using traditional formal languages. 
These formal languages provide at least syntax, some semantics and an inference system. The syntax 
defines the structure of the text of a formal specification including properties that are expressed as axi-
oms, formulas of some logic. The semantics describes the models linked to a given specification; in the 
formal specification context, a model is a mathematical object that defines behavior of the realizations 
of the specifications. The inference system allows defining deductions that can be made from a formal 
specification. These deductions allow new formulas to be derived and checked. So, the inference system 
can help to automate testing, prototyping or verification.

Bruel and France (1998) describe how to formalize UML models using Z. Gogolla and Ritcher (1997) 
do this by transforming UML to TROLL and Overgaard (1998) achieves it by using operational semantics. 
U2B (Snook & Butler, 2002) transforms UML models to B (Abrial, 1996). (Kim & Carrington, 1999) 
(Kim and Carrington, 2002) formalize UML by using OBJECT-Z.

Borger, Cavarra and Riccobene (2000) provide a rigorous semantics for one of the central diagram types 
which are used in UML for the description of dynamical system behavior, namely activity diagrams.

Reggio, Cerioli and Astesiano (2001) present a general framework of the semantics of UML, where 
an individual semantics is given to the different kinds of UML diagrams within a UML model, and next, 
such semantics are composed to get the semantics on the overall model.

Gerber et al. (2002) explores the state-of-the-art of model-to-model transformation. Strengths and 
weakness of different technologies such as Common Warehouse Metamodel (CWM) transformations 
(CWM, 2003) and graph transformations (Mens et al., 2006) are remarked.
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Gogolla and Henderson-Seller (2002) analyze the UML metamodel part dealing with stereotypes, 
and make various suggestions for improving the definition and use of stereotypes. Barbier, Henderson-
Sellers, Le Parc-Lacayrelle and Bruel (2003) introduce a formal definition for the semantics of the 
Whole-Part relation that had been incorporated into version 2.0 of UML. Kuske, Gogolla, Kollmann 
and Kreowski (2002) describe an integrated semantics for UML class, object and state diagrams based 
on graph transformation.

Graph transformation theory has been developed over the last three decades as a suite of techniques 
and tools for formal modeling and very high-level visual programming (Rozenberg, 1997). AGG is a 
rule-based visual programming environment supporting an algebraic approach to graph transformation 
that is used for modeling and software validation (Taentzer, 2004).

UML CASE tools could be enhanced with functionality for formal specification, deductive verification; 
however, only research tools provide support for advanced analysis. For example, the main task of USE 
tool (Gogolla, Bohling and Ritchers, 2005) is to validate and verify specifications consisting of UML/
OCL class diagrams. Key (Ahrendt et al., 2005) is a tool based on Together enhanced with functionality 
for formal specification and deductive verification (CASE, 2009) (Ahrent, Baar, Beckert, Bubel, Giese, 
Hahnle, Menzel, Mostowski, Roth, Schlager, & Smith, 2005) (Ahrent, Baar, Beckert, Giese, Hahnle, 
Menzel, Mostowski, & Smith, 2005).

It is difficult to compare the existing results and to see how to integrate them in order to define a 
standard semantics since they specify different UML subsets and they are based on different formalisms. 
For instance, the books (Siau, & Halpin, 2001) and (Favre, 2003) describe different approaches.

With the emergence of MDA, the emphasis moved from UML formalization to MOF-based meta-
model formalization.

MCumber and Cheng (2001) propose a general framework for formalizing UML diagrams in terms 
of different formal languages using a mapping from UML metamodels and formal languages.

Akehurst, Kent and Patrascoiu (2003) describe how to formalize metamodels and model transforma-
tions by using relational algebras. They propose an approach that uses metamodeling patterns captur-
ing the essence of mathematical relations. The proposed technique is to adopt a pattern that models a 
transformation relationship as a relation or collections of relations, and encode this as an object model. 
Hausmann (2003) defined an extension of a metamodeling language to specify mappings between meta-
models based on concepts presented in Akehurst, Kent and Patrascoiu (2003). Kuster, Sendall and Wahler 
(2004) compare and contrast two approaches to model transformations: one is graph transformation and 
the other is a relational approach. Buttner and Gogolla (2004) analyze UML metamodel transformations 
using a specific graph transformation tool, AGG. Czarnecki and Helsen (2003) describe taxonomy with 
a feature model to compare several existing and proposed model-to-model transformation approaches.

To date, there is no way to integrate semantically formal languages and their related tools with 
Model-Driven Development.

Poernomo (2004) proposes a formalization of MOF metamodels within the constructive type theory. 
Joualt & Kurtev (2006) describe ATL that is a transformation language that implements the MOF-
metamodel Query, View, Transformation (QVT).

More recently, (Boronat, & Meseguer, 2007) and (Boronat, & Messeger, 2008) present a formal, alge-
braic semantics of the MOF standard in membership equational logic (MEL). An executable framework 
for MOF has been integrated within the Eclipse Modeling framework (Eclipse, 2009).
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Mda inFraStructure

Our goal is to formalize MDA processes in terms of MOF-based metamodels and QVT-based transfor-
mations. Both, MOF and QVT, depend on UML metamodel, which in turn depends on OCL. That is to 
say, the formalization of MDA processes depends on various OMG standards. Some of them, such as 
OCL and QVT, involve imperative constructions that are hard to formalize. To avoid this inconvenient, 
we analyzed the graph of package dependencies to select a minimal set of packages that allows us to 
precisely define the semantics of MDA process in a way independent of imperative constructions. Next, 
we describe the package dependencies involve in this analysis.

The Infrastructure::Core package is a complete metamodel that is reused by other metamodels that 
import or specialize its metaclasses.

MOF 2.0 reuses and integrates the UML Infrastructure::Core and provides two metamodels EMOF 
(Essential MOF) and CMOF (Complete MOF). EMOF favors simplicity of implementation over expres-
siveness. CMOF is the metamodel used to specify more sophisticated metamodels such as UML 2.2 
Superstructure. It is built from EMOF and the Core::Constructs of UML 2.2 (see Chapter 2 Figure 9).

MOF, like all metamodels in the MOF and UML family, is described as a CMOF model. However, 
EMOF can be described in itself. This results in a complete, standalone model of EMOF that has no 
dependencies on any other packages, or metamodeling capabilities that are not supported by EMOF 
itself.

Other important consideration is that MOF and QVT depends only on UML Core::Basic package 
which at the same time only depends on EssentialOCL, a subset of the complete OCL, exposing the 
minimal OCL required to work with EMOF (see Chapter 2 Figures 9 and 11). It references explicitly the 
EMOF classes: Property, Operation, Parameter, TypedElement, Type, Class, DataType, Enumeration, 
PrimitiveType, and EnumerationLiteral. The following metaclasses defined in complete OCL are not 
part of EssentialOCL: MessageType, ElementType, AssociationClassCallExp, MessageExp, StateExp, 
UnspecifiedValueExp. Moreover, any well-formedness rules defined for these classes are consequently 
not part of the definition of Essential OCL. Then, EssentialOCL does not depend on imperative con-
structions (OCL, 2006).

On the other hand, QVT has a hybrid declarative/imperative nature. The declarative part includes two 
metamodels/languages layers: Relation and Core. The latter is defined using Essential OCL and EMOF. 
The Core language is equally powerful to the Relation language and can be implemented directly or 
used as a reference for defining the semantics of relations, which are mapped to Core using the trans-
formation language itself (see Chapter 2 Figure 11). Then, we can formalize QVT transformations via 
the formalization of the QVT::Core and QVT::Base. We can reason about transformations by reasoning 
about the corresponding core transformation.

Considering the above, we select a minimal subset of packages of OMG standards to formalize MDA 
process. This subset constitutes an MDA Infrastructure that can be reused by different MDA processes. 
Figure 1 shows the components of the MDA Infrastructure.

To formalize metamodels, we use a special-purpose language NEREUS. It takes advantage of all the 
existing theoretical background on formal methods, for instance, the notions of refinement, implemen-
tation correctness, observable equivalences and behavioral equivalences that play an essential role in 
model-to-model transformations (Astesiano, Kreowski, & Krieg-Bruckner, 1999) (Cardelli, & Wegner, 
1985). The system type of NEREUS was defined rigorously in the algebraic framework. Considering 
that MOF supports only binary associations, NEREUS typifies a hierarchy of type constructor for binary 
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associations and provides rigorous specification of them. The semantics of MOF metamodels (that is 
specified in OCL) can be enriched and refined by integrating it with NEREUS. This integration facilitates 
proofs and tests of models and model transformations via the formal specification of metamodels and 
metamodel transformations. Some properties can be deduced from the formal specification and could 
be re-injected into the MOF specification without wasting the advantages of semi-formal languages of 
being more intuitive and pragmatic for most implementers and practitioners.

In contrast to the works mentioned above, our approach has two main advantages linked to automa-
tion and interoperability. On the one hand, we show how to generate automatically formal specifications 
from MOF metamodels. Due to scalability problems, this is an essential requisite. We define a system of 
transformation rules for translating MOF metamodels specified in OCL into algebraic languages. On the 
other hand, our approach focuses on interoperability of formal languages. Languages that are defined in 
terms of NEREUS metamodels can be related to each other because they are defined in the same way 
through a textual syntax. Any number of source languages such as different Domain Specific Languages 
(DSLs) and target languages (different formal language) could be connected without having to define 
explicit metamodel transformations for each language pair (Figure 2). Such as MOF is a DSL to define 
semi-formal metamodels, NEREUS can be viewed as a DSL for defining formal metamodels.

Another advantage of our approach is linked to pragmatic aspects. NEREUS is a formal notation 
closed to MOF metamodels that allows meta-designers who must manipulate metamodels to understand 
their formal specification.

Rather than requiring developers to manipulate formal specifications, the idea is to provide rigorous 
foundations for MDD in order to develop tools that, on the one hand, take advantage of the power of 
formal languages and, on the other hand, allow developers to directly manipulate MDA models; however 
meta-designers need to understand MOF metamodels and NEREUS specifications.

Experiments and tool support related to the NEREUS approach may be found at (Favre, 2001) (Favre, 
2005) (Favre, 2006) and (Favre, 2009). However, we would like remark that here NEREUS is used as an 
intermediate formal notation to communicate the essential of an MDA reverse engineering approach.

Figure 1. MDA Infrastructure
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nereuS: a MetaMOdeLing Language

The definition of NEREUS was inspired in MOF. Like MOF, NEREUS provides mechanisms for specify-
ing classes, relations and packages. The outstanding characteristic with respect other algebraic languages 
is that it expresses different kinds of relations (dependency, binary association, aggregation, composition) 
as primitives to develop specifications. Next, a description of the NEREUS constructs is included.

classes

Classes may declare types, operations and, axioms that are formulas of first-order logic. They are struc-
tured by three different kinds of relations: importing, inheritance and subtyping. The syntax of a class 
is as follows:

CLASS className 
IMPORTS<importList>IS-SUBTYPE-OF<subtypeList>INHERITS<inheritList>GE
NERATED-BY<constructorList> 
DEFERRED 
TYPES<sortList>ATTRIBUTES<attributeList>OPERATIONS<operationList> 
EFFECTIVE 
TYPES<sortList>ATTRIBUTES<attributeList>OPERATIONS<operationList>AXI
OMS<varList> <axiomList> 
END-CLASS 

The clauses IMPORT, INHERITS, IS-SUBTYPE-OF, DEFERRED and EFFECTIVE are optional 
and there is no order between them, except the lineal order imposed by the visibility: each symbol has 
to be declared before being used.

Types, attributes and operations can be declared as DEFERRED or EFFECTIVE. The DEFERRED 
clause declares elements that are incompletely defined due to there are not enough axioms to define the 
behavior of the new operations or, there are not enough operations to generate all values of a sort. The 
EFFECTIVE clause either declares new types, operations or attributes that are completely defined or 
completes the definition of some inherited type, attribute or operation.

Figure 2. Interoperability and NEREUS
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the iMPOrtS, inheritS and iS-SuBtYPe-OF clauses

The IMPORTS clause expresses dependency relations. The specification of a new class is based on the 
imported specifications declared in <importsList> and their public operations may be used in the new 
specification.

The INHERITS clause specifies that a new class is built starting from the union of classes appearing 
in <inheritsList>. The component of these classes will be components of the new class, and their own 
types, attributes and operations will be elements of the new class.

In contrast to the module reuse viewpoint of the INHERITS clause, the IS-SUBTYPE-OF clause relies 
on the inheritance of behavior viewpoint. A notion closely related with subtyping is polymorphism, which 
satisfies the property that each object of a subclass is at the same time an object of its superclasses.

The components of the class that do not come from INHERITS, IS-SUBTYPE and IMPORTS clauses 
are named the “own part” of the class.

the tYPeS clause

The declaration of types (sorts) has the following form:

TYPES s1,s2,…,sn 

This clause can declare types as EFFECTIVE or DEFERRED.

the attriButeS and OPeratiOnS clauses

The ATTRIBUTES and OPERATIONS clauses declare functionalities of attributes and operations 
respectively with the traditional syntax of signatures. Operations can be declared as total or partial. 
Partial operations must specify its domain by means of the PRE clause that indicates what conditions 
the function arguments must satisfy to belong to the function domain.

constructors, deFerred/inherited OPeratiOnS

The GENERATED-BY clause refers to the basic constructor operations of the class. NEREUS allows us 
to specify operation signatures in an incomplete way by using the underscore notation “_”. An underscore 
in the domain of functionality expresses that the subclasses can extend the inherited functionality with 
the Cartesian product of other types. An incomplete operation has the following syntax:

Operation: Type
1
 x Type

2
 x .. x Type

n
 x _ -> RType 

The “*” notation in a functionality refers to the functionality inherited from the base class. This nota-
tion precedes the Cartesian product of own domains:

Operation: * x Type
1 x Type2 x….-> RType 
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higher Order Simulation

NEREUS supports higher order operations (a function f is higher order if functional sorts appear in 
a parameter sort or the result sort of f). In the context of OCL Collection formalization, second-order 
operations are required.

axioms

The AXIOMS clause declares pairs v: C where v is a universal quantified variable of type C. Follow-
ing this clause, axioms are included to specify the class semantics. As for many-sorted specifications, 
axioms are formulas in first-order logic.

A term is a typed variable, a constant or a well-formed operation application. Formulas may be 
atomic or compound. An atomic formula is an equivalence equation between two terms of the same 
type. Equations of the form term=True can be abbreviated by term. All operations are strict, if one of 
its arguments is undefined, the result too. A compound formula (or predicate) is built by using the logic 
operators not, and, implies and equivalence.

To facilitate the use of conditionals, the class Boolean provides the operation IF-THEN-ELSE whose 
signature is:

IF-THEN-ELSE: Boolean x S x S -> S 

and the axioms related are:

IF-THEN-ELSE (True, x, y) = x 
IF-THEN-ELSE (False, x, y) = y 
2PARAMETERIZED CLASSES 

NEREUS distinguishes variable parts in a specification by means of explicit parameterization. The 
elements of <parameterList> are pairs C1:C2 where C1 is the formal generic parameter constrained by 
an existing class C2 (only subclasses of C2 will be actual parameters). The syntax of a parameterized 
class is as follows:

CLASS className [<parameterList>]IMPORTS<importList>IS-SUBTYPE-OF<su
btypeList>INHERITS<inheritList>GENERATED-BY<constructorList> 
DEFERRED 
TYPES<sortList>FUNCTIONS<functionList> 
EFFECTIVE 
TYPES<sortList>FUNCTIONS<functionList>AXIOMS<varList> 
<axiomList> 
END-CLASS
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Local instances of classes

NEREUS allows to define local instances of a class in the IMPORTS, INHERITS and IS-SUBTYPE-
OF clauses by the syntax

className [<parameterList>] [<bindingList>] 

where the elements of <bindingList> can be pairs of sorts s1:s2 and/or pairs of operations o1:o2 
with o2 and s2 belonging to the “own part” of ClassName. References to parameterized specifications 
instantiate always the parameters. The sort of interest of a class (if any) is also implicitly renamed each 
time the class is substituted or renamed.

Axioms can introduce local names whether for referring common sub-terms or for defining axioms 
that involve second order functions. NEREUS provides the construction LET…IN to limit the scope of 
the declarations of auxiliary symbols by using local symbols.

The following expressions are equivalent, and exemplifies the use of the LET…IN construct in the 
construction of axioms over second order functions:

LET 
OPERATIONS 
f: Elem -> Boolean 
AXIOMS v: Elem 
f (v) = … 
IN 
expression-with-operation (c, f) 
END-LET 

NEREUS includes a concise notation that is closed to the OCL notation. The syntax Fx (c, [g(x1, x2, 
…, xi, x, xi+1, …)] where c is a collection, is equivalent to

LET 
OPERATIONS 
h: T

x
 -> T

g
 

AXIOMS x: T
x
;… 

h (x) = g (x
1
, x

2
, ...., x

i
, x, x

i+1
,....) 

IN 
…F (c, h)… 
END-LET 

In a similar way, the above expression may be written by using the WHERE notation:

expression-with-operation (c, f) 
WHERE f: Elem -> Boolean 
AXIOMS v: Elem 
f (v) = … 
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Primitive and constructor types

Several useful predefined types are offered in NEREUS. It provides primitive types (Boolean, Integer, 
Real and String), enumerated types and tuple. Besides, it provides a hierarchy of collections including 
Set, Bag, Sequence and OrderedSet. Appendix-B includes their specification.

association definition

NEREUS provides a taxonomy of constructor types that classifies binary association according to kind 
(ordinary association, aggregation and composition), degree (unary, binary), navigability (unidirectional, 
bidirectional), and connectivity (e.g. one-to-one, one-to-many and many-to-many). Figure 3 partially 
depicts the hierarchy of constructor types.

Generic relations can be used in the definition of concrete relations by instantiation. New associa-
tions can be defined as follows:

ASSOCIATION <relationName> 
IS <constructorTypeName> […:class1;…:class2;…:role1;…:role2; 
…:mult1;…:mult2;…:visibility1;…:visibility2] 
CONSTRAINED-BY <constraintList> 
END 

Figure 3. Hierarchy of constructor types for associations
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The IS paragraph expresses the instantiation of <constructorTypeName> with classes, roles, visibility 
and multiplicity. The CONSTRAINED-BY clause allows the specification of predefined constraints 
(ordered, changeable, addOnly, Frozen, xor, subset) and specific static constraints in first-order logic.

Associations are defined in a class by means of the ASSOCIATES clause:

CLASS className 
… 
ASSOCIATES <<associationName>> 
… 
END-CLASS

Package definition

The package is the mechanism provided by NEREUS for grouping classes and associations and control-
ling its visibility. The syntax of a package is as follows:

PACKAGE packageName 
IMPORTING <importsList> 
GENERALIZATION <inheritsList> 
NESTING <nestingList> 
CLUSTERING <clusteringList> 
<elements> 
END-PACKAGE 

Like MOF, NEREUS provides mechanisms for metamodel composition and reuse (importing, gen-
eralization, nesting and clustering) (MOF, 2002, pp. 2-14) The IMPORTING clause lists the imported 
packages (<importsList>); the GENERALIZATION clause lists the inherited packages in <inheritList>; 
NESTING clause lists the nested packages (<nestingList>) and CLUSTERING clause lists the cluster-
ing ones (<clusteringList>).

comments

A comment is a line preceded by “- -“

-- <texto>

the “::” notation

The “::” notation allows expressing the name of an element as an ordered list of another elements in 
which it is contained. The syntax for using it is:

Package::Class::roleName 

Next, we show examples of NEREUS specifications.
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eXaMPLe 4-1: OcL cOLLectiOnS in nereuS

Following we show the predefined type Collection in OCL and NEREUS. Collection is a superclass of 
all collection types in OCL: Set, Bag, Sequence and OrderedSet (OCL, 2006). In Appendix-B we present 
the complete specification of this hierarchy both in OCL and NEREUS.

collection in OcL

size (): Integer
The number of elements in the collection self.

post: result = self -> iterate (elem; acc: Integer = 0 | acc + 1)

includes (object: T): Boolean
True if object is an element of self, false otherwise.

post: result = (self -> count (object) > 0)

excludes (object: T): Boolean
True if object is not an element of self, false otherwise.

post: result = (self -> count (object) = 0)

count (object: T): Integer
The number of times that object occurs in the collection self.

post: result = self -> iterate (elem; acc: Integer = 0 | if elem = 
object then acc + 1 else acc endif)

includesAll (c2: Collection (T)): Boolean
Does self contain all the elements of c2 ?

post: result = c2 -> forAll (elem | self -> includes (elem))

excludesAll (c2: Collection (T)): Boolean
Does self contain none of the elements of c2 ?

post: result = c2 -> forAll(elem | self -> excludes (elem))

isEmpty(): Boolean
Is self the empty collection?

post: result = (self -> size () = 0)



61

Formalization of MOF-Based Metamodels

notEmpty (): Boolean
Is self not the empty collection?

post: result = (self -> size () <> 0)

sum (): T
The addition of all elements in self. Elements must be of a type supporting the + operation. The + op-
eration must take one parameter of type T and be both associative: (a + b) + c = a + (b + c), and com-
mutative: a + b = b + a.

Integer and Real fulfill this condition.

post: result = self -> iterate (elem; acc: T = 0 | acc + elem)

product (c2: Collection (T2)): Set (Tuple (first: T, second: T2))
The cartesian product operation of self and c2.

post: result = self -> iterate (e1; acc: Set (Tuple (first: T, sec-
ond: T2)) = Set {} | c2 -> iterate (e2; acc2: Set (Tuple (first: T, 
second: T2)) = acc | acc2 -> including (Tuple {first = e1, second = 
e2})))

collection in nereuS

Following we show the predefined type OCL-Collection in NEREUS (Favre, 2001). Collection is a pa-
rameterized class. It imports Boolean and Nat specifications. Its basic constructor operations are create 
and add. The sort Collection and the operations create, add, count and collect are defined as deferred. 
For instance, the count operation determines the number of times that an element occurs in the Collec-
tion. Due to the collection Set does not admit more than one occurrence, the semantics of count can only 
be completed in the subclasses. The rest of its operations are effective. Some of them are second-order 
operations (forAll, select, exists and iterate). The semantic specification of count exemplifies how to 
use local definitions by using the WHERE paragraph. The includes and excludes operations exemplify 
the use of the if-then-else notation.

CLASS Collection [Elem] 
IMPORTS Boolean, Nat 
GENERATED-BY create, add DEFERREDTYPES 
Collection 
OPERATIONS 
create: → Collection 
add: Collection x Elem → Collection 
count: Collection x Elem → Nat 
collect: Collection x (Elem -> Elem1: ANY) -> Collection 
EFFECTIVEOPERATIONS 
isEmpty: Collection -> Boolean 
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size: Collection → Nat 
includes: Collection x Elem -> Boolean 
excludes: Collection x Elem -> Boolean 
includesAll: Collection x Collection -> Boolean 
forAll: Collection x (Elem -> Boolean) -> Boolean 
exists: Collection x (Elem -> Boolean) -> Boolean 
select: Collection x (Elem -> Boolean) -> Collection 
reject: Collection x (Elem -> Boolean) -> Collection 
iterate: Collection x (Elem x Acc: ANY) x (-> Acc) -> Acc 
AXIOMS c, c1: Collection; e: Elem; f: Elem -> Boolean; 
g: Elem x Acc -> Acc; base: -> Acc 
isEmpty (c) = (size (c) = 0) 
iterate (create, g, base) = base 
iterate (add (c, e), g, base) = g (e, iterate (c, g, base)) 
count (c, e) = iterate (c, f1, 0) 
 WHEREOPERATIONS f1: Elem x Nat ->Nat 
 AXIOMS e1: Elem; i: Nat 
 f1 (e1, i) = if e = e1 then i+1 else i 
 END-WHERE 
size (create) = 0 
size (add (c, e)) = 1 + size (c) 
includes (create, e) = False 
includes (add (c, e), e1) = if e = e1 then True 
else includes (c, e1) 
excludes (create, e) = True 
excludes (add (c, e), e1) = if e = e1 then False else excludes (c, 
e1) 
includesAll (create, c) = True 
includesAll (add (c, e), c1) = includesAll (c, c1) and includes (e, 
c1) 
excludesAll (create, c) = True 
excludesAll (add (c, e), c1) = excludesAll (c, c1) and excludes (e, 
c1) 
forAll (create, f) = True 
forAll (add (c, e), f) = f (e) and forAll (c, f) 
exists (create, f) = False 
exists (add (c, e)) = f (e) or exists (c, f) 
select (create, f) = create 
select (add (c, e), f) = if f (e) then add (select (c, f), e) else 
select (c, f) 
reject (create, f) = create 
reject (add (c, e), f) = if not f (e) then add (reject (c, f), e) 
 else reject (c, f) 
END-CLASS
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Set in OcL

union (s: Set (T)): Set (T)

The union of self and s. 
post: result -> forAll (elem | self -> includes (elem) or s -> in-
cludes (elem)) 
post: self -> forAll (elem | result -> includes(elem)) 
post: s -> forAll (elem | result -> includes (elem))

union(bag: Bag(T)): Bag(T)

The union of self and bag. 
post: result -> forAll (elem | 
result -> count (elem) = self -> count (elem) + bag -> count (elem)) 
post: self -> forAll (elem | result -> includes (elem)) 
post: bag -> forAll (elem | result -> includes (elem))

= (s: Set (T)): Boolean

Evaluates to true if self and s contain the same elements. 
post: result = (self -> forAll (elem | 
s -> includes (elem)) and s -> forAll (elem | self -> includes 
(elem)))

intersection (s: Set (T)): Set (T)

The intersection of self and s (i.e., the set of all elements that 
are in both self and s). 
post: result -> forAll (elem | self -> includes (elem) and s -> in-
cludes (elem)) 
post: self -> forAll (elem | s -> includes (elem) = result -> in-
cludes (elem)) 
post: s -> forAll (elem | self -> includes (elem) = result -> in-
cludes (elem))

intersection (bag: Bag(T)): Set(T)

The intersection of self and bag.post: result = self -> 
intersection(bag -> asSet)

ñ (s: Set (T)): Set(T)
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The elements of self, which are not in s. 
post: result -> forAll (elem | self -> includes (elem) and s -> ex-
cludes (elem)) 
post: self -> forAll (elem | result -> includes (elem) = s -> ex-
cludes (elem))

including (object: T): Set(T)

The set containing all elements of self plus object. 
post: result-> forAll (elem | self -> includes (elem) or (elem = ob-
ject)) 
post: self -> forAll (elem | result -> includes (elem)) 
post: result -> includes (object)

excluding (object: T): Set(T)

The set containing all elements of self without object. 
post: result -> forAll (elem | self -> includes (elem) and (elem <> 
object)) 
post: self - > forAll (elem | result -> includes (elem) = (object <> 
elem)) 
post: result -> excludes (object)

symmetricDifference (s: Set (T)): Set (T)

The sets containing all the elements that are in self or s, but not 
in both. 
post: result -> forAll (elem | self -> includes (elem) xor s -> in-
cludes (elem)) 
post: self -> forAll (elem | result -> includes (elem) = s -> ex-
cludes (elem)) 
post: s -> forAll (elem | result -> includes (elem) = self -> ex-
cludes (elem))

count (object: T): Integer
The number of occurrences of object in self.

post: result <= 1

flatten (): Set (T2)
If the element type is not a collection type, this results is the same self. If the element type is a collection 
type, the result is the set containing all the elements of all the elements of self.
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post: result = if self.type.elementType.oclIsKindOf (CollectionType) 
then 
self -> iterate (c; acc: Set () = Set {} | acc -> union (c -> asSet 
())) else self endif

asSet (): Set (T)
A Set identical to self.

post: result = self

asOrderedSet (): OrderedSet (T)
An OrderedSet that contains all the elements from self, in undefined order.

post: result -> forAll (elem | self -> includes (elem))

asSequence (): Sequence (T)
A Sequence that contains all the elements from self, in undefined order.

post: result -> forAll (elem | self -> includes (elem)) 
post: self -> forAll (elem | result -> count (elem) = 1)

asBag (): Bag (T)
The Bag that contains all the elements from self.

post: result -> forAll (elem | self -> includes (elem)) 
post: self -> forAll (elem | result -> count (elem) = 1)

Set in nereuS

The class Set is a subtype of Collection. The IS-SUBTYPE-OF clause exemplifies the definition of 
a local instance of Collection that renames the operations create and add by createSet and including 
respectively. All operations are defined as effective. In AXIOMS, a concise notation for second-order 
operations is exemplified. For instance, forAll(v) (s, [includes (union (s, s2), v)]) refers to an operation 
forAll over an index v, and collection s and the logical expression includes (union (s, s2), v).

CLASS Set [T] 
IS-SUBTYPE-OF Collection [T] [create: createSet; add: including] 
IMPORTS Sequence, Bag [create: createBag; including: includingBag], 
OrderedSet EFFECTIVETYPES 
Set 
OPERATIONS 
createSet, including, count 
equal: Set x Set –> Boolean 
union: Set x Set → Set 
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union: Set x Bag → Bag 
intersection: Set x Set → Set 
intersection: Set x Bag → Set 
-: Set x Set → Set 
excluding: Set x T → Set 
symmetricDifference: Set x Set → Set 
collect: Set x (T → T1: ANY) → Bag [T1] 
flatten: Set -> Set[T1:ANY] 
asSet: Set -> Set 
asOrderedSet: Set -> OrderedSet 
asSequence: Set → Sequence 
asBag: Set → Bag 
AXIOMS s, s2: Set; b: Bag; b1: Bag[T1] ; e, e1: T; g: T1 -> Boolean 
collect (createSet, g) = createBag 
collect (including (s, e), g) = includingBag (collect (excluding (s, 
e), g(e)) 
count (s, e) <= 1 
forAll (v) (union (s, s2), [includes (s, v) or includes (s2, v)]) 
forAll (v) (s, [ includes (union (s, s2), v) ]) 
forAll (v) (s2, [includes (union (s, s2), v) ]) 
forAll (v) (s, [includes (union (s, b), v) ]) 
forAll (v) (b, [includes (union (s, b), v)]) 
forAll (v) (union (s, b), [count (union (s, b), v) = count(s, v) + 
count (b, v)]) 
equal (s, s2) = 
forAll (v) (s, [includes (s2, v)) and forAll (v1) (s2, [includes (s, 
v1)]) ]) 
forAll (v) (intersection (s, s2), [includes (s, v) and includes (s2, 
v)] 
forAll (v) (s, [includes (s2, v)) = includes (intersection (s, s2), 
v)]) 
forAll (v) (s2, [includes (s, v)) = includes (intersection (s, s2), 
v)]) 
intersection (s, b) = intersection (s, asSet (b)) 
forAll (v) (s – s2, [includes (s,v) and excludes (s2,v) ]) 
forAll (v)(s, [includes (s – s2, v) = excludes (s2,v) ]) 
forAll (v) (including (s, e), [includes (s,v) or equal (v,e)] 
forAll (v)(s, [includes (including (s, e), v) ]) 
includes (including (s, e), e) 
forAll (v) (excluding (s, e), [includes (s, v) and not equal (v,e)]) 
forAll (v) (s, [includes (excluding (s, e), v) = not equal (e,v)]) 
excludes (excluding (s, e), e) 
forAll (v) (symmetricDifference (s, s2), [includes (s, v) xor in-
cludes (s2, v)]) 
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forAll (v) (s, [includes (symmetricDifference (s, s2), v) = excludes 
(s2, v)]) 
forAll (v) [includes (symmetricDifference (s, s2), v) = excludes (s, 
v)]) 
flatten (s)= if oclIsKindOf (elementType (type (s)), CollectionType) 
 then iterate (v) (s, [union (acc, asSet (v))], [acc = createSet]) 
else s 
asSet(s) = s 
forAll (v) (asOrderedSet (s), [includes (asOrderedSet (s), v)]) 
forAll (v) (asSequence (s), includes (s, v)) 
forAll (v) (s, count (asSequence (s), v) = 1) 
forAll (v) (asBag (s), [includes (s, v)]) 
forAll (v)(s, [count (asBag (s), v) = 1]) 
forAll (v) (asOrderedSet (b), [includes(b,v)]) 
forAll (v) (b, [includes (asOrdered (b), v)) 
forAll(v) (b, [count (asOrderedSet (b), v) = 1]) 
END-CLASS

eXaMPLe 4-2: BidirectiOnaL aSSOciatiOnS in nereuS

Figure 4 shows a bidirectional association between the classes A and B whose association-end multiplic-
ity is *. Next, we show the scheme in NEREUS related to this bidirectional association. The elements 
that have to be instantiated are shown in italics. The scheme must be instantiated with classes (Class1, 
Class2), roles (role1, role2), multiplicities and properties.

An association is specified as a set of links, each link is added by applying the addlink operation. 
isRightLinked operation determines whether or not an instance of Class1 belongs to a link. isLeftLinked 
operation determines whether or not an instance of Class2 belongs to a link. rightCardinality gives the 
cardinality associated with instances of Class1. get_role1 gives the collection[Class2] associated with 
an instance of Class1. isRelated determines whether or not two instances are related and so on.

addLink, get_role1, get_role2 and remove are partial operations that restrict their domains by pre-
conditions. Various axioms must be instantiated according to the properties of the association. The parts 
that must be instantiated are shown in italics. A complete specification may be found at Appendix-B.

Figure 4. Bidirectional association in NEREUS
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RELATION SCHEME Bidirectional-3 
IMPORTS Collection-C1: Collection [Class1], Collection-C2: Collec-
tion [Class2] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVEOPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: Typename → Bidirectional-3 
addLink: Bidirectional-3 (a) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-3 
pre: not isRelated (a, c1, c2) 
isEmpty: Bidirectional-3 → Boolean 
isRightLinked: Bidirectional-3 x Class1 → Boolean 
isLeftLinked: Bidirectional-3 x Class2 → Boolean 
rightCardinality: Bidirectional-3 x Class1 → Nat 
leftCardinality: Bidirectional-3 x Class2 → Nat 
get_role1: Bidirectional-3 (a) x Class1(c1) → Collection-C2 
pre: isRightLinked (a, c1) 
get_role2: Bidirectional-3 (a) x Class2 (c2) → Collection-C1 
pre: isLeftLinked (a, c2) 
remove: Bidirectional-3 (a) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-3 
pre: isRelated (a, c1, c2) 
isRelated: Bidirectional-3 x Class1 (c1) x Class2 (c2) → Boolean 
AXIOMS a: Bidirectional-3; c1, cc1: Class1; c2, cc2: Class2; t: 
TypeName 
name (create (t)) = t 
name (add (a, c1, c2)) = name (a) 
isEmpty (create (t)) = True 
isEmpty (addLink (a, c1, c2)) = False 
frozen (a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1 (a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
isRelated (create (t), c1, c2) = False 
isRelated (addLink (a, c1, c2), cc1, cc2) = 
(c1= cc1 and c2 = cc2) or isRelated (a, cc1, cc2) 
isRightLinked (create (t), c1) = False 
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isRightLinked (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then True else isRightLinked (a, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then True else isLeftLinked (a, cc2) 
rightCardinality (create (t), c1) = 0 
rightCardinality (addLink(a, c1, c2), cc1) = 
if c1= cc1 then 1 + rightCardinality (a, cc1) else rightCardinality 
(a, cc1) 
leftCardinality (create (t), c2) = 0 
leftCardinality (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then 1 + leftCardinality (a, cc2) else leftCardinality 
(a, cc2) 
getClass2 (addLink (a, c1, c2), cc1) = 
if c1= cc1 then add (getClass2 (a, cc1), c2) else getClass2 (a, cc1) 
getClass1 (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then add (getClass1 (a, cc2), c2) else getClass1 (a, 
cc2) 
remove (addLink (a, c1, c2), cc1, cc2) = 
if (c1= cc1 and c2 = cc2) then a else remove (a, cc1, cc2) 
END-RELATION

eXaMPLe 4-3: aggregatiOn / cOMPOSitiOn in nereuS

This example shows the specification of a composition between two classes A (composite) and B (com-
ponent) (Figure 5)

Next, we show the scheme for a composition (1.. n1..n2) in NEREUS. This scheme expresses a 
subtype relationship between Composition and Aggregation (which in turn is a subtype of BinaryAs-
sociation) as shows Figure 6.

RELATION SCHEME AggregationIS-SUBTYPE-OF BinaryAssociation [Whole: 
Class1, Part: Class2] 
DEFERREDOPERATIONS 
isPart: Aggregation x Whole x Part→ Boolean 

Figure 5. Composition in NEREUS
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isEmpty: Aggregation → Boolean 
isLinkedWhole: Aggregation x Whole → Boolean 
isLinkedPart: Aggregation x Part → Boolean 
END-RELATIONRELATION SCHEME Composition-2 
--0..1 to n1..n2 
IMPORTS C-Part: Collection [Part] [create-s: create] 
IS-SUBTYPE-OF Aggregation [C-Part: Part] 
GENERATED-BY create, addPartEFFECTIVEOPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-7 
addPart: Composition-2 (a) x C-Part (cp) x Whole (w) → Composition-2 
pre:<n1> ≤ size(cp) ≤ <n2> and not isLinkedWhole (a, w) 
rightCardinality: Composition-2 x Whole → Nat 
leftCardinality: Composition-2 x Part → Nat 
getPart: Aggregation (a) x Whole (w) → C-Part (p) 
pre: isLinkedWhole (a, w) 
getWhole: Aggregation (a) x Part (p) → Wholepre: isLinkedPart (a, p) 
AXIOMS a: Composition-2; p, p1: Part; w, w: Whole; t: TypeName; cp: 
C-Part 
name (create (t)) = t 
name (addPart (a, cp, w)) = name (a) 
frozen (a) = True 
changeable (a) = False 

Figure 6. Relationships between composition, aggregation and binary associations
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addOnly (a) = True 
getMult1 (a) = 1 
getMult2 (a) = <n1> .. <n2> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, cp, w), w1) = 
if includes (cp, w1) then 1 else leftCardinality (a, w1) 
rightCardinality (create (t), w) = 0 
leftCardinality (addPart (a, cp, w), p1) = 
if includes (cp, p1) then 1 else leftCardinality (a, p1) 
get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
getPart (addPart (a, cp, w), w1) = if (w = w1) then cp else getPart 
(a, w1) 
getWhole (addPart (a, cp, w), p)= 
if includes (cp, p) then w else getWhole (a, p) 
isPart (create (t), p) = False 
isPart(addPart (a, cp, w), p1, w1) = 
(includes (cp, p1) and w = w1) or isPart (a, p1, w1) 
isLinkedWhole(create (t), w) = False 
isLinkedWhole (addPart (a, cp, w), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
isLinkedPart (create(t), w) = False 
isLinkedPart (addPart (a, cp, w), p) = includes (cp, p) or isLinked-
Part (a, p) 
END-RELATION

eXaMPLe 4-4: State diagraM MetaMOdeL

The State Diagram Metamodel (Figure 7) defines a set of concepts than can be used for modeling discrete 
behavior through finite state transition systems such as state machines, state and transitions. OCL can 
be reused to attach consistency rules to metamodel components. For instance the following rules may 
be attached to State-Diagram metamodel.

Context Statemachine 
--The connection points of a state machine are pseudostates of kind 
entry point 
--or exit point. 
conectionPoint -> forAll (c | c.kind = #entryPoint or c.kind = #ex-
itPoint) 
Context PseudoState 
-An initial vertex can have at most one ongoing transition 
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(self.kind = #initial) implies (self.outgoing -> size <= 1) 
Context Region 
--A region can have at most one initial vertex. 
self.subvertex -> select (v| v.oclIsKindOf (Pseudostate)) -> 
 select (p: Pseudostate|p.kind = #initial) -> size () <= 1 

Next, we show partially the specification in NEREUS of Figure 5. The shaded specification is linked 
to OCL axioms.

PACKAGE StateDiagramMetamodel 
IMPORTS TransitionKind, PseudoStateKind 
CLASS StateMachine 
IS-SUBTYPE-OF UML::CommonBehaviors::BasicBehaviors::Behavior 
ASSOCIATES 
<< StateMachine-State>> 
<< StateMachine-PseudoState >>… 
AXIOMS a: StateMachine-PseudoState; sm:StateMachine 
forAll (c) (get_connectionPoint (a, sm), 
[kind(c) = #entryPoint or kind(c) = #exitPoint]) … 
END-CLASSCLASS Region 

Figure 7. State Diagram metamodel
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IS-SUBTYPE-OFUML::Classes::Kernel::Namespace 
ASSOCIATES 
<< State-Region>> 
<< StateMachine-Region>> 
<< Region-Vertex >>… 
AXIOMS a: Region-Vertex; r: Region 
size (select (p) (select (v) (get_subvertex (a, r), 
oclIsKinfOf (v, PseudoState) ]), [kind(p) = #initial])) <= 1 
END-CLASSCLASS PseudoState 
IS-SUBTYPE-OF Vertex, NameElement 
ASSOCIATES 
<<Vertex-Transition-1>> 
<<Vertex-Transition-2>> 
<< StateMachine-PseudoState>> 
… 
OPERATIONS 
kind: PseudoState -> PseudoStateKind 
AXIOMS ps: PseudoState; a: Vertex-Transition-1 
kind (ps) = #initial implies 
 size (get_outgoing (a,ps)) <=1… 
END-CLASSASSOCIATION stateMachine-PseudoState 
IS Composition-2 [StateMachine: class1; PseudoState: class2; 
stateMachine: role1; conectionPoint: role2; 0..1: mult1; *: mult2; 
+: visibility1;+: visibility2] 
CONSTRAINED-BY StateMachine: subsets namespace; PseudoState: subsets 
ownedMember 
ENDASSOCIATION Region-Vertex 
IS Composition-2 [Region: class1; Vertex: class2; container: role1; 
subvertex: role2; 0..1: mult1; *: mult2; +: visibility1; +: visibil-
ity2] 
CONSTRAINED-BY Region: subsets namespace; Vertex: subsets ownedMem-
ber 
END 
… 
END-PACKAGE

eXaMPLe 4-5: Qvt cOre FOrMaLizatiOn

We show the formalization of the QVT Core metamodel. The Core language is as powerful as the Rela-
tion language and may be used as a reference for the semantics of relations, which are mapped to Core. 
Figure 8 shows two metaclasses of the QVT-BASE package and their interrelationships. The complete 
diagram may be found at (QVT, 2008, pp.15). A transformation defines how one set of models can be 
transformed into another. It is composed by a set of rules that specify its execution behavior. The fol-
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lowing constraints (extendingRule and transitiveRule) may be attached to the package specifying that 
the rules of the extended transformation are included in the extending transformation and the extension 
is transitive:

 
extendingRule = 
Transformation.allInstances -> forAll (t| 
t.extends.size = 1 implies t.extends.rule -> include (t.rule)) 
  
transitiveRule = 
Transformation.allInstances -> 
forAll (t1, t2, t3 | t1.extends.size = 1 and t2.extends.size = 1 and 
t3.extends.size = 1 
and (t1.extends.rule -> includes (t2.rule) and 
t2.extends.rule -> includes (t3.rules)) implies t1.extends.rule -> 
includes (t3.rule) 

A rule domain is the set of model elements of a typed model that are of interest to it. A domain may 
be marked as checkable or enforceable

An analogy between a virtual machine-based architecture and QVT is described in (QVT, 2008 pp. 
10). The Core language is like JAVA byte code and the Core semantics is like the behavior specification 
for the Java Virtual Machine (JVM). The Relation language is like the Java language, and the standard 
transformation from Relations to Core is like the Java compiler which produces byte code. We can go 
beyond that showing an analogy between the semantics of the JVM byte code and the core of QVT. 
The semantics of Java, that includes object-oriented features, is hard to formalize. However, JVM byte 
code is defined more precisely. Liu and Moore (2004) proved that Java program verification via a deep 
embedding of the JVM into the logic of ACL2 (Kaufman & Moore, 2009) is a viable approach. Analo-
gously, the semantics of QVT, that includes mechanisms for involving imperative implementations of 
transformations, is hard to formalize. The Core package that is based on QVT Base package, EMOF and 
Essential OCL (see Chapter 2 Figure 11) is more simply and more precisely defined. Then, we decided 
to formalize QVT transformations via the QVT core and QVT base formalization.

Figure 8. Transformation and rules in QVT
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We can reason about transformations by reasoning about the corresponding core transformation. 
Following, we include a partial specification in NEREUS of the QVT-BASE package.

As an example, the OCL specification, extendingRule and transformationRule can be translated into 
the shaded axioms.

PACKAGE QVTBase 
CLASS Transformation 
IMPORTS EMOF::Tag 
INHERITS EMOF::MetaClass, EMOF::Package 
ASSOCIATES 
<<Transformation-Tag>> 
<<Transformation-Transformation>> 
<<Transformation-Rule>>, 
<<Transformation-TypeModel>> 
AXIOMS ass1: <<Transformation-Transformation>>; 
ass2: <<Transformation-Rule>> ; t: Transformation ;… 
size (get_extends (ass1, t)) = 1 implies 
includes (get_rule (ass2, get_extends (ass1, t)), get_rule (ass1, 
t)) 
END-CLASSCLASS TypedModel 
IMPORTS EMOF::Package 
IS-SUBTYPE-OF EMOF::NamedElement 
ASSOCIATES 
<<Transformation-TypeModel>> 
<<TypeModel-Package>> 
<<Domain-TypeModel>> 
<<TypeModel-TypeModel>> 
END-CLASSCLASS Domain 
IS-SUBTYPE-OF EMOF::NamedElement 
ASSOCIATES 
<<Rule-Domain>> 
<<Domain-TypeModel>> 
DEFERREDATTRIBUTES 
isCheckable: Domain -> Boolean 
isEnforceable: Domain -> Boolean 
END-CLASSCLASS Rule 
IS-SUBTYPE-OF EMOF::NamedElement 
ASSOCIATES 
<<Rule-Domain>> 
<<Rule-Rule>> 
<<Transformation-Rule>> 
END-CLASSASSOCIATION Transformation-Transformation 
IS Unidirectional-2 [Transformation: class1; Transformation: class2; 
extendedBy: role1; extends: role2; *: mult1; 0..1: mult2; +: vis-
ibility1; +: visibility2] 



76

Formalization of MOF-Based Metamodels

END-ASSOCIATIONASSOCIATION Transformation-Rule 
IS Composition-2 [Transformation: class1; Rule: class2; transfor-
mation: role1; rule: role2; 1: mult1; *: mult2; +: visibility1; +: 
visibility2] 
END-ASSOCIATIONASSOCIATION Transformation-TypedModel 
… 
END-PACKAGE
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Chapter 5

MOF-Metamodels and 
Formal Languages

a Bridge BetWeen MOF-MetaMOdeLS and nereuS

This chapter describes how to automatically translate MOF metamodels into NEREUS (Favre, 2005) 
(Favre, Martinez, & Pereira, 2005). We describe a bridge between MOF metamodels and NEREUS 
based on reusable schemes and a system of transformation rules. We consider MOF metamodels that 
are expressed by UML class diagrams, packages diagrams and OCL specifications.

The text of a NEREUS specification is completed gradually. Figure 1 shows the main steps of this 
transformation. First, the signature and axioms are obtained by instantiating the reusable scheme BOX_. 
Next, associations are transformed by instantiating reusable schemes that exist in the component Associa-
tion. Finally, OCL specifications are transformed using a set of transformation rules. Then, a specification 
that reflects all the information of UML diagrams is constructed.

Following we describe the transformation of a basic package (that does not depend on others) including 
only classes and relationships. Following sections describe how to transform basic classes and associa-
tions. The transformation processes is supported by reusable schemes and a system of transformation 
rules for translating OCL specifications into NEREUS.

DOI: 10.4018/978-1-61520-649-0.ch005
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Figure 2 depicts the different ways in which a class A may be related in a MOF metamodel: general-
ization, dependency, aggregation, composition and binary associations. Figure 2 shows in an only box 
several relations, for instance, the class A is associated with the classes D1, D2, ..Dk or is composed by 
the classes C1, C2,…Ck. It can be transformed in part of a NEREUS specification by instantiating the 
following scheme Class_:

CLASS __ 
IMPORTS F1, F2,.., Fk 
INHERITS B1, B2,...Bk 
Box_ [...:attr1;...:attri;...:meth1;..:methi,..] 
ASSOCIATES <<Aggregation-E1>> 
ASSOCIATES <<Aggregation-E2>> … 
ASSOCIATES <<Composition-C1>> 
ASSOCIATES <<Composition-C2>>... 
ASSOCIATES <<Association-D1>> 
ASSOCIATES <<Association-D2>> 
AXIOMSEND-CLASS

Figure 1. Transforming MOF metamodels into NEREUS 

Figure 2. MOF relationships
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CLASS__ refers to other scheme called BOX_:

CLASS Box_ 
IMPORTS TP

1
 ..,TP

m
INHERITS 

Cartes-Prod [T-attr
1
: T1; T- attr

2
: T2;..; get-1: select-1 ; 

get-2:select-2,..., set-1:modif-1,..., set-n: modif-n] 
DEFERREDOPERATIONS 
meth

1
:Box_ x TPi

1
 x TPi

2
 x .....TPi

n
→TPi

j
 

.... 
meth

r
: Box_ x TPr

1
 xTPr

2
.....x TPr

p
→ TPr

k 

END-CLASS 

The Box_ scheme refines the following scheme CartesProd:

CLASS Cartes-Prod_ 
IMPORTS T1,...,Tn 
EFFECTIVETYPES 
Cartes-Prod 
OPERATIONS 
create: T1 x ... x Tn→ Cartes-Prod 
modif-i: Cartes-Prod x Ti → Cartes-Prod 
select-i: Cartes-Prod → Ti 1 ≤ i ≤ n 
AXIOMS cp: Cartes-Prod; t1: T1; ti, ti´:Ti...tn:Tn 
select-i (create (t1, t2,..., tn)) = ti 
modif-i(create (t1, t2,....tn),ti´) = create(t1, t2,.., ti´,.. tn) 1 
≤ i ≤ n 
END-CLASS 

Flattening the class CartesProd in the scheme BOX_ results the following Box_ scheme:

CLASS Box_ 
IMPORTS TP1,.., TPm, T-attr

1,
 T-attr

2,…,
 T-attr

n
EFFECTIVETYPES Box_ 

OPERATIONS 
create_: T-attr

1
 x ... x T-attr

n
→ Box_ 

set-i: Box_ x T-attr
i
→ Box_ 

get-i: Box_ → T-attr
i
 1 ≤ i ≤ n 

DEFERREDOPERATIONS 
meth

1
: Box_ x TPi

1
 x TPi

2
 x .....TPi

n
→TPi

j
 

... 
meth

r
: Box_ x TPr

1
 xTPr

2
.....x TPr

p
→ TPr

k
AXIOMS cp: Box_; t1: T-ATTR1; 

ti, ti´: T-ATTR-i,...,tn: T-ATTR-n 
get-i (create_(t1,t2,...,tn)) = ti 
set-i(create_(t1,t2,....tn),ti´) = create(t1,t2,..,ti´,..tn) 1 ≤ i ≤ 
n 
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END-CLASS 

The mapping of attributes requires two operations: an access operation and a modifier. The access 
operation takes no arguments and returns the object to which the receiver is mapped to. The modifier 
takes no argument and changes the mapping of the receiver to that argument. In NEREUS no standard 
convention exists, but frequently we use names such as get_ and set_ for them.

In the instantiation, the underscore _ is followed by the name of the sort of interest.

tranSFOrMatiOn OF aSSOciatiOnS

Association specification is constructed by instantiating the scheme ASSOCIATION_:

ASSOCIATION __IS __[ _:Class1; _: Class2; _: Role1; _: Role2; _: 
Mult1; _: Mult2; _: Visibility1; _: Visibility2] 
CONSTRAINED BY __END 

Besides, the specification of the association is generated by instantiating the respective scheme in 
the hierarchy of binary associations (Chapter 4 Figure 3).

tranSFOrMatiOn OF OcL SPeciFicatiOn intO nereuS

In the context of MOF metamodels, OCL can appear linked to class invariants, pre-and post-conditions 
of operations, attribute constraints and association constraints.

Analyzing OCL specifications we can derive axioms that will be included in the NEREUS specifica-
tions. Preconditions written in OCL are used to generate preconditions in NEREUS. Postconditions and 
invariants allow generating axioms in NEREUS.

An operation can be specified in OCL by means of preconditions and postconditions by the follow-
ing syntax:

Typename:: OperationName (parameter1:Type1,...): ReturnTypepre:_ 
some expression of self and parameter1 
post: Result = _ some function of self and parameter1 

self can be used in the expression to refer to the object on which an operation was called, and the name 
Result is the name of the returned object, if there is any. The names of the parameter (parameter1,...) 
can also be used in the expression.

The value of a property in a postcondition is the value upon completion of the operation. To refer to 
the value of a property at the start of the operation, the property name has to postfix with “@” followed 
by the keyword “pre”.

Other predefined constraints can appear: changeable, addOnly and frozen in attributes and, ordered, 
changeable, addOnly, frozen, xor and subset in associations.
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The following section describes how to integrate OCL with NEREUS by using a system of trans-
formation rules

From OcL to nereuS

The OCL basic types Boolean, Integer, Real and String are associated with NEREUS basic types with 
the same name. Like OCL, NEREUS provides enumeration types that are aligned to the OCL semantics. 
NEREUS provides classes for collection type hierarchies. The types Set, Bag and Sequence are subtypes 
of Collection(x). Collection(Type1) conforms to Collection(Type2) when Type1 conforms to Type2. This 
is also true for Set(Type1), Bag(Type1) and Sequence(Type1), each one with Collection(Type2). Type1 
conforms to Type2 both, when they are identical or Type1 is subtype of Type2.

The transformation process of OCL specifications to NEREUS is supported by a system of trans-
formation rules. By analyzing OCL specifications we can derive axioms that will be included in the 
NEREUS specifications. Preconditions written in OCL are used to generate preconditions in NEREUS. 

Table 1. Rules for transforming operation signature 

OCL 
NEREUS

Type -> operationName (paramater1: Type1, parameter2: Type2,...): ReturnType 
operationName: Type x Type1 x. Type2 x ...-> ReturnType

Type::operationName (parameter1: Type1, parameter2: Type2,…): ReturnType 
operationName: Type x Type1 x Type2 X ...-> ReturnType 
collection -> operationName (expr: OCLBooleanExpr, 
parameter1: Type1,…): ReturnType 
operationName: Collection x (Elem -> Boolean) x Type1 x …-> ReturnType

collection -> operationName (expr: OCLExprType, parameter1: Type1,…): ReturnType 
operationName: Collection x (Elem -> Type) x Type1 x …-> ReturnType

collection -> operationName (expr: OCLExprType, parameter1: Type1,…): ReturnType 
operationName: Collection x (Elem -> Type) x Type1 x …-> ReturnType

Table 2. Rules for transforming operation body 

OCL 
NEREUS

v. operationName (parameters) 
operationName (TranslateNEREUS (v),TranslateNEREUS (parameters))

self.operationName (parameters) 
operationName (c, TranslateNEREUS (parameters)) 
with [ c| ->self]

Type::operationName (parameters): ReturnType 
operationName = expression 
operationName (c, Translate NEREUS (parameters)) = 
Translate NEREUS(expression)) 
with [c|->self]

V -> operationName (parameters) 
operationName (TranslateNEREUS (v), TranslateNEREUS (parameters))
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Postconditions and invariants allow us to generate axioms in NEREUS. We define a system of trans-
formation rules that only considers expressions based on Essential OCL. The following metaclasses 
defined in complete OCL are not part of the EssentialOCL: MessageType, StateExp, ElementType, 
AssociationClassCallExp, MessageExp, and UnspecifiedValueExp. Any well-formed rules defined for 
these classes are consequently not part of the definition of the transformation rule system.

The following tables show some rules for translating OCL expressions into NEREUS. Each rule is a 
pair of an OCL expression (the shaded expression at the top) and a NEREUS expression. An introduction 
to OCL constructs and the transformation rule system may be found at Appendix-C.

The system includes a small set with around fifty rules. It was built by means of an iterative ap-
proach through successive refinements. The set of rules was validated by analyzing the different OCL 
expression attached to the UML metamodels (UMLa, 2007) (UMLb, 2007), MOF (MOF, 2006) and 
QVT (QVT, 2007).

eXaMPLe 5-1: cLaSS diagraM SPeciFied in OcL

Figure 3 shows a simple class diagram P&M. It introduces two classes (Person and Meeting) and a 
bidirectional association between them (Participates). We have meetings in which persons may partici-
pate. This example was analyzed in (Hussmann, Cerioli, Reggio and Tort, 1999), (Padawitz, 2000), and 
(Favre, 2005). Although this package is a model at M2 level, it shows the main problem in the transla-
tion process and is self-contained.

The following OCL constraints are attached to the diagram P&M (Figure 3):

context Meeting::checkDate (): Bool 
post: result = self.participants -> collect (meetings) -> 
forAll (m | m<> self and m.isConfirmed implies 
(after (self.end, m.start) or after (m.end,self.start))) 

Table 3. Attribute rule 

OCL 
NEREUS

v.attributeName 
attributeName (v)

Table 4. Role rule 

OCL 
NEREUS

context AssociationName 
object.roleName 
AXIOMS a: AssociationName 
get_roleName (a, object) 
with [a│->Assoc]
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context Meeting::isConfirmed () 
post: result = self.checkdate () and self.numConfirmedParticipants 
>= 2 
  
context Person::numMeeting (): Nat 
post: result = self.meetings -> size 
  
context Person::numConfirmedMeeting (): Nat 
post: result = self.meetings -> select (isConfirmed) -> size 
  
context Meeting::isConfirmed (): Bool 
post: result = self.checkdate () and self.numConfirmedParticipants 
>= 2 
  
context Meeting::duration (): Time 
post: result = timeDifference (self.end, self.start) 
  
context Meeting:: checkDate():Bool 
post: result = self.participants-> collect(meetings) -> 

Table 5. Rules for basic OCL expressions 

OCL 
NEREUS

Expression.operationName 
operationName (TranslateNereus (expression))

Expression1 binaryOperator expression2 
TranslateNereus (expression1)TranslateNereus (binaryOperator) 
TranslateNereus (expression2) 
TranslateNereus (binaryOperator) (TranslateNereus (expression1), 
TranslateNereus(expression2))

unaryOperator expression 
TranslateNereus (unaryOperator) TranslateNereus (expression)

if booleanExpression then expression1 else expression2 endif 
IFTranslateNereus (booleanExpression) 
THENTranslateNereus (expression1) 
ELSETranslateNereus(expression2)

let v: Type = expression1 in expression2-with-v 
LET 
v =TranslateNereus (expression1) 
IN 
TranslateNereus (expression2-with -v) 
END-LET 
TranslateNereus(expression2-with -v) 
WHERE 
v =TranslateNereus (expression1) 
END-WHERE
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Table 6. Rules for transforming forAll and exist operations 

OCL 
NEREUS

Collection -> operationName (v:Element| boolean-expr-with-v) 
operationName::= forAll │exists 
OPERATIONS 
operationName: Collection x (Element -> Boolean) -> Boolean 
AXIOMS 
… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
Collection -> operationName (v:Element| boolean-expr-with-v) 
operationName::= forAll │exists 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
END-WHERE 
Collection -> operationName (v:Element| boolean-expr-with-v) 
operationName::= forAll │exists 
Shorthand notation 
operationName (v) (collection, [f (v)])

Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean) -> Boolean 
AXIOMS… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f(v)= Translate NEREUS (boolean-expr-with-v) 
END-WHERE 
Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
Shorthand notation 
operationName (v) (collection, [f (v)])

continued on following page
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Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean) -> Boolean 
AXIOMS… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f(v)= Translate NEREUS (boolean-expr-with-v) 
END-WHERE 
Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
Shorthand notation 
operationName (v) (collection, [f (v)])

Collection -> operationName (v |boolean-expr) 
operationName::= forAll │exists 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean)-> Boolean 
AXIOMS… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Elem 
f(v)= Translate NEREUS (boolean-expr) 
IN 
operationName (collection, f) 
END-LET 
Collection -> operationName (v |boolean-expr) 
operationName::= forAll │exists 
Collection [Element] 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Elem 
f (v)= Translate NEREUS (boolean-expr) 
END-WHERE 
Collection -> operationName (v |boolean-expr) 
operationName::= forAll │exists 
Collection [Element] 
Shorthand notation 
operationName (v) (collection, [f (v)])

Table 6. continued
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Table 7. Rules for collection operations (select, reject, collect, iterate) 

OCL 
NEREUS

Collection -> operationName (v: Element | boolean-expr-with-v) 
operationName::= select│ reject 
OPERATIONS 
operationName: Collection x (Element -> Boolean) -> Collection 
AXIOMS 
LET OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
Collection -> operationName (v: Element | boolean-expr-with-v) 
operationName::= select│ reject 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr-with-v) 
END-WHERE 
Collection -> operationName (v: Element | boolean-expr-with-v) 
operationName::= select│ reject 
Shorthand notation 
operationName (v) (collection, [f (v)])

Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
OPERATIONS 
collect: Collection x (Element ->Boolean) -> Collection 
AXIOMS 
LET 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
IN 
collect (collection, f) 
END-LET 
Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
collect (collection, f) 
WHERE 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
END-WHERE 
Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
Shorthand notation 
Collect (v) (collection, [f (v)])

continued on following page
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 forAll (m1 | m1<> self and m1.isConfirmed implies 
 (after (self.end, m1.start) or after(m1.end, self.start))) 

We can built a specification of the diagram of Figure 3 by instantiating the scheme BOX_ and the 
scheme ASSOCIATION_ and, applying rules of the transformation system . The classes Person and 
Meeting are built by instantiating the BOX_ scheme.

Next, we show the partial specification in NEREUS of the classes Person and Meeting.

CLASS Person 
IMPORTS String, Nat 
INHERITS Box_ Person [Box_Person: Person] 

collection -> iterate (v: Element; acc: Type = exp | 
expression-with-v-and-acc) 
OPERATIONS 
iterate: Collection x (Element x Acc: ANY) x -> Acc) -> Acc 
AXIOMS 
LET 
OPERATIONS 
f: Element x Type -> Type 
base: -> Type 
AXIOMS v: Element; acc: Type 
f (v, acc)=TranslateNEREUS(expr-with-v-and-acc) 
base = Translate NEREUS (exp) 
IN 
iterate (collection, f, base) 
END-LET 
collection -> iterate (v: Element; acc: Type = exp | 
expression-with-v-and-acc) 
iterate (collection, f, base) 
WHERE 
OPERATIONS 
f: Element x Type -> Type 
base: -> Type 
AXIOMS v: Element; acc: Type 
f (v, acc)=TranslateNEREUS (expr-with-v-and-acc) 
base = Translate NEREUS (exp) 
END-WHERE

Table 7. continued

Table 8. Precondition Rule 

OCL 
NEREUS

Type::operationName (par1: Type1,…): ReturnType 
pre: expression-with-self - or-attribute-or--par1..pari 
operationName: Type (t) x Type1(t1) x...x TypeI (ti)-> ReturnType 
pre: TranslateNEREUS (expression-with-self -or-attribute-or--par1..pari) 
with [self│-> t; attribute│-> attribute(t); par1│->t1;…pari│->ti]
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Table 9. Rules for transforming postconditions 

OCL 
NEREUS

Collection → operationName (parameterList): Boolean 
post: result = collection → forAll (elem: Element│ bool-expr-with-elem) 
OPERATIONS 
TranslateNEREUS (collection → operationName (parameterList): Boolean) 
AXIOMS c: Collection; elem: Element; … 
operationName (create, parameterList)= TRUE 
operationName (add(c,elem), parameterList) = 
operationName (c,parameterList) AND TranslateNEREUS (bool-expr-with-elem)

Collection → operationName (parameterList): Boolean 
post: result = collection → exists (elem: Element│ boolean-expression-with-elem) 
OPERATIONS 
TranslateNEREUS(collection → operationName (parameterList): Boolean) 
AXIOMS c: Collection; elem: Element; … 
operationName (create, parameterList)= FALSE 
operationName (add(c,elem), parameterList) = 
operationName (c, parameterList) OR TranslateNEREUS (boolean-expression-with-elem)

Sequence → operationName (parameterList): Boolean 
post: result = Sequence { 1 ..sequence → size } → 
forAll (index: Integer│boolean-expr-with-index) 
OPERATIONS 
TranslateNEREUS (sequence → operationName (parameterList): Boolean) 
AXIOMS s: Sequence; index:Nat; ... 
operationName (s, parameterList) = (1 ≤ index ≤ size (s)) implies 
TranslateNEREUS (boolean-expr-with-index)

Collection -> operationName (t1:T1; t2: T2;...): Boolean 
post: result = collection -> iterate (elem: Element; acc: Boolean = exp│ 
bool-expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (collection -> operationName (t1:T1; t2: T2;...): Boolean) 
AXIOMS c: Collection; elem: Element; t1:T1; t2:T2 
operationName (create, t1, t2,..) = TranslateNEREUS (exp) 
operationName (add (c, elem), t1, t2,.....) = 
TranslateNEREUS (bool-expr-with-elem-and-acc) 
With [acc |-> operationName (c, t1, t2,...)]

Figure 3. P&M Class Diagram
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ASSOCIATES 
<<Participates>> 
END-CLASS 
  
CLASS Meeting 
IMPORTS String, Date, Boolean, Time 
INHERITS Box_ Meeting [Box_Meeting: Meeting] 
ASSOCIATES <<Participates>> 
AXIOMS 
END-CLASS 

The following specifications of Person and Meeting result by flattening the classes Box_Person and 
Box_Meeting respectively.

CLASS Person 
IMPORTS Nat, String 
EFFECTIVETYPES 
Person 
ATTRIBUTES 
get_name: Person → String 
get_affiliation: Person → String 
get_address: Person → String 
OPERATIONS 
createPerson: String x String x String → Person 
set_name: Person x String → Person 
set_affiliation: Person x String → Person 
set_address: Person x String → Person 
DEFERREDOPERATIONS 
numMeeting: Person → Nat 
numConfirmedMeeting: Person → Nat 
AXIOMS cp: Person; t1, t2, t3, tp1, tp2, tp3: String 
get_name (createPerson (t1, t2, t3)) = t1 
get_affiliation (createPerson (t1, t2, t3)) = t2 
get_address (createPerson (t1, t2, t3)) = t3 
set_name (createPerson (t1, t2, t3), tp2) = createPerson (tp1, t2, t3) 
set_affiliation (createPerson (t1, t2, t3), tp2) = createPerson (t1, 
tp2, t3) 
set_address (createPerson (t1, t2, t3), tp3) = createPerson (t1, t2, tp3) 
END-CLASS 
  
CLASS Meeting 
IMPORTS String, Date, Boolean, Time 
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EFFECTIVETYPES Meeting 
GENERATED-BY createMeeting 
OPERATIONS 
createMeeting: String x Date x Date x Boolean -> Meeting 
title: Meeting -> String 
start: Meeting -> Date 
end: Meeting -> Date 
isConfirmed: Meeting -> Boolean 
set_title: Meeting x String -> Meeting 
set_start: Meeting x Date -> Meeting 
set_end: Meeting x Date -> Meeting 
set_isConfirmed: Meeting x Boolean -> Boolean 
AXIOMS s: String; d, d1: Date; b: Boolean; … 
title (createMeeting (s, d, d1, b)) = s 
start (createMeeting (s, d, d1, b)) = d 
end (createMeeting (s, d, d1, b)) = d1 
isConfirmed (createMeeting (s, d, d1, b)) = b 
... 
END-CLASS 

The association Participates can be built by instantiating the scheme ASSOCIATION_:

ASSOCIATION Participates 
IS Bidirectional-Set [Person: Class1; Meeting: Class2; participants: 
role1; meetings: role2; *: mult1; *: mult2; +: visibility1; +: vis-
ibility2] 
END 

The Association Participates refers to Bidirectional-Set, a scheme belonging to the reusable compo-
nent Association:

RELATION SCHEME Bidirectional-Set 
-- Bidirectional /* to */ as Set 
IS-SUBTYPE-OF BinaryAssociation [Person: Class1; Meeting: Class2] 
IMPORTS Set_Person: Set [Person], Set_Meeting: Set [Meeting] 
GENERATED-BY create, addLink 
name, frozen, changeable, addOnly, getRole1, getRole2, 
getMult1,getMult2, getVisibility1, getVisibility2, isRelated, isEmp-
ty, rightCardinality, leftCardinality 
EFFECTIVEOPERATIONS create: Typename -> Participates 
addLink:Participates (b) x Person (p) x Meeting (m)-> Participates 
 pre: not isRelated (a, p, m) 



94

MOF-Metamodels and Formal Languages

isRightLinked: Participates x Person -> Boolean 
isLeftLinked: Participates x Meeting -> Boolean 
getMeetings: Participates (a) x Person (p) -> Set_Meeting 
 pre: isRightLinked (a, p) 
getParticipants: Participates (a) x Meeting (m)-> Set_Person 
 pre: isLeftLinked (a, m) 
remove: Participates (a) x Person (p) x Meeting (m) -> Participates 
 pre: isRelated (a, p, m) 
AXIOMS a: Participates; p, p1: Person; m, m1: Meeting; t: TypeName 
Name (create (t)) = t 
Name (add (a, p, m)) = name (a) 
isEmpty (create (t))= True 
isEmpty (addLink (a, p, m)) = False 
frozen (a) = False 
changeable (a) = True 
addOnly (a) = False 
getRole1 (a) = “ participants” 
getRole2 (a) = “meetings” 
getMult1 (a) = * 
getMult2 (a) = * 
getVisibility1 (a) = + 
getVisibility2 (a) = + 
isRelated (create (t), p, m) = False 
isRelated (addLink (a, p, m), p1, m1) = 
(p = p1 and m = m1) or isRelated (a, p1, m1) 
isRightLinked (create (t), p) = False 
isRightLinked (addLink (a, p, m), p1) = 
if p = p1 then True else isRightLinked (a, p1) 
isLeftLinked (create (t), m) = False 
isLeftLinked (addLink (a, p, m), m1) = 
if m = m1 then True else isLeftLinked (a, m1) 
rightCardinality (create (t), p) = 0 
rightCardinality (addLink (a, p, m), p1) = 
if p = p1 then 1 + rightCardinality (a, p1) else rightCardinality 
(a, p1) 
leftCardinality (create (t), m) = 0 
leftCardinality (addLink (a, p, m), m1) = 
if m = m1 then 1+ leftCardinality (a, m1) else leftCardinality (a, 
m1) 
getMeetings (addLink (a, p, m), p1) = 
if p = p1 then including (getMeetings (a, p1), m) else getMeetings 
(a, p1) 
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getParticipants (addLink (a, p, m), m1) = 
if m = m1 then including (getParticipants (a, m1), m) 
 else getParticipants (a, m1) 
remove (addLink (a, p, m), p1, m1) = 
if (p = p1 and m = m1) then a else remove (a, p1, m1) 
END-RELATION 

Next, we show the specifications of Person and Meeting constructed by using the system of trans-
formation rules. In this transformation the main rules used are shown in Table 10.

CLASS Person 
IMPORTS String, Nat 
ASSOCIATES <<Participates>> 
GENERATED-BY create_Person 
... 
AXIOMS p: Person; s, sp: String; Pa: Participates 
name (create_Person (s)) = s 
set-name (create_Person (s), sp) = create_Person (sp) 
numConfirmedMeetings (p) = 
size (select (m) (getMeetings (Pa, p), [isConfirmed (m)]) --Rules 1, 2 
numMeetings (p) = size (getMeetings (Pa, p)) --Rule 1 
END-CLASS 
  
CLASS Meeting 
IMPORTS String, Date, Boolean, Time 
ASSOCIATES <<Participates>> 
GENERATED-BY create_Meeting 
AXIOMS m, m1: Meeting; s, sp: String; d, dp, d1, d1p: Date; b, bp: 

Table 10. Transformation rules 

RULE OCL 
NEREUS

1

T → operationName (parameterList): returnType 
post: expression 
OPERATIONS 
TranslateNEREUS (T → operationName (parameterList): returnType) 
AXIOMS 
TranslateNEREUS (expression)

2

T-> operationName (v:Type | bool-expr-with-v) 
OperationName::= forAll│exists│select│reject 
T::= Collection|Set|OrderedSet|Bag 
operationName (v) (TranslateNEREUS (T), 
[TranslateNEREUS (bool-expr-with-v)])

3 T -> collect (v: type │v.property) 
collect (v)(Translate NEREUS (T), [Translate NEREUS (v.property)])
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Boolean; Pa:Participates 
title (create_Meeting (s, d, d1, b)) = s 
start (create_Meeting (s, d, d1, b)) = d 
end (create_Meeting (s, d, d1, b)) = d1 
set-tittle (create_Meeting (s, d, d1, b), sp) = create_Meeting (sp, 
d, d1, b) 
set-start (create_Meeting (s, d, d1, b), dp) = create_Meeting (s, 
dp, d1, b) 
set-end (create_Meeting (s, d, d1, b), d1p) = create_Meeting (s, d, 
d1p, b) 
duration (m) = timeDifference (end (m), start (m)) 
isConfirmed (cancel (m)) = False 
isConfirmed (m) = checkDate (m) and NumConfirmedParticipants (m) >= 2 
 --Rule 1 
checkDate (m) = forAll (me) (collect (p) (getParticipants (Pa, m), 
[getMeetings (Pa, p)]), [consistent (m, me]) --Rule 1 
Consistent (m, m1)= 
not (isConfirmed (m1)) or (end (m) < start (m1) or end (m1) < start 
(m)) 
NumConfirmedParticipants (m) = size (getParticipants (Participates, m)) 
 --Rules 1, 2, 3 
END-CLASS 

For example, the following OCL specification:

context Person:: numMeetingConfirmed (): Nat 
post: result= self.meetings -> select (isConfirmed) -> size 

is translated into:

AXIOMS p: Person;... 
NumConfirmedMeeting (p) = 
TranslateNereus

 (self.meetings -> select (isConfirmed) -> size) 
Translate

Nereus
 (self.meetings -> select (isConfirmed) -> size) = 

Size (Translate
NEREUS

 (self.meetings-> select (isConfirmed)) 
numConfirmedMeetings (p) = size(select (m) (getMeetings (Pa, p), 
[isConfirmed(m)]) 

Figure 4 summarizes the phases of the translation of P&M.
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Chapter 6

Mappings of MOF Metamodels 
and Algebraic Languages

intrOductiOn

In this chapter we examine the relation between NEREUS and formal specification using CASL (Com-
mon Algebraic Specification Language) as a common algebraic language (Bidoit & Mosses, 2004).

CASL is an expressive and simple language based on a critical selection of known constructs such 
as subsorts, partial functions, first-order logic, and structured and architectural specifications. A basic 
specification declares sorts, subsorts, operations and predicates, and gives axioms and constraints. 
Specifications are structured by means of specification building operators for renaming, extension and 
combining. Architectural specifications impose structure on implementations, whereas structured speci-
fications only structure the text of specifications.

CASL allows loose, free and generated specifications. The models of a loose specification include 
all those where the declared functions have the specified properties, without any restrictions on the set 
of values corresponding to the various sorts. In models of a generated specification, in contrast, it is 
required that all values can be expressed by terms formed from the specified constructors, i.e. unreach-
able values are prohibited. In models of free specifications, it is required that values of terms are distinct 
except when their equality follows from the specified axioms: the possibility of unintended coincidence 
between their axioms is prohibited.

DOI: 10.4018/978-1-61520-649-0.ch006
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CASL is at the center of a family of specification languages. It has restrictions to various sublan-
guages, and extensions to higher-order, state-based, concurrent, and other languages. CASL is supported 
by tools and facilitates interoperability of prototyping and verification tools.

Algebraic languages do not follow similar structuring mechanisms to UML or NEREUS. The graph 
structure of a class diagram involves cycles such as those created by bidirectional associations. However, 
the algebraic specifications are structured hierarchically and cyclic import structures between two speci-
fications are avoided. In the following, we describe how to translate basic specification in NEREUS into 
CASL, and then we analyze how to translate associations (Favre, 2009), (Favre, 2006) (Favre, 2005).

tranSLating BaSic SPeciFicatiOnS

In NEREUS the elements of <parameterList> are pairs C1:C2 where C1 is the formal generic parameter 
constrained by an existing class C2 or C1: ANY. In CASL, the first syntax is translated into [C2] and 
the second in [sort C1]. Next, we show two expressions in NEREUS and the CASL:

NEREUS CLASS CartesProd [ E:ANY; E1: ANY] 
CASL spec CARTESPROD [sort E] [sort E1] 
  
NEREUS CLASS HASH [T:ANY; V:HASHABLE] 
CASL spec HASH [sort T] [HASHABLE] 

NEREUS and CASL have the similar syntax for declaring types. The sorts in the IS-SUBTYPE 
paragraph are linked to subsorts in CASL.

The signatures of the NEREUS operations are translated into operations or predicates in CASL. Data 
type declarations may be used to abbreviate declarations of types and constructors.

Any NEREUS function that includes partial functions must specify the domain of each of them. This 
is the role of the PRE clause that indicates what conditions the function’s arguments must satisfy to 
belong to the function’s domain. To indicate that a CASL function may be partial the notation uses -›?; 
the normal arrow will be reserved for total functions. The translation includes an axiom for restricting 
the domain. For example, a partial function remove (see Bidirectional-3 specification in Appendix-B)

remove: Bidirectional-3 (b) x Class1 (c1) x Class2(c2) -> Bidirec-
tional-3 
pre: isRelated (b,c1,c2) 

is translated into

remove: Bidirectional-3 (b) x Class1 x Class2 ->? Bidirectional-3 
… 
forall b:Bidirectional-3, c1:Class1; c2: Class2 
def remove (b,c1,c2)  isRelated (b,c1,c2) 
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In NEREUS it is possible to specify three different levels of visibility for operations: public, protected 
and private. In CASL, a private visibility requires to hide the operation by means of the operator Hide. 
On the other hand, a protected operation in a class is included in all the subclasses of that class, and it 
is hided by means of the operator Hide or the use of local definitions.

The IMPORTS paragraph declares imported specifications. In CASL, the specifications are declared 
in the header specification after the keyword given, or, like unions of specifications. A generic specifica-
tion definition SN with some parameters and some imports is expressed as follows:

spec SN [SP
1
] [SP

2
] …[SP

n
] 

given SP1´, SP2´,..., SPm´= SP1´´ and SP´´ and … 
then 
 SP 
end 

SN refers to the specification that has parameter specifications SP1, SP2,... SPn, (if any). Parameters 
should be distinguished from references to fixed specifications that are not intended to be instantiated such 
as SP1’, SP2’, .., SPm’(if any). SP1”, SP2”, … are references to import that can be instantiated. Unions 
also allow us to express inheritance relations in CASL. The translation of the expression in NEREUS

CLASS A 
INHERITS B,C 

is translated into the following expression in CASL

spec A = B and C  
end 

References to generic specifications always instantiate the parameters. In NEREUS, the instantiation 
of parameters [C: B] where C is a class already existing in the environment and B is a component of A 
and C is a subclass of B, constructs an instance of A in which the component B is substituted by C. In 
CASL, the intended fitting of the parameter symbols to the argument symbols may have to be specified 
explicitly by means of a fit C|-> B.

NEREUS and CASL have the similar syntax for defining local functions. Then, this transformation 
is reduced to a simple translation.

NEREUS distinguishes incomplete and complete specifications. In CASL, the incomplete specifica-
tions are translated to loose specifications and complete ones to free specifications. If the specification 
has basic constructors, it will be translated into generated specifications. However, if it is incomplete it 
will be translated into loose generated specifications. Both NEREUS and CASL allow loose extensions 
of free specifications.

The classes that include higher order operations are translated inside parameterized first-order 
specifications. The main difference between higher order specifications and parameterized ones is that, 
in the first approach, several function-calls can be done with the same specification and parameterized 
specifications require the construction of several instantiations. Next, we show the translation of the 
Collection specification (see Class Collection in Chapter 4) to CASL. Take into account that there are 
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as much functions f1, f2, f3, and f4 as functions select, reject, forAll and exists. There are as much func-
tions base and g as functions iterate too.

spec Operation [ sort X] = 
Z1 and Z2 and ... Zr 
thenpred 
f1

j
: X → | 1 ≤ j ≤ m 

f2
j
: X → | 1 ≤ j ≤ n 

f3
j
: X → | 1 ≤ j ≤ k 

f4
j
: X → | 1 ≤ j ≤ l 

ops 
base

j
: -> Z

j
 | 1 ≤ j ≤ r 

g
j
: Z

j
 x X -> Z

j
 | 1 ≤ j ≤ r 

end 
  
spec Collection [sort Elem] 
given NAT= OPERATION [Elem] 
thengenerated type 
Collection::= create | add (Collection ; Elem) 
pred 
isEmpty: Collection 
includes: Collection x Elem 
includesAll: Collection x Collection 
forAll

i
: Collection |1 ≤ i ≤ k 

exists
i
: Collection |1 ≤ i ≤ l 

iterate
i
: Collection → Z

j
 | 1≤ i ≤ r 

ops 
size: Collection → Nat 
select

i
: Collection → Collection |1≤i ≤ m 

reject
i
: Collection → Collection |1≤i ≤ n 

forall c, c1: Collection; e: Elem 
isEmpty (create) 
includes (add (c, e), e1) = if e = e1 then true else includes (c, 
e1) 
select

i
 (create) = create 

select
i
 (add (c, e)) = 

if f1
i
 (e) then add (select

i
 (c), e) else select

i
 (c) |1≤i ≤ m 

includesAll (c, add (c1, e)) = includes(c, e) and includesAll (c, c1) 
reject

i
 (create) = create 

reject
i
 (add (c, e))= 

if not f2
i
 (e) then add (reject

i
 (c), e) else reject

i
 (c) |1 ≤ i ≤ n 

forAlli (add (c, e))= f3i (e) and for-alli (c) |1 ≤ i ≤ k 
existsi (add (c, e))= f4i (e) or existsi (c) |1 ≤ i ≤ l 
iteratej (create) = basej 
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iterate
j
 (add (c, e)) = g

j
 (e, iterate

j
 (c)) | 1 ≤ i ≤ r 

localops f2: Elem x Nat ->Nat 
forall e: Elem; i: Nat 
f2(e, i) = i + 1 
within size (c) = iterate (c, f2, 0) 
end-local 
end

tranSLating aSSOciatiOnS

NEREUS and UML follow similar structuring mechanisms of data abstraction and data encapsulation. 
The algebraic languages do not follow these structuring mechanisms in an UML style. In UML an as-
sociation can be viewed as a local part of an object. This interpretation can not be mapped to classical 
algebraic specifications which do not admit cyclic import relations.

We propose an algebraic specification that considers associations belonging to the environment in 
which an actual instance of the class is embedded. Let Assoc be a bi-directional association between two 
classes called A and B, the following steps can be distinguished in the translation process:

• Step1: Regroup the operations of classes A and B distinguishing operations local to A, local to B 
and, local to A and B and Assoc.

• Step 2: Construct the specifications A’ and B’ from A and B where A’ and B’ include local opera-
tions to A and B respectively.

• Step 3: Construct specifications Collection[A’] and Collection[B’] by instantiating reusable 
schemes.

• Step 4: Construct a specification Assoc (with A’ and B’) by instantiating reusable schemes in the 
component Association

• Step 5: Construct the specification AssocA+B by extending Assoc with A’, B’ and the operations 
local to A’, B’ and Assoc.

Figure 1 shows the relations among the specifications built in the different steps and partially depicts 
the structure of CASL specifications in the shaded text.

eXaMPLe 6-1: tranSLating P&M cLaSS diagraM intO caSL

We exemplify the previous steps with the transformation of P&M (see Chapter 5 Figure 3).
Step 1: Regroup the operations of classes Person and Meeting distinguishing operations local to 

Person, local to Meeting and, local to Person and Meeting and Participates. (see Table 1)
Step 2: Construct the specifications PERSON and MEETING including only local operations.

spec PERSON given STRING, NAT = 
thengenerated type Person::= create-Person (String) 
ops 
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name:Person -> String 
setName: Person x String -> Name 
end 
  
spec MEETING given STRING, DATE = 
thengenerated type Meeting::= create-Meeting (String; Date;Date) 
ops 
title: Meeting -> String 
set-title: Meeting x String -(Meeting 
start: Meeting -(Date 
set-start: Meeting x Date -(Meeting 
isEnd: Meeting -(Date 
set-end: Meeting x Date -(Meeting 
end 

Figure 1. Translating associations into CASL

Table 1.

Local to… Operations/Attributes

PERSON Name

MEETING title, start, end, duration

PERSON, MEETING, 
PARTICIPATES

cancel, isConfirmed, numConfirmedMeetings, checkDate, num-
Meetings, numConfirmedParticipants
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Step 3: Construct specifications by instantiating reusable schemes for collections, in particular, we 
select Set as concrete Collection.

spec SET-PERSON given NAT = PERSON and BAG [PERSON] and … 
thengenerated type Set [Person]::= create (including (Set [Person]; 
Person) 
ops 
union: Set [Person] x Set [Person] -> Set [Person] 
intersection: Set [Person] x Set [Person] -> Set [Person] 
count: Set [Person] x Person -> Nat 
… 
spec SET-MEETING given NAT = MEETING and BAG [MEETING] and… 
thengenerated type Set [Meeting]::= create  including (Set [Meet-
ing]; Meeting) 
ops 
union: Set [Meeting] x Set [Meeting] -> Set [Meeting] 
intersection: Set [Meeting] x Set [Meeting] -> Set [Meeting] 
count: Set [Meeting] x Meeting -> Nat 
… 

Step 4: Construct a specification Participates (with PERSON and MEETING) by instantiating reus-
able schemes in the component Association

spec PARTICIPATES = SET-PERSON and SET-MEETING and 
BINARY-ASSOCIATION [PERSON] [MEETING] 
with BinaryAssociation |-> Participates 
pred 
isRightLinked: Participates x Person 
isLeftLinked: Participates x Meeting 
isRelated: Participates x Person x Meeting 
ops 
addLink: Participates x Person x Meeting -> Participates 
getParticipants: Participates x Meeting -> Set [Person] 
getMeetings: Participates x Person -> Set [Meeting] 
remove: Participates x Person x Meeting -> Participates 
∀a: Participates; p, p1: Person; m, m1: Meeting 
def addLink (a, p, m)  not isRelated (a, p, m) 
def getParticipants (a, m)  isLeftLinked (a, m) 
def getMeetings (a, m)  isRightLinked (a, m) 
def remove (a, p, m)  isRelated (a, p, m) 
endspec 
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Step 5: Construct the specification PERSON&MEETING by extending Participates and the opera-
tions local to PERSON, MEETING and PARTICIPATES.

spec PERSON&MEETING = PARTICIPATES 
thenops 
numMeeting: Participates x Person -> Nat 
numConfirmedMeetings: Participates x Person -> Nat 
isConfirmed: Participates x Meeting -> Boolean 
numConfirmedParticipants: Participates x Meeting -(Nat 
checkDate: Participates x Meeting -(Participates 
select: Participates x Set [Meeting] -(Set [Meeting] 
collect: Participates x Set [Person] -(Bag [Meeting] 
pred 
forall: Participates x Set [Meeting] x Meeting 
(s: Set [Meeting]; m: Meeting; pa: Participates; p: Person; m: Meet-
ing; sp: Set [Person]; 
bm: Bag [Meeting] 
forall (pa, including (s, m), m1) = isConsistent (pa, m, m1) and 
forall (pa, s, m1) 
select (pa, create-Meeting) = create-Meeting 
select (pa, including (s, m)) = including (select (pa, s), m) when 
isConfirmed (pa, m) 
 else select (pa, s) 
collect (pa, create-Person, s) = asBag (create-Person) 
collect (pa, including (sp, p)) = asBag (including (collect (pa, 
sp), p)) 
numMeeting (pa, p) = size (getMeetings (pa, p)) 
isConfirmed (pa, m) = checkDate (pa, m) and numConfirmedParticipants 
(pa, m) ((2 
numConfirmedMeetings (pa, p) = size (select (getMeetings (pa, p)) 
checkDate (pa, m) = forall (pa, collect (pa, getParticipants(pa, m), 
m) 
isConsistent (pa, m, m1) = 
not (isConfirmed (pa, m1)) or (end (m) (start (m1) or end (m1) 
(start (m)) 
numConfirmedParticipants (pa, m) = size (getParticipants (pa, m)) 
end 

Figure 2 depicts the relations among the specifications built in the different steps.
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Chapter 7

Mappings of MOF Metamodels 
and Object-Oriented Languages

intrOductiOn

This chapter discusses the main steps for transforming NEREUS constructions into object oriented 
languages. As an example, we use the Eiffel language that allows integrating specifications with Eiffel 
contracts (Meyer, 1992). Figure 1 shows the main steps.

The Eiffel code is constructed gradually. First, associations and operation signature are translated. 
The transformation is supported by reusable components. From OCL and NEREUS specifications it is 
possible to construct contracts on Eiffel and /or feature implementations by applying heuristics.

MaPPing cLaSSeS and aSSOciatiOnS

For generating code from some NEREUS specification we need transformation rules. For each class in 
NEREUS an Eiffel class is built. If a NEREUS class is incomplete, i.e., it contains sorts and operations 
in the clause DEFERRED, the keyword class in Eiffel is preceded by the keyword deferred. NEREUS 
and Eiffel have the same syntax for declaring class parameters. Then, this transformation is reduced to 
a trivial translation.

The relation introduced in NEREUS using the clause IMPORTS will be translated into a client re-
lation in Eiffel. The relation expressed through the keyword INHERITS in NEREUS will become an 
inheritance relation in Eiffel. This provides the mechanism to carry out modifications on the inherited 
classes that will allow adaptation. Also, subsortings will become inheritance relations.

Associations are transformed by instantiating schemes that exist in the reusable component Associa-
tion. A component is defined in three levels of abstraction that integrate NEREUS incomplete algebraic 
specifications, complete algebraic specifications and object oriented code.

DOI: 10.4018/978-1-61520-649-0.ch007
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Figure 2 depicts a specific Association component including schemes for the Eiffel language. It de-
scribes taxonomy of associations classified according to kind, degree, navigability and multiplicity.

The first level describes a hierarchy of incomplete specifications of associations using NEREUS and 
OCL. Every leaf in this level corresponds to sub-components at the second level.

A realization sub-component is a tree of algebraic specifications: the root is the most abstract defini-
tion and the internal nodes correspond to different realizations of the root. For example, for a “binary, 

Figure 2. Association component

Figure 1. From NEREUS to object oriented languages



109

Mappings of MOF Metamodels and Object-Oriented Languages

bi-directional and many-to-many” association, different realizations through hashing, sequences, or trees 
could be associated. These subcomponents specify realizations starting from algebraic specifications 
of Eiffel libraries (Meyer, 1994).

The implementation level associates each leaf of the realization level with different implementations 
in Eiffel. Implementation sub-components express how to implement associations and aggregations. 
For example, a bi-directional binary association with multiplicity “one-to-one” will be implemented as 
an attribute in each associated class containing a reference to the related object. On the contrary, if the 
association is “many-to-many”, the best approach is to implement the association as a different class in 
which each instance represents one link and its attributes.

For every ASSOCIATES clause, a scheme in the implementation level of the association component will 
be selected and instantiated. In these cases, the implementation level schemes suggest including reference 
attributes in the classes or introducing an intermediate class or container. Notice that the transformation 
of an association does not necessarily imply the existence of an associated class in the generated code 
as an efficient implementation can suggest including reference attributes in the involved classes.

The following scheme may be used to implement bidirectional associations. It include two schemes 
for classes Class1 and Class2

eiffel-Bidirectional-Set Scheme

classClass1 
... 
feature {NONE} 
-- data members for association Association_Name 
rol2: UnboundedCollectionbyReference [Class2]; 
mult_rol1: MULTIPLICITY; 
-- operations for association Association_Name 
get_mult_rol2: MULTIPLICITY isdo 
Result:= mult_rol2end; 
get_frozen_rol2: BOOLEAN isdo 
Result:= result_frozen1end; 
add_only_rol2: BOOLEAN isdo 
Result:= result_add_only1end; 
changeable_rol2: BOOLEAN isdo 
Result:= result_changeable1end; 
cardinality_rol2: INTEGER isdo 
Result:= rol2.count 
end; 
 
set_ rol2 (d:UnboundedCollectionbyReference [Class2]) isrequire 
get_mult_rol2.get_upper_bound >= d.count 
dorol2:= d 
end; 
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get_ rol2: 
UnboundedCollectionbyReference[Class2] isdo 
Result:= rol2end; 
remove_rol2 (e: Class2) isrequire 
is-related_rol2 (e) and not get_frozen_rol2 and not add-only_
rol2dorol2. prune (e) 
end; 
add_rol2 (e: Class2) isrequire is-related_rol2 (e) and not get_fro-
zen_rol2 and cardinality_rol2get_mult_rol2.get_upper_bound 
dorol2. put (e) 
end; 
 
add_rol2 (e:Class2) isrequire 
is-related_rol2 (e) and 
multiplicity_rol2get_mult_rol2.get_upper_bound and not get_frozen_
rol2 
dorol2. put (e) 
end; 
 
is_related_rol2 (e: Class2): BOOLEAN isdo 
Result:=rol2. has (e) 
end; 
 
invariant 
mult_ rol2.get_lower_bound = LowerBound; 
mult_ rol2.get_upper_bound = Upper Bound; 
rol2.count >= LowerBound; 
rol2.count <= Upper Boundend – class Class1 
-------------------------------------------------------------------- 
classClass2 
... 
feature {NONE} 
-- data members for association Association_Name 
rol1: UnbondedCollectionby Reference [Class1]; 
mult_rol1: MULTIPLICITY; 
-- operations for association Association_Name 
... 
add_rol1(e: Class1) isrequire 
is-related_rol1 (e) and and not get_frozen_rol1 and multiplicity_
rol1get_mult_rol1.get_upper_bound 
dorol1. put (e) 
end; 
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is_related_rol1 (e: Class2): BOOLEAN isdo 
Result:=rol1. has (e) 
end; 
 
invariant 
mult_ rol1.get_lower_bound = LowerBound; 
mult_ rol1.get_upper_bound = Upper Bound; 
rol1.count >= LowerBound; 
rol1.count <= Upper Bound 
end – class Class2

For the association Participates the following will be in the code:

For each class there is a private attribute in the opposite class• 
The type of the newly created attribute is a Set and it will have corresponding get_ and set_ • 
operations.

Next, from the operation signatures, the interfaces for the features of the Eiffel class are generated. 
The translation of each operation has a different treatment according to the type of feature to which it 
makes reference (functions, procedures, variables, or constants). It should also be considered that of all 
the domains of an operation, the first one that coincides with the sort of the specified class is the object 
Current in Eiffel and it should be eliminated from the list of parameters of the resultant feature. Second 
order functionalities of collections are translated respecting the syntax of the Eiffel schemes for Collec-
tion classes. As an example, we can generate code for the P&M Class Diagram described in Example 
5-1 and translated into CASL in Example 6-1 by using the following textual substitution:

 
[Class1: Person; Class2: Meeting; rol1: participants; rol2: meet-
ings; UnboundedCollectionbyReference: UnboundedSetbyReference; re-
sult_frozen1: false; result_add_only1: false,LowerBound1:2; Upper-
Bound: *; ..]

cOnStructing OBject Oriented cOntractS and iMPLeMentatiOnS

Eiffel provides an assertion language. Assertions are Boolean expressions of semantic properties of the 
classes. They can play the following roles:

• Precondition: Expresses the requirements that the client must satisfy to call a routine.
• Postcondition: Expresses the conditions that the routine guarantees on return.
• Class invariant: Expresses the requirements that every object of the class must satisfy after its 

creation.
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The expression of the form old exp denotes the value that an attribute or expression exp had on 
routine entry. Current refers to the target object itself and Result is the name of the returned object, if 
there is any.

Let TranslateEiffel be a function that expresses the translation of a NEREUS term to Eiffel.
TranslateEiffel op(es,e2,e3,...) (where es, e2, e3 ... are well-formed non-ground terms and es is a 

term of the sort of interest) can be given in the following inductive way:

TranslateEiffel op(es, e2, e3 ...) = 
TranslateEiffel es.op (TranslateEiffele2, TranslateEiffel e3....) 

Preconditions and axioms of a function written in NEREUS are used to generate preconditions and 
postconditions for routines and invariants for Eiffel classes.

A NEREUS precondition, which is a well-formed term defined over functions and constants of the 
global environment classes, is automatically translated to Eiffel precondition. Axioms are translated to 
Eiffel post-conditions, invariants and implementations. We define two heuristics to obtain postconditions 
and /or implementations in Eiffel:

• Invariant heuristics: It is possible to derive an invariant if it can establish a correspondence 
between the functions in an axiom A and the class attributes that only depend on the state of the 
object (that is to say, all the terms of the interest sort are variables). Then, TranslateEiffel (A) is 
the Eiffel invariant.

• Postcondition / implementation heuristics: A postcondition can automatically be generated 
from one axiom if a term e(<list-of-arguments>) which is associated to an operation op, can be 
distinguished within itself in such a way that any other term of the axiom depends upon the <list-
of-arguments> or constants. Then, the postcondition will associate itself with the feature linked 
to the term and will obviously depend only upon the previous state of the method execution, upon 
the state after its execution and upon the method arguments. If the selected term e is linked with 
a value belonging to the sort of interest, it is associated with Current and the sort then it is as-
sociated to old. If the selected term e is linked with a value the different sort, it is associated with 
Result. If the resulting expression is in the form Result =… it is possible to generate the body of 
the feature. The programmer can also incorporate assertions that reflect purely implementation 
aspects. For simple operations the body of the feature could be generated from OCL postcondi-
tions but frequently the body of the feature must be written. In that case, generating code for the 
pre and post-conditions ensures that the code conforms to the specification in the UML diagrams. 
Next, we show some examples of heuristic application. (see Table 1)
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Table 1.

NEREUS EIFFEL

CLASS Bounded-Sequence [Elem] 
... 
AXIOMS s: Bounded-Sequence; 
e: Elem 
full (s) = (capacity (s) = count (s)) 
empty (s) = (count(s) =0)

class BOUNDED-Sequence [G] 
... 
capacity:INTEGER 
count: INTEGER 
full: BOOLEAN 
empty: BOOLEAN 
invariant 
full = (count = capacity) 
empty = (count = 0)

CLASS Set [Elem] 
.... 
AXIOMS s: Set; e: Elem 
current 
has (s,e) implies 
count(extend (s, e)) =count (s) 
old 
not has (s,e) implies 
count(extend (s, e)) = count (s) + 1

class SET [G] 
... 
extend (e: G) 
.... 
ensure 
old has (e) implies count = old count 
not old has (e) implies 
(count = old count + 1)

CLASS Set [Elem] 
.... 
Axioms s: Set; e: Elem 
has (s, e) => not empty (s) 
result

class SET[G] 
.... 
has (e: G):BOOLEAN 
... 
ensure 
Result implies not empty

CLASS Meeting 
... 
Axioms p: Person 
numMeetings (p)= 
size(getParticipates (p))

class Meeting 
... 
numMeeting (p:PERSON) 
do 
Result:= meetings.size() 
end



Section 3
Techniques Underlying  

MDA-Based Reverse Engineering
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Chapter 8

Software Evolution, MDA and 
Design Pattern Components

intrOductiOn

The success of MDA depends on the definition of model transformations and component libraries which 
make a significant impact on tools that provide support for MDA. MDA is a young approach and several 
technical issues are not adequately addressed. For instance, existing MDA-based CASE tools do not 
provide adequate support to deal with component-based reuse (CASE, 2009). In light of this, we propose 
a metamodeling technique to reach a high level of reusability and adaptability of components.

Reusability is the ability to use software elements for constructing many different applications. An 
ideal software reusability tehnology should facilitate a consistent system implementation, starting from 
the adaptation and integration of “implementation pieces” that exist in reusable components library. 
Software reusability has two main purposes: to increase the reliability of software and to reduce the cost 
of software development. Most current approaches to object oriented reusability are based on empiri-
cal methods. However the most effective forms of reuse are generally found at more abstract levels of 
design (Krueger, 1992).

In MDA, software reusability is difficult because it requires taking many different requirements into 
account, some of which are abstract and conceptual, while others, such as efficiency are concrete. A 
good approach for MDA reusability must reconcile models at different abstraction levels.

In this chapter, we analyze how to define reusable components in a way that fits with MDA and 
propose a megamodel for defining MDA components. Considering the relevant role that design patterns 
take in software evolution we exemplify MDA components for them.

We propose a megamodel to define families of design pattern components by means of PIM-, PSM- 
and ISM-metamodels and their interrelations. Instances of the megamodel are reusable components that 
describe specific design patterns at different levels of abstraction (PIMs, PSMs and ISMs). They can be 

DOI: 10.4018/978-1-61520-649-0.ch008
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viewed as megacomponents that allow defining in a concise way as many components as different pat-
tern solutions can appear. We analyze metamodel transformations of both PIMs into PSMs, and PSMs 
into ISMs (Favre, & Martinez, 2006).

The traditional techniques for verification and validation are still essential to achieve software qual-
ity. We describe foundations for constructing formalizations of design pattern component. We define a 
megamodel based on MOF-metamodels and metamodel-based model transformations and show how 
to formalize them by using the metamodeling notation NEREUS. This notation, as we had said, can be 
viewed as an intermediate notation open to many other formal languages (Favre, 2006) (Favre, 2005). 
We illustrate our MDA-based approach by using the Observer design pattern.

Considering design patterns is a relevant technique in software development, in particular in forward 
and reverse engineering processes we include some references to related work and remark the contribu-
tion of an MDA approach.

reLated WOrK

This section shows the evolution of design pattern techniques and remarks the advantages of an MDA 
approach to define design pattern components.

In (Budinsky, Finni, Vlissides, & Yu, 1996) a tool to automatically generate code of design patterns 
from a small amount of information given by the user is described. This approach has two widespread 
problems. The user should understand “what to cut” and “where to paste” and both cannot be obvious. 
Once the user has incorporated pattern code in his application, any change that implies to generate the 
code again will force it to reinstate the pattern code in the application. The user cannot see changes in 
the generated code through the tool.

Florijn, Meijers, and van Winsen, (1997) describe a tool prototype that supports design pattern during 
the development or maintenance of object-oriented programs.

Albin-Amiot and Guéhéneuc (2001) describe how a metamodel can be used to obtain a representation 
of design patterns and how this representation allows both automatic generation and detection of design 
patterns. The contribution of this proposal is the definition of design patterns as entities of modeling 
of first class. The main limitation of this approach concerns the integration of the generated code with 
the user code.

Judson, Carver and France (2003) describe an approach to rigorous modeling of pattern-based transfor-
mations that involve specializations of the UML metamodel to characterize source and target models.

Kim, France, Ghosh, and Song (2003a) describe a metamodeling approach to specify design pat-
terns using roles. They analyze the characteristics of object-based roles and generalize them. Based on 
the generalized notion of a role, they define a new notion of a model role which is played by a model 
element. The approach is intended to be easy to use and practical for the development of tools that in-
corporate patterns into UML models.

Kim, France, Ghosh, and Song (2003b) describe a metamodeling approach that uses a pattern speci-
fication language called Role-Based Modeling Language (RBML). A pattern specification defines a 
family of UML models in terms of roles, where a role is associated with a UML metaclass as its base. 
RBML uses visual notations based on the UML and textual constraints expressed in OCL to specify 
patterns properties. The RBML allows specifying various perspectives of design patterns such as static 
structure, interactions and state-based behavior.
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France, Kim, Ghosh, and Song (2004) present a technique to specify pattern solutions expressed in 
the UML. The specifications created by this technique are metamodels that characterize UML design 
models of pattern solutions. The patterns specification consists of a Structural Pattern Specification (SPS) 
that specifies the class diagram view of pattern solutions, and a set of Interaction Pattern Specification 
(IPSs) that specifies interactions in pattern solutions. A UML model conforms to a pattern specification 
if its class diagram conforms to the SPS and the interactions described by sequence diagrams conform 
to the IPSs.

Component-based approaches have been proposed to reuse (D´Souza & Wills, 1999) (Szyperski, 
Gruntz, & Murer, 2002).

Bettin (2003) summarizes lessons from several projects related to component-based development 
and MDA and examines the pragmatic use of today’s MDA tools.

Meyer (2003) discusses the concept of Trusted Components, a reusable software element possess-
ing specified and guaranteed property quality and examines a first framework for a Component Quality 
Model. Arnout (2004) analyzes the popular Gamma´s design patterns (Gamma, Helm, Johnson and 
Vlissides, 1995) to identify which ones can become reusable components in an Eiffel library.

In this chapter, we show how to integrate design patterns components with MDA-based processes. 
The following advantages between our approach and some existing ones are worth mentioning. We de-
fine a megamodel to define families of reusable design pattern components. It refers to metamodel and 
transformations organized in an architectural framework. A design pattern metamodel allows detecting 
the presence of a pattern in a family of models. If there were no metamodels, a library of models speci-
fying each one the ways in that the design pattern can appear should be necessary (this is expensive). 
Also, it should be necessary to compare the model that is analyzed with the models of the library to see 
if matching exists. On the other hand, the specification of the metamodels in the three levels allows us 
to refine pattern model step-by-step in a MDA perspective.

a MegaMOdeL FOr deFining Mda reuSaBLe cOMPOnentS

We propose a metamodeling technique to define MDA components. To define families of reusable com-
ponents we describe a megamodel that refers to metamodels and model transformations organized into 
an architectural framework (Bezivin, Jouault, & Valduriez, 2004). Figure 1 depicts a megamodel.

The megamodel associates a set of classes linked to metamodels and transformations. Metamodels are 
defined at three different levels of abstraction linked to PIM, PSM and ISM. Transformations describe 
families of refinements between a source model and a target model at a different abstraction level (PIM 
to PSM, PSM to ISM).

In this context, a refinement is a more detailed specification that conforms to another which is more 
abstract. A refinement is associated to a source metamodel and a target metamodel and is composed by 
parameters, preconditions and postconditions (see Figure 1). The precondition states the conditions that 
must be hold whenever the transformation is applied. Properties that the transformation guarantees when 
it was applied are stated by the postconditions. OCL contracts describe conditions that must be met for 
a refinement step to be consistent.

The classes PIM-Metamodel, PSM-Metamodel and the class ISM-Metamodel describe families 
of PIMs, PSMs and ISMs respectively. The classes Refinement PIM-PSM and Refinement PIM-PSM 
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describe families of refinements both between PIM- and PSM- metamodels and PSM- and ISM- meta-
models respectively.

There are associations between metamodel and refinements so that each refinement links a source 
metamodel and a target metamodel:

There is an association between the class • PIM-Metamodel and the class Refinement PIM-PSM 
specifying that each instance of PIM metamodel is connected with zero or more instances of the 
Refinement PIM-PSM associated.
There is an association between the class • PSM-Metamodel and the class Refinement PIM-PSM 
specifying that each instance of PSM metamodel is connected with zero or more instances of the 
Refinement PIM-PSM associated.
There is an association between the class • PSM-Metamodel and the class Refinement PSM-ISM 
specifying that each instance of PSM metamodel is connected with zero or more instances of the 
Refinement PSM-ISM associated.
There is an association between the class • ISM-Metamodel and the class Refinement PSM-ISM 
specifying that each instance of PSM metamodel is connected with zero or more instances of the 
Refinement PSM-ISM associated.

Figure 2 shows an instance of the megamodel that refers concrete instances of an Observer pattern 
metamodel, refinements and, links between metamodels and refinements. Links connect an instance of a 
refinement with an instance of a metamodel. The Observer pattern “defines a one-to-many dependency 

Figure 1. A “megamodel” for MDA components
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between objects so that when one object changes state, all its dependents are notified and updated au-
tomatically” (Gamma et.al, 1995, pp. 293).

This instantiation can be viewed as a megacomponent defining a family of reusable components that 
integrate instances of PIMs, PSMs and ISMs.

SPeciFYing Mda deSign Pattern cOMPOnentS

We analyze how to specify design patterns with MDA. To specify design patterns at different abstraction 
levels, it was necessary to build metamodels both for different platforms and programming languages. 
These metamodels were specified as specializations of the UML metamodel. Metamodels for Eiffel, 
Java and C++ at levels of PSM and ISM are shown in Appendix A.

Metamodels are defined at three levels:

• PIM Level: Metamodels describe design patterns in a way independent of platforms and specific 
technologies.

• PSM Level: Metamodels describe design patterns for specific platforms.
• ISM Level: Metamodels describe design pattern in a specific programming language.

The definition of metamodels is based on popular catalogues: Gamma et al. (1995), Alpert, Brown 
and Woolf (1998), Grand (1998), each one of them exemplifies design patterns by using C++, Smalltalk 
y Java respectively.

Metamodels were specified taking into account:

• Structure: Different representations of classes in the pattern, i.e. the different ways in which the 
design pattern can appear at PIM level, where analyzed.

Figure 2. An instance of the megamodel: The observer pattern component
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• Participants: In view of each element that appears in the model must be specified in the respec-
tive metamodel, the classes and objects that participate in the pattern, their responsibilities and 
interrelationships must be analyzed.

• Collaborations: It was analyzed how participants collaborate to carry out their responsibilities 
which revealed the operations that must be included in the pattern and therefore specified in the 
metamodel.

• Examples: Different applications and variants of patterns were exemplified in order that to check 
metamodels.

Each PSM-metamodel was defined taking into account:

The associated • PIM
The features of specific platform: Metamodels at this level were based on specific technologies. • 
For instance, a Java metamodel restricts inheritance because Java does not support multiple in-
heritance, while not an Eiffel-metamodel.

ISM-metamodels are defined considering the grammar of the respective programming language.

the OBServer cOMPOnent

This section partially describes an Observer component that includes metamodels and refinements. In 
particular, we present one PIM-metamodel and two PSM-and ISM-metamodels linked to Eiffel and 
Java platforms/languages. We show how to formalize MDA components by integrating metamodels 
and refinements.

Metamodels are expressed as UML class diagrams following the UML 2.2 notation. Metaclasses of 
the UML metamodel are shown in dark gray; metaclasses of the specific platforms and programming 
languages are shown gray whereas the remaining metaclasses corresponds to the specialization of the 
UML metamodel of the pattern. The description of metaclasses is organized in alphabetical order. Next, 
a brief description of the Observer pattern is included.

Observer Pattern description

The Observer pattern defines “a one-to-many dependency between objects so that when one object 
changes state, all its dependents are notified and updated automatically” (Gamma et al., 1995). It involves 
the following central participants:

• Subject: It can contain any number of observers. It maintains a collection of observers and is 
responsible for adding and removing observers of this collection (attach y detach). When state 
changes (i.e. the values of some attributes change) the subject will notify observers of this situa-
tion (notify).

• Observer: It can observe one or more subjects. It has the responsibility of updating itself when 
receives a notification of change from the subject (update).
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• Concrete Subject: It stores state of interest to ConcreteObserver objects. It sends a notification to 
its observers when its state changes.

• Concrete Observer: It maintains a reference to a ConcreteSubject object. It stores state that 
should stay consistent with the subjects. It implements the Observer updating interface to keep its 
states consistent with the subjects (update).

Collaborations

• ConcreteSubject notifies its observers when there is a change that could make state of its observ-
ers inconsistent with its own.
After being informed of a change in the concrete subject, a • ConcreteObserver object may query 
the subject for information. ConcreteObserver uses this information to reconcile its state with that 
of the subject.

Consequences

The Observer pattern allows us to vary subjects and observers independently. It is possible to reuse 
subjects without reusing their observers, and vice versa. It lets us add observers without modifying the 
subject or other observers.

Figure 3 shows the class diagram (a) and sequence diagram (b) that model the Observer pattern.

PiM-MetaMOdeL OF the OBServer Pattern

The Observer pattern metamodel at PIM level specifies the structural and behavior views of this pattern 
in a platform independent pattern model, i.e., it specifies the classes that participate, their operations and 
attributes and the relation between classes.

There are four essential participants: Subject, Observer, ConcreteSubject and ConcreteObserver. So, 
these four classes must be specified in the metamodel, as well as the relation between them and their 
interactions. The PIM metamodel involves the following participants linked to them:

• AbstractObserver: This metaclass specifies the characteristics of class Observer inside the 
Observer pattern. It should have at least an operation with the characteristics of Update. Each in-
stance of this metaclass can be an abstract class or an interface. If the instance is an abstract class, 
a concrete observer inherits its behavior and, therefore there is an inheritance relation with the 
concrete observer. If the instance is an interface, there is a realization relation with the concrete 
observer.

• ConcreteObserver: This metaclass specifies the characteristics of a concrete observer. It knows 
the subject (or the subjects), then it is associated to ConcreteSubject through a unidirectional as-
sociation navigable away from that end.

• AbstractSubject: Each instance of this metaclass can be an abstract class or an interface and it has 
at least three operations specified by Attach, Detach and Notify. If the instance of this metaclass is 



122

Software Evolution, MDA and Design Pattern Components

an abstract class, all concrete subjects inherit its behavior therefore there is an inheritance relation 
with the concrete subject. If the instance is an interface, there is a realization relation with the con-
crete subject. If the instance of AbstractSubject is an abstract class, it is associated to an instance 
of AbstractObserver through a unidirectional association navigable away from that end.

• ConcreteSubject: This metaclass specifies the characteristics of a concrete subject. It has at 
least two operations specified by GetState and SetState and its internal state is specified by the 
ObserverState metaclass.

The specialized UML metamodel of the Observer pattern is partially shown in Figures 4, 5, 6, and 
7 (a,b,c,d). The shaded metaclasses correspond to metaclasses of the UML metamodel, whereas the 
remaining corresponds to the specialization of the UML metamodel of the Observer pattern.

description of Metaclasses

Next, we describe the metaclasses of the metamodel at PIM level. For each one of them it is included 
a brief description, generalizations, associations and restrictions in OCL and natural language. The 
Observer pattern metamodel at PIM level specifies the structural and behavior views of this pattern in a 
platform independent pattern model. It specifies the classes that participate, its operations and attributes 
and the relation between classes.

Figure 3. The Observer pattern
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Figure 4. Observer metamodel: Class diagram
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Figure 5. Observer metamodel: Abstract subject: Operations

Figure 6. Observer metamodel: Abstract observer: Operations
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AssocEndConcreteObserver

Description
It represents the association-end that links one association ObserverSubject, of which is a member, with 
one ConcreteObserver.

Generalizations

Property (from Kernel)• 

Associations

participant: • ConcreteObserver [1] It refers to the classifier that takes part in the association.
association: ObserverSubject [1] It refers to the association of which this association-end is mem-• 
ber. It redefines Property::association

Constraints

[1]  This association-end has a multiplicity n1..n2 (n1>= 0 and n2>=1) self.lower >= 0 and self.upper 
>= 1

[2]  It must be navigable self.isNavigable()

Additional Operations

[1]  The observer operation isNavigable denotes if the association-end is navigable. isNavigable = not 
self.class -> isEmpty ()

Figure 7. Observer metamodel: ConcreteSubject: Operations 
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AssocEndObserver

Description
This property represents the association-end which connects an association SubjectObserver, of which 
is member, with a class Observer.

Generalizations

Property (from Kernel)• 

Associations

participant: • Observer [1] It denotes the classifier that participates in the association.
association: SubjectObserver [1] It denotes the association of which the association-end is mem-• 
ber. It redefines Property::association.

Constraints

[1]  This association-end has a multiplicity n1..n2 (n1>= 0 and n2>=1) self.lower >= 0 and self.upper 
>= 1

[2]  It must be navigable. self.isNavigable ()

AssocEndSubject

Description
This property represents the association-end which connects an association SubjectObserver, of which 
is member, with a class Observer.

Generalizations

Property (from Kernel)• 

Associations

participant: • Subject [1] It denotes the classifier that takes part in the association.
association: SubjectObserver [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.

Constraints

[1]  This association-end has a multiplicity n1..n2 (n1 >= 0 and n2 >= 1) self.lower >= 0 and self.upper 
>= 1
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Attach

Description
It defines an operation that is declared by a Subject.

Generalizations

Operation (from Kernel, Interfaces)• 

Associations

classSubject: • ClassSubject [0..1] It denotes the class that declares this operation. It redefines 
Operation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this operation. It • 
redefines Operation::interface.

Constraints

[1]  This operation changes the state of the subject. not self.isQuery
[2]  It has a nonempty set of parameters containing exactly one input parameter (direction=#in) whose 

type is Observer. self.ownedParameter -> notEmpty () and self.ownedParameter -> select (param 
| param.direction= #in and param.type = oclIsKindOf (Observer)) -> size() = 1

[3]  Its visibility must be public self.visibility = #public

ClassObserver

Description
This metaclass specifies the features that a class taking the role of observer in the pattern must have.

Generalizations

• Observer, Class (from Kernel)

Associations

update: Update [1..*] Every instance of the • ClassObserver must have at least one operation that is 
an instance of Update. It is a subset of Class::ownedOperation.

Constraints
No additional restrictions.
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ClassSubject

Description
This metaclass specifies the features that a class taking the role of subject in the pattern must have.

Generalizations

• Subject, Class (from Kernel)

Associations

attach: Attach [1..*] Every instance of • ClassSubject has at least one operation that is an instance 
of Attach. It is a subset of Class::ownedOperation.
detach: Detach [1..*] Every instance of • ClassSubject has at least one operation that is instance of 
Detach. It is a subset of Class::ownedOperation.
notify: Notify [1..*] Every instance of • ClassSubject has at least one operation that is an instance 
of Notify. It is a subset of Class::ownedOperation.

Constraints
No additional constraints.

ConcreteObserver

Description
This metaclass specifies the features that must be have a class taking the role of Concrete Observer in 
the pattern.

Generalizations

Class (from Kernel)• 

Associations

assocEndConcreteObserver: AssocEndConcreteObserver[1] It denotes the association-end of the • 
association ObserverSubject in which this classifier participates.
generalizationObserver: GeneralizationObserver [0..1] It designs a generalization in which • 
ConcreteObserver takes the role of subclass (specific). It is a subset of Classifier::generalization.
interfaceRealizationObserver: InterfaceRealizationObserver [0..1] It denotes a realization of in-• 
terface where ConcreteObserver takes the role of the classifier implementing the contract (imple-
mentingClassifier).It is a subset of BehavioredClassifier::interfaceRealization.

Constraints

[1]  Instances of concrete observers should not be abstract classes. not self.isAbstract
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[2]  If an instance of a concrete observer participates in an interface realization, then it must be a 
BehavioredClassifier. self.interfaceRealizationObserver -> notEmpty () implies self.oclIsKindOf 
(BehavioredClassifier))

ConcreteSubject

Description
This metaclass specifies the features that must have a class taking the role of Concrete Subject in the 
model of the pattern Observer.

Generalizations

Class (from Kernel)• 

Associations

assocEndConcreteSubject: AssocEndConcreteSubject [1] It denotes the association-end of the as-• 
sociation ObserverSubject in which this classifier participates.
generalizationSubject: GeneralizationSubject [0..1] It designs a generalization where • 
ConcreteSubject takes the role of child (specific). It is a subset of Classifier::generalización.
getState: GetState [1..*] Every instance of • ConcreteSubject must have one or more operation instanc-
es of GetState operation. They can be own or inherited. It is a subset of NameSpace::member.
interfaceRealizationSubject: InterfaceRealization [0..1] It designs an interface realization where • 
ConcreteSubject takes the role of classifier implementing the contract (implementingClassifier). 
It is a subset of BehavioredClassifier::InterfaceRealization.
setState: SetState [1..*] Every instance of • ConcreteSubject must have one or more operation instanc-
es of SetState operation. They can be own or inherited. It is a subset of NameSpace::member.
state: Property [1..*] It specifies a non-empty set of all attributes of • ConcreteSubject. They can be 
own or inherited. It is a subset of NameSpace::member.

Constraints

[1]  An instance of a concrete subject should not be an abstract class. not self.isAbstract
[2]  If an instance of the concrete subject participates in an interface realization, then it must be a 

BehavioredClassifier. self.interfaceRealizationSubject -> notEmpty () implies self.oclIsKindOf 
(BehavioredClassifier)

[3]  State is a set of properties that are attributes but not association-ends. self.state -> forAll (p | 
p.association -> isEmpty())

Detach

Description
It defines an operation that is declared by a subject.
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Generalizations

Operation (from Kernel, Interfaces)• 

Associations

classSubject: • ClassSubject [0..1] It designs the class that declares this operation. It redefines 
Operation::class
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this operation. It • 
redefines Operation::interface.

Constraints

[1]  This operation changes the state of the subject. not self.isQuery
[2]  It has a nonempty set of parameters, one of them must be an input parameter of type Observer. self.

ownedParameter -> notEmpty () and self.ownedParameter -> select (param | param.direction = 
#in and param.type = oclIsKindOf (Observer)) -> size() = 1

[3]  Its visibility must be public. self.visibility = #public

GeneralizationObserver

Description
This metaclass specifies a generalization between an observer (ClassObserver) and a concrete observer 
(ConcreteObserver) in the pattern.

Generalizations

Generalization (from Kernel)• 

Associations

classObserver: • ClassObserver [1] It denotes the general element of this relation. It redefines 
Generalization::general.
concreteObserver: • ConcreteObserver [1] It denotes the specific element of this relation. It rede-
fines Generalization::specific.

Constraints
No additional constraints.

GeneralizationSubject

Description
This metaclass specifies a generalization between a subject (ClassSubject) and a concrete subject (Con-
creteSubject) in the model of the Observer pattern.



131

Software Evolution, MDA and Design Pattern Components

Generalizations

Generalization (from Kernel)• 

Associations

classSubject: • ClassSubject [1] It denotes the general element of this relation. It redefines 
Generalization::general.
concreteSubject: • ConcreteSubject [1] It denotes the specific element of this relation. It redefines 
Generalization::specific.

Constraints
No additional constraints.

GetState

Description
It defines an operation that is member of ConcreteSubject. It specifies a service that may be required 
by another object.

Generalizations

Operation (from Kernel)• 

Associations
No additional operations.

Constraints

[1]  It is an observer operation. self.isQuery
[2]  Due to it must return the subject state, the set of parameter is not empty and at least, one of them 

must have a direction equal to out or return. self.ownedParameter -> notEmpty () and self.owned-
Parameter ->select (par |par.direction = #return or par.direction = #out) -> size () >= 1

[3]  Its visibility must be public. self.visibility = #public

InterfaceObserver

Description
An interface InterfaceObserver specifies the features that must have an interface taking the role of Ab-
stract Observer in the model of the Observer pattern.

Generalizations

• Observer, Interface (from Interfaces)
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Associations

update: Update [1..*] Every instance of InterfaceObserver must have at least one operation that is • 
an instance of Update. It is a subset of Interface::ownedOperation.

Constraints
No additional constraints.

InterfaceSubject

Description
This metaclass specifies the features that must have an interface taking the role of abstract subject in 
the model of the Observer pattern.

Generalizations

• Subject, Interface (from Interfaces)

Associations

attach: Attach [1..*] Every instance of InterfaceSubject must have at least one operation that is an • 
instance of Attach. It is subset of Interface::ownedOperation.
detach: Detach [1..*] Every instance of InterfaceSubject must have at least one operation that is • 
an instance of Detach. It is a subset of Interface::ownedOperation.
notify: Notify[1..*] Every instance of InterfaceSubject must have at least one operation that is an • 
instance of Notify. It is a subset of Interface::ownedOperation.

Constraints
No additional constraints.

InterfaceRealizationObserver

Description
This metaclass specifies an interface realization between an abstract observer (InterfaceObserver) and 
a concrete observer (ConcreteObserver) in the model of the pattern Observer.

Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteObserver: • ConcreteObserver [1] It designs the element that implements the contract in 
this relation. It redefines InterfaceRealization::implementingClassifier.
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interfaceObserver: InterfaceObserver [1] It designs the element that defines the contract in this • 
relation. It redefines InterfaceRealization::contract.

Constraints
No additional constraints.

InterfaceRealizationSubject

Description
This metaclass specifies an interface realization between an abstract subject (InterfaceSubject) and a 
concrete subject (ConcreteSubject) in the model of the pattern Observer.

Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteSubject: • ConcreteSubject [1] It designs the element that implements the contract in this 
relation. It redefines InterfaceRealization::implementingClassifier.
interfaceSubject: InterfaceSubject [1] It designs the element that defines the contract in this rela-• 
tion. It redefines InterfaceRealization::contract.

Constraints
No additional constraints.

Notify

Description
It defines an operation that is declared by a subject.

Generalizations

Operation (from Kernel, Interfaces)• 

Associations

classSubject: • ClassSubject [0..1] It designs the class that declares this operation. It redefines 
Operation::class.
interfaceSubject: InterfaceSubject [0..1] It designs the interface that declares this operation. It • 
redefines Operation::interface.
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Constraints

[1]  It is an operation that does not change the state of the subject. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

Observer

Description
An Observer is a specialized classifier that specifies the features of the classifier taking the role of ob-
server in the model of the pattern Observer. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations

assocEndObserver: AssocEndObserver [0..1] It denotes the end-association of the association • 
SubjectObserver in which this classifier participates.

Constraints
No additional constraints.

ObserverSubject

Description
This metaclass specifies a binary association between two instances of Observer y Subject respec-
tively.

Generalizations

Association (from Kernel)• 

Associations

assocEndConcreteObserver: AssocEndConcreteObserver [1] It represents a connection with the • 
classifier ConcreteObserver. It is a subset of Association::memberEnd.
assocEndConcreteSubject: AssocEndConcreteSubject [1] It represents a connection with the clas-• 
sifier ConcreteSubject. It is a subset of Association::memberEnd.

Constraints

[1]  It has two association-end. self.memberEnd -> size () = 2
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SetState

Description
It defines an operation of ConcreteSubject. It specifies a service that can be required from other ob-
ject.

Generalizations

Operation (from Kernel)• 

Associations
There are no additional associations.

Constraints

[1]  It is a non-observer operation. not self.isQuery
[2]  The set of parameters is not empty and at least, one of them must be an input parameter. self.

ownedParameter -> notEmpty () and self.ownedParameter -> select (param | param.direction = 
#in) -> size() >= 1

[3]  Its visibility must be public. self.visibility = #public

Subject

Description
This metaclass is a specialized classifier that specifies the features that must have the instance taking 
the role of subject in the model of the Observer pattern. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations

assocEndSubject: AssocEndSubject [0..1] It denotes the association-end of the association • 
SubjectObserver in which this classifier participates.

Constraints
No additional constraints.

SubjectObserver

Description
This metaclass specifies a binary association between two classifiers: Subject y Observer.
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Generalizations

Association (from Kernel)• 

Associations

assocEndObserver: AssocEndObserver [1] It represents a connection with the • Observer classifier. 
It is a subset of Association::memberEnd.
assocEndSubject: AssocEndSubject [1] It represents a connection with the • Subject classifier. It is 
a subset of Association::memberEnd.

Constraints

[1]  There are two association-end members. self.memberEnd -> size () = 2

Update

Description
It defines an operation that is declared by Observer specifing a service that may be required from other 
object.

Generalizations

Operation (from Kernel, Interfaces)• 

Associations

classObserver: • ClassObserver [0..1] It denotes a class that is declared by this operation. It rede-
fines Operation::ownedOperation.
interfaceObserver: InterfaceObserver [0..1] It denotes the interface that is declared by this opera-• 
tion. It redefines Operation::ownedOperation.

Constraints

[1]  This operation does not change the state of the observer. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

PSM-MetaMOdeL OF the OBServer Pattern

For each design pattern at the PIM level there is a number of metamodels corresponding to different 
platforms at the PSM level. In particular, we exemplify metamodels of the Observer pattern (structural 
view) in the Eiffel platform and Java platform.
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PSM-Metamodel of the Observer Pattern for the eiffel Platform

Figure 8 shows the metamodel of the structural view of the Observer pattern in the Eiffel platform. This 
metamodel was constructed as a specialization of the PSM-Eiffel metamodel. The PSM-Eiffel metamodel 
is described in Appendix A.

The main difference between the PIM and the PSM-Eiffel lies in the way in which are modeled the 
interfaces. These can be modeled as abstract classes, so instances of metaclasses Observer and Subject 

Figure 8. PSM Eiffel observer metamodel
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are abstract classes in Eiffel, and therefore, the relationships between instances of Observer and Effec-
tiveObserver, and between the instances of Subject and EffectiveSubject are generalizations.

The metamodel establishes that a subject is related with an observer through a binary association to 
which is connected by two end-associations. In the same way, the effective observer is linked through 
a binary association to the effective subject.

A subject has at least three routine instances of the Attach, Detach y Notify operations. An observer 
has at least a routine of Update.

Figure 9. PSM Java Observer metamodel
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An effective subject must have a state determined by an attribute or a set of attributes, which will be 
objects of observation and, at least operations that allow us to obtain and modify their values. Attributes 
and routines can be own or inherited.

PSM-Metamodel of the Observer Pattern for the java Platform

Figure 9 shows the Observer pattern metamodel in the Java platform. This metamodel is a specialization 
of the UML metamodel. Figure 10 shows the main metaclasses and their interrelations. Figure 11 and 
Figure 12 complete this view with methods corresponding to subjects and observers. This metamodel 
is a specialization of the PSM-Java metamodel (Appendix A), which in turn is a specialization of the 
UML metamodel (UML, 2009a, UML, 2009b).

The main difference with the PIM metamodel has to do with inheritance relationships due to Java 
does not have multiple inheritance. The metamodel establishes that the subject can be a Java class or 
a Java interface. In case that the subject is a Java class, it is linked to every concrete subject through 
a generalization where the subject takes the role of parent and the concrete subject the role of child. 

Figure 10. PSM Java Observer metamodel: Abstract subject: Operations
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Otherwise, if the subject is an interface, it is linked to a concrete subject through a realization where the 
concrete subject implements the contract that is defined by the abstract subject.

Similar relations are established for the observer and the concrete observer. A subject is related with 
an observer through a binary association to which is connected by association-ends. In case the subject 
is an interface, this association can not appear. The concrete subject and the concrete object are linked 
in the same way through a binary association. A subject has at least three method instances of Attach, 
Detach y Notify.

An observer has at least an instance of Update. A concrete subject must have a state composed by 
one or more fields, observer object, and at least methods that allow get and modify their values. Both 
fields and methods, can be own or inherited.

iSM-MetaMOdeL OF the OBServer Pattern

Figures 13, 14, 15, 16, and 17 show the metamodel of the pattern Observer at Java level. This metamodel 
was built starting from the ISM-Java metamodel (Appendix A).

Figure 11. PSM Java Observer metamodel: Abstract observer: Operations 

Figure 12. PSM Java Observer metamodel: Concrete subject: Operations
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The main difference with the PSM metamodel is that at ISM level does not include association con-
structs and on the other hand, appear implementation constructs.

The metamodel establishes that a subject can be a class of a Java interface. If it is a class will includes 
at least three method instances of Attach, Detach y Notify, and a reference to its observers through an 
attribute which can be an instance of ObserverReference or an instance of SubjectObserverReference. 
In the first case, the attribute refers to the collection of observers. In the second case refers to the inter-
mediate class that maintains the relation between subjects and observers.

Figure 13. ISM Java Observer metamodel: Class diagram
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A class taking the role of observer can be a class or an interface Java and will have at least a method 
instance of Update.

The metaclass ConcreteSubject specifies a Java class which has a state composes by a field or a set 
of fields (which in turn are observer objects) and, at least methods that allow obtain and modify their 
values. Both fields and methods can be own or inherited.

If an instance of ConcreteSubject is heir of an instance of ClassSubject, then it will inherit a field that 
is instance of ObserverReference or instance of SubjectObserverReference, and hence does not need to 
declare any reference to their observers. On the contrary, if it implements an interface that is instance 
of InterfaceSubject, must declare a field, instance of ObserverReference or SubjectObserverReference, 
to maintain information on their observers.

ConcreteObserver specifies a Java class which can inherit of a class that is instance of ClassObserver 
or can implement an interface instance of InterfaceObserver and can maintain a reference to the subject 
that is observed through an attribute instance of SubjectReference.

Figure 14. ISM Java Observer metamodel: Abstract subject: Operations
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SubjectObserverAssociation specifies the Java class that maintains the relation between a subject 
and their observers. This class has an attribute instance of SubjectObserverMapping that stores the links 
between the subject and its observers. It must have methods for adding and removing such links and 
notify to observers of the changes in the subject.

SPeciFYing MetaMOdeL-BaSed tranSFOrMatiOnS

A model transformation is a specification of a mechanism to convert the elements of a model, that are 
instances of a particular metamodel, into elements of another model which can be instances of the same 
or different metamodels.

Metamodel transformations are a specific type of model transformations that impose relations between 
pairs of metamodels. They can be used in the specification stages of the MDA-based developments to 
check the validity of a transformation.

Figure 15. ISM Java Observer metamodel: Abstract observer: Operations

Figure 16. ISM Java Observer metamodel: Concrete subject: Operations
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We specify metamodel-based model transformations as OCL contracts that are described by means 
of the notation described in Chapter 3 (see Figure 4). Below, we partially exemplify a transformation 
Observer Pattern component from a PIM to an Eiffel-based PSM.

Transformation PIM-UML to PSM-EIFFEL {parameters 
sourceModel: Observer-PIM-Metamodel:: Package 
targetModel: Observer-PSM-EIFFEL-Metamodel:: Package 
preconditions-- TRUE for the general casepostconditionspost:-- 
sourceModel and targetModel have the same number of classifiers. 
targetModel.ownedMember -> select (oclIsTypeOf (EiffelClass)) -> 
size () = 
sourceModel.ownedMember -> select (oclIsTypeOf (Class)) -> size () + 
sourceModel.ownedMember-> select (oclIsTypeOf (Interface)) -> size 
() 
post:-- for each interface ‘sourceInterface’ in sourceModel exists a 
class ‘targetClass’-- in targetModel so that: 
sourceModel.ownedMember -> select (oclIsTypeOf (Interface)) -> 
forAll (sourceInterface | 
targetModel.ownedMember -> select (oclIsTypeOf (EiffelClass)) -> 
exists (targetClass | 
-- ‘targetClass’ matches sourceInterface’. 
targetClass.oclAsType (EiffelClass).classInterfaceMatch 
(sourceInterface.oclAsType (Interface)))) 
post:-- For each class ‘sourceClass’ in sourceModel exists a class 
‘targetClass’ in targetModel-- so that: 

Figure 17. ISM Java Observer metamodel: SubjectObserverAssociation: Operations
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sourceModel.ownedMember -> select (oclIsTypeOf (Class)) -> forAll 
(sourceClass | 
targetModel.ownedMember -> select (oclIsTypeOf (EiffelClass)) -> 
exists (targetClass | 
-- ‘targetClass’ matches ‘sourceClass’. 
targetClass.oclAsType(EiffelClass).classClassMatch 
(sourceClass.oclAsType (Class)))) 
  
local operationsObserver-PSM-EIFFEL -Metamodel::EiffelClass:: class-
ClassMatch (aClass: Observer-PIM-Metamodel::Class): Boolean 
classClassMatch (aClass) = 
-- the class to which is applied this operation (self) matches the 
class ‘aClass ’-- if they have the same name, 
self.name = aClass.name and 
-- they have the same abstraction level, 
self.isDeferred = aClass.isAbstract and 
-- they have the same visibility, 
self.visibility = aClass.visibility and 
-- they have the same restrictions, 
self.invariant = aClass.ownedRule and 
-- they have the same parameters, 
self.parameters = aClass.ownedTemplateSignature.parameter and 
-- the number of parents of self is equal to the number of parents 
of aClass plus-- the number of interfaces implemented in aClass. 
self.parents -> size () = 
aClass.superClass -> size () + aClass.interfaceRealization.contract 
-> size () and 
-- for each class ‘sourceParent’ that is parent of aClass, exists a 
class ‘targetParent’ in-- targetModel that is parent of self, and 
‘targetParent’ matches sourceParent’, 
aClass.superClass -> forAll (sourceParent | 
self.parents -> exists (targetParent | 
targetParent.classClassMatch(sourceParent))) and 
-- for each interface ‘sourceContract’ that implements aClass, ex-
ists a class-- ‘targetParent’ in targetModel that is the parent of 
self, so that ‘targetParent’-- matches ‘sourceContract’, 
aClass.interfaceRealization.contract -> forAll (sourceContract | 
self.parents -> exists (targetParent | 
targetParent.classInterfaceMatch(sourceContract))) and 
-- the number of routines of self is equal to the number of opera-
tions of aClass, 
self.ownedRoutine -> size() = aClass.ownedOperation -> size () and 
-- for each operation ‘sourceOperation’ of aClass which does not 
return a result exists-- a procedure ‘targetProcedure’ in self that 
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matches ‘sourceOperation’, 
aClass.ownedOperation -> select (op | 
not op.ownedParameter -> exists (direction = #return)) -> forAll 
(sourceOperation| 
self.ownedRoutine -> exists (targetProcedure | 
targetProcedure.oclIsTypeOf (Procedure) and 
  
targetProcedure.rutineOperationMatch (sourceOperation))) and 
-- for each operation ‘sourceOperation’ of aClass that returns a 
result, exists a function ‘targetFunction’ in--self that matches 
with the first, 
aClass.ownedOperation -> select (op | 
op.ownedParameter -> exists (direction = #return)) -> forAll (sour-
ceOperation| 
self.ownedRoutine -> exists (targetFunction | 
targetFunction.oclIsTypeOf (Function) and 
targetFunction.rutineOperationMatch (sourceOperation))) and 
-- the number of attributes plus the number of association-ends of 
self is equal to-- the number of properties of aClass, 
self.associationEnd -> size () + self.attribute -> size () = aClass.
ownedAttribute -> size () and 
-- for each property ‘sourceEnd’ of aClass, which is an association-
end, exists-- in self an association-end ‘targetEnd’ that matches 
‘sourceEnd’ and 
aClass.ownedAttribute -> select (end | end.association -> size () = 
1) -> 
forAll (sourceEnd | self.associationEnd -> exists (targetEnd | 
targetEnd.propertyMatch (sourceEnd))) and 
-- for each property ‘sourceAtt’ of aClass, which is an attribute, 
exists in self an attribute-- ‘targetAtt’ that matches ‘sourceAtt’. 
aClass.ownedAttribute -> select (att | att.association -> size () = 
0) -> 
forAll (sourceAtt | self.attribute -> exists (targetAtt | 
targetAtt.propertyMatch (sourceAtt))) 
  
Observer-PSM-EIFFEL -Metamodel:: EiffelClass:: classInterfaceMatch 
(anInterface: Observer-PIM-Metamodel::Interface): Boolean 
classInterfaceMatch (anInterface) = 
-- the class to which this operation is applied (self) matches the 
interface-- ‘anInterface’ if:-- they have the same name, 
self.name = anInterface.name and 
-- self is deferred, 
self.isDeferred and 
-- they have the same visibility, 
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self.visibility = anInterface.visibility and 
-- they have the same restrictions, 
self.invariant = anInterface.ownedRule and 
-- they have the same parameters, 
self.parameters = anInterface.ownedTemplateSignature.parameter and 
-- for each interface that is parent of ‘anInterface’ exists a class 
that is parent of self so that both-- match, 
anInterface.superClass -> forAll (sourceParent | 
self.parents -> exists (targetParent | 
targetParent.classInterfaceMatch (sourceParent))) and 
-- the number of routines of self is equal to the number of opera-
tions of ‘ anInterface’ 
self.ownedRoutine -> size () = anInterface.ownedOperation -> size () 
and 
-- for each operation ‘sourceOperation’ of ‘anInterface’ which does 
not return a result,-- exists a procedure ‘targetProcedure’ in self 
that matches ‘sourceOperation’,  
anInterface.ownedOperation -> select (op | 
not op.ownedParameter ->exists (direction = #return)) -> forAll 
(sourceOperation | 
self.ownedRoutine -> exists (targetProcedure | 
targetProcedure.oclIsTypeOf (Procedure) and 
targetProcedure.routineOperationMatch (sourceOperation))) and 
-- for each operation ‘sourceOperation’ of ‘anInterface’ that return 
a result exists a-- function ‘targetFunction’ in self that matches 
‘sourceOperation’, 
anInterface.ownedOperation -> select (op | 
op.ownedParameter -> exists (direction = #return)) -> forAll (sour-
ceOperation | 
self.ownedRoutine -> exists (targetFunction | 
targetFunction.oclIsTypeOf (Function) and 
targetFunction.routineOperationMatch(sourceOperation))) and 
-- the number of attributes plus the number of association-end of 
self is equal to the-- number of properties of ‘anInterface’, 
self.associationEnd -> size () + self.attribute -> size () = anIn-
terface.ownedAttribute ->size () and 
-- for each property ‘sourceEnd’ of ‘anInterface’, that is an asso-
ciation-end,-- exists in self an association-end ‘targetEnd ’so that 
both properties match and, 
anInterface.attribute -> select (end | end.association -> size () = 
1) -> 
forAll (sourceEnd | self.associationEnd -> exists (targetEnd | 
targetEnd.propertyMatch (sourceEnd))) and 
-- for each property ‘sourceAtt’ of ‘anInterface’,which is an attri-
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bute, exists in self-- an attribute ‘targetAtt’ so that both proper-
ties match. 
anInterface.attribute -> select (att | att.association -> size () = 
0) -> 
forAll (sourceAtt | self.attribute -> exists (targetAtt | 
targetAtt.propertyMatch(sourceAtt))) 
  
Observer-PSM-EIFFEL -Metamodel:: Routine:: routineOperationMatch(anO
peration: Observer-PIM-Metamodel::Operation): Boolean 
routineOperationMatch (anOperation) = 
-- the routine to which this operation is applied (self) matches the 
operation-- ‘anOperation’ if:-- they have the same name, 
self.name = anOperation.name and 
-- they have the same visibility, 
self.visibility = anOperation.visibility and 
-- they have the same attribute value for isFrozen and isLeaf, 
self.isFrozen = anOperation.isLeaf and 
-- they have the same restrictions, 
self.precondition = anOperation.precondition and 
self.postcondition = anOperation.postcondition and 
self.bodycondition = anOperation.bodycondition and 
-- they have parameters with the same values of attributes and types 
that match and, 
anOperation.ownedParameter -> forAll (sourceParam | 
self.ownedParameter -> exists(targetParam | 
targetParam.name = sourceParam.name and 
targetParam.direction = sourceParam.direction and 
targetParam.defaultValue = sourceParam.defaultValue and 
targetParam.isOrdered = sourceParam.isOrdered and 
targetParam.upperValue = sourceParam.upperValue and 
targetParam.lowerValue = sourceParam.lowerValue and 
(targetParam.type = sourceParam.type or 
targetParam.type.conformsTo(sourceParam.type)))) and 
-- if ‘anOperation’ belongs to an interface, then it implies that 
self is deferred 
anOperation.interface -> size () =1 implies self.isDeferred 
  
Observer-PSM-EIFFEL -Metamodel:: Property::propertyMatch(aProperty: 
Observer-PIM-Metamodel::Property): Boolean 
attributeMatch (aProperty) = 
-- The property to which this operation is applied (self) matches 
‘aProperty’-- if both have attributes with the same values and 
self.name = aProperty.name and 
self.isDerived = aProperty.isDerived and 
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self.isReadOnly = aProperty.isReadOnly and 
self.isDerivedOnly = aProperty.isDerivedOnly and 
self.aggregation = aProperty.aggregation and 
self.default = aProperty.default and 
self.isComposite = aProperty.isComposite and 
self.isStatic = aProperty.isStatic and 
self.isOrdered = aProperty.isOrdered and 
self.isUnique = aProperty.isUnique and 
self.upper = aProperty.upper and 
self.lower = aProperty.lower and 
self.ownedRule = aProperty.ownedRule and 
self.isFrozen = aProperty.isLeaf and 
self.visibility = aProperty.visibility and 
-- the type of self conforms to the type of ‘aProperty’. 
self.type = aProperty.type or self.type.conformsTo (aProperty.type) 
Observer-PSM-EIFFEL -Metamodel:: Type::conformsTo (aType: Observer-
PIM-Metamodel:: Type): Boolean 
conformsTo (aType) = 
-- This operation determines whether the type to which this opera-
tion is applied (self)matches ‘aType’.-- if ‘aType’ is an OCL type, 
self could match some of the types that are defined in Eiffel li-
brary.-- There are two cases:-- If ‘aType’ is an OCL primitive type, 
self could match some of the primitive types that are defined in the 
Kernel component in the Eiffel library.if aType.oclIsKindOf (Primi-
tive) then ( 
aType.oclIsTypeOf (Integer) implies self.oclIsTypeOf (INTEGER) and 
aType.oclIsTypeOf (Real) implies self.oclIsTypeOf (REAL) and 
aType.oclIsTypeOf (String) implies self.oclIsTypeOf (STRING) and 
aType.oclIsTypeOf (Boolean) implies self.oclIsTypeOf (BOOLEAN) 
) else-- If ‘aType’ is an OCL Collection type, self could match some 
of the collection types that are defined in the -- data structures 
component in the Eiffel library.if aType.oclIsKindOf(Collection) 
then ( 
aType.oclIsTypeOf (SetType) implies self.oclIsKindOf (SET) and 
aType.oclIsTypeOf (OrderedSetType) implies 
self.oclIsKindOf (TWO_WAY_SORTED_SET) and 
aType.oclIsTypeOf (SequenceType) implies 
self.oclIsKinkOf(SEQUENCE) and 
aType.oclIsTypeOf (BagType) implies self.oclIsKindOf (BAG)) 
endif 
endif 

The definition of the transformation from PIM to PSM uses both the specialized UML metamodel 
of the Observer pattern and the UML metamodel of an Eiffel platform as source and target parameters 
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respectively. The source metamodel describes a family of packages whose elements are only classes 
and associations. The postconditions establish correspondences among classes, their superclasses, pa-
rameters, operations, and associations. The transformation specification guarantees, for instance, that 
for each class sourceClass in the source exists a class targetClass in the target model, both of them with 
the same name, the same parent classes and same child classes and so on.

We describe a transformation from a model of the pattern Observer at PIM level to a PSM in the 
Eiffel platform. The definition uses PIM and PSM metamodels as source and target parameters.

Postconditions establish mappings between classes and interfaces in the source model and classes 
in the target one. The different relationships between the source and the target model are commented 
in the text of the transformation. .

FOrMaLizatiOn OF MegaMOdeL inStanceS

The formalization implies formalizing metamodels, refinements and links among them. We describe 
how to transform metamodels and metamodel-based refinements.

constructing Metamodel Formalization

MOF-metamodels and NEREUS have similar constructs and structuring mechanisms. Then, every 
package in a metamodel is translated into a package in NEREUS. Also, every class or association in a 
metamodel is translated into a class or an association in NEREUS.

In this section we partially show the Package ObserverMetamodel that specifies in NEREUS the 
pattern Observer at PIM level. The names of the associations refer to the linked classes, for instance, 
AssocEndConcreteObserver-ConcreteObserver denotes an association between the classes AssocEnd-
ConcreteObserver and ConcreteObserver. Classes and association in the Package ObserverMetamodel 
are shown in lexical orden.

PACKAGE ObserverMetamodel 
IMPORTS Kernel, Interfaces, Dependencies 
-- Specification of Metaclasses 
… 
CLASS ClassObserver 
IS-SUBTYPE-OF Class, Observer 
ASSOCIATES 
<<ClassObserver-Update>> 
GENERATED_BY create 
TYPES ClassObserver 
OPERATIONS 
create: * → ClassObserver 
END-CLASS 
  
CLASS ClassSubject 
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IS-SUBTYPE-OF Class, Subject 
ASSOCIATES 
<< Attach-ClassSubject>> 
<<ClassSubject-Detach>> 
<<ClassSubject-Notify>> 
GENERATED_BY create 
TYPES 
ClassSubject 
OPERATIONS 
create: * → ClassSubject 
END-CLASS 
 
CLASS ConcreteObserver 
IS-SUBTYPE-OF Class 
ASSOCIATES 
<<AssocEndConcreteObserver-ConcreteObserver>> 
<<ConcreteObserver-GeneralizationObserver>> 
<<ConcreteObserver-InterfaceRealizationObserver>> 
TYPES ConcreteObserver 
OPERATIONS 
create: * → ConcreteObserver 
AXIOMS obs: ConcreteObserver; CI: ConcreteObserver-InterfaceRealiza-
tionObserver 
not isAbstract (obs) 
notEmpty (get_interfaceRealizationObserver (CI, obs)) => oclIsKindOf 
(obs, BehavioredClassifier) 
END-CLASS 
  
CLASS ConcreteSubject 
IS-SUBTYPE-OF Class 
ASSOCIATES 
<<AssocEndConcreteSubject-ConcreteSubject>> 
<<ConcreteSubject-SetState>> 
<<ConcreteSubject-GeneralizationSubject>> 
<<ConcreteSubject-GetState>> 
<<ConcreteSubject-InterfaceRealizationSubject>> 
<<ConcreteSubject-Property>> 
TYPES 
ConcreteSubject 
OPERATIONS 
create: * → ConcreteSubject 
AXIOMS sub:ConcreteSubject; CP: ConcreteSubject-Property; 
AP: Association-Property; 
CI: ConcreteSubject-InterfaceRealizationSubject 
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not isAbstract (sub) 
notEmpty (get_interfaceRealizationObserver (CI, sub)) => 
oclIsKindOf(sub, BehavioredClassifier) 
forAll (p) (get_state (CP, sub), [isEmpty (get_association (AP, p) 
]) 
END-CLASS 
 
CLASS Observer 
IS-SUBTYPE-OF Classifier 
ASSOCIATES 
<<AssocEndObserver-Observer>> 
GENERATED_BY create 
DEFFERREDTYPES 
Observer 
OPERATIONS 
create: * → Observer 
END-CLASS 
 
CLASS ObserverSubject 
IS-SUBTYPE-OF Association 
ASSOCIATES 
<<AssocEndConcreteSubject-ObserverSubject>> 
<<AssocEndConcreteObserver-ObserverSubject>> 
GENERATED_BY create 
TYPES 
ObserverSubject 
OPERATIONS 
create: * → ObserverSubject 
AXIOMS a: ObserverSubject; AP: Association-Property 
size (get_memeberEnd(AP, a)) = 2 
END-CLASS 
  
CLASS Subject 
IS-SUBTYPE-OF Classifier 
ASSOCIATES 
<<AssocEndSubject-Subject>> 
GENERATED_BY create 
DEFFERREDTYPES Subject 
OPERATIONS 
create: * → Subject 
END-CLASS 
  
CLASS SubjectObserver 
IS-SUBTYPE-OF Association 
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ASSOCIATES 
<<AssocEndSubject-SubjectObserver>> 
<<AssocEndObserver-SubjectObserver>> 
GENERATED_BY create 
TYPES 
SubjectObserver 
OPERATIONS 
create: * → SubjectObserver 
AXIOMS a: SubjectObserver ; AP: Association-Property 
Size (get_memberEnd (AP, a)) = 2 
END-CLASS 
… 
-- Specification of associationsASSOCIATION AssocEndConcreteObserv-
er-ConcreteObserver 
IS Bidirectional-1 [AssocEndConcreteObserver: Class1; ConcreteOb-
server: Class2; 
assocEndConcreteObserver: role1; participant: role2; 1:mult1; 
1:mult2; +:visibility1; +:visibility2] 
END 
  
ASSOCIATION AssocEndConcreteObserver-ObserverSubject 
IS Bidirectional-1 [AssocEndConcreteObserver: Class1; ObserverSub-
ject: Class2; 
assocEndConcreteObserver: role1; association: role2; 1:mult1; 
1:mult2; +:visibility1; +:visibility2] 
CONSTRAINED_BY 
assocEndConcreteObserver: subsets memberEnd 
association: redefines association 
END 
  
ASSOCIATION AssocEndConcreteSubject-ConcreteSubject 
IS Bidirectional-1 [AssocEndConcreteSubject: Class1; ConcreteSub-
ject: Class2; 
assocEndConcreteSubject:role1; participant:role2; 1:mult1; 1:mult2; 
+:visibility1; +:visibility2] 
END 
  
ASSOCIATION AssocEndConcreteSubject-ObserverSubject 
IS Bidirectional-1 [AssocEndConcreteSubject: Class1; ObserverSub-
ject: Class2; 
assocEndConcreteSubject:role1; association:role2; 1:mult1; 1:mult2; 
+:visibility1; +:visibility2] 
CONSTRAINED_BY 
assocEndConcreteSubject: subsets memberEnd 
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association: redefines association 
END 
… 
END-PACKAGE

Formalizing refinements

Instances of refinement classes are translated into NEREUS specifications by instantiating reusable 
schemes (see Figure 18).

Below, the specification of the refinement between a PIM-UML and a PSM-Eiffel is shown. The 
function TranslateNEREUS (transformation.precondition) that appears in the transformation scheme as 
a precondition of the operation addLink translates into NEREUS the OCL precondition. The function 
TranslateNEREUS (transformation.postcondition) that appears in the axioms translates into NEREUS 
axioms the OCL postconditions. An instantiation of the transformation scheme is the following:

 [TransformationName:PIM-UML to PSM-EIFFEL; 
 sourceMetamodel: Observer-PIM -Metamodel; 

Figure 18. A scheme for translating refinements: From UML/OCL to NEREUS
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 targetMetamodel: Observer-PSM-EIFFEL-Metamodel; 
 precondition: OCLexp1; 
 postcondition: OCLexp2 ] 
  
CLASS PIM-UML_to_PSM-EIFFEL 
GENERATED-BY addLink 
EFFECTIVETYPES 
PIM -UML_to_PSM-EIFFEL 
OPERATIONS 
addLink: 
Observer-PIM-Metamodel x Observer-PSM-EIFFEL-Metamodel → PIM-UML_to_
PSM-EIFFEL 
get-source: PIM -UML_to_PSM-EIFFEL → Observer-PIM-Metamodel 
get-target: PIM -UML_to_PSM-EIFFEL → Observer-PSM-EIFFEL-Metamodel 
equal: PIM-UML_to_PSM-EIFFEL x PIM-UML_to_PSM-EIFFEL → Boolean 
-- local operations (private) 
classClassMatch: 
Observer-PSM-EIFFEL-Metamodel::EiffelClass x Observer-PIM-
Metamodel::Class → Boolean 
classInterfaceMatch: Observer-PSM-EIFFEL-Metamodel::EiffelClass x 
Observer-PIM-Metamodel::Interface → Boolean … 
AXIOMS 
m1: Observer-PIM-Metamodel, m2: Observer-PSM-EIFFEL-Metamodel; 
t1, t2: PIM-UML_to_PSM-EIFFEL; PP: Package-PackageableElement; 
e: Observer-PSM-EIFFEL-Metamodel::EiffelClass; c: Observer-PIM 
-Metamodel::Class; … 
get-source (addLink (m1, m2)) = m1 
get-target (addLink (m1, m2)) = m2 
equal (t1, t2) = IF get-source (t1) = get-source (t2) and get-target 
(t1) = get-target (t2) 
 THEN true ELSE false 
-- TranslateNEREUS (Transformation.postcondition)-- sourceModel and 
targetModel have the equal number of classifiers. 
size (select (elem) (get_ownedMember(PP,m2), [oclIsTypeOf (elem, 
EiffelClass)])) = 
size (select (elem) (get_ownedMember (PP, m1), [oclIsTypeOf (elem, 
Class)])) + 
size (select (elem) (get_ownedMember (PP, m1), [oclIsTypeOf (elem, 
Interface)])) and 
-- For each interface ‘sourceInterface’ in sourceModel exists a 
class ‘targetClass’-- in targetModel so that: 
forAll (sourceInterface) (select (elem) (get_ownedMember (PP, m1),  
[oclIsTypeOf (elem, Interface)]), 
[exists (targetClass) (select (elem) (get_ownedMember (PP,m2),  
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[oclIsTypeOf (elem, EiffelClass)]), 
-- sourceInterface and targetClass match 
[interfaceClassMatch (oclAsType (targetClass, EiffelClass), 
oclAsType (sourceInterface, Interface)) ]) ]) and 
-- for each class ‘sourceClass’ in sourceModel exists a class ‘tar-
getClass’ in targetModel so that: 
forAll (sourceClass) (select (elem) (get_ownedMember (PP, m1), 
[oclIsTypeOf (elem, Class)]), 
[exists (targetClass) (select (elem) (get_ownedMember (PP, m2),  
[oclIsTypeOf (elem, EiffelClass)]), 
-- sourceClass and targetClass match 
[classClassMatch (oclAsType (targetClass, EiffelClass),oclAsType 
(sourceClass, Class))])]) 
-- local operations 
classClassMatch (e, c) = equal (name (e), name (c)) and equal (isDe-
ferred (e),isAbstract (c)) and 
… 
END-CLASS
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Chapter 9

Evolution of Models and 
MDA-Based Refactoring

intrOductiOn

In MDA is crucial to define, manage, and maintain traces and relationships between different models, 
and automatically transform them and produce implementations.

Refactoring is a powerful technique when is repeatedly applied to a model to obtain another one with 
the same behavior but enhancing some non functionality quality factor such as simplicity, flexibility, 
understandability and performance (Fowler, 1999) (Mens, Van Eetvelde, Demeyer & Janssens, 2005). 
Refactorings are horizontal transformations for supporting perfective model evolution.

In MDA, a crucial part of the evolution from abstract models to executable components or applications 
(forward engineering) or, from code to abstract models (reverse engineering) is accomplished by means 
of refactoring. Although the most effective forms of refactorings are at the design levels (for example, 
PIMs or PSMs), MDA-based CASE tools provide limited facilities for refactoring only on source code 
through an explicit selection made by the designer (CASE, 2009).

MDA-based refactorings can be specified in OCL as contracts between meta-patterns (MOF meta-
model), consisting of pre- and post-conditions that hold for the model before/after refactoring. Besides, 
we propose an alternative formalization based on the NEREUS language. We propose a uniform treat-
ment of refactoring at platform independent, platform specific and implementation specific abstraction 
levels.

DOI: 10.4018/978-1-61520-649-0.ch009
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Refactoring is an important technique in MDA processes such as forward engineering and reverse 
engineering. In this context, refactoring techniques should be raised to higher levels of abstraction in 
order to achieve software evolution.

We propose an MDA framework for refactoring that is structured at three different levels of abstrac-
tion linked to models, metamodels and formal specification. The model level includes different kind of 
models (PIM, PSM, ISM) related by refinement.

Considering there is a need for rigorous techniques that address refactoring in a more consistent and 
precise way, we propose a rigorous approach to identify refactorings by formal specification match-
ing.

In the following sections we describe an MDA-based refactoring approach. First, we describe some 
related work.

reLated WOrK

This section shows the evolution of refactoring techniques and remarks the advantages of an MDA ap-
proach.

The first relevant publication on refactoring was carried out by Opdyke (1992), showing how func-
tionalities and attributes can migrate among classes, how classes can be joined and separated using a class 
diagram notation (subset of current UML). Roberts (1999) completed this work describing techniques 
based on refactoring contracts. Fowler (1999) is the classical book on code refactoring. It informally 
analyzes refactoring techniques on Java source code, explaining the structural changes through examples 
with class diagrams.

Several approaches provide support to restructure UML models. In (Sunyé, Pollet, LeTraon, and 
Jézéquel, 2001) a set of refactorings is presented and how they may be designed to preserve the behav-
ior of UML models is explained. Mens, Demeyer, DuBois, Stenten, and Van Gorp (2003) provide an 
overview of existing research in the field of refactoring. Porres (2003) defines and implements model 
refactorings as rule-based transformations. Van Gorp, Stenten, Mens, and Demeyer (2003) propose a set 
of minimal extensions to UML metamodel, which allows reasoning about refactoring for all common 
object-oriented languages.

There is a tendency to integrate refactoring tools into industrial software development environments. 
For example, Together ControlCenter (CASE, 2009) applies code refactoring on user requirements. Mens, 
Van Eetvelde, Demeyer, and Janssens (2005) explore the use of graph rewriting for specifying refactor-
ings and prove that them preserve some properties. (France, Ghosh, Song, & Kim, 2003), (Laplante, & 
Neill, 2005) and Kerievsky (2004) describe methods for pattern-directed refactorings.

Long, Jifeng, and Liu (2005) formalizes Fowler´s refactorings (Fowler, 1999) as refinement laws in 
a relational calculus.

Batory (2007) explores the underlying connections among program refactoring, program synthesis 
and MDD from an architectural meta-programming perspective.

Folli and Mens (2008) analyze refactoring of UML models in the context of graph transformation 
approach. They use a specific graph transformation tool, AGG, and provide suggestions of how AGG 
may be improved to better support model refactoring.

(Demeyer, Ducasse, & Nierstrasz, 2002), (Mens, & Tourwe, 2004), (Thomas, 2005) and (France & 
Rumpe, 2007) describe the state-of-the-art of refactoring.
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Mda-BaSed reFactOring

We propose an MDA framework for refactoring that is structured at three different levels of abstraction 
linked to models, metamodels and formal specification (Favre & Pereira, 2008) (Favre & Pereira, 2006). 
The model level includes different kind of models (PIM, PSM, ISM) related by refinement. At this level 
refactorings are based on a set of model refactoring rules. The metamodel level imposes relations between 
a source metamodel and a target metamodel, both represented as MOF-metamodels. Every PIM, PSM 
and ISM is an instance of a MOF-metamodel.

The level of formal specifications links MOF-metamodels and metamodel-based refactorings to 
formal specifications. We propose to formalize MOF-metamodels and metamodel-based transforma-
tions by using the NEREUS language. NEREUS can be used as a common specification language and 
is connected with different semiformal, formal and programming languages. Figure 1 depicts the levels 
of the framework.

In summary, in the level of models, the refactoring of instances of PIMs, PSMs and ISMs is based 
on classical pattern-directed refactoring techniques, MOF-metamodels “control” the consistency of 
these transformations and, NEREUS facilitates the connection of the metamodels with different formal 
languages. NEREUS can be used to reason and ensure consistency of refactoring and to take advantage 
of all existing theoretical background on formal methods, using different tools such as theorem provers, 
model checkers or rewrite engines.

Figure 1. A framework for MDA refactoring
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SPeciFYing Mda reFactOring

We define a catalog of semantics-preserving transformation rules. This catalog includes the classical 
refactorings (Fowler, 1999) (Kerievsky, 2004) and, a repertory of refactorings of UML class diagrams 
linked to PIMs and PSMs.

The next section describes the Extract-Composite Refactoring that will be used as a running example 
(Kerievsky, 2004, pp. 214).

the extract composite refactoring

The Extract Composite refactoring was described in terms of JAVA code in (Kerievsky, 2004, p. 214). 
We propose to specify this rule at the PIM level. Figure 2 exemplifies the Extract Composite refactoring 
as a pattern-directed rule.

The source pattern in Figure 2 depicts subclasses in a hierarchy that implement the same composite. 
The rule application extracts a superclass that implements the composite removing duplicate behavior. 
The main steps in the proposed transformation are: create a composite; make each class that contains 
duplicate behavior a subclass of the composite and identify methods that are purely duplicated or par-
tially duplicated across the subclasses of a composite. A purely duplicated method can be moved with 
all child containers to the composite. If the method is partially duplicated only the common behavior 
across all subclasses can be moved.

Within MDA, refactorings are a particular kind of model-to-model transformation. Metamodel trans-
formations impose relations between a source metamodel and a target metamodel both represented as 
MOF- metamodels (MOF, 2006).

reFactOring at MetaMOdeL LeveL

We propose to express refactorings as metamodel transformations between source and target meta-pat-
terns. A meta-pattern defines a family of patterns, its instances. A meta-pattern transformation describes 

Figure 2. The Extract Composite refactoring
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a mechanism to convert the elements of a pattern that are instances of a particular meta-pattern, into 
elements of another pattern.

Refactorings could be specified as contract imposing relations between a source metamodel and a 
target metamodel both represented as MOF- metamodel. Figure 3 and Figure 4 show the source and 
target metamodels for the Extract-Composite. The source metamodel defines the family of source models 
to which refactorings can be applied and the target metamodel characterizes models that are generated. 
The models to be transformed and the resulting models of the transformations will be instances of the 
corresponding metamodel.

The source and target metamodels include metaclasses linked to the essential participants in the 
patterns of Figure 2: Composite, Component and Leaf and, three relationships: Composite-Component-
Assoc, Component-Leaf-Generalization and Component-Composite-Generalization. The metamodel also 

Figure 3. The Extract Composite Refactoring: Source metamodel

Figure 4. The Extract Composite Refactoring: Target metamodel
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shows metaclasses linked to properties such as AssEndComposite and AssEndComponent and, shaded 
metaclasses that correspond to the UML metamodel.

We can remark the following differences between the source and target metamodel. On the one hand, 
in the source metamodel, an instance of Component has two or more instances of Component-Composite-
Generalization (compositeSpecialization) and two or more association-ends (associationEnd).

On the other hand, in the target metamodel, an instance of Component has exactly one instance of 
Component-Composite-Generalization and one association-end.

extract composite refactoring: Source Metamodel

Notation of the Design Pattern Metamodels

Metamodels are expressed as UML class diagrams following the UML 2.2 notation. Metaclasses of 
the UML metamodel are shown in dark gray; metaclasses of the specific platforms and programming 
languages are shown gray whereas the remaining metaclasses corresponds to the specialization of the 
UML metamodel. The description of metaclasses is organized in alphabetical order.

Abstract Syntax

Figure 3 shows the metaclasses linked to the essential participants in the source metamodel to which 
can be applied the refactoring Extract Composite:

• Composite, Component and Leaf, refer to one class of the model with special features,
• CompositeComponentAssoc, ComponentLeafGeneralization andComponentCompositeGeneral-

ization, refer particular relationships between the classes Composite, Component and Leaf,
• AssEndComposite and AssEndComponent, represent class properties,

The source metamodel specifies an instance of Component that has two or more instances of Com-
ponentCompositeGeneralization (compositeSpecialization), i.e., two or more generalizations that have 
a subclass that is an instance of Composite.

On the other hand, an instance of Component has two or more association-ends (associationEnd), 
each of them is linked to an association whose type is CompositeComponentAssoc which in turn, has 
another association-end whose participant is an instance of Composite. An instance of Component has 
one or more instances of ComponentLeafGeneralization, i.e., one or more generalizations that has a 
subclass that is an instance of Leaf.

Description of the Metaclasses

AssEndComponent

Description
It describes the link between the association CompositeComponentAssoc and the class Component.



164

Evolution of Models and MDA-Based Refactoring

Generalizations

Property (from • Kernel).

Attributes
No additional attributes.

Associations

association: CompositeComponentAssoc [1] It denotes the association that links the classes • 
Component and Composite. It redefines Property::association.
participant: • Component [1] It denotes the class that participates in the association in this 
association-end.

Constraints
No additional constraints

AssEndComposite

Description
It denotes the link between the association CompositeComponentAssoc and the class Composite.

Generalizations

Property (from Kernel)• 

Attributes
No additional attributes.

Associations

association: CompositeComponentAssoc [1] It refers to the association that links the classes • 
Component and Composite. It redefines Property::association.
participant: • Composite [1] It denotes the class that participates in the association in this association-
end.

Constraints

[1]  The association-end is an aggregation or a composition. self.aggregation = #shared or self.aggrega-
tion = #composite
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Component

Description
It represents a class having the role of Component in an inheritance hierarchy.

Generalizations

Class (from Kernel)• 

Attributes
No additional attributes.

Associations

associationEnd: • AssEndComponent [2..*] It denotes the set of association-ends, in which the class 
Component participates. These association-ends belong to associations that connect with the class 
Composite.
compositeSpecialization: ComponentCompositeGeneralization [2..*] It specifies the set of gener-• 
alizations in which Component is the superclass and a class Composite is a subclass.
leafSpecialization: ComponentLeafGeneralization [1..*] It specifies the set of generalizations in • 
which Component is the superclass and a class Leaf is the subclass.

Constraints

[1]  The associations between Composite and Component are equivalent.

AssEndComposite

Description
It denotes the connection between the association CompositeComponentAssoc and the class Compos-
ite.

Generalizations

Property (from • Kernel)

Attributes
No additional attributes.

Associations

association: CompositeComponentAssoc [1] It refers to the association that connects instances of • 
the classes Component and Composite. It redefines Property::association.
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participant: • Composite [1] It refers to the class that participates in the association of this association-
end.

Constraints

[1]  The association-end is aggregation or composition. self.aggregation = #shared or self.aggregation 
= #composite

Component

Description
It represents a class having the role of Component in an inheritance hierarchy.

Generalizations

Class (from Kernel)• 

Attributes
No additional attributes.

Associations

associationEnd: • AssEndComponent [2..*] It denotes the set of association-ends (in which the class 
Component participates) belonging to associations that are linked to the class Composite.
compositeSpecialization: ComponentCompositeGeneralization [2..*] It specifies the set of gener-• 
alizations in which Component is the superclasss and a class Composite is the subclass.
leafSpecialization: ComponentLeafGeneralization [1..*] It specifies the set of generalizations in • 
which Component is the superclass and a class Leaf is the subclass.

Constraints

[1]  The associations between Composite and Component are equivalent. self.associationEnd → collect 
(assEnd | assEnd.association) → forAll (a1, a2 | a1 = a2 or a1.isEquivalentTo (a2))

[2]  In each class Composite, that is subclass of Component, exists operations that have function-
ality equivalents to operations of other classes Composite. The operation isEquivalentOp-
erationTo() verifies whether the operation passed as parameter is equivalent to the operation to 
which the operation is applied. This implies that they verify signature, plug-in and exact match. 
The operation isEquivalentOperationTo() is specified as additional operation in the UML meta-
model (Appendix A).

 -- for all class Composite, subclass of Component self.compositeSpecialization.child → forAll (class |
 -- exists operations class.ownedOperation → exists (op | self.compositeSpecialization.child → 

excluding (class) → forAll (c | c.ownedOperation → exists (o |
 -- functionally equivalent to operations of another classes Composite op.isEquivalentOperationTo 

(o)))))
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Local Operations

CompositeComponentAssoc:• 
 isEquivalentTo (a: CompositeComponentAssoc): Boolean;
 -- It verifies whether or no the association passed as parameter is equivalent to the
 -- association to which the operation is applied, i.e., they are equivalent, except
 -- their names; the other features are preserved.
 isEquivalentTo (a) = (self.name = a.name or self.name <> a.name) and
 self.isDerived = a.isDerived and self.visibility = a.visibility and
 self.memberEnd → forAll (a1End | a.memberEnd → exists (a2End |
 (a1End.name = a2End.name or a1End.name <> a2End.name) and
 a1End.visibility = a2End.visibility and a1End.isLeaf = a2End.isLeaf and
 a1End.isStatic = a2End.isStatic and a1End.isDerived = a2End.isDerived and a1End.isReadOnly 

= a2End.isReadOnly and a1End.isDerivedUnion = a2End.isDerivedUnion and a1End.aggre-
gation = a2End.aggregation and a1End.upper = a2End.upper and a1End.lower = a2End.lower 
and a1End.subsettedProperty = a2End.subsettedProperty and a1End.redefinedProperty = a2End.
redefinedProperty))

ComponentCompositeGeneralization

Description
It represents a generalization that exists between classes Component and Composite.

Generalizations

Generalization(from • Kernel)

Attributes
No additional attributes

Associations

parent: • Component [1] It refers to a class that takes the role of parent in the generalization. It re-
defines Generalization::general.
child: • Composite [1] It refers to a class that takes the role of child in the generalization. It rede-
fines Generalization::specific.

Constraints
No additional constraints.

Component LeafGeneralization

Description
It represents a generalization that exists between the classes Component and Leaf.
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Generalizations

Generalization (from • Kernel)

Attributes
No additional attributes

Associations

parent: • Component [1] It refers to a class that takes the role of parent in the generalization. It re-
defines Generalization::general.
child: • Leaf [1] It refers to a class that takes the role of child in the generalization. It redefines 
Generalization::specific.

Constraints
No additional constraints.

Composite

Description
It represents a class having the role of Composite in an inheritance hierarchy.

Generalizations

Class (from • Kernel)

Attributes
No additional attributes

Associations

associationEnd: • AssEndComposite [1] It denotes the set of association-ends, in which the class 
Composite participates, belonging to associations that are linked to the class Component.
componentGeneralization: ComponentCompositeGeneralization [1] It specifies the set of gener-• 
alizations in which Composite is the subclass and a class Component is the superclass.

 It is a subset of Classifier::generalization.

Constraints
No additional constraints.

CompositeComponentAssoc

Description
It describes a binary association that relates the metaclasses Composite and Component.
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Generalizations

Association (from Kernel)• 

Attributes
No additional attributes

Associations

assEndComposite: • AssEndComposite [1] It refers to the association-end linked to the Composite 
of the association CompositeComponentAssoc. It is a subset of Association::memberEnd.
assEndComponent: • AssEndComponent [1] It refers to the association-end linked to a Component 
of the association CompositeComponentAssoc. It is a subset of Association::memberEnd.

Constraints

[1]  CompositeComponentAssoc is a binary association; the only association-ends are assEndComposite 
and assEndComponent. self.memberEnd -> size () = 2

Leaf

Description
It represents a class that is a leaf in the inheritance hierarchy.

Generalizations

Class (form • Kernel).

Attributes
No additional attributes

Associations

componentGeneralization: ComponentLeafGeneralization [1] It refers to a generalization where • 
Leaf is subclass of the class Component. It is a subset of Classifier::generalization.

Constraints
No additional constraints.
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extract composite refactoring: target Metamodel

Abstract Syntax

Figure 4 shows the metaclasses related to the essential participants in the generated models when the 
Extract Composite refactoring is applied. The transformation establishes:

In the source model, an instance of • Component has two or more instances of 
ComponentCompositeGeneralization (compositeSpecialization) and two or more association-
ends (associationEnd);
In the target model, an instance of • Component has exactly one instance of 
ComponentCompositeGeneralization and an only association-end of type AssEndComponent.

Description of Metaclasses

AssEndComponent
It describes the connection of CompositeComponentAssoc with the class Component.

Generalizations

Property (from • Kernel)

Attributes
No additional attributes.

Associations

association: CompositeComponentAssoc [1] It refers to the association that connects the classes • 
Component and Composite. It redefines Property::association.
participant: • Component [1] It denotes the class that participates in the association in this 
association-end.

Constraints
No additional Constraints.

AssEndComposite
It denotes the connection of the association CompositeComponentAssoc with the class Composite.

Generalizations

Property (from • Kernel).

Attributes
There are no additional attributes.
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Associations

association: CompositeComponentAssoc [1] It refers the association that connects classes • 
Component and Composite. It redefines Property::association.
participant: • Composite [1] It denotes the class that participates in the association in this association-
end.

Constraints

[1]  The association-end is aggregation or composition. self.aggregation = #shared or self.aggregation 
= #composite

Component
It represents a class having the role of Component in an inheritance hierarchy.

Generalizations

Class (from • Kernel)

Attributes
No additional attributes.

Associations

associationEnd: • AssEndComponent [1] It denotes the association-end, in which the class 
Component participates, belonging to the association that connects to the class Composite.
compositeSpecialization: ComponentCompositeGeneralization [1] It specifies the generalization • 
in which Component is the superclass and a class Composite is the subclass.
leafSpecialization: ComponentLeafGeneralization [1..*] It specifies the set of generalizations in • 
which Component is the superclass and a class Leaf is the subclass.

Constraints
No additional restrictions.

ComponentCompositeGeneralization
It represents the generalization that exists between the classes Component and Composite.

Generalizations

Generalization (from • Kernel)

Attributes
No additional attributes.
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Associations

parent: • Component [1] It refers to the class that takes the role of parent in the relation of general-
ization. It redefines Generalization::general.
child: • Composite [1] It refers to the class that takes the role of child in the generalization. It rede-
fines Generalization::specific.

Constraints
No additional constraints.

ComponentLeafGeneralization
It denotes the generalization that exists between the classes Component and Leaf.

Generalizations

Generalization (from • Kernel)

Attributes
No additional attributes.

Associations

parent: • Component [1] It refers to the class that takes the role of parent in the generalization. It 
redefines Generalization::general.
child: • Leaf [1] It refers to the class that takes the role of children in the generalization. It redefines 
Generalization::specific.

Constraint
No additional constraints.

Composite
It denotes a class having the role of Composite in an inheritance hierarchy.

Generalizations

Class (from • Kernel)

Attributes
No additional attributes.

Associations

associationEnd: • AssEndComposite [1] It denotes the set of association-ends (in which the class 
Composite participates), belonging to associations that connect them with the class Component.
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componentGeneralization: ComponentCompositeGeneralization [1] It specifies the set of gener-• 
alization in which Composite is the subclass and a class Component is the superclass.

It is a subset of Classifier::generalization.

Constraints
No additional constraints.

CompositeComponentAssoc
It denotes a binary association that relates the metaclasses Composite and Component.

Generalizations

Association (from • Kernel)

Attributes
No additional attributes.

Associations

assEndComposite: • AssEndComposite [1] It refers to the association-end linked to the Composite 
of the association CompositeComponentAssoc. It is a subset of Association::memberEnd.
assEndComponent: • AssEndComponent [1] It refers to the association-end linked to Component 
of the association CompositeComponentAssoc.

It is a subset of Association::memberEnd.

Constraints

[1]  CompositeComponentAssoc is a binary association, i.e. the only association-ends that are members 
of the association are assEndComposite and assEndComponent. self.memberEnd -> size () = 2

Leaf
It denotes a class having the role of Leaf in the inheritance hierarchy.

Generalizations

Class (from • Kernel).

Attributes
No additional attributes.

Associations

componentGeneralization: ComponentLeafGeneralization [1] It refers to a generalization where • 
Leaf is a subclass of a class Component. It is a subset of Classifier::generalization.
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Constraints
No additional constraints.

extract composite refactoring rule

The models to be transformed and the resulting models of the transformations will be instances of the 
source and target metamodels.

The transformations between models are described relating each element of the source model to one 
or more elements of the target model at metamodel level. In other words, relating the metaclass of an 
element of the source model with the corresponding metaclass of the element in the target model.

Refactorings are expressed as OCL contracts that consist of a name, a set of parameters, a precondition 
and a postcondition. Each parameter is a metamodel element. The precondition, which deals with the state 
of the model before the transformation, states relations at the metamodel level between the elements of 
the source model. The postcondition, which deals with the state of the model after the transformation, 
states relations at metamodel level between the elements of the source model and a target model. Rules 
can also include local declarations that are used in preconditions and postconditions.

The pattern Extract Composite identifies an inheritance hierarchy with two or more subclasses 
(Composite) that store a collection of children. When the children being collected are classes in the same 
hierarchy, it is probable that duplicated operations can be removed by refactoring to Composite. The 
application of this rule creates a superclass (Composite) and moves attributes and equivalent operations 
of the subclasses to the superclass. The inheritance hierarchy is simplified by factorizing in a superclass 
the common behavior.

The following steps can be distinguished:

Create an abstract class • Composite.
Reflect as • subclass of the composite to each class of the original hierarchy that contains equivalent 
attributes and operations to manage their children (subclasses of the same hierarchy).
Detect equivalent operations in classes of the original hierarchy and move them to the • superclass 
Composite.
Detect equivalent attributes and move them to the • superclass Composite. Rename attributes (if it 
is necessary) and update each reference to them in the classes.
Check the client classes of classes • Composite in the original hierarchy to communicate them 
through the new interface.

Refactorings are specified as OCL contracts that are written by using the notation described in Chap-
ter 3. Following, the Extract-Composite rule specifies the above steps as a transformation rule in OCL. 
Comments in the text explain the different OCL expressions.

Transformation Extract-Composite {parametersource: Source Metamodel 
Extract Composite:: Package 
target: Target Metamodel Extract Composite:: Package 
local operationspostconditionspost 
-- For each instance of class Component(SourceClass) in the source, 
source.ownedMember -> select (oclIsTypeOf (Component)) -> forAll 
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(sourceClass | 
 -- there is an instance of Component(targetClass) in the target 
so that, target.ownedMember -> select (oclIsTypeOf (Component)) -> 
exists (targetClass | 
  -- targetClass has only a generalization 
   -- its type is ComponentCompositeGeneralization, 
    -- targetClass is the parent of a class whose type is 
Composite, targetClass.oclAsType (Component).compositeSpecialization 
-> size() =1 and 
   -- targetClass has an only association-end relating with a 
class 
   -- whose type is Composite, targetClass.oclAsType (Compo-
nent).associationEnd -> size () =1 and 
   -- the set of subclasses of targetClass whose type is Leaf, 
is equal -- to the set of subclasses of sourceClass whose type is 
Leaf 
   targetClass.oclAsType (Component).leafSpecialization.child = 
sourceClass. oclAsType (Component).leafSpecialization.child and 
   -- inherited attributes of NamedElement targetClass.name = 
sourceClass.name and targetClass.visibility = sourceClass.visibility 
and 
   -- targetClass has the following values for: 
   -- inherited attribute of RedefinableElement targetClass.
oclAsType (Class).isLeaf = sourceClass.isLeaf and 
   -- inherited attribute of Classifier targetClass.oclAsType 
(Class).isAbstract = sourceClass.isAbstract and 
   -- inherited associations of Class 
   -- targetClass has the same set of nested classifiers as 
   -- sourceClass 
    targetClass.oclAsType(Class).nestedClassifier = source-
Class.oclAsType(Class).nestedClassifier and 
   -- targetClass has the same subset of own operations as 
   -- sourceClass 
    targetClass.oclAsType(Class).ownedOperation = source-
Class.oclAsType(Class).ownedOperation and 
   -- the set of own attributes of targetClass is the resulting 
set of 
   --excluding to the set of own attributes of sourceClass, the 
   -- attributes that are the association-end that relates 
sourceClass 
   -- with the different classes whose type is Composite in the 
source-- package.and including the association-end that links it 
with the 
   -- only class Composite in the target package, 
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    targetClass.oclAsType(Class).ownedAttribute = 
    sourceClass.oclAsType(Class).ownedAttribute -> 
    excluding (sourceClass.oclAsType (Component). 
    associationEnd.association.assEndComposite) -> 
    including (targetClass. oclAsType (Component). 
    associationEnd.association.assEndComposite) and 
   -- inherited associations of Classifier 
    -- both classes have the same set of generalizations tar-
getClass.oclAsType (Class).generalization = sourceClass.oclAsType 
(Class).generalization and 
    -- both classes belong to the same package targetClass.
oclAsType (Class).package = sourceClass.oclAsType (Class).package 
and 
    -- both classes have the same set of redefined classifi-
ers targetClass.oclAsType (Class).redefinedClassifier = sourceClass.
oclAsType (Class).redefinedClassifier and 
    -- inherited associations of Namespace 
    -- both classes have the same restrictions targetClass.
oclAsType (Class).ownedRule = sourceClass.oclAsType (Class).owne-
dRule and 
    -- both classes have the same set of imported ele-
ments targetClass.oclAsType (Class).elementImport = sourceClass.
oclAsType (Class).elementImport)) 
post 
-- for each instance of Composite (sourceClass), in the source pack-
age, source.ownedMember -> select(oclIsTypeOf (Composite)) -> forAll 
(sourceClass | 
 -- exists an instance of Class (targetClass) in the target pack-
age, so that target.ownedMember -> select(oclIsTypeOf(Class)) -> 
exists (targetClass | 
 -- the class of the package target (targetClass) has as parent a 
 -- class whose type is Composite, targetClass.oclAsType (Class).
superClass.oclIsTypeOf (Composite)) and 
  -- targetClass has the following values for: 
  -- inherited attribute of RedefinableElement targetClass.
oclAsType(Class).isLeaf = sourceClass.oclAsType (Composite).isLeaf 
and 
  -- inherited attributes of NamedElement targetClass.name = 
sourceClass.name and targetClass.visibility = sourceClass.visibility 
and 
  -- inherited attribute of Classifier targetClass.oclAsType 
(Class).isAbstract = sourceClass.oclAsType (Composite).isAbstract 
and 
  -- for each operation of sourceClass sourceClass.oclAsType 
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(Composite).ownedOperation -> forAll(op | 
  -- that is equivalent to operations belonging to another 
classes 
  -- whose types is Composite in the source package (source.
ownedMember -> select(oclIsTypeOf(Composite)) -> 
excluding(sourceClass)) -> collect (oclAsType(Composite).ownedOpera-
tion) -> forAll (o | if o.isEquivalentOperationTo (op) 
   -- the operation isEquivalentOperationTo() is specified as 
   --additional operation of the class Operation of the UML 
   --metamodel (see Appendix A) 
  then-- if the operations o and op are equivalents then, 
   -- an equivalent operation exists in the class parent of 
   -- targetClass in the package target targetClass.
oclAsType(Class).superClass.ownedOperation-> exists (targetOp | op.
isEquivalentOperationTo (targetOp)) and 
   -- and that operation is excluded of targetClass target-
Class.oclAsType(Class).ownedOperation -> excludes(op) and 
   -- operations which are referred directly or indirectly by 
op 
   -- and have an equivalent operation op (that is referred by 
   -- o) are moved to the parent of targetClass op.referenced-
Operation -> forAll (refOp | o.referencedOperation -> forAll (refO | 
   -- the operation referencedOperation is specified as 
   -- additional operation of the class Operation of the 
   -- metamodel UML (see Appendix A) 
  if refOp.isEquivalentOperationTo(refO) 
   then 
   targetClass.oclAsType (Class).superClass. oclAsType (Class).
ownedOperation-> 
    exists (targetOp | 
    refOp.isEquivalentOperationTo (targetOp)) and 
   -- and that operation is excluded of targetClass target-
Class.oclAsType (Class).ownedOperation -> excludes (refOp) 
   else 
   -- if that operations are not equivalents then they 
   -- are moved to the parent class targetClass as an 
   -- abstract operation. 
   targetClass.oclAsType(Class).superClass. 
   ownedOperation -> exists (targetOp | 
   refOp.isEquivalentOperationTo (targetOp) and targetOp.owned-
Member -> 
   select (oclIsKindOf(Action)) -> size() = 0))) 
  else 
  -- if the operation of sourceClass (op) does not have 
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  -- equivalent operations in the remaining classes, then it is 
-- an operation of targetClass in the package target targetClass.
oclAsType (Class).ownedOperation -> includes(op) 
  endif)) 
 -- for each attribute of sourceClass sourceClass.
oclAsType(Composite).ownedAttribute -> forAll(sa | 
 -- that is equivalent to the attributes of the remaining classes 
 -- whose type is Composite in the package source (source.owned-
Member -> select(oclIsTypeOf(Composite)) -> excluding (source-
Class)).oclAsType (Composite). ownedAttribute -> forAll (a | 
  if a.isEquivalentPropertyTo (sa) 
  -- the operation isEquivalentPropertyTo() is specified as  
  -- an additional operation of the class Property of the 
  -- metamodel UML. 
  then-- if attributes a and sa are equivalents then an 
  -- equivalent attribute exists in the class parent of 
  -- targetClass in the package target targetClass.oclAsType 
(Class).superClass. ownedAttribute -> exists (targetAt | 
   sa.isEquivalentPropertyTo (targetAt)) and 
  -- and that attribute is excluded of targetClass 
  targetClass.oclAsType(Class).ownedAttribute -> excludes(sa) 
and 
  -- in the implementations (if they exists) of the operations 
  -- of sourceClass and their descendents, every reference 
  -- to the property sa is changed by the property targetAt in  
  -- the class parent of targetClass and their descendents. 
  sourceClass.oclAsType(Composite).referencedProperty 
   -> includes (sa) implies 
   targetClass.oclAsType(Class).superClass. 
    referencedProperty -> excludes(sa) and 
   targetClass.oclAsType(Class).superClass. 
    referencedProperty -> includes(targetAt) and 
 -- in the expressions OCL related to the invariants, 
 -- preconditions and postconditions and operation body of 
 -- sourceClass or of a descendent class, 
 -- every reference to a property sa is replaced by the property 
 -- targetAt in the parent class of targetClass and in its 
 -- descendents. 
   sourceClass.oclAsType(Composite). 
   referencedPropertyInOcl -> includes (sa) 
    implies 
    targetClass.oclAsType(Class).superClass. 
    referencedPropertyInOcl -> excludes(sa) and 
    targetClass.oclAsType(Class).superClass. 
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    referencedPropertyInOcl -> includes(targetAt) 
   else-- if the attribute of sourceClass (sa) does not have 
   -- equivalent attributes in the remaining classes, then it 
   -- is an attribute of targetClass in the package target 
   targetClass.oclAsType(Class). 
   ownedAttribute -> includes(sa) 
   endif)) and 
  -- both classes belongs to the same package targetClass.
oclAsType(Class).package = sourceClass.oclAsType(Composite).package 
and 
  -- both classes have the same set of redefined classifi-
ers targetClass.oclAsType (Class).redefinedClassifier = sourceClass.
oclAsType (Composite).redefinedClassifier and 
  -- both classes have the same set of imported elements target-
Class.oclAsType (Class).elementImport = sourceClass.oclAsType (Com-
posite).elementImport)) 
post 
-- for each class sourceClass in the package source, source.owned-
Member -> select (oclIsTypeOf (Class)) -> forAll (sourceClass | 
-- exists a class targetClass in the package target so that, 
 target.ownedMember -> select(oclIsTypeOf(Class)) -> 
 exists (targetClass | 
  -- if sourceClass is client of same class whose type is Com-
positeif (sourceClass.oclAsType (Class).clientDependency -> 
   exists (c | c.supplier.oclIsTypeOf(Composite))) 
  then 
  -- targetClass has the following values for: 
  -- inherited attribute of RedefinableElement 
  targetClass.oclAsType(Class).isLeaf = 
   sourceClass.oclAsType(Class).isLeaf and 
  -- inherited attributes of NamedElement 
  targetClass.name = sourceClass.name and 
  targetClass.visibility = sourceClass.visibility and 
  -- inherited attribute of Classifier 
  targetClass.oclAsType(Class).isAbstract = 
   sourceClass.oclAsType(Class).isAbstract and 
  -- inherited associations of Class 
  -- targetClass has the same set of nested classifiers as 
sourceClass 
  targetClass.oclAsType(Class).nestedClassifier = 
   sourceClass.oclAsType(Class).nestedClassifier and 
  -- own operations of targetClass. 
  -- for each own operation of sourceClass, in the package 
source, sourceClass.oclAsType(Class).ownedOperation -> forAll (sOp / 
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  -- exists in targetClass or in its descending an operation 
with the following 
  -- properties 
   targetClass.oclAsType (Class).allDescendant.ownedOperation 
   -> exists (tOp / 
    -- if the return type and/or the parameters of the opera-
tion sOp are 
    -- of type Composite (from the source metamodel), they 
are of the -- type Composite (from the target metamodel) in tOp, 
i.e., for 
    -- each parameter of the operation sOp of sourceClass 
    sOp.ownedParameter -> forAll (sP / 
    -- exists a parameter in the operation (tOp) of target-
Class so that 
    tOp.ownedParameter -> exists (tP / 
    -- if the type of the parameter is Composite (from the 
source 
    -- metamodel), in targetClass, it is the type Composite 
(from the 
    -- target metamodel) 
     if (sP.type.oclIsTypeOf(Composite)) 
     then 
      tP.type = Composite 
     else 
      tP.type = sP.type 
     endif and 
     -- the remaining properties of the parameters are pre-
served. tP.direction = sP.direction and 
     tP.defaultValue = sP.defaultValue and 
     tP.isOrdered = sP.isOrdered and 
     tP.isUnique = sP.isUnique and 
     tP.upperValue = sP.upperValue and 
     tP.lowerValue = sP.lowerValue)) and 
     -- the remaining properties of the operation are  
     -- preserved 
     tOp.name = sOp.name and 
     tOp.class = sOp.class and 
     tOp.isQuery = sOp.isQuery and 
     tOp.precondition = sOp.precondition and 
     tOp.postcondition = sOp.postcondition and 
     tOp.bodyCondition = sOp.bodyCondition and 
     tOp.raisedException = sOp. raisedException and 
     tOp.redefinedOperation = sOp.redefinedOperation)) and 
  -- own attributes of targetClass (attributes and association-
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end). 
  -- for each own attribute of sourceClass, sourceClass.oclAs-
Type (Class).ownedAttribute -> forAll (sAt / 
   -- exists in targetClass or in its descending an attribute 
with the 
   -- following properties 
   targetClass.oclAsType (Class).allDescendant.ownedAttribute 
   -> exists (tAt / 
   -- if the attribute of sourceClass is of type Composite 
(from the 
   -- source metamodel) 
 if (sAt.type.oclIsTypeOf (Composite)) 
  then 
  -- the type of the attribute of targetClass is Composite (from 
  -- the target metamodel); 
   tAt.type.oclIsTypeOf (Composite) and 
  -- and the remaining properties of the attribute are 
  -- preserved 
  tAt.visibility = sAt.visibility and 
  tAt.isLeaf = sAt.isLeaf and 
  tAt.isStatic = sAt.isStatic and 
  tAt.isDerived = sAt.isDerived and 
  tAt.isReadOnly = sAt.isReadOnly and 
  tAt.isDerivedUnion = sAt.isDerivedUnion and 
  tAt.aggregation = sAt.aggregation and 
  tAt.upper = sAt.upper and 
  tAt.lower = sAt.lower and 
  tAt.association = sAt.association and 
  tAt.owningAssociation = sAt.owningAssociation and 
  tAt.redefinedProperty = sAt.redefinedProperty and 
  tAt.subsettedProperty = sAt.subsettedProperty 
 else 
  -- on the contrary, the attributes of targetClass are equal to 
  -- whose of sourceClass 
  tAt = sAt 
 endif)) and 
 -- inherited associations of Classifier 
 -- both classes have the same set of generalizations targetClass.
oclAsType (Class).generalization = sourceClass.oclAsType (Class).
generalization and 
 -- both classes belongs to the same package targetClass.oclAsType 
(Class).package = sourceClass.oclAsType (Class).package and 
 -- both classes have the same set of classifiers targetClass.
oclAsType (Class).redefinedClassifier = sourceClass.oclAsType 
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(Class).redefinedClassifier and 
 -- both classes have the same set of imported elements target-
Class.oclAsType (Class).elementImport = sourceClass.oclAsType 
(Class).elementImport and 
else 
-- on the contrary, targetClass is equal to sourceClass. 
targetClass = sourceClass 
endif)) 
}

reFactOring at MOdeL LeveL

The Extract-Composite rule describes a family of refactoring at model level. One of them is exemplified 
on the open source HyperText Markup Language (HTML) Parser. When the parser HTML analyzes 
code HTML, identifies and creates objects representing HTML tags and pieces of text. The following 
example is analyzed in (Kerievsky, 2004):

 
“<HTML> 
 <BODY> 
  Hello, and welcome to my Web page! I work for 
  <A REF= “http://industriallogic.com”> 
< IMG SRC= “http://industriallogic.com/images/logo141x145.gif”> 
< /A> 
< /BODY > 
< /HTML> “ 

The parser creates the following kind of objects:

• HTMLTag (for the <BODY> tag)
• HTMLStringNode (for the string “Hello, and welcome...”)
• HTMLLinkTag (for the <A HREF= “….”> tag)

The link tag (<A HREF= “….”>) contains an image tag (<IMG SRC “…”>) that the parser handles 
as a child of HTMLLinkTag. When the parser detects that the link tag contains an image tag, constructs 
an object HTMLImageTag as child of the object HTMLLinkTag. Another tag such as HTMLFormTag 
and HTMLTitleTag are also child containers.

Figure 5 and Figure 6 show an instance of the Extract Composite pattern of Figure 2. Figure 5 shows 
a simplified hierarchy of the HyperText Markup Language (HTML) tags, that is an instance of the source 
metamodel of Figure 2. The HTML tags can be form, link and image tag. The form and link tags are child 
containers; for example, a link tag can contain an image tag. HTML tags can be: form, link and image. 
The form and link tags are containers of children, that is to say, a link tag can contain an image tag.
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Figure 5 exemplifies the Extract Composite refactoring rule at the PIM level specified in OCL (Favre, 
& Pereira, 2007). (Kerievsky, 2004, pp. 214) describes this rule at the ISM-JAVA level.

The source pattern in Figure 2 depicts subclasses in a hierarchy that implement the same composite. 
The rule application extracts a superclass that implements the composite removing duplicate behavior. 
The main steps in the proposed transformation are: create a composite; make each class that contains 
duplicate behavior a subclass of the composite and identify methods that are purely duplicated or par-
tially duplicated across the subclasses of a composite. A purely duplicated method can be moved with 
all child containers to the composite. If the method is partially duplicated only the common behavior 
across all subclasses can be moved.

The classes HTMLLinkTag and HTMLFormTag are instances of the metaclass Composite of the source 
metamodel of the Extract Composite refactoring, HTMLTag is an instance of the metaclass Component 
and HTMLImageTag is an instance of the metaclass Leaf.

In this example, the application of the Extract Composite refactoring includes the following steps:

create a new class,• 
rename the new class by • CompositeHTMLTag (name given in the designer),
make • CompositeHTMLTag child of HTMLTag and parent of HTMLFormTag y HTMLLinkTag,
move the equivalent operations from the classes • HTMLFormTag and HTMLLinkTag to the new 
class,
remove the aggregations that each class has with the class • HTMLTag (HTMLFormTag-
HTMLTag and HTMLLinkTag-HTMLTag) and replace them by an only aggregation between 
CompositeHTMLTag and HTMLTag.

Figure 5. The Extract Composite Refactoring: A source instance
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To identify patterns we propose to adapt the ideas of specification matching described in (Zaremski 
&Wing, 1997). The HTMLLinkTag and HTMLFormTag classes are instances of the Composite metaclass 
of the Extract Composite Source Metamodel, HTMLTag is an instance of the Component metaclass and 
HTMLImageTag is an instance of the Leaf metaclass (Figure 2).

The refactoring rule needs to identify duplicate operations of the HTMLFormTag and HTMLLinkTag 
classes. Under signature matching, the addTag operation of HTMLLinkTag class is matched by both 
addTag and removeTag operations of the HTMLFormTag class.

Let the following match be:

• Exact Pre/Post Match: Two specifications, S and S’, satisfy the exact pre/post match if their 
preconditions are equivalent and their postconditions are equivalent: match E-pre/p ost (S, S’) = (S’pre 
<=> Spre) and (Spost <=> S’post)

• Plug-In Match: Under this match, S’ is matched by any specifications S whose precondition is 
weaker (to allow at least all of the conditions that S’ allows) and whose postcondition is stronger 
(to provide a guarantee at least as strong as S’): match plug-in (S, S’) = (S’pre => Spre) and (Spost => 
S’post)

S is behaviorally equivalent to S’, since we can replace S’ with S and have the same observable 
behavior, but this is not a true equivalence because it is not symmetric.

Then, under Plug-In Match, addTag operation of HTMLLinkTag class is only matched by addTag 
operation of HTMLFormTag class. Let S be the specification of the addTag operation of the HTMLLink-
Tag class and let S’ be the specification of the addTag operation of the HTMLFormTag class with allTag 
renamed to tag. The precondition requirement (S’pre => Spre) holds, since S’pre = Spre = true, so showing 
match plug-in (S, S’) reduces to proving (Spost => S’post), in OCL:

Figure 6. The Extract Composite Refactoring: A target instance
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(self.tag = self.tag@pre -> including (t)) implies 
(self.tag→size() = self.tag@pre -> size()+1 and 
self.tag -> includes (t)) 

So, S is behaviorally equivalent to S’, since we can plug in S for S’ and have the same observable 
behavior, but this is not a true equivalence because it is not symmetric. Therefore, addTag operation of 
the HTMLLinkTag class is moved to the new Composite class generated in the target model and addTag 
operation of the HTMLFormTag class is removed.

Table 1 shows the resulting match for the operations removeTag, getTag and toPlainTextTag. Figure 
6 depicts a target instance, the refactoring of the source model (Figure 5).

reFactOring at FOrMaL Language LeveL

Formal techniques are clearly needed in order to ensure that behavioral properties of the software are 
preserved by refactorings maintaining consistency between the refactored artifact and other software 
artifacts. Next, we show the specification of the Extract Composite source metamodel in NEREUS. This 
specification can be built by using the bases described in Chapter 4, that is to say, by using reusable 
schemes and the system of transformation rules described in Chapter

PACKAGE ExtractCompositeSourceMetamodel 
IMPORTS Kernel 
  
CLASS AssEndComposite 
IS-SUBTYPE-OF Property 
ASSOCIATES 
<< AssEndComposite-Composite >> 
<< AssEndComposite-CompositeComponentAssoc >> 
TYPES 
AssEndComposite 
OPERATIONS 
create: * → AssEndComposite 
AXIOMS assEnd: AssEndComposite 
get-aggregation(assEnd) = “shared” or get-aggregation(assEnd) = 
“composite” 
END-CLASS 
  

Table 1. Specification Matching 

Operation Specification S Operation Specification S’ Specification Matching

HTMLLinkTag::removeTag HTMLFormTag::removeTag Match plug-in (S, S’)

HTMLLinkTag::getTag HTMLFormTag::getTag matchE-pre/post(S, S’)

HTMLLinkTag::toPlainTextTag HTMLFormTag::toPlainTextTag matchE-pre/post(S, S’)



186

Evolution of Models and MDA-Based Refactoring

CLASS AssEndComponent 
IS-SUBTYPE-OF Property 
ASSOCIATES 
<< AssEndComponent-Component >> 
<< AssEndComponent-CompositeComponentAssoc >> 
TYPES 
AssEndComposite 
OPERATIONS 
create: * → AssEndComponent 
… 
END-CLASS 
  
CLASS CompositeComponentAssoc 
IS-SUBTYPE-OF Association 
ASSOCIATES 
<< AssEndComposite-CompositeComponentAssoc >> 
<< AssEndComponent-CompositeComponentAssoc >> 
TYPES 
CompositeComponentAssoc 
OPERATIONS 
create: * → CompositeComponentAssoc 
isEquivalentTo: CompositeComponentAssoc x CompositeComponentAssoc 
->boolean 
AXIOMS c, cc: CompositeComponentAssoc; AP: Association-Property 
size (get-memberEnd (AP, cc)) = 2 
isEquivalentTo (c,cc) = (get-isDerived (c) = get-isDerived (cc) and 
get-visibility (c) = get-visibility (cc) and 
(get-name (c)=get-name (cc) or get-name (c) <> get-name (cc))and 
forAll (end1) (get-memberEnd (AP, c), [exists (end2) (get-memberEnd 
(AP, cc), 
[(get-name (end1) = get-name (end2) or get-name (end1) <> get-name 
(end2))and 
get-visibility (end1) = get-visibility (end2) and get-isLeaf (end1) 
= get-isLeaf (end2) and 
get-isStatic (end1) = get-isStatic (end2) and 
get-isDerived (end1) = get-isDerived (end2) and 
get-isReadOnly (end1) = get-isReadOnly(end2) and 
get-aggregationv(end1) = get-aggregation (end2) and 
get-upper (end1) = get-upper(end2) and get-lower(end1) = get-
lower(end2) and 
get-subsettedProperty (end1) = get-subsettedProperty (end2) and 
get-redefinedProperty (end1) = get-redefinedProperty (end2) ] ])) 
END-CLASS 
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CLASS Component 
IS-SUBTYPE-OF M_Class 
ASSOCIATES 
<< Component-ComponentCompositeGeneralization >> 
<< Component-ComponentLeafGeneralization >> 
<< AssEndComponent-Component >> 
TYPES 
Component 
OPERATIONS 
create: * → Component 
AXIOMS c: Component; Ap: AssEndComponent-Component; 
Aa: AssEndComponent-CompositeComponentAssoc; 
Cp: Component-ComponentCompositeGeneralization; 
Oc: Class-Operation; Cc: ComponentCompositeGeneralization-Composite 
forAll (a1,a2) (collect (assEnd) (get_associationEnd (Ap, c), 
[get_association (Aa, assEnd)]), [a1 = a2 or isEquivalentTo(a1, a2) 
]) 
forAll (cl) (collect (child) (get_compositeSpecialization (Cp, c), 
[get_child (Cc, child) ]), 
[exists (op) (get_ownedOperation (Oc, cl), 
[forAll (c) (excluding (collect (child) (get_compositeSpecialization 
(Cp, c), 
[get_child (Cc, child)]), cl), 
[exists (o) (get_ownedOperation (Oc, c)), 
[isEquivalentTo (op, o)] ]] 
END-CLASS 
  
CLASS ComponentCompositeGeneralization 
IS-SUBTYPE-OF Generalization 
ASSOCIATES 
<< ComponentCompositeGeneralization-Composite >> 
<< Component-ComponentCompositeGeneralization >> 
TYPES 
ComponentCompositeGeneralization 
OPERATIONS 
create: * → ComponentCompositeGeneralization 
… 
END-CLASS 
  
CLASS ComponentLeafGeneralization 
IS-SUBTYPE-OF Generalization 
ASSOCIATES 
<< Component-ComponentLeafGeneralization >> 
<< ComponentLeafGeneralization-Leaf >> 
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TYPES 
ComponentLeafGeneralization 
OPERATIONS 
create: * → ComponentLeafGeneralization 
… 
END-CLASS 
  
CLASS Leaf 
IS-SUBTYPE-OF M_Class 
ASSOCIATES 
<< ComponentLeafGeneralization-Leaf >> 
TYPES Leaf 
OPERATIONS 
create: * → Leaf 
… 
END-CLASS 
  
CLASS Composite 
IS-SUBTYPE-OF M_Class 
ASSOCIATES 
<< ComponentCompositeGeneralization-Composite >> 
<< AssEndComposite-Composite >> 
TYPESComposite 
OPERATIONS 
create: * → Composite 
… 
END-CLASS 
  
ASSOCIATION AssEndComposite-Composite 
IS Bidirectional-1 [Composite: class1; AssEndComposite: class2; par-
ticipant: role1; associationEnd: role2; 1: mult1; 1: mult2; +: vis-
ibility1; +: visibility2] 
END 
  
ASSOCIATION AssEndComponent-Component 
IS Bidirectional-5 [AssEndComponent: class1; Component: class2; as-
sociationEnd: role1; participant: role2; 2..*: mult1; 1: mult2; +: 
visibility1; +: visibility2] 
END 
  
ASSOCIATION AssEndComposite-CompositeComponentAssoc 
IS Bidirectional-1 [AssEndComposite: class1; CompositeComponentAs-
soc: class2; assEndComposite: role1; association: role2; 1: mult1; 
1: mult2; +: visibility1; +: visibility2] 
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END 
  
ASSOCIATION AssEndComponent-CompositeComponentAssoc 
IS Bidirectional-1 [AssEndComponent: class1; CompositeComponentAs-
soc: class2; assEndComponent: role1; association: role2; 1: mult1; 
1: mult2; +: visibility1; +: visibility2] 
END 
  
ASSOCIATION Component-ComponentCompositeGeneralization 
IS Bidirectional-5 [ComponentCompositeGeneralization: class1; Compo-
nent: class2; compositeSpecialization: role1; parent: role2; 2..*: 
mult1; 1: mult2; +: visibility1; +: visibility2] 
CONSTRAINED-BY 
parent: redefines general 
END 
  
ASSOCIATION Component-ComponentLeafGeneralization 
IS Bidirectional-5 [ComponentLeafGeneralization: class1; Component: 
class2; leafSpecialization: role1; parent: role2; 1..*: mult1; 1: 
mult2; +: visibility1; +: visibility2] 
CONSTRAINED-BY 
parent: redefines general 
END 
  
ASSOCIATION ComponentCompositeGeneralization-Composite 
IS Composition-1 [Composite: whole; ComponentCompositeGeneraliza-
tion: part; child: role1; componentGeneralization: role2; 1: mult1; 
1: mult2; +: visibility1; +: visibility2] 
CONSTRAINED-BY 
child: redefines specific 
componentGeneralization: subsets generalization 
END 
  
ASSOCIATION ComponentLeafGeneralization-Leaf 
IS Composition-1 [Leaf: whole; ComponentLeafGeneralization: part; 
child: role1; componentGeneralization: role2; 1: mult1; 1: mult2; +: 
visibility1; +: visibility2] 
END 
  
END-PACKAGE

Instances of refactorings are translated into NEREUS specifications by instantiating the reusable 
schemes shown in Figure 6.

Following we shows the specification of the refactoring ExtractCompositeRefactoring. The function 
TranslateNEREUS (transformation.precondition) that appears in the transformation scheme as a precondi-
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tion of the operation create translates into NEREUS precondition the OCL precondition. The function, 
TranslateNEREUS (transformation.postcondition), that appears in the axioms translates into NEREUS axioms 
the OCL postconditions. An instantiation of the transformation scheme is the following:

 
[name: ExtractComposite; 
sourceMetamodel: ExtractCompositeSourceMetamodel; 
targetMetamodel: ExtractCompositeTargetMetamodel; 
OCLexp1: precondition; 
OCLexp2: postcondition ] 
  
CLASS ExtractCompositeRefactoring 
[source: ExtractCompositeSourceMetamodel; 
target: ExtractCompositeTargetMetamodel] 
GENERATED-BY addLink 
EFFECTIVETYPE 
ExtractCompositeRefactoring 
OPERATIONS 
addLink: source x target → ExtractCompositeRefactoring 
get_source: ExtractCompositeRefactoring → source 
get_target: ExtractCompositeRefactoring → target 
... 
AXIOMS 
r: ExtractCompositerefactoring; 
m1: source; 
m2: target; 
PP: PackageableElement-Package 
get_source (addLink (m1, m2)) = m1 
get_target (addLink (m1, m2)) = m2 
forAll (sourceClass) (select (sourceC) (get_ownedMember(PP, m1), 
[oclIsTypeOf(sourceC, Component)], 
[exists (targetClass) 
(select (targetC) (get_ownedMember(PP, m2), 
[oclIsTypeOf(targetC, Component)]), 
name (targetClass) = name (sourceClass) and 
visibility (targetClass) = visibility (sourceClass) 
........ 
END-CLASS

eXaMPLe 9-1: State Machine diagraM reFactOring

Following, we specify a refactoring on state machine diagrams at PIM level. We describe in the context 
of our approach an example of refactoring analyzed in Folli and Mens (2008). The authors specify a 



191

Evolution of Models and MDA-Based Refactoring

refactoring, called “Introduce Initial Pseudostate” by using a graph transformation-based technique. 
We highlight the advantages of our proposal contrasting it with graph transformation.

The Introduce Initial Pseudostate refactoring is used to improve the structure of a state machine dia-
gram. When all the incoming transitions of a region have the same target state it is possible to simplify 
the diagram by adding an initial pseudostate to the region and by setting the region itself as target of the 
incoming transitions. In general, it is a good convention not to cross boundaries of a composite state. 
This refactoring does not modify other kinds of diagrams.

Figure 7 (a) shows a diagram containing a transition that crosses the boundaries of the ACTIVE 
composite state. The refactoring leads to Figure 7 (b):

• add an initial pseudostate to the ACTIVE composite state,
change the target of the transition, which initially refers to the • Ready state, to the region itself,
define an automatic transition between the initial pseudostate and the • Ready state and
if the ACTIVE composite state contains an entry action, it is moved to the transition.• 

As a result, the Ready state will become the default initial state of the ACTIVE region, a transition 
whose target is the ACTIVE state will lead the state machine to the Ready state.

Figure 7. A scheme for translating transformations: From MOF to NEREUS
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To specify this refactoring, source and target metamodels are specified as specialized UML meta-
models. Figure 9 shows the UML simplified metamodel of state machines and Figure 10 metamodels 
for the “Introduce State Refactoring”.

Source metamodel establishes that a source model has at least a composite state (instance of Com-
positeState), which contains one or more regions (instances of aRegion) without initial pseudostate. 
These regions have an inner state (instance of InnerState), which is the target of transitions (instances 
of IncomingTransition) that cross boundaries of its containing composite state (Figure 10a).

Target metamodel establishes that a target model has at least a composite state (instance of Composi-
teState), whose regions (instances of aRegion) contain an initial pseudostate (Figure 10b).

Figure 8. UML state machine diagram refactoring: Introducing initial pseudostate
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Model refactoring is specified relating each element of the source model to one or more elements 
of the target model at metamodel level. Following we partially shows the specification of the Introduce 
Initial Pseudostate refactoring as an OCL contract emphasizing the main changes in the diagrams. The 
refactoring specification is explained by comments.

Transformation Introduce Initial Pseudostate { 
  
parameter 
source: Source_Metamodel::StateMachine 
target: Target_Metamodel::StateMachine 
  
postcondition 
-- A ‘CompositeState’ in source model matches a ‘CompositeState’ in 
target model 
-- (allVertex is an additional operation of the StateMachine meta-
class of the UML metamodel) source.allVertex -> select(oclIsTy
peOf(CompositeState)) -> forAll (sourceState | target.allVer-
tex -> select(oclIsTypeOf(CompositeState)) -> exists (target-
State | targetState.oclAsType(CompositeState).matches(sourceState.
oclAsType(CompositeState)))) and 
-- A ‘Pseudostate’ in source model matches a ‘Pseudostate’ in target 
model source.allVertex -> select(oclIsTypeOf(Pseudostate)) -> forAll 

Figure 9. Simplified state diagram metamodel
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(sourcePState | …. 
… 
local operations 
  
Target_Metamodel::CompositeState matches (aSourceState: Target_
Metamodel::CompositeState): Boolean 
  
matches (aSourceState) = 
-- ‘aSourceState’ and ‘targetState’ (self) have the same name self.
name = aSourceState.name 
and 

Figure 10. Introducing initial pseudostate refactoring: Source and target metamodels
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-- The cardinality of the ‘targetState’ entry transition set is 
equal to the cardinality of the 
-- ‘aSourceState’ entry transition set plus the cardinality of the 
innerState incomingTransition set of -- the source model self.in-
coming -> size() = aSourceState.incoming -> size() + (aSourceState.
aRegion.innerState.incomingTransition) -> size() 
and 
-- for each transition that crosses the compositeState in the source 
model, there is a transition in 
--the target model, so that: 
aSourceState.aRegion.innerState.incomingTransition -> 
forAll(sourceTransition | 
 self.incoming ->exist (targetTransition | 
  --both transitions have the same name, guard and container 
and targetTransition.name = sourceTransition.name and … 
  --both transitions have the same source state targetTransi-
tion.source = sourceTransition.source and 
  -- the target of the targetTransition is the CompositeState 
(self) targetTransit.target = self)) 
and 
 -- for each region of ‘aSourceState’, there is a region in ‘tar-
getState’ (self), so that: 
 aSourceState.aRegion -> forAll(sourceRegion| self.aRegion -> 
exist(targetRegion| 
 -- the vertex set of ‘targetRegion’ is equal to the vertex set of 
‘sourceRegion’ union an initialPseudoState 
  targetRegion.subvertex = sourceRegion.subvertex -> union (tar-
getRegion.initialPseudoState) 
  and 
  -- for each innerState of ‘sourceRegion’ there is an inner-
State in ‘targetRegion’ so that: 
  sourceRegion.innerState -> forAll (innerSourceState| targetRe-
gion.innerState -> exists (innerTargetState| 
   -- both innerStates have the same name and 
   innerTargetState.name = innerSourceState.name 
  and 
  -- the set of the ‘innerTargetState’ incoming transitions is 
equal to the set of the 
  --‘innerSourceState’ incoming transition minus the transition 
that crosses the boundaries --of the composite state plus the tran-
sition from the initial pseudoState. 
  innerTargetState.incoming = innerSourceState.incoming – (in-
nerSourceState.incomingTransition) -> union(innerTargetState.inner-
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Transition))) 
and …)) 
and … } 

This example was previously analyzed in the context of graph transformation. Next, we discuss 
advantages of our approach regarding the use of graph transformation to specify model refactoring ac-
cording to the results shown in (Mens, 2006) and (Folli and Mens, 2008). Graph transformation allows 
representing complex transformations in a compact visual way using a tool, however “current state-of-
the-art in graph transformation does not suffice to easily define model refactorings, so their expressive 
power needs to be increased” (Folli and Mens, 2008, p. 11). Some limitations are:

the • type graph, which represent UML metamodel, does not allow representing concepts like 
Aggregation and Composition, which are represented by a more generic concept of association;
the • type graph cannot expresses all well-formedness constraints imposed on the UML metamodel. 
This problem can be resolved by adding additional global graph constraints but “Trying to for-
malize OCL constraints as graph constraints, however, is a far from trivial task.” (Folli and Mens, 
2008, pp. 11).

In our approach metamodeling-based refactorings are specified as OCL contracts between MOF 
metamodels which are defined as specializations of the UML metamodel itself. Aggregations and com-
positions can be specified and OCL constraints are included.

Considering there is a need for rigorous techniques that address refactoring in consistent and precise 
way, we propose, on the one hand, a rigorous approach to identify refactorings by specification match-
ing, and on the other hand a formalization in the NEREUS language.
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Chapter 10

MDA-Based Object-Oriented 
Reverse Engineering

intrOductiOn

Reverse engineering is the process of analyzing software systems to extract software artifacts at a higher 
level of abstraction so that it is easier to understand them, e.g., for reengineering, modernizing, reuse, 
migration or documenting purposes.

This chapter describes an approach to reverse engineering object oriented code. A central idea in 
reverse engineering is exploiting the source code as the most reliable description both of the system 
behavior and of the organization and its business rules.

We propose an approach for MDA-based object oriented reverse engineering that integrates classi-
cal compiler techniques, metamodeling techniques and formal specification for recovering designs and 
architectures.

We analyze reverse engineering of PSMs and PIMs from object-oriented code. Models are expressed 
using UML and OCL. On the one hand, the subset of UML diagrams, that are useful for platform-depen-
dent models, includes class diagram, object diagram, state diagram, interaction diagram (collaboration 
diagram and sequence diagram) and package diagram. On the other hand, a PIM can be expressed by 
means of use case diagrams, activity diagrams, interaction diagrams to model system processes and state 
diagrams to model lifecycle of the system entities.

DOI: 10.4018/978-1-61520-649-0.ch010
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Reverse engineering involves processes with different degrees of automation, which can go from 
totally automatic static analysis to human intervention requiring processes to dynamically analyze the 
resultant models. Then, we analyze static and dynamic analysis techniques for recovering models at 
different abstraction levels.

We show how MOF-based metamodels can be used to drive model recovery processes. Besides, con-
sidering that validation, verification and consistency analysis are crucial activities in the modernization of 
systems, we propose an algebraic formalization of these MOF-defined reverse engineering processes.

Next, we describe related work and the features of existing reverse engineering tools.

reLated WOrK

Many works had contributed to reverse engineering object oriented code. (Muller, Jahnke, Smith, Storey, 
Tilley, & Wong, 2000) presents a roadmap for reverse engineering research for the first decade of the 
2000s. (Angyal, Lengyel, & Charaf, 2006) is an overview of the state-of-the-art of reverse engineering 
techniques. A more recent survey of existing work in the area of reverse engineering is (Canfora & Di 
Penta, 2007). This article compares existing work, discusses success and provides a road map for pos-
sible future developments in the area.

Fanta and Rajlich (1998) describe the reengineering of a deteriorated object-oriented industrial program 
written in C++. In order to deal with this problem, they designed and implemented several restructuring 
tools and used them in specific reengineering scenarios.

Systa (2000) describes an experimental environment to reverse engineer JAVA software that integrates 
dynamic and static information.

Demeyer, Ducasse, & Nierstrasz (2002) distinguish a variety of techniques for object-oriented reen-
gineering based on patterns.

Qiao, Yang, Chu and Xu (2003) present an approach to bridging legacy systems to MDA that includes 
an architecture description language and a reverse engineering process.

Koehler, Hauser, Kapoor, Wu, and Kumaran (2003) describe a method that implements model 
driven transformations between particular platform-independent (business views) and platform-specific 
(IT architectural) models. On the PIM level, they use business process models and on the PSM level, 
the IT architectural models are service-oriented and focus on specific platform using Web service and 
workflows.

Gueheneuc (2004) proposes a study of class diagram constituents with respect to their recovery from 
object oriented code.

Boronat, Carsi and Ramos (2005) describe MOMENT, a rigorous framework for automatic legacy 
system migration in MDA.

MacDonald, Russell, and Atchison (2005) report on a project that assessed the feasibility of applying 
MDD to the evolution of a legacy system.

Deissenboeck and Ratiu (2006) show the first steps towards the definition of a metamodel that unifies 
a conceptual view on programs with the classical structure-based reverse engineering metamodels.

Tonella and Potrich (2005) provide a relevant overview of techniques that have been recently in-
vestigated and applied in the field of reverse engineering of object oriented code. They describe the 
algorithms involved in the recovery of UML diagrams from code and some of the techniques that can 
be adopted for their visualization. The algorithms deal with the reverse engineering of the following 
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diagrams: class diagram, object and interaction diagram, state diagram and package diagram. The un-
derling principle in this approach is that information is derived statically by performing propagation of 
proper data in a data flow graph.

(Greevy, Ducasse & Girba, 2005) describes a novel approach to analyze the evolution of a system 
in terms of features reflecting how the functional roles of software artifacts change. They introduce 
visualizations to support reasoning about the evolution of a system from a feature perspective.

Reus, Geers and van Deursen (2006) describe a feasibility study in reengineering legacy systems 
based on grammars and metamodels.

The increased use of data warehouse and data mining techniques had motivated an interest in data 
reverse technologies. In general, reverse engineering of persistent data structure of software systems is 
more specifically referred to as database reverse engineering. Kagdi, Collard and Maletic (2007) provide a 
survey and taxonomy of approaches for mining software repositories in the context of software evolution. 
The term mining software repositories (MSR) describes a broad kind of research into the examination 
of software repositories including artifacts that are produced and stored during software evolution. The 
main contribution of this article is to present a layered taxonomy identifying four dimensions in order 
to objectively describe and compare the different existing approaches.

Novel approaches analyze the evolution of a system in terms of features. A feature in a program 
represents some functionality that is accessible by and visible to the developers, and usually captured by 
explicit requirements. The process of identifying the parts of code that correspond to specific functional-
ity is called feature (or concept) location and it is part of the incremental change process. (Pohyvanyk, 
Gueheneuc, Marcus, Antoniol, & Rajlich, 2007) analyzes feature location using probabilistic ranking 
of methods based on execution scenarios and information retrieval and, proposes a new technique for 
feature location which combines an information retrieval technique with dynamic analysis.

Nowadays, software industry evolves to manage new platform technologies, design techniques and 
processes and there is a need for information integration and tool interoperation based on Model Driven 
Development (MDD). There is an increased demand of modernization systems that are still business-
critical in order to extend their useful lifetime. The success of system modernization depends on the 
existence of technical frameworks for information integration and tool interoperation like the Model 
Driven Architecture (MDA). Reverse engineering techniques play a crucial role in modernizing systems 
in a way that fits with the Model Driven Architecture (MDA).

OMG is involved in the definition of standards to successfully modernize existing information systems. 
The OMG Architecture-Driven Modernization (ADM) Task Force is developing a set of moderniza-
tion standards with the purpose of software improvement, modifications, interoperability, refactoring, 
restructuring, reuse, porting, migration and MDA migration.

In the following section we analyze different tools linked to reverse engineering.

caSe tOOLS

Twenty years ago, reverse engineering was focused mainly on recovering high-level architecture or 
diagrams from procedural code to face up to problems such as comprehending data structures or data-
bases, or the Y2K problem. At that time, many different tools for extracting intermediate representa-
tions from the source code and storing it into databases were built. Many reverse engineering tools have 
been implemented to reverse engineering code written in procedural programming languages such as C 
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and Cobol (Antoniol, Fiutem, Lutteri, Tonella & Zanfei, 1997). Examples of tools include CIA (Chen, 
Nishimoto, & Ramamoorthy, 1990) and the Software Refinery that used an object database, called Re-
fine, to store artifacts in the form of an attribute Abstract Syntax Tree (Markosian, Newcomb, Brand, 
Burson, & Kitzmiller, 1994).

A growing demand of reverse engineering systems appeared on the stage when object oriented lan-
guages emerged. The compiler techniques were adapted to perform a propagation of proper data in an 
essentially dynamic context. During this time, the focus of software analysis moved from static analysis 
to dynamic one. Many works has been aimed at identifying abstract data types in procedural code. This 
process cannot be fully automated and the output of reverse engineering was only the starting point for 
highly human-interaction reengineering.

Bellay and Gall (1998) evaluate the capabilities of reverse engineering tools by applying them to a 
real-world embedded software system which implements part of a train control system. The selected 
tools were Refine/C (Markosian, Newcomb, Brand, Burson, & Kitzmiller, 1994), Imagix4D (Imagix4D, 
2000), SNiFF+ (SNiFF+, 1996) and Rigi (Muller & Klashinsky, 1988).

Amstrong and Trudeau (1998) examined tools focusing on the abstraction and visualization of system 
components and interactions. The five tools they examine were: Rigi (Muller & Klashinsky, 1988), the 
Dali workbench (Kazman, & Carriere, 1999), the Software Bookshelf (Finnigan, Holt, Kalas, Kerr, Kon-
togiannis et al, 1997), CIA (Chen, Nishimoto, & Ramamoorthy, 1990) and SNiFF+(SNiFF+, 1996).

When the Unified Modeling Language (UML) emerged, a new problem was how to extract higher 
level views of the system expressed by different kind of diagrams. (Dwyer, Hatcliff, Joehanes, Laubach, 
Pasareanu, Robby, Zheng, & Visser, 2001) describes an integrated collection of program analysis and 
transformation components, called Bandera, that enables the automatic extraction of safe, compact 
finite-state models from program source code.

The reverse engineering tool RevEng extracts UML diagrams from C++ code. Among the diagrams 
that RevEng extracts are class diagram, object diagram, state diagram, sequence and collaboration dia-
grams and package diagram (Potrich & Tonella, 2000).

To date, there are about 150 UML CASE tools that vary widely in functionality, usability, perfor-
mance and platforms (CASE, 2009). Some of them can only help with the mechanics of drawing and 
exporting UML diagrams. The main stream object-oriented CASE tools support forward engineering 
and reverse engineering processes and can help with the analysis of consistency between diagrams. 
Only a few UML tools include extension for real time modeling. Table 1 exemplifies taxonomy of the 
UML CASE tools (CASE, 2009).

The current techniques available in the commercial tools do not allow generating complete and ex-
ecutable code and after generation, the code needs additions. A source of problems in the code generation 

Table 1. UML CASE tools 

Basic Drawing Tools Visio

Main Stream Object Oriented Case Tools Rational Rose, Argo/UML, Together, UModel, MagicDraw, MetaEdit+, Poseidon, 
Fujuba

Real Time/Embedded Tools Rapsody, Rational Rose Real Time, RapidRMA

MDA-based tools OptimalJ, AndroMDA, Ameos, Together Architect, Codagen, ArcStyler, MDE Studio, 
Objecteering



203

MDA-Based Object-Oriented Reverse Engineering

processes is that, on the one hand, the UML models contain information that cannot be expressed in 
object- oriented languages while, on the other hand, the object-oriented languages express implementa-
tion characteristics that have no counterpart in the UML models.

Moreover, the existing CASE tools do not exploit all the information contained in the UML models. 
For instance, cardinality and constraints of associations and preconditions, postconditions, and class 
invariants in OCL are only translated as annotations. It is the designer’s responsibility to make good use 
of this information either selecting an appropriate implementation from a limited repertoire or imple-
menting the association by himself.

On the other hand, many CASE tools support reverse engineering, however, they only use more 
basic notational features with a direct code representation and produce very large diagrams. Reverse 
engineering processes are facilitated by inserting annotations in the generated code. These annotations 
are the link between the model elements and the language. As such, they should be kept intact and not 
be changed. It is the programmer’s responsibility to know what he or she can modify and what he or 
she cannot modify.

UML CASE tools provide limited facilities for refactoring on source code through an explicit selec-
tion made for the designer. However it will be worth thinking about refactoring at the design level. The 
advantage of refactoring at UML level is that the transformations do not have to be tied to the syntax of 
a programming language. This is relevant since UML is designed to serve as a basis for code generation 
with the MDA paradigm (Sunye, Pollet, LeTraon, & Jezequel, 2001).

Techniques that currently exist in UML CASE tools provide little support for validating models in 
the design stages. Reasoning about models of systems is well supported by automated theorem provers 
and model checkers, however these tools are not integrated into CASE tools environments. Another 
problem is that as soon as the requirements specifications are handed down, the system architecture 
begins to deviate from specifications. Only research tools provide support for formal specification and 
deductive verification.

Nowadays, software and system engineering industry evolves to manage new platform technologies, 
design techniques and processes. A new architectural framework for information integration and tool 
interoperation such as MDD had created the need to develop new analysis tools and specific techniques. 
MDD refers to a range of development approaches that are based on the use of software models as first 
class entities, one of them is MDA.

The success of MDA depends on the existence of CASE tools that make a significant impact on 
software processes such as forward engineering and reverse engineering processes (CASE, 2009).

The tool market around MDA tools is still in flux and, only about 10% of UML Case tools provide 
some support for MDA (CASE, 2009). All of the MDA tools are partially compliant to MDA features. 
They provide good support for modeling and limited support for automated transformation. In general, 
they support MDD from the PIM level and use UML class diagrams for designing PIMs. Some of them 
provide only one level of transformation from PIM to code (Codagen, Ameos, Arcstyler) and, in general, 
there is no relation between QVT and the current existing MDA tools. As an example, OptimalJ from 
Compuware supports MDD from PIM level. It allows generating PSMs from a PIM and a partial code 
generation. It distinguishes three kinds of models: a domain model that correspond to a PIM model, an 
application model that includes PSMs linked to different platforms (Relational-PSM, EJB-PSM and 
web-PSM) and an implementation model. The transformation process is supported by transformation 
and functional patterns.
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(Mansurov, & Campara, 2005) describes a tool-assisted way of introducing models in the migration 
towards MDA. They propose to automatically extract architecturally significant models (called Container 
models) and then refactoring them to achieve models in higher-level of abstraction.

Eclipse is an open source framework that can be extended by external plug-in and several transfor-
mation tools are implemented as Eclipse plug-in. Eclipse generative Modeling Tools (EclipseGMT) is 
a collection of tools for model driven development (Eclipse, 2009). Atlas Transformation Language 
(ATL) implements the MOF-metamodel Query, View, Transformation (QVT).

MetaEdit+ is an integrated environment for building and using solutions in a language that uses 
concepts and rules from the problem domain, a Domain-Specific Language (DSL). High-level models 
are expressed in a DSL and code can then be automatically generated from them using customized code 
generators (MetaEdit, 2009).

The Fujaba Tool Suite project is suited to provide an easy to extend UML, Story Driven Modeling and 
Graph Transformation platform with the ability to add plug-ins (FUJUBA, 2009). It combines UML static 
diagrams and UML behavior diagrams (Story Diagrams). Furthermore, it supports the generation of Java 
code. Fujaba is configured with plug-ins for Reverse Engineering and Design Pattern recognition.

The MDA-based tools use MOF to support OMG standards such as UML and XMI (XML Metadata 
Interchange). MOF has a central role in MDA as a common standard to integrate all different kinds of 
models and metadata and to exchange these models among tools; however, MOF does not allow capturing 
semantic properties in a platform independent way and there is no rigorous foundations for specifying 
transformations among different kinds of models.

a FraMeWOrK FOr reverSe engineering

We propose to reverse engineering MDA models from object oriented code starting from the integration 
of compiler techniques, metamodeling and formal specification. With the emergence of MDA, the static 
analysis based on compiler techniques and dynamic analysis must be integrated with metamodeling 
techniques (Favre, 2008a) (Favre, 2008b) (Favre, Martinez, & Pereira, 2009).

Figure 1 shows a framework for reverse engineering that integrates static and dynamic analysis, meta-
modeling and formal specification. It distinguishes three different abstraction levels linked to models, 
metamodels and formal specifications.

The model level includes code, PIMs and PSMs. A PIM is a model with a high level of abstraction 
that is independent of an implementation technology (MDA, 2005). A PSM is a tailored model to specify 
a system in terms of specific platform such J2EE or .NET. PIMs and PSMs are expressed in UML and 
OCL (UML, 2009a) (UML, 2009b) (OCL, 2006). The subset of UML diagrams that are useful for PSMs 
includes class diagram, object diagram, state diagram, interaction diagram and package diagram. On 
the other hand, a PIM can be expressed by means of use case diagrams, activity diagrams, interactions 
diagrams to model system processes and state diagrams to model lifecycle of the system entities. An 
ISM is a specification of the system in source code.

At model level, transformations are based on classical compiler construction techniques. They involve 
processes with different degrees of automation, which can go from totally automatic static analysis to 
human intervention requiring processes to dynamically analyze the resultant models. All the algorithms 
that deal with the reverse engineering share an analysis framework. The basic idea is to describe source 
code or models by an abstract language and perform a propagation analysis in a data-flow graph called 
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in this context object-data flow. This static analysis is complemented with dynamic analysis supported 
by tracer tools.

The metamodel level includes MOF metamodels that describe the transformations at model level 
(MOF, 2006). A metamodel is an explicit model of the constructs and rules needed to construct specific 
models. MOF metamodels use an object modeling framework that is essentially a subset of UML 2.2 
core (UML, 2009a). The modeling concepts are classes which model MOF metaobjects, associations, 
which model binary relations between metaobjects, data types which model other data, and packages 
which modularize the models. At this level MOF metamodels describe families of ISMs, PSMs and PIMs. 
Every ISM, PSM and PIM conforms to a MOF metamodel. Metamodel transformations are specified as 
OCL contracts between a source metamodel and a target metamodel. MOF metamodels “control” the 
consistency of these transformations.

The level of formal specification includes specifications of MOF metamodels and metamodel trans-
formations in the metamodeling language NEREUS that can be used to connect them with different 
formal and programming languages (Favre, 2006) (Favre, 2009).

To sum up, in the level of models, instances of ISMs, PSMs and PIMs are generated by applying 
static and dynamic analysis. Static analysis builds an abstract model of the state and determines how 
the program executes to this state. Dynamic analysis operates by executing a program and evaluating 
the execution trace of the program. Contracts based on MOF-metamodels “control” the consistency of 
these transformations and NEREUS facilitates the connection of the metamodels and transformations 
with different formal languages.

Our work could be considered as an MDA-based formalization of the process described by Tonella 
and Potrich (2005). Additionally, we propose algorithms for extracting UML diagrams that can differ 
on the ones proposed by the mentioned authors. For instance, a different algorithm for extracting State 
Diagrams is proposed. We also propose to include OCL specifications (preconditions, postconditions 
and invariants) in UML Diagrams. Other advantages are linked to the automation of the formalization 

Figure 1. MDA-based reverse engineering
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process and interoperability of formal languages (Favre, 2007) (Favre, 2008a) (Favre, 2008b) (Favre, 
Martinez & Pereira, 2009).

The following sections describe reverse engineering at three different levels of abstraction correspond-
ing to code-to-model transformation, MOF-metamodel formalization and algebraic formalization.

cOde-tO-MOdeL tranSFOrMatiOnS

At model level, transformations are based on static and dynamic analysis. Static analysis extracts static 
information that describes the structure of the software reflected in the software documentation (e.g., the 
text of the source code) while dynamic analysis information describes the structure of the run-behavioral. 
Static information can be extracted by using techniques and tools based on compiler techniques such 
as parsing and data flow algorithms. On the other hand, dynamic information can be extracted by using 
debuggers, event recorders and general tracer tools.

We suppose that the reverse engineering process starts from the ISM that reflects the migration of 
legacy code to object-oriented code. The next step in the migration towards MDA is the introduction of 
PSMs. Then, a PIM is abstracted from the PSMs omitting platform specific details.

Next, we describe the process for recovery PSMs from code. Figure 2 shows the different phases. The 
source code is parsed to obtain an abstract syntax tree (AST) associated with the source programming 
language grammar. Then, a metamodel extractor extracts a simplified, abstract version of language that 
ignores all instructions that do not affect the data flows, for instance all control flows such as conditional 
and loops.

Figure 2. Reverse engineering at model level: Static and dynamic analysis
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The information represented according to this metamodel allows building the data-flow graph for a 
given source code, as well as conducting all other analysis that do not depend on the graph. The idea is to 
derive statically information by performing a propagation of data. Different kinds of analysis propagate 
different kinds of information in the data-flow graph, extracting the different kinds of diagrams that are 
included in a PSM.

The static analysis is based on classical compiler techniques (Aho, Sethi & Ullman, 1985) and ab-
stract interpretation (Jones & Nielson, 1995). On the one hand, data-flow graph and the generic flow 
propagation algorithms are specializations of classical flow analysis techniques (Aho, Sethi & Ullman, 
1985). Because there are many possible executions, it is usually not reasonable to consider all state 
of the program. Thus static analysis is based on abstract models of the program state that are easier to 
manipulate, although lose some information. Abstract interpretation of program state allows obtaining 
automatically as much information as possible about program executions without having to run the 
program on all input data and then ensuring computability or tractability. These ideas were applied in 
compiler optimizations. They require information about program semantics and are semantics- preserv-
ing program transformations.

In our context, an abstract interpretation performs method invocation using abstract domains instead 
of concrete attribute values to deduce information about the object computation on its actual state from 
the resulting abstract descriptions of its attributes. This implies to abstract equivalence classes grouping 
attribute values corresponding to the different states in which the class can be.

The static analysis builds a partial PSM that must be refined by dynamic analysis. Ernst (2003) pro-
vides a comparison of static and dynamic analysis from the point of view of their synergy and duality. 
He argues that static analysis is conservative and sound. Conservatism means reporting weak properties 
that are guaranteed to be true, preserving soundness, but not be strong enough to be useful. Soundness 
guarantees that static analysis provides an accurate description of the behavior, no matter on what input 
or in what execution environment. Dynamic analysis is precise due to it examines the actual run-time 
behavior of the program. However the results of executions may not generalize to other executions.

Ernst (2003) argues that whereas the chief challenge of static analysis is choosing a good abstract 
interpretation, the chief challenge of performing good dynamic analysis is selecting a representative set 
of test cases. A test can help to detect properties of the program, but it can be difficult detect whether 
results of a test are true program properties or properties of a particular execution context.

Dynamic analysis is based on testing and profiling. Execution tracer tools generate execution model 
snapshots that allow us to deduce complementary information. Execution models, programs and UML 
models coexist in this process. An object-oriented execution model has the following components: a set 
of objects, a set of attributes for each object, a location for each object, each object refers to a value of 
an object type and, a set of messages that include a name selector and may include one or more argu-
ments. Additionally, types are available for describing types of attributes and parameters of methods or 
constructors. On the other hand, an object-oriented program model has a set of classes, a set of attributes 
for each class, a set of operations for each class, and a generalization hierarchy over classes.

The static analysis is based on program models but dynamic analysis is based on execution models. 
For instance a basic algorithm for the recovery of class diagram can be obtained by a static analysis. 
From the source code, associations, generalization, realizations and dependencies may be inferred. But, 
to distinguish between aggregation and composition, or to include OCL specifications (e.g. precondi-
tions and postconditions of operations, invariants and association constraints) we need to capture system 
states through dynamic analysis.
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Dynamic analysis allows generating execution snapshot to collect life cycle traces of object instances 
and reason from tests and proofs. The combination of static and dynamic analysis can enrich reverse 
engineering process. There are different ways of combination, for instance performing first static analysis 
and then dynamic one or perhaps iterating static and dynamic analysis.

The ideas of transformations at model level are based on techniques described in (Tonella & Potrich, 
2005). The underlying algorithms to these techniques deal with reverse engineering of UML diagram 
from object-oriented code, e.g., Java, Eiffel and C++. The following UML diagrams are considered: 
class diagram, interaction diagram (sequence and collaboration diagram), object diagram, state diagram 
and package diagram.

Classical compiler techniques such as parsing and data flow are integrated in a common analysis 
framework that is shared by all recovering processes. The basic idea is that information is derived statically 
by performing a propagation of data. Different kinds of analysis propagate different kind of information 
in a dataflow graph. This is built by parsing the source code described by a grammar.

The remaining parts of the chapter describe how to recover UML diagrams from source object-
oriented code.

Static analysis

The concepts and algorithms of data flow analysis described in (Aho, Sethi & Ullman, 1985) are adapted 
for reverse engineering object oriented code. The data flow analysis can be viewed as the transmission 
of useful relationships from all parts of the code to the places when the information can be used.

The basic representation of the static analysis is the Data Flow Graph (OFG) that allows tracing 
information of object interactions from the object creation, through object assignment to variables, the 
storage of objects in attributes or their use in messages (method invocations). OFG is defined as an 
oriented graph that represents all data flows linking objects.

The static analysis is data flow sensitive, but control flow insensitive. This means that programs with 
different control flows and the same data flows are associated with the same analysis results (Tonella 
& Potrich, 2005).

A consequence of the control flow insensitivity is that the construction of the OFG can be described 
with reference to a simplified, abstract version of the object-oriented languages in which instructions 
related to flow control are ignored. A generic algorithm of flow propagation working on the OFG pro-
cesses object information. Then, the three essential components of the common analysis framework are 
the simplified abstract object-oriented language, the data flow graph and the flow propagation algorithm. 
Following, we describe them.

a Simplified Object-Oriented Language

All instructions that refer to data flows are represented in the abstract language, while all control flow 
instructions such as conditional and different iteration constructs are ignored. Moreover, to avoid name 
conflicts all identifiers are given fully scoped names including a list of enclosing packages, classes and 
methods.

Table 2 shows the abstract syntax of simplified language (Tonella & Potrich, 2005).
Table 2 shall employ some notational conventions summarized below:
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non-terminals are denoted by upper case letters• 
a: class attribute name• 
m: method name• 
p• 1, p2, …pj: formal parameters
x, y: program locations• 
a• 1,a2,…aj: actual parameters
cons: class constructor• 
c: class name• 

A program P consists of zero or more declarations (D*) concatenated with zero or more statements 
(S*). The order of declarations and instructions is irrelevant. The nesting structure of packages, classes 
and statements is flattened, i.e. statements belonging to different methods are merged and identified by 
their fully scope names. The process of transformation of an object oriented program into a simplified 
language can be easily automated.

Table 2 shows three types of declaration production: attribute declarations (2), method declarations 
(3) and constructor declaration (4). An attribute declaration is defined by the scope determined by the 
list of packages, classes, followed by the attribute identifier. A method declaration consists in its name 
followed by a list of formal parameter (p1, p2, …pj). Constructors have a similar declaration.

Table 2 also shows three types of statement production: allocation statements (5), assignments (6) 
and method invocation (7). The left hand side and the right hand side of all statements is a program lo-
cation. The target of a method invocation is also a program location. Program locations are either, local 
variables, class attributes or method parameters.

data Flow graph (OFg)

OFG is a pair (N, E) where N is a set of nodes and E is a set of edges. A node is added for each program 
location (i.e., attribute, formal parameter or attribute). Edges represent the data flows appearing in the 
program. They are added to the OFG according to the rules specified in (Tonella & Potrich, 2005, pp. 
26). Table 3 shows the rules for constructing OFG from Java statements.

When a constructor or method is invoked, edges are built which connect each actual parameter 
ai to the respective formal parameter pi. In case of constructor invocation, the newly created object, 
referenced by cons.this is paired with the left hand side x of the related assignment. In case of method 
invocation, the target object y becomes m.this inside the called method, generating the edge (y, m.this), 

Table 2. Simplified object-oriented language: Abstract syntax 

(1) P ::= D*S*

(2) D ::= a

(3)  m (p1,p2,…,pj)

(4)  cons (p1,p2,…,pj)

(5) S ::= x = new c (a1,a2,…aj)

(6)  x = y

(7)  [x = ] y.m (a1,a2,…,aj)
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and the value returned by method m (if any) flows to the left hand side x (pair (m.return, x)) (Tonella 
& Potrich, 2005, pp. 26).

Some edges in the OFG may be related to the usage of library classes. Each time a library class 
introduces a data flow from a variable x to a variable y an edge (x,y) must be included in the OFG. 
Containers are an example of library classes that introduce external data flows. For instance, any Java 
class implementing the interface Collection or the interface Map, or any Eiffel class reusing Container 
introduces external data flows.

Object containers provide two basic operations affecting the OFG: insert and extract for adding an 
object to a container and accessing an object in a container respectively. In the abstract program repre-
sentation insertion and extraction methods are associated with container objects.

The OFG treats the two cases:
c.insert (y) and y =c. extract () where c is a container and x is an object. These statements introduce 

the edges shown in Table 4 to the OFG.
Other cases require that data flows are modeled semi-automatically in a similar way as done for 

the class libraries, for instance dynamic loading and the access to code written in other programming 
languages.

Flow Propagation algorithm

Next, we show a pseudo-code of generic flow propagation algorithm that is a specific instance of the 
algorithms applied to control flow graph described in (Aho, Sethi & Ullman, 1985). It was presented in 
(Tonella & Potrich, 2005, pp. 31).

Algorithm: Forward propagationfor each node n∈ N 
in[n] = emptyset 
out[n]= gen[n] ∪ (in[n] - kill[n]) 
end-forwhile any in[n] or out[n] changes 

Table 3. Rules for constructing OFG from Java statements 

(1) P ::= D*S* { }

(2) D ::= a { }

(3)  m (p1,p2,…,pj) { }

(4)  cons (p1,p2,…,pj) { }

(5) S ::= x = new c (a1,a2,…aj) {(a1,p1) ∈E,..(aj,pj) ∈E, (cons.this,x)∈ E}

(6)  x = y {(y,x) ∈ E}

(7)  [x = ] y.m (a1,a2,…,aj) {(y, m.this) ∈E, (a1,p1) ∈E,..(aj,pj)∈E, (m.return,x) ∈E}

Table 4.

c.insert(x) (x,c) ∈ E

x = c.extract () (c,x) ∈ E
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 for each node n∈ N 
 in[n] = ∪ 

p∈pred(n) out[p] 
 out[n] = gen[n] ∪ (in[n] - kill[n]) 
 end-forend-while 

Let gen[n] and kill[n] be two sets of each basic node n ∈ N. gen[n] is the set of flow information 
entities generated by n. kill[n] is the set of definition outside of n that define entities that also have 
definitions within n. There are two sets of equations, called data-flow equations that relate incoming 
and outgoing flow information inside the sets in[n] and out[n]:

in[n] = ∪ 
p∈pred(n) out[p] 

out[n] = gen[n] ∪ (in[n] - kill[n]) 

Each node n stores the incoming and outgoing flow information inside the sets in[n] and out[n], which 
are initially empty. Each node n generates the set of flow information entities included in gen[s] set, and 
prevents the elements of kill[n] set from being further propagated after node n. In forward propagation 
in[n] is obtained from the predecessors of node n as the union of the respective out sets.

In some cases, it may be appropriate to propagate information in reverse order by collecting the 
incoming information from the out sets of the successors. Next, we show the pseudo-code of backward 
propagation algorithm:

Algorithm: Backward propagationfor each node n∈ N 
in[n] = emptyset 
out[n]= gen[n] ∪ (in[n] - kill[n]) 
end-forwhile any in[n] or out[n] changes 
 for each node n∈ N 
 in[n] = ∪ 

p∈succ(n) out[p] 
 out[n] = gen[n] ∪ (in[n] - kill[n]) 
 end-forend-while 

The algorithm can distinguish when entities are scoped at the class level (for instance, class attributes, 
method names, program location). That means that it is not possible to distinguish two entities (e.g. two 
attributes) when they belong to the same class but to different class instances (objects).

The OFG constructed in based on the previous rules is “object insensitive”. An object sensitive OFG 
might improve the analysis results. It can be built by giving all non-static program names an object 
scope instead a class scope and object can be identified statically by their allocation points. Thus, in an 
object sensitive OFG, non-static class attributes and methods with their parameters and local variables, 
are replicated for every statically identified object.

A detailed description of the basis of static analysis may be found at (Systa, 2000) and (Tonella & 
Potrich, 2005) which presents static analysis with reference to a Java program.

The remaining parts of this chapter contain details on dynamic analysis and on how to adapt and 
extend the proposed techniques in the MDA context.
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dynamic analysis

Integrating dynamic and static analysis seems to be beneficial. For instance, the static analysis is not 
enough to determine the actual method invocations due to polymorphism. This is only possible by analyz-
ing the behavior. The static and dynamic information could be shown as separated views or merged in a 
single view. In general, the dynamic behavior could be visualized as a scenery diagram which describes 
interaction between objects. To extract specific information, it is necessary to define particular views 
of these sceneries. Although, the construction of these views can be automated, their analysis requires 
some manual processing in most cases. In order to describe an integration of static and dynamic analysis 
we define the syntax at levels of execution scenery models and object-oriented programs.

Object-Oriented execution Scenery Model

An execution model has the following components:

a set of objects• 
a set of attributes for each object• 
a location for each object• 
each object refers to a value of an object type• 
a set of messages• 

Additionally, types such as Integer, String, Real and Boolean are available for describing types of 
attributes and parameters of methods or constructors. For naming elements, we assume an alphabet A 
and a set of finite, non-empty of identifiers N ⊆ A+ over alphabet A. All identifiers are given fully scope 
name, being preceded by a dot separated list of enclosing elements.

Objects are associated with attribute values describing properties of the objects that define their state. 
All attributes have different names.

A message includes a name selector and may include one or more arguments. Normally, there exist 
a determined number of arguments. The acceptable values of arguments belong to a type, not necessar-
ily basic.

Object-Oriented Program Model

Such a model has the following components:

a set of classes• 
a set of attributes for each class• 
a set of operations for each class• 
a generalization hierarchy over classes• 

Additionally, types such as Integer, String, Set (Real) are available for describing types of attributes 
and operation parameters.

We assume that there is a signature ∑= (T, O) with T being a set of type names, and O being a set of 
operations over types in T.
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Classes

The central concept of OO programs is the class. A class is a static concept that provides a common 
description for a set of objects sharing the same properties.

The set of classes is a finite set of names CLASS ⊆ N. Each class c ⊆ CLASS induces an object type 
tc ∈T having the same name of the class.

Attributes

Attributes are part of a class declaration. An attribute has a name and a type specifying the domain of 
attribute values. Let t ∈ T be a type. The attributes of a class have distinct names. Attributes with the 
same name may, however, appear in different classes that are not related by generalization. The set of 
attribute names and class names need not be disjoint.

Operations

Operations are part of a class definition. They are used to describe behavioral properties of objects. 
Operations of a class c∈ CLASS with tc ∈ T are defined by a set OPc of signatures w: tc x t1 x… x tn 
-> t with operation symbols w being elements of N.

The name of an operation is determined by the symbol w. The first parameter tc denotes the type of 
the class instance to which the operation is applied. An operation may have any number of parameters 
but only a single return type.

Generalization

A generalization is a taxonomic relationship between two classes. This relationship is a specialization 
of a general class into a more specific class. Specialization and generalization are different views of the 
same concept. Generalization relationships form a hierarchy over a set of classes.

A child class implicitly inherits attributes and operation of its parent class. It contains all inherits 
attributes and operations of its parent classes. It contains all inherited attributes (and operations) and 
those that are defined directly in the class.

Dynamic analysis allows producing specifications in OCL or detecting specific relationships such 
as composition. Nimmer and Ernst (2002) investigate combining dynamic and static analysis for re-
covering formal specifications. They propose to generate specifications from program executions, then 
verify them, i.e., to dynamically detect and then statically verify program specifications. They suggest 
that dynamic analysis can capture all semantics information of interest in certain applications. Their 
experimental results demonstrate that a specific technique, dynamic invariant detection, is effective at 
generating consistent specifications that can be used by a static checker. Recovering specifications is 
useful in testing, debugging, verification, maintenance and optimizations. These ideas can be adapted 
for recovering OCL specifications in MDA models.

Now, we are in the situation to analyze reverse engineering of UML diagrams from object-oriented 
code. First, we analyze code to model transformations for two classical diagrams: Class Diagram and 
State Diagram.



214

MDA-Based Object-Oriented Reverse Engineering

cOde-tO-MOdeL tranSFOrMatiOnS: the BaSeS 
FOr recOvering cLaSS diagraM

A class diagram is a representation of the static view that shows a collection of static model elements, 
such as classes, interfaces, methods, attributes, types as well as their properties (e.g., type and visibil-
ity). Besides, the class diagram shows the interrelationships holding among the classes (UML, 2009a; 
UML, 2009b).

Reverse engineering of class diagram from code is difficult task that cannot be automated. Certain 
elements in the class diagram carry behavioral information that cannot be inferred just from the analysis 
of the code.

The static analysis is based on program models but dynamic analysis is based on execution models. 
For instance a basic algorithm for the recovery of class diagram can be obtained by a static analysis. 
By analyzing the syntax of the source code, internal class features such as attributes and methods and 
their properties (e.g. the parameters of the methods and visibility) can be recovered. From the source 
code, associations, generalization, realizations and dependencies may be inferred too. However, to dis-
tinguish between aggregation and composition, or to include OCL specifications (e.g. preconditions and 
postconditions of operations, invariants and association constraints) we need to capture system states 
through dynamic analysis.

Figure 3 shows relationships that can be detected statically between a Java program and a UML 
class diagram.

The association between A and B could be an aggregation or a composition. An aggregation models 
the situation where an object is made up of several parts. The whole shows at least an emergent property, 
i.e. “the whole is more than the sum of its parts”. Other properties that characterize the aggregation are 
the following:

type-anti-symmetry: the aggregation from a type A (as whole) to a type B (as part), prevents the • 
existence of another aggregation from B (as a whole) to A (as part)
instance-reflexivity• 
instance anti-symmetry• 

Dynamic analysis allows generating execution snapshot to collect life cycle traces of object instances 
and reason from tests and proofs. Execution tracer tools generate execution model snapshots that allow 
us to deduce complementary information.

Execution models, programs and UML models coexist in this process. An object-oriented execution 
model has the following components: a set of objects, a set of attributes for each object, a location for 
each object, each object refers to a value of an object type and, a set of messages that include a name 
selector and may include one or more arguments. Additionally, types are available for describing types 
of attributes and parameters of methods or constructors. On the other hand, an object-oriented program 
model has a set of classes, a set of attributes for each class, a set of operations for each class, and a 
generalization hierarchy over classes.

A composition is a particular aggregation in which the lifetime of the part is controlled by the whole 
(directly or transitively). Then, we can detect a composition by generating tests and scanning dependency 
configurations between the birth and the death of a part object according to those of the whole.
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In the same way, the execution traces of different instances of the same class or method, could guide 
the construction of invariants or pre- and post-conditions respectively.

cOde-tO-MOdeL tranSFOrMatiOn: the BaSeS 
FOr recOvering State diagraM

Below, we describe how to reverse engineering state diagrams from code by integrating static and dy-
namic analysis.

A state transition diagram describes the life cycle of objects that are instances of a class from the time 
they are created until they are destroyed. Object state is determined by the value of its attributes and pos-
sibly by the variables involved in attribute computations. The basic elements of a state diagram are states, 
identified as equivalence classes of attribute values and, transitions triggered by method invocation.

Our approach to recover state diagrams has similar goals to abstract interpretation that allows obtain-
ing automatically as much information as possible about program executions without having to run it 
on all input data and then ensuring computability or tractability (Jones, & Nielsen, 1995). These ideas 
were applied to optimizing compilers, often under the name data-flow analysis (Aho, Sethi, & Ullman 
(1985). In our context, an abstract interpretation performs method invocation using abstract domains 
instead of concrete attribute values to deduce information about the object computation on its actual state 
from the resulting abstract descriptions of its attributes. This implies to abstract equivalence classes that 

Figure 3. Java constructs versus class diagram constructs
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group attribute values corresponding to the different states in which the class can be and the transitions 
among state equivalence classes.

Then, the first step is to define an appropriate abstract interpretation for attributes (which give the 
state of the object) and transformer class method (which give the transitions from state to state to be 
represented in the state diagram).

A taxonomy of finite-state automata minimization can be found at (Watson, 1995) and (Daciuk, 1998). 
The main characteristic of these algorithms is that they are incremental. The minimization algorithm 
should compare incrementally the equivalence between pairs of states to determine whether they can 
be merged in an only state.

The recovery algorithm iterates over the following activities: the construction of a finite automata by 
executing abstract interpretations of class methods and the minimization of the automata for recovering 
approximate state equivalence classes.

To ensure tractability, our algorithm proposes an incremental minimization every time a state is 
candidate to be added to the automaton. When it is detected that two states are equivalents, they are 
merged in an only state. This could lead to modification of the parts of the automaton that had been 
previously minimized. To optimize the comparison of pairs of states, these are classified according to 
their emerging transitions. Let m be a bound of the number of transformer methods of a class, the idea 
is to generate subsets of the set of transformer methods. The subset of emerging transitions of a new 
state belongs, in a particular snapshot, to one of them. Two states are candidates to be equivalent if they 
belong to the same subset. Then, it is sufficient to compare all the pairs composed by the state and one 
element of the subset. Considerable human interaction to select which abstract interpretations should 
be executed is required. Then, our approach is so significantly less automatic than traditional abstract 
interpretation (Nielsen & Jones, 1995).

As an example, Figure 4.a shows a diagram including states (s1, s2,.., s8) and transitions (m1,m2,…
,m6). Figure 4.b shows a simplified snapshot of the automaton when a transition to s5 is added. Then, 
the shaded states could belong to the same equivalence state class. s8 belongs to the same subset of s4 
and an equivalence analysis is carried out concluding that s8 and s4 can be merged (Figure 4.c, Figure 

Figure 4. Recovering minimum State Diagram
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4.d) . Figure 4.e shows the successive transformations. Next, we show the pseudo code of the recovery 
algorithm.

Algorithm for recovering State Diagrams 
  
-- initialization of different sets 
 set-of-states initialStates = {}; -- states defined by class con-
structors 
 set-of-states pendingStates ={};-- set of states pending of anal-
ysis 
 set-of-states allStates = {};-- set of all states 
--definition of initial states for the objects of the class 
 for each class constructor c 
 {-- executing an abstract interpretation of each class construc-
tor 
  state s = abstractInterpretationState (c, {}); 
  initialStates = initialStates ∪ {s}; 
  pendingStatesPending = pendingStates ∪ {s}; 
  allStates = allStates ∪{s}; 
 } 
-- initialization of transition set 
set-of-transitions transitionSet = {}; 
-- generation of subsets of transformer methods 
set-of-bins b = classifiedStates (allStates); 
while |pendingStates| > 0 
 { state r = extract (pendingStates); 
  pendingState = pendingStates – {r}; 
   for each transformer class method m 
    {-- generating transitions of the state r 
     s = abstractInterpretationState (m, r); 
     if s ∉ allStates 
      {pendingStates = pendingStates ∪ {s}; 
      allStates = allStates ∪ {s};} 
      transitionSet = transitionSet ∪ abstractInterpreta-
tionTransition (m,r,s);} 
   -- updating subsets of transformer methods 
   b = modifyBins (r, transitionSet, allStates); 
   for each e ∈ b 
    if s ∈ b 
   {-- defining equivalence of states and merging equivalent 
states 
   for each q ∈ bin and s< > q 
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    if equivalents (s, q) mergeStates (transitionSet, all-
States, s, q);} 
  } 
 }

MOF-BaSed FOrMaLizatiOn: reverSe 
engineering uML cLaSS diagraM

We specify reverse engineering processes as MOF-based transformations. A refinement is the process 
of building a more detailed specification that conforms to another that is more abstract. On the other 
hand, we call anti-refinement the process of extracting from a more detailed specification (or code) 
another one, more abstract, that is confirmed by the more detailed specification. Then, we describe how 
to specify anti-refinements within the proposed framework.

Figures 5 and 6 partially depict an ISM metamodel for Java. A metamodel is an explicit model of the 
constructs and rules needed to build specific models (its instances). The ISM includes metaclasses linked 
to the constructs needed to build specific Java programs. Figure 7 depicts a PSM Java metamodel.

Figure 5 shows partially an ISM-Java metamodel that includes constructs for representing classes, 
field and operations. It also shows different kind of relationships such as composition and generalization. 
For example, an instance of JavaClass could be related to another instance of JavaClass that takes the role 
of superclass or, it could be composed by other instances of JavaClass that take the role of nestedClass. 
Figure 6 shows the metamodel for operations. An operation is a subtype of the metaclass Operation of 
the UML kernel. There is a generalization between operation and constructor and method and so on.

Figure 5. Java ISM metamodel
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Figure 7 shows partially a PSM-Java metamodel that includes constructs for representing classes, 
field, operations and association-end. It also shows different kind of relationships such as composition 
and generalization. For example, an instance of JavaClass could be related to another instance of Ja-
vaClass that takes the role of superclass or, it could be composed by other instances of JavaClass that 
takes the role of nestedClass. The main difference between a Java-ISM and a Java-PSM is that the latter 
includes constructs for associations.

Metamodel transformations impose relations between a source metamodel and a target metamodel, both 
represented as MOF-metamodels. The transformations between models are described starting from the 
metaclass of the elements of the source model and the metaclass of the elements of the target model. The 
models to be transformed and the target models will be instances of the corresponding metamodel.

The transformation specification is an OCL contract that consists of a name, a set of parameters, a 
precondition and postconditions. The precondition states relations between the metaclasses of the source 
metamodel. The postconditions deal with the state of the models after the transformation. Next, an anti-
refinement between an ISM-Java (Figure 5) and a PSM-Java (Figure 7) is partially specified.

Figure 6. Java ISM metamodel: Operations
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Transformation ISM-Java to PSM-Java 
  
parameters 
source: ISM-JavaMetamodel::JavaPackage 
target: PSM-JavaMetamodel::Java Package 
  
preconditions 
-- True 
  
postconditionslet 
SetClassSource: Set[ISM-JavaMetamodel::JavaPackage::JavaClass] = 
source.ownedMember -> 
select (oclIsKindOf (JavaPackage).javaClasses 
in-- for each Java class in the ISM exists a PSM class with the same 
name 
SetClassSource -> 
forAll (sClass| target.ownedMember -> 
select (oclIsKindOf (JavaClass)) -> 
exists (tClass|sClass.name = tClass.name) 
and 
  
-- for each associationEnd of a class in the PSM exists a private 
attribute of the same name in 
-- the ISM 
sClass.fields->forAll (sField| SetClassSource-> 

Figure 7. Java PSM metamodel
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exists (tc1| tc1.type = sField.type implies 
tc1.associationEnd -> includes (sField.type) 
and 
  
--for each extends relation in Java exists a generalization in the 
PSM 
(source.ownedMember -> 
select(oclIsKindOf (JavaClass).extendingClass -> 
 includes(sClass)) implies SetClassSource -> 
  exists (t1 | t1.superclass.name = sClass.name)…

MOF-BaSed FOrMaLizatiOn: reverSe 
engineering uML State diagraM

The State Diagram metamodel (Figure 8) defines a set of concepts than can be used for modeling discrete 
behavior through finite state transition systems such as state machines, state and transitions. OCL can 
be used to attach consistency rules to metamodel components. The following rules are attached to the 
State-Diagram metamodel:

Context Statemachine 
--The connection points of a state machine are pseudostates of kind 
entry point or exit point. conectionPoint -> forAll (c | c.kind = 
#entryPoint or c.kind = #exitPoint) 

Figure 8. State diagram metamodel
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Context PseudoState 
--An initial vertex can have at most one ongoing transition (self.
kind = #initial) implies (self.outgoing -> size <= 1) 
  
Context Region 
--A region can have at most one initial vertex. self.subvertex -> 
select (v |v.oclIsKindOf (Pseudostate)) -> select (p:Pseudostate 
|p.kind = #initial) -> size () <=1 

With respect to reverse engineering processes, two types of consistency can be distinguished, verti-
cal consistency between different levels of refinements and horizontal consistency or inter-consistency 
between models at the same abstraction level. For instance, a vertical consistency analysis detects when 
a state model is associated to a class that does not exist in the ISM. A horizontal consistency analysis 
could detect that the sequence of interactions shown in the sequence diagram does not exist as a trace 
of the state diagram linked to the respective class. We propose to specify consistency relationships as 
OCL contracts based on MOF- metamodels.

Next, we partially exemplify a transformation from an ISM-Java (Figures 5 & 6) to a PSM-Java 
(Figure 7). This transformation uses both the specialized UML metamodel of Java code and the UML 
metamodel of a Java platform as source and target parameters respectively. The postconditions state 
relations at metamodel level between the elements of the source and target model. The transformation 
specification guarantees that for each class in Java code there is a class in the PSM-Java, both of them 
with the same name, the same parent class, equivalent operations and so on. Besides, the PSM-Java has 
a ‘stateMachine’ for each class having a significant dynamic behavior.

Transformation ISM-JAVA to PSM-JAVA {parameter 
sourceModel: ISM-JAVA-Metamodel:: JavaPackage 
targetModel: PSM-JAVA-Metamodel:: JavaPackage 
postconditions 
-- For each class ‘sourceClass’ in the sourceModel 
sourceModel.ownedMember -> select (oclIsTypeOf (JavaClass)) -> 
forAll (sourceClass | 
--there is a class ‘targetClass’ in the targetModel so that both 
classes have the same 
--name, 
targetModel.ownedMember -> select (oclIsTypeOf (JavaClass)) -> 
exists (targetClass | targetClass.name = sourceClass.name and 
-- if ‘sourceClass’ has an extends relation, targetModel has a su-
perclass so that 
-- both superclasses are equivalent. 
sourceClass.extends -> size () = 1 implies (targetClass.superClass 
-> size () = 1 and targetClass.superClass.classMatch(sourceClass.
extends)) and 
--For each operation of ‘sourceClass’ there is an operation in tar-
getClass so that 
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--both operations are equivalent. 
sourceClass.javaOperation -> forAll (sourceOp | 
targetClass.javaOp -> exists (targetOp | targetOp.operationMatch 
(sourceOp))) and 
--For each field in ‘sourceClass’ whose type is a primitive type 
there is a field in 
--‘targetClass’ so that: 
sourceClass.field -> select (f | f.javaType.oclIsTypeOf (Primitive)) 
-> 
forAll (sourceField | targetClass.field -> exists (targetField | 
-- ‘targetField’ and ‘sourceField’ have the same name, type,… 
targetField.name = sourceField.name and targetField.type = source-
Field.javaType…)) and 
-- For each field in ‘sourceClass’ whose type is a user defined type 
there is an 
--association end in ‘ targetClass’ so that: 
 sourceClass.field -> select (f | f.javaType.oclIsTypeOf (UserJa-
vaClass)) -> 
forAll (sourceField | targetClass.associationEnd -> exists (tar-
getAssocEnd | 
-- ‘targetAssocEnd’ and ‘sourceField’ have the same name, type,… 
 targetAssocEnd.name = sourceField.name and 
 targetAssocEnd.opposite.type = sourceField.javaType and ...)) 
and… 
--If ‘sourceClass’ has some significant dynamic behavior, target-
Model has 
-- a ‘stateMachine’ so that: 
 sourceClass.hasSignificantDynamicBehavior() implies 
 targetModel.ownedMember -> select(oclIsTypeOf(JavaStateMachin
e))-> 
 exists (targetMachine | 
 -- ‘targetMachine’ and ‘sourceClass’ have the same name and 
 targetMachine.name = sourceClass.name and 
 -- For each modifier operation in the ‘sourceClass’ there is a 
transition in ‘targetClass’ 
 sourceClass.javaOperation -> select (op | op.isModifier ()) -> 
 forAll (op | targetMachine.region.transition -> exists(t | 
t.isCreatedFrom(op))) 
 )) and 
… }
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SPeciFYing anti-reFineMentS in nereuS

The formalization of the metamodel level implies to formalize metamodels and links among them. The 
specification in NEREUS of the State Diagram Metamodel shown in Figure 8 is as follows:

PACKAGE StateDiagramMetamodel 
IMPORTS TransitionKind, PseudoStateKind 
  
CLASS StateMachine 
IS-SUBTYPE-OF UML::CommonBehaviors::BasicBehaviors::Behavior 
ASSOCIATES 
<< StateMachine-State>> 
<< StateMachine-PseudoState >> … 
AXIOMS a: StateMachine-PseudoState; sm:StateMachine 
forAll (c) (get_connectionPoint (a, sm), 
[kind (c) = #entryPoint or kind (c) = #exitPoint]) … 
END-CLASS 
 
CLASS Region 
IS-SUBTYPE-OFUML::Classes::Kernel::Namespace 
ASSOCIATES 
<< State-Region>> 
<< StateMachine-Region>> 
<< Region-Vertex >>… 
AXIOMS a: Region-Vertex; r: Region 
size (select (p) (select(v) (get_subvertex (a, r), oclIsKinfOf (v, 
PseudoState) ]), 
[kind (p) = #initial ])) <= 1 
END-CLASS 
 
CLASS PseudoState 
IS-SUBTYPE-OF Vertex,… 
ASSOCIATES 
<<Vertex-Transition-1>> 
<<Vertex-Transition-2>> 
<< StateMachine-PseudoState>>… 
ATTRIBUTE 
kind: PseudoState -> PseudoStateKind 
AXIOMS ps: PseudoState; a: Vertex-Transition-1 
kind (ps) = #initial implies size (get_outgoing (a, ps)) <=1… 
END-CLASS 
 
ASSOCIATION stateMachine-PseudoState 
IS Composition-2 [StateMachine: class1; PseudoState: 
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class2;stateMachine: role1; conectionPoint: role2; 0..1: mult1; *: 
mult2; +: visibility1;+: visibility2] 
CONSTRAINED-BY StateMachine: subsets namespace; 
PseudoState: subsets ownedMember 
ENDASSOCIATION Region-Vertex 
IS Composition-2 [Region: class1; Vertex:class2; container: role1; 
subvertex: role2; 0..1: mult1; *: mult2; +: visibility1; +: visibil-
ity2] 
CONSTRAINED-BY Vertex: subsets ownedMember 
END 
… 
END-PACKAGE 

Anti-refinements are specified as links between metamodels, where OCLexp1 and OCLexp2 are 
the precondition and postconditions in a transformation respectively. Instances of metamodel-based 
transformations are automatically translated into NEREUS specifications by instantiating the following 
reusable scheme:

CLASStransformationName [source: Metamodel_A; target: Metamodel_B]
GENERATED-BY addLink 
EFFECTIVE 
TYPEtransformationName 
OPERATIONS 
addLink: source x target -> metaLink 
pre: Translate NEREUS

 (Transformation_AtoB. Precondition) 
getSource: metamodelLink -> source 
getTarget: metaLink -> target 
  
AXIOMS m1: source ; m2: target ; l: transformationName 
getSource (addLink(m1,m2)) = m1 
getTarget (addLink (m1,m2)) = m2 
Translate 

NEREUS
 (Transformation.Postcondition) 

END-CLASS 

The function TranslateNEREUS (transformation.precondition) that appears in the transformation scheme 
as a precondition of the operation addLink translates into NEREUS precondition the OCL precondi-
tion. The function TranslateNEREUS (transformation.postcondition) that appears in the axioms translates 
into NEREUS axioms the OCL postconditions. An instantiation of the transformation scheme is the 
following:

[TransformationName: ISMJava to PSMJava; 
sourceMetamodel: ISM -JAVA-Metamodel:: JavaPackage; 
targetMetamodel: PSM -JAVA-Metamodel:: JavaPackage ; 
precondition: OCLexp1; 
postcondition: OCLexp2 ]
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Chapter 11

Summing Up the Parts

reverSe engineering: a diFFerent POint OF vieW

This chapter summarizes the main results described in this book and challenges and strategic directions 
in MDA reverse engineering.

Reverse engineering is the process of analyzing software systems to extract software artifacts at a 
higher level of abstraction.

Nowadays, software and system engineering industry evolves to manage new platform technologies, 
design techniques and processes. Architectural framework for information integration and tool interop-
eration, such as MDA, had created the need to develop new analysis tools and specific techniques.

MDA is not itself a technology specification but it represents an evolving plan to achieve cohesive 
model-driven technology specifications. The original inspiration around the definition of MDA had to 
do with the middleware integration problem in internet. Beyond interoperability reasons, there are other 
good benefits to use MDA such as to improve the productivity, process quality and maintenance costs.

The outstanding ideas behind MDA are separating the specification of the system functionality 
from its implementation on specific platforms, managing the software evolution from abstract models 
to implementations increasing the degree of automation and achieving interoperability with multiple 
platforms, programming languages and formal languages.

DOI: 10.4018/978-1-61520-649-0.ch011
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MDA distinguishes at least three main models: Computation Independent Model (CIM), Platform In-
dependent Model (PIM), Platform Specific Model (PSM) and Implementation Specific Model (ISM).

The initial diffusion of MDA was focused on its relation with UML as modeling language. However, 
there are UML users who do not use MDA, and MDA users who use other modeling languages such as 
DSLs. The essence of MDA is MOF that allows different kinds of artifacts from multiple vendors to be 
used together in a same project.

MOF-metamodels are expressed as a combination of UML, OCL and natural language. MOF has no 
built-in semantics apart from the well-formedness rules in OCL and what can deduced from them. This 
form of specification does not make possible validating that specific metamodels, like UML metamodel, 
conform MOF. A combination of MOF metamodeling and formal specification can help us to address 
MDA reverse engineering process.

With the emergence of MDA, new approaches should be developed in order to reverse engineering, 
both platform independent and platform specific models, from object oriented code.

This book describes MDA reverse engineering processes based on the integration of traditional reverse 
engineering techniques, advanced metamodeling techniques and formal specification. A framework to 
reverse engineering MDA models from object oriented code that distinguishes three different levels of 
abstraction linked to models, metamodel and formal specification was proposed.

The model level includes code, PIMs and PSMs. A PIM is a model with a high level of abstraction 
that is independent of an implementation technology. A PSM is a tailored model to specify a system in 
terms of specific platform such J2EE or .NET. PIMs and PSMs are expressed in UML and OCL. The 
subset of UML diagrams that are useful for PSMs includes class diagram, object diagram, state diagram, 
interaction diagram and package diagram. On the other hand, a PIM can be expressed by means of use 
case diagrams, activity diagrams, interactions diagrams to model system processes and state diagrams 
to model lifecycle of the system entities. An ISM is a specification of the system in source code.

At model level, transformations are based on classical compiler construction techniques. They involve 
processes with different degrees of automation, which can go from totally automatic static analysis to 
human intervention requiring processes to dynamically analyze the resultant models. All the algorithms 
that deal with the reverse engineering share an analysis framework. The basic idea is to describe source 
code or models by an abstract language and perform a propagation analysis in a data-flow graph called, 
in this context, object-data flow. This static analysis is complemented with dynamic analysis supported 
by tracer tools.

The metamodel level includes MOF metamodels that describe the transformations at model level. 
MOF metamodels describe families of ISMs, PSMs and PIMs. Every ISM, PSM and PIM conforms to 
a MOF metamodel. Metamodel transformations are specified as OCL contracts between a source meta-
model and a target metamodel. These contracts “control” the transformation consistency.

This book describes a formalization of MDA processes in terms of MOF-based metamodels and 
QVT-based transformations. Both, MOF and QVT, depends on UML metamodel, which in turn depends 
on OCL. That is to say, the formalization of MDA processes depends on various OMG standards. Some 
of them, such as OCL and QVT, involve imperative constructions that are hard to formalize. To avoid 
this inconvenient, we analyzed the graph of package dependencies to select a minimal set of packages 
that allows us to precisely define the semantics of MDA process in a way independent of imperative 
constructions. . The formalization is based on a subset of OMG standard metamodels that we called MDA 
Infrastructure, including elements of UML Infrastructure, EssentialOCL, EMOF and the QVT-Core.
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The level of formal specification includes specifications of MOF metamodels and metamodel transfor-
mations in the metamodeling language NEREUS that can be used to connect them with different formal 
and programming languages. NEREUS, like MDA, was designed for improving interoperability and 
reusability through separation of concerns. It is suited for specifying metamodels based on the concepts 
of entity, associations and systems. Formal specification can be automatically generated by using reus-
able schemes and a system of transformation rules for translating OCL specification into NEREUS.

We analyze how to define reusable components in a way that fits with MDA and propose a megamodel 
for defining MDA components. Considering the relevant role that design patterns take in software evolu-
tion we exemplify MDA components for them. We propose a megamodel to define families of design 
pattern components by means of PIM-, PSM- and ISM-metamodels and their interrelations. Instances 
of the “megamodel” are reusable components that describe specific design patterns at different levels 
of abstraction (PIMs, PSMs and ISMs). They can be viewed as “megacomponents” that allow defining 
in a concise way as many components as different pattern solutions can appear.

In MDA is crucial to define, manage, and maintain traces and relationships between different models, 
and automatically transform them and produce implementations. Refactoring is a powerful technique 
when is repeatedly applied to a model to obtain another one with the same behavior but enhancing 
some non functionality quality factor such as simplicity, flexibility, understandability and performance. 
Refactorings are horizontal transformations for supporting perfective model evolution. We propose 
an MDA framework for refactoring that is structured at three different levels of abstraction linked to 
models, metamodels and formal specification. The model level includes different kind of models (PIM, 
PSM, ISM) related by refinement.

Our approach to MDA processes has two main advantages linked to automation and interoperability. 
On the one hand, our approach shows how to generate automatically formal specifications from MOF 
metamodels. On the other hand, our approach focuses on interoperability of formal languages. Consider-
ing that there exist many formal algebraic languages, NEREUS allows any number of source languages 
such as different DSLs and target languages (different formal language) could be connected without 
having to define explicit metamodel transformations for each language pair. Such as MOF is a DSL to 
define semi-formal metamodels, NEREUS can be viewed as a DSL for defining formal metamodels.

Another advantage of our approach is linked to pragmatic aspects. NEREUS is a formal notation 
closed to MOF metamodels that allows meta-designers who must manipulate metamodels to understand 
their formal specification.

Our approach could be considered as an MDA-based formalization of traditional reverse engineer-
ing processes. The underlying ideas contribute to a more general goal, the definition of rigorous MDA 
processes such as forward engineering, reverse engineering and in general round trip engineering.

This book intends to shorten the path to this goal providing an overview of several techniques that 
can be adopted in the field of MDA-based processes. It presents principles of reverse engineering within 
system evolution and shows how to recover designs and architectures. Different techniques for helping 
in reverse engineering about how to define MDA-based reusable component and transformations are 
covered. The underlying concepts were giving with special emphasis on consistency, traceability, testing 
and verification combining semiformal metamodeling techniques and formal specification.

Although, this book uses some specific notation, the underlying ideas of our approach are indepen-
dent of NEREUS and the proposed rule transformational system. The following are the bases of our 
approach:



234

Summing Up the Parts

The integration of compiler techniques, metamodeling and formal specification.• 
The formalization of an • MDA Infrastructure.
The definition of a formal Domain Specific Language (DSL) for defining metamodels and • 
transformations.
The automation of bridges between • MOF metamodels and the DSL.
The definition of • MDA-based reuse and refactoring techniques.

chaLLengeS On Mda-BaSed reverSe engineering

Reverse engineering techniques are used as a mean to design software systems by evolving existing 
ones based on new requirements or technologies. In particular, reverse engineering is an integral part of 
the modernization of legacy systems whose aging can or will have a negative impact on the economy, 
finance and society.

To date, software industry evolves to tackle new approaches that are aligned with internet, object 
orientation and distributed components. However, the majority of the large information systems running 
today in many organizations were developed many years ago with technology that is now obsolete. Many 
large systems remain in use after more than 20 years; they may be written for mainframe hardware which 
is expensive to maintain and which may not be aligned with current organizational politics. There is a 
high risk in replacing legacy systems that are still business-critical. That is the reason for the increased 
demand of reengineering techniques of legacy system to extend their useful lifetime.

The success of legacy system modernization depends on the existence of technical frameworks like 
MDA to cope with the diversity of languages and technologies used to develop a single software system. 
Besides, the existing CASE tools must incorporate new functionality that make a significant impact on 
the automation of reverse engineering processes.

In legacy system modernization, reverse engineering is an integral part of the software development 
cycle. Although this book was born with the problem of legacy systems in mind, reverse engineering 
has the power to address general problems related to program comprehension and modification.

Commercial MDA tools have recently begun to emerge, in general, UML preexisting tools are been 
extended to support MDA. The current techniques available in these tools provide forward engineering 
and limited facilities for reverse engineering. They only use more basic notational features with a direct 
code representation and produce very large diagrams.

Most CASE tools can reverse engineering static diagrams, but there is a lack of tool support for what 
regards the extraction of dynamic diagrams and also OCL pre- and post-conditions. One of the major 
challenges of reverse engineering is to deal with the high dynamicity. For example, object-oriented lan-
guages introduce the concept of reflection. This affects the static analysis then, future tasks in reverse 
engineering should promote a high integration of human feedbacks into automatic reverse engineering 
processes.

Refactoring is an important step for evolving models in reverse engineering processes however CASE 
tools provide limited facilities for refactoring only on source code through an explicit selection made for 
the designer but do not provide support for model refactorings. Formal techniques are needed in order 
to ensure behavioral properties of the software involved in the refactoring.

Another research trend of reverse engineering is design pattern identification to understand the design 
considerations promoting reuse and quality of different software artifacts. Pattern identification allows 
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measuring quality of software reverse engineering, because pattern and anti-pattern can help to discover 
weakness of code or models.

MDA approach is useless without tools automating the model transformation. The existing MDA-
based tools do not provide sophisticated transformation from PIM to PSM and from PSM to code. To 
date, they might be able to support forward engineering and partial round trip engineering between PIM 
and code. Little support for reverse engineering business models from code is provided for the existing 
CASE tools.

The MDA Case tools must evolve towards a new generation of tools that insure consistency of va-
riety of artifacts representing different dimensions. MDA is an architectural framework for specifying 
software artifacts and their interrelations. It allows working with existing tools by abstracting informa-
tion from the external representation used by them. This abstraction provides independence from the 
used tools and should be aligned to OMG standards such as XMI and in general, artifacts represented 
by MOF metamodels.

The existing tools should also handle dynamic information. The idea is determine, on the one hand 
what information need to be collected at run time, and then checking that the contracts are satisfied when 
the program run or, on the other hand inferring constraints that may be added to the artifact specification. 
Besides, there is a need to develop tools for new software architecture that have characteristics of being 
extremely dynamic, highly distributed, self-configurable and heterogeneous.

To date most MDD research focuses on “Software Language Engineering”. Perhaps, in the coming 
years the focus will be on “Software Process Engineering”. In the light of the advances, a new type of 
tools, that do a more intelligent job, might emerge. Probably, the next generation of tools might be able 
to describe the behavior of software systems in terms of business models and translate it into executable 
programs on distributed environment and to automate round-trip engineering processes. It will prob-
ably take several years before a full round trip engineering based on standards occurs (many authors 
are skeptical about this).
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Chapter 12

Towards MDA Software 
Evolution

intrOductiOn

This chapter discusses software evolution, challenges and strategic directions in the context of MDA.
Various authors agreed that it is difficult to define completely software and then, software evolution. 

Software is certainly more that bits stored in a file, it is an abstract idea that encompasses the concepts, 
algorithms embodied in the implementation as well as all its associated artifacts and processes. Research 
seems to confirm that computer software and process software have much in common. Osterweil (2003) 
assures that software processes are software too. In other paper (Osterweil, 2007), he suggests analyzing 
the nature of software and proposes to define taxonomies for exploring characteristics and approaches 
to the development, verification of qualities and software evolution. The exploration of these questions 
is an important current of software engineering research.

On the other hand, evolution is defined as a process of gradual change and development from fewer 
and simpler forms to higher, more complex, or better ones. In biology, evolution is related to develop 
over time often many generations, into forms that are better adapted to survive changes in their environ-
ment. Thus, evolution captures the notion of something improving and changes occur in species in suc-
cessive generations, i.e. individuals get old and species evolve. Jazayeri (2005) analyzes the definition 
of software evolution. The concept of “specie” in software may be associated to meta-levels describing 
families (species) of software systems. These meta-levels or architectures are created as improvements 
to previous existing ones and describe evolved families of software systems.

Evolution must focus on “species” of software rather than individual software applications. Then, 
“Software, like people, get old“ (Parnas, 1994) and meta-levels or architectures, like species, evolve.

DOI: 10.4018/978-1-61520-649-0.ch012
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Starting from our understanding of software applications, their specification in terms of models (and 
metamodels) evolves to new generation of tools that have an improved structure and are based on new 
technologies.

Software evolution is multidimensional and is composed of different types of entities/concepts or 
artifacts that come from specifications, designs and architectures to source code, test cases and documen-
tation. Each of them depends on other artifacts embodied in the implementation such as user interfaces, 
components, patterns and so on. The different ways and rates that these artifacts change, lead to unreli-
able software and cause many problems associated with software maintenance.

Software artifacts evolve at different rhythm and in different ways, for instance, an initial design is 
not updated to reflect the changes that are introduced in the code. Software evolution needs a software 
development framework that supports the consistency evolution of the different dimensions of the 
software.

In this light, an MDA-based approach can help to support consistently software evolution due to 
MDA can be viewed as an integration architectural framework that maintains consistency as the software 
evolves, i.e., the concept of multidimensional evolution is in the essence of MDA.

MDA can help to develop and support a common application framework for software evolution that 
raises issues such as common exchange formats, tool integration and interoperability. When the system 
evolves, MDA maintains the interrelation between software entities accommodating the evolution of 
higher level artifacts together with the code in a consistent way.

Next, we describe challenges in software evolution and the role of MDA to overcome or avoid the 
negative effect of software aging.

chaLLengeS On Mda-BaSed SOFtWare evOLutiOn

(Mens, Wermelinger, Ducasse, Demeyer, Hirschfeld and Jazayeri, 2005) list 18 essential challenges in 
the software evolution that need to be addressed in the future. We include the main challenges that our 
MDA-based reverse engineering and software evolution could overcome:

“To provide tools and techniques which preserve or even improve the quality characteristics of a • 
software system, whatever its size and complexity”.
“To develop and support a common application framework for doing joint • software evolution 
research”.
“Software evolution techniques should be raised to a higher level of abstraction, in order to ac-• 
commodate not only evolution of programs, but also evolution of higher-level artifacts”.
“To achieve co-evolution between different types of software artifacts or different representation • 
of them”.
“In order to become accepted as practical tools for software developers, formal methods need to • 
embrace change and evolution as an essential fact of life”.
“Software evolution must provide more and better support for multi-language systems.”• 

 (Mens, Wermelinger, Ducasse, Demeyer, Hirschfeld and Jazayeri, 2005)

A challenge on software evolution is the necessity to achieve co-evolution between different types 
of software artifacts or different representations of them. MDA allows us to develop and relate all dif-
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ferent artifacts in a way that ensures their inter-consistency. MDA raises the level of reasoning to a 
more abstract level and therefore even more appropriate. It places change and evolution in the center of 
software development process. To give a few examples, in the context of MDA co-evolution is needed 
between:

source code and models at levels of PSMs and PIMs• 
structural and behavioral models at levels of PSMs• 
structural and behavioral models at levels of PIMs• 
code and CIMs• 

Among others, an interesting research direction would be treat the notion of change in programming 
and modeling languages as a first-class entity and provide support for multi language systems.

Existing formal methods provide a poor support for evolving specifications and incremental verifica-
tion approaches. In particular, with the existing verification tools, simple changes in a system require 
to verify its complete specification again making the cost of the verification proportional to its size. To 
use formal methods that place change and evolution in the center of the software development process 
is another challenge (Canfora & Di Penta, 2007)

Component-based software offers interesting challenges in software evolution. New tools and tech-
niques to analyze the evolution of systems and their components both in a way independent from each 
other and as interrelated artifacts must emerge. Perhaps, an interesting challenge would be an MDA 
adaptation of existing results for analyzing software evolution through feature views (Pohyvanyk, 
Gueheneuc, Marcus, Antoniol and Rajlich, 2007) (Greevy, Ducasse & Girba, 2005). Buckley, Mens 
and Zenger (2005) propose taxonomy of software change based on characterizing the mechanisms of 
change and the factors that influence these mechanisms. The goal is to relate concrete tools, formalisms 
and methods within the domain of software evolution.

The integration of business models with PIM, PSMs and code is crucial to achieve software evolution. 
Some works are producing advances in this direction. Hess (2005) describes an approach for mapping 
business requirements to application software, for using patterns to help translate business requirements 
to software requirements, and for using patterns to translate software requirements into potential solution 
designs. Besides, the integration between ontologies (that are essentially CIMs) and MDA is occupying 
a central place in software development (Djuric, Gasevic and Devedzic, 2005) (Kherraf, Lefrebe, & 
Suryn, 2008).

OMG is involved in the definition of standards to successfully modernize existing information 
systems. The OMG Architecture-Driven Modernization (ADM) Task Force is developing a set of mod-
ernization standards for the purpose of software improvement, modifications, interoperability, refac-
toring, restructuring, reuse, porting, migration and MDA migration. Current work involves building a 
Knowledge Discovery Meta-model (KDM) to facilitate the exchange of existing systems meta-data for 
various modernization tools. Subsequent standards will address analysis, visualization, refactoring and 
transformation related standards. A detailed description may be found at ADM (2007).

In summary, a lot remains to be done to provide support for MDA-based software evolution:

Research on formalisms and theories to increase understanding of • software evolution processes,
Development of methods, techniques and heuristics to provide support for software changes,• 
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New verification tools that embrace change and evolution as central in software development • 
processes
Development of new sophisticated tools to develop industrial size software systems• 
Definition of standards to evaluate the quality of evolved artifacts/systems.• 

Besides, the adoption of software evolution should be favored by educating future generations of 
software engineers, i.e., integrating background on software evolution into the computer science cur-
riculum.

reFerenceS

Buckley, J., Mens, T., & Zenger, M. (2005). Towards a taxonomy of software change. Journal of Software 
Maintenance and Evolution: Research and Practice, 1-26.

Canfora, G., & Di Penta, M. (2007). New Frontiers of reverse Engineering. Future of Software engi-
neering. In Proceedings of Future of Software Engineering (FOSE 2007) (pp. 326-341). Los Alamitos: 
IEEE Press.

Djuric, D., Gasevic, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology Development. 
Heidelberg: Springer-Verlag.

Greevy, O., Ducasse, S., & Girba, T. (2005). Journal of Software Maintenance and Evolution . Research 
and Practice, 18(6), 425–456.

Hess, H. (2005). Aligning technology and business: Applying patterns for legacy transformation. IBM 
Systems Journal, 44(1), 25–45.

Jazayeri, M. (2005) Species evolve, individuals age. In Proceedings of the 2005 Eight International 
Workshop on Principles of Software Evolution (IWPSE´05) (pp. 3-9). Los Alamitos: IEEE Computer 
Society.

Kherraf, S., Lefebre, E., & Suryn, W. (2008). Transformation From CIM to PIM Using Patterns and 
Archetypes. In Proceedings of the 19th Australian Conference on Software Engineering (pp. 338-346). 
Los Alamitos: IEEE Computer Society.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M. (2005). Challenges 
in Software Evolution. In Proceedings of Eighth International Workshop on Principles of Software 
Evolution (pp. 13-22). Los Alamitos: IEEE Computer Society.

Osterweil, L. (2003). Software Processes Are Software Too, Revisited [Los Alamitos: IEEE Computer 
Press.]. An Invited Talk on the Most Influential Paper of ICSE, 1997, 540–548.

Osterweil, L. (2007) A Future for Software Engineering? In Proceedings of Future of Software Engineer-
ing (FOSE 2007) (pp. 1-11). Los Alamitos, IEEE Computer Society

Parnas, D. (1994) Software aging. In Proceedings of the International Conference on Software Engineer-
ing (pp. 279-287). Los Alamitos: IEEE Computer Press.



240

Towards MDA Software Evolution

Pohyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2007). Feature Location 
Using Probabilistic ranking of Methods Based on Execution Scenarios and Information Retrieval. IEEE 
Transactions on Software Engineering, 23(6), 420–432. doi:10.1109/TSE.2007.1016



Section 5
Selected Readings



242  

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13
Foundations for MDA Case 

Tools
Liliana Favre

Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Claudia Teresa Pereira
Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Liliana Inés Martinez
Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

intrOductiOn 

The model driven architecture (MDA) is an 
initiative proposed by the object management 
group (OMG), which is emerging as a technical 
framework to improve productivity, portability, in-
teroperability, and maintenance (MDA, 2003). 

MDA promotes the use of models and model-
to-model transformations for developing soft-
ware systems. All artifacts, such as requirement 
specifications, architecture descriptions, design 
descriptions, and code are regarded as models. 
MDA distinguishes four main kinds of models: 
computation independent model (CIM), platform 
independent model (PIM), platform specific mod-
els (PSM), and implementation specific model 
(ISM).

A CIM describes a system from the computa-
tion independent viewpoint that focuses on the 

environment of and the requirements for the 
system. In general, it is called domain model. 
A PIM is a model that contains no reference to 
the platforms that are used to realize it. A PSM 
describes a system with full knowledge of the 
final implementation platform. In this context, a 
platform is “a set of subsystems and technologies 
that provide a coherent set of functionality which 
any application supported by that platform can use 
without concern for the details of how the func-
tionality is implemented” (MDA, 2003, p. 2-3). 
PIMs and PSMs are expressed using the unified 
modeling language (UML) combined with the 
object constraint language (OCL) (Favre, 2003; 
OCL, 2004; UML, 2004). 

The idea behind MDA is to manage the evolu-
tion from CIMs to PIMs and PSMs that can be 
used to generate executable components and ap-
plications. In MDA is crucial to define, manage, 
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and maintain traces and relationships between 
different models and automatically transform 
them and produce code that is complete and 
executable.

Metamodeling has become an essential tech-
nique in model-centric software development. 
The metamodeling framework for the UML 
itself is based on architecture with four layers: 
meta-metamodel, metamodel, model, and user 
objects. A metamodel is an explicit model of 
the constructs and rules needed to build specific 
models, its instances. A meta-metamodel defines 
a language to write metamodels. OCL can be 
used to attach consistency rules to models and 
metamodels. Related OMG standard metamodels 
and meta-metamodels such as meta object facility 
(MOF), software process engineering metamodel 
(SPEM) and common warehouse model (CWM) 
share a common design philosophy (CWM, 2001; 
MOF, 2005; SPEM, 2005). 

MOF defines a common way for capturing 
all the diversity of modeling standards and inter-
change constructs. MOF uses an object model-
ing framework that is essentially a subset of the 
UML core. The four main modeling concepts 
are “classes, which model MOF metaobjects; 
associations, which model binary relationships 
between metaobjects; data types, which model 
other data; and packages, which modularize the 
models” (MOF, 2005, p. 2-6). The query, view, 
transformation (QVT) standard depends on MOF 
and OCL for specifying queries, views, and trans-
formations. A query selects specific elements of 
a model, a view is a model derived from other 
model, and a model transformation is a specifica-
tion of a mechanism to convert the elements of a 
model, into elements of another model, which can 
be instances of the same or different metamodels 
(QVT, 2003). 

The success of MDA depends on the existence 
of CASE (computer-aided software engineering) 
tools that make a significant impact on software 
processes such as forward engineering and re-
verse engineering processes (CASE, 2006). This 

article explains the most important challenges to 
automate the processes that should be supported 
by MDA tools. We propose an integration of 
knowledge developed by the community of formal 
methods with MDA. We describe a rigorous frame-
work that comprises the metamodeling notation 
NEREUS and bridges between MOF-metamodels 
and NEREUS, and between NEREUS and for-
mal languages. NEREUS can be viewed as an 
intermediate notation open to many other formal 
specifications. We analyze metamodeling tech-
niques for expressing model transformations such 
as refinements and refactorings. Our approach 
focuses on interoperability of formal languages 
in model driven development (MDD).

This article is organized as follow. We first 
analyze the limitations of the existing MDA-
based CASE tools. Then, we describe the bases 
of rigorous MDA-based processes. Next, we show 
how the formalization of MOF metamodels and 
metamodel-based model transformations allows 
us automatic software generation. Finally, we 
highlight the key directions in which MDA is 
moving forward.  

BacKgrOund 

To date, there are about 120 UML CASE tools 
that vary widely in functionality, usability, per-
formance, and platforms (CASE, 2006). Some of 
them can only help with the mechanics of drawing 
and exporting UML diagrams. The mainstream 
object-oriented CASE tools support forward en-
gineering and reverse engineering processes and 
can help with the analysis of consistency between 
diagrams. Only a few UML tools include extension 
for real time modeling. The tool market around 
MDA tools is still in flux and only about 10% of 
them provide some support for MDA. Table 1 
exemplifies a taxonomy of the UML CASE tools 
(CASE, 2006). 

The current techniques available in the com-
mercial tools do not allow generating complete 
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and executable code and after generation, the code 
needs additions. A source of problems in the code 
generation processes is that, on the one hand, the 
UML models contain information that cannot be 
expressed in object-oriented languages while, 
on the other hand, the object-oriented languages 
express implementation characteristics that have 
no counterpart in the UML models.

Moreover, the existing CASE tools do not 
exploit all the information contained in the UML 
models. For instance, cardinality and constraints 
of associations and preconditions, postconditions, 
and class invariants in OCL are only translated 
as annotations. It is the designer’s responsibil-
ity to make good use of this information either 
selecting an appropriate implementation from a 
limited repertoire or implementing the associa-
tion by himself. 

On the other hand, many CASE tools sup-
port reverse engineering, however, they only use 
more basic notational features with a direct code 
representation and produce very large diagrams. 
Reverse engineering processes are facilitated by 
inserting annotations in the generated code. These 
annotations are the link between the model ele-
ments and the language. As such, they should be 
kept intact and not be changed. It is the program-
mer’s responsibility to know what he or she can 
modify and what he or she cannot modify.

UML CASE tools provide limited facilities 
for refactoring on source code through an explicit 
selection made for the designer. However, it will 
be worth thinking about refactoring at the design 
level. The advantage of refactoring at UML level 
is that the transformations do not have to be tied 

to the syntax of a programming language. This 
is relevant since UML is designed to serve as a 
basis for code generation with MDA (Sunye et 
al., 2001).

Techniques that currently exist in UML CASE 
tools provide little support for validating models 
in the design stages. Reasoning about models of 
systems is well supported by automated theorem 
provers and model checkers, however, these tools 
are not integrated into CASE tools environments. 
Another problem is that as soon as the require-
ments specifications are handed down, the system 
architecture begins to deviate from specifications 
(Kollmann & Gogolla, 2002). Only research tools 
provide support for formal specification and de-
ductive verification.

All of the MDA CASE tools are partially com-
pliant to MDA features. They provide good support 
for modeling and limited support for automated 
transformation. In general, they support MDD 
from the PIM level and use UML class diagrams 
for designing PIMs. Some of them provide only 
one level of transformation from PIM to code 
(Codagen, Ameos, Arcstyler) and, in general, there 
is no relation between QVT and the current exist-
ing MDA tools. As an example, OptimalJ from 
Compuware supports MDD from PIM level. It 
allows generating PSMs from a PIM and a partial 
code generation. It distinguishes three kinds of 
models: a domain model that correspond to a PIM 
model, an application model that includes PSMs 
linked to different platforms (Relational-PSM, 
EJB-PSM and Web-PSM), and an implementation 
model. The transformation process is supported 
by transformation and functional patterns. 

Basic drawing tools Visio

Main stream object oriented case tools Rational Rose, Argo/UML, Together, UModel, 
MagicDraw, MetaEdit+, Poseidon

Real time/embedded tools Rapsody, Rational Rose Real Time, RapidRMA

MDA-based tools OptimalJ, AndroMDA, Ameos, Together Architect, 
Codagen, ArcStyler, MDE Studio, Objecteering

Table 1. UML CASE tools
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The MDA-based tools use MOF to support 
OMG standards such as UML and XMI (XML 
metadata interchange). MOF has a central role 
in MDA as a common standard to integrate all 
different kinds of models and metadata and to ex-
change these models among tools; however, MOF 
does not allow capturing semantic properties in a 
platform independent way and there is no rigor-
ous foundations for specifying transformations 
among different kinds of models. 

A lot of research work has been carried out 
dealing with the advanced metamodeling tech-
niques and formalization of different kinds of 
transformations. For instance, the main task of 
USE tool (Gogolla, Bohling, & Ritchers, 2005) is 
to validate and verify specifications consisting of 
UML/OCL class diagrams. Key (Ahrendt et al., 
2002) is a tool based on together (CASE, 2006) 
enhanced with functionality for formal specifica-
tion and deductive verification.

Akehurst and Kent (2002) propose an ap-
proach that uses metamodeling patterns that 
capture the essence of mathematical relations. 
The proposed technique is to adopt a pattern that 
models a transformation relationship as a rela-
tion or collections of relations, and encode this 
as an object model. Hausmann (2003) defined an 
extension of a metamodeling language to specify 
mappings between metamodels based on con-
cepts presented in Akehurst et al. (2002). Kuster, 
Sendall, and Wahler (2004) compare and contrast 
two approaches to model transformations: one is 
graph transformation and the other is a relational 
approach. Czarnecki and Helsen (2003) describe 
a taxonomy with a feature model to compare 
several existing and proposed model-to-model 
transformation approaches. 

rigOrOuS MOdeL-driven 
deveLOPMent

Developing or reengineering a system in an MDA 
perspective should be done through automated 

transformation with the help of tools. Figure 1 
illustrates the different processes and artifacts 
beyond this idea. Forward engineering and 
reverse engineering processes should be sup-
ported in MDA tools. Forward engineering is the 
process of transforming higher-level or abstract 
models into concrete ones. Reverse engineering 
reconstructs higher-level models from low ones. 
Reengineering is the process that transforms one 
concrete representation to another, while recon-
stituting the higher-level models along the way. 
We describe a rigorous framework compliant to 
MDA forward engineering processes. A model-
driven development is carried out as a sequence 
of model transformations that includes, at least, 
the following steps: construct a CIM, transform 
the CIM into a PIM that provides a computing 
architecture independent of specific platforms, 
transform the PIM into one or more PSMs, each 
one suited for specific platforms, and derive code 
directly from the PSMs. 

A model transformation is the process of con-
verting one model into another model preserving 
some kind of equivalence relation between them. 
We can distinguish two types of transformations 
to support model evolution from CIMs to ISMs: 
refinements and refactorings. A refinement is the 
process of building a more detailed specification 
that conforms to another that is more abstract. 
On the other hand, a refactoring means chang-
ing a model leaving its behavior unchanged, but 
enhancing some non-functionality quality factors 
such as simplicity, flexibility, understandability, 
and performance. 

Metamodeling is a powerful technique to spec-
ify families of models and model transformations. 
Figure 1 shows the different correspondences that 
may be held between several models and meta-
models and their interrelations. A CIM is related to 
one or more PIM-metamodels. A PIM-metamodel 
is related to more than one PSM-metamodels, 
each one suited for different platforms (e.g., .NET, 
J2EE, or relational). The PSM-metamodels cor-
respond to ISM-metamodels. A metamodel is a 
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description of all the concepts that can be used 
in the respective level. For instance, a metamodel 
linked to a relational platform refers to concepts of 
table, foreign key and column. An ISM-metamodel 
includes concepts of programming languages such 
as constructor and method. 

The following types of model transformations 
can be distinguished:

• CIM to PIM refinement: It describes how a 
CIM that is an instance of a MOF-metamodel 
is transformed into a PIM that is an instance 

of a specialized metamodel for a specific 
computation dependent model.

• PIM to PSM refinement: It describes how 
a PIM that is an instance of a MOF-Meta-
model is transformed into a PSM that is an 
instance of a specialized MOF-metamodel 
for a specific platform.

• PSM to ISM refinement: It describes how 
a PSM is transformed into code (which is an 
instance of MOF-metamodel for a platform 
and specific language technologies).

Figure 1. Rigorous model-driven development 
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• Refactoring: It specifies how a model in 
a given level is transformed into a new 
restructured model in the same level (for 
instance, PIM to PIM, PSM to PSM, ISM 
to ISM). The source and target models are 
instances of the same MOF-metamodel.

Metamodel transformations are a specific type 
of model transformations that impose relations 
between pairs of metamodels. A metamodel-based 
transformation is a specification of a mechanism to 
convert the elements of a model, that are instances 
of a particular metamodel, into elements of another 
model, which can be instances of the same or dif-
ferent metamodels. We specify metamodel-based 
model transformations as OCL contracts that are 
described by means of a transformation name, 
parameters, preconditions, postconditions, and 
additional operations. 

The MDA-based processes are based on the 
adaptation of reusable components and systems 
of transformations rules. We analyzed basic 
techniques for MDA-based processes such as 
refactoring (Kerievsky, 2004; Long, Jifeng & Liu, 
2005; Mens, Demeyer, Du Bois, Stenten, & Van 
Gorp, 2004) and design pattern (France, Kim, 
Ghosh, & Song, 2004; Gamma, Helm, Johnson, 
& Vlissides, 1995). 

Pereira and Favre (2006) propose a metamod-
eling technique to define refactorings at different 
abstraction levels (e.g., PIM, PSM, and ISM). A 
transformational system based on behaviour-
preserving model-to-model transformations was 
defined. To reason about correctness and robust-
ness we propose to specify refactorings as OCL 
contracts that are based on metamodels capturing 
common properties to a family of refactorings.

Martinez and Favre (2006) describe a meta-
modeling technique to define design pattern 
components from an MDA perspective. In this 
context, we propose a “megamodel” for defining 
reusable components that integrates different 
kinds of models with their respective metamodels. 
We analyze metamodel-based model transforma-

tions among levels of PIMs, PSMs and ISMs. We 
illustrate the approach to define reusable design 
pattern components using the popular Gamma 
patterns (Gamma et al., 1995).

FOrMaLizatiOn OF Mda-BaSed 
PrOceSSeS

UML and OCL are too imprecise and ambiguous 
when it comes to simulation, verification, valida-
tion, and forecasting of system properties and even 
when it comes to generating models/implementa-
tions through transformations. Although OCL is a 
textual language, OCL expressions rely on UML 
class diagrams (i.e., the syntax context is deter-
mined graphically). OCL does also not have the 
solid background of a classical formal language. In 
the context of MDA, model transformations should 
preserve correctness. To achieve this, the different 
modeling and programming languages involved 
in an MDD must be defined in a consistent and 
precise way. Then, the combination of UML/OCL 
specifications and formal languages offers the 
best of both worlds to software developer. In this 
direction, we define NEREUS to take advantage of 
all the existing theoretical background on formal 
methods, using different tools such as theorem 
provers, model checkers, or rewrite engines in 
different stages of MDD. 

Favre (2006) proposes a rigorous framework 
to model driven developments. The bases of 
this approach are the metamodeling notation 
NEREUS and, bridges between UML/OCL and 
NEREUS and between NEREUS and algebraic 
languages. 

NEREUS can be viewed as an intermediate 
notation open to many other formal specifica-
tions, such as algebraic, functional or logic ones. 
NEREUS is suited for specifying MOF. Most of 
the MOF concepts for metamodels (entity, associa-
tions, and packages) can be mapped to NEREUS 
in a straightforward manner. This language is 
relation-centric which means that it expresses 
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different kinds of UML relations (dependency, 
association, aggregation, and composition) as 
primitives to develop specifications. In Favre 
(2006), we show how to integrate NEREUS with 
algebraic languages using the common algebraic 
specification language (CASL) (Bidoit & Mosses, 
2004).

The formalization of MDA-based processes 
implies to specify metamodels and metamodel-
based transformations. 

On the one hand, we define a bridge between 
MOF-metamodels and NEREUS that is based 
on a system of transformation rules to convert 
automatically UML/OCL into NEREUS speci-
fications. Starting from UML class diagrams, an 
incomplete algebraic specification can be built by 
instantiating reusable schemes and components, 
which already exist in the NEREUS predefined 
library. Analyzing OCL specifications, it is pos-
sible to derive axioms that will be included in the 
NEREUS specification. Preconditions written 
in OCL are used to generate preconditions in 
NEREUS. Postconditions and invariants allow 
us to generate axioms in NEREUS. Thus, an 
incomplete specification can be built semi-
automatically (Favre, 2005; Favre, Martinez, & 
Pereira, 2003). 

On the other hand, we formalize transfor-
mations (refinements and refactorings) as OCL 
contracts that are translated into NEREUS speci-
fications by instantiating reusable schemes.

We have applied the approach to transform 
UML/OCL class diagrams into NEREUS speci-
fications, which in turn, are used to generate 
object-oriented code (Favre, 2005; Favre et al., 

2005). The process is based on the adaptation of 
MDA-based reusable components. NEREUS al-
lows us to keep a trace of the structure of UML 
models in the specification structure that will 
make easier to maintain consistency between the 
various levels when the system evolves. All the 
UML model information (classes, associations, 
and OCL specifications) is overturned into speci-
fications having implementation implications. The 
transformation of different kinds of UML asso-
ciations into object-oriented code was analyzed, 
as well as, the construction of assertions and 
code from algebraic specifications. The proposed 
transformations preserve the integrity between 
specification and code. The transformation process 
is based on reusable components.

In Favre and Martinez (2006) we describe how 
formalize MOF- metamodels and metamodel-
based transformations exemplifying with MDA 
design pattern components. 

In contrast to other works, our approach is the 
only one focusing on interoperability of formal 
languages in model-driven software development. 
There are UML formalizations based on differ-
ent languages that do not use an intermediate 
language such as NEREUS. However, this extra 
step provides some advantages. NEREUS would 
eliminate the need to define formalizations and 
specific transformations for each different formal 
language. The metamodel specifications and 
transformations can be reused at many levels in 
MDA. Languages that are defined in terms of 
NEREUS metamodels can be related to each 
other because they are defined in the same way 
through a textual syntax.

Figure 2. Interoperability of formal languages
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 Any number of source languages (modeling 
language) and target languages (formal language) 
could be connected without having to define ex-
plicit model/metamodel transformations for each 
language pair. NEREUS embraces changes at 
different levels of abstraction (Figure 2).

Future trendS

Nowadays, there exists an increased demand of 
reengineering of legacy systems towards new 
technologies. Advanced MDA tools should re-
verse existing code to abstract models to facilitate 
platform migration. It will probably take several 
years before a full round trip engineering based 
on standards occurs (many authors are skeptical 
about this). The existing MDA-based tools do not 
provide sophisticated transformation from PIM 
to PSM and from PSM to code.

To solve problems basic research on formal-
isms and theories will have to be carried out 
dealing with software evolution in MDA. If MDA 
becomes a commonplace, adapting it to formal 
development will become crucial. Formal and 
semi-formal techniques can play complemen-
tary roles in software development processes. 
This integration is beneficial for both graphical 
and formal specification techniques. On the one 
hand, semi-formal techniques have the ability to 
visualize language constructs allowing a great 
difference in the productivity of the specification 
process, especially when the graphical view is 
supported by means of good tools. On the other 
hand, formal specifications allow us to produce a 
precise and analyzable software specification be-
fore implementation and to define semi-automatic 
forward engineering processes. 

The integration between ontology (that are 
essentially CIMs) and MDA will occupy a central 
place in MDD (Djuric, Gasevic, & Devedzic, 
2006). The use of formal specification will make 

it possible to perform automated reasoning about 
ontology. A new type of MDA tools that do a more 
intelligent job might emerge. Probably, the next 
generation of tools might be able to describe the 
behavior of software systems in terms of domain 
models and translate it into executable programs 
on distributed environment. 

 

cOncLuSiOn 

There is a great number of UML CASE tools in ex-
istence that facilitates code generation and limited 
support for reverse engineering. Unfortunately, the 
current techniques available in these tools provide 
little automation for MDD. The formalization of 
metamodels and metamodel-based model trans-
formations can help to overcome these problems. 
We propose to integrate knowledge developed by 
the community of formal methods with MDA. A 
rigorous framework for MDD was defined. It is 
comprised of a metamodeling notation NEREUS, 
a “megamodel” for defining MDA components 
and the definition of metamodeling/model trans-
formations based on MOF and NEREUS. We 
define basic techniques for forward engineering 
and reverse engineering. 

We define systems of transformation rules 
that allow translating MOF-metamodels to formal 
specifications and implementations. A bridge 
between NEREUS and algebraic languages was 
defined by using CASL. Our approach focuses on 
interoperability of formal languages. 

We want to define foundations for MDA tools 
that permit designers to directly manipulate the 
visual models they have created. However, meta-
designers need to understand metamodels and 
metamodel transformations. 

This research is still evolving and additional 
issues will have to be tackled in order to fit ad-
vances in MDD. 
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KeY terMS 

CASE Tool: Computer aided software engi-
neering (CASE); a tool to aid in the analysis and 
design of software systems.

Forward Engineering: The process of trans-
forming a model into code through a mapping to 
a specific implementation language.      

MDA (Model Driven Architecture): A 
framework based on UML and other industry 
standards for visualizing, storing, and exchang-
ing software design and models. It separates the 
specification of functionality from the specifica-
tion of the implementation of that functionality 
on a specific technology platform.

Metamodel: A model that defines the language 
for expressing a model.

Meta-Metamodel: A model that defines the 
language for expressing a metamodel.

Model Transformation: The process of con-
verting one model into another model preserv-
ing some kind of equivalence relation between 
them.

OCL (Object Constraint Language): A 
notational language for analysis and design of 
software systems that allows software develop-
ers to write constraints and queries over object 
models such as UML models.

Refactoring: A change to a system that 
leaves its behavior unchanged but enhances some 
nonfunctional quality factors such as simplicity, 
flexibility, understanding and performance.

Reverse Engineering: The process of trans-
forming code into a model through a mapping 
from a specific implementation language.

UML (Unified Modeling Language): An 
OMG standard language for visualizing, specify-
ing, constructing, and documenting the artifacts 
of a software-intensive system.

This work was previously published in Encyclopedia of Information Science and Technology, Second Edition, edited by M. 
Khosrow-Pour, pp. 1566-1573, copyright 2009 by Information Science Reference (an imprint of IGI Global).
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Chapter 14
A Rigorous Framework for 

Model-Driven Development
Liliana Favre 
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intrOductiOn

The model-driven architecture (MDA) is an ini-
tiative of the Object Management Group (OMG, 
www.omg.org), which is facing a paradigm shift 
from object-oriented software development to 
model-centric development. It is emerging as 

a technical framework to improve portability, 
interoperability, and reusability (MDA, www.
omg.org/docs/omg/03-06-01.pdf). MDA pro-
motes the use of models and model-to-model 
transformations for developing software systems. 
All artifacts, such as requirement specifications, 
architecture descriptions, design descriptions, 

aBStract

The model-driven architecture (MDA) is an approach to model-centric software development. The 
concepts of models, metamodels, and model transformations are at the core of MDA. Model-driven de-
velopment (MDD) distinguishes different kinds of models: the computation-independent model (CIM), 
the platform-independent model (PIM), and the platform-specific model (PSM). Model transformation 
is the process of converting one model into another model of the same system, preserving some kind of 
equivalence relation between them. One of the key concepts behind MDD is that models generated dur-
ing software developments are represented using common metamodeling techniques. In this chapter, we 
analyze an integration of MDA metamodeling techniques with knowledge developed by the community 
of formal methods. We describe a rigorous framework that comprises the NEREUS metamodeling nota-
tion (open to many other formal languages), a system of transformation rules to bridge the gap between 
UML/OCL and NEREUS, the definition of MDA-based reusable components, and model/metamodeling 
transformations.  In particular, we show how to integrate NEREUS with algebraic languages using the 
Common Algebraic Specification Language (CASL). NEREUS focuses on interoperability of formal 
languages in MDD.
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and code, are regarded as models and are rep-
resented using common modeling languages. 
MDA distinguishes different kinds of models: 
the computation-independent model (CIM), the 
platform-independent model (PIM), and the 
platform-specific model (PSM). Unified Model-
ing Language (UML, www.uml.org) combined 
with Object Constraint Language (OCL, www.
omg.org/cgi-bin/doc?ptc/2003-10-14) is the most 
widely used way to specify PIMs and PSMs.

A model-driven development (MDD) is car-
ried out as a sequence of model transformations. 
Model transformation is the process of convert-
ing one model into another model of the same 
system, preserving some kind of equivalence 
relation between them. The high-level models 
that are developed independently of a particular 
platform are gradually transformed into models 
and code for specific platforms.  

One of the key concepts behind MDA is that all 
artifacts generated during software developments 
are represented using common metamodeling 
techniques. Metamodels in the context of MDA 
are expressed using meta object facility (MOF) 
(www.omg.org/mof). The integration of UML 
2.0 with the OMG MOF standards provides sup-
port for MDA tool interoperability (www.uml.
org).  However, the existing MDA-based tools 
do not provide sophisticated transformations 
because many of the MDA standards are recent 
or still in development (CASE, www.omg.org/
cgi-bin/doc?ad/2001-02-01). For instance, OMG 
is working on the definition of a query, view, 
transformations (QVT) metamodel, and to date 
there is no way to define transformations between 
MOF models (http://www.sce.carleton.ca/courses/
sysc-4805/w06/courseinfo/OMdocs/MOF-QVT-
ptc-05-11-01.pdf). There is currently no precise 
foundation for specifying model-to-model trans-
formations.   

MDDs can be improved by means of other 
metamodeling techniques. In particular, in this 
chapter, we analyze the integration of MDA 
with knowledge developed by the formal method 

community. If MDA becomes a commonplace, 
adapting it to formal development will become 
crucial. MDA can take advantage of the differ-
ent formal languages and the diversity of tools 
developed for prototyping, model validations, 
and model simulations.  Currently, there is no 
way to integrate semantically formal languages 
and their related tools with MDA. In this direc-
tion, we define a framework that focuses on in-
teroperability of formal languages in MDD. The 
framework comprises:

• The metamodeling notation NEREUS;
• A “megamodel” for defining MDA-based 

reusable components;
• A bridge between UML/OCL and NEREUS; 

and
• Bridges between NEREUS and formal 

languages.

Considering that different modeling/program-
ming languages could be used to specify different 
kinds of models (PIMs, PSMs, and code models) 
and different tools could be used to validate or 
verify them, we propose to use the NEREUS 
language, which is a formal notation suited for 
specifying UML-based metamodels. NEREUS 
can be viewed as an intermediate notation open 
to many other formal specifications, such as al-
gebraic, functional, or logic ones. 

The “megamodel” defines reusable compo-
nents that fit with the MDA approach. A “mega-
model” is a set of elements that represent and/or 
refer to models and metamodel (Bezivin, Jouault, 
& Valduriez, 2004). Metamodels that describe 
instances of PIMs, PSMs, and code models are 
defined at different abstraction levels and struc-
tured by different relationships. The “megamodel” 
has two views, one of them in UML/OCL and the 
other in NEREUS. 

We define a bridge between UML/OCL and 
NEREUS consisting of a system of transforma-
tion rules to convert automatically UML/OCL 
metamodels into NEREUS specifications. We 
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also formalize model/metamodel transformations 
among levels of PIMs, PSMs, and implementa-
tions. 

A bridge between NEREUS and algebraic 
languages was defined by using the common 
algebraic specification language (CASL) (Bidoit 
& Mosses, 2004), that has been designed as a 
general-purpose algebraic specification language 
and subsumes many existing formal languages.

Rather than requiring developers to manipulate 
formal specifications, we want to provide rigorous 
foundations for MDD in order to develop tools 
that, on one hand, take advantage of the power of 
formal languages and, on the other hand, allow 
developers to directly manipulate the UML/OCL 
models that they have created.

This chapter is structured as follows. We 
first provide some background information and 
related work.  The second section describes how 
to formalize UML-based metamodels in the in-
termediate notation NEREUS. Next, we introduce 
a “megamodel” to define reusable components 
in a way that fits MDA.  Then, we show how to 
bridge the gap between UML/OCL and NEREUS. 
An integration of NEREUS with CASL is then 
described. Next, we compare our approach with 
other existing ones, and then discuss future trends 
in the context of MDA. Finally, conclusions are 
presented. 

BacKgrOund

the Model-driven architecture

MDA distinguishes different kinds of models: 
the computation-independent model (CIM), the 
platform-independent model (PIM), the platform-
specific model (PSM), and code models. A CIM 
describes a system from the computation-indepen-
dent viewpoint that focuses on the environment of 
and the requirements for the system. In general, 
it is called a domain model and may be expressed 
using business models. A PIM is a model that 

contains no reference to the platforms that are 
used to realize it. A PSM describes a system in 
the terms of the final implementation platform, 
for example, .NET or J2EE. UML combined with 
OCL is the most widely used way of writing either 
PIMs or PSMs. 

The transformation for one PIM to several 
PSMs is at the core of MDA. A model-driven 
development is carried out as a sequence of 
model transformations that includes, at least, 
the following steps: construct a CIM; transform 
the CIM into a PIM that provides a computing 
architecture independent of specific platforms; 
transform the PIM into one or more PSMs, and 
derive code directly from the PSMs (Kleppe, 
Warmer, & Bast, 2003).

Metamodeling has become an essential tech-
nique in model-centric software development. 
The UML itself is defined using a metamodeling 
approach. The metamodeling framework for the 
UML is based on an architecture with four layers: 
meta-metamodel, metamodel, model, and user 
objects. A model is expressed in the language 
of one specific metamodel. A metamodel is an 
explicit model of the constructs and rules needed 
to construct specific models. A meta-metamodel 
defines a language to write metamodels. The 
meta-metamodel is usually self-defined using a 
reflexive definition and is based on at least three 
concepts (entity, association, and package) and 
a set of primitive types. Languages for express-
ing UML-based metamodels are based on UML 
class diagrams and OCL constraints to rule out 
illegal models. 

Related OMG standard metamodels and meta-
metamodels such as Meta Object Facility (MOF) 
(www.omg.org/mof), software process engineer-
ing metamodel (SPEM, www.omg.org/technol-
ogy/documents/formal/spem.htm), and  common 
warehouse metamodel (CWM) (www.omg.org/
cgi-bin/doc?ad/2001-02-01) share a common 
design philosophy. Metamodels in the context of 
MDA are expressed using MOF. It defines a com-
mon way for capturing all the diversity of model-
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ing standards and interchange constructs that are 
used in MDA. Its goal is to define languages in a 
same way and then integrate them semantically. 
MOF and the core of the UML metamodel are 
closely aligned with their modeling concepts. The 
UML metamodel can be viewed as an “instance 
of” the MOF metamodel.  OMG is working on 
the definition of a query, view, transformations 
(QVT) metamodel for expressing transformations 
as an extension of MOF. 

Figure 1 depicts a “toy” metamodel  that in-
cludes the core modeling concepts of the UML 
class diagrams, including classes, interfaces, as-
sociations, association-ends, and packages. As an 
example, Figure 1 shows some OCL constraints 
that also complement the class diagram.

Mda-Based tools

There are at least 100 UML CASE tools that differ 
widely in functionality, usability, performance, 

and platforms. Currently, about 10% of them pro-
vide some support for MDA. Examples of these 
tools include OptimalJ, ArcStyler, AndroMDA, 
Ameos, and Codagen, among others. The tool 
market around MDA is still in flux. References to 
MDA-based tools can be found at www.objects-
bydesign.com/tools. As an example, OptimalJ is 
an MDA-based environment to generate J2EE 
applications. OptimalJ distinguishes three kinds of 
models: a domain model that correspond to a PIM 
model, an application model that includes PSMs 
linked to different platforms (Relational-PSM, 
EJB-PSM and web-PSM), and an implementation 
model. The transformation process is supported by 
transformation and functional patterns. OptimalJ 
allows the generation of PSMs from a PIM and a 
partial code generation.  

UML CASE tools provide limited facilities 
for refactoring on source code through an explicit 
selection made for the designer. However, it will 
be worth thinking about refactoring at the design 

Figure 1. A simplified UML metamodel
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level. The advantage of refactoring at the UML 
level is that the transformations do not have to be 
tied to the syntax of a programming language. This 
is relevant since UML is designed to serve as a 
basis for code generation with the MDA approach 
(Sunyé, Pollet, Le Traon, & Jezequel, 2001). 

Many UML CASE tools support reverse 
engineering; however, they only use more basic 
notational features with a direct code representa-
tion and produce very large diagrams. Reverse 
engineering processes are not integrated with 
MDDs either.

Techniques that currently exist in UML 
CASE tools provide little support for validating 
models in the design stages. Reasoning about 
models of systems is well supported by automated 
theorem provers and model checkers; however, 
these tools are not integrated into CASE tools 
environments. 

A discussion of limitations of the forward 
engineering processes supported by the existing 
UML CASE tools may be found in Favre, Mar-
tinez, and Pereira (2003, 2005).

The MDA-based tools use MOF to support 
OMG standards such as UML and XML meta-
data interchange (XMI). MOF has a central role 
in MDA as a common standard to integrate all 
different kinds of models and metadata and to ex-
change these models among tools. However, MOF 
does not allow the capture of semantic properties 
in a platform-independent way, and there are no 
rigorous foundations for specifying transforma-
tions among different kinds of models.

Mda and Semi-Formal/Formal  
Modeling techniques

Various research analyzed the integration of semi-
formal techniques and object-oriented designs 
with formal techniques. It is difficult to compare 
the existing results and to see how to integrate 
them in order to define standard semantics since 
they specify different UML subsets and are based 
on different formalisms. Next, we mention only 

some of numerous existing works. U2B transforms 
UML models to B (Snook & Butler, 2002). Kim 
and Carrington (2002) formalize UML by using 
OBJECT-Z. Reggio, Cerioli, and Astesiano (2001) 
present a general framework of the semantics 
of UML, where the different kinds of diagrams 
within a UML model are given individual seman-
tics and then such semantics are composed to get 
the semantics on the overall model. McUmber 
and Cheng (2001) propose a general framework 
for formalizing UML diagrams in terms of dif-
ferent formal languages using a mapping from 
UML metamodels and formal languages. Kuske, 
Gogolla, Kollmann, and Kreowski (2002) describe 
an integrated semantics for UML class, object, and 
state diagrams based on graph transformation.

UML CASE tools could be enhanced with 
functionality for formal specification and de-
ductive verification; however, only research 
tools provide support for advanced analysis. For 
example, the main task of USE tool (Gogolla, 
Bohling, & Ritchers, 2005) is to validate and 
verify specifications consisting of UML/OCL 
class diagrams. Key (Ahrendt et al., 2005) is a 
tool based on Together (CASE, www.omg.org/
cgi-bin/doc?ad/2001-02-01) enhanced with func-
tionality for formal specification and deductive 
verification.

To date, model-driven approaches have been 
discussed at several workshops (Abmann, 2004; 
Evans, Sammut, & Willans, 2003; Gogolla, Sam-
mut, & Whittle, 2004). Several metamodeling 
approaches and model transformations have been 
proposed to MDD (Atkinson & Kuhne, 2002; 
Bezivin, Farcet, Jezequel, Langlois, & Pollet, 2003; 
Buttner & Gogolla, 2004; Caplat & Sourrouille, 
2002; Cariou, Marvie, Seinturier and Duchien, 
2004; Favre, 2004; Gogolla, Lindow, Richters, & 
Ziemann, 2002; Kim & Carrington, 2002). 

Akehurst and Kent (2002) propose an approach 
that uses metamodeling patterns that capture the 
essence of mathematical relations. The proposed 
technique is to adopt a pattern that models a 
transformation relationship as a relation or col-
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lections of relations, and encode this as an object 
model. Hausmann (2003) defined an extension 
of a metamodeling language to specify map-
pings between metamodels based on concepts 
presented in Akehurst and Kent (2002). Kuster, 
Sendall, and Wahler (2004) compare and contrast 
two approaches to model transformations: one is 
graph transformation and the other is a relational 
approach.  Czarnecki and Helsen (2003) describe 
a taxonomy with a feature model to compare 
several existing and proposed model-to-model 
transformation approaches. To date, there is no 
way to integrate semantically formal languages 
and their related tools with Model-Driven De-
velopment. 

FOrMaLizing MetaMOdeLS: 
the nereuS Language

A combination of formal specifications and 
metamodeling techniques can help us to ad-
dress MDA. A formal specification clarifies the 
intended meaning of metamodel/models, helps 
to validate model transformations, and provides 
reference for implementation. In this light, we 
propose the intermediate notation NEREUS that 
focuses on interoperability of formal languages. 
It is suited for specifying metamodels based on 
the concepts of entity, associations, and systems. 
Most of the UML concepts for the metamodels 
can be mapped to NEREUS in a straightforward 
manner. NEREUS is relation-centric; that is, it 
expresses different kinds of relations (dependency, 

association, aggregation, composition) as primi-
tives to develop specifications. 

Defining Classes in NEREUS

In NEREUS the basic unit of specification is the 
class. Classes may declare types, operations, and 
axioms that are formulas of first-order logic. They 
are structured by three different kinds of relations: 
importing, inheritance, and subtyping.  Figure 2 
shows its syntax. 

NEREUS distinguishes variable parts in a 
specification by means of explicit parameteriza-
tion. The elements of <parameterList> are pairs 
C1:C2 where C1 is the formal generic parameter 
constrained by an existing class C2 (only sub-
classes of C2 will be actual parameters). The 
IMPORTS clause expresses clientship relations. 
The specification of the new class is based on the 
imported specifications declared in <importList> 
and their public operations may be used in the 
new specification.

NEREUS distinguishes inheritance from 
subtyping. Subtyping is like inheritance of be-
havior, while inheritance relies on the module 
viewpoint of classes. Inheritance is expressed 
in the INHERITS clause; the specification of 
the class is built from the union of the specifica-
tions of the classes appearing in the <inheritsList>. 
Subtypings are declared in the IS-SUBTYPE-OF 
clause. A notion closely related with subtyping is 
polymorphism, which satisfies the property that 
each object of a subclass is at the same time an 
object of its superclasses. 

Figure 2. Class syntax in NEREUS

    CLASS className [<parameterList>] 
  IMPORTS <importsList> 
  INHERITS <inheritsList> 
  IS-SUBTYPE-OF <subtypeList> 
  GENERATED-BY <basicConstructors> 
  ASSOCIATES<associatesList> 
  DEFERRED 
  TYPES <typesList> 
 

FUNCTIONS <functionList> 
EFFECTIVE 
TYPES <typesList> 
FUNCTIONS <functionList> 
AXIOMS <varList> 
<axiomList> 
END-CLASS 
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NEREUS allows us to define local instances of 
a class in the IMPORTS and INHERITS clauses 
by the following syntax ClassName [<bindingList>] 
where the elements of <bindingList> can be pairs 
of class names C1: C2 being C2 a component of 
ClassName; pairs of sorts s1: s2, and/or pairs of 
operations o1: o2 with o2 and s2 belonging to the 
own part of ClassName.

NEREUS distinguishes deferred and effective 
parts. The DEFERRED clause declares new types 
or operations that are incompletely defined. The 
EFFECTIVE clause either declares new types 
or operations that are completely defined or 
completes the definition of some inherited type 
or operation.

Operations are declared in the FUNCTIONS 
clause that introduces the operation signatures, the 
list of their arguments, and result types. They can 
be declared as total or partial. Partial functions 
must specify its domain by means of the PRE 
clause that indicates what conditions the function ś 
arguments must satisfy to belong to the function ś 
domain. NEREUS allows us to specify operation 

signatures in an incomplete way. NEREUS sup-
ports higher order operations (a function f is higher 
order if functional sorts appear in a parameter 
sort or the result sort of f ). In the context of OCL 
Collection formalization, second-order operations 
are required. In NEREUS, it is possible to specify 
any of the three levels of visibility for operations: 
public, protected, and private.  NEREUS provides 
the construction LET… IN  to limit the scope of 
the declarations of auxiliary symbols by using 
local definitions.

Several useful predefined types are offered 
in NEREUS, for example, Collection, Set, Se-
quence, Bag, Boolean, String, Nat, and enumer-
ated types.  Figure 3 shows the predefined type 
OCL-Collection.

Defining Associations

NEREUS provides a taxonomy of constructor 
types that classifies binary associations according 
to kind (aggregation, composition, association, 
association class, qualified association), degree 

Figure 3. The collection class

  CLASS  Collection [Elem:ANY] 
IMPORTS Boolean, Nat  
GENERATED-BY  create, add 
DEFERRED 
TYPE  Collection 
FUNCTIONS create : →  Collection 
add : Collection  x Elem →  Collection 
count : Collection x Elem → Nat 
iterate :  
Collection x ( Elem x  Acc: ANY ) x  ( -> Acc ) -> Acc  
EFFECTIVE 
FUNCTIONS  isEmpty: Collection ->Boolean 
size: Collection → Nat  
includes: Collection x Elem ->Boolean 
includesAll: Collection x Collection -> Boolean 
excludes: Collection x Elem -> Boolean 
forAll : Collection x ( Elem -> Boolean) -> Boolean       
exists : Collection x ( Elem -> Boolean) -> Boolean 
select: Collectionx ( Elem -> Boolean) -> Collection 
 
 
 

AXIOMS  c : Collection; e : Elem; f : Elem -> Boolean;   
g : Elem x Acc -> Acc;  base : -> Acc 
isEmpty ( c ) = (size (c ) = 0 ) 
iterate (create, g, base ) =  base 
iterate (add (c, e), g, base) = g (e, iterate (c, g, base)) 
count (c,e) = 
    LET   
    FUNCTIONS  
            f1: Elem x Nat ->Nat 
            AXIOMS e1:Elem; i:Nat 
            f1(e1, i) = if e = e1 then i+1 else i 
            IN  iterate (c, f1, 0) 
    END-LET 
includes (create , e ) = False 
includes (add (c, e), e1) = if e = e1   then True  
                                                           else includes (c, e1)  
forAll (create , f )  = True 
forAll (add(c,e), f ) =  f (e) and forAll (c, f)  
exists (create, f ) = False 
exists (add (c, e)) =  f (e) or  exists (c, f )   
select (create, f) = create 
select (add (c,e), f) = if f(e) then  add (select(c,f ),e)  
                                             else  select (c, f)…           
END-CLASS 
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(unary, binary), navigability (unidirectional, bidi-
rectional), and connectivity (one-to-one, one-to-
many, many-to-many). Figure 4 partially depicts 
the hierarchy of Binary Associations. 

Generic relations can be used in the definition 
of concrete relations by instantiation. New asso-
ciations can be defined by means of the syntax 
shown in Figure 5.

The IS paragraph expresses the instantiation 
of <constructorTypeName> with classes, roles, vis-
ibility, and multiplicity. The CONSTRAINED-BY 
clause allows the specification of static constraints 
in first-order logic. Relations are defined in a class 
by means of the ASSOCIATES clause. 

Defining Packages

The package is the mechanism provided by 
NEREUS for grouping classes and associations 

and controlling its visibility.  Figure 6 shows the 
syntax of a package. 

<importsList> lists the imported packages; 
<inheristList> lists the inherited packages and <el-
ements> are classes, associations, and packages. 
Figure 7 partially shows the NEREUS specifica-
tion of Figure 1. 

Figure 4. The binary association hierarchy  

... 

... ... ... 

BinaryAssociation 

Aggregation     Bidirectional 

      Shared    Non-Shared Unidirectional Bidirectional 

1..1 *..* ... 
 

 

 

  
 

       Qualified 

Figure 5. Association syntax in NEREUS

   ASSOCIATION <relationName> 
IS <constructorTypeName> […: Class1; …: Class2; …: Role1; …: Role2;     …: mult1; …: 
mult2; …: visibility1; …: visibility2] 
CONSTRAINED-BY <constraintList> 
END 
 

Figure 6. Package syntax

   PACKAGE packageName 
IMPORTS <importsList> 
INHERITS <inheritsList> 
<elements> 
END-PACKAGE 
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deFining reuSaBLe  
cOMPOnentS: a “MegaMOdeL”

Developing reusable components requires a 
high focus on software quality. The traditional 
techniques for verification and validation are still 
essential to achieve software quality. The formal 
specifications are of particular importance for 
supporting testing of applications, for reasoning 
about correctness and robustness of models, for 
checking the validity of a transformation and for 
generating code “automatically” from abstract 
models. MDA can take advantages of formal 

languages and the tools developed around them. 
In this direction, we propose a “megamodel” to 
define MDA reusable components. A “mega-
model” is a set of elements that represent and/
or refer to models and metamodels at different 
levels of abstraction and structured by different 
relationships (Bezivin, Jouault, & Valduriez, 
2004). It relates PIMs, PSMs, and code with 
their respective metamodels specified both in 
UML/OCL and NEREUS. NEREUS represents 
the transient stage in the process of conversion 
of UML/OCL specifications to different formal 
specifications. 

Figure 7. A simplified UML metamodel in NEREUS

  PACKAGE Core 
CLASS TheClass 
ASSOCIATES<<ClassPackage>>,  
<< ClassClass >>,  
<< SourceAssociationEnd >>, 
<<TargetAssociationEnd>>, 
<<ClassInterface>>,… 
TYPES TheClass 
FUNCTIONS 
name: TheClass -> String 
… 
END-CLASS 
CLASS ThePackage 
ASSOCIATES <<PackagePackage>>, 
<<ClassPackage>>,  
<< PackageAssociation >>… 
TYPE ThePackage 
FUNCTIONS 
name: ThePackage -> String 
… 
END-CLASS 
CLASS TheAssociation 
ASSOCIATES  <<PackageAssociation>>, 
<<AssociationAssociationEnd>> 
TYPES TheAssociation 
FUNCTIONS 
name: TheAssociation -> String 
… 
END-CLASS 
CLASS TheAssociationEnd 
ASSOCIATES 
<<AssociationAssociationEnd>>, 
<<AssociationEndAssociationEnd>>, 
<<SourceAssociationEnd>>, 
<<TargetAssociationEnd>>, 
… 
END-CLASS 

CLASS TheInterface 
ASSOCIATES <<ClassInterface>>,… 
END-CLASS 
ASSOCIATION PackagePackage 
IS Composition-2 [ThePackage: class1; 
ThePackage: class2; thePackage : role1; 
nestedPackages: role2; 0..1: mult1; 
 *: mult2; +: visibility1; +: visibility2] 
END 
ASSOCIATION ClassPackage 
IS Bidirectional-2 [TheClass: class1;  
ThePackage: class2; theClass: role1;  
owner: role2; *: mult1; 1: mult2;  
+: visibility1; +: visibility2] 
END 
ASSOCIATION ClassClass  
IS Unidirectional-3 [TheClass: class1;  
TheClass: class2; theClass: role1;  
parents: role2; 1: mult1; *: mult2;  
+: visibility1; +: visibility2] 
END 
ASSOCIATION ClassInterface 
IS Bidirectional-4 [ TheClass: class1;  
TheInterface: class2; theClass: role1; 
implementedInt: role2;  0..*: mult1;  
0..*: mult2; +: visibility1; +: visibility2] 
END 
ASSOCIATION SourceAssociationEnd 
… 
ASSOCIATION TargetAssociationEnd 
… 
ASSOCIATION PackageAssociation  
… 
ASSOCIATION 
AssociationendAssociationend 
… 
END-PACKAGE 
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We define MDA components at three differ-
ent levels of abstraction: platform- independent 
component model (PICM), platform-specific 
component model (PSCM), and implementation 
component model (ICM). The PICM includes a 
UML/OCL metamodel that describes a family of 
all those PIMs that are instances of the metamodel. 
A PIM is a model that contains no information of 
the platform that is used to realize it. A platform 
is defined as “a set of subsystems and technolo-
gies that provide a coherent set of functionality, 
which any application supported by that platform 
can use without concern for the details of how the 
functionality is implemented” (www.omg.org/
docs/omg/03-06-01.pdf, p.2.3). 

A PICM-metamodel is related to more than one 
PSCM-metamodel, each one suited for different 
platforms. The PSCM metamodels are special-
izations of the PICM-metamodel. The PSCM 
includes UML/OCL metamodels that are linked 
to specific platforms and a family of PSMs that 
are instances of the respective PSCM-metamodel.  
Every one of them describes a family of PSM 
instances.  PSCM-metamodels correspond to 
ICM-metamodels. Figure 8 shows the different 
correspondences that may be held between sev-
eral models and metamodels. A “megamodel” is 
based on two views, one of them in UML/OCL 
and the other in NEREUS. A metamodel is a 
description of all the concepts that can be used 
in the respective level (PICM, PSCM, and ICM). 
The concepts of attribute, operations, classes, 
associations, and packages are included in the 
PIM-metamodel. PSM-metamodels constrain a 
PIM-metamodel to fit a specific platform, for in-
stance, a metamodel linked to a relational platform 
refers to the concepts of table, foreign key, and 
column. The ICM-metamodel includes concepts 
of programming languages such as constructor 
and method. 

A model transformation is a specification of 
a mechanism to convert the elements of a model 
that are instances of a particular metamodel into 
elements of another model, which can be instances 

of the same or different metamodel. A metamodel 
transformation is a specific type of model trans-
formations that impose relations between pairs of 
metamodels. We define a bridge between UML/
OCL and NEREUS. For a subsequent translation 
into formal languages, NEREUS may serve as a 
source language. In the following sections, we 
describe how to bridge the gap between NEREUS 
and formal languages. In particular, we analyze 
how to translate NEREUS into CASL. 

a Bridge BetWeen uML and 
nereuS

We define a bridge between UML/OCL static 
models and NEREUS. A detailed analysis may be 
found in Favre (2005a). The text of the NEREUS 
specification is completed gradually. First, the sig-
nature and some axioms of classes are obtained by 
instantiating the reusable schemes BOX_ and  AS-
SOCIATION_.  Next, OCL specifications are trans-
formed using a set of transformation rules. Then, 
a specification that reflects all the information of 
UML models is constructed.  Figure 9 depicts the 
main steps of this translation process. 

Figure 10 shows the reusable schemes BOX_ 
and ASSOCIATION_. In BOX_ , the attribute map-
ping requires two operations: an access operation 
and a modifier. The access operation takes no argu-
ments and returns the object to which the receiver 
is mapped. The modifier takes one argument and 
changes the mapping of the receiver to that argu-
ment. In NEREUS, no standard convention exists, 
but frequently we use names such as get_ and set_ 
for them. Association specification is constructed 
by instantiating the scheme ASSOCIATION_.

Figure 11 shows a simple class diagram P&M 
in UML. P&M introduces two classes (Person and 
Meeting) and a bidirectional association between 
them. This example was analyzed by Hussmann, 
Cerioli, Reggio, and Tort (1999), Padawitz (2000), 
and Favre (2005a). We have meetings in which 
persons may participate. The NEREUS specifi-
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Figure 8. A “megamodel” for MDA
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cation of Figure 12 is built by instantiating the 
scheme BOX_ and the scheme ASSOCIATION_ 
(see Figure 10). 

The transformation process of OCL speci-
fications to NEREUS is supported by a system 
of transformation rules. Figure 13 shows how to 
translate some OCL expressions into NEREUS. 

By analyzing OCL specifications, we can de-
rive axioms that will be included in the NEREUS 
specifications. Preconditions written in OCL 
are used to generate preconditions in NEREUS. 
Postconditions and invariants allow us to generate 
axioms in NEREUS. Figure 14 shows how to map 
OCL specifications of P&M onto NEREUS.  

An operation can be specified in OCL by means 
of pre- and post-conditions. self can be used in 
the expression to refer to the object on which the 
operation was called, and the name result is the 
name of the returned object, if there is any. The 
names of the parameter (parameter1,...) can also 
be used in the expression. In a postcondition, the 
expression can refer to two sets of values for each 
property of an object: the value of a property at the 
start of the operation and the value of a property 
upon completion of the operation. To refer to the 
value of a property at the start of the operation, 
one has to postfix the property name with “@”, 
followed by the keyword “pre”. For example, the 
following OCL spcification:

Figure 10. The reusable schemes BOX_ and ASSOCIATION_

 

 CLASS BOX_ 
IMPORTS TP1,..., TPm, T-attr1, T-attr2,..., Tattrn 
INHERITS B1,B2,..., Bm 
ASSOCIATES  
<<Aggregation-E1>>,...,<<Aggregation-Em>>, 
<< Composition-C1>>,...,<<CompositionCk>>, 
<< Association-D1>>,...,<<Association-Dk>> 
EFFECTIVE 
TYPE Name 
FUNCTIONS 
createName : T-attr1 x ... x T-attrn -> Name 
seti : Name x T-attri -> Name 

geti: Name -> T-attri               1<=i<=n 
DEFERRED 
FUNCTIONS 
meth1: Name x TPi1 x TPi2  x TPin -> TPij 
... 
methr : Name x TPr1 x TPr2 ... x  TPin -> TPij 
AXIOMS t1, t1’: T-attr1; t2, t2’: T-attr2;...;  
tn, tn’: T-attrn 
geti(create(t1,t2,...,tn)) = ti           1 ≤ i ≤ n  
seti (create (t1,t2,...,tn), ti’) = create (t1,t2,...ti’,...,tn)            
END-CLASS 

 
ASSOCIATION ___ 
IS __ [__: Class1; __:Class2; __: Role1;__:Role2;__:Mult1; __:Mult2; __:Visibility1; __:Visibility2] 
CONSTRAINED BY __ 
END 

Figure 11. The package P&M
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Figure 12. The package P&M: Translating interfaces and relations into NEREUS

 PACKAGE P&M 
CLASS Person 
IMPORTS String, Nat 
ASSOCIATES <<Participates>> 
EFFECTIVE 
TYPE  Person 
GENERATED-BY Create_Person 
FUNCTIONS 
createPerson: String x String x String -> Person   
name: Person -> String 
affiliation: Person -> String 
address: Person -> String 
set-name: Person x String -> Person 
set-affiliation : Person x String -> Person 
set-address: Person x String -> Person 
AXIOMS p:Person; m: Meeting; s,  s1, s2, s3: 
String; pa: Participates 
name(createPerson(s1,s2, s3)) = s1 
affiliation (createPerson (s1, s2, s3) ) = s2 
address (createPerson (s1, s2, s3)) = s3 
set-name ( createPerson (s1, s2, s3), s) =  
createPerson (s,s2,s3))  
set-affiliation (createPerson( s1,s2, s3), s) = 
createPerson (s1, s, s3))  
… 
END-CLASS 
CLASS Meeting 
IMPORTS String, Date, Boolean, Time 

ASSOCIATES <<Participates>> 
EFFECTIVE 
TYPE Meeting 
GENERATED-BY createMeeting 
FUNCTIONS 
createMeeting:  
String x Date x Date x Boolean  -> Meeting 
tittle: Meeting -> String 
start : Meeting -> Date 
end : Meeting -> Date 
isConfirmed : Meeting -> Boolean 
set-tittle: Meeting x String -> Meeting 
set-start : Meeting x Date -> Meeting 
set-end: Meeting x Date -> Meeting 
set-isConfirmed: Meeting x Boolean -> Boolean 
AXIOMS s: String; d, d1,: Date; b: 
Boolean;… 
title( createMeeting (s, d, d1, b) ) =   s 
start ( createMeeting (s, d, d1, b)) = d 
end ( createMeeting (s, d, d1, b)) = d1 
isConfirmed ( createMeeting (s, d, d1, b)) = b 
... 
END-CLASS 
ASSOCIATION Participates 
IS Bidirectional-Set [Person: Class1; Meeting: 
Class2; participants: Role1; meetings: Role2; *: 
Mult1; * : Mult2; + : Visibility1; +: Visibility2] 
END 
END_PACKAGE 

  

 

Figure 13. Transforming OCL into NEREUS: A system of transformation rules 

OCL NEREUS 

  v (variable)  v (variable) 
 
Type-> operationName (parameter1: Type1,...): Rtype 

 
operationName : TypexType1x...-> Rtype 
 

v. operation (v’) operation (v, v’) 
v->operation (v’) operation (v, v’) 
v.attribute attribute (v ) 
context A                 
object.rolename 
  

get_  rolename (A, object) 

e.op  op (Translate NEREUS (e)) 
 
Let TranslateNEREUS be functions that translate 
logical expressions of OCL into first-order 
formulae in NEREUS. 

collection-> op (v:Elem |boolean-expr-with-v) 

op ::=select| forAll| reject| exists 

LET 
FUNCTIONS  
f: Elem -> Boolean 
AXIOMS v : Elem 
f (v)= Translate NEREUS (boolean-expr-with-v ) 
IN 
op (collection, f) 
END-LET 
----------------------------------- 
opv (collection, [f(v)])           Equivalent concise notation 
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   AddPerson (p:Person) 
pre: not meetings -> includes(p) 
post: meetings = meetings@pre  -> including(p)  
 

is translated into:

   AddPerson: Participates (a) x Person (p) -> Participates 
 pre: not includes(getMeetings(a), p) 
AXIOMS a: Participates; p:Person;.... 
 getMeetings(AddPerson(a,p)) =including(getMeetings(a), p)  
  

Figure 14. The package P&M: Transforming OCL contracts into NEREUS

 
context Meeting:: checkDate():Bool                                                                OCL 
post: result = self.participants->collect(meetings) ->forAll(m | m<> self and 
m.isConfirmed implies (after(self.end,m.start) or after(m.end,self.start))) 
context Meeting::isConfirmed () 
post: result= self.checkdate() and self.numConfirmedParticipants >= 2 
context  Person:: numMeeting ( ): Nat 
post: result = self.meetings -> size 
context  Person :: numConfirmedMeeting ( ) : Nat 
post: result= self.meetings -> select (isConfirmed) -> size 

 
 

Rule 1 
T → Op (<parameterList>) : ReturnType 
post: expr  

AXIOMS  t : T, ... 
 TranslateNEREUS (exp) 

Rule 2   
T-> 
forAll op (v:Type |bool-exprwith-v)  
op ::= exists |select | reject 

forAllv op (TranslateNEREUS (T),    
TranslateNEREUS (bool-exprwith-v) 

Rule 3 
T -> collect ( v :type |v.property) 

collectv (Translate NEREUS (T),  
Translate NEREUS (v.property)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CLASS Person... 
AXIOMS p:Person;  s,s’: String; Pa: Participates 
numConfirmedMeetings (p) =   
size(selectm (getMeetings(Pa,p), [isConfirmed (m)] )                Rule 1, 2 
numMeetings (p) = size (getMeetings (Pa, p))                           Reglas 1 
END-CLASS 
CLASS Meeting… 
AXIOMS m,m1:Meeting;  s,s’:String; d,d’,d1,d1’:Date; b,b’:Boolean; 
Pa:Participates 
isConfirmed (cancel(m)) = False 
isConfirmed (m)=checkDate(m) and NumConfirmedParticipants (m) >= 2   Rule 1 
checkDate(m) =                                                                                           Rules  1, 2, 3 
forAllme (collectp   (getParticipants(Pa,m), [getMeetings (Pa, p)]), [consistent (m,me)] )                                                                                                 
consistent(m,m1)= not (isConfirmed(m1)) or (end(m) < start(m1) or end(m1) < start(m)) 
 NumConfirmedParticipants (m) = size (getParticipants(Pa,m))  
END-CLASS 
 
 
 

                 NEREUS 
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integrating nereuS With  
aLgeBraic LanguageS:  
FrOM nereuS tO caSL

In this section, we examine the relation between 
NEREUS and algebraic languages using Common 
Algebraic Specification Language (CASL) as a 
common algebraic language (Bidoit & Mosses, 
2004).

CASL is an expressive and simple language 
based on a critical selection of known constructs, 
such as subsorts, partial functions, first-order 
logic, and structured and architectural specifica-
tions. A basic specification declares sorts, sub-
sorts, operations, and predicates, and gives axioms 
and constraints. Specifications are structured by 
means of specification-building operators for re-
naming, extension, and combining.  Architectural 
specifications impose structure on implementa-
tions, whereas structured specifications only 
structure the text of specifications. It allows loose, 
free, and generated specifications.

CASL is at the center of a family of specifi-
cation languages. It has restrictions to various 
sublanguages and extensions to higher order, state-
based, concurrent, and other languages. CASL is 
supported by tools and facilitates interoperability 
of prototyping and verification tools.  

Algebraic languages do not follow similar 
structuring mechanisms to UML or NEREUS. 
The graph structure of a class diagram involves 
cycles such as those created by bidirectional as-
sociations.  However, the algebraic specifications 
are structured hierarchically and cyclic import 
structures between two specifications are avoided.  

In the following, we describe how to translate 
basic specification in NEREUS to CASL, and 
then analyze how to translate associations (Favre, 
2005b).

Translating Basic Specifications

In NEREUS, the elements of <parameterList> 
are pairs C1:C2 where C1 is the formal generic 
parameter constrained by an existing class C2 or 
C1: ANY (see Figure 2). In CASL, the first syntax 
is translated into [C2] and the second in [sort C1]. 
Figure 15 shows some examples.

NEREUS and CASL have a similar syntax for 
declaring types. The sorts in the IS-SUBTYPE 
paragraph are linked to subsorts in CASL.

The signatures of the NEREUS operations are 
translated into operations or predicates in CASL. 
Datatype declarations may be used to abbreviate 
declarations of types and constructors.

Any NEREUS function that includes partial 
functions must specify the domain of each of 
them. This is the role of the PRE clause that in-
dicates what conditions the function ś arguments 
must satisfy to belong to the function ś domain. 
To indicate that a CASL function may be partial, 
the notation uses -›?; the normal arrow will be re-
served for total functions. The translation includes 
an axiom for restricting the domain.  Figure 16 
exemplifies the translation of a partial function 
remove (see Figure 2). 

In NEREUS, it is possible to specify three 
different levels of visibility for operations: public, 
protected, and private. In CASL, a private vis-
ibility requires hiding the operation by means of 

Figure 15. Translating parameters

   NEREUS         CLASS CartesProd [ E: ANY; E1 : ANY]        
CASL                spec CARTESPROD [sort E] [sort E1]              

    
 NEREUS         CLASS HASH [T: ANY; V: HASHABLE]      
 CASL               spec HASH [sort T] [HASHABLE] 
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the operator Hide. On the other hand, a protected 
operation in a class is included in all the subclasses 
of that class, and it is hidden by means of the 
operator Hide or the use of local definitions.

The IMPORTS paragraph declares imported 
specifications. In CASL, the specifications are de-
clared in the header specification after the keyword 
given or like unions of specifications. A generic 
specification definition SN with some parameters 
and some imports is depicted in Figure 17. 

SN refers to the specification that has parameter 
specifications SP1, SP2, ... SPn , (if any). Parameters 
should be distinguished from references to fixed 
specifications that are not intended to be instanti-
ated such as SP1’, SP2’, .., SPm’(if any). SP1”, SP2”,  
… are references to import that can be instantiated.   
Unions also allow us to express inheritance rela-
tions in CASL. Figure 18 exemplifies the transla-

tion of inheritance relations. References to generic 
specifications always instantiate the parameters. 
In NEREUS, the instantiation of parameters [C 
: B]—where C is a class already existing in the 
environment and B is a component of A, and C 
is a subclass of B—constructs an instance of A 
in which the component B is substituted by C. 
In CASL, the intended fitting of the parameter 
symbols to the argument symbols may have to be 
specified explicitly by means of a fit C|-> B. 

NEREUS and CASL have the similar syntax 
for defining local functions. Then, this transfor-
mation is reduced to a simple translation.

NEREUS distinguishes incomplete and com-
plete specifications. In CASL, the incomplete 
specifications are translated to loose specifica-
tions and complete ones to free specifications. If 
the specification has basic constructors, it will be 

Figure 16. Translating partial functions

   NEREUS   
remove: Bidirectional (b) x Class1(c1) x Class2 (c2)-> Bidirectional 
               pre: isRelated (b,c1,c2)  
 
CASL 
 remove: Bidirectional (b) x Class1 x Class2 -›? Bidirectional 
 … 
 forall b:Bidirectional, c1:Class1; c2: Class2 
 def remove(b,c1,c2) <=> isRelated (b,c1,c2) 
 

Figure 17. Translating importing relations

   spec SN [SP1] [SP2]... [SPn] given SP1’, SP2’,..., SPm’=  
         SP1” and SP2” and …  
then  
SP 
end 
 

Figure 18. Translating inheritance relations

   NEREUS                              CLASS A    
INHERITS B, C 
 

     CASL                                    spec A = B and C end 
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translated into generated specifications. However, 
if it is incomplete, it will be translated into loose 
generated specifications. Both NEREUS and 
CASL allow loose extensions of free specifica-
tions.

The classes that include higher order operations 
are translated inside parameterized first-order 
specifications. The main difference between 
higher order specifications and parameterized 
ones is that, in the first approach, several function-
calls can be done with the same specification 
and parameterized specifications require the 
construction of several instantiations. Figure 19  
shows the translation of the Collection specifica-
tion (see Figure 3) to CASL. Take into account 
that there are as many functions f1, f2, f3, and 
f4 as functions select, reject, forAll and exists. 
There are also as many functions base and g as 
functions iterate. 

translating associations

NEREUS and UML follow similar structuring 
mechanisms of data abstraction and data encap-
sulation. The algebraic languages do not follow 
these structuring mechanisms in an UML style. 
In UML, an association can be viewed as a local 
part of an object. This interpretation cannot be 
mapped to classical algebraic specifications, which 
do not admit cyclic import relations. 

We propose an algebraic specification that 
considers associations belonging to the environ-
ment in which an actual instance of the class is 
embedded. Let  Assoc  be a bi-directional as-
sociation between two classes called A and B; 
the following steps can be distinguished in the 
translation process. We exemplify these steps with 
the transformation of  P&M (see Figure 11). 

Figure 19. Translating higher order functions
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Step 1: 
 Regroup the operations of classes A  and B 

distinguishing operations local to A,   local 
to B and, local  to A and B and Assoc (Fig-
ure 20).

Step 2:  
 Construct the specifications A’ and B’ from 

A and B where A’ and B’ include local opera-
tions to A and B respectively (Figure 21).

Step 3:  
 Construct specifications Collection[A’]  and 

Collection[B’] by instantiating reusable 
schemes (Figure 22).

Step 4: 
 Construct a specification Assoc (with A’ and 

B’) by instantiating reusable schemes in the 
component Association (Figure 23).

Step 5:  
 Construct the specification AssocA+B by 

extending Assoc with A’, B’ and the opera-
tions local to A’, B’ and Assoc (Figure 24).

Figure 25 depicts the relationships among the 
specifications built in the different steps.

BeneFitS OF the rigOrOuS 
FraMeWOrK FOr Mda

Formal and semiformal techniques can play 
complementary roles in MDA-based software 
development processes. We consider it beneficial 
for both semiformal and formal specification tech-
niques. On one hand, semiformal techniques lack 
precise semantics; however, they have the ability 
to visualize language constructions, allowing a 

great difference in the productivity of the speci-
fication process, especially when the graphical 
view is supported by good tools. On the other 
hand, formal specifications allow us to produce 
a precise and analyzable software specification 
and automate model-to-model transformations; 
however, they require familiarity with formal 
notations that most designers and implementers 
do not currently have, and the learning curve 
for the application of these techniques requires 
considerable time. 

UML and OCL are too imprecise and ambigu-
ous when it comes to simulation, verification, 
validation, and forecasting of system properties 
and even when it comes to generating models/
implementations through transformations.  Al-
though OCL is a textual language, OCL expres-
sions rely on UML class diagrams, that is, the 
syntax context is determined graphically. OCL 
does also not have the solid background of a clas-
sical formal language. In the context of MDA, 
model transformations should preserve correct-
ness. To achieve this, the different modeling and 
programming languages involved in a MDD must 
be defined in a consistent and precise way. Then, 
the combination of UML/OCL specifications and 
formal languages offers the best of both worlds 
to the software developer. In this direction, we 
define NEREUS to take advantage of all the exist-
ing theoretical background on formal methods, 
using different tools such as theorem provers, 
model checkers, or rewrite engines in different 
stages of MDD.  

In contrast to other works, our approach is the 
only one focusing on the interoperability of formal 
languages in model-driven software development. 

Figure 20. Translating Participates association. Step 1.

LocaL to… operations/attributes

person name

meeting tittLe, start, end, duration

person, meeting, participates canceL, isconfirmed, numconfirmedmeetings, checkdate, 
nummeetings
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There are UML formalizations based on differ-
ent languages that do not use an intermediate 
language. However, this extra step provides some 
advantages. NEREUS would eliminate the need 
to define formalizations and specific transfor-
mations for each different formal language. The 
metamodel specifications and transformations can 
be reused at many levels in MDA. Languages that 
are defined in terms of NEREUS metamodels can 
be related to each other because they are defined 
in the same way through a textual syntax.

We define only one bridge between UML/OCL 
and NEREUS by means of a transformational 
system consisting of a small set of transforma-
tion rules that can be automated. Our approach 
avoids defining transformation systems and the 
formal languages being used.  Also, intermediate 
specifications may be needed for refactoring and 
for forward and reverse engineering purposes 
based on formal specifications. 

We have applied the approach to transform 
UML/OCL class diagrams into NEREUS speci-

Figure 21. Translating Participates association. Step 2.

    spec PERSON given  STRING, NAT = 
then  
generated type Person ::= create-Person (String) 
ops 
name: Person -> String 
setName :Person x String -> Name 
end 
 
spec MEETING given  STRING, DATE = 
then generated type Meeting ::=  create-Meeting ( String; Date; Date) 
ops 
tittle: Meeting -> String 
set-title: Meeting x String -> Meeting 
start : Meeting -> Date 
set-start: Meeting x Date -> Meeting  
isEnd: Meeting -> Date 
set-end: Meeting x Date -> Meeting  
end 

Figure 22. Translating Participates association. Step 3.

   spec SET-PERSO N  g iven N AT= PERSON and  BA G[PERSON] and …  
then 
generated type Set[Person] :: =  create | including (Set[Person]; Person) 
ops 
union : Set[Person] x Set[Person] -> Set [Person] 
intersection : Set[Person] x Set[Person] -> Set [Person] 
count: Set[Person] x Person -> Nat 
…  
 
spec SET-M EETIN G  given  NAT =  M EETING  and BAG[M EETING] and …  
then 
generated type Set [M eeting] :: = create | including (Set[M eeting]; M eeting) 
…  
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fications, which, in turn, are used to generate 
object-oriented code. The process is based on 
the adaptation of MDA-based reusable compo-
nents. NEREUS allows us to keep a trace of the 
structure of UML models in the specification 

structure that will make it easier to maintain 
consistency between the various levels when the 
system evolves. All the UML model information 
(classes, associations, and OCL specifications) is 
overturned into specifications having implementa-

Figure 23. Translating Participates association. Step 4.

   spec PARTICIPATES =  SET-PERSON and SET-MEETING and  
BINARY-ASSOCIATION [PERSON][MEETING]  
with BinaryAssociation |-> Participates 
pred 
isRightLinked: Participates x Person  
isLeftLinked: Participates x Meeting 
isRelated: Participates x Person x Meeting 
ops 
addLink: Participates x Person x Meeting -> Participates 
getParticipants: Participates x Meeting -> Set [Person]   
getMeetings: Participates x Person -> Set[Meeting] 
remove: Participates x Person x Meeting -> Participates 
"  a : Participates; p,p1: Person; m,m1: Meeting 
def addLink (a,p,m)   not isRelated (a,p,m) 
def getParticipants (a, m)    isLeftLinked (a,m) 
def getMeetings (a, m)   isRightLinked ( a, m) 
def remove (a,p,m)   isRelated (a, p, m) 
endspec  

Figure 24. Translating Participates association. Step 5.
 
spec PERSON&MEETING = PARTICIPATES 
then  ops 
numMeeting : Participates x Person -> Nat 
numConfirmedMeeting : Participates x Person -> Nat 
isConfirmed : Participates x Meeting -> Boolean 
numConfirmedParticipants: Participates x Meeting -> Nat 
checkDate: Participates x Meeting -> Participates 
select : Participates x Set[Meeting]  -> Set[Meeting] 
collect: Participates x Set[Person]  -> Bag[Meeting] 
pred    forall: Participates x Set[Meeting] x Meeting  
" s : Set[Meeting]; m:Meeting; pa:Participates; p:Person; m:Meeting; sp:Set[Person];  
bm: Bag[Meeting] 
forall (pa, including(s,m),m1) = isConsistent(pa, m,m1) and forall(pa, s, m1) 
select( pa, create-Meeting) = create-Meeting 
select ( pa, including (s, m)) = including(select(pa,s), m) when isConfirmed (pa, m)  

                                 else select (pa,s) 
collect (pa, create-Person,s) = asBag (create-Person) 
collect (pa, including (sp, p) ) = asBag (including (collect (pa,sp), p)) 
numMeeting( pa, p) = size (getMeetings(pa, p)) 
isConfirmed (pa, m) = checkDate (pa,m) and NumConfirmedParticipants (pa,m) >= 2 
numConfirmedMeeting (pa, p) = size (select (getMeetings (pa,p)) 
checkDate (pa, m) = forall (pa, collect (pa, getParticipants(pa,m), m) 
isConsistent (pa, m, m1) =  
not (isConfirmed (pa,m1)) or (end(m) < start (m1) or  end (m1) < start(m)) 
numParticipantsConfirmed (pa, m) = size( getParticipants (pa, m)) 
end 
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tion implications. The transformation of different 
kinds of UML associations into object-oriented 
code was analyzed, as was the construction of 
assertions and code from algebraic specifica-
tions. The proposed transformations preserve 
the integrity between specification and code. 
The transformation of algebraic specifications 
to object-oriented code was prototyped (Favre, 
2005a). The OCL/NEREUS transformation rules 
were prototyped (Favre et al., 2003).

Future trendS

Currently, OMG is promoting a transition from 
code-oriented to MDA-based software develop-
ment techniques.  The existing MDA-based tools 
do not provide sophisticated transformation from 
PIM to PSM and from PSM to code. To date, they 
might be able to support forward engineering 
and partial round-trip engineering between PIM 

and code. However, it will probably take several 
years before a full round-trip engineering based 
on standards occurs (many authors are skeptical 
about this). 

To solve these problems, a lot of work will 
have to be carried out dealing with the semantics 
for UML, advanced metamodeling techniques, 
and rigorous transformation processes. If MDA 
becomes commonplace, adapting it to formal 
development will become crucial. In this light, 
we will investigate the NEREUS language for 
integrating formal tools. NEREUS would allow 
different formal tools to be used in the same 
development environment to translate models 
expressed in different modeling languages into 
the intermediate language, and back, by using 
NEREUS as an internal representation that is 
shared among different formal languages/tools. 
Any number of source languages (modeling lan-
guage) and target languages (formal language) 
could be connected without having to define 

Figure 25. Translating Participates association into CASL
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explicit model/metamodel transformations for 
each language pair. 

Techniques that currently exist in UML CASE 
tools provide little support for generating business 
models. In the light of the advances of the MDA 
paradigm, a new type of UML tool that does a 
more intelligent job might emerge. Probably, the 
next generation of tools might be able to describe 
the behavior of software systems in terms of 
business models and translate it into executable 
programs on distributed environment.

cOncLuSiOn

In this chapter, we describe a uniform framework 
for model-driven development that integrates 
UML/OCL specifications with formal languages.  
It is comprised of a “megamodel” for defining 
MDA components, a metamodeling notation 
NEREUS, and the definition of metamodeling/
model transformations using UML/OCL and 
NEREUS. 

A “megamodel” integrates PIMs, PSMs and 
code models with their respective metamodels. We 
formalize UML-based metamodels in NEREUS, 
which is an intermediate notation particularly 
suited for metamodeling. We define a system of 
transformation rules to bridge the gap between 
UML/OCL models and NEREUS. We propose to 
specify metamodel transformations independently 
of any technology. We investigate the way to define 
them using UML/OCL and NEREUS. 

We want to define foundations for MDA tools 
that permit designers to directly manipulate the 
UML/OCL models they have created. However, 
meta-designers need to understand metamodels 
and metamodel transformations. 

We are validating the “megamodel” through 
forward engineering, reverse engineering, model 
refactoring, and pattern applications. 

We foresee the integration of our results in the 
existing UML CASE tools, experimenting with 
different platforms such as .NET and J2EE. 
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Appendix A:
Platform Specific Metamodels 

and Language Metamodels

The following metamodels are partially described:

A.1: PSM-Eiffel Metamodel
A.2: PSM-Java Metamodel
A.3: ISM-Eiffel Metamodel
A.4: ISM-Java Metamodel
A.5: ISM-C++ Metamodel

Metamodels are specified by using the UML notation:

• Abstract syntax: It consists of one or more UML class diagrams that show the metaclasses defin-
ing constructs and relationships. The shaded metaclasses belong to the UML metamodel.

• Metaclasses description: Natural language is used to describe metaclasses, generalizations and 
associations. Constraints are specified in OCL. Metaclasses are listed in alphabetic order.

a.1 PSM MetaMOdeL: eiFFeL PLatFOrM

description of Metaclasses

AssociationEnd

Description
It represents the own association-ends of the class.

DOI: 10.4018/978-1-61520-649-0.ch015
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Generalization

Property (from Kernel)• 

Attributes
No additional attributes

Associations

class: EiffelClass [0..1] It refers to the class of which this association-end is part• 

Attribute

Description
It represents the attributes declared in a class Eiffel.

Generalization

Property (from Kernel)• 

Figure 1. PSM-Eiffel metamodel: Diagram of classes
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Attributes

isFrozen: Boolean [1] It specifies whether an attribute is frozen, i.e., constant. In this case, it must • 
have an initial value. It redefines RedefinableElement::isLeaf.

Associations

class: EiffelClass [1] It refers to the class declaring this attribute. It redefines Property::class.• 

Constraints

[1]  An attribute is a property which is part of a class and but not member of any association. self.class 
-> size () = 1 and self.association-> isEmpty () and self.opposite-> isEmpty ()

EiffelClass

Description
An Eiffel class describes a set of objects which share the same specifications of features, restrictions 
and semantics.

Figure 2. PSM-Eiffel metamodel: Diagram of operations



281

Appendix A

Generalizations

Class (from Kernel), Classifier (from Templates).• 

Attributes

isDeferred Boolean [1] It specifies whether a class is deferred, i.e., one or more features, that are • 
specified but not implemented, are included in the class. It redefines Classifier::isAbstract.
isExpanded: Boolean [1] It specifies whether the class is flattened, i.e., its instances are objects • 
but no references to objects.

Associations

associationEnd: AssociationEnd [*] It refers to the own association-ends of the class Eiffel. It is a • 
subset of Class::ownedAttribute.
attribute: Attribute [*] It refers to the own variables of the Eiffel class. It is a subset of • 
Class::ownedAttribute.
generalization: Generalization [*] It specifies generalizations.• 
invariant: Constraint [*] It refers to class invariants. It redefines NameSpace::ownedRule.• 
/parameters: TemplateParameter [*] It refers to the set of parameters of the class. It is derived.• 
/parents: EiffelClass [*] It refers to supeclasses of an Eiffel class. It redefines Class::superclass. • 
It is derived.
routine: Routine [*] It refers the own operations of the class. It redefines Class::ownedOperation.• 

Figure 3. PSM-Eiffel metamodel: Diagram of types (UML, OCL and Eiffel)
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Constraints

[1]  A class, with at least a deferred routine, must be declared deferred. self.ownedRoutine -> exists (r 
| r.isDeferred) implies self. isDeferred

[2]  Private routines of a class can not be declared abstract. self.ownedRoutine -> forAll (r | r.visibility 
= #private implies not r.isAbstract)

[3]  Frozen routines of a class can not be declared deferred. self.ownedRoutine -> forAll (r | r.isFrozen 
implies not r.isDeferred)

[4]  An Eiffel class does not have nested classes. self.nestedClassifier -> isEmpty ()
[5]  parents is derived from generalization. parents = self.generalization.parent
[6]  parameters is derived from the parameters of the signature template that can be redefined. param-

eters = ownedSignature.parameter

Function

Description
It declares a function that can be called passing a fixed number of arguments.

Generalizations

Routine• 

Attributes
No additional attributes.

Associations

returnType: Type [1] It refers to the return type of the function. It redefines Operation::type.• 

Constraints

[1]  A function must have a return type and therefore, its set of arguments includes one argument whose 
type is return. self.ownedParameter -> select (p | p.direction = #return) -> size = 1

Implementation

Description
It specifies a procedure that realizes a routine.

Generalization

Element (from Kernel)• 



283

Appendix A

Attributes

procedure: Expression [0..1] It refers to the procedure of the routine.• 

Associations

invokedRoutine: Routine [*] It refers to the routines invoked in this implementation.• 
referencedAttribute: Field [*] It specifies the variables referred in this implementation.• 
signature: Routine [1] It refers to routine linked to this implementation.• 

Constraints

[1]  A routine can not call a constructor. self.invokedRoutine -> select (r | r.oclIsTypeOf (Procedure)) 
-> forAll (p | not p.oclAsType (Procedure).isConstructor)

Procedure

Description
It declares a procedure that can be invoked by passing a fixed number of arguments.

Generalizations

Routine• 

Attributes

isConstructor: Boolean [1] It determines whether the procedure is constructor.• 

Associations
No additional associations.

Constraints

[1]  A procedure does not have a return type. self.ownedParameter -> select(p | p.direction = #return) 
-> isEmpty ()

[2]  The constructor of a class can not be abstract. self.isConstructor implies not self.isDeferred

Routine

Description
It specifies the characteristics of an Eiffel routine.
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Generalizations

Operation (from Kernel)• 

Attributes

isDeferred: Boolean [1] It specifies whether a routine is deferred, i.e., without implementation.• 
isFrozen: Boolean [1] It specifies whether a routine is final, i.e., it can not be redefined in a descen-• 
dent class. It redefines RedefinableElement::isLeaf.

Associations

body: Implementation [0..1] It refers to the routine implementation.• 
class: EiffelClass [1] It refers to the class declaring this routine. It redefines Operation::class.• 

Constraints

[1]  A deferred routine does not have implementations. self.isDeferred implies self.body -> isEmpty 
()

a.2 PSM MetaMOdeL: java PLatFOrM

description of Metaclasses

Next, we describe the main metaclasses of the PSM-Java

Figure 4. PSM-Java metamodel: Diagram of classes
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AssociationEnd

Description
It specifies the characteristics of an Eiffel routine.

Generalization

Property (from Kernel)• 

Figure 5. PSM-Java metamodel: Diagram of interfaces

Figure 6. PSM-Java metamodel: Diagram of classes and interfaces
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Attributes
No additional attributes.

Associations

class: JavaClass [0..1] It refers to the class of which this association-end is part. It redefines • 
Property::class.

Constraints

[1]  An association-end is a property that is member of an association. self.association -> size () = 1

Constructor

Description
It designs an operation that is used to create class instances. They can not be explicitly invoked by means 
of expressions of method call. Constructors do not have return type and have the same name of the class 
containing the declaration. Constructor declarations can not be inherited.

Generalization

JavaOperation• 

Figure 7. PSM-Java metamodel: Diagram of operations
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Attributes
No additional attributes.

Associations
No additional associations.

Figure 8. PSM-Java metamodel: Diagram of types (UML, OCL and Java)

Figure 9. PSM-Java metamodel: Diagram of packages
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Constraints

[1]  Constructors do not have return type. self.type -> isEmpty ()
[2]  The constructor name is equal to the name of the class containing the declaration. self.name = self.

class.name

Field

Description
It specifies the attributes declared in a class or interface.

Generalization

Property (from Kernel)• 

Attributes

isFinal: Boolean [1] It specifies whether an attribute is final, i.e., constant. In this case, it must • 
have an initial value. It redefines RedefinableElement::isLeaf.
isTransient: Boolean [1] It specifies whether an attribute is part of the persistent state of the • 
object.
isVolatile: Boolean [1] It specifies whether an attribute is volatile, i.e., it is accessed • 
asynchronously.

Associations

class: JavaClass [0..1] It refers to the class declaring this attribute. It redefines Property::class.• 

Constraints

[1]  An attribute is a property that is part of a class and is not member of associations. self.class -> size 
() = 1 and self.association -> isEmpty () and self.opposite -> isEmpty ()

Implementation

Description
It specifies the procedure of the operation.

Generalization

Element (from Kernel)• 
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Attributes

Procedure: Expression [0..1] It refers to the procedure of the operation.• 

Associations

invokedMethod: Method [*] It refers to the methods invoked in the body of an operation.• 
referencedField: Field [*] It refers to the variables referred in the body of an operation.• 
signature: JavaOperation [1] It specifies the operation that implements.• 

Constraints
No additional constraints.

JavaClass

Description
A Java class describes a set of objects sharing the same specifications of features, constraints and se-
mantics.

Generalizations

Class (from Kernel), Classifier (from Templates), BehavioredClassifier (from Interfaces)• 

Attributes

isFinal: Boolean It specifies whether the class can have subclasses. It redefines • 
RedefinableElement::isLeaf.
/isGeneric: Boolean It specifies whether the class is generic. It is a derived attribute.• 
isStatic: Boolean It specifies whether the class is static.• 

Associations

associationEnd: AssociationEnd [*] It refers to the own association-end of the Java class. It is • 
subset of Class::ownedAttribute
field: Field [*] It refers to own variables of the Java class. It is a subset of C• lass::ownedAttribute
/implement: JavaInterface [*] It refers to the Java interfaces implemented by this class. It is • 
derived.
javaOperation: JavaOperation [*] It refers the own operations of the class. It redefines • 
Class::ownedOperation
javaPackage: JavaPackage [0..1] It refers to the package in which it is declared. It redefines • 
Type::package.
nestedClass: JavaClass [*] It refers to the Java classes declared within of the body of a JavaClass • 
(nested classes).
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nestedInterface: JavaInterface [*] It refers to the Java interfaces declared within the body of a • 
JavaClass (nested interfaces). It is a subset of Class::nestedClassifier.
/parameters: TemplateParameter [*] It refers the set of parameters of the class. It is derived.• 
/superClass: JavaClass [1] It refers to the superclass of a Java class. It redefines • Class::superclass. 
It is derived.

Constraints

[1]  Nested classifiers of a class or interface can only be of the type JavaClass or JavaInterface. self.
nestedClassifier -> forAll (c | c.oclIsTypeOf (JavaClass) or c.oclIsTypeOf (JavaInterface))

[2]  The implemented interfaces are those referred through the interface realization. implement = self.
interfaceRealization.contract

[3]  A class having at least an abstract method must be declared abstract. self.javaOperation -> select 
(op | op.oclIsTypeOf (Method)) -> exists (m | m.oclAsType(Method).isAbstract) implies self.
isAbstract

[4]  A class that is declared abstract does not have a constructor explicitly defined. self.isAbstract 
implies self.javaOperation -> select (op | op.oclIsTypeOf (Constructor)) -> isEmpty ()

[5]  A class that is declared final does not have subclasses, i.e., it is not superclass of any class. self.
isFinal implies self.javaPackage.ownedMember -> select (m | m.oclIsTypeOf (JavaClass)) -> forAll 
(c | c.oclAsType (JavaClass).superClass <> self)

[6]  The access level protected, private and static can be only applied to nested classes, i.e., declared 
within the declaration of another class. (self.visibility = #protected or self.visibility = #private or 
self.isStatic) implies self.javaPackage.ownedMember -> select (m | m.oclIsTypeOf (JavaClass)) 
-> exists (c | c.oclAsType (JavaClass).nestedClass -> includes (self))

[7]  Private methods of a class can not be declared abstract. self.javaOperation -> select (op | 
op.oclIsTypeOf (Method)) -> forAll (m | m.visibility = #private implies not m.oclAsType (Method).
isAbstract)

[8]  Static methods of a class can not be declared abstract. self.javaOperation -> select (op | op.oclIsTypeOf 
(Method)) -> forAll (m | m.isStatic implies not m.oclAsType (Method).isAbstract)

[9]  A method that isFinal can not be declared abstract. self.javaOperation -> select (op | op.oclIsTypeOf 
(Method)) -> forAll (m | m.oclAsType(Method).isFinal implies not m.oclAsType (Method).
isAbstract)

[10]  A class is generic if has a template signature. isGeneric = (self.ownedTemplateSignature -> size 
() =1)

[11]  parameters is derived starting from of the parameters of the template signature. /parameters = self.
ownedTemplateSignature.parameter

JavaInterface

Description
It describes the characteristics of the interfaces in the Java platform.
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Generalizations

Interface (from Interfaces), Classifier (from Templates)• 

Attributes
No additional attributes.

Associations

associationEnd: AssociationEnd [*] It refers the own association-ends of a JavaInterface. It is a • 
subset of Interface::ownedAttribute.
field: Field [*] It refers to the own fields of a JavaInterface. It is a subset of • 
Interface::ownedAttribute.
javaPackage: JavaPackage [0..1] It refers to the package in which it is declared. It redefines • 
Type::package.
method: Method [*] It refers to the own methods of a JavaInterface. It redefines • 
Interface::ownedOperation.
nestedClass: It refers to the classes that are declared within the body of a JavaInterface (nested • 
classes). It is a subset of Interface::nestedClassifer.
nestedInterface: JavaInterface [*] It refers to the interfaces that are declared within the body of a • 
JavaInterface (nested interfaces). It is a subset of Interface::nestedClassifer.
/superInterface: JavaInterface [*] It refers to the super-interfaces of a JavaInterface. It is derived. • 
It redefines Classifier::general.

Constraints

[1]  The Java interfaces are implicitly abstract. self.isAbstract
[2]  The own member of an interface are implicitly public. self.ownerMember -> forAll (m | m.visibility 

= #public)
[3]  Nested classifiers of an interface can only be of the type JavaClass or JavaInterface. self.nested-

Classifier -> forAll (c | c.oclIsTypeOf (JavaClass) or c.oclIsTypeOf (JavaInterface))
[4]  An interface can only be declared private or protected if it is directly nested in the class declara-

tion. (self.visibility = #protected or self.visibility = #private) implies self.package.ownedMember 
-> select (m | m.oclIsTypeOf (JavaClass)) -> exists (c | c.oclAsType (JavaClass).nestedInterface 
-> includes (self))

[5]  An interface can only be declared static if it is directly nested in the class or interface declaration. self.
isStatic implies self.package.ownedMember -> select (m | m.oclIsTypeOf (JavaClass)) -> exists 
(c | c.oclAsType (JavaClass).nestedInterface -> includes (self)) or self.package.ownedMember -> 
select (m | m.oclIsTypeOf (JavaInterface)) -> exists (i | i.oclAsType (JavaInterface).nestedInterface 
-> includes (self))

[6]  Methods that are declared in an interface are abstract and hence do not have implementations. self.
method ->forAll (m| m.isAbstract and m.body -> isEmpty ())

[7]  Methods of an interface can not be declared static. self.method -> forAll (m| not m.isStatic)
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[8]  Methods of an interface can not be synchronized. self.method -> forAll (m| not 
m.isSynchronized)

[9]  Fields of an interface are implicitly public, static or final. self.field ->forAll (f | f.visibility = #public 
and f.isStatic and f.isFinal)

[10]  superInterface is derived of the generalization. /superInterface = self.generalization.general
[11]  Parameters are derived from the parameters of the template signature. /parameters = self.ownedTem-

plateSignature.parameter

JavaOperation

Description
It describes the characteristics of the interfaces in the Java platform.

Generalization

Operation (from Kernel, from Interfaces)• 

Attributes
No additional attributes.

Associations

class: JavaClass [0..1] It refers to the class declaring the operation. It redefines • Operation::class.
body: Implementation [0..1] It refers to the implementation of the operation.• 
javaException: JavaClass [*] It refers to the types that represent the exceptions that can appear • 
during an invocation of this operation.

Constraints

[1]  An abstract operation does not have implementation. self.isAbstract implies self.body -> isEmpty 
()

JavaPackage

Description
It is used for grouping elements. Its members can be classes, interfaces or sub-packages.

Generalization

Package (from Kernel)• 

Attributes
No additional attributes.
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Associations

javaClass: JavaClass [*] It refers to classes that are members of this package. It is a subset of • 
Package::ownedType.
javaInterface: JavaInterface [*] It refers to all interfaces that are members of this package. It is a • 
subset of Package::ownedType.
/subpackage: Package [*] It refers to the packages that are members of this package. It is • 
derived.

Constraints
No additional constraints.

Method

Description
It declares an operation that can be invoked by passing a fixed number of the arguments.

Generalizations

JavaOperation• 

Attributes

isAbstract: Boolean [1] It specifies whether a method is abstract, i.e., it does not have • 
implementation.
isFinal: Bolean It specifies whether a method is final. In this case, it can not be overwritten in a • 
derived class. It redefines RedefinableElement::isLeaf.
isSyncronized: Boolean [1] It specifies whether a method is synchronized. It is true if acquires a • 
lock before execution.

Associations

interface: JavaInterface [0..1] It declares the interface that declares this method. It redefines • 
Operation::interface.

Constraints
No additional restrictions.
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a.3 iSM MetaMOdeL: eiFFeL Language

description of Metaclasses

Attribute

Description
It represents the attributes that are declared in a class, according to the specification of the Eiffel lan-
guage.

Generalization

Property (from Kernel).• 

Attributes

isConstant: Boolean [1] It specifies whether an attribute is constant. In this case it must have a • 
compulsory initial value.

Associations

class: EiffelClass [1] It refers to the class that declares this attribute. It redefines • Property::class.
type: EiffelClass [1] It refers to the type of this attribute. It redefines • TypedElement::type.

Constraints

[1]  An attribute is a property that is part of a class and is not member of associations. self.class -> size 
() = 1 and self.association -> isEmpty () and self.opposite -> isEmpty ()

Assertion

Description
It describes assertions, according to the specification of the Eiffel language.

Generalization

Constraint (from Kernel)• 

Attributes

Tag_Mark: Identifier [0..1] It refers to the identifier of the assertion. It redefines • 
NamedElement::name.
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Associations

class [0..1]: EiffelClass It refers to the class that is the context in which this restriction is evalu-• 
ated. It is a subset of Constraint::context.
routine [0..1]: Routine It refers to the routine that is the context in which this restriction is evalu-• 
ated. It is a subset of Constraint::context.

Constraints
No additional restrictions.

Figure 10. ISM-Eiffel metamodel: Diagram of classes
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Argument

Description
It describes the arguments of a routine.

Figure 11. ISM-Eiffel metamodel: Diagram of operations
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Figure 12. ISM-Eiffel metamodel: Diagram of types

Figure 13. ISM-Eiffel metamodel: Diagram of clusters
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Generalization

Parameter (from Kernel)• 

Attributes
No additional attributes.

Associations

type: EiffelClass [1] It refers to the type of this argument. It redefines • TypedElement::type.

Constraints
No additional constraints.

Cluster

Description
It is used to group and organize classes in Eiffel.

Generalization

Package (from Kernel)• 

Attributes
No additional attributes.

Associations

ownedClass: EiffelClass [*] It refers to Eiffel classes that are members of this cluster. It redefines • 
Package::ownedType.

Constraints
No additional constraints.

Compound

Description
It describes a set of instructions, according to the specification of the Eiffel language.

Generalization

Element (from Kernel)• 
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Attributes
No additional attributes.

Associations

instruction: Instruction [*] It specifies the set of instructions that forms the compound. It is • 
ordered.

Constraints
No additional constraints.

EntityDeclaration

Description
It describes a local entity of a routine, according to the specification of the Eiffel language.

Generalization

TypedElement (from Kernel)• 

Attributes
No additional attributes.

Associations

type [1]: EiffelClass It specifies the type of the entity. It redefines • TypedElement::type.

Constraints
No additional constraints.

EiffelClass

Description
An Eiffel class describes a set of objects sharing the same feature specifications, restrictions and se-
mantics.

Generalizations

Class (from Kernel), Classifier (from Templates)• 

Attributes

isDeferred: Boolean [1] It specifies whether a class is deferred, i.e., it includes one or more fea-• 
tures that are specified but no implemented. It redefines Classifier::isAbstract.
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isExpanded: Boolean [1] It specifies whether the class is flattened, i.e. its instances are objects but • 
no references to objects.
isObsolete: Boolean [1] It specifies whether the class is obsolete.• 

Associations

attribute: Attribute [*] It refers to the own attributes of the Eiffel class. It redefines • 
Class::ownedAttribute.
eiffelFeatures: EiffelFeature [*] It refers the features of which this class is client.• 
generalization: Generalization [*] It specifies the generalization for this class.• 
invariant: Assertion [*] It refers to invariants of the class. It redefines • NameSpace::ownedRule.
ownedRoutine: Routine [*] It refers to the own routines of the class. It redefines • 
Class::ownedOperation.
/parameters: EiffelParameter [*] It refers to the set of parameters of the class. It is derived.• 
/parent: EiffelClass [*] It refers to the parent class of an Eiffel class. It redefines • Class::superClass. 
It is derived.

Constraints

[1]  A class having a deferred routine must be declared deferred. self.ownedRoutine -> exists (r | 
r.isDeferred) implies self. isDeferred

[2]  Secret routines can not be declared deferred. self.ownedRoutine -> forAll (r | r.availability = #secret 
implies not r.isDeferred)

[3]  Frozen routines of a class can not be declared deferred. self.ownedRoutine -> forAll (r | r.isFrozen 
implies not r.isDeferred)

[4]  An Eiffel class has not nested classes. self.nestedClassifier -> isEmpty ()
[5]  ancestors is derived of the generalization. ancestors = self.generalization.parent
[6]  parameters is derived from the parameters of the template signature that can be redefined. param-

eters = ownedSignature.parameter
[7]  Parameters of a class are of the type Eiffel class. self.parameters.parameteredElement -> forAll (p 

| p.oclIsTypeOf (EiffelClass))
[8]  A deferred class has not creation procedure. self.class.isDeferred implies self.ownedRoutine -> 

select (p | p.oclIsTypOf (Procedure) and p.isCreator) -> isEmpty ()
[9]  A flattened class has only a creation procedure without arguments. self.class.isExpanded implies self.

ownedRoutine -> select (p | p.oclIsTypeOf (Procedure) and p.isCreator) -> size () = 1 and self.
ownedRoutine -> select (p | p.isCreator and p.argument -> isEmpty ()) -> size () = 1

[10]  A flattened class does not have parameters. self.class.isExpanded implies self.parameter -> isEmpty 
()

EiffelParameter

Description
It specifies the parameters of a class, according to the specification of the Eiffel language.
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Generalizations

TemplateParameter (from Templates)• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints

[1]  The type of the parameters of a class is EiffelClass. self.parameteredElement -> forAll (p | 
p.oclIsTypeOf (EiffelClass))

EiffelFeature

Description
It declares a feature, according to the specification of the Eiffel language.

Generalizations

NamedElement• 

Attributes

availability: FeatureAvailability [1] It refers to the availability of the feature. It redefines • 
NamedElement::visibility.

Associations

clients: EiffelClass[*] It refers to the classes for which this feature is available.• 

Constraints

[1]  If the feature is selectively available, then it must be associated to a list of clients, else the list of 
clients is empty. if self.availability = #selectively_available then self.client -> size () > 0 else self.
client -> isEmpty() endif

FeatureAvailability

Description
FeatureAvailability is an enumeration of the following values:
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available• 
secret• 
selectively available• 

which determine whether a feature is available in all classes, some classes or no classes.

Generalizations

None• 

Function

Description
It declares a function, according the specification of the Eiffel language.

Generalizations

Routine• 

Attributes
No additional attributes.

Associations

/type: EiffelClass[1] It refers to the return type of the function. It redefines • TypedElement::type.

Constraints
No additional restrictions.

Instruction

Description
It describes an instruction, according to the specification of the Eiffel language.

Generalizations

NamedElement (from Kernel)• 

Attributes
No additional attributes.

Associations

routineBody: RoutineBody It refers to the body of the routine of which this instruction forms a • 
part.
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routine: Routine It refers to the routine that declares the clause rescue of which this instruction is • 
a part.

Constraints
No additional constraints.

Routinebody

Description
It specifies the body of the routine, according to the specification of the Eiffel language.

Generalization

Element (from Kernel)• 

Attributes

is Deferred: Boolean It specifies whether the body is deferred, i.e., it is not implemented.• 

Associations

signature: Routine [1] It refers to the routine to which corresponds this implementation.• 
instruction: Instruction [0..1] It refers to the instruction that composes the body of the routine.• 

Constraints

[1]  If the body if the routine is deferred, then the routine declaring it is also deferred. self.isDeferred 
implies self.signature.isDeferred

Procedure

Description
It declares a procedure, according the specification of the Eiffel language.

Generalizations

Routine• 

Attributes

isCreator: Boolean [1] It determines whether the procedure is the creation.• 

Associations
No additional associations.
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Constraints

[1]  A procedure does not have a return type. self.ownedParameter -> select (p | p.direction = #return) 
-> isEmpty ()

[2]  If a procedure is a creation procedure then it can not be deferred. self.isCreator implies not self.
isDeferred

Routine

Description
It specifies the features of a routine Eiffel.

Generalizations

Operation (from Kernel), Feature• 

Attributes

isDeferred: Boolean [1] It specifies whether a routine is deferred, i.e., it does not have • 
implementation.
isFrozen: Boolean [1] It specifies whether a routine is final, i.e., it can not be redefined in a descen-• 
dent class. It redefines RedefinableElement::isLeaf
isOnce: Boolean [1] It specifies whether the routine is executed only a time.• 
isObsolete: Boolean [1] It specifies whether the routine is obsolete.• 

Associations

argument: Argument [*] It refers to the formal arguments of the routine. It redefines • 
Operation::OwnedParameter.
body: RoutineBody [1] It refers to the implementation of the routine.• 
class: EiffelClass [1] It refers to a class that declares this routine. It redefines • Operation::class.
ensure: Assertion [*] It specifies the postconditions of the routine. It redefines • 
Operation::postcondition.
localEntity: EntityDeclaration [*] It specifies the local entities of the routine.• 
require: Assertion [*] It specifies the preconditions of the routine. It redefines • 
Operation::precondition.
rescue: Instruction [0..1] It specifies that the answer to an exception occurs during the execution • 
of the routine.

Constraints

[1]  If a routine is deferred then it does not have implementation. self.isDeferred implies self.body-
>isEmpty ()

[2]  If a routine is frozen, then it can not be deferred. self.isFrozen implies self.isDeferred
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Simple Instruction

Description
It describes a simple instruction, according to the specification of the Eiffel language.

Generalizations

NamedElement (from Kernel)• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraint
No additional restrictions.

a.4 iSM MetaMOdeL: java Language

description of Metaclasses

Block

Description
It specifies the code block implementing an operation, according to the specification of the Java lan-
guage.

Generalizations

Action (from Action)• 

Attributes
No additional attributes

Associations

blockStatement: blockStatement [0..1] It refers to the statements of which this block is part.• 
implementation: Implementation [1] It refers to the implementation of which this block is part.• 
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Figure 15. ISM-Java metamodel: Diagram of interfaces

Figure 14. ISM-Java metamodel: Diagram of classes
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Constraints
No additional constraints.

Constructor

Description
It is a constructor, according to the definition in the Java language.

Generalization

JavaOperation• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints

[1]  A constructor does not have a return type. self.returnType -> isEmpty ()
[2]  The constructor name is equal to the class name including the declaration. self.name = self.class.

name

Field

Description
It represents an attribute, as is defined in the Java language.

Figure 16. ISM-Java metamodel: Diagram of classes and interfaces
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Generalization

Property (from Kernel)• 

Attributes

isFinal: Boolean [1] It specifies whether an attribute is final, i.e., constant. If an attribute is final, • 
then it must have an initial value.
isTransient: Boolean [1] It specifies whether an attribute is part of the persistent state of the • 
object.
isVolatile: Boolean [1] It specifies whether an attribute is volatile, i.e., it is accessed non-• 
synchronically.

Figure 17. ISM-Java metamodel: Diagram of operations
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Associations

class: JavaClass [0..1] It refers to the class declaring this attribute. It redefines • Property::class.
javaType: JavaType [1] It refers to the attribute type. It redefines • TypedElement::type.

Constraints

[1]  An attribute is a property that is a part of a class and is not member of associations. self.class -> 
size () = 1 and self.association -> isEmpty () and self.opposite -> isEmpty ()

Implementation

Description
It specifies a procedure that obtains the result of the operation.

Generalization

Element (from Kernel)• 

Attributes
No additional attributes.

Figure 18. ISM-Java metamodel: Diagram of implementations
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Associations

block: Block [1] It specifies the code block of the implementation.• 
invokedMethod: Method [*] It refers to the methods invoked in the body of an operation.• 
referencedField: Field [*] It refers to the variables referred in the body of an operation.• 
signature: JavaOperation [1] It specifies the operation signature• 

Constraints
No additional constraints.

JavaClass

Description
A Java class as is defined in the Java language.

Generalizations

Class (from Kernel), Classifier (from Templates), BehavioredClassifier (from Interfaces)• 

Attributes

isFinal: Boolean It specifies whether the class can have subclasses. It redefines • 
RedefinableElement::isLeaf.
/isGeneric: Boolean It specifies whether the class is generic. It is a derived attribute.• 
isStatic: Boolean It specifies whether the class is static.• 

Figure 19. ISM-Java metamodel: Diagram of types
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Associations

field: Field [*] It refers to the own variables of the Java class. It redefines • Class::ownedAttribute.
/implement: It refers to the Java interfaces that are implemented by this class. It is derived.• 
javaOperation: JavaOperation [*] It refers the own operations of the class. It redefines • 
Class::ownedOperation.
javaPackage: JavaPackage [0..1] It refers to the package in which is declared. It redefines • 
Type::package.
nestedClass: JavaClass [*] It refers to the Java classes that are declared within the body of a Java • 
class (nested classes). It is a subset of Class::nestedClassifier.
nestedInterface: JavaInterface [*] It refers to the Java interfaces that are declared within the body • 
of a JavaClass (nested interfaces). It is a subset of Class::nestedClassifier.
/parameters: JavaParametes [*] It refers to the set of parameters of a class. It is derived.• 
/superClass: JavaClass [1] It refers to a superclass of a Java class. It redefines • Class::superClass. 
It is derived.

Constraints

[1]  Nested classifiers belonging to a class or interface can only be of type JavaClass or JavaInterface. self.
nestedClassifier -> forAll (c | c.oclIsTypeOf (JavaClass) or c.oclIsTypeOf (JavaInterface))

[2]  The implemented interfaces are those referred through the interface realization. implement = self.
interfaceRealization.contract

Figure 20. ISM - Java Metamodel: Diagram of packages
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[3]  A class that has at least one abstract method must be declared abstract. self.javaOperation -> select 
(op | op.oclIsTypeOf (Method)) -> exists (m | m.oclAsType (Method).isAbstract) implies self.
isAbstract)

[4]  An abstract class does not have a constructor defined explicitly. self.isAbstract implies self.java-
Operation -> select (op | op.oclIsTypeOf (Constructor)) -> isEmpty ()

[5]  A class that is declared final cannot have subclasses, i.e., it is not superclass of any class in the pack-
age. self.isFinal implies self.javaPackage.ownedMember -> select (m | m.oclIsTypeOf (JavaClass)) 
-> forAll (c| c.oclAsType (JavaClass).superClass < > self)

[6]  The access level protected, private or static can only be applied to nested classes, i.e., that are 
declared within the declaration of another class. (self.visibility = #protected or self.visibility = 
#private or self.isStatic) implies self.javaPackage.ownedMember -> select (m | m.oclIsTypeOf 
(JavaClass)) -> exists (c | c.oclAsType (JavaClass).nestedClass -> includes(self))

[7]  Private methods of a class can not be declared abstract. self.javaOperation -> select (op | 
op.oclIsTypeOf (Method)) -> forAll (m | m.visibility = #private implies not m.oclAsType (Method).
isAbstract)

[8]  Static methods of a class can not be declared abstract. self.javaOperation -> select (op | op.oclIsTypeOf 
(Method)) -> forAll (m | m.isStatic implies not m.oclAsType(Method).isAbstract)

[9]  Final methods of a class can not be declared abstract. self.javaOperation -> select (op | op.oclIsTypeOf 
(Method)) -> forAll (m | m.oclAsType (Method).isFinal implies not m.oclAsType (Method).
isAbstract)

[10]  A class is generic if it has a signature template. isGeneric = (self.ownedTemplateSignature -> size 
() =1)

[11]  Parameters are derived through the parameters of the signature template. /parameters= self.
ownedTemplateSignature.parameter

[12]  A class is concrete, if its methods have associated an implementation. not self.isAbstract implies 
self.allMethod () -> forAll (m | self.allBody () -> exist (b | b.signature = m))

[13]  Elements, that can be actual parameters of a formal parameter, are of type Java types. self.param-
eters.parameteredElement -> forAll (p | p.oclIsTypeOf (JavaType))

Additional Operations

[1]  allMethod is the set of all methods, i.e., the methods that are own, inherited and the methods of 
the interfaces implemented. allMethod (): Set(Method) allMethod () = self.allClassMethod() -> 
union(self.implement.allInterfaceMethod()) allClassMethod(): Set(Method) allClassMethod () = 
self.javaOperation -> select (o | o.oclIsType(Method)) -> union (self.superClass.allClassMethod 
()) allInterfaceMethod (): Set (Method) allInterfaceMethod () = self.method -> union(self.super-
Interface.allInterfaceMethod())

[2]  allBody is the set of all method implementations of a class, i.e., both own and inherited. allBody 
(): Set (Implementation) allBody = self.allMethod ().body

JavaInterface

Description
It describes the characteristics of an interface according to the Java language.
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Generalizations

Interface (from Interfaces), Classifier (from Templates).• 

Attributes
No additional attributes.

Associations

field: Field [*] It refers to the own fields of a JavaInterface. It redefines • 
Interface::ownedAttribute.
javaPackage: JavaPackage [0..1] It refers to the package in which is declared. It is subset of • 
Type::package.
method: Method [*] It refers to the own methods of a JavaInterface. It redefines • 
Interface::ownedOperation.
nestedClass: JavaClass [*] It refers to the classes that are declared within the body of a JavaInterface • 
(nested classes). It is a subset of Interface::nestedClassifer.
nestedInterface: JavaInterface [*] It refers all interfaces that are declared within the body of a • 
JavaInterface (nested interfaces). It is a subset of Interface::nestedClassifer.
/parameter: JavaParameter [1] It refers to the set of parameters of an interface. It is derived.• 
/superInterface: JavaInterface [*] It refers to the superinterfaces of a JavaInterface. It is derived. • 
It redefines Classifier::general

Constraints

[1]  Interfaces are implicitly abstract. self.isAbstract
[2]  The own members of an interface are implicitly public. self.ownerMember -> forAll (m | m.visibility 

= #public)
[3]  Nested classifiers of an interface can only be of the type JavaClass or JavaInterface. self.nested-

Classifier -> forAll (c | c.oclIsTypeOf (JavaClass) or c.oclIsTypeOf (JavaInterface))
[4]  An interface that is directly nested in the class declaration can only be declared private or pro-

tected. (self.visibility = #protected or self.visibility = #private) implies self.package.ownedMember 
-> select (m | m.oclIsTypeOf (JavaClass)) -> exists (c | c.oclAsType(JavaClass).nestedInterface -> 
includes (self))

[5]  An interface that in the class or interface declaration is nested can only be declared static. self.
isStatic implies self.package.ownedMember -> select (m | m.oclIsTypeOf (JavaClass)) -> exists 
(c | c.oclAsType(JavaClass).nestedInterface -> includes (self)) or self.package.ownedMember -> 
select (m | m.oclIsTypeOf (JavaInterface)) -> exists (I | i.oclAsType (JavaInterface).nestedInterface 
-> includes (self))

[6]  Methods that are declared in an interface are abstract and hence do not have implementation. self.
method -> forAll (m| m.isAbstract and m.body -> isEmpty ())

[7]  Methods of an interface can not be declared static. self.method -> forAll (m| not m.isStatic)
[8]  Methods of an interface can not be synchronized. self.method -> forAll (m| not 

m.isSynchronized)
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[9]  Fields of an interface are implicitly public, static or final. self.field -> forAll (f | f.visibility = #public 
and f.isStatic and f.siFinal)

[10]  superInterface is derived of the generalization. /superInterface = self.generalization.general
[11]  parameters are derived through the parameters of the signature template. /parameters = self.

ownedTemplateSignature.parameter
[12]  Elements that can be actual parameters of a formal parameter are types of Java. self.parameters.

parameteredElement -> forAll (p | p.oclIsTypeOf (JavaType))

JavaOperation

Description
It describes a method according to the specification of the Java language.

Generalizations

Operation (from Kernel)• 

Associations

body: Implementation [0..1] It refers to the implementation of the operation.• 
class: JavaClass [0..1] It refers to the class that implements this operation. It redefines • 
Operation::class.
javaExceptions: JavaClass [*] It refers to the types representing the exceptions that can occur dur-• 
ing an invocation of this operation. It redefines Operation::raisedException.
parameter: OperationParameter [*] It specifies the parameter of the operation. It redefines • 
Operation::ownedParameter
/returnType: JavaType [0..1] It specifies the return type of the operation. It redefines • Operation::type. 
It is derived.

Constraints

[1]  An abstract operation does not have implementation. self.isAbstract implies self.body -> isEmpty 
()

JavaPackage

Description
It is a package as is defined in the Java language.

Generalizations

Package (from Kernel)• 
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Attributes
No additional attributes.

Associations

javaClass: JavaClas s [*] It refers to the classes that are members of this package. It is a subset of • 
Package::ownedType.
javaInterface: JavaInterface [*] It refers to the interfaces that are members of this package. It is a • 
subset of Package::ownedType.
/subpackage: JavaPackage [*] It refers to the packages that are members of this package. It rede-• 
fines Package::nestedPackage. It is derived.

Constraints

[1]  Members of a package can only be classes, interfaces or sub-packages. self.ownedMember -> 
forAll (m | m.oclIsTypeOf (JavaInterface) or m.oclIsTypeOf (JavaClass) or m.oclIsTypeOf 
(JavaPackage))

Method

Description
It describes a method according to its definition in Java language.

Generalizations

JavaOperation• 

Attributes

isAbstract: Boolean [1] It specifies whether a method is abstract, i.e., without implementation.• 
isFinal: Boolean [1] It specifies whether a method is final. In this case, it can not be overwritten in • 
a derived class. It redefines RedefinableElement::isLeaf.
isNative: Boolean [1] It specifies whether a method is native.• 
isSyncronized: Boolean [1] It specifies whether a method is synchronized. It is true if acquires a • 
lock before execution.

Associations

interface: JavaInterface [0..1] It declares the interface declaring this method. It redefines • 
Operation::interface.

Constraints

[1]  A native method can not be abstract. self.isNative implies not self.isAbstract
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[2]  If a method has a return type then it must have a return statement. self.type -> size () = 1 implies self.
body.block.oclIsTypeOf (Return) or self.body.block.oclIsKindOf (BlockStatement) and self.body.
block.allStatement() -> exists (sent | sent.oclIsTypeOf(Return))

Additional operations

[1]  allStatement is the set of all statements that conforms the body of the method. allStatement(): 
Set(Statement) allStatement() = self.subBlock -> union (self.subBlock.allStatement ())

OperationParameter

Description
It specifies the parameters of an operation according to the specification of the Java language.

Generalization

Parameter (from Kernel)• 

Attributes
No additional attributes.

Associations

type: JavaType [1] It refers to the type of the parameter. It redefines • TypedElement::type.

Constraints
No additional constraints.

a.5 iSM MetaMOdeL: c++ Language

descriptions of Metaclasses

C++ Class

Description
A C++ class describes a set of objects that share the same specifications of features, restrictions and 
semantics.

Generalizations

Class (from Kernel), Classifier (from Templates)• 

Attributes
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class-key: Class-Key [1] It specifies the type of the class, i.e., if it is a class, structure or union.• 
isFinal: Boolean [1] It specifies if the class has subclasses. It redefines • 
RedefinableElement::isLeaf.
/isGeneric: Boolean It specifies if the class is generic. It is a derived attribute.• 

Associations

variable: Variable [*] It refers to the own variables of the C++ class. It redefines • 
Class::ownedAttribute.
nestedClass: C++Class [*] It refers to the C++ classes that are declared within the body of a C++ • 
class (nested classes). It is a subset of Class::nestedClassifier.
/superClass: C++Class [*] It refers to the superclasses of a C++ class. It redefines • Class::superClass. 
It is derived.
function: C++MemberFunction [*] It refers to the own functions of the class. It redefines • 
Class::ownedOperation.
generalization: C++Generalization [*] It refers to the generalizations of the class. It redefines • 
Class::Generalization.
friendClass: C++Class [*] It refers to the friend classes of the class.• 

Figure 21. ISM–C++ metamodel: Diagram of classes
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friendFunction: C++Function [*] It refers to the friend functions of the class.• 
/parameters: C++Parameter [*] It refers to the set of parameters of the class. It is derived.• 

Constraints

[1]  A class that has pure virtual functions must be declared abstract. self.function -> select (oclIsTypeOf 
(Method)) -> exists (m | m.oclAsType (Method).isPureVirtual) implies self.isAbstract

[2]  A class declared final does not have subclasses, i. e., it is not superclass of any class belonging to 
the package. self.isFinal implies self.package.ownedMember -> select (oclIsTypeOf (C++Class)) 
-> forAll (c | c.oclAsType (C++Class).superClass < > self)

Figure 22. ISM–C++ metamodel: Diagram of functions
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[3]  Private functions of a class can not be declared abstract. self.function -> select (oclIsTypeOf (Method)) 
-> forAll (m | m.visibility = #private implies not m.oclAsType (Method).isPureVirtual)

[4]  Final methods of a class can not be declared abstracts. self.function -> select (oclIsTypeOf (Method)) 
-> forAll (m | m.oclAsType (Method).isFinal implies not m.oclAsType (Method).isVirtual)

[5]  A class is generic if it has a signature template. isGeneric = (self.ownedTemplateSignature -> size 
() =1)

[6]  Parameters are derived from parameters of the signature template that is redefinable. /parameters 
= self.ownedTemplateSignature.parameter

[7]  Friend functions are C++ functions but no member functions of a class. self.friendFunction -> 
forAll (f | f.isTypeOf (C++Function))

[8]  A class only has a destructor. self.function -> select (oclIsTypeOf (Destructor)) ->size() <=1

C++File

Description
It represents a C++ file.

Generalizations

Namespace (from Kernel)• 

Attributes

extension: FileExtension [1] It specifies the extension of the file, i.e., if the file is header then “h”, • 
else, if it is an implementation “c” or “cpp”.

Figure 23. ISM–C++ metamodel: Diagram of implementations
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Associations

c++Project: C++Project [1] It refers to the project of which the file is part.• 
/includedFile: C++File [*] It refers to the set of files that are included. It is derived.• 
globalVariableandConstantDeclaration:GlobalVariableandConstantDeclaration[*] It refers to the • 
set of global variables and constants that are declared.
precompilerDirectives: PrecompilerDirectives [*] It refers to the set of precompiler directives.• 
classifierDeclaration: ClassifierDeclaration [*] It refers to the set of classifier declarations.• 
classifierDefinition: ClassifierDefinition [*] It refers to the set of classifier definitions.• 
functionDeclaration: FunctionDeclaration [*] It refers to the set of function declarations.• 
functionDefinition: FunctionDefinition [*] It refers to the set of function definitions.• 

Constraints

[1]  The included files are derived through the files that are included by the directive #include. /includ-
edFile = self.precompilerDirective -> collect (oclIsTypeOf (Include).headerFile)

C++Function

Description
It is a C++ function.

Generalizations

Operation (from Kernel)• 

Figure 24. ISM–C++ metamodel: Diagram of classifiers
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Attributes

isVarArg: Boolean It specifies whether the function can have variable arguments.• 
linkage: Linkage-Specifier It specifies whether the function is • extern, indicating to compiler that 
the definition of the function is in another file, or is static, i.e., its name is invisible on the outside 
of the file declaring it.
isInLine: Boolean True means that the compiler will replace the function call by the function • 
code.

Associations

parameter: FunctionParameter [*] It specifies the function parameters. It redefines • 
Operation::ownedParameter.
pre: C++Assertion [*] It refers to the preconditions of the function. It redefines • 
Operation::precondition.
post: C++Assertion [*] It refers to the postconditions of the function. It redefines • 
Operation::postcondition.
/returnType: C++Classifier [0..1] It specifies the return type of the function. It redefines • 
Operation::type. It is derived.

Figure 25. ISM–C++ metamodel: Diagram of projects



322

Appendix A

throws: C++Class [*] It refers to the types that represent exceptions that can appear during an • 
invocation of this operation. It redefines Operation::raisedException.
body: Implementation [0..1] It refers to the implementation of the function.• 

Constraints

[1]  A pure virtual function does not have implementation. self.isPureVirtual implies self.body -> 
isEmpty()

C++ Generalization

Description
It represents a generalization in C++.

Generalizations

Generalization (from Kernel)• 

Attributes

access-specifier: Access-Specifier It specifies what the access type of the members of the base • 
class.
isVirtual: Boolean It specifies whether the inheritance is virtual.• 

Figure 26. 
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Associations

general: C++Class [1] It refers to the more general class in the generalization. It redefines • 
Generalization::general.
specific: C++Class [1] It refers to the more specific class in the generalization. It redefines • 
Generalization::specific.

Constraints
No additional constraints.

C++MemberFunction

It is a function that is member of a C++ class.

Generalizations

C++Function• 

Attributes
No additional attributes.

Associations

class: C++Class [1] It refers to the class to which the function belongs. It redefines • 
Operation::class.

Constraints

[1]  A function that is member of a class can not be declared extern. self.linkage <> “extern”

C++Project

Description
It represents a C++ project.

Generalizations

Namespace (from Kernel)• 

Attributes
No additional attributes.
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Associations

c++File: C++File [1.. *] It refers to the set of C++ files that belong to the project.• 

Constraints
No additional constraints.

ClassifierDeclaration

Description
It represents classifier declarations.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.

Associations

C++Classifier: C++Classifier [1] It refers to the declared classifier.• 

Constraints
No additional constraints.

ClassifierDefinition

Description
It denotes classifier definitions.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.

Associations

c++Class: C++Class [1] It refers to the class that is defined.• 

Constraints
No additional constraints.
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Constructor

Description
It designs a function that is used to create class instances. It cannot be called explicitly by means of 
invocation expression. It does not have return type. Its name is the same of the class including it. Its 
declaration is no inherited.

Generalizations

C++MemberFunction• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints

[1]  Constructors do not have return type. self.type -> isEmpty()
[2]  The name of the constructor is the same as the class name including its declaration. self.name = 

self.class.name

Destructor

Description
A destructor is a function member with the same name as the class prefixed by a “~”. Classes have 
only a function destructor that does not have arguments nor return type. Destructors are usually used 
to de-allocate memory and do other cleanup for a class object and its class members when the object 
is destroyed.

Generalizations

C++MemberFunction• 

Attributes

isVirtual: Boolean [1] It specifies whether the destructor is virtual, i.e., if it can be redefined in the • 
subclasses.

Associations
No additional associations.
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Constraints

[1]  A destructor does not have arguments nor return type. self.ownedParameter -> isEmpty () and self.
type -> isEmpty ()

[2]  The destructor name is the same as the name of the class containing it prefixed by a ~. self.name 
= “~”.concat (self.class.name)

FunctionDeclaration

Description
It denotes function declarations.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.

Associations

c++Function: C++Function [1] It denotes the function that declares.• 

Constraints
No additional restrictions.

FunctionDefinition

Description
It represents function definitions.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.

Associations

c++Function: C++Function [1] It denotes the function that defines.• 

Constraints
No additional constraints.
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GlobalVariableandConstantDeclaration

Description
It denotes global variables and constants that are declared in a C++ file.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

HeaderFile

Description
It represents a C++ header file.

Generalizations

C++File• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Implementation

Description
It specifies a procedure that carries out the function result.

Generalization

Element (de Kernel)• 
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Attributes

Procedure: Expression [0..1] It refers to the procedure of the function.• 

Associations

function: C++Function [1] It refers to the functions to which it belongs.• 
invokedMethod: Method [*] It refers to the methods called in the body of a function.• 
referencedVariable: Variable [*] It refers to the variables referred in the body of a function.• 
statement: Statement [0..1] It refers to the statement block of the body of the function.• 

Constraints
No additional constraints.

ImplementationFile

Description
It denotes a C++ implementation file.

Generalizations

C++File• 

Attributes
No additional attributes.

Associations
No additional associations.

Constraints
No additional constraints.

Include

Description
It denotes precompiler directives of type #include.

Generalizations

PrecompilerDirective• 

Attributes
No additional attributes.
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Associations

headerFile: HeaderFile [1] It denotes the header file that is included through a directive.• 

Constraints
No additional constraints.

Method

Description
It declares a member function of a class that can be called by passing a fixed number of arguments.

Generalizations

C++MemberFunction• 

Attributes

isConst: Boolean [1] It specifies whether a method is constant. It redefines • Operation::isQuery.
isFinal: Boolean [1] It specifies whether a method is final, i.e., if it can not be redefined in the • 
subclasses. It redefines RedefinableElement::isLeaf.
isVirtual: Boolean [1] It specifies whther a method is virtual, i.e., if it can be redefined in the • 
subclasses.
isPureVirtual: Boolean [1] It specifies whether a method is pure, i.e., if it does not have • 
implementation.

Associations
No additional associations.

Constraints
No additional restrictions.

PrecompilerDirective

Description
It denotes precompiler directives.

Generalizations

Element (from Kernel)• 

Attributes
No additional attributes.
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Associations
No additional associations.

Restrictions
No additional restrictions.

Statement

Description
It denotes the code block that implements a function.

Generalizations

Action (from Action)• 

Attributes

No additional attributes.

Associations

implementation: Implementation [1] It refers to the implementation of which the implementation • 
is part.
compoundStatement: CompoundStatement [0..1] It refers to the statement block of which this is • 
part.

Constraints

No additional constraints.

Variable

Description
It denotes the variable that is declared in the class.

Generalizations

Property (de Kernel)• 

Attributes

isConst: Boolean [1] It specifies whether a variable is constant. If it is final, must have an initial • 
value compulsory. It redefines RedefinableElement::isLeaf.
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isVolatile: Boolean [1] It specifies whether a variable is volatile, i.e., if it is not accessed • 
synchronically.
storage: Storage-Specifier [1] It specifies the type of the variable allocation.• 
var-type: Var-Type [1] It specifies the type of the variable, i.e., if the variable is object, reference • 
or pointer.

Associations

class: C++Class [1] It refers to a class declaring this variable. It redefines • Property::class.

Constraints

[1]  A variable is a property that is part of a class and is not member of associations. self.class -> size 
() = 1 and self.association -> isEmpty () and self.opposite -> isEmpty ()
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Appendix B:
OCL and NEREUS: Type System

This Appendix includes the specification of the type system of OCL. It includes the OCL signature and 
the algebraic specification.

B.1: PriMitive tYPeS

1. 1. Boolean

1. 1. 1. OCL Signature

or (b: Boolean): Boolean
True if either self or b is true.

xor (b: Boolean): Boolean
True if either self or b is true, but not both.

post: (self or b) and not (self = b)

and (b: Boolean): Boolean
True if both self and b are true.

DOI: 10.4018/978-1-61520-649-0.ch016
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not: Boolean
True if self is false.

post: if self then result = false else result = true endif

implies (b: Boolean): Boolean
True if self is false, or if self is true and b is true.

post: (not self) or (self and b)

1. 1. 2. NEREUS Signature

TYPE Boolean

OPERATIONS

 
True: →Boolean 
False: →Boolean 
not_: Boolean → Boolean 
_and_: Boolean x Boolean → Boolean 
_=_: Boolean x Boolean → Boolean 
_or_: Boolean x Boolean →Boolean 
_xor_: Boolean x Boolean → Boolean 
_⇒_: Boolean x Boolean → Boolean 
_⇔:_ Boolean x Boolean → Boolean 
if_then_else: Boolean x Boolean x Boolean → Boolean 

1. 2. real

1. 2. 1. OCL Signature

Integer is a subclass of Real

+ (r: Real): Real
The value of the addition of self and r.

- (r: Real): Real
The value of the subtraction of r from self.

* (r: Real): Real
The value of the multiplication of self and r.

-: Real
The negative value of self.
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/ (r: Real): Real
The value of self divided by r. Evaluates to OclInvalid if r is equal to zero.

abs (): Real
The absolute value of self. post: if self < 0 then result = - self else result = self endif

floor (): Integer
The largest integer that is less than or equal to self. post: (result <= self) and (result + 1 > self)

round (): Integer
The integer that is closest to self. When there are two such integers, the largest one. post: ((self - result).
abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))

max (r: Real): Real
The maximum of self and r. post: if self >= r then result = self else result = r endif

min (r: Real): Real
The minimum of self and r. post: if self <= r then result = self else result = r endif

< (r: Real): Boolean
True if self is less than r.

> (r: Real): Boolean
True if self is greater than r. post: result = not (self <= r)

<= (r: Real): Boolean
True if self is less than or equal to r. post: result = ((self = r) or (self < r))

>= (r: Real): Boolean
True if self is greater than or equal to r. post: result = ((self = r) or (self > r))

1. 2. 2. NEREUS Signature

TYPE Real

OPERATIONS

 
_=_: Real x Real → Boolean 
_< >_: Real x Real → Boolean 
-_: Real -> Real 
_+_: Real x Real → Real 
_-_: Real x Real → Real 
_*_: Real x Real → Real 
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_/_: Real x Real → Real 
abs: Real → Real 
floor: Real → Integer 
round: Real → Integer 
max: Real x Real → Real 
min: Real x Real → Real 
_<_: Real x Real → Boolean 
_>_: Real x Real → Boolean 
_<=_: Real x Real → Boolean 
_>=_: Real x Real → Boolean 

1. 3. integer

1. 3. 1. OCL Signature

-: Integer
The negative value of self.

+ (i: Integer): Integer
The value of the addition of self and i.

- (i: Integer): Integer
The value of the subtraction of i from self.

* (i: Integer): Integer

/ (i: Integer): Real
The value of self divided by i.Evaluates to OclInvalid if r is equal to zero.

abs (): Integer
The absolute value of self. post: if self < 0 then result = - self else result = self endif

div (i: Integer): Integer
The number of times that is completely within self. pre: i <> 0 post: if self / i >= 0 then result = (self / 
i).floor () else result = -((-self/i).floor ()) endif

mod (i: Integer): Integer
The result is self modulo i. post: result = self - (self.div (i) * i)

max (i: Integer): Integer
The maximum of self an i. post: if self >= i then result = self else result = i endif



336

Appendix B

min (i: Integer): Integer
The minimum of self an i. post: if self <= i then result = self else result = i endif

1. 3. 2 NEREUS Signature

TYPE Integer

OPERATIONS

 
_=_: Integer x Integer → Boolean 
_< >_: Integer x Integer → Boolean 
-_: Integer → Integer 
_+_: Integer x Integer → Integer 
_-_: Integer x Integer → Integer 
_*_: Integer x Integer → Integer 
_/_: Integer x Integer → Integer 
abs: Integer → Integer 
floor: Integer → Integer 
round: Integer → Integer 
max: Integer x Integer → Integer 
min: Integer x Integer → Integer 
_<_: Integer x Integer → Boolean 
_>_: Integer x Integer → Boolean 
_<=_: Integer x Integer → Boolean 
_>=_: Integer x Integer → Boolean 

1. 4. String

1. 4. 1. OCL Signature

size (): Integer
The number of characters in self.

Concat (s: String): String
The concatenation of self and s. post: result.size () = self.size () + string.size () post: result.substring 
(1, self.size ()) = self post: result.substring (self.size () + 1, result.size ()) = s

substring(lower: Integer, upper: Integer): String
The sub-string of self starting at character number lower, up to and including character number upper. 
Character numbers run from 1 to self.size (). pre: 1 <= lower pre: lower <= upper pre: upper <= self.
size ()
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toInteger (): Integer
Converts self to an Integer value.

toReal (): Real
Converts self to a Real value.

1. 4. 2. NEREUS Signature

TYPE String

OPERATIONS

 
concat: String x String → String 
size: String → Integer 
subString: String x Integer x Integer → String 
toInteger: String → Integer 
toReal: String -> Real 

1. 5. tuple

CLASS Tuple 
IMPORTS T1, T2 
EFFECTIVETYPE 
Tuple 
OPERATIONS 
createTuple: T1 x T2 → Tuple 
modifFirst: Tuple x T1→ Tuple 
modifSecond: Tuple x T2 → Tuple 
selectFirst: Tuple → T1 
selectSecond: Tuple → T2 
AXIOMS t: Tuple; f1, f2: T1; s1, s2: T2 
modifFirst (createTuple (f1, s1), f2) = createTuple (f2, s1) 
modifSecond (createTuple (f1, s1), s2) = createTuple (f1, s2) 
selectFirst (createTuple(f1,s1)) = f1 
selectSecond (createTuple(f1,s1)) = s1 
END-CLASS
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B.2: cOLLectiOn tYPeS

2. 1. collection

2. 1. 1 OCL Signature

size (): Integer
The number of elements in the collection self. post: result = self -> iterate (elem; acc: Integer = 0 | acc 
+ 1)

includes (object: T): Boolean
True if object is an element of self, false otherwise. post: result = (self -> count (object) > 0)

excludes (object: T): Boolean
True if object is not an element of self, false otherwise. post: result = (self -> count (object) = 0)

count (object: T): Integer
The number of times that object occurs in the collection self. post: result = self -> iterate (elem; acc: 
Integer = 0 | if elem = object then acc + 1 else acc endif)

includesAll (c2: Collection(T)): Boolean
Does self contain all the elements of c2 ? post: result = c2 -> forAll (elem | self -> includes (elem))

excludesAll (c2: Collection(T)): Boolean
Does self contain none of the elements of c2 ? post: result = c2 -> forAll (elem | self -> excludes 
(elem))

isEmpty (): Boolean
Is self the empty collection? post: result = (self -> size () = 0)

notEmpty (): Boolean
Is self not the empty collection? post: result = (self -> size () <> 0)

sum (): T
The addition of all elements in self. Elements must be of a type supporting the + operation. The + op-
eration must take one parameter of type T and be both associative: (a + b) + c = a + (b + c), and com-
mutative: a + b = b + a. Integer and Real fulfill this condition. post: result = self -> iterate (elem; acc: 
T = 0 | acc + elem)

product (c2: Collection (T2)): Set (Tuple (first: T, second: T2))
The cartesian product operation of self and c2.

post: result = self -> iterate (e1; acc: Set (Tuple (first: T, second: T2)) = Set {} | c2 -> iterate (e2; 
acc2: Set (Tuple (first: T, second: T2)) = acc | acc2 -> including (Tuple {first = e1, second = e2})))
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2. 1. 2. NEREUS Specification

CLASS Collection [Elem: ANY] 
IMPORTS Boolean, Nat 
GENERATED-BY create, add DEFERREDTYPES 
Collection 
OPERATIONS 
create: → Collection 
add: Collection x Elem → Collection 
count: Collection x Elem → Nat 
collect: Collection x (Elem → Elem1: ANY) → Collection 
EFFECTIVEOPERATIONS isEmpty: Collection → Boolean 
size: Collection → Nat 
includes: Collection x Elem → Boolean 
excludes: Collection x Elem → Boolean 
includesAll: Collection x Collection → Boolean 
forAll: Collection x (Elem → Boolean) → Boolean 
exists: Collection x (Elem → Boolean) → Boolean 
select: Collection x (Elem → Boolean) → Collection 
reject: Collection x (Elem → Boolean) → Collection 
iterate: Collection x (Elem x Acc: ANY) x (→ Acc) → Acc 
AXIOMS c, c1: Collection; e: Elem; f: Elem → Boolean; g: Elem x Acc 
→ Acc; 
base: → Acc 
isEmpty (c) = (size (c) = 0) 
iterate (create, g, base) = base 
iterate (add (c, e), g, base)= g (e, iterate (c, g, base)) 
count (c, e) = iterate (c, f1, 0) 
 WHERE OPERATIONS f1: Elem x Nat→Nat 
 AXIOMS e1: Elem; i: Nat 
 f1 (e1, i) = if e = e1 then i + 1 else i 
 END-WHERE 
size (create) = 0 
size (add (c, e)) = 1 ] + size (c) 
 includes (create, e) = False 
includes (add (c, e), e1) = if e = e1 then True else includes (c, 
e1) 
excludes (create, e) = True 
excludes (add (c, e), e1) = if e = e1 then False else excludes (c, 
e1) 
includesAll (create, c) = True 
includesAll (add (c, e), c1) = includesAll (c, c1) and includes (e, 
c1) 
excludesAll (create, c) = True 
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excludesAll (add (c, e), c1) = excludesAll (c, c1) and excludes (e, 
c1) 
forAll (create, f) = True 
forAll (add (c, e), f) = f (e) and forAll (c, f) 
exists (create, f) = False 
exists (add (c, e), f) = f (e) or exists (c, f) 
select (create, f) = create 
select (add (c, e), f) = if f (e) then add (select (c, f), e) else 
select (c, f) 
reject (create, f) = create 
reject (add (c, e), f) = if not f (e) then add (reject (c, f),e) 
 else reject (c, f) 
END-CLASS

Collection-with-suma

CLASS Collection-with-suma [Elem: Real] 
INHERITS Collection [Elem] 
EFFECTIVEOPERATIONS 
suma: Collection-with-suma → Real 
AXIOMS c: Collection-with-suma 
suma (c) = iterate (c, f, 0) 
 WHERE OPERATIONS 
 f: Real x Real → Real 
 AXIOMS r1, r2: Real 
 f (r1, r2) = r1 + r2 
 END-WHEREEND-CLASS

Collection-with-cartesian-product

CLASS Collection-with-cartesianProduct [Elem1, Elem2]IS-SUBTYPE-OF 
Collection [Elem1] [Collection: Collection-with-cartesianProduct] 
IMPORTS Collection [Elem2], Tuple [Elem1, Elem2], Set [Tuple] [set: 
setTuple] 
EFFECTIVEOPERATIONS 
product: Collection-with-cartesianProduct x Collection → SetTuple 
AXIOMS c: Collection-with-cartesianProduct; c2: Collection; t: tu-
ple; s: SetTuple 
product (c, c2) = iterate (c, g, base) 
 WHERE OPERATIONS 
 g: Element x setTuple → setTuple 
 base: → setTupla 
 AXIOMS e: Element; acc: setTuple 
 g (e, acc) = 
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 iterate (v) (c2, [including (acc2, createTuple (e, v)], [acc2 = 
acc]) 
 base = emptyset 
 END-WHEREEND-CLASS

Collection-with-cartesian-product

CLASS Collection-with-cartesianProduct [Elem1, Elem2] 
IS-SUBTYPE-OF 
Collection [Elem1] [Collection: Collection-with-cartesianProduct] 
IMPORTS Collection [Elem2], Tuple [Elem1, Elem2], Set [Tuple] [set: 
setTuple] 
EFFECTIVEOPERATIONS 
product: Collection-with-cartesianProduct x Collection → SetTuple 
AXIOMS c: Collection-with-cartesianProduct; c2: Collection; t: tu-
ple; 
s: SetTuple 
product (c, c2) = iterate (c, g, base) 
 WHERE OPERATIONS 
  g: Element x setTuple → setTuple 
  base: → setTuple 
 AXIOMS e: Element; acc: setTuple 
  g (e, acc) = iterate (c2, g1, base1) 
 WHERE OPERATIONS 
     g1: Element x setTuple → setTuple 
      base1: → setTuple 
 AXIOMS v: Element; acc2: setTuple 
     g1 (v, acc2) = including (acc2, createTuple (e, v)) 
     base1 = acc 
 END-WHERE END-WHEREEND-CLASS

2. 2. Set

2. 2. 1. OCL Signature

union (s: Set (T)): Set (T)
The union of self and s. post: result -> forAll (elem | self -> includes (elem) or s -> includes (elem)) post: 
self -> forAll (elem | result -> includes (elem)) post: s -> forAll (elem | result -> includes (elem))

union(bag: Bag(T)): Bag(T)
The union of self and bag.

post: result -> forAll (elem | result -> count (elem) = self -> count (elem) + bag -> count (elem)) post: 
self -> forAll (elem | result -> includes (elem)) post: bag -> forAll (elem | result -> includes (elem))
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= (s: Set(T)): Boolean
Evaluates to true if self and s contain the same elements. post: result = (self -> forAll (elem | s -> 
includes(elem)) and s -> forAll(elem | self -> includes(elem)))

intersection (s: Set (T)): Set (T)
The intersection of self and s (i.e., the set of all elements that are in both self and s). post: result -> forAll 
(elem | self -> includes (elem) and s -> includes (elem)) post: self->forAll (elem | s -> includes (elem) = 
result -> includes (elem)) post: s -> forAll (elem | self -> includes (elem) = result -> includes (elem))

intersection (bag: Bag (T)): Set (T) 
The intersection of self and bag. post: result = self -> intersection (bag -> asSet)

ñ (s: Set (T)): Set (T)
The elements of self, which are not in s. post: result -> forAll (elem | self -> includes (elem) and s -> 
excludes (elem)) post: self ->forAll (elem | result -> includes (elem) = s -> excludes (elem))

including (object: T): Set (T)
The set containing all elements of self plus object. post: result -> forAll (elem | self -> includes (elem) or 
(elem = object)) post: self -> forAll (elem | result -> includes (elem)) post: result -> includes (object)

excluding (object: T): Set (T)
The set containing all elements of self without object. post: result -> forAll (elem | self -> includes (elem) 
and (elem < > object)) post: self -> forAll (elem | result -> includes (elem) = (object < > elem)) post: 
result -> excludes (object)

symmetricDifference (s: Set (T)): Set (T)
The sets containing all the elements that are in self or s, but not in both. post: result -> forAll (elem | self 
-> includes (elem) xor s -> includes (elem)) post: self -> forAll (elem | result -> includes (elem) = s -> 
excludes (elem)) post: s -> forAll (elem | result -> includes (elem) = self -> excludes (elem))

count (object: T): Integer
The number of occurrences of object in self. post: result <= 1

flatten (): Set (T2)
If the element type is not a collection type, this results in the same self. If the element type is a collection 
type, the result is the set containing all the elements of all the elements of self. post: result = if self.type.
elementType.oclIsKindOf (CollectionType) then self -> iterate (c; acc: Set () = Set { } | acc -> union (c 
-> asSet ())) else self endif

asSet (): Set (T)
A Set identical to self. This operation exists for convenience reasons. post: result = self
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asOrderedSet (): OrderedSet (T)
An OrderedSet that contains all the elements from self, in undefined order. post: result -> forAll (elem 
| self -> includes (elem))

asSequence (): Sequence (T)
A Sequence that contains all the elements from self, in undefined order. post: result -> forAll (elem | 
self -> includes (elem)) post: self -> forAll (elem | result -> count (elem) = 1)

asBag (): Bag (T)
The Bag that contains all the elements from self. post: result -> forAll (elem | self -> includes (elem)) post: 
self -> forAll (elem | result -> count (elem) = 1)

2. 2. 2. Nereus Specification

CLASS Set [T: ANY] 
IS-SUBTYPE-OF Collection [T] [create: createSet; add: including] 
IMPORTS Sequence, Bag [create: createBag; including: includingBag], 
OrderedSet 
GENERATED-BY createSet, including EFFECTIVETYPES 
Set 
OPERATIONS createSet, including, count 
equal: Set x Set → Boolean 
union: Set x Set → Set 
union: Set x Bag → Bag 
intersection: Set x Set → Set 
intersection: Set x Bag → Set 
ñ: Set x Set → Set 
excluding: Set x T → Set 
symmetricDifference: Set x Set → Set 
collect: Set x (T → T1: ANY) → Bag [T1] 
flatten: Set → Set [T1: ANY] 
asSet: Set → Set 
asOrderedSet: Set → OrderedSet 
asSequence: Set → Sequence 
asBag: Set → Bag 
AXIOMS s, s2: Set; b: Bag; b1: Bag [T1] ; e, e1: T; g: T1 → Boolean 
collect (createSet, g) = createBag 
collect (including (s, e), g) = includingBag (collect (excluding (s, 
e),g (e)) 
count (s, e) <= 1 
forAll (v) (union (s, s2), [includes (s, v) or includes (s2, v)]) 
forAll (v) (s, [ includes (union (s, s2), v) ]) 
forAll (v) (s2, [ includes (union (s, s2), v) ]) 
forAll (v) (s, [ includes (union (s, b), v) ]) 
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forAll (v) (b, [ includes (union (s, b), v) ]) 
forAll (v) (union (s, b),[ count (union (s, b), v) = count(s, v) + 
count (b, v) ]) 
equal (s, s2) = 
forAll (v) (s, [includes (s2, v)) and forAll (v1) (s2, [includes (s, 
v1)]) ]) 
forAll (v) (intersection (s, s2), [includes (s,v) and includes 
(s2,v)] 
forAll (v) (s, [includes (s2, v)) = includes (intersection (s, s2), 
v)]) 
forAll (v) (s2, [includes (s, v)) = includes (intersection (s, s2), 
v)]) 
intersection (s, b) = intersection (s, asSet (b)) 
forAll (v) (s – s2, [includes (s, v) and excludes (s2, v) ]) 
forAll (v) (s, [includes (s – s2, v) = excludes (s2,v) ]) 
forAll (v) (including (s, e), [includes (s, v) or equal (v,e)] 
forAll (v) (s, [includes (including (s, e), v) ]) 
includes (including (s, e), e) 
forAll (v) (excluding (s, e), [includes (s, v) and not equal (v, e) 
]) 
forAll (v) (s, [includes (excluding (s, e), v) = not equal (e, v) ]) 
excludes (excluding (s, e), e) 
forAll (v) (symmetricDifference (s, s2), [includes (s, v) xor in-
cludes (s2, v) ]) 
forAll (v) (s, [includes (symmetricDifference (s, s2), v) = excludes 
(s2, v) ]) 
forAll (v) [includes (symmetricDifference (s, s2), v) = excludes (s, 
v) ]) 
flatten (s)= if oclIsKindOf (elementType (type (s)), Collection-
Type) then iterate (v) (s, [union (acc, asset (v)) ], [acc = create-
Set]) else s 
asSet (s) = s 
forAll (v) (asOrderedSet (s), [includes(asOrderedSet (s), v) ]) 
forAll (v) (asSequence (s), includes (s, v)) 
forAll (v) (s, count (asSequence (s), v) = 1) 
forAll (v) (asBag (s), [includes (s, v)]) 
forAll (v) (s, [count (asBag (s), v) = 1]) 
forAll (v) (asOrderedSet (b), [includes (b, v) ]) 
forAll (v) (b, [includes (asOrdered(b), v)) 
forAll (v) (b, [count (asOrderedSet (b), v) = 1]) 
END-CLASS
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2. 3. Bag

2. 3. 1. OCL Signature

= (bag: Bag (T)): Boolean
True if self and bag contain the same elements, the same number of times. post: result = (self -> forAll 
(elem | self -> count (elem) = bag -> count (elem)) and bag -> forAll (elem | bag -> count(elem) = self 
-> count(elem)))

union (bag: Bag (T)): Bag (T)
The union of self and bag. post: result -> forAll (elem | result -> count (elem) = self -> count (elem) + 
bag -> count (elem)) post: self -> forAll (elem | result -> count (elem) = self -> count (elem) + bag -> 
count (elem)) post: bag -> forAll (elem | result -> count (elem) = self -> count (elem) + bag -> count 
(elem))

union (set: Set (T)): Bag (T)
The union of self and set. post: result -> forAll (elem | result -> count (elem) = self -> count (elem) + set 
-> count (elem)) post: self -> forAll (elem | result -> count (elem) = self -> count (elem) + set -> count 
(elem)) post: set -> forAll(elem | result -> count (elem) = self -> count (elem) + set -> count (elem))

intersection (bag: Bag (T)): Bag (T)
The intersection of self and bag. post: result -> forAll (elem | result -> count (elem) = self -> count (elem).
min (bag -> count (elem))) post: self -> forAll (elem | result -> count (elem) = self -> count (elem).min 
(bag -> count (elem))) post: bag -> forAll(elem | result -> count (elem) = self -> count (elem).min (bag 
-> count (elem)))

intersection (set: Set (T)): Set (T)
The intersection of self and set. post: result -> forAll (elem | result -> count (elem) = self -> count (elem).
min (set -> count (elem))) post: self -> forAll (elem | result -> count (elem) = self -> count (elem).min 
(set -> count (elem))) post: set -> forAll (elem | result -> count (elem) = self -> count (elem).min (set 
-> count (elem)))

including (object: T): Bag (T)
The bag containing all elements of self plus object.

post: result -> forAll (elem |
if elem = object then result -> count(elem) = self -> count(elem) + 1
else result -> count(elem) = self -> count(elem)
endif)
post: self -> forAll (elem |
if elem = object then result -> count (elem) = self -> count (elem) + 1
else result -> count(elem) = self -> count(elem)
endif)
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excluding (object: T): Bag (T)
The bag containing all elements of self apart from all occurrences of object.

post: result -> forAll (elem |
if elem = object then result -> count (elem) = 0
else result -> count (elem) = self -> count (elem)
endif)
post: self -> forAll (elem |
if elem = object then result -> count (elem) = 0
else result -> count (elem) = self -> count (elem)
endif)

count (object: T): Integer
The number of occurrences of object in self.

Flatten (): Bag (T2)
If the element type is not a collection type, this results in the same bag. If the element type is a collec-
tion type, the result is the bag containing all the elements of all the elements of self. post: result = if 
self.type.elementType.oclIsKindOf (CollectionType) then self -> iterate (c; acc: Bag () = Bag { } | acc 
-> union (c->asBag ())) else self endif

asBag (): Bag (T)
A bag identical to self. This operation exists for convenience reasons. post: result = self

asSequence (): Sequence (T)
A Sequence that contains all the elements from self, in undefined order. post: result -> forAll (elem | 
self -> count (elem) = result -> count (elem)) post: self -> forAll (elem | self -> count (elem) = result 
-> count (elem))

asset (): Set (T)
The Set containing all the elements from self, with duplicates removed. post: result -> forAll (elem | 
self -> includes (elem)) post: self -> forAll (elem | result -> includes (elem))

asOrderedSet (): OrderedSet (T)
An OrderedSet that contains all the elements from self, in undefined order, with duplicates removed. post: 
result -> forAll (elem | self -> includes (elem)) post: self -> forAll (elem | result -> includes (elem)) post: 
self -> forAll (elem | result -> count (elem) = 1)

2. 3. 2. NEREUS Specification

CLASS Bag [T] 
IS-SUBTYPE-OF Collection [T] [create: createBag; add: including] 
IMPORTS Sequence [T], Set [T] 
GENERATED-BY createBag, including 
EFFECTIVETYPES Bag 
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OPERATIONS 
emptyBag, including, count 
equal: Bag x Bag → Boolean 
union: Bag x Bag → Bag 
union: Bag x Set → Bag 
intersection: Bag x Bag → Bag 
intersection: Bag x Set → Set 
excluding: Bag x T → Bag 
collect: Bag x (T → T1) → Bag [T1] 
asBag: Bag -> Bag 
flatten: Bag -> Bag [T1:ANY] 
asSequence: Bag → Sequence 
asSet: Bag → Set 
asOrderedSet: Bag → OrderedSet 
AXIOMS b, b1: Bag; s: Set; e, e1: T; g: T → T1; f: T → Boolean 
count (including (b, e), e1) = if e = e1 then 1 + count (b, e1) else 
count (b, e1) 
equal (b, b1) = forAll (v) (b, [count (b, v) = count (b1, v) and 
 forAll (v1) (b1, count (b1, v) = count (b, v) ]) 
forAll (v) (union (b, b1), [count (union (b, b1), v) = count (b, v) 
+ count (b1, v) ]) 
forAll (v) (b, [count (union (b, b1), v) = count (b, v) + count (b1, 
v) ]) 
forAll (v) (b1, [count (union (b, b1), v) = count (b, v) + count 
(b1, v) ]) 
forAll (v) (union(b, s), [count (union(b, s), v) = count (b, v) + 
count (s, v) ]) 
forAll (v) (b, [count (union (b, s), v) = count (b, v) + count (s, 
v) ]) 
forAll (v) (s, [count (union (b, s), v) = count (b, v) + count (s, 
v) ]) 
forAll (v) (intersection (b, b1), 
 [count (intersection (b, b1), v) = min (count (b, v), count (b1, 
v) ]) 
forAll (v) (b, [count (intersection (b, b1), v) = min (count(b, v), 
count (b1, v) ]) 
forAll (v) (b1, [count (intersection (b, b1), v) = min (count (b, 
v), count (b1, v) ]) 
forAll (v) (intersection (b, s), [count(intersection(b,s),v) = 
min(count(b,v), count(s,v)]) 
forAll (v) (b, [count (intersection (b, s), v) = min (count (b, v), 
count (s, v) ]) 
forAll (v) (s, [count (intersection (b, s), v) = min (count (b, v), 
count (s, v) ]) 
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forAll (v) (asSequence (b), [count (b, v) = count (asSequence (b), 
v) ]) 
forAll (v) (b, [count (b, v) = count (asSequence (b), v) ]) 
forAll (v) (asset (b), [includes(b, v) ]) 
forAll (v) (b, [includes (asSet (b), v) ]) 
asBag (b) = b 
flatten (b) = if oclIsKindOf (elementType (type (b)), Collection-
Type) 
 then iterate (v) (b, [union (acc, asBag (v)) ], [acc = createBag 
]) 
 else b 
forAll (v) (including (b, e), 
 [if equal(v, e) then count (including (b, e) = count (b, v) + 1 
 else count (including (b, e), v) = count (b, v) ]) 
forAll (v) (b, [if equal (v, e) then count (including (b, e)) = 
count (b, v) + 1 
 else count (including (b, e), v) = count (b, v) ]) 
collect (create, g) = createBag 
collect (including (s, e), g) = including (collect (excluding (s, 
e),g (e)) 
forAll (v) (excluding (b, e), [if equal (v, e) 
 then count (excluding (b, e), v) = 0 
 else count (excluding (b, e), v) = count (b, v) ]) 
forAll (v) (b, [ if equal (v, e) 
 then count (excluding (b, e), v) = 0 
 else count (excluding (b, e), v) = count (b, v) ]) 
END-CLASS

2. 4. Sequence

2. 4. 1 OCL Specification

count (object: T): Integer
The number of occurrences of object in self.

= (s: Sequence (T)): Boolean
True if self contains the same elements as s in the same order. post: result = Sequence {1..self -> size () 
} -> forAll (index: Integer | self -> at (index) = s -> at (index)) and self -> size () = s -> size ()

union (s: Sequence (T)): Sequence (T)
The sequence consisting of all elements in self, followed by all elements in s. post: result -> size () = self 
-> size () + s -> size () post: Sequence {1..self -> size () } -> forAll (index: Integer | self -> at (index) = 
result -> at (index)) post: Sequence {1..s -> size () } -> forAll (index: Integer | s -> at (index) = result 
-> at (index + self -> size ())))
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flatten (): Sequence (T2)
If the element type is not a collection type, this results in the same self. If the element type is a collec-
tion type, the result is the sequence containing all the elements of all the elements of self. The order of 
the elements is partial. post: result = if self.type.elementType.oclIsKindOf (CollectionType) then self 
-> iterate (c; acc: Sequence () = Sequence { } | acc -> union (c -> asSequence ()))

else self
endif

append (object: T): Sequence (T)
The sequence of elements, consisting of all elements of self, followed by object. post: result -> size () 
= self -> size () + 1 post: result -> at (result -> size ()) = object post: Sequence {1..self -> size () } -> 
forAll (index: Integer | result -> at (index) = self -> at (index))

prepend (object: T): Sequence (T)
The sequence consisting of object, followed by all elements in self. post: result -> size = self -> size () 
+ 1 post: result -> at (1) = object post: Sequence {1..self -> size () } -> forAll(index: Integer | self -> at 
(index) = result -> at (index + 1))

insertAt (index: Integer, object: T): Sequence (T)
The sequence consisting of self with object inserted at position index. post: result -> size = self -> size 
() + 1 post: result -> at (index) = object post: Sequence {1..(index - 1)} -> forAll (i: Integer | self -> at 
(i) = result -> at (i)) post: Sequence { (index + 1)..self -> size () } -> forAll (i: Integer | self -> at (i) = 
result -> at (i + 1))

subsequence (lower: Integer, upper: Integer): Sequence (T)
The sub-sequence of self starting at number lower, up to and including element number upper. pre: 1 <= 
lower pre: lower <= upper pre: upper <= self -> size () post: result -> size () = upper - lower + 1 post: 
Sequence {lower..upper} -> forAll (index | result -> at (index - lower + 1) = self -> at (index))

at (i: Integer): T
The i-th element of sequence. pre: i >= 1 and i <= self -> size ()

indexOf (obj: T): Integer
The index of object obj in the sequence. pre: self -> includes(obj) post: self -> at (i) = obj

first (): T
The first element in self. post: result = self -> at (1)

last (): T
The last element in self. post: result = self -> at (self -> size ())
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including (object: T): Sequence (T)
The sequence containing all elements of self plus object added as the last element. post: result = self.
append (object)

excluding (object: T): Sequence (T)
The sequence containing all elements of self apart from all occurrences of object. The order of the re-
maining elements is not changed. post:result -> includes (object) = false post: result -> size () = self -> 
size () - self -> count (object) post: result = self -> iterate (elem; acc: Sequence (T) = Sequence {} | if 
elem = object then acc else acc -> append (elem) endif)

asBag (): Bag (T)
The Bag containing all the elements from self, including duplicates. post: result -> forAll (elem | self 
-> count (elem) = result -> count (elem)) post: self -> forAll (elem | self -> count (elem) = result -> 
count (elem))

asSequence (): Sequence(T)
The Sequence identical to the object itself. This operation exists for convenience reasons. post: result 
= self

asSet (): Set (T)
The Set containing all the elements from self, with duplicates removed. post: result -> forAll (elem | 
self -> includes (elem)) post: self -> forAll (elem | result -> includes (elem))

asOrderedSet (): OrderedSet (T)
An OrderedSet that contains all the elements from self, in the same order, with duplicates removed. post: 
result -> forAll (elem | self -> includes (elem)) post: self -> forAll (elem | result -> includes (elem)) post: 
self -> forAll (elem | result -> count (elem) = 1) post: self -> forAll (elem1, elem2 | self -> indexOf 
(elem1) < self -> indexOf (elem2) implies result -> indexOf (elem1) < result -> indexOf (elem2)

2. 4. 2. NEREUS Specification

CLASS Sequence [T] 
IMPORTS Bag [T], Set [T], Integer 
IS-SUBTYPE-OF Collection [create: createSeq; add: append] 
GENERATED-BY createSeq, append 
EFFECTIVE TYPES Sequence 
OPERATIONS 
createSeq, append, count 
equal: Sequence x Sequence 
prepend: Sequence x T → Sequence 
union: Sequence x Sequence → Sequence 
flatten: Sequence → Sequence [T1: ANY] 
insertAt: Sequence x Integer x T → Sequence 
subSequence: 
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Sequence(s) x Integer (lower) x Integer (upper) → Sequence 
pre: 1<= lower and lower<= upper and upper<= size(s) 
at: Sequence(s) x Integer(i) → T 
pre: i >=1 and i<=size(s) 
indexOf: Sequence(s) x T(e) → Integer 
pre: includes(s,e) 
first: Sequence → T 
last: Sequence → T 
including: Sequence x T → Sequence 
excluding: Sequence x T → Sequence 
collect: Sequence x (T->T1) → Sequence 
asBag: Sequence → Bag 
asSequence:Sequence → Sequence 
asOrderedSet: Sequence → OrderedSet 
asSet: Sequence → Set 
AXIOMS s, s1: Sequence; e, e1: T; f: T → Boolean; i, index, lower, 
upper: Integer; 
g: T -> T1 
count (append (s, e), e1) = if e = e1 then 1+ count (s, e1) else 
count (s, e1) 
equal (s, s1) = ((1<= index <= size (s)) implies 
 at (s, index) = at (s1, index)) and size (s) = size (s1) 
size (union (s, s1)) = size(s) + size (s1) 
(1 <= index <= size (s)) implies at (s, index) = at (union (s, s1), 
index) 
(1 <= index <= size (s1)) implies 
at (s1, index) = at (union (s, s1), index + size (s)) 
flatten (s) = if oclIsKindOf (elementType (type (s)), Collection-
Type) 
 then iterate (v) (s, [union (acc, asSequence (v)) ], [acc = crea-
teSeq]) 
 else b 
size (append (s, e)) = size (s) + 1 
at (append (s, e), size (append (s, e)) = e 
(1<= index <= size (s)) implies at (append (s, e), index) = at (s, 
index) 
size (prepend (s, e)) = size (s) + 1 
at (prepend (s, e), 1) = e 
(1<= index <= size (s)) implies at (s, index) = at (prepend(s, e), 
index + 1) 
size (insertAt (s, index, e) = size (s) + 1 
at (insertAt (s, index, e), index) = e 
(1<= i<= index - 1) implies at (s, i) = at (insertAt (s, index, e), 
i) 
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(index + 1 <= i <= size (s)) implies at (s, i) = at (insertAt(s, in-
dex, e), i + 1) 
size (subSequence (s, lower, upper)) = upper – lower + 1 
(lower <= index <= upper) implies 
at (subsequence (s, lower, upper), index – lower +1) = at (sequence, 
index) 
at (s, indexOf (s, e)) = e 
first (s) = at (s,1) 
last (s) = at (s, size (s)) 
including(s, e) = append(s, e) 
not includes (excluding (s, e), e) 
size (excluding (s, e)) = size (s) – count (s, e) 
iterate (v) (s, [if e = v then acc else append (acc, v) ], [acc = 
createSeq]) 
excluding (create, e) = create 
excluding (append (s, e), e1) = if e = e1 then excluding (s, e) 
 else append (excluding (s, e), e1) 
forAll (v) (asBag (s), [count (s, v)) = count (asBag (s), e) ]) 
forAll (v) (s, [count (s, v) = count (asBag (s), v) ]) 
asSequence (s) = s 
forAll (v) (asSet (s), [includes (s, v)]) 
forAll (v) (asset (s), [includes (asset (s), v) ]) 
forAll (v) (asOrderedSet (s), [includes (s, v) ]) 
forAll (v) (s, [includes (asOrderedSet (s), v) ]) 
forAll (v) (s, [count (isOrderdSet (s), e) = 1) 
forAll (v1, v2) (s, [(indexOf (s, v1) < indexOf (s, v2)) implies 
(indexOf (isOrderedSet (s), v1) < indexOf (isOrderedSet (s), v2) ]) 
collect (createSeq, g) = createSeq 
collect (append (s, e), g) = including (collect (excluding (s, e), 
g(e)) 
END-CLASS

2. 5. Ordered Set

2. 5. 1. OCL Specification

append (object: T): OrderedSet (T)
The set of elements, consisting of all elements of self, followed by object. post: result -> size () = self 
-> size () + 1 post: result -> at (result -> size ()) = object post: Sequence {1..self -> size() } -> forAll 
(index: Integer | result -> at (index) = self -> at (index))



353

Appendix B

prepend (object: T): OrderedSet (T)
The sequence consisting of object, followed by all elements in self. post: result -> size = self -> size () 
+ 1 post: result -> at (1) = object post: Sequence {1..self -> size ()} -> forAll (index: Integer | self -> at 
(index) = result -> at (index + 1))

insertAt (index: Integer, object: T): OrderedSet (T)
The set consisting of self with object inserted at position index. post: result -> size = self -> size () + 
1 post: result -> at (index) = object post: Sequence {1..(index - 1) } -> forAll (i: Integer | self -> at (i) = 
result -> at (i)) post: Sequence { (index + 1).. self -> size () } -> forAll (i: Integer | self -> at (i) = result 
-> at (i + 1))

subOrderedSet (lower: Integer, upper: Integer): OrderedSet (T)
The sub-set of self starting at number lower, up to and including element number upper. pre: 1 <= 
lower pre: lower <= upper pre: upper <= self -> size () post: result -> size () = upper - lower + 1 post: 
Sequence {lower..upper} -> forAll (index | result -> at (index - lower + 1) = self -> at (index))

at (i: Integer): T
The i-th element of self. pre: i >= 1 and i <= self -> size ()

indexOf (obj: T): Integer
The index of object obj in the sequence. pre: self -> includes (obj) post: self -> at (i) = obj

first (): T
The first element in self. post: result = self -> at (1)

last (): T
The last element in self. post: result = self -> at (self -> size ())

2. 5. 2. NEREUS Specification

CLASS OrderedSet [T: ANY] 
IMPORTS Integer, Bag 
IS-SUBTYPE-OF Collection [create: createOrderedSet; add: append] 
GENERATED-BY createOrderedSet, including 
EFFECTIVE TYPES OrderedSet 
OPERATIONS 
createOrderedSet, append, count 
prepend: OrderedSet x T → OrderedSet 
insertAt: OrderedSet x Integer x T → OrderedSet 
subOrderedSet: 
OrderedSet (s) x Integer (lower) x Integer (upper) → OrderedSet 
pre: 1<= lower and lower <= upper and upper <= size (s) 
at: OrderedSet (s) x Integer (i) → T 
pre: i >=1 and I <= size (s) 
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indexOf: OrderedSet (s) x T (e) → Integer 
pre: includes (s, e) 
first: OrderedSet → T 
last: OrderedSet → T 
collect: OrderedSet x (T → T1: ANY) → Bag [T1] 
excluding: OrderedSet x T → OrderedSet 
AXIOMS s, s1: OrderedSet; e, e1:T; f:T -> Boolean; i, index, lower, 
upper: Integer; 
g: T->T1 
count (s, e) <= 1 
size (append (s, e)) = size (s) + 1 
at (append (s, e), size (append (s, e)) = e 
(1<= index <= size (s)) implies at (append (s, e), index) = at (s, 
index) 
size (prepend (s, e)) = size (s) + 1 
at (prepend (s, e),1) = e 
(1<= index <= size (s)) implies at (s, index) = at (prepend (s, e), 
index + 1) 
size (insertAt (s, index, e) = size (s) + 1 
at (insertAt (s, index, e), index) = e 
(1 <= I <= index - 1) implies at (s, i) = at (insertAt (s, index, 
e), i) 
(index + 1 <= I <= size (s)) implies at (s, i) = at (insertAt (s, 
index, e), i + 1) 
size (subOrderedSet (s, lower, upper)) = upper – lower + 1 
(lower <= index <= upper) implies 
at (subOrderedSet (s, lower, upper), index – lower + 1) = at (se-
quence, index) 
at (s, indexOf (s, e)) = e 
first (s) = at (s,1) 
last (s) = at (s, size (s)) 
excluding (createOrderedSet, e) = createOrderedSet 
excluding (append (s, e), e1) = 
if e = e1 then excluding (s, e) else append (excluding (s, e), e1) 
collect (createOrderedSet, g) = createBag 
collect (including (s, e), g) = includingBag (collect (excluding (s, 
e), g (e)) 
END-CLASS
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B.3: enuMeratiOn Signature

3. 1. OcL Signature

An enumerated type is defined by the following syntax

ENUM Name (#val
1
, #val

2
,..., #val

n
) 

where val
i
 are the posible values associated to the respective type. 

TYPE 
Enumeration 
OPERATIONS 
_=_: Enumeration x Enumeration → Boolean 
_ < > _: Enumeration x Enumeration → Boolean 

3. 2. nereuS Specification

CLASS EnumType 
IMPORTS String, OrderedSet [String], Nat 
GENERATED-BY createEnumType 
EFFECTIVETYPES 
EnumType 
OPERATIONS 
createEnumType: OrderedSet → EnumType 
cardinality: EnumType → Nat 
value: EnumType (t) x Nat (i) → String 
pre: 1<= i <= cardinality (t) 
AXIOMS t: EnumType; s: OrderedSet; i: Nat 
cardinality (createEnumType (s)) = size (s) 
value (s, i) = at (s, i) 
END-CLASS 

B.4: tYPe cOnStructOrS

4. 1. cartesian Product

CLASS CartesProd 
IMPORTS T

1
, T

2
,..., T

n
TYPE 

CartesProd 
EFFECTIVEOPERATIONS 
create: T1 x T2 x ...x Tn→ CartesProd 
modif-i: CartesProd x Ti → CartesProd 
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....  1≤i≤ n 
select-i: Cartes-Prod → Ti 
AXIOMS cp: CartesProd; t

1
:T

1
; t

2
, t

2’´
:T

2
... t

n
:T

n
 

modif-i (Create(t
1
, t

2
,.t

i
,.., t

n
)) = t

i
 

... 
select-i (create(t

1
, t

2
, .., t

i
,.. t

n
), t

i´
) = create(t

1
, t

2
,.., t

i´
,.. 

t
n
) 1≤i≤ n 

END-CLASS

4. 2. the constructor type association

4. 2. 1. Binary-Association

Relation scheme BinaryAssociation [Class1: ANY, Class2: ANY] 
--Binary Association 
IMPORTS Boolean, Multiplicity, Visibility, String, Typename 
DEFERREDTYPES BinaryAssociation 
OPERATIONS 
name: BinaryAssociation → TypeName 
frozen: BinaryAssociation → Boolean 
changeable: BinaryAssociation → Boolean 
addOnly: BinaryAssociation → Boolean 
get_role1: BinaryAssociation → String 
get_role2: BinaryAssociation → String 
getMult1: BinaryAssociation → Multiplicity 
getMult2: BinaryAssociation → Multiplicity 
getVisibility1: BinaryAssociation → Visibility 
getVisibility2: BinaryAssociation → Visibility 
END-RELATION

4. 2. 2. Unidirectional- Effective/ 1 to 1

RELATION SCHEME Unidirectional-1 
--Unidirectional/ 1 to 1 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVETYPES Unidirectional-1 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: TypeName → Unidirectional-1 
addLink: Unidirectional-1 (u) x Class1 (c1) x Class2 (c2) → Unidi-
rectional-1 
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pre: not frozen (u) and not isRelated (u, c1, c2) and rightCardinal-
ity (u, c1) < 1 and leftCardinality (u, c2) < 1 
removeLink: Unidirectional-1 (u) x Class1 (c1) x Class2 (c2) → Undi-
rectional-1 
pre: isRelated (u, c1, c2) and not addOnly (u) and not frozen (u) 
get_Class2: Unidirectional-1(u) x Classl (c1) → Class2pre: isRight-
Linked (u, c1) 
isRelated: Unidirectional-1 x Class1 x Class2 → Boolean 
isRightLinked: Unidirectional-1 x Class1 → Boolean 
isLeftLinked: Unidirectional-1 x Class2 → Boolean 
isEmpty: Unidirectional-1→ Boolean 
rightCardinality: Unidirectional-1 x Class1 → Nat 
leftCardinality: Unidirectional-1x Class2→ Nat 
AXIOMS t: TypeName; u: Unidirectional-1; c1, cc1: Class1; c2, cc2: 
Class2 
get-role1 (u) = <role name> 
get_role2 (u) = <role name> 
getVisibility1 (u) = <visibility> 
getVisibility2 (u) = <visibility> 
frozen (u) = <True or False> 
changeable (u) =<True or False> 
addOnly (u) =<True or False> 
getMult1(u) = 1 
getMult2 (u) = 1 
isRelated (create (t), c1, c2) = False 
isRelated (addLink (u, c1, c2), cc1, cc2) = 
(cc1 = c1 and cc2 = c2) or isRelated (u, cc1, cc2) 
get_Class2 (addLink (u, c1, c2), cc1) = 
if c1 = cc1 then c2 else get_Class2 (u, cc1) 
removeLink (addLink (u, c1, c2), cc1, cc2) = 
if c1 = cc1 and c2 = cc2 then u else addLink(removeLink (u, cc1, 
cc2), c1, c2) 
name (create (t)) = t 
name (addLink (u, c1, c2))= name (u) 
isEmpty (create (t)) = True 
isEmpty (addLink (u, c1, c2)) = False 
isRightLinked (create (t), c1) = False 
isRightLinked(addLink (u, c1, c2), cc1) = (c1 = cc1) or isRight-
Linked (u, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addLink (u, c1, c2), cc2) = (c2 = cc2) or isLeftLinked 
(u, cc2) 
0 ≤ rightCardinality (u, c1) ≤ 1 
0 ≤ leftCardinality (u, c2) ≤ 1 
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rightCardinality (create(t), c1) = 0 
leftCardinality (create (t), c2) = 0 
rightCardinality (addLink (u, c1, c2), cc1) = 
if c1 = cc1 then 1 else rightCardinality (u, cc1) 
leftCardinality (addLink (u, c1, c2), cc2) = 
if c2 = cc2 then 1 else leftCardinality (u, cc2) 
END-RELATION

4. 2. 3. Unidirectional/ Effective/ 1 to M

RELATION SCHEME Unidirectional-2 
--Unidirectional/ 1to M 
IMPORTS Collection-C2: Collection [Class2] [create-c2: create] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVETYPES Unidirectional-2 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: TypeName → Unidirectional-2 
addLink: Unidirectional-2 (u) x Class1 (c1) x Class2 (c2) → Unidi-
rectional-2 
pre: not frozen (u) and not isRelated (u, c1, c2) and leftCardinal-
ity (u, c2) < 1 
and rightCardinality (u, c1) < <M> 
removeLink: Unidirectional-2 (u) x Class1 (c1) x Class2 (c2) → Undi-
rectional-2 
pre: isRelated (u, c1, c2) and not addOnly (u) and not frozen (u) 
get_Class2: Unidirectional-2 x Class1 → Collection-C2 
isRelated: Unidirectional-2 x Class1 x Class2 → Boolean 
isRightLinked: Unidirectional-2 x Class1 → Boolean 
isLeftLinked: Unidirectional-2 x Class2 → Boolean 
isEmpty: Unidirectional-2 → Boolean 
rightCardinality: Unidirectional-2 x Class1 → Nat 
leftCardinality: Unidirectional-2 x Class2 → Nat 
AXIOMS t: TypeName; u: Unidirectional-2; c1, cc1: Class1; c2, cc2: 
Class2 
get_role1 (u) = <role name> 
get_role2 (u) = <role name> 
getVisibility1 (u) = <visibility> 
getVisibility2 (u) = <visibility> 
frozen (u) = False 
changeable (u) =<True or False> 
addOnly (u) =<True or False> 
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getMult1 (u) = 1 
getMult2 (u) = <multiplicity> 
isRelated (create (t), c1, c2) = False 
isRelated (addLink (u, c1, c2), cc1, cc2) = 
(cc1 = c1 and cc2 = c2) or isRelated (u, cc1, cc2) 
get_Class2 (create (t), c1) = create-c2 
get_Class2 (addLink (u, c1, c2), cc1) = 
if c1 = cc1 then add (get_Class2 (u, cc1), c2) else get_Class2 (u, 
cc1) 
removeLink (addLink (u, c1, c2), cc1, cc2) = 
if c1 = cc1 and c2 = cc2 then u else addLink (removeLink (u, cc1, 
cc2), c1, c2) 
name (create (t)) = t 
name (addLink (u, c1, c2)) = name (u) 
isEmpty (create (t)) = True 
isEmpty (addLink (u, c1, c2)) = False 
isRightLinked (create (t), c1) = False 
isRightLinked (addLink (u, c1, c2), cc1) = (c1 = cc1) or isRight-
Linked (u, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addLink (u, c1, c2), cc2) = (c2 = cc2) or isLeftLinked 
(u, cc2) 
rightCardinality (create (t), c1) =0 
leftCardinality (create (t), c2) = 0 
rightCardinality (addLink (u, c1, c2), cc1) = 
if c1 = cc1 then 1 + rightCardinality (u, cc1) else rightCardinality 
(u, cc1) 
leftCardinality (addLink (u, c1, c2), cc2) = 
if c2 = cc2 then 1 else leftCardinality (u,cc2) 
END-RELATION

4. 2. 4. Unidirectional/Frozen/ n1..m1 to n2..m2

RELATION SCHEME Unidirectional-3 
--unidirectional/n1..n2 to m1..m2 / frozenIMPORTS PAIR: Cartes-Prod-
uct [Class1, Class2] [create-pair: create] 
Collection-Pair: Bounded-Collection [PAIR] [create-c2: create; re-
latedC: isRelated] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create 
EFFECTIVETYPES Unidirectional-3 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
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create: TypeName x Collection-Pair (c2) → Unidirectional-3 
pre: is-Bounded1 (c2, <n1>, <m1>) and is-Bounded2 (c2, <n2>, <m2>) 
get_Class2: Unidirectional-3 x Classl → Collection-Pair 
isEmpty: Unidirectional-3→ Boolean 
rightCardinality: Unidirectional-3 x Class1 → Nat 
leftCardinality: Unidirectional-3 x Class2→ Nat 
isRightLinked: Unidirectional-3 x Class1→ Boolean 
isLeftLinked: Unidirectional-3 x Class2→ Boolean 
isRelated:Unidirectional-3 x Class1 x Class2 → Boolean 
AXIOMS t: TypeName; u: Unidirectional-4; col: Collection-Pair; c1: 
Class1; c2: Class2; p: PAIR 
get_role1(u) = <role name> 
get_role2(u) = <role name> 
getVisibility1(u) = <visibility> 
getVisibility2(u) = <visibility> 
frozen (u) = True 
changeable (u) = False 
addOnly (u) = False 
getMult1 (u) = <multiplicity> 
getMult2(u) = <multiplicity> 
get_ Class2 (create (t, col)) = col 
<n1> ≤ rightCardinality (u) ≤ <m1><n2> ≤ leftCardinality (u) ≤ <m2> 
name (create (t, col)) = t 
name(addlink (u, c1, c2)) = name (u) 
isEmpty (create (t, col))= True 
isEmpty (addlink (u, c1, c2)) = False 
rightCardinality (create (t, col), c1) = rightSize (col, c1) 
leftCardinality (create (t, col), c2) = leftSize (col, c2) 
isRightLinked (create (t, col), c1) = relatedC (col, c1) 
isLeftLinked (create (t, col), c2) = relatedC (col, c2) 
END-RELATION

4. 2. 5. Aggregation

RELATION SCHEME AggregationIS-SUBTYPE-OF BinaryAssociation [Whole: 
Class1, Part: Class2] 
DEFERREDOPERATIONS 
isPart: Aggregation x Whole x Part→ Boolean 
isEmpty: Aggregation → Boolean 
isLinkedWhole: Aggregation x Whole → Boolean 
isLinkedPart: Aggregation x Part → Boolean 
END-RELATION
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4. 2. 6. Aggregation/ Simple/ 1 to 1 / not frozen

RELATION SCHEME Aggregation-1 
-- aggregation/simple/ 1 to 1/not frozen 
IS-SUBTYPE-OF Aggregation 
GENERATED-BY create, addPartEFFECTIVETYPES Aggregation-1 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-1 
addPart: Aggregation-1(a) x Part (p) x Whole (w) → Aggregation-1 
pre: rightCardinality (a, w) < 1 and leftCardinality (a, p) < 1 
getPart: Aggregation-1 (a) x Whole (w) → Partpre: isLinkedWhole (a, 
w) 
getWhole: Aggregation-1(a) x Part (p) → Wholepre: isLinkedPart (a, 
p) 
removePart: Aggregation-1 (a) x Whole (w) x Part (p) → Aggregation-1 
pre: isPart (a, w, p) and not addOnly (a) and not frozen (a) 
rightCardinality: Aggregation-1 x Whole → Nat 
leftCardinality: Aggregation-1 x Part → Nat 
AXIOMS a: Aggregation-1; p, p1: Part; w, w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a) = False 
changeable (a) = True 
add-Only (a) = <True or False> 
getMult1 (a) = 1 
getMult2 (a) = 1 
get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
getPart (addPart (a, p, w), w1) = if w = w1 then p else getPart (a, 
w1) 
getWhole (addPart (a, p, w), p1) = if (p = p1) then w else getWhole 
(a, p1) 
isPart (create (t), w, p) = False 
isPart (addPart (a, p, w), w1, p1) = (w = w1 and p = p1) or isPart 
(a, w1, p1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, p, w)) = False 
removePart (addPart (a, p, w), p1, w1) = 
if (p = p1 and w = w1) then a else removePart (a, p1, w1) 
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isLinkedWhole (create (t), w) = False 
isLinkedWhole (addPart (a, w, p), w1) = w = w1 or isLinkedWhole (a, 
w1) 
isLinkedPart (create(t), p) = False 
isLinkedPart (addPart (a, w, p), p1) = (p = p1) or isLinkedPart (a, 
p1) 
0 ≤ righCardinality (a, w) ≤ 1 
0 ≤ leftCardinality (a, p) ≤ 1 
righCardinality (create (t), p1) = 0 
leftCardinality (create (t), w1) = 0 
righCardinality (addPart (a, p, w), w1) = 
if w = w1 then 1 else righCardinality (a, w1) 
leftCardinality (addPart (a, p, w), p1) = 
if p = p1 then 1 else leftCardinality (a, p1) 
END-RELATION

4. 2. 7. Aggregation /Simple/ 1 to M / not frozen

RELATION SCHEME Aggregation-2 
--aggregation/simple/1 to M/not frozen 
IMPORTS C-Part: Collection [Part] 
IS-SUBTYPE-OF Aggregation 
GENERATED-BY create, addPartEFFECTIVETYPES Aggregation-2 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-2 
addPart: Aggregation-2 (a) x Part (p) x Whole (w) → Aggregation-2 
pre: leftCardinality (a, p) < 1 and righCardinality (a, w) < <M> and 
not isPart (a, w, p) 
getPart: Aggregation-2 (a) x Whole (w) → C-Partpre: isLinkedWhole 
(a, w) 
getWhole: Aggregation-2 (a) x Part (p) → Wholepre: isLinkedPart (a, 
p) 
rightCardinality: Aggregation-2 x Whole → Nat 
leftCardinality: Aggregation-2 x Part → Nat 
removePart: Aggregation-2 (a) x Whole (w) x Part (p) → Aggregation-2 
pre: isPart (a, w, p) and not addOnly (a) and not frozen (a) 
AXIOMS a: Aggregation-2; p, p1: Part; w, w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a) = False 
changeable (a) = True 
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add-Only(a) = <True or False> 
getMult1 (a) =1 
getMult2 (a) = <M> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, p, w), w1) = 
if w = w1 then 1+ rightCardinality (a, w1) else rightCardinality (a, 
w1) 
leftCardinality (create (t), p) = 0 
leftCardinality (addPart (a, p, w), p1) = if p = p1 then 1 else 
leftCardinality (a, p1) 
get_role1(a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1= <visibility> 
getVisibility2= <visibility> 
getPart (addPart (a, p, w), w1) = 
if (w = w1) then add (getPart (a, w1), p) else getPart (a, w1) 
getWhole (addPart (a, p, w), p1) = if (p = p1) then w else getWhole 
(a, p1) 
isPart (create (t), w, p) = False 
isPart (addPart (a, p, w), w1, p1) = (p = p1 and w = w1) or isPart 
(a, w1, p1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, p, w)) = False 
removePart (addPart (a, p, w), p1, w1) = 
if (p = p1 and w = w1) then a else removePart (a, p1,w1) 
isLinkedWhole (create (t), w) = False 
isLinkedWhole (addPart (a, p, w), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
isLinkedPart (create (t), p) = False 
isLinkedPart (addPart (a, p, w), p1)= (p = p1) or isLinkedPart (a, 
p1) 
END-RELATION

4. 2. 8. Aggregation/ Simple/ N to M/not frozen

RELATION SCHEME Aggregation-3 
--aggregation/simple/N to M/not frozen 
IMPORTS C-Part: Collection [Part] 
 C-Whole: Collection [Whole] 
IS-SUBTYPE-OF Aggregation 
GENERATED-BY create, addPart 
EFFECTIVETYPES Aggregation-3 
OPERATIONS 
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name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-3 
addPart: Aggregation-3 x Part (p) x Whole (w) → Aggregation-3 
pre: not isLinkedPart (a, p) and rightCardinality (a, w) < <M> 
and leftCardinality (a, p) < <N> 
getPart: Aggregation-3 (a) x Whole (w) → C-Partpre: isLinkedWhole 
(a, w) 
getWhole: Aggregation-3 (a) x Part (p) → C-Wholepre: isLinkedPart 
(a, p) 
leftCardinality: Aggregation-3 x Part → Nat 
rightCardinality: Aggregation-3 x Whole → Nat 
removePart: Aggregation-3 (a) x Whole (w) x Part (p) → Aggregation-3 
pre: isPart (a, w, p) and not addOnly (a) and not frozen (a) 
  
AXIOMS a: Aggregation-3; p, p1: Part; w,w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name(a) 
frozen (a) = False 
changeable (a) = True 
add-Only (a) = <True or False> 
getMult1 (a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, p, w), w1) = 
if w = w1 then 1+ rightCardinality (a, w1) else rightCardinality (a, 
w1) 
leftCardinality (create (t), p) = 0 
leftCardinality (addPart (a, p, w), p1) = if (p = p1) then 1+ left-
Cardinality (a, p1) 
 else leftCardinality (a, p1) 
get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
isPart (create (t), p, w) = False 
isPart (addPart (a, p, w), p1, w1) = (p = p1 and w = w1) or 
isPart(a, p1, w1) 
getPart (addPart (a, p, w), w1) = 
if (w = w1) then add (getPart (a, w1), p) else getPart (a, w1) 
getWhole (addPart (a, p, w), p1) = 
if (p = p1) then add (getWhole (a, p1), w) else getWhole (a, p1) 
isEmpty (create (t)) = True 
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isEmpty (addPart (a, p, w)) = False 
remove (addPart (a, p, w), p1, w1) = 
if (p = p1 and w = w1) then a else remove (a, p1, w1) 
isLinkedWhole (create (t), w) = False 
isLinkedWhole (addPart (a, w, p), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
isLinkedPart (create (t), p) = False 
isLinkedPart (addPart (a, w, p), p1) = (p = p1) or isLinkedPart (a, 
p1) 
END-RELATION

4. 2. 9. Aggregation/Simple/1 to 1/frozen

RELATION SCHEME Aggregation-4 
-- aggregation/simple/ 1 to 1/frozen 
IS-SUBTYPE-OF Aggregation 
GENERATED-BY create, addPart 
EFFECTIVETYPES Aggregation-4 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-4 
addPart: Aggregation-4 (a) x Part (p) x Whole (w) → Aggregation-4 
pre: not isPart (a, w, p) 
getPart: Aggregation-4 (a) x Whole (w) → Partpre: isLinkedWhole (a, 
w) 
getWhole: Aggregation-4 (a) x Part (p) → Wholepre: isLinkedPart (a, 
p) 
AXIOMS a: Aggregation-4; p, p1: Part; w, w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a) = True 
changeable (a) = False 
addOnly (a) = False 
getMult1 (a) = 1 
getMult2 (a) = 1 
get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
isPart (create (t), w, p) = False 
isPart (addPart (a, p, w), w1, p1) = (w = w1 and p = p1) or isPart 
(a, w1, p1) 
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getPart (addPart (a, p, w), w1) = if w = w1 then p else getPart (a, 
w1) 
getWhole (addPart (a, p, w), p1) = if p = p1 then w else getWhole 
(a, p1) 
isLinkedWhole (create(t), w1) = False 
isLinkedWhole (addPart (a, w, p), w1) = (w = w1) or isLinkedWhole(a, 
w1) 
isLinkedPart (create(t), p1) = False 
isLinkedPart (addPart (a, w, p), p1)) = (p = p1) or isLinkedPart (a, 
p1) 
isEmpty (create(t)) = True 
isEmpty (addPart (a, p, w)) = False 
END-RELATION

4. 2.10. Aggregation/ Simple/ 1 to M/ frozen

RELATION SCHEME Aggregation-5 
-- aggregation/simple/ 1 to N1..N2/ frozen 
IMPORTS C-Part: Collection [Part] 
IS-SUBTYPE-OF Aggregation [C-Part: Part] 
GENERATED-BY create, addPart 
EFFECTIVETYPES Aggregation-5 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-5 
addPart: Aggregation-5 (a) x C-Part (cp) x Whole (w) → Aggregation-5 
pre: rightCardinality (a, w) < 1 and <n1> < size (cp)< <n2> 
getPart: Aggregation-5 (a) x Whole (w) → C-Partpre: isLinkedWhole 
(a, w) 
getWhole: Aggregation-5 (a) x Part (p) → Wholepre: isLinkedPart (a, 
p) 
rightCardinality: Aggregation-5 x Whole → Nat 
leftCardinality: Aggregation-5 x Part → Nat 
AXIOMS a: Aggregation-5; cp, cp1: C-Part ; w, w1: Whole ; t: Type-
Name 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a)= True 
changeable (a) = False 
addOnly (a) = False 
getMult1 (a) =1 
getMult2 (a) = <M> 
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get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
isPart (create (t), w, p) = False 
isPart (addPart (a, cp, w), w1, cp1) = (w = w1 and cp = cp1) or is-
Part (a, w1, cp1) 
getPart (addPart (a, cp, w), w1) = if (w = w1) then cp else getPart 
(a, w1) 
getWhole (addPart (a, cp, w), p1) = 
if includes (cp, p1) then w else getWhole (a, p1) 
isPart (create (t), w1, p1) = False 
isPart(addPart(a,cp,w),w1,cp1) = (w = w1 and cp = cp1) or isPart (a, 
w1, p1) 
isLinkedWhole (create (t), w1) = False 
isLinkedWhole (addPart (a, w, cp), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
isLinkedPart (create (t), cp1) = False 
isLinkedPart (addPart (a, w, cp), cp1))= (cp = cp1) or isLinkedPart 
(a, cp1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, cp, w)) = False 
rightcardinality (create (t), w) = 0 
rightCardinality (addPart (a, cp, w), w1) = 
if (w=w1) then size (cp) else righCardinality (a, w1) 
leftcardinality (create (t), w) = 0 
leftCardinality (addPart (a, cp, w), w1) = 
if (w = w1) then size (cp) else leftCardinality (a, w1) 
END-RELATION

4. 2. 11. Aggregation/simple/1to n1..n2/changeable

RELATION SCHEME Aggregation-6 
-- aggregation/simple/1to n1..n2/changeable 
IMPORTS C-Part: Collection [Part] 
IS-SUBTYPE-OF Aggregation [C-Part: Part; undefine: isPart] 
GENERATED-BY create, addPartEFFECTIVETYPES Aggregation-6 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isEmpty, isLinkedPart, is-
LinkedWhole 
create: TypeName → Aggregation-6 
addPart: Aggregation-6 (a) x C-Part (cp) x Whole (w) → Aggregation-6 
pre: changeable (a) and <n1> ≤ size (cp) ≤ <n2> 
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rightCardinality: Aggregation-6 x Whole → Nat 
leftCardinality: Aggregation-6 x Part → Nat 
removePart: Aggregation-6 (a) x Whole (w) x Part (p) → Aggregation-6 
pre: isPart (a, w, p) and not addOnly (a) 
getPart: Aggregation-6 (a) x Whole (w) → C-Part (p) 
pre: isLinkedWhole (a, w) 
getWhole: Aggregation-6 (a) x Part (p) → Wholepre: isLinkedPart (a, 
p) 
isPart: Aggregation-6 x Whole x Part → Boolean 
  
AXIOMS a: Aggregation-6; p, p1: Part; w, w1: Whole; t: TypeName; 
cp: C-Part 
name (create (t)) = t 
name (addPart (a, cp, w)) = name (a) 
frozen (a) = False 
changeable (a) = True 
addOnly (a) = <True or False> 
getMult1 (a) = 1 
getMult2 (a)= <n1>..<n2> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, cp, w), w1) = 
if (w = w1) then size (cp) else rightCardinality (a, w1) 
leftCardinality (create (t), w) = 0 
leftCardinality (addPart (a, cp, w), p1) = 
if includes (cp, p1) then 1 else leftCardinality (a, w1) 
get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1= <visibility> 
getVisibility2= <visibility> 
getWhole (addPart (a, cp, w), p1) = 
if includes (cp, p1) then w else getWhole (a, p1) 
getPart (addPart (a,c p, w), w1) = if (w = w1) then cp else getPart 
(a, w1) 
isPart (create (t), w, p) = False 
isPart (addPart(a, cp, w), w1, p1) = 
includes (cp, p1) and (w = w1) or isPart (a, w1, p1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, cp, w)) = False 
remove (addPart (a, cp, w), p1, w1) = 
if (includes (cp, p1) and w = w1) then addPart (create (t), delete 
(cp, p1), w) 
 else remove (a, p, w1) 
isLinkedWhole (create (t), w1) = False 
isLinkedWhole (addPart (a, cp, w), w1)= (w = w1) or isLinkedWhole 
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(a, w1) 
isLinkedPart (create (t), p1) = False 
isLinkedPart (addPart(a, cp, w), p) = includes (cp, p) or isLinked-
Part (a, p) 
END-RELATION

4. 2. 12. Aggregation/ 1 to n1..n2 /ordered/frozen

RELATION SCHEME Aggregation-7 
--aggregation/simple/1to n1..n2/ordered/frozen 
IMPORTS C-Part: Sequence [Part] [create-s: create] 
IS-SUBTYPE-OF Aggregation [C-Part: Part] 
GENERATED-BY create, addPartEFFECTIVETYPES Aggregation-7 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Whole, isLinkedPart 
create: TypeName → Aggregation-7 
addPart: Aggregation-7(a) x C-Part (cp) x Whole (w) → Aggregation-7 
pre:<n1> ≤size (cp) ≤ <n2> and not isLinkedWhole (a, w) 
rightCardinality: Aggregation-7 x Whole → Nat 
leftCardinality: Aggregation-7 x Part → Nat 
getPart: Aggregation (a) x Whole (w) → C-Part (p) 
pre: isLinkedWhole (a, w) 
getWhole: Aggregation (a) x Part (p) → Wholepre: isLinkedPart (a, p) 
AXIOMS a: Aggregation-7; p, p1: Part; w, w1: Whole; t: TypeName; cp: 
C-Part 
name (create (t)) = t 
name (addPart (a, cp, w)) = name (a) 
frozen (a)= True 
changeable (a) = False 
addOnly (a) = True 
getMult1 (a) = 1 
getMult2 (a) = <n1>..<n2> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, cp, w), w1) = 
if includes(cp, w1) then 1 else leftCardinality (a, w1) 
rightCardinality (create (t), w) = 0 
leftCardinality (addPart (a, cp, w), p1) = 
if includes (cp, p1) then 1 else leftCardinality (a, p1) 
get_role1(a) = <name-role1> 
get_role2(a) = <name-role2> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
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getPart (addPart(a, cp, w), w1) = if (w = w1) then cp else getPart 
(a, w1) 
getWhole (addPart (a, cp, w), p)= 
if includes (cp, p) then w else getWhole (a, p) 
isPart (create (t), p) = False 
isPart (addPart (a, cp, w), p1, w1) = 
(includes (cp, p1) and (w = w1)) or isPart (a, p1, w1) 
isLinkedWhole (create (t), w) = False 
isLinkedWhole (addPart (a, cp, w), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
isLinkedPart (create(t), w) = False 
isLinkedPart (addPart (a, cp, w), p) = includes (cp, p) or isLinked-
Part (a, p) 
END-RELATION

4. 2. 13. Aggregation/ Composition/ 1..1

RELATION SCHEME Composition-1 
--composition/simple/ 1..1/not frozen 
IS-SUBTYPE-OF Aggregation 
GENERATED-BYcreate, addEFFECTIVETYPES Composition-1 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, getPart, getWhole, isPart, 
isEmpty, isLinkedPart, isLinkedWhole 
create: TypeName → Composition-1 
addPart: Composition-1(c) x Part (p) x Whole (w) → Composition-1 
pre: rightCardinality(a, w) <1 and leftCardinality (a, p) < 1 
removePart: Composition-1 (a) x Whole (w) x Part (p) → Composition-1 
pre: isLinkedPart (a, w, p) and not addOnly (a) and not frozen (a) 
leftCardinality: Composition-1 x Part → Nat 
rightCardinality: Composition-1 x Whole → Nat 
getPart: Composition-1(c) x Whole (w) → Part 
pre: isLinkedWhole (c, w) 
getWhole: Composition-1(c) x Part (p) → Whole 
pre: isLinkedPart (c, p) 
AXIOMS a: Composition-1; p, p1: Part; w, w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a) = False 
changeable (a) = True 
add-Only (a) = <True or False> 
getMult1 (a) = 1 
getMult2 (a) = 1 
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get_role1 (a) = <name-role1> 
get_role2 (a) = <name-role2> 
getVisibility1= <visibility> 
getVisibility2= <visibility> 
getPart (addPart (a, p, w)) = if w = w1 then p else getPart (a, w1) 
getWhole (addPart (a, p, w), p1)) = if (p = p1) then w else getWhole 
(a, p1) 
isPart (create(t), p1) = False 
isPart (addPart (a, p, w), w1, p1) = (w = w1 and p = p1) or isPart 
(a, w1, p1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, p, w)) = False 
remove (addPart (a, p, w), p1, w1) = 
if (p = p1 and w = w1) then a else remove (a, p1, w1) 
isLinkedPart (create(t), p) = False 
isLinkedPart (addPart (a, w, p), p1) = (p = p1) or isLinkedPart (a, 
p1) 
isLinkedWhole (create (t), p) = False 
isLinkedWhole (addPart (a, w, p), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
leftCardinality (create (t), p) = 0 
leftCardinality (addPart (a, w, p), p1) = if (p = p1) then 1 else 
leftCardinality (a, p1) 
END-RELATION

4. 14. composition / Simple/ 1 to M/ not frozen

RELATION SCHEME Composition-2 
--composition / simple / 1..M / not frozen 
IMPORTS C-Part: Collection [Part] 
IS-SUBTYPE-OF Aggregation 
EFFECTIVETYPES Composition-2 
OPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2, isPart, isEmpty, isLinked-
Part, isLinkedWhole 
create: TypeName → Composition-2 
addPart: Composition-2 (a) x Part (p) x Whole (w) → Composition-2 
pre: leftCardinality (a, p) < 1 and not isPart (a, p, w) and right-
Cardinality (a, w) < <M> 
rightCardinality: Composition-2 x Whole → Nat 
leftCardinality: Composition-2 x Part → Nat 
removePart: Composition-2 (a) x Whole (w) x Part (p) → Composition-2 
pre: isPart (a, w, p) and not addOnly (a) and not frozen (a) 
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getPart: Composition (c) x Whole (w) → C-Part 
pre: isLinkedWhole (c, w) 
getWhole: Composition-2 (c) x Part (p) → Whole 
pre: isLinkedPart (c, p) 
AXIOMS a: Composition-2; p, p1: Part; w, w1: Whole; t: TypeName 
name (create (t)) = t 
name (addPart (a, p, w)) = name (a) 
frozen (a) = False 
changeable (a) = True 
addOnly (a) = <True or False> 
getMult1 (a) =1 
getMult2 (a) = <M> 
rightCardinality (create (t), w) = 0 
rightCardinality (addPart (a, p, w), w1) = 
if w = w1 then 1+ rightCardinality (a, w1) else rightCardinality (a, w1) 
leftCardinality (create (t), p) = 0 
leftCardinality (addPart (a, p, w), p1) = if p = p1 then 1 else 
leftCardinality (a, p1) 
get_role1 (a) = <name-role> 
get_role2 (a) = <name-role> 
getVisibility1 = <visibility> 
getVisibility2 = <visibility> 
isPart (create(t), p, w)= False 
isPart (addPart (a, p, w), p1, w1) = (p = p1 and w = w1) or isPart 
(a, p1, w1) 
getPart (addPart (a, p, w), w1) = 
if w = w1 then then includes (getPart (a, w1), p) else getPart (a, 
w1) 
getWhole (addPart (a, p, w), p1) = if p = p1 then w else getWhole 
(a, p1) 
isEmpty (create (t)) = True 
isEmpty (addPart (a, p, w)) = False 
remove (addPart (a, p, w), p1, w1) = 
if (p = p1 and w = w1) then a else remove (a, p1, w1) 
isLinkedPart (create (t), p1) = False 
isLinkedWhole (create (t), w1) = False 
isLinkedPart (addPart (a, w, p), p1) = (p = p1) or isLinkedPart (a, 
p1) 
isLinkedWhole (addPart (a, w, p), w1) = (w = w1) or isLinkedWhole 
(a, w1) 
END-RELATION
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4. 15. Bidirectional / 1 to 1

RELATION SCHEME Bidirectional-1 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVE 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: Typename → Bidirectional-1 
addLink: Bidirectional-1(b) x Class1(c1) x Class2(c2) → Bidirection-
al-1 
pre: rightCardinality (b, c1) < 1 and leftCardinality (b, c2) < 1 
and 
not isRelated (a, c1, c2) 
isEmpty: Bidirectional-1 → Boolean 
isRightLinked: Bidirectional-1 x Class1 → Boolean 
isLeftLinked: Bidirectional-1 x Class2 → Boolean 
rightCardinality: Bidirectional-1 x Class1 → Nat 
leftCardinality: Bidirectional-1 x Class2 → Nat 
getClass1: Bidirectional-1(a) x Class1 (c1) → Class2pre: isRight-
Linked (a,c1) 
getClass2: Bidirectional-1(a) x Class2 (c2) → Class1pre: 
isLeftLinked (a, c2) 
remove: Bidirectional-1 (a) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-1 
pre: isRelated (a, c1, c2) 
isRelated: Bidirectional-1 x Class1 (c1) x Class2 (c2) → Boolean 
AXIOMS a: Bidirectional-1; c1, cc1: Class1; c2, cc2: Class2; t: 
TypeName 
name (create(t)) = t 
name (add (a, c1, c2)) = name (a) 
isEmpty (create(t) = True 
isEmpty (addLink (a, c1, c2)) = False 
frozen (a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1(a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
isRelated (create (t), c1, c2) = False 
isRelated (addLink (a, c1, c2), cc1, cc2) = 
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(c1 = cc1 and c2 = cc2) or isRelated (a, cc1, cc2) 
isRightLinked (create (t), c1) = False 
isRightLinked (addLink (a, c1, c2), cc1) = 
if c1= cc1 then True else isRightLinked (a,cc1) 
isLeftLinked (create (t),c2) = False 
isLeftLinked (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then True else isLeftLinked (a, cc2) 
rightCardinality (create (t), c1) = 0 
rightCardinality (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then 1 else rightCardinality (a, cc1) 
leftCardinality (create (t), c1) = 0 
leftCardinality (addLink (a, c1, c2), cc1) = 
if c1= cc1 then 1 else leftCardinality (a, cc1) 
getClass1(addLink (a, c1, c2), cc1) = if c1 = cc1 then c2 else 
getClass1(a, cc1) 
getClass2 (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then c2 else getClass2 (a, cc2) 
remove (addLink (a, c1, c2), cc1, cc2) = 
if (c1=cc1 and c2=cc2) then a else remove(a,cc1,cc2) 
END-RELATION

4. 16. Bidirectional/ 1 to *

RELATION SCHEME Bidirectional-2 
IMPORTS Collection-C2: Collection [Class2] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVEOPERATIONS 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: Typename→ Bidirectional-2 
addLink: Bidirectional-2 (b) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-2 
pre: leftCardinality (b, c2) < 1 and not isRelated (a, c1, c2) 
isEmpty: Bidirectional-2 → Boolean 
isRightLinked: Bidirectional-2 x Class1 → Boolean 
isLeftLinked: Bidirectional-2 x Class2 → Boolean 
rightCardinality: Bidirectional-2 x Class1 → Nat 
leftCardinality: Bidirectional-2 x Class2 → Nat 
getClass1: Bidirectional-2 (a) x Class1 (c1) → Collection-C2 
pre: isRightLinked (a, c1) 
getClass2: Bidirectional-2 (a) x Class2 (c2) → Class1pre: 
isLeftLinked (a, c2) 
remove: Bidirectional-2 (a) x Class1 (c1) x Class2 (c2) → Bidirec-
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tional-2 
pre: isRelated (a, c1, c2) 
isRelated: Bidirectional-2 x Class1 (c1) x Class2 (c2) → Boolean 
AXIOMS a: Bidirectional-2; c1, cc1: Class1; c2, cc2: Class2; t: 
TypeName 
name (create (t)) = t 
name (add (a, c1, c2)) = name (a) 
isEmpty (create (t)) = True 
isEmpty (addLink (a, c1, c2)) = False 
frozen (a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1 (a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
isRelated (create (t), c1, c2) = False 
isRelated(addLink(a, c1, c2), cc1, cc2) = 
(c1 = cc1 and c2 = cc2) or isRelated(a, cc1, cc2) 
isRightLinked (create (t), c1) = False 
isRightLinked (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then True else isRightLinked (a, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then True else isLeftLinked (a, cc2) 
rightCardinality (create (t), c1) = 0 
rightCardinality(addLink (a, c1, c2), cc1) = 
if c = cc1 then 1 + rightCardinality (a, cc1) else rightCardinality 
(a, cc1) 
leftCardinality (create (t), c2) = 0 
leftCardinality(addLink (a, c1, c2), cc2) = 
if c2 = cc2 then 1 else leftCardinality (a, cc2) 
getClass2 (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then add (getClass2 (a, cc1), c2) else getClass2 (a, 
cc1) 
getClass1 (addLink (a, c1, c2), cc2) = if c2 = cc2 then c1 else 
getClass1(a, cc2) 
remove (addLink (a, c1, c2), cc1, cc2) = 
if (c1 = cc1 and c2 = cc2) then a else remove(a, cc1, cc2) 
isRelated (create (t), c1, c2) = False 
isRelated(addLink(a, c1, c2), cc1, cc2) = 
(c1= cc1 and c2 = cc2) or isRelated(a, cc1, cc2) 
END-RELATION
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4. 17. Bidirectional/ * to *

RELATION SCHEME Bidirectional-3 
IMPORTS Collection-C1:Collection [Class1], Collection-C2: Collection 
[Class2] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addLink 
EFFECTIVE 
name, frozen, changeable, addOnly, get_role1, get_role2, getMult1, 
getMult2, getVisibility1, getVisibility2 
create: Typename → Bidirectional-3 
addLink: Bidirectional-3 (b) x Class1(c1) x Class2 (c2) → Bidirec-
tional-3 
pre: not isRelated (a, c1, c2) 
isEmpty: Bidirectional-3 → Boolean 
isRightLinked: Bidirectional-3 x Class1 → Boolean 
isLeftLinked: Bidirectional-3 x Class2 → Boolean 
rightCardinality: Bidirectional-3 x Class1 → Nat 
leftCardinality: Bidirectional-3 x Class2 → Nat 
getClass2: Bidirectional-3 (a) x Class1 (c1) → Collection-C2 
pre: isRightLinked (a, c1) 
getClass1: Bidirectional-3 (a) x Class2 (c2) → Collection-C1 
pre: isLeftLinked (a, c2) 
remove: Bidirectional-3 (a) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-3 
pre: isRelated (a, c1, c2) 
isRelated: Bidirectional-3 x Class1 (c1) x Class2 (c2) → Boolean 
  
AXIOMS a: Bidirectional-3; c1,cc1: Class1; c2,cc2:Class2; t:TypeName 
name (create (t))= t 
name (add (a, c1, c2)) = name (a) 
isEmpty (create(t))= True 
isEmpty (addLink (a, c1, c2)) = False 
frozen (a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1(a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
isRelated (create (t), c1, c2) = False 
isRelated (addLink (a, c1, c2), cc1, cc2) = 
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(c1 = cc1 and c2 = cc2) or isRelated(a, cc1, cc2) 
isRightLinked (create (t), c1) = False 
isRightLinked (addLink(a, c1, c2), cc1) = 
if c1 = cc1 then True else isRightLinked (a, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then True else isLeftLinked (a, cc2) 
rightCardinality (create (t), c1) = 0 
rightCardinality (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then 1 + rightCardinality (a, cc1) else rightCardinality 
(a, cc1) 
leftCardinality (create (t), c2) = 0 
leftCardinality (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then 1 + leftCardinality (a, cc2) else 
leftCardinality(a, cc2) 
getClass2 (addLink (a, c1, c2), cc1) = 
if c1 = cc1 then add (getClass2 (a, cc1), c2) else getClass2 (a, cc1) 
getClass1 (addLink (a, c1, c2), cc2) = 
if c2 = cc2 then add (getClass1(a, cc2), c2) else getClass1 (a, cc2) 
remove (addLink (a, c1, c2), cc1, cc2) = 
if (c1 = cc1 and c2 = cc2) then a else remove (a, cc1, cc2) 
END-RELATION

4. 18. Bidirectional / * to *

RELATION CLASS Bidirectional-4 
IMPORTS Collection-C2: Collection [Class2] 
 Collection-C1:Collection [Class1] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addlink 
EFFECTIVE 
name, create, frozen, changeable, addOnly, get_role1, get_role2, 
getMult1, getMult2, getVisibility1, getVisibility2, isRelated 
create: Typename → Bidirectional-4 
addlink: Bidirectional-4 (b) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-4 
pre: rightCardinality (b, c1) < < m1> and leftCardinality (b, c2) < 
<m2> 
isEmpty: Bidirectional-4 → Boolean 
isRightLinked: Bidirectional-4 x Class1 → Boolean 
isLeftLinked: Bidirectional-4 x Class2 → Boolean 
rightCardinality: Bidirectional-4 x Class1 → Nat 
leftCardinality: Bidirectional-4 x Class2 → Nat 
link1: Bidirectional-4 (a) x Class1 (c1) → Collection-C2 
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pre: isRightLinked (a, c1) 
link2: Bidirectional-4 (a) x Class2 (c2) → Collection-C1 
pre: isLeftLinked (a, c2) 
remove: Bidirectional-4 (a) x Class1 (c1) x Class2 (c2) → Boolean 
pre: isRelated (a, c1, c2) 
AXIOMS a: Bidirectional-4; c1, cc1: Class1; c2, cc2: Class2; t: 
TypeName 
isEmpty (create (t)) = True 
isEmpty (addlink (a, c1, c2)) = False 
frozen(a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1 (a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
isRelated (create (t), c1, c2) = False 
isRelated (addlink (a, c1, c2), cc1, cc2) = 
(c1 = cc1 and c2 = cc2) or isRelated (a, cc1, cc2) 
isRightLinked (create (t), c1) = False 
isRightLinked (addlink1(a, c1, c2), cc1) = 
if c1= cc1 then True else isRightLinked (a, cc1) 
isLeftLinked (create (t), c2) = False 
isLeftLinked (addlink2 (a, c1, c2), cc2) = 
if c2 = cc2 then True else isLeftLinked (a, cc2) 
rightCardinality (create (t), c1) = 0 
rightCardinality (addlink1(a, c1, c2), cc1) = 
if c1 = cc1 then 1+ rightCardinality (a, cc1) else rightCardinality 
(a, cc1) 
leftCardinality (create (t), c1) = 0 
leftCardinality (addlink2 (a, c1, c2), cc1) = 
if c1 = cc1 then 1 + leftCardinality (a, cc1) else leftCardinality 
(a, cc1) 
link1(addlink1(a, c1, c2), cc1) = 
if c1 = cc1 then includes (link1(a), c2) else link1(a, cc1) 
link2 (addlink2 (a, c1, c2), cc2) = 
if c2=cc2 then includes(link2 (a), c1) else link2 (a, cc2) 
remove1(addlink1(a, c1, c2), cc1, cc2) = 
if (c1 = cc1 and c2 = cc2) then a else remove1(a, cc1, cc2) 
remove2 (addlink2 (a, c2, c1), cc2, cc1) = 
if (c2 = cc2 and c1 = cc1) then a else remove2(a, cc2, cc1) 
END-RELATION
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4. 19. Bidirectional/n1..n2 to m1..m2

RELATION SCHEME Bidirectional-5 
IMPORTSClass1, Class2, 
PAIR: Cartes-Product [Class1, Class2] [create-pair: create], 
Collection-Links: Collection [PAIR] [create-c2: create], 
Collection-C2: Collection [Class2], Collection-C1: Collection 
[Class1] 
IS-SUBTYPE-OF BinaryAssociation 
GENERATED-BY create, addlink 
EFFECTIVEOPERATIONS 
name, create, frozen, changeable, addOnly, get_role1, get_role2, 
getMult1, getMult2, getVisibility1, getVisibility2, is-related 
create: Typename x Collection-Links (l) → Bidirectional-5 
addlink: Bidirectional-5 (b) x Class1 (c1) x Class2 (c2) → Bidirec-
tional-5 
pre: rightCardinality (b, c1) < < m1> and leftCardinality (b, c2) < 
<m2> 
isEmpty: Bidirectional-5 → Boolean 
isRightLinked: Bidirectional-5 x Class1 → Boolean 
isLeftLinked: Bidirectional-5 x Class2 → Boolean 
rightCardinality: Bidirectional-5 x Class1 → Nat 
leftCardinality: Bidirectional-5 x Class2 → Nat 
link1: Bidirectional-5 (a) x Class1 (c1) → Collection-C2 
pre: isRightLinked (a, c1) 
link2: Bidirectional (a) x Class2 (c2) → Collection-C1 
pre: isLeftLinked (a, c2) 
remove: Bidirectional (a) x Class1 (c1) x Class2 (c2) → Boolean 
pre: isRelated (a, c1, c2) 
  
AXIOMS a: Bidirectional; c1, cc1: Class1; c2, cc2: Class2; t: Type-
Name; 
col: Collection-Link 
isEmpty (create (t, cl)) = isEmpty (cl) 
isEmpty (addlink (a, c1, c2)) = False 
frozen (a) = <True or False> 
changeable (a) = <True or False> 
addOnly (a) = <True or False> 
get_role1 (a) = <role name> 
get_role2 (a) = <role name> 
getMult1 (a) = <multiplicity> 
getMult2 (a) = <multiplicity> 
getVisibility1 (a) = <visibility> 
getVisibility2 (a) = <visibility> 
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is-related (create (t, empty), c1, c2) = False 
is-related(create (t, add(cl,e)), c1, c2) = 
if select1 (e) = c1 and select2 (e) = c2 then TRUE 
 else is-related (create (t, cl), c1, c2) 
isRelated (addlink (a, c1, c2), cc1, cc2) = 
(c1= cc1 and c2 = cc2) or isRelated (a, cc1, cc2) 
isRightLinked (create (t, empty), c1) = False 
isRightLinked (create (t, add (col, e)), c1) = 
if select1(e) =c1 then TRUE else isRighLinked (create (t, col), c1) 
isRightLinked (addlink1(a, c1, c2), cc1) = if c1 = cc1 then True 
 else isRightLinked (a, cc1) 
isLeftLinked (create (t, empty), c2) = False 
isLeftLinked (addlink2 (a, c1, c2), cc2) = if c2 = cc2 then True 
 else isLeftLinked (a, cc2) 
isLeftLinked (create (t, add (col, e)), c2) = 
if select2 (e) = c1 then TRUE else isLeftLinked (create (t, col), 
c2) 
rightCardinality (create (t, empty), c1) = 0 
righCardinality (create (t, add (col, e)), c1) = 
if select1(e) = c1 then 1+ rightCardinality (col, c1) 
rightCardinality (addlink1(a, c1, c2), cc1) = 
if c1 = cc1 then 1+ rightCardinality (a, cc1) else rightCardinality 
(a, cc1) 
leftCardinality (create (t, empty), c1) = 0 
leftCardinality (create (t, add (col, e)), c1) = 
if select1 (e) = c1 then 1+ leftCardinality (col, c1) else leftCar-
dinality (a, cc1) 
if c1 = cc1 then 1 + leftCardinality (a, cc1) else leftCardinality 
(a, cc1) 
link1 (addlink1 (a, c1, c2), cc1) = 
if c1= cc1 then includes (link1(a), c2) else link1(a, cc1) 
link2 (addlink2 (a, c1, c2), cc2) = 
if c2 = cc2 then includes (link2 (a), c1) else link2 (a, cc2) 
remove1 (addlink1 (a, c1, c2), cc, cc2) = 
if (c1 = cc1 and c2 = cc2) then a else remove1(a, cc1, cc2) 
remove2 (addlink2 (a, c2, c1), cc2, cc1) = 
if (c2 = cc2 and c1 = cc1) then a else remove2 (a, cc2, cc1) 
END-RELATION
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Appendix C:
Transformation Rule System

the OBject cOnStraint Language: an OvervieW

This Appendix describes all the constructs of the Object Constraint Language (OCL) with which we can 
write constraints in MOF metamodels. A detailed description may be found at (OCL, 2006).

OCL was developed as a business modeling language within the IBM Insurance division and has its 
roots in the SYNTROPY method. It is a semi-formal language that remains easy to read and write.

OCL enables one to describe constraints on object oriented models and other object modeling artifacts. 
A constraint is a restriction on one or more values of (part of) an object oriented model or system. The 
OCL expressions are written in the context of UML diagrams and in general, specify invariant conditions 
that must hold for the system being modeled or queries over objects described in a model. For instance, 
in UML static diagrams, OCL expressions are linked to classifiers with their properties and relationships. 
In this context, classifiers can be classes, interfaces, primitive types and packages.

All classifiers of UML diagrams as well as attributes, association-ends, method and operations are 
considered valid types in OCL expressions. OCL expressions do not have side effects; i.e. their evalu-
ation cannot alter the state of the corresponding executing system.

Next, OCL constructs linked to Essential OCL are described.

DOI: 10.4018/978-1-61520-649-0.ch017
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context Specification

OCL expressions are written in the context of instances of specific types. The context of an expression 
within an UML model can be specified through a context declaration at the beginning of the respective 
OCL expression.

In an OCL expression the reserved word self is used to refer to the contextual instance.

invariants

An invariant is a constraint associated with a Classifier that is referred to as a type, and it must be true 
for all instances of that type at any time. Invariants are written in a context declaration followed as the 
name of the type. The self keyword can be dropped if the context is clear.

Package context

If it is necessary to specify explicitly in which package, due to the package in which the Classifier belongs 
is not clear from the environment, we can use the package context. Invariants, preconditions and post-
condition constraints can be enclosed between “package” and “endpackage” statements as follows:

Package Package::SubPackage 
context X 
inv: …some invariant… 
context X::operationName (…) 
pre:…some precondition… 
post:…some postcondition… 
endpackage 
Objects and Properties 

OCL expressions can refer to Classifiers, e.g. types, classes, interfaces, associations (acting as types) 
and data types. All attributes, association-ends, methods and operations without side effects that are 
defined on these types can be used in OCL expressions. Operations and methods are defined to be side 
effect free if the isQuery attribute of an operation is True. A property can be one of: an attribute, an 
association-end, an operation with isQuery being true and a method with isQuery being true

The value of a property of an object is written in an OCL expression by a dot followed by name of 
the property.

An operation can be specified in OCL by means of preconditions and postconditions as follows:

Typename:: OperationName (parameter1:Type1,...): ReturnType 
pre:_ some expression of self and parameter1 
post: Result = _ some function of self and parameter1 

self can be used in the expression to refer to the object on which an operation was called and the name 
Result is the name of the returned object, if there is any. The names of the parameter (parameter1,...) 
can also be used in the expression.
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The value of a property in a postcondition is the value upon completion of the operation. To refer to 
the value of a property at the start of the operation, the property name has a postfix with “@” followed 
by the keyword “pre”. Other predefined constraints can appear: changeable, addOnly and frozen in at-
tributes and, ordered, changeable, addOnly, frozen, xor and subset in associations.

navigations that are derived from associations

An association can be navigated from a specific object to other objects connected by the association and 
their properties. The syntax for expressing navigations uses the role of the association-end as follows:

object.rolename 

If the role name does not appear in the UML diagram, the convention is to use the name of the 
association-end class.

The expression object.rolename refers to a collection of objects. OCL provides the predefined col-
lection types Collection, Set, Bag, and Sequence. They are used to specify the exact results of naviga-
tion through associations in class models. They have a large number of predefined operations on them. 
Properties of collection are accessed by an arrow “- >” followed by the name of the property:

collection - > operationName 

Properties can be combined to make more complicated expressions. Due to an OCL expression always 
evaluates to a specific object of a specific type, it is possible always apply another property to the result 
to get a new result value. Thus, each OCL expression can be evaluated left-to-right.

Pathnames for Packages

Within MOF metamodels, types are organized in packages. A package pathname prefix enables referring 
to types in other packages. The syntax is a package name followed by a double colon

Packagename::Typename 

This usage of pathnames is transitive and can also be used for packages within packages:

Packagename1::Packagename2::TypeName 

accessing Overridden Properties of Supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using 
the oclAsType () operation. T.oclAsType() evaluates the object as oclType

In OCL, a number of basic types are predefined. The most basic types are Boolean, Integer, Real, 
String, Enumerate and Tuple. OCL defines a number of operations on these predefined types.

Also, OCL provides a hierarchy of collection types including Collection, Set, Bag, OrderedSet and 
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Sequence.
If the name does not appear in the diagram, is associated by convention the name of the class 

association-end.
All types must conform in a valid expression. A type t1 conforms to a type t2 when an instance of t1 

can be substituted at each place where an instance of t2 is expected. The basic type conformance rules 
are the following ones:

Each type conforms to each of its supertypes• 
Type conformance is transitive: if • t1 conforms to t2, and t2 conforms to t3, then t1 conforms to 
t3.

Predefined types collections

Collection is the abstract supertype whose subtypes are Set, OrderedSet, Bag and Sequence. All opera-
tions on collections are denoted by the following syntax:

<collection>->  <operation> 

OCL Collections are automatically flattened; that is, a collection never contains collections but 
contains only simple objects.

OCL defines standard operations on collections such as size, count, includes, includesAll, isEmpty 
and notEmpty. Also, OCL provides many operations on the collection types that allow us to iterate over 
its elements. They are select, reject, collect, exists, forall and iterate. These operations take each element 
and evaluate an expression on them. Following, we describe these operations.

The select and reject operations specify a selection of a special subset from a specific collection. The 
select operation gets the subset of all elements of the collection for which the expression evaluates to 
True. The syntax of the select operation looks in three different forms:

collection -> select (v: Type |boolean-expression-with-v) 
collection -> select (v |boolean-expression-with-v) 
collection -> select (boolean-expression) 

The first form declares an iterator variable called v. The type of this iterator variable is declared as 
Type. The second form is a shorthand notation, in which the type of the iterator variable is omitted. The 
third form is the shortest one. It can be used only if an explicit reference to the iterator is not needed in 
the expression

The reject operation is identical to the select operation, but with reject we get the subset of all ele-
ments of the collection for which the expression evaluates to False.

The syntax of the select operation looks also in three different forms:

collection -> reject (v: Type | boolean-expression-with-v) 
collection -> reject (v | boolean-expression-with-v) 
collection -> reject (boolean-expression) 
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The collect operation specify a collection which is derived from some other collection, but which 
contains different objects from the original collection (i.e, it does not return sub-collections as a select 
or reject operation). The syntax of the select operation comes in three different forms:

collection -> collect (v: Type | expression-with-v) 
collection -> collect (v | expression-with-v) 
collection -> collect (expression) 

Because navigation through many objects is very common, OCL provides a shorthand notation for 
the collect operation. For any property name that is defined as a property on the objects in the collection, 
the following two expressions are equivalents:

collection.propertyname (par1, par2,…) 
collection -> collect (propertyname (par1, par2,…) 

The exists operation in OCL allows specifying a Boolean expression, which must hold for at least 
one element in the collection. The syntax for the exists operation is as follows:

collection -> exists (v: Type | Boolean-expression-with-v) 
collection -> exists (v | Boolean-expression-with-v) 
collection -> exists (Boolean-expression) 

The iterate operation is the more generic so that operations reject, select, forAll, exists, collect can 
be described in terms of the iterate operation. The syntax of the iterate operation is as follows:

collection -> iterate (elem: T; acc: T = <expression> |  expression-
with-elem-and-acc) 

The variable elem is an iterator; the variable acc is an accumulator. acc gets an initial value <expres-
sion>. The iterates operation iterates over the elements of the collection and the expression-with-elem-
and-acc is evaluated and its value is assigned to acc. The value of acc is built up during the iteration 
of the collection.

The result of the iterate operation can be calculated as is shown in the following pseudocode:

iterate (elem: T; acc: T2 = value) 
{ acc = value; 
for (Enumeration e = collection.elements (); e.hasMoreElements ();) 
{ 
elem= e.nextElement (); 
acc = <expression-with-elem-acc> 
} 
return acc; 
} 
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FrOM OcL tO nereuS: a SYSteM OF tranSFOrMatiOn ruLeS

Rule OCL 
NEREUS

R1 v (variable) 
v (variable)

R2 Type -> operationName (paramater1: Type1, parameter2: Type2,...): ReturnType 
operationName: Type x Type1 x. Type2 x ...-> ReturnType

R3 Type::operationName (parameter1: Type1, parameter2: Type2,…): ReturnType 
operationName: Type x Type1 x Type2 X ...-> ReturnType

R4 collection -> operationName (expr: OCLBooleanExpr, 
parameter1: Type1,…): ReturnType 
operationName: Collection x (Elem -> Boolean) x Type1 x …-> ReturnType

R5 collection -> operationName (expr: OCLExprType, parameter1: Type1,…): ReturnType 
operationName: Collection x (Elem -> Type) x Type1 x …-> ReturnType

R6 v. operationName (parameters) 
operationName (TranslateNEREUS (v),TranslateNEREUS (parameters))

R7 self.operationName (parameters) 
operationName (c, TranslateNEREUS (parameters)) 
with [ c| ->self]

R8 Type::operationName (parameters): ReturnType 
operationName = expression 
operationName (c, Translate NEREUS (parameters)) = 
Translate NEREUS(expression)) 
with [c|->self]

R9 V -> operationName (parameters) 
operationName (TranslateNEREUS (v), TranslateNEREUS (parameters))

R10 v.attributeName 
attributeName (v)

R11 context AssociationName 
object.roleName 
AXIOMS a: AssociationName 
get_roleName (a, object) 
with [a│->Assoc]

R12 expression.operationName 
operationName (TranslateNereus (expression))

R13 Expression1 binaryOperator expression2 
TranslateNereus (expression1)TranslateNereus (binaryOperator) 
TranslateNereus (expression2) 
TranslateNereus (binaryOperator) (TranslateNereus (expression1), 
TranslateNereus(expression2))

R14 unaryOperator expression 
TranslateNereus (unaryOperator) TranslateNereus (expression)

R15 if booleanExpression then expression1 else expression2 endif 
IFTranslateNereus (booleanExpression) 
THENTranslateNereus (expression1) 
ELSETranslateNereus(expression2)
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R16 let v: Type = expression1 in expression2-with-v 
LET 
v =TranslateNereus (expression1) 
IN 
TranslateNereus (expression2-with -v) 
END-LET 
TranslateNereus(expression2-with -v) 
WHERE 
v =TranslateNereus (expression1) 
END-WHERE

R17 Collection -> operationName (v:Element| boolean-expr-with-v) 
operationName::= forAll │exists 
OPERATIONS 
operationName: Collection x (Element -> Boolean) -> Boolean 
AXIOMS 
… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
---------------------------------------------------------- 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
END-WHERE 
Shorthand notation 
operationName (v) (collection, [f (v)])

R18 Collection -> operationName (v |boolean-expr-with-v) 
operationName::= forAll │exists 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean) -> Boolean 
AXIOMS… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= Translate NEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
------------------------------------------------------------------------------------ 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f(v)= Translate NEREUS (boolean-expr-with-v) 
END-WHERE 
------------------------------------------------------------------------------------- 
Shorthand notation 
operationName (v) (collection, [f (v)])
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R19 Collection -> operationName (v |boolean-expr) 
operationName::= forAll │exists 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean)-> Boolean 
AXIOMS… 
LET 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Elem 
f(v)= Translate NEREUS (boolean-expr) 
IN 
operationName (collection, f) 
END-LET 
------------------------------------------------------------------------------------- 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Elem 
f (v)= Translate NEREUS (boolean-expr) 
END-WHERE 
------------------------------------------------------------------------------------------ 
Shorthand notation 
operationName (v) (collection, [f (v)])

R20 Collection -> forAll (v1, v2 |boolean-expr-with-v1-and-v2) 
Collection [Element] 
Collection -> forAll (v1|forAll (v2, boolean-expr-with-v1-and-v2))

R21 Collection -> operationName (v: Element | boolean-expr-with-v) 
operationName::= select│ reject 
OPERATIONS 
operationName: Collection x (Element -> Boolean) -> Collection 
AXIOMS 
LET OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr-with-v) 
END-WHERE 
-------------------------------------------------------------------------------------- 
Shorthand notation 
operationName (v) (collection, [f (v)])
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R22 Collection-> operationName (v |boolean-expr-with-v) 
operationName::= select│ reject 
Collection[Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean)-> Collection 
AXIOMS 
LET OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS(boolean-expr-with-v) 
IN 
operationName (collection, f) 
END-LET 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr-with-v) 
END-WHERE 
-------------------------------------------------------------------------------------- 
Shorthand notation 
operationName (v) (collection, [f (v)])

R23 Collection-> operationName (boolean-expr) 
operationName::= select│ reject 
Collection [Element] 
OPERATIONS 
operationName: Collection x (Element-> Boolean) -> Collection 
AXIOMS 
LET OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS (boolean-expr) 
IN 
operationName (collection, f) 
END-LET 
operationName (collection, f) 
WHERE 
OPERATIONS 
f: Element -> Boolean 
AXIOMS v: Element 
f (v)= TranslateNEREUS(boolean-expr) 
END-WHERE 
-------------------------------------------------------------------------------------------- 
Shorthand notation 
operationName (v) (collection, [f (v)])
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R24 Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
OPERATIONS 
collect: Collection x (Element ->Boolean) -> Collection 
AXIOMS 
LET 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
IN 
collect (collection, f) 
END-LET 
collect (collection, f) 
WHERE 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
END-WHERE 
----------------------------------------------------------------------------- 
Shorthand notation 
Collect (v) (collection, [f (v)])

R25 Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
Collection [Element] 
OPERATIONS 
collect: Collection x (Element ->Boolean) -> Collection 
AXIOMS 
LET 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
IN 
collect (collection, f) 
END-LET 
collect (collection, f) 
WHERE 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
END-WHERE 
------------------------------------------------------------------- 
Shorthand notation 
Collect (v) (collection, [f (v)])



391

Appendix C

R26 Collection -> collect (v: Element | expression-with-v) 
Let Type(expression-with-v) be S 
Collection [Element] 
OPERATIONS 
collect: Collection x (Element ->Boolean) -> Collection 
AXIOMS 
LET 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
IN 
collect (collection, f) 
END-LET 
collect (collection, f) 
WHERE 
OPERATIONS 
f: Element -> S 
AXIOMS v: Element 
f (v)= Translate NEREUS (expr-with-v) 
END-WHERE 
--------------------------------------------------------------------------------- 
Shorthand notation 
Collect (v)(collection, [f (v)])

R27 collection -> iterate (v: Element; acc: Type = exp | 
expression-with-v-and-acc) 
OPERATIONS 
iterate: Collection x (Element x Acc: ANY) x -> Acc) -> Acc 
AXIOMS 
LET 
OPERATIONS 
f: Element x Type -> Type 
base: -> Type 
AXIOMS v: Element; acc: Type 
f (v, acc)=TranslateNEREUS(expr-with-v-and-acc) 
base = Translate NEREUS (exp) 
IN 
iterate (collection, f, base) 
END-LET 
iterate (collection, f, base) 
WHERE 
OPERATIONS 
f: Element x Type -> Type 
base: -> Type 
AXIOMS v: Element; acc: Type 
f (v, acc)=TranslateNEREUS (expr-with-v-and-acc) 
base = Translate NEREUS (exp) 
END-WHERE

R28 Type::operationName (par1: Type1,…): ReturnType 
pre: expression-with-self - or-attribute-or--par1..pari 
operationName: Type (t) x Type1(t1) x...x TypeI (ti)-> ReturnType 
pre: TranslateNEREUS (expression-with-self -or-attribute-or--par1..pari) 
with [self│-> t; attribute│-> attribute(t); par1│->t1;…pari│->ti]

R29 Type::operationName (par1: Type1,…): ReturnType 
post: expression-with-self -or-attribute-or self 
OPERATIONS 
TranslateNEREUS(Type::operationName (par1: Type1,…): ReturnType 
AXIOMS 
TranslateNEREUS (expression-with-self -or-attribute@pre-or result) 
With [ self│->t ; attribute@pre │-> 
attribute (t) ; result │-> operationName (t, par1,..) ]
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R30 Collection → operationName (parameterList): Boolean 
post: result = collection → forAll (elem: Element│ bool-expr-with-elem) 
OPERATIONS 
TranslateNEREUS (collection → operationName (parameterList): Boolean) 
AXIOMS c: Collection; elem: Element; … 
operationName (create, parameterList)= TRUE 
operationName (add(c,elem), parameterList) = 
operationName (c,parameterList) AND TranslateNEREUS (bool-expr-with-elem)

R31 Collection → operationName (parameterList): Boolean 
post: result = collection → exists (elem: Element│ boolean-expression-with-elem) 
OPERATIONS 
TranslateNEREUS(collection → operationName (parameterList): Boolean) 
AXIOMS c: Collection; elem: Element; … 
operationName (create, parameterList)= FALSE 
operationName (add(c,elem), parameterList) = 
operationName (c, parameterList) OR TranslateNEREUS (boolean-expression-with-elem)

R32 Sequence → operationName (parameterList): Boolean 
post: result = Sequence { 1 ..sequence → size } → 
forAll (index: Integer│boolean-expr-with-index) 
OPERATIONS 
TranslateNEREUS (sequence → operationName (parameterList): Boolean) 
AXIOMS s: Sequence; index:Nat; ... 
operationName (s, parameterList) = (1 ≤ index ≤ size (s)) implies 
TranslateNEREUS (boolean-expr-with-index)

R33 Sequence { 1 .. sequence → size } → 
forAll (index: Integer│boolean-expr-with-index) 
AXIOMS s: Sequence; index: Nat; ... 
(1 ≤ index ≤ size(s)) implies TranslateNEREUS (boolean-expr-with-index)

R34 Collection -> operationName (t1:T1; t2: T2;...): Boolean 
post: result = collection -> iterate (elem: Element; acc: Boolean = exp│ 
bool-expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (collection -> operationName (t1:T1; t2: T2;...): Boolean) 
AXIOMS c: Collection; elem: Element; t1:T1; t2:T2 
operationName (create, t1, t2,..) = TranslateNEREUS (exp) 
operationName (add (c, elem), t1, t2,.....) = 
TranslateNEREUS (bool-expr-with-elem-and-acc) 
With [acc |-> operationName (c, t1, t2,...)]
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R35 collection -> operationName (t1: T1; t2: T2;...): returnType 
post: result = collection -> iterate(elem:Element; acc: Type = exp│ expr-with-elem-and-acc) 
OPERATIONS 
Translate NEREUS (collection -> operationName (t1:T1; t2: T2;...): returnType) 
AXIOMS c: Collection; t1: T1; t2: T2, 
LET 
OPERATIONS 
g: Element x Type -> Type 
base: -> Type 
AXIOMS e: Element; acc:Type 
g (e, acc) = Translate NEREUS (expr -with-elem-and-acc) 
base = Translate NEREUS (expr) 
IN 
operationName (c, t1, t2,…) = iterate (c, g, base) 
END-LET 
AXIOMS c: Collection; t1:T1; t2:T2, 
operationName (c, t1, t2,…) = iterate (c, g, base) 
WHERE 
OPERATIONS 
g: Element x Type -> Type 
base: -> Type 
AXIOMS e: Element; acc:Type 
g (e, acc) = Translate NEREUS ( expr -with-elem-and-acc) 
base = Translate NEREUS ( expr) 
END-WHERE

R36 sequence → operationName (t1: T1, t2: T2, ..): returnType 
post: result = sequence → 
iterate (elem: Element; acc: Type = expr│ 
expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (sequence → operationName (t1:T1,t2:T2, ..): returnType) 
AXIOMS s: Sequence ; elem: Element; t1: T1; t2: T2,… 
operationName (create, t1,t2, …) = TranslateNEREUS (expr) 
operationName (add (s, elem), t1, t2,.....) = 
TranslateNEREUS (expr-with-elem-and-acc) 
with [acc |-> operationName (s, t1, t2,...)]

R37 bag → operationName (t1: T1, t2: T2, ..): returnType 
post: result = bag → iterate (elem: Element; acc: Type = expr │ 
expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (bag→operationName (t1:T1, .): returnType) 
AXIOMS b: Bag; elem: Element; t1:T1; t2:T2,… 
operationName (create, t1, t2,..) = TranslateNEREUS (expr) 
operationName (add (b, elem), t1, t2,.....) = 
TranslateNEREUS (expr-with-elem-and-acc) 
With [acc|->operationName (b, t1, t2,...)]



394

Appendix C

R38 Collection -> operationName (t1:T1; t2: T2;...): returnType 
post: result = collection -> iterate (elem:Element; acc: Type = exp│ 
expr-with-elem-and-acc) 
OPERATIONS 
Translate NEREUS (collection -> op (t1:T1; t2: T2;...): returnType) 
AXIOMS c: Collection ; t1: T1; t2: T2;… 
LET 
OPERATIONS 
g: Element x Type -> Type 
base: -> Type 
AXIOMS elem: Element; acc: Type 
g (elem, acc) = Translate NEREUS ( expr -with-elem-and-acc) 
base = Translate NEREUS ( expr) 
IN 
operationName (c, t1, t2,…) = iterate (c, g, base) 
END-LET 
------------------------------------------------------------------------------ 
AXIOMS c: Collection ; t1: T1; t2: T2;… 
operationName (c, t1, t2,…) = iterate (c, g, base) 
WHERE 
OPERATIONS 
g: Element x Type -> Type 
base: -> Type 
AXIOMS elem: Element; acc:Type 
g (elem,acc) = Translate NEREUS ( expr -with-elem-and-acc) 
base = Translate NEREUS ( expr) 
END-WHERE

R39 sequence → operationName (t1: T1,t2: T2, ..): returnType 
post: result = sequence →iterate (elem: Element; acc: Type = expr│ 
expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (sequence → operationName (t1: T1, t2: T2, ..): returnType) 
AXIOMS s: Sequence; elem: Element; t1:T1; t2: T2, … 
operationName (create, t1, t2,..) = TranslateNEREUS (expr) 
operationName (add (s, elem), t1, t2,.....) = 
TranslateNEREUS (expr-with-elem-and-acc) 
with [acc |-> operationName (s, t1, t2,...)]

R40 bag → operationName (t1: T1,t2: T2, ..): returnType 
post: result = bag → iterate (elem: Element; acc: Type = expr │ 
expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (bag→operationName (t1:T1, .):returnType) 
AXIOMS b: Bag; elem: Element; t1: T1; t2: T2,… 
operationName (create, t1, t2,..) = TranslateNEREUS (expr) 
operationName (add (b, elem), t1, t2,.....) = 
TranslateNEREUS (expr-with-elem-and-acc) 
With [acc|->operationName (b, t1, t2,...)]

R41 set → operationName (t1: T1, t2: T2, ..): returnType 
post: result = set →iterate (elem: Element; acc: Type = expr│ 
expr-with-elem-and-acc) 
OPERATIONS 
TranslateNEREUS (set→operatioName (t1:T1, t2: T2, ..): returnType) 
AXIOMS s: Set; elem: Elem; t1:T1; t2:T2,… 
operationName (create, t1,t2,..) = TranslateNEREUS (expr) 
operationName (add (s, elem), t1, t2,..) = 
TranslateNEREUS (expr-with-elem-and-acc) 
with [ acc |->operationName (excluding (s, e), t1, t2,...)]
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R42 T → operationName (parameterList): returnType 
post: result binary-operator expr 
OPERATIONS 
TranslateNEREUS (T → operationName (parameterList): returnType) 
AXIOMS t: T, ... 
operationName (t, parameterList) TranslateNEREUS(binary-operator) TranslateNEREUS(expr)

R43 T → operationName (parameterList): returnType 
post: result -> iteratorOperation (iteratorExpression) 
OPERATIONS 
TranslateNEREUS (T → operationName (parameterList): returnType) 
AXIOMS t: T, ... 
iteratorOperation(operationName (t, parameterList), 
TranslateNEREUS (iteratorExpression)

R44 T → operationName (parameterList): returnType 
post: expression1 = expression2 
OPERATIONS 
TranslateNEREUS (T → operationName (parameterList): returnType) 
AXIOMS 
TranslateNEREUS (expression1) = TranslateNEREUS(expression2)

R45 T → operationName (parameterList): returnType 
post: expression 
OPERATIONS 
TranslateNEREUS (T → operationName (parameterList): returnType) 
AXIOMS 
TranslateNEREUS (expression)

R46 T-> operationName (v:Type | bool-expr-with-v) 
OperationName::= forAll│exists│select│reject 
T::= Collection|Set|OrderedSet|Bag 
operationName (v) (TranslateNEREUS (T), 
[TranslateNEREUS (bool-expr-with-v)])

R47 T -> collect (v: type │v.property) 
collect (v)(Translate NEREUS (T), [Translate NEREUS (v.property)])

R48 c.property (Shorthand notation) 
c -> collect (property) 
collect (v) (TranslateNEREUS (c), [Translate NEREUS (property)])

R49 T -> iterate (e: Element; acc: Type = expr │ boolean-expr-with-e) 
Iterate (v) (TranslateNEREUS (T), [TranslateNEREUS (boolean-expr-with-e) ], [TranslateNEREUS(expr)])

R50 Set {} 
createSet 
OrderedSet {} 
createOrderedSet 
Sequence {} 
createSequence 
Bag {} 
createBag 
Set { e1,e2,...,ei} 
Including (including (… (including (createSet, ei),…, e2), e1)) 
OrderedSet {e1,e2,...,ei} 
Including (including (…(including (createOrderedSet, ei), …,e2),e1)) 
Sequence {e1,e2,...,ei} 
Including (including (…(including (createSequence, ei),…, e2), e1)) 
Bag {e1,e2,...,ei} 
Including (including (…(including (createBag, ei),…, e2), e1))

R51 Packagename::rolename 
Packagename::rolename

R52 Let v be enum (e1,e2, …,ei,..) 
v = # ei 
v = #ei
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Appendix D:
Design Pattern Metamodels

Appendix D describes three metamodels for the Observer pattern: a PSM metamodel based on the 
Eiffel platform, a PSM metamodel based on a Java platform and a ISM metamodel based on the Java 
platform.

d.1. eiFFeL-PSM OBServer MetaMOdeL

description of the Metaclasses

AssocEndEffectiveObserver

Description
This end-association connects an association ObserverSubject, of which is member, with an Effecti-
veObserver.

Generalizations

AssociationEnd (from PSM-Eiffel)• 

DOI: 10.4018/978-1-61520-649-0.ch018



397

Appendix D

Associations

association: ObserverSubject [1] It denotes the association of which this end-association is mem-• 
ber. It redefines Property::association.
participant: EffectiveObserver [1] It denotes the class that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1>= 0 and n2>=1) self.lower >= 0 and self.upper >= 1

Figure 1. Eiffel PSM observer metamodel
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AssocEndEffectiveSubject

Description
It connects an association ObserverSubject, of which is member, with a class EffectiveSubject.

Generalizations

AssociationEnd (from PSM-Eiffel)• 

Associations

association: ObserverSubject [1] It denotes the association of which the association-end is mem-• 
ber. It redefines Property::association.
participant: EffectiveSubject [1] It denotes the class that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1>= 0 and n2>=1) self.lower >= 0 and self.upper >=1
[2]  It must be navigable self.isNavigable()

Additional operations

[1]  isNavigable denotes whether the association-end is navigable. The association-end is member of a 
binary association then, to be navigable, it must be own part of a class. isNavigable(): Boolean is-
Navigable() = not self.class -> isEmpty()

AssocEndObserver

Description
It connects an association SubjectObserver, of which is member, with a class Observer.

Generalizations

AssociationEnd (from PSM-Eiffel)• 

Associations

association: SubjectObserver [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.
participant: Observer [1] It denotes the class that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1>= 0 and n2>=1) self.lower >= 0 and self.upper >= 1
[2]  It must be navigable. self.isNavigable()
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AssocEndSubject

Description
It connects an association SubjectObserver, of which is member, with a class Subject.

Generalizations

AssociationEnd (from PSM-Eiffel)• 

Associations

association: SubjectObserver[1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.
participant: Subject [1] It denotes the class that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1>= 0 and n2>=1). self.lower >= 0 and self.upper >=1

Attach

Description
It defines a routine that is declared by Subject.

Generalizations

Routine (from PSM-Eiffel)• 

Associations

subject: Subject [1] It denotes the class that declares this routine. It redefines Routine::class.• 

Constraints

[1]  This routine changes the state of the subject. not self.isQuery
[2]  This routine has a non-empty set of parameters being one of them an input parameter (direction 

= #in) whose type is Observer. self.ownedParameter -> notEmpty () and self.ownedParameter -> 
select (par | par.direction = #in and par.type = oclIsKindOf (Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public
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Detach

Description
It defines a routine that is declared by Subject.

Generalizations

Routine (from PSM-Eiffel)• 

Associations

subject: Subject [1] It denotes the class that is declared by this routine. It redefines • 
Routine::class.

Constraints

[1]  This routine changes the state of the subject. not self.isQuery
[2]  It has a non-empty set of parameters being one of them an input parameter whose type is Observer. self.

ownedParameter -> notEmpty () and self.ownedParameter -> select (par | par.direction = #in 
and par.type = oclIsKindOf (Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public

EffectiveObserver

Description
This metaclass specifies the features that a class with the behavior of an effective observer must have 
in the model of the pattern Observer.

Generalizations

EiffelClass (from PSM-Eiffel)• 

Associations

assocEndEffectiveObserver: AssocEndEffectiveObserver[1] It denotes the association-end of the • 
association ObserverSubject in which this classifier participates.
relationshipObserver:RelationshipObserver [1] It denotes a generalization where EffectiveObserver • 
takes the role of heir. It is a subset of Classifier::generalization.

Constraints

[1]  Instances of effective observers should not be a deferred class. not self.isDeferred
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EffectiveSubject

Description
This metaclass specifies the features that must have a class taking the role of effective subject in the 
model of the Observer pattern.

Generalizations

EiffelClass (from PSM-Eiffel)• 

Associations

assocEndEffectiveSubject:AssocEndEffectiveSubject [1] It denotes the association-end of the as-• 
sociation ObserverSubject in which this classifier participates.
getState: GetState [1..*] Every instance of EffectiveSubject must have one or more operation in-• 
stances of GetState. They can be own or inherited. It is a subset of NameSpace::member.
relationshipSubject:RelationshipSubject [1] It denotes a generalization where EffectiveSubject • 
takes the role of heir. It is a subset of Classifier::generalization.
setState: SetState [1..*] Every instance of EffectiveSubject must have one or more operation in-• 
stances of SetState. They can be own or inherited. It is a subset of NameSpace::member.
state: Attribute [1..*] It specifies a non-empty set that contains all attributes of EffectiveSubject. • 
They can be own or inherited. It is a subset of NameSpace::member.

Constraints

[1]  Instances of effective subjects should not be a deferred class. not self.isDeferred

GetState

Description
It defines a routine member of EffectiveSubject. It specifies a service that can be required from another 
object.

Generalizations

Routine (from PSM-Eiffel)• 

Associations
No additional associations.

Constraints

[1]  It is not a deferred routine and does not change the state of the subject not self.isDeferred and self.
isQuery
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[2]  The state should return to the subject, therefore within the set of arguments must have at least one 
parameter whose address is out or return. self.ownedParameter -> notEmpty () and self.owned-
Parameter -> select (par | par.direction = #return or par.direction = #out) -> size () >= 1

[3]  Its visibility must be public. self.visibility = #public

Notify

Description
It defines a routine that is declared by Subject.

Generalizations

Routine (from PSM-Eiffel)• 

Associations

Subject: Subject [1] It denotes the class that is declared by this routine. It redefines • 
Routine::class.

Constraints

[1]  This routine does not change the subject state. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

Observer

Description
This metaclass specifies the features that must have every class taking the role of observer in the model 
of the Observer pattern in the Eiffel platform.

Generalizations

EiffelClass (from PSM-Eiffel)• 

Associations

assocEndObserver: AssocEndObserver [1] It denotes the association-end of the association • 
SubjectObserver in which this class participates.
update: Update [1..*] Every instance of Observer must have at least one routine instance of Update. • 
It is a subset of EiffelClass::ownedRoutine.

Constraints
No additional constraints.
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ObserverSubject

Description
This metaclass specifies a binary association between instances of EffectiveObserver and Effective-
Subject.

Generalizations

Association (from Kernel)• 

Associations

assocEndEffectiveObserver:AssocEndEffectiveObserver [1] It represents a connection with the • 
class EffectiveObserver. It is a subset of Association::memberEnd.
assocEndEffectiveSubject:AssocEndEffectiveSubject [1] It represents a connection with the class • 
EffectiveSubject. It is a subset of Association::memberEnd.

Constraints

[1]  It has two association-ends. self.memberEnd -> size () =2

RelationshipObserver

Description
This class specifies the inheritance relation (Generalization) between an observer (Observer) and an 
effective observer (EffectiveObserver) in the model of the Observer pattern.

Generalizations

Generalization (from Kernel)• 

Associations

heir: EffectiveObserver [1] It denotes the element that takes the role of heir in the relation. It re-• 
defines Generalization::specific.
parent: Observer [1] It denotes the element that takes the role of parent in the relation. It redefines • 
Generalization::general.

Constraints
No additional constraints.
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RelationshipSubject

Description
This metaclass specifies an inheritance relation (Generalization) between a subject (Subject) and an 
effective subject (EffectiveSubject) in the model of the Observer pattern.

Generalizations

Generalization (from Kernel)• 

Associations

heir: EffectiveSubject [1] It denotes the element that takes the role of heir in the relation. It rede-• 
fines Generalization::specific.
parent: Subject [1] It denotes the element that takes the role of parent in the relation. It redefines • 
Generalization::general.

Constraints
No additional constraints.

SetState

Descriptions
It defines a routine member of EffectiveSubject. It specifies a service that can be required from another 
object.

Generalizations

Routine (from PSM-Eiffel)• 

Associations
No additional associations.

Constraints

[1]  It is not a deferred routine and modifies the state of the subset. not self.isDeferred and not self.
isQuery

[2]  The set of arguments is non-empty and one of them must be an input parameter. self.ownedPar-
ameter -> notEmpty () and self.ownedParameter ->select (par | par.direction= #in) -> size () >=1

[3]  Its visibility must be public. self.visibility = #public
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Subject

Description
This metaclass specifies the features that must have an Eiffel class taking the role of subject in the model 
of the Observer pattern in the Eiffel platform.

Generalizations

EiffelClass (from PSM-Eiffel)• 

Associations

assocEndSubject: AssocEndSubject [1] It denotes the association-end of the association • 
SubjectObserver in which this class participates.
attach: Attach [1..*] Every instance of Subject must have at least a routine instance of Attach. It is • 
a subset of Subconjunto de EiffelClass::ownedRoutine.
detach: Detach [1..*] Every instance of Subject must have at least a routine instance of Detach. It • 
is a subset of EiffelClass::ownedRoutine.
notify: Notify[1..*] Every instance of Subject must have at least a routine instance of Notify. It is • 
a subset of EiffelClass::ownedRoutine.

Constraints
No additional constraints.

SubjectObserver

Description
This metaclass specifies a binary association between the instances Subject and Observer.

Generalizations

Association (from Kernel)• 

Associations

assocEndObserver: AssocEndObserver [1] It represents a connection with the class Observer. It is • 
a subset of Association::memberEnd.
assocEndSubject:AssocEndSubject [1] It represents a connection with the class Subject. It is a • 
subset of Association::memberEnd.

Constraints

[1]  It has two association-ends. self.memberEnd -> size () =2
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Update

Description
It defines the routine that is declared by the Observer specifying the required services by another ob-
ject.

Generalizations

Routine (from PSM-Eiffel)• 

Associations

observer: Observer [1] It denotes the class that declares this operation. It is a subset of • 
Routine::ownedRoutine.

Constraints

[1]  It is a routine that does not change the observer state. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

d.2. java-PSM OBServer MetaMOdeL

description of Metaclasses

AssocEndConcreteObserver

Description
This association-end connects an association ObserverSubject, of which is member, with a Concre-
teObserver.

Generalizations

AssociationEnd (from PSM-Java)• 

Associations

association: ObserverSubject [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association
participant: ConcreteObserver [1] It denotes the classifier that participates in the association.• 
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Constraints

[1]  It has a multiplicity n1..n2 (n1 >= 0 and n2 >= 1). self.lower >= 0 and self.upper > 0

AssocEndConcreteSubject

Description
This association-end connects an association ObserverSubject, of which is member, with a class Con-
creteSubject.

Figure 2. Java PSM observer metamodel
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Figure 3. Java PSM observer metamodel: Abstract subject: Operations

Figure 4. Java PSM observer metamodel: Abstract observer: Operations
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Generalizations

AssociationEnd (from PSM-Java)• 

Associations

association: ObserverSubject [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.
participant: Concretesubject [1] It denotes the classifier that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1 >= 0 and n2 >= 1). self.lower >= 0 and self.upper > 0
[2]  It is navigable. self.isNavigable ()

Additional operations

[3]  The observer operation isNavigable determines whether this association-end is navigable. Due to 
it is member of a binary association, to be navigable must be an own association-end of a class. is-
Navigable(): Boolean isNavigable() = not self.class -> isEmpty ()

AssocEndObserver

Description
It connects an association SubjectObserver, of which is member, with a class Observer.

Figure 5. Java PSM observer metamodel: Concrete subject: Attributes and operations
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Generalizations

AssociationEnd (from PSM-Java)• 

Associations

association: SubjectObserver [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.
participant: Observer [1] It denotes the classifier that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1 >= 0 and n2 >=1). self.lower >= 0 and self.upper > 0
[2]  It must be navigable self.isNavigable ()

AssocEndSubject

Description
It connects an association SubjectObserver, of which is member, with a class Subject.

Generalizations

AssociationEnd (from PSM-Java)• 

Associations

association: SubjectObserver [1] It denotes the association of which this association-end is mem-• 
ber. It redefines Property::association.
participant: Subject [1] It denotes the classifier that participates in the association.• 

Constraints

[1]  It has a multiplicity n1..n2 (n1 >= 0 and n2 >= 1). self.lower >= 0 and self.upper > 0

Attach

Description
It defines a method that is declared by a subject.

Generalizations

Method (from PSM-Java)• 
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Associations

classSubject: ClassSubject [0..1] It denotes the class declaring this method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface declaring this method. It rede-• 
fines Method::interface.

Constraints

[1]  This method changes the subject state. not self.isQuery
[2]  This method has a non-empty set of parameters, being one of them an input parameter whose type 

is Observer. self.ownedParameter -> notEmpty () and self. ownedParameter -> select (param | 
param.direction= #in and param.type = oclIsKindOf(Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public

ClassObserver

Description
A metaclass ClassObserver specifies the features that must have a Java class taking the role of observer 
in the model of the Observer pattern.

Generalizations

Observer, JavaClass (from PSM-Java)• 

Associations

update: Update [1..*] Every instance of ClassObserver must have at least a method instance of • 
Update. It is a subset of JavaClass::javaOperation.

Constraints
No additional constraints.

ClassSubject

Description
This metaclass specifies the features that must have a Java class taking the role of subject in the model 
of the pattern Observer.

Generalizations

Subject, JavaClass (from PSM-Java)• 
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Associations

attach: Attach [1..*] Every instance of ClassSubject has at least a method instance of Attach. It is • 
a subset of JavaClass:: javaOperation.
detach: Detach [1..*] Every instance of ClassSubject has at least a method instance of Detach. It • 
is a subset of JavaClass:: javaOperation.
notify: Notify[1..*] Every instance of ClassSubject has at least a method instance of Notify. It is a • 
subset of JavaClass:: javaOperation.

Constraints
No additional constraints.

ConcreteObserver

Description
This metaclass specifies the features that must have a Java class with the behavior of a concrete observer 
in the model of the pattern Observer.

Generalizations

JavaClass (from PSM-Java)• 

Associations

assocEndConcreteObserver:AssocEndConcreteObserver [1] It denotes the association-end of the • 
association ObserverSubject in which this classifier participates.
generalizationObserver: GeneralizationObserver [0..1] It denotes a generalization where • 
ConcreteObserver takes the role of child (specific). It redefines Classifier::generalization.
interfaceRealizationObserver:InterfaceRealizationObserver [0..1] It denotes an interface realiza-• 
tion where ConcreteObserver takes the role of the classifier implementing the contract (imple-
mentingClassifier). It is a subset of BehavioredClassifier::interfaceRealization.

Constraints

[1]  An instance of a concrete observer can not be an abstract class. not self.isAbstract
[2]  If an instance of a concrete observer participates in an interface realization, then it must be a 

BehavioredClassifier. self.interfaceRealizationObserver -> notEmpty () implies self.oclIsKindOf 
(BehavioredClassifier))

ConcreteSubject

Description
This metaclass specifies the features that must have a class taking the role of subject in the model of 
the Observer pattern.
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Generalizations

JavaClass (from PSM-Java)• 

Associations

assocEndConcreteSubject:AssocEndConcreteSubject [1] It denotes the association-end of the as-• 
sociation ObserverSubject in which this classifier participates.
generalizationSubject:GeneralizationSubject [0..1] It denotes a generalization where • 
ConcreteSubject takes the role of child (specific). It redefines Classifier::generalization.
getState: GetState [1..*] Every instance of ConcreteSubject must have one or more method in-• 
stances of GetState. They may be own or inherited. It is a subset of NameSpace::member.
interfaceRealizationSubject:InterfaceRealizationSubject [0..1] It denotes an interface realization • 
where ConcreteSubject takes the role of the classifier implementing the contract (implementing-
Classifier). It is a subset of BehavioredClassifier::interfaceRealization.
setState: GetState [1..*] Every instance of ConcreteSubject must have one or more method in-• 
stances of SetState. They may be own or inherited. It is a subset of NameSpace::member.
state: Field [1..*] It specifies a non-empty set of all attributes of ConcreteSubject. They may be • 
own or inherited. It is a subset of NameSpace::member.

Constraints

[1]  An instance of the concrete subject can not be an abstract class. not self.isAbstract
[2]  If an instance of a concrete subject participates in an interface realization, then it must be a 

BehavioredClassifier. self.interfaceRealizationSubject -> notEmpty () implies self.oclIsKindOf 
(BehavioredClassifier))

Detach

Description
It defines a method that is declared by a subject.

Generalizaciones

Method (from PSM-Java)• 

Associations

classSubject: ClassSubject [0..1] It denotes the class that declares this method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this method. It rede-• 
fines Method::interface.
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Constraints

[1]  This method changes the subject state. not self.isQuery
[2]  This method has a non-empty set of parameters being one of them an input parameter of type 

Observer. self.ownedParameter -> notEmpty () and self.ownedParameter -> select (param | param.
direction= #in and param.type = oclIsKindOf (Observer)) -> size() = 1

[3]  Its visibility must be public. self.visibility = #public

GeneralizationObserver

Description
This metaclass specifies a generalization between an observer (ClassObserver) and a concrete observer 
(ConcreteObserver) in the model of the pattern Observer.

Generalizations

Generalization (from Kernel)• 

Associations

classObserver: ClassObserver [1] It denotes the general element of this relation. It redefines • 
Generalization::general.
concreteObserver: ConcreteObserver [1] It denotes the specific element of this relation. It rede-• 
fines Generalization::specific.

Constraints
No additional constraints.

GeneralizationSubject

Description
This metaclass specifies a generalization between a subject (ClassSubject) and a concrete subject (Con-
creteSubject) in the model of the Observer pattern.

Generalizations

Generalization (from Kernel)• 

Associations

classSubject: ClassSubject [1] It denotes the general element of this relation. It redefines • 
Generalization::general.
concreteSubject: ConcreteSubject [1] It denotes the specific element of this relation. It redefines • 
Generalization::specific.
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Constraints
No additional restrictions.

GetState

Description
It defines a method that is member of ConcretetSubject. It specifies a service that can be required from 
another object.

Generalizations

Method (from PSM-Java)• 

Associations
No additional associations.

Constraints

[1]  It is an observer and concrete method. self.isQuery and not self.isAbstract
[2]  Because it has to return the state of the subject, the set of parameters should not be empty  and at 

least, must have one of them whose direction is out or return. self.ownedParameter -> notEmpty 
() and self.ownedParameter ->select (par | par.direction= #return or par.direction = #out) -> size 
() >=1

[3]  Its visibility must be public. self.visibility = #public

InterfaceObserver

Description
The metaclass InterfaceObserver specifies the features that must have a Java interface taking the role 
of abstract observer in the model of the Observer pattern.

Generalizations

Observer, JavaInterface (from PSM-Java)• 

Associations

update: Update [1..*] Every instance of InterfaceObserver must have at least one operation in-• 
stance of Update. It is a subset of JavaInterface::method.

Constraints
No additional constraints.
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InterfaceSubject

Description
This metaclass specifies the features that must have a Java interface taking the role of abstract subject 
in the model of the pattern Observer.

Generalizations

Subject, JavaInterface (from PSM-Java)• 

Associations

attach: Attach [1..*] Every instance of InterfaceSubject must have at least a method instance of • 
Attach. It is a subset of JavaInterface::method.
detach: Detach [1..*] Every instance of InterfaceSubject must have at least a method instance of • 
Detach. It is a subset of JavaInterface::method.
notify: Notify [1..*] Every instance of InterfaceSubject must have at least a method instance of • 
Notify. It is a subset of JavaInterface::method.

Constraints
No additional constraints.

InterfaceRealizationObserver

Description
This metaclass specifies an interface realization between an abstract observer (InterfaceObserver) and 
a concrete observer (ConcreteObserver) in the model of the pattern Observer.

Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteObserver: ConcreteObserver [1] It denotes the element implementing the contract in this • 
relation. It redefines InterfaceRealization::implementingClassifier.
interfaceObserver: InterfaceObserver [1] It denotes the element that defines the contract in this • 
relation.It redefines InterfaceRealization::contract.

Constraints
No additional constraints.
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InterfaceRealizationSubject

Description
This metaclass specifies an interface realization between an abstract subject (InterfaceSubject) and a 
concrete subject (ConcreteSubject) in the model of the pattern Observer.

Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteSubject: ConcreteSubject [1] It denotes the element implementing the contract in this • 
relation. It redefines InterfaceRealization::implementingClassifier.
interfaceSubject: InterfaceSubject [1] It denotes the element that defines the contract in this rela-• 
tion. It redefines InterfaceRealization::contract.

Constraints
No additional constraints.

Notify

Description
It defines a method that is declared by the subject.

Generalizations

Method (from PSM-Java)• 

Associations

classSubject: ClassSubject [0..1] It denotes the class that declares the method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this method. It rede-• 
fines Method::interface.

Constraints

[1]  It is a method that changes the subject state. self.isQuery
[2]  Its visibility is public. self.visibility = #public
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Observer

Description
An observer is a specialized classifier that specifies the features of observers in the model of the pattern 
Observer. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations

assocEndObserver:AssocEndObserver [0..1] It denotes the association-end of the association • 
SubjectObserver in which this classifier participates.

Constraints
No additional constraints.

ObserverSubject

Description
This metaclass specifies a binary association between two instances of Observer and Subject.

Generalizations

Association (from Kernel)• 

Associations

assocEndConcreteObserver:AssocEndConcreteObserver [1] It represents a connection with the • 
classifier ConcreteObserver. It is a subset of Association::memberEnd.
assocEndConcreteSubject:AssocEndConcreteSubject [1] It represents a connection with the clas-• 
sifier ConcreteSubject. It is a subset of Association::memberEnd.

Constraints

[1]  It has two association-ends. self.memberEnd -> size () = 2

SetState

Description
It defines an operation that is member of ConcreteSubject. It specifies a service that can be required 
from another object.
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Generalizaciones

Method (from PSM-Java)• 

Associations
No additional associations.

Constraints

[1]  It is a concrete method that modify the subject state. not self.isAbstract and not self.isQuery
[2]  It has a non-empty set of parameters and one of them, at least must be an input parameter. self.

OwnedParameter -> notEmpty () and self.OwnedParameter -> select (param | param.direction = 
#in) -> size () >= 1

[3]  Its visibility must be public. self.visibility = #public

Subject

Description
This metaclass is a specialized classifier that specifies the features that must have instances taking the 
role of subject in the model of the pattern Observer. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations

assocEndSubject: AssocEndSubject [0..1] It denotes the association-end of the association • 
SubjectObserver in which the classifier participates.

Constraints
No additional constraints.

SubjectObserver

Description
This metaclass specifies a binary association between two classifiers: Subject y Observer.

Generalizations

Association (from Kernel)• 



420

Appendix D

Associations

assocEndObserver: AssocEndObserver [1] It represents a connection with the classifier Observer. • 
It is a subset of Association::memberEnd.
assocEndSubject: AssocEndSubject [1] It represents a connection with the classifier Subject. It is • 
a subset of Association::memberEnd.

Constraints

[1]  It has two association-ends. self.memberEnd -> size () = 2

Update

Description
It defines a method that is declared by an observer. This method specifies a service that can be required 
by another object.

Generalizations

Method (from PSM-Java)• 

Associations

classObserver: ClassObserver [0..1] It denotes the class that declares this operation. It redefines • 
JavaOperation::class.
interfaceObserver: InterfaceObserver [0..1] It denotes the interface that declares this operation. It • 
redefines Method::interface.

Constraints

[1]  It is a method that does not change the observer state. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

d. 3. java-iSM OBServer MetaMOdeL

description of the Metaclasses

AddLink

Description
It defines a method that is declared by an instance of the class SubjectObserverAssociation.
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Generalizations

Method (from ISM-Java)• 

Associations

subjectObserverAssociation:SubjectObserverAssociation [1] It denotes the class that declares this • 
method. It redefines JavaOperation::class.

Figure 6. Java ISM observer metamodel
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Figure 7. Java ISM observer metamodel: Abstract subject: Operations

Figure 8. Java ISM observer metamodel: Abstract observer: Operations
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Constraints

[1]  This method changes the state of the instance defining it. not self.isQuery
[2]  It has a non-empty set of parameters being one of them an input parameter. self.parameter -> 

notEmpty () and self. parameter -> select (param | param.direction = #in and param.type = oclIs-
KindOf (Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public

Figure 9. Java ISM observer metamodel: Concrete subject: Operations and attributes

Figure 10. Java ISM observer metamodel: SubjectObserverAssociation: Operations



424

Appendix D

Attach

Description
It defines a method that is declared by a subject.

Generalizations

Method (from ISM-Java)• 

Associations

classSubject: ClassSubject [0..1] It denotes the class that declares this method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this method. It rede-• 
fines Method::interface.

Constraints

[1]  This method changes the state of the subject. not self.isQuery
[2]  It has a non-empty set of parameters, one of them is an input parameter of type Observer. self.

parameter -> notEmpty () and self. parameter -> select (param | param.direction = #in and param.
type = oclIsKindOf (Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public
[4]  If the subject that declares this routine has a reference to a class SubjectObserverAssociation, 

then this routine will delegate this task to this class, by invoking to a routine that is an instance of 
AddLink. not self.subject.subjectObserverReference -> isEmpty implies self.invokedRoutine -> 
exists (r | r.oclIsTypeOf (AddLink))

ClassObserver

Description
A metaclass ClassObserver specifies the features of a class Java taking the role of observer in the model 
of a pattern Observer.

Generalizations

Observer, JavaClass (from ISM-Java)• 

Associations

update: Update [1..*] Every instance of ClassObserver must have at least a method instance of • 
Update. It is a subset of JavaClass::javaOperation.
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Constraints
No additional constraints.

ClassSubject

Description
This metaclass specifies the features that must have a Java class taking the role of subject in the model 
of the pattern Observer.

Generalizations

Subject, JavaClass (from ISM-Java)• 

Associations

attach: Attach [1..*] Every instance of ClassSubject has at least a method instance of Attach. It is • 
a subset of JavaClass::javaOperation.
detach: Detach [1..*] Every instance of ClassSubject has at least a method instance of Detach. It • 
is a subset of JavaClass::javaOperation
notify: Notify [1..*] Every instance of ClassSubject has at least a method instance of Notify. It is • 
a subset of JavaClass::javaOperation.
observerReference: ObserverReference [0..1] It denotes the attribute that allows the subject to • 
maintain a reference to its observers. It is a subset of JavaClass::field.
subjectObserverReference:SubjectObserverReference [0..1] It denotes the attribute, which is a ref-• 
erence to a class that maintains the relation subject-observers. It is a subset of JavaClass::field.

Constraints
No additional constraints.

ConcreteObserver

Description
This metaclass specifies the features that must have a Java class with the behavior of a concrete observer 
in the model of the pattern Observer.

Generalizations

JavaClass (de ISM-Java)• 

Associations

generalizationObserver: GeneralizationObserver [0..1] It denotes a generalization where • 
ConcreteObserver takes the role of child (specific). It redefines Classifier::generalization.
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interfaceRealizationObserver: InterfaceRealizationObserver [0..1] It denotes an interface realiza-• 
tion where ConcreteObserver takes the role of the classifier implementing the contract. It is a 
subset of BehavioredClassifier::interfaceRealization.
subjectReference: SubjectReference [0..1] It denotes a reference to subjects that are observed by • 
the observer. It is a subset of JavaClass::field.

Constraints

[1]  An instance of a concrete observer can not be an abstract class. not self.isAbstract
[2]  If an instance of a concrete observer participates in an interface realization, then it must be a 

BehavioredClassifier. self.interfaceRealizationObserver -> notEmpty () implies self.superClass 
-> exists (c | c.oclIsTypeOf (BehavioredClassifier))

ConcreteSubject

Description
This metaclass specifies the features that must have a class taking the role of concrete subject in the 
model of the pattern Observer.

Generalizations

JavaClass (from ISM-Java)• 

Associations

generalizationSubject: GeneralizationSubject [0..1] It denotes a generalization where • 
ConcreteSubject takes the role of child (specific). It redefines Classifier::generalization.
getState: GetState [1..*] Every instance of ConcreteSubject must have one or more method in-• 
stances of GetState. They can be own or inherited. It is a subset of NameSpace::member.
interfaceRealizationSubject: InterfaceRealization [0..1] It denotes an interface realization where • 
ConcreteSubject takes the role of the classifier implementing the contract (implementingClassi-
fier). It is a subset of BehavioredClassifier::interfaceRealization.
observerReference: ObserverReference [0..1] It denotes the attribute that allows the subject to • 
maintain a reference to its observers. It is a subset of JavaClass::field.
setState: GetState [1..*] Every instance of ConcreteSubject must have one or more method in-• 
stances of SetState. They can be own or inherited. It is a subset of NameSpace::member.
state: Property [1..*] It specifies a non-empty set of all attributes of ConcreteSubject. They can be • 
own or inherited. It is a subset of NameSpace::member.
subjectObserverReference: SubjectObserverReference [0..1] It denotes the attribute, which is a • 
reference to a class maintaining the relation subject-observers. It is a subset of JavaClass::field.

Constraints

[1]  An instance of a concrete subject can not be an abstract class. not self.isAbstract
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[2]  If an instance of a concrete subject participates in an interface realization, then it must be a 
BehavioredClassifier. self.interfaceRealizationSubject -> notEmpty () implies self.superClass -> 
exists (c | c.oclIsTypeOf (BehavioredClassifier))

[3]  If an instance of a concrete subject is subclass of ClassSubject, it will inherit the field ObserverReference 
or the field subjectObserverReference, therefore it does not need to declare any references to its 
observers. On the contrary, if it implements the interface InterfaceSubject, then it must declare a 
field whose type is ObserverReference or SubjectObserverReference to maintain information of its 
observers. not self.generalizationSubject -> isEmpty () implies self.observerReference -> isEmpty 
() and self.subjectObserverReference -> isEmpty () and not self.interfaceRealizationSubject -> 
isEmpty () implies not self.observerReference -> isEmpty () xor not self.observerReference -> 
isEmpty ()

Detach

Description
It defines a method that is declared by a subject.

Generalizations

Method (from ISM-Java)• 

Associations

classSubject: ClassSubject [0..1] It denotes the class that declares this method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this method. It rede-• 
fines Method::interface.

Constraints

[1]  This method changes the subject state. not self.isQuery
[2]  It has a non-empty set of parameters being one of them an input parameter whose type is Observer. self.

parameter -> notEmpty () and self.parameter ->select (param | param.direction = #in and param.
type = oclIsKindOf(Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public
[4]  If the subject that declares this routine has a reference to a SubjectObserverAssociation class, this 

routine will delegate its task to this class, by invoking to a routine instance of RemoveLink. not 
self.subject.subjectObserverReference -> isEmpty () implies self.invokedRoutine->exists (r | 
r.oclIsTypeOf (RemoveLink))
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GeneralizationObserver

Description
This metaclass specifies a generalization between an abstract observer (ClassObserver) and a concrete 
observer (ConcreteObserver) in the model of the pattern Observer.

Generalizations

Generalization (from Kernel)• 

Associations

classObserver: ClassObserver [1] It denotes the general element of this relation. It redefines • 
Generalization::general.
concreteObserver: ConcreteObserver [1] It denotes the specific element of this relation. It rede-• 
fines Generalization::specific.

Constraints
No additional constraints.

GeneralizationSubject

Description
This metaclass specifies a generalization between an abstract subject (ClassSubject) and a concrete 
subject (ConcreteSubject) in the model of the pattern Observer.

Generalizations

Generalization (from Kernel)• 

Associations

classSubject: ClassSubject [1] It denotes a general element of this relation. It redefines • 
Generalization::general.
concreteSubject: ConcreteSubject [1] It denotes the specific element of this relation. It redefines • 
Generalization::specific.

Constraints
No additional constraints.
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GetState

Description
This metaclass specifies a generalization between an abstract subject (ClassSubject) and a concrete 
subject (ConcreteSubject) in the model of the pattern Observer.

Generalizations

Method (from ISM-Java)• 

Associations
No additional associations.

Constraints

[1]  It is an observer and concrete method. self.isQuery and not self.isAbstract
[2]  As it must return the subject state, the set of parameters must not be empty, and at least, one of the 

parameters must have a direction equal to out or return. self.parameter -> notEmpty () and self.
parameter -> select (par | par.direction = #return or par.direction = #out) -> size () >=1

[3]  Its visibility must be public. self.visibility = #public

InterfaceObserver

Description
An InterfaceObserver specifies the features that must have a Java interface taking the role of abstract 
observer in the model of the pattern Observer.

Generalizations

Observer, JavaInterface (from ISM-Java)• 

Associations

update: Update [1..*] Every instance of InterfaceObserver has at least an operation instance of • 
Update. It is a subset of JavaInterface::method.

Constraints
No additional constraints.

InterfaceSubject

Description
This metaclass specifies the features that must have a Java interface taking the role of abstract subject 
in the model of a pattern Observer.
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Generalizations

Subject, JavaInterface (from ISM-Java)• 

Associations

attach: Attach [1..*] Every instance of InterfaceSubject has at least a method instance of Attach. It • 
is a subset of JavaInterface::method.
detach: Detach [1..*] Every instance of InterfaceSubject has at least a method instance of Detach. • 
It is a subset of JavaInterface::method.
notify: Notify[1..*] Every instance of InterfaceSubject has at least a method instance of Notify. It • 
is a subset of JavaInterface::method.

Constraints
No additional constraints.

InterfaceRealizationObserver

Description
This metaclass specifies an interface realization between an abstract observer (InterfaceObserver) and 
a concrete observer (ConcreteObserver) in the model of the pattern Observer.

Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteObserver: ConcreteObserver [1] It denotes the element that implements the contract in • 
this relation. It redefines InterfaceRealization::implementingClassifier.
interfaceObserver: InterfaceObserver [1] It denotes the element that defines the contract in this • 
relation. It redefines InterfaceRealization::contract.

Constraints
No additional constraints.

InterfaceRealizationSubject

Descriptions
This metaclass specifies an interface realization between an abstract subject (InterfaceSubject) and a 
concrete subject (ConcreteSubject) in the model of the pattern Observer.
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Generalizations

InterfaceRealization (from Kernel)• 

Associations

concreteSubject: ConcreteSubject [1] It denotes the element that implements the contract in this • 
relation. It redefines InterfaceRealization::implementingClassifier.
interfaceSubject: InterfaceSubject [1] It denotes the element that defines the contract in this rela-• 
tion. It redefines InterfaceRealization::contract.

Constraints
No additional constraints.

Notify

Description
It defines a method that is declared by a subject.

Generalizations

Method (from ISM-Java) Associations• 
classSubject: ClassSubject [0..1] It denotes the class that declares this method. It redefines • 
JavaOperation::class.
interfaceSubject: InterfaceSubject [0..1] It denotes the interface that declares this method. It rede-• 
fines Method::interface.

Constraints

[1]  It is a method that does not change the subject state. self.isQuery
[2]  Its visibility must be public. self.visibility = #public
[3]  If the subject that declares this routine has a reference to a SubjectObserverAssociation class, this 

routine will delegate its task to this class by invoking this routine instance of NotifyObserver. not 
self.subject.subjectObserverReference -> isEmpty implies self.invokedRoutine -> exists (r | 
r.oclIsTypeOf(NotifyObserver))

NotifyObservers

Description
It defines a method that is declared by an instance of SubjectObserverAssociation.

Generalizations

Method (from ISM-Java)• 
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Associations

subjectObserverAssociation:SubjectObserverAssociation [1] It denotes the class that declares this • 
method. It redefines JavaOperation::class.

Constraints

[1]  This is a method that does not change the state of the instance that defines it. self.isQuery
[2]  Its visibility must be public. self.visibility = #public

Observer

Description
An observer is a specialized classifier that specifies a classifier whose role is observer in the model of 
the pattern Observer. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations
No additional associations.

Constraints
No additional constraints.

ObserverReference

Description
This field represents a reference to observers of a subject.

Generalizations

Field (from ISM-Java)• 

Associations

subject: Subject [1] It denotes the class that declares this field. It redefines Field::class.• 

Constraints

[1]  The type of this field must correspond to some of the collections of the Java library. self.type.
oclIsKindOf (JavaCollection) and self.type.parameter -> size () = 1 and self.type.parameter.
ownedParameteredElement.oclIsTypeOf (Observer)
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[2]  Its visibility must be private or protected. self.visibility = #private or self.visibility = #protected

RemoveLink

Description
It defines a method that is declared by an instance of SubjectObserverAssociation.

Generalizations

Method (from ISM-Java)• 

Associations

subjectObserverAssociation:SubjectObserverAssociation [1] It denotes the class that declares this • 
method. It redefines JavaOperation::class.

Constraints

[1]  This method changes the state of instances defining it. not self.isQuery
[2]  It has a non-empty set of parameters being one of them an input parameter whose type is ob-

server. self.parameter -> notEmpty() and self.parameter -> select (param | param.direction = #in 
and param.type = oclIsKindOf (Observer)) -> size () = 1

[3]  Its visibility must be public. self.visibility = #public

SetState

Description
It defines an operation member of ConcreteSubject. It specifies a service that can be required from 
another object.

Generalizations

Method (from ISM-Java)• 

Associations
No additional associations.

Constraints

[1]  This is a method that is concrete and modifies the state of the subject. not self.isAbstract and not 
self.isQuery

[2]  It has a non-empty set of parameters being at least one of them an input parameter. self.parameter 
-> notEmpty () and self.parameter ->select (param | param.direction = #in) -> size () >= 1

[3]  Its visibility must be public. self.visibility = #public
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Subject

Description
This metaclass specifies a specialized classifier that takes the role of subject in the model of the pattern 
Observer. It is an abstract metaclass.

Generalizations

Classifier (from Kernel)• 

Associations
No additional associations.

Constraints
No additional constraints.

SubjectObserverAssociation

Description
This metaclass specifies the features of the class that maintains the relation between a subject and its 
observers.

Generalizations

JavaClass (from ISM-Java)• 

Associations

mapping: SubjectObserverMapping [1] It specifies an own attribute. It is a subset of • 
JavaClass::field.
notify: NotifyObservers [1..*] It specifies an own operation. It is a subset of JavaClass::method.• 
register: AddLink [1..*] It specifies an own operation. It is a subset of JavaClass::method.• 
unregister: RemoveLink [1..*] It specifies an own operation. It is a subset of JavaClass::method.• 

Constraints
No additional constraints.

SubjectObserverMapping

Description
This metaclass specifies the class attribute SubjectObserverAssociation, that maintains the mapping 
between a subject and its observers.
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Generalizations

Field (from ISM-Java)• 

Associations

subjectObserverAssociation: SubjectObserverAssociation [1] It denotes the class that declares • 
this attribute. It redefines Field::Class.

Constraints

[1]  Its visibility must be private or protected. self.visibility = #private or self.visibility = #protected

SubjectObserverReference

Description
This attribute is a reference to a class SubjectObserverAssociation, which maintain the relation between 
a subject and its observers.

Generalizations

Field (from ISM-Java)• 

Associations

subject: Subject [1] It denotes the class that declares this attribute. It redefines Attribute:: class.• 
type: SubjectObserverAssociation [1] It refers to the type of this attribute. It redefines • 
Attribute::type.

Constraints
No additional constraints.

Update

Description
It defines a method that is declared by an observer which specifies a service that is required by another 
object.

Generalizations

Method (from ISM-Java)• 
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Associations

classObserver: ClassObserver [0..1] It denotes the class that declares this operation. It redefines • 
JavaOperation::class.
interfaceObserver: InterfaceObserver [0..1] It denotes the interface that declares this operation. It • 
redefines Method::interface.

Constraints

[1]  This is a method that does not change the state of the observer. self.isQuery
[2]  Its visibility must be public. self.visibility = #public
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