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Preface

Over the past few years, the field of information fusion has gone through con-
siderable and rapid change. While it is difficult to write a book in such a dynamic
environment, this book is justified by the fact that the field is currently at a turning
point. After a phase of questions, debates, and even mistakes, during which the field
of fusion in signal and image processing was not well defined, we are now able to
efficiently use basic tools (often imported from other fields) and it is now possible to
both design entire applications, and develop more complex and sophisticated tools.
Nevertheless, there remains much theoretical work to be done in order to broaden the
foundations of these methods, as well as experimental work to validate their use.

The objectives of this book are to present, on the one hand, the general ideas of
fusion and its specificities in signal and image processing and in robotics, and on the
other hand, the major methods and tools, which are essentially numerical. This book
does not intend, of course, to compete with those devoted entirely to one of these tools,
or one of these applications, but instead tries to underline the assets of the different
theories in the intended application fields.

With a book like this one, we cannot aspire to be comprehensive. We will not
discuss methods based on expert or multi-agent systems (however, an example will
be given to illustrate them), on neural networks and all of the symbolic methods
expressed in logical formalism. Several teams work on developing such methods, for
example, in France, the IRIT in Toulouse and the CRIL in Lens on logical methods,
the LAAS in Toulouse on neuromimetic methods, the IMAG in Grenoble on multi-
agent systems, and many others. Likewise, among the methods we will discuss, many
interesting aspects will have to be left aside, whether theoretical, methodological or
regarding applications because they would bring the reader beyond the comparative
context we want him to stay in, but we hope that the cited references will help com-
plete this presentation for readers who would wish to study these aspects further.

11



12 Information Fusion

This book is meant essentially for PhD students, researchers or people in the indus-
try, who wish to familiarize themselves with the concepts of fusion and discover its
main theories. It can also serve as a guide to understanding theories and methodolo-
gies, developing new applications, discovering new research subjects, for example,
those suggested by the problems and prospects mentioned in this book.

The structure is organized in two sets of chapters. The first deals with definitions
(Chapter 1) and the specificities of the fields that are discussed: signal processing
in Chapter 2, image processing in Chapter 3 and robotics in Chapter 4. The second
part is concerned with the major theories of fusion. After an overview of the modes
of knowledge representation used in fusion (Chapter 5), we present the principles of
probabilistic and statistical fusion in Chapter 6, of belief function theory in Chapter
7, of fuzzy and possibilistic fusion in Chapter 8. The specificities of fusion in image
processing and in certain robotics problems require taking into account spatial infor-
mation. This is discussed in Chapter 9, since the fusion methods developed in other
fields do not consider it naturally. An example of an application that relies on a multi-
agent architecture is given in Chapter 10. The specific methods of temporal fusion,
finally, are described in Chapter 11.

This book owes a great deal to the GDR-PRC ISIS and to their directors, Odile
Macchi and Jean-Marc Chassery. Its authors were the coordinators of the workgroup
on information fusion and the related actions. The GDR was the first initiative that led
to bringing together the French community of people working on information fusion
in signal and image processing, to build ties with other communities (man-machine
communications, robotics and automation, artificial intelligence), to enrich ideas
and it thus became the preferred place for discussion. This book would not have
existed without the maturity acquired in this group. This book is also indebted to
the comments and discussions of the FUSION Working Group (a European project)
directed by Professor Philippe Smets (IRIDIA, Université Libre de Bruxelles), aimed
at summarizing the problems and methods of data fusion in different fields, from
artificial intelligence to image processing, from regulations to financial analysis, etc.
It grouped together researchers from the IRIT in Toulouse, the IRIDIA in Brussels,
Télécom-Paris, the CNR in Padua, the University of Granada, the University of
Tunis, the University of Magdeburg, the ONERA, Thomson-CSF, Delft University,
University College London. Chapter 1 in particular owes much to this group. Finally,
the trust bestowed on us by Bernard Dubuisson, his motivation and his encourage-
ments also helped a great deal in the completion of this book. This book is dedicated
to the memory of Philippe Smets.

Isabelle BLOCH



Chapter 1

Definitions

1.1. Introduction

Fusion has become an important aspect of information processing in several very
different fields, in which the information that needs to be fused, the objectives, the
methods, and hence the terminology, can vary greatly, even if there are also many
analogies. The objective of this chapter is to specify the context of fusion in the field
of signal and image processing, to specify the concepts and to draw definitions. This
chapter should be seen as a guide for the entire book. It should help those with another
vision of the problem to find their way.

1.2. Choosing a definition

In this book, the word “information” is used in a broad sense. In particular, it
covers both data (for example, measurements, images, signals, etc.) and knowledge
(regarding the data, the subject, the constraints, etc.) that can be either generic or
specific.

The definition of information fusion that we will be using throughout this book is
given below.

DEFINITION 1.1 (Fusion of information). Fusion of information consists of combining
information originating from several sources in order to improve decision making.

Chapter written by Isabelle BLOCH and Henri MAÎTRE.
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This definition, which is largely the result of discussions led within the GDR-PRC
ISIS1 workgroup on information fusion, is general enough to encompass the diversity
of fusion problems encountered in signal and image processing. Its appeal lies in the
fact that it focuses on the combination and decision phases, i.e. two operations that
can take different forms depending on the problems and applications.

For each type of problem and application, this definition can be made more specific
by answering a certain number of questions: what is the objective of the fusion? what is
the information we wish to fuse? where does it come from? what are its characteristics
(uncertainty, relation between the different pieces of information, generic or factual,
static or dynamic, etc.)? what methodology should we choose? how can we assess and
validate the method and the results? what are the major difficulties, the limits?, etc.

Let us compare this definition with those suggested by other workgroups that have
contributed to forming the structure of the field of information fusion.

Definition 1.1 is a little more specific than that suggested by the European work-
group FUSION [BLO 01], which worked on fusion in several fields from 1996 to
19992. The general definition retained in this project is the following: gathering
information originating from different sources and using the gathered information to
answer questions, make decisions, etc. In this definition, which also focuses on the
combination and on the goals, the goals usually stop before the decision process, and
are not restricted to improving the overall information. They include, for example,
obtaining a general perspective, typically in problems related to fusing the opinions
or preferences of people, which is one of the themes discussed in this project, but this
goes beyond the scope of this book. Here, improving knowledge refers to the world
as it is and not to the world as we would like it to be, as is the case with preference
fusion.

Some of the first notable efforts in clarifying the field were made by the data
fusion work group at the US Department of Defense’s Joint Directors of Labora-
tories (JDL). This group was created in 1986 and focused on specifying and codi-
fying the terminology of data fusion in some sort of dictionary (Data Fusion Lex-
icon) [JDL 91]. The method suggested was exclusively meant for defense applica-
tions (such as automatically tracking, recognizing and identifying targets, battlefield
surveillance) and focused on functionalities, by identifying processes, functions and
techniques [HAL 97]. It emphasized the description of a hierarchy of steps in pro-
cessing a system. The definition we use here contrasts with the JDL’s definition and
chooses another perspective, focusing more on describing combination and decision

1. www-isis.enst.fr.
2. This chapter greatly benefited from the discussions within this workgroup and we wish to
thank all of the participants.
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methods rather than systems. It is better suited to the diversity of situations encoun-
tered in signal and image processing. In this sense, it is a broader definition.

Another European workgroup of the EARSeL (European Association of Remote
Sensing Laboratories) extended the JDL’s definition to the broader field of satellite
imagery [WAL 99]: the fusion of data constitutes a formal framework in which the
data originating from different sources can be expressed; its goal is to obtain infor-
mation of higher quality; the exact definition of “higher quality” will depend on the
application. This definition encompasses most of the definitions suggested by several
authors in satellite imagery, which are gathered in [WAL 99]. Definition 1.1 goes fur-
ther and includes decisions.

The meaning of the word fusion can be understood on different levels. Other con-
cepts, such as estimation, revision, association of data and data mining, can sometimes
be considered as fusion problems in a broad sense of the word. Let us specify these
concepts.

Fusion and estimation. The objective of estimation is to combine several values
of a parameter or a distribution, in order to obtain a plausible value of this parameter.
Thus, we have the same combination and decision steps, which are the two major
ingredients of Definition 1.1. On the other hand, numerical fusion methods often
require a preliminary step to estimate the distributions that are to be combined (see
section 1.5) and the estimation is then interpreted as one of the steps of the fusion
process.

Fusion and revision or updating. Revising or updating consists of completing or
modifying an element of information based on new information. It can be consid-
ered as one of the fields of fusion. Sometimes, fusion is considered in a stricter sense,
where combination is symmetric. As for revision, it is not symmetric and it draws a
distinction between information known beforehand and new information. Here, we
will be considering dynamic processes among others (particularly robotics), and it
seems important for us to include revision and updating as part of fusion (for exam-
ple, for applications such as helping a robot comprehend its environment). Revision
involves the addition of new information that makes it possible to modify, or specify,
the information previously available about the observed phenomenon, whereas updat-
ing involves a modification of the phenomenon that leads to modifying the information
about it (typically in a time-based process).

Fusion and association. Data association is the operation that makes it possible
to find among different signals originating from two sources or more those that are
transmitted by the same object (source or target). According to Bar-Shalom and Fort-
man [BAR 88], data association is the most difficult step in multiple target tracking.
It consists of detecting and associating noisy measurements, the origins of which are
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unknown because of several factors, such as random false alarms in detections, clut-
ter, interfering targets, traps and other countermeasures. The main models used in
this field are either deterministic (based on classic hypothesis tests), or probabilistic
models (essential Bayesian) [BAR 88, LEU 96, ROM 96]. The most common method
[BAR 88] relies on the Kalman filter with a Gaussian hypothesis. More recently, other
estimation methods have been suggested, such as the Interactive Multiple Model esti-
mator (IMM), which can adapt to different types of motion and reduce noise, while
preserving a good accuracy in estimating states [YED 97]. This shows how the prob-
lems we come across can be quite different from those covered by Definition 1.1.

Fusion and data mining. Data mining consists of extracting relevant parts of infor-
mation and data, which can be, for example, special data (in the sense that it has spe-
cific properties), or rare data. It can be distinguished from fusion that tries to explain
where the objective is to find general trends, or from fusion that tries to generalize
and lead to more generic knowledge based on data. We will not be considering data
mining as a fusion problem.

1.3. General characteristics of the data

In this section, we will briefly describe the general characteristics of the informa-
tion we wish to fuse, characteristics that have to be taken into account in a fusion
process. More detailed and specific examples will be given for each field in the fol-
lowing chapters.

A first characteristic involves the type of information we wish to fuse. It can con-
sist of direct observations, results obtained after processing these observations, more
generic knowledge, expressed in the form of rules for example, or opinions of experts.
This information can be expressed either in numerical or symbolic form (see section
1.4). Particular attention is needed in choosing the scale used for representing the
information. This scale should not necessarily have any absolute significance, but it at
least has to be possible to compare information using the scale. In other words, scales
induce an order within populations. This leads to properties of commensurability, or
even of normalization.

The different levels of the elements of information we wish to fuse are also a
very important aspect. Usually, the lower level (typically the original measurements)
is distinguished from a higher level requiring preliminary steps, such as processing,
extracting primitives or structuring the information. Depending on the level, the con-
straints can vary, as well as the difficulties. This will be illustrated, for example, in the
case of image fusion in Chapter 3.

Other distinctions in the types of data should also be underlined, because they give
rise to different models and types of processing. The distinction between common and
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rare data is one of them. Information can also be either factual or generic. Generic
knowledge can be, for example, a model of the observed phenomenon, general rules,
integrity constraints. Factual information is more directly related to the observations.
Often, these two types of information have different specificities. Generic information
is usually less specific (and serves as a “default”) than factual information, which is
directly relevant to the particular phenomenon being observed. The default is consid-
ered if the specific information is not available or reliable, otherwise, and if the ele-
ments of information are contradictory, more specific information is preferred. Finally,
information can be static or dynamic, and again, this leads to different ways of mod-
eling and describing it.

The information handled in a fusion process is comprised, on the one hand, of the
elements of information we wish to fuse together and, on the other hand, of additional
information used to guide or assist the combination. It can consist of information
regarding the information we wish to combine, such as information on the sources, on
their dependences, their reliability, preferences, etc. It can also be contextual informa-
tion regarding the field. This additional information is not necessarily expressed using
the same formalism as the information we wish to combine (it usually is not), but it
can be involved in choosing the model used for describing the elements of information
we wish to fuse.

One of the important characteristics of information in fusion is its imperfection,
which is always present (fusion would otherwise not be necessary). It can take differ-
ent forms, which are briefly described below. Let us note that there is not always a
consensus on the definition of these concepts in other works. The definitions we give
here are rather intuitive and well suited to the problem of fusion, but are certainly not
universal. The different possible nuances are omitted on purpose here because they
will be discussed further and illustrated in the following chapters for each field of
fusion described in this book.

Uncertainty. Uncertainty is related to the truth of an element of information and
characterizes the degree to which it conforms with reality [DUB 88]. It refers to the
nature of the object or fact involved, its quality, its essence, or its occurrence.

Imprecision. Imprecision involves the content of the information and therefore is
a measurement of a quantitative lack of knowledge on a measurement [DUB 88]. It
involves the lack of accuracy in quantity, size, time, the lack of definition on a proposal
which is open to different interpretations or with vague and ill-defined contours. This
concept is often confused with uncertainty because both these imperfections can be
present at the same time and one can cause the other. It is important to be able to
tell the difference between these two terms because they are often antagonistic, even
if they can be included in a broader meaning for uncertainty. On the contrary, other
classifications with a larger number of categories have been suggested [KLI 88].
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Incompleteness. Incompleteness characterizes the absence of information given
by the source on certain aspects of the problem. Incompleteness of the information
originating from each source is the main reason for fusion. The information provided
by each source is usually partial, i.e. it only provides one vision of the world or the
phenomenon we are observing, by only pointing out certain characteristics.

Ambiguity. Ambiguity expresses the possibility for an element of information to
lead to two interpretations. It can be caused by previous imperfections, for example,
an imprecise measure that does not make it possible to distinguish two situations,
or the incompleteness that causes possible confusion between objects and situations
that cannot be separated based on the characteristics exposed by the source. One of
the objectives of fusion is to erase the ambiguities of a source using the information
provided by the other sources or additional knowledge.

Conflict. Conflict characterizes two or more elements of information leading to
contradictory and therefore incompatible interpretations. Conflict situations are com-
mon in fusion problems and are often difficult to solve. First of all, detecting conflicts
is not always simple. They can easily be confused with other types of imperfections,
or even with the complementarity of sources. Furthermore, identifying and classify-
ing them are questions that often arise, but in different ways depending on the field.
Finally, solutions come in different forms. They can rely on the elimination of unreli-
able sources, on taking into account additional information, etc. In some cases, it can
be preferable to delay the combination and wait for other elements of information that
might solve the conflicts, or even not go through with the fusion at all.

There are other, more positive characteristics of information that can be used to
limit the imperfections.

Redundancy. Redundancy is the quality of a source that provides the same
information several times. Redundancy among sources is often observed, since the
sources provide information about the same phenomenon. Ideally, redundancy is used
to reduce uncertainties and imprecisions.

Complementarity. Complementarity is the property of sources that provide infor-
mation on different variables. It comes from the fact that they usually do not provide
information about the same characteristics of the observed phenomenon. It is directly
used in the fusion process in order to obtain more complete overall information and to
remove ambiguities.

The tools that can be used to model the different kinds of information and to mea-
sure the imperfections of the information, as well as redundancy and complementarity,
will be described in Chapter 6.
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1.4. Numerical/symbolic

There has been a great deal of discussion in the fusion community regarding the
duality between numerical and symbolic fusion. The objective in this section is not
to go over the details of these discussions, but rather to present the different levels on
which this question can be expressed. By cleverly describing these levels, it is often
possible to silence these debates. The three levels we will distinguish here involve the
type of data, the type of process applied to the data and the role of representations.
They are discussed in detail in the following sections.

1.4.1. Data and information

By numerical information, we mean information that is directly given in the form
of numbers. These numbers can represent physical measurements, gray levels in an
image, the intensity of a signal, the distance given by a range-finder, or the response
to a numerical processing operator. They can be either directly read inside the data we
wish to fuse or attached to the field or the contextual knowledge.

By symbolic information, we mean any information given in the form of symbols,
propositions, rules, etc. Such information can either be attached to the elements of
information we wish to fuse or to knowledge of the field (for example, proposals on
the properties of the field involved, structural information, general rules regarding the
observed phenomenon, etc.).

The classification of information and data as numerical or symbolic cannot always
be achieved in a binary way, since information can also be hybrid, and numbers can
represent the coding of information of non-numerical nature. This is typically the case
when evaluating data or a process, or when quantifying imprecision or uncertainty. In
such cases, the absolute values of the numbers are often of little importance and what
mostly counts is where they lie on a scale, or the order they are in if several quantities
are evaluated. The term “hybrid” then refers to numbers used as symbols to represent
an element of information, but with a quantization, which makes it possible to han-
dle them numerically. These numbers can be used for symbolic as well as numerical
information.

1.4.2. Processes

In the context of information processing, a numerical process refers to any calcu-
lation conducted with numbers. In information fusion, this covers all of the methods
that combine numbers using formal calculations. It is important to note that this type
of process does not necessarily formulate any hypotheses regarding the type of infor-
mation represented by numbers. At the beginning, information can be either numerical
or symbolic in nature.
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Symbolic processes include formal calculation on propositions (for example,
logic-type methods or grammars, more details of which can be found in [BLO 01]),
possibly taking into account numerical knowledge. Structural methods, such as graph-
based methods, which are widely used in structural shape recognition (particularly
for fusion), can be included in the same category.

We use the phrase hybrid process for methods where prior knowledge is used in
a symbolic way to control the numerical processes, for example, by declaring propo-
sitional rules that suggest, enable or on the contrary prohibit certain numerical opera-
tions. Typically, a proposition that defines in which cases two sources are independent
can be used to choose how probabilities are combined.

1.4.3. Representations

As shown in the two previous sections, representations and their types can play
very different roles. Numerical representations can be used for intrinsically numerical
data but also for evaluating and quantizing symbolic data. Numerical representations
in information fusion are often used for quantifying the imprecision, uncertainty or
unreliability of the information (this information can be either numerical or symbolic
in nature) and therefore to represent information on the data we wish to combine
rather than the data itself. These representations are discussed in greater detail in the
chapters on numerical fusion methods. Numerical representations are also often used
for degrees of belief related to numerical or symbolic knowledge and for degrees of
consistency or inconsistency (or conflict) between the elements of information (the
most common case is probably the fusion of databases or regulations). Let us note
that the same numerical formalism can be used to represent different types of data or
knowledge [BLO 96]: the most obvious example is the use of probabilities to represent
data as different as frequencies or subjective degrees of belief [COX 46].

Symbolic representations can be used in logical systems, or rule-based systems,
but also as a priori knowledge or contextual or generic knowledge used to guide a
numerical process, as a structural medium, for example, in image fusion, and of course
as semantics attached to the objects handled.

In many examples, a strong duality can be observed between the roles of numerical
and symbolic representations, which can be used when fusing heterogenous sources.
Examples will be given in different fields in the following chapters.

1.5. Fusion systems

Fusion generally is not an easy task. If we simplify, it can be divided into sev-
eral tasks. We will briefly describe them here because they will serve as a guide to
describing theoretical tools in the following chapters. Let us consider a general fusion
problem with m sources S1, S2, . . . , Sm, and where the objective is to make a decision
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among n possible decisions d1, d2, . . . , dn. The main steps we have to achieve in order
to build the fusion process are as follows:

1) modeling: this step includes choosing a formalism and expressions for the ele-
ments of information we wish to fuse within this formalism. This modeling can be
guided by additional information (regarding the information and the context or the
field). Let us assume, to give the reader a better idea, that each source Sj provides
an element of information represented by M j

i regarding the decision di. The form
of M j

i depends of course on which formalism was chosen. It can, for example, be a
distribution in a numerical formalism, or a formula in a logical formalism;

2) estimation: most models require an estimation phase (for example, all of the
methods that use distributions). Again, the additional information can come into play;

3) combination: this step involves the choice of an operator, compatible with the
modeling formalism that was chosen, and guided by the additional information;

4) decision: this is the final step of fusion, which allows us to go from information
provided by the sources to the choice of a decision di.

We will not go into further detail about these steps here because it would require
discussing formalisms and technical aspects. This will be the subject of the following
chapters.

The way these steps are organized defines the fusion system and its architecture.
In the ideal case, the decision is made based on all of the M j

i , for all of the sources
and all of the decisions. This is referred to as global fusion. In the global model, no
information is overlooked. The complexity of this model and of its implementation
leads to the development of simplified systems, but with more limited performances
[BLO 94].

A second model thus consists of first making local decisions for each source sepa-
rately. In this case, a decision d(j) is made based on all of the information originating
from the source Sj only. This is known as a decentralized decision. Then, in a second
step, these local decisions are fused into a global decision. This model is the obvi-
ous choice when the sources are not available simultaneously. It provides answers
rapidly because procedures are specific to each source, and can easily be adapted to
the addition of new sources. This type of model benefits from the use of techniques
from adaptive control and often uses distributed architectures. It is also referred to
as decision fusion [DAS 96, THO 90]. Its main drawback comes from the fact that
it poorly describes relations between sensors, as well as the possible correlations or
dependences between sources. Furthermore, this model very easily leads to contra-
dictory local decisions (d(j) �= d(k) for j �= k) and solving these conflicts implies
arbitration on a higher level, which is difficult to optimize, since the original informa-
tion is no longer available. Models of this type are often implemented for real-time
applications, for example in the military.
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A third model, “orthogonal” to the previous one, consists of combining all of the
M j

i related to the same decision di using an operation F , in order to obtain a fused
form Mi = F (M1

i ,M2
i , . . . , Mm

i ). A decision is then made based on the result of
this combination. In this case, no intermediate decision is made and the information
is handled within the chosen formalism up until the last step, thus reducing contra-
dictions and conflicts. This model, just like the global model, is a centralized model
that requires all of the sources to be available simultaneously. Simpler than the global
model, it is not as flexible as the distributed model, making the possible addition of
sources of information more difficult.

Finally, an intermediate, hybrid model consists of choosing adaptively which infor-
mation is necessary for a given problem based on the specificities of the sources. This
type of model often copies the human expert and involves symbolic knowledge of
the sources and objects. It is therefore often used in rule-based systems. Multi-agent
architectures are well suited for this model.

The system aspect of fusion will be discussed further in an example in Chapter 10.

1.6. Fusion in signal and image processing and fusion in other fields

Fusion in signal and image processing has specific features that need to be taken
into account at every step when constructing a fusion process. These specificities also
require modifying and complexifying certain theoretical tools, often taken from other
fields. This is typically the case of spatial information in image fusion or in robotics.
These specificities will be discussed in detail in the case of fusion in signal, image and
robotics in the following chapters.

The quality of the data to be processed and its heterogenity are often more signif-
icant than in other fields (problems in combining expert opinions, for example). This
causes an additional level of complexity, which has to be taken into account in the
modeling, but also in the algorithms.

The data is mostly objective (provided by sensors), which separates them from
subjective data such as what can be provided by individuals. However, they maintain
a certain part of subjectivity (for example, in the choice of the sensors or the sources
of information, or also of the acquisition parameters). There is also some subjectivity
in how the objectives are expressed. Objective data is usually degraded, either because
of imperfection in the acquisition systems, or because of the processes to which it is
subjected.

In fact, one of the main difficulties comes from the fact that the types of knowledge
that are dealt with are very heterogenous. They are comprised not just of measure-
ments and observations (which can be heterogenous themselves), but also of general
cases, typical examples, generic models, etc.
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The major differences with other application fields of information fusion first stem
from the fact that the essential question (and therefore the objective of fusion) is not the
same. In signal and image processing, it consists essentially, according to Definition
1.1, of improving our knowledge of the world (as it is). This implies the existence of
a truth, even if we only have access to a partial or deformed version of it, or if it is
difficult to obtain, as opposed to the fusion of preferences (the way we want the world
to be), the fusion of regulations (the way the world should be), or voting problems,
where typically there is no truth, etc. [BLO 01].
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Chapter 2

Fusion in Signal Processing

2.1. Introduction

There has been a significant evolution in sensors available today in terms of perfor-
mance and quality as well as the associated signal processing. This constant progress,
from the perspective of both hardware and software, provides us with increasingly
dense and complex elements of information, that differ in nature and reliability, for
example, the multi-mode radar, capable of performing several tasks such as detecting,
tracking or identifying targets.

Whether in the field of military applications, with the improved performances of
portable devices, where speed, range, maneuverability, stealth, signal jamming and
group movements have a direct impact on the surveillance system’s efficiency, or in
other fields of signal processing, there are major demands: a surveillance or diagnosis
system must have a reactivity close to real-time, without loss of performance, and must
offer as quickly as possible a situation assessment, with a reliability and an accuracy
known to the operator. The use of a single type of sensor quickly became obsolete and
the multi-sensor approach, associated with information fusion, progressively became
prevalent for the creation of a comprehensive system to assist decision making.

This multi-sensor approach introduced new concepts, many of them inherent to
how the systems functioned, such as control, decision making and communications
management, in order to co-ordinate the various components and to ensure a certain
consistency. Because of disparities in response time, accuracy or operating conditions
between the sensors, managing such a system is complex in many regards.
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The major concepts are directly related to information processing. Data fusion sys-
tems rely mostly on a series of modeling, estimation, retiming and data association,
combination (or fusion itself) of elements of information, and then decision making or
supervision steps. Going from the knowledge of a bit of information to a mathematical
representation that renders it usable constitutes the information modeling stage. The
retiming and data association phase is preliminary to the combination or fusion phase
of multi-source information. The first three phases are usually clearly uncorrelated
from the decision making phase, which consists of expressing compromise problems
(costs, risks, etc.). These concepts allow us to achieve improvements due to the com-
plementarity and redundancy of the pre-existing information and of the measurements.
A system’s efficiency then results from the complexity of the resulting system, from
the reliability of the model, from the retiming and association techniques, from the
clever combination of the information, and finally from the decisions that are made.

At the same time, information and communications systems are expected to assist
and co-operate with the operators of the application field (the users) with the goal of
reaching a decision. There are functions that are entirely automated on a local scale
over which the operator has no element of control because these functions are reliable
and/or accurate enough. On the other hand, the system as a whole has to be interactive
with the user, who has to be able to control certain parts of the system by modifying,
for example, confidence levels on whether a set of considered hypotheses is complete,
or by defining in real-time a balance between different decision criteria. The system
should also be capable of providing complementary information, upon request from
the user, for example, on the level of conflict between elements of information.

One of the fundamental ideas has to do with the meaning of information and the
combination mechanisms in a broad sense. The modeling that is chosen has to be
suited accurately to the meaning of the information that is actually available. This
accuracy in modeling causes problems of heterogenity or hybridism in the representa-
tion of data. This leads to the suggestion of modeling and heterogenous fusion mecha-
nisms where the concept of reliability between the meaning of the information actually
available, and the meaning of the mathematical representation is essential.

The question of focusing more on the combination mechanisms rather than the
semantics, or vice versa, divides researchers in this field. In the field of signal process-
ing, the trend among authors has been to emphasize mechanisms based on the idea
that the process’s quality essentially relies on the quality of the mechanisms involved.
Probability theory, based on a strong sense of modeling, gives us well-known and most
importantly well-controlled mechanisms (simulated annealing, hypothesis test, multi-
model Kalman filtering, etc.). From this perspective, probability theory is therefore
the “right” theoretical framework which has been particularly well studied by a num-
ber of researchers, despite certain drawbacks regarding the reliability of the seman-
tic representations when there is little information, but the semantic aspect remains
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fundamental. It is therefore useful to rely on other forms of representing information in
order to increase the model’s reliability by considering information of smaller mean-
ing, or by adding mechanisms for sorting, windowing, etc., to authorize this semantic
information to be taken into account.

A certain number of difficulties in data fusion are caused by generic problems that
are independent of theoretical frameworks.

The first problem is how knowledge, or the lack of knowledge, is modeled (mean-
ing of the information and semantic representation). As we will see, there are several
methods.

The second generic problem involves the method of information fusion and the
choice of mechanisms for information management. The problems we are discussing
here involve reliability and/or data association. These are questions related to the con-
cept of uncertainty. The “right” method for combining information necessarily takes
into account the imprecision relative to each source. Let us note that the choice of
mechanisms strongly depends on how knowledge is modeled because either informa-
tion is reliably modeled and the combinations are rather simple, or the model lacks in
reliability and, in that case, additional focus is needed on the mechanisms in order to
take into account the reliability problems during the combination phase.

Finally, a third difficulty lies in the choice of evaluation criteria for the quality of
classifiers. This is because performance in terms of proper classification rates is not, by
itself, a sufficient criterion, hence the necessity of evaluating a classifier’s robustness,
in other words how well performances rate when the model strays from reality.

2.2. Objectives of fusion in signal processing

Let us recall Definition 1.1 from the previous chapter: fusion consists of combining
information originating from several sources in order to improve decision making. In
the field of signal processing, the goal of information fusion is to obtain a system to
assist decision making, whose main quality (among others) is to be robust when faced
with various imprecisions, uncertainties and forms of incompleteness regarding the
information sources.

The basic fusion mechanism is described in Chapter 1. It is comprised of four
sequential phases, i.e. a modeling phase, an estimation phase, the actual combination
phase and a decision phase. A fusion system is then comprised of a collection of
different basic mechanisms depending on the problem we are dealing with. We will
now discuss the three major categories of problems that information fusion techniques
attempt to solve in the field of signal processing.
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2.2.1. Estimation and calculation of a law a posteriori

In the context of mobile robotics, for which the general concepts of fusion will be
described in Chapter 4, the navigation of a mobile robot is a basic problem for a fusion
system. It is well-known today that the solution to this problem is obtained from the
competition between two sub-systems [ABI 92, STE 95]:

– an almost continuous navigation, using dead reckoning, based on a behavioral
model and on data provided by different proprioceptive sensors;

– a retiming operation at regular intervals based on the observation of checkpoints
or control points located near the mobile robot.

Dead reckoning uses sensors such as a gyrometer, an accelerometer, a steering
wheel angle measurements, a pedometer and an odometer (based on an angular encod-
er connected to a wheel). The exclusive use of dead reckoning works through the
integration of data using a dynamic model and cannot prevent the estimated trajec-
tory from straying from the actual trajectory. It is therefore necessary to observe the
real world at regular intervals, using sensors such as cameras, distance measurements,
acoustic or optical barriers, GPS (Global Positioning System) in order to register the
estimated trajectory with the real world. The most commonly used fusion mechanism
consists of combining various elements of information through an extended Kalman
filter that works in three phases: the first phase is a short-term prediction based on
dead reckoning navigation by proprioceptive data integration1; when exteroceptive2

data is accessible, the second phase consists of providing an estimate of its own loca-
tion based on this data; the final phase of this iterative process is a fusion categorized
as a revision or an update, which is conducted using a weighted interpolation of the
distributions between the position predicted from the proprioceptive data and the posi-
tion estimated from the exteroceptive data (see Figure 2.1, as well as section 4.2.2).

The use of an adequate Kalman filter [CHU 91] provides an optimal estimate of
the internal state involving the moving object’s navigation, in the context of stochastic
dynamic systems theory [GEL 84, GOP 93]. The predicted and estimated positions
are provided by one, two or three-dimensional probability density distributions. The
greatest difficulty lies not in predicting the moving object’s future position, which
can be modeled very reliably, but in the mechanism for estimating the position that
depends on the environment and the final accuracy desired. The environment can be
completely structured (in other words filled with markers leading to a precise recon-
struction of the position), partly structured (there are a certain number of markers that
can be used for regular retiming, the difficulty being to find them and use them to infer

1. Proprioceptive: able to measure an attribute involving its own state.
2. Exteroceptive: able to measure an attribute involving an external object that is present.
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Figure 2.1. Navigation and localization

the vehicle’s position) or non-structured. The final accuracy depends on the number
of markers and on their respective configurations [BON 96, ROM 98].

The dual problem is the tracking of maneuvering moving objects that are co-
operative or non-co-operative (Figure 2.2). In a tracking system [APP 98, BAR 88,
BAR 93], the proprioceptive data from different moving objects maneuvering inside
the scene is not available. The dead reckoning navigational sub-system is then replaced
by a predictor, based on an evolutionary model that makes it possible to estimate
the position of the moving object between two consecutive observations. The mov-
ing objects in question possess maneuvering capabilities and the difficulty lies in the
choice of the adequate evolutionary model at a given time. The different sensors can
also be located in remote sites, causing the data to be out of synchronization. We then
have to define a mechanism that allows for the data to be synchronized within a grain
of time that also has to be defined.

The process then works as follows: the data is acquired at each site, a local pre-
processing phase sorts and validates the data before it is sent to the decision center,
where each valid element of data is translated in a centralized co-ordinate system and
associated with a track. At this stage of the process, we are dealing with an iterative
mechanism identical to the one we saw in navigation, a prediction phase based on a
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Figure 2.2. Multi-sensor tracking of a maneuvering target

model, followed by an update phase, based on observed data, that can be implemented
using an extended Kalman filter.

If the different models used are close to reality and if the partial decisions (data
validation choosing an evolutionary model, associating validated data with a track)
were right, then the problem consists of combining several distributions involving a
quantity in order to infer a plausible value for the resulting distribution which takes
into account all of the imprecisions. If one of the partial decisions is incorrect, a con-
junctive or weighted mean combination no longer has any physical meaning and more
elaborate mechanisms are required to account for the problem’s uncertainties. This
last comment shows the importance of windowing mechanisms, which are designed
to prohibit combination when the distributions are incompatible. This is relevant to
fusion techniques only insofar as we are discussing the robustness of a mechanism
with respect to modeling defects, the use of not perfectly reliable data, to taking into
account uncertainties which are native or induced by a series of partial decisions.

The distribution combination mechanism may or may not authorize the combina-
tion of distributions, depending on the scenario.

A first windowing mechanism authorizes the combination:

– when one of the distributions is much more precise than the other, the combina-
tion must then behave as a conjunctive mechanism, such that the resulting distribution
generally behaves like the most precise of the distributions;
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– when the accuracies of the two distributions are close, a dissymmetric fusion
of the type revision or update has to be implemented. This mechanism then makes it
possible to manage some sort of a compromise between the confidence we have in
the prediction mechanism and the confidence we have in the mechanism which, based
on an observation, allows us to go from an estimate to the position. This continuous
adjustment is fundamental if we hope to obtain an almost optimal and hence robust
solution with respect to imprecisions on measurements and models.

When the first windowing mechanism does not authorize the combination, there
is no actual combination. Data that is not assigned to any track is not discarded. It
takes part in a mechanism for creating a new track. We can therefore consider that we
are performing a non-symmetric disjunctive combination at the level of track manage-
ment.

These comments on the estimation and calculation of a law a posteriori show that
fusion in signal processing, even if it is still oriented towards statistical and proba-
bilistic techniques, relies on the same basic physical or logical principles as in other
fields.

2.2.2. Discriminating between several hypotheses and identifying

In a large number of identification problems, we have, on the one hand, infor-
mation characterizing each hypothesis, class or type to recognize and, on the other
hand, information extracted from observations. These two elements of information
are provided for a set of attributes that can be seen as different explanations of the real
situation, and which have to be exploited together. The information characterizing the
classes will be referred to as a priori information, since it specifies what we can expect
for the values of the attributes, conditionally to each hypothesis, before obtaining an
observation. As for the observations (perceptive information), they are measurements
of these attributes. This approach is maintained at every information level. Thus, an
observation can be obtained from a possibly complex, previous process. At any rate,
the imperfection of each observation has to be defined, whether it is a crude, low-level
measurement or a high level perspective of the situation.

We will use indifferently the words sensor, observer or source of information when
referring to any instrument capable of providing information on an object or an attrib-
ute assumed to be part of a continuous or discrete set. The discrete set of hypotheses
within which we will have to discriminate is referred to as the frame of discernment.

In the example of Figure 2.3, we have, as our input, three a priori distributions
involving the speed of a moving object conditionally to the type to which the moving
object belongs (above). The graph in the top-right corner shows the measurement of
the moving object’s speed provided by a Doppler radar and the associated imprecision.



32 Information Fusion

We can either plot the four distributions on the same graph, or produce the convolu-
tion of the distribution involving the measurement with each a priori distribution and
plot only the first order moment concerning the measurement on the resulting graph
(below). The intersection provides three likelihood values conditionally to each type
of moving object. The concept of likelihood, in this context, refers to what we believe
is true.
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Figure 2.3. Discriminating among several hypotheses

Let us assume that, at this stage, we have to pick one hypothesis out of three. Either
we have information at our disposal regarding the probability of a moving object in
this area and we are capable of producing a posteriori probabilities based on these a
priori probabilities and on the likelihoods after a phase of multiplicative combination,
followed by a renormalization (see Chapter 6). It is then natural to pick the type that
has the highest a posteriori probability. If this information is not available, we pick the
type with the highest likelihood. In both mechanisms, we have just added elements of
uncertainty that can be expressed using a confusion matrix in a probabilistic approach,
in other words there is a probability of picking type 1 when the type was actually H1,
H2, H3 or was just a false alarm. It is then possible to use the concept of Bayesian risk
to make a decision that minimizes a cost function we have to define.

Today, in the context of a multi-sensor system, we have to minimize the probability
of making a false decision while maintaining the highest possible level of operational
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efficiency for the system. Each sensor can work according to different modes compet-
ing with each other and, for each mode, a sensor can provide different attributes. For
each attribute, the system contains a set of a priori distributions conditionally to a set
of hypotheses in competition with each other.

Once the measurement involving an attribute has been validated, we calculate the
likelihood of each hypothesis for which an associated conditional distribution is avail-
able. For all of the measured attributes, we can define an encompassing set of com-
peting hypotheses, which we will refer to as the frame of discernment. For each of
the hypotheses in question, either we have its likelihood conditionally to the measure-
ment of an attribute, or we implant new mechanisms to extend the likelihoods to all
of the hypotheses in the frame of discernment. At this stage, the likelihoods are fused
to provide an overall likelihood of each hypothesis in the frame, conditionally to the
set of attribute measurements that have been conducted. It is then possible to implant
a decision mechanism.

We now consider problems involving reliability and/or data association. These are
questions related to concepts of uncertainty. The “right” method of combining ele-
ments of information necessarily takes into account the imprecisions and uncertain-
ties related to each source. It is worth noting that the choice of mechanisms strongly
depends on how knowledge is modeled, since either information is accurately mod-
eled, and the combinations are rather simple, or the modeling is not accurate, in which
case the focus should be placed on the mechanisms for taking into account reliability
problems.

Different techniques have been developed these past years, particularly in the field
of tracking [BAR 88, BLO 88a, BLO 88b, BLO 89, REI 79, SIN 74].

Let us assume that we are attempting to track a moving object (a target) using a
sensor. Let us also assume that the sensor is noisy, causing a certain number of false
alarms. The risk here is to take a false alarm into account in order to retime the target’s
state vector. Once the track has been initialized, a prediction window (ellipsoidal with
three sigmas, for example) is available at the time t. The measurements appearing in
this window are validated. The other measurements are directly considered as false
alarms and are discarded.

There are two types of methods we can use:

– MHT (Multiple Hypothesis Tracking) [REI 79] in which each validated mea-
surement is associated with a track. By studying the likelihood over time of each of
these tracks, it is possible to weed out some of them. The hypotheses corresponding
to different tracks are managed using a tree diagram. Combinatorial aspects limit the
size of the solvable problems. This method is therefore adapted to cases with a limited
number of false alarms;
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– PDAF (Probabilistic Data Association Filter) [BAR 74, BAR 80] in which all
of the validated measurements are assigned to the track. In this case, we conduct a
weighted mean combination, in agreement with the theorem of total probabilities.
In this case, we hope for a uniform spatial probabilistic distribution of false alarms.
These can thus have a statistically isotropic influence and therefore be filtered over the
course of the iterations in time. This method is therefore adapted to cases with higher
numbers of false alarms.

What should be understood at this level is that it is necessary to jointly take into
account both the estimation and mechanisms for managing uncertainties, by explicitly
displaying a measurement of what is believed to be true for each uncertainty that has
to be managed (for example, the association between a validated measurement and a
track). Several measurements have been considered, the most common of which are:

– Fisher information [FIS 12], which relies on the inverse of a covariance matrix
[MAN 92];

– Shannon information, obtained from the likelihood algorithm of a probability
distribution [MCI 96];

– Kullback-Leibler information [KUL 59] or cross entropy, which measures the
distance between two probability distributions. A discrimination gain [KAS 96,
KAS 97] can be calculated between the density predicted when no observation is made
on the target and the density predicted if one particular sensor is handling it.

2.2.3. Controlling and supervising a data fusion chain

Another generic method for designing operational systems is to supervise the data
processing chain. This chain is assumed to be adaptive, for example, the behavior of
moving targets are governed by three competing dynamic models and a mechanism
needs to be implemented to deal with the competition between these three models.
Two types of methods are found in other works: by alternately switching from one
model to another according to criteria that need to be defined [ACK 70] or by making
the different models interact in a probabilistic framework [BLO 89]. More generally,
the objective is to control the sequence of the various processes by assuming that
other processes are conducted in parallel, then by deciding afterwards which process
is optimal, or by defining a processing chain comprised of several steps, each step
itself controlled by a set of competing models. We then have to supervise which model
controls the current processing step.

This problem of dynamically affecting resources is not, strictly speaking, spe-
cific to the topic of data fusion. It exists wherever a sufficiently large number of
parameters have to be supervised in order for a system to function in an optimal or
sub-optimal way. This is the case in particular in the field of multi-agent systems
[FER 88, GAS 92]. However, there are many specificities to a multi-sensor system.
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They involve the basic mechanisms of information combination, or the choice of data
that has to be retrieved (complementarity or redundancy). The allocation of multi-
sensor resources is the optimization of the overall performances of a set of sensors or
measuring instruments, according to operational criteria or depending on the mission
of this set. Another, more concise and pragmatic definition is given by [MCI 96]: “a
multi-sensor system generally has to answer four questions: which sensor should I
use? for what purpose (mode)? where should I direct it? when should I begin?”

This set of sensors is also characterized by six major functions, in the case of
military applications, by using the information on targets as input and the control of
the sensors as output [BUE 90]:

– events are predicted in order to evaluate the periods of time during which events
occur that require sensors to observe them;

– predicting the sensor’s state makes it possible to model the performances of the
sensor in order to determine its abilities to accomplish the tasks it was assigned to do;

– arranging targets by order of priority is done for all of the targets, according to
information needs and urgency, depending on criteria based on threat (in defense),
opportunity (in attack), or surveillance;

– the assignment of sensors to targets is determined based on the previous two
functions (prediction on the sensor and target ranking), in order to quantify the use-
fulness [POP 89], the adequacy of each possible assignment (an optimal assignment
is obtained by maximizing this usefulness);

– assignment control makes it possible to organize and program the sensor’s vari-
ous tasks over time;

– the interface with the sensors makes it possible to dispatch the orders to the
various sensors.

These functions give an overview of how a sensor system works, particularly in
terms of the sequence in time.

A systems architecture mostly involves how the sensors are organized with respect
to each other, particularly in terms of communications, but also depending on how the
information is processed. The choice of an architecture immediately leads to choosing
the system’s control, as well as its co-ordination. The architectures of multi-sensor
systems used to be strongly centralized. These architectures had the advantage of pro-
viding information on different levels of abstraction, but the system is then vulnerable
to possible breakdowns of the central processor, which has to process an increasingly
large and heterogenous volume of data. Needs have evolved towards a more inde-
pendent system. System control has therefore become more delocalized: it is either
semi-distributed, allowing for partial fusions of information at different intermediate
levels, with a final decision based on the processed information or distributed, making
it possible to make many decisions locally and independently. If the system has to
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be efficient, the implementation of control rules is difficult and many problems occur
because of local decision conflicts between agents. A comparative study in tracking
mode of these three types of architectures can be found in [BLA 86].

Modeling the sensor resource [BUE 90] can help realize which characteristics play
a role:

– the passive mode (the sensor merely receives information), the active mode
(transmitting and receiving) or the protected mode (the transmitted and received infor-
mation is in the form of a pulse);

– the direction; the frequency (changing the frequencies used by active sensors is
a significant need in a military context);

– the type of wave, pulse or continuous; the power (greater range and quality of
measurement, particularly in noisy or jammed environments);

– the size of the beam, thin or wide;

– the illumination time (identification requires a longer time than simple detec-
tion).

On some sensors, there are four types of control available [WAL 90]:

– global (this control mode is used to establish the default values of the sensor’s
parameters);

– sectoral (the surveillance volume is partitioned into different sectors, for which
the sensor’s parameters can be adapted);

– targeted (the parameters are adapted based on the various targets that are
present);

– the last mode involves the search for targets (the precise volume or other
attributes are specified).

Data retrieval plays a particular role. The first mode is the push mode, which means
that the data processing system expects the data and processes them as they come
along. The sensors continuously send observation sequences and it is up to the system
to manage the waiting queue (the time sequence). The drawback of such a system is
the lack of reactivity because the elements of information arrive in a pre-defined order
(generally based on the sensors’ acquisition times). The other data retrieval mode is
the pull mode. In this case, the system sends sensors requests, in other words informa-
tion queries, specifying among other things which target the sensor should be aimed
at and the observation time. This way, the system controls the information it needs and
the information retrieval sequence can be different for each target. Over the course of
a tracking function, additional information requests are sent when the target is maneu-
vering. In a classification process, if the target’s speed is very high, and if the system is
hesitating between a missile and a plane, the following request may involve wingspan
and the decision will then be immediate. In the pull mode, an operator can act on the
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sequence to modify a sensor’s state. In reference to the seconds-long human reaction
time, this is called a long loop, as opposed to an automated system response.

However, control distribution generates very stringent constraints on the manage-
ment of telecommunications. The communications network can be either partly or
fully connected. In [GRI 92], a study on propagation and fusion of estimates in the
nodes of a multi-sensor network was conducted under three constraints: there had to
be no unique fusion center, communications were imposed from one node to another
and nodes had no overall information regarding the network, they only knew the nodes
to which they were connected. The goal was to find the optimal estimate to propagate,
using all the available and useful information, while minimizing redundancy.

Another approach to communications management in multi-sensor systems in-
volves setting up intelligent resource allocation based on information theory. In a
decentralized system, the objective is to quickly find a receiver for whom the informa-
tion it receives will maximize the change in its entropy. An intelligent mechanism
is compared with the standard round-robin mechanism in a multi-sensor tracking
system [DEA 97b] by relying on the information filter, and on a multi-sensor iden-
tification system [DEA 97a, GRE 96] by using a decentralized Bayesian algorithm.
Results show that the average and maximum waiting periods for communications can
be reduced. In identification, the number of targets processed is greater because of
this algorithm. In tracking, the system made it possible to reduce communications,
while still obtaining more specifics about the target, and more significantly for targets
following a uniform straight line trajectory or performing major maneuvers.

2.3. Problems and specificities of fusion in signal processing

By stating the three main types of objectives, we have stumbled upon a certain
number of sub-problems specific to fusion in signal processing. We will now discuss
a few of these basic subjects to show how they can be handled and solved.

2.3.1. Dynamic control

The complexity of an actual application is reflected not only in the volume of data
involved, but also and most importantly in the variety of mechanisms that need to
be taken into account in order to obtain a feasible solution. Supervising the whole
system consists of providing a plan regarding the fusion strategy that needs to be
implemented. There are currently two levels that coexist.

The first level is to provide contextual combination mechanisms in order to be able
to take into account context changes defined on the overall supervisor’s level. The
objective is to bring back down to the combination level itself dissymmetric weight-
ings involving different elements of information being combined. Because the system
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is, by nature, sub-optimal, we have to reach a compromise between the different quan-
tities involved. The basic case is when a prediction and an observation are available.
This is the case shown in Figure 2.1. The use of an extended Kalman filter amounts to
managing the respective weights attributed to the present observation and the predic-
tion function of the past and the prediction model. This filter is usually implemented
recursively. The time intervals between observations are not regular and this compro-
mise naturally has to be adapted to each new observation. The weight has to express,
of course, the confidence placed in each element of information.

Obviously, the problem gets more complicated when the number of sources of
information is greater than two. The simplest way to handle the process is to couple
several sensors mechanically on a same platform. Many such systems exist, for exam-
ple, two coupled cameras, a camera and a range-finder, a camera and a light projection
system. The same applies to signal processing. The system shown in Figure 2.4 is a
mechanical coupling between a radar and an FLIR which produces infrared labels.
When a plane is locked onto by a radar, it will perform maneuvers to evade tracking.
The usual way to do this is to use the artifacts of the single radar tracking algorithm.
When the trajectory is a straight line, the algorithm makes a compromise between the
weights of the observations and tracks, while maintaining a direction change detector
active. This detector reacts once it has 10 samples on the target. When the pilot begins
his maneuver, the plane is positioned so as to reflect as little energy as possible and
triggers a counter-measure system. The role of the infrared labels, in normal mode, is
to confirm the target’s direction given the shape of the exhaust stream and, in direction
changing mode, the variation in shape of the exhaust stream can be used to conduct an
early detection and to provide information on changes in direction. In a way, the data
originating from one of the sensors supervises the overall process.
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Figure 2.4. Single platform coupling of two sensors
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More generally, in the context of the coexistence of several sensors, a confidence
level is assigned to each sensor conditionally to each hypothesis of the frame of
discernment [APP 91]. This level is constantly adapted based on contextual knowl-
edge and must reflect the sensor’s reliability given the context (temperature, degree of
humidity, partial masking, etc.). This level can be associated with the validity of simul-
taneously using a set of sensors, the reliability of a sensor depending on the context
and not on hypotheses [NIM 98].

The second level consists of extracting the various degrees or probabilities of con-
fidence or reliability, based either on a priori information or on attribute measurements
that have already been conducted. The method then relies on the operator’s expertise,
on knowledge acquired about the scene and on the occurrence of outside events. In the
end, we need a final action that can be expressed in operational terms, such as resource
management with respect to mission objectives or priority orders.

Figure 2.5 shows the three stage supervision of a change in orientation of sensors,
in the case of an absence of data caused by masked terrain.
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Figure 2.5. Controlling the orientation of sensors in the case of masked terrain

As a result, this high-level control is strongly related to the problem of synchro-
nizing and integrating data. A geographically distributed system involves a communi-
cations network comprised of slow and fast channels. The transmission time can vary,
meaning that the observation may reach the fusion center in non-chronological order.
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Thus, we have the following questions:

– how long do we have to wait for the missing data?

– when they reach the processing center, should they be integrated to the fusion
process?

– how does this data contribute to the quality tracking operation?

– how does the quantity of information change as it grows older?

As with missing data of contextual origin, the method can rely on a decision tree,
whose final action is to choose between gaining information by using the delayed data,
or gaining time by discarding this same data. There are necessarily several criteria
to this choice because it involves the content of the data delayed by evaluating the
expected information gain for each track, but the complexity of the resulting situation
without this data plays a role and requires evaluating the risk of confusing tracks if
these tracks are close, as well as evaluating the risk of losing the track.

When a multi-sensor system is operating, for scene surveillance, often the quality
of the result depends mostly on time. In a multi-target environment, recognizing and
identifying the objects in the scene has to be done in as short a time as possible, with-
out waiting for all of the data that can be provided by the sensors. Because accessing
the data takes time, one of the solutions is to operate in the pull mode, or data request
mode, and to choose the smallest (the most discriminating) set of attributes for differ-
entiating objects from one another.

For airspace surveillance, there are many types of models and data available for
classification and identification. Thus, physical attributes that do not change, such as
the wingspan or the length of a plane, can sometimes help in directly recognizing
the target, or at least in obtaining a measurement and therefore formulate hypotheses
on the target’s class, which will later be confirmed or proven wrong based on other
attribute measurements. Furthermore, many types of sensors can provide a wide vari-
ety of information, depending on what mode is selected and thus be used to measure
different attributes. The variety of a priori information that can be obtained about a tar-
get when trying to classify it can be used to think in advance. This way, it is possible to
recognize an object faster by taking into consideration the discriminatory capabilities
of the different attributes conditionally to each class.

If, for each attribute, we have at our disposal the membership function for each
class, the choice of the quickest attribute for characterizing an object is the one that
leads to the result with as little ambiguity as possible. We then have to define the
membership functions that represent the different classes. The degree of separation
between two membership functions [CON 01, CON 02] can then be used to imple-
ment a mechanism for making it easier to choose the first attributes to search for (the
selection of the sensor and of its mode), corresponding to each attribute. The a pri-
ori information is obtained either from learning or by constructing a database and is
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stored in the form of membership functions. At each iteration, the result is a list of
attributes, arranged in a particular order, and the supervisor in charge of allocating the
system’s entire resources then provides a measurement corresponding to one of the
attributes. The performance evaluation requires a simulation with the introduction of
noise and a statistical validation over a large number of trials, whose quality criterion
is the number of requests necessary to obtain an object’s class. The order used for
arranging these requests can be pre-defined, random or based on a designed mecha-
nism. Finally, the number of requests needed to obtain the right classification of the
object can bring improvements up to, for example, three out of eight total requests,
without affecting non-recognition and poor recognition rates. This overall orientation
of suggesting modular algorithmic subdivisions, whose output is no longer a single
decision but instead an ordered list (in this case the requests), is increasingly sought
after. This is because it naturally authorizes the resource allocation stage to operate in
a more serene way, thus allowing it to fully play its part, with a significant decrease in
conflicts over resources.

In the end, many research fields involve the problem of organizing a processing
chain generally consisting of modules with sequential subdivisions and other compet-
ing subdivisions. What is specific to the field of fusion is the fact that it is necessary to
evaluate in different places the amount of redundant or complementary information in
a sub-module’s input in order to know how this particular data can be integrated into
the process. This systems architecture, where the local process control is performed
from an evaluation of the information content in the inputs, is no longer sufficient
today. It remains fundamental for dynamic process control, but it is accompanied by
process supervision performed by each sub-system.

It is considered today that, in the same way as sensors have their own operating
modes, algorithmic subdivisions also have different processing modes and that it is
possible either to switch locally, or under the control of a supervisor, from one mode
to another, or to locally make some of the processes compete with each other, then to
aggregate, combine or fuse all of the outputs in order to provide either an optimal out-
put or a summed-up output of the information acquired. We are no longer discussing
only fusion, but the more general field of artificial intelligence. In order to achieve
an operational status, all of the various subdivisions have to interact with each other
according to one or several plans, such as those suggested in [GAR 97] (Figure 2.6).

The most common simple plan works by using a supervision mechanism based on
competing processing modes, in a fusion architecture comprised of low-level signal
processing phases and of two types of streams: a continuous stream of data and a
stream for controlling processing modes on demand [CHE 97]. An accurate way to
describe reality is to take into account, on the processing mode level, the concept of
object behaviors by using different models expressing behavior variations in these
objects [REY 96].
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Figure 2.6. Taxonomy of the different interaction mechanisms

In any case, it is necessary to be able to refer to “degraded” modes, in the sense that
when there is a strong uncertainty in the choice of the current behavior and supervision
operates by switching modes, this uncertainty can lead to an operational malfunction.
In order to remain robust towards this type of uncertainty, the use of degraded modes
that include the behaviors of more accurate and “refined” modes makes it possible
to manage the amount of uncertainty that exists at a given time regarding behavioral
knowledge.

2.3.2. Quality of the information

In the field of military intelligence, the STANAG 2022 gives us a precise definition
of the variable that allows us to qualify information. The first parameter is related to
the quality of the source. The available information is essentially symbolic since it
is obtained either directly from human sources, or from an analysis of sensor signals
performed by a human operator. As a result, the quality of a source is only relative
and somewhat subjective. This quality can be expressed on an alphabetical scale from
A when the source is completely reliable, to D when a source is not very reliable or
not at all; the letter E indicates that the reliability cannot be estimated. In a context
of essentially numerical information, this same quality can be assessed but this time
using a numerical coefficient that can be in the form of a probability, a possibility
or a Dempster-Shafer mass. This coefficient will be calculated based on the context,
which can be provided by weather conditions, the possibility of jamming or decoys,
or also by the sensor’s operating conditions. This coefficient will be included naturally
in the fusion algorithms, in order to favor a source over another if the former has more
favorable operating conditions [NIM 02].

A second parameter that can be used to assess the quality of information is given
by the credibility of that information. In the field of intelligence, this credibility is
provided by a numerical scale from 1, for information confirmed by other sources, to



Fusion in Signal Processing 43

5 for unlikely information; the number 6 denotes information for which the accuracy
cannot be estimated. Likewise, in a numerical context, this quality can be assessed by
taking into account the sensor’s definition, the signal-to-noise ratio and it will be a
representation of the likelihood of the state we are trying to estimate.

2.3.3. Representativeness and accuracy of learning and a priori information

For each quantity we wish to fuse, we need a priori information characterizing
each type of object as well as one or several elements of perceptive information. This
pair of elements cannot be represented using the same formalism, probabilistic, pos-
sibilistic, belief function, etc. Assessing the compatibility of the observations and the
hypotheses of the frame of discernment has to be done with heterogenous elements of
information, which requires the implementation of hybrid fusion mechanisms. Even
the a priori information involving the attributes does not have to be homogenous. This
point has been discussed by many authors. Expressing how a possibilistic representa-
tion can still hold some meaning when suggesting to switch over to a representation
in probabilistic context is at the core of the theory explaining the meaning of each
representation, and was in fact its foundation [BLO 96]. A first idea is to switch to a
homogenous context, which reflects to a certain extent the accuracy with respect to
the real world and leads either to a loss of information, or to including information
without justification. In the case of non-homogenous combination between probabil-
ity and possibility distributions, it can be useful to rely on the strengths of these two
representations: the probabilistic representation holds a strong meaning for the part
of the medium where the value is high; the possibilistic representation holds a strong
meaning for the part where it is equal to zero. Hence, it is possible to suggest a dou-
ble representation system where each of the two brings its strength for the part of the
medium where it is strong [NIF 00].

Finally, we should point out the incompleteness of knowledge obtained through
learning.
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Chapter 3

Fusion in Image Processing

In the same way as the previous chapter described the specificities of fusion tech-
niques applied to signal processing, this chapter will focus on the specificities of fusion
in image processing. We will go back to the general definitions provided in Chapter 1
and discuss them in this particular context. We wish to emphasize the specific nature
of images and their representation in fusion problems, and insist on what makes fusion
in image processing different from most of the other application fields in fusion.

3.1. Objectives of fusion in image processing

Images appeared of course very early on as important sources of information for
existing information fusion systems and data fusion systems have used images. Let us
consider, for example, a comprehensive tracking application for ecological situations.
It requires remote sensing to provide weather information. The data provided by the
image can then be integrated in a physical model by estimating, for each pixel, the
cloud cover. We can include in a thermodynamics balance equation the level of water
vapor estimated this way for each point inside the image.

However, this is not the type of application that has led to the original field of
image fusion. We should look instead at the practice of image interpretation experts,
where we will find the models that image processors have tried to copy, from widely
different areas of society. Here are two examples, but we could easily find many other
and more diverse cases.
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A radiologist in a hospital environment makes his decisions based on many pho-
tographs that often give different points of view of a same anatomical structure. These
photographs can be spread out over a view box and the doctor makes his opinion
based on closely and alternately examining several points of view. Based on a hypoth-
esis inferred from one of the photographs, he confirms his interpretations using the
others, clarifies it by cross-checking and including additional points of view, or on
the contrary rules it out based on contradictory information provided by one of these
points of view. This situation is typical of medical imaging, which is a field where
the acquisition techniques are growing more diverse: X-rays, magnetic resonance,
nuclear imaging and ultrasound imaging, each one leading to a variety of possible
modes depending on the acquisition protocols. It also finds support in the efforts made
by all hospital structures to group all of the image sources together in the same ward
or to have all of the images converge on a single console where the diagnosis will take
place. These efforts have progressively led to the introduction of integrated archiving
and consultation systems in hospitals (PACS1, for example).

For our second example, we choose a remote sensing expert whose task is to inter-
pret a complex scene. He has a large number of images at his disposal, provided by
various sensors, for example, images in the visible spectrum in different ranges of
wavelengths, or infrared images, or also radar images. Each source gives him infor-
mation on a particular aspect of the scene, thus allowing him to come up with a sce-
nario. Again, the expert works by confronting different representations, combining
them either to support his idea or to rule it out. His ability is the result of a consid-
erable amount of training and is increasingly complex as the image sources diversify
and grow in number. However, both satellite applications, for which many sensors
complete each other’s information, and airborne applications, for which very different
sources are used (maps, cadasters, land occupation maps, geological or agricultural
surveys, elevation models, etc.), definitely tend to progress towards a greater com-
plexity of image sources.

In this context, image fusion appears as a task in itself, distinct from data fusion
because it is not clear whether it is possible to design an operational framework in
which every element of information would have its place, as was the case with the
satellite image that allowed us to include the “cloud cover” measurement in an overall
plan involving, for example, the evapotranspiration of vegetation cover and weather
conditions. In a broader context of image processing, image fusion is used to help
decision making in a complex and usually poorly formalized situation, in which the
different images provide an element of “truth” that contributes, in collaboration and in
opposition with other sources, to an overall interpretation. Therefore, by developing
automatic image fusion methods, preparing and shortening the human elaboration and
expertise phase, and possibly in situations with a large number of image sources, our

1. Picture Archiving and Communication Systems.
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wish is to manage the multiplicity without sacrificing the potential contributions of a
complex combination, even beyond what human experts can achieve today.

Therefore, the task of fusion in image processing is closely related to decision
making. On the other hand, it has little to do with the phase it is often associated with
geometric registration of images, but this phase is today generally considered to be
unavoidable, and many image fusion studies simply perform it and leave to a human
operator the task of implementing the decision making.

The objective of registration is to exactly overlap the pixels corresponding to a
same object observed in different images. This phase can be made easier if there is
a recognized absolute frame of reference to describe the scene. This is the case, for
example, in mapping or geography applications, which rely on geocoded frames of ref-
erence, as well as for medical applications, for which conventional anatomical frames
of reference have been established. There are many kinds of registration techniques
(see, for example, [ZIT 03]), based on different principles: correlation, dynamic pro-
gramming, optical flow, elastic deformation, etc. (see [MAI 91] and [MAN 94] for
summaries of the methods used in aerial and satellite imagery and medical imaging,
respectively).

For which objectives are we likely to use image fusion? First of all, for improving
the three main tasks of shape recognition, detecting, recognizing and identifying.

Detection. This consists in this case of validating the presence or absence of the
object we are searching for: presence of a vehicle on a road, or of a stenosis in a blood
vessel. This is sometimes combined with the other objective of tracking objects detect-
ed in a sequence of pictures.

Recognition or classification. A detected object is associated with one of the cate-
gories of known or expected objects based on photometric, geometric or morphologi-
cal criteria. This operation can be conducted on objects on very different levels, from
the pixel to complex sets of image components.

Identification. A detected and recognized object is identified when it is associated
with a single prototype in its category. Thus, once a vehicle has been detected with
infrared imaging, recognition can determine its type: truck, motorcycle or car, and the
conclusion of the identification will be that the vehicle is the milkman’s truck, which
is the typical object monitored in this type of image . . .

However, applications other than shape recognition also require the implementa-
tion of fusion methods. These operations can take place during the recognition pro-
cess, but at a more preliminary stage, and do not necessary lead to a decision.

Segmentation. This constitutes a more focused objective than classification, since
it intends to extract determined objects as precisely as possible. It can consist simply
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of using the complementarity of the sources of information, in order to better identify
the limits of the image’s homogenous components. For example, by fusing the pre-
cise graph provided by aerial imaging with the network’s topological structure and its
approximate geometry provided by a map, we can come up with an excellent descrip-
tion of the road network.

Reconstruction. The multiplicity of points of view is an advantage for three-dimen-
sional reconstruction of observed scenes and, although this reconstruction may consist
of the typical methods (such as in stereovision, or in tomography), in other situations in
which acquisition is not controlled as well, it is only possible to reconstruct an approx-
imate three-dimensional information that empirically combines the various available
aspects.

Detection of change. This type of decision typically involves images taken at dif-
ferent dates, whether they are a map and an image, or multi-data images for tracking
crops or a pathology. It may also consist of sequences of multi-source images (at a
faster rate than multi-data images).

Updating knowledge of a phenomenon or a scene. Unlike in the previous case, the
decision consists here of using the information provided by different sources (possibly
multi-data) in order to modify or complete prior knowledge, for example, completing
a road network with new traffic circles to update a map.

Some of these different decision problems are similar to the combination of ex-
perts, since each image can be considered as an expert giving his opinion according
to his abilities. However, in general, the information in fusion problems of experts is
more scattered than with images. Learning is therefore more difficult because there is
less data, although the user often has less constraints over the algorithmic costs of the
methods. With images, the amount of data to be fused is both an advantage when it
comes to learning and a drawback for the computational load.

If we compare the problem of image fusion with that of data fusion based on
aggregation and multi-criteria optimization, we notice that one of the main differences
lies in the fact that for the latter, the goal is to find a solution that best satisfies a set
of generally stringent constraints, whereas in image processing, each source provides
(fairly explicitly) a level of satisfaction (for belonging to a category, for example,
which can then be considered a criterion) and the decision rather consists of choosing
the best one (the best category, for example).

3.2. Fusion situations

Depending on the applications, fusion problems can occur in different situations, in
which the types of information elements are not the same. The main fusion situations
in image processing are the following.



Fusion in Image Processing 51

Several images from the same sensor. This consists, for example, of several chan-
nels on the same satellite, or multi-echo images in MRI, or also of image sequences
for scenes in motion. The data in those cases is relatively homogenous because it cor-
responds to similar physical measurements.

Several images from different sensors. This is the most common case, in which
the different physical principles of each sensor allow the user to have complementary
perspectives of the scene. They can consist of ERS and SPOT images, MRI or ultra-
sound images, etc. The heterogenity is then much greater, since the various sensors do
not deal with the same aspects of the phenomenon. Each image gives a partial image
with no information on the characteristics they are not meant to observe (for example,
an anatomical MRI yields no functional information and the resolution of a PET scan
is too low for a precise view of the anatomy).

Several elements of information extracted from a same image. In this situation, dif-
ferent types of information are extracted from an image using several sensors, oper-
ators, classifiers, etc., that rely on different characteristics of the data and attempt to
extract different objects, often leading to very heterogenous elements of information
to fuse. The extracted information can involve the same object (fusion of contour
detectors, for example) or different objects and the goal is then to find an overall inter-
pretation of the scene and consistency between the objects. The elements of informa-
tion can be on different levels (very local, or more structural when studying spatial
relations between objects).

Images and another source of information. By another source of information, we
mean, for example, a model, which may be particular like a map, or generic like an
anatomical atlas, a knowledge base, rules, information provided by experts, etc. The
elements of information are again in very different forms, both in nature and in their
initial representation (images in the case of a map or a digital atlas, but also linguistic
descriptions, databases, etc.).

3.3. Data characteristics in image fusion

The specifics of fusion in image processing make it difficult to take advantage
of the progress made in other fields of information fusion. One of the reasons is the
complexity of the data and knowledge, which make it impossible to attempt to find a
comprehensive system to combine in a single relation all of the image’s components.

The complexity is partly due to the volume of information to process (for example,
a single MRI image of the brain takes up 8 to 16 megabytes). These large volumes of
data, on which statistical learning is often possible, are one of the reasons behind the
widespread use of probabilistic and statistical methods in image fusion.
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The complexity is also a result of the strong heterogenity of information to com-
bine, whether it is images taken from different sensors, images and models, or different
characteristics extracted from one or several images. This disparity is found both in
the nature of the information and in their representation. The data can be frequent,
for example, when dealing with a typical case for a given application, for which it
is possible, for example, to obtain statistical data. It can also be scarce (for exam-
ple, pathological images) and in this case it is much more difficult to model them in
a statistical way. The combination of these two types of data is common in image
processing. Furthermore, they can be factual (typically, a photography of a scene at
a given time) or generic (a model, rules, general knowledge about the application).
Combining elements of information with different specificities often leads to conflict
problems to solve. In image processing, this is not an easy task because factual infor-
mation is not always reliable and accurate enough for it to systematically be given the
priority over less specific and more generic information that may allow exceptions.

The combination of information is often guided or constrained by additional infor-
mation regarding the information to combine, the context and the field of application.
It is also a source of strong heterogenity. One example of additional information on
the information is the reliability of a source, either overall or conditional to the objects
observed. This is a very common case in the classification of multi-source images,
where an image may be reliable for one class but not for another. Here are a few
examples of additional information about the subject and the context:

– rivers are dark in SPOT’s XS3 channel (information relating the type of acquisi-
tion with an observation);

– the CSF is dark in MRI images in T1;

– roads cross each other to form intersections (integrity constraint).

This generic information is used to guide the fusion process. The last example is a
typical case of a rule with exceptions. The rule gives the most general case, but is not
true in the case of dead-ends, for example.

Active fusion is one of the means for reducing complexity by choosing at every
instant the best information to fuse. This choice can be performed based on a partial
result of fusion obtained at a previous stage, on information measurements, on outside
information likely to guide the fusion, on the identification of ambiguities that have to
be cleared up, etc.

In image processing, fused information is necessarily tainted with imperfections
(uncertainty, imprecision, incompleteness, ambiguity, conflict, etc., according to the
distinctions proposed in Chapter 1). These imperfections originate on different levels,
from the observed phenomena to the processes. For example, the smooth transition
from healthy tissue to pathological tissue is an imprecision caused by the physio-
logical phenomenon. Likewise, similar characteristics between two different kinds of
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tissue show up on images that measure this type of characteristic, resulting in doubts
as to whether a particular point belongs to one kind of tissue or the other, which is
an uncertainty due to both the phenomenon and the sensor. The delocalization of the
spatial information, which is due to the fact that all of the information contained in a
volume is grouped together in a same pixel, is caused by the sensor and its resolution,
and constitutes an imprecision regarding the location of the information in the image
(partial volume effect). Gibbs phenomena at the level of clear transitions, occurring in
MRIs or radar imagery, for example, are a source of imprecision caused by the dig-
ital reconstruction algorithms used on the images. The representation of (symbolic)
information in schematic form (with maps or atlases) is a source of both impreci-
sions and uncertainties. These are then magnified by the primitives extracted from the
images, used as the basis for the fusion. The most familiar example is contour detec-
tion using Gaussian filters on different scales: when increasing the Gaussian’s standard
deviation, we get a higher certainty regarding the presence of contours, but we lose
accuracy regarding their location. This antagonism between accuracy and certainty
has been well identified as a characteristic trait of the approach in shape recognition
[SIM 89]. This antagonism often gives rise to contradictions in image fusion, since
there are several measurements available for one event: if the data is accurate, then
it is probably uncertain, and might contradict itself; if the certainty is increased, this
often comes at the price of more imprecision, which renders the data less informa-
tive if this imprecision is too great. Fusion therefore requires a decision system for
explicitly managing uncertainty and imprecision in order to avoid inconsistencies.

Imprecision is not a feature specific to the data, but it can be related to the objec-
tives and goals, especially if they are expressed in a vague linguistic form.

Finally, the spatial nature of information, specific to image processing, deserves
particular attention. Its introduction in fusion methods, often inspired by other fields
lacking this spatial nature, is not immediate and yet necessary in order to ensure the
spatial consistency of the results. Imprecision is also present at this level. On a low
level, it consists of problems of registration or partial volume, for example. At a higher
level, it consists, for example, of relations between objects that can be intrinsically
vague or poorly defined (such as a relation like “to the left of”).

As with other fusion applications, redundancy and complementarity between the
images we wish to fuse are assets in reducing imperfections such as uncertainty and
imprecision, clearing up ambiguities, completing information, solving conflicts. Here
are a few examples of complementarity in image fusion:

– involving the information itself: hidden parts that can be different in depth
images or aerial images;

– involving the type of information: anatomical information or functional infor-
mation for the same subject in different imaging modes;
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– involving the quality of the information: two images of the same type, but dif-
ferent acquisition parameters can lead to elements of information of different qualities
for different structures.

Redundancy is caused more obviously by the fact that the images we wish to com-
bine describe the same scene. For certain fusion problems, such as group studies in
functional imaging, redundancy (which areas are activated by all of the subjects) and
complementarity (where are the differences) are subjects of study in themselves.

Conflict is a very delicate matter, as with other applications of information fusion,
as we discussed in Chapter 1. With images, examples of conflicts that are only appar-
ent and easily confused with complementarity occur when an image is not capable of
distinguishing two classes whereas another one can. Imprecision and uncertainty are
also sources of conflict. For example, a poorly localized contour can cause a conflict
between several contour detectors. Conflicts due to the different specificities of the
elements of information to combine are common in image and model fusion applica-
tions. For example, recognition of brain structures by fusion of MRI images and data
found in an anatomical atlas must deal with variability among individuals, which is
often not represented in the atlas, or also the possible presence of pathologies in the
patient’s images, which are not found in the generic model. Similar problems occur in
the fusion problems of aerial and satellite images with digital maps. In this case, the
conflict can be due to an imprecise drawing of the map, to modifications of the scene
not included on an older map, etc.

3.4. Constraints

There are several types of constraints specific to image processing that have to be
taken into account.

From the perspective of the fusion system’s architecture, decentralized systems
are rarely imposed. The most common case is that of off-line fusion, in which all the
elements of information are available simultaneously. Centralized systems can then be
used.

Real-time constraints are fairly rare, except with surveillance or multimedia appli-
cations, in which they are destined to play a growing role. We will come across such
constraints again, but in a much stronger form, in the parts of this book that describe
fusion in robotics, for example.

On the other hand, spatial consistency constraints are very stringent and constitute
an important subject of research in image fusion. An increasing amount of studies
focus on taking into account spatial information, either on a local level by way of the
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spatial context, or on a more structural level by way of spatial relations between the
structures or the objects of the scene.

The fact that the data is growing in volume can exert some constraints on the
calculation time. Thus, handling single pixels is limited to simple operations. More
complicated operations often require including information of a higher level and a
more structural representation of the information.

The complexity and amount of data dealt with often requires a choice of the infor-
mation and knowledge to fuse. This choice is of course guided mainly by relevance
criteria with regards to the decision objectives, but also by criteria involving the diffi-
culty in accessing and representing information and knowledge, as well as their qual-
ity.

Finally, evaluation is a crucial problem. In image fusion problems, there is usually
a “truth” or a “right” solution, but it is often difficult to find. Thus, evaluating and val-
idating a fusion method can only be done by using simulations, phantom acquisitions,
or by comparing with a manual decision. This situation is different from problems of
vote or social choice, where there is no truth and the goal is to find a “best” solution
expressed as a compromised, based on equity and ethics criteria.

3.5. Numerical and symbolic aspects in image fusion

If the numerical aspect of information handled in image processing is obvious, its
symbolic aspect deserves a little more attention.

The symbolic information can be bound to the data we wish to fuse (for example,
visual information in a map or an anatomical atlas, attributes calculated using the data
or objects previously extracted from the data) or to the knowledge of the field. Typi-
cally, the information on the field is often represented by rules, structural representa-
tions such as graphs, often used in shape recognition in images, constraints that need
to be taken into account in the algorithms. Structural information can, for example,
specify that a road network can be represented by a graph using roads and intersec-
tions, or it can express in the form of propositions general rules about the scene such
as “brain ventricles are always inside the white matter”, etc. Structural information
can also be represented in the form of icons and therefore in a way similar to images,
for example, in the case of digital maps or anatomical atlases. The geometric represen-
tations of the structures are then combined with the nature or the semantics of these
structures. However, the information in this field can also be purely numerical when it
consists, for example, of specifics about the acquisition, such as the wavelengths used
in satellite imagery, or acquisition times in medical imaging. Hybrid representations,
in which numbers are used as symbols with a quantification, are used in image fusion
to quantify the quality of a sensor, to evaluate symbolic data or the confidence in a
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measurement, the reliability of an image for certain classes or structures, etc. From
a processing perspective, this hybrid aspect arises, for example, when a proposition
establishing that the recognition of a structure only depends on the local context leads
to an adequate modeling in a Markovian framework. Symbolic representations are also
used as a priori knowledge, or contextual or generic knowledge to guide the numeri-
cal process. They also serve as a structural medium, for example, when fusing images
and maps [MOI 95].
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Chapter 4

Fusion in Robotics

4.1. The necessity for fusion in robotics

Robots are mechanical objects whose purpose it is to replace humans either in tasks
that may be simple, repetitive or strenuous (a welding robot for automobile manufac-
turing), or in environments that may be dangerous (demining robots, contaminated
environment robots) or inaccessible (Martian robots, underwater robots, micro-robots
for surgery) [ROB 02]. One of the characteristics of robots is that they maneuver in the
same type of environment as a human being, i.e. a three-dimensional space comprised
of elements in situations that can change over time.

A robot’s ability to move is related to its ability to perceive the environment, in
order to know it (exploration), to move inside it (localization) and to interact with it
(action) [ABI 92, KOS 93].

Perception is usually achieved by way of sensors embedded in the robot itself,
much like a human being is equipped with eyes, skin to allow them to sense objects,
with a balance mechanism (the inner ear) to allow them to maneuver inside their envi-
ronment [FRA 00]. As with human beings, there are many different kinds of sensors
and, usually, they make it possible to obtain complementary information on the robot’s
state, its situation with respect to the environment, and the state of that environment.

The perception system is closely related to the mission the robot must achieve and
to the prior knowledge it has of the environment.
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In the course of exploration, the robot’s mission is to maneuver inside the environ-
ment in order to construct a map of it. This map may have different semantic levels,
cells dividing the environment and which have to be recognized as occupied or empty,
or even be used for recognizing and locating objects with more complex structures,
such as a hole in a mechanical structure in which a pin has to be inserted, a vehicle on
a road, or a door in a room.

In the course of localization, the robot has at its disposal a map of the environment
that generally corresponds to reality in terms of accuracy (objects that are displaced
or not well positioned), but also of reliability: the existence of an object that does not
appear in the map (false positive) or the absence of an object listed on the map (false
negative). Sometimes, the environment is comprised of objects that can also move in
the environment. In that case, it is obviously impossible to have a map beforehand
representing the environment at every instant. However, if evolutionary models of
these objects are available, as well as their states at a given time, it is possible to
predict the map’s state in a “near” future, i.e. in a short time horizon compared to the
time constant of the observed systems.

In the course of the action, based on the knowledge of its current state and of the
objective it has to accomplish, the robot generates a trajectory that is feasible in its
environment, in other words a control to transmit to its actuators and the observations
needed to “properly” proceed with this trajectory [KOS 93].

4.2. Specific features of fusion in robotics

4.2.1. Constraints on the perception system

By definition, the robot must maneuver and operate inside its environment, which
leads to risks. Therefore, it is necessary for the information obtained with the percep-
tion system to be accurate and reliable enough to ensure the safety of the robot, of the
environment and of the other users in this environment, particularly human beings.

Sensors are embedded in the robot and their numbers are therefore limited, as well
as their performances in time and in space, in size and in energy resources. As a result,
the data obtained from the sensors is necessarily limited and the lack of information
is what is dealt with, rather than redundancy.

4.2.2. Proprioceptive and exteroceptive sensors

Just as a human being needs to know its own state before considering a movement
(sitting, standing, carrying weight, off balance), it is necessary to know a certain num-
ber of parameters regarding the robot’s static and dynamic state. In order to do this,
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the robot has to be equipped with proprioceptive sensors such as an inertial measure-
ment unit, accelerometers, odometers, etc. In many cases, there are also mechanical
models of the robot available, which make it possible to complete the knowledge of
the system’s state. For example, the direct model of a manipulator robot gives us the
position and orientation of its effector (tool) depending on the position value of each
of its axes. Likewise, knowledge of a robot’s kinematic model, based on the rotation
speed of the wheels, can be used to evaluate its speed.

Before and during a movement, the robot has to localize itself with respect to its
environment. In order to do this, it is necessary for it to perceive objects using sensors
that are adequate to this environment, which are referred to as exteroceptive sensors.
Under water, for example, the use of sonar will be preferred; for driving at night, an
infrared camera will be used. The books by [CHA 98, ZHA 97] give a rather thorough
presentation of everything pertaining to perception in intelligent vehicles.

4.2.3. Interaction with the operator and symbolic interpretation

A robot’s purpose is to maneuver in space instead of or alongside humans in order
to replace or to help them in achieving their mission. The extent of the interactions
with the human operator vary depending on the cases. For example, when driving an
automobile or teleoperating, the human operator stays in direct control of the robot
(or of the vehicle). The role of the embedded perception system is then to transmit
information to this operator in order to facilitate their control task. On the contrary,
when performing more automated tasks, for example, with welding robots or Martian
robots for which real-time control is impossible, the information perceived is essen-
tially used by the robot itself. The information transmitted to the human operator only
corresponds to status reports on the progress of the mission, on alarms or on the robot’s
situation.

Depending on their use (human or robot operator), the semantic nature of the infor-
mation will be quite different, i.e. more symbolic for the human operator (the object
is close, the speed is high), and more numerical if they are directly used by the robot
(distance from the tool point to the closest point on the table = 20 cm).

4.2.4. Time constraints

The robot maneuvers inside the environment at a certain speed. The environment
can also change with time (other robots or vehicles) at varying speeds. In order for the
robot to achieve its mission, the frequency of observation of its state and the state of
its environment needs to be high enough (Shannon’s theorem). For safety reasons, it
also has to be able to perceive “events” that require a rapid response or action.
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Therefore, the processing of the information obtained from the sensors has to
be quick and efficient in order to provide information in time, even if its quality is
reduced. Many research teams are working on architectures dedicated to this type of
application.

As for the methods that have been developed, several solutions can be suggested.

Data extrapolation. When the data is acquired, it is dated, either by a clock com-
mon to all of the sensors, or by different clocks that are synchronized periodically.
Based on a sequence of data and using an evolutionary model, also called a dynamic
model, it is often possible to extrapolate the observed variable, even if its quality
deteriorates over time, from lack of observations. This is typically what is done with
tracking filters, such as the Kalman filter [BAR 88, KOK 94, STE 98]. The prediction
can be used to obtain an element of information with an error greater than that of the
initial data, but which corresponds to the current date. This method is described at
length in section 2.2.1.

Focusing. Depending on the context, we might need to obtain certain elements of
information that seem more important than others. We would then have to focus the
system’s perception abilities on these elements, even if that means overlooking others
that may also be available. For example, when a moving robot is about to go through a
doorway, the areas where the two jambs are located are observed in priority, even if a
watch is maintained to detect possible obstacles in front of the vehicle. The technique
is used in particular in the case of information in the form of an image, where only
a part of the image is subjected to significant processing. Focusing requires being
able to identify what is relevant based on the estimate of the situation, or on action
objectives that have been defined. Depending on what is relevant, a perception strategy
will then have to be defined in terms of the sensors used, the choice of the data and
the algorithms that are to be used. This method has been widely used at the LASMEA
laboratory in Clermont-Ferrand for aiming, based on the results of image analysis,
a laser beam capable of measuring the distance between two automobiles [CHE 96,
TRA 93]. Finally, the technique is the same as that presented for the identification of
military targets described in section 2.2.3.

Sensor based control. This method consists of foregoing the interpretation of data,
which is often very costly in terms of time and computing power, by computing the
control directly from the information obtained from the sensors before they undergo
any extensive processing. Depending on the robot’s situation and the mission it has to
achieve, a control strategy is defined based on the sensor’s measurements. For exam-
ple, if a moving robot is located in a hallway and has to maneuver between the two
walls that confine it, we can impose the order that the distances between each of the
walls and the robot have to be identical. The robot’s movements are then directly cal-
culated based on the difference in the measurements by the sensors that provide these
two distances. This method can help substantially in speeding up the control loop, but
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it requires, however, an assessment of the situation at a higher semantic level at times
when the strategy is changed.

4.3. Characteristics of the data in robotics

4.3.1. Calibrating and changing the frame of reference

The data that is processed in the context of robotics is, for the most part, geomet-
ric in nature. It essentially involves distances as well as their successive derivatives
(speed, acceleration, radius of curvature, etc.). We will have to localize a frame of
reference associated with the robot with respect to the frame associated with its envi-
ronment (absolute localization), or with respect to the same frame related to the robot
but with the position it was in a few moments before (relative localization). We will
also have to localize the frames associated with fixed or moving obstacles with respect
to the robot’s frame.

One frame of reference at least is always assigned to the robot, only one if it is
not deformable, two or more if it is. For example, with a manipulator robot, we define
the basic frame, which does not move in the environment and the tool (or effector)
frame, which allows us to localize the operating part of the robot in the situation
where the mission could be performed. With regards to manipulator robots, we should
mention the book by Khalil [KHA 99] which covers the basics of modeling. The same
techniques can be applied to mobile robotics.

Sensors located on the robot or in the environment also have their own frame of
reference, based on which the measurement is defined. If we want the robot to be
able to use the measurement, it has to be referenced to the frame it is associated with,
which is usually different from that of the sensor’s. Using a calibration method that
is rarely trivial, the goal is to define the transformation relating the two frames, i.e.
robot and sensor. This transformation is not perfectly known, leading to measurement
errors. These errors, which are difficult to estimate, are usually neglected when the
data is used.

Figure 4.1 shows an example of a situation where a robot is located in an inside
environment. R(k) is the situation of the frame associated with the robot at the time
k. The robot is equipped with two sensors associated with the frames Rsensor1 and
Rsensor2 . We will assume that a map of the robot’s environment is available, which
is associated with the frame Rmap. This environment contains two walls, the charac-
teristics of which (length, orientation) can be known, as well as their localization on
the map using the frames they are associated with, i.e. Rwall1 and Rwall2 . The entire
system can be referenced with respect to a universe frame Ru. Let us assume that
we wish to localize the robot at the time k with respect to the universe frame. This
means we have to find the geometric transformation T

R(k)
Ru

relating these two frames.
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We know the map’s localization with respect to the universe frame T
Rmap

Ru
as well as

the localization of the walls with respect to the map T
Rwalli

Rmap
. The sensors give us the

localization of the walls with respect to the sensors T
Rwalli

Rsensorj
and the calibration pro-

vides us with the localization of the sensors with respect to the frame associated with

the robot T
Rsensorj

R(k) . We can then infer that:
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Figure 4.1. Localization of a moving robot in its environment which is described in a map

This simple example underlines the typical problems that have to be solved in
robotics:

– the determination of transformations T
Rsensorj

R(k) by calibration;

– the evaluation of the transformation T
Rwalli

Rsensorj
based on sensor information,

which requires signal and image processing;

– matching the “walls” that are seen with those that are known and on the map;

– the fusion of information from different sensors that see the various walls.

4.3.2. Types and levels of representation of the environment

In order to define a strategy for action or perception, it is often necessary to rely on
an interpretation of the situation based on symbolic data with a high semantic level.
For example, we can be faced with situations such that:

– the effector is close to the pin;
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– the robot is reaching the end of the hallway;

– the vehicle is being overtaken.

The situation is characterized by symbolic data evaluated from usually numeri-
cal data obtained from the sensors. This evaluation requires the use of models that
describe the symbols based on their numerical values:

– geometric description of the pin;

– meaning of “close”;

– geometric description of a hallway;

– meaning of “reaching the end of the hallway”;

– localization of a vehicle in the lanes;

– meaning of “being overtaken”.

The confidence that can be assigned to the various symbolic assertions depends on
the quality of the measurements (accuracy, reliability) and of the symbol description
models.

4.4. Data fusion mechanisms

Data fusion in robotics relies on the use of traditional tools (probabilities, crisp or
fuzzy sets, belief theory). Applications in robotics are different from other applica-
tions, especially when it comes to the structure of the fusion and more generally of the
perception.

First of all, we have to properly identify the objectives of the fusion in order for
them to be consistent with the mission the robot has to achieve. For example, when the
robot is located far away from the elements that comprise its environment, no effort
will be made to precisely localize them since they do not pose an immediate threat.
However, we need to be sure that the space chosen for movement is clear of obstacles.
The objectives of perception can change over time, requiring that the fusion system,
as well as the sensors and the processing algorithms, are able to adapt to the situation.

The aspect of time is fundamental in robotics. Many fusion algorithms use evolu-
tionary models such as differential equations, recursive equations, graphs and sequen-
tial logic rules. It is then possible to fuse the knowledge acquired previously and reg-
istered with the present moment with newly acquired information. Some methods also
use single or multiple target tracking algorithms [BAR 88, KOK 94, NIM 00].

Finally, the security aspect has to be taken into account because the information
obtained from the fusion is generally used for moving the robot. If it is erroneous or not
accurate enough, it can lead to the robot colliding with its environment. Therefore, it
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is essential to rate the data in terms of accuracy and certainty. If the quality of the data
is insufficient, the perception and control strategies of the robot have to be adapted.
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Chapter 5

Information and Knowledge Representation
in Fusion Problems

5.1. Introduction

In this chapter, we will briefly present the different modes for representing infor-
mation and knowledge used in fusion, as well as how they are integrated into systems.
Because numerical representations rely on the theories of probability, belief functions,
fuzzy sets and possibility, they will be discussed again in greater detail in Chapters
6, 7 and 8. Knowledge-based systems, which can be used to structure information,
knowledge and inference modes in order to combine them, will be presented only in
broad strokes. They will not be discussed in detail in this book, but an example of
a multi-agent system will be presented in Chapter 10. Symbolic approaches, as well
as reasoning modes in different logics, will only be mentioned. They go beyond the
scope of numerical fusion; however, their properties would deserve more attention in
information fusion in signal and image processing.

5.2. Processing information in fusion

As we said in Chapter 1, we consider the word information in the broadest sense.
Thus, the term information can be applied to any element that might be coded in
order to be stored, processed or broadcast [DUB 01]. In signal and image processing,
it often consists of information related to real worlds (observations, measurements,
generic knowledge regarding real phenomena, etc.), but it can also consist of virtual
worlds, in the expression of a user’s goals and preferences.
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This generic concept is usually divided into two categories, i.e. knowledge, in ref-
erence to classes of objects, and data, which corresponds to cases, facts, or particular
objects.

According to the distinction suggested in [DUB 01], information can be comprised
of data, facts, and then involves a particular, well-determined situation (there is a forest
in that place). It can relate to existence (or some other property) of an indeterminate
situation (there are some areas covered by forests). Comprised of statistical data, pro-
totypes or typical examples, it involves a set of particular situations. Finally, it consists
of classes of situations and take the form of constraints, generic rules, with or without
exceptions, and general knowledge.

The information handled in fusion is most often imperfect. These imperfections
are in fact one of the reasons for fusion. These imperfections manifest themselves
in multiple forms: ambiguity, bias, noise, incompleteness, imprecision, uncertainty,
inconsistency and conflict, etc. We also have to mention the varying and evolving
nature of information that relates to the dynamic world (see Chapters 4 and 11).

We have already mentioned in detail these imperfections in Chapter 1 and then
specified them in Chapters 2 for the information handled in signal processing, 3 in
images and 4 in robotics. To sum up, they are caused by:

– the observed phenomena;

– the limits of the sensors;

– the reconstruction and processing algorithms;

– noise;

– the lack of reliability (often a result of the previous limits);

– the representation mode;

– the knowledge and concepts involved.

What matters in fusion processes is to include these imperfections in the represen-
tations and in the reasoning modes.

The questions related to fusion are similar to those related to information process-
ing in general [DUB 01]. Thus, the objective is to:

– represent the information (in order to express it in a useful form);

– store, retrieve and make the information explicit;

– use the information to decide and act;

– communicate the information.

The difficulty in solving these problems is of course greater because of these
imperfections. There are three ways of reacting to this:
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1) a first attitude consists of eliminating imperfections as best as possible. This
involves, for example, improving sensors and increasing the number of acquisitions;

2) a second possible action is to tolerate the imprecision by producing robust algo-
rithms and programs, and by combining them with procedures for repairing failures;

3) the third possibility is to try to reason with the imperfection. In this case, it is
considered as a type of knowledge or information and taking it into account requires
modeling it, developing approximate modes of thought, and using meta-knowledge,
i.e. knowledge about these imperfections.

In this book, we will prefer the third approach, which explicitly involves tech-
niques of information fusion and decision making.

5.3. Numerical representations of imperfect knowledge

The major numerical theories that allow us to represent imperfect knowledge and
to use them as the basis for our approach are:

– probabilities (Chapter 6);

– belief functions (Chapter 7);

– fuzzy sets and possibilities (Chapter 8).

In probabilistic representations, language is comprised of probability distributions
in a frame of reference. They allow us to rigorously take into account random or
stochastic uncertainties. It is more difficult to take into account other forms of imper-
fections, both formally and semantically. Bayesian inference, often used in fusion in
the subjects we are concerned with, serves as the basis for abductive reasoning (the
different types of inferences are presented in section 5.6).

Belief function theory (or the Dempster-Shafer theory [SHA 76]) relies on a lan-
guage defined by functions (referred to, in this context, as mass, belief and plausibility
functions) over every subset of the frame of discernment. Using representations, we
can take into account at the same time imprecision and uncertainty (including its sub-
jective form), ignorance, incompleteness and have access to conflict. Inference based
on Dempster’s rule achieves conjunctive aggregation of the combined information.

In fuzzy set and possibility theories [DUB 80, DUB 88, ZAD 65, ZAD 78], lan-
guage is comprised of fuzzy subsets of the frame of reference or possibility distri-
butions over the frame of reference. It allows us to represent qualitative, imprecise,
vague information. Inference is done according to logical rules (or their equivalent in
numerical form), essentially by deductive reasoning that may be qualitative.

We will discuss these three theories again in detail in the following chapters, but
for the moment, this is what matters:
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– they do not model exactly the same concepts or the same aspects of the informa-
tion;

– they do not have the same semantics;

– they do not have the same power of representation;

– they do not have the same reasoning power.

In particular, the first two points make it illusory and misleading to want to com-
pare their performances on the same applications1.

These remarks are also a motivation for hybrid representation techniques, which
allow us to simultaneously represent elements of information with different types of
imperfections. It is also possible to define the probabilities of fuzzy events, of the
belief functions of fuzzy subsets, etc. However, these approaches are still rarely used
in information fusion.

5.4. Symbolic representation of imperfect knowledge

Artificial intelligence is traditionally defined (in Minsky’s and McCarthy’s works,
for example) from two points of view:

– from the cognitive point of view: this consists of constructing computable mod-
els of cognitive processes, in other words programs that can simulate human perfor-
mances;

– from the computer science and engineering point of view: this consists of assign-
ing to computers tasks that would be considered intelligent if performed by a human,
in other words extending the abilities of computers.

Artificial intelligence generated symbolic representations of knowledge. The field
of knowledge representation is characterized by:

– the definition of a representation as a set of syntactic and semantic rules to
describe an element of knowledge;

– logical representations (the expressivity depends on the logic used; see section
5.6);

– compact representations (only the relevant and characteristic properties are
stated explicitly);

– ease of use;

– what is important is actually explicit.

1. This partly explains the contradictory conclusions found on this subject in other works.
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Most of the data handled in fusion in the fields of signal and image process-
ing is analog or digital. Analog descriptions require a complete description of the
world. Switching over to logical representations, which are cheaper and more com-
pact, requires converting analog representations into symbolic representations.

Symbolic representations have requirements on several levels:

– the ontological level: all of the important concepts have to be taken into account;

– the epistemic level: we should not have to express what is not known;

– the computational level: the representation should allow for an efficient compu-
tation of the properties expressed.

The first two levels induce constraints on the language and the third on the infer-
ence mechanisms.

The knowledge representation (symbolic) community focuses on non-monotonic
reasoning, automatic reasoning, logic descriptions, subjective representations (prefer-
ences, wishes, etc.), ontologies, etc. [REI 91]. Closer to what concerns us, it also fo-
cuses on learning, the integration and fusion of knowledge bases, decision and diagno-
sis, temporal and spatial reasoning, the representation of actions and planning. There
are definitely directions to explore in this direction for the fusion that concerns us.

5.5. Knowledge-based systems

The evolution of image processing, from the lowest level of signal processing to the
interpretation of complex scenes, quite naturally leads the user to taking into account
knowledge beyond merely the image signal. As a consequence, this brings knowl-
edge management techniques in contact with image processing. These are methods
developed in artificial intelligence and which have been referred to as: expert systems,
knowledge-based systems (KBS), multi-agent systems, etc.

These techniques have had a strong influence on the development of image pro-
cessing techniques. In particular, they contributed to important projects that were part
of European programs. We suggest discussing here the lessons that can be learned
from these methods.

The objectives of these methods are as follows:

– representing knowledge in a declarative and not just procedural way as in the
most common image processing algorithms;

– separating knowledge into different categories:
- factual knowledge separated from operational knowledge,
- particular knowledge separated from general knowledge;

– using the same knowledge to achieve different objectives;
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– creating universal, and therefore reusable inference mechanisms;

– keeping records (explanations) of the inferences obtained.

Such systems can be seen as extensions of the usual expert systems, by allowing
the use of different modes of knowledge representation and reasoning.

The most common method used is shown in Figure 5.1, including the major func-
tions:

– the supervision system in charge of the overall system management, and of the
use of rules (when and how to use them);

– an interfacing system that allows the user to specify particular rules for a given
problem, or to set the objectives for a session;

– an inference engine that activates the processing rules, and generates the sys-
tem’s behavior;

– and of course a knowledge base that contains two different categories of knowl-
edge: the facts on one side (in the case of an image processor, this is where the images
are), and the rules on the other side, indicating how the facts should be combined in
order to infer new knowledge.

supervisor

dialog with
the user

inference
engine

fact base rule base
knowledge base

Figure 5.1. The major functions of a KBS

Building a KBS requires agents with three distinct roles:

– the user fills the system with data to be processed;

– the expert builds the knowledge base;

– the developer builds the inference engine and the reasoning strategy.

The most commonly used model in image processing is based on the “blackboard”,
i.e. an area shared by all of the system’s users to drop in information obtained while
the system is operating. The blackboard of an image processing expert system is often
the image itself, or at least a multi-layered extension of the image, with each layer
referenced on the image and bearing the results of a category of operators or experts
applied to a specific area inside the image.
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The different types of knowledge represented in these systems are divided into the
following categories:

– declarative (how things are);

– procedural (how things are done);

– episodic (related to the previous experience);

– and meta-knowledge (knowledge about knowledge).

Generally, it is extremely difficult to change from one type of knowledge to an-
other (and often even impossible) and therefore these categories of knowledge are, by
nature, quite different and may all be necessary.

Control consists of searching for paths between initial knowledge and goals, us-
ing techniques called forward chaining (applying inference rules when new data is
declared, with the consequences possibly triggering new inference rules), or backward
chaining (applying inference rules when new requests are stated, in which case the
premises of these rules that have not been verified generate new rules).

The most common examples of KBS include:

– production rules;

– frames;

– semantic networks;

– systems with uncertainty: Mycin [SHO 76], etc.

Production rule systems (of the type if. . . and/or. . . then. . . ) are systems that are
easy to adapt or extend, and the way they operate and their results can easily be ex-
plained. They have the drawback of having a fragmented representation of knowledge
which causes a lack of efficiency. Their power of expression depends mostly on the
type of logic used. For example, first-order or predicate logic make it possible to han-
dle variables and quantifiers, whereas in propositional logic, everything is constant.

Frames constitute a declarative form of KBS in which a list of attributes or proper-
ties is supplied with characteristics and values for these characteristics. They are useful
in describing general concepts, classes of objects. Classes with different granularities
can be handled using links of hierarchy, inheritance, specialization and instantiation.
Most of the time, these systems are static, but some dynamics can be introduced by
assigning procedures to attributes.

Semantic networks rely on a graphic representation of the knowledge base, in
which the nodes represent concepts and objects, and arcs represent relations. The infer-
ence rules are based on inheritance properties when taking an arc from one class to a
more specific class. These networks are often used in natural language processing, for
example.
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In image viewing and processing, for which we operate in environments that are
not completely specified and only partly known, we have examples of knowledge-
based systems essentially designed for supervising programs [CLE 93, NAZ 84,
THO 93] and for interpreting images [DES 90, GAR 89, HAN 78, MAT 86,
MCK 85]. Quite generally, they are comprised of the following components: isolated
points of the image, contours, areas. Semantic relations also come from artificial intel-
ligence: Part-Of, Is-a, Instance-of are the most common. It is much more complicated
to implement more complex structures, though they are quite useful to image pro-
cessing, such as concepts of hidden areas, shadows, multi-scale representation and
frequential components. Supervision strings together the expert’s task based on the
objectives and the results that have already been obtained, and the distinction is made
between:

– systems guided by data, which put together, for example, pieces of contours to
form lines, then lines to form objects, etc., until they end up with a known object;

– and systems guided by goals, which start with the hypothesis of the result and
recursively search for the previous steps necessary to the presence of this hypothesis.

The prototype of such a system is well represented by Hanson and Rieseman’s
VISION system [HAN 78, HAN 88]. A slightly similar method is found in many other
systems. The processing phase is separated in levels, as illustrated in Figure 5.2: typ-
ically a high level (level 3) which contains the symbolic descriptions and recognized
objects, then an intermediate level (level 2) which contains areas, lines, shapes, and
finally the low level (level 1) which contains images and their pixels. Operators use
the data on the level n− 1 to create information on the level n. The other way round,
requests are made by the level n on the level n − 1 in order to accomplish a certain
number of tasks necessary to decision making. Also, processes are constantly operat-
ing within each level to organize, arrange in order and fuse the information.

level 3

level 2

level 1

symbolic description of
the objects and scenes

inference,
deduction

focusing,
fusion,

hypothesis

matching,

symbolic description
of areas, shapes
and lines

image, pixels, data stereo,
movement

organization,
grouping,
division

perceptual
organization

segmentation,
extraction

resegmentation,
redetection

Figure 5.2. Diagram explaining how a KBS works.
This representation is based on VISION [HAN 88]
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In vision, specific tasks of focusing and adapting (with their attentional mecha-
nisms, for revision or repairs and consistency management), co-operation and fusion
(confrontational, augmentative, integrative) and co-ordination (deliberative, reactive,
optimal) are added to KBS. These methods are discussed in detail in [GAR 01] and
will not be covered here.

An example of a multi-agent system will be given in Chapter 10.

5.6. Reasoning modes and inference

There is a wider variety of inference modes used in KBS than in traditional knowl-
edge bases. These modes are divided into the following categories:

– deductive reasoning, which provides consequences based on facts (for example,
if the fact base contains A and the proposition A→ B, then we can infer B);

– contraposition allows us to reason on non-observations (for example, if we have
A→ B and non-B, we can infer non-A);

– abductive reasoning attempts to find the causes explaining the observations (for
example, based on A → B and the observation of B, we infer that A is a possible
cause of B);

– inductive reasoning allows us to infer rules from regular or usual observations
(for example, if we have B every time we have A, we can infer A→ B);

– projection provides consequences based on actions (if the fact base contains the
proposition A→ B and we perform A, we expect B to occur);

– planning establishes which actions to perform in order to achieve goals (if we
want B and the base contains A→ B, then we infer the action A).

These last two inference modes are particularly developed in embedded KBS, such
as those used in mobile robotics [SAF 02].

Information fusion often requires the help of different reasoning modes, in order
to better grasp and represent the nuances and subtleties of human reasoning.

In monotonic reasoning, obtaining more information naturally leads to more con-
clusions: if A is inferred from a base KB, we will also infer A from KB ∪B. Tradi-
tional, propositional and first-order logic resort to this mode of reasoning.

In non-monotonic reasoning, new information can invalidate previous conclusions.
In the presence of imperfect knowledge and information, as is the case in information
fusion, sources of non-monotonicity essentially come from the hypotheses and restric-
tions that are applied. These are necessary to be able to reason, but can be questioned
if new information or elements of knowledge become available. These hypotheses that
are sources of non-monotonicity include:
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– the use of typical properties;

– possible exceptions;

– the closed world hypothesis, which will be discussed particularly in Chapters 7
and 8.

Non-monotonic logics rely on concepts of preferences (which world, which situa-
tion is more “normal” than others, what are the preferred goals if not all of them can
be met, etc.), belief changes or revisions (the well-known AGM postulates [ALC 85])
and of course a certain number of postulates that manage non-monotonicity, referred
to as rationality postulates. “Cautious” monotonicity, which is an example of such a
postulate, expresses the fact that if a base KB can be used to infer A → B and C,
then it can be used to infer A ∧ C → B.

The concepts of contingency, i.e. of necessary or possible truth, are not well rep-
resented in traditional logic. Manipulating such objects requires the introduction of
modalities in logic. Modal logics [CHE 80, HUG 68] allow us to reason on propo-
sitions A (A is true), �A (A is necessary), ♦A (A is possible). Numerical forms of
these concepts are found in belief function theory in terms of belief and plausibility
(see Chapter 7), and in possibility theory in terms of necessity and possibility (see
Chapter 8). We will not discuss in detail the logical meanings of these concepts in this
book.

Finally, the concepts of imprecision and uncertainty, which we have already dis-
cussed extensively, can be represented in fuzzy and possibilistic logic, which will be
briefly described in Chapter 8.
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Chapter 6

Probabilistic and Statistical Methods

6.1. Introduction and general concepts

Probabilistic methods essentially deal with the uncertainty of information. They
rely on solid and well-mastered mathematical theories in signal and image processing,
such as Bayesian decision theory, estimation theory, entropy measurements, etc., thus
making it one of the preferred tools for fusion.

Information and its imperfections (mostly those whose nature can be expressed in
terms of uncertainty) are modeled using probability distributions or statistical mea-
surements. We will see in section 6.2 how this formalism can be used to measure
information. We will then describe the different stages of the fusion process: model-
ing and estimation in section 6.3, Bayesian combination in section 6.4, then Bayesian
combination seen as an estimation problem in section 6.5. The most common rules
of decision making are presented in sections 6.6 and 6.7. The following sections give
examples of applications and other theoretical tools are discussed, in the fields of
multi-source classification in image processing in section 6.8, then of target motion
analysis in signal processing in section 6.9.

6.2. Information measurements

If we have a set of l sources of information Ij , a first task often consists of trans-
forming it into a smaller and therefore easier to process subset, without losing any
information.
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The approach in principal component analysis, which projects each source of infor-
mation on the eigenvectors of the covariance matrix, is often used, in order to obtain
l new decorrelated sources, arranged in decreasing order of energy. Truncating the set
to keep only the first l′ (l > l′) sources can often be done while preserving most of the
original set’s energy.

However, in practice, this method quickly shows its limitations in image process-
ing, for example, because it cannot take into account complex dependences between
images or the spatial variations of dependences.

In order to express the information contributed by adding a new source of infor-
mation Il+1 to an already known set {I1, . . . , Il}, the preferred approach is that sug-
gested by Shannon, which relies on the concepts of information and entropy [KUL 59,
MAI 96]. Based on the joint probability of the first l sources p(I1, . . . , Il) (estimated
most of the time by using frequencies of occurrence, for example, based on the multi-
dimensional histogram of gray levels in an image), the entropy (or mean information
per pixel in the case of images) of the first l sources is defined by:

H
(
I1, . . . , Il

)
= −

∑
p
(
I1, . . . , Il

)
log p

(
I1, . . . , Il

)
, [6.1]

and the entropy contributed by the (l + 1)th source is expressed, either depending on
the entropies, or depending on the probabilities, as:

H
(
Il+1 | I1, . . . Il

)
= H

(
I1, . . . , Il+1

)
−H

(
I1, . . . , Il

)
= −

∑
p
(
I1, . . . Il+1

)
log p

(
Il+1 | I1, . . . , Il

)
.

[6.2]

For two sources, we thus define redundancy1 between them as:

R(I1, I2) = H(I1) + H(I2)−H(I1, I2), [6.3]

and the complementarity of the source I2 with respect to I1, i.e. the mean quantity of
information that has to be added to I2 in order to have I1:

C
(
I1 | I2

)
= H

(
I1 | I2

)
, [6.4]

which leads us to the following relation:

H
(
I1

)
= R

(
I1, I2

)
+ C

(
I1 | I2

)
. [6.5]

Analogous methods could be considered in a non-probabilistic framework, by rely-
ing, for example, on fuzzy entropy [LUC 72]. For the moment, the formalism is less
well developed in this direction.

1. This redundancy unfortunately cannot be generalized to more than two sources without
potentially losing its positivity property.
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In fusion, we usually work with highly redundant sources to confirm an uncertain
decision and complementary images to broaden the range of decisions. Complemen-
tary sources can lead to either conflicting or consensual decisions.

In image processing, the concept of entropy has been extended to characterize not
only how spread out the measurements are in the measurement space, but also the
spatial consistency of the measurements, by taking into account occurrence probabil-
ities of certain pixel configurations, in the context of either classification [MAI 94,
MAI 96], or Markov fields [TUP 00, VOL 95].

The concepts of overall entropy are not always well suited for fusion problems and
the concepts of entropy conditional to the classes to recognize are often preferable:
they achieve a finer analysis of the information that each source provides for each
class and are therefore better suited for problems in which a source is better for certain
classes and worse for others. Although the formal definition of such concepts poses
no particular difficulty, they are rarely used in fusion and would probably deserve to
be further investigated.

6.3. Modeling and estimation

The most commonly used theory in other works is by far probability theory, associ-
ated with Bayesian decision theory [DUD 73]. It models information as a conditional
probability, for example, the probability for a pixel to belong to a particular class,
given the images available. Thus, the measurement introduced in section 1.5 can be
written as follows:

M j
i (x) = p

(
x ∈ Ci | Ij

)
. [6.6]

This probability is calculated based on characteristics fj(x) of the information
extracted from the sources. For example, with images, they can consist of the simplest
of cases of the considered pixel’s gray level or of more complex information requiring
preliminary processing. Equation [6.6] then no longer depends on the entire source Ij

and is instead written more simply as:

M j
i (x) = p

(
x ∈ Ci | fj(x)

)
. [6.7]

In signal and image processing, in the absence of strong functional models for
describing the observed phenomena, the probabilities p(fj(x) | x ∈ Ci), or more
generally p(Ij | x ∈ Ci) (which represents the probability, conditional to the class
Ci, of the information provided by the source Ij), are learned from frequencies of
occurrence on testing areas (or by learning on these areas the parameters of a given
law) which gives us the probabilities in equations [6.6] and [6.7] by applying Bayes’
rule.
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6.4. Combination in a Bayesian framework

In the Bayesian model, fusion can be achieved in equivalent ways on two levels:

– either on the modeling level and we then calculate probabilities in the form:

p
(
x ∈ Ci | I1, . . . , Il

)
, [6.8]

using Bayes’ rule:

p
(
x ∈ Ci | I1, . . . , Il

)
=

p
(
I1, . . . Il | x ∈ Ci

)
p
(
x ∈ Ci

)
p
(
I1, . . . , Il

) , [6.9]

where the different terms are estimated by learning;

– or from Bayes’ rule itself, where the information provided by a sensor updates
the information regarding x, which is estimated according to the previous sensors (this
is the only usable form if the elements of information are available one after the other
and not simultaneously):

p
(
x ∈ Ci | I1, . . . , Il

)
=

p
(
I1 | x ∈ Ci

)
p
(
I2 | x ∈ Ci, I1

)
· · · p

(
Il | x ∈ Ci, I1, . . . , Il−1

)
p
(
x ∈ Ci

)
p
(
I1

)
p
(
I2 | I1

)
· · · p

(
Il | I1, . . . , Il−1

) .

Very often, because of the complexity of learning using several sensors and the
difficulty of gathering enough statistics, these equations are simplified under the inde-
pendence hypothesis. Again, criteria have been suggested for verifying the validity of
these hypotheses. The previous formulae then become:

p
(
x ∈ Ci | I1, . . . , Il

)
=

∏l
j=1 p

(
Ij | x ∈ Ci

)
p
(
x ∈ Ci

)
p
(
I1, . . . , Il

) . [6.10]

This equation clearly shows the combination of information as a product, hence
a conjunctive fusion. It is worth noting that the a priori probability plays exactly the
same role in the combination as each of the sources with which it is also combined by
a product.

6.5. Combination as an estimation problem

Another way of seeing probabilistic fusion consists of considering that each source
yields a probability (of belonging to a class, for example) and that fusion consists of
combining these probabilities, in order to find the overall probability of belonging to
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a class. This point of view amounts to considering that fusion is an estimation prob-
lem and is a way of using combination operators other than the product. In particular,
the mean, weighted mean and consensus methods are often used [COO 88, COO 91,
FRE 85]. Robust estimators can also be used, in order to reduce or eliminate the influ-
ence of outliers. Finally, methods provided by regionalized variable theory [MAT 70],
such as kriging or universal kriging, can also be used in this context.

6.6. Decision

The last step involves the decision, for example, choosing which class a point
belongs to. This binary decision can be paired up with a measurement of the quality
of this decision, which can possibly lead to its rejection. The most commonly used
rule in probabilistic and Bayesian decision is the a posteriori maximum:

x ∈ Ci if p
(
x ∈ Ci | I1, . . . , Il

)
= max

{
p
(
x ∈ Ck | I1, . . . , Il

)
, 1 ≤ k ≤ n

}
,

but many other criteria have been developed by probabilists and statisticians, in order
for them to find the best way to adapt to the user and to the context of his decision:
maximum likelihood, maximum entropy, maximum marginal probability, maximum
expected value, minimum risk, etc. However, the large diversity of these criteria leaves
the user hard-pressed to justify a choice and brings him further away from the objec-
tivity initially sought by these methods.

6.7. Other methods in detection

The field of detection by multi-sensor fusion has been studied at length and has led
to several methods. A distinction is made between centralized detection, in which mea-
surements made by different sensors are considered as a vector on which the decision
is made, and decentralized detection, in which each sensor yields a binary response
(detection or not), and these answers are then combined by a fusion operator.

In the first case [VAR 97], the decision rules often rely on average risk, maximum
profit, minimum risk, all taken from the Bayesian approach, but also on criteria such as
the Neyman-Pearson criterion, which consists of maximizing the detection probability
for a given probability of having a false alarm. This implicitly assumes that the false
alarm is considered as the worst error, which is not always the case depending on the
applications (for example, in the case of humanitarian demining, non-detection is the
worst error).

In the second case, if we have l sensors, each one producing a binary response,
the fusion operator is considered as a logical function of these l responses (which
constitute the operator’s input). The number of possible operators is very high, (22l

),
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making it impractical to use methods based on thoroughly counting the possibilities
when the value of l goes beyond a few units. However, the number of possibilities
is greatly reduced by the monotonicity constraint imposed on the operator [THO 89].
Among the more interesting methods in this field, we can mention those based on
entropy for optimizing the fusion operator [DES 99]. This leads to an optimal fusion
rule expressed as a weighted sum of local decisions, that can be compared to a thresh-
old which is a function of false alarm and detection probabilities of the various local
sensors, a priori probabilities and costs. Methods based on entropy can also be used
on several levels: for choosing the most relevant sensors, for optimizing local sensors
(on each sensor’s level) and for optimizing the fusion operator.

6.8. An example of Bayesian fusion in satellite imagery

In this section, we will illustrate Bayesian fusion by a simple example of multi-
source classification in satellite imagery, in which fusion is performed on pixels, based
on the information of the gray levels. This example was discussed in [CHA 95]. Fig-
ure 6.1 shows an example of six images to fuse. These are SPOT images in the XS
multi-band spectral mode in green (XS1), red (XS2) and near infrared (XS3), with a
sampling increment of 20 meters, registered in a common frame of reference (to allow
us to perform fusion on the pixel level).

The classes considered are cities or urban areas (class C1), rivers (class C2) and a
class C3 for every other structure (mostly vegetated areas).

Since the main characteristic of the cities in these images is their texture, the three
initial images are completed with three texture images obtained by using an algorithm
for estimating the parameters of a Gaussian Markovian field [DES 93]. These texture
images are also shown in Figure 6.1.

Conditional probabilities are learned using a histogram of the gray levels. These
estimates can be smoothed with Parzen windows, for example. Figure 6.2 illustrates
the results of the learning process in one of the images. In practice, in order to avoid
unjustified hypotheses of independence, the joint probability of the three XS channels
conditionally to the classes is estimated, and likewise for the three texture images.

One of the difficulties of the Bayesian method is the a priori estimation of proba-
bilities. If they are set according to the proportion of classes found in the images, this
leads to a strong decrease in the probability of poorly represented classes (see Figure
6.2, on the right) thus making them very difficult to detect. The method chosen here
consists of making these estimations when there is little conflict between the classes
and to take uniform a priori probabilities when the statistical properties of the classes
indicate a strong conflict.
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Figure 6.1. SPOT satellite images in XS multi-band spectral mode with a size of 512 × 512
pixels and a 1-B level of pre-processing in vertical viewing (the area of Vignola, near Modena,
in Italy) © Spot Image. From top to bottom, the green (XS1), red (XS2) and near infrared (XS3)
channels. Left: original SPOT images. Right: images of temperature parameters of a Gaussian

Markovian field on the three SPOT channels (texture images)
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conditional probabilities P(w/Ci)

P(w/river)

P(w/city)

gray level space

P(w/river)

P(w/Ci)

gray level space

P(Ci)

P(river)

P(w/city)P(city)

Figure 6.2. Left: conditional probabilities of the cities and rivers in the texture image on XS2.
Right: probabilities conditional to the two classes multiplied by their a priori probability

P (city) = 11% and P (river) = 2%

Figure 6.3 shows the fusion result, for an a priori maximum criterion. The river is
superimposed in white over the original image, as well as the contours of the urban
areas. The rest corresponds to the class C3.

6.9. Probabilistic fusion methods applied to target motion analysis

After seeing an example of Bayesian fusion in image processing, we are now going
to see other probabilistic methods based on different concepts applied to a traditional
problem in signal processing, i.e. that of target motion analysis. After a general pre-
sentation of target motion analysis, we will examine in detail some aspects that are
more relevant to data fusion. In particular, we will focus on showing what the basic
techniques of target motion analysis can contribute to a detection system.

6.9.1. General presentation

First of all, let us point out the goal of target motion analysis: determining, based
on measurements (observations), the trajectory of a moving object. This essentially
involves a framework in which a dynamic system is partially observed. A traditional
and historical example is the estimation of a planet’s trajectory, based on optical obser-
vations (angle measurements). Below are the most widespread types of measurements
in target motion analysis:

– angles (sonar, ESM, infrared, etc.);
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Figure 6.3. Detection images by Bayesian inference of the classes city, river and C3

in the scene of Vignola by fusing 6 SPOT satellite images

– delays (radar, sonar, interferometers, etc.);

– Doppler shifts (differentials);

– intensity variations, image deformations, etc.

We note that these measurements are very diverse. One common trait, however,
is that they have a non-linear dependence on parameters defining the moving object’s
trajectory. In many cases, we will call system’s state the vector of parameters, instan-
taneous or not, defining the trajectory. These parameters can be the moving object’s
position, its speed at each instant or at a reference time.
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Problem formulation

Thus, in a deterministic approach, the goal is to infer from the sequence of obser-
vations {β̂1, . . . , β̂n} the value of the state estimated at a reference time, i.e. X̂0,{

β̂1, . . . , β̂n

}
−→ X̂0

In the case of tracking, the objective is then to estimate the sequence of states:{
β̂1, . . . , β̂n

}
−→

{
X̂1, . . . , X̂n

}
We will now briefly present the elementary model for bearings-only tracking using

passive target motion analysis (also known as BOT TMA), by restricting ourselves first
to a target in uniform rectilinear motion in the plane. For a general representation, see
[NAR 84] and [CHA 92]. Let X be the state vector related to the target (T ), defined
by:

X = XT −Xobs �
[
rx, ry, vx, vy

]∗
,

where ∗ indicates the transpose.

The state dynamics equation (time-discrete) then has the following form:

Xk = Φ(k, k − 1)Xk−1 + Uk, [6.11]

where:

Φ(k, k − 1) =
(

Id2 αId2

0 Id2

)
,

Id2 �
(

1 0
0 1

)
, α � tk − tk−1.

[6.12]

In the formula above, the vector Uk expresses the effects of the observer’s accel-
erations. The matrix Φ(k, k − 1) is the system’s transition matrix, also denoted by F
from now on. Furthermore, we assume that α = 1. The measurement equation is, in
this case:

β̃k = βk + wk = tan−1

(
rx,k

ry,k

)
+ wk. [6.13]

As you can see, the target’s trajectory is determined by a state vector X, which is
defined at an arbitrary reference time (i.e. X0). Thus, under the Gaussian hypothesis,
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the problem is as follows; let B̃ be the measurement history (the angles), we must now
consider the following likelihood functional [NAR 84]:

p
(
B̃ | X̂

)
= cst exp

[
− 1

2

∥∥B̃−B
(
X̂
)∥∥2

Σ−1

]
,

with wk as a sequence of independent, identically distributed, Gaussian white noise
and:

B̃ =
(
β̃1, . . . , β̃p

)∗
,

β̃k = βk + wk, w : N (0,Σ).
[6.14]

Clearly, the likelihood functional has a non-linear dependence on the state X and
there is no general explicit solution to this optimization problem. This is why we often
resort to a Gauss-Newton type algorithm [NAR 84], written as follows:

X̂�+1 = X̂� − ρ�

[(
∂B̂
∂X

)∗
Σ−1 ∂B̂

∂X

]−1(
∂B̂
∂X

)∗
Σ−1

(
B̃− B̂

)
, [6.15]

where Σ = Diag(σ2
i ), σ2

i is the noise variance of the ith measurement, � is the iter-
ation index, ρ� the stepsize and, using notations that are not completely accurate,
B̂ = B(X̂�). A simple calculation [NAR 84] helps us calculate the matrix ∂B̂/∂X,
i.e.:

∂B̂
∂X

=

⎛⎜⎜⎜⎜⎜⎝
cos
(
β1

)
r1

− sin
(
β1

)
r1

(
t1 − t0

)cos
(
β1

)
r1

−
(
t1 − t0

) sin (β1

)
r1

...
...

...
...

cos
(
βp

)
rp

− sin
(
βp

)
rp

(
tp − t0

)cos
(
βp

)
rp

−
(
tp − t0

) sin (βp

)
rp

⎞⎟⎟⎟⎟⎟⎠
[6.16]

where ri refers to the relative target-receiver distance at the time i.

The phrase comprehensive target motion analysis methods is generally used to
refer to this type of approach [NAR 84]. They are often presented in competition with
Kalman-type methods, even though the objectives are fundamentally different. The
methods are simple to implement and have reasonable calculation costs. A few iter-
ations of the algorithm are usually enough. A difficult point can be the choice of the
increment ρ. See [BAZ 93] for a state of the art in knowledge on efficient methods for
choosing these parameters.

Still in the context of comprehensive methods, another type stands out: instrumen-
tal variable methods (IVM). The idea is simple: to use the successive estimations of
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the system’s state to infer the instrumental variables by an iterative algorithm. The
pseudo-measurements zk are defined by:

zk = ro,x(k) cos β̂k − ro,y(k) sin β̂k [6.17]

This equation can also be written in matrix form:

zk = Ã∗(k)X0(k) = Ã∗(k)XT (k) + ηk,

where ro,x, ro,y represents the observer’s co-ordinates and:∣∣∣∣∣ Ã
∗(k) =

(
cos β̂k,− sin β̂k, 0, 0

)
,

ηk = rk sin wk � rkwk.
[6.18]

We are then led to consider a linear regression problem for which there is an
explicit solution. However, the solution obtained this way is usually strongly biased
because of the correlation between the columns of the regression matrix and the addi-
tive noise. The IVM consists of replacing the usual optimality equation for minimizing
the quadratic norm of the error with the following iterative expression:

X̂�+1 =
(
A∗

p

(
X̂�

)
R̂−2Ãp

)−1(
A∗

p

(
X̂�

)
R̂−2Zp

)
. [6.19]

This is an even simpler method for implementing the Gauss-Newton algorithm.
The convergence of these two methods has been debated at length; there are, however,
methods that lead to results with a certain degree of generality. More precisely, if we
consider the quadratic functional of X̂:

L
(
X̂
)

=
∥∥X̂−X

∥∥2, [6.20]

Iltis and Anderson [ILT 96] show that this is a Lyapunov functional [BAR 85] for the
continuous differential equation:

d

dt
X̂ = G

(
X̂
)

[6.21]

where G(X̂) is the gradient vector of the likelihood in X̂. After some simple calcula-
tions, we get:

G
(
X̂
)

= H∗(X̂)
⎛⎜⎝β1 − β̂1

...
βp − β̂p

⎞⎟⎠
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where βi � βi(X), β̂i � βi(X̂) and:

H
(
X̂
)

=

⎛⎜⎜⎜⎜⎜⎜⎝
cos β̂1

r̂1
− sin β̂1

r̂1

cos β̂1

r̂1
− sin β̂1

r̂1
...

...
...

...

cos β̂p

r̂p
− sin β̂p

r̂p

p cos β̂p

r̂p
−p sin β̂p

r̂p

⎞⎟⎟⎟⎟⎟⎟⎠
r̂i =

(
r2
x,i

(
X̂
)

+ r2
y,i

(
X̂)
)1/2

, H∗(X̂) : a 4× p size matrix.

[6.22]

We then have to calculate the line matrix (X̂−X)
∗
H∗(X̂) whose kth element,

denoted by Ik, has the following form:

Ik =
1
r̂2
k

Ŵ∗
k

(
X̂−X

)
, [6.23]

where Ŵk � (r̂y,k,−r̂x,k, k r̂y,k,−k r̂x,k)∗.

We can then easily prove the following results [LEC 99]:⎧⎪⎨⎪⎩
Ŵ∗

kX̂ = 0, k = 1, . . . , p,

1
r̂2
k

Ŵ∗
kX =

rk

r̂k
sin
(
β̂k − βk

)
.

[6.24]

We will give a few elements of proof of this property and it will then be easy to
imagine extensions. To do this, first, the vectors X and X̂ are partitioned in sub-vectors
with positions (R) and speeds (V):

X �
(
R
V

)
, X̂ �

(
R̂
V̂

)
,

we then have:

Ŵ∗
kX =

(
R̂∗, V̂∗)( J kJ

kJ k2J

)(
R
V

)
,

=
(
R̂ + kV̂

)∗
J(R + kV),

[6.25]

where J =
( 0 1
−1 0

)
.
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This calls for the following important comment. If U and U′ are two vectors R
2,

then:

U∗JU′ = uxu′
y − u′

xuy,

= det
(
U,U′), [6.26]

and as a result:

Ŵ∗
kX = det

(
R̂ + kV̂,R + kV

)
, [6.27]

=
rk

r̂k

det
(
R̂k,Rk

)∥∥Rk

∥∥∥∥R̂k

∥∥ ,

=
rk

r̂k
sin
(
R̂k,Rk

)
[6.28]

where: Rk � R + kV, R̂k � R̂ + kV̂.

We now simply have to point out that sin(R̂k,Rk) = sin(βk − β̂k).

This calculation can be applied, not without some difficulties, to the case of a target
and an observer that are maneuvering. We then have the following convergence result
[LEC 99].

Convergence of the iterative methods

Let us assume that the maneuvering times of the target are known, then the deriva-
tive with respect to time L̇(X̂) of the Liapunov function L(X̂) is:

L̇
(
X̂
)

= 2
(
X̂−X

)∗
GL

(
X̂
)

= −2
p∑

k=1

rk

r̂k

(
β̂k − βk

)
sin
(
β̂k − βk

)
. [6.29]

As you can see, there is a functional of the gradient vector GL(X̂) of the likelihood
functional that cannot be equal to zero if all of the β̂k and βk coincide, i.e. if the model
is perfectly estimated. This analysis can be generalized without difficulty to the case
of multiple sensors and most importantly to multi-leg cases2.

This type of calculation can actually easily be applied to the case of a constantly
accelerating target and, more generally, to an observation model of the type tan(βt) =
A∗

t X/B∗
t X and even f(βt) = A∗

t X/B∗
t X where f is a monotonic and continuously

differentiable function. Thus, the non-linearity has a relatively simple structure. This is

2. A leg is a section of the trajectory over which the target has a uniform rectilinear motion.
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of great importance whether for the analysis of observability [TRE 96], or of the con-
vergence of the extended Kalman filter [SON 85]. As a result, the analysis of observ-
ability becomes much easier if we rewrite equations [6.11] and [6.13] as follows:∣∣∣∣∣Xk+1 = FXk + U

0 ≡ zk = HkXk

where:

F = Φ
(
tk+1, tk

)
=
(

Id αId
0 Id

)(
α � tk+1 − tk

)
Xk � Xtk

Hk =
(
cos θk,− sin θk, 0, 0

) [6.30]

If we now assume that the observer is not maneuvering, U ≡ 0. We then have:∣∣∣∣∣∣∣∣∣∣∣∣

z0 = H0X0

z1 = H1FX0

...

zk = HkF kX0

[6.31]

with:

F k =
(

ccId kαId
0 Id

)
so that the observability matrix O can be written:

O =

⎛⎜⎜⎜⎝
cH0

H1F
...

HkF k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cos θ0 − sin θ0 0 0
cos θ1 − sin θ1 α cos θ1 −α sin θ1

...

cos θk − sin θk kα cos θk −kα sin θk

⎞⎟⎟⎟⎠ [6.32]

Factoring the observability matrix as follows is quite helpful:

O = ΔθΔr

⎛⎜⎜⎜⎝
ry(0) −rx(0) 0 0
ry(1) −rx(1) αry(1) −αrx(1)

...
ry(k) −rx(k) kαry(k) −kαrx(k)

⎞⎟⎟⎟⎠
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with:

Δθ � diag
(
cos θ0, cos θ1, . . . , cos θk

)
Δr � diag

(
r−1
y (0), r−1

y (1), . . . , r−1
y (k)

) [6.33]

This factorization is valid so long as each term r(k) is different from zero, which
is hardly restrictive. Let O′ be the factored observability matrix:

O′ =

⎛⎜⎜⎜⎜⎝
rx(0) ry(0) 0 0

...
... αrx(1) αry(1)

rx(k)︸ ︷︷ ︸
Tx

ry(k)︸ ︷︷ ︸
Ty

kαrx(k)︸ ︷︷ ︸
Vx

kαry(k)︸ ︷︷ ︸
Vy

⎞⎟⎟⎟⎟⎠
We then have: rankO = rankO′.

We easily infer from the previous calculations that the vectors Tx,Ty,Vx and Vy

are linear combinations of the three vectors 1,Z and Z2, and we have:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tx = rx(0)1 + αvxZ

Vx = αrx(1)Z + α2vxZ2

Ty = ry(0)1 + αvyZ

Vy = αry(1)Z + α2vyZ2

with:

1 � (1, 1, . . . , 1)1

Z � (0, 1, 2, . . . , k)∗

Z2 � (0, 0, 2, . . . , k(k − 1))∗

It is then obvious that the rank of the matrix (O′) and therefore of the matrix O is
equal to 3, except if we have rx(0)vy = ry(0)vx, in which case the rank of O is only
2. This analysis might seem simplistic, however, it makes it possible to handle most
problems. Let us consider, for example, the case of a system comprised of two linear
sub-antennae located on a same line. Here, the previous calculations lead to:

O′ =
(O′

1

O′
2

)
, [6.34]

=
( O′

1

ΔO′
1

)
+ β

(
O O O O
Δ1 O αΔZ O

)
, [6.35]
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where: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O′

1 = (Tx,Ty,Vx,Vy) and: O′
2 = Δ

(
T′

x,T′
y,V′

x,V′
y

)
,

Δ = diag
(

cos θ′0
cos θ0

, . . . ,
cos θ′k
cos θk

)
= diag

(
r′0
r0

, . . . ,
r′k
rk

)
,

β � r′x(0)− rx(0).

[6.36]

Let us now examine the properties of the matrixO′. Let kerO′
1 denote the kernel of

O′
1 and R its supplementary subspace in R

4, i.e. R
4 = kerO′

1⊕R where⊕ represents
the direct sum. Then, let X be any vector in R

4, X can be decomposed in a unique
way as a sum of two vectors of kerO′

1 and R, meaning that X = K+Y (K ∈ kerO′
1

and Y ∈ R) and we have the following implications:

– if Y �= 0, then O′X �= 0,

– if Y = 0, then O′X = βΔ(x11 + αx3Z) .

Therefore, we only have to examine the second hypothesis (namely Y = 0) and
we then have:

O′X = 0 =⇒ x1 = x3 = 0 (1 and Z are linearly independent) ,

and therefore, since X ∈ kerO′
1, we also have x2Ty + x4Vy = 0 and therefore

in the end, x2 = x4 = 0. As a result, except for the specific case where Ty =
Vy = O, kerO′ is simply the zero vector in the multi-platform case. Even if this is
a purely algebraic result, we begin to perceive the advantage of fusing the outputs of
the platforms.

As for the filtering aspect, particle filtering methods can be used to avoid any
linearization. Briefly, its general form is as follows:

– initialization:

sn
o ∼ p(X0), qn

0 = 1/N ; n = 1, . . . , N ;

– for t = 1, . . . , T :
- prediction: s̃n

t ∼ f(Xt|Xt−1 = sn
t−1, β̂t); n = 1, . . . , N ,

- calculation of the weights:

q̃n
t = qn

t−1

p
(
s̃n

t | sn
t−1

)
lt
(
β̂t; s̃n

t

)
f
(
s̃n

t | sn
t−1, β̂t

)
for n = 1, . . . , N , (normalization step)

- E(X̂t) =
∑N

n=1 qn
t s̃n

t ,
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- resampling (the decision to resample is ensured by a test):⎧⎪⎪⎨⎪⎪⎩
sn

t ∼
N∑

k=1

qk
t δs̃k

t
,

qn
t = 1/N, n = 1, . . . , N.

[6.37]

Different forms of this filter and application examples in target motion analysis can
be found in [HUE 02]. Finally, still on the subject of filtering, models for maneuvering
targets hold great importance. Among them, we can mention a standard one, i.e. the
Singer model (with correlated noise):⎧⎪⎨⎪⎩

ẋ(t) =
[
0 1
0 0

]
x(t) +

[
0
1

]
a(t),

ȧ(t) = −αa(t) + w(t) where r(τ) � cov
(
wt, wt−τ

)
= σ2e−ατ .

[6.38]

More generally, these models can be divided into the following categories:

– maneuvering models decoupled in co-ordinates:
- white noise models for which the command is a white noise,
- Markov models for which the input is a Markov process (includes the Singer

model),
- the Semi-Markov Jump Process.

– motion models: 2-D, for example, with a constant gyration rate, 3-D, ballistic;

– measurement models: cartesian, linearized, pseudo-measurements, modified po-
lar, curvilinear.

For the three categories above, we can give the following examples:

– Wiener acceleration model (discrete time):

F =

⎡⎢⎣1 T T 2/2
0 0 T

0 0 1

⎤⎥⎦ , Q =

⎡⎢⎣T 5/20 T 4/8 T 3/6
T 4/8 T 3/3 T 2/2
T 3/6 T 2/2 T

⎤⎥⎦ ; [6.39]

– ARMA acceleration model:

ẋ(t) =

⎡⎢⎢⎣
0 1 0 0
0 0 β1 β2

0 0 0 1
0 0 −α2 −α1

⎤⎥⎥⎦x(t) +

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ ; [6.40]
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– constant gyration rate model (ω is known):

ẋ(t) = A(ω)x + w(t), with: A(ω) =

⎡⎢⎢⎣
0 1 0 0
0 0 0 −ω
0 0 0 1
0 ω 0 0

⎤⎥⎥⎦ . [6.41]

Finally, in the context of image analysis, the problem of target motion analysis
often leads to considering more complex models such as:

– contour models;

– more complex kinematic equations (rigid body, for example);

– object dilation factors;

– more subtle measurement models (luminance, for example).

We are now going to examine some of the implications of data fusion in the field
of target motion analysis.

6.9.2. Multi-platform target motion analysis

As we have just seen, there are many advantages to considering target motion
analysis problems from the multi-platform perspective. We will see, in particular, that
the performances can be decently estimated. However, in what follows, we will always
assume that there is only one target. In other words, multi-target and multi-sensor
association problems will not be considered at all in this section. The following results
have been obtained [TRE 96]:

var(r̂x) = 3 σ2r4 tan2(θ)
(2n+1)(m(2m+1)(m+1)d2 ,

var(r̂y) = 3 σ2r4

(2n+1)(m(2m+1)(m+1)d2 ,

var(v̂x) = 45 σ2r4 sin2(θ)
n(n+1)(2n+1)(2m+1)[5m(m+1)d2 cos2(θ)+(2n−1)(2n+3)v2 sin2(θ−γ)]

,

var(v̂y) = 45 σ2r4 cos2(θ)
n(n+1)(2n+1)(2m+1)[5m(m+1)d2 cos2(θ)+(2n−1)(2n+3)v2 sin2(θ−γ)]

.

The parameters in these equations have the following meaning:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ: target’s azimuth,

γ: target’s bearing, with the North as reference,

v: modulus of the target’s speed, r: distance,

m: number of platforms, n: integration time,

d: inter-platform distance, σ2: estimated noise variance.

[6.42]
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We can now see the influence of the various parameters. It is, however, preferable
to give a more physical interpretation of the results given in equation [6.42]. We thus
define the quantities Abas and Tbas as follows3:

Abas = 2md
∣∣ cos(θ)

∣∣,
Tbas = (2n + 1)v

∣∣ sin(θ − γ)
∣∣,

we make the following approximations:

m(m + 1)d2 cos2 θ � 1
4
Abas

2

(2n− 1)(2n + 3)v2 sin2(θ − γ) � Tbas
2,

and in the end we get:

var(r̂x) =
12 σ2 r4 sin2(θ)

(2n + 1)(2m + 1)Abas
2 ,

var(r̂y) =
12 σ2 r4 cos2(θ)

(2n + 1)(2m + 1)Tbas
2 ,

var(v̂x) =
180 σ2 r4 sin2(θ)

n(n + 1)(2n + 1)(2m + 1)
[
5Abas

2 + 4Tbas
2
] ,

var(v̂y) =
180 σ2 r4 cos2(θ)

n(n + 1)(2n + 1)(2m + 1)
[
5Abas

2 + 4Tbas
2
] .

With these approximations, we have a good idea of the influence the various
parameters have on multi-platform target motion analysis systems. See [LEC 99] for
a more comprehensive presentation.

6.9.3. Target motion analysis by fusion of active and passive measurements

Again, we will restrict ourselves to the case of a single target, in uniform rectilinear
motion.

We have at our disposal passive measurements at every instant β(t) =
tan−1[rx(t)/ry(t)] and at the transmission times, for example, for the radar or
the active sonar, the measurements r(t) = [r2

x(t) + r2
y(t)]1/2. Of course, these

measurements are affected by noise that we will assume to be an independent,

3. Abas for array baseline and Tbas for target baseline.
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identically distributed sequence. Simple calculations lead to the expression of the
gradient vectors Mk (Nk, respectively) of βk (rk, respectively) with respect to X:⎧⎪⎨⎪⎩

Mk =
1
rk

(cos βk,− sin βk, k cos βk,−k sin βk)∗,

Nk = (sinβk, cos βk, k sin βk, k cos βk)∗.
[6.43]

Assuming that the estimates for the bearing and the distance are independent, the
calculation of the Fisher matrix related to the estimate of the state X is a routine
exercise that leads us to:

FIM =
∑

k

(
1

σ2
β,k

MkM∗
k +

δr,k

σ2
r,k

NkN∗
k

)
. [6.44]

In equation [6.44], δr,k is equal to 1 when an active measurement is available and
otherwise to 0. We have to consider any number of active measurements, but it can
be shown [LEC 00] that we can simply consider the cases: one active measurement
out of T , two out of T and finally three out of T . We then have the following results
[LEC 00].

PROPOSITION 6.1. Let det(FIMτ,T,β,r) be the determinant of the matrix FIM asso-
ciated with two active measurements (separated by τ ) and T passive measurements,
then:

det
(

FIMτ,T

)
� τ2(

rσrσβ

)4 ∑
0≤t<t′≤T

(t− t′)2
[
1 + β̇2

(
− tt′ + τ(t + t′)

)]2
. [6.45]

PROPOSITION 6.2. We now consider that we have three active measurements (at 0, τ2

and τ3) and T passive measurements, then:

det
(

FIMτ2,τ3,T

)
� T

r2σ2
βσ6

r

∑
0<τ2<τ3≤T

[
τ2τ3

(
τ2 − τ3

)
β̇
]2

. [6.46]

We get the same type of result as in the case of an active measurement [LEC 00].
In fact, we can easily see that the predominant contributions are from the terms of the
type 2 active measurements among 4 and we have the following result:

det(FIM) ∝
∑

0≤t<t′≤T

(t− t′)2
[
1 + β̇2

(
− tt′ + τ(t + t′)

)]2
. [6.47]
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In the case of a maneuvering target (two legs and a maneuvering time tm that is
known), the state vector becomes 6-dimensional and the calculations become notice-
ably more complicated [LEC 00]. We then obtain:

det(FIM) ≈ c
∑

t1,...,t6

[(
t1 − t2

)(
t3 − t4

)(
t5 − t6

)]2
×
[
2 t2 cos

(
2β0 − 2

(
t2 − 2tm + t2 sin 2β0

)
,

− 2 t2β̇
(
t2 − t1 +

(
t1 + t2

)(
cos 2β0 + sin 2β0

)
,

+ β̇2
((

t1 − t2
)2(

t2 − 2 tm
)
− t2

(
t1 + t2

)2( cos 2β0 − sin 2β0

))
,

−
(
t3 + t4 − t5 − t6

)2(− t2 + 2 tm + t2
(
cos 2β0 − sin 2β0

)))]2
.

This formula might seem disconcertingly complex. We notice, however, that the
predominant term is simply:

2 t2 cos
(
2β0 − 2

(
t2 − 2tm + t2 sin 2β0

))
.

Again, we reach the conclusion that the optimal strategy consists of focusing the
active measurements on the extremities of the legs. Therefore, as you can see, sim-
ple considerations make it possible for us to grasp the fusion of active and passive
measurements in target motion analysis.

6.9.4. Detection of a moving target in a network of sensors

The problem here is simple. How can we detect a moving target traveling through
a network of sensors? In order to better outline the problem, a few specifics are neces-
sary. We will assume in this case that the detection radius of each sensor is relatively
limited, so as to make it reasonably impossible for it to detect more than one target.
At a given time, a target is only perceivable by a few sensors of the network that are
close enough.

In practice, this means that antenna processing methods are of little use. There is
no concept of antenna gain and we therefore have to rely first and foremost on time
discrimination. As a result, the target motion analysis stage is the core of single sensor
detection. We will not discuss any further the method used, or performance calculation
in detection. For this, see [DON 00, DON 02].

In general, it is actually impossible to achieve detection on the sensor’s level at the
output of partial target motion analysis. In practice, this means that the sensor’s signal
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is as follows:

zt = e(Y, t) + nt [6.48]

where Y = [α � cpa/v, tcpa, θ]t.

This means that, based on the data provided by a single sensor, it is only possible
to estimate 3 parameters out of 4. Centralized processing then consists of considering
the observations provided by the sensors and to process them together. If we denote
by Z (Z = (Zt

1,Z
t
2)

t) the vector of concatenated measurements, we have:

Z = E(X) + N =
(
E
(
Y1(X)

)
E
(
Y2(X)

))+
(
N1

N2

)
, [6.49]

where: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X =
(
cpa1, v, θ, tcpa1

)t
,

Y1(X) =
(
α1 � cpa1/v, θ, tcpa1

)t
,

Y2(X) =
(
α2 � cpa2/v, θ, tcpa2

)t
,

α2 = α1 − (d/v) sin θ, tcpa2 = tcpa1 + (d/v) cos θ.

[6.50]

This tells us that it is possible to achieve both detection and complete target
motion analysis. However, it can easily be shown [DON 00] that the computational
load becomes prohibitive. This is because the parameter discretization has to be
fine enough. Furthermore, because of the context (scale detection of a network),
the robustness of such a process is very problematic. One possible solution is to
use decentralized processing. Thus, we can consider fusion on the target motion
analysis level. The objective is then to estimate the complete parameter vector X
(X = (cpa, v, θ, tcpa)

t) from partial vectors estimated on the sensor level.

We then have the following geometric relations:⎧⎪⎪⎨⎪⎪⎩
cpa2

v
= α2 = α1 −

d

v
sin(θ),

tcpa2 = tcpa1 +
d

v
cos(θ),

[6.51]

and we assume that the partial estimate densities are governed by the following laws:⎛⎝ α̂1

θ̂1

t̂cpa1

⎞⎠ −→ N

⎡⎣⎛⎝ α1

θ
tcpa1

⎞⎠ ; Γ1

⎤⎦
⎛⎝ α̂2

θ̂2

t̂cpa2

⎞⎠ −→ N

⎡⎣⎛⎝ α2

θ
tcpa2

⎞⎠ ; Γ2

⎤⎦ .
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A first idea consists of considering the partial estimation vectors Ŷ1 and Ŷ2 as
observations and using an iterative method for estimating the complete state. We can,
however, define an admittedly sub-optimal, but explicit, fusion method as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̂ =
1

σ2
1 + σ2

2

(
σ2

2 θ̂1 + σ2
1 θ̂2

)
,

v̂ =
d sin(θ̂)
α̂1 − α̂2

,

ĉpa1 = α̂1
d sin(θ̂)
α̂1 − α̂2

.

[6.52]

We can then show using Taylor series expansions [DON 00, DON 02] that this
estimator of X asymptotically follows the law:⎛⎜⎜⎝

ĉpa1

v̂

θ̂
t̂cpa1

⎞⎟⎟⎠ −→ N

⎡⎢⎢⎣
⎛⎜⎜⎝

cpa1

v
θ

tcpa1

⎞⎟⎟⎠ ;M1Γ1M
t
1 + M2Γ2M

t
2

⎤⎥⎥⎦ , [6.53]

where:

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v

(
1− α1

α1 − α2

)
α1d cos(θ)
α1 − α2

σ2
2

σ2
1 + σ2

2

0

− v

α1 − α2

d cos(θ)
α1 − α2

σ2
2

σ2
1 + σ2

2

0

0
σ2

2

σ2
1 + σ2

2

1

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, [6.54]

and:

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v

(
α1

α1 − α2

)
α1d cos(θ)
α1 − α2

σ2
1

σ2
1 + σ2

2

0

v

α1 − α2

d cos(θ)
α1 − α2

σ2
1

σ2
1 + σ2

2

0

0
σ2

1

σ2
1 + σ2

2

0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. [6.55]

In the equation above, the matrix Γi, (i = 1, 2) is unknown, which is why we have
to replace it with its estimate. We can then show that the performances of decentralized
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estimation are quite close to those of centralized estimation. The advantage of this
approach, in this context, is therefore quite obvious.

6.10. Discussion

The widespread progress of probabilistic methods, particularly of Bayesian meth-
ods, is the result of the knowledge acquired through numerous experiments that helped
guide the modeling and learning phases, rather than of Cox’s justification [COX 46]
(see Appendix A).

The major advantage of probabilistic methods comes from the fact that they rely
on a solid mathematical background, and have been the subject of many studies. As
a result, they offer a wide selection of tools that can be used both for modeling (for
example, using parametric laws with well-studied properties) and model learning (for
parametric or non-parametric laws) (see, for example, [CHA 95, LEE 87, LUO 89]).
They also suggest usage rules that are either theoretical (bounds, asymptotic values)
or heuristic (hypothesis tests, validity criteria, confidence tables). Finally, probabilis-
tic modeling, supported by the frequentist interpretation, which is widespread in the
world of physics and signal processing, is a concept currently shared universally, serv-
ing as basis for comparison with other models.

Another advantage of probabilistic and statistical methods, this time from the com-
bination perspective, is again that they rely on solid mathematical background and can
be used for updating complex knowledge networks [PEA 86a, PEA 86b]. They allow
the introduction of information that can easily be expressed in probability form, such
as spatial context in the framework of Markov fields (see Chapter 9) or information
quality expressed as the probability for a measurement to be reliable [GRA 00].

However, and despite their solid mathematical background, these methods are also
criticized and suffer several drawbacks. We will discuss them all in this section, but
we should point out that some of them are disputed by unconditional probabilities.

First of all, even though they lead to a good representation of the uncertain nature
of information, they cannot easily be used to represent its imprecision and often cause
confusion between these two concepts. Furthermore, during the learning phase, they
require that very stringent constraints are met by the measurements (imposed by the
basic probability axioms) and by the set of considered classes (comprehensiveness).
The constraints can make learning very difficult (how is it possible to characterize ar-
eas that are not wheat fields in aerial imaging4?), or, if the problem to solve is complex,

4. This problem is an example of the more general problem encountered in shape classification
and recognition: generally, the complement of a class is not a class.
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can lead in practice to inconsistencies because the user cannot in this case take into
account the entire network of probabilistic dependences (this is the case for logic
loops [PEA 86a]). Learning probability laws require, in addition to the hypotheses, a
significant amount of data. Typically, non-parametric learning of a multi-dimensional
law in images or areas of limited size is not always relevant and we often resort to the
use of parametric models, which, in turn, require hypotheses about the forms of the
laws.

The estimation of a priori probabilities is often difficult and has a major impor-
tance in the cases where little information is available (very flat distributions of the
conditional probabilities). If, in the case of image processing, conditional probabili-
ties can often be estimated by learning based on occurrence frequencies, this usually
is not the case for a priori probabilities. Evaluating them goes beyond the framework
of frequentist probabilities and often requires more subjective concepts. Furthermore,
Bayesian combination is constrained, as is modeling, by the probability axioms and
its use in practice often requires simpler hypotheses (such as independence) that are
rarely verified. Probabilistic and Bayesian theory combines the elements of informa-
tion in a conjunctive way, using products of conditional probabilities, which in practice
often leads to a collapse of the probabilities of events that are obtained from a long
chain of inference.

The additivity constraint may be too strong for certain problems. Let us consider
the example given by Smets [SME 78], in the field of medical diagnosis. If a symptom
s is always present in patients with a pathology A and we observe this symptom s,
then the probability for the patient to have A increases. The additivity constraint then
imposes that the probability for the patient not to have A must decrease, even though
there is no reason for it (Hempel’s paradox), if the symptom s can also be observed in
other pathologies5.

Applying Bayesian methods often requires considerable knowledge of the prob-
lem and achieving good operating conditions implies additional considerations for

5. Because of the additivity constraint and Bayes’ rule (equation [A.8]), if p(s | A) = 1,
then p(A | s) = p(A)/p(s) and therefore p(A | s) ≥ p(A). On the contrary, p(Ā | s) =
1 − p(A | s) and therefore p(Ā | s) ≤ p(Ā). Smets’s argument refuting this inequality is
debatable, but it can also be interpreted as follows: the additive probability model may be too
simplistic in this case. In particular, the idea of the probability of a pathology A can make sense,
whereas it is not certain that the probability of [Ā | s] does because Ā does not correspond to
a single pathology, but instead to an infinite, poorly known, imprecise set and it is difficult to
claim that [Ā | s] is a well-defined, binary proposition that accurately represents reality. Thus,
any model that leads to the conclusion p(Ā | s) can easily be disputed. We hope that this
interpretation does not misrepresent Smets’ ideas.
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each problem to tackle6. For example, the “Bayesian” diagnosis can be formalized as
follows:

p
(
Ai | O

)
=

p
(
O | Ai

)
p
(
Ai

)∑
j p
(
O | Aj

)
p
(
Aj

) =
p
(
O | Ai

)
p
(
Ai

)
p
(
O | Āi

)
p
(
Āi

)
+ p
(
O | Ai

)
p
(
Ai

) , [6.56]

where p(Ai | O) refers to the probability for a patient to have the pathology Ai, given
a set of observations O (clinical examinations, images, etc.), p(O | Ai) refers to the
conditional probability of the observations given the pathology and p(Ai) is the a pri-
ori probability of Ai. The decision is made based on the p(Ai | O). The use of this
formula requires either that all of the pathologies are known, or to have statistics con-
necting the observations to Āi (“non-pathology Ai”). Both solutions seem unrealistic.
Furthermore, it has to be possible for all of the probability distributions involved in the
formula to be estimated. The problem then is the limit to the statistical tests connecting
symptoms or observations with pathologies and the difficulty of having an estimate of
the a priori probabilities. These limits are of course general and are not specific to this
particular example.

Probabilistic modeling can only deal with singletons that represent the different
hypotheses, under the closed world’s constraint. We saw in the previous example of
medical diagnosis how this hypothesis does not fit reality. Furthermore, singletons
cannot be used to represent complex situations. Let us take the case of images affected
by the partial volume effect (a common situation in medical imaging). The usual mod-
els in other works for representing this phenomenon consist of assigning to a point
probabilities of belonging to the types of tissue it is comprised of, which are propor-
tional to the amount of each type of tissue in the volume represented by this point.
However, this does not correspond to anything real. This type of probabilistic model
implies that we are faced with an uncertainty regarding the class to which the point
belongs (we know that the point can belong to several classes but we do not know
which one), whereas in fact it belongs to several different classes simultaneously. To
us, this seems to be the typical example of probabilistic models that are used but do
not properly model the observed phenomenon.

Fuzzy sets or belief function theory (or Dempster-Shafer theory) allow us to better
describe the reality of certain problems and to find less disputable interpretations.

6. Frequentist methods lead to the opposite situations, particularly Fisher’s theory, which is
essentially automatic: “faced with a new situation, the statistician can apply maximum like-
lihood in an automatic fashion, with little chance (in experienced hands) of going far wrong
and considerable chance of providing a nearly optimal inference. In short, he does not have to
think a lot about the specific situation in order to solve his problem” [EFR 86]. It is a theory of
archetypes, that allows us to obtain reasonable solutions by separating the different problems,
in cases where the Bayesian approach, which deals with everything “all at once”, would be too
complex. This automatic nature is certainly one of the reasons behind the popularity of Fisher’s
theory, despite the disadvantages of the frequentist methods.
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Fuzzy sets, for example, can perfectly account for the partial belonging phenomenon
that is in fact observed. Relaxing the probability additivity constraint is not enough
to solve the problem: the solution does in fact involve the modeling of a completely
different phenomenon. We will discuss this further in the next two chapters.

Another limitation stems from the difficulty of adding, to our reasoning system,
knowledge that cannot be simply expressed with probabilities.

Along the same idea, it is difficult to model the absence of knowledge, imprecise
knowledge (unlike uncertain knowledge, which is naturally represented by probabil-
ities), or also what we do not know about a phenomenon. The insufficient reason
principle is not enough for taking into account what is not known and can lead to
contradictions depending on how it is expressed.

The same type of problem arises with the maximum entropy principle. Shafer’s
well-known example about the probability for the existence of life on planet Sirius is
a good illustration [SHA 76]7. These drawbacks, which are not better solved using a
subjective version of probabilities, emerge whenever the objective is to model human
reasoning that involves decisions based on data that is at the same time imprecise and
uncertain, partial, not completely reliable, conflicting, and constraints and objectives
that are not always very precise.
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Chapter 7

Belief Function Theory

7.1. General concept and philosophy of the theory

Belief function theory (or Dempster-Shafer theory) dates back to the 1970s but its
use in signal and image fusion is relatively recent. Nevertheless, the first applications
show some promise and in this chapter we will point out the characteristics of this
theory that deserve our attention, both from the perspectives of representing knowl-
edge and its imperfections (imprecision, uncertainty, ambiguity, absence of knowl-
edge, conflict) and of combining it.

Although this theory is inspired by concepts of superior and inferior probabilities,
and therefore often considered from a probabilistic point of view, it can be interpreted
in a more general way, from a subjective point of view, as a quantitative formal model
of degrees of confidence [SME 90a]. One of the main assets of this theory is that it
deals with subsets rather than singletons, making it very flexible for modeling many
of the situations we come across in signal and image fusion. It also provides us with
representations of uncertainty, imprecision, as well as of the absence of knowledge.
For this purpose, several functions are used to model the information and manipulate
it, instead of simply the probabilities used in the previous chapter. This theory can
be used to measure conflicts between sources and to interpret them in terms of the
reliability of the sources, of an open world or of contradicting observations. Although
several combination modes are possible, conjunctive combination is the most com-
monly used in the fields we are concerned with here and we will focus mostly on
this mode. This means that the essential part of the user’s work will be transferred to
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the phase that consists of modeling and representing the information and knowledge
available.

From now on, we will very often illustrate our discussion with the example of
multi-source classification.

7.2. Modeling

Belief function theory, like possibility theory, allows us, as we will see in the fol-
lowing chapter, to represent both imprecision and uncertainty using mass functions
m, plausibility functions Pls and belief functions Bel [GUA 91, SHA 76, SME 90a].
Mass functions are defined for all of the subsets in the space D, referred to here as the
frame of discernment (containing, for example, the classes we are interested in), and
not simply the singletons such as probabilities which only measure the probability of
belonging to a given class.

Let us assume that D = {C1, C2, . . . , Cn} where each Ci refers to a hypothesis
that supports a decision (typically a class in a multi-source classification problem).
A mass function is defined as a function of 2D (the sets of subsets of D) into [0, 1].
Usually, the condition m(∅) = 0 is imposed, as well as a normalization of the form:∑

A⊆D

m(A) = 1, [7.1]

which guarantees the commensurability between several sets of masses.

The constraint m(∅) = 0 corresponds to a closed world hypothesis, in which all of
the possible situations are in fact represented in D (which implies that we are capable
of making a list of them). If this constraint is relaxed and if we accept having a mass
that is strictly positive over ∅, this then corresponds to an open world hypothesis, in
which the solutions outside of D can be considered.

A focal element is a subset A of D such that m(A) > 0. The collection of focal
elements is called the core.

A belief function Bel is a totally increasing function defined from 2D into [0, 1]:

∀A1 ∈ 2D, . . . Ak ∈ 2D,

Bel
(
∪i=1···k Ai

)
≥

∑
I⊆{1···k}, I �=∅

(−1)|I|+1 Bel
(
∩i∈I Ai

)
, [7.2]

where |I| refers to the number of elements in I and such that Bel(∅) = 0, Bel(D) =
1.
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Given a mass function m, the Bel function defined by:

∀A ∈ 2D, Bel(A) =
∑

B⊆A,B �=∅
m(B) [7.3]

is a belief function. Conversely, from a belief function defined as a totally increasing
function (inequality [7.2]) such that Bel(∅) = 0, Bel(D) = 1, we can define a mass
function by:

∀A ∈ 2D, m(A) =
∑
B⊆A

(−1)|A−B| Bel(B). [7.4]

This mass function then verifies equation [7.3].

The belief function measures the total confidence placed in the set A. The empty
set is excluded from the sum because it would otherwise be found in both the evalua-
tion of A and the evaluation of AC (∅ ⊂ A and ∅ ⊂ AC).

Thus, having a zero mass on a subset A does not mean that this set is impossible,
simply that we are not capable of assigning a level precisely to A, since we could have
non-zero masses on subsets of A, which would lead us to Bel(A) �= 0. This comment
is very important for modeling because it allows us not to assign confidence values
when we are not able to do so (this way, we are not forcing information where none is
available).

In the open world hypothesis, we have:

Bel(D) = 1−m(∅). [7.5]

A plausibility function Pls is also a function of 2D into [0, 1] defined by:

∀A ∈ 2D, Pls(A) =
∑

B∩A�=∅
m(B) = 1− Bel

(
AC
)
. [7.6]

More generally, in order to account for the possibility of dealing with an open
world, we have:

Pls(A) =
∑

B∩A�=∅
m(B) = Bel(D)− Bel(AC). [7.7]

Plausibility measures the maximum confidence that can be placed in A. This func-
tion has a natural interpretation in the transferable belief model [SME 90a] in which
additional information is considered to allow for the transfer of belief to more precise
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subsets. Plausibility then represents the maximum belief that could potentially be
assigned to a subset A if we learned, for example, that the solution is in A (all of
the confidence placed in a subset B intersecting A is then transferred to A in order to
lower to 0 the confidence in AC).

We have the following properties:

∀A ∈ 2D, Pls(A) ≥ Bel(A), [7.8]

∀A ∈ 2D, Bel(A) + Bel(AC) ≤ 1, [7.9]

∀A ∈ 2D, Pls(A) + Pls(AC) ≥ 1, [7.10]

∀A ∈ 2D, Bel(A) + Bel(AC) = 1⇐⇒ Bel(A) = Pls(A). [7.11]

The interval [Bel(A),Pls(A)] is referred to as the confidence interval and its length
measures the absence of knowledge we have of an event A and its complement.

If we assign masses only to the simple hypotheses (m(A) = 0 for |A| > 1), then
the three functions m, Bel and Pls are equal and are a probability. They are referred
to as Bayesian mass functions. In more complex situations, this is not the case and
there is no direct equivalence with probabilities. Functions similar to credibility and
plausibility functions could be obtained, for example, from probabilities conditional
to pessimistic and optimistic behaviors respectively, but their formalization would be
much more difficult than what belief function theory has to offer.

Among the distinctive mass functions, there is a category for simple support func-
tions, for which all of the mass is assigned to a non-empty subset A and to a set of
discernment D:

m(A) = s

m(D) = 1− s

m(B) = 0 for any B, B �= A, B �= D,

with s ∈ [0, 1].

If s is equal to 0, then the entire mass is assigned to D. This function represents
the total lack of knowledge, in the sense that no subsets can be distinguished.

The possibility of assigning masses to the composite hypotheses and therefore to
work on 2D rather than on D constitutes one of the advantages of this theory because
it allows for very flexible and rich modeling, particularly of ambiguity or hesitation
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between two classes. Here are a few examples of situations in which fusion based on
belief function theory can be used:

– in extreme cases (which can be considered ideal) where we know all of the infor-
mation regarding the problem at hand;

– when a source only provides information on certain classes: for example, certain
PET1 images provide information on the limits of the brain but not the head;

– when a source is not capable of telling the difference between two hypotheses:
belief function theory can then be used to consider the disjunction of these two classes,
without adding arbitrary information that would force their separation;

– when attempting to model partial volume effects, typically by representing a
pixel or a voxel belonging to several classes;

– when attempting to represent a source’s overall reliability: this can be done by
assigning a non-zero mass to D;

– in cases where a source’s reliability depends on the classes (for example, the
anatomical information provided by functional brain images is not very reliable,
whereas MRI images are very reliable for anatomical classes);

– in cases where we want to add a priori information: even if it is not easy to
use probabilities to represent this information, it can still be added if they lead to a
way of choosing focal elements (particularly hypothesis disjunctions), of defining or
modifying mass functions.

7.3. Estimation of mass functions

Estimation of mass functions is a difficult problem because there is no universal
solution. The difficulty gets worse here if we want to assign masses to the compos-
ite hypotheses [GAR 86, LOW 91]. In image processing, for example, they can be
constructed on three levels: on the highest level (which is often abstract and sym-
bolic), the representation of information is used in a fashion similar to what is done
in artificial intelligence and masses are assigned to propositions, and often provided
by experts [BAL 92, GOR 85, NEA 92]. Most of the time, this information is not
derived directly from data measurements and the corresponding methods are there-
fore not specific to signal and image processing. On an intermediate level, masses are
calculated based on attributes and can rely, for example, on image geometric models
[AND 88, CHE 93, CLE 91, CUC 92]. This level is well-suited for model-based shape
recognition problems, but it is difficult to use for fusion problems on complex struc-
tures without a model. On a low level (the pixel in image processing), many methods
are possible and most rely on statistical shape recognition methods.

1. Positron Emission Tomography, used in particular for functional brain imaging.
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The simplest way imaginable consists of calculating the masses on the singletons
in a source (an image, for example) Ij by:

mj

({
Ci

})
(x) = M j

i (x), [7.12]

where M j
i (x) is estimated most often as a probability. The masses on all of the other

subsets D are then equal to zero. Clearly, this model is very simplistic and does not put
to use the interesting characteristics of belief function theory. However, many meth-
ods rely on an initial model like this one, or only use certain composite hypotheses, in
a simplifying and often very heuristic method [CLE 91, LEE 87, RAS 90, ZAH 92].
Recent work addressed the problem of estimating belief functions from sample data.
For instance, belief functions are estimated from realizations of a random variable,
with the constraint that they converge towards the probability distribution of this vari-
able when the sample size goes towards infinity (see [DEN 06]). But other methods
can also be considered. In the following sections, we present a few of the models found
in other works.

7.3.1. Modification of probabilistic models

The simplest and most often used model consists of using the discounting tech-
nique [SHA 76]. The new masses m′ are calculated based on the initial masses m as
follows (the index j representing the source of information, as well as the element x
we are reasoning on, are omitted here):

m′({Ci

})
= αm

({
Ci

})
, [7.13]

m′(D) = 1− α + αm(D), [7.14]

where α ∈ [0, 1] is the discounting coefficient. In the case where the initial masses
are learned from singletons only, for example, based on probabilities, then m(D) = 0
and m′(D) = 1−α. This technique is often used to weaken a source depending on its
reliability and makes it possible to assign to D a mass that will be small if the source
is reliable and high if it is not. In extreme cases, the value α = 0 is used for a source
that is not reliable at all and all of the mass is then assigned to D, which represents the
total absence of knowledge. The value α = 1 is used for a reliable source in which all
of the mass is assigned to the singletons and there is no ambiguity between classes.

This type of model is very simple. Learning the masses of the singletons can bene-
fit from the usual techniques of statistical learning. However, hypothesis disjunctions
are not modeled, which strongly reduces the applicability of this model.

Two models based on the probabilistic approach have been suggested by Appriou
[APP 93], taking into account disjunctions other than D. These models assume that
initial estimations have been conducted of the conditional probabilities p(f(x) | Ci)
(where f(x) refers to the characteristics of x extracted from the source and on which
the fusion is based), which are denoted more simply by p(x | Ci). The mass function
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associated with a source is calculated by combining the mass functions associated
with each singleton, defined in the first model by:

mi
({

Ci

})
(x) =

αiRp
(
x | Ci

)
1 + Rp

(
x | Ci

) , [7.15]

mi
(
D \

{
Ci

})
(x) =

αi

1 + Rp
(
x | Ci

) , [7.16]

mi(D)(x) = 1− αi, [7.17]

where αi is a discounting coefficient related to the class Ci, which makes it possible
to take into account the source’s reliability for this particular class (and not its overall
reliability, unlike the previous model) and R is a probability weighting coefficient. If
R = 0, only the reliability of the source is taken into account, otherwise the data is
also taken into account.

In the second model, the masses associated with each singleton are defined by:

mi
({

Ci

})
(x) = 0, [7.18]

mi
(
D \

{
Ci

})
(x) = αi

(
1−Rp

(
x | Ci

))
, [7.19]

mi(D)(x) = 1− αi + αiRp
(
x | Ci

)
. [7.20]

This model corresponds to the case where p(x|Ci) gives us information essentially
on what Ci is not.

The mass associated with the source is then calculated as⊕im
i, where⊕ is Demp-

ster’s orthogonal sum (see section 7.4). This model is well-suited for cases where one
class is easily learned compared to all of the others, which is common in shape recog-
nition in images, or in the case when each class is determined based on an adequate
sensor (for example, a road sensor in an aerial image can be used to define the proba-
bility of belonging to the road, as opposed to belonging to all of the other classes, but
is not capable of telling these other classes apart).

In [DRO 97], disjunctions are defined based on a significance criterion for the
conditional probabilities. If only one probability p(x|Ci) is significant (thus creating
the need to define thresholds), then a simple mass model involving the singletons
is used. If several probabilities are significant, the disjunctions of the corresponding
hypotheses are also taken into account. For example, if three values are significant and
are such that p(x|Ci) > p(x | Cj) > p(x | Ck), the mass function is defined by:

m
({

Ci

})
(x) = p

(
x | Ci

)
− p
(
c | Cj

)
, [7.21]

m
({

Ci ∪ Cj

})
(x) = p

(
x | Cj

)
− p
(
x | Ck

)
, [7.22]

m
({

Ci ∪ Cj ∪ Ck

})
(x) = p

(
x | Ck

)
, [7.23]
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then the masses are normalized. If no probability is significant, the mass is assigned
entirely to D.

7.3.2. Modification of distance models

An approach using shape recognition is suggested in [DEN 95]. If each class Ci is
represented by a prototype (also called a center) xi, then a mass function associated
with each class can be defined, in which Ci and D are the only focal elements:

mi
({

Ci

})
(x) = αe−γd2(x,xi), [7.24]

mi(D)(x) = 1− αe−γd2(x,xi). [7.25]

The parameters α and γ allow us to modify the amount of absence knowledge and
the types of mass functions. Using the distance d2(x, xi), the mass can be set so as to
be high when x “is similar” to the class Ci. The mi are then combined according to
Dempster’s rule (see section 7.4) in order to have a mass that takes into account the
information about all of the classes.

This approach can also be applied to the k closest neighbors. The distance is the
one between x and one of its neighbors, and the mass is assigned, according to the
previous model, to the class to which this neighbor belongs and to D. The functions
calculated for each of the neighbors of x are then combined using Dempster’s rule.

7.3.3. A priori information on composite focal elements (disjunctions)

In many applications, it is possible to have a priori information available that
can be used to determine, under some supervision, which focal elements should be
taken into account. These methods were used, for example, in [BLO 96, MIL 00,
MIL 01, TUP 99]. In [BLO 96], images of the brain are combined to detect patholo-
gies (see section 7.7). Mass functions are automatically estimated based on gray levels
[BLO 97b] and the classes that cannot be distinguished in certain images from their
gray levels are grouped together in disjunctions. In [TUP 99], the results from sensors
in several structures are fused in order to interpret a radar image. The abilities of a
sensor to tell the difference or not between various classes of structures is what makes
it possible to define focal elements and the class disjunctions that need to be taken
into account. In [MIL 00, MIL 01], attributes extracted from images provided by dif-
ferent sensors are combined in order to distinguish mines from harmless objects, in a
humanitarian demining program. The measurements to combine can be specific to a
class or to the entire frame of discernment. For example, the depth of the objects can
be used to assign a mass to harmless objects if it is high, but cannot be used to tell the
difference between objects if it is low and the mass is then assigned to D.
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This type of approach is very effective if such information is available, but it
remains supervised and therefore can only be applied to problems with a reasonable
number of elements in D.

7.3.4. Learning composite focal elements

Learning methods for focal elements often rely on prior classifications conducted
in each source separately. Typically, based on confusion matrices, it is possible to
identify classes confused according to a source, whose reunion will constitute a focal
element of the mass function assigned to this source.

In a completely non-supervised way, the intersection between the classes detected
in a source and those detected in another source can define the singletons and the frame
of discernment, with the classes detected in each source then becoming disjunctions
[MAS 97].

Dissonance and consonance measures are given in [MEN 96]. The idea consists
of modifying an initial mass function, involving only the singletons, by discounting
the masses of the singletons depending on their levels of consonance and by creating
masses for disjunctions of two classes depending on the level of dissonance between
these two classes. This method was applied to the fusion of several classifiers. The
consonance of a class is calculated based on the number of elements affected to that
class by all of the classifiers and the dissonance based on the number of elements that
are classified differently.

In the case of elements that are characterized by a measurement in a one-dimen-
sional space (represented typically by a histogram), the masses on the composite
hypotheses can be defined in the areas of overlapping or ambiguity between two neigh-
boring classes. Another method, based on thresholding by hierarchy, is suggested in
[ROM 99] where each peak of the histogram corresponds to a singleton. Then the
histogram is progressively thresholded at decreasing heights and disjunctions are cre-
ated when maxima are grouped together. This method can be compared to component
trees, which are used, for example, in mathematical morphology with the concept of
cup topology [DOK 00], and to confidence intervals and their relations with possibility
distributions [DUB 99, MER 05] (see Chapter 8).

7.3.5. Introducing disjunctions by mathematical morphology

Without being restricted to one-dimensional representation spaces, the method
suggested in [BLO 97a] allows for the calculation of masses for disjunctions, by ero-
sions and dilations of masses first defined for singletons. The properties of these mor-
phological operations (of duality in particular) make it possible to interpret them as
beliefs and plausibilities, from which the masses can then be inferred.
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7.4. Conjunctive combination

7.4.1. Dempster’s rule

Let mj (j = 1 · · · l) be the mass function defined for the source j. The conjunctive
combination of the mass functions is conducted according to Dempster’s orthogonal
rule [SHA 76, SME 90a], defined ∀A ⊆ D by:(

m1 ⊕m2 ⊕ · · · ⊕ml

)
(A) =

∑
B1∩···∩Bl=A

m1

(
B1

)
m2

(
B2

)
· · ·ml

(
Bl

)
. [7.26]

Axiomatic justifications of this rule can be found in [SME 90a]. The differences
between these axioms and those of Cox [COX 46] (which are used to justify the prob-
ability rules) explain the origins of the differences between the two theories [BLO 95].
These aspects are discussed in Appendix B.

7.4.2. Conflict and normalization

In the non-normalized equation [7.26], the mass assigned by combination to the
empty set is usually not equal to zero. It is often interpreted as the conflict between the
sources. Let us note that this conflict measurement is not absolute, but instead depends
on the modeling (particularly of the distribution of masses among the different subsets
of D). There are two essential sources of conflict: either the sources are not reliable, or
they provide information about different phenomena. In the first case, it is acceptable
to combine the sources and a solution for taking the conflict into account is to weaken
the sources according to their reliability. We will discuss this further later on. In the
second case, combination makes no sense. Methods for regrouping sources according
to the phenomena they observe have been suggested, with the objective of combining
only the sources within each group. These groups are calculated in such a way as to
minimize the conflict within each group [MIL 01, SCH 93].

In an open world hypothesis, a non-zero mass on the empty set can also represent
a solution that was not predicted in D. Under a closed world hypothesis, where every-
thing that is possible is represented in D, this interpretation is not acceptable, which
leads us to normalizing the result of the combination in the following form2:

(
m1 ⊕ · · · ⊕ml

)
(A) =

∑
B1∩···∩Bl=A m1

(
B1

)
· · ·ml

(
Bl

)
1−∑B1∩···∩Bl=∅ m1

(
B1

)
· · ·ml

(
Bl

) , [7.27]

2. This normalized form is Dempster’s rule in its strict sense [SHA 76]; the non-normalized rule
was suggested later [SME 90a] but seems preferable today for most applications.
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and (
m1 ⊕m2 ⊕ · · · ⊕ml

)
(∅) = 0

if the denominator of equation [7.27] is not equal to zero, i.e. if:

k =
∑

B1∩···∩Bl=∅
m1

(
B1

)
m2

(
B2

)
· · ·ml

(
Bl

)
< 1. [7.28]

Therefore, this quantity (which measures the conflict between sources) is directly
taken into account in the combination in the form of normalization factor. It represents
the mass that would be assigned to the empty set if we did not have this normalization
(equation [7.26]). It is important to take into account this value in order to appreciate
the quality of the combination: it may not make much sense in case of a strong conflict
and lead to decisions that could be disputed.

Let us consider a simple example in which D = {C1, C2, C3} and two mass
functions with only the singletons as their focal elements and the following values:

C1 C2 C3

m1 0.9 0.0 0.1

m2 0.0 0.9 0.1

Their non-normalized and normalized fusions lead to:

C1 C2 C3 ∅
m1 ⊕m2 non-normalized 0.0 0.0 0.01 0.99

m1 ⊕m2 normalized 0.0 0.0 1.0 0.0

All of the mass is then concentrated in C3, which is the only class in which both
sources agree, but only to say that the solution is hardly plausible. The normalization
masked the conflict. The non-normalized form is often preferable in case of conflict.
Here, it allows us to assign the essential part of the mass to the empty set and the
origin of the conflict can be attributed to the open world hypothesis, a low reliability
of at least one of the two sources, or to the fact that one source sees a class C1 object
whereas the second source see another class C2 object.
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Methods other than normalization have been suggested for eliminating the mass
assigned to the empty set. For example, this mass is assigned to D in [YAG 87],
in other words assigned to ignorance. In [DUB 88], a more subtle method is sug-
gested: for example, if the focal elements A1 and A2 of two sources are in conflict
(A1 ∩ A2 = ∅), then the product m1(A1)m2(A2) is assigned to m(A1 ∪ A2). This
means we are assuming that at least one of the two sources is reliable without speci-
fying which and the disjunctive form of the result is the most cautious attitude.

7.4.3. Properties

Let us now examine the properties of the combination rule. It is commutative and
associative. The mass function defined by:

m0(D) = 1 and ∀A ⊆ D, A �= D, m0(A) = 0 [7.29]

is the neutral element for the combination. This mass represents a completely uninfor-
mative source, which is unable to distinguish any element of D. In fact, this is what
our intuition tells us, that the mass function plays no part in the combination. The def-
inition of this mass function replaces the indifference principle used in probabilities
(equal distribution of the probabilities over all of the elements) and better represents
the absence of information.

The law ⊕ is not idempotent. Consider again the previous example, but this time
with the following mass functions:

C1 C2 C3

m1 0.7 0.2 0.1

m2 0.7 0.2 0.1

Their non-normalized and normalized fusions lead us to:

C1 C2 C3 ∅
m1 ⊕m2 non-normalized 0.49 0.04 0.01 0.46

m1 ⊕m2 normalized 0.91 0.07 0.02 0.0

This example illustrates the non-idempotence of the combination rule. The
strongest values are reinforced and the smaller ones weakened. It is also important to
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note that the conflict between two identical mass functions is not equal to zero, and
that it increases as the mass becomes more spread out over the singletons.

At first, this combination rule was thought to be applicable only under the source
independent hypothesis. It has been shown [QUI 89, QUI 91] that the rule can still be
applied without this hypothesis, by relying on the analogy with random closed sets.
In less technical and more philosophical terms, independence in the framework of
belief functions should not be understood in a statistical sense, but instead in a more
“cognitive” sense [SME 93]. This is referred to as cognitive independence. Imagine,
for example, that we wish to combine the opinions of experts. They are likely not to
be statistically independent (if they are experts in the same field), but we can expect
them to be cognitively independent, i.e. each one makes up his own opinion with-
out consulting the others. This is the type of independence Dempster’s rule applies
to, which results in the non-idempotence of the rule, causing the reinforcement of
identical mass functions. Under the dependence hypothesis, we would want an idem-
potent rule instead. We will continue with these considerations with fuzzy set theory
in Chapter 8.

When the functions m, Bel and Pls are probabilities (i.e. when only the focal
elements are singletons), Dempster’s combination law is consistent with the traditional
probability laws. In this light, probabilities are shown as the limit of belief theory,
when there is no ambiguity or imprecision and only the uncertainty of the data needs
to be taken into account.

Dempster’s rule has a conjunctive behavior, since it provides focal elements that
are the intersections of the focal elements of the initial mass functions. Therefore, it
reinforces focusing and decreases the length of the confidence intervals [Bel,Pls].

In practice, the combination calculation is conducted by laying down the intersec-
tion table of the focal elements. For example, if m1 pertains to C1 ∪ C2 (typical of a
source no longer capable to tell two classes apart) and C3, and m2 to C1 and C2 ∪C3,
the focal elements of m1 ⊕m2 are given by the following intersection table:

C1 ∪ C2 C3

C1 C1 ∅
C2 ∪ C3 C2 C3

In this case, the focal elements are simply the singletons and the empty set. This
example illustrates how conjunctive combination reduces the imprecision and solves
(or generally reduces) the ambiguity of each source.
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In particular, the intervals [Bel,Pls] are reduced after the combination, since the
mass functions are more focused than the initial masses (they pertain to smaller sets).

On the other hand, the mass on the empty set (which measures conflict) increases
during fusion.

Let us now assume that the model partly includes the absence of knowledge and
that a non-zero mass is assigned to D in both sources. We then get the following
intersection table:

C1 ∪ C2 C3 D

C1 C1 ∅ C1

C2 ∪ C3 C2 C3 C2 ∪ C3

D C1 ∪ C2 C3 D

This time, the ambiguity is only partially reduced and non-zero mass remains on
the imprecise elements (class disjunction). The conflict, on the other hand, is dimin-
ished, which is a property that is true in general of the combination of weakened
masses by reinforcing D.

7.4.4. Discounting

Discounting allows us to model the reliability of the sources with the help of a
coefficient α (α ∈ [0, 1]) used for increasing the mass on D. The idea is to strengthen
the absence of knowledge as the source becomes less reliable. A mass function m is
then transformed into a mass function m′ according to the following formulae:

m′(A) = αm(A) ∀A, A �= D,

m′(D) = 1− α
(
1−m(D)

)
= 1− α + αm(D).

The effect of discounting is to increase the intervals [Bel,Pls] and, during the
combination, to reduce conflict.

7.4.5. Conditioning

We now consider the specific case of a source that provides a certain element of
information on a subset B of D. This information is modeled as follows:

mB(B) = 1 and ∀A ⊆ D, A �= B, mB(A) = 0. [7.30]
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All of the sources have to be “conditioned” by mB , in order to account for the
fact that the truth can only be in B. Conditioning is done simply by combining a mass
function m with mB :

∀A ⊆ D, m⊕mB(A) =
∑

A=B∩C

m(C), [7.31]

which can also be written:

∀A ⊆ D, A �⊆ B, m⊕mB(A) = 0, [7.32]

∀A ⊆ D, A ⊆ B, m⊕mB(A) =
∑

X⊆BC

m(A ∪X). [7.33]

Conditioning is performed in accordance with the transferable belief model
[SME 90a]: knowledge of B leads us to transferring all of the mass on the subsets
included in B. Thus, the belief initially assigned to a subset A=A1∪A2 (with A1⊆
B and A2⊆BC) represented the fact that the truth could be anywhere in A. Knowl-
edge of B can now be used to specify the information and to reduce A to A1. In a
way, the diffuse belief in A is now concentrated in the only part that is included in B.

Conditioning performed according to the conjunctive rule is the equivalent, in the
framework of belief functions, of conditional probabilities, which also corresponds to
a conjunction. This is because we have:

P (X | B) =
P (X ∩B)

P (B)
.

7.4.6. Separable mass functions

We now consider simple support mass functions. If m1 and m2 are simple support
functions with the same support A, with weights s1 and s2, then the combination
yields a function with the same support and a weight s1 + s2 − s1s2. Such functions
are never cause for conflict.

If both functions have different supports A1 and A2, then the combination leads
to: (

m1 ⊕m2

)(
A1 ∩A2

)
= s1s2(

m1 ⊕m2

)(
A1

)
= s1

(
1− s2

)
(
m1 ⊕m2

)(
A2

)
= s2

(
1− s1

)
(
m1 ⊕m2

)
(D) =

(
1− s1

)(
1− s2

)
(
m1 ⊕m2

)
(B) = 0 ∀B, B �= A1, B �= A2, B �= A1 ∩A2, B �= D.
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Particularly, if A1 ∩ A2 = ∅, then both functions cause conflict, since a non-zero
mass is assigned to the empty set. When s1s2 �= 1, the resulting function is referred
to as a separable mass function.

7.4.7. Complexity

In the general case, as shown by formula [7.26], the combination has an exponen-
tial complexity. In practice, it is rare to have to take into account all of the subsets of
D and the complexity is often more reasonable. A linear complexity is obtained if the
masses are modeled according to Barnett’s structure [BAR 81], i.e. if the focal ele-
ments of each source are only the singletons and their complements (separable func-
tions). This structure is suited for shape recognition problems in which each source is
a detector that can be used to distinguish one class from all the others. But it is not
general and cannot be applied to sources which require focal elements that can be any
disjunctions.

7.5. Other combination modes

Other combination modes, such as disjunctive or compromise modes, are possible
by replacing the intersection in formula [7.26] with another set operation. For exam-
ple, disjunctive fusion is obtained by taking the union [SME 93]:(

m1 ⊕∪ · · · ⊕∪ ml

)
(A) =

∑
B1∪···∪Bl=A

m1

(
B1

)
· · ·ml

(
Bl

)
. [7.34]

Let us note that this combination cannot lead to conflict. It widens the focal ele-
ments therefore providing less precise information from each of the sources. This
fusion can be useful if we are unable to model beforehand the reliabilities, ambigu-
ities and imprecisions of the sources. For example, if a source is focused in A and
another one in B with A ∩ B = ∅, one way of not solving the conflict is to conclude
that the truth is in A ∪B, thus allowing a disjunctive fusion.

However, in most image fusion applications, the goal is to obtain a combined mass
function that is more focused than the initial masses. This is why conjunctive fusion is
the preferred method, since it implies that the imprecisions, reliabilities, ambiguities
of each source are taken into account in the modeling stage. It then constitutes the
most crucial phase and requires the most attention.

7.6. Decision

Once the combined mass functions have been combined, the belief and plausibility
functions are inferred from equations [7.3] and [7.6]. The last step is the decision
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phase, where a subset of D has to be chosen to maximize a certain criterion. From
here on, m, Bel and Pls refer to the mass, belief and plausibility functions obtained
after the combination.

In belief function theory, several decision rules are possible and are most of the
time applied to the choice of a singleton Ci.

The maximum plausibility:

x ∈ Ci if Pls
(
Ci

)
(x) = max

{
Pls
(
Ck

)
(x), 1 ≤ k ≤ n

}
, [7.35]

this rule being optimal in the sense laid down by probabilistic criteria for mass func-
tions derived from probabilities [APP 91].

The maximum credibility:

x ∈ Ci if Bel
(
Ci

)
(x) = max

{
Bel
(
Ck

)
(x), 1 ≤ k ≤ n

}
, [7.36]

which is equivalent to the maximum plausibility criterion in the case where the result
of the combination only involves singletons.

The maximum credibility without confidence interval overlap (without the risk of
an error):

x ∈ Ci if Bel
(
Ci

)
(x) ≥ max

{
Pls
(
Ck

)
(x), 1 ≤ k ≤ n, k �= i

}
, [7.37]

this last condition being particularly strict and possibly leading to no decision being
made.

The maximum credibility with discarding [MAS 97]:

x ∈ Ci if Bel
(
Ci

)
(x) = max

{
Bel
(
Ck

)
(x), 1 ≤ k ≤ n

}
[7.38]

and

Bel
(
Ci

)
(x) ≥ Bel

(
CC

i

)
,

which expresses the fact that the decision has to be unambiguous enough since the
condition will be met if the mass is very focused on Ci.

The maximum pignistic probability defined by [SME 90b]:

∀Cj ∈ D, BetP
(
Cj

)
=
∑

Ci∈A

m(A)
|A|
(
1−m(∅)

) , [7.39]

where |A| refers to the number of elements in A thus making it possible to switch to
a probabilistic framework, which is often desired for making the decision (or the bet)
or for associating this decision with other probabilistic criteria, for example, in the
framework of Markov fields for spatial regularization criteria [TUP 99].
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Mixed rules have also been suggested, in which plausibility is used for certain
classes and belief for others. This makes it possible to favor the detection of classes
for which plausibility is considered [MIL 01].

The decision can also be made in favor of a disjunction. In this case, it is imprecise
but does allow us to take into account class mixture or ambiguities remaining after the
fusion. This type of decision is interesting, for example, when taking into account the
partial volume effect and the voxels affected by it will thus be classified as mixture
voxels, rather than voxels from pure classes, as our intuition would tell us [BLO 96].
The decision also allows us to indicate the elements for which fusion is not enough to
clear up the ambiguities and therefore to suggest the acquisition of new information,
as well as the use of active fusion [GAN 96, PIN 95].

Finally, decision rules with costs have been suggested [DEN 95]. For any function
f of D in R, the lower and upper expectations of f relative to a belief function Bel, in
Dempster’s sense, are defined by:

E∗(f) =
∑
A⊆D

m(A) min
Ci∈A

f
(
Ci

)
, [7.40]

E∗(f) =
∑
A⊆D

m(A) max
Ci∈A

f
(
Ci

)
. [7.41]

Decision rules with costs are then obtained by choosing for f a function that
expresses the cost of an action when the element to which the decision pertains belongs
to the class Ci. This cost function can also be introduced with a traditional proba-
bilistic decision rule with costs, using pignistic probability. Thus, the decision can be
optimistic if the lower expectation is minimized, pessimistic if the upper expectation
is minimized, or intermediate if the pignistic probability is used.

7.7. Application example in medical imaging

The application we have chosen here, to give the reader an idea of the poten-
tial of belief function theory, is the classification of MRI images presenting a pathol-
ogy known as adrenoleukodystrophy (ALD), which are acquired with two echo times
[BLO 96]. For doctors, obtaining significant measurements requires a segmentation
of both the pathological areas and ventricles, which are visible on different images.
The initial images are represented in Figure 7.1. This figure shows a good discrimi-
nation between the brain, the ventricles (V) and the cerebrospinal fluid (CSF) on the
first image, but white matter (WM) cannot be distinguished from gray matter (GM),
or WM from CSF. On the other hand, the ALD area is clearly visible on the second
image (in white). This image presents small differences between WM and GM, but the
ventricles have almost the same gray levels as the GM and their contours are indistinct.
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Figure 7.1. Example of an MRI section of the brain acquired with two echo times
(Saint-Vincent de Paul hospital, radiology service, Professor Catherine Adamsbaum).
The pathological area corresponds to the whiter areas in the upper part of the image

These two images constitute a typical example to illustrate the fusion by belief
function theory. We will only present here the results obtained for three classes (C1 =
WM + GM, C2 = V + CSF and C3 = ALD).

The definition of the focal elements is supervised using a reasoning method that
takes into account the knowledge available and the characteristics of the image with
respect to the classes we are focusing on. For the example described here, the focal
elements of the mass function m1 assigned to the first image are C2, C1∪C3, since C1

and C3 are not well discriminated on this image. Zero mass functions are assigned to
the other composite hypotheses, since the corresponding classes cannot be confused.
On the second image, it is on the other hand difficult to separate the brain from the ven-
tricles and therefore the focal elements of m2 are C3 and C1∪C2. We will discuss later
the introduction of overall absence of knowledge and of a mass explicitly representing
the partial volume. The mass functions are chosen with a simple trapezoidal shape,
whose parameters are automatically determined on the histograms [BLO 97b]. This is
a crude model, but it has proven to be sufficient for this application. The functions are
then normalized so as to satisfy the normalization constraint

∑
A⊂D m(A) = 1. With

this model, the classification is performed only based on the gray levels and the fusion
is performed on the pixel level, therefore without spatial information.

Conjunctive combination by Dempster’s rule only provides focal elements which
are the singletons C1, C2, C3. The conflict is not equal to zero in this case.

The last phase is the decision making. Always making a decision in favor of a
simple hypothesis forces us in fact to always making a clear decision, which is not
adapted to all of the actual situations in medical imaging, where pixels can belong to
a union of classes but also to none strictly. However, because Bel(A) ≥ Bel(Ci) for
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any Ci ∈ A and because Bel(D) ≥ Bel(A), a certain number of precautions have
to be taken in order to decide in favor of a composite hypothesis. We can, for exam-
ple, imagine making a decision in favor of a composite hypothesis if the arguments
involving the simple hypotheses are not strong enough.

Thus, in Figure 7.2, the decision was made according to the maximum belief over
all of the hypotheses except D. Let us note that, in this simple case, the maximum
credibility is equivalent to the maximum plausibility, since m1 ⊕ m2 is a Bayesian
mass function. With this rule, the decision is made in favor of a simple hypothesis in
the points where other masses are equal to zero and in favor of a composite hypothesis
otherwise. This way, we obtain interesting results since the partial volume points are
detected as a composite hypothesis, whereas the areas without ambiguity are well
segmented. Figure 7.3 shows the results obtained by making a decision in favor of a
simple hypothesis with the maximum belief.

C1 U C2

C1 U C3

C2 U C3

C2

C3

C1

C1 (brain)

C2 (ventricles + CSF)

C3 (ALD)

C1 U C2

C1 U C3

C2 U C3

Figure 7.2. The different decision areas depending on the values of m1(C2) and m2(C3)
and the decision image, by taking the maximum belief over all of the hypotheses except D
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C1

C2

C3

C1 (brain)

C2 (ventricles + CSF)

C3 (ALD)

Figure 7.3. The different decision zones depending on the values of m1(C2) and m2(C3)
and the decision image, by taking the maximum belief over the simple hypotheses

Studying the influence of the weighting of m1(C1 ∪ C3) and m2(C1 ∪ C2), rela-
tive to m1(C2) and m2(C3), has shown that the conflict calculation does not present
a systematic evolution towards an increase or a decrease of conflict. For example, if
m2(C3) is small, the conflict is reduced and the weight attributed to m1(C2) increases
(in this case, the two sources are in better agreement over C2, i.e. the ventricle class).
The calculation of the decision areas (as in Figures 7.2 and 7.3) shows that if the
weights of m2(C3) and m1(C2) increase, the decision area in favor of C1 decreases
(when the decisions are made based on simple hypotheses). This can also be observed
in decision images: Figure 7.4 shows a close-up of the decision images in which the
ventricles and the CSF are better detected if the weight for m2(C3) and m1(C2)
increases. Differences are also apparent on the small ALD branches which are bet-
ter detected as well. It is very important to note that the areas that are different are
classified as favoring the C1 ∪ C2 hypothesis (i.e. brain or ventricles and CSF) when
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the decision is taken on all the hypotheses except D (in favor of the hypothesis C1∪C3

for the ALD branches, respectively). With this decision rule, there is practically no dif-
ference in the decision images, showing the robustness with respect to weighting. This
supports the idea that composite hypotheses should not be so often ignored.

Figure 7.4. Decision by maximum belief based on simple hypotheses,
for an increasing weight on m2(C3) and m1(C2)

Let us now examine the influence of overall absence of knowledge, modeled by a
mass on D added by discounting, according to reliability coefficients for each source.
This time, the result of the combination m1⊕m2 is no longer a Bayesian mass function
and the decision by maximum belief is no longer equivalent to the maximum plausibil-
ity. In fact, we do observe small differences in the decision images. We have observed
only very slight differences when the decision is made based on simple hypotheses.
However, decisions on all of the hypotheses except D are always made in favor of a
composite hypothesis, as expected. In our application, there is no particular argument
for suggesting that one image is more or less reliable than another (overall because
this is not true on a class per class basis). This is why it is not very useful to assign a
mass to m(D) and this is confirmed by the results. On the other hand, we have strong
arguments to support partial absence of knowledge, depending on the image, which
leads to ambiguities between classes and this was included by masses for the com-
posite hypotheses. Once again, this justifies the method used for assigning masses,
which relies on how the problem is modeled, rather than the traditional method based
on probabilities and overall reliability factors.

The images used in this example were acquired with rather thick sections, thus
causing a strong partial volume effect, particularly between white matter and the ALD
(see Figure 7.1). We will now include this knowledge explicitly as a mass on C1 ∪C3

in the second image (trapezoidal function inferred from the histogram). This reduces
conflict. The combination m1 ⊕ m2 is no longer a Bayesian mass function and the
decision areas are modified, as shown in Figure 7.5.
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C1

C2

C3

C1

C2

C3

Figure 7.5. Decision areas depending on the values of m1(C2) and m2(C3) by including
an increasing mass on C1 ∪ C3 for the second image (m2(C3) which has to be smaller

than 1 − m2(C1 ∪ C3)). The dotted lines represent the previous limits
(see Figure 7.3)

The decision images in Figure 7.6 respectively show the results obtained for all
of the hypotheses except D and for all of the simple hypotheses only, first with
m2(C1 ∪ C3) = 0 and then with an increasing weight assigned to m2(C1 ∪ C3).
This figure shows that the decision for all of the hypotheses includes all of the par-
tial volume areas between WM and the ALD in C1 ∪ C3, and does not change if the
weights of m2(C1 ∪ C3) increase, which is another indication of the robustness with
respect to weighting. On the contrary, the decision images for the simple hypothe-
ses only show an increasing number of partial volume points that are included in the
ALD. This modeling makes it possible to imitate how a doctor would make his deci-
sion, based on his objective. In the image farther to the left, where the partial volume
is not taken into account, the area classified as ALD presents no ambiguity (and cor-
responds to “pure” ALD, without mixture), whereas on the image farther to the right,
all of the partial volume is included in the ALD (this corresponds to the actual seg-
mentation manually obtained by doctors) and the classified areas of the brain contain
no ambiguous parts.

We have tried here to illustrate a few of the characteristics of belief function the-
ory that can be used in image fusion for classification, segmentation or recognition
and that constitute advantages compared to the traditional probabilistic and Bayesian
methods. They reflect the high flexibility of possible models, taking into account at
the same time uncertainty and imprecision, partial or overall absence of knowledge,
the reliabilities of the sources, the ability of each source to provide reliable or unreli-
able information on each class, a priori information it may be impossible to represent
using probabilities, etc. The application presented here is a good illustration of these
various advantages. First of all, a model that is well suited to the problem is possible,
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Figure 7.6. Decision by maximum belief for all of the hypotheses except D (first column)
and for all of the simple hypotheses (second column), without any mass on C1 ∪ C2 (top)
and by including a mass on C1 ∪ C2 (representing the partial volume effect between the

brain the ALD) in the second image, with an increasing weight (middle and bottom)

particularly by assigning masses to the composite hypotheses, expressing, for exam-
ple, the fact that a source does not make it possible to correctly differentiate between
two classes or even modeling the partial volume effect. The probabilities are not well
adapted to the modeling of partial volume at the limit between two classes. One solu-
tion is suggested here, by assigning a mass directly to the union of these classes, which
again leads to a satisfactory interpretation. Even a rather crude definition of the mass
functions and of their relative weights turned out to be sufficient and robust. Finally,
the decision was made according to two rules: a traditional rule where the decision is
always made in favor of a simple hypothesis and a second rule where it is also pos-
sible to decide in favor of a composite hypothesis. This latter rule is closer to what
happens in reality, by highlighting the partial volume areas, and by adapting itself to
the doctor’s reasoning mode.
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Chapter 8

Fuzzy Sets and Possibility Theory

8.1. Introduction and general concepts

As we have seen in the first chapters of this book, imprecisions and uncertainties
are inherent to the data handled in the application fields that concern us.

The advantages of fuzzy sets and possibility theory for information processing,
particularly in image and vision [KRI 92], fall into the four following categories:

– the ability of fuzzy sets to represent spatial information in images as well as
its imprecision, on several levels (local, regional, or global) and in different forms
(numerical, symbolic, quantitative, qualitative);

– the possibility of representing very heterogenous information, directly extracted
from images or obtained from outside knowledge, such as expert or generic knowledge
in a field or about a problem;

– the possibility of generalizing to fuzzy sets operations for manipulating spatial
information;

– the various possible semantics;

– the flexibility of the combination operators, which makes it possible to fuse ele-
ments of information that are different in nature, in very different situations.

We will particularly insist on this last point.

In this chapter, we will first of all present the basic elements of fuzzy set and
possibility theory. Their use in the more specific context of fusion will be discussed
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later. This theory was introduced by Zadeh and the first article on the subject dates
back to 1965 [ZAD 65]. See [DUB 80, KAU 75, ZIM 91] which contain most of the
theory.

8.2. Definitions of the fundamental concepts of fuzzy sets

8.2.1. Fuzzy sets

Let S be the universe or the space of reference. This is a classical (or crisp) set.
Its elements will be denoted by x, y, etc. In image processing, S will typically be the
space in which the image is defined (Zn or R

n, with n = 2, 3, etc.). The elements
of S are then the points of the image (pixels, voxels). The universe can also be a set
of values taken from characteristics of the image such as the scale of gray levels. The
elements are then values (gray levels). The set S can also be a set of primitives or
objects extracted from the images (segments, areas, objects, etc.) in a representation
on a higher level of image content.

A subset X of S is defined by its characteristic function μX , such that:

μX(x) =

{
1 if x ∈ X

0 if x /∈ X
[8.1]

The characteristic function μX is a binary function, specifying for each point of S
whether it belongs to X .

Fuzzy set theory deals with gradual membership. A fuzzy subset of S is defined
by its membership function μ of S in [0, 1]1. For any x of S, μ(x) is the value in [0, 1]
that represents the degree to which x is a member of the fuzzy subset (often referred
to simply as “fuzzy set”).

Different notations are often used to refer to a fuzzy set. The set {(x, μ(x)),
x ∈ X}, completely defines the fuzzy set and is sometimes denoted by

∫
S μ(x)/x, or

in the discrete finite case
∑N

i=1 μ(xi)/xi where N indicates the number of elements
in S.

Since knowing the set of all of the pairs (x, μ(x)) is completely equivalent to
having the definition of the membership function μ, from now on we will simplify
the notations and use the functional notation μ (a function of S into [0, 1]) to refer to
both the fuzzy set and its membership function. We denote by F the set of fuzzy sets
defined on S.

1. The interval [0, 1] is the most commonly used, but any interval or any other set (a lattice,
typically) can be used.
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The support of a fuzzy set μ is the set of points with strictly positive membership
to μ (it is a binary set):

Supp(μ) =
{
x ∈ S, μ(x) > 0

}
. [8.2]

The core of a fuzzy set μ is the set of points that are completely included in μ (it
is also a binary set):

Core(μ) =
{
x ∈ S, μ(x) = 1

}
. [8.3]

A fuzzy set μ is said to be normalized if at least one point is completely included
in the set μ (which is equivalent to Core(μ) �= ∅):

∃x ∈ S, μ(x) = 1. [8.4]

A fuzzy set μ is described as unimodal if there is only one point x such that
μ(x) = 1. A less restrictive definition allows the core to be a compact set, not neces-
sarily reduced to a point.

8.2.2. Set operations: Zadeh’s original definitions

Since fuzzy sets were introduced to generalize the concept of sets, the first oper-
ations defined were set operations. In this section, we will present Zadeh’s original
definitions [ZAD 65]. More general classes of operations will be presented in section
8.5.

The equality of two fuzzy sets is defined by the equality of their membership func-
tions:

μ = ν ⇐⇒ ∀x ∈ S, μ(x) = ν(x). [8.5]

The inclusion of a fuzzy set in another is defined by an inequality between the two
membership functions:

μ ⊆ ν ⇐⇒ ∀x ∈ S, μ(x) ≤ ν(x). [8.6]

The equality of μ and ν is of course equivalent to having the inclusion in both
directions.
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Let us note that these concepts lead to a binary result. It is also possible to define
a degree of inclusion between two fuzzy subsets, but we will not discuss this here.

The intersection (the union, respectively) of two fuzzy subsets is defined by the
point-to-point minimum (maximum, respectively) between the membership functions:

∀x ∈ S, (μ ∩ ν)(x) = min
[
μ(x), ν(x)

]
, [8.7]

∀x ∈ S, (μ ∪ ν)(x) = max
[
μ(x), ν(x)

]
. [8.8]

The complement of a fuzzy set is defined by:

∀x ∈ S, μC(x) = 1− μ(x). [8.9]

Here are the major properties of these operations:

– they are all consistent with set operations: in the specific case where the mem-
bership functions only have 0 and 1 as values (sets are then binary), these definitions
amount to the traditional binary definitions (this is an important property and the least
we would expect from the fuzzy extension of a binary operation);

– μ = ν ⇔ μ ⊆ ν and ν ⊆ μ;

– fuzzy complementation is involutive: (μC)C = μ;

– intersection and union are commutative and associative;

– intersection and union are idempotent and mutually distributive;

– intersection and union are dual with respect to complementation: (μ ∩ ν)C =
μC ∪ νC ;

– if we consider that the empty set ∅ is a fuzzy set with an identically zero mem-
bership function, then we have μ ∩ ∅ = ∅ and μ ∪ ∅ = μ, for any fuzzy set μ defined
in S;

– if we consider that the universe is a fuzzy set with a membership function equal
to 1, then we have μ ∩ S = μ and μ ∪ S = S, for any fuzzy set μ defined in S.

These properties are the same as the corresponding binary operations. However,
some properties that are true in the binary case are lost in the fuzzy case, such as
the law of the excluded middle (X ∪ XC = S) and the law of non-contradiction
(X ∩XC = ∅). This is because we have, in general:

μ ∪ μC �= S, [8.10]

μ ∩ μC �= ∅. [8.11]
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8.2.3. α-cuts

The α-cut of a fuzzy set μ is the binary set defined by:

μα =
{
x ∈ S, μ(x) ≥ α

}
. [8.12]

Strict (or strong) α-cuts are defined by:

μαS
=
{
x ∈ S, μ(x) > α

}
.

A fuzzy set can be interpreted as its α-cuts stacked on top of each other. It can be
reconstructed from them using several formulae, the most common of which are:

μ(x) =
∫ 1

0

μα(x)dα,

μ(x) = sup
α∈]0,1]

min
(
α, μα(x)

)
,

μ(x) = sup
α∈]0,1]

(
αμα(x)

)
.

Most of the operations we have defined so far commute with α-cuts. More pre-
cisely, we have the following relations:

∀(μ, ν) ∈ F2, μ = ν ⇐⇒ ∀α ∈ ]0, 1], μα = να,

∀(μ, ν) ∈ F2, μ ⊆ ν ⇐⇒ ∀α ∈ ]0, 1], μα ⊆ να,

∀(μ, ν) ∈ F2, ∀α ∈ [0, 1], (μ ∩ ν)α = μα ∩ να,

∀(μ, ν) ∈ F2, ∀α ∈ [0, 1], (μ ∪ ν)α = μα ∪ να,

∀μ ∈ F , ∀α ∈ [0, 1],
(
μC
)
α

=
(
μ1−αS

)C
.

Choosing an α-cut in a fuzzy set is equivalent to thresholding the membership
function in order to select the points with a level of membership of at least α. This
operation can be interpreted as a “defuzzification” and is used in the decision phases
after the fusion.

8.2.4. Cardinality

In this section, we will restrict ourselves to fuzzy sets defined over a finite domain,
or that have a finite support (this will always be the case in image applications).

The cardinality of a fuzzy set μ is defined by:

|μ| =
∑
x∈S

μ(x),



140 Information Fusion

or, if only the support of μ is finite:

|μ| =
∑

x∈Supp(μ)

μ(x).

This definition is consistent with the traditional concept of the cardinality of a
binary set. In the case of a fuzzy set, each point counts as an amount equal to its
membership level. The cardinality is also referred to as the power of the fuzzy set (for
example, [LUC 72]).

This definition can be extended to the case where S is not finite but is measur-
able. Let M be a measure S (such that

∫
S dM(x) = 1). The cardinality of μ is then

defined by:

|μ| =
∫
S

μ(x)dM(x).

8.2.5. Fuzzy number

In this section, we will assume that S = R.

A fuzzy quantity is a fuzzy set μ in R. A fuzzy interval is a convex fuzzy quantity
(all of its α-cuts are intervals). The upper semi-continuity of μ is equivalent to the fact
that the α-cuts are closed intervals.

A fuzzy number is an upper semi-continuous (u.s.c.) interval with a compact and
unimodal support. An example of a fuzzy number representing “roughly 10” is shown
in Figure 8.1.

R

μ

10
0

1

Figure 8.1. Fuzzy number representing “roughly 10”
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We can also find less stringent definitions, particularly if we accept an interval of
modal values, i.e. if there are four real numbers a, b, c, d, with a ≤ b ≤ c ≤ d such
that μ(x) = 0 outside the interval [a, d], μ is non-decreasing on [a, b], non-increasing
on [c, d] and equal to 1 on [b, c] [GOE 83, GOE 86].

A fuzzy number can be interpreted as a flexible representation of an imprecise
quantity, which is a more general representation than the traditional interval.

We now turn again to the concept of the cardinality of a fuzzy set, which is defined
above as a number. If the set is not well defined, we can expect for any measure of
this set to be imprecise as well, particularly its cardinality, which should therefore be
defined as a fuzzy number [DUB 80]:

|μ|f (n) = sup
{
α ∈ [0, 1], |μα| = n

}
.

The quantity |μ|f (n) represents the degree to which the cardinality of μ is equal
to n.

A very common class of fuzzy number is comprised of the L-R fuzzy numbers.
They are defined by a parametric representation of their membership function:

∀x ∈ R, μ(x) =

⎧⎪⎪⎨⎪⎪⎩
L

(
m− x

α

)
if x ≤ m

R

(
x−m

β

)
if x ≥ m

where α and β are strictly positive numbers referred to as left and right spreads, m is
a number referred to as the mean value, and L and R are functions with the following
properties:

– ∀x ∈ R, L(x) = L(−x);
– L(0) = 1;

– L is non-increasing on [0,+∞[.

The function R has similar properties.

One of the main advantages of these fuzzy numbers is their compact representa-
tion, which allows simple calculations.

In fusion, fuzzy numbers are often used for representing knowledge about mea-
surements or observations, or flexible constraints applied to the values they can be
equal to, for example: “the gray level of this structure is roughly equal to 10”. Elements
of knowledge like this one can then be fused with the data or with other elements of
knowledge.
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8.3. Fuzzy measures

The definitions and a few examples of fuzzy measures are presented here. For a
more detailed presentation, see [DUB 80, SUG 74].

8.3.1. Fuzzy measure of a crisp set

A fuzzy measure is a function f from C, which is the set of subsets of S (hence
defined on crisp sets), into [0, 1] that satisfies the following conditions:

– f(∅) = 0;

– f(S) = 1;

– monotonicity: ∀(A,B) ∈ C2, A ⊆ B ⇒ f(A) ≤ f(B);
– continuity:

∀i ∈ N, ∀Ai ∈ C, A1 ⊆ A2 · · · ⊆ An · · · or A1 ⊇ A2 · · · ⊇ An · · ·

=⇒ lim
i→∞

f
(
Ai

)
= f
(

lim
i→∞

Ai

)
.

Some notable properties of fuzzy measures are:

∀(A,B) ∈ C2, f(A ∪B) ≥ max
[
f(A), f(B)

]
, [8.13]

∀(A,B) ∈ C2, f(A ∩B) ≤ min
[
f(A), f(B)

]
. [8.14]

This definition assumes no additivity constraint. They could simply be called non-
additive measures, since the link with fuzzy set theory which was presented earlier is
relatively weak.

8.3.2. Examples of fuzzy measures

Several families of fuzzy measures can be found in other works, the most common
of which are:

– probability measures;

– fuzzy λ-measures, obtained by relaxing the additivity constraint for probability
measures:

∀(A,B) ∈ C2, A ∩B = ∅ =⇒ f(A ∪B) = f(A) + f(B) + λf(A)f(B) [8.15]

with λ > −1;

– belief and plausibility function in belief function theory [SHA 76] (see Chapter
7);
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– possibility measures [ZAD 78], which will be introduced in section 8.4.

The links between the various fuzzy measures can be found in [BAN 78] or in
[DUB 80].

8.3.3. Fuzzy integrals

Fuzzy integrals [GRA 92, SUG 74] are the counterpart of Lebesgue integrals when
the integration is performed with respect to a fuzzy measurement. Fuzzy integrals can
be divided into two types.

The Sugeno integral of a measurable function f , defined from S into [0, 1], with
respect to a fuzzy measure μ is defined by:

Sμ(f) =
∫

f ◦ μ = sup
α∈[0,1]

min
[
α, μ
({

x ∈ S, f(x) > α
})]

.

In the finite case (|S| = N ), this expression is equivalent to:

Sμ(f) =
∫

f ◦ μ =
N

max
i=1

min
[
f
(
xp(i)

)
, μ
(
Ai

)]
,

where p is a permutation of {1, 2 . . . N} such that:

0 ≤ f
(
xp(1)

)
≤ · · · ≤ f

(
xp(N)

)
and where Ai = {xp(1), . . . , xp(N)}.

The Choquet integral of a measurable function f , defined from S into R
+, with

respect to a fuzzy measurement μ is defined by:

Cμ(f) =
∫

fdμ =
∫ +∞

0

μ
({

x, f(x) > α
})

dα.

In the finite case, we get:

Cμ(f) =
∫

fdμ =
N∑

i=1

[
f
(
xp(i)

)
− f
(
xp(i−1)

)]
μ
(
Ai

)
,

with f(xp(0)) = 0.

The properties of these integrals are presented in detail in [GRA 92, MUR 89,
SUG 74]. The major ones in the finite case are the following:
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– for the measure μmin defined by ∀A ⊂ S, A �= S, μmin(A) = 0 and
μmin(S) = 1, the integrals Sμmin(f) and Cμmin(f) are equal to the minimum of the
values taken by f ;

– for the measure μmax defined by ∀A ⊆ S, A �= ∅, μmax(A) = 1 and
μmax(∅) = 0, the integrals Sμmax(f) and Cμmax(f) are equal to the maximum of
the values taken by f ;

– for any two measurable functions f and f ′ and for any fuzzy measure μ, we have
the following monotonicity property:(

∀x ∈ S, f(x) ≤ f ′(x)
)

=⇒
{

Sμ(f) ≤ Sμ(f ′)
Cμ(f) ≤ Cμ(f ′)

which is also true in the infinite case;

– for any measurable function f and fuzzy measures μ and μ′, we have the follow-
ing monotonicity property:(

∀A ⊆ S, μ(A) ≤ μ′(A)
)

=⇒
{

Sμ(f) ≤ Sμ′(f)
Cμ(f) ≤ Cμ′(f)

which is also true in the infinite case;

– the following inequalities are inferred from the previous properties for any mea-
surable function f and fuzzy measure μ:

N
min
i=1

f
(
xi

)
≤ Sμ(f) ≤ N

max
i=1

f
(
xi

)
;

N
min
i=1

f
(
xi

)
≤ Cμ(f) ≤ N

max
i=1

f
(
xi

)
;

– for any additive measure (or σ-additive in the infinite case), the Choquet integral
coincides with the Lebesgue integral; in this regard, fuzzy integrals can be considered
as an extension of Lebesgue integrals;

– for any fuzzy measurement μ, the Sugeno and Choquet integrals satisfy the fol-
lowing continuity property: for any sequence of measurable functions fn in S such
that:

lim
n→+∞ fn = f

we have:

lim
n→+∞Sμ

(
fn

)
= Sμ(f),

lim
n→+∞Cμ

(
fn

)
= Cμ(f).

Fuzzy integrals are applied in particular in multi-criteria aggregation, but also in
data fusion (as part of the mean operators) and in shape recognition.
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8.3.4. Fuzzy set measures

Up until now, measures have been applied to crisp sets. If we now consider fuzzy
sets, we need measures that provide quantitative evaluations of such sets. These mea-
sures are referred to as fuzzy sets [BOU 96] or evaluation measures [DUB 92b]. There
is no real consensus over the definition of such measures. Here is the least strict of
them, given in [BOU 96].

A fuzzy set measure is a function M from F in R
+ such that:

1) M(∅) = 0;

2) ∀(μ, ν) ∈ F2, μ ⊆ ν ⇒M(μ) ≤M(ν).

Other conditions can be added depending on the applications, for example:

– M has its values in [0, 1];
– M(S) = 1;

– M(μ) = 0⇔ μ = ∅;
– M(μ) = 1⇔ μ = S.

Simple examples of fuzzy set measures are fuzzy cardinality, the cardinality of
the support of μ, the supremum of μ, etc. Other examples are given in the following
section: measures of fuzziness.

8.3.5. Measures of fuzziness

An important question regarding the evaluation of a fuzzy set involves the degree
of fuzziness of the set. De Luca and Termini [LUC 72] suggested defining a degree of
fuzziness as a function f of F into R

+ such that:

1) ∀μ ∈ F , f(μ) = 0⇔ μ ∈ C (crisp sets are non-fuzzy and are the only ones to
satisfy this property);

2) f(μ) is maximum if and only if ∀x ∈ S, μ(x) = 0.5;

3) ∀(μ, ν) ∈ F2, f(μ) ≥ f(ν) if ν is more contrasted than μ (closer to a binary
set), i.e.:

∀x ∈ S,

{
ν(x) ≥ μ(x) if μ(x) ≥ 0.5
ν(x) ≥ μ(x) if μ(x) ≤ 0.5

4) ∀μ ∈ F , f(μ) = f(μC) (a fuzzy set and its complement are both as fuzzy).

De Luca and Termini also defined the entropy of a fuzzy set [LUC 72], as a degree
of fuzziness, in the finite case:

E(μ) = H(μ) + H
(
μC
)
, [8.16]
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where H(μ) is defined in a similar fashion to Shannon’s entropy:

H(μ) = −K

N∑
i=1

μ
(
xi

)
log μ

(
xi

)
. [8.17]

It is easy to see that E satisfies all of the axioms of the degree of fuzziness. Fur-
thermore, we have:

H
(
max(μ, ν)

)
+ H

(
min(μ, ν)

)
= H(μ) + H(ν), [8.18]

and:

E
(
max(μ, ν)

)
+ E

(
min(μ, ν)

)
= E(μ) + E(ν). [8.19]

Many other measures of fuzziness have been suggested, with similar properties.
Here are the most important ones.

The Hamming distance to the closest binary set, which is nothing more than the
0.5-cut, is given by [KAU 75]:

f(μ) =
N∑

i=1

∣∣μ(xi

)
− μ1/2

(
xi

)∣∣.
The Hamming or quadratic distance between μ and its complement [YAG 79] or

more generally:

f(μ) =

[
N∑

i=1

∣∣μ(xi

)
− μC

(
xi

)∣∣p]1/p

=

[
N∑

i=1

∣∣2μ
(
xi

)
− 1
∣∣p]1/p

.

The measure suggested by Kosko [KOS 90] compares the intersection of μ and μC

with their union according to the formula:∣∣min
(
μ, μC

)∣∣∣∣max
(
μ, μC

)∣∣ .
Generalized entropy is defined based on a generating function, either in additive

or multiplicative form [BEZ 92]:
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– the additive form is given by:

f(μ) =
N∑

i=1

g
[
μ
(
xi

)]
+ g
[
1− μ

(
xi

)]
[8.20]

where g is a function of [0, 1] in R
+ such that: ∀t ∈ [0, 1], g′′(t) < 0. Examples

of generating functions are g(t) = te1−t, g(t) = at − bt2 (with 0 < b < a),
g(t) = −t log t (this last form gives the fuzzy entropy of [LUC 72]).

– the multiplicative form is given by:

f(μ) =
N∑

i=1

g
[
μ
(
xi

)]
g
[
1− μ

(
xi

)]
[8.21]

where g is a function of [0, 1] in R
+ such that: ∀t ∈ [0, 1], g′(t) > 0 and g′′(t) < 0.

Two examples of generating functions are g(t) = te1−t, g(t) = tα.

In fusion problems, these measures of fuzziness can be used for learning mem-
bership functions. It is also possible to infer comparison measures from fuzzy set
measures [BOU 96] which are used, for example, in order to compare an element of
information to a model or a constraint and then are combined in a fusion or multi-
criteria aggregation process.

8.4. Elements of possibility theory

Possibility theory, which is derived from fuzzy set theory, was introduced by Zadeh
in [ZAD 78] and later developed by several researches, particularly Dubois and Prade
in France [DUB 80, DUB 88].

8.4.1. Necessity and possibility

A possibility measure is a function Π of C (whose argument is therefore a crisp
subset of S) in [0, 1] such that:

– Π(∅) = 0;

– Π(S) = 1;

– ∀I ⊂ N, ∀Ai ⊆ S(i ∈ I), Π(∪i∈IAi) = supi∈I Π(Ai).

In the finite case, a possibility measure is a fuzzy measure. It corresponds to the
limit of equation [8.13], which is inferred from the monotonicity of a fuzzy measure.

By duality, a measure of necessity is defined as a function N of C into [0, 1] such
that:

∀A ⊆ S, N(A) = 1−Π
(
AC
)
. [8.22]
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This duality means that if an event is necessary, its opposite is impossible.

A measure of necessity verifies the following properties:

– N(∅) = 0;

– N(S) = 1;

– ∀I ⊂ N, ∀Ai ⊆ S(i ∈ I), N(∩i∈IAi) = infi∈I N(Ai).

Conversely, any measure satisfying these properties is, by duality, a possibility
measure.

Possibility and necessity measures also have the following properties:

– ∀A ⊆ S, max(Π(A),Π(AC)) = 1, which expresses the fact that one of the two
sets A and AC is completely possible;

– ∀A ⊆ S, min(N(A), N(AC)) = 0, which expresses the fact that two opposite
events cannot be simultaneously necessary;

– ∀A ⊆ S, Π(A) ≥ N(A): an event has to be possible for it to be necessary;

– ∀A ⊆ S, N(A) > 0 ⇒ Π(A) = 1 (since N(A) > 0 ⇒ Π(AC) < 1 and
max(Π(A),Π(AC)) = 1);

– ∀A ⊆ S, Π(A) < 1⇒ N(A) = 0;

– ∀A ⊆ S, N(A) + N(AC) ≤ 1;

– ∀A ⊆ S, Π(A) + Π(AC) ≥ 1.

The last two properties reflect non-additivity. Knowing Π(A) is not enough to
completely determine Π(AC), unlike with probability measures. The uncertainty
related to an event is expressed by two numbers instead of one as before.

8.4.2. Possibility distribution

A possibility distribution is a function π of S in [0, 1] with the following normal-
ization condition:

sup
x∈S

π(x) = 1. [8.23]

This condition corresponds to a closed world hypothesis, in which at least one
element of S is completely possible. This condition can be relaxed in an open world
hypothesis.

In the finite case, a possibility distribution makes it possible to define a possibility
measure using the formula:

∀A ∈ C, Π(A) = sup
{
π(x), x ∈ A

}
. [8.24]
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Conversely, a possibility measure leads to a possibility distribution:

∀x ∈ S, π(x) = Π({x}). [8.25]

By duality, a necessity measure is defined from a possibility distribution as:

∀A ∈ C, N(A) = 1− sup
{
π(x), x /∈ A

}
= inf

{
1− π(x), x ∈ AC

}
. [8.26]

In the non-normalized case, we no longer have Π(S) = 1. Likewise, the properties
N(A) > 0⇒ Π(A) = 1 and Π(A) < 1⇒ N(A) = 0 are no longer true.

These definitions have a simple interpretation if we consider the problem of how
to represent the value of a variable, in which S represents the variation range of this
variable. A possibility distribution on S describes the degrees to which the variable
can have each possible value. It is actually the fuzzy set of the possible values for this
variable. The degree of membership of each value to this set corresponds to the degree
of possibility for the variable to have this value. Therefore, a possibility distribution
can represent the imprecision related to the variable’s exact value. Typically, a fuzzy
number is a possibility distribution that describes the possible values that this number
can have.

Let us consider, for example, a classification problem in image processing. Here is
a list of examples (not a comprehensive one) of possibility distributions:

– let S be the set of classes. A possibility distribution on S, defined for each object
to classify (point, area, etc.), can represent the degrees to which each object can belong
to each of these classes;

– let S be a characteristic space (for example, a scale of gray levels). A possibility
distribution on S can be defined for each class and represent, for each gray level, the
possibility for that class to appear in the image with that gray level;

– let S be the image space. A possibility distribution on S can be defined for each
class and give for each point of the image its degree of possibility of belonging to that
class.

In the definition given here, we have always considered the possibility and the
necessity of a crisp subset of S. Now, consider a fuzzy set μ of S (μ ∈ F). The
concept of possibility must then be extended [ZAD 78]:

Π(μ) = sup
x∈S

min
(
μ(x), π(x)

)
. [8.27]

This corresponds to the following interpretation: given a possibility distribution
π on S, associated with a variable X taking its values in S, we can assess to which
extent “X is μ”. In this way, the possibility of μ combines the degree to which the
variable X has the value x and the degree of membership of x to the fuzzy set.
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8.4.3. Semantics

The membership functions and possibility distributions can have different seman-
tics. Here are the major ones:

– a semantics of degree of similarity (the concept of distance);

– a semantics of degree of plausibility for an object for which only an imprecise
description is available to actually be the one we are trying to identify;

– a semantics of degree of preference (a fuzzy class is then the set of “right” choi-
ces), this interpretation being closer to the concept of a utility function.

These three types of semantics are used in signal and image processing as well as
in fusion.

8.4.4. Similarities with the probabilistic, statistical and belief interpretations

Rather than opposing the various formalisms, it is interesting to emphasize the
cases where the interpretations overlap. Several of these similarities are given in
[DUB 99], and we will sum them up here.

A possibility distribution π, representing, for example, knowledge about the possi-
ble values of a variable x, can also be interpreted as a family of subsets {A1, . . . An},
each one included in the next with Ai ⊂ Ai+1, to which levels of confidence λi are
attributed, which are defined by:

λi = N
(
Ai

)
= 1−Π

(
AC

i

)
. [8.28]

Since the necessity N is monotonic, we have λ1 ≤ · · · ≤ λn. This implies that the
set of values of the possibility distribution is finite. Let α1 = 1, α2 ≥ · · · ≥ αn be
these values and let αn+1 = 0. Then the (Ai, λi) are given by:

Ai =
{
s ∈ S, π(s) ≥ αi

}
, λi = 1− αi+1. [8.29]

Conversely, the least specific possibility distribution (i.e. the most possible) asso-
ciated with {(A1, λ1), . . . (An, λn)} that verifies λi = N(Ai) is given by:

π(s) = min
i

max
(
1− λi, Ai(s)

)
. [8.30]

If we define pi = αi − αi+1, we have
∑

i pi = 1 and:

π(s) =
∑

i,s∈Ai

pi. [8.31]
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Therefore, the (Ai, pi) form random closed sets, each one included in the next, or
even focal sets in belief function theory. The corresponding mass functions are thus
described as consonant. Let us note that pi is not the probability for x (the variable
whose possibility distribution is π) to belong to Ai, but rather the probability for Ai

to actually represent the knowledge available regarding x. Once again, we are dealing
with the two concepts of imprecision (through the size of Ai) and uncertainty (the
value of pi).

The value of λi can also be interpreted as a lower bound of the probability for the
actual value of x to be in Ai. The distribution π is then equivalent to a family P of
probabilities:

P =
{
P, P

(
Ai

)
≥ λi, i = 1 . . . n

}
. [8.32]

Possibility is then interpreted as the upper probability:

Π(B) = P ∗(B) = sup
{
P (B), P ∈ P

}
, [8.33]

and necessity as the lower probability:

N(B) = P∗(B) = inf
{
P (B), P ∈ P

}
. [8.34]

Interpretations in terms of likelihood functions involve probabilities of the form
P (sm | s) where sm refers to the measured value of x and s to its actual value. The
distribution π can then be identified with P (sm | s). For any subset A, we have:

min
s∈A

P
(
sm | s

)
≤ P

(
sm | A

)
≤ max

s∈A
P
(
sm | s

)
[8.35]

which then makes it possible to interpret Π(A) as the upper bound of P (sm | A).
However, we cannot get very far with this since the information available is usually
lower than P (sm | s).

8.5. Combination operators

Following Zadeh’s original work [ZAD 65], many operators were suggested in
the fuzzy community to combine membership functions or possibility distributions2.
These operators are also called connectives, or combination or aggregation operators.

2. Let us note that because a possibility distribution and a membership function have similar
mathematical expressions and because there is a connection between the two, the operators can
apply to either of them. However, they have different origins, meanings and semantics, which
is a point that should not be overlooked.
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The major classes of operators are described in [BLO 96b, DUB 85, DUB 88,
DUB 99, YAG 91]. Among the main operators, we can mention in particular T-norms,
T-conorms [MEN 42, SCH 83], means [GRA 95, YAG 88], symmetric sums and
operators that take into account conflict measures or also the reliability of sources
[DEV 93, DUB 92a]. This sections contains the major definitions. The interpretations
in terms of set operations and information fusion will be discussed further in section
8.10.

Since most operators work point by point (i.e. by combining the membership or
plausibility degrees in the same point of S), it is sufficient to define them for the
possible values of the membership functions or possibility distributions. Therefore,
the operators are defined as functions of [0, 1] or [0, 1]×[0, 1] in [0, 1]. In what follows,
the letters x, y, etc. will refer to the values we wish to combine, i.e. the values in [0, 1]
representing the degrees of membership or possibility.

8.5.1. Fuzzy complementation

A fuzzy complementation is a function c of [0, 1] in [0, 1] such that:

– c(0) = 1;

– c(1) = 0;

– c is involutive: ∀x ∈ [0, 1], c(c(x)) = x;

– c is strictly decreasing.

The simplest example is that given in section 8.2:

∀x ∈ [0, 1], c(x) = 1− x. [8.36]

Since it is difficult to directly construct involutive functions, it is useful to charac-
terize them using a simpler, more general form. Thus, continuous complementations
have the following general form:

∀x ∈ [0, 1], c(x) = ϕ−1
[
1− ϕ(x)

]
, [8.37]

with ϕ : [0, 1]→ [0, 1], such that:

– ϕ(0) = 0;

– ϕ(1) = 1;

– ϕ is strictly increasing.

There are several functions ϕ that verify these properties and it is easy to come up
with one. The simplest example is:

∀x ∈ [0, 1], ϕ(x) = xn, [8.38]
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which enables us to construct the following complementation:

∀x ∈ [0, 1], c(x) =
(
1− xn

)1/n
. [8.39]

For n = 1, we find the most common form used, i.e. c(x) = 1 − x. The higher
n becomes (for n > 1), or the lower it becomes (for n < 1), the more binary the
resulting form. In the first case, most of the values, except for those close to 1, have
a complement that is close to 1 and in the second case, most of the values, except for
those close to 0, have a complement close to 0.

If, for a real number a in ]0, 1], ϕ has the following form:

∀x ∈ [0, 1], ϕ(x) =
ax

(1− a)x + 1
, [8.40]

then the corresponding complementation is:

∀x ∈ [0, 1], c(x) =
1− x

1 + a2x
. [8.41]

Here is another example, depending on four parameters a, b, c and n such that
0 ≤ a < b < c ≤ 1:

∀x ∈ [0, 1], c(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ a

1− 1
2

[
x− a

b− a

]n

if a ≤ x ≤ b

1
2

[
c− x

c− b

]n

if b ≤ x ≤ c

0 if c ≤ x ≤ 1

[8.42]

A few examples are illustrated in Figure 8.2.

8.5.2. Triangular norms and conorms

In the context of stochastic geometry [MEN 42, SCH 83], a triangular norm, or
t-norm, is a function t : [0, 1]× [0, 1]→ [0, 1] such that:

– t is commutative: ∀(x, y) ∈ [0, 1]2, t(x, y) = t(y, x);
– t is associative: ∀(x, y, z) ∈ [0, 1]3, t[t(x, y), z] = t[x, t(y, z)];
– 1 is a neutral element: ∀x ∈ [0, 1], t(x, 1) = t(1, x) = x;

– t is increasing with respect to the two variables:

∀(x, x′, y, y′) ∈ [0, 1]4, (x ≤ x′ and y ≤ y′) =⇒ t(x, y) ≤ t(x′, y′).
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1-x

(1-x^2)^0.5

(1-x^4)^0.25

(1-x^0.5)^2

(1-x^0.25)^4

(1-x)/(1+3x)

b = 0.6
a = 0.3

c = 0.9
n = 2

Figure 8.2. A few examples of fuzzy complementation

Additionally, we have: t(0, 1) = t(0, 0) = t(1, 0) = 0, t(1, 1) = 1 and 0 is a zero
element (∀x ∈ [0, 1], t(x, 0) = 0).

Continuity is often added to this list of properties.

The operators min(x, y), xy, max(0, x + y − 1) are examples of t-norms, which
are by far the most commonly used.

T-norms generalize to fuzzy sets the concept of intersection as well as the logical
“and”.

The following result is easy to prove. For any t-norm t, we have:

∀(x, y) ∈ [0, 1]2, t(x, y) ≤ min(x, y). [8.43]

This shows that the “min” is the highest t-norm and that any t-norm has a conjunc-
tive behavior.

On the other hand, any t-norm is always higher than t0, which is the smallest t-
norm, defined by:

∀(x, y) ∈ [0, 1]2, t0(x, y) =

⎧⎪⎨⎪⎩
x if y = 1
y if x = 1
0 otherwise

[8.44]
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Furthermore, the t-norms mentioned above verify:

∀(x, y) ∈ [0, 1]2, t0(x, y) ≤ max(0, x + y − 1) ≤ xy ≤ min(x, y). [8.45]

Let us note, however, that there is no complete order for all of the t-norms.

Parametric forms allow some variations between certain of these operators. For
example, the t-norm defined in [YAG 80] by:

∀(x, y) ∈ [0, 1]2, t(x, y) = 1−min
[
1,
[
(1− x)p + (1− y)p

]1/p
]

[8.46]

varies from the Lukasiewicz t-norm max(0, x + y − 1) for p = 1 to the min for
p = +∞.

Examples of t-norms are shown in Figure 8.3.

Figure 8.3. Four examples of t-norms. First line: t0 (lowest t-norm) Lukasiewicz t-norm.
Second line: product and minimum (highest t-norm)
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Based on a t-norm t and a complementation c, another operator T , referred to as
the t-conorm, can be defined by duality:

∀(x, y) ∈ [0, 1]2, T (x, y) = c
[
t
(
c(x), c(u)

)]
. [8.47]

Therefore, a t-conorm is a function T : [0, 1]× [0, 1]→ [0, 1] such that:

– T is commutative: ∀(x, y) ∈ [0, 1]2, T (x, y) = T (y, x);
– T is associative: ∀(x, y, z) ∈ [0, 1]3, T [T (x, y), z] = T [x, T (y, z)];
– 0 is an identity element: ∀x ∈ [0, 1], T (x, 0) = T (0, x) = x;

– T is increasing with respect to the two variables:

∀(x, x′, y, y′) ∈ [0, 1]4, (x ≤ x′ and y ≤ y′) =⇒ T (x, y) ≤ T (x′, y′).

Furthermore, we have: T (0, 1) = T (1, 1) = T (1, 0) = 1, T (0, 0) = 0 and 1 is a
zero element (∀x ∈ [0, 1], T (x, 1) = 1).

The most common examples of t-conorms are: max(x, y), x + y − xy,
min(1, x + y).

T-conorms generalize to fuzzy sets the concept of union or of the logical “or”.

For any t-conorm, we have:

∀(x, y) ∈ [0, 1]2, T (x, y) ≥ max(x, y). [8.48]

This shows that the “max” is the smallest t-conorm and that any t-conorm has a
disjunctive behavior.

On the other hand, any t-conorm is smaller than T0, which is the highest t-conorm,
defined by:

∀(x, y) ∈ [0, 1]2, T0(x, y) =

⎧⎪⎨⎪⎩
x if y = 0
y if x = 0
1 otherwise

[8.49]

Furthermore, we have the following inequalities between the most common t-
conorms3:

∀(x, y) ∈ [0, 1]2, T0(x, y) ≥ min(1, x + y) ≥ x + y − xy ≥ max(x, y). [8.50]

3. Again, there is no complete order for all of the t-conorms.
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Examples of t-conorms are shown in Figure 8.4.

Figure 8.4. Four examples of t-conorms. First line: T0 (highest t-conorm)
and Lukasiewicz t-conorm. Second line: algebraic sum and maximum

(smallest t-conorm)

Here are a few other useful properties of these operators:

– any t-norm or t-conorm is distributive over the “min” and the “max”, and there-
fore we have equalities of the type:

∀(x, y, z) ∈ [0, 1]3, t
[
x,min(y, z)

]
= min

[
t(x, y), t(x, z)

]
; [8.51]

– the only mutually distributive t-norms and t-conorms are the “min” and the
“max”;

– the only idempotent t-norm is the “min”, and the only idempotent t-conorm is
the “max”;
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– based on any t-norm t and any continuous, strictly increasing function h from
[0, 1] in [0, 1] such that h(0) = 0 and h(1) = 1, we can define another t-norm t′ using
the formula [SCH 63]:

∀(x, y) ∈ [0, 1]2, t′(x, y) = h−1
[
t
(
h(x), h(y)

)]
. [8.52]

This gives us a way of generating families of t-norms based on an example.

There are generic forms for t-norms and t-conorms with specific properties
[DUB 85]. We will now discuss the two most useful groups: archimedean and nilpo-
tent t-conorms.

A strictly monotonic, archimedean t-norm t verifies:

∀x ∈ [0, 1], t(x, x) < x, [8.53]

∀(x, y, y′) ∈ [0, 1]3, y < y′ =⇒ t(x, y) < t(x, y′). [8.54]

Likewise, a strictly monotonic archimedean t-conorm T verifies the two following
properties:

∀x ∈ [0, 1], T (x, x) > x, [8.55]

∀(x, y, y′) ∈ [0, 1]3, y < y′ =⇒ T (x, y) < T (x, y′). [8.56]

Any strictly monotonic, archimedean t-norm t can be expressed in the following
form:

∀(x, y) ∈ [0, 1]2, t(x, y) = f−1
[
f(x) + f(y)

]
, [8.57]

where f , referred to as the generating function, is a continuous and decreasing bijec-
tion of [0, 1] into [0,+∞] such that f(0) = +∞ and f(1) = 0.

The associated t-conorms have the following form:

∀(x, y) ∈ [0, 1]2, T (x, y) = ϕ−1
[
ϕ(x) + ϕ(y)

]
, [8.58]

where the generating function ϕ is a continuous and increasing bijection of [0, 1] into
[0,+∞] such that ϕ(0) = 0 and ϕ(1) = +∞.

Such t-norms and t-conorms never satisfy the non-contradiction law and the ex-
cluded middle law. These laws are expressed as:

∀x ∈ [0, 1], t
[
x, c(x)

]
= 0, [8.59]

∀x ∈ [0, 1], T
[
x, c(x)

]
= 1. [8.60]
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These two equations are usually not verified by strictly monotonic, archimedean
t-norms and t-conorms.

Any strictly monotonic, archimedean t-norm (or t-conorm) can be defined based
on multiplicative generators, by equivalence with additive generators [CHE 89]:

∀(x, y) ∈ [0, 1]2, t(x, y) = h−1
[
h(x)h(y)

]
, [8.61]

where h is a strictly increasing function of [0, 1] into [0, 1] such that h(0) = 0 and
h(1) = 1. The equivalence with the additive form is obtained simply by defining:

h = e−f [8.62]

where f is an additive generating function.

The most common t-norms and t-conorms in this class are the product and the
algebraic sum:

∀(x, y) ∈ [0, 1]2, t(x, y) = xy, T (x, y) = x + y − xy. [8.63]

The only rational t-norms of this class are the Hamacher t-norms defined by
[HAM 78]:

∀(x, y) ∈ [0, 1]2,
xy

γ + (1− γ)(x + y − xy)
, [8.64]

where γ is a positive parameter (for γ = 1 we get the product again). They are illus-
trated in Figure 8.5.

Figure 8.5. Two examples of Hamacher t-norms, for γ = 0 (left)
and γ = 0.4 (right)
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Another parametric family of this class is comprised of the Frank functions,
defined by [FRA 79]:

∀(x, y) ∈ [0, 1]2, t(x, y) = logs

[
1 +

(
sx − 1

)(
sy − 1

)
s− 1

]
, [8.65]

where s is a strictly positive parameter. These t-norms and their dual t-conorms satisfy
the following notable relation (and t-norms and t-conorms alone satisfy this relation):

∀(x, y) ∈ [0, 1]2, t(x, y) + T (x, y) = x + y. [8.66]

Examples of Frank t-norms are shown in Figure 8.6. If s is small and tends to 0, the
t-norm tends to the minimum. If s tends to +∞, the t-norm tends to the Lukasiewicz
t-norm. If s = 1, we end up with the product again.

Figure 8.6. Four examples of Frank t-norms. First line: s = 0.1 and s = 2.
Second line: s = 10 and s = 1, 000
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The second useful family of t-norms and t-conorms is comprised of the nilpotent
operators, which have the following general form:

∀(x, y) ∈ [0, 1]2, t(x, y) = f∗[f(x) + f(y)
]
, [8.67]

where f is a decreasing bijection of [0, 1] into [0, 1], such that f(0) = 1, f(1) = 0 and
f∗(x) = f−1(x) if x ∈ [0, 1], with f∗(x) = 0 if x ≥ 1. The general form of nilpotent
t-conorms is inferred from it by duality.

These operators satisfy the excluded middle law and the non-contradiction law.

The most common t-norms and t-conorms in this class are the Lukasiewicz opera-
tors:

∀(x, y) ∈ [0, 1]2, t(x, y) = max(0, x + y − 1), T (x, y) = min(1, x + y).

Examples of generating functions f have been suggested by Schweizer and Sklar
[SCH 63], as well as by Yager [YAG 80].

Operators combining t-norms and t-conorms have been suggested, for example, by
[ZIM 80]:

∀(x, y) ∈ [0, 1]2, Cγ(x, y) = t(x, y)1−γT (x, y)γ , [8.68]

where γ is a parameter in [0, 1].

8.5.3. Mean operators

A mean operator is a function m : [0, 1]× [0, 1]→ [0, 1] such that:

– the result of the combination is always included between the min and the max:
∀(x, y) ∈ [0, 1]2, min(x, y) ≤ m(x, y) ≤ max(x, y), but m �= min and m �= max;

– m is commutative;

– m is increasing with respect to the two variables:

∀(x, x′, y, y′) ∈ [0, 1]4, (x ≤ x′ and y ≤ y′) =⇒ m(x, y) ≤ m(x′, y′).

The first property entails that m is always an idempotent operation:

∀x ∈ [0, 1], m(x, x) = x.
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These operators are generally not associative; the medians are the only ones that
are, where m(x, y) is the median value of x, y and a parameter α in [0, 1]:

m(x, y) = med(x, y, α) =

⎧⎪⎪⎨⎪⎪⎩
x if y ≤ x ≤ α or α ≤ x ≤ y

y if x ≤ y ≤ α or α ≤ y ≤ x

α if y ≤ α ≤ x or x ≤ α ≤ y

[8.69]

Figure 8.7 illustrates a few median operators.

Figure 8.7. Three examples of medians, for α equal to 0.1, 0.5 and 0.8, respectively
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A weaker property than associativity is bisymmetry:

∀(x, y, z, t) ∈ [0, 1]4, m
[
m(x, y),m(z, t)

]
= m

[
m(x, z),m(y, t)

]
. [8.70]

The means that satisfy this property and are continuous and strictly increasing have
the following general form:

∀(x, y) ∈ [0, 1]2, m(x, y) = k−1

[
k(x) + k(y)

2

]
, [8.71]

where k is a continuous, strictly increasing function of [0, 1] into [0, 1]. The function
k can be interpreted as a change of scale or dynamics of the values to combine. These
values, once they have been transformed by k, are then combined using a simple arith-
metic mean, and the result is then changed back to the initial scale.

The most common means are obtained from functions k of the type:

∀x ∈ [0, 1], k(x) = xα,

with α ∈ R. The arithmetic mean (x+y)/2 is obtained for α = 1, the quadratic mean√
(x2 + y2)/2 for α = 2, the harmonic mean 2xy/(x+y) for α = −1, the geometric

mean
√

xy for α = 0. At the limit when α tends to −∞ or +∞, m tends to the min
or the max. Table 8.1 sums up these results.

α m(x, y) comment

−∞ min(x, y) limit value

−1 2xy
x+y harmonic mean

0 (xy)−1/2 geometric mean

+1 x+y
2 arithmetic mean

+2
√

x2+y2

2 quadratic mean

+∞ max(x, y) limit value

Table 8.1. Examples of continuous, strictly increasing and bisymmetric means.
For the harmonic mean, we adopt the convention that m(0, 0) = 0

Figure 8.8 shows a few examples of means.
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Figure 8.8. Four examples of mean operators. First line: harmonic and geometric means.
Second line: arithmetic and quadratic means

Within the class of mean operators, we also have weighted means, OWAs (Ordered
Weighted Average) [YAG 88] and the fuzzy integrals discussed above [GRA 95].

In OWAs, the weights are defined by the ranks of the values to combine. Let
a1, a2, . . . an be these values. They are arranged in a sequence aj1 , aj2 , . . . ajn

such
that:

aj1 ≤ aj2 ≤ · · · ≤ ajn
.

Then, for a set of weights wi that verifies:

n∑
i=1

wi = 1, ∀i, 1 ≤ i ≤ n, wi ∈ [0, 1],
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the OWA operator is defined by the expression:

OWA
(
a1, a2, . . . , an

)
=

n∑
i=1

wiaji
. [8.72]

We can also consider fuzzy integrals to be included in this class of operators
[GRA 95], since Choquet and Sugeno integrals are idempotent, continuous, increas-
ing and included between the minimum and the maximum. It includes the specific
case of order statistics and therefore the minimum, the maximum and the median. The
Choquet integrals defined with respect to an additive measure μ are equivalent to a
weighted arithmetic mean, in which the weights wi assigned to the values xi are equal
to μ({xi}).

OWAs can also be interpreted as a particular class of Choquet integrals, where the
fuzzy measure is defined by:

∀A, |A| = i, μ(A) =
i−1∑
j=0

wn−j .

Conversely, any commutative Choquet integral is such that μ(A) only depends on
|A| and is equal to an OWA whose weights are given by:

w1 = 1−
n∑

i=2

wi,

∀i ≥ 2, wi = μ
(
An−i+1

)
− μ
(
An−i

)
,

where Ai refers to any subset such that |Ai| = i.

A more detailed study of the properties of these operators can be found in
[GRA 92, GRA 95].

8.5.4. Symmetric sums

Symmetric sums are defined by an auto-duality property, which corresponds to the
invariance of the result of the operation by inverting the scale of values to combine.
More specifically, a symmetric sum is a function σ : [0, 1]× [0, 1]→ [0, 1] such that:

– σ(0, 0) = 0;

– σ is commutative;

– σ is increasing with respect to the two variables;

– σ is continuous;

– σ is self-dual: ∀(x, y) ∈ [0, 1]2, σ(x, y) = 1− σ(1− x, 1− y).
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Let us note that auto-duality differs from the duality mentioned between t-norms
and t-conorms. For those operators, inverting the scale changes the type of operator.
Here, the scale of values can be inverted without changing the way they are combined.
This property was used in particular for combining expert opinions. It could also be
expressed with other complementations.

From these basic properties, we can infer that:

– σ(1, 1) = 1,

– ∀x ∈ ]0, 1[, σ(x, 1− x) = 1/2,

– the only symmetric sum that is both associative and a mean is the median with
the parameter 1/2.

The general form of symmetric sums is given by:

σ(x, y) =
g(x, y)

g(x, y) + g(1− x, 1− y)
, [8.73]

where g is a continuous, positive, increasing function of [0, 1]× [0, 1] into [0, 1], such
that g(0, 0) = 0. Typically, a continuous t-norm or t-conorm can be chosen as g.

If ∀x ∈ [0, 1], g(0, x) = 0, then σ(0, 1) is not defined; otherwise σ(0, 1) = 1/2.

The general form of strictly increasing, associative, symmetric sums is given by:

∀(x, y) ∈ [0, 1]2, σ(x, y) = ψ−1
[
ψ(x) + ψ(y)

]
, [8.74]

where ψ is a strictly monotonic function such that ψ(0) and ψ(1) are not bounded
and ∀x ∈ [0, 1], ψ(1 − x) + ψ(x) = 0. From this, we infer that 0 and 1 are identity
elements and that 1/2 is a zero element.

Table 8.2 shows a few typical examples of symmetric sums. They are obtained by
using various t-norms and t-conorms as generating function g.

g(x, y) σ(x, y) property

xy σ0(x, y) = xy
1−x−y+2xy associative

x + y − xy σ+(x, y) = x+y−xy
1+x+y−2xy non-associative

min(x, y) σmin(x, y) = min(x,y)
1−|x−y| mean

max(x, y) σmax(x, y) = max(x,y)
1+|x−y| mean

Table 8.2. Examples of symmetric sums, defined based on t-norms and t-conorms. For σ0,
we adopt the convention that σ0(0, 1) = σ0(1, 0) = 0 and for σmin, we assume that

σmin(0, 1) = σmin(1, 0) = 0
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These operations can be arranged in two different orders depending on the values
to combine:

x + y ≤ 1 =⇒ σ0(x, y) ≤ σmin(x, y) ≤ σmax(x, y) ≤ σ+(x, y), [8.75]

x + y ≥ 1 =⇒ σ0(x, y) ≥ σmin(x, y) ≥ σmax(x, y) ≥ σ+(x, y). [8.76]

The four examples in Table 8.2 are illustrated in Figure 8.9.

Figure 8.9. Four examples of symmetric sums. First line: σ0 and σ+.
Second line: σmin and σmax

8.5.5. Adaptive operators

There are many operators found in other works that we will not discuss here. We
will simply mention adaptive operators according to conflict between possibility dis-
tributions [DUB 92a], which behave like a min when the distributions are consonant
and like a max when they produce a strong conflict. Let π1 and π2 be two possibility
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distributions that we wish to combine into an overall distribution π′. They may repre-
sent, for example, the imprecision on a variable estimated in two different ways, for
which we want an overall estimation.

Let us consider, for example, the case of the conjunctive combination of two pos-
sibility distributions π1 and π2 defined on D. This type of combination is well suited
for the case where the distributions overlap at least partially, i.e. when certain classes
are presented as possible by the two sources. If this is not the case, the sources are in
conflict and a possible measure of conflict is:

h
(
π1, π2

)
= 1−max

c∈D
min

(
π1(c), π2(c)

)
, [8.77]

which represents 1 minus the height of the intersection between the two distributions
(calculated by a min in this equation). The combination can be normalized by this
height, but this would hide the conflict: a possibility of 1 is always assigned to the
classes presented as the most possible by both sources, even if that possibility is low
(this problem is similar to that mentioned in section 7.4 about the conjunctive com-
bination of belief functions). In terms of conflict, the interpretation of this quantity
matches our intuition of triangular or trapezoidal possibility distributions (and more
generally of monomodal possibility distributions), but it is not well suited for forms in
which a single point can generate a strong conflict value, even if the two distributions
are different in that point only.

In the extreme case of completely conflicting distributions, conjunctive combina-
tion leads to an identically zero distributions. A disjunctive combination is then the
preferred method, making it possible to keep all of the data if it is presented as possi-
ble by at least one of the two sources. The underlying hypothesis is that at least one of
the sources is reliable.

Here are a few examples of the possible formulae for π′:

π′(s) = max

[
t
[
π1(s), π2(s)

]
h
(
π1, π2

) , 1− h
(
π1, π2

)]
, [8.78]

π′(s) = min

[
1,

t
[
π1(s), π2(s)

]
h
(
π1, π2

) + 1− h
(
π1, π2

)]
, [8.79]

π′(s) = t
[
π1(s), π2(s)

]
+ 1− h

(
π1, π2

)
, [8.80]

π′(s) = max

[
min

(
π1, π2

)
h

,min
[
max

(
π1, π2

)
, 1− h

]]
. [8.81]

The first two forms combine normalized conjunction with a constant distribution
of conflict value, whereas the latter allows us to switch from a strictly conjunctive
combination, when the conflict is equal to zero, to a strictly disjunctive combination,
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when the conflict is equal to 1 (see the example in Figure 8.10). However, this operator
is not associative. Let us note that the min could be replaced with another t-norm.

The last formula (equation [8.81]) is illustrated in Figure 8.10 for two possibility
distributions with an increasing conflict.

π’

π1 π2

π

s

h=1

π1
π2

π1 π2

π’

π’
π

s

h=0.5

π

s
h=0

Figure 8.10. Example of adaptive operators varying from the min
to the max when the conflict between two distributions increases

When the sources are unequally reliable and information is available regarding
this reliability, the level of conflict between two sources indicates to what extent the
information provided by the less reliable source can be taken into account. If, for
example, π1 is more reliable than π2, we can consider that if they are in agreement
with each other, π2 can provide information and make the fusion more accurate by
conjunction. If, on the other hand, the two sources are in conflict, it is preferable not
to take into account π2. The following operator models this behavior:

min
[
π1,max

[
π2, h

(
π1, π2

)]]
. [8.82]
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This only assumes knowing an order of reliability of the sources.

If, additionally, we have access to numerical values of reliability (a much more
stringent constraint than the previous hypothesis), we can then transform the possibil-
ity distributions into distributions with equivalent reliabilities. Let wj be the reliability
coefficient of πj ; if the source is completely reliable, this coefficient is equal to 1 and
it is equal to 0 if the source is not reliable at all. The transformation of πj works
according to the formula:

max
(
πj , 1− wj

)
[8.83]

which amounts to conducting a disjunction between πj and a constant distribution of
value 1−wj . Thus, if the source is completely reliable, the corresponding distribution
is not modified, whereas if it had not been reliable at all, the distribution would have
become constant and equal to 1, which represents absence of knowledge (any element
is completely possible). Once the distributions have been transformed, they can be
combined conjunctively.

Other operators of this kind can be found in [DUB 99], but we will not discuss
them in detail here.

These operators can also be used conditionally to the classes, to take into account
the specificities of the sources for each class. Two sources may, for example, be in
conflict over a class but not over the others, a source may be reliable for certain classes
and not others, etc. Although these ideas are still not often applied in fuzzy fusion of
signals and images, the theoretical framework allows it.

8.6. Linguistic variables

It often happens to have numerical representations that are not suited for the de-
scription of a situation. For example, if a variable has a wide variation range, it can be
difficult to assign a precise value to each specific situation and the preferred method
will consist of using more qualitative terms, taken from natural language, to gener-
ally crudely define subsets that are typical of interesting situations. For example, to
describe the size of an object, it can be easier and more appropriate to only use a few
terms with flexible boundaries, such a small, medium, large. This corresponds to a
certain granularity of information. According to [ZAD 96], the concept of “granule”
is the starting point for “computing with words” theories. Zadeh defined a granule
as “a fuzzy set of points having the form of a clump of elements drawn together by
similarity” [ZAD 96]. A word then becomes a label for a granule. In order to per-
form calculations with such representations, specific tools have to be developed. The
field of fuzzy reasoning particularly benefits from these tools, as well as the field of
knowledge fusion or approximate or crude data.

These types of representations are referred to as linguistic variables. They are vari-
able whose values are words, phrases or sentences [ZAD 75]. Their advantage lies
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essentially in the fact that linguistic characterizations can be less specific than numer-
ical ones and therefore require less information to be used and handled in reasoning
systems.

8.6.1. Definition

A linguistic variable is defined by a quintuple (x, T (x),S, G,M) where x is the
variable’s name, T (x) the set of values of x (referred to as terms), S is the domain or
the universe in which the values of the variable are defined, G is a syntactic rule which
makes it possible to generate the name X of each value of x and M is a semantic
rule, since M(X) is the fuzzy set defined in S that represents the meaning of X
[DUB 80, ZAD 75, ZIM 91].

This definition represents a symbolic-numerical conversion and establishes ties
between language and numerical scales.

8.6.2. An example of a linguistic variable

Let us consider the example of an object’s size. In numerical terms, this size can be
expressed using a value that varies inside a domain S (typically, S is a subset of R

+).
In linguistic terms, size can be expressed by using terms such as very small, small,
medium, large, very large, etc. The semantics of these terms are defined by fuzzy sets
in S. Figure 8.11 illustrates the concept of the linguistic variable “size”.

M

S

size linguistic variable

syntactic rules

terms{very small, small, medium, large, very large}

semantic rules

membership
functions

Figure 8.11. Illustration of the linguistic variable “size”, its terms and the associated fuzzy
sets. The arrows drawn from the linguistic variable to the term set represent syntactic

rules. The second set of arrows represents the semantic rules and translates
the terms into membership functions
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8.6.3. Modifiers

The meaning of a term of a linguistic variable can be modulated by operators
known as modifiers. If A is a fuzzy set, then the modifier h allows us to construct a
composite term h(A) that is a fuzzy set in the same universe S. Here are the most
common operators:

– normalization:

μnorm(A)(u) =
μA(u)

supv∈S μA(v)
,

where μA refers to the membership function to A and u is an arbitrary value in S;

– concentration:

μcon(A)(u) =
[
μA(u)

]2;
– dilation4:

μdil(A)(u) =
[
μA(u)

]0.5;

– contrast enhancement:

μint(A)(u) =

⎧⎨⎩2
[
μA(u)

]2
if μA(u) ∈ [0, 0, 5]

1− 2
[
1− μA(u)

]2
otherwise.

Typical modifiers defined using these operators are [DUB 80]:

– very A = con(A),
– more or less A = dil(A),
– plus A = A1.25,

– slightly A = int[norm(plus A and not(very A))] where “and” and “not” are de-
fined by a t-norm and a complementation, respectively.

8.7. Fuzzy and possibilistic logic

The development of fuzzy logic is directly related to the specificities of human
reasoning: more flexible than traditional propositional logic, it tolerates imprecision
and can be used to make inferences even in the presence of imperfect data and knowl-
edge. It is capable of dealing with gradual predicates, originating either from the use

4. Note that this is not a dilation in the morphological sense.
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of continuous frames of reference, or from concepts of typicality (a situation may gen-
erally be typical of known situations and this has to be accounted for when reasoning
by analogy).

When reasoning with propositions, the uncertainty (in a wide sense) corresponds
to the inability to state whether a proposition is true or false, either because the infor-
mation is incomplete, vague, imprecise, or because the information is contradictory or
fluctuating.

In the first case, a possibilistic model makes it possible to take into account this
type of uncertainty, whereas in the second case, a probabilistic model would be well
suited.

There is another important distinction between the degree of certainty and the
degree of truth. In fuzzy logic, propositions are assigned a degree of truth, whereas
in possibilistic logic, they are usually assigned degrees of uncertainty.

8.7.1. Fuzzy logic

In fuzzy logic [DUB 80, DUB 91], reasoning is based on elementary fuzzy propo-
sitions of the type:

X is P [8.84]

where X is a variable with possible values in the reference space S and P is a fuzzy
subset of S, with the membership function μP .

The degrees of truth of such propositions are defined as values in [0, 1] based on
μP .

Logical connectives are defined in a very simple way, by using the same operators
as their set equivalents. For example, the degree of truth of a conjunction such as:

X is A and Y is B

is defined based on a t-norm t by:

μA∧B(x, y) = t
[
μA(x), μB(y)

]
.

Likewise, a disjunction such as:

X is A or Y is B
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has a degree of truth based on a t-conorm T :

μA∨B(x, y) = T
[
μA(x), μB(y)

]
,

and a negation has a degree of truth defined by a fuzzy complementation c:

μ¬A(x) = c
[
μA(x)

]
.

In the case of variables with values in a product space, i.e. X with values in S and
Y with values in V , conjunction is interpreted as a cartesian product. The degree of
truth of:

X is A and Y is B

is then written:

μA×B(x, y) = t
[
μA(x), μB(y)

]
.

Now let us consider the implication. In classical logic, we have:

A =⇒ (B)⇐⇒ (B or non-A), [8.85]

and therefore the implication is expressed based on a disjunction and a negation. By
using the same equivalence in the fuzzy case, a fuzzy implication is defined based on a
t-conorm (disjunction) and a complementation (negation). Let A and B be non-fuzzy
sets. The degree to which A implies B is defined by:

Imp(A,B) = T
[
c(A), B

]
[8.86]

where T is a t-conorm and c is a complementation.

In the case where A and B are fuzzy, we have:

Imp(A,B) = inf
x

T
[
c
(
μA(x)

)
, μB(x)

]
. [8.87]

The following table sums up the major fuzzy implications used in other works for
fuzzy reasoning:

T (x, y) = max(x, y) max(1− a, b) Kleene-Diene

T (x, y) = min(1, x + y) min(1, 1− a + b) Lukasiewicz

T (x, y) = x + y − xy 1− a + ab Reichenbach
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In any case, we get the same classical implication table, given below, in the extreme
cases of true (1) and false (0) propositions, in other words when using binary degrees
of truth.

A B A⇒ B

0 0 1

0 1 1

1 0 0

1 1 1

With these few definitions, we can now define the fuzzy equivalents of the major
reasoning modes: modus ponens, modus tollens, syllogism, contraposition. Consider
the example of modus ponens. In classical logic, it is written:(

A ∧ (A =⇒ B)
)

=⇒ B. [8.88]

Its fuzzy equivalent is defined as follows:

– let us consider the rule:

if X is A then Y is B;

– and the knowledge:

X is A′

where A′ is an approximation of A;

– we then come to the conclusion:

Y is B′

where B′ is an approximation of B, with the degree:

μB′(y) = sup
x

t
[
μA⇒B(x, y), μA′(x)

]
. [8.89]

We can now model and handle fuzzy rule systems. For example, let us consider
the rule:

IF (x is A AND y is B) THEN z is C
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and α as the degree of truth of x is A, β as the degree of truth of y is B, γ as the
degree of truth of z is C. The rule’s degree of truth (or of satisfaction) is obtained by
combining the fuzzy connectors defined above:

Imp
(
t(α, β), γ

)
, [8.90]

hence:

T
[
c
(
T (α, β)

)
, γ
]
. [8.91]

Likewise for the rule:

IF (x is A OR y is B) THEN z is C

its degree of satisfaction is:

Imp
(
T (α, β), γ

)
= T

[
c
(
T (α, β)

)
, γ
]
. [8.92]

These rules can be used to describe in a qualitative fashion the graph of a fuzzy
function using a small number of rules. For example, a function such as that in Figure
8.12 can be described, on a rather crude granularity level, by:

IF X is small THEN Y is small

IF X is medium THEN Y is large

IF X is large THEN Y is small

These rules rely on the concept of linguistic variables, discussed above, and the
semantics of the values “small”, “medium”, “large”, are defined by fuzzy sets over the
definition domains of X and Y .

Figure 8.12. An example of a function’s graph

Fuzzy rule systems have been used in many fields, essentially in fuzzy control, but
also for fuzzy reasoning, for modeling flexible criteria in image processing and fusion,
etc.
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8.7.2. Possibilistic logic

Possibilistic logic relies on the definition of a possibility measure Π in a Boolean
algebra B with the formulae [DUB 91]:

Π : B −→ [0, 1]

such that:

– Π(⊥) = 0;

– Π(�) = 1;

– ∀ϕ, φ, Π(ϕ ∨ ψ) = max(Π(ϕ),Π(ψ));
– ∀ϕ, Π(∃xϕ) = sup

{
Π
(
ϕ[a | x]

)
, a ∈ D(x)

}
(where D(x) is the domain of

the variable x and ϕ[a|x] is obtained by replacing the occurrences of x in ϕ with a).

Now let Ω be the set of interpretations and let π be a normalized possibility distri-
bution:

π : Ω −→ [0, 1]

such that:

∃ω ∈ Ω, π(ω) = 1.

The possibility of a formula is then expressed as:

Π(ϕ) = sup
{
π(ω), ω |= ϕ

}
[8.93]

where ω |= ϕ is read “ω is a model of ϕ”, meaning that ϕ is satisfied in the world ω.

As we did with sets, a necessity measure is defined for formulae using duality by:

N(ϕ) = 1−Π(¬ϕ). [8.94]

We then have the following property:

∀ϕ, φ, N(ϕ ∧ ψ) = min
(
N(ϕ), N(ψ)

)
. [8.95]

This formalism can be used to deal with many situations by modeling them in a
very simple way. For example, a default rule such as “if A then B”, with possible
exceptions, can be simply expressed as:

Π(A ∧B) ≥ Π(A ∧ ¬B) [8.96]

Likewise, possibilistic modus ponens reasoning can be modeled by:

– if we have the rule: N(A⇒ B) = α
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– and an element of knowledge written as: N(A) = β

– then the conclusion can be expressed by: min(α, β) ≤ N(B) ≤ α.

The formalism of possibilistic logic is used in many fields, for example, to repre-
sent preference or utility models in the form of KBS and then to use these systems for
reasoning [DUB 99].

Let us consider a knowledge base of the type:

KB =
{(

ϕi, αi), i = 1 . . . n
}

where αi is a degree of certainty or priority associated with the formula ϕi (represent-
ing an element of knowledge).

Satisfying this set of formulae in each world is represented by a possibility distri-
bution defined as follows. In the case where the knowledge base is comprised of only
one formula, we have:

π(ϕ,α)(ω) =

{
1 if ω |= ϕ

1− α otherwise
[8.97]

More generally, for a set of elements of knowledge with priorities, we have:

πKB(ω) = min
i=1...n

{
1− αi, ω |= ¬ϕi

}
= min

i=1...n
max

(
1− αi, ϕi(ω)

)
. [8.98]

This formula is interpreted this way: if a formula is significant (αi close to 1), this
formula’s degree of satisfaction in the world ω is taken into account. If, on the other
hand, it is not significant (αi close to 0), then it will not come into play in the overall
evaluation of the knowledge base. The min corresponds to the fact that we are trying to
know to what extent the formulae of the knowledge base are simultaneously satisfied
in ω.

The inconsistency degree of the base KB can be measured using the expression:

1−max
ω

πKB(ω). [8.99]

A base is said to be complete if it can be used to infer whether any formula is
true or whether its opposite is true: either KB � ϕ (KB allows us to infer ϕ), or
KB � ¬ϕ (KB allows us to infer ¬ϕ).

When a base is not complete, it leads to an absence of knowledge regarding certain
formulae ϕ: KB �� ϕ and KB �� ¬ϕ. Using possibilistic logic, this situation can be
represented in a very simple way:

Π(ϕ) = Π(¬ϕ) = 1

whereas there is no such simple model in probability theory, for example.
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8.8. Fuzzy modeling in fusion

Among the non-probabilistic techniques that have appeared over the past 10 years
in fusion, fuzzy set theory provides a very efficient tool for explicitly representing
imprecise information, in the form of membership functions [BAN 78, KAU 75,
ZAD 65], as we saw above. As a result, the measure M j

i (x) introduced in Chapter 1
is written in the form:

M j
i (x) = μj

i (x), [8.100]

where μj
i (x) refers, for example, to the degree of membership of x to the class Ci

according to the source Ij , or the translation of a symbolic element of information
expressed by a linguistic variable (see, for example, [DEL 92]).

In other works there are two main methods for using fuzzy sets in image processing
[BLO 96a]: the first is more symbolic in nature and expresses in the form of fuzzy rules
the membership of certain structures to a class, depending on measurements obtained
by image processing; the second uses fuzzy sets to directly represent the classes or
structures in the image, spatially covering the objects with a membership function. Let
us consider the example of the “road” class in a satellite image. In the first approach,
we would describe the road in a linguistic form such as “a road is a rather elongated
structure”. The membership of an object to the road class will then be represented by
a function associating its length with a degree in [0, 1]. Any parallel contour detection
algorithm can then be used to assign to the objects it detects a degree of membership to
the road class, depending on their length. In the second approach, the road is directly
represented in the image by a fuzzy set, with membership degrees that are strong in
the middle of the road and close to 0 in fields or forest.

These functions are not subjected to the axiomatic constraints imposed by proba-
bilities and hence offer a greater flexibility in modeling them. This flexibility can be
seen as a disadvantage since it can easily leave the user helpless to define these func-
tions. The disadvantage of fuzzy sets is that they represent essentially the imprecise
nature of information, whereas uncertainty is represented implicitly and can only be
obtained by inference from the different membership functions.

Possibility theory [DUB 88, ZAD 78], which is derived from fuzzy sets, allows
us to represent both the imprecision and the uncertainty, by using possibility distribu-
tions π on a set S and two functions characterizing events: the possibility Π and the
necessity N .

A possibility distribution is interpreted as a function that gives the degree of pos-
sibility for a variable to have the value s, with S being the domain of the variable’s
values. The distribution π is then interpreted as the membership function to the fuzzy
subset S for the possible values of this variable. In the framework of numerical fusion,
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a possible application of this theory consists of choosing S = D (the class set) and
defining the measure M j

i by:

M j
i (x) = πx

j

(
Ci

)
, [8.101]

i.e. as the possibility degree for the class to which x belongs to have the value Ci,
according to the source Ij . This defines a possibility distribution for each source and
each element x. The possibility and the necessity for each class are then written:

Πj

({
Ci

})
= πj

(
Ci

)
, Nj

({
Ci

})
= inf

{(
1− πj

(
Ck

))
, Ck �= Ci

}
. [8.102]

For any subset A of D, the possibility and the necessity are calculated using for-
mulae [8.24] and [8.26].

This modeling assumes that classes are crisp, whereas the fuzzy model defined by
equation [8.100] assumes fuzzy classes.

Generally speaking, there are three interpretations of fuzziness in other works, in
terms of plausibilities, similarities, preferences [DUB 99]. The same interpretations
are used in signal and image fusion. The interpretation in terms of plausibilities is
used for the membership to a class, in the definition of a fuzzy spatial object (an
object with imprecise limits). The interpretation in terms of similarities is that used
for the definition of a fuzzy class in a characteristic space as a function of the distance
to a prototype, for example, of linguistic variables representing information or knowl-
edge about spatial objects, or also of degrees of satisfaction of a relation, a constraint.
Finally, preferences are used in the expression of choice criteria (for example, for
planning applications in robotics), which are often related to constraints or knowledge
outside the image.

8.9. Defining membership functions or possibility distributions

Constructing membership functions or possibility distributions can be done in sev-
eral ways.

In most applications, this construction is done either by taking ideas directly from
probabilistic learning methods, from heuristics, from neuromimetic methods used for
learning the parameters of particular forms of membership functions, or finally by
minimizing classification criteria [BEZ 81]. Below is a description of the major meth-
ods.

A first method consists of defining a fuzzy class membership function based on
the image’s intensity function I (the gray levels):

μi(x) = Fi

[
I(x)

]
, [8.103]
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where Fi is a function that is determined according to the problem. The most com-
monly used are normalization functions or S functions [PAL 92] (which is equivalent
to considering that the lighter parts of the image have a high membership to the class),
functions Π (monomodal, they associate the class with a range of gray levels with
imprecise limits), or also multimodal functions.

These functions are often determined under supervision, but can also be learned,
for example, using automatic classification algorithms such as fuzzy C-means
[BEZ 81] or possibilistic C-means [KRI 93] (see, for example, [BEZ 99] for an
overview of fuzzy classification algorithms). The main drawback of fuzzy C-means
is that the membership functions have counter-intuitive forms: the class membership
values are non-decreasing with respect to the distance to the center of the class. This
problem is avoided with possibility C-means.

Other characteristics can be used to achieve this goal. For example, the set of
contours in an image can be defined by a spatial fuzzy set whose membership function
is a function of the image’s gradient:

μi(x) = Fi

[
∇I(x)

]
, [8.104]

where F is a decreasing function.

If specific object detectors are available, the membership functions of these objects
can be defined as functions of the response to these detectors (the case of contours
falls into this category). For example, a road detector can provide in a satellite image
a response whose amplitude increases with the membership to the road.

In the case of linguistic variables, the forms of membership functions and their
parameters are often defined by the user.

The spatial imprecision over the definition of the limits between classes (if the
membership functions are defined in the image space) can be introduced based on a
preliminary binary detection of the classes. A membership function is constructed as
equal to 1 inside the binary area at a certain distance from the edges, as equal to 0
outside this area at a certain distance from the edges and as decreasing between these
two limits. For example, an imprecision zone on the edge of the class can be modeled
as the zone included between the erosion and the dilatation of this object, since the
size of these operations depends on the spatial extension of the imprecision we wish to
represent. If R is the binary area we start with, En(R) its erosion of size n and Dm(R)
its dilatation of size m, the fuzzy class membership function can be defined by:

μ(x) = 1 if x ∈ En(R), [8.105]

μ(x) = 0 if x ∈ Dm(R)C ,

μ(x) = F
[
d
(
x,En(R)

)]
otherwise

where F is a decreasing function of the distance from x to En(R).
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The construction of possibility distributions can also be done from probabilistic
learning, followed by a transformation of probability into possibility. Several meth-
ods have been suggested for this purpose. The main advantage in signal and image
processing is that statistical information is often available, particularly the histogram,
which is well suited for applying statistical learning methods. We then get probability
distributions pk. Their transformation into possibility distributions πk (both distribu-
tions are assumed to be discrete and 1 ≤ k ≤ K) is achieved according to various
criteria [DEV 85, DUB 83, KLI 92], such as not changing the order, normalization
constraints, conserving the uncertainty measured by the entropy [KLI 92], the consis-
tency p− π expressed by [DEL 87]:

∀k, πk ≤ pk,

which is not very satisfactory (an unlikely class can be possible), or [ZAD 78]:

K∑
k=1

pkπk = c

where c is a constant in [0, 1], or also a more general relation involving all of the
subsets A [DUB 80]:

N(A) ≤ P (A) ≤ Π(A).

A comparison of these methods can be found in [KLI 92].

Other methods try to directly estimate the membership functions based on the
histogram, in order to optimize entropy criteria [CHE 95] or minimal specificity and
consistency criteria [CIV 86].

In any case, these methods attempt to find a similarity between the histogram and
the membership functions or the possibility distributions and do not take into consid-
eration interpretations that are specific to fuzziness because they invalidate some of
these similarities. For example, the tails of the histogram correspond to classes with
little representation, hence with values that can be very low, even if the points involved
belong to the corresponding classes. The method suggested in [BLO 97] provides a
way of avoiding this problem with the help of a criterion that combines the similari-
ties of membership functions and the histogram where they have meaning, with an a
priori form of the functions that correspond to the desired interpretation. The parame-
ters of the membership functions are then estimated in order to optimize this criterion
by using a simulated annealing method.

8.10. Combining and choosing the operators

One of the advantages of fuzzy set and possibility theory, beyond the fact that it
imposes few constraints on modeling, is that it offers a wide variety of combination
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operators. We will present the main ones, then give a few indications on how to choose
a fusion operator according to its properties and its behavior.

An important feature, common to every theory, of these combination operators is
that they provide us with a result of the same nature as the functions we started with
(the closure property) and therefore with the same interpretation in terms of impreci-
sion and uncertainty. Therefore, they make it possible not to make any partial binary
decision before the combination takes place, which could lead to inconsistencies that
would be difficult to eliminate. The decision is only made at the very end, based on
the result of the combination.

In fuzzy set and possibility theory, a number of combination modes are possi-
ble [DUB 85, YAG 91]. Among the major operators, we can mention in particular
t-norms, t-conorms [MEN 42, SCH 83], means [GRA 95, YAG 88], symmetric sums
and operators that take into account conflict or source reliability measures [DEV 93,
DUB 92a], as we saw in section 8.5. From here on, the letters x, y, etc. refer to the
values we wish to combine, i.e. values in [0, 1] that therefore represent μj

i or πj(Ci)
in this case.

The choice of a fusion operator is made according to several criteria presented in
[BLO 96b].

A first criterion is the operator’s behavior. Strict, lenient or cautious behaviors are
expressed in mathematical form as conjunction, disjunction, or compromise. Let x and
y be two real numbers (in [0, 1]) representing the degrees of confidence to combine.
The combination of x and y by an operator F is described as:

– conjunctive if F (x, y) ≤ min(x, y) (corresponding to a strict behavior);

– disjunctive if F (x, y) ≥ max(x, y) (lenient behavior);

– compromise if x ≤ F (x, y) ≤ y if x ≤ y and y ≤ F (x, y) ≤ x otherwise
(cautious behavior).

This distinction is not sufficient to categorize operators whose behaviors are not
always the same. This is why the classification defined in [BLO 96b] describes oper-
ators not only as conjunctive and disjunctive, but also depending on their behavior
according to the values of the information to combine. The three classes suggested
correspond to:

– context independent constant behavior (CICB) operators: the result depends only
on the values to combine (the calculation involves no other information) and the
behavior is the same regardless of what those values are;

– context independent variable behavior (CIVB) operators: the behavior depends
on the numerical values of the information to fuse;

– context dependent (CD) operators, for example, of more comprehensive knowl-
edge such as the reliability of the sensors, or the conflict between the sources.
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Fuzzy fusion operators fall into three categories. T-norms, which generalize set
intersection to fuzzy sets, are conjunctive CICB operators, since for any t-norm t, we
have:

∀(x, y) ∈ [0, 1]2, t(x, y) ≤ min(x, y).

On the other hand, t-conorms which generalize union are disjunctive CICB opera-
tors, since for any t-conorms T , we have:

∀(x, y) ∈ [0, 1]2, T (x, y) ≥ max(x, y).

Mean operators are also CICBs and have a compromise behavior, since they verify:

∀(x, y) ∈ [0, 1]2, min(x, y) ≤ m(x, y) ≤ max(x, y).

Let us note that Bayesian fusion, in which the operator involved is a product, and
fusion of belief functions using Dempster’s orthogonal sum are also conjunctive.

In the CIVB operator class we have, for example, certain symmetric sums. Gener-
ally speaking, any associative symmetric sum σ (except for medians) has the following
behavior [DUB 88]:

– conjunctive if max(x, y) < 1/2: σ(x, y) ≤ min(x, y);
– disjunctive if min(x, y) > 1/2: σ(x, y) ≥ max(x, y);
– compromise if x ≤ 1/2 ≤ y: x ≤ σ(x, y) ≤ y (and the opposite inequality if

y ≤ 1/2 ≤ x).

Non-associative symmetric sums also have a variable behavior, but according to
less simple rules [BLO 96b].

In the CIVB operator class, we also have the operators suggested in the MYCIN
system for combining certainty factors [SHO 75].

Examples of CD operators are found in possibility theory. Earlier, we presented
operators that depended on an overall measure of the conflict between two sources of
information [DUB 92a], which are applicable to cases where one of the two elements
of information is reliable, but where we do not know which one, so that:

– they are conjunctive if the sources are consonant (low conflict): in this case, the
two sources are necessarily reliable and therefore the operator can be strict;

– they are disjunctive if the sources are dissonant (high conflict): a disjunction then
favors all of the possibilities provided by both sources;
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– they have a compromise behavior in the case of partial conflict: these cases are
the most problematic and the operators are then “cautious”.

The difficulty is then to find a good conflict measure. That suggested as the maxi-
mum of the intersection between two possibility distributions [DUB 92a] is not always
well suited to image processing problems, particularly for the classification of multi-
source data. Fuzzy distances (see, for example, [BLO 99]) can provide solutions to
this problem.

The advantage of DC operators for image processing is undeniable, since they
allow us to take into consideration a wider variety of situations, several of which occur
simultaneously in image processing. Here are a few examples:

– sources can be in conflict when they provide information regarding one type of
event (a class, for example) and consonant for another class;

– sources can have different overall reliabilities;

– a source can be reliable for one class and poorly reliable for another, etc.

Unfortunately, these operators still have not, in our opinion, been developed far
enough in image processing and would deserve specific research.

This classification, which includes all of the commonly used operators, constitutes
a first criterion for choosing an operator for a specific application.

A second criterion is given by the properties of operators and their interpretations
in terms of uncertain, imprecise, incomplete or ambiguous data fusion.

The commutativity and associativity properties reflect the fact that the result of the
combination does not depend on what order the elements of information are arranged
in when they are combined. Whereas commutativity is satisfied by all of the commonly
used operators, this is not systematic with associativity (means and symmetric sums
usually are not associative). These two properties are often laid out as the minimum
properties that fusion operators have to satisfy. However, human reasoning does not
always comply with them. For example, a photo interpreter often starts by constructing
a primary interpretation of the scene based on a single image, then improves this in-
terpretation by using the other images, according to a process that clearly is not com-
mutative.

The existence of an identity element means that a source yielding this value will
have no influence on the result of the combination and represents some sort of indif-
ference on the part of the source towards the information sought, or even a complete
absence of knowledge regarding it. Such an element exists for t-norms and t-conorms.
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Another distinctive element, the zero element, means that a source yielding this
value has complete determination over the result of the fusion. Such elements also
exist for t-norms and t-conorms.

The property of increasingness is usually imposed on operators and matches what
our intuition tells us.

Boundary conditions, which define the behavior of the operators when the infor-
mation to combine has extreme values, guarantee compatibility with the binary case,
where all of the propositions are simply either true or false (this corresponds to the
constraint of complying with deductive logic imposed by Cox for defining an induc-
tive logic [COX 46]).

The continuity property satisfied by most operators guarantees the robustness of
the fusion. However, this property is not always necessary, since natural phenomena
(particularly time phenomena) are not always continuous.

Idempotence means that providing information that is already available will not
change the fusion result. This property is not systematically imposed. It is verified by
means, the t-norm min and the t-conorm max (and those are the only ones). We might
want, on the contrary, to have the combination of two identical values reinforce or
weaken the overall result. Let us consider the example of identical simultaneous testi-
monies. If the witnesses are plotting together, it is not surprising to see them saying the
same thing and the associated degrees of confidence will therefore be combined in an
idempotent way. Whereas if they are independent, the credibility of what they are say-
ing will be reinforced if they are trusted, or weakened if they are not. Let us note that
the combination rules modeling these behaviors have been known since Bernoulli.
Generally speaking, it is considered that if sources are dependent (in the cognitive
sense), idempotence can be imposed, whereas if they are independent, reinforcement
effects can be needed.

Along the same lines, the nilpotence property will be imposed, for example, to
combine consecutive testimonies, in order to model the deterioration of information
along a chain of witnesses that are not completely reliable. For example, for certain
t-conorms, satisfying this property will help achieve a result equal to 1 by combining
a certain number of measures, which are not all equal to zero. This type of behavior
may be useful when the information is the result of a long processing chain.

The excluded middle and non-contradiction properties, satisfied only for certain
operators, have an accepted interpretation in reasoning terms, in the field of artificial
intelligence and fuzzy reasoning. There are examples in image processing where the
excluded middle is not advisable, whenever there is a need for introducing absence of
knowledge regarding an event and its complements and therefore to relax the compre-
hensiveness constraint applied, for example, in probabilities.
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The generalization of all of the above to the combination of two elements of infor-
mation poses no particular difficulty (in particular, the same types of behavior are
found in CIVB operators with rules that are a little more complicated), except for
non-associative operators. The main question surrounding these operators is to know
in what order the elements of information should be combined. Several situations can
occur:

– in certain applications, each element of information has to be combined with the
others as soon as it becomes available (for example, in order to make partial decisions
based on the data available at every instant): the order is then set by the order in which
the elements of information arrive;

– the order can be imposed by priorities on the information to take into account,
and operators have been designed to respond to these needs (for example, in order to
combine database requests);

– in other situations, criteria have to be determined for finding an order adapted
to the application, particularly when the elements of information are in conflict, since
the results can be very different depending on whether the consonant or the conflicting
elements of information are combined first.

Finally, the study of the behaviors of operators in terms of the quality of the deci-
sion they lead to and of their reactions when faced with conflicting situations leads to
a final criterion for choice. An important point, however, involves the discriminating
power of the operators. Highly conjunctive or disjunctive operators (for example, the
Lukasiewicz t-norm and t-conorm) quickly saturate at 0 or 1 and therefore are often
poorly discriminatory. For example, with the t-conorm F (a, b) = min(a + b, 1), we
have F (0.5, 0.5) = 1, F (0.1, 0.9) = 1, or also F (0.8, 0.8) = 1, whereas these three
situations have quite different interpretations.

The ability of operators to combine information that is quantitative (numerical)
or qualitative (for which only the order is known) can also be a criterion for choice.
For example, the min, the max and any rank filter are useful in this regard since they
can combine both types of information. This is because the calculation of min(x, y),
for example, only requires knowing an order between x and y, but does not require
their numerical values to be known. Additionally, ordinal operations are imposed if
we want them to remain invariant by an increasing transformation of the membership
degrees [DUB 99].

8.11. Decision

The major rule used in fuzzy fusion is the maximum degree of membership:

x ∈ Ci if μi(x) = max
{
μk(x), 1 ≤ k ≤ n

}
, [8.106]
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where μk refers to the membership function to the class k resulting from the combi-
nation.

The quality of the decision is measured basically according to two criteria:

– the first involves the “crispness” of the decision: the maximum degree of mem-
bership (or more generally the one that corresponds to the decision) is compared to a
threshold, which is chosen depending on the applications (and possibly depending on
the chosen combination operator);

– the second involves the “discriminating” nature of the decision, which is evalu-
ated by comparing the two highest values.

If these criteria are not met for an element x, then this element is placed in a
rejection class, or reclassified according to other criteria, such as spatial criteria, for
example (see Chapter 9).

8.12. Application examples

In this section, we will illustrate fuzzy methods with two examples of multi-source
classification.

8.12.1. Example in satellite imagery

For the first example, we go back to the SPOT images from the example in Chapter
6 (Figure 6.1). The classes that are considered are still cities or urban areas (class
C1), rivers (class C2) and a class C3 encompassing all the other structures (mostly
vegetated areas). This example was discussed in [CHA 95].

First, a supervised learning phase is conducted based on the histograms condi-
tional to the classes, either simply by smoothing these histograms, or by minimizing
the distance to the histograms of parametric functions such as truncated Gaussian dis-
tributions or piecewise linear L-R functions (trapezoidal functions). This first phase is
illustrated in the first line of Figure 8.13.

However, these functions, denoted by f j
i for learning the class Ci in the image

j, have no satisfactory interpretation in terms of membership functions. Particularly,
the tails of the histogram correspond to gray levels that are rare in the images, but
whose corresponding points belong without ambiguity to the darkest class (the light-
est, respectively). The change from the functions f j

i to the membership functions μj
i

is done by a transformation such that:

μj
i (x) = λj

i (x)f j
i (x) [8.107]
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Figure 8.13. Top: the functions f j
i conditional to the classes that were estimated under

supervision on the learning areas of the images; in the center, the functions f j
city estimated

from the maxima of the functions f j
river and f j

C3
; bottom: the membership functions μj

i .
Left: estimation from the normalized and smoothed histograms; center, estimation from

the truncated Gaussian functions; right: estimation of the functions
from the linear L-R functions
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where x denotes the gray level in a point and the λj
i are functions determined so that

the complement of the classes is defined by the same formula and so that the order
in which the functions are in is untouched. By choosing, for example, the simplest
complementation c(a) = 1− a for a ∈ [0, 1], and by stating that the complement of a
class Ci is also the union of the classes Ck for k �= i (in a closed world), we get:

λj
i (x) =

1

f j
i (x) + f j

i (x)
[8.108]

with:

f j
i (x) = max

k �=i
f j

k(x). [8.109]

The results obtained by this method are illustrated in Figure 8.13 and show that
the resulting membership functions present the behavior we expected.

For fusion, an adaptive operator is defined by the combination of a t-norm t and
a t-conorm T , as t1−γT γ . This operator, sometimes referred to as the compensation
operator, can vary between the t-norm for γ = 0 and the t-conorm for γ = 1. The
operator defined in [CHA 95] is special because γ is defined locally, in each point, as
a function Hi(x) which is a function of a normalized conjunction of the membership
degrees of x. This function is illustrated in Figure 8.14 and its values increase with the
class membership. The t-norm used here is a min and the t-conorm is a max.

Figure 8.14. Images of the parameters Hi of the classes of cities on the left,
rivers in the center and C3 on the right

Figure 8.15 illustrates the results obtained with this operator on a detail of the
image (bottom line), which can favorably be compared to those obtained with a simple
t-norm. The decision is made by a maximum of membership degrees in each point.
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Figure 8.15. Detail of the river detection images of the Vignola scene: original channel 3
SPOT image, decision based on the images Hi, on the constant behavior

t-norms, on the variable behavior compensation operator

Figure 8.16 shows the result of the fusion for the entire image with the adaptive
operator, since the decision is still simply made by a maximum of the membership
degrees. The river, as well as the contours of urban areas, are highlighted in white in
the original image. The rest corresponds to the class C3.
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Figure 8.16. Result of the fusion using the variable behavior
compensation operator on the Vignola scene

8.12.2. Example in medical imaging

The second example uses the same images as the example in Chapter 7 regard-
ing the classification of multi-echo MRI images of the brain (Figure 7.1). We are still
looking at the pixel level and the membership functions are defined based on the gray
levels, in an unsupervised fashion [BLO 97]. Three classes are considered: brain, ven-
tricles and cerebrospinal fluid, and the pathological area.

Here the combination operators are chosen in an adaptive fashion, not locally in
each point, but depending on the classes. Since the two images provide similar infor-
mation about the ventricles, the membership functions are fused by a mean operator.
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The healthy brain and the pathology cannot be distinguished in the first image and
therefore only one class can be learned, denoted by μ1

c . In the second image, it is pos-
sible to learn two classes μ2

c (brain) and μ2
path (pathology). The functions μ1

c and μ2
c

are also combined using an arithmetic mean. For the pathology, μ1
c and μ2

path are com-
bined using a symmetric sum defined by: ab/(1− a− b + 2ab). This ensures that the
pathology is not detected in the areas where μ2

path = 0 and otherwise reinforces the
membership to that class, thus making it possible to include in the pathological area
the entire partial volume area where the points are comprised in part of pathological
tissue.

After the combination, the decision is made based on the maximum membership.
The result is illustrated in Figure 8.17.

Figure 8.17. Two MRI acquisitions of the brain and the result of the fuzzy fusion classification
(the decision is only made locally in each point, without spatial regularization)

This example illustrates the advantage of choosing operators in an adaptive fash-
ion, based on information provided by the images about the different classes.



194 Information Fusion

8.13. Bibliography

[BAN 78] BANON G., “Distinction entre plusieurs sous-ensembles de mesures floues”, Col-
loque International sur la Théorie des Ensembles Flous, Marseille, France, 1978.

[BEZ 81] BEZDEK J.C., Pattern Recognition with Fuzzy Objective Function Algorithms,
Plenum, New York, 1981.

[BEZ 92] BEZDEK J.C., PAL S.K., Fuzzy Models for Pattern Recognition, IEEE Press, New
York, 1992.

[BEZ 99] BEZDEK J.C., KELLER J., KRISHNAPURAM R., PAL N.R., Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing, Handbooks of Fuzzy Sets series,
Kluwer Academic Publisher, Boston, 1999.

[BLO 96a] BLOCH I., “Image Information Processing using Fuzzy Sets”, World Automation
Congress, Soft Computing with Industrial Applications, Montpellier, France, p. 79-84, May
1996.

[BLO 96b] BLOCH I., “Information Combination Operators for Data Fusion: A Comparative
Review with Classification”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 26,
no. 1, p. 52-67, 1996.

[BLO 97] BLOCH I., AURDAL L., BIJNO D., MÜLLER J., “Estimation of Class Membership
Functions for Grey-Level Based Image Fusion”, ICIP’97, vol. III, Santa Barbara, Califor-
nia, p. 268-271, October 1997.

[BLO 99] BLOCH I., “On Fuzzy Distances and their Use in Image Processing under Impreci-
sion”, Pattern Recognition, vol. 32, no. 11, p. 1873-1895, 1999.

[BOU 96] BOUCHON-MEUNIER B., RIFQI M., BOTHOREL S., “Towards General Measures
of Comparison of Objects”, Fuzzy Sets and Systems, vol. 84, no. 2, p. 143-153, September
1996.

[CHA 95] CHAUVIN S., Evaluation des théories de la décision appliquées à la fusion de cap-
teurs en imagerie satellitaire, PhD Thesis, Ecole Nationale Suérieure des Télécommunica-
tions and Nantes University, December 1995.

[CHE 89] CHENG Y., KASHYAP R.L., “A Study of Associative Evidential Reasoning”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-11, no. 6, p. 623-
631, 1989.

[CHE 95] CHENG H.D., CHEN J.R., “Automatically Determine the Membership Function
based on the Maximum Entropy Principle”, 2nd Annual Joint Conf. on Information Sci-
ences, Wrightsville Beach, USA, p. 127-130, 1995.

[CIV 86] CIVANLAR M.R., TRUSSEL H.J., “Constructing Membership Functions using Sta-
tistical Data”, Fuzzy Sets and Systems, vol. 18, p. 1-13, 1986.

[COX 46] COX R.T., “Probability, Frequency and Reasonable Expectation”, Journal of
Physics, vol. 14, no. 1, p. 115-137, 1946.

[DEL 87] DELGADO M., MORAL S., “On the Concept of Possibility-Probability Consis-
tency”, Fuzzy Sets and Systems, vol. 21, no. 3, p. 311-318, 1987.



Fuzzy Sets and Possibility Theory 195

[DEL 92] DELLEPIANE S., VENTURI G., VERNAZZA G., “Model Generation and Model
Matching of Real Images by a Fuzzy Approach”, Pattern Recognition, vol. 25, no. 2, p. 115-
137, 1992.

[DEV 85] DEVI B.B., SARMA V.V.S., “Estimation of Fuzzy Memberships from Histograms”,
Information Sciences, vol. 35, p. 43-59, 1985.

[DEV 93] DEVEUGHELE S., DUBUISSON B., “Using Possibility Theory in Perception: An
Application in Artificial Vision”, Second IEEE International Conference on Fuzzy Systems,
San Francisco, California, p. 821-826, 1993.

[DUB 80] DUBOIS D., PRADE H., Fuzzy Sets and Systems: Theory and Applications, Aca-
demic Press, New York, 1980.

[DUB 83] DUBOIS D., PRADE H., “Unfair Coins and Necessity Measures: Towards a Pos-
sibilistic Interpretation of Histograms”, Fuzzy Sets and Systems, vol. 10, no. 1, p. 15-20,
1983.

[DUB 85] DUBOIS D., PRADE H., “A Review of Fuzzy Set Aggregation Connectives”, Infor-
mation Sciences, vol. 36, p. 85-121, 1985.

[DUB 88] DUBOIS D., PRADE H., Possibility Theory, Plenum Press, New York, 1988.

[DUB 91] DUBOIS D., LANG J., PRADE H., “Fuzzy Sets in Approximate Reasoning, Part II:
Logical Approaches”, Fuzzy Sets and Systems, vol. 40, p. 203-244, 1991.

[DUB 92a] DUBOIS D., PRADE H., “Combination of Information in the Framework of Pos-
sibility Theory”, in A. MONGI and A. ABIDI (ed.) Data Fusion in Robotics and Machine
Intelligence, Academic Press, 1992.

[DUB 92b] DUBOIS D., PRADE H., “A Unifying View of Comparison Indices in a Fuzzy Set-
Theoretic Framework”, in R.R. YAGER (ed.) Fuzzy Sets and Possibility Theory, p. 3-13,
Pergamon Press, 1992.

[DUB 99] DUBOIS D., PRADE H., YAGER R., “Merging Fuzzy Information”, in J. BEZDEK,
D. DUBOIS and H. PRADE (ed.) Handbook of Fuzzy Sets Series, Approximate Reasoning
and Information Systems, Chapter 6, Kluwer, 1999.

[FRA 79] FRANK M.J., “On the Simultaneous Associativity of F (x, y) and x+y−F (x, y)”,
Aequationes Mathematicae, vol. 19, p. 194-226, 1979.

[GOE 83] GOETSCHEL R., VOXMAN W., “Topological Properties of Fuzzy Numbers”, Fuzzy
Sets and Systems, vol. 10, p. 87-99, 1983.

[GOE 86] GOETSCHEL R., WOXMAN W., “Elementary Fuzzy Calculus”, Fuzzy Sets and
Systems, vol. 18, p. 31-43, 1986.

[GRA 92] GRABISCH M., MUROFUSHI T., SUGENO M., “Fuzzy Measures of Fuzzy Events
Defined by Fuzzy Integrals”, Fuzzy Sets and Systems, vol. 50, p. 293-313, 1992.

[GRA 95] GRABISCH M., “Fuzzy Integral in Multicriteria Decision Making”, Fuzzy Sets and
Systems, vol. 69, p. 279-298, 1995.

[HAM 78] HAMACHER H., “Ueber logische Verknupfungen Unscharfer Aussagen und deren
Zugehoerige Bewertungsfunktionen”, Progress in Cybernetics and System Research, vol. 3,
p. 276-287, 1978.



196 Information Fusion

[KAU 75] KAUFMANN A., Introduction to the Theory of Fuzzy Subsets, Academic Press, New
York, 1975.

[KLI 92] KLIR G.J., PARVIZ B., “Probability-Possibility Transformations: A Comparison”,
Int. J. General Systems, vol. 21, p. 291-310, 1992.

[KOS 90] KOSKO B., “Fuzziness vs. Probability”, International Jounal of General Systems,
vol. 17, p. 211-240, 1990.

[KRI 92] KRISHNAPURAM R., KELLER J.M., “Fuzzy Set Theoretic Approach to Computer
Vision: an Overview”, IEEE Int. Conf. on Fuzzy Systems, San Diego, California, p. 135-142,
1992.

[KRI 93] KRISHNAPURAM R., KELLER J.M., “A Possibilistic Approach to Clustering”, IEEE
Transactions on Fuzzy Systems, vol. 1, no. 2, p. 98-110, 1993.

[LUC 72] LUCA A.D., TERMINI S., “A Definition of Non-Probabilistic Entropy in the Setting
of Fuzzy Set Theory”, Information and Control, vol. 20, p. 301-312, 1972.

[MEN 42] MENGER K., “Statistical Metrics”, Proc. National Academy of Sciences of USA,
vol. 28, p. 535-537, 1942.

[MUR 89] MUROFUSHI T., SUGENO M., “An Interpretation of Fuzzy Measure and the Cho-
quet Integral as an Integral with respect to a Fuzzy Measure”, Fuzzy Sets and Systems,
vol. 29, p. 201-227, 1989.

[PAL 92] PAL S.K., “Fuzzy Set Theoretic Measures for Automatic Feature Evaluation”, Infor-
mation Science, vol. 64, p. 165-179, 1992.

[SCH 63] SCHWEIZER B., SKLAR A., “Associative Functions and Abstract Semigroups”,
Publ. Math. Debrecen, vol. 10, p. 69-81, 1963.

[SCH 83] SCHWEIZER B., SKLAR A., Probabilistic Metric Spaces, North Holland, Amster-
dam, 1983.

[SHA 76] SHAFER G., A Mathematical Theory of Evidence, Princeton University Press, 1976.

[SHO 75] SHORTLIFFE E.H., BUCHANAN B.G., “A Model of Inexact Reasoning in
Medicine”, Mathematical Biosciences, vol. 23, p. 351-379, 1975.

[SUG 74] SUGENO M., Theory of Fuzzy Integral and its Applications, PhD Thesis, Tokyo
Institute of Technology, Tokyo, 1974.

[YAG 79] YAGER R.R., “On the Measure of Fuzziness and Negation”, International Journal
of General Systems, vol. 5, p. 221-229, 1979.

[YAG 80] YAGER R.R., “On a General Class of Fuzzy Connectives”, Fuzzy Sets and Systems,
vol. 4, p. 235-242, 1980.

[YAG 88] YAGER R.R., “On Ordered Weighted Averaging Aggregation Operators in Multi-
Criteria Decision Making”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 18,
no. 1, p. 183-190, 1988.

[YAG 91] YAGER R.R., “Connectives and Quantifiers in Fuzzy Sets”, Fuzzy Sets and Systems,
vol. 40, p. 39-75, 1991.

[ZAD 65] ZADEH L.A., “Fuzzy Sets”, Information and Control, vol. 8, p. 338-353, 1965.



Fuzzy Sets and Possibility Theory 197

[ZAD 75] ZADEH L.A., “The Concept of a Linguistic Variable and its Application to Approx-
imate Reasoning”, Information Sciences, vol. 8, p. 199-249, 1975.

[ZAD 78] ZADEH L.A., “Fuzzy Sets as a Basis for a Theory of Possibility”, Fuzzy Sets and
Systems, vol. 1, p. 3-28, 1978.

[ZAD 96] ZADEH L.A., “Fuzzy Logic = Computing with Words”, IEEE Transactions on
Fuzzy Systems, vol. 4, no. 2, p. 103-111, 1996.

[ZIM 80] ZIMMERMANN H.J., ZYSNO P., “Latent Connectives in Human Decision Making”,
Fuzzy Sets and Systems, vol. 4, p. 37-51, 1980.

[ZIM 91] ZIMMERMANN H.J., Fuzzy Set Theory and its Applications, Kluwer Academic
Publisher, Boston, 1991.



This page intentionally left blank



Chapter 9

Spatial Information in Fusion Methods

Spatial information is fundamental in image processing. Including it in fusion
methods is crucial and often requires specific developments to adapt the methods used
in other fields. One of the most common objectives of these developments it to ensure
that the decision is spatially consistent. For example, in multi-source classification,
the goal will be to avoid those points which are isolated or scattered in a homogenous
class to be assigned to a different class.

9.1. Modeling

Spatial information on the modeling level is generally implicit depending on what
level of representation is chosen. If we are reasoning on a pixel level, the information
contained in a pixel does not include any spatial information, so this information will
have to be added explicitly. The spatial context that is considered is most often the
local neighborhood of each point. A simple way of taking it into account is to define
the measure M j

i (x) (see Chapter 1) based on the characteristics of x and of its neigh-
bors also. If we denote by V(x) the neighborhood of x (containing x), we will define
M j

i (x) as a function of the type:

M j
i (x) = Fi

[
fj(y), y ∈ V(x)

]
, [9.1]

where fj(y) refers to the characteristics of y in the source j. This type of approach can
be seen as a spatial filtering problem. In the case of linear filtering, F is expressed as a
convolution and the convolution kernel defined on V is typically a Gaussian function
or a rectangular window. If the filtering is not linear, many solutions are suggested
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in image processing [MAI 02], the most frequent of which are the median filter, the
sigma filter, or morphological filtering. Finally, more elaborate techniques use relax-
ation, such as Markov fields, which operate either on the level of the measure (this is
referred to as restoration), or on the level of the classification, as we will see later on.

If we work on the level of primitives (segments, contours, areas) or on the level of
objects or structures in the scene, the local spatial information is implicitly accounted
for in the representation. If the detection of these elements or their localization are
not precise (for example, because of the imperfection of the registration), it is often
advisable to explicitly include this spatial imprecision in the representation, before the
fusion. Fuzzy dilation is an operation well suited for this purpose [BLO 95, BLO 96,
BUS 00]. This allows the conflict to be reduced to the moment when the fusion takes
place and hence to choose a conjunctive combination mode simply and without risk.

In a less local fashion, the spatial relations between primitives constitute impor-
tant information regarding the structure of the scene [BLO 97, BLO 99a, BLO 99b,
BLO 99c, BLO 00b] and they can taken advantage of in fusion, as a source of addi-
tional information [BLO 00a, BLO 00c, GER 99]. In this case, the spatial context
V(x) of an element x is a set of primitives or objects whose spatial relations with
respect to x are known.

9.2. The decision level

The inclusion of spatial information on the decision level is the easiest. The most
common method consists of first establishing a rejection rule (depending on the crisp-
ness and the discriminating nature of the decision) then reclassifying the rejected
elements according to their spatial context. For example, reclassification can be per-
formed according to the following rule (absolute majority):

x ∈ Ci if
∣∣{y ∈ V(x), y ∈ Ci

}∣∣ ≥ |V|
2

[9.2]

which expresses that at least half of the elements of the neighborhood have to be
in Ci in order to put x in Ci. This rule does not always allow x to be assigned to a
class. A less severe rule only considers the most represented class in the neighborhood
(majority rule):

x ∈ Ci if
∣∣{y ∈ V(x), y ∈ Ci

}∣∣ = max
k

∣∣{y ∈ V(x), y ∈ Ck

}∣∣. [9.3]

These rules apply regardless of the level of representation of the elements consid-
ered.

An example of fuzzy classification can be found in [BOU 92], but this is a general
method, which can be applied in a similar fashion to other theories.
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9.3. The combination level

The inclusion of spatial information on the combination is less common and more
difficult.

In probabilistic fusion, Markov fields offer a natural framework for this purpose.
In the expression of Bayes’ rule, the Markovian hypothesis is involved in the a pri-
ori probability. This probability is combined with the probabilities conditional to the
classes by way of a product. This comment leads us to consider that spatial informa-
tion, in this model, constitutes a source of data like any other.

This is the most common approach and it has been applied on several levels of
representation. On the local, pixel level, many examples can be found in other works
(for example, [AUR 97b, DES 96]). On a more structural level, Markov fields are
defined on graphs that are more general than the pixel graphs (the nodes are primi-
tives or even objects) and examples can be found for road detection in SAR images
[TUP 98], for the segmentation of MRI images of the brain [GER 95], for recognizing
structures of the cerebral cortex [MAN 95, MAN 96], for the interpretation of aerial
images [MOI 95], etc.

With other theories, it would also be possible to develop similar approaches, with
spatial information still considered as an additional source of data.

This is, for example, the case of spatial relations mentioned above considered as
an additional source of information: recognizing an object can be the result of the
fusion of information regarding that object and of information regarding the relations
it has to have with respect to other objects. The fuzzy set framework allows both the
representation and the fusion of such information [BLO 00c].

We should mention another example: in [HEG 98], a mass function is defined for
representing the spatial context and combined with mass functions representing the
information extracted from the images according to Dempster’s rule. However, there
are still few studies in this field, which certainly deserves to be developed further.

9.4. Application examples

9.4.1. The combination level: multi-source Markovian classification

Let us consider the same example of the fusion of MRI images of the brain from
Chapters 7 and 8, with the objective of segmenting the healthy brain, the pathology
and the ventricles, this time using a Markovian approach. This method was developed
in [AUR 95, AUR 97a, AUR 97b].
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Bayes’ rule makes it possible to calculate the a posteriori probability of each class
conditionally to the two images. The a priori probability term is modeled using a
Markovian hypothesis regarding the image of the classes and acts as a spatial regu-
larization. Therefore, the a posteriori probability is expressed as the product of three
terms: two terms expressing the probabilities of the gray levels in each of the images
conditionally to the classes (under the conditional independence hypotheses) and a
term expressing the spatial regularities of the classes. The Markovian framework
allows us to express the problem of the a posteriori maximum optimization as the
minimization of an energy that includes:

1) data-based terms, that depend on the gray levels of each image, on coefficients
weighting the importance of each image according to the classes and on prior knowl-
edge of the positions of the ventricles in the brain;

2) a regularization term, in the form of a Potts potential, that takes into account the
neighboring pixels of each point.

Therefore, the energy is written in each point x assigned to the class Ci in the
current step:

Φ1
i

(
f1(x)

)
+ Φ2

i

(
f2(x)

)
+ λ

∑
y∈V(x)

ω
(
Ci, Cy

)
[9.4]

where Φ1
i (Φ2

i ) represents the data-based potential characterizing the class Ci in the
first (second) image, which is a function of the gray level f1(x) (f2(x)) at the point
x in this image, V(x) represents the spatial neighborhood of x, Cy the class to which
the neighbor y is assigned in the current iteration and ω(Ci, Cy) represents the regu-
larization constraints between the classes Ci and Cy . The factor λ makes it possible
to weight the influence of the regularization with respect to the data-based term. The
data-based potentials are determined automatically based on histograms of gray levels,
whose significant modes are selected using a multi-scale approach. Here, the regular-
ization is simple: it favors the membership to the same class as the neighboring points
(ω(Ci, Ci) = 0) and puts at a disadvantage the membership of neighboring points to
different classes (ω(Ci, Cy) = 1 if Cy �= Ci).

The results (see Figure 9.1) show the spatial homogenity of the obtained segmen-
tation. The spatial information used in this example is still relatively local, since it
only involves a small neighborhood around each point.

9.4.2. The modeling and decision level: fusion of structure detectors using belief
function theory

In this example, developed in [TUP 99], the objective is to interpret a radar image
by fusing the results of several structure detectors (roads, slopes, cities, etc.). The
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Figure 9.1. Two MRI acquisitions of the brain and the result
of the classification by Markovian fusion

fusion is performed on an intermediate level, on primitives obtained by these detectors
(segments or areas), and therefore which contain spatial information.

Figure 9.2 illustrates an example of an ERS-1 radar image of the Aix-en-Provence
region.

Figure 9.3 shows the results of three of the detectors applied to this image.

The results of these detectors serve as the basis for modeling using belief functions.
This theory is particularly well-suited here, since it allows us to model the behavior of
each detector. Thus, road, slope or river detectors are precise for the objects they are
designed to study, but are not capable of distinguishing the other classes. As a result,
the focal elements of a road detector are the class “road” and the set “non-road” (hence
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Figure 9.2. ERS-1 radar image of Aix-en-Provence region

Figure 9.3. Results of three detectors: roads, slopes and homogenous areas. The gray levels
indicate the confidence in the result provided by each detector
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the union of all the other classes considered). On the contrary, the homogenous area
detector is not very precise because it uses filters with size 9×9 windows, which erases
all of the roads that cut through homogenous areas. It is then natural to choose as the
focal elements the set “roads ∪ homogenous areas” and the set “non-homogenous”.
This is an example of a detector for which no focal element is a singleton. Urban area
detectors are modeled in a similar fashion. This example shows that knowledge about
the detectors and their behaviors is what allows us to conduct the modeling phase and
choose the focal elements.

The mass functions are then learned from the response histograms of the various
detectors, by minimizing a distance between these histograms and trapezoidal para-
metric functions.

The fusion is then performed according to Dempster’s non-normalized orthogo-
nal rule (conjunctive fusion) since all the imprecisions and ambiguities regarding the
detectors are explicitly taken into account in the modeling. This makes it possible to
reduce the focal elements to singletons or union of two classes only. Furthermore, this
is a typically open world application: it is not possible to predict all the classes that
may show up in the image and only those for which detectors have been designed can
be detected. The non-normalized combination allows us to represent in the mass of
the empty set anything that is not predicted.

Finally, the decision phase is conducted in a Markovian framework, ensuring the
addition of spatial consistency between the areas, hence an additional level of spatial
information. The pignistic probabilities (see Chapter 7) make it possible to go back to
probabilities for singletons, which are then combined to a spatial regularization term.

The result of an interpretation is shown in Figure 9.4.

9.4.3. The modeling level: fuzzy fusion of spatial relations

In this last example, the spatial information we are considering is structural infor-
mation, involving no longer the local consistency of the classes or areas, but instead
the relations between the objects we are looking for. The application involves recog-
nizing internal structures of the brain in MRI images, using an anatomical atlas as our
guide [BLO 00c, GER 00].

A cross-section extracted from the 3-D volume of the atlas is shown in Figure 9.5;
the view of the corresponding cross-section in the 3-D MRI acquisition which needs
to be processed is represented in Figure 9.6.

The recognition is performed progressively, with one structure detected at each
step. Each step relies on the objects obtained in the previous steps and on various kinds
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Figure 9.4. Result obtained from the image in Figure 9.2 by fusing detectors of different
structures. The lighter areas represent urban areas. The dark lines correspond to roads,

the lighter lines to slopes. The darkest areas (with different shades) are forest areas.
Finally, the medium gray areas correspond to the empty set, i.e. unrecognized areas

of elements of anatomical knowledge. The localization and morphology information
of this object are provided by the atlas and symbolic information about this object is
expressed with respect to objects identified in the previous steps. This symbolic infor-
mation concerns spatial relations (pertaining to sets, directions or distances) as well
as constitution information (gray matter, white matter or liquid) or radiometric knowl-
edge related to the type of imagery. The fuzzy set framework was chosen for several
reasons: it allows us, using a single formalism, to express elements of information with
different semantics, of which there can be many for this problem. It also allows us to
model the imprecision and the uncertainty, which is particularly important in this field
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right caudate nucleus

right putamen

left lateral ventricle

third and fourth ventricles

brain

Figure 9.5. A cross-section of the atlas representing the structures
we are trying to recognize in the image

Figure 9.6. A cross-section of the cerebral volume we wish to recognize in a plane
close to that of the atlas in the previous figure. This is an MRI image
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Figure 9.7. Information expressed in the image space. White and black correspond to
minimum and maximum membership values, respectively. Top left: information on the location

and the approximate shape provided by the atlas. Top right: binary localization constraint
expressing the fact that the caudate nucleus is located in the brain (search area, in black)

and outside the lateral ventricles in white. Bottom left: prior radiometric knowledge.
Bottom right: relative directional relation “to the left of the lateral ventricles”

because of the anatomical variability among individuals. Finally, fuzzy fusion which
leads to recognition can take advantage of the many operators which make it possible
to adequately model the relations we know between these elements of information.

Modeling is achieved by representing, in the image space, each element of infor-
mation by a fuzzy set. Fuzzy areas of interest are thus defined for each type of knowl-
edge and their fusion allows us to focus our research in a increasingly limited area. We
will illustrate this process with the recognition phase of the caudate nucleus. At this
phase of the recognition procedure, three objects have been segmented: the brain and
the two lateral ventricles. Figure 9.7 illustrates the representation of the knowledge
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related to the caudate nucleus (information regarding the location and the approxi-
mate shape provided by the atlas, location in the brain and outside the lateral ventri-
cles, radiometry and relative position to the left of the lateral ventricles). The formal
definition of these representations can be found in [BLO 00b, BLO 00c].

The recognition of certain structures uses information about distance, which is
usually represented by fuzzy sets in the image space. Figure 9.8 illustrates this type of
representation for three types of knowledge.

μ

d

1

0
D

μ

d

1

0
D

maxD

2

μ

1

0 d
D max

Figure 9.8. Examples of the representation of knowledge about distances. Left: representation
in the form of fuzzy intervals in R

+. Right: the corresponding spatial representations.
The putamen is located at an approximately constant distance from the surface of the brain
(top), the caudate nucleus at a distance smaller than roughly D from the lateral ventricles
(represented in white) (middle), the lateral ventricles are in the brain at a distance greater
than roughly Dmax/2 from the surface of the brain (bottom). The contours of the objects

we are looking for (putamen, caudate nucleus and ventricles, respectively) are shown
in white and are in fact in the areas that satisfy the relations with a high degree

The fusion of spatial knowledge is achieved using a conjunctive operator (a t-
norm) in order to reduce the area of interest as new knowledge is provided, in order to
focus the search. Then these fused elements of spatial knowledge are combined to the
radiometric information by a mean operator, reaching this time a compromise between
these types of information. The resulting area can then be easily segmented (Figure
9.9).
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Figure 9.9. Result of the fusion of all the knowledge available regarding the caudate
nucleus (left) and the segmentation of that nucleus (right)

Figure 9.10 illustrates six objects of the atlas as well as the same objects rec-
ognized in an MRI acquisition. They are properly segmented, even though they are
significantly different in the image in size, location and morphology from those in
the atlas which serves as a model. It is worth noting that the third and fourth ven-
tricles, which are particularly difficult to segment in MRI images, here are properly
recognized and segmented, thanks to the use of spatial relations with respect to other
structures of the brain.

Figure 9.10. Results of the recognition procedures. Six structures are represented:
the lateral ventricles (medium gray), the third and fourth ventricles (light gray),

a caudate nucleus and a putamen (dark gray). On the left, the structures
from the atlas and on the right, those recognized in a 3-D MRI image
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Chapter 10

Multi-Agent Methods: An Example of an
Architecture and its Application for the

Detection, Recognition and
Identification of Targets

The purpose of vision systems is to allow an understanding of the observed scene,
based on diverse data obtained from images. This scene is often characterized by a
non-homogenous, highly variable environment and any observation condition. Obvi-
ously, this general nature leads to very complex systems, including the need for scala-
bility, for the ability to provide intermediate results, the integration of uncertain knowl-
edge, or the possibility to adapt through the choice of strategies, operators and param-
eters.

The problem of vision that we have just introduced involves the detection, recog-
nition and identification (DRI) of targets such as military ground vehicles, boats and
aircraft. In this operational context, we have to be capable of making a decision as
quickly as possible, in order to assess the threat. A DRI system needs to constantly
search for the relevant information among a wealth of useless elements of informa-
tion. We propose a method based on multi-agent concepts to solve this problem. At
each instant, a population of agents works in parallel in the environment. Each agent
has descriptive and operational knowledge at its disposal to allow it to elaborate its
own strategy and to conduct processes. The set of results obtained is stored in a world
model shared by all the agents.

Chapter written by Fabienne EALET, Bertrand COLLIN and Catherine GARBAY.
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This chapter is organized as follows: in section 10.1, we will describe the appli-
cation and the state of the art in the field, before presenting the fundamental concepts
of the system in section 10.2. In section 10.3, we will present the architecture and the
platform used. In section 10.4, we will describe the agents of the system and the con-
trol scheme we propose. In section 10.5, we will describe the information handled by
the agents. Finally, in the last section, we will illustrate this architecture with different
results that were obtained.

10.1. The DRI function

The DRI function is comprised of three phases. Detection consists of finding the
possible threats in the image. In this phase, little information is available: the target is
represented by roughly a dozen pixels. An example is shown in Figure 10.1.

Figure 10.1. Examples of vehicles in the detection phase.
Each target is indicated by an arrow

In the recognition phase, the mechanism is more precise since it specifies the tar-
get’s class. The objective is then to answer the question: “is it a ground vehicle, a
boat or a ship?” Finally, in the identification phase, the system has to be able to name
the target: “is it an AMX10 tank, a frigate or a Mirage 2000 plane?” The consecutive
phases of detection, recognition and identification require for the information regard-
ing the target to be expanded in time.
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10.1.1. The application context

The objective of this work is to find the information regarding the target in an
image environment characterized by several levels of complexity:

– unpredictable context: the elements of the observed scene and the targets present
are not known beforehand;

– variety of possible scenarios: a scenario corresponds to an observation phase of
several targets in the considered environment. The scenarios are constantly evolving
in terms of luminosity, possible masking, shadows;

– multi-target application context: when processing a sequence of images, a target
can enter the sensor’s observation field at any time;

– heterogenous observations: the considered targets are ground vehicles, aircraft
or boats. Depending on their positions with respect to the sensor, their aspects and
their time signatures are highly variable;

– incompleteness and imprecision: the information provided by the sensor is
tainted with imperfections and gives a partial interpretation of the scene.

We have chosen to limit the context of this study to the tracking of military targets
in a non-structured (non-urban), outside environment. Depending on the position of
the camera with respect to the target, we considered three different missions:

– “ground-to-ground” missions: the camera carrier is placed on the ground and
observes a scene on the ground; the possible target maneuvers in the observed space;
the sensor can be fixed or mobile; masking phenomena, in this configuration, are very
common and often caused by the presence of vegetation;

– “air-to-ground” missions: the sensor is embedded in an airborne carrier (plane,
helicopter). It is mobile and observes the scene on the ground; blocking is caused
mainly by vegetation-type masking structures;

– “air-to-air mission”: as before, the sensor is embedded in an airborne carrier, it is
mobile and observes part of the sky; target masking is caused mainly by the presence
of clouds, or by the possible presence of other targets.

Depending on the type of mission, the objectives, the target classes and their behav-
ioral characteristics vary. In a surface-to-air mission, the targets are planes. In an air-to-
ground or ground-to-ground mission, the focus is more on boats and ground vehicles.
This specification provides an element of information regarding the target’s possible
class.

In the context of this study, we worked with images provided by infrared and vis-
ible sensors, acquired during surface-to-air or ground-to-ground missions (fixed sen-
sor). However, the system’s design allows the integration of new sources of knowledge
and new algorithms adapted to other types of sensors such as the radar or other types
of mission.
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10.1.2. Design constraints and concepts

The vision problem poses a number of difficulties:

– we do not know beforehand which processing chain can solve the vision problem
we are dealing with. It is chosen according to the context and the situations encoun-
tered. There is never an overall objective defined, on the contrary, local objectives
come up depending on the processes being conducted. Furthermore, the aspect vari-
ability for a given object or several objects in an image suggests that it is impossible to
apply a comprehensive process to the entire image. Thus, the system, depending on the
context, needs to adapt its strategy, the operators as well as the parameters according
to the local information that is gathered;

– the specification of entities, objects, classes and sub-classes needs to allow a high
variability within classes and from one class to another. Of course, this implies that
the systems need to be capable of handling uncertainty;

– the information we are interested in is sometimes concentrated in a few pixels,
for example, in detection and it is drowned in a considerable amount of data, hence
the need to follow an incremental, safe and progressive procedure in order to gather
knowledge. The objective is to rely on results that have already been obtained to con-
tinue with the process;

– the context of a multi-target application imposes the need for a monitoring alert
function that can very quickly inform the system of the presence of a possible threat.

All of these difficulties described here raise a number of questions regarding design
that have been discussed in other works, such as the ability to adapt, to focus, to
distribute, to handle uncertainty and the system’s incrementality.

10.1.3. State of the art

Over the past two decades, there has been considerable progress on the subject
of DRI from a scientific and technical perspective. Bhanu and Ratches have drawn
a particularly detailed review of this progress [BHA 86, RAT 97]. For the most part,
the systems suggested in the early 1980s were heuristic. They would typically use
the following sequential scheme: segmentation, detection, extraction of parameters,
classification and tracking targets.

At the end of the 1980s, a new generation of systems appeared, with the inten-
tion of breaking this sequentiality. These methods explicitly integrated the knowl-
edge and techniques of shape recognition (knowledge-based vision and model-based
vision). They usually go through the following phases: searching for relevant areas,
then recognition and identification of targets in a more limited area [BHA 92].

Today, improving performances requires associating complementary information
in order to provide an adequate response to the operational needs of situation analysis.
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Among other things, they make it possible to improve the robustness of the analysis
with respect to its environment, the acuteness of the information transmitted and the
reactivity in time. However, a smart use of the synergies between the different sources
of information and the volume of available data requires the implementation of data
fusion methods. Different theoretical methods would seem to satisfy this condition
since they can be used, for example, to deal with uncertainty, imprecision, incomplete-
ness, reliability, dependence or relevance. Among these methods, we should mention
mainly probabilistic [BUE 97], possibilistic, fuzzy set and evidence theories, as well
as logical or connectionist methods [HEN 93, ROT 90, YOU 98].

The integration of multi-sensor data, of spatial and temporal knowledge has
opened new prospects for the future. The goal is no longer to develop new algorithms
but rather to take advantage of partial and imprecise information provided by each
one of them. The most common approach remains the prediction and verification of
hypotheses [BEV 97, WU 97]. The major drawback is often the handling of a great
number of hypotheses, which imposes a large number of combinations to examine.
This method of exploration, associated with feedback, has the advantage of question-
ing hypotheses, and of choosing algorithms and parameters [DRA 95]. In the event of
poor performances, it authorizes a change of strategy rather than pursuing the analysis
with faulty hypotheses. It allows the system to adapt itself to the current situation.
The calculation of a cost/benefit function makes it possible to complete this adaptive
scheme by asking the question of how useful an action is, knowing the current situa-
tion and uncertainties [ROB 94].

Constraints tied to the heterogenity and the amount of knowledge naturally lead
to architectures that distribute knowledge. The objective from now on is to equip the
DRI system with the ability to manage, select and activate its own resources so as to
conceive efficient control strategies to go through with the various analysis phases.
Today, a DRI system is at the intersection between image analysis and cognitive rea-
soning functions.

10.2. Proposed method: towards a vision system

The problem of vision is stated as an incremental problem of information gath-
ering, in which at each step of the process we ask the questions “where, what, how”
[GAR 00, RAO 95]:

– where is the relevant information located in the image?

– what is the relevant information?

– how is this information extracted from the image?

In order to answer these questions and satisfy the constraints stated before, a vision
system must constantly rely on the information gathered to construct its own knowl-
edge of the field. The objective is to suggest new areas of focus, different goals and
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strategies based on the available information. In order to abide by this philosophy
inherent to multi-dimensional space, we have made a series of choices which we will
justify as we go along.

10.2.1. Representation space and situated agents

We suggest focusing the design of our system on the concept of situated agents.
Such an agent is embedded in a three-dimensional space: the image space (the
“where”), the goal space (the “what”) and the method space (the “how”). A represen-
tation of the system is shown in Figure 10.2.
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Figure 10.2. General view of the multi-agent system. Each agent is embedded in a
three-dimensional space comprised of the image space, the goal space and the method space.
The agents are situated in the image, with a precise goal. They work locally using the data
from the knowledge base to produce partial results that will be stored in the world model.

This world model is then shared among all of the agents

The goal space is comprised of a set of concepts that represent the elements in
the scene we wish to analyze, such as roads, vegetation, the sky, the sea, etc. In the
detection phase, an agent for a given concept (what?) will select a method (how?) in
order to extract a region of interest (where?). The population of agents constantly uses
the information specified in the knowledge base or gathered in the world model to
work out its own strategy:

– an agent is always situated in an area of interest. For example, the system may
be searching for vehicles on the roads. Extracted from a previous process, roads then
constitute the areas of interest for vehicle tracking;
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– agents always have an objective at their disposal. It is set by the knowledge
base. Starting with its initial objective, the system navigates through the goal space by
means of the focusing rules;

– depending on the concept to search for, agents have one or several methods at
their disposal in the knowledge base. For example, when searching for areas that rep-
resent the road concept, agents can rely on geometric information (Hough transform,
AREA) and radiometric information (gray levels).

Thus, the knowledge base allows connections between different representation
spaces:

– a connection between the goal and the “how”: the knowledge base associates
each concept with localization, detection and focusing methods, which will then be
adjusted;

– a connection between the goal and the “where”: the knowledge base specifies
focusing strategies which enable to define new areas of interest for a new objective.

This variation in the three representation spaces gives the system great qualities in
adapting, distributing, incrementing as we will now discuss.

10.2.2. Focusing and adapting

According to the philosophy generally advocated by active perception and among
others by Bajcsy [BAJ 88], we have chosen a strategy that operates by consecutive
focusing steps, in other words a control guided by the search for information
[TOU 98]. Thus, when an agent extracts relevant information, it can request the
creation of another agent to obtain complementary information in a precise area of
the image. As a result, the system works out a strategy based on what it finds at a
given instant, and in that sense can be described as opportunistic. Depending on the
goal and the context, a method is selected in the knowledge base and its parameters
are adjusted locally by the agent.

Focusing and adaptation mechanisms are closely related. They make it possible
to improve the performances of a vision system by way of an active behavior of the
system. It is only possible to adapt the parameters and strategies of a system if a
focusing phase has been conducted beforehand.

These two concepts are also embedded in the three-dimensional “where, what,
how” space. As regards focusing, we will use the terms:

– spatial focusing: control in the image space;

– cognitive focusing: control in the goal space;

– operational focusing: control in the task space.
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As regards adapting, we will use the terms:

– image adaptation: the system evolves through a series of focusing phases and
organizes itself according to the nature of the information found in the image;

– cognitive adaptation: the goals are constructed in a dynamic fashion based on
the gathered information;

– operational adaptation: the methods are adapted based on the goal and the loca-
tion.

This description of the ideas behind focusing and adaptation shows the relation that
binds them. There is in fact a permanent interaction between these two concepts. The
focusing phase appears in some way as essential to adaptation, regardless of which
space is considered. For example, in the image space, focusing defines a window of
interest, and adaptation takes advantage of the information found in that window to
adjust its processing parameters.

Focusing and adaptation within a system are achieved by way of a constant interac-
tion between the system and its environment. Depending on the information available,
the system develops and organizes itself in such a way as to expand its knowledge of
the application field.

10.2.3. Distribution and co-operation

Distribution and co-operation are two concepts that are readily associated, since
distribution in a set of subspaces implies the gathering of partial results. The objective
of co-operation is precisely to co-ordinate the activities and to combine the results
so as to complete the vision task. According to Hoc [GAR 00, HOC 96], it is possible
to distinguish three forms of co-operation: confrontational co-operation, augmentative
co-operation and integrative co-operation. It is worth noting the analogy with the three
representation spaces of the agents, in order to underline the relation between these
three forms of co-operation and the system’s forms of distribution. The following
analogy becomes apparent:

– between confrontational co-operation and “how”: the problem is considered in
its operational distribution. Several methods can be considered to reach a goal;

– between augmentative co-operation and “where”: the problem is considered as
spatially distributed. The system navigates in the image space. It works on areas of the
image then fuses the results;

– between integrative co-operation and “what”: the problem is considered as func-
tionally distributed. The system navigates in the goal space. In order for the final
objective to be achieved, intermediate tasks have to performed.

This concept of co-operation includes of course collective dynamics and a distri-
bution in the design. In vision systems in general there is always at least one level
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of co-operation [GAT 96]. The fundamental point that characterizes all of these co-
operations, whether they are confrontational, augmentative, or integrative is the accu-
mulation of information with the objective of making a decision.

10.2.4. Decision and uncertainty management

Decisions have to be made at every step of the vision process. In order to make
these choices, the system needs to constantly estimate the confidence in the current
hypotheses, whether as regards to location, detection, focusing or recognition. Confi-
dence depends on a great number of parameters such as:

– the quality of the selected operators;

– the presence of significant descriptors for objects;

– knowledge about the context, the environment.

It integrates very different elements of information, such as statistical, geometric or
kinematic information, for example. In order to do this, different formalisms have been
suggested, such as probabilistic methods [RIM 93], possibilistic methods [NIF 98],
Dempster-Shafer theory [LEF 96, NIG 00], or also fuzzy methods [MEE 00]. These
formalisms make it possible to approach the problem of the dynamics of beliefs by
using inference mechanisms, in order to draw temporary conclusions [FAB 96]. As
Bremond and Thonnat have aptly pointed out, “the most commonly used methods are
probabilistic . . . . In the context of scene interpretation . . . they provide a strict and
rigorous framework that can be applied to any type of uncertainty” [BRE 96].

Graphs constitute a graphic and efficient way of representing the relations that exist
between the different possible states of the system: causality, dependence or temporal
relations, etc. They also turn out to be well-suited tools for structuring knowledge,
thus making it possible among other things to propagate information and uncertainty
in order to reinforce or decrease hypotheses.

This is why we have chosen a representation in the form of Bayesian networks.
This formalism requires a complete definition of the probabilistic model, but provides
a rigorous framework [FAB 96].

10.2.5. Incrementality and learning

Incrementality presents itself on several levels of the system:

– in the construction of the system itself since the population of agents is adapted
depending on the information available and its relevance;

– in the gathering of information since the information is progressively accumu-
lated in a world model which is made available to the population of agents;
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– in the confidence in the information since the system reinforces hypotheses or
not through time and weights the uncertainty depending on the information obtained;

– finally, in the knowledge base, which gives an operational description of the
scene elements, since the system can refine over time its knowledge that was set
beforehand. The term learning is used in this sense.

This incrementality is essential in the context of our application, where the relevant
information can be summed up to a few pixels in the detection phase. Therefore, the
objective is both to progressively take advantage of the environment and to authorize
the system to be adaptive.

We have just described the fundamental points of the design we are proposing.
They are associated with a set of keywords: focusing, adaptation, distribution, co-
operation, uncertainty, decision, incrementality and learning. These concepts are the
basis of the multi-agent architecture we will now describe.

10.3. The multi-agent system: platform and architecture

We propose a decentralized architecture to solve the problem of the detection,
recognition and identification of targets. We will focus our attention on the detection
phase. We will first present the system’s architecture, i.e. the agent in its environment.
We will then discuss further the multi-agent platform that allows the exchange of
messages.

10.3.1. The developed multi-agent architecture

The agents behave independently. They work in an area of the image with their
own objective, in competition or in parallel. The knowledge necessary to achieve an
objective is specified in the knowledge base shared by all of the agents. Each one of
them gathers information and stores it in a world model, which is also shared. This
architecture is shown in Figure 10.2.

10.3.2. Presentation of the platform used

A community of agents cannot exist without a set of generally complex models
defined within a platform. This platform specifies the fundamental elements such as
the hardware and software architecture, or also the communication modes used by the
agents to communicate with each other and with the data. The different features pro-
vided by this structure are summed up in Table 10.1, according to the plan suggested
by the ASA (Agent System Architecture) workgroup, a group supported by the AFIA1

and the GDR-I32.

1. French Association for Artificial Intelligence.
2. The Research Group for Information, Interaction and Intelligence of the CNRS.
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Platform name None.

Date and context
of its creation

Developed in 1998 by Bouillot and Perez (DGA) as a tool
for different research studies.

Development stage Version 1.0

Current state Stable version.

Hardware configuration
Operates on a set of UNIX stations (including a 32 proces-
sor system).

− C++ programming.
Software environment − Thread library.

− TCL/TK interface.

Other works
Internship report [BOU 99]. There are no specific works
currently available.

− Application to mobile robotics [DAL 01].

Applications
− Implementation of an image processing chain [ROP 01].
− Application to the detection, recognition and identifica-
tion of targets [EAL 99, EAL 00].

General architecture

Each agent is an independent thread. These agents commu-
nicate by sending messages according to an asynchronous
protocol. Any agent can request the creation of another
agent or decide to leave the system. The respective activa-
tion or destruction messages are sent to the administrator.

Agent model

The generic agent model includes all of the communication
features but no particular data regarding the agent’s abili-
ties, the representation of outside tasks or the representation
of the abilities of other agents of the system. Aside from the
communication functions, the agent is therefore an empty
structure.

Design tools
There are no design tools, however, there is an interface
which makes it possible to preserve a record of the system’s
operation.

Test No test.

Availability Not available.

Table 10.1. Description of the multi-agent platform

The platform is comprised of two elements: an agent structure equipped with
means of communication and an independent supervisor known as an administrator.
This administrator serves as the connection between the various actors of the systems.
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In particular, it receives the requests sent by the agents for the creation of new agents.
Its role is to:

– take an inventory of the agent population;

– assign to the agents the resources necessary for them to function (allocation of
memory space);

– create a thread for each agent;

– provide a common time frame of reference.

The administrator has an information file for each agent that specifies its technical
features.

10.4. The control scheme

The objective is to distribute the vision processes among a population of agents.
The agents in the system have different roles and different behaviors with respect to
the information that is handled and produced. Because we are dealing with the analysis
of a sequence of images, we will distinguish two levels of control: intra-image control
and inter-image control.

10.4.1. The intra-image control cycle

The diagram of the principle of intra-image control is shown in Figure 10.3. It is
comprised of two exploration loops: spatial exploration and temporal exploration.

anchoring initialization

spatial
exploration temporal

explorationfocalization

decision

detection
movement

Figure 10.3. The intra-image control diagram is organized according to a spatial
exploration strategy and completed by a temporal analysis of the image

Spatial exploration of the image takes place in three phases:

– the first phase consists of searching areas in the image for samples, i.e. possible
attachment points for a given concept (road, field, vehicle, etc.). In concrete terms,
the goal is to search for the areas that comply with a set of clauses specified in the
knowledge base (a detailed description of this structure is given in section 10.5.1).
This is the localization phase;
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– the second phase relies on the samples to extract the supports of the concepts by
using techniques based on the growth of areas. This is the detection phase;

– finally, the last phase uses available information to determine new areas of inter-
est in the image and to progress in the concept space. This is the focusing step.

These three phases are repeated until all of the focusing rules specified in the
knowledge base have been explored.

We have made the choice of distinguishing the localization and detection phases
for two major reasons. On the one hand, it is often easier to find in the image an
element that is characteristic of an object rather than that object’s entire support. On
the other hand, when the objects in the image have been localized, it becomes possible
to locally adapt the operators and parameters in order to improve the performances of
the segmentation.

Each phase of the process is conducted locally by an agent. The intra-image control
cycle is presented in Figure 10.4.

concept agent

image

localization agent

spatial
exploration

temporal
explorationsample

focusing agent detection agent movement agent

decision agent

area

area

area

target

support
support

Figure 10.4. The intra-image control diagram is comprised of two analysis cycles: a spatial
exploration cycle and a temporal exploration cycle in order to associate additional

information in the context of information fusion
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The temporal exploration makes it possible to associate additional information in
the context of an information fusion cycle. For example, in an infrared image, a vehicle
can be characterized by a hot area in motion.

Just as with the spatial exploration, each phase of the information fusion is con-
ducted locally by a type of agent. Therefore, two new agents have been specified:
the Decision and Movement agents. The Movement agent searches for the support of
moving objects while the Decision agent’s goal is to make the most of the two supports
extracted by the Detection and Movement agents, respectively.

The Decision agent uses the information obtained to assess the need to continue
with the analysis or to stop. This makes it possible to either activate the recognition
process if a target has been detected, or otherwise to continue the detection phase
by activating the loop related to the spatial exploration. As a result, the hypotheses
expressed regarding the support’s identity and kinematics, respectively, lead to differ-
ent actions on the part of the Decision agent (see Figure 10.5).

results of the
movement agent

results of the detection agent

target non-target

movement

non-movement

continue spatial
exploration

towards recognition
(increased probability)

towards recognition
(decreased probability)

Figure 10.5. The different behaviors of the Decision agent: the hypotheses stated according to
the support’s identity and kinematics provided by the Detection and Movement agents,

respectively, lead to different actions

At each new image, the system’s initialization and the knowledge base’s updating
protocol are under the control of the Concept agent. This update allows the system to
adapt itself according to the gathered information and to progress toward the knowl-
edge specified beforehand. Thus, the parameters of the methods, among other things,
can be modified, such as, for example, the validation range related to the image pro-
cessing operators.

10.4.2. Inter-image control cycle

There are three problems to consider in the inter-image analysis cycle:

– using the image sequence;

– using the information gathered from the images;

– updating the knowledge base.
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The usage of a sequence of images is carried out by a loop that operates in a set
time interval. For each time increment, the intra-image process is started over again
by way of the Concept agent.

The objective is then to use the past to our benefit, and by past we mean the infor-
mation gathered from each image, in order to avoid going through all of the processes
for each new image. Thus, under the fixed camera hypothesis, we have to consider the
following two situations depending on the kinematics associated with the concept:

– for a fixed concept, it seems wise to keep the satisfactory samples obtained for a
given image. These samples will be copied at the time t + 1 in the following image.
This information copying phase is controlled by a validation threshold that specifies
the minimum authorized confidence. Based on these copied samples, a new statistical
analysis is conducted by the Detection agents in order to locally adjust the segmenta-
tion parameters;

– for a concept in movement, it seems wise to start over a complete analysis. Thus,
nothing is copied.

After describing the intra- and inter-image control cycles, which made it possible
to present the various agents of the systems and their roles, we are now going to
describe in greater detail the information handled by the agents. We will focus on
their features, on how they are organized, as well as on possible causality relations.

10.5. The information handled by the agents

Each agent uses and provides information. All of these elements of information
have to be organized so as to allow other agents to have access to them. We will
distinguish two types of elements of information in our system:

– descriptive and operational knowledge that provides a prior representation of the
different concepts present in the application;

– the information gathered by agents during the analysis of the image sequence.

This distinction is important since the representation modes associated with these
elements of information are distinct and it is precisely the composition of these infor-
mation structures that we are going to describe with the knowledge base and the world
model.

10.5.1. The knowledge base

The knowledge base is specified in order to provide agents with the information
required for their execution. It defines, among other things, the field of the process,
the initial objective and provides an operational description of the concepts.
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The knowledge base is organized in four parts (an example is shown in Figure
10.6).

{domain}
image : image.gif
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concept : ]
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Figure 10.6. The knowledge base

– the first specifies the field of our work, i.e. the set of images used;

– the second defines the initial objective given to the system;

– the third part provides the validation threshold as regards the extracted informa-
tion; this validation threshold will be used in the inter-image control cycles, among
other things, to choose the samples to copy;

– the last part provides a description of the methods necessary to the agents
and their parameters. The different methods consist of localization, detection, focus-
ing and movement, which are characterized by the tags “L”, “D”, “F” and “M”,
respectively. Localization methods rely on local criteria for intensity (“GREY”),
homogenity (“HOMOG”), area (“AREA”) and criteria related to the Hough trans-
form (“HOUGH”). Thus, a sample is defined as a set of points that verifies a set
of criteria associated with the current concept. Detection methods are based on area
growth (“DETEC”). Finally, focusing methods (“FOCUS”) search for new areas of
interest, based on the current information, using three different strategies: on (“O”),
next to (“N”) or elsewhere (“E”) in the image. A movement detection method has been
implemented (“MOVE”) and, based on the optical flow constraint, it is expressed as
an optimization problem [KOR 97].

The elements of information specified in the knowledge base depend on the appli-
cation field and more specifically on the context of the mission. As a result, they are
difficult to specify beforehand. To overcome this difficulty, we have chosen an inter-
active acquisition of knowledge using a graphical interface (developed in TCL/TK)
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which allows us to specify the names of the concepts we want, the types of methods
necessary to their analysis and to calculate in semi-automatic mode the parameters of
these methods. In order to do this, the areas of interest that represent each concept
(road, vehicle, etc.) are selected in an interactive fashion in the image.

At each new image, this knowledge base is updated based on the information gath-
ered by the agents. This update currently concerns the method parameters. A prospect
for the future is of course to extend this “learning” to the choice of methods.

10.5.2. The world model

The information gathered by the agents over time progressively adds detail to the
world model. A representation of this structure is shown in Figure 10.7.

image info
identifier
reference image
image(s) inter
 image hough,
 image seg, etc.

image size
concept list

concept info
identifier

estimation

sample list
support list

support info
identifier

area
type
Nb pixels
sample list

sample info
identifier
identifier parent
type
type parent
Nb pixel
estimation
statistic info

statistic info
mean

standard deviation
variance

maximum
minimum

link between 2 elements
of a list
composition relationship

Figure 10.7. Structure of the world model: for each image, we have access to the list of
concepts, of supports and of the associated statistical parameters. A concept

is comprised of several supports, which are themselves comprised
of samples characterized by a list of statistical information
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This description of the scene is constructed incrementally. The update of the world
model is conducted throughout the analysis process. The information gathered is char-
acterized by a confidence measure that makes it possible to evaluate the membership
coefficient of an entity to a given concept. This parameter evolves over time and prop-
agates through the information structure using Bayesian networks. The networks were
constructed with the “Bayes Net Toolbox3”.

For a given support, its confidence depends on three sources of information:

– the samples that have contributed to constructing it;

– the additional information, if there is any, such as the presence of movement;

– the other supports that have induced its construction by focusing (the concept of
lineage).

The calculation of confidence associated with each support can be shown in the
form of a causality graph. It depends on several sub-networks (Figure 10.8).

smpl 1 smpl N

parent

id

sup

mov

the movement focusing strategy

measurements taken
from the image

Figure 10.8. Description of the Bayesian network used for calculating the confidence
of a support. This confidence depends on the confidence obtained for each sample,

on focusing relations and on the movement

We are going to describe each one of these sub-networks in detail:

– for each sample (Spl1, . . . SplN) that belongs to the support, a statistical analysis
is conducted in order to calculate the measure of confidence for each attribute (Att1,
. . . AttN). The system calculates this measure of confidence as a gap between two
probability distributions originating from the measure and the model. These measures

3. www.cs.berkeley.edu/%7Emurphyk/Bayes/bnt.html.
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are then propagated using the Bayesian network. This is described by the diagram in
Figure 10.9.

smpl

smpl  = T smpl = F

T
T

T

T
 F

 F
 F
 F

 = F = T = F = T

Figure 10.9. The computation of the confidence in a sample is conducted using a Bayesian
network. In this example, two methods are used to characterize a sample

The measure of confidence associated with the sample is given by the following
relation:

P (Spl=T ) = P (Spl = T/Att1 = T, Att2 = T ) · P (Att1 = T ) · P (Att2 = T )

+ P (Spl = T/Att1 = T, Att2 = F ) · P (Att1 = T ) · P (Att2 = F )

+ P (Spl = T/Att1 = F,Att2 = T ) · P (Att1 = F ) · P (Att2 = T )

+ P (Spl = T/Att1 = F,Att2 = F ) · P (Att1 = F ) · P (Att2 = F )

– additionally, each support has a lineage resulting from the focusing relations. For
example, a hypothesis of the type “vehicle on a road” will be reinforced, whereas the
probability of having “road in the sky” will be minimized. The possibilities associated
to each of the hypotheses are set beforehand and later evolve through the Bayesian
network;

– the movement information can also reinforce a hypothesis. For example, the
movement information will reinforce a vehicle hypothesis and not a road hypothesis.
The concept used for calculating the confidence measure is similar to that described
for the samples.

Depending on the information calculated by the agents, the probabilities will
evolve and be updated. Information is propagated through the network based on the
“causes-consequences” dependency relations that are set.

10.6. The results

Given an initial goal, the system’s objective is to pursue the exploration of the
image or sequence as long as it is useful. This exploration is guided by focusing rules
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and a satisfaction threshold. A goal concept can also be reached by a “direct” strategy
if it is the first specified concept, or by an “indirect” strategy if it is specified within
the focusing rules. Depending on what strategies are used, the system’s responses will
be different. We will now illustrate these comments with various experiments:

– direct analysis: the system directly searches for vehicles in the image, without
relying on context elements;

– indirect analysis: the system relies on context elements such as roads to search
for vehicles. Two focusing strategies are used in the examples mentioned: search for
vehicles “on” and “next to” roads.

10.6.1. Direct analysis

The first experiment consists of finding vehicles in an image using nothing but data
from the knowledge base attached to the vehicle concept. The analyzed image and the
associated knowledge base are shown in Figure 10.10.

{FIELD}
ROOT:IMAGES/SOURCE/Vol/vol.%02d.gif
EXTENSION:gif:BEGINNING:0:
NB:1:INCREMENT:1:
-------------------------- {GOAL}
CONCEPT:1:------------------------
{VALIDATION} VAL:0.10
------------------------ {CONCEPT
1} NAME:VEHICLE: SIZE:1:
L:1:GREY:1:114:255:
L:1:HOMOG:3:1:10:
L:1:AREA:0:10:100:
D:1:DETECT:1:0:0
{CONCEPT 2} NAME:ROAD:SIZE:1:
L:1HOUGH:1:0.1:0.5:
L:1GREY:4:80:255:
L:1AREA:1:250:4000:
D:1DETECT:2:0:0

Figure 10.10. Direct analysis: the reference image is presented on the left
and the associated knowledge base is described on the right

In this image, two concepts are defined: road and vehicle. These concepts are char-
acterized by localization and detection methods. On the other hand, no focusing rule
is specified. Therefore, only the attributes related to the initial concept, namely “vehi-
cle”, are used. The models used in the localization phase to find the vehicles in the
image are statistical (gray levels and homogenity) and geometric (AREA). The popu-
lation of agents implemented in this example is shown in Figure 10.11.
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first
agent in

the image

the first letters indicate
the agent type:

C: concept agent
L: localization agent
Dt: detection agent
Dc: decision agent

the latter specifies the objective:
V: vehicle

indicates the probability for
a support to be a member of
the vehicle concept

Figure 10.11. Agent graph generated for detecting vehicles using the direct strategy; four
types of agents are implemented: the Concept, Localization, Detection and Decision agents.

All these agents have the same objective, namely the vehicle concept.
In this example, nine vehicle-type supports are detected

This population is organized around four types of agents:

– the Concept agent is the first agent that is created. Its role is to initialize the
system and activate the exploration loops according to the information at its disposal
in the knowledge base. In this example, it requests the activation of spatial exploration
using a localization agent, since localization criteria are specified. On the other hand,
no movement information is described in the base. As a result, the loop related to
temporal exploration is not activated;

– a Localization agent searches the image for pixels that satisfy the set of localiza-
tion criteria specified in the knowledge base and associated with the vehicle objective.
After a labeling phase, this agent provides elementary areas referred to as samples,
which are associated with statistical information. As soon as a sample is identified,
the Localization agent requests the creation of a new Detection agent. The nine sam-
ples that were found led to the creation of nine Detection agents;

– each Detection agent works with the associated sample and performs a local
statistical analysis to extract the object’s support. No focusing strategy is specified
and therefore the spatial exploration comes to an end;

– the Decision agent has no complementary information regarding movement
since no knowledge on that subject is specified. Therefore, it transmits the data ob-
tained without requesting complementary analysis and provides a decision.
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All of these agents are not present in the image at the same time. As soon as an
agent has completed its task, it asks the administrator to delete its information file
before terminating itself. The result of the segmentation is shown in Figure 10.12.

false alarms

4 vehicles present

probability included between 67 and 74%
probability included between 63 and 66%
probability smaller than 63%

detected vehicles

Figure 10.12. Segmentation of the vehicles supports. On the left, the initial image shows the
presence of four vehicles. On the right, the resulting segmentation is shown. The shade
associated with each support represents the probability of membership to the concept

This segmentation image displays the nine “vehicle” supports found in the image.
A probability of membership to the vehicle concept is associated with each support.
This probability is represented by a color. It is interesting to emphasize two important
results:

– the vehicles are detected with a probability of membership of over 67%. On
the other hand, these elements of information are drowned in a large amount of false
positives with probabilities between 63 and 66%;

– this population of agents shows us a decentralization that appears very early on in
the system. The control is conducted locally by each agent. Furthermore, the steps of
the process are distributed so as to divide the computational load between the different
processes, as shown in Figure 10.13.

time

decision
detection

localization
concept

Figure 10.13. Distribution of the computation times among the different agents: black
indicates the activation of an agent and gray indicates that it is running
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Notice how costly the localization phase is in terms of computation time, since it
conducts a local analysis on the entire image. This gives us an understanding of how
useful the focusing phase is, since it will quickly provide the system with more limited
areas of analysis, thus reducing the computation time. This is because localization is
only conducted once for the entire image, even in the case of a sequence of images,
and only for the first concept we are searching for. The result of the segmentation is
mediocre. While vehicles are detected despite how little information is available, the
rate of false positives is significant (44%). The next logical step therefore is to better
control the analysis by using one or several focusing strategies.

10.6.2. Indirect analysis: two focusing strategies

In order to limit the domain we have to search for in order to find relevant informa-
tion, we have introduced models that express the contextual relations between the var-
ious concepts found in the scene. These relations, attached to a concept, are expressed
in the form of focusing strategies. They are specified in the knowledge base. As we
have said before, we have defined three focusing strategies. It is possible to focus:
“on” a support, “next to” a support, or also “elsewhere” in the image. In this section,
we present the experimental results obtained with two focusing strategies.

The first idea is to search for large structures in the image where the system is likely
to find vehicles. Therefore, in the previous example (section 10.6.1), we chose roads
as our initial objective, knowing that the associated focusing strategies will consist of
searching for vehicles on and next to roads. Although the knowledge base remains
virtually unchanged compared to the previous example, it does, however, include two
additional focusing rules that specify whether to search for vehicles (concept 1) on
(“O”) or next to (“N”) roads (concept 2). The file associated with this knowledge base
is described in Figure 10.14.

{DOMAIN} ROOT:IMAGES/SOURCE/Vol/vol.%02d.gif

EXTENSION:gif: BEGINNING:0: NB:1:

INCREMENT:1: --------------------------

{GOAL} CONCEPT:2: --------------------------

{VALIDATION} VAL:0.10

--------------------------

{CONCEPT 1} NAME:VEHICLE: SIZE:1:

L:1:GREY:1:114:255: L:1:HOMOG:3:1:10:

L:1:AREA:0:10:100: D:1:DETECT:1:0:0

{CONCEPT 2} NAME:ROAD: SIZE:1:

L:1:HOUGH:1:0.1:0.5: L:1:GREY:4:80:255:

L:1:AREA:1:250:4000: D:1:DETECT:2:0:0

F:1:FOCUS:S:3 F:1:FOCUS:A:3

Figure 10.14. Knowledge base for an indirect analysis
of the vehicle concept
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The exploration graph associated with this segmentation is shown in Figure 10.15.

first agent created
in the image

road objective vehicle objective

the first letters indicate
the agent type:

C: concept agent
L: localization agent
Dt: detection agent
F: focusing agent (index by a type: o  on; n  next to)
Dc: decision agent

the latter specifies the objective:
V: vehicle
R: road

indicates the probability
for a support to be a
member of the vehicle
concept

o

o

o

n

n

n

Figure 10.15. Agent graph related to vehicle detection when two focusing rules are specified.
The type of the initial objective is “road”. The system searches

for vehicles “on” roads or “next to” roads

The first agent created is the Concept agent. It initializes the system and activates
the spatial exploration by creating a localization agent, which searches for elementary
areas of the image satisfying all of the localization clauses. Based on three extracted
samples, three detection agents are given the task of extracting the road supports. We
then note that the focusing branches related to the road objective split in two. This
indicates that two focusing agents are activated when a road support is found. The
system actually focuses “on” the road support, which is completed by also focusing
“next to” road supports.

Five kinds of agents are required in this case: the Concept, Localization, Detection,
Focusing and Decision agents. They can be designed with two possible objectives:
road and vehicle. The segmentation result is shown in Figure 10.16.

Four vehicles are extracted. Three are located on one of the road supports and the
latter is located next to that same support. The system detects all of the vehicles in
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detected vehicle

probabilities of belonging to the vehicle concept:

probability smaller than 63%

probability included between 67 and 74%

Figure 10.16. Segmentation of vehicles with two focusing strategies. On the left, the initial
image is shown, and on the right, the result of the segmentation. Four vehicles

are detected: three on the road, and one next to the road

the image. The vehicle located next to the road is characterized by a probability of
roughly 60%. This probability is much lower than the other probabilities measured
(in the range of 70%) that characterize the vehicles on the road. This result illustrates
the impact of the focusing relations. The probability of observing a vehicle on a road
remains higher than that of observing a vehicle next to the road.

In this example, we focused on the spatial exploration of the image. For the road
objective, this exploration is represented by the series of localization, detection, then
focusing behaviors, which allows a change of objective and an iteration of the process.
All of the results that we have presented are relevant to intra-image processing. We will
now consider a sequence of images and present, among other things, the concepts of
incrementality and adaptability.

10.6.3. Indirect analysis: spatial and temporal exploration

In this section, we give an illustration of the different forms of comprehensive
system adaptation. We have chosen to present the results for a sequence of 9 images
shown in Figure 10.17. We have introduced a perturbation (a uniform increase in the
gray levels) in the images numbered one and three in order to better evaluate the
system’s adaptive nature.

Using the graphical interface, we have specified the knowledge base presented in
Figure 10.18. This is comprised of two concepts: vehicle and field. The vehicle con-
cept is characterized by three localization methods, a detection method and a method
related to motion detection. The field concept is characterized by three localization
methods, a detection method and a focusing strategy that imposes a constraint on the
search for vehicles in fields.
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1 2 3

4 5 6

7 8 9

Figure 10.17. Reference sequence

{DOMAIN} ROOT:IMAGES/SOURCE/Mif1/mif.%02d.gif

EXTENSION:gif: BEGINNING:0: NB:9:
INCREMENT:1: --------------------------

{GOAL} CONCEPT:1: --------------------------

{VALIDATION} VAL:0.1 --------------------------

{CONCEPT1} NAME:FIELD: SIZE:1:

L:0:HOUGH:0:0.1:0.5: L:1:GREY:5:40:120:

L:1:HOMOG:9:0:3: L:1:AREA:0:250:3000000:

D:1DETECT:5:0:0 F:1:FOCUS:S:1
{CONCEPT3} NAME:VEHICLE: SIZE:2:

L:1:GREY:5:10:80: L:1:HOMOG:2:3:15:

L:1:AREA:0:150:1000: D:1:DETECT:1:0:0

M:1:MOVE:1:3:255

Figure 10.18. Knowledge base related to the first image in the sequence

The resulting agent graph is shown in Figure 10.19. The first agent created is still
the Concept agent, but this time it simultaneously activates the spatial exploration by
means of a Localization agent and the temporal analysis of the sequence by means
of the activation of a Movement agent. The spatial exploration follows the diagram
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described before in the localization, detection and focusing loop. The temporal anal-
ysis is conducted in parallel, in order to quickly arrive at areas of interest. We notice
that two Decision agents are activated while the image is being processed. The first
one is activated on a request from the Movement agent and it checks to see if the mov-
ing areas have already been labeled as vehicles. If they have, this branch would have
been interrupted and would have provided the probability of membership to the vehi-
cle concept. In the case that concerns us, it turns out that the moving areas have not yet
been labeled by the vehicle concept. Thus, a more in-depth analysis is needed, which
results in the creation of five Localization agents. Only one Localization agent found
a sample and therefore only one Detection agent is activated to extract the support of
the object in question.

first agent created
in the image

the first letters indicate
the agent type:

C: concept agent
L: localization agent
Dt: detection agent
F: focusing agent (index: o  on)

Dc: decision agent

the latter specifies the objective:

V: vehicleM: movement
F: field

movementspatial exploration

o oo o

Figure 10.19. Agent graph in the presence of movement. It represents the population of agents
implemented to find the vehicles, knowing that the spatial exploration is

conducted along with the search for movement information

In this example, the object is detected by the loop related to the search for move-
ment. This is because of the speed of execution of this loop compared to the spatial
exploration. However, strictly speaking, the vehicle in movement may be found by
either one of the two branches.
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The result of the segmentation according to movement, obtained for the first image
of the sequence, is given in Figure 10.20. Five regions have been labeled, including
the vehicle, but also four other regions representing the concept “smoke”. Each area
appears as a potential target, based on which the analysis will continue.

Figure 10.20. Segmentation of the moving areas: on the left, the reference
image is presented and on the right, the resulting segmentation

Taking into account information regarding movement makes it possible to very
quickly reach the area of interest, without waiting for the complete analysis related
to the spatial exploration. Furthermore, it leads to an increase in the probability of
membership to the vehicle concept. The probability obtained is 79%, whereas without
the movement information, the probability is 65%.

The Movement agent is a monitoring agent that allows a quicker decision to be
made regarding the possibility of a threat. On the other hand, this analysis in no way
alters the benefit of the spatial exploration, which segments the targets that are not
detected by the movement branch, either for reasons of computation time (depending,
for example, on the machine’s load, etc.), or because the vehicle in question is not
moving.

Depending on the information available and the execution speed, the paths to the
segmentation of the target can be modified. The system can operate using an explor-
atory process based on contextual relations or on strong information such as move-
ment; this way, it adapts to the situations it encounters.

10.6.4. Conclusion

In order to solve the problem of the detection, recognition and identification of
targets, we have proposed a multi-agent architecture based on the implementation of
agents which are located simultaneously in the image space, the goal space and the
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method space4. The method we propose complies with a series of fundamental prin-
ciples such as:

– focusing and adaptation;

– distribution and co-operation;

– uncertainty management;

– incrementality and learning.

Each concept allows the system to navigate within a space, but also to switch from
one space to another. The suggested system designs its own strategy depending on the
information available and proceeds in an incremental fashion. Over time, the system
makes hypotheses that are confirmed or not, later on, depending on the information
that is gathered. Thus, the suggested method follows an anytime philosophy, which
means that there is always a possible decision and it is refined over time.

The system is equipped with various adapting capabilities. Here are the major
ones:

– local adaptation, which is present, among other places, within the Detection
agent, since it uses the statistics associated with the current sample to adjust the seg-
mentation parameters;

– global adaptation which is present in two different forms:
- adaptation of the agent population: the presence of movement in the image

can force the system to request a complementary analysis of the areas in question, thus
new agents are created to answer to this request,

- adaptation of the data structures: over a sequence of images, the system is
capable of managing the updates of the knowledge base and the evolution of the
world model by using in particular a set of probabilities to assess the confidence in
the results.

Exploration and analysis strategies are not set in stone. They depend on decisions
made locally by agents and the modification of knowledge allows the systems to
develop different strategies. This operating mode described for the detection phase
applies in the same way to the recognition and identification phases [EAL 01]: in this
work, the characterization phase was completed by a discrimination phase, since the
adaptability relies on the concept of the usefulness of attributes.
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Chapter 11

Fusion of Non-Simultaneous Elements of
Information: Temporal Fusion

11.1. Time variable observations

Temporal fusion of data allows us to handle instantaneous information, i.e. infor-
mation whose value is only valid at a given time. This fusion is used when the param-
eters obtained from observation vary with time.

The problem therefore is to track the evolution of these observations, as opposed
to an overall characterization of the evolution. The following example illustrates this
instantaneous nature: when observing a beating heart, the temporal fusion of data
makes it possible to estimate the instantaneous blood flow. With a non-temporal fu-
sion, it would be possible to estimate the mean blood flow over a long period of time.
On the other hand, temporal fusion would be needed to observe the evolution of the
mean blood flow depending on, for example, the evolution of the patient’s level of
stress. This shows that we always have to define concepts related to time such as
“moment”, “evolution”, “period of time” according to the application because a length
of time can be “long” in certain cases, or “short” or even “negligible” in others.

Thus, temporal fusion involves the evolution or the modification of data:

– it may involve the modification of the object being observed. For example, when
analyzing the heart’s movement, focus will be directed to its morphological modifica-
tions over time;

Chapter written by Michèle ROMBAUT.
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– it may involve the relative evolution of two objects. In robotic manipulation, for
example, the objective is to model the effector’s movement with respect to the object
it has to grip in the scene, in order to be able to determine at any given time the control
laws to apply;

– it may involve the relative movement between the observed object and the
observing sensor. This is the case, for example, with driver assistance systems when
the vehicle is equipped with a sensor capable of detecting and characterizing obstacles;

– finally, it may also be used when the acquisition conditions vary over time and
when it is necessary to modify certain acquisition and processing parameters. For
example, when the lighting conditions of an observed scene vary, it can be useful to
modify a camera’s aperture size.

11.2. Temporal constraints

Therefore, the objective of temporal fusion is to determine or evaluate information
with a time-limited validity. The concept of an instant is completely related to the
application. For example, the global warming timescale cannot be compared to the
scale used for locating a plane. In any case, it is necessary to specify the expected
performances depending on how the data is going to be used. During the observation of
dynamic systems, the observation period (sampling period) has to be compatible with
the Shannon theorem: the sampling period must be no greater that half the response
time of the observed system.

This constraint requires the development of specific processing architectures if the
observed system evolves quickly or requires rapid responses, compared to the time it
takes to observe the data [ROM 95].

The processing time leads to a delay that corresponds to the time between the
acquisition of measurements and the transmission of data obtained from processing
these measurements. For example, if the sensor is a CCD camera, the measurement
is an image comprised of pixels which are associated with gray levels. Processing
the image can lead to obtaining data of a higher level such as areas associated with
physical features. The data, obtained after the processing, involves the moment of
observation, i.e. it corresponds to the date of the measurements it is associated with.
Processing causes delays that may or may not be neglected depending on the appli-
cation. For example, if the information is used to determine a control, the delay can
cause an instability, which is a result well known to control engineers; if they are used
to trigger an alarm, the delay can be fatal. A compromise will often have to be made
between the quality of the data and how fast it has to be available.

For each sensor, we need to define the temporal quantities with which it is associ-
ated [ALL 01]. Figure 11.1 represents these quantities:
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– the moment of acquisition is the measurement that corresponds to a date set by
the clock. Usually, the error made for this data is ignored;

– the moment of transmission when the data is available to be fused, for example;

– the processing time that corresponds to the time interval between the acquisi-
tion moment and the transmission moment. This time may or may not be constant
depending on which processes are applied;

– the sampling period, which corresponds to the time interval between two acqui-
sitions. Usually, this period is constant.

sampling period

measurement
acquisition

time

data
transmission
time

time

processing
time

interval

Figure 11.1. Time related quantities associated with a sensor

The essential time constraints are the acquisition frequency of measurements and
the delay caused by the processing time. If the frequency is high enough and if the
delay can be neglected, we can consider that all of the information that can be used
in the fusion system is constantly available. It is worth noting that in most fusion
applications, temporal constraints are neglected. They are dealt with mostly in military
applications for detecting and tracking targets [ANK 01, APP 98, PAO 94], in mobile
robotics [KOS 93, PRU 99] and in the context of intelligent vehicles [ETE 94, JOU 99,
TRA 93, TRA 94].

11.3. Fusion

Fusion uses data provided by different sources with temporal characteristics that
may be different. In the context of temporal fusion, information provided by the same
source may also be fused, but at different times.

11.3.1. Fusion of distinct sources

In the ideal case, the sources of information are synchronous (same period and
same acquisition time) and provide their information with the same processing time.
The data available can then be immediately fused.

With real applications, the data is rarely synchronous and cannot be fused directly.
Here are the major causes:
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1) the measurements are sampled at the same frequency, but with a shift (Figure
11.2);

2) the measurements are sampled at different frequencies (Figure 11.3);

3) the measurements are sampled at the same frequency, but the processing times
are different (Figure 11.4);

4) the measurements are sampled at different frequencies and the processing times
are different. Therefore, the sensors are completely asynchronous (Figure 11.5).

sensor 1
sensor 2

Figure 11.2. Same period, same processing time, different acquisition times

sensor 1
sensor 2

Figure 11.3. Different periods, same processing time

sensor 1
sensor 2

Figure 11.4. Same period, same acquisition time, different processing times

sensor 1
sensor 2

Figure 11.5. Different periods, different processing times

11.3.2. Fusion of single source data

The fusion of single source data consists of re-evaluating the variable when new
data is available by taking into account the previous values. It consists of an update,
since the new data corresponds to the innovation of the observed system. The relative
importance of the history (the previous data) and of the innovation can be adjusted
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by the fusion process based on criteria that have to be optimized. It is also possible
to define a forgetting coefficient which makes it possible to minimize or eliminate the
effect of older measurements.

11.3.3. Temporal registration

Sensors observe quantities that vary with time. In order to be able to fuse the data,
we have to ensure that it is obtained from measurements that correspond to the same
acquisition time. If this is not the case, a temporal registration mechanism has to be
implemented in order for the measurements which appear to be acquired at the same
time. In multi-sensor fusion, this mechanism will only be implemented if the tem-
poral characteristics of the sensors are too different. In single sensor fusion, the data
always has to be registered. This registration mechanism is the major characteristic of
temporal data fusion.

11.4. Dating measurements

Whether in single source or multi-source fusion, evaluating variable data requires
taking into account the time and particularly the moment when the measurement was
taken. Evaluating the acquisition times of measurements is one of the major problems
of temporal fusion [ALL 01]. In the most favorable case, the sensors are physically
close to one another and the acquisition of measurements is supervised by the same
electronic device. The measurements and their associated data are then dated by a
single clock common to all of the sensors. On the other hand, in the most common
case, the sensors operate independently and all have their own clocks. In this case,
it is necessary to account for this multiplicity of clocks. Here are the most common
solutions.

Registering the clocks. At certain times, a master clock sends a registration signal to
all of the slave clocks so that they may be synchronized. Between two synchronization
times, the delays between the clocks are considered to be small and to cause only few
mistakes in the measurements.

Common clock. The sensors have the possibility of operating with the help of an exter-
nal clock which will be the common clock. This requires for the clock signal to travel
through the entire device.

It is sometimes very difficult to determine the acquisition date, particularly when
the measurement provided by the sensor is evaluated from a time measurement. This
is the case, for example, when using an ultrasound sensor for which the distance mea-
surement is determined from the time of flight of the wave traveling from the sensor’s
transmitter, to the object being studied and finally to the sensor’s receiver. The acqui-
sition date is considered equal to either the wave’s emission date or its reception date.
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Usually, the inaccuracy of measurement dating is not taken into account. The error
made on the acquisition date is assumed to lead to a negligible error in the data.

11.5. Evolutionary models

The method used to register data in time is based on the use of evolutionary models.
It can also be used to make up for the lack of data in time, for example, when the
sampling frequency is too small or in the case of a significant delay.

An evolutionary model is a knowledge model used for estimating a quantity at a
given time, knowing the value or values of this same quantity at previous times. The
model can be obtained by learning or from expert knowledge based, for example, on
the laws of physics, mechanics, physiology, etc. When the model is known, it is then
usually possible to predict the data in advance and particularly on the date of the data
registration.

This concept of model can be illustrated by the following example. If we know at
a time t the position x(t) and the speed v of an object along a line, it is possible, using
the well-known laws of kinematics, to predict the position t+Δt on the condition that
Δt is “small enough” compared to the possible variations of speed:

x(t + Δt) = v.Δt + x(t).

The model should also allow the error of the new data to be calculated knowing
those of the previous data.

Let us assume, in the previous example, that the error on x and on v is modeled by
an interval:

x(t) ∈
[
x−(t);x+(t)

]
v ∈
[
v−; v+

]
Then the lower and upper limits of x(t + Δt) are:

x−(t + Δt) = v−.Δt + x−(t)

x+(t + Δt) = v+.Δt + x+(t)

and therefore:

x(t + Δt) ∈
[
x−(t + Δt);x+(t + Δt)

]
=
[
v− ·Δt + x−(t); v+ ·Δt + x+(t)

]
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Note that the interval used to model the error has increased by Δt · (v+−v−) over
the course of the prediction:

x+(t)− x−(t) < x+(t + Δt)− x−(t + Δt)

<
(
v+ ·Δt + x+(t)

)
−
(
v− ·Δt + x−(t)

)
<
(
x+(t)− x−(t)

)
+ Δt ·

(
v+ − v−)

Evolutionary models come in very diverse forms, such as differential equations,
recursive equations, evolution graphs, logical rules and others. They are merely
approximations of the evolution of the observed variables. Therefore, they lead to
errors in the value of the predicted data, errors that need to be estimated and taken into
account during the fusion operation with the measured value. Generally speaking, the
evolutionary model MX of the variable X and of the confidence ConfX assigned to
it is defined in terms of accuracy and/or reliability, by equation [11.1], to obtain the
predicted values X̂ of this variable and of the associated confidence ConfX̂ :

MX

([
X(t)

ConfX(t)

]
,Δt

)
=
[

X̂(t + Δt)
ConfX̂(t + Δt)

]
[11.1]

For example, let us assume that we are observing a discrete system described by
the following rule:

if X(t) = E1, then X(t + Δt) = E2

where E1 and E2 are two possible states. We can introduce uncertainty in this modeled
rule by using a probability distribution:

if X(t) = E1, then p
(
X(t + Δt) = E1

)
= p1 and p

(
X(t + Δt) = E2

)
= p2

This rule can be interpreted as the definition of a conditional probability:

p
(
X(t + Δt) = E1/X(t) = E1

)
= p1

p
(
X(t + Δt) = E2/X(t) = E1

)
= p2

If we know the probability for the state to be E1 at t, described by p(X(t) = E1) =
p, then, by conditioning, we infer:

p
(
X(t + Δt) = E1

)
= p
(
X(t + Δt) = E1/X(t) = E1

)
· p
(
X(t) = E1

)
= p1 · p

p
(
X(t + Δt) = E2

)
= p
(
X(t + Δt) = E2/X(t) = E1

)
· p(X(t) = E1

)
= p2.p

In addition, we notice here that the uncertainty has increased, since the probability
initially assigned to the state E1 was divided at the time t + Δt between the states E1

and E2.
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11.6. Single sensor prediction-combination

Associating combination and prediction functions is the basic mechanism for
achieving temporal data fusion. Its implementation depends essentially on the for-
malism used for representing the data (probability, possibility, evidence mass). The
best known is the Kalman filter, which is based on probability theory. See [ABI 92,
BAR 88, KAL 60] for a detailed description.

In more general terms, the method relies on the alternate use of prediction and
combination mechanisms. Let us assume that we have an evolutionary model MX

such as it was defined in the previous section by equation [11.1], as well as a model
for the sensor HX , such that for any acceptable value of X , we can infer the value Y
from the sensor’s measurement. Finally, let us assume that we know the inverse model
H−1

X of this sensor that can be used to estimate X from Y .

First, we initialize at the time t0 the data X(t0) at a value as close as possible to
the actual value we wish to determine, which is based either on prior knowledge or on
a first measurement Y (t0). We also initialize the confidence ConfX(t0) of this first
value in terms of reliability and/or accuracy. A new measurement Y (t1) is acquired
at the time t1 > t0, to which we assign a confidence ConfY (t1). The data X(t0) is
predicted up until the time t1 by using an evolutionary model MX :

MX

([
X
(
t0
)

ConfX

(
t0
)] ,Δt

)
=

[
X̂
(
t1/t0

)
ConfX̂

(
t1/t0

)] [11.2]

where Δt = t1 − t0, X̂(t1/t0) is the prediction of X at the time t1 knowing all of the
measurements up until t0 and ConfX̂(t1/t0) is the prediction of ConfX at the time t1
knowing all of the measurements up until t0.

We also calculate:

H−1
X

([
Y
(
t1
)

ConfY

(
t1
)])

At the time t1, the data X̂(t1/t1) and its confidence ConfX̂(t1/t1) are estimated

by a conjunctive combination Comb of the data’s history, represented by X̂(t1/t0),
and the innovation resulting from the measurement Y (t1):

Comb

([
X̂
(
t1/t0

)
ConfX̂

(
t1/t0

)] ,H−1

([
Y
(
t1
)

ConfY

(
t1
)])) =

[
X̂
(
t1/t1

)
ConfX̂

(
t1/t1

)] [11.3]

We notice in equation [11.3] that all of the variables are referenced at t1 and can
therefore be combined. During the prediction phase, the confidence should decrease
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or, if the model corresponds exactly to reality, remain constant. During the combi-
nation phase, since this is conjunctive, the confidence will increase according to the
quality of the measurement.

It is common for the sampling frequency to be too small for the application, i.e.
intermediate values of X between two sampling times would be needed. In this case,
we simply have to use the evolutionary model to register X with the times we are
interested in, without having to use new measurements for the combination.

11.7. Multi-sensor prediction-combination

We now wish to combine information gathered from different sources [ELE 96].
We saw in section 11.3.1 that a number of problems could arise from the synchroniza-
tion of sensors. We will deal with the most general case, where all of the sensors are
completely asynchronous, i.e. they have completely independent sampling frequencies
and processing times. The only hypothesis, which is usually true, is that the sensors
operate “monotonically”, i.e. for each sensor, the measurements are transmitted in the
same order they were acquired in. In the rest of this section, we will describe the
method for variables only, in order to have simpler equations. Obviously, in practice,
it is also necessary to deal with the confidence in the variables.

We begin by studying the case of two sensors C1 and C2 before generalizing to
any number of sensors. Let us assume that these two sensors deliver dated measure-
ments Y1(t) and Y2(t). We have at our disposal the inverse methods of these sensors
which make it possible to obtain estimates of X1(t) and X2(t) based solely on these
measurements. From now on, we will say that these sensors directly provide these two
estimates, thus implying that they are obtained from measurements. We will denote
by ta the acquisition time and by tt the transmission time such as they are represented
in Figure 11.6.

sensor 1

sensor 2

Figure 11.6. Example of two asynchronous sensor fusion

Let us assume that we know an estimate of X at the time t0 denoted by X̂(t0) and
that ta,1 < ta,2 and tt,1 < tt,2.



254 Information Fusion

A tt,1

The estimate X1(ta,1) obtained from the measurement Y1(ta,1) becomes available.
We assume that this estimate is more recent than that at t0 and therefore that ta,1 > t0.
Then, we register X̂(t0) until ta,1 by using the evolutionary model to obtain:

X̂
(
ta,1/t0

)
= MX

(
X̂
(
t0
)
,
(
ta,1 − t0

))
We can then combine these two estimates that correspond to the same date:

X̂
(
ta,1/ta,1

)
= Comb

(
X̂
(
ta,1/t0

)
, X1

(
ta,1

))
Finally, we predict this value until the present time:

X̂
(
tt,1/ta,1

)
= MX

(
X̂
(
ta,1/ta,1

)
,
(
tt,1 − ta,1

))
However, we bear X1(ta,1) and X̂(ta,1/ta,1) in mind.

A tt,2

The estimate X2(ta,2) obtained from the second sensor becomes available. We
assume that this estimate is more recent than that at ta,1. This time we register X̂(ta,1)
until ta,2 by using the evolutionary model to obtain:

X̂
(
ta,2/ta,1

)
= MX

(
X̂
(
ta,1/ta,1

)
,
(
ta,2 − ta,1

))
We can then combine these two estimates:

X̂
(
ta,2/ta,2

)
= Comb

(
X̂
(
ta,2/ta,1

)
, X2

(
ta,2

))
Finally, we predict this value up until the present time:

X̂
(
tt,2/ta,2

)
= MX

(
X̂
(
ta,2/ta,2

)
,
(
tt,2 − ta,2

))
In this example with two sensors, we have assumed that the measurements on the

two sensors arrived in the same order they were in when they were acquired, i.e., if
tt,1 < tt,2, then ta,1 < ta,2. This condition is not always satisfied, particularly in the
case where a sensor has a long processing time compared with the sampling period
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of another sensor. However, this sensor can provide us with relevant information even
if it is delayed and there is no point in working without it. We will now present the
method in the general case.

We now have at our disposal a certain number of sensors providing elements of
information with the dates ta,i. These times are arranged chronologically so that
ta,1 < ta,2 < ta,3 <, etc. For each of these instants, we have stored X(ta,i) obtained
directly from the measurement and X̂(ta,i/ta,i), which is the estimate of X that takes
into account all of the available measurements up until ta,i. Table 11.1 shows all of
the variables that are stored.

ta,1 ta,2 ta,3 ta,4

X(ta,1) X(ta,2) X(ta,3) X(ta,4)

X̂(ta,1/ta,1) X̂(ta,2/ta,2) X̂(ta,3/ta,3) X̂(ta,4/ta,4)

Table 11.1. Table of the variables stored at the different times

At the time t∗t , we have a new measurement that gives us X(t∗a), such that ta,2 <
t∗a < ta,3. Table 11.1 then changes into Table 11.2.

ta,1 ta,2 t∗a ta,3 ta,4 t∗t

X(ta,1) X(ta,2) X(t∗a) X(ta,3) X(ta,4)

X̂(ta,1) X̂(ta,2) X̂(ta,3) X̂(ta,4)

Table 11.2. Table of the variables at the current time t∗t

This new estimate has to be taken into account as well as all of those that followed
it. The method consists of alternately using prediction and combination until obtaining
the prediction at the time t∗t . This method is illustrated by Table 11.3

Given that the sensors behave “monotonically”, when a measurement is provided
by the sensor Ci, the previous measurement from the same sensor is forgotten. As a
result, the storing table has a number of columns equal to the number of sensors.
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ta,1 ta,2 t∗a ta,3 ta,4 t∗t

X(ta,1) X(ta,2) X(t∗a) X(ta,3) X(ta,4)

↓
X̂(ta,1) X̂(ta,2) → X̂(t∗a/ta,2) → X̂(t∗a)

Taking the measurement into account at t∗a

ta,1 ta,2 t∗a ta,3 ta,4 t∗t

X(ta,1) X(ta,2) X(tt∗a) X(ta,3) X(ta,4)

↓
X̂(ta,1) X̂(ta,2) X̂(t∗a) → X̂(ta,3/t∗a) → X̂(ta,3)

Taking the measurement into account at ta,3

ta,1 ta,2 t∗a ta,3 ta,4 t∗t

X(ta,1) X(ta,2) X(tt∗a) X(ta,3) X(ta,4)

↓
X̂(ta,1) X̂(ta,2) X̂(t∗a) X̂(ta,3) → X̂(ta,4/ta,3) → X̂(ta,4)

Taking the measurement into account at ta,4

ta,1 ta,2 t∗a ta,3 ta,4 t∗t

X(ta,1) X(ta,2) X(tt∗a) X(ta,3) X(ta,4)

X̂(ta,1) X̂(ta,2) X̂(t∗a) X̂(ta,3) X̂(ta,4) → X̂(t∗t /ta,4)

Prediction up to the current time

Table 11.3. Tables representing the data updating method
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11.8. Conclusion

Whenever trying to track the evolution of variables in time, it is essential to study
the temporal constraints:

– the need for information set by the application (frequency of data availability);

– the temporal features of the sensors and of the associated data processes (fre-
quency, delay);

– the temporal characteristics related to the sensors.

After listing all of these, the performances of the sensors can turn out to be good
enough as to not require the use of mechanisms specific to temporal fusion (the acqui-
sition frequency is high enough, the delays are negligible). If this is not the case, a
system has to be implemented for assigning dates to the data and evolutionary models
are needed in order to achieve temporal registration.

There are few studies that have directly focused on temporal fusion, or more gen-
erally on time management in data fusion applications. This aspect appears mostly in
military applications for target tracking and in robotics. In most cases, time manage-
ment is limited to the use of the Kalman filter, often in its extended version (lineariza-
tion around an operating point). The quality of the fusion results could probably be
significantly improved if, in critical applications, the temporal aspect was not plainly
ignored.
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Chapter 12

Conclusion

Now that we have been through this overview of the major numerical fusion meth-
ods and of their use in signal and image processing and in robotics, we will sum up a
few achievements and conclusions, as well as a few issues that still pose difficulties.

12.1. A few achievements

The previous chapters have shown that a wide variety of numerical techniques
are used for the fusion of imprecise and uncertain information. This diversity is the
result of the diversity of the tasks themselves that contribute to the decision in a multi-
source information system. Probabilistic methods remain the most commonly used,
mostly because they have led to the development of operational tools and great know-
how, which is the result of a considerable amount of practice. On the decision level
these tools turn out to be particularly efficient, whereas for modeling, some aspects
remain limited or even disputed. Fuzzy set theory relies on a type of modeling close
to intuition. In the fusion applications mentioned here, there is still little formalism
or development in the decision phase. On the other hand, the combination phase is
very rich and allows knowledge of any type to be included. Belief function theory
offers the most powerful modeling tools, making it possible to simply and efficiently
include knowledge, imprecision and uncertainty. Combination, as it is used in signal
and image processing, is limited to the conjunctive mode.

In numerical fusion for signal and image processing, the efforts of the past years
have led to a better understanding of the different theories taken from fields such as
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belief functions and fuzziness. We thus know now which application frameworks are
right for these theories, their advantages and their limits in these application fields;
we also know how to represent and model information and numerical, symbolic or
structural data in each of the formalisms, and how to achieve their combination. There
have been many new developments, particularly for the traditional multi-source clas-
sification, structure or object recognition in images, tracking, localizing and planning
applications.

12.2. A few prospects

Despite this progress, some aspects remain poorly understood or require further
development.

Taking into account the origin of the data and knowledge, as well as the relations
between sources, is still often performed under supervision and therefore requires lit-
tle experience. One of the important questions involves the independence between
sources and conditioning (particularly in the case of sequential fusion, in dynamic
updating processes). The probabilistic framework offers methods to test statistical
independence, and those are usually the only tools at our disposal. But this type of
independence is often considered too restricting, and in other contexts, such as belief
function theory, the preferred concept is cognitive independence, which is related
to how the knowledge and data are acquired rather than to their nature [SHA 76,
SME 90]. When choosing the operators of fuzzy and possibilistic theories, indepen-
dence results in the operators being idempotent, whereas dependence requires rein-
forcement.

A very difficult question is conflict management. Insofar as it is possible, the
sources of the conflict have to be identified and made explicit, in order to avoid incon-
sistencies when making the decision. In particular, it is not always easy to tell the
difference between conflict and the complementarity of sources, or to know whether it
should be resolved or not. Conflict, which can be referred to as “apparent”, is actually
a form of complementarity. For example, if a source systematically includes class B
in class A whereas another source is good at distinguishing them, these two sources
seem to be in conflict. Recognizing complementarity often requires the use of prior
(or learned) knowledge regarding the low possibilities for the first source to tell the
two classes apart. Resolving such conflicts is easy once they have been properly iden-
tified. A second form of conflict, which is real this time, is due to inconsistencies
between sources, which are caused by their limited reliabilities, by changes that occur
in the scene between acquisitions, or also by the fact that they are not dealing with
the same thing. This type of conflict is more difficult to identify and to resolve. It is
sometimes even preferable to simply indicate it and not to try to solve it because it
often corresponds to a fundamental inadequacy of our knowledge of the problem.
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Choosing and evaluating methods is as crucial as it is difficult. Again, there is no
general solution for choosing methods that are adapted to the different types of infor-
mation and knowledge handled, or to the applications we may have in mind. Evaluat-
ing methods can be more or less easy depending on whether the truth is accessible or
not. Attempts to compare numerical fusion methods, when applied to the same prob-
lems, have given contradicting results and therefore have failed. We think the main
reason for this is that each problem is expressed more easily in one theory than in
another, so solving them with the wrong tools requires these techniques to become
distorted, and does not make much sense.

Finally, in the case of image processing applications, and also for certain appli-
cations in robotics, the introduction of spatial information in fusion is an important
point, for which the set of existing methods could benefit from further development.
Particularly, the recent successes achieved by taking into account structural informa-
tion shows the advantage of combining spatial information from different levels.

We have noticed in the previous chapters that each approach is adapted to a lim-
ited set of imperfections in the information to fuse. It is rare for all of the imperfec-
tions to be modeled simultaneously and in a simple way in a unique theory. Thus, a
field of investigation that remains open involves the fusion of methods or the com-
bined use of different complementary formalisms. These studies on method com-
bination are promising, because their goal is to use the advantages of the different
theories in order to make them cooperate with each other. This combination can
rely on relations that exist between the different methods. For example, a probabil-
ity can be interpreted as a particular mass function, a belief function whose focal
elements are such that each one is included in the next can be interpreted as a pos-
sibility distribution, a possibility distribution can be interpreted as confidence inter-
vals or as a family of probabilities (see, for example, [DUB 99] for details on the
connections between possibilities and probabilities), etc. Thus, studies have already
been conducted to combine the imprecision represented by fuzzy sets with probabilis-
tic uncertainty (for example, [CAI 93, PIE 94, SAL 95] in a Markovian classification
method where the classes are fuzzy), to combine Markov fields with belief functions
[BEN 97, HEG 98], or to work with belief functions whose focal elements are fuzzy
[SME 81, YAG 82, YEN 90, ZAD 79].
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Appendix A

Probabilities: A Historical Perspective

This appendix is largely inspired by [BLO 96].

Among the different methods for representing knowledge, numerical methods,
which attempt to model the imprecision and uncertainty of data and knowledge, are
widely used for problems as diverse as multi-criteria aggregation, combining testi-
monies, or fusing heterogenous images. Probabilistic methods certainly are the most
popular, but still give rise to a number of controversies, particularly between frequen-
tist or objectivist methods and subjectivist methods. Although subjectivists seem to
be taking over in many fields, frequentist concepts are still of great practical use, par-
ticularly when it comes to learning a law based on large samples, for example, to
recognize cultivations in an aerial image.

A historical overview of the different meanings of probability can help explain the
causes of these controversies and show that the choice of a method can be thought
through and justified by the problem at hand and by our interpretation of probability.
section A.1 will focus on this historical perspective and section A.2 on the charac-
terization of different classes of probabilities. This is largely based on review articles
cited as references.

It seems remarkable that the hypothesis of the additivity of probabilities1, which is
widely recognized today, only appeared so late. This hypothesis is stated as an axiom

Chapter written by Isabelle BLOCH.
1. The additivity relation expresses the fact that for two exclusive events A and B, the probabil-
ity of the union denoted by A + B is equal to p(A + B) = p(A) + p(B). Particularly, we infer
p(A) + p(Ā) = 1, where Ā denotes the opposite of A (or its complement in set theory terms).
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in Kolmogorov theory. However, the works of Cox show that these axioms can be
inferred from a certain number of basic postulates prompted by intuition (see section
A.3).

In section 6.10, we gave a few examples showing the limits of additive probabili-
ties, which are often the results of the strict constraints that they impose. The modifi-
cation of basic postulates in order to overcome these limits leads to different numerical
theories, which no longer satisfy the same properties, and thus leads us again to meth-
ods such as fuzzy sets or Dempster-Shafer belief theory. The latter has often been
criticized on the grounds that Dempster’s orthogonal combination rule had no theoret-
ical justifications. Several authors have responded to this criticism, and in Appendix
B we will present Smets’s arguments, which allow this rule to be inferred from more
easily justifiable axioms. We will then establish the relation between these axioms and
those given by Cox, in order to explain the origins of the differences between the two
theories.

A.1. Probabilities through history

This study was inspired by Shafer’s works and particularly by his remarkable
review articles on the history of science [SHA 78, SHA 86]. The following histori-
cal presentation is largely based on these works. They constitute the basic points, and
additional information was added from articles or books [COX 46, DEM 93, DUB 88,
GOO 59, HOR 86, JAY 57, JEF 61, KEM 42, NEA 92, SOM 89, TRI 72].

A.1.1. Before 1660

The conflict between knowledge and opinion appeared as early as the Classical
era, in particular with Plato, in roughly 400 BC, and terms such as necessary, possible,
probable, began to be defined. We find for example with Aristotle (roughly 350 BC)
assertions of the type “if an event is necessary, then its opposite is impossible” (until
possibility theory was developed, no consistent theory was capable of modeling this
sentence) or also “what is probable is what usually occurs” (in reference to phenomena
repeating themselves, which are the basis of frequentist theory). For the Ancients,
there were three epistemological categories. In the first, certain knowledge is possible.
This is equivalent to Plato’s concept of knowledge or science. The second category is
comprised of events for which knowledge is probable or possible. This corresponds
to Plato’s concept of opinion and, in this sense, probability is seen as an attribute
of opinion. The third category, which is absent in Plato’s philosophy, corresponds to
events for which no knowledge is possible, hence to the realm of chance. This term
is used to mean the lack of statistical regularity. Transposed in more modern terms,
these concepts correspond, in our opinion, to deductive reasoning for the first category
and to inductive reasoning for the second. The third corresponds to phenomena that
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(apparently) do not follow any law that is predictable or that has been learned. This
third category would seem to rule out any possibility of a mathematical theory for
chance.

These concepts were still very primitive, and no theory had yet been developed.
However, their importance can be disputed, since they are related to the theory of
knowledge, considered to be essential, and the focus of the work of many philoso-
phers. The fact that probability was considered as a “guide to life” by Cicero (60
BC) stands as proof of this. It is difficult to resist the pleasure of repeating these few
sentences by Seneca, quoted in [MAT 78]: “There are differences of interpretation,
however, between our countrymen and the Etruscans, the latter of whom possess con-
summate skill in the explanation of the meaning of lightning. We think that because
clouds collide, therefore lightning is emitted; they hold that clouds collide in order
that lightning may be emitted. They refer everything to the will of God: therefore they
are strong in their conviction that lightning does not give an indication of the future
because it has occurred, but occurs because it is meant to give this indication” (Seneca,
Natural Questions, II, 32).

This passage is a good illustration of the subjective nature of opinion; it is impos-
sible to imagine an experiment that would make it possible to prove or refute either
one of these opinions. This is also an illustration of the difference between causality
and logical links, which are often not distinguished. Probabilities express logical links
but not causality relations [DEM 93].

These epistemological categories later disappeared, for unknown reasons. During
the Renaissance, two completely independent concepts were used: chance, or random-
ness, and probability, which is seen as an attribute of opinion and with no numerical
value attached to it. The concept of chance is strongly related to game theory. Its
premises can be found in Dante’s Purgatory (1310), in which he describes the differ-
ent sums that can be obtained from rolling three dice. Game theory was later widely
developed at the end of the 16th century and during the first half of the 17th century.
Cardan (1560) and Galileo (1620) compiled the different results that can be obtained
in a game, and counted the number of cases where each of these outcomes occurred.
For the first time, the concept of “equiprobable cases” was mentioned. The origins of
the mathematical probability theory are attributed to Pascal and Fermat (even though
they did not use the word probability), since, in their correspondence (around 1654),
they started solving the first non-trivial problems. In 1657, the first book on the subject
of game theory, written by Huygens, was published. These three mathematicians and
philosophers tried to solve the “point problem”: a game between two players, which
requires that one player has three points in order to win, remains unfinished; how, then,
should the stakes be equitably divided if one player has one point and the other has
two? They explained with equiprobable cases why proportional frequencies appeared
in a wide series of outcomes. However, they were troubled in solving their problem
because of the determinism imposed on them by Christianity. The Ancients, on the
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contrary, accepted indeterminism very well. To sum up, all of these works dealt with
the problem of games and produced a theory of chance, but probability is never men-
tioned, even if the vocabulary used is slightly more epistemological. There was still
significant confusion between statistics and prior knowledge, which led to two classes
of probabilities being confused, based on frequencies (related to statistics) and based
on equiprobable cases (related to prior knowledge).

A.1.2. Towards the Bayesian mathematical formulation

The first link between game theory and probabilities was given in 1662, when it
was introduced by Arnauld in the Art of Thinking. Arnauld established an analogy
between games and everyday life and suggested that an epistemological perspective
of chance made it possible to apply the theory to probabilities (which were still consid-
ered as attributes of opinion). He stopped short of the concept of numerical probability,
but his works clearly mark a milestone in the evolution of the concept of probability.
The analogy between games and life was used up until the end of the 17th century by
demographers who calculated life expectancy tables by using game theory, but without
including the concept of probability.

A contribution from an entirely different field came from Leibniz, who suggested
in the De Conditionibus (1665) to represent a person’s legal rights using numbers.
The absence of law was represented by 0, a pure law by 1 and a conditional law by
a fraction between 0 and 1. This classification of rights relies on the condition upon
which the law is founded: an impossible condition leads to the absence of law, if it is
necessary the law is pure, if it is contingent2, the law is conditional. These concepts
of contingency and necessity are also used by Bernoulli regarding the problem of the
combination of testimonies. Leibniz suggests relating the probability for the condition
to exist with the “quantity” of the law and thus seemed to lean towards a numerical
conception of probability, without relying on game theory. He only later becomes
acquainted with this theory. Although his essays on chance provided nothing new
from a mathematical perspective, they acknowledged the link between probability and
game theory.

In the field of the combination of testimonies, the works of Hooper in 1699 (A Cal-
culation of the Credibility of Human Testimony) lead to the definition of non-Bayesian
confidence functions, which represent the credibility of a witness, as well as to two
combination rules, one for consecutive testimonies and the other for simultaneous
testimonies. These two rules, which were very popular in the 18th century, were com-
pletely abandoned in the 19th century.

2. Contingent is used here meaning that something may or may not occur.
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One of the most important contributions to the relation between game theory and
probability at the end of the 17th century is probably that of Bernoulli, particularly in
his book Ars Conjectandi (published in 1713). Bernoulli suggested as early as 1680
a mathematical theory of probabilities and their combinations. He uses game theory
to calculate probabilities, but does not remove from probabilities their epistemolog-
ical aspect and their role in the judgment of individuals. Thus, the first formalisms
that allowed numerical probabilities to be used focused on the study of subjective
probabilities! For the most part, Bernoulli’s theory focuses on probabilities that are
subjective, and that are means of measuring knowledge. They are calculated based on
the concept of “arguments”, and their properties depend on the nature of these argu-
ments. In particular, they are not always additive. The combination rules suggested by
Bernoulli, which are more complete than Hopper’s, take on different forms, depend-
ing on the arguments, and not all of these forms correspond to the usual probabilistic
rules. In the last part of his work, Bernoulli established his famous law of large num-
bers. This law allows a prior unknown probability to be estimated afterwards based
on the observation of occurrence frequencies. Therefore, this theorem has more to do
with random probabilities than epistemological probabilities (according to the distinc-
tion later introduced by Lambert), since a chance that can only be known a posteriori
is not initially a characteristic of our knowledge.

The successors of Bernoulli simplified his theory and unknowingly reduced its
scope. First of all, they were not convinced by Bernoulli whose theory, which often
seemed complicated to them, was not as well established as game theory. Addition-
ally, they mostly held on to the law of large numbers and identified probability with
the chance of appearing, thus leading to an essentially frequentist approach. We can
mention, among the successors of Bernoulli, Montmort (Essai d’analyse sur les jeux
de hasard, 1708), who attempts to apply game theory to other fields, and Moivre (De
Mensura Sortis, 1711, Doctrine of Chances, 1718) where we find the first explicit
additivity rule and a representation of probabilities between 0 and 1. His definition
became the classical definition. These two authors mentioned probabilities but their
theory often deals with chance. They defined probabilities as the ratio of the number
of favorable cases to the number of possible cases, but the authors were faced with the
problem of counting the number of cases, which is not possible in every field. Note
that Moivre had already discovered the Gaussian distribution.

In the 18th century, only Lambert pursued Bernoulli’s work and distinguished ran-
dom probabilities and epistemological probabilities. The former are those that can be
known a priori, as in game theory, or a posteriori, provided by experience. The latter
are assigned to events by inferences based on effects or circumstances and are more
subjective in nature. In Photometrica (1760), he focused on error theory and suggested
a method known today as maximum likelihood. In Neues Organon (1764), he general-
ized Bernoulli’s argument theory, corrected and generalized his combination laws and
discussed the cases of games, syllogisms and of different types of testimonies. His
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laws are a specific example of Dempster’s combination rule and, again, probabilities
here are not additive.

The works of Bayes (An Essay Towards Solving a Problem in the Doctrine of
Chances, 1763) later suggested a general approach that eliminated the distinction
between random probabilities and epistemological probabilities. Bayes reversed
Bernoulli’s theorem, whereas Bernoulli estimated the number of successful outcomes
based on the knowledge of probability, Bayes attempted to calculate the probability
knowing the number of successful outcomes in a sample and expressed it in terms of
initial, final and likelihood probabilities. He only dealt with additive probabilities.
Bayes never tried to make his work known to others. His essay was found only
after his death, along with other works (particularly on electrically charged bodies),
which were written using abbreviations that have not all been deciphered [HOL 62].
This has led some to wonder about the exact origins of Bayes’ theorem (see, for
example, Stigler’s works [STI 82, STI 83], who suggests a. . . Bayesian solution to
this interrogation).

This work was continued by Laplace (Théorie analytique des probabilités, 1812).
This era saw the rapid development of inverse probabilities, seen from a subjective per-
spective. This theory underlined the distinction between the “initial” (or prior) prob-
ability of a hypothesis, the “final” probability (after the experiment), and the “likeli-
hood” probability (probability of the experiment knowing the hypothesis). Laplace
also introduced the concept of insufficient reason: some outcomes are considered
equally probable if there is no reason to think otherwise. This principle was widely
adopted until the middle of the 20th century.

A.1.3. The predominance of the frequentist approach: the “objectivists”

In the 19th and early 20th century, because of the rapid development of physical
sciences, the modeling of human reasoning was neglected. A new discipline emerged
at that time: statistics. The concept of probability was often related to the observation
of physical phenomena, to their repetition in long sequences. The theories of Bayes
and Laplace were criticized for their subjective natures, accused of lacking rigor, and
the concept of prior probability was rejected because it seemed too vague.

The works of Cournot (1843), Ellis (1843), Venn (1866) then defined physical
probabilities, in terms of frequencies. As emphasized by Good [GOO 59], these works
were faced with problems that were impossible to solve. For example, if by flipping a
coin, we observe the following sequence of Heads (H) and Tails (T): THTHTHTHTH,
etc., we can infer that the probability of getting Tails is 1/2, but this does not mean we
can draw conclusions about the game’s honesty.

One of the problems raised by these methods involves the length of the sequences
used for calculating the frequencies. They have to be long, but how long? The theories
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were developed for infinite sequences, but did not specify how to proceed in practice.
This was the case for Venn’s limit, Fisher’s hypothetical infinite population (1912),
or von Mises’s infinite random sequences (1919). Von Mises clearly stated the dis-
tinction between abstract mathematical theory and the application of this theory: the
essential property of these infinite random sequences has to be that the probability
of success must remain the same regardless of the sub-sequence (which is infinite),
which is an abstract concept, and is restricted in particular to those fields where this
definition is reasonable. His argument was that it is not necessary to actually repeat
the experiment indefinitely for the probability to exist and therefore he limited himself
to physical probabilities and random processes, excluding problems where we would
ask ourselves, for example, the probability for X to die at age 60.

The 20th century also saw the development of the Gaussian distribution. Already
known to Moivre, it was obtained by Gauss (1823) by using the maximum likelihood
principle in problems about the estimation of the observation error. In the middle of
the 19th century, it was rediscovered by Herschel, based on geometric considerations
for estimating measurement errors in the positions of stars, and also by Maxwell while
he studied the speed distributions of molecules in a gas [DEM 93].

However, despite the strong frequentist context of the time, distinctions similar to
those made today were expressed. For example, Poisson, in his research on the prob-
ability of judgments (1837), distinguished chance and probability. Chance is specific
to the event itself, regardless of our knowledge, whereas probability is related to our
knowledge. This distinction is similar to Lambert’s. The distinction between objective
probability and subjective probability is also explicit in Cournot’s Exposition de la
Théorie des Chances et des Probabilités (1843). But even if the distinction is explicit,
theories developed in the 19th century only make it possible to solve problems related
to physical or objective probabilities.

Boole’s works, in a way, constitute a link between frequentist and epistemological
methods. In his book Laws of Thought (1854), he attempted to combine, on an episte-
mological level, evaluations made locally on various attributes of the information. He
supported the idea that probabilities are obtained from frequencies, but acknowledged
the impossibility of estimating, in many situations, the joint frequencies, which thus
need to be generated on a subjective level.

A.1.4. The 20th century: a return to subjectivism

In the 20th century, traditional methods continued to be developed, with increas-
ingly strong mathematical foundations, particularly under the impulse of Kolmogorov,
and the frequentist method remained present and strong (particularly in signal and
image processing), benefiting from the works of Neyman, Pearson, Feller [FEL 66].
At the same time, with the birth of artificial intelligence and its growing importance,
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human reasoning and the models used to describe it gained interest and led researchers
to return to a more subjectivist conception of probabilities. Two schools of thought
have appeared, one for additive properties and the other for non-additive properties.

The first school of thought relies on basic postulates to more rigorously and less
arbitrarily obtain probabilities, their properties, Bayes’ theorem, etc. Among them
we can mention the works of Keynes [KEY 29], Kemble [KEM 42], Cox [COX 46],
Jaynes [JAY 57], Jeffreys [JEF 61], Tribus [TRI 72]. We will discuss Cox’s approach
in detail in section A.3. Tribus’s approach is directly inspired by it. Jaynes and Kemble
worked in the field of statistical mechanics and showed that this requires a subjectivist
approach. Jeffreys, based on a method similar to Cox’s but in which numbers are
included by convention, inferred the properties of probabilities from a certain number
of principles. These principles reject others considered to be fundamental in other the-
ories (for example, the definition of probabilities in terms of infinite sets of possible
observations, in terms of world properties, the causality principle, etc.). The essence of
his theory is that none of the direct probabilities, whether a priori or a posteriori, is a
frequency. Even if the probability is calculated based on a frequency, it is not identical
to the frequency and a reasonable degree of confidence is necessary before it can be
used. The goal of Jeffreys’s theory was not to justify inductive reasoning, but to ensure
its mathematical consistency. In a very similar fashion, a great number of researchers
studied the philosophical perspective of subjective probabilities with respect to objec-
tive probabilities, often without questioning additivity (Keynes, Jeffreys, Ramsey, de
Finetti, Koopman, Russel, Carnap, Good, Savage, etc.). In particular, the works of
Savage and Finetti showed that the Bayesian theory’s subjective approach is the most
justified and the most consistent [FIN 37]. In his works, de Finetti adopted a resolutely
subjective approach (more than that of Cox) and reasoned in terms of the consistency
of individual opinions, and even in terms of collective psychology in order to explain
the coincidences in the opinions of different individuals. This method, which is par-
ticularly interesting, is described briefly in section A.3.

The second school of thought completely re-examined additivity, relying in par-
ticular on the works of pioneers such as Bernoulli and Lambert (see, for example,
[GOO 59, SHA 86]). Koopman, in the 1940s, introduced the concept of lower and
upper probabilities, thus defining a subjective probability with an inequality and no
longer as a precise value, based on the works of Boole (Laws of Thought, 1854),
which had already foreseen this evolution. Several other researchers followed up on
his work (Good, Dempster, etc.). In particular, Dempster generalized Lambert’s rules,
which are only able to deal with arguments involving a single conclusion, in the case
when several hypotheses need to be considered. Applications of these new theories
can be found in the field of economics, where Shackle, for example, suggested eco-
nomic models relying on concepts close to possibility theory, or in the field of legal
precedents, particularly the works of Ekelöf (Rättegang, 1963) who suggested three
operators for combining testimonies: the combination of consecutive testimonies and
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that of simultaneous corroborating testimonies follow Hooper’s rules, whereas the
combination of conflicting testimonies is related to a specific case of Lambert’s rule.

Starting in the 1960s, theories appeared that were no longer directly related to
probabilities. Zadeh invented fuzzy sets in 1965 [ZAD 65], Shortliffe and Buchanan
constructed the MYCIN system based on the concept of certainty factors in 1975
[SHO 75], Shafer developed belief theory (A Mathematical Theory of Evidence, 1976)
[SHA 76] and Zadeh introduced possibility theory in 1978 [ZAD 78].

A.2. Objectivist and subjectivist probability classes

Section A.1 showed that there are several classes of probabilities, summed up here,
based on the classification set out by Good [GOO 59]:

1) the traditional definition is provided by game theory and relies essentially on
the concept of equally probable cases. Calculating the probabilities is achieved using
frequencies of occurrence, by counting all of the cases;

2) a more subjective version of this definition includes additional information
related to the knowledge we have, for example, knowledge of the honesty, or lack
thereof, of a game. Therefore, this second class only considers conditional probabil-
ities. We can also include in this class Savage’s or Finetti’s subjective probabilities,
which are estimated proportionally to the sum of money that a person would be will-
ing to give if what it claimed turned out to be false [DUB 88, FIN 37];

3) a third class is that of inverse probabilities, according to Bayes and Laplace.
It consists of the final probability of a hypothesis (after experiments have been con-
ducted) estimated from the a priori probability (in the absence of experiments) and the
conditional probability (or likelihood probability), or experiment probability given the
hypothesis;

4) the physical probabilities used in the 19th century are no longer subjective in
nature and attempt on the contrary to achieve objectivity by calculating probabilities
that are conditional to experiments that have been conducted;

5) the purely frequentist approach calculates occurrence frequencies in large
sequences (Venn’s limit, Fisher’s infinite population, etc.);

6) finally, the last class, which Good calls “neo-classic” subjective probability, is
the largest. Probabilities represent degrees of confidence, with respect to a state of
knowledge, taking into account both subjective and objective information. This def-
inition encompasses all of the others and may be much more general. It relies on a
mathematical theory based on a few axioms, which makes it possible to ensure the
consistency of all the degrees of confidence. It can be extended to a theory of rational
behavior by including utilities. Finally, Good even suggests representing these sub-
jective probabilities with inequalities, which is similar to the Dempster-Shafer belief
theory, for example.
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The opposition between objectivists and subjectivists actually stems from funda-
mental differences in the types of problems they try to solve and in their models.
Objectivist frequentists search for frequencies in a set, which implies the possibility
of infinite repetitions in similar conditions, but also provides an operational means
of calculation. The probability is specific to the set and does not exist without it, but
the data can be hypothetical (it is not always necessary to conduct all of the repe-
titions). This leads objectivists to refuse problems that are devoid of meaning, such
as events that only occur once. Statements are considered objective if they can be
refuted (with counter-examples), even if they cannot be rigorously proven [MAT 78].
On the contrary, subjectivists consider probabilities as measures of confidence, of
reasonable expectation [COX 46], of the numerical coding of a state of knowledge
[DEM 93], of an appropriate mental subtlety and can therefore deal with problems
for which there is no set, particularly unique phenomena. For such phenomena, there
is no probability per se, but only probabilistic models [MAT 78]. The hypotheses are
evaluated according to the observed data and the prior probability, even if the knowl-
edge is incomplete. Subjectivists do not try to achieve the best asymptotic behavior, as
statisticians do, but try instead to make the best possible inference given the available
data [DEM 93, KEM 42]. In other words, frequentists deal with random probabili-
ties and subjectivists deal with epistemological probabilities [SHA 78, SHA 86]. The
former are specific to the event itself and are not modified when knowledge changes
[KEM 42]. The latter, on the other hand, are always conditional and change accord-
ing to knowledge. They enable possible conclusions to be drawn, between certainty
and impossibility, and therefore, constitute an extended logic [KEY 29]. Subjectivists
reject the principle according to which the same causes produce the same effects, not
because they consider it to be false, but because it has no meaning, since the causes
are never identical. Oddly enough, objectivity was introduced in order to eliminate the
arbitrary and subjective nature of Bayes and Laplace, but it required the use of statis-
tical criteria that are not universal and which have to be chosen somewhat arbitrarily
[DEM 93].

Finally, the last difference between the two methods, both mathematical and in
meaning, is fundamental because it involves additivity. Random probabilities are nec-
essarily additive, since they are related to the frequentist aspect, while epistemological
probabilities do not have to be, although there is still controversy over this. We will
discuss this further in the following sections.

To sum up, there are three types of people concerned with probabilities: mathe-
maticians who suggest models without worrying about whether they fit reality or how
they will be used, physicists who infer laws from observations and experiments, and
philosophers who wonder about the meaning of all this.

A.3. Fundamental postulates for an inductive logic

Rather than accepting the “axioms” of probabilities such as they are presented, for
example, in Kolmogorov’s traditional approach, more subjectivist methods start off
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with intuitive postulates, which are directly related to what is expected of an induc-
tive logic3, from where they infer probability rules. This method was devised by Cox
[COX 46], essentially, and was discussed in detail, for example, in [DEM 93, PAR 95,
TRI 72], where demonstrations of the major results can also be found. Here, we will
present these fundamental postulates and the outline of the reasoning. At the end of
this section, we will present the works led by de Finetti [FIN 37]. Less known to signal
and images processors, they are appealing in two ways, both for their fundamentally
subjectivist aspect and for the simplicity of the demonstration.

A.3.1. Fundamental postulates

Here are the fundamental postulates as laid out by Cox [TRI 72] (those suggested
by Jeffreys [JEF 61] are very similar4):

1) consistency or non-contradiction: if a conclusion can be drawn in different
ways, they must all lead to the same result; there have to be no contradictory con-
clusions based on the same data; furthermore, equal confidences have to be attributed
to propositions that have the same truth value;

2) continuity of the method: the operations performed have to be continuous and if
a slight change occurs in the data, it must not lead to sudden changes in the result;

3) universality or completeness: it has to be possible to attribute a degree of confi-
dence to any well-defined propositions and to compare degrees of confidence;

4) unequivocal statements: propositions have to be well defined, i.e. it has to be
theoretically possible to determine whether a proposition is true or false. This is equiv-
alent to what Horvitz refers to as clarity [HOR 86];

5) no information is refused: conclusions cannot be drawn based on partial infor-
mation, meaning that all the information, experience or knowledge available related
to the proposition we wish to evaluate has to be taken into account and, in particular,
it is important to take into account the dependence of the context. This postulate is

3. The objective of inductive logic is to determine the most likely solution given the information
available, true and false being the extreme cases, as opposed to deductive logic, for which the
only possible cases are true, false, and total lack of knowledge.
4. Jeffreys, by trying to define a general inference method, laid out the following postulates: all
of the hypotheses have to be expressed, and the conclusions are inferred from the hypotheses;
the theory has to be consistent and not contradictory; every rule has to be applicable in practice;
the theory has to provide indicators for pointing out possible false inferences; the theory should
not systematically reject empirical information. Additionally, Jeffreys suggests relying on the
following guidelines: the number of postulates has to be kept to a minimum; the theory has to
be in agreement with human reasoning; because induction is more complex than deduction, we
cannot hope to develop it further than deduction. Jeffreys’s approach then consists of translating
these postulates in more formal axioms, of introducing numbers to represent probabilities and
finally of demonstrating the traditional results [JEF 61].
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a response to traditional probability theories, where, in order to achieve objectivity,
certain types of information have to be dismissed.

Postulates 2 and 3 lead to the use of real numbers for representing and comparing
degrees of confidence: a single real number is necessary and sufficient for representing
a degree of confidence and the switch from true to false is continuous.

Postulate 1 leads to the existence of functional relations between the degrees of
confidence.

Postulate 4 imposes that traditional, deductive symbolic logic is a specific case.

Postulate 5 leads to hypothetical conditioning: the degree of confidence in a propo-
sition A is only know conditionally to a state of knowledge e that represents informa-
tion related to the confidence in A and assumed (or believed) to be true. Such a degree
of confidence is denoted by [A | e].

The consistency postulate and hypothetical conditioning impose the existence of a
functional equation T relating [AB | e] (degree of confidence in “A and B” for the
state of knowledge e) and at least two of the quantities [A | e], [A | Be], [B | e],
[B | Ae], and the existence of a functional relation S between the degrees of confi-
dence in a proposition [A | e] and in its negation [Ā|e].

Paris [PAR 95], in a rigorous demonstration of the works of Cox, insists on a
hypothesis that is often omitted but is crucial to the demonstration:

∀(α, β, γ) ∈ [0, 1]3, ∀ε > 0, ∃A,B,C,D, verifying the consistency postulate /∣∣[D | ABC]− α
∣∣ < ε,

∣∣[C | AB]− β
∣∣ < ε,

∣∣[B | A]− γ
∣∣ < ε.

In particular, this hypothesis cannot be verified in a finite frame of reference.

A.3.2. First functional equation

For the relation T , 11 functions are possible (6 with 2 arguments, 4 with 3 argu-
ments and 1 with 4 arguments). Because the roles of A and B are symmetric, these
functions can be reduced to 7. With the rest of the arguments, certain types of functions
can be eliminated by examining specific cases that lead to absurdities.

If the state of knowledge e stipulates that “A and B are independent”, then
[A | e] = [A | Be]. Among the 7 forms of T , the one that is a function of [A | e] and
[A | Be] is then a function of [A | e] only and no longer depends on B. This form
must therefore be eliminated.
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If e = “A = B̄”, then [AB | e] = [B | Ae] = i (where i represents the degree
of confidence assigned to impossible propositions). This constant value eliminates the
form of T that depends on [A | e] and [B | e].

If we now examine the case “A is impossible”, then [AB | e] = [A | e] = [A | Be]
= i and [B | Ae] is undefined. This case allows us to eliminate the 4 forms of T that
are functions, respectively, of [A | e] and [B | Ae], of [A | e], [A | Be] and [B | Ae],
of [B | e], [B | Ae] and [A | e], and of [A | e], [A | Be], [B | e] and [B | Ae].

Therefore, the only possible form is:

[AB | e] = T
(
[A | Be], [B | e]

)
= T

(
[B | Ae], [A | e]

)
, [A.1]

in which A and B have interchangeable roles and where the continuity postulate
imposes that T is a continuous function.

Traditional deductive logic imposes that for three propositions A, B and C, we
have (AB)C = A(BC). By applying this rule, we infer that T must be associative.
The general solution to this functional equation is a product:

Kf
[
T
(
[A | Be], [B | e]

)]
= f
(
[A | Be]

)
f
(
[B | e]

)
, [A.2]

where K is a constant that can be chosen as equal to 1 for convenience and f is a
monotonic function. The original demonstration of this result [COX 46] assumes that
T is twice differentiable. However, Aczél’s results on functional equations can be used
to reduce these hypotheses [ACZ 48, ACZ 66]: T only has to be associative, contin-
uous and strictly increasing with respect to each of the arguments; differentiability is
not required5.

If we now assume that “A = B”, then [A | Be] = c (where c is the degree of
confidence assigned to a proposition that is certain). Therefore, we have f(c) = 1. In
a similar fashion, by assuming that “A = B̄”, we find that f(i) must be equal to 0 or
to +∞. By convention, we choose f(i) = 0. Therefore, the function f is positive and
increasing from 0 to 1.

A.3.3. Second functional equation

We now examine the functional relation S between [A | e] and [Ā|e]. By applying
S twice, we get S2 = Id. Consistency with the first functional equation implies that

5. Dubois and Prade have shown that by accepting that T is simply non-decreasing, we can
choose T = min.
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S must satisfy the equation:

yS

[
S(x)

y

]
= xS

[
S(y)

x

]
[A.3]

the general solution of which is:

f
(
[A | e]

)k + f
(
[Ā | e]

)k = 1 [A.4]

by assuming that S is twice differentiable.

A.3.4. Probabilities inferred from functional equations

We then set by convention p(A|e) = f([A | e])k, which is referred to as the
probability of A conditionally to e. The two functional equations then become:

p(AB | e) = p(A | Be)p(B | e), [A.5]

p(A | e) + p(Ā | e) = 1. [A.6]

We have thus demonstrated the relations imposed axiomatically in the traditional
approach (Kolmogorov). Furthermore, we are dealing from the start with conditional
probabilities (related to a state of knowledge), whereas these probabilities were only
introduced later in the traditional theory. Finally, we infer the relation that leads to the
probability of the union:

p(A + B | e) = p(A | e) + p(B | e)− p(AB | e), [A.7]

and therefore the additivity of the probabilities of exclusive events (usually imposed
axiomatically in the traditional theory). We also infer Bayes’ rule:

p(A | Be) =
p(B | Ae)p(A | e)

p(B | e) . [A.8]

Note that this approach leads to subjective probabilities that are additive, in con-
tradiction with the general conception in the 17th century and with that of one of the
schools of thought in the 20th century.

A.3.5. Measure of uncertainty and information theory

In an approach similar to that of Cox, Jaynes defined a series of criteria in order
to obtain a measure of uncertainty [JAY 57]. In his works, he tried to bring together
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mechanics, statistics and information theory. He expressed his research as a prob-
lem involving the specification of probabilities when little information is available.
He examined the two objectivist and subjectivist methods, and chose the latter. By
representing a state of knowledge, this makes it possible to express possible conclu-
sions if not enough information is available to obtain conclusions that are certain. It is
therefore more general, and Jaynes adopted it for statistical mechanics.

The intuitive criteria that Jaynes expects from a measure of uncertainty are the
following:

1) the measure has to be positive and continuous;

2) it has to increase when the uncertainty increases;

3) it has to be additive if the sources are independent.

He thus obtains a unique measure of uncertainty represented by a discrete proba-
bility distribution that corresponds to these intuitive criteria:

H
(
p1, . . . , pn

)
= −K

n∑
i=1

pi log pi. [A.9]

In the same way Cox rediscovered probabilistic relations from his postulates,
Jaynes thus rediscovered, based on his criteria, the entropy in statistical mechanics and
simultaneously Shannon’s entropy [SHA 59].

The maximum entropy principle can then be considered analogous to Laplace’s
principle of insufficient reason. The essential difference is that Laplace’s principle is
arbitrary in nature and can lead to paradoxes (the concept of equally probable cases
changes if the variable is changed), whereas the maximum entropy principle makes it
possible to make inferences on the basis of partial information in an unbiased fashion.
It can be chosen for the good reason that entropy is determined in a unique way as the
value that “implicates itself the least” with respect to the missing information and not
for the negative reason that there is no reason to think otherwise. However, it can be
criticized because the results it provides depend on how the problem is stated. This
criticism also applies to the principle of insufficient reason as we have seen in section
6.10.

A.3.6. De Finetti and betting theory

The approach suggested by de Finetti, which predates that of Cox, also relies on
simple and intuitive axioms that lead to the properties of probabilities [FIN 37]. We
have of course the same axioms of increasingness and universal comparison, and most
importantly a consistency axiom which serves as the basis of the demonstration.
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De Finetti developed a betting theory to explain his argument: the probability p
attributed by an individual to an event E is given by the conditions on which this indi-
vidual would be willing to bet on this event, i.e. on which he would wager the sum
pS in order to win S if the event E occurred. Based on this definition, de Finetti first
showed that the sum of the probabilities of incompatible events has to be equal to 1.
Let {E1, . . . En} be a complete class of incompatible events, let pi be their probabili-
ties (always assessed by an individual) and let Si be the stakes that correspond to each
of them. If the event Ek occurs, the gain Gk is defined as the difference between the
corresponding stake Sk and the sum of the wagers, meaning that:

Gk = Sk −
n∑

i=1

piSi. [A.10]

We obtain n equations of this type, corresponding to the n possible outcomes. If
we consider these equations as a system of n equations with n unknowns, i.e. the Si,
the determinant of this system is equal to:

D =

⎡⎢⎢⎣
1− p1 −p2 · · · −pn

−p1 1− p2 · · · −pn

· · · · · · · · · · · ·
−p1 −p2 · · · 1− pn

⎤⎥⎥⎦ = 1−
(
p1 + p2 + · · ·+ pn

)
. [A.11]

If the determinant is not equal to zero, the system has a solution for any Gk, even
if every one of them is positive. This would not be consistent with the concept of
betting. It is difficult to conceive of a game that could always be won or in which it is
possible to give the opponent the possibility of certainly winning! Therefore, the only
consistent solution is that obtained when the determinant is equal to zero, i.e. when:

n∑
i=1

pi = 1. [A.12]

Furthermore, this condition is sufficient, since we then have:

n∑
i=1

piGi = 0, [A.13]

and not all of the gains are positive.

De Finetti interprets the result this way: each evaluation (which is subjective) of
the pi such that

∑n
i=1 pi = 1 is an acceptable evaluation, in other words one that

corresponds to a consistent opinion. The choice of an evaluation among those that are
acceptable is then no longer the objective at all.
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From equation [A.12], we get the additivity of the probabilities of disjoint events.

The second step of the argument focuses on determining conditional probabilities.
To do this, we will consider three bets:

1) a bet on E1E2 (E1 and E2), with the stake S1, and the wager p1S1;

2) a bet on E2, with the stake S2, and the wager p2S2;

3) a bet on E1 | E2, with the stake S, and the wager pS, the gain for this bet being:
- (1− p)S if E1 | E2 is true,
- (−p)S if E1 | E2 is false,
- 0 if E2 does not occur (the game is considered void in this case, and the wager

is paid back).

Three outcomes are possible:

1) if E1 and E2 occur, then the gain is:

G1 =
(
1− p1

)
S1 +

(
1− p2

)
S2 + (1− p)S; [A.14]

2) if E2 occurs but not E1, then the gain is:

G2 = −p1S1 +
(
1− p2

)
S2 − pS; [A.15]

3) if E2 does not occur, then the gain is:

G3 = −p1S1 − p2S2. [A.16]

Consider equations A.14, A.15 and A.16 as a system of 3 equations with 3
unknowns, as before. The determinant is equal to:

p1 − pp2 [A.17]

and, again for reasons of consistency, has to be equal to 0. We then get the relation:

p
(
E1 | E2

)
=

p
(
E1E2

)
p
(
E2

) [A.18]

from which we infer Bayes’ theorem.

Note that in this case, the expected gain is equal to:

p1G1 +
(
p2 − p1

)
G2 +

(
1− p3

)
G3 =

(
p1 − p2p

)
S = 0. [A.19]

Therefore, the expected gain is zero for any S, S1, S2.
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De Finetti adopts a subjectivist philosophy, in the sense that he considers subjec-
tivist elements, far from having to be eliminated as suggested by objectivists in order
to render the concept of probability more “scientific”, are essential and inherent to the
concept of probability. This coincides with the point of view according to which prob-
ability expresses an individual’s opinion, and only has significance with regard to that
individual, as opposed to the objectivist perspective which considers that probability
exists independently of individuals and is a property of the physical world.
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Appendix B

Axiomatic Inference of the Dempster-Shafer
Combination Rule

The Dempster-Shafer belief theory has often been criticized for imposing an ad
hoc combination rule (Dempster’s orthogonal rule [SHA 76], equation [7.26]), with
no theoretical justification for it, although it does have a perfectly satisfactory intuitive
interpretation, which is in agreement with the concept of the conjunction of focal
elements.

This appendix completes the theory presented in Chapter 7 by giving a theoretical
justification of the conjunctive combination rule (non-normalized, as it is suggested in
[SME 90]).

We will also explain how it is related to the Cox approach to probabilities, which is
presented in Appendix A. In particular, we will underline the differences between the
axioms, which explain the difference between the models and the combination modes
in the two theories.

Several recent works have attempted to justify this rule, for example, those of
Dubois and Prade [DUB 86], which mathematically justify the use of the product to
combine masses based on the concept of the separability of sources, or those of Smets
based on the transferable belief model [SME 90].

Chapter written by Isabelle BLOCH.



284 Information Fusion

We should also mention the works of Gacôgne, which have led to a justification,
in the specific cases where the frame of discernment is reduced to two elements, based
on the concept of accentuation [GAC 93]1.

The works of Smets offer the most general justification, as far as we know, and
his arguments will be described here. Furthermore, his method is similar to that of
Cox (see Appendix A). Work similar to that of Smets has been done by Klawonn and
Schwecke [KLA 92].

B.1. Smets’s axioms

The first observation Smets made involves the indifference principle (or principle
of insufficient reason). Assigning the same probability to every simple event implies
that different probabilities will be assigned to union of events, which, to Smets, does
not correspond to indifference. This should instead be expressed by the existence of a
constant that is positive or equal to zero and such that:

∀A ⊂ D, A �= D, Bel(A) = c, [B.1]

where D refers to the frame of discernment. This is obviously impossible with proba-
bilities, but it is not in the Dempster-Shafer context with credibilities, since we have:

A ∩B = ∅ =⇒ Bel(A ∪B) ≥ Bel(A) + Bel(B) [B.2]

hence c ≥ 2c and therefore c = 0. The mass function representing indifference (or
complete lack of knowledge) is therefore defined by:

m(D) = 1 and ∀A �= D, m(A) = 0, [B.3]

1. Gacôgne shows that the Dempster-Shafer rule (equation [7.26]), in the case where the frame
of discernment is reduced to a proposition P and its opposite P̄ , can be inferred from the
concept of accentuation. An accentuation function is such that it reduces the degrees of confi-
dence smaller than 0.5 and increases those greater than 0.5, thus making them more like binary
degrees (this is equivalent to the concept of reinforcement found in the algebraic theory of
ordered semigroups as well as in fuzzy set theory). The rational function of [0, 1] in [0, 1]
with the lowest degree that is an accentuation function is defined by x2/(2x2 − 2x + 1), and
that is the one that can be used to show the analogy with Dempster-Shafer. This concept is
then generalized to pairs (x, y), characterizing a proposition P , such that 0 ≤ x ≤ y ≤ 1
(referred to as “obligation” and “eventuality”, hence similar to the concept of credibility and
plausibility or of necessity and possibility). The accentuation of such a couple is defined by:
#(x, y) = ((2xy − x2)/(1 − 2x + 2xy), y2/(1 − 2x + 2xy)). These two values corre-
spond exactly to those we would obtain by combining, using the Dempster-Shafer rule (equa-
tion [7.26]), the credibility (respectively, the plausibility) of a proposition P with itself. If we
now have at our disposal two games with the measures (x, y) and (x′, y′) on P , the same type
of reasoning leads to the justification of the Dempster-Shafer rule [GAC 93]. We would then be
left with having to generalize this approach to more complex spaces of discernment.
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which, this time, is perfectly satisfactory. This particular mass function plays an
important part in the combination rule since it is its identity element, which confirms
its interpretation in terms of complete lack of knowledge, which cannot modify
another mass function.

Smets’s second idea is the transferable belief model, which defines conditioning.
The problem is stated as follows: given a new information, which makes it possible
to state that the truth is located in a subset B of the frame of discernment D, how
can a set of masses m be modified to take into account this new information? The
expression suggested by Smets is as follows:

m′(A) =
∑

X⊆B̄

m(A ∪X) ∀A ⊆ B

= 0 otherwise

[B.4]

where m′ refers to the new set of masses. These formulae can be modified if needed,
although this is not necessary and can even be detrimental to the extent that it masks
conflict [SME 90], as we saw in Chapter 7. Normalization also poses continuity prob-
lems in the vicinity of the total conflict [DUB 86].

This formula is interpreted as follows. If we decompose a subset A into the union
A1 ∪ A2 with A1 ⊆ B and A2 ⊆ B̄, the mass m(A1 ∪ A2) is entirely transferred to
A1 (hence the model’s name). In specific cases where A2 = ∅ (A ⊆ B), the mass of
A is not modified and if A1 = ∅ (A ⊆ B̄), the mass of A becomes zero.

In Shafer’s theory [SHA 76] and in our presentation of it in Chapter 7, the con-
ditioning formula is inferred from the combination rule, whereas here, it precedes it
and is constructed simply by logical considerations. Note that the conditioning rule on
plausibilities:

Pls(A | B) =
Pls(A ∩B)

Pls(B)

can itself be justified by supposing that:

Pls(A ∩B) = T
[
Pls(A | B),Pls(B)

]
and by applying a method similar to the one that lead us to the first functional equation
(section A.3.2) [DUB 86].

In a third step, Smets defines two axioms that he wishes to see satisfied by the
combination rule, denoted by ⊕:
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A1: (Bel1⊕Bel2)(A) has to be a function of only the functions m1 and m2 and
of A.2

A2: ⊕ has to be commutative.

A3: ⊕ has to be associative.

A4: If m2(B) = 1, then m1 ⊕ m2 has to satisfy the conditioning law, meaning
that: (

m1 ⊕m2

)
(A) =

∑
X⊆B̄

m1(A ∪X) ∀A ⊆ B

= 0 otherwise.

[B.5]

A5: The law has to satisfy an internal symmetry property (invariance under per-
mutation of the simple hypotheses).

A6: For A �= D, (m1 ⊕ m2)(A) does not depend on m1(X) for X ⊆ Ā (auto-
functionality property).

A7: There are at least 3 elements in D.

A8: The law has to satisfy a continuity property:

m2(A) = 1− ε, m2(D) = ε, mA(A) = 1

=⇒ ∀X, lim
ε→0

(
m1 ⊕m2

)
(X) =

(
m1 ⊕mA

)
(X),

[B.6]

with m1 being a function of any mass; this property makes it possible to eliminate
degenerate cases.

B.2. Inference of the combination rule

Based on the previous axioms, Smets obtains the only possible combination rule
that satisfies these axioms. To do this, he relies on communality functions defined by:

∀A ⊆ D, q(A) =
∑

A⊆X, X⊆D

m(X). [B.7]

2. In [KLA 92], the axioms are for the most part similar to those used by Smets. The major
difference lies in the use of relations between spaces of discernment that are included in one
another rather than of dependence relations as used by Smets.
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His demonstration, which we will not give in detail, relies on the properties of
triangular norms and of absolutely monotonic functions and is divided into three parts.
First of all, axioms A1 to A4 lead to the existence of a function f such that the result of
the combination depends only on A and on the communalities of the subsets included
in A: (

q1 ⊕ q2

)
(A) = f

[
A,
{
q1(X); X ⊆ A, q2(X); X ⊆ A

}]
. [B.8]

Then, by adding axioms A5 and A6, it is possible to specify the form of f , which
now only depends on A and on q1(A) and q2(A):(

q1 ⊕ q2

)
(A) = f

[
A, q1(A), q2(A)

]
. [B.9]

Finally, the set of axioms A1 to A8 allows us to determine the final form of the
combination rule: (

q1 ⊕ q2

)
(A) = q1(A)q2(A). [B.10]

As expected, we get the Dempster-Shafer rule on communalities and this leads us
to the combination of mass or credibility functions.

The advantage of Smets’s method is that the axioms it relies on have interpretations
that are close to what our intuition tells us. It is also easier to refute or modify them if
they do not correspond to the problem at hand.

B.3. Relation with Cox’s postulates

In this section, we will try to establish the links between Cox’s postulates (see
Appendix A) and Smet’s axioms, in order to show why they lead to different theories.

First of all, we should specify which framework we chose for this comparison. The
works of Cox and those of Smets do not deal with exactly the same problems, since
Cox attempted to justify probabilities and their properties, whereas Smets tried to
justify a combination rule. However, it is interesting to note certain analogies between
the two sets of axioms. Furthermore, Cox’s axioms make it possible to infer Bayes’
rule (equation [A.8]), which is used in signal and image processing to fuse information
by using conditional probabilities (see Chapter 6). We chose the data fusion point of
view for this comparison. It would also be interesting to compare Cox’s axioms with
those introduced by Smets in order to justify credibility and plausibility functions
[SME 93], but this comparison would only involve the modeling phases of the fusion
process and not the combination phases themselves.
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Axiom A1, which expresses the dependence between degrees of confidence and
their combinations, is not as strict as Cox’s postulate. Indeed, the consistency postulate
implies the existence of a relation defining the degree of confidence in AB which
involves only the propositions A and B, in the form of degrees of confidence assigned
to [A | B] and [B] (or [B | A] and [A]) but not to other propositions. Smets’s axiom,
which is more general, corresponds to the possibility provided by the Dempster-Shafer
theory to deal with subsets and not simply with singletons.

Axioms A2, A3 and A5 correspond to properties of classical propositional logic.
Cox’s postulates (particularly postulate 4) also imply that deductive logic exists as a
specific case. Therefore, the two methods coincide with each other on this point. These
axioms are used in Cox’s method to eliminate certain forms of functional relations
between [AB | e] and the other degrees of confidence, in order to keep only the form
that is consistent with deductive logic:

[AB | e] = T
(
[A | Be], [B | e]

)
= T

(
[B | Ae], [A | e]

)
. [B.11]

Likewise, these axioms are used in Smets’s demonstration to eliminate depen-
dences and prove that (q1 ⊕ q2)(A) at first only depends on A, and on q1(X) and
q2(X) for X ⊆ A; then, in a second phase, only on q1(A) and q2(A).

Axiom A4 (conditioning) expresses an idea that is very similar to the hypothetical
conditioning obtained from Cox’s fifth postulate. The main difference is that condi-
tioning, this time, is expressed more as a compatibility relation than as a conditional
probability.

There is no equivalent to Cox’s postulate 3 (universality) in Smets’s axioms. This
is justified by the very basis of belief theory, in which propositions are character-
ized by two numbers (credibility and plausibility) instead of just one, and in which
well-defined propositions are allowed not to have a degree of confidence assigned to
them3. This flexibility is helpful for solving problems related to lack of information:
if a source is not capable of providing information about A, but provides some, for
example, about A∪B, this situation is naturally taken into account by belief function
theory by assigning a mass to A ∪ B and not to A, whereas it would often require
including hypotheses or models in probability theory in order to be able to assign a
degree of confidence to A. From the perspective of comparing degrees of confidence,

3. This can be done, for example, by assigning a zero mass to this proposition A. This does not
mean, however, that a zero confidence is attributed to A, since the credibility Bel(A) and the
plausibility Pls(A) are not necessarily equal to zero because non-zero masses can be assigned
to propositions B such that A ∩ B �= ∅. This simply means that no degree of confidence is
assigned specifically to A.
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this can be done on two levels in belief theory, either on credibilities, or on plausibili-
ties, thus leading to conclusions that are not necessarily equivalent.

Smets’s axiom A6 does not imply that A and Ā are interchangeable, whereas this
property is explicitly used by Cox to obtain the second functional equation (equation
[A.6]), since subsets X can be involved in both (m1 ⊕m2)(A) and (m1 ⊕m2)(Ā).
Therefore, no complementarity relation regarding m can be obtained from it. This is
replaced by a duality relation between Bel and Pls.

Finally, axioms A7 and A8 are considered by Smets himself as technical axioms
used in the demonstrations. The regularity imposed on functions can be compared
with the regularity hypotheses formulated for Cox’s two functional equations [A.5]
and [A.6].

These differences between the two theories have consequences on the three levels
that traditionally comprise the fusion process, i.e. the modeling of belief functions,
the combination of the functions determined from the information provided by several
sources and the final decision:

– first in the modeling phase, because this phase is strongly constrained by the two
functional relations (equations [A.5] and [A.6]) in probabilistic fusion, whereas belief
theory makes it possible to easily adapt to many situations (we mentioned the example
of sensors that only provide information regarding the union of two classes, without
distinguishing them);

– in the combination of belief functions, postulates impose Bayes’ rule on the one
hand, Dempster’s rule on the other hand, and their differences stem in particular from
the more flexible constraints imposed by Smets’s conditioning rather than from Cox’s
hypothetical conditioning;

– finally, in the decision making, i.e. the ultimate phase of the fusion process, dif-
ferences come mostly from comparing degrees of confidence, which give way to sev-
eral types of decision in the Dempster-Shafer theory.
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