Hendbook of

=N ‘=CF"

i

Qﬁmfﬂﬁ
"'--.‘.‘::’Lbﬂ..!-._‘:t.:m.’lnlu

,‘ | WE’M F?’H ='-|
M FANE RS TN i.:-ﬁf L:—,-‘-_-n:,:-t

L.':I-

- g

e

SFNTIRE e aRsYY

5 "‘r—h@ﬁ

Handbook of
Neural
Computation

Editors in Chief
Emile Fiesler and Russell Beale

INSTITUTE OF PHYSICS PUBLISHING
Bristol Philadelphia

and

OXFORD UNIVERSITY PRESS
New York Oxford
1997

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 il
Copyright © 1997 IOP Publishing Ltd

INSTITUTE OF PHYSICS PUBLISHING
Bristol Philadelphia

and

OXFORD UNIVERSITY PRESS

Oxford New York

Athens Auckland Bangkok Bogotd

Bombay Buenos Aires Calcutta Cape Town

Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madras = Madrid Melbourne
Mexico City Nairobi Paris Singapore

Taipei Tokyo Toronto

and associated companies in

Berlin Ibadan
Copyright © 1997 by 10P Publishing Ltd and Oxford University Press, Inc.

Published by Institute of Physics Publishing,

Techno House, Redcliffe Way, Bristol BS1 6NX, United Kingdom

(US Editorial Office: The Public Ledger Building, Suite 1035, 150 South Independence Mall West,
Philadelphia, PA 19106, USA)

and Oxford University Press, Inc., 198 Madison Avenue, New York, New York 10016, USA
Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of IOP Publishing Ltd and Oxford University Press.

British Library Cataloguing-in-Publication Data and
Library of Congress Cataloging-in-Publication Data are available

ISBN 0 7503 0312 3

This handbook is a joint publication of Institute of Physics Publishing
and Oxford University Press

PROJECT STAFF
INSTITUTE OF PHYSICS PUBLISHING

Publisher: Robin Rees

Project Editor: Sarah Hood

Production Editor: Neil Scriven

Production Manager: Sharon Toop

Assistant Production Manager: Jenny Troyano
Production Assistant: Sarah Plenty

Electronic Production Manager: Tony Cox

OXFORD UNIVERSITY PRESS

Senior Editor: Sean Pidgeon
Project Editor: Matthew Giarratano
Editorial Assistant: Merilee Johnson
Cover Design: Joan Greenfield

Printing (last digit): 987654321
Printed in the United Kingdom on acid-free paper

iV Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Lid and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

Contents

PART A

PART B

PART C

PART D

PART E
PART F

PART G

PART H

Preface vii
Foreword 1X
How to Use This Handbook Xi

INTRODUCTION
Al Neural Computation: The Background
A2 Why Neural Networks?

FUNDAMENTAL CONCEPTS OF NEURAL COMPUTATION
B1 The Artificial Neuron

B2 Neural Network Topologies

B3 Neural Network Training

B4 Data Input and Output Representations

B5 Network Analysis Techniques

B6 Neural Networks: A Pattern Recognition Perspective

NEURAL NETWORK MODELS
C1 Supervised Models

C2 Unsupervised Models

C3 Reinforcement Learning

HYBRID APPROACHES
D1 Neuro-fuzzy systems
D2 Neural-Evolutionary Systems

NEURAL NETWORK IMPLEMENTATIONS
El Neural Network Hardware Implementations

APPLICATIONS OF NEURAL COMPUTATION
F1 Neural Network Applications

NEURAL NETWORKS IN PRACTICE: CASE STUDIES
G1 Perception and Cognition

G2 Engineering

G3 Physical Sciences

G4 Biology and Biochemistry

G5 Medicine

G6 Economics, Finance and Business

G7 Computer Science

G8 Arts and Humanities

THE NEURAL NETWORK RESEARCH COMMUNITY
H1 Future Research in Neural Computation

List of Contributors

Index

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Preface

The current era of human history has been termed the Information Age. Our new array of information
media still includes those relics of a previous era, printed books and journals, but has been expanded
immeasurably by the addition of digital modes of information storage and transmission. These media
provide a repository for the increasingly distributed and diverse collection of data, theories, models and
ideas that constitutes the universe of human knowledge. It might also be argued that the dissemination
of information has been one of the successes of this era, although it is important to make the distinction
between information volume and effectiveness of distribution. In the academic arena, it seems clear that
.the quantity of new research materials makes it increasingly difficult to access what is genuinely relevant
and useful, as the usual collection mechanisms (libraries, journals, conference proceedings) have become
overloaded.

This information explosion has been a particular characteristic of the field of neural computing, which
has seen, in the last 10 years, a rapid increase in the number of published papers, together with many new
monographs and textbooks. It is this information overload that the Handbook of Neural Computation aims
to address, by providing a central resource of material that is continually updated and refreshed. It distills
the information and expertise of the whole community into a structured set of articles written by leading
researchers. Such a reference is of little use if it does not evolve in parallel with the field that it claims
to represent; to remain current and useful, therefore, the handbook will be updated by means of regular
supplements, allowing it to mirror the continuing development of the field.

Neural computation is at the center of a new kind of multidisciplinary research that adapts natural
paradigms and applies them to practical problems. Artificial neural networks are useful tools that have
been applied successfully in a broad range of environments (as witnessed by the case studies in Part
G of this handbook), and yet they have an intrinsic complexity that provides a continuing stimulus
to theoretical investigations. These interesting aspects of the field have attracted a diverse research
community. For example, neural networks attract the interest of computer scientists because, as designers
of computing systems, they are interested in the possibilities that the technology holds. Engineers, users of
the technology, are interested to see how effective the approach can be and therefore want to understand the
operational characteristics of networks. Because of their relationship with models of human information
processing, neural networks are investigated by psychologists and others interested in human capabilities.
Mathematicians and physicists find application for their previously developed tools in modeling complex,
dynamic systems, while discovering new challenges that require different techniques. This heterogeneous
mix of backgrounds provides the community with a many-pronged attack on the problems posed by the
field, with a lively debate available on practically any topic; this collusion, sometimes collision, of cultures
has resulted in a spectacularly fast development of the area.

The multidisciplinary character of the field creates some problems for its practitioners, who often have
to become familiar with contributions from a number of different disciplines. The diversity of publications
and worldwide activity makes it very difficult to develop a feel for the whole field. This problem is
partly addressed by conferences and neural network journals, but these present only the leading edge of
research. The Handbook of Neural Computation aims to bridge this gap, collecting material from across
the spectrum of neural network activity and tying it together into a coherent whole. Input from computer
scientists, engineers, biologists, psychologists, mathematicians and physicists (and now also those whose
background is explicitly in neural networks, a relatively recent phenomenon) has been assembled into a
work that forms a central reference repository for the field.

This handbook is not designed to compete with journals or conferences. The latter are well suited to the
dissemination of leading-edge research. The handbook provides, instead, an overview of the field, collating
and filtering the research findings into a less detailed but broader view of the domain. As well as allowing
established practitioners to view the wider context of their work, it is designed to be used by newcomers
to the field, who need access to review-style articles. The opening sections of the handbook introduce the
basic concepts of neural computation, followed by a comprehensive set of technical descriptions of neural

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 Vil
Copyright © 1997 IOP Publishing Ltd

Preface

network models. While it is not possible to describe every variant of every model, we have aimed to
present the major ones in a structured and self-consistent arrangement. Descriptions of hybrid approaches
that couple neural techniques with other methods are followed by details of implementations in hardware.
Applications of neural computation to different domains form the next part, followed by more detailed
individual case studies, collated under common headings and written in such a style as to facilitate the
transfer of applicable techniques between different domains. The handbook finishes with a collection of
essays from leading researchers on future directions for research.

‘We hope that this handbook will become an invaluable reference tool for all those involved in the field
of neural computation. It should provide a comprehensive, organized view of the field for many years,
supplemented on a regular basis to allow it to remain genuinely up to date. The electronic version of the
handbook, comprising both CD-ROM and Internet implementations, will facilitate distributed access to the
content and efficient retrieval of information. The handbook should provide a coherent overview of the
field, helping to ensure that we are all aware of important developments and thinking in other disciplines
that impact our own research activities.

Russell Beale and Emile Fiesler, June 1996

viili Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Foreword

James A Anderson

Neural networks are models for computation that take their inspiration from the way the brain is supposed
to be constructed and that often try to solve the problems that the brain seems to try to solve. Biological
neural networks in mammals are built from neurons (nerve cells) that are themselves remarkably complex
biological units. Huge numbers of neurons, connected together and cooperating in poorly understood ways,
give rise to the complex behavior of organisms. Artificial neural networks, variants of which are discussed
at length in this volume, are smaller, simpler, and more understandable than the biological ones, but are
still able to do some remarkably interesting things. Some of the operations that artificial networks are good
at—pattern recognition, concept formation, association, generalization, some kinds of inference—seem to
be similar to things that brains do well. It is fair to say that artificial neural networks behave a lot more
like humans than digital computers do.

There are two related but distinct goals that have driven neural network research since its beginnings:

(i) First, we want to construct and analyze artificial neural networks because that may allow us to begin to
understand how the biological neural networks in our brains work. This is the domain of neuroscience,
cognitive science, psychology, and perhaps philosophy.

(ii) Second, we want to construct and analyze artificial neural networks because that will allow us to
build more intelligent machines. This is the domain of engineering and computer science.

These two goals—understanding the brain and making smart devices—are mixed together in varying
proportions throughout this collection though the bias here is toward the careful analysis and application
of artificial networks. Although there is a degree of creative tension between these two goals, there is also
synergy.

The modern history of artificial neural networks might be said to begin with an often reprinted 1943
paper by Warren McCulloch and Walter Pitts, ‘A logical calculus of the ideas immanent in nervous activity’.
McCulloch and Pitts were making models for brain function, that is, what does the brain compute and how
does it do it? However, only two years after the publication of their paper, in 1945, John von Neumann
used their model for neuron behavior and neural computation in an influential discussion of the proper
design to be used for future generations of digital computers.

The creative tension arises from the following observation. Consider an engineer who wants to use
biology as inspiration for an intelligent adaptive device. Why should engineers be bound by biological
solutions? If you are stuck with slow and unreliable biological hardware, perhaps you are also forced to
use intrinsically undesirable algorithms.

Ample evidence suggests that our lately evolved species-specific behaviors like language are simply
not very well constructed. After only a few tens of thousands of generations of talking ancestors, human
language is still no more than an indispensable kludge, grounded in and limited by the circuitry that nature
had to work with in the primate brain. Maybe after several million more years of evolution our descendants
will finally get it right. Maybe there are better ways to perform the operations of intelligence. Why stick
with the second rate?

The synergy between biological neural networks and artificial neural networks arises in several ways.

First, precise analysis of simple, general neural networks is intrinsically interesting and can have
unexpected benefits. The McCulloch-Pitts paper developed a primitive model of the brain, but a very
good model for many kinds of computation. One of its side effects was to originate the field of finite state
automata.

Second, to make intelligent systems usable by humans perhaps we must make artificial systems that
are conceptually, though not physically, designed like we are. We would have difficulty communicating
with a truly different kind of intelligence. The current emphasis on user-friendly computer interfaces is

© 1997 10P Publishing Ltd and Oxford University Press Hundbook of Neural Computation release 97/1 ix

Copyright © 1997 IOP Publishing Ltd

Foreword

an example. Large amounts of computer power are spent to provide a translator between a real logic
processor and our far less logical selves. For us to acknowledge a system as intelligent perhaps it has to
be just like us. As Xenophanes commented 2500 years ago, ‘horses would draw the forms of gods like
horses, and cattle like cattle, and they would make the gods’ bodies the same shape as their own’.

Third, neural networks provide a valuable set of examples of ways that a massively parallel computer
could be organized. Current digital computers will soon run up against limitations imposed by the physics
of electronic circuitry and the speed of light. One way to keep increasing computer speed is to use multiple
CPUs; if one computer computes fast, then two computers should compute twice as fast. Unfortunately,
coordinating many CPUs to work fast and effectively on a single problem has proven to be extremely
difficult. Neurons have time constants in the millisecond range; present-day silicon devices have time
constants in the nanosecond range. Yet somehow the brain has been able to build exceedingly powerful
computing systems by summing the abilities of huge numbers of biological neurons, even though each
neuron is computing several orders of magnitude more siowly than an electronic device constructed from
silicon. The best known example of this design is the mammalian cerebral cortex, where neurons are
arranged in parallel arrays in a highly modular structure. Most neural networks described in this collection
are abstractions of the architecture of the mammalian cerebral cortex. Knowing, in detail, how this parallel
architecture works would be of considerable practical value.

However, the study of human cognitive abilities suggests a price may be paid for using it. The
resulting systems, both biological and artificial, may be forced to become very special-purpose and will
almost surely lack the universality and flexibility that we are accustomed to in digital computers. The things
that make neural networks so interesting as models for human behavior, for example, good generalization,
easy formation of associations, and the ability to work with inadequate or degraded data, may appear in
less benign form in artificial neural networks as loss of detail and precision, inexplicable prejudice, and
erroneous and unmotivated conclusions. Making effective use of artificial neural networks may require a
different kind of computing than we are used to, one that solves different problems in different ways but
one with great power in its own domain.

All these fascinating, important and very practical issues are discussed in detail in the pages to follow.
It is hard to predict what form computers will take in a century. There is a good chance, however, that
they will incorporate in some form many of the ideas presented here.

X Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

How to Use This Handbook

The Handbook of Neural Computation is the first in a series of three updatable reference works known
collectively as the Computational Intelligence Library. (The other two volumes are the Handbook of
Evolutionary Computation and the Handbook of Fuzzy Computation.) This handbook has been designed
to provide valuable information to a diverse readership. Through regular supplements, the handbook will
remain fully up to date and will develop and evolve along with the research field that it represents.

WHERE TO LOOK FOR INFORMATION

An informal categorization of readers and their possible information requirements is given below, together
with pointers to appropriate sections of the handbook.

The Research Scientist

This reader has a very good general knowledge of neural computation. She may want to

o develop new neural network models or improve existing ones (Part C: Neural Network Models)
e develop new applications of neural networks (Part F: Applications of Neural Computation; Part G:
Neural Networks in Practice: Case Studies)

o improve the underlying theory and/or heuristic principles of neural computation (Part B: Fundamental
Concepts of Neural Computation; Part H: The Neural Network Research Community)

The Applications Specialist
This reader is working in a technical environment (such as engineering). He perhaps

e has a problem that may be amenable to a neural network solution (Part F: Applications of Neural
Computation; Part C: Neural Network Models)

e wants to compare the cost-effectiveness of the neural network solution with that of other possible
solutions (Part F: Applications of Neural Computation)

e is interested in real systems experience as conveyed by case studies (Part G: Neural Networks in
Practice: Case Studies)

The Practitioner

This reader is working in a professional discipline that is not closely related to computer science, such as
medicine or finance. She may have heard of the potential of neural networks for solving problems in her
professional field, but might have little or no knowledge of the principles of neural computation or of how
to apply it in practice. She may want to

e find a quick way into the subject (Part A: Introduction; Part B: Fundamental Concepts of Neural
Computation)

e look at real case studies to see what neural networks have already achieved in her field of interest
(Part G: Neural Networks in Practice: Case Studies; Part F: Applications of Neural Computation)
e find a relatively easy and quick route to implementation of a neural network solution (Part G: Neural

Networks in Practice: Case Studies; Part F: Applications of Neural Computation; Part C: Neural
Network Models)

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Compusation release 97/1 Xi

Copyright © 1997 IOP Publishing Ltd

How to Use This Handbook

The Student (or Teacher)

This reader may be

o looking for an easy way into the subject (Part A: Introduction)

e interested in getting a firm grasp of the fundamentals (Part B: Fundamental Concepts of Neural
Computation)

e interested in practical examples for projects (Part G: Neural Networks in Practice: Case Studies)

CROSS-REFERENCES

Most of the articles in the handbook contain cross-references to related articles. A section number in the
margin indicates that further information on the concept under discussion may be found in that section of
the handbook. The notation in the following example indicates that further information on the multilayer
perceptron and the radial basis function network may be found in sections C1.2 and C1.6.2, respectively.

Cl2 Several neural network models have been proposed for applications of this type. The mulrilayer
c162 perceptron and the radial basis function network were considered in this case.

In the electronic edition of the handbook, these marginal section numbers become hypertext links
to the section in question, (Full details of the functionality of the electronic edition are provided in the
application itself.)

NUMBERING OF EQUATIONS, FIGURES, PAGES, AND TABLES

To facilitate incorporation of the regular supplements to the handbook, which will include new material
and updates to existing articles, a unique system of numbering of equations, figures, pages and tables has
been employed. Each section in the handbook starts at page 1 with the section code preceding the page
number. For example, section F1.8 starts on page F1.8:1 and continues through page F1.8:6, and then
section F1.9 follows on page F1.9:1. Equations, figures, and tables are numbered sequentially throughout
each section with the section code preceding the number of the equation, figure, and table. For example,
the third equation in section B3.2 is referred to as equation (B3.2.3) or simply (B3.2.3). The third figure
or table in the same section would be referred to as figure B3.2.3 or table B3.2.3.

HANDBOOK SUPPLEMENTS

The Handbook of Neural Computation will be updated on a regular basis by means of supplements
containing new contributions and revisions to existing articles. To receive these supplements it is essential
that you complete and return the registration card at the front of the loose-leaf binder and return it to
the address indicated on the card. (Purchasers of the electronic edition will receive separate registration
information.)- If you have not already completed the registration card, please do so now. After you
have registered, you will receive new supplements as they are published. The first two supplements are
free; thereafter, you will be sent subscription renewal notices. If you wish to keep your copy of the
handbook fully up to date, it is essential that you renew your subscription promptly.

FURTHER INFORMATION

For the latest information on the Handbook of Neural Computation, please visit our website at
http://www.oup-usa.org/acadref/hnc.htmi, or you may contact the editors in chief or the publisher at the
contact addresses given below.

Dr Emile Fiesler Dr Russell Beale Mr Sean Pidgeon

IDIAP School of Computer Science Senior Editor

C.P. 592 University of Birmingham, Scholarly and Professional Reference
Martigny CH-1920 Edgbaston Oxford University Press

Switzerland Birmingham B15 2TT 198 Madison Avenue

e-mail: efiesler@idiap.ch United Kingdom New York, NY 10016, USA

e-mail: r.beale@cs.bham.ac.uk e-mail: sdp@oup-usa.org

Xil Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

http://www.oup-usa.org/

IMPORTANT

Please remember that no part of this handbook may be reproduced
without the prior permission of Institute of Physics Publishing and
Oxford University Press

®© 1997 10P Publishing Ltd and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

Huandbook of Neural Computation release 97/1

LIST OF CONTRIBUTORS

Copyright © 1997 IOP Publishing Ltd

List of Contributors

Igor Aleksander (C1.5)

Professor of Neural Systems Engineering,

Imperial College of Science, Technology and Medicine,
London,

United Kingdom

e-mail: i.aleksander@ic.ac.uk

Nigel M Allinson (G1.1)

Professor of Electronic Systems Engineering,

University of Manchester Institute of Science and
Technology,

United Kingdom

e-mail: allinson@umist.ac.uk

Luis B Almeida (C1.2)

Professor of Signal Processing and Neural Networks,
Instituto Superior Tecnico,

Technical University of Lisbon,

Portugal

e-mail: lba@inesc.pt

Shun-ichi Amari (H1.1)
Director of the Brain Information Processing Group,
RIKEN (Institute of Physical and Chemical Research),
Saitama,
Japan
e-mail: amari@zoo.riken.go.jp

James A Anderson (Foreword, H1.4)

Professor of Cognitive and Linguistic Sciences,
Brown University,

Providence,

Rhode Island,

USA

e-mail: james_anderson@brown.edu

Nirwan Ansari (G2.3)

Associate Professor of Electrical and Computer
Engineering,

New Jersey Institute of Technology,

Newark,

USA

e-mail: ang@hertz.njit.edu

Michael A Arbib (Al.2, B1)

Professor of Computer Science and Neurobiology,
University of Southern California,

Los Angeles,

USA

e-mail: arbib@pollux.usc.edu

Patrick Argos (G4.4)

Professor and Senior Research Group Leader in
Biocomputing,

European Molecular Biology Laboratory,

Heidelberg,

Germany

e-mail: argos@mailserver.embl-heidelberg.de

William W Armstrong (C1.8, G2.1, G5.1)

Professor of Computing Science,

University of Alberta;

and President of Dendronic Decisions Limited,
Edmonton,

Alberta,

Canada

e-mail: arms@cs.ualberta.ca

James Austin (F1.4, G1.7)

British Aerospace Senior Lecturer in Computer Science,

and Director of the Advanced Computer Architecture
Group,

University of York,

United Kingdom

e-mail: austin@minster.york.ac.uk

Timothy S Axelrod (E1.1)

Senior Fellow,

Mount Stromlo Observatory,
Canberra,

Australia

e-mail; tsa@mso.anu.edu.an

Magali E Azema-Barac (G6.3)

Quantitative Researcher,

U § West Inc,

Englewood,

Colorado,

USA

e-mail: mazemab@uswest.com

George Y Baaklini (G2.6)

Nondestructive Evaluation Group Leader,
Structural Integrity Branch,

NASA Lewis Research Center,

Cleveland,

Ohio,

USA

e-mail: baaklini#y#-george @lims-al.lerc.nasa.gov

Martin Béaker (G3.2)

Research Assistant,

Institut fiir Theoretische Physik,
Universitdt Hamburg,

Germany

e-mail: bagker@x4u2.desy.de

Etienne Barnard (G1.5)

Associate Professor of Computer Science and Electrical
Engineering,

Oregon Graduate Institute of Science and Technology,

Beaverton,

USA

e-mail: barnard @cse.ogi.edu

@© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Handbook of Neural Computation release 97/1

LoC:1

List of Contributors

T K Barrett (G3.1)

Senior Scientist,

ThermoTrex Corporation,

San Diego,

California,

USA

e-mail: tbarrett@crash.cts.com

Andrea Basso (F1.5)

Senior Researcher,

Ecole Politechnique Fédéreli de Lausanne (EPFL),
Switzerland

e-mail: basso@tcom.epfl.ch

Russell Beale (Preface, B5.1)

Lecturer in Computer Science,
University of Birmingham,
United Kingdom

e-mail: rbeale@cs.bham.ac.uk

Valeriu Beiu (E1.4)

Senior Lecturer in Computer Science,
Bucharest Polytechnic University,
Romania;

and Postdoctoral Fellow,

Los Alamos National Laboratory,
New Mexico,

USA

e-mail: beiu@mth kcl.ac.uk

Laszlo Berke (G2.6)

Senior Staff Scientist,

NASA Lewis Research Center,

Cleveland,

Chio,

USA

e-mail: berke#m#-laszlo@lims-al .lerc.nasa.gov

Christopher M Bishop (B6)

Professor of Neural Computing,
Neural Computing Research Group,
Aston University,

Birmingham,

United Kingdom

e-mail: ¢.m.bishop@aston.ac.uk

F Blayo (G6.1)

Consultant;

and Director of PREFIGURE,

Lyon,

France;

and Lecturer in Neural Networks,
Swiss Federal Institute of Technology,
Lausanne,

Switzerland

e-mail: fblayo@babel.asi.fr

David Bounds (G6.2)

Professor of Computer Science and Applied Mathematics,
Aston University;

and Recognition Systems Ltd,

Birmingham,

United Kingdom

e-mail: boundsd @aston.ac.uk

P Stuart Bowling (G2.7)

Technical Staff Member,

Los Alamos National Laboratory,
New Mexico,

USA

e-mail: psb@Ilanl.gov

Charles M Bowden (G3.3)

Senior Research Scientist,

US Army Missile Command,

Redstone Arsenal,

Alabama,

USA;

and Adjunct Professor of Physics and Optical
Science,

University of Alabama,

Huntsville,

USA

e-mail: fybt0la@prodigy.com

Thomas M Breuel (G1.3)

IBM Almaden Research Center,
San Jose,

California,

USA

e-mail: tmb@almaden.ibm.com

Stanley K Brown (G2.7)

Technical Staff Member,

Los Alamos National Laboratory,
New Mexico,

USA

e-mail; skbrown@lanl.gov

Masud Cader (C1.4)

CSIS,

Department of Computer Science,
Washington, DC,

UsA

e-mail: mcader@worldbank.org

Gail A Carpenter (C2.2.1)

Professor of Cognitive and Neural Systems;
and Professor of Mathematics,

Boston University,

Massachusetts,

USA

e-mail: gail@cns.bu.edu

H John Caulfield (H1.2)

University Eminent Scholar,
Alabama A&M University,
Normal,

USA

e-mail: caulfield@caos.aamu.edu

Krzysztof] Cios (C1.7, D1, G2.6, G2.12)

Professor of Electrical Engineering and Computer Science,
University of Toledo,

Ohio,

USA

e-mail: fac1765@uofi0l.utoledo.edu

LoC:2 Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

®© 1997 IOP Publishing Ltd and Oxford University Press

List of Contributors

Ron Cole (G1.5)

Director of the Center for Spoken Language
Understanding;

and Professor of Computer Science and Engineering,

Oregon Graduate Institute of Science and Technology,

Beaverton,

usa

e-mail: cole@cse.ogi.edu

Shawn P Day (F1.8)

Senior Scientist,

Synaptics Inc,

San Jose,

California,

UsA

e-mail: shawn@synaptics.com

Massimo de Francesco (B2.9)

University of Geneva,
Switzerland :
e-mail: massimo@cui.unige.ch

Thierry Denceux (F1.2)

Enseignant-Chercheur en Génie Informatique,
Université de Technologie de Compiégne,
France

e-mail: tdenoeux @hds.univ-compiegne.fr

Alan J Dix (G7.1)

Reader in Software Technology,
University of Huddersfield,
United Kingdom

e-mail: alan@zeus.hud.ac.uk

Mark Fanty (G1.5)

Assistant Professor of Computer Science,

Oregon Graduate Institute of Science and Technology,
Beaverton,

USA

e-mail: fanty@cse.ogi.edu

Emile Fiesler (Preface, B2.1-B2.8, C1.7, E1.2)

Research Director,

Institut Dalle Molle d’Intelligence Artificielle Perceptive
(IDIAP),

Martigny,

Switzerland

e-mail: efiesler@idiap.ch

Janet E Finlay (G7.1)
Senior Lecturer in Information Systems,
University of Huddersfield,
United Kingdom
e-mail; j.e.finlay@hud.ac.uk

Dmitrij Frishman (G4.4)

Postdoctoral Fellow,

European Molecular Biology Laboratory,
Heidelberg,

Germany

e-mail: frishman@mailserver.embl-heidelberg.de

Bernd Fritzke (C2.4)

Postdoctoral Researcher in Systems Biophysics,
Institute for Neural Computation,

Ruhr-Universitdt Bochum,

Germany

e-mail: fritzke @neuroinformatik.ruhr-uni-bochum.de

Hiroshi Fujita (GS.2)
Professor of Computer Engineering,
Gifu University,
Japan
e-mail: fujita@fjt.info.gifu-v.ac.jp

John Fulcher (F1.6, G1.2, G8.2)

Senior Lecturer in Computer Science,
University of Wollongong,

New South Wales,

Australia

e-mail: john@cs.uow.edu.au

George M Georgiou (C1.1)

Associate Professor of Computer Science,
California State University,

San Bernadino,

USA

e-mail: georgiou@.csci.csusb.edu

Richard M Golden (G5.4)

Assistant Professor of Psychology,
University of Texas at Dallas,
Richardson,

Texas,

USA

e-mail: golden@utdallas.edu

Jim Graham (G4.3)

Senior Lecturer in Medical Biophysics,
University of Manchester,

United Kingdom

e-mail: jim.graham@man.ac.uk

Stephen Grossberg (C2.2.1, C2.2.3)

Chairman and Wang Professor of Cognitive and
Neural Systems;

Director of Center for Adaptive Systems;

and Professor of Mathematics, Psychology,
and Biomedical Engineering,

Boston University,

Massachusetts,

USA

e-mail: steve@cns.bu.edu

Gary Grudnitski (G6.4)

Professor of Accountancy,

San Diego State University,
California,

USA

e-mail: gary.grudnitski@sdsu.edu

Mohamad H Hassoun (C1.3)

Professor of Electrical and Computer Engineering,
Wayne State University,

Detroit,

Michigan,

USA

e-mail: hassoun @brain.eng.wayne.edu

© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Handbook of Neural Computation release 97/1

LoC:3

List of Contributors

Atsushi Hiramatsu (G2.2)

Senior Research Engineer,

NTT Network Service Systems Laboratories,

Tokyo,
Japan
e-mail: hiramatsu@csl.ntt.jp

Paul G Horan (E1.5)
Senior Research Scientist,
Hitachi Dublin Laboratory,
Ireland
e-mail: paul.horan@hdl.ie

Peggy Israel Doerschuk (C2.2.2)

Assistant Professor of Computer Science,
Lamar University,

Beaumont,

Texas,

USA

e-mail: doerschupi@hal.lamar.edu

George W Irwin (G2.9)

Professor of Control Engineering,
The Queen’s University of Belfast,
United Kingdom

e-mail: g.irwin@ee.qub.ac.uk

Marwan A Jabri (GS5.3)
Professor of Adaptive Systems;

and Director of the Systems Engineering and Design

Automation Laboratory,
University of Sydney,
New South Wales,
Australia
e-mail: marwan@sedal.usyd.edu.au

Geoffrey B Jackson (G2.11)

Design Engineer,
Information Storage Devices,
San Jose,

California,

Usa

e-mail: gjackson@isd.com

Thomas O Jackson (B4)

Research Manager,

High Integrity Systems Engineering Group,
University of York,

United Kingdom

e-mail: tom@minster.york.ac.uk

John L Johnson (G1.6)

Research Physicist,

US Army Missile Command,

Redstone Arsenal,

Alabama,

USA

e-mail: jjohn@ssdd.redstone.army.mil

Roger D Jones (G2.7)

Director of Basic Technologies,

Center for Adaptive Systems Applications,
Los Alamos,

New Mexico,

USA

e-mail: rdj@1lacasa.com

Christian Jutten (C1.6)

Professor of Electrical Engineering,

University Joseph Fourier;

and Director of the Image Processing and Pattern
Recognition Laboratory (LTIRF),

National Polytechnic Institute of Grenoble (INPG),

France

e-mail: chris@tirf.inpg.fr

S Sathiya Keerthi (C3)

Associate Professor of Computer Science and Automation,
Indian Institute of Science,

Bangalore,

India

e-mail: ssk@csa.iisc.ernet.in

Wolfgang Knecht (G2.10)

Doctor of Technical Sciences,

Research and Development Department,
Phonak AG,

Staefa,

Switzerland

e-mail: phonak@dial-switch.ch

Aleksandar Kostov (G5.1)

Research Assistant Professor,
Faculty of Rehabilitation Medicine,
University of Alberta,

Edmonton,

Canada

e-mail: aleks.kostov@ualberta.ca

Cris Koutsougeras (C2.3)

Associate Professor of Computer Science,
Tulane University,

New Orleans,

Louisiana,

USA

e-mail: ck@cs.tulane.edu

Govindaraj Kuntimad (G1.6)
Engineering Specialist,
Rockwell International,
Huntsville,
Alabama,
USA
e-mail: gkuntima@rdyne.rockwell.com

Barry Lennox (G2.8)

Research Associate in Chemical Engineering,
University of Newcastle-upon-Tyne,

United Kingdom

e-mail: barry.lennox@ncl.ac.uk

Gordon Lightbody (G2.9)

Lecturer in Control Engineering,
The Queen’s University of Belfast,
United Kingdom

e-mail: glightbody@ee.qub.ac.uk

LoC:4 Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

© 1997 IOP Publishing Ltd and Oxford University Press

List of Contributors

Alexander Linden (B5.2)

Staff Scientist,

General Electric Corporate Research and Development
Center,

Niskayuna,

New York,

USA

e-mail: alexander.linden@crd.ge.com

Stephen P Luttrell (B5.3)

Senior Principal Research Scientist in Pattern and
Information Processing,

Defence Research Agency,

Worcestershire,

United Kingdom

e-mail: luttrell@signal.dra.hmg.gb

Gerhard Mack (G3.2)

Professor of Physics,
University of Hamburg,
Germany

e-mail: mack@x4u2.desy.de

Robert A J Matthews (G8.1)

Visiting Research Fellow,

Aston University,

Birmingham,

United Kingdom

e-mail: 100265.3005@compuserve.com

William C Mead (G2.7)

President,

Adaptive Network Solutions Inc,
Los Alamos,

New Mexico,

USA

e-mail; wem@ansr.com

M Mehmet Ali (G2.4)

Associate Professor of Electrical and Computer
Engineering,

Concordia University,

Montreal,

Quebec,

Canada

e-mail: mustafa@ece.concordia.ca

Thomas V N Merriam (G8.1)

Independent Scholar,
Basingstoke,
United Kingdom

Perry D Moerland (E1.2)

Researcher,

Institut Dalle Molle d’Intelligence Artificielle Perceptive
(IDIAP),

Martigny,

Switzerland

e-mail: perry.moerland @idiap.ch

Gary A Montague (G2.8)

Reader in Process Control,
University of Newcastle-upon-Tyne,
United Kingdom

e-mail: gary.montague@ncl.ac.uk

Helen B Morton (C1.5)

Lecturer in Psychology,

Brunel University,

Middlesex,

United Kingdom

e-mail: helen.morton@brunel.ac.uk

Gary Lawrence Murphy (F1.1)

Director of Communications Research,
TeleDynamics Telepresence and Control Systems,
Sauble Beach,

Ontario,

Canada

e-mail: garym@maya.sos.on.ca

Alan F Murray (G2.11)

Professor of Neural Electronics,
University of Edinburgh,
United Kingdom

e-mail: a.f.murray @ee.ed.ac.uk

Robert A Mustard (G5.6)

Assistant Professor,
Department of Surgery,
University of Toronto,
Ontario,

Canada

Huu Tri Nguyen (G2.4)
Systems Engineer,
CAE Electronics Ltd,
Montreal,
Quebec,
Canada

Craig Niederberger (G5.4)

Assistant Professor of Urology,
Obstetrics-Gynecology and Genetics;
Chief of the Division of Andrology;
and Director of Urologic Research,
University of lllinois at Chicago,
USA

e-mail: craign@uic.edu

James L Noyes (B3)

Professor of Computer Science,
Wittenberg University,
Springfield,

Ohio,

USA

e-mail: noyes@wittenberg.edu

Witold Pedrycz (D1)

Professor of Computer Engineering and Computer Science,
University of Manitoba,

Winnipeg,

Canada

e-mail: pedrycz@ee.umanitoba.ca

© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Hundbook of Neural Computation release 97/1

LoC:§

List of Contributors

Shawn D Pethel (G3.3)

Electronics Engineer,

US Army Missile Command,

Redstone Arsenal,

Alabama,

USA

e-mail: sdpethel @ssdd.redstone.army.mil

Tom Pike (G5.6)

Software Engineer,
University of Toronto,
Ontario,

Canada

Riccardo Poli (G5.5)

Lecturer in Artificial Intelligence,
University of Birmingham,
United Kingdom

e-mail: r.poli@cs.bham.ac.uk

V William Porto (D2)

Senior Staff Scientist,

Natural Selection Inc,

La Jolla,

California,

USA

e-mail; bporto@natural-selection.com

Susan E Pursell (G5.4)

Resident,

Department of Urology,
University of Hlinois at Chicago,
USA

Heggere S Ranganath (G1.6)

Associate Professor of Computer Science,
University of Alabama,

Huntsville,

Usa

e-mail: ranganat@cs.uah.edu

B Ravindran (C3)

Research Scholar,

Department of Computer Science and Automation,

Indian Institute of Science,

Bangalore,

India

e-mail: ravi@bheeshma.csa.iisc.ernet.in

A N Refenes (G6.3)

Associate Professor;

and Director of the Neuroforecasting Unit,

London Business School,
United Kingdom
e-mail: pnr@lbs.co.uk

Duncan Ross (G6.2)
Recognition Systems Ltd,
Stockport,

United Kingdom

Burkhard Rost (G4.1)
Physicist,
European Molecular Biology Laboratory,
Heidelberg,
Germany
e-mail: rost@embl-heidelberg.de

D G Sandler (G3.1)

Chief Scientist,

ThermoTrex Corporation,

San Diego,

California,

USA

e-mail: dsandler@crash.cts.com

I Saxena (E1.5)

Institut Dalle Molle d’Intelligence Artificielle Perceptive
(IDIAP),

Martigny,

Switzerland

e-mail: isaxena@idiap.ch

Soheil Shams (F1.3)

Senior Research Staff Member,
Hughes Research Laboratories,
Malibu,

California,

USA

e-mail: shams@maxwell.hrl.hac.com

Dan Simon (G2.5)

Senior Test Engineer,

TRW Vehicle Safety Systems,
Mesa,

Arizona,

USA

e-mail: d.simon@ieee.org

E E Snyder (G4.2)

Biocomputational Scientist,
Sequana Therapeutics Inc,

La Jolla,

California,

USA

e-mail; eesnyder@sequana.com

Marcus Speh (G3.2)

Director,

Knowledge Management Services,
Andersen Consulting,

London,

United Kingdom

e-mail: marcus.speh@ac.com

Richard B Stein (G5.1)

Professor of Physiology and Neuroscience,
University of Alberta,

Edmonton,

Canada

e-mail: richard.stein@ualberta.ca

Maxwell B Stinchcombe (B2.10)

Associate Professor of Economics,
University of Texas at Austin,

USA

e-mail: maxwell@mundo.eco.utexas.edu

LoC:6 Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

© 1997 10P Publishing Ltd and Oxford University Press

List of Contributors

Gary D Stormo (G4.2)

University of Colorado,

Department of MCD Biology,
Boulder,

USA

e-mail: stormo@beagle.colorado.edu

Harold Szu (C1.4)

Alfred and Helen Lamson Professor of Computer Science;
and Director of the Center for Advanced Computer Studies,
University of Southwestern Louisiana,

Lafayette,

USA

e-mail: hszu@cacs.usl.edu

J G Taylor (Al.1, H1.3)

Director of the Centre for Neural Networks;
and Professor of Mathematics,

King’s College,

London,

United Kingdom

e-mail: udah057 @bay.cc.kcl.ac.uk

Monroe M Thomas (C1.8, G2.1, G5.1)

Vice President of Dendronic Decisions Ltd,
Edmonton,

Alberta,

Canada

e-mail: mmt@msn.com

Kari Torkkola (F1.7, G1.4)

Principal Staff Scientist,

Motorola Phoenix Corporate Research Laboratories,
Tempe,

Arizona,

USA

e-mail: a540aa@email.mot.com

Guido Valli (GS.5)

Associate Professor of Bioengineering,
University of Florence,

Italy

e-mail: valli@cobra.ing.unifi.it

Alex Vary (G2.6)

Deputy Branch Chief, Retired,
Structural Integrity Branch,
NASA Lewis Research Center,
Cleveland,

Ohio,

USA

Michel Verleysen (C2.1)

Research Fellow in Microelectronics and Neural Networks,
National Fund for Scientific Research,

Université Catholique de Louvain,

Belgium

e-mail: verleysen@dice.ucl.ac.be

Eric A Vittoz (E1.3)

Senior Vice President and Head of Bio-inspired Systems,
Centre Suisse d'Electronique et de Microtechnique SA,
Neuchatel,

Switzerland,;

and Professor of Electrical Engineering,

Ecole Politechnique Fédéreli de Lausanne (EPFL),
Switzerland

e-mail; vittoz@csemne.ch

Paul B Watta (C1.3)

Assistant Professor of Electrical and Computer
Engineering,

Wayne State University,

Detroit,

Michigan,

USA

e-mail: watta@brain.eng.wayne.edu

Paul J Werbos (A2, F1.9)

Program Director for Neuroengineering,
National Science Foundation,

Arlington,

Virginia,

USA

e-mail: pwerbos @nsf.gov

Hu Jun Yin (G1.1)

Research Fellow,

Department of Electrical Engineering and Electronics,

University of Manchester Institute of Science and
Technology,

United Kingdom

e-mail: yin@umist.ac.uk

© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Handbook of Neural Computation release 97/1

LoC:7

PART A
INTRODUCTION

Al NEURAL COMPUTATION: THE BACKGROUND

Al.1 The historical background
J G Taylor

Al.2 The biological and psychological background
Michael A Arbib

A2 WHY NEURAL NETWORKS?
Paul J Werbos

A2.1 Summary
A2.2 What is a neural network?
A2.3 A traditional roadmap of artificial neural network capabilities

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Al

Neural Computation: The Background

Contents

Al NEURAL COMPUTATION: THE BACKGROUND
Al.1 The historical background
J G Taylor
Al1.2 The biological and psychological background
Michael A Arbib

® 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

A1l The historical background
J G Taylor

Abstract

The brief history of neural network research presented in this section indicates that,
although the initial revolution in neural networks lost its early momentum, the second
revolution may well avoid the fate of the first. The subject now has strengths that
were absent from its earliest version: these are discussed, and especially the fact that the
biological origin of the subject is now giving it greater stability. The new avenues opened
up by biologically motivated research and by studies in other areas such as statistical
mechanics, statistics, functional analysis and machine learning are described, and future
directions discussed. The strengths and weaknesses of the subject are compared with
those of alternative and competing approaches to information processing.

Al.1l.1 Introduction

The discipline of neural networks is presently living through the second of a pair of revolutions, the
first having started in 1943 with the publication of a startling result by the American scientists Warren
McCulloch and Walter Pitts. They considered the case of a network made up of binary decision units
(BDNs) and showed that such a network could perform any logical function on its inputs. This was
taken to mean that one could ‘mechanize’ thought, and it helped to support the development of the digital
computer and its use as a paradigm for human thought. The result was made even more intriguing due to
the fact that the BDN is a beautifully simple model of the sort of nerve cell used in the human brain to
support thinking. This led to the suggestion that here was a good model of human thought.

Before the logical paradigm won the day, another American, Frank Rosenblatt, and several of his
colleagues showed how it was possible to train a network of BDNs, called a perceptron (appropriate for a c1.1.1
device which could apparently perceive), so as to be able to recognize a set of patterns chosen beforehand
(Rosenblatt 1962).

This training used what are called the connection weights. Each of these weights is a number by
which one must multiply the activity on a particular input in order to obtain the effect of that input on
the BDN. The total activity on the BDN is the sum of such terms over all the inputs. The connection
weights are the most important objects in a neural network, and their modification (so-called training) is B3
presently under close study. The last word has clearly not yet been said on what is the most effective
training algorithm, and there are many proposals for new learning algorithms each year.

The essence of the training rules was very simple: one would present the network with examples
and change those connection weights which led to an improvement of the results, so as to be closer to the
desired values. This rule worked miracles, at least on a set of rather ‘toy’ example patterns. This caused a
wave of euphoria to sweep through the research community, and Rosenblatt spoke to packed houses when
he went to campuses to describe his results.

One of the factors in his success was that he appeared to be building a model duplicating, to some
extent, the activity of the human brain. The early result of McCulloch and Pitts indicated that a network
of BDNs could solve any logical task; now Rosenblatt had demonstrated that such a network could also be
trained to classify any pattern set. Moreover, the network of BDNs used by Rosenblatt, which possessed a
more detailed description of the state of the system in terms of the connection weights between the model
neurons than did the McCulloch-Pitts network, seemed to be a more convincing model of the brain. Bl1.2

® 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 Al1.1:1

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

Al.1.2 Living neurons

a12 To justify such a strong claim it is necessary to expand the argument a little. Living neurons are, in
fact, composed of a cell body and numerous outgrowths. One of these, which may branch into several
collaterals, is called the axon. It acts as the output line for the neuron. The other outgrowths are called
the dendrites; they are often covered with little ‘spines’, where the ends of the axons of other cells attach
themselves. The interior of the nerve cell is kept at a negative electric potential (usually about —60 mV) by
means of active pumps in the cell wall which pump sodium ions outside and keep slightly fewer potassium
ions inside. This electrical balance is especially delicately assessed at the exit point of the axon. If the cell
electrical potential becomes too positive, usually by about +10 to +15 mV, then there will be a sudden
reversal of the potential to about +60 mV, and an almost as sudden return to the usual negative resting
value, all in about 2 to 3 ms.

This sequence of potential changes is called an action potential, which moves steadily down the axon
and its branches (at about 1 to 10 m s~!). It is this action potential that is the signal sent from one
nerve cell to its neighbors. The generation of the signal by the neuron is achieved by the summation of
the signals coming to the cell body from the dendrites, which themselves have been affected by action
potentials coming to them from nearby cells. The strengths of the action potentials moving along the
axons are all the same. It is by means of rescaling the effects of each action potential as it arrives at a
synapse or junction from one cell to the next (by means of multiplication of the incoming activity of a
nerve impulse by the appropriate connection weight mentioned earlier) that a differential effect is achieved
for each cell on its neighbors.

The above description of the actions of the living nerve cells in the brain is highly simplified, but gives
a correct overall picture. It is seen that each nerve cell is acting like a BDN, with the decision to respond
being that of assessing whether or not the total activity from its neighbors arriving at its axon outgrowth is
above the threshold mentioned earlier. This activity is the sum of the incoming action potentials scaled by
an appropriate factor, which may be identified with the connection weight of the BDN. The identification
of the BDN with the living nerve cell is thus complete. A network of BDNs is, indeed, a simple model
of the brain.

Al.1.3 Difficulties to be faced

This, then, was the first neural network revolution. Its attraction to many (although not all) was reduced
when Marvin Minsky and Seymour Papert showed in 1969 that perceptrons are very limited. They have
an Achilles heel: they cannot solve some very simple pattern classification tasks, such as separating the
binary patterns (0, 0), (1, 1) from the patterns (1, 0), (0, 1), known as the parity problem, or XOR. To
solve this problem it is necessary to have neurons whose outputs are not available to the outside world.
These so-called ‘hidden neurons’ cannot be trained by causing their outputs to become closer to the desired
values given by the training set. Thus, in the XOR case, the input—output training set is (0, 0), 0; (1,
D, 0; (0, 1), 1; (1, 0), 1. The desired outputs of 0 or 1 (in the various cases) for the output neurons are
not provided for any hidden neuron. Yet in the case of any linearly inseparable problem, such as XOR,
there must be hidden neurons present in the network architecture in order to help turn the problem into a
linearly separable one for the outputs.

In addition, there was a further important difficulty which was emphasized by Minsky and Papert,
who gave a very thorough mathematical analysis of the time it takes to train such networks, and how this
increases with the number of input neurons. It was shown by Minsky and Papert (1969) that training times
increase very rapidly for certain problems as the number of input lines increases.

These (and other) difficulties were seized upon by opponents of the burgeoning subject. In particular,
this was true of those working in the field of artificial intelligence (AI) who at that time did not want
to concern themselves with the underlying ‘wetware’ of the brain, but only with the functional aspects—
regarded by them solely as logical processing. Due to the limitations of funding, competition between the
Al and neural network communities could have only one victor.

Al.1.4 Reawakening

Neural networks then went into a relative quietude, with only a few, but very clever, devotees still working
on it. Then came new vigor from various sources. One was from the increasing power of computers,
allowing simulations of otherwise intractable problems. At the same time, the difficulty of training hidden

A1.1:2 Handbook of Neural Computation release 97/1 @© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The historical background

neurons was solved by the backpropagation algorithm, originally introduced by Paul Werbos (1974), and c1.23
independently discovered by Parker (1985) and LeCun (1985); it was highly publicized by the PDP Group

with Rumelhart and McClelland (1986). Backpropagation allowed the error to be transported back from

the output lines to earlier layers in the network so as to give a very precise modification of the weights

on the hidden units. It was possible to simulate ever-larger problems using this training scheme, and so
begin to train neural networks on industrially interesting problems.

Another source of stimulus was the seminal paper of John Hopfield (1982) and related work of
Grossberg and collaborators (Cohen and Grossberg 1983) in analyzing the dynamics of networks by
introducing powerful methods based on Lyapunov functions to describe this development. In all, this
work showed how a network of BDNs, coupled to each other and asynchronously updated, can be seen to
develop in time as if the system were running down an energy hill to find a minimum. Hopfield (1982)
showed, in particular, how it is possible to sculpt the energy landscape so that there are a desired set of
minima. Such a network leads to a content-addressable memory, since a partially correct starting activity
will develop into the complete version quite quickly.

The introduction of an energy function quickly alerted the physics community, ever eager to sharpen
their teeth on a new problem. This led to the spin glass approach, with the global ideas on phase transitions
and temperature entering the field of neural networks for the first time. A spin glass derivation was also
given by Amit (1989) of the capacity limit of 0.14N as the limit to the number of patterns which can
usefully be stored in a network of N neurons (and which was originally found experimentally by Hopfield
(1982)). Gardner then introduced the general notion of the ‘space’ of neural networks (Gardner 1988), an
idea that has been explored more fully by the recent developments of differential geometry by the work of
Amari (1991). It is clear that the statistical mechanical approach is still flourishing, and is leading to many
new insights. For example, it has become clear how the presence of temperature allows the avoidance of
spurious states brought about by the form of the connection weights; these false states are made unstable
if the network is ‘hot’ enough, and only the correct states are recalled in that case. It has also become
clear as to what was the source of the limit on the storage capacity of these networks, and how this might
be increased by choosing suitable connectivity to obtain the full capacity N (Coombes and Taylor 1993).

Another very important historical development was the creation of the Bolrzmann machine (Hinton c1.4
and Sejnowski 1983), which may be regarded as the extension of the Hopfield network to include hidden B1.3
neurons. The name was assigned since the probability distribution of the states of the network is identical
to the Boltzmann distribution. The Boltzmann machine learning algorithm, based on the Kullback~
Liebler metric as a distance function on the probability distributions of the states, allowed this probability
distribution to move more closely to an external one to be learned. However, the learning algorithm is
slow, and this has prevented many useful applications.

A further network which proved very attractive to those entering the field was the self-organizing c21.1
map. This had been developed by several workers (Willshaw and von der Malsburg 1976, Grossberg 1976)
and reached a very effective form for applications in terms of the self-organizing feature map (SOFM) of
Kohonen (1982). This allowed the weights of a single-layer network to adapt to an ensemble of inputs so
as to learn the distribution of those inputs in an ordered fashion. Numerous developments have occurred
in this approach more recently (Ritter et al 1991).

The other question, of the scaling of training times as the size of the input space increases, which
was raised by Minsky and Papert, is still unsolved. Papert, in a recent paper (Minsky and Papert 1989),
wrote ‘...the entire structure of recent connectionist theories might be built on quicksand: it is all based
on toy-sized problems with no theoretical analysis to show that performance will be maintained when the
models are scaled up to realistic size. The connectionist authors fail to read our work as a warning that
networks, like brute force, scale very badly’. This is a warning not to be taken lightly. It is being met by
various methods and devices: accelerator cards, ever faster and smaller hardware devices, and a deeper El
understanding of the theory behind neural computation. It is to be noted in this respect that accelerator
cards may offer time saving and tractable training sessions on large databases but still may not help the
convergence to significant solutions. It may be that the second neural network ‘revolution’ is only just
beginning, but it is very clear that the scaling problem is in the forefront of researchers’ minds.

Al.1L5 Forms of networks and their training

In order to understand in more detail the way that greater strength is being brought to the subject of neural
networks, it is important to point out the two extremes that now exist inside the discipline itself. At one end

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 Al1.1:3

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

is the work of those mainly concerned with solving industrial problems. These include engineers, computer
scientists, and people in the industrial sector. To them, neural computing is only one of a spectrum of adap-
tive information processing techniques. At the other extreme are those interested in understanding living
systems, such as biologists, psychologists, and philosophers, together with mathematicians and physicists
who are interested in the whole range of the subject as throwing up valuable and interesting new problems.

The styles of approach of the two extremes are somewhat different. The subject of artificial neural
computing is based on networks, some of which have been mentioned earlier, which use the rather simple

B23 BDNs defined above. There are two extremes of the architectures of the networks: feedforward networks
(input streams steadily through the network from a set of input neurons to a set of output ones) and

B2.3 recurrent networks (where there is constant feedback from the neurons of the network to each other, as in
the Hopfield network mentioned earlier). This is mirrored in the differences between the topologies such
networks possess; one is the line, and the other the circle, which cannot be topologically deformed into
each other. As is to be expected, there are two extreme styles of computation in these networks. In the
feedforward case the input moves through the network to become the output; in the recurrent network the
activities in the network develop over time until it settles into some asymptotic value which is used as the
output of the network. The network thus relaxes into this asymptotic state.

B3.1, C3 Network training can be classified into three sorts: supervised, reinforcement and unsupervised. The
most popular of the first of these, backpropagation, has been mentioned earlier as the way to train neural
networks to solve hard problems like parity, which needs hidden nodes (with no output that might be
specified directly by the supervisor or teacher). It uses a set of training data which is assumed to be
given, so that the (usually) feedforward network has a set of given inputs and outputs. When a given
input is applied to the untrained network, the output is not expected to be the desired one, so that an
error is obtained. That is used to assign changes, usvally small ones, to the connection weights to all the
neurons (including the hidden ones) in the network. This process of change is repeated many times until
an acceptably low error level is obtained.

The second training method uses a reward given to the network by the environment on its response
to a given input. This reward may also be used to determine modifications to the weights to achieve a
maximum reward from the environment. Thus, this form of learning is ‘with a critic’, to be compared to
supervised learning, which is ‘with a teacher’. Finally, there is unsupervised learning, which is closer to the
style of learning in biological systems (although reinforcement learning also has strong biological roots).
In this method correlations between signals are learned by increasing the connection weight between two
neurons which are both active together.

At the other end of the subject of neural computation is investigation of nervous systems of the many
species of animals, in an attempt to understand them. Since even a single living neuron is very complex,
this approach does not aim for application in the marketplace, although simplified versions of mechanisms
gleaned from this area of study are turning out to be of great value in commercial applications. This
is true, for example, for models of the eye or ear, and also in the area of control, where reinforcement
training (related to conditioned learning) has led to some very effective industrial control systems (White
and Sofge 1992). The biological neural networks which are of interest are also extremely complex as
nonlinear dynamical systems or mappings, although there is steady progress in their unraveling.

The most important lesson to be learned from these studies, besides the detailed network styles being
used, is that the brain has developed a very powerful modular scheme for handling the scaling problem
mentioned earlier. Exactly how this works is presently under extensive scrutiny, in particular, through the
use of noninvasive techniques (EEG, MEG, PET, MRI). The causal chains of activations of various brain
regions is being discovered as a subject performs a particular information processing task; the results are
allowing more global models of the brain to be constructed.

Al.1.6 Strengths of neural networks

In the face of the difficulties neural networks are still facing, of slow training, incompletely understood
complexity and the highly nonlinear neural network system involved, as mentioned earlier, there are several
features which will ensure the continued strength of the subject as a viable discipline.

Firstly, increases in computing power that were almost undreamed of severa!l years ago, with gigabytes
of memory and giga-interconnection updates per second. That may still be some way from the speed and
power of the human brain. But if only specialized devices are to be developed, the total complexity of
the human brain need not be a deterrent from attaining a lesser goal.

A1.1:4 Handbook of Neural Computation telease 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The historical background

Secondly, there are developments in the theoretical understanding of neural networks that are
impressive. Convergence of training schedules and their speed-up is presently under active investigation.
The subject of dynamical systems theory is being brought to bear on these questions, and impressive
results are being obtained. The use of concepts like attractor, stability, circle maps and so on are allowing
a strong framework to be built for neural networks; in particular, the manner in which the dynamics of
learning appears to display the general features of a sequence of phase transitions, as new features of
the complexity of the training set are able to be discovered by the network, and new specialized feature
detectors in the hidden layers emerge in the training process.

Thirdly, there are several different disciplines which are seen to have a great deal of overlap with
neural networks. Thus the branch of statistics associated with regression analysis is now recognized as
having been extended in an adaptive manner by the use of neural network representations of time series
(Breiman 1994). Computer-intensive techniques, such as bootstrapping, are proving of great value in
neural networks for tackling problems with small data sets. Pattern recognition, for example, also has B1.5, B6
important overlaps with the discipline in the areas of classification and data compression. Neural networks Fi.5
can extend these areas to give them an adaptability that is proving to be very important, such as in learning
the most important features of a scene by means of adaptive principle component analysis (PCA) (Oja
1982). Statistical mechanics (especially spin glasses) has already been noted above as leading to important
new insights into the problems of storage and response of neural networks. Machine learning is also of
importance for the subject, and under the ‘probably approximately correct’ (PAC) approach has allowed
the study of the complexity of neural networks needed to solve a given problem.

Fourthly, the field of function approximation has led to the important ‘universal approximation
theorem’ (Hecht-Nielsen 1987, Hornik et al 1989). This theorem states that any suitably smooth function
can be approximated arbitrarily closely by a neural network with only one hidden layer. The number
of nodes required for such an approximation would be expected to increase without bound as the
approximation was made increasingly better. The result is of the utmost importance to those who wish to
apply neural networks to a particular problem; it states that a suitable network can always be found. This
is also true for trajectories of patterns (Funahashi and Nakamura 1993).

There is a similar, but more extended result, for the learning of conditional probability distributions
(Allen and Taylor 1994), where now the universal network has to have at least two layers to be able to
have a smooth limit when the stochastic series being modeled becomes noise-free. Again, this is very
important in the modeling by neural networks of financial series which have considerable stochasticity. G63

Fifthly, and already discussed briefly above, is the emerging subject of computational neuroscience.
This attempts to create simple models of the neural systems which are important in controlling the response
patterns of animals of a given species. This has a vast breadth, encompassing as it does the million or
so species of living animals, culminating with man. It is a subject with vast implications for mankind,
especially from the medical benefits that better understanding of brain processes would bring, both to those
in the field of mental health and in the more general area of understanding of healthy living systems.

The field of computational neuroscience has led to useful devices by the route of ‘reverse engineering’.
In this, algorithms are developed for information processing based on simple models of the neural
processing occurring in the living system. Thus it is not only the single neuron which is proving of
value in reverse engineering, as it has already for the development of artificial neural networks (and
where also it continues with the incorporation of increasingly complex neurons to achieve more powerful
artificial neural networks). It is increasingly occurring in the reverse engineering of the overall architecture
of artificial networks from that of living neural networks. This approach has also proved of value at the
hardware level, as well as generating new styles of artificial neural computation. Thus, in the first category,
is the work of Carver Mead and his colleagues at the California Institute of Technology in the United
States (Mead 1989). They have built both a silicon retina and a silicon ear, using VLSI designs based on
the known functions of these devices in living systems and their approximate wiring diagrams.

The retina has lateral inhibitory connections between the first (horizontal) layer of cells and the
input cells, which leads to a very elegant method of reducing redundancy (say, in patches of constant
illumination) of visual inputs. It is also possible to extend this modeling to later layers in the retina, and
also to proceed further into the early layers of the visual cortex. The latter appears to use a decomposition
of the input into some overcomplete set of functions, such as might arise from differences of Gaussians or
similar functions with localized values. This leads into the field of wavelet transforms, another theoretical
area proving to be of great value in developing new paradigms for neural networks (Szu and Hopper 1995).

The manner in which more global brain processing can be understood has been developed over the

© 1997 IOP Publishing Ltd and Oxford University Press Handboaok of Neural Computation telease 97/1 Al.1l:8

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

last few years by Teuvo Kohonen in the SOFM mentioned earlier (Kohonen 1982). In more detail, this
algorithm is based on the idea of competition between nearby neurons, ending up in one neuron winning
and the others being turned off by lateral inhibition from that winner. This winner is then trained by
increasing the connection weights to it so that it gives a larger output. This means rotating the weights on
the winning neuron so that they are more closely aligned to the input. The same is done for the neurons
in a small region round the winner. If this is done repeatedly for a set of training inputs the network
ends up representing the inputs in a topographic fashion over its surface (assuming the network is laid
out in a two-dimensional fashion). If the inputs have features which are more than two dimensional then
the resulting map may have folds in it; such discontinuities are seen, for example, in the map of rotation
sensitivity for cells in the visual cortex.

One can search for other tricks that nature may use, and attempt to incorporate them into suitable
machines. Thus there are presently attempts to build a *vision machine’ by means of the sensitive response
of sets of coupled oscillators to their inputs. Yet again this also leads to some very important mathematical
problems in understanding the response patterns of many physical systems.

It also leads to the more general question of whether or not it is possible to use the finer details of
the temporal structure of neural activity. An extreme case of this is the use of information by coincidence
of a number of nerve impulses impinging on a given cell. Suggestions of this sort have been around for a
decade or more, but it is only recently that the improvement in computing power has allowed increasing
numbers of simulations to test this idea.

As is well known, chaos and fractals are a key aspect of any physical phenomena. Will they prove to
be of importance in improving neural networks? Some, especially Walter Freeman (1995) from Berkeley
in connection with olfaction, suggest that such is the case, and that strange attractors may be used to give
a very effective method of searching through, or giving access to, a large region of the state space of a
neural network. That possibility has not yet been achieved in detail, however, see Quoy et al (1995) for
an interesting attempt to achieve a useful speed-up by ‘living on the edge of chaos’ for a neural network.
But the question is an important one and again indicates the breadth of possibilities now coming under
the banner of neural networks.

Al1.1.7 Hybrids and the future

From what has been sketched above about the past and some of the avenues being explored in the present
for neural networks, it is clear that the subject now has such breadth and depth that it is unlikely to run
out of steam as it did earlier. Indeed, it is becoming increasingly clear that artificial neural networks
(ANNS) can be seen to be one of a number of similar tools in the tool-kit of anyone tackling problems

p2, DI in information processing. Along with genetic algorithms, fuzzy logic, belief networks, and other areas
(such as parallel computing), ANNs are to be used either on their own or in hybrid systems wherever
and however is most appropriate. The past divisions, noted above as having existed between different
branches of information processing, seem to have been removed by these developments. Moreover, new
techniques are being developed to allow the parallel use of these various technologies, or even better, in a
manner that allows them to help each other. Thus genetic algorithms are being used to help improve the
architecture of a neural network, where the fitness function used to select better descendants at each stage
of the generation process is the error on the training set (in the case of a supervised learning problem).
Similarly, it has proved of value to obtain help from fuzzy logic to allow for rough initial settings of the
weights in a network.

There are some general rules for determining when a neural network is most appropriate for a particular
task, compared with one of the other methods mentioned earlier. If the data are noisy, if there are no rules
for the decisions or response that are required, or if the training and response must be rapid (something
missing from genetic algorithms, for example), then ANNs may be the best bet. It is also necessary to
comment finally on the present situation in the relation between ANNs and Al mentioned earlier. As noted
above for other adaptive techniques, the move is now to combine an ANN solution for part of a problem
with results obtained from a knowledge-based expert system (KBES). That has been done successfully

F1.72,G1.4 in speech recognition, where the Kohonen network mentioned earlier is good for individual phoneme
recognition, but not so good for words (due to difficulty in incorporating context into the ANN). A KBES
approach, with about 20000 expert rules, then allows the total system to be far more effective. Similar

Ba.102, c128 greater efficiency can also be obtained using hybrid systems with rime-delayed neural networks (which
involve inputs that are delayed or lagged relatively to each other, so as to cover a spread of input times).

Al.1:6 Handbook of Neural Compuration release 97/1 ®© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The historical background

It is clear that a more realistic and effective approach is arising in the relationship between the different
branches of information processing. Undoubtedly this use of the best of all possible worlds will increase.
But at the same time the neural network approach, in the context of obtaining a better understanding of
the human brain, will also give ever increasing powers to the ANN approach. In the end one can only see
that as being the most effective (provided there is the computing power) method for many of the deeper
problems facing the information industry. Nor is there any serious alternative to the further development of
neural network models of ourselves to understand the higher levels of human cognition, including human
consciousness.

References

Allen D W and Taylor J G 1994 Learning time series by neural networks Proc. Int. Conf. on Artificial Neural Networks
(Sorrento, Italy, 1994) ed M Marinaro and P Morasso (Berlin: Springer) pp 529-32

Amari S 1991 Dualistic geometry of the manifold of higher-order neurons Neural Networks 4 443-51

Amit D 1989 Models of Brain Function (Cambridge: Cambridge University Press)

Breiman L 1994 Bagging predictors UCLA Preprint (unpublished)

Cohen M A and Grossberg S 1983 Absolute stability of global pattern formation and parallel memory storage by
competitive neural networks IEEE Trans. Syst. Man Cybern. 13 815-26

Coombes S and Taylor J G 1993 Using generalised principal component analysis to achieve associative memory in a
Hopfield net Network 5 75-88

Freeman W 1995 Society of Brains (Hillsdale, NJ: Erlbaum)

Funahashi K and Nakamura Y 1993 Approximation of dynamical systems by continuous time recurrent neural networks
Neural Networks 6 801-6

Gardner E 1988 The space of interactions in neural network models J. Phys. A: Math. Gen. 21 25770

Grossberg S 1976 Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural
feature detectors Biol. Cybern. 23 121-34

Hecht-Nielsen R 1987 Kolmogorov’s mapping neural network existence theorem Proc. Int. Conf. on Neural Networks
1l (New York: IEEE) pp 11-13

Hinton G and Sejnowski T 1983 Optimal perceptual inference Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (Washington) (New York: IEEE) pp 448-53

Hopfield J 1982 Neural networks and physical systems with emergent collective computational properties Proc. Nat!
Acad. Sci., USA 81 3088-92

Hornik K, Stinchcombe M and White H 1989 Multi-layer feedforward networks are universal approximators Neural
Networks 2 359-66

Kohonen T 1982 Self-organised formation of topologically correct feature maps Biol. Cybern. 43 56-69

LeCun Y 1985 Une procédure d’apprentissage pour réseau 4 seuil asymetrique Cognitiva 85 (Paris: CESTA) pp 599-
604

McCulloch W S and Pitts W 1943 A logical calculus of ideas immanent in nervous activity Bull. Math. Biophys. §
115-33

Mead C 1989 Analogue VLSI and Neural Systems (Reading, MA: Addison-Wesley)

Minsky M and Papert S 1969 Perceptrons (Boston, MA: MIT Press)

——1989 Perceptrons 2nd edn (Boston, MA: MIT Press)

Oja E 1982 A simplified neuron model as a principal component analyser J. Math. Biol. 15 61-8

Parker D B 1985 Learning logic Technical Report TR-47 Center for Computational Research in Economics and
Management Science, Massachusetts Institute of Technology, Cambridge, MA

Quoy M, Doyon B and Samuelides M 1995 Dimension reduction by learning in a discrete time chaotic neural network
Proc. Worid Congr. on Neural Networks (1995) (Washington: INNS) pp 1-300-303

Ritter H, Martinetz T and Schulten K 1991 Neural computation and self-organising maps (Reading, MA: Addison-
Wesley)

Rosenblatt F 1962 Principles of Neurodynamics (New York: Spartan)

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing (Boston, MA: MIT Press)

Szu H and Hopper T 1995 Wavelets as preprocessors for neural networks Plenary Talk Proc. World Congr. on Neural
Networks (Washington, DC, 1995) (Washington: INNS); Kohonen T 1995 Plenary Talk Proc. World Congr. on
Neural Networks (Washington, DC, 1995) (Washington: INNS)

Werbos P 1974 Beyond regression PhD Thesis Harvard University

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control (New York: Van Nostrand Reinhold)

Willshaw D J and von der Malsburg C 1976 How patterned neural connections can be set up by self-organisation
Proc. R. Soc. B 194 431-45

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A1.1:7

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

Al1.2 The biological and psychological background

Michael A Arbib

Abstract

A brief look at how biology and psychology motivate the definitions of artificial neurons
presented in other sections of this handbook.

Al.2.1 Biological motivation and neural diversity

In biology, there are radically different types of neurons in the human brain, and further variations in neuron
types of other species. In brain theory, the complexities of real neurons are abstracted in many ways to aid
an understanding of different aspects of neural development, learning, or function. In neural computation,
the artificial neurons are designed as variations on the abstractions of brain theory and implemented in
software, VLSI, or other media. Although detailed models of biological neurons are not within the scope
of this handbook, it will be useful to provide an informal view of neurons as defined biologically, for it
is the biological neurons that inspired the various notions of formal neuron used in neural computation Bi
(discussed in detail elsewhere in this handbook). The nervous system of animals comprises an intricate
network of neurons (a few hundred neurons in some simple creatures; hundreds of billions in a human
brain) continually combining signals from receptors with signals encoding past experience to barrage
motor neurons with signals which will yield adaptive interactions with the environment. In animals with
backbones (vertebrates, including mammals in general and humans in particular) the brain constitutes the
most headward part of this central nervous system (CNS), linked to the receptors and effectors of the body
via the spinal cord. Invertebrate nervous systems (neural networks) provide astounding variations on the
vertebrate theme, thanks to eons of divergent evolution. Thus, while the human brain may be the source of
rich analogies for technologists in search of ‘artificial intelligence’, both invertebrates and vertebrates will
provide endless ideas for technologists designing neural networks for sensory processing, robot control,
and a host of other applications (Arbib 1995).

Although this variety means that there is no such thing as a typical neuron, the ‘basic neuron’ shown
in figure A1.2.1 indicates the main features that carry over into artificial neurons. We divide the neuron
into three parts: the dendrites, the soma (cell body) and a long fiber called the axon whose branches form
the axonal arborization. The soma and dendrites act as input surface for signals from other neurons and/or
receptors. The axon carries signals from the neuron to other neurons and/or effectors (muscle fibers or
glands, say). The tips of the branches of the axon are called nerve terminals or boutons. The locus of
interaction between a terminal and the cell upon which it impinges is called a synapse, and we say that
the cell with the terminal synapses upon the cell with which the connection is made.

The ‘signal’ carried along the axon is the potential difference across the cell membrane. For ‘short’
cells (such as the bipolar cells of the retina) passive propagation of membrane potential carries a signal
from one end of the cell to the other, but if the axon is long, this mechanism is completely inadequate since
changes at one end will decay away almost completely before reaching the other end. Fortunately, cell
membranes have the further property that if the change in potential difference is large enough (we say it
exceeds a threshold), then in a cylindrical configuration such as the axon, a ‘spike’ can be generated which
will actively propagate at full amplitude instead of fading passively. After a spike has been dispatched
to propagate along the axon, there is a refractory period, of the order of a millisecond, during which a
new spike cannot be started along the axon. The details of axonal propagation can be explained by the

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A1.2:1

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

Dendrites Soma Axon with branches and
synaptic terminals

Figure Al.2.1. The ‘basic’ biological neuron. The soma and dendrites act as the input surface; the axon
carries the output signals. The tips of the branches of the axon form synapses upon other neurons or upon
effectors (though synapses may occur along the branches of an axon as well as at the ends). The arrows
indicate the direction of ‘typical’ information flow from inputs to outputs.

Hodgkin-Huxley equation (Hodgkin and Huxley 1952), which also underlies more complex dynamics that
may allow even small patches of neural membrane to act like complex computing elements. At present,
most artificial neurons used in applications are much simpler, and it remains for future technology in neural
computation to more fully exploit these ‘subneural subtleties’,

An impulse traveling along the axon triggers off new impulses in each of its branches, which in
turn trigger impulses in their even finer branches. When an impulse arrives at one of the terminals, after
a slight delay it yields a change in potential difference across the membrane of the cell upon which it
impinges, usually by a chemically mediated process that involves the release of chemical ‘transmitters’
whereby the presynaptic cell affects the postsynaptic cell. The effect of the ‘classical’ transmitters is of two
basic kinds: either excitafory, tending to move the potential difference across the postsynaptic membrane
in the direction of the threshold, or conversely, inhibitory, tending to move the polarity away from the
threshold. Indeed, most neural modeling to date focuses on these excitatory and inhibitory interactions
(which occur on a time scale of a millisecond, more or less, in biological neurons). However, neurons
may also secrete transmitters which modulate the function of a circuit over some quite extended time-
scale. Modeling which takes account of this neuromodulation (Dickinson 1995) will become increasingly
important in future, since it allows cells to change their function—for example, a cell may change from one
which passively responds to stimulation to a pacemaker which spontaneously fires in a rhythmic pattern—
enabling a neural network to dramatically switch its overall mode of activity.

The excitatory or inhibitory effect of the transmitter released when an impulse arrives at a terminal
generally causes a subthreshold change in the postsynaptic membrane. Nonetheless, the cooperative effect
of many such subthreshold changes may yield a potential change at the start of the axon which exceeds
the threshold—and if this occurs at a time when the axon has passed the refractory period of its previous
firing, then a new impulse will be fired down the axon.

Synapses can differ in shape, size, form and effectiveness. The geometrical relationships between
the different synapses impinging upon the cell determine what patterns of synaptic activation will yield
the appropriate temporal relationships to excite the cell. A highly simplified example (figure Al1.2.2)
shows how the properties of nervous tissue just presented would indeed allow a simple neuron, by its very
dendritic geometry, to compute some useful function (cf Rall 1964, p 90). Consider a neuron with four
dendrites, each receiving a single synapse from a visual receptor, so arranged that synapses a, b, ¢ and d
(from left to right) are at increasing distances from the axon hillock (¢). We assume that each receptor
reacts to the passage of a spot of light above its surface by yielding a generator potential which yields
in the postsynaptic membrane the same time course of depolarization. This time course is propagated
passively, and the further it is propagated, the later and the lower is its peak. If four inputs reached a,
b, ¢ and d simultaneously, their effect might be less than the threshold required to trigger a spike there.
However, if an input reaches d before one reaches ¢, and so on, in such a way that the peaks of the four
resultant time courses at the axon hillock coincide, it could well pass the threshold. This then is a cell

A1.2:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The biological and psychological background

Figure A1.2.2. An example, adapted from Wilfrid Rall, of the subtleties that can be revealed by neural
modeling when dendritic properties (in this case, length-dependent conduction time) are taken into account.
The effect of simultaneously activating all inputs may be subthreshold, yet the cell may respond when
inputs traverse the cell from right to left.

which, although very simple, can detect direction of motion across its input. It responds only if the spot of
light is moving from right to left, and if the velocity of that motion falls within certain limits. Our cell will
not respond to a stationary object, or one moving from left to right, because the asymmetry of placement

of the dendrites on the cell body yields preference of one direction of motion over others. We see, then,
that the form (i.e. the geometry) of the cell can have a great impact upon the function of the cell and we
thus speak of form—function relations. Very little work on artificial neurons has taken advantage of subtle
properties of this kind, though Mead’s (1989) study of Analog VLSI and Neural Systems, while inspired E13
by biology, does open the door to technological applications in which surprisingly complex computations
may be executed by single neurons. Such neurons can compute functions that would require networks of
some complexity if one were using the much simpler artificial neurons that are discussed in Chapter B1 B:
of this handbook.

Al.2.2 Psychological motivation and learning rules

Much work in neural computation focuses on the learning rules which change the weights of connections B33
between neurons to better adapt a network to serve some overall function. Intriguingly, the classic
definitions of these learning rules come not from biology, but from the psychological studies of Donald
Hebb and Frank Rosenblatt. The work since the early 1980s which has revealed the biological validity of
variants of the rules they formulated (Baudry et al 1993) is beyond the scope of this handbook. Instead,
since the ‘line of descent’ of neural learning rules may be traced back to this psychological work, we now
provide a brief introduction to the ideas of Hebb and Rosenblatt. Hebb (1949) developed a multilevel
model of perception and learning, in which the ‘units of thought’ were encoded by ‘cell assemblies’, each
defined by activity reverberating in a set of closed neural pathways. Hebb introduced a neurophysiological
postulate (far in advance of physiological evidence): ‘“When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells, such that A’s efficiency as one of the cells firing B, is increased.” (Hebb 1949,
p 62).

The essence of the Hebb synapse is to increase coupling between coactive cells so that they could
be linked in growing assemblies. Hebb developed similar hypotheses at a higher hierarchical level of
organization, linking cognitive events and their recall into ‘phase sequences’—a temporally organized
series of activations of cell assemblies. The simplest formalization of Hebb’s rule is to increase w;; by B33

Aw,’j =ky,~xj (A121)

where synapse w;; connects a presynaptic neuron with firing rate x; to a postsynaptic neuron with firing
rate y;. Hebb’s original learning rule referred exclusively to excitatory synapses, and has the unfortunate
property that it can only increase synaptic weights, thus washing out the distinctive performance of different
neurons in a network. However, when the Hebbian rule is augmented by a normalization rule (e.g. keeping B4.4.1
constant the total strength of synapses upon a given neuron), it tends to ‘sharpen’ a neuron’s predisposition
‘without a teacher’, causing its firing to become better and better correlated with a cluster of stimulus
patterns. This performance is improved when there is some competition between neurons so that if one

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurul Computation release 97/1 Al12:3

Copyright © 1997 IOP Publishing Ltd

Neural Computation: The Background

neuron becomes adept at responding to a pattern, it inhibits other neurons from doing so (competitive
learning, see Rumelhart and Zipser 1986).

B1.5, B6 Rosenblatt (1958) explicitly considered the problem of pattern recognition, where a ‘teacher’ is
essential—for example, placing ‘b’ and ‘B’ in the same category depends on a historico—social convention
known to the teacher, rather than on some natural regularity of the environment. He thus introduced

c1.1.1 perceptrons, neural networks that change with ‘experience’, using an error-correction rule designed to
change the weights of each response unit when it makes erroneous responses to stimuli that are presented

to the network. Consider the case in which a set of input lines feeds a single layer of preprocessors whose

B12 outputs feed into an output unit which is a McCulloch—Pitts neuron. The definition of such a neuron is
given in Chapter B1; here we need only note that it has adjustable weights (wy, ..., w;) and threshold 6

and effects a twofold classification: if the preprocessors feed the pattern x = (x1, ..., xz) to the output
unit, then the response of that unit will be 1 if f(x) = wix;+...+ waxg—0 20, but 0if f(x) < 0. A
simple perceptron is one in which the preprocessors are not interconnected, which means that the network

has no short-term memory. (If such connections are present, the perceptron is called cross-coupled or

B23 recurrent. A recurrent perceptron may have multiple layers and loops back from an ‘earlier’ to a ‘later’
layer.) Rosenblatt (1958) provided a learning scheme with the property that if the patterns of the training

set (i.e. a set of feature vectors, each one classified with a O or 1) can be separated by some choice of
weights and threshold, then the scheme will eventually yield a satisfactory setting of the weights. The
best known perceptron learning rule strengthens an active synapse if the efferent neuron fails to fire when

it should have fired, and weakens an active synapse if the neuron fires when it should not have done so:

Aw,'j =k(Y, -—y,~)xj. (A122)

As before, synapse w;; connects a neuron with firing rate x; to a neuron with firing rate y;, but now Y; is the
‘correct’ output supplied by the ‘teacher.” (This is similar to the Widrow—Hoff (1960) least-mean-squares
model of adaptive control.) Notice that the rule does change the response to x; ‘in the right direction’. If
the output is correct, ¥; = y; and there is no change, Aw;; = 0. If the output is too small, then ¥; —y; > 0,
and the change in w;; will add Aw;;x; = k(¥; — y;)x;x; > O to the output unit’s response to (x, ..., Xa).
Similarly, if the output is too large, Aw;; will decrease the output unit’s response. Thus, there is a sense
in which w + Aw classifies the input pattern x ‘more nearly correctly’ than w does. Unfortunately, in
classifying x ‘more correctly’ we run the risk of classifying another pattern ‘less correctly.” However,
the perceptron convergence theorem shows that Rosenblatt’s procedure does not yield an endless seesaw,
but will eventually converge to a correct set of weights, if one exists, albeit perhaps after many iterations
through the set of trial patterns.

As Rosenblatt himself noted, extension of these classic ideas to multilayer feedforward networks
posed the structural credit assignment problem: when an error is made at the output of a network, how is
credit (or blame) to be assigned to neurons deep within the network? One of the most popular techniques

c12 is called backpropagation, whereby the error of output units is propagated back to yield estimates of how
much a given ‘hidden unit’ contributed to the output error. These estimates are used in the adjustment
of synaptic weights to these units within the network. In fact, any function f : X — Y for which X
and Y are codeable as input and output patterns of a neural network can be approximated arbitrarily well
by a feedforward network with one layer of hidden units. The catch is that very many hidden units
may be required for a close fit. It is often an empirical question whether there exists a sufficiently good
approximation achievable by a network of a given size—an approximation which a given learning rule
may or may not find.

Finally, we note that Hebb’s rule (i) does not depend explicitly on a teaching signal Y, whereas the
perceptron rule (ii) does depend explicitly on a teacher. For this reason, Hebb’s rule plays an important

3.1 role in studies of unsupervised learning or self-organization. However, it should be noted that Hebb’s rule
B3.1 can also play a role in supervised learning or learning with a teacher. This is the case when the neuron
being trained has a feaching input, separate from the trainable inputs, that can be used to pre-emptively fire
c13,Fl4 the neuron. Supervised Hebbian learning is often the method of choice in associative networks. Moreover,
picking up another psychological theme, it is closely related to Pavlovian conditioning: here the response
of the cell being trained corresponds to the conditioned and unconditioned response (R), the ‘training input’
corresponds to the unconditioned stimulus (US), and the ‘trainable input’ corresponds to the conditioned
stimulus (CS). Since the US alone can fire R, while the CS alone may initially be unable to fire R, the
conjoint activity of US and CS creates the conditions for Hebb’s rule to strengthen the US — R synapse,

so that eventually the CS alone is enough to elicit a response.

A1.2:4 Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The biological and psychological background

Acknowledgement

Much of this article is based on the author’s article ‘Part I-Background’ in The Handbook of Brain Theory
and Neural Networks edited by M A Arbib, Cambridge, MA: A Bradford Book/The MIT Press (1995).

References

Arbib M A (ed) 1995 The Handbook of Brain Theory and Neural Networks (Cambridge, MA: Bradford Books/MIT
Press)

Baudry M, Thompson R F and Davis J L (eds) 1993 Synaptic Plasticity: Molecular, Cellular, and Functional Aspects
(Cambridge, MA: Bradford Books/MIT Press)

Dickinson P 1995 Neuromodulation in invertebrate nervous systems The Handbook of Brain Theory and Neural
Networks ed M A Arbib (Cambridge, MA: Bradford Books/MIT Press)

Hebb D O 1949 The Organization of Behavior (New York: Wiley)

Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction
and excitation in nerve J. Physiol. Lond. 117 50044

Mead C 1989 Analog VLSI and Neural Systems (Reading, MA: Addison-Wesley)

Rall W 1964 Theoretical significance of dendritic trees for neuronal input-output relations Neural Theory and Modeling
ed R Reiss (Stanford, CA: Stanford University Press) pp 73-97

Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol.
Rev. 65 386—408

Rumelhart D E and Zipser D 1986 Feature discovery by competitive learning Paralle! Distributed Processing ed
D E Rumelhart and J L McClelland (Cambridge, MA: MIT Press)

Widrow B and Hoff M E Jr 1960 Adaptive switching circuits 7960 IRE WESCON Convention Record 4 96-104

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neurat Computation release 971 A1.2:5

Copyright © 1997 IOP Publishing Ltd

A2

Why Neural Networks?

Paul J Werbos

Abstract

This chapter reviews the general advantages of artificial neural networks (ANNs)
which have motivated their use in practical applications. It explains two alternative
definitions (computer hardware oriented and brain oriented) of an ANN, and provides an
overview of the computational tasks that various classes of ANNs can perform. The
advantages include: (i) access to existing sixth-generation computer hardware with
huge price-performance advantages; (ii) links to brain-like intelligence; (iii) ease of
use; (iv) superior approximation of nonlinear functions; (v) advantages of learning over
tweaking, including learning off-line to be adaptive on-line (in control); (vi) availability
of many specific designs providing nonlinear generalizations of many familiar algorithms.
Among the algorithms and applications are those for image and speech preprocessing,
function maximization or minimization, feature extraction, pattern classification, function
approximation, identification and control of dynamical systems, data compression, and

SO on.

Contents

A2 WHY NEURAL NETWORKS?
A2.1 Summary

A22 What is a neural network?
AlZ3 A traditional roadmap of artificial neural network capabilities

The views presented in this chapter are those of the author and are not necessarily those of the National Science Foundation.

@ 1997 IOP Publishing Ltd' anc'l Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.1 Summary

Paul J Werbos

Abstract
See the abstract for Chapter A2.

Artificial neural networks (ANNs) are now being deployed in a growing number of real-world applications
across a wide range of industries. There are six major factors which (with varying degrees of emphasis)
explain why practical engineers and computer scientists have chosen to use ANNs:

(i) ANN solutions can now be implemented on special-purpose chips and boards which offer considerably
more throughput per dollar and more portability than conventional computers or supercomputers.

(ii) Because the brain itself is made up of neural networks, ANN designs seem like a natural way to try
to replicate brain-like intelligence in artificial systems.

(iii) ANN designs are often much easier to use than the non-neural equivalents—especially when the
conventional alternatives require first-principles models which are not well developed.

(iv) Various universal approximation theorems suggest that ANNs can usually approximate what can be
done with other methods anyway and that the approximation can be as good as desired, if one can
afford the computational cost of the accuracy required.

(v) ANN designs usually offer solutions based on ‘learning’ which can be far cheaper and faster than the
traditional approach of elaborate prior research followed by tweaking applications until they work.

(vi) The ANN literature includes designs to solve a variety of specific tasks—like function approximation,
pattern recognition, clustering, feature extraction, and a variety of novel control-related capabilities—
of importance to many applications. In many cases it provides a workable nonlinear generalization
of familiar linear methods.

Generally speaking, ANNs tend to have greater advantage when data are plentiful but prior knowledge is
limited.

Advantages (i) and (ii) follow directly from the very definition of ANNs discussed in Section A2.2. A2z
Advantages (v) and (vi) are not unique to ANNs; most of the algorithms used to adapt ANNs for specific
tasks can also be used to adapt other nonlinear structures, such as fuzzy logic systems or physical models
based on first principles or econometric models. For example, backpropagation—the most popular ANN
algorithm—was originally formulated in 1974 as a general algorithm, for use across a wide variety of
nonlinear systems, of which ANNs were discussed only as a special case (Werbos 1994). Backpropagation
has been used to adapt several different types of ANN, but applications to other types of structure are now
less common, because it is easier to use off-the-shelf equations or code designed for ANNs. Engineers who
wish to achieve neural-like capabilities using non-neural designs could benefit substantially by learning
about the techniques which have been developed in the neural network field, and subsequently generalized
(for example, see White and Sofge 1992, Werbos 1993).

Some ANN advocates have argued that ANNs can perform some tasks which are beyond the reach
of ‘parametric mathematics’. Some critics have argued that ANNs cannot do anything that cannot be done
just as well ‘using mathematical methods’. Both of these positions are quite naive insofar as ANNs are
simply a subset of what can be done with precise mathematics. Nevertheless, they are an interesting and
important subset, for the reasons given above.

Many of us believe that the greatest value of ANN research, in the long term, will come when we use
it to go back to the brain itself, to develop a more functional, engineering-based understanding of the brain

© 1997 TOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.1:1

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

as an engineering device. This belief is shared even by many researchers who believe that ‘consciousness’
in the largest sense includes more than just an understanding of the brain (Levine and Elsberry 1996,
Pribram 1994).

References

Levine D and Elsberry W (ed) 1996 Optimality in Biological and Artificial Networks (Hillsdale, NJ: Erlbaum)

Pribram K (ed) 1994 Origins: Brain and Self-Organization (Hillsdale, NJ: Erlbaum)

Werbos P 1993 Elastic fuzzy logic: a better fit to neurocontrol and true intelligence J. Int. Fuzzy Syst. 1 365-77

——1994 The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting
(New York: Wiley)

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches (New
York: Van Nostrand)

A2.1:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.2 What is a neural network?

Paul J Werbos

Abstract
See the abstract for Chapter A2.

A2.2.1 Introduction

There are several possible answers to the question,"What is a neural network?” Years ago, some people
would answer the question by simply writing out the equations of one particular artificial neural network
(ANN) design. However, there are many different ANN designs, oriented towards very different kinds of
tasks. Even within the field itself few researchers appreciate how broad the range really is.

A2.2.2 The US National Science Foundation neuroengineering program: a case study

The example of the US National Science Foundation (NSF) neuroengineering program is a useful case
study of the varying motivations and concepts behind ANN research. At NSF, the decision to fund a
program in neuroengineering was motivated by two very different-looking definitions of what the field is
about. Fortunately, in practice, the two definitions ended up including virtually the same set of research
efforts. One definition was motivated by computer hardware considerations, and the other by links to the
brain.

A2.2.3 Artificial neural networks as sixth-generation computers

The neuroengineering program at NSF started out as an element of the optical technology program. It was
intended to support a vision of sixth-generation computing, illustrated in figure A2.2.1.

Most people today are very familiar with fourth-generation computing, illustrated on the left-hand side
of the figure. Ordinary personal computers and workstations are examples of fourth-generation computing.
In that scheme, there is one CPU chip inside which all the hard-core computing work is done. The CPU
processes one instruction at a time. Its capabilities map nicely into familiar computer languages like
FORTRAN, BASIC, C or SMALLTALK (in historical order). The key breakthroughs underlying fourth-
generation computing were the invention of the microchip (co-invented by Federico Faggin of CalTech)
and the development of VLSI technology. E1.3, E1.43

A decade or two ago, many computer scientists became excited by the concept of massively parallel
processing (MPP) or fifth-generation computing, illustrated in the middle of the figure. In MPP, hundreds
or even millions of fully featured CPU chips are inserted into a single computer, in the hope of increasing
computational throughput a hundred-fold or a million-fold. Unfortunately, MPP computers cannot just run
conventional computer programs in FORTRAN or C in a straightforward manner. Therefore, governments
in the United States and Japan have funded a large amount of research into high-performance computing,
teaching people how to write computer programs within that subset of algorithms which can exploit the
power of these ‘supercomputers’.

In the late 1980s, researchers in optical technology came to NSF and argued that optical computing
offers the hope of computational power a thousand or even a million times larger than fifth-generation
computing. Since the computing industry is a huge industry, this claim was considered very carefully.
NSF consulted with Carver Mead—the father of VLSI—and his colleague, Federico Faggin, among others.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.2:1

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

‘j %mm’
....................... NAJ"@

Fourth Generation Fifth Generation Sixth Generation

Figure A2.2.1. Three generations of computer hardware.

Mead and Faggin claimed that similar capabilities could be achieved in microchips, if one were willing
to put hundreds or millions of extremely simple processing units onto a single chip. Thus sixth-generation
capability could be implemented either in optical technology or in VLSI. (Michael Conrad of Wayne State
University in Detroit has studied a third alternative, using molecular computing.)

The skeptics argued that sixth-generation computers can only run an extremely small subset of all
possible computer programs. They would not represent a massive improvement in productivity for the
computing industry as a whole, because they would be useful only in a few very small niche applications.
They would not be suitable for truly generic, general-purpose computing. Carver Mead replied that the
human brain itself is based on an extremely massive parallelism, using processors which—like the elements
of optical hologram processors—perform the same ‘simple’ operations over and over again, without running
anything at all like FORTRAN code. The human brain appears to demonstrate very generic capabilities;
it is not just a niche machine. Therefore, he argued, sixth-generation computers should also be able to
achieve truly generic capabilities. Mead himself has made a major effort to follow through on these
opportunities (Mead 1988).

In evaluating this argument, NSF concluded that Mead’s argument was essentially correct, but that
extensive research would be needed in order to convert the argument into a working engineering capability.
More precisely, they concluded that research would be needed to actually develop algorithms or designs, to
perform useful generic computational tasks consistent with the constraints of sixth-generation computing.
The neuroengineering program was initiated in 1988 to do precisely that. For the purposes of this program,
ANNs were defined as algorithms or designs of this sort.

The concept of sixth-generation hardware was largely theoretical in 1988. A few years later, there
was a great variety of experimental ANN boards and chips available; however, few of these were of
direct practical interest, because of limited throughput, reliability or availability. But by 1995, there
were a number of practical, reliable high-throughput workstations, boards and chips available on the
commercial market—boards available for $5000 or less (retail) and chips available, in some cases, at
prices under $10 (wholesale). A few examples follow. Adaptive Solutions Inc, of Beaverton, Oregon,
has sold workstations—using digital ANN chips able to implement a variety of ANN designs—which
benchmark 100 times as fast as a Cray supercomputer, on the image recognition problems which are
currently the main source of funding for the company; they also provide a PC board based on a SIMD
architecture. Accurate Automation Corporation of Chattanooga, Tennessee, sells an MIMD board which is
slower but more flexible, originally developed for control applications. HNC of San Diego, California, has
won a Babbage prize for breakthroughs in price-performance ratios in a neural-oriented array processor
workstation. Among the many interesting chips are those designed by Motorola, Adaptive Solutions, Harris
Semiconductor (motivated by NASA system identification applications) and a collaboration between Ford
Motor Company and the Jet Propulsion Laboratory of Pasadena, California. Some of the chip designers
have distributed software simulators of their designs to researchers; such simulators make it possible for

A2.2:2 Handbook of Neural Computation telease 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

What is a neural network?

engineering researchers, with knowledge of neural networks and applications but not of hardware as such,
to develop and test designs which could be implemented directly in hardware. One should expect even
more powerful hardware from a larger set of suppliers to be developed each year; however, the results
achieved by 1995 were already enough to make sixth-generation computing a realistic option for practical
engineers.

The implications of this are very great. Suppose that you have an existing, conventional algorithm to
perform some task like control or pattern recognition—tested on a mainframe or supercomputer. Suppose
that your algorithm is not widely used in industry, because of its cost or physical demands. (For example,
people do not put mainframes on cars or dedicated supercomputers in every workstation of a factory.) If
you develop an equivalent ANN of equal capability and complexity, then these ANN chips and boards
would make it far easier for people to actually use your work. In some applications—such as spacecraft—
chips could be sent into orbit, and then reprogrammed (virtually rewired) by telemetry, to permit a complete
updating of their functions when desired, without the need to replace hardware.

Some researchers believe in the possibility of a seventh-generation style of computing, exploiting
quantum effects such as Bell’s theorem. Most of the work in true quantum computing today is highly
abstract, with little emphasis on useful generic computing tasks; however, H John Caulfield of Alabama
A&M University has done preliminary work which might have practical implications involving optical
computing and neural networks (Caulfield 1995, Caulfield and Shamir 1992). A few further possibilities
along these lines are discussed in the author’s chapter in Levine and Elsberry (1996), and in Conrad (1994).
In general, we would expect the main computational advantage of quantum computing to involve some
exploitation of massive parallelism involving simple operations, as with optical computing; thus ANN
approaches may be crucial to practical success in quantum computing.

Most successful projects in neuroengineering do not focus at all on the chips or boards at first. They
begin with extensive simulations on PCs or workstations, along with some mathematical analysis and a
very aggressive effort to understand and assimilate designs developed elsewhere. After some success in
simulations, they proceed to tests on real-world plants or data, which they use to refine their designs and to
justify building up a more modular, flexible software system. Then, after there is success on a real-world
plant, market forces almost always encourage them to look more intensively at chips and boards.

A2.2.4 Artificial neural networks as brain-like designs or circuits

Figure A2.2.2 represents a different definition of neuroengineering—the definition used at the actual start
of the NSF program. The figure emphasizes the link to neuroscience, as well as the difference between
neuroscience and neuroengineering. In neuroscience and psychology, one tries to understand what the
capabilities of the brain actually are. Of special interest to us are the capabilities of the brain in solving
difficult computational problems important to engineering. In neuroscience, one also studies how the
circuits or architectures in the brain give rise to these capabilities.

NEUROSCIENCE NEUROENGINEERING
CAPABILITY = — = e e e » PROBLEM
ARCHITECTURE \«== =~ === To—————— ALGORITHM/ARCHITECTURE
APPLICATIONS THEORETICAL
EVALUATIONS

Figure A2.2.2, Neuroscience and neuroengineering. Neuroengineering tries to develop algorithms and
architectures, inspired by what is known about brain functioning, to imitate brain capabilities which are not
yet achieved by other means. By demonstrating algorithm capabilities and properties, it may raise issues
which feed back to questions or hypotheses for neuroscience.

In neuroengineering, we do something different. We try to replicate capabilities of the brain, in a
practical engineering or computational context. We try to exploit what is known about how the brain
achieves these capabilities, in developing designs which are consistent with that knowledge. (We now

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.2:3

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

use the word ‘design’ rather than ‘algorithm’ to emphasize the fact that the same equations may be
implemented sometimes in software and sometimes as chip architectures.) We then test and improve these
designs, based on real-world applications, simulations, and mathematical analysis drawing on a variety of
disciplines. Finally, there can be a feedback from what we have learned, allowing us to understand the
brain in a new light, hopefully deriving new insights and designs in the process.

Even at this global level, we can see some issues which lead to diversity or even conflict in the
neural network community. There are two extreme approaches to developing ANN designs: (i) bottom-up
efforts to copy what is currently known about biological circuits directly into chips, sometimes without
engineering analysis along the way; (ii) totally engineering-based efforts, based on the idea that today’s
knowledge of the brain is very partial, and that ‘brain-like circuitry’ now requires little more than limiting
ourselves to what we could implement on sixth-generation hardware. In informal discussions, people
sometimes compare ‘paying biologists to teach engineers how to do engineering’ versus ‘paying engineers
to teach biologists how to do biology’.

The NSF program in neuroengineering emphasizes the engineering approach, because it is hard
to imagine how a purely bottom-up biological approach, without new engineering-based mathematical
paradigms, could replicate or explain something as global as ‘intelligence’ in the brain (Pribram 1994),
let alone ‘consciousness’ in the broadest sense (Levine and Elsberry 1996). Almost all of the useful basic
designs in the ANN field resulted from some sort of biological inspiration, and biology still has a great
deal to tell us; however, we have now reached the point where our ability to learn useful new things
from biology depends on the participation of people who appreciate how much has already been learned
in an engineering context. US government funding is generally available for such collaborations, but it
is difficult to locate competent proposals combining both key elements: firstly, engineers with a deep
enough understanding to be truly relevant and, secondly, wet, experimental biologists willing to take a
novel approach to fundamental issues.

Whatever the limits of today’s ANN designs, the brain still provides an existence proof that far more
is possible and that research to develop more powerful designs can, in fact, succeed.

References

Caulfield H J 1995 Optical computing benefits from quantum mechanics Laser Focus World May 181-4

Caulfield H J and Shamir J 1992 Wave particle duality processors: characteristics, requirements and applications
J. Opt. Soc. Am. A7 1314-23

Conrad M 1994 Speedup of self-organization through quantum mechanical parallelism On Self-Organization: An
Interdisciplinary Search for a Unifying Principle ed R K Mishra, D Maaz and E Zwierlein (Berlin: Springer)

Levine D and Elsberry W (eds) 1996 Optimality in Biological and Artificial Networks (Hillsdale, NJ: Erlbaum)

Mead C 1988 Analog VLSI and Neural Systems (Reading, MA: Addison-Wesley)

Pribram K (ed) 1994 Origins: Brain and Self-Organization (Hillsdale, NJ: Erlbaum)

A2.2:4 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

A2.3 A traditional roadmap of artificial neural network
capabilities

Paul J Werbos

Abstract
See the abstract for Chapter AZ.

Practical uses of artificial neural networks (ANNs) all depend on the fact that ANNs can perform specific
computational tasks important to engineering or to other economic sectors. Unfortunately, popularized
accounts of ANNs often make it sound as though ANNs only perform one or two fundamental tasks, and
that the rest is ‘mere application’. This is highly misleading.

In 1988, a broad survey of ANNs would have shown the existence of three basic types of design,
still in use today:

(i) hard-wired designs to perform highly specific, concrete tasks, such as image preprocessing by a Ei
‘silicon retina’;

(ii) designs to perform static or combinatorial optimization—the minimization or maximization of a F1.3
complicated function of many variables;

(iii) designs based on learning, where the weights or parameters of an ANN are adjusted or adapted over B3
time, so as to permit the system to perform some kind of generic task over a wide range of possible
applications.

Learning designs now account for the bulk of the field, but the other two categories still merit some
discussion

A23.1 Hard-wired designs

The hard-wired designs usually try to mimic the details of some brain circuit, complete with all the
connections and all the parameters as they exist in an adult brain without further learning. Major
examples would be ‘silicon retinas’ (used for preprocessing images, as in Mead 1988), ‘silicon cochleas’
(for preprocessing speech data), and artificial controllers for hexapod robots modeled on studies of the
cockroach. Grossberg, like Mead, has put major efforts into developing something like a silicon retina, of
great interest to the US Navy, by building on more detailed biological research in his group (Gaudiano
1992),

Even the brain itself uses relatively fixed preprocessors and postprocessors, to simplify the job of
the higher centers, based on millions of years of evolution and experience with certain very specific,
concrete tasks. Most of the current work on wavelets—which are often used as preprocessors coming
before ANNs—could be seen as belonging to this category; however, even wavelet analysis can be made
adaptive using neural network methods (Szu et al 1992).

A2.3.2 Static optimization

Years ago, static optimization based on Hopfield networks accounted for perhaps a quarter of all efforts Fi3,B13
towards ANN applications. (Grossberg had discussed the same class of network in earlier years, but
Hopfield proposed its use on optimization problems. See the chapter by Hopfield in Lau (1992).) The
key idea here was that Hopfield networks always settle down into a (local) minimum of some ‘energy’

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.3:1

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

function, a function which depends on the weights in the network. By choosing the weights and the
transfer functions in a clever manner, the user can make the network minimize some desired function
of many inputs. This idea was especially natural for people trying to minimize quadratic functions of
many variables with constraints. For example, many researchers envisaged using Hopfield networks to
maximize very complex likelihood functions taken from image segmentation and image analysis research;
they envisaged high-quality segmentation on a chip.

This approach worked very well on toy problems, including toy versions of the traveling salesman
problem; however, it encountered great difficulty in scaling up to problems of more realistic scale, With
larger problems, there were issues of numerical efficiency and the difficulty of finding a ‘good’ energy
function. Even with smaller problems, these kinds of networks frequently have many, many local minima
or ‘attractors’. At present, people in industry facing very large static optimization problems still tend to use
classical methods; see the chapter by Shanno in Miller et al (1990). When there are many local minima,
it was popular a few years ago to use simulated annealing or modifications of the Hopfield network (such
as Szu’s ‘Cauchy machine’, Scheff and Szu 1987) to provide a kind of random element to help the system
escape from local minima. Currently, it is more popular to use genetic algorithms for this purpose.

Unfortunately, genetic algorithms also have difficulties in scaling to larger problems (except when
there is a special structure present). There has been a lot of discussion of ANN-genetic hybrids, which
could help overcome the scaling problem, but the author is not aware of any large-scale applications to
static optimization problems or of any hybrid designs which are truly suitable for this purpose. In any
case, it seems very unlikely that neural circuits in the brain would use this particular way of injecting
noise. For a credible alternative view of these issues, see the work of Michael Conrad of Wayne State
University (Conrad 1993, 1994, Smalz and Conrad 1994),

Many researchers believe that Hopfield networks or Hopfield-like networks could perform much better
in optimization, if only the users of these networks could be more ‘clever’, somehow, in specifying their
weights or connections. But from a practical point of view, it is probably not realistic to demand higher
levels of ‘cleverness’ than engineers have displayed in past efforts to use these networks. Fortunately, it
is not necessary to rely on cleverness alone when solving large problems. For example, methods which
make some use of Kohonen’s feature-extraction ANNs have demonstrated accuracy comparable to that of
classical methods on a number of large-scale routing and optimization problems; see the chapter by El
Ghaziri in Kohonen et al (1991). Clearly this approach is worthy of further pursuit.

More generally, it is possible to use learning methods to derive useful weights in a more reliable

8331 manner for Hopfield networks. When Hopfield networks are adapted by use of the well known Hebbian
methods, they act as associative memories, which are not suitable for solving complex optimization
problems. However, it is also possible to adapt them so as to minimize error and solve problems
which cannot be solved by more popular feedforward networks. Hopfield networks are a special case
of simultaneous recurrent networks (SRNs). See White and Sofge (1992), Chapter 3, and Werbos (1993)
for relatively straightforward discussions of how to adapt the weights in such networks so as to minimize
error. This is a promising area for future research, but the author is not aware of any working examples
as yet in static optimization,

In summary, there are several examples of state-of-the-art performances on large problems by
Kohonen-related networks. There is reason to hope for better performance and reliability with Hopfield-like
networks in the future, with further research exploiting learning and noise injection.

A2.3.3 Designs based on learning

The vast bulk of the neural network field today is based on designs which learn to perform tasks over time.
Learning can be used to solve extremely complex problems, especially when the human user understands
the art of learning in stages, using a schedule of related tasks of increasing difficulty.

Many authors have argued that ‘intelligence’ in the true sense of the word can never be achieved by
simply expanding our library of computational algorithms tailored to narrow, application-specific tasks.
Instead, ‘intelligence’ implies the ability of a computational system to learn the algorithms itself, from
experience, based on generalized learning principles which can be used in a wide variety of applications.
Many authors have argued at length that a deeper understanding of learning must be the foundation of any
really scientific explanation of intelligence (Hebb 1949, Pribram 1994, Werbos 1994).

But what kinds of generic tasks can ANNs learn to perform? The ANN field has traditionally used a
three-fold taxonomy to describe these tasks:

A2.3:2 Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A traditional roadmap of artificial neural network capabilities

e Supervised learning
e Unsupervised learning
¢ Reinforcement learning.

In all three areas, there is a traditional choice between two modes of learning:

e ‘off-line learning’, where all the observations in a database of ‘training data’ are analyzed together,
simultaneously;

e ‘on-line learning’, where data are fed into the network one observation at a time. The weights or
parameters in the network are changed after each observation, but there is no other record kept of the
observation. The system then goes on to the next observation, and so on.

A2.3.3.1 Supervised learning

Intuitively, in on-line mode, supervised learning works as follows. Whenever we make an observation, B3.1
we first see a set (or vector) of input values X. We plug in these values as inputs to our ANN and
then calculate the outputs of the ANN using the weights or parameters inherited from before. Then, in

the training period, we also obtain a specification of exactly what the outputs of the ANN should have
been for that observation. (For example, the inputs might represent the pixels of an image containing a
handwritten digit; the desired output might be a coded representation of the correct classification of the
digit.) We then adjust the weights of the ANN so as to make its actual output more like the desired output

in the future (see figure A2.3.1).

x FUTURE,—— & ¥
x(T) y(T)
x(1) y(1)

Figure A2.3.1. The supervised learning task.

Many researchers will immediately recognize the similarity between this figure and the well
established, well known method called multiple regression or ordinary least squares. As in multiple
regression, supervised learning tries to estimate a set of weights which represent the relationship between
the input variables X and the dependent or target variables Y, but supervised learning looks for the
best nonlinear relationship, not just the best linear relationship. It uses ANN forms which are capable
of approximating any smooth nonlinear relationship (Barron 1993). Also, it offers numerical techniques
which are faster than those generally used in statistics. Conventional statistics normally use the offline
mode; however, the on-line mode is more useful in many applications.

Nevertheless, the theoretical issues involved in supervised learning (apart from learning speed) are
indeed quite close to those in statistics. The best current research in supervised learning draws heavily
on the literature in statistics—including the literature on issues like robustness and multicolinearity, which
are neglected all too often in conventional statistical analysis.

Computer tools for supervised learning are now very widespread, though of varying quality. Most of
the real-world applications of ANNs today are based at least in part on supervised learning. Supervised
learning may be thought of as a tool for function approximation, or as a tool for statistical pattern
recognition. Former post office officials have told me that all of the best ZIP-code recognizers today
use fairly standard ANNs for digit recognition. This is a remarkable achievement in such a short time,
relative to a field (statistical pattern recognition) which had already been highly developed and intensively
funded long before ANNs became widely known. Also, this is far from an isolated example; fortunately,
there are other sections in this handbook which review some of the many, many applications in this

© 1997 1I0P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.3:3

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

category. There is substantial opportunity to develop even better designs for supervised learning (Werbos
1993), but the tools available today are already quite useful.

A2.3.3.2 Unsupervised learning

On the other hand, supervised learning is clearly absurd as a model of what the human brain does as a
whole system. There is no one telling us exactly what to do with every muscle of our body every moment

B3.1 of the day. The term unsupervised learning was coined in the 1980s to describe ANN designs which do
not require that kind of detailed guidance or feedback.

Intuitively, in online mode, unsupervised learning works as follows. Whenever we make an
observation, we first see a vector of input values X. We plug these values in as inputs to our ANN,
calculate the outputs of our ANN using weights inherited from before, then adapt or adjust the weights
without using any external information about how ‘good’ the outputs were.

From an engineering viewpoint, supervised learning is a well defined task—the task of matching
or predicting some externally-specified target variables. Unsupervised learning as such is not a well
defined task. Some of the designs used in unsupervised learning originated as biological models, models
which were formulated well before their value as computational systems was known; fortunately, many of
these designs did turn out to have important ‘emergent properties’, computational capabilities which were
discovered only after the models were studied further (see Pribram 1994 for more elaborate discussions
of the related concepts of self-organization, chaos and so on).

As a practical matter, unsupervised learning includes useful designs to perform a variety of tasks—

C1.3, Fl4 most notably, feature extraction, clustering and associative memory. In feature extraction, one maps an
input vector X into another vector R, which tries to represent the same useful information in a more useful
form—usually a more compact form. If the vector R does have fewer components than the original input
vector, then this can be used as a data compression scheme. In any event, it can also be used to provide
more useful, more tractable input either to a supervised learning scheme or to some other downstream
information processor. Clustering offers similar benefits.

Some of the ANN designs for clustering and feature extraction are based more on experimentation
and intuition than on mathematical theory. However, classical methods for clustering, found in standard
statistical packages, are usually even more ad hoc in nature; they tend to require arbitrary choices of distance
measures and sequencing (Duda and Hart 1975). At least some of the ANN designs do provide something
like adaptive distance measures to permit a more rational clustering strategy, which is occasionally useful.

Some of the ANN designs for feature extraction are equivalent (in the limit) to conventional principal
components analysis (PCA), the most popular classical method for data-based feature extraction. However,
PCA itself is a linear design, and it does not represent a true stochastic model (Joreskog and Sorbom
1984). There is another class of ANN design which is truly nonlinear, but approximates PCA in the
linear special case; we might say that these ‘autoassociator’ designs are the nonlinear generalization
of PCA (Werbos 1988, Hinton and Beckman 1990, Fleming and Cottrell 1990). These designs have
performed reasonably well in moderate-sized applications like diagnostics in aerospace vehicles and
chemical plants; however, they have not performed as well in complex data compression applications,
and the issue of statistical consistency is a concern. There are other ANN designs—like Kohonen’s

c21.1 self-organizing maps (see Kohonen in Lau 1992) and the stochastic encoder/decoder/predictor (White and
Sofge 1992, Chapter 13)—which are firmly rooted in stochastic analysis; they may be viewed as nonlinear
generalizations of factor analysis, which is the standard method used by statisticians to model the structure
of probability distributions for vectors containing many continuous variables (Joreskog and Sorbom 1984).
Both of these have had significant real-world applications, but the details are proprietary in the cases I am
most familiar with.

The distinction between supervised and unsupervised systems has been confused at times in the
literature, in part because of confusion between systems and subsystems, and in part because of cultural

c221 differences within the field. For example, there is a design called ARTMAP which is used to perform
supervised learning tasks, using components based on unsupervised learning designs; the system as a
whole is worthy of evaluation in the context of supervised learning—because it is a competitor in that
market—even though its components are unsupervised (Carpenter et al 1992). Heteroassociative memories
are similar. On the other hand, the autoassociators mentioned above use a supervised learning approach
on the inside in order to solve a problem in unsupervised learning; the design as a whole is unsupervised.
The human brain itself clearly has a structure of modules and submodules which is far more complex

A2.3:4 Handbook of Neural Computation release 97/1 ®© 1997 1IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A traditional roadmap of artificial neural network capabilities

than anything which has ever been implemented as an ANN; thus it would not be surprising if the brain
included supervised components as part of a more complex architecture.

A2.3.3.3 Reinforcement learning

Many of us believe that the concept of unsupervised learning is just as absurd as the concept of supervised
learning, as a description of what the brain does as a whole system. Intermediate between supervised
learning and unsupervised learning is another classical area called reinforcement learning, illustrated in c3

figure A2.3.2.

U

Figure A2.3.2. The reinforcement learning task. (From Miller et a/ 1990 with permission of MIT Press.)

Intuitively, in online mode, reinforcement learning works as follows. When we make an observation,
we first see a vector of inputs, X. We plug X into our ANN, calculate the outputs of the ANN, then
obtain from the outside a global evaluation U of how good the outputs were. Instead of obtaining rotal
feedback (as in supervised learning) or no feedback (as in unsupervised learning), we obtain a moderate
degree of feedback. In the modern formulation of reinforcement learning, it is also assumed that U (z) at
time ¢ will depend on the observed variables X, which in turn depend on actions taken at an earlier time;
the goal is to maximize U over future time, accounting for the impact of present actions on future U.
An example of such a system might be an ANN which learns how to operate a factory so as to maximize
profit over time, or to minimize fuel consumption or pollution or a weighted sum of both.

In figure A2.3.2, we see a cartoon figure representing our ANN system. The cartoon figure has
control over certain levers, forming a vector u, and gets to see certain input information X. The cartoon
figure starts out with no knowledge about the causal relationships between u, X and U. Its job is to
learn these relationships, and come up with a strategy of action which will maximize the reward criterion
U over time. This is the problem or task of reinforcement learning. Reinforcement learning maps very
well into many serious theories and models of human and animal behavior (Levine and Elsberry 1996). It
also maps directly into the problem of optimizing performance over time, a fundamental task considered
in modern control theory and decision analysis. Modern work on reinforcement learning has medified
the definition of the problem very slightly, to allow for knowledge of U as a function of X, for reasons
beyond the scope of this section. Some of the very largest, socially important applications of ANNs have
come precisely in this area.

Reinforcement learning should not be interpreted as an alternative way to perform supervised learning
tasks. Rather, it is a large collection of alternative designs aimed at performing a different task. These
designs typically contain components which are supervised, but the designs as a whole are neither
supervised nor unsupervised.

Reinforcement learning is only one example—though perhaps the most important example—of neural
network designs for control. Problems in decision and control can be resolved into a number of specific
tasks—including prediction over time or system identification by ANN—which are just as fundamental,
in their own way, as the task of supervised learning. In the last few years, there has been a tremendous
growth in research, developing new generic designs for use on these generic tasks. Decision and control

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 A2.3:5

Copyright © 1997 IOP Publishing Ltd

Why Neural Networks?

may itself be seen as a kind of integrating framework—Tlike the human brain itself—which encourages us
to combine a wide variety of subtasks and components into a single system, which serves as a unifying
framework. This requirement for unification and integration is one of the key factors which distinguishes
the ANN approach from earlier styles of research.

References

Barron A R 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Info. Theory
39 93045

Carpenter G A, Grossberg S, Markuzon N, Reynolds J H and Rosen D B 1992 Fuzzy ARTMAP: a neural network
architecture for incremental supervised learning of analog multidimensional maps /IEEE Trans. Neural Networks
3 698-713

Conrad M 1993 Emergent computation through self-assembly Nanobiology 2 5-30

Conrad M 1994 Speedup of self-organization through quantum mechanical parallelism On Self-Organization: An
Interdisciplinary Search for a Unifying Principle ed R K Mishra, D Maaz and E Zwierlein (Berlin: Springer)

Duda R O and Hart P E 1975 Pattern Classification and Scene Analysis (New York: Wiley)

Fleming M K and Cottrell G W 1990 Categorization of faces using unsupervised feature extraction Proc. Int. Joint
Conf. on Neural Networks (San Diego, CA) (New York: IEEE Press) p 1I-65-70

Gaudiano P 1992 A unified neural network model of spatiotemporal processing in A and Y retinal ganglion cells II:
temporal adaptation and simulation of experimental data Biol. Cybern. 67 23-34

Hebb D O 1949 The Organization of Behavior (New York: Wiley)

Hinton G E and Beckman S 1990 An unsupervised learning procedure that discovers surfaces in random-dot
stereograms Proc. Int. Joint Conf. on Neural Networks (Washington, DC) (Hillsdale, NJ: Erlbaum) I-218-222

Joreskog K G and Sorbom D 1984 Advances in Factor Analysis and Structural Equation Models (Lanham, MD:
University Press of America). See also the classic but out-of-print text by Maxwell and Lawley Factor Analysis
as Maximum Likelihood Method

Kohonen T, Makisara K, Simula O and Kangas J (eds) 1991 Artificial Neural Networks vol 1 (New York: North-
Holland)

Lau C G (ed) 1992 Neural Networks: Theoretical Foundations and Analysis (New York: IEEE Press)

Levine D and Elsberry W (eds) 1996 Optimality in Biological and Artificial Networks (Hillsdale, NJ: Erlbaum)

Mead C 1988 Analog VLSI and Neural Systems (Reading, MA: Addison-Wesley)

Miller W T, Sutton R and Werbos P (eds) 1990 Neural Networks for Control (Cambridge, MA: MIT Press)

Pribram K (ed) 1994 Origins: Brain and Self-Organization (Hillsdale, NJ: Erlbaum)

Scheff K and Szu H 1987 1-D optical Cauchy machine infinite film spectrum search Proc. IEEE Int. Conf. on Neural
Networks (New York: IEEE Press)

Smalz R and Conrad M 1994 Combining evolution with credit apportionment: a new learning algorithm for neural
nets Neural Networks 7 341-51

Szu H H, Telfer B and Kadambe S 1992 Neural network adaptive wavelets for signal representation and classification
Opt. Eng. 31 1907-16

Werbos P 1988 Backpropagation: past and future Proc. Int. Conf. on Neural Networks (New York: IEEE Press)
1-343-353

——1993 Supervised learning: can it escape its local minimum Proc. WCNN93 (Hillsdale, NJ: Erlbaum)

——1994 The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting
(New York: Wiley)

White D A and Sofge D A (eds) 1992 Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches (New
York: Van Nostrand)

A2.3:6 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

PART B

FUNDAMENTAL CONCEPTS OF NEURAL
COMPUTATION

Bl THE ARTIFICIAL NEURON
Michael A Arbib

B1.1 Neurons and neural networks: the most abstract view
B1.2 The McCulloch-Pitts neuron

B1.3 Hopfield networks

B1.4 The leaky integrator neuron

B1.5 Pattern recognition

B1.6 A note on nonlinearity and continuity

B1.7 Variations on a theme

B2 NEURAL NETWORK TOPOLOGIES

B2.1 Introduction
Emile Fiesler

B2.2 Topology
Emile Fiesler

B2.3 Symmetry and asymmetry
Emile Fiesler

B2.4 High-order topologies
Emile Fiesler

B2.5 Fully connected topologies
Emile Fiesler

B2.6 Partially connected topologies
Emile Fiesler

B2.7 Special topologies
Emile Fiesler

B2.8 A formal framework
Emile Fiesler

B2.9 Modular topologies
Massimo de Francesco

B2.10 Theoretical considerations for choosing a network topology
Maxwell B Stinchcombe

B3 NEURAL NETWORK TRAINING
James L Noyes

B3.1 Introduction

B3.2 Characteristics of neural network models
B3.3 Learning rules

B3.4 Acceleration of training

B3.5 Training and generalization

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

B4 DATA INPUT AND OUTPUT REPRESENTATIONS
Thomas O Jackson

B4.1 Introduction

B4.2 Data complexity and separability
B4.3 The necessity of preserving feature information
B4.4 Data preprocessing techniques
B4.5 A ‘case study’ review

B4.6 Data representation properties
B4.7 Coding schemes

B4.8 Discrete codings

B4.9 Continuous codings

B4.10 Complex representation issues
B4.11 Conclusions

B5 NETWORK ANALYSIS TECHNIQUES

B5.1 Introduction
Russell Beale

B5.2 Iterative inversion of neural networks and its applications
Alexander Linden

B5.3 Designing analyzable networks
Stephen P Luttrell

B6 NEURAL NETWORKS: A PATTERN RECOGNITION PERSPECTIVE
Christopher M Bishop

B6.1 Infroduction

B6.2 Classification and regression
B6.3 Error functions

B6.4 Generalization

B6.5 Discussion

Handbook of Neural Computation release 97/1 © 1997 TIOP Publishing Ltd and Oxford University Press
Copyright © 1997 IOP Publishing Ltd

B1

The Artificial Neuron

Michael A Arbib

Abstract

This chapter first describes the basic structure of a single neural unit, briefly relating
it to the general notion of a neural network. The interior workings of simple artificial
neurons—especially the discrete-time McCulloch—Pitts neuron and continuous-time leaky
integrator neuron—are then presented, including the general properties of threshold
functions and activation functions. Finally, we briefly note that there are many alternative
neuron models available.

Contents

B1 THE ARTIFICIAL NEURON

B1l.1 Neurons and neural networks: the most abstract view
B1.2 The McCulloch-Pitts neuron

B1.3 Hopfield networks

B1.4 The leaky integrator neuron

B1.5 Pattern recognition

B1.6 A note on nonlinearity and continuity

B1.7 Variations on a theme

Much of this chapter is based on the author’s overview article ‘Part I-Background’ in The Handbook of Brain Theory and Neural
Networks edited by M A Arbib, Cambridge, MA: A Bradford Book/The MIT Press (1995).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.1 Neurons and neural networks: the most abstract
view

Michael A Arbib

Abstract
See the abstract for Chapter Bl.

There are many types of artificial neuron, but most of them can be captured as formal objects of the kind
shown in figure B1.1.1. There is a set X of signals which can be carried on the multiple input lines x,
..., X, and single output line y. In addition, the neuron has an internal state s belonging to some state

set S.

X, \

: @—»y
v

Figure B1.1.1. A ‘generic’ neuron, with inputs xj, ..., x,, output y, and internal state s.

A neuron may be either discrete-time or continuous-time. In other words, the input values, state and
output may be given at discrete times t € Z = {0, 1, 2, 3, ...}, say, or may be given at all times ¢ in some
interval contained in the real line R. A discrete-time neuron is then specified by two functions which
specify (i) how the new state is determined by the immediately preceding inputs and (in some neuron
models, but by no means all) the previous state, and (ii) how the current output is to be ‘read out’ from
the current state:

The next-state-function f : X" x § — S,s(t) = f(x1¢¢ = 1), ..., x,(t — 1),s(t — 1)); and
The output function g - S — Y, y(t) = g(s(1)).

As we shall see in later sections, popular choices take the signal-set X to be either a binary set—{0, 1}
is the ‘classical choice’, though physicists, inspired by the ‘spin-glass’ analogy, often use the spin-down,
spin-up set denoted by {—1, +1}—or an interval of the real line, such as [0, 1]; while the state-set is often
taken to be R itself. A continuous-time neuron is also specified by two functions f : X" x § — S, and
g:8 = Y, y(t) = g(s(#)), but now f serves to define the rate of change of the state, that is, it provides
the right-hand side of the differential equation which defines the state dynamics:

ds(t)
dt

Clearly, § at least can no longer be a discrete set. A popular choice is to take the signal-set X to be
an interval of the real line, such as [0, 1], and the state-set to be R itself,

The focus of this chapter will be on motivating and defining some of the best known forms for f
and g. But first it is worth noting that the subject of neural computation is not interested in neurons as

= fOa(®), ... X (1), 5() .

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 Bl1.1:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

a4 3
&~
. —_— >
input output
. —
lines lines
>
\ y

Figure B1.1.2. A neural network viewed as a system (continuous-time case) or automaton (discrete-time
case). The input at time ¢ is the pattern on the input lines, the output is the pattern on the output lines; and
the internal state is the vector of states of all neurons of the network.

ends in themselves but rather in neurons as units which can be composed into networks. Thus, both as
background for later chapters and as a framework for the focused discussion of individual neurons in this
chapter, we briefly introduce the idea of a neural network.

We first show how a neural network comprised of continuous-time neurons can also be seen as a
continuous-time system in this sense. As typified in figure B1.1.2, we characterize a neural network by
selecting N neurons and by taking the output line of each neuron, which may be split into several branches
carrying identical output signals, and either connecting each branch to a unique input line of another neuron
or feeding it outside the network to provide one of the N, network output lines. Then every input to a
given neuron must be connected either to an output of another neuron or to one of the (possibly split)
N input lines of the network. Then the input set X of the entire network is R, the state set @ = RV,
and the output set ¥ = R, If the ith output line comes from the jth neuron, then the output function
is determined by the fact that the ith component of the output at time ¢ is the output g;(s; (¢)) of the jth
neuron at time ¢. The state transition function for the neural network follows from the state transition
functions of each of the N neurons

de)
dr

as soon as we specify whether x;;(f) is the output of the kth neuron or the value currently being applied
on the /th input line of the overall network.

Turning to the discrete-time case, we first note that, in computer science, an automaton is a discrete-
time system with discrete input, output and state spaces. Formally, we describe an automaton by the sets X,
Y and Q of inputs, outputs and states, respectively, together with the next-state function § : Q x X — Q
and the output function B : Q — Y. If the automaton is in state g and receives input x at time ¢,
then its next state will be 8(g, x) and its next output will be B(g). It should be clear that a network
like that shown in figure B1.1.2, but now a discrete-time network made up solely from discrete-time
neurons, functions like a finite automaton, as each neuron changes state synchronously on each tick of
the time-scale ¢t = 0, 1,2, 3,.... Conversely, it can be shown (see e.g. Arbib 1987, Chapter 2—that the
result was essentially, though inscrutably, due to McCulloch and Pitts 1943) that any finite automaton
can be simulated by a suitable network of discrete-time neurons (even those of the ‘McCulloch-Pitts
type’ defined below). Although we can define a neural network for the very general notion of ‘neuron’
shown in figure B1.1.1, most artificial neurons are of the kind shown in figure B1.1.3 in which the input
lines are parametrized by real numbers. The parameter attached to an input line to neuron i that comes
from the output of neuron j is often denoted by w;;, and is referred to by such terms as the strength or

B33 synaptic weight for the connection from neuron j to neuron {. Much of the study of neural computation
is then devoted to finding settings for these weights which will get a given neural network to approximate
some desired behavior. The weights may either be set on the basis of some explicit design principles,

B33 or ‘discovered’ through the use of learning rules whereby the weight settings are automatically adjusted
‘on the basis of experience’. But all this is meat for later chapters, and we now return to our focal aim:

= fi(xlj(t)’ s 9xn_,‘j(t)’ sj(t))

B1.1:2 Handbook of Neural Computation release 97/1 @© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neurons and neural networks: the most abstract view

introducing a number of the basic models of single neurons which ‘fill in the details’ in figure B1.1.3. As
described in Section Al.2, there are radically different types of neurons in the human brain, and further A1.2
variations in neuron types of other species.

Xl \VVI
(O
' /’wn
X

n

Figure B1.1.3. A neuron in which each input x; passes through a ‘synaptic weight’ or ‘connection strength’
wy.

Dendrites Soma Axon with branches and
synaptic terminals

Figure B1.1.4. The ‘basic’ neuron. The soma and dendrites act as the input surface; the axon carries the
output signals. The tips of the branches of the axon form synapses upon other neurons or upon effectors.
The arrows indicate the direction of information flow from inputs to outputs.

In neural computation, the artificial neurons are designed as variations on the abstractions of brain
theory and implemented in software, VLSI, or other media. Figure B1.1.4 indicates the main features E1.3,E143
needed to visualize biological neurons. We divide the neuron into three parts: the dendrites, the soma
(cell body) and a long fiber called the axon whose branches form the axonal arborization. The soma
and dendrites act as input surface for signals from other neurons and/or input devices (sensors). The
axon carries ‘spikes’ from the neuron to other neurons and/or effectors (motors, etc). Towards a first
approximation, we may think of a ‘spike’ as an all-or-none (binary) event; each neuron has a ‘refractory
period’ such that at most one spike can be triggered per refractory period. The locus of interaction between
an axon terminal and the cell upon which it impinges is called a synapse, and we say that the cell with
the terminal synapses upon the cell with which the connection is made.

References

Arbib M A 1987 Brains, Machines and Mathematics 2nd edn (Berlin: Springer)
McCulloch W S and Pitts W H 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.
5115-33

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B1.1:3

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.2 The McCulloch-Pitts neuron

Michael A Arbib

Abstract

See the abstract for Chapter Bl.

The work of McCulloch and Pitts (1943) combined neurophysiology and mathematical logic, modeling
the neuron as a binary discrete-time element. They showed how excitation, inhibition and threshold might
be used to construct a wide variety of ‘neurons’. It was the first model to squarely tie the study of
neural networks to the idea of computation in its modern sense. The basic idea is to divide time into
units comparable to a refractory period (assumed to be the same for each neuron) so that in each time
period at most one spike can be initiated in the axon of a given neuron. The McCulloch-Pitts neuron
(figure B1.2.1(a)) thus operates on a discrete time-scale, t =0, 1,2,3,.... We write y(¢) = | if a spike
does appear at time ¢, y() = O if not. Each connection or synapse, from the output of one neuron to
the input of another, has an attached weight. Let w; be the weight on the ith connection onto a given
neuron. We call the synapse excitatory if w; > 0, and inhibitory if w; < 0. We also associate a threshold
@ with each neuron, and assume exactly one unit of delay in the effect of all presynaptic inputs on the
cell’s output, so that a neuron ‘fires’ (i.e. has value 1 on its output line) at time ¢ only when the weighted
values of its inputs at time ¢ are at least . Formally, if at time ¢ — 1 the value of the ith input is x;(t — 1)
and the output one time step later is y(¢), then

y(t)=1if and only if) wixi(t—1) > 6.
i

To place this definition within our general formulation, we note that the state of the neuron at time ¢
does not depend on the previous state of the neuron itself, but is simply s(z) =), w;x;(¢t — 1), and that
the output may be written as y(t) = g(s(t)), where g is now the threshold function

g(s) = H(s—8) which equals 1 iff s=0

where H is the Heaviside (unit step) function, with H(x) =1if x > 0, but H(x) =0 if x < 0.

Figures B1.2.1(b)—(d) show how weights and threshold can be set to yield neurons which realize
the logical functions AND, OR and NOT. As a result, McCulloch~Pitts neurons are sufficient to build
networks which can function as the control circuitry for a computer carrying out computations of arbitrary
complexity. This discovery played a crucial role in the development of automata theory and in the study
of learning machines (see Arbib 1987 for a detailed account of this relationship). In neural computation,
the McCulloch-Pitts neuron is often generalized so that the input and output values can lie anywhere in
the range [0, 1] and the function g(s(¢)) which yields y(z) is a continuously varying function rather than
a step function. In this case we call g the activation function of the neuron; g is usually taken to be a
sigmoid function, that is, g : R — [0, 1] is continuous and monotonically increasing, with g(—00) = 0 B3.24
and g(o0) = 1 (and, in some studies, with the additional property that it has a single inflection point).
Two popular sigmoidal functions are

1

- L
T ¥ oxp(—s/0) and 3(1+ tanh(s)).

© 1997 1I0P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B1.2:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

@ "1 w1 » *1 N\
y
) 1
2

\b——b "1—:@_’"

2

(c)

Figure B1.2.1. (a) A McCulloch-Pitts neuron operating on a discrete time-scale. Each input has an
attached weight w;, and the neuron has a threshold 8. The neuron ‘fires’ at time ¢ + 1 if the weighted
values of its inputs at time ¢ are at least 8. Settings of weights and threshold for neurons that function (b)
as an AND gate (the output fires if x; and x, both fire), (c) an OR gate (the output fires if x; or x, or both
fire), and (d) a NOT gate (the output fires if x; does NOT fire).

References

Arbib M A 1987 Brains, Machines and Mathematics 2nd edn (Berlin: Springer)

McCulloch W S and Pitts W H 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.
5115-33

B1.2:2 Handbook of Neural Computation release 97/1 © 1997 TOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.3 Hopfield networks
Michael A Arbib

Abstract
See the abstract for Chapter Bl.

Hopfield (1982) contributed much to the resurgence of interest in neural networks in the 1980s by
associating an energy function with a network, showing that if only one neuron changed state at a time (the
so-called asynchronous update), a symmetrically connected network would settle to a local minimum of the
energy, and that many optimization problems could be mapped to energy functions for symmetric neural
networks. Based on this work, many papers have used neural networks to solve optimization problems
(Hopfield and Tank 1985). The basic idea, given a criterion J to be minimized, is to find a Hopfield
network whose energy function E approximates J, then let the network settle to an equilibrium and read
off a solution from the state of the network. The study of optimization is beyond the scope of this chapter,
but it will be worthwhile to understand the notion of network ‘energy’.

In a McCulloch—Pitts network, every neuron processes its inputs to determine a new output at each time B1.2
step. By contrast, a Hopfield network is a network of such units with (a) symmetric weights (w;; = w;;) €134
and no self-connections (w;; = 0), and (b) asynchronous updating. For instance, let s; denote the state
(0 or 1) of the ith unit. At each time step, pick just one unit at random. If unit i is chosen, s; takes the
value 1 if and only if) w;;s; > 6;. Otherwise s; is set to 0. Note that this is an autonomous (input-free)
network: there are no inputs (although instead of considering 6; as a threshold we may consider —6; as a
constant input, also known as a bias). Hopfield defined a measure called the energy for such a network,

E = —% ZS,‘SJ'U)U + ZS,'O,' .
ij i

This is not the physical energy of the neural network, but a mathematical quantity that, in some ways, does
for neural dynamics what the potential energy does for Newtonian mechanics. In general, a mechanical
system moves to a state of lower potential energy. Hopfield showed that his symmetrical networks with
asynchronous updating had a similar property. For example, if we pick a unit and the foregoing firing
rule does not change its s;, it will not change E. However if s; initially equals O, and) wj;s; > 6; then
5; goes from O to 1 with all other s; constant, and the ‘energy gap’, or change in E, is given by

AE = — -;— Z(w,’js_,' + wy;s;) + 6;
j

= — Z wijs;js; + 6;, by symmetry
J
£0 sinceZ Wi;Sj P 9,' .

Similarly, if s; initially equals 1, and) w;;s; < 6; then 5; goes from 1 to 0 with all other §; constant,
and the energy gap is given by
AE = Zwiij —0,' <0.

In other words, with every asynchronous update, we have AE < 0. Hence the dynamics of the
network tends to move E towards a minimum. We stress that there may be different such states—they
are local minima—just as, in figure B1.3.1, both D and E are local minima (each of them is lower than

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B1.3:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

Basin of

C

Figure B1.3.1. An energy landscape: For a ball rolling on the ‘hillside’, point A is an unstable equilibrium,
point B lies in a region of neutral equilibrium, and point C is a point of stable equilibrium. Point C is
called an attractor: the basin of attraction of C comprises all states from which the ball’s dynamics tend
toward C.

any ‘nearby’ state) but not global minima (since C is lower than either of them). Global minimization is
not guaranteed.

The expression just presented for AE depends on the symmetry condition, w;; = wj;, for, without
this condition, the expression would instead be AE = —% > (wi;s; + wjis;) +6;. In this case, Hopfield’s
updating rule would not yield a passage to the energy minimum, but might instead yield a limit cycle,
which could be useful in, for example, controlling rhythmic behavior. In a control problem, a link w;;
might express the likelihood that the action represented by i would precede that represented by j, in which
case w;; = wj; is normally inappropriate.

The condition of asynchronous update is crucial, too. If we consider the simple ‘flip-fiop’ with
w;z = wy = 1 and 6 = 6; = 0.5, then the McCulloch-Pitts network will oscillate between the
states (0, 1) and (1, O) or will sit in the states (0, 0) or (1, 1); in other words, there is no guarantee
that it will converge to an equilibrium. However, with E = —% Z,-j sisjwi; + 3 ; 8i6;, we have
E@0,0) = 0,EQ©,1) = E(1,0) = 0.5 and E(1,1) = 0, and the Hopfield network will converge to
the minimum at either (0, 0) or (1, 1).

References

Hopfield J 1982 Neural networks and physical systems with emergent collective computational properties Proc. Natl
Acad. Sci., USA 79 2554-8
Hopfield J and Tank D W 1985 Neural computation of decisions in optimization problems Biol. Cybern. 52 141-52

B1.3:2 Handbook of Neural Computation release 97/1 © 1997 TOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.4 The leaky integrator neuron

Michael A Arbib

Abstract
See the abstract for Chapter Bl.

The simplest continuous-time model of the neuron in frequent use is the leaky integrator model, which
has become popular in the simpler applications of neural networks which choose analog VLSI for their E13
implementation. The leaky integrator model uses the ‘firing rate’ (to mimic the biological measure of the
number of spikes traversing the axon in some recent interval: but the artificial neuron need not involve
any explicit spike generation) as a continuously varying owfput measure of the cell’s activity, in which the
internal state of the neuron is described by a single variable, the ‘membrane potential’ (another biological
term with no implications for how this value should be stored in digital or analog circuitry). The firing rate
is approximated by a simple, sigmoidal function of the membrane potential. That is, for this continuous-
time neuron, the state is just the membrane potential, and the activation function g converts the membrane B3.2.4
potential m to the firing rate g(m) which increases from O to its maximum value, 1 say, as m increases
from —oo to +o00. The biological motivation is this: if the membrane potential is low, the neuron will
never reach threshold and so will have 0 as its firing rate; conversely, above a certain membrane potential
the neuron will fire at its maximal firing rate, namely once every refractory period.

The time evolution of the cell’s membrane potential is given by the differential equation

dm(t)
T =—m(t)+‘ZwiXi(t)+h (Bl4.D

where 7 is the time constant, and X;(¢) is the firing rate at the ith input. Thus an excitatory input (w; > 0)
will be such that increasing it will increase dm(z)/dt, while an inhibitory input {w; < 0) will have the
opposite effect. A neuron described by (B1.4.1) is called a leaky integrator neuron. This is because the
equation

dm(t)
T = Z w; X; (£) (B1.4.2)

would simply integrate the inputs with scaling constant 7:
1 T
m(T) = m(0) + ;/ D wiXi(r) dt
0
but the —m(t) term in (B1.4.1) opposes this integration by a ‘leakage’ of the potential m(t) as it tries to

return to its input-free equilibrium 4. When all the inputs are zero,

dm(t)
TT = m(t)+h

has & as its unique equilibrium, and
m(t) =e"m0) + (1 —e™/")h

which tends to the resting level h with time constant v with increasing ¢ so long as t is positive.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 Bl.4:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

It should be noted that, even at this simple level of modeling, there are alternatives. In the above
mode], we have used subtractive inhibition. But one may alternatively use shunting inhibition which,
applied at a given point on a dendrite, serves to divide, rather than subtract from, the potential change
passively propagating from more distal synapses. Again, the ‘lumped-frequency’ model cannot model
relative timing effects corresponding to different delays (corresponding to pathways of different lengths
linking neurons). These might be approximated by introducing appropriate delay terms

dm(t)

T

= ——m(t) -+ Zw,-x,-(t —-1)+h.

All this reinforces the observation that there is no modeling approach which is automatically
appropriate. Rather, we seek to find the simplest model adequate to address the complexity of a given
range of problems.

B1.4:2 Handbook of Neural Computation release 97/1 @© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.5S Pattern recognition

Michael A Arbib

Abstract
See the abstract for Chapter Bl.

With x; a ‘measure of confidence’ that the jth item of a set of features occurs in some input pattern x, the
preprocessor shown in figure B1.5.1 converts x into the feature vector (x, x,, ..., 2;) in a d-dimensional
Euclidean space R called the pattern space. The pattern recognizer takes the feature vector and produces
a response that has the appropriate one of K distinct values; points in R¢ are thus grouped into at least
K different categories. However, a category might be represented in more than one connected region
of R?. To take an example from visual pattern recognition (although the theory of pattern recognition Bs
networks applies to any classification of R?), ‘a’ and ‘A’ are members of the category of the first letter of
the English alphabet, but they would be found in different connected regions of a pattern space. In such
cases, it may be necessary to establish a hierarchical system involving a separate apparatus to recognize
each subset, and a further system that recognizes that the subsets all belong to the same set (see our later
discussion of radial basis functions). Here we avoid this problem by concentrating on the case in which
the decision space is divided into exactly two connected regions.

P | >
r X4
- ; —_x: Pattern N
> r
Input g 0 X ; Recognition [~ Classification
< .)
Pattern %] e .) Vector
- . . Network L >
-»> s .
° .
r _—x->
) d

Figure B1.5.1. One strategy in pattern recognition is to precede an adaptive neural network by a layer of
‘preprocessors’ or ‘feature extractors’ which replace the image by a finite vector for further processing. In
other approaches, the functions defined by the early layers of the network may themselves be subject to
training.

We call a function f : R? — R a discriminant function if the equation f(x) = 0 gives the decision
surface separating two regions of a pattern space. A basic problem of pattern recognition is the specification
of such a function. It is virtually impossible for humans to ‘read out’ the function they use (not to mention
how they use it) to classify patterns. Thus, a common strategy in pattern recognition is to provide
a classification machine with an adjustable function and to ‘train’ it with a set of patterns of known
classification that are typical of those with which the machine must ultimately work. The function may
be linear, quadratic, polynomial (see the discussion of polynomial neurons below), or even more subtle
yet, depending on the complexity and shape of the pattern space and the necessary discriminations. The
experimenter chooses a class of functions with parameters which, it is hoped, will, with proper adjustment,

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9771 B1.5:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

yield a function that will successfully classify any given pattern. For example, the experimenter may
decide to use a linear function of the form

Fx) = wixy +waxa + -+ wexg + wap

Bt2 (i.e. a McCulloch—Pitts neuron) in a two-category pattern classifier. The equation f(x) = O gives a
hyperplane as the decision surface, and training involves adjusting the coefficients (wq, wa, ..., Wg, Wyt1)
so that the decision surface produces an acceptable separation of the two classes. We say that two categories
are linearly separable if an acceptable setting of such linear weights exists. Of course, as will be shown

B1.73,C162 in later chapters, many interesting pattern sets are not linearly separable (cf the section on radial basis
functions below), and so whole networks—rather than single, simple neurons—are needed to categorize
most interesting patterns.

B1.5:2 Handbook of Neural Computati release 97/1 © 1997 TOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.6 A note on nonlinearity and continuity

Michael A Arbib

Abstract
See the abstract for Chapter Bl.

In both the McCulloch—Pitts and leaky integrator neurons, the neuron is defined by a linear term followed B1.2, B1.4
by a nonlinearity. Without the nonlinearity, the theory of neural networks reduces to linear systems
theory—an already powerful branch of systems theory. A number of applications of neural networks do
indeed exploit the methods of linear algebra and linear systems. However, with fixed input, a linear system
has only a single equilibrium state whereas a nonlinear system may, depending on its structure, exhibit
multiple equilibrium states, limit cycles, or even chaotic behavior. This rich repertoire takes us far beyond
the range of linear systems, and is exploited in neural network applications. For example, the equilibria
of a network may be considered as ‘standard patterns’, and the passage of a network from some initial
state (a ‘noisy’ pattern) to a nearby equilibrium may be considered a means of pattern recognition. Since B1.5, B6
stable equilibria are often called ‘attractors’, this is called ‘pattern recognition by attractor networks’. This
complements the style of pattern recognition exemplified in figure B1.5.1 where the ‘noisy’ pattern is the
input to the network, and the ‘classification’ of the pattern is the output. In this case, too, nonlinearities
are crucial as, whether by the sharp divide of the Heaviside step function or by the more gentle emphasis
of the sigmoid, they can separate the patterns into, or towards, a vector of binary oppositions. The closest
that a linear system comes to this—and it is a method emulated in some neural network applications
(Oja 1992)—is principal component analysis which is a method not of classifying patterns but rather of 8443
reducing them to a low-dimensional representation which contains much of the variance of a given set of
patterns.

Given these reasons for using nonlinear activation functions, are there reasons to choose continuous
ones, rather than the simple step function? There are two main reasons. One is noise resistance: a
step function can amplify noise which a sigmoid function may smooth out, but this may be at the price
of postponing a binary decision until after further statistical analysis has been made. The other is to
allow the use of training methods (see Chapter B3) which exploit methods of the differential calculus B3
to adjust synaptic weights to better approximate some desired network behavior. In fact, the classical
Hebbian and perceptron training rules do indeed work for binary neurons. However, the widely used B33.1, B332
backpropagation method for training multilayer feedforward networks makes essential use of the fact that c1.23
the activation functions are continuous, indeed differentiable. This is not the place to review the details
of backpropagation. Rather, we note the general situation of which it is a special case. If a network
has no loops in it, then the input pattern uniquely determines the output pattern (so long as we hold the
input constant and wait long enough for its effects to propagate through all the layers of the network).
The output y depends, however, not only on the input x itself, but also upon the current setting w of the
weights of the network connections. We write y = f(x; w), where the form of f depends on the actual
structure of the network. The training problem is this: given a set of constraints on the desired values of
input pairs, find a choice w, of w such that y = f(x; w,) ‘best’ meets these constraints. The definition
of ‘best’ usually involves some cost function C which measures how well the current f(—; w), at step i
of the training procedure, meets the constraints; call the current cost C(w, i). Training then consists in
adjusting w to try and minimize C(w, i). Since calculus-based methods of minimization rest on the taking
of derivatives, their application to network training requires that C be a differentiable function of w; this,
in turn, requires that f(x; w) be differentiable, and this, in turn, requires that the activation functions be

© 1997 TOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B1.6:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

differentiable. This, then, provides a powerful motivation for using activation functions that are not only
continuous but also differentiable. However, minimization can also be conducted by step-wise search and
s0, as noted before, training methods have been successfully defined for networks employing the Heaviside
function as an activation function.

References

Oja E 1992 Principal components, minor components, and linear neural networks Neural Networks § 927-35

B1.6:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

B1.7 Variations on a theme

Michael A Arbib

Abstract
See the abstract for Chapter Bl.

There are many variations on the basic definitions given above, and a few are briefly noted here. We first

look at integrate-and-fire neurons which add spike generation to the leaky integrator neurons defined above.

However, as noted earlier, much of neural computation is devoted to finding settings for the connection

weights which will get a given neural network to approximate some desired behavior. This has led authors

to define classes of ‘neurons’ which are defined not because of their similarity to ‘real’ neurons but simply

because of their mathematical utility in an approximation network. We present polynomial neurons and

radial basis functions as two examples of this kind, before looking at the use of stochastic neurons to c162 cC14
provide a means of escaping ‘local minima’. We close with a brief mention of the use of neurons to form
self-organizing maps, but can give no details since they depend on ideas about synaptic plasticity that will c2.2.1

not be presented until Chapter B3.

B1.7.1 Integrate-and-fire neurons

Another class of neuron models has continuous-time, continuous state-space R, but discrete signal space
{0, 1}—so that the model approximates spike generation. This model of a spiking cell—the integrate and
fire model—far antedates the discrete-time model of McCulloch and Pitts: it was introduced by Lapicque
(1907). Essentially, it uses the leaky integrator model (1) for the membrane potential, but now an arriving
input X;(t) = 1 acts like a delta-function to instantaneously increment the state by w;. The output
instantaneously switches to 1 (a spike is generated) each time the neuron reaches a given threshold value.
This model captures the two key aspects of biological neurons: a passive, integrating response for small
inputs and a stereotyped impulse once the input exceeds a particular amplitude. Hill (1936) used mo
coupled leaky integrators, one of them representing membrane potential, and the other representing the
fluctuating threshold to approximate the effect of the refractory period on neuron dynamics.

B1.7.2 Polynomial neurons

Here the idea is to generalize the input—output power of neurons by replacing the linear next-state function
>, wix; by some polynomial combination of the inputs:

E Xi ...x,'jk .

"1""'&""‘1 "'ijk

Here we have some finite set S, say, of tuples of the form i, ...i;, where each i, is the index of one
of the inputs to the neuron under consideration. Then, for each such tuple we calculate the monomial
Wi,...i; Xi; - - - X;;, and then sum them to get the term that drives the activation function of the neuron. We
thus regain the usual neuron definition when each tuple is restricted to be of length one, forcing the above
sum to be linear. This idea goes back to the work of Gilstrap in the 1960s (see Barron et al 1987 for a
more recent review). These neurons are also known as high-order neurons or ‘neurons with high-order
connections’; they are also called sigma-pi neurons since the above expression is a sum (sigma) of products
(pi) of the x;.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B1.7:1

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

The increased power of polynomial neurons is clear on considering XOR, the simple Boolean operation
of addition modulo 2, also known as the exclusive-or. If we imagine the square with vertices (0, 0), (0, 1),
(1, 1), and (1, 0) in the Cartesian plane, with (x;, x2) being labeled by x; @x2, we have 0Os at one diagonally
opposite pair of vertices and 1s at the other diagonally opposite pair of vertices. It is clear that there is
no way of interposing a straight line such that the 1s lie on one side and the Os lie on the other side;
i.e. there is no way of choosing w;, wy and 8 such that wix; + wox, > 6 iff x; ® x; = 1. However,
we can realize the exclusive-or with a single polynomial neuron with wy = w, = 1, wyp = 2, since
X1+ X3 —2x1%2 = X1 @ x3.

B1.7.3 Radial basis functions

Suppose that a pattern space can be divided into ‘clusters’ for each of which there is a single category
to which pattern vectors within the cluster are most likely to correspond. We can then address the
pattern recognition problem by dividing the pattern space into regions bounded by hyperplanes, where
each hyperplane corresponds to a single threshold neuron (figure B1.7.1). By connecting each neuron to
an AND gate, we get a network that signals whether or not a pattern falls within the polygonal space
approximating the cluster; connecting all these AND gates to an OR gate, we end up with a network that
signals whether or not the pattern is (approximately) in any of the clusters belonging to a given category.

Figure B1.7.1. Here we see two convex ‘clusters’ approximated by a set of lines (‘hyperplanes’ in a
general d-dimensional set). Each line serves as discriminant function f for a threshold neuron; we choose
the sign of f so that most of the points in the cluster satisfy f(x) > 0. If we connect these neurons to an
AND gate, then the AND gate will fire primarily for x belonging to the cluster. If we can divide the set
of instances of patterns in a more complex category into a finite set of convex clusters (two in the above
case), and connect AND gates for these clusters to an OR gate, we get a network which will fire primarily
for x belonging to any cluster of the pattern.

An alternative to this ‘compounding of linear separabilities’ (the architecture described above is
c12,c162 sometimes referred to as an instance of a three-layer perceptron) is the use of radial basis functions
(RBFs; see Lowe 1995 for a survey). An RBF operates on an input x in R" and is characterized by a
weight vector w in R". However, instead of forming the linear combination), w; x; and passing it through
a step or sigmoid activation function, we instead take the norm ||x — w|| of the difference between x and
w, and then pass it through an activation function f which decreases as ||x — w|| increases (a Gaussian is
a typical choice). The ‘neuron’ thus tests whether or not the current input x is close to w, and can relay
the measure of closeness to other units which will use this information about where x lies in the input
space to determine how best to process it. Although the details are beyond the scope of this chapter, we
briefly discuss the use of RBFs to solve the above ‘cluster-based’ pattern recognition problem in cases in
which it is possible to describe the clusters of data as if they were generated according to an underlying
probability density function. The multilayer perceptron method concentrates on class boundaries, while
the RBF method focuses upon regions where the data density is highest. In probabilistic classification of
patterns, we are primarily interested in the posterior probability p(cjx) that class c¢ is present given the
observation x. However, it is easier to model other related aspects of the data such as the unconditional
distribution of the data p(x), or the probability p(x|c) that the data were generated given that they came
from a specific class c—the Bayes theorem then tells us that p(c;|x) = p(c;)p(x|c;) p(x). Of interest here
is the case where the distribution of the data is modeled as if it were generated by a mixture distribution,
that is, a linear combination of parameterized states, or basis functions such as Gaussians. Since individual

B1.7:2 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Varjations on a theme

data clusters for each class are not likely to be approximated by a single Gaussian distribution, we need
several basis functions per cluster. (Think of each Gaussian as defining an elliptical ‘hill’ resting on the
ocean floor. Then we may need to superimpose a set of such hills to cover a given area which rises above
‘sea level’ to form an island.) We assume that the likelihood and the unconditional distribution can both
be modeled by the same set of distributions, g(x|s) but with different coefficients (e.g. Gaussians with
different means, variances and orientations of the axes of the ellipsoid), that is,

p(x) =) ps)g(xls).
§
This gives a radial basis function architecture (see Lowe 1955 for further details).

B1.7.4 Stochastic neurons

Finally, we note that there are many cases in which a noise term is added to the next-state function or

the activation function, allowing neural networks (such as the Boltzmann machine of Ackley er al 1985, B3.24,C14
see Aarts and Korst 1995 for a recent review) to perform a kind of stochastic approximation. We have

earlier spoken of deterministic discrete-time neurons in which the quantity s(z) = Y, w;x; (¢ — 1) is passed

through a sigmoidal function to determine the output

1
1+ exp(—s(t)/8)

y() =

The twist in Boltzmann machines is to use a noisy binary neuron; it has two states, 0 and 1, and the

formula 1

14 exp(—s()/T)

is now interpreted as the probability that the state of the neuron will be 1 at time t. When T is very
large, the neuron’s behavior is highly random; when T — 0, the next state will be 1 only when s(¢) > 0.
T is thus a noise term, often referred to as ‘temperature’ on the basis of an analogy with the Boltzmann
distribution used in statistical mechanics. In most cases, the response of a Boltzmann machine to given
inputs starts with a large value of T. Subsequently, the value of T is decreased to eventually become
0. This is an example of the strategy of simulated annealing which uses controlled noise to escape from
local minima during a minimization process (recall our discussion of figure B1.7.1 in relation to Hopfield B13
networks) to almost surely find the global minimum for the function being minimized. The idea is to use
noise to ‘shake’ a system out of a local minimum and let it settle into a global minimum. Returning to
figure B1.3.1, consider, for example, shaking strong enough to shake the ball from D to A, and thus into
the basin of attraction of C, but not strong enough to shake the ball back from C towards D.

pit) =

B1.7.5 Learning vector quantization and Kohonen maps

The input patterns to a neural network define a continuous vector space. Vector quantization provides a
means to ‘quantize’ this space by forming a ‘code book’ of significant vectors linked to useful information—

we can then analyze a novel vector by looking for the vector in the code book to which it is most similar.
Learning vector quantization provides a means whereby a neural network can self-organize, both to provide c1.1.5
the code book (one neuron per entry) and to find (by a winner-take-all technique) the code associated with a

novel input vector. If this methodology is augmented by constraints which force nearby neurons to become
associated with similar codes, the result is a self-organizing feature map (also known as a Kohonen map), c2.1.1
whereby a high-dimensional feature space is mapped quasi-continuously onto the neural manifold (Kohonen
1990). These methods of self-organization are extensions of the Hebbian learning mechanisms described 83.3.1
in Chapter B3, and thus further description lies beyond the scope of this introduction.

References

Aarts E H L and Korst] HM 1995 Boltzmann machines The Handbook of Brain Theory and Neural Networks ed
M A Arbib (Cambridge, MA: Bradford Books/MIT Press) pp 162-5
Ackley D H, Hinton G E and Sejnowski T J 1985 A learning algorithm for Boltzmann machines Cog. Sci. 9 147-69

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B1.7:3

Copyright © 1997 IOP Publishing Ltd

The Artificial Neuron

Barron R L, Gilstrap L O and Shrier S 1987 Polynomial and neural networks: analogies and engineering applications
Proc. Int. Conf. on Neural Networks (New York: IEEE Press) 11 431-93

Hill A V 1936 Excitation and accommodation in nerve Proc. R. Soc. B 119 305-55

Kohonen T 1990 The self-organizing map Proc. I[EEE 78 1464-80

Lapicque L 1907 Recherches quantitatifs sur I’excitation électrique des nerfs traitée comme une polarisation J. Physiol.
Paris 9 620-35

Lowe D 1995 Radial basis function networks The Handbook of Brain Theory and Neural Networks ed M A Arbib
(Cambridge, MA: Bradford Books/MIT Press) pp 779-82

B1.7:4 Handbook of Neural Computation release 97/1 ® 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B2

Neural Network Topologies

Abstract

An artificial neural network consists of a topology and a set of rules that govern
the dynamic aspects of the network. This section contains a detailed treatment of
the topology of a neural network, that is, the combined structure of its neurons and
connections. It starts with the basic concepts including neurons, connections, and layers,
followed by symmetry and high-order aspects. Next, fully and partially connected
topologies are discussed, which is complemented by an overview of special topologies
like modular, composite, and ontogenic ones. The next section discusses aspects of a
formal framework, which is an underlying theme that unites this section in which a
balance is sought between clarity and mathematical rigor in the hope of providing a
useful basis and reference for the other chapters of this handbook. This section proceeds
with a discussion on modular topologies and concludes with theoretical considerations
for choosing a neural network topology.

Contents

B2 NEURAL NETWORK TOPOLOGIES

B2.1 Introduction
Emile Fiesler

B2.2 Topology
Emile Fiesler

B2.3 Symmetry and asymmetry
Emile Fiesler

B2.4 High-order topologies
Emile Fiesler

B2.5 Fully connected topologies
Emile Fiesler

B2.6 Partially connected topologies
Emile Fiesler

B2.7 Special topologies
Emile Fiesler

B2.8 A formal framework
Emile Fiesler

B2.9 Modular topologies
Massimo de Francesco

B2.10 Theoretical considerations for choosing a network topology
Maxwell B Stinchcombe

© 1997 IOP Publishing Lid and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.1 Introduction

Emile Fiesler

Abstract
See the abstract for Chapter B2.

A neural network is a network of neurons. This high-level definition applies to both biological neural
networks and artificial neural networks (ANNs). This chapter is mainly concerned with the various ways
in which neurons can be interconnected to form the networks or network topologies used in ANNs, even
though some underlying principles are also applicable to their biological counterparts. The term ‘neural
network’ is therefore used to stand for ‘artificial neural network’ in the remainder of this chapter, unless
explicitly stated otherwise. The main purpose of this chapter is to provide a base for the rest of the
Handbook and in particular for the next chapter, in which the training of ANNs is discussed.

connection

neuron

Figure B2.1.1. An unstructured neural network topology with five neurons.

Figure B2.1.1 shows an example neural network topology. A node in such a network is usually called
an artificial neuron, or simply neuron, a tradition that is continued in this handbook (see Chapter B1). Bi
The widely accepted term ‘artificial neuron’ is specific to the field of ANNs and therefore preferred over
its alternatives. Nevertheless, given the length of this term and the need to frequently use it, it is not
surprising that its abbreviated form, ‘neuron’, is often used as a substitute instead. However, given that
the primary meaning of the word ‘neuron’ is a biological cell from the central nervous system of animals,
it is good practice to clearly specify the meaning of the term ‘neuron’ when using it. Instead of ‘(artificial)
neuron’, other terms are also used:

e Node. This is a generic term, related to the word ‘knot’ and used in a variety of contexts, one of them
being graph theory, which offers a mathematical framework to describe neural network topologies
(see Section B2.8.4). B2.8.4

© 1997 1IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.1:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

e Cell. An even more generic term, that is more naturally associated with the building blocks of
organisms.
Unit. A very general term used in numerous contexts.
Neurode. A nice short term coined by Caudill and Butler (1990), which contains elements of both
the words ‘neuron’ and ‘node’, giving a cybernetic flavor to the word ‘neuron’.

The first three words are generic terms, borrowed from other fields, which can serve as alternative
terminology as long as their meaning is well defined when used in a neural network context. The neologism
‘neurode’ is specifically created for ANNS, but unfortunately not widely known and accepted.

A connectionist system, better known as artificial neural network, is in principle an abstract entity.
It can be described mathematically and can be manifested in various ways, for example in hardware
and software implementations. An artificial neural network comprises a coliection of artificial neurons
connected by a set of links, which function as communication channels. Such a link is called an
interconnection or connection for short.

References

Caudill M and Butler C 1990 Naturally Intelligent Systems (Cambridge, MA: MIT Press)

B2.1:2 Hundbook of Neural Computation release 97/1 ® 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.2 Topology

Emile Fiesler

Abstract
See the abstract for Chapter B2.

A neural network topology represents the way in which neurons are connected to form a network. In
other words, the neural network topology can be seen as the relationship between the neurons by means
of their connections. The topology of a neural network plays a fundamental role in its functionality and
performance, as illustrated throughout the handbook.

The generic terms structure and architecture are used as synonyms for network topology. However,
caution should be taken when using these terms since their meaning is not well defined as they are also
often used in contexts where they encompass more than the neural network topology alone or refer to
something different altogether. They are for example often used in the context of hardware implementations
(computer architectures) or their meaning includes, besides the network topology, also the learning rule
(see for example the book by Zurada (1992)).

More precisely, the topology of a neural network consists of its frame or framework of neurons,
together with its interconnection structure or connectivity:

neural framework

neural network topolo . .
p gy{ interconnection structure

The next two subsections are devoted to these two constituents respectively.

B2.2.1 Neural framework

Most neural networks, including many biological ones, have a layered topology. There are a few exceptions
where the network is not explicitly layered, but those can usually be interpreted as having a layered
topology, for example in some associative memory networks, which can be seen as a one-layer neural c13
network where all neurons function both as input and output units.

At the framework level, neurons are considered as abstract entities, thereby not considering possible
differences between them. The framework of a neural network can therefore be described by the number
of neuron layers, denoted by L, and the number of neurons in each of the layers, denoted by »,, where [
is the index indicating the layer number:

number of neuron layers L

neural framework{ number of neurons per layer N, where 1 </ < L.

The number of neurons in a layer (N,) is also called the layer size.
The following neuron types can be distinguished.

Input neuron. A neuron that receives external inputs from outside the network.

Output neuron. A neuron that produces some of the outputs of the network.

Hidden neuron. A neuron that has no direct interaction with the ‘outside world’, only with other
neurons within the network.

Similar terminology is used at the layer level for multilayer neural networks.

© 1997 IOP Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B2.2:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

Input layer. A layer consisting of input neurons.
Hidden layer. A layer consisting of hidden neurons.
Output layer. A layer consisting of output neurons.

In muitilayer and most other neural networks the neuron layers are ordered and can be numbered: the
input layer having index one, the first hidden layer index two, the second hidden layer index three, and
so forth until the output layer, which is given the highest index L, equal to the total number of layers in
the network. The number of neurons in the input layer can thus be denoted as Ny, the number of neurons
in the first hidden layer as N, in the second hidden layer as N3 and so on, until the output layer, whose
size would be Nr. In figure B2.2.1 a four-layer neural network topology is shown, together with the layer

sizes.
Layer name ! N ;
output layer 4=L Ny,=N, =1
second hidden layer 3 Ny= 2
first hidden layer 2 N2 =4
input layer 1 Ny =2

Figure B2.2.1. A fully interlayer connected topology with four layers,

Combining all layer sizes yields
L
N=)"N (B2.2.1)
I=1

where N is the total number of neurons in the network. Besides being clearer, the indexed notation for

layer sizes is preferred since the number of layers in neural networks varies from one model to another

and there are even some models that adapt their topology dynamically during the training process, thereby

c1.7 varying the number of layers (see Section C1.7). Also, if one assigns a different variable to each layer (for

example /, m, n, ...}, one soon runs out of variables and into notational conflicts; this is especially the

case for generic descriptions of multilayer neural networks and deep networks, which are networks with
many layers.

In some neural networks, neurons are grouped together, as in layered topologies, but there is no

well-defined way to order these groups. The groups of neurons in networks without an ordered structure

B2.2:2 Hundbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Topology

are called clusters, slabs, or assemblies, which are therefore generic terms which include the layer concept
as a special case.

The neurons within a layer, or cluster, are usually not ordered, all neurons being equally important.
However, the neurons within a cluster are sometimes numbered for convenience to be able to uniquely
address them, for example in computer simulations. Layers are likewise shapeless and can be represented
in various ways. Exceptions are the input and output layers, which are special since the application
constraints can suggest a specific shape, which can be one, two, or higher dimensional. Note however,
that this structural shape is usually only present in pictorial representations of the neural network, since
the individual neurons are still equally important and ‘unaware’ of each other’s presence with respect
to relative orientation. An exception could be an application specific partial connectivity where only
certain neurons are connected to each other, thereby embedding positional information, such as the feature
detectors of LeCun et al (1989).

Likewise, there is also no fixed way of representing neural networks in pictorial form. Neural networks
are most often drawn bottom up, with the input layer at the bottom and the output layer at the top, as in
figure B2.2.1. Besides this, a left-to-right representation is also used, especially for optical neural networks Eis
since the direction of the passing light in optical diagrams is by default assumed to be from left to right.
Besides these, other pictorial orientations are also conceivable. This representational flexibility is also
present in graph theory (see Section B2.8.4).

l N,
3=L N3—NL=
2 N,= 2
1 Ny=2

Figure B2.2.2. A three-layer neural network topology with six interlayer connections (i), four supralayer
connections (s) between the input and output layer, and four intralayer connections (a) including two
self-connections (self) in the hidden layer.

B2.2.2 Interconnection structure

The interconnection structure of a neural network determines the way in which the neurons are linked.
Based on a layered structure, several different kinds of connection can be distinguished (see figure B2.2.2
for an illustration):

e Interlayer connection. This connects neurons in adjacent layers whose layer indices differ by one.
e Intralayer connection. This is a connection between neurons in the same layer.

© 1997 10P Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B2.2:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

e Self-connection. This is a connection that connects a neuron to itself. It is a special kind of intralayer
connection.

e Supralayer connection. This is a connection between neurons that are in distinct layers that are not
adjacent; in other words these connections ‘cross’ or ‘jump’ at least one hidden layer.

With each connection an (interconnection) strength or weight is associated which is a weighting factor
that reflects its importance. This weight is a scalar value (a number), which can be positive (excitatory)
or negative (inhibitory). If a connection has a zero weight is it considered to be nonexistent at that point
in time.

Note that the basic concept of layeredness is based on the presence of interlayer connections. In
other words, every layered neural network has at least one interlayer connection between adjacent layers.
If interlayer connections are absent between any two adjacent clusters in the network, a spatial reordering
can be applied to the topology, after which certain connections become the interlayer connections of the
transformed, layered, network.

References

Le Cun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation
applied to handwritten zip code recognition Neural Comput. 1 541-51
Zurada J M 1992 Introduction to Artificial Neural Systems (St Paul, MN: West)

B2.2:4 Hundbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.3 Symmetry and asymmetry

Emile Fiesler

Abstract
See the abstract for Chapter B2.

The information flow through a connection can be symmetric or asymmetric. Before elaborating on this,

it should be stated that ‘information transfer’ or ‘flow’, in the following discussion, refers to the forward

propagation, where network outputs are produced in reaction to external inputs or stimuli given to the

neural network. This in contrast to the information used to update the network parameters as determined

by the neural network learning rule. B33
A connection in a neural network is either unidirectional when it is only used for information transfer

in one direction at all times, or multidirectional where it can be used in more than one direction (the

term multidirectional is used here instead of bidirectional to include the case of high-order connections

(see Section B2.4)). A multidirectional connection can either have one weight value that is used for B24

information flow in all directions, which is the symmetric case (see figure B2.3.1), or separate weight

values for information flow in specific directions, which is the asymmetric case (see figure B2.3.2).

C Wiz = Wy C

Figure B2.3.1. A symmetric connection between two neurons.

Figure B2.3.2, Two asymmetric connections between two neurons.

Hence, a symmetric connection is a multidirectional connection which has one weight value associated
with it that is the same when used in any of the possible directions. All other connections are asymmetric
connections, which can be either unidirectional connections (see figure B2.3.3) or multidirectional
connections with more than one weight value per connection. Note that a multidirectional connection
can be represented by a set of unidirectional connections (see figure B2.3.2), which is closer to biological
reality where synapses are also unidirectional. In a unidirectional connection the information flows from
its source neuron to its sink neuron (see figure B2.3.3).

The definitions regarding symmetry can be extended to the network level: a symmetric neural network
is a network with only symmetric connections, whereas an asymmetric neural network has at least one

© 1997 10P Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B2.3:11

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

source sink
neuron neuron

Figure B2.3.3. A unidirectional connection between a source and a sink neuron.

asymmetric connection. Most neural networks are asymmetric, having a unidirectional information flow
or a multidirectional one with distinct weight values.
An important class of neural networks is the so called feedforward neural networks with unidirectional
information flow from input to output layer. The name feedforward is somewhat confusing since the best-
ct.23 known algorithm for training a feedforward neural network is the backpropagation learning rule, whose
name indicates the backward propagation of (error gradient) information from the output layer, via the
hidden layers, back to the input layer, which is used to update the network parameters. The opposite of
feedforward is ‘feedback’; a term used for those networks that contain loops where information is fed
back to neurons in previous layers. This terminology is not recommended since it is most often used
for networks which have unidirectional supralayer connections from the output to the input layer, thereby
excluding all other possible topologies with loops from the definition. Preferred is the term recurrent neural
network for networks that contain at least one loop. Some common examples of recurrent neural networks
are symmetric neural networks with bidirectional information flow, networks with self-connections, and
networks with unidirectional connections from output back to input neurons.

B2.3:2 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.4 High-order topologies

Emile Fiesler

Abstract
See the abstract for Chapter B2.

Most neural networks have only first-order connections which link one source neuron to one sink neuron.
However, it is also possible to connect more than two neurons by a high-order connection (the term higher
order is sometimes used instead of ‘high order’) (see figure B2.4.1).

sink neuron

splicing function

source neurons

Figure B2.4.1. A third-order connection.

High-order connections are typically asymmetric, linking a set of source neurons to a sink neuron.
The connection order (w) is defined as the cardinality of the set of its source neurons, which is the number
of elements in that set. As an example, figure B2.4.1 shows a third-order connection. The information
produced by the source neurons is combined by a splicing function which has @ inputs and one output.
The most commonly used splicing function for high-order neural networks is multiplication, where the
connection outputs the product of the values produced by its source neurons. The set of source neurons
of a high-order connection is usually located in one layer. The connectivity definitions of Section B2.2.2
apply therefore also to high-order connections.

The concept of higher orders can also be extended to the network level. A high-order neural network
has at least one high-order connection and the neural network order (S2) is determined by the highest-order
connection in the network:

Q= mu?x Wy (B24.1)

where w ranges over all weights in the network.

Having high-order connections gives the network the ability to extract higher-order information from
the input data set, which is a powerful feature.

Layered high-order neural networks with multiplication as splicing function are also called sigma—pi
{XT1) neural networks, since a summation (X) of products (I1) is used in the forward propagation:

a; = Z lU[x].}j 1_[ai (B242)
{s;} }

iE{Sj

®© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.4:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

where a; is the activation value of the sink neuron, {s;} is the set of source neurons, wy,); the associated
weight, and a; the activation values of the source neurons. The layer indices are omitted from this formula
for notational simplicity. In Section B2.8.8 notational issues concerning weights are discussed. For more
information on sigma-pi neural networks, see Rumelhart et al (1986), which is based on the work of
Williams (1983).

The history of high-order neural networks includes the work of Poggio (1975) where the term ‘high
order’ is used, and Feldman and Ballard (1982) where multiplication is used as splicing function and the
connections are named conjunctive connections. An important and fundamental contribution to the area
of high-order neural networks, which has given rise to their wider dissemination, is the work by Lee er al
(1986).

For completeness functional link networks (Pao 1989) and product unit neural networks (Durbin and
Rumelhart 1989) are mentioned here since they can be considered as special cases of high-order neural
networks. In these types of network there is no combining of information from several source neurons
taking place, but incoming information from a single source is transformed by means of a nonlinear
splicing function.

References

Durbin R and Rumelhart D E 1989 Product units: a computationally powerful and biologically plausible extension to
backpropagation networks Neural Comput. 1 133-42

Feldman J A and Ballard D H 1982 Connectionist models and their properties Cogn. Sci. 6 205-54

Lee Y C, Doolen G, Chen H, Sun G, Maxwell T, Lee H and Giles CL 1986 Machine learning using a higher order
correlation network Physica D 22 276-306

Pao Yoh-Han 1989 Adaptive Pattern Recognition and Neural Networks (Reading, MA: Addison-Wesley)

Poggio T 1975 On optimal nonlinear associative recall Biol. Cybernet. 19 201-9

Rumelhart D E, McClelland J L and the PDP Research Group 1986 Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. vol 1: Foundations (Cambridge, MA: MIT Press)

Williams R J 1983 Unit Activation Rules for Cognitive Network Models ICS Technical Report 8303, Institue for
Cognitive Science, University of California, San Diego

B2.4:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.5 Fully connected topologies

Emile Fiesler

Abstract
See the abstract for Chapter B2.

The simplest topologies are the fully connected ones, where all possible connections are present. However,
depending on the neural framework and learning rule, the term fully connected neural network is used for
several different interconnection schemes, and it is therefore important to distinguish between these.

The most commonly used topology is the fully interlayer-connected one, where all possible interlayer
connections are present but no intra- or supralayer ones. This is the default interconnectivity scheme for
most nonrecurrent multilayer neural networks.

A truly fully connected or plenary neural network has all possible inter-, supra-, and intralayer
connections including self-connections. However, only a few neural networks have a plenary topology. A
slightly more popular ‘fully connected’ topology is a plenary neural network without self-connections, as
used for example for some associative memories. C13

B2.5.1 Connection counting

In order to compare different neural network topologies, and more specifically their complexities, it is useful
to know how many connections a certain topology comprises. The connection counting is based on fully
connected topologies since they are the most commonly used and since they enable a fair and yet simple
comparison. Fully interlayer-connected topologies are considered as well as the various combinations
of interlayer connections together with intra- and supralayer connections (see Section B2.2.2); and fully
connected means here that all possible connections of each of those kinds are present in the topology.
Before starting the counting of the connections, a few related issues need to be discussed and defined.

The total number of weights in a network can be denoted by W. For most neural networks this
number is equal to the number of connections, since one weight is associated with one connection. In
neural networks with weight sharing (Rumelhart et al 1986), where a group of connections shares the same
weight, the number of weights can be smaller than the number of connections. However, even in this
case it is common practice to assign a separate weight to each connection and to update shared weights
together and in an identical way. Given this, the number of connections is again equal to the number of
weights and the same notation (W) can be used for both.

When counting the number of weights, it has to be decided whether to also count the neuron biases.
The bias of a neuron, which determines its threshold level, can also be regarded as a special weight and its
value is often modified in the same way as normal weights. This can be explained in the following way.
The weighted sum of inputs to a neuron n, which has W, , input providing connections, can be denoted as

Wi Wi

D Winai— Oy =Y wina+6,(-1) (B2.5.1)
i=1 i=1

where a; is the activation value of the neuron providing the ith input, and w; , is the weight between that
neuron providing the ith input to neuron n and neuron n itself (see Section B2.8.2 for a discussion on

© 1997 IOP Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B2.5:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

notational issues concerning weights). Renaming ©, as wg, and assuming a@p to be a virtual activation
with a constant value of —1, equation B2.5.1 becomes equal to:

Wn
> winas. (B2.5.2)
i=0

Hence, the bias of a neuron can be seen as the weight of a virtual connection that receives its input from a
virtual or dummy neuron that has a constant activation value of —1. In this section biases are not counted
as weights. They can be included in the connection counting by initializing the appropriate summation
indices with zero instead of one.

For networks where intralayer connections are present, two cases need to be distinguished: with and
without self-connections. Both cases can be conveniently combined in one formula by using the & symbol,
as utilized in the following section. If self-connections are present, the addition has to be used, else the
subtraction has to be used.

The maximum number of connections in asymmetric neural networks is twice that of their symmetric
counterparts, except for self-connections, which are intrinsically directed. Asymmetric topologies are
therefore not elaborated upon in this context. The most common neural networks have symmetric first-
order topologies, which will be discussed first, followed by symmetric high-order ones.

B2.5.1.1 Counting symmetric first-order connections

The simplest and most widely used topologies have interlayer connections only. The total number of
possible interlayer connections can be obtained by multiplying the layer sizes of each pair of adjacent
layers and summing these over the whole network:

W= W, = Ni N (B2.5.3)

where W, represents the number of connections between layer ! and [+ 1.
When intralayer connections are also present, a number equal to the number of possible connections
within a layer ((N;/2) (N; £ 1)) has to be added for each layer in the network, and the total becomes

L L-1 2 L1
N (NL)*£N N
> S WMED+Y NNy = Iy l§=1: N, (N, +=22). (B2.5.4)

= I=1

The number of connections in networks with both interlayer and supralayer connections can be
calculated by summing over all the layer sizes, multiplied by the sizes of all the layers of a higher index:

Plenary neural networks have all possible connections and are equivalent to a fully connected
undirected graph with N nodes (see Section B2.8.4), which has

Mh

Nont1 Z N;. (B2.5.5)

i MT

m=1

% (Nx1) (B2.5.6)

connections.
In summary, the number of connections in (fully connected) first-order topologies is quadratic in the

number of neurons:
W = O(N?) (B2.5.7)

where O() is the ‘order’ notation as used in complexity theory (see for example Aho et al (1974)).

B2.5.1.2 Counting high-order connections

In this subsection the counting of connections is extended to high-order topologies. In order to focus
the high-order connection counting on the most common case, all the source neurons of a high-order

B2.5:2 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Fully connected topologies

connection are assumed here to share the same layer and the possibility of having multiple instances of
the same source neuron providing input to one high-order connection is excluded.

It is illustrative to first examine the case of one single sink neuron in a high-order network. The total
number of possible connections of order w that can provide information for one specific sink neuron is
equal to the number of possibilities of combining the corresponding source neurons. This number is equal

to
(”).__”’__ B2.5.8)
w /7T wln-ow) (B2.5.

where n is the number of potential source neurons. Note that & can be maximally n.
Adding up these numbers over all possible orders, the maximum number of connections associated
with a high-order neuront then becomes
Q
n
(;) . (B2.5.9)
i=1

Since Q is bounded by n, the total number of high-order connections is bounded by

n n .
Z(;)=2 -1 (B2.5.10)

i=1

The virtual bias connection of the neuron can be added to this sum to obtain the crisp maximum of 2”.

To obtain the connectivity count of a high-order topology, these high-order neurons need to be
combined into a network. Given the scope of this handbook, only the most prevalent case, that of
asymmetric fully interlayer connected high-order networks is presented here (high-order connections are
usually unidirectional and counting multidirectional high-order connections is complicated since the set
of source neurons can no longer be assumed to share the same layer). For a more elaborate treatment of
this subject the reader is referred to the article by Fiesler et al (1996), which also contains a comparison
between the various topologies based on these connection counts.

The number of connections in a fully interlayer-connected neural network of order €2 is

L-1 Q

N,
> Nig (l.’) (B2.5.11)
=1 i=1

In general, the number of connections in (fully connected) high-order topologies is exponential in the
number of neurons:
W =o0@2"). (B2.5.12)

References

Aho A V, Hopcroft J E and Ullman J D 1974 The Design and Analysis of Computer Algorithms (Computer Science
and Information Processing) (Reading, MA: Addison-Wesley)

Fiesler E, Caulfield H J, Choudry A and Ryan J P 1996 Maximal interconnection topologies for neural networks, in
preparation

Rumelhart D E, McClelland J L and the PDP Research Group 1986 Parallel Distributed Processing. Explorations in
the Microstructure of Cognition. vol 1: Foundations (Cambridge, MA: MIT Press)

t Note that the concept of ‘order’ can be seen from the connection point of view as well as from the neuron point of view.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.5:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.6 Partially connected topologies

Emile Fiesler

Abstract
See the abstract for Chapter B2.

Even though most neural network topologies are fully connected according to any of the definitions given in
Section B2.5, this choice is usually an arbitrary one and based on simplicity. Partially connected topologies
offer an interesting alternative with a reduced degree of redundancy and hence a potential for increased
efficiency. As shown in Sections B2.5.1.1 and B2.5.1.2, the number of connections in fully connected
neural networks is quadratic in the number of neurons for first-order networks and exponential for high-
order networks. Although it is outside the scope of this chapter to discuss the amount of redundancy
desired in neural networks, one can imagine that so many connections are in many cases an overkill with
a serious overhead in training and using the network. On the other hand, partial connectedness brings
along the difficult question of which connections to use and which not. Before giving an overview of the
different strategies followed in creating partially connected topologies, a number of metrics are presented,
providing a base for studying them.

B2.6.1 Connectivity metrics

Some basic neural network connectivity metrics are presented in this section. They can be used for the
analysis and comparison of partially connected topologies, but are also applicable to the various kinds of
fully connected topology discussed in Section B2.5.

The degree of a neuron is equal to the number of connections linked to it. More specifically, the
degree of a neuron can be subdivided into an in degree (d'™) or fan-in, which is the number of connections
that can provide information for the neuron, and an out degree (d°*) or fan-out, which is the number of
connections that can receive information from the neuron. It therefore holds that

d, = d" + d™ (B2.6.1)
where d, is the degree of neuron n. For the network as a whole, the average degree (d) can be defined as

Sims i + 47y
N

d= (B2.6.2)

where d; ; denotes the degree of neuron i in layer /. Another useful metric is the connectivity density of a

topology, which is defined as
w
A (B2.6.3)
Whnax
where W is the number of connections in the network and Wy, the total number of possible connections
for that interconnection scheme; these are given in Sections B2.5.1.1 and B2.5.1.2.
The last metric given here is the connectivity level, which provides a ratio of the number of connections
with respect to the number of neurons in the network:

w
- (B2.6.4)

®© 1997 IOP Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B2.6:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.6.2 A classification of partially connected neural networks

As mentioned earlier, choosing a suitable partially connected topology is not a trivial task. This task is
most difficult if one strives to find a scheme for choosing such a topology a priori, that is, independent
of the application. Most approaches leading to partially connected topologies are therefore assuming a
number of constraints, which can aid in the topology choice. Based on this, the methods for constructing
partially connected networks can be classified as follows:

o Methods based on theoretical and experimental studies. These methods usually assume a fixed,
possibly random, connectivity distribution with either a constant degree or connectivity level. The
created networks are typically used for theoretical studies to determine fundamental aspects of these
networks, as for example their storage capacity.

e Methods derived from biological neural networks. The goal of these methods is to mimic biological
neural networks as well as possible, or at least to use certain criteria from biology as constraints to
aid the network building.

e Application dependent methods. This is an important class of methods where the choice of topology
is directly based on information obtained from a given application domain.

e Methods based on modularity. Modular neural networks, which are discussed in a later section, are a
special kind of partially connected neural networks that can be seen as a subclass of the application-
dependent models. They consist of sets of modules, which can each be either fully or partially
connected internally. The modules themselves are typically sparsely connected to each other, again
often based on application-dependent knowledge. (See also Sections B2.7 and B2.9.)

o Methods developed for hardware implementation. These methods are based on constraints that arise
from hardware limitations in analog or digital electronic, optical, or other hardware implementations.
An important subclass are the locally connected neural networks, such as cellular neural networks (see

E1.2.4 Section E1.2.4), that minimize the amount of wiring needed for the network, which is of fundamental
importance for electronic implementations.

e Ontogenic methods. An important class of methods, where the topology is dynamically adapted during
the training process by adding and/or deleting connections and/or neurons, are the ontogenic methods.
The ontogenic methods that include the removal and/or addition of individual connections provide an
automatic way to create partially connected neural networks. The various kinds of ontogenic neural

CL7,C24 network are discussed in Sections C1.7 and C2.4

An extensive review of partially connected neural networks, based on this classification, can be found
in the atricle by Elizondo et al (1996). A short summary of this work, restricted to nonontogenic methods,
is the article by Elizondo et al (1995).

Besides these purely neural-network-based methods, other artificial intelligence techniques, such as

p2 evolutionary computation and inductive knowledge, have been used to aid the construction of partially
connected networks.

For completeness, a technique that does not necessarily reduce the number of connections but reduces
the number of modifiable parameters by reducing the number of weights needs to be mentioned here, which
is weight sharing (see also Section B2.5.1). Using this technique, groups of connections are assigned only
one updatable weight. These groups of connections can for example act as feature detectors in pattern
recognition applications.

References

Elizondo D, Fiesler E and Korczak J 1995 Non-ontogenic sparse neural networks Proc. Int. Conf. on Neural Networks
(Perth) (Piscatawat, NJ: IEEE) pp 290-5
—— 1996 A survey of partially connected neural networks, in preparation

B2.6:2 Handbook of Neural Compuration release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.7 Special topologies
Emile Fiesler

Abstract
See the abstract for Chapter B2.

Besides the common layered topologies, which are usually at least fully interlayer connected, there exists
a variety of other topologies that are not necessarily layered, or at least not homogeneously layered. In
this section a number of these are discussed.

Modular neural networks are composed of a set of smaller subnetworks (the modules), each performing B2.9
a subtask of the complete problem. The topology design of modular neural networks is typically based
on knowledge obtained from a specific application or application domain. Based on this knowledge, the
problem is split up into subproblems, each assigned to a neural module. These individual modules do not
have to belong to the same category and their topologies can therefore differ considerably. The global
interconnectivity of the modular network, that links the modules, is often irregular as it is usually tuned to
the application, The overall topology of modular neural networks is therefore often irregular and without
a uniform layered structure.

Somewhat related to modular neural networks are composite neural networks. A composite neural ci6,c23
network consists of a concatenation of two or more neural network models, each with its associated
topology, thereby forming a new neural network model. A layered structure can therefore be observed
at the component level, since they are stacked, but the internal topologies of the components themselves
can differ from each other, yielding an inhomogeneous global topology. Composite neural networks are
often called hybrid neural networks, a context-dependent term that is even more popular for describing
combinations of neural networks with other artificial intelligence techniques such as expert systems and
evolutionary systems. In this handbook, the term ‘hybrid neural network’ is therefore reserved for these
latter systems (see part D of this handbook).

Another kind of topology that is sometimes used in the context of neural computation is the tree,
which refers to the graph theoretical definition of a connected acyclic graph (see Section B2.8.4 for the
relationship between graph theory and neural network topologies). The typical tree topology used is a
rooted one, where connections branch off from one point or a set of points. These points are usually the
output neurons of the network. Tree-based topologies are usually deep and sparse, and the neurons have
a restricted fan-in and fan-out. If these networks are trees according to the definition, that is, without
cross-connections between the branches of the tree, it can be argued whether they should be classified
as neural networks or as decision trees (Kanal 1979, Breiman ef al 1984). In this context it should be
mentioned that it is in some cases possible to convert the tree-based topology into a conventional layered
neural network topology (see for example Frean 1990).

An important class of networks which can have a nonstandard topology are the ontogenic neural c17,c24
networks, as discussed in the previous section, where the topology can change over time during the
training process. Even though their topology is dynamic, it is usually homogeneous at each point in time
during the training; this in contrast with modular neural networks, which are usually inhomogeneous.

One of the fundamental motivations behind ontogenic neural networks is to overcome the notorious
problem of finding a suitable topology for solving a given problem. The ultimate goal is to find the optimal
topology, which is usually the minimal topology that allows a successful solution of the problem. For
this reason, but also for establishing a base for comparing the resulting topologies of different ontogenic
training methods, it is important to define the minimal topology (Fiesler 1993).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.7:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

Definition. A minimal neural network topology for a given problem is a topology with a minimal
computational complexity that enables the problem to be solved adequately.

In practice, the topological complexity of neural networks can be estimated by the number of high-
complexity operations, like multiplications, to be performed during one recall phase. In the case where
the splicing function is either the multiplication operation or a low-complexity operation, the count can
be restricted to the number of multiplications only. For first-order networks, where the number of
multiplications to be performed in the recall process is almost equal to the number of weighted connections,
this can be further simplified as:

Definition. A minimal first-order neural network topology for a given problem is a neural network topology
with a minimal number of weighted connections that solves the problem adequately.

To illustrate the concept of minimal topology, the well-known exclusive OR (XOR) problem can be used.
The exclusive OR function has two Boolean inputs and one Boolean output which yields FALSE either
when both inputs are TRUE or when both inputs are FALSE, and yields TRUE otherwise. This function is
the simplest example of a nonlinearly separable problem. Since nonlinearly separable problems cannot be
solved by first-order perceptrons without hidden layers (Minsky and Papert 1969), the minimal topology
of a perceptron that can solve the XOR problem has either hidden layers or high-order connections.

Figure B2.7.1. A first-order neural network with a minimal interlayer-connected topology that can solve
the XOR problem. It has three layers and six interlayer connections.

In the following three examples, binary (0, 1) inputs, outputs, and activation values are assumed, as
well as a hard-limiting threshold or Heaviside function (H) as activation function:

0 if x<@©
H(x)=[L i e (B2.7.1)

and the activation value of a neuron in layer [+ 1 is calculated by the following forward propagation

formula:
a, =H (Z Wl,_l.a,,.) (B2.7.2)

where ay, is the activation value of neuron i in layer [, and W, , the weight of the connection between this
neuron and neuron j in layer / + 1, in accordance with the abbreviated notation of Section B2.8.2.

B2.7:2 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Special topologies

l Nl

3=L Ny=N, =1
2 N2= 1

1 N,=2

Figure B2.7.2. A first-order neural network with a minimal topology that can solve the XOR problem. It
has three layers, three interlayer connections, and two supralayer connections.

! N,
2=L| Ny=N,=1
1 Ny=2

Figure B2.7.3. A high-order neural network with a minimal topology that can solve the XOR problem. It
has two layers, two first-order connections, and one second-order connection.

Figure B2.7.1 shows the minimal topology of an interlayer-connected first-order neural network able
to solve the XOR problem, and figure B2.7.2 the smallest first-order solution which uses supralayer

connections.

Figure B2.7.3 shows the smallest high-order solution with two first-order connections and one second-

order connection.

References

Breiman L, Friedman J H, Olsen R A and Stone C J 1984 Classification and Regression Trees (Belmont, CA:

Wadsworth)

© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Handbook of Neural Computation release 97/1

B2.7:3

Neural Network Topologies

Fiesler E 1993 Minimal and high order network topologies Proc. 5th Workshop on Neural Networks:
Academic/Industrial/NASA/Defense; Int. Conf. on Computational Intelligence: Neural Networks, Fuzzy Systems,
Evolutionary Programming and Virtual Reality (WNN93/FNN93) (San Francisco, CA); SPIE Proc. 2204 173-8

Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networks Neural
Comput. 2 198-209

Kanal L N 1979 Problem solving models and search strategies for pattern recognition /EEE Trans. Pattern Anal.
Machine Intell. 1 194-201 :

Minsky M L and Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press)

B2.7:4 Handbook of Neural Computation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.8 A formal framework

Emile Fiesler

Abstract
See the abstract for Chapter B2.

Even though ANNs have been studied for several decades, a unifying formal theory is still missing.
An important reason for this is the nonlinear nature of neural networks, which makes them difficult to
study analytically, since most of our mathematical knowledge relates to linear mathematics. This lack of
formalization is further illustrated by the upsurge in progress in neurocomputing during the period when
computers became popular and widespread, since they enable the study of neural networks by simulating
their nonlinear dynamics. It is therefore important to strive for a formal theoretical framework that will
aid the development of formal theories and analytical studies of neural networks. A first step towards
this goal is the standardization of terminology, notations, and several higher-level neural network concepts
to enable smooth information dissemination within the neural network community, including users, that
consists of people with a wide variety of backgrounds and interests. The IEEE Neural Network Council
Standardization Committee is aiming at this goal. A further step towards this goal is a formal definition
of a neural network that is broad enough to encompass virtually all existing neural network models, yet
detailed enough to be useful. Such a topology-based definition, supported by a consistent terminology and
notation, can be found in the article by Fiesler (1994); other examples of formal definitions can be found
in the artices by Valiant (1988), Hong (1988), Farmer (1990), and Smith (1992).

A deep-rooted nomenclature issue, that of the definition of a layer, will be addressed in the next
section. Further, in order to illustrate the concept of a consistent and mnemonic notation, the notational
issue of weights, the most important neural network parameters, is discussed in the subsequent section,
which is followed by a structured method to visualize and study weights and network connectivity. Lastly,
the relationship between neural network topologies and graph theory is outlined; this offers a mathematical
base for neural network formalization from the topology point of view.

B2.8.1 Layer counting

A fundamental terminology issue which gives rise to much confusion throughout the neural network
literature is that of the definition of a layer and, related to this, how to count layers in a network. The
problem is rooted in the generic nature of the word ‘layer’, since it can refer to at least three network
elements:

e A layer of neurons
e A layer of connections and their weights
e A combination of a layer of neurons plus their connections and weights.

Some of these interpretations need further explanation. The second meaning, that of the connections and
associated weights, is difficult to use if there are other connections present besides interlayer connections
only, for example intralayer connections, which are inherently intertwined with a layer of neurons. Defining
a layer as a set of connections plus weights is therefore very limited in scope and its use should be
discouraged. For both the second and the third meaning, the relationship between the neurons and ‘their’
connections needs to be defined. In this context of layers, all incoming connections, that is, those that are
capable of providing information to a layer of neurons, are usually the ones that are associated with that

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation telease 9771 B2.8:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

ayer. Nevertheless, independent of which meaning is used, an important part of this terminology issue can
be solved by simply defining what one means by a layer.

An early neural network in history with a layered topology was the perceptron (Rosenblatt 1958),

c.1 which is sometimes called the single-layer perceptron. It has a layer of input units that duplicate and
fan-out incoming information, and a layer of output units that perform the (nonlinear) weighted sum
operation. The name single-layer perceptron reflects the third meaning of the word ‘layer’ as given above,
and is based on not counting the input layer as a layer, which is explained below. Since the conception
of the perceptron, many other neural network models have been introduced. The topology of some of
these models does not match with the layer concept given by the third interpretation. This is for example
the case for networks which have intralayer connections in the input (neuronal) layer or where a certain

c1.4 amount of processing takes place in the input layer, such as the Boltzmann machine and related stochastic

B23 neural network models and such as recurrent neural networks that feed information from the output layer
back to the input layer.

Currently, the most popular neural network models belong to the family of multilayer neural networks.
The terminology associated with these models includes the terms input layer, hidden layer, and output
layer (see Section B2.2.1), which corresponds to the first interpretation of the word ‘layer’ as a layer of
neurons.

The issue of defining a layer also gives rise to the problem of counting the number of layers, which is
mainly caused by the dilemma of whether one should count the input layer as a layer. The argument against
counting the input layer is that in many neural network models the input layer is used for duplicating and
fanning out information and does not perform any further information processing. However, since there
are neural network models where the input neurons are also processing units, as explained above, the
best solution is to include the input layer in the counting. This policy has therefore been adopted by this
handbook.

The layer counting problem manifests itself mainly when one wants to label or classify a neural
network as having a certain number of layers. An easy way to circumvent the layer counting problem is
therefore to count the number of hidden layers instead of the total number of layers. This approach avoids
the issue of whether to count the input layer.

In can be concluded that the concept of a layer should be based on a layer of neurons. For a number
of popular neural network modeis it would be possible to also include the incoming interlayer connections
into the layer concept, but this should be discouraged given its limited scope of validity. In general it is
best to clearly define what is understood by a layer, and in order to avoid the layer counting problem one
can count the number of hidden layers instead.

B2.8.2 Weight notation

To underline the importance and to illustrate the use of a consistent and mnemonic notation, the notation
of the most fundamental and abundant neural network parameters, that of the weights, is discussed in this
section.

A suitable and commonly used notation for a connection weight is the letter w, which is also
mnemonic, using the first letter of the word ‘weight’. Depending on the topology, there are several
ways to uniquely address a specific weight in the network.

The best and most general way is to specify the position of both the source and the sink neuron that
are linked by the connection associated with a weight, by specifying the layer and neuron indices of both:
Wym;, where ! and m are the indices of the source and sink layers respectively and i and j the neuron
indices within these layers. This notation specifies a weight in a unique way for all the different kinds of
first-order connection as defined in Section B2.2.2.

For neural networks with only interlayer connections, the notation can be simplified if necessary.
Since the difference between the layer indices (/ and m) is always one for these networks, one of the two
indices could be omitted: wy,,. In cases where this abbreviated notation is used, it is important to clearly
specify which layer the index [represents: whether it represents the layer containing the source or the
sink neuron.

A further notational simplification is possible for first-order networks with one neuronal layer or
networks without any cluster structure, where all neurons in the network are equally important. The
weights in these networks can be simply addressed by w;;, where the i and j indices point to the two
neurons linked by the connection ‘carrying’ this weight.

B2.8:2 Handbook of Neural Computation release 97/1 @© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A formal framework

High-order connections require a more elaborate notation since they combine the information of
several source neurons. Hence, the set of source neurons ({s;}) needs to be included in the notation and
the weight of a high-order connection can be denoted as w;),. When desired, this notation can be
abbreviated for certain kinds of networks, analogous to first-order connections as described above.

Similarly to the weight notation, mnemonic notations for other network parameters are also
recommended and used in this handbook.

B2.8.3 Connectivity matrices

A compact way to represent the connections and/or weights in a neural network is by means of a
connectivity matrix. For first-order neural networks this is a two-dimensional array where each element
represents a connection or its associated weight. A global connectivity matrix describes the complete
network topology with all neuron indices enumerated along each of its two axes. Note that a symmetric
neural network has a symmetric connectivity matrix and an asymmetric neural network an asymmetric
one. Feedforward neural networks can be represented by a triangular matrix without diagonal elements.
Figure B2.8.1 shows an example for the fully interlayer connected topology of figure B2.2.1.

1,1 12121 22 23 2431 32|43
1,1
1,2 . ° . .
2,1 . .
2,2 . .
2,3 . .
24 . .
3.1 .
3,2 .
4,1

Figure B2.8.1. Connectivity matrix for the four-layer fully interlayer-connected neural network topology
as depicted in figure B2.2.1. On the vertical axis the source neurons are listed by a tuple consisting of
the layer number followed by the neuron number in that layer. On the horizonal axis the sink neurons are
listed using the same notation. A ‘e’ symbol marks the presence of a connection in the topology.

For layered networks, the order of the neuron indices should reflect the sequential order of the layers,
starting with the input layer neurons at one end of the matrix and ending with the output neurons at the
other end of the matrix. The matrix can be subdivided into blocks based on the layer boundaries (see
figure B2.8.1). In such a matrix, subdivided into blocks, the diagonal elements, which are the matrix
elements with identical indices, represent the self-connections and the diagonal blocks containing these
diagonal elements contain the intralayer connections. The interlayer connections are found in the blocks

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B2.8:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

that are horizontally or vertically adjacent to the diagonal blocks. All other blocks represent supralayer
connections. Figure B2.8.2 shows the global connectivity matrix for the network depicted in figure B2.2.2.

1,1 41,2121 22131
11 . e | o
1,2 . o | o
2,1 . . °
2,2 ° . .
311 o .

Figure B2.8.2. Global connectivity matrix for the layered neural network topology with various kinds of
connection as depicted in figure B2.2.2. The notation is the same as in figure B2.8.1.

For layered neural networks with only interlayer connections, individual connectivity matrices can be
constructed for each of the connection sets between adjacent layers.

The connectivity matrices for high-order neural networks need to have a dimensionality of © + 1,
corresponding to the maximum number of source neurons (£2) plus one sink neuron.

Based on the definitions of Section B2.2.2, the span of a connection, measured in number of layers,
can be defined as the difference between the indices of the layers in which the neurons that are linked by
that connection are located. That is, the span of a connection which connects layer [with layer m is |l —m]|.
For example, interlayer connections have a span of one, intralayer connections a zero span, and supralayer
connections a span of two or more. Different kinds of supralayer connection can be distinguished based on
their span. The span of a connection can be easily visualized with the aid of a global connectivity matrix,
since it is equal to the horizontal or vertical distance, in blocks, from the matrix element corresponding
to that connection to the closest diagonal element of the connectivity matrix. The span of a high-order
connection, which is equal to the maximum difference between any of the indices of the layers it connects,
is more difficult to visualize given the increased dimensionality of the connectivity matrix.

B2.8.4 Neural networks as graphs

Graph theory (see for example Harary 1969) provides an excellent framework for studying and interpreting
neural network topologies. A neural network topology is in principle a graph (N, W), where A is the
set of neurons and W the set of connections, and when the network has a layered structure it becomes a
layered graph (Fiesler 1993). More specifically, neural networks are directed layered graphs, specifying
the direction of the information flow. In the case where the information between neurons can flow in more
than one direction, there are two possibilities:

e if distinct weight values are used for the information flow (between some neurons) in more than one
direction, the topology remains a directed graph but with multiple connections between those neurons
that can have a multidirectional information flow;

e if the same weight value is used in all directions, the topology becomes symmetric (see Section B2.3)
and corresponds to the topology of an undirected graph.

Figure B2.1.1 shows a neural network topology without a layered structure, which is a directed graph.
If all possible connections are present, as in a plenary neural network, its topology is equivalent to a fully
connected graph.

B2.8:4 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

A formal framework

References

Farmer J D 1990 A Rosetta stone for connectionism Physica D 42 153-87

Fiesler E 1993 Layered graphs with a maximum number of edges Circuit Theory and Design 93. Proc. 11th Eur.
Conf. on Circuit Theory and Design (Davos, 1993) part I, ed H Dedieu (Amsterdam: Elsevier) pp 403-8

—— 1994 Neural network classification and formalization Comput. Standards Interfaces 16 231-9

Harary F 1969 Graph Theory (Reading, MA: Addison-Wesley)

Hong Jiawei 1988 On connectionist models Commun. Pure Appl. Math. 41 1039-50

Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol.
Rev. 65 386408

Smith L § 1992 A framework for neural net specification /EEE Trans. Software Eng. 18 601-12

Valiant L G 1988 Functionality in neural nets Proc. 7th Natl Conf. Am. Assoc. Artificial Intell. (AAAI)-88 (S5t Paul,
MN, 1988) vol 2 (San Mateo, CA: Morgan Kaufmann) pp 629-34

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.8:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.9 Modular topologies

Massimo de Francesco

Abstract
See the abstract for Chapter B2.

B2.9.1 Introduction

The beauty of neural network programming, and certainly one of the reasons why early models were found
so appealing by computer science researchers, is the idea of a distributed, uniform method of computation,
where a few decisions concerning simple topologies of fully connected layers of neurons are enough to
define a complete system able to carry out any assigned task. Indeed, the dream of a self-programming
system, coupled with the mathematical purity of a regular structure, has been the primary focus of research
in neural networks.

This uniformity, however, can be the major shortcoming when trying to cope with real-world problems.
The brain itself, the most perfected biological neural system, is far from being a regular and uniform
structure: millions of years of evolution and genetic selection ended up in a highly organized, hierarchical
system, which can be better described by the expression network of networks. From nature’s point of view,
uniformity is a waste of resources.

B2.9.2 The complexity problem

As a matter of fact, uniform architectures such as multilayer perceptrons have proved to be able to tackle ci.2
problems in an effective way, and approximation theorems show that these networks are able under certain
conditions to represent virtually any mapping. However, the computational costs associated with training

a uniformly connected network can be unacceptably high, and the learning rules commonly used are not
guaranteed to converge to the global optimum.

Scaling properties of uniform multilayer perceptrons are a matter of concern, because the number
of weights usually grows more than linearly with the size of the problem. Since an interesting result of
computational learning theory tells us that we need proportionally as many examples as weights to achieve
a given accuracy (Baum and Haussler 1989), the actual number of examples and the time needed to train
the system can become prohibitively large as the problem size increases.

Furthermore, uniform feedforward architectures are subject to interference effects from uncorrelated
features in the input space. By trying to exploit all the information a given unit receives, it becomes much
more sensible to apparent relationships between unrelated features, which arise especially with high input
dimensionality and insufficient training data.

Problems such as image or speech recognition convey such an amount of information that their Fi6, F1.7
treatment by a uniform architecture is not conceivable without relying on heavy preprocessing of the data
in order to extract the most relevant information.

Modular architectures try to cope with these problems by restricting the search for a good
approximation function to a smaller but potentially more interesting set of candidates. The idea that
led to the investigation of more modular architectures came from the observation that class boundaries in
large, real-world problems are usually much smoother and more regular than those found in such toys but
extremely difficult problems as n-parity or the double spiral, and do not require the excessively powerful

® 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9771 B2.9:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

approximation capability of uniform architectures. For instance, we do not expect a face classification
system to completely change its output as one single bit in the input space is altered.

Modularity is also the natural outcome of divide and conquer strategies, where a priori knowledge
about the problem can be exploited to shape the network architecture.

B2.9.3 Modular topologies

Although any simple categorization could not account for all the types of architecture commonly called
modular, published work seems to focus on three main levels of modularity related to neural computation:
modular multinetwork systems, modular topologies, and (biological) modular models. We will essentially
discuss the former, with special emphasis on modular topologies, although we will give a definition of
and pointers to the latter.

B2.9.3.1 Modular systems

Modular systems usually decompose a difficult problem into easier subproblems, so that each subproblem
can be successfully solved by an eventually uniform neural network. Different options have been
investigated regarding the way input data is fed into the different modules, how the different results
are finally combined, and whether the subnetworks are trained independently or in the context of the
global system.

Some of these modular systems rely on the decomposition of the training data itself, by specializing
different networks on different subsets of the input space. Sabourin and Mitiche (1992) for instance
describe a character recognition system where high-level features in the input data, such as presence or
absence of loops, are used to select a specifically trained subnetwork. Others rely on the fact that different
instantiations of the same network trained on the same data (or on different representations of the same
data) usually converge to different global minima (because of the randomized starting conditions), so that a
simple voting procedure can be implemented (see for instance the article by Lincoln and Skrzypek (1990).
Others again add specific neural circuitry to provide more sophisticated combination of the partial results
(see for instance the article by Waibel (1989)).

Among modular systems, the multiexpert model (Jacobs ez al 1991) deserves special consideration,
since no a priori knowledge regarding the task decomposition is required: the system itself learns the
correct allocation of training cases by performing gradient descent on an altered error function enforcing
the competition between the expert networks and thus inducing their specialization to local regions of the
input space.

Most of the modular systems described here claim better generalization than a comparable uniform
architecture, although some of them achieve this at the expense of increased computation.

B2.9.3.2 Modular models

CALM networks (Murre et al 1992) or cortical column models (Alexandra et al 1991) are original
neural network models which are intrinsically modular. The basic computing structures of CALM and
cortical column models are small modules composed by neuron-like elements, and the models describe
the interaction, learning, and computing properties of assemblies of these modules. The main focus here
is on biological resemblance, rather than computational efficiency.

B2.9.3.3 Modular topologies

The final category of modular architectures includes simple topological variations of otherwise well known
and widely used neural models such as multilayer perceptrons. Units of the hidden and possibly output
layers in these networks are further organized into several clusters which have only local connectivity to
units in the previous layer. Modules are thus composed by one or more units having connections limited
to a local field (or a union of local fields) in the previous layer, and several modules operating in parallel
are needed to completely cover the input space. This eventually overlapping tiling can be repeated for the
subsequent layers, but is especially useful between the input and the first hidden layer. These architectures
do not require modification of the standard learning rules, so that standard backpropagation can be applied.
They are therefore very easy to implement, yet achieve very good results by diminishing the total number

B2.9:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Modular topologies

of weights, by partially avoiding interference effects, and by enforcing a divide and conquer strategy. If
it is possible to load the training set in a modular topology, then we will obtain a network which is faster
and which generalizes better than a corresponding uniform network.

The study of a printed optical character recognition task from De Francesco (1994) will help illustrate
these points with some numbers. Suppose we are processing a 16 x 16 binary image with a feedforward
neural network. With 50 hidden units, the first layer in a fully connected topology would contain
50 x 16 x 16 = 12800 weights. If we define a modular architecture using nine modules with an 8 x 8
local input field overlapping the whole image, and if each of these modules contains six units (for a total
of 9 x 6 = 54 hidden units), the combined first layer would have 9 x 6 x 8 x 8 = 3456 weights, roughly a
quarter of the uniform architecture. The results reported in table B2.9.1 show that the modular architecture
is much more accurate than the uniform one. Furthermore, since the modular architecture has much fewer
weights, it is tighter and executes faster, so that it can be more easily deployed in an industrial application
where speed and space constraints are an important factor.

Table B2.9.1. A comparison of modular and uniform topologies.

Topology No of modules No of weights No of hidden layers No of outputs Accuracy (%)

Uniform 2 (2 layers) ~W ~25 ~100 < 85*
Uniform 2 ~2W ~50 ~100 98.2
Modular 10 w ~50 ~100 99.5

* The uniform architecture with the same number of weights as the modular network was most of the
time unable to converge on the training set; 85% represents the accuracy on the test set of the most
converged network in the batch. Accuracy values of the two other architectures are averaged over ten
runs.

Similar results have been reported by Le Cun (1989) on a smaller problem, with a topology combining

local fields with additional constraints of equality between weights in different clusters. This is known as

the weight sharing technique, described by Rumelhart et al (1986). Today, weight sharing is especially

used in time delay neural networks, which have been extensively applied to speech recognition tasks. C1.2.8,F1.7
Recent theoretical results on sample size bounds for shared weight networks (Taylor 1995) indicate

that the generalization power of these networks depends on the number of classes of weights (shared

weights are counted only once), rather than on the total number of connections, which explains their

improved performance over uniform architectures.

B2.9.4 A need for further research

It must be noted that many modular architectures are in fact subsets of uniform topologies, in the sense
that they are equivalent to a uniform architecture with some of the connections fixed with zero-valued
weights. It can thus be objected that these modular networks are intrinsically less powerful than uniform
ones, and this is certainly true in the general case. The point is that modular architectures can and must
be adapted to the particular problem or class of problems to be effective, where uniform ones only depend
on the problem dimensions. This raises the issue of determining whether and how a given architecture is
suited to the particular task. Local receptive fields for instance can be easily justified in image processing,
but much less so in financial forecasting or medical diagnosis, where the input is composed of complex
variables with no evident topological relationship. Which knowledge is useful and how it can be translated
into the network architecture is still an open question from a theoretical point of view.

Some ontogenic networks attempt to cope with the architectural dilemma by modifying themselves c¢1.7, c24
during training, usually pruning apparently unused connections, trying in this way to prevent some of
the problems associated with fully connected networks. They however fail to produce any intelligible
modularity in the final architecture, and their global performance is usually not as good as successfully
trained networks with a fixed modular topology.

Although important experimental evidence supporting the superiority of modular architectures has
been cumulated over the last few years, and even if large-scale problems such as speech recognition have
shown to be tractable only by modular topologies, the lack of important theoretical results and the additional
efforts needed to choose and specify a modular architecture have certainly diminished their interest among

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.9:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

researchers in neural networks. Therefore, before hoping to find a more widespread use of modular neural
networks, some fundamental and related questions will have to be answered more precisely:

How can problems be categorized in order to establish which ones benefit the most from modularity?
How can we exploit topological data in the theoretical determination of optimal bounds for the size
of the training set?

¢ Conversely, given a problem, is there any computationally effective way to determine a good topology
to solve it?

References

Alexandre D, Guyot F, Haton J-P and Burnod Y 1991 The cortical column: a new processing unit for multilayered
networks Neural Networks 4 15-25

Baum E B and Haussler D 1989 What size net gives valid generalization? Neural Comput. 1 151-60

De Francesco M 1994 Functional networks: a new computational framework for the specification, simulation and
algebraic manipulation of modular neural systems PhD Thesis University of Geneva

Jacobs R A, Jordan M I, Nowlan S J and Hinton G E 1991 Adaptive mixtures of local experts Neural Comput. 3
79-87

Murre] M J, Phaf R H and Wolters G 1992 CALM: a building block for learning neural networks Neural Networks
5 52-82

Le Cun Y 1989 Generalization and network design strategies Technical report CRG-TR-89-4, University of Toronto
Connectionist Research Group

Lincoln W and Skrzypek J 1990 Synergy of clustering multiple back propagation networks Advances in Neural
Information Processing Systems 2 (Denver, CO, 1989) ed D S Touretzky (San Mateo, CA: Morgan Kaufmann)
pp 650-9

Rumelhart D E, Hinton G E and Williams R G 1986 Learning internal representation by error propagation Parallel
Distributed Processing vol 1, ed D E Rumelhart and J L McClelland (Cambridge, MA: MIT Press) pp 318-62

Sabourin M and Mitiche A 1992 Optical character recognition by a neural network Neural networks § 843-52

Taylor J § 1995 Sample sizes for threshold networks with equivalences Information Comput. 118 65-72

Waibel A 1989 Modular construction of time delay neural networks for speech recognition Neural Comput. 1 39-46

B2.9:4 Handbook of Neural Computation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10 Theoretical considerations for choosing a
network topology

Maxwell B Stinchcombe

Abstract

A minimal criterion for choosing a network topology is ‘denseness’. A network topology
is dense if it contains networks that can come arbitrarily close to any functional relation
between inputs x and outputs y. Within a chosen dense class of networks, the question
is how large a network to choose. Here a minimal criterion is consistency. A method of
choosing the size of the the network is consistent if, as the number of data or training
examples grows large, all avoidable errors disappear. This means that the choices cannot
overfit. The most widespread consistent methods of choice are variants of a statistical
technique known as cross-validation.

B2.10.1 Introduction

Neural networks provide an attractive set of models of the unknown relation between a set of input variables
x € R* and output variables y € R™. The different topologies or architectures provide different classes of
nonlinear functions to estimate the unknown relation. The questions to be answered are as follows:

(i) What class of relations is, at least potentially, representable?

(ii) What parts of the potential are actually realizable?

(iii) How might we actually learn (or estimate) the unknown relation?

(iv) How well does the estimated relation do when presented with new inputs?

The formal answers to the first question have taken the form of denseness (or universal approximation)
theorems—if some aspect of the architecture goes to infinity, then, up to any € > 0, all relations in some
class X of functions from R* to R™ can be e-captured. If an architecture does not have this property, then
there are relations between x and y that will not be captured.

The formal answers to the second question have taken the form of consistency theorems—if the
number of data (read number of training examples) becomes large, then, up to any € > O, all relations
in X between x and y can be e-learned (read estimated). The previous denseness results are a crucial
ingredient here.

Imbedded in the consistency theorems are two kinds of answer to the third question. The first class
of consistency theorems delivers asymptotic learning if the complexity of the architecture (measured by
the number of parameters) goes to infinity at a rate sufficiently slow relative to the the amount of data.
These results provide little practical guidance—multiplication of the complexity by any positive constant
maintains the asymptotic relation. The second, more satisfactory class of consistency theorems delivers
asymptotic learning if the complexity of the architecture is chosen by cross-validation (CV). The focus B3.52 C1.26
here will be CV and related procedures.

The essential CV idea is to divide the N data points into two disjoint sets of N; and N, points,
Ny + N2 = N, estimate the relation between x and y using the N; points, and (providing an answer
to the fourth question) evaluate the generalization capacity using the N points. This simple idea has
many variants. Related procedures include complexity regularization (loss-minimization procedures that
include penalties for overparametrization), and nonconvergent methods (N;-estimated gradient descent on
overparametrized models with an N, deterioration-of-fit stopping rule).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.10:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10.2 Measures of fit and generalization

The aim is to use artificial neural network (ANN) models to estimate an unknown relationship between
x and y and to estimate the quality of estimate’s fit to the data, and its capacity for generalization. The
starting point is a representative sample of N data points, (x;,)’i),-N=1- The most widely used measures
of generalization of an estimated relation, ¢, are of the form (¢,, u) where £, : R¥™ — R, is the
(measurable) ‘loss function’, u is the (countably additive Borel) probability on R¥*” from which the
generalization points (x, y) will be drawn, and (f,v) := [fdv for any nonnegative function f and
probability v. By far the most common loss function is ef, (x,y) = (y —o(x))% but any £5 = (y — ¢(x))?,
p € [1,00] (with the usual L? convention for p = oc) is feasible. Extremely useful for theoretical
purposes are the Sobolev loss functions that depend on f(x), the true conditional mean of y given x, and
the distance between the derivatives of f and g, for example, €25(x, y) = 3, <4 (D* f (x) — D%0(x)).
(In these last two sentences and from here onwards, we will assume that y € R!. This is for notational
convenience only, the results and discussion apply to higher output dimensions.)

This loss function approach covers both the case of noisy and noiseless observations. If f(x) denotes
(a version of) E(y|x), then a complete description of p is given by y = f(x) + ¢ where x is distributed
according to P, the marginal of 1 on R¥, and € is a mean-zero random variable with distribution Q(x)
on R™. If € is independent of x and Q(x) = Q, we have the standard additive noise model. If Q(x) is a
point mass on 0, i.e. if the conditional variance of € is a.e. 0, we have noiseless observations (the additive
noise model with zero variance).

When the data are a random sample drawn from g, and both N, and N, are moderately large,
the Glivenko—Cantelli theorem tells us that the empirical distributions uy, uy,, and py, are good
approximations to . If we pick a model, ¢, to minimize (£,, Ly,), then (€3, iy,) is an underestimate of
(€5, u). However, {£;, y,) is unbiased, and this is the basis of CV. We can not expect good generalization
of our estimated models if the empirical distribution of the (x;, y,~)f"=1 is very far from p.

B2.10.3 Denseness

c1.1 Single-layer feedforward (SLFF) networks are (for present purposes) functions of the form f(x,6,J) =
Bo + ij=1 B;G(yjx + vj0) where y/x is the inner product of the k-vectors y; and x, y;0 is a scalar,
G : R — R, and 8 is the vector of the 8 and y. The first formal denseness results were proved for SLFF
networks in Funahashi (1989), followed nearly immediately (and independently) by Cybenko (1989) and
Hornik et al (1989). All three of these showed that, if G is a sigmoid, then for any continuous g defined
on any compact set K C R*, and for any € > 0, if J is sufficiently large, then there exists a 6 such
that sup, . | f(x,6, J) — g(x)| < €. (This is ‘denseness in C (R¥) in the compact-open topology’.) Note
carefully that this is a statement about the existence of a network with this type of architecture, not a
guarantee that the network can be found, something that the consistency results deliver.

In the article by Hornik et al (1989) there is an inductive proof that the same result is true for

c12 multilayer feedforward (MLFF) networks (feedforward networks applied to the outputs of other feedforward
networks). An immediate consequence of denseness in the compact open topology is the result that for
the £ loss functions with compactly supported P, for large J, there exist 6 such that the loss associated
with f(x,8, J) is within any € > 0 of the theoretical minimum loss (which is zero in the noiseless case,
and is the expected value of the conditional variance in the Zé case). Using some of the techniques in
Funahashi (1989) and Cybenko (1989), Hornik et al (1990) show that the same results are true using the
various £2°b loss functions; Stinchcombe and White (1989, 1990) and Hornik (1991, 1993) have expanded
these results in various directions, loosening the restrictions on G and allowing for different restrictions
on the 4.

C162 Radial basis function (RBF) networks are (for present purposes) functions of the form s(x,8, J) =
Bo + Zf:] B;G((x — ¢;YM(x — ¢;)) where the B are scalars, the c; are k-vectors, M is a positive definite
matrix, and G : R — R. Park and Sandberg (1991, 1993a, 1993b) show that for large J, the £ loss
function is within any € > 0 of its theoretical minimum.

The sum of dense networks is again dense, meaning that combination networks will also have
denseness properties. One expects that architectures more complicated than SLFF, MLFF, and RBF
networks will also have denseness properties, and the techniques used in the literature just cited are
well-suited to delivering such results.

B2.10:2 Handbook of Neural Computation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Theoretical considerations for choosing a network topology

Denseness is a minimal property, and, unfortunately rather too crude to usefully compare different
dense network architectures—given two different architectures, there are typically two corresponding
disjoint, dense sets &7, &> C & of possible relations for which the two architectures are better suited.
Further, the known rates at which the loss can can be driven to its theoretical minimum as a function
of the number of parameters is the same for both RBF and SLFF networks (Stinchcombe et al 1993).
The empirical process techniques used in Stinchcombe et al (1993) (and previously for a class of SLFF
networks in Barron 1993) seem broadly applicable (see also Hornik et al 1993).

B2.10.4 Consistency

Let @(N) be an estimator of the relationship between x and y based on the data set N. A consistency
result for @(N) is a statement of the form, ‘as N 1 0o, {(£5w), 1) converges to its theoretical minimum’.
The methods of Grenander (1981), Gallant (1987), White and Wooldridge (1991) allow denseness results
to be turned into consistency results (White 1990, Gallant and White 1992, also Hart and Wehrly 1993).

For SLFF networks, the two consistency results in White (1990) concern the 2;‘; loss function and
have very different flavors. The first gives conditions on the rates at which different aspects of SLFF
architecture can go to infinity, the second concerning leave-one-out cross-validation (see below). By
contrast, the article by Gallant and White (1992) concerns the E{Z‘S‘)b loss functions, p < oo, imposes a
prior compactness condition on the set of possible relations between x and y, and requires only that the
complexity of the network become infinite in the limit. In particular, this allows for the many variants of
CV.

B2.10.5 Cross-validation

Cross-validation (CV) refers to the simple idea of splitting the data into two parts, using one part to find
the estimated relation, and then judging the quality of the fit using the other part of the data. There are
many variants of this simple idea.

Let M = U; M, be the union of different classes of models of the relation between x and y. (The
classical example has M, as the class of linear models in which regressors 1, ..., J are included. In
fitting either an SLFF or an RBF, M, is the class of functions where J nonlinear terms are included in
the summation. If the choice is to be between architectures that vary in more than the number of nonlinear
terms to be added, the appropriate choice of M, should be clear.) Let $;(S) € M, denote the loss
minimizing estimate of the relation between x and y based on the data in S C N, that is, ¢, (S) minimizes
{€y, is) over ¢ € M.

Originally (Stone 1974), CV meant ‘leave-one-out CV’ or ‘delete-one CV,’ picking that &; that
minimizes the average Ave(Eéf(N\m), i;) where the average is taken over all i € N and u; is a point
mass on the /th data point. Intuitively, this works because ‘overfitting’ the data leads on N\{i} to larger
errors in predicting y; from x;. The variants in the statistics literature (Zhang 1993) include delete-d CV
(the obvious variant of classical delete-one CV), r-fold CV, picking ¢, to minimize Ave(EéJ AN, U,)
where the average is taken over a random division of the data into r equally sized parts, and repeated
learning-testing, a bootstrap method which consists of picking ¢; to minimize Ave(Eéj(Nl), ww,) where
the average is taken over random independent selections of size d subsets N, of N and N; = N\N,. Note
that this list includes sample-splitting CV, which is just twofold CV, splitting the data in half, fitting on
one half, and picking the model from the predicted loss estimated with the second half.

Delete-d CV requires fitting the model N choose d times, and is, computationally, the most expensive
of the procedures. The least expensive is r-fold CV with r = 2. Generally, in the classical case (described
above), the computationally more intensive procedures have a better chance of picking the correct model
(Zhang 1993, 1992). Even though there is a tendency to overfit in the classical case, provided M is
dense, the CV procedure will deliver a consistent estimate of the functional relationship between x and y.
That is, as N 1 oo, the loss approximates its theoretical minimum (Hart and Wehrly 1993). Thus, when
data (training examples) are cheap relative to the computational problems of picking the @, 2-fold CV
recommends itself.

© 1997 TOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B2.10:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Topologies

B2.10.6 Related procedures

Complexity regularization and noncovergent methods either are or can be understood as variants of cross-
validation.

B2.10.6.1 Complexity regularization

Complexity regularization picks that model ¢ € M that minimizes (£,, un) + AP(p) where P(p) is a
penalty term for the complexity of ¢, and A is a scalar. This is an idea that goes back (at least) to ridge
regression (Hoerl and Kennard 1970). For example, P(yp) could be the minimal J such that ¢ € M,
when M; C M. Intuitively, the tendency to overfit by picking too complex a ¢ is countered by the
penaity.

Akaike’s information criterion (AIC; Akaike 1973) works for the independent additive noise model. It
has £, being the sample log likelihood, A = 1, and P(p) being the number of parameters used in specifying
¢ (in the case that the additive noise is i.i.d. Gaussian, this is the same as the 2; loss function). Stone
(1977) showed that delete-one CV is equivalent to maximizing the sample log likelihood plus e; = 0. He
also showed that if one of the classes of models, say M-, is exactly correctly specified, then e;. is equal
to the number of parameters used in specifying M ;.. There is a tendency to overinterpret this result;
e; may not be equal to the number of parameters for J # J*, and there is no guarantee that the two
criteria make the same choice. The Kullback-Leibler (1951) information criterion can provide a (slight)
generalization of the AIC.

The general difficulty in applying complexity regularization procedures is correctly choosing A. This
can be done by CV (though it seems rather indirect)}—simply let ¢(A) be the choice as a function of A
based on the subset N; of the data, and pick A to minimize (£,0, i4w,) (see Lukas 1993 for the asymptotic
optimality of this procedure).

B2.10.6.2 Nonconvergent methods

The nonconvergent methods of model selection (Finnoff et @/ 1993} is a form of twofold CV. One starts
with a model that is tremendously overparametrized (e.g. the number of nonlinear terms in an ANN might
be set at N/2). By gradient descent (or its backpropagation variant), the parameters in the model are
moved in a direction chosen to improve (£, in,}, continuing until {£,, uy,) begins to increase. This is
a model selection procedure in two separate senses. First, if the starting point of the parameters is zero,
then gradient descent will not have pushed very many of the parameters away from zero by the time the
N, fit has begun to deteriorate. Parameters close to zero identify nonlinear units that can be ignored and
so an M; has been chosen. The second point arises from a shift away from the statistical viewpoint of
nested sets of models. The aim is a model (or estimate) of the relation between x and y. The fact that our
model has ‘too many’ parameters is not, in principle, an objection if the model itself has not been overfit.

References

Akaike H 1973 Information theory and an extension of the maximum likelihood principle Second Int. Symp. on
Information Theory ed B N Petrov and F Csaki (Budapest: Akademiai Kiado) pp 267-81

Barron A 1993 Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Info. Theory
39 930-45

Billingsley P 1968 Convergence of Probability Measures (New York: Wiley)

Cybenko G 1989 Approximation by superpositions of a sigmoidal function Math. Control Signals Syst. 2 303-14

Finnoff W, Hergert F and Zimmermann H G 1993 Improving model selection by nonconvergent methods Neural
Networks 6 771-83

Funahashi K 1989 On the approximate realization of continuous mappings by neural networks Neural Networks 2
183-92

Gallant R 1987 Identification and Consistency in Seminonparametric Regression ed T F Bewley Fifth World Conf. on
Advances in Econometrics vol 1 (New York: Cambridge University Press) pp 145-170

Gallant R and White H 1992 On learning the derivatives of an unknown mapping with neural networks Neural
Networks 5 129-138

Grenander U 1981 Abstract Inference (New York: Wiley)

Hart J D and Wehrly T E 1993 Consistency of cross-validation when the data are curves Stochastic Processes and
their Applications 45 351-61

B2.10:4 Huandbook of Neural Computation release 97/1 © 1997 [OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Theoretical considerations for choosing a network topology

Hoerl A and Kennard R 1970 Ridge regression: biased estimation for non-orthogonal problems Technometrics 12 55

Hornik K 1991 Approximation capabilities of multilayer feedforward networks Neural Networks 4 251-7

——1993 Some new results on neural network approximation Neural Networks 6 1069-72

Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural
Nerworks 2 359-66 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation & Learning
Theory (Oxford: Blackwell) and in Rao Vemuri V (ed) Artificial Neural Networks: Concepts and Control
Applications (IEEE Computer Society))

——1990 Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
Neural Networks 3 551-560 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation &
Learning Theory (Oxford: Blackwell))

Hornik K, Stinchcombe M, White H and Auer P 1994 Degree of approximation results for feedforward networks
approximating unknown mappings and their derivatives Neural Comput. 6 1262-75

Kullback L and Leibler R A 1951 On information and sufficiency Ann. Math. Stat. 22 79-86

Lukas M A 1993 Asymptotic optimality of generalized cross-validation for choosing the regularization parameter
Numerische Mathematik 66 41-66

Park J and Sandberg I W 1991 Universal approximation using radial basis-function networks Neural Comput. 3 246-57

——1993a Approximation and radial-basis function networks Neural Comput. § 305-16

——1993b Nonlinear approximations using elliptic basis function networks Circuits, Syst. Signal Processing 13 99-113

Stinchcombe M and White H 1989 Universal approximation using feedforward networks with non-sigmoid hidden
layer activation functions Proc. Int. Joint Conf. on Neural Networks (Washington, DC) vol I (San Diego: SOS
Printing) pp 613-7 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation & Learning
Theory (Oxford: Blackwell))

——1990 Approximating and learning unknown mappings using multilayer feedforward networks with bounded
weights Proc. Int. Joint Conf. on Neural Networks (Washington, DC) vol III (San Diego: SOS Printing) pp
7-16 (Reprinted in White H (ed) 1992 Artificial Neural Networks: Approximation & Learning Theory (Oxford:
Blackwell))

Stinchcombe M, White H and Yukich J 1995 Sup-norm approximation bounds for networks through probabilistic
methods IEEE Trans. Info. Theory 41 1021-7

Stone M 1974 Cross-validitory choice and assessment of statistical predictions J. R. Stat. Soc. B 35 111-33

——1977 An asypmtotic equivalence of choice of model by cross validation and Akaike’s criterion J. R. Stat. Soc. B
39 4447

White H 1990 Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings
Neural Networks 3 535-50

White H and Wooldridge J 1991 Some results for sieve estimation with dependent obserations Nonparametric and
Semiparametric Methods in Econometrics and Statistics ed W Bamett, J] Powell and G Tauchen (New York:
Cambridge University Press)

Zhang P 1992 On the distributional properties of model selection criteria J. Am. Stat. Assoc. 87 732~7

——1993 Model selection via multifold cross validation Ann. Star. 21 299-313

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compusation release 97/1 B2.10:5

Copyright © 1997 IOP Publishing Ltd

B3

Neural Network Training

James L Noyes

Abstract

The characteristics of neural network models are discussed, including a four-parameter
generic activation function and an associated generic output function. Both supervised
and unsupervised learning rules are described, including the Hebbian rule (in various
forms), the perceptron rule, the delta and generalized delta rules, competitive rules, and
the Klopf drive reinforcement rule. Methods of accelerating neural network training
are described within the context of a multilayer feedforward network model, including
some implementation details. These methods are primarily based upon an unconstrained
optimization framework which utilizes gradient, conjugate gradient, and quasi-Newton
methods (to determine the improvement directions), combined with adaptive steplength
computation (to determine the learning rates). Bounded weight and bias methods are
also discussed. The importance of properly selecting and preprocessing neural network
training data is addressed. Some techniques for measuring and improving network
generalization are presented, including cross validation, training set selection, adding
noise to the training data, and the pruning of weights.

Contents

B3 NEURAL NETWORK TRAINING

B3.1 Introduction

B3.2 Characteristics of neural network models
B3.3 Learning rules

B3.4 Acceleration of training

B3.5 Training and generalization

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 1OP Publishing Ltd 4 ’

Neural Network Training

B3.1 Introduction

James L Noyes

Abstract
See the abstract for Chapter B3.

Neural networks do not learn by being programmed; they learn by being trained. Sometimes the words
training and learning are used interchangeably within the context of neural networks, but here a distinction
will be made between them. Learning, in a neural network, is the adjustment of the network in response
to external stimuli; this adjustment can be permanent. In biological neural networks, both memory and the
formation of thoughts involve neuronal synaptic changes. An artificial neural network models the synaptic
states of its artificial neurons by means of numerical weights. A successful neural network learning process
causes these weights to change and eventually to stabilize.

Learning may be supervised or unsupervised. Supervised learning is a process in which the external
network input data and the corresponding target data for network output are provided and the network
adjusts itself in some fashion so that a given input will produce the desired target. This can be done by
determining the network output for a given input, comparing this output with the corresponding target,
computing any error (difference) between the output and target, and using this error to provide the external
Jeedback, based upon external target data, that is necessary to adjust the network. In unsupervised learning,
the network adjusts itself by using the inputs only. It has no target data, and hence cannot determine errors
upon which to base external feedback for learning. An unsupervised network can, however, group similar
sets of input patterns into clusters predicated upon a predetermined set of criteria relating the components
of the data. Based upon one or more of these criteria, the network discovers any existing regularities,
patterns, classifications or separating properties. The network adjusts itself so that similar inputs produce
the same representative output.

Training, in a neural network, refers to the presentation of the inputs, and possibly targets, to the
network. This is done during the training phase. Training, and hence learning, is just the means to an
end. This end is effective recall, generalization, or some combination of the two during the application
phase, when the network is used to solve a problem. Recall is based upon the decoding and output of
information that has previously been encoded and learned. Generalization is the ability of the network
to produce reasonable outputs associated with new inputs. This is usuvally an important property for a
neural network to possess. Recall and generalization take place during the use of a neural network for a
particular application. In general, these are quite fast, whereas learning is commonly much slower because
the network weights must typically be readjusted many times during the learning process. These weight
adjustments, which are based upon the particular learning rule employed, are the main characteristics of
training. Once a neural network has been trained and tested, it is used in an application mode until it
no longer performs to the satisfaction of the user. When this point is reached, the training data set may
be modified by adding or removing data, and the training and testing process repeated (Rumelhart and
McClelland 1986, Noyes 1992, Fausett 1994).

References

Fausett L 1994 Fundamentals of Neural Networks (Englewood Cliffs, NJ: Prentice-Hall)

Noyes J L 1992 Artificial Intelligence with Common Lisp: Fundamentals of Symbolic and Numeric Processing
(Lexington, MA: D C Heath)

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)

® 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9771 B3.1:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.2 Characteristics of neural network models

James L Noyes

Abstract
See the abstract for Chapter B3.

Before discussing the concepts of neural network training, a brief discussion outlining the characteristics
of general neural network models is necessary.

B3.2.1 Biological and applications-oriented modeling

A neural network model may be developed to simulate various features of the human or animal brain
(for example, to study the effectiveness of different neural connection schemes, or how the absence of
myelin affects response times, or how the loss of a collection of neurons degrades memory). This type
of modeling can be characterized as biologically oriented (McClelland and Rumelhart 1986, Klopf 1988,
Hertz et al 1991, Kandel 1991).

On the other hand, a neural network model may be developed to help solve a problem that has
nothing in common with biology or neurophysiology. The network model is designed or chosen with a
specific application in mind, such as the identification of handwritten letters, face recognition, function
approximation, robotic control, or prediction of credit risk. This type of model can be characterized as
application oriented. The majority of neural network models are of this type. In this type of model one
need not concern oneself with developing constructs that have any biological counterpart at all. If the
network performs well on a certain class of problem, then it is deemed adequate.

B3.2.2 The neuron

The purpose of the neuron is to receive information from other neurons, perform some relatively simple
processing on this combined information and send the results on to other neurons. For neural network
models it is convenient to classify these neurons into one of three types: (i) An input neuron is one that
has only one input, no weight adjustment, and the input is from an external source (i.e. the input values
used for training or in applications). (ii) An output neuron is one whose output is used externally as
a network result. For example, the values from all of the output neurons are used during a supervised
training session. (iii) A hidden neuron receives its inputs only from other neurons and sends its output
only to other neurons. Neural network topologies are discussed in detail in Chapter B2 of this handbook. B2

The following general notational conventions will be followed in the remainder of this chapter. A
scalar variable will be written with one or more italicized lower-case letters, such as net, w, or w;;. A
vector is written as a lower-case letter in italicized boldface. For example, an input vector is written as =
and an output vector is written as y. All vectors are assumed to be column vectors. A matrix is written as
an upper-case letter in bold sans serif. For example, a weight matrix could be denoted by W. A transpose
of a vector or matrix is indicated with a small upper-case T as a superscript, such as &' (a row vector)
and WT. Since there are typically many of these scalars, vectors, and matrices needed to describe neural
network processing, subscripts will be used frequently.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.2:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.2.3 Neuron signal propagation

For a given neuron to fire, the incoming signals from other neurons must be combined in some fashion.
One early solution was to use a simple weighted sum as a firing rule. When this weighted sum reaches a
given threshold value 6, the neuron will fire. For neuron i this is written as:

m
Z WX 2 0.
j=1

This approach was adopted by Warren McCulloch and Walter Pitts in one of the first neural network models
ever devised (McCulloch and Pitts 1943). Here a signal of 1 was output when its weighted sum reached
or exceeded the threshold and a 0 was output when it did not. Even though these signals were limited
to binary values, they were able to demonstrate that any arbitrary logical function could be constructed
by an appropriate combination of such ‘logical threshold elements’. The learning issue was not actually
addressed.

In general, a propagation rule describes how the signal information coming into a hidden or output
neuron is combined to achieve a net input into that neuron. The weighted-sum rule is the most common
way to do this and for neuron { is given by:

m
net; = wio + wl @i = wio + Y_ wi;xi;. (B3.2.1)
j=1

Here w;q is an optional bigs value for this neuron, ®; is the vector of input values (signals) from other
neurons, and w; is the vector of the associated connection weights. Sometimes the bias is incorporated
into the vector w;, in which case the vector x; is given an extra first-component value of unity. It should
be noted that the above m-term inner product is very computationally intensive. In general, the number
of inputs to a neuron will depend on the connection topology, so it is sometimes more accurate to say that
m; inputs are used, instead of just m.

One could use this bias to implement the above threshold value 8 and cause the neuron to output a
value if the above inner-product value meets or exceeds this threshold. This type of firing scheme could
be incorporated into the weighted-sum rule by setting w;p = —6 and then producing an output only when
net; > 0. This is equivalent to the previous firing rule.

B3.2.4 Neuron inputs and outputs

The output of input neurons is usually identical to their input (i.e. y; = x;). For hidden and output neurons,
the inputs into one neuron come from the output of the other neurons, so it is sufficient to discuss output
signals only. The neuron outputs can be of different types. The simplest type of output is binary output,
where y; takes the value 0 or 1. A similar type of output with slightly different properties, is bipolar
output, where each y; takes on the value —1 or 4+1. While the binary output is simpler and more natural
to use, it is frequently more computationally advantageous to use bipolar output. Alternatively, the output
may be continuous: this is sometimes called an analog output. Here y; takes on real-number values,
often within some predefined range. This range depends upon the choice of the activation function and its
parameters (described below).

An activation rule describes how the neuron simulates the firing process that sends the signal onward.
This rule is normally described by a mathematical function called an activation function which has certain
desired properties. Here is a useful generic sigmoid activation function associated with a hidden or output
neuron:

f@=a/0+e) +d. (B3.2.2)

This function has one variable (z) and four controlling parameters (a, b, ¢, and d) which typically remain
constant during the network training process. This activation function performs the mapping f : R —
(d, a + d), is monotonically increasing, and has the shape of the s-curve for learning. This type of curve
is often called a sigmoid curve. The parameter b has the most significant effect on the slope of this curve:
a small value of b corresponds to a gradual curve increase, while a large value corresponds to a steep
increase. The case b = oo corresponds to a hard-limiting step function. (One can define the steepness by
the product ab.) The parameter ¢ causes a shifting along the horizontal axis (and is usually zero). The
parameters a and d define the range limits for scaling purposes. Here are some specific examples:

B3.2:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Characteristics of neural network models

0.6
0.4/

02r

_ .

-10 -5 5 1

of

Figure B3.2.1. Logistic function with b = 2.
1+
081

0.6

¥y
T

[
T

0

0.
J/ 1 Il
s

-10
Figure B3.2.2. Simple logistic function.

1k

0.5F

s

Figure B3.2.3. Bipolar function with b = 1.

a=1,b>0,c=0,d=0 gives the logistic function 1/(1 + e~%%)

with a range of (0, 1) as shown in figure B3.2.1.

=1,b=1,¢=0,d=0 gives the simple logistic function

with a range of (0, 1) as shown in figure B3.2.2.
a=2,b>0,c=0,d=—1 gives the bipolar function 2/(1 + e~%) — 1

with a range of (—1, 1) as shown in figure B3.2.3.
a=2,b=2,c=0,d =—1 gives the simple hyperbolic tangent function

tanh(z) with a range of (—1, 1)

as shown in figure B3.2.4.

All four of these functions are frequently used in neural network learning models. Once the activation
function has been selected, the output of neuron i is typically given by

yi = f(net;). (B3.2.3)

Notice that the generic sigmoid activation function is also differentiable, which is a requirement for many
of the training methods to be discussed later in this chapter. In particular, its derivative is given by

() =abe /(1 + 72492 = (b/a)[f(z) — dll(a + d) — f(2)] (B3.2.4)

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

B3.2:3

Neural Network Training

0.5

1
-10 -5 5 10

-05F
—__Jl -

Figure B3.2.4. Simple hyperbolic tangent.

which performs the mapping f' : R — (0, ab/4), where the derivative maximum of ab/4 occurs when
z =c/b.

Many other activation functions may be used in neural network models. A common discontinuous
function is the step function. However, because it is discontinuous, it cannot be used for training methods
that require differentiability.

In addition to the activation function, it is sometimes useful to define an output function that is applied
to the activation function for each output neuron in order to modify its result (it is not normally used to
modify the result computed by input neurons or hidden neurons). One common modification is to convert
continuous output into discrete output (e.g. real output into binary or bipolar output). One can define
a generic output function, which is compatible with the generic sigmoid activation function previously
described, when one sets d = y, and a = yy — yL, where y. and yy are given problem-dependent lower
and upper limits:

L ifz <y +ae
F(z) = {z if yy+ae<z<yy—ae (B3.2.5)
Yu if z > yy —ae.

This function performs the mapping: F : (d, a+d) — [d, a+d]. The parameter e is a measure of closeness
and must lie within the interval [O, 1/ 2). This function is not differentiable and hence is typically used only
in conjunction with the display of the results produced by the output neurons and in a supervised training
algorithm that has a termination condition that stops the iteration when all of the y; values produced by
the output neurons are within e of the corresponding target values #;. When continuous target values are
being matched, a sum of squared errors is frequently used in a termination condition, stopping when the
sum of all of the [#;; — y;.]? values are small enough, where L is the output layer. When something like
binary or bipolar target values are to be matched, one can compute an auxiliary sum of squares by using
[tir — F(yiL))? as an additional termination condition, stopping when this sum is exactly zero—which
can often happen before the regular sum of squares is small and thereby save additional training iterations.
This can also help prevent overtraining.

For example, suppose one requires a bipolar range with yp = —1 and yy = 1. One then sets
d =y, = —1and a = yy — yL = 2. One choice is to set ¢ = 0.4. This leads to what is sometimes called
the 40-20-40 rule (Fahlman 1988). The generic sigmoid activation and output functions become:

f@=2/1+e?)—1

for ¢ =0 and

-1 if z < —0.2 (lower 40% of the range)
F(z) = { b4 if —0.2 < z < 0.2 (middle 20% of the range)
1 if z > 0.2 (upper 40% of the range).

The smaller the value of e, the more stringent the matching requirement. Another choice is e = 0.1, which
yields a more stringent /0-80—10 rule.

B3.2.5 Neuron connections

The way in which neurons communicate information is determined by the types of connections that are
allowed. For the purposes of this chapter, some basic definitions will be given. For further information

B3.2:4 Handbook of Neural Compusation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Characteristics of neural network models

the reader should consult Chapter B2 of this handbook, which provides a detailed discussion of neural B2
network topology.

A feedforward network is one for which the signal only flows in a forward direction from the input B23
neurons through possible intermediate (hidden) neurons to the output neurons during their use, without
any connections back to previous neurons. On the other hand, a recurrent network contains one or more B23
cycles and hence allows a neuron to have a closed-loop signal path back to itself either directly or through
other neurons.

Neural networks only work properly if they have a suitable connection structure for the given
application. One common structure groups the neurons into layers. Neurons within these layers usually
have the same characteristics and are typically not connected at all or else are fully interlayer connected.
Multiple layers are common and are called muitilayer networks. The input neurons are all in the first layer, ci.2
known as the input layer, the output neurons are all in the last layer, known as the output layer, and any
hidden neurons are contained in hidden layers between the input and output layers. The input layer is
unique in that no weights affect the input into it so it is not considered to be a computational layer that
has weights to compute.

A single-layer network is a neural network that has only one computational layer (i.e. it really has ci.1
two layers, an input layer that is not computational and an output layer that is). A multilayer feedforward
network (MLFF) is one in which the neuron outputs of one layer feed into the neuron inputs of the
subsequent layer.

References

Fahlman S E 1988 An empirical study of learning speed in back-propagation networks Carnegie Mellon Computer
Science Report CMU-CS-88-162

Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture
Notes vol 1 (Redwood City, CA: Addison-Wesley)

Kandel E R (ed) 1991 Principles of Neural Science 3rd edn (New York: Elsevier)

Klopf A H 1988 A neuronal model of classical conditioning Psychobiology 16 85-125

McClelland J L. and Rumelhart D E 1986 Parallel Distributed Processing vol 2 (Cambridge, MA: MIT Press)

McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biophys.
5115-33

®© 1997 1OP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.2:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.3 Learning rules

James L Noyes

Abstract
See the abstract for Chapter B3.

This section describes some of the more important learning rules that have been used in neural network
training. It is not intended to present the complete training algorithms themselves (one training rule
could be incorporated in many algorithmic variations; specific algorithmic implementations are discussed
in Part C. Each of these rules describes a learning process that modifies a specified neural network to
incorporate new information. There are two standard ways to do this: (i) The on-line training approach,
sometimes called case or exemplar updating, updates the appropriate weights after each single input (and
target) vector. (ii) The off-line training approach, sometimes called batch or epoch updating, updates the
appropriate weights after each complete pass through the entire sequence of training data.

As indicated above, the term ‘learning’ applied to neural networks usually refers to learning the
weights, and that is what is discussed in this section. This definition excludes other information about the
network that might be learned, such as the way in which the neurons are connected, the activation function
and parameters that it uses, the propagation rule, and even the learning rules themselves.

B3.3.1 Hebbian rule

Donald O Hebb, a psychologist at McGill University, developed the first commonly used learning rule for
neural networks in his classic book Organization of Behavior (Hebb 1949). His rule was a very general
one which was based upon synaptic changes. It stated that when an axon of neuron A repeatedly stimulates
neuron B while neuron B is firing, a metabolic change takes place such that the weight w between A and
B is increased in magnitude. The simplest versions of Hebbian learning are unsupervised. Denoting these
neurons by n; and n;, if neuron n; receives positive input x; while producing a positive output y;, this rule
states that for some learning rate n > O

wyj = Wy + Aw;; (B3.3.1)
where the increase in the weight connecting n; and n; can be given by
Aw,'j =YXy (B332)

where on-line training is normally used. Of all the learning rules, Hebbian learning is probably the best
known. It established the foundation upon which many other learning rules are based.

Hebb proposed a principle, not an algorithm, so there are some additional details that must be provided
in order to make this computable. (i) It is implicitly assumed that all weights w;; have been initialized
(e.g. to some small random values) prior to the start of the learning process. (ii) The parameter # must be
specified precisely (it is typically given as a constant, but it could be a variable). (iii) There must be some
type of normalization associated with this increase or else w;; can become infinite. (iv) Positive inputs
tend to excite the neuron while negative inputs tend to inhibit the neuron.

Example: Suppose one wishes to train a single neuron, n;, which has m = 4 inputs from other
neurons and has a bipolar activation function of f(z) = sgn(z). Layer notation will be used. Assume a
fixed learning rate is used with n = 1/4, an initial random weight vector of w = (0.1, —0.4, —0.1, 0.3)T

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation telease 971 B3.3:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

is given with a bias value of wjg = 0.5, and that k = 2 training input vectors are to be used; these are
given as:) = (0,1,0, =17,z = (1,0, 0, 1)T. The computation is performed as follows, starting with
.

net; = 0.5+ (0.1)(0) + (—0.4)(1) + (-0.1)(0) + (0.3)(—1) = -0.2
y) = f(net;) =sgn(—0.2) = -1
Awy = 3(-1(0) =0 Awyp = 3(=D(1) = -}
Awiy = 3(-1)(0) =0 Awyy =5 =1.

The updated weight vector becomes w = (0.1, —0.65, —0.1, 0.55)T. Continuing this computation for z;:

net; = 0.5 + (0.1)(1) + (—0.65)(0) + (—0.1)(0) + (0.55)(1) = 1.15
y1 = f(net;) = sgn(1.15) = 1
Awy = (1)) = Awp = {(1(©0) =0
Awp=iO)=0 Aw=iDM)=1.

The updated weight vector now becomes w = (0.35, —0.65, —0.1, 0.8)T.

In the example above, the Hebbian rule was used in an unsupervised fashion. Notice that the
appropriate weight was also increased when the input and output were both ‘off’ (negative) at the same
time. That is a common modification to what the Hebbian rule originally stated and it leads to a stronger
form of learning sometimes called the extended Hebbian rule.

Suppose now that the Hebbian rule is used in another way, namely in a supervised learning situation.
In this situation the weight improvement is given by:

Awyj = ntix; (B3.3.3)

where f; is a given target value. In this form it is sometimes called the correlation rule (Zurada 1992).

Example. Suppose one wishes to train a single neuron, n;, which has m = 4 inputs and an identity
activation {and output) function of f(z) = z. Assume a fixed learning rate is used with n = 1, an initial
weight vector of w = 0 is given with a bias value of wy = 0 and that k = 4 orthogonal unit vectors and
corresponding targets are to be used for training. These training pairs are given as: z; = (1,0,0,0)T,
1 =0.73; ¢y = (0,1,0,0)T, 1, = —=0.32; 3 = (0,0, 1,0)T, 13 = 1.24; x4 = (0,0,0,)T, 4 = —0.09.
Now consider how well the weights can be determined with just one pass through the training set. The
training computation can now be simplified to:

wy; = wi; + 4iXx; .
The training phase proceeds as follows:

wi =0+ ©.73)(1) =073 wp =0+ (—0.32)(1) = —0.32
w3 =0+ 120)(1) =124 wy =0+ (=0.09)(1) = —0.09.

Using equation (B3.2.1), the propagation rule is given by
f(net)) = net; = 0.73x11 — 0.3215 + 1.24x33 — 0.09xy4 .

Hence, by inspection, it may be seen that the training input vectors produce their target values exactly
with just one pass through the training set. This network has been trained as an associative memory.

The previous example worked well because of the particular selection of input vectors. The suitability
of this rule depends upon the orthogonality (correlation) of the input training vectors. When the input
vectors are not orthogonal, the output will include a portion of each of their target values. However, if
the training input vectors are linearly independent, then they can be orthogonalized by the Gram—Schmidt
process (Anderson and Hinton 1981). Unfortunately, the Gram—-Schmidt process can be unstable, so other
techniques such as Householder transformations may be used (Tucker 1993). The advantage is that the
m x m weight matrix W may be readily determined to satisfy

Wz| =y, W), =y, ..., Wa,, = y,, or simply WX' =Y

B3.3:2 Handbook of Neural Computation rtelease 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

where z; are the orthogonalized input training vectors and the X' and Y matrices are constructed from
these respective column vectors. Since X' is orthogonal, its inverse is equal to its transpose so that the
weight matrix is simply computed by:

W=YX)T. (B3.3.4)

There have been several variations of the Hebbian learning rule that offer certain improvements (Hertz et
al 1991). One simple variation has already been illustrated, that of extended Hebbian learning. A second
simple variation is to normalize the weights that are found by a factor of 1/N where N is the number of
neurons in the system. Another more substantial variation, called by some neo-Hebbian learning, utilizes
a component that incorporates forgetting, together with learning (Kosko 1992). Still another variation,
called differential Hebbian learning, computes the weight increase based upon the product of the rates of
change (i.e. the derivatives with respect to time) of the input and output signals instead of the x; and y,
values themselves (Wasserman 1989, Kosko 1992). Only when both of these signals increase or decrease
at the same time is their product positive, causing a weight increase.

B3.3.2 Perceptron rule

The psychologist Frank Rosenblatt invented a device known as the perceptron during the late 1950s
(Rosenblatt 1962, McCorduck 1979). The perceptron used layers of neurons with a binary step activation
function. Most perceptrons were trained, but some were self-organizing. Rosenblatt’s original perceptron
device was designed to simulate the retina. His idea was to be able to classify patterns appearing on the
retina (the input layer) into categories. A common type of perceptron model is a neural network using
linear threshold neurons with s neurons in the input layer and one neuron in the output layer. The outputs
could be binary or bipolar. This is a supervised scheme that updates the weights by using equation (B3.2.1)
where the weight change for the learning rate n > 0 is given by

Aw;j =t — yi)x; . (B3.3.5)

Here y; = f(net;) where f(z) is now defined by the discontinuous threshold activation function

_I1 forz > 6
f(Z)_{o forz <@
where @ is a given threshold. This type of neuron is called a linear threshold neuron. As stated in
section B3.2.1, this can be accomplished by setting w;p = —# in the weighted-sum rule that determines
net;.

Here, as in the Hebbian rule, n > 0, but now the error is multiplied instead of just the output alone.
Because of the incorporation of the target value, it is easy to see that this is a supervised learning method.
It is also more powerful than the Hebbian rule. Notice that whenever the output of neuron i is equal to
the desired target value, the weight change is zero. As with Hebbian learning, on-line training is normally
used.

There is a theorem called the perceptron convergence theorem (Rosenblatt 1962) which states the
following: if a set of weights exists that allow the perceptron to respond correctly to all of the training
patterns, then the rule’s learning method will find a set of weights to do this and it will do it in a finite
number of iterations.

Perceptrons became very successful at solving certain types of pattern recognition problem. This led
to exaggerated claims about their applicability to a broad range of problems. Marvin Minsky and Seymour
Papert spent some time studying these types of model and their limitations. They authored a text in 1969
(reprinted with additional notes in Minsky and Papert 1988) which presented a detailed analysis of the
capabilities and limitations of perceptrons. The best-known example of a very simple limitation was the
impossibility of modeling an XOR gate. This is called the XOR problem (exclusive OR). To solve this
problem a model has to learn two weights so that the following XOR table can be reproduced:

X1 X2
0O 0 O
0 1 1
1 0 1
1 1 0
© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B3.3:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

These four input points can easily be plotted on the x,—x; axis as the corners of a unit square.
Dropping the neuron i index for simplicity, the output is then defined by:

for wix1 + wyxy >0
for wix; + waxy < 6.

f(net) = [(1)

Hence, to match the target values, the following four inequalities would have to be satisfied:

w10+ wy(0) <6orb <6

w(0) + wy(l) >0 or wy, >80

wi(1) +wy(0) > 6 or wy >0

wi (D) +uw(l) <@ orw; +w; <8.

This is a contradiction, because it is impossible for each individual weight to be greater than or equal to
¢ while their sum is less than 8.

This was a two-dimensional example of a general inability of a single-layer network to map functions
(solve problems) that are not linearly separable. A linearly separable function is a function for which
there exists a hyperplane of the form

m
Ty o X =
wm_ijx,—B
j=1

for which all points on one side of this hyperplane have one function value and all points on the other side
of this plane have a different function value. For example, if m = 2 the AND gate function and OR gate
function are linearly separable on the plane since a straight line can be shown to separate their points with
the same function values, but this is not the case with the XOR gate function. However, as will be seen
later, a multilayer network can solve such a problem.

B3.3.3 Delta rule

Bernard Widrow and Marcian E (Ted) Hoff developed an important learning rule to solve problems in
adaptive signal processing. It may be considered to be more general than the perceptron rule because
their rule could handle continuous as well as discrete inputs and outputs for problems. This rule, which
they called the least-mean-square (LMS) rule, could be used to solve a variety of problems without using
hidden neurons (Widrow and Hoff 1960). Because it uses the ‘delta’ correction difference, it is often
called the delta rule.

The delta rule is a supervised scheme that updates the weights by using equation (B3.3.1) where the
weight change is given for a fixed learning rate > O by

Awij =t — neti)xj (B3.3.6)

with no activation function needed. (An alternative view of this is to use the delta as (#; — y;), as was the
case in the perceptron rule, where the activation function is the simple linear identity function f(z) = z.)

The LMS name derives from the idea of training until the weights have been adjusted so that the
total least-mean-square error of a single neuron in the output layer, namely

k k
E(w)=1) (1 —net;)* = 1) (4 — net)? (B3.3.7)

Jj=1 j=1
is minimized, summing over all j = 1,2, ..., k training cases (where the index 1 is dropped since there

is only one output). It is important to remember that E is a function of all the weight and bias variables,
since the input and target data are all known.
Using equation (B3.2.1) for this single output neuron, equation (B3.3.7) becomes

k

2

E(w) = %Z(tj — Wy — WXy —-r— w,,,xmj) .
j=1

B3.3:4 Handbook of Neural Computation telease 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

The delta rule may be viewed as an adaptive way of solving the least-squares minimization problem where
the parameters wp, wi, ..., Wy, of a multiple linear regression function are to be determined. This method
has been used successfully in conjunction with both on-line and off-line training.

Widrow and Hoff called the single output model an adaptive linear element or adaline. They showed c1.1.3
that the training algorithm for this network would converge for any function that the network is capable of
representing. This single neuren in the output layer was later extended to a multiple-neuron model called
madaline (many adalines). Cl.14

B3.3.4 Generalized delta rule

This rule (sometimes also just called the delta rule) was proposed by several researchers including Werbos,
Parker, Le Cun, and Rumelhart (Rumelhart and McClelland 1986). It is also related to an early method
presented by Bryson for solving optimal control problems (Dreyfus 1990). David Rumelhart and the
PDP Research Group helped popularize this learning rule in conjunction with a complete training method
known as backpropagation. This training method is one of the most important techniques in neural network c1.2
training. As will be shown later, this is a gradient descent method which moves a positive distance along the
negative gradient in ‘weight space’. The associated learning rule requires that the activation function f(z)
be semilinear. A semilinear activation function is one in which the output of a neuron is a nondecreasing
and differentiable function of the net total input. Note that the generic sigmoid activation function given
by equation (B3.2.2) is semilinear.

The generalized delta rule again uses equation (B3.3.1). Here the weight changes for the output layer
are given for a fixed learning rate n > O by

Awij = nlt; — f(net;)]) f'(net;)x; . (B3.3.8)

Note that the term in braces is the same as (t; — y;), which was used in the perceptron rule (see
equation (B3.3.5)) so the weight changes will be small when these values are close together. However,
now the weight changes will also be small whenever the derivative of the activation function is close to
zero (i.e. the function is nearly flat at the net; point). Examination of the derivative of the generic sigmoid
activation function shows that f'(net;) is always positive and it approaches zero as net; becomes large.
This helps ensure the stability of the weight changes so that they do not oscillate. Backpropagation has
been shown to be very effective for a variety of problems, and the added hidden layers can overcome
the separability problem. However, there are three difficulties with this method. If some of the weights
become too large during the training cycle, the corresponding derivatives will approach zero and the weight
improvements also approach zero (even though the output is not close to the target). This can cause what
is sometimes called network paralysis (Wasserman 1989). It can lead to a termination of the training even
though a solution has not yet been found. A second difficulty is that, like all gradient methods, it may
stop at a local minimum instead of a global one. A third difficulty, also common with unmodified gradient
methods, is that of slow convergence (i.e. a lengthy learning process). Using a smaller learning rate n
may help some of these situations, or it may just increase the training time. This indicates the value of a
variable learning rate, as will be seen later.

The weight changes for the hidden layers are more involved since this derivative is multiplied by the
inner product of a weight vector and an error vector. For each prior layer /, summing over j, it has the
form:

Awy iy = {Z[wm,u . Awl+1,j]}f/(net1,i)xlj- (B3.3.9)
J

The basic idea behind both of these weight correction formulas is to determine a way to make the
appropriate correction to a weight in proportion to the error that it causes. The importance of this method
is that it makes it possible to make these weight corrections in all of the computational layers. The details
of the backprojection method are described more fully by Rumelhart and McClelland (1986).

B3.3.5 Kohonen rule

This rule is typically used in an unsupervised learning network to bring about what is called competitive
learning. A competitive learning network is a neural network in which each group (cluster) of neurons
competes for the right to become active. This is accomplished by specifying an additional criterion for

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B3.3:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

W,
Figure B3.3.1. Two-dimensional unit vectors in the unit circle.

the network so that it is forced to make a choice as to which neurons will respond. The simplest network
of this kind consists of a single layer of computational neurons, each fully connected to the inputs. A
common type of layer may be viewed as a two-dimensional self-organizing topographic feature map. Here
the location of the most strongly excited neurons is correlated with certain input signals. Neighboring
excited neurons correspond to inputs with similar features. Teuvo Kohonen is the person most often

c21.1 associated with the self-organizing network, which is one in which the network updates the connection
weights based only upon the characteristics of the input patterns presented. Kohonen devised a learning
rule that can be used in various types of competitive learning situation to cause the neural network to
organize itself by selecting representative neurons.

The most extreme competitive learning strategy is the winner take all criterion where the activation
of the neuron with the largest ner input is the one to have its weights updated.

This type of competitive learning assumes that the weights in the network are typically initialized
to random values. Their weight vectors and input vectors are normalized by using their corresponding
Euclidean norms. If the current normalized m-dimensional input vector is ¢, and there are ¢ neurons in
the group, then one computes

wyx = max{w, T, W T, -+, W, x}. (B3.3.10)

This represents a collection of ¢ m-dimensional weight vectors and one input vector all emanating from

the origin of a unit hypersphere (in two dimensions this is a circle). See figure B3.3.1, where ¢ = 8 and

p = 5. This means that neuron p is the winning neuron in this group if its weight vector w, makes a
smaller angle with & than the weight vector associated with any other neuron.
The weight improvement is given for a decreasing learning rate o > 0 by

Wpj 1= Wpj + 0 Awp; (B3.3.11)
where the weight changes associated with neuron p are given as:
Aij =X Wy (B3312)

For the winner take all criterion, this corresponds to modifying the corresponding w), vector (only) by a
fraction of the difference between the current input vector and the current weight vector. (Notice that no
activation function is needed in order to do this.) After this improvement, the weights associated with
neuron p tend to better estimate this input. Unfortunately, neurons which have weight vectors that are far
from any input vector may never win and hence never learn; these are like ‘dead neurons’. Solutions to
this difficulty and other variations of this learning rule are given by Hertz et al (1991).

B3.3:6 Hendbook of Neural Computation release 97/1 @® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

Other less extreme variations of this strategy allow the neighboring neurons to have their weights
updated also. Here a ‘geometry’ is chosen that can be used to define these neighbors. For example, suppose
the group of neurons is considered to be arranged in a two-dimensional array. A linear neighborhood
would be all neurons within a certain distance away in either the same row or the same column (e.g. if
the distance were 2, then two neurons on each side would also have their weights updated). A hexagonal
neighborhood is one in which the neighbors are within a certain distance in all directions in this plane
(e.g. two hexagons away from a neuron in a plane would correspond to 17 neighbors that would also have
their weights updated). Other choices are possible (Caudill and Butler 1992). Kohonen also proposed a
modification of his rule called the ‘Mexican hat’ variation, which is described by Hertz ez al (1991). In
this variation, a neighborhood function is defined and used as a multiplier.

This type of learning can be used for determining the statistical properties of the network inputs
(it generates a model of the distribution of the input vectors around the unit hypersphere). Competitive
learning, in general, is well suited as a regularity detector in pattern recognition.

B3.3.6 Outstar rule

Steven Grossberg coined the terms instar and outstar to characterize the way in which actual neurons
behave. Here instar refers to a neuron that receives (dendrite) inputs from many other neurons in the
network. Outstar refers to a neuron that sends (axon) outputs to many other neurons in the network, and
again the connecting synapses modify this output.

Instar training, which is unsupervised, is accomplished by adjusting the connecting weights to match c1.1.6
the input vector. This can be achieved by using the Kohonen rule defined in the last section. The instar
neuron fires whenever a specific input vector is used. On the other hand, the outstar produces a desired
pattern to be sent to other neurons when it fires, and hence it is a supervised training method. One way
to accomplish outstar training is to adjust its weights to be like the desired farget vector. The weight ci.16
improvement here is given for a decreasing learning rate 8 > 0O by

Wy = Wy + ﬂ ij,' (B3313)

where the weight changes associated with the neurons j = 1,2, ... to which neuron i sends output are
given as
iji = Wy (B3.3.14)

Here the outstar weights are iteratively trained, based upon the distribution of the target vectors (Wasserman
1989). Outstar training is distinctive in that the neuron weight adjustments are not applied to the neuron’s

own input weights, but rather applied to the weights of receiving neurons. Counterpropagation networks, c232
such as those proposed by Hecht-Nielsen (1990), can utilize a combination of Kohonen learning and
Grossberg outstar learning.

B3.3.7 Drive reinforcement rule

Drive reinforcement learning was developed by Harry Klopf of the Air Force Wright Laboratories. This
name arises from the fact that the signal levels, called the drives, are used together with the changes in
signal levels, which are considered as reinforcements. This approach is a discrete variation of differential
Hebbian learning and does well at modeling several different types of classical conditioning phenomenon.
Classical conditioning involves the following components: an unconditional stimulus, an unconditional
response, a conditioned stimulus, and a conditioned response. One important feature of this type of model
is the time between stimulus and response.
Klopf suggested the following changes to the original Hebbian model (Klopf 1988):

(i) Instead of correlating presynaptic levels of activity with postsynaptic activity levels, changes in these
levels are correlated. Specifically, only positive changes in the first derivatives of these input levels
are correlated with changes in output levels.

(ii) A time interval is incorporated into the learning model by correlating earlier changes in presynaptic
levels with later changes in postsynaptic levels.

(iii) The change in synapse efficacy should be proportional to its current efficacy in order to account for
experimental s-shaped learning curves.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.3:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

This model predicts a learning acquisition curve that has a positive initial acceleration and a subsequent
negative acceleration (like the s-curve) and which is not terminated by conditioned inhibition. First one
defines a new net; as

net;(8) =y wi;()x;;(t) — (B3.3.15)
j=1

where 7 is the number of synaptic weights.
The output, or drive, for neuron i may then be defined as

0 for net;(t) <0
yi(t) = ' net; (t) for 0 < net; () < A (B3.3.16)
A for net; (t) > A.

Here each y;(¢) is nonnegative and bounded. (Negative values have no meaning because they would
correspond to negative firing frequencies.) A common range is from 0 to A = 1. The time value ¢ is
computed by adding a discrete time step for each iteration. The weight update has the form:

wi; (¢ + 1) = wy (1) + Awy; (1) . (B3.3.17)

Here the weight change is given by

Aw;;(t) == Ay; (t){z Nelwij(t — k)| Axi;t — k)] (B3.3.18)
k=1

where the sum is from k = 1 to k¥ = t (the upper time interval limit) and absolute weight values are used.
The change in the input presynaptic signal at time ¢ — k is given by

Axij(t — k) i=x;j(t —k) — x;5(t —k —1). (B3.3.19)

If Ax;;(t — k) <0, then it is reset to zero before computing the above weight change.
The change in the output postsynaptic signal, the reinforcement, at time ¢ is

Ayi(t) := y; (1) — yi(t — 1). (B3.3.20)

For this learning rule there are 7 constants ; > 12 > ... > n; > 0. These are ordered to indicate that
the most recent stimuli have the most influence. For example, if At = 1/2 second, then one might choose
t=6sothatt—1,z-2,...,¢t— 6 would correspond to half-second time intervals back 3 seconds from
the present time, and 7 could be zero. For example, 1, =5, 12 = 3, 3 = 1.5, n4 = 0.75, ns = 0.25,
16 == 0 can be used to model an exponential recency effect (Kosko 1992).

A lower bound is set on the absolute values of the weights, which means that positive (excitatory)
weights remain positive and negative (inhibitory) weights remain negative (e.g. |w;;(¢)| = 0.1). These
weights are typically initialized to small positive and negative values such as +0.1 and —0.1. Finally, the
change in Ay;(z) is usually restricted to positive changes only. Learning does not occur if this signal is
decreasing in strength.

This type of learning allows the corresponding neural network to perceive causal relationships based
upon temporal events. That is, by keeping track of past events, these may be associated with present
events. None of the other learning rules presented in this chapter can do this. The drive reinforcement
method has also been used to develop adaptive control systems. As an example, this method has been
used to solve the pole balancing problem with a self-supervised control model (Morgan et al 1990). In
this problem the object is to balance a pole that is standing up on a movable cart by moving it back and
forth. This learning rule can also be used to help train hierarchical control systems (Klopf et al 1993).

B3.3.8 Comparison of learning rules

The following is a general summary of the main features of these rules and how they compare with one
another.

The Hebbian rule is the earliest and simplest of the learning rules. Learning occurs by modifying
the connecting weight between each pair of neurons that are ‘on’ (fire) at the same time, and weights are
usually updated after each example (on-line training). The concept of how to connect a collection of such

B3.3:8 Handbook of Neural Computation telease 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Learning rules

neurons into a network was not explicitly defined. The Hebbian rule can be used in either an unsupervised
or a supervised training mode. It is still a common learning rule for a neural network designed to act as
an associative memory. It can be used with training patterns that are either binary or bipolar. The original
Hebbian rule only referred to neurons firing at the same time and did not address neurons that do not fire
at the same time (see the discussion on asynchronous updating in section B3.4.3). A stronger form of
learning arises if the weights are increased when both neurons are ‘off’ at the same time as well as ‘on’
at the same time.

The perceptron rule is a more powerful learning rule than the Hebbian rule. Here a layered network
of neurons is defined explicitly. Single-computational-layer perceptrons are the simplest types of network.
The perceptron rule is normally used in a supervised training mode. The convergence theorem states that
if a set of weights exist that will permit the network to associate correctly all input—target training patterns,
then its training algorithm will learn a set of weights that will perform this association in a finite number
of training cycles. Weights are updated after each example is presented (on-line training). The original
perceptron with a binary-valued output served as a classifier. It essentially forms two decision regions
separated by a hyperplane.

The delta rule is also known as the Widrow—Hoff or least-mean-square (LMS) learning rule. It is
also a supervised rule which may be viewed as an extension of the single-computational-layer perceptron
rule since this rule can handle both discrete and continuous (analog) inputs. The ‘delta’ in this rule is
the difference between the target and the net input with the weight improvement proportional to this
difference. The weights are typically adjusted after each example is presented (on-line training), so the
method is adaptive in nature just as the two previous learning methods. The LMS name refers to the
fact that the sum of squares of these deltas is minimized. It can be used when the data are not linearly
separable. A commonly employed special case of this network is the adaline that only uses one (bipolar
or binary) output unit.

The generalized delta rule can be viewed as an extension of the delta rule (or the perceptron rule).
Specifically, it extends the previous delta rule in two important ways that significantly increase the power
of the learning process. First, it generalizes the delta difference of the previous rule by replacing the net
input by a function of the net input and then multiplying this difference by the function’s rate of change
(derivative). This activation function, providing a neuron’s output, is required to be both nondecreasing and
differentiable. Typically this is some type of s-shaped sigmoid function. In the previous learning rules, the
neuron outputs were typically quite simple (such as step functions and identity functions) and not always
differentiable. Second, by requiring differentiability of the activation function, it permits learning methods
(e.g. backpropagation) to be developed that can train weights in multiple-layer networks. This supervised
learning rule can be used with discrete or continuous inputs and can update the weights through either
on-line or off-line training. Off-line training is equivalent to a gradient descent method. With only three
layers (one hidden layer) and continuous data, these networks can form any decision region and can learn
any continuous mapping to an arbitrary accuracy (Kolmogorov 1957, Sprecher 1965, Hecht-Nielsen 1987).

The Kohonen rule also utilizes a network of layered neurons, but the layer can be of a different
type than the layers associated with the previous three learning rules. In those rules the neurons were in
one-dimensional layers (i.e. each is considered as a column or row of neurons). The Kohonen rule uses
either a one- or two-dimensional layer of neurons, the latter being somewhat more common. The neurons
in a layer can form cluster units. This is a self-organizing unsupervised network in which the neurons
compete with one another to become active. Different competition criteria have been used. For example,
during the training process, the neuron whose weight vector most closely matches the input training pattern
becomes the winner. Only this neuron and its neighbors update their weights. A more extreme winner
take all criterion only allows the winning neuron to update its weights. This type of network can be used
to determine the statistical properties of the network inputs.

The outstar rule utilizes the ability of a neuron to send its output to many other neurons. It is a
supervised training method that directly adjusts its weights to be just like a given target vector. It is
distinctive from the other learning rules in that the weight adjustments are applied to the weights of the
receiving neurons, not its own input weights.

The drive reinforcement rule allows a neural network to identify causal relationships and solve certain
adaptive control problems. Klopf modified the original Hebbian rule to incorporate changes in neuron input
levels, time intervals, and current weight values in order to determine how weights should be modified.

Overall, it is seen that the Hebbian rule, perceptron rule, delta rule, and sometimes the generalized
delta rule are typically employed when one has an on-line training situation. The generalized delta rule and

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.3:9

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

the others can be used in the off-line mode. The generalized delta rule is very flexible and can also be used
as a general function approximator. The Hebbian rule and Kohonen rule may be considered as operating
in an unsupervised mode, while the others are typically supervised (the Hebbian rule has a supervised
form also). The drive reinforcement rule is the only one of these that incorporates rates of change over
time and is designed to deal with cause and effect learning.

References

Anderson J A and Hinton G E 1981 Models of information processing in the brain Parallel Models of Associative
Memory ed G E Hinton and J A Anderson (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 948

Caudill M and Butler C 1992 Naturally Intelligent Systems (Cambridge, MA: MIT Press)

Dreyfus S E 1990 Artificial neural networks, backpropagation, and the Kelley-Bryson gradient procedure J. Guidance,
Control Dynamics 13 926-8

Hebb D O 1949 The Organization of Behavior (New York: Wiley)

Hecht-Nielsen R 1987 Kolmogorov’s mapping neural network existence theorem IEEE Int. Conf. on Neural Networks
vol III (New York: IEEE Press) pp 114

——1990 Neurocomputing (Reading, MA: Addison-Wesley)

Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture
Notes vol 1 (Redwood City, CA: Addison-Wesley)

Klopf A H 1988 A neuronal model of classical conditioning Psychobiology 16 85-125

Klopf A H, Morgan J S and Weaver S E 1993 A hierarchical network of control systems that learn: modeling nervous
system function during classical and instrumental conditions Adaptive Behavior 1 263-319

Kolmogorov A N 1957 On the representation of continuous functions of many variables by superposition of continuous
functions of one variable and addition Dokl. Akad. Nauk USSR 114 953-6

Kosko B 1992 Neural Networks and Fuzzy Systems: a Dynamical Systems Approach to Machine Intelligence
(Englewood Cliffs, NJ: Prentice Hall)

McCorduck P 1979 Machines Who Think (San Francisco, CA: Freeman)

Minsky M and Papert S 1988 Perceptrons: an Introduction to Computational Geometry expanded edition reprinted
from the 1969 edition (Cambridge, MA: MIT Press)

Morgan J S, Patterson E C and Klopf A H 1990 Drive-reinforcement learning: a self-supervised model for adaptive
control Network 1 43948

Rosenblatt F 1962 Principles of Neurodynamics (Washington, DC: Spartan Books)

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)

Sprecher D 1965 On the structure of continuous functions of several variables Trans. Am. Math. Soc. 115 340-55

Tucker A 1993 Linear Algebra: an Introduction to the Theory and Use of Vectors and Matrices (New York: Macmillan)

Wasserman P D 1989 Neural Computing: Theory and Practice (New York: Van Nostrand Reinhold)

Widrow B and Hoff M E 1960 Adaptive switching circuits Wescon Convention Record part 4 (New York: Institute of
Radio Engineers) pp 96104

Zurada J M 1992 Introduction to Artificial Neural Systems (St Paul, MN: West Publishing)

B3.3:10 Handbook of Neural Compusation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4 Acceleration of training
James L Noyes

Abstract
See the abstract for Chapter B3.

Early neural network training methods, such as backpropagation, often took quite a long time to train. The c1.2
time that it takes to train a network has long been an issue when different types of applications have been
considered. The length of training time depends upon the number of iterations (passes through the training
data). The number of iterations required to train a network depends on several interrelated factors including
data preconditioning, choice of activation function, the size and topology of the network, initialization of B3.2.4
weights and biases, learning rules (weight updating schemes), the way in which the training data are B33
presented (on-line or off-line), and the type and number of training data used.

In this section, some of these factors will be addressed and suggestions will be made to accelerate
network training in the context of multilayer feedforward networks.

B3.4.1 Data preprocessing

Of all the quantities that one can set or modify prior to a neural network training phase, the single
modification that can have the greatest effect on the convergence (training time) is data preprocessing.
The training data that a network uses can have a significant effect on the values computed during the
learning process. Data preprocessing can help condition these computations so they are not as susceptible
to roundoff error, overflow, and underflow. Preprocessing of the training data typically refers to some
simple type of data transformation achieved by some combination of scaling, translation, and rotation.
Sometimes a less sophisticated algorithm can work as well with preconditioned data as a more sophisticated
algorithm can work with unconditioned data.

It has generally been found that problems with discrete {0, 1} binary values should be transformed
into equivalent problems with corresponding bipolar values (or their equivalent), unless one has a good
reason to do otherwise. This is because training problems are often exacerbated by zero (0) input values.
Not only do these values cause the corresponding ret; not to contain (add) any w;; components because
the corresponding x; = 0, but the zero values also prevent the same w;; values from being efficiently
corrected because the term x;error; = 0 for that value (it behaves just as though error; = 0).

The simple linear transformation 7'(z) = 2z — 1 will transform binary {0, 1} values into bipolar {—1, 1}
values. To employ these bipolar training values requires that the generic sigmoid activation function
(equation (B3.2.2)) use ¢ = 2 and d = —1 as parameters. Another common mapping range, as an
alternative to the bipolar range, is {—0.5, +0.5} with T(z) = z — 1/2. As always, when the training
data are transformed and the network is trained with these transformed data, the problem data must be
transformed in the same manner. Simple symmetric scaling can sometimes make a significant difference
in the training time.

If continuous (analog) data, rather than discrete data, are to be used for network training, then other
scaling techniques can be used, such as normalizing each input data value by using the transformation
z; = (x; — u)/o, where p is the mean and o is the standard deviation of the underlying distribution,
In practice, the sample mean and standard deviation are used. This is a statistically based data scaling
technique and can be used to help compensate for networks that have variables with widely differing
magnitudes (Bevington 1969). In general, all of the standard deterministic and statistically based scaling
techniques are candidates for use in the preprocessing of neural network data.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B3.4:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4.2 Initialization of weights

Initialization of the network weights (and biases) can also have a significant influence upon both the
solution (the final trained weights) and the training time. it is important to avoid choices of these weights
that would make either the activation function values or the corresponding derivatives near zero. The most
common type of initialization is that of uniformly distributed ‘random’ numbers. Here a pseudorandom
number (PRN) generator is used (Park and Miller 1988). Usually the initial weights are generated as
small positive and negative weights distributed around zero in some manner. It is not generally a good
idea to use large initial weights since this can lead to small error derivatives which produce small weight
improvements and slow learning.

It is common to use a PRN generator to compute initial weights within the interval [—p, o] where
p is typically set to a constant value within some range, say 1/4 < p < 5. In general, the choice of p
depends upon the gain of the activation function (as specified by its parameters), the training data set, the
learning method, and learning rate used during training (Thimm ez al 1996).

For the standard backpropagation method using the simple logistic function, the most commonly
used intervals are probably [—1, 1] and [-—1/2, t /2]. For example, Fahlman (1988) conducted a detailed
investigation of the learning speed for backpropagation and backprop-like algorithms (e.g. Quickprop).
These were applied to a benchmark set of encoder and decoder problems of various sizes, mostly of size 8
or 10; for example, a 10-5-10 multilayer feedforward (MLFF) network was common. In this empirical
study he found that even though PRNs in the interval [—1, 1] worked well, there were good results for p
as large as 4.

Success has also been achieved with other schemes whereby the hidden layer weights are initialized
in a different manner than the output layer weights. For example, one might initialize the hidden layer
weights with small PRNs distributed around zero and initialize the weights associated with the output
layer with an equal distribution of +1 and —1 values (Smith 1993). Here the idea is to keep hidden layer
outputs at a mid-range value and to try achieve output layer values that do not make the derivatives too
small.

If one choice of initial weights does not lead to a solution, then another set is tried. Even if a solution
is reached, it is sometimes a good strategy to generate two or three other sets of initial weights in order to
see if the corresponding solution is the same or at least equally as good. Other useful weight initialization
schemes have also been developed and studied, such as by Fausett (1994). Thimm and Fiesler (1994)
present a detailed comparison of neural network initialization techniques. They conclude that all methods
are equally or less effective compared with a simple initialization scheme with a fixed range of random
numbers. The range [—0.77, 0.77] is found to be most suitable for multilayer neural networks.

B3.4.3 Updating schemes

Synchronous updating of a neural network means that the activation function is applied simultaneously for
all neurons. Asynchronous updating means that each neuron computes its activation function independently
(e.g. randomly) which corresponds to independent neuron firings. The corresponding output is then
propagated to other neurons before another neuron is selected to fire. This type of updating can add
stability to a neural network by preventing oscillatory behavior sometimes associated with synchronous
updating (Rumelhart and McClelland 1986).

B3.4.4 Adaptive learning rate methods

Adaptive learning rates have been shown to provide a substantial improvement in neural network training
times. This can be especially important in real-time training problems. A significant class of adaptive
learning rate methods is based upon solving the unconstrained minimization problem (UMP). In the
following, this problem and the methods for its solution will be given, they will then be placed within the
framework of neural network training.

B3.4.4.1 The unconstrained minimization problem

The general unconstrained minimization problem (UMP) consists of finding a real vector such that a given
scalar objective function of that vector is maximized or minimized. In the following, the minimization
problem will be addressed in the context of minimizing the errors associated with an MLFF network.

B3.4:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

However, it is possible to formulate other supervised neural network models as optimization problems
also. The vector to be determined is the n-dimensional vector w = (wy, wy, ..., wy)T of network weights
and biases, which is typically called the weight vector. The UMP may then be formulated as

minimize: E(w) (B34.1)

where w is unconstrained (not restricted in its n-dimensional real domain). E(w) is the neural network
objective function and it is possible that many local minima exist.

There are many well-known methods for solving the general UMP. Most of these methods are
extremely effective and have been perfected over the years for the solution of scientific and engineering
problems. Once the neural network problem has been formulated as a UMP, all of the theory of
unconstrained optimization, such as that relating to the existence of solutions, problem conditioning, and
solution convergence rates, may be applied to neural network problems. In addition, all of the practical
knowledge such as efficient optimization algorithms, scaling techniques, and standard UMP software may
be applied to help facilitate neural network learning (Noyes 1991).

The optimization methods are broadly classified by the type of information that they use. These are:

(i) Search methods. These use evaluations of the objective function E(w) only and do not utilize any
partial derivative information of the objective function with respect to the weights. These methods
are usually very slow and are seldom used in practice unless no derivative information is available.
Sometimes, however, n-dimensional search methods can be used to augment derivative methods.

(ii) First-derivative (gradient) methods. These use both objective function evaluations and evaluations of
the first partial derivatives of E(w). The gradient VE(w) is an n-dimensional real vector consisting
of the first partial derivatives of E(x) with respect to each weight w; for i = 1,2,...,n. These
gradient methods are the optimization methods that are typically used for neural network training.
Most are relatively fast and require only a moderate amount of information. These methods include:
(a) steepest descent, (b) conjugate gradient descent, and (c) quasi-Newton descent. These are called
descent methods because they guarantee a decrease in E(w) at each iteration (e.g. training epoch).

(iii) Second-derivative (Hessian) methods. These use function evaluations and both first- and second-
partial-derivative evaluations. The Hessian V2E(w) is an n x n real matrix consisting of the second-
partial derivatives of E(w) with respect to both w; and w; fori =1,2,...,nand j =1,2,...,n.
These methods are used less often than the first-derivative methods, because they require more
information and often more computation. These methods typically require the fewest number of
iterations, especially when they are close to the solution. Even though these methods may often be
the fastest, they are typically not that much faster than the modified gradient methods (i.e. conjugate
gradient and quasi-Newton). Hence these modified gradient methods are usually the methods of
choice.

In general, all of these classes of methods for solving the UMP find a local minimum point w* such
that E(w*) < E(w) for all weight vectors w in a neighborhood of w*. (If w* is a local minimum of E (w)
then the norm of VE(w*) is zero and VZE(w*) is positive semidefinite.) Only additional conditions on
E(w), such as convexity, will guarantee that this local minimum is also global. In practice, several ‘widely
scattered’ initial weight vectors w® can be employed, each yielding a solution w*. The w* associated
with the smallest E(w*) is then selected as the best choice for the global minimum weight vector.

B3.4.4.2 The neural network optimization framework

Suppose one chooses the multilayer feedforward (MLFF) network as the neural network model. The
objective function is then typically a least-squares function so the neural network optimization model can
be given by:
P Ny
Ew) =3 [ty — ypq)*- (B3.4.2)

Here P is the total number of presentations (input—target cases) in the training set given by {(x,, ¢,); p =
1,2,..., P}. Ng is the number of components in t,, t,, is the gth component of the pth target vector
and y,, is the corresponding computed output from the output layer that depends upon w. The multiplier
of 1/2 is simply used for normalization purposes.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.4:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

Even a moderately sized neural network problem can lead to a large, high-dimensional optimization
problem and hence the storage required by certain algorithms can be a major issue. This is easily seen since
the number of weights and biases needed for an L-layer MLFF network of the form N{-N,—Ns—.. ~N|
is given by

n=MN+ DM+ N+ DN+ ...+ (N + DN, (B34.3)

where N; is the number of units in the ith layer. Note that the added constant ‘1’ indicates the inclusion
of the bias term with the other weight terms.

Example: Consider the previously discussed XOR gate problem modeled as a 2-2—1 network with
bipolar training data given by

X1 X2 4

-1 -1 -1

—1 +1 +1
+1 -1 41
+1 41 -1,

The corresponding activation function of f(z) = 2/(1 + e %) — 1 could then be used with
the parameter » > 0 controlling the slope of this s-curve. The number of weights and biases is
n=02+12+4+ @2+ 1)1 =9. There are P = 4 input-target cases, with N, = 1 component in the
target vector (in this case it is a scalar). Fortunately, E(w) seldom needs to be explicitly formulated in
practice. Here it will be done in order to show the presence of the weights and biases which are to be
chosen optimally so that E(w) is minimized:

Ew) = 3{[n1 = ynl® + (121 ~ yu P + [ta1 — ya1 P + [ta1 — yar1?)
= =1 = f(wra + wrs f(ws) — wsy — ws3) + wre f (We1 ~ wes — we3))]?
+ 1 — f(w 4 wrs f(ws1 — wsz + ws3) + wrs f (W1 — wez + wes))]?
+ [1 = f (w4 + was f(ws + ws2 — ws3) + wrg f(wer + we2 — we3))}
+ [=1 = f(wrs + wrs f (ws1 + wsz + wsz) + wre f(wer + wez2 + wes)) 1’} .

The nine-element vector w is defined by
T
w = (Ws1, Wsy, Ws3, Wel, We2, We3, Wi4, Wrs, W)

where the first index is the index of the receiving neuron and the second index is that of the transmitting
neuron in the previous layer.

Even without making the final substitution of 2/(1 4+ e~%?) — 1 for the activation function f(z), one
can see the complexity of this objective function E(w). Fortunately, however, this problem together with
many much larger problems can often be solved easily with the right optimization method.

In the above example, the elements ws;, ws;, ws3, respectively, represent the bias and the two weights
associated with the first neuron in the second (hidden) layer. The elements wg;, wep, wes, respectively,
represent the bias and the two weights associated with the second neuron in the hidden layer. The elements
w14, Wys, Wre, Tespectively, represent the bias and the two weights associated with the first (and only)
neuron in the output layer.

Based upon the objective function, it is relatively easy to write the computer code for a function
and procedure that will evaluate the function E(w) and gradient VE (w) respectively. To evaluate E(w)
requires P forward passes through the network (no backward passes are needed). A training epoch
consists of one pass through all of the input—target vectors in the training set. To evaluate the gradient
VE{(w) requires P forward and backward passes (just like the backpropagation method). With a little
extra computation, E(w) can also be computed in the gradient procedure.

The reason for making this last statement is that, by using the best-known optimization methods
for solving the neural network training problem, not only is a weight improvement direction recomputed
during each training epoch, but an adaptive learning rate can be computed as well (Gill er a/ 1981). None
of the well known optimization methods would use a fixed learning rate, because it would be extremely
inefficient to do so. The standard backpropagation method typically uses a ‘small’ fixed learning rate and
this is why it is typically quite slow. The reason this is done is because a small enough learning rate is

B3.4:4 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

guaranteed to produce a decrease in the objective function as long as the gradient VE(w) is not zero.
However, adaptive learning rates can be chosen to guarantee such a decrease also and they are usually
much faster.

In addition, most optimization methods modify —V E(w), the negative gradient at the current point,
in order to compute a new direction. This is because other information, such as gradients at nearby
points, can frequently yield a better direction of decrease. Only one method, steepest descent, uses just
the negative gradient for the direction to move at each iteration, but even this method does not use a
fixed step. This method is typically slow also, but not nearly as slow as a fixed-step gradient algorithm
(e.g. backpropagation). Within a neural network context, a judicious computation of both the direction
and learning rate can guarantee a sufficient decrease in the objective function during each training epoch.
Specifically, this means that the computed learning rate must be large enough to reduce the magnitude of
the directional derivative by a prescribed amount and must also reduce the objective function by a given
amount. On the other hand, the learning rate cannot be too large or a functional increase may result. The
equations to test these conditions are standard and are given below. The variable v is the counter for the
training epochs—it is not an exponent. It is typically used as a subscript for scalars and as a superscript
for vectors (so that the counter is not confused with the indices).

IVE(w® + n,d")'d"| < —a« VE(w")'d" where 0<a <1 (B3.4.4)
E@’) — E(w’ + n,d*) > —Bn, VE(w")"d” where 0<p < 1. (B3.4.5)

The value of the constant o determines the accuracy with which the learning rate approximates a stationary
point of E(w) along a direction d”. If @ = 0, the learning rate procedure is normally associated with
an ‘exact line search’. If « is ‘small’, the procedure is usually associated with an ‘accurate line search’.
However, the objective function E(w) must also be sufficiently reduced at the same time, using the
constant value 8 as a multiplier. If 8 < «, then there is at least one solution (at least one value for 7,)
that satisfies these two conditions (Gill et al 1981). This sufficient decrease at each iteration, in turn,
guarantees convergence to a local minimum since the least-squares objective function is bounded below
by zero. In addition, most of these methods usually have a superlinear convergence rate (Fletcher 1987).
In neural network terminology, this means that the learning will be much faster than backpropagation,
which has a linear rate.

B3.4.4.3 Adaptive learning rate algorithm

Before presenting a generic minimization algorithm, a simple adaptive learning rate algorithm will be
given (Dennis and Schnabel 1983).

Given € in (0,1/2), e.g. € = 107, 0 < B < & < 1 as chosen constants along with w” and d”, the
current weight and direction, start with a learning rate of 1, = 1:

While E(w" + n,d”) > E(w”) + en, VE(w")'d’
adjust 1, := An, for some A in [§, «]
Then set w’*! ;= w’ + 5,d".

In this implementation, if A < B, a search failure is indicated and w'*! is automatically reset to a new
random value which restarts the process. This modification makes the adaptive learning rate algorithm
more robust.

B3.4.4.4 Neural network minimization algorithm

A generic neural network minimization algorithm that encompasses all of the classes of methods mentioned
in this chapter is now presented. This represents a framework for neural network training. The geometrical
interpretation of this algorithm is that for each current weight vector w" a direction d* is chosen which
makes a strictly acute angle with the negative of the gradient vector —VE(w"). The new weight vector
w'*! is obtained by using a positive learning rate of size 1, with a direction d” that will sufficiently
decrease E(w). The extreme case is to choose a value 7, that minimizes E(w) along this direction line
(instead of just reducing E(w)), but this is a time-consuming process and is not usually implemented in
practice. As with most algorithms of this nature, it is only guaranteed to approximate a stationary point
(i.e. a point where the gradient is zero).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.4:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

0. Set v :=0, select an initial weight vector w® and choose numax, the maximum number of iterations
to use.

1. Solve the direction subproblem by finding a search direction d¥ from the current weight vector w"
that guarantees a function decrease. This can be achieved if the gradient VE(w") is not zero. If the
norm of the gradient |V E(w")| is suitably small, the algorithm terminates successfully.

2. Solve the learning rate subproblem by finding a positive learning rate n, so that a sufficient decrease
is obtained. (In particular, this means that E(w" + n,d") is sufficiently smaller than E(w").) Set the
improvement p¥ := n,d’.

3. Update w'*' := w’ + p” and v := v + 1. If v > numax, the algorithm terminates unsuccessfully,
otherwise return to step 1.

Table B3.4.1. Weight and bias improvement vectors.

Simple gradient (SBP):
Modified gradient (MBP):
Steepest descent:
Conjugate gradient (CG):
Quasi-Newton (QN):
Newton:

V= pd’ = —n VE(w")

Vo= nd” = —q[VEw") + yp"~']
=n,d" =—n, VE(w")

- [VE(w") + yop*']

=n,d" = —n,S(w") VE(w")

=nd’ = -, {VZE(w”)}"! VE(w")

<

<

<

CECRC R
i
3
&
I

In table B3.4.1, n is a fixed learning rate, while n, is an adaptive learning rate which depends upon the
current training epoch, d” is the current direction vector, y is a fixed scalar multiplier, y, is a variable scalar
multiplier involving two inner product calculations, S{w") is an # X n matrix built up from the differences
in successive gradients and improvement vectors, VE(w") is the current n-component gradient vector,
and finally V2E(w") is the current n x n Hessian matrix. In practice, since both of these matrices are
symmetric, only the upper-triangular part of S(w") and V2E (w”) are usually stored (requiring n(n + 1)/2
locations instead of n? locations). For the Newton method, a linear system of equations is solved instead
of finding a matrix inverse for V2E(w") and multiplying the inverse by —VE(w"). That is, one solves
the linear system V2E(w")d” = —VE(w") for the current direction d".

The specific algorithm classes are usually based upon how the direction subproblem is solved.
Table B3.4.1 shows the improvement vector p* for some of these classes. Notice that the first two
of these methods are the standard backpropagation method (SBP) and the backpropagation method with a
momentum term added (MBP). Notice also that these are the only methods that use fixed learning rates
(steplengths). This helps explain why SBP and MBP often take a great many training epochs to converge,
when they do.

B3.4.4.5 Algorithm efficiency

The following example demonstrates that the choice of learning rate can significantly affect convergence.

Example: This example uses the standard backpropagation method (SBP) to solve the XOR gate
problem with the training set shown using layers containing 2-2-1 neurons and a logistic activation
function with b = 1. The training data are as follows:

X1 X2 4
0O 0 O
0 1 1
1 0 1
1 1 0.

Using the same randomly chosen starting point, one can use SBP with several fixed learning rates
and count the number of training epochs (iterations) needed. Note the differences in training efficiency.

B3.4:6 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

Learning rate () Training epochs (v)

09 932

1.7 494

3.0 280

5.0 160
10.0 121
n>10 (convergence failure)

Convergence is also affected by the initial weight vector and the fact that these same fixed learning
rates will produce a different number of training epochs when different initial weight vectors are used.
The only efficient way to perform this minimization is to have the algorithm adjust the learning rate as it
goes. That adjustment requires additional computation (more forward passes through the training set), but
the overall training computations will normally be greatly reduced.

Of course, measuring efficiency by simple iteration (epoch) counts is not the whole story. The
computation of the improvement p¥ can require many floating point operations. Even though the actual
implementation of these ‘formulas’ is typically more efficient than that shown here, the adaptive learning
rate methods usually require a lot more operations per iteration than SBP or MBP. However, they
frequently require a lot fewer operations per problem, and this is the real measure of algorithm efficiency.
The number of operations required for various optimization schemes is calculated and described by Moreira
and Fiesler (1995).

B3.4.4.6 Quasi-Newton and conjugate gradient methods

In unconstrained optimization practice, quasi-Newton (QN) methods and conjugate gradient (CG) methods
are the methods of choice, because of their superlinear convergence rates. Both of these methods are based
upon minimizing a quadratic approximation to a given objective function. However, there are significant
differences between these two methods. CG uses a simpler updating method that is easier to code and
requires fewer floating point operations and much less memory (see table B3.4.1). The coefficient y, is the
quotient of two inner products, and there are three formulas that have been used in practice to compute this
coefficient: Fletcher—Reeves, Polak—Ribiere, and Hestenes—Stiefel. (These formulas are fully described
by Gill et al 1981.) The CG method requires O(n) memory locations, while QN requires O(n%) memory
locations; this is the most significant factor for neural network models because of their potentially large
size of n. This can be seen by examining equation (B3.4.3) and is illustrated in table B3.4.2. However, the
QN method is typically less sensitive to the accuracy in computing the learning rate in order to produce a
sufficient decrease in the objective function and directional derivative. The earliest method of this type was
called the DFP (Davidon-Fletcher-Powell) variable-metric method. Because the QN method is similar to
the Newton method, a learning rate of unity is often satisfactory and eliminates the need for an adaptive
learning rate determination. The contemporary method for computing the matrix S(w") is typically the
BFGS (Broyden—Fletcher—Goldfarb—Shanno) method and has been found to work well in practice (Fletcher
1987). For these reasons, QN is usually faster than CG and is usually the preferred method for small-to-
moderate-size optimization problems. Unfortunately, while some neural networks are small, others can be
quite large, as shown by the MLFF examples in table B3.4.2. The value of n is obtained from equation
(B3.4.3).

Table B3.4.2. Multilayer feedforward storage size examples.

N1~N3-N; Network n n? n(n+1)/2 10n
2-2-1 9 81 45 90
10-5-10 115 13225 6670 1150
25-10-8 348 121104 60726 3480
8140-8 3608 13017664 6510636 36080
®© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation. release 97/1 B3.4:7

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.4.4.7 Low-storage methods

Because of these sizes, several practitioners have chosen the CG method over the QN method as a means
of speeding up neural network learning (Barnard and Cole 1989, Johansson et al 1990). However, there
is still another class of methods called low-storage methods which have the advantages of the QN speed,
but require not much more memory than CG, taking O(n) memory locations. For example, one low-
storage version of the quasi-Newton method requires approximately 10m additional memory locations (see
table B3.4.2).

One such technique that has successfully been used for neural network training is Nocedal’s low-
storage L-BFGS method (Nocedal 1980). L-BFGS employs a low storage approximation to the standard
BFGS direction transformation matrix, combined with an efficient adaptive learning rate determination.
The matrix used approximates the inverse Hessian, so this method is of the quasi-Newton variety, but it
is not explicitly stored. Instead, it uses a rotational vector storage algorithm where only the most recent
gradient differences are stored (the oldest are overwritten by the newest). The learning rate n, = 1 is
always tried first. If this fails to produce a sufficient decrease, a safeguarded and efficient cubic/quadratic
polynomial fitting algorithm is used to find an appropriate value of ,. L-BFGS has both reduced memory
requirements and improved convergence speed (Liu and Nocedal 1989). It has been employed to solve a
variety of MLFF neural network problems (Noyes 1991).

Low-storage optimization techniques belong to a relatively recent class of methods. Other methods
of this class have been proposed by Griewank and Toint (1982), Buckley and Lenir (1983), and Fletcher
(1990). Fletcher’s method is described as using less storage than L-BFGS at the expense of more
calculations.

B3.4.4.8 Other optimization methods

Many other optimization strategies could be tried. The best-known methods for solving the UMP are
the line search methods which are the one-dimensional search methods used to solve the learning rate
subproblem discussed earlier in this chapter. A newer class of methods is based upon trust regions, which
could be used to restrict the size of the learning rate at any iteration, based upon the validity of the Taylor
series approximation (Fletcher 1987). Another optimization strategy that can be used to limit the weight
and bias values is that of constrained optimization where the weight values are constrained in some fashion
(discussed in section B3.4.5).

There are other ways to compute adaptive learning rates for the solution of optimization problems.
One such method, developed by Jacobs and Sutton, has been used in conjunction with accelerating the
backpropagation method. It is called the delta bar delta method and was designed to compute a different
learning rate for each weight in the network based upon a weighted average of the weight’s current and
past partial derivative values (Jacobs 1988, Smith 1993).

No matter what adaptive learning rate method is used, it is clear that adaptive learning rate methods
have the potential of significantly accelerating the network learning process over that of a fixed learning
rate for gradient-based methods. They tend to be very robust and free the user from the often difficult
decision of what learning rate to use for a given application.

B3.4.5 Weight constraints

A general neural network training problem is frequently modeled through the use of an unconstrained
objective function E (w) that depends upon the training data as well as the n-vector (n-dimensional vector)
w of weights and biases. Another type of optimization is called constrained optimization in which some
or all of the variables are constrained in some way, often by algebraic equalities or inequalities. For the
neural network problem, the simplest types of constraint are upper and lower bounds upon each of the
weights and biases. These simple bounds could be enforced for each. More computation per iteration
would typically be necessary, but convergence could be faster overall if reasonable bounds were known
(because these values could not be overadjusted).

Any least-squares function to be minimized, such as that resulting from training an MLFF network,
possesses the special property that its minimum objective function value is bounded below by zero. In the
usual problem statement, the w vector is not constrained and hence not bounded at all. However, there are
certain problems such as those with physical parameters (such as scientific models) in which it is useful

B3.4:8 Handbook of Neural Computation release 97/1 © 1997 I0P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Acceleration of training

to consider the employment of simple bounds of the form
wy < w’ <wy

where w, = wie, wy = wye for given scalars wy, wy and the n-vector e = (1, 1, 1,..., 1)T. Note that
this is a special case in which the same simple bounds are used for all weights and biases.

There can be advantages in bounding these weights. As the network is trained, unconstrained weights
can occasionally become very large, which can force the neuron units to produce excessive net; values
(especially if a fixed learning rate is used which is too large). Small derivatives with proportionally small
propagation error corrections can result, and little improvement will be made to the weights and biases.
This brings the training process to a standstill, which is called network paralysis. Bounding the weights
and biases will prevent them from becoming too large. Such bounds can also limit the weights and biases
from ever being overcorrected and producing floating point overflow during the iteration process. If any
a priori information is known about realistic limits for a given problem, this information can be easily
and naturally incorporated. Finally, because well-chosen bounds w). and wy can be employed to restrict
the sequence w” from going too far in a given direction, convergence can be improved in some cases.
Notice, however, that poorly chosen bounds can actually prevent the sequence w” from converging to an
optimum point.

There are different ways of implementing such bound limits in an algorithm. Here is the simplest
method that adjusts each component w; after the vector w”*! has been computed. Sometimes this method
is called ‘clipping’:
v+1
H
v+l
i

v+l
P
=y {upper-limit check} .

if w'™ < wy then w wL {lower-limit check}

else if w'™ > wy then w
This has the advantage of being very easy to code, being relatively fast, and requiring no additional storage.
Its disadvantage is that the adjusted w"*! point may not lie in the same direction as the improvement
vector, and hence may slow down the convergence process.

With a small amount of additional work, the aforementioned disadvantage may be corrected by
computing a modified learning rate which is the minimum of the previously computed adaptive learning
rate and the learning rate which would place w”*! on the nearest constraint bound. Here both w" and
r' = —VE(w") are used, with their respective components denoted by w; and 7;:

if r; < 0 then s, := min{s,, (wL — w;)/r;} {lower-limit check}
else if r; > O then s, :

min{s,, (wy — w;)/r;} {upper-limit check} .

This may be derived from a more general set of standard linear constraint conditions (Gill et al 1981). This
is done before the vector w”*! is computed. These conditions check each component r; in the direction
vector r*. The constraints to be checked are the potentially binding ones having normal vectors which
make an acute angle with the direction vector (otherwise a decrease in E(w) cannot be guaranteed). The
most binding limit is the nearest bound, which corresponds to the minimum s,,. No learning rate, fixed or
adaptive, is allowed to exceed this limit.

B3.4.6 Implementation issues

This section briefly describes two important implementation issues that may be used to further enhance all
neural network training methods. Extended precision computation can help ensure that gradient directions
and improvements are computed accurately. Neural network models can be very ill conditioned in that
a small perturbation in the modeling expressions or training data can produce a large perturbation in the
final weights and biases. Consequently, it is usually important to code the necessary expressions so as
to reduce roundoff error and the possibility of floating point overflow. One simple technique is to test
the argument of any exponential or hyperbolic activation function in order to ensure that the function
evaluation will not produce overflow. Another more general technique to employ whenever possible is to
perform all floating point computations, or at least the critical ones such as inner products, weight updates,
and function evaluations, in extended precision (e.g. double precision). While using a higher precision
will always take more storage and a little more execution time per iteration, it usually results in fewer

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.4:9

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

iterations per problem and can often make the difference between convergence and failure to solve a neural
network problem.

Dynamic data structures can permit even larger problems to be modeled. Neural network models
are natural candidates for such an approach because of their potentially large size and inherent dynamic
character. Several high-level computer programming languages such as Ada, C, C++, Modula-2, and
Pascal contain the capability of accessing additional primary memory known as dynamic memory. This
allows the algorithm implementor to utilize both regular static memory and dynamic memory to solve
much larger problems. Usually this is accomplished by using pointers and dynamic variables to create
some type of linked structure in dynamic memory. Since several data structures such as linked scalars,
linked vectors, and linked matrices are possible, it is important to choose a dynamic data structure suitable
for the type of neural network model at hand (Freeman and Skapura 1991). Here ‘suitable’ means a
structure that supports efficient floating point computation and makes efficient use of memory.

References

Barnard E and Cole R A 1989 A neural-net training program based on conjugate-gradient optimization Technical
Report CSE 89-014 July Oregon Graduate Center

Bevington P R 1969 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill)

Buckley A and Lenir A 1983 QN-like variable storage conjugate gradients Mathematical Programming 27 155-75

Dennis J E Jr and Schnabel R B 1983 Numerical Methods for Unconstrained Optimization and Non-linear Equations
(Englewood Cliffs, NJ: Prentice-Hall)

Fahlman S E 1988 An empirical study of learning speed in back-propagation networks Carnegie Mellon Computer
Science Report CMU-CS-88-162

Fausett L 1994 Fundamentals of Neural Networks (Englewood Cliffs, NJ: Prentice-Hall)

Fletcher R 1987 Practical Methods of Optimization 2nd edn (New York: Wiley)

——1990 Low storage methods for unconstrained optimization Computational Solution of Non-linear Systems of
Equations (Lectures in Applied Mathematics 26) ed E L. Allgower et al (Providence, RI: American Mathematical
Society) pp 165-79

Freeman J A and Skapura D M 1991 Neural Networks: Algorithms, Applications and Programming Technigues
(Reading, MA: Addison-Wesley)

Gill P E, Murray W and Wright M H 1981 Practical Optimization (San Diego, CA: Academic)

Griewank A and Toint P L 1982 Partitioned variable metric updates for large structured optimization problems
Numerische Mathematik 39 119-37

Jacobs R A 1988 Increased rates of convergence through learning rate adaptation Neural Networks 1 295-307

Johansson E M, Dowla F U and Goodman D M 1990 Backpropagation Learning for Multi-Layer Feed-Forward
Neural Networks using the Conjugate Gradient Method Lawrence Livermore National Laboratory, UCRL-JC-
104850 Preprint September 26

Liu D C and Nocedal J 1989 On the limited memory BFGS method for large scale optimization Math. Programming
B 45 503-28

Moreira M and Fiesler E 1995 Neural networks with adaptive learning rates and momentum terms [DIAP Technical
Report No 95-04

Nocedal J 1980 Updating quasi-Newton matrices with limited storage Math. Compur. 35 773-82

Noyes J L 1991 Neural network optimization methods Proc. 4th Conf. Neural Networks and Parallel Distributed
Processing (Fort Wayne, IN: Indiana-Purdue University) pp 1-12

Park S K and Miller K W 1988 Random number generators: good ones are hard to find Communications of the ACM
31 1192-203

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 (Cambridge, MA: MIT)

Smith M 1993 Neural Networks for Statistical Modeling (New York, NK: Van Nostrand Reinhold)

Thimm G and Fiesler E 1994 High Order and Multilayer Perceptron Initialization IDIAP Technical Report 94-07 1994
(Institut Dalle Molle D’Intelligence Artificielle Perceptive, Case Postale 609 1920 Martigny Valais Suisse)
Thimm G, Moerland P and Fiesler E 1996 The interchangeability of learning rate and gain in backpropagation neural

networks Neural Comput. 8

B3.4:10 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.5 Training and generalization
James L Noyes

Abstract
See the abstract for Chapter B3.

In a neural network, the number, dimension, and type of training data have a substantial effect upon the
network’s training phase as well as its subsequent performance during the application phase. In particular,
training affects generalization performance. The connection topology chosen and the activation function
used are usually influenced by the available training data. Different neural network models and their
associated solution methods may have different training data requirements, If a particular model is to be
employed, then the user should determine whether there are any special training approaches recommended.
This section addresses some general approaches to training and generalization, often within the context of
a multilayer feedforward (MLFF) network baseline model.

Some basic terminology must first be established. A set of training data is the data set that is used
to train a given network (i.e. determine all weights and biases). A validation data set can be used to
determine when the network has been satisfactorily trained. A set of test data is used to determine the
quality of this trained network. Typically, the neural network modeler is familiar with the characteristics
of both training data and validation data. The test data are the data associated with the problem that the
neural network is designed to solve. In some cases, the characteristics of the data associated with the
problem may not be completely known before it is used in the network. The real goal of the network is to
perform well on these actual problem data because of the network’s ability to generalize. Typically, some
balance between recall and generalization is desired. A lengthy training phase tends to improve recall at
the expense of generalization. It is possible to quantify the notion of generalization, but some of these
quantification methods can be rather complex (Hertz et al 1991).

To many, the generalization ability is the most valuable feature of neural networks. This leads to
further questions relating to the size of the training set (the size of the potential application set may not
even be known), the amount of training employed, the order in which the training data are presented, and
the degree to which the training data are representative of the problem data.

B3.5.1 Importance of appropriate training data

When discussing the problem of selecting appropriate training data, one can consider the neural network B4
to be a mapping from an N;-dimensional space into an N -dimensional space, where these dimensions
are the number of neurons in the input and output layers, respectively. In a supervised network, the
number of input and output neurons is dictated by the problem. However, when layers or clusters are to
be used, the modeler is able to choose other topology defining characteristics. There are many similarities
between designing and training a neural network and that of approximating a function (with a statistical
emphasis). To start, one first picks the underlying network topology (with the form of the approximating
function) so that it will adequately be able to model the anticipated data. Having selected the topology,
one then attempts to determine the weights and biases (parameters of the approximation function) so that
the training error is small. However, as will be seen, this does not guarantee that the error associated with
the actual problem data will also be small.

The set of training data should be representative of the anticipated problem data. A polynomial fitting
analogy may be used to illustrate why this is true. If only a very small sample of data is used where none

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.5:1

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

of the data used has an ordinate value larger than a given number, then the corresponding polynomial
is not guaranteed to give a close approximation for any abscissa that does have a large ordinate, even if
the data are error free. Put another way, the statistical characteristics of the training data (the sample)
should be close to the statistics of the actual problem data (the underlying population) for a network to be
properly trained. In addition, the statistics of the validation data (a different sample) should also be close
to the statistics of the actual problem data.

In the following it will be assumed that the chosen network topology can adequately model the
application data and that the training data, validation data, and actual problem data all come from the same
underlying distribution.

The size of the network model, as well as the type of model used, should depend upon the number
of data to be used to train it. These two sizes are interrelated. A model with a lot of weights and biases
to determine generally requires a lot of training data or else it will memorize well, but not generalize
well. That is, it may train faster and do quite well reproducing desired training results, but it may give a
very unsatisfactory performance when any kind of nontraining data is used. On the other hand, a model
with too few weights compared with the size of the training data set may train very slowly or not train
at ail. (The training speed depends upon the difficulty of the problem itself as well as the size of the
training data set.) These data set sizes must often be determined empirically, after a lot of experimentation,
Normally one chooses the smallest network that trains well and performs satisfactorily on the test data.

c1.24 Another consideration is the robustness of the network—its sensitivity to perturbations in its parameters
and weights. For example, it has been shown that the probability of error increases with the number of
layers in an MLFF network (Stevenson et al 1990).

During the application period when the network is used to solve actual problems, it may be found
that there are new types of data case for which the network is not producing the anticipated or required
output. This could result from obtaining new problem data having different characteristics than the data
used to train the network. This could also result from trying to solve a problem containing data from
a different underlying distribution than that of the training data. Assuming that these new problem data
are valid for the intended application, some or all of the data from these new cases can be added to the
training (and validation) data sets and the network can be retrained.

B3.5.2 Measuring and improving network generalization

Network generalization may be addressed in two stages: how to detect and measure the generalization
error, and how to reduce this error by improving generalization.

B3.5.2.1 Measures of generalization

Quantitative measures of generalization try to predict how well a network will perform on the actual
problem data. If a network’s generalization ability cannot be bounded or estimated, then it may not
reliably be used for unseen problem data. Given a test data set of m examples from some arbitrary
probability distribution, what size of MLFF network will provide a valid generalization? Alternatively,
given a network, what is the minimum and maximum number of samples needed to train it adequately?

A method of quantifying the number of training data needed for an L-layer MLFF network was
given by Mehrotra et al (1991) and a perceptron-based example of this was given by Wasserman (1993).
Consider an MLFF network with N; inputs. For this type of network, assume there are W weight and bias
values to be determined. Each input corresponds to a single point in N;-dimensional space. If one were to
partition each dimension into K intervals, then there are K™ uniformly distributed hypercubes in this N;-
space. As the number of input components increases, the number of hypercubes increases exponentially.
If it is desired to have a training point in each hypercube in order to have the set of training data uniformly
distributed, then the number of training examples needed is also K*'. For example, suppose one had
to design a 5-N,-3 network (so N; = 5) and wanted K = 2 intervals. This would mean that 25 = 32
input examples would be needed in the training set. The number of weights and biases would then be
W=(0G+1DN+ N+ 1)3 =9N, +3. So an N, of 2 or 3 should be reasonable to try for a good
generalization capability, but an N, of 5 or higher would probably be too large. One can work this in
the other direction, choosing N, first, then picking a K value to determine the number of training cases
needed.

B3.5:2 Handbook of Neural Computation release 97/1 ®© 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Training and generalization

B3.5.2.2 The Vapnik—Chervonenkis dimension

An even more theoretical way to try to determine the number of training data needed to achieve good
generalization is by using the Vapnik—Chervonenkis dimension or VC dimension (Vapnik and Chervonenkis
1971, Baum and Haussler 1989, Sakurai 1993, Wasserman 1993). The VC dimension can be used to relate a
neural network’s memorization capacity to its generalization capacity. The VC dimension is closely related
to the number of weights and biases in a network, in analogy with the number of degrees of freedom
(coefficients) in polynomial least-squares data fitting problems. Roughly speaking, for a fixed number
of training cases, the smaller the network, the better the generalization since it is more likely to behave
similarly on another training set of the same size with the same characteristics.

If F is a class of {—1, +1}-valued functions on R¥ (where N, is the number of input neurons), and
S is a set of m points in R, then VCdim(F) is the cardinality of the largest set S ¢ RM that is shattered
(i.e. all partitions ST and S~ of S can be induced by functions in F). The VC dimension for a network of
this type with only one computational layer can be shown to be just n, the number of unknown weights
and biases.

There is no closed-form solution for the VC dimension for a general MLFF network, but it is closely
related to the number of weights and biases in the network. Even though no closed-form solution has been
found, a theoretical bound has been obtained. Baum and Hausler (1989) define an accuracy parameter
€ and try to predict correctly at least a fraction 1 — € of examples from a test data set with the same
distribution. Assuming 0 < € < 1/8, theoretical order of magnitude bounds for m are given by Q(n/e)
and O((n/€)log,(N/e)), where N is the number of neurons in a single-hidden-layer network and # is the
total number of weights and biases. For example, this means that one needs on the order of n/e training
examples in order to have a generalization error under €.

Yamasaki (1993) has given a precise expression for the number of test examples that can be memorized
in an MLFF network that employs a logistic activation function (see section B3.2.4) and a single unit in
the output layer L. This expression is given by

Ny [No/21+ [N2/2] - [N3/2 = 1T+ ...+ [Np2/2] - [N -1/2 = 1]

where the ceiling (least-integer) and floor (greatest-integer) functions are used.
Although upper and lower bounds have been defined for certain network types, these bounds often
tend to be quite conservative about the number of training examples required.

B3.5.2.3 The generalized prediction error

Other approaches to the measurement of a network’s generalization have been tried. Moody (1992)
proposed a measure called the generalized prediction error (GPE) to estimate how well a given network
would perform on nontest data. The GPE is based upon the weights and biases, the number of examples
in the training set, and the amount of error in the training data. It works by appending an additional term
to the objective function to be minimized during the training process.

B3.5.2.4 Cross validation

A more empirical method of measuring generalization error is that of cross validation (Stone 1959, 1974, ci.26
White 1989, Smith 1993, Liu 1995). The idea here is to use additional examples from test data sets that
were not used in training the network. The network is trained with the training data set (only) to determine
the weights and biases, and a test data set is selected. Each input pattern from the test set is presented
to the trained network and the corresponding output is computed. That output is then compared with the
corresponding target data in the test set to determine each error. These errors can be combined to produce
an overall error for the given test set by using the same error measure as was used when the network was
trained (e.g. a least-squares error). This is done for all the test data sets. If each of these overall errors
is small enough, then the neural network model generalizes well and is said to be validated. If not, then
some adjustments are made either in the training or in the model itself to improve generalization, and the
entire process is repeated.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.5:3

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

B3.5.2.5 The ‘leave one out’ approach

In some cases there are not enough data to make more than one test data set. In some cases there may
only be enough data to place in the training set and train the network, but none for the test set to validate
the network. In this situation a typical strategy is the ‘leave one out’ approach. That is, one trains the
network with m — 1 examples in the training set, then evaluates the network with the unused example.
This can then be done m times and a determination made as to whether the results are satisfactory. This
approach can be extended to ‘leave some out’ with more combinations to be tried. A different type of
approach is to effectively synthesize new data from the old by adding random errors to the training data
(see below).

B3.5.2.6 Reducing the number of weights

Perhaps the simplest methods to improve generalization are to simply increase the training set or decrease
the number of weights and biases in the model (e.g. by reducing the size of the hidden layers). Both of
these methods tend to reduce the effects of any errors in the training data. If the ability to generalize
is important, then one wants to be sure that there are not too many hidden neurons for the amount of
training data used. Extra neurons can cause overfitting. This situation is analogous to the task of fitting a
polynomial to a given set of data. If the polynomial has too high a degree, then extra coefficients must
be determined. So even though the polynomial fits the data points well (perhaps even exactly), it can be
highly oscillatory between the given data points so that it does not accurately represent the data trend,
even at nearby data points.

B3.5.2.7 Early training termination

cr26 Another relatively simple method to improve generalization is that of early training termination used by
Smith (1993) and others. The training algorithm determines weights and biases based upon training data
that often include errors. If the network models this type of training data too closely, then it is not likely
to perform well on the actual problem data, even if both are from the same distribution. This tends
to happen when one overfits the data by training with the goal of making the overall training error as
small as possible (this is the normal goal of any minimization algorithm). The resulting network then
models too much of the training data error. To prevent this from happening one pauses periodically in
the training process to compute an overall (cross validation) test case error for one or more test sets using
the current weight and bias values. These values, together with the corresponding overall test case error,
are then saved. The training is then resumed. As the training continues, the overall training error usually
gets smaller. However, at some stage of the training process, the overall testing error gets larger. When
this happens, one terminates the training and uses the previous weights and biases that were saved. An
alternative method of early training termination is even simpler and can be employed when binary or
bipolar training data is used. This method uses a generic sigmoid output function (equation (B3.2.5)) to
compute an auxiliary sum of squares and stops when this sum is exactly zero instead of stopping when
the regular sum of squares (equation (B3.4.2)) is small (see section B3.2.4)).

B3.5.2.8 Adding noise to the data

Another method of using the available training data in such a way as to improve generalization without
using exceptionally large training sets involves adding noise to the data, effectively augmenting the original
training data with generated training data. This is done by applying a small, say 1-5%, random error to
each component of each training example each time the network processes it. This does two things: it has
the effect of adding more training data, and it prevents memorization. Here the training examples actually
used are different for every presentation (the original training data are unchanged), and it is impossible
for any of the weights to adjust themselves so that any single input is memorized. In addition, the trained
network tends to be more robust when there is a relatively smooth mapping from the input space into the
output space (Matsuoka 1992).

B3.5:4 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Training and generalization

B3.5.2.9 Weight decay and weight pruning

There are several methods of improving generalization by causing the weights and biases to be computed

in a different manner. Weight decay methods try to force some of the weights toward zero. Weight ci1.26
pruning methods actually seek to eliminate small weights entirely. One way to implement weight decay is

by adding a nonnegative penalty term to the objective function to be minimized (Krogh and Hertz 1992,
Smith 1993). This could take the form

A(w) = E(w) + pC(w)

where E (w) is the original objective function (e.g. a least-squares function), p > 0 is a scaling multiplier,
and C(w) is a ‘complexity’ measure that frequently includes some or all of the weights and biases directly.
For example, C(w) = (Ewiz) /2 helps keep the weights small since small weights help minimize A(w).

The multiplier p should be chosen so that it is neither too small (allowing a close fit with possible
overfitting) nor too large (allowing an excessive error influence). It can either be fixed or it can be adjusted
successively by using the previous test validation methods.

Often the penalty term is differentiable, where the partial derivatives are easily formulated and
incorporated into any gradient-based or Hessian-based descent methods. Other penalties can be based
upon Taylor series expansions (Le Cun ez al 1990) or weight smoothing methods (Jean and Wang 1994).

After the initial training of a neural network, one may decide to prune the weights, and perhaps
neurons (when all input weights are zero). It is possible effectively to remove any weights and biases that
are too small, and will therefore have the least effect on the training error, by setting the weights to zero
and retraining the network. When the network is fully or partially retrained, the zero weights and biases
are treated as constants so that they are not altered. This can be accomplished with or without the aid of
automation since the pruning algorithm to do this can be directly followed by the network modeler when
the model is small or implemented on the computer when the model is large and many weights and biases
must be checked (Ying et al 1993). The use of this type of method is an alternative to methods that limit
the number of hidden neurons. This method can also be used in conjunction with weight decay methods.

One may combine some of the above methods to help further improve a neural network’s
generalization capability.

References

Baum E B and Haussler D 1989 What size net gives valid generalization? Neural Information Processing Systems
vol 1, ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 81-90

Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation Santa Fe Institute Lecture
Notes vol 1 (Redwood City, CA: Addison-Wesley)

Jean J S N and Wang J 1994 Weight smoothing to improve network generalization IEEE Trans. Neural Networks 5
752-63

Krogh A and Hertz J A 1992 A simple weight decay can improve generalization Advances in Neural Information
Processing Systems vol 4 ed J Moody, S J Hanson and R P Lippman (San Mateo, CA: Morgan Kaufmann)
pp 950-7

Le Cun Y L, Denker J S and Solla S A 1990 Optimal brain damage Advances in Neural Information Processing
Systems vol 2 ed D S Touretsky (San Mateo, CA: Morgan Kaufmann) pp 598-605

Liu Y 1995 Unbiased estimate of generalization error and model selection in neural networks Neural Networks 8
215-9

Matsuoka J 1992 Noise injection into inputs in back-propagation learning /EEE Trans. Systems, Man, Cybern. 22
43640

Mehrotra K G, Mohan C K and Ranka S 1991 Bounds on the number of samples needed for neural learning IEEE
Trans. Neural Networks 2 548-58

Moody J E 1992 The effective number of parameters: an analysis of generalization and regularization in nonlinear
learning systems Advances in Neural Information Processing Systems vol 4, ed J Moody, S J Hanson and
R P Lippman (San Mateo, CA: Morgan Kaufmann) pp 847-54

Sakurai A 1993 Tighter bounds of the VC-dimension of three-layer networks World Congress on Neural Networks
vol HI (International Neural Network Society) 540-3

Smith M 1993 Neural Networks for Statistical Modeling (New York, NK: Van Nostrand Reinhold)

Stevenson M, Winter R and Widrow B 1990 Sensitivity of feedforward neural networks to weight errors IEEE Trans.
Neural Networks 1 71-80

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B3.5:5

Copyright © 1997 IOP Publishing Ltd

Neural Network Training

Stone M 1959 Application of a measure of information to the design and comparison of regression experiments Ann.
Math. Statistics 30 55-69

——1974 Cross-validatory choice and assessment of statistical predictions J. R. Statistical Soc. B 36 111-47

Vapnik V N and Chervonenkis A 1971 On the uniform convergence of relative frequencies of events to their
probabilities Theory Probab. Appl. 16 264-80

Wasserman P D 1993 Advanced Methods in Neural Computing (New York: Van Nostrand Reinhold)

White H 1989 Learning in artificial neural networks: a statistical perspective Neural Comput. 1 425-64

Yamasaki M 1993 The lower bound of the capacity for a neural network with multiple hidden layers World Congress
on Neural Networks vol 1l (International Neural Network Society) 544-7

Ying X, Surkan A J and Guan Q 1993 Simplifying neural networks by pruning alternated with backpropagation training
World Congress on Neural Networks vol III (International Neural Network Society) July 364-7

B3.5:6 Handbook of Neural Compuration release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

B4

Data Input and Output Representations

Thomas O Jackson

Abstract

Neural networks are adaptive systems that have ‘automatic’ learning properties, that is,
they adapt their internal parameters in order to satisfy constraints imposed by a training
algorithm and the input and output training data. In order to extract the maximum
potential from the training algorithms very careful consideration must be given to the
form and characteristics of the data that are presented to the network at the input and
output stages. In this chapter we discuss the requirements for data preparation and
data representation. We consider the issue of feature extraction from the data sample
to enhance the information content of the data used for training, and give examples of
data preprocessing techniques. We consider the issue of data separability and discuss the
mechanisms by which neural networks can partition and categorize data. We compare and
contrast the different means by which real-world variables can be represented at the input
and output of neural networks, looking in detail at the properties of local and distributed
schemes and discrete and continuous methods. Finally, we consider the representation
of more complex or abstract properties such as time and symbolic information. The
objective in this chapter is to highlight the fundamental role that data preparation plays
in developing successful neural network systems, and to provide developers with the
necessary methods and understanding to approach this task.

Contents

B4 DATA INPUT AND OUTPUT REPRESENTATIONS

B4.1 Introduction

B4.2 Data complexity and separability
B4.3 The necessity of preserving feature information
B4.4 Data preprocessing techniques
B4.5 A ‘case study’ review

B4.6 Data representation properties
B4.7 Coding schemes

B4.8 Discrete codings

B4.9 Continuous codings

B4.10 Complex representation issues
B4.11 Conclusions

© 1997 IOP Publishing Ltd Handbook for Institute of Physics Publishing release 97/1
Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.1 Introduction

Thomas O Jackson

Abstract
See the abstract for Chapter B4.

The past decade has seen a meteoric rise in the popularity of neural network techniques. One reason
for this increase may be that neural computing can offer relatively simple solutions to complex pattern
classification problems. In simple terms, the neural computing approach can be described by the following
algorithm.

(i) Gather the data sample.

(ii) Choose and prepare the training set from the sample.

(iii) Select an appropriate network topology.

(iv) Train the network until it displays the desired properties.

It has been described as a ‘black box’ solution (even ‘statistics for amateurs’ (Anderson 1995)) because
the internal representations or mechanics of the network need not be known, or understood, in order to
find a solution to the problem in hand. Neural networks have been, and perhaps continue to be, applied
in this ‘simplistic’ manner. However, this approach obscures a realm of complexities which contribute
to the successful performance of neural computing methods. One major issue, which is the focus of
this chapter, is the manner in which data are presented to a neural network. That is, the mechanisms
by which the data set is transformed into input vectors such that the salient information is presented in
a ‘meaningful’ manner to a network. It is true to say that the familiar maxim applied to conventional
computing systems—‘garbage in, garbage out’—is equally valid in the neural computing paradigm.

The theme of data representation receives minimal attention in many neural texts. This is a major
oversight. The structures used to represent data at the input to a neural network contribute as much to the
successful solution of any given problem as the choice of network topology. It could be argued that the
data representations are more critical than the network topology; the flexibility inherent in neural learning B2
algorithms can accommodate nonoptimal selection of topological parameters such as weights or the number
of nodes. However, if a network is trained with inappropriately structured data then it is unlikely that the
network will learn a mapping function that has any useful correlation with the training data. Similarly,
the representations used at the output of a neural network play a crucial role in the training process.

The aim of this chapter is to illustrate the techniques and data structures that ensure appropriate
representation of the input and output data. There are two issues: (i) enhancement of feature information
from the data set, and (ii) how to represent features (as variables) at the network input and output layers.
We will discuss these two problems from a number of different viewpoints. In Section B4.2 we start
with fundamental principles and consider data complexity and data separability. In the course of this
discussion we shall examine the mechanisms by which neural networks are able to partition and categorize
data. The motivation for this discussion is simple—in order to understand the constraints that determine
satisfactory data representations it is first necessary to understand how a network ‘processes’ data. Section
B4.3 considers data preprocessing. Sections B4.4 to B4.10 deal with the specifics of data representation,
considering discrete versus continuous data formats, local and distributed schemes and data encoding
techniques.

It is worth emphasizing that this chapter does not address the issue of internal data representations
but rather the means by which data are represented at the input and output stages of a network. The
subject of internal representations is discussed within Chapter B5. BS

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.1:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Qutput Representations

References

Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)

B4.1:2 Handbook of Neural Computation release 97/1 © 1997 I0P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.2 Data complexity and separability
Thomas O Jackson

Abstract
See the abstract for Chapter B4.

There are a number of different mathematical frameworks which might be used to illustrate the point that
data representation is a fundamental issue in neural computing. The approach adopted here is to consider
the problem in terms of pattern space partitioning. To identify the properties that distinguish ‘good’
data representations we must first review how a neural network performs pattern classification within a
given pattern space. To do this a hypothetical and somewhat trivial pattern classification problem will be
discussed. Consider the data set shown in figure B4.2.1; it describes two data classes distributed across
a two-dimensional feature space. The data points are representative samples taken from each class. The
pattern classification task is defined as follows: given any random vector, A, taken from the same feature
space, which class should it be assigned to?

s

decision

classY

A AA
a4 +++ class X
+Ve + + +

+

Figure B4.2.1. Class separation using a linear decision boundary.

One traditional pattern classification technique which is commonly used to solve this categorization
problem is pattern space partitioning using decision boundaries. A decision boundary is a hyperplane
partition in the pattern space which segregates pattern classes. The simplest example of a decision boundary
is the linear decision boundary shown in figure B4.2.1. Any vector that falls on the (arbitrarily assigned)
positive side of the boundary is attributed to class Y, similarly, any vector that falls on the negative
side of the boundary is attributed to class X. The field of statistical pattern recognition has given rise B6.23
to many forms of decision boundary (two good reference texts on this subject are Duda and Hart (1973)
and Fu (1980)). However, the challenge of decision boundary methods is not in defining the form of the
hyperplane boundaries, but in positioning the planes in the pattern space.

In the trivial example shown in figure B4.2.1, a simple visual inspection is sufficient to identify
where a linear partition may be positioned. Clearly, however, the problem becomes nontrivial when
we move to data sets with three or more dimensions, and complex analytical methods are required in
these cases. The compelling attraction of neural computing techniques is that they provide adaptive
learning algorithms which can position decision boundaries ‘automatically’ through repetitive exposure to
representative samples of the data.

© 1997 1IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B4.2:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

CL11, Fi1.23 The perceptron (Rosenblatt 1958) is the simplest neural classifier and it can be easily demonstrated
that the network functions as a linear discriminator. The analysis is straightforward and is worth considering
briefly here. The definition of the perceptron classifier is given by

y= Hv[Zw,-x,- . e]. (B4.2.1)
i=1

where w; are the weight vectors, x; are the input vector components, 6 is a constant bias input and Hv
is the Heaviside function.

X1 w
X 07w,
Figure B4.2.2. The perceptron classifier.

The output, y, will take on a positive or negative value dependent upon the input data and weight
vector values. A positive response indicates class Y, a negative response indicates class X.
We can rearrange (B4.2.1) and express it in the inner product form

y = {|WjX|cos¢) — 0. (B4.2.2)

The cos ¢ term (where ¢ is the angle between the weight vector, W, and the input vector X') has a range
between 1. Any value of ¢ greater than +£90° will reverse the value of the output, y. This produces
a linear decision boundary because the crossover point is at £90°. The weight parameters and the bias
value determine the position of the decision boundary in the pattern space. If we consider the crossover
region where y = 0, we can demonstrate this point

0= wx —8. (B4.2.3)
i=1

Expanding this for the perceptron two weight network:

O=w; Xx1+wyXx3—6. (B4.2.4)
Rearranging this for x,
wi 7]
Nn=——x+—. (B4.2.5)
un wsa

Comparing (B4.2.5) to the equation for a straight line, y = mx + ¢, we can see that the slope of the
decision boundary, m, is controlled by the ratio of w;/w,, and the axis intercept, ¢, is controlled by the
bias term, 6.

During the learning cycle the weight values are modified iteratively, in order to arrive at a satisfactory
position of the decision plane. Satisfactory in this context means minimizing the number of classification
errors to a predefined acceptable level across the training set (which of course should converge to zero in

B3 the optimal case). Details of the training algorithms are discussed in Chapter B3.

The brief analysis of the perceptron has demonstrated that it can partition a pattern space by placing a
linear decision boundary within it. Identifying representative data samples is clearly a key issue. Placement
of the boundary is made on the assumption that the samples taken from classes X and Y are fully
representative of the class types. Inadequate training data can lead to the boundary being positioned
incorrectly. For example, in figure B4.2.3 exclusion of the samples X; and X, from the training data
could result in classification errors.

In ‘real world’ classification tasks the data sets are rarely separated or partitioned as easily as the
trivial example we have discussed, and, in practice, the range of problems that can be solved with simple
linear decision boundaries is extremely limited. For most nontrivial pattern classification problems we must

B4.2:2 Handbook of Neural Computati release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data complexity and separability

Figure B4.2.3. Misclassification due to incorrectly positioned decision boundary.

contend with data sets which have complex class boundaries. Examples are shown in figure B4.2.4(a) and
b).

The data spread shown in figure B4.2.4(b) is an example of the XOR classification problem. This
classification task was used by Minsky and Papert (1969) to highlight the limitations of the single-layer
perceptron classifier.

‘(a) ?(b) +
class Y, A + class X
class Y AA + ++ 4
AAA $++ class X AAA ++
A A+ +++‘ A
ACATT ++ A
A she Af
class-i;(+ + AA class Y
>

Figure B4.2.4. (a) Meshed classes. () XOR problem.

A simple visual inspection shows that neither of these data sets can be separated using a single linear
classification boundary. In such cases, a perceptron could not converge to a satisfactory solution. Complex
data sets, as typified in the examples of figure B4.2.4, must be partitioned by combining multiple decision
boundaries. For example, the XOR problem shown in figure B4.2.4(b) can be resolved in the following
manner.

4

Figure B4.2.5. Piece-wise linear classification achieved by combining decision planes.

© 1997 TOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B4.2:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

By placing two decision boundaries it is possible to logically combine the classification decisions of
each and partition the data satisfactorily. This technique is known as piece-wise linear classification. A
truth table illustrating the combination of the decision boundaries is shown in table B4.2.1.

Table B4.2.1. Truth table for piece-wise linear classification scheme.

Classification Sign of decision line

DI D2
Class X + +
Class Y - +
Class Y + -

Partitioned regions of this type are known as convex regions or alternatively convex hulls. A convex
region is one in which any point in the space can be connected by a straight line to any other without
crossing the boundary of that region. Convex regions may be open or closed—examples of each type are
shown in figure B4.2.6.

Open Convex Hulls E

S

Closed Convex Hulls

Figure B4.2.6. Examples of open and closed convex hulls.

In a perceptron classifier convex hulls are created by combining the output of two parallel perceptron
units into a third unit, figure B4.2.7. The third unit, which forms a second layer in the network, is
configured to perform the logical AND function (i.e. it becomes active when both its inputs are active) so
that it implements the condition for class X in table B4.2.1. There are, however, many classes of problems
which cannot be partitioned by convex regions. The meshed class example shown in figure B4.2.4(a) is
one example. The solution to this class of problems is to combine perceptrons into a network of three

c12 or more layers. This class of networks are generally termed multilayer perceptrons. The third layer of
units receives regions as inputs and is able to combine these regions into areas of arbitrary complexity.
Examples are shown in figure B4.2.8.

The number of units in the first layer of the network controls the number of linear planes. The
complexity of the regions that can be created in the pattern space is defined by the number of linear planes
that are combined. There is a mathematical proof, the Kolmogorov theorem (Kolmogorov 1957), which
states that regions of arbitrary complexity can be generated with just three layers. The proof will not be
explored here, but a useful analysis can be found in (Hecht-Nielsen 1987).

To summarize, we have seen that the class of networks based upon perceptron classifiers are able to
partition a pattern space using decision boundaries. We have also seen that the position of the boundaries
in the pattern space is determined by the weight constants in the network and the bias terms. At this point
the fundamental link between the classification performance and the quality of the training data becomes

B4.2:4 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data complexity and separability

X2
Figure B4.2.7. Two-layer perceptron network for partitioning convex hulls.

4 classY

class X

class Y

—> >

Figure B4.2.8. Arbitrary complex regions partitioned by perceptron networks of three or more layers.

apparent; the weights of the network are modified in response to the training data. Clearly, for a network
to generate meaningful internal representations that adequately partition the pattern space, we must present
the network with data that accurately define that pattern space.

References

Duda R O and Hart P E 1973 Pattesn Classification and Scene Analysis (New York: Wiley)

Fu K S 1980 Digital Pattern Recognition (Berlin: Springer)

Hecht-Neilsen R 1987 Kolmogorov’s mapping neural network existence theorem Ist IEEE Int. Conference on Neural
Networks 3 San Diego 11-14

Kolmogorov A N 1957 On the representation of continuous functions of many variables by superposition of continuous
functions of one variable and addition Dokl. Akad. Nauk USSR 114 953-6

Minsky M and Papert S 1969 Perceptrons: An Introduction to Computational Geometry (Cambridge, MA: MIT Press)

Rosenblatt F 1958 The Perceptron: a probabilistic model for information storage and retrieval in the brain Psych. Rev.
65 386-408

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation rtelease 97/1 B4.2:5

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.3 The necessity of preserving feature information

Thomas O Jackson

Abstract
See the abstract for Chapter B4.

The preceding discussion provides us with an important insight into neural network classification
techniques; the clustering of the data has a large impact upon the complexity of the neural network
classifier. From this we conclude that the data presentations should preserve the clustering inherent in

the data set. This implies that the properties which determine the class distribution must be understood.
Neural computing offers no ‘short cuts’ here; data analysis is a prerequisite, and we need to draw from
established statistical and numerical analysis techniques (again, Duda and Hart (1973) and Fu (1980) are
useful references).

As an example of how we might approach this task, consider the following character recognition Gi1.2

problem: a neural network will be used to map the five bitmaps, figure B4.3.1, onto their respective vowel
classes.

||

Figure B4.3.1. Five ‘character’ bitmaps.

The ‘raw’ data is the set of five 64-bit binary vectors representing the bitmaps. One simple approach
to this problem might be to use the 64-bit vector as the input to the network. Another option is to assign
each bitmap an arbitrary code, for example 110011 to represent the bitmap for character ‘A’. However,
a more productive approach might be to recognize that it is the information contained in the shape of
the characters which uniquely defines them. This information can be used to derive representations that
explicitly define the shape. For example, we might consider counting the number of the horizontal and
vertical spars, the relative positions of the spars, and the ratio of vertical to horizontal spars. This approach
allows contextual or a priori knowledge to be captured in the data presented to a network. One advantage
of this approach is that similar shape characters, such as ‘O’ and ‘U’, would have similar representations
(that is, there would be many common features in the two feature vectors). In many applications this is a
desirable property as it can lead to more robust generalization.

Wasserman (1993) has suggested that in some circumstances it may be desirable to use the ‘raw’
data as the input to the network. Many classification problems are difficult to solve using traditional
pattern recognition partially because the task of identifying and extracting appropriate feature information
is so complex and ill-defined. In such cases a neural network may prove more adept at identifying

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 9771 B4.3:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

underlying features or data trends than a human analyst. Consequently, there may be an advantage gained
from presenting a network with large, unprocessed data vectors and expecting that the adaptive training
procedure will be able to identify the underlying information. There is clearly a compromise which must
be reached between these two approaches. Unfortunately there are few analytical methods available to
assist in the decision process.

To demonstrate that a data representation is capable of destroying the clustering properties we will
consider an example using binary coding. Binary codings map a discrete valued number from a single
dimension into a much higher, complex dimension space. For example, if a feature with a range of values
0-32 is mapped into a binary representation, the set of values is mapped onto a six-dimension feature
space. However, this transform is not an appropriate mapping because the binary representation has many
discontinuities between neighboring states. For example, consider the transition of values from 29-32 in
binary form.

Value Binary

29 011101
30 011110
31 011111
32 100000

We can see that there is a common pattern in bits 3-5 of the vectors for the values 29-31. However,
there is no corresponding pattern in the binary vector for value 32. In terms of pattern vectors this would
suggest that the two feature values, 31 and 32, are quite separate in pattern space. These discontinuities
destroy the inherent clustering of the data set and fragment the data. In general, the fragmentation leads
to more complex pattern spaces and a more demanding partitioning task.

This simple example leads us to an important general principle: the metric we use to gauge similarity
in the pattern domain should be preserved in the data representation. In the example above, we are using a
Euclidean metric to determine the similarity of the discrete representation, but the similarity of the binary
patterns is determined by the Hamming metric, and, as we have argued, these are not equivalent.

B1.3 This is not to say that binary codings are universally inappropriate. The discrete Hopfield network,
for example, makes good use of binary representations. However, it is important to note that the inputs
to a Hopfield network generally encode states or events rather than feature values. For example, one
application of the Hopfield network is in optimization problems such as the traveling salesman. In this
problem the binary input vectors record the event that a particular salesman has visited a certain city
(represented by a discrete node).

In conclusion, the primary objective for any data representation is to capture the appropriate
information from the data set in order to adequately constrain the classification problem. Careful
consideration of the problem characteristics and suitable preprocessing will, in general, lead to more
predictable classification performance.

References

Duda R O and Hart P E 1973 Parttern Classification and Scene Analysis (New York: Wiley)
Fu K S 1980 Digital Pattern Recognition (Berlin: Springer)
Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

B4.3:2 Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.4 Data preprocessing techniques

Thomas O Jackson

Abstract
See the abstract for Chapter B4.

Data sets are often plagued by problems of noise, bias, large variations in the dynamic range or sampling
range, to highlight a few. These problems may obscure the major information content or at least make it
far more problematic to extract. There are a number of general data processing algorithms available which
can remove these unwanted variances, and enhance the information content in the data. We will discuss
these in the following sections.

B4.4.1 Normalization

Data sets can exhibit large dynamic variances over one or more dimensions in the data. These large
variances can often dominate more important but smaller trends in the data. One technique for removing
these variations is normalization. Normalization removes redundant information from a data set, typically
by compacting it or making it invariant over one or more features. For example, when building a
pattern recognition system to recognize surface textures in gray-scale images it is often desirable to Fi1.2
make the system invariant to changes in light conditions (i.e. contrast and brightness) within the image.
Normalization techniques allow the variations in the contrast and brightness to be removed such that the
images have a consistent gray-scale range.

Similarly when processing speech signals, for example in a voice recognition system, it is advantageous F1.7
to make the system invariant to changes in the absolute volume level of the signal. This is described in
figure B4.4.1.

(a) (b)

Amplitude Amplitude

Phase Phase

Figure B4.4.1. (a) Varying magnitudes; (b) normalized amplitudes.

The vectors represent the phase and amplitude of the signal. In figure B4.4.1(a), the three vectors
are shown with varying amplitudes and phases, however, it may only be the phase information that is
of relevance to the classification problem. In figure B4.4.1(b) the vectors have been normalized to unit
length, such that all amplitude variations have been removed, whilst leaving the phase information intact.

We may also want to normalize data with respect to its position. For example, in a character
recognition system it is typical that the input data are normalized with respect to position and size. In

© 1997 I0P Publishing Ltd and Oxford University Press Huandbook of Neural Computation release 97/1 B4.4:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

classification systems which use template matching schemes this preprocessing step can substantially reduce
the number of templates required. A simple example is shown in figure B4.4.2,

One point of caution should be noted from this example. Normalization procedures can remove
important feature information as well as redundant information. For example, consider the case of a
character ‘C’. If it is normalized to remove scale variations then it is possible to normalize upper case
‘C’ and lower case ‘c’ to the same representation. This may or may not be a desirable transform,
depending upon the application. This example stresses the importance of understanding the context of the
normalization with respect to the classification task in hand.

=t

Figure B4.4.2. Scale and position normalization. The three ‘T" characters in the top of the diagram can
be normalized and reduced to a single representation shown below.

B4.4.2 Normalization algorithms

The principle of normalization is to reduce a vector (or data set) to a standard unit length; usually 1, for
convenience. To do this we compute the length of the vector and divide each vector component by its
length. The length, /, of a vector, Y, is given by

m 172
I= (Z yf) (B4.4.1)
1

where [is the length, and m is the dimensionality of Y. Hence, a normalized, unit length vector ¥’ is
given by
, Y
V= T (B4.4.2)
A vector (or data set) can be normalized across many different dimensions, and with respect to many
different statistical measures such as the mean or variance. We shall describe three approaches which

Wasserman (1993) has termed total normalization, vertical normalization and horizontal normalization.

Total normalization. This is the most widely applied normalization method. The normalization is performed
globally across the whole data set. For example, to remove unnecessary offsets from a data set we can
normalize with respect to the mean. This is described in equation (B4.4.3).

Evaluate the mean of the data vectors, 7, across the full data set (1 to p vectors):

P mo
y = Sl ==l L Vi (B4.4.3)
pxm
where m is the number of components in a vector.
For each vector, divide by the mean:
y .
V=—. (B4.4.4)
y

Vertical normalization. In some applications normalizing over the total data set is not appropriate, for
example when the components of a feature vector represent different data types. In these circumstances

B4.4:2 Handbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data preprocessing techniques

it is more appropriate to evaluate the mean or variance measure of the individual vector components. An
algorithm to normalize by removing the mean is described in equation (B4.4.5).
Determine the mean y; of each component, i, over each vector in the data set (1 to p):
p
— j=1 y ji

¥ = —p— fori =1 tom. (B4.4.5)

For all vectors, divide each component by the corresponding component mean:

y=2 fori=1tom (B4.4.6)
Yi
Horizontal normalization. When handling vectors that incorporate temporal properties, for example, a
vector that represents an ordered time series, we must normalize the vectors individually. Hence, to
normalize with respect to the mean, we can perform the following equation.
For each vector, j =1 to p, establish the mean, y;:

m s
3, = Lisi i (B4.4.7)
m
For each vector, j =1 to p, divide by the mean:
Y;
Y, = (B4.4.8)
i

The algorithms described above describe techniques to remove offsets from a data set. The same methods
can be used to remove unwanted variations in vector magnitude by dividing by the vector length.

These descriptions present details of three possible approaches to normalization. They are not a
definitive set of algorithms. However, they highlight the fact that caution must be exercised when
normalizing vectors to ensure that only the redundant information is removed. Normalization is a powerful
technique when applied correctly and can significantly enhance the information content within a data set.

B4.4.3 Principal component analysis

Normalization is one scheme by which pertinent feature information can be enhanced in a data set.
Another scheme which is often linked to neural networks, largely due to the work of Oja (1982, 1992) and
Linsker (1988), is principal component analysis (PCA) (also known as the Karhunen-Loeve transform,
(Papoulis 1965)). It is a data compression technique that extracts characteristic features from the data
whilst minimizing the information loss. It is typically used in statistical analysis for high-dimensional data
sets, where the features with the greatest significance are obscured by the size and complexity of the data.

The basic principle of PCA is the representation of the data by a reduced set of unit vectors
(eigenvectors). The eigenvectors are positioned along the directions of greatest data variance. They
are positioned so that the projections from the data points onto the axis of the vector are minimized across
the full data set. A simple example is shown in figure B4.4.3. The vector, Y, is positioned along the
direction of the greatest data spread in the two-dimensional space. Any point in the data sample can now
be described in terms of its projection along the axis of Y, with only a small reduction in positional
accuracy. As a consequence, a two-dimensional position vector has been reduced to a single-dimensional
description. In high-dimensional spaces the objective is to find the minimum set of eigenvectors that can
describe the data spread whilst ensuring a tolerably low loss in accuracy.

Having discussed the approach in general terms, we can now provide a mathematical framework for
PCA. The eigenvectors that are required are members of the covariance matrix, R, for the data set. This
matrix is generated from the outer product equation:

R= % Y (@ - D)@ - D) (B4.4.9)
k=1

where T is the mean vector of the data sample and N is the number of vectors.
Once the eigenvectors of this matrix are found, (A, A5, K, A,), they can be ordered in terms of their
eigenvalues. The principal components are those which minimize the mean squared error between the data

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B4.4:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

4

+ _ Y (direction of largest
data variation)

>

Figure B4.4.3. Determining the direction of greatest variation in a data set.

and its projection onto the new axis. The smaller eigenvectors are discarded (i.e. those with the smallest
variance) and the data vectors are approximated by a linear sum of the remaining m eigenvectors:

&= (M)A (B4.4.10)
i=1

& will be close to x if the appropriate eigenvectors were chosen. Note that the dimensionality of & is
less than that of the original vector. Proof that the information loss in this reduction is minimal will not
be discussed here, however, a detailed analysis can be found in Haykin (1994), and a formal analysis
of eigenvectors and eigenvalues is presented in Rumelhart and McClelland (1986). Principal component
analysis is a useful statistical technique in a data preprocessing ‘toolkit’ for neural networks.

References

Haykin S 1994 Neural Networks: A comprehensive foundation (New York: Macmillan College Publishing Company)

Linsker R 1988 Self-organisation in a perceptual network Computer 21 105-17

Oja E 1982 A simplified neural model as a principal component analyzer J. Math. Biol. 15 267-73

——1992 Principal components, minor components and linear neural networks Neural Networks § 927-36

Papoulis A 1965 Probability, random variables and stochastic processes (New York: McGraw-Hill)

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing: Explorations in the Microstructure of
Cognition (Cambridge, MA: MIT Press)

Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

B4.4:4 Handbook of Neural Computation release 97/1 ®© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.5 A ‘case study’ review
Thomas O Jackson

Abstract
See the abstract for Chapter B4,

To consolidate the ideas discussed so far, we will review a neural network application as a small case
study. The application is a face-recognition system using gray-scale camera images. The neural system F1.6.5
was developed at Rutgers University and reported in Wilder (1993). The recognition system was required
to identify individual faces captured by a CCD camera, under controlled and constant lighting conditions.
The neural network used was the Mammone—Sankar neural tree network (NTN) (the details of this are not
important for our discussion).

The CCD camera produces a gray-scale image that is 416 x 320 pixels in size. A ‘holistic’ analysis
approach was used, whereby the facial image is processed as a whole, rather than being partitioned into
regions of high interest features (such as eyes, ears, mouth etc). The question is, given the 416 x 320
pixel image, where do we start on the task of generating data suitable for developing a neural network
solution? Clearly, we would not wish to take the ‘easy’ option and treat the image as a pixel map; this
would generate a 133, 120 component vector. This approach would quickly leave us bereft of computer
resources and sufficient hours (or patience) to complete the training task! Obviously some form of data
reduction is required.

The method selected was gray-scale projections. This involves generating a ‘gray-scale’ profile of
an image by summing the gray-scales along predetermined paths in the image (e.g. along pixel rows or
columns). If a number of projections are made, along several high interest planes, then a two-dimensional
image can be represented by a one-dimensional gray-scale profile vector. The images were partitioned
into 16 horizontal and vertical planes, and the gray-scale data were integrated over these planes. These
profiles provided strong delineation of the facial features in each orientation. A schematic representation
is provided in figure B4.5.1.

I

10

16

Grey-scale image Vertical gray-scale 16 band gray-scale Discrete Cosine Transform
projections at 440 rows projections

Figure B4.5.1. Feature extraction processing stages.

This step reduces the 133, 120 pixel image into two one-dimensional vectors, each with 16 components
describing the vertical and horizontal gray-scale profiles. One could potentially consider using these vectors

® 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B4.5:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

as the basis for the network training data. However, a further data transform was applied to these vectors,
mapping them into a spatial frequency domain using a unitary orthogonal transform. The authors cite
several reasons for this step:

unitary transforms are energy and entropy preserving;

they decorrelate highly correlated vectors, and;

the major percentage of the vector information is mapped onto the low frequency components,
allowing the high frequency components to be discarded with minimum information loss.

Three transforms were tested: the discrete cosine transform (DCT), the Karhunen-Loeve (PCA, described
in section B4.4.3) and the Hadamard. All three gave similar recognition performance. However, the
DCT was chosen due to the fact that it has an efficient and fast hardware implementation. The feature
decorrelation provided by the transform also creates some invariance to small localized changes in the
input image (caused, for example, by the subject changing a facial expression or removing spectacles).
The final step in the preprocessing phase was to discard some of the high frequency components (which
had minimal information content) of the DCT. This resulted in a final training vector with 23 feature
components.

A number of important principles for data preprocessing are demonstrated in this example. Firstly,
there is a solid grasp of the underlying characteristics of the classification problem. As a result efficient
techniques for extracting the high interest features within the images were derived. Secondly, a clear
method for data reduction with minimal information loss was applied (that is, gray-scale projections).
Thirdly, transforms were applied to the ‘reduced’ vector descriptions which enhanced the information
content and allowed further redundant information to be discarded. These transforms provided some
invariance to small changes in the images and increased the separability between individual images. These
principles should be uppermost in our thinking when developing a pattern recognition system (neural or
otherwise).

References

Wilder J 1993 Face recognition using transform codings of gray scale projections and the neural tree network Artificial
Neural Networks for Speech and Vision ed R] Mammone (London: Chapman and Hall) pp 520-36

B4.5:2 Handbook of Neural Compusation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.6 Data representation properties

Thomas O Jackson

Abstract
See the abstract for Chapter B4.

Having looked at data preparation techniques in broad terms we can now focus on the details of data
representations. Anderson (1995) has suggested that there are five general rules to consider when adopting
data representations. Summarizing, these are broadly as follows:

e similar events should give rise to similar representations;

o things that should be separated should be given different representations (ideally separate categories
should have orthogonal representations);

o if an input feature is important (in the context of the recognition task) then it should have a large
number of elements associated with it;

s carrying out adequate preprocessing will reduce the computational task in the adaptive parts of the
network;

o the representation should be easy to program and flexible.

Wasserman (1993) has also proposed a list of properties for data representation schemes. He suggests
that there are four principal characteristics of a good representation:

¢ Compactness

e Information preservation

e Decorrelation

o Separability.

We shall discuss each of these properties in turn.

Compactness. Large networks require longer training times. For example, it has been shown that the
training times for the simple perceptron network increase exponentially with the number of inputs, within
the range 2 < t < MM, where M is the number of inputs. Also it has been proposed that learning times
for MLPs increase at a rate proportional to the number of connections cubed. Hence, it is advantageous
to keep input vectors short.

Information preservation. The need for compact representations must be balanced against the need to
preserve information in the data vector. Consequently, we need to utilize data transforms which allow
a reduction in dimensionality without a reduction in the amount of information represented. Also,
the transform should be reversible—such that when the reduced vector is expanded all of the original
information is recovered. Data transforms of this nature are in use in the analog domain, for example
techniques such as fast Fourier transforms, which represent complex frequency modulated signals in terms
of a number of sinusoid components. Similarly, in the digital domain there are numerous encoding
techniques, such as Manchester encoding, which also reduce the dimensionality of a digital signal without
a reduction in the information content.

Decorrelation. This supports Anderson’s suggestion that objects which belong to different classes should
be given different representations.

Separability. Ideally the data transforms should increase the separation between disparate classes but
enhance the grouping of similar classes. This is complementary to the requirement for decorrelation.

These lists outline the broad objectives that need to be satisfied by a data representation scheme. In
the following sections, we discuss appropriate coding schemes which meet some or all of these constraints.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.6:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

References

Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)
Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

B4.6:2 Handbook of Neural Computation release 97/1 © 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Qutput Representations

B4.7 Coding schemes
Thomas O Jackson

Abstract
See the abstract for Chapter B4.

In the following section we consider the pragmatic issue of how to present features or variables to a neural
network using discrete or continuous values input nodes. Discrete codings typically refer to binary (0,1)
or bipolar (—1, +1) activation functions but can also include nodes with graded output levels. Continuous
valued variables can take any value in the set of real numbers. There are many alternative coding schemes,
so to structure the discussion we categorize them in terms of local or distributed schemes, and discrete
hence, continuous representations. There has been only marginal effort expended to date on comparing the
quantitative and qualitative benefits of the various representation schemes, although the work of Hancock
(1988) is one useful reference. Walters (1987) has also suggested a mathematical framework within which
.he various schemes may be compared.

B4.7.1 Local versus distributed schemes

One of the first issues that needs to be resolved when considering schemes to present data to a neural
network is the choice of distributed or local representations. A local representation is one in which the
feature space is divided into a fixed number of intervals or categories, and a single node (or a cluster of
nodes) is used to represent each category. For example, a local input representation for a neural network
to classify the range of colors in the visible spectrum would use a seven node input, in which each node
is assigned one of the colors, figure B4.7.1.

Figure B4.7.1. A local representation scheme.

Each node has a unique interpretation and they are nonoverlapping. A color is represented by
activating the appropriate node. Local representations typically use binary (or bipolar) activation levels.
However, it is possible to use continuous valued nodes and introduce the concept of fuzzy or probabilistic 1.2
representation. The representation usually operates in a one-of-n mode, but it is also possible to indicate
the presence of two or more features by turning on each of the relevant nodes simultaneously.

A distributed representation is one in which a concept or feature is represented by a pattern of activity
over a large set of units. The units are not specific to any individual feature but each unit contributes

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.7:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Figure B4.7.2. A distributed coding scheme.

(a)

one node

Figure B4.7.3. (a) A local representation. (b) Coarse distributed representation.

to the representation of many features. For example, a distributed representation to encode the spectrum
described above could employ just three nodes to represent the primary colors (red, blue, green) and
describe the full color spectrum in terms of the combinations of the primary colors, figure B4.7.2.

Table B4.7.1. Characteristics of local representation schemes.

Advantages Disadvantages

It is a simple representation scheme which Local schemes do not scale well—a node is
allows direct visibility of variables. required for each input feature.

More than one concept can be represented A new node has to be added in order to

at any time by activating units encode a new feature.

simultaneously.

If continuous valued units are used then They are sensitive to node failures and are
probabilistic representations can be consequently less robust than distributed
implemented. schemes.

One example of a distributed scheme is Hinton’s coarse coding (Rumelhart and McClelland 1986).
In coarse coding each node has an overlapping receptive field, and a feature or value is represented by the
simultaneous activation of several fields. Hinton (1989) has contrasted the two schemes in the following
manner.

In figure B4.7.3(a), a local representation scheme is depicted. The state space is divided into 36
states, and a neuron is assigned to each state. Figure B4.7.3(b) shows how the state space could be
mapped onto a coarse coding scheme using neurons with wider, and overlapping, receptive fields. In
this example each neuron in the coarse coding scheme has a receptive field four times the size of that
in the local representation. The feature space is represented with only 27 nodes in the coarse coding,
but requires 36 nodes in the local representation scheme. The economy offered by coarse coding can be
improved by increasing the size of the receptive field. The accuracy of the coarse coding scheme is also

B4.7:2 Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Coding schemes

Table B4.7.2. Characteristics of distributed representation schemes.

Advantages Disadvantages

Distributed schemes are efficient (in the ideal Distributed schemes are more complex than
case they require log n nodes, where n is the local schemes.
number of features).

Similar inputs give rise to similar Variables are not directly accessible but
representations. must be ‘decoded’ first.

They are robust to noise or faulty units Distributed schemes can only represent a
because the representation is spread across single variable at any one time.

many nodes.

Addition of a new concept does not require
the addition of a new unit.

improved by increasing the size of the receptive fields. This is possibly counterintuitive, but the increased
field size ensures that the overlapping field zones become increasingly more specific. Hence, accuracy is
proportional to nr where n is the number of nodes and r is the receptive field (or radius).

Hinton suggests that coarse coding is only effective when the features to be represented are relatively
sparsely distributed. If many features co-occur within a receptive field, then the patterns of activity become
ambiguous and individual features cannot be distinguished. As a rule of thumb, Hinton suggests that the
size of the receptive fields should be similar to the spacing of the feature set.

In tables B4.7.1 and B4.7.2 the properties of local and distributed coding schemes are described.

References

Hancock P 1988 Data representation in neural nets: an empirical study Proc. 1988 Connectionist Models Summer
School (Carnegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Hinton G 1989 Neural networks Ist Sun Annual Lecture in Computer Science (University of Manchester, UK)

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing: Explorations in the Microstructure of
Cognition (Cambridge, MA: MIT Press)

Walters D K W 1987 Response mapping functions: classification and analysis of connectionist representations. JEEE
1st Int. Conf. on Neural Networks ed M Caudill and C Butler (New York: IEEE Press)

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.7:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.8 Discrete codings
Thomas O Jackson

Abstract
See the abstract for Chapter B4.

In general continuous codings provide better performance than discrete. This point will not be justified

here, but a detailed investigation is reported in Hancock (1988). However, in some circumstances we

may have to use discrete codings and discrete nodes. For example, if we are using an off-the-shelf VLS E13,E143
neural network; many commercial neural network chips use discrete implementations. Hence, despite the
performance advantage of continuous codings we shall look at both discrete and continuous schemes for
representing numbers. We will start with a discussion of discrete schemes.

B4.8.1 Simple sum scheme

The most basic coding scheme for representing real values using a layer of discrete input nodes is the
simple sum scheme. This scheme represents a number, N, by setting an equivalent number of nodes to
an active state. For example, the number 5 could be represented by the binary patterns 0000111111, or
110000111 or 111110000. This scheme offers simplicity as well as some inherent fault tolerance (the loss
of an individual node does not result in large error in the value of the variable represented). For small
numeric ranges this approach is practical. However, it does not scale well; representing a large range of
numbers (e.g. 1-1000) soon becomes prohibitive.

B4.8.2 Value unit encoding

An encoding closely related to the sum scheme is value unit encoding (also known as point approximation
Gallant (1993)). In this method each node is assigned a unique interval within the input range [u, v]. A
node becomes active if the input value lies within its interval. The intervals do not overlap, so only one
unit is active during the representation of a number (i.e. it is a local representation scheme). The precision
of the representation is bounded by the interval width, which in turn is defined by the number of units
used. The scheme can be represented in the following manner:

a

u<x<u+2a

a <u+20
= (+1)iff .. (B4.8.1)

a u<x<u+no

where n is the number of nodes, a, is the output activation of unit n, and 8 is the interval size given by
(v — u)/n. Note that the lower limit of the range, u, is represented by an all zero representation.

As an example, to represent a range of values [0,15] using five input nodes, an interval width of 3 is
required. Representations for the values 2 and 10 would be as in figure B4.8.1.

The efficiency of the value unit encoding scheme is clearly dependent upon the degree of precision
required; higher precision requires the use of more units and a reduction in the economy of representation.
Unlike the sum scheme, this technique does not offer fault tolerance because the failure of a single node
can lead to a loss of representation.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.8:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

46 79 1012 13-15

1-3
. O O O Value unit encoding for 2

Figure B4.8.1. Example of value unit encoding.

O Value unit encoding for 10

B4.8.3 Discrete thermometer

Discrete thermometer encoding is an extension to value unit encoding; the units are coded to respond over
some interval of the input range [u, v]. However, thermometer coding is a distributed scheme and a unit
is always active if the input value is equal to, or greater than, its interval threshold. To represent a value
in the range [0,15] the following representations would be used, figure B4.8.2.

x>0 x>3 x>6 x>9 x>12

O O O O Encoding for value 2

O Encoding forvalue 10

Figure B4.8.2. Example of a discrete thermometer encoding.

For an input range of [u, v] the thermometer code can be expressed in the following manner:

@ x>u+2d
@ o lx=zu+29

= (+1iff§ . . . (B4.8.2)
a X >u+nd

where n is the number of nodes, a, is the output activation of unit n, and 3 is the interval size given by
(v—u)/n+1.

The thermometer scheme has some inherent fault tolerance, due to the fact that the failure of a node
does not result in a large error in the value represented. The maximum error introduced by the failure of
a single node is equivalent to the value of the interval width.

One of the benefits of the thermometer scheme is that variable precision can be controlled in a
simple manner: the precision can be improved by reducing the size of the intervals. The cost of this
improved resolution is the need to use more units for any given range of input values. Where economy
of representation is required (for example in hardware implementations) precision can be traded for larger
interval widths and fewer nodes. In situations where both precision and compactness are required, the
group and weight scheme may be more appropriate.

B4.8.4 Group and weight scheme

Takeda and Goodman (1986) have proposed a discrete representation which combines the economy of
binary representations with the strengths of the simple sum scheme. A number is represented as a bit
pattern, using N bits. The bit pattern is split into K groups, each of which has M bits (hence N = KM).
The bits in each group are summed and multiplied by a base number given by M 4 1. The algorithm to
transform a number using this group and weight approach is as follows:

K M
> [(M + D! qu] (B4.8.3)

k=1 i=1

B4.8:2 Handbook of Neural C

putati release 97/1 @® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Discrete codings

where xy; is bit i of group k.
For example, to represent the number 5 using a 6-bit pattern, with two groups of three bits (i.e.
M =3, k = 2). This can be represented by 100 x 100. Expanding this using equation (B4.8.3) gives us

[4' x (14+0+0)+4°x (1+0+0)]=5.

The binary and simple sum scheme are special cases for equation (B4.8.3). If M =1 and K = N, then it
reduces to the binary case. If M = N and X = 1, then we have the simple sum scheme. One difficulty
with this scheme is that there are many possible permutations for representing any number. In the above
example (010 100), (001 010) (001 001) (etc) are all valid bit patterns for the number 5. This can make
generating a training set problematic.

B4.8.5 Bar coding

A simple variation on the thermometer scheme has been employed by Anderson (1995), which can be
loosely described as ‘bar coding’. This scheme incorporates elements of linear thermometer coding
with aspects of topographical map representation (see Section C2.1), and is modeled on neurobiological
mechanisms observed in the cerebral cortex regions. A continuous parameter is represented by a state
vector with two fields. The first field is a ‘symbolic’ field which provides a unique code for the value
(e.g. Anderson has used binary ASCII codes to represent characters). The second field is an analog code
represented by a ‘sliding bar’ of activity on a ‘topographical scale’. The activity bar is represented by
activating consecutive nodes in the input layer. This is described in figure B4.8.3.

10011111] |

Symbolic code

Min increasing Max
Value —_— Value

Figure B4.8.3. Two-field state vector with ‘symbolic’ field and sliding analog field (after Anderson (1995)).

Vectors in this representation scheme can be concatenated together to represent multiple parameters.
A further variant on the theme is the use of an activity bar that can increase or decrease in width in order
to represent the degree of similarity between two states, figure B4.8.4.

Low Similarity between X and Y

Variable X | I
Min increasing Max
Value Value
Variable Y | |
Min increasing Max
Value > Value
High Similarity between X and Y
Variable X I
Min increasing Max
Valus — Value
Variable Y |
Min increasing Max
Value Valus

Figure B4.8.4. The use of an activity bar of increasing or decreasing width is used to represent the degree

of similarity between two vectors (after Anderson (1995)).

© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Handbook of Neural Computation release 97/1

B4.8:3

Data Input and Output Representations

Anderson has used this scheme in a neural classification system to represent multiparameter continuous
valued signals from a radar. A typical input vector was composed of five signal parameters and had the
following form:

azimuth elevation frequency pulse-width pseudo-spectra
[0000111100] [0111000000] [0000011110] [0011110000] [0001010101000]

The variables (e.g. azimuth, elevation) are represented by an ‘activity bar’ consisting of three or four
active nodes. The position within the frame represents the magnitude. The ‘pseudo-spectra’ field is used
to encode category information about the type of the radar signal. There were three signal types used in
the training example: a monochromatic pulse, a phase modulated signal or a continuous frequency sweep
signal. A single active node was used to represent a monochromatic pulse, an alternating sequence (as
shown in the example) was used to represent a phase modulated frequency. A continuous block of active
nodes was used to represent a signal with a continuous frequency sweep. The patterns used are ‘caricature’
representations of the spectrum produced by Fourier analysis of each signal type. The signal codes are
positioned within the pseudo-spectra data field relative to the center frequency of the signal.

The approach used here by Anderson raises an interesting issue, namely mixing data types within any
single or output vector. In practice many data sets will be composed of diverse data types, for example,
continuous, discrete, binary, symbolic. There is no reason, other than hardware constraints, why these
diverse types cannot be represented simultaneously within a network input or output layer. For example,
to generate a feature vector to capture information for trading on a financial market, we may need to
represent each of the following: share-price, share-price-index, share-price-rising, month, company. This
could map onto a feature vector with the following data types: continuous value, continuous value, bipolar
(Y ,N), discrete, symbolic. An example of a vector to represent this data may be: (4.59, 101.3, +1, 10,
111000).

B4.8.6 Nonlinear thermometer scales

The discrete thermometer and bar coding schemes we have discussed so far have used linear scales and
constant width intervals. However, these schemes can also be adapted to use nonlinear numeric scales,
to accommodate nonlinear trends in data. For example, if the data have a large range we may wish to
make the intervals logarithmic in order to enhance the regions of interest. Wasserman (1993) suggests
that Tukey’s (1977) transformational ladder lists a useful set of methods to consider for monotonically
increasing or decreasing nonlinear representations. The list is as follows:

exp(exp(y))
exp(y)

y4

y2

yO.S

y0‘25

log(y)
log(log(y))

Monotonically increasing data sets would use the transforms in the upper half of the list, decreasing
distributions would use the transforms in the bottom of the list. Other methods such as normal and Gaussian
distributions would also clearly be applicable. These methods can also be applied in the continuous valued
variants for thermometer coding.

B4.8.7 N-tupling preprocessing

The representation schemes we have considered so far are biased towards multilayer networks derived

from the perceptron model. However, there is a class of neural network schemes which do not use nodes

c13, F1.4 and weights architectures. The class of networks in question are binary associative networks such as the
c1.54,C1.58 binary associative memory (Anderson 1995), WISARD (Aleksander and Morton 1990), and the advanced
distributed associative memory (Austin 1987). These networks rely on binary input representations, and

B4.8:4 Handbook of Neural Computation release 97/1 ®© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Discrete codings

place quite different demands upon the form of representations that can be employed. In particular these
networks rely upon the use of sparsely distributed binary input vectors.

One representation technique that is applicable in this domain is N-tuple preprocessing (Browning
and Bledsoe 1959). N-tupling is a one-step mapping process that semi-orthogonalizes the input data by
greatly increasing the dimensionality of the input vector. The input is sampled by an arbitrary number of
N-tuple units. The function of a tuple unit is to map an N-bit binary vector onto a discrete location in
a 2" address space (i.e. a tuple unit is a one-of-N decoder), this is shown in figure B4.8.5. The N-tuple
sampling produces a high-dimensional but sparse coded binary representation of the input vector.

Tuple
Unit

15F—0

0 —b>
QE— 0
1 —p
0 =i

Figure B4.8.5. A 4-tuple unit, showing the 4 to 16-bit vector expansion.

The increase in dimensionality is defined by

(B4.8.4)

dim(x) — 2V [——-—dimm]

N

where N is the dimensionality of the tuple units, and ¥ is the input vector. From (B4.8.4) it can be seen
that N-tuple sampling increases the dimensionality of the input vector x, and reduces the density x;/x,
of the vector. For binary networks N-tupling is an effective preprocessing method.

References

Aleksander I and Morton H 1990 An Introduction to Neural Computing (London: Chapman and Hall)

Anderson J A 1995 An Introduction to Neural Networks (MIT Bradford Press)

Austin J 1987 ADAM: A distributed associative memory for scene analysis /st IEEE Int. Conf. on Neural Networks
ed M Caudill and C Butler (San Diego, CA: IEEE)

Browning W and Bledsoe W 1959 Pattern recognition and reading by machine Proc. astern J. Comp. Conf. pp 225-232

Gallant S I 1993 Neural Network Learning and Expert Systems (MIT Bradford Press)

Hancock P 1988 Data representation in neural nets: an empirical study Proc. 1988 Connectionist Models Summer
School (Carnegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Takeda M and Goodman J W 1986 Neural networks for computation: number representations and programming
complexity Appl. Opt. 25 303347

Tukey J W 1977 Exploratory data analysis (Reading, MA: Addison-Wesley)

Wasserman P D 1993 Advanced methods in neural computing (New York: Van Nostrand Reinhold)

®© 1997 I0P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.8:5

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.9 Continuous codings

Thomas O Jackson

Abstract
See the abstract for Chapter B4.

Continuous codings provide more robust and flexible means for coding numbers, both real valued and
integer. There are several popular forms for continuous coding of inputs, all of which rely on the use of
units with a continuous graded output response. These schemes will now be discussed.

B4.9.1 Simple analog

The simplest continuous valued representation scheme is the use of direct analog coding, whereby the
activation level of a node is directly proportional to the input value. It would be a reasonable approximation
to suggest that this method is probably used in 60-70% of neural network applications. Neuron models
typically use an activation range of [0, 1] or [—1, 41]. In order to use the analog coding scheme over
any given number range, [u, v], we simply linearly scale the representation. If the number range is offset
from zero then we can use a simple transform:

value in range (4, v) = (v —u)[a;]1 +u (B4.9.1)

where a; is the activation of the node.

The simple analog scheme is robust and economical. The most significant weakness in this technique
is the potential loss of precision when scaling the input over a large range. For example, given an input
range of [0, 1000], the difference in representation between two input values such as 810 and 890 can be
masked by the precision of the neuron transfer function. This effect is more pronounced at the extremes of
the range due to the nonlinearity of the sigmoid transfer function. Some of these difficulties can be avoided B3.24
by careful preprocessing of the data, using methods such as normalization (see section B4.4.1). Also, a B4.4.1
data set that has a large dynamic range can be preprocessed using a logarithmic representation. This will
allow the large range of the data to be compressed, but will emphasize small percentage deviations which
may be of greatest relevance to the classification problem.

The effect of the nonlinearity in the sigmoid transfer function is of greater concern when the scheme is
used for representing variables at the output stage of a multilayer perceptron network. Care must be taken c1.2
to avoid using output values which place the nodes in their saturation mode (i.e. outside of the nonlinear
region of the sigmoid function); failure to do so can lead to excessively long training times. This is due
to the fact that the output error value propagated through the network during the backpropagation training
phase is proportional to the derivative of the sigmoid function. At the points of saturation the rate of change
in output with respect to input activation tends to zero. As a consequence the rate of change of weights
also tends to zero, and training rates crawl along at a prohibitively slow pace. To combat this problem, the
outputs should be offset from the limits by some scaling factor. Guyon (1991) has demonstrated that the
multilayer perceptron algorithm training performance is improved by biasing the sigmoid function such
that it is asymmetric, figure B4.9.1. He proposed the following modifications to the sigmoid function to
make it asymmetric about the origin:

2a

T& =1 em ~

(B4.9.2)

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.9:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Suggested values of a and b (which are scaling and bias terms) are:
a=1716

and
b = 0.66666.

For convenience it is useful to set the target output range for the MLP between the limits of 1. These
bias values allow an adequate offset of +0.716.

Figure B4.9.1. Offset, asymmetric, transfer function.

A typical example of this encoding technique can be found in Gorman and Sejnowski’s (1988) neural
sonar recognition system. Here a neural network is trained to classify sonar returns, distinguishing between
mines and similarly shaped natural objects. The sonar signal is a power/frequency spectrum, as shown in
figure B4.9.2. The spectral envelope is sampled at sixty points by sixty analog neuron nodes. Each node
records a single value in the envelope. This example illustrates the inherent simplicity of analog codings.
However, one downside to this simplicity is that the scheme offers no fault tolerance; if a node fails then
the representation is lost.

16 node input layer

Power

Frequncy

Figure B4.9.2. Sampling of the spectral envelope by the analog coding scheme.

B4.9.2 Continuous thermometer

The continuous thermometer coding is a mix of the discrete thermometer and simple analog methods. The
advantage of the continuous scheme over the discrete scheme is that higher precision can be achieved
using fewer nodes. This is due to the fact that each node can represent a continuous range of values
within its interval. It offers similar fault tolerant properties to the discrete scheme. An example is shown
in figure B4.9.3.

B4.9.3 Interpolation coding

Interpolation coding, proposed by Ballard (1987), is a multiunit extension of simple analog coding. In the
simplest case, a single analog unit is replaced by two units, with the output activation functions mapped in

B4.9:2 Hundbook of Neural Computation release 97/1 © 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Continuous codings

x>0 x>3 x>6 x>9 x>12

O O O OVaIue unit encoding for 2
O Value unit encoding for 10

Figure B4.9.3. Continuous thermometer scheme.

opposition to each other. The outputs of the units always sum to a total of one, but one unit’s activation
decreases linearly with the increase in the other. The scheme can also be used in thermometer type codings,
with pairs of units being assigned to each interval. For example, using a thermometer range of 012, the
output for the value 2, and the output for the value 10 can be encoded as shown in figure B4.9.4.

x>0 x>3

x>6 x>9
CI) CX) CD Encoding for value 2
CX) CX) CD Encoding for value 10

Figure B4.9.4. Two-unit interpolation encoding.

This method can also be extended across multiple units. This scheme has been found to have good
resilience to noise (Hancock 1988).
The output is decoded using the following algorithm.

e Determine the value of the node with maximum response, 0, and the value of the highest neighbor,
02. The peak responses (or center response), p, for the selected nodes are then weighted by the actual
response, and the output value is given by

(p101 + p202)

output =
P (01 +02)

(B4.9.3)

B4.9.4 Proportional coarse coding

In section B4.7.1 we described how a coarse distributed scheme can represent a feature space using the B47.1
simultaneous activation of many discrete units. Coarse coding can also be implemented with nonlinear
activation functions. The contribution to the output value from each node is not linear but is proportional,

the relative contributions being controlled by the activation function. Saund (1986) has developed a scheme
which uses the derivative of the sigmoid function as the proportionality function

f& = 1 +e*
flx) = (—1{—%_——); (B4.9.4)

Examples of the derivative are shown in figure B4.9.5. The width of the function can be controlled by

a gain parameter. The width of the function controls the degree of distribution across the nodes (i.e. the
coarseness of the representation). Saund calls this a smearing function.

The layer of units is configured in the same manner as a thermometer coding: each unit is assigned
a response interval. However, the scheme differs from thermometer coding in that intervals overlap. To
represent a variable the smearing function is centered at the value of the variable, x, and the units within
the range of the function are activated to the level determined by the smearing function.

® 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 971 B4.9:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

Figure B4.9.5. Proportionality functions based on the derivative of the sigmoid function.

the least square difference

To determine the value of a number represented by a pattern of activity, the smearing function is ‘slid’

across the outputs until a best-fit is found. The best-fit is determined by the placement which minimizes

can be achieved using eight units.

point x within the interval. The placement of the function at the best-fit point indicates the value of the

activation

variable. An example is shown in figure B4.9.6. Saund reports that variable precision of better than 2%

search for ‘best-fit’

Q(x) = Z(Sx-—i -a)’

where a is the activation value of the node at interval i and s5,—; is the value of the smearing function at

(B4.9.5)

Peak of smear function
gives value of the number

I B

interval

Figure B4.9.6. The smearing function determines the point of maximum response (after Saund (1986)).

B4.9:4 Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

© 1997 IOP Publishing Ltd and Oxford University Press

Continuous codings

B4.9.5 Computational complexity of distributed encoding schemes

The advantage of distributed schemes is their compactness and robustness to damage or noise. The penalty
paid for this compactness is complexity. For example, in Hancock (1988) a proportional coarse coding
scheme is described which is based upon a Gaussian distribution:

output = exp(—0.5(A /o)) (B4.9.6)

where A is the distance of the input from the node’s center value, and o is the standard deviation of the
Gaussian curve.

Hancock describes a one-pass algorithm which is used to ‘decode’ the representation. The example
is based upon a four-node representation. Each of the units, aj—a4 has a value at which it gives peak
response, p;—ps. The purpose of the algorithm is to establish the distance of the actual response from
the peak response, and subsequently determine the value represented by the nodes. The algorithm is as
follows:

find the unit, a;, with the highest output, o;;
find the neighboring unit g; with the next highest output, 05;
calculate the offset A, from the peak response pj, using

A =[-2n(0)]"2 (Ip2 = p11)/o;
e calculate an initial estimate x, of the output value:
if p1 > p; then x3 = py + Aj else x5 = py — Ag;
e form an estimate x; for each of the other units, i:
if x; > pothen x; = p; + A; else x; = p; — A

e calculate the output value by weighting the individual estimates according to the actual outputs of

each unit:
X101 + X202 + X303 + X404

01 +o02+ 03+ 04

This example highlights the computational overhead that is associated with some of the more complex
distributed encoding schemes. It is worth highlighting this issue because this decoding must be performed
as a postprocessing activity, and hence requires additional computer resource. In software implementations
of neural systems this may not present a problem; however, it is more problematic (or costly) in systems
that use dedicated hardware. In some circumstances the computational overhead associated with these
coding methods may be too high, and simpler schemes may prove more pragmatic.

output =

References

Ballard D H 1987 Interpolation coding: a representation for numbers in neural models Biol. Cybern. 57 389-402

Gorman R P and Sejnowski T J 1988 Analysis of hidden units in a layered network trained to classify sonar targets
Neural Networks 1 75-89

Guyon I P 1991 Application of neural networks to character recognition Int. J. Patt. Recog. Artif. Intell. 5 353-82

Hancock P 1988 Data representation in neural nets: an empirical study Proc. 1988 Connectionist Models Summer
School (Carnegie Mellon University) ed D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan
Kauffman)

Saund E 1986 Abstraction and representation of continuous variables in connectionist networks Proc. A.A.A.I-86. Fifth
National Conference on Artificial Intelligence (Philadelphia, PA: Los Altos, Kaufmmann) 638—43

®© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.9:5

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.10 Complex representation issues
Thomas O Jackson

Abstract
See the abstract for Chapter B4.

B4.10.1 Introduction

In our review of data representations we have so far restricted the discussion to the representation of
real-valued variables. However, in some application domains we may wish to represent more complex
variables and concepts, such as time or symbolic information. There are many diverse methods being
developed to facilitate the representation of these complex parameters, but an in-depth review of these
methods is outside the scope of this chapter. However, we shall highlight a number of techniques which
are broadly representative of developments in this area. Firstly, we shall consider how to represent time
in neural networks. Secondly, we shall review the work of Pollack and discuss symbolic representation.
It will become apparent that the network topology and the form of data representation become highly
interdependent in these domains.

B4.10.2 Representing time in neural systems

The question of representing time in neural systems raises many interesting issues. We shall discuss
three fundamental approaches to the problem, and illustrate them with examples of their use in typical
applications. These approaches broadly split into the following methods:

representing time by transforming it into a spatial domain;
making the representation of data to a network time-dependent through the use of delays or filters in
time delay networks;

e making a network time-dependent by the use of recursion.

B4.10.2.1 Transforming between time and spatial domains

Many signal processing domains produce data that have important temporal properties, for example, in F1.8, G3.3
speech processing applications. In general, neural network topologies are configured to handle static data, F1.7,Gi.4
and are not able to process time-varying data. One method to resolve this problem is to transform time
varying signals into a spatial domain. The simplest way to do this is to sample a time-varying signal,
using r samples, and represent it as a time ordered series of measurements in a static feature vector:
[(t1, %, ..., t,]. Alternatively, the signal can be sampled and transformed into a spatial domain using
mathematical techniques such as fast Fourier transforms (FFTs) or spectrograms.

Examples of this approach can be seen in many neural network applications, for example in Kohonen’s
phonetic typewriter, and in the NETtalk system, both of which are speech processing systems.

Kohonen (1988) has developed a neural based system for real-time speech-to-text translation (for
phonetic languages). The key to Kohonen’s system is the transformation of a time-varying speech signal
into a spatial representation using FFTs. The speech signal is sampled at 9.83 millisecond intervals. This is
achieved using a D/A converter, the output of which is analyzed using a 256 point fast Fourier transform.
The Fourier transform extracts 15 spectral components, which, after normalization, form the features of the

© 1997 10P Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.10:1

Copyright © 1997 IOP Publishing Ltd

Data Input and Qutput Representations

oy

/ sample attime t,,

>

Moot Time

Figure B4.10.1. Sampling a time-varying signal, into » discrete measurements.

input vector. This is a static vector, representing the spatial relationships between the instantaneous values
of 15 frequency components. The sampling interval of 9.83 milliseconds is much shorter than the duration
of a typical speech phoneme (which vary in duration from 40 to 400 milliseconds) and as a consequence
the classification of a phoneme is made on the basis of several consecutive samples (typically seven). A
rule-based system is used to analyze the transitions between the samples and subsequently classify the
speech phonemes. Hence, the neural network is used to identify and classify the static, spectral signals,
but rule-based postprocessing is used to capture the temporal properties.

A similar approach can be seen in the NETtalk system, although in this application the spatial
relationships in the data are of more specific concern than the temporal properties. The NETtalk system
was developed by Sejnowski and Rosenberg (1987). It is a neural system which produces synthesized
speech from written English text. The neural network generates a string of phonemes from a string of input
text; the phonemes are used as the input to a traditional speech synthesis system. Pronouncing English
words from written text is a nontrivial task because the rules of English pronunciation are idiosyncratic and
the sound of an individual character is dependent upon the context provided by the surrounding characters
contained in a word. As a consequence the neural network uses a ‘sliding” window that is able to ‘view’
characters behind and ahead of any individual input character. The NETtalk system uses a seven character
window, which slides over a string of input text. This is described in figure B4.10.2. Each of the characters
within the frame is fed to one of seven groups within the input layer. Each input cluster is composed of 29
input units. The clusters use local representation; a character is represented by activating one of the nodes
(26 alphabet characters plus three special characters including a ‘space’ character). Using this approach,
and a supervised training algorithm, the network is able to learn the phonetic translation of each central
character input, whilst accounting for the context of the surrounding characters. Although this application
is not strictly a problem with temporal properties, it can be appreciated that this type of approach could
be usefully applied to time-varying signals.

Central
character

7 letter window
‘slides’ over the text

Figure B4.10.2. The text ‘window’ used in the NETtalk system.

These two examples demonstrate how it is possible, using appropriate preprocessing and
postprocessing, to generate data representations in time-dependent domains that are devoid of explicit
temporal properties, and which make use of spatial relationships that standard neural network topologies
can readily process.

B4.10:2 Handbook of Neural Compuwation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Complex representation issues

B4.10.2.2 Time-delay neural networks

In the preceding section we described methods for representing time-varying signals using spatial
representations. However, in some applications we are not concerned with analyzing a signal at a specific
point in time, but in predicting the state of a signal at a future point in time. In these circumstances,
we need to encapsulate the notion of time dependency within the neural network solution. This can
be achieved using time delays or filters to control the effect, with time, of the network inputs on the
internal representations. One network incorporating this approach is the time-delay neural network (TDNN)
developed by Lang and Hinton (1988) for phoneme classification.

The operation of the TDNN relies on two key modifications to the standard multilayer network
topology; the introduction of time delays on inter-layer connections and duplication of the internal layers
of the network. The hidden layer and the output layer are replicated (in Lang and Hinton’s example there
are ten duplicate copies of the hidden layer and five duplicate copies of the output layer) with identical
sets of weights and nodes. The input vector is time sliced with a moving window (in a similar fashion to
the NETtalk system), and a sampled section, at time #,, is presented to one copy of the hidden layer via
time delays of #,, f,+1, t,+2, and so on. In a similar manner, the activity represented at the hidden layer
is passed to one copy of the output layer via five time delays. At time #,41, the input is moved to the
next time slice, and this is presented to the next copy of the hidden layer and the next copy of the output
layer. Using this approach the variation of the input signal over time has a direct impact on the internal
representations formed by the network during training. The detailed mechanics of the network will not be
discussed here, but are presented in Section C1.2. For the purposes of our discussion we wish to highlight
the fact that there are no specific constraints on the data representation to capture the time series. The
temporal properties are captured, via the time delays, in the network topology itself.

B4.10.2.3 Time sensitivity through recursion

The two methods described above both suffer from the same limitation that all temporal sequences must
be of the same (predetermined) length or sampled on a fixed time base. This may be acceptable in some
applications but clearly not in all. Elman (1990) has addressed this issue by developing networks that
incorporate the concept of ‘memory’ through the use of recursion. Memory allows time to be represented
in a network by its impact upon the current input state. In figure B4.10.3 a schematic diagram is shown
which describes Elman’s feedback mechanisms that create a short-term memory module to modify the
internal network state parameters on a time-dependent basis.

Output

input

Figure B4.10.3. A simple recurrent network used by Elman to represent time. (Note the feedback
connections from the hidden layer to the context layer.) Not all connections are shown (after Elman
1990).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.10:3

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

The network shown in the diagram has a memory component; the context units. The context units
have a one-to-one mapping with the hidden layer, so that any activation at the hidden layer is directly
mirrored at the context layer. The context units also have feedforward connections to the hidden layer;
each context unit activates all of the hidden units. At time ¢, the first input is presented to the network.
The activation at the hidden layer is replicated at the hidden layer via the feedback connections. At time
t + 1 the next input is presented and propagated through the network. However, both the input and the
context units activate the hidden units. Consequently, the total input to the hidden layer is a function
of the present input plus the previous input activation at time t. The context units therefore provide the
network with a dynamic ‘memory’ which is time sensitive.

To demonstrate the principles involved we shall discuss Elman’s use of the network for learning
sentence structure. In the test application, a set of sentences was randomly generated, using a lexical
dictionary of 29 items (with 13 classes of noun and verb) containing 10000 two- and three-word sentences.
Each lexical item was represented by a randomly assigned sparse coded vector (one-bit set in 31, so that
each vector was orthogonal to the others). The training process consisted in presenting a total of 27 534
31-bit binary vectors to the network, which were formed from the stream of the 10000 sentences. The
training was supervised, such that the first input word-vector was trained to map onto the next word in
the sentence sequence. For example, the sentence ‘man eats food’ meant that the first input would be the
binary representation for ‘man’. The associated target vector would be the vector for ‘eats’. Similarly, the
next input would be ‘eats’ which would be associated with ‘food’ as the output target.

Elman discovered that the network had many highly interesting emergent properties when trained
on this test set. The prediction task is nondeterministic, sentence sequences cannot be learned ‘rote’
fashion. However, it was found that the network functioned in a predictive manner and suggested probable
conclusions for incomplete sentence inputs.

B4.10.3 Representation of symbolic information

One area of neural computing where the issue of data representation acquires a very different perspective
is the domain of cognitive science or artificial intelligence. A wide range of neural networks are being
developed which form the basis for cognitive models. The issues in this domain are far reaching and
the range of methods that have been developed are highly diverse. However, to draw attention to some
of the issues in this novel area of neural computing we shall highlight the work of Jordan Pollack who
has developed neural network models for high-level symbolic data representation. This work focuses on
the issues of recursion, and the need for flexible data structures when representing symbolic information.
The primary reason for discussing this work rather than any of the other major efforts in this area is that
Pollack’s approach places emphasis on the data representation issues. By way of introduction we shall
first define the concept of a ‘symbol’ and ‘symbolic reasoning’.

The most widely accepted model for cognitive reasoning is currently the ‘symbolic processing’
paradigm. This paradigm hypothesizes that reasoning ability is derived from our mental capacity to
manipulate symbols and structures of symbols. A symbol is a token which represents an object or a
concept. The formal definition of the symbolic paradigm has been credited to Newell and Simon (1976)
and reads as follows: ‘a physical symbol system consists of a set of entities, called symbols, which are
physical patterns that can occur as components of another type of entity called an expression (or symbol
structure)’. One important issue to highlight in this definition is that the symbol representations must
display compositionality, that is, that they can be combined, systematically, to form new or higher-level
concepts.

The challenge facing the neural computing community is to derive neural architectures that are capable
of manipulating symbols and symbol structures, whilst adhering to the formalisms defined by the symbol
paradigm. Alternatively, the challenge is to propose new, viable models to replace the symbol model of
reasoning. To date the bulk of the effort in neural network cognitive research has been focused towards
symbolic models. However, there are also a number of researchers calling for a paradigm shift and
developing models based at the ‘sub-symbolic’ level (e.g. Hinton 1991, Smolensky 1988). As we have
already stated, these issues are largely outside the scope of our current discussions, but we shall consider
some of the data structure issues raised in Pollack’s work.

Pollack (1991) has argued that a major failing of connectionism in addressing high-level cognition is
the inadequacy of its representations, especially in addressing the problem of how to represent variable
length data structures (as typified by trees and lists). He has proposed a neural network solution to this

B4.10:4 Handbook of Neural Computation release 97/1 © 1997 1OP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Complex representation issues

problem which draws extensively on the properties of reduced descriptions and recursion. A reduced
description is a compact, symbol representation for a larger concept or object. In principle, reduced
descriptions support the notion of compositionality. The system is called a recursive autoassociative
memory (RAAM). He suggests that the RAAM demonstrates that neural systems can learn rules for
compositionality if they use appropriate internal representations. The RAAM principle is best described
by way of a diagram, see figure B4.10.4.

2n output heurons

Left’ Terminal IHight' Terminal

Recontructor stage

n hidden
neurons

Compressor Stage

Left Terminal | Right Terminal

2n input neurons
Figure B4.10.4. RAAM network, with typical ternary tree structure which the network can encode.

The RAAM is a two-stage encoding network with a compressor stage and a reconstructor stage.
The input layer to hidden layer is the compressor stage—this combines two n-bit inputs (i.e. two nodes
in the tree) into a single n-bit vector. The hidden layer to output layer is the reconstructor, which maps
the compressed vector back into its two constituent parts. For example, considering the tree structure in
figure B4.10.4, the compressor stage of the network maps the terminals A and B onto a compressed vector
representation for terminal X. Similarly C and D are mapped onto a representation for Y. Applying
this mechanism recursively X and Y are reapplied to the input layer and are mapped onto a reduced
vector representation for the node Z. The reconstructor layer learns the reciprocal mappings, hence Z
would be mapped back onto nodes X and Y, and X back to A and B etc. The representation for Z can
consequently be considered a reduced representation for the complete tree. These mappings are trained
using standard autoassociative backpropagation learning algorithms. A tree of any depth can be represented
by this recursive approach. To support the recursion the network uses an external stack (not shown in
figure B4.10.4) to store intermediary representations.

The RAAM system can be also used to represent sequences, for example, (X — ¥ — Z) by
exploiting the fact that they map onto left-branching binary trees, that is, ((NIL X) Y) Z). Pollack
suggests that, using these principles, the RAAM can represent complex syntactic and semantic trees (such
as required in natural language processing) and represent propositions of the type ‘Pat loved John’, ‘Pat
knew John loved Mary’. Given that the propositional sentences can be parsed into ternary trees of type
(action agent object), the network can represent a proposition of arbitrary depth. For example, the sentence
‘Pat knew John loved Mary’ can be broken into the triple sequence (KNEW PAT (LOVED JOHN MARY)).
Pollack demonstrated the properties of the network using a training set of 13 propositional sentences, with
recursion varying from 1 to 4 levels.

The constituent parts of the propositions were encoded using binary codings (e.g. the human agent
set—John, Man, Mary, Pat—was encoded using the binary patterns 100, 101, 110, 111 respectively).
Once trained, the system was shown to perform productive generalization. For example, given the triple
(LOVED X Y) the network is able to represent all sixteen possible instantiations of the triple even though
only four were present in the training set. Pollack argues that this demonstrates that the RAAM is not
simply memorizing the training set but is learning the high-level principles of compositionality.

Although we do not have time to explore the implications of the network performance in the cognitive
domain, it highlights an important issue with respect to data representation. The RAAM network provides
mechanisms for representing arbitrary length data structures within a fixed topology network. These
types of mechanisms are a prerequisite if neural networks are to make any future impact in the domain of
symbolic processing. The following references are recommended to readers who may wish to pursue this
topic further: Shastri and Ajjanggade (1989), Hinton (1991), Smolensky (1988).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compuration release 97/1 B4.10:5

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

The discussion of the time-dependent networks and Pollack’s work demonstrate that in these complex
domains the data representations do not differ greatly from the techniques we have discussed in the context
of neural networks for pattern recognition. However, it is evident that the structure of the networks play
a much more significant role than the input or output representations in determining how the data are
interpreted.

References

Elman J L 1990 Finding structure in time Cognitive Sci. 14 179-211

Hinton G E 1991 Connectionist symbol processing (Cambridge, MA: MIT/Elsevier)

Kohonen T 1988 The Neural Phonetic Typewriter IEEE Computer 21 25-40

Lang K J and Hinton G E 1988 The development of time-delay neural network architecture for speech recognition
Technical Report CMU-CS-88-152 Camegie-Mellon University, Pittsburgh, PA

Newell A and Simon H A 1976 Computer science as empirical enquiry: symbols and search Commun. ACM 19

Pollack J B 1991 Recursive distributed representations Connectionist Symbol Processing (Cambridge, MA:
MIT/Elsevier) ed G E Hinton pp 77-106

Sejnowski T J and Rosenberg C R 1987 Parallel networks that learn to pronounce English text Complex Systems §
145-68

Shastri L and Ajjanggade V 1989 A connectionist system for rule based reasoning with multi-place predicates and
variables Technical report MS-CIS-89-06 University of Pennsylvania

Smolensky P 1988 Connectionism, constituency and the language of thought Fodor and his Critics ed B L G Rey
(Oxford: Blackwell)

B4.10:6 Handbook of Neural Computation release 97/1 @© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Data Input and Output Representations

B4.11 Conclusions

Thomas O Jackson

Abstract
See the abstract for Chapter B4,

The successful design and implementation of a pattern classification system hinges on one central
principle—‘know your data’. This cannot be overstated. A thorough understanding of the characteristics
of the data—its properties, trends, biases and distribution—is a prerequisite to generating training data for
neural networks. Poor training data will confound even the most sophisticated neural network training
algorithm.

In this chapter we have drawn attention to this issue, and provided a broad overview of techniques
for data preparation and variable representation that will contribute to developing efficient neural network
classification systems. Neural networks are being applied extensively in many diverse application domains.
It would be a mammoth task to try to provide a set of definitive techniques that would cater for all cases,
and clearly we have not taken this approach. Instead, we have emphasized the approach to data preparation
and analysis which should be adopted, stressing that traditional data analysis techniques, appropriate to
the domain in question, should be exploited to the full. Attention to detail in data preparation will reap
major benefits in the ease with which a neural solution to a classification task will be found.

We will close with a quote from Saund (1986):

‘A key theme in artificial intelligence is to discover good representations for the problem at hand. A
good representation makes explicit information useful to the computation, it strips away obscuring clutter,
it reduces information to its essentials.’

References

Saund E 1986 Abstraction and representation of continuous variables in connectionist networks Proc. A.A.A.I-86: Fifth
National Conference on Artificial Intelligence (Philadelphia, PA: Los Altos, Kaufimann) pp 63843

Further reading

1. Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing vol 1 and 2 (Cambridge, MA: MIT
Press)

The PDP volumes provide broad coverage of representation issues. The appendix of volume 1 also contains
useful tutorial material on linear algebra.

2. Anderson J A 1995 An Introduction to Neural Networks (Cambridge, MA: MIT Press)

Anderson’s book provides a very thorough and interesting discussion of data representation, taking on board
developments within the field of neuroscience.

3. Wasserman P D 1993 Advanced Methods in Neural Computing (New York: Van Nostrand Reinhold)

Wasserman has a lengthy section on ‘neural engineering’ in this book which covers many issues relating to data
representation and the application of neural computing methods.

4. Haykin S 1994 Neural Networks: A Comprehensive Foundation (New York: MacMillan)

This book provides a very mathematical treatise of neural computing methods, including discussions of theorems
for pattern separability. Not for the mathematlcally faint-hearted.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B4.11:1

Copyright © 1997 IOP Publishing Ltd

BS

Network Analysis Techniques

Contents

B5 NETWORK ANALYSIS TECHNIQUES

B5.1 Introduction
Russell Beale

B5.2 Iterative inversion of neural networks and its applications
Alexander Linden

B5.3 Designing analyzable networks
Stephen P Luttrell

®© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1
Copyright © 1997 IOP Publishing Ltd

Network Analysis Techniques

B5.1 Introduction

Russell Beale

One of the oft-quoted advantages of neural systems is that they can be used as a black box, able to learn a
task without the user having a detailed understanding of the internal processes. While this is undoubtedly
true, it is also the case that many errors and cases of poor performance are created by users who use
inappropriate networks, architectures or learning paradigms for their problems, and that having a grasp of
what the network is trying to do and how it is going about it will inevitably result in the more appropriate
and effective use of neural systems.

It is natural to want to extend this understanding to a deeper level, and to ask what exactly is
happening inside the network—it is often not sufficient to know that a network appears to be doing
something; we want to know how and why it is doing it. Analyzing networks in order to understand their
internal dynamics is not an easy task, however. In general, networks learn a complex nonlinear mapping
between inputs and outputs, parametrized by the weights, and sometimes the architecture, of the network.
This mapping may be distributed over the whole of the network, and it can be difficult or impossible to
disentangle the different contributions that make up the overall picture. Any connectist system that has
learned a representation is unlikely to have developed a highly localized one in which individual nodes
represent specific, atomic concepts, though these do occur in some systems that are specifically designed
for a more symbolic approach. Equally, truly distributed representations, in which the contribution of any
one element of the network only marginally affects the overall output, are hard to point to. There are
visualization tools that allow, for example, the weight values to be pictured, but these do not give the
whole story, and the representation of often huge numbers of weights in a two- or three-dimensional space
is restrictive at best, useless at worst.

The two sections that follow present different approaches to understanding the behavior of networks
and their internal representations. Stephen Luttrell discusses the creation of analyzable networks, in which
the network is constructed in such a manner that it is immediately amenable to analysis. While this
has the advantage of being comprehensible in terms of its behavior, it results in a network structure that
is unfamiliar to most neural network researchers. Alexander Linden presents a different angle on the
problem. He discusses the use of iterative inversion techniques on previously trained networks, which
helps in finding, for example, false-positive and false-negative cases, and answering ‘what if’ questions.
This approach, in comparison to Luttrell’s, can be applied to any pretrained network.

It is likely that future supplements to this handbook will contain descriptions of other approaches to
network analysis, and that ongoing research will bring this aspect of neural computation to full maturity.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation telease 9771 BS5,1:1

Copyright © 1997 IOP Publishing Ltd

Network Analysis Techniques

B5.2 Iterative inversion of neural networks and its
applications

Alexander Linden

Abstract

In this section we survey the iterative inversion of neural networks and its applications,
and we discuss its implementation using gradient descent optimization. Inversion is
useful for analyzing already trained neural networks, for example, finding false positive
and false negative cases and answering related ‘what-if’ questions. Another group of
applications addresses the reformulation of knowledge stored in neural networks, for
example, compiling transition knowledge into control knowledge (model-based predictive
control). Among the applications that will be discussed are inverse kinematics, active
learning and reinforcement learning. At the end of this section, the more general case
of constrained solution spaces is discussed.

B5.2.1 Introduction

Many problems can be formulated as inverse problems, where events or inputs have to be determined,
that cause desired or observed effects in some given system or environment. The corresponding forward
formulation models the causal direction, that is, it takes causal factors as input and predicts the outcome
due to the system’s reaction. Examples of inverse problems are briefly presented here, jointly with their
forward formulation.

e For a robot manipulator, the forward model maps its joint angle configuration to the coordinates of
the end-effector. The inverse kinematics takes a specified desired position of the end-effector as input
and determines the configurations that cause it. Usually there will be infinitely many configurations
in the solution space (DeMers 1996) for a robot manipulator with excess degrees of freedom.

o In process control, the forward model predicts the next state of some dynamic system, based on its
current state and the control signals applied to it. The inverse dynamics determines the control signals
that would cause a given desired state given the current state (Jordan and Rumelhart 1992).

e Inremote sensing (e.g. medical imaging, astronomy, geophysical sensing with satellites) the forward
model maps known or speculated characteristics of objects (e.g. geo- and biophysical parameters like
nature of soil and vegetation) to sensed measurements (e.g. electromagnetic or acoustic waves). The
inverse task is to infer the characteristics of the remote objects given their measurements (Davis et
al 1995)—see also Inverse Problems 10 1994 for more applications.

It will be assumed, unless otherwise stated, that the problems considered here are such that causes and
effects can be adequately described by vectors of physical measurements. Under this assumption, forward
models are usually many-to-one functions, since many causes may have the same effects. The inverse
does only exist as a set-valued function and learning this with neural networks will cause problems. It
can be shown (Bishop 1995) that if specific inputs of a neural network are trained onto many targets, the
output will converge to their weighted average, which is usually not an inverse solution.

To avoid this problem, the methodology discussed here will consider inversion as an optimization
problem. Inverse solutions will be calculated iteratively based on a given forward model (Williams 1986).

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Compusation telease 971 BS5.2:1

Copyright © 1997 IOP Publishing Ltd

Network Analysis Techniques

B5.2.2 Introduction to inversion as an optimization problem

Assume a feedforward neural network has already been trained (e.g. by supervised learning) to implement
a forward mapping for a given problem. In other words, it implements a differentiable function f, that
maps real-valued inputs £ = (x1,...,xy) to real-valued outputs ¥ = (¥1,...,ym). Since only the
p1 differentiability of f is assumed, the method described here applies to statistical regression and fuzzy
systems as well.
The problem of inversion can now be stated as follows: for which input vectors x does f(x)
approximate a desired y*? This question can be translated into an optimization problem: find the z
that minimize

E = |ly* - f@)*. (B5.2.1)

Since f is differentiable, gradient optimization is applicable, whereby the input components of x are
considered as free parameters, while the weights of the neural network are held constant. The procedure

requires the calculation of the partial derivatives §; for each of the input components x, ..., x.:
oE
8 =— (B5.2.2)
Bx,-
dlly* — F@I?) 3f (@
A —F@N o - payy . @ (B5.2.3)
ax,- 6x,~

The procedure of computing the &; is very similar to the error backpropagation procedure for training the
weights of a neural network. The only difference is that error signals are now also computed for the input
units and that the partial derivatives for the weights 8 E/dw;; need not be computed, since the weights are
held constant.

Starting with an initial point @ in input space, the gradient-descent step rule for the nth iteration is
2 = x7D — pgh (B5.2.4)

where n > O is the step-width. Its iteration over n yields a sequence of inputs =, z®, ..., ®,
which subsequently minimizes ||y* — f(@®)||®>. As is common for gradient-descent techniques, this
procedure can get trapped into local minima, that is, if ||y* — f(@™)||> converges to some ¢ > O.

D21, Cl42 In these cases more global techniques like genetic algorithms or simulated annealing could be used.
Furthermore, gradient descent techniques are sometimes a little slow for real-time applications. Faster
gradient optimization methods have already been developed for the purpose of training the weights and
are hence applicable to iterative inversion as well. The techniques discussed here are also applicable to

B23,C1.28 other types of structures, for example, recurrent neural networks, time-delay neural networks (Thrun and
Linden 1990) and Hidden Markov Models. The key idea is to transform these structures into feedforward
neural network representation (unfolding from time to space). Therefore, without loss of generality, the
following discussion can be focused on feedforward neural networks.

B5.2.3 An example: iterative inversion for network analysis

Although classificationt is usually treated as a forward problem, we consider it here as a first demonstration
on iterative inversion. Furthermore, it will be illustrated how it can be applied to the analysis of already
trained neural networks. The domain of numerical character recognition was chosen for demonstration
purposes only.
Consider a feedforward neural network (Linden and Kindermann 1989) that has already been trained
613 on classifying handwritten numeralsi. Inputs to the network are 8 x 11 gray-level pixel maps and its ten
output units specify the corresponding categories. In figure B5.2.1 the task is to find an input, without
looking at the training set, that gets classified as a ‘3’. Consequently, the output of the network must
come close to the vector (0,0,0,1,0,0,0,0,0,0). The process starts in figure B5.2.1(a@) with the null
matrix (hence all pixels are white). A modification to equation (B5.2.4) ensures that input activations do
not leave the interval (0, 1]:

t The task of classification is to assign categorical symbols to given patterns.
1 The details will be ignored, because iterative inversion is independent of the structure and the training of the neural network. It
should be noted however, that the training set contained 49 different versions of the ten numerals.

B5.2:2 Handbook of Neural Computation release 97/1 ®© 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Iterative inversion of neural networks

0123456789 0123456789 0123456789
IIITTTITTT] 5 O OIEITTTT]

@ (®) o]

0123456789 0123456789 0123456789

TETITTT] EEE EENEEN EEE EEENEN
) T N
1 | 1

Figure BS.2.1. Example of iterative inversion in a numerical character recognition domain. The snapshots
from initial input (@) to the final result (f) have ten iterations in between. White pixels indicate input
activations near zero and black indicates a one.

2 = min[1, max[0, x"V + 58" 1]]. (B5.2.5)
After a number of iterations, the classification of the input pattern in figure B5.2.1 comes gradually closer
to a ‘3’. Inverse solutions as in figure B5.2.1(f) are quite sensitive to the particular choice of initial starting
points. Often, domain knowledge can help in choosing good starting points, especially if an expectation
about the solution already exists. If no good domain knowledge exists, a neutral or a selection of parallel
initial starting points (possibly combined with genetic algorithms) can be chosen.

Sometimes it is required to integrate additional constraints to restrict the number of possible inverse
solutions, which is is also called regularization. For example, minimizing the extended objective function

E =y - f@|*+rz* — |’ (B5.2.6)

will favor inverse solutions @ that are in the neighborhood of =* (Kindermann and Linden 1992). The
weighting factor A > O sets a priority between the different objectives. A choice of A < 0 favors solutions
that are distant from x*.

This method can also be used to improve the training technique considerably. It is possible, for
example, to detect false positive input patterns which are very close to the null matrix, but still get
classified as a ‘7’ (figure B5.2.2(a)). Augmenting the training set with this and similar derived input
patterns and training with the correcting output (Hwang et al 1990) leads to improved behavior. For
example, figure B5.2.2(b) is derived using the same conditions as for figure B5.2.2(a), but is less of a
false positive. This technique of augmenting a training set can be considered as a kind of knowledge
acquisition ot selective querying: a human is put into the loop in order to correct the outputs of the neural
network by analyzing its input/output behavior.

The same principle can also be applied to spot false negatives. Figure B5.2.2(c) shows an input
pattern not classified as a “7” but still close to a typical ‘7’ (z* has been set to a ‘7’ used during training).
This example shows that having access to the classifier can be abused for camouflaging fraud, such that
it is not detected. Iterative inversion provides a way to proactively detect possible fraudulent situations.

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1 B5.2:3

Copyright © 1997 IOP Publishing Ltd

Network Analysis Techniques

0123456789 0123456789 0123456789 0123456789
EEEEEEE NN HEEBEEE BN (LI TITEI1T] CETTTT1TT1T1]

(@)) (©) (@)

Figure B5.2.2. Interesting input/output relationships can be found with the iterative inversion technique:
(@) depicts an input pattern that is as ‘white’ as possible; (b) same as (a), but with an improved classification
network; (c) depicts an input pattern that looks like a ‘7’ but does explicitly not get classified as such; (d)
depicts an input pattern that is ‘white’ in its upper half, but still gets classified as a ‘1.

It is also useful, as will be pointed out in the next section, to hold specific parts of the input vector
constant. In figure B5.2.2(d), only the lower half of the pixel map was allowed to vary while searching
for an input pattern that would be classified as a ‘1°.

B5.2.4 Applications of knowledge reformulation by inverting forward models
B5.2.4.1 From transition knowledge to control knowledge

Control problems have a natural inverse formulation: given a current state description @, of a process and
a description of a desired state d, what control input u, should be applied to the dynamic process to yield
a given desired state? The corresponding forward formulation is a mapping g which predicts the next state
&,41 given a current state x, and a current control u, as input:

T =g@,u). (B5.2.7)

The following assumes that a forward model g has been identified} for a given process. Iterative
inversion can be now applied to calculate a control vector i, in order to get the dynamic process closer
to a desired state d = g(x,, u,) given a current state &,. Inputs to g which represent x, are held constant
during the gradient descent optimization.

This procedure actually implements a technique called model-based predictive control (Bryson and Ho
1975) with lookahead 1. The generalization to k-step lookahead can be achieved by k-times concatenating
g (see the left part of figure B5.2.3 for an example of k¥ = 3). In the general case, the objective function
is

E = ||d — g(@4k-1, rr-D| (B5.2.8)

where &,; is the result of repeatedly applying g to &;4;—: and @;4+;—; until x, and @, are reached. The
control signal vectors {ii,4;)f.‘;,] are considered the free variables of the optimization. Only the control
vector i, is sent te the process to be controlled. After the state transition into x4 is observed, the other
control signal vectors {i;; };‘;21 can be used as starting points for the next iterative inversion.

This neurocontrol method is very flexible and has the potential to deal with even discontinuous control
laws, since the control action is computed as the result of gradient descent. It has been applied for dynamic
robot manipulator control (Kawato et al 1990, Thrun ef al 1991). Its main drawback is that for real-time
purposes the method might be slow, especially if the lookahead k is large. There have been a couple
of techniques developed to speed this process up (Thrun et al 1991, Nguyen and Widrow 1989). Their
basic idea is to use a second neural network trained on the results of iterative inversion in order to quickly
compute u, given x, and d. This second neural network can either provide good initial starting points or
can be used as the controller.

1 The field of system identification deals with obtaining approximations of g.

B5.2:4 Handbook of Neural Computation release 97/1 ® 1997 IOP Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Iterative inversion of neural networks

Figure B5.2.3. A cascaded neural network architecture for performing three-step look ahead model-based
predictive control. The gray arcs represent the flow of error signals. The gray arcs running into the control
variables denote the fact that their corresponding partial derivatives (i.e. error signals) have to be computed
for the gradient descent search.

B5.2.4.2 Inverse kinematics

Consider a simple planar robot arm with three joints. The forward kinematics takes the joint angles
0 = (8,, 62, 63)" as input and calculates the (x, y)-position of the arm’s fingertip. In this simple example,
the forward kinematics can be represented by a differentiable trigonometric mapping X (61, 6, 63) = (x, y).
It is again straightforward to derive inverse solutions by iterative inversion (Thrun et al 1991, Hoskins et
al 1992). Figure B5.2.4 illustrates this process by showing the robot arm in each of the joint positions
that gradient descent steps through from the initial starting point (i.e. the current position of the robot
manipulator) to the final configuration, where its fingertips are at a specified (x*, y*) position. Even in
this simple case, the inverse mapping is not a function, since many joint angles yield the same fingertip
position. Regularization constraints can be included to relax the joints as much as possible or to have
minimum joint movement. In analogy to the human planning process, this kind of search can be considered
as mental planning, because the robot arm is moved ‘mentally’ through the workspace (Thrun et al 1991)
until it coincides with the ‘goal’.

B5.2.5 Other applications of search in the input space of neural networks

B5.2.5.1 Function optimization

Optimization of a univariate function f with respect to its input = can be achieved by either performing
gradient ascent (for maximization) or descent (for minimization):

af (@)

Bxi("_l)

Xf") - xi(n-l) + {(B5.2.9)

This is a special case of iterative inversion, because the application of equation B5.2.9 is equivalent to
iteratively assigning y* = f(x) & 1 as desired target and using equation B5.2.3. The following two
applications will briefly illustrate the use of function extremization.

B5.2.5.2 Active learning

In active learning (Cohn 1996) the objective is to learn forward models with minimum data collection
efforts. Usually one starts with an incomplete or nonexistent forward model. The idea is to derive

© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computation release 97/1

Copyright © 1997 IOP Publishing Ltd

B5.2:5

Network Analysis Techniques

Figure B5.2.4. A planar robot manipulator in each of the calculated points in joint space during an iterative
inversion.

points in input space, such that maximal information can be gained for the forward model by querying
the environment for the corresponding outputs at these input points. Consider a committee of neural
networkst, where a large disagreement between individual neural networks on the same input can be
interpreted as something ‘interesting’ in terms of information gain (Krogh and Vedelsby 1995). The
measure of disagreement is a function A(x) based on some kind of variance calculation of the outputs
y; = fi(x). Query points z are then calculated by maximizing A(x) by equation (B5.2.9). A query on T
yields a target ¢* which once integrated into the training set will reduce the disagreement of the committee
(at least on x and its neighborhood). Other methods in active learning use other heuristics to specify the
‘interestingness’ or ‘novelty’ of input points to derive new useful queries (Cohn 1996).

B5.2.5.3 Converting evaluation knowledge into actionable knowledge

Evaluation models estimate the utility or value of being in a particular state or performing a certain control
action while being in a state, that is, they calculate functions like Q(x) or Q(x, u). As iterative inversion
was applied to infer control knowledge from transition knowledge, it can in the same way calculate actions

c3 from evaluation models. Reinforcement learning is one of the most prominent ways of obtaining evaluation
models, for example, Q-learning. Control actions can be directly calculated by maximizing Q(zx, u) with
respect to u for any given & (Werbos 1992). If only state evaluations Q(x) are available, the existence of
a transition model g(z, u) is needed to calculate control actions by maximizing Q(g(x, v)) with respect
to u. Both techniques assume differentiable evaluation models. Unfortunately, some applications have the
property that the evaluation models make sudden jumps in the state space (Linden 1993), that is, are not
differentiable.

B5.2.6 The problem of unconstrained search in input space

When searching in input space some input configurations may be impossible by the nature of the domain.
The information about the validity of inputs is not captured by the structure and parameters of the model
F. For example, consider that the variables x; and x, describe the position of an object on a circle.
Hence, x; and x; have to obey xl2 4 x% = 1. But gradient descent on x; and x; in order to minimize
E(d,z) = ||d — f(x1,x2)||*> would yield values x; and x; for which x? 4+ x2 # 1. The idea is to find a
way of restricting the search space. In this example one would minimize E(d, 8) = ||d~ f(sin8, cos 8)|?
with respect to € and obtain provable valid solutions.

t A committee of neural networks is a set of neural networks which all try to model the same function. The resulting output of the
committee is usually the mean of the individual neural networks: f(z) = (3_ f;(2))/n.

B5.2:6 Handbook of Neural Computation release 97/1 ®© 1997 10P Publishing Ltd and Oxford University Press

Copyright © 1997 IOP Publishing Ltd

Iterative inversion of neural networks

The key idea is to know (or to learn to know) where the input data are actually coming from. If all
input data lie on a lower-dimensional manifold X’ C X’ and it is possible to describe X’ by an auxiliary
space A and a mapping h : A — X’ such that

e for each point a € A the image h(a) € A’

o for each point &’ € X’ the inverse image a@ € A exists such that h(a) = o’

¢ and h is differentiable

then, instead of minimizing E(d,x) = ||/d — f(x)|*> with respect to @, one can now minimize
E{d,a) = ||d — f(h(a))|? in an unconstrained way with respect to .A-space, but still conforming to
the constraints defined by h. An example for this is the case where all inputs x;,...,x; describe a
discrete probability distribution, that is, they satisfy Y x; = 1 and x; > 0. In this example, the function h
should be the softmax function

e
Zj:l e
whereby A is the whole ®%. Another frequent constraint is the positivity of input variables (e.g. if
they describe distances). Here A is simply the component-wise application of the exp function, that is,
X =expa;.

The real challenge is how to acquire h when little is known about the domain. In this context,
methods used for dimensionality reduction such as nonlinear principal component analysis might turn out
to be useful. The idea is to train autoassociative networks with a bottle-neck hidden layer (Oja 1991) on
all input data. The bottle-neck hidden layer here represents the auxiliary search space .A. The part of the
network that maps the bottle-neck layer representation to the output would represent the function h.

BS.2,7 Alternative approaches

Indirect approaches for obtaining an inverse. Jordan and Rumelhart (1992) presented an approach of
learning exactly one inverse function by training a second neural network g such that the composite
function f o g accomplishes an autoassociation task. The only way for g to achieve z = (f o g)(z) for
all relevant cases « is that g approximates one inverse of f. A nice application of this approach is a
lookahead controller for a truck backer-upper (Nguyen and Widrow 1989). A drawback of this method is
that only one of the many inverse solutions is compiled into g.

Density estimation. Ghahramani (1994) and Bishop (1995) propose a probability density framework to
deal with inverse problems. Here, the joint probability distribution of the inputs and outputs p(x; y*) is
learned from data. Inputs & are determined by maximizing the conditional probability p(x|y). Although
this framework results only in valid inputs that have actually been used in the training process, high-
dimensional input or output spaces make estimating joint probabilities much more data-intensive than
simple function estimation. It is also not obvious how to include domain knowledge, for example in the
form of fuzzy rules, into a joint density estimation framework.

Mathematical programming. Lu (1993) addresses the question of inverting neural networks <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>